Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2#define pr_fmt(fmt) "SMP alternatives: " fmt
3
4#include <linux/module.h>
5#include <linux/sched.h>
6#include <linux/perf_event.h>
7#include <linux/mutex.h>
8#include <linux/list.h>
9#include <linux/stringify.h>
10#include <linux/highmem.h>
11#include <linux/mm.h>
12#include <linux/vmalloc.h>
13#include <linux/memory.h>
14#include <linux/stop_machine.h>
15#include <linux/slab.h>
16#include <linux/kdebug.h>
17#include <linux/kprobes.h>
18#include <linux/mmu_context.h>
19#include <linux/bsearch.h>
20#include <linux/sync_core.h>
21#include <asm/text-patching.h>
22#include <asm/alternative.h>
23#include <asm/sections.h>
24#include <asm/mce.h>
25#include <asm/nmi.h>
26#include <asm/cacheflush.h>
27#include <asm/tlbflush.h>
28#include <asm/insn.h>
29#include <asm/io.h>
30#include <asm/fixmap.h>
31#include <asm/paravirt.h>
32#include <asm/asm-prototypes.h>
33#include <asm/cfi.h>
34
35int __read_mostly alternatives_patched;
36
37EXPORT_SYMBOL_GPL(alternatives_patched);
38
39#define MAX_PATCH_LEN (255-1)
40
41#define DA_ALL (~0)
42#define DA_ALT 0x01
43#define DA_RET 0x02
44#define DA_RETPOLINE 0x04
45#define DA_ENDBR 0x08
46#define DA_SMP 0x10
47
48static unsigned int debug_alternative;
49
50static int __init debug_alt(char *str)
51{
52 if (str && *str == '=')
53 str++;
54
55 if (!str || kstrtouint(str, 0, &debug_alternative))
56 debug_alternative = DA_ALL;
57
58 return 1;
59}
60__setup("debug-alternative", debug_alt);
61
62static int noreplace_smp;
63
64static int __init setup_noreplace_smp(char *str)
65{
66 noreplace_smp = 1;
67 return 1;
68}
69__setup("noreplace-smp", setup_noreplace_smp);
70
71#define DPRINTK(type, fmt, args...) \
72do { \
73 if (debug_alternative & DA_##type) \
74 printk(KERN_DEBUG pr_fmt(fmt) "\n", ##args); \
75} while (0)
76
77#define DUMP_BYTES(type, buf, len, fmt, args...) \
78do { \
79 if (unlikely(debug_alternative & DA_##type)) { \
80 int j; \
81 \
82 if (!(len)) \
83 break; \
84 \
85 printk(KERN_DEBUG pr_fmt(fmt), ##args); \
86 for (j = 0; j < (len) - 1; j++) \
87 printk(KERN_CONT "%02hhx ", buf[j]); \
88 printk(KERN_CONT "%02hhx\n", buf[j]); \
89 } \
90} while (0)
91
92static const unsigned char x86nops[] =
93{
94 BYTES_NOP1,
95 BYTES_NOP2,
96 BYTES_NOP3,
97 BYTES_NOP4,
98 BYTES_NOP5,
99 BYTES_NOP6,
100 BYTES_NOP7,
101 BYTES_NOP8,
102#ifdef CONFIG_64BIT
103 BYTES_NOP9,
104 BYTES_NOP10,
105 BYTES_NOP11,
106#endif
107};
108
109const unsigned char * const x86_nops[ASM_NOP_MAX+1] =
110{
111 NULL,
112 x86nops,
113 x86nops + 1,
114 x86nops + 1 + 2,
115 x86nops + 1 + 2 + 3,
116 x86nops + 1 + 2 + 3 + 4,
117 x86nops + 1 + 2 + 3 + 4 + 5,
118 x86nops + 1 + 2 + 3 + 4 + 5 + 6,
119 x86nops + 1 + 2 + 3 + 4 + 5 + 6 + 7,
120#ifdef CONFIG_64BIT
121 x86nops + 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8,
122 x86nops + 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9,
123 x86nops + 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10,
124#endif
125};
126
127/*
128 * Nomenclature for variable names to simplify and clarify this code and ease
129 * any potential staring at it:
130 *
131 * @instr: source address of the original instructions in the kernel text as
132 * generated by the compiler.
133 *
134 * @buf: temporary buffer on which the patching operates. This buffer is
135 * eventually text-poked into the kernel image.
136 *
137 * @replacement/@repl: pointer to the opcodes which are replacing @instr, located
138 * in the .altinstr_replacement section.
139 */
140
141/*
142 * Fill the buffer with a single effective instruction of size @len.
143 *
144 * In order not to issue an ORC stack depth tracking CFI entry (Call Frame Info)
145 * for every single-byte NOP, try to generate the maximally available NOP of
146 * size <= ASM_NOP_MAX such that only a single CFI entry is generated (vs one for
147 * each single-byte NOPs). If @len to fill out is > ASM_NOP_MAX, pad with INT3 and
148 * *jump* over instead of executing long and daft NOPs.
149 */
150static void add_nop(u8 *buf, unsigned int len)
151{
152 u8 *target = buf + len;
153
154 if (!len)
155 return;
156
157 if (len <= ASM_NOP_MAX) {
158 memcpy(buf, x86_nops[len], len);
159 return;
160 }
161
162 if (len < 128) {
163 __text_gen_insn(buf, JMP8_INSN_OPCODE, buf, target, JMP8_INSN_SIZE);
164 buf += JMP8_INSN_SIZE;
165 } else {
166 __text_gen_insn(buf, JMP32_INSN_OPCODE, buf, target, JMP32_INSN_SIZE);
167 buf += JMP32_INSN_SIZE;
168 }
169
170 for (;buf < target; buf++)
171 *buf = INT3_INSN_OPCODE;
172}
173
174extern s32 __retpoline_sites[], __retpoline_sites_end[];
175extern s32 __return_sites[], __return_sites_end[];
176extern s32 __cfi_sites[], __cfi_sites_end[];
177extern s32 __ibt_endbr_seal[], __ibt_endbr_seal_end[];
178extern s32 __smp_locks[], __smp_locks_end[];
179void text_poke_early(void *addr, const void *opcode, size_t len);
180
181/*
182 * Matches NOP and NOPL, not any of the other possible NOPs.
183 */
184static bool insn_is_nop(struct insn *insn)
185{
186 /* Anything NOP, but no REP NOP */
187 if (insn->opcode.bytes[0] == 0x90 &&
188 (!insn->prefixes.nbytes || insn->prefixes.bytes[0] != 0xF3))
189 return true;
190
191 /* NOPL */
192 if (insn->opcode.bytes[0] == 0x0F && insn->opcode.bytes[1] == 0x1F)
193 return true;
194
195 /* TODO: more nops */
196
197 return false;
198}
199
200/*
201 * Find the offset of the first non-NOP instruction starting at @offset
202 * but no further than @len.
203 */
204static int skip_nops(u8 *buf, int offset, int len)
205{
206 struct insn insn;
207
208 for (; offset < len; offset += insn.length) {
209 if (insn_decode_kernel(&insn, &buf[offset]))
210 break;
211
212 if (!insn_is_nop(&insn))
213 break;
214 }
215
216 return offset;
217}
218
219/*
220 * "noinline" to cause control flow change and thus invalidate I$ and
221 * cause refetch after modification.
222 */
223static void noinline optimize_nops(const u8 * const instr, u8 *buf, size_t len)
224{
225 for (int next, i = 0; i < len; i = next) {
226 struct insn insn;
227
228 if (insn_decode_kernel(&insn, &buf[i]))
229 return;
230
231 next = i + insn.length;
232
233 if (insn_is_nop(&insn)) {
234 int nop = i;
235
236 /* Has the NOP already been optimized? */
237 if (i + insn.length == len)
238 return;
239
240 next = skip_nops(buf, next, len);
241
242 add_nop(buf + nop, next - nop);
243 DUMP_BYTES(ALT, buf, len, "%px: [%d:%d) optimized NOPs: ", instr, nop, next);
244 }
245 }
246}
247
248/*
249 * In this context, "source" is where the instructions are placed in the
250 * section .altinstr_replacement, for example during kernel build by the
251 * toolchain.
252 * "Destination" is where the instructions are being patched in by this
253 * machinery.
254 *
255 * The source offset is:
256 *
257 * src_imm = target - src_next_ip (1)
258 *
259 * and the target offset is:
260 *
261 * dst_imm = target - dst_next_ip (2)
262 *
263 * so rework (1) as an expression for target like:
264 *
265 * target = src_imm + src_next_ip (1a)
266 *
267 * and substitute in (2) to get:
268 *
269 * dst_imm = (src_imm + src_next_ip) - dst_next_ip (3)
270 *
271 * Now, since the instruction stream is 'identical' at src and dst (it
272 * is being copied after all) it can be stated that:
273 *
274 * src_next_ip = src + ip_offset
275 * dst_next_ip = dst + ip_offset (4)
276 *
277 * Substitute (4) in (3) and observe ip_offset being cancelled out to
278 * obtain:
279 *
280 * dst_imm = src_imm + (src + ip_offset) - (dst + ip_offset)
281 * = src_imm + src - dst + ip_offset - ip_offset
282 * = src_imm + src - dst (5)
283 *
284 * IOW, only the relative displacement of the code block matters.
285 */
286
287#define apply_reloc_n(n_, p_, d_) \
288 do { \
289 s32 v = *(s##n_ *)(p_); \
290 v += (d_); \
291 BUG_ON((v >> 31) != (v >> (n_-1))); \
292 *(s##n_ *)(p_) = (s##n_)v; \
293 } while (0)
294
295
296static __always_inline
297void apply_reloc(int n, void *ptr, uintptr_t diff)
298{
299 switch (n) {
300 case 1: apply_reloc_n(8, ptr, diff); break;
301 case 2: apply_reloc_n(16, ptr, diff); break;
302 case 4: apply_reloc_n(32, ptr, diff); break;
303 default: BUG();
304 }
305}
306
307static __always_inline
308bool need_reloc(unsigned long offset, u8 *src, size_t src_len)
309{
310 u8 *target = src + offset;
311 /*
312 * If the target is inside the patched block, it's relative to the
313 * block itself and does not need relocation.
314 */
315 return (target < src || target > src + src_len);
316}
317
318static void __apply_relocation(u8 *buf, const u8 * const instr, size_t instrlen, u8 *repl, size_t repl_len)
319{
320 for (int next, i = 0; i < instrlen; i = next) {
321 struct insn insn;
322
323 if (WARN_ON_ONCE(insn_decode_kernel(&insn, &buf[i])))
324 return;
325
326 next = i + insn.length;
327
328 switch (insn.opcode.bytes[0]) {
329 case 0x0f:
330 if (insn.opcode.bytes[1] < 0x80 ||
331 insn.opcode.bytes[1] > 0x8f)
332 break;
333
334 fallthrough; /* Jcc.d32 */
335 case 0x70 ... 0x7f: /* Jcc.d8 */
336 case JMP8_INSN_OPCODE:
337 case JMP32_INSN_OPCODE:
338 case CALL_INSN_OPCODE:
339 if (need_reloc(next + insn.immediate.value, repl, repl_len)) {
340 apply_reloc(insn.immediate.nbytes,
341 buf + i + insn_offset_immediate(&insn),
342 repl - instr);
343 }
344
345 /*
346 * Where possible, convert JMP.d32 into JMP.d8.
347 */
348 if (insn.opcode.bytes[0] == JMP32_INSN_OPCODE) {
349 s32 imm = insn.immediate.value;
350 imm += repl - instr;
351 imm += JMP32_INSN_SIZE - JMP8_INSN_SIZE;
352 if ((imm >> 31) == (imm >> 7)) {
353 buf[i+0] = JMP8_INSN_OPCODE;
354 buf[i+1] = (s8)imm;
355
356 memset(&buf[i+2], INT3_INSN_OPCODE, insn.length - 2);
357 }
358 }
359 break;
360 }
361
362 if (insn_rip_relative(&insn)) {
363 if (need_reloc(next + insn.displacement.value, repl, repl_len)) {
364 apply_reloc(insn.displacement.nbytes,
365 buf + i + insn_offset_displacement(&insn),
366 repl - instr);
367 }
368 }
369 }
370}
371
372void apply_relocation(u8 *buf, const u8 * const instr, size_t instrlen, u8 *repl, size_t repl_len)
373{
374 __apply_relocation(buf, instr, instrlen, repl, repl_len);
375 optimize_nops(instr, buf, instrlen);
376}
377
378/* Low-level backend functions usable from alternative code replacements. */
379DEFINE_ASM_FUNC(nop_func, "", .entry.text);
380EXPORT_SYMBOL_GPL(nop_func);
381
382noinstr void BUG_func(void)
383{
384 BUG();
385}
386EXPORT_SYMBOL(BUG_func);
387
388#define CALL_RIP_REL_OPCODE 0xff
389#define CALL_RIP_REL_MODRM 0x15
390
391/*
392 * Rewrite the "call BUG_func" replacement to point to the target of the
393 * indirect pv_ops call "call *disp(%ip)".
394 */
395static int alt_replace_call(u8 *instr, u8 *insn_buff, struct alt_instr *a,
396 struct module *mod)
397{
398 u8 *wr_instr = module_writable_address(mod, instr);
399 void *target, *bug = &BUG_func;
400 s32 disp;
401
402 if (a->replacementlen != 5 || insn_buff[0] != CALL_INSN_OPCODE) {
403 pr_err("ALT_FLAG_DIRECT_CALL set for a non-call replacement instruction\n");
404 BUG();
405 }
406
407 if (a->instrlen != 6 ||
408 wr_instr[0] != CALL_RIP_REL_OPCODE ||
409 wr_instr[1] != CALL_RIP_REL_MODRM) {
410 pr_err("ALT_FLAG_DIRECT_CALL set for unrecognized indirect call\n");
411 BUG();
412 }
413
414 /* Skip CALL_RIP_REL_OPCODE and CALL_RIP_REL_MODRM */
415 disp = *(s32 *)(wr_instr + 2);
416#ifdef CONFIG_X86_64
417 /* ff 15 00 00 00 00 call *0x0(%rip) */
418 /* target address is stored at "next instruction + disp". */
419 target = *(void **)(instr + a->instrlen + disp);
420#else
421 /* ff 15 00 00 00 00 call *0x0 */
422 /* target address is stored at disp. */
423 target = *(void **)disp;
424#endif
425 if (!target)
426 target = bug;
427
428 /* (BUG_func - .) + (target - BUG_func) := target - . */
429 *(s32 *)(insn_buff + 1) += target - bug;
430
431 if (target == &nop_func)
432 return 0;
433
434 return 5;
435}
436
437static inline u8 * instr_va(struct alt_instr *i)
438{
439 return (u8 *)&i->instr_offset + i->instr_offset;
440}
441
442/*
443 * Replace instructions with better alternatives for this CPU type. This runs
444 * before SMP is initialized to avoid SMP problems with self modifying code.
445 * This implies that asymmetric systems where APs have less capabilities than
446 * the boot processor are not handled. Tough. Make sure you disable such
447 * features by hand.
448 *
449 * Marked "noinline" to cause control flow change and thus insn cache
450 * to refetch changed I$ lines.
451 */
452void __init_or_module noinline apply_alternatives(struct alt_instr *start,
453 struct alt_instr *end,
454 struct module *mod)
455{
456 u8 insn_buff[MAX_PATCH_LEN];
457 u8 *instr, *replacement;
458 struct alt_instr *a, *b;
459
460 DPRINTK(ALT, "alt table %px, -> %px", start, end);
461
462 /*
463 * In the case CONFIG_X86_5LEVEL=y, KASAN_SHADOW_START is defined using
464 * cpu_feature_enabled(X86_FEATURE_LA57) and is therefore patched here.
465 * During the process, KASAN becomes confused seeing partial LA57
466 * conversion and triggers a false-positive out-of-bound report.
467 *
468 * Disable KASAN until the patching is complete.
469 */
470 kasan_disable_current();
471
472 /*
473 * The scan order should be from start to end. A later scanned
474 * alternative code can overwrite previously scanned alternative code.
475 * Some kernel functions (e.g. memcpy, memset, etc) use this order to
476 * patch code.
477 *
478 * So be careful if you want to change the scan order to any other
479 * order.
480 */
481 for (a = start; a < end; a++) {
482 int insn_buff_sz = 0;
483 u8 *wr_instr, *wr_replacement;
484
485 /*
486 * In case of nested ALTERNATIVE()s the outer alternative might
487 * add more padding. To ensure consistent patching find the max
488 * padding for all alt_instr entries for this site (nested
489 * alternatives result in consecutive entries).
490 */
491 for (b = a+1; b < end && instr_va(b) == instr_va(a); b++) {
492 u8 len = max(a->instrlen, b->instrlen);
493 a->instrlen = b->instrlen = len;
494 }
495
496 instr = instr_va(a);
497 wr_instr = module_writable_address(mod, instr);
498
499 replacement = (u8 *)&a->repl_offset + a->repl_offset;
500 wr_replacement = module_writable_address(mod, replacement);
501
502 BUG_ON(a->instrlen > sizeof(insn_buff));
503 BUG_ON(a->cpuid >= (NCAPINTS + NBUGINTS) * 32);
504
505 /*
506 * Patch if either:
507 * - feature is present
508 * - feature not present but ALT_FLAG_NOT is set to mean,
509 * patch if feature is *NOT* present.
510 */
511 if (!boot_cpu_has(a->cpuid) == !(a->flags & ALT_FLAG_NOT)) {
512 memcpy(insn_buff, wr_instr, a->instrlen);
513 optimize_nops(instr, insn_buff, a->instrlen);
514 text_poke_early(wr_instr, insn_buff, a->instrlen);
515 continue;
516 }
517
518 DPRINTK(ALT, "feat: %d*32+%d, old: (%pS (%px) len: %d), repl: (%px, len: %d) flags: 0x%x",
519 a->cpuid >> 5,
520 a->cpuid & 0x1f,
521 instr, instr, a->instrlen,
522 replacement, a->replacementlen, a->flags);
523
524 memcpy(insn_buff, wr_replacement, a->replacementlen);
525 insn_buff_sz = a->replacementlen;
526
527 if (a->flags & ALT_FLAG_DIRECT_CALL) {
528 insn_buff_sz = alt_replace_call(instr, insn_buff, a,
529 mod);
530 if (insn_buff_sz < 0)
531 continue;
532 }
533
534 for (; insn_buff_sz < a->instrlen; insn_buff_sz++)
535 insn_buff[insn_buff_sz] = 0x90;
536
537 apply_relocation(insn_buff, instr, a->instrlen, replacement, a->replacementlen);
538
539 DUMP_BYTES(ALT, wr_instr, a->instrlen, "%px: old_insn: ", instr);
540 DUMP_BYTES(ALT, replacement, a->replacementlen, "%px: rpl_insn: ", replacement);
541 DUMP_BYTES(ALT, insn_buff, insn_buff_sz, "%px: final_insn: ", instr);
542
543 text_poke_early(wr_instr, insn_buff, insn_buff_sz);
544 }
545
546 kasan_enable_current();
547}
548
549static inline bool is_jcc32(struct insn *insn)
550{
551 /* Jcc.d32 second opcode byte is in the range: 0x80-0x8f */
552 return insn->opcode.bytes[0] == 0x0f && (insn->opcode.bytes[1] & 0xf0) == 0x80;
553}
554
555#if defined(CONFIG_MITIGATION_RETPOLINE) && defined(CONFIG_OBJTOOL)
556
557/*
558 * CALL/JMP *%\reg
559 */
560static int emit_indirect(int op, int reg, u8 *bytes)
561{
562 int i = 0;
563 u8 modrm;
564
565 switch (op) {
566 case CALL_INSN_OPCODE:
567 modrm = 0x10; /* Reg = 2; CALL r/m */
568 break;
569
570 case JMP32_INSN_OPCODE:
571 modrm = 0x20; /* Reg = 4; JMP r/m */
572 break;
573
574 default:
575 WARN_ON_ONCE(1);
576 return -1;
577 }
578
579 if (reg >= 8) {
580 bytes[i++] = 0x41; /* REX.B prefix */
581 reg -= 8;
582 }
583
584 modrm |= 0xc0; /* Mod = 3 */
585 modrm += reg;
586
587 bytes[i++] = 0xff; /* opcode */
588 bytes[i++] = modrm;
589
590 return i;
591}
592
593static int emit_call_track_retpoline(void *addr, struct insn *insn, int reg, u8 *bytes)
594{
595 u8 op = insn->opcode.bytes[0];
596 int i = 0;
597
598 /*
599 * Clang does 'weird' Jcc __x86_indirect_thunk_r11 conditional
600 * tail-calls. Deal with them.
601 */
602 if (is_jcc32(insn)) {
603 bytes[i++] = op;
604 op = insn->opcode.bytes[1];
605 goto clang_jcc;
606 }
607
608 if (insn->length == 6)
609 bytes[i++] = 0x2e; /* CS-prefix */
610
611 switch (op) {
612 case CALL_INSN_OPCODE:
613 __text_gen_insn(bytes+i, op, addr+i,
614 __x86_indirect_call_thunk_array[reg],
615 CALL_INSN_SIZE);
616 i += CALL_INSN_SIZE;
617 break;
618
619 case JMP32_INSN_OPCODE:
620clang_jcc:
621 __text_gen_insn(bytes+i, op, addr+i,
622 __x86_indirect_jump_thunk_array[reg],
623 JMP32_INSN_SIZE);
624 i += JMP32_INSN_SIZE;
625 break;
626
627 default:
628 WARN(1, "%pS %px %*ph\n", addr, addr, 6, addr);
629 return -1;
630 }
631
632 WARN_ON_ONCE(i != insn->length);
633
634 return i;
635}
636
637/*
638 * Rewrite the compiler generated retpoline thunk calls.
639 *
640 * For spectre_v2=off (!X86_FEATURE_RETPOLINE), rewrite them into immediate
641 * indirect instructions, avoiding the extra indirection.
642 *
643 * For example, convert:
644 *
645 * CALL __x86_indirect_thunk_\reg
646 *
647 * into:
648 *
649 * CALL *%\reg
650 *
651 * It also tries to inline spectre_v2=retpoline,lfence when size permits.
652 */
653static int patch_retpoline(void *addr, struct insn *insn, u8 *bytes)
654{
655 retpoline_thunk_t *target;
656 int reg, ret, i = 0;
657 u8 op, cc;
658
659 target = addr + insn->length + insn->immediate.value;
660 reg = target - __x86_indirect_thunk_array;
661
662 if (WARN_ON_ONCE(reg & ~0xf))
663 return -1;
664
665 /* If anyone ever does: CALL/JMP *%rsp, we're in deep trouble. */
666 BUG_ON(reg == 4);
667
668 if (cpu_feature_enabled(X86_FEATURE_RETPOLINE) &&
669 !cpu_feature_enabled(X86_FEATURE_RETPOLINE_LFENCE)) {
670 if (cpu_feature_enabled(X86_FEATURE_CALL_DEPTH))
671 return emit_call_track_retpoline(addr, insn, reg, bytes);
672
673 return -1;
674 }
675
676 op = insn->opcode.bytes[0];
677
678 /*
679 * Convert:
680 *
681 * Jcc.d32 __x86_indirect_thunk_\reg
682 *
683 * into:
684 *
685 * Jncc.d8 1f
686 * [ LFENCE ]
687 * JMP *%\reg
688 * [ NOP ]
689 * 1:
690 */
691 if (is_jcc32(insn)) {
692 cc = insn->opcode.bytes[1] & 0xf;
693 cc ^= 1; /* invert condition */
694
695 bytes[i++] = 0x70 + cc; /* Jcc.d8 */
696 bytes[i++] = insn->length - 2; /* sizeof(Jcc.d8) == 2 */
697
698 /* Continue as if: JMP.d32 __x86_indirect_thunk_\reg */
699 op = JMP32_INSN_OPCODE;
700 }
701
702 /*
703 * For RETPOLINE_LFENCE: prepend the indirect CALL/JMP with an LFENCE.
704 */
705 if (cpu_feature_enabled(X86_FEATURE_RETPOLINE_LFENCE)) {
706 bytes[i++] = 0x0f;
707 bytes[i++] = 0xae;
708 bytes[i++] = 0xe8; /* LFENCE */
709 }
710
711 ret = emit_indirect(op, reg, bytes + i);
712 if (ret < 0)
713 return ret;
714 i += ret;
715
716 /*
717 * The compiler is supposed to EMIT an INT3 after every unconditional
718 * JMP instruction due to AMD BTC. However, if the compiler is too old
719 * or MITIGATION_SLS isn't enabled, we still need an INT3 after
720 * indirect JMPs even on Intel.
721 */
722 if (op == JMP32_INSN_OPCODE && i < insn->length)
723 bytes[i++] = INT3_INSN_OPCODE;
724
725 for (; i < insn->length;)
726 bytes[i++] = BYTES_NOP1;
727
728 return i;
729}
730
731/*
732 * Generated by 'objtool --retpoline'.
733 */
734void __init_or_module noinline apply_retpolines(s32 *start, s32 *end,
735 struct module *mod)
736{
737 s32 *s;
738
739 for (s = start; s < end; s++) {
740 void *addr = (void *)s + *s;
741 void *wr_addr = module_writable_address(mod, addr);
742 struct insn insn;
743 int len, ret;
744 u8 bytes[16];
745 u8 op1, op2;
746
747 ret = insn_decode_kernel(&insn, wr_addr);
748 if (WARN_ON_ONCE(ret < 0))
749 continue;
750
751 op1 = insn.opcode.bytes[0];
752 op2 = insn.opcode.bytes[1];
753
754 switch (op1) {
755 case CALL_INSN_OPCODE:
756 case JMP32_INSN_OPCODE:
757 break;
758
759 case 0x0f: /* escape */
760 if (op2 >= 0x80 && op2 <= 0x8f)
761 break;
762 fallthrough;
763 default:
764 WARN_ON_ONCE(1);
765 continue;
766 }
767
768 DPRINTK(RETPOLINE, "retpoline at: %pS (%px) len: %d to: %pS",
769 addr, addr, insn.length,
770 addr + insn.length + insn.immediate.value);
771
772 len = patch_retpoline(addr, &insn, bytes);
773 if (len == insn.length) {
774 optimize_nops(addr, bytes, len);
775 DUMP_BYTES(RETPOLINE, ((u8*)wr_addr), len, "%px: orig: ", addr);
776 DUMP_BYTES(RETPOLINE, ((u8*)bytes), len, "%px: repl: ", addr);
777 text_poke_early(wr_addr, bytes, len);
778 }
779 }
780}
781
782#ifdef CONFIG_MITIGATION_RETHUNK
783
784/*
785 * Rewrite the compiler generated return thunk tail-calls.
786 *
787 * For example, convert:
788 *
789 * JMP __x86_return_thunk
790 *
791 * into:
792 *
793 * RET
794 */
795static int patch_return(void *addr, struct insn *insn, u8 *bytes)
796{
797 int i = 0;
798
799 /* Patch the custom return thunks... */
800 if (cpu_feature_enabled(X86_FEATURE_RETHUNK)) {
801 i = JMP32_INSN_SIZE;
802 __text_gen_insn(bytes, JMP32_INSN_OPCODE, addr, x86_return_thunk, i);
803 } else {
804 /* ... or patch them out if not needed. */
805 bytes[i++] = RET_INSN_OPCODE;
806 }
807
808 for (; i < insn->length;)
809 bytes[i++] = INT3_INSN_OPCODE;
810 return i;
811}
812
813void __init_or_module noinline apply_returns(s32 *start, s32 *end,
814 struct module *mod)
815{
816 s32 *s;
817
818 if (cpu_feature_enabled(X86_FEATURE_RETHUNK))
819 static_call_force_reinit();
820
821 for (s = start; s < end; s++) {
822 void *dest = NULL, *addr = (void *)s + *s;
823 void *wr_addr = module_writable_address(mod, addr);
824 struct insn insn;
825 int len, ret;
826 u8 bytes[16];
827 u8 op;
828
829 ret = insn_decode_kernel(&insn, wr_addr);
830 if (WARN_ON_ONCE(ret < 0))
831 continue;
832
833 op = insn.opcode.bytes[0];
834 if (op == JMP32_INSN_OPCODE)
835 dest = addr + insn.length + insn.immediate.value;
836
837 if (__static_call_fixup(addr, op, dest) ||
838 WARN_ONCE(dest != &__x86_return_thunk,
839 "missing return thunk: %pS-%pS: %*ph",
840 addr, dest, 5, addr))
841 continue;
842
843 DPRINTK(RET, "return thunk at: %pS (%px) len: %d to: %pS",
844 addr, addr, insn.length,
845 addr + insn.length + insn.immediate.value);
846
847 len = patch_return(addr, &insn, bytes);
848 if (len == insn.length) {
849 DUMP_BYTES(RET, ((u8*)wr_addr), len, "%px: orig: ", addr);
850 DUMP_BYTES(RET, ((u8*)bytes), len, "%px: repl: ", addr);
851 text_poke_early(wr_addr, bytes, len);
852 }
853 }
854}
855#else
856void __init_or_module noinline apply_returns(s32 *start, s32 *end,
857 struct module *mod) { }
858#endif /* CONFIG_MITIGATION_RETHUNK */
859
860#else /* !CONFIG_MITIGATION_RETPOLINE || !CONFIG_OBJTOOL */
861
862void __init_or_module noinline apply_retpolines(s32 *start, s32 *end,
863 struct module *mod) { }
864void __init_or_module noinline apply_returns(s32 *start, s32 *end,
865 struct module *mod) { }
866
867#endif /* CONFIG_MITIGATION_RETPOLINE && CONFIG_OBJTOOL */
868
869#ifdef CONFIG_X86_KERNEL_IBT
870
871static void poison_cfi(void *addr, void *wr_addr);
872
873static void __init_or_module poison_endbr(void *addr, void *wr_addr, bool warn)
874{
875 u32 endbr, poison = gen_endbr_poison();
876
877 if (WARN_ON_ONCE(get_kernel_nofault(endbr, wr_addr)))
878 return;
879
880 if (!is_endbr(endbr)) {
881 WARN_ON_ONCE(warn);
882 return;
883 }
884
885 DPRINTK(ENDBR, "ENDBR at: %pS (%px)", addr, addr);
886
887 /*
888 * When we have IBT, the lack of ENDBR will trigger #CP
889 */
890 DUMP_BYTES(ENDBR, ((u8*)addr), 4, "%px: orig: ", addr);
891 DUMP_BYTES(ENDBR, ((u8*)&poison), 4, "%px: repl: ", addr);
892 text_poke_early(wr_addr, &poison, 4);
893}
894
895/*
896 * Generated by: objtool --ibt
897 *
898 * Seal the functions for indirect calls by clobbering the ENDBR instructions
899 * and the kCFI hash value.
900 */
901void __init_or_module noinline apply_seal_endbr(s32 *start, s32 *end, struct module *mod)
902{
903 s32 *s;
904
905 for (s = start; s < end; s++) {
906 void *addr = (void *)s + *s;
907 void *wr_addr = module_writable_address(mod, addr);
908
909 poison_endbr(addr, wr_addr, true);
910 if (IS_ENABLED(CONFIG_FINEIBT))
911 poison_cfi(addr - 16, wr_addr - 16);
912 }
913}
914
915#else
916
917void __init_or_module apply_seal_endbr(s32 *start, s32 *end, struct module *mod) { }
918
919#endif /* CONFIG_X86_KERNEL_IBT */
920
921#ifdef CONFIG_CFI_AUTO_DEFAULT
922#define __CFI_DEFAULT CFI_AUTO
923#elif defined(CONFIG_CFI_CLANG)
924#define __CFI_DEFAULT CFI_KCFI
925#else
926#define __CFI_DEFAULT CFI_OFF
927#endif
928
929enum cfi_mode cfi_mode __ro_after_init = __CFI_DEFAULT;
930
931#ifdef CONFIG_CFI_CLANG
932struct bpf_insn;
933
934/* Must match bpf_func_t / DEFINE_BPF_PROG_RUN() */
935extern unsigned int __bpf_prog_runX(const void *ctx,
936 const struct bpf_insn *insn);
937
938/*
939 * Force a reference to the external symbol so the compiler generates
940 * __kcfi_typid.
941 */
942__ADDRESSABLE(__bpf_prog_runX);
943
944/* u32 __ro_after_init cfi_bpf_hash = __kcfi_typeid___bpf_prog_runX; */
945asm (
946" .pushsection .data..ro_after_init,\"aw\",@progbits \n"
947" .type cfi_bpf_hash,@object \n"
948" .globl cfi_bpf_hash \n"
949" .p2align 2, 0x0 \n"
950"cfi_bpf_hash: \n"
951" .long __kcfi_typeid___bpf_prog_runX \n"
952" .size cfi_bpf_hash, 4 \n"
953" .popsection \n"
954);
955
956/* Must match bpf_callback_t */
957extern u64 __bpf_callback_fn(u64, u64, u64, u64, u64);
958
959__ADDRESSABLE(__bpf_callback_fn);
960
961/* u32 __ro_after_init cfi_bpf_subprog_hash = __kcfi_typeid___bpf_callback_fn; */
962asm (
963" .pushsection .data..ro_after_init,\"aw\",@progbits \n"
964" .type cfi_bpf_subprog_hash,@object \n"
965" .globl cfi_bpf_subprog_hash \n"
966" .p2align 2, 0x0 \n"
967"cfi_bpf_subprog_hash: \n"
968" .long __kcfi_typeid___bpf_callback_fn \n"
969" .size cfi_bpf_subprog_hash, 4 \n"
970" .popsection \n"
971);
972
973u32 cfi_get_func_hash(void *func)
974{
975 u32 hash;
976
977 func -= cfi_get_offset();
978 switch (cfi_mode) {
979 case CFI_FINEIBT:
980 func += 7;
981 break;
982 case CFI_KCFI:
983 func += 1;
984 break;
985 default:
986 return 0;
987 }
988
989 if (get_kernel_nofault(hash, func))
990 return 0;
991
992 return hash;
993}
994#endif
995
996#ifdef CONFIG_FINEIBT
997
998static bool cfi_rand __ro_after_init = true;
999static u32 cfi_seed __ro_after_init;
1000
1001/*
1002 * Re-hash the CFI hash with a boot-time seed while making sure the result is
1003 * not a valid ENDBR instruction.
1004 */
1005static u32 cfi_rehash(u32 hash)
1006{
1007 hash ^= cfi_seed;
1008 while (unlikely(is_endbr(hash) || is_endbr(-hash))) {
1009 bool lsb = hash & 1;
1010 hash >>= 1;
1011 if (lsb)
1012 hash ^= 0x80200003;
1013 }
1014 return hash;
1015}
1016
1017static __init int cfi_parse_cmdline(char *str)
1018{
1019 if (!str)
1020 return -EINVAL;
1021
1022 while (str) {
1023 char *next = strchr(str, ',');
1024 if (next) {
1025 *next = 0;
1026 next++;
1027 }
1028
1029 if (!strcmp(str, "auto")) {
1030 cfi_mode = CFI_AUTO;
1031 } else if (!strcmp(str, "off")) {
1032 cfi_mode = CFI_OFF;
1033 cfi_rand = false;
1034 } else if (!strcmp(str, "kcfi")) {
1035 cfi_mode = CFI_KCFI;
1036 } else if (!strcmp(str, "fineibt")) {
1037 cfi_mode = CFI_FINEIBT;
1038 } else if (!strcmp(str, "norand")) {
1039 cfi_rand = false;
1040 } else {
1041 pr_err("Ignoring unknown cfi option (%s).", str);
1042 }
1043
1044 str = next;
1045 }
1046
1047 return 0;
1048}
1049early_param("cfi", cfi_parse_cmdline);
1050
1051/*
1052 * kCFI FineIBT
1053 *
1054 * __cfi_\func: __cfi_\func:
1055 * movl $0x12345678,%eax // 5 endbr64 // 4
1056 * nop subl $0x12345678,%r10d // 7
1057 * nop jz 1f // 2
1058 * nop ud2 // 2
1059 * nop 1: nop // 1
1060 * nop
1061 * nop
1062 * nop
1063 * nop
1064 * nop
1065 * nop
1066 * nop
1067 *
1068 *
1069 * caller: caller:
1070 * movl $(-0x12345678),%r10d // 6 movl $0x12345678,%r10d // 6
1071 * addl $-15(%r11),%r10d // 4 sub $16,%r11 // 4
1072 * je 1f // 2 nop4 // 4
1073 * ud2 // 2
1074 * 1: call __x86_indirect_thunk_r11 // 5 call *%r11; nop2; // 5
1075 *
1076 */
1077
1078asm( ".pushsection .rodata \n"
1079 "fineibt_preamble_start: \n"
1080 " endbr64 \n"
1081 " subl $0x12345678, %r10d \n"
1082 " je fineibt_preamble_end \n"
1083 " ud2 \n"
1084 " nop \n"
1085 "fineibt_preamble_end: \n"
1086 ".popsection\n"
1087);
1088
1089extern u8 fineibt_preamble_start[];
1090extern u8 fineibt_preamble_end[];
1091
1092#define fineibt_preamble_size (fineibt_preamble_end - fineibt_preamble_start)
1093#define fineibt_preamble_hash 7
1094
1095asm( ".pushsection .rodata \n"
1096 "fineibt_caller_start: \n"
1097 " movl $0x12345678, %r10d \n"
1098 " sub $16, %r11 \n"
1099 ASM_NOP4
1100 "fineibt_caller_end: \n"
1101 ".popsection \n"
1102);
1103
1104extern u8 fineibt_caller_start[];
1105extern u8 fineibt_caller_end[];
1106
1107#define fineibt_caller_size (fineibt_caller_end - fineibt_caller_start)
1108#define fineibt_caller_hash 2
1109
1110#define fineibt_caller_jmp (fineibt_caller_size - 2)
1111
1112static u32 decode_preamble_hash(void *addr)
1113{
1114 u8 *p = addr;
1115
1116 /* b8 78 56 34 12 mov $0x12345678,%eax */
1117 if (p[0] == 0xb8)
1118 return *(u32 *)(addr + 1);
1119
1120 return 0; /* invalid hash value */
1121}
1122
1123static u32 decode_caller_hash(void *addr)
1124{
1125 u8 *p = addr;
1126
1127 /* 41 ba 78 56 34 12 mov $0x12345678,%r10d */
1128 if (p[0] == 0x41 && p[1] == 0xba)
1129 return -*(u32 *)(addr + 2);
1130
1131 /* e8 0c 78 56 34 12 jmp.d8 +12 */
1132 if (p[0] == JMP8_INSN_OPCODE && p[1] == fineibt_caller_jmp)
1133 return -*(u32 *)(addr + 2);
1134
1135 return 0; /* invalid hash value */
1136}
1137
1138/* .retpoline_sites */
1139static int cfi_disable_callers(s32 *start, s32 *end, struct module *mod)
1140{
1141 /*
1142 * Disable kCFI by patching in a JMP.d8, this leaves the hash immediate
1143 * in tact for later usage. Also see decode_caller_hash() and
1144 * cfi_rewrite_callers().
1145 */
1146 const u8 jmp[] = { JMP8_INSN_OPCODE, fineibt_caller_jmp };
1147 s32 *s;
1148
1149 for (s = start; s < end; s++) {
1150 void *addr = (void *)s + *s;
1151 void *wr_addr;
1152 u32 hash;
1153
1154 addr -= fineibt_caller_size;
1155 wr_addr = module_writable_address(mod, addr);
1156 hash = decode_caller_hash(wr_addr);
1157
1158 if (!hash) /* nocfi callers */
1159 continue;
1160
1161 text_poke_early(wr_addr, jmp, 2);
1162 }
1163
1164 return 0;
1165}
1166
1167static int cfi_enable_callers(s32 *start, s32 *end, struct module *mod)
1168{
1169 /*
1170 * Re-enable kCFI, undo what cfi_disable_callers() did.
1171 */
1172 const u8 mov[] = { 0x41, 0xba };
1173 s32 *s;
1174
1175 for (s = start; s < end; s++) {
1176 void *addr = (void *)s + *s;
1177 void *wr_addr;
1178 u32 hash;
1179
1180 addr -= fineibt_caller_size;
1181 wr_addr = module_writable_address(mod, addr);
1182 hash = decode_caller_hash(wr_addr);
1183 if (!hash) /* nocfi callers */
1184 continue;
1185
1186 text_poke_early(wr_addr, mov, 2);
1187 }
1188
1189 return 0;
1190}
1191
1192/* .cfi_sites */
1193static int cfi_rand_preamble(s32 *start, s32 *end, struct module *mod)
1194{
1195 s32 *s;
1196
1197 for (s = start; s < end; s++) {
1198 void *addr = (void *)s + *s;
1199 void *wr_addr = module_writable_address(mod, addr);
1200 u32 hash;
1201
1202 hash = decode_preamble_hash(wr_addr);
1203 if (WARN(!hash, "no CFI hash found at: %pS %px %*ph\n",
1204 addr, addr, 5, addr))
1205 return -EINVAL;
1206
1207 hash = cfi_rehash(hash);
1208 text_poke_early(wr_addr + 1, &hash, 4);
1209 }
1210
1211 return 0;
1212}
1213
1214static int cfi_rewrite_preamble(s32 *start, s32 *end, struct module *mod)
1215{
1216 s32 *s;
1217
1218 for (s = start; s < end; s++) {
1219 void *addr = (void *)s + *s;
1220 void *wr_addr = module_writable_address(mod, addr);
1221 u32 hash;
1222
1223 hash = decode_preamble_hash(wr_addr);
1224 if (WARN(!hash, "no CFI hash found at: %pS %px %*ph\n",
1225 addr, addr, 5, addr))
1226 return -EINVAL;
1227
1228 text_poke_early(wr_addr, fineibt_preamble_start, fineibt_preamble_size);
1229 WARN_ON(*(u32 *)(wr_addr + fineibt_preamble_hash) != 0x12345678);
1230 text_poke_early(wr_addr + fineibt_preamble_hash, &hash, 4);
1231 }
1232
1233 return 0;
1234}
1235
1236static void cfi_rewrite_endbr(s32 *start, s32 *end, struct module *mod)
1237{
1238 s32 *s;
1239
1240 for (s = start; s < end; s++) {
1241 void *addr = (void *)s + *s;
1242 void *wr_addr = module_writable_address(mod, addr);
1243
1244 poison_endbr(addr + 16, wr_addr + 16, false);
1245 }
1246}
1247
1248/* .retpoline_sites */
1249static int cfi_rand_callers(s32 *start, s32 *end, struct module *mod)
1250{
1251 s32 *s;
1252
1253 for (s = start; s < end; s++) {
1254 void *addr = (void *)s + *s;
1255 void *wr_addr;
1256 u32 hash;
1257
1258 addr -= fineibt_caller_size;
1259 wr_addr = module_writable_address(mod, addr);
1260 hash = decode_caller_hash(wr_addr);
1261 if (hash) {
1262 hash = -cfi_rehash(hash);
1263 text_poke_early(wr_addr + 2, &hash, 4);
1264 }
1265 }
1266
1267 return 0;
1268}
1269
1270static int cfi_rewrite_callers(s32 *start, s32 *end, struct module *mod)
1271{
1272 s32 *s;
1273
1274 for (s = start; s < end; s++) {
1275 void *addr = (void *)s + *s;
1276 void *wr_addr;
1277 u32 hash;
1278
1279 addr -= fineibt_caller_size;
1280 wr_addr = module_writable_address(mod, addr);
1281 hash = decode_caller_hash(wr_addr);
1282 if (hash) {
1283 text_poke_early(wr_addr, fineibt_caller_start, fineibt_caller_size);
1284 WARN_ON(*(u32 *)(wr_addr + fineibt_caller_hash) != 0x12345678);
1285 text_poke_early(wr_addr + fineibt_caller_hash, &hash, 4);
1286 }
1287 /* rely on apply_retpolines() */
1288 }
1289
1290 return 0;
1291}
1292
1293static void __apply_fineibt(s32 *start_retpoline, s32 *end_retpoline,
1294 s32 *start_cfi, s32 *end_cfi, struct module *mod)
1295{
1296 bool builtin = mod ? false : true;
1297 int ret;
1298
1299 if (WARN_ONCE(fineibt_preamble_size != 16,
1300 "FineIBT preamble wrong size: %ld", fineibt_preamble_size))
1301 return;
1302
1303 if (cfi_mode == CFI_AUTO) {
1304 cfi_mode = CFI_KCFI;
1305 if (HAS_KERNEL_IBT && cpu_feature_enabled(X86_FEATURE_IBT))
1306 cfi_mode = CFI_FINEIBT;
1307 }
1308
1309 /*
1310 * Rewrite the callers to not use the __cfi_ stubs, such that we might
1311 * rewrite them. This disables all CFI. If this succeeds but any of the
1312 * later stages fails, we're without CFI.
1313 */
1314 ret = cfi_disable_callers(start_retpoline, end_retpoline, mod);
1315 if (ret)
1316 goto err;
1317
1318 if (cfi_rand) {
1319 if (builtin) {
1320 cfi_seed = get_random_u32();
1321 cfi_bpf_hash = cfi_rehash(cfi_bpf_hash);
1322 cfi_bpf_subprog_hash = cfi_rehash(cfi_bpf_subprog_hash);
1323 }
1324
1325 ret = cfi_rand_preamble(start_cfi, end_cfi, mod);
1326 if (ret)
1327 goto err;
1328
1329 ret = cfi_rand_callers(start_retpoline, end_retpoline, mod);
1330 if (ret)
1331 goto err;
1332 }
1333
1334 switch (cfi_mode) {
1335 case CFI_OFF:
1336 if (builtin)
1337 pr_info("Disabling CFI\n");
1338 return;
1339
1340 case CFI_KCFI:
1341 ret = cfi_enable_callers(start_retpoline, end_retpoline, mod);
1342 if (ret)
1343 goto err;
1344
1345 if (builtin)
1346 pr_info("Using kCFI\n");
1347 return;
1348
1349 case CFI_FINEIBT:
1350 /* place the FineIBT preamble at func()-16 */
1351 ret = cfi_rewrite_preamble(start_cfi, end_cfi, mod);
1352 if (ret)
1353 goto err;
1354
1355 /* rewrite the callers to target func()-16 */
1356 ret = cfi_rewrite_callers(start_retpoline, end_retpoline, mod);
1357 if (ret)
1358 goto err;
1359
1360 /* now that nobody targets func()+0, remove ENDBR there */
1361 cfi_rewrite_endbr(start_cfi, end_cfi, mod);
1362
1363 if (builtin)
1364 pr_info("Using FineIBT CFI\n");
1365 return;
1366
1367 default:
1368 break;
1369 }
1370
1371err:
1372 pr_err("Something went horribly wrong trying to rewrite the CFI implementation.\n");
1373}
1374
1375static inline void poison_hash(void *addr)
1376{
1377 *(u32 *)addr = 0;
1378}
1379
1380static void poison_cfi(void *addr, void *wr_addr)
1381{
1382 switch (cfi_mode) {
1383 case CFI_FINEIBT:
1384 /*
1385 * __cfi_\func:
1386 * osp nopl (%rax)
1387 * subl $0, %r10d
1388 * jz 1f
1389 * ud2
1390 * 1: nop
1391 */
1392 poison_endbr(addr, wr_addr, false);
1393 poison_hash(wr_addr + fineibt_preamble_hash);
1394 break;
1395
1396 case CFI_KCFI:
1397 /*
1398 * __cfi_\func:
1399 * movl $0, %eax
1400 * .skip 11, 0x90
1401 */
1402 poison_hash(wr_addr + 1);
1403 break;
1404
1405 default:
1406 break;
1407 }
1408}
1409
1410#else
1411
1412static void __apply_fineibt(s32 *start_retpoline, s32 *end_retpoline,
1413 s32 *start_cfi, s32 *end_cfi, struct module *mod)
1414{
1415}
1416
1417#ifdef CONFIG_X86_KERNEL_IBT
1418static void poison_cfi(void *addr, void *wr_addr) { }
1419#endif
1420
1421#endif
1422
1423void apply_fineibt(s32 *start_retpoline, s32 *end_retpoline,
1424 s32 *start_cfi, s32 *end_cfi, struct module *mod)
1425{
1426 return __apply_fineibt(start_retpoline, end_retpoline,
1427 start_cfi, end_cfi, mod);
1428}
1429
1430#ifdef CONFIG_SMP
1431static void alternatives_smp_lock(const s32 *start, const s32 *end,
1432 u8 *text, u8 *text_end)
1433{
1434 const s32 *poff;
1435
1436 for (poff = start; poff < end; poff++) {
1437 u8 *ptr = (u8 *)poff + *poff;
1438
1439 if (!*poff || ptr < text || ptr >= text_end)
1440 continue;
1441 /* turn DS segment override prefix into lock prefix */
1442 if (*ptr == 0x3e)
1443 text_poke(ptr, ((unsigned char []){0xf0}), 1);
1444 }
1445}
1446
1447static void alternatives_smp_unlock(const s32 *start, const s32 *end,
1448 u8 *text, u8 *text_end)
1449{
1450 const s32 *poff;
1451
1452 for (poff = start; poff < end; poff++) {
1453 u8 *ptr = (u8 *)poff + *poff;
1454
1455 if (!*poff || ptr < text || ptr >= text_end)
1456 continue;
1457 /* turn lock prefix into DS segment override prefix */
1458 if (*ptr == 0xf0)
1459 text_poke(ptr, ((unsigned char []){0x3E}), 1);
1460 }
1461}
1462
1463struct smp_alt_module {
1464 /* what is this ??? */
1465 struct module *mod;
1466 char *name;
1467
1468 /* ptrs to lock prefixes */
1469 const s32 *locks;
1470 const s32 *locks_end;
1471
1472 /* .text segment, needed to avoid patching init code ;) */
1473 u8 *text;
1474 u8 *text_end;
1475
1476 struct list_head next;
1477};
1478static LIST_HEAD(smp_alt_modules);
1479static bool uniproc_patched = false; /* protected by text_mutex */
1480
1481void __init_or_module alternatives_smp_module_add(struct module *mod,
1482 char *name,
1483 void *locks, void *locks_end,
1484 void *text, void *text_end)
1485{
1486 struct smp_alt_module *smp;
1487
1488 mutex_lock(&text_mutex);
1489 if (!uniproc_patched)
1490 goto unlock;
1491
1492 if (num_possible_cpus() == 1)
1493 /* Don't bother remembering, we'll never have to undo it. */
1494 goto smp_unlock;
1495
1496 smp = kzalloc(sizeof(*smp), GFP_KERNEL);
1497 if (NULL == smp)
1498 /* we'll run the (safe but slow) SMP code then ... */
1499 goto unlock;
1500
1501 smp->mod = mod;
1502 smp->name = name;
1503 smp->locks = locks;
1504 smp->locks_end = locks_end;
1505 smp->text = text;
1506 smp->text_end = text_end;
1507 DPRINTK(SMP, "locks %p -> %p, text %p -> %p, name %s\n",
1508 smp->locks, smp->locks_end,
1509 smp->text, smp->text_end, smp->name);
1510
1511 list_add_tail(&smp->next, &smp_alt_modules);
1512smp_unlock:
1513 alternatives_smp_unlock(locks, locks_end, text, text_end);
1514unlock:
1515 mutex_unlock(&text_mutex);
1516}
1517
1518void __init_or_module alternatives_smp_module_del(struct module *mod)
1519{
1520 struct smp_alt_module *item;
1521
1522 mutex_lock(&text_mutex);
1523 list_for_each_entry(item, &smp_alt_modules, next) {
1524 if (mod != item->mod)
1525 continue;
1526 list_del(&item->next);
1527 kfree(item);
1528 break;
1529 }
1530 mutex_unlock(&text_mutex);
1531}
1532
1533void alternatives_enable_smp(void)
1534{
1535 struct smp_alt_module *mod;
1536
1537 /* Why bother if there are no other CPUs? */
1538 BUG_ON(num_possible_cpus() == 1);
1539
1540 mutex_lock(&text_mutex);
1541
1542 if (uniproc_patched) {
1543 pr_info("switching to SMP code\n");
1544 BUG_ON(num_online_cpus() != 1);
1545 clear_cpu_cap(&boot_cpu_data, X86_FEATURE_UP);
1546 clear_cpu_cap(&cpu_data(0), X86_FEATURE_UP);
1547 list_for_each_entry(mod, &smp_alt_modules, next)
1548 alternatives_smp_lock(mod->locks, mod->locks_end,
1549 mod->text, mod->text_end);
1550 uniproc_patched = false;
1551 }
1552 mutex_unlock(&text_mutex);
1553}
1554
1555/*
1556 * Return 1 if the address range is reserved for SMP-alternatives.
1557 * Must hold text_mutex.
1558 */
1559int alternatives_text_reserved(void *start, void *end)
1560{
1561 struct smp_alt_module *mod;
1562 const s32 *poff;
1563 u8 *text_start = start;
1564 u8 *text_end = end;
1565
1566 lockdep_assert_held(&text_mutex);
1567
1568 list_for_each_entry(mod, &smp_alt_modules, next) {
1569 if (mod->text > text_end || mod->text_end < text_start)
1570 continue;
1571 for (poff = mod->locks; poff < mod->locks_end; poff++) {
1572 const u8 *ptr = (const u8 *)poff + *poff;
1573
1574 if (text_start <= ptr && text_end > ptr)
1575 return 1;
1576 }
1577 }
1578
1579 return 0;
1580}
1581#endif /* CONFIG_SMP */
1582
1583/*
1584 * Self-test for the INT3 based CALL emulation code.
1585 *
1586 * This exercises int3_emulate_call() to make sure INT3 pt_regs are set up
1587 * properly and that there is a stack gap between the INT3 frame and the
1588 * previous context. Without this gap doing a virtual PUSH on the interrupted
1589 * stack would corrupt the INT3 IRET frame.
1590 *
1591 * See entry_{32,64}.S for more details.
1592 */
1593
1594/*
1595 * We define the int3_magic() function in assembly to control the calling
1596 * convention such that we can 'call' it from assembly.
1597 */
1598
1599extern void int3_magic(unsigned int *ptr); /* defined in asm */
1600
1601asm (
1602" .pushsection .init.text, \"ax\", @progbits\n"
1603" .type int3_magic, @function\n"
1604"int3_magic:\n"
1605 ANNOTATE_NOENDBR
1606" movl $1, (%" _ASM_ARG1 ")\n"
1607 ASM_RET
1608" .size int3_magic, .-int3_magic\n"
1609" .popsection\n"
1610);
1611
1612extern void int3_selftest_ip(void); /* defined in asm below */
1613
1614static int __init
1615int3_exception_notify(struct notifier_block *self, unsigned long val, void *data)
1616{
1617 unsigned long selftest = (unsigned long)&int3_selftest_ip;
1618 struct die_args *args = data;
1619 struct pt_regs *regs = args->regs;
1620
1621 OPTIMIZER_HIDE_VAR(selftest);
1622
1623 if (!regs || user_mode(regs))
1624 return NOTIFY_DONE;
1625
1626 if (val != DIE_INT3)
1627 return NOTIFY_DONE;
1628
1629 if (regs->ip - INT3_INSN_SIZE != selftest)
1630 return NOTIFY_DONE;
1631
1632 int3_emulate_call(regs, (unsigned long)&int3_magic);
1633 return NOTIFY_STOP;
1634}
1635
1636/* Must be noinline to ensure uniqueness of int3_selftest_ip. */
1637static noinline void __init int3_selftest(void)
1638{
1639 static __initdata struct notifier_block int3_exception_nb = {
1640 .notifier_call = int3_exception_notify,
1641 .priority = INT_MAX-1, /* last */
1642 };
1643 unsigned int val = 0;
1644
1645 BUG_ON(register_die_notifier(&int3_exception_nb));
1646
1647 /*
1648 * Basically: int3_magic(&val); but really complicated :-)
1649 *
1650 * INT3 padded with NOP to CALL_INSN_SIZE. The int3_exception_nb
1651 * notifier above will emulate CALL for us.
1652 */
1653 asm volatile ("int3_selftest_ip:\n\t"
1654 ANNOTATE_NOENDBR
1655 " int3; nop; nop; nop; nop\n\t"
1656 : ASM_CALL_CONSTRAINT
1657 : __ASM_SEL_RAW(a, D) (&val)
1658 : "memory");
1659
1660 BUG_ON(val != 1);
1661
1662 unregister_die_notifier(&int3_exception_nb);
1663}
1664
1665static __initdata int __alt_reloc_selftest_addr;
1666
1667extern void __init __alt_reloc_selftest(void *arg);
1668__visible noinline void __init __alt_reloc_selftest(void *arg)
1669{
1670 WARN_ON(arg != &__alt_reloc_selftest_addr);
1671}
1672
1673static noinline void __init alt_reloc_selftest(void)
1674{
1675 /*
1676 * Tests apply_relocation().
1677 *
1678 * This has a relative immediate (CALL) in a place other than the first
1679 * instruction and additionally on x86_64 we get a RIP-relative LEA:
1680 *
1681 * lea 0x0(%rip),%rdi # 5d0: R_X86_64_PC32 .init.data+0x5566c
1682 * call +0 # 5d5: R_X86_64_PLT32 __alt_reloc_selftest-0x4
1683 *
1684 * Getting this wrong will either crash and burn or tickle the WARN
1685 * above.
1686 */
1687 asm_inline volatile (
1688 ALTERNATIVE("", "lea %[mem], %%" _ASM_ARG1 "; call __alt_reloc_selftest;", X86_FEATURE_ALWAYS)
1689 : ASM_CALL_CONSTRAINT
1690 : [mem] "m" (__alt_reloc_selftest_addr)
1691 : _ASM_ARG1
1692 );
1693}
1694
1695void __init alternative_instructions(void)
1696{
1697 int3_selftest();
1698
1699 /*
1700 * The patching is not fully atomic, so try to avoid local
1701 * interruptions that might execute the to be patched code.
1702 * Other CPUs are not running.
1703 */
1704 stop_nmi();
1705
1706 /*
1707 * Don't stop machine check exceptions while patching.
1708 * MCEs only happen when something got corrupted and in this
1709 * case we must do something about the corruption.
1710 * Ignoring it is worse than an unlikely patching race.
1711 * Also machine checks tend to be broadcast and if one CPU
1712 * goes into machine check the others follow quickly, so we don't
1713 * expect a machine check to cause undue problems during to code
1714 * patching.
1715 */
1716
1717 /*
1718 * Make sure to set (artificial) features depending on used paravirt
1719 * functions which can later influence alternative patching.
1720 */
1721 paravirt_set_cap();
1722
1723 __apply_fineibt(__retpoline_sites, __retpoline_sites_end,
1724 __cfi_sites, __cfi_sites_end, NULL);
1725
1726 /*
1727 * Rewrite the retpolines, must be done before alternatives since
1728 * those can rewrite the retpoline thunks.
1729 */
1730 apply_retpolines(__retpoline_sites, __retpoline_sites_end, NULL);
1731 apply_returns(__return_sites, __return_sites_end, NULL);
1732
1733 apply_alternatives(__alt_instructions, __alt_instructions_end, NULL);
1734
1735 /*
1736 * Now all calls are established. Apply the call thunks if
1737 * required.
1738 */
1739 callthunks_patch_builtin_calls();
1740
1741 /*
1742 * Seal all functions that do not have their address taken.
1743 */
1744 apply_seal_endbr(__ibt_endbr_seal, __ibt_endbr_seal_end, NULL);
1745
1746#ifdef CONFIG_SMP
1747 /* Patch to UP if other cpus not imminent. */
1748 if (!noreplace_smp && (num_present_cpus() == 1 || setup_max_cpus <= 1)) {
1749 uniproc_patched = true;
1750 alternatives_smp_module_add(NULL, "core kernel",
1751 __smp_locks, __smp_locks_end,
1752 _text, _etext);
1753 }
1754
1755 if (!uniproc_patched || num_possible_cpus() == 1) {
1756 free_init_pages("SMP alternatives",
1757 (unsigned long)__smp_locks,
1758 (unsigned long)__smp_locks_end);
1759 }
1760#endif
1761
1762 restart_nmi();
1763 alternatives_patched = 1;
1764
1765 alt_reloc_selftest();
1766}
1767
1768/**
1769 * text_poke_early - Update instructions on a live kernel at boot time
1770 * @addr: address to modify
1771 * @opcode: source of the copy
1772 * @len: length to copy
1773 *
1774 * When you use this code to patch more than one byte of an instruction
1775 * you need to make sure that other CPUs cannot execute this code in parallel.
1776 * Also no thread must be currently preempted in the middle of these
1777 * instructions. And on the local CPU you need to be protected against NMI or
1778 * MCE handlers seeing an inconsistent instruction while you patch.
1779 */
1780void __init_or_module text_poke_early(void *addr, const void *opcode,
1781 size_t len)
1782{
1783 unsigned long flags;
1784
1785 if (boot_cpu_has(X86_FEATURE_NX) &&
1786 is_module_text_address((unsigned long)addr)) {
1787 /*
1788 * Modules text is marked initially as non-executable, so the
1789 * code cannot be running and speculative code-fetches are
1790 * prevented. Just change the code.
1791 */
1792 memcpy(addr, opcode, len);
1793 } else {
1794 local_irq_save(flags);
1795 memcpy(addr, opcode, len);
1796 sync_core();
1797 local_irq_restore(flags);
1798
1799 /*
1800 * Could also do a CLFLUSH here to speed up CPU recovery; but
1801 * that causes hangs on some VIA CPUs.
1802 */
1803 }
1804}
1805
1806typedef struct {
1807 struct mm_struct *mm;
1808} temp_mm_state_t;
1809
1810/*
1811 * Using a temporary mm allows to set temporary mappings that are not accessible
1812 * by other CPUs. Such mappings are needed to perform sensitive memory writes
1813 * that override the kernel memory protections (e.g., W^X), without exposing the
1814 * temporary page-table mappings that are required for these write operations to
1815 * other CPUs. Using a temporary mm also allows to avoid TLB shootdowns when the
1816 * mapping is torn down.
1817 *
1818 * Context: The temporary mm needs to be used exclusively by a single core. To
1819 * harden security IRQs must be disabled while the temporary mm is
1820 * loaded, thereby preventing interrupt handler bugs from overriding
1821 * the kernel memory protection.
1822 */
1823static inline temp_mm_state_t use_temporary_mm(struct mm_struct *mm)
1824{
1825 temp_mm_state_t temp_state;
1826
1827 lockdep_assert_irqs_disabled();
1828
1829 /*
1830 * Make sure not to be in TLB lazy mode, as otherwise we'll end up
1831 * with a stale address space WITHOUT being in lazy mode after
1832 * restoring the previous mm.
1833 */
1834 if (this_cpu_read(cpu_tlbstate_shared.is_lazy))
1835 leave_mm();
1836
1837 temp_state.mm = this_cpu_read(cpu_tlbstate.loaded_mm);
1838 switch_mm_irqs_off(NULL, mm, current);
1839
1840 /*
1841 * If breakpoints are enabled, disable them while the temporary mm is
1842 * used. Userspace might set up watchpoints on addresses that are used
1843 * in the temporary mm, which would lead to wrong signals being sent or
1844 * crashes.
1845 *
1846 * Note that breakpoints are not disabled selectively, which also causes
1847 * kernel breakpoints (e.g., perf's) to be disabled. This might be
1848 * undesirable, but still seems reasonable as the code that runs in the
1849 * temporary mm should be short.
1850 */
1851 if (hw_breakpoint_active())
1852 hw_breakpoint_disable();
1853
1854 return temp_state;
1855}
1856
1857static inline void unuse_temporary_mm(temp_mm_state_t prev_state)
1858{
1859 lockdep_assert_irqs_disabled();
1860 switch_mm_irqs_off(NULL, prev_state.mm, current);
1861
1862 /*
1863 * Restore the breakpoints if they were disabled before the temporary mm
1864 * was loaded.
1865 */
1866 if (hw_breakpoint_active())
1867 hw_breakpoint_restore();
1868}
1869
1870__ro_after_init struct mm_struct *poking_mm;
1871__ro_after_init unsigned long poking_addr;
1872
1873static void text_poke_memcpy(void *dst, const void *src, size_t len)
1874{
1875 memcpy(dst, src, len);
1876}
1877
1878static void text_poke_memset(void *dst, const void *src, size_t len)
1879{
1880 int c = *(const int *)src;
1881
1882 memset(dst, c, len);
1883}
1884
1885typedef void text_poke_f(void *dst, const void *src, size_t len);
1886
1887static void *__text_poke(text_poke_f func, void *addr, const void *src, size_t len)
1888{
1889 bool cross_page_boundary = offset_in_page(addr) + len > PAGE_SIZE;
1890 struct page *pages[2] = {NULL};
1891 temp_mm_state_t prev;
1892 unsigned long flags;
1893 pte_t pte, *ptep;
1894 spinlock_t *ptl;
1895 pgprot_t pgprot;
1896
1897 /*
1898 * While boot memory allocator is running we cannot use struct pages as
1899 * they are not yet initialized. There is no way to recover.
1900 */
1901 BUG_ON(!after_bootmem);
1902
1903 if (!core_kernel_text((unsigned long)addr)) {
1904 pages[0] = vmalloc_to_page(addr);
1905 if (cross_page_boundary)
1906 pages[1] = vmalloc_to_page(addr + PAGE_SIZE);
1907 } else {
1908 pages[0] = virt_to_page(addr);
1909 WARN_ON(!PageReserved(pages[0]));
1910 if (cross_page_boundary)
1911 pages[1] = virt_to_page(addr + PAGE_SIZE);
1912 }
1913 /*
1914 * If something went wrong, crash and burn since recovery paths are not
1915 * implemented.
1916 */
1917 BUG_ON(!pages[0] || (cross_page_boundary && !pages[1]));
1918
1919 /*
1920 * Map the page without the global bit, as TLB flushing is done with
1921 * flush_tlb_mm_range(), which is intended for non-global PTEs.
1922 */
1923 pgprot = __pgprot(pgprot_val(PAGE_KERNEL) & ~_PAGE_GLOBAL);
1924
1925 /*
1926 * The lock is not really needed, but this allows to avoid open-coding.
1927 */
1928 ptep = get_locked_pte(poking_mm, poking_addr, &ptl);
1929
1930 /*
1931 * This must not fail; preallocated in poking_init().
1932 */
1933 VM_BUG_ON(!ptep);
1934
1935 local_irq_save(flags);
1936
1937 pte = mk_pte(pages[0], pgprot);
1938 set_pte_at(poking_mm, poking_addr, ptep, pte);
1939
1940 if (cross_page_boundary) {
1941 pte = mk_pte(pages[1], pgprot);
1942 set_pte_at(poking_mm, poking_addr + PAGE_SIZE, ptep + 1, pte);
1943 }
1944
1945 /*
1946 * Loading the temporary mm behaves as a compiler barrier, which
1947 * guarantees that the PTE will be set at the time memcpy() is done.
1948 */
1949 prev = use_temporary_mm(poking_mm);
1950
1951 kasan_disable_current();
1952 func((u8 *)poking_addr + offset_in_page(addr), src, len);
1953 kasan_enable_current();
1954
1955 /*
1956 * Ensure that the PTE is only cleared after the instructions of memcpy
1957 * were issued by using a compiler barrier.
1958 */
1959 barrier();
1960
1961 pte_clear(poking_mm, poking_addr, ptep);
1962 if (cross_page_boundary)
1963 pte_clear(poking_mm, poking_addr + PAGE_SIZE, ptep + 1);
1964
1965 /*
1966 * Loading the previous page-table hierarchy requires a serializing
1967 * instruction that already allows the core to see the updated version.
1968 * Xen-PV is assumed to serialize execution in a similar manner.
1969 */
1970 unuse_temporary_mm(prev);
1971
1972 /*
1973 * Flushing the TLB might involve IPIs, which would require enabled
1974 * IRQs, but not if the mm is not used, as it is in this point.
1975 */
1976 flush_tlb_mm_range(poking_mm, poking_addr, poking_addr +
1977 (cross_page_boundary ? 2 : 1) * PAGE_SIZE,
1978 PAGE_SHIFT, false);
1979
1980 if (func == text_poke_memcpy) {
1981 /*
1982 * If the text does not match what we just wrote then something is
1983 * fundamentally screwy; there's nothing we can really do about that.
1984 */
1985 BUG_ON(memcmp(addr, src, len));
1986 }
1987
1988 local_irq_restore(flags);
1989 pte_unmap_unlock(ptep, ptl);
1990 return addr;
1991}
1992
1993/**
1994 * text_poke - Update instructions on a live kernel
1995 * @addr: address to modify
1996 * @opcode: source of the copy
1997 * @len: length to copy
1998 *
1999 * Only atomic text poke/set should be allowed when not doing early patching.
2000 * It means the size must be writable atomically and the address must be aligned
2001 * in a way that permits an atomic write. It also makes sure we fit on a single
2002 * page.
2003 *
2004 * Note that the caller must ensure that if the modified code is part of a
2005 * module, the module would not be removed during poking. This can be achieved
2006 * by registering a module notifier, and ordering module removal and patching
2007 * through a mutex.
2008 */
2009void *text_poke(void *addr, const void *opcode, size_t len)
2010{
2011 lockdep_assert_held(&text_mutex);
2012
2013 return __text_poke(text_poke_memcpy, addr, opcode, len);
2014}
2015
2016/**
2017 * text_poke_kgdb - Update instructions on a live kernel by kgdb
2018 * @addr: address to modify
2019 * @opcode: source of the copy
2020 * @len: length to copy
2021 *
2022 * Only atomic text poke/set should be allowed when not doing early patching.
2023 * It means the size must be writable atomically and the address must be aligned
2024 * in a way that permits an atomic write. It also makes sure we fit on a single
2025 * page.
2026 *
2027 * Context: should only be used by kgdb, which ensures no other core is running,
2028 * despite the fact it does not hold the text_mutex.
2029 */
2030void *text_poke_kgdb(void *addr, const void *opcode, size_t len)
2031{
2032 return __text_poke(text_poke_memcpy, addr, opcode, len);
2033}
2034
2035void *text_poke_copy_locked(void *addr, const void *opcode, size_t len,
2036 bool core_ok)
2037{
2038 unsigned long start = (unsigned long)addr;
2039 size_t patched = 0;
2040
2041 if (WARN_ON_ONCE(!core_ok && core_kernel_text(start)))
2042 return NULL;
2043
2044 while (patched < len) {
2045 unsigned long ptr = start + patched;
2046 size_t s;
2047
2048 s = min_t(size_t, PAGE_SIZE * 2 - offset_in_page(ptr), len - patched);
2049
2050 __text_poke(text_poke_memcpy, (void *)ptr, opcode + patched, s);
2051 patched += s;
2052 }
2053 return addr;
2054}
2055
2056/**
2057 * text_poke_copy - Copy instructions into (an unused part of) RX memory
2058 * @addr: address to modify
2059 * @opcode: source of the copy
2060 * @len: length to copy, could be more than 2x PAGE_SIZE
2061 *
2062 * Not safe against concurrent execution; useful for JITs to dump
2063 * new code blocks into unused regions of RX memory. Can be used in
2064 * conjunction with synchronize_rcu_tasks() to wait for existing
2065 * execution to quiesce after having made sure no existing functions
2066 * pointers are live.
2067 */
2068void *text_poke_copy(void *addr, const void *opcode, size_t len)
2069{
2070 mutex_lock(&text_mutex);
2071 addr = text_poke_copy_locked(addr, opcode, len, false);
2072 mutex_unlock(&text_mutex);
2073 return addr;
2074}
2075
2076/**
2077 * text_poke_set - memset into (an unused part of) RX memory
2078 * @addr: address to modify
2079 * @c: the byte to fill the area with
2080 * @len: length to copy, could be more than 2x PAGE_SIZE
2081 *
2082 * This is useful to overwrite unused regions of RX memory with illegal
2083 * instructions.
2084 */
2085void *text_poke_set(void *addr, int c, size_t len)
2086{
2087 unsigned long start = (unsigned long)addr;
2088 size_t patched = 0;
2089
2090 if (WARN_ON_ONCE(core_kernel_text(start)))
2091 return NULL;
2092
2093 mutex_lock(&text_mutex);
2094 while (patched < len) {
2095 unsigned long ptr = start + patched;
2096 size_t s;
2097
2098 s = min_t(size_t, PAGE_SIZE * 2 - offset_in_page(ptr), len - patched);
2099
2100 __text_poke(text_poke_memset, (void *)ptr, (void *)&c, s);
2101 patched += s;
2102 }
2103 mutex_unlock(&text_mutex);
2104 return addr;
2105}
2106
2107static void do_sync_core(void *info)
2108{
2109 sync_core();
2110}
2111
2112void text_poke_sync(void)
2113{
2114 on_each_cpu(do_sync_core, NULL, 1);
2115}
2116
2117/*
2118 * NOTE: crazy scheme to allow patching Jcc.d32 but not increase the size of
2119 * this thing. When len == 6 everything is prefixed with 0x0f and we map
2120 * opcode to Jcc.d8, using len to distinguish.
2121 */
2122struct text_poke_loc {
2123 /* addr := _stext + rel_addr */
2124 s32 rel_addr;
2125 s32 disp;
2126 u8 len;
2127 u8 opcode;
2128 const u8 text[POKE_MAX_OPCODE_SIZE];
2129 /* see text_poke_bp_batch() */
2130 u8 old;
2131};
2132
2133struct bp_patching_desc {
2134 struct text_poke_loc *vec;
2135 int nr_entries;
2136 atomic_t refs;
2137};
2138
2139static struct bp_patching_desc bp_desc;
2140
2141static __always_inline
2142struct bp_patching_desc *try_get_desc(void)
2143{
2144 struct bp_patching_desc *desc = &bp_desc;
2145
2146 if (!raw_atomic_inc_not_zero(&desc->refs))
2147 return NULL;
2148
2149 return desc;
2150}
2151
2152static __always_inline void put_desc(void)
2153{
2154 struct bp_patching_desc *desc = &bp_desc;
2155
2156 smp_mb__before_atomic();
2157 raw_atomic_dec(&desc->refs);
2158}
2159
2160static __always_inline void *text_poke_addr(struct text_poke_loc *tp)
2161{
2162 return _stext + tp->rel_addr;
2163}
2164
2165static __always_inline int patch_cmp(const void *key, const void *elt)
2166{
2167 struct text_poke_loc *tp = (struct text_poke_loc *) elt;
2168
2169 if (key < text_poke_addr(tp))
2170 return -1;
2171 if (key > text_poke_addr(tp))
2172 return 1;
2173 return 0;
2174}
2175
2176noinstr int poke_int3_handler(struct pt_regs *regs)
2177{
2178 struct bp_patching_desc *desc;
2179 struct text_poke_loc *tp;
2180 int ret = 0;
2181 void *ip;
2182
2183 if (user_mode(regs))
2184 return 0;
2185
2186 /*
2187 * Having observed our INT3 instruction, we now must observe
2188 * bp_desc with non-zero refcount:
2189 *
2190 * bp_desc.refs = 1 INT3
2191 * WMB RMB
2192 * write INT3 if (bp_desc.refs != 0)
2193 */
2194 smp_rmb();
2195
2196 desc = try_get_desc();
2197 if (!desc)
2198 return 0;
2199
2200 /*
2201 * Discount the INT3. See text_poke_bp_batch().
2202 */
2203 ip = (void *) regs->ip - INT3_INSN_SIZE;
2204
2205 /*
2206 * Skip the binary search if there is a single member in the vector.
2207 */
2208 if (unlikely(desc->nr_entries > 1)) {
2209 tp = __inline_bsearch(ip, desc->vec, desc->nr_entries,
2210 sizeof(struct text_poke_loc),
2211 patch_cmp);
2212 if (!tp)
2213 goto out_put;
2214 } else {
2215 tp = desc->vec;
2216 if (text_poke_addr(tp) != ip)
2217 goto out_put;
2218 }
2219
2220 ip += tp->len;
2221
2222 switch (tp->opcode) {
2223 case INT3_INSN_OPCODE:
2224 /*
2225 * Someone poked an explicit INT3, they'll want to handle it,
2226 * do not consume.
2227 */
2228 goto out_put;
2229
2230 case RET_INSN_OPCODE:
2231 int3_emulate_ret(regs);
2232 break;
2233
2234 case CALL_INSN_OPCODE:
2235 int3_emulate_call(regs, (long)ip + tp->disp);
2236 break;
2237
2238 case JMP32_INSN_OPCODE:
2239 case JMP8_INSN_OPCODE:
2240 int3_emulate_jmp(regs, (long)ip + tp->disp);
2241 break;
2242
2243 case 0x70 ... 0x7f: /* Jcc */
2244 int3_emulate_jcc(regs, tp->opcode & 0xf, (long)ip, tp->disp);
2245 break;
2246
2247 default:
2248 BUG();
2249 }
2250
2251 ret = 1;
2252
2253out_put:
2254 put_desc();
2255 return ret;
2256}
2257
2258#define TP_VEC_MAX (PAGE_SIZE / sizeof(struct text_poke_loc))
2259static struct text_poke_loc tp_vec[TP_VEC_MAX];
2260static int tp_vec_nr;
2261
2262/**
2263 * text_poke_bp_batch() -- update instructions on live kernel on SMP
2264 * @tp: vector of instructions to patch
2265 * @nr_entries: number of entries in the vector
2266 *
2267 * Modify multi-byte instruction by using int3 breakpoint on SMP.
2268 * We completely avoid stop_machine() here, and achieve the
2269 * synchronization using int3 breakpoint.
2270 *
2271 * The way it is done:
2272 * - For each entry in the vector:
2273 * - add a int3 trap to the address that will be patched
2274 * - sync cores
2275 * - For each entry in the vector:
2276 * - update all but the first byte of the patched range
2277 * - sync cores
2278 * - For each entry in the vector:
2279 * - replace the first byte (int3) by the first byte of
2280 * replacing opcode
2281 * - sync cores
2282 */
2283static void text_poke_bp_batch(struct text_poke_loc *tp, unsigned int nr_entries)
2284{
2285 unsigned char int3 = INT3_INSN_OPCODE;
2286 unsigned int i;
2287 int do_sync;
2288
2289 lockdep_assert_held(&text_mutex);
2290
2291 bp_desc.vec = tp;
2292 bp_desc.nr_entries = nr_entries;
2293
2294 /*
2295 * Corresponds to the implicit memory barrier in try_get_desc() to
2296 * ensure reading a non-zero refcount provides up to date bp_desc data.
2297 */
2298 atomic_set_release(&bp_desc.refs, 1);
2299
2300 /*
2301 * Function tracing can enable thousands of places that need to be
2302 * updated. This can take quite some time, and with full kernel debugging
2303 * enabled, this could cause the softlockup watchdog to trigger.
2304 * This function gets called every 256 entries added to be patched.
2305 * Call cond_resched() here to make sure that other tasks can get scheduled
2306 * while processing all the functions being patched.
2307 */
2308 cond_resched();
2309
2310 /*
2311 * Corresponding read barrier in int3 notifier for making sure the
2312 * nr_entries and handler are correctly ordered wrt. patching.
2313 */
2314 smp_wmb();
2315
2316 /*
2317 * First step: add a int3 trap to the address that will be patched.
2318 */
2319 for (i = 0; i < nr_entries; i++) {
2320 tp[i].old = *(u8 *)text_poke_addr(&tp[i]);
2321 text_poke(text_poke_addr(&tp[i]), &int3, INT3_INSN_SIZE);
2322 }
2323
2324 text_poke_sync();
2325
2326 /*
2327 * Second step: update all but the first byte of the patched range.
2328 */
2329 for (do_sync = 0, i = 0; i < nr_entries; i++) {
2330 u8 old[POKE_MAX_OPCODE_SIZE+1] = { tp[i].old, };
2331 u8 _new[POKE_MAX_OPCODE_SIZE+1];
2332 const u8 *new = tp[i].text;
2333 int len = tp[i].len;
2334
2335 if (len - INT3_INSN_SIZE > 0) {
2336 memcpy(old + INT3_INSN_SIZE,
2337 text_poke_addr(&tp[i]) + INT3_INSN_SIZE,
2338 len - INT3_INSN_SIZE);
2339
2340 if (len == 6) {
2341 _new[0] = 0x0f;
2342 memcpy(_new + 1, new, 5);
2343 new = _new;
2344 }
2345
2346 text_poke(text_poke_addr(&tp[i]) + INT3_INSN_SIZE,
2347 new + INT3_INSN_SIZE,
2348 len - INT3_INSN_SIZE);
2349
2350 do_sync++;
2351 }
2352
2353 /*
2354 * Emit a perf event to record the text poke, primarily to
2355 * support Intel PT decoding which must walk the executable code
2356 * to reconstruct the trace. The flow up to here is:
2357 * - write INT3 byte
2358 * - IPI-SYNC
2359 * - write instruction tail
2360 * At this point the actual control flow will be through the
2361 * INT3 and handler and not hit the old or new instruction.
2362 * Intel PT outputs FUP/TIP packets for the INT3, so the flow
2363 * can still be decoded. Subsequently:
2364 * - emit RECORD_TEXT_POKE with the new instruction
2365 * - IPI-SYNC
2366 * - write first byte
2367 * - IPI-SYNC
2368 * So before the text poke event timestamp, the decoder will see
2369 * either the old instruction flow or FUP/TIP of INT3. After the
2370 * text poke event timestamp, the decoder will see either the
2371 * new instruction flow or FUP/TIP of INT3. Thus decoders can
2372 * use the timestamp as the point at which to modify the
2373 * executable code.
2374 * The old instruction is recorded so that the event can be
2375 * processed forwards or backwards.
2376 */
2377 perf_event_text_poke(text_poke_addr(&tp[i]), old, len, new, len);
2378 }
2379
2380 if (do_sync) {
2381 /*
2382 * According to Intel, this core syncing is very likely
2383 * not necessary and we'd be safe even without it. But
2384 * better safe than sorry (plus there's not only Intel).
2385 */
2386 text_poke_sync();
2387 }
2388
2389 /*
2390 * Third step: replace the first byte (int3) by the first byte of
2391 * replacing opcode.
2392 */
2393 for (do_sync = 0, i = 0; i < nr_entries; i++) {
2394 u8 byte = tp[i].text[0];
2395
2396 if (tp[i].len == 6)
2397 byte = 0x0f;
2398
2399 if (byte == INT3_INSN_OPCODE)
2400 continue;
2401
2402 text_poke(text_poke_addr(&tp[i]), &byte, INT3_INSN_SIZE);
2403 do_sync++;
2404 }
2405
2406 if (do_sync)
2407 text_poke_sync();
2408
2409 /*
2410 * Remove and wait for refs to be zero.
2411 */
2412 if (!atomic_dec_and_test(&bp_desc.refs))
2413 atomic_cond_read_acquire(&bp_desc.refs, !VAL);
2414}
2415
2416static void text_poke_loc_init(struct text_poke_loc *tp, void *addr,
2417 const void *opcode, size_t len, const void *emulate)
2418{
2419 struct insn insn;
2420 int ret, i = 0;
2421
2422 if (len == 6)
2423 i = 1;
2424 memcpy((void *)tp->text, opcode+i, len-i);
2425 if (!emulate)
2426 emulate = opcode;
2427
2428 ret = insn_decode_kernel(&insn, emulate);
2429 BUG_ON(ret < 0);
2430
2431 tp->rel_addr = addr - (void *)_stext;
2432 tp->len = len;
2433 tp->opcode = insn.opcode.bytes[0];
2434
2435 if (is_jcc32(&insn)) {
2436 /*
2437 * Map Jcc.d32 onto Jcc.d8 and use len to distinguish.
2438 */
2439 tp->opcode = insn.opcode.bytes[1] - 0x10;
2440 }
2441
2442 switch (tp->opcode) {
2443 case RET_INSN_OPCODE:
2444 case JMP32_INSN_OPCODE:
2445 case JMP8_INSN_OPCODE:
2446 /*
2447 * Control flow instructions without implied execution of the
2448 * next instruction can be padded with INT3.
2449 */
2450 for (i = insn.length; i < len; i++)
2451 BUG_ON(tp->text[i] != INT3_INSN_OPCODE);
2452 break;
2453
2454 default:
2455 BUG_ON(len != insn.length);
2456 }
2457
2458 switch (tp->opcode) {
2459 case INT3_INSN_OPCODE:
2460 case RET_INSN_OPCODE:
2461 break;
2462
2463 case CALL_INSN_OPCODE:
2464 case JMP32_INSN_OPCODE:
2465 case JMP8_INSN_OPCODE:
2466 case 0x70 ... 0x7f: /* Jcc */
2467 tp->disp = insn.immediate.value;
2468 break;
2469
2470 default: /* assume NOP */
2471 switch (len) {
2472 case 2: /* NOP2 -- emulate as JMP8+0 */
2473 BUG_ON(memcmp(emulate, x86_nops[len], len));
2474 tp->opcode = JMP8_INSN_OPCODE;
2475 tp->disp = 0;
2476 break;
2477
2478 case 5: /* NOP5 -- emulate as JMP32+0 */
2479 BUG_ON(memcmp(emulate, x86_nops[len], len));
2480 tp->opcode = JMP32_INSN_OPCODE;
2481 tp->disp = 0;
2482 break;
2483
2484 default: /* unknown instruction */
2485 BUG();
2486 }
2487 break;
2488 }
2489}
2490
2491/*
2492 * We hard rely on the tp_vec being ordered; ensure this is so by flushing
2493 * early if needed.
2494 */
2495static bool tp_order_fail(void *addr)
2496{
2497 struct text_poke_loc *tp;
2498
2499 if (!tp_vec_nr)
2500 return false;
2501
2502 if (!addr) /* force */
2503 return true;
2504
2505 tp = &tp_vec[tp_vec_nr - 1];
2506 if ((unsigned long)text_poke_addr(tp) > (unsigned long)addr)
2507 return true;
2508
2509 return false;
2510}
2511
2512static void text_poke_flush(void *addr)
2513{
2514 if (tp_vec_nr == TP_VEC_MAX || tp_order_fail(addr)) {
2515 text_poke_bp_batch(tp_vec, tp_vec_nr);
2516 tp_vec_nr = 0;
2517 }
2518}
2519
2520void text_poke_finish(void)
2521{
2522 text_poke_flush(NULL);
2523}
2524
2525void __ref text_poke_queue(void *addr, const void *opcode, size_t len, const void *emulate)
2526{
2527 struct text_poke_loc *tp;
2528
2529 text_poke_flush(addr);
2530
2531 tp = &tp_vec[tp_vec_nr++];
2532 text_poke_loc_init(tp, addr, opcode, len, emulate);
2533}
2534
2535/**
2536 * text_poke_bp() -- update instructions on live kernel on SMP
2537 * @addr: address to patch
2538 * @opcode: opcode of new instruction
2539 * @len: length to copy
2540 * @emulate: instruction to be emulated
2541 *
2542 * Update a single instruction with the vector in the stack, avoiding
2543 * dynamically allocated memory. This function should be used when it is
2544 * not possible to allocate memory.
2545 */
2546void __ref text_poke_bp(void *addr, const void *opcode, size_t len, const void *emulate)
2547{
2548 struct text_poke_loc tp;
2549
2550 text_poke_loc_init(&tp, addr, opcode, len, emulate);
2551 text_poke_bp_batch(&tp, 1);
2552}
1// SPDX-License-Identifier: GPL-2.0-only
2#define pr_fmt(fmt) "SMP alternatives: " fmt
3
4#include <linux/module.h>
5#include <linux/sched.h>
6#include <linux/perf_event.h>
7#include <linux/mutex.h>
8#include <linux/list.h>
9#include <linux/stringify.h>
10#include <linux/highmem.h>
11#include <linux/mm.h>
12#include <linux/vmalloc.h>
13#include <linux/memory.h>
14#include <linux/stop_machine.h>
15#include <linux/slab.h>
16#include <linux/kdebug.h>
17#include <linux/kprobes.h>
18#include <linux/mmu_context.h>
19#include <linux/bsearch.h>
20#include <linux/sync_core.h>
21#include <asm/text-patching.h>
22#include <asm/alternative.h>
23#include <asm/sections.h>
24#include <asm/mce.h>
25#include <asm/nmi.h>
26#include <asm/cacheflush.h>
27#include <asm/tlbflush.h>
28#include <asm/insn.h>
29#include <asm/io.h>
30#include <asm/fixmap.h>
31#include <asm/paravirt.h>
32#include <asm/asm-prototypes.h>
33
34int __read_mostly alternatives_patched;
35
36EXPORT_SYMBOL_GPL(alternatives_patched);
37
38#define MAX_PATCH_LEN (255-1)
39
40static int __initdata_or_module debug_alternative;
41
42static int __init debug_alt(char *str)
43{
44 debug_alternative = 1;
45 return 1;
46}
47__setup("debug-alternative", debug_alt);
48
49static int noreplace_smp;
50
51static int __init setup_noreplace_smp(char *str)
52{
53 noreplace_smp = 1;
54 return 1;
55}
56__setup("noreplace-smp", setup_noreplace_smp);
57
58#define DPRINTK(fmt, args...) \
59do { \
60 if (debug_alternative) \
61 printk(KERN_DEBUG pr_fmt(fmt) "\n", ##args); \
62} while (0)
63
64#define DUMP_BYTES(buf, len, fmt, args...) \
65do { \
66 if (unlikely(debug_alternative)) { \
67 int j; \
68 \
69 if (!(len)) \
70 break; \
71 \
72 printk(KERN_DEBUG pr_fmt(fmt), ##args); \
73 for (j = 0; j < (len) - 1; j++) \
74 printk(KERN_CONT "%02hhx ", buf[j]); \
75 printk(KERN_CONT "%02hhx\n", buf[j]); \
76 } \
77} while (0)
78
79static const unsigned char x86nops[] =
80{
81 BYTES_NOP1,
82 BYTES_NOP2,
83 BYTES_NOP3,
84 BYTES_NOP4,
85 BYTES_NOP5,
86 BYTES_NOP6,
87 BYTES_NOP7,
88 BYTES_NOP8,
89};
90
91const unsigned char * const x86_nops[ASM_NOP_MAX+1] =
92{
93 NULL,
94 x86nops,
95 x86nops + 1,
96 x86nops + 1 + 2,
97 x86nops + 1 + 2 + 3,
98 x86nops + 1 + 2 + 3 + 4,
99 x86nops + 1 + 2 + 3 + 4 + 5,
100 x86nops + 1 + 2 + 3 + 4 + 5 + 6,
101 x86nops + 1 + 2 + 3 + 4 + 5 + 6 + 7,
102};
103
104/* Use this to add nops to a buffer, then text_poke the whole buffer. */
105static void __init_or_module add_nops(void *insns, unsigned int len)
106{
107 while (len > 0) {
108 unsigned int noplen = len;
109 if (noplen > ASM_NOP_MAX)
110 noplen = ASM_NOP_MAX;
111 memcpy(insns, x86_nops[noplen], noplen);
112 insns += noplen;
113 len -= noplen;
114 }
115}
116
117extern s32 __retpoline_sites[], __retpoline_sites_end[];
118extern s32 __return_sites[], __return_sites_end[];
119extern s32 __cfi_sites[], __cfi_sites_end[];
120extern s32 __ibt_endbr_seal[], __ibt_endbr_seal_end[];
121extern struct alt_instr __alt_instructions[], __alt_instructions_end[];
122extern s32 __smp_locks[], __smp_locks_end[];
123void text_poke_early(void *addr, const void *opcode, size_t len);
124
125/*
126 * Are we looking at a near JMP with a 1 or 4-byte displacement.
127 */
128static inline bool is_jmp(const u8 opcode)
129{
130 return opcode == 0xeb || opcode == 0xe9;
131}
132
133static void __init_or_module
134recompute_jump(struct alt_instr *a, u8 *orig_insn, u8 *repl_insn, u8 *insn_buff)
135{
136 u8 *next_rip, *tgt_rip;
137 s32 n_dspl, o_dspl;
138 int repl_len;
139
140 if (a->replacementlen != 5)
141 return;
142
143 o_dspl = *(s32 *)(insn_buff + 1);
144
145 /* next_rip of the replacement JMP */
146 next_rip = repl_insn + a->replacementlen;
147 /* target rip of the replacement JMP */
148 tgt_rip = next_rip + o_dspl;
149 n_dspl = tgt_rip - orig_insn;
150
151 DPRINTK("target RIP: %px, new_displ: 0x%x", tgt_rip, n_dspl);
152
153 if (tgt_rip - orig_insn >= 0) {
154 if (n_dspl - 2 <= 127)
155 goto two_byte_jmp;
156 else
157 goto five_byte_jmp;
158 /* negative offset */
159 } else {
160 if (((n_dspl - 2) & 0xff) == (n_dspl - 2))
161 goto two_byte_jmp;
162 else
163 goto five_byte_jmp;
164 }
165
166two_byte_jmp:
167 n_dspl -= 2;
168
169 insn_buff[0] = 0xeb;
170 insn_buff[1] = (s8)n_dspl;
171 add_nops(insn_buff + 2, 3);
172
173 repl_len = 2;
174 goto done;
175
176five_byte_jmp:
177 n_dspl -= 5;
178
179 insn_buff[0] = 0xe9;
180 *(s32 *)&insn_buff[1] = n_dspl;
181
182 repl_len = 5;
183
184done:
185
186 DPRINTK("final displ: 0x%08x, JMP 0x%lx",
187 n_dspl, (unsigned long)orig_insn + n_dspl + repl_len);
188}
189
190/*
191 * optimize_nops_range() - Optimize a sequence of single byte NOPs (0x90)
192 *
193 * @instr: instruction byte stream
194 * @instrlen: length of the above
195 * @off: offset within @instr where the first NOP has been detected
196 *
197 * Return: number of NOPs found (and replaced).
198 */
199static __always_inline int optimize_nops_range(u8 *instr, u8 instrlen, int off)
200{
201 unsigned long flags;
202 int i = off, nnops;
203
204 while (i < instrlen) {
205 if (instr[i] != 0x90)
206 break;
207
208 i++;
209 }
210
211 nnops = i - off;
212
213 if (nnops <= 1)
214 return nnops;
215
216 local_irq_save(flags);
217 add_nops(instr + off, nnops);
218 local_irq_restore(flags);
219
220 DUMP_BYTES(instr, instrlen, "%px: [%d:%d) optimized NOPs: ", instr, off, i);
221
222 return nnops;
223}
224
225/*
226 * "noinline" to cause control flow change and thus invalidate I$ and
227 * cause refetch after modification.
228 */
229static void __init_or_module noinline optimize_nops(u8 *instr, size_t len)
230{
231 struct insn insn;
232 int i = 0;
233
234 /*
235 * Jump over the non-NOP insns and optimize single-byte NOPs into bigger
236 * ones.
237 */
238 for (;;) {
239 if (insn_decode_kernel(&insn, &instr[i]))
240 return;
241
242 /*
243 * See if this and any potentially following NOPs can be
244 * optimized.
245 */
246 if (insn.length == 1 && insn.opcode.bytes[0] == 0x90)
247 i += optimize_nops_range(instr, len, i);
248 else
249 i += insn.length;
250
251 if (i >= len)
252 return;
253 }
254}
255
256/*
257 * Replace instructions with better alternatives for this CPU type. This runs
258 * before SMP is initialized to avoid SMP problems with self modifying code.
259 * This implies that asymmetric systems where APs have less capabilities than
260 * the boot processor are not handled. Tough. Make sure you disable such
261 * features by hand.
262 *
263 * Marked "noinline" to cause control flow change and thus insn cache
264 * to refetch changed I$ lines.
265 */
266void __init_or_module noinline apply_alternatives(struct alt_instr *start,
267 struct alt_instr *end)
268{
269 struct alt_instr *a;
270 u8 *instr, *replacement;
271 u8 insn_buff[MAX_PATCH_LEN];
272
273 DPRINTK("alt table %px, -> %px", start, end);
274 /*
275 * The scan order should be from start to end. A later scanned
276 * alternative code can overwrite previously scanned alternative code.
277 * Some kernel functions (e.g. memcpy, memset, etc) use this order to
278 * patch code.
279 *
280 * So be careful if you want to change the scan order to any other
281 * order.
282 */
283 for (a = start; a < end; a++) {
284 int insn_buff_sz = 0;
285 /* Mask away "NOT" flag bit for feature to test. */
286 u16 feature = a->cpuid & ~ALTINSTR_FLAG_INV;
287
288 instr = (u8 *)&a->instr_offset + a->instr_offset;
289 replacement = (u8 *)&a->repl_offset + a->repl_offset;
290 BUG_ON(a->instrlen > sizeof(insn_buff));
291 BUG_ON(feature >= (NCAPINTS + NBUGINTS) * 32);
292
293 /*
294 * Patch if either:
295 * - feature is present
296 * - feature not present but ALTINSTR_FLAG_INV is set to mean,
297 * patch if feature is *NOT* present.
298 */
299 if (!boot_cpu_has(feature) == !(a->cpuid & ALTINSTR_FLAG_INV))
300 goto next;
301
302 DPRINTK("feat: %s%d*32+%d, old: (%pS (%px) len: %d), repl: (%px, len: %d)",
303 (a->cpuid & ALTINSTR_FLAG_INV) ? "!" : "",
304 feature >> 5,
305 feature & 0x1f,
306 instr, instr, a->instrlen,
307 replacement, a->replacementlen);
308
309 DUMP_BYTES(instr, a->instrlen, "%px: old_insn: ", instr);
310 DUMP_BYTES(replacement, a->replacementlen, "%px: rpl_insn: ", replacement);
311
312 memcpy(insn_buff, replacement, a->replacementlen);
313 insn_buff_sz = a->replacementlen;
314
315 /*
316 * 0xe8 is a relative jump; fix the offset.
317 *
318 * Instruction length is checked before the opcode to avoid
319 * accessing uninitialized bytes for zero-length replacements.
320 */
321 if (a->replacementlen == 5 && *insn_buff == 0xe8) {
322 *(s32 *)(insn_buff + 1) += replacement - instr;
323 DPRINTK("Fix CALL offset: 0x%x, CALL 0x%lx",
324 *(s32 *)(insn_buff + 1),
325 (unsigned long)instr + *(s32 *)(insn_buff + 1) + 5);
326 }
327
328 if (a->replacementlen && is_jmp(replacement[0]))
329 recompute_jump(a, instr, replacement, insn_buff);
330
331 for (; insn_buff_sz < a->instrlen; insn_buff_sz++)
332 insn_buff[insn_buff_sz] = 0x90;
333
334 DUMP_BYTES(insn_buff, insn_buff_sz, "%px: final_insn: ", instr);
335
336 text_poke_early(instr, insn_buff, insn_buff_sz);
337
338next:
339 optimize_nops(instr, a->instrlen);
340 }
341}
342
343#if defined(CONFIG_RETPOLINE) && defined(CONFIG_OBJTOOL)
344
345/*
346 * CALL/JMP *%\reg
347 */
348static int emit_indirect(int op, int reg, u8 *bytes)
349{
350 int i = 0;
351 u8 modrm;
352
353 switch (op) {
354 case CALL_INSN_OPCODE:
355 modrm = 0x10; /* Reg = 2; CALL r/m */
356 break;
357
358 case JMP32_INSN_OPCODE:
359 modrm = 0x20; /* Reg = 4; JMP r/m */
360 break;
361
362 default:
363 WARN_ON_ONCE(1);
364 return -1;
365 }
366
367 if (reg >= 8) {
368 bytes[i++] = 0x41; /* REX.B prefix */
369 reg -= 8;
370 }
371
372 modrm |= 0xc0; /* Mod = 3 */
373 modrm += reg;
374
375 bytes[i++] = 0xff; /* opcode */
376 bytes[i++] = modrm;
377
378 return i;
379}
380
381static inline bool is_jcc32(struct insn *insn)
382{
383 /* Jcc.d32 second opcode byte is in the range: 0x80-0x8f */
384 return insn->opcode.bytes[0] == 0x0f && (insn->opcode.bytes[1] & 0xf0) == 0x80;
385}
386
387static int emit_call_track_retpoline(void *addr, struct insn *insn, int reg, u8 *bytes)
388{
389 u8 op = insn->opcode.bytes[0];
390 int i = 0;
391
392 /*
393 * Clang does 'weird' Jcc __x86_indirect_thunk_r11 conditional
394 * tail-calls. Deal with them.
395 */
396 if (is_jcc32(insn)) {
397 bytes[i++] = op;
398 op = insn->opcode.bytes[1];
399 goto clang_jcc;
400 }
401
402 if (insn->length == 6)
403 bytes[i++] = 0x2e; /* CS-prefix */
404
405 switch (op) {
406 case CALL_INSN_OPCODE:
407 __text_gen_insn(bytes+i, op, addr+i,
408 __x86_indirect_call_thunk_array[reg],
409 CALL_INSN_SIZE);
410 i += CALL_INSN_SIZE;
411 break;
412
413 case JMP32_INSN_OPCODE:
414clang_jcc:
415 __text_gen_insn(bytes+i, op, addr+i,
416 __x86_indirect_jump_thunk_array[reg],
417 JMP32_INSN_SIZE);
418 i += JMP32_INSN_SIZE;
419 break;
420
421 default:
422 WARN(1, "%pS %px %*ph\n", addr, addr, 6, addr);
423 return -1;
424 }
425
426 WARN_ON_ONCE(i != insn->length);
427
428 return i;
429}
430
431/*
432 * Rewrite the compiler generated retpoline thunk calls.
433 *
434 * For spectre_v2=off (!X86_FEATURE_RETPOLINE), rewrite them into immediate
435 * indirect instructions, avoiding the extra indirection.
436 *
437 * For example, convert:
438 *
439 * CALL __x86_indirect_thunk_\reg
440 *
441 * into:
442 *
443 * CALL *%\reg
444 *
445 * It also tries to inline spectre_v2=retpoline,lfence when size permits.
446 */
447static int patch_retpoline(void *addr, struct insn *insn, u8 *bytes)
448{
449 retpoline_thunk_t *target;
450 int reg, ret, i = 0;
451 u8 op, cc;
452
453 target = addr + insn->length + insn->immediate.value;
454 reg = target - __x86_indirect_thunk_array;
455
456 if (WARN_ON_ONCE(reg & ~0xf))
457 return -1;
458
459 /* If anyone ever does: CALL/JMP *%rsp, we're in deep trouble. */
460 BUG_ON(reg == 4);
461
462 if (cpu_feature_enabled(X86_FEATURE_RETPOLINE) &&
463 !cpu_feature_enabled(X86_FEATURE_RETPOLINE_LFENCE)) {
464 if (cpu_feature_enabled(X86_FEATURE_CALL_DEPTH))
465 return emit_call_track_retpoline(addr, insn, reg, bytes);
466
467 return -1;
468 }
469
470 op = insn->opcode.bytes[0];
471
472 /*
473 * Convert:
474 *
475 * Jcc.d32 __x86_indirect_thunk_\reg
476 *
477 * into:
478 *
479 * Jncc.d8 1f
480 * [ LFENCE ]
481 * JMP *%\reg
482 * [ NOP ]
483 * 1:
484 */
485 if (is_jcc32(insn)) {
486 cc = insn->opcode.bytes[1] & 0xf;
487 cc ^= 1; /* invert condition */
488
489 bytes[i++] = 0x70 + cc; /* Jcc.d8 */
490 bytes[i++] = insn->length - 2; /* sizeof(Jcc.d8) == 2 */
491
492 /* Continue as if: JMP.d32 __x86_indirect_thunk_\reg */
493 op = JMP32_INSN_OPCODE;
494 }
495
496 /*
497 * For RETPOLINE_LFENCE: prepend the indirect CALL/JMP with an LFENCE.
498 */
499 if (cpu_feature_enabled(X86_FEATURE_RETPOLINE_LFENCE)) {
500 bytes[i++] = 0x0f;
501 bytes[i++] = 0xae;
502 bytes[i++] = 0xe8; /* LFENCE */
503 }
504
505 ret = emit_indirect(op, reg, bytes + i);
506 if (ret < 0)
507 return ret;
508 i += ret;
509
510 /*
511 * The compiler is supposed to EMIT an INT3 after every unconditional
512 * JMP instruction due to AMD BTC. However, if the compiler is too old
513 * or SLS isn't enabled, we still need an INT3 after indirect JMPs
514 * even on Intel.
515 */
516 if (op == JMP32_INSN_OPCODE && i < insn->length)
517 bytes[i++] = INT3_INSN_OPCODE;
518
519 for (; i < insn->length;)
520 bytes[i++] = BYTES_NOP1;
521
522 return i;
523}
524
525/*
526 * Generated by 'objtool --retpoline'.
527 */
528void __init_or_module noinline apply_retpolines(s32 *start, s32 *end)
529{
530 s32 *s;
531
532 for (s = start; s < end; s++) {
533 void *addr = (void *)s + *s;
534 struct insn insn;
535 int len, ret;
536 u8 bytes[16];
537 u8 op1, op2;
538
539 ret = insn_decode_kernel(&insn, addr);
540 if (WARN_ON_ONCE(ret < 0))
541 continue;
542
543 op1 = insn.opcode.bytes[0];
544 op2 = insn.opcode.bytes[1];
545
546 switch (op1) {
547 case CALL_INSN_OPCODE:
548 case JMP32_INSN_OPCODE:
549 break;
550
551 case 0x0f: /* escape */
552 if (op2 >= 0x80 && op2 <= 0x8f)
553 break;
554 fallthrough;
555 default:
556 WARN_ON_ONCE(1);
557 continue;
558 }
559
560 DPRINTK("retpoline at: %pS (%px) len: %d to: %pS",
561 addr, addr, insn.length,
562 addr + insn.length + insn.immediate.value);
563
564 len = patch_retpoline(addr, &insn, bytes);
565 if (len == insn.length) {
566 optimize_nops(bytes, len);
567 DUMP_BYTES(((u8*)addr), len, "%px: orig: ", addr);
568 DUMP_BYTES(((u8*)bytes), len, "%px: repl: ", addr);
569 text_poke_early(addr, bytes, len);
570 }
571 }
572}
573
574#ifdef CONFIG_RETHUNK
575
576#ifdef CONFIG_CALL_THUNKS
577void (*x86_return_thunk)(void) __ro_after_init = &__x86_return_thunk;
578#endif
579
580/*
581 * Rewrite the compiler generated return thunk tail-calls.
582 *
583 * For example, convert:
584 *
585 * JMP __x86_return_thunk
586 *
587 * into:
588 *
589 * RET
590 */
591static int patch_return(void *addr, struct insn *insn, u8 *bytes)
592{
593 int i = 0;
594
595 if (cpu_feature_enabled(X86_FEATURE_RETHUNK)) {
596 if (x86_return_thunk == __x86_return_thunk)
597 return -1;
598
599 i = JMP32_INSN_SIZE;
600 __text_gen_insn(bytes, JMP32_INSN_OPCODE, addr, x86_return_thunk, i);
601 } else {
602 bytes[i++] = RET_INSN_OPCODE;
603 }
604
605 for (; i < insn->length;)
606 bytes[i++] = INT3_INSN_OPCODE;
607 return i;
608}
609
610void __init_or_module noinline apply_returns(s32 *start, s32 *end)
611{
612 s32 *s;
613
614 for (s = start; s < end; s++) {
615 void *dest = NULL, *addr = (void *)s + *s;
616 struct insn insn;
617 int len, ret;
618 u8 bytes[16];
619 u8 op;
620
621 ret = insn_decode_kernel(&insn, addr);
622 if (WARN_ON_ONCE(ret < 0))
623 continue;
624
625 op = insn.opcode.bytes[0];
626 if (op == JMP32_INSN_OPCODE)
627 dest = addr + insn.length + insn.immediate.value;
628
629 if (__static_call_fixup(addr, op, dest) ||
630 WARN_ONCE(dest != &__x86_return_thunk,
631 "missing return thunk: %pS-%pS: %*ph",
632 addr, dest, 5, addr))
633 continue;
634
635 DPRINTK("return thunk at: %pS (%px) len: %d to: %pS",
636 addr, addr, insn.length,
637 addr + insn.length + insn.immediate.value);
638
639 len = patch_return(addr, &insn, bytes);
640 if (len == insn.length) {
641 DUMP_BYTES(((u8*)addr), len, "%px: orig: ", addr);
642 DUMP_BYTES(((u8*)bytes), len, "%px: repl: ", addr);
643 text_poke_early(addr, bytes, len);
644 }
645 }
646}
647#else
648void __init_or_module noinline apply_returns(s32 *start, s32 *end) { }
649#endif /* CONFIG_RETHUNK */
650
651#else /* !CONFIG_RETPOLINE || !CONFIG_OBJTOOL */
652
653void __init_or_module noinline apply_retpolines(s32 *start, s32 *end) { }
654void __init_or_module noinline apply_returns(s32 *start, s32 *end) { }
655
656#endif /* CONFIG_RETPOLINE && CONFIG_OBJTOOL */
657
658#ifdef CONFIG_X86_KERNEL_IBT
659
660static void poison_endbr(void *addr, bool warn)
661{
662 u32 endbr, poison = gen_endbr_poison();
663
664 if (WARN_ON_ONCE(get_kernel_nofault(endbr, addr)))
665 return;
666
667 if (!is_endbr(endbr)) {
668 WARN_ON_ONCE(warn);
669 return;
670 }
671
672 DPRINTK("ENDBR at: %pS (%px)", addr, addr);
673
674 /*
675 * When we have IBT, the lack of ENDBR will trigger #CP
676 */
677 DUMP_BYTES(((u8*)addr), 4, "%px: orig: ", addr);
678 DUMP_BYTES(((u8*)&poison), 4, "%px: repl: ", addr);
679 text_poke_early(addr, &poison, 4);
680}
681
682/*
683 * Generated by: objtool --ibt
684 */
685void __init_or_module noinline apply_ibt_endbr(s32 *start, s32 *end)
686{
687 s32 *s;
688
689 for (s = start; s < end; s++) {
690 void *addr = (void *)s + *s;
691
692 poison_endbr(addr, true);
693 if (IS_ENABLED(CONFIG_FINEIBT))
694 poison_endbr(addr - 16, false);
695 }
696}
697
698#else
699
700void __init_or_module apply_ibt_endbr(s32 *start, s32 *end) { }
701
702#endif /* CONFIG_X86_KERNEL_IBT */
703
704#ifdef CONFIG_FINEIBT
705
706enum cfi_mode {
707 CFI_DEFAULT,
708 CFI_OFF,
709 CFI_KCFI,
710 CFI_FINEIBT,
711};
712
713static enum cfi_mode cfi_mode __ro_after_init = CFI_DEFAULT;
714static bool cfi_rand __ro_after_init = true;
715static u32 cfi_seed __ro_after_init;
716
717/*
718 * Re-hash the CFI hash with a boot-time seed while making sure the result is
719 * not a valid ENDBR instruction.
720 */
721static u32 cfi_rehash(u32 hash)
722{
723 hash ^= cfi_seed;
724 while (unlikely(is_endbr(hash) || is_endbr(-hash))) {
725 bool lsb = hash & 1;
726 hash >>= 1;
727 if (lsb)
728 hash ^= 0x80200003;
729 }
730 return hash;
731}
732
733static __init int cfi_parse_cmdline(char *str)
734{
735 if (!str)
736 return -EINVAL;
737
738 while (str) {
739 char *next = strchr(str, ',');
740 if (next) {
741 *next = 0;
742 next++;
743 }
744
745 if (!strcmp(str, "auto")) {
746 cfi_mode = CFI_DEFAULT;
747 } else if (!strcmp(str, "off")) {
748 cfi_mode = CFI_OFF;
749 cfi_rand = false;
750 } else if (!strcmp(str, "kcfi")) {
751 cfi_mode = CFI_KCFI;
752 } else if (!strcmp(str, "fineibt")) {
753 cfi_mode = CFI_FINEIBT;
754 } else if (!strcmp(str, "norand")) {
755 cfi_rand = false;
756 } else {
757 pr_err("Ignoring unknown cfi option (%s).", str);
758 }
759
760 str = next;
761 }
762
763 return 0;
764}
765early_param("cfi", cfi_parse_cmdline);
766
767/*
768 * kCFI FineIBT
769 *
770 * __cfi_\func: __cfi_\func:
771 * movl $0x12345678,%eax // 5 endbr64 // 4
772 * nop subl $0x12345678,%r10d // 7
773 * nop jz 1f // 2
774 * nop ud2 // 2
775 * nop 1: nop // 1
776 * nop
777 * nop
778 * nop
779 * nop
780 * nop
781 * nop
782 * nop
783 *
784 *
785 * caller: caller:
786 * movl $(-0x12345678),%r10d // 6 movl $0x12345678,%r10d // 6
787 * addl $-15(%r11),%r10d // 4 sub $16,%r11 // 4
788 * je 1f // 2 nop4 // 4
789 * ud2 // 2
790 * 1: call __x86_indirect_thunk_r11 // 5 call *%r11; nop2; // 5
791 *
792 */
793
794asm( ".pushsection .rodata \n"
795 "fineibt_preamble_start: \n"
796 " endbr64 \n"
797 " subl $0x12345678, %r10d \n"
798 " je fineibt_preamble_end \n"
799 " ud2 \n"
800 " nop \n"
801 "fineibt_preamble_end: \n"
802 ".popsection\n"
803);
804
805extern u8 fineibt_preamble_start[];
806extern u8 fineibt_preamble_end[];
807
808#define fineibt_preamble_size (fineibt_preamble_end - fineibt_preamble_start)
809#define fineibt_preamble_hash 7
810
811asm( ".pushsection .rodata \n"
812 "fineibt_caller_start: \n"
813 " movl $0x12345678, %r10d \n"
814 " sub $16, %r11 \n"
815 ASM_NOP4
816 "fineibt_caller_end: \n"
817 ".popsection \n"
818);
819
820extern u8 fineibt_caller_start[];
821extern u8 fineibt_caller_end[];
822
823#define fineibt_caller_size (fineibt_caller_end - fineibt_caller_start)
824#define fineibt_caller_hash 2
825
826#define fineibt_caller_jmp (fineibt_caller_size - 2)
827
828static u32 decode_preamble_hash(void *addr)
829{
830 u8 *p = addr;
831
832 /* b8 78 56 34 12 mov $0x12345678,%eax */
833 if (p[0] == 0xb8)
834 return *(u32 *)(addr + 1);
835
836 return 0; /* invalid hash value */
837}
838
839static u32 decode_caller_hash(void *addr)
840{
841 u8 *p = addr;
842
843 /* 41 ba 78 56 34 12 mov $0x12345678,%r10d */
844 if (p[0] == 0x41 && p[1] == 0xba)
845 return -*(u32 *)(addr + 2);
846
847 /* e8 0c 78 56 34 12 jmp.d8 +12 */
848 if (p[0] == JMP8_INSN_OPCODE && p[1] == fineibt_caller_jmp)
849 return -*(u32 *)(addr + 2);
850
851 return 0; /* invalid hash value */
852}
853
854/* .retpoline_sites */
855static int cfi_disable_callers(s32 *start, s32 *end)
856{
857 /*
858 * Disable kCFI by patching in a JMP.d8, this leaves the hash immediate
859 * in tact for later usage. Also see decode_caller_hash() and
860 * cfi_rewrite_callers().
861 */
862 const u8 jmp[] = { JMP8_INSN_OPCODE, fineibt_caller_jmp };
863 s32 *s;
864
865 for (s = start; s < end; s++) {
866 void *addr = (void *)s + *s;
867 u32 hash;
868
869 addr -= fineibt_caller_size;
870 hash = decode_caller_hash(addr);
871 if (!hash) /* nocfi callers */
872 continue;
873
874 text_poke_early(addr, jmp, 2);
875 }
876
877 return 0;
878}
879
880static int cfi_enable_callers(s32 *start, s32 *end)
881{
882 /*
883 * Re-enable kCFI, undo what cfi_disable_callers() did.
884 */
885 const u8 mov[] = { 0x41, 0xba };
886 s32 *s;
887
888 for (s = start; s < end; s++) {
889 void *addr = (void *)s + *s;
890 u32 hash;
891
892 addr -= fineibt_caller_size;
893 hash = decode_caller_hash(addr);
894 if (!hash) /* nocfi callers */
895 continue;
896
897 text_poke_early(addr, mov, 2);
898 }
899
900 return 0;
901}
902
903/* .cfi_sites */
904static int cfi_rand_preamble(s32 *start, s32 *end)
905{
906 s32 *s;
907
908 for (s = start; s < end; s++) {
909 void *addr = (void *)s + *s;
910 u32 hash;
911
912 hash = decode_preamble_hash(addr);
913 if (WARN(!hash, "no CFI hash found at: %pS %px %*ph\n",
914 addr, addr, 5, addr))
915 return -EINVAL;
916
917 hash = cfi_rehash(hash);
918 text_poke_early(addr + 1, &hash, 4);
919 }
920
921 return 0;
922}
923
924static int cfi_rewrite_preamble(s32 *start, s32 *end)
925{
926 s32 *s;
927
928 for (s = start; s < end; s++) {
929 void *addr = (void *)s + *s;
930 u32 hash;
931
932 hash = decode_preamble_hash(addr);
933 if (WARN(!hash, "no CFI hash found at: %pS %px %*ph\n",
934 addr, addr, 5, addr))
935 return -EINVAL;
936
937 text_poke_early(addr, fineibt_preamble_start, fineibt_preamble_size);
938 WARN_ON(*(u32 *)(addr + fineibt_preamble_hash) != 0x12345678);
939 text_poke_early(addr + fineibt_preamble_hash, &hash, 4);
940 }
941
942 return 0;
943}
944
945/* .retpoline_sites */
946static int cfi_rand_callers(s32 *start, s32 *end)
947{
948 s32 *s;
949
950 for (s = start; s < end; s++) {
951 void *addr = (void *)s + *s;
952 u32 hash;
953
954 addr -= fineibt_caller_size;
955 hash = decode_caller_hash(addr);
956 if (hash) {
957 hash = -cfi_rehash(hash);
958 text_poke_early(addr + 2, &hash, 4);
959 }
960 }
961
962 return 0;
963}
964
965static int cfi_rewrite_callers(s32 *start, s32 *end)
966{
967 s32 *s;
968
969 for (s = start; s < end; s++) {
970 void *addr = (void *)s + *s;
971 u32 hash;
972
973 addr -= fineibt_caller_size;
974 hash = decode_caller_hash(addr);
975 if (hash) {
976 text_poke_early(addr, fineibt_caller_start, fineibt_caller_size);
977 WARN_ON(*(u32 *)(addr + fineibt_caller_hash) != 0x12345678);
978 text_poke_early(addr + fineibt_caller_hash, &hash, 4);
979 }
980 /* rely on apply_retpolines() */
981 }
982
983 return 0;
984}
985
986static void __apply_fineibt(s32 *start_retpoline, s32 *end_retpoline,
987 s32 *start_cfi, s32 *end_cfi, bool builtin)
988{
989 int ret;
990
991 if (WARN_ONCE(fineibt_preamble_size != 16,
992 "FineIBT preamble wrong size: %ld", fineibt_preamble_size))
993 return;
994
995 if (cfi_mode == CFI_DEFAULT) {
996 cfi_mode = CFI_KCFI;
997 if (HAS_KERNEL_IBT && cpu_feature_enabled(X86_FEATURE_IBT))
998 cfi_mode = CFI_FINEIBT;
999 }
1000
1001 /*
1002 * Rewrite the callers to not use the __cfi_ stubs, such that we might
1003 * rewrite them. This disables all CFI. If this succeeds but any of the
1004 * later stages fails, we're without CFI.
1005 */
1006 ret = cfi_disable_callers(start_retpoline, end_retpoline);
1007 if (ret)
1008 goto err;
1009
1010 if (cfi_rand) {
1011 if (builtin)
1012 cfi_seed = get_random_u32();
1013
1014 ret = cfi_rand_preamble(start_cfi, end_cfi);
1015 if (ret)
1016 goto err;
1017
1018 ret = cfi_rand_callers(start_retpoline, end_retpoline);
1019 if (ret)
1020 goto err;
1021 }
1022
1023 switch (cfi_mode) {
1024 case CFI_OFF:
1025 if (builtin)
1026 pr_info("Disabling CFI\n");
1027 return;
1028
1029 case CFI_KCFI:
1030 ret = cfi_enable_callers(start_retpoline, end_retpoline);
1031 if (ret)
1032 goto err;
1033
1034 if (builtin)
1035 pr_info("Using kCFI\n");
1036 return;
1037
1038 case CFI_FINEIBT:
1039 ret = cfi_rewrite_preamble(start_cfi, end_cfi);
1040 if (ret)
1041 goto err;
1042
1043 ret = cfi_rewrite_callers(start_retpoline, end_retpoline);
1044 if (ret)
1045 goto err;
1046
1047 if (builtin)
1048 pr_info("Using FineIBT CFI\n");
1049 return;
1050
1051 default:
1052 break;
1053 }
1054
1055err:
1056 pr_err("Something went horribly wrong trying to rewrite the CFI implementation.\n");
1057}
1058
1059#else
1060
1061static void __apply_fineibt(s32 *start_retpoline, s32 *end_retpoline,
1062 s32 *start_cfi, s32 *end_cfi, bool builtin)
1063{
1064}
1065
1066#endif
1067
1068void apply_fineibt(s32 *start_retpoline, s32 *end_retpoline,
1069 s32 *start_cfi, s32 *end_cfi)
1070{
1071 return __apply_fineibt(start_retpoline, end_retpoline,
1072 start_cfi, end_cfi,
1073 /* .builtin = */ false);
1074}
1075
1076#ifdef CONFIG_SMP
1077static void alternatives_smp_lock(const s32 *start, const s32 *end,
1078 u8 *text, u8 *text_end)
1079{
1080 const s32 *poff;
1081
1082 for (poff = start; poff < end; poff++) {
1083 u8 *ptr = (u8 *)poff + *poff;
1084
1085 if (!*poff || ptr < text || ptr >= text_end)
1086 continue;
1087 /* turn DS segment override prefix into lock prefix */
1088 if (*ptr == 0x3e)
1089 text_poke(ptr, ((unsigned char []){0xf0}), 1);
1090 }
1091}
1092
1093static void alternatives_smp_unlock(const s32 *start, const s32 *end,
1094 u8 *text, u8 *text_end)
1095{
1096 const s32 *poff;
1097
1098 for (poff = start; poff < end; poff++) {
1099 u8 *ptr = (u8 *)poff + *poff;
1100
1101 if (!*poff || ptr < text || ptr >= text_end)
1102 continue;
1103 /* turn lock prefix into DS segment override prefix */
1104 if (*ptr == 0xf0)
1105 text_poke(ptr, ((unsigned char []){0x3E}), 1);
1106 }
1107}
1108
1109struct smp_alt_module {
1110 /* what is this ??? */
1111 struct module *mod;
1112 char *name;
1113
1114 /* ptrs to lock prefixes */
1115 const s32 *locks;
1116 const s32 *locks_end;
1117
1118 /* .text segment, needed to avoid patching init code ;) */
1119 u8 *text;
1120 u8 *text_end;
1121
1122 struct list_head next;
1123};
1124static LIST_HEAD(smp_alt_modules);
1125static bool uniproc_patched = false; /* protected by text_mutex */
1126
1127void __init_or_module alternatives_smp_module_add(struct module *mod,
1128 char *name,
1129 void *locks, void *locks_end,
1130 void *text, void *text_end)
1131{
1132 struct smp_alt_module *smp;
1133
1134 mutex_lock(&text_mutex);
1135 if (!uniproc_patched)
1136 goto unlock;
1137
1138 if (num_possible_cpus() == 1)
1139 /* Don't bother remembering, we'll never have to undo it. */
1140 goto smp_unlock;
1141
1142 smp = kzalloc(sizeof(*smp), GFP_KERNEL);
1143 if (NULL == smp)
1144 /* we'll run the (safe but slow) SMP code then ... */
1145 goto unlock;
1146
1147 smp->mod = mod;
1148 smp->name = name;
1149 smp->locks = locks;
1150 smp->locks_end = locks_end;
1151 smp->text = text;
1152 smp->text_end = text_end;
1153 DPRINTK("locks %p -> %p, text %p -> %p, name %s\n",
1154 smp->locks, smp->locks_end,
1155 smp->text, smp->text_end, smp->name);
1156
1157 list_add_tail(&smp->next, &smp_alt_modules);
1158smp_unlock:
1159 alternatives_smp_unlock(locks, locks_end, text, text_end);
1160unlock:
1161 mutex_unlock(&text_mutex);
1162}
1163
1164void __init_or_module alternatives_smp_module_del(struct module *mod)
1165{
1166 struct smp_alt_module *item;
1167
1168 mutex_lock(&text_mutex);
1169 list_for_each_entry(item, &smp_alt_modules, next) {
1170 if (mod != item->mod)
1171 continue;
1172 list_del(&item->next);
1173 kfree(item);
1174 break;
1175 }
1176 mutex_unlock(&text_mutex);
1177}
1178
1179void alternatives_enable_smp(void)
1180{
1181 struct smp_alt_module *mod;
1182
1183 /* Why bother if there are no other CPUs? */
1184 BUG_ON(num_possible_cpus() == 1);
1185
1186 mutex_lock(&text_mutex);
1187
1188 if (uniproc_patched) {
1189 pr_info("switching to SMP code\n");
1190 BUG_ON(num_online_cpus() != 1);
1191 clear_cpu_cap(&boot_cpu_data, X86_FEATURE_UP);
1192 clear_cpu_cap(&cpu_data(0), X86_FEATURE_UP);
1193 list_for_each_entry(mod, &smp_alt_modules, next)
1194 alternatives_smp_lock(mod->locks, mod->locks_end,
1195 mod->text, mod->text_end);
1196 uniproc_patched = false;
1197 }
1198 mutex_unlock(&text_mutex);
1199}
1200
1201/*
1202 * Return 1 if the address range is reserved for SMP-alternatives.
1203 * Must hold text_mutex.
1204 */
1205int alternatives_text_reserved(void *start, void *end)
1206{
1207 struct smp_alt_module *mod;
1208 const s32 *poff;
1209 u8 *text_start = start;
1210 u8 *text_end = end;
1211
1212 lockdep_assert_held(&text_mutex);
1213
1214 list_for_each_entry(mod, &smp_alt_modules, next) {
1215 if (mod->text > text_end || mod->text_end < text_start)
1216 continue;
1217 for (poff = mod->locks; poff < mod->locks_end; poff++) {
1218 const u8 *ptr = (const u8 *)poff + *poff;
1219
1220 if (text_start <= ptr && text_end > ptr)
1221 return 1;
1222 }
1223 }
1224
1225 return 0;
1226}
1227#endif /* CONFIG_SMP */
1228
1229#ifdef CONFIG_PARAVIRT
1230void __init_or_module apply_paravirt(struct paravirt_patch_site *start,
1231 struct paravirt_patch_site *end)
1232{
1233 struct paravirt_patch_site *p;
1234 char insn_buff[MAX_PATCH_LEN];
1235
1236 for (p = start; p < end; p++) {
1237 unsigned int used;
1238
1239 BUG_ON(p->len > MAX_PATCH_LEN);
1240 /* prep the buffer with the original instructions */
1241 memcpy(insn_buff, p->instr, p->len);
1242 used = paravirt_patch(p->type, insn_buff, (unsigned long)p->instr, p->len);
1243
1244 BUG_ON(used > p->len);
1245
1246 /* Pad the rest with nops */
1247 add_nops(insn_buff + used, p->len - used);
1248 text_poke_early(p->instr, insn_buff, p->len);
1249 }
1250}
1251extern struct paravirt_patch_site __start_parainstructions[],
1252 __stop_parainstructions[];
1253#endif /* CONFIG_PARAVIRT */
1254
1255/*
1256 * Self-test for the INT3 based CALL emulation code.
1257 *
1258 * This exercises int3_emulate_call() to make sure INT3 pt_regs are set up
1259 * properly and that there is a stack gap between the INT3 frame and the
1260 * previous context. Without this gap doing a virtual PUSH on the interrupted
1261 * stack would corrupt the INT3 IRET frame.
1262 *
1263 * See entry_{32,64}.S for more details.
1264 */
1265
1266/*
1267 * We define the int3_magic() function in assembly to control the calling
1268 * convention such that we can 'call' it from assembly.
1269 */
1270
1271extern void int3_magic(unsigned int *ptr); /* defined in asm */
1272
1273asm (
1274" .pushsection .init.text, \"ax\", @progbits\n"
1275" .type int3_magic, @function\n"
1276"int3_magic:\n"
1277 ANNOTATE_NOENDBR
1278" movl $1, (%" _ASM_ARG1 ")\n"
1279 ASM_RET
1280" .size int3_magic, .-int3_magic\n"
1281" .popsection\n"
1282);
1283
1284extern void int3_selftest_ip(void); /* defined in asm below */
1285
1286static int __init
1287int3_exception_notify(struct notifier_block *self, unsigned long val, void *data)
1288{
1289 unsigned long selftest = (unsigned long)&int3_selftest_ip;
1290 struct die_args *args = data;
1291 struct pt_regs *regs = args->regs;
1292
1293 OPTIMIZER_HIDE_VAR(selftest);
1294
1295 if (!regs || user_mode(regs))
1296 return NOTIFY_DONE;
1297
1298 if (val != DIE_INT3)
1299 return NOTIFY_DONE;
1300
1301 if (regs->ip - INT3_INSN_SIZE != selftest)
1302 return NOTIFY_DONE;
1303
1304 int3_emulate_call(regs, (unsigned long)&int3_magic);
1305 return NOTIFY_STOP;
1306}
1307
1308/* Must be noinline to ensure uniqueness of int3_selftest_ip. */
1309static noinline void __init int3_selftest(void)
1310{
1311 static __initdata struct notifier_block int3_exception_nb = {
1312 .notifier_call = int3_exception_notify,
1313 .priority = INT_MAX-1, /* last */
1314 };
1315 unsigned int val = 0;
1316
1317 BUG_ON(register_die_notifier(&int3_exception_nb));
1318
1319 /*
1320 * Basically: int3_magic(&val); but really complicated :-)
1321 *
1322 * INT3 padded with NOP to CALL_INSN_SIZE. The int3_exception_nb
1323 * notifier above will emulate CALL for us.
1324 */
1325 asm volatile ("int3_selftest_ip:\n\t"
1326 ANNOTATE_NOENDBR
1327 " int3; nop; nop; nop; nop\n\t"
1328 : ASM_CALL_CONSTRAINT
1329 : __ASM_SEL_RAW(a, D) (&val)
1330 : "memory");
1331
1332 BUG_ON(val != 1);
1333
1334 unregister_die_notifier(&int3_exception_nb);
1335}
1336
1337void __init alternative_instructions(void)
1338{
1339 int3_selftest();
1340
1341 /*
1342 * The patching is not fully atomic, so try to avoid local
1343 * interruptions that might execute the to be patched code.
1344 * Other CPUs are not running.
1345 */
1346 stop_nmi();
1347
1348 /*
1349 * Don't stop machine check exceptions while patching.
1350 * MCEs only happen when something got corrupted and in this
1351 * case we must do something about the corruption.
1352 * Ignoring it is worse than an unlikely patching race.
1353 * Also machine checks tend to be broadcast and if one CPU
1354 * goes into machine check the others follow quickly, so we don't
1355 * expect a machine check to cause undue problems during to code
1356 * patching.
1357 */
1358
1359 /*
1360 * Paravirt patching and alternative patching can be combined to
1361 * replace a function call with a short direct code sequence (e.g.
1362 * by setting a constant return value instead of doing that in an
1363 * external function).
1364 * In order to make this work the following sequence is required:
1365 * 1. set (artificial) features depending on used paravirt
1366 * functions which can later influence alternative patching
1367 * 2. apply paravirt patching (generally replacing an indirect
1368 * function call with a direct one)
1369 * 3. apply alternative patching (e.g. replacing a direct function
1370 * call with a custom code sequence)
1371 * Doing paravirt patching after alternative patching would clobber
1372 * the optimization of the custom code with a function call again.
1373 */
1374 paravirt_set_cap();
1375
1376 /*
1377 * First patch paravirt functions, such that we overwrite the indirect
1378 * call with the direct call.
1379 */
1380 apply_paravirt(__parainstructions, __parainstructions_end);
1381
1382 __apply_fineibt(__retpoline_sites, __retpoline_sites_end,
1383 __cfi_sites, __cfi_sites_end, true);
1384
1385 /*
1386 * Rewrite the retpolines, must be done before alternatives since
1387 * those can rewrite the retpoline thunks.
1388 */
1389 apply_retpolines(__retpoline_sites, __retpoline_sites_end);
1390 apply_returns(__return_sites, __return_sites_end);
1391
1392 /*
1393 * Then patch alternatives, such that those paravirt calls that are in
1394 * alternatives can be overwritten by their immediate fragments.
1395 */
1396 apply_alternatives(__alt_instructions, __alt_instructions_end);
1397
1398 /*
1399 * Now all calls are established. Apply the call thunks if
1400 * required.
1401 */
1402 callthunks_patch_builtin_calls();
1403
1404 apply_ibt_endbr(__ibt_endbr_seal, __ibt_endbr_seal_end);
1405
1406#ifdef CONFIG_SMP
1407 /* Patch to UP if other cpus not imminent. */
1408 if (!noreplace_smp && (num_present_cpus() == 1 || setup_max_cpus <= 1)) {
1409 uniproc_patched = true;
1410 alternatives_smp_module_add(NULL, "core kernel",
1411 __smp_locks, __smp_locks_end,
1412 _text, _etext);
1413 }
1414
1415 if (!uniproc_patched || num_possible_cpus() == 1) {
1416 free_init_pages("SMP alternatives",
1417 (unsigned long)__smp_locks,
1418 (unsigned long)__smp_locks_end);
1419 }
1420#endif
1421
1422 restart_nmi();
1423 alternatives_patched = 1;
1424}
1425
1426/**
1427 * text_poke_early - Update instructions on a live kernel at boot time
1428 * @addr: address to modify
1429 * @opcode: source of the copy
1430 * @len: length to copy
1431 *
1432 * When you use this code to patch more than one byte of an instruction
1433 * you need to make sure that other CPUs cannot execute this code in parallel.
1434 * Also no thread must be currently preempted in the middle of these
1435 * instructions. And on the local CPU you need to be protected against NMI or
1436 * MCE handlers seeing an inconsistent instruction while you patch.
1437 */
1438void __init_or_module text_poke_early(void *addr, const void *opcode,
1439 size_t len)
1440{
1441 unsigned long flags;
1442
1443 if (boot_cpu_has(X86_FEATURE_NX) &&
1444 is_module_text_address((unsigned long)addr)) {
1445 /*
1446 * Modules text is marked initially as non-executable, so the
1447 * code cannot be running and speculative code-fetches are
1448 * prevented. Just change the code.
1449 */
1450 memcpy(addr, opcode, len);
1451 } else {
1452 local_irq_save(flags);
1453 memcpy(addr, opcode, len);
1454 local_irq_restore(flags);
1455 sync_core();
1456
1457 /*
1458 * Could also do a CLFLUSH here to speed up CPU recovery; but
1459 * that causes hangs on some VIA CPUs.
1460 */
1461 }
1462}
1463
1464typedef struct {
1465 struct mm_struct *mm;
1466} temp_mm_state_t;
1467
1468/*
1469 * Using a temporary mm allows to set temporary mappings that are not accessible
1470 * by other CPUs. Such mappings are needed to perform sensitive memory writes
1471 * that override the kernel memory protections (e.g., W^X), without exposing the
1472 * temporary page-table mappings that are required for these write operations to
1473 * other CPUs. Using a temporary mm also allows to avoid TLB shootdowns when the
1474 * mapping is torn down.
1475 *
1476 * Context: The temporary mm needs to be used exclusively by a single core. To
1477 * harden security IRQs must be disabled while the temporary mm is
1478 * loaded, thereby preventing interrupt handler bugs from overriding
1479 * the kernel memory protection.
1480 */
1481static inline temp_mm_state_t use_temporary_mm(struct mm_struct *mm)
1482{
1483 temp_mm_state_t temp_state;
1484
1485 lockdep_assert_irqs_disabled();
1486
1487 /*
1488 * Make sure not to be in TLB lazy mode, as otherwise we'll end up
1489 * with a stale address space WITHOUT being in lazy mode after
1490 * restoring the previous mm.
1491 */
1492 if (this_cpu_read(cpu_tlbstate_shared.is_lazy))
1493 leave_mm(smp_processor_id());
1494
1495 temp_state.mm = this_cpu_read(cpu_tlbstate.loaded_mm);
1496 switch_mm_irqs_off(NULL, mm, current);
1497
1498 /*
1499 * If breakpoints are enabled, disable them while the temporary mm is
1500 * used. Userspace might set up watchpoints on addresses that are used
1501 * in the temporary mm, which would lead to wrong signals being sent or
1502 * crashes.
1503 *
1504 * Note that breakpoints are not disabled selectively, which also causes
1505 * kernel breakpoints (e.g., perf's) to be disabled. This might be
1506 * undesirable, but still seems reasonable as the code that runs in the
1507 * temporary mm should be short.
1508 */
1509 if (hw_breakpoint_active())
1510 hw_breakpoint_disable();
1511
1512 return temp_state;
1513}
1514
1515static inline void unuse_temporary_mm(temp_mm_state_t prev_state)
1516{
1517 lockdep_assert_irqs_disabled();
1518 switch_mm_irqs_off(NULL, prev_state.mm, current);
1519
1520 /*
1521 * Restore the breakpoints if they were disabled before the temporary mm
1522 * was loaded.
1523 */
1524 if (hw_breakpoint_active())
1525 hw_breakpoint_restore();
1526}
1527
1528__ro_after_init struct mm_struct *poking_mm;
1529__ro_after_init unsigned long poking_addr;
1530
1531static void text_poke_memcpy(void *dst, const void *src, size_t len)
1532{
1533 memcpy(dst, src, len);
1534}
1535
1536static void text_poke_memset(void *dst, const void *src, size_t len)
1537{
1538 int c = *(const int *)src;
1539
1540 memset(dst, c, len);
1541}
1542
1543typedef void text_poke_f(void *dst, const void *src, size_t len);
1544
1545static void *__text_poke(text_poke_f func, void *addr, const void *src, size_t len)
1546{
1547 bool cross_page_boundary = offset_in_page(addr) + len > PAGE_SIZE;
1548 struct page *pages[2] = {NULL};
1549 temp_mm_state_t prev;
1550 unsigned long flags;
1551 pte_t pte, *ptep;
1552 spinlock_t *ptl;
1553 pgprot_t pgprot;
1554
1555 /*
1556 * While boot memory allocator is running we cannot use struct pages as
1557 * they are not yet initialized. There is no way to recover.
1558 */
1559 BUG_ON(!after_bootmem);
1560
1561 if (!core_kernel_text((unsigned long)addr)) {
1562 pages[0] = vmalloc_to_page(addr);
1563 if (cross_page_boundary)
1564 pages[1] = vmalloc_to_page(addr + PAGE_SIZE);
1565 } else {
1566 pages[0] = virt_to_page(addr);
1567 WARN_ON(!PageReserved(pages[0]));
1568 if (cross_page_boundary)
1569 pages[1] = virt_to_page(addr + PAGE_SIZE);
1570 }
1571 /*
1572 * If something went wrong, crash and burn since recovery paths are not
1573 * implemented.
1574 */
1575 BUG_ON(!pages[0] || (cross_page_boundary && !pages[1]));
1576
1577 /*
1578 * Map the page without the global bit, as TLB flushing is done with
1579 * flush_tlb_mm_range(), which is intended for non-global PTEs.
1580 */
1581 pgprot = __pgprot(pgprot_val(PAGE_KERNEL) & ~_PAGE_GLOBAL);
1582
1583 /*
1584 * The lock is not really needed, but this allows to avoid open-coding.
1585 */
1586 ptep = get_locked_pte(poking_mm, poking_addr, &ptl);
1587
1588 /*
1589 * This must not fail; preallocated in poking_init().
1590 */
1591 VM_BUG_ON(!ptep);
1592
1593 local_irq_save(flags);
1594
1595 pte = mk_pte(pages[0], pgprot);
1596 set_pte_at(poking_mm, poking_addr, ptep, pte);
1597
1598 if (cross_page_boundary) {
1599 pte = mk_pte(pages[1], pgprot);
1600 set_pte_at(poking_mm, poking_addr + PAGE_SIZE, ptep + 1, pte);
1601 }
1602
1603 /*
1604 * Loading the temporary mm behaves as a compiler barrier, which
1605 * guarantees that the PTE will be set at the time memcpy() is done.
1606 */
1607 prev = use_temporary_mm(poking_mm);
1608
1609 kasan_disable_current();
1610 func((u8 *)poking_addr + offset_in_page(addr), src, len);
1611 kasan_enable_current();
1612
1613 /*
1614 * Ensure that the PTE is only cleared after the instructions of memcpy
1615 * were issued by using a compiler barrier.
1616 */
1617 barrier();
1618
1619 pte_clear(poking_mm, poking_addr, ptep);
1620 if (cross_page_boundary)
1621 pte_clear(poking_mm, poking_addr + PAGE_SIZE, ptep + 1);
1622
1623 /*
1624 * Loading the previous page-table hierarchy requires a serializing
1625 * instruction that already allows the core to see the updated version.
1626 * Xen-PV is assumed to serialize execution in a similar manner.
1627 */
1628 unuse_temporary_mm(prev);
1629
1630 /*
1631 * Flushing the TLB might involve IPIs, which would require enabled
1632 * IRQs, but not if the mm is not used, as it is in this point.
1633 */
1634 flush_tlb_mm_range(poking_mm, poking_addr, poking_addr +
1635 (cross_page_boundary ? 2 : 1) * PAGE_SIZE,
1636 PAGE_SHIFT, false);
1637
1638 if (func == text_poke_memcpy) {
1639 /*
1640 * If the text does not match what we just wrote then something is
1641 * fundamentally screwy; there's nothing we can really do about that.
1642 */
1643 BUG_ON(memcmp(addr, src, len));
1644 }
1645
1646 local_irq_restore(flags);
1647 pte_unmap_unlock(ptep, ptl);
1648 return addr;
1649}
1650
1651/**
1652 * text_poke - Update instructions on a live kernel
1653 * @addr: address to modify
1654 * @opcode: source of the copy
1655 * @len: length to copy
1656 *
1657 * Only atomic text poke/set should be allowed when not doing early patching.
1658 * It means the size must be writable atomically and the address must be aligned
1659 * in a way that permits an atomic write. It also makes sure we fit on a single
1660 * page.
1661 *
1662 * Note that the caller must ensure that if the modified code is part of a
1663 * module, the module would not be removed during poking. This can be achieved
1664 * by registering a module notifier, and ordering module removal and patching
1665 * trough a mutex.
1666 */
1667void *text_poke(void *addr, const void *opcode, size_t len)
1668{
1669 lockdep_assert_held(&text_mutex);
1670
1671 return __text_poke(text_poke_memcpy, addr, opcode, len);
1672}
1673
1674/**
1675 * text_poke_kgdb - Update instructions on a live kernel by kgdb
1676 * @addr: address to modify
1677 * @opcode: source of the copy
1678 * @len: length to copy
1679 *
1680 * Only atomic text poke/set should be allowed when not doing early patching.
1681 * It means the size must be writable atomically and the address must be aligned
1682 * in a way that permits an atomic write. It also makes sure we fit on a single
1683 * page.
1684 *
1685 * Context: should only be used by kgdb, which ensures no other core is running,
1686 * despite the fact it does not hold the text_mutex.
1687 */
1688void *text_poke_kgdb(void *addr, const void *opcode, size_t len)
1689{
1690 return __text_poke(text_poke_memcpy, addr, opcode, len);
1691}
1692
1693void *text_poke_copy_locked(void *addr, const void *opcode, size_t len,
1694 bool core_ok)
1695{
1696 unsigned long start = (unsigned long)addr;
1697 size_t patched = 0;
1698
1699 if (WARN_ON_ONCE(!core_ok && core_kernel_text(start)))
1700 return NULL;
1701
1702 while (patched < len) {
1703 unsigned long ptr = start + patched;
1704 size_t s;
1705
1706 s = min_t(size_t, PAGE_SIZE * 2 - offset_in_page(ptr), len - patched);
1707
1708 __text_poke(text_poke_memcpy, (void *)ptr, opcode + patched, s);
1709 patched += s;
1710 }
1711 return addr;
1712}
1713
1714/**
1715 * text_poke_copy - Copy instructions into (an unused part of) RX memory
1716 * @addr: address to modify
1717 * @opcode: source of the copy
1718 * @len: length to copy, could be more than 2x PAGE_SIZE
1719 *
1720 * Not safe against concurrent execution; useful for JITs to dump
1721 * new code blocks into unused regions of RX memory. Can be used in
1722 * conjunction with synchronize_rcu_tasks() to wait for existing
1723 * execution to quiesce after having made sure no existing functions
1724 * pointers are live.
1725 */
1726void *text_poke_copy(void *addr, const void *opcode, size_t len)
1727{
1728 mutex_lock(&text_mutex);
1729 addr = text_poke_copy_locked(addr, opcode, len, false);
1730 mutex_unlock(&text_mutex);
1731 return addr;
1732}
1733
1734/**
1735 * text_poke_set - memset into (an unused part of) RX memory
1736 * @addr: address to modify
1737 * @c: the byte to fill the area with
1738 * @len: length to copy, could be more than 2x PAGE_SIZE
1739 *
1740 * This is useful to overwrite unused regions of RX memory with illegal
1741 * instructions.
1742 */
1743void *text_poke_set(void *addr, int c, size_t len)
1744{
1745 unsigned long start = (unsigned long)addr;
1746 size_t patched = 0;
1747
1748 if (WARN_ON_ONCE(core_kernel_text(start)))
1749 return NULL;
1750
1751 mutex_lock(&text_mutex);
1752 while (patched < len) {
1753 unsigned long ptr = start + patched;
1754 size_t s;
1755
1756 s = min_t(size_t, PAGE_SIZE * 2 - offset_in_page(ptr), len - patched);
1757
1758 __text_poke(text_poke_memset, (void *)ptr, (void *)&c, s);
1759 patched += s;
1760 }
1761 mutex_unlock(&text_mutex);
1762 return addr;
1763}
1764
1765static void do_sync_core(void *info)
1766{
1767 sync_core();
1768}
1769
1770void text_poke_sync(void)
1771{
1772 on_each_cpu(do_sync_core, NULL, 1);
1773}
1774
1775struct text_poke_loc {
1776 /* addr := _stext + rel_addr */
1777 s32 rel_addr;
1778 s32 disp;
1779 u8 len;
1780 u8 opcode;
1781 const u8 text[POKE_MAX_OPCODE_SIZE];
1782 /* see text_poke_bp_batch() */
1783 u8 old;
1784};
1785
1786struct bp_patching_desc {
1787 struct text_poke_loc *vec;
1788 int nr_entries;
1789 atomic_t refs;
1790};
1791
1792static struct bp_patching_desc bp_desc;
1793
1794static __always_inline
1795struct bp_patching_desc *try_get_desc(void)
1796{
1797 struct bp_patching_desc *desc = &bp_desc;
1798
1799 if (!arch_atomic_inc_not_zero(&desc->refs))
1800 return NULL;
1801
1802 return desc;
1803}
1804
1805static __always_inline void put_desc(void)
1806{
1807 struct bp_patching_desc *desc = &bp_desc;
1808
1809 smp_mb__before_atomic();
1810 arch_atomic_dec(&desc->refs);
1811}
1812
1813static __always_inline void *text_poke_addr(struct text_poke_loc *tp)
1814{
1815 return _stext + tp->rel_addr;
1816}
1817
1818static __always_inline int patch_cmp(const void *key, const void *elt)
1819{
1820 struct text_poke_loc *tp = (struct text_poke_loc *) elt;
1821
1822 if (key < text_poke_addr(tp))
1823 return -1;
1824 if (key > text_poke_addr(tp))
1825 return 1;
1826 return 0;
1827}
1828
1829noinstr int poke_int3_handler(struct pt_regs *regs)
1830{
1831 struct bp_patching_desc *desc;
1832 struct text_poke_loc *tp;
1833 int ret = 0;
1834 void *ip;
1835
1836 if (user_mode(regs))
1837 return 0;
1838
1839 /*
1840 * Having observed our INT3 instruction, we now must observe
1841 * bp_desc with non-zero refcount:
1842 *
1843 * bp_desc.refs = 1 INT3
1844 * WMB RMB
1845 * write INT3 if (bp_desc.refs != 0)
1846 */
1847 smp_rmb();
1848
1849 desc = try_get_desc();
1850 if (!desc)
1851 return 0;
1852
1853 /*
1854 * Discount the INT3. See text_poke_bp_batch().
1855 */
1856 ip = (void *) regs->ip - INT3_INSN_SIZE;
1857
1858 /*
1859 * Skip the binary search if there is a single member in the vector.
1860 */
1861 if (unlikely(desc->nr_entries > 1)) {
1862 tp = __inline_bsearch(ip, desc->vec, desc->nr_entries,
1863 sizeof(struct text_poke_loc),
1864 patch_cmp);
1865 if (!tp)
1866 goto out_put;
1867 } else {
1868 tp = desc->vec;
1869 if (text_poke_addr(tp) != ip)
1870 goto out_put;
1871 }
1872
1873 ip += tp->len;
1874
1875 switch (tp->opcode) {
1876 case INT3_INSN_OPCODE:
1877 /*
1878 * Someone poked an explicit INT3, they'll want to handle it,
1879 * do not consume.
1880 */
1881 goto out_put;
1882
1883 case RET_INSN_OPCODE:
1884 int3_emulate_ret(regs);
1885 break;
1886
1887 case CALL_INSN_OPCODE:
1888 int3_emulate_call(regs, (long)ip + tp->disp);
1889 break;
1890
1891 case JMP32_INSN_OPCODE:
1892 case JMP8_INSN_OPCODE:
1893 int3_emulate_jmp(regs, (long)ip + tp->disp);
1894 break;
1895
1896 default:
1897 BUG();
1898 }
1899
1900 ret = 1;
1901
1902out_put:
1903 put_desc();
1904 return ret;
1905}
1906
1907#define TP_VEC_MAX (PAGE_SIZE / sizeof(struct text_poke_loc))
1908static struct text_poke_loc tp_vec[TP_VEC_MAX];
1909static int tp_vec_nr;
1910
1911/**
1912 * text_poke_bp_batch() -- update instructions on live kernel on SMP
1913 * @tp: vector of instructions to patch
1914 * @nr_entries: number of entries in the vector
1915 *
1916 * Modify multi-byte instruction by using int3 breakpoint on SMP.
1917 * We completely avoid stop_machine() here, and achieve the
1918 * synchronization using int3 breakpoint.
1919 *
1920 * The way it is done:
1921 * - For each entry in the vector:
1922 * - add a int3 trap to the address that will be patched
1923 * - sync cores
1924 * - For each entry in the vector:
1925 * - update all but the first byte of the patched range
1926 * - sync cores
1927 * - For each entry in the vector:
1928 * - replace the first byte (int3) by the first byte of
1929 * replacing opcode
1930 * - sync cores
1931 */
1932static void text_poke_bp_batch(struct text_poke_loc *tp, unsigned int nr_entries)
1933{
1934 unsigned char int3 = INT3_INSN_OPCODE;
1935 unsigned int i;
1936 int do_sync;
1937
1938 lockdep_assert_held(&text_mutex);
1939
1940 bp_desc.vec = tp;
1941 bp_desc.nr_entries = nr_entries;
1942
1943 /*
1944 * Corresponds to the implicit memory barrier in try_get_desc() to
1945 * ensure reading a non-zero refcount provides up to date bp_desc data.
1946 */
1947 atomic_set_release(&bp_desc.refs, 1);
1948
1949 /*
1950 * Corresponding read barrier in int3 notifier for making sure the
1951 * nr_entries and handler are correctly ordered wrt. patching.
1952 */
1953 smp_wmb();
1954
1955 /*
1956 * First step: add a int3 trap to the address that will be patched.
1957 */
1958 for (i = 0; i < nr_entries; i++) {
1959 tp[i].old = *(u8 *)text_poke_addr(&tp[i]);
1960 text_poke(text_poke_addr(&tp[i]), &int3, INT3_INSN_SIZE);
1961 }
1962
1963 text_poke_sync();
1964
1965 /*
1966 * Second step: update all but the first byte of the patched range.
1967 */
1968 for (do_sync = 0, i = 0; i < nr_entries; i++) {
1969 u8 old[POKE_MAX_OPCODE_SIZE] = { tp[i].old, };
1970 int len = tp[i].len;
1971
1972 if (len - INT3_INSN_SIZE > 0) {
1973 memcpy(old + INT3_INSN_SIZE,
1974 text_poke_addr(&tp[i]) + INT3_INSN_SIZE,
1975 len - INT3_INSN_SIZE);
1976 text_poke(text_poke_addr(&tp[i]) + INT3_INSN_SIZE,
1977 (const char *)tp[i].text + INT3_INSN_SIZE,
1978 len - INT3_INSN_SIZE);
1979 do_sync++;
1980 }
1981
1982 /*
1983 * Emit a perf event to record the text poke, primarily to
1984 * support Intel PT decoding which must walk the executable code
1985 * to reconstruct the trace. The flow up to here is:
1986 * - write INT3 byte
1987 * - IPI-SYNC
1988 * - write instruction tail
1989 * At this point the actual control flow will be through the
1990 * INT3 and handler and not hit the old or new instruction.
1991 * Intel PT outputs FUP/TIP packets for the INT3, so the flow
1992 * can still be decoded. Subsequently:
1993 * - emit RECORD_TEXT_POKE with the new instruction
1994 * - IPI-SYNC
1995 * - write first byte
1996 * - IPI-SYNC
1997 * So before the text poke event timestamp, the decoder will see
1998 * either the old instruction flow or FUP/TIP of INT3. After the
1999 * text poke event timestamp, the decoder will see either the
2000 * new instruction flow or FUP/TIP of INT3. Thus decoders can
2001 * use the timestamp as the point at which to modify the
2002 * executable code.
2003 * The old instruction is recorded so that the event can be
2004 * processed forwards or backwards.
2005 */
2006 perf_event_text_poke(text_poke_addr(&tp[i]), old, len,
2007 tp[i].text, len);
2008 }
2009
2010 if (do_sync) {
2011 /*
2012 * According to Intel, this core syncing is very likely
2013 * not necessary and we'd be safe even without it. But
2014 * better safe than sorry (plus there's not only Intel).
2015 */
2016 text_poke_sync();
2017 }
2018
2019 /*
2020 * Third step: replace the first byte (int3) by the first byte of
2021 * replacing opcode.
2022 */
2023 for (do_sync = 0, i = 0; i < nr_entries; i++) {
2024 if (tp[i].text[0] == INT3_INSN_OPCODE)
2025 continue;
2026
2027 text_poke(text_poke_addr(&tp[i]), tp[i].text, INT3_INSN_SIZE);
2028 do_sync++;
2029 }
2030
2031 if (do_sync)
2032 text_poke_sync();
2033
2034 /*
2035 * Remove and wait for refs to be zero.
2036 */
2037 if (!atomic_dec_and_test(&bp_desc.refs))
2038 atomic_cond_read_acquire(&bp_desc.refs, !VAL);
2039}
2040
2041static void text_poke_loc_init(struct text_poke_loc *tp, void *addr,
2042 const void *opcode, size_t len, const void *emulate)
2043{
2044 struct insn insn;
2045 int ret, i;
2046
2047 memcpy((void *)tp->text, opcode, len);
2048 if (!emulate)
2049 emulate = opcode;
2050
2051 ret = insn_decode_kernel(&insn, emulate);
2052 BUG_ON(ret < 0);
2053
2054 tp->rel_addr = addr - (void *)_stext;
2055 tp->len = len;
2056 tp->opcode = insn.opcode.bytes[0];
2057
2058 switch (tp->opcode) {
2059 case RET_INSN_OPCODE:
2060 case JMP32_INSN_OPCODE:
2061 case JMP8_INSN_OPCODE:
2062 /*
2063 * Control flow instructions without implied execution of the
2064 * next instruction can be padded with INT3.
2065 */
2066 for (i = insn.length; i < len; i++)
2067 BUG_ON(tp->text[i] != INT3_INSN_OPCODE);
2068 break;
2069
2070 default:
2071 BUG_ON(len != insn.length);
2072 }
2073
2074
2075 switch (tp->opcode) {
2076 case INT3_INSN_OPCODE:
2077 case RET_INSN_OPCODE:
2078 break;
2079
2080 case CALL_INSN_OPCODE:
2081 case JMP32_INSN_OPCODE:
2082 case JMP8_INSN_OPCODE:
2083 tp->disp = insn.immediate.value;
2084 break;
2085
2086 default: /* assume NOP */
2087 switch (len) {
2088 case 2: /* NOP2 -- emulate as JMP8+0 */
2089 BUG_ON(memcmp(emulate, x86_nops[len], len));
2090 tp->opcode = JMP8_INSN_OPCODE;
2091 tp->disp = 0;
2092 break;
2093
2094 case 5: /* NOP5 -- emulate as JMP32+0 */
2095 BUG_ON(memcmp(emulate, x86_nops[len], len));
2096 tp->opcode = JMP32_INSN_OPCODE;
2097 tp->disp = 0;
2098 break;
2099
2100 default: /* unknown instruction */
2101 BUG();
2102 }
2103 break;
2104 }
2105}
2106
2107/*
2108 * We hard rely on the tp_vec being ordered; ensure this is so by flushing
2109 * early if needed.
2110 */
2111static bool tp_order_fail(void *addr)
2112{
2113 struct text_poke_loc *tp;
2114
2115 if (!tp_vec_nr)
2116 return false;
2117
2118 if (!addr) /* force */
2119 return true;
2120
2121 tp = &tp_vec[tp_vec_nr - 1];
2122 if ((unsigned long)text_poke_addr(tp) > (unsigned long)addr)
2123 return true;
2124
2125 return false;
2126}
2127
2128static void text_poke_flush(void *addr)
2129{
2130 if (tp_vec_nr == TP_VEC_MAX || tp_order_fail(addr)) {
2131 text_poke_bp_batch(tp_vec, tp_vec_nr);
2132 tp_vec_nr = 0;
2133 }
2134}
2135
2136void text_poke_finish(void)
2137{
2138 text_poke_flush(NULL);
2139}
2140
2141void __ref text_poke_queue(void *addr, const void *opcode, size_t len, const void *emulate)
2142{
2143 struct text_poke_loc *tp;
2144
2145 text_poke_flush(addr);
2146
2147 tp = &tp_vec[tp_vec_nr++];
2148 text_poke_loc_init(tp, addr, opcode, len, emulate);
2149}
2150
2151/**
2152 * text_poke_bp() -- update instructions on live kernel on SMP
2153 * @addr: address to patch
2154 * @opcode: opcode of new instruction
2155 * @len: length to copy
2156 * @emulate: instruction to be emulated
2157 *
2158 * Update a single instruction with the vector in the stack, avoiding
2159 * dynamically allocated memory. This function should be used when it is
2160 * not possible to allocate memory.
2161 */
2162void __ref text_poke_bp(void *addr, const void *opcode, size_t len, const void *emulate)
2163{
2164 struct text_poke_loc tp;
2165
2166 text_poke_loc_init(&tp, addr, opcode, len, emulate);
2167 text_poke_bp_batch(&tp, 1);
2168}