Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.5.6.
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 *	Routines to identify caches on Intel CPU.
   4 *
   5 *	Changes:
   6 *	Venkatesh Pallipadi	: Adding cache identification through cpuid(4)
   7 *	Ashok Raj <ashok.raj@intel.com>: Work with CPU hotplug infrastructure.
   8 *	Andi Kleen / Andreas Herrmann	: CPUID4 emulation on AMD.
   9 */
  10
  11#include <linux/slab.h>
  12#include <linux/cacheinfo.h>
  13#include <linux/cpu.h>
  14#include <linux/cpuhotplug.h>
  15#include <linux/sched.h>
  16#include <linux/capability.h>
  17#include <linux/sysfs.h>
  18#include <linux/pci.h>
  19#include <linux/stop_machine.h>
  20
  21#include <asm/cpufeature.h>
  22#include <asm/cacheinfo.h>
  23#include <asm/amd_nb.h>
  24#include <asm/smp.h>
  25#include <asm/mtrr.h>
  26#include <asm/tlbflush.h>
  27
  28#include "cpu.h"
  29
  30#define LVL_1_INST	1
  31#define LVL_1_DATA	2
  32#define LVL_2		3
  33#define LVL_3		4
  34#define LVL_TRACE	5
  35
  36/* Shared last level cache maps */
  37DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_llc_shared_map);
  38
  39/* Shared L2 cache maps */
  40DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_l2c_shared_map);
  41
  42static cpumask_var_t cpu_cacheinfo_mask;
  43
  44/* Kernel controls MTRR and/or PAT MSRs. */
  45unsigned int memory_caching_control __ro_after_init;
  46
  47struct _cache_table {
  48	unsigned char descriptor;
  49	char cache_type;
  50	short size;
  51};
  52
  53#define MB(x)	((x) * 1024)
  54
  55/* All the cache descriptor types we care about (no TLB or
  56   trace cache entries) */
  57
  58static const struct _cache_table cache_table[] =
  59{
  60	{ 0x06, LVL_1_INST, 8 },	/* 4-way set assoc, 32 byte line size */
  61	{ 0x08, LVL_1_INST, 16 },	/* 4-way set assoc, 32 byte line size */
  62	{ 0x09, LVL_1_INST, 32 },	/* 4-way set assoc, 64 byte line size */
  63	{ 0x0a, LVL_1_DATA, 8 },	/* 2 way set assoc, 32 byte line size */
  64	{ 0x0c, LVL_1_DATA, 16 },	/* 4-way set assoc, 32 byte line size */
  65	{ 0x0d, LVL_1_DATA, 16 },	/* 4-way set assoc, 64 byte line size */
  66	{ 0x0e, LVL_1_DATA, 24 },	/* 6-way set assoc, 64 byte line size */
  67	{ 0x21, LVL_2,      256 },	/* 8-way set assoc, 64 byte line size */
  68	{ 0x22, LVL_3,      512 },	/* 4-way set assoc, sectored cache, 64 byte line size */
  69	{ 0x23, LVL_3,      MB(1) },	/* 8-way set assoc, sectored cache, 64 byte line size */
  70	{ 0x25, LVL_3,      MB(2) },	/* 8-way set assoc, sectored cache, 64 byte line size */
  71	{ 0x29, LVL_3,      MB(4) },	/* 8-way set assoc, sectored cache, 64 byte line size */
  72	{ 0x2c, LVL_1_DATA, 32 },	/* 8-way set assoc, 64 byte line size */
  73	{ 0x30, LVL_1_INST, 32 },	/* 8-way set assoc, 64 byte line size */
  74	{ 0x39, LVL_2,      128 },	/* 4-way set assoc, sectored cache, 64 byte line size */
  75	{ 0x3a, LVL_2,      192 },	/* 6-way set assoc, sectored cache, 64 byte line size */
  76	{ 0x3b, LVL_2,      128 },	/* 2-way set assoc, sectored cache, 64 byte line size */
  77	{ 0x3c, LVL_2,      256 },	/* 4-way set assoc, sectored cache, 64 byte line size */
  78	{ 0x3d, LVL_2,      384 },	/* 6-way set assoc, sectored cache, 64 byte line size */
  79	{ 0x3e, LVL_2,      512 },	/* 4-way set assoc, sectored cache, 64 byte line size */
  80	{ 0x3f, LVL_2,      256 },	/* 2-way set assoc, 64 byte line size */
  81	{ 0x41, LVL_2,      128 },	/* 4-way set assoc, 32 byte line size */
  82	{ 0x42, LVL_2,      256 },	/* 4-way set assoc, 32 byte line size */
  83	{ 0x43, LVL_2,      512 },	/* 4-way set assoc, 32 byte line size */
  84	{ 0x44, LVL_2,      MB(1) },	/* 4-way set assoc, 32 byte line size */
  85	{ 0x45, LVL_2,      MB(2) },	/* 4-way set assoc, 32 byte line size */
  86	{ 0x46, LVL_3,      MB(4) },	/* 4-way set assoc, 64 byte line size */
  87	{ 0x47, LVL_3,      MB(8) },	/* 8-way set assoc, 64 byte line size */
  88	{ 0x48, LVL_2,      MB(3) },	/* 12-way set assoc, 64 byte line size */
  89	{ 0x49, LVL_3,      MB(4) },	/* 16-way set assoc, 64 byte line size */
  90	{ 0x4a, LVL_3,      MB(6) },	/* 12-way set assoc, 64 byte line size */
  91	{ 0x4b, LVL_3,      MB(8) },	/* 16-way set assoc, 64 byte line size */
  92	{ 0x4c, LVL_3,      MB(12) },	/* 12-way set assoc, 64 byte line size */
  93	{ 0x4d, LVL_3,      MB(16) },	/* 16-way set assoc, 64 byte line size */
  94	{ 0x4e, LVL_2,      MB(6) },	/* 24-way set assoc, 64 byte line size */
  95	{ 0x60, LVL_1_DATA, 16 },	/* 8-way set assoc, sectored cache, 64 byte line size */
  96	{ 0x66, LVL_1_DATA, 8 },	/* 4-way set assoc, sectored cache, 64 byte line size */
  97	{ 0x67, LVL_1_DATA, 16 },	/* 4-way set assoc, sectored cache, 64 byte line size */
  98	{ 0x68, LVL_1_DATA, 32 },	/* 4-way set assoc, sectored cache, 64 byte line size */
  99	{ 0x70, LVL_TRACE,  12 },	/* 8-way set assoc */
 100	{ 0x71, LVL_TRACE,  16 },	/* 8-way set assoc */
 101	{ 0x72, LVL_TRACE,  32 },	/* 8-way set assoc */
 102	{ 0x73, LVL_TRACE,  64 },	/* 8-way set assoc */
 103	{ 0x78, LVL_2,      MB(1) },	/* 4-way set assoc, 64 byte line size */
 104	{ 0x79, LVL_2,      128 },	/* 8-way set assoc, sectored cache, 64 byte line size */
 105	{ 0x7a, LVL_2,      256 },	/* 8-way set assoc, sectored cache, 64 byte line size */
 106	{ 0x7b, LVL_2,      512 },	/* 8-way set assoc, sectored cache, 64 byte line size */
 107	{ 0x7c, LVL_2,      MB(1) },	/* 8-way set assoc, sectored cache, 64 byte line size */
 108	{ 0x7d, LVL_2,      MB(2) },	/* 8-way set assoc, 64 byte line size */
 109	{ 0x7f, LVL_2,      512 },	/* 2-way set assoc, 64 byte line size */
 110	{ 0x80, LVL_2,      512 },	/* 8-way set assoc, 64 byte line size */
 111	{ 0x82, LVL_2,      256 },	/* 8-way set assoc, 32 byte line size */
 112	{ 0x83, LVL_2,      512 },	/* 8-way set assoc, 32 byte line size */
 113	{ 0x84, LVL_2,      MB(1) },	/* 8-way set assoc, 32 byte line size */
 114	{ 0x85, LVL_2,      MB(2) },	/* 8-way set assoc, 32 byte line size */
 115	{ 0x86, LVL_2,      512 },	/* 4-way set assoc, 64 byte line size */
 116	{ 0x87, LVL_2,      MB(1) },	/* 8-way set assoc, 64 byte line size */
 117	{ 0xd0, LVL_3,      512 },	/* 4-way set assoc, 64 byte line size */
 118	{ 0xd1, LVL_3,      MB(1) },	/* 4-way set assoc, 64 byte line size */
 119	{ 0xd2, LVL_3,      MB(2) },	/* 4-way set assoc, 64 byte line size */
 120	{ 0xd6, LVL_3,      MB(1) },	/* 8-way set assoc, 64 byte line size */
 121	{ 0xd7, LVL_3,      MB(2) },	/* 8-way set assoc, 64 byte line size */
 122	{ 0xd8, LVL_3,      MB(4) },	/* 12-way set assoc, 64 byte line size */
 123	{ 0xdc, LVL_3,      MB(2) },	/* 12-way set assoc, 64 byte line size */
 124	{ 0xdd, LVL_3,      MB(4) },	/* 12-way set assoc, 64 byte line size */
 125	{ 0xde, LVL_3,      MB(8) },	/* 12-way set assoc, 64 byte line size */
 126	{ 0xe2, LVL_3,      MB(2) },	/* 16-way set assoc, 64 byte line size */
 127	{ 0xe3, LVL_3,      MB(4) },	/* 16-way set assoc, 64 byte line size */
 128	{ 0xe4, LVL_3,      MB(8) },	/* 16-way set assoc, 64 byte line size */
 129	{ 0xea, LVL_3,      MB(12) },	/* 24-way set assoc, 64 byte line size */
 130	{ 0xeb, LVL_3,      MB(18) },	/* 24-way set assoc, 64 byte line size */
 131	{ 0xec, LVL_3,      MB(24) },	/* 24-way set assoc, 64 byte line size */
 132	{ 0x00, 0, 0}
 133};
 134
 135
 136enum _cache_type {
 137	CTYPE_NULL = 0,
 138	CTYPE_DATA = 1,
 139	CTYPE_INST = 2,
 140	CTYPE_UNIFIED = 3
 141};
 142
 143union _cpuid4_leaf_eax {
 144	struct {
 145		enum _cache_type	type:5;
 146		unsigned int		level:3;
 147		unsigned int		is_self_initializing:1;
 148		unsigned int		is_fully_associative:1;
 149		unsigned int		reserved:4;
 150		unsigned int		num_threads_sharing:12;
 151		unsigned int		num_cores_on_die:6;
 152	} split;
 153	u32 full;
 154};
 155
 156union _cpuid4_leaf_ebx {
 157	struct {
 158		unsigned int		coherency_line_size:12;
 159		unsigned int		physical_line_partition:10;
 160		unsigned int		ways_of_associativity:10;
 161	} split;
 162	u32 full;
 163};
 164
 165union _cpuid4_leaf_ecx {
 166	struct {
 167		unsigned int		number_of_sets:32;
 168	} split;
 169	u32 full;
 170};
 171
 172struct _cpuid4_info_regs {
 173	union _cpuid4_leaf_eax eax;
 174	union _cpuid4_leaf_ebx ebx;
 175	union _cpuid4_leaf_ecx ecx;
 176	unsigned int id;
 177	unsigned long size;
 178	struct amd_northbridge *nb;
 179};
 180
 181/* AMD doesn't have CPUID4. Emulate it here to report the same
 182   information to the user.  This makes some assumptions about the machine:
 183   L2 not shared, no SMT etc. that is currently true on AMD CPUs.
 184
 185   In theory the TLBs could be reported as fake type (they are in "dummy").
 186   Maybe later */
 187union l1_cache {
 188	struct {
 189		unsigned line_size:8;
 190		unsigned lines_per_tag:8;
 191		unsigned assoc:8;
 192		unsigned size_in_kb:8;
 193	};
 194	unsigned val;
 195};
 196
 197union l2_cache {
 198	struct {
 199		unsigned line_size:8;
 200		unsigned lines_per_tag:4;
 201		unsigned assoc:4;
 202		unsigned size_in_kb:16;
 203	};
 204	unsigned val;
 205};
 206
 207union l3_cache {
 208	struct {
 209		unsigned line_size:8;
 210		unsigned lines_per_tag:4;
 211		unsigned assoc:4;
 212		unsigned res:2;
 213		unsigned size_encoded:14;
 214	};
 215	unsigned val;
 216};
 217
 218static const unsigned short assocs[] = {
 219	[1] = 1,
 220	[2] = 2,
 221	[4] = 4,
 222	[6] = 8,
 223	[8] = 16,
 224	[0xa] = 32,
 225	[0xb] = 48,
 226	[0xc] = 64,
 227	[0xd] = 96,
 228	[0xe] = 128,
 229	[0xf] = 0xffff /* fully associative - no way to show this currently */
 230};
 231
 232static const unsigned char levels[] = { 1, 1, 2, 3 };
 233static const unsigned char types[] = { 1, 2, 3, 3 };
 234
 235static const enum cache_type cache_type_map[] = {
 236	[CTYPE_NULL] = CACHE_TYPE_NOCACHE,
 237	[CTYPE_DATA] = CACHE_TYPE_DATA,
 238	[CTYPE_INST] = CACHE_TYPE_INST,
 239	[CTYPE_UNIFIED] = CACHE_TYPE_UNIFIED,
 240};
 241
 242static void
 243amd_cpuid4(int leaf, union _cpuid4_leaf_eax *eax,
 244		     union _cpuid4_leaf_ebx *ebx,
 245		     union _cpuid4_leaf_ecx *ecx)
 246{
 247	unsigned dummy;
 248	unsigned line_size, lines_per_tag, assoc, size_in_kb;
 249	union l1_cache l1i, l1d;
 250	union l2_cache l2;
 251	union l3_cache l3;
 252	union l1_cache *l1 = &l1d;
 253
 254	eax->full = 0;
 255	ebx->full = 0;
 256	ecx->full = 0;
 257
 258	cpuid(0x80000005, &dummy, &dummy, &l1d.val, &l1i.val);
 259	cpuid(0x80000006, &dummy, &dummy, &l2.val, &l3.val);
 260
 261	switch (leaf) {
 262	case 1:
 263		l1 = &l1i;
 264		fallthrough;
 265	case 0:
 266		if (!l1->val)
 267			return;
 268		assoc = assocs[l1->assoc];
 269		line_size = l1->line_size;
 270		lines_per_tag = l1->lines_per_tag;
 271		size_in_kb = l1->size_in_kb;
 272		break;
 273	case 2:
 274		if (!l2.val)
 275			return;
 276		assoc = assocs[l2.assoc];
 277		line_size = l2.line_size;
 278		lines_per_tag = l2.lines_per_tag;
 279		/* cpu_data has errata corrections for K7 applied */
 280		size_in_kb = __this_cpu_read(cpu_info.x86_cache_size);
 281		break;
 282	case 3:
 283		if (!l3.val)
 284			return;
 285		assoc = assocs[l3.assoc];
 286		line_size = l3.line_size;
 287		lines_per_tag = l3.lines_per_tag;
 288		size_in_kb = l3.size_encoded * 512;
 289		if (boot_cpu_has(X86_FEATURE_AMD_DCM)) {
 290			size_in_kb = size_in_kb >> 1;
 291			assoc = assoc >> 1;
 292		}
 293		break;
 294	default:
 295		return;
 296	}
 297
 298	eax->split.is_self_initializing = 1;
 299	eax->split.type = types[leaf];
 300	eax->split.level = levels[leaf];
 301	eax->split.num_threads_sharing = 0;
 302	eax->split.num_cores_on_die = topology_num_cores_per_package();
 303
 304
 305	if (assoc == 0xffff)
 306		eax->split.is_fully_associative = 1;
 307	ebx->split.coherency_line_size = line_size - 1;
 308	ebx->split.ways_of_associativity = assoc - 1;
 309	ebx->split.physical_line_partition = lines_per_tag - 1;
 310	ecx->split.number_of_sets = (size_in_kb * 1024) / line_size /
 311		(ebx->split.ways_of_associativity + 1) - 1;
 312}
 313
 314#if defined(CONFIG_AMD_NB) && defined(CONFIG_SYSFS)
 315
 316/*
 317 * L3 cache descriptors
 318 */
 319static void amd_calc_l3_indices(struct amd_northbridge *nb)
 320{
 321	struct amd_l3_cache *l3 = &nb->l3_cache;
 322	unsigned int sc0, sc1, sc2, sc3;
 323	u32 val = 0;
 324
 325	pci_read_config_dword(nb->misc, 0x1C4, &val);
 326
 327	/* calculate subcache sizes */
 328	l3->subcaches[0] = sc0 = !(val & BIT(0));
 329	l3->subcaches[1] = sc1 = !(val & BIT(4));
 330
 331	if (boot_cpu_data.x86 == 0x15) {
 332		l3->subcaches[0] = sc0 += !(val & BIT(1));
 333		l3->subcaches[1] = sc1 += !(val & BIT(5));
 334	}
 335
 336	l3->subcaches[2] = sc2 = !(val & BIT(8))  + !(val & BIT(9));
 337	l3->subcaches[3] = sc3 = !(val & BIT(12)) + !(val & BIT(13));
 338
 339	l3->indices = (max(max3(sc0, sc1, sc2), sc3) << 10) - 1;
 340}
 341
 342/*
 343 * check whether a slot used for disabling an L3 index is occupied.
 344 * @l3: L3 cache descriptor
 345 * @slot: slot number (0..1)
 346 *
 347 * @returns: the disabled index if used or negative value if slot free.
 348 */
 349static int amd_get_l3_disable_slot(struct amd_northbridge *nb, unsigned slot)
 350{
 351	unsigned int reg = 0;
 352
 353	pci_read_config_dword(nb->misc, 0x1BC + slot * 4, &reg);
 354
 355	/* check whether this slot is activated already */
 356	if (reg & (3UL << 30))
 357		return reg & 0xfff;
 358
 359	return -1;
 360}
 361
 362static ssize_t show_cache_disable(struct cacheinfo *this_leaf, char *buf,
 363				  unsigned int slot)
 364{
 365	int index;
 366	struct amd_northbridge *nb = this_leaf->priv;
 367
 368	index = amd_get_l3_disable_slot(nb, slot);
 369	if (index >= 0)
 370		return sprintf(buf, "%d\n", index);
 371
 372	return sprintf(buf, "FREE\n");
 373}
 374
 375#define SHOW_CACHE_DISABLE(slot)					\
 376static ssize_t								\
 377cache_disable_##slot##_show(struct device *dev,				\
 378			    struct device_attribute *attr, char *buf)	\
 379{									\
 380	struct cacheinfo *this_leaf = dev_get_drvdata(dev);		\
 381	return show_cache_disable(this_leaf, buf, slot);		\
 382}
 383SHOW_CACHE_DISABLE(0)
 384SHOW_CACHE_DISABLE(1)
 385
 386static void amd_l3_disable_index(struct amd_northbridge *nb, int cpu,
 387				 unsigned slot, unsigned long idx)
 388{
 389	int i;
 390
 391	idx |= BIT(30);
 392
 393	/*
 394	 *  disable index in all 4 subcaches
 395	 */
 396	for (i = 0; i < 4; i++) {
 397		u32 reg = idx | (i << 20);
 398
 399		if (!nb->l3_cache.subcaches[i])
 400			continue;
 401
 402		pci_write_config_dword(nb->misc, 0x1BC + slot * 4, reg);
 403
 404		/*
 405		 * We need to WBINVD on a core on the node containing the L3
 406		 * cache which indices we disable therefore a simple wbinvd()
 407		 * is not sufficient.
 408		 */
 409		wbinvd_on_cpu(cpu);
 410
 411		reg |= BIT(31);
 412		pci_write_config_dword(nb->misc, 0x1BC + slot * 4, reg);
 413	}
 414}
 415
 416/*
 417 * disable a L3 cache index by using a disable-slot
 418 *
 419 * @l3:    L3 cache descriptor
 420 * @cpu:   A CPU on the node containing the L3 cache
 421 * @slot:  slot number (0..1)
 422 * @index: index to disable
 423 *
 424 * @return: 0 on success, error status on failure
 425 */
 426static int amd_set_l3_disable_slot(struct amd_northbridge *nb, int cpu,
 427			    unsigned slot, unsigned long index)
 428{
 429	int ret = 0;
 430
 431	/*  check if @slot is already used or the index is already disabled */
 432	ret = amd_get_l3_disable_slot(nb, slot);
 433	if (ret >= 0)
 434		return -EEXIST;
 435
 436	if (index > nb->l3_cache.indices)
 437		return -EINVAL;
 438
 439	/* check whether the other slot has disabled the same index already */
 440	if (index == amd_get_l3_disable_slot(nb, !slot))
 441		return -EEXIST;
 442
 443	amd_l3_disable_index(nb, cpu, slot, index);
 444
 445	return 0;
 446}
 447
 448static ssize_t store_cache_disable(struct cacheinfo *this_leaf,
 449				   const char *buf, size_t count,
 450				   unsigned int slot)
 451{
 452	unsigned long val = 0;
 453	int cpu, err = 0;
 454	struct amd_northbridge *nb = this_leaf->priv;
 455
 456	if (!capable(CAP_SYS_ADMIN))
 457		return -EPERM;
 458
 459	cpu = cpumask_first(&this_leaf->shared_cpu_map);
 460
 461	if (kstrtoul(buf, 10, &val) < 0)
 462		return -EINVAL;
 463
 464	err = amd_set_l3_disable_slot(nb, cpu, slot, val);
 465	if (err) {
 466		if (err == -EEXIST)
 467			pr_warn("L3 slot %d in use/index already disabled!\n",
 468				   slot);
 469		return err;
 470	}
 471	return count;
 472}
 473
 474#define STORE_CACHE_DISABLE(slot)					\
 475static ssize_t								\
 476cache_disable_##slot##_store(struct device *dev,			\
 477			     struct device_attribute *attr,		\
 478			     const char *buf, size_t count)		\
 479{									\
 480	struct cacheinfo *this_leaf = dev_get_drvdata(dev);		\
 481	return store_cache_disable(this_leaf, buf, count, slot);	\
 482}
 483STORE_CACHE_DISABLE(0)
 484STORE_CACHE_DISABLE(1)
 485
 486static ssize_t subcaches_show(struct device *dev,
 487			      struct device_attribute *attr, char *buf)
 488{
 489	struct cacheinfo *this_leaf = dev_get_drvdata(dev);
 490	int cpu = cpumask_first(&this_leaf->shared_cpu_map);
 491
 492	return sprintf(buf, "%x\n", amd_get_subcaches(cpu));
 493}
 494
 495static ssize_t subcaches_store(struct device *dev,
 496			       struct device_attribute *attr,
 497			       const char *buf, size_t count)
 498{
 499	struct cacheinfo *this_leaf = dev_get_drvdata(dev);
 500	int cpu = cpumask_first(&this_leaf->shared_cpu_map);
 501	unsigned long val;
 502
 503	if (!capable(CAP_SYS_ADMIN))
 504		return -EPERM;
 505
 506	if (kstrtoul(buf, 16, &val) < 0)
 507		return -EINVAL;
 508
 509	if (amd_set_subcaches(cpu, val))
 510		return -EINVAL;
 511
 512	return count;
 513}
 514
 515static DEVICE_ATTR_RW(cache_disable_0);
 516static DEVICE_ATTR_RW(cache_disable_1);
 517static DEVICE_ATTR_RW(subcaches);
 518
 519static umode_t
 520cache_private_attrs_is_visible(struct kobject *kobj,
 521			       struct attribute *attr, int unused)
 522{
 523	struct device *dev = kobj_to_dev(kobj);
 524	struct cacheinfo *this_leaf = dev_get_drvdata(dev);
 525	umode_t mode = attr->mode;
 526
 527	if (!this_leaf->priv)
 528		return 0;
 529
 530	if ((attr == &dev_attr_subcaches.attr) &&
 531	    amd_nb_has_feature(AMD_NB_L3_PARTITIONING))
 532		return mode;
 533
 534	if ((attr == &dev_attr_cache_disable_0.attr ||
 535	     attr == &dev_attr_cache_disable_1.attr) &&
 536	    amd_nb_has_feature(AMD_NB_L3_INDEX_DISABLE))
 537		return mode;
 538
 539	return 0;
 540}
 541
 542static struct attribute_group cache_private_group = {
 543	.is_visible = cache_private_attrs_is_visible,
 544};
 545
 546static void init_amd_l3_attrs(void)
 547{
 548	int n = 1;
 549	static struct attribute **amd_l3_attrs;
 550
 551	if (amd_l3_attrs) /* already initialized */
 552		return;
 553
 554	if (amd_nb_has_feature(AMD_NB_L3_INDEX_DISABLE))
 555		n += 2;
 556	if (amd_nb_has_feature(AMD_NB_L3_PARTITIONING))
 557		n += 1;
 558
 559	amd_l3_attrs = kcalloc(n, sizeof(*amd_l3_attrs), GFP_KERNEL);
 560	if (!amd_l3_attrs)
 561		return;
 562
 563	n = 0;
 564	if (amd_nb_has_feature(AMD_NB_L3_INDEX_DISABLE)) {
 565		amd_l3_attrs[n++] = &dev_attr_cache_disable_0.attr;
 566		amd_l3_attrs[n++] = &dev_attr_cache_disable_1.attr;
 567	}
 568	if (amd_nb_has_feature(AMD_NB_L3_PARTITIONING))
 569		amd_l3_attrs[n++] = &dev_attr_subcaches.attr;
 570
 571	cache_private_group.attrs = amd_l3_attrs;
 572}
 573
 574const struct attribute_group *
 575cache_get_priv_group(struct cacheinfo *this_leaf)
 576{
 577	struct amd_northbridge *nb = this_leaf->priv;
 578
 579	if (this_leaf->level < 3 || !nb)
 580		return NULL;
 581
 582	if (nb && nb->l3_cache.indices)
 583		init_amd_l3_attrs();
 584
 585	return &cache_private_group;
 586}
 587
 588static void amd_init_l3_cache(struct _cpuid4_info_regs *this_leaf, int index)
 589{
 590	int node;
 591
 592	/* only for L3, and not in virtualized environments */
 593	if (index < 3)
 594		return;
 595
 596	node = topology_amd_node_id(smp_processor_id());
 597	this_leaf->nb = node_to_amd_nb(node);
 598	if (this_leaf->nb && !this_leaf->nb->l3_cache.indices)
 599		amd_calc_l3_indices(this_leaf->nb);
 600}
 601#else
 602#define amd_init_l3_cache(x, y)
 603#endif  /* CONFIG_AMD_NB && CONFIG_SYSFS */
 604
 605static int
 606cpuid4_cache_lookup_regs(int index, struct _cpuid4_info_regs *this_leaf)
 607{
 608	union _cpuid4_leaf_eax	eax;
 609	union _cpuid4_leaf_ebx	ebx;
 610	union _cpuid4_leaf_ecx	ecx;
 611	unsigned		edx;
 612
 613	if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD) {
 614		if (boot_cpu_has(X86_FEATURE_TOPOEXT))
 615			cpuid_count(0x8000001d, index, &eax.full,
 616				    &ebx.full, &ecx.full, &edx);
 617		else
 618			amd_cpuid4(index, &eax, &ebx, &ecx);
 619		amd_init_l3_cache(this_leaf, index);
 620	} else if (boot_cpu_data.x86_vendor == X86_VENDOR_HYGON) {
 621		cpuid_count(0x8000001d, index, &eax.full,
 622			    &ebx.full, &ecx.full, &edx);
 623		amd_init_l3_cache(this_leaf, index);
 624	} else {
 625		cpuid_count(4, index, &eax.full, &ebx.full, &ecx.full, &edx);
 626	}
 627
 628	if (eax.split.type == CTYPE_NULL)
 629		return -EIO; /* better error ? */
 630
 631	this_leaf->eax = eax;
 632	this_leaf->ebx = ebx;
 633	this_leaf->ecx = ecx;
 634	this_leaf->size = (ecx.split.number_of_sets          + 1) *
 635			  (ebx.split.coherency_line_size     + 1) *
 636			  (ebx.split.physical_line_partition + 1) *
 637			  (ebx.split.ways_of_associativity   + 1);
 638	return 0;
 639}
 640
 641static int find_num_cache_leaves(struct cpuinfo_x86 *c)
 642{
 643	unsigned int		eax, ebx, ecx, edx, op;
 644	union _cpuid4_leaf_eax	cache_eax;
 645	int 			i = -1;
 646
 647	if (c->x86_vendor == X86_VENDOR_AMD ||
 648	    c->x86_vendor == X86_VENDOR_HYGON)
 649		op = 0x8000001d;
 650	else
 651		op = 4;
 652
 653	do {
 654		++i;
 655		/* Do cpuid(op) loop to find out num_cache_leaves */
 656		cpuid_count(op, i, &eax, &ebx, &ecx, &edx);
 657		cache_eax.full = eax;
 658	} while (cache_eax.split.type != CTYPE_NULL);
 659	return i;
 660}
 661
 662void cacheinfo_amd_init_llc_id(struct cpuinfo_x86 *c, u16 die_id)
 663{
 664	/*
 665	 * We may have multiple LLCs if L3 caches exist, so check if we
 666	 * have an L3 cache by looking at the L3 cache CPUID leaf.
 667	 */
 668	if (!cpuid_edx(0x80000006))
 669		return;
 670
 671	if (c->x86 < 0x17) {
 672		/* LLC is at the node level. */
 673		c->topo.llc_id = die_id;
 674	} else if (c->x86 == 0x17 && c->x86_model <= 0x1F) {
 675		/*
 676		 * LLC is at the core complex level.
 677		 * Core complex ID is ApicId[3] for these processors.
 678		 */
 679		c->topo.llc_id = c->topo.apicid >> 3;
 680	} else {
 681		/*
 682		 * LLC ID is calculated from the number of threads sharing the
 683		 * cache.
 684		 * */
 685		u32 eax, ebx, ecx, edx, num_sharing_cache = 0;
 686		u32 llc_index = find_num_cache_leaves(c) - 1;
 687
 688		cpuid_count(0x8000001d, llc_index, &eax, &ebx, &ecx, &edx);
 689		if (eax)
 690			num_sharing_cache = ((eax >> 14) & 0xfff) + 1;
 691
 692		if (num_sharing_cache) {
 693			int bits = get_count_order(num_sharing_cache);
 694
 695			c->topo.llc_id = c->topo.apicid >> bits;
 696		}
 697	}
 698}
 699
 700void cacheinfo_hygon_init_llc_id(struct cpuinfo_x86 *c)
 701{
 702	/*
 703	 * We may have multiple LLCs if L3 caches exist, so check if we
 704	 * have an L3 cache by looking at the L3 cache CPUID leaf.
 705	 */
 706	if (!cpuid_edx(0x80000006))
 707		return;
 708
 709	/*
 710	 * LLC is at the core complex level.
 711	 * Core complex ID is ApicId[3] for these processors.
 712	 */
 713	c->topo.llc_id = c->topo.apicid >> 3;
 714}
 715
 716void init_amd_cacheinfo(struct cpuinfo_x86 *c)
 717{
 718	struct cpu_cacheinfo *ci = get_cpu_cacheinfo(c->cpu_index);
 719
 720	if (boot_cpu_has(X86_FEATURE_TOPOEXT)) {
 721		ci->num_leaves = find_num_cache_leaves(c);
 722	} else if (c->extended_cpuid_level >= 0x80000006) {
 723		if (cpuid_edx(0x80000006) & 0xf000)
 724			ci->num_leaves = 4;
 725		else
 726			ci->num_leaves = 3;
 727	}
 728}
 729
 730void init_hygon_cacheinfo(struct cpuinfo_x86 *c)
 731{
 732	struct cpu_cacheinfo *ci = get_cpu_cacheinfo(c->cpu_index);
 733
 734	ci->num_leaves = find_num_cache_leaves(c);
 735}
 736
 737void init_intel_cacheinfo(struct cpuinfo_x86 *c)
 738{
 739	/* Cache sizes */
 740	unsigned int l1i = 0, l1d = 0, l2 = 0, l3 = 0;
 741	unsigned int new_l1d = 0, new_l1i = 0; /* Cache sizes from cpuid(4) */
 742	unsigned int new_l2 = 0, new_l3 = 0, i; /* Cache sizes from cpuid(4) */
 743	unsigned int l2_id = 0, l3_id = 0, num_threads_sharing, index_msb;
 744	struct cpu_cacheinfo *ci = get_cpu_cacheinfo(c->cpu_index);
 745
 746	if (c->cpuid_level > 3) {
 747		/*
 748		 * There should be at least one leaf. A non-zero value means
 749		 * that the number of leaves has been initialized.
 750		 */
 751		if (!ci->num_leaves)
 752			ci->num_leaves = find_num_cache_leaves(c);
 753
 754		/*
 755		 * Whenever possible use cpuid(4), deterministic cache
 756		 * parameters cpuid leaf to find the cache details
 757		 */
 758		for (i = 0; i < ci->num_leaves; i++) {
 759			struct _cpuid4_info_regs this_leaf = {};
 760			int retval;
 761
 762			retval = cpuid4_cache_lookup_regs(i, &this_leaf);
 763			if (retval < 0)
 764				continue;
 765
 766			switch (this_leaf.eax.split.level) {
 767			case 1:
 768				if (this_leaf.eax.split.type == CTYPE_DATA)
 769					new_l1d = this_leaf.size/1024;
 770				else if (this_leaf.eax.split.type == CTYPE_INST)
 771					new_l1i = this_leaf.size/1024;
 772				break;
 773			case 2:
 774				new_l2 = this_leaf.size/1024;
 775				num_threads_sharing = 1 + this_leaf.eax.split.num_threads_sharing;
 776				index_msb = get_count_order(num_threads_sharing);
 777				l2_id = c->topo.apicid & ~((1 << index_msb) - 1);
 778				break;
 779			case 3:
 780				new_l3 = this_leaf.size/1024;
 781				num_threads_sharing = 1 + this_leaf.eax.split.num_threads_sharing;
 782				index_msb = get_count_order(num_threads_sharing);
 783				l3_id = c->topo.apicid & ~((1 << index_msb) - 1);
 784				break;
 785			default:
 786				break;
 787			}
 788		}
 789	}
 790	/*
 791	 * Don't use cpuid2 if cpuid4 is supported. For P4, we use cpuid2 for
 792	 * trace cache
 793	 */
 794	if ((!ci->num_leaves || c->x86 == 15) && c->cpuid_level > 1) {
 795		/* supports eax=2  call */
 796		int j, n;
 797		unsigned int regs[4];
 798		unsigned char *dp = (unsigned char *)regs;
 799		int only_trace = 0;
 800
 801		if (ci->num_leaves && c->x86 == 15)
 802			only_trace = 1;
 803
 804		/* Number of times to iterate */
 805		n = cpuid_eax(2) & 0xFF;
 806
 807		for (i = 0 ; i < n ; i++) {
 808			cpuid(2, &regs[0], &regs[1], &regs[2], &regs[3]);
 809
 810			/* If bit 31 is set, this is an unknown format */
 811			for (j = 0 ; j < 4 ; j++)
 812				if (regs[j] & (1 << 31))
 813					regs[j] = 0;
 814
 815			/* Byte 0 is level count, not a descriptor */
 816			for (j = 1 ; j < 16 ; j++) {
 817				unsigned char des = dp[j];
 818				unsigned char k = 0;
 819
 820				/* look up this descriptor in the table */
 821				while (cache_table[k].descriptor != 0) {
 822					if (cache_table[k].descriptor == des) {
 823						if (only_trace && cache_table[k].cache_type != LVL_TRACE)
 824							break;
 825						switch (cache_table[k].cache_type) {
 826						case LVL_1_INST:
 827							l1i += cache_table[k].size;
 828							break;
 829						case LVL_1_DATA:
 830							l1d += cache_table[k].size;
 831							break;
 832						case LVL_2:
 833							l2 += cache_table[k].size;
 834							break;
 835						case LVL_3:
 836							l3 += cache_table[k].size;
 837							break;
 838						}
 839
 840						break;
 841					}
 842
 843					k++;
 844				}
 845			}
 846		}
 847	}
 848
 849	if (new_l1d)
 850		l1d = new_l1d;
 851
 852	if (new_l1i)
 853		l1i = new_l1i;
 854
 855	if (new_l2) {
 856		l2 = new_l2;
 857		c->topo.llc_id = l2_id;
 858		c->topo.l2c_id = l2_id;
 859	}
 860
 861	if (new_l3) {
 862		l3 = new_l3;
 863		c->topo.llc_id = l3_id;
 864	}
 865
 866	/*
 867	 * If llc_id is not yet set, this means cpuid_level < 4 which in
 868	 * turns means that the only possibility is SMT (as indicated in
 869	 * cpuid1). Since cpuid2 doesn't specify shared caches, and we know
 870	 * that SMT shares all caches, we can unconditionally set cpu_llc_id to
 871	 * c->topo.pkg_id.
 872	 */
 873	if (c->topo.llc_id == BAD_APICID)
 874		c->topo.llc_id = c->topo.pkg_id;
 875
 876	c->x86_cache_size = l3 ? l3 : (l2 ? l2 : (l1i+l1d));
 877
 878	if (!l2)
 879		cpu_detect_cache_sizes(c);
 880}
 881
 882static int __cache_amd_cpumap_setup(unsigned int cpu, int index,
 883				    struct _cpuid4_info_regs *base)
 884{
 885	struct cpu_cacheinfo *this_cpu_ci;
 886	struct cacheinfo *this_leaf;
 887	int i, sibling;
 888
 889	/*
 890	 * For L3, always use the pre-calculated cpu_llc_shared_mask
 891	 * to derive shared_cpu_map.
 892	 */
 893	if (index == 3) {
 894		for_each_cpu(i, cpu_llc_shared_mask(cpu)) {
 895			this_cpu_ci = get_cpu_cacheinfo(i);
 896			if (!this_cpu_ci->info_list)
 897				continue;
 898			this_leaf = this_cpu_ci->info_list + index;
 899			for_each_cpu(sibling, cpu_llc_shared_mask(cpu)) {
 900				if (!cpu_online(sibling))
 901					continue;
 902				cpumask_set_cpu(sibling,
 903						&this_leaf->shared_cpu_map);
 904			}
 905		}
 906	} else if (boot_cpu_has(X86_FEATURE_TOPOEXT)) {
 907		unsigned int apicid, nshared, first, last;
 908
 909		nshared = base->eax.split.num_threads_sharing + 1;
 910		apicid = cpu_data(cpu).topo.apicid;
 911		first = apicid - (apicid % nshared);
 912		last = first + nshared - 1;
 913
 914		for_each_online_cpu(i) {
 915			this_cpu_ci = get_cpu_cacheinfo(i);
 916			if (!this_cpu_ci->info_list)
 917				continue;
 918
 919			apicid = cpu_data(i).topo.apicid;
 920			if ((apicid < first) || (apicid > last))
 921				continue;
 922
 923			this_leaf = this_cpu_ci->info_list + index;
 924
 925			for_each_online_cpu(sibling) {
 926				apicid = cpu_data(sibling).topo.apicid;
 927				if ((apicid < first) || (apicid > last))
 928					continue;
 929				cpumask_set_cpu(sibling,
 930						&this_leaf->shared_cpu_map);
 931			}
 932		}
 933	} else
 934		return 0;
 935
 936	return 1;
 937}
 938
 939static void __cache_cpumap_setup(unsigned int cpu, int index,
 940				 struct _cpuid4_info_regs *base)
 941{
 942	struct cpu_cacheinfo *this_cpu_ci = get_cpu_cacheinfo(cpu);
 943	struct cacheinfo *this_leaf, *sibling_leaf;
 944	unsigned long num_threads_sharing;
 945	int index_msb, i;
 946	struct cpuinfo_x86 *c = &cpu_data(cpu);
 947
 948	if (c->x86_vendor == X86_VENDOR_AMD ||
 949	    c->x86_vendor == X86_VENDOR_HYGON) {
 950		if (__cache_amd_cpumap_setup(cpu, index, base))
 951			return;
 952	}
 953
 954	this_leaf = this_cpu_ci->info_list + index;
 955	num_threads_sharing = 1 + base->eax.split.num_threads_sharing;
 956
 957	cpumask_set_cpu(cpu, &this_leaf->shared_cpu_map);
 958	if (num_threads_sharing == 1)
 959		return;
 960
 961	index_msb = get_count_order(num_threads_sharing);
 962
 963	for_each_online_cpu(i)
 964		if (cpu_data(i).topo.apicid >> index_msb == c->topo.apicid >> index_msb) {
 965			struct cpu_cacheinfo *sib_cpu_ci = get_cpu_cacheinfo(i);
 966
 967			if (i == cpu || !sib_cpu_ci->info_list)
 968				continue;/* skip if itself or no cacheinfo */
 969			sibling_leaf = sib_cpu_ci->info_list + index;
 970			cpumask_set_cpu(i, &this_leaf->shared_cpu_map);
 971			cpumask_set_cpu(cpu, &sibling_leaf->shared_cpu_map);
 972		}
 973}
 974
 975static void ci_leaf_init(struct cacheinfo *this_leaf,
 976			 struct _cpuid4_info_regs *base)
 977{
 978	this_leaf->id = base->id;
 979	this_leaf->attributes = CACHE_ID;
 980	this_leaf->level = base->eax.split.level;
 981	this_leaf->type = cache_type_map[base->eax.split.type];
 982	this_leaf->coherency_line_size =
 983				base->ebx.split.coherency_line_size + 1;
 984	this_leaf->ways_of_associativity =
 985				base->ebx.split.ways_of_associativity + 1;
 986	this_leaf->size = base->size;
 987	this_leaf->number_of_sets = base->ecx.split.number_of_sets + 1;
 988	this_leaf->physical_line_partition =
 989				base->ebx.split.physical_line_partition + 1;
 990	this_leaf->priv = base->nb;
 991}
 992
 993int init_cache_level(unsigned int cpu)
 994{
 995	struct cpu_cacheinfo *ci = get_cpu_cacheinfo(cpu);
 996
 997	/* There should be at least one leaf. */
 998	if (!ci->num_leaves)
 999		return -ENOENT;
1000
1001	return 0;
1002}
1003
1004/*
1005 * The max shared threads number comes from CPUID.4:EAX[25-14] with input
1006 * ECX as cache index. Then right shift apicid by the number's order to get
1007 * cache id for this cache node.
1008 */
1009static void get_cache_id(int cpu, struct _cpuid4_info_regs *id4_regs)
1010{
1011	struct cpuinfo_x86 *c = &cpu_data(cpu);
1012	unsigned long num_threads_sharing;
1013	int index_msb;
1014
1015	num_threads_sharing = 1 + id4_regs->eax.split.num_threads_sharing;
1016	index_msb = get_count_order(num_threads_sharing);
1017	id4_regs->id = c->topo.apicid >> index_msb;
1018}
1019
1020int populate_cache_leaves(unsigned int cpu)
1021{
1022	unsigned int idx, ret;
1023	struct cpu_cacheinfo *this_cpu_ci = get_cpu_cacheinfo(cpu);
1024	struct cacheinfo *this_leaf = this_cpu_ci->info_list;
1025	struct _cpuid4_info_regs id4_regs = {};
1026
1027	for (idx = 0; idx < this_cpu_ci->num_leaves; idx++) {
1028		ret = cpuid4_cache_lookup_regs(idx, &id4_regs);
1029		if (ret)
1030			return ret;
1031		get_cache_id(cpu, &id4_regs);
1032		ci_leaf_init(this_leaf++, &id4_regs);
1033		__cache_cpumap_setup(cpu, idx, &id4_regs);
1034	}
1035	this_cpu_ci->cpu_map_populated = true;
1036
1037	return 0;
1038}
1039
1040/*
1041 * Disable and enable caches. Needed for changing MTRRs and the PAT MSR.
1042 *
1043 * Since we are disabling the cache don't allow any interrupts,
1044 * they would run extremely slow and would only increase the pain.
1045 *
1046 * The caller must ensure that local interrupts are disabled and
1047 * are reenabled after cache_enable() has been called.
1048 */
1049static unsigned long saved_cr4;
1050static DEFINE_RAW_SPINLOCK(cache_disable_lock);
1051
1052void cache_disable(void) __acquires(cache_disable_lock)
1053{
1054	unsigned long cr0;
1055
1056	/*
1057	 * Note that this is not ideal
1058	 * since the cache is only flushed/disabled for this CPU while the
1059	 * MTRRs are changed, but changing this requires more invasive
1060	 * changes to the way the kernel boots
1061	 */
1062
1063	raw_spin_lock(&cache_disable_lock);
1064
1065	/* Enter the no-fill (CD=1, NW=0) cache mode and flush caches. */
1066	cr0 = read_cr0() | X86_CR0_CD;
1067	write_cr0(cr0);
1068
1069	/*
1070	 * Cache flushing is the most time-consuming step when programming
1071	 * the MTRRs. Fortunately, as per the Intel Software Development
1072	 * Manual, we can skip it if the processor supports cache self-
1073	 * snooping.
1074	 */
1075	if (!static_cpu_has(X86_FEATURE_SELFSNOOP))
1076		wbinvd();
1077
1078	/* Save value of CR4 and clear Page Global Enable (bit 7) */
1079	if (cpu_feature_enabled(X86_FEATURE_PGE)) {
1080		saved_cr4 = __read_cr4();
1081		__write_cr4(saved_cr4 & ~X86_CR4_PGE);
1082	}
1083
1084	/* Flush all TLBs via a mov %cr3, %reg; mov %reg, %cr3 */
1085	count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ALL);
1086	flush_tlb_local();
1087
1088	if (cpu_feature_enabled(X86_FEATURE_MTRR))
1089		mtrr_disable();
1090
1091	/* Again, only flush caches if we have to. */
1092	if (!static_cpu_has(X86_FEATURE_SELFSNOOP))
1093		wbinvd();
1094}
1095
1096void cache_enable(void) __releases(cache_disable_lock)
1097{
1098	/* Flush TLBs (no need to flush caches - they are disabled) */
1099	count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ALL);
1100	flush_tlb_local();
1101
1102	if (cpu_feature_enabled(X86_FEATURE_MTRR))
1103		mtrr_enable();
1104
1105	/* Enable caches */
1106	write_cr0(read_cr0() & ~X86_CR0_CD);
1107
1108	/* Restore value of CR4 */
1109	if (cpu_feature_enabled(X86_FEATURE_PGE))
1110		__write_cr4(saved_cr4);
1111
1112	raw_spin_unlock(&cache_disable_lock);
1113}
1114
1115static void cache_cpu_init(void)
1116{
1117	unsigned long flags;
1118
1119	local_irq_save(flags);
1120
1121	if (memory_caching_control & CACHE_MTRR) {
1122		cache_disable();
1123		mtrr_generic_set_state();
1124		cache_enable();
1125	}
1126
1127	if (memory_caching_control & CACHE_PAT)
1128		pat_cpu_init();
1129
1130	local_irq_restore(flags);
1131}
1132
1133static bool cache_aps_delayed_init = true;
1134
1135void set_cache_aps_delayed_init(bool val)
1136{
1137	cache_aps_delayed_init = val;
1138}
1139
1140bool get_cache_aps_delayed_init(void)
1141{
1142	return cache_aps_delayed_init;
1143}
1144
1145static int cache_rendezvous_handler(void *unused)
1146{
1147	if (get_cache_aps_delayed_init() || !cpu_online(smp_processor_id()))
1148		cache_cpu_init();
1149
1150	return 0;
1151}
1152
1153void __init cache_bp_init(void)
1154{
1155	mtrr_bp_init();
1156	pat_bp_init();
1157
1158	if (memory_caching_control)
1159		cache_cpu_init();
1160}
1161
1162void cache_bp_restore(void)
1163{
1164	if (memory_caching_control)
1165		cache_cpu_init();
1166}
1167
1168static int cache_ap_online(unsigned int cpu)
1169{
1170	cpumask_set_cpu(cpu, cpu_cacheinfo_mask);
1171
1172	if (!memory_caching_control || get_cache_aps_delayed_init())
1173		return 0;
1174
1175	/*
1176	 * Ideally we should hold mtrr_mutex here to avoid MTRR entries
1177	 * changed, but this routine will be called in CPU boot time,
1178	 * holding the lock breaks it.
1179	 *
1180	 * This routine is called in two cases:
1181	 *
1182	 *   1. very early time of software resume, when there absolutely
1183	 *      isn't MTRR entry changes;
1184	 *
1185	 *   2. CPU hotadd time. We let mtrr_add/del_page hold cpuhotplug
1186	 *      lock to prevent MTRR entry changes
1187	 */
1188	stop_machine_from_inactive_cpu(cache_rendezvous_handler, NULL,
1189				       cpu_cacheinfo_mask);
1190
1191	return 0;
1192}
1193
1194static int cache_ap_offline(unsigned int cpu)
1195{
1196	cpumask_clear_cpu(cpu, cpu_cacheinfo_mask);
1197	return 0;
1198}
1199
1200/*
1201 * Delayed cache initialization for all AP's
1202 */
1203void cache_aps_init(void)
1204{
1205	if (!memory_caching_control || !get_cache_aps_delayed_init())
1206		return;
1207
1208	stop_machine(cache_rendezvous_handler, NULL, cpu_online_mask);
1209	set_cache_aps_delayed_init(false);
1210}
1211
1212static int __init cache_ap_register(void)
1213{
1214	zalloc_cpumask_var(&cpu_cacheinfo_mask, GFP_KERNEL);
1215	cpumask_set_cpu(smp_processor_id(), cpu_cacheinfo_mask);
1216
1217	cpuhp_setup_state_nocalls(CPUHP_AP_CACHECTRL_STARTING,
1218				  "x86/cachectrl:starting",
1219				  cache_ap_online, cache_ap_offline);
1220	return 0;
1221}
1222early_initcall(cache_ap_register);