Linux Audio

Check our new training course

Loading...
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Generic hugetlb support.
   4 * (C) Nadia Yvette Chambers, April 2004
   5 */
   6#include <linux/list.h>
   7#include <linux/init.h>
   8#include <linux/mm.h>
   9#include <linux/seq_file.h>
  10#include <linux/sysctl.h>
  11#include <linux/highmem.h>
  12#include <linux/mmu_notifier.h>
  13#include <linux/nodemask.h>
  14#include <linux/pagemap.h>
  15#include <linux/mempolicy.h>
  16#include <linux/compiler.h>
  17#include <linux/cpuset.h>
  18#include <linux/mutex.h>
  19#include <linux/memblock.h>
  20#include <linux/sysfs.h>
  21#include <linux/slab.h>
  22#include <linux/sched/mm.h>
  23#include <linux/mmdebug.h>
  24#include <linux/sched/signal.h>
  25#include <linux/rmap.h>
  26#include <linux/string_helpers.h>
  27#include <linux/swap.h>
  28#include <linux/swapops.h>
  29#include <linux/jhash.h>
  30#include <linux/numa.h>
  31#include <linux/llist.h>
  32#include <linux/cma.h>
  33#include <linux/migrate.h>
  34#include <linux/nospec.h>
  35#include <linux/delayacct.h>
  36#include <linux/memory.h>
  37#include <linux/mm_inline.h>
  38#include <linux/padata.h>
  39
  40#include <asm/page.h>
  41#include <asm/pgalloc.h>
  42#include <asm/tlb.h>
  43
  44#include <linux/io.h>
  45#include <linux/hugetlb.h>
  46#include <linux/hugetlb_cgroup.h>
  47#include <linux/node.h>
 
  48#include <linux/page_owner.h>
  49#include "internal.h"
  50#include "hugetlb_vmemmap.h"
  51
  52int hugetlb_max_hstate __read_mostly;
  53unsigned int default_hstate_idx;
  54struct hstate hstates[HUGE_MAX_HSTATE];
  55
  56#ifdef CONFIG_CMA
  57static struct cma *hugetlb_cma[MAX_NUMNODES];
  58static unsigned long hugetlb_cma_size_in_node[MAX_NUMNODES] __initdata;
  59#endif
  60static unsigned long hugetlb_cma_size __initdata;
  61
  62__initdata struct list_head huge_boot_pages[MAX_NUMNODES];
 
 
 
 
 
 
  63
  64/* for command line parsing */
  65static struct hstate * __initdata parsed_hstate;
  66static unsigned long __initdata default_hstate_max_huge_pages;
  67static bool __initdata parsed_valid_hugepagesz = true;
  68static bool __initdata parsed_default_hugepagesz;
  69static unsigned int default_hugepages_in_node[MAX_NUMNODES] __initdata;
  70
  71/*
  72 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
  73 * free_huge_pages, and surplus_huge_pages.
  74 */
  75__cacheline_aligned_in_smp DEFINE_SPINLOCK(hugetlb_lock);
  76
  77/*
  78 * Serializes faults on the same logical page.  This is used to
  79 * prevent spurious OOMs when the hugepage pool is fully utilized.
  80 */
  81static int num_fault_mutexes __ro_after_init;
  82struct mutex *hugetlb_fault_mutex_table __ro_after_init;
  83
  84/* Forward declaration */
  85static int hugetlb_acct_memory(struct hstate *h, long delta);
  86static void hugetlb_vma_lock_free(struct vm_area_struct *vma);
  87static void hugetlb_vma_lock_alloc(struct vm_area_struct *vma);
  88static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma);
  89static void hugetlb_unshare_pmds(struct vm_area_struct *vma,
  90		unsigned long start, unsigned long end);
  91static struct resv_map *vma_resv_map(struct vm_area_struct *vma);
  92
  93static void hugetlb_free_folio(struct folio *folio)
  94{
  95#ifdef CONFIG_CMA
  96	int nid = folio_nid(folio);
  97
  98	if (cma_free_folio(hugetlb_cma[nid], folio))
  99		return;
 100#endif
 101	folio_put(folio);
 102}
 103
 104static inline bool subpool_is_free(struct hugepage_subpool *spool)
 105{
 106	if (spool->count)
 107		return false;
 108	if (spool->max_hpages != -1)
 109		return spool->used_hpages == 0;
 110	if (spool->min_hpages != -1)
 111		return spool->rsv_hpages == spool->min_hpages;
 112
 113	return true;
 114}
 115
 116static inline void unlock_or_release_subpool(struct hugepage_subpool *spool,
 117						unsigned long irq_flags)
 118{
 119	spin_unlock_irqrestore(&spool->lock, irq_flags);
 120
 121	/* If no pages are used, and no other handles to the subpool
 122	 * remain, give up any reservations based on minimum size and
 123	 * free the subpool */
 124	if (subpool_is_free(spool)) {
 125		if (spool->min_hpages != -1)
 126			hugetlb_acct_memory(spool->hstate,
 127						-spool->min_hpages);
 128		kfree(spool);
 129	}
 130}
 131
 132struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
 133						long min_hpages)
 134{
 135	struct hugepage_subpool *spool;
 136
 137	spool = kzalloc(sizeof(*spool), GFP_KERNEL);
 138	if (!spool)
 139		return NULL;
 140
 141	spin_lock_init(&spool->lock);
 142	spool->count = 1;
 143	spool->max_hpages = max_hpages;
 144	spool->hstate = h;
 145	spool->min_hpages = min_hpages;
 146
 147	if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
 148		kfree(spool);
 149		return NULL;
 150	}
 151	spool->rsv_hpages = min_hpages;
 152
 153	return spool;
 154}
 155
 156void hugepage_put_subpool(struct hugepage_subpool *spool)
 157{
 158	unsigned long flags;
 159
 160	spin_lock_irqsave(&spool->lock, flags);
 161	BUG_ON(!spool->count);
 162	spool->count--;
 163	unlock_or_release_subpool(spool, flags);
 164}
 165
 166/*
 167 * Subpool accounting for allocating and reserving pages.
 168 * Return -ENOMEM if there are not enough resources to satisfy the
 169 * request.  Otherwise, return the number of pages by which the
 170 * global pools must be adjusted (upward).  The returned value may
 171 * only be different than the passed value (delta) in the case where
 172 * a subpool minimum size must be maintained.
 173 */
 174static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
 175				      long delta)
 176{
 177	long ret = delta;
 178
 179	if (!spool)
 180		return ret;
 181
 182	spin_lock_irq(&spool->lock);
 183
 184	if (spool->max_hpages != -1) {		/* maximum size accounting */
 185		if ((spool->used_hpages + delta) <= spool->max_hpages)
 186			spool->used_hpages += delta;
 187		else {
 188			ret = -ENOMEM;
 189			goto unlock_ret;
 190		}
 191	}
 192
 193	/* minimum size accounting */
 194	if (spool->min_hpages != -1 && spool->rsv_hpages) {
 195		if (delta > spool->rsv_hpages) {
 196			/*
 197			 * Asking for more reserves than those already taken on
 198			 * behalf of subpool.  Return difference.
 199			 */
 200			ret = delta - spool->rsv_hpages;
 201			spool->rsv_hpages = 0;
 202		} else {
 203			ret = 0;	/* reserves already accounted for */
 204			spool->rsv_hpages -= delta;
 205		}
 206	}
 207
 208unlock_ret:
 209	spin_unlock_irq(&spool->lock);
 210	return ret;
 211}
 212
 213/*
 214 * Subpool accounting for freeing and unreserving pages.
 215 * Return the number of global page reservations that must be dropped.
 216 * The return value may only be different than the passed value (delta)
 217 * in the case where a subpool minimum size must be maintained.
 218 */
 219static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
 220				       long delta)
 221{
 222	long ret = delta;
 223	unsigned long flags;
 224
 225	if (!spool)
 226		return delta;
 227
 228	spin_lock_irqsave(&spool->lock, flags);
 229
 230	if (spool->max_hpages != -1)		/* maximum size accounting */
 231		spool->used_hpages -= delta;
 232
 233	 /* minimum size accounting */
 234	if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
 235		if (spool->rsv_hpages + delta <= spool->min_hpages)
 236			ret = 0;
 237		else
 238			ret = spool->rsv_hpages + delta - spool->min_hpages;
 239
 240		spool->rsv_hpages += delta;
 241		if (spool->rsv_hpages > spool->min_hpages)
 242			spool->rsv_hpages = spool->min_hpages;
 243	}
 244
 245	/*
 246	 * If hugetlbfs_put_super couldn't free spool due to an outstanding
 247	 * quota reference, free it now.
 248	 */
 249	unlock_or_release_subpool(spool, flags);
 250
 251	return ret;
 252}
 253
 254static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
 255{
 256	return HUGETLBFS_SB(inode->i_sb)->spool;
 257}
 258
 259static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
 260{
 261	return subpool_inode(file_inode(vma->vm_file));
 262}
 263
 264/*
 265 * hugetlb vma_lock helper routines
 266 */
 267void hugetlb_vma_lock_read(struct vm_area_struct *vma)
 268{
 269	if (__vma_shareable_lock(vma)) {
 270		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
 271
 272		down_read(&vma_lock->rw_sema);
 273	} else if (__vma_private_lock(vma)) {
 274		struct resv_map *resv_map = vma_resv_map(vma);
 275
 276		down_read(&resv_map->rw_sema);
 277	}
 278}
 279
 280void hugetlb_vma_unlock_read(struct vm_area_struct *vma)
 281{
 282	if (__vma_shareable_lock(vma)) {
 283		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
 284
 285		up_read(&vma_lock->rw_sema);
 286	} else if (__vma_private_lock(vma)) {
 287		struct resv_map *resv_map = vma_resv_map(vma);
 288
 289		up_read(&resv_map->rw_sema);
 290	}
 291}
 292
 293void hugetlb_vma_lock_write(struct vm_area_struct *vma)
 294{
 295	if (__vma_shareable_lock(vma)) {
 296		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
 297
 298		down_write(&vma_lock->rw_sema);
 299	} else if (__vma_private_lock(vma)) {
 300		struct resv_map *resv_map = vma_resv_map(vma);
 301
 302		down_write(&resv_map->rw_sema);
 303	}
 304}
 305
 306void hugetlb_vma_unlock_write(struct vm_area_struct *vma)
 307{
 308	if (__vma_shareable_lock(vma)) {
 309		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
 310
 311		up_write(&vma_lock->rw_sema);
 312	} else if (__vma_private_lock(vma)) {
 313		struct resv_map *resv_map = vma_resv_map(vma);
 314
 315		up_write(&resv_map->rw_sema);
 316	}
 317}
 318
 319int hugetlb_vma_trylock_write(struct vm_area_struct *vma)
 320{
 321
 322	if (__vma_shareable_lock(vma)) {
 323		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
 324
 325		return down_write_trylock(&vma_lock->rw_sema);
 326	} else if (__vma_private_lock(vma)) {
 327		struct resv_map *resv_map = vma_resv_map(vma);
 328
 329		return down_write_trylock(&resv_map->rw_sema);
 330	}
 331
 332	return 1;
 333}
 334
 335void hugetlb_vma_assert_locked(struct vm_area_struct *vma)
 336{
 337	if (__vma_shareable_lock(vma)) {
 338		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
 339
 340		lockdep_assert_held(&vma_lock->rw_sema);
 341	} else if (__vma_private_lock(vma)) {
 342		struct resv_map *resv_map = vma_resv_map(vma);
 343
 344		lockdep_assert_held(&resv_map->rw_sema);
 345	}
 346}
 347
 348void hugetlb_vma_lock_release(struct kref *kref)
 349{
 350	struct hugetlb_vma_lock *vma_lock = container_of(kref,
 351			struct hugetlb_vma_lock, refs);
 352
 353	kfree(vma_lock);
 354}
 355
 356static void __hugetlb_vma_unlock_write_put(struct hugetlb_vma_lock *vma_lock)
 357{
 358	struct vm_area_struct *vma = vma_lock->vma;
 359
 360	/*
 361	 * vma_lock structure may or not be released as a result of put,
 362	 * it certainly will no longer be attached to vma so clear pointer.
 363	 * Semaphore synchronizes access to vma_lock->vma field.
 364	 */
 365	vma_lock->vma = NULL;
 366	vma->vm_private_data = NULL;
 367	up_write(&vma_lock->rw_sema);
 368	kref_put(&vma_lock->refs, hugetlb_vma_lock_release);
 369}
 370
 371static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma)
 372{
 373	if (__vma_shareable_lock(vma)) {
 374		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
 375
 376		__hugetlb_vma_unlock_write_put(vma_lock);
 377	} else if (__vma_private_lock(vma)) {
 378		struct resv_map *resv_map = vma_resv_map(vma);
 379
 380		/* no free for anon vmas, but still need to unlock */
 381		up_write(&resv_map->rw_sema);
 382	}
 383}
 384
 385static void hugetlb_vma_lock_free(struct vm_area_struct *vma)
 386{
 387	/*
 388	 * Only present in sharable vmas.
 389	 */
 390	if (!vma || !__vma_shareable_lock(vma))
 391		return;
 392
 393	if (vma->vm_private_data) {
 394		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
 395
 396		down_write(&vma_lock->rw_sema);
 397		__hugetlb_vma_unlock_write_put(vma_lock);
 398	}
 399}
 400
 401static void hugetlb_vma_lock_alloc(struct vm_area_struct *vma)
 402{
 403	struct hugetlb_vma_lock *vma_lock;
 404
 405	/* Only establish in (flags) sharable vmas */
 406	if (!vma || !(vma->vm_flags & VM_MAYSHARE))
 407		return;
 408
 409	/* Should never get here with non-NULL vm_private_data */
 410	if (vma->vm_private_data)
 411		return;
 412
 413	vma_lock = kmalloc(sizeof(*vma_lock), GFP_KERNEL);
 414	if (!vma_lock) {
 415		/*
 416		 * If we can not allocate structure, then vma can not
 417		 * participate in pmd sharing.  This is only a possible
 418		 * performance enhancement and memory saving issue.
 419		 * However, the lock is also used to synchronize page
 420		 * faults with truncation.  If the lock is not present,
 421		 * unlikely races could leave pages in a file past i_size
 422		 * until the file is removed.  Warn in the unlikely case of
 423		 * allocation failure.
 424		 */
 425		pr_warn_once("HugeTLB: unable to allocate vma specific lock\n");
 426		return;
 427	}
 428
 429	kref_init(&vma_lock->refs);
 430	init_rwsem(&vma_lock->rw_sema);
 431	vma_lock->vma = vma;
 432	vma->vm_private_data = vma_lock;
 433}
 434
 435/* Helper that removes a struct file_region from the resv_map cache and returns
 436 * it for use.
 437 */
 438static struct file_region *
 439get_file_region_entry_from_cache(struct resv_map *resv, long from, long to)
 440{
 441	struct file_region *nrg;
 442
 443	VM_BUG_ON(resv->region_cache_count <= 0);
 444
 445	resv->region_cache_count--;
 446	nrg = list_first_entry(&resv->region_cache, struct file_region, link);
 
 447	list_del(&nrg->link);
 448
 449	nrg->from = from;
 450	nrg->to = to;
 451
 452	return nrg;
 453}
 454
 455static void copy_hugetlb_cgroup_uncharge_info(struct file_region *nrg,
 456					      struct file_region *rg)
 457{
 458#ifdef CONFIG_CGROUP_HUGETLB
 459	nrg->reservation_counter = rg->reservation_counter;
 460	nrg->css = rg->css;
 461	if (rg->css)
 462		css_get(rg->css);
 463#endif
 464}
 465
 466/* Helper that records hugetlb_cgroup uncharge info. */
 467static void record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup *h_cg,
 468						struct hstate *h,
 469						struct resv_map *resv,
 470						struct file_region *nrg)
 471{
 472#ifdef CONFIG_CGROUP_HUGETLB
 473	if (h_cg) {
 474		nrg->reservation_counter =
 475			&h_cg->rsvd_hugepage[hstate_index(h)];
 476		nrg->css = &h_cg->css;
 477		/*
 478		 * The caller will hold exactly one h_cg->css reference for the
 479		 * whole contiguous reservation region. But this area might be
 480		 * scattered when there are already some file_regions reside in
 481		 * it. As a result, many file_regions may share only one css
 482		 * reference. In order to ensure that one file_region must hold
 483		 * exactly one h_cg->css reference, we should do css_get for
 484		 * each file_region and leave the reference held by caller
 485		 * untouched.
 486		 */
 487		css_get(&h_cg->css);
 488		if (!resv->pages_per_hpage)
 489			resv->pages_per_hpage = pages_per_huge_page(h);
 490		/* pages_per_hpage should be the same for all entries in
 491		 * a resv_map.
 492		 */
 493		VM_BUG_ON(resv->pages_per_hpage != pages_per_huge_page(h));
 494	} else {
 495		nrg->reservation_counter = NULL;
 496		nrg->css = NULL;
 497	}
 498#endif
 499}
 500
 501static void put_uncharge_info(struct file_region *rg)
 502{
 503#ifdef CONFIG_CGROUP_HUGETLB
 504	if (rg->css)
 505		css_put(rg->css);
 506#endif
 507}
 508
 509static bool has_same_uncharge_info(struct file_region *rg,
 510				   struct file_region *org)
 511{
 512#ifdef CONFIG_CGROUP_HUGETLB
 513	return rg->reservation_counter == org->reservation_counter &&
 
 514	       rg->css == org->css;
 515
 516#else
 517	return true;
 518#endif
 519}
 520
 521static void coalesce_file_region(struct resv_map *resv, struct file_region *rg)
 522{
 523	struct file_region *nrg, *prg;
 524
 525	prg = list_prev_entry(rg, link);
 526	if (&prg->link != &resv->regions && prg->to == rg->from &&
 527	    has_same_uncharge_info(prg, rg)) {
 528		prg->to = rg->to;
 529
 530		list_del(&rg->link);
 531		put_uncharge_info(rg);
 532		kfree(rg);
 533
 534		rg = prg;
 
 535	}
 536
 537	nrg = list_next_entry(rg, link);
 538	if (&nrg->link != &resv->regions && nrg->from == rg->to &&
 539	    has_same_uncharge_info(nrg, rg)) {
 540		nrg->from = rg->from;
 541
 542		list_del(&rg->link);
 543		put_uncharge_info(rg);
 544		kfree(rg);
 545	}
 546}
 547
 548static inline long
 549hugetlb_resv_map_add(struct resv_map *map, struct list_head *rg, long from,
 550		     long to, struct hstate *h, struct hugetlb_cgroup *cg,
 551		     long *regions_needed)
 552{
 553	struct file_region *nrg;
 554
 555	if (!regions_needed) {
 556		nrg = get_file_region_entry_from_cache(map, from, to);
 557		record_hugetlb_cgroup_uncharge_info(cg, h, map, nrg);
 558		list_add(&nrg->link, rg);
 559		coalesce_file_region(map, nrg);
 560	} else
 561		*regions_needed += 1;
 562
 563	return to - from;
 
 
 564}
 565
 566/*
 567 * Must be called with resv->lock held.
 568 *
 569 * Calling this with regions_needed != NULL will count the number of pages
 570 * to be added but will not modify the linked list. And regions_needed will
 571 * indicate the number of file_regions needed in the cache to carry out to add
 572 * the regions for this range.
 573 */
 574static long add_reservation_in_range(struct resv_map *resv, long f, long t,
 575				     struct hugetlb_cgroup *h_cg,
 576				     struct hstate *h, long *regions_needed)
 
 577{
 578	long add = 0;
 579	struct list_head *head = &resv->regions;
 580	long last_accounted_offset = f;
 581	struct file_region *iter, *trg = NULL;
 582	struct list_head *rg = NULL;
 583
 584	if (regions_needed)
 585		*regions_needed = 0;
 586
 587	/* In this loop, we essentially handle an entry for the range
 588	 * [last_accounted_offset, iter->from), at every iteration, with some
 589	 * bounds checking.
 590	 */
 591	list_for_each_entry_safe(iter, trg, head, link) {
 592		/* Skip irrelevant regions that start before our range. */
 593		if (iter->from < f) {
 594			/* If this region ends after the last accounted offset,
 595			 * then we need to update last_accounted_offset.
 596			 */
 597			if (iter->to > last_accounted_offset)
 598				last_accounted_offset = iter->to;
 599			continue;
 600		}
 601
 602		/* When we find a region that starts beyond our range, we've
 603		 * finished.
 604		 */
 605		if (iter->from >= t) {
 606			rg = iter->link.prev;
 607			break;
 608		}
 609
 610		/* Add an entry for last_accounted_offset -> iter->from, and
 611		 * update last_accounted_offset.
 612		 */
 613		if (iter->from > last_accounted_offset)
 614			add += hugetlb_resv_map_add(resv, iter->link.prev,
 615						    last_accounted_offset,
 616						    iter->from, h, h_cg,
 617						    regions_needed);
 
 
 
 
 
 
 
 618
 619		last_accounted_offset = iter->to;
 620	}
 621
 622	/* Handle the case where our range extends beyond
 623	 * last_accounted_offset.
 624	 */
 625	if (!rg)
 626		rg = head->prev;
 627	if (last_accounted_offset < t)
 628		add += hugetlb_resv_map_add(resv, rg, last_accounted_offset,
 629					    t, h, h_cg, regions_needed);
 
 
 
 
 
 
 630
 
 631	return add;
 632}
 633
 634/* Must be called with resv->lock acquired. Will drop lock to allocate entries.
 635 */
 636static int allocate_file_region_entries(struct resv_map *resv,
 637					int regions_needed)
 638	__must_hold(&resv->lock)
 639{
 640	LIST_HEAD(allocated_regions);
 641	int to_allocate = 0, i = 0;
 642	struct file_region *trg = NULL, *rg = NULL;
 643
 644	VM_BUG_ON(regions_needed < 0);
 645
 
 
 646	/*
 647	 * Check for sufficient descriptors in the cache to accommodate
 648	 * the number of in progress add operations plus regions_needed.
 649	 *
 650	 * This is a while loop because when we drop the lock, some other call
 651	 * to region_add or region_del may have consumed some region_entries,
 652	 * so we keep looping here until we finally have enough entries for
 653	 * (adds_in_progress + regions_needed).
 654	 */
 655	while (resv->region_cache_count <
 656	       (resv->adds_in_progress + regions_needed)) {
 657		to_allocate = resv->adds_in_progress + regions_needed -
 658			      resv->region_cache_count;
 659
 660		/* At this point, we should have enough entries in the cache
 661		 * for all the existing adds_in_progress. We should only be
 662		 * needing to allocate for regions_needed.
 663		 */
 664		VM_BUG_ON(resv->region_cache_count < resv->adds_in_progress);
 665
 666		spin_unlock(&resv->lock);
 667		for (i = 0; i < to_allocate; i++) {
 668			trg = kmalloc(sizeof(*trg), GFP_KERNEL);
 669			if (!trg)
 670				goto out_of_memory;
 671			list_add(&trg->link, &allocated_regions);
 672		}
 673
 674		spin_lock(&resv->lock);
 675
 676		list_splice(&allocated_regions, &resv->region_cache);
 677		resv->region_cache_count += to_allocate;
 
 
 
 678	}
 679
 680	return 0;
 681
 682out_of_memory:
 683	list_for_each_entry_safe(rg, trg, &allocated_regions, link) {
 684		list_del(&rg->link);
 685		kfree(rg);
 686	}
 687	return -ENOMEM;
 688}
 689
 690/*
 691 * Add the huge page range represented by [f, t) to the reserve
 692 * map.  Regions will be taken from the cache to fill in this range.
 693 * Sufficient regions should exist in the cache due to the previous
 694 * call to region_chg with the same range, but in some cases the cache will not
 695 * have sufficient entries due to races with other code doing region_add or
 696 * region_del.  The extra needed entries will be allocated.
 697 *
 698 * regions_needed is the out value provided by a previous call to region_chg.
 699 *
 700 * Return the number of new huge pages added to the map.  This number is greater
 701 * than or equal to zero.  If file_region entries needed to be allocated for
 702 * this operation and we were not able to allocate, it returns -ENOMEM.
 703 * region_add of regions of length 1 never allocate file_regions and cannot
 704 * fail; region_chg will always allocate at least 1 entry and a region_add for
 705 * 1 page will only require at most 1 entry.
 706 */
 707static long region_add(struct resv_map *resv, long f, long t,
 708		       long in_regions_needed, struct hstate *h,
 709		       struct hugetlb_cgroup *h_cg)
 710{
 711	long add = 0, actual_regions_needed = 0;
 712
 713	spin_lock(&resv->lock);
 714retry:
 715
 716	/* Count how many regions are actually needed to execute this add. */
 717	add_reservation_in_range(resv, f, t, NULL, NULL,
 718				 &actual_regions_needed);
 719
 720	/*
 721	 * Check for sufficient descriptors in the cache to accommodate
 722	 * this add operation. Note that actual_regions_needed may be greater
 723	 * than in_regions_needed, as the resv_map may have been modified since
 724	 * the region_chg call. In this case, we need to make sure that we
 725	 * allocate extra entries, such that we have enough for all the
 726	 * existing adds_in_progress, plus the excess needed for this
 727	 * operation.
 728	 */
 729	if (actual_regions_needed > in_regions_needed &&
 730	    resv->region_cache_count <
 731		    resv->adds_in_progress +
 732			    (actual_regions_needed - in_regions_needed)) {
 733		/* region_add operation of range 1 should never need to
 734		 * allocate file_region entries.
 735		 */
 736		VM_BUG_ON(t - f <= 1);
 737
 738		if (allocate_file_region_entries(
 739			    resv, actual_regions_needed - in_regions_needed)) {
 740			return -ENOMEM;
 741		}
 742
 743		goto retry;
 744	}
 745
 746	add = add_reservation_in_range(resv, f, t, h_cg, h, NULL);
 747
 748	resv->adds_in_progress -= in_regions_needed;
 749
 750	spin_unlock(&resv->lock);
 
 751	return add;
 752}
 753
 754/*
 755 * Examine the existing reserve map and determine how many
 756 * huge pages in the specified range [f, t) are NOT currently
 757 * represented.  This routine is called before a subsequent
 758 * call to region_add that will actually modify the reserve
 759 * map to add the specified range [f, t).  region_chg does
 760 * not change the number of huge pages represented by the
 761 * map.  A number of new file_region structures is added to the cache as a
 762 * placeholder, for the subsequent region_add call to use. At least 1
 763 * file_region structure is added.
 764 *
 765 * out_regions_needed is the number of regions added to the
 766 * resv->adds_in_progress.  This value needs to be provided to a follow up call
 767 * to region_add or region_abort for proper accounting.
 768 *
 769 * Returns the number of huge pages that need to be added to the existing
 770 * reservation map for the range [f, t).  This number is greater or equal to
 771 * zero.  -ENOMEM is returned if a new file_region structure or cache entry
 772 * is needed and can not be allocated.
 773 */
 774static long region_chg(struct resv_map *resv, long f, long t,
 775		       long *out_regions_needed)
 776{
 777	long chg = 0;
 778
 779	spin_lock(&resv->lock);
 780
 781	/* Count how many hugepages in this range are NOT represented. */
 782	chg = add_reservation_in_range(resv, f, t, NULL, NULL,
 783				       out_regions_needed);
 784
 785	if (*out_regions_needed == 0)
 786		*out_regions_needed = 1;
 787
 788	if (allocate_file_region_entries(resv, *out_regions_needed))
 789		return -ENOMEM;
 790
 791	resv->adds_in_progress += *out_regions_needed;
 792
 793	spin_unlock(&resv->lock);
 794	return chg;
 795}
 796
 797/*
 798 * Abort the in progress add operation.  The adds_in_progress field
 799 * of the resv_map keeps track of the operations in progress between
 800 * calls to region_chg and region_add.  Operations are sometimes
 801 * aborted after the call to region_chg.  In such cases, region_abort
 802 * is called to decrement the adds_in_progress counter. regions_needed
 803 * is the value returned by the region_chg call, it is used to decrement
 804 * the adds_in_progress counter.
 805 *
 806 * NOTE: The range arguments [f, t) are not needed or used in this
 807 * routine.  They are kept to make reading the calling code easier as
 808 * arguments will match the associated region_chg call.
 809 */
 810static void region_abort(struct resv_map *resv, long f, long t,
 811			 long regions_needed)
 812{
 813	spin_lock(&resv->lock);
 814	VM_BUG_ON(!resv->region_cache_count);
 815	resv->adds_in_progress -= regions_needed;
 816	spin_unlock(&resv->lock);
 817}
 818
 819/*
 820 * Delete the specified range [f, t) from the reserve map.  If the
 821 * t parameter is LONG_MAX, this indicates that ALL regions after f
 822 * should be deleted.  Locate the regions which intersect [f, t)
 823 * and either trim, delete or split the existing regions.
 824 *
 825 * Returns the number of huge pages deleted from the reserve map.
 826 * In the normal case, the return value is zero or more.  In the
 827 * case where a region must be split, a new region descriptor must
 828 * be allocated.  If the allocation fails, -ENOMEM will be returned.
 829 * NOTE: If the parameter t == LONG_MAX, then we will never split
 830 * a region and possibly return -ENOMEM.  Callers specifying
 831 * t == LONG_MAX do not need to check for -ENOMEM error.
 832 */
 833static long region_del(struct resv_map *resv, long f, long t)
 834{
 835	struct list_head *head = &resv->regions;
 836	struct file_region *rg, *trg;
 837	struct file_region *nrg = NULL;
 838	long del = 0;
 839
 840retry:
 841	spin_lock(&resv->lock);
 842	list_for_each_entry_safe(rg, trg, head, link) {
 843		/*
 844		 * Skip regions before the range to be deleted.  file_region
 845		 * ranges are normally of the form [from, to).  However, there
 846		 * may be a "placeholder" entry in the map which is of the form
 847		 * (from, to) with from == to.  Check for placeholder entries
 848		 * at the beginning of the range to be deleted.
 849		 */
 850		if (rg->to <= f && (rg->to != rg->from || rg->to != f))
 851			continue;
 852
 853		if (rg->from >= t)
 854			break;
 855
 856		if (f > rg->from && t < rg->to) { /* Must split region */
 857			/*
 858			 * Check for an entry in the cache before dropping
 859			 * lock and attempting allocation.
 860			 */
 861			if (!nrg &&
 862			    resv->region_cache_count > resv->adds_in_progress) {
 863				nrg = list_first_entry(&resv->region_cache,
 864							struct file_region,
 865							link);
 866				list_del(&nrg->link);
 867				resv->region_cache_count--;
 868			}
 869
 870			if (!nrg) {
 871				spin_unlock(&resv->lock);
 872				nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
 873				if (!nrg)
 874					return -ENOMEM;
 875				goto retry;
 876			}
 877
 878			del += t - f;
 879			hugetlb_cgroup_uncharge_file_region(
 880				resv, rg, t - f, false);
 881
 882			/* New entry for end of split region */
 883			nrg->from = t;
 884			nrg->to = rg->to;
 885
 886			copy_hugetlb_cgroup_uncharge_info(nrg, rg);
 887
 888			INIT_LIST_HEAD(&nrg->link);
 889
 890			/* Original entry is trimmed */
 891			rg->to = f;
 892
 
 
 
 893			list_add(&nrg->link, &rg->link);
 894			nrg = NULL;
 895			break;
 896		}
 897
 898		if (f <= rg->from && t >= rg->to) { /* Remove entire region */
 899			del += rg->to - rg->from;
 900			hugetlb_cgroup_uncharge_file_region(resv, rg,
 901							    rg->to - rg->from, true);
 902			list_del(&rg->link);
 903			kfree(rg);
 904			continue;
 905		}
 906
 907		if (f <= rg->from) {	/* Trim beginning of region */
 908			hugetlb_cgroup_uncharge_file_region(resv, rg,
 909							    t - rg->from, false);
 910
 911			del += t - rg->from;
 912			rg->from = t;
 913		} else {		/* Trim end of region */
 914			hugetlb_cgroup_uncharge_file_region(resv, rg,
 915							    rg->to - f, false);
 916
 
 
 
 917			del += rg->to - f;
 918			rg->to = f;
 
 
 
 919		}
 920	}
 921
 922	spin_unlock(&resv->lock);
 923	kfree(nrg);
 924	return del;
 925}
 926
 927/*
 928 * A rare out of memory error was encountered which prevented removal of
 929 * the reserve map region for a page.  The huge page itself was free'ed
 930 * and removed from the page cache.  This routine will adjust the subpool
 931 * usage count, and the global reserve count if needed.  By incrementing
 932 * these counts, the reserve map entry which could not be deleted will
 933 * appear as a "reserved" entry instead of simply dangling with incorrect
 934 * counts.
 935 */
 936void hugetlb_fix_reserve_counts(struct inode *inode)
 937{
 938	struct hugepage_subpool *spool = subpool_inode(inode);
 939	long rsv_adjust;
 940	bool reserved = false;
 941
 942	rsv_adjust = hugepage_subpool_get_pages(spool, 1);
 943	if (rsv_adjust > 0) {
 944		struct hstate *h = hstate_inode(inode);
 945
 946		if (!hugetlb_acct_memory(h, 1))
 947			reserved = true;
 948	} else if (!rsv_adjust) {
 949		reserved = true;
 950	}
 951
 952	if (!reserved)
 953		pr_warn("hugetlb: Huge Page Reserved count may go negative.\n");
 954}
 955
 956/*
 957 * Count and return the number of huge pages in the reserve map
 958 * that intersect with the range [f, t).
 959 */
 960static long region_count(struct resv_map *resv, long f, long t)
 961{
 962	struct list_head *head = &resv->regions;
 963	struct file_region *rg;
 964	long chg = 0;
 965
 966	spin_lock(&resv->lock);
 967	/* Locate each segment we overlap with, and count that overlap. */
 968	list_for_each_entry(rg, head, link) {
 969		long seg_from;
 970		long seg_to;
 971
 972		if (rg->to <= f)
 973			continue;
 974		if (rg->from >= t)
 975			break;
 976
 977		seg_from = max(rg->from, f);
 978		seg_to = min(rg->to, t);
 979
 980		chg += seg_to - seg_from;
 981	}
 982	spin_unlock(&resv->lock);
 983
 984	return chg;
 985}
 986
 987/*
 988 * Convert the address within this vma to the page offset within
 989 * the mapping, huge page units here.
 990 */
 991static pgoff_t vma_hugecache_offset(struct hstate *h,
 992			struct vm_area_struct *vma, unsigned long address)
 993{
 994	return ((address - vma->vm_start) >> huge_page_shift(h)) +
 995			(vma->vm_pgoff >> huge_page_order(h));
 996}
 997
 998/**
 999 * vma_kernel_pagesize - Page size granularity for this VMA.
1000 * @vma: The user mapping.
1001 *
1002 * Folios in this VMA will be aligned to, and at least the size of the
1003 * number of bytes returned by this function.
1004 *
1005 * Return: The default size of the folios allocated when backing a VMA.
 
 
1006 */
1007unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
1008{
1009	if (vma->vm_ops && vma->vm_ops->pagesize)
1010		return vma->vm_ops->pagesize(vma);
1011	return PAGE_SIZE;
1012}
1013EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
1014
1015/*
1016 * Return the page size being used by the MMU to back a VMA. In the majority
1017 * of cases, the page size used by the kernel matches the MMU size. On
1018 * architectures where it differs, an architecture-specific 'strong'
1019 * version of this symbol is required.
1020 */
1021__weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
1022{
1023	return vma_kernel_pagesize(vma);
1024}
1025
1026/*
1027 * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
1028 * bits of the reservation map pointer, which are always clear due to
1029 * alignment.
1030 */
1031#define HPAGE_RESV_OWNER    (1UL << 0)
1032#define HPAGE_RESV_UNMAPPED (1UL << 1)
1033#define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
1034
1035/*
1036 * These helpers are used to track how many pages are reserved for
1037 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
1038 * is guaranteed to have their future faults succeed.
1039 *
1040 * With the exception of hugetlb_dup_vma_private() which is called at fork(),
1041 * the reserve counters are updated with the hugetlb_lock held. It is safe
1042 * to reset the VMA at fork() time as it is not in use yet and there is no
1043 * chance of the global counters getting corrupted as a result of the values.
1044 *
1045 * The private mapping reservation is represented in a subtly different
1046 * manner to a shared mapping.  A shared mapping has a region map associated
1047 * with the underlying file, this region map represents the backing file
1048 * pages which have ever had a reservation assigned which this persists even
1049 * after the page is instantiated.  A private mapping has a region map
1050 * associated with the original mmap which is attached to all VMAs which
1051 * reference it, this region map represents those offsets which have consumed
1052 * reservation ie. where pages have been instantiated.
1053 */
1054static unsigned long get_vma_private_data(struct vm_area_struct *vma)
1055{
1056	return (unsigned long)vma->vm_private_data;
1057}
1058
1059static void set_vma_private_data(struct vm_area_struct *vma,
1060							unsigned long value)
1061{
1062	vma->vm_private_data = (void *)value;
1063}
1064
1065static void
1066resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map *resv_map,
1067					  struct hugetlb_cgroup *h_cg,
1068					  struct hstate *h)
1069{
1070#ifdef CONFIG_CGROUP_HUGETLB
1071	if (!h_cg || !h) {
1072		resv_map->reservation_counter = NULL;
1073		resv_map->pages_per_hpage = 0;
1074		resv_map->css = NULL;
1075	} else {
1076		resv_map->reservation_counter =
1077			&h_cg->rsvd_hugepage[hstate_index(h)];
1078		resv_map->pages_per_hpage = pages_per_huge_page(h);
1079		resv_map->css = &h_cg->css;
1080	}
1081#endif
1082}
1083
1084struct resv_map *resv_map_alloc(void)
1085{
1086	struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
1087	struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
1088
1089	if (!resv_map || !rg) {
1090		kfree(resv_map);
1091		kfree(rg);
1092		return NULL;
1093	}
1094
1095	kref_init(&resv_map->refs);
1096	spin_lock_init(&resv_map->lock);
1097	INIT_LIST_HEAD(&resv_map->regions);
1098	init_rwsem(&resv_map->rw_sema);
1099
1100	resv_map->adds_in_progress = 0;
1101	/*
1102	 * Initialize these to 0. On shared mappings, 0's here indicate these
1103	 * fields don't do cgroup accounting. On private mappings, these will be
1104	 * re-initialized to the proper values, to indicate that hugetlb cgroup
1105	 * reservations are to be un-charged from here.
1106	 */
1107	resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, NULL, NULL);
1108
1109	INIT_LIST_HEAD(&resv_map->region_cache);
1110	list_add(&rg->link, &resv_map->region_cache);
1111	resv_map->region_cache_count = 1;
1112
1113	return resv_map;
1114}
1115
1116void resv_map_release(struct kref *ref)
1117{
1118	struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
1119	struct list_head *head = &resv_map->region_cache;
1120	struct file_region *rg, *trg;
1121
1122	/* Clear out any active regions before we release the map. */
1123	region_del(resv_map, 0, LONG_MAX);
1124
1125	/* ... and any entries left in the cache */
1126	list_for_each_entry_safe(rg, trg, head, link) {
1127		list_del(&rg->link);
1128		kfree(rg);
1129	}
1130
1131	VM_BUG_ON(resv_map->adds_in_progress);
1132
1133	kfree(resv_map);
1134}
1135
1136static inline struct resv_map *inode_resv_map(struct inode *inode)
1137{
1138	/*
1139	 * At inode evict time, i_mapping may not point to the original
1140	 * address space within the inode.  This original address space
1141	 * contains the pointer to the resv_map.  So, always use the
1142	 * address space embedded within the inode.
1143	 * The VERY common case is inode->mapping == &inode->i_data but,
1144	 * this may not be true for device special inodes.
1145	 */
1146	return (struct resv_map *)(&inode->i_data)->i_private_data;
1147}
1148
1149static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
1150{
1151	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1152	if (vma->vm_flags & VM_MAYSHARE) {
1153		struct address_space *mapping = vma->vm_file->f_mapping;
1154		struct inode *inode = mapping->host;
1155
1156		return inode_resv_map(inode);
1157
1158	} else {
1159		return (struct resv_map *)(get_vma_private_data(vma) &
1160							~HPAGE_RESV_MASK);
1161	}
1162}
1163
1164static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
1165{
1166	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1167	VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
1168
1169	set_vma_private_data(vma, (unsigned long)map);
 
1170}
1171
1172static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
1173{
1174	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1175	VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
1176
1177	set_vma_private_data(vma, get_vma_private_data(vma) | flags);
1178}
1179
1180static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
1181{
1182	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1183
1184	return (get_vma_private_data(vma) & flag) != 0;
1185}
1186
1187bool __vma_private_lock(struct vm_area_struct *vma)
1188{
1189	return !(vma->vm_flags & VM_MAYSHARE) &&
1190		get_vma_private_data(vma) & ~HPAGE_RESV_MASK &&
1191		is_vma_resv_set(vma, HPAGE_RESV_OWNER);
1192}
1193
1194void hugetlb_dup_vma_private(struct vm_area_struct *vma)
1195{
1196	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1197	/*
1198	 * Clear vm_private_data
1199	 * - For shared mappings this is a per-vma semaphore that may be
1200	 *   allocated in a subsequent call to hugetlb_vm_op_open.
1201	 *   Before clearing, make sure pointer is not associated with vma
1202	 *   as this will leak the structure.  This is the case when called
1203	 *   via clear_vma_resv_huge_pages() and hugetlb_vm_op_open has already
1204	 *   been called to allocate a new structure.
1205	 * - For MAP_PRIVATE mappings, this is the reserve map which does
1206	 *   not apply to children.  Faults generated by the children are
1207	 *   not guaranteed to succeed, even if read-only.
1208	 */
1209	if (vma->vm_flags & VM_MAYSHARE) {
1210		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
1211
1212		if (vma_lock && vma_lock->vma != vma)
1213			vma->vm_private_data = NULL;
1214	} else
1215		vma->vm_private_data = NULL;
1216}
1217
1218/*
1219 * Reset and decrement one ref on hugepage private reservation.
1220 * Called with mm->mmap_lock writer semaphore held.
1221 * This function should be only used by move_vma() and operate on
1222 * same sized vma. It should never come here with last ref on the
1223 * reservation.
1224 */
1225void clear_vma_resv_huge_pages(struct vm_area_struct *vma)
1226{
1227	/*
1228	 * Clear the old hugetlb private page reservation.
1229	 * It has already been transferred to new_vma.
1230	 *
1231	 * During a mremap() operation of a hugetlb vma we call move_vma()
1232	 * which copies vma into new_vma and unmaps vma. After the copy
1233	 * operation both new_vma and vma share a reference to the resv_map
1234	 * struct, and at that point vma is about to be unmapped. We don't
1235	 * want to return the reservation to the pool at unmap of vma because
1236	 * the reservation still lives on in new_vma, so simply decrement the
1237	 * ref here and remove the resv_map reference from this vma.
1238	 */
1239	struct resv_map *reservations = vma_resv_map(vma);
1240
1241	if (reservations && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1242		resv_map_put_hugetlb_cgroup_uncharge_info(reservations);
1243		kref_put(&reservations->refs, resv_map_release);
1244	}
1245
1246	hugetlb_dup_vma_private(vma);
1247}
1248
1249/* Returns true if the VMA has associated reserve pages */
1250static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
1251{
1252	if (vma->vm_flags & VM_NORESERVE) {
1253		/*
1254		 * This address is already reserved by other process(chg == 0),
1255		 * so, we should decrement reserved count. Without decrementing,
1256		 * reserve count remains after releasing inode, because this
1257		 * allocated page will go into page cache and is regarded as
1258		 * coming from reserved pool in releasing step.  Currently, we
1259		 * don't have any other solution to deal with this situation
1260		 * properly, so add work-around here.
1261		 */
1262		if (vma->vm_flags & VM_MAYSHARE && chg == 0)
1263			return true;
1264		else
1265			return false;
1266	}
1267
1268	/* Shared mappings always use reserves */
1269	if (vma->vm_flags & VM_MAYSHARE) {
1270		/*
1271		 * We know VM_NORESERVE is not set.  Therefore, there SHOULD
1272		 * be a region map for all pages.  The only situation where
1273		 * there is no region map is if a hole was punched via
1274		 * fallocate.  In this case, there really are no reserves to
1275		 * use.  This situation is indicated if chg != 0.
1276		 */
1277		if (chg)
1278			return false;
1279		else
1280			return true;
1281	}
1282
1283	/*
1284	 * Only the process that called mmap() has reserves for
1285	 * private mappings.
1286	 */
1287	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1288		/*
1289		 * Like the shared case above, a hole punch or truncate
1290		 * could have been performed on the private mapping.
1291		 * Examine the value of chg to determine if reserves
1292		 * actually exist or were previously consumed.
1293		 * Very Subtle - The value of chg comes from a previous
1294		 * call to vma_needs_reserves().  The reserve map for
1295		 * private mappings has different (opposite) semantics
1296		 * than that of shared mappings.  vma_needs_reserves()
1297		 * has already taken this difference in semantics into
1298		 * account.  Therefore, the meaning of chg is the same
1299		 * as in the shared case above.  Code could easily be
1300		 * combined, but keeping it separate draws attention to
1301		 * subtle differences.
1302		 */
1303		if (chg)
1304			return false;
1305		else
1306			return true;
1307	}
1308
1309	return false;
1310}
1311
1312static void enqueue_hugetlb_folio(struct hstate *h, struct folio *folio)
1313{
1314	int nid = folio_nid(folio);
1315
1316	lockdep_assert_held(&hugetlb_lock);
1317	VM_BUG_ON_FOLIO(folio_ref_count(folio), folio);
1318
1319	list_move(&folio->lru, &h->hugepage_freelists[nid]);
1320	h->free_huge_pages++;
1321	h->free_huge_pages_node[nid]++;
1322	folio_set_hugetlb_freed(folio);
1323}
1324
1325static struct folio *dequeue_hugetlb_folio_node_exact(struct hstate *h,
1326								int nid)
1327{
1328	struct folio *folio;
1329	bool pin = !!(current->flags & PF_MEMALLOC_PIN);
1330
1331	lockdep_assert_held(&hugetlb_lock);
1332	list_for_each_entry(folio, &h->hugepage_freelists[nid], lru) {
1333		if (pin && !folio_is_longterm_pinnable(folio))
1334			continue;
1335
1336		if (folio_test_hwpoison(folio))
 
1337			continue;
1338
1339		list_move(&folio->lru, &h->hugepage_activelist);
1340		folio_ref_unfreeze(folio, 1);
1341		folio_clear_hugetlb_freed(folio);
1342		h->free_huge_pages--;
1343		h->free_huge_pages_node[nid]--;
1344		return folio;
1345	}
1346
1347	return NULL;
 
 
 
 
 
 
 
 
 
 
1348}
1349
1350static struct folio *dequeue_hugetlb_folio_nodemask(struct hstate *h, gfp_t gfp_mask,
1351							int nid, nodemask_t *nmask)
1352{
1353	unsigned int cpuset_mems_cookie;
1354	struct zonelist *zonelist;
1355	struct zone *zone;
1356	struct zoneref *z;
1357	int node = NUMA_NO_NODE;
1358
1359	/* 'nid' should not be NUMA_NO_NODE. Try to catch any misuse of it and rectifiy. */
1360	if (nid == NUMA_NO_NODE)
1361		nid = numa_node_id();
1362
1363	zonelist = node_zonelist(nid, gfp_mask);
1364
1365retry_cpuset:
1366	cpuset_mems_cookie = read_mems_allowed_begin();
1367	for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
1368		struct folio *folio;
1369
1370		if (!cpuset_zone_allowed(zone, gfp_mask))
1371			continue;
1372		/*
1373		 * no need to ask again on the same node. Pool is node rather than
1374		 * zone aware
1375		 */
1376		if (zone_to_nid(zone) == node)
1377			continue;
1378		node = zone_to_nid(zone);
1379
1380		folio = dequeue_hugetlb_folio_node_exact(h, node);
1381		if (folio)
1382			return folio;
1383	}
1384	if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
1385		goto retry_cpuset;
1386
1387	return NULL;
1388}
1389
1390static unsigned long available_huge_pages(struct hstate *h)
1391{
1392	return h->free_huge_pages - h->resv_huge_pages;
1393}
1394
1395static struct folio *dequeue_hugetlb_folio_vma(struct hstate *h,
1396				struct vm_area_struct *vma,
1397				unsigned long address, long chg)
 
1398{
1399	struct folio *folio = NULL;
1400	struct mempolicy *mpol;
1401	gfp_t gfp_mask;
1402	nodemask_t *nodemask;
1403	int nid;
1404
1405	/*
1406	 * A child process with MAP_PRIVATE mappings created by their parent
1407	 * have no page reserves. This check ensures that reservations are
1408	 * not "stolen". The child may still get SIGKILLed
1409	 */
1410	if (!vma_has_reserves(vma, chg) && !available_huge_pages(h))
 
 
 
 
 
1411		goto err;
1412
1413	gfp_mask = htlb_alloc_mask(h);
1414	nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
1415
1416	if (mpol_is_preferred_many(mpol)) {
1417		folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask,
1418							nid, nodemask);
1419
1420		/* Fallback to all nodes if page==NULL */
1421		nodemask = NULL;
1422	}
1423
1424	if (!folio)
1425		folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask,
1426							nid, nodemask);
1427
1428	if (folio && vma_has_reserves(vma, chg)) {
1429		folio_set_hugetlb_restore_reserve(folio);
1430		h->resv_huge_pages--;
1431	}
1432
1433	mpol_cond_put(mpol);
1434	return folio;
1435
1436err:
1437	return NULL;
1438}
1439
1440/*
1441 * common helper functions for hstate_next_node_to_{alloc|free}.
1442 * We may have allocated or freed a huge page based on a different
1443 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
1444 * be outside of *nodes_allowed.  Ensure that we use an allowed
1445 * node for alloc or free.
1446 */
1447static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
1448{
1449	nid = next_node_in(nid, *nodes_allowed);
1450	VM_BUG_ON(nid >= MAX_NUMNODES);
1451
1452	return nid;
1453}
1454
1455static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
1456{
1457	if (!node_isset(nid, *nodes_allowed))
1458		nid = next_node_allowed(nid, nodes_allowed);
1459	return nid;
1460}
1461
1462/*
1463 * returns the previously saved node ["this node"] from which to
1464 * allocate a persistent huge page for the pool and advance the
1465 * next node from which to allocate, handling wrap at end of node
1466 * mask.
1467 */
1468static int hstate_next_node_to_alloc(int *next_node,
1469					nodemask_t *nodes_allowed)
1470{
1471	int nid;
1472
1473	VM_BUG_ON(!nodes_allowed);
1474
1475	nid = get_valid_node_allowed(*next_node, nodes_allowed);
1476	*next_node = next_node_allowed(nid, nodes_allowed);
1477
1478	return nid;
1479}
1480
1481/*
1482 * helper for remove_pool_hugetlb_folio() - return the previously saved
1483 * node ["this node"] from which to free a huge page.  Advance the
1484 * next node id whether or not we find a free huge page to free so
1485 * that the next attempt to free addresses the next node.
1486 */
1487static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1488{
1489	int nid;
1490
1491	VM_BUG_ON(!nodes_allowed);
1492
1493	nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1494	h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1495
1496	return nid;
1497}
1498
1499#define for_each_node_mask_to_alloc(next_node, nr_nodes, node, mask)		\
1500	for (nr_nodes = nodes_weight(*mask);				\
1501		nr_nodes > 0 &&						\
1502		((node = hstate_next_node_to_alloc(next_node, mask)) || 1);	\
1503		nr_nodes--)
1504
1505#define for_each_node_mask_to_free(hs, nr_nodes, node, mask)		\
1506	for (nr_nodes = nodes_weight(*mask);				\
1507		nr_nodes > 0 &&						\
1508		((node = hstate_next_node_to_free(hs, mask)) || 1);	\
1509		nr_nodes--)
1510
1511#ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1512#ifdef CONFIG_CONTIG_ALLOC
1513static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask,
1514		int nid, nodemask_t *nodemask)
1515{
1516	struct folio *folio;
1517	int order = huge_page_order(h);
1518	bool retried = false;
1519
1520	if (nid == NUMA_NO_NODE)
1521		nid = numa_mem_id();
1522retry:
1523	folio = NULL;
1524#ifdef CONFIG_CMA
1525	{
 
1526		int node;
1527
1528		if (hugetlb_cma[nid])
1529			folio = cma_alloc_folio(hugetlb_cma[nid], order, gfp_mask);
 
 
 
 
1530
1531		if (!folio && !(gfp_mask & __GFP_THISNODE)) {
1532			for_each_node_mask(node, *nodemask) {
1533				if (node == nid || !hugetlb_cma[node])
1534					continue;
1535
1536				folio = cma_alloc_folio(hugetlb_cma[node], order, gfp_mask);
1537				if (folio)
1538					break;
 
1539			}
1540		}
1541	}
1542#endif
1543	if (!folio) {
1544		folio = folio_alloc_gigantic(order, gfp_mask, nid, nodemask);
1545		if (!folio)
1546			return NULL;
1547	}
1548
1549	if (folio_ref_freeze(folio, 1))
1550		return folio;
1551
1552	pr_warn("HugeTLB: unexpected refcount on PFN %lu\n", folio_pfn(folio));
1553	hugetlb_free_folio(folio);
1554	if (!retried) {
1555		retried = true;
1556		goto retry;
1557	}
1558	return NULL;
1559}
1560
 
 
1561#else /* !CONFIG_CONTIG_ALLOC */
1562static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask,
1563					int nid, nodemask_t *nodemask)
1564{
1565	return NULL;
1566}
1567#endif /* CONFIG_CONTIG_ALLOC */
1568
1569#else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
1570static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask,
1571					int nid, nodemask_t *nodemask)
1572{
1573	return NULL;
1574}
 
 
 
1575#endif
1576
1577/*
1578 * Remove hugetlb folio from lists.
1579 * If vmemmap exists for the folio, clear the hugetlb flag so that the
1580 * folio appears as just a compound page.  Otherwise, wait until after
1581 * allocating vmemmap to clear the flag.
1582 *
1583 * Must be called with hugetlb lock held.
1584 */
1585static void remove_hugetlb_folio(struct hstate *h, struct folio *folio,
1586							bool adjust_surplus)
1587{
1588	int nid = folio_nid(folio);
1589
1590	VM_BUG_ON_FOLIO(hugetlb_cgroup_from_folio(folio), folio);
1591	VM_BUG_ON_FOLIO(hugetlb_cgroup_from_folio_rsvd(folio), folio);
1592
1593	lockdep_assert_held(&hugetlb_lock);
1594	if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1595		return;
1596
1597	list_del(&folio->lru);
1598
1599	if (folio_test_hugetlb_freed(folio)) {
1600		folio_clear_hugetlb_freed(folio);
1601		h->free_huge_pages--;
1602		h->free_huge_pages_node[nid]--;
1603	}
1604	if (adjust_surplus) {
1605		h->surplus_huge_pages--;
1606		h->surplus_huge_pages_node[nid]--;
1607	}
1608
1609	/*
1610	 * We can only clear the hugetlb flag after allocating vmemmap
1611	 * pages.  Otherwise, someone (memory error handling) may try to write
1612	 * to tail struct pages.
1613	 */
1614	if (!folio_test_hugetlb_vmemmap_optimized(folio))
1615		__folio_clear_hugetlb(folio);
1616
1617	h->nr_huge_pages--;
1618	h->nr_huge_pages_node[nid]--;
1619}
1620
1621static void add_hugetlb_folio(struct hstate *h, struct folio *folio,
1622			     bool adjust_surplus)
1623{
1624	int nid = folio_nid(folio);
1625
1626	VM_BUG_ON_FOLIO(!folio_test_hugetlb_vmemmap_optimized(folio), folio);
1627
1628	lockdep_assert_held(&hugetlb_lock);
1629
1630	INIT_LIST_HEAD(&folio->lru);
1631	h->nr_huge_pages++;
1632	h->nr_huge_pages_node[nid]++;
1633
1634	if (adjust_surplus) {
1635		h->surplus_huge_pages++;
1636		h->surplus_huge_pages_node[nid]++;
 
 
 
1637	}
1638
1639	__folio_set_hugetlb(folio);
1640	folio_change_private(folio, NULL);
1641	/*
1642	 * We have to set hugetlb_vmemmap_optimized again as above
1643	 * folio_change_private(folio, NULL) cleared it.
1644	 */
1645	folio_set_hugetlb_vmemmap_optimized(folio);
1646
1647	arch_clear_hugetlb_flags(folio);
1648	enqueue_hugetlb_folio(h, folio);
1649}
1650
1651static void __update_and_free_hugetlb_folio(struct hstate *h,
1652						struct folio *folio)
1653{
1654	bool clear_flag = folio_test_hugetlb_vmemmap_optimized(folio);
1655
1656	if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1657		return;
1658
1659	/*
1660	 * If we don't know which subpages are hwpoisoned, we can't free
1661	 * the hugepage, so it's leaked intentionally.
1662	 */
1663	if (folio_test_hugetlb_raw_hwp_unreliable(folio))
1664		return;
1665
1666	/*
1667	 * If folio is not vmemmap optimized (!clear_flag), then the folio
1668	 * is no longer identified as a hugetlb page.  hugetlb_vmemmap_restore_folio
1669	 * can only be passed hugetlb pages and will BUG otherwise.
1670	 */
1671	if (clear_flag && hugetlb_vmemmap_restore_folio(h, folio)) {
1672		spin_lock_irq(&hugetlb_lock);
1673		/*
1674		 * If we cannot allocate vmemmap pages, just refuse to free the
1675		 * page and put the page back on the hugetlb free list and treat
1676		 * as a surplus page.
1677		 */
1678		add_hugetlb_folio(h, folio, true);
1679		spin_unlock_irq(&hugetlb_lock);
1680		return;
1681	}
1682
1683	/*
1684	 * If vmemmap pages were allocated above, then we need to clear the
1685	 * hugetlb flag under the hugetlb lock.
1686	 */
1687	if (folio_test_hugetlb(folio)) {
1688		spin_lock_irq(&hugetlb_lock);
1689		__folio_clear_hugetlb(folio);
1690		spin_unlock_irq(&hugetlb_lock);
1691	}
1692
1693	/*
1694	 * Move PageHWPoison flag from head page to the raw error pages,
1695	 * which makes any healthy subpages reusable.
1696	 */
1697	if (unlikely(folio_test_hwpoison(folio)))
1698		folio_clear_hugetlb_hwpoison(folio);
1699
1700	folio_ref_unfreeze(folio, 1);
1701
1702	INIT_LIST_HEAD(&folio->_deferred_list);
1703	hugetlb_free_folio(folio);
1704}
1705
1706/*
1707 * As update_and_free_hugetlb_folio() can be called under any context, so we cannot
1708 * use GFP_KERNEL to allocate vmemmap pages. However, we can defer the
1709 * actual freeing in a workqueue to prevent from using GFP_ATOMIC to allocate
1710 * the vmemmap pages.
1711 *
1712 * free_hpage_workfn() locklessly retrieves the linked list of pages to be
1713 * freed and frees them one-by-one. As the page->mapping pointer is going
1714 * to be cleared in free_hpage_workfn() anyway, it is reused as the llist_node
1715 * structure of a lockless linked list of huge pages to be freed.
1716 */
1717static LLIST_HEAD(hpage_freelist);
1718
1719static void free_hpage_workfn(struct work_struct *work)
1720{
1721	struct llist_node *node;
1722
1723	node = llist_del_all(&hpage_freelist);
1724
1725	while (node) {
1726		struct folio *folio;
1727		struct hstate *h;
1728
1729		folio = container_of((struct address_space **)node,
1730				     struct folio, mapping);
1731		node = node->next;
1732		folio->mapping = NULL;
1733		/*
1734		 * The VM_BUG_ON_FOLIO(!folio_test_hugetlb(folio), folio) in
1735		 * folio_hstate() is going to trigger because a previous call to
1736		 * remove_hugetlb_folio() will clear the hugetlb bit, so do
1737		 * not use folio_hstate() directly.
1738		 */
1739		h = size_to_hstate(folio_size(folio));
1740
1741		__update_and_free_hugetlb_folio(h, folio);
1742
1743		cond_resched();
1744	}
1745}
1746static DECLARE_WORK(free_hpage_work, free_hpage_workfn);
1747
1748static inline void flush_free_hpage_work(struct hstate *h)
 
1749{
1750	if (hugetlb_vmemmap_optimizable(h))
1751		flush_work(&free_hpage_work);
1752}
1753
1754static void update_and_free_hugetlb_folio(struct hstate *h, struct folio *folio,
1755				 bool atomic)
1756{
1757	if (!folio_test_hugetlb_vmemmap_optimized(folio) || !atomic) {
1758		__update_and_free_hugetlb_folio(h, folio);
1759		return;
1760	}
1761
1762	/*
1763	 * Defer freeing to avoid using GFP_ATOMIC to allocate vmemmap pages.
1764	 *
1765	 * Only call schedule_work() if hpage_freelist is previously
1766	 * empty. Otherwise, schedule_work() had been called but the workfn
1767	 * hasn't retrieved the list yet.
1768	 */
1769	if (llist_add((struct llist_node *)&folio->mapping, &hpage_freelist))
1770		schedule_work(&free_hpage_work);
1771}
1772
1773static void bulk_vmemmap_restore_error(struct hstate *h,
1774					struct list_head *folio_list,
1775					struct list_head *non_hvo_folios)
1776{
1777	struct folio *folio, *t_folio;
1778
1779	if (!list_empty(non_hvo_folios)) {
1780		/*
1781		 * Free any restored hugetlb pages so that restore of the
1782		 * entire list can be retried.
1783		 * The idea is that in the common case of ENOMEM errors freeing
1784		 * hugetlb pages with vmemmap we will free up memory so that we
1785		 * can allocate vmemmap for more hugetlb pages.
1786		 */
1787		list_for_each_entry_safe(folio, t_folio, non_hvo_folios, lru) {
1788			list_del(&folio->lru);
1789			spin_lock_irq(&hugetlb_lock);
1790			__folio_clear_hugetlb(folio);
1791			spin_unlock_irq(&hugetlb_lock);
1792			update_and_free_hugetlb_folio(h, folio, false);
1793			cond_resched();
1794		}
1795	} else {
1796		/*
1797		 * In the case where there are no folios which can be
1798		 * immediately freed, we loop through the list trying to restore
1799		 * vmemmap individually in the hope that someone elsewhere may
1800		 * have done something to cause success (such as freeing some
1801		 * memory).  If unable to restore a hugetlb page, the hugetlb
1802		 * page is made a surplus page and removed from the list.
1803		 * If are able to restore vmemmap and free one hugetlb page, we
1804		 * quit processing the list to retry the bulk operation.
1805		 */
1806		list_for_each_entry_safe(folio, t_folio, folio_list, lru)
1807			if (hugetlb_vmemmap_restore_folio(h, folio)) {
1808				list_del(&folio->lru);
1809				spin_lock_irq(&hugetlb_lock);
1810				add_hugetlb_folio(h, folio, true);
1811				spin_unlock_irq(&hugetlb_lock);
1812			} else {
1813				list_del(&folio->lru);
1814				spin_lock_irq(&hugetlb_lock);
1815				__folio_clear_hugetlb(folio);
1816				spin_unlock_irq(&hugetlb_lock);
1817				update_and_free_hugetlb_folio(h, folio, false);
1818				cond_resched();
1819				break;
1820			}
1821	}
1822}
1823
1824static void update_and_free_pages_bulk(struct hstate *h,
1825						struct list_head *folio_list)
 
 
 
1826{
1827	long ret;
1828	struct folio *folio, *t_folio;
1829	LIST_HEAD(non_hvo_folios);
1830
1831	/*
1832	 * First allocate required vmemmmap (if necessary) for all folios.
1833	 * Carefully handle errors and free up any available hugetlb pages
1834	 * in an effort to make forward progress.
1835	 */
1836retry:
1837	ret = hugetlb_vmemmap_restore_folios(h, folio_list, &non_hvo_folios);
1838	if (ret < 0) {
1839		bulk_vmemmap_restore_error(h, folio_list, &non_hvo_folios);
1840		goto retry;
1841	}
1842
1843	/*
1844	 * At this point, list should be empty, ret should be >= 0 and there
1845	 * should only be pages on the non_hvo_folios list.
1846	 * Do note that the non_hvo_folios list could be empty.
1847	 * Without HVO enabled, ret will be 0 and there is no need to call
1848	 * __folio_clear_hugetlb as this was done previously.
1849	 */
1850	VM_WARN_ON(!list_empty(folio_list));
1851	VM_WARN_ON(ret < 0);
1852	if (!list_empty(&non_hvo_folios) && ret) {
1853		spin_lock_irq(&hugetlb_lock);
1854		list_for_each_entry(folio, &non_hvo_folios, lru)
1855			__folio_clear_hugetlb(folio);
1856		spin_unlock_irq(&hugetlb_lock);
1857	}
1858
1859	list_for_each_entry_safe(folio, t_folio, &non_hvo_folios, lru) {
1860		update_and_free_hugetlb_folio(h, folio, false);
1861		cond_resched();
1862	}
1863}
1864
1865struct hstate *size_to_hstate(unsigned long size)
1866{
1867	struct hstate *h;
 
1868
1869	for_each_hstate(h) {
1870		if (huge_page_size(h) == size)
1871			return h;
1872	}
1873	return NULL;
1874}
1875
1876void free_huge_folio(struct folio *folio)
1877{
1878	/*
1879	 * Can't pass hstate in here because it is called from the
1880	 * generic mm code.
1881	 */
1882	struct hstate *h = folio_hstate(folio);
1883	int nid = folio_nid(folio);
1884	struct hugepage_subpool *spool = hugetlb_folio_subpool(folio);
 
1885	bool restore_reserve;
1886	unsigned long flags;
1887
1888	VM_BUG_ON_FOLIO(folio_ref_count(folio), folio);
1889	VM_BUG_ON_FOLIO(folio_mapcount(folio), folio);
1890
1891	hugetlb_set_folio_subpool(folio, NULL);
1892	if (folio_test_anon(folio))
1893		__ClearPageAnonExclusive(&folio->page);
1894	folio->mapping = NULL;
1895	restore_reserve = folio_test_hugetlb_restore_reserve(folio);
1896	folio_clear_hugetlb_restore_reserve(folio);
1897
1898	/*
1899	 * If HPageRestoreReserve was set on page, page allocation consumed a
1900	 * reservation.  If the page was associated with a subpool, there
1901	 * would have been a page reserved in the subpool before allocation
1902	 * via hugepage_subpool_get_pages().  Since we are 'restoring' the
1903	 * reservation, do not call hugepage_subpool_put_pages() as this will
1904	 * remove the reserved page from the subpool.
1905	 */
1906	if (!restore_reserve) {
1907		/*
1908		 * A return code of zero implies that the subpool will be
1909		 * under its minimum size if the reservation is not restored
1910		 * after page is free.  Therefore, force restore_reserve
1911		 * operation.
1912		 */
1913		if (hugepage_subpool_put_pages(spool, 1) == 0)
1914			restore_reserve = true;
1915	}
1916
1917	spin_lock_irqsave(&hugetlb_lock, flags);
1918	folio_clear_hugetlb_migratable(folio);
1919	hugetlb_cgroup_uncharge_folio(hstate_index(h),
1920				     pages_per_huge_page(h), folio);
1921	hugetlb_cgroup_uncharge_folio_rsvd(hstate_index(h),
1922					  pages_per_huge_page(h), folio);
1923	lruvec_stat_mod_folio(folio, NR_HUGETLB, -pages_per_huge_page(h));
1924	mem_cgroup_uncharge(folio);
1925	if (restore_reserve)
1926		h->resv_huge_pages++;
1927
1928	if (folio_test_hugetlb_temporary(folio)) {
1929		remove_hugetlb_folio(h, folio, false);
1930		spin_unlock_irqrestore(&hugetlb_lock, flags);
1931		update_and_free_hugetlb_folio(h, folio, true);
1932	} else if (h->surplus_huge_pages_node[nid]) {
1933		/* remove the page from active list */
1934		remove_hugetlb_folio(h, folio, true);
1935		spin_unlock_irqrestore(&hugetlb_lock, flags);
1936		update_and_free_hugetlb_folio(h, folio, true);
 
1937	} else {
1938		arch_clear_hugetlb_flags(folio);
1939		enqueue_hugetlb_folio(h, folio);
1940		spin_unlock_irqrestore(&hugetlb_lock, flags);
1941	}
 
1942}
1943
1944/*
1945 * Must be called with the hugetlb lock held
 
 
 
 
 
 
 
1946 */
1947static void __prep_account_new_huge_page(struct hstate *h, int nid)
 
 
1948{
1949	lockdep_assert_held(&hugetlb_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1950	h->nr_huge_pages++;
1951	h->nr_huge_pages_node[nid]++;
 
1952}
1953
1954static void init_new_hugetlb_folio(struct hstate *h, struct folio *folio)
1955{
1956	__folio_set_hugetlb(folio);
1957	INIT_LIST_HEAD(&folio->lru);
1958	hugetlb_set_folio_subpool(folio, NULL);
1959	set_hugetlb_cgroup(folio, NULL);
1960	set_hugetlb_cgroup_rsvd(folio, NULL);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1961}
1962
1963static void __prep_new_hugetlb_folio(struct hstate *h, struct folio *folio)
 
 
 
 
 
1964{
1965	init_new_hugetlb_folio(h, folio);
1966	hugetlb_vmemmap_optimize_folio(h, folio);
 
 
 
1967}
 
1968
1969static void prep_new_hugetlb_folio(struct hstate *h, struct folio *folio, int nid)
 
 
 
 
1970{
1971	__prep_new_hugetlb_folio(h, folio);
1972	spin_lock_irq(&hugetlb_lock);
1973	__prep_account_new_huge_page(h, nid);
1974	spin_unlock_irq(&hugetlb_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1975}
1976
1977/*
1978 * Find and lock address space (mapping) in write mode.
1979 *
1980 * Upon entry, the folio is locked which means that folio_mapping() is
1981 * stable.  Due to locking order, we can only trylock_write.  If we can
1982 * not get the lock, simply return NULL to caller.
 
 
 
 
1983 */
1984struct address_space *hugetlb_folio_mapping_lock_write(struct folio *folio)
1985{
1986	struct address_space *mapping = folio_mapping(folio);
1987
 
 
1988	if (!mapping)
1989		return mapping;
1990
 
 
 
1991	if (i_mmap_trylock_write(mapping))
1992		return mapping;
1993
1994	return NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1995}
1996
1997static struct folio *alloc_buddy_hugetlb_folio(struct hstate *h,
1998		gfp_t gfp_mask, int nid, nodemask_t *nmask,
1999		nodemask_t *node_alloc_noretry)
2000{
2001	int order = huge_page_order(h);
2002	struct folio *folio;
2003	bool alloc_try_hard = true;
2004	bool retry = true;
2005
2006	/*
2007	 * By default we always try hard to allocate the folio with
2008	 * __GFP_RETRY_MAYFAIL flag.  However, if we are allocating folios in
2009	 * a loop (to adjust global huge page counts) and previous allocation
2010	 * failed, do not continue to try hard on the same node.  Use the
2011	 * node_alloc_noretry bitmap to manage this state information.
2012	 */
2013	if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry))
2014		alloc_try_hard = false;
 
2015	if (alloc_try_hard)
2016		gfp_mask |= __GFP_RETRY_MAYFAIL;
2017	if (nid == NUMA_NO_NODE)
2018		nid = numa_mem_id();
2019retry:
2020	folio = __folio_alloc(gfp_mask, order, nid, nmask);
2021	/* Ensure hugetlb folio won't have large_rmappable flag set. */
2022	if (folio)
2023		folio_clear_large_rmappable(folio);
2024
2025	if (folio && !folio_ref_freeze(folio, 1)) {
2026		folio_put(folio);
2027		if (retry) {	/* retry once */
2028			retry = false;
2029			goto retry;
2030		}
2031		/* WOW!  twice in a row. */
2032		pr_warn("HugeTLB unexpected inflated folio ref count\n");
2033		folio = NULL;
2034	}
2035
2036	/*
2037	 * If we did not specify __GFP_RETRY_MAYFAIL, but still got a
2038	 * folio this indicates an overall state change.  Clear bit so
2039	 * that we resume normal 'try hard' allocations.
2040	 */
2041	if (node_alloc_noretry && folio && !alloc_try_hard)
2042		node_clear(nid, *node_alloc_noretry);
2043
2044	/*
2045	 * If we tried hard to get a folio but failed, set bit so that
2046	 * subsequent attempts will not try as hard until there is an
2047	 * overall state change.
2048	 */
2049	if (node_alloc_noretry && !folio && alloc_try_hard)
2050		node_set(nid, *node_alloc_noretry);
2051
2052	if (!folio) {
2053		__count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
2054		return NULL;
2055	}
2056
2057	__count_vm_event(HTLB_BUDDY_PGALLOC);
2058	return folio;
2059}
2060
2061static struct folio *only_alloc_fresh_hugetlb_folio(struct hstate *h,
2062		gfp_t gfp_mask, int nid, nodemask_t *nmask,
2063		nodemask_t *node_alloc_noretry)
2064{
2065	struct folio *folio;
2066
2067	if (hstate_is_gigantic(h))
2068		folio = alloc_gigantic_folio(h, gfp_mask, nid, nmask);
2069	else
2070		folio = alloc_buddy_hugetlb_folio(h, gfp_mask, nid, nmask, node_alloc_noretry);
2071	if (folio)
2072		init_new_hugetlb_folio(h, folio);
2073	return folio;
2074}
2075
2076/*
2077 * Common helper to allocate a fresh hugetlb page. All specific allocators
2078 * should use this function to get new hugetlb pages
2079 *
2080 * Note that returned page is 'frozen':  ref count of head page and all tail
2081 * pages is zero.
2082 */
2083static struct folio *alloc_fresh_hugetlb_folio(struct hstate *h,
2084		gfp_t gfp_mask, int nid, nodemask_t *nmask)
 
2085{
2086	struct folio *folio;
2087
2088	if (hstate_is_gigantic(h))
2089		folio = alloc_gigantic_folio(h, gfp_mask, nid, nmask);
2090	else
2091		folio = alloc_buddy_hugetlb_folio(h, gfp_mask, nid, nmask, NULL);
2092	if (!folio)
 
2093		return NULL;
2094
2095	prep_new_hugetlb_folio(h, folio, folio_nid(folio));
2096	return folio;
2097}
2098
2099static void prep_and_add_allocated_folios(struct hstate *h,
2100					struct list_head *folio_list)
2101{
2102	unsigned long flags;
2103	struct folio *folio, *tmp_f;
2104
2105	/* Send list for bulk vmemmap optimization processing */
2106	hugetlb_vmemmap_optimize_folios(h, folio_list);
2107
2108	/* Add all new pool pages to free lists in one lock cycle */
2109	spin_lock_irqsave(&hugetlb_lock, flags);
2110	list_for_each_entry_safe(folio, tmp_f, folio_list, lru) {
2111		__prep_account_new_huge_page(h, folio_nid(folio));
2112		enqueue_hugetlb_folio(h, folio);
2113	}
2114	spin_unlock_irqrestore(&hugetlb_lock, flags);
2115}
2116
2117/*
2118 * Allocates a fresh hugetlb page in a node interleaved manner.  The page
2119 * will later be added to the appropriate hugetlb pool.
2120 */
2121static struct folio *alloc_pool_huge_folio(struct hstate *h,
2122					nodemask_t *nodes_allowed,
2123					nodemask_t *node_alloc_noretry,
2124					int *next_node)
2125{
2126	gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
2127	int nr_nodes, node;
 
2128
2129	for_each_node_mask_to_alloc(next_node, nr_nodes, node, nodes_allowed) {
2130		struct folio *folio;
2131
2132		folio = only_alloc_fresh_hugetlb_folio(h, gfp_mask, node,
2133					nodes_allowed, node_alloc_noretry);
2134		if (folio)
2135			return folio;
2136	}
2137
2138	return NULL;
 
 
 
 
 
2139}
2140
2141/*
2142 * Remove huge page from pool from next node to free.  Attempt to keep
2143 * persistent huge pages more or less balanced over allowed nodes.
2144 * This routine only 'removes' the hugetlb page.  The caller must make
2145 * an additional call to free the page to low level allocators.
2146 * Called with hugetlb_lock locked.
2147 */
2148static struct folio *remove_pool_hugetlb_folio(struct hstate *h,
2149		nodemask_t *nodes_allowed, bool acct_surplus)
2150{
2151	int nr_nodes, node;
2152	struct folio *folio = NULL;
2153
2154	lockdep_assert_held(&hugetlb_lock);
2155	for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2156		/*
2157		 * If we're returning unused surplus pages, only examine
2158		 * nodes with surplus pages.
2159		 */
2160		if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
2161		    !list_empty(&h->hugepage_freelists[node])) {
2162			folio = list_entry(h->hugepage_freelists[node].next,
2163					  struct folio, lru);
2164			remove_hugetlb_folio(h, folio, acct_surplus);
 
 
 
 
 
 
 
 
 
2165			break;
2166		}
2167	}
2168
2169	return folio;
2170}
2171
2172/*
2173 * Dissolve a given free hugetlb folio into free buddy pages. This function
2174 * does nothing for in-use hugetlb folios and non-hugetlb folios.
2175 * This function returns values like below:
2176 *
2177 *  -ENOMEM: failed to allocate vmemmap pages to free the freed hugepages
2178 *           when the system is under memory pressure and the feature of
2179 *           freeing unused vmemmap pages associated with each hugetlb page
2180 *           is enabled.
2181 *  -EBUSY:  failed to dissolved free hugepages or the hugepage is in-use
2182 *           (allocated or reserved.)
2183 *       0:  successfully dissolved free hugepages or the page is not a
2184 *           hugepage (considered as already dissolved)
2185 */
2186int dissolve_free_hugetlb_folio(struct folio *folio)
2187{
2188	int rc = -EBUSY;
2189
2190retry:
2191	/* Not to disrupt normal path by vainly holding hugetlb_lock */
2192	if (!folio_test_hugetlb(folio))
2193		return 0;
2194
2195	spin_lock_irq(&hugetlb_lock);
2196	if (!folio_test_hugetlb(folio)) {
2197		rc = 0;
2198		goto out;
2199	}
2200
2201	if (!folio_ref_count(folio)) {
2202		struct hstate *h = folio_hstate(folio);
2203		if (!available_huge_pages(h))
 
 
2204			goto out;
2205
2206		/*
2207		 * We should make sure that the page is already on the free list
2208		 * when it is dissolved.
2209		 */
2210		if (unlikely(!folio_test_hugetlb_freed(folio))) {
2211			spin_unlock_irq(&hugetlb_lock);
2212			cond_resched();
2213
2214			/*
2215			 * Theoretically, we should return -EBUSY when we
2216			 * encounter this race. In fact, we have a chance
2217			 * to successfully dissolve the page if we do a
2218			 * retry. Because the race window is quite small.
2219			 * If we seize this opportunity, it is an optimization
2220			 * for increasing the success rate of dissolving page.
2221			 */
2222			goto retry;
2223		}
2224
2225		remove_hugetlb_folio(h, folio, false);
 
2226		h->max_huge_pages--;
2227		spin_unlock_irq(&hugetlb_lock);
2228
2229		/*
2230		 * Normally update_and_free_hugtlb_folio will allocate required vmemmmap
2231		 * before freeing the page.  update_and_free_hugtlb_folio will fail to
2232		 * free the page if it can not allocate required vmemmap.  We
2233		 * need to adjust max_huge_pages if the page is not freed.
2234		 * Attempt to allocate vmemmmap here so that we can take
2235		 * appropriate action on failure.
2236		 *
2237		 * The folio_test_hugetlb check here is because
2238		 * remove_hugetlb_folio will clear hugetlb folio flag for
2239		 * non-vmemmap optimized hugetlb folios.
2240		 */
2241		if (folio_test_hugetlb(folio)) {
2242			rc = hugetlb_vmemmap_restore_folio(h, folio);
2243			if (rc) {
2244				spin_lock_irq(&hugetlb_lock);
2245				add_hugetlb_folio(h, folio, false);
2246				h->max_huge_pages++;
2247				goto out;
2248			}
2249		} else
2250			rc = 0;
2251
2252		update_and_free_hugetlb_folio(h, folio, false);
2253		return rc;
2254	}
2255out:
2256	spin_unlock_irq(&hugetlb_lock);
2257	return rc;
2258}
2259
2260/*
2261 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
2262 * make specified memory blocks removable from the system.
2263 * Note that this will dissolve a free gigantic hugepage completely, if any
2264 * part of it lies within the given range.
2265 * Also note that if dissolve_free_hugetlb_folio() returns with an error, all
2266 * free hugetlb folios that were dissolved before that error are lost.
2267 */
2268int dissolve_free_hugetlb_folios(unsigned long start_pfn, unsigned long end_pfn)
2269{
2270	unsigned long pfn;
2271	struct folio *folio;
2272	int rc = 0;
2273	unsigned int order;
2274	struct hstate *h;
2275
2276	if (!hugepages_supported())
2277		return rc;
2278
2279	order = huge_page_order(&default_hstate);
2280	for_each_hstate(h)
2281		order = min(order, huge_page_order(h));
2282
2283	for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << order) {
2284		folio = pfn_folio(pfn);
2285		rc = dissolve_free_hugetlb_folio(folio);
2286		if (rc)
2287			break;
2288	}
2289
2290	return rc;
2291}
2292
2293/*
2294 * Allocates a fresh surplus page from the page allocator.
2295 */
2296static struct folio *alloc_surplus_hugetlb_folio(struct hstate *h,
2297				gfp_t gfp_mask,	int nid, nodemask_t *nmask)
2298{
2299	struct folio *folio = NULL;
2300
2301	if (hstate_is_gigantic(h))
2302		return NULL;
2303
2304	spin_lock_irq(&hugetlb_lock);
2305	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages)
2306		goto out_unlock;
2307	spin_unlock_irq(&hugetlb_lock);
2308
2309	folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask);
2310	if (!folio)
2311		return NULL;
2312
2313	spin_lock_irq(&hugetlb_lock);
2314	/*
2315	 * We could have raced with the pool size change.
2316	 * Double check that and simply deallocate the new page
2317	 * if we would end up overcommiting the surpluses. Abuse
2318	 * temporary page to workaround the nasty free_huge_folio
2319	 * codeflow
2320	 */
2321	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
2322		folio_set_hugetlb_temporary(folio);
2323		spin_unlock_irq(&hugetlb_lock);
2324		free_huge_folio(folio);
2325		return NULL;
 
 
 
2326	}
2327
2328	h->surplus_huge_pages++;
2329	h->surplus_huge_pages_node[folio_nid(folio)]++;
2330
2331out_unlock:
2332	spin_unlock_irq(&hugetlb_lock);
2333
2334	return folio;
2335}
2336
2337static struct folio *alloc_migrate_hugetlb_folio(struct hstate *h, gfp_t gfp_mask,
2338				     int nid, nodemask_t *nmask)
2339{
2340	struct folio *folio;
2341
2342	if (hstate_is_gigantic(h))
2343		return NULL;
2344
2345	folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask);
2346	if (!folio)
2347		return NULL;
2348
2349	/* fresh huge pages are frozen */
2350	folio_ref_unfreeze(folio, 1);
2351	/*
2352	 * We do not account these pages as surplus because they are only
2353	 * temporary and will be released properly on the last reference
2354	 */
2355	folio_set_hugetlb_temporary(folio);
2356
2357	return folio;
2358}
2359
2360/*
2361 * Use the VMA's mpolicy to allocate a huge page from the buddy.
2362 */
2363static
2364struct folio *alloc_buddy_hugetlb_folio_with_mpol(struct hstate *h,
2365		struct vm_area_struct *vma, unsigned long addr)
2366{
2367	struct folio *folio = NULL;
2368	struct mempolicy *mpol;
2369	gfp_t gfp_mask = htlb_alloc_mask(h);
2370	int nid;
2371	nodemask_t *nodemask;
2372
2373	nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
2374	if (mpol_is_preferred_many(mpol)) {
2375		gfp_t gfp = gfp_mask & ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL);
2376
2377		folio = alloc_surplus_hugetlb_folio(h, gfp, nid, nodemask);
2378
2379		/* Fallback to all nodes if page==NULL */
2380		nodemask = NULL;
2381	}
2382
2383	if (!folio)
2384		folio = alloc_surplus_hugetlb_folio(h, gfp_mask, nid, nodemask);
2385	mpol_cond_put(mpol);
2386	return folio;
2387}
2388
2389struct folio *alloc_hugetlb_folio_reserve(struct hstate *h, int preferred_nid,
2390		nodemask_t *nmask, gfp_t gfp_mask)
2391{
2392	struct folio *folio;
2393
2394	spin_lock_irq(&hugetlb_lock);
2395	folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask, preferred_nid,
2396					       nmask);
2397	if (folio) {
2398		VM_BUG_ON(!h->resv_huge_pages);
2399		h->resv_huge_pages--;
2400	}
2401
2402	spin_unlock_irq(&hugetlb_lock);
2403	return folio;
2404}
2405
2406/* folio migration callback function */
2407struct folio *alloc_hugetlb_folio_nodemask(struct hstate *h, int preferred_nid,
2408		nodemask_t *nmask, gfp_t gfp_mask, bool allow_alloc_fallback)
2409{
2410	spin_lock_irq(&hugetlb_lock);
2411	if (available_huge_pages(h)) {
2412		struct folio *folio;
2413
2414		folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask,
2415						preferred_nid, nmask);
2416		if (folio) {
2417			spin_unlock_irq(&hugetlb_lock);
2418			return folio;
2419		}
2420	}
2421	spin_unlock_irq(&hugetlb_lock);
2422
2423	/* We cannot fallback to other nodes, as we could break the per-node pool. */
2424	if (!allow_alloc_fallback)
2425		gfp_mask |= __GFP_THISNODE;
2426
2427	return alloc_migrate_hugetlb_folio(h, gfp_mask, preferred_nid, nmask);
2428}
2429
2430static nodemask_t *policy_mbind_nodemask(gfp_t gfp)
 
 
2431{
2432#ifdef CONFIG_NUMA
2433	struct mempolicy *mpol = get_task_policy(current);
 
 
 
2434
2435	/*
2436	 * Only enforce MPOL_BIND policy which overlaps with cpuset policy
2437	 * (from policy_nodemask) specifically for hugetlb case
2438	 */
2439	if (mpol->mode == MPOL_BIND &&
2440		(apply_policy_zone(mpol, gfp_zone(gfp)) &&
2441		 cpuset_nodemask_valid_mems_allowed(&mpol->nodes)))
2442		return &mpol->nodes;
2443#endif
2444	return NULL;
2445}
2446
2447/*
2448 * Increase the hugetlb pool such that it can accommodate a reservation
2449 * of size 'delta'.
2450 */
2451static int gather_surplus_pages(struct hstate *h, long delta)
2452	__must_hold(&hugetlb_lock)
2453{
2454	LIST_HEAD(surplus_list);
2455	struct folio *folio, *tmp;
2456	int ret;
2457	long i;
2458	long needed, allocated;
2459	bool alloc_ok = true;
2460	int node;
2461	nodemask_t *mbind_nodemask = policy_mbind_nodemask(htlb_alloc_mask(h));
2462
2463	lockdep_assert_held(&hugetlb_lock);
2464	needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
2465	if (needed <= 0) {
2466		h->resv_huge_pages += delta;
2467		return 0;
2468	}
2469
2470	allocated = 0;
 
2471
2472	ret = -ENOMEM;
2473retry:
2474	spin_unlock_irq(&hugetlb_lock);
2475	for (i = 0; i < needed; i++) {
2476		folio = NULL;
2477		for_each_node_mask(node, cpuset_current_mems_allowed) {
2478			if (!mbind_nodemask || node_isset(node, *mbind_nodemask)) {
2479				folio = alloc_surplus_hugetlb_folio(h, htlb_alloc_mask(h),
2480						node, NULL);
2481				if (folio)
2482					break;
2483			}
2484		}
2485		if (!folio) {
2486			alloc_ok = false;
2487			break;
2488		}
2489		list_add(&folio->lru, &surplus_list);
2490		cond_resched();
2491	}
2492	allocated += i;
2493
2494	/*
2495	 * After retaking hugetlb_lock, we need to recalculate 'needed'
2496	 * because either resv_huge_pages or free_huge_pages may have changed.
2497	 */
2498	spin_lock_irq(&hugetlb_lock);
2499	needed = (h->resv_huge_pages + delta) -
2500			(h->free_huge_pages + allocated);
2501	if (needed > 0) {
2502		if (alloc_ok)
2503			goto retry;
2504		/*
2505		 * We were not able to allocate enough pages to
2506		 * satisfy the entire reservation so we free what
2507		 * we've allocated so far.
2508		 */
2509		goto free;
2510	}
2511	/*
2512	 * The surplus_list now contains _at_least_ the number of extra pages
2513	 * needed to accommodate the reservation.  Add the appropriate number
2514	 * of pages to the hugetlb pool and free the extras back to the buddy
2515	 * allocator.  Commit the entire reservation here to prevent another
2516	 * process from stealing the pages as they are added to the pool but
2517	 * before they are reserved.
2518	 */
2519	needed += allocated;
2520	h->resv_huge_pages += delta;
2521	ret = 0;
2522
2523	/* Free the needed pages to the hugetlb pool */
2524	list_for_each_entry_safe(folio, tmp, &surplus_list, lru) {
2525		if ((--needed) < 0)
2526			break;
2527		/* Add the page to the hugetlb allocator */
2528		enqueue_hugetlb_folio(h, folio);
 
 
 
 
 
2529	}
2530free:
2531	spin_unlock_irq(&hugetlb_lock);
2532
2533	/*
2534	 * Free unnecessary surplus pages to the buddy allocator.
2535	 * Pages have no ref count, call free_huge_folio directly.
2536	 */
2537	list_for_each_entry_safe(folio, tmp, &surplus_list, lru)
2538		free_huge_folio(folio);
2539	spin_lock_irq(&hugetlb_lock);
2540
2541	return ret;
2542}
2543
2544/*
2545 * This routine has two main purposes:
2546 * 1) Decrement the reservation count (resv_huge_pages) by the value passed
2547 *    in unused_resv_pages.  This corresponds to the prior adjustments made
2548 *    to the associated reservation map.
2549 * 2) Free any unused surplus pages that may have been allocated to satisfy
2550 *    the reservation.  As many as unused_resv_pages may be freed.
 
 
 
 
 
 
2551 */
2552static void return_unused_surplus_pages(struct hstate *h,
2553					unsigned long unused_resv_pages)
2554{
2555	unsigned long nr_pages;
2556	LIST_HEAD(page_list);
2557
2558	lockdep_assert_held(&hugetlb_lock);
2559	/* Uncommit the reservation */
2560	h->resv_huge_pages -= unused_resv_pages;
2561
2562	if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
2563		goto out;
2564
2565	/*
2566	 * Part (or even all) of the reservation could have been backed
2567	 * by pre-allocated pages. Only free surplus pages.
2568	 */
2569	nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
2570
2571	/*
2572	 * We want to release as many surplus pages as possible, spread
2573	 * evenly across all nodes with memory. Iterate across these nodes
2574	 * until we can no longer free unreserved surplus pages. This occurs
2575	 * when the nodes with surplus pages have no free pages.
2576	 * remove_pool_hugetlb_folio() will balance the freed pages across the
2577	 * on-line nodes with memory and will handle the hstate accounting.
 
 
 
 
2578	 */
2579	while (nr_pages--) {
2580		struct folio *folio;
2581
2582		folio = remove_pool_hugetlb_folio(h, &node_states[N_MEMORY], 1);
2583		if (!folio)
2584			goto out;
2585
2586		list_add(&folio->lru, &page_list);
2587	}
2588
2589out:
2590	spin_unlock_irq(&hugetlb_lock);
2591	update_and_free_pages_bulk(h, &page_list);
2592	spin_lock_irq(&hugetlb_lock);
2593}
2594
2595
2596/*
2597 * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
2598 * are used by the huge page allocation routines to manage reservations.
2599 *
2600 * vma_needs_reservation is called to determine if the huge page at addr
2601 * within the vma has an associated reservation.  If a reservation is
2602 * needed, the value 1 is returned.  The caller is then responsible for
2603 * managing the global reservation and subpool usage counts.  After
2604 * the huge page has been allocated, vma_commit_reservation is called
2605 * to add the page to the reservation map.  If the page allocation fails,
2606 * the reservation must be ended instead of committed.  vma_end_reservation
2607 * is called in such cases.
2608 *
2609 * In the normal case, vma_commit_reservation returns the same value
2610 * as the preceding vma_needs_reservation call.  The only time this
2611 * is not the case is if a reserve map was changed between calls.  It
2612 * is the responsibility of the caller to notice the difference and
2613 * take appropriate action.
2614 *
2615 * vma_add_reservation is used in error paths where a reservation must
2616 * be restored when a newly allocated huge page must be freed.  It is
2617 * to be called after calling vma_needs_reservation to determine if a
2618 * reservation exists.
2619 *
2620 * vma_del_reservation is used in error paths where an entry in the reserve
2621 * map was created during huge page allocation and must be removed.  It is to
2622 * be called after calling vma_needs_reservation to determine if a reservation
2623 * exists.
2624 */
2625enum vma_resv_mode {
2626	VMA_NEEDS_RESV,
2627	VMA_COMMIT_RESV,
2628	VMA_END_RESV,
2629	VMA_ADD_RESV,
2630	VMA_DEL_RESV,
2631};
2632static long __vma_reservation_common(struct hstate *h,
2633				struct vm_area_struct *vma, unsigned long addr,
2634				enum vma_resv_mode mode)
2635{
2636	struct resv_map *resv;
2637	pgoff_t idx;
2638	long ret;
2639	long dummy_out_regions_needed;
2640
2641	resv = vma_resv_map(vma);
2642	if (!resv)
2643		return 1;
2644
2645	idx = vma_hugecache_offset(h, vma, addr);
2646	switch (mode) {
2647	case VMA_NEEDS_RESV:
2648		ret = region_chg(resv, idx, idx + 1, &dummy_out_regions_needed);
2649		/* We assume that vma_reservation_* routines always operate on
2650		 * 1 page, and that adding to resv map a 1 page entry can only
2651		 * ever require 1 region.
2652		 */
2653		VM_BUG_ON(dummy_out_regions_needed != 1);
2654		break;
2655	case VMA_COMMIT_RESV:
2656		ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2657		/* region_add calls of range 1 should never fail. */
2658		VM_BUG_ON(ret < 0);
2659		break;
2660	case VMA_END_RESV:
2661		region_abort(resv, idx, idx + 1, 1);
2662		ret = 0;
2663		break;
2664	case VMA_ADD_RESV:
2665		if (vma->vm_flags & VM_MAYSHARE) {
2666			ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2667			/* region_add calls of range 1 should never fail. */
2668			VM_BUG_ON(ret < 0);
2669		} else {
2670			region_abort(resv, idx, idx + 1, 1);
2671			ret = region_del(resv, idx, idx + 1);
2672		}
2673		break;
2674	case VMA_DEL_RESV:
2675		if (vma->vm_flags & VM_MAYSHARE) {
2676			region_abort(resv, idx, idx + 1, 1);
2677			ret = region_del(resv, idx, idx + 1);
2678		} else {
2679			ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2680			/* region_add calls of range 1 should never fail. */
2681			VM_BUG_ON(ret < 0);
2682		}
2683		break;
2684	default:
2685		BUG();
2686	}
2687
2688	if (vma->vm_flags & VM_MAYSHARE || mode == VMA_DEL_RESV)
2689		return ret;
2690	/*
2691	 * We know private mapping must have HPAGE_RESV_OWNER set.
2692	 *
2693	 * In most cases, reserves always exist for private mappings.
2694	 * However, a file associated with mapping could have been
2695	 * hole punched or truncated after reserves were consumed.
2696	 * As subsequent fault on such a range will not use reserves.
2697	 * Subtle - The reserve map for private mappings has the
2698	 * opposite meaning than that of shared mappings.  If NO
2699	 * entry is in the reserve map, it means a reservation exists.
2700	 * If an entry exists in the reserve map, it means the
2701	 * reservation has already been consumed.  As a result, the
2702	 * return value of this routine is the opposite of the
2703	 * value returned from reserve map manipulation routines above.
2704	 */
2705	if (ret > 0)
2706		return 0;
2707	if (ret == 0)
2708		return 1;
2709	return ret;
 
2710}
2711
2712static long vma_needs_reservation(struct hstate *h,
2713			struct vm_area_struct *vma, unsigned long addr)
2714{
2715	return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
2716}
2717
2718static long vma_commit_reservation(struct hstate *h,
2719			struct vm_area_struct *vma, unsigned long addr)
2720{
2721	return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
2722}
2723
2724static void vma_end_reservation(struct hstate *h,
2725			struct vm_area_struct *vma, unsigned long addr)
2726{
2727	(void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
2728}
2729
2730static long vma_add_reservation(struct hstate *h,
2731			struct vm_area_struct *vma, unsigned long addr)
2732{
2733	return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
2734}
2735
2736static long vma_del_reservation(struct hstate *h,
2737			struct vm_area_struct *vma, unsigned long addr)
2738{
2739	return __vma_reservation_common(h, vma, addr, VMA_DEL_RESV);
2740}
2741
2742/*
2743 * This routine is called to restore reservation information on error paths.
2744 * It should ONLY be called for folios allocated via alloc_hugetlb_folio(),
2745 * and the hugetlb mutex should remain held when calling this routine.
2746 *
2747 * It handles two specific cases:
2748 * 1) A reservation was in place and the folio consumed the reservation.
2749 *    hugetlb_restore_reserve is set in the folio.
2750 * 2) No reservation was in place for the page, so hugetlb_restore_reserve is
2751 *    not set.  However, alloc_hugetlb_folio always updates the reserve map.
2752 *
2753 * In case 1, free_huge_folio later in the error path will increment the
2754 * global reserve count.  But, free_huge_folio does not have enough context
2755 * to adjust the reservation map.  This case deals primarily with private
2756 * mappings.  Adjust the reserve map here to be consistent with global
2757 * reserve count adjustments to be made by free_huge_folio.  Make sure the
2758 * reserve map indicates there is a reservation present.
2759 *
2760 * In case 2, simply undo reserve map modifications done by alloc_hugetlb_folio.
2761 */
2762void restore_reserve_on_error(struct hstate *h, struct vm_area_struct *vma,
2763			unsigned long address, struct folio *folio)
2764{
2765	long rc = vma_needs_reservation(h, vma, address);
 
2766
2767	if (folio_test_hugetlb_restore_reserve(folio)) {
2768		if (unlikely(rc < 0))
2769			/*
2770			 * Rare out of memory condition in reserve map
2771			 * manipulation.  Clear hugetlb_restore_reserve so
2772			 * that global reserve count will not be incremented
2773			 * by free_huge_folio.  This will make it appear
2774			 * as though the reservation for this folio was
2775			 * consumed.  This may prevent the task from
2776			 * faulting in the folio at a later time.  This
2777			 * is better than inconsistent global huge page
2778			 * accounting of reserve counts.
2779			 */
2780			folio_clear_hugetlb_restore_reserve(folio);
2781		else if (rc)
2782			(void)vma_add_reservation(h, vma, address);
2783		else
2784			vma_end_reservation(h, vma, address);
2785	} else {
2786		if (!rc) {
2787			/*
2788			 * This indicates there is an entry in the reserve map
2789			 * not added by alloc_hugetlb_folio.  We know it was added
2790			 * before the alloc_hugetlb_folio call, otherwise
2791			 * hugetlb_restore_reserve would be set on the folio.
2792			 * Remove the entry so that a subsequent allocation
2793			 * does not consume a reservation.
2794			 */
2795			rc = vma_del_reservation(h, vma, address);
2796			if (rc < 0)
2797				/*
2798				 * VERY rare out of memory condition.  Since
2799				 * we can not delete the entry, set
2800				 * hugetlb_restore_reserve so that the reserve
2801				 * count will be incremented when the folio
2802				 * is freed.  This reserve will be consumed
2803				 * on a subsequent allocation.
2804				 */
2805				folio_set_hugetlb_restore_reserve(folio);
2806		} else if (rc < 0) {
2807			/*
2808			 * Rare out of memory condition from
2809			 * vma_needs_reservation call.  Memory allocation is
2810			 * only attempted if a new entry is needed.  Therefore,
2811			 * this implies there is not an entry in the
2812			 * reserve map.
2813			 *
2814			 * For shared mappings, no entry in the map indicates
2815			 * no reservation.  We are done.
2816			 */
2817			if (!(vma->vm_flags & VM_MAYSHARE))
2818				/*
2819				 * For private mappings, no entry indicates
2820				 * a reservation is present.  Since we can
2821				 * not add an entry, set hugetlb_restore_reserve
2822				 * on the folio so reserve count will be
2823				 * incremented when freed.  This reserve will
2824				 * be consumed on a subsequent allocation.
2825				 */
2826				folio_set_hugetlb_restore_reserve(folio);
2827		} else
2828			/*
2829			 * No reservation present, do nothing
2830			 */
2831			 vma_end_reservation(h, vma, address);
2832	}
2833}
2834
2835/*
2836 * alloc_and_dissolve_hugetlb_folio - Allocate a new folio and dissolve
2837 * the old one
2838 * @h: struct hstate old page belongs to
2839 * @old_folio: Old folio to dissolve
2840 * @list: List to isolate the page in case we need to
2841 * Returns 0 on success, otherwise negated error.
2842 */
2843static int alloc_and_dissolve_hugetlb_folio(struct hstate *h,
2844			struct folio *old_folio, struct list_head *list)
2845{
2846	gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
2847	int nid = folio_nid(old_folio);
2848	struct folio *new_folio = NULL;
2849	int ret = 0;
2850
2851retry:
2852	spin_lock_irq(&hugetlb_lock);
2853	if (!folio_test_hugetlb(old_folio)) {
2854		/*
2855		 * Freed from under us. Drop new_folio too.
2856		 */
2857		goto free_new;
2858	} else if (folio_ref_count(old_folio)) {
2859		bool isolated;
2860
2861		/*
2862		 * Someone has grabbed the folio, try to isolate it here.
2863		 * Fail with -EBUSY if not possible.
2864		 */
2865		spin_unlock_irq(&hugetlb_lock);
2866		isolated = isolate_hugetlb(old_folio, list);
2867		ret = isolated ? 0 : -EBUSY;
2868		spin_lock_irq(&hugetlb_lock);
2869		goto free_new;
2870	} else if (!folio_test_hugetlb_freed(old_folio)) {
2871		/*
2872		 * Folio's refcount is 0 but it has not been enqueued in the
2873		 * freelist yet. Race window is small, so we can succeed here if
2874		 * we retry.
2875		 */
2876		spin_unlock_irq(&hugetlb_lock);
2877		cond_resched();
2878		goto retry;
2879	} else {
2880		if (!new_folio) {
2881			spin_unlock_irq(&hugetlb_lock);
2882			new_folio = alloc_buddy_hugetlb_folio(h, gfp_mask, nid,
2883							      NULL, NULL);
2884			if (!new_folio)
2885				return -ENOMEM;
2886			__prep_new_hugetlb_folio(h, new_folio);
2887			goto retry;
2888		}
2889
2890		/*
2891		 * Ok, old_folio is still a genuine free hugepage. Remove it from
2892		 * the freelist and decrease the counters. These will be
2893		 * incremented again when calling __prep_account_new_huge_page()
2894		 * and enqueue_hugetlb_folio() for new_folio. The counters will
2895		 * remain stable since this happens under the lock.
2896		 */
2897		remove_hugetlb_folio(h, old_folio, false);
2898
2899		/*
2900		 * Ref count on new_folio is already zero as it was dropped
2901		 * earlier.  It can be directly added to the pool free list.
2902		 */
2903		__prep_account_new_huge_page(h, nid);
2904		enqueue_hugetlb_folio(h, new_folio);
2905
2906		/*
2907		 * Folio has been replaced, we can safely free the old one.
2908		 */
2909		spin_unlock_irq(&hugetlb_lock);
2910		update_and_free_hugetlb_folio(h, old_folio, false);
2911	}
2912
2913	return ret;
2914
2915free_new:
2916	spin_unlock_irq(&hugetlb_lock);
2917	if (new_folio)
2918		update_and_free_hugetlb_folio(h, new_folio, false);
2919
2920	return ret;
2921}
2922
2923int isolate_or_dissolve_huge_page(struct page *page, struct list_head *list)
2924{
2925	struct hstate *h;
2926	struct folio *folio = page_folio(page);
2927	int ret = -EBUSY;
2928
2929	/*
2930	 * The page might have been dissolved from under our feet, so make sure
2931	 * to carefully check the state under the lock.
2932	 * Return success when racing as if we dissolved the page ourselves.
2933	 */
2934	spin_lock_irq(&hugetlb_lock);
2935	if (folio_test_hugetlb(folio)) {
2936		h = folio_hstate(folio);
2937	} else {
2938		spin_unlock_irq(&hugetlb_lock);
2939		return 0;
2940	}
2941	spin_unlock_irq(&hugetlb_lock);
2942
2943	/*
2944	 * Fence off gigantic pages as there is a cyclic dependency between
2945	 * alloc_contig_range and them. Return -ENOMEM as this has the effect
2946	 * of bailing out right away without further retrying.
2947	 */
2948	if (hstate_is_gigantic(h))
2949		return -ENOMEM;
2950
2951	if (folio_ref_count(folio) && isolate_hugetlb(folio, list))
2952		ret = 0;
2953	else if (!folio_ref_count(folio))
2954		ret = alloc_and_dissolve_hugetlb_folio(h, folio, list);
2955
2956	return ret;
2957}
2958
2959struct folio *alloc_hugetlb_folio(struct vm_area_struct *vma,
2960				    unsigned long addr, int avoid_reserve)
2961{
2962	struct hugepage_subpool *spool = subpool_vma(vma);
2963	struct hstate *h = hstate_vma(vma);
2964	struct folio *folio;
2965	long map_chg, map_commit, nr_pages = pages_per_huge_page(h);
2966	long gbl_chg;
2967	int memcg_charge_ret, ret, idx;
2968	struct hugetlb_cgroup *h_cg = NULL;
2969	struct mem_cgroup *memcg;
2970	bool deferred_reserve;
2971	gfp_t gfp = htlb_alloc_mask(h) | __GFP_RETRY_MAYFAIL;
2972
2973	memcg = get_mem_cgroup_from_current();
2974	memcg_charge_ret = mem_cgroup_hugetlb_try_charge(memcg, gfp, nr_pages);
2975	if (memcg_charge_ret == -ENOMEM) {
2976		mem_cgroup_put(memcg);
2977		return ERR_PTR(-ENOMEM);
2978	}
2979
2980	idx = hstate_index(h);
2981	/*
2982	 * Examine the region/reserve map to determine if the process
2983	 * has a reservation for the page to be allocated.  A return
2984	 * code of zero indicates a reservation exists (no change).
2985	 */
2986	map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
2987	if (map_chg < 0) {
2988		if (!memcg_charge_ret)
2989			mem_cgroup_cancel_charge(memcg, nr_pages);
2990		mem_cgroup_put(memcg);
2991		return ERR_PTR(-ENOMEM);
2992	}
2993
2994	/*
2995	 * Processes that did not create the mapping will have no
2996	 * reserves as indicated by the region/reserve map. Check
2997	 * that the allocation will not exceed the subpool limit.
2998	 * Allocations for MAP_NORESERVE mappings also need to be
2999	 * checked against any subpool limit.
3000	 */
3001	if (map_chg || avoid_reserve) {
3002		gbl_chg = hugepage_subpool_get_pages(spool, 1);
3003		if (gbl_chg < 0)
3004			goto out_end_reservation;
 
 
 
 
 
 
 
 
 
 
 
 
 
3005	}
3006
3007	/* If this allocation is not consuming a reservation, charge it now.
3008	 */
3009	deferred_reserve = map_chg || avoid_reserve;
3010	if (deferred_reserve) {
3011		ret = hugetlb_cgroup_charge_cgroup_rsvd(
3012			idx, pages_per_huge_page(h), &h_cg);
3013		if (ret)
3014			goto out_subpool_put;
3015	}
3016
3017	ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
3018	if (ret)
3019		goto out_uncharge_cgroup_reservation;
3020
3021	spin_lock_irq(&hugetlb_lock);
3022	/*
3023	 * glb_chg is passed to indicate whether or not a page must be taken
3024	 * from the global free pool (global change).  gbl_chg == 0 indicates
3025	 * a reservation exists for the allocation.
3026	 */
3027	folio = dequeue_hugetlb_folio_vma(h, vma, addr, gbl_chg);
3028	if (!folio) {
3029		spin_unlock_irq(&hugetlb_lock);
3030		folio = alloc_buddy_hugetlb_folio_with_mpol(h, vma, addr);
3031		if (!folio)
3032			goto out_uncharge_cgroup;
3033		spin_lock_irq(&hugetlb_lock);
3034		if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
3035			folio_set_hugetlb_restore_reserve(folio);
3036			h->resv_huge_pages--;
3037		}
3038		list_add(&folio->lru, &h->hugepage_activelist);
3039		folio_ref_unfreeze(folio, 1);
3040		/* Fall through */
3041	}
3042
3043	hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, folio);
3044	/* If allocation is not consuming a reservation, also store the
3045	 * hugetlb_cgroup pointer on the page.
3046	 */
3047	if (deferred_reserve) {
3048		hugetlb_cgroup_commit_charge_rsvd(idx, pages_per_huge_page(h),
3049						  h_cg, folio);
3050	}
3051
3052	spin_unlock_irq(&hugetlb_lock);
3053
3054	hugetlb_set_folio_subpool(folio, spool);
3055
3056	map_commit = vma_commit_reservation(h, vma, addr);
3057	if (unlikely(map_chg > map_commit)) {
3058		/*
3059		 * The page was added to the reservation map between
3060		 * vma_needs_reservation and vma_commit_reservation.
3061		 * This indicates a race with hugetlb_reserve_pages.
3062		 * Adjust for the subpool count incremented above AND
3063		 * in hugetlb_reserve_pages for the same page.  Also,
3064		 * the reservation count added in hugetlb_reserve_pages
3065		 * no longer applies.
3066		 */
3067		long rsv_adjust;
3068
3069		rsv_adjust = hugepage_subpool_put_pages(spool, 1);
3070		hugetlb_acct_memory(h, -rsv_adjust);
3071		if (deferred_reserve) {
3072			spin_lock_irq(&hugetlb_lock);
3073			hugetlb_cgroup_uncharge_folio_rsvd(hstate_index(h),
3074					pages_per_huge_page(h), folio);
3075			spin_unlock_irq(&hugetlb_lock);
3076		}
3077	}
3078
3079	if (!memcg_charge_ret)
3080		mem_cgroup_commit_charge(folio, memcg);
3081	lruvec_stat_mod_folio(folio, NR_HUGETLB, pages_per_huge_page(h));
3082	mem_cgroup_put(memcg);
3083
3084	return folio;
3085
3086out_uncharge_cgroup:
3087	hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
3088out_uncharge_cgroup_reservation:
3089	if (deferred_reserve)
3090		hugetlb_cgroup_uncharge_cgroup_rsvd(idx, pages_per_huge_page(h),
3091						    h_cg);
3092out_subpool_put:
3093	if (map_chg || avoid_reserve)
3094		hugepage_subpool_put_pages(spool, 1);
3095out_end_reservation:
3096	vma_end_reservation(h, vma, addr);
3097	if (!memcg_charge_ret)
3098		mem_cgroup_cancel_charge(memcg, nr_pages);
3099	mem_cgroup_put(memcg);
3100	return ERR_PTR(-ENOSPC);
3101}
3102
3103int alloc_bootmem_huge_page(struct hstate *h, int nid)
3104	__attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
3105int __alloc_bootmem_huge_page(struct hstate *h, int nid)
3106{
3107	struct huge_bootmem_page *m = NULL; /* initialize for clang */
3108	int nr_nodes, node = nid;
3109
3110	/* do node specific alloc */
3111	if (nid != NUMA_NO_NODE) {
3112		m = memblock_alloc_try_nid_raw(huge_page_size(h), huge_page_size(h),
3113				0, MEMBLOCK_ALLOC_ACCESSIBLE, nid);
3114		if (!m)
3115			return 0;
3116		goto found;
3117	}
3118	/* allocate from next node when distributing huge pages */
3119	for_each_node_mask_to_alloc(&h->next_nid_to_alloc, nr_nodes, node, &node_states[N_MEMORY]) {
3120		m = memblock_alloc_try_nid_raw(
3121				huge_page_size(h), huge_page_size(h),
3122				0, MEMBLOCK_ALLOC_ACCESSIBLE, node);
3123		/*
3124		 * Use the beginning of the huge page to store the
3125		 * huge_bootmem_page struct (until gather_bootmem
3126		 * puts them into the mem_map).
3127		 */
3128		if (!m)
3129			return 0;
3130		goto found;
 
3131	}
 
3132
3133found:
3134
3135	/*
3136	 * Only initialize the head struct page in memmap_init_reserved_pages,
3137	 * rest of the struct pages will be initialized by the HugeTLB
3138	 * subsystem itself.
3139	 * The head struct page is used to get folio information by the HugeTLB
3140	 * subsystem like zone id and node id.
3141	 */
3142	memblock_reserved_mark_noinit(virt_to_phys((void *)m + PAGE_SIZE),
3143		huge_page_size(h) - PAGE_SIZE);
3144	/* Put them into a private list first because mem_map is not up yet */
3145	INIT_LIST_HEAD(&m->list);
3146	list_add(&m->list, &huge_boot_pages[node]);
3147	m->hstate = h;
3148	return 1;
3149}
3150
3151/* Initialize [start_page:end_page_number] tail struct pages of a hugepage */
3152static void __init hugetlb_folio_init_tail_vmemmap(struct folio *folio,
3153					unsigned long start_page_number,
3154					unsigned long end_page_number)
3155{
3156	enum zone_type zone = zone_idx(folio_zone(folio));
3157	int nid = folio_nid(folio);
3158	unsigned long head_pfn = folio_pfn(folio);
3159	unsigned long pfn, end_pfn = head_pfn + end_page_number;
3160	int ret;
3161
3162	for (pfn = head_pfn + start_page_number; pfn < end_pfn; pfn++) {
3163		struct page *page = pfn_to_page(pfn);
3164
3165		__ClearPageReserved(folio_page(folio, pfn - head_pfn));
3166		__init_single_page(page, pfn, zone, nid);
3167		prep_compound_tail((struct page *)folio, pfn - head_pfn);
3168		ret = page_ref_freeze(page, 1);
3169		VM_BUG_ON(!ret);
3170	}
3171}
3172
3173static void __init hugetlb_folio_init_vmemmap(struct folio *folio,
3174					      struct hstate *h,
3175					      unsigned long nr_pages)
3176{
3177	int ret;
3178
3179	/* Prepare folio head */
3180	__folio_clear_reserved(folio);
3181	__folio_set_head(folio);
3182	ret = folio_ref_freeze(folio, 1);
3183	VM_BUG_ON(!ret);
3184	/* Initialize the necessary tail struct pages */
3185	hugetlb_folio_init_tail_vmemmap(folio, 1, nr_pages);
3186	prep_compound_head((struct page *)folio, huge_page_order(h));
3187}
3188
3189static void __init prep_and_add_bootmem_folios(struct hstate *h,
3190					struct list_head *folio_list)
3191{
3192	unsigned long flags;
3193	struct folio *folio, *tmp_f;
3194
3195	/* Send list for bulk vmemmap optimization processing */
3196	hugetlb_vmemmap_optimize_folios(h, folio_list);
3197
3198	list_for_each_entry_safe(folio, tmp_f, folio_list, lru) {
3199		if (!folio_test_hugetlb_vmemmap_optimized(folio)) {
3200			/*
3201			 * If HVO fails, initialize all tail struct pages
3202			 * We do not worry about potential long lock hold
3203			 * time as this is early in boot and there should
3204			 * be no contention.
3205			 */
3206			hugetlb_folio_init_tail_vmemmap(folio,
3207					HUGETLB_VMEMMAP_RESERVE_PAGES,
3208					pages_per_huge_page(h));
3209		}
3210		/* Subdivide locks to achieve better parallel performance */
3211		spin_lock_irqsave(&hugetlb_lock, flags);
3212		__prep_account_new_huge_page(h, folio_nid(folio));
3213		enqueue_hugetlb_folio(h, folio);
3214		spin_unlock_irqrestore(&hugetlb_lock, flags);
3215	}
3216}
3217
3218/*
3219 * Put bootmem huge pages into the standard lists after mem_map is up.
3220 * Note: This only applies to gigantic (order > MAX_PAGE_ORDER) pages.
3221 */
3222static void __init gather_bootmem_prealloc_node(unsigned long nid)
3223{
3224	LIST_HEAD(folio_list);
3225	struct huge_bootmem_page *m;
3226	struct hstate *h = NULL, *prev_h = NULL;
3227
3228	list_for_each_entry(m, &huge_boot_pages[nid], list) {
3229		struct page *page = virt_to_page(m);
3230		struct folio *folio = (void *)page;
3231
3232		h = m->hstate;
3233		/*
3234		 * It is possible to have multiple huge page sizes (hstates)
3235		 * in this list.  If so, process each size separately.
 
 
 
 
 
 
 
3236		 */
3237		if (h != prev_h && prev_h != NULL)
3238			prep_and_add_bootmem_folios(prev_h, &folio_list);
3239		prev_h = h;
3240
3241		VM_BUG_ON(!hstate_is_gigantic(h));
3242		WARN_ON(folio_ref_count(folio) != 1);
3243
3244		hugetlb_folio_init_vmemmap(folio, h,
3245					   HUGETLB_VMEMMAP_RESERVE_PAGES);
3246		init_new_hugetlb_folio(h, folio);
3247		list_add(&folio->lru, &folio_list);
3248
3249		/*
3250		 * We need to restore the 'stolen' pages to totalram_pages
3251		 * in order to fix confusing memory reports from free(1) and
3252		 * other side-effects, like CommitLimit going negative.
3253		 */
3254		adjust_managed_page_count(page, pages_per_huge_page(h));
3255		cond_resched();
3256	}
3257
3258	prep_and_add_bootmem_folios(h, &folio_list);
3259}
3260
3261static void __init gather_bootmem_prealloc_parallel(unsigned long start,
3262						    unsigned long end, void *arg)
3263{
3264	int nid;
3265
3266	for (nid = start; nid < end; nid++)
3267		gather_bootmem_prealloc_node(nid);
3268}
3269
3270static void __init gather_bootmem_prealloc(void)
3271{
3272	struct padata_mt_job job = {
3273		.thread_fn	= gather_bootmem_prealloc_parallel,
3274		.fn_arg		= NULL,
3275		.start		= 0,
3276		.size		= nr_node_ids,
3277		.align		= 1,
3278		.min_chunk	= 1,
3279		.max_threads	= num_node_state(N_MEMORY),
3280		.numa_aware	= true,
3281	};
3282
3283	padata_do_multithreaded(&job);
3284}
 
 
 
 
 
 
 
 
 
 
 
3285
3286static void __init hugetlb_hstate_alloc_pages_onenode(struct hstate *h, int nid)
3287{
3288	unsigned long i;
3289	char buf[32];
3290	LIST_HEAD(folio_list);
3291
3292	for (i = 0; i < h->max_huge_pages_node[nid]; ++i) {
3293		if (hstate_is_gigantic(h)) {
3294			if (!alloc_bootmem_huge_page(h, nid))
 
3295				break;
3296		} else {
3297			struct folio *folio;
3298			gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
3299
3300			folio = only_alloc_fresh_hugetlb_folio(h, gfp_mask, nid,
3301					&node_states[N_MEMORY], NULL);
3302			if (!folio)
3303				break;
3304			list_add(&folio->lru, &folio_list);
3305		}
 
 
3306		cond_resched();
3307	}
3308
3309	if (!list_empty(&folio_list))
3310		prep_and_add_allocated_folios(h, &folio_list);
3311
3312	if (i == h->max_huge_pages_node[nid])
3313		return;
3314
3315	string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3316	pr_warn("HugeTLB: allocating %u of page size %s failed node%d.  Only allocated %lu hugepages.\n",
3317		h->max_huge_pages_node[nid], buf, nid, i);
3318	h->max_huge_pages -= (h->max_huge_pages_node[nid] - i);
3319	h->max_huge_pages_node[nid] = i;
3320}
3321
3322static bool __init hugetlb_hstate_alloc_pages_specific_nodes(struct hstate *h)
3323{
3324	int i;
3325	bool node_specific_alloc = false;
3326
3327	for_each_online_node(i) {
3328		if (h->max_huge_pages_node[i] > 0) {
3329			hugetlb_hstate_alloc_pages_onenode(h, i);
3330			node_specific_alloc = true;
3331		}
3332	}
3333
3334	return node_specific_alloc;
3335}
3336
3337static void __init hugetlb_hstate_alloc_pages_errcheck(unsigned long allocated, struct hstate *h)
3338{
3339	if (allocated < h->max_huge_pages) {
3340		char buf[32];
3341
3342		string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3343		pr_warn("HugeTLB: allocating %lu of page size %s failed.  Only allocated %lu hugepages.\n",
3344			h->max_huge_pages, buf, allocated);
3345		h->max_huge_pages = allocated;
3346	}
3347}
3348
3349static void __init hugetlb_pages_alloc_boot_node(unsigned long start, unsigned long end, void *arg)
3350{
3351	struct hstate *h = (struct hstate *)arg;
3352	int i, num = end - start;
3353	nodemask_t node_alloc_noretry;
3354	LIST_HEAD(folio_list);
3355	int next_node = first_online_node;
3356
3357	/* Bit mask controlling how hard we retry per-node allocations.*/
3358	nodes_clear(node_alloc_noretry);
3359
3360	for (i = 0; i < num; ++i) {
3361		struct folio *folio = alloc_pool_huge_folio(h, &node_states[N_MEMORY],
3362						&node_alloc_noretry, &next_node);
3363		if (!folio)
3364			break;
3365
3366		list_move(&folio->lru, &folio_list);
3367		cond_resched();
3368	}
3369
3370	prep_and_add_allocated_folios(h, &folio_list);
3371}
3372
3373static unsigned long __init hugetlb_gigantic_pages_alloc_boot(struct hstate *h)
3374{
3375	unsigned long i;
3376
3377	for (i = 0; i < h->max_huge_pages; ++i) {
3378		if (!alloc_bootmem_huge_page(h, NUMA_NO_NODE))
3379			break;
3380		cond_resched();
3381	}
3382
3383	return i;
3384}
3385
3386static unsigned long __init hugetlb_pages_alloc_boot(struct hstate *h)
3387{
3388	struct padata_mt_job job = {
3389		.fn_arg		= h,
3390		.align		= 1,
3391		.numa_aware	= true
3392	};
3393
3394	job.thread_fn	= hugetlb_pages_alloc_boot_node;
3395	job.start	= 0;
3396	job.size	= h->max_huge_pages;
3397
3398	/*
3399	 * job.max_threads is twice the num_node_state(N_MEMORY),
3400	 *
3401	 * Tests below indicate that a multiplier of 2 significantly improves
3402	 * performance, and although larger values also provide improvements,
3403	 * the gains are marginal.
3404	 *
3405	 * Therefore, choosing 2 as the multiplier strikes a good balance between
3406	 * enhancing parallel processing capabilities and maintaining efficient
3407	 * resource management.
3408	 *
3409	 * +------------+-------+-------+-------+-------+-------+
3410	 * | multiplier |   1   |   2   |   3   |   4   |   5   |
3411	 * +------------+-------+-------+-------+-------+-------+
3412	 * | 256G 2node | 358ms | 215ms | 157ms | 134ms | 126ms |
3413	 * | 2T   4node | 979ms | 679ms | 543ms | 489ms | 481ms |
3414	 * | 50G  2node | 71ms  | 44ms  | 37ms  | 30ms  | 31ms  |
3415	 * +------------+-------+-------+-------+-------+-------+
3416	 */
3417	job.max_threads	= num_node_state(N_MEMORY) * 2;
3418	job.min_chunk	= h->max_huge_pages / num_node_state(N_MEMORY) / 2;
3419	padata_do_multithreaded(&job);
3420
3421	return h->nr_huge_pages;
3422}
3423
3424/*
3425 * NOTE: this routine is called in different contexts for gigantic and
3426 * non-gigantic pages.
3427 * - For gigantic pages, this is called early in the boot process and
3428 *   pages are allocated from memblock allocated or something similar.
3429 *   Gigantic pages are actually added to pools later with the routine
3430 *   gather_bootmem_prealloc.
3431 * - For non-gigantic pages, this is called later in the boot process after
3432 *   all of mm is up and functional.  Pages are allocated from buddy and
3433 *   then added to hugetlb pools.
3434 */
3435static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
3436{
3437	unsigned long allocated;
3438	static bool initialized __initdata;
3439
3440	/* skip gigantic hugepages allocation if hugetlb_cma enabled */
3441	if (hstate_is_gigantic(h) && hugetlb_cma_size) {
3442		pr_warn_once("HugeTLB: hugetlb_cma is enabled, skip boot time allocation\n");
3443		return;
3444	}
3445
3446	/* hugetlb_hstate_alloc_pages will be called many times, initialize huge_boot_pages once */
3447	if (!initialized) {
3448		int i = 0;
3449
3450		for (i = 0; i < MAX_NUMNODES; i++)
3451			INIT_LIST_HEAD(&huge_boot_pages[i]);
3452		initialized = true;
3453	}
3454
3455	/* do node specific alloc */
3456	if (hugetlb_hstate_alloc_pages_specific_nodes(h))
3457		return;
3458
3459	/* below will do all node balanced alloc */
3460	if (hstate_is_gigantic(h))
3461		allocated = hugetlb_gigantic_pages_alloc_boot(h);
3462	else
3463		allocated = hugetlb_pages_alloc_boot(h);
3464
3465	hugetlb_hstate_alloc_pages_errcheck(allocated, h);
3466}
3467
3468static void __init hugetlb_init_hstates(void)
3469{
3470	struct hstate *h, *h2;
3471
3472	for_each_hstate(h) {
 
 
 
3473		/* oversize hugepages were init'ed in early boot */
3474		if (!hstate_is_gigantic(h))
3475			hugetlb_hstate_alloc_pages(h);
3476
3477		/*
3478		 * Set demote order for each hstate.  Note that
3479		 * h->demote_order is initially 0.
3480		 * - We can not demote gigantic pages if runtime freeing
3481		 *   is not supported, so skip this.
3482		 * - If CMA allocation is possible, we can not demote
3483		 *   HUGETLB_PAGE_ORDER or smaller size pages.
3484		 */
3485		if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
3486			continue;
3487		if (hugetlb_cma_size && h->order <= HUGETLB_PAGE_ORDER)
3488			continue;
3489		for_each_hstate(h2) {
3490			if (h2 == h)
3491				continue;
3492			if (h2->order < h->order &&
3493			    h2->order > h->demote_order)
3494				h->demote_order = h2->order;
3495		}
3496	}
 
3497}
3498
3499static void __init report_hugepages(void)
3500{
3501	struct hstate *h;
3502
3503	for_each_hstate(h) {
3504		char buf[32];
3505
3506		string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3507		pr_info("HugeTLB: registered %s page size, pre-allocated %ld pages\n",
3508			buf, h->free_huge_pages);
3509		pr_info("HugeTLB: %d KiB vmemmap can be freed for a %s page\n",
3510			hugetlb_vmemmap_optimizable_size(h) / SZ_1K, buf);
3511	}
3512}
3513
3514#ifdef CONFIG_HIGHMEM
3515static void try_to_free_low(struct hstate *h, unsigned long count,
3516						nodemask_t *nodes_allowed)
3517{
3518	int i;
3519	LIST_HEAD(page_list);
3520
3521	lockdep_assert_held(&hugetlb_lock);
3522	if (hstate_is_gigantic(h))
3523		return;
3524
3525	/*
3526	 * Collect pages to be freed on a list, and free after dropping lock
3527	 */
3528	for_each_node_mask(i, *nodes_allowed) {
3529		struct folio *folio, *next;
3530		struct list_head *freel = &h->hugepage_freelists[i];
3531		list_for_each_entry_safe(folio, next, freel, lru) {
3532			if (count >= h->nr_huge_pages)
3533				goto out;
3534			if (folio_test_highmem(folio))
3535				continue;
3536			remove_hugetlb_folio(h, folio, false);
3537			list_add(&folio->lru, &page_list);
 
 
3538		}
3539	}
3540
3541out:
3542	spin_unlock_irq(&hugetlb_lock);
3543	update_and_free_pages_bulk(h, &page_list);
3544	spin_lock_irq(&hugetlb_lock);
3545}
3546#else
3547static inline void try_to_free_low(struct hstate *h, unsigned long count,
3548						nodemask_t *nodes_allowed)
3549{
3550}
3551#endif
3552
3553/*
3554 * Increment or decrement surplus_huge_pages.  Keep node-specific counters
3555 * balanced by operating on them in a round-robin fashion.
3556 * Returns 1 if an adjustment was made.
3557 */
3558static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
3559				int delta)
3560{
3561	int nr_nodes, node;
3562
3563	lockdep_assert_held(&hugetlb_lock);
3564	VM_BUG_ON(delta != -1 && delta != 1);
3565
3566	if (delta < 0) {
3567		for_each_node_mask_to_alloc(&h->next_nid_to_alloc, nr_nodes, node, nodes_allowed) {
3568			if (h->surplus_huge_pages_node[node])
3569				goto found;
3570		}
3571	} else {
3572		for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
3573			if (h->surplus_huge_pages_node[node] <
3574					h->nr_huge_pages_node[node])
3575				goto found;
3576		}
3577	}
3578	return 0;
3579
3580found:
3581	h->surplus_huge_pages += delta;
3582	h->surplus_huge_pages_node[node] += delta;
3583	return 1;
3584}
3585
3586#define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
3587static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid,
3588			      nodemask_t *nodes_allowed)
3589{
3590	unsigned long min_count;
3591	unsigned long allocated;
3592	struct folio *folio;
3593	LIST_HEAD(page_list);
3594	NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL);
3595
3596	/*
3597	 * Bit mask controlling how hard we retry per-node allocations.
3598	 * If we can not allocate the bit mask, do not attempt to allocate
3599	 * the requested huge pages.
3600	 */
3601	if (node_alloc_noretry)
3602		nodes_clear(*node_alloc_noretry);
3603	else
3604		return -ENOMEM;
3605
3606	/*
3607	 * resize_lock mutex prevents concurrent adjustments to number of
3608	 * pages in hstate via the proc/sysfs interfaces.
3609	 */
3610	mutex_lock(&h->resize_lock);
3611	flush_free_hpage_work(h);
3612	spin_lock_irq(&hugetlb_lock);
3613
3614	/*
3615	 * Check for a node specific request.
3616	 * Changing node specific huge page count may require a corresponding
3617	 * change to the global count.  In any case, the passed node mask
3618	 * (nodes_allowed) will restrict alloc/free to the specified node.
3619	 */
3620	if (nid != NUMA_NO_NODE) {
3621		unsigned long old_count = count;
3622
3623		count += persistent_huge_pages(h) -
3624			 (h->nr_huge_pages_node[nid] -
3625			  h->surplus_huge_pages_node[nid]);
3626		/*
3627		 * User may have specified a large count value which caused the
3628		 * above calculation to overflow.  In this case, they wanted
3629		 * to allocate as many huge pages as possible.  Set count to
3630		 * largest possible value to align with their intention.
3631		 */
3632		if (count < old_count)
3633			count = ULONG_MAX;
3634	}
3635
3636	/*
3637	 * Gigantic pages runtime allocation depend on the capability for large
3638	 * page range allocation.
3639	 * If the system does not provide this feature, return an error when
3640	 * the user tries to allocate gigantic pages but let the user free the
3641	 * boottime allocated gigantic pages.
3642	 */
3643	if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) {
3644		if (count > persistent_huge_pages(h)) {
3645			spin_unlock_irq(&hugetlb_lock);
3646			mutex_unlock(&h->resize_lock);
3647			NODEMASK_FREE(node_alloc_noretry);
3648			return -EINVAL;
3649		}
3650		/* Fall through to decrease pool */
3651	}
3652
3653	/*
3654	 * Increase the pool size
3655	 * First take pages out of surplus state.  Then make up the
3656	 * remaining difference by allocating fresh huge pages.
3657	 *
3658	 * We might race with alloc_surplus_hugetlb_folio() here and be unable
3659	 * to convert a surplus huge page to a normal huge page. That is
3660	 * not critical, though, it just means the overall size of the
3661	 * pool might be one hugepage larger than it needs to be, but
3662	 * within all the constraints specified by the sysctls.
3663	 */
3664	while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
3665		if (!adjust_pool_surplus(h, nodes_allowed, -1))
3666			break;
3667	}
3668
3669	allocated = 0;
3670	while (count > (persistent_huge_pages(h) + allocated)) {
3671		/*
3672		 * If this allocation races such that we no longer need the
3673		 * page, free_huge_folio will handle it by freeing the page
3674		 * and reducing the surplus.
3675		 */
3676		spin_unlock_irq(&hugetlb_lock);
3677
3678		/* yield cpu to avoid soft lockup */
3679		cond_resched();
3680
3681		folio = alloc_pool_huge_folio(h, nodes_allowed,
3682						node_alloc_noretry,
3683						&h->next_nid_to_alloc);
3684		if (!folio) {
3685			prep_and_add_allocated_folios(h, &page_list);
3686			spin_lock_irq(&hugetlb_lock);
3687			goto out;
3688		}
3689
3690		list_add(&folio->lru, &page_list);
3691		allocated++;
3692
3693		/* Bail for signals. Probably ctrl-c from user */
3694		if (signal_pending(current)) {
3695			prep_and_add_allocated_folios(h, &page_list);
3696			spin_lock_irq(&hugetlb_lock);
3697			goto out;
3698		}
3699
3700		spin_lock_irq(&hugetlb_lock);
3701	}
3702
3703	/* Add allocated pages to the pool */
3704	if (!list_empty(&page_list)) {
3705		spin_unlock_irq(&hugetlb_lock);
3706		prep_and_add_allocated_folios(h, &page_list);
3707		spin_lock_irq(&hugetlb_lock);
3708	}
3709
3710	/*
3711	 * Decrease the pool size
3712	 * First return free pages to the buddy allocator (being careful
3713	 * to keep enough around to satisfy reservations).  Then place
3714	 * pages into surplus state as needed so the pool will shrink
3715	 * to the desired size as pages become free.
3716	 *
3717	 * By placing pages into the surplus state independent of the
3718	 * overcommit value, we are allowing the surplus pool size to
3719	 * exceed overcommit. There are few sane options here. Since
3720	 * alloc_surplus_hugetlb_folio() is checking the global counter,
3721	 * though, we'll note that we're not allowed to exceed surplus
3722	 * and won't grow the pool anywhere else. Not until one of the
3723	 * sysctls are changed, or the surplus pages go out of use.
3724	 */
3725	min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
3726	min_count = max(count, min_count);
3727	try_to_free_low(h, min_count, nodes_allowed);
3728
3729	/*
3730	 * Collect pages to be removed on list without dropping lock
3731	 */
3732	while (min_count < persistent_huge_pages(h)) {
3733		folio = remove_pool_hugetlb_folio(h, nodes_allowed, 0);
3734		if (!folio)
3735			break;
3736
3737		list_add(&folio->lru, &page_list);
3738	}
3739	/* free the pages after dropping lock */
3740	spin_unlock_irq(&hugetlb_lock);
3741	update_and_free_pages_bulk(h, &page_list);
3742	flush_free_hpage_work(h);
3743	spin_lock_irq(&hugetlb_lock);
3744
3745	while (count < persistent_huge_pages(h)) {
3746		if (!adjust_pool_surplus(h, nodes_allowed, 1))
3747			break;
3748	}
3749out:
3750	h->max_huge_pages = persistent_huge_pages(h);
3751	spin_unlock_irq(&hugetlb_lock);
3752	mutex_unlock(&h->resize_lock);
3753
3754	NODEMASK_FREE(node_alloc_noretry);
3755
3756	return 0;
3757}
3758
3759static long demote_free_hugetlb_folios(struct hstate *src, struct hstate *dst,
3760				       struct list_head *src_list)
3761{
3762	long rc;
3763	struct folio *folio, *next;
3764	LIST_HEAD(dst_list);
3765	LIST_HEAD(ret_list);
3766
3767	rc = hugetlb_vmemmap_restore_folios(src, src_list, &ret_list);
3768	list_splice_init(&ret_list, src_list);
3769
3770	/*
3771	 * Taking target hstate mutex synchronizes with set_max_huge_pages.
3772	 * Without the mutex, pages added to target hstate could be marked
3773	 * as surplus.
3774	 *
3775	 * Note that we already hold src->resize_lock.  To prevent deadlock,
3776	 * use the convention of always taking larger size hstate mutex first.
3777	 */
3778	mutex_lock(&dst->resize_lock);
3779
3780	list_for_each_entry_safe(folio, next, src_list, lru) {
3781		int i;
3782
3783		if (folio_test_hugetlb_vmemmap_optimized(folio))
3784			continue;
3785
3786		list_del(&folio->lru);
3787
3788		split_page_owner(&folio->page, huge_page_order(src), huge_page_order(dst));
3789		pgalloc_tag_split(folio, huge_page_order(src), huge_page_order(dst));
3790
3791		for (i = 0; i < pages_per_huge_page(src); i += pages_per_huge_page(dst)) {
3792			struct page *page = folio_page(folio, i);
3793
3794			page->mapping = NULL;
3795			clear_compound_head(page);
3796			prep_compound_page(page, dst->order);
3797
3798			init_new_hugetlb_folio(dst, page_folio(page));
3799			list_add(&page->lru, &dst_list);
3800		}
3801	}
3802
3803	prep_and_add_allocated_folios(dst, &dst_list);
3804
3805	mutex_unlock(&dst->resize_lock);
3806
3807	return rc;
3808}
3809
3810static long demote_pool_huge_page(struct hstate *src, nodemask_t *nodes_allowed,
3811				  unsigned long nr_to_demote)
3812	__must_hold(&hugetlb_lock)
3813{
3814	int nr_nodes, node;
3815	struct hstate *dst;
3816	long rc = 0;
3817	long nr_demoted = 0;
3818
3819	lockdep_assert_held(&hugetlb_lock);
3820
3821	/* We should never get here if no demote order */
3822	if (!src->demote_order) {
3823		pr_warn("HugeTLB: NULL demote order passed to demote_pool_huge_page.\n");
3824		return -EINVAL;		/* internal error */
3825	}
3826	dst = size_to_hstate(PAGE_SIZE << src->demote_order);
3827
3828	for_each_node_mask_to_free(src, nr_nodes, node, nodes_allowed) {
3829		LIST_HEAD(list);
3830		struct folio *folio, *next;
3831
3832		list_for_each_entry_safe(folio, next, &src->hugepage_freelists[node], lru) {
3833			if (folio_test_hwpoison(folio))
3834				continue;
3835
3836			remove_hugetlb_folio(src, folio, false);
3837			list_add(&folio->lru, &list);
3838
3839			if (++nr_demoted == nr_to_demote)
3840				break;
3841		}
3842
3843		spin_unlock_irq(&hugetlb_lock);
3844
3845		rc = demote_free_hugetlb_folios(src, dst, &list);
3846
3847		spin_lock_irq(&hugetlb_lock);
3848
3849		list_for_each_entry_safe(folio, next, &list, lru) {
3850			list_del(&folio->lru);
3851			add_hugetlb_folio(src, folio, false);
3852
3853			nr_demoted--;
3854		}
3855
3856		if (rc < 0 || nr_demoted == nr_to_demote)
3857			break;
3858	}
3859
3860	/*
3861	 * Not absolutely necessary, but for consistency update max_huge_pages
3862	 * based on pool changes for the demoted page.
3863	 */
3864	src->max_huge_pages -= nr_demoted;
3865	dst->max_huge_pages += nr_demoted << (huge_page_order(src) - huge_page_order(dst));
3866
3867	if (rc < 0)
3868		return rc;
3869
3870	if (nr_demoted)
3871		return nr_demoted;
3872	/*
3873	 * Only way to get here is if all pages on free lists are poisoned.
3874	 * Return -EBUSY so that caller will not retry.
3875	 */
3876	return -EBUSY;
3877}
3878
3879#define HSTATE_ATTR_RO(_name) \
3880	static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
3881
3882#define HSTATE_ATTR_WO(_name) \
3883	static struct kobj_attribute _name##_attr = __ATTR_WO(_name)
3884
3885#define HSTATE_ATTR(_name) \
3886	static struct kobj_attribute _name##_attr = __ATTR_RW(_name)
 
3887
3888static struct kobject *hugepages_kobj;
3889static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
3890
3891static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
3892
3893static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
3894{
3895	int i;
3896
3897	for (i = 0; i < HUGE_MAX_HSTATE; i++)
3898		if (hstate_kobjs[i] == kobj) {
3899			if (nidp)
3900				*nidp = NUMA_NO_NODE;
3901			return &hstates[i];
3902		}
3903
3904	return kobj_to_node_hstate(kobj, nidp);
3905}
3906
3907static ssize_t nr_hugepages_show_common(struct kobject *kobj,
3908					struct kobj_attribute *attr, char *buf)
3909{
3910	struct hstate *h;
3911	unsigned long nr_huge_pages;
3912	int nid;
3913
3914	h = kobj_to_hstate(kobj, &nid);
3915	if (nid == NUMA_NO_NODE)
3916		nr_huge_pages = h->nr_huge_pages;
3917	else
3918		nr_huge_pages = h->nr_huge_pages_node[nid];
3919
3920	return sysfs_emit(buf, "%lu\n", nr_huge_pages);
3921}
3922
3923static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
3924					   struct hstate *h, int nid,
3925					   unsigned long count, size_t len)
3926{
3927	int err;
3928	nodemask_t nodes_allowed, *n_mask;
3929
3930	if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
3931		return -EINVAL;
3932
3933	if (nid == NUMA_NO_NODE) {
3934		/*
3935		 * global hstate attribute
3936		 */
3937		if (!(obey_mempolicy &&
3938				init_nodemask_of_mempolicy(&nodes_allowed)))
3939			n_mask = &node_states[N_MEMORY];
3940		else
3941			n_mask = &nodes_allowed;
3942	} else {
3943		/*
3944		 * Node specific request.  count adjustment happens in
3945		 * set_max_huge_pages() after acquiring hugetlb_lock.
3946		 */
3947		init_nodemask_of_node(&nodes_allowed, nid);
3948		n_mask = &nodes_allowed;
3949	}
3950
3951	err = set_max_huge_pages(h, count, nid, n_mask);
3952
3953	return err ? err : len;
3954}
3955
3956static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
3957					 struct kobject *kobj, const char *buf,
3958					 size_t len)
3959{
3960	struct hstate *h;
3961	unsigned long count;
3962	int nid;
3963	int err;
3964
3965	err = kstrtoul(buf, 10, &count);
3966	if (err)
3967		return err;
3968
3969	h = kobj_to_hstate(kobj, &nid);
3970	return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
3971}
3972
3973static ssize_t nr_hugepages_show(struct kobject *kobj,
3974				       struct kobj_attribute *attr, char *buf)
3975{
3976	return nr_hugepages_show_common(kobj, attr, buf);
3977}
3978
3979static ssize_t nr_hugepages_store(struct kobject *kobj,
3980	       struct kobj_attribute *attr, const char *buf, size_t len)
3981{
3982	return nr_hugepages_store_common(false, kobj, buf, len);
3983}
3984HSTATE_ATTR(nr_hugepages);
3985
3986#ifdef CONFIG_NUMA
3987
3988/*
3989 * hstate attribute for optionally mempolicy-based constraint on persistent
3990 * huge page alloc/free.
3991 */
3992static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
3993					   struct kobj_attribute *attr,
3994					   char *buf)
3995{
3996	return nr_hugepages_show_common(kobj, attr, buf);
3997}
3998
3999static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
4000	       struct kobj_attribute *attr, const char *buf, size_t len)
4001{
4002	return nr_hugepages_store_common(true, kobj, buf, len);
4003}
4004HSTATE_ATTR(nr_hugepages_mempolicy);
4005#endif
4006
4007
4008static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
4009					struct kobj_attribute *attr, char *buf)
4010{
4011	struct hstate *h = kobj_to_hstate(kobj, NULL);
4012	return sysfs_emit(buf, "%lu\n", h->nr_overcommit_huge_pages);
4013}
4014
4015static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
4016		struct kobj_attribute *attr, const char *buf, size_t count)
4017{
4018	int err;
4019	unsigned long input;
4020	struct hstate *h = kobj_to_hstate(kobj, NULL);
4021
4022	if (hstate_is_gigantic(h))
4023		return -EINVAL;
4024
4025	err = kstrtoul(buf, 10, &input);
4026	if (err)
4027		return err;
4028
4029	spin_lock_irq(&hugetlb_lock);
4030	h->nr_overcommit_huge_pages = input;
4031	spin_unlock_irq(&hugetlb_lock);
4032
4033	return count;
4034}
4035HSTATE_ATTR(nr_overcommit_hugepages);
4036
4037static ssize_t free_hugepages_show(struct kobject *kobj,
4038					struct kobj_attribute *attr, char *buf)
4039{
4040	struct hstate *h;
4041	unsigned long free_huge_pages;
4042	int nid;
4043
4044	h = kobj_to_hstate(kobj, &nid);
4045	if (nid == NUMA_NO_NODE)
4046		free_huge_pages = h->free_huge_pages;
4047	else
4048		free_huge_pages = h->free_huge_pages_node[nid];
4049
4050	return sysfs_emit(buf, "%lu\n", free_huge_pages);
4051}
4052HSTATE_ATTR_RO(free_hugepages);
4053
4054static ssize_t resv_hugepages_show(struct kobject *kobj,
4055					struct kobj_attribute *attr, char *buf)
4056{
4057	struct hstate *h = kobj_to_hstate(kobj, NULL);
4058	return sysfs_emit(buf, "%lu\n", h->resv_huge_pages);
4059}
4060HSTATE_ATTR_RO(resv_hugepages);
4061
4062static ssize_t surplus_hugepages_show(struct kobject *kobj,
4063					struct kobj_attribute *attr, char *buf)
4064{
4065	struct hstate *h;
4066	unsigned long surplus_huge_pages;
4067	int nid;
4068
4069	h = kobj_to_hstate(kobj, &nid);
4070	if (nid == NUMA_NO_NODE)
4071		surplus_huge_pages = h->surplus_huge_pages;
4072	else
4073		surplus_huge_pages = h->surplus_huge_pages_node[nid];
4074
4075	return sysfs_emit(buf, "%lu\n", surplus_huge_pages);
4076}
4077HSTATE_ATTR_RO(surplus_hugepages);
4078
4079static ssize_t demote_store(struct kobject *kobj,
4080	       struct kobj_attribute *attr, const char *buf, size_t len)
4081{
4082	unsigned long nr_demote;
4083	unsigned long nr_available;
4084	nodemask_t nodes_allowed, *n_mask;
4085	struct hstate *h;
4086	int err;
4087	int nid;
4088
4089	err = kstrtoul(buf, 10, &nr_demote);
4090	if (err)
4091		return err;
4092	h = kobj_to_hstate(kobj, &nid);
4093
4094	if (nid != NUMA_NO_NODE) {
4095		init_nodemask_of_node(&nodes_allowed, nid);
4096		n_mask = &nodes_allowed;
4097	} else {
4098		n_mask = &node_states[N_MEMORY];
4099	}
4100
4101	/* Synchronize with other sysfs operations modifying huge pages */
4102	mutex_lock(&h->resize_lock);
4103	spin_lock_irq(&hugetlb_lock);
4104
4105	while (nr_demote) {
4106		long rc;
4107
4108		/*
4109		 * Check for available pages to demote each time thorough the
4110		 * loop as demote_pool_huge_page will drop hugetlb_lock.
4111		 */
4112		if (nid != NUMA_NO_NODE)
4113			nr_available = h->free_huge_pages_node[nid];
4114		else
4115			nr_available = h->free_huge_pages;
4116		nr_available -= h->resv_huge_pages;
4117		if (!nr_available)
4118			break;
4119
4120		rc = demote_pool_huge_page(h, n_mask, nr_demote);
4121		if (rc < 0) {
4122			err = rc;
4123			break;
4124		}
4125
4126		nr_demote -= rc;
4127	}
4128
4129	spin_unlock_irq(&hugetlb_lock);
4130	mutex_unlock(&h->resize_lock);
4131
4132	if (err)
4133		return err;
4134	return len;
4135}
4136HSTATE_ATTR_WO(demote);
4137
4138static ssize_t demote_size_show(struct kobject *kobj,
4139					struct kobj_attribute *attr, char *buf)
4140{
4141	struct hstate *h = kobj_to_hstate(kobj, NULL);
4142	unsigned long demote_size = (PAGE_SIZE << h->demote_order) / SZ_1K;
4143
4144	return sysfs_emit(buf, "%lukB\n", demote_size);
4145}
4146
4147static ssize_t demote_size_store(struct kobject *kobj,
4148					struct kobj_attribute *attr,
4149					const char *buf, size_t count)
4150{
4151	struct hstate *h, *demote_hstate;
4152	unsigned long demote_size;
4153	unsigned int demote_order;
4154
4155	demote_size = (unsigned long)memparse(buf, NULL);
4156
4157	demote_hstate = size_to_hstate(demote_size);
4158	if (!demote_hstate)
4159		return -EINVAL;
4160	demote_order = demote_hstate->order;
4161	if (demote_order < HUGETLB_PAGE_ORDER)
4162		return -EINVAL;
4163
4164	/* demote order must be smaller than hstate order */
4165	h = kobj_to_hstate(kobj, NULL);
4166	if (demote_order >= h->order)
4167		return -EINVAL;
4168
4169	/* resize_lock synchronizes access to demote size and writes */
4170	mutex_lock(&h->resize_lock);
4171	h->demote_order = demote_order;
4172	mutex_unlock(&h->resize_lock);
4173
4174	return count;
4175}
4176HSTATE_ATTR(demote_size);
4177
4178static struct attribute *hstate_attrs[] = {
4179	&nr_hugepages_attr.attr,
4180	&nr_overcommit_hugepages_attr.attr,
4181	&free_hugepages_attr.attr,
4182	&resv_hugepages_attr.attr,
4183	&surplus_hugepages_attr.attr,
4184#ifdef CONFIG_NUMA
4185	&nr_hugepages_mempolicy_attr.attr,
4186#endif
4187	NULL,
4188};
4189
4190static const struct attribute_group hstate_attr_group = {
4191	.attrs = hstate_attrs,
4192};
4193
4194static struct attribute *hstate_demote_attrs[] = {
4195	&demote_size_attr.attr,
4196	&demote_attr.attr,
4197	NULL,
4198};
4199
4200static const struct attribute_group hstate_demote_attr_group = {
4201	.attrs = hstate_demote_attrs,
4202};
4203
4204static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
4205				    struct kobject **hstate_kobjs,
4206				    const struct attribute_group *hstate_attr_group)
4207{
4208	int retval;
4209	int hi = hstate_index(h);
4210
4211	hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
4212	if (!hstate_kobjs[hi])
4213		return -ENOMEM;
4214
4215	retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
4216	if (retval) {
4217		kobject_put(hstate_kobjs[hi]);
4218		hstate_kobjs[hi] = NULL;
4219		return retval;
4220	}
4221
4222	if (h->demote_order) {
4223		retval = sysfs_create_group(hstate_kobjs[hi],
4224					    &hstate_demote_attr_group);
4225		if (retval) {
4226			pr_warn("HugeTLB unable to create demote interfaces for %s\n", h->name);
4227			sysfs_remove_group(hstate_kobjs[hi], hstate_attr_group);
4228			kobject_put(hstate_kobjs[hi]);
4229			hstate_kobjs[hi] = NULL;
4230			return retval;
4231		}
4232	}
4233
4234	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4235}
4236
4237#ifdef CONFIG_NUMA
4238static bool hugetlb_sysfs_initialized __ro_after_init;
4239
4240/*
4241 * node_hstate/s - associate per node hstate attributes, via their kobjects,
4242 * with node devices in node_devices[] using a parallel array.  The array
4243 * index of a node device or _hstate == node id.
4244 * This is here to avoid any static dependency of the node device driver, in
4245 * the base kernel, on the hugetlb module.
4246 */
4247struct node_hstate {
4248	struct kobject		*hugepages_kobj;
4249	struct kobject		*hstate_kobjs[HUGE_MAX_HSTATE];
4250};
4251static struct node_hstate node_hstates[MAX_NUMNODES];
4252
4253/*
4254 * A subset of global hstate attributes for node devices
4255 */
4256static struct attribute *per_node_hstate_attrs[] = {
4257	&nr_hugepages_attr.attr,
4258	&free_hugepages_attr.attr,
4259	&surplus_hugepages_attr.attr,
4260	NULL,
4261};
4262
4263static const struct attribute_group per_node_hstate_attr_group = {
4264	.attrs = per_node_hstate_attrs,
4265};
4266
4267/*
4268 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
4269 * Returns node id via non-NULL nidp.
4270 */
4271static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
4272{
4273	int nid;
4274
4275	for (nid = 0; nid < nr_node_ids; nid++) {
4276		struct node_hstate *nhs = &node_hstates[nid];
4277		int i;
4278		for (i = 0; i < HUGE_MAX_HSTATE; i++)
4279			if (nhs->hstate_kobjs[i] == kobj) {
4280				if (nidp)
4281					*nidp = nid;
4282				return &hstates[i];
4283			}
4284	}
4285
4286	BUG();
4287	return NULL;
4288}
4289
4290/*
4291 * Unregister hstate attributes from a single node device.
4292 * No-op if no hstate attributes attached.
4293 */
4294void hugetlb_unregister_node(struct node *node)
4295{
4296	struct hstate *h;
4297	struct node_hstate *nhs = &node_hstates[node->dev.id];
4298
4299	if (!nhs->hugepages_kobj)
4300		return;		/* no hstate attributes */
4301
4302	for_each_hstate(h) {
4303		int idx = hstate_index(h);
4304		struct kobject *hstate_kobj = nhs->hstate_kobjs[idx];
4305
4306		if (!hstate_kobj)
4307			continue;
4308		if (h->demote_order)
4309			sysfs_remove_group(hstate_kobj, &hstate_demote_attr_group);
4310		sysfs_remove_group(hstate_kobj, &per_node_hstate_attr_group);
4311		kobject_put(hstate_kobj);
4312		nhs->hstate_kobjs[idx] = NULL;
4313	}
4314
4315	kobject_put(nhs->hugepages_kobj);
4316	nhs->hugepages_kobj = NULL;
4317}
4318
4319
4320/*
4321 * Register hstate attributes for a single node device.
4322 * No-op if attributes already registered.
4323 */
4324void hugetlb_register_node(struct node *node)
4325{
4326	struct hstate *h;
4327	struct node_hstate *nhs = &node_hstates[node->dev.id];
4328	int err;
4329
4330	if (!hugetlb_sysfs_initialized)
4331		return;
4332
4333	if (nhs->hugepages_kobj)
4334		return;		/* already allocated */
4335
4336	nhs->hugepages_kobj = kobject_create_and_add("hugepages",
4337							&node->dev.kobj);
4338	if (!nhs->hugepages_kobj)
4339		return;
4340
4341	for_each_hstate(h) {
4342		err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
4343						nhs->hstate_kobjs,
4344						&per_node_hstate_attr_group);
4345		if (err) {
4346			pr_err("HugeTLB: Unable to add hstate %s for node %d\n",
4347				h->name, node->dev.id);
4348			hugetlb_unregister_node(node);
4349			break;
4350		}
4351	}
4352}
4353
4354/*
4355 * hugetlb init time:  register hstate attributes for all registered node
4356 * devices of nodes that have memory.  All on-line nodes should have
4357 * registered their associated device by this time.
4358 */
4359static void __init hugetlb_register_all_nodes(void)
4360{
4361	int nid;
4362
4363	for_each_online_node(nid)
4364		hugetlb_register_node(node_devices[nid]);
 
 
 
 
 
 
 
 
 
 
4365}
4366#else	/* !CONFIG_NUMA */
4367
4368static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
4369{
4370	BUG();
4371	if (nidp)
4372		*nidp = -1;
4373	return NULL;
4374}
4375
4376static void hugetlb_register_all_nodes(void) { }
4377
4378#endif
4379
4380#ifdef CONFIG_CMA
4381static void __init hugetlb_cma_check(void);
4382#else
4383static inline __init void hugetlb_cma_check(void)
4384{
4385}
4386#endif
4387
4388static void __init hugetlb_sysfs_init(void)
4389{
4390	struct hstate *h;
4391	int err;
4392
4393	hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
4394	if (!hugepages_kobj)
4395		return;
4396
4397	for_each_hstate(h) {
4398		err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
4399					 hstate_kobjs, &hstate_attr_group);
4400		if (err)
4401			pr_err("HugeTLB: Unable to add hstate %s", h->name);
4402	}
4403
4404#ifdef CONFIG_NUMA
4405	hugetlb_sysfs_initialized = true;
4406#endif
4407	hugetlb_register_all_nodes();
4408}
4409
4410#ifdef CONFIG_SYSCTL
4411static void hugetlb_sysctl_init(void);
4412#else
4413static inline void hugetlb_sysctl_init(void) { }
4414#endif
4415
4416static int __init hugetlb_init(void)
4417{
4418	int i;
4419
4420	BUILD_BUG_ON(sizeof_field(struct page, private) * BITS_PER_BYTE <
4421			__NR_HPAGEFLAGS);
4422
4423	if (!hugepages_supported()) {
4424		if (hugetlb_max_hstate || default_hstate_max_huge_pages)
4425			pr_warn("HugeTLB: huge pages not supported, ignoring associated command-line parameters\n");
4426		return 0;
4427	}
4428
4429	/*
4430	 * Make sure HPAGE_SIZE (HUGETLB_PAGE_ORDER) hstate exists.  Some
4431	 * architectures depend on setup being done here.
4432	 */
4433	hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
4434	if (!parsed_default_hugepagesz) {
4435		/*
4436		 * If we did not parse a default huge page size, set
4437		 * default_hstate_idx to HPAGE_SIZE hstate. And, if the
4438		 * number of huge pages for this default size was implicitly
4439		 * specified, set that here as well.
4440		 * Note that the implicit setting will overwrite an explicit
4441		 * setting.  A warning will be printed in this case.
4442		 */
4443		default_hstate_idx = hstate_index(size_to_hstate(HPAGE_SIZE));
4444		if (default_hstate_max_huge_pages) {
4445			if (default_hstate.max_huge_pages) {
4446				char buf[32];
4447
4448				string_get_size(huge_page_size(&default_hstate),
4449					1, STRING_UNITS_2, buf, 32);
4450				pr_warn("HugeTLB: Ignoring hugepages=%lu associated with %s page size\n",
4451					default_hstate.max_huge_pages, buf);
4452				pr_warn("HugeTLB: Using hugepages=%lu for number of default huge pages\n",
4453					default_hstate_max_huge_pages);
4454			}
4455			default_hstate.max_huge_pages =
4456				default_hstate_max_huge_pages;
4457
4458			for_each_online_node(i)
4459				default_hstate.max_huge_pages_node[i] =
4460					default_hugepages_in_node[i];
4461		}
4462	}
4463
4464	hugetlb_cma_check();
4465	hugetlb_init_hstates();
4466	gather_bootmem_prealloc();
4467	report_hugepages();
4468
4469	hugetlb_sysfs_init();
 
4470	hugetlb_cgroup_file_init();
4471	hugetlb_sysctl_init();
4472
4473#ifdef CONFIG_SMP
4474	num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
4475#else
4476	num_fault_mutexes = 1;
4477#endif
4478	hugetlb_fault_mutex_table =
4479		kmalloc_array(num_fault_mutexes, sizeof(struct mutex),
4480			      GFP_KERNEL);
4481	BUG_ON(!hugetlb_fault_mutex_table);
4482
4483	for (i = 0; i < num_fault_mutexes; i++)
4484		mutex_init(&hugetlb_fault_mutex_table[i]);
4485	return 0;
4486}
4487subsys_initcall(hugetlb_init);
4488
4489/* Overwritten by architectures with more huge page sizes */
4490bool __init __attribute((weak)) arch_hugetlb_valid_size(unsigned long size)
4491{
4492	return size == HPAGE_SIZE;
4493}
4494
4495void __init hugetlb_add_hstate(unsigned int order)
4496{
4497	struct hstate *h;
4498	unsigned long i;
4499
4500	if (size_to_hstate(PAGE_SIZE << order)) {
4501		return;
4502	}
4503	BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
4504	BUG_ON(order < order_base_2(__NR_USED_SUBPAGE));
4505	h = &hstates[hugetlb_max_hstate++];
4506	__mutex_init(&h->resize_lock, "resize mutex", &h->resize_key);
4507	h->order = order;
4508	h->mask = ~(huge_page_size(h) - 1);
 
 
4509	for (i = 0; i < MAX_NUMNODES; ++i)
4510		INIT_LIST_HEAD(&h->hugepage_freelists[i]);
4511	INIT_LIST_HEAD(&h->hugepage_activelist);
4512	h->next_nid_to_alloc = first_memory_node;
4513	h->next_nid_to_free = first_memory_node;
4514	snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
4515					huge_page_size(h)/SZ_1K);
4516
4517	parsed_hstate = h;
4518}
4519
4520bool __init __weak hugetlb_node_alloc_supported(void)
4521{
4522	return true;
4523}
4524
4525static void __init hugepages_clear_pages_in_node(void)
4526{
4527	if (!hugetlb_max_hstate) {
4528		default_hstate_max_huge_pages = 0;
4529		memset(default_hugepages_in_node, 0,
4530			sizeof(default_hugepages_in_node));
4531	} else {
4532		parsed_hstate->max_huge_pages = 0;
4533		memset(parsed_hstate->max_huge_pages_node, 0,
4534			sizeof(parsed_hstate->max_huge_pages_node));
4535	}
4536}
4537
4538/*
4539 * hugepages command line processing
4540 * hugepages normally follows a valid hugepagsz or default_hugepagsz
4541 * specification.  If not, ignore the hugepages value.  hugepages can also
4542 * be the first huge page command line  option in which case it implicitly
4543 * specifies the number of huge pages for the default size.
4544 */
4545static int __init hugepages_setup(char *s)
4546{
4547	unsigned long *mhp;
4548	static unsigned long *last_mhp;
4549	int node = NUMA_NO_NODE;
4550	int count;
4551	unsigned long tmp;
4552	char *p = s;
4553
4554	if (!parsed_valid_hugepagesz) {
4555		pr_warn("HugeTLB: hugepages=%s does not follow a valid hugepagesz, ignoring\n", s);
4556		parsed_valid_hugepagesz = true;
4557		return 1;
4558	}
4559
4560	/*
4561	 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter
4562	 * yet, so this hugepages= parameter goes to the "default hstate".
4563	 * Otherwise, it goes with the previously parsed hugepagesz or
4564	 * default_hugepagesz.
4565	 */
4566	else if (!hugetlb_max_hstate)
4567		mhp = &default_hstate_max_huge_pages;
4568	else
4569		mhp = &parsed_hstate->max_huge_pages;
4570
4571	if (mhp == last_mhp) {
4572		pr_warn("HugeTLB: hugepages= specified twice without interleaving hugepagesz=, ignoring hugepages=%s\n", s);
4573		return 1;
4574	}
4575
4576	while (*p) {
4577		count = 0;
4578		if (sscanf(p, "%lu%n", &tmp, &count) != 1)
4579			goto invalid;
4580		/* Parameter is node format */
4581		if (p[count] == ':') {
4582			if (!hugetlb_node_alloc_supported()) {
4583				pr_warn("HugeTLB: architecture can't support node specific alloc, ignoring!\n");
4584				return 1;
4585			}
4586			if (tmp >= MAX_NUMNODES || !node_online(tmp))
4587				goto invalid;
4588			node = array_index_nospec(tmp, MAX_NUMNODES);
4589			p += count + 1;
4590			/* Parse hugepages */
4591			if (sscanf(p, "%lu%n", &tmp, &count) != 1)
4592				goto invalid;
4593			if (!hugetlb_max_hstate)
4594				default_hugepages_in_node[node] = tmp;
4595			else
4596				parsed_hstate->max_huge_pages_node[node] = tmp;
4597			*mhp += tmp;
4598			/* Go to parse next node*/
4599			if (p[count] == ',')
4600				p += count + 1;
4601			else
4602				break;
4603		} else {
4604			if (p != s)
4605				goto invalid;
4606			*mhp = tmp;
4607			break;
4608		}
4609	}
4610
4611	/*
4612	 * Global state is always initialized later in hugetlb_init.
4613	 * But we need to allocate gigantic hstates here early to still
4614	 * use the bootmem allocator.
4615	 */
4616	if (hugetlb_max_hstate && hstate_is_gigantic(parsed_hstate))
4617		hugetlb_hstate_alloc_pages(parsed_hstate);
4618
4619	last_mhp = mhp;
4620
4621	return 1;
4622
4623invalid:
4624	pr_warn("HugeTLB: Invalid hugepages parameter %s\n", p);
4625	hugepages_clear_pages_in_node();
4626	return 1;
4627}
4628__setup("hugepages=", hugepages_setup);
4629
4630/*
4631 * hugepagesz command line processing
4632 * A specific huge page size can only be specified once with hugepagesz.
4633 * hugepagesz is followed by hugepages on the command line.  The global
4634 * variable 'parsed_valid_hugepagesz' is used to determine if prior
4635 * hugepagesz argument was valid.
4636 */
4637static int __init hugepagesz_setup(char *s)
4638{
4639	unsigned long size;
4640	struct hstate *h;
4641
4642	parsed_valid_hugepagesz = false;
4643	size = (unsigned long)memparse(s, NULL);
4644
4645	if (!arch_hugetlb_valid_size(size)) {
4646		pr_err("HugeTLB: unsupported hugepagesz=%s\n", s);
4647		return 1;
4648	}
4649
4650	h = size_to_hstate(size);
4651	if (h) {
4652		/*
4653		 * hstate for this size already exists.  This is normally
4654		 * an error, but is allowed if the existing hstate is the
4655		 * default hstate.  More specifically, it is only allowed if
4656		 * the number of huge pages for the default hstate was not
4657		 * previously specified.
4658		 */
4659		if (!parsed_default_hugepagesz ||  h != &default_hstate ||
4660		    default_hstate.max_huge_pages) {
4661			pr_warn("HugeTLB: hugepagesz=%s specified twice, ignoring\n", s);
4662			return 1;
4663		}
4664
4665		/*
4666		 * No need to call hugetlb_add_hstate() as hstate already
4667		 * exists.  But, do set parsed_hstate so that a following
4668		 * hugepages= parameter will be applied to this hstate.
4669		 */
4670		parsed_hstate = h;
4671		parsed_valid_hugepagesz = true;
4672		return 1;
4673	}
4674
4675	hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
4676	parsed_valid_hugepagesz = true;
4677	return 1;
4678}
4679__setup("hugepagesz=", hugepagesz_setup);
4680
4681/*
4682 * default_hugepagesz command line input
4683 * Only one instance of default_hugepagesz allowed on command line.
4684 */
4685static int __init default_hugepagesz_setup(char *s)
4686{
4687	unsigned long size;
4688	int i;
4689
4690	parsed_valid_hugepagesz = false;
4691	if (parsed_default_hugepagesz) {
4692		pr_err("HugeTLB: default_hugepagesz previously specified, ignoring %s\n", s);
4693		return 1;
4694	}
4695
4696	size = (unsigned long)memparse(s, NULL);
4697
4698	if (!arch_hugetlb_valid_size(size)) {
4699		pr_err("HugeTLB: unsupported default_hugepagesz=%s\n", s);
4700		return 1;
4701	}
4702
4703	hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
4704	parsed_valid_hugepagesz = true;
4705	parsed_default_hugepagesz = true;
4706	default_hstate_idx = hstate_index(size_to_hstate(size));
4707
4708	/*
4709	 * The number of default huge pages (for this size) could have been
4710	 * specified as the first hugetlb parameter: hugepages=X.  If so,
4711	 * then default_hstate_max_huge_pages is set.  If the default huge
4712	 * page size is gigantic (> MAX_PAGE_ORDER), then the pages must be
4713	 * allocated here from bootmem allocator.
4714	 */
4715	if (default_hstate_max_huge_pages) {
4716		default_hstate.max_huge_pages = default_hstate_max_huge_pages;
4717		for_each_online_node(i)
4718			default_hstate.max_huge_pages_node[i] =
4719				default_hugepages_in_node[i];
4720		if (hstate_is_gigantic(&default_hstate))
4721			hugetlb_hstate_alloc_pages(&default_hstate);
4722		default_hstate_max_huge_pages = 0;
4723	}
4724
4725	return 1;
4726}
4727__setup("default_hugepagesz=", default_hugepagesz_setup);
4728
4729static unsigned int allowed_mems_nr(struct hstate *h)
4730{
4731	int node;
4732	unsigned int nr = 0;
4733	nodemask_t *mbind_nodemask;
4734	unsigned int *array = h->free_huge_pages_node;
4735	gfp_t gfp_mask = htlb_alloc_mask(h);
4736
4737	mbind_nodemask = policy_mbind_nodemask(gfp_mask);
 
4738	for_each_node_mask(node, cpuset_current_mems_allowed) {
4739		if (!mbind_nodemask || node_isset(node, *mbind_nodemask))
 
4740			nr += array[node];
4741	}
4742
4743	return nr;
4744}
4745
4746#ifdef CONFIG_SYSCTL
4747static int proc_hugetlb_doulongvec_minmax(const struct ctl_table *table, int write,
4748					  void *buffer, size_t *length,
4749					  loff_t *ppos, unsigned long *out)
4750{
4751	struct ctl_table dup_table;
4752
4753	/*
4754	 * In order to avoid races with __do_proc_doulongvec_minmax(), we
4755	 * can duplicate the @table and alter the duplicate of it.
4756	 */
4757	dup_table = *table;
4758	dup_table.data = out;
4759
4760	return proc_doulongvec_minmax(&dup_table, write, buffer, length, ppos);
4761}
4762
4763static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
4764			 const struct ctl_table *table, int write,
4765			 void *buffer, size_t *length, loff_t *ppos)
4766{
4767	struct hstate *h = &default_hstate;
4768	unsigned long tmp = h->max_huge_pages;
4769	int ret;
4770
4771	if (!hugepages_supported())
4772		return -EOPNOTSUPP;
4773
4774	ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
4775					     &tmp);
4776	if (ret)
4777		goto out;
4778
4779	if (write)
4780		ret = __nr_hugepages_store_common(obey_mempolicy, h,
4781						  NUMA_NO_NODE, tmp, *length);
4782out:
4783	return ret;
4784}
4785
4786static int hugetlb_sysctl_handler(const struct ctl_table *table, int write,
4787			  void *buffer, size_t *length, loff_t *ppos)
4788{
4789
4790	return hugetlb_sysctl_handler_common(false, table, write,
4791							buffer, length, ppos);
4792}
4793
4794#ifdef CONFIG_NUMA
4795static int hugetlb_mempolicy_sysctl_handler(const struct ctl_table *table, int write,
4796			  void *buffer, size_t *length, loff_t *ppos)
4797{
4798	return hugetlb_sysctl_handler_common(true, table, write,
4799							buffer, length, ppos);
4800}
4801#endif /* CONFIG_NUMA */
4802
4803static int hugetlb_overcommit_handler(const struct ctl_table *table, int write,
4804		void *buffer, size_t *length, loff_t *ppos)
4805{
4806	struct hstate *h = &default_hstate;
4807	unsigned long tmp;
4808	int ret;
4809
4810	if (!hugepages_supported())
4811		return -EOPNOTSUPP;
4812
4813	tmp = h->nr_overcommit_huge_pages;
4814
4815	if (write && hstate_is_gigantic(h))
4816		return -EINVAL;
4817
4818	ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
4819					     &tmp);
4820	if (ret)
4821		goto out;
4822
4823	if (write) {
4824		spin_lock_irq(&hugetlb_lock);
4825		h->nr_overcommit_huge_pages = tmp;
4826		spin_unlock_irq(&hugetlb_lock);
4827	}
4828out:
4829	return ret;
4830}
4831
4832static struct ctl_table hugetlb_table[] = {
4833	{
4834		.procname	= "nr_hugepages",
4835		.data		= NULL,
4836		.maxlen		= sizeof(unsigned long),
4837		.mode		= 0644,
4838		.proc_handler	= hugetlb_sysctl_handler,
4839	},
4840#ifdef CONFIG_NUMA
4841	{
4842		.procname       = "nr_hugepages_mempolicy",
4843		.data           = NULL,
4844		.maxlen         = sizeof(unsigned long),
4845		.mode           = 0644,
4846		.proc_handler   = &hugetlb_mempolicy_sysctl_handler,
4847	},
4848#endif
4849	{
4850		.procname	= "hugetlb_shm_group",
4851		.data		= &sysctl_hugetlb_shm_group,
4852		.maxlen		= sizeof(gid_t),
4853		.mode		= 0644,
4854		.proc_handler	= proc_dointvec,
4855	},
4856	{
4857		.procname	= "nr_overcommit_hugepages",
4858		.data		= NULL,
4859		.maxlen		= sizeof(unsigned long),
4860		.mode		= 0644,
4861		.proc_handler	= hugetlb_overcommit_handler,
4862	},
4863};
4864
4865static void hugetlb_sysctl_init(void)
4866{
4867	register_sysctl_init("vm", hugetlb_table);
4868}
4869#endif /* CONFIG_SYSCTL */
4870
4871void hugetlb_report_meminfo(struct seq_file *m)
4872{
4873	struct hstate *h;
4874	unsigned long total = 0;
4875
4876	if (!hugepages_supported())
4877		return;
4878
4879	for_each_hstate(h) {
4880		unsigned long count = h->nr_huge_pages;
4881
4882		total += huge_page_size(h) * count;
4883
4884		if (h == &default_hstate)
4885			seq_printf(m,
4886				   "HugePages_Total:   %5lu\n"
4887				   "HugePages_Free:    %5lu\n"
4888				   "HugePages_Rsvd:    %5lu\n"
4889				   "HugePages_Surp:    %5lu\n"
4890				   "Hugepagesize:   %8lu kB\n",
4891				   count,
4892				   h->free_huge_pages,
4893				   h->resv_huge_pages,
4894				   h->surplus_huge_pages,
4895				   huge_page_size(h) / SZ_1K);
4896	}
4897
4898	seq_printf(m, "Hugetlb:        %8lu kB\n", total / SZ_1K);
4899}
4900
4901int hugetlb_report_node_meminfo(char *buf, int len, int nid)
4902{
4903	struct hstate *h = &default_hstate;
4904
4905	if (!hugepages_supported())
4906		return 0;
4907
4908	return sysfs_emit_at(buf, len,
4909			     "Node %d HugePages_Total: %5u\n"
4910			     "Node %d HugePages_Free:  %5u\n"
4911			     "Node %d HugePages_Surp:  %5u\n",
4912			     nid, h->nr_huge_pages_node[nid],
4913			     nid, h->free_huge_pages_node[nid],
4914			     nid, h->surplus_huge_pages_node[nid]);
4915}
4916
4917void hugetlb_show_meminfo_node(int nid)
4918{
4919	struct hstate *h;
 
4920
4921	if (!hugepages_supported())
4922		return;
4923
4924	for_each_hstate(h)
4925		printk("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
4926			nid,
4927			h->nr_huge_pages_node[nid],
4928			h->free_huge_pages_node[nid],
4929			h->surplus_huge_pages_node[nid],
4930			huge_page_size(h) / SZ_1K);
 
4931}
4932
4933void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
4934{
4935	seq_printf(m, "HugetlbPages:\t%8lu kB\n",
4936		   K(atomic_long_read(&mm->hugetlb_usage)));
4937}
4938
4939/* Return the number pages of memory we physically have, in PAGE_SIZE units. */
4940unsigned long hugetlb_total_pages(void)
4941{
4942	struct hstate *h;
4943	unsigned long nr_total_pages = 0;
4944
4945	for_each_hstate(h)
4946		nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
4947	return nr_total_pages;
4948}
4949
4950static int hugetlb_acct_memory(struct hstate *h, long delta)
4951{
4952	int ret = -ENOMEM;
4953
4954	if (!delta)
4955		return 0;
4956
4957	spin_lock_irq(&hugetlb_lock);
4958	/*
4959	 * When cpuset is configured, it breaks the strict hugetlb page
4960	 * reservation as the accounting is done on a global variable. Such
4961	 * reservation is completely rubbish in the presence of cpuset because
4962	 * the reservation is not checked against page availability for the
4963	 * current cpuset. Application can still potentially OOM'ed by kernel
4964	 * with lack of free htlb page in cpuset that the task is in.
4965	 * Attempt to enforce strict accounting with cpuset is almost
4966	 * impossible (or too ugly) because cpuset is too fluid that
4967	 * task or memory node can be dynamically moved between cpusets.
4968	 *
4969	 * The change of semantics for shared hugetlb mapping with cpuset is
4970	 * undesirable. However, in order to preserve some of the semantics,
4971	 * we fall back to check against current free page availability as
4972	 * a best attempt and hopefully to minimize the impact of changing
4973	 * semantics that cpuset has.
4974	 *
4975	 * Apart from cpuset, we also have memory policy mechanism that
4976	 * also determines from which node the kernel will allocate memory
4977	 * in a NUMA system. So similar to cpuset, we also should consider
4978	 * the memory policy of the current task. Similar to the description
4979	 * above.
4980	 */
4981	if (delta > 0) {
4982		if (gather_surplus_pages(h, delta) < 0)
4983			goto out;
4984
4985		if (delta > allowed_mems_nr(h)) {
4986			return_unused_surplus_pages(h, delta);
4987			goto out;
4988		}
4989	}
4990
4991	ret = 0;
4992	if (delta < 0)
4993		return_unused_surplus_pages(h, (unsigned long) -delta);
4994
4995out:
4996	spin_unlock_irq(&hugetlb_lock);
4997	return ret;
4998}
4999
5000static void hugetlb_vm_op_open(struct vm_area_struct *vma)
5001{
5002	struct resv_map *resv = vma_resv_map(vma);
5003
5004	/*
5005	 * HPAGE_RESV_OWNER indicates a private mapping.
5006	 * This new VMA should share its siblings reservation map if present.
5007	 * The VMA will only ever have a valid reservation map pointer where
5008	 * it is being copied for another still existing VMA.  As that VMA
5009	 * has a reference to the reservation map it cannot disappear until
5010	 * after this open call completes.  It is therefore safe to take a
5011	 * new reference here without additional locking.
5012	 */
5013	if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
5014		resv_map_dup_hugetlb_cgroup_uncharge_info(resv);
5015		kref_get(&resv->refs);
5016	}
5017
5018	/*
5019	 * vma_lock structure for sharable mappings is vma specific.
5020	 * Clear old pointer (if copied via vm_area_dup) and allocate
5021	 * new structure.  Before clearing, make sure vma_lock is not
5022	 * for this vma.
5023	 */
5024	if (vma->vm_flags & VM_MAYSHARE) {
5025		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
5026
5027		if (vma_lock) {
5028			if (vma_lock->vma != vma) {
5029				vma->vm_private_data = NULL;
5030				hugetlb_vma_lock_alloc(vma);
5031			} else
5032				pr_warn("HugeTLB: vma_lock already exists in %s.\n", __func__);
5033		} else
5034			hugetlb_vma_lock_alloc(vma);
5035	}
5036}
5037
5038static void hugetlb_vm_op_close(struct vm_area_struct *vma)
5039{
5040	struct hstate *h = hstate_vma(vma);
5041	struct resv_map *resv;
5042	struct hugepage_subpool *spool = subpool_vma(vma);
5043	unsigned long reserve, start, end;
5044	long gbl_reserve;
5045
5046	hugetlb_vma_lock_free(vma);
5047
5048	resv = vma_resv_map(vma);
5049	if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
5050		return;
5051
5052	start = vma_hugecache_offset(h, vma, vma->vm_start);
5053	end = vma_hugecache_offset(h, vma, vma->vm_end);
5054
5055	reserve = (end - start) - region_count(resv, start, end);
5056	hugetlb_cgroup_uncharge_counter(resv, start, end);
5057	if (reserve) {
5058		/*
5059		 * Decrement reserve counts.  The global reserve count may be
5060		 * adjusted if the subpool has a minimum size.
5061		 */
5062		gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
5063		hugetlb_acct_memory(h, -gbl_reserve);
5064	}
5065
5066	kref_put(&resv->refs, resv_map_release);
5067}
5068
5069static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
5070{
5071	if (addr & ~(huge_page_mask(hstate_vma(vma))))
5072		return -EINVAL;
5073
5074	/*
5075	 * PMD sharing is only possible for PUD_SIZE-aligned address ranges
5076	 * in HugeTLB VMAs. If we will lose PUD_SIZE alignment due to this
5077	 * split, unshare PMDs in the PUD_SIZE interval surrounding addr now.
5078	 */
5079	if (addr & ~PUD_MASK) {
5080		/*
5081		 * hugetlb_vm_op_split is called right before we attempt to
5082		 * split the VMA. We will need to unshare PMDs in the old and
5083		 * new VMAs, so let's unshare before we split.
5084		 */
5085		unsigned long floor = addr & PUD_MASK;
5086		unsigned long ceil = floor + PUD_SIZE;
5087
5088		if (floor >= vma->vm_start && ceil <= vma->vm_end)
5089			hugetlb_unshare_pmds(vma, floor, ceil);
5090	}
5091
5092	return 0;
5093}
5094
5095static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma)
5096{
5097	return huge_page_size(hstate_vma(vma));
 
 
5098}
5099
5100/*
5101 * We cannot handle pagefaults against hugetlb pages at all.  They cause
5102 * handle_mm_fault() to try to instantiate regular-sized pages in the
5103 * hugepage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
5104 * this far.
5105 */
5106static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf)
5107{
5108	BUG();
5109	return 0;
5110}
5111
5112/*
5113 * When a new function is introduced to vm_operations_struct and added
5114 * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops.
5115 * This is because under System V memory model, mappings created via
5116 * shmget/shmat with "huge page" specified are backed by hugetlbfs files,
5117 * their original vm_ops are overwritten with shm_vm_ops.
5118 */
5119const struct vm_operations_struct hugetlb_vm_ops = {
5120	.fault = hugetlb_vm_op_fault,
5121	.open = hugetlb_vm_op_open,
5122	.close = hugetlb_vm_op_close,
5123	.may_split = hugetlb_vm_op_split,
5124	.pagesize = hugetlb_vm_op_pagesize,
5125};
5126
5127static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
5128				int writable)
5129{
5130	pte_t entry;
5131	unsigned int shift = huge_page_shift(hstate_vma(vma));
5132
5133	if (writable) {
5134		entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
5135					 vma->vm_page_prot)));
5136	} else {
5137		entry = huge_pte_wrprotect(mk_huge_pte(page,
5138					   vma->vm_page_prot));
5139	}
5140	entry = pte_mkyoung(entry);
5141	entry = arch_make_huge_pte(entry, shift, vma->vm_flags);
 
5142
5143	return entry;
5144}
5145
5146static void set_huge_ptep_writable(struct vm_area_struct *vma,
5147				   unsigned long address, pte_t *ptep)
5148{
5149	pte_t entry;
5150
5151	entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(vma->vm_mm, address, ptep)));
5152	if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
5153		update_mmu_cache(vma, address, ptep);
5154}
5155
5156bool is_hugetlb_entry_migration(pte_t pte)
5157{
5158	swp_entry_t swp;
5159
5160	if (huge_pte_none(pte) || pte_present(pte))
5161		return false;
5162	swp = pte_to_swp_entry(pte);
5163	if (is_migration_entry(swp))
5164		return true;
5165	else
5166		return false;
5167}
5168
5169bool is_hugetlb_entry_hwpoisoned(pte_t pte)
5170{
5171	swp_entry_t swp;
5172
5173	if (huge_pte_none(pte) || pte_present(pte))
5174		return false;
5175	swp = pte_to_swp_entry(pte);
5176	if (is_hwpoison_entry(swp))
5177		return true;
5178	else
5179		return false;
5180}
5181
5182static void
5183hugetlb_install_folio(struct vm_area_struct *vma, pte_t *ptep, unsigned long addr,
5184		      struct folio *new_folio, pte_t old, unsigned long sz)
5185{
5186	pte_t newpte = make_huge_pte(vma, &new_folio->page, 1);
5187
5188	__folio_mark_uptodate(new_folio);
5189	hugetlb_add_new_anon_rmap(new_folio, vma, addr);
5190	if (userfaultfd_wp(vma) && huge_pte_uffd_wp(old))
5191		newpte = huge_pte_mkuffd_wp(newpte);
5192	set_huge_pte_at(vma->vm_mm, addr, ptep, newpte, sz);
5193	hugetlb_count_add(pages_per_huge_page(hstate_vma(vma)), vma->vm_mm);
5194	folio_set_hugetlb_migratable(new_folio);
5195}
5196
5197int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
5198			    struct vm_area_struct *dst_vma,
5199			    struct vm_area_struct *src_vma)
5200{
5201	pte_t *src_pte, *dst_pte, entry;
5202	struct folio *pte_folio;
5203	unsigned long addr;
5204	bool cow = is_cow_mapping(src_vma->vm_flags);
5205	struct hstate *h = hstate_vma(src_vma);
5206	unsigned long sz = huge_page_size(h);
5207	unsigned long npages = pages_per_huge_page(h);
5208	struct mmu_notifier_range range;
5209	unsigned long last_addr_mask;
5210	int ret = 0;
5211
 
 
5212	if (cow) {
5213		mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, src,
5214					src_vma->vm_start,
5215					src_vma->vm_end);
5216		mmu_notifier_invalidate_range_start(&range);
5217		vma_assert_write_locked(src_vma);
5218		raw_write_seqcount_begin(&src->write_protect_seq);
5219	} else {
5220		/*
5221		 * For shared mappings the vma lock must be held before
5222		 * calling hugetlb_walk() in the src vma. Otherwise, the
5223		 * returned ptep could go away if part of a shared pmd and
5224		 * another thread calls huge_pmd_unshare.
5225		 */
5226		hugetlb_vma_lock_read(src_vma);
5227	}
5228
5229	last_addr_mask = hugetlb_mask_last_page(h);
5230	for (addr = src_vma->vm_start; addr < src_vma->vm_end; addr += sz) {
5231		spinlock_t *src_ptl, *dst_ptl;
5232		src_pte = hugetlb_walk(src_vma, addr, sz);
5233		if (!src_pte) {
5234			addr |= last_addr_mask;
5235			continue;
5236		}
5237		dst_pte = huge_pte_alloc(dst, dst_vma, addr, sz);
5238		if (!dst_pte) {
5239			ret = -ENOMEM;
5240			break;
5241		}
5242
5243		/*
5244		 * If the pagetables are shared don't copy or take references.
5245		 *
5246		 * dst_pte == src_pte is the common case of src/dest sharing.
 
5247		 * However, src could have 'unshared' and dst shares with
5248		 * another vma. So page_count of ptep page is checked instead
5249		 * to reliably determine whether pte is shared.
 
5250		 */
5251		if (page_count(virt_to_page(dst_pte)) > 1) {
5252			addr |= last_addr_mask;
5253			continue;
5254		}
5255
5256		dst_ptl = huge_pte_lock(h, dst, dst_pte);
5257		src_ptl = huge_pte_lockptr(h, src, src_pte);
5258		spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
5259		entry = huge_ptep_get(src_vma->vm_mm, addr, src_pte);
5260again:
5261		if (huge_pte_none(entry)) {
5262			/*
5263			 * Skip if src entry none.
 
 
5264			 */
5265			;
5266		} else if (unlikely(is_hugetlb_entry_hwpoisoned(entry))) {
5267			if (!userfaultfd_wp(dst_vma))
5268				entry = huge_pte_clear_uffd_wp(entry);
5269			set_huge_pte_at(dst, addr, dst_pte, entry, sz);
5270		} else if (unlikely(is_hugetlb_entry_migration(entry))) {
5271			swp_entry_t swp_entry = pte_to_swp_entry(entry);
5272			bool uffd_wp = pte_swp_uffd_wp(entry);
5273
5274			if (!is_readable_migration_entry(swp_entry) && cow) {
5275				/*
5276				 * COW mappings require pages in both
5277				 * parent and child to be set to read.
5278				 */
5279				swp_entry = make_readable_migration_entry(
5280							swp_offset(swp_entry));
5281				entry = swp_entry_to_pte(swp_entry);
5282				if (userfaultfd_wp(src_vma) && uffd_wp)
5283					entry = pte_swp_mkuffd_wp(entry);
5284				set_huge_pte_at(src, addr, src_pte, entry, sz);
5285			}
5286			if (!userfaultfd_wp(dst_vma))
5287				entry = huge_pte_clear_uffd_wp(entry);
5288			set_huge_pte_at(dst, addr, dst_pte, entry, sz);
5289		} else if (unlikely(is_pte_marker(entry))) {
5290			pte_marker marker = copy_pte_marker(
5291				pte_to_swp_entry(entry), dst_vma);
5292
5293			if (marker)
5294				set_huge_pte_at(dst, addr, dst_pte,
5295						make_pte_marker(marker), sz);
5296		} else {
5297			entry = huge_ptep_get(src_vma->vm_mm, addr, src_pte);
5298			pte_folio = page_folio(pte_page(entry));
5299			folio_get(pte_folio);
5300
5301			/*
5302			 * Failing to duplicate the anon rmap is a rare case
5303			 * where we see pinned hugetlb pages while they're
5304			 * prone to COW. We need to do the COW earlier during
5305			 * fork.
5306			 *
5307			 * When pre-allocating the page or copying data, we
5308			 * need to be without the pgtable locks since we could
5309			 * sleep during the process.
5310			 */
5311			if (!folio_test_anon(pte_folio)) {
5312				hugetlb_add_file_rmap(pte_folio);
5313			} else if (hugetlb_try_dup_anon_rmap(pte_folio, src_vma)) {
5314				pte_t src_pte_old = entry;
5315				struct folio *new_folio;
5316
5317				spin_unlock(src_ptl);
5318				spin_unlock(dst_ptl);
5319				/* Do not use reserve as it's private owned */
5320				new_folio = alloc_hugetlb_folio(dst_vma, addr, 1);
5321				if (IS_ERR(new_folio)) {
5322					folio_put(pte_folio);
5323					ret = PTR_ERR(new_folio);
5324					break;
5325				}
5326				ret = copy_user_large_folio(new_folio, pte_folio,
5327							    addr, dst_vma);
5328				folio_put(pte_folio);
5329				if (ret) {
5330					folio_put(new_folio);
5331					break;
5332				}
5333
5334				/* Install the new hugetlb folio if src pte stable */
5335				dst_ptl = huge_pte_lock(h, dst, dst_pte);
5336				src_ptl = huge_pte_lockptr(h, src, src_pte);
5337				spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
5338				entry = huge_ptep_get(src_vma->vm_mm, addr, src_pte);
5339				if (!pte_same(src_pte_old, entry)) {
5340					restore_reserve_on_error(h, dst_vma, addr,
5341								new_folio);
5342					folio_put(new_folio);
5343					/* huge_ptep of dst_pte won't change as in child */
5344					goto again;
5345				}
5346				hugetlb_install_folio(dst_vma, dst_pte, addr,
5347						      new_folio, src_pte_old, sz);
5348				spin_unlock(src_ptl);
5349				spin_unlock(dst_ptl);
5350				continue;
5351			}
5352
5353			if (cow) {
5354				/*
5355				 * No need to notify as we are downgrading page
5356				 * table protection not changing it to point
5357				 * to a new page.
5358				 *
5359				 * See Documentation/mm/mmu_notifier.rst
5360				 */
5361				huge_ptep_set_wrprotect(src, addr, src_pte);
5362				entry = huge_pte_wrprotect(entry);
5363			}
5364
5365			if (!userfaultfd_wp(dst_vma))
5366				entry = huge_pte_clear_uffd_wp(entry);
5367
5368			set_huge_pte_at(dst, addr, dst_pte, entry, sz);
5369			hugetlb_count_add(npages, dst);
5370		}
5371		spin_unlock(src_ptl);
5372		spin_unlock(dst_ptl);
5373	}
5374
5375	if (cow) {
5376		raw_write_seqcount_end(&src->write_protect_seq);
5377		mmu_notifier_invalidate_range_end(&range);
5378	} else {
5379		hugetlb_vma_unlock_read(src_vma);
5380	}
5381
5382	return ret;
5383}
5384
5385static void move_huge_pte(struct vm_area_struct *vma, unsigned long old_addr,
5386			  unsigned long new_addr, pte_t *src_pte, pte_t *dst_pte,
5387			  unsigned long sz)
5388{
5389	bool need_clear_uffd_wp = vma_has_uffd_without_event_remap(vma);
5390	struct hstate *h = hstate_vma(vma);
5391	struct mm_struct *mm = vma->vm_mm;
5392	spinlock_t *src_ptl, *dst_ptl;
5393	pte_t pte;
5394
5395	dst_ptl = huge_pte_lock(h, mm, dst_pte);
5396	src_ptl = huge_pte_lockptr(h, mm, src_pte);
5397
5398	/*
5399	 * We don't have to worry about the ordering of src and dst ptlocks
5400	 * because exclusive mmap_lock (or the i_mmap_lock) prevents deadlock.
5401	 */
5402	if (src_ptl != dst_ptl)
5403		spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
5404
5405	pte = huge_ptep_get_and_clear(mm, old_addr, src_pte, sz);
5406
5407	if (need_clear_uffd_wp && pte_marker_uffd_wp(pte))
5408		huge_pte_clear(mm, new_addr, dst_pte, sz);
5409	else {
5410		if (need_clear_uffd_wp) {
5411			if (pte_present(pte))
5412				pte = huge_pte_clear_uffd_wp(pte);
5413			else if (is_swap_pte(pte))
5414				pte = pte_swp_clear_uffd_wp(pte);
5415		}
5416		set_huge_pte_at(mm, new_addr, dst_pte, pte, sz);
5417	}
5418
5419	if (src_ptl != dst_ptl)
5420		spin_unlock(src_ptl);
5421	spin_unlock(dst_ptl);
5422}
5423
5424int move_hugetlb_page_tables(struct vm_area_struct *vma,
5425			     struct vm_area_struct *new_vma,
5426			     unsigned long old_addr, unsigned long new_addr,
5427			     unsigned long len)
5428{
5429	struct hstate *h = hstate_vma(vma);
5430	struct address_space *mapping = vma->vm_file->f_mapping;
5431	unsigned long sz = huge_page_size(h);
5432	struct mm_struct *mm = vma->vm_mm;
5433	unsigned long old_end = old_addr + len;
5434	unsigned long last_addr_mask;
5435	pte_t *src_pte, *dst_pte;
5436	struct mmu_notifier_range range;
5437	bool shared_pmd = false;
5438
5439	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, old_addr,
5440				old_end);
5441	adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
5442	/*
5443	 * In case of shared PMDs, we should cover the maximum possible
5444	 * range.
5445	 */
5446	flush_cache_range(vma, range.start, range.end);
5447
5448	mmu_notifier_invalidate_range_start(&range);
5449	last_addr_mask = hugetlb_mask_last_page(h);
5450	/* Prevent race with file truncation */
5451	hugetlb_vma_lock_write(vma);
5452	i_mmap_lock_write(mapping);
5453	for (; old_addr < old_end; old_addr += sz, new_addr += sz) {
5454		src_pte = hugetlb_walk(vma, old_addr, sz);
5455		if (!src_pte) {
5456			old_addr |= last_addr_mask;
5457			new_addr |= last_addr_mask;
5458			continue;
5459		}
5460		if (huge_pte_none(huge_ptep_get(mm, old_addr, src_pte)))
5461			continue;
5462
5463		if (huge_pmd_unshare(mm, vma, old_addr, src_pte)) {
5464			shared_pmd = true;
5465			old_addr |= last_addr_mask;
5466			new_addr |= last_addr_mask;
5467			continue;
5468		}
5469
5470		dst_pte = huge_pte_alloc(mm, new_vma, new_addr, sz);
5471		if (!dst_pte)
5472			break;
5473
5474		move_huge_pte(vma, old_addr, new_addr, src_pte, dst_pte, sz);
5475	}
5476
5477	if (shared_pmd)
5478		flush_hugetlb_tlb_range(vma, range.start, range.end);
5479	else
5480		flush_hugetlb_tlb_range(vma, old_end - len, old_end);
5481	mmu_notifier_invalidate_range_end(&range);
5482	i_mmap_unlock_write(mapping);
5483	hugetlb_vma_unlock_write(vma);
5484
5485	return len + old_addr - old_end;
5486}
5487
5488void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
5489			    unsigned long start, unsigned long end,
5490			    struct page *ref_page, zap_flags_t zap_flags)
5491{
5492	struct mm_struct *mm = vma->vm_mm;
5493	unsigned long address;
5494	pte_t *ptep;
5495	pte_t pte;
5496	spinlock_t *ptl;
5497	struct page *page;
5498	struct hstate *h = hstate_vma(vma);
5499	unsigned long sz = huge_page_size(h);
5500	bool adjust_reservation = false;
5501	unsigned long last_addr_mask;
5502	bool force_flush = false;
5503
5504	WARN_ON(!is_vm_hugetlb_page(vma));
5505	BUG_ON(start & ~huge_page_mask(h));
5506	BUG_ON(end & ~huge_page_mask(h));
5507
5508	/*
5509	 * This is a hugetlb vma, all the pte entries should point
5510	 * to huge page.
5511	 */
5512	tlb_change_page_size(tlb, sz);
5513	tlb_start_vma(tlb, vma);
5514
5515	last_addr_mask = hugetlb_mask_last_page(h);
 
 
 
 
 
 
5516	address = start;
5517	for (; address < end; address += sz) {
5518		ptep = hugetlb_walk(vma, address, sz);
5519		if (!ptep) {
5520			address |= last_addr_mask;
5521			continue;
5522		}
5523
5524		ptl = huge_pte_lock(h, mm, ptep);
5525		if (huge_pmd_unshare(mm, vma, address, ptep)) {
5526			spin_unlock(ptl);
5527			tlb_flush_pmd_range(tlb, address & PUD_MASK, PUD_SIZE);
5528			force_flush = true;
5529			address |= last_addr_mask;
 
5530			continue;
5531		}
5532
5533		pte = huge_ptep_get(mm, address, ptep);
5534		if (huge_pte_none(pte)) {
5535			spin_unlock(ptl);
5536			continue;
5537		}
5538
5539		/*
5540		 * Migrating hugepage or HWPoisoned hugepage is already
5541		 * unmapped and its refcount is dropped, so just clear pte here.
5542		 */
5543		if (unlikely(!pte_present(pte))) {
5544			/*
5545			 * If the pte was wr-protected by uffd-wp in any of the
5546			 * swap forms, meanwhile the caller does not want to
5547			 * drop the uffd-wp bit in this zap, then replace the
5548			 * pte with a marker.
5549			 */
5550			if (pte_swp_uffd_wp_any(pte) &&
5551			    !(zap_flags & ZAP_FLAG_DROP_MARKER))
5552				set_huge_pte_at(mm, address, ptep,
5553						make_pte_marker(PTE_MARKER_UFFD_WP),
5554						sz);
5555			else
5556				huge_pte_clear(mm, address, ptep, sz);
5557			spin_unlock(ptl);
5558			continue;
5559		}
5560
5561		page = pte_page(pte);
5562		/*
5563		 * If a reference page is supplied, it is because a specific
5564		 * page is being unmapped, not a range. Ensure the page we
5565		 * are about to unmap is the actual page of interest.
5566		 */
5567		if (ref_page) {
5568			if (page != ref_page) {
5569				spin_unlock(ptl);
5570				continue;
5571			}
5572			/*
5573			 * Mark the VMA as having unmapped its page so that
5574			 * future faults in this VMA will fail rather than
5575			 * looking like data was lost
5576			 */
5577			set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
5578		}
5579
5580		pte = huge_ptep_get_and_clear(mm, address, ptep, sz);
5581		tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
5582		if (huge_pte_dirty(pte))
5583			set_page_dirty(page);
5584		/* Leave a uffd-wp pte marker if needed */
5585		if (huge_pte_uffd_wp(pte) &&
5586		    !(zap_flags & ZAP_FLAG_DROP_MARKER))
5587			set_huge_pte_at(mm, address, ptep,
5588					make_pte_marker(PTE_MARKER_UFFD_WP),
5589					sz);
5590		hugetlb_count_sub(pages_per_huge_page(h), mm);
5591		hugetlb_remove_rmap(page_folio(page));
5592
5593		/*
5594		 * Restore the reservation for anonymous page, otherwise the
5595		 * backing page could be stolen by someone.
5596		 * If there we are freeing a surplus, do not set the restore
5597		 * reservation bit.
5598		 */
5599		if (!h->surplus_huge_pages && __vma_private_lock(vma) &&
5600		    folio_test_anon(page_folio(page))) {
5601			folio_set_hugetlb_restore_reserve(page_folio(page));
5602			/* Reservation to be adjusted after the spin lock */
5603			adjust_reservation = true;
5604		}
5605
5606		spin_unlock(ptl);
5607
5608		/*
5609		 * Adjust the reservation for the region that will have the
5610		 * reserve restored. Keep in mind that vma_needs_reservation() changes
5611		 * resv->adds_in_progress if it succeeds. If this is not done,
5612		 * do_exit() will not see it, and will keep the reservation
5613		 * forever.
5614		 */
5615		if (adjust_reservation) {
5616			int rc = vma_needs_reservation(h, vma, address);
5617
5618			if (rc < 0)
5619				/* Pressumably allocate_file_region_entries failed
5620				 * to allocate a file_region struct. Clear
5621				 * hugetlb_restore_reserve so that global reserve
5622				 * count will not be incremented by free_huge_folio.
5623				 * Act as if we consumed the reservation.
5624				 */
5625				folio_clear_hugetlb_restore_reserve(page_folio(page));
5626			else if (rc)
5627				vma_add_reservation(h, vma, address);
5628		}
5629
5630		tlb_remove_page_size(tlb, page, huge_page_size(h));
5631		/*
5632		 * Bail out after unmapping reference page if supplied
5633		 */
5634		if (ref_page)
5635			break;
5636	}
 
5637	tlb_end_vma(tlb, vma);
5638
5639	/*
5640	 * If we unshared PMDs, the TLB flush was not recorded in mmu_gather. We
5641	 * could defer the flush until now, since by holding i_mmap_rwsem we
5642	 * guaranteed that the last refernece would not be dropped. But we must
5643	 * do the flushing before we return, as otherwise i_mmap_rwsem will be
5644	 * dropped and the last reference to the shared PMDs page might be
5645	 * dropped as well.
5646	 *
5647	 * In theory we could defer the freeing of the PMD pages as well, but
5648	 * huge_pmd_unshare() relies on the exact page_count for the PMD page to
5649	 * detect sharing, so we cannot defer the release of the page either.
5650	 * Instead, do flush now.
5651	 */
5652	if (force_flush)
5653		tlb_flush_mmu_tlbonly(tlb);
5654}
5655
5656void __hugetlb_zap_begin(struct vm_area_struct *vma,
5657			 unsigned long *start, unsigned long *end)
5658{
5659	if (!vma->vm_file)	/* hugetlbfs_file_mmap error */
5660		return;
5661
5662	adjust_range_if_pmd_sharing_possible(vma, start, end);
5663	hugetlb_vma_lock_write(vma);
5664	if (vma->vm_file)
5665		i_mmap_lock_write(vma->vm_file->f_mapping);
5666}
5667
5668void __hugetlb_zap_end(struct vm_area_struct *vma,
5669		       struct zap_details *details)
5670{
5671	zap_flags_t zap_flags = details ? details->zap_flags : 0;
5672
5673	if (!vma->vm_file)	/* hugetlbfs_file_mmap error */
5674		return;
5675
5676	if (zap_flags & ZAP_FLAG_UNMAP) {	/* final unmap */
5677		/*
5678		 * Unlock and free the vma lock before releasing i_mmap_rwsem.
5679		 * When the vma_lock is freed, this makes the vma ineligible
5680		 * for pmd sharing.  And, i_mmap_rwsem is required to set up
5681		 * pmd sharing.  This is important as page tables for this
5682		 * unmapped range will be asynchrously deleted.  If the page
5683		 * tables are shared, there will be issues when accessed by
5684		 * someone else.
5685		 */
5686		__hugetlb_vma_unlock_write_free(vma);
5687	} else {
5688		hugetlb_vma_unlock_write(vma);
5689	}
5690
5691	if (vma->vm_file)
5692		i_mmap_unlock_write(vma->vm_file->f_mapping);
5693}
5694
5695void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
5696			  unsigned long end, struct page *ref_page,
5697			  zap_flags_t zap_flags)
5698{
5699	struct mmu_notifier_range range;
5700	struct mmu_gather tlb;
 
 
5701
5702	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
5703				start, end);
5704	adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
5705	mmu_notifier_invalidate_range_start(&range);
5706	tlb_gather_mmu(&tlb, vma->vm_mm);
 
 
 
5707
5708	__unmap_hugepage_range(&tlb, vma, start, end, ref_page, zap_flags);
5709
5710	mmu_notifier_invalidate_range_end(&range);
5711	tlb_finish_mmu(&tlb);
 
5712}
5713
5714/*
5715 * This is called when the original mapper is failing to COW a MAP_PRIVATE
5716 * mapping it owns the reserve page for. The intention is to unmap the page
5717 * from other VMAs and let the children be SIGKILLed if they are faulting the
5718 * same region.
5719 */
5720static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
5721			      struct page *page, unsigned long address)
5722{
5723	struct hstate *h = hstate_vma(vma);
5724	struct vm_area_struct *iter_vma;
5725	struct address_space *mapping;
5726	pgoff_t pgoff;
5727
5728	/*
5729	 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
5730	 * from page cache lookup which is in HPAGE_SIZE units.
5731	 */
5732	address = address & huge_page_mask(h);
5733	pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
5734			vma->vm_pgoff;
5735	mapping = vma->vm_file->f_mapping;
5736
5737	/*
5738	 * Take the mapping lock for the duration of the table walk. As
5739	 * this mapping should be shared between all the VMAs,
5740	 * __unmap_hugepage_range() is called as the lock is already held
5741	 */
5742	i_mmap_lock_write(mapping);
5743	vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
5744		/* Do not unmap the current VMA */
5745		if (iter_vma == vma)
5746			continue;
5747
5748		/*
5749		 * Shared VMAs have their own reserves and do not affect
5750		 * MAP_PRIVATE accounting but it is possible that a shared
5751		 * VMA is using the same page so check and skip such VMAs.
5752		 */
5753		if (iter_vma->vm_flags & VM_MAYSHARE)
5754			continue;
5755
5756		/*
5757		 * Unmap the page from other VMAs without their own reserves.
5758		 * They get marked to be SIGKILLed if they fault in these
5759		 * areas. This is because a future no-page fault on this VMA
5760		 * could insert a zeroed page instead of the data existing
5761		 * from the time of fork. This would look like data corruption
5762		 */
5763		if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
5764			unmap_hugepage_range(iter_vma, address,
5765					     address + huge_page_size(h), page, 0);
5766	}
5767	i_mmap_unlock_write(mapping);
5768}
5769
5770/*
5771 * hugetlb_wp() should be called with page lock of the original hugepage held.
5772 * Called with hugetlb_fault_mutex_table held and pte_page locked so we
5773 * cannot race with other handlers or page migration.
5774 * Keep the pte_same checks anyway to make transition from the mutex easier.
5775 */
5776static vm_fault_t hugetlb_wp(struct folio *pagecache_folio,
5777		       struct vm_fault *vmf)
 
5778{
5779	struct vm_area_struct *vma = vmf->vma;
5780	struct mm_struct *mm = vma->vm_mm;
5781	const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
5782	pte_t pte = huge_ptep_get(mm, vmf->address, vmf->pte);
5783	struct hstate *h = hstate_vma(vma);
5784	struct folio *old_folio;
5785	struct folio *new_folio;
5786	int outside_reserve = 0;
5787	vm_fault_t ret = 0;
 
5788	struct mmu_notifier_range range;
5789
5790	/*
5791	 * Never handle CoW for uffd-wp protected pages.  It should be only
5792	 * handled when the uffd-wp protection is removed.
5793	 *
5794	 * Note that only the CoW optimization path (in hugetlb_no_page())
5795	 * can trigger this, because hugetlb_fault() will always resolve
5796	 * uffd-wp bit first.
5797	 */
5798	if (!unshare && huge_pte_uffd_wp(pte))
5799		return 0;
5800
5801	/*
5802	 * hugetlb does not support FOLL_FORCE-style write faults that keep the
5803	 * PTE mapped R/O such as maybe_mkwrite() would do.
5804	 */
5805	if (WARN_ON_ONCE(!unshare && !(vma->vm_flags & VM_WRITE)))
5806		return VM_FAULT_SIGSEGV;
5807
5808	/* Let's take out MAP_SHARED mappings first. */
5809	if (vma->vm_flags & VM_MAYSHARE) {
5810		set_huge_ptep_writable(vma, vmf->address, vmf->pte);
5811		return 0;
5812	}
5813
5814	old_folio = page_folio(pte_page(pte));
5815
5816	delayacct_wpcopy_start();
5817
5818retry_avoidcopy:
5819	/*
5820	 * If no-one else is actually using this page, we're the exclusive
5821	 * owner and can reuse this page.
5822	 *
5823	 * Note that we don't rely on the (safer) folio refcount here, because
5824	 * copying the hugetlb folio when there are unexpected (temporary)
5825	 * folio references could harm simple fork()+exit() users when
5826	 * we run out of free hugetlb folios: we would have to kill processes
5827	 * in scenarios that used to work. As a side effect, there can still
5828	 * be leaks between processes, for example, with FOLL_GET users.
5829	 */
5830	if (folio_mapcount(old_folio) == 1 && folio_test_anon(old_folio)) {
5831		if (!PageAnonExclusive(&old_folio->page)) {
5832			folio_move_anon_rmap(old_folio, vma);
5833			SetPageAnonExclusive(&old_folio->page);
5834		}
5835		if (likely(!unshare))
5836			set_huge_ptep_writable(vma, vmf->address, vmf->pte);
5837
5838		delayacct_wpcopy_end();
5839		return 0;
5840	}
5841	VM_BUG_ON_PAGE(folio_test_anon(old_folio) &&
5842		       PageAnonExclusive(&old_folio->page), &old_folio->page);
5843
5844	/*
5845	 * If the process that created a MAP_PRIVATE mapping is about to
5846	 * perform a COW due to a shared page count, attempt to satisfy
5847	 * the allocation without using the existing reserves. The pagecache
5848	 * page is used to determine if the reserve at this address was
5849	 * consumed or not. If reserves were used, a partial faulted mapping
5850	 * at the time of fork() could consume its reserves on COW instead
5851	 * of the full address range.
5852	 */
5853	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
5854			old_folio != pagecache_folio)
5855		outside_reserve = 1;
5856
5857	folio_get(old_folio);
5858
5859	/*
5860	 * Drop page table lock as buddy allocator may be called. It will
5861	 * be acquired again before returning to the caller, as expected.
5862	 */
5863	spin_unlock(vmf->ptl);
5864	new_folio = alloc_hugetlb_folio(vma, vmf->address, outside_reserve);
5865
5866	if (IS_ERR(new_folio)) {
5867		/*
5868		 * If a process owning a MAP_PRIVATE mapping fails to COW,
5869		 * it is due to references held by a child and an insufficient
5870		 * huge page pool. To guarantee the original mappers
5871		 * reliability, unmap the page from child processes. The child
5872		 * may get SIGKILLed if it later faults.
5873		 */
5874		if (outside_reserve) {
5875			struct address_space *mapping = vma->vm_file->f_mapping;
5876			pgoff_t idx;
5877			u32 hash;
5878
5879			folio_put(old_folio);
5880			/*
5881			 * Drop hugetlb_fault_mutex and vma_lock before
5882			 * unmapping.  unmapping needs to hold vma_lock
5883			 * in write mode.  Dropping vma_lock in read mode
5884			 * here is OK as COW mappings do not interact with
5885			 * PMD sharing.
5886			 *
5887			 * Reacquire both after unmap operation.
5888			 */
5889			idx = vma_hugecache_offset(h, vma, vmf->address);
5890			hash = hugetlb_fault_mutex_hash(mapping, idx);
5891			hugetlb_vma_unlock_read(vma);
5892			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5893
5894			unmap_ref_private(mm, vma, &old_folio->page,
5895					vmf->address);
5896
5897			mutex_lock(&hugetlb_fault_mutex_table[hash]);
5898			hugetlb_vma_lock_read(vma);
5899			spin_lock(vmf->ptl);
5900			vmf->pte = hugetlb_walk(vma, vmf->address,
5901					huge_page_size(h));
5902			if (likely(vmf->pte &&
5903				   pte_same(huge_ptep_get(mm, vmf->address, vmf->pte), pte)))
5904				goto retry_avoidcopy;
5905			/*
5906			 * race occurs while re-acquiring page table
5907			 * lock, and our job is done.
5908			 */
5909			delayacct_wpcopy_end();
5910			return 0;
5911		}
5912
5913		ret = vmf_error(PTR_ERR(new_folio));
5914		goto out_release_old;
5915	}
5916
5917	/*
5918	 * When the original hugepage is shared one, it does not have
5919	 * anon_vma prepared.
5920	 */
5921	ret = __vmf_anon_prepare(vmf);
5922	if (unlikely(ret))
5923		goto out_release_all;
5924
5925	if (copy_user_large_folio(new_folio, old_folio, vmf->real_address, vma)) {
5926		ret = VM_FAULT_HWPOISON_LARGE | VM_FAULT_SET_HINDEX(hstate_index(h));
5927		goto out_release_all;
5928	}
5929	__folio_mark_uptodate(new_folio);
5930
5931	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, vmf->address,
5932				vmf->address + huge_page_size(h));
 
 
 
 
5933	mmu_notifier_invalidate_range_start(&range);
5934
5935	/*
5936	 * Retake the page table lock to check for racing updates
5937	 * before the page tables are altered
5938	 */
5939	spin_lock(vmf->ptl);
5940	vmf->pte = hugetlb_walk(vma, vmf->address, huge_page_size(h));
5941	if (likely(vmf->pte && pte_same(huge_ptep_get(mm, vmf->address, vmf->pte), pte))) {
5942		pte_t newpte = make_huge_pte(vma, &new_folio->page, !unshare);
5943
5944		/* Break COW or unshare */
5945		huge_ptep_clear_flush(vma, vmf->address, vmf->pte);
5946		hugetlb_remove_rmap(old_folio);
5947		hugetlb_add_new_anon_rmap(new_folio, vma, vmf->address);
5948		if (huge_pte_uffd_wp(pte))
5949			newpte = huge_pte_mkuffd_wp(newpte);
5950		set_huge_pte_at(mm, vmf->address, vmf->pte, newpte,
5951				huge_page_size(h));
5952		folio_set_hugetlb_migratable(new_folio);
5953		/* Make the old page be freed below */
5954		new_folio = old_folio;
5955	}
5956	spin_unlock(vmf->ptl);
5957	mmu_notifier_invalidate_range_end(&range);
5958out_release_all:
5959	/*
5960	 * No restore in case of successful pagetable update (Break COW or
5961	 * unshare)
5962	 */
5963	if (new_folio != old_folio)
5964		restore_reserve_on_error(h, vma, vmf->address, new_folio);
5965	folio_put(new_folio);
5966out_release_old:
5967	folio_put(old_folio);
5968
5969	spin_lock(vmf->ptl); /* Caller expects lock to be held */
5970
5971	delayacct_wpcopy_end();
5972	return ret;
5973}
5974
 
 
 
 
 
 
 
 
 
 
 
 
 
5975/*
5976 * Return whether there is a pagecache page to back given address within VMA.
 
5977 */
5978bool hugetlbfs_pagecache_present(struct hstate *h,
5979				 struct vm_area_struct *vma, unsigned long address)
5980{
5981	struct address_space *mapping = vma->vm_file->f_mapping;
5982	pgoff_t idx = linear_page_index(vma, address);
5983	struct folio *folio;
5984
5985	folio = filemap_get_folio(mapping, idx);
5986	if (IS_ERR(folio))
5987		return false;
5988	folio_put(folio);
5989	return true;
 
 
5990}
5991
5992int hugetlb_add_to_page_cache(struct folio *folio, struct address_space *mapping,
5993			   pgoff_t idx)
5994{
5995	struct inode *inode = mapping->host;
5996	struct hstate *h = hstate_inode(inode);
5997	int err;
5998
5999	idx <<= huge_page_order(h);
6000	__folio_set_locked(folio);
6001	err = __filemap_add_folio(mapping, folio, idx, GFP_KERNEL, NULL);
6002
6003	if (unlikely(err)) {
6004		__folio_clear_locked(folio);
6005		return err;
6006	}
6007	folio_clear_hugetlb_restore_reserve(folio);
6008
6009	/*
6010	 * mark folio dirty so that it will not be removed from cache/file
6011	 * by non-hugetlbfs specific code paths.
6012	 */
6013	folio_mark_dirty(folio);
6014
6015	spin_lock(&inode->i_lock);
6016	inode->i_blocks += blocks_per_huge_page(h);
6017	spin_unlock(&inode->i_lock);
6018	return 0;
6019}
6020
6021static inline vm_fault_t hugetlb_handle_userfault(struct vm_fault *vmf,
6022						  struct address_space *mapping,
6023						  unsigned long reason)
6024{
6025	u32 hash;
6026
6027	/*
6028	 * vma_lock and hugetlb_fault_mutex must be dropped before handling
6029	 * userfault. Also mmap_lock could be dropped due to handling
6030	 * userfault, any vma operation should be careful from here.
6031	 */
6032	hugetlb_vma_unlock_read(vmf->vma);
6033	hash = hugetlb_fault_mutex_hash(mapping, vmf->pgoff);
6034	mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6035	return handle_userfault(vmf, reason);
6036}
6037
6038/*
6039 * Recheck pte with pgtable lock.  Returns true if pte didn't change, or
6040 * false if pte changed or is changing.
6041 */
6042static bool hugetlb_pte_stable(struct hstate *h, struct mm_struct *mm, unsigned long addr,
6043			       pte_t *ptep, pte_t old_pte)
6044{
6045	spinlock_t *ptl;
6046	bool same;
6047
6048	ptl = huge_pte_lock(h, mm, ptep);
6049	same = pte_same(huge_ptep_get(mm, addr, ptep), old_pte);
6050	spin_unlock(ptl);
6051
6052	return same;
6053}
6054
6055static vm_fault_t hugetlb_no_page(struct address_space *mapping,
6056			struct vm_fault *vmf)
6057{
6058	struct vm_area_struct *vma = vmf->vma;
6059	struct mm_struct *mm = vma->vm_mm;
6060	struct hstate *h = hstate_vma(vma);
6061	vm_fault_t ret = VM_FAULT_SIGBUS;
6062	int anon_rmap = 0;
6063	unsigned long size;
6064	struct folio *folio;
6065	pte_t new_pte;
6066	bool new_folio, new_pagecache_folio = false;
6067	u32 hash = hugetlb_fault_mutex_hash(mapping, vmf->pgoff);
 
6068
6069	/*
6070	 * Currently, we are forced to kill the process in the event the
6071	 * original mapper has unmapped pages from the child due to a failed
6072	 * COW/unsharing. Warn that such a situation has occurred as it may not
6073	 * be obvious.
6074	 */
6075	if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
6076		pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
6077			   current->pid);
6078		goto out;
6079	}
6080
6081	/*
6082	 * Use page lock to guard against racing truncation
6083	 * before we get page_table_lock.
 
6084	 */
6085	new_folio = false;
6086	folio = filemap_lock_hugetlb_folio(h, mapping, vmf->pgoff);
6087	if (IS_ERR(folio)) {
6088		size = i_size_read(mapping->host) >> huge_page_shift(h);
6089		if (vmf->pgoff >= size)
6090			goto out;
6091		/* Check for page in userfault range */
 
 
 
6092		if (userfaultfd_missing(vma)) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6093			/*
6094			 * Since hugetlb_no_page() was examining pte
6095			 * without pgtable lock, we need to re-test under
6096			 * lock because the pte may not be stable and could
6097			 * have changed from under us.  Try to detect
6098			 * either changed or during-changing ptes and retry
6099			 * properly when needed.
6100			 *
6101			 * Note that userfaultfd is actually fine with
6102			 * false positives (e.g. caused by pte changed),
6103			 * but not wrong logical events (e.g. caused by
6104			 * reading a pte during changing).  The latter can
6105			 * confuse the userspace, so the strictness is very
6106			 * much preferred.  E.g., MISSING event should
6107			 * never happen on the page after UFFDIO_COPY has
6108			 * correctly installed the page and returned.
6109			 */
6110			if (!hugetlb_pte_stable(h, mm, vmf->address, vmf->pte, vmf->orig_pte)) {
6111				ret = 0;
6112				goto out;
6113			}
6114
6115			return hugetlb_handle_userfault(vmf, mapping,
6116							VM_UFFD_MISSING);
6117		}
6118
6119		if (!(vma->vm_flags & VM_MAYSHARE)) {
6120			ret = __vmf_anon_prepare(vmf);
6121			if (unlikely(ret))
6122				goto out;
6123		}
6124
6125		folio = alloc_hugetlb_folio(vma, vmf->address, 0);
6126		if (IS_ERR(folio)) {
6127			/*
6128			 * Returning error will result in faulting task being
6129			 * sent SIGBUS.  The hugetlb fault mutex prevents two
6130			 * tasks from racing to fault in the same page which
6131			 * could result in false unable to allocate errors.
6132			 * Page migration does not take the fault mutex, but
6133			 * does a clear then write of pte's under page table
6134			 * lock.  Page fault code could race with migration,
6135			 * notice the clear pte and try to allocate a page
6136			 * here.  Before returning error, get ptl and make
6137			 * sure there really is no pte entry.
6138			 */
6139			if (hugetlb_pte_stable(h, mm, vmf->address, vmf->pte, vmf->orig_pte))
6140				ret = vmf_error(PTR_ERR(folio));
6141			else
6142				ret = 0;
 
 
 
 
 
6143			goto out;
6144		}
6145		folio_zero_user(folio, vmf->real_address);
6146		__folio_mark_uptodate(folio);
6147		new_folio = true;
6148
6149		if (vma->vm_flags & VM_MAYSHARE) {
6150			int err = hugetlb_add_to_page_cache(folio, mapping,
6151							vmf->pgoff);
6152			if (err) {
6153				/*
6154				 * err can't be -EEXIST which implies someone
6155				 * else consumed the reservation since hugetlb
6156				 * fault mutex is held when add a hugetlb page
6157				 * to the page cache. So it's safe to call
6158				 * restore_reserve_on_error() here.
6159				 */
6160				restore_reserve_on_error(h, vma, vmf->address,
6161							folio);
6162				folio_put(folio);
6163				ret = VM_FAULT_SIGBUS;
6164				goto out;
6165			}
6166			new_pagecache_folio = true;
6167		} else {
6168			folio_lock(folio);
 
 
 
 
6169			anon_rmap = 1;
6170		}
6171	} else {
6172		/*
6173		 * If memory error occurs between mmap() and fault, some process
6174		 * don't have hwpoisoned swap entry for errored virtual address.
6175		 * So we need to block hugepage fault by PG_hwpoison bit check.
6176		 */
6177		if (unlikely(folio_test_hwpoison(folio))) {
6178			ret = VM_FAULT_HWPOISON_LARGE |
6179				VM_FAULT_SET_HINDEX(hstate_index(h));
6180			goto backout_unlocked;
6181		}
6182
6183		/* Check for page in userfault range. */
6184		if (userfaultfd_minor(vma)) {
6185			folio_unlock(folio);
6186			folio_put(folio);
6187			/* See comment in userfaultfd_missing() block above */
6188			if (!hugetlb_pte_stable(h, mm, vmf->address, vmf->pte, vmf->orig_pte)) {
6189				ret = 0;
6190				goto out;
6191			}
6192			return hugetlb_handle_userfault(vmf, mapping,
6193							VM_UFFD_MINOR);
6194		}
6195	}
6196
6197	/*
6198	 * If we are going to COW a private mapping later, we examine the
6199	 * pending reservations for this page now. This will ensure that
6200	 * any allocations necessary to record that reservation occur outside
6201	 * the spinlock.
6202	 */
6203	if ((vmf->flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
6204		if (vma_needs_reservation(h, vma, vmf->address) < 0) {
6205			ret = VM_FAULT_OOM;
6206			goto backout_unlocked;
6207		}
6208		/* Just decrements count, does not deallocate */
6209		vma_end_reservation(h, vma, vmf->address);
6210	}
6211
6212	vmf->ptl = huge_pte_lock(h, mm, vmf->pte);
6213	ret = 0;
6214	/* If pte changed from under us, retry */
6215	if (!pte_same(huge_ptep_get(mm, vmf->address, vmf->pte), vmf->orig_pte))
6216		goto backout;
6217
6218	if (anon_rmap)
6219		hugetlb_add_new_anon_rmap(folio, vma, vmf->address);
6220	else
6221		hugetlb_add_file_rmap(folio);
6222	new_pte = make_huge_pte(vma, &folio->page, ((vma->vm_flags & VM_WRITE)
 
6223				&& (vma->vm_flags & VM_SHARED)));
6224	/*
6225	 * If this pte was previously wr-protected, keep it wr-protected even
6226	 * if populated.
6227	 */
6228	if (unlikely(pte_marker_uffd_wp(vmf->orig_pte)))
6229		new_pte = huge_pte_mkuffd_wp(new_pte);
6230	set_huge_pte_at(mm, vmf->address, vmf->pte, new_pte, huge_page_size(h));
6231
6232	hugetlb_count_add(pages_per_huge_page(h), mm);
6233	if ((vmf->flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
6234		/* Optimization, do the COW without a second fault */
6235		ret = hugetlb_wp(folio, vmf);
6236	}
6237
6238	spin_unlock(vmf->ptl);
6239
6240	/*
6241	 * Only set hugetlb_migratable in newly allocated pages.  Existing pages
6242	 * found in the pagecache may not have hugetlb_migratable if they have
6243	 * been isolated for migration.
6244	 */
6245	if (new_folio)
6246		folio_set_hugetlb_migratable(folio);
6247
6248	folio_unlock(folio);
6249out:
6250	hugetlb_vma_unlock_read(vma);
6251
6252	/*
6253	 * We must check to release the per-VMA lock. __vmf_anon_prepare() is
6254	 * the only way ret can be set to VM_FAULT_RETRY.
6255	 */
6256	if (unlikely(ret & VM_FAULT_RETRY))
6257		vma_end_read(vma);
6258
6259	mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6260	return ret;
6261
6262backout:
6263	spin_unlock(vmf->ptl);
6264backout_unlocked:
6265	if (new_folio && !new_pagecache_folio)
6266		restore_reserve_on_error(h, vma, vmf->address, folio);
6267
6268	folio_unlock(folio);
6269	folio_put(folio);
6270	goto out;
6271}
6272
6273#ifdef CONFIG_SMP
6274u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
6275{
6276	unsigned long key[2];
6277	u32 hash;
6278
6279	key[0] = (unsigned long) mapping;
6280	key[1] = idx;
6281
6282	hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0);
6283
6284	return hash & (num_fault_mutexes - 1);
6285}
6286#else
6287/*
6288 * For uniprocessor systems we always use a single mutex, so just
6289 * return 0 and avoid the hashing overhead.
6290 */
6291u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
6292{
6293	return 0;
6294}
6295#endif
6296
6297vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
6298			unsigned long address, unsigned int flags)
6299{
 
 
6300	vm_fault_t ret;
6301	u32 hash;
6302	struct folio *folio = NULL;
6303	struct folio *pagecache_folio = NULL;
 
6304	struct hstate *h = hstate_vma(vma);
6305	struct address_space *mapping;
6306	int need_wait_lock = 0;
6307	struct vm_fault vmf = {
6308		.vma = vma,
6309		.address = address & huge_page_mask(h),
6310		.real_address = address,
6311		.flags = flags,
6312		.pgoff = vma_hugecache_offset(h, vma,
6313				address & huge_page_mask(h)),
6314		/* TODO: Track hugetlb faults using vm_fault */
6315
 
 
6316		/*
6317		 * Some fields may not be initialized, be careful as it may
6318		 * be hard to debug if called functions make assumptions
6319		 */
6320	};
 
 
 
 
 
 
 
 
6321
6322	/*
6323	 * Serialize hugepage allocation and instantiation, so that we don't
6324	 * get spurious allocation failures if two CPUs race to instantiate
6325	 * the same page in the page cache.
 
 
 
 
 
 
6326	 */
6327	mapping = vma->vm_file->f_mapping;
6328	hash = hugetlb_fault_mutex_hash(mapping, vmf.pgoff);
6329	mutex_lock(&hugetlb_fault_mutex_table[hash]);
6330
6331	/*
6332	 * Acquire vma lock before calling huge_pte_alloc and hold
6333	 * until finished with vmf.pte.  This prevents huge_pmd_unshare from
6334	 * being called elsewhere and making the vmf.pte no longer valid.
6335	 */
6336	hugetlb_vma_lock_read(vma);
6337	vmf.pte = huge_pte_alloc(mm, vma, vmf.address, huge_page_size(h));
6338	if (!vmf.pte) {
6339		hugetlb_vma_unlock_read(vma);
6340		mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6341		return VM_FAULT_OOM;
6342	}
6343
6344	vmf.orig_pte = huge_ptep_get(mm, vmf.address, vmf.pte);
6345	if (huge_pte_none_mostly(vmf.orig_pte)) {
6346		if (is_pte_marker(vmf.orig_pte)) {
6347			pte_marker marker =
6348				pte_marker_get(pte_to_swp_entry(vmf.orig_pte));
6349
6350			if (marker & PTE_MARKER_POISONED) {
6351				ret = VM_FAULT_HWPOISON_LARGE |
6352				      VM_FAULT_SET_HINDEX(hstate_index(h));
6353				goto out_mutex;
6354			} else if (WARN_ON_ONCE(marker & PTE_MARKER_GUARD)) {
6355				/* This isn't supported in hugetlb. */
6356				ret = VM_FAULT_SIGSEGV;
6357				goto out_mutex;
6358			}
6359		}
6360
6361		/*
6362		 * Other PTE markers should be handled the same way as none PTE.
6363		 *
6364		 * hugetlb_no_page will drop vma lock and hugetlb fault
6365		 * mutex internally, which make us return immediately.
6366		 */
6367		return hugetlb_no_page(mapping, &vmf);
6368	}
6369
6370	ret = 0;
6371
6372	/*
6373	 * vmf.orig_pte could be a migration/hwpoison vmf.orig_pte at this
6374	 * point, so this check prevents the kernel from going below assuming
6375	 * that we have an active hugepage in pagecache. This goto expects
6376	 * the 2nd page fault, and is_hugetlb_entry_(migration|hwpoisoned)
6377	 * check will properly handle it.
6378	 */
6379	if (!pte_present(vmf.orig_pte)) {
6380		if (unlikely(is_hugetlb_entry_migration(vmf.orig_pte))) {
6381			/*
6382			 * Release the hugetlb fault lock now, but retain
6383			 * the vma lock, because it is needed to guard the
6384			 * huge_pte_lockptr() later in
6385			 * migration_entry_wait_huge(). The vma lock will
6386			 * be released there.
6387			 */
6388			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6389			migration_entry_wait_huge(vma, vmf.address, vmf.pte);
6390			return 0;
6391		} else if (unlikely(is_hugetlb_entry_hwpoisoned(vmf.orig_pte)))
6392			ret = VM_FAULT_HWPOISON_LARGE |
6393			    VM_FAULT_SET_HINDEX(hstate_index(h));
6394		goto out_mutex;
6395	}
6396
6397	/*
6398	 * If we are going to COW/unshare the mapping later, we examine the
6399	 * pending reservations for this page now. This will ensure that any
6400	 * allocations necessary to record that reservation occur outside the
6401	 * spinlock. Also lookup the pagecache page now as it is used to
6402	 * determine if a reservation has been consumed.
 
6403	 */
6404	if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) &&
6405	    !(vma->vm_flags & VM_MAYSHARE) && !huge_pte_write(vmf.orig_pte)) {
6406		if (vma_needs_reservation(h, vma, vmf.address) < 0) {
6407			ret = VM_FAULT_OOM;
6408			goto out_mutex;
6409		}
6410		/* Just decrements count, does not deallocate */
6411		vma_end_reservation(h, vma, vmf.address);
6412
6413		pagecache_folio = filemap_lock_hugetlb_folio(h, mapping,
6414							     vmf.pgoff);
6415		if (IS_ERR(pagecache_folio))
6416			pagecache_folio = NULL;
6417	}
6418
6419	vmf.ptl = huge_pte_lock(h, mm, vmf.pte);
6420
6421	/* Check for a racing update before calling hugetlb_wp() */
6422	if (unlikely(!pte_same(vmf.orig_pte, huge_ptep_get(mm, vmf.address, vmf.pte))))
6423		goto out_ptl;
6424
6425	/* Handle userfault-wp first, before trying to lock more pages */
6426	if (userfaultfd_wp(vma) && huge_pte_uffd_wp(huge_ptep_get(mm, vmf.address, vmf.pte)) &&
6427	    (flags & FAULT_FLAG_WRITE) && !huge_pte_write(vmf.orig_pte)) {
6428		if (!userfaultfd_wp_async(vma)) {
6429			spin_unlock(vmf.ptl);
6430			if (pagecache_folio) {
6431				folio_unlock(pagecache_folio);
6432				folio_put(pagecache_folio);
6433			}
6434			hugetlb_vma_unlock_read(vma);
6435			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6436			return handle_userfault(&vmf, VM_UFFD_WP);
6437		}
6438
6439		vmf.orig_pte = huge_pte_clear_uffd_wp(vmf.orig_pte);
6440		set_huge_pte_at(mm, vmf.address, vmf.pte, vmf.orig_pte,
6441				huge_page_size(hstate_vma(vma)));
6442		/* Fallthrough to CoW */
6443	}
6444
6445	/*
6446	 * hugetlb_wp() requires page locks of pte_page(vmf.orig_pte) and
6447	 * pagecache_folio, so here we need take the former one
6448	 * when folio != pagecache_folio or !pagecache_folio.
6449	 */
6450	folio = page_folio(pte_page(vmf.orig_pte));
6451	if (folio != pagecache_folio)
6452		if (!folio_trylock(folio)) {
6453			need_wait_lock = 1;
6454			goto out_ptl;
6455		}
6456
6457	folio_get(folio);
6458
6459	if (flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) {
6460		if (!huge_pte_write(vmf.orig_pte)) {
6461			ret = hugetlb_wp(pagecache_folio, &vmf);
 
6462			goto out_put_page;
6463		} else if (likely(flags & FAULT_FLAG_WRITE)) {
6464			vmf.orig_pte = huge_pte_mkdirty(vmf.orig_pte);
6465		}
 
6466	}
6467	vmf.orig_pte = pte_mkyoung(vmf.orig_pte);
6468	if (huge_ptep_set_access_flags(vma, vmf.address, vmf.pte, vmf.orig_pte,
6469						flags & FAULT_FLAG_WRITE))
6470		update_mmu_cache(vma, vmf.address, vmf.pte);
6471out_put_page:
6472	if (folio != pagecache_folio)
6473		folio_unlock(folio);
6474	folio_put(folio);
6475out_ptl:
6476	spin_unlock(vmf.ptl);
6477
6478	if (pagecache_folio) {
6479		folio_unlock(pagecache_folio);
6480		folio_put(pagecache_folio);
6481	}
6482out_mutex:
6483	hugetlb_vma_unlock_read(vma);
6484
6485	/*
6486	 * We must check to release the per-VMA lock. __vmf_anon_prepare() in
6487	 * hugetlb_wp() is the only way ret can be set to VM_FAULT_RETRY.
6488	 */
6489	if (unlikely(ret & VM_FAULT_RETRY))
6490		vma_end_read(vma);
6491
6492	mutex_unlock(&hugetlb_fault_mutex_table[hash]);
 
6493	/*
6494	 * Generally it's safe to hold refcount during waiting page lock. But
6495	 * here we just wait to defer the next page fault to avoid busy loop and
6496	 * the page is not used after unlocked before returning from the current
6497	 * page fault. So we are safe from accessing freed page, even if we wait
6498	 * here without taking refcount.
6499	 */
6500	if (need_wait_lock)
6501		folio_wait_locked(folio);
6502	return ret;
6503}
6504
6505#ifdef CONFIG_USERFAULTFD
6506/*
6507 * Can probably be eliminated, but still used by hugetlb_mfill_atomic_pte().
6508 */
6509static struct folio *alloc_hugetlb_folio_vma(struct hstate *h,
6510		struct vm_area_struct *vma, unsigned long address)
6511{
6512	struct mempolicy *mpol;
6513	nodemask_t *nodemask;
6514	struct folio *folio;
6515	gfp_t gfp_mask;
6516	int node;
6517
6518	gfp_mask = htlb_alloc_mask(h);
6519	node = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
6520	/*
6521	 * This is used to allocate a temporary hugetlb to hold the copied
6522	 * content, which will then be copied again to the final hugetlb
6523	 * consuming a reservation. Set the alloc_fallback to false to indicate
6524	 * that breaking the per-node hugetlb pool is not allowed in this case.
6525	 */
6526	folio = alloc_hugetlb_folio_nodemask(h, node, nodemask, gfp_mask, false);
6527	mpol_cond_put(mpol);
6528
6529	return folio;
6530}
6531
6532/*
6533 * Used by userfaultfd UFFDIO_* ioctls. Based on userfaultfd's mfill_atomic_pte
6534 * with modifications for hugetlb pages.
6535 */
6536int hugetlb_mfill_atomic_pte(pte_t *dst_pte,
6537			     struct vm_area_struct *dst_vma,
6538			     unsigned long dst_addr,
6539			     unsigned long src_addr,
6540			     uffd_flags_t flags,
6541			     struct folio **foliop)
6542{
6543	struct mm_struct *dst_mm = dst_vma->vm_mm;
6544	bool is_continue = uffd_flags_mode_is(flags, MFILL_ATOMIC_CONTINUE);
6545	bool wp_enabled = (flags & MFILL_ATOMIC_WP);
6546	struct hstate *h = hstate_vma(dst_vma);
6547	struct address_space *mapping = dst_vma->vm_file->f_mapping;
6548	pgoff_t idx = vma_hugecache_offset(h, dst_vma, dst_addr);
6549	unsigned long size = huge_page_size(h);
6550	int vm_shared = dst_vma->vm_flags & VM_SHARED;
 
6551	pte_t _dst_pte;
6552	spinlock_t *ptl;
6553	int ret = -ENOMEM;
6554	struct folio *folio;
6555	int writable;
6556	bool folio_in_pagecache = false;
6557
6558	if (uffd_flags_mode_is(flags, MFILL_ATOMIC_POISON)) {
6559		ptl = huge_pte_lock(h, dst_mm, dst_pte);
6560
6561		/* Don't overwrite any existing PTEs (even markers) */
6562		if (!huge_pte_none(huge_ptep_get(dst_mm, dst_addr, dst_pte))) {
6563			spin_unlock(ptl);
6564			return -EEXIST;
6565		}
6566
6567		_dst_pte = make_pte_marker(PTE_MARKER_POISONED);
6568		set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte, size);
6569
6570		/* No need to invalidate - it was non-present before */
6571		update_mmu_cache(dst_vma, dst_addr, dst_pte);
6572
6573		spin_unlock(ptl);
6574		return 0;
6575	}
6576
6577	if (is_continue) {
6578		ret = -EFAULT;
6579		folio = filemap_lock_hugetlb_folio(h, mapping, idx);
6580		if (IS_ERR(folio))
6581			goto out;
6582		folio_in_pagecache = true;
6583	} else if (!*foliop) {
6584		/* If a folio already exists, then it's UFFDIO_COPY for
6585		 * a non-missing case. Return -EEXIST.
6586		 */
6587		if (vm_shared &&
6588		    hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
6589			ret = -EEXIST;
6590			goto out;
6591		}
6592
6593		folio = alloc_hugetlb_folio(dst_vma, dst_addr, 0);
6594		if (IS_ERR(folio)) {
6595			ret = -ENOMEM;
 
6596			goto out;
6597		}
6598
6599		ret = copy_folio_from_user(folio, (const void __user *) src_addr,
6600					   false);
 
6601
6602		/* fallback to copy_from_user outside mmap_lock */
6603		if (unlikely(ret)) {
6604			ret = -ENOENT;
6605			/* Free the allocated folio which may have
6606			 * consumed a reservation.
6607			 */
6608			restore_reserve_on_error(h, dst_vma, dst_addr, folio);
6609			folio_put(folio);
6610
6611			/* Allocate a temporary folio to hold the copied
6612			 * contents.
6613			 */
6614			folio = alloc_hugetlb_folio_vma(h, dst_vma, dst_addr);
6615			if (!folio) {
6616				ret = -ENOMEM;
6617				goto out;
6618			}
6619			*foliop = folio;
6620			/* Set the outparam foliop and return to the caller to
6621			 * copy the contents outside the lock. Don't free the
6622			 * folio.
6623			 */
6624			goto out;
6625		}
6626	} else {
6627		if (vm_shared &&
6628		    hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
6629			folio_put(*foliop);
6630			ret = -EEXIST;
6631			*foliop = NULL;
6632			goto out;
6633		}
6634
6635		folio = alloc_hugetlb_folio(dst_vma, dst_addr, 0);
6636		if (IS_ERR(folio)) {
6637			folio_put(*foliop);
6638			ret = -ENOMEM;
6639			*foliop = NULL;
6640			goto out;
6641		}
6642		ret = copy_user_large_folio(folio, *foliop, dst_addr, dst_vma);
6643		folio_put(*foliop);
6644		*foliop = NULL;
6645		if (ret) {
6646			folio_put(folio);
6647			goto out;
6648		}
6649	}
6650
6651	/*
6652	 * If we just allocated a new page, we need a memory barrier to ensure
6653	 * that preceding stores to the page become visible before the
6654	 * set_pte_at() write. The memory barrier inside __folio_mark_uptodate
6655	 * is what we need.
6656	 *
6657	 * In the case where we have not allocated a new page (is_continue),
6658	 * the page must already be uptodate. UFFDIO_CONTINUE already includes
6659	 * an earlier smp_wmb() to ensure that prior stores will be visible
6660	 * before the set_pte_at() write.
6661	 */
6662	if (!is_continue)
6663		__folio_mark_uptodate(folio);
6664	else
6665		WARN_ON_ONCE(!folio_test_uptodate(folio));
6666
6667	/* Add shared, newly allocated pages to the page cache. */
6668	if (vm_shared && !is_continue) {
 
 
 
 
 
 
6669		ret = -EFAULT;
6670		if (idx >= (i_size_read(mapping->host) >> huge_page_shift(h)))
6671			goto out_release_nounlock;
6672
6673		/*
6674		 * Serialization between remove_inode_hugepages() and
6675		 * hugetlb_add_to_page_cache() below happens through the
6676		 * hugetlb_fault_mutex_table that here must be hold by
6677		 * the caller.
6678		 */
6679		ret = hugetlb_add_to_page_cache(folio, mapping, idx);
6680		if (ret)
6681			goto out_release_nounlock;
6682		folio_in_pagecache = true;
6683	}
6684
6685	ptl = huge_pte_lock(h, dst_mm, dst_pte);
 
6686
6687	ret = -EIO;
6688	if (folio_test_hwpoison(folio))
 
 
 
 
 
 
 
 
 
 
6689		goto out_release_unlock;
6690
6691	/*
6692	 * We allow to overwrite a pte marker: consider when both MISSING|WP
6693	 * registered, we firstly wr-protect a none pte which has no page cache
6694	 * page backing it, then access the page.
6695	 */
6696	ret = -EEXIST;
6697	if (!huge_pte_none_mostly(huge_ptep_get(dst_mm, dst_addr, dst_pte)))
6698		goto out_release_unlock;
6699
6700	if (folio_in_pagecache)
6701		hugetlb_add_file_rmap(folio);
6702	else
6703		hugetlb_add_new_anon_rmap(folio, dst_vma, dst_addr);
6704
6705	/*
6706	 * For either: (1) CONTINUE on a non-shared VMA, or (2) UFFDIO_COPY
6707	 * with wp flag set, don't set pte write bit.
6708	 */
6709	if (wp_enabled || (is_continue && !vm_shared))
6710		writable = 0;
6711	else
6712		writable = dst_vma->vm_flags & VM_WRITE;
6713
6714	_dst_pte = make_huge_pte(dst_vma, &folio->page, writable);
6715	/*
6716	 * Always mark UFFDIO_COPY page dirty; note that this may not be
6717	 * extremely important for hugetlbfs for now since swapping is not
6718	 * supported, but we should still be clear in that this page cannot be
6719	 * thrown away at will, even if write bit not set.
6720	 */
6721	_dst_pte = huge_pte_mkdirty(_dst_pte);
6722	_dst_pte = pte_mkyoung(_dst_pte);
6723
6724	if (wp_enabled)
6725		_dst_pte = huge_pte_mkuffd_wp(_dst_pte);
6726
6727	set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte, size);
6728
 
 
6729	hugetlb_count_add(pages_per_huge_page(h), dst_mm);
6730
6731	/* No need to invalidate - it was non-present before */
6732	update_mmu_cache(dst_vma, dst_addr, dst_pte);
6733
6734	spin_unlock(ptl);
6735	if (!is_continue)
6736		folio_set_hugetlb_migratable(folio);
6737	if (vm_shared || is_continue)
6738		folio_unlock(folio);
6739	ret = 0;
6740out:
6741	return ret;
6742out_release_unlock:
6743	spin_unlock(ptl);
6744	if (vm_shared || is_continue)
6745		folio_unlock(folio);
6746out_release_nounlock:
6747	if (!folio_in_pagecache)
6748		restore_reserve_on_error(h, dst_vma, dst_addr, folio);
6749	folio_put(folio);
6750	goto out;
6751}
6752#endif /* CONFIG_USERFAULTFD */
6753
6754long hugetlb_change_protection(struct vm_area_struct *vma,
6755		unsigned long address, unsigned long end,
6756		pgprot_t newprot, unsigned long cp_flags)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6757{
6758	struct mm_struct *mm = vma->vm_mm;
6759	unsigned long start = address;
6760	pte_t *ptep;
6761	pte_t pte;
6762	struct hstate *h = hstate_vma(vma);
6763	long pages = 0, psize = huge_page_size(h);
6764	bool shared_pmd = false;
6765	struct mmu_notifier_range range;
6766	unsigned long last_addr_mask;
6767	bool uffd_wp = cp_flags & MM_CP_UFFD_WP;
6768	bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE;
6769
6770	/*
6771	 * In the case of shared PMDs, the area to flush could be beyond
6772	 * start/end.  Set range.start/range.end to cover the maximum possible
6773	 * range if PMD sharing is possible.
6774	 */
6775	mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA,
6776				0, mm, start, end);
6777	adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
6778
6779	BUG_ON(address >= end);
6780	flush_cache_range(vma, range.start, range.end);
6781
6782	mmu_notifier_invalidate_range_start(&range);
6783	hugetlb_vma_lock_write(vma);
6784	i_mmap_lock_write(vma->vm_file->f_mapping);
6785	last_addr_mask = hugetlb_mask_last_page(h);
6786	for (; address < end; address += psize) {
6787		spinlock_t *ptl;
6788		ptep = hugetlb_walk(vma, address, psize);
6789		if (!ptep) {
6790			if (!uffd_wp) {
6791				address |= last_addr_mask;
6792				continue;
6793			}
6794			/*
6795			 * Userfaultfd wr-protect requires pgtable
6796			 * pre-allocations to install pte markers.
6797			 */
6798			ptep = huge_pte_alloc(mm, vma, address, psize);
6799			if (!ptep) {
6800				pages = -ENOMEM;
6801				break;
6802			}
6803		}
6804		ptl = huge_pte_lock(h, mm, ptep);
6805		if (huge_pmd_unshare(mm, vma, address, ptep)) {
6806			/*
6807			 * When uffd-wp is enabled on the vma, unshare
6808			 * shouldn't happen at all.  Warn about it if it
6809			 * happened due to some reason.
6810			 */
6811			WARN_ON_ONCE(uffd_wp || uffd_wp_resolve);
6812			pages++;
6813			spin_unlock(ptl);
6814			shared_pmd = true;
6815			address |= last_addr_mask;
6816			continue;
6817		}
6818		pte = huge_ptep_get(mm, address, ptep);
6819		if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
6820			/* Nothing to do. */
6821		} else if (unlikely(is_hugetlb_entry_migration(pte))) {
 
 
6822			swp_entry_t entry = pte_to_swp_entry(pte);
6823			struct page *page = pfn_swap_entry_to_page(entry);
6824			pte_t newpte = pte;
6825
6826			if (is_writable_migration_entry(entry)) {
6827				if (PageAnon(page))
6828					entry = make_readable_exclusive_migration_entry(
6829								swp_offset(entry));
6830				else
6831					entry = make_readable_migration_entry(
6832								swp_offset(entry));
6833				newpte = swp_entry_to_pte(entry);
 
 
6834				pages++;
6835			}
6836
6837			if (uffd_wp)
6838				newpte = pte_swp_mkuffd_wp(newpte);
6839			else if (uffd_wp_resolve)
6840				newpte = pte_swp_clear_uffd_wp(newpte);
6841			if (!pte_same(pte, newpte))
6842				set_huge_pte_at(mm, address, ptep, newpte, psize);
6843		} else if (unlikely(is_pte_marker(pte))) {
6844			/*
6845			 * Do nothing on a poison marker; page is
6846			 * corrupted, permissons do not apply.  Here
6847			 * pte_marker_uffd_wp()==true implies !poison
6848			 * because they're mutual exclusive.
6849			 */
6850			if (pte_marker_uffd_wp(pte) && uffd_wp_resolve)
6851				/* Safe to modify directly (non-present->none). */
6852				huge_pte_clear(mm, address, ptep, psize);
6853		} else if (!huge_pte_none(pte)) {
6854			pte_t old_pte;
6855			unsigned int shift = huge_page_shift(hstate_vma(vma));
6856
6857			old_pte = huge_ptep_modify_prot_start(vma, address, ptep);
6858			pte = huge_pte_modify(old_pte, newprot);
6859			pte = arch_make_huge_pte(pte, shift, vma->vm_flags);
6860			if (uffd_wp)
6861				pte = huge_pte_mkuffd_wp(pte);
6862			else if (uffd_wp_resolve)
6863				pte = huge_pte_clear_uffd_wp(pte);
6864			huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte);
6865			pages++;
6866		} else {
6867			/* None pte */
6868			if (unlikely(uffd_wp))
6869				/* Safe to modify directly (none->non-present). */
6870				set_huge_pte_at(mm, address, ptep,
6871						make_pte_marker(PTE_MARKER_UFFD_WP),
6872						psize);
6873		}
6874		spin_unlock(ptl);
6875	}
6876	/*
6877	 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
6878	 * may have cleared our pud entry and done put_page on the page table:
6879	 * once we release i_mmap_rwsem, another task can do the final put_page
6880	 * and that page table be reused and filled with junk.  If we actually
6881	 * did unshare a page of pmds, flush the range corresponding to the pud.
6882	 */
6883	if (shared_pmd)
6884		flush_hugetlb_tlb_range(vma, range.start, range.end);
6885	else
6886		flush_hugetlb_tlb_range(vma, start, end);
6887	/*
6888	 * No need to call mmu_notifier_arch_invalidate_secondary_tlbs() we are
6889	 * downgrading page table protection not changing it to point to a new
6890	 * page.
6891	 *
6892	 * See Documentation/mm/mmu_notifier.rst
6893	 */
6894	i_mmap_unlock_write(vma->vm_file->f_mapping);
6895	hugetlb_vma_unlock_write(vma);
6896	mmu_notifier_invalidate_range_end(&range);
6897
6898	return pages > 0 ? (pages << h->order) : pages;
6899}
6900
6901/* Return true if reservation was successful, false otherwise.  */
6902bool hugetlb_reserve_pages(struct inode *inode,
6903					long from, long to,
6904					struct vm_area_struct *vma,
6905					vm_flags_t vm_flags)
6906{
6907	long chg = -1, add = -1;
6908	struct hstate *h = hstate_inode(inode);
6909	struct hugepage_subpool *spool = subpool_inode(inode);
6910	struct resv_map *resv_map;
6911	struct hugetlb_cgroup *h_cg = NULL;
6912	long gbl_reserve, regions_needed = 0;
6913
6914	/* This should never happen */
6915	if (from > to) {
6916		VM_WARN(1, "%s called with a negative range\n", __func__);
6917		return false;
6918	}
6919
6920	/*
6921	 * vma specific semaphore used for pmd sharing and fault/truncation
6922	 * synchronization
6923	 */
6924	hugetlb_vma_lock_alloc(vma);
6925
6926	/*
6927	 * Only apply hugepage reservation if asked. At fault time, an
6928	 * attempt will be made for VM_NORESERVE to allocate a page
6929	 * without using reserves
6930	 */
6931	if (vm_flags & VM_NORESERVE)
6932		return true;
6933
6934	/*
6935	 * Shared mappings base their reservation on the number of pages that
6936	 * are already allocated on behalf of the file. Private mappings need
6937	 * to reserve the full area even if read-only as mprotect() may be
6938	 * called to make the mapping read-write. Assume !vma is a shm mapping
6939	 */
6940	if (!vma || vma->vm_flags & VM_MAYSHARE) {
6941		/*
6942		 * resv_map can not be NULL as hugetlb_reserve_pages is only
6943		 * called for inodes for which resv_maps were created (see
6944		 * hugetlbfs_get_inode).
6945		 */
6946		resv_map = inode_resv_map(inode);
6947
6948		chg = region_chg(resv_map, from, to, &regions_needed);
 
6949	} else {
6950		/* Private mapping. */
6951		resv_map = resv_map_alloc();
6952		if (!resv_map)
6953			goto out_err;
6954
6955		chg = to - from;
6956
6957		set_vma_resv_map(vma, resv_map);
6958		set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
6959	}
6960
6961	if (chg < 0)
 
6962		goto out_err;
 
6963
6964	if (hugetlb_cgroup_charge_cgroup_rsvd(hstate_index(h),
6965				chg * pages_per_huge_page(h), &h_cg) < 0)
 
 
 
6966		goto out_err;
 
6967
6968	if (vma && !(vma->vm_flags & VM_MAYSHARE) && h_cg) {
6969		/* For private mappings, the hugetlb_cgroup uncharge info hangs
6970		 * of the resv_map.
6971		 */
6972		resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, h_cg, h);
6973	}
6974
6975	/*
6976	 * There must be enough pages in the subpool for the mapping. If
6977	 * the subpool has a minimum size, there may be some global
6978	 * reservations already in place (gbl_reserve).
6979	 */
6980	gbl_reserve = hugepage_subpool_get_pages(spool, chg);
6981	if (gbl_reserve < 0)
 
6982		goto out_uncharge_cgroup;
 
6983
6984	/*
6985	 * Check enough hugepages are available for the reservation.
6986	 * Hand the pages back to the subpool if there are not
6987	 */
6988	if (hugetlb_acct_memory(h, gbl_reserve) < 0)
 
6989		goto out_put_pages;
 
6990
6991	/*
6992	 * Account for the reservations made. Shared mappings record regions
6993	 * that have reservations as they are shared by multiple VMAs.
6994	 * When the last VMA disappears, the region map says how much
6995	 * the reservation was and the page cache tells how much of
6996	 * the reservation was consumed. Private mappings are per-VMA and
6997	 * only the consumed reservations are tracked. When the VMA
6998	 * disappears, the original reservation is the VMA size and the
6999	 * consumed reservations are stored in the map. Hence, nothing
7000	 * else has to be done for private mappings here
7001	 */
7002	if (!vma || vma->vm_flags & VM_MAYSHARE) {
7003		add = region_add(resv_map, from, to, regions_needed, h, h_cg);
7004
7005		if (unlikely(add < 0)) {
7006			hugetlb_acct_memory(h, -gbl_reserve);
7007			goto out_put_pages;
7008		} else if (unlikely(chg > add)) {
7009			/*
7010			 * pages in this range were added to the reserve
7011			 * map between region_chg and region_add.  This
7012			 * indicates a race with alloc_hugetlb_folio.  Adjust
7013			 * the subpool and reserve counts modified above
7014			 * based on the difference.
7015			 */
7016			long rsv_adjust;
7017
7018			/*
7019			 * hugetlb_cgroup_uncharge_cgroup_rsvd() will put the
7020			 * reference to h_cg->css. See comment below for detail.
7021			 */
7022			hugetlb_cgroup_uncharge_cgroup_rsvd(
7023				hstate_index(h),
7024				(chg - add) * pages_per_huge_page(h), h_cg);
7025
7026			rsv_adjust = hugepage_subpool_put_pages(spool,
7027								chg - add);
7028			hugetlb_acct_memory(h, -rsv_adjust);
7029		} else if (h_cg) {
7030			/*
7031			 * The file_regions will hold their own reference to
7032			 * h_cg->css. So we should release the reference held
7033			 * via hugetlb_cgroup_charge_cgroup_rsvd() when we are
7034			 * done.
7035			 */
7036			hugetlb_cgroup_put_rsvd_cgroup(h_cg);
7037		}
7038	}
7039	return true;
7040
7041out_put_pages:
7042	/* put back original number of pages, chg */
7043	(void)hugepage_subpool_put_pages(spool, chg);
7044out_uncharge_cgroup:
7045	hugetlb_cgroup_uncharge_cgroup_rsvd(hstate_index(h),
7046					    chg * pages_per_huge_page(h), h_cg);
7047out_err:
7048	hugetlb_vma_lock_free(vma);
7049	if (!vma || vma->vm_flags & VM_MAYSHARE)
7050		/* Only call region_abort if the region_chg succeeded but the
7051		 * region_add failed or didn't run.
7052		 */
7053		if (chg >= 0 && add < 0)
7054			region_abort(resv_map, from, to, regions_needed);
7055	if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
7056		kref_put(&resv_map->refs, resv_map_release);
7057		set_vma_resv_map(vma, NULL);
7058	}
7059	return false;
7060}
7061
7062long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
7063								long freed)
7064{
7065	struct hstate *h = hstate_inode(inode);
7066	struct resv_map *resv_map = inode_resv_map(inode);
7067	long chg = 0;
7068	struct hugepage_subpool *spool = subpool_inode(inode);
7069	long gbl_reserve;
7070
7071	/*
7072	 * Since this routine can be called in the evict inode path for all
7073	 * hugetlbfs inodes, resv_map could be NULL.
7074	 */
7075	if (resv_map) {
7076		chg = region_del(resv_map, start, end);
7077		/*
7078		 * region_del() can fail in the rare case where a region
7079		 * must be split and another region descriptor can not be
7080		 * allocated.  If end == LONG_MAX, it will not fail.
7081		 */
7082		if (chg < 0)
7083			return chg;
7084	}
7085
7086	spin_lock(&inode->i_lock);
7087	inode->i_blocks -= (blocks_per_huge_page(h) * freed);
7088	spin_unlock(&inode->i_lock);
7089
7090	/*
7091	 * If the subpool has a minimum size, the number of global
7092	 * reservations to be released may be adjusted.
7093	 *
7094	 * Note that !resv_map implies freed == 0. So (chg - freed)
7095	 * won't go negative.
7096	 */
7097	gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
7098	hugetlb_acct_memory(h, -gbl_reserve);
7099
7100	return 0;
7101}
7102
7103#ifdef CONFIG_HUGETLB_PMD_PAGE_TABLE_SHARING
7104static unsigned long page_table_shareable(struct vm_area_struct *svma,
7105				struct vm_area_struct *vma,
7106				unsigned long addr, pgoff_t idx)
7107{
7108	unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
7109				svma->vm_start;
7110	unsigned long sbase = saddr & PUD_MASK;
7111	unsigned long s_end = sbase + PUD_SIZE;
7112
7113	/* Allow segments to share if only one is marked locked */
7114	unsigned long vm_flags = vma->vm_flags & ~VM_LOCKED_MASK;
7115	unsigned long svm_flags = svma->vm_flags & ~VM_LOCKED_MASK;
7116
7117	/*
7118	 * match the virtual addresses, permission and the alignment of the
7119	 * page table page.
7120	 *
7121	 * Also, vma_lock (vm_private_data) is required for sharing.
7122	 */
7123	if (pmd_index(addr) != pmd_index(saddr) ||
7124	    vm_flags != svm_flags ||
7125	    !range_in_vma(svma, sbase, s_end) ||
7126	    !svma->vm_private_data)
7127		return 0;
7128
7129	return saddr;
7130}
7131
7132bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
7133{
7134	unsigned long start = addr & PUD_MASK;
7135	unsigned long end = start + PUD_SIZE;
7136
7137#ifdef CONFIG_USERFAULTFD
7138	if (uffd_disable_huge_pmd_share(vma))
7139		return false;
7140#endif
7141	/*
7142	 * check on proper vm_flags and page table alignment
7143	 */
7144	if (!(vma->vm_flags & VM_MAYSHARE))
7145		return false;
7146	if (!vma->vm_private_data)	/* vma lock required for sharing */
7147		return false;
7148	if (!range_in_vma(vma, start, end))
7149		return false;
7150	return true;
7151}
7152
7153/*
7154 * Determine if start,end range within vma could be mapped by shared pmd.
7155 * If yes, adjust start and end to cover range associated with possible
7156 * shared pmd mappings.
7157 */
7158void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
7159				unsigned long *start, unsigned long *end)
7160{
7161	unsigned long v_start = ALIGN(vma->vm_start, PUD_SIZE),
7162		v_end = ALIGN_DOWN(vma->vm_end, PUD_SIZE);
7163
7164	/*
7165	 * vma needs to span at least one aligned PUD size, and the range
7166	 * must be at least partially within in.
7167	 */
7168	if (!(vma->vm_flags & VM_MAYSHARE) || !(v_end > v_start) ||
7169		(*end <= v_start) || (*start >= v_end))
7170		return;
7171
7172	/* Extend the range to be PUD aligned for a worst case scenario */
7173	if (*start > v_start)
7174		*start = ALIGN_DOWN(*start, PUD_SIZE);
7175
7176	if (*end < v_end)
7177		*end = ALIGN(*end, PUD_SIZE);
 
 
 
 
7178}
7179
7180/*
7181 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
7182 * and returns the corresponding pte. While this is not necessary for the
7183 * !shared pmd case because we can allocate the pmd later as well, it makes the
7184 * code much cleaner. pmd allocation is essential for the shared case because
7185 * pud has to be populated inside the same i_mmap_rwsem section - otherwise
7186 * racing tasks could either miss the sharing (see huge_pte_offset) or select a
7187 * bad pmd for sharing.
 
 
7188 */
7189pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
7190		      unsigned long addr, pud_t *pud)
7191{
 
7192	struct address_space *mapping = vma->vm_file->f_mapping;
7193	pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
7194			vma->vm_pgoff;
7195	struct vm_area_struct *svma;
7196	unsigned long saddr;
7197	pte_t *spte = NULL;
7198	pte_t *pte;
 
 
 
 
7199
7200	i_mmap_lock_read(mapping);
7201	vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
7202		if (svma == vma)
7203			continue;
7204
7205		saddr = page_table_shareable(svma, vma, addr, idx);
7206		if (saddr) {
7207			spte = hugetlb_walk(svma, saddr,
7208					    vma_mmu_pagesize(svma));
7209			if (spte) {
7210				ptdesc_pmd_pts_inc(virt_to_ptdesc(spte));
7211				break;
7212			}
7213		}
7214	}
7215
7216	if (!spte)
7217		goto out;
7218
7219	spin_lock(&mm->page_table_lock);
7220	if (pud_none(*pud)) {
7221		pud_populate(mm, pud,
7222				(pmd_t *)((unsigned long)spte & PAGE_MASK));
7223		mm_inc_nr_pmds(mm);
7224	} else {
7225		ptdesc_pmd_pts_dec(virt_to_ptdesc(spte));
7226	}
7227	spin_unlock(&mm->page_table_lock);
7228out:
7229	pte = (pte_t *)pmd_alloc(mm, pud, addr);
7230	i_mmap_unlock_read(mapping);
7231	return pte;
7232}
7233
7234/*
7235 * unmap huge page backed by shared pte.
7236 *
7237 * Called with page table lock held.
 
 
 
 
7238 *
7239 * returns: 1 successfully unmapped a shared pte page
7240 *	    0 the underlying pte page is not shared, or it is the last user
7241 */
7242int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
7243					unsigned long addr, pte_t *ptep)
7244{
7245	unsigned long sz = huge_page_size(hstate_vma(vma));
7246	pgd_t *pgd = pgd_offset(mm, addr);
7247	p4d_t *p4d = p4d_offset(pgd, addr);
7248	pud_t *pud = pud_offset(p4d, addr);
7249
7250	i_mmap_assert_write_locked(vma->vm_file->f_mapping);
7251	hugetlb_vma_assert_locked(vma);
7252	if (sz != PMD_SIZE)
7253		return 0;
7254	if (!ptdesc_pmd_pts_count(virt_to_ptdesc(ptep)))
7255		return 0;
7256
7257	pud_clear(pud);
7258	ptdesc_pmd_pts_dec(virt_to_ptdesc(ptep));
7259	mm_dec_nr_pmds(mm);
 
7260	return 1;
7261}
7262
7263#else /* !CONFIG_HUGETLB_PMD_PAGE_TABLE_SHARING */
7264
7265pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
7266		      unsigned long addr, pud_t *pud)
7267{
7268	return NULL;
7269}
7270
7271int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
7272				unsigned long addr, pte_t *ptep)
7273{
7274	return 0;
7275}
7276
7277void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
7278				unsigned long *start, unsigned long *end)
7279{
7280}
7281
7282bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
7283{
7284	return false;
7285}
7286#endif /* CONFIG_HUGETLB_PMD_PAGE_TABLE_SHARING */
7287
7288#ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
7289pte_t *huge_pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
7290			unsigned long addr, unsigned long sz)
7291{
7292	pgd_t *pgd;
7293	p4d_t *p4d;
7294	pud_t *pud;
7295	pte_t *pte = NULL;
7296
7297	pgd = pgd_offset(mm, addr);
7298	p4d = p4d_alloc(mm, pgd, addr);
7299	if (!p4d)
7300		return NULL;
7301	pud = pud_alloc(mm, p4d, addr);
7302	if (pud) {
7303		if (sz == PUD_SIZE) {
7304			pte = (pte_t *)pud;
7305		} else {
7306			BUG_ON(sz != PMD_SIZE);
7307			if (want_pmd_share(vma, addr) && pud_none(*pud))
7308				pte = huge_pmd_share(mm, vma, addr, pud);
7309			else
7310				pte = (pte_t *)pmd_alloc(mm, pud, addr);
7311		}
7312	}
7313
7314	if (pte) {
7315		pte_t pteval = ptep_get_lockless(pte);
7316
7317		BUG_ON(pte_present(pteval) && !pte_huge(pteval));
7318	}
7319
7320	return pte;
7321}
7322
7323/*
7324 * huge_pte_offset() - Walk the page table to resolve the hugepage
7325 * entry at address @addr
7326 *
7327 * Return: Pointer to page table entry (PUD or PMD) for
7328 * address @addr, or NULL if a !p*d_present() entry is encountered and the
7329 * size @sz doesn't match the hugepage size at this level of the page
7330 * table.
7331 */
7332pte_t *huge_pte_offset(struct mm_struct *mm,
7333		       unsigned long addr, unsigned long sz)
7334{
7335	pgd_t *pgd;
7336	p4d_t *p4d;
7337	pud_t *pud;
7338	pmd_t *pmd;
7339
7340	pgd = pgd_offset(mm, addr);
7341	if (!pgd_present(*pgd))
7342		return NULL;
7343	p4d = p4d_offset(pgd, addr);
7344	if (!p4d_present(*p4d))
7345		return NULL;
7346
7347	pud = pud_offset(p4d, addr);
7348	if (sz == PUD_SIZE)
7349		/* must be pud huge, non-present or none */
7350		return (pte_t *)pud;
7351	if (!pud_present(*pud))
7352		return NULL;
7353	/* must have a valid entry and size to go further */
7354
7355	pmd = pmd_offset(pud, addr);
7356	/* must be pmd huge, non-present or none */
7357	return (pte_t *)pmd;
7358}
7359
 
 
7360/*
7361 * Return a mask that can be used to update an address to the last huge
7362 * page in a page table page mapping size.  Used to skip non-present
7363 * page table entries when linearly scanning address ranges.  Architectures
7364 * with unique huge page to page table relationships can define their own
7365 * version of this routine.
7366 */
7367unsigned long hugetlb_mask_last_page(struct hstate *h)
7368{
7369	unsigned long hp_size = huge_page_size(h);
7370
7371	if (hp_size == PUD_SIZE)
7372		return P4D_SIZE - PUD_SIZE;
7373	else if (hp_size == PMD_SIZE)
7374		return PUD_SIZE - PMD_SIZE;
7375	else
7376		return 0UL;
7377}
7378
7379#else
7380
7381/* See description above.  Architectures can provide their own version. */
7382__weak unsigned long hugetlb_mask_last_page(struct hstate *h)
7383{
7384#ifdef CONFIG_HUGETLB_PMD_PAGE_TABLE_SHARING
7385	if (huge_page_size(h) == PMD_SIZE)
7386		return PUD_SIZE - PMD_SIZE;
7387#endif
7388	return 0UL;
7389}
7390
7391#endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
7392
7393bool isolate_hugetlb(struct folio *folio, struct list_head *list)
7394{
7395	bool ret = true;
 
 
7396
7397	spin_lock_irq(&hugetlb_lock);
7398	if (!folio_test_hugetlb(folio) ||
7399	    !folio_test_hugetlb_migratable(folio) ||
7400	    !folio_try_get(folio)) {
7401		ret = false;
7402		goto unlock;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7403	}
7404	folio_clear_hugetlb_migratable(folio);
7405	list_move_tail(&folio->lru, list);
7406unlock:
7407	spin_unlock_irq(&hugetlb_lock);
7408	return ret;
7409}
7410
7411int get_hwpoison_hugetlb_folio(struct folio *folio, bool *hugetlb, bool unpoison)
 
 
7412{
7413	int ret = 0;
 
7414
7415	*hugetlb = false;
7416	spin_lock_irq(&hugetlb_lock);
7417	if (folio_test_hugetlb(folio)) {
7418		*hugetlb = true;
7419		if (folio_test_hugetlb_freed(folio))
7420			ret = 0;
7421		else if (folio_test_hugetlb_migratable(folio) || unpoison)
7422			ret = folio_try_get(folio);
7423		else
7424			ret = -EBUSY;
7425	}
7426	spin_unlock_irq(&hugetlb_lock);
7427	return ret;
7428}
7429
7430int get_huge_page_for_hwpoison(unsigned long pfn, int flags,
7431				bool *migratable_cleared)
7432{
7433	int ret;
 
 
 
 
7434
7435	spin_lock_irq(&hugetlb_lock);
7436	ret = __get_huge_page_for_hwpoison(pfn, flags, migratable_cleared);
7437	spin_unlock_irq(&hugetlb_lock);
 
 
 
 
 
 
 
 
 
 
 
7438	return ret;
7439}
7440
7441void folio_putback_active_hugetlb(struct folio *folio)
7442{
7443	spin_lock_irq(&hugetlb_lock);
7444	folio_set_hugetlb_migratable(folio);
7445	list_move_tail(&folio->lru, &(folio_hstate(folio))->hugepage_activelist);
7446	spin_unlock_irq(&hugetlb_lock);
7447	folio_put(folio);
 
7448}
7449
7450void move_hugetlb_state(struct folio *old_folio, struct folio *new_folio, int reason)
7451{
7452	struct hstate *h = folio_hstate(old_folio);
7453
7454	hugetlb_cgroup_migrate(old_folio, new_folio);
7455	set_page_owner_migrate_reason(&new_folio->page, reason);
7456
7457	/*
7458	 * transfer temporary state of the new hugetlb folio. This is
7459	 * reverse to other transitions because the newpage is going to
7460	 * be final while the old one will be freed so it takes over
7461	 * the temporary status.
7462	 *
7463	 * Also note that we have to transfer the per-node surplus state
7464	 * here as well otherwise the global surplus count will not match
7465	 * the per-node's.
7466	 */
7467	if (folio_test_hugetlb_temporary(new_folio)) {
7468		int old_nid = folio_nid(old_folio);
7469		int new_nid = folio_nid(new_folio);
7470
7471		folio_set_hugetlb_temporary(old_folio);
7472		folio_clear_hugetlb_temporary(new_folio);
7473
7474
7475		/*
7476		 * There is no need to transfer the per-node surplus state
7477		 * when we do not cross the node.
7478		 */
7479		if (new_nid == old_nid)
7480			return;
7481		spin_lock_irq(&hugetlb_lock);
7482		if (h->surplus_huge_pages_node[old_nid]) {
7483			h->surplus_huge_pages_node[old_nid]--;
7484			h->surplus_huge_pages_node[new_nid]++;
7485		}
7486		spin_unlock_irq(&hugetlb_lock);
7487	}
7488}
7489
7490static void hugetlb_unshare_pmds(struct vm_area_struct *vma,
7491				   unsigned long start,
7492				   unsigned long end)
7493{
7494	struct hstate *h = hstate_vma(vma);
7495	unsigned long sz = huge_page_size(h);
7496	struct mm_struct *mm = vma->vm_mm;
7497	struct mmu_notifier_range range;
7498	unsigned long address;
7499	spinlock_t *ptl;
7500	pte_t *ptep;
7501
7502	if (!(vma->vm_flags & VM_MAYSHARE))
7503		return;
7504
7505	if (start >= end)
7506		return;
7507
7508	flush_cache_range(vma, start, end);
7509	/*
7510	 * No need to call adjust_range_if_pmd_sharing_possible(), because
7511	 * we have already done the PUD_SIZE alignment.
7512	 */
7513	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm,
7514				start, end);
7515	mmu_notifier_invalidate_range_start(&range);
7516	hugetlb_vma_lock_write(vma);
7517	i_mmap_lock_write(vma->vm_file->f_mapping);
7518	for (address = start; address < end; address += PUD_SIZE) {
7519		ptep = hugetlb_walk(vma, address, sz);
7520		if (!ptep)
7521			continue;
7522		ptl = huge_pte_lock(h, mm, ptep);
7523		huge_pmd_unshare(mm, vma, address, ptep);
7524		spin_unlock(ptl);
7525	}
7526	flush_hugetlb_tlb_range(vma, start, end);
7527	i_mmap_unlock_write(vma->vm_file->f_mapping);
7528	hugetlb_vma_unlock_write(vma);
7529	/*
7530	 * No need to call mmu_notifier_arch_invalidate_secondary_tlbs(), see
7531	 * Documentation/mm/mmu_notifier.rst.
7532	 */
7533	mmu_notifier_invalidate_range_end(&range);
7534}
7535
7536/*
7537 * This function will unconditionally remove all the shared pmd pgtable entries
7538 * within the specific vma for a hugetlbfs memory range.
7539 */
7540void hugetlb_unshare_all_pmds(struct vm_area_struct *vma)
7541{
7542	hugetlb_unshare_pmds(vma, ALIGN(vma->vm_start, PUD_SIZE),
7543			ALIGN_DOWN(vma->vm_end, PUD_SIZE));
7544}
7545
7546#ifdef CONFIG_CMA
7547static bool cma_reserve_called __initdata;
7548
7549static int __init cmdline_parse_hugetlb_cma(char *p)
7550{
7551	int nid, count = 0;
7552	unsigned long tmp;
7553	char *s = p;
7554
7555	while (*s) {
7556		if (sscanf(s, "%lu%n", &tmp, &count) != 1)
7557			break;
7558
7559		if (s[count] == ':') {
7560			if (tmp >= MAX_NUMNODES)
7561				break;
7562			nid = array_index_nospec(tmp, MAX_NUMNODES);
7563
7564			s += count + 1;
7565			tmp = memparse(s, &s);
7566			hugetlb_cma_size_in_node[nid] = tmp;
7567			hugetlb_cma_size += tmp;
7568
7569			/*
7570			 * Skip the separator if have one, otherwise
7571			 * break the parsing.
7572			 */
7573			if (*s == ',')
7574				s++;
7575			else
7576				break;
7577		} else {
7578			hugetlb_cma_size = memparse(p, &p);
7579			break;
7580		}
7581	}
7582
7583	return 0;
7584}
7585
7586early_param("hugetlb_cma", cmdline_parse_hugetlb_cma);
7587
7588void __init hugetlb_cma_reserve(int order)
7589{
7590	unsigned long size, reserved, per_node;
7591	bool node_specific_cma_alloc = false;
7592	int nid;
7593
7594	/*
7595	 * HugeTLB CMA reservation is required for gigantic
7596	 * huge pages which could not be allocated via the
7597	 * page allocator. Just warn if there is any change
7598	 * breaking this assumption.
7599	 */
7600	VM_WARN_ON(order <= MAX_PAGE_ORDER);
7601	cma_reserve_called = true;
7602
7603	if (!hugetlb_cma_size)
7604		return;
7605
7606	for (nid = 0; nid < MAX_NUMNODES; nid++) {
7607		if (hugetlb_cma_size_in_node[nid] == 0)
7608			continue;
7609
7610		if (!node_online(nid)) {
7611			pr_warn("hugetlb_cma: invalid node %d specified\n", nid);
7612			hugetlb_cma_size -= hugetlb_cma_size_in_node[nid];
7613			hugetlb_cma_size_in_node[nid] = 0;
7614			continue;
7615		}
7616
7617		if (hugetlb_cma_size_in_node[nid] < (PAGE_SIZE << order)) {
7618			pr_warn("hugetlb_cma: cma area of node %d should be at least %lu MiB\n",
7619				nid, (PAGE_SIZE << order) / SZ_1M);
7620			hugetlb_cma_size -= hugetlb_cma_size_in_node[nid];
7621			hugetlb_cma_size_in_node[nid] = 0;
7622		} else {
7623			node_specific_cma_alloc = true;
7624		}
7625	}
7626
7627	/* Validate the CMA size again in case some invalid nodes specified. */
7628	if (!hugetlb_cma_size)
7629		return;
7630
7631	if (hugetlb_cma_size < (PAGE_SIZE << order)) {
7632		pr_warn("hugetlb_cma: cma area should be at least %lu MiB\n",
7633			(PAGE_SIZE << order) / SZ_1M);
7634		hugetlb_cma_size = 0;
7635		return;
7636	}
7637
7638	if (!node_specific_cma_alloc) {
7639		/*
7640		 * If 3 GB area is requested on a machine with 4 numa nodes,
7641		 * let's allocate 1 GB on first three nodes and ignore the last one.
7642		 */
7643		per_node = DIV_ROUND_UP(hugetlb_cma_size, nr_online_nodes);
7644		pr_info("hugetlb_cma: reserve %lu MiB, up to %lu MiB per node\n",
7645			hugetlb_cma_size / SZ_1M, per_node / SZ_1M);
7646	}
7647
7648	reserved = 0;
7649	for_each_online_node(nid) {
7650		int res;
7651		char name[CMA_MAX_NAME];
7652
7653		if (node_specific_cma_alloc) {
7654			if (hugetlb_cma_size_in_node[nid] == 0)
7655				continue;
7656
7657			size = hugetlb_cma_size_in_node[nid];
7658		} else {
7659			size = min(per_node, hugetlb_cma_size - reserved);
7660		}
7661
 
7662		size = round_up(size, PAGE_SIZE << order);
7663
7664		snprintf(name, sizeof(name), "hugetlb%d", nid);
7665		/*
7666		 * Note that 'order per bit' is based on smallest size that
7667		 * may be returned to CMA allocator in the case of
7668		 * huge page demotion.
7669		 */
7670		res = cma_declare_contiguous_nid(0, size, 0,
7671					PAGE_SIZE << order,
7672					HUGETLB_PAGE_ORDER, false, name,
7673					&hugetlb_cma[nid], nid);
7674		if (res) {
7675			pr_warn("hugetlb_cma: reservation failed: err %d, node %d",
7676				res, nid);
7677			continue;
7678		}
7679
7680		reserved += size;
7681		pr_info("hugetlb_cma: reserved %lu MiB on node %d\n",
7682			size / SZ_1M, nid);
7683
7684		if (reserved >= hugetlb_cma_size)
7685			break;
7686	}
7687
7688	if (!reserved)
7689		/*
7690		 * hugetlb_cma_size is used to determine if allocations from
7691		 * cma are possible.  Set to zero if no cma regions are set up.
7692		 */
7693		hugetlb_cma_size = 0;
7694}
7695
7696static void __init hugetlb_cma_check(void)
7697{
7698	if (!hugetlb_cma_size || cma_reserve_called)
7699		return;
7700
7701	pr_warn("hugetlb_cma: the option isn't supported by current arch\n");
7702}
7703
7704#endif /* CONFIG_CMA */
v5.9
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Generic hugetlb support.
   4 * (C) Nadia Yvette Chambers, April 2004
   5 */
   6#include <linux/list.h>
   7#include <linux/init.h>
   8#include <linux/mm.h>
   9#include <linux/seq_file.h>
  10#include <linux/sysctl.h>
  11#include <linux/highmem.h>
  12#include <linux/mmu_notifier.h>
  13#include <linux/nodemask.h>
  14#include <linux/pagemap.h>
  15#include <linux/mempolicy.h>
  16#include <linux/compiler.h>
  17#include <linux/cpuset.h>
  18#include <linux/mutex.h>
  19#include <linux/memblock.h>
  20#include <linux/sysfs.h>
  21#include <linux/slab.h>
  22#include <linux/sched/mm.h>
  23#include <linux/mmdebug.h>
  24#include <linux/sched/signal.h>
  25#include <linux/rmap.h>
  26#include <linux/string_helpers.h>
  27#include <linux/swap.h>
  28#include <linux/swapops.h>
  29#include <linux/jhash.h>
  30#include <linux/numa.h>
  31#include <linux/llist.h>
  32#include <linux/cma.h>
 
 
 
 
 
 
  33
  34#include <asm/page.h>
  35#include <asm/pgalloc.h>
  36#include <asm/tlb.h>
  37
  38#include <linux/io.h>
  39#include <linux/hugetlb.h>
  40#include <linux/hugetlb_cgroup.h>
  41#include <linux/node.h>
  42#include <linux/userfaultfd_k.h>
  43#include <linux/page_owner.h>
  44#include "internal.h"
 
  45
  46int hugetlb_max_hstate __read_mostly;
  47unsigned int default_hstate_idx;
  48struct hstate hstates[HUGE_MAX_HSTATE];
  49
  50#ifdef CONFIG_CMA
  51static struct cma *hugetlb_cma[MAX_NUMNODES];
 
  52#endif
  53static unsigned long hugetlb_cma_size __initdata;
  54
  55/*
  56 * Minimum page order among possible hugepage sizes, set to a proper value
  57 * at boot time.
  58 */
  59static unsigned int minimum_order __read_mostly = UINT_MAX;
  60
  61__initdata LIST_HEAD(huge_boot_pages);
  62
  63/* for command line parsing */
  64static struct hstate * __initdata parsed_hstate;
  65static unsigned long __initdata default_hstate_max_huge_pages;
  66static bool __initdata parsed_valid_hugepagesz = true;
  67static bool __initdata parsed_default_hugepagesz;
 
  68
  69/*
  70 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
  71 * free_huge_pages, and surplus_huge_pages.
  72 */
  73DEFINE_SPINLOCK(hugetlb_lock);
  74
  75/*
  76 * Serializes faults on the same logical page.  This is used to
  77 * prevent spurious OOMs when the hugepage pool is fully utilized.
  78 */
  79static int num_fault_mutexes;
  80struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
  81
  82/* Forward declaration */
  83static int hugetlb_acct_memory(struct hstate *h, long delta);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  84
  85static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
  86{
  87	bool free = (spool->count == 0) && (spool->used_hpages == 0);
 
 
 
 
 
  88
  89	spin_unlock(&spool->lock);
 
 
 
 
 
 
  90
  91	/* If no pages are used, and no other handles to the subpool
  92	 * remain, give up any reservations based on minimum size and
  93	 * free the subpool */
  94	if (free) {
  95		if (spool->min_hpages != -1)
  96			hugetlb_acct_memory(spool->hstate,
  97						-spool->min_hpages);
  98		kfree(spool);
  99	}
 100}
 101
 102struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
 103						long min_hpages)
 104{
 105	struct hugepage_subpool *spool;
 106
 107	spool = kzalloc(sizeof(*spool), GFP_KERNEL);
 108	if (!spool)
 109		return NULL;
 110
 111	spin_lock_init(&spool->lock);
 112	spool->count = 1;
 113	spool->max_hpages = max_hpages;
 114	spool->hstate = h;
 115	spool->min_hpages = min_hpages;
 116
 117	if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
 118		kfree(spool);
 119		return NULL;
 120	}
 121	spool->rsv_hpages = min_hpages;
 122
 123	return spool;
 124}
 125
 126void hugepage_put_subpool(struct hugepage_subpool *spool)
 127{
 128	spin_lock(&spool->lock);
 
 
 129	BUG_ON(!spool->count);
 130	spool->count--;
 131	unlock_or_release_subpool(spool);
 132}
 133
 134/*
 135 * Subpool accounting for allocating and reserving pages.
 136 * Return -ENOMEM if there are not enough resources to satisfy the
 137 * request.  Otherwise, return the number of pages by which the
 138 * global pools must be adjusted (upward).  The returned value may
 139 * only be different than the passed value (delta) in the case where
 140 * a subpool minimum size must be maintained.
 141 */
 142static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
 143				      long delta)
 144{
 145	long ret = delta;
 146
 147	if (!spool)
 148		return ret;
 149
 150	spin_lock(&spool->lock);
 151
 152	if (spool->max_hpages != -1) {		/* maximum size accounting */
 153		if ((spool->used_hpages + delta) <= spool->max_hpages)
 154			spool->used_hpages += delta;
 155		else {
 156			ret = -ENOMEM;
 157			goto unlock_ret;
 158		}
 159	}
 160
 161	/* minimum size accounting */
 162	if (spool->min_hpages != -1 && spool->rsv_hpages) {
 163		if (delta > spool->rsv_hpages) {
 164			/*
 165			 * Asking for more reserves than those already taken on
 166			 * behalf of subpool.  Return difference.
 167			 */
 168			ret = delta - spool->rsv_hpages;
 169			spool->rsv_hpages = 0;
 170		} else {
 171			ret = 0;	/* reserves already accounted for */
 172			spool->rsv_hpages -= delta;
 173		}
 174	}
 175
 176unlock_ret:
 177	spin_unlock(&spool->lock);
 178	return ret;
 179}
 180
 181/*
 182 * Subpool accounting for freeing and unreserving pages.
 183 * Return the number of global page reservations that must be dropped.
 184 * The return value may only be different than the passed value (delta)
 185 * in the case where a subpool minimum size must be maintained.
 186 */
 187static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
 188				       long delta)
 189{
 190	long ret = delta;
 
 191
 192	if (!spool)
 193		return delta;
 194
 195	spin_lock(&spool->lock);
 196
 197	if (spool->max_hpages != -1)		/* maximum size accounting */
 198		spool->used_hpages -= delta;
 199
 200	 /* minimum size accounting */
 201	if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
 202		if (spool->rsv_hpages + delta <= spool->min_hpages)
 203			ret = 0;
 204		else
 205			ret = spool->rsv_hpages + delta - spool->min_hpages;
 206
 207		spool->rsv_hpages += delta;
 208		if (spool->rsv_hpages > spool->min_hpages)
 209			spool->rsv_hpages = spool->min_hpages;
 210	}
 211
 212	/*
 213	 * If hugetlbfs_put_super couldn't free spool due to an outstanding
 214	 * quota reference, free it now.
 215	 */
 216	unlock_or_release_subpool(spool);
 217
 218	return ret;
 219}
 220
 221static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
 222{
 223	return HUGETLBFS_SB(inode->i_sb)->spool;
 224}
 225
 226static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
 227{
 228	return subpool_inode(file_inode(vma->vm_file));
 229}
 230
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 231/* Helper that removes a struct file_region from the resv_map cache and returns
 232 * it for use.
 233 */
 234static struct file_region *
 235get_file_region_entry_from_cache(struct resv_map *resv, long from, long to)
 236{
 237	struct file_region *nrg = NULL;
 238
 239	VM_BUG_ON(resv->region_cache_count <= 0);
 240
 241	resv->region_cache_count--;
 242	nrg = list_first_entry(&resv->region_cache, struct file_region, link);
 243	VM_BUG_ON(!nrg);
 244	list_del(&nrg->link);
 245
 246	nrg->from = from;
 247	nrg->to = to;
 248
 249	return nrg;
 250}
 251
 252static void copy_hugetlb_cgroup_uncharge_info(struct file_region *nrg,
 253					      struct file_region *rg)
 254{
 255#ifdef CONFIG_CGROUP_HUGETLB
 256	nrg->reservation_counter = rg->reservation_counter;
 257	nrg->css = rg->css;
 258	if (rg->css)
 259		css_get(rg->css);
 260#endif
 261}
 262
 263/* Helper that records hugetlb_cgroup uncharge info. */
 264static void record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup *h_cg,
 265						struct hstate *h,
 266						struct resv_map *resv,
 267						struct file_region *nrg)
 268{
 269#ifdef CONFIG_CGROUP_HUGETLB
 270	if (h_cg) {
 271		nrg->reservation_counter =
 272			&h_cg->rsvd_hugepage[hstate_index(h)];
 273		nrg->css = &h_cg->css;
 
 
 
 
 
 
 
 
 
 
 
 274		if (!resv->pages_per_hpage)
 275			resv->pages_per_hpage = pages_per_huge_page(h);
 276		/* pages_per_hpage should be the same for all entries in
 277		 * a resv_map.
 278		 */
 279		VM_BUG_ON(resv->pages_per_hpage != pages_per_huge_page(h));
 280	} else {
 281		nrg->reservation_counter = NULL;
 282		nrg->css = NULL;
 283	}
 284#endif
 285}
 286
 
 
 
 
 
 
 
 
 287static bool has_same_uncharge_info(struct file_region *rg,
 288				   struct file_region *org)
 289{
 290#ifdef CONFIG_CGROUP_HUGETLB
 291	return rg && org &&
 292	       rg->reservation_counter == org->reservation_counter &&
 293	       rg->css == org->css;
 294
 295#else
 296	return true;
 297#endif
 298}
 299
 300static void coalesce_file_region(struct resv_map *resv, struct file_region *rg)
 301{
 302	struct file_region *nrg = NULL, *prg = NULL;
 303
 304	prg = list_prev_entry(rg, link);
 305	if (&prg->link != &resv->regions && prg->to == rg->from &&
 306	    has_same_uncharge_info(prg, rg)) {
 307		prg->to = rg->to;
 308
 309		list_del(&rg->link);
 
 310		kfree(rg);
 311
 312		coalesce_file_region(resv, prg);
 313		return;
 314	}
 315
 316	nrg = list_next_entry(rg, link);
 317	if (&nrg->link != &resv->regions && nrg->from == rg->to &&
 318	    has_same_uncharge_info(nrg, rg)) {
 319		nrg->from = rg->from;
 320
 321		list_del(&rg->link);
 
 322		kfree(rg);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 323
 324		coalesce_file_region(resv, nrg);
 325		return;
 326	}
 327}
 328
 329/* Must be called with resv->lock held. Calling this with count_only == true
 330 * will count the number of pages to be added but will not modify the linked
 331 * list. If regions_needed != NULL and count_only == true, then regions_needed
 332 * will indicate the number of file_regions needed in the cache to carry out to
 333 * add the regions for this range.
 
 
 334 */
 335static long add_reservation_in_range(struct resv_map *resv, long f, long t,
 336				     struct hugetlb_cgroup *h_cg,
 337				     struct hstate *h, long *regions_needed,
 338				     bool count_only)
 339{
 340	long add = 0;
 341	struct list_head *head = &resv->regions;
 342	long last_accounted_offset = f;
 343	struct file_region *rg = NULL, *trg = NULL, *nrg = NULL;
 
 344
 345	if (regions_needed)
 346		*regions_needed = 0;
 347
 348	/* In this loop, we essentially handle an entry for the range
 349	 * [last_accounted_offset, rg->from), at every iteration, with some
 350	 * bounds checking.
 351	 */
 352	list_for_each_entry_safe(rg, trg, head, link) {
 353		/* Skip irrelevant regions that start before our range. */
 354		if (rg->from < f) {
 355			/* If this region ends after the last accounted offset,
 356			 * then we need to update last_accounted_offset.
 357			 */
 358			if (rg->to > last_accounted_offset)
 359				last_accounted_offset = rg->to;
 360			continue;
 361		}
 362
 363		/* When we find a region that starts beyond our range, we've
 364		 * finished.
 365		 */
 366		if (rg->from > t)
 
 367			break;
 
 368
 369		/* Add an entry for last_accounted_offset -> rg->from, and
 370		 * update last_accounted_offset.
 371		 */
 372		if (rg->from > last_accounted_offset) {
 373			add += rg->from - last_accounted_offset;
 374			if (!count_only) {
 375				nrg = get_file_region_entry_from_cache(
 376					resv, last_accounted_offset, rg->from);
 377				record_hugetlb_cgroup_uncharge_info(h_cg, h,
 378								    resv, nrg);
 379				list_add(&nrg->link, rg->link.prev);
 380				coalesce_file_region(resv, nrg);
 381			} else if (regions_needed)
 382				*regions_needed += 1;
 383		}
 384
 385		last_accounted_offset = rg->to;
 386	}
 387
 388	/* Handle the case where our range extends beyond
 389	 * last_accounted_offset.
 390	 */
 391	if (last_accounted_offset < t) {
 392		add += t - last_accounted_offset;
 393		if (!count_only) {
 394			nrg = get_file_region_entry_from_cache(
 395				resv, last_accounted_offset, t);
 396			record_hugetlb_cgroup_uncharge_info(h_cg, h, resv, nrg);
 397			list_add(&nrg->link, rg->link.prev);
 398			coalesce_file_region(resv, nrg);
 399		} else if (regions_needed)
 400			*regions_needed += 1;
 401	}
 402
 403	VM_BUG_ON(add < 0);
 404	return add;
 405}
 406
 407/* Must be called with resv->lock acquired. Will drop lock to allocate entries.
 408 */
 409static int allocate_file_region_entries(struct resv_map *resv,
 410					int regions_needed)
 411	__must_hold(&resv->lock)
 412{
 413	struct list_head allocated_regions;
 414	int to_allocate = 0, i = 0;
 415	struct file_region *trg = NULL, *rg = NULL;
 416
 417	VM_BUG_ON(regions_needed < 0);
 418
 419	INIT_LIST_HEAD(&allocated_regions);
 420
 421	/*
 422	 * Check for sufficient descriptors in the cache to accommodate
 423	 * the number of in progress add operations plus regions_needed.
 424	 *
 425	 * This is a while loop because when we drop the lock, some other call
 426	 * to region_add or region_del may have consumed some region_entries,
 427	 * so we keep looping here until we finally have enough entries for
 428	 * (adds_in_progress + regions_needed).
 429	 */
 430	while (resv->region_cache_count <
 431	       (resv->adds_in_progress + regions_needed)) {
 432		to_allocate = resv->adds_in_progress + regions_needed -
 433			      resv->region_cache_count;
 434
 435		/* At this point, we should have enough entries in the cache
 436		 * for all the existings adds_in_progress. We should only be
 437		 * needing to allocate for regions_needed.
 438		 */
 439		VM_BUG_ON(resv->region_cache_count < resv->adds_in_progress);
 440
 441		spin_unlock(&resv->lock);
 442		for (i = 0; i < to_allocate; i++) {
 443			trg = kmalloc(sizeof(*trg), GFP_KERNEL);
 444			if (!trg)
 445				goto out_of_memory;
 446			list_add(&trg->link, &allocated_regions);
 447		}
 448
 449		spin_lock(&resv->lock);
 450
 451		list_for_each_entry_safe(rg, trg, &allocated_regions, link) {
 452			list_del(&rg->link);
 453			list_add(&rg->link, &resv->region_cache);
 454			resv->region_cache_count++;
 455		}
 456	}
 457
 458	return 0;
 459
 460out_of_memory:
 461	list_for_each_entry_safe(rg, trg, &allocated_regions, link) {
 462		list_del(&rg->link);
 463		kfree(rg);
 464	}
 465	return -ENOMEM;
 466}
 467
 468/*
 469 * Add the huge page range represented by [f, t) to the reserve
 470 * map.  Regions will be taken from the cache to fill in this range.
 471 * Sufficient regions should exist in the cache due to the previous
 472 * call to region_chg with the same range, but in some cases the cache will not
 473 * have sufficient entries due to races with other code doing region_add or
 474 * region_del.  The extra needed entries will be allocated.
 475 *
 476 * regions_needed is the out value provided by a previous call to region_chg.
 477 *
 478 * Return the number of new huge pages added to the map.  This number is greater
 479 * than or equal to zero.  If file_region entries needed to be allocated for
 480 * this operation and we were not able to allocate, it returns -ENOMEM.
 481 * region_add of regions of length 1 never allocate file_regions and cannot
 482 * fail; region_chg will always allocate at least 1 entry and a region_add for
 483 * 1 page will only require at most 1 entry.
 484 */
 485static long region_add(struct resv_map *resv, long f, long t,
 486		       long in_regions_needed, struct hstate *h,
 487		       struct hugetlb_cgroup *h_cg)
 488{
 489	long add = 0, actual_regions_needed = 0;
 490
 491	spin_lock(&resv->lock);
 492retry:
 493
 494	/* Count how many regions are actually needed to execute this add. */
 495	add_reservation_in_range(resv, f, t, NULL, NULL, &actual_regions_needed,
 496				 true);
 497
 498	/*
 499	 * Check for sufficient descriptors in the cache to accommodate
 500	 * this add operation. Note that actual_regions_needed may be greater
 501	 * than in_regions_needed, as the resv_map may have been modified since
 502	 * the region_chg call. In this case, we need to make sure that we
 503	 * allocate extra entries, such that we have enough for all the
 504	 * existing adds_in_progress, plus the excess needed for this
 505	 * operation.
 506	 */
 507	if (actual_regions_needed > in_regions_needed &&
 508	    resv->region_cache_count <
 509		    resv->adds_in_progress +
 510			    (actual_regions_needed - in_regions_needed)) {
 511		/* region_add operation of range 1 should never need to
 512		 * allocate file_region entries.
 513		 */
 514		VM_BUG_ON(t - f <= 1);
 515
 516		if (allocate_file_region_entries(
 517			    resv, actual_regions_needed - in_regions_needed)) {
 518			return -ENOMEM;
 519		}
 520
 521		goto retry;
 522	}
 523
 524	add = add_reservation_in_range(resv, f, t, h_cg, h, NULL, false);
 525
 526	resv->adds_in_progress -= in_regions_needed;
 527
 528	spin_unlock(&resv->lock);
 529	VM_BUG_ON(add < 0);
 530	return add;
 531}
 532
 533/*
 534 * Examine the existing reserve map and determine how many
 535 * huge pages in the specified range [f, t) are NOT currently
 536 * represented.  This routine is called before a subsequent
 537 * call to region_add that will actually modify the reserve
 538 * map to add the specified range [f, t).  region_chg does
 539 * not change the number of huge pages represented by the
 540 * map.  A number of new file_region structures is added to the cache as a
 541 * placeholder, for the subsequent region_add call to use. At least 1
 542 * file_region structure is added.
 543 *
 544 * out_regions_needed is the number of regions added to the
 545 * resv->adds_in_progress.  This value needs to be provided to a follow up call
 546 * to region_add or region_abort for proper accounting.
 547 *
 548 * Returns the number of huge pages that need to be added to the existing
 549 * reservation map for the range [f, t).  This number is greater or equal to
 550 * zero.  -ENOMEM is returned if a new file_region structure or cache entry
 551 * is needed and can not be allocated.
 552 */
 553static long region_chg(struct resv_map *resv, long f, long t,
 554		       long *out_regions_needed)
 555{
 556	long chg = 0;
 557
 558	spin_lock(&resv->lock);
 559
 560	/* Count how many hugepages in this range are NOT respresented. */
 561	chg = add_reservation_in_range(resv, f, t, NULL, NULL,
 562				       out_regions_needed, true);
 563
 564	if (*out_regions_needed == 0)
 565		*out_regions_needed = 1;
 566
 567	if (allocate_file_region_entries(resv, *out_regions_needed))
 568		return -ENOMEM;
 569
 570	resv->adds_in_progress += *out_regions_needed;
 571
 572	spin_unlock(&resv->lock);
 573	return chg;
 574}
 575
 576/*
 577 * Abort the in progress add operation.  The adds_in_progress field
 578 * of the resv_map keeps track of the operations in progress between
 579 * calls to region_chg and region_add.  Operations are sometimes
 580 * aborted after the call to region_chg.  In such cases, region_abort
 581 * is called to decrement the adds_in_progress counter. regions_needed
 582 * is the value returned by the region_chg call, it is used to decrement
 583 * the adds_in_progress counter.
 584 *
 585 * NOTE: The range arguments [f, t) are not needed or used in this
 586 * routine.  They are kept to make reading the calling code easier as
 587 * arguments will match the associated region_chg call.
 588 */
 589static void region_abort(struct resv_map *resv, long f, long t,
 590			 long regions_needed)
 591{
 592	spin_lock(&resv->lock);
 593	VM_BUG_ON(!resv->region_cache_count);
 594	resv->adds_in_progress -= regions_needed;
 595	spin_unlock(&resv->lock);
 596}
 597
 598/*
 599 * Delete the specified range [f, t) from the reserve map.  If the
 600 * t parameter is LONG_MAX, this indicates that ALL regions after f
 601 * should be deleted.  Locate the regions which intersect [f, t)
 602 * and either trim, delete or split the existing regions.
 603 *
 604 * Returns the number of huge pages deleted from the reserve map.
 605 * In the normal case, the return value is zero or more.  In the
 606 * case where a region must be split, a new region descriptor must
 607 * be allocated.  If the allocation fails, -ENOMEM will be returned.
 608 * NOTE: If the parameter t == LONG_MAX, then we will never split
 609 * a region and possibly return -ENOMEM.  Callers specifying
 610 * t == LONG_MAX do not need to check for -ENOMEM error.
 611 */
 612static long region_del(struct resv_map *resv, long f, long t)
 613{
 614	struct list_head *head = &resv->regions;
 615	struct file_region *rg, *trg;
 616	struct file_region *nrg = NULL;
 617	long del = 0;
 618
 619retry:
 620	spin_lock(&resv->lock);
 621	list_for_each_entry_safe(rg, trg, head, link) {
 622		/*
 623		 * Skip regions before the range to be deleted.  file_region
 624		 * ranges are normally of the form [from, to).  However, there
 625		 * may be a "placeholder" entry in the map which is of the form
 626		 * (from, to) with from == to.  Check for placeholder entries
 627		 * at the beginning of the range to be deleted.
 628		 */
 629		if (rg->to <= f && (rg->to != rg->from || rg->to != f))
 630			continue;
 631
 632		if (rg->from >= t)
 633			break;
 634
 635		if (f > rg->from && t < rg->to) { /* Must split region */
 636			/*
 637			 * Check for an entry in the cache before dropping
 638			 * lock and attempting allocation.
 639			 */
 640			if (!nrg &&
 641			    resv->region_cache_count > resv->adds_in_progress) {
 642				nrg = list_first_entry(&resv->region_cache,
 643							struct file_region,
 644							link);
 645				list_del(&nrg->link);
 646				resv->region_cache_count--;
 647			}
 648
 649			if (!nrg) {
 650				spin_unlock(&resv->lock);
 651				nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
 652				if (!nrg)
 653					return -ENOMEM;
 654				goto retry;
 655			}
 656
 657			del += t - f;
 
 
 658
 659			/* New entry for end of split region */
 660			nrg->from = t;
 661			nrg->to = rg->to;
 662
 663			copy_hugetlb_cgroup_uncharge_info(nrg, rg);
 664
 665			INIT_LIST_HEAD(&nrg->link);
 666
 667			/* Original entry is trimmed */
 668			rg->to = f;
 669
 670			hugetlb_cgroup_uncharge_file_region(
 671				resv, rg, nrg->to - nrg->from);
 672
 673			list_add(&nrg->link, &rg->link);
 674			nrg = NULL;
 675			break;
 676		}
 677
 678		if (f <= rg->from && t >= rg->to) { /* Remove entire region */
 679			del += rg->to - rg->from;
 680			hugetlb_cgroup_uncharge_file_region(resv, rg,
 681							    rg->to - rg->from);
 682			list_del(&rg->link);
 683			kfree(rg);
 684			continue;
 685		}
 686
 687		if (f <= rg->from) {	/* Trim beginning of region */
 
 
 
 688			del += t - rg->from;
 689			rg->from = t;
 
 
 
 690
 691			hugetlb_cgroup_uncharge_file_region(resv, rg,
 692							    t - rg->from);
 693		} else {		/* Trim end of region */
 694			del += rg->to - f;
 695			rg->to = f;
 696
 697			hugetlb_cgroup_uncharge_file_region(resv, rg,
 698							    rg->to - f);
 699		}
 700	}
 701
 702	spin_unlock(&resv->lock);
 703	kfree(nrg);
 704	return del;
 705}
 706
 707/*
 708 * A rare out of memory error was encountered which prevented removal of
 709 * the reserve map region for a page.  The huge page itself was free'ed
 710 * and removed from the page cache.  This routine will adjust the subpool
 711 * usage count, and the global reserve count if needed.  By incrementing
 712 * these counts, the reserve map entry which could not be deleted will
 713 * appear as a "reserved" entry instead of simply dangling with incorrect
 714 * counts.
 715 */
 716void hugetlb_fix_reserve_counts(struct inode *inode)
 717{
 718	struct hugepage_subpool *spool = subpool_inode(inode);
 719	long rsv_adjust;
 
 720
 721	rsv_adjust = hugepage_subpool_get_pages(spool, 1);
 722	if (rsv_adjust) {
 723		struct hstate *h = hstate_inode(inode);
 724
 725		hugetlb_acct_memory(h, 1);
 
 
 
 726	}
 
 
 
 727}
 728
 729/*
 730 * Count and return the number of huge pages in the reserve map
 731 * that intersect with the range [f, t).
 732 */
 733static long region_count(struct resv_map *resv, long f, long t)
 734{
 735	struct list_head *head = &resv->regions;
 736	struct file_region *rg;
 737	long chg = 0;
 738
 739	spin_lock(&resv->lock);
 740	/* Locate each segment we overlap with, and count that overlap. */
 741	list_for_each_entry(rg, head, link) {
 742		long seg_from;
 743		long seg_to;
 744
 745		if (rg->to <= f)
 746			continue;
 747		if (rg->from >= t)
 748			break;
 749
 750		seg_from = max(rg->from, f);
 751		seg_to = min(rg->to, t);
 752
 753		chg += seg_to - seg_from;
 754	}
 755	spin_unlock(&resv->lock);
 756
 757	return chg;
 758}
 759
 760/*
 761 * Convert the address within this vma to the page offset within
 762 * the mapping, in pagecache page units; huge pages here.
 763 */
 764static pgoff_t vma_hugecache_offset(struct hstate *h,
 765			struct vm_area_struct *vma, unsigned long address)
 766{
 767	return ((address - vma->vm_start) >> huge_page_shift(h)) +
 768			(vma->vm_pgoff >> huge_page_order(h));
 769}
 770
 771pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
 772				     unsigned long address)
 773{
 774	return vma_hugecache_offset(hstate_vma(vma), vma, address);
 775}
 776EXPORT_SYMBOL_GPL(linear_hugepage_index);
 777
 778/*
 779 * Return the size of the pages allocated when backing a VMA. In the majority
 780 * cases this will be same size as used by the page table entries.
 781 */
 782unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
 783{
 784	if (vma->vm_ops && vma->vm_ops->pagesize)
 785		return vma->vm_ops->pagesize(vma);
 786	return PAGE_SIZE;
 787}
 788EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
 789
 790/*
 791 * Return the page size being used by the MMU to back a VMA. In the majority
 792 * of cases, the page size used by the kernel matches the MMU size. On
 793 * architectures where it differs, an architecture-specific 'strong'
 794 * version of this symbol is required.
 795 */
 796__weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
 797{
 798	return vma_kernel_pagesize(vma);
 799}
 800
 801/*
 802 * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
 803 * bits of the reservation map pointer, which are always clear due to
 804 * alignment.
 805 */
 806#define HPAGE_RESV_OWNER    (1UL << 0)
 807#define HPAGE_RESV_UNMAPPED (1UL << 1)
 808#define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
 809
 810/*
 811 * These helpers are used to track how many pages are reserved for
 812 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
 813 * is guaranteed to have their future faults succeed.
 814 *
 815 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
 816 * the reserve counters are updated with the hugetlb_lock held. It is safe
 817 * to reset the VMA at fork() time as it is not in use yet and there is no
 818 * chance of the global counters getting corrupted as a result of the values.
 819 *
 820 * The private mapping reservation is represented in a subtly different
 821 * manner to a shared mapping.  A shared mapping has a region map associated
 822 * with the underlying file, this region map represents the backing file
 823 * pages which have ever had a reservation assigned which this persists even
 824 * after the page is instantiated.  A private mapping has a region map
 825 * associated with the original mmap which is attached to all VMAs which
 826 * reference it, this region map represents those offsets which have consumed
 827 * reservation ie. where pages have been instantiated.
 828 */
 829static unsigned long get_vma_private_data(struct vm_area_struct *vma)
 830{
 831	return (unsigned long)vma->vm_private_data;
 832}
 833
 834static void set_vma_private_data(struct vm_area_struct *vma,
 835							unsigned long value)
 836{
 837	vma->vm_private_data = (void *)value;
 838}
 839
 840static void
 841resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map *resv_map,
 842					  struct hugetlb_cgroup *h_cg,
 843					  struct hstate *h)
 844{
 845#ifdef CONFIG_CGROUP_HUGETLB
 846	if (!h_cg || !h) {
 847		resv_map->reservation_counter = NULL;
 848		resv_map->pages_per_hpage = 0;
 849		resv_map->css = NULL;
 850	} else {
 851		resv_map->reservation_counter =
 852			&h_cg->rsvd_hugepage[hstate_index(h)];
 853		resv_map->pages_per_hpage = pages_per_huge_page(h);
 854		resv_map->css = &h_cg->css;
 855	}
 856#endif
 857}
 858
 859struct resv_map *resv_map_alloc(void)
 860{
 861	struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
 862	struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
 863
 864	if (!resv_map || !rg) {
 865		kfree(resv_map);
 866		kfree(rg);
 867		return NULL;
 868	}
 869
 870	kref_init(&resv_map->refs);
 871	spin_lock_init(&resv_map->lock);
 872	INIT_LIST_HEAD(&resv_map->regions);
 
 873
 874	resv_map->adds_in_progress = 0;
 875	/*
 876	 * Initialize these to 0. On shared mappings, 0's here indicate these
 877	 * fields don't do cgroup accounting. On private mappings, these will be
 878	 * re-initialized to the proper values, to indicate that hugetlb cgroup
 879	 * reservations are to be un-charged from here.
 880	 */
 881	resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, NULL, NULL);
 882
 883	INIT_LIST_HEAD(&resv_map->region_cache);
 884	list_add(&rg->link, &resv_map->region_cache);
 885	resv_map->region_cache_count = 1;
 886
 887	return resv_map;
 888}
 889
 890void resv_map_release(struct kref *ref)
 891{
 892	struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
 893	struct list_head *head = &resv_map->region_cache;
 894	struct file_region *rg, *trg;
 895
 896	/* Clear out any active regions before we release the map. */
 897	region_del(resv_map, 0, LONG_MAX);
 898
 899	/* ... and any entries left in the cache */
 900	list_for_each_entry_safe(rg, trg, head, link) {
 901		list_del(&rg->link);
 902		kfree(rg);
 903	}
 904
 905	VM_BUG_ON(resv_map->adds_in_progress);
 906
 907	kfree(resv_map);
 908}
 909
 910static inline struct resv_map *inode_resv_map(struct inode *inode)
 911{
 912	/*
 913	 * At inode evict time, i_mapping may not point to the original
 914	 * address space within the inode.  This original address space
 915	 * contains the pointer to the resv_map.  So, always use the
 916	 * address space embedded within the inode.
 917	 * The VERY common case is inode->mapping == &inode->i_data but,
 918	 * this may not be true for device special inodes.
 919	 */
 920	return (struct resv_map *)(&inode->i_data)->private_data;
 921}
 922
 923static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
 924{
 925	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
 926	if (vma->vm_flags & VM_MAYSHARE) {
 927		struct address_space *mapping = vma->vm_file->f_mapping;
 928		struct inode *inode = mapping->host;
 929
 930		return inode_resv_map(inode);
 931
 932	} else {
 933		return (struct resv_map *)(get_vma_private_data(vma) &
 934							~HPAGE_RESV_MASK);
 935	}
 936}
 937
 938static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
 939{
 940	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
 941	VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
 942
 943	set_vma_private_data(vma, (get_vma_private_data(vma) &
 944				HPAGE_RESV_MASK) | (unsigned long)map);
 945}
 946
 947static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
 948{
 949	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
 950	VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
 951
 952	set_vma_private_data(vma, get_vma_private_data(vma) | flags);
 953}
 954
 955static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
 956{
 957	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
 958
 959	return (get_vma_private_data(vma) & flag) != 0;
 960}
 961
 962/* Reset counters to 0 and clear all HPAGE_RESV_* flags */
 963void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
 
 
 
 
 
 
 964{
 965	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
 966	if (!(vma->vm_flags & VM_MAYSHARE))
 967		vma->vm_private_data = (void *)0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 968}
 969
 970/* Returns true if the VMA has associated reserve pages */
 971static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
 972{
 973	if (vma->vm_flags & VM_NORESERVE) {
 974		/*
 975		 * This address is already reserved by other process(chg == 0),
 976		 * so, we should decrement reserved count. Without decrementing,
 977		 * reserve count remains after releasing inode, because this
 978		 * allocated page will go into page cache and is regarded as
 979		 * coming from reserved pool in releasing step.  Currently, we
 980		 * don't have any other solution to deal with this situation
 981		 * properly, so add work-around here.
 982		 */
 983		if (vma->vm_flags & VM_MAYSHARE && chg == 0)
 984			return true;
 985		else
 986			return false;
 987	}
 988
 989	/* Shared mappings always use reserves */
 990	if (vma->vm_flags & VM_MAYSHARE) {
 991		/*
 992		 * We know VM_NORESERVE is not set.  Therefore, there SHOULD
 993		 * be a region map for all pages.  The only situation where
 994		 * there is no region map is if a hole was punched via
 995		 * fallocate.  In this case, there really are no reserves to
 996		 * use.  This situation is indicated if chg != 0.
 997		 */
 998		if (chg)
 999			return false;
1000		else
1001			return true;
1002	}
1003
1004	/*
1005	 * Only the process that called mmap() has reserves for
1006	 * private mappings.
1007	 */
1008	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1009		/*
1010		 * Like the shared case above, a hole punch or truncate
1011		 * could have been performed on the private mapping.
1012		 * Examine the value of chg to determine if reserves
1013		 * actually exist or were previously consumed.
1014		 * Very Subtle - The value of chg comes from a previous
1015		 * call to vma_needs_reserves().  The reserve map for
1016		 * private mappings has different (opposite) semantics
1017		 * than that of shared mappings.  vma_needs_reserves()
1018		 * has already taken this difference in semantics into
1019		 * account.  Therefore, the meaning of chg is the same
1020		 * as in the shared case above.  Code could easily be
1021		 * combined, but keeping it separate draws attention to
1022		 * subtle differences.
1023		 */
1024		if (chg)
1025			return false;
1026		else
1027			return true;
1028	}
1029
1030	return false;
1031}
1032
1033static void enqueue_huge_page(struct hstate *h, struct page *page)
1034{
1035	int nid = page_to_nid(page);
1036	list_move(&page->lru, &h->hugepage_freelists[nid]);
 
 
 
 
1037	h->free_huge_pages++;
1038	h->free_huge_pages_node[nid]++;
 
1039}
1040
1041static struct page *dequeue_huge_page_node_exact(struct hstate *h, int nid)
 
1042{
1043	struct page *page;
1044	bool nocma = !!(current->flags & PF_MEMALLOC_NOCMA);
 
 
 
 
 
1045
1046	list_for_each_entry(page, &h->hugepage_freelists[nid], lru) {
1047		if (nocma && is_migrate_cma_page(page))
1048			continue;
1049
1050		if (!PageHWPoison(page))
1051			break;
 
 
 
 
1052	}
1053
1054	/*
1055	 * if 'non-isolated free hugepage' not found on the list,
1056	 * the allocation fails.
1057	 */
1058	if (&h->hugepage_freelists[nid] == &page->lru)
1059		return NULL;
1060	list_move(&page->lru, &h->hugepage_activelist);
1061	set_page_refcounted(page);
1062	h->free_huge_pages--;
1063	h->free_huge_pages_node[nid]--;
1064	return page;
1065}
1066
1067static struct page *dequeue_huge_page_nodemask(struct hstate *h, gfp_t gfp_mask, int nid,
1068		nodemask_t *nmask)
1069{
1070	unsigned int cpuset_mems_cookie;
1071	struct zonelist *zonelist;
1072	struct zone *zone;
1073	struct zoneref *z;
1074	int node = NUMA_NO_NODE;
1075
 
 
 
 
1076	zonelist = node_zonelist(nid, gfp_mask);
1077
1078retry_cpuset:
1079	cpuset_mems_cookie = read_mems_allowed_begin();
1080	for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
1081		struct page *page;
1082
1083		if (!cpuset_zone_allowed(zone, gfp_mask))
1084			continue;
1085		/*
1086		 * no need to ask again on the same node. Pool is node rather than
1087		 * zone aware
1088		 */
1089		if (zone_to_nid(zone) == node)
1090			continue;
1091		node = zone_to_nid(zone);
1092
1093		page = dequeue_huge_page_node_exact(h, node);
1094		if (page)
1095			return page;
1096	}
1097	if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
1098		goto retry_cpuset;
1099
1100	return NULL;
1101}
1102
1103static struct page *dequeue_huge_page_vma(struct hstate *h,
 
 
 
 
 
1104				struct vm_area_struct *vma,
1105				unsigned long address, int avoid_reserve,
1106				long chg)
1107{
1108	struct page *page;
1109	struct mempolicy *mpol;
1110	gfp_t gfp_mask;
1111	nodemask_t *nodemask;
1112	int nid;
1113
1114	/*
1115	 * A child process with MAP_PRIVATE mappings created by their parent
1116	 * have no page reserves. This check ensures that reservations are
1117	 * not "stolen". The child may still get SIGKILLed
1118	 */
1119	if (!vma_has_reserves(vma, chg) &&
1120			h->free_huge_pages - h->resv_huge_pages == 0)
1121		goto err;
1122
1123	/* If reserves cannot be used, ensure enough pages are in the pool */
1124	if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
1125		goto err;
1126
1127	gfp_mask = htlb_alloc_mask(h);
1128	nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
1129	page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
1130	if (page && !avoid_reserve && vma_has_reserves(vma, chg)) {
1131		SetPagePrivate(page);
 
 
 
 
 
 
 
 
 
 
 
 
1132		h->resv_huge_pages--;
1133	}
1134
1135	mpol_cond_put(mpol);
1136	return page;
1137
1138err:
1139	return NULL;
1140}
1141
1142/*
1143 * common helper functions for hstate_next_node_to_{alloc|free}.
1144 * We may have allocated or freed a huge page based on a different
1145 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
1146 * be outside of *nodes_allowed.  Ensure that we use an allowed
1147 * node for alloc or free.
1148 */
1149static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
1150{
1151	nid = next_node_in(nid, *nodes_allowed);
1152	VM_BUG_ON(nid >= MAX_NUMNODES);
1153
1154	return nid;
1155}
1156
1157static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
1158{
1159	if (!node_isset(nid, *nodes_allowed))
1160		nid = next_node_allowed(nid, nodes_allowed);
1161	return nid;
1162}
1163
1164/*
1165 * returns the previously saved node ["this node"] from which to
1166 * allocate a persistent huge page for the pool and advance the
1167 * next node from which to allocate, handling wrap at end of node
1168 * mask.
1169 */
1170static int hstate_next_node_to_alloc(struct hstate *h,
1171					nodemask_t *nodes_allowed)
1172{
1173	int nid;
1174
1175	VM_BUG_ON(!nodes_allowed);
1176
1177	nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
1178	h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
1179
1180	return nid;
1181}
1182
1183/*
1184 * helper for free_pool_huge_page() - return the previously saved
1185 * node ["this node"] from which to free a huge page.  Advance the
1186 * next node id whether or not we find a free huge page to free so
1187 * that the next attempt to free addresses the next node.
1188 */
1189static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1190{
1191	int nid;
1192
1193	VM_BUG_ON(!nodes_allowed);
1194
1195	nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1196	h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1197
1198	return nid;
1199}
1200
1201#define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask)		\
1202	for (nr_nodes = nodes_weight(*mask);				\
1203		nr_nodes > 0 &&						\
1204		((node = hstate_next_node_to_alloc(hs, mask)) || 1);	\
1205		nr_nodes--)
1206
1207#define for_each_node_mask_to_free(hs, nr_nodes, node, mask)		\
1208	for (nr_nodes = nodes_weight(*mask);				\
1209		nr_nodes > 0 &&						\
1210		((node = hstate_next_node_to_free(hs, mask)) || 1);	\
1211		nr_nodes--)
1212
1213#ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
1214static void destroy_compound_gigantic_page(struct page *page,
1215					unsigned int order)
1216{
1217	int i;
1218	int nr_pages = 1 << order;
1219	struct page *p = page + 1;
1220
1221	atomic_set(compound_mapcount_ptr(page), 0);
1222	if (hpage_pincount_available(page))
1223		atomic_set(compound_pincount_ptr(page), 0);
1224
1225	for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1226		clear_compound_head(p);
1227		set_page_refcounted(p);
1228	}
1229
1230	set_compound_order(page, 0);
1231	__ClearPageHead(page);
1232}
1233
1234static void free_gigantic_page(struct page *page, unsigned int order)
1235{
1236	/*
1237	 * If the page isn't allocated using the cma allocator,
1238	 * cma_release() returns false.
1239	 */
1240#ifdef CONFIG_CMA
1241	if (cma_release(hugetlb_cma[page_to_nid(page)], page, 1 << order))
1242		return;
1243#endif
1244
1245	free_contig_range(page_to_pfn(page), 1 << order);
1246}
1247
1248#ifdef CONFIG_CONTIG_ALLOC
1249static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1250		int nid, nodemask_t *nodemask)
1251{
1252	unsigned long nr_pages = 1UL << huge_page_order(h);
 
 
 
1253	if (nid == NUMA_NO_NODE)
1254		nid = numa_mem_id();
1255
 
1256#ifdef CONFIG_CMA
1257	{
1258		struct page *page;
1259		int node;
1260
1261		if (hugetlb_cma[nid]) {
1262			page = cma_alloc(hugetlb_cma[nid], nr_pages,
1263					huge_page_order(h), true);
1264			if (page)
1265				return page;
1266		}
1267
1268		if (!(gfp_mask & __GFP_THISNODE)) {
1269			for_each_node_mask(node, *nodemask) {
1270				if (node == nid || !hugetlb_cma[node])
1271					continue;
1272
1273				page = cma_alloc(hugetlb_cma[node], nr_pages,
1274						huge_page_order(h), true);
1275				if (page)
1276					return page;
1277			}
1278		}
1279	}
1280#endif
 
 
 
 
 
1281
1282	return alloc_contig_pages(nr_pages, gfp_mask, nid, nodemask);
 
 
 
 
 
 
 
 
 
1283}
1284
1285static void prep_new_huge_page(struct hstate *h, struct page *page, int nid);
1286static void prep_compound_gigantic_page(struct page *page, unsigned int order);
1287#else /* !CONFIG_CONTIG_ALLOC */
1288static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1289					int nid, nodemask_t *nodemask)
1290{
1291	return NULL;
1292}
1293#endif /* CONFIG_CONTIG_ALLOC */
1294
1295#else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
1296static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1297					int nid, nodemask_t *nodemask)
1298{
1299	return NULL;
1300}
1301static inline void free_gigantic_page(struct page *page, unsigned int order) { }
1302static inline void destroy_compound_gigantic_page(struct page *page,
1303						unsigned int order) { }
1304#endif
1305
1306static void update_and_free_page(struct hstate *h, struct page *page)
 
 
 
 
 
 
 
 
 
1307{
1308	int i;
 
 
 
1309
 
1310	if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1311		return;
1312
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1313	h->nr_huge_pages--;
1314	h->nr_huge_pages_node[page_to_nid(page)]--;
1315	for (i = 0; i < pages_per_huge_page(h); i++) {
1316		page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
1317				1 << PG_referenced | 1 << PG_dirty |
1318				1 << PG_active | 1 << PG_private |
1319				1 << PG_writeback);
1320	}
1321	VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
1322	VM_BUG_ON_PAGE(hugetlb_cgroup_from_page_rsvd(page), page);
1323	set_compound_page_dtor(page, NULL_COMPOUND_DTOR);
1324	set_page_refcounted(page);
1325	if (hstate_is_gigantic(h)) {
1326		/*
1327		 * Temporarily drop the hugetlb_lock, because
1328		 * we might block in free_gigantic_page().
1329		 */
1330		spin_unlock(&hugetlb_lock);
1331		destroy_compound_gigantic_page(page, huge_page_order(h));
1332		free_gigantic_page(page, huge_page_order(h));
1333		spin_lock(&hugetlb_lock);
1334	} else {
1335		__free_pages(page, huge_page_order(h));
1336	}
 
 
 
 
 
 
 
 
 
 
 
1337}
1338
1339struct hstate *size_to_hstate(unsigned long size)
 
1340{
1341	struct hstate *h;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1342
1343	for_each_hstate(h) {
1344		if (huge_page_size(h) == size)
1345			return h;
 
 
 
 
 
1346	}
1347	return NULL;
 
 
 
 
 
 
 
 
 
 
 
1348}
1349
1350/*
1351 * Test to determine whether the hugepage is "active/in-use" (i.e. being linked
1352 * to hstate->hugepage_activelist.)
 
 
1353 *
1354 * This function can be called for tail pages, but never returns true for them.
 
 
 
1355 */
1356bool page_huge_active(struct page *page)
 
 
1357{
1358	VM_BUG_ON_PAGE(!PageHuge(page), page);
1359	return PageHead(page) && PagePrivate(&page[1]);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1360}
 
1361
1362/* never called for tail page */
1363static void set_page_huge_active(struct page *page)
1364{
1365	VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1366	SetPagePrivate(&page[1]);
1367}
1368
1369static void clear_page_huge_active(struct page *page)
 
1370{
1371	VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1372	ClearPagePrivate(&page[1]);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1373}
1374
1375/*
1376 * Internal hugetlb specific page flag. Do not use outside of the hugetlb
1377 * code
1378 */
1379static inline bool PageHugeTemporary(struct page *page)
1380{
1381	if (!PageHuge(page))
1382		return false;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1383
1384	return (unsigned long)page[2].mapping == -1U;
 
 
 
1385}
1386
1387static inline void SetPageHugeTemporary(struct page *page)
1388{
1389	page[2].mapping = (void *)-1U;
1390}
1391
1392static inline void ClearPageHugeTemporary(struct page *page)
1393{
1394	page[2].mapping = NULL;
 
 
1395}
1396
1397static void __free_huge_page(struct page *page)
1398{
1399	/*
1400	 * Can't pass hstate in here because it is called from the
1401	 * compound page destructor.
1402	 */
1403	struct hstate *h = page_hstate(page);
1404	int nid = page_to_nid(page);
1405	struct hugepage_subpool *spool =
1406		(struct hugepage_subpool *)page_private(page);
1407	bool restore_reserve;
 
1408
1409	VM_BUG_ON_PAGE(page_count(page), page);
1410	VM_BUG_ON_PAGE(page_mapcount(page), page);
1411
1412	set_page_private(page, 0);
1413	page->mapping = NULL;
1414	restore_reserve = PagePrivate(page);
1415	ClearPagePrivate(page);
 
 
1416
1417	/*
1418	 * If PagePrivate() was set on page, page allocation consumed a
1419	 * reservation.  If the page was associated with a subpool, there
1420	 * would have been a page reserved in the subpool before allocation
1421	 * via hugepage_subpool_get_pages().  Since we are 'restoring' the
1422	 * reservtion, do not call hugepage_subpool_put_pages() as this will
1423	 * remove the reserved page from the subpool.
1424	 */
1425	if (!restore_reserve) {
1426		/*
1427		 * A return code of zero implies that the subpool will be
1428		 * under its minimum size if the reservation is not restored
1429		 * after page is free.  Therefore, force restore_reserve
1430		 * operation.
1431		 */
1432		if (hugepage_subpool_put_pages(spool, 1) == 0)
1433			restore_reserve = true;
1434	}
1435
1436	spin_lock(&hugetlb_lock);
1437	clear_page_huge_active(page);
1438	hugetlb_cgroup_uncharge_page(hstate_index(h),
1439				     pages_per_huge_page(h), page);
1440	hugetlb_cgroup_uncharge_page_rsvd(hstate_index(h),
1441					  pages_per_huge_page(h), page);
 
 
1442	if (restore_reserve)
1443		h->resv_huge_pages++;
1444
1445	if (PageHugeTemporary(page)) {
1446		list_del(&page->lru);
1447		ClearPageHugeTemporary(page);
1448		update_and_free_page(h, page);
1449	} else if (h->surplus_huge_pages_node[nid]) {
1450		/* remove the page from active list */
1451		list_del(&page->lru);
1452		update_and_free_page(h, page);
1453		h->surplus_huge_pages--;
1454		h->surplus_huge_pages_node[nid]--;
1455	} else {
1456		arch_clear_hugepage_flags(page);
1457		enqueue_huge_page(h, page);
 
1458	}
1459	spin_unlock(&hugetlb_lock);
1460}
1461
1462/*
1463 * As free_huge_page() can be called from a non-task context, we have
1464 * to defer the actual freeing in a workqueue to prevent potential
1465 * hugetlb_lock deadlock.
1466 *
1467 * free_hpage_workfn() locklessly retrieves the linked list of pages to
1468 * be freed and frees them one-by-one. As the page->mapping pointer is
1469 * going to be cleared in __free_huge_page() anyway, it is reused as the
1470 * llist_node structure of a lockless linked list of huge pages to be freed.
1471 */
1472static LLIST_HEAD(hpage_freelist);
1473
1474static void free_hpage_workfn(struct work_struct *work)
1475{
1476	struct llist_node *node;
1477	struct page *page;
1478
1479	node = llist_del_all(&hpage_freelist);
1480
1481	while (node) {
1482		page = container_of((struct address_space **)node,
1483				     struct page, mapping);
1484		node = node->next;
1485		__free_huge_page(page);
1486	}
1487}
1488static DECLARE_WORK(free_hpage_work, free_hpage_workfn);
1489
1490void free_huge_page(struct page *page)
1491{
1492	/*
1493	 * Defer freeing if in non-task context to avoid hugetlb_lock deadlock.
1494	 */
1495	if (!in_task()) {
1496		/*
1497		 * Only call schedule_work() if hpage_freelist is previously
1498		 * empty. Otherwise, schedule_work() had been called but the
1499		 * workfn hasn't retrieved the list yet.
1500		 */
1501		if (llist_add((struct llist_node *)&page->mapping,
1502			      &hpage_freelist))
1503			schedule_work(&free_hpage_work);
1504		return;
1505	}
1506
1507	__free_huge_page(page);
1508}
1509
1510static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
1511{
1512	INIT_LIST_HEAD(&page->lru);
1513	set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1514	spin_lock(&hugetlb_lock);
1515	set_hugetlb_cgroup(page, NULL);
1516	set_hugetlb_cgroup_rsvd(page, NULL);
1517	h->nr_huge_pages++;
1518	h->nr_huge_pages_node[nid]++;
1519	spin_unlock(&hugetlb_lock);
1520}
1521
1522static void prep_compound_gigantic_page(struct page *page, unsigned int order)
1523{
1524	int i;
1525	int nr_pages = 1 << order;
1526	struct page *p = page + 1;
1527
1528	/* we rely on prep_new_huge_page to set the destructor */
1529	set_compound_order(page, order);
1530	__ClearPageReserved(page);
1531	__SetPageHead(page);
1532	for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1533		/*
1534		 * For gigantic hugepages allocated through bootmem at
1535		 * boot, it's safer to be consistent with the not-gigantic
1536		 * hugepages and clear the PG_reserved bit from all tail pages
1537		 * too.  Otherwise drivers using get_user_pages() to access tail
1538		 * pages may get the reference counting wrong if they see
1539		 * PG_reserved set on a tail page (despite the head page not
1540		 * having PG_reserved set).  Enforcing this consistency between
1541		 * head and tail pages allows drivers to optimize away a check
1542		 * on the head page when they need know if put_page() is needed
1543		 * after get_user_pages().
1544		 */
1545		__ClearPageReserved(p);
1546		set_page_count(p, 0);
1547		set_compound_head(p, page);
1548	}
1549	atomic_set(compound_mapcount_ptr(page), -1);
1550
1551	if (hpage_pincount_available(page))
1552		atomic_set(compound_pincount_ptr(page), 0);
1553}
1554
1555/*
1556 * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1557 * transparent huge pages.  See the PageTransHuge() documentation for more
1558 * details.
1559 */
1560int PageHuge(struct page *page)
1561{
1562	if (!PageCompound(page))
1563		return 0;
1564
1565	page = compound_head(page);
1566	return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
1567}
1568EXPORT_SYMBOL_GPL(PageHuge);
1569
1570/*
1571 * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1572 * normal or transparent huge pages.
1573 */
1574int PageHeadHuge(struct page *page_head)
1575{
1576	if (!PageHead(page_head))
1577		return 0;
1578
1579	return page_head[1].compound_dtor == HUGETLB_PAGE_DTOR;
1580}
1581
1582/*
1583 * Find address_space associated with hugetlbfs page.
1584 * Upon entry page is locked and page 'was' mapped although mapped state
1585 * could change.  If necessary, use anon_vma to find vma and associated
1586 * address space.  The returned mapping may be stale, but it can not be
1587 * invalid as page lock (which is held) is required to destroy mapping.
1588 */
1589static struct address_space *_get_hugetlb_page_mapping(struct page *hpage)
1590{
1591	struct anon_vma *anon_vma;
1592	pgoff_t pgoff_start, pgoff_end;
1593	struct anon_vma_chain *avc;
1594	struct address_space *mapping = page_mapping(hpage);
1595
1596	/* Simple file based mapping */
1597	if (mapping)
1598		return mapping;
1599
1600	/*
1601	 * Even anonymous hugetlbfs mappings are associated with an
1602	 * underlying hugetlbfs file (see hugetlb_file_setup in mmap
1603	 * code).  Find a vma associated with the anonymous vma, and
1604	 * use the file pointer to get address_space.
1605	 */
1606	anon_vma = page_lock_anon_vma_read(hpage);
1607	if (!anon_vma)
1608		return mapping;  /* NULL */
1609
1610	/* Use first found vma */
1611	pgoff_start = page_to_pgoff(hpage);
1612	pgoff_end = pgoff_start + pages_per_huge_page(page_hstate(hpage)) - 1;
1613	anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root,
1614					pgoff_start, pgoff_end) {
1615		struct vm_area_struct *vma = avc->vma;
1616
1617		mapping = vma->vm_file->f_mapping;
1618		break;
1619	}
1620
1621	anon_vma_unlock_read(anon_vma);
1622	return mapping;
1623}
1624
1625/*
1626 * Find and lock address space (mapping) in write mode.
1627 *
1628 * Upon entry, the page is locked which allows us to find the mapping
1629 * even in the case of an anon page.  However, locking order dictates
1630 * the i_mmap_rwsem be acquired BEFORE the page lock.  This is hugetlbfs
1631 * specific.  So, we first try to lock the sema while still holding the
1632 * page lock.  If this works, great!  If not, then we need to drop the
1633 * page lock and then acquire i_mmap_rwsem and reacquire page lock.  Of
1634 * course, need to revalidate state along the way.
1635 */
1636struct address_space *hugetlb_page_mapping_lock_write(struct page *hpage)
1637{
1638	struct address_space *mapping, *mapping2;
1639
1640	mapping = _get_hugetlb_page_mapping(hpage);
1641retry:
1642	if (!mapping)
1643		return mapping;
1644
1645	/*
1646	 * If no contention, take lock and return
1647	 */
1648	if (i_mmap_trylock_write(mapping))
1649		return mapping;
1650
1651	/*
1652	 * Must drop page lock and wait on mapping sema.
1653	 * Note:  Once page lock is dropped, mapping could become invalid.
1654	 * As a hack, increase map count until we lock page again.
1655	 */
1656	atomic_inc(&hpage->_mapcount);
1657	unlock_page(hpage);
1658	i_mmap_lock_write(mapping);
1659	lock_page(hpage);
1660	atomic_add_negative(-1, &hpage->_mapcount);
1661
1662	/* verify page is still mapped */
1663	if (!page_mapped(hpage)) {
1664		i_mmap_unlock_write(mapping);
1665		return NULL;
1666	}
1667
1668	/*
1669	 * Get address space again and verify it is the same one
1670	 * we locked.  If not, drop lock and retry.
1671	 */
1672	mapping2 = _get_hugetlb_page_mapping(hpage);
1673	if (mapping2 != mapping) {
1674		i_mmap_unlock_write(mapping);
1675		mapping = mapping2;
1676		goto retry;
1677	}
1678
1679	return mapping;
1680}
1681
1682pgoff_t __basepage_index(struct page *page)
1683{
1684	struct page *page_head = compound_head(page);
1685	pgoff_t index = page_index(page_head);
1686	unsigned long compound_idx;
1687
1688	if (!PageHuge(page_head))
1689		return page_index(page);
1690
1691	if (compound_order(page_head) >= MAX_ORDER)
1692		compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
1693	else
1694		compound_idx = page - page_head;
1695
1696	return (index << compound_order(page_head)) + compound_idx;
1697}
1698
1699static struct page *alloc_buddy_huge_page(struct hstate *h,
1700		gfp_t gfp_mask, int nid, nodemask_t *nmask,
1701		nodemask_t *node_alloc_noretry)
1702{
1703	int order = huge_page_order(h);
1704	struct page *page;
1705	bool alloc_try_hard = true;
 
1706
1707	/*
1708	 * By default we always try hard to allocate the page with
1709	 * __GFP_RETRY_MAYFAIL flag.  However, if we are allocating pages in
1710	 * a loop (to adjust global huge page counts) and previous allocation
1711	 * failed, do not continue to try hard on the same node.  Use the
1712	 * node_alloc_noretry bitmap to manage this state information.
1713	 */
1714	if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry))
1715		alloc_try_hard = false;
1716	gfp_mask |= __GFP_COMP|__GFP_NOWARN;
1717	if (alloc_try_hard)
1718		gfp_mask |= __GFP_RETRY_MAYFAIL;
1719	if (nid == NUMA_NO_NODE)
1720		nid = numa_mem_id();
1721	page = __alloc_pages_nodemask(gfp_mask, order, nid, nmask);
1722	if (page)
1723		__count_vm_event(HTLB_BUDDY_PGALLOC);
1724	else
1725		__count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
 
 
 
 
 
 
 
 
 
 
 
1726
1727	/*
1728	 * If we did not specify __GFP_RETRY_MAYFAIL, but still got a page this
1729	 * indicates an overall state change.  Clear bit so that we resume
1730	 * normal 'try hard' allocations.
1731	 */
1732	if (node_alloc_noretry && page && !alloc_try_hard)
1733		node_clear(nid, *node_alloc_noretry);
1734
1735	/*
1736	 * If we tried hard to get a page but failed, set bit so that
1737	 * subsequent attempts will not try as hard until there is an
1738	 * overall state change.
1739	 */
1740	if (node_alloc_noretry && !page && alloc_try_hard)
1741		node_set(nid, *node_alloc_noretry);
1742
1743	return page;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1744}
1745
1746/*
1747 * Common helper to allocate a fresh hugetlb page. All specific allocators
1748 * should use this function to get new hugetlb pages
 
 
 
1749 */
1750static struct page *alloc_fresh_huge_page(struct hstate *h,
1751		gfp_t gfp_mask, int nid, nodemask_t *nmask,
1752		nodemask_t *node_alloc_noretry)
1753{
1754	struct page *page;
1755
1756	if (hstate_is_gigantic(h))
1757		page = alloc_gigantic_page(h, gfp_mask, nid, nmask);
1758	else
1759		page = alloc_buddy_huge_page(h, gfp_mask,
1760				nid, nmask, node_alloc_noretry);
1761	if (!page)
1762		return NULL;
1763
1764	if (hstate_is_gigantic(h))
1765		prep_compound_gigantic_page(page, huge_page_order(h));
1766	prep_new_huge_page(h, page, page_to_nid(page));
 
 
 
 
 
 
 
 
 
1767
1768	return page;
 
 
 
 
 
 
1769}
1770
1771/*
1772 * Allocates a fresh page to the hugetlb allocator pool in the node interleaved
1773 * manner.
1774 */
1775static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1776				nodemask_t *node_alloc_noretry)
 
 
1777{
1778	struct page *page;
1779	int nr_nodes, node;
1780	gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
1781
1782	for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1783		page = alloc_fresh_huge_page(h, gfp_mask, node, nodes_allowed,
1784						node_alloc_noretry);
1785		if (page)
1786			break;
 
 
1787	}
1788
1789	if (!page)
1790		return 0;
1791
1792	put_page(page); /* free it into the hugepage allocator */
1793
1794	return 1;
1795}
1796
1797/*
1798 * Free huge page from pool from next node to free.
1799 * Attempt to keep persistent huge pages more or less
1800 * balanced over allowed nodes.
 
1801 * Called with hugetlb_lock locked.
1802 */
1803static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1804							 bool acct_surplus)
1805{
1806	int nr_nodes, node;
1807	int ret = 0;
1808
 
1809	for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1810		/*
1811		 * If we're returning unused surplus pages, only examine
1812		 * nodes with surplus pages.
1813		 */
1814		if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
1815		    !list_empty(&h->hugepage_freelists[node])) {
1816			struct page *page =
1817				list_entry(h->hugepage_freelists[node].next,
1818					  struct page, lru);
1819			list_del(&page->lru);
1820			h->free_huge_pages--;
1821			h->free_huge_pages_node[node]--;
1822			if (acct_surplus) {
1823				h->surplus_huge_pages--;
1824				h->surplus_huge_pages_node[node]--;
1825			}
1826			update_and_free_page(h, page);
1827			ret = 1;
1828			break;
1829		}
1830	}
1831
1832	return ret;
1833}
1834
1835/*
1836 * Dissolve a given free hugepage into free buddy pages. This function does
1837 * nothing for in-use hugepages and non-hugepages.
1838 * This function returns values like below:
1839 *
1840 *  -EBUSY: failed to dissolved free hugepages or the hugepage is in-use
1841 *          (allocated or reserved.)
1842 *       0: successfully dissolved free hugepages or the page is not a
1843 *          hugepage (considered as already dissolved)
 
 
 
 
1844 */
1845int dissolve_free_huge_page(struct page *page)
1846{
1847	int rc = -EBUSY;
1848
 
1849	/* Not to disrupt normal path by vainly holding hugetlb_lock */
1850	if (!PageHuge(page))
1851		return 0;
1852
1853	spin_lock(&hugetlb_lock);
1854	if (!PageHuge(page)) {
1855		rc = 0;
1856		goto out;
1857	}
1858
1859	if (!page_count(page)) {
1860		struct page *head = compound_head(page);
1861		struct hstate *h = page_hstate(head);
1862		int nid = page_to_nid(head);
1863		if (h->free_huge_pages - h->resv_huge_pages == 0)
1864			goto out;
 
1865		/*
1866		 * Move PageHWPoison flag from head page to the raw error page,
1867		 * which makes any subpages rather than the error page reusable.
1868		 */
1869		if (PageHWPoison(head) && page != head) {
1870			SetPageHWPoison(page);
1871			ClearPageHWPoison(head);
 
 
 
 
 
 
 
 
 
 
1872		}
1873		list_del(&head->lru);
1874		h->free_huge_pages--;
1875		h->free_huge_pages_node[nid]--;
1876		h->max_huge_pages--;
1877		update_and_free_page(h, head);
1878		rc = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1879	}
1880out:
1881	spin_unlock(&hugetlb_lock);
1882	return rc;
1883}
1884
1885/*
1886 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
1887 * make specified memory blocks removable from the system.
1888 * Note that this will dissolve a free gigantic hugepage completely, if any
1889 * part of it lies within the given range.
1890 * Also note that if dissolve_free_huge_page() returns with an error, all
1891 * free hugepages that were dissolved before that error are lost.
1892 */
1893int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
1894{
1895	unsigned long pfn;
1896	struct page *page;
1897	int rc = 0;
 
 
1898
1899	if (!hugepages_supported())
1900		return rc;
1901
1902	for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order) {
1903		page = pfn_to_page(pfn);
1904		rc = dissolve_free_huge_page(page);
 
 
 
 
1905		if (rc)
1906			break;
1907	}
1908
1909	return rc;
1910}
1911
1912/*
1913 * Allocates a fresh surplus page from the page allocator.
1914 */
1915static struct page *alloc_surplus_huge_page(struct hstate *h, gfp_t gfp_mask,
1916		int nid, nodemask_t *nmask)
1917{
1918	struct page *page = NULL;
1919
1920	if (hstate_is_gigantic(h))
1921		return NULL;
1922
1923	spin_lock(&hugetlb_lock);
1924	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages)
1925		goto out_unlock;
1926	spin_unlock(&hugetlb_lock);
1927
1928	page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
1929	if (!page)
1930		return NULL;
1931
1932	spin_lock(&hugetlb_lock);
1933	/*
1934	 * We could have raced with the pool size change.
1935	 * Double check that and simply deallocate the new page
1936	 * if we would end up overcommiting the surpluses. Abuse
1937	 * temporary page to workaround the nasty free_huge_page
1938	 * codeflow
1939	 */
1940	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
1941		SetPageHugeTemporary(page);
1942		spin_unlock(&hugetlb_lock);
1943		put_page(page);
1944		return NULL;
1945	} else {
1946		h->surplus_huge_pages++;
1947		h->surplus_huge_pages_node[page_to_nid(page)]++;
1948	}
1949
 
 
 
1950out_unlock:
1951	spin_unlock(&hugetlb_lock);
1952
1953	return page;
1954}
1955
1956static struct page *alloc_migrate_huge_page(struct hstate *h, gfp_t gfp_mask,
1957				     int nid, nodemask_t *nmask)
1958{
1959	struct page *page;
1960
1961	if (hstate_is_gigantic(h))
1962		return NULL;
1963
1964	page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
1965	if (!page)
1966		return NULL;
1967
 
 
1968	/*
1969	 * We do not account these pages as surplus because they are only
1970	 * temporary and will be released properly on the last reference
1971	 */
1972	SetPageHugeTemporary(page);
1973
1974	return page;
1975}
1976
1977/*
1978 * Use the VMA's mpolicy to allocate a huge page from the buddy.
1979 */
1980static
1981struct page *alloc_buddy_huge_page_with_mpol(struct hstate *h,
1982		struct vm_area_struct *vma, unsigned long addr)
1983{
1984	struct page *page;
1985	struct mempolicy *mpol;
1986	gfp_t gfp_mask = htlb_alloc_mask(h);
1987	int nid;
1988	nodemask_t *nodemask;
1989
1990	nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
1991	page = alloc_surplus_huge_page(h, gfp_mask, nid, nodemask);
 
 
 
 
 
 
 
 
 
 
1992	mpol_cond_put(mpol);
 
 
 
 
 
 
 
1993
1994	return page;
 
 
 
 
 
 
 
 
 
1995}
1996
1997/* page migration callback function */
1998struct page *alloc_huge_page_nodemask(struct hstate *h, int preferred_nid,
1999		nodemask_t *nmask, gfp_t gfp_mask)
2000{
2001	spin_lock(&hugetlb_lock);
2002	if (h->free_huge_pages - h->resv_huge_pages > 0) {
2003		struct page *page;
2004
2005		page = dequeue_huge_page_nodemask(h, gfp_mask, preferred_nid, nmask);
2006		if (page) {
2007			spin_unlock(&hugetlb_lock);
2008			return page;
 
2009		}
2010	}
2011	spin_unlock(&hugetlb_lock);
2012
2013	return alloc_migrate_huge_page(h, gfp_mask, preferred_nid, nmask);
 
 
 
 
2014}
2015
2016/* mempolicy aware migration callback */
2017struct page *alloc_huge_page_vma(struct hstate *h, struct vm_area_struct *vma,
2018		unsigned long address)
2019{
2020	struct mempolicy *mpol;
2021	nodemask_t *nodemask;
2022	struct page *page;
2023	gfp_t gfp_mask;
2024	int node;
2025
2026	gfp_mask = htlb_alloc_mask(h);
2027	node = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
2028	page = alloc_huge_page_nodemask(h, node, nodemask, gfp_mask);
2029	mpol_cond_put(mpol);
2030
2031	return page;
 
 
 
 
2032}
2033
2034/*
2035 * Increase the hugetlb pool such that it can accommodate a reservation
2036 * of size 'delta'.
2037 */
2038static int gather_surplus_pages(struct hstate *h, int delta)
2039	__must_hold(&hugetlb_lock)
2040{
2041	struct list_head surplus_list;
2042	struct page *page, *tmp;
2043	int ret, i;
2044	int needed, allocated;
 
2045	bool alloc_ok = true;
 
 
2046
 
2047	needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
2048	if (needed <= 0) {
2049		h->resv_huge_pages += delta;
2050		return 0;
2051	}
2052
2053	allocated = 0;
2054	INIT_LIST_HEAD(&surplus_list);
2055
2056	ret = -ENOMEM;
2057retry:
2058	spin_unlock(&hugetlb_lock);
2059	for (i = 0; i < needed; i++) {
2060		page = alloc_surplus_huge_page(h, htlb_alloc_mask(h),
2061				NUMA_NO_NODE, NULL);
2062		if (!page) {
 
 
 
 
 
 
 
2063			alloc_ok = false;
2064			break;
2065		}
2066		list_add(&page->lru, &surplus_list);
2067		cond_resched();
2068	}
2069	allocated += i;
2070
2071	/*
2072	 * After retaking hugetlb_lock, we need to recalculate 'needed'
2073	 * because either resv_huge_pages or free_huge_pages may have changed.
2074	 */
2075	spin_lock(&hugetlb_lock);
2076	needed = (h->resv_huge_pages + delta) -
2077			(h->free_huge_pages + allocated);
2078	if (needed > 0) {
2079		if (alloc_ok)
2080			goto retry;
2081		/*
2082		 * We were not able to allocate enough pages to
2083		 * satisfy the entire reservation so we free what
2084		 * we've allocated so far.
2085		 */
2086		goto free;
2087	}
2088	/*
2089	 * The surplus_list now contains _at_least_ the number of extra pages
2090	 * needed to accommodate the reservation.  Add the appropriate number
2091	 * of pages to the hugetlb pool and free the extras back to the buddy
2092	 * allocator.  Commit the entire reservation here to prevent another
2093	 * process from stealing the pages as they are added to the pool but
2094	 * before they are reserved.
2095	 */
2096	needed += allocated;
2097	h->resv_huge_pages += delta;
2098	ret = 0;
2099
2100	/* Free the needed pages to the hugetlb pool */
2101	list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
2102		if ((--needed) < 0)
2103			break;
2104		/*
2105		 * This page is now managed by the hugetlb allocator and has
2106		 * no users -- drop the buddy allocator's reference.
2107		 */
2108		put_page_testzero(page);
2109		VM_BUG_ON_PAGE(page_count(page), page);
2110		enqueue_huge_page(h, page);
2111	}
2112free:
2113	spin_unlock(&hugetlb_lock);
2114
2115	/* Free unnecessary surplus pages to the buddy allocator */
2116	list_for_each_entry_safe(page, tmp, &surplus_list, lru)
2117		put_page(page);
2118	spin_lock(&hugetlb_lock);
 
 
 
2119
2120	return ret;
2121}
2122
2123/*
2124 * This routine has two main purposes:
2125 * 1) Decrement the reservation count (resv_huge_pages) by the value passed
2126 *    in unused_resv_pages.  This corresponds to the prior adjustments made
2127 *    to the associated reservation map.
2128 * 2) Free any unused surplus pages that may have been allocated to satisfy
2129 *    the reservation.  As many as unused_resv_pages may be freed.
2130 *
2131 * Called with hugetlb_lock held.  However, the lock could be dropped (and
2132 * reacquired) during calls to cond_resched_lock.  Whenever dropping the lock,
2133 * we must make sure nobody else can claim pages we are in the process of
2134 * freeing.  Do this by ensuring resv_huge_page always is greater than the
2135 * number of huge pages we plan to free when dropping the lock.
2136 */
2137static void return_unused_surplus_pages(struct hstate *h,
2138					unsigned long unused_resv_pages)
2139{
2140	unsigned long nr_pages;
 
2141
2142	/* Cannot return gigantic pages currently */
2143	if (hstate_is_gigantic(h))
 
 
 
2144		goto out;
2145
2146	/*
2147	 * Part (or even all) of the reservation could have been backed
2148	 * by pre-allocated pages. Only free surplus pages.
2149	 */
2150	nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
2151
2152	/*
2153	 * We want to release as many surplus pages as possible, spread
2154	 * evenly across all nodes with memory. Iterate across these nodes
2155	 * until we can no longer free unreserved surplus pages. This occurs
2156	 * when the nodes with surplus pages have no free pages.
2157	 * free_pool_huge_page() will balance the freed pages across the
2158	 * on-line nodes with memory and will handle the hstate accounting.
2159	 *
2160	 * Note that we decrement resv_huge_pages as we free the pages.  If
2161	 * we drop the lock, resv_huge_pages will still be sufficiently large
2162	 * to cover subsequent pages we may free.
2163	 */
2164	while (nr_pages--) {
2165		h->resv_huge_pages--;
2166		unused_resv_pages--;
2167		if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
 
2168			goto out;
2169		cond_resched_lock(&hugetlb_lock);
 
2170	}
2171
2172out:
2173	/* Fully uncommit the reservation */
2174	h->resv_huge_pages -= unused_resv_pages;
 
2175}
2176
2177
2178/*
2179 * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
2180 * are used by the huge page allocation routines to manage reservations.
2181 *
2182 * vma_needs_reservation is called to determine if the huge page at addr
2183 * within the vma has an associated reservation.  If a reservation is
2184 * needed, the value 1 is returned.  The caller is then responsible for
2185 * managing the global reservation and subpool usage counts.  After
2186 * the huge page has been allocated, vma_commit_reservation is called
2187 * to add the page to the reservation map.  If the page allocation fails,
2188 * the reservation must be ended instead of committed.  vma_end_reservation
2189 * is called in such cases.
2190 *
2191 * In the normal case, vma_commit_reservation returns the same value
2192 * as the preceding vma_needs_reservation call.  The only time this
2193 * is not the case is if a reserve map was changed between calls.  It
2194 * is the responsibility of the caller to notice the difference and
2195 * take appropriate action.
2196 *
2197 * vma_add_reservation is used in error paths where a reservation must
2198 * be restored when a newly allocated huge page must be freed.  It is
2199 * to be called after calling vma_needs_reservation to determine if a
2200 * reservation exists.
 
 
 
 
 
2201 */
2202enum vma_resv_mode {
2203	VMA_NEEDS_RESV,
2204	VMA_COMMIT_RESV,
2205	VMA_END_RESV,
2206	VMA_ADD_RESV,
 
2207};
2208static long __vma_reservation_common(struct hstate *h,
2209				struct vm_area_struct *vma, unsigned long addr,
2210				enum vma_resv_mode mode)
2211{
2212	struct resv_map *resv;
2213	pgoff_t idx;
2214	long ret;
2215	long dummy_out_regions_needed;
2216
2217	resv = vma_resv_map(vma);
2218	if (!resv)
2219		return 1;
2220
2221	idx = vma_hugecache_offset(h, vma, addr);
2222	switch (mode) {
2223	case VMA_NEEDS_RESV:
2224		ret = region_chg(resv, idx, idx + 1, &dummy_out_regions_needed);
2225		/* We assume that vma_reservation_* routines always operate on
2226		 * 1 page, and that adding to resv map a 1 page entry can only
2227		 * ever require 1 region.
2228		 */
2229		VM_BUG_ON(dummy_out_regions_needed != 1);
2230		break;
2231	case VMA_COMMIT_RESV:
2232		ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2233		/* region_add calls of range 1 should never fail. */
2234		VM_BUG_ON(ret < 0);
2235		break;
2236	case VMA_END_RESV:
2237		region_abort(resv, idx, idx + 1, 1);
2238		ret = 0;
2239		break;
2240	case VMA_ADD_RESV:
2241		if (vma->vm_flags & VM_MAYSHARE) {
2242			ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2243			/* region_add calls of range 1 should never fail. */
2244			VM_BUG_ON(ret < 0);
2245		} else {
2246			region_abort(resv, idx, idx + 1, 1);
2247			ret = region_del(resv, idx, idx + 1);
2248		}
2249		break;
 
 
 
 
 
 
 
 
 
 
2250	default:
2251		BUG();
2252	}
2253
2254	if (vma->vm_flags & VM_MAYSHARE)
2255		return ret;
2256	else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && ret >= 0) {
2257		/*
2258		 * In most cases, reserves always exist for private mappings.
2259		 * However, a file associated with mapping could have been
2260		 * hole punched or truncated after reserves were consumed.
2261		 * As subsequent fault on such a range will not use reserves.
2262		 * Subtle - The reserve map for private mappings has the
2263		 * opposite meaning than that of shared mappings.  If NO
2264		 * entry is in the reserve map, it means a reservation exists.
2265		 * If an entry exists in the reserve map, it means the
2266		 * reservation has already been consumed.  As a result, the
2267		 * return value of this routine is the opposite of the
2268		 * value returned from reserve map manipulation routines above.
2269		 */
2270		if (ret)
2271			return 0;
2272		else
2273			return 1;
2274	}
2275	else
2276		return ret < 0 ? ret : 0;
2277}
2278
2279static long vma_needs_reservation(struct hstate *h,
2280			struct vm_area_struct *vma, unsigned long addr)
2281{
2282	return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
2283}
2284
2285static long vma_commit_reservation(struct hstate *h,
2286			struct vm_area_struct *vma, unsigned long addr)
2287{
2288	return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
2289}
2290
2291static void vma_end_reservation(struct hstate *h,
2292			struct vm_area_struct *vma, unsigned long addr)
2293{
2294	(void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
2295}
2296
2297static long vma_add_reservation(struct hstate *h,
2298			struct vm_area_struct *vma, unsigned long addr)
2299{
2300	return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
2301}
2302
 
 
 
 
 
 
2303/*
2304 * This routine is called to restore a reservation on error paths.  In the
2305 * specific error paths, a huge page was allocated (via alloc_huge_page)
2306 * and is about to be freed.  If a reservation for the page existed,
2307 * alloc_huge_page would have consumed the reservation and set PagePrivate
2308 * in the newly allocated page.  When the page is freed via free_huge_page,
2309 * the global reservation count will be incremented if PagePrivate is set.
2310 * However, free_huge_page can not adjust the reserve map.  Adjust the
2311 * reserve map here to be consistent with global reserve count adjustments
2312 * to be made by free_huge_page.
2313 */
2314static void restore_reserve_on_error(struct hstate *h,
2315			struct vm_area_struct *vma, unsigned long address,
2316			struct page *page)
 
 
 
 
 
 
 
 
2317{
2318	if (unlikely(PagePrivate(page))) {
2319		long rc = vma_needs_reservation(h, vma, address);
2320
2321		if (unlikely(rc < 0)) {
 
2322			/*
2323			 * Rare out of memory condition in reserve map
2324			 * manipulation.  Clear PagePrivate so that
2325			 * global reserve count will not be incremented
2326			 * by free_huge_page.  This will make it appear
2327			 * as though the reservation for this page was
2328			 * consumed.  This may prevent the task from
2329			 * faulting in the page at a later time.  This
2330			 * is better than inconsistent global huge page
2331			 * accounting of reserve counts.
2332			 */
2333			ClearPagePrivate(page);
2334		} else if (rc) {
2335			rc = vma_add_reservation(h, vma, address);
2336			if (unlikely(rc < 0))
 
 
 
 
 
 
 
 
 
 
 
 
 
2337				/*
2338				 * See above comment about rare out of
2339				 * memory condition.
 
 
 
 
2340				 */
2341				ClearPagePrivate(page);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2342		} else
2343			vma_end_reservation(h, vma, address);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2344	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2345}
2346
2347struct page *alloc_huge_page(struct vm_area_struct *vma,
2348				    unsigned long addr, int avoid_reserve)
2349{
2350	struct hugepage_subpool *spool = subpool_vma(vma);
2351	struct hstate *h = hstate_vma(vma);
2352	struct page *page;
2353	long map_chg, map_commit;
2354	long gbl_chg;
2355	int ret, idx;
2356	struct hugetlb_cgroup *h_cg;
 
2357	bool deferred_reserve;
 
 
 
 
 
 
 
 
2358
2359	idx = hstate_index(h);
2360	/*
2361	 * Examine the region/reserve map to determine if the process
2362	 * has a reservation for the page to be allocated.  A return
2363	 * code of zero indicates a reservation exists (no change).
2364	 */
2365	map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
2366	if (map_chg < 0)
 
 
 
2367		return ERR_PTR(-ENOMEM);
 
2368
2369	/*
2370	 * Processes that did not create the mapping will have no
2371	 * reserves as indicated by the region/reserve map. Check
2372	 * that the allocation will not exceed the subpool limit.
2373	 * Allocations for MAP_NORESERVE mappings also need to be
2374	 * checked against any subpool limit.
2375	 */
2376	if (map_chg || avoid_reserve) {
2377		gbl_chg = hugepage_subpool_get_pages(spool, 1);
2378		if (gbl_chg < 0) {
2379			vma_end_reservation(h, vma, addr);
2380			return ERR_PTR(-ENOSPC);
2381		}
2382
2383		/*
2384		 * Even though there was no reservation in the region/reserve
2385		 * map, there could be reservations associated with the
2386		 * subpool that can be used.  This would be indicated if the
2387		 * return value of hugepage_subpool_get_pages() is zero.
2388		 * However, if avoid_reserve is specified we still avoid even
2389		 * the subpool reservations.
2390		 */
2391		if (avoid_reserve)
2392			gbl_chg = 1;
2393	}
2394
2395	/* If this allocation is not consuming a reservation, charge it now.
2396	 */
2397	deferred_reserve = map_chg || avoid_reserve || !vma_resv_map(vma);
2398	if (deferred_reserve) {
2399		ret = hugetlb_cgroup_charge_cgroup_rsvd(
2400			idx, pages_per_huge_page(h), &h_cg);
2401		if (ret)
2402			goto out_subpool_put;
2403	}
2404
2405	ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
2406	if (ret)
2407		goto out_uncharge_cgroup_reservation;
2408
2409	spin_lock(&hugetlb_lock);
2410	/*
2411	 * glb_chg is passed to indicate whether or not a page must be taken
2412	 * from the global free pool (global change).  gbl_chg == 0 indicates
2413	 * a reservation exists for the allocation.
2414	 */
2415	page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
2416	if (!page) {
2417		spin_unlock(&hugetlb_lock);
2418		page = alloc_buddy_huge_page_with_mpol(h, vma, addr);
2419		if (!page)
2420			goto out_uncharge_cgroup;
 
2421		if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
2422			SetPagePrivate(page);
2423			h->resv_huge_pages--;
2424		}
2425		spin_lock(&hugetlb_lock);
2426		list_move(&page->lru, &h->hugepage_activelist);
2427		/* Fall through */
2428	}
2429	hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
 
2430	/* If allocation is not consuming a reservation, also store the
2431	 * hugetlb_cgroup pointer on the page.
2432	 */
2433	if (deferred_reserve) {
2434		hugetlb_cgroup_commit_charge_rsvd(idx, pages_per_huge_page(h),
2435						  h_cg, page);
2436	}
2437
2438	spin_unlock(&hugetlb_lock);
2439
2440	set_page_private(page, (unsigned long)spool);
2441
2442	map_commit = vma_commit_reservation(h, vma, addr);
2443	if (unlikely(map_chg > map_commit)) {
2444		/*
2445		 * The page was added to the reservation map between
2446		 * vma_needs_reservation and vma_commit_reservation.
2447		 * This indicates a race with hugetlb_reserve_pages.
2448		 * Adjust for the subpool count incremented above AND
2449		 * in hugetlb_reserve_pages for the same page.  Also,
2450		 * the reservation count added in hugetlb_reserve_pages
2451		 * no longer applies.
2452		 */
2453		long rsv_adjust;
2454
2455		rsv_adjust = hugepage_subpool_put_pages(spool, 1);
2456		hugetlb_acct_memory(h, -rsv_adjust);
 
 
 
 
 
 
2457	}
2458	return page;
 
 
 
 
 
 
2459
2460out_uncharge_cgroup:
2461	hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
2462out_uncharge_cgroup_reservation:
2463	if (deferred_reserve)
2464		hugetlb_cgroup_uncharge_cgroup_rsvd(idx, pages_per_huge_page(h),
2465						    h_cg);
2466out_subpool_put:
2467	if (map_chg || avoid_reserve)
2468		hugepage_subpool_put_pages(spool, 1);
 
2469	vma_end_reservation(h, vma, addr);
 
 
 
2470	return ERR_PTR(-ENOSPC);
2471}
2472
2473int alloc_bootmem_huge_page(struct hstate *h)
2474	__attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
2475int __alloc_bootmem_huge_page(struct hstate *h)
2476{
2477	struct huge_bootmem_page *m;
2478	int nr_nodes, node;
2479
2480	for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
2481		void *addr;
2482
2483		addr = memblock_alloc_try_nid_raw(
 
 
 
 
 
 
 
2484				huge_page_size(h), huge_page_size(h),
2485				0, MEMBLOCK_ALLOC_ACCESSIBLE, node);
2486		if (addr) {
2487			/*
2488			 * Use the beginning of the huge page to store the
2489			 * huge_bootmem_page struct (until gather_bootmem
2490			 * puts them into the mem_map).
2491			 */
2492			m = addr;
2493			goto found;
2494		}
2495	}
2496	return 0;
2497
2498found:
2499	BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h)));
 
 
 
 
 
 
 
 
 
2500	/* Put them into a private list first because mem_map is not up yet */
2501	INIT_LIST_HEAD(&m->list);
2502	list_add(&m->list, &huge_boot_pages);
2503	m->hstate = h;
2504	return 1;
2505}
2506
2507static void __init prep_compound_huge_page(struct page *page,
2508		unsigned int order)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2509{
2510	if (unlikely(order > (MAX_ORDER - 1)))
2511		prep_compound_gigantic_page(page, order);
2512	else
2513		prep_compound_page(page, order);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2514}
2515
2516/* Put bootmem huge pages into the standard lists after mem_map is up */
2517static void __init gather_bootmem_prealloc(void)
 
 
 
2518{
 
2519	struct huge_bootmem_page *m;
 
2520
2521	list_for_each_entry(m, &huge_boot_pages, list) {
2522		struct page *page = virt_to_page(m);
2523		struct hstate *h = m->hstate;
2524
2525		WARN_ON(page_count(page) != 1);
2526		prep_compound_huge_page(page, h->order);
2527		WARN_ON(PageReserved(page));
2528		prep_new_huge_page(h, page, page_to_nid(page));
2529		put_page(page); /* free it into the hugepage allocator */
2530
2531		/*
2532		 * If we had gigantic hugepages allocated at boot time, we need
2533		 * to restore the 'stolen' pages to totalram_pages in order to
2534		 * fix confusing memory reports from free(1) and another
2535		 * side-effects, like CommitLimit going negative.
2536		 */
2537		if (hstate_is_gigantic(h))
2538			adjust_managed_page_count(page, 1 << h->order);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2539		cond_resched();
2540	}
 
 
2541}
2542
2543static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
 
 
 
 
 
 
 
 
 
2544{
2545	unsigned long i;
2546	nodemask_t *node_alloc_noretry;
 
 
 
 
 
 
 
 
2547
2548	if (!hstate_is_gigantic(h)) {
2549		/*
2550		 * Bit mask controlling how hard we retry per-node allocations.
2551		 * Ignore errors as lower level routines can deal with
2552		 * node_alloc_noretry == NULL.  If this kmalloc fails at boot
2553		 * time, we are likely in bigger trouble.
2554		 */
2555		node_alloc_noretry = kmalloc(sizeof(*node_alloc_noretry),
2556						GFP_KERNEL);
2557	} else {
2558		/* allocations done at boot time */
2559		node_alloc_noretry = NULL;
2560	}
2561
2562	/* bit mask controlling how hard we retry per-node allocations */
2563	if (node_alloc_noretry)
2564		nodes_clear(*node_alloc_noretry);
 
 
2565
2566	for (i = 0; i < h->max_huge_pages; ++i) {
2567		if (hstate_is_gigantic(h)) {
2568			if (hugetlb_cma_size) {
2569				pr_warn_once("HugeTLB: hugetlb_cma is enabled, skip boot time allocation\n");
2570				break;
2571			}
2572			if (!alloc_bootmem_huge_page(h))
 
 
 
 
 
2573				break;
2574		} else if (!alloc_pool_huge_page(h,
2575					 &node_states[N_MEMORY],
2576					 node_alloc_noretry))
2577			break;
2578		cond_resched();
2579	}
2580	if (i < h->max_huge_pages) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2581		char buf[32];
2582
2583		string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
2584		pr_warn("HugeTLB: allocating %lu of page size %s failed.  Only allocated %lu hugepages.\n",
2585			h->max_huge_pages, buf, i);
2586		h->max_huge_pages = i;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2587	}
2588
2589	kfree(node_alloc_noretry);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2590}
2591
2592static void __init hugetlb_init_hstates(void)
2593{
2594	struct hstate *h;
2595
2596	for_each_hstate(h) {
2597		if (minimum_order > huge_page_order(h))
2598			minimum_order = huge_page_order(h);
2599
2600		/* oversize hugepages were init'ed in early boot */
2601		if (!hstate_is_gigantic(h))
2602			hugetlb_hstate_alloc_pages(h);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2603	}
2604	VM_BUG_ON(minimum_order == UINT_MAX);
2605}
2606
2607static void __init report_hugepages(void)
2608{
2609	struct hstate *h;
2610
2611	for_each_hstate(h) {
2612		char buf[32];
2613
2614		string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
2615		pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
2616			buf, h->free_huge_pages);
 
 
2617	}
2618}
2619
2620#ifdef CONFIG_HIGHMEM
2621static void try_to_free_low(struct hstate *h, unsigned long count,
2622						nodemask_t *nodes_allowed)
2623{
2624	int i;
 
2625
 
2626	if (hstate_is_gigantic(h))
2627		return;
2628
 
 
 
2629	for_each_node_mask(i, *nodes_allowed) {
2630		struct page *page, *next;
2631		struct list_head *freel = &h->hugepage_freelists[i];
2632		list_for_each_entry_safe(page, next, freel, lru) {
2633			if (count >= h->nr_huge_pages)
2634				return;
2635			if (PageHighMem(page))
2636				continue;
2637			list_del(&page->lru);
2638			update_and_free_page(h, page);
2639			h->free_huge_pages--;
2640			h->free_huge_pages_node[page_to_nid(page)]--;
2641		}
2642	}
 
 
 
 
 
2643}
2644#else
2645static inline void try_to_free_low(struct hstate *h, unsigned long count,
2646						nodemask_t *nodes_allowed)
2647{
2648}
2649#endif
2650
2651/*
2652 * Increment or decrement surplus_huge_pages.  Keep node-specific counters
2653 * balanced by operating on them in a round-robin fashion.
2654 * Returns 1 if an adjustment was made.
2655 */
2656static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
2657				int delta)
2658{
2659	int nr_nodes, node;
2660
 
2661	VM_BUG_ON(delta != -1 && delta != 1);
2662
2663	if (delta < 0) {
2664		for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
2665			if (h->surplus_huge_pages_node[node])
2666				goto found;
2667		}
2668	} else {
2669		for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2670			if (h->surplus_huge_pages_node[node] <
2671					h->nr_huge_pages_node[node])
2672				goto found;
2673		}
2674	}
2675	return 0;
2676
2677found:
2678	h->surplus_huge_pages += delta;
2679	h->surplus_huge_pages_node[node] += delta;
2680	return 1;
2681}
2682
2683#define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
2684static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid,
2685			      nodemask_t *nodes_allowed)
2686{
2687	unsigned long min_count, ret;
 
 
 
2688	NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL);
2689
2690	/*
2691	 * Bit mask controlling how hard we retry per-node allocations.
2692	 * If we can not allocate the bit mask, do not attempt to allocate
2693	 * the requested huge pages.
2694	 */
2695	if (node_alloc_noretry)
2696		nodes_clear(*node_alloc_noretry);
2697	else
2698		return -ENOMEM;
2699
2700	spin_lock(&hugetlb_lock);
 
 
 
 
 
 
2701
2702	/*
2703	 * Check for a node specific request.
2704	 * Changing node specific huge page count may require a corresponding
2705	 * change to the global count.  In any case, the passed node mask
2706	 * (nodes_allowed) will restrict alloc/free to the specified node.
2707	 */
2708	if (nid != NUMA_NO_NODE) {
2709		unsigned long old_count = count;
2710
2711		count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
 
 
2712		/*
2713		 * User may have specified a large count value which caused the
2714		 * above calculation to overflow.  In this case, they wanted
2715		 * to allocate as many huge pages as possible.  Set count to
2716		 * largest possible value to align with their intention.
2717		 */
2718		if (count < old_count)
2719			count = ULONG_MAX;
2720	}
2721
2722	/*
2723	 * Gigantic pages runtime allocation depend on the capability for large
2724	 * page range allocation.
2725	 * If the system does not provide this feature, return an error when
2726	 * the user tries to allocate gigantic pages but let the user free the
2727	 * boottime allocated gigantic pages.
2728	 */
2729	if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) {
2730		if (count > persistent_huge_pages(h)) {
2731			spin_unlock(&hugetlb_lock);
 
2732			NODEMASK_FREE(node_alloc_noretry);
2733			return -EINVAL;
2734		}
2735		/* Fall through to decrease pool */
2736	}
2737
2738	/*
2739	 * Increase the pool size
2740	 * First take pages out of surplus state.  Then make up the
2741	 * remaining difference by allocating fresh huge pages.
2742	 *
2743	 * We might race with alloc_surplus_huge_page() here and be unable
2744	 * to convert a surplus huge page to a normal huge page. That is
2745	 * not critical, though, it just means the overall size of the
2746	 * pool might be one hugepage larger than it needs to be, but
2747	 * within all the constraints specified by the sysctls.
2748	 */
2749	while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
2750		if (!adjust_pool_surplus(h, nodes_allowed, -1))
2751			break;
2752	}
2753
2754	while (count > persistent_huge_pages(h)) {
 
2755		/*
2756		 * If this allocation races such that we no longer need the
2757		 * page, free_huge_page will handle it by freeing the page
2758		 * and reducing the surplus.
2759		 */
2760		spin_unlock(&hugetlb_lock);
2761
2762		/* yield cpu to avoid soft lockup */
2763		cond_resched();
2764
2765		ret = alloc_pool_huge_page(h, nodes_allowed,
2766						node_alloc_noretry);
2767		spin_lock(&hugetlb_lock);
2768		if (!ret)
 
 
2769			goto out;
 
 
 
 
2770
2771		/* Bail for signals. Probably ctrl-c from user */
2772		if (signal_pending(current))
 
 
2773			goto out;
 
 
 
 
 
 
 
 
 
 
2774	}
2775
2776	/*
2777	 * Decrease the pool size
2778	 * First return free pages to the buddy allocator (being careful
2779	 * to keep enough around to satisfy reservations).  Then place
2780	 * pages into surplus state as needed so the pool will shrink
2781	 * to the desired size as pages become free.
2782	 *
2783	 * By placing pages into the surplus state independent of the
2784	 * overcommit value, we are allowing the surplus pool size to
2785	 * exceed overcommit. There are few sane options here. Since
2786	 * alloc_surplus_huge_page() is checking the global counter,
2787	 * though, we'll note that we're not allowed to exceed surplus
2788	 * and won't grow the pool anywhere else. Not until one of the
2789	 * sysctls are changed, or the surplus pages go out of use.
2790	 */
2791	min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
2792	min_count = max(count, min_count);
2793	try_to_free_low(h, min_count, nodes_allowed);
 
 
 
 
2794	while (min_count < persistent_huge_pages(h)) {
2795		if (!free_pool_huge_page(h, nodes_allowed, 0))
 
2796			break;
2797		cond_resched_lock(&hugetlb_lock);
 
2798	}
 
 
 
 
 
 
2799	while (count < persistent_huge_pages(h)) {
2800		if (!adjust_pool_surplus(h, nodes_allowed, 1))
2801			break;
2802	}
2803out:
2804	h->max_huge_pages = persistent_huge_pages(h);
2805	spin_unlock(&hugetlb_lock);
 
2806
2807	NODEMASK_FREE(node_alloc_noretry);
2808
2809	return 0;
2810}
2811
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2812#define HSTATE_ATTR_RO(_name) \
2813	static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2814
 
 
 
2815#define HSTATE_ATTR(_name) \
2816	static struct kobj_attribute _name##_attr = \
2817		__ATTR(_name, 0644, _name##_show, _name##_store)
2818
2819static struct kobject *hugepages_kobj;
2820static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2821
2822static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
2823
2824static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
2825{
2826	int i;
2827
2828	for (i = 0; i < HUGE_MAX_HSTATE; i++)
2829		if (hstate_kobjs[i] == kobj) {
2830			if (nidp)
2831				*nidp = NUMA_NO_NODE;
2832			return &hstates[i];
2833		}
2834
2835	return kobj_to_node_hstate(kobj, nidp);
2836}
2837
2838static ssize_t nr_hugepages_show_common(struct kobject *kobj,
2839					struct kobj_attribute *attr, char *buf)
2840{
2841	struct hstate *h;
2842	unsigned long nr_huge_pages;
2843	int nid;
2844
2845	h = kobj_to_hstate(kobj, &nid);
2846	if (nid == NUMA_NO_NODE)
2847		nr_huge_pages = h->nr_huge_pages;
2848	else
2849		nr_huge_pages = h->nr_huge_pages_node[nid];
2850
2851	return sprintf(buf, "%lu\n", nr_huge_pages);
2852}
2853
2854static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
2855					   struct hstate *h, int nid,
2856					   unsigned long count, size_t len)
2857{
2858	int err;
2859	nodemask_t nodes_allowed, *n_mask;
2860
2861	if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
2862		return -EINVAL;
2863
2864	if (nid == NUMA_NO_NODE) {
2865		/*
2866		 * global hstate attribute
2867		 */
2868		if (!(obey_mempolicy &&
2869				init_nodemask_of_mempolicy(&nodes_allowed)))
2870			n_mask = &node_states[N_MEMORY];
2871		else
2872			n_mask = &nodes_allowed;
2873	} else {
2874		/*
2875		 * Node specific request.  count adjustment happens in
2876		 * set_max_huge_pages() after acquiring hugetlb_lock.
2877		 */
2878		init_nodemask_of_node(&nodes_allowed, nid);
2879		n_mask = &nodes_allowed;
2880	}
2881
2882	err = set_max_huge_pages(h, count, nid, n_mask);
2883
2884	return err ? err : len;
2885}
2886
2887static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
2888					 struct kobject *kobj, const char *buf,
2889					 size_t len)
2890{
2891	struct hstate *h;
2892	unsigned long count;
2893	int nid;
2894	int err;
2895
2896	err = kstrtoul(buf, 10, &count);
2897	if (err)
2898		return err;
2899
2900	h = kobj_to_hstate(kobj, &nid);
2901	return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
2902}
2903
2904static ssize_t nr_hugepages_show(struct kobject *kobj,
2905				       struct kobj_attribute *attr, char *buf)
2906{
2907	return nr_hugepages_show_common(kobj, attr, buf);
2908}
2909
2910static ssize_t nr_hugepages_store(struct kobject *kobj,
2911	       struct kobj_attribute *attr, const char *buf, size_t len)
2912{
2913	return nr_hugepages_store_common(false, kobj, buf, len);
2914}
2915HSTATE_ATTR(nr_hugepages);
2916
2917#ifdef CONFIG_NUMA
2918
2919/*
2920 * hstate attribute for optionally mempolicy-based constraint on persistent
2921 * huge page alloc/free.
2922 */
2923static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
2924				       struct kobj_attribute *attr, char *buf)
 
2925{
2926	return nr_hugepages_show_common(kobj, attr, buf);
2927}
2928
2929static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
2930	       struct kobj_attribute *attr, const char *buf, size_t len)
2931{
2932	return nr_hugepages_store_common(true, kobj, buf, len);
2933}
2934HSTATE_ATTR(nr_hugepages_mempolicy);
2935#endif
2936
2937
2938static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
2939					struct kobj_attribute *attr, char *buf)
2940{
2941	struct hstate *h = kobj_to_hstate(kobj, NULL);
2942	return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
2943}
2944
2945static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
2946		struct kobj_attribute *attr, const char *buf, size_t count)
2947{
2948	int err;
2949	unsigned long input;
2950	struct hstate *h = kobj_to_hstate(kobj, NULL);
2951
2952	if (hstate_is_gigantic(h))
2953		return -EINVAL;
2954
2955	err = kstrtoul(buf, 10, &input);
2956	if (err)
2957		return err;
2958
2959	spin_lock(&hugetlb_lock);
2960	h->nr_overcommit_huge_pages = input;
2961	spin_unlock(&hugetlb_lock);
2962
2963	return count;
2964}
2965HSTATE_ATTR(nr_overcommit_hugepages);
2966
2967static ssize_t free_hugepages_show(struct kobject *kobj,
2968					struct kobj_attribute *attr, char *buf)
2969{
2970	struct hstate *h;
2971	unsigned long free_huge_pages;
2972	int nid;
2973
2974	h = kobj_to_hstate(kobj, &nid);
2975	if (nid == NUMA_NO_NODE)
2976		free_huge_pages = h->free_huge_pages;
2977	else
2978		free_huge_pages = h->free_huge_pages_node[nid];
2979
2980	return sprintf(buf, "%lu\n", free_huge_pages);
2981}
2982HSTATE_ATTR_RO(free_hugepages);
2983
2984static ssize_t resv_hugepages_show(struct kobject *kobj,
2985					struct kobj_attribute *attr, char *buf)
2986{
2987	struct hstate *h = kobj_to_hstate(kobj, NULL);
2988	return sprintf(buf, "%lu\n", h->resv_huge_pages);
2989}
2990HSTATE_ATTR_RO(resv_hugepages);
2991
2992static ssize_t surplus_hugepages_show(struct kobject *kobj,
2993					struct kobj_attribute *attr, char *buf)
2994{
2995	struct hstate *h;
2996	unsigned long surplus_huge_pages;
2997	int nid;
2998
2999	h = kobj_to_hstate(kobj, &nid);
3000	if (nid == NUMA_NO_NODE)
3001		surplus_huge_pages = h->surplus_huge_pages;
3002	else
3003		surplus_huge_pages = h->surplus_huge_pages_node[nid];
3004
3005	return sprintf(buf, "%lu\n", surplus_huge_pages);
3006}
3007HSTATE_ATTR_RO(surplus_hugepages);
3008
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3009static struct attribute *hstate_attrs[] = {
3010	&nr_hugepages_attr.attr,
3011	&nr_overcommit_hugepages_attr.attr,
3012	&free_hugepages_attr.attr,
3013	&resv_hugepages_attr.attr,
3014	&surplus_hugepages_attr.attr,
3015#ifdef CONFIG_NUMA
3016	&nr_hugepages_mempolicy_attr.attr,
3017#endif
3018	NULL,
3019};
3020
3021static const struct attribute_group hstate_attr_group = {
3022	.attrs = hstate_attrs,
3023};
3024
 
 
 
 
 
 
 
 
 
 
3025static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
3026				    struct kobject **hstate_kobjs,
3027				    const struct attribute_group *hstate_attr_group)
3028{
3029	int retval;
3030	int hi = hstate_index(h);
3031
3032	hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
3033	if (!hstate_kobjs[hi])
3034		return -ENOMEM;
3035
3036	retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
3037	if (retval)
3038		kobject_put(hstate_kobjs[hi]);
 
 
 
3039
3040	return retval;
3041}
 
 
 
 
 
 
 
 
 
3042
3043static void __init hugetlb_sysfs_init(void)
3044{
3045	struct hstate *h;
3046	int err;
3047
3048	hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
3049	if (!hugepages_kobj)
3050		return;
3051
3052	for_each_hstate(h) {
3053		err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
3054					 hstate_kobjs, &hstate_attr_group);
3055		if (err)
3056			pr_err("HugeTLB: Unable to add hstate %s", h->name);
3057	}
3058}
3059
3060#ifdef CONFIG_NUMA
 
3061
3062/*
3063 * node_hstate/s - associate per node hstate attributes, via their kobjects,
3064 * with node devices in node_devices[] using a parallel array.  The array
3065 * index of a node device or _hstate == node id.
3066 * This is here to avoid any static dependency of the node device driver, in
3067 * the base kernel, on the hugetlb module.
3068 */
3069struct node_hstate {
3070	struct kobject		*hugepages_kobj;
3071	struct kobject		*hstate_kobjs[HUGE_MAX_HSTATE];
3072};
3073static struct node_hstate node_hstates[MAX_NUMNODES];
3074
3075/*
3076 * A subset of global hstate attributes for node devices
3077 */
3078static struct attribute *per_node_hstate_attrs[] = {
3079	&nr_hugepages_attr.attr,
3080	&free_hugepages_attr.attr,
3081	&surplus_hugepages_attr.attr,
3082	NULL,
3083};
3084
3085static const struct attribute_group per_node_hstate_attr_group = {
3086	.attrs = per_node_hstate_attrs,
3087};
3088
3089/*
3090 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
3091 * Returns node id via non-NULL nidp.
3092 */
3093static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
3094{
3095	int nid;
3096
3097	for (nid = 0; nid < nr_node_ids; nid++) {
3098		struct node_hstate *nhs = &node_hstates[nid];
3099		int i;
3100		for (i = 0; i < HUGE_MAX_HSTATE; i++)
3101			if (nhs->hstate_kobjs[i] == kobj) {
3102				if (nidp)
3103					*nidp = nid;
3104				return &hstates[i];
3105			}
3106	}
3107
3108	BUG();
3109	return NULL;
3110}
3111
3112/*
3113 * Unregister hstate attributes from a single node device.
3114 * No-op if no hstate attributes attached.
3115 */
3116static void hugetlb_unregister_node(struct node *node)
3117{
3118	struct hstate *h;
3119	struct node_hstate *nhs = &node_hstates[node->dev.id];
3120
3121	if (!nhs->hugepages_kobj)
3122		return;		/* no hstate attributes */
3123
3124	for_each_hstate(h) {
3125		int idx = hstate_index(h);
3126		if (nhs->hstate_kobjs[idx]) {
3127			kobject_put(nhs->hstate_kobjs[idx]);
3128			nhs->hstate_kobjs[idx] = NULL;
3129		}
 
 
 
 
 
3130	}
3131
3132	kobject_put(nhs->hugepages_kobj);
3133	nhs->hugepages_kobj = NULL;
3134}
3135
3136
3137/*
3138 * Register hstate attributes for a single node device.
3139 * No-op if attributes already registered.
3140 */
3141static void hugetlb_register_node(struct node *node)
3142{
3143	struct hstate *h;
3144	struct node_hstate *nhs = &node_hstates[node->dev.id];
3145	int err;
3146
 
 
 
3147	if (nhs->hugepages_kobj)
3148		return;		/* already allocated */
3149
3150	nhs->hugepages_kobj = kobject_create_and_add("hugepages",
3151							&node->dev.kobj);
3152	if (!nhs->hugepages_kobj)
3153		return;
3154
3155	for_each_hstate(h) {
3156		err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
3157						nhs->hstate_kobjs,
3158						&per_node_hstate_attr_group);
3159		if (err) {
3160			pr_err("HugeTLB: Unable to add hstate %s for node %d\n",
3161				h->name, node->dev.id);
3162			hugetlb_unregister_node(node);
3163			break;
3164		}
3165	}
3166}
3167
3168/*
3169 * hugetlb init time:  register hstate attributes for all registered node
3170 * devices of nodes that have memory.  All on-line nodes should have
3171 * registered their associated device by this time.
3172 */
3173static void __init hugetlb_register_all_nodes(void)
3174{
3175	int nid;
3176
3177	for_each_node_state(nid, N_MEMORY) {
3178		struct node *node = node_devices[nid];
3179		if (node->dev.id == nid)
3180			hugetlb_register_node(node);
3181	}
3182
3183	/*
3184	 * Let the node device driver know we're here so it can
3185	 * [un]register hstate attributes on node hotplug.
3186	 */
3187	register_hugetlbfs_with_node(hugetlb_register_node,
3188				     hugetlb_unregister_node);
3189}
3190#else	/* !CONFIG_NUMA */
3191
3192static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
3193{
3194	BUG();
3195	if (nidp)
3196		*nidp = -1;
3197	return NULL;
3198}
3199
3200static void hugetlb_register_all_nodes(void) { }
3201
3202#endif
3203
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3204static int __init hugetlb_init(void)
3205{
3206	int i;
3207
 
 
 
3208	if (!hugepages_supported()) {
3209		if (hugetlb_max_hstate || default_hstate_max_huge_pages)
3210			pr_warn("HugeTLB: huge pages not supported, ignoring associated command-line parameters\n");
3211		return 0;
3212	}
3213
3214	/*
3215	 * Make sure HPAGE_SIZE (HUGETLB_PAGE_ORDER) hstate exists.  Some
3216	 * architectures depend on setup being done here.
3217	 */
3218	hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
3219	if (!parsed_default_hugepagesz) {
3220		/*
3221		 * If we did not parse a default huge page size, set
3222		 * default_hstate_idx to HPAGE_SIZE hstate. And, if the
3223		 * number of huge pages for this default size was implicitly
3224		 * specified, set that here as well.
3225		 * Note that the implicit setting will overwrite an explicit
3226		 * setting.  A warning will be printed in this case.
3227		 */
3228		default_hstate_idx = hstate_index(size_to_hstate(HPAGE_SIZE));
3229		if (default_hstate_max_huge_pages) {
3230			if (default_hstate.max_huge_pages) {
3231				char buf[32];
3232
3233				string_get_size(huge_page_size(&default_hstate),
3234					1, STRING_UNITS_2, buf, 32);
3235				pr_warn("HugeTLB: Ignoring hugepages=%lu associated with %s page size\n",
3236					default_hstate.max_huge_pages, buf);
3237				pr_warn("HugeTLB: Using hugepages=%lu for number of default huge pages\n",
3238					default_hstate_max_huge_pages);
3239			}
3240			default_hstate.max_huge_pages =
3241				default_hstate_max_huge_pages;
 
 
 
 
3242		}
3243	}
3244
3245	hugetlb_cma_check();
3246	hugetlb_init_hstates();
3247	gather_bootmem_prealloc();
3248	report_hugepages();
3249
3250	hugetlb_sysfs_init();
3251	hugetlb_register_all_nodes();
3252	hugetlb_cgroup_file_init();
 
3253
3254#ifdef CONFIG_SMP
3255	num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
3256#else
3257	num_fault_mutexes = 1;
3258#endif
3259	hugetlb_fault_mutex_table =
3260		kmalloc_array(num_fault_mutexes, sizeof(struct mutex),
3261			      GFP_KERNEL);
3262	BUG_ON(!hugetlb_fault_mutex_table);
3263
3264	for (i = 0; i < num_fault_mutexes; i++)
3265		mutex_init(&hugetlb_fault_mutex_table[i]);
3266	return 0;
3267}
3268subsys_initcall(hugetlb_init);
3269
3270/* Overwritten by architectures with more huge page sizes */
3271bool __init __attribute((weak)) arch_hugetlb_valid_size(unsigned long size)
3272{
3273	return size == HPAGE_SIZE;
3274}
3275
3276void __init hugetlb_add_hstate(unsigned int order)
3277{
3278	struct hstate *h;
3279	unsigned long i;
3280
3281	if (size_to_hstate(PAGE_SIZE << order)) {
3282		return;
3283	}
3284	BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
3285	BUG_ON(order == 0);
3286	h = &hstates[hugetlb_max_hstate++];
 
3287	h->order = order;
3288	h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
3289	h->nr_huge_pages = 0;
3290	h->free_huge_pages = 0;
3291	for (i = 0; i < MAX_NUMNODES; ++i)
3292		INIT_LIST_HEAD(&h->hugepage_freelists[i]);
3293	INIT_LIST_HEAD(&h->hugepage_activelist);
3294	h->next_nid_to_alloc = first_memory_node;
3295	h->next_nid_to_free = first_memory_node;
3296	snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
3297					huge_page_size(h)/1024);
3298
3299	parsed_hstate = h;
3300}
3301
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3302/*
3303 * hugepages command line processing
3304 * hugepages normally follows a valid hugepagsz or default_hugepagsz
3305 * specification.  If not, ignore the hugepages value.  hugepages can also
3306 * be the first huge page command line  option in which case it implicitly
3307 * specifies the number of huge pages for the default size.
3308 */
3309static int __init hugepages_setup(char *s)
3310{
3311	unsigned long *mhp;
3312	static unsigned long *last_mhp;
 
 
 
 
3313
3314	if (!parsed_valid_hugepagesz) {
3315		pr_warn("HugeTLB: hugepages=%s does not follow a valid hugepagesz, ignoring\n", s);
3316		parsed_valid_hugepagesz = true;
3317		return 0;
3318	}
3319
3320	/*
3321	 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter
3322	 * yet, so this hugepages= parameter goes to the "default hstate".
3323	 * Otherwise, it goes with the previously parsed hugepagesz or
3324	 * default_hugepagesz.
3325	 */
3326	else if (!hugetlb_max_hstate)
3327		mhp = &default_hstate_max_huge_pages;
3328	else
3329		mhp = &parsed_hstate->max_huge_pages;
3330
3331	if (mhp == last_mhp) {
3332		pr_warn("HugeTLB: hugepages= specified twice without interleaving hugepagesz=, ignoring hugepages=%s\n", s);
3333		return 0;
3334	}
3335
3336	if (sscanf(s, "%lu", mhp) <= 0)
3337		*mhp = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3338
3339	/*
3340	 * Global state is always initialized later in hugetlb_init.
3341	 * But we need to allocate >= MAX_ORDER hstates here early to still
3342	 * use the bootmem allocator.
3343	 */
3344	if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
3345		hugetlb_hstate_alloc_pages(parsed_hstate);
3346
3347	last_mhp = mhp;
3348
3349	return 1;
 
 
 
 
 
3350}
3351__setup("hugepages=", hugepages_setup);
3352
3353/*
3354 * hugepagesz command line processing
3355 * A specific huge page size can only be specified once with hugepagesz.
3356 * hugepagesz is followed by hugepages on the command line.  The global
3357 * variable 'parsed_valid_hugepagesz' is used to determine if prior
3358 * hugepagesz argument was valid.
3359 */
3360static int __init hugepagesz_setup(char *s)
3361{
3362	unsigned long size;
3363	struct hstate *h;
3364
3365	parsed_valid_hugepagesz = false;
3366	size = (unsigned long)memparse(s, NULL);
3367
3368	if (!arch_hugetlb_valid_size(size)) {
3369		pr_err("HugeTLB: unsupported hugepagesz=%s\n", s);
3370		return 0;
3371	}
3372
3373	h = size_to_hstate(size);
3374	if (h) {
3375		/*
3376		 * hstate for this size already exists.  This is normally
3377		 * an error, but is allowed if the existing hstate is the
3378		 * default hstate.  More specifically, it is only allowed if
3379		 * the number of huge pages for the default hstate was not
3380		 * previously specified.
3381		 */
3382		if (!parsed_default_hugepagesz ||  h != &default_hstate ||
3383		    default_hstate.max_huge_pages) {
3384			pr_warn("HugeTLB: hugepagesz=%s specified twice, ignoring\n", s);
3385			return 0;
3386		}
3387
3388		/*
3389		 * No need to call hugetlb_add_hstate() as hstate already
3390		 * exists.  But, do set parsed_hstate so that a following
3391		 * hugepages= parameter will be applied to this hstate.
3392		 */
3393		parsed_hstate = h;
3394		parsed_valid_hugepagesz = true;
3395		return 1;
3396	}
3397
3398	hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
3399	parsed_valid_hugepagesz = true;
3400	return 1;
3401}
3402__setup("hugepagesz=", hugepagesz_setup);
3403
3404/*
3405 * default_hugepagesz command line input
3406 * Only one instance of default_hugepagesz allowed on command line.
3407 */
3408static int __init default_hugepagesz_setup(char *s)
3409{
3410	unsigned long size;
 
3411
3412	parsed_valid_hugepagesz = false;
3413	if (parsed_default_hugepagesz) {
3414		pr_err("HugeTLB: default_hugepagesz previously specified, ignoring %s\n", s);
3415		return 0;
3416	}
3417
3418	size = (unsigned long)memparse(s, NULL);
3419
3420	if (!arch_hugetlb_valid_size(size)) {
3421		pr_err("HugeTLB: unsupported default_hugepagesz=%s\n", s);
3422		return 0;
3423	}
3424
3425	hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
3426	parsed_valid_hugepagesz = true;
3427	parsed_default_hugepagesz = true;
3428	default_hstate_idx = hstate_index(size_to_hstate(size));
3429
3430	/*
3431	 * The number of default huge pages (for this size) could have been
3432	 * specified as the first hugetlb parameter: hugepages=X.  If so,
3433	 * then default_hstate_max_huge_pages is set.  If the default huge
3434	 * page size is gigantic (>= MAX_ORDER), then the pages must be
3435	 * allocated here from bootmem allocator.
3436	 */
3437	if (default_hstate_max_huge_pages) {
3438		default_hstate.max_huge_pages = default_hstate_max_huge_pages;
 
 
 
3439		if (hstate_is_gigantic(&default_hstate))
3440			hugetlb_hstate_alloc_pages(&default_hstate);
3441		default_hstate_max_huge_pages = 0;
3442	}
3443
3444	return 1;
3445}
3446__setup("default_hugepagesz=", default_hugepagesz_setup);
3447
3448static unsigned int allowed_mems_nr(struct hstate *h)
3449{
3450	int node;
3451	unsigned int nr = 0;
3452	nodemask_t *mpol_allowed;
3453	unsigned int *array = h->free_huge_pages_node;
3454	gfp_t gfp_mask = htlb_alloc_mask(h);
3455
3456	mpol_allowed = policy_nodemask_current(gfp_mask);
3457
3458	for_each_node_mask(node, cpuset_current_mems_allowed) {
3459		if (!mpol_allowed ||
3460		    (mpol_allowed && node_isset(node, *mpol_allowed)))
3461			nr += array[node];
3462	}
3463
3464	return nr;
3465}
3466
3467#ifdef CONFIG_SYSCTL
3468static int proc_hugetlb_doulongvec_minmax(struct ctl_table *table, int write,
3469					  void *buffer, size_t *length,
3470					  loff_t *ppos, unsigned long *out)
3471{
3472	struct ctl_table dup_table;
3473
3474	/*
3475	 * In order to avoid races with __do_proc_doulongvec_minmax(), we
3476	 * can duplicate the @table and alter the duplicate of it.
3477	 */
3478	dup_table = *table;
3479	dup_table.data = out;
3480
3481	return proc_doulongvec_minmax(&dup_table, write, buffer, length, ppos);
3482}
3483
3484static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
3485			 struct ctl_table *table, int write,
3486			 void *buffer, size_t *length, loff_t *ppos)
3487{
3488	struct hstate *h = &default_hstate;
3489	unsigned long tmp = h->max_huge_pages;
3490	int ret;
3491
3492	if (!hugepages_supported())
3493		return -EOPNOTSUPP;
3494
3495	ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
3496					     &tmp);
3497	if (ret)
3498		goto out;
3499
3500	if (write)
3501		ret = __nr_hugepages_store_common(obey_mempolicy, h,
3502						  NUMA_NO_NODE, tmp, *length);
3503out:
3504	return ret;
3505}
3506
3507int hugetlb_sysctl_handler(struct ctl_table *table, int write,
3508			  void *buffer, size_t *length, loff_t *ppos)
3509{
3510
3511	return hugetlb_sysctl_handler_common(false, table, write,
3512							buffer, length, ppos);
3513}
3514
3515#ifdef CONFIG_NUMA
3516int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
3517			  void *buffer, size_t *length, loff_t *ppos)
3518{
3519	return hugetlb_sysctl_handler_common(true, table, write,
3520							buffer, length, ppos);
3521}
3522#endif /* CONFIG_NUMA */
3523
3524int hugetlb_overcommit_handler(struct ctl_table *table, int write,
3525		void *buffer, size_t *length, loff_t *ppos)
3526{
3527	struct hstate *h = &default_hstate;
3528	unsigned long tmp;
3529	int ret;
3530
3531	if (!hugepages_supported())
3532		return -EOPNOTSUPP;
3533
3534	tmp = h->nr_overcommit_huge_pages;
3535
3536	if (write && hstate_is_gigantic(h))
3537		return -EINVAL;
3538
3539	ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
3540					     &tmp);
3541	if (ret)
3542		goto out;
3543
3544	if (write) {
3545		spin_lock(&hugetlb_lock);
3546		h->nr_overcommit_huge_pages = tmp;
3547		spin_unlock(&hugetlb_lock);
3548	}
3549out:
3550	return ret;
3551}
3552
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3553#endif /* CONFIG_SYSCTL */
3554
3555void hugetlb_report_meminfo(struct seq_file *m)
3556{
3557	struct hstate *h;
3558	unsigned long total = 0;
3559
3560	if (!hugepages_supported())
3561		return;
3562
3563	for_each_hstate(h) {
3564		unsigned long count = h->nr_huge_pages;
3565
3566		total += (PAGE_SIZE << huge_page_order(h)) * count;
3567
3568		if (h == &default_hstate)
3569			seq_printf(m,
3570				   "HugePages_Total:   %5lu\n"
3571				   "HugePages_Free:    %5lu\n"
3572				   "HugePages_Rsvd:    %5lu\n"
3573				   "HugePages_Surp:    %5lu\n"
3574				   "Hugepagesize:   %8lu kB\n",
3575				   count,
3576				   h->free_huge_pages,
3577				   h->resv_huge_pages,
3578				   h->surplus_huge_pages,
3579				   (PAGE_SIZE << huge_page_order(h)) / 1024);
3580	}
3581
3582	seq_printf(m, "Hugetlb:        %8lu kB\n", total / 1024);
3583}
3584
3585int hugetlb_report_node_meminfo(int nid, char *buf)
3586{
3587	struct hstate *h = &default_hstate;
 
3588	if (!hugepages_supported())
3589		return 0;
3590	return sprintf(buf,
3591		"Node %d HugePages_Total: %5u\n"
3592		"Node %d HugePages_Free:  %5u\n"
3593		"Node %d HugePages_Surp:  %5u\n",
3594		nid, h->nr_huge_pages_node[nid],
3595		nid, h->free_huge_pages_node[nid],
3596		nid, h->surplus_huge_pages_node[nid]);
 
3597}
3598
3599void hugetlb_show_meminfo(void)
3600{
3601	struct hstate *h;
3602	int nid;
3603
3604	if (!hugepages_supported())
3605		return;
3606
3607	for_each_node_state(nid, N_MEMORY)
3608		for_each_hstate(h)
3609			pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
3610				nid,
3611				h->nr_huge_pages_node[nid],
3612				h->free_huge_pages_node[nid],
3613				h->surplus_huge_pages_node[nid],
3614				1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
3615}
3616
3617void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
3618{
3619	seq_printf(m, "HugetlbPages:\t%8lu kB\n",
3620		   atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
3621}
3622
3623/* Return the number pages of memory we physically have, in PAGE_SIZE units. */
3624unsigned long hugetlb_total_pages(void)
3625{
3626	struct hstate *h;
3627	unsigned long nr_total_pages = 0;
3628
3629	for_each_hstate(h)
3630		nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
3631	return nr_total_pages;
3632}
3633
3634static int hugetlb_acct_memory(struct hstate *h, long delta)
3635{
3636	int ret = -ENOMEM;
3637
3638	spin_lock(&hugetlb_lock);
 
 
 
3639	/*
3640	 * When cpuset is configured, it breaks the strict hugetlb page
3641	 * reservation as the accounting is done on a global variable. Such
3642	 * reservation is completely rubbish in the presence of cpuset because
3643	 * the reservation is not checked against page availability for the
3644	 * current cpuset. Application can still potentially OOM'ed by kernel
3645	 * with lack of free htlb page in cpuset that the task is in.
3646	 * Attempt to enforce strict accounting with cpuset is almost
3647	 * impossible (or too ugly) because cpuset is too fluid that
3648	 * task or memory node can be dynamically moved between cpusets.
3649	 *
3650	 * The change of semantics for shared hugetlb mapping with cpuset is
3651	 * undesirable. However, in order to preserve some of the semantics,
3652	 * we fall back to check against current free page availability as
3653	 * a best attempt and hopefully to minimize the impact of changing
3654	 * semantics that cpuset has.
3655	 *
3656	 * Apart from cpuset, we also have memory policy mechanism that
3657	 * also determines from which node the kernel will allocate memory
3658	 * in a NUMA system. So similar to cpuset, we also should consider
3659	 * the memory policy of the current task. Similar to the description
3660	 * above.
3661	 */
3662	if (delta > 0) {
3663		if (gather_surplus_pages(h, delta) < 0)
3664			goto out;
3665
3666		if (delta > allowed_mems_nr(h)) {
3667			return_unused_surplus_pages(h, delta);
3668			goto out;
3669		}
3670	}
3671
3672	ret = 0;
3673	if (delta < 0)
3674		return_unused_surplus_pages(h, (unsigned long) -delta);
3675
3676out:
3677	spin_unlock(&hugetlb_lock);
3678	return ret;
3679}
3680
3681static void hugetlb_vm_op_open(struct vm_area_struct *vma)
3682{
3683	struct resv_map *resv = vma_resv_map(vma);
3684
3685	/*
 
3686	 * This new VMA should share its siblings reservation map if present.
3687	 * The VMA will only ever have a valid reservation map pointer where
3688	 * it is being copied for another still existing VMA.  As that VMA
3689	 * has a reference to the reservation map it cannot disappear until
3690	 * after this open call completes.  It is therefore safe to take a
3691	 * new reference here without additional locking.
3692	 */
3693	if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
 
3694		kref_get(&resv->refs);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3695}
3696
3697static void hugetlb_vm_op_close(struct vm_area_struct *vma)
3698{
3699	struct hstate *h = hstate_vma(vma);
3700	struct resv_map *resv = vma_resv_map(vma);
3701	struct hugepage_subpool *spool = subpool_vma(vma);
3702	unsigned long reserve, start, end;
3703	long gbl_reserve;
3704
 
 
 
3705	if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3706		return;
3707
3708	start = vma_hugecache_offset(h, vma, vma->vm_start);
3709	end = vma_hugecache_offset(h, vma, vma->vm_end);
3710
3711	reserve = (end - start) - region_count(resv, start, end);
3712	hugetlb_cgroup_uncharge_counter(resv, start, end);
3713	if (reserve) {
3714		/*
3715		 * Decrement reserve counts.  The global reserve count may be
3716		 * adjusted if the subpool has a minimum size.
3717		 */
3718		gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
3719		hugetlb_acct_memory(h, -gbl_reserve);
3720	}
3721
3722	kref_put(&resv->refs, resv_map_release);
3723}
3724
3725static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
3726{
3727	if (addr & ~(huge_page_mask(hstate_vma(vma))))
3728		return -EINVAL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3729	return 0;
3730}
3731
3732static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma)
3733{
3734	struct hstate *hstate = hstate_vma(vma);
3735
3736	return 1UL << huge_page_shift(hstate);
3737}
3738
3739/*
3740 * We cannot handle pagefaults against hugetlb pages at all.  They cause
3741 * handle_mm_fault() to try to instantiate regular-sized pages in the
3742 * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
3743 * this far.
3744 */
3745static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf)
3746{
3747	BUG();
3748	return 0;
3749}
3750
3751/*
3752 * When a new function is introduced to vm_operations_struct and added
3753 * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops.
3754 * This is because under System V memory model, mappings created via
3755 * shmget/shmat with "huge page" specified are backed by hugetlbfs files,
3756 * their original vm_ops are overwritten with shm_vm_ops.
3757 */
3758const struct vm_operations_struct hugetlb_vm_ops = {
3759	.fault = hugetlb_vm_op_fault,
3760	.open = hugetlb_vm_op_open,
3761	.close = hugetlb_vm_op_close,
3762	.split = hugetlb_vm_op_split,
3763	.pagesize = hugetlb_vm_op_pagesize,
3764};
3765
3766static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
3767				int writable)
3768{
3769	pte_t entry;
 
3770
3771	if (writable) {
3772		entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
3773					 vma->vm_page_prot)));
3774	} else {
3775		entry = huge_pte_wrprotect(mk_huge_pte(page,
3776					   vma->vm_page_prot));
3777	}
3778	entry = pte_mkyoung(entry);
3779	entry = pte_mkhuge(entry);
3780	entry = arch_make_huge_pte(entry, vma, page, writable);
3781
3782	return entry;
3783}
3784
3785static void set_huge_ptep_writable(struct vm_area_struct *vma,
3786				   unsigned long address, pte_t *ptep)
3787{
3788	pte_t entry;
3789
3790	entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
3791	if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
3792		update_mmu_cache(vma, address, ptep);
3793}
3794
3795bool is_hugetlb_entry_migration(pte_t pte)
3796{
3797	swp_entry_t swp;
3798
3799	if (huge_pte_none(pte) || pte_present(pte))
3800		return false;
3801	swp = pte_to_swp_entry(pte);
3802	if (non_swap_entry(swp) && is_migration_entry(swp))
3803		return true;
3804	else
3805		return false;
3806}
3807
3808static int is_hugetlb_entry_hwpoisoned(pte_t pte)
3809{
3810	swp_entry_t swp;
3811
3812	if (huge_pte_none(pte) || pte_present(pte))
3813		return 0;
3814	swp = pte_to_swp_entry(pte);
3815	if (non_swap_entry(swp) && is_hwpoison_entry(swp))
3816		return 1;
3817	else
3818		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3819}
3820
3821int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
3822			    struct vm_area_struct *vma)
 
3823{
3824	pte_t *src_pte, *dst_pte, entry, dst_entry;
3825	struct page *ptepage;
3826	unsigned long addr;
3827	int cow;
3828	struct hstate *h = hstate_vma(vma);
3829	unsigned long sz = huge_page_size(h);
3830	struct address_space *mapping = vma->vm_file->f_mapping;
3831	struct mmu_notifier_range range;
 
3832	int ret = 0;
3833
3834	cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
3835
3836	if (cow) {
3837		mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, src,
3838					vma->vm_start,
3839					vma->vm_end);
3840		mmu_notifier_invalidate_range_start(&range);
 
 
3841	} else {
3842		/*
3843		 * For shared mappings i_mmap_rwsem must be held to call
3844		 * huge_pte_alloc, otherwise the returned ptep could go
3845		 * away if part of a shared pmd and another thread calls
3846		 * huge_pmd_unshare.
3847		 */
3848		i_mmap_lock_read(mapping);
3849	}
3850
3851	for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
 
3852		spinlock_t *src_ptl, *dst_ptl;
3853		src_pte = huge_pte_offset(src, addr, sz);
3854		if (!src_pte)
 
3855			continue;
3856		dst_pte = huge_pte_alloc(dst, addr, sz);
 
3857		if (!dst_pte) {
3858			ret = -ENOMEM;
3859			break;
3860		}
3861
3862		/*
3863		 * If the pagetables are shared don't copy or take references.
 
3864		 * dst_pte == src_pte is the common case of src/dest sharing.
3865		 *
3866		 * However, src could have 'unshared' and dst shares with
3867		 * another vma.  If dst_pte !none, this implies sharing.
3868		 * Check here before taking page table lock, and once again
3869		 * after taking the lock below.
3870		 */
3871		dst_entry = huge_ptep_get(dst_pte);
3872		if ((dst_pte == src_pte) || !huge_pte_none(dst_entry))
3873			continue;
 
3874
3875		dst_ptl = huge_pte_lock(h, dst, dst_pte);
3876		src_ptl = huge_pte_lockptr(h, src, src_pte);
3877		spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
3878		entry = huge_ptep_get(src_pte);
3879		dst_entry = huge_ptep_get(dst_pte);
3880		if (huge_pte_none(entry) || !huge_pte_none(dst_entry)) {
3881			/*
3882			 * Skip if src entry none.  Also, skip in the
3883			 * unlikely case dst entry !none as this implies
3884			 * sharing with another vma.
3885			 */
3886			;
3887		} else if (unlikely(is_hugetlb_entry_migration(entry) ||
3888				    is_hugetlb_entry_hwpoisoned(entry))) {
 
 
 
3889			swp_entry_t swp_entry = pte_to_swp_entry(entry);
 
3890
3891			if (is_write_migration_entry(swp_entry) && cow) {
3892				/*
3893				 * COW mappings require pages in both
3894				 * parent and child to be set to read.
3895				 */
3896				make_migration_entry_read(&swp_entry);
 
3897				entry = swp_entry_to_pte(swp_entry);
3898				set_huge_swap_pte_at(src, addr, src_pte,
3899						     entry, sz);
 
3900			}
3901			set_huge_swap_pte_at(dst, addr, dst_pte, entry, sz);
 
 
 
 
 
 
 
 
 
3902		} else {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3903			if (cow) {
3904				/*
3905				 * No need to notify as we are downgrading page
3906				 * table protection not changing it to point
3907				 * to a new page.
3908				 *
3909				 * See Documentation/vm/mmu_notifier.rst
3910				 */
3911				huge_ptep_set_wrprotect(src, addr, src_pte);
 
3912			}
3913			entry = huge_ptep_get(src_pte);
3914			ptepage = pte_page(entry);
3915			get_page(ptepage);
3916			page_dup_rmap(ptepage, true);
3917			set_huge_pte_at(dst, addr, dst_pte, entry);
3918			hugetlb_count_add(pages_per_huge_page(h), dst);
3919		}
3920		spin_unlock(src_ptl);
3921		spin_unlock(dst_ptl);
3922	}
3923
3924	if (cow)
 
3925		mmu_notifier_invalidate_range_end(&range);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3926	else
3927		i_mmap_unlock_read(mapping);
 
 
 
3928
3929	return ret;
3930}
3931
3932void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
3933			    unsigned long start, unsigned long end,
3934			    struct page *ref_page)
3935{
3936	struct mm_struct *mm = vma->vm_mm;
3937	unsigned long address;
3938	pte_t *ptep;
3939	pte_t pte;
3940	spinlock_t *ptl;
3941	struct page *page;
3942	struct hstate *h = hstate_vma(vma);
3943	unsigned long sz = huge_page_size(h);
3944	struct mmu_notifier_range range;
 
 
3945
3946	WARN_ON(!is_vm_hugetlb_page(vma));
3947	BUG_ON(start & ~huge_page_mask(h));
3948	BUG_ON(end & ~huge_page_mask(h));
3949
3950	/*
3951	 * This is a hugetlb vma, all the pte entries should point
3952	 * to huge page.
3953	 */
3954	tlb_change_page_size(tlb, sz);
3955	tlb_start_vma(tlb, vma);
3956
3957	/*
3958	 * If sharing possible, alert mmu notifiers of worst case.
3959	 */
3960	mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, mm, start,
3961				end);
3962	adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
3963	mmu_notifier_invalidate_range_start(&range);
3964	address = start;
3965	for (; address < end; address += sz) {
3966		ptep = huge_pte_offset(mm, address, sz);
3967		if (!ptep)
 
3968			continue;
 
3969
3970		ptl = huge_pte_lock(h, mm, ptep);
3971		if (huge_pmd_unshare(mm, vma, &address, ptep)) {
3972			spin_unlock(ptl);
3973			/*
3974			 * We just unmapped a page of PMDs by clearing a PUD.
3975			 * The caller's TLB flush range should cover this area.
3976			 */
3977			continue;
3978		}
3979
3980		pte = huge_ptep_get(ptep);
3981		if (huge_pte_none(pte)) {
3982			spin_unlock(ptl);
3983			continue;
3984		}
3985
3986		/*
3987		 * Migrating hugepage or HWPoisoned hugepage is already
3988		 * unmapped and its refcount is dropped, so just clear pte here.
3989		 */
3990		if (unlikely(!pte_present(pte))) {
3991			huge_pte_clear(mm, address, ptep, sz);
 
 
 
 
 
 
 
 
 
 
 
 
3992			spin_unlock(ptl);
3993			continue;
3994		}
3995
3996		page = pte_page(pte);
3997		/*
3998		 * If a reference page is supplied, it is because a specific
3999		 * page is being unmapped, not a range. Ensure the page we
4000		 * are about to unmap is the actual page of interest.
4001		 */
4002		if (ref_page) {
4003			if (page != ref_page) {
4004				spin_unlock(ptl);
4005				continue;
4006			}
4007			/*
4008			 * Mark the VMA as having unmapped its page so that
4009			 * future faults in this VMA will fail rather than
4010			 * looking like data was lost
4011			 */
4012			set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
4013		}
4014
4015		pte = huge_ptep_get_and_clear(mm, address, ptep);
4016		tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
4017		if (huge_pte_dirty(pte))
4018			set_page_dirty(page);
 
 
 
 
 
 
 
 
4019
4020		hugetlb_count_sub(pages_per_huge_page(h), mm);
4021		page_remove_rmap(page, true);
 
 
 
 
 
 
 
 
 
 
4022
4023		spin_unlock(ptl);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4024		tlb_remove_page_size(tlb, page, huge_page_size(h));
4025		/*
4026		 * Bail out after unmapping reference page if supplied
4027		 */
4028		if (ref_page)
4029			break;
4030	}
4031	mmu_notifier_invalidate_range_end(&range);
4032	tlb_end_vma(tlb, vma);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4033}
4034
4035void __unmap_hugepage_range_final(struct mmu_gather *tlb,
4036			  struct vm_area_struct *vma, unsigned long start,
4037			  unsigned long end, struct page *ref_page)
4038{
4039	__unmap_hugepage_range(tlb, vma, start, end, ref_page);
4040
4041	/*
4042	 * Clear this flag so that x86's huge_pmd_share page_table_shareable
4043	 * test will fail on a vma being torn down, and not grab a page table
4044	 * on its way out.  We're lucky that the flag has such an appropriate
4045	 * name, and can in fact be safely cleared here. We could clear it
4046	 * before the __unmap_hugepage_range above, but all that's necessary
4047	 * is to clear it before releasing the i_mmap_rwsem. This works
4048	 * because in the context this is called, the VMA is about to be
4049	 * destroyed and the i_mmap_rwsem is held.
4050	 */
4051	vma->vm_flags &= ~VM_MAYSHARE;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4052}
4053
4054void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
4055			  unsigned long end, struct page *ref_page)
 
4056{
4057	struct mm_struct *mm;
4058	struct mmu_gather tlb;
4059	unsigned long tlb_start = start;
4060	unsigned long tlb_end = end;
4061
4062	/*
4063	 * If shared PMDs were possibly used within this vma range, adjust
4064	 * start/end for worst case tlb flushing.
4065	 * Note that we can not be sure if PMDs are shared until we try to
4066	 * unmap pages.  However, we want to make sure TLB flushing covers
4067	 * the largest possible range.
4068	 */
4069	adjust_range_if_pmd_sharing_possible(vma, &tlb_start, &tlb_end);
4070
4071	mm = vma->vm_mm;
4072
4073	tlb_gather_mmu(&tlb, mm, tlb_start, tlb_end);
4074	__unmap_hugepage_range(&tlb, vma, start, end, ref_page);
4075	tlb_finish_mmu(&tlb, tlb_start, tlb_end);
4076}
4077
4078/*
4079 * This is called when the original mapper is failing to COW a MAP_PRIVATE
4080 * mappping it owns the reserve page for. The intention is to unmap the page
4081 * from other VMAs and let the children be SIGKILLed if they are faulting the
4082 * same region.
4083 */
4084static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
4085			      struct page *page, unsigned long address)
4086{
4087	struct hstate *h = hstate_vma(vma);
4088	struct vm_area_struct *iter_vma;
4089	struct address_space *mapping;
4090	pgoff_t pgoff;
4091
4092	/*
4093	 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
4094	 * from page cache lookup which is in HPAGE_SIZE units.
4095	 */
4096	address = address & huge_page_mask(h);
4097	pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
4098			vma->vm_pgoff;
4099	mapping = vma->vm_file->f_mapping;
4100
4101	/*
4102	 * Take the mapping lock for the duration of the table walk. As
4103	 * this mapping should be shared between all the VMAs,
4104	 * __unmap_hugepage_range() is called as the lock is already held
4105	 */
4106	i_mmap_lock_write(mapping);
4107	vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
4108		/* Do not unmap the current VMA */
4109		if (iter_vma == vma)
4110			continue;
4111
4112		/*
4113		 * Shared VMAs have their own reserves and do not affect
4114		 * MAP_PRIVATE accounting but it is possible that a shared
4115		 * VMA is using the same page so check and skip such VMAs.
4116		 */
4117		if (iter_vma->vm_flags & VM_MAYSHARE)
4118			continue;
4119
4120		/*
4121		 * Unmap the page from other VMAs without their own reserves.
4122		 * They get marked to be SIGKILLed if they fault in these
4123		 * areas. This is because a future no-page fault on this VMA
4124		 * could insert a zeroed page instead of the data existing
4125		 * from the time of fork. This would look like data corruption
4126		 */
4127		if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
4128			unmap_hugepage_range(iter_vma, address,
4129					     address + huge_page_size(h), page);
4130	}
4131	i_mmap_unlock_write(mapping);
4132}
4133
4134/*
4135 * Hugetlb_cow() should be called with page lock of the original hugepage held.
4136 * Called with hugetlb_instantiation_mutex held and pte_page locked so we
4137 * cannot race with other handlers or page migration.
4138 * Keep the pte_same checks anyway to make transition from the mutex easier.
4139 */
4140static vm_fault_t hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
4141		       unsigned long address, pte_t *ptep,
4142		       struct page *pagecache_page, spinlock_t *ptl)
4143{
4144	pte_t pte;
 
 
 
4145	struct hstate *h = hstate_vma(vma);
4146	struct page *old_page, *new_page;
 
4147	int outside_reserve = 0;
4148	vm_fault_t ret = 0;
4149	unsigned long haddr = address & huge_page_mask(h);
4150	struct mmu_notifier_range range;
4151
4152	pte = huge_ptep_get(ptep);
4153	old_page = pte_page(pte);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4154
4155retry_avoidcopy:
4156	/* If no-one else is actually using this page, avoid the copy
4157	 * and just make the page writable */
4158	if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
4159		page_move_anon_rmap(old_page, vma);
4160		set_huge_ptep_writable(vma, haddr, ptep);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4161		return 0;
4162	}
 
 
4163
4164	/*
4165	 * If the process that created a MAP_PRIVATE mapping is about to
4166	 * perform a COW due to a shared page count, attempt to satisfy
4167	 * the allocation without using the existing reserves. The pagecache
4168	 * page is used to determine if the reserve at this address was
4169	 * consumed or not. If reserves were used, a partial faulted mapping
4170	 * at the time of fork() could consume its reserves on COW instead
4171	 * of the full address range.
4172	 */
4173	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
4174			old_page != pagecache_page)
4175		outside_reserve = 1;
4176
4177	get_page(old_page);
4178
4179	/*
4180	 * Drop page table lock as buddy allocator may be called. It will
4181	 * be acquired again before returning to the caller, as expected.
4182	 */
4183	spin_unlock(ptl);
4184	new_page = alloc_huge_page(vma, haddr, outside_reserve);
4185
4186	if (IS_ERR(new_page)) {
4187		/*
4188		 * If a process owning a MAP_PRIVATE mapping fails to COW,
4189		 * it is due to references held by a child and an insufficient
4190		 * huge page pool. To guarantee the original mappers
4191		 * reliability, unmap the page from child processes. The child
4192		 * may get SIGKILLed if it later faults.
4193		 */
4194		if (outside_reserve) {
4195			put_page(old_page);
4196			BUG_ON(huge_pte_none(pte));
4197			unmap_ref_private(mm, vma, old_page, haddr);
4198			BUG_ON(huge_pte_none(pte));
4199			spin_lock(ptl);
4200			ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
4201			if (likely(ptep &&
4202				   pte_same(huge_ptep_get(ptep), pte)))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4203				goto retry_avoidcopy;
4204			/*
4205			 * race occurs while re-acquiring page table
4206			 * lock, and our job is done.
4207			 */
 
4208			return 0;
4209		}
4210
4211		ret = vmf_error(PTR_ERR(new_page));
4212		goto out_release_old;
4213	}
4214
4215	/*
4216	 * When the original hugepage is shared one, it does not have
4217	 * anon_vma prepared.
4218	 */
4219	if (unlikely(anon_vma_prepare(vma))) {
4220		ret = VM_FAULT_OOM;
 
 
 
 
4221		goto out_release_all;
4222	}
 
4223
4224	copy_user_huge_page(new_page, old_page, address, vma,
4225			    pages_per_huge_page(h));
4226	__SetPageUptodate(new_page);
4227
4228	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, haddr,
4229				haddr + huge_page_size(h));
4230	mmu_notifier_invalidate_range_start(&range);
4231
4232	/*
4233	 * Retake the page table lock to check for racing updates
4234	 * before the page tables are altered
4235	 */
4236	spin_lock(ptl);
4237	ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
4238	if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
4239		ClearPagePrivate(new_page);
4240
4241		/* Break COW */
4242		huge_ptep_clear_flush(vma, haddr, ptep);
4243		mmu_notifier_invalidate_range(mm, range.start, range.end);
4244		set_huge_pte_at(mm, haddr, ptep,
4245				make_huge_pte(vma, new_page, 1));
4246		page_remove_rmap(old_page, true);
4247		hugepage_add_new_anon_rmap(new_page, vma, haddr);
4248		set_page_huge_active(new_page);
 
4249		/* Make the old page be freed below */
4250		new_page = old_page;
4251	}
4252	spin_unlock(ptl);
4253	mmu_notifier_invalidate_range_end(&range);
4254out_release_all:
4255	restore_reserve_on_error(h, vma, haddr, new_page);
4256	put_page(new_page);
 
 
 
 
 
4257out_release_old:
4258	put_page(old_page);
 
 
4259
4260	spin_lock(ptl); /* Caller expects lock to be held */
4261	return ret;
4262}
4263
4264/* Return the pagecache page at a given address within a VMA */
4265static struct page *hugetlbfs_pagecache_page(struct hstate *h,
4266			struct vm_area_struct *vma, unsigned long address)
4267{
4268	struct address_space *mapping;
4269	pgoff_t idx;
4270
4271	mapping = vma->vm_file->f_mapping;
4272	idx = vma_hugecache_offset(h, vma, address);
4273
4274	return find_lock_page(mapping, idx);
4275}
4276
4277/*
4278 * Return whether there is a pagecache page to back given address within VMA.
4279 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
4280 */
4281static bool hugetlbfs_pagecache_present(struct hstate *h,
4282			struct vm_area_struct *vma, unsigned long address)
4283{
4284	struct address_space *mapping;
4285	pgoff_t idx;
4286	struct page *page;
4287
4288	mapping = vma->vm_file->f_mapping;
4289	idx = vma_hugecache_offset(h, vma, address);
4290
4291	page = find_get_page(mapping, idx);
4292	if (page)
4293		put_page(page);
4294	return page != NULL;
4295}
4296
4297int huge_add_to_page_cache(struct page *page, struct address_space *mapping,
4298			   pgoff_t idx)
4299{
4300	struct inode *inode = mapping->host;
4301	struct hstate *h = hstate_inode(inode);
4302	int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
 
 
 
 
4303
4304	if (err)
 
4305		return err;
4306	ClearPagePrivate(page);
 
4307
4308	/*
4309	 * set page dirty so that it will not be removed from cache/file
4310	 * by non-hugetlbfs specific code paths.
4311	 */
4312	set_page_dirty(page);
4313
4314	spin_lock(&inode->i_lock);
4315	inode->i_blocks += blocks_per_huge_page(h);
4316	spin_unlock(&inode->i_lock);
4317	return 0;
4318}
4319
4320static vm_fault_t hugetlb_no_page(struct mm_struct *mm,
4321			struct vm_area_struct *vma,
4322			struct address_space *mapping, pgoff_t idx,
4323			unsigned long address, pte_t *ptep, unsigned int flags)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4324{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4325	struct hstate *h = hstate_vma(vma);
4326	vm_fault_t ret = VM_FAULT_SIGBUS;
4327	int anon_rmap = 0;
4328	unsigned long size;
4329	struct page *page;
4330	pte_t new_pte;
4331	spinlock_t *ptl;
4332	unsigned long haddr = address & huge_page_mask(h);
4333	bool new_page = false;
4334
4335	/*
4336	 * Currently, we are forced to kill the process in the event the
4337	 * original mapper has unmapped pages from the child due to a failed
4338	 * COW. Warn that such a situation has occurred as it may not be obvious
 
4339	 */
4340	if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
4341		pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
4342			   current->pid);
4343		return ret;
4344	}
4345
4346	/*
4347	 * We can not race with truncation due to holding i_mmap_rwsem.
4348	 * i_size is modified when holding i_mmap_rwsem, so check here
4349	 * once for faults beyond end of file.
4350	 */
4351	size = i_size_read(mapping->host) >> huge_page_shift(h);
4352	if (idx >= size)
4353		goto out;
4354
4355retry:
4356	page = find_lock_page(mapping, idx);
4357	if (!page) {
4358		/*
4359		 * Check for page in userfault range
4360		 */
4361		if (userfaultfd_missing(vma)) {
4362			u32 hash;
4363			struct vm_fault vmf = {
4364				.vma = vma,
4365				.address = haddr,
4366				.flags = flags,
4367				/*
4368				 * Hard to debug if it ends up being
4369				 * used by a callee that assumes
4370				 * something about the other
4371				 * uninitialized fields... same as in
4372				 * memory.c
4373				 */
4374			};
4375
4376			/*
4377			 * hugetlb_fault_mutex and i_mmap_rwsem must be
4378			 * dropped before handling userfault.  Reacquire
4379			 * after handling fault to make calling code simpler.
 
 
 
 
 
 
 
 
 
 
 
 
4380			 */
4381			hash = hugetlb_fault_mutex_hash(mapping, idx);
4382			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
4383			i_mmap_unlock_read(mapping);
4384			ret = handle_userfault(&vmf, VM_UFFD_MISSING);
4385			i_mmap_lock_read(mapping);
4386			mutex_lock(&hugetlb_fault_mutex_table[hash]);
4387			goto out;
 
 
 
 
 
 
4388		}
4389
4390		page = alloc_huge_page(vma, haddr, 0);
4391		if (IS_ERR(page)) {
4392			/*
4393			 * Returning error will result in faulting task being
4394			 * sent SIGBUS.  The hugetlb fault mutex prevents two
4395			 * tasks from racing to fault in the same page which
4396			 * could result in false unable to allocate errors.
4397			 * Page migration does not take the fault mutex, but
4398			 * does a clear then write of pte's under page table
4399			 * lock.  Page fault code could race with migration,
4400			 * notice the clear pte and try to allocate a page
4401			 * here.  Before returning error, get ptl and make
4402			 * sure there really is no pte entry.
4403			 */
4404			ptl = huge_pte_lock(h, mm, ptep);
4405			if (!huge_pte_none(huge_ptep_get(ptep))) {
 
4406				ret = 0;
4407				spin_unlock(ptl);
4408				goto out;
4409			}
4410			spin_unlock(ptl);
4411			ret = vmf_error(PTR_ERR(page));
4412			goto out;
4413		}
4414		clear_huge_page(page, address, pages_per_huge_page(h));
4415		__SetPageUptodate(page);
4416		new_page = true;
4417
4418		if (vma->vm_flags & VM_MAYSHARE) {
4419			int err = huge_add_to_page_cache(page, mapping, idx);
 
4420			if (err) {
4421				put_page(page);
4422				if (err == -EEXIST)
4423					goto retry;
 
 
 
 
 
 
 
 
4424				goto out;
4425			}
 
4426		} else {
4427			lock_page(page);
4428			if (unlikely(anon_vma_prepare(vma))) {
4429				ret = VM_FAULT_OOM;
4430				goto backout_unlocked;
4431			}
4432			anon_rmap = 1;
4433		}
4434	} else {
4435		/*
4436		 * If memory error occurs between mmap() and fault, some process
4437		 * don't have hwpoisoned swap entry for errored virtual address.
4438		 * So we need to block hugepage fault by PG_hwpoison bit check.
4439		 */
4440		if (unlikely(PageHWPoison(page))) {
4441			ret = VM_FAULT_HWPOISON |
4442				VM_FAULT_SET_HINDEX(hstate_index(h));
4443			goto backout_unlocked;
4444		}
 
 
 
 
 
 
 
 
 
 
 
 
 
4445	}
4446
4447	/*
4448	 * If we are going to COW a private mapping later, we examine the
4449	 * pending reservations for this page now. This will ensure that
4450	 * any allocations necessary to record that reservation occur outside
4451	 * the spinlock.
4452	 */
4453	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
4454		if (vma_needs_reservation(h, vma, haddr) < 0) {
4455			ret = VM_FAULT_OOM;
4456			goto backout_unlocked;
4457		}
4458		/* Just decrements count, does not deallocate */
4459		vma_end_reservation(h, vma, haddr);
4460	}
4461
4462	ptl = huge_pte_lock(h, mm, ptep);
4463	ret = 0;
4464	if (!huge_pte_none(huge_ptep_get(ptep)))
 
4465		goto backout;
4466
4467	if (anon_rmap) {
4468		ClearPagePrivate(page);
4469		hugepage_add_new_anon_rmap(page, vma, haddr);
4470	} else
4471		page_dup_rmap(page, true);
4472	new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
4473				&& (vma->vm_flags & VM_SHARED)));
4474	set_huge_pte_at(mm, haddr, ptep, new_pte);
 
 
 
 
 
 
4475
4476	hugetlb_count_add(pages_per_huge_page(h), mm);
4477	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
4478		/* Optimization, do the COW without a second fault */
4479		ret = hugetlb_cow(mm, vma, address, ptep, page, ptl);
4480	}
4481
4482	spin_unlock(ptl);
4483
4484	/*
4485	 * Only make newly allocated pages active.  Existing pages found
4486	 * in the pagecache could be !page_huge_active() if they have been
4487	 * isolated for migration.
4488	 */
4489	if (new_page)
4490		set_page_huge_active(page);
4491
4492	unlock_page(page);
4493out:
 
 
 
 
 
 
 
 
 
 
4494	return ret;
4495
4496backout:
4497	spin_unlock(ptl);
4498backout_unlocked:
4499	unlock_page(page);
4500	restore_reserve_on_error(h, vma, haddr, page);
4501	put_page(page);
 
 
4502	goto out;
4503}
4504
4505#ifdef CONFIG_SMP
4506u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
4507{
4508	unsigned long key[2];
4509	u32 hash;
4510
4511	key[0] = (unsigned long) mapping;
4512	key[1] = idx;
4513
4514	hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0);
4515
4516	return hash & (num_fault_mutexes - 1);
4517}
4518#else
4519/*
4520 * For uniprocesor systems we always use a single mutex, so just
4521 * return 0 and avoid the hashing overhead.
4522 */
4523u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
4524{
4525	return 0;
4526}
4527#endif
4528
4529vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
4530			unsigned long address, unsigned int flags)
4531{
4532	pte_t *ptep, entry;
4533	spinlock_t *ptl;
4534	vm_fault_t ret;
4535	u32 hash;
4536	pgoff_t idx;
4537	struct page *page = NULL;
4538	struct page *pagecache_page = NULL;
4539	struct hstate *h = hstate_vma(vma);
4540	struct address_space *mapping;
4541	int need_wait_lock = 0;
4542	unsigned long haddr = address & huge_page_mask(h);
 
 
 
 
 
 
 
4543
4544	ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
4545	if (ptep) {
4546		/*
4547		 * Since we hold no locks, ptep could be stale.  That is
4548		 * OK as we are only making decisions based on content and
4549		 * not actually modifying content here.
4550		 */
4551		entry = huge_ptep_get(ptep);
4552		if (unlikely(is_hugetlb_entry_migration(entry))) {
4553			migration_entry_wait_huge(vma, mm, ptep);
4554			return 0;
4555		} else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
4556			return VM_FAULT_HWPOISON_LARGE |
4557				VM_FAULT_SET_HINDEX(hstate_index(h));
4558	}
4559
4560	/*
4561	 * Acquire i_mmap_rwsem before calling huge_pte_alloc and hold
4562	 * until finished with ptep.  This serves two purposes:
4563	 * 1) It prevents huge_pmd_unshare from being called elsewhere
4564	 *    and making the ptep no longer valid.
4565	 * 2) It synchronizes us with i_size modifications during truncation.
4566	 *
4567	 * ptep could have already be assigned via huge_pte_offset.  That
4568	 * is OK, as huge_pte_alloc will return the same value unless
4569	 * something has changed.
4570	 */
4571	mapping = vma->vm_file->f_mapping;
4572	i_mmap_lock_read(mapping);
4573	ptep = huge_pte_alloc(mm, haddr, huge_page_size(h));
4574	if (!ptep) {
4575		i_mmap_unlock_read(mapping);
 
 
 
 
 
 
 
 
 
4576		return VM_FAULT_OOM;
4577	}
4578
4579	/*
4580	 * Serialize hugepage allocation and instantiation, so that we don't
4581	 * get spurious allocation failures if two CPUs race to instantiate
4582	 * the same page in the page cache.
4583	 */
4584	idx = vma_hugecache_offset(h, vma, haddr);
4585	hash = hugetlb_fault_mutex_hash(mapping, idx);
4586	mutex_lock(&hugetlb_fault_mutex_table[hash]);
 
 
 
 
 
 
 
 
4587
4588	entry = huge_ptep_get(ptep);
4589	if (huge_pte_none(entry)) {
4590		ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
4591		goto out_mutex;
 
 
 
4592	}
4593
4594	ret = 0;
4595
4596	/*
4597	 * entry could be a migration/hwpoison entry at this point, so this
4598	 * check prevents the kernel from going below assuming that we have
4599	 * an active hugepage in pagecache. This goto expects the 2nd page
4600	 * fault, and is_hugetlb_entry_(migration|hwpoisoned) check will
4601	 * properly handle it.
4602	 */
4603	if (!pte_present(entry))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4604		goto out_mutex;
 
4605
4606	/*
4607	 * If we are going to COW the mapping later, we examine the pending
4608	 * reservations for this page now. This will ensure that any
4609	 * allocations necessary to record that reservation occur outside the
4610	 * spinlock. For private mappings, we also lookup the pagecache
4611	 * page now as it is used to determine if a reservation has been
4612	 * consumed.
4613	 */
4614	if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
4615		if (vma_needs_reservation(h, vma, haddr) < 0) {
 
4616			ret = VM_FAULT_OOM;
4617			goto out_mutex;
4618		}
4619		/* Just decrements count, does not deallocate */
4620		vma_end_reservation(h, vma, haddr);
4621
4622		if (!(vma->vm_flags & VM_MAYSHARE))
4623			pagecache_page = hugetlbfs_pagecache_page(h,
4624								vma, haddr);
 
4625	}
4626
4627	ptl = huge_pte_lock(h, mm, ptep);
4628
4629	/* Check for a racing update before calling hugetlb_cow */
4630	if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
4631		goto out_ptl;
4632
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4633	/*
4634	 * hugetlb_cow() requires page locks of pte_page(entry) and
4635	 * pagecache_page, so here we need take the former one
4636	 * when page != pagecache_page or !pagecache_page.
4637	 */
4638	page = pte_page(entry);
4639	if (page != pagecache_page)
4640		if (!trylock_page(page)) {
4641			need_wait_lock = 1;
4642			goto out_ptl;
4643		}
4644
4645	get_page(page);
4646
4647	if (flags & FAULT_FLAG_WRITE) {
4648		if (!huge_pte_write(entry)) {
4649			ret = hugetlb_cow(mm, vma, address, ptep,
4650					  pagecache_page, ptl);
4651			goto out_put_page;
 
 
4652		}
4653		entry = huge_pte_mkdirty(entry);
4654	}
4655	entry = pte_mkyoung(entry);
4656	if (huge_ptep_set_access_flags(vma, haddr, ptep, entry,
4657						flags & FAULT_FLAG_WRITE))
4658		update_mmu_cache(vma, haddr, ptep);
4659out_put_page:
4660	if (page != pagecache_page)
4661		unlock_page(page);
4662	put_page(page);
4663out_ptl:
4664	spin_unlock(ptl);
4665
4666	if (pagecache_page) {
4667		unlock_page(pagecache_page);
4668		put_page(pagecache_page);
4669	}
4670out_mutex:
 
 
 
 
 
 
 
 
 
4671	mutex_unlock(&hugetlb_fault_mutex_table[hash]);
4672	i_mmap_unlock_read(mapping);
4673	/*
4674	 * Generally it's safe to hold refcount during waiting page lock. But
4675	 * here we just wait to defer the next page fault to avoid busy loop and
4676	 * the page is not used after unlocked before returning from the current
4677	 * page fault. So we are safe from accessing freed page, even if we wait
4678	 * here without taking refcount.
4679	 */
4680	if (need_wait_lock)
4681		wait_on_page_locked(page);
4682	return ret;
4683}
4684
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4685/*
4686 * Used by userfaultfd UFFDIO_COPY.  Based on mcopy_atomic_pte with
4687 * modifications for huge pages.
4688 */
4689int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm,
4690			    pte_t *dst_pte,
4691			    struct vm_area_struct *dst_vma,
4692			    unsigned long dst_addr,
4693			    unsigned long src_addr,
4694			    struct page **pagep)
4695{
4696	struct address_space *mapping;
4697	pgoff_t idx;
4698	unsigned long size;
 
 
 
 
4699	int vm_shared = dst_vma->vm_flags & VM_SHARED;
4700	struct hstate *h = hstate_vma(dst_vma);
4701	pte_t _dst_pte;
4702	spinlock_t *ptl;
4703	int ret;
4704	struct page *page;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4705
4706	if (!*pagep) {
4707		ret = -ENOMEM;
4708		page = alloc_huge_page(dst_vma, dst_addr, 0);
4709		if (IS_ERR(page))
4710			goto out;
 
4711
4712		ret = copy_huge_page_from_user(page,
4713						(const void __user *) src_addr,
4714						pages_per_huge_page(h), false);
4715
4716		/* fallback to copy_from_user outside mmap_lock */
4717		if (unlikely(ret)) {
4718			ret = -ENOENT;
4719			*pagep = page;
4720			/* don't free the page */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4721			goto out;
4722		}
4723	} else {
4724		page = *pagep;
4725		*pagep = NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4726	}
4727
4728	/*
4729	 * The memory barrier inside __SetPageUptodate makes sure that
4730	 * preceding stores to the page contents become visible before
4731	 * the set_pte_at() write.
 
 
 
 
 
 
4732	 */
4733	__SetPageUptodate(page);
 
 
 
4734
4735	mapping = dst_vma->vm_file->f_mapping;
4736	idx = vma_hugecache_offset(h, dst_vma, dst_addr);
4737
4738	/*
4739	 * If shared, add to page cache
4740	 */
4741	if (vm_shared) {
4742		size = i_size_read(mapping->host) >> huge_page_shift(h);
4743		ret = -EFAULT;
4744		if (idx >= size)
4745			goto out_release_nounlock;
4746
4747		/*
4748		 * Serialization between remove_inode_hugepages() and
4749		 * huge_add_to_page_cache() below happens through the
4750		 * hugetlb_fault_mutex_table that here must be hold by
4751		 * the caller.
4752		 */
4753		ret = huge_add_to_page_cache(page, mapping, idx);
4754		if (ret)
4755			goto out_release_nounlock;
 
4756	}
4757
4758	ptl = huge_pte_lockptr(h, dst_mm, dst_pte);
4759	spin_lock(ptl);
4760
4761	/*
4762	 * Recheck the i_size after holding PT lock to make sure not
4763	 * to leave any page mapped (as page_mapped()) beyond the end
4764	 * of the i_size (remove_inode_hugepages() is strict about
4765	 * enforcing that). If we bail out here, we'll also leave a
4766	 * page in the radix tree in the vm_shared case beyond the end
4767	 * of the i_size, but remove_inode_hugepages() will take care
4768	 * of it as soon as we drop the hugetlb_fault_mutex_table.
4769	 */
4770	size = i_size_read(mapping->host) >> huge_page_shift(h);
4771	ret = -EFAULT;
4772	if (idx >= size)
4773		goto out_release_unlock;
4774
 
 
 
 
 
4775	ret = -EEXIST;
4776	if (!huge_pte_none(huge_ptep_get(dst_pte)))
4777		goto out_release_unlock;
4778
4779	if (vm_shared) {
4780		page_dup_rmap(page, true);
4781	} else {
4782		ClearPagePrivate(page);
4783		hugepage_add_new_anon_rmap(page, dst_vma, dst_addr);
4784	}
 
 
 
 
 
 
 
4785
4786	_dst_pte = make_huge_pte(dst_vma, page, dst_vma->vm_flags & VM_WRITE);
4787	if (dst_vma->vm_flags & VM_WRITE)
4788		_dst_pte = huge_pte_mkdirty(_dst_pte);
 
 
 
 
 
4789	_dst_pte = pte_mkyoung(_dst_pte);
4790
4791	set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
 
 
 
4792
4793	(void)huge_ptep_set_access_flags(dst_vma, dst_addr, dst_pte, _dst_pte,
4794					dst_vma->vm_flags & VM_WRITE);
4795	hugetlb_count_add(pages_per_huge_page(h), dst_mm);
4796
4797	/* No need to invalidate - it was non-present before */
4798	update_mmu_cache(dst_vma, dst_addr, dst_pte);
4799
4800	spin_unlock(ptl);
4801	set_page_huge_active(page);
4802	if (vm_shared)
4803		unlock_page(page);
 
4804	ret = 0;
4805out:
4806	return ret;
4807out_release_unlock:
4808	spin_unlock(ptl);
4809	if (vm_shared)
4810		unlock_page(page);
4811out_release_nounlock:
4812	put_page(page);
 
 
4813	goto out;
4814}
 
4815
4816long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
4817			 struct page **pages, struct vm_area_struct **vmas,
4818			 unsigned long *position, unsigned long *nr_pages,
4819			 long i, unsigned int flags, int *locked)
4820{
4821	unsigned long pfn_offset;
4822	unsigned long vaddr = *position;
4823	unsigned long remainder = *nr_pages;
4824	struct hstate *h = hstate_vma(vma);
4825	int err = -EFAULT;
4826
4827	while (vaddr < vma->vm_end && remainder) {
4828		pte_t *pte;
4829		spinlock_t *ptl = NULL;
4830		int absent;
4831		struct page *page;
4832
4833		/*
4834		 * If we have a pending SIGKILL, don't keep faulting pages and
4835		 * potentially allocating memory.
4836		 */
4837		if (fatal_signal_pending(current)) {
4838			remainder = 0;
4839			break;
4840		}
4841
4842		/*
4843		 * Some archs (sparc64, sh*) have multiple pte_ts to
4844		 * each hugepage.  We have to make sure we get the
4845		 * first, for the page indexing below to work.
4846		 *
4847		 * Note that page table lock is not held when pte is null.
4848		 */
4849		pte = huge_pte_offset(mm, vaddr & huge_page_mask(h),
4850				      huge_page_size(h));
4851		if (pte)
4852			ptl = huge_pte_lock(h, mm, pte);
4853		absent = !pte || huge_pte_none(huge_ptep_get(pte));
4854
4855		/*
4856		 * When coredumping, it suits get_dump_page if we just return
4857		 * an error where there's an empty slot with no huge pagecache
4858		 * to back it.  This way, we avoid allocating a hugepage, and
4859		 * the sparse dumpfile avoids allocating disk blocks, but its
4860		 * huge holes still show up with zeroes where they need to be.
4861		 */
4862		if (absent && (flags & FOLL_DUMP) &&
4863		    !hugetlbfs_pagecache_present(h, vma, vaddr)) {
4864			if (pte)
4865				spin_unlock(ptl);
4866			remainder = 0;
4867			break;
4868		}
4869
4870		/*
4871		 * We need call hugetlb_fault for both hugepages under migration
4872		 * (in which case hugetlb_fault waits for the migration,) and
4873		 * hwpoisoned hugepages (in which case we need to prevent the
4874		 * caller from accessing to them.) In order to do this, we use
4875		 * here is_swap_pte instead of is_hugetlb_entry_migration and
4876		 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
4877		 * both cases, and because we can't follow correct pages
4878		 * directly from any kind of swap entries.
4879		 */
4880		if (absent || is_swap_pte(huge_ptep_get(pte)) ||
4881		    ((flags & FOLL_WRITE) &&
4882		      !huge_pte_write(huge_ptep_get(pte)))) {
4883			vm_fault_t ret;
4884			unsigned int fault_flags = 0;
4885
4886			if (pte)
4887				spin_unlock(ptl);
4888			if (flags & FOLL_WRITE)
4889				fault_flags |= FAULT_FLAG_WRITE;
4890			if (locked)
4891				fault_flags |= FAULT_FLAG_ALLOW_RETRY |
4892					FAULT_FLAG_KILLABLE;
4893			if (flags & FOLL_NOWAIT)
4894				fault_flags |= FAULT_FLAG_ALLOW_RETRY |
4895					FAULT_FLAG_RETRY_NOWAIT;
4896			if (flags & FOLL_TRIED) {
4897				/*
4898				 * Note: FAULT_FLAG_ALLOW_RETRY and
4899				 * FAULT_FLAG_TRIED can co-exist
4900				 */
4901				fault_flags |= FAULT_FLAG_TRIED;
4902			}
4903			ret = hugetlb_fault(mm, vma, vaddr, fault_flags);
4904			if (ret & VM_FAULT_ERROR) {
4905				err = vm_fault_to_errno(ret, flags);
4906				remainder = 0;
4907				break;
4908			}
4909			if (ret & VM_FAULT_RETRY) {
4910				if (locked &&
4911				    !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
4912					*locked = 0;
4913				*nr_pages = 0;
4914				/*
4915				 * VM_FAULT_RETRY must not return an
4916				 * error, it will return zero
4917				 * instead.
4918				 *
4919				 * No need to update "position" as the
4920				 * caller will not check it after
4921				 * *nr_pages is set to 0.
4922				 */
4923				return i;
4924			}
4925			continue;
4926		}
4927
4928		pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
4929		page = pte_page(huge_ptep_get(pte));
4930
4931		/*
4932		 * If subpage information not requested, update counters
4933		 * and skip the same_page loop below.
4934		 */
4935		if (!pages && !vmas && !pfn_offset &&
4936		    (vaddr + huge_page_size(h) < vma->vm_end) &&
4937		    (remainder >= pages_per_huge_page(h))) {
4938			vaddr += huge_page_size(h);
4939			remainder -= pages_per_huge_page(h);
4940			i += pages_per_huge_page(h);
4941			spin_unlock(ptl);
4942			continue;
4943		}
4944
4945same_page:
4946		if (pages) {
4947			pages[i] = mem_map_offset(page, pfn_offset);
4948			/*
4949			 * try_grab_page() should always succeed here, because:
4950			 * a) we hold the ptl lock, and b) we've just checked
4951			 * that the huge page is present in the page tables. If
4952			 * the huge page is present, then the tail pages must
4953			 * also be present. The ptl prevents the head page and
4954			 * tail pages from being rearranged in any way. So this
4955			 * page must be available at this point, unless the page
4956			 * refcount overflowed:
4957			 */
4958			if (WARN_ON_ONCE(!try_grab_page(pages[i], flags))) {
4959				spin_unlock(ptl);
4960				remainder = 0;
4961				err = -ENOMEM;
4962				break;
4963			}
4964		}
4965
4966		if (vmas)
4967			vmas[i] = vma;
4968
4969		vaddr += PAGE_SIZE;
4970		++pfn_offset;
4971		--remainder;
4972		++i;
4973		if (vaddr < vma->vm_end && remainder &&
4974				pfn_offset < pages_per_huge_page(h)) {
4975			/*
4976			 * We use pfn_offset to avoid touching the pageframes
4977			 * of this compound page.
4978			 */
4979			goto same_page;
4980		}
4981		spin_unlock(ptl);
4982	}
4983	*nr_pages = remainder;
4984	/*
4985	 * setting position is actually required only if remainder is
4986	 * not zero but it's faster not to add a "if (remainder)"
4987	 * branch.
4988	 */
4989	*position = vaddr;
4990
4991	return i ? i : err;
4992}
4993
4994#ifndef __HAVE_ARCH_FLUSH_HUGETLB_TLB_RANGE
4995/*
4996 * ARCHes with special requirements for evicting HUGETLB backing TLB entries can
4997 * implement this.
4998 */
4999#define flush_hugetlb_tlb_range(vma, addr, end)	flush_tlb_range(vma, addr, end)
5000#endif
5001
5002unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
5003		unsigned long address, unsigned long end, pgprot_t newprot)
5004{
5005	struct mm_struct *mm = vma->vm_mm;
5006	unsigned long start = address;
5007	pte_t *ptep;
5008	pte_t pte;
5009	struct hstate *h = hstate_vma(vma);
5010	unsigned long pages = 0;
5011	bool shared_pmd = false;
5012	struct mmu_notifier_range range;
 
 
 
5013
5014	/*
5015	 * In the case of shared PMDs, the area to flush could be beyond
5016	 * start/end.  Set range.start/range.end to cover the maximum possible
5017	 * range if PMD sharing is possible.
5018	 */
5019	mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA,
5020				0, vma, mm, start, end);
5021	adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
5022
5023	BUG_ON(address >= end);
5024	flush_cache_range(vma, range.start, range.end);
5025
5026	mmu_notifier_invalidate_range_start(&range);
 
5027	i_mmap_lock_write(vma->vm_file->f_mapping);
5028	for (; address < end; address += huge_page_size(h)) {
 
5029		spinlock_t *ptl;
5030		ptep = huge_pte_offset(mm, address, huge_page_size(h));
5031		if (!ptep)
5032			continue;
 
 
 
 
 
 
 
 
 
 
 
 
 
5033		ptl = huge_pte_lock(h, mm, ptep);
5034		if (huge_pmd_unshare(mm, vma, &address, ptep)) {
 
 
 
 
 
 
5035			pages++;
5036			spin_unlock(ptl);
5037			shared_pmd = true;
 
5038			continue;
5039		}
5040		pte = huge_ptep_get(ptep);
5041		if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
5042			spin_unlock(ptl);
5043			continue;
5044		}
5045		if (unlikely(is_hugetlb_entry_migration(pte))) {
5046			swp_entry_t entry = pte_to_swp_entry(pte);
 
 
5047
5048			if (is_write_migration_entry(entry)) {
5049				pte_t newpte;
5050
5051				make_migration_entry_read(&entry);
 
 
 
5052				newpte = swp_entry_to_pte(entry);
5053				set_huge_swap_pte_at(mm, address, ptep,
5054						     newpte, huge_page_size(h));
5055				pages++;
5056			}
5057			spin_unlock(ptl);
5058			continue;
5059		}
5060		if (!huge_pte_none(pte)) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5061			pte_t old_pte;
 
5062
5063			old_pte = huge_ptep_modify_prot_start(vma, address, ptep);
5064			pte = pte_mkhuge(huge_pte_modify(old_pte, newprot));
5065			pte = arch_make_huge_pte(pte, vma, NULL, 0);
 
 
 
 
5066			huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte);
5067			pages++;
 
 
 
 
 
 
 
5068		}
5069		spin_unlock(ptl);
5070	}
5071	/*
5072	 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
5073	 * may have cleared our pud entry and done put_page on the page table:
5074	 * once we release i_mmap_rwsem, another task can do the final put_page
5075	 * and that page table be reused and filled with junk.  If we actually
5076	 * did unshare a page of pmds, flush the range corresponding to the pud.
5077	 */
5078	if (shared_pmd)
5079		flush_hugetlb_tlb_range(vma, range.start, range.end);
5080	else
5081		flush_hugetlb_tlb_range(vma, start, end);
5082	/*
5083	 * No need to call mmu_notifier_invalidate_range() we are downgrading
5084	 * page table protection not changing it to point to a new page.
 
5085	 *
5086	 * See Documentation/vm/mmu_notifier.rst
5087	 */
5088	i_mmap_unlock_write(vma->vm_file->f_mapping);
 
5089	mmu_notifier_invalidate_range_end(&range);
5090
5091	return pages << h->order;
5092}
5093
5094int hugetlb_reserve_pages(struct inode *inode,
 
5095					long from, long to,
5096					struct vm_area_struct *vma,
5097					vm_flags_t vm_flags)
5098{
5099	long ret, chg, add = -1;
5100	struct hstate *h = hstate_inode(inode);
5101	struct hugepage_subpool *spool = subpool_inode(inode);
5102	struct resv_map *resv_map;
5103	struct hugetlb_cgroup *h_cg = NULL;
5104	long gbl_reserve, regions_needed = 0;
5105
5106	/* This should never happen */
5107	if (from > to) {
5108		VM_WARN(1, "%s called with a negative range\n", __func__);
5109		return -EINVAL;
5110	}
5111
5112	/*
 
 
 
 
 
 
5113	 * Only apply hugepage reservation if asked. At fault time, an
5114	 * attempt will be made for VM_NORESERVE to allocate a page
5115	 * without using reserves
5116	 */
5117	if (vm_flags & VM_NORESERVE)
5118		return 0;
5119
5120	/*
5121	 * Shared mappings base their reservation on the number of pages that
5122	 * are already allocated on behalf of the file. Private mappings need
5123	 * to reserve the full area even if read-only as mprotect() may be
5124	 * called to make the mapping read-write. Assume !vma is a shm mapping
5125	 */
5126	if (!vma || vma->vm_flags & VM_MAYSHARE) {
5127		/*
5128		 * resv_map can not be NULL as hugetlb_reserve_pages is only
5129		 * called for inodes for which resv_maps were created (see
5130		 * hugetlbfs_get_inode).
5131		 */
5132		resv_map = inode_resv_map(inode);
5133
5134		chg = region_chg(resv_map, from, to, &regions_needed);
5135
5136	} else {
5137		/* Private mapping. */
5138		resv_map = resv_map_alloc();
5139		if (!resv_map)
5140			return -ENOMEM;
5141
5142		chg = to - from;
5143
5144		set_vma_resv_map(vma, resv_map);
5145		set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
5146	}
5147
5148	if (chg < 0) {
5149		ret = chg;
5150		goto out_err;
5151	}
5152
5153	ret = hugetlb_cgroup_charge_cgroup_rsvd(
5154		hstate_index(h), chg * pages_per_huge_page(h), &h_cg);
5155
5156	if (ret < 0) {
5157		ret = -ENOMEM;
5158		goto out_err;
5159	}
5160
5161	if (vma && !(vma->vm_flags & VM_MAYSHARE) && h_cg) {
5162		/* For private mappings, the hugetlb_cgroup uncharge info hangs
5163		 * of the resv_map.
5164		 */
5165		resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, h_cg, h);
5166	}
5167
5168	/*
5169	 * There must be enough pages in the subpool for the mapping. If
5170	 * the subpool has a minimum size, there may be some global
5171	 * reservations already in place (gbl_reserve).
5172	 */
5173	gbl_reserve = hugepage_subpool_get_pages(spool, chg);
5174	if (gbl_reserve < 0) {
5175		ret = -ENOSPC;
5176		goto out_uncharge_cgroup;
5177	}
5178
5179	/*
5180	 * Check enough hugepages are available for the reservation.
5181	 * Hand the pages back to the subpool if there are not
5182	 */
5183	ret = hugetlb_acct_memory(h, gbl_reserve);
5184	if (ret < 0) {
5185		goto out_put_pages;
5186	}
5187
5188	/*
5189	 * Account for the reservations made. Shared mappings record regions
5190	 * that have reservations as they are shared by multiple VMAs.
5191	 * When the last VMA disappears, the region map says how much
5192	 * the reservation was and the page cache tells how much of
5193	 * the reservation was consumed. Private mappings are per-VMA and
5194	 * only the consumed reservations are tracked. When the VMA
5195	 * disappears, the original reservation is the VMA size and the
5196	 * consumed reservations are stored in the map. Hence, nothing
5197	 * else has to be done for private mappings here
5198	 */
5199	if (!vma || vma->vm_flags & VM_MAYSHARE) {
5200		add = region_add(resv_map, from, to, regions_needed, h, h_cg);
5201
5202		if (unlikely(add < 0)) {
5203			hugetlb_acct_memory(h, -gbl_reserve);
5204			goto out_put_pages;
5205		} else if (unlikely(chg > add)) {
5206			/*
5207			 * pages in this range were added to the reserve
5208			 * map between region_chg and region_add.  This
5209			 * indicates a race with alloc_huge_page.  Adjust
5210			 * the subpool and reserve counts modified above
5211			 * based on the difference.
5212			 */
5213			long rsv_adjust;
5214
 
 
 
 
5215			hugetlb_cgroup_uncharge_cgroup_rsvd(
5216				hstate_index(h),
5217				(chg - add) * pages_per_huge_page(h), h_cg);
5218
5219			rsv_adjust = hugepage_subpool_put_pages(spool,
5220								chg - add);
5221			hugetlb_acct_memory(h, -rsv_adjust);
 
 
 
 
 
 
 
 
5222		}
5223	}
5224	return 0;
 
5225out_put_pages:
5226	/* put back original number of pages, chg */
5227	(void)hugepage_subpool_put_pages(spool, chg);
5228out_uncharge_cgroup:
5229	hugetlb_cgroup_uncharge_cgroup_rsvd(hstate_index(h),
5230					    chg * pages_per_huge_page(h), h_cg);
5231out_err:
 
5232	if (!vma || vma->vm_flags & VM_MAYSHARE)
5233		/* Only call region_abort if the region_chg succeeded but the
5234		 * region_add failed or didn't run.
5235		 */
5236		if (chg >= 0 && add < 0)
5237			region_abort(resv_map, from, to, regions_needed);
5238	if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
5239		kref_put(&resv_map->refs, resv_map_release);
5240	return ret;
 
 
5241}
5242
5243long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
5244								long freed)
5245{
5246	struct hstate *h = hstate_inode(inode);
5247	struct resv_map *resv_map = inode_resv_map(inode);
5248	long chg = 0;
5249	struct hugepage_subpool *spool = subpool_inode(inode);
5250	long gbl_reserve;
5251
5252	/*
5253	 * Since this routine can be called in the evict inode path for all
5254	 * hugetlbfs inodes, resv_map could be NULL.
5255	 */
5256	if (resv_map) {
5257		chg = region_del(resv_map, start, end);
5258		/*
5259		 * region_del() can fail in the rare case where a region
5260		 * must be split and another region descriptor can not be
5261		 * allocated.  If end == LONG_MAX, it will not fail.
5262		 */
5263		if (chg < 0)
5264			return chg;
5265	}
5266
5267	spin_lock(&inode->i_lock);
5268	inode->i_blocks -= (blocks_per_huge_page(h) * freed);
5269	spin_unlock(&inode->i_lock);
5270
5271	/*
5272	 * If the subpool has a minimum size, the number of global
5273	 * reservations to be released may be adjusted.
 
 
 
5274	 */
5275	gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
5276	hugetlb_acct_memory(h, -gbl_reserve);
5277
5278	return 0;
5279}
5280
5281#ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
5282static unsigned long page_table_shareable(struct vm_area_struct *svma,
5283				struct vm_area_struct *vma,
5284				unsigned long addr, pgoff_t idx)
5285{
5286	unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
5287				svma->vm_start;
5288	unsigned long sbase = saddr & PUD_MASK;
5289	unsigned long s_end = sbase + PUD_SIZE;
5290
5291	/* Allow segments to share if only one is marked locked */
5292	unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
5293	unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
5294
5295	/*
5296	 * match the virtual addresses, permission and the alignment of the
5297	 * page table page.
 
 
5298	 */
5299	if (pmd_index(addr) != pmd_index(saddr) ||
5300	    vm_flags != svm_flags ||
5301	    sbase < svma->vm_start || svma->vm_end < s_end)
 
5302		return 0;
5303
5304	return saddr;
5305}
5306
5307static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr)
5308{
5309	unsigned long base = addr & PUD_MASK;
5310	unsigned long end = base + PUD_SIZE;
5311
 
 
 
 
5312	/*
5313	 * check on proper vm_flags and page table alignment
5314	 */
5315	if (vma->vm_flags & VM_MAYSHARE && range_in_vma(vma, base, end))
5316		return true;
5317	return false;
 
 
 
 
5318}
5319
5320/*
5321 * Determine if start,end range within vma could be mapped by shared pmd.
5322 * If yes, adjust start and end to cover range associated with possible
5323 * shared pmd mappings.
5324 */
5325void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
5326				unsigned long *start, unsigned long *end)
5327{
5328	unsigned long a_start, a_end;
 
5329
5330	if (!(vma->vm_flags & VM_MAYSHARE))
 
 
 
 
 
5331		return;
5332
5333	/* Extend the range to be PUD aligned for a worst case scenario */
5334	a_start = ALIGN_DOWN(*start, PUD_SIZE);
5335	a_end = ALIGN(*end, PUD_SIZE);
5336
5337	/*
5338	 * Intersect the range with the vma range, since pmd sharing won't be
5339	 * across vma after all
5340	 */
5341	*start = max(vma->vm_start, a_start);
5342	*end = min(vma->vm_end, a_end);
5343}
5344
5345/*
5346 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
5347 * and returns the corresponding pte. While this is not necessary for the
5348 * !shared pmd case because we can allocate the pmd later as well, it makes the
5349 * code much cleaner.
5350 *
5351 * This routine must be called with i_mmap_rwsem held in at least read mode.
5352 * For hugetlbfs, this prevents removal of any page table entries associated
5353 * with the address space.  This is important as we are setting up sharing
5354 * based on existing page table entries (mappings).
5355 */
5356pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
 
5357{
5358	struct vm_area_struct *vma = find_vma(mm, addr);
5359	struct address_space *mapping = vma->vm_file->f_mapping;
5360	pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
5361			vma->vm_pgoff;
5362	struct vm_area_struct *svma;
5363	unsigned long saddr;
5364	pte_t *spte = NULL;
5365	pte_t *pte;
5366	spinlock_t *ptl;
5367
5368	if (!vma_shareable(vma, addr))
5369		return (pte_t *)pmd_alloc(mm, pud, addr);
5370
 
5371	vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
5372		if (svma == vma)
5373			continue;
5374
5375		saddr = page_table_shareable(svma, vma, addr, idx);
5376		if (saddr) {
5377			spte = huge_pte_offset(svma->vm_mm, saddr,
5378					       vma_mmu_pagesize(svma));
5379			if (spte) {
5380				get_page(virt_to_page(spte));
5381				break;
5382			}
5383		}
5384	}
5385
5386	if (!spte)
5387		goto out;
5388
5389	ptl = huge_pte_lock(hstate_vma(vma), mm, spte);
5390	if (pud_none(*pud)) {
5391		pud_populate(mm, pud,
5392				(pmd_t *)((unsigned long)spte & PAGE_MASK));
5393		mm_inc_nr_pmds(mm);
5394	} else {
5395		put_page(virt_to_page(spte));
5396	}
5397	spin_unlock(ptl);
5398out:
5399	pte = (pte_t *)pmd_alloc(mm, pud, addr);
 
5400	return pte;
5401}
5402
5403/*
5404 * unmap huge page backed by shared pte.
5405 *
5406 * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared
5407 * indicated by page_count > 1, unmap is achieved by clearing pud and
5408 * decrementing the ref count. If count == 1, the pte page is not shared.
5409 *
5410 * Called with page table lock held and i_mmap_rwsem held in write mode.
5411 *
5412 * returns: 1 successfully unmapped a shared pte page
5413 *	    0 the underlying pte page is not shared, or it is the last user
5414 */
5415int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
5416					unsigned long *addr, pte_t *ptep)
5417{
5418	pgd_t *pgd = pgd_offset(mm, *addr);
5419	p4d_t *p4d = p4d_offset(pgd, *addr);
5420	pud_t *pud = pud_offset(p4d, *addr);
 
5421
5422	i_mmap_assert_write_locked(vma->vm_file->f_mapping);
5423	BUG_ON(page_count(virt_to_page(ptep)) == 0);
5424	if (page_count(virt_to_page(ptep)) == 1)
 
 
5425		return 0;
5426
5427	pud_clear(pud);
5428	put_page(virt_to_page(ptep));
5429	mm_dec_nr_pmds(mm);
5430	*addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
5431	return 1;
5432}
5433#define want_pmd_share()	(1)
5434#else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
5435pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
 
 
5436{
5437	return NULL;
5438}
5439
5440int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
5441				unsigned long *addr, pte_t *ptep)
5442{
5443	return 0;
5444}
5445
5446void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
5447				unsigned long *start, unsigned long *end)
5448{
5449}
5450#define want_pmd_share()	(0)
5451#endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
 
 
 
 
5452
5453#ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
5454pte_t *huge_pte_alloc(struct mm_struct *mm,
5455			unsigned long addr, unsigned long sz)
5456{
5457	pgd_t *pgd;
5458	p4d_t *p4d;
5459	pud_t *pud;
5460	pte_t *pte = NULL;
5461
5462	pgd = pgd_offset(mm, addr);
5463	p4d = p4d_alloc(mm, pgd, addr);
5464	if (!p4d)
5465		return NULL;
5466	pud = pud_alloc(mm, p4d, addr);
5467	if (pud) {
5468		if (sz == PUD_SIZE) {
5469			pte = (pte_t *)pud;
5470		} else {
5471			BUG_ON(sz != PMD_SIZE);
5472			if (want_pmd_share() && pud_none(*pud))
5473				pte = huge_pmd_share(mm, addr, pud);
5474			else
5475				pte = (pte_t *)pmd_alloc(mm, pud, addr);
5476		}
5477	}
5478	BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte));
 
 
 
 
 
5479
5480	return pte;
5481}
5482
5483/*
5484 * huge_pte_offset() - Walk the page table to resolve the hugepage
5485 * entry at address @addr
5486 *
5487 * Return: Pointer to page table entry (PUD or PMD) for
5488 * address @addr, or NULL if a !p*d_present() entry is encountered and the
5489 * size @sz doesn't match the hugepage size at this level of the page
5490 * table.
5491 */
5492pte_t *huge_pte_offset(struct mm_struct *mm,
5493		       unsigned long addr, unsigned long sz)
5494{
5495	pgd_t *pgd;
5496	p4d_t *p4d;
5497	pud_t *pud;
5498	pmd_t *pmd;
5499
5500	pgd = pgd_offset(mm, addr);
5501	if (!pgd_present(*pgd))
5502		return NULL;
5503	p4d = p4d_offset(pgd, addr);
5504	if (!p4d_present(*p4d))
5505		return NULL;
5506
5507	pud = pud_offset(p4d, addr);
5508	if (sz == PUD_SIZE)
5509		/* must be pud huge, non-present or none */
5510		return (pte_t *)pud;
5511	if (!pud_present(*pud))
5512		return NULL;
5513	/* must have a valid entry and size to go further */
5514
5515	pmd = pmd_offset(pud, addr);
5516	/* must be pmd huge, non-present or none */
5517	return (pte_t *)pmd;
5518}
5519
5520#endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
5521
5522/*
5523 * These functions are overwritable if your architecture needs its own
5524 * behavior.
5525 */
5526struct page * __weak
5527follow_huge_addr(struct mm_struct *mm, unsigned long address,
5528			      int write)
5529{
5530	return ERR_PTR(-EINVAL);
 
 
 
 
 
 
 
 
5531}
5532
5533struct page * __weak
5534follow_huge_pd(struct vm_area_struct *vma,
5535	       unsigned long address, hugepd_t hpd, int flags, int pdshift)
 
5536{
5537	WARN(1, "hugepd follow called with no support for hugepage directory format\n");
5538	return NULL;
 
 
 
5539}
5540
5541struct page * __weak
5542follow_huge_pmd(struct mm_struct *mm, unsigned long address,
5543		pmd_t *pmd, int flags)
5544{
5545	struct page *page = NULL;
5546	spinlock_t *ptl;
5547	pte_t pte;
5548
5549	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
5550	if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
5551			 (FOLL_PIN | FOLL_GET)))
5552		return NULL;
5553
5554retry:
5555	ptl = pmd_lockptr(mm, pmd);
5556	spin_lock(ptl);
5557	/*
5558	 * make sure that the address range covered by this pmd is not
5559	 * unmapped from other threads.
5560	 */
5561	if (!pmd_huge(*pmd))
5562		goto out;
5563	pte = huge_ptep_get((pte_t *)pmd);
5564	if (pte_present(pte)) {
5565		page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
5566		/*
5567		 * try_grab_page() should always succeed here, because: a) we
5568		 * hold the pmd (ptl) lock, and b) we've just checked that the
5569		 * huge pmd (head) page is present in the page tables. The ptl
5570		 * prevents the head page and tail pages from being rearranged
5571		 * in any way. So this page must be available at this point,
5572		 * unless the page refcount overflowed:
5573		 */
5574		if (WARN_ON_ONCE(!try_grab_page(page, flags))) {
5575			page = NULL;
5576			goto out;
5577		}
5578	} else {
5579		if (is_hugetlb_entry_migration(pte)) {
5580			spin_unlock(ptl);
5581			__migration_entry_wait(mm, (pte_t *)pmd, ptl);
5582			goto retry;
5583		}
5584		/*
5585		 * hwpoisoned entry is treated as no_page_table in
5586		 * follow_page_mask().
5587		 */
5588	}
5589out:
5590	spin_unlock(ptl);
5591	return page;
 
 
5592}
5593
5594struct page * __weak
5595follow_huge_pud(struct mm_struct *mm, unsigned long address,
5596		pud_t *pud, int flags)
5597{
5598	if (flags & (FOLL_GET | FOLL_PIN))
5599		return NULL;
5600
5601	return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
 
 
 
 
 
 
 
 
 
 
 
 
5602}
5603
5604struct page * __weak
5605follow_huge_pgd(struct mm_struct *mm, unsigned long address, pgd_t *pgd, int flags)
5606{
5607	if (flags & (FOLL_GET | FOLL_PIN))
5608		return NULL;
5609
5610	return pte_page(*(pte_t *)pgd) + ((address & ~PGDIR_MASK) >> PAGE_SHIFT);
5611}
5612
5613bool isolate_huge_page(struct page *page, struct list_head *list)
5614{
5615	bool ret = true;
5616
5617	VM_BUG_ON_PAGE(!PageHead(page), page);
5618	spin_lock(&hugetlb_lock);
5619	if (!page_huge_active(page) || !get_page_unless_zero(page)) {
5620		ret = false;
5621		goto unlock;
5622	}
5623	clear_page_huge_active(page);
5624	list_move_tail(&page->lru, list);
5625unlock:
5626	spin_unlock(&hugetlb_lock);
5627	return ret;
5628}
5629
5630void putback_active_hugepage(struct page *page)
5631{
5632	VM_BUG_ON_PAGE(!PageHead(page), page);
5633	spin_lock(&hugetlb_lock);
5634	set_page_huge_active(page);
5635	list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
5636	spin_unlock(&hugetlb_lock);
5637	put_page(page);
5638}
5639
5640void move_hugetlb_state(struct page *oldpage, struct page *newpage, int reason)
5641{
5642	struct hstate *h = page_hstate(oldpage);
5643
5644	hugetlb_cgroup_migrate(oldpage, newpage);
5645	set_page_owner_migrate_reason(newpage, reason);
5646
5647	/*
5648	 * transfer temporary state of the new huge page. This is
5649	 * reverse to other transitions because the newpage is going to
5650	 * be final while the old one will be freed so it takes over
5651	 * the temporary status.
5652	 *
5653	 * Also note that we have to transfer the per-node surplus state
5654	 * here as well otherwise the global surplus count will not match
5655	 * the per-node's.
5656	 */
5657	if (PageHugeTemporary(newpage)) {
5658		int old_nid = page_to_nid(oldpage);
5659		int new_nid = page_to_nid(newpage);
5660
5661		SetPageHugeTemporary(oldpage);
5662		ClearPageHugeTemporary(newpage);
5663
5664		spin_lock(&hugetlb_lock);
 
 
 
 
 
 
 
5665		if (h->surplus_huge_pages_node[old_nid]) {
5666			h->surplus_huge_pages_node[old_nid]--;
5667			h->surplus_huge_pages_node[new_nid]++;
5668		}
5669		spin_unlock(&hugetlb_lock);
5670	}
5671}
5672
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5673#ifdef CONFIG_CMA
5674static bool cma_reserve_called __initdata;
5675
5676static int __init cmdline_parse_hugetlb_cma(char *p)
5677{
5678	hugetlb_cma_size = memparse(p, &p);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5679	return 0;
5680}
5681
5682early_param("hugetlb_cma", cmdline_parse_hugetlb_cma);
5683
5684void __init hugetlb_cma_reserve(int order)
5685{
5686	unsigned long size, reserved, per_node;
 
5687	int nid;
5688
 
 
 
 
 
 
 
5689	cma_reserve_called = true;
5690
5691	if (!hugetlb_cma_size)
5692		return;
5693
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5694	if (hugetlb_cma_size < (PAGE_SIZE << order)) {
5695		pr_warn("hugetlb_cma: cma area should be at least %lu MiB\n",
5696			(PAGE_SIZE << order) / SZ_1M);
 
5697		return;
5698	}
5699
5700	/*
5701	 * If 3 GB area is requested on a machine with 4 numa nodes,
5702	 * let's allocate 1 GB on first three nodes and ignore the last one.
5703	 */
5704	per_node = DIV_ROUND_UP(hugetlb_cma_size, nr_online_nodes);
5705	pr_info("hugetlb_cma: reserve %lu MiB, up to %lu MiB per node\n",
5706		hugetlb_cma_size / SZ_1M, per_node / SZ_1M);
 
 
5707
5708	reserved = 0;
5709	for_each_node_state(nid, N_ONLINE) {
5710		int res;
5711		char name[20];
 
 
 
 
 
 
 
 
 
5712
5713		size = min(per_node, hugetlb_cma_size - reserved);
5714		size = round_up(size, PAGE_SIZE << order);
5715
5716		snprintf(name, 20, "hugetlb%d", nid);
5717		res = cma_declare_contiguous_nid(0, size, 0, PAGE_SIZE << order,
5718						 0, false, name,
5719						 &hugetlb_cma[nid], nid);
 
 
 
 
 
 
5720		if (res) {
5721			pr_warn("hugetlb_cma: reservation failed: err %d, node %d",
5722				res, nid);
5723			continue;
5724		}
5725
5726		reserved += size;
5727		pr_info("hugetlb_cma: reserved %lu MiB on node %d\n",
5728			size / SZ_1M, nid);
5729
5730		if (reserved >= hugetlb_cma_size)
5731			break;
5732	}
 
 
 
 
 
 
 
5733}
5734
5735void __init hugetlb_cma_check(void)
5736{
5737	if (!hugetlb_cma_size || cma_reserve_called)
5738		return;
5739
5740	pr_warn("hugetlb_cma: the option isn't supported by current arch\n");
5741}
5742
5743#endif /* CONFIG_CMA */