Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Generic hugetlb support.
4 * (C) Nadia Yvette Chambers, April 2004
5 */
6#include <linux/list.h>
7#include <linux/init.h>
8#include <linux/mm.h>
9#include <linux/seq_file.h>
10#include <linux/sysctl.h>
11#include <linux/highmem.h>
12#include <linux/mmu_notifier.h>
13#include <linux/nodemask.h>
14#include <linux/pagemap.h>
15#include <linux/mempolicy.h>
16#include <linux/compiler.h>
17#include <linux/cpuset.h>
18#include <linux/mutex.h>
19#include <linux/memblock.h>
20#include <linux/sysfs.h>
21#include <linux/slab.h>
22#include <linux/sched/mm.h>
23#include <linux/mmdebug.h>
24#include <linux/sched/signal.h>
25#include <linux/rmap.h>
26#include <linux/string_helpers.h>
27#include <linux/swap.h>
28#include <linux/swapops.h>
29#include <linux/jhash.h>
30#include <linux/numa.h>
31#include <linux/llist.h>
32#include <linux/cma.h>
33#include <linux/migrate.h>
34#include <linux/nospec.h>
35#include <linux/delayacct.h>
36#include <linux/memory.h>
37#include <linux/mm_inline.h>
38#include <linux/padata.h>
39
40#include <asm/page.h>
41#include <asm/pgalloc.h>
42#include <asm/tlb.h>
43
44#include <linux/io.h>
45#include <linux/hugetlb.h>
46#include <linux/hugetlb_cgroup.h>
47#include <linux/node.h>
48#include <linux/page_owner.h>
49#include "internal.h"
50#include "hugetlb_vmemmap.h"
51
52int hugetlb_max_hstate __read_mostly;
53unsigned int default_hstate_idx;
54struct hstate hstates[HUGE_MAX_HSTATE];
55
56#ifdef CONFIG_CMA
57static struct cma *hugetlb_cma[MAX_NUMNODES];
58static unsigned long hugetlb_cma_size_in_node[MAX_NUMNODES] __initdata;
59#endif
60static unsigned long hugetlb_cma_size __initdata;
61
62__initdata struct list_head huge_boot_pages[MAX_NUMNODES];
63
64/* for command line parsing */
65static struct hstate * __initdata parsed_hstate;
66static unsigned long __initdata default_hstate_max_huge_pages;
67static bool __initdata parsed_valid_hugepagesz = true;
68static bool __initdata parsed_default_hugepagesz;
69static unsigned int default_hugepages_in_node[MAX_NUMNODES] __initdata;
70
71/*
72 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
73 * free_huge_pages, and surplus_huge_pages.
74 */
75__cacheline_aligned_in_smp DEFINE_SPINLOCK(hugetlb_lock);
76
77/*
78 * Serializes faults on the same logical page. This is used to
79 * prevent spurious OOMs when the hugepage pool is fully utilized.
80 */
81static int num_fault_mutexes __ro_after_init;
82struct mutex *hugetlb_fault_mutex_table __ro_after_init;
83
84/* Forward declaration */
85static int hugetlb_acct_memory(struct hstate *h, long delta);
86static void hugetlb_vma_lock_free(struct vm_area_struct *vma);
87static void hugetlb_vma_lock_alloc(struct vm_area_struct *vma);
88static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma);
89static void hugetlb_unshare_pmds(struct vm_area_struct *vma,
90 unsigned long start, unsigned long end);
91static struct resv_map *vma_resv_map(struct vm_area_struct *vma);
92
93static void hugetlb_free_folio(struct folio *folio)
94{
95#ifdef CONFIG_CMA
96 int nid = folio_nid(folio);
97
98 if (cma_free_folio(hugetlb_cma[nid], folio))
99 return;
100#endif
101 folio_put(folio);
102}
103
104static inline bool subpool_is_free(struct hugepage_subpool *spool)
105{
106 if (spool->count)
107 return false;
108 if (spool->max_hpages != -1)
109 return spool->used_hpages == 0;
110 if (spool->min_hpages != -1)
111 return spool->rsv_hpages == spool->min_hpages;
112
113 return true;
114}
115
116static inline void unlock_or_release_subpool(struct hugepage_subpool *spool,
117 unsigned long irq_flags)
118{
119 spin_unlock_irqrestore(&spool->lock, irq_flags);
120
121 /* If no pages are used, and no other handles to the subpool
122 * remain, give up any reservations based on minimum size and
123 * free the subpool */
124 if (subpool_is_free(spool)) {
125 if (spool->min_hpages != -1)
126 hugetlb_acct_memory(spool->hstate,
127 -spool->min_hpages);
128 kfree(spool);
129 }
130}
131
132struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
133 long min_hpages)
134{
135 struct hugepage_subpool *spool;
136
137 spool = kzalloc(sizeof(*spool), GFP_KERNEL);
138 if (!spool)
139 return NULL;
140
141 spin_lock_init(&spool->lock);
142 spool->count = 1;
143 spool->max_hpages = max_hpages;
144 spool->hstate = h;
145 spool->min_hpages = min_hpages;
146
147 if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
148 kfree(spool);
149 return NULL;
150 }
151 spool->rsv_hpages = min_hpages;
152
153 return spool;
154}
155
156void hugepage_put_subpool(struct hugepage_subpool *spool)
157{
158 unsigned long flags;
159
160 spin_lock_irqsave(&spool->lock, flags);
161 BUG_ON(!spool->count);
162 spool->count--;
163 unlock_or_release_subpool(spool, flags);
164}
165
166/*
167 * Subpool accounting for allocating and reserving pages.
168 * Return -ENOMEM if there are not enough resources to satisfy the
169 * request. Otherwise, return the number of pages by which the
170 * global pools must be adjusted (upward). The returned value may
171 * only be different than the passed value (delta) in the case where
172 * a subpool minimum size must be maintained.
173 */
174static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
175 long delta)
176{
177 long ret = delta;
178
179 if (!spool)
180 return ret;
181
182 spin_lock_irq(&spool->lock);
183
184 if (spool->max_hpages != -1) { /* maximum size accounting */
185 if ((spool->used_hpages + delta) <= spool->max_hpages)
186 spool->used_hpages += delta;
187 else {
188 ret = -ENOMEM;
189 goto unlock_ret;
190 }
191 }
192
193 /* minimum size accounting */
194 if (spool->min_hpages != -1 && spool->rsv_hpages) {
195 if (delta > spool->rsv_hpages) {
196 /*
197 * Asking for more reserves than those already taken on
198 * behalf of subpool. Return difference.
199 */
200 ret = delta - spool->rsv_hpages;
201 spool->rsv_hpages = 0;
202 } else {
203 ret = 0; /* reserves already accounted for */
204 spool->rsv_hpages -= delta;
205 }
206 }
207
208unlock_ret:
209 spin_unlock_irq(&spool->lock);
210 return ret;
211}
212
213/*
214 * Subpool accounting for freeing and unreserving pages.
215 * Return the number of global page reservations that must be dropped.
216 * The return value may only be different than the passed value (delta)
217 * in the case where a subpool minimum size must be maintained.
218 */
219static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
220 long delta)
221{
222 long ret = delta;
223 unsigned long flags;
224
225 if (!spool)
226 return delta;
227
228 spin_lock_irqsave(&spool->lock, flags);
229
230 if (spool->max_hpages != -1) /* maximum size accounting */
231 spool->used_hpages -= delta;
232
233 /* minimum size accounting */
234 if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
235 if (spool->rsv_hpages + delta <= spool->min_hpages)
236 ret = 0;
237 else
238 ret = spool->rsv_hpages + delta - spool->min_hpages;
239
240 spool->rsv_hpages += delta;
241 if (spool->rsv_hpages > spool->min_hpages)
242 spool->rsv_hpages = spool->min_hpages;
243 }
244
245 /*
246 * If hugetlbfs_put_super couldn't free spool due to an outstanding
247 * quota reference, free it now.
248 */
249 unlock_or_release_subpool(spool, flags);
250
251 return ret;
252}
253
254static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
255{
256 return HUGETLBFS_SB(inode->i_sb)->spool;
257}
258
259static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
260{
261 return subpool_inode(file_inode(vma->vm_file));
262}
263
264/*
265 * hugetlb vma_lock helper routines
266 */
267void hugetlb_vma_lock_read(struct vm_area_struct *vma)
268{
269 if (__vma_shareable_lock(vma)) {
270 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
271
272 down_read(&vma_lock->rw_sema);
273 } else if (__vma_private_lock(vma)) {
274 struct resv_map *resv_map = vma_resv_map(vma);
275
276 down_read(&resv_map->rw_sema);
277 }
278}
279
280void hugetlb_vma_unlock_read(struct vm_area_struct *vma)
281{
282 if (__vma_shareable_lock(vma)) {
283 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
284
285 up_read(&vma_lock->rw_sema);
286 } else if (__vma_private_lock(vma)) {
287 struct resv_map *resv_map = vma_resv_map(vma);
288
289 up_read(&resv_map->rw_sema);
290 }
291}
292
293void hugetlb_vma_lock_write(struct vm_area_struct *vma)
294{
295 if (__vma_shareable_lock(vma)) {
296 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
297
298 down_write(&vma_lock->rw_sema);
299 } else if (__vma_private_lock(vma)) {
300 struct resv_map *resv_map = vma_resv_map(vma);
301
302 down_write(&resv_map->rw_sema);
303 }
304}
305
306void hugetlb_vma_unlock_write(struct vm_area_struct *vma)
307{
308 if (__vma_shareable_lock(vma)) {
309 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
310
311 up_write(&vma_lock->rw_sema);
312 } else if (__vma_private_lock(vma)) {
313 struct resv_map *resv_map = vma_resv_map(vma);
314
315 up_write(&resv_map->rw_sema);
316 }
317}
318
319int hugetlb_vma_trylock_write(struct vm_area_struct *vma)
320{
321
322 if (__vma_shareable_lock(vma)) {
323 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
324
325 return down_write_trylock(&vma_lock->rw_sema);
326 } else if (__vma_private_lock(vma)) {
327 struct resv_map *resv_map = vma_resv_map(vma);
328
329 return down_write_trylock(&resv_map->rw_sema);
330 }
331
332 return 1;
333}
334
335void hugetlb_vma_assert_locked(struct vm_area_struct *vma)
336{
337 if (__vma_shareable_lock(vma)) {
338 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
339
340 lockdep_assert_held(&vma_lock->rw_sema);
341 } else if (__vma_private_lock(vma)) {
342 struct resv_map *resv_map = vma_resv_map(vma);
343
344 lockdep_assert_held(&resv_map->rw_sema);
345 }
346}
347
348void hugetlb_vma_lock_release(struct kref *kref)
349{
350 struct hugetlb_vma_lock *vma_lock = container_of(kref,
351 struct hugetlb_vma_lock, refs);
352
353 kfree(vma_lock);
354}
355
356static void __hugetlb_vma_unlock_write_put(struct hugetlb_vma_lock *vma_lock)
357{
358 struct vm_area_struct *vma = vma_lock->vma;
359
360 /*
361 * vma_lock structure may or not be released as a result of put,
362 * it certainly will no longer be attached to vma so clear pointer.
363 * Semaphore synchronizes access to vma_lock->vma field.
364 */
365 vma_lock->vma = NULL;
366 vma->vm_private_data = NULL;
367 up_write(&vma_lock->rw_sema);
368 kref_put(&vma_lock->refs, hugetlb_vma_lock_release);
369}
370
371static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma)
372{
373 if (__vma_shareable_lock(vma)) {
374 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
375
376 __hugetlb_vma_unlock_write_put(vma_lock);
377 } else if (__vma_private_lock(vma)) {
378 struct resv_map *resv_map = vma_resv_map(vma);
379
380 /* no free for anon vmas, but still need to unlock */
381 up_write(&resv_map->rw_sema);
382 }
383}
384
385static void hugetlb_vma_lock_free(struct vm_area_struct *vma)
386{
387 /*
388 * Only present in sharable vmas.
389 */
390 if (!vma || !__vma_shareable_lock(vma))
391 return;
392
393 if (vma->vm_private_data) {
394 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
395
396 down_write(&vma_lock->rw_sema);
397 __hugetlb_vma_unlock_write_put(vma_lock);
398 }
399}
400
401static void hugetlb_vma_lock_alloc(struct vm_area_struct *vma)
402{
403 struct hugetlb_vma_lock *vma_lock;
404
405 /* Only establish in (flags) sharable vmas */
406 if (!vma || !(vma->vm_flags & VM_MAYSHARE))
407 return;
408
409 /* Should never get here with non-NULL vm_private_data */
410 if (vma->vm_private_data)
411 return;
412
413 vma_lock = kmalloc(sizeof(*vma_lock), GFP_KERNEL);
414 if (!vma_lock) {
415 /*
416 * If we can not allocate structure, then vma can not
417 * participate in pmd sharing. This is only a possible
418 * performance enhancement and memory saving issue.
419 * However, the lock is also used to synchronize page
420 * faults with truncation. If the lock is not present,
421 * unlikely races could leave pages in a file past i_size
422 * until the file is removed. Warn in the unlikely case of
423 * allocation failure.
424 */
425 pr_warn_once("HugeTLB: unable to allocate vma specific lock\n");
426 return;
427 }
428
429 kref_init(&vma_lock->refs);
430 init_rwsem(&vma_lock->rw_sema);
431 vma_lock->vma = vma;
432 vma->vm_private_data = vma_lock;
433}
434
435/* Helper that removes a struct file_region from the resv_map cache and returns
436 * it for use.
437 */
438static struct file_region *
439get_file_region_entry_from_cache(struct resv_map *resv, long from, long to)
440{
441 struct file_region *nrg;
442
443 VM_BUG_ON(resv->region_cache_count <= 0);
444
445 resv->region_cache_count--;
446 nrg = list_first_entry(&resv->region_cache, struct file_region, link);
447 list_del(&nrg->link);
448
449 nrg->from = from;
450 nrg->to = to;
451
452 return nrg;
453}
454
455static void copy_hugetlb_cgroup_uncharge_info(struct file_region *nrg,
456 struct file_region *rg)
457{
458#ifdef CONFIG_CGROUP_HUGETLB
459 nrg->reservation_counter = rg->reservation_counter;
460 nrg->css = rg->css;
461 if (rg->css)
462 css_get(rg->css);
463#endif
464}
465
466/* Helper that records hugetlb_cgroup uncharge info. */
467static void record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup *h_cg,
468 struct hstate *h,
469 struct resv_map *resv,
470 struct file_region *nrg)
471{
472#ifdef CONFIG_CGROUP_HUGETLB
473 if (h_cg) {
474 nrg->reservation_counter =
475 &h_cg->rsvd_hugepage[hstate_index(h)];
476 nrg->css = &h_cg->css;
477 /*
478 * The caller will hold exactly one h_cg->css reference for the
479 * whole contiguous reservation region. But this area might be
480 * scattered when there are already some file_regions reside in
481 * it. As a result, many file_regions may share only one css
482 * reference. In order to ensure that one file_region must hold
483 * exactly one h_cg->css reference, we should do css_get for
484 * each file_region and leave the reference held by caller
485 * untouched.
486 */
487 css_get(&h_cg->css);
488 if (!resv->pages_per_hpage)
489 resv->pages_per_hpage = pages_per_huge_page(h);
490 /* pages_per_hpage should be the same for all entries in
491 * a resv_map.
492 */
493 VM_BUG_ON(resv->pages_per_hpage != pages_per_huge_page(h));
494 } else {
495 nrg->reservation_counter = NULL;
496 nrg->css = NULL;
497 }
498#endif
499}
500
501static void put_uncharge_info(struct file_region *rg)
502{
503#ifdef CONFIG_CGROUP_HUGETLB
504 if (rg->css)
505 css_put(rg->css);
506#endif
507}
508
509static bool has_same_uncharge_info(struct file_region *rg,
510 struct file_region *org)
511{
512#ifdef CONFIG_CGROUP_HUGETLB
513 return rg->reservation_counter == org->reservation_counter &&
514 rg->css == org->css;
515
516#else
517 return true;
518#endif
519}
520
521static void coalesce_file_region(struct resv_map *resv, struct file_region *rg)
522{
523 struct file_region *nrg, *prg;
524
525 prg = list_prev_entry(rg, link);
526 if (&prg->link != &resv->regions && prg->to == rg->from &&
527 has_same_uncharge_info(prg, rg)) {
528 prg->to = rg->to;
529
530 list_del(&rg->link);
531 put_uncharge_info(rg);
532 kfree(rg);
533
534 rg = prg;
535 }
536
537 nrg = list_next_entry(rg, link);
538 if (&nrg->link != &resv->regions && nrg->from == rg->to &&
539 has_same_uncharge_info(nrg, rg)) {
540 nrg->from = rg->from;
541
542 list_del(&rg->link);
543 put_uncharge_info(rg);
544 kfree(rg);
545 }
546}
547
548static inline long
549hugetlb_resv_map_add(struct resv_map *map, struct list_head *rg, long from,
550 long to, struct hstate *h, struct hugetlb_cgroup *cg,
551 long *regions_needed)
552{
553 struct file_region *nrg;
554
555 if (!regions_needed) {
556 nrg = get_file_region_entry_from_cache(map, from, to);
557 record_hugetlb_cgroup_uncharge_info(cg, h, map, nrg);
558 list_add(&nrg->link, rg);
559 coalesce_file_region(map, nrg);
560 } else
561 *regions_needed += 1;
562
563 return to - from;
564}
565
566/*
567 * Must be called with resv->lock held.
568 *
569 * Calling this with regions_needed != NULL will count the number of pages
570 * to be added but will not modify the linked list. And regions_needed will
571 * indicate the number of file_regions needed in the cache to carry out to add
572 * the regions for this range.
573 */
574static long add_reservation_in_range(struct resv_map *resv, long f, long t,
575 struct hugetlb_cgroup *h_cg,
576 struct hstate *h, long *regions_needed)
577{
578 long add = 0;
579 struct list_head *head = &resv->regions;
580 long last_accounted_offset = f;
581 struct file_region *iter, *trg = NULL;
582 struct list_head *rg = NULL;
583
584 if (regions_needed)
585 *regions_needed = 0;
586
587 /* In this loop, we essentially handle an entry for the range
588 * [last_accounted_offset, iter->from), at every iteration, with some
589 * bounds checking.
590 */
591 list_for_each_entry_safe(iter, trg, head, link) {
592 /* Skip irrelevant regions that start before our range. */
593 if (iter->from < f) {
594 /* If this region ends after the last accounted offset,
595 * then we need to update last_accounted_offset.
596 */
597 if (iter->to > last_accounted_offset)
598 last_accounted_offset = iter->to;
599 continue;
600 }
601
602 /* When we find a region that starts beyond our range, we've
603 * finished.
604 */
605 if (iter->from >= t) {
606 rg = iter->link.prev;
607 break;
608 }
609
610 /* Add an entry for last_accounted_offset -> iter->from, and
611 * update last_accounted_offset.
612 */
613 if (iter->from > last_accounted_offset)
614 add += hugetlb_resv_map_add(resv, iter->link.prev,
615 last_accounted_offset,
616 iter->from, h, h_cg,
617 regions_needed);
618
619 last_accounted_offset = iter->to;
620 }
621
622 /* Handle the case where our range extends beyond
623 * last_accounted_offset.
624 */
625 if (!rg)
626 rg = head->prev;
627 if (last_accounted_offset < t)
628 add += hugetlb_resv_map_add(resv, rg, last_accounted_offset,
629 t, h, h_cg, regions_needed);
630
631 return add;
632}
633
634/* Must be called with resv->lock acquired. Will drop lock to allocate entries.
635 */
636static int allocate_file_region_entries(struct resv_map *resv,
637 int regions_needed)
638 __must_hold(&resv->lock)
639{
640 LIST_HEAD(allocated_regions);
641 int to_allocate = 0, i = 0;
642 struct file_region *trg = NULL, *rg = NULL;
643
644 VM_BUG_ON(regions_needed < 0);
645
646 /*
647 * Check for sufficient descriptors in the cache to accommodate
648 * the number of in progress add operations plus regions_needed.
649 *
650 * This is a while loop because when we drop the lock, some other call
651 * to region_add or region_del may have consumed some region_entries,
652 * so we keep looping here until we finally have enough entries for
653 * (adds_in_progress + regions_needed).
654 */
655 while (resv->region_cache_count <
656 (resv->adds_in_progress + regions_needed)) {
657 to_allocate = resv->adds_in_progress + regions_needed -
658 resv->region_cache_count;
659
660 /* At this point, we should have enough entries in the cache
661 * for all the existing adds_in_progress. We should only be
662 * needing to allocate for regions_needed.
663 */
664 VM_BUG_ON(resv->region_cache_count < resv->adds_in_progress);
665
666 spin_unlock(&resv->lock);
667 for (i = 0; i < to_allocate; i++) {
668 trg = kmalloc(sizeof(*trg), GFP_KERNEL);
669 if (!trg)
670 goto out_of_memory;
671 list_add(&trg->link, &allocated_regions);
672 }
673
674 spin_lock(&resv->lock);
675
676 list_splice(&allocated_regions, &resv->region_cache);
677 resv->region_cache_count += to_allocate;
678 }
679
680 return 0;
681
682out_of_memory:
683 list_for_each_entry_safe(rg, trg, &allocated_regions, link) {
684 list_del(&rg->link);
685 kfree(rg);
686 }
687 return -ENOMEM;
688}
689
690/*
691 * Add the huge page range represented by [f, t) to the reserve
692 * map. Regions will be taken from the cache to fill in this range.
693 * Sufficient regions should exist in the cache due to the previous
694 * call to region_chg with the same range, but in some cases the cache will not
695 * have sufficient entries due to races with other code doing region_add or
696 * region_del. The extra needed entries will be allocated.
697 *
698 * regions_needed is the out value provided by a previous call to region_chg.
699 *
700 * Return the number of new huge pages added to the map. This number is greater
701 * than or equal to zero. If file_region entries needed to be allocated for
702 * this operation and we were not able to allocate, it returns -ENOMEM.
703 * region_add of regions of length 1 never allocate file_regions and cannot
704 * fail; region_chg will always allocate at least 1 entry and a region_add for
705 * 1 page will only require at most 1 entry.
706 */
707static long region_add(struct resv_map *resv, long f, long t,
708 long in_regions_needed, struct hstate *h,
709 struct hugetlb_cgroup *h_cg)
710{
711 long add = 0, actual_regions_needed = 0;
712
713 spin_lock(&resv->lock);
714retry:
715
716 /* Count how many regions are actually needed to execute this add. */
717 add_reservation_in_range(resv, f, t, NULL, NULL,
718 &actual_regions_needed);
719
720 /*
721 * Check for sufficient descriptors in the cache to accommodate
722 * this add operation. Note that actual_regions_needed may be greater
723 * than in_regions_needed, as the resv_map may have been modified since
724 * the region_chg call. In this case, we need to make sure that we
725 * allocate extra entries, such that we have enough for all the
726 * existing adds_in_progress, plus the excess needed for this
727 * operation.
728 */
729 if (actual_regions_needed > in_regions_needed &&
730 resv->region_cache_count <
731 resv->adds_in_progress +
732 (actual_regions_needed - in_regions_needed)) {
733 /* region_add operation of range 1 should never need to
734 * allocate file_region entries.
735 */
736 VM_BUG_ON(t - f <= 1);
737
738 if (allocate_file_region_entries(
739 resv, actual_regions_needed - in_regions_needed)) {
740 return -ENOMEM;
741 }
742
743 goto retry;
744 }
745
746 add = add_reservation_in_range(resv, f, t, h_cg, h, NULL);
747
748 resv->adds_in_progress -= in_regions_needed;
749
750 spin_unlock(&resv->lock);
751 return add;
752}
753
754/*
755 * Examine the existing reserve map and determine how many
756 * huge pages in the specified range [f, t) are NOT currently
757 * represented. This routine is called before a subsequent
758 * call to region_add that will actually modify the reserve
759 * map to add the specified range [f, t). region_chg does
760 * not change the number of huge pages represented by the
761 * map. A number of new file_region structures is added to the cache as a
762 * placeholder, for the subsequent region_add call to use. At least 1
763 * file_region structure is added.
764 *
765 * out_regions_needed is the number of regions added to the
766 * resv->adds_in_progress. This value needs to be provided to a follow up call
767 * to region_add or region_abort for proper accounting.
768 *
769 * Returns the number of huge pages that need to be added to the existing
770 * reservation map for the range [f, t). This number is greater or equal to
771 * zero. -ENOMEM is returned if a new file_region structure or cache entry
772 * is needed and can not be allocated.
773 */
774static long region_chg(struct resv_map *resv, long f, long t,
775 long *out_regions_needed)
776{
777 long chg = 0;
778
779 spin_lock(&resv->lock);
780
781 /* Count how many hugepages in this range are NOT represented. */
782 chg = add_reservation_in_range(resv, f, t, NULL, NULL,
783 out_regions_needed);
784
785 if (*out_regions_needed == 0)
786 *out_regions_needed = 1;
787
788 if (allocate_file_region_entries(resv, *out_regions_needed))
789 return -ENOMEM;
790
791 resv->adds_in_progress += *out_regions_needed;
792
793 spin_unlock(&resv->lock);
794 return chg;
795}
796
797/*
798 * Abort the in progress add operation. The adds_in_progress field
799 * of the resv_map keeps track of the operations in progress between
800 * calls to region_chg and region_add. Operations are sometimes
801 * aborted after the call to region_chg. In such cases, region_abort
802 * is called to decrement the adds_in_progress counter. regions_needed
803 * is the value returned by the region_chg call, it is used to decrement
804 * the adds_in_progress counter.
805 *
806 * NOTE: The range arguments [f, t) are not needed or used in this
807 * routine. They are kept to make reading the calling code easier as
808 * arguments will match the associated region_chg call.
809 */
810static void region_abort(struct resv_map *resv, long f, long t,
811 long regions_needed)
812{
813 spin_lock(&resv->lock);
814 VM_BUG_ON(!resv->region_cache_count);
815 resv->adds_in_progress -= regions_needed;
816 spin_unlock(&resv->lock);
817}
818
819/*
820 * Delete the specified range [f, t) from the reserve map. If the
821 * t parameter is LONG_MAX, this indicates that ALL regions after f
822 * should be deleted. Locate the regions which intersect [f, t)
823 * and either trim, delete or split the existing regions.
824 *
825 * Returns the number of huge pages deleted from the reserve map.
826 * In the normal case, the return value is zero or more. In the
827 * case where a region must be split, a new region descriptor must
828 * be allocated. If the allocation fails, -ENOMEM will be returned.
829 * NOTE: If the parameter t == LONG_MAX, then we will never split
830 * a region and possibly return -ENOMEM. Callers specifying
831 * t == LONG_MAX do not need to check for -ENOMEM error.
832 */
833static long region_del(struct resv_map *resv, long f, long t)
834{
835 struct list_head *head = &resv->regions;
836 struct file_region *rg, *trg;
837 struct file_region *nrg = NULL;
838 long del = 0;
839
840retry:
841 spin_lock(&resv->lock);
842 list_for_each_entry_safe(rg, trg, head, link) {
843 /*
844 * Skip regions before the range to be deleted. file_region
845 * ranges are normally of the form [from, to). However, there
846 * may be a "placeholder" entry in the map which is of the form
847 * (from, to) with from == to. Check for placeholder entries
848 * at the beginning of the range to be deleted.
849 */
850 if (rg->to <= f && (rg->to != rg->from || rg->to != f))
851 continue;
852
853 if (rg->from >= t)
854 break;
855
856 if (f > rg->from && t < rg->to) { /* Must split region */
857 /*
858 * Check for an entry in the cache before dropping
859 * lock and attempting allocation.
860 */
861 if (!nrg &&
862 resv->region_cache_count > resv->adds_in_progress) {
863 nrg = list_first_entry(&resv->region_cache,
864 struct file_region,
865 link);
866 list_del(&nrg->link);
867 resv->region_cache_count--;
868 }
869
870 if (!nrg) {
871 spin_unlock(&resv->lock);
872 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
873 if (!nrg)
874 return -ENOMEM;
875 goto retry;
876 }
877
878 del += t - f;
879 hugetlb_cgroup_uncharge_file_region(
880 resv, rg, t - f, false);
881
882 /* New entry for end of split region */
883 nrg->from = t;
884 nrg->to = rg->to;
885
886 copy_hugetlb_cgroup_uncharge_info(nrg, rg);
887
888 INIT_LIST_HEAD(&nrg->link);
889
890 /* Original entry is trimmed */
891 rg->to = f;
892
893 list_add(&nrg->link, &rg->link);
894 nrg = NULL;
895 break;
896 }
897
898 if (f <= rg->from && t >= rg->to) { /* Remove entire region */
899 del += rg->to - rg->from;
900 hugetlb_cgroup_uncharge_file_region(resv, rg,
901 rg->to - rg->from, true);
902 list_del(&rg->link);
903 kfree(rg);
904 continue;
905 }
906
907 if (f <= rg->from) { /* Trim beginning of region */
908 hugetlb_cgroup_uncharge_file_region(resv, rg,
909 t - rg->from, false);
910
911 del += t - rg->from;
912 rg->from = t;
913 } else { /* Trim end of region */
914 hugetlb_cgroup_uncharge_file_region(resv, rg,
915 rg->to - f, false);
916
917 del += rg->to - f;
918 rg->to = f;
919 }
920 }
921
922 spin_unlock(&resv->lock);
923 kfree(nrg);
924 return del;
925}
926
927/*
928 * A rare out of memory error was encountered which prevented removal of
929 * the reserve map region for a page. The huge page itself was free'ed
930 * and removed from the page cache. This routine will adjust the subpool
931 * usage count, and the global reserve count if needed. By incrementing
932 * these counts, the reserve map entry which could not be deleted will
933 * appear as a "reserved" entry instead of simply dangling with incorrect
934 * counts.
935 */
936void hugetlb_fix_reserve_counts(struct inode *inode)
937{
938 struct hugepage_subpool *spool = subpool_inode(inode);
939 long rsv_adjust;
940 bool reserved = false;
941
942 rsv_adjust = hugepage_subpool_get_pages(spool, 1);
943 if (rsv_adjust > 0) {
944 struct hstate *h = hstate_inode(inode);
945
946 if (!hugetlb_acct_memory(h, 1))
947 reserved = true;
948 } else if (!rsv_adjust) {
949 reserved = true;
950 }
951
952 if (!reserved)
953 pr_warn("hugetlb: Huge Page Reserved count may go negative.\n");
954}
955
956/*
957 * Count and return the number of huge pages in the reserve map
958 * that intersect with the range [f, t).
959 */
960static long region_count(struct resv_map *resv, long f, long t)
961{
962 struct list_head *head = &resv->regions;
963 struct file_region *rg;
964 long chg = 0;
965
966 spin_lock(&resv->lock);
967 /* Locate each segment we overlap with, and count that overlap. */
968 list_for_each_entry(rg, head, link) {
969 long seg_from;
970 long seg_to;
971
972 if (rg->to <= f)
973 continue;
974 if (rg->from >= t)
975 break;
976
977 seg_from = max(rg->from, f);
978 seg_to = min(rg->to, t);
979
980 chg += seg_to - seg_from;
981 }
982 spin_unlock(&resv->lock);
983
984 return chg;
985}
986
987/*
988 * Convert the address within this vma to the page offset within
989 * the mapping, huge page units here.
990 */
991static pgoff_t vma_hugecache_offset(struct hstate *h,
992 struct vm_area_struct *vma, unsigned long address)
993{
994 return ((address - vma->vm_start) >> huge_page_shift(h)) +
995 (vma->vm_pgoff >> huge_page_order(h));
996}
997
998/**
999 * vma_kernel_pagesize - Page size granularity for this VMA.
1000 * @vma: The user mapping.
1001 *
1002 * Folios in this VMA will be aligned to, and at least the size of the
1003 * number of bytes returned by this function.
1004 *
1005 * Return: The default size of the folios allocated when backing a VMA.
1006 */
1007unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
1008{
1009 if (vma->vm_ops && vma->vm_ops->pagesize)
1010 return vma->vm_ops->pagesize(vma);
1011 return PAGE_SIZE;
1012}
1013EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
1014
1015/*
1016 * Return the page size being used by the MMU to back a VMA. In the majority
1017 * of cases, the page size used by the kernel matches the MMU size. On
1018 * architectures where it differs, an architecture-specific 'strong'
1019 * version of this symbol is required.
1020 */
1021__weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
1022{
1023 return vma_kernel_pagesize(vma);
1024}
1025
1026/*
1027 * Flags for MAP_PRIVATE reservations. These are stored in the bottom
1028 * bits of the reservation map pointer, which are always clear due to
1029 * alignment.
1030 */
1031#define HPAGE_RESV_OWNER (1UL << 0)
1032#define HPAGE_RESV_UNMAPPED (1UL << 1)
1033#define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
1034
1035/*
1036 * These helpers are used to track how many pages are reserved for
1037 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
1038 * is guaranteed to have their future faults succeed.
1039 *
1040 * With the exception of hugetlb_dup_vma_private() which is called at fork(),
1041 * the reserve counters are updated with the hugetlb_lock held. It is safe
1042 * to reset the VMA at fork() time as it is not in use yet and there is no
1043 * chance of the global counters getting corrupted as a result of the values.
1044 *
1045 * The private mapping reservation is represented in a subtly different
1046 * manner to a shared mapping. A shared mapping has a region map associated
1047 * with the underlying file, this region map represents the backing file
1048 * pages which have ever had a reservation assigned which this persists even
1049 * after the page is instantiated. A private mapping has a region map
1050 * associated with the original mmap which is attached to all VMAs which
1051 * reference it, this region map represents those offsets which have consumed
1052 * reservation ie. where pages have been instantiated.
1053 */
1054static unsigned long get_vma_private_data(struct vm_area_struct *vma)
1055{
1056 return (unsigned long)vma->vm_private_data;
1057}
1058
1059static void set_vma_private_data(struct vm_area_struct *vma,
1060 unsigned long value)
1061{
1062 vma->vm_private_data = (void *)value;
1063}
1064
1065static void
1066resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map *resv_map,
1067 struct hugetlb_cgroup *h_cg,
1068 struct hstate *h)
1069{
1070#ifdef CONFIG_CGROUP_HUGETLB
1071 if (!h_cg || !h) {
1072 resv_map->reservation_counter = NULL;
1073 resv_map->pages_per_hpage = 0;
1074 resv_map->css = NULL;
1075 } else {
1076 resv_map->reservation_counter =
1077 &h_cg->rsvd_hugepage[hstate_index(h)];
1078 resv_map->pages_per_hpage = pages_per_huge_page(h);
1079 resv_map->css = &h_cg->css;
1080 }
1081#endif
1082}
1083
1084struct resv_map *resv_map_alloc(void)
1085{
1086 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
1087 struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
1088
1089 if (!resv_map || !rg) {
1090 kfree(resv_map);
1091 kfree(rg);
1092 return NULL;
1093 }
1094
1095 kref_init(&resv_map->refs);
1096 spin_lock_init(&resv_map->lock);
1097 INIT_LIST_HEAD(&resv_map->regions);
1098 init_rwsem(&resv_map->rw_sema);
1099
1100 resv_map->adds_in_progress = 0;
1101 /*
1102 * Initialize these to 0. On shared mappings, 0's here indicate these
1103 * fields don't do cgroup accounting. On private mappings, these will be
1104 * re-initialized to the proper values, to indicate that hugetlb cgroup
1105 * reservations are to be un-charged from here.
1106 */
1107 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, NULL, NULL);
1108
1109 INIT_LIST_HEAD(&resv_map->region_cache);
1110 list_add(&rg->link, &resv_map->region_cache);
1111 resv_map->region_cache_count = 1;
1112
1113 return resv_map;
1114}
1115
1116void resv_map_release(struct kref *ref)
1117{
1118 struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
1119 struct list_head *head = &resv_map->region_cache;
1120 struct file_region *rg, *trg;
1121
1122 /* Clear out any active regions before we release the map. */
1123 region_del(resv_map, 0, LONG_MAX);
1124
1125 /* ... and any entries left in the cache */
1126 list_for_each_entry_safe(rg, trg, head, link) {
1127 list_del(&rg->link);
1128 kfree(rg);
1129 }
1130
1131 VM_BUG_ON(resv_map->adds_in_progress);
1132
1133 kfree(resv_map);
1134}
1135
1136static inline struct resv_map *inode_resv_map(struct inode *inode)
1137{
1138 /*
1139 * At inode evict time, i_mapping may not point to the original
1140 * address space within the inode. This original address space
1141 * contains the pointer to the resv_map. So, always use the
1142 * address space embedded within the inode.
1143 * The VERY common case is inode->mapping == &inode->i_data but,
1144 * this may not be true for device special inodes.
1145 */
1146 return (struct resv_map *)(&inode->i_data)->i_private_data;
1147}
1148
1149static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
1150{
1151 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1152 if (vma->vm_flags & VM_MAYSHARE) {
1153 struct address_space *mapping = vma->vm_file->f_mapping;
1154 struct inode *inode = mapping->host;
1155
1156 return inode_resv_map(inode);
1157
1158 } else {
1159 return (struct resv_map *)(get_vma_private_data(vma) &
1160 ~HPAGE_RESV_MASK);
1161 }
1162}
1163
1164static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
1165{
1166 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1167 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
1168
1169 set_vma_private_data(vma, (unsigned long)map);
1170}
1171
1172static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
1173{
1174 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1175 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
1176
1177 set_vma_private_data(vma, get_vma_private_data(vma) | flags);
1178}
1179
1180static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
1181{
1182 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1183
1184 return (get_vma_private_data(vma) & flag) != 0;
1185}
1186
1187bool __vma_private_lock(struct vm_area_struct *vma)
1188{
1189 return !(vma->vm_flags & VM_MAYSHARE) &&
1190 get_vma_private_data(vma) & ~HPAGE_RESV_MASK &&
1191 is_vma_resv_set(vma, HPAGE_RESV_OWNER);
1192}
1193
1194void hugetlb_dup_vma_private(struct vm_area_struct *vma)
1195{
1196 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1197 /*
1198 * Clear vm_private_data
1199 * - For shared mappings this is a per-vma semaphore that may be
1200 * allocated in a subsequent call to hugetlb_vm_op_open.
1201 * Before clearing, make sure pointer is not associated with vma
1202 * as this will leak the structure. This is the case when called
1203 * via clear_vma_resv_huge_pages() and hugetlb_vm_op_open has already
1204 * been called to allocate a new structure.
1205 * - For MAP_PRIVATE mappings, this is the reserve map which does
1206 * not apply to children. Faults generated by the children are
1207 * not guaranteed to succeed, even if read-only.
1208 */
1209 if (vma->vm_flags & VM_MAYSHARE) {
1210 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
1211
1212 if (vma_lock && vma_lock->vma != vma)
1213 vma->vm_private_data = NULL;
1214 } else
1215 vma->vm_private_data = NULL;
1216}
1217
1218/*
1219 * Reset and decrement one ref on hugepage private reservation.
1220 * Called with mm->mmap_lock writer semaphore held.
1221 * This function should be only used by move_vma() and operate on
1222 * same sized vma. It should never come here with last ref on the
1223 * reservation.
1224 */
1225void clear_vma_resv_huge_pages(struct vm_area_struct *vma)
1226{
1227 /*
1228 * Clear the old hugetlb private page reservation.
1229 * It has already been transferred to new_vma.
1230 *
1231 * During a mremap() operation of a hugetlb vma we call move_vma()
1232 * which copies vma into new_vma and unmaps vma. After the copy
1233 * operation both new_vma and vma share a reference to the resv_map
1234 * struct, and at that point vma is about to be unmapped. We don't
1235 * want to return the reservation to the pool at unmap of vma because
1236 * the reservation still lives on in new_vma, so simply decrement the
1237 * ref here and remove the resv_map reference from this vma.
1238 */
1239 struct resv_map *reservations = vma_resv_map(vma);
1240
1241 if (reservations && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1242 resv_map_put_hugetlb_cgroup_uncharge_info(reservations);
1243 kref_put(&reservations->refs, resv_map_release);
1244 }
1245
1246 hugetlb_dup_vma_private(vma);
1247}
1248
1249/* Returns true if the VMA has associated reserve pages */
1250static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
1251{
1252 if (vma->vm_flags & VM_NORESERVE) {
1253 /*
1254 * This address is already reserved by other process(chg == 0),
1255 * so, we should decrement reserved count. Without decrementing,
1256 * reserve count remains after releasing inode, because this
1257 * allocated page will go into page cache and is regarded as
1258 * coming from reserved pool in releasing step. Currently, we
1259 * don't have any other solution to deal with this situation
1260 * properly, so add work-around here.
1261 */
1262 if (vma->vm_flags & VM_MAYSHARE && chg == 0)
1263 return true;
1264 else
1265 return false;
1266 }
1267
1268 /* Shared mappings always use reserves */
1269 if (vma->vm_flags & VM_MAYSHARE) {
1270 /*
1271 * We know VM_NORESERVE is not set. Therefore, there SHOULD
1272 * be a region map for all pages. The only situation where
1273 * there is no region map is if a hole was punched via
1274 * fallocate. In this case, there really are no reserves to
1275 * use. This situation is indicated if chg != 0.
1276 */
1277 if (chg)
1278 return false;
1279 else
1280 return true;
1281 }
1282
1283 /*
1284 * Only the process that called mmap() has reserves for
1285 * private mappings.
1286 */
1287 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1288 /*
1289 * Like the shared case above, a hole punch or truncate
1290 * could have been performed on the private mapping.
1291 * Examine the value of chg to determine if reserves
1292 * actually exist or were previously consumed.
1293 * Very Subtle - The value of chg comes from a previous
1294 * call to vma_needs_reserves(). The reserve map for
1295 * private mappings has different (opposite) semantics
1296 * than that of shared mappings. vma_needs_reserves()
1297 * has already taken this difference in semantics into
1298 * account. Therefore, the meaning of chg is the same
1299 * as in the shared case above. Code could easily be
1300 * combined, but keeping it separate draws attention to
1301 * subtle differences.
1302 */
1303 if (chg)
1304 return false;
1305 else
1306 return true;
1307 }
1308
1309 return false;
1310}
1311
1312static void enqueue_hugetlb_folio(struct hstate *h, struct folio *folio)
1313{
1314 int nid = folio_nid(folio);
1315
1316 lockdep_assert_held(&hugetlb_lock);
1317 VM_BUG_ON_FOLIO(folio_ref_count(folio), folio);
1318
1319 list_move(&folio->lru, &h->hugepage_freelists[nid]);
1320 h->free_huge_pages++;
1321 h->free_huge_pages_node[nid]++;
1322 folio_set_hugetlb_freed(folio);
1323}
1324
1325static struct folio *dequeue_hugetlb_folio_node_exact(struct hstate *h,
1326 int nid)
1327{
1328 struct folio *folio;
1329 bool pin = !!(current->flags & PF_MEMALLOC_PIN);
1330
1331 lockdep_assert_held(&hugetlb_lock);
1332 list_for_each_entry(folio, &h->hugepage_freelists[nid], lru) {
1333 if (pin && !folio_is_longterm_pinnable(folio))
1334 continue;
1335
1336 if (folio_test_hwpoison(folio))
1337 continue;
1338
1339 list_move(&folio->lru, &h->hugepage_activelist);
1340 folio_ref_unfreeze(folio, 1);
1341 folio_clear_hugetlb_freed(folio);
1342 h->free_huge_pages--;
1343 h->free_huge_pages_node[nid]--;
1344 return folio;
1345 }
1346
1347 return NULL;
1348}
1349
1350static struct folio *dequeue_hugetlb_folio_nodemask(struct hstate *h, gfp_t gfp_mask,
1351 int nid, nodemask_t *nmask)
1352{
1353 unsigned int cpuset_mems_cookie;
1354 struct zonelist *zonelist;
1355 struct zone *zone;
1356 struct zoneref *z;
1357 int node = NUMA_NO_NODE;
1358
1359 /* 'nid' should not be NUMA_NO_NODE. Try to catch any misuse of it and rectifiy. */
1360 if (nid == NUMA_NO_NODE)
1361 nid = numa_node_id();
1362
1363 zonelist = node_zonelist(nid, gfp_mask);
1364
1365retry_cpuset:
1366 cpuset_mems_cookie = read_mems_allowed_begin();
1367 for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
1368 struct folio *folio;
1369
1370 if (!cpuset_zone_allowed(zone, gfp_mask))
1371 continue;
1372 /*
1373 * no need to ask again on the same node. Pool is node rather than
1374 * zone aware
1375 */
1376 if (zone_to_nid(zone) == node)
1377 continue;
1378 node = zone_to_nid(zone);
1379
1380 folio = dequeue_hugetlb_folio_node_exact(h, node);
1381 if (folio)
1382 return folio;
1383 }
1384 if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
1385 goto retry_cpuset;
1386
1387 return NULL;
1388}
1389
1390static unsigned long available_huge_pages(struct hstate *h)
1391{
1392 return h->free_huge_pages - h->resv_huge_pages;
1393}
1394
1395static struct folio *dequeue_hugetlb_folio_vma(struct hstate *h,
1396 struct vm_area_struct *vma,
1397 unsigned long address, long chg)
1398{
1399 struct folio *folio = NULL;
1400 struct mempolicy *mpol;
1401 gfp_t gfp_mask;
1402 nodemask_t *nodemask;
1403 int nid;
1404
1405 /*
1406 * A child process with MAP_PRIVATE mappings created by their parent
1407 * have no page reserves. This check ensures that reservations are
1408 * not "stolen". The child may still get SIGKILLed
1409 */
1410 if (!vma_has_reserves(vma, chg) && !available_huge_pages(h))
1411 goto err;
1412
1413 gfp_mask = htlb_alloc_mask(h);
1414 nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
1415
1416 if (mpol_is_preferred_many(mpol)) {
1417 folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask,
1418 nid, nodemask);
1419
1420 /* Fallback to all nodes if page==NULL */
1421 nodemask = NULL;
1422 }
1423
1424 if (!folio)
1425 folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask,
1426 nid, nodemask);
1427
1428 if (folio && vma_has_reserves(vma, chg)) {
1429 folio_set_hugetlb_restore_reserve(folio);
1430 h->resv_huge_pages--;
1431 }
1432
1433 mpol_cond_put(mpol);
1434 return folio;
1435
1436err:
1437 return NULL;
1438}
1439
1440/*
1441 * common helper functions for hstate_next_node_to_{alloc|free}.
1442 * We may have allocated or freed a huge page based on a different
1443 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
1444 * be outside of *nodes_allowed. Ensure that we use an allowed
1445 * node for alloc or free.
1446 */
1447static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
1448{
1449 nid = next_node_in(nid, *nodes_allowed);
1450 VM_BUG_ON(nid >= MAX_NUMNODES);
1451
1452 return nid;
1453}
1454
1455static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
1456{
1457 if (!node_isset(nid, *nodes_allowed))
1458 nid = next_node_allowed(nid, nodes_allowed);
1459 return nid;
1460}
1461
1462/*
1463 * returns the previously saved node ["this node"] from which to
1464 * allocate a persistent huge page for the pool and advance the
1465 * next node from which to allocate, handling wrap at end of node
1466 * mask.
1467 */
1468static int hstate_next_node_to_alloc(int *next_node,
1469 nodemask_t *nodes_allowed)
1470{
1471 int nid;
1472
1473 VM_BUG_ON(!nodes_allowed);
1474
1475 nid = get_valid_node_allowed(*next_node, nodes_allowed);
1476 *next_node = next_node_allowed(nid, nodes_allowed);
1477
1478 return nid;
1479}
1480
1481/*
1482 * helper for remove_pool_hugetlb_folio() - return the previously saved
1483 * node ["this node"] from which to free a huge page. Advance the
1484 * next node id whether or not we find a free huge page to free so
1485 * that the next attempt to free addresses the next node.
1486 */
1487static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1488{
1489 int nid;
1490
1491 VM_BUG_ON(!nodes_allowed);
1492
1493 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1494 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1495
1496 return nid;
1497}
1498
1499#define for_each_node_mask_to_alloc(next_node, nr_nodes, node, mask) \
1500 for (nr_nodes = nodes_weight(*mask); \
1501 nr_nodes > 0 && \
1502 ((node = hstate_next_node_to_alloc(next_node, mask)) || 1); \
1503 nr_nodes--)
1504
1505#define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \
1506 for (nr_nodes = nodes_weight(*mask); \
1507 nr_nodes > 0 && \
1508 ((node = hstate_next_node_to_free(hs, mask)) || 1); \
1509 nr_nodes--)
1510
1511#ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
1512#ifdef CONFIG_CONTIG_ALLOC
1513static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask,
1514 int nid, nodemask_t *nodemask)
1515{
1516 struct folio *folio;
1517 int order = huge_page_order(h);
1518 bool retried = false;
1519
1520 if (nid == NUMA_NO_NODE)
1521 nid = numa_mem_id();
1522retry:
1523 folio = NULL;
1524#ifdef CONFIG_CMA
1525 {
1526 int node;
1527
1528 if (hugetlb_cma[nid])
1529 folio = cma_alloc_folio(hugetlb_cma[nid], order, gfp_mask);
1530
1531 if (!folio && !(gfp_mask & __GFP_THISNODE)) {
1532 for_each_node_mask(node, *nodemask) {
1533 if (node == nid || !hugetlb_cma[node])
1534 continue;
1535
1536 folio = cma_alloc_folio(hugetlb_cma[node], order, gfp_mask);
1537 if (folio)
1538 break;
1539 }
1540 }
1541 }
1542#endif
1543 if (!folio) {
1544 folio = folio_alloc_gigantic(order, gfp_mask, nid, nodemask);
1545 if (!folio)
1546 return NULL;
1547 }
1548
1549 if (folio_ref_freeze(folio, 1))
1550 return folio;
1551
1552 pr_warn("HugeTLB: unexpected refcount on PFN %lu\n", folio_pfn(folio));
1553 hugetlb_free_folio(folio);
1554 if (!retried) {
1555 retried = true;
1556 goto retry;
1557 }
1558 return NULL;
1559}
1560
1561#else /* !CONFIG_CONTIG_ALLOC */
1562static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask,
1563 int nid, nodemask_t *nodemask)
1564{
1565 return NULL;
1566}
1567#endif /* CONFIG_CONTIG_ALLOC */
1568
1569#else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
1570static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask,
1571 int nid, nodemask_t *nodemask)
1572{
1573 return NULL;
1574}
1575#endif
1576
1577/*
1578 * Remove hugetlb folio from lists.
1579 * If vmemmap exists for the folio, clear the hugetlb flag so that the
1580 * folio appears as just a compound page. Otherwise, wait until after
1581 * allocating vmemmap to clear the flag.
1582 *
1583 * Must be called with hugetlb lock held.
1584 */
1585static void remove_hugetlb_folio(struct hstate *h, struct folio *folio,
1586 bool adjust_surplus)
1587{
1588 int nid = folio_nid(folio);
1589
1590 VM_BUG_ON_FOLIO(hugetlb_cgroup_from_folio(folio), folio);
1591 VM_BUG_ON_FOLIO(hugetlb_cgroup_from_folio_rsvd(folio), folio);
1592
1593 lockdep_assert_held(&hugetlb_lock);
1594 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1595 return;
1596
1597 list_del(&folio->lru);
1598
1599 if (folio_test_hugetlb_freed(folio)) {
1600 folio_clear_hugetlb_freed(folio);
1601 h->free_huge_pages--;
1602 h->free_huge_pages_node[nid]--;
1603 }
1604 if (adjust_surplus) {
1605 h->surplus_huge_pages--;
1606 h->surplus_huge_pages_node[nid]--;
1607 }
1608
1609 /*
1610 * We can only clear the hugetlb flag after allocating vmemmap
1611 * pages. Otherwise, someone (memory error handling) may try to write
1612 * to tail struct pages.
1613 */
1614 if (!folio_test_hugetlb_vmemmap_optimized(folio))
1615 __folio_clear_hugetlb(folio);
1616
1617 h->nr_huge_pages--;
1618 h->nr_huge_pages_node[nid]--;
1619}
1620
1621static void add_hugetlb_folio(struct hstate *h, struct folio *folio,
1622 bool adjust_surplus)
1623{
1624 int nid = folio_nid(folio);
1625
1626 VM_BUG_ON_FOLIO(!folio_test_hugetlb_vmemmap_optimized(folio), folio);
1627
1628 lockdep_assert_held(&hugetlb_lock);
1629
1630 INIT_LIST_HEAD(&folio->lru);
1631 h->nr_huge_pages++;
1632 h->nr_huge_pages_node[nid]++;
1633
1634 if (adjust_surplus) {
1635 h->surplus_huge_pages++;
1636 h->surplus_huge_pages_node[nid]++;
1637 }
1638
1639 __folio_set_hugetlb(folio);
1640 folio_change_private(folio, NULL);
1641 /*
1642 * We have to set hugetlb_vmemmap_optimized again as above
1643 * folio_change_private(folio, NULL) cleared it.
1644 */
1645 folio_set_hugetlb_vmemmap_optimized(folio);
1646
1647 arch_clear_hugetlb_flags(folio);
1648 enqueue_hugetlb_folio(h, folio);
1649}
1650
1651static void __update_and_free_hugetlb_folio(struct hstate *h,
1652 struct folio *folio)
1653{
1654 bool clear_flag = folio_test_hugetlb_vmemmap_optimized(folio);
1655
1656 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1657 return;
1658
1659 /*
1660 * If we don't know which subpages are hwpoisoned, we can't free
1661 * the hugepage, so it's leaked intentionally.
1662 */
1663 if (folio_test_hugetlb_raw_hwp_unreliable(folio))
1664 return;
1665
1666 /*
1667 * If folio is not vmemmap optimized (!clear_flag), then the folio
1668 * is no longer identified as a hugetlb page. hugetlb_vmemmap_restore_folio
1669 * can only be passed hugetlb pages and will BUG otherwise.
1670 */
1671 if (clear_flag && hugetlb_vmemmap_restore_folio(h, folio)) {
1672 spin_lock_irq(&hugetlb_lock);
1673 /*
1674 * If we cannot allocate vmemmap pages, just refuse to free the
1675 * page and put the page back on the hugetlb free list and treat
1676 * as a surplus page.
1677 */
1678 add_hugetlb_folio(h, folio, true);
1679 spin_unlock_irq(&hugetlb_lock);
1680 return;
1681 }
1682
1683 /*
1684 * If vmemmap pages were allocated above, then we need to clear the
1685 * hugetlb flag under the hugetlb lock.
1686 */
1687 if (folio_test_hugetlb(folio)) {
1688 spin_lock_irq(&hugetlb_lock);
1689 __folio_clear_hugetlb(folio);
1690 spin_unlock_irq(&hugetlb_lock);
1691 }
1692
1693 /*
1694 * Move PageHWPoison flag from head page to the raw error pages,
1695 * which makes any healthy subpages reusable.
1696 */
1697 if (unlikely(folio_test_hwpoison(folio)))
1698 folio_clear_hugetlb_hwpoison(folio);
1699
1700 folio_ref_unfreeze(folio, 1);
1701
1702 INIT_LIST_HEAD(&folio->_deferred_list);
1703 hugetlb_free_folio(folio);
1704}
1705
1706/*
1707 * As update_and_free_hugetlb_folio() can be called under any context, so we cannot
1708 * use GFP_KERNEL to allocate vmemmap pages. However, we can defer the
1709 * actual freeing in a workqueue to prevent from using GFP_ATOMIC to allocate
1710 * the vmemmap pages.
1711 *
1712 * free_hpage_workfn() locklessly retrieves the linked list of pages to be
1713 * freed and frees them one-by-one. As the page->mapping pointer is going
1714 * to be cleared in free_hpage_workfn() anyway, it is reused as the llist_node
1715 * structure of a lockless linked list of huge pages to be freed.
1716 */
1717static LLIST_HEAD(hpage_freelist);
1718
1719static void free_hpage_workfn(struct work_struct *work)
1720{
1721 struct llist_node *node;
1722
1723 node = llist_del_all(&hpage_freelist);
1724
1725 while (node) {
1726 struct folio *folio;
1727 struct hstate *h;
1728
1729 folio = container_of((struct address_space **)node,
1730 struct folio, mapping);
1731 node = node->next;
1732 folio->mapping = NULL;
1733 /*
1734 * The VM_BUG_ON_FOLIO(!folio_test_hugetlb(folio), folio) in
1735 * folio_hstate() is going to trigger because a previous call to
1736 * remove_hugetlb_folio() will clear the hugetlb bit, so do
1737 * not use folio_hstate() directly.
1738 */
1739 h = size_to_hstate(folio_size(folio));
1740
1741 __update_and_free_hugetlb_folio(h, folio);
1742
1743 cond_resched();
1744 }
1745}
1746static DECLARE_WORK(free_hpage_work, free_hpage_workfn);
1747
1748static inline void flush_free_hpage_work(struct hstate *h)
1749{
1750 if (hugetlb_vmemmap_optimizable(h))
1751 flush_work(&free_hpage_work);
1752}
1753
1754static void update_and_free_hugetlb_folio(struct hstate *h, struct folio *folio,
1755 bool atomic)
1756{
1757 if (!folio_test_hugetlb_vmemmap_optimized(folio) || !atomic) {
1758 __update_and_free_hugetlb_folio(h, folio);
1759 return;
1760 }
1761
1762 /*
1763 * Defer freeing to avoid using GFP_ATOMIC to allocate vmemmap pages.
1764 *
1765 * Only call schedule_work() if hpage_freelist is previously
1766 * empty. Otherwise, schedule_work() had been called but the workfn
1767 * hasn't retrieved the list yet.
1768 */
1769 if (llist_add((struct llist_node *)&folio->mapping, &hpage_freelist))
1770 schedule_work(&free_hpage_work);
1771}
1772
1773static void bulk_vmemmap_restore_error(struct hstate *h,
1774 struct list_head *folio_list,
1775 struct list_head *non_hvo_folios)
1776{
1777 struct folio *folio, *t_folio;
1778
1779 if (!list_empty(non_hvo_folios)) {
1780 /*
1781 * Free any restored hugetlb pages so that restore of the
1782 * entire list can be retried.
1783 * The idea is that in the common case of ENOMEM errors freeing
1784 * hugetlb pages with vmemmap we will free up memory so that we
1785 * can allocate vmemmap for more hugetlb pages.
1786 */
1787 list_for_each_entry_safe(folio, t_folio, non_hvo_folios, lru) {
1788 list_del(&folio->lru);
1789 spin_lock_irq(&hugetlb_lock);
1790 __folio_clear_hugetlb(folio);
1791 spin_unlock_irq(&hugetlb_lock);
1792 update_and_free_hugetlb_folio(h, folio, false);
1793 cond_resched();
1794 }
1795 } else {
1796 /*
1797 * In the case where there are no folios which can be
1798 * immediately freed, we loop through the list trying to restore
1799 * vmemmap individually in the hope that someone elsewhere may
1800 * have done something to cause success (such as freeing some
1801 * memory). If unable to restore a hugetlb page, the hugetlb
1802 * page is made a surplus page and removed from the list.
1803 * If are able to restore vmemmap and free one hugetlb page, we
1804 * quit processing the list to retry the bulk operation.
1805 */
1806 list_for_each_entry_safe(folio, t_folio, folio_list, lru)
1807 if (hugetlb_vmemmap_restore_folio(h, folio)) {
1808 list_del(&folio->lru);
1809 spin_lock_irq(&hugetlb_lock);
1810 add_hugetlb_folio(h, folio, true);
1811 spin_unlock_irq(&hugetlb_lock);
1812 } else {
1813 list_del(&folio->lru);
1814 spin_lock_irq(&hugetlb_lock);
1815 __folio_clear_hugetlb(folio);
1816 spin_unlock_irq(&hugetlb_lock);
1817 update_and_free_hugetlb_folio(h, folio, false);
1818 cond_resched();
1819 break;
1820 }
1821 }
1822}
1823
1824static void update_and_free_pages_bulk(struct hstate *h,
1825 struct list_head *folio_list)
1826{
1827 long ret;
1828 struct folio *folio, *t_folio;
1829 LIST_HEAD(non_hvo_folios);
1830
1831 /*
1832 * First allocate required vmemmmap (if necessary) for all folios.
1833 * Carefully handle errors and free up any available hugetlb pages
1834 * in an effort to make forward progress.
1835 */
1836retry:
1837 ret = hugetlb_vmemmap_restore_folios(h, folio_list, &non_hvo_folios);
1838 if (ret < 0) {
1839 bulk_vmemmap_restore_error(h, folio_list, &non_hvo_folios);
1840 goto retry;
1841 }
1842
1843 /*
1844 * At this point, list should be empty, ret should be >= 0 and there
1845 * should only be pages on the non_hvo_folios list.
1846 * Do note that the non_hvo_folios list could be empty.
1847 * Without HVO enabled, ret will be 0 and there is no need to call
1848 * __folio_clear_hugetlb as this was done previously.
1849 */
1850 VM_WARN_ON(!list_empty(folio_list));
1851 VM_WARN_ON(ret < 0);
1852 if (!list_empty(&non_hvo_folios) && ret) {
1853 spin_lock_irq(&hugetlb_lock);
1854 list_for_each_entry(folio, &non_hvo_folios, lru)
1855 __folio_clear_hugetlb(folio);
1856 spin_unlock_irq(&hugetlb_lock);
1857 }
1858
1859 list_for_each_entry_safe(folio, t_folio, &non_hvo_folios, lru) {
1860 update_and_free_hugetlb_folio(h, folio, false);
1861 cond_resched();
1862 }
1863}
1864
1865struct hstate *size_to_hstate(unsigned long size)
1866{
1867 struct hstate *h;
1868
1869 for_each_hstate(h) {
1870 if (huge_page_size(h) == size)
1871 return h;
1872 }
1873 return NULL;
1874}
1875
1876void free_huge_folio(struct folio *folio)
1877{
1878 /*
1879 * Can't pass hstate in here because it is called from the
1880 * generic mm code.
1881 */
1882 struct hstate *h = folio_hstate(folio);
1883 int nid = folio_nid(folio);
1884 struct hugepage_subpool *spool = hugetlb_folio_subpool(folio);
1885 bool restore_reserve;
1886 unsigned long flags;
1887
1888 VM_BUG_ON_FOLIO(folio_ref_count(folio), folio);
1889 VM_BUG_ON_FOLIO(folio_mapcount(folio), folio);
1890
1891 hugetlb_set_folio_subpool(folio, NULL);
1892 if (folio_test_anon(folio))
1893 __ClearPageAnonExclusive(&folio->page);
1894 folio->mapping = NULL;
1895 restore_reserve = folio_test_hugetlb_restore_reserve(folio);
1896 folio_clear_hugetlb_restore_reserve(folio);
1897
1898 /*
1899 * If HPageRestoreReserve was set on page, page allocation consumed a
1900 * reservation. If the page was associated with a subpool, there
1901 * would have been a page reserved in the subpool before allocation
1902 * via hugepage_subpool_get_pages(). Since we are 'restoring' the
1903 * reservation, do not call hugepage_subpool_put_pages() as this will
1904 * remove the reserved page from the subpool.
1905 */
1906 if (!restore_reserve) {
1907 /*
1908 * A return code of zero implies that the subpool will be
1909 * under its minimum size if the reservation is not restored
1910 * after page is free. Therefore, force restore_reserve
1911 * operation.
1912 */
1913 if (hugepage_subpool_put_pages(spool, 1) == 0)
1914 restore_reserve = true;
1915 }
1916
1917 spin_lock_irqsave(&hugetlb_lock, flags);
1918 folio_clear_hugetlb_migratable(folio);
1919 hugetlb_cgroup_uncharge_folio(hstate_index(h),
1920 pages_per_huge_page(h), folio);
1921 hugetlb_cgroup_uncharge_folio_rsvd(hstate_index(h),
1922 pages_per_huge_page(h), folio);
1923 lruvec_stat_mod_folio(folio, NR_HUGETLB, -pages_per_huge_page(h));
1924 mem_cgroup_uncharge(folio);
1925 if (restore_reserve)
1926 h->resv_huge_pages++;
1927
1928 if (folio_test_hugetlb_temporary(folio)) {
1929 remove_hugetlb_folio(h, folio, false);
1930 spin_unlock_irqrestore(&hugetlb_lock, flags);
1931 update_and_free_hugetlb_folio(h, folio, true);
1932 } else if (h->surplus_huge_pages_node[nid]) {
1933 /* remove the page from active list */
1934 remove_hugetlb_folio(h, folio, true);
1935 spin_unlock_irqrestore(&hugetlb_lock, flags);
1936 update_and_free_hugetlb_folio(h, folio, true);
1937 } else {
1938 arch_clear_hugetlb_flags(folio);
1939 enqueue_hugetlb_folio(h, folio);
1940 spin_unlock_irqrestore(&hugetlb_lock, flags);
1941 }
1942}
1943
1944/*
1945 * Must be called with the hugetlb lock held
1946 */
1947static void __prep_account_new_huge_page(struct hstate *h, int nid)
1948{
1949 lockdep_assert_held(&hugetlb_lock);
1950 h->nr_huge_pages++;
1951 h->nr_huge_pages_node[nid]++;
1952}
1953
1954static void init_new_hugetlb_folio(struct hstate *h, struct folio *folio)
1955{
1956 __folio_set_hugetlb(folio);
1957 INIT_LIST_HEAD(&folio->lru);
1958 hugetlb_set_folio_subpool(folio, NULL);
1959 set_hugetlb_cgroup(folio, NULL);
1960 set_hugetlb_cgroup_rsvd(folio, NULL);
1961}
1962
1963static void __prep_new_hugetlb_folio(struct hstate *h, struct folio *folio)
1964{
1965 init_new_hugetlb_folio(h, folio);
1966 hugetlb_vmemmap_optimize_folio(h, folio);
1967}
1968
1969static void prep_new_hugetlb_folio(struct hstate *h, struct folio *folio, int nid)
1970{
1971 __prep_new_hugetlb_folio(h, folio);
1972 spin_lock_irq(&hugetlb_lock);
1973 __prep_account_new_huge_page(h, nid);
1974 spin_unlock_irq(&hugetlb_lock);
1975}
1976
1977/*
1978 * Find and lock address space (mapping) in write mode.
1979 *
1980 * Upon entry, the folio is locked which means that folio_mapping() is
1981 * stable. Due to locking order, we can only trylock_write. If we can
1982 * not get the lock, simply return NULL to caller.
1983 */
1984struct address_space *hugetlb_folio_mapping_lock_write(struct folio *folio)
1985{
1986 struct address_space *mapping = folio_mapping(folio);
1987
1988 if (!mapping)
1989 return mapping;
1990
1991 if (i_mmap_trylock_write(mapping))
1992 return mapping;
1993
1994 return NULL;
1995}
1996
1997static struct folio *alloc_buddy_hugetlb_folio(struct hstate *h,
1998 gfp_t gfp_mask, int nid, nodemask_t *nmask,
1999 nodemask_t *node_alloc_noretry)
2000{
2001 int order = huge_page_order(h);
2002 struct folio *folio;
2003 bool alloc_try_hard = true;
2004 bool retry = true;
2005
2006 /*
2007 * By default we always try hard to allocate the folio with
2008 * __GFP_RETRY_MAYFAIL flag. However, if we are allocating folios in
2009 * a loop (to adjust global huge page counts) and previous allocation
2010 * failed, do not continue to try hard on the same node. Use the
2011 * node_alloc_noretry bitmap to manage this state information.
2012 */
2013 if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry))
2014 alloc_try_hard = false;
2015 if (alloc_try_hard)
2016 gfp_mask |= __GFP_RETRY_MAYFAIL;
2017 if (nid == NUMA_NO_NODE)
2018 nid = numa_mem_id();
2019retry:
2020 folio = __folio_alloc(gfp_mask, order, nid, nmask);
2021 /* Ensure hugetlb folio won't have large_rmappable flag set. */
2022 if (folio)
2023 folio_clear_large_rmappable(folio);
2024
2025 if (folio && !folio_ref_freeze(folio, 1)) {
2026 folio_put(folio);
2027 if (retry) { /* retry once */
2028 retry = false;
2029 goto retry;
2030 }
2031 /* WOW! twice in a row. */
2032 pr_warn("HugeTLB unexpected inflated folio ref count\n");
2033 folio = NULL;
2034 }
2035
2036 /*
2037 * If we did not specify __GFP_RETRY_MAYFAIL, but still got a
2038 * folio this indicates an overall state change. Clear bit so
2039 * that we resume normal 'try hard' allocations.
2040 */
2041 if (node_alloc_noretry && folio && !alloc_try_hard)
2042 node_clear(nid, *node_alloc_noretry);
2043
2044 /*
2045 * If we tried hard to get a folio but failed, set bit so that
2046 * subsequent attempts will not try as hard until there is an
2047 * overall state change.
2048 */
2049 if (node_alloc_noretry && !folio && alloc_try_hard)
2050 node_set(nid, *node_alloc_noretry);
2051
2052 if (!folio) {
2053 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
2054 return NULL;
2055 }
2056
2057 __count_vm_event(HTLB_BUDDY_PGALLOC);
2058 return folio;
2059}
2060
2061static struct folio *only_alloc_fresh_hugetlb_folio(struct hstate *h,
2062 gfp_t gfp_mask, int nid, nodemask_t *nmask,
2063 nodemask_t *node_alloc_noretry)
2064{
2065 struct folio *folio;
2066
2067 if (hstate_is_gigantic(h))
2068 folio = alloc_gigantic_folio(h, gfp_mask, nid, nmask);
2069 else
2070 folio = alloc_buddy_hugetlb_folio(h, gfp_mask, nid, nmask, node_alloc_noretry);
2071 if (folio)
2072 init_new_hugetlb_folio(h, folio);
2073 return folio;
2074}
2075
2076/*
2077 * Common helper to allocate a fresh hugetlb page. All specific allocators
2078 * should use this function to get new hugetlb pages
2079 *
2080 * Note that returned page is 'frozen': ref count of head page and all tail
2081 * pages is zero.
2082 */
2083static struct folio *alloc_fresh_hugetlb_folio(struct hstate *h,
2084 gfp_t gfp_mask, int nid, nodemask_t *nmask)
2085{
2086 struct folio *folio;
2087
2088 if (hstate_is_gigantic(h))
2089 folio = alloc_gigantic_folio(h, gfp_mask, nid, nmask);
2090 else
2091 folio = alloc_buddy_hugetlb_folio(h, gfp_mask, nid, nmask, NULL);
2092 if (!folio)
2093 return NULL;
2094
2095 prep_new_hugetlb_folio(h, folio, folio_nid(folio));
2096 return folio;
2097}
2098
2099static void prep_and_add_allocated_folios(struct hstate *h,
2100 struct list_head *folio_list)
2101{
2102 unsigned long flags;
2103 struct folio *folio, *tmp_f;
2104
2105 /* Send list for bulk vmemmap optimization processing */
2106 hugetlb_vmemmap_optimize_folios(h, folio_list);
2107
2108 /* Add all new pool pages to free lists in one lock cycle */
2109 spin_lock_irqsave(&hugetlb_lock, flags);
2110 list_for_each_entry_safe(folio, tmp_f, folio_list, lru) {
2111 __prep_account_new_huge_page(h, folio_nid(folio));
2112 enqueue_hugetlb_folio(h, folio);
2113 }
2114 spin_unlock_irqrestore(&hugetlb_lock, flags);
2115}
2116
2117/*
2118 * Allocates a fresh hugetlb page in a node interleaved manner. The page
2119 * will later be added to the appropriate hugetlb pool.
2120 */
2121static struct folio *alloc_pool_huge_folio(struct hstate *h,
2122 nodemask_t *nodes_allowed,
2123 nodemask_t *node_alloc_noretry,
2124 int *next_node)
2125{
2126 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
2127 int nr_nodes, node;
2128
2129 for_each_node_mask_to_alloc(next_node, nr_nodes, node, nodes_allowed) {
2130 struct folio *folio;
2131
2132 folio = only_alloc_fresh_hugetlb_folio(h, gfp_mask, node,
2133 nodes_allowed, node_alloc_noretry);
2134 if (folio)
2135 return folio;
2136 }
2137
2138 return NULL;
2139}
2140
2141/*
2142 * Remove huge page from pool from next node to free. Attempt to keep
2143 * persistent huge pages more or less balanced over allowed nodes.
2144 * This routine only 'removes' the hugetlb page. The caller must make
2145 * an additional call to free the page to low level allocators.
2146 * Called with hugetlb_lock locked.
2147 */
2148static struct folio *remove_pool_hugetlb_folio(struct hstate *h,
2149 nodemask_t *nodes_allowed, bool acct_surplus)
2150{
2151 int nr_nodes, node;
2152 struct folio *folio = NULL;
2153
2154 lockdep_assert_held(&hugetlb_lock);
2155 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2156 /*
2157 * If we're returning unused surplus pages, only examine
2158 * nodes with surplus pages.
2159 */
2160 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
2161 !list_empty(&h->hugepage_freelists[node])) {
2162 folio = list_entry(h->hugepage_freelists[node].next,
2163 struct folio, lru);
2164 remove_hugetlb_folio(h, folio, acct_surplus);
2165 break;
2166 }
2167 }
2168
2169 return folio;
2170}
2171
2172/*
2173 * Dissolve a given free hugetlb folio into free buddy pages. This function
2174 * does nothing for in-use hugetlb folios and non-hugetlb folios.
2175 * This function returns values like below:
2176 *
2177 * -ENOMEM: failed to allocate vmemmap pages to free the freed hugepages
2178 * when the system is under memory pressure and the feature of
2179 * freeing unused vmemmap pages associated with each hugetlb page
2180 * is enabled.
2181 * -EBUSY: failed to dissolved free hugepages or the hugepage is in-use
2182 * (allocated or reserved.)
2183 * 0: successfully dissolved free hugepages or the page is not a
2184 * hugepage (considered as already dissolved)
2185 */
2186int dissolve_free_hugetlb_folio(struct folio *folio)
2187{
2188 int rc = -EBUSY;
2189
2190retry:
2191 /* Not to disrupt normal path by vainly holding hugetlb_lock */
2192 if (!folio_test_hugetlb(folio))
2193 return 0;
2194
2195 spin_lock_irq(&hugetlb_lock);
2196 if (!folio_test_hugetlb(folio)) {
2197 rc = 0;
2198 goto out;
2199 }
2200
2201 if (!folio_ref_count(folio)) {
2202 struct hstate *h = folio_hstate(folio);
2203 if (!available_huge_pages(h))
2204 goto out;
2205
2206 /*
2207 * We should make sure that the page is already on the free list
2208 * when it is dissolved.
2209 */
2210 if (unlikely(!folio_test_hugetlb_freed(folio))) {
2211 spin_unlock_irq(&hugetlb_lock);
2212 cond_resched();
2213
2214 /*
2215 * Theoretically, we should return -EBUSY when we
2216 * encounter this race. In fact, we have a chance
2217 * to successfully dissolve the page if we do a
2218 * retry. Because the race window is quite small.
2219 * If we seize this opportunity, it is an optimization
2220 * for increasing the success rate of dissolving page.
2221 */
2222 goto retry;
2223 }
2224
2225 remove_hugetlb_folio(h, folio, false);
2226 h->max_huge_pages--;
2227 spin_unlock_irq(&hugetlb_lock);
2228
2229 /*
2230 * Normally update_and_free_hugtlb_folio will allocate required vmemmmap
2231 * before freeing the page. update_and_free_hugtlb_folio will fail to
2232 * free the page if it can not allocate required vmemmap. We
2233 * need to adjust max_huge_pages if the page is not freed.
2234 * Attempt to allocate vmemmmap here so that we can take
2235 * appropriate action on failure.
2236 *
2237 * The folio_test_hugetlb check here is because
2238 * remove_hugetlb_folio will clear hugetlb folio flag for
2239 * non-vmemmap optimized hugetlb folios.
2240 */
2241 if (folio_test_hugetlb(folio)) {
2242 rc = hugetlb_vmemmap_restore_folio(h, folio);
2243 if (rc) {
2244 spin_lock_irq(&hugetlb_lock);
2245 add_hugetlb_folio(h, folio, false);
2246 h->max_huge_pages++;
2247 goto out;
2248 }
2249 } else
2250 rc = 0;
2251
2252 update_and_free_hugetlb_folio(h, folio, false);
2253 return rc;
2254 }
2255out:
2256 spin_unlock_irq(&hugetlb_lock);
2257 return rc;
2258}
2259
2260/*
2261 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
2262 * make specified memory blocks removable from the system.
2263 * Note that this will dissolve a free gigantic hugepage completely, if any
2264 * part of it lies within the given range.
2265 * Also note that if dissolve_free_hugetlb_folio() returns with an error, all
2266 * free hugetlb folios that were dissolved before that error are lost.
2267 */
2268int dissolve_free_hugetlb_folios(unsigned long start_pfn, unsigned long end_pfn)
2269{
2270 unsigned long pfn;
2271 struct folio *folio;
2272 int rc = 0;
2273 unsigned int order;
2274 struct hstate *h;
2275
2276 if (!hugepages_supported())
2277 return rc;
2278
2279 order = huge_page_order(&default_hstate);
2280 for_each_hstate(h)
2281 order = min(order, huge_page_order(h));
2282
2283 for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << order) {
2284 folio = pfn_folio(pfn);
2285 rc = dissolve_free_hugetlb_folio(folio);
2286 if (rc)
2287 break;
2288 }
2289
2290 return rc;
2291}
2292
2293/*
2294 * Allocates a fresh surplus page from the page allocator.
2295 */
2296static struct folio *alloc_surplus_hugetlb_folio(struct hstate *h,
2297 gfp_t gfp_mask, int nid, nodemask_t *nmask)
2298{
2299 struct folio *folio = NULL;
2300
2301 if (hstate_is_gigantic(h))
2302 return NULL;
2303
2304 spin_lock_irq(&hugetlb_lock);
2305 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages)
2306 goto out_unlock;
2307 spin_unlock_irq(&hugetlb_lock);
2308
2309 folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask);
2310 if (!folio)
2311 return NULL;
2312
2313 spin_lock_irq(&hugetlb_lock);
2314 /*
2315 * We could have raced with the pool size change.
2316 * Double check that and simply deallocate the new page
2317 * if we would end up overcommiting the surpluses. Abuse
2318 * temporary page to workaround the nasty free_huge_folio
2319 * codeflow
2320 */
2321 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
2322 folio_set_hugetlb_temporary(folio);
2323 spin_unlock_irq(&hugetlb_lock);
2324 free_huge_folio(folio);
2325 return NULL;
2326 }
2327
2328 h->surplus_huge_pages++;
2329 h->surplus_huge_pages_node[folio_nid(folio)]++;
2330
2331out_unlock:
2332 spin_unlock_irq(&hugetlb_lock);
2333
2334 return folio;
2335}
2336
2337static struct folio *alloc_migrate_hugetlb_folio(struct hstate *h, gfp_t gfp_mask,
2338 int nid, nodemask_t *nmask)
2339{
2340 struct folio *folio;
2341
2342 if (hstate_is_gigantic(h))
2343 return NULL;
2344
2345 folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask);
2346 if (!folio)
2347 return NULL;
2348
2349 /* fresh huge pages are frozen */
2350 folio_ref_unfreeze(folio, 1);
2351 /*
2352 * We do not account these pages as surplus because they are only
2353 * temporary and will be released properly on the last reference
2354 */
2355 folio_set_hugetlb_temporary(folio);
2356
2357 return folio;
2358}
2359
2360/*
2361 * Use the VMA's mpolicy to allocate a huge page from the buddy.
2362 */
2363static
2364struct folio *alloc_buddy_hugetlb_folio_with_mpol(struct hstate *h,
2365 struct vm_area_struct *vma, unsigned long addr)
2366{
2367 struct folio *folio = NULL;
2368 struct mempolicy *mpol;
2369 gfp_t gfp_mask = htlb_alloc_mask(h);
2370 int nid;
2371 nodemask_t *nodemask;
2372
2373 nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
2374 if (mpol_is_preferred_many(mpol)) {
2375 gfp_t gfp = gfp_mask & ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL);
2376
2377 folio = alloc_surplus_hugetlb_folio(h, gfp, nid, nodemask);
2378
2379 /* Fallback to all nodes if page==NULL */
2380 nodemask = NULL;
2381 }
2382
2383 if (!folio)
2384 folio = alloc_surplus_hugetlb_folio(h, gfp_mask, nid, nodemask);
2385 mpol_cond_put(mpol);
2386 return folio;
2387}
2388
2389struct folio *alloc_hugetlb_folio_reserve(struct hstate *h, int preferred_nid,
2390 nodemask_t *nmask, gfp_t gfp_mask)
2391{
2392 struct folio *folio;
2393
2394 spin_lock_irq(&hugetlb_lock);
2395 folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask, preferred_nid,
2396 nmask);
2397 if (folio) {
2398 VM_BUG_ON(!h->resv_huge_pages);
2399 h->resv_huge_pages--;
2400 }
2401
2402 spin_unlock_irq(&hugetlb_lock);
2403 return folio;
2404}
2405
2406/* folio migration callback function */
2407struct folio *alloc_hugetlb_folio_nodemask(struct hstate *h, int preferred_nid,
2408 nodemask_t *nmask, gfp_t gfp_mask, bool allow_alloc_fallback)
2409{
2410 spin_lock_irq(&hugetlb_lock);
2411 if (available_huge_pages(h)) {
2412 struct folio *folio;
2413
2414 folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask,
2415 preferred_nid, nmask);
2416 if (folio) {
2417 spin_unlock_irq(&hugetlb_lock);
2418 return folio;
2419 }
2420 }
2421 spin_unlock_irq(&hugetlb_lock);
2422
2423 /* We cannot fallback to other nodes, as we could break the per-node pool. */
2424 if (!allow_alloc_fallback)
2425 gfp_mask |= __GFP_THISNODE;
2426
2427 return alloc_migrate_hugetlb_folio(h, gfp_mask, preferred_nid, nmask);
2428}
2429
2430static nodemask_t *policy_mbind_nodemask(gfp_t gfp)
2431{
2432#ifdef CONFIG_NUMA
2433 struct mempolicy *mpol = get_task_policy(current);
2434
2435 /*
2436 * Only enforce MPOL_BIND policy which overlaps with cpuset policy
2437 * (from policy_nodemask) specifically for hugetlb case
2438 */
2439 if (mpol->mode == MPOL_BIND &&
2440 (apply_policy_zone(mpol, gfp_zone(gfp)) &&
2441 cpuset_nodemask_valid_mems_allowed(&mpol->nodes)))
2442 return &mpol->nodes;
2443#endif
2444 return NULL;
2445}
2446
2447/*
2448 * Increase the hugetlb pool such that it can accommodate a reservation
2449 * of size 'delta'.
2450 */
2451static int gather_surplus_pages(struct hstate *h, long delta)
2452 __must_hold(&hugetlb_lock)
2453{
2454 LIST_HEAD(surplus_list);
2455 struct folio *folio, *tmp;
2456 int ret;
2457 long i;
2458 long needed, allocated;
2459 bool alloc_ok = true;
2460 int node;
2461 nodemask_t *mbind_nodemask = policy_mbind_nodemask(htlb_alloc_mask(h));
2462
2463 lockdep_assert_held(&hugetlb_lock);
2464 needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
2465 if (needed <= 0) {
2466 h->resv_huge_pages += delta;
2467 return 0;
2468 }
2469
2470 allocated = 0;
2471
2472 ret = -ENOMEM;
2473retry:
2474 spin_unlock_irq(&hugetlb_lock);
2475 for (i = 0; i < needed; i++) {
2476 folio = NULL;
2477 for_each_node_mask(node, cpuset_current_mems_allowed) {
2478 if (!mbind_nodemask || node_isset(node, *mbind_nodemask)) {
2479 folio = alloc_surplus_hugetlb_folio(h, htlb_alloc_mask(h),
2480 node, NULL);
2481 if (folio)
2482 break;
2483 }
2484 }
2485 if (!folio) {
2486 alloc_ok = false;
2487 break;
2488 }
2489 list_add(&folio->lru, &surplus_list);
2490 cond_resched();
2491 }
2492 allocated += i;
2493
2494 /*
2495 * After retaking hugetlb_lock, we need to recalculate 'needed'
2496 * because either resv_huge_pages or free_huge_pages may have changed.
2497 */
2498 spin_lock_irq(&hugetlb_lock);
2499 needed = (h->resv_huge_pages + delta) -
2500 (h->free_huge_pages + allocated);
2501 if (needed > 0) {
2502 if (alloc_ok)
2503 goto retry;
2504 /*
2505 * We were not able to allocate enough pages to
2506 * satisfy the entire reservation so we free what
2507 * we've allocated so far.
2508 */
2509 goto free;
2510 }
2511 /*
2512 * The surplus_list now contains _at_least_ the number of extra pages
2513 * needed to accommodate the reservation. Add the appropriate number
2514 * of pages to the hugetlb pool and free the extras back to the buddy
2515 * allocator. Commit the entire reservation here to prevent another
2516 * process from stealing the pages as they are added to the pool but
2517 * before they are reserved.
2518 */
2519 needed += allocated;
2520 h->resv_huge_pages += delta;
2521 ret = 0;
2522
2523 /* Free the needed pages to the hugetlb pool */
2524 list_for_each_entry_safe(folio, tmp, &surplus_list, lru) {
2525 if ((--needed) < 0)
2526 break;
2527 /* Add the page to the hugetlb allocator */
2528 enqueue_hugetlb_folio(h, folio);
2529 }
2530free:
2531 spin_unlock_irq(&hugetlb_lock);
2532
2533 /*
2534 * Free unnecessary surplus pages to the buddy allocator.
2535 * Pages have no ref count, call free_huge_folio directly.
2536 */
2537 list_for_each_entry_safe(folio, tmp, &surplus_list, lru)
2538 free_huge_folio(folio);
2539 spin_lock_irq(&hugetlb_lock);
2540
2541 return ret;
2542}
2543
2544/*
2545 * This routine has two main purposes:
2546 * 1) Decrement the reservation count (resv_huge_pages) by the value passed
2547 * in unused_resv_pages. This corresponds to the prior adjustments made
2548 * to the associated reservation map.
2549 * 2) Free any unused surplus pages that may have been allocated to satisfy
2550 * the reservation. As many as unused_resv_pages may be freed.
2551 */
2552static void return_unused_surplus_pages(struct hstate *h,
2553 unsigned long unused_resv_pages)
2554{
2555 unsigned long nr_pages;
2556 LIST_HEAD(page_list);
2557
2558 lockdep_assert_held(&hugetlb_lock);
2559 /* Uncommit the reservation */
2560 h->resv_huge_pages -= unused_resv_pages;
2561
2562 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
2563 goto out;
2564
2565 /*
2566 * Part (or even all) of the reservation could have been backed
2567 * by pre-allocated pages. Only free surplus pages.
2568 */
2569 nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
2570
2571 /*
2572 * We want to release as many surplus pages as possible, spread
2573 * evenly across all nodes with memory. Iterate across these nodes
2574 * until we can no longer free unreserved surplus pages. This occurs
2575 * when the nodes with surplus pages have no free pages.
2576 * remove_pool_hugetlb_folio() will balance the freed pages across the
2577 * on-line nodes with memory and will handle the hstate accounting.
2578 */
2579 while (nr_pages--) {
2580 struct folio *folio;
2581
2582 folio = remove_pool_hugetlb_folio(h, &node_states[N_MEMORY], 1);
2583 if (!folio)
2584 goto out;
2585
2586 list_add(&folio->lru, &page_list);
2587 }
2588
2589out:
2590 spin_unlock_irq(&hugetlb_lock);
2591 update_and_free_pages_bulk(h, &page_list);
2592 spin_lock_irq(&hugetlb_lock);
2593}
2594
2595
2596/*
2597 * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
2598 * are used by the huge page allocation routines to manage reservations.
2599 *
2600 * vma_needs_reservation is called to determine if the huge page at addr
2601 * within the vma has an associated reservation. If a reservation is
2602 * needed, the value 1 is returned. The caller is then responsible for
2603 * managing the global reservation and subpool usage counts. After
2604 * the huge page has been allocated, vma_commit_reservation is called
2605 * to add the page to the reservation map. If the page allocation fails,
2606 * the reservation must be ended instead of committed. vma_end_reservation
2607 * is called in such cases.
2608 *
2609 * In the normal case, vma_commit_reservation returns the same value
2610 * as the preceding vma_needs_reservation call. The only time this
2611 * is not the case is if a reserve map was changed between calls. It
2612 * is the responsibility of the caller to notice the difference and
2613 * take appropriate action.
2614 *
2615 * vma_add_reservation is used in error paths where a reservation must
2616 * be restored when a newly allocated huge page must be freed. It is
2617 * to be called after calling vma_needs_reservation to determine if a
2618 * reservation exists.
2619 *
2620 * vma_del_reservation is used in error paths where an entry in the reserve
2621 * map was created during huge page allocation and must be removed. It is to
2622 * be called after calling vma_needs_reservation to determine if a reservation
2623 * exists.
2624 */
2625enum vma_resv_mode {
2626 VMA_NEEDS_RESV,
2627 VMA_COMMIT_RESV,
2628 VMA_END_RESV,
2629 VMA_ADD_RESV,
2630 VMA_DEL_RESV,
2631};
2632static long __vma_reservation_common(struct hstate *h,
2633 struct vm_area_struct *vma, unsigned long addr,
2634 enum vma_resv_mode mode)
2635{
2636 struct resv_map *resv;
2637 pgoff_t idx;
2638 long ret;
2639 long dummy_out_regions_needed;
2640
2641 resv = vma_resv_map(vma);
2642 if (!resv)
2643 return 1;
2644
2645 idx = vma_hugecache_offset(h, vma, addr);
2646 switch (mode) {
2647 case VMA_NEEDS_RESV:
2648 ret = region_chg(resv, idx, idx + 1, &dummy_out_regions_needed);
2649 /* We assume that vma_reservation_* routines always operate on
2650 * 1 page, and that adding to resv map a 1 page entry can only
2651 * ever require 1 region.
2652 */
2653 VM_BUG_ON(dummy_out_regions_needed != 1);
2654 break;
2655 case VMA_COMMIT_RESV:
2656 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2657 /* region_add calls of range 1 should never fail. */
2658 VM_BUG_ON(ret < 0);
2659 break;
2660 case VMA_END_RESV:
2661 region_abort(resv, idx, idx + 1, 1);
2662 ret = 0;
2663 break;
2664 case VMA_ADD_RESV:
2665 if (vma->vm_flags & VM_MAYSHARE) {
2666 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2667 /* region_add calls of range 1 should never fail. */
2668 VM_BUG_ON(ret < 0);
2669 } else {
2670 region_abort(resv, idx, idx + 1, 1);
2671 ret = region_del(resv, idx, idx + 1);
2672 }
2673 break;
2674 case VMA_DEL_RESV:
2675 if (vma->vm_flags & VM_MAYSHARE) {
2676 region_abort(resv, idx, idx + 1, 1);
2677 ret = region_del(resv, idx, idx + 1);
2678 } else {
2679 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2680 /* region_add calls of range 1 should never fail. */
2681 VM_BUG_ON(ret < 0);
2682 }
2683 break;
2684 default:
2685 BUG();
2686 }
2687
2688 if (vma->vm_flags & VM_MAYSHARE || mode == VMA_DEL_RESV)
2689 return ret;
2690 /*
2691 * We know private mapping must have HPAGE_RESV_OWNER set.
2692 *
2693 * In most cases, reserves always exist for private mappings.
2694 * However, a file associated with mapping could have been
2695 * hole punched or truncated after reserves were consumed.
2696 * As subsequent fault on such a range will not use reserves.
2697 * Subtle - The reserve map for private mappings has the
2698 * opposite meaning than that of shared mappings. If NO
2699 * entry is in the reserve map, it means a reservation exists.
2700 * If an entry exists in the reserve map, it means the
2701 * reservation has already been consumed. As a result, the
2702 * return value of this routine is the opposite of the
2703 * value returned from reserve map manipulation routines above.
2704 */
2705 if (ret > 0)
2706 return 0;
2707 if (ret == 0)
2708 return 1;
2709 return ret;
2710}
2711
2712static long vma_needs_reservation(struct hstate *h,
2713 struct vm_area_struct *vma, unsigned long addr)
2714{
2715 return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
2716}
2717
2718static long vma_commit_reservation(struct hstate *h,
2719 struct vm_area_struct *vma, unsigned long addr)
2720{
2721 return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
2722}
2723
2724static void vma_end_reservation(struct hstate *h,
2725 struct vm_area_struct *vma, unsigned long addr)
2726{
2727 (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
2728}
2729
2730static long vma_add_reservation(struct hstate *h,
2731 struct vm_area_struct *vma, unsigned long addr)
2732{
2733 return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
2734}
2735
2736static long vma_del_reservation(struct hstate *h,
2737 struct vm_area_struct *vma, unsigned long addr)
2738{
2739 return __vma_reservation_common(h, vma, addr, VMA_DEL_RESV);
2740}
2741
2742/*
2743 * This routine is called to restore reservation information on error paths.
2744 * It should ONLY be called for folios allocated via alloc_hugetlb_folio(),
2745 * and the hugetlb mutex should remain held when calling this routine.
2746 *
2747 * It handles two specific cases:
2748 * 1) A reservation was in place and the folio consumed the reservation.
2749 * hugetlb_restore_reserve is set in the folio.
2750 * 2) No reservation was in place for the page, so hugetlb_restore_reserve is
2751 * not set. However, alloc_hugetlb_folio always updates the reserve map.
2752 *
2753 * In case 1, free_huge_folio later in the error path will increment the
2754 * global reserve count. But, free_huge_folio does not have enough context
2755 * to adjust the reservation map. This case deals primarily with private
2756 * mappings. Adjust the reserve map here to be consistent with global
2757 * reserve count adjustments to be made by free_huge_folio. Make sure the
2758 * reserve map indicates there is a reservation present.
2759 *
2760 * In case 2, simply undo reserve map modifications done by alloc_hugetlb_folio.
2761 */
2762void restore_reserve_on_error(struct hstate *h, struct vm_area_struct *vma,
2763 unsigned long address, struct folio *folio)
2764{
2765 long rc = vma_needs_reservation(h, vma, address);
2766
2767 if (folio_test_hugetlb_restore_reserve(folio)) {
2768 if (unlikely(rc < 0))
2769 /*
2770 * Rare out of memory condition in reserve map
2771 * manipulation. Clear hugetlb_restore_reserve so
2772 * that global reserve count will not be incremented
2773 * by free_huge_folio. This will make it appear
2774 * as though the reservation for this folio was
2775 * consumed. This may prevent the task from
2776 * faulting in the folio at a later time. This
2777 * is better than inconsistent global huge page
2778 * accounting of reserve counts.
2779 */
2780 folio_clear_hugetlb_restore_reserve(folio);
2781 else if (rc)
2782 (void)vma_add_reservation(h, vma, address);
2783 else
2784 vma_end_reservation(h, vma, address);
2785 } else {
2786 if (!rc) {
2787 /*
2788 * This indicates there is an entry in the reserve map
2789 * not added by alloc_hugetlb_folio. We know it was added
2790 * before the alloc_hugetlb_folio call, otherwise
2791 * hugetlb_restore_reserve would be set on the folio.
2792 * Remove the entry so that a subsequent allocation
2793 * does not consume a reservation.
2794 */
2795 rc = vma_del_reservation(h, vma, address);
2796 if (rc < 0)
2797 /*
2798 * VERY rare out of memory condition. Since
2799 * we can not delete the entry, set
2800 * hugetlb_restore_reserve so that the reserve
2801 * count will be incremented when the folio
2802 * is freed. This reserve will be consumed
2803 * on a subsequent allocation.
2804 */
2805 folio_set_hugetlb_restore_reserve(folio);
2806 } else if (rc < 0) {
2807 /*
2808 * Rare out of memory condition from
2809 * vma_needs_reservation call. Memory allocation is
2810 * only attempted if a new entry is needed. Therefore,
2811 * this implies there is not an entry in the
2812 * reserve map.
2813 *
2814 * For shared mappings, no entry in the map indicates
2815 * no reservation. We are done.
2816 */
2817 if (!(vma->vm_flags & VM_MAYSHARE))
2818 /*
2819 * For private mappings, no entry indicates
2820 * a reservation is present. Since we can
2821 * not add an entry, set hugetlb_restore_reserve
2822 * on the folio so reserve count will be
2823 * incremented when freed. This reserve will
2824 * be consumed on a subsequent allocation.
2825 */
2826 folio_set_hugetlb_restore_reserve(folio);
2827 } else
2828 /*
2829 * No reservation present, do nothing
2830 */
2831 vma_end_reservation(h, vma, address);
2832 }
2833}
2834
2835/*
2836 * alloc_and_dissolve_hugetlb_folio - Allocate a new folio and dissolve
2837 * the old one
2838 * @h: struct hstate old page belongs to
2839 * @old_folio: Old folio to dissolve
2840 * @list: List to isolate the page in case we need to
2841 * Returns 0 on success, otherwise negated error.
2842 */
2843static int alloc_and_dissolve_hugetlb_folio(struct hstate *h,
2844 struct folio *old_folio, struct list_head *list)
2845{
2846 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
2847 int nid = folio_nid(old_folio);
2848 struct folio *new_folio = NULL;
2849 int ret = 0;
2850
2851retry:
2852 spin_lock_irq(&hugetlb_lock);
2853 if (!folio_test_hugetlb(old_folio)) {
2854 /*
2855 * Freed from under us. Drop new_folio too.
2856 */
2857 goto free_new;
2858 } else if (folio_ref_count(old_folio)) {
2859 bool isolated;
2860
2861 /*
2862 * Someone has grabbed the folio, try to isolate it here.
2863 * Fail with -EBUSY if not possible.
2864 */
2865 spin_unlock_irq(&hugetlb_lock);
2866 isolated = isolate_hugetlb(old_folio, list);
2867 ret = isolated ? 0 : -EBUSY;
2868 spin_lock_irq(&hugetlb_lock);
2869 goto free_new;
2870 } else if (!folio_test_hugetlb_freed(old_folio)) {
2871 /*
2872 * Folio's refcount is 0 but it has not been enqueued in the
2873 * freelist yet. Race window is small, so we can succeed here if
2874 * we retry.
2875 */
2876 spin_unlock_irq(&hugetlb_lock);
2877 cond_resched();
2878 goto retry;
2879 } else {
2880 if (!new_folio) {
2881 spin_unlock_irq(&hugetlb_lock);
2882 new_folio = alloc_buddy_hugetlb_folio(h, gfp_mask, nid,
2883 NULL, NULL);
2884 if (!new_folio)
2885 return -ENOMEM;
2886 __prep_new_hugetlb_folio(h, new_folio);
2887 goto retry;
2888 }
2889
2890 /*
2891 * Ok, old_folio is still a genuine free hugepage. Remove it from
2892 * the freelist and decrease the counters. These will be
2893 * incremented again when calling __prep_account_new_huge_page()
2894 * and enqueue_hugetlb_folio() for new_folio. The counters will
2895 * remain stable since this happens under the lock.
2896 */
2897 remove_hugetlb_folio(h, old_folio, false);
2898
2899 /*
2900 * Ref count on new_folio is already zero as it was dropped
2901 * earlier. It can be directly added to the pool free list.
2902 */
2903 __prep_account_new_huge_page(h, nid);
2904 enqueue_hugetlb_folio(h, new_folio);
2905
2906 /*
2907 * Folio has been replaced, we can safely free the old one.
2908 */
2909 spin_unlock_irq(&hugetlb_lock);
2910 update_and_free_hugetlb_folio(h, old_folio, false);
2911 }
2912
2913 return ret;
2914
2915free_new:
2916 spin_unlock_irq(&hugetlb_lock);
2917 if (new_folio)
2918 update_and_free_hugetlb_folio(h, new_folio, false);
2919
2920 return ret;
2921}
2922
2923int isolate_or_dissolve_huge_page(struct page *page, struct list_head *list)
2924{
2925 struct hstate *h;
2926 struct folio *folio = page_folio(page);
2927 int ret = -EBUSY;
2928
2929 /*
2930 * The page might have been dissolved from under our feet, so make sure
2931 * to carefully check the state under the lock.
2932 * Return success when racing as if we dissolved the page ourselves.
2933 */
2934 spin_lock_irq(&hugetlb_lock);
2935 if (folio_test_hugetlb(folio)) {
2936 h = folio_hstate(folio);
2937 } else {
2938 spin_unlock_irq(&hugetlb_lock);
2939 return 0;
2940 }
2941 spin_unlock_irq(&hugetlb_lock);
2942
2943 /*
2944 * Fence off gigantic pages as there is a cyclic dependency between
2945 * alloc_contig_range and them. Return -ENOMEM as this has the effect
2946 * of bailing out right away without further retrying.
2947 */
2948 if (hstate_is_gigantic(h))
2949 return -ENOMEM;
2950
2951 if (folio_ref_count(folio) && isolate_hugetlb(folio, list))
2952 ret = 0;
2953 else if (!folio_ref_count(folio))
2954 ret = alloc_and_dissolve_hugetlb_folio(h, folio, list);
2955
2956 return ret;
2957}
2958
2959struct folio *alloc_hugetlb_folio(struct vm_area_struct *vma,
2960 unsigned long addr, int avoid_reserve)
2961{
2962 struct hugepage_subpool *spool = subpool_vma(vma);
2963 struct hstate *h = hstate_vma(vma);
2964 struct folio *folio;
2965 long map_chg, map_commit, nr_pages = pages_per_huge_page(h);
2966 long gbl_chg;
2967 int memcg_charge_ret, ret, idx;
2968 struct hugetlb_cgroup *h_cg = NULL;
2969 struct mem_cgroup *memcg;
2970 bool deferred_reserve;
2971 gfp_t gfp = htlb_alloc_mask(h) | __GFP_RETRY_MAYFAIL;
2972
2973 memcg = get_mem_cgroup_from_current();
2974 memcg_charge_ret = mem_cgroup_hugetlb_try_charge(memcg, gfp, nr_pages);
2975 if (memcg_charge_ret == -ENOMEM) {
2976 mem_cgroup_put(memcg);
2977 return ERR_PTR(-ENOMEM);
2978 }
2979
2980 idx = hstate_index(h);
2981 /*
2982 * Examine the region/reserve map to determine if the process
2983 * has a reservation for the page to be allocated. A return
2984 * code of zero indicates a reservation exists (no change).
2985 */
2986 map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
2987 if (map_chg < 0) {
2988 if (!memcg_charge_ret)
2989 mem_cgroup_cancel_charge(memcg, nr_pages);
2990 mem_cgroup_put(memcg);
2991 return ERR_PTR(-ENOMEM);
2992 }
2993
2994 /*
2995 * Processes that did not create the mapping will have no
2996 * reserves as indicated by the region/reserve map. Check
2997 * that the allocation will not exceed the subpool limit.
2998 * Allocations for MAP_NORESERVE mappings also need to be
2999 * checked against any subpool limit.
3000 */
3001 if (map_chg || avoid_reserve) {
3002 gbl_chg = hugepage_subpool_get_pages(spool, 1);
3003 if (gbl_chg < 0)
3004 goto out_end_reservation;
3005 }
3006
3007 /* If this allocation is not consuming a reservation, charge it now.
3008 */
3009 deferred_reserve = map_chg || avoid_reserve;
3010 if (deferred_reserve) {
3011 ret = hugetlb_cgroup_charge_cgroup_rsvd(
3012 idx, pages_per_huge_page(h), &h_cg);
3013 if (ret)
3014 goto out_subpool_put;
3015 }
3016
3017 ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
3018 if (ret)
3019 goto out_uncharge_cgroup_reservation;
3020
3021 spin_lock_irq(&hugetlb_lock);
3022 /*
3023 * glb_chg is passed to indicate whether or not a page must be taken
3024 * from the global free pool (global change). gbl_chg == 0 indicates
3025 * a reservation exists for the allocation.
3026 */
3027 folio = dequeue_hugetlb_folio_vma(h, vma, addr, gbl_chg);
3028 if (!folio) {
3029 spin_unlock_irq(&hugetlb_lock);
3030 folio = alloc_buddy_hugetlb_folio_with_mpol(h, vma, addr);
3031 if (!folio)
3032 goto out_uncharge_cgroup;
3033 spin_lock_irq(&hugetlb_lock);
3034 if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
3035 folio_set_hugetlb_restore_reserve(folio);
3036 h->resv_huge_pages--;
3037 }
3038 list_add(&folio->lru, &h->hugepage_activelist);
3039 folio_ref_unfreeze(folio, 1);
3040 /* Fall through */
3041 }
3042
3043 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, folio);
3044 /* If allocation is not consuming a reservation, also store the
3045 * hugetlb_cgroup pointer on the page.
3046 */
3047 if (deferred_reserve) {
3048 hugetlb_cgroup_commit_charge_rsvd(idx, pages_per_huge_page(h),
3049 h_cg, folio);
3050 }
3051
3052 spin_unlock_irq(&hugetlb_lock);
3053
3054 hugetlb_set_folio_subpool(folio, spool);
3055
3056 map_commit = vma_commit_reservation(h, vma, addr);
3057 if (unlikely(map_chg > map_commit)) {
3058 /*
3059 * The page was added to the reservation map between
3060 * vma_needs_reservation and vma_commit_reservation.
3061 * This indicates a race with hugetlb_reserve_pages.
3062 * Adjust for the subpool count incremented above AND
3063 * in hugetlb_reserve_pages for the same page. Also,
3064 * the reservation count added in hugetlb_reserve_pages
3065 * no longer applies.
3066 */
3067 long rsv_adjust;
3068
3069 rsv_adjust = hugepage_subpool_put_pages(spool, 1);
3070 hugetlb_acct_memory(h, -rsv_adjust);
3071 if (deferred_reserve) {
3072 spin_lock_irq(&hugetlb_lock);
3073 hugetlb_cgroup_uncharge_folio_rsvd(hstate_index(h),
3074 pages_per_huge_page(h), folio);
3075 spin_unlock_irq(&hugetlb_lock);
3076 }
3077 }
3078
3079 if (!memcg_charge_ret)
3080 mem_cgroup_commit_charge(folio, memcg);
3081 lruvec_stat_mod_folio(folio, NR_HUGETLB, pages_per_huge_page(h));
3082 mem_cgroup_put(memcg);
3083
3084 return folio;
3085
3086out_uncharge_cgroup:
3087 hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
3088out_uncharge_cgroup_reservation:
3089 if (deferred_reserve)
3090 hugetlb_cgroup_uncharge_cgroup_rsvd(idx, pages_per_huge_page(h),
3091 h_cg);
3092out_subpool_put:
3093 if (map_chg || avoid_reserve)
3094 hugepage_subpool_put_pages(spool, 1);
3095out_end_reservation:
3096 vma_end_reservation(h, vma, addr);
3097 if (!memcg_charge_ret)
3098 mem_cgroup_cancel_charge(memcg, nr_pages);
3099 mem_cgroup_put(memcg);
3100 return ERR_PTR(-ENOSPC);
3101}
3102
3103int alloc_bootmem_huge_page(struct hstate *h, int nid)
3104 __attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
3105int __alloc_bootmem_huge_page(struct hstate *h, int nid)
3106{
3107 struct huge_bootmem_page *m = NULL; /* initialize for clang */
3108 int nr_nodes, node = nid;
3109
3110 /* do node specific alloc */
3111 if (nid != NUMA_NO_NODE) {
3112 m = memblock_alloc_try_nid_raw(huge_page_size(h), huge_page_size(h),
3113 0, MEMBLOCK_ALLOC_ACCESSIBLE, nid);
3114 if (!m)
3115 return 0;
3116 goto found;
3117 }
3118 /* allocate from next node when distributing huge pages */
3119 for_each_node_mask_to_alloc(&h->next_nid_to_alloc, nr_nodes, node, &node_states[N_MEMORY]) {
3120 m = memblock_alloc_try_nid_raw(
3121 huge_page_size(h), huge_page_size(h),
3122 0, MEMBLOCK_ALLOC_ACCESSIBLE, node);
3123 /*
3124 * Use the beginning of the huge page to store the
3125 * huge_bootmem_page struct (until gather_bootmem
3126 * puts them into the mem_map).
3127 */
3128 if (!m)
3129 return 0;
3130 goto found;
3131 }
3132
3133found:
3134
3135 /*
3136 * Only initialize the head struct page in memmap_init_reserved_pages,
3137 * rest of the struct pages will be initialized by the HugeTLB
3138 * subsystem itself.
3139 * The head struct page is used to get folio information by the HugeTLB
3140 * subsystem like zone id and node id.
3141 */
3142 memblock_reserved_mark_noinit(virt_to_phys((void *)m + PAGE_SIZE),
3143 huge_page_size(h) - PAGE_SIZE);
3144 /* Put them into a private list first because mem_map is not up yet */
3145 INIT_LIST_HEAD(&m->list);
3146 list_add(&m->list, &huge_boot_pages[node]);
3147 m->hstate = h;
3148 return 1;
3149}
3150
3151/* Initialize [start_page:end_page_number] tail struct pages of a hugepage */
3152static void __init hugetlb_folio_init_tail_vmemmap(struct folio *folio,
3153 unsigned long start_page_number,
3154 unsigned long end_page_number)
3155{
3156 enum zone_type zone = zone_idx(folio_zone(folio));
3157 int nid = folio_nid(folio);
3158 unsigned long head_pfn = folio_pfn(folio);
3159 unsigned long pfn, end_pfn = head_pfn + end_page_number;
3160 int ret;
3161
3162 for (pfn = head_pfn + start_page_number; pfn < end_pfn; pfn++) {
3163 struct page *page = pfn_to_page(pfn);
3164
3165 __ClearPageReserved(folio_page(folio, pfn - head_pfn));
3166 __init_single_page(page, pfn, zone, nid);
3167 prep_compound_tail((struct page *)folio, pfn - head_pfn);
3168 ret = page_ref_freeze(page, 1);
3169 VM_BUG_ON(!ret);
3170 }
3171}
3172
3173static void __init hugetlb_folio_init_vmemmap(struct folio *folio,
3174 struct hstate *h,
3175 unsigned long nr_pages)
3176{
3177 int ret;
3178
3179 /* Prepare folio head */
3180 __folio_clear_reserved(folio);
3181 __folio_set_head(folio);
3182 ret = folio_ref_freeze(folio, 1);
3183 VM_BUG_ON(!ret);
3184 /* Initialize the necessary tail struct pages */
3185 hugetlb_folio_init_tail_vmemmap(folio, 1, nr_pages);
3186 prep_compound_head((struct page *)folio, huge_page_order(h));
3187}
3188
3189static void __init prep_and_add_bootmem_folios(struct hstate *h,
3190 struct list_head *folio_list)
3191{
3192 unsigned long flags;
3193 struct folio *folio, *tmp_f;
3194
3195 /* Send list for bulk vmemmap optimization processing */
3196 hugetlb_vmemmap_optimize_folios(h, folio_list);
3197
3198 list_for_each_entry_safe(folio, tmp_f, folio_list, lru) {
3199 if (!folio_test_hugetlb_vmemmap_optimized(folio)) {
3200 /*
3201 * If HVO fails, initialize all tail struct pages
3202 * We do not worry about potential long lock hold
3203 * time as this is early in boot and there should
3204 * be no contention.
3205 */
3206 hugetlb_folio_init_tail_vmemmap(folio,
3207 HUGETLB_VMEMMAP_RESERVE_PAGES,
3208 pages_per_huge_page(h));
3209 }
3210 /* Subdivide locks to achieve better parallel performance */
3211 spin_lock_irqsave(&hugetlb_lock, flags);
3212 __prep_account_new_huge_page(h, folio_nid(folio));
3213 enqueue_hugetlb_folio(h, folio);
3214 spin_unlock_irqrestore(&hugetlb_lock, flags);
3215 }
3216}
3217
3218/*
3219 * Put bootmem huge pages into the standard lists after mem_map is up.
3220 * Note: This only applies to gigantic (order > MAX_PAGE_ORDER) pages.
3221 */
3222static void __init gather_bootmem_prealloc_node(unsigned long nid)
3223{
3224 LIST_HEAD(folio_list);
3225 struct huge_bootmem_page *m;
3226 struct hstate *h = NULL, *prev_h = NULL;
3227
3228 list_for_each_entry(m, &huge_boot_pages[nid], list) {
3229 struct page *page = virt_to_page(m);
3230 struct folio *folio = (void *)page;
3231
3232 h = m->hstate;
3233 /*
3234 * It is possible to have multiple huge page sizes (hstates)
3235 * in this list. If so, process each size separately.
3236 */
3237 if (h != prev_h && prev_h != NULL)
3238 prep_and_add_bootmem_folios(prev_h, &folio_list);
3239 prev_h = h;
3240
3241 VM_BUG_ON(!hstate_is_gigantic(h));
3242 WARN_ON(folio_ref_count(folio) != 1);
3243
3244 hugetlb_folio_init_vmemmap(folio, h,
3245 HUGETLB_VMEMMAP_RESERVE_PAGES);
3246 init_new_hugetlb_folio(h, folio);
3247 list_add(&folio->lru, &folio_list);
3248
3249 /*
3250 * We need to restore the 'stolen' pages to totalram_pages
3251 * in order to fix confusing memory reports from free(1) and
3252 * other side-effects, like CommitLimit going negative.
3253 */
3254 adjust_managed_page_count(page, pages_per_huge_page(h));
3255 cond_resched();
3256 }
3257
3258 prep_and_add_bootmem_folios(h, &folio_list);
3259}
3260
3261static void __init gather_bootmem_prealloc_parallel(unsigned long start,
3262 unsigned long end, void *arg)
3263{
3264 int nid;
3265
3266 for (nid = start; nid < end; nid++)
3267 gather_bootmem_prealloc_node(nid);
3268}
3269
3270static void __init gather_bootmem_prealloc(void)
3271{
3272 struct padata_mt_job job = {
3273 .thread_fn = gather_bootmem_prealloc_parallel,
3274 .fn_arg = NULL,
3275 .start = 0,
3276 .size = nr_node_ids,
3277 .align = 1,
3278 .min_chunk = 1,
3279 .max_threads = num_node_state(N_MEMORY),
3280 .numa_aware = true,
3281 };
3282
3283 padata_do_multithreaded(&job);
3284}
3285
3286static void __init hugetlb_hstate_alloc_pages_onenode(struct hstate *h, int nid)
3287{
3288 unsigned long i;
3289 char buf[32];
3290 LIST_HEAD(folio_list);
3291
3292 for (i = 0; i < h->max_huge_pages_node[nid]; ++i) {
3293 if (hstate_is_gigantic(h)) {
3294 if (!alloc_bootmem_huge_page(h, nid))
3295 break;
3296 } else {
3297 struct folio *folio;
3298 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
3299
3300 folio = only_alloc_fresh_hugetlb_folio(h, gfp_mask, nid,
3301 &node_states[N_MEMORY], NULL);
3302 if (!folio)
3303 break;
3304 list_add(&folio->lru, &folio_list);
3305 }
3306 cond_resched();
3307 }
3308
3309 if (!list_empty(&folio_list))
3310 prep_and_add_allocated_folios(h, &folio_list);
3311
3312 if (i == h->max_huge_pages_node[nid])
3313 return;
3314
3315 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3316 pr_warn("HugeTLB: allocating %u of page size %s failed node%d. Only allocated %lu hugepages.\n",
3317 h->max_huge_pages_node[nid], buf, nid, i);
3318 h->max_huge_pages -= (h->max_huge_pages_node[nid] - i);
3319 h->max_huge_pages_node[nid] = i;
3320}
3321
3322static bool __init hugetlb_hstate_alloc_pages_specific_nodes(struct hstate *h)
3323{
3324 int i;
3325 bool node_specific_alloc = false;
3326
3327 for_each_online_node(i) {
3328 if (h->max_huge_pages_node[i] > 0) {
3329 hugetlb_hstate_alloc_pages_onenode(h, i);
3330 node_specific_alloc = true;
3331 }
3332 }
3333
3334 return node_specific_alloc;
3335}
3336
3337static void __init hugetlb_hstate_alloc_pages_errcheck(unsigned long allocated, struct hstate *h)
3338{
3339 if (allocated < h->max_huge_pages) {
3340 char buf[32];
3341
3342 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3343 pr_warn("HugeTLB: allocating %lu of page size %s failed. Only allocated %lu hugepages.\n",
3344 h->max_huge_pages, buf, allocated);
3345 h->max_huge_pages = allocated;
3346 }
3347}
3348
3349static void __init hugetlb_pages_alloc_boot_node(unsigned long start, unsigned long end, void *arg)
3350{
3351 struct hstate *h = (struct hstate *)arg;
3352 int i, num = end - start;
3353 nodemask_t node_alloc_noretry;
3354 LIST_HEAD(folio_list);
3355 int next_node = first_online_node;
3356
3357 /* Bit mask controlling how hard we retry per-node allocations.*/
3358 nodes_clear(node_alloc_noretry);
3359
3360 for (i = 0; i < num; ++i) {
3361 struct folio *folio = alloc_pool_huge_folio(h, &node_states[N_MEMORY],
3362 &node_alloc_noretry, &next_node);
3363 if (!folio)
3364 break;
3365
3366 list_move(&folio->lru, &folio_list);
3367 cond_resched();
3368 }
3369
3370 prep_and_add_allocated_folios(h, &folio_list);
3371}
3372
3373static unsigned long __init hugetlb_gigantic_pages_alloc_boot(struct hstate *h)
3374{
3375 unsigned long i;
3376
3377 for (i = 0; i < h->max_huge_pages; ++i) {
3378 if (!alloc_bootmem_huge_page(h, NUMA_NO_NODE))
3379 break;
3380 cond_resched();
3381 }
3382
3383 return i;
3384}
3385
3386static unsigned long __init hugetlb_pages_alloc_boot(struct hstate *h)
3387{
3388 struct padata_mt_job job = {
3389 .fn_arg = h,
3390 .align = 1,
3391 .numa_aware = true
3392 };
3393
3394 job.thread_fn = hugetlb_pages_alloc_boot_node;
3395 job.start = 0;
3396 job.size = h->max_huge_pages;
3397
3398 /*
3399 * job.max_threads is twice the num_node_state(N_MEMORY),
3400 *
3401 * Tests below indicate that a multiplier of 2 significantly improves
3402 * performance, and although larger values also provide improvements,
3403 * the gains are marginal.
3404 *
3405 * Therefore, choosing 2 as the multiplier strikes a good balance between
3406 * enhancing parallel processing capabilities and maintaining efficient
3407 * resource management.
3408 *
3409 * +------------+-------+-------+-------+-------+-------+
3410 * | multiplier | 1 | 2 | 3 | 4 | 5 |
3411 * +------------+-------+-------+-------+-------+-------+
3412 * | 256G 2node | 358ms | 215ms | 157ms | 134ms | 126ms |
3413 * | 2T 4node | 979ms | 679ms | 543ms | 489ms | 481ms |
3414 * | 50G 2node | 71ms | 44ms | 37ms | 30ms | 31ms |
3415 * +------------+-------+-------+-------+-------+-------+
3416 */
3417 job.max_threads = num_node_state(N_MEMORY) * 2;
3418 job.min_chunk = h->max_huge_pages / num_node_state(N_MEMORY) / 2;
3419 padata_do_multithreaded(&job);
3420
3421 return h->nr_huge_pages;
3422}
3423
3424/*
3425 * NOTE: this routine is called in different contexts for gigantic and
3426 * non-gigantic pages.
3427 * - For gigantic pages, this is called early in the boot process and
3428 * pages are allocated from memblock allocated or something similar.
3429 * Gigantic pages are actually added to pools later with the routine
3430 * gather_bootmem_prealloc.
3431 * - For non-gigantic pages, this is called later in the boot process after
3432 * all of mm is up and functional. Pages are allocated from buddy and
3433 * then added to hugetlb pools.
3434 */
3435static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
3436{
3437 unsigned long allocated;
3438 static bool initialized __initdata;
3439
3440 /* skip gigantic hugepages allocation if hugetlb_cma enabled */
3441 if (hstate_is_gigantic(h) && hugetlb_cma_size) {
3442 pr_warn_once("HugeTLB: hugetlb_cma is enabled, skip boot time allocation\n");
3443 return;
3444 }
3445
3446 /* hugetlb_hstate_alloc_pages will be called many times, initialize huge_boot_pages once */
3447 if (!initialized) {
3448 int i = 0;
3449
3450 for (i = 0; i < MAX_NUMNODES; i++)
3451 INIT_LIST_HEAD(&huge_boot_pages[i]);
3452 initialized = true;
3453 }
3454
3455 /* do node specific alloc */
3456 if (hugetlb_hstate_alloc_pages_specific_nodes(h))
3457 return;
3458
3459 /* below will do all node balanced alloc */
3460 if (hstate_is_gigantic(h))
3461 allocated = hugetlb_gigantic_pages_alloc_boot(h);
3462 else
3463 allocated = hugetlb_pages_alloc_boot(h);
3464
3465 hugetlb_hstate_alloc_pages_errcheck(allocated, h);
3466}
3467
3468static void __init hugetlb_init_hstates(void)
3469{
3470 struct hstate *h, *h2;
3471
3472 for_each_hstate(h) {
3473 /* oversize hugepages were init'ed in early boot */
3474 if (!hstate_is_gigantic(h))
3475 hugetlb_hstate_alloc_pages(h);
3476
3477 /*
3478 * Set demote order for each hstate. Note that
3479 * h->demote_order is initially 0.
3480 * - We can not demote gigantic pages if runtime freeing
3481 * is not supported, so skip this.
3482 * - If CMA allocation is possible, we can not demote
3483 * HUGETLB_PAGE_ORDER or smaller size pages.
3484 */
3485 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
3486 continue;
3487 if (hugetlb_cma_size && h->order <= HUGETLB_PAGE_ORDER)
3488 continue;
3489 for_each_hstate(h2) {
3490 if (h2 == h)
3491 continue;
3492 if (h2->order < h->order &&
3493 h2->order > h->demote_order)
3494 h->demote_order = h2->order;
3495 }
3496 }
3497}
3498
3499static void __init report_hugepages(void)
3500{
3501 struct hstate *h;
3502
3503 for_each_hstate(h) {
3504 char buf[32];
3505
3506 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3507 pr_info("HugeTLB: registered %s page size, pre-allocated %ld pages\n",
3508 buf, h->free_huge_pages);
3509 pr_info("HugeTLB: %d KiB vmemmap can be freed for a %s page\n",
3510 hugetlb_vmemmap_optimizable_size(h) / SZ_1K, buf);
3511 }
3512}
3513
3514#ifdef CONFIG_HIGHMEM
3515static void try_to_free_low(struct hstate *h, unsigned long count,
3516 nodemask_t *nodes_allowed)
3517{
3518 int i;
3519 LIST_HEAD(page_list);
3520
3521 lockdep_assert_held(&hugetlb_lock);
3522 if (hstate_is_gigantic(h))
3523 return;
3524
3525 /*
3526 * Collect pages to be freed on a list, and free after dropping lock
3527 */
3528 for_each_node_mask(i, *nodes_allowed) {
3529 struct folio *folio, *next;
3530 struct list_head *freel = &h->hugepage_freelists[i];
3531 list_for_each_entry_safe(folio, next, freel, lru) {
3532 if (count >= h->nr_huge_pages)
3533 goto out;
3534 if (folio_test_highmem(folio))
3535 continue;
3536 remove_hugetlb_folio(h, folio, false);
3537 list_add(&folio->lru, &page_list);
3538 }
3539 }
3540
3541out:
3542 spin_unlock_irq(&hugetlb_lock);
3543 update_and_free_pages_bulk(h, &page_list);
3544 spin_lock_irq(&hugetlb_lock);
3545}
3546#else
3547static inline void try_to_free_low(struct hstate *h, unsigned long count,
3548 nodemask_t *nodes_allowed)
3549{
3550}
3551#endif
3552
3553/*
3554 * Increment or decrement surplus_huge_pages. Keep node-specific counters
3555 * balanced by operating on them in a round-robin fashion.
3556 * Returns 1 if an adjustment was made.
3557 */
3558static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
3559 int delta)
3560{
3561 int nr_nodes, node;
3562
3563 lockdep_assert_held(&hugetlb_lock);
3564 VM_BUG_ON(delta != -1 && delta != 1);
3565
3566 if (delta < 0) {
3567 for_each_node_mask_to_alloc(&h->next_nid_to_alloc, nr_nodes, node, nodes_allowed) {
3568 if (h->surplus_huge_pages_node[node])
3569 goto found;
3570 }
3571 } else {
3572 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
3573 if (h->surplus_huge_pages_node[node] <
3574 h->nr_huge_pages_node[node])
3575 goto found;
3576 }
3577 }
3578 return 0;
3579
3580found:
3581 h->surplus_huge_pages += delta;
3582 h->surplus_huge_pages_node[node] += delta;
3583 return 1;
3584}
3585
3586#define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
3587static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid,
3588 nodemask_t *nodes_allowed)
3589{
3590 unsigned long min_count;
3591 unsigned long allocated;
3592 struct folio *folio;
3593 LIST_HEAD(page_list);
3594 NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL);
3595
3596 /*
3597 * Bit mask controlling how hard we retry per-node allocations.
3598 * If we can not allocate the bit mask, do not attempt to allocate
3599 * the requested huge pages.
3600 */
3601 if (node_alloc_noretry)
3602 nodes_clear(*node_alloc_noretry);
3603 else
3604 return -ENOMEM;
3605
3606 /*
3607 * resize_lock mutex prevents concurrent adjustments to number of
3608 * pages in hstate via the proc/sysfs interfaces.
3609 */
3610 mutex_lock(&h->resize_lock);
3611 flush_free_hpage_work(h);
3612 spin_lock_irq(&hugetlb_lock);
3613
3614 /*
3615 * Check for a node specific request.
3616 * Changing node specific huge page count may require a corresponding
3617 * change to the global count. In any case, the passed node mask
3618 * (nodes_allowed) will restrict alloc/free to the specified node.
3619 */
3620 if (nid != NUMA_NO_NODE) {
3621 unsigned long old_count = count;
3622
3623 count += persistent_huge_pages(h) -
3624 (h->nr_huge_pages_node[nid] -
3625 h->surplus_huge_pages_node[nid]);
3626 /*
3627 * User may have specified a large count value which caused the
3628 * above calculation to overflow. In this case, they wanted
3629 * to allocate as many huge pages as possible. Set count to
3630 * largest possible value to align with their intention.
3631 */
3632 if (count < old_count)
3633 count = ULONG_MAX;
3634 }
3635
3636 /*
3637 * Gigantic pages runtime allocation depend on the capability for large
3638 * page range allocation.
3639 * If the system does not provide this feature, return an error when
3640 * the user tries to allocate gigantic pages but let the user free the
3641 * boottime allocated gigantic pages.
3642 */
3643 if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) {
3644 if (count > persistent_huge_pages(h)) {
3645 spin_unlock_irq(&hugetlb_lock);
3646 mutex_unlock(&h->resize_lock);
3647 NODEMASK_FREE(node_alloc_noretry);
3648 return -EINVAL;
3649 }
3650 /* Fall through to decrease pool */
3651 }
3652
3653 /*
3654 * Increase the pool size
3655 * First take pages out of surplus state. Then make up the
3656 * remaining difference by allocating fresh huge pages.
3657 *
3658 * We might race with alloc_surplus_hugetlb_folio() here and be unable
3659 * to convert a surplus huge page to a normal huge page. That is
3660 * not critical, though, it just means the overall size of the
3661 * pool might be one hugepage larger than it needs to be, but
3662 * within all the constraints specified by the sysctls.
3663 */
3664 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
3665 if (!adjust_pool_surplus(h, nodes_allowed, -1))
3666 break;
3667 }
3668
3669 allocated = 0;
3670 while (count > (persistent_huge_pages(h) + allocated)) {
3671 /*
3672 * If this allocation races such that we no longer need the
3673 * page, free_huge_folio will handle it by freeing the page
3674 * and reducing the surplus.
3675 */
3676 spin_unlock_irq(&hugetlb_lock);
3677
3678 /* yield cpu to avoid soft lockup */
3679 cond_resched();
3680
3681 folio = alloc_pool_huge_folio(h, nodes_allowed,
3682 node_alloc_noretry,
3683 &h->next_nid_to_alloc);
3684 if (!folio) {
3685 prep_and_add_allocated_folios(h, &page_list);
3686 spin_lock_irq(&hugetlb_lock);
3687 goto out;
3688 }
3689
3690 list_add(&folio->lru, &page_list);
3691 allocated++;
3692
3693 /* Bail for signals. Probably ctrl-c from user */
3694 if (signal_pending(current)) {
3695 prep_and_add_allocated_folios(h, &page_list);
3696 spin_lock_irq(&hugetlb_lock);
3697 goto out;
3698 }
3699
3700 spin_lock_irq(&hugetlb_lock);
3701 }
3702
3703 /* Add allocated pages to the pool */
3704 if (!list_empty(&page_list)) {
3705 spin_unlock_irq(&hugetlb_lock);
3706 prep_and_add_allocated_folios(h, &page_list);
3707 spin_lock_irq(&hugetlb_lock);
3708 }
3709
3710 /*
3711 * Decrease the pool size
3712 * First return free pages to the buddy allocator (being careful
3713 * to keep enough around to satisfy reservations). Then place
3714 * pages into surplus state as needed so the pool will shrink
3715 * to the desired size as pages become free.
3716 *
3717 * By placing pages into the surplus state independent of the
3718 * overcommit value, we are allowing the surplus pool size to
3719 * exceed overcommit. There are few sane options here. Since
3720 * alloc_surplus_hugetlb_folio() is checking the global counter,
3721 * though, we'll note that we're not allowed to exceed surplus
3722 * and won't grow the pool anywhere else. Not until one of the
3723 * sysctls are changed, or the surplus pages go out of use.
3724 */
3725 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
3726 min_count = max(count, min_count);
3727 try_to_free_low(h, min_count, nodes_allowed);
3728
3729 /*
3730 * Collect pages to be removed on list without dropping lock
3731 */
3732 while (min_count < persistent_huge_pages(h)) {
3733 folio = remove_pool_hugetlb_folio(h, nodes_allowed, 0);
3734 if (!folio)
3735 break;
3736
3737 list_add(&folio->lru, &page_list);
3738 }
3739 /* free the pages after dropping lock */
3740 spin_unlock_irq(&hugetlb_lock);
3741 update_and_free_pages_bulk(h, &page_list);
3742 flush_free_hpage_work(h);
3743 spin_lock_irq(&hugetlb_lock);
3744
3745 while (count < persistent_huge_pages(h)) {
3746 if (!adjust_pool_surplus(h, nodes_allowed, 1))
3747 break;
3748 }
3749out:
3750 h->max_huge_pages = persistent_huge_pages(h);
3751 spin_unlock_irq(&hugetlb_lock);
3752 mutex_unlock(&h->resize_lock);
3753
3754 NODEMASK_FREE(node_alloc_noretry);
3755
3756 return 0;
3757}
3758
3759static long demote_free_hugetlb_folios(struct hstate *src, struct hstate *dst,
3760 struct list_head *src_list)
3761{
3762 long rc;
3763 struct folio *folio, *next;
3764 LIST_HEAD(dst_list);
3765 LIST_HEAD(ret_list);
3766
3767 rc = hugetlb_vmemmap_restore_folios(src, src_list, &ret_list);
3768 list_splice_init(&ret_list, src_list);
3769
3770 /*
3771 * Taking target hstate mutex synchronizes with set_max_huge_pages.
3772 * Without the mutex, pages added to target hstate could be marked
3773 * as surplus.
3774 *
3775 * Note that we already hold src->resize_lock. To prevent deadlock,
3776 * use the convention of always taking larger size hstate mutex first.
3777 */
3778 mutex_lock(&dst->resize_lock);
3779
3780 list_for_each_entry_safe(folio, next, src_list, lru) {
3781 int i;
3782
3783 if (folio_test_hugetlb_vmemmap_optimized(folio))
3784 continue;
3785
3786 list_del(&folio->lru);
3787
3788 split_page_owner(&folio->page, huge_page_order(src), huge_page_order(dst));
3789 pgalloc_tag_split(folio, huge_page_order(src), huge_page_order(dst));
3790
3791 for (i = 0; i < pages_per_huge_page(src); i += pages_per_huge_page(dst)) {
3792 struct page *page = folio_page(folio, i);
3793
3794 page->mapping = NULL;
3795 clear_compound_head(page);
3796 prep_compound_page(page, dst->order);
3797
3798 init_new_hugetlb_folio(dst, page_folio(page));
3799 list_add(&page->lru, &dst_list);
3800 }
3801 }
3802
3803 prep_and_add_allocated_folios(dst, &dst_list);
3804
3805 mutex_unlock(&dst->resize_lock);
3806
3807 return rc;
3808}
3809
3810static long demote_pool_huge_page(struct hstate *src, nodemask_t *nodes_allowed,
3811 unsigned long nr_to_demote)
3812 __must_hold(&hugetlb_lock)
3813{
3814 int nr_nodes, node;
3815 struct hstate *dst;
3816 long rc = 0;
3817 long nr_demoted = 0;
3818
3819 lockdep_assert_held(&hugetlb_lock);
3820
3821 /* We should never get here if no demote order */
3822 if (!src->demote_order) {
3823 pr_warn("HugeTLB: NULL demote order passed to demote_pool_huge_page.\n");
3824 return -EINVAL; /* internal error */
3825 }
3826 dst = size_to_hstate(PAGE_SIZE << src->demote_order);
3827
3828 for_each_node_mask_to_free(src, nr_nodes, node, nodes_allowed) {
3829 LIST_HEAD(list);
3830 struct folio *folio, *next;
3831
3832 list_for_each_entry_safe(folio, next, &src->hugepage_freelists[node], lru) {
3833 if (folio_test_hwpoison(folio))
3834 continue;
3835
3836 remove_hugetlb_folio(src, folio, false);
3837 list_add(&folio->lru, &list);
3838
3839 if (++nr_demoted == nr_to_demote)
3840 break;
3841 }
3842
3843 spin_unlock_irq(&hugetlb_lock);
3844
3845 rc = demote_free_hugetlb_folios(src, dst, &list);
3846
3847 spin_lock_irq(&hugetlb_lock);
3848
3849 list_for_each_entry_safe(folio, next, &list, lru) {
3850 list_del(&folio->lru);
3851 add_hugetlb_folio(src, folio, false);
3852
3853 nr_demoted--;
3854 }
3855
3856 if (rc < 0 || nr_demoted == nr_to_demote)
3857 break;
3858 }
3859
3860 /*
3861 * Not absolutely necessary, but for consistency update max_huge_pages
3862 * based on pool changes for the demoted page.
3863 */
3864 src->max_huge_pages -= nr_demoted;
3865 dst->max_huge_pages += nr_demoted << (huge_page_order(src) - huge_page_order(dst));
3866
3867 if (rc < 0)
3868 return rc;
3869
3870 if (nr_demoted)
3871 return nr_demoted;
3872 /*
3873 * Only way to get here is if all pages on free lists are poisoned.
3874 * Return -EBUSY so that caller will not retry.
3875 */
3876 return -EBUSY;
3877}
3878
3879#define HSTATE_ATTR_RO(_name) \
3880 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
3881
3882#define HSTATE_ATTR_WO(_name) \
3883 static struct kobj_attribute _name##_attr = __ATTR_WO(_name)
3884
3885#define HSTATE_ATTR(_name) \
3886 static struct kobj_attribute _name##_attr = __ATTR_RW(_name)
3887
3888static struct kobject *hugepages_kobj;
3889static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
3890
3891static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
3892
3893static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
3894{
3895 int i;
3896
3897 for (i = 0; i < HUGE_MAX_HSTATE; i++)
3898 if (hstate_kobjs[i] == kobj) {
3899 if (nidp)
3900 *nidp = NUMA_NO_NODE;
3901 return &hstates[i];
3902 }
3903
3904 return kobj_to_node_hstate(kobj, nidp);
3905}
3906
3907static ssize_t nr_hugepages_show_common(struct kobject *kobj,
3908 struct kobj_attribute *attr, char *buf)
3909{
3910 struct hstate *h;
3911 unsigned long nr_huge_pages;
3912 int nid;
3913
3914 h = kobj_to_hstate(kobj, &nid);
3915 if (nid == NUMA_NO_NODE)
3916 nr_huge_pages = h->nr_huge_pages;
3917 else
3918 nr_huge_pages = h->nr_huge_pages_node[nid];
3919
3920 return sysfs_emit(buf, "%lu\n", nr_huge_pages);
3921}
3922
3923static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
3924 struct hstate *h, int nid,
3925 unsigned long count, size_t len)
3926{
3927 int err;
3928 nodemask_t nodes_allowed, *n_mask;
3929
3930 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
3931 return -EINVAL;
3932
3933 if (nid == NUMA_NO_NODE) {
3934 /*
3935 * global hstate attribute
3936 */
3937 if (!(obey_mempolicy &&
3938 init_nodemask_of_mempolicy(&nodes_allowed)))
3939 n_mask = &node_states[N_MEMORY];
3940 else
3941 n_mask = &nodes_allowed;
3942 } else {
3943 /*
3944 * Node specific request. count adjustment happens in
3945 * set_max_huge_pages() after acquiring hugetlb_lock.
3946 */
3947 init_nodemask_of_node(&nodes_allowed, nid);
3948 n_mask = &nodes_allowed;
3949 }
3950
3951 err = set_max_huge_pages(h, count, nid, n_mask);
3952
3953 return err ? err : len;
3954}
3955
3956static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
3957 struct kobject *kobj, const char *buf,
3958 size_t len)
3959{
3960 struct hstate *h;
3961 unsigned long count;
3962 int nid;
3963 int err;
3964
3965 err = kstrtoul(buf, 10, &count);
3966 if (err)
3967 return err;
3968
3969 h = kobj_to_hstate(kobj, &nid);
3970 return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
3971}
3972
3973static ssize_t nr_hugepages_show(struct kobject *kobj,
3974 struct kobj_attribute *attr, char *buf)
3975{
3976 return nr_hugepages_show_common(kobj, attr, buf);
3977}
3978
3979static ssize_t nr_hugepages_store(struct kobject *kobj,
3980 struct kobj_attribute *attr, const char *buf, size_t len)
3981{
3982 return nr_hugepages_store_common(false, kobj, buf, len);
3983}
3984HSTATE_ATTR(nr_hugepages);
3985
3986#ifdef CONFIG_NUMA
3987
3988/*
3989 * hstate attribute for optionally mempolicy-based constraint on persistent
3990 * huge page alloc/free.
3991 */
3992static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
3993 struct kobj_attribute *attr,
3994 char *buf)
3995{
3996 return nr_hugepages_show_common(kobj, attr, buf);
3997}
3998
3999static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
4000 struct kobj_attribute *attr, const char *buf, size_t len)
4001{
4002 return nr_hugepages_store_common(true, kobj, buf, len);
4003}
4004HSTATE_ATTR(nr_hugepages_mempolicy);
4005#endif
4006
4007
4008static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
4009 struct kobj_attribute *attr, char *buf)
4010{
4011 struct hstate *h = kobj_to_hstate(kobj, NULL);
4012 return sysfs_emit(buf, "%lu\n", h->nr_overcommit_huge_pages);
4013}
4014
4015static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
4016 struct kobj_attribute *attr, const char *buf, size_t count)
4017{
4018 int err;
4019 unsigned long input;
4020 struct hstate *h = kobj_to_hstate(kobj, NULL);
4021
4022 if (hstate_is_gigantic(h))
4023 return -EINVAL;
4024
4025 err = kstrtoul(buf, 10, &input);
4026 if (err)
4027 return err;
4028
4029 spin_lock_irq(&hugetlb_lock);
4030 h->nr_overcommit_huge_pages = input;
4031 spin_unlock_irq(&hugetlb_lock);
4032
4033 return count;
4034}
4035HSTATE_ATTR(nr_overcommit_hugepages);
4036
4037static ssize_t free_hugepages_show(struct kobject *kobj,
4038 struct kobj_attribute *attr, char *buf)
4039{
4040 struct hstate *h;
4041 unsigned long free_huge_pages;
4042 int nid;
4043
4044 h = kobj_to_hstate(kobj, &nid);
4045 if (nid == NUMA_NO_NODE)
4046 free_huge_pages = h->free_huge_pages;
4047 else
4048 free_huge_pages = h->free_huge_pages_node[nid];
4049
4050 return sysfs_emit(buf, "%lu\n", free_huge_pages);
4051}
4052HSTATE_ATTR_RO(free_hugepages);
4053
4054static ssize_t resv_hugepages_show(struct kobject *kobj,
4055 struct kobj_attribute *attr, char *buf)
4056{
4057 struct hstate *h = kobj_to_hstate(kobj, NULL);
4058 return sysfs_emit(buf, "%lu\n", h->resv_huge_pages);
4059}
4060HSTATE_ATTR_RO(resv_hugepages);
4061
4062static ssize_t surplus_hugepages_show(struct kobject *kobj,
4063 struct kobj_attribute *attr, char *buf)
4064{
4065 struct hstate *h;
4066 unsigned long surplus_huge_pages;
4067 int nid;
4068
4069 h = kobj_to_hstate(kobj, &nid);
4070 if (nid == NUMA_NO_NODE)
4071 surplus_huge_pages = h->surplus_huge_pages;
4072 else
4073 surplus_huge_pages = h->surplus_huge_pages_node[nid];
4074
4075 return sysfs_emit(buf, "%lu\n", surplus_huge_pages);
4076}
4077HSTATE_ATTR_RO(surplus_hugepages);
4078
4079static ssize_t demote_store(struct kobject *kobj,
4080 struct kobj_attribute *attr, const char *buf, size_t len)
4081{
4082 unsigned long nr_demote;
4083 unsigned long nr_available;
4084 nodemask_t nodes_allowed, *n_mask;
4085 struct hstate *h;
4086 int err;
4087 int nid;
4088
4089 err = kstrtoul(buf, 10, &nr_demote);
4090 if (err)
4091 return err;
4092 h = kobj_to_hstate(kobj, &nid);
4093
4094 if (nid != NUMA_NO_NODE) {
4095 init_nodemask_of_node(&nodes_allowed, nid);
4096 n_mask = &nodes_allowed;
4097 } else {
4098 n_mask = &node_states[N_MEMORY];
4099 }
4100
4101 /* Synchronize with other sysfs operations modifying huge pages */
4102 mutex_lock(&h->resize_lock);
4103 spin_lock_irq(&hugetlb_lock);
4104
4105 while (nr_demote) {
4106 long rc;
4107
4108 /*
4109 * Check for available pages to demote each time thorough the
4110 * loop as demote_pool_huge_page will drop hugetlb_lock.
4111 */
4112 if (nid != NUMA_NO_NODE)
4113 nr_available = h->free_huge_pages_node[nid];
4114 else
4115 nr_available = h->free_huge_pages;
4116 nr_available -= h->resv_huge_pages;
4117 if (!nr_available)
4118 break;
4119
4120 rc = demote_pool_huge_page(h, n_mask, nr_demote);
4121 if (rc < 0) {
4122 err = rc;
4123 break;
4124 }
4125
4126 nr_demote -= rc;
4127 }
4128
4129 spin_unlock_irq(&hugetlb_lock);
4130 mutex_unlock(&h->resize_lock);
4131
4132 if (err)
4133 return err;
4134 return len;
4135}
4136HSTATE_ATTR_WO(demote);
4137
4138static ssize_t demote_size_show(struct kobject *kobj,
4139 struct kobj_attribute *attr, char *buf)
4140{
4141 struct hstate *h = kobj_to_hstate(kobj, NULL);
4142 unsigned long demote_size = (PAGE_SIZE << h->demote_order) / SZ_1K;
4143
4144 return sysfs_emit(buf, "%lukB\n", demote_size);
4145}
4146
4147static ssize_t demote_size_store(struct kobject *kobj,
4148 struct kobj_attribute *attr,
4149 const char *buf, size_t count)
4150{
4151 struct hstate *h, *demote_hstate;
4152 unsigned long demote_size;
4153 unsigned int demote_order;
4154
4155 demote_size = (unsigned long)memparse(buf, NULL);
4156
4157 demote_hstate = size_to_hstate(demote_size);
4158 if (!demote_hstate)
4159 return -EINVAL;
4160 demote_order = demote_hstate->order;
4161 if (demote_order < HUGETLB_PAGE_ORDER)
4162 return -EINVAL;
4163
4164 /* demote order must be smaller than hstate order */
4165 h = kobj_to_hstate(kobj, NULL);
4166 if (demote_order >= h->order)
4167 return -EINVAL;
4168
4169 /* resize_lock synchronizes access to demote size and writes */
4170 mutex_lock(&h->resize_lock);
4171 h->demote_order = demote_order;
4172 mutex_unlock(&h->resize_lock);
4173
4174 return count;
4175}
4176HSTATE_ATTR(demote_size);
4177
4178static struct attribute *hstate_attrs[] = {
4179 &nr_hugepages_attr.attr,
4180 &nr_overcommit_hugepages_attr.attr,
4181 &free_hugepages_attr.attr,
4182 &resv_hugepages_attr.attr,
4183 &surplus_hugepages_attr.attr,
4184#ifdef CONFIG_NUMA
4185 &nr_hugepages_mempolicy_attr.attr,
4186#endif
4187 NULL,
4188};
4189
4190static const struct attribute_group hstate_attr_group = {
4191 .attrs = hstate_attrs,
4192};
4193
4194static struct attribute *hstate_demote_attrs[] = {
4195 &demote_size_attr.attr,
4196 &demote_attr.attr,
4197 NULL,
4198};
4199
4200static const struct attribute_group hstate_demote_attr_group = {
4201 .attrs = hstate_demote_attrs,
4202};
4203
4204static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
4205 struct kobject **hstate_kobjs,
4206 const struct attribute_group *hstate_attr_group)
4207{
4208 int retval;
4209 int hi = hstate_index(h);
4210
4211 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
4212 if (!hstate_kobjs[hi])
4213 return -ENOMEM;
4214
4215 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
4216 if (retval) {
4217 kobject_put(hstate_kobjs[hi]);
4218 hstate_kobjs[hi] = NULL;
4219 return retval;
4220 }
4221
4222 if (h->demote_order) {
4223 retval = sysfs_create_group(hstate_kobjs[hi],
4224 &hstate_demote_attr_group);
4225 if (retval) {
4226 pr_warn("HugeTLB unable to create demote interfaces for %s\n", h->name);
4227 sysfs_remove_group(hstate_kobjs[hi], hstate_attr_group);
4228 kobject_put(hstate_kobjs[hi]);
4229 hstate_kobjs[hi] = NULL;
4230 return retval;
4231 }
4232 }
4233
4234 return 0;
4235}
4236
4237#ifdef CONFIG_NUMA
4238static bool hugetlb_sysfs_initialized __ro_after_init;
4239
4240/*
4241 * node_hstate/s - associate per node hstate attributes, via their kobjects,
4242 * with node devices in node_devices[] using a parallel array. The array
4243 * index of a node device or _hstate == node id.
4244 * This is here to avoid any static dependency of the node device driver, in
4245 * the base kernel, on the hugetlb module.
4246 */
4247struct node_hstate {
4248 struct kobject *hugepages_kobj;
4249 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
4250};
4251static struct node_hstate node_hstates[MAX_NUMNODES];
4252
4253/*
4254 * A subset of global hstate attributes for node devices
4255 */
4256static struct attribute *per_node_hstate_attrs[] = {
4257 &nr_hugepages_attr.attr,
4258 &free_hugepages_attr.attr,
4259 &surplus_hugepages_attr.attr,
4260 NULL,
4261};
4262
4263static const struct attribute_group per_node_hstate_attr_group = {
4264 .attrs = per_node_hstate_attrs,
4265};
4266
4267/*
4268 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
4269 * Returns node id via non-NULL nidp.
4270 */
4271static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
4272{
4273 int nid;
4274
4275 for (nid = 0; nid < nr_node_ids; nid++) {
4276 struct node_hstate *nhs = &node_hstates[nid];
4277 int i;
4278 for (i = 0; i < HUGE_MAX_HSTATE; i++)
4279 if (nhs->hstate_kobjs[i] == kobj) {
4280 if (nidp)
4281 *nidp = nid;
4282 return &hstates[i];
4283 }
4284 }
4285
4286 BUG();
4287 return NULL;
4288}
4289
4290/*
4291 * Unregister hstate attributes from a single node device.
4292 * No-op if no hstate attributes attached.
4293 */
4294void hugetlb_unregister_node(struct node *node)
4295{
4296 struct hstate *h;
4297 struct node_hstate *nhs = &node_hstates[node->dev.id];
4298
4299 if (!nhs->hugepages_kobj)
4300 return; /* no hstate attributes */
4301
4302 for_each_hstate(h) {
4303 int idx = hstate_index(h);
4304 struct kobject *hstate_kobj = nhs->hstate_kobjs[idx];
4305
4306 if (!hstate_kobj)
4307 continue;
4308 if (h->demote_order)
4309 sysfs_remove_group(hstate_kobj, &hstate_demote_attr_group);
4310 sysfs_remove_group(hstate_kobj, &per_node_hstate_attr_group);
4311 kobject_put(hstate_kobj);
4312 nhs->hstate_kobjs[idx] = NULL;
4313 }
4314
4315 kobject_put(nhs->hugepages_kobj);
4316 nhs->hugepages_kobj = NULL;
4317}
4318
4319
4320/*
4321 * Register hstate attributes for a single node device.
4322 * No-op if attributes already registered.
4323 */
4324void hugetlb_register_node(struct node *node)
4325{
4326 struct hstate *h;
4327 struct node_hstate *nhs = &node_hstates[node->dev.id];
4328 int err;
4329
4330 if (!hugetlb_sysfs_initialized)
4331 return;
4332
4333 if (nhs->hugepages_kobj)
4334 return; /* already allocated */
4335
4336 nhs->hugepages_kobj = kobject_create_and_add("hugepages",
4337 &node->dev.kobj);
4338 if (!nhs->hugepages_kobj)
4339 return;
4340
4341 for_each_hstate(h) {
4342 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
4343 nhs->hstate_kobjs,
4344 &per_node_hstate_attr_group);
4345 if (err) {
4346 pr_err("HugeTLB: Unable to add hstate %s for node %d\n",
4347 h->name, node->dev.id);
4348 hugetlb_unregister_node(node);
4349 break;
4350 }
4351 }
4352}
4353
4354/*
4355 * hugetlb init time: register hstate attributes for all registered node
4356 * devices of nodes that have memory. All on-line nodes should have
4357 * registered their associated device by this time.
4358 */
4359static void __init hugetlb_register_all_nodes(void)
4360{
4361 int nid;
4362
4363 for_each_online_node(nid)
4364 hugetlb_register_node(node_devices[nid]);
4365}
4366#else /* !CONFIG_NUMA */
4367
4368static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
4369{
4370 BUG();
4371 if (nidp)
4372 *nidp = -1;
4373 return NULL;
4374}
4375
4376static void hugetlb_register_all_nodes(void) { }
4377
4378#endif
4379
4380#ifdef CONFIG_CMA
4381static void __init hugetlb_cma_check(void);
4382#else
4383static inline __init void hugetlb_cma_check(void)
4384{
4385}
4386#endif
4387
4388static void __init hugetlb_sysfs_init(void)
4389{
4390 struct hstate *h;
4391 int err;
4392
4393 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
4394 if (!hugepages_kobj)
4395 return;
4396
4397 for_each_hstate(h) {
4398 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
4399 hstate_kobjs, &hstate_attr_group);
4400 if (err)
4401 pr_err("HugeTLB: Unable to add hstate %s", h->name);
4402 }
4403
4404#ifdef CONFIG_NUMA
4405 hugetlb_sysfs_initialized = true;
4406#endif
4407 hugetlb_register_all_nodes();
4408}
4409
4410#ifdef CONFIG_SYSCTL
4411static void hugetlb_sysctl_init(void);
4412#else
4413static inline void hugetlb_sysctl_init(void) { }
4414#endif
4415
4416static int __init hugetlb_init(void)
4417{
4418 int i;
4419
4420 BUILD_BUG_ON(sizeof_field(struct page, private) * BITS_PER_BYTE <
4421 __NR_HPAGEFLAGS);
4422
4423 if (!hugepages_supported()) {
4424 if (hugetlb_max_hstate || default_hstate_max_huge_pages)
4425 pr_warn("HugeTLB: huge pages not supported, ignoring associated command-line parameters\n");
4426 return 0;
4427 }
4428
4429 /*
4430 * Make sure HPAGE_SIZE (HUGETLB_PAGE_ORDER) hstate exists. Some
4431 * architectures depend on setup being done here.
4432 */
4433 hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
4434 if (!parsed_default_hugepagesz) {
4435 /*
4436 * If we did not parse a default huge page size, set
4437 * default_hstate_idx to HPAGE_SIZE hstate. And, if the
4438 * number of huge pages for this default size was implicitly
4439 * specified, set that here as well.
4440 * Note that the implicit setting will overwrite an explicit
4441 * setting. A warning will be printed in this case.
4442 */
4443 default_hstate_idx = hstate_index(size_to_hstate(HPAGE_SIZE));
4444 if (default_hstate_max_huge_pages) {
4445 if (default_hstate.max_huge_pages) {
4446 char buf[32];
4447
4448 string_get_size(huge_page_size(&default_hstate),
4449 1, STRING_UNITS_2, buf, 32);
4450 pr_warn("HugeTLB: Ignoring hugepages=%lu associated with %s page size\n",
4451 default_hstate.max_huge_pages, buf);
4452 pr_warn("HugeTLB: Using hugepages=%lu for number of default huge pages\n",
4453 default_hstate_max_huge_pages);
4454 }
4455 default_hstate.max_huge_pages =
4456 default_hstate_max_huge_pages;
4457
4458 for_each_online_node(i)
4459 default_hstate.max_huge_pages_node[i] =
4460 default_hugepages_in_node[i];
4461 }
4462 }
4463
4464 hugetlb_cma_check();
4465 hugetlb_init_hstates();
4466 gather_bootmem_prealloc();
4467 report_hugepages();
4468
4469 hugetlb_sysfs_init();
4470 hugetlb_cgroup_file_init();
4471 hugetlb_sysctl_init();
4472
4473#ifdef CONFIG_SMP
4474 num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
4475#else
4476 num_fault_mutexes = 1;
4477#endif
4478 hugetlb_fault_mutex_table =
4479 kmalloc_array(num_fault_mutexes, sizeof(struct mutex),
4480 GFP_KERNEL);
4481 BUG_ON(!hugetlb_fault_mutex_table);
4482
4483 for (i = 0; i < num_fault_mutexes; i++)
4484 mutex_init(&hugetlb_fault_mutex_table[i]);
4485 return 0;
4486}
4487subsys_initcall(hugetlb_init);
4488
4489/* Overwritten by architectures with more huge page sizes */
4490bool __init __attribute((weak)) arch_hugetlb_valid_size(unsigned long size)
4491{
4492 return size == HPAGE_SIZE;
4493}
4494
4495void __init hugetlb_add_hstate(unsigned int order)
4496{
4497 struct hstate *h;
4498 unsigned long i;
4499
4500 if (size_to_hstate(PAGE_SIZE << order)) {
4501 return;
4502 }
4503 BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
4504 BUG_ON(order < order_base_2(__NR_USED_SUBPAGE));
4505 h = &hstates[hugetlb_max_hstate++];
4506 __mutex_init(&h->resize_lock, "resize mutex", &h->resize_key);
4507 h->order = order;
4508 h->mask = ~(huge_page_size(h) - 1);
4509 for (i = 0; i < MAX_NUMNODES; ++i)
4510 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
4511 INIT_LIST_HEAD(&h->hugepage_activelist);
4512 h->next_nid_to_alloc = first_memory_node;
4513 h->next_nid_to_free = first_memory_node;
4514 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
4515 huge_page_size(h)/SZ_1K);
4516
4517 parsed_hstate = h;
4518}
4519
4520bool __init __weak hugetlb_node_alloc_supported(void)
4521{
4522 return true;
4523}
4524
4525static void __init hugepages_clear_pages_in_node(void)
4526{
4527 if (!hugetlb_max_hstate) {
4528 default_hstate_max_huge_pages = 0;
4529 memset(default_hugepages_in_node, 0,
4530 sizeof(default_hugepages_in_node));
4531 } else {
4532 parsed_hstate->max_huge_pages = 0;
4533 memset(parsed_hstate->max_huge_pages_node, 0,
4534 sizeof(parsed_hstate->max_huge_pages_node));
4535 }
4536}
4537
4538/*
4539 * hugepages command line processing
4540 * hugepages normally follows a valid hugepagsz or default_hugepagsz
4541 * specification. If not, ignore the hugepages value. hugepages can also
4542 * be the first huge page command line option in which case it implicitly
4543 * specifies the number of huge pages for the default size.
4544 */
4545static int __init hugepages_setup(char *s)
4546{
4547 unsigned long *mhp;
4548 static unsigned long *last_mhp;
4549 int node = NUMA_NO_NODE;
4550 int count;
4551 unsigned long tmp;
4552 char *p = s;
4553
4554 if (!parsed_valid_hugepagesz) {
4555 pr_warn("HugeTLB: hugepages=%s does not follow a valid hugepagesz, ignoring\n", s);
4556 parsed_valid_hugepagesz = true;
4557 return 1;
4558 }
4559
4560 /*
4561 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter
4562 * yet, so this hugepages= parameter goes to the "default hstate".
4563 * Otherwise, it goes with the previously parsed hugepagesz or
4564 * default_hugepagesz.
4565 */
4566 else if (!hugetlb_max_hstate)
4567 mhp = &default_hstate_max_huge_pages;
4568 else
4569 mhp = &parsed_hstate->max_huge_pages;
4570
4571 if (mhp == last_mhp) {
4572 pr_warn("HugeTLB: hugepages= specified twice without interleaving hugepagesz=, ignoring hugepages=%s\n", s);
4573 return 1;
4574 }
4575
4576 while (*p) {
4577 count = 0;
4578 if (sscanf(p, "%lu%n", &tmp, &count) != 1)
4579 goto invalid;
4580 /* Parameter is node format */
4581 if (p[count] == ':') {
4582 if (!hugetlb_node_alloc_supported()) {
4583 pr_warn("HugeTLB: architecture can't support node specific alloc, ignoring!\n");
4584 return 1;
4585 }
4586 if (tmp >= MAX_NUMNODES || !node_online(tmp))
4587 goto invalid;
4588 node = array_index_nospec(tmp, MAX_NUMNODES);
4589 p += count + 1;
4590 /* Parse hugepages */
4591 if (sscanf(p, "%lu%n", &tmp, &count) != 1)
4592 goto invalid;
4593 if (!hugetlb_max_hstate)
4594 default_hugepages_in_node[node] = tmp;
4595 else
4596 parsed_hstate->max_huge_pages_node[node] = tmp;
4597 *mhp += tmp;
4598 /* Go to parse next node*/
4599 if (p[count] == ',')
4600 p += count + 1;
4601 else
4602 break;
4603 } else {
4604 if (p != s)
4605 goto invalid;
4606 *mhp = tmp;
4607 break;
4608 }
4609 }
4610
4611 /*
4612 * Global state is always initialized later in hugetlb_init.
4613 * But we need to allocate gigantic hstates here early to still
4614 * use the bootmem allocator.
4615 */
4616 if (hugetlb_max_hstate && hstate_is_gigantic(parsed_hstate))
4617 hugetlb_hstate_alloc_pages(parsed_hstate);
4618
4619 last_mhp = mhp;
4620
4621 return 1;
4622
4623invalid:
4624 pr_warn("HugeTLB: Invalid hugepages parameter %s\n", p);
4625 hugepages_clear_pages_in_node();
4626 return 1;
4627}
4628__setup("hugepages=", hugepages_setup);
4629
4630/*
4631 * hugepagesz command line processing
4632 * A specific huge page size can only be specified once with hugepagesz.
4633 * hugepagesz is followed by hugepages on the command line. The global
4634 * variable 'parsed_valid_hugepagesz' is used to determine if prior
4635 * hugepagesz argument was valid.
4636 */
4637static int __init hugepagesz_setup(char *s)
4638{
4639 unsigned long size;
4640 struct hstate *h;
4641
4642 parsed_valid_hugepagesz = false;
4643 size = (unsigned long)memparse(s, NULL);
4644
4645 if (!arch_hugetlb_valid_size(size)) {
4646 pr_err("HugeTLB: unsupported hugepagesz=%s\n", s);
4647 return 1;
4648 }
4649
4650 h = size_to_hstate(size);
4651 if (h) {
4652 /*
4653 * hstate for this size already exists. This is normally
4654 * an error, but is allowed if the existing hstate is the
4655 * default hstate. More specifically, it is only allowed if
4656 * the number of huge pages for the default hstate was not
4657 * previously specified.
4658 */
4659 if (!parsed_default_hugepagesz || h != &default_hstate ||
4660 default_hstate.max_huge_pages) {
4661 pr_warn("HugeTLB: hugepagesz=%s specified twice, ignoring\n", s);
4662 return 1;
4663 }
4664
4665 /*
4666 * No need to call hugetlb_add_hstate() as hstate already
4667 * exists. But, do set parsed_hstate so that a following
4668 * hugepages= parameter will be applied to this hstate.
4669 */
4670 parsed_hstate = h;
4671 parsed_valid_hugepagesz = true;
4672 return 1;
4673 }
4674
4675 hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
4676 parsed_valid_hugepagesz = true;
4677 return 1;
4678}
4679__setup("hugepagesz=", hugepagesz_setup);
4680
4681/*
4682 * default_hugepagesz command line input
4683 * Only one instance of default_hugepagesz allowed on command line.
4684 */
4685static int __init default_hugepagesz_setup(char *s)
4686{
4687 unsigned long size;
4688 int i;
4689
4690 parsed_valid_hugepagesz = false;
4691 if (parsed_default_hugepagesz) {
4692 pr_err("HugeTLB: default_hugepagesz previously specified, ignoring %s\n", s);
4693 return 1;
4694 }
4695
4696 size = (unsigned long)memparse(s, NULL);
4697
4698 if (!arch_hugetlb_valid_size(size)) {
4699 pr_err("HugeTLB: unsupported default_hugepagesz=%s\n", s);
4700 return 1;
4701 }
4702
4703 hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
4704 parsed_valid_hugepagesz = true;
4705 parsed_default_hugepagesz = true;
4706 default_hstate_idx = hstate_index(size_to_hstate(size));
4707
4708 /*
4709 * The number of default huge pages (for this size) could have been
4710 * specified as the first hugetlb parameter: hugepages=X. If so,
4711 * then default_hstate_max_huge_pages is set. If the default huge
4712 * page size is gigantic (> MAX_PAGE_ORDER), then the pages must be
4713 * allocated here from bootmem allocator.
4714 */
4715 if (default_hstate_max_huge_pages) {
4716 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
4717 for_each_online_node(i)
4718 default_hstate.max_huge_pages_node[i] =
4719 default_hugepages_in_node[i];
4720 if (hstate_is_gigantic(&default_hstate))
4721 hugetlb_hstate_alloc_pages(&default_hstate);
4722 default_hstate_max_huge_pages = 0;
4723 }
4724
4725 return 1;
4726}
4727__setup("default_hugepagesz=", default_hugepagesz_setup);
4728
4729static unsigned int allowed_mems_nr(struct hstate *h)
4730{
4731 int node;
4732 unsigned int nr = 0;
4733 nodemask_t *mbind_nodemask;
4734 unsigned int *array = h->free_huge_pages_node;
4735 gfp_t gfp_mask = htlb_alloc_mask(h);
4736
4737 mbind_nodemask = policy_mbind_nodemask(gfp_mask);
4738 for_each_node_mask(node, cpuset_current_mems_allowed) {
4739 if (!mbind_nodemask || node_isset(node, *mbind_nodemask))
4740 nr += array[node];
4741 }
4742
4743 return nr;
4744}
4745
4746#ifdef CONFIG_SYSCTL
4747static int proc_hugetlb_doulongvec_minmax(const struct ctl_table *table, int write,
4748 void *buffer, size_t *length,
4749 loff_t *ppos, unsigned long *out)
4750{
4751 struct ctl_table dup_table;
4752
4753 /*
4754 * In order to avoid races with __do_proc_doulongvec_minmax(), we
4755 * can duplicate the @table and alter the duplicate of it.
4756 */
4757 dup_table = *table;
4758 dup_table.data = out;
4759
4760 return proc_doulongvec_minmax(&dup_table, write, buffer, length, ppos);
4761}
4762
4763static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
4764 const struct ctl_table *table, int write,
4765 void *buffer, size_t *length, loff_t *ppos)
4766{
4767 struct hstate *h = &default_hstate;
4768 unsigned long tmp = h->max_huge_pages;
4769 int ret;
4770
4771 if (!hugepages_supported())
4772 return -EOPNOTSUPP;
4773
4774 ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
4775 &tmp);
4776 if (ret)
4777 goto out;
4778
4779 if (write)
4780 ret = __nr_hugepages_store_common(obey_mempolicy, h,
4781 NUMA_NO_NODE, tmp, *length);
4782out:
4783 return ret;
4784}
4785
4786static int hugetlb_sysctl_handler(const struct ctl_table *table, int write,
4787 void *buffer, size_t *length, loff_t *ppos)
4788{
4789
4790 return hugetlb_sysctl_handler_common(false, table, write,
4791 buffer, length, ppos);
4792}
4793
4794#ifdef CONFIG_NUMA
4795static int hugetlb_mempolicy_sysctl_handler(const struct ctl_table *table, int write,
4796 void *buffer, size_t *length, loff_t *ppos)
4797{
4798 return hugetlb_sysctl_handler_common(true, table, write,
4799 buffer, length, ppos);
4800}
4801#endif /* CONFIG_NUMA */
4802
4803static int hugetlb_overcommit_handler(const struct ctl_table *table, int write,
4804 void *buffer, size_t *length, loff_t *ppos)
4805{
4806 struct hstate *h = &default_hstate;
4807 unsigned long tmp;
4808 int ret;
4809
4810 if (!hugepages_supported())
4811 return -EOPNOTSUPP;
4812
4813 tmp = h->nr_overcommit_huge_pages;
4814
4815 if (write && hstate_is_gigantic(h))
4816 return -EINVAL;
4817
4818 ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
4819 &tmp);
4820 if (ret)
4821 goto out;
4822
4823 if (write) {
4824 spin_lock_irq(&hugetlb_lock);
4825 h->nr_overcommit_huge_pages = tmp;
4826 spin_unlock_irq(&hugetlb_lock);
4827 }
4828out:
4829 return ret;
4830}
4831
4832static struct ctl_table hugetlb_table[] = {
4833 {
4834 .procname = "nr_hugepages",
4835 .data = NULL,
4836 .maxlen = sizeof(unsigned long),
4837 .mode = 0644,
4838 .proc_handler = hugetlb_sysctl_handler,
4839 },
4840#ifdef CONFIG_NUMA
4841 {
4842 .procname = "nr_hugepages_mempolicy",
4843 .data = NULL,
4844 .maxlen = sizeof(unsigned long),
4845 .mode = 0644,
4846 .proc_handler = &hugetlb_mempolicy_sysctl_handler,
4847 },
4848#endif
4849 {
4850 .procname = "hugetlb_shm_group",
4851 .data = &sysctl_hugetlb_shm_group,
4852 .maxlen = sizeof(gid_t),
4853 .mode = 0644,
4854 .proc_handler = proc_dointvec,
4855 },
4856 {
4857 .procname = "nr_overcommit_hugepages",
4858 .data = NULL,
4859 .maxlen = sizeof(unsigned long),
4860 .mode = 0644,
4861 .proc_handler = hugetlb_overcommit_handler,
4862 },
4863};
4864
4865static void hugetlb_sysctl_init(void)
4866{
4867 register_sysctl_init("vm", hugetlb_table);
4868}
4869#endif /* CONFIG_SYSCTL */
4870
4871void hugetlb_report_meminfo(struct seq_file *m)
4872{
4873 struct hstate *h;
4874 unsigned long total = 0;
4875
4876 if (!hugepages_supported())
4877 return;
4878
4879 for_each_hstate(h) {
4880 unsigned long count = h->nr_huge_pages;
4881
4882 total += huge_page_size(h) * count;
4883
4884 if (h == &default_hstate)
4885 seq_printf(m,
4886 "HugePages_Total: %5lu\n"
4887 "HugePages_Free: %5lu\n"
4888 "HugePages_Rsvd: %5lu\n"
4889 "HugePages_Surp: %5lu\n"
4890 "Hugepagesize: %8lu kB\n",
4891 count,
4892 h->free_huge_pages,
4893 h->resv_huge_pages,
4894 h->surplus_huge_pages,
4895 huge_page_size(h) / SZ_1K);
4896 }
4897
4898 seq_printf(m, "Hugetlb: %8lu kB\n", total / SZ_1K);
4899}
4900
4901int hugetlb_report_node_meminfo(char *buf, int len, int nid)
4902{
4903 struct hstate *h = &default_hstate;
4904
4905 if (!hugepages_supported())
4906 return 0;
4907
4908 return sysfs_emit_at(buf, len,
4909 "Node %d HugePages_Total: %5u\n"
4910 "Node %d HugePages_Free: %5u\n"
4911 "Node %d HugePages_Surp: %5u\n",
4912 nid, h->nr_huge_pages_node[nid],
4913 nid, h->free_huge_pages_node[nid],
4914 nid, h->surplus_huge_pages_node[nid]);
4915}
4916
4917void hugetlb_show_meminfo_node(int nid)
4918{
4919 struct hstate *h;
4920
4921 if (!hugepages_supported())
4922 return;
4923
4924 for_each_hstate(h)
4925 printk("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
4926 nid,
4927 h->nr_huge_pages_node[nid],
4928 h->free_huge_pages_node[nid],
4929 h->surplus_huge_pages_node[nid],
4930 huge_page_size(h) / SZ_1K);
4931}
4932
4933void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
4934{
4935 seq_printf(m, "HugetlbPages:\t%8lu kB\n",
4936 K(atomic_long_read(&mm->hugetlb_usage)));
4937}
4938
4939/* Return the number pages of memory we physically have, in PAGE_SIZE units. */
4940unsigned long hugetlb_total_pages(void)
4941{
4942 struct hstate *h;
4943 unsigned long nr_total_pages = 0;
4944
4945 for_each_hstate(h)
4946 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
4947 return nr_total_pages;
4948}
4949
4950static int hugetlb_acct_memory(struct hstate *h, long delta)
4951{
4952 int ret = -ENOMEM;
4953
4954 if (!delta)
4955 return 0;
4956
4957 spin_lock_irq(&hugetlb_lock);
4958 /*
4959 * When cpuset is configured, it breaks the strict hugetlb page
4960 * reservation as the accounting is done on a global variable. Such
4961 * reservation is completely rubbish in the presence of cpuset because
4962 * the reservation is not checked against page availability for the
4963 * current cpuset. Application can still potentially OOM'ed by kernel
4964 * with lack of free htlb page in cpuset that the task is in.
4965 * Attempt to enforce strict accounting with cpuset is almost
4966 * impossible (or too ugly) because cpuset is too fluid that
4967 * task or memory node can be dynamically moved between cpusets.
4968 *
4969 * The change of semantics for shared hugetlb mapping with cpuset is
4970 * undesirable. However, in order to preserve some of the semantics,
4971 * we fall back to check against current free page availability as
4972 * a best attempt and hopefully to minimize the impact of changing
4973 * semantics that cpuset has.
4974 *
4975 * Apart from cpuset, we also have memory policy mechanism that
4976 * also determines from which node the kernel will allocate memory
4977 * in a NUMA system. So similar to cpuset, we also should consider
4978 * the memory policy of the current task. Similar to the description
4979 * above.
4980 */
4981 if (delta > 0) {
4982 if (gather_surplus_pages(h, delta) < 0)
4983 goto out;
4984
4985 if (delta > allowed_mems_nr(h)) {
4986 return_unused_surplus_pages(h, delta);
4987 goto out;
4988 }
4989 }
4990
4991 ret = 0;
4992 if (delta < 0)
4993 return_unused_surplus_pages(h, (unsigned long) -delta);
4994
4995out:
4996 spin_unlock_irq(&hugetlb_lock);
4997 return ret;
4998}
4999
5000static void hugetlb_vm_op_open(struct vm_area_struct *vma)
5001{
5002 struct resv_map *resv = vma_resv_map(vma);
5003
5004 /*
5005 * HPAGE_RESV_OWNER indicates a private mapping.
5006 * This new VMA should share its siblings reservation map if present.
5007 * The VMA will only ever have a valid reservation map pointer where
5008 * it is being copied for another still existing VMA. As that VMA
5009 * has a reference to the reservation map it cannot disappear until
5010 * after this open call completes. It is therefore safe to take a
5011 * new reference here without additional locking.
5012 */
5013 if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
5014 resv_map_dup_hugetlb_cgroup_uncharge_info(resv);
5015 kref_get(&resv->refs);
5016 }
5017
5018 /*
5019 * vma_lock structure for sharable mappings is vma specific.
5020 * Clear old pointer (if copied via vm_area_dup) and allocate
5021 * new structure. Before clearing, make sure vma_lock is not
5022 * for this vma.
5023 */
5024 if (vma->vm_flags & VM_MAYSHARE) {
5025 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
5026
5027 if (vma_lock) {
5028 if (vma_lock->vma != vma) {
5029 vma->vm_private_data = NULL;
5030 hugetlb_vma_lock_alloc(vma);
5031 } else
5032 pr_warn("HugeTLB: vma_lock already exists in %s.\n", __func__);
5033 } else
5034 hugetlb_vma_lock_alloc(vma);
5035 }
5036}
5037
5038static void hugetlb_vm_op_close(struct vm_area_struct *vma)
5039{
5040 struct hstate *h = hstate_vma(vma);
5041 struct resv_map *resv;
5042 struct hugepage_subpool *spool = subpool_vma(vma);
5043 unsigned long reserve, start, end;
5044 long gbl_reserve;
5045
5046 hugetlb_vma_lock_free(vma);
5047
5048 resv = vma_resv_map(vma);
5049 if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
5050 return;
5051
5052 start = vma_hugecache_offset(h, vma, vma->vm_start);
5053 end = vma_hugecache_offset(h, vma, vma->vm_end);
5054
5055 reserve = (end - start) - region_count(resv, start, end);
5056 hugetlb_cgroup_uncharge_counter(resv, start, end);
5057 if (reserve) {
5058 /*
5059 * Decrement reserve counts. The global reserve count may be
5060 * adjusted if the subpool has a minimum size.
5061 */
5062 gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
5063 hugetlb_acct_memory(h, -gbl_reserve);
5064 }
5065
5066 kref_put(&resv->refs, resv_map_release);
5067}
5068
5069static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
5070{
5071 if (addr & ~(huge_page_mask(hstate_vma(vma))))
5072 return -EINVAL;
5073
5074 /*
5075 * PMD sharing is only possible for PUD_SIZE-aligned address ranges
5076 * in HugeTLB VMAs. If we will lose PUD_SIZE alignment due to this
5077 * split, unshare PMDs in the PUD_SIZE interval surrounding addr now.
5078 */
5079 if (addr & ~PUD_MASK) {
5080 /*
5081 * hugetlb_vm_op_split is called right before we attempt to
5082 * split the VMA. We will need to unshare PMDs in the old and
5083 * new VMAs, so let's unshare before we split.
5084 */
5085 unsigned long floor = addr & PUD_MASK;
5086 unsigned long ceil = floor + PUD_SIZE;
5087
5088 if (floor >= vma->vm_start && ceil <= vma->vm_end)
5089 hugetlb_unshare_pmds(vma, floor, ceil);
5090 }
5091
5092 return 0;
5093}
5094
5095static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma)
5096{
5097 return huge_page_size(hstate_vma(vma));
5098}
5099
5100/*
5101 * We cannot handle pagefaults against hugetlb pages at all. They cause
5102 * handle_mm_fault() to try to instantiate regular-sized pages in the
5103 * hugepage VMA. do_page_fault() is supposed to trap this, so BUG is we get
5104 * this far.
5105 */
5106static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf)
5107{
5108 BUG();
5109 return 0;
5110}
5111
5112/*
5113 * When a new function is introduced to vm_operations_struct and added
5114 * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops.
5115 * This is because under System V memory model, mappings created via
5116 * shmget/shmat with "huge page" specified are backed by hugetlbfs files,
5117 * their original vm_ops are overwritten with shm_vm_ops.
5118 */
5119const struct vm_operations_struct hugetlb_vm_ops = {
5120 .fault = hugetlb_vm_op_fault,
5121 .open = hugetlb_vm_op_open,
5122 .close = hugetlb_vm_op_close,
5123 .may_split = hugetlb_vm_op_split,
5124 .pagesize = hugetlb_vm_op_pagesize,
5125};
5126
5127static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
5128 int writable)
5129{
5130 pte_t entry;
5131 unsigned int shift = huge_page_shift(hstate_vma(vma));
5132
5133 if (writable) {
5134 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
5135 vma->vm_page_prot)));
5136 } else {
5137 entry = huge_pte_wrprotect(mk_huge_pte(page,
5138 vma->vm_page_prot));
5139 }
5140 entry = pte_mkyoung(entry);
5141 entry = arch_make_huge_pte(entry, shift, vma->vm_flags);
5142
5143 return entry;
5144}
5145
5146static void set_huge_ptep_writable(struct vm_area_struct *vma,
5147 unsigned long address, pte_t *ptep)
5148{
5149 pte_t entry;
5150
5151 entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(vma->vm_mm, address, ptep)));
5152 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
5153 update_mmu_cache(vma, address, ptep);
5154}
5155
5156bool is_hugetlb_entry_migration(pte_t pte)
5157{
5158 swp_entry_t swp;
5159
5160 if (huge_pte_none(pte) || pte_present(pte))
5161 return false;
5162 swp = pte_to_swp_entry(pte);
5163 if (is_migration_entry(swp))
5164 return true;
5165 else
5166 return false;
5167}
5168
5169bool is_hugetlb_entry_hwpoisoned(pte_t pte)
5170{
5171 swp_entry_t swp;
5172
5173 if (huge_pte_none(pte) || pte_present(pte))
5174 return false;
5175 swp = pte_to_swp_entry(pte);
5176 if (is_hwpoison_entry(swp))
5177 return true;
5178 else
5179 return false;
5180}
5181
5182static void
5183hugetlb_install_folio(struct vm_area_struct *vma, pte_t *ptep, unsigned long addr,
5184 struct folio *new_folio, pte_t old, unsigned long sz)
5185{
5186 pte_t newpte = make_huge_pte(vma, &new_folio->page, 1);
5187
5188 __folio_mark_uptodate(new_folio);
5189 hugetlb_add_new_anon_rmap(new_folio, vma, addr);
5190 if (userfaultfd_wp(vma) && huge_pte_uffd_wp(old))
5191 newpte = huge_pte_mkuffd_wp(newpte);
5192 set_huge_pte_at(vma->vm_mm, addr, ptep, newpte, sz);
5193 hugetlb_count_add(pages_per_huge_page(hstate_vma(vma)), vma->vm_mm);
5194 folio_set_hugetlb_migratable(new_folio);
5195}
5196
5197int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
5198 struct vm_area_struct *dst_vma,
5199 struct vm_area_struct *src_vma)
5200{
5201 pte_t *src_pte, *dst_pte, entry;
5202 struct folio *pte_folio;
5203 unsigned long addr;
5204 bool cow = is_cow_mapping(src_vma->vm_flags);
5205 struct hstate *h = hstate_vma(src_vma);
5206 unsigned long sz = huge_page_size(h);
5207 unsigned long npages = pages_per_huge_page(h);
5208 struct mmu_notifier_range range;
5209 unsigned long last_addr_mask;
5210 int ret = 0;
5211
5212 if (cow) {
5213 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, src,
5214 src_vma->vm_start,
5215 src_vma->vm_end);
5216 mmu_notifier_invalidate_range_start(&range);
5217 vma_assert_write_locked(src_vma);
5218 raw_write_seqcount_begin(&src->write_protect_seq);
5219 } else {
5220 /*
5221 * For shared mappings the vma lock must be held before
5222 * calling hugetlb_walk() in the src vma. Otherwise, the
5223 * returned ptep could go away if part of a shared pmd and
5224 * another thread calls huge_pmd_unshare.
5225 */
5226 hugetlb_vma_lock_read(src_vma);
5227 }
5228
5229 last_addr_mask = hugetlb_mask_last_page(h);
5230 for (addr = src_vma->vm_start; addr < src_vma->vm_end; addr += sz) {
5231 spinlock_t *src_ptl, *dst_ptl;
5232 src_pte = hugetlb_walk(src_vma, addr, sz);
5233 if (!src_pte) {
5234 addr |= last_addr_mask;
5235 continue;
5236 }
5237 dst_pte = huge_pte_alloc(dst, dst_vma, addr, sz);
5238 if (!dst_pte) {
5239 ret = -ENOMEM;
5240 break;
5241 }
5242
5243 /*
5244 * If the pagetables are shared don't copy or take references.
5245 *
5246 * dst_pte == src_pte is the common case of src/dest sharing.
5247 * However, src could have 'unshared' and dst shares with
5248 * another vma. So page_count of ptep page is checked instead
5249 * to reliably determine whether pte is shared.
5250 */
5251 if (page_count(virt_to_page(dst_pte)) > 1) {
5252 addr |= last_addr_mask;
5253 continue;
5254 }
5255
5256 dst_ptl = huge_pte_lock(h, dst, dst_pte);
5257 src_ptl = huge_pte_lockptr(h, src, src_pte);
5258 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
5259 entry = huge_ptep_get(src_vma->vm_mm, addr, src_pte);
5260again:
5261 if (huge_pte_none(entry)) {
5262 /*
5263 * Skip if src entry none.
5264 */
5265 ;
5266 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry))) {
5267 if (!userfaultfd_wp(dst_vma))
5268 entry = huge_pte_clear_uffd_wp(entry);
5269 set_huge_pte_at(dst, addr, dst_pte, entry, sz);
5270 } else if (unlikely(is_hugetlb_entry_migration(entry))) {
5271 swp_entry_t swp_entry = pte_to_swp_entry(entry);
5272 bool uffd_wp = pte_swp_uffd_wp(entry);
5273
5274 if (!is_readable_migration_entry(swp_entry) && cow) {
5275 /*
5276 * COW mappings require pages in both
5277 * parent and child to be set to read.
5278 */
5279 swp_entry = make_readable_migration_entry(
5280 swp_offset(swp_entry));
5281 entry = swp_entry_to_pte(swp_entry);
5282 if (userfaultfd_wp(src_vma) && uffd_wp)
5283 entry = pte_swp_mkuffd_wp(entry);
5284 set_huge_pte_at(src, addr, src_pte, entry, sz);
5285 }
5286 if (!userfaultfd_wp(dst_vma))
5287 entry = huge_pte_clear_uffd_wp(entry);
5288 set_huge_pte_at(dst, addr, dst_pte, entry, sz);
5289 } else if (unlikely(is_pte_marker(entry))) {
5290 pte_marker marker = copy_pte_marker(
5291 pte_to_swp_entry(entry), dst_vma);
5292
5293 if (marker)
5294 set_huge_pte_at(dst, addr, dst_pte,
5295 make_pte_marker(marker), sz);
5296 } else {
5297 entry = huge_ptep_get(src_vma->vm_mm, addr, src_pte);
5298 pte_folio = page_folio(pte_page(entry));
5299 folio_get(pte_folio);
5300
5301 /*
5302 * Failing to duplicate the anon rmap is a rare case
5303 * where we see pinned hugetlb pages while they're
5304 * prone to COW. We need to do the COW earlier during
5305 * fork.
5306 *
5307 * When pre-allocating the page or copying data, we
5308 * need to be without the pgtable locks since we could
5309 * sleep during the process.
5310 */
5311 if (!folio_test_anon(pte_folio)) {
5312 hugetlb_add_file_rmap(pte_folio);
5313 } else if (hugetlb_try_dup_anon_rmap(pte_folio, src_vma)) {
5314 pte_t src_pte_old = entry;
5315 struct folio *new_folio;
5316
5317 spin_unlock(src_ptl);
5318 spin_unlock(dst_ptl);
5319 /* Do not use reserve as it's private owned */
5320 new_folio = alloc_hugetlb_folio(dst_vma, addr, 1);
5321 if (IS_ERR(new_folio)) {
5322 folio_put(pte_folio);
5323 ret = PTR_ERR(new_folio);
5324 break;
5325 }
5326 ret = copy_user_large_folio(new_folio, pte_folio,
5327 addr, dst_vma);
5328 folio_put(pte_folio);
5329 if (ret) {
5330 folio_put(new_folio);
5331 break;
5332 }
5333
5334 /* Install the new hugetlb folio if src pte stable */
5335 dst_ptl = huge_pte_lock(h, dst, dst_pte);
5336 src_ptl = huge_pte_lockptr(h, src, src_pte);
5337 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
5338 entry = huge_ptep_get(src_vma->vm_mm, addr, src_pte);
5339 if (!pte_same(src_pte_old, entry)) {
5340 restore_reserve_on_error(h, dst_vma, addr,
5341 new_folio);
5342 folio_put(new_folio);
5343 /* huge_ptep of dst_pte won't change as in child */
5344 goto again;
5345 }
5346 hugetlb_install_folio(dst_vma, dst_pte, addr,
5347 new_folio, src_pte_old, sz);
5348 spin_unlock(src_ptl);
5349 spin_unlock(dst_ptl);
5350 continue;
5351 }
5352
5353 if (cow) {
5354 /*
5355 * No need to notify as we are downgrading page
5356 * table protection not changing it to point
5357 * to a new page.
5358 *
5359 * See Documentation/mm/mmu_notifier.rst
5360 */
5361 huge_ptep_set_wrprotect(src, addr, src_pte);
5362 entry = huge_pte_wrprotect(entry);
5363 }
5364
5365 if (!userfaultfd_wp(dst_vma))
5366 entry = huge_pte_clear_uffd_wp(entry);
5367
5368 set_huge_pte_at(dst, addr, dst_pte, entry, sz);
5369 hugetlb_count_add(npages, dst);
5370 }
5371 spin_unlock(src_ptl);
5372 spin_unlock(dst_ptl);
5373 }
5374
5375 if (cow) {
5376 raw_write_seqcount_end(&src->write_protect_seq);
5377 mmu_notifier_invalidate_range_end(&range);
5378 } else {
5379 hugetlb_vma_unlock_read(src_vma);
5380 }
5381
5382 return ret;
5383}
5384
5385static void move_huge_pte(struct vm_area_struct *vma, unsigned long old_addr,
5386 unsigned long new_addr, pte_t *src_pte, pte_t *dst_pte,
5387 unsigned long sz)
5388{
5389 bool need_clear_uffd_wp = vma_has_uffd_without_event_remap(vma);
5390 struct hstate *h = hstate_vma(vma);
5391 struct mm_struct *mm = vma->vm_mm;
5392 spinlock_t *src_ptl, *dst_ptl;
5393 pte_t pte;
5394
5395 dst_ptl = huge_pte_lock(h, mm, dst_pte);
5396 src_ptl = huge_pte_lockptr(h, mm, src_pte);
5397
5398 /*
5399 * We don't have to worry about the ordering of src and dst ptlocks
5400 * because exclusive mmap_lock (or the i_mmap_lock) prevents deadlock.
5401 */
5402 if (src_ptl != dst_ptl)
5403 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
5404
5405 pte = huge_ptep_get_and_clear(mm, old_addr, src_pte, sz);
5406
5407 if (need_clear_uffd_wp && pte_marker_uffd_wp(pte))
5408 huge_pte_clear(mm, new_addr, dst_pte, sz);
5409 else {
5410 if (need_clear_uffd_wp) {
5411 if (pte_present(pte))
5412 pte = huge_pte_clear_uffd_wp(pte);
5413 else if (is_swap_pte(pte))
5414 pte = pte_swp_clear_uffd_wp(pte);
5415 }
5416 set_huge_pte_at(mm, new_addr, dst_pte, pte, sz);
5417 }
5418
5419 if (src_ptl != dst_ptl)
5420 spin_unlock(src_ptl);
5421 spin_unlock(dst_ptl);
5422}
5423
5424int move_hugetlb_page_tables(struct vm_area_struct *vma,
5425 struct vm_area_struct *new_vma,
5426 unsigned long old_addr, unsigned long new_addr,
5427 unsigned long len)
5428{
5429 struct hstate *h = hstate_vma(vma);
5430 struct address_space *mapping = vma->vm_file->f_mapping;
5431 unsigned long sz = huge_page_size(h);
5432 struct mm_struct *mm = vma->vm_mm;
5433 unsigned long old_end = old_addr + len;
5434 unsigned long last_addr_mask;
5435 pte_t *src_pte, *dst_pte;
5436 struct mmu_notifier_range range;
5437 bool shared_pmd = false;
5438
5439 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, old_addr,
5440 old_end);
5441 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
5442 /*
5443 * In case of shared PMDs, we should cover the maximum possible
5444 * range.
5445 */
5446 flush_cache_range(vma, range.start, range.end);
5447
5448 mmu_notifier_invalidate_range_start(&range);
5449 last_addr_mask = hugetlb_mask_last_page(h);
5450 /* Prevent race with file truncation */
5451 hugetlb_vma_lock_write(vma);
5452 i_mmap_lock_write(mapping);
5453 for (; old_addr < old_end; old_addr += sz, new_addr += sz) {
5454 src_pte = hugetlb_walk(vma, old_addr, sz);
5455 if (!src_pte) {
5456 old_addr |= last_addr_mask;
5457 new_addr |= last_addr_mask;
5458 continue;
5459 }
5460 if (huge_pte_none(huge_ptep_get(mm, old_addr, src_pte)))
5461 continue;
5462
5463 if (huge_pmd_unshare(mm, vma, old_addr, src_pte)) {
5464 shared_pmd = true;
5465 old_addr |= last_addr_mask;
5466 new_addr |= last_addr_mask;
5467 continue;
5468 }
5469
5470 dst_pte = huge_pte_alloc(mm, new_vma, new_addr, sz);
5471 if (!dst_pte)
5472 break;
5473
5474 move_huge_pte(vma, old_addr, new_addr, src_pte, dst_pte, sz);
5475 }
5476
5477 if (shared_pmd)
5478 flush_hugetlb_tlb_range(vma, range.start, range.end);
5479 else
5480 flush_hugetlb_tlb_range(vma, old_end - len, old_end);
5481 mmu_notifier_invalidate_range_end(&range);
5482 i_mmap_unlock_write(mapping);
5483 hugetlb_vma_unlock_write(vma);
5484
5485 return len + old_addr - old_end;
5486}
5487
5488void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
5489 unsigned long start, unsigned long end,
5490 struct page *ref_page, zap_flags_t zap_flags)
5491{
5492 struct mm_struct *mm = vma->vm_mm;
5493 unsigned long address;
5494 pte_t *ptep;
5495 pte_t pte;
5496 spinlock_t *ptl;
5497 struct page *page;
5498 struct hstate *h = hstate_vma(vma);
5499 unsigned long sz = huge_page_size(h);
5500 bool adjust_reservation = false;
5501 unsigned long last_addr_mask;
5502 bool force_flush = false;
5503
5504 WARN_ON(!is_vm_hugetlb_page(vma));
5505 BUG_ON(start & ~huge_page_mask(h));
5506 BUG_ON(end & ~huge_page_mask(h));
5507
5508 /*
5509 * This is a hugetlb vma, all the pte entries should point
5510 * to huge page.
5511 */
5512 tlb_change_page_size(tlb, sz);
5513 tlb_start_vma(tlb, vma);
5514
5515 last_addr_mask = hugetlb_mask_last_page(h);
5516 address = start;
5517 for (; address < end; address += sz) {
5518 ptep = hugetlb_walk(vma, address, sz);
5519 if (!ptep) {
5520 address |= last_addr_mask;
5521 continue;
5522 }
5523
5524 ptl = huge_pte_lock(h, mm, ptep);
5525 if (huge_pmd_unshare(mm, vma, address, ptep)) {
5526 spin_unlock(ptl);
5527 tlb_flush_pmd_range(tlb, address & PUD_MASK, PUD_SIZE);
5528 force_flush = true;
5529 address |= last_addr_mask;
5530 continue;
5531 }
5532
5533 pte = huge_ptep_get(mm, address, ptep);
5534 if (huge_pte_none(pte)) {
5535 spin_unlock(ptl);
5536 continue;
5537 }
5538
5539 /*
5540 * Migrating hugepage or HWPoisoned hugepage is already
5541 * unmapped and its refcount is dropped, so just clear pte here.
5542 */
5543 if (unlikely(!pte_present(pte))) {
5544 /*
5545 * If the pte was wr-protected by uffd-wp in any of the
5546 * swap forms, meanwhile the caller does not want to
5547 * drop the uffd-wp bit in this zap, then replace the
5548 * pte with a marker.
5549 */
5550 if (pte_swp_uffd_wp_any(pte) &&
5551 !(zap_flags & ZAP_FLAG_DROP_MARKER))
5552 set_huge_pte_at(mm, address, ptep,
5553 make_pte_marker(PTE_MARKER_UFFD_WP),
5554 sz);
5555 else
5556 huge_pte_clear(mm, address, ptep, sz);
5557 spin_unlock(ptl);
5558 continue;
5559 }
5560
5561 page = pte_page(pte);
5562 /*
5563 * If a reference page is supplied, it is because a specific
5564 * page is being unmapped, not a range. Ensure the page we
5565 * are about to unmap is the actual page of interest.
5566 */
5567 if (ref_page) {
5568 if (page != ref_page) {
5569 spin_unlock(ptl);
5570 continue;
5571 }
5572 /*
5573 * Mark the VMA as having unmapped its page so that
5574 * future faults in this VMA will fail rather than
5575 * looking like data was lost
5576 */
5577 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
5578 }
5579
5580 pte = huge_ptep_get_and_clear(mm, address, ptep, sz);
5581 tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
5582 if (huge_pte_dirty(pte))
5583 set_page_dirty(page);
5584 /* Leave a uffd-wp pte marker if needed */
5585 if (huge_pte_uffd_wp(pte) &&
5586 !(zap_flags & ZAP_FLAG_DROP_MARKER))
5587 set_huge_pte_at(mm, address, ptep,
5588 make_pte_marker(PTE_MARKER_UFFD_WP),
5589 sz);
5590 hugetlb_count_sub(pages_per_huge_page(h), mm);
5591 hugetlb_remove_rmap(page_folio(page));
5592
5593 /*
5594 * Restore the reservation for anonymous page, otherwise the
5595 * backing page could be stolen by someone.
5596 * If there we are freeing a surplus, do not set the restore
5597 * reservation bit.
5598 */
5599 if (!h->surplus_huge_pages && __vma_private_lock(vma) &&
5600 folio_test_anon(page_folio(page))) {
5601 folio_set_hugetlb_restore_reserve(page_folio(page));
5602 /* Reservation to be adjusted after the spin lock */
5603 adjust_reservation = true;
5604 }
5605
5606 spin_unlock(ptl);
5607
5608 /*
5609 * Adjust the reservation for the region that will have the
5610 * reserve restored. Keep in mind that vma_needs_reservation() changes
5611 * resv->adds_in_progress if it succeeds. If this is not done,
5612 * do_exit() will not see it, and will keep the reservation
5613 * forever.
5614 */
5615 if (adjust_reservation) {
5616 int rc = vma_needs_reservation(h, vma, address);
5617
5618 if (rc < 0)
5619 /* Pressumably allocate_file_region_entries failed
5620 * to allocate a file_region struct. Clear
5621 * hugetlb_restore_reserve so that global reserve
5622 * count will not be incremented by free_huge_folio.
5623 * Act as if we consumed the reservation.
5624 */
5625 folio_clear_hugetlb_restore_reserve(page_folio(page));
5626 else if (rc)
5627 vma_add_reservation(h, vma, address);
5628 }
5629
5630 tlb_remove_page_size(tlb, page, huge_page_size(h));
5631 /*
5632 * Bail out after unmapping reference page if supplied
5633 */
5634 if (ref_page)
5635 break;
5636 }
5637 tlb_end_vma(tlb, vma);
5638
5639 /*
5640 * If we unshared PMDs, the TLB flush was not recorded in mmu_gather. We
5641 * could defer the flush until now, since by holding i_mmap_rwsem we
5642 * guaranteed that the last refernece would not be dropped. But we must
5643 * do the flushing before we return, as otherwise i_mmap_rwsem will be
5644 * dropped and the last reference to the shared PMDs page might be
5645 * dropped as well.
5646 *
5647 * In theory we could defer the freeing of the PMD pages as well, but
5648 * huge_pmd_unshare() relies on the exact page_count for the PMD page to
5649 * detect sharing, so we cannot defer the release of the page either.
5650 * Instead, do flush now.
5651 */
5652 if (force_flush)
5653 tlb_flush_mmu_tlbonly(tlb);
5654}
5655
5656void __hugetlb_zap_begin(struct vm_area_struct *vma,
5657 unsigned long *start, unsigned long *end)
5658{
5659 if (!vma->vm_file) /* hugetlbfs_file_mmap error */
5660 return;
5661
5662 adjust_range_if_pmd_sharing_possible(vma, start, end);
5663 hugetlb_vma_lock_write(vma);
5664 if (vma->vm_file)
5665 i_mmap_lock_write(vma->vm_file->f_mapping);
5666}
5667
5668void __hugetlb_zap_end(struct vm_area_struct *vma,
5669 struct zap_details *details)
5670{
5671 zap_flags_t zap_flags = details ? details->zap_flags : 0;
5672
5673 if (!vma->vm_file) /* hugetlbfs_file_mmap error */
5674 return;
5675
5676 if (zap_flags & ZAP_FLAG_UNMAP) { /* final unmap */
5677 /*
5678 * Unlock and free the vma lock before releasing i_mmap_rwsem.
5679 * When the vma_lock is freed, this makes the vma ineligible
5680 * for pmd sharing. And, i_mmap_rwsem is required to set up
5681 * pmd sharing. This is important as page tables for this
5682 * unmapped range will be asynchrously deleted. If the page
5683 * tables are shared, there will be issues when accessed by
5684 * someone else.
5685 */
5686 __hugetlb_vma_unlock_write_free(vma);
5687 } else {
5688 hugetlb_vma_unlock_write(vma);
5689 }
5690
5691 if (vma->vm_file)
5692 i_mmap_unlock_write(vma->vm_file->f_mapping);
5693}
5694
5695void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
5696 unsigned long end, struct page *ref_page,
5697 zap_flags_t zap_flags)
5698{
5699 struct mmu_notifier_range range;
5700 struct mmu_gather tlb;
5701
5702 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
5703 start, end);
5704 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
5705 mmu_notifier_invalidate_range_start(&range);
5706 tlb_gather_mmu(&tlb, vma->vm_mm);
5707
5708 __unmap_hugepage_range(&tlb, vma, start, end, ref_page, zap_flags);
5709
5710 mmu_notifier_invalidate_range_end(&range);
5711 tlb_finish_mmu(&tlb);
5712}
5713
5714/*
5715 * This is called when the original mapper is failing to COW a MAP_PRIVATE
5716 * mapping it owns the reserve page for. The intention is to unmap the page
5717 * from other VMAs and let the children be SIGKILLed if they are faulting the
5718 * same region.
5719 */
5720static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
5721 struct page *page, unsigned long address)
5722{
5723 struct hstate *h = hstate_vma(vma);
5724 struct vm_area_struct *iter_vma;
5725 struct address_space *mapping;
5726 pgoff_t pgoff;
5727
5728 /*
5729 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
5730 * from page cache lookup which is in HPAGE_SIZE units.
5731 */
5732 address = address & huge_page_mask(h);
5733 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
5734 vma->vm_pgoff;
5735 mapping = vma->vm_file->f_mapping;
5736
5737 /*
5738 * Take the mapping lock for the duration of the table walk. As
5739 * this mapping should be shared between all the VMAs,
5740 * __unmap_hugepage_range() is called as the lock is already held
5741 */
5742 i_mmap_lock_write(mapping);
5743 vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
5744 /* Do not unmap the current VMA */
5745 if (iter_vma == vma)
5746 continue;
5747
5748 /*
5749 * Shared VMAs have their own reserves and do not affect
5750 * MAP_PRIVATE accounting but it is possible that a shared
5751 * VMA is using the same page so check and skip such VMAs.
5752 */
5753 if (iter_vma->vm_flags & VM_MAYSHARE)
5754 continue;
5755
5756 /*
5757 * Unmap the page from other VMAs without their own reserves.
5758 * They get marked to be SIGKILLed if they fault in these
5759 * areas. This is because a future no-page fault on this VMA
5760 * could insert a zeroed page instead of the data existing
5761 * from the time of fork. This would look like data corruption
5762 */
5763 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
5764 unmap_hugepage_range(iter_vma, address,
5765 address + huge_page_size(h), page, 0);
5766 }
5767 i_mmap_unlock_write(mapping);
5768}
5769
5770/*
5771 * hugetlb_wp() should be called with page lock of the original hugepage held.
5772 * Called with hugetlb_fault_mutex_table held and pte_page locked so we
5773 * cannot race with other handlers or page migration.
5774 * Keep the pte_same checks anyway to make transition from the mutex easier.
5775 */
5776static vm_fault_t hugetlb_wp(struct folio *pagecache_folio,
5777 struct vm_fault *vmf)
5778{
5779 struct vm_area_struct *vma = vmf->vma;
5780 struct mm_struct *mm = vma->vm_mm;
5781 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
5782 pte_t pte = huge_ptep_get(mm, vmf->address, vmf->pte);
5783 struct hstate *h = hstate_vma(vma);
5784 struct folio *old_folio;
5785 struct folio *new_folio;
5786 int outside_reserve = 0;
5787 vm_fault_t ret = 0;
5788 struct mmu_notifier_range range;
5789
5790 /*
5791 * Never handle CoW for uffd-wp protected pages. It should be only
5792 * handled when the uffd-wp protection is removed.
5793 *
5794 * Note that only the CoW optimization path (in hugetlb_no_page())
5795 * can trigger this, because hugetlb_fault() will always resolve
5796 * uffd-wp bit first.
5797 */
5798 if (!unshare && huge_pte_uffd_wp(pte))
5799 return 0;
5800
5801 /*
5802 * hugetlb does not support FOLL_FORCE-style write faults that keep the
5803 * PTE mapped R/O such as maybe_mkwrite() would do.
5804 */
5805 if (WARN_ON_ONCE(!unshare && !(vma->vm_flags & VM_WRITE)))
5806 return VM_FAULT_SIGSEGV;
5807
5808 /* Let's take out MAP_SHARED mappings first. */
5809 if (vma->vm_flags & VM_MAYSHARE) {
5810 set_huge_ptep_writable(vma, vmf->address, vmf->pte);
5811 return 0;
5812 }
5813
5814 old_folio = page_folio(pte_page(pte));
5815
5816 delayacct_wpcopy_start();
5817
5818retry_avoidcopy:
5819 /*
5820 * If no-one else is actually using this page, we're the exclusive
5821 * owner and can reuse this page.
5822 *
5823 * Note that we don't rely on the (safer) folio refcount here, because
5824 * copying the hugetlb folio when there are unexpected (temporary)
5825 * folio references could harm simple fork()+exit() users when
5826 * we run out of free hugetlb folios: we would have to kill processes
5827 * in scenarios that used to work. As a side effect, there can still
5828 * be leaks between processes, for example, with FOLL_GET users.
5829 */
5830 if (folio_mapcount(old_folio) == 1 && folio_test_anon(old_folio)) {
5831 if (!PageAnonExclusive(&old_folio->page)) {
5832 folio_move_anon_rmap(old_folio, vma);
5833 SetPageAnonExclusive(&old_folio->page);
5834 }
5835 if (likely(!unshare))
5836 set_huge_ptep_writable(vma, vmf->address, vmf->pte);
5837
5838 delayacct_wpcopy_end();
5839 return 0;
5840 }
5841 VM_BUG_ON_PAGE(folio_test_anon(old_folio) &&
5842 PageAnonExclusive(&old_folio->page), &old_folio->page);
5843
5844 /*
5845 * If the process that created a MAP_PRIVATE mapping is about to
5846 * perform a COW due to a shared page count, attempt to satisfy
5847 * the allocation without using the existing reserves. The pagecache
5848 * page is used to determine if the reserve at this address was
5849 * consumed or not. If reserves were used, a partial faulted mapping
5850 * at the time of fork() could consume its reserves on COW instead
5851 * of the full address range.
5852 */
5853 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
5854 old_folio != pagecache_folio)
5855 outside_reserve = 1;
5856
5857 folio_get(old_folio);
5858
5859 /*
5860 * Drop page table lock as buddy allocator may be called. It will
5861 * be acquired again before returning to the caller, as expected.
5862 */
5863 spin_unlock(vmf->ptl);
5864 new_folio = alloc_hugetlb_folio(vma, vmf->address, outside_reserve);
5865
5866 if (IS_ERR(new_folio)) {
5867 /*
5868 * If a process owning a MAP_PRIVATE mapping fails to COW,
5869 * it is due to references held by a child and an insufficient
5870 * huge page pool. To guarantee the original mappers
5871 * reliability, unmap the page from child processes. The child
5872 * may get SIGKILLed if it later faults.
5873 */
5874 if (outside_reserve) {
5875 struct address_space *mapping = vma->vm_file->f_mapping;
5876 pgoff_t idx;
5877 u32 hash;
5878
5879 folio_put(old_folio);
5880 /*
5881 * Drop hugetlb_fault_mutex and vma_lock before
5882 * unmapping. unmapping needs to hold vma_lock
5883 * in write mode. Dropping vma_lock in read mode
5884 * here is OK as COW mappings do not interact with
5885 * PMD sharing.
5886 *
5887 * Reacquire both after unmap operation.
5888 */
5889 idx = vma_hugecache_offset(h, vma, vmf->address);
5890 hash = hugetlb_fault_mutex_hash(mapping, idx);
5891 hugetlb_vma_unlock_read(vma);
5892 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5893
5894 unmap_ref_private(mm, vma, &old_folio->page,
5895 vmf->address);
5896
5897 mutex_lock(&hugetlb_fault_mutex_table[hash]);
5898 hugetlb_vma_lock_read(vma);
5899 spin_lock(vmf->ptl);
5900 vmf->pte = hugetlb_walk(vma, vmf->address,
5901 huge_page_size(h));
5902 if (likely(vmf->pte &&
5903 pte_same(huge_ptep_get(mm, vmf->address, vmf->pte), pte)))
5904 goto retry_avoidcopy;
5905 /*
5906 * race occurs while re-acquiring page table
5907 * lock, and our job is done.
5908 */
5909 delayacct_wpcopy_end();
5910 return 0;
5911 }
5912
5913 ret = vmf_error(PTR_ERR(new_folio));
5914 goto out_release_old;
5915 }
5916
5917 /*
5918 * When the original hugepage is shared one, it does not have
5919 * anon_vma prepared.
5920 */
5921 ret = __vmf_anon_prepare(vmf);
5922 if (unlikely(ret))
5923 goto out_release_all;
5924
5925 if (copy_user_large_folio(new_folio, old_folio, vmf->real_address, vma)) {
5926 ret = VM_FAULT_HWPOISON_LARGE | VM_FAULT_SET_HINDEX(hstate_index(h));
5927 goto out_release_all;
5928 }
5929 __folio_mark_uptodate(new_folio);
5930
5931 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, vmf->address,
5932 vmf->address + huge_page_size(h));
5933 mmu_notifier_invalidate_range_start(&range);
5934
5935 /*
5936 * Retake the page table lock to check for racing updates
5937 * before the page tables are altered
5938 */
5939 spin_lock(vmf->ptl);
5940 vmf->pte = hugetlb_walk(vma, vmf->address, huge_page_size(h));
5941 if (likely(vmf->pte && pte_same(huge_ptep_get(mm, vmf->address, vmf->pte), pte))) {
5942 pte_t newpte = make_huge_pte(vma, &new_folio->page, !unshare);
5943
5944 /* Break COW or unshare */
5945 huge_ptep_clear_flush(vma, vmf->address, vmf->pte);
5946 hugetlb_remove_rmap(old_folio);
5947 hugetlb_add_new_anon_rmap(new_folio, vma, vmf->address);
5948 if (huge_pte_uffd_wp(pte))
5949 newpte = huge_pte_mkuffd_wp(newpte);
5950 set_huge_pte_at(mm, vmf->address, vmf->pte, newpte,
5951 huge_page_size(h));
5952 folio_set_hugetlb_migratable(new_folio);
5953 /* Make the old page be freed below */
5954 new_folio = old_folio;
5955 }
5956 spin_unlock(vmf->ptl);
5957 mmu_notifier_invalidate_range_end(&range);
5958out_release_all:
5959 /*
5960 * No restore in case of successful pagetable update (Break COW or
5961 * unshare)
5962 */
5963 if (new_folio != old_folio)
5964 restore_reserve_on_error(h, vma, vmf->address, new_folio);
5965 folio_put(new_folio);
5966out_release_old:
5967 folio_put(old_folio);
5968
5969 spin_lock(vmf->ptl); /* Caller expects lock to be held */
5970
5971 delayacct_wpcopy_end();
5972 return ret;
5973}
5974
5975/*
5976 * Return whether there is a pagecache page to back given address within VMA.
5977 */
5978bool hugetlbfs_pagecache_present(struct hstate *h,
5979 struct vm_area_struct *vma, unsigned long address)
5980{
5981 struct address_space *mapping = vma->vm_file->f_mapping;
5982 pgoff_t idx = linear_page_index(vma, address);
5983 struct folio *folio;
5984
5985 folio = filemap_get_folio(mapping, idx);
5986 if (IS_ERR(folio))
5987 return false;
5988 folio_put(folio);
5989 return true;
5990}
5991
5992int hugetlb_add_to_page_cache(struct folio *folio, struct address_space *mapping,
5993 pgoff_t idx)
5994{
5995 struct inode *inode = mapping->host;
5996 struct hstate *h = hstate_inode(inode);
5997 int err;
5998
5999 idx <<= huge_page_order(h);
6000 __folio_set_locked(folio);
6001 err = __filemap_add_folio(mapping, folio, idx, GFP_KERNEL, NULL);
6002
6003 if (unlikely(err)) {
6004 __folio_clear_locked(folio);
6005 return err;
6006 }
6007 folio_clear_hugetlb_restore_reserve(folio);
6008
6009 /*
6010 * mark folio dirty so that it will not be removed from cache/file
6011 * by non-hugetlbfs specific code paths.
6012 */
6013 folio_mark_dirty(folio);
6014
6015 spin_lock(&inode->i_lock);
6016 inode->i_blocks += blocks_per_huge_page(h);
6017 spin_unlock(&inode->i_lock);
6018 return 0;
6019}
6020
6021static inline vm_fault_t hugetlb_handle_userfault(struct vm_fault *vmf,
6022 struct address_space *mapping,
6023 unsigned long reason)
6024{
6025 u32 hash;
6026
6027 /*
6028 * vma_lock and hugetlb_fault_mutex must be dropped before handling
6029 * userfault. Also mmap_lock could be dropped due to handling
6030 * userfault, any vma operation should be careful from here.
6031 */
6032 hugetlb_vma_unlock_read(vmf->vma);
6033 hash = hugetlb_fault_mutex_hash(mapping, vmf->pgoff);
6034 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6035 return handle_userfault(vmf, reason);
6036}
6037
6038/*
6039 * Recheck pte with pgtable lock. Returns true if pte didn't change, or
6040 * false if pte changed or is changing.
6041 */
6042static bool hugetlb_pte_stable(struct hstate *h, struct mm_struct *mm, unsigned long addr,
6043 pte_t *ptep, pte_t old_pte)
6044{
6045 spinlock_t *ptl;
6046 bool same;
6047
6048 ptl = huge_pte_lock(h, mm, ptep);
6049 same = pte_same(huge_ptep_get(mm, addr, ptep), old_pte);
6050 spin_unlock(ptl);
6051
6052 return same;
6053}
6054
6055static vm_fault_t hugetlb_no_page(struct address_space *mapping,
6056 struct vm_fault *vmf)
6057{
6058 struct vm_area_struct *vma = vmf->vma;
6059 struct mm_struct *mm = vma->vm_mm;
6060 struct hstate *h = hstate_vma(vma);
6061 vm_fault_t ret = VM_FAULT_SIGBUS;
6062 int anon_rmap = 0;
6063 unsigned long size;
6064 struct folio *folio;
6065 pte_t new_pte;
6066 bool new_folio, new_pagecache_folio = false;
6067 u32 hash = hugetlb_fault_mutex_hash(mapping, vmf->pgoff);
6068
6069 /*
6070 * Currently, we are forced to kill the process in the event the
6071 * original mapper has unmapped pages from the child due to a failed
6072 * COW/unsharing. Warn that such a situation has occurred as it may not
6073 * be obvious.
6074 */
6075 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
6076 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
6077 current->pid);
6078 goto out;
6079 }
6080
6081 /*
6082 * Use page lock to guard against racing truncation
6083 * before we get page_table_lock.
6084 */
6085 new_folio = false;
6086 folio = filemap_lock_hugetlb_folio(h, mapping, vmf->pgoff);
6087 if (IS_ERR(folio)) {
6088 size = i_size_read(mapping->host) >> huge_page_shift(h);
6089 if (vmf->pgoff >= size)
6090 goto out;
6091 /* Check for page in userfault range */
6092 if (userfaultfd_missing(vma)) {
6093 /*
6094 * Since hugetlb_no_page() was examining pte
6095 * without pgtable lock, we need to re-test under
6096 * lock because the pte may not be stable and could
6097 * have changed from under us. Try to detect
6098 * either changed or during-changing ptes and retry
6099 * properly when needed.
6100 *
6101 * Note that userfaultfd is actually fine with
6102 * false positives (e.g. caused by pte changed),
6103 * but not wrong logical events (e.g. caused by
6104 * reading a pte during changing). The latter can
6105 * confuse the userspace, so the strictness is very
6106 * much preferred. E.g., MISSING event should
6107 * never happen on the page after UFFDIO_COPY has
6108 * correctly installed the page and returned.
6109 */
6110 if (!hugetlb_pte_stable(h, mm, vmf->address, vmf->pte, vmf->orig_pte)) {
6111 ret = 0;
6112 goto out;
6113 }
6114
6115 return hugetlb_handle_userfault(vmf, mapping,
6116 VM_UFFD_MISSING);
6117 }
6118
6119 if (!(vma->vm_flags & VM_MAYSHARE)) {
6120 ret = __vmf_anon_prepare(vmf);
6121 if (unlikely(ret))
6122 goto out;
6123 }
6124
6125 folio = alloc_hugetlb_folio(vma, vmf->address, 0);
6126 if (IS_ERR(folio)) {
6127 /*
6128 * Returning error will result in faulting task being
6129 * sent SIGBUS. The hugetlb fault mutex prevents two
6130 * tasks from racing to fault in the same page which
6131 * could result in false unable to allocate errors.
6132 * Page migration does not take the fault mutex, but
6133 * does a clear then write of pte's under page table
6134 * lock. Page fault code could race with migration,
6135 * notice the clear pte and try to allocate a page
6136 * here. Before returning error, get ptl and make
6137 * sure there really is no pte entry.
6138 */
6139 if (hugetlb_pte_stable(h, mm, vmf->address, vmf->pte, vmf->orig_pte))
6140 ret = vmf_error(PTR_ERR(folio));
6141 else
6142 ret = 0;
6143 goto out;
6144 }
6145 folio_zero_user(folio, vmf->real_address);
6146 __folio_mark_uptodate(folio);
6147 new_folio = true;
6148
6149 if (vma->vm_flags & VM_MAYSHARE) {
6150 int err = hugetlb_add_to_page_cache(folio, mapping,
6151 vmf->pgoff);
6152 if (err) {
6153 /*
6154 * err can't be -EEXIST which implies someone
6155 * else consumed the reservation since hugetlb
6156 * fault mutex is held when add a hugetlb page
6157 * to the page cache. So it's safe to call
6158 * restore_reserve_on_error() here.
6159 */
6160 restore_reserve_on_error(h, vma, vmf->address,
6161 folio);
6162 folio_put(folio);
6163 ret = VM_FAULT_SIGBUS;
6164 goto out;
6165 }
6166 new_pagecache_folio = true;
6167 } else {
6168 folio_lock(folio);
6169 anon_rmap = 1;
6170 }
6171 } else {
6172 /*
6173 * If memory error occurs between mmap() and fault, some process
6174 * don't have hwpoisoned swap entry for errored virtual address.
6175 * So we need to block hugepage fault by PG_hwpoison bit check.
6176 */
6177 if (unlikely(folio_test_hwpoison(folio))) {
6178 ret = VM_FAULT_HWPOISON_LARGE |
6179 VM_FAULT_SET_HINDEX(hstate_index(h));
6180 goto backout_unlocked;
6181 }
6182
6183 /* Check for page in userfault range. */
6184 if (userfaultfd_minor(vma)) {
6185 folio_unlock(folio);
6186 folio_put(folio);
6187 /* See comment in userfaultfd_missing() block above */
6188 if (!hugetlb_pte_stable(h, mm, vmf->address, vmf->pte, vmf->orig_pte)) {
6189 ret = 0;
6190 goto out;
6191 }
6192 return hugetlb_handle_userfault(vmf, mapping,
6193 VM_UFFD_MINOR);
6194 }
6195 }
6196
6197 /*
6198 * If we are going to COW a private mapping later, we examine the
6199 * pending reservations for this page now. This will ensure that
6200 * any allocations necessary to record that reservation occur outside
6201 * the spinlock.
6202 */
6203 if ((vmf->flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
6204 if (vma_needs_reservation(h, vma, vmf->address) < 0) {
6205 ret = VM_FAULT_OOM;
6206 goto backout_unlocked;
6207 }
6208 /* Just decrements count, does not deallocate */
6209 vma_end_reservation(h, vma, vmf->address);
6210 }
6211
6212 vmf->ptl = huge_pte_lock(h, mm, vmf->pte);
6213 ret = 0;
6214 /* If pte changed from under us, retry */
6215 if (!pte_same(huge_ptep_get(mm, vmf->address, vmf->pte), vmf->orig_pte))
6216 goto backout;
6217
6218 if (anon_rmap)
6219 hugetlb_add_new_anon_rmap(folio, vma, vmf->address);
6220 else
6221 hugetlb_add_file_rmap(folio);
6222 new_pte = make_huge_pte(vma, &folio->page, ((vma->vm_flags & VM_WRITE)
6223 && (vma->vm_flags & VM_SHARED)));
6224 /*
6225 * If this pte was previously wr-protected, keep it wr-protected even
6226 * if populated.
6227 */
6228 if (unlikely(pte_marker_uffd_wp(vmf->orig_pte)))
6229 new_pte = huge_pte_mkuffd_wp(new_pte);
6230 set_huge_pte_at(mm, vmf->address, vmf->pte, new_pte, huge_page_size(h));
6231
6232 hugetlb_count_add(pages_per_huge_page(h), mm);
6233 if ((vmf->flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
6234 /* Optimization, do the COW without a second fault */
6235 ret = hugetlb_wp(folio, vmf);
6236 }
6237
6238 spin_unlock(vmf->ptl);
6239
6240 /*
6241 * Only set hugetlb_migratable in newly allocated pages. Existing pages
6242 * found in the pagecache may not have hugetlb_migratable if they have
6243 * been isolated for migration.
6244 */
6245 if (new_folio)
6246 folio_set_hugetlb_migratable(folio);
6247
6248 folio_unlock(folio);
6249out:
6250 hugetlb_vma_unlock_read(vma);
6251
6252 /*
6253 * We must check to release the per-VMA lock. __vmf_anon_prepare() is
6254 * the only way ret can be set to VM_FAULT_RETRY.
6255 */
6256 if (unlikely(ret & VM_FAULT_RETRY))
6257 vma_end_read(vma);
6258
6259 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6260 return ret;
6261
6262backout:
6263 spin_unlock(vmf->ptl);
6264backout_unlocked:
6265 if (new_folio && !new_pagecache_folio)
6266 restore_reserve_on_error(h, vma, vmf->address, folio);
6267
6268 folio_unlock(folio);
6269 folio_put(folio);
6270 goto out;
6271}
6272
6273#ifdef CONFIG_SMP
6274u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
6275{
6276 unsigned long key[2];
6277 u32 hash;
6278
6279 key[0] = (unsigned long) mapping;
6280 key[1] = idx;
6281
6282 hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0);
6283
6284 return hash & (num_fault_mutexes - 1);
6285}
6286#else
6287/*
6288 * For uniprocessor systems we always use a single mutex, so just
6289 * return 0 and avoid the hashing overhead.
6290 */
6291u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
6292{
6293 return 0;
6294}
6295#endif
6296
6297vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
6298 unsigned long address, unsigned int flags)
6299{
6300 vm_fault_t ret;
6301 u32 hash;
6302 struct folio *folio = NULL;
6303 struct folio *pagecache_folio = NULL;
6304 struct hstate *h = hstate_vma(vma);
6305 struct address_space *mapping;
6306 int need_wait_lock = 0;
6307 struct vm_fault vmf = {
6308 .vma = vma,
6309 .address = address & huge_page_mask(h),
6310 .real_address = address,
6311 .flags = flags,
6312 .pgoff = vma_hugecache_offset(h, vma,
6313 address & huge_page_mask(h)),
6314 /* TODO: Track hugetlb faults using vm_fault */
6315
6316 /*
6317 * Some fields may not be initialized, be careful as it may
6318 * be hard to debug if called functions make assumptions
6319 */
6320 };
6321
6322 /*
6323 * Serialize hugepage allocation and instantiation, so that we don't
6324 * get spurious allocation failures if two CPUs race to instantiate
6325 * the same page in the page cache.
6326 */
6327 mapping = vma->vm_file->f_mapping;
6328 hash = hugetlb_fault_mutex_hash(mapping, vmf.pgoff);
6329 mutex_lock(&hugetlb_fault_mutex_table[hash]);
6330
6331 /*
6332 * Acquire vma lock before calling huge_pte_alloc and hold
6333 * until finished with vmf.pte. This prevents huge_pmd_unshare from
6334 * being called elsewhere and making the vmf.pte no longer valid.
6335 */
6336 hugetlb_vma_lock_read(vma);
6337 vmf.pte = huge_pte_alloc(mm, vma, vmf.address, huge_page_size(h));
6338 if (!vmf.pte) {
6339 hugetlb_vma_unlock_read(vma);
6340 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6341 return VM_FAULT_OOM;
6342 }
6343
6344 vmf.orig_pte = huge_ptep_get(mm, vmf.address, vmf.pte);
6345 if (huge_pte_none_mostly(vmf.orig_pte)) {
6346 if (is_pte_marker(vmf.orig_pte)) {
6347 pte_marker marker =
6348 pte_marker_get(pte_to_swp_entry(vmf.orig_pte));
6349
6350 if (marker & PTE_MARKER_POISONED) {
6351 ret = VM_FAULT_HWPOISON_LARGE |
6352 VM_FAULT_SET_HINDEX(hstate_index(h));
6353 goto out_mutex;
6354 } else if (WARN_ON_ONCE(marker & PTE_MARKER_GUARD)) {
6355 /* This isn't supported in hugetlb. */
6356 ret = VM_FAULT_SIGSEGV;
6357 goto out_mutex;
6358 }
6359 }
6360
6361 /*
6362 * Other PTE markers should be handled the same way as none PTE.
6363 *
6364 * hugetlb_no_page will drop vma lock and hugetlb fault
6365 * mutex internally, which make us return immediately.
6366 */
6367 return hugetlb_no_page(mapping, &vmf);
6368 }
6369
6370 ret = 0;
6371
6372 /*
6373 * vmf.orig_pte could be a migration/hwpoison vmf.orig_pte at this
6374 * point, so this check prevents the kernel from going below assuming
6375 * that we have an active hugepage in pagecache. This goto expects
6376 * the 2nd page fault, and is_hugetlb_entry_(migration|hwpoisoned)
6377 * check will properly handle it.
6378 */
6379 if (!pte_present(vmf.orig_pte)) {
6380 if (unlikely(is_hugetlb_entry_migration(vmf.orig_pte))) {
6381 /*
6382 * Release the hugetlb fault lock now, but retain
6383 * the vma lock, because it is needed to guard the
6384 * huge_pte_lockptr() later in
6385 * migration_entry_wait_huge(). The vma lock will
6386 * be released there.
6387 */
6388 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6389 migration_entry_wait_huge(vma, vmf.address, vmf.pte);
6390 return 0;
6391 } else if (unlikely(is_hugetlb_entry_hwpoisoned(vmf.orig_pte)))
6392 ret = VM_FAULT_HWPOISON_LARGE |
6393 VM_FAULT_SET_HINDEX(hstate_index(h));
6394 goto out_mutex;
6395 }
6396
6397 /*
6398 * If we are going to COW/unshare the mapping later, we examine the
6399 * pending reservations for this page now. This will ensure that any
6400 * allocations necessary to record that reservation occur outside the
6401 * spinlock. Also lookup the pagecache page now as it is used to
6402 * determine if a reservation has been consumed.
6403 */
6404 if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) &&
6405 !(vma->vm_flags & VM_MAYSHARE) && !huge_pte_write(vmf.orig_pte)) {
6406 if (vma_needs_reservation(h, vma, vmf.address) < 0) {
6407 ret = VM_FAULT_OOM;
6408 goto out_mutex;
6409 }
6410 /* Just decrements count, does not deallocate */
6411 vma_end_reservation(h, vma, vmf.address);
6412
6413 pagecache_folio = filemap_lock_hugetlb_folio(h, mapping,
6414 vmf.pgoff);
6415 if (IS_ERR(pagecache_folio))
6416 pagecache_folio = NULL;
6417 }
6418
6419 vmf.ptl = huge_pte_lock(h, mm, vmf.pte);
6420
6421 /* Check for a racing update before calling hugetlb_wp() */
6422 if (unlikely(!pte_same(vmf.orig_pte, huge_ptep_get(mm, vmf.address, vmf.pte))))
6423 goto out_ptl;
6424
6425 /* Handle userfault-wp first, before trying to lock more pages */
6426 if (userfaultfd_wp(vma) && huge_pte_uffd_wp(huge_ptep_get(mm, vmf.address, vmf.pte)) &&
6427 (flags & FAULT_FLAG_WRITE) && !huge_pte_write(vmf.orig_pte)) {
6428 if (!userfaultfd_wp_async(vma)) {
6429 spin_unlock(vmf.ptl);
6430 if (pagecache_folio) {
6431 folio_unlock(pagecache_folio);
6432 folio_put(pagecache_folio);
6433 }
6434 hugetlb_vma_unlock_read(vma);
6435 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6436 return handle_userfault(&vmf, VM_UFFD_WP);
6437 }
6438
6439 vmf.orig_pte = huge_pte_clear_uffd_wp(vmf.orig_pte);
6440 set_huge_pte_at(mm, vmf.address, vmf.pte, vmf.orig_pte,
6441 huge_page_size(hstate_vma(vma)));
6442 /* Fallthrough to CoW */
6443 }
6444
6445 /*
6446 * hugetlb_wp() requires page locks of pte_page(vmf.orig_pte) and
6447 * pagecache_folio, so here we need take the former one
6448 * when folio != pagecache_folio or !pagecache_folio.
6449 */
6450 folio = page_folio(pte_page(vmf.orig_pte));
6451 if (folio != pagecache_folio)
6452 if (!folio_trylock(folio)) {
6453 need_wait_lock = 1;
6454 goto out_ptl;
6455 }
6456
6457 folio_get(folio);
6458
6459 if (flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) {
6460 if (!huge_pte_write(vmf.orig_pte)) {
6461 ret = hugetlb_wp(pagecache_folio, &vmf);
6462 goto out_put_page;
6463 } else if (likely(flags & FAULT_FLAG_WRITE)) {
6464 vmf.orig_pte = huge_pte_mkdirty(vmf.orig_pte);
6465 }
6466 }
6467 vmf.orig_pte = pte_mkyoung(vmf.orig_pte);
6468 if (huge_ptep_set_access_flags(vma, vmf.address, vmf.pte, vmf.orig_pte,
6469 flags & FAULT_FLAG_WRITE))
6470 update_mmu_cache(vma, vmf.address, vmf.pte);
6471out_put_page:
6472 if (folio != pagecache_folio)
6473 folio_unlock(folio);
6474 folio_put(folio);
6475out_ptl:
6476 spin_unlock(vmf.ptl);
6477
6478 if (pagecache_folio) {
6479 folio_unlock(pagecache_folio);
6480 folio_put(pagecache_folio);
6481 }
6482out_mutex:
6483 hugetlb_vma_unlock_read(vma);
6484
6485 /*
6486 * We must check to release the per-VMA lock. __vmf_anon_prepare() in
6487 * hugetlb_wp() is the only way ret can be set to VM_FAULT_RETRY.
6488 */
6489 if (unlikely(ret & VM_FAULT_RETRY))
6490 vma_end_read(vma);
6491
6492 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6493 /*
6494 * Generally it's safe to hold refcount during waiting page lock. But
6495 * here we just wait to defer the next page fault to avoid busy loop and
6496 * the page is not used after unlocked before returning from the current
6497 * page fault. So we are safe from accessing freed page, even if we wait
6498 * here without taking refcount.
6499 */
6500 if (need_wait_lock)
6501 folio_wait_locked(folio);
6502 return ret;
6503}
6504
6505#ifdef CONFIG_USERFAULTFD
6506/*
6507 * Can probably be eliminated, but still used by hugetlb_mfill_atomic_pte().
6508 */
6509static struct folio *alloc_hugetlb_folio_vma(struct hstate *h,
6510 struct vm_area_struct *vma, unsigned long address)
6511{
6512 struct mempolicy *mpol;
6513 nodemask_t *nodemask;
6514 struct folio *folio;
6515 gfp_t gfp_mask;
6516 int node;
6517
6518 gfp_mask = htlb_alloc_mask(h);
6519 node = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
6520 /*
6521 * This is used to allocate a temporary hugetlb to hold the copied
6522 * content, which will then be copied again to the final hugetlb
6523 * consuming a reservation. Set the alloc_fallback to false to indicate
6524 * that breaking the per-node hugetlb pool is not allowed in this case.
6525 */
6526 folio = alloc_hugetlb_folio_nodemask(h, node, nodemask, gfp_mask, false);
6527 mpol_cond_put(mpol);
6528
6529 return folio;
6530}
6531
6532/*
6533 * Used by userfaultfd UFFDIO_* ioctls. Based on userfaultfd's mfill_atomic_pte
6534 * with modifications for hugetlb pages.
6535 */
6536int hugetlb_mfill_atomic_pte(pte_t *dst_pte,
6537 struct vm_area_struct *dst_vma,
6538 unsigned long dst_addr,
6539 unsigned long src_addr,
6540 uffd_flags_t flags,
6541 struct folio **foliop)
6542{
6543 struct mm_struct *dst_mm = dst_vma->vm_mm;
6544 bool is_continue = uffd_flags_mode_is(flags, MFILL_ATOMIC_CONTINUE);
6545 bool wp_enabled = (flags & MFILL_ATOMIC_WP);
6546 struct hstate *h = hstate_vma(dst_vma);
6547 struct address_space *mapping = dst_vma->vm_file->f_mapping;
6548 pgoff_t idx = vma_hugecache_offset(h, dst_vma, dst_addr);
6549 unsigned long size = huge_page_size(h);
6550 int vm_shared = dst_vma->vm_flags & VM_SHARED;
6551 pte_t _dst_pte;
6552 spinlock_t *ptl;
6553 int ret = -ENOMEM;
6554 struct folio *folio;
6555 int writable;
6556 bool folio_in_pagecache = false;
6557
6558 if (uffd_flags_mode_is(flags, MFILL_ATOMIC_POISON)) {
6559 ptl = huge_pte_lock(h, dst_mm, dst_pte);
6560
6561 /* Don't overwrite any existing PTEs (even markers) */
6562 if (!huge_pte_none(huge_ptep_get(dst_mm, dst_addr, dst_pte))) {
6563 spin_unlock(ptl);
6564 return -EEXIST;
6565 }
6566
6567 _dst_pte = make_pte_marker(PTE_MARKER_POISONED);
6568 set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte, size);
6569
6570 /* No need to invalidate - it was non-present before */
6571 update_mmu_cache(dst_vma, dst_addr, dst_pte);
6572
6573 spin_unlock(ptl);
6574 return 0;
6575 }
6576
6577 if (is_continue) {
6578 ret = -EFAULT;
6579 folio = filemap_lock_hugetlb_folio(h, mapping, idx);
6580 if (IS_ERR(folio))
6581 goto out;
6582 folio_in_pagecache = true;
6583 } else if (!*foliop) {
6584 /* If a folio already exists, then it's UFFDIO_COPY for
6585 * a non-missing case. Return -EEXIST.
6586 */
6587 if (vm_shared &&
6588 hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
6589 ret = -EEXIST;
6590 goto out;
6591 }
6592
6593 folio = alloc_hugetlb_folio(dst_vma, dst_addr, 0);
6594 if (IS_ERR(folio)) {
6595 ret = -ENOMEM;
6596 goto out;
6597 }
6598
6599 ret = copy_folio_from_user(folio, (const void __user *) src_addr,
6600 false);
6601
6602 /* fallback to copy_from_user outside mmap_lock */
6603 if (unlikely(ret)) {
6604 ret = -ENOENT;
6605 /* Free the allocated folio which may have
6606 * consumed a reservation.
6607 */
6608 restore_reserve_on_error(h, dst_vma, dst_addr, folio);
6609 folio_put(folio);
6610
6611 /* Allocate a temporary folio to hold the copied
6612 * contents.
6613 */
6614 folio = alloc_hugetlb_folio_vma(h, dst_vma, dst_addr);
6615 if (!folio) {
6616 ret = -ENOMEM;
6617 goto out;
6618 }
6619 *foliop = folio;
6620 /* Set the outparam foliop and return to the caller to
6621 * copy the contents outside the lock. Don't free the
6622 * folio.
6623 */
6624 goto out;
6625 }
6626 } else {
6627 if (vm_shared &&
6628 hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
6629 folio_put(*foliop);
6630 ret = -EEXIST;
6631 *foliop = NULL;
6632 goto out;
6633 }
6634
6635 folio = alloc_hugetlb_folio(dst_vma, dst_addr, 0);
6636 if (IS_ERR(folio)) {
6637 folio_put(*foliop);
6638 ret = -ENOMEM;
6639 *foliop = NULL;
6640 goto out;
6641 }
6642 ret = copy_user_large_folio(folio, *foliop, dst_addr, dst_vma);
6643 folio_put(*foliop);
6644 *foliop = NULL;
6645 if (ret) {
6646 folio_put(folio);
6647 goto out;
6648 }
6649 }
6650
6651 /*
6652 * If we just allocated a new page, we need a memory barrier to ensure
6653 * that preceding stores to the page become visible before the
6654 * set_pte_at() write. The memory barrier inside __folio_mark_uptodate
6655 * is what we need.
6656 *
6657 * In the case where we have not allocated a new page (is_continue),
6658 * the page must already be uptodate. UFFDIO_CONTINUE already includes
6659 * an earlier smp_wmb() to ensure that prior stores will be visible
6660 * before the set_pte_at() write.
6661 */
6662 if (!is_continue)
6663 __folio_mark_uptodate(folio);
6664 else
6665 WARN_ON_ONCE(!folio_test_uptodate(folio));
6666
6667 /* Add shared, newly allocated pages to the page cache. */
6668 if (vm_shared && !is_continue) {
6669 ret = -EFAULT;
6670 if (idx >= (i_size_read(mapping->host) >> huge_page_shift(h)))
6671 goto out_release_nounlock;
6672
6673 /*
6674 * Serialization between remove_inode_hugepages() and
6675 * hugetlb_add_to_page_cache() below happens through the
6676 * hugetlb_fault_mutex_table that here must be hold by
6677 * the caller.
6678 */
6679 ret = hugetlb_add_to_page_cache(folio, mapping, idx);
6680 if (ret)
6681 goto out_release_nounlock;
6682 folio_in_pagecache = true;
6683 }
6684
6685 ptl = huge_pte_lock(h, dst_mm, dst_pte);
6686
6687 ret = -EIO;
6688 if (folio_test_hwpoison(folio))
6689 goto out_release_unlock;
6690
6691 /*
6692 * We allow to overwrite a pte marker: consider when both MISSING|WP
6693 * registered, we firstly wr-protect a none pte which has no page cache
6694 * page backing it, then access the page.
6695 */
6696 ret = -EEXIST;
6697 if (!huge_pte_none_mostly(huge_ptep_get(dst_mm, dst_addr, dst_pte)))
6698 goto out_release_unlock;
6699
6700 if (folio_in_pagecache)
6701 hugetlb_add_file_rmap(folio);
6702 else
6703 hugetlb_add_new_anon_rmap(folio, dst_vma, dst_addr);
6704
6705 /*
6706 * For either: (1) CONTINUE on a non-shared VMA, or (2) UFFDIO_COPY
6707 * with wp flag set, don't set pte write bit.
6708 */
6709 if (wp_enabled || (is_continue && !vm_shared))
6710 writable = 0;
6711 else
6712 writable = dst_vma->vm_flags & VM_WRITE;
6713
6714 _dst_pte = make_huge_pte(dst_vma, &folio->page, writable);
6715 /*
6716 * Always mark UFFDIO_COPY page dirty; note that this may not be
6717 * extremely important for hugetlbfs for now since swapping is not
6718 * supported, but we should still be clear in that this page cannot be
6719 * thrown away at will, even if write bit not set.
6720 */
6721 _dst_pte = huge_pte_mkdirty(_dst_pte);
6722 _dst_pte = pte_mkyoung(_dst_pte);
6723
6724 if (wp_enabled)
6725 _dst_pte = huge_pte_mkuffd_wp(_dst_pte);
6726
6727 set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte, size);
6728
6729 hugetlb_count_add(pages_per_huge_page(h), dst_mm);
6730
6731 /* No need to invalidate - it was non-present before */
6732 update_mmu_cache(dst_vma, dst_addr, dst_pte);
6733
6734 spin_unlock(ptl);
6735 if (!is_continue)
6736 folio_set_hugetlb_migratable(folio);
6737 if (vm_shared || is_continue)
6738 folio_unlock(folio);
6739 ret = 0;
6740out:
6741 return ret;
6742out_release_unlock:
6743 spin_unlock(ptl);
6744 if (vm_shared || is_continue)
6745 folio_unlock(folio);
6746out_release_nounlock:
6747 if (!folio_in_pagecache)
6748 restore_reserve_on_error(h, dst_vma, dst_addr, folio);
6749 folio_put(folio);
6750 goto out;
6751}
6752#endif /* CONFIG_USERFAULTFD */
6753
6754long hugetlb_change_protection(struct vm_area_struct *vma,
6755 unsigned long address, unsigned long end,
6756 pgprot_t newprot, unsigned long cp_flags)
6757{
6758 struct mm_struct *mm = vma->vm_mm;
6759 unsigned long start = address;
6760 pte_t *ptep;
6761 pte_t pte;
6762 struct hstate *h = hstate_vma(vma);
6763 long pages = 0, psize = huge_page_size(h);
6764 bool shared_pmd = false;
6765 struct mmu_notifier_range range;
6766 unsigned long last_addr_mask;
6767 bool uffd_wp = cp_flags & MM_CP_UFFD_WP;
6768 bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE;
6769
6770 /*
6771 * In the case of shared PMDs, the area to flush could be beyond
6772 * start/end. Set range.start/range.end to cover the maximum possible
6773 * range if PMD sharing is possible.
6774 */
6775 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA,
6776 0, mm, start, end);
6777 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
6778
6779 BUG_ON(address >= end);
6780 flush_cache_range(vma, range.start, range.end);
6781
6782 mmu_notifier_invalidate_range_start(&range);
6783 hugetlb_vma_lock_write(vma);
6784 i_mmap_lock_write(vma->vm_file->f_mapping);
6785 last_addr_mask = hugetlb_mask_last_page(h);
6786 for (; address < end; address += psize) {
6787 spinlock_t *ptl;
6788 ptep = hugetlb_walk(vma, address, psize);
6789 if (!ptep) {
6790 if (!uffd_wp) {
6791 address |= last_addr_mask;
6792 continue;
6793 }
6794 /*
6795 * Userfaultfd wr-protect requires pgtable
6796 * pre-allocations to install pte markers.
6797 */
6798 ptep = huge_pte_alloc(mm, vma, address, psize);
6799 if (!ptep) {
6800 pages = -ENOMEM;
6801 break;
6802 }
6803 }
6804 ptl = huge_pte_lock(h, mm, ptep);
6805 if (huge_pmd_unshare(mm, vma, address, ptep)) {
6806 /*
6807 * When uffd-wp is enabled on the vma, unshare
6808 * shouldn't happen at all. Warn about it if it
6809 * happened due to some reason.
6810 */
6811 WARN_ON_ONCE(uffd_wp || uffd_wp_resolve);
6812 pages++;
6813 spin_unlock(ptl);
6814 shared_pmd = true;
6815 address |= last_addr_mask;
6816 continue;
6817 }
6818 pte = huge_ptep_get(mm, address, ptep);
6819 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
6820 /* Nothing to do. */
6821 } else if (unlikely(is_hugetlb_entry_migration(pte))) {
6822 swp_entry_t entry = pte_to_swp_entry(pte);
6823 struct page *page = pfn_swap_entry_to_page(entry);
6824 pte_t newpte = pte;
6825
6826 if (is_writable_migration_entry(entry)) {
6827 if (PageAnon(page))
6828 entry = make_readable_exclusive_migration_entry(
6829 swp_offset(entry));
6830 else
6831 entry = make_readable_migration_entry(
6832 swp_offset(entry));
6833 newpte = swp_entry_to_pte(entry);
6834 pages++;
6835 }
6836
6837 if (uffd_wp)
6838 newpte = pte_swp_mkuffd_wp(newpte);
6839 else if (uffd_wp_resolve)
6840 newpte = pte_swp_clear_uffd_wp(newpte);
6841 if (!pte_same(pte, newpte))
6842 set_huge_pte_at(mm, address, ptep, newpte, psize);
6843 } else if (unlikely(is_pte_marker(pte))) {
6844 /*
6845 * Do nothing on a poison marker; page is
6846 * corrupted, permissons do not apply. Here
6847 * pte_marker_uffd_wp()==true implies !poison
6848 * because they're mutual exclusive.
6849 */
6850 if (pte_marker_uffd_wp(pte) && uffd_wp_resolve)
6851 /* Safe to modify directly (non-present->none). */
6852 huge_pte_clear(mm, address, ptep, psize);
6853 } else if (!huge_pte_none(pte)) {
6854 pte_t old_pte;
6855 unsigned int shift = huge_page_shift(hstate_vma(vma));
6856
6857 old_pte = huge_ptep_modify_prot_start(vma, address, ptep);
6858 pte = huge_pte_modify(old_pte, newprot);
6859 pte = arch_make_huge_pte(pte, shift, vma->vm_flags);
6860 if (uffd_wp)
6861 pte = huge_pte_mkuffd_wp(pte);
6862 else if (uffd_wp_resolve)
6863 pte = huge_pte_clear_uffd_wp(pte);
6864 huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte);
6865 pages++;
6866 } else {
6867 /* None pte */
6868 if (unlikely(uffd_wp))
6869 /* Safe to modify directly (none->non-present). */
6870 set_huge_pte_at(mm, address, ptep,
6871 make_pte_marker(PTE_MARKER_UFFD_WP),
6872 psize);
6873 }
6874 spin_unlock(ptl);
6875 }
6876 /*
6877 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
6878 * may have cleared our pud entry and done put_page on the page table:
6879 * once we release i_mmap_rwsem, another task can do the final put_page
6880 * and that page table be reused and filled with junk. If we actually
6881 * did unshare a page of pmds, flush the range corresponding to the pud.
6882 */
6883 if (shared_pmd)
6884 flush_hugetlb_tlb_range(vma, range.start, range.end);
6885 else
6886 flush_hugetlb_tlb_range(vma, start, end);
6887 /*
6888 * No need to call mmu_notifier_arch_invalidate_secondary_tlbs() we are
6889 * downgrading page table protection not changing it to point to a new
6890 * page.
6891 *
6892 * See Documentation/mm/mmu_notifier.rst
6893 */
6894 i_mmap_unlock_write(vma->vm_file->f_mapping);
6895 hugetlb_vma_unlock_write(vma);
6896 mmu_notifier_invalidate_range_end(&range);
6897
6898 return pages > 0 ? (pages << h->order) : pages;
6899}
6900
6901/* Return true if reservation was successful, false otherwise. */
6902bool hugetlb_reserve_pages(struct inode *inode,
6903 long from, long to,
6904 struct vm_area_struct *vma,
6905 vm_flags_t vm_flags)
6906{
6907 long chg = -1, add = -1;
6908 struct hstate *h = hstate_inode(inode);
6909 struct hugepage_subpool *spool = subpool_inode(inode);
6910 struct resv_map *resv_map;
6911 struct hugetlb_cgroup *h_cg = NULL;
6912 long gbl_reserve, regions_needed = 0;
6913
6914 /* This should never happen */
6915 if (from > to) {
6916 VM_WARN(1, "%s called with a negative range\n", __func__);
6917 return false;
6918 }
6919
6920 /*
6921 * vma specific semaphore used for pmd sharing and fault/truncation
6922 * synchronization
6923 */
6924 hugetlb_vma_lock_alloc(vma);
6925
6926 /*
6927 * Only apply hugepage reservation if asked. At fault time, an
6928 * attempt will be made for VM_NORESERVE to allocate a page
6929 * without using reserves
6930 */
6931 if (vm_flags & VM_NORESERVE)
6932 return true;
6933
6934 /*
6935 * Shared mappings base their reservation on the number of pages that
6936 * are already allocated on behalf of the file. Private mappings need
6937 * to reserve the full area even if read-only as mprotect() may be
6938 * called to make the mapping read-write. Assume !vma is a shm mapping
6939 */
6940 if (!vma || vma->vm_flags & VM_MAYSHARE) {
6941 /*
6942 * resv_map can not be NULL as hugetlb_reserve_pages is only
6943 * called for inodes for which resv_maps were created (see
6944 * hugetlbfs_get_inode).
6945 */
6946 resv_map = inode_resv_map(inode);
6947
6948 chg = region_chg(resv_map, from, to, ®ions_needed);
6949 } else {
6950 /* Private mapping. */
6951 resv_map = resv_map_alloc();
6952 if (!resv_map)
6953 goto out_err;
6954
6955 chg = to - from;
6956
6957 set_vma_resv_map(vma, resv_map);
6958 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
6959 }
6960
6961 if (chg < 0)
6962 goto out_err;
6963
6964 if (hugetlb_cgroup_charge_cgroup_rsvd(hstate_index(h),
6965 chg * pages_per_huge_page(h), &h_cg) < 0)
6966 goto out_err;
6967
6968 if (vma && !(vma->vm_flags & VM_MAYSHARE) && h_cg) {
6969 /* For private mappings, the hugetlb_cgroup uncharge info hangs
6970 * of the resv_map.
6971 */
6972 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, h_cg, h);
6973 }
6974
6975 /*
6976 * There must be enough pages in the subpool for the mapping. If
6977 * the subpool has a minimum size, there may be some global
6978 * reservations already in place (gbl_reserve).
6979 */
6980 gbl_reserve = hugepage_subpool_get_pages(spool, chg);
6981 if (gbl_reserve < 0)
6982 goto out_uncharge_cgroup;
6983
6984 /*
6985 * Check enough hugepages are available for the reservation.
6986 * Hand the pages back to the subpool if there are not
6987 */
6988 if (hugetlb_acct_memory(h, gbl_reserve) < 0)
6989 goto out_put_pages;
6990
6991 /*
6992 * Account for the reservations made. Shared mappings record regions
6993 * that have reservations as they are shared by multiple VMAs.
6994 * When the last VMA disappears, the region map says how much
6995 * the reservation was and the page cache tells how much of
6996 * the reservation was consumed. Private mappings are per-VMA and
6997 * only the consumed reservations are tracked. When the VMA
6998 * disappears, the original reservation is the VMA size and the
6999 * consumed reservations are stored in the map. Hence, nothing
7000 * else has to be done for private mappings here
7001 */
7002 if (!vma || vma->vm_flags & VM_MAYSHARE) {
7003 add = region_add(resv_map, from, to, regions_needed, h, h_cg);
7004
7005 if (unlikely(add < 0)) {
7006 hugetlb_acct_memory(h, -gbl_reserve);
7007 goto out_put_pages;
7008 } else if (unlikely(chg > add)) {
7009 /*
7010 * pages in this range were added to the reserve
7011 * map between region_chg and region_add. This
7012 * indicates a race with alloc_hugetlb_folio. Adjust
7013 * the subpool and reserve counts modified above
7014 * based on the difference.
7015 */
7016 long rsv_adjust;
7017
7018 /*
7019 * hugetlb_cgroup_uncharge_cgroup_rsvd() will put the
7020 * reference to h_cg->css. See comment below for detail.
7021 */
7022 hugetlb_cgroup_uncharge_cgroup_rsvd(
7023 hstate_index(h),
7024 (chg - add) * pages_per_huge_page(h), h_cg);
7025
7026 rsv_adjust = hugepage_subpool_put_pages(spool,
7027 chg - add);
7028 hugetlb_acct_memory(h, -rsv_adjust);
7029 } else if (h_cg) {
7030 /*
7031 * The file_regions will hold their own reference to
7032 * h_cg->css. So we should release the reference held
7033 * via hugetlb_cgroup_charge_cgroup_rsvd() when we are
7034 * done.
7035 */
7036 hugetlb_cgroup_put_rsvd_cgroup(h_cg);
7037 }
7038 }
7039 return true;
7040
7041out_put_pages:
7042 /* put back original number of pages, chg */
7043 (void)hugepage_subpool_put_pages(spool, chg);
7044out_uncharge_cgroup:
7045 hugetlb_cgroup_uncharge_cgroup_rsvd(hstate_index(h),
7046 chg * pages_per_huge_page(h), h_cg);
7047out_err:
7048 hugetlb_vma_lock_free(vma);
7049 if (!vma || vma->vm_flags & VM_MAYSHARE)
7050 /* Only call region_abort if the region_chg succeeded but the
7051 * region_add failed or didn't run.
7052 */
7053 if (chg >= 0 && add < 0)
7054 region_abort(resv_map, from, to, regions_needed);
7055 if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
7056 kref_put(&resv_map->refs, resv_map_release);
7057 set_vma_resv_map(vma, NULL);
7058 }
7059 return false;
7060}
7061
7062long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
7063 long freed)
7064{
7065 struct hstate *h = hstate_inode(inode);
7066 struct resv_map *resv_map = inode_resv_map(inode);
7067 long chg = 0;
7068 struct hugepage_subpool *spool = subpool_inode(inode);
7069 long gbl_reserve;
7070
7071 /*
7072 * Since this routine can be called in the evict inode path for all
7073 * hugetlbfs inodes, resv_map could be NULL.
7074 */
7075 if (resv_map) {
7076 chg = region_del(resv_map, start, end);
7077 /*
7078 * region_del() can fail in the rare case where a region
7079 * must be split and another region descriptor can not be
7080 * allocated. If end == LONG_MAX, it will not fail.
7081 */
7082 if (chg < 0)
7083 return chg;
7084 }
7085
7086 spin_lock(&inode->i_lock);
7087 inode->i_blocks -= (blocks_per_huge_page(h) * freed);
7088 spin_unlock(&inode->i_lock);
7089
7090 /*
7091 * If the subpool has a minimum size, the number of global
7092 * reservations to be released may be adjusted.
7093 *
7094 * Note that !resv_map implies freed == 0. So (chg - freed)
7095 * won't go negative.
7096 */
7097 gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
7098 hugetlb_acct_memory(h, -gbl_reserve);
7099
7100 return 0;
7101}
7102
7103#ifdef CONFIG_HUGETLB_PMD_PAGE_TABLE_SHARING
7104static unsigned long page_table_shareable(struct vm_area_struct *svma,
7105 struct vm_area_struct *vma,
7106 unsigned long addr, pgoff_t idx)
7107{
7108 unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
7109 svma->vm_start;
7110 unsigned long sbase = saddr & PUD_MASK;
7111 unsigned long s_end = sbase + PUD_SIZE;
7112
7113 /* Allow segments to share if only one is marked locked */
7114 unsigned long vm_flags = vma->vm_flags & ~VM_LOCKED_MASK;
7115 unsigned long svm_flags = svma->vm_flags & ~VM_LOCKED_MASK;
7116
7117 /*
7118 * match the virtual addresses, permission and the alignment of the
7119 * page table page.
7120 *
7121 * Also, vma_lock (vm_private_data) is required for sharing.
7122 */
7123 if (pmd_index(addr) != pmd_index(saddr) ||
7124 vm_flags != svm_flags ||
7125 !range_in_vma(svma, sbase, s_end) ||
7126 !svma->vm_private_data)
7127 return 0;
7128
7129 return saddr;
7130}
7131
7132bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
7133{
7134 unsigned long start = addr & PUD_MASK;
7135 unsigned long end = start + PUD_SIZE;
7136
7137#ifdef CONFIG_USERFAULTFD
7138 if (uffd_disable_huge_pmd_share(vma))
7139 return false;
7140#endif
7141 /*
7142 * check on proper vm_flags and page table alignment
7143 */
7144 if (!(vma->vm_flags & VM_MAYSHARE))
7145 return false;
7146 if (!vma->vm_private_data) /* vma lock required for sharing */
7147 return false;
7148 if (!range_in_vma(vma, start, end))
7149 return false;
7150 return true;
7151}
7152
7153/*
7154 * Determine if start,end range within vma could be mapped by shared pmd.
7155 * If yes, adjust start and end to cover range associated with possible
7156 * shared pmd mappings.
7157 */
7158void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
7159 unsigned long *start, unsigned long *end)
7160{
7161 unsigned long v_start = ALIGN(vma->vm_start, PUD_SIZE),
7162 v_end = ALIGN_DOWN(vma->vm_end, PUD_SIZE);
7163
7164 /*
7165 * vma needs to span at least one aligned PUD size, and the range
7166 * must be at least partially within in.
7167 */
7168 if (!(vma->vm_flags & VM_MAYSHARE) || !(v_end > v_start) ||
7169 (*end <= v_start) || (*start >= v_end))
7170 return;
7171
7172 /* Extend the range to be PUD aligned for a worst case scenario */
7173 if (*start > v_start)
7174 *start = ALIGN_DOWN(*start, PUD_SIZE);
7175
7176 if (*end < v_end)
7177 *end = ALIGN(*end, PUD_SIZE);
7178}
7179
7180/*
7181 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
7182 * and returns the corresponding pte. While this is not necessary for the
7183 * !shared pmd case because we can allocate the pmd later as well, it makes the
7184 * code much cleaner. pmd allocation is essential for the shared case because
7185 * pud has to be populated inside the same i_mmap_rwsem section - otherwise
7186 * racing tasks could either miss the sharing (see huge_pte_offset) or select a
7187 * bad pmd for sharing.
7188 */
7189pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
7190 unsigned long addr, pud_t *pud)
7191{
7192 struct address_space *mapping = vma->vm_file->f_mapping;
7193 pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
7194 vma->vm_pgoff;
7195 struct vm_area_struct *svma;
7196 unsigned long saddr;
7197 pte_t *spte = NULL;
7198 pte_t *pte;
7199
7200 i_mmap_lock_read(mapping);
7201 vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
7202 if (svma == vma)
7203 continue;
7204
7205 saddr = page_table_shareable(svma, vma, addr, idx);
7206 if (saddr) {
7207 spte = hugetlb_walk(svma, saddr,
7208 vma_mmu_pagesize(svma));
7209 if (spte) {
7210 ptdesc_pmd_pts_inc(virt_to_ptdesc(spte));
7211 break;
7212 }
7213 }
7214 }
7215
7216 if (!spte)
7217 goto out;
7218
7219 spin_lock(&mm->page_table_lock);
7220 if (pud_none(*pud)) {
7221 pud_populate(mm, pud,
7222 (pmd_t *)((unsigned long)spte & PAGE_MASK));
7223 mm_inc_nr_pmds(mm);
7224 } else {
7225 ptdesc_pmd_pts_dec(virt_to_ptdesc(spte));
7226 }
7227 spin_unlock(&mm->page_table_lock);
7228out:
7229 pte = (pte_t *)pmd_alloc(mm, pud, addr);
7230 i_mmap_unlock_read(mapping);
7231 return pte;
7232}
7233
7234/*
7235 * unmap huge page backed by shared pte.
7236 *
7237 * Called with page table lock held.
7238 *
7239 * returns: 1 successfully unmapped a shared pte page
7240 * 0 the underlying pte page is not shared, or it is the last user
7241 */
7242int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
7243 unsigned long addr, pte_t *ptep)
7244{
7245 unsigned long sz = huge_page_size(hstate_vma(vma));
7246 pgd_t *pgd = pgd_offset(mm, addr);
7247 p4d_t *p4d = p4d_offset(pgd, addr);
7248 pud_t *pud = pud_offset(p4d, addr);
7249
7250 i_mmap_assert_write_locked(vma->vm_file->f_mapping);
7251 hugetlb_vma_assert_locked(vma);
7252 if (sz != PMD_SIZE)
7253 return 0;
7254 if (!ptdesc_pmd_pts_count(virt_to_ptdesc(ptep)))
7255 return 0;
7256
7257 pud_clear(pud);
7258 ptdesc_pmd_pts_dec(virt_to_ptdesc(ptep));
7259 mm_dec_nr_pmds(mm);
7260 return 1;
7261}
7262
7263#else /* !CONFIG_HUGETLB_PMD_PAGE_TABLE_SHARING */
7264
7265pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
7266 unsigned long addr, pud_t *pud)
7267{
7268 return NULL;
7269}
7270
7271int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
7272 unsigned long addr, pte_t *ptep)
7273{
7274 return 0;
7275}
7276
7277void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
7278 unsigned long *start, unsigned long *end)
7279{
7280}
7281
7282bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
7283{
7284 return false;
7285}
7286#endif /* CONFIG_HUGETLB_PMD_PAGE_TABLE_SHARING */
7287
7288#ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
7289pte_t *huge_pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
7290 unsigned long addr, unsigned long sz)
7291{
7292 pgd_t *pgd;
7293 p4d_t *p4d;
7294 pud_t *pud;
7295 pte_t *pte = NULL;
7296
7297 pgd = pgd_offset(mm, addr);
7298 p4d = p4d_alloc(mm, pgd, addr);
7299 if (!p4d)
7300 return NULL;
7301 pud = pud_alloc(mm, p4d, addr);
7302 if (pud) {
7303 if (sz == PUD_SIZE) {
7304 pte = (pte_t *)pud;
7305 } else {
7306 BUG_ON(sz != PMD_SIZE);
7307 if (want_pmd_share(vma, addr) && pud_none(*pud))
7308 pte = huge_pmd_share(mm, vma, addr, pud);
7309 else
7310 pte = (pte_t *)pmd_alloc(mm, pud, addr);
7311 }
7312 }
7313
7314 if (pte) {
7315 pte_t pteval = ptep_get_lockless(pte);
7316
7317 BUG_ON(pte_present(pteval) && !pte_huge(pteval));
7318 }
7319
7320 return pte;
7321}
7322
7323/*
7324 * huge_pte_offset() - Walk the page table to resolve the hugepage
7325 * entry at address @addr
7326 *
7327 * Return: Pointer to page table entry (PUD or PMD) for
7328 * address @addr, or NULL if a !p*d_present() entry is encountered and the
7329 * size @sz doesn't match the hugepage size at this level of the page
7330 * table.
7331 */
7332pte_t *huge_pte_offset(struct mm_struct *mm,
7333 unsigned long addr, unsigned long sz)
7334{
7335 pgd_t *pgd;
7336 p4d_t *p4d;
7337 pud_t *pud;
7338 pmd_t *pmd;
7339
7340 pgd = pgd_offset(mm, addr);
7341 if (!pgd_present(*pgd))
7342 return NULL;
7343 p4d = p4d_offset(pgd, addr);
7344 if (!p4d_present(*p4d))
7345 return NULL;
7346
7347 pud = pud_offset(p4d, addr);
7348 if (sz == PUD_SIZE)
7349 /* must be pud huge, non-present or none */
7350 return (pte_t *)pud;
7351 if (!pud_present(*pud))
7352 return NULL;
7353 /* must have a valid entry and size to go further */
7354
7355 pmd = pmd_offset(pud, addr);
7356 /* must be pmd huge, non-present or none */
7357 return (pte_t *)pmd;
7358}
7359
7360/*
7361 * Return a mask that can be used to update an address to the last huge
7362 * page in a page table page mapping size. Used to skip non-present
7363 * page table entries when linearly scanning address ranges. Architectures
7364 * with unique huge page to page table relationships can define their own
7365 * version of this routine.
7366 */
7367unsigned long hugetlb_mask_last_page(struct hstate *h)
7368{
7369 unsigned long hp_size = huge_page_size(h);
7370
7371 if (hp_size == PUD_SIZE)
7372 return P4D_SIZE - PUD_SIZE;
7373 else if (hp_size == PMD_SIZE)
7374 return PUD_SIZE - PMD_SIZE;
7375 else
7376 return 0UL;
7377}
7378
7379#else
7380
7381/* See description above. Architectures can provide their own version. */
7382__weak unsigned long hugetlb_mask_last_page(struct hstate *h)
7383{
7384#ifdef CONFIG_HUGETLB_PMD_PAGE_TABLE_SHARING
7385 if (huge_page_size(h) == PMD_SIZE)
7386 return PUD_SIZE - PMD_SIZE;
7387#endif
7388 return 0UL;
7389}
7390
7391#endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
7392
7393bool isolate_hugetlb(struct folio *folio, struct list_head *list)
7394{
7395 bool ret = true;
7396
7397 spin_lock_irq(&hugetlb_lock);
7398 if (!folio_test_hugetlb(folio) ||
7399 !folio_test_hugetlb_migratable(folio) ||
7400 !folio_try_get(folio)) {
7401 ret = false;
7402 goto unlock;
7403 }
7404 folio_clear_hugetlb_migratable(folio);
7405 list_move_tail(&folio->lru, list);
7406unlock:
7407 spin_unlock_irq(&hugetlb_lock);
7408 return ret;
7409}
7410
7411int get_hwpoison_hugetlb_folio(struct folio *folio, bool *hugetlb, bool unpoison)
7412{
7413 int ret = 0;
7414
7415 *hugetlb = false;
7416 spin_lock_irq(&hugetlb_lock);
7417 if (folio_test_hugetlb(folio)) {
7418 *hugetlb = true;
7419 if (folio_test_hugetlb_freed(folio))
7420 ret = 0;
7421 else if (folio_test_hugetlb_migratable(folio) || unpoison)
7422 ret = folio_try_get(folio);
7423 else
7424 ret = -EBUSY;
7425 }
7426 spin_unlock_irq(&hugetlb_lock);
7427 return ret;
7428}
7429
7430int get_huge_page_for_hwpoison(unsigned long pfn, int flags,
7431 bool *migratable_cleared)
7432{
7433 int ret;
7434
7435 spin_lock_irq(&hugetlb_lock);
7436 ret = __get_huge_page_for_hwpoison(pfn, flags, migratable_cleared);
7437 spin_unlock_irq(&hugetlb_lock);
7438 return ret;
7439}
7440
7441void folio_putback_active_hugetlb(struct folio *folio)
7442{
7443 spin_lock_irq(&hugetlb_lock);
7444 folio_set_hugetlb_migratable(folio);
7445 list_move_tail(&folio->lru, &(folio_hstate(folio))->hugepage_activelist);
7446 spin_unlock_irq(&hugetlb_lock);
7447 folio_put(folio);
7448}
7449
7450void move_hugetlb_state(struct folio *old_folio, struct folio *new_folio, int reason)
7451{
7452 struct hstate *h = folio_hstate(old_folio);
7453
7454 hugetlb_cgroup_migrate(old_folio, new_folio);
7455 set_page_owner_migrate_reason(&new_folio->page, reason);
7456
7457 /*
7458 * transfer temporary state of the new hugetlb folio. This is
7459 * reverse to other transitions because the newpage is going to
7460 * be final while the old one will be freed so it takes over
7461 * the temporary status.
7462 *
7463 * Also note that we have to transfer the per-node surplus state
7464 * here as well otherwise the global surplus count will not match
7465 * the per-node's.
7466 */
7467 if (folio_test_hugetlb_temporary(new_folio)) {
7468 int old_nid = folio_nid(old_folio);
7469 int new_nid = folio_nid(new_folio);
7470
7471 folio_set_hugetlb_temporary(old_folio);
7472 folio_clear_hugetlb_temporary(new_folio);
7473
7474
7475 /*
7476 * There is no need to transfer the per-node surplus state
7477 * when we do not cross the node.
7478 */
7479 if (new_nid == old_nid)
7480 return;
7481 spin_lock_irq(&hugetlb_lock);
7482 if (h->surplus_huge_pages_node[old_nid]) {
7483 h->surplus_huge_pages_node[old_nid]--;
7484 h->surplus_huge_pages_node[new_nid]++;
7485 }
7486 spin_unlock_irq(&hugetlb_lock);
7487 }
7488}
7489
7490static void hugetlb_unshare_pmds(struct vm_area_struct *vma,
7491 unsigned long start,
7492 unsigned long end)
7493{
7494 struct hstate *h = hstate_vma(vma);
7495 unsigned long sz = huge_page_size(h);
7496 struct mm_struct *mm = vma->vm_mm;
7497 struct mmu_notifier_range range;
7498 unsigned long address;
7499 spinlock_t *ptl;
7500 pte_t *ptep;
7501
7502 if (!(vma->vm_flags & VM_MAYSHARE))
7503 return;
7504
7505 if (start >= end)
7506 return;
7507
7508 flush_cache_range(vma, start, end);
7509 /*
7510 * No need to call adjust_range_if_pmd_sharing_possible(), because
7511 * we have already done the PUD_SIZE alignment.
7512 */
7513 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm,
7514 start, end);
7515 mmu_notifier_invalidate_range_start(&range);
7516 hugetlb_vma_lock_write(vma);
7517 i_mmap_lock_write(vma->vm_file->f_mapping);
7518 for (address = start; address < end; address += PUD_SIZE) {
7519 ptep = hugetlb_walk(vma, address, sz);
7520 if (!ptep)
7521 continue;
7522 ptl = huge_pte_lock(h, mm, ptep);
7523 huge_pmd_unshare(mm, vma, address, ptep);
7524 spin_unlock(ptl);
7525 }
7526 flush_hugetlb_tlb_range(vma, start, end);
7527 i_mmap_unlock_write(vma->vm_file->f_mapping);
7528 hugetlb_vma_unlock_write(vma);
7529 /*
7530 * No need to call mmu_notifier_arch_invalidate_secondary_tlbs(), see
7531 * Documentation/mm/mmu_notifier.rst.
7532 */
7533 mmu_notifier_invalidate_range_end(&range);
7534}
7535
7536/*
7537 * This function will unconditionally remove all the shared pmd pgtable entries
7538 * within the specific vma for a hugetlbfs memory range.
7539 */
7540void hugetlb_unshare_all_pmds(struct vm_area_struct *vma)
7541{
7542 hugetlb_unshare_pmds(vma, ALIGN(vma->vm_start, PUD_SIZE),
7543 ALIGN_DOWN(vma->vm_end, PUD_SIZE));
7544}
7545
7546#ifdef CONFIG_CMA
7547static bool cma_reserve_called __initdata;
7548
7549static int __init cmdline_parse_hugetlb_cma(char *p)
7550{
7551 int nid, count = 0;
7552 unsigned long tmp;
7553 char *s = p;
7554
7555 while (*s) {
7556 if (sscanf(s, "%lu%n", &tmp, &count) != 1)
7557 break;
7558
7559 if (s[count] == ':') {
7560 if (tmp >= MAX_NUMNODES)
7561 break;
7562 nid = array_index_nospec(tmp, MAX_NUMNODES);
7563
7564 s += count + 1;
7565 tmp = memparse(s, &s);
7566 hugetlb_cma_size_in_node[nid] = tmp;
7567 hugetlb_cma_size += tmp;
7568
7569 /*
7570 * Skip the separator if have one, otherwise
7571 * break the parsing.
7572 */
7573 if (*s == ',')
7574 s++;
7575 else
7576 break;
7577 } else {
7578 hugetlb_cma_size = memparse(p, &p);
7579 break;
7580 }
7581 }
7582
7583 return 0;
7584}
7585
7586early_param("hugetlb_cma", cmdline_parse_hugetlb_cma);
7587
7588void __init hugetlb_cma_reserve(int order)
7589{
7590 unsigned long size, reserved, per_node;
7591 bool node_specific_cma_alloc = false;
7592 int nid;
7593
7594 /*
7595 * HugeTLB CMA reservation is required for gigantic
7596 * huge pages which could not be allocated via the
7597 * page allocator. Just warn if there is any change
7598 * breaking this assumption.
7599 */
7600 VM_WARN_ON(order <= MAX_PAGE_ORDER);
7601 cma_reserve_called = true;
7602
7603 if (!hugetlb_cma_size)
7604 return;
7605
7606 for (nid = 0; nid < MAX_NUMNODES; nid++) {
7607 if (hugetlb_cma_size_in_node[nid] == 0)
7608 continue;
7609
7610 if (!node_online(nid)) {
7611 pr_warn("hugetlb_cma: invalid node %d specified\n", nid);
7612 hugetlb_cma_size -= hugetlb_cma_size_in_node[nid];
7613 hugetlb_cma_size_in_node[nid] = 0;
7614 continue;
7615 }
7616
7617 if (hugetlb_cma_size_in_node[nid] < (PAGE_SIZE << order)) {
7618 pr_warn("hugetlb_cma: cma area of node %d should be at least %lu MiB\n",
7619 nid, (PAGE_SIZE << order) / SZ_1M);
7620 hugetlb_cma_size -= hugetlb_cma_size_in_node[nid];
7621 hugetlb_cma_size_in_node[nid] = 0;
7622 } else {
7623 node_specific_cma_alloc = true;
7624 }
7625 }
7626
7627 /* Validate the CMA size again in case some invalid nodes specified. */
7628 if (!hugetlb_cma_size)
7629 return;
7630
7631 if (hugetlb_cma_size < (PAGE_SIZE << order)) {
7632 pr_warn("hugetlb_cma: cma area should be at least %lu MiB\n",
7633 (PAGE_SIZE << order) / SZ_1M);
7634 hugetlb_cma_size = 0;
7635 return;
7636 }
7637
7638 if (!node_specific_cma_alloc) {
7639 /*
7640 * If 3 GB area is requested on a machine with 4 numa nodes,
7641 * let's allocate 1 GB on first three nodes and ignore the last one.
7642 */
7643 per_node = DIV_ROUND_UP(hugetlb_cma_size, nr_online_nodes);
7644 pr_info("hugetlb_cma: reserve %lu MiB, up to %lu MiB per node\n",
7645 hugetlb_cma_size / SZ_1M, per_node / SZ_1M);
7646 }
7647
7648 reserved = 0;
7649 for_each_online_node(nid) {
7650 int res;
7651 char name[CMA_MAX_NAME];
7652
7653 if (node_specific_cma_alloc) {
7654 if (hugetlb_cma_size_in_node[nid] == 0)
7655 continue;
7656
7657 size = hugetlb_cma_size_in_node[nid];
7658 } else {
7659 size = min(per_node, hugetlb_cma_size - reserved);
7660 }
7661
7662 size = round_up(size, PAGE_SIZE << order);
7663
7664 snprintf(name, sizeof(name), "hugetlb%d", nid);
7665 /*
7666 * Note that 'order per bit' is based on smallest size that
7667 * may be returned to CMA allocator in the case of
7668 * huge page demotion.
7669 */
7670 res = cma_declare_contiguous_nid(0, size, 0,
7671 PAGE_SIZE << order,
7672 HUGETLB_PAGE_ORDER, false, name,
7673 &hugetlb_cma[nid], nid);
7674 if (res) {
7675 pr_warn("hugetlb_cma: reservation failed: err %d, node %d",
7676 res, nid);
7677 continue;
7678 }
7679
7680 reserved += size;
7681 pr_info("hugetlb_cma: reserved %lu MiB on node %d\n",
7682 size / SZ_1M, nid);
7683
7684 if (reserved >= hugetlb_cma_size)
7685 break;
7686 }
7687
7688 if (!reserved)
7689 /*
7690 * hugetlb_cma_size is used to determine if allocations from
7691 * cma are possible. Set to zero if no cma regions are set up.
7692 */
7693 hugetlb_cma_size = 0;
7694}
7695
7696static void __init hugetlb_cma_check(void)
7697{
7698 if (!hugetlb_cma_size || cma_reserve_called)
7699 return;
7700
7701 pr_warn("hugetlb_cma: the option isn't supported by current arch\n");
7702}
7703
7704#endif /* CONFIG_CMA */
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Generic hugetlb support.
4 * (C) Nadia Yvette Chambers, April 2004
5 */
6#include <linux/list.h>
7#include <linux/init.h>
8#include <linux/mm.h>
9#include <linux/seq_file.h>
10#include <linux/sysctl.h>
11#include <linux/highmem.h>
12#include <linux/mmu_notifier.h>
13#include <linux/nodemask.h>
14#include <linux/pagemap.h>
15#include <linux/mempolicy.h>
16#include <linux/compiler.h>
17#include <linux/cpuset.h>
18#include <linux/mutex.h>
19#include <linux/memblock.h>
20#include <linux/sysfs.h>
21#include <linux/slab.h>
22#include <linux/sched/mm.h>
23#include <linux/mmdebug.h>
24#include <linux/sched/signal.h>
25#include <linux/rmap.h>
26#include <linux/string_helpers.h>
27#include <linux/swap.h>
28#include <linux/swapops.h>
29#include <linux/jhash.h>
30#include <linux/numa.h>
31#include <linux/llist.h>
32#include <linux/cma.h>
33
34#include <asm/page.h>
35#include <asm/pgalloc.h>
36#include <asm/tlb.h>
37
38#include <linux/io.h>
39#include <linux/hugetlb.h>
40#include <linux/hugetlb_cgroup.h>
41#include <linux/node.h>
42#include <linux/userfaultfd_k.h>
43#include <linux/page_owner.h>
44#include "internal.h"
45
46int hugetlb_max_hstate __read_mostly;
47unsigned int default_hstate_idx;
48struct hstate hstates[HUGE_MAX_HSTATE];
49
50#ifdef CONFIG_CMA
51static struct cma *hugetlb_cma[MAX_NUMNODES];
52#endif
53static unsigned long hugetlb_cma_size __initdata;
54
55/*
56 * Minimum page order among possible hugepage sizes, set to a proper value
57 * at boot time.
58 */
59static unsigned int minimum_order __read_mostly = UINT_MAX;
60
61__initdata LIST_HEAD(huge_boot_pages);
62
63/* for command line parsing */
64static struct hstate * __initdata parsed_hstate;
65static unsigned long __initdata default_hstate_max_huge_pages;
66static bool __initdata parsed_valid_hugepagesz = true;
67static bool __initdata parsed_default_hugepagesz;
68
69/*
70 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
71 * free_huge_pages, and surplus_huge_pages.
72 */
73DEFINE_SPINLOCK(hugetlb_lock);
74
75/*
76 * Serializes faults on the same logical page. This is used to
77 * prevent spurious OOMs when the hugepage pool is fully utilized.
78 */
79static int num_fault_mutexes;
80struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
81
82/* Forward declaration */
83static int hugetlb_acct_memory(struct hstate *h, long delta);
84
85static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
86{
87 bool free = (spool->count == 0) && (spool->used_hpages == 0);
88
89 spin_unlock(&spool->lock);
90
91 /* If no pages are used, and no other handles to the subpool
92 * remain, give up any reservations based on minimum size and
93 * free the subpool */
94 if (free) {
95 if (spool->min_hpages != -1)
96 hugetlb_acct_memory(spool->hstate,
97 -spool->min_hpages);
98 kfree(spool);
99 }
100}
101
102struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
103 long min_hpages)
104{
105 struct hugepage_subpool *spool;
106
107 spool = kzalloc(sizeof(*spool), GFP_KERNEL);
108 if (!spool)
109 return NULL;
110
111 spin_lock_init(&spool->lock);
112 spool->count = 1;
113 spool->max_hpages = max_hpages;
114 spool->hstate = h;
115 spool->min_hpages = min_hpages;
116
117 if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
118 kfree(spool);
119 return NULL;
120 }
121 spool->rsv_hpages = min_hpages;
122
123 return spool;
124}
125
126void hugepage_put_subpool(struct hugepage_subpool *spool)
127{
128 spin_lock(&spool->lock);
129 BUG_ON(!spool->count);
130 spool->count--;
131 unlock_or_release_subpool(spool);
132}
133
134/*
135 * Subpool accounting for allocating and reserving pages.
136 * Return -ENOMEM if there are not enough resources to satisfy the
137 * request. Otherwise, return the number of pages by which the
138 * global pools must be adjusted (upward). The returned value may
139 * only be different than the passed value (delta) in the case where
140 * a subpool minimum size must be maintained.
141 */
142static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
143 long delta)
144{
145 long ret = delta;
146
147 if (!spool)
148 return ret;
149
150 spin_lock(&spool->lock);
151
152 if (spool->max_hpages != -1) { /* maximum size accounting */
153 if ((spool->used_hpages + delta) <= spool->max_hpages)
154 spool->used_hpages += delta;
155 else {
156 ret = -ENOMEM;
157 goto unlock_ret;
158 }
159 }
160
161 /* minimum size accounting */
162 if (spool->min_hpages != -1 && spool->rsv_hpages) {
163 if (delta > spool->rsv_hpages) {
164 /*
165 * Asking for more reserves than those already taken on
166 * behalf of subpool. Return difference.
167 */
168 ret = delta - spool->rsv_hpages;
169 spool->rsv_hpages = 0;
170 } else {
171 ret = 0; /* reserves already accounted for */
172 spool->rsv_hpages -= delta;
173 }
174 }
175
176unlock_ret:
177 spin_unlock(&spool->lock);
178 return ret;
179}
180
181/*
182 * Subpool accounting for freeing and unreserving pages.
183 * Return the number of global page reservations that must be dropped.
184 * The return value may only be different than the passed value (delta)
185 * in the case where a subpool minimum size must be maintained.
186 */
187static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
188 long delta)
189{
190 long ret = delta;
191
192 if (!spool)
193 return delta;
194
195 spin_lock(&spool->lock);
196
197 if (spool->max_hpages != -1) /* maximum size accounting */
198 spool->used_hpages -= delta;
199
200 /* minimum size accounting */
201 if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
202 if (spool->rsv_hpages + delta <= spool->min_hpages)
203 ret = 0;
204 else
205 ret = spool->rsv_hpages + delta - spool->min_hpages;
206
207 spool->rsv_hpages += delta;
208 if (spool->rsv_hpages > spool->min_hpages)
209 spool->rsv_hpages = spool->min_hpages;
210 }
211
212 /*
213 * If hugetlbfs_put_super couldn't free spool due to an outstanding
214 * quota reference, free it now.
215 */
216 unlock_or_release_subpool(spool);
217
218 return ret;
219}
220
221static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
222{
223 return HUGETLBFS_SB(inode->i_sb)->spool;
224}
225
226static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
227{
228 return subpool_inode(file_inode(vma->vm_file));
229}
230
231/* Helper that removes a struct file_region from the resv_map cache and returns
232 * it for use.
233 */
234static struct file_region *
235get_file_region_entry_from_cache(struct resv_map *resv, long from, long to)
236{
237 struct file_region *nrg = NULL;
238
239 VM_BUG_ON(resv->region_cache_count <= 0);
240
241 resv->region_cache_count--;
242 nrg = list_first_entry(&resv->region_cache, struct file_region, link);
243 VM_BUG_ON(!nrg);
244 list_del(&nrg->link);
245
246 nrg->from = from;
247 nrg->to = to;
248
249 return nrg;
250}
251
252static void copy_hugetlb_cgroup_uncharge_info(struct file_region *nrg,
253 struct file_region *rg)
254{
255#ifdef CONFIG_CGROUP_HUGETLB
256 nrg->reservation_counter = rg->reservation_counter;
257 nrg->css = rg->css;
258 if (rg->css)
259 css_get(rg->css);
260#endif
261}
262
263/* Helper that records hugetlb_cgroup uncharge info. */
264static void record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup *h_cg,
265 struct hstate *h,
266 struct resv_map *resv,
267 struct file_region *nrg)
268{
269#ifdef CONFIG_CGROUP_HUGETLB
270 if (h_cg) {
271 nrg->reservation_counter =
272 &h_cg->rsvd_hugepage[hstate_index(h)];
273 nrg->css = &h_cg->css;
274 if (!resv->pages_per_hpage)
275 resv->pages_per_hpage = pages_per_huge_page(h);
276 /* pages_per_hpage should be the same for all entries in
277 * a resv_map.
278 */
279 VM_BUG_ON(resv->pages_per_hpage != pages_per_huge_page(h));
280 } else {
281 nrg->reservation_counter = NULL;
282 nrg->css = NULL;
283 }
284#endif
285}
286
287static bool has_same_uncharge_info(struct file_region *rg,
288 struct file_region *org)
289{
290#ifdef CONFIG_CGROUP_HUGETLB
291 return rg && org &&
292 rg->reservation_counter == org->reservation_counter &&
293 rg->css == org->css;
294
295#else
296 return true;
297#endif
298}
299
300static void coalesce_file_region(struct resv_map *resv, struct file_region *rg)
301{
302 struct file_region *nrg = NULL, *prg = NULL;
303
304 prg = list_prev_entry(rg, link);
305 if (&prg->link != &resv->regions && prg->to == rg->from &&
306 has_same_uncharge_info(prg, rg)) {
307 prg->to = rg->to;
308
309 list_del(&rg->link);
310 kfree(rg);
311
312 coalesce_file_region(resv, prg);
313 return;
314 }
315
316 nrg = list_next_entry(rg, link);
317 if (&nrg->link != &resv->regions && nrg->from == rg->to &&
318 has_same_uncharge_info(nrg, rg)) {
319 nrg->from = rg->from;
320
321 list_del(&rg->link);
322 kfree(rg);
323
324 coalesce_file_region(resv, nrg);
325 return;
326 }
327}
328
329/* Must be called with resv->lock held. Calling this with count_only == true
330 * will count the number of pages to be added but will not modify the linked
331 * list. If regions_needed != NULL and count_only == true, then regions_needed
332 * will indicate the number of file_regions needed in the cache to carry out to
333 * add the regions for this range.
334 */
335static long add_reservation_in_range(struct resv_map *resv, long f, long t,
336 struct hugetlb_cgroup *h_cg,
337 struct hstate *h, long *regions_needed,
338 bool count_only)
339{
340 long add = 0;
341 struct list_head *head = &resv->regions;
342 long last_accounted_offset = f;
343 struct file_region *rg = NULL, *trg = NULL, *nrg = NULL;
344
345 if (regions_needed)
346 *regions_needed = 0;
347
348 /* In this loop, we essentially handle an entry for the range
349 * [last_accounted_offset, rg->from), at every iteration, with some
350 * bounds checking.
351 */
352 list_for_each_entry_safe(rg, trg, head, link) {
353 /* Skip irrelevant regions that start before our range. */
354 if (rg->from < f) {
355 /* If this region ends after the last accounted offset,
356 * then we need to update last_accounted_offset.
357 */
358 if (rg->to > last_accounted_offset)
359 last_accounted_offset = rg->to;
360 continue;
361 }
362
363 /* When we find a region that starts beyond our range, we've
364 * finished.
365 */
366 if (rg->from > t)
367 break;
368
369 /* Add an entry for last_accounted_offset -> rg->from, and
370 * update last_accounted_offset.
371 */
372 if (rg->from > last_accounted_offset) {
373 add += rg->from - last_accounted_offset;
374 if (!count_only) {
375 nrg = get_file_region_entry_from_cache(
376 resv, last_accounted_offset, rg->from);
377 record_hugetlb_cgroup_uncharge_info(h_cg, h,
378 resv, nrg);
379 list_add(&nrg->link, rg->link.prev);
380 coalesce_file_region(resv, nrg);
381 } else if (regions_needed)
382 *regions_needed += 1;
383 }
384
385 last_accounted_offset = rg->to;
386 }
387
388 /* Handle the case where our range extends beyond
389 * last_accounted_offset.
390 */
391 if (last_accounted_offset < t) {
392 add += t - last_accounted_offset;
393 if (!count_only) {
394 nrg = get_file_region_entry_from_cache(
395 resv, last_accounted_offset, t);
396 record_hugetlb_cgroup_uncharge_info(h_cg, h, resv, nrg);
397 list_add(&nrg->link, rg->link.prev);
398 coalesce_file_region(resv, nrg);
399 } else if (regions_needed)
400 *regions_needed += 1;
401 }
402
403 VM_BUG_ON(add < 0);
404 return add;
405}
406
407/* Must be called with resv->lock acquired. Will drop lock to allocate entries.
408 */
409static int allocate_file_region_entries(struct resv_map *resv,
410 int regions_needed)
411 __must_hold(&resv->lock)
412{
413 struct list_head allocated_regions;
414 int to_allocate = 0, i = 0;
415 struct file_region *trg = NULL, *rg = NULL;
416
417 VM_BUG_ON(regions_needed < 0);
418
419 INIT_LIST_HEAD(&allocated_regions);
420
421 /*
422 * Check for sufficient descriptors in the cache to accommodate
423 * the number of in progress add operations plus regions_needed.
424 *
425 * This is a while loop because when we drop the lock, some other call
426 * to region_add or region_del may have consumed some region_entries,
427 * so we keep looping here until we finally have enough entries for
428 * (adds_in_progress + regions_needed).
429 */
430 while (resv->region_cache_count <
431 (resv->adds_in_progress + regions_needed)) {
432 to_allocate = resv->adds_in_progress + regions_needed -
433 resv->region_cache_count;
434
435 /* At this point, we should have enough entries in the cache
436 * for all the existings adds_in_progress. We should only be
437 * needing to allocate for regions_needed.
438 */
439 VM_BUG_ON(resv->region_cache_count < resv->adds_in_progress);
440
441 spin_unlock(&resv->lock);
442 for (i = 0; i < to_allocate; i++) {
443 trg = kmalloc(sizeof(*trg), GFP_KERNEL);
444 if (!trg)
445 goto out_of_memory;
446 list_add(&trg->link, &allocated_regions);
447 }
448
449 spin_lock(&resv->lock);
450
451 list_for_each_entry_safe(rg, trg, &allocated_regions, link) {
452 list_del(&rg->link);
453 list_add(&rg->link, &resv->region_cache);
454 resv->region_cache_count++;
455 }
456 }
457
458 return 0;
459
460out_of_memory:
461 list_for_each_entry_safe(rg, trg, &allocated_regions, link) {
462 list_del(&rg->link);
463 kfree(rg);
464 }
465 return -ENOMEM;
466}
467
468/*
469 * Add the huge page range represented by [f, t) to the reserve
470 * map. Regions will be taken from the cache to fill in this range.
471 * Sufficient regions should exist in the cache due to the previous
472 * call to region_chg with the same range, but in some cases the cache will not
473 * have sufficient entries due to races with other code doing region_add or
474 * region_del. The extra needed entries will be allocated.
475 *
476 * regions_needed is the out value provided by a previous call to region_chg.
477 *
478 * Return the number of new huge pages added to the map. This number is greater
479 * than or equal to zero. If file_region entries needed to be allocated for
480 * this operation and we were not able to allocate, it returns -ENOMEM.
481 * region_add of regions of length 1 never allocate file_regions and cannot
482 * fail; region_chg will always allocate at least 1 entry and a region_add for
483 * 1 page will only require at most 1 entry.
484 */
485static long region_add(struct resv_map *resv, long f, long t,
486 long in_regions_needed, struct hstate *h,
487 struct hugetlb_cgroup *h_cg)
488{
489 long add = 0, actual_regions_needed = 0;
490
491 spin_lock(&resv->lock);
492retry:
493
494 /* Count how many regions are actually needed to execute this add. */
495 add_reservation_in_range(resv, f, t, NULL, NULL, &actual_regions_needed,
496 true);
497
498 /*
499 * Check for sufficient descriptors in the cache to accommodate
500 * this add operation. Note that actual_regions_needed may be greater
501 * than in_regions_needed, as the resv_map may have been modified since
502 * the region_chg call. In this case, we need to make sure that we
503 * allocate extra entries, such that we have enough for all the
504 * existing adds_in_progress, plus the excess needed for this
505 * operation.
506 */
507 if (actual_regions_needed > in_regions_needed &&
508 resv->region_cache_count <
509 resv->adds_in_progress +
510 (actual_regions_needed - in_regions_needed)) {
511 /* region_add operation of range 1 should never need to
512 * allocate file_region entries.
513 */
514 VM_BUG_ON(t - f <= 1);
515
516 if (allocate_file_region_entries(
517 resv, actual_regions_needed - in_regions_needed)) {
518 return -ENOMEM;
519 }
520
521 goto retry;
522 }
523
524 add = add_reservation_in_range(resv, f, t, h_cg, h, NULL, false);
525
526 resv->adds_in_progress -= in_regions_needed;
527
528 spin_unlock(&resv->lock);
529 VM_BUG_ON(add < 0);
530 return add;
531}
532
533/*
534 * Examine the existing reserve map and determine how many
535 * huge pages in the specified range [f, t) are NOT currently
536 * represented. This routine is called before a subsequent
537 * call to region_add that will actually modify the reserve
538 * map to add the specified range [f, t). region_chg does
539 * not change the number of huge pages represented by the
540 * map. A number of new file_region structures is added to the cache as a
541 * placeholder, for the subsequent region_add call to use. At least 1
542 * file_region structure is added.
543 *
544 * out_regions_needed is the number of regions added to the
545 * resv->adds_in_progress. This value needs to be provided to a follow up call
546 * to region_add or region_abort for proper accounting.
547 *
548 * Returns the number of huge pages that need to be added to the existing
549 * reservation map for the range [f, t). This number is greater or equal to
550 * zero. -ENOMEM is returned if a new file_region structure or cache entry
551 * is needed and can not be allocated.
552 */
553static long region_chg(struct resv_map *resv, long f, long t,
554 long *out_regions_needed)
555{
556 long chg = 0;
557
558 spin_lock(&resv->lock);
559
560 /* Count how many hugepages in this range are NOT respresented. */
561 chg = add_reservation_in_range(resv, f, t, NULL, NULL,
562 out_regions_needed, true);
563
564 if (*out_regions_needed == 0)
565 *out_regions_needed = 1;
566
567 if (allocate_file_region_entries(resv, *out_regions_needed))
568 return -ENOMEM;
569
570 resv->adds_in_progress += *out_regions_needed;
571
572 spin_unlock(&resv->lock);
573 return chg;
574}
575
576/*
577 * Abort the in progress add operation. The adds_in_progress field
578 * of the resv_map keeps track of the operations in progress between
579 * calls to region_chg and region_add. Operations are sometimes
580 * aborted after the call to region_chg. In such cases, region_abort
581 * is called to decrement the adds_in_progress counter. regions_needed
582 * is the value returned by the region_chg call, it is used to decrement
583 * the adds_in_progress counter.
584 *
585 * NOTE: The range arguments [f, t) are not needed or used in this
586 * routine. They are kept to make reading the calling code easier as
587 * arguments will match the associated region_chg call.
588 */
589static void region_abort(struct resv_map *resv, long f, long t,
590 long regions_needed)
591{
592 spin_lock(&resv->lock);
593 VM_BUG_ON(!resv->region_cache_count);
594 resv->adds_in_progress -= regions_needed;
595 spin_unlock(&resv->lock);
596}
597
598/*
599 * Delete the specified range [f, t) from the reserve map. If the
600 * t parameter is LONG_MAX, this indicates that ALL regions after f
601 * should be deleted. Locate the regions which intersect [f, t)
602 * and either trim, delete or split the existing regions.
603 *
604 * Returns the number of huge pages deleted from the reserve map.
605 * In the normal case, the return value is zero or more. In the
606 * case where a region must be split, a new region descriptor must
607 * be allocated. If the allocation fails, -ENOMEM will be returned.
608 * NOTE: If the parameter t == LONG_MAX, then we will never split
609 * a region and possibly return -ENOMEM. Callers specifying
610 * t == LONG_MAX do not need to check for -ENOMEM error.
611 */
612static long region_del(struct resv_map *resv, long f, long t)
613{
614 struct list_head *head = &resv->regions;
615 struct file_region *rg, *trg;
616 struct file_region *nrg = NULL;
617 long del = 0;
618
619retry:
620 spin_lock(&resv->lock);
621 list_for_each_entry_safe(rg, trg, head, link) {
622 /*
623 * Skip regions before the range to be deleted. file_region
624 * ranges are normally of the form [from, to). However, there
625 * may be a "placeholder" entry in the map which is of the form
626 * (from, to) with from == to. Check for placeholder entries
627 * at the beginning of the range to be deleted.
628 */
629 if (rg->to <= f && (rg->to != rg->from || rg->to != f))
630 continue;
631
632 if (rg->from >= t)
633 break;
634
635 if (f > rg->from && t < rg->to) { /* Must split region */
636 /*
637 * Check for an entry in the cache before dropping
638 * lock and attempting allocation.
639 */
640 if (!nrg &&
641 resv->region_cache_count > resv->adds_in_progress) {
642 nrg = list_first_entry(&resv->region_cache,
643 struct file_region,
644 link);
645 list_del(&nrg->link);
646 resv->region_cache_count--;
647 }
648
649 if (!nrg) {
650 spin_unlock(&resv->lock);
651 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
652 if (!nrg)
653 return -ENOMEM;
654 goto retry;
655 }
656
657 del += t - f;
658
659 /* New entry for end of split region */
660 nrg->from = t;
661 nrg->to = rg->to;
662
663 copy_hugetlb_cgroup_uncharge_info(nrg, rg);
664
665 INIT_LIST_HEAD(&nrg->link);
666
667 /* Original entry is trimmed */
668 rg->to = f;
669
670 hugetlb_cgroup_uncharge_file_region(
671 resv, rg, nrg->to - nrg->from);
672
673 list_add(&nrg->link, &rg->link);
674 nrg = NULL;
675 break;
676 }
677
678 if (f <= rg->from && t >= rg->to) { /* Remove entire region */
679 del += rg->to - rg->from;
680 hugetlb_cgroup_uncharge_file_region(resv, rg,
681 rg->to - rg->from);
682 list_del(&rg->link);
683 kfree(rg);
684 continue;
685 }
686
687 if (f <= rg->from) { /* Trim beginning of region */
688 del += t - rg->from;
689 rg->from = t;
690
691 hugetlb_cgroup_uncharge_file_region(resv, rg,
692 t - rg->from);
693 } else { /* Trim end of region */
694 del += rg->to - f;
695 rg->to = f;
696
697 hugetlb_cgroup_uncharge_file_region(resv, rg,
698 rg->to - f);
699 }
700 }
701
702 spin_unlock(&resv->lock);
703 kfree(nrg);
704 return del;
705}
706
707/*
708 * A rare out of memory error was encountered which prevented removal of
709 * the reserve map region for a page. The huge page itself was free'ed
710 * and removed from the page cache. This routine will adjust the subpool
711 * usage count, and the global reserve count if needed. By incrementing
712 * these counts, the reserve map entry which could not be deleted will
713 * appear as a "reserved" entry instead of simply dangling with incorrect
714 * counts.
715 */
716void hugetlb_fix_reserve_counts(struct inode *inode)
717{
718 struct hugepage_subpool *spool = subpool_inode(inode);
719 long rsv_adjust;
720
721 rsv_adjust = hugepage_subpool_get_pages(spool, 1);
722 if (rsv_adjust) {
723 struct hstate *h = hstate_inode(inode);
724
725 hugetlb_acct_memory(h, 1);
726 }
727}
728
729/*
730 * Count and return the number of huge pages in the reserve map
731 * that intersect with the range [f, t).
732 */
733static long region_count(struct resv_map *resv, long f, long t)
734{
735 struct list_head *head = &resv->regions;
736 struct file_region *rg;
737 long chg = 0;
738
739 spin_lock(&resv->lock);
740 /* Locate each segment we overlap with, and count that overlap. */
741 list_for_each_entry(rg, head, link) {
742 long seg_from;
743 long seg_to;
744
745 if (rg->to <= f)
746 continue;
747 if (rg->from >= t)
748 break;
749
750 seg_from = max(rg->from, f);
751 seg_to = min(rg->to, t);
752
753 chg += seg_to - seg_from;
754 }
755 spin_unlock(&resv->lock);
756
757 return chg;
758}
759
760/*
761 * Convert the address within this vma to the page offset within
762 * the mapping, in pagecache page units; huge pages here.
763 */
764static pgoff_t vma_hugecache_offset(struct hstate *h,
765 struct vm_area_struct *vma, unsigned long address)
766{
767 return ((address - vma->vm_start) >> huge_page_shift(h)) +
768 (vma->vm_pgoff >> huge_page_order(h));
769}
770
771pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
772 unsigned long address)
773{
774 return vma_hugecache_offset(hstate_vma(vma), vma, address);
775}
776EXPORT_SYMBOL_GPL(linear_hugepage_index);
777
778/*
779 * Return the size of the pages allocated when backing a VMA. In the majority
780 * cases this will be same size as used by the page table entries.
781 */
782unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
783{
784 if (vma->vm_ops && vma->vm_ops->pagesize)
785 return vma->vm_ops->pagesize(vma);
786 return PAGE_SIZE;
787}
788EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
789
790/*
791 * Return the page size being used by the MMU to back a VMA. In the majority
792 * of cases, the page size used by the kernel matches the MMU size. On
793 * architectures where it differs, an architecture-specific 'strong'
794 * version of this symbol is required.
795 */
796__weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
797{
798 return vma_kernel_pagesize(vma);
799}
800
801/*
802 * Flags for MAP_PRIVATE reservations. These are stored in the bottom
803 * bits of the reservation map pointer, which are always clear due to
804 * alignment.
805 */
806#define HPAGE_RESV_OWNER (1UL << 0)
807#define HPAGE_RESV_UNMAPPED (1UL << 1)
808#define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
809
810/*
811 * These helpers are used to track how many pages are reserved for
812 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
813 * is guaranteed to have their future faults succeed.
814 *
815 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
816 * the reserve counters are updated with the hugetlb_lock held. It is safe
817 * to reset the VMA at fork() time as it is not in use yet and there is no
818 * chance of the global counters getting corrupted as a result of the values.
819 *
820 * The private mapping reservation is represented in a subtly different
821 * manner to a shared mapping. A shared mapping has a region map associated
822 * with the underlying file, this region map represents the backing file
823 * pages which have ever had a reservation assigned which this persists even
824 * after the page is instantiated. A private mapping has a region map
825 * associated with the original mmap which is attached to all VMAs which
826 * reference it, this region map represents those offsets which have consumed
827 * reservation ie. where pages have been instantiated.
828 */
829static unsigned long get_vma_private_data(struct vm_area_struct *vma)
830{
831 return (unsigned long)vma->vm_private_data;
832}
833
834static void set_vma_private_data(struct vm_area_struct *vma,
835 unsigned long value)
836{
837 vma->vm_private_data = (void *)value;
838}
839
840static void
841resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map *resv_map,
842 struct hugetlb_cgroup *h_cg,
843 struct hstate *h)
844{
845#ifdef CONFIG_CGROUP_HUGETLB
846 if (!h_cg || !h) {
847 resv_map->reservation_counter = NULL;
848 resv_map->pages_per_hpage = 0;
849 resv_map->css = NULL;
850 } else {
851 resv_map->reservation_counter =
852 &h_cg->rsvd_hugepage[hstate_index(h)];
853 resv_map->pages_per_hpage = pages_per_huge_page(h);
854 resv_map->css = &h_cg->css;
855 }
856#endif
857}
858
859struct resv_map *resv_map_alloc(void)
860{
861 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
862 struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
863
864 if (!resv_map || !rg) {
865 kfree(resv_map);
866 kfree(rg);
867 return NULL;
868 }
869
870 kref_init(&resv_map->refs);
871 spin_lock_init(&resv_map->lock);
872 INIT_LIST_HEAD(&resv_map->regions);
873
874 resv_map->adds_in_progress = 0;
875 /*
876 * Initialize these to 0. On shared mappings, 0's here indicate these
877 * fields don't do cgroup accounting. On private mappings, these will be
878 * re-initialized to the proper values, to indicate that hugetlb cgroup
879 * reservations are to be un-charged from here.
880 */
881 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, NULL, NULL);
882
883 INIT_LIST_HEAD(&resv_map->region_cache);
884 list_add(&rg->link, &resv_map->region_cache);
885 resv_map->region_cache_count = 1;
886
887 return resv_map;
888}
889
890void resv_map_release(struct kref *ref)
891{
892 struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
893 struct list_head *head = &resv_map->region_cache;
894 struct file_region *rg, *trg;
895
896 /* Clear out any active regions before we release the map. */
897 region_del(resv_map, 0, LONG_MAX);
898
899 /* ... and any entries left in the cache */
900 list_for_each_entry_safe(rg, trg, head, link) {
901 list_del(&rg->link);
902 kfree(rg);
903 }
904
905 VM_BUG_ON(resv_map->adds_in_progress);
906
907 kfree(resv_map);
908}
909
910static inline struct resv_map *inode_resv_map(struct inode *inode)
911{
912 /*
913 * At inode evict time, i_mapping may not point to the original
914 * address space within the inode. This original address space
915 * contains the pointer to the resv_map. So, always use the
916 * address space embedded within the inode.
917 * The VERY common case is inode->mapping == &inode->i_data but,
918 * this may not be true for device special inodes.
919 */
920 return (struct resv_map *)(&inode->i_data)->private_data;
921}
922
923static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
924{
925 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
926 if (vma->vm_flags & VM_MAYSHARE) {
927 struct address_space *mapping = vma->vm_file->f_mapping;
928 struct inode *inode = mapping->host;
929
930 return inode_resv_map(inode);
931
932 } else {
933 return (struct resv_map *)(get_vma_private_data(vma) &
934 ~HPAGE_RESV_MASK);
935 }
936}
937
938static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
939{
940 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
941 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
942
943 set_vma_private_data(vma, (get_vma_private_data(vma) &
944 HPAGE_RESV_MASK) | (unsigned long)map);
945}
946
947static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
948{
949 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
950 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
951
952 set_vma_private_data(vma, get_vma_private_data(vma) | flags);
953}
954
955static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
956{
957 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
958
959 return (get_vma_private_data(vma) & flag) != 0;
960}
961
962/* Reset counters to 0 and clear all HPAGE_RESV_* flags */
963void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
964{
965 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
966 if (!(vma->vm_flags & VM_MAYSHARE))
967 vma->vm_private_data = (void *)0;
968}
969
970/* Returns true if the VMA has associated reserve pages */
971static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
972{
973 if (vma->vm_flags & VM_NORESERVE) {
974 /*
975 * This address is already reserved by other process(chg == 0),
976 * so, we should decrement reserved count. Without decrementing,
977 * reserve count remains after releasing inode, because this
978 * allocated page will go into page cache and is regarded as
979 * coming from reserved pool in releasing step. Currently, we
980 * don't have any other solution to deal with this situation
981 * properly, so add work-around here.
982 */
983 if (vma->vm_flags & VM_MAYSHARE && chg == 0)
984 return true;
985 else
986 return false;
987 }
988
989 /* Shared mappings always use reserves */
990 if (vma->vm_flags & VM_MAYSHARE) {
991 /*
992 * We know VM_NORESERVE is not set. Therefore, there SHOULD
993 * be a region map for all pages. The only situation where
994 * there is no region map is if a hole was punched via
995 * fallocate. In this case, there really are no reserves to
996 * use. This situation is indicated if chg != 0.
997 */
998 if (chg)
999 return false;
1000 else
1001 return true;
1002 }
1003
1004 /*
1005 * Only the process that called mmap() has reserves for
1006 * private mappings.
1007 */
1008 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1009 /*
1010 * Like the shared case above, a hole punch or truncate
1011 * could have been performed on the private mapping.
1012 * Examine the value of chg to determine if reserves
1013 * actually exist or were previously consumed.
1014 * Very Subtle - The value of chg comes from a previous
1015 * call to vma_needs_reserves(). The reserve map for
1016 * private mappings has different (opposite) semantics
1017 * than that of shared mappings. vma_needs_reserves()
1018 * has already taken this difference in semantics into
1019 * account. Therefore, the meaning of chg is the same
1020 * as in the shared case above. Code could easily be
1021 * combined, but keeping it separate draws attention to
1022 * subtle differences.
1023 */
1024 if (chg)
1025 return false;
1026 else
1027 return true;
1028 }
1029
1030 return false;
1031}
1032
1033static void enqueue_huge_page(struct hstate *h, struct page *page)
1034{
1035 int nid = page_to_nid(page);
1036 list_move(&page->lru, &h->hugepage_freelists[nid]);
1037 h->free_huge_pages++;
1038 h->free_huge_pages_node[nid]++;
1039}
1040
1041static struct page *dequeue_huge_page_node_exact(struct hstate *h, int nid)
1042{
1043 struct page *page;
1044 bool nocma = !!(current->flags & PF_MEMALLOC_NOCMA);
1045
1046 list_for_each_entry(page, &h->hugepage_freelists[nid], lru) {
1047 if (nocma && is_migrate_cma_page(page))
1048 continue;
1049
1050 if (!PageHWPoison(page))
1051 break;
1052 }
1053
1054 /*
1055 * if 'non-isolated free hugepage' not found on the list,
1056 * the allocation fails.
1057 */
1058 if (&h->hugepage_freelists[nid] == &page->lru)
1059 return NULL;
1060 list_move(&page->lru, &h->hugepage_activelist);
1061 set_page_refcounted(page);
1062 h->free_huge_pages--;
1063 h->free_huge_pages_node[nid]--;
1064 return page;
1065}
1066
1067static struct page *dequeue_huge_page_nodemask(struct hstate *h, gfp_t gfp_mask, int nid,
1068 nodemask_t *nmask)
1069{
1070 unsigned int cpuset_mems_cookie;
1071 struct zonelist *zonelist;
1072 struct zone *zone;
1073 struct zoneref *z;
1074 int node = NUMA_NO_NODE;
1075
1076 zonelist = node_zonelist(nid, gfp_mask);
1077
1078retry_cpuset:
1079 cpuset_mems_cookie = read_mems_allowed_begin();
1080 for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
1081 struct page *page;
1082
1083 if (!cpuset_zone_allowed(zone, gfp_mask))
1084 continue;
1085 /*
1086 * no need to ask again on the same node. Pool is node rather than
1087 * zone aware
1088 */
1089 if (zone_to_nid(zone) == node)
1090 continue;
1091 node = zone_to_nid(zone);
1092
1093 page = dequeue_huge_page_node_exact(h, node);
1094 if (page)
1095 return page;
1096 }
1097 if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
1098 goto retry_cpuset;
1099
1100 return NULL;
1101}
1102
1103static struct page *dequeue_huge_page_vma(struct hstate *h,
1104 struct vm_area_struct *vma,
1105 unsigned long address, int avoid_reserve,
1106 long chg)
1107{
1108 struct page *page;
1109 struct mempolicy *mpol;
1110 gfp_t gfp_mask;
1111 nodemask_t *nodemask;
1112 int nid;
1113
1114 /*
1115 * A child process with MAP_PRIVATE mappings created by their parent
1116 * have no page reserves. This check ensures that reservations are
1117 * not "stolen". The child may still get SIGKILLed
1118 */
1119 if (!vma_has_reserves(vma, chg) &&
1120 h->free_huge_pages - h->resv_huge_pages == 0)
1121 goto err;
1122
1123 /* If reserves cannot be used, ensure enough pages are in the pool */
1124 if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
1125 goto err;
1126
1127 gfp_mask = htlb_alloc_mask(h);
1128 nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
1129 page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
1130 if (page && !avoid_reserve && vma_has_reserves(vma, chg)) {
1131 SetPagePrivate(page);
1132 h->resv_huge_pages--;
1133 }
1134
1135 mpol_cond_put(mpol);
1136 return page;
1137
1138err:
1139 return NULL;
1140}
1141
1142/*
1143 * common helper functions for hstate_next_node_to_{alloc|free}.
1144 * We may have allocated or freed a huge page based on a different
1145 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
1146 * be outside of *nodes_allowed. Ensure that we use an allowed
1147 * node for alloc or free.
1148 */
1149static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
1150{
1151 nid = next_node_in(nid, *nodes_allowed);
1152 VM_BUG_ON(nid >= MAX_NUMNODES);
1153
1154 return nid;
1155}
1156
1157static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
1158{
1159 if (!node_isset(nid, *nodes_allowed))
1160 nid = next_node_allowed(nid, nodes_allowed);
1161 return nid;
1162}
1163
1164/*
1165 * returns the previously saved node ["this node"] from which to
1166 * allocate a persistent huge page for the pool and advance the
1167 * next node from which to allocate, handling wrap at end of node
1168 * mask.
1169 */
1170static int hstate_next_node_to_alloc(struct hstate *h,
1171 nodemask_t *nodes_allowed)
1172{
1173 int nid;
1174
1175 VM_BUG_ON(!nodes_allowed);
1176
1177 nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
1178 h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
1179
1180 return nid;
1181}
1182
1183/*
1184 * helper for free_pool_huge_page() - return the previously saved
1185 * node ["this node"] from which to free a huge page. Advance the
1186 * next node id whether or not we find a free huge page to free so
1187 * that the next attempt to free addresses the next node.
1188 */
1189static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1190{
1191 int nid;
1192
1193 VM_BUG_ON(!nodes_allowed);
1194
1195 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1196 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1197
1198 return nid;
1199}
1200
1201#define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask) \
1202 for (nr_nodes = nodes_weight(*mask); \
1203 nr_nodes > 0 && \
1204 ((node = hstate_next_node_to_alloc(hs, mask)) || 1); \
1205 nr_nodes--)
1206
1207#define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \
1208 for (nr_nodes = nodes_weight(*mask); \
1209 nr_nodes > 0 && \
1210 ((node = hstate_next_node_to_free(hs, mask)) || 1); \
1211 nr_nodes--)
1212
1213#ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
1214static void destroy_compound_gigantic_page(struct page *page,
1215 unsigned int order)
1216{
1217 int i;
1218 int nr_pages = 1 << order;
1219 struct page *p = page + 1;
1220
1221 atomic_set(compound_mapcount_ptr(page), 0);
1222 if (hpage_pincount_available(page))
1223 atomic_set(compound_pincount_ptr(page), 0);
1224
1225 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1226 clear_compound_head(p);
1227 set_page_refcounted(p);
1228 }
1229
1230 set_compound_order(page, 0);
1231 __ClearPageHead(page);
1232}
1233
1234static void free_gigantic_page(struct page *page, unsigned int order)
1235{
1236 /*
1237 * If the page isn't allocated using the cma allocator,
1238 * cma_release() returns false.
1239 */
1240#ifdef CONFIG_CMA
1241 if (cma_release(hugetlb_cma[page_to_nid(page)], page, 1 << order))
1242 return;
1243#endif
1244
1245 free_contig_range(page_to_pfn(page), 1 << order);
1246}
1247
1248#ifdef CONFIG_CONTIG_ALLOC
1249static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1250 int nid, nodemask_t *nodemask)
1251{
1252 unsigned long nr_pages = 1UL << huge_page_order(h);
1253 if (nid == NUMA_NO_NODE)
1254 nid = numa_mem_id();
1255
1256#ifdef CONFIG_CMA
1257 {
1258 struct page *page;
1259 int node;
1260
1261 if (hugetlb_cma[nid]) {
1262 page = cma_alloc(hugetlb_cma[nid], nr_pages,
1263 huge_page_order(h), true);
1264 if (page)
1265 return page;
1266 }
1267
1268 if (!(gfp_mask & __GFP_THISNODE)) {
1269 for_each_node_mask(node, *nodemask) {
1270 if (node == nid || !hugetlb_cma[node])
1271 continue;
1272
1273 page = cma_alloc(hugetlb_cma[node], nr_pages,
1274 huge_page_order(h), true);
1275 if (page)
1276 return page;
1277 }
1278 }
1279 }
1280#endif
1281
1282 return alloc_contig_pages(nr_pages, gfp_mask, nid, nodemask);
1283}
1284
1285static void prep_new_huge_page(struct hstate *h, struct page *page, int nid);
1286static void prep_compound_gigantic_page(struct page *page, unsigned int order);
1287#else /* !CONFIG_CONTIG_ALLOC */
1288static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1289 int nid, nodemask_t *nodemask)
1290{
1291 return NULL;
1292}
1293#endif /* CONFIG_CONTIG_ALLOC */
1294
1295#else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
1296static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1297 int nid, nodemask_t *nodemask)
1298{
1299 return NULL;
1300}
1301static inline void free_gigantic_page(struct page *page, unsigned int order) { }
1302static inline void destroy_compound_gigantic_page(struct page *page,
1303 unsigned int order) { }
1304#endif
1305
1306static void update_and_free_page(struct hstate *h, struct page *page)
1307{
1308 int i;
1309
1310 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1311 return;
1312
1313 h->nr_huge_pages--;
1314 h->nr_huge_pages_node[page_to_nid(page)]--;
1315 for (i = 0; i < pages_per_huge_page(h); i++) {
1316 page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
1317 1 << PG_referenced | 1 << PG_dirty |
1318 1 << PG_active | 1 << PG_private |
1319 1 << PG_writeback);
1320 }
1321 VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
1322 VM_BUG_ON_PAGE(hugetlb_cgroup_from_page_rsvd(page), page);
1323 set_compound_page_dtor(page, NULL_COMPOUND_DTOR);
1324 set_page_refcounted(page);
1325 if (hstate_is_gigantic(h)) {
1326 /*
1327 * Temporarily drop the hugetlb_lock, because
1328 * we might block in free_gigantic_page().
1329 */
1330 spin_unlock(&hugetlb_lock);
1331 destroy_compound_gigantic_page(page, huge_page_order(h));
1332 free_gigantic_page(page, huge_page_order(h));
1333 spin_lock(&hugetlb_lock);
1334 } else {
1335 __free_pages(page, huge_page_order(h));
1336 }
1337}
1338
1339struct hstate *size_to_hstate(unsigned long size)
1340{
1341 struct hstate *h;
1342
1343 for_each_hstate(h) {
1344 if (huge_page_size(h) == size)
1345 return h;
1346 }
1347 return NULL;
1348}
1349
1350/*
1351 * Test to determine whether the hugepage is "active/in-use" (i.e. being linked
1352 * to hstate->hugepage_activelist.)
1353 *
1354 * This function can be called for tail pages, but never returns true for them.
1355 */
1356bool page_huge_active(struct page *page)
1357{
1358 VM_BUG_ON_PAGE(!PageHuge(page), page);
1359 return PageHead(page) && PagePrivate(&page[1]);
1360}
1361
1362/* never called for tail page */
1363static void set_page_huge_active(struct page *page)
1364{
1365 VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1366 SetPagePrivate(&page[1]);
1367}
1368
1369static void clear_page_huge_active(struct page *page)
1370{
1371 VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1372 ClearPagePrivate(&page[1]);
1373}
1374
1375/*
1376 * Internal hugetlb specific page flag. Do not use outside of the hugetlb
1377 * code
1378 */
1379static inline bool PageHugeTemporary(struct page *page)
1380{
1381 if (!PageHuge(page))
1382 return false;
1383
1384 return (unsigned long)page[2].mapping == -1U;
1385}
1386
1387static inline void SetPageHugeTemporary(struct page *page)
1388{
1389 page[2].mapping = (void *)-1U;
1390}
1391
1392static inline void ClearPageHugeTemporary(struct page *page)
1393{
1394 page[2].mapping = NULL;
1395}
1396
1397static void __free_huge_page(struct page *page)
1398{
1399 /*
1400 * Can't pass hstate in here because it is called from the
1401 * compound page destructor.
1402 */
1403 struct hstate *h = page_hstate(page);
1404 int nid = page_to_nid(page);
1405 struct hugepage_subpool *spool =
1406 (struct hugepage_subpool *)page_private(page);
1407 bool restore_reserve;
1408
1409 VM_BUG_ON_PAGE(page_count(page), page);
1410 VM_BUG_ON_PAGE(page_mapcount(page), page);
1411
1412 set_page_private(page, 0);
1413 page->mapping = NULL;
1414 restore_reserve = PagePrivate(page);
1415 ClearPagePrivate(page);
1416
1417 /*
1418 * If PagePrivate() was set on page, page allocation consumed a
1419 * reservation. If the page was associated with a subpool, there
1420 * would have been a page reserved in the subpool before allocation
1421 * via hugepage_subpool_get_pages(). Since we are 'restoring' the
1422 * reservtion, do not call hugepage_subpool_put_pages() as this will
1423 * remove the reserved page from the subpool.
1424 */
1425 if (!restore_reserve) {
1426 /*
1427 * A return code of zero implies that the subpool will be
1428 * under its minimum size if the reservation is not restored
1429 * after page is free. Therefore, force restore_reserve
1430 * operation.
1431 */
1432 if (hugepage_subpool_put_pages(spool, 1) == 0)
1433 restore_reserve = true;
1434 }
1435
1436 spin_lock(&hugetlb_lock);
1437 clear_page_huge_active(page);
1438 hugetlb_cgroup_uncharge_page(hstate_index(h),
1439 pages_per_huge_page(h), page);
1440 hugetlb_cgroup_uncharge_page_rsvd(hstate_index(h),
1441 pages_per_huge_page(h), page);
1442 if (restore_reserve)
1443 h->resv_huge_pages++;
1444
1445 if (PageHugeTemporary(page)) {
1446 list_del(&page->lru);
1447 ClearPageHugeTemporary(page);
1448 update_and_free_page(h, page);
1449 } else if (h->surplus_huge_pages_node[nid]) {
1450 /* remove the page from active list */
1451 list_del(&page->lru);
1452 update_and_free_page(h, page);
1453 h->surplus_huge_pages--;
1454 h->surplus_huge_pages_node[nid]--;
1455 } else {
1456 arch_clear_hugepage_flags(page);
1457 enqueue_huge_page(h, page);
1458 }
1459 spin_unlock(&hugetlb_lock);
1460}
1461
1462/*
1463 * As free_huge_page() can be called from a non-task context, we have
1464 * to defer the actual freeing in a workqueue to prevent potential
1465 * hugetlb_lock deadlock.
1466 *
1467 * free_hpage_workfn() locklessly retrieves the linked list of pages to
1468 * be freed and frees them one-by-one. As the page->mapping pointer is
1469 * going to be cleared in __free_huge_page() anyway, it is reused as the
1470 * llist_node structure of a lockless linked list of huge pages to be freed.
1471 */
1472static LLIST_HEAD(hpage_freelist);
1473
1474static void free_hpage_workfn(struct work_struct *work)
1475{
1476 struct llist_node *node;
1477 struct page *page;
1478
1479 node = llist_del_all(&hpage_freelist);
1480
1481 while (node) {
1482 page = container_of((struct address_space **)node,
1483 struct page, mapping);
1484 node = node->next;
1485 __free_huge_page(page);
1486 }
1487}
1488static DECLARE_WORK(free_hpage_work, free_hpage_workfn);
1489
1490void free_huge_page(struct page *page)
1491{
1492 /*
1493 * Defer freeing if in non-task context to avoid hugetlb_lock deadlock.
1494 */
1495 if (!in_task()) {
1496 /*
1497 * Only call schedule_work() if hpage_freelist is previously
1498 * empty. Otherwise, schedule_work() had been called but the
1499 * workfn hasn't retrieved the list yet.
1500 */
1501 if (llist_add((struct llist_node *)&page->mapping,
1502 &hpage_freelist))
1503 schedule_work(&free_hpage_work);
1504 return;
1505 }
1506
1507 __free_huge_page(page);
1508}
1509
1510static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
1511{
1512 INIT_LIST_HEAD(&page->lru);
1513 set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1514 spin_lock(&hugetlb_lock);
1515 set_hugetlb_cgroup(page, NULL);
1516 set_hugetlb_cgroup_rsvd(page, NULL);
1517 h->nr_huge_pages++;
1518 h->nr_huge_pages_node[nid]++;
1519 spin_unlock(&hugetlb_lock);
1520}
1521
1522static void prep_compound_gigantic_page(struct page *page, unsigned int order)
1523{
1524 int i;
1525 int nr_pages = 1 << order;
1526 struct page *p = page + 1;
1527
1528 /* we rely on prep_new_huge_page to set the destructor */
1529 set_compound_order(page, order);
1530 __ClearPageReserved(page);
1531 __SetPageHead(page);
1532 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1533 /*
1534 * For gigantic hugepages allocated through bootmem at
1535 * boot, it's safer to be consistent with the not-gigantic
1536 * hugepages and clear the PG_reserved bit from all tail pages
1537 * too. Otherwise drivers using get_user_pages() to access tail
1538 * pages may get the reference counting wrong if they see
1539 * PG_reserved set on a tail page (despite the head page not
1540 * having PG_reserved set). Enforcing this consistency between
1541 * head and tail pages allows drivers to optimize away a check
1542 * on the head page when they need know if put_page() is needed
1543 * after get_user_pages().
1544 */
1545 __ClearPageReserved(p);
1546 set_page_count(p, 0);
1547 set_compound_head(p, page);
1548 }
1549 atomic_set(compound_mapcount_ptr(page), -1);
1550
1551 if (hpage_pincount_available(page))
1552 atomic_set(compound_pincount_ptr(page), 0);
1553}
1554
1555/*
1556 * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1557 * transparent huge pages. See the PageTransHuge() documentation for more
1558 * details.
1559 */
1560int PageHuge(struct page *page)
1561{
1562 if (!PageCompound(page))
1563 return 0;
1564
1565 page = compound_head(page);
1566 return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
1567}
1568EXPORT_SYMBOL_GPL(PageHuge);
1569
1570/*
1571 * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1572 * normal or transparent huge pages.
1573 */
1574int PageHeadHuge(struct page *page_head)
1575{
1576 if (!PageHead(page_head))
1577 return 0;
1578
1579 return page_head[1].compound_dtor == HUGETLB_PAGE_DTOR;
1580}
1581
1582/*
1583 * Find address_space associated with hugetlbfs page.
1584 * Upon entry page is locked and page 'was' mapped although mapped state
1585 * could change. If necessary, use anon_vma to find vma and associated
1586 * address space. The returned mapping may be stale, but it can not be
1587 * invalid as page lock (which is held) is required to destroy mapping.
1588 */
1589static struct address_space *_get_hugetlb_page_mapping(struct page *hpage)
1590{
1591 struct anon_vma *anon_vma;
1592 pgoff_t pgoff_start, pgoff_end;
1593 struct anon_vma_chain *avc;
1594 struct address_space *mapping = page_mapping(hpage);
1595
1596 /* Simple file based mapping */
1597 if (mapping)
1598 return mapping;
1599
1600 /*
1601 * Even anonymous hugetlbfs mappings are associated with an
1602 * underlying hugetlbfs file (see hugetlb_file_setup in mmap
1603 * code). Find a vma associated with the anonymous vma, and
1604 * use the file pointer to get address_space.
1605 */
1606 anon_vma = page_lock_anon_vma_read(hpage);
1607 if (!anon_vma)
1608 return mapping; /* NULL */
1609
1610 /* Use first found vma */
1611 pgoff_start = page_to_pgoff(hpage);
1612 pgoff_end = pgoff_start + pages_per_huge_page(page_hstate(hpage)) - 1;
1613 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root,
1614 pgoff_start, pgoff_end) {
1615 struct vm_area_struct *vma = avc->vma;
1616
1617 mapping = vma->vm_file->f_mapping;
1618 break;
1619 }
1620
1621 anon_vma_unlock_read(anon_vma);
1622 return mapping;
1623}
1624
1625/*
1626 * Find and lock address space (mapping) in write mode.
1627 *
1628 * Upon entry, the page is locked which allows us to find the mapping
1629 * even in the case of an anon page. However, locking order dictates
1630 * the i_mmap_rwsem be acquired BEFORE the page lock. This is hugetlbfs
1631 * specific. So, we first try to lock the sema while still holding the
1632 * page lock. If this works, great! If not, then we need to drop the
1633 * page lock and then acquire i_mmap_rwsem and reacquire page lock. Of
1634 * course, need to revalidate state along the way.
1635 */
1636struct address_space *hugetlb_page_mapping_lock_write(struct page *hpage)
1637{
1638 struct address_space *mapping, *mapping2;
1639
1640 mapping = _get_hugetlb_page_mapping(hpage);
1641retry:
1642 if (!mapping)
1643 return mapping;
1644
1645 /*
1646 * If no contention, take lock and return
1647 */
1648 if (i_mmap_trylock_write(mapping))
1649 return mapping;
1650
1651 /*
1652 * Must drop page lock and wait on mapping sema.
1653 * Note: Once page lock is dropped, mapping could become invalid.
1654 * As a hack, increase map count until we lock page again.
1655 */
1656 atomic_inc(&hpage->_mapcount);
1657 unlock_page(hpage);
1658 i_mmap_lock_write(mapping);
1659 lock_page(hpage);
1660 atomic_add_negative(-1, &hpage->_mapcount);
1661
1662 /* verify page is still mapped */
1663 if (!page_mapped(hpage)) {
1664 i_mmap_unlock_write(mapping);
1665 return NULL;
1666 }
1667
1668 /*
1669 * Get address space again and verify it is the same one
1670 * we locked. If not, drop lock and retry.
1671 */
1672 mapping2 = _get_hugetlb_page_mapping(hpage);
1673 if (mapping2 != mapping) {
1674 i_mmap_unlock_write(mapping);
1675 mapping = mapping2;
1676 goto retry;
1677 }
1678
1679 return mapping;
1680}
1681
1682pgoff_t __basepage_index(struct page *page)
1683{
1684 struct page *page_head = compound_head(page);
1685 pgoff_t index = page_index(page_head);
1686 unsigned long compound_idx;
1687
1688 if (!PageHuge(page_head))
1689 return page_index(page);
1690
1691 if (compound_order(page_head) >= MAX_ORDER)
1692 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
1693 else
1694 compound_idx = page - page_head;
1695
1696 return (index << compound_order(page_head)) + compound_idx;
1697}
1698
1699static struct page *alloc_buddy_huge_page(struct hstate *h,
1700 gfp_t gfp_mask, int nid, nodemask_t *nmask,
1701 nodemask_t *node_alloc_noretry)
1702{
1703 int order = huge_page_order(h);
1704 struct page *page;
1705 bool alloc_try_hard = true;
1706
1707 /*
1708 * By default we always try hard to allocate the page with
1709 * __GFP_RETRY_MAYFAIL flag. However, if we are allocating pages in
1710 * a loop (to adjust global huge page counts) and previous allocation
1711 * failed, do not continue to try hard on the same node. Use the
1712 * node_alloc_noretry bitmap to manage this state information.
1713 */
1714 if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry))
1715 alloc_try_hard = false;
1716 gfp_mask |= __GFP_COMP|__GFP_NOWARN;
1717 if (alloc_try_hard)
1718 gfp_mask |= __GFP_RETRY_MAYFAIL;
1719 if (nid == NUMA_NO_NODE)
1720 nid = numa_mem_id();
1721 page = __alloc_pages_nodemask(gfp_mask, order, nid, nmask);
1722 if (page)
1723 __count_vm_event(HTLB_BUDDY_PGALLOC);
1724 else
1725 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1726
1727 /*
1728 * If we did not specify __GFP_RETRY_MAYFAIL, but still got a page this
1729 * indicates an overall state change. Clear bit so that we resume
1730 * normal 'try hard' allocations.
1731 */
1732 if (node_alloc_noretry && page && !alloc_try_hard)
1733 node_clear(nid, *node_alloc_noretry);
1734
1735 /*
1736 * If we tried hard to get a page but failed, set bit so that
1737 * subsequent attempts will not try as hard until there is an
1738 * overall state change.
1739 */
1740 if (node_alloc_noretry && !page && alloc_try_hard)
1741 node_set(nid, *node_alloc_noretry);
1742
1743 return page;
1744}
1745
1746/*
1747 * Common helper to allocate a fresh hugetlb page. All specific allocators
1748 * should use this function to get new hugetlb pages
1749 */
1750static struct page *alloc_fresh_huge_page(struct hstate *h,
1751 gfp_t gfp_mask, int nid, nodemask_t *nmask,
1752 nodemask_t *node_alloc_noretry)
1753{
1754 struct page *page;
1755
1756 if (hstate_is_gigantic(h))
1757 page = alloc_gigantic_page(h, gfp_mask, nid, nmask);
1758 else
1759 page = alloc_buddy_huge_page(h, gfp_mask,
1760 nid, nmask, node_alloc_noretry);
1761 if (!page)
1762 return NULL;
1763
1764 if (hstate_is_gigantic(h))
1765 prep_compound_gigantic_page(page, huge_page_order(h));
1766 prep_new_huge_page(h, page, page_to_nid(page));
1767
1768 return page;
1769}
1770
1771/*
1772 * Allocates a fresh page to the hugetlb allocator pool in the node interleaved
1773 * manner.
1774 */
1775static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1776 nodemask_t *node_alloc_noretry)
1777{
1778 struct page *page;
1779 int nr_nodes, node;
1780 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
1781
1782 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1783 page = alloc_fresh_huge_page(h, gfp_mask, node, nodes_allowed,
1784 node_alloc_noretry);
1785 if (page)
1786 break;
1787 }
1788
1789 if (!page)
1790 return 0;
1791
1792 put_page(page); /* free it into the hugepage allocator */
1793
1794 return 1;
1795}
1796
1797/*
1798 * Free huge page from pool from next node to free.
1799 * Attempt to keep persistent huge pages more or less
1800 * balanced over allowed nodes.
1801 * Called with hugetlb_lock locked.
1802 */
1803static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1804 bool acct_surplus)
1805{
1806 int nr_nodes, node;
1807 int ret = 0;
1808
1809 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1810 /*
1811 * If we're returning unused surplus pages, only examine
1812 * nodes with surplus pages.
1813 */
1814 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
1815 !list_empty(&h->hugepage_freelists[node])) {
1816 struct page *page =
1817 list_entry(h->hugepage_freelists[node].next,
1818 struct page, lru);
1819 list_del(&page->lru);
1820 h->free_huge_pages--;
1821 h->free_huge_pages_node[node]--;
1822 if (acct_surplus) {
1823 h->surplus_huge_pages--;
1824 h->surplus_huge_pages_node[node]--;
1825 }
1826 update_and_free_page(h, page);
1827 ret = 1;
1828 break;
1829 }
1830 }
1831
1832 return ret;
1833}
1834
1835/*
1836 * Dissolve a given free hugepage into free buddy pages. This function does
1837 * nothing for in-use hugepages and non-hugepages.
1838 * This function returns values like below:
1839 *
1840 * -EBUSY: failed to dissolved free hugepages or the hugepage is in-use
1841 * (allocated or reserved.)
1842 * 0: successfully dissolved free hugepages or the page is not a
1843 * hugepage (considered as already dissolved)
1844 */
1845int dissolve_free_huge_page(struct page *page)
1846{
1847 int rc = -EBUSY;
1848
1849 /* Not to disrupt normal path by vainly holding hugetlb_lock */
1850 if (!PageHuge(page))
1851 return 0;
1852
1853 spin_lock(&hugetlb_lock);
1854 if (!PageHuge(page)) {
1855 rc = 0;
1856 goto out;
1857 }
1858
1859 if (!page_count(page)) {
1860 struct page *head = compound_head(page);
1861 struct hstate *h = page_hstate(head);
1862 int nid = page_to_nid(head);
1863 if (h->free_huge_pages - h->resv_huge_pages == 0)
1864 goto out;
1865 /*
1866 * Move PageHWPoison flag from head page to the raw error page,
1867 * which makes any subpages rather than the error page reusable.
1868 */
1869 if (PageHWPoison(head) && page != head) {
1870 SetPageHWPoison(page);
1871 ClearPageHWPoison(head);
1872 }
1873 list_del(&head->lru);
1874 h->free_huge_pages--;
1875 h->free_huge_pages_node[nid]--;
1876 h->max_huge_pages--;
1877 update_and_free_page(h, head);
1878 rc = 0;
1879 }
1880out:
1881 spin_unlock(&hugetlb_lock);
1882 return rc;
1883}
1884
1885/*
1886 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
1887 * make specified memory blocks removable from the system.
1888 * Note that this will dissolve a free gigantic hugepage completely, if any
1889 * part of it lies within the given range.
1890 * Also note that if dissolve_free_huge_page() returns with an error, all
1891 * free hugepages that were dissolved before that error are lost.
1892 */
1893int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
1894{
1895 unsigned long pfn;
1896 struct page *page;
1897 int rc = 0;
1898
1899 if (!hugepages_supported())
1900 return rc;
1901
1902 for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order) {
1903 page = pfn_to_page(pfn);
1904 rc = dissolve_free_huge_page(page);
1905 if (rc)
1906 break;
1907 }
1908
1909 return rc;
1910}
1911
1912/*
1913 * Allocates a fresh surplus page from the page allocator.
1914 */
1915static struct page *alloc_surplus_huge_page(struct hstate *h, gfp_t gfp_mask,
1916 int nid, nodemask_t *nmask)
1917{
1918 struct page *page = NULL;
1919
1920 if (hstate_is_gigantic(h))
1921 return NULL;
1922
1923 spin_lock(&hugetlb_lock);
1924 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages)
1925 goto out_unlock;
1926 spin_unlock(&hugetlb_lock);
1927
1928 page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
1929 if (!page)
1930 return NULL;
1931
1932 spin_lock(&hugetlb_lock);
1933 /*
1934 * We could have raced with the pool size change.
1935 * Double check that and simply deallocate the new page
1936 * if we would end up overcommiting the surpluses. Abuse
1937 * temporary page to workaround the nasty free_huge_page
1938 * codeflow
1939 */
1940 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
1941 SetPageHugeTemporary(page);
1942 spin_unlock(&hugetlb_lock);
1943 put_page(page);
1944 return NULL;
1945 } else {
1946 h->surplus_huge_pages++;
1947 h->surplus_huge_pages_node[page_to_nid(page)]++;
1948 }
1949
1950out_unlock:
1951 spin_unlock(&hugetlb_lock);
1952
1953 return page;
1954}
1955
1956static struct page *alloc_migrate_huge_page(struct hstate *h, gfp_t gfp_mask,
1957 int nid, nodemask_t *nmask)
1958{
1959 struct page *page;
1960
1961 if (hstate_is_gigantic(h))
1962 return NULL;
1963
1964 page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
1965 if (!page)
1966 return NULL;
1967
1968 /*
1969 * We do not account these pages as surplus because they are only
1970 * temporary and will be released properly on the last reference
1971 */
1972 SetPageHugeTemporary(page);
1973
1974 return page;
1975}
1976
1977/*
1978 * Use the VMA's mpolicy to allocate a huge page from the buddy.
1979 */
1980static
1981struct page *alloc_buddy_huge_page_with_mpol(struct hstate *h,
1982 struct vm_area_struct *vma, unsigned long addr)
1983{
1984 struct page *page;
1985 struct mempolicy *mpol;
1986 gfp_t gfp_mask = htlb_alloc_mask(h);
1987 int nid;
1988 nodemask_t *nodemask;
1989
1990 nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
1991 page = alloc_surplus_huge_page(h, gfp_mask, nid, nodemask);
1992 mpol_cond_put(mpol);
1993
1994 return page;
1995}
1996
1997/* page migration callback function */
1998struct page *alloc_huge_page_nodemask(struct hstate *h, int preferred_nid,
1999 nodemask_t *nmask, gfp_t gfp_mask)
2000{
2001 spin_lock(&hugetlb_lock);
2002 if (h->free_huge_pages - h->resv_huge_pages > 0) {
2003 struct page *page;
2004
2005 page = dequeue_huge_page_nodemask(h, gfp_mask, preferred_nid, nmask);
2006 if (page) {
2007 spin_unlock(&hugetlb_lock);
2008 return page;
2009 }
2010 }
2011 spin_unlock(&hugetlb_lock);
2012
2013 return alloc_migrate_huge_page(h, gfp_mask, preferred_nid, nmask);
2014}
2015
2016/* mempolicy aware migration callback */
2017struct page *alloc_huge_page_vma(struct hstate *h, struct vm_area_struct *vma,
2018 unsigned long address)
2019{
2020 struct mempolicy *mpol;
2021 nodemask_t *nodemask;
2022 struct page *page;
2023 gfp_t gfp_mask;
2024 int node;
2025
2026 gfp_mask = htlb_alloc_mask(h);
2027 node = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
2028 page = alloc_huge_page_nodemask(h, node, nodemask, gfp_mask);
2029 mpol_cond_put(mpol);
2030
2031 return page;
2032}
2033
2034/*
2035 * Increase the hugetlb pool such that it can accommodate a reservation
2036 * of size 'delta'.
2037 */
2038static int gather_surplus_pages(struct hstate *h, int delta)
2039 __must_hold(&hugetlb_lock)
2040{
2041 struct list_head surplus_list;
2042 struct page *page, *tmp;
2043 int ret, i;
2044 int needed, allocated;
2045 bool alloc_ok = true;
2046
2047 needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
2048 if (needed <= 0) {
2049 h->resv_huge_pages += delta;
2050 return 0;
2051 }
2052
2053 allocated = 0;
2054 INIT_LIST_HEAD(&surplus_list);
2055
2056 ret = -ENOMEM;
2057retry:
2058 spin_unlock(&hugetlb_lock);
2059 for (i = 0; i < needed; i++) {
2060 page = alloc_surplus_huge_page(h, htlb_alloc_mask(h),
2061 NUMA_NO_NODE, NULL);
2062 if (!page) {
2063 alloc_ok = false;
2064 break;
2065 }
2066 list_add(&page->lru, &surplus_list);
2067 cond_resched();
2068 }
2069 allocated += i;
2070
2071 /*
2072 * After retaking hugetlb_lock, we need to recalculate 'needed'
2073 * because either resv_huge_pages or free_huge_pages may have changed.
2074 */
2075 spin_lock(&hugetlb_lock);
2076 needed = (h->resv_huge_pages + delta) -
2077 (h->free_huge_pages + allocated);
2078 if (needed > 0) {
2079 if (alloc_ok)
2080 goto retry;
2081 /*
2082 * We were not able to allocate enough pages to
2083 * satisfy the entire reservation so we free what
2084 * we've allocated so far.
2085 */
2086 goto free;
2087 }
2088 /*
2089 * The surplus_list now contains _at_least_ the number of extra pages
2090 * needed to accommodate the reservation. Add the appropriate number
2091 * of pages to the hugetlb pool and free the extras back to the buddy
2092 * allocator. Commit the entire reservation here to prevent another
2093 * process from stealing the pages as they are added to the pool but
2094 * before they are reserved.
2095 */
2096 needed += allocated;
2097 h->resv_huge_pages += delta;
2098 ret = 0;
2099
2100 /* Free the needed pages to the hugetlb pool */
2101 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
2102 if ((--needed) < 0)
2103 break;
2104 /*
2105 * This page is now managed by the hugetlb allocator and has
2106 * no users -- drop the buddy allocator's reference.
2107 */
2108 put_page_testzero(page);
2109 VM_BUG_ON_PAGE(page_count(page), page);
2110 enqueue_huge_page(h, page);
2111 }
2112free:
2113 spin_unlock(&hugetlb_lock);
2114
2115 /* Free unnecessary surplus pages to the buddy allocator */
2116 list_for_each_entry_safe(page, tmp, &surplus_list, lru)
2117 put_page(page);
2118 spin_lock(&hugetlb_lock);
2119
2120 return ret;
2121}
2122
2123/*
2124 * This routine has two main purposes:
2125 * 1) Decrement the reservation count (resv_huge_pages) by the value passed
2126 * in unused_resv_pages. This corresponds to the prior adjustments made
2127 * to the associated reservation map.
2128 * 2) Free any unused surplus pages that may have been allocated to satisfy
2129 * the reservation. As many as unused_resv_pages may be freed.
2130 *
2131 * Called with hugetlb_lock held. However, the lock could be dropped (and
2132 * reacquired) during calls to cond_resched_lock. Whenever dropping the lock,
2133 * we must make sure nobody else can claim pages we are in the process of
2134 * freeing. Do this by ensuring resv_huge_page always is greater than the
2135 * number of huge pages we plan to free when dropping the lock.
2136 */
2137static void return_unused_surplus_pages(struct hstate *h,
2138 unsigned long unused_resv_pages)
2139{
2140 unsigned long nr_pages;
2141
2142 /* Cannot return gigantic pages currently */
2143 if (hstate_is_gigantic(h))
2144 goto out;
2145
2146 /*
2147 * Part (or even all) of the reservation could have been backed
2148 * by pre-allocated pages. Only free surplus pages.
2149 */
2150 nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
2151
2152 /*
2153 * We want to release as many surplus pages as possible, spread
2154 * evenly across all nodes with memory. Iterate across these nodes
2155 * until we can no longer free unreserved surplus pages. This occurs
2156 * when the nodes with surplus pages have no free pages.
2157 * free_pool_huge_page() will balance the freed pages across the
2158 * on-line nodes with memory and will handle the hstate accounting.
2159 *
2160 * Note that we decrement resv_huge_pages as we free the pages. If
2161 * we drop the lock, resv_huge_pages will still be sufficiently large
2162 * to cover subsequent pages we may free.
2163 */
2164 while (nr_pages--) {
2165 h->resv_huge_pages--;
2166 unused_resv_pages--;
2167 if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
2168 goto out;
2169 cond_resched_lock(&hugetlb_lock);
2170 }
2171
2172out:
2173 /* Fully uncommit the reservation */
2174 h->resv_huge_pages -= unused_resv_pages;
2175}
2176
2177
2178/*
2179 * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
2180 * are used by the huge page allocation routines to manage reservations.
2181 *
2182 * vma_needs_reservation is called to determine if the huge page at addr
2183 * within the vma has an associated reservation. If a reservation is
2184 * needed, the value 1 is returned. The caller is then responsible for
2185 * managing the global reservation and subpool usage counts. After
2186 * the huge page has been allocated, vma_commit_reservation is called
2187 * to add the page to the reservation map. If the page allocation fails,
2188 * the reservation must be ended instead of committed. vma_end_reservation
2189 * is called in such cases.
2190 *
2191 * In the normal case, vma_commit_reservation returns the same value
2192 * as the preceding vma_needs_reservation call. The only time this
2193 * is not the case is if a reserve map was changed between calls. It
2194 * is the responsibility of the caller to notice the difference and
2195 * take appropriate action.
2196 *
2197 * vma_add_reservation is used in error paths where a reservation must
2198 * be restored when a newly allocated huge page must be freed. It is
2199 * to be called after calling vma_needs_reservation to determine if a
2200 * reservation exists.
2201 */
2202enum vma_resv_mode {
2203 VMA_NEEDS_RESV,
2204 VMA_COMMIT_RESV,
2205 VMA_END_RESV,
2206 VMA_ADD_RESV,
2207};
2208static long __vma_reservation_common(struct hstate *h,
2209 struct vm_area_struct *vma, unsigned long addr,
2210 enum vma_resv_mode mode)
2211{
2212 struct resv_map *resv;
2213 pgoff_t idx;
2214 long ret;
2215 long dummy_out_regions_needed;
2216
2217 resv = vma_resv_map(vma);
2218 if (!resv)
2219 return 1;
2220
2221 idx = vma_hugecache_offset(h, vma, addr);
2222 switch (mode) {
2223 case VMA_NEEDS_RESV:
2224 ret = region_chg(resv, idx, idx + 1, &dummy_out_regions_needed);
2225 /* We assume that vma_reservation_* routines always operate on
2226 * 1 page, and that adding to resv map a 1 page entry can only
2227 * ever require 1 region.
2228 */
2229 VM_BUG_ON(dummy_out_regions_needed != 1);
2230 break;
2231 case VMA_COMMIT_RESV:
2232 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2233 /* region_add calls of range 1 should never fail. */
2234 VM_BUG_ON(ret < 0);
2235 break;
2236 case VMA_END_RESV:
2237 region_abort(resv, idx, idx + 1, 1);
2238 ret = 0;
2239 break;
2240 case VMA_ADD_RESV:
2241 if (vma->vm_flags & VM_MAYSHARE) {
2242 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2243 /* region_add calls of range 1 should never fail. */
2244 VM_BUG_ON(ret < 0);
2245 } else {
2246 region_abort(resv, idx, idx + 1, 1);
2247 ret = region_del(resv, idx, idx + 1);
2248 }
2249 break;
2250 default:
2251 BUG();
2252 }
2253
2254 if (vma->vm_flags & VM_MAYSHARE)
2255 return ret;
2256 else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && ret >= 0) {
2257 /*
2258 * In most cases, reserves always exist for private mappings.
2259 * However, a file associated with mapping could have been
2260 * hole punched or truncated after reserves were consumed.
2261 * As subsequent fault on such a range will not use reserves.
2262 * Subtle - The reserve map for private mappings has the
2263 * opposite meaning than that of shared mappings. If NO
2264 * entry is in the reserve map, it means a reservation exists.
2265 * If an entry exists in the reserve map, it means the
2266 * reservation has already been consumed. As a result, the
2267 * return value of this routine is the opposite of the
2268 * value returned from reserve map manipulation routines above.
2269 */
2270 if (ret)
2271 return 0;
2272 else
2273 return 1;
2274 }
2275 else
2276 return ret < 0 ? ret : 0;
2277}
2278
2279static long vma_needs_reservation(struct hstate *h,
2280 struct vm_area_struct *vma, unsigned long addr)
2281{
2282 return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
2283}
2284
2285static long vma_commit_reservation(struct hstate *h,
2286 struct vm_area_struct *vma, unsigned long addr)
2287{
2288 return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
2289}
2290
2291static void vma_end_reservation(struct hstate *h,
2292 struct vm_area_struct *vma, unsigned long addr)
2293{
2294 (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
2295}
2296
2297static long vma_add_reservation(struct hstate *h,
2298 struct vm_area_struct *vma, unsigned long addr)
2299{
2300 return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
2301}
2302
2303/*
2304 * This routine is called to restore a reservation on error paths. In the
2305 * specific error paths, a huge page was allocated (via alloc_huge_page)
2306 * and is about to be freed. If a reservation for the page existed,
2307 * alloc_huge_page would have consumed the reservation and set PagePrivate
2308 * in the newly allocated page. When the page is freed via free_huge_page,
2309 * the global reservation count will be incremented if PagePrivate is set.
2310 * However, free_huge_page can not adjust the reserve map. Adjust the
2311 * reserve map here to be consistent with global reserve count adjustments
2312 * to be made by free_huge_page.
2313 */
2314static void restore_reserve_on_error(struct hstate *h,
2315 struct vm_area_struct *vma, unsigned long address,
2316 struct page *page)
2317{
2318 if (unlikely(PagePrivate(page))) {
2319 long rc = vma_needs_reservation(h, vma, address);
2320
2321 if (unlikely(rc < 0)) {
2322 /*
2323 * Rare out of memory condition in reserve map
2324 * manipulation. Clear PagePrivate so that
2325 * global reserve count will not be incremented
2326 * by free_huge_page. This will make it appear
2327 * as though the reservation for this page was
2328 * consumed. This may prevent the task from
2329 * faulting in the page at a later time. This
2330 * is better than inconsistent global huge page
2331 * accounting of reserve counts.
2332 */
2333 ClearPagePrivate(page);
2334 } else if (rc) {
2335 rc = vma_add_reservation(h, vma, address);
2336 if (unlikely(rc < 0))
2337 /*
2338 * See above comment about rare out of
2339 * memory condition.
2340 */
2341 ClearPagePrivate(page);
2342 } else
2343 vma_end_reservation(h, vma, address);
2344 }
2345}
2346
2347struct page *alloc_huge_page(struct vm_area_struct *vma,
2348 unsigned long addr, int avoid_reserve)
2349{
2350 struct hugepage_subpool *spool = subpool_vma(vma);
2351 struct hstate *h = hstate_vma(vma);
2352 struct page *page;
2353 long map_chg, map_commit;
2354 long gbl_chg;
2355 int ret, idx;
2356 struct hugetlb_cgroup *h_cg;
2357 bool deferred_reserve;
2358
2359 idx = hstate_index(h);
2360 /*
2361 * Examine the region/reserve map to determine if the process
2362 * has a reservation for the page to be allocated. A return
2363 * code of zero indicates a reservation exists (no change).
2364 */
2365 map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
2366 if (map_chg < 0)
2367 return ERR_PTR(-ENOMEM);
2368
2369 /*
2370 * Processes that did not create the mapping will have no
2371 * reserves as indicated by the region/reserve map. Check
2372 * that the allocation will not exceed the subpool limit.
2373 * Allocations for MAP_NORESERVE mappings also need to be
2374 * checked against any subpool limit.
2375 */
2376 if (map_chg || avoid_reserve) {
2377 gbl_chg = hugepage_subpool_get_pages(spool, 1);
2378 if (gbl_chg < 0) {
2379 vma_end_reservation(h, vma, addr);
2380 return ERR_PTR(-ENOSPC);
2381 }
2382
2383 /*
2384 * Even though there was no reservation in the region/reserve
2385 * map, there could be reservations associated with the
2386 * subpool that can be used. This would be indicated if the
2387 * return value of hugepage_subpool_get_pages() is zero.
2388 * However, if avoid_reserve is specified we still avoid even
2389 * the subpool reservations.
2390 */
2391 if (avoid_reserve)
2392 gbl_chg = 1;
2393 }
2394
2395 /* If this allocation is not consuming a reservation, charge it now.
2396 */
2397 deferred_reserve = map_chg || avoid_reserve || !vma_resv_map(vma);
2398 if (deferred_reserve) {
2399 ret = hugetlb_cgroup_charge_cgroup_rsvd(
2400 idx, pages_per_huge_page(h), &h_cg);
2401 if (ret)
2402 goto out_subpool_put;
2403 }
2404
2405 ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
2406 if (ret)
2407 goto out_uncharge_cgroup_reservation;
2408
2409 spin_lock(&hugetlb_lock);
2410 /*
2411 * glb_chg is passed to indicate whether or not a page must be taken
2412 * from the global free pool (global change). gbl_chg == 0 indicates
2413 * a reservation exists for the allocation.
2414 */
2415 page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
2416 if (!page) {
2417 spin_unlock(&hugetlb_lock);
2418 page = alloc_buddy_huge_page_with_mpol(h, vma, addr);
2419 if (!page)
2420 goto out_uncharge_cgroup;
2421 if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
2422 SetPagePrivate(page);
2423 h->resv_huge_pages--;
2424 }
2425 spin_lock(&hugetlb_lock);
2426 list_move(&page->lru, &h->hugepage_activelist);
2427 /* Fall through */
2428 }
2429 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
2430 /* If allocation is not consuming a reservation, also store the
2431 * hugetlb_cgroup pointer on the page.
2432 */
2433 if (deferred_reserve) {
2434 hugetlb_cgroup_commit_charge_rsvd(idx, pages_per_huge_page(h),
2435 h_cg, page);
2436 }
2437
2438 spin_unlock(&hugetlb_lock);
2439
2440 set_page_private(page, (unsigned long)spool);
2441
2442 map_commit = vma_commit_reservation(h, vma, addr);
2443 if (unlikely(map_chg > map_commit)) {
2444 /*
2445 * The page was added to the reservation map between
2446 * vma_needs_reservation and vma_commit_reservation.
2447 * This indicates a race with hugetlb_reserve_pages.
2448 * Adjust for the subpool count incremented above AND
2449 * in hugetlb_reserve_pages for the same page. Also,
2450 * the reservation count added in hugetlb_reserve_pages
2451 * no longer applies.
2452 */
2453 long rsv_adjust;
2454
2455 rsv_adjust = hugepage_subpool_put_pages(spool, 1);
2456 hugetlb_acct_memory(h, -rsv_adjust);
2457 }
2458 return page;
2459
2460out_uncharge_cgroup:
2461 hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
2462out_uncharge_cgroup_reservation:
2463 if (deferred_reserve)
2464 hugetlb_cgroup_uncharge_cgroup_rsvd(idx, pages_per_huge_page(h),
2465 h_cg);
2466out_subpool_put:
2467 if (map_chg || avoid_reserve)
2468 hugepage_subpool_put_pages(spool, 1);
2469 vma_end_reservation(h, vma, addr);
2470 return ERR_PTR(-ENOSPC);
2471}
2472
2473int alloc_bootmem_huge_page(struct hstate *h)
2474 __attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
2475int __alloc_bootmem_huge_page(struct hstate *h)
2476{
2477 struct huge_bootmem_page *m;
2478 int nr_nodes, node;
2479
2480 for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
2481 void *addr;
2482
2483 addr = memblock_alloc_try_nid_raw(
2484 huge_page_size(h), huge_page_size(h),
2485 0, MEMBLOCK_ALLOC_ACCESSIBLE, node);
2486 if (addr) {
2487 /*
2488 * Use the beginning of the huge page to store the
2489 * huge_bootmem_page struct (until gather_bootmem
2490 * puts them into the mem_map).
2491 */
2492 m = addr;
2493 goto found;
2494 }
2495 }
2496 return 0;
2497
2498found:
2499 BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h)));
2500 /* Put them into a private list first because mem_map is not up yet */
2501 INIT_LIST_HEAD(&m->list);
2502 list_add(&m->list, &huge_boot_pages);
2503 m->hstate = h;
2504 return 1;
2505}
2506
2507static void __init prep_compound_huge_page(struct page *page,
2508 unsigned int order)
2509{
2510 if (unlikely(order > (MAX_ORDER - 1)))
2511 prep_compound_gigantic_page(page, order);
2512 else
2513 prep_compound_page(page, order);
2514}
2515
2516/* Put bootmem huge pages into the standard lists after mem_map is up */
2517static void __init gather_bootmem_prealloc(void)
2518{
2519 struct huge_bootmem_page *m;
2520
2521 list_for_each_entry(m, &huge_boot_pages, list) {
2522 struct page *page = virt_to_page(m);
2523 struct hstate *h = m->hstate;
2524
2525 WARN_ON(page_count(page) != 1);
2526 prep_compound_huge_page(page, h->order);
2527 WARN_ON(PageReserved(page));
2528 prep_new_huge_page(h, page, page_to_nid(page));
2529 put_page(page); /* free it into the hugepage allocator */
2530
2531 /*
2532 * If we had gigantic hugepages allocated at boot time, we need
2533 * to restore the 'stolen' pages to totalram_pages in order to
2534 * fix confusing memory reports from free(1) and another
2535 * side-effects, like CommitLimit going negative.
2536 */
2537 if (hstate_is_gigantic(h))
2538 adjust_managed_page_count(page, 1 << h->order);
2539 cond_resched();
2540 }
2541}
2542
2543static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
2544{
2545 unsigned long i;
2546 nodemask_t *node_alloc_noretry;
2547
2548 if (!hstate_is_gigantic(h)) {
2549 /*
2550 * Bit mask controlling how hard we retry per-node allocations.
2551 * Ignore errors as lower level routines can deal with
2552 * node_alloc_noretry == NULL. If this kmalloc fails at boot
2553 * time, we are likely in bigger trouble.
2554 */
2555 node_alloc_noretry = kmalloc(sizeof(*node_alloc_noretry),
2556 GFP_KERNEL);
2557 } else {
2558 /* allocations done at boot time */
2559 node_alloc_noretry = NULL;
2560 }
2561
2562 /* bit mask controlling how hard we retry per-node allocations */
2563 if (node_alloc_noretry)
2564 nodes_clear(*node_alloc_noretry);
2565
2566 for (i = 0; i < h->max_huge_pages; ++i) {
2567 if (hstate_is_gigantic(h)) {
2568 if (hugetlb_cma_size) {
2569 pr_warn_once("HugeTLB: hugetlb_cma is enabled, skip boot time allocation\n");
2570 break;
2571 }
2572 if (!alloc_bootmem_huge_page(h))
2573 break;
2574 } else if (!alloc_pool_huge_page(h,
2575 &node_states[N_MEMORY],
2576 node_alloc_noretry))
2577 break;
2578 cond_resched();
2579 }
2580 if (i < h->max_huge_pages) {
2581 char buf[32];
2582
2583 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
2584 pr_warn("HugeTLB: allocating %lu of page size %s failed. Only allocated %lu hugepages.\n",
2585 h->max_huge_pages, buf, i);
2586 h->max_huge_pages = i;
2587 }
2588
2589 kfree(node_alloc_noretry);
2590}
2591
2592static void __init hugetlb_init_hstates(void)
2593{
2594 struct hstate *h;
2595
2596 for_each_hstate(h) {
2597 if (minimum_order > huge_page_order(h))
2598 minimum_order = huge_page_order(h);
2599
2600 /* oversize hugepages were init'ed in early boot */
2601 if (!hstate_is_gigantic(h))
2602 hugetlb_hstate_alloc_pages(h);
2603 }
2604 VM_BUG_ON(minimum_order == UINT_MAX);
2605}
2606
2607static void __init report_hugepages(void)
2608{
2609 struct hstate *h;
2610
2611 for_each_hstate(h) {
2612 char buf[32];
2613
2614 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
2615 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
2616 buf, h->free_huge_pages);
2617 }
2618}
2619
2620#ifdef CONFIG_HIGHMEM
2621static void try_to_free_low(struct hstate *h, unsigned long count,
2622 nodemask_t *nodes_allowed)
2623{
2624 int i;
2625
2626 if (hstate_is_gigantic(h))
2627 return;
2628
2629 for_each_node_mask(i, *nodes_allowed) {
2630 struct page *page, *next;
2631 struct list_head *freel = &h->hugepage_freelists[i];
2632 list_for_each_entry_safe(page, next, freel, lru) {
2633 if (count >= h->nr_huge_pages)
2634 return;
2635 if (PageHighMem(page))
2636 continue;
2637 list_del(&page->lru);
2638 update_and_free_page(h, page);
2639 h->free_huge_pages--;
2640 h->free_huge_pages_node[page_to_nid(page)]--;
2641 }
2642 }
2643}
2644#else
2645static inline void try_to_free_low(struct hstate *h, unsigned long count,
2646 nodemask_t *nodes_allowed)
2647{
2648}
2649#endif
2650
2651/*
2652 * Increment or decrement surplus_huge_pages. Keep node-specific counters
2653 * balanced by operating on them in a round-robin fashion.
2654 * Returns 1 if an adjustment was made.
2655 */
2656static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
2657 int delta)
2658{
2659 int nr_nodes, node;
2660
2661 VM_BUG_ON(delta != -1 && delta != 1);
2662
2663 if (delta < 0) {
2664 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
2665 if (h->surplus_huge_pages_node[node])
2666 goto found;
2667 }
2668 } else {
2669 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2670 if (h->surplus_huge_pages_node[node] <
2671 h->nr_huge_pages_node[node])
2672 goto found;
2673 }
2674 }
2675 return 0;
2676
2677found:
2678 h->surplus_huge_pages += delta;
2679 h->surplus_huge_pages_node[node] += delta;
2680 return 1;
2681}
2682
2683#define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
2684static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid,
2685 nodemask_t *nodes_allowed)
2686{
2687 unsigned long min_count, ret;
2688 NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL);
2689
2690 /*
2691 * Bit mask controlling how hard we retry per-node allocations.
2692 * If we can not allocate the bit mask, do not attempt to allocate
2693 * the requested huge pages.
2694 */
2695 if (node_alloc_noretry)
2696 nodes_clear(*node_alloc_noretry);
2697 else
2698 return -ENOMEM;
2699
2700 spin_lock(&hugetlb_lock);
2701
2702 /*
2703 * Check for a node specific request.
2704 * Changing node specific huge page count may require a corresponding
2705 * change to the global count. In any case, the passed node mask
2706 * (nodes_allowed) will restrict alloc/free to the specified node.
2707 */
2708 if (nid != NUMA_NO_NODE) {
2709 unsigned long old_count = count;
2710
2711 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
2712 /*
2713 * User may have specified a large count value which caused the
2714 * above calculation to overflow. In this case, they wanted
2715 * to allocate as many huge pages as possible. Set count to
2716 * largest possible value to align with their intention.
2717 */
2718 if (count < old_count)
2719 count = ULONG_MAX;
2720 }
2721
2722 /*
2723 * Gigantic pages runtime allocation depend on the capability for large
2724 * page range allocation.
2725 * If the system does not provide this feature, return an error when
2726 * the user tries to allocate gigantic pages but let the user free the
2727 * boottime allocated gigantic pages.
2728 */
2729 if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) {
2730 if (count > persistent_huge_pages(h)) {
2731 spin_unlock(&hugetlb_lock);
2732 NODEMASK_FREE(node_alloc_noretry);
2733 return -EINVAL;
2734 }
2735 /* Fall through to decrease pool */
2736 }
2737
2738 /*
2739 * Increase the pool size
2740 * First take pages out of surplus state. Then make up the
2741 * remaining difference by allocating fresh huge pages.
2742 *
2743 * We might race with alloc_surplus_huge_page() here and be unable
2744 * to convert a surplus huge page to a normal huge page. That is
2745 * not critical, though, it just means the overall size of the
2746 * pool might be one hugepage larger than it needs to be, but
2747 * within all the constraints specified by the sysctls.
2748 */
2749 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
2750 if (!adjust_pool_surplus(h, nodes_allowed, -1))
2751 break;
2752 }
2753
2754 while (count > persistent_huge_pages(h)) {
2755 /*
2756 * If this allocation races such that we no longer need the
2757 * page, free_huge_page will handle it by freeing the page
2758 * and reducing the surplus.
2759 */
2760 spin_unlock(&hugetlb_lock);
2761
2762 /* yield cpu to avoid soft lockup */
2763 cond_resched();
2764
2765 ret = alloc_pool_huge_page(h, nodes_allowed,
2766 node_alloc_noretry);
2767 spin_lock(&hugetlb_lock);
2768 if (!ret)
2769 goto out;
2770
2771 /* Bail for signals. Probably ctrl-c from user */
2772 if (signal_pending(current))
2773 goto out;
2774 }
2775
2776 /*
2777 * Decrease the pool size
2778 * First return free pages to the buddy allocator (being careful
2779 * to keep enough around to satisfy reservations). Then place
2780 * pages into surplus state as needed so the pool will shrink
2781 * to the desired size as pages become free.
2782 *
2783 * By placing pages into the surplus state independent of the
2784 * overcommit value, we are allowing the surplus pool size to
2785 * exceed overcommit. There are few sane options here. Since
2786 * alloc_surplus_huge_page() is checking the global counter,
2787 * though, we'll note that we're not allowed to exceed surplus
2788 * and won't grow the pool anywhere else. Not until one of the
2789 * sysctls are changed, or the surplus pages go out of use.
2790 */
2791 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
2792 min_count = max(count, min_count);
2793 try_to_free_low(h, min_count, nodes_allowed);
2794 while (min_count < persistent_huge_pages(h)) {
2795 if (!free_pool_huge_page(h, nodes_allowed, 0))
2796 break;
2797 cond_resched_lock(&hugetlb_lock);
2798 }
2799 while (count < persistent_huge_pages(h)) {
2800 if (!adjust_pool_surplus(h, nodes_allowed, 1))
2801 break;
2802 }
2803out:
2804 h->max_huge_pages = persistent_huge_pages(h);
2805 spin_unlock(&hugetlb_lock);
2806
2807 NODEMASK_FREE(node_alloc_noretry);
2808
2809 return 0;
2810}
2811
2812#define HSTATE_ATTR_RO(_name) \
2813 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2814
2815#define HSTATE_ATTR(_name) \
2816 static struct kobj_attribute _name##_attr = \
2817 __ATTR(_name, 0644, _name##_show, _name##_store)
2818
2819static struct kobject *hugepages_kobj;
2820static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2821
2822static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
2823
2824static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
2825{
2826 int i;
2827
2828 for (i = 0; i < HUGE_MAX_HSTATE; i++)
2829 if (hstate_kobjs[i] == kobj) {
2830 if (nidp)
2831 *nidp = NUMA_NO_NODE;
2832 return &hstates[i];
2833 }
2834
2835 return kobj_to_node_hstate(kobj, nidp);
2836}
2837
2838static ssize_t nr_hugepages_show_common(struct kobject *kobj,
2839 struct kobj_attribute *attr, char *buf)
2840{
2841 struct hstate *h;
2842 unsigned long nr_huge_pages;
2843 int nid;
2844
2845 h = kobj_to_hstate(kobj, &nid);
2846 if (nid == NUMA_NO_NODE)
2847 nr_huge_pages = h->nr_huge_pages;
2848 else
2849 nr_huge_pages = h->nr_huge_pages_node[nid];
2850
2851 return sprintf(buf, "%lu\n", nr_huge_pages);
2852}
2853
2854static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
2855 struct hstate *h, int nid,
2856 unsigned long count, size_t len)
2857{
2858 int err;
2859 nodemask_t nodes_allowed, *n_mask;
2860
2861 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
2862 return -EINVAL;
2863
2864 if (nid == NUMA_NO_NODE) {
2865 /*
2866 * global hstate attribute
2867 */
2868 if (!(obey_mempolicy &&
2869 init_nodemask_of_mempolicy(&nodes_allowed)))
2870 n_mask = &node_states[N_MEMORY];
2871 else
2872 n_mask = &nodes_allowed;
2873 } else {
2874 /*
2875 * Node specific request. count adjustment happens in
2876 * set_max_huge_pages() after acquiring hugetlb_lock.
2877 */
2878 init_nodemask_of_node(&nodes_allowed, nid);
2879 n_mask = &nodes_allowed;
2880 }
2881
2882 err = set_max_huge_pages(h, count, nid, n_mask);
2883
2884 return err ? err : len;
2885}
2886
2887static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
2888 struct kobject *kobj, const char *buf,
2889 size_t len)
2890{
2891 struct hstate *h;
2892 unsigned long count;
2893 int nid;
2894 int err;
2895
2896 err = kstrtoul(buf, 10, &count);
2897 if (err)
2898 return err;
2899
2900 h = kobj_to_hstate(kobj, &nid);
2901 return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
2902}
2903
2904static ssize_t nr_hugepages_show(struct kobject *kobj,
2905 struct kobj_attribute *attr, char *buf)
2906{
2907 return nr_hugepages_show_common(kobj, attr, buf);
2908}
2909
2910static ssize_t nr_hugepages_store(struct kobject *kobj,
2911 struct kobj_attribute *attr, const char *buf, size_t len)
2912{
2913 return nr_hugepages_store_common(false, kobj, buf, len);
2914}
2915HSTATE_ATTR(nr_hugepages);
2916
2917#ifdef CONFIG_NUMA
2918
2919/*
2920 * hstate attribute for optionally mempolicy-based constraint on persistent
2921 * huge page alloc/free.
2922 */
2923static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
2924 struct kobj_attribute *attr, char *buf)
2925{
2926 return nr_hugepages_show_common(kobj, attr, buf);
2927}
2928
2929static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
2930 struct kobj_attribute *attr, const char *buf, size_t len)
2931{
2932 return nr_hugepages_store_common(true, kobj, buf, len);
2933}
2934HSTATE_ATTR(nr_hugepages_mempolicy);
2935#endif
2936
2937
2938static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
2939 struct kobj_attribute *attr, char *buf)
2940{
2941 struct hstate *h = kobj_to_hstate(kobj, NULL);
2942 return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
2943}
2944
2945static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
2946 struct kobj_attribute *attr, const char *buf, size_t count)
2947{
2948 int err;
2949 unsigned long input;
2950 struct hstate *h = kobj_to_hstate(kobj, NULL);
2951
2952 if (hstate_is_gigantic(h))
2953 return -EINVAL;
2954
2955 err = kstrtoul(buf, 10, &input);
2956 if (err)
2957 return err;
2958
2959 spin_lock(&hugetlb_lock);
2960 h->nr_overcommit_huge_pages = input;
2961 spin_unlock(&hugetlb_lock);
2962
2963 return count;
2964}
2965HSTATE_ATTR(nr_overcommit_hugepages);
2966
2967static ssize_t free_hugepages_show(struct kobject *kobj,
2968 struct kobj_attribute *attr, char *buf)
2969{
2970 struct hstate *h;
2971 unsigned long free_huge_pages;
2972 int nid;
2973
2974 h = kobj_to_hstate(kobj, &nid);
2975 if (nid == NUMA_NO_NODE)
2976 free_huge_pages = h->free_huge_pages;
2977 else
2978 free_huge_pages = h->free_huge_pages_node[nid];
2979
2980 return sprintf(buf, "%lu\n", free_huge_pages);
2981}
2982HSTATE_ATTR_RO(free_hugepages);
2983
2984static ssize_t resv_hugepages_show(struct kobject *kobj,
2985 struct kobj_attribute *attr, char *buf)
2986{
2987 struct hstate *h = kobj_to_hstate(kobj, NULL);
2988 return sprintf(buf, "%lu\n", h->resv_huge_pages);
2989}
2990HSTATE_ATTR_RO(resv_hugepages);
2991
2992static ssize_t surplus_hugepages_show(struct kobject *kobj,
2993 struct kobj_attribute *attr, char *buf)
2994{
2995 struct hstate *h;
2996 unsigned long surplus_huge_pages;
2997 int nid;
2998
2999 h = kobj_to_hstate(kobj, &nid);
3000 if (nid == NUMA_NO_NODE)
3001 surplus_huge_pages = h->surplus_huge_pages;
3002 else
3003 surplus_huge_pages = h->surplus_huge_pages_node[nid];
3004
3005 return sprintf(buf, "%lu\n", surplus_huge_pages);
3006}
3007HSTATE_ATTR_RO(surplus_hugepages);
3008
3009static struct attribute *hstate_attrs[] = {
3010 &nr_hugepages_attr.attr,
3011 &nr_overcommit_hugepages_attr.attr,
3012 &free_hugepages_attr.attr,
3013 &resv_hugepages_attr.attr,
3014 &surplus_hugepages_attr.attr,
3015#ifdef CONFIG_NUMA
3016 &nr_hugepages_mempolicy_attr.attr,
3017#endif
3018 NULL,
3019};
3020
3021static const struct attribute_group hstate_attr_group = {
3022 .attrs = hstate_attrs,
3023};
3024
3025static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
3026 struct kobject **hstate_kobjs,
3027 const struct attribute_group *hstate_attr_group)
3028{
3029 int retval;
3030 int hi = hstate_index(h);
3031
3032 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
3033 if (!hstate_kobjs[hi])
3034 return -ENOMEM;
3035
3036 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
3037 if (retval)
3038 kobject_put(hstate_kobjs[hi]);
3039
3040 return retval;
3041}
3042
3043static void __init hugetlb_sysfs_init(void)
3044{
3045 struct hstate *h;
3046 int err;
3047
3048 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
3049 if (!hugepages_kobj)
3050 return;
3051
3052 for_each_hstate(h) {
3053 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
3054 hstate_kobjs, &hstate_attr_group);
3055 if (err)
3056 pr_err("HugeTLB: Unable to add hstate %s", h->name);
3057 }
3058}
3059
3060#ifdef CONFIG_NUMA
3061
3062/*
3063 * node_hstate/s - associate per node hstate attributes, via their kobjects,
3064 * with node devices in node_devices[] using a parallel array. The array
3065 * index of a node device or _hstate == node id.
3066 * This is here to avoid any static dependency of the node device driver, in
3067 * the base kernel, on the hugetlb module.
3068 */
3069struct node_hstate {
3070 struct kobject *hugepages_kobj;
3071 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
3072};
3073static struct node_hstate node_hstates[MAX_NUMNODES];
3074
3075/*
3076 * A subset of global hstate attributes for node devices
3077 */
3078static struct attribute *per_node_hstate_attrs[] = {
3079 &nr_hugepages_attr.attr,
3080 &free_hugepages_attr.attr,
3081 &surplus_hugepages_attr.attr,
3082 NULL,
3083};
3084
3085static const struct attribute_group per_node_hstate_attr_group = {
3086 .attrs = per_node_hstate_attrs,
3087};
3088
3089/*
3090 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
3091 * Returns node id via non-NULL nidp.
3092 */
3093static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
3094{
3095 int nid;
3096
3097 for (nid = 0; nid < nr_node_ids; nid++) {
3098 struct node_hstate *nhs = &node_hstates[nid];
3099 int i;
3100 for (i = 0; i < HUGE_MAX_HSTATE; i++)
3101 if (nhs->hstate_kobjs[i] == kobj) {
3102 if (nidp)
3103 *nidp = nid;
3104 return &hstates[i];
3105 }
3106 }
3107
3108 BUG();
3109 return NULL;
3110}
3111
3112/*
3113 * Unregister hstate attributes from a single node device.
3114 * No-op if no hstate attributes attached.
3115 */
3116static void hugetlb_unregister_node(struct node *node)
3117{
3118 struct hstate *h;
3119 struct node_hstate *nhs = &node_hstates[node->dev.id];
3120
3121 if (!nhs->hugepages_kobj)
3122 return; /* no hstate attributes */
3123
3124 for_each_hstate(h) {
3125 int idx = hstate_index(h);
3126 if (nhs->hstate_kobjs[idx]) {
3127 kobject_put(nhs->hstate_kobjs[idx]);
3128 nhs->hstate_kobjs[idx] = NULL;
3129 }
3130 }
3131
3132 kobject_put(nhs->hugepages_kobj);
3133 nhs->hugepages_kobj = NULL;
3134}
3135
3136
3137/*
3138 * Register hstate attributes for a single node device.
3139 * No-op if attributes already registered.
3140 */
3141static void hugetlb_register_node(struct node *node)
3142{
3143 struct hstate *h;
3144 struct node_hstate *nhs = &node_hstates[node->dev.id];
3145 int err;
3146
3147 if (nhs->hugepages_kobj)
3148 return; /* already allocated */
3149
3150 nhs->hugepages_kobj = kobject_create_and_add("hugepages",
3151 &node->dev.kobj);
3152 if (!nhs->hugepages_kobj)
3153 return;
3154
3155 for_each_hstate(h) {
3156 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
3157 nhs->hstate_kobjs,
3158 &per_node_hstate_attr_group);
3159 if (err) {
3160 pr_err("HugeTLB: Unable to add hstate %s for node %d\n",
3161 h->name, node->dev.id);
3162 hugetlb_unregister_node(node);
3163 break;
3164 }
3165 }
3166}
3167
3168/*
3169 * hugetlb init time: register hstate attributes for all registered node
3170 * devices of nodes that have memory. All on-line nodes should have
3171 * registered their associated device by this time.
3172 */
3173static void __init hugetlb_register_all_nodes(void)
3174{
3175 int nid;
3176
3177 for_each_node_state(nid, N_MEMORY) {
3178 struct node *node = node_devices[nid];
3179 if (node->dev.id == nid)
3180 hugetlb_register_node(node);
3181 }
3182
3183 /*
3184 * Let the node device driver know we're here so it can
3185 * [un]register hstate attributes on node hotplug.
3186 */
3187 register_hugetlbfs_with_node(hugetlb_register_node,
3188 hugetlb_unregister_node);
3189}
3190#else /* !CONFIG_NUMA */
3191
3192static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
3193{
3194 BUG();
3195 if (nidp)
3196 *nidp = -1;
3197 return NULL;
3198}
3199
3200static void hugetlb_register_all_nodes(void) { }
3201
3202#endif
3203
3204static int __init hugetlb_init(void)
3205{
3206 int i;
3207
3208 if (!hugepages_supported()) {
3209 if (hugetlb_max_hstate || default_hstate_max_huge_pages)
3210 pr_warn("HugeTLB: huge pages not supported, ignoring associated command-line parameters\n");
3211 return 0;
3212 }
3213
3214 /*
3215 * Make sure HPAGE_SIZE (HUGETLB_PAGE_ORDER) hstate exists. Some
3216 * architectures depend on setup being done here.
3217 */
3218 hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
3219 if (!parsed_default_hugepagesz) {
3220 /*
3221 * If we did not parse a default huge page size, set
3222 * default_hstate_idx to HPAGE_SIZE hstate. And, if the
3223 * number of huge pages for this default size was implicitly
3224 * specified, set that here as well.
3225 * Note that the implicit setting will overwrite an explicit
3226 * setting. A warning will be printed in this case.
3227 */
3228 default_hstate_idx = hstate_index(size_to_hstate(HPAGE_SIZE));
3229 if (default_hstate_max_huge_pages) {
3230 if (default_hstate.max_huge_pages) {
3231 char buf[32];
3232
3233 string_get_size(huge_page_size(&default_hstate),
3234 1, STRING_UNITS_2, buf, 32);
3235 pr_warn("HugeTLB: Ignoring hugepages=%lu associated with %s page size\n",
3236 default_hstate.max_huge_pages, buf);
3237 pr_warn("HugeTLB: Using hugepages=%lu for number of default huge pages\n",
3238 default_hstate_max_huge_pages);
3239 }
3240 default_hstate.max_huge_pages =
3241 default_hstate_max_huge_pages;
3242 }
3243 }
3244
3245 hugetlb_cma_check();
3246 hugetlb_init_hstates();
3247 gather_bootmem_prealloc();
3248 report_hugepages();
3249
3250 hugetlb_sysfs_init();
3251 hugetlb_register_all_nodes();
3252 hugetlb_cgroup_file_init();
3253
3254#ifdef CONFIG_SMP
3255 num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
3256#else
3257 num_fault_mutexes = 1;
3258#endif
3259 hugetlb_fault_mutex_table =
3260 kmalloc_array(num_fault_mutexes, sizeof(struct mutex),
3261 GFP_KERNEL);
3262 BUG_ON(!hugetlb_fault_mutex_table);
3263
3264 for (i = 0; i < num_fault_mutexes; i++)
3265 mutex_init(&hugetlb_fault_mutex_table[i]);
3266 return 0;
3267}
3268subsys_initcall(hugetlb_init);
3269
3270/* Overwritten by architectures with more huge page sizes */
3271bool __init __attribute((weak)) arch_hugetlb_valid_size(unsigned long size)
3272{
3273 return size == HPAGE_SIZE;
3274}
3275
3276void __init hugetlb_add_hstate(unsigned int order)
3277{
3278 struct hstate *h;
3279 unsigned long i;
3280
3281 if (size_to_hstate(PAGE_SIZE << order)) {
3282 return;
3283 }
3284 BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
3285 BUG_ON(order == 0);
3286 h = &hstates[hugetlb_max_hstate++];
3287 h->order = order;
3288 h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
3289 h->nr_huge_pages = 0;
3290 h->free_huge_pages = 0;
3291 for (i = 0; i < MAX_NUMNODES; ++i)
3292 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
3293 INIT_LIST_HEAD(&h->hugepage_activelist);
3294 h->next_nid_to_alloc = first_memory_node;
3295 h->next_nid_to_free = first_memory_node;
3296 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
3297 huge_page_size(h)/1024);
3298
3299 parsed_hstate = h;
3300}
3301
3302/*
3303 * hugepages command line processing
3304 * hugepages normally follows a valid hugepagsz or default_hugepagsz
3305 * specification. If not, ignore the hugepages value. hugepages can also
3306 * be the first huge page command line option in which case it implicitly
3307 * specifies the number of huge pages for the default size.
3308 */
3309static int __init hugepages_setup(char *s)
3310{
3311 unsigned long *mhp;
3312 static unsigned long *last_mhp;
3313
3314 if (!parsed_valid_hugepagesz) {
3315 pr_warn("HugeTLB: hugepages=%s does not follow a valid hugepagesz, ignoring\n", s);
3316 parsed_valid_hugepagesz = true;
3317 return 0;
3318 }
3319
3320 /*
3321 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter
3322 * yet, so this hugepages= parameter goes to the "default hstate".
3323 * Otherwise, it goes with the previously parsed hugepagesz or
3324 * default_hugepagesz.
3325 */
3326 else if (!hugetlb_max_hstate)
3327 mhp = &default_hstate_max_huge_pages;
3328 else
3329 mhp = &parsed_hstate->max_huge_pages;
3330
3331 if (mhp == last_mhp) {
3332 pr_warn("HugeTLB: hugepages= specified twice without interleaving hugepagesz=, ignoring hugepages=%s\n", s);
3333 return 0;
3334 }
3335
3336 if (sscanf(s, "%lu", mhp) <= 0)
3337 *mhp = 0;
3338
3339 /*
3340 * Global state is always initialized later in hugetlb_init.
3341 * But we need to allocate >= MAX_ORDER hstates here early to still
3342 * use the bootmem allocator.
3343 */
3344 if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
3345 hugetlb_hstate_alloc_pages(parsed_hstate);
3346
3347 last_mhp = mhp;
3348
3349 return 1;
3350}
3351__setup("hugepages=", hugepages_setup);
3352
3353/*
3354 * hugepagesz command line processing
3355 * A specific huge page size can only be specified once with hugepagesz.
3356 * hugepagesz is followed by hugepages on the command line. The global
3357 * variable 'parsed_valid_hugepagesz' is used to determine if prior
3358 * hugepagesz argument was valid.
3359 */
3360static int __init hugepagesz_setup(char *s)
3361{
3362 unsigned long size;
3363 struct hstate *h;
3364
3365 parsed_valid_hugepagesz = false;
3366 size = (unsigned long)memparse(s, NULL);
3367
3368 if (!arch_hugetlb_valid_size(size)) {
3369 pr_err("HugeTLB: unsupported hugepagesz=%s\n", s);
3370 return 0;
3371 }
3372
3373 h = size_to_hstate(size);
3374 if (h) {
3375 /*
3376 * hstate for this size already exists. This is normally
3377 * an error, but is allowed if the existing hstate is the
3378 * default hstate. More specifically, it is only allowed if
3379 * the number of huge pages for the default hstate was not
3380 * previously specified.
3381 */
3382 if (!parsed_default_hugepagesz || h != &default_hstate ||
3383 default_hstate.max_huge_pages) {
3384 pr_warn("HugeTLB: hugepagesz=%s specified twice, ignoring\n", s);
3385 return 0;
3386 }
3387
3388 /*
3389 * No need to call hugetlb_add_hstate() as hstate already
3390 * exists. But, do set parsed_hstate so that a following
3391 * hugepages= parameter will be applied to this hstate.
3392 */
3393 parsed_hstate = h;
3394 parsed_valid_hugepagesz = true;
3395 return 1;
3396 }
3397
3398 hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
3399 parsed_valid_hugepagesz = true;
3400 return 1;
3401}
3402__setup("hugepagesz=", hugepagesz_setup);
3403
3404/*
3405 * default_hugepagesz command line input
3406 * Only one instance of default_hugepagesz allowed on command line.
3407 */
3408static int __init default_hugepagesz_setup(char *s)
3409{
3410 unsigned long size;
3411
3412 parsed_valid_hugepagesz = false;
3413 if (parsed_default_hugepagesz) {
3414 pr_err("HugeTLB: default_hugepagesz previously specified, ignoring %s\n", s);
3415 return 0;
3416 }
3417
3418 size = (unsigned long)memparse(s, NULL);
3419
3420 if (!arch_hugetlb_valid_size(size)) {
3421 pr_err("HugeTLB: unsupported default_hugepagesz=%s\n", s);
3422 return 0;
3423 }
3424
3425 hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
3426 parsed_valid_hugepagesz = true;
3427 parsed_default_hugepagesz = true;
3428 default_hstate_idx = hstate_index(size_to_hstate(size));
3429
3430 /*
3431 * The number of default huge pages (for this size) could have been
3432 * specified as the first hugetlb parameter: hugepages=X. If so,
3433 * then default_hstate_max_huge_pages is set. If the default huge
3434 * page size is gigantic (>= MAX_ORDER), then the pages must be
3435 * allocated here from bootmem allocator.
3436 */
3437 if (default_hstate_max_huge_pages) {
3438 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
3439 if (hstate_is_gigantic(&default_hstate))
3440 hugetlb_hstate_alloc_pages(&default_hstate);
3441 default_hstate_max_huge_pages = 0;
3442 }
3443
3444 return 1;
3445}
3446__setup("default_hugepagesz=", default_hugepagesz_setup);
3447
3448static unsigned int allowed_mems_nr(struct hstate *h)
3449{
3450 int node;
3451 unsigned int nr = 0;
3452 nodemask_t *mpol_allowed;
3453 unsigned int *array = h->free_huge_pages_node;
3454 gfp_t gfp_mask = htlb_alloc_mask(h);
3455
3456 mpol_allowed = policy_nodemask_current(gfp_mask);
3457
3458 for_each_node_mask(node, cpuset_current_mems_allowed) {
3459 if (!mpol_allowed ||
3460 (mpol_allowed && node_isset(node, *mpol_allowed)))
3461 nr += array[node];
3462 }
3463
3464 return nr;
3465}
3466
3467#ifdef CONFIG_SYSCTL
3468static int proc_hugetlb_doulongvec_minmax(struct ctl_table *table, int write,
3469 void *buffer, size_t *length,
3470 loff_t *ppos, unsigned long *out)
3471{
3472 struct ctl_table dup_table;
3473
3474 /*
3475 * In order to avoid races with __do_proc_doulongvec_minmax(), we
3476 * can duplicate the @table and alter the duplicate of it.
3477 */
3478 dup_table = *table;
3479 dup_table.data = out;
3480
3481 return proc_doulongvec_minmax(&dup_table, write, buffer, length, ppos);
3482}
3483
3484static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
3485 struct ctl_table *table, int write,
3486 void *buffer, size_t *length, loff_t *ppos)
3487{
3488 struct hstate *h = &default_hstate;
3489 unsigned long tmp = h->max_huge_pages;
3490 int ret;
3491
3492 if (!hugepages_supported())
3493 return -EOPNOTSUPP;
3494
3495 ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
3496 &tmp);
3497 if (ret)
3498 goto out;
3499
3500 if (write)
3501 ret = __nr_hugepages_store_common(obey_mempolicy, h,
3502 NUMA_NO_NODE, tmp, *length);
3503out:
3504 return ret;
3505}
3506
3507int hugetlb_sysctl_handler(struct ctl_table *table, int write,
3508 void *buffer, size_t *length, loff_t *ppos)
3509{
3510
3511 return hugetlb_sysctl_handler_common(false, table, write,
3512 buffer, length, ppos);
3513}
3514
3515#ifdef CONFIG_NUMA
3516int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
3517 void *buffer, size_t *length, loff_t *ppos)
3518{
3519 return hugetlb_sysctl_handler_common(true, table, write,
3520 buffer, length, ppos);
3521}
3522#endif /* CONFIG_NUMA */
3523
3524int hugetlb_overcommit_handler(struct ctl_table *table, int write,
3525 void *buffer, size_t *length, loff_t *ppos)
3526{
3527 struct hstate *h = &default_hstate;
3528 unsigned long tmp;
3529 int ret;
3530
3531 if (!hugepages_supported())
3532 return -EOPNOTSUPP;
3533
3534 tmp = h->nr_overcommit_huge_pages;
3535
3536 if (write && hstate_is_gigantic(h))
3537 return -EINVAL;
3538
3539 ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
3540 &tmp);
3541 if (ret)
3542 goto out;
3543
3544 if (write) {
3545 spin_lock(&hugetlb_lock);
3546 h->nr_overcommit_huge_pages = tmp;
3547 spin_unlock(&hugetlb_lock);
3548 }
3549out:
3550 return ret;
3551}
3552
3553#endif /* CONFIG_SYSCTL */
3554
3555void hugetlb_report_meminfo(struct seq_file *m)
3556{
3557 struct hstate *h;
3558 unsigned long total = 0;
3559
3560 if (!hugepages_supported())
3561 return;
3562
3563 for_each_hstate(h) {
3564 unsigned long count = h->nr_huge_pages;
3565
3566 total += (PAGE_SIZE << huge_page_order(h)) * count;
3567
3568 if (h == &default_hstate)
3569 seq_printf(m,
3570 "HugePages_Total: %5lu\n"
3571 "HugePages_Free: %5lu\n"
3572 "HugePages_Rsvd: %5lu\n"
3573 "HugePages_Surp: %5lu\n"
3574 "Hugepagesize: %8lu kB\n",
3575 count,
3576 h->free_huge_pages,
3577 h->resv_huge_pages,
3578 h->surplus_huge_pages,
3579 (PAGE_SIZE << huge_page_order(h)) / 1024);
3580 }
3581
3582 seq_printf(m, "Hugetlb: %8lu kB\n", total / 1024);
3583}
3584
3585int hugetlb_report_node_meminfo(int nid, char *buf)
3586{
3587 struct hstate *h = &default_hstate;
3588 if (!hugepages_supported())
3589 return 0;
3590 return sprintf(buf,
3591 "Node %d HugePages_Total: %5u\n"
3592 "Node %d HugePages_Free: %5u\n"
3593 "Node %d HugePages_Surp: %5u\n",
3594 nid, h->nr_huge_pages_node[nid],
3595 nid, h->free_huge_pages_node[nid],
3596 nid, h->surplus_huge_pages_node[nid]);
3597}
3598
3599void hugetlb_show_meminfo(void)
3600{
3601 struct hstate *h;
3602 int nid;
3603
3604 if (!hugepages_supported())
3605 return;
3606
3607 for_each_node_state(nid, N_MEMORY)
3608 for_each_hstate(h)
3609 pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
3610 nid,
3611 h->nr_huge_pages_node[nid],
3612 h->free_huge_pages_node[nid],
3613 h->surplus_huge_pages_node[nid],
3614 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
3615}
3616
3617void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
3618{
3619 seq_printf(m, "HugetlbPages:\t%8lu kB\n",
3620 atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
3621}
3622
3623/* Return the number pages of memory we physically have, in PAGE_SIZE units. */
3624unsigned long hugetlb_total_pages(void)
3625{
3626 struct hstate *h;
3627 unsigned long nr_total_pages = 0;
3628
3629 for_each_hstate(h)
3630 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
3631 return nr_total_pages;
3632}
3633
3634static int hugetlb_acct_memory(struct hstate *h, long delta)
3635{
3636 int ret = -ENOMEM;
3637
3638 spin_lock(&hugetlb_lock);
3639 /*
3640 * When cpuset is configured, it breaks the strict hugetlb page
3641 * reservation as the accounting is done on a global variable. Such
3642 * reservation is completely rubbish in the presence of cpuset because
3643 * the reservation is not checked against page availability for the
3644 * current cpuset. Application can still potentially OOM'ed by kernel
3645 * with lack of free htlb page in cpuset that the task is in.
3646 * Attempt to enforce strict accounting with cpuset is almost
3647 * impossible (or too ugly) because cpuset is too fluid that
3648 * task or memory node can be dynamically moved between cpusets.
3649 *
3650 * The change of semantics for shared hugetlb mapping with cpuset is
3651 * undesirable. However, in order to preserve some of the semantics,
3652 * we fall back to check against current free page availability as
3653 * a best attempt and hopefully to minimize the impact of changing
3654 * semantics that cpuset has.
3655 *
3656 * Apart from cpuset, we also have memory policy mechanism that
3657 * also determines from which node the kernel will allocate memory
3658 * in a NUMA system. So similar to cpuset, we also should consider
3659 * the memory policy of the current task. Similar to the description
3660 * above.
3661 */
3662 if (delta > 0) {
3663 if (gather_surplus_pages(h, delta) < 0)
3664 goto out;
3665
3666 if (delta > allowed_mems_nr(h)) {
3667 return_unused_surplus_pages(h, delta);
3668 goto out;
3669 }
3670 }
3671
3672 ret = 0;
3673 if (delta < 0)
3674 return_unused_surplus_pages(h, (unsigned long) -delta);
3675
3676out:
3677 spin_unlock(&hugetlb_lock);
3678 return ret;
3679}
3680
3681static void hugetlb_vm_op_open(struct vm_area_struct *vma)
3682{
3683 struct resv_map *resv = vma_resv_map(vma);
3684
3685 /*
3686 * This new VMA should share its siblings reservation map if present.
3687 * The VMA will only ever have a valid reservation map pointer where
3688 * it is being copied for another still existing VMA. As that VMA
3689 * has a reference to the reservation map it cannot disappear until
3690 * after this open call completes. It is therefore safe to take a
3691 * new reference here without additional locking.
3692 */
3693 if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3694 kref_get(&resv->refs);
3695}
3696
3697static void hugetlb_vm_op_close(struct vm_area_struct *vma)
3698{
3699 struct hstate *h = hstate_vma(vma);
3700 struct resv_map *resv = vma_resv_map(vma);
3701 struct hugepage_subpool *spool = subpool_vma(vma);
3702 unsigned long reserve, start, end;
3703 long gbl_reserve;
3704
3705 if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3706 return;
3707
3708 start = vma_hugecache_offset(h, vma, vma->vm_start);
3709 end = vma_hugecache_offset(h, vma, vma->vm_end);
3710
3711 reserve = (end - start) - region_count(resv, start, end);
3712 hugetlb_cgroup_uncharge_counter(resv, start, end);
3713 if (reserve) {
3714 /*
3715 * Decrement reserve counts. The global reserve count may be
3716 * adjusted if the subpool has a minimum size.
3717 */
3718 gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
3719 hugetlb_acct_memory(h, -gbl_reserve);
3720 }
3721
3722 kref_put(&resv->refs, resv_map_release);
3723}
3724
3725static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
3726{
3727 if (addr & ~(huge_page_mask(hstate_vma(vma))))
3728 return -EINVAL;
3729 return 0;
3730}
3731
3732static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma)
3733{
3734 struct hstate *hstate = hstate_vma(vma);
3735
3736 return 1UL << huge_page_shift(hstate);
3737}
3738
3739/*
3740 * We cannot handle pagefaults against hugetlb pages at all. They cause
3741 * handle_mm_fault() to try to instantiate regular-sized pages in the
3742 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
3743 * this far.
3744 */
3745static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf)
3746{
3747 BUG();
3748 return 0;
3749}
3750
3751/*
3752 * When a new function is introduced to vm_operations_struct and added
3753 * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops.
3754 * This is because under System V memory model, mappings created via
3755 * shmget/shmat with "huge page" specified are backed by hugetlbfs files,
3756 * their original vm_ops are overwritten with shm_vm_ops.
3757 */
3758const struct vm_operations_struct hugetlb_vm_ops = {
3759 .fault = hugetlb_vm_op_fault,
3760 .open = hugetlb_vm_op_open,
3761 .close = hugetlb_vm_op_close,
3762 .split = hugetlb_vm_op_split,
3763 .pagesize = hugetlb_vm_op_pagesize,
3764};
3765
3766static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
3767 int writable)
3768{
3769 pte_t entry;
3770
3771 if (writable) {
3772 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
3773 vma->vm_page_prot)));
3774 } else {
3775 entry = huge_pte_wrprotect(mk_huge_pte(page,
3776 vma->vm_page_prot));
3777 }
3778 entry = pte_mkyoung(entry);
3779 entry = pte_mkhuge(entry);
3780 entry = arch_make_huge_pte(entry, vma, page, writable);
3781
3782 return entry;
3783}
3784
3785static void set_huge_ptep_writable(struct vm_area_struct *vma,
3786 unsigned long address, pte_t *ptep)
3787{
3788 pte_t entry;
3789
3790 entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
3791 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
3792 update_mmu_cache(vma, address, ptep);
3793}
3794
3795bool is_hugetlb_entry_migration(pte_t pte)
3796{
3797 swp_entry_t swp;
3798
3799 if (huge_pte_none(pte) || pte_present(pte))
3800 return false;
3801 swp = pte_to_swp_entry(pte);
3802 if (non_swap_entry(swp) && is_migration_entry(swp))
3803 return true;
3804 else
3805 return false;
3806}
3807
3808static int is_hugetlb_entry_hwpoisoned(pte_t pte)
3809{
3810 swp_entry_t swp;
3811
3812 if (huge_pte_none(pte) || pte_present(pte))
3813 return 0;
3814 swp = pte_to_swp_entry(pte);
3815 if (non_swap_entry(swp) && is_hwpoison_entry(swp))
3816 return 1;
3817 else
3818 return 0;
3819}
3820
3821int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
3822 struct vm_area_struct *vma)
3823{
3824 pte_t *src_pte, *dst_pte, entry, dst_entry;
3825 struct page *ptepage;
3826 unsigned long addr;
3827 int cow;
3828 struct hstate *h = hstate_vma(vma);
3829 unsigned long sz = huge_page_size(h);
3830 struct address_space *mapping = vma->vm_file->f_mapping;
3831 struct mmu_notifier_range range;
3832 int ret = 0;
3833
3834 cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
3835
3836 if (cow) {
3837 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, src,
3838 vma->vm_start,
3839 vma->vm_end);
3840 mmu_notifier_invalidate_range_start(&range);
3841 } else {
3842 /*
3843 * For shared mappings i_mmap_rwsem must be held to call
3844 * huge_pte_alloc, otherwise the returned ptep could go
3845 * away if part of a shared pmd and another thread calls
3846 * huge_pmd_unshare.
3847 */
3848 i_mmap_lock_read(mapping);
3849 }
3850
3851 for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
3852 spinlock_t *src_ptl, *dst_ptl;
3853 src_pte = huge_pte_offset(src, addr, sz);
3854 if (!src_pte)
3855 continue;
3856 dst_pte = huge_pte_alloc(dst, addr, sz);
3857 if (!dst_pte) {
3858 ret = -ENOMEM;
3859 break;
3860 }
3861
3862 /*
3863 * If the pagetables are shared don't copy or take references.
3864 * dst_pte == src_pte is the common case of src/dest sharing.
3865 *
3866 * However, src could have 'unshared' and dst shares with
3867 * another vma. If dst_pte !none, this implies sharing.
3868 * Check here before taking page table lock, and once again
3869 * after taking the lock below.
3870 */
3871 dst_entry = huge_ptep_get(dst_pte);
3872 if ((dst_pte == src_pte) || !huge_pte_none(dst_entry))
3873 continue;
3874
3875 dst_ptl = huge_pte_lock(h, dst, dst_pte);
3876 src_ptl = huge_pte_lockptr(h, src, src_pte);
3877 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
3878 entry = huge_ptep_get(src_pte);
3879 dst_entry = huge_ptep_get(dst_pte);
3880 if (huge_pte_none(entry) || !huge_pte_none(dst_entry)) {
3881 /*
3882 * Skip if src entry none. Also, skip in the
3883 * unlikely case dst entry !none as this implies
3884 * sharing with another vma.
3885 */
3886 ;
3887 } else if (unlikely(is_hugetlb_entry_migration(entry) ||
3888 is_hugetlb_entry_hwpoisoned(entry))) {
3889 swp_entry_t swp_entry = pte_to_swp_entry(entry);
3890
3891 if (is_write_migration_entry(swp_entry) && cow) {
3892 /*
3893 * COW mappings require pages in both
3894 * parent and child to be set to read.
3895 */
3896 make_migration_entry_read(&swp_entry);
3897 entry = swp_entry_to_pte(swp_entry);
3898 set_huge_swap_pte_at(src, addr, src_pte,
3899 entry, sz);
3900 }
3901 set_huge_swap_pte_at(dst, addr, dst_pte, entry, sz);
3902 } else {
3903 if (cow) {
3904 /*
3905 * No need to notify as we are downgrading page
3906 * table protection not changing it to point
3907 * to a new page.
3908 *
3909 * See Documentation/vm/mmu_notifier.rst
3910 */
3911 huge_ptep_set_wrprotect(src, addr, src_pte);
3912 }
3913 entry = huge_ptep_get(src_pte);
3914 ptepage = pte_page(entry);
3915 get_page(ptepage);
3916 page_dup_rmap(ptepage, true);
3917 set_huge_pte_at(dst, addr, dst_pte, entry);
3918 hugetlb_count_add(pages_per_huge_page(h), dst);
3919 }
3920 spin_unlock(src_ptl);
3921 spin_unlock(dst_ptl);
3922 }
3923
3924 if (cow)
3925 mmu_notifier_invalidate_range_end(&range);
3926 else
3927 i_mmap_unlock_read(mapping);
3928
3929 return ret;
3930}
3931
3932void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
3933 unsigned long start, unsigned long end,
3934 struct page *ref_page)
3935{
3936 struct mm_struct *mm = vma->vm_mm;
3937 unsigned long address;
3938 pte_t *ptep;
3939 pte_t pte;
3940 spinlock_t *ptl;
3941 struct page *page;
3942 struct hstate *h = hstate_vma(vma);
3943 unsigned long sz = huge_page_size(h);
3944 struct mmu_notifier_range range;
3945
3946 WARN_ON(!is_vm_hugetlb_page(vma));
3947 BUG_ON(start & ~huge_page_mask(h));
3948 BUG_ON(end & ~huge_page_mask(h));
3949
3950 /*
3951 * This is a hugetlb vma, all the pte entries should point
3952 * to huge page.
3953 */
3954 tlb_change_page_size(tlb, sz);
3955 tlb_start_vma(tlb, vma);
3956
3957 /*
3958 * If sharing possible, alert mmu notifiers of worst case.
3959 */
3960 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, mm, start,
3961 end);
3962 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
3963 mmu_notifier_invalidate_range_start(&range);
3964 address = start;
3965 for (; address < end; address += sz) {
3966 ptep = huge_pte_offset(mm, address, sz);
3967 if (!ptep)
3968 continue;
3969
3970 ptl = huge_pte_lock(h, mm, ptep);
3971 if (huge_pmd_unshare(mm, vma, &address, ptep)) {
3972 spin_unlock(ptl);
3973 /*
3974 * We just unmapped a page of PMDs by clearing a PUD.
3975 * The caller's TLB flush range should cover this area.
3976 */
3977 continue;
3978 }
3979
3980 pte = huge_ptep_get(ptep);
3981 if (huge_pte_none(pte)) {
3982 spin_unlock(ptl);
3983 continue;
3984 }
3985
3986 /*
3987 * Migrating hugepage or HWPoisoned hugepage is already
3988 * unmapped and its refcount is dropped, so just clear pte here.
3989 */
3990 if (unlikely(!pte_present(pte))) {
3991 huge_pte_clear(mm, address, ptep, sz);
3992 spin_unlock(ptl);
3993 continue;
3994 }
3995
3996 page = pte_page(pte);
3997 /*
3998 * If a reference page is supplied, it is because a specific
3999 * page is being unmapped, not a range. Ensure the page we
4000 * are about to unmap is the actual page of interest.
4001 */
4002 if (ref_page) {
4003 if (page != ref_page) {
4004 spin_unlock(ptl);
4005 continue;
4006 }
4007 /*
4008 * Mark the VMA as having unmapped its page so that
4009 * future faults in this VMA will fail rather than
4010 * looking like data was lost
4011 */
4012 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
4013 }
4014
4015 pte = huge_ptep_get_and_clear(mm, address, ptep);
4016 tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
4017 if (huge_pte_dirty(pte))
4018 set_page_dirty(page);
4019
4020 hugetlb_count_sub(pages_per_huge_page(h), mm);
4021 page_remove_rmap(page, true);
4022
4023 spin_unlock(ptl);
4024 tlb_remove_page_size(tlb, page, huge_page_size(h));
4025 /*
4026 * Bail out after unmapping reference page if supplied
4027 */
4028 if (ref_page)
4029 break;
4030 }
4031 mmu_notifier_invalidate_range_end(&range);
4032 tlb_end_vma(tlb, vma);
4033}
4034
4035void __unmap_hugepage_range_final(struct mmu_gather *tlb,
4036 struct vm_area_struct *vma, unsigned long start,
4037 unsigned long end, struct page *ref_page)
4038{
4039 __unmap_hugepage_range(tlb, vma, start, end, ref_page);
4040
4041 /*
4042 * Clear this flag so that x86's huge_pmd_share page_table_shareable
4043 * test will fail on a vma being torn down, and not grab a page table
4044 * on its way out. We're lucky that the flag has such an appropriate
4045 * name, and can in fact be safely cleared here. We could clear it
4046 * before the __unmap_hugepage_range above, but all that's necessary
4047 * is to clear it before releasing the i_mmap_rwsem. This works
4048 * because in the context this is called, the VMA is about to be
4049 * destroyed and the i_mmap_rwsem is held.
4050 */
4051 vma->vm_flags &= ~VM_MAYSHARE;
4052}
4053
4054void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
4055 unsigned long end, struct page *ref_page)
4056{
4057 struct mm_struct *mm;
4058 struct mmu_gather tlb;
4059 unsigned long tlb_start = start;
4060 unsigned long tlb_end = end;
4061
4062 /*
4063 * If shared PMDs were possibly used within this vma range, adjust
4064 * start/end for worst case tlb flushing.
4065 * Note that we can not be sure if PMDs are shared until we try to
4066 * unmap pages. However, we want to make sure TLB flushing covers
4067 * the largest possible range.
4068 */
4069 adjust_range_if_pmd_sharing_possible(vma, &tlb_start, &tlb_end);
4070
4071 mm = vma->vm_mm;
4072
4073 tlb_gather_mmu(&tlb, mm, tlb_start, tlb_end);
4074 __unmap_hugepage_range(&tlb, vma, start, end, ref_page);
4075 tlb_finish_mmu(&tlb, tlb_start, tlb_end);
4076}
4077
4078/*
4079 * This is called when the original mapper is failing to COW a MAP_PRIVATE
4080 * mappping it owns the reserve page for. The intention is to unmap the page
4081 * from other VMAs and let the children be SIGKILLed if they are faulting the
4082 * same region.
4083 */
4084static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
4085 struct page *page, unsigned long address)
4086{
4087 struct hstate *h = hstate_vma(vma);
4088 struct vm_area_struct *iter_vma;
4089 struct address_space *mapping;
4090 pgoff_t pgoff;
4091
4092 /*
4093 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
4094 * from page cache lookup which is in HPAGE_SIZE units.
4095 */
4096 address = address & huge_page_mask(h);
4097 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
4098 vma->vm_pgoff;
4099 mapping = vma->vm_file->f_mapping;
4100
4101 /*
4102 * Take the mapping lock for the duration of the table walk. As
4103 * this mapping should be shared between all the VMAs,
4104 * __unmap_hugepage_range() is called as the lock is already held
4105 */
4106 i_mmap_lock_write(mapping);
4107 vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
4108 /* Do not unmap the current VMA */
4109 if (iter_vma == vma)
4110 continue;
4111
4112 /*
4113 * Shared VMAs have their own reserves and do not affect
4114 * MAP_PRIVATE accounting but it is possible that a shared
4115 * VMA is using the same page so check and skip such VMAs.
4116 */
4117 if (iter_vma->vm_flags & VM_MAYSHARE)
4118 continue;
4119
4120 /*
4121 * Unmap the page from other VMAs without their own reserves.
4122 * They get marked to be SIGKILLed if they fault in these
4123 * areas. This is because a future no-page fault on this VMA
4124 * could insert a zeroed page instead of the data existing
4125 * from the time of fork. This would look like data corruption
4126 */
4127 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
4128 unmap_hugepage_range(iter_vma, address,
4129 address + huge_page_size(h), page);
4130 }
4131 i_mmap_unlock_write(mapping);
4132}
4133
4134/*
4135 * Hugetlb_cow() should be called with page lock of the original hugepage held.
4136 * Called with hugetlb_instantiation_mutex held and pte_page locked so we
4137 * cannot race with other handlers or page migration.
4138 * Keep the pte_same checks anyway to make transition from the mutex easier.
4139 */
4140static vm_fault_t hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
4141 unsigned long address, pte_t *ptep,
4142 struct page *pagecache_page, spinlock_t *ptl)
4143{
4144 pte_t pte;
4145 struct hstate *h = hstate_vma(vma);
4146 struct page *old_page, *new_page;
4147 int outside_reserve = 0;
4148 vm_fault_t ret = 0;
4149 unsigned long haddr = address & huge_page_mask(h);
4150 struct mmu_notifier_range range;
4151
4152 pte = huge_ptep_get(ptep);
4153 old_page = pte_page(pte);
4154
4155retry_avoidcopy:
4156 /* If no-one else is actually using this page, avoid the copy
4157 * and just make the page writable */
4158 if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
4159 page_move_anon_rmap(old_page, vma);
4160 set_huge_ptep_writable(vma, haddr, ptep);
4161 return 0;
4162 }
4163
4164 /*
4165 * If the process that created a MAP_PRIVATE mapping is about to
4166 * perform a COW due to a shared page count, attempt to satisfy
4167 * the allocation without using the existing reserves. The pagecache
4168 * page is used to determine if the reserve at this address was
4169 * consumed or not. If reserves were used, a partial faulted mapping
4170 * at the time of fork() could consume its reserves on COW instead
4171 * of the full address range.
4172 */
4173 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
4174 old_page != pagecache_page)
4175 outside_reserve = 1;
4176
4177 get_page(old_page);
4178
4179 /*
4180 * Drop page table lock as buddy allocator may be called. It will
4181 * be acquired again before returning to the caller, as expected.
4182 */
4183 spin_unlock(ptl);
4184 new_page = alloc_huge_page(vma, haddr, outside_reserve);
4185
4186 if (IS_ERR(new_page)) {
4187 /*
4188 * If a process owning a MAP_PRIVATE mapping fails to COW,
4189 * it is due to references held by a child and an insufficient
4190 * huge page pool. To guarantee the original mappers
4191 * reliability, unmap the page from child processes. The child
4192 * may get SIGKILLed if it later faults.
4193 */
4194 if (outside_reserve) {
4195 put_page(old_page);
4196 BUG_ON(huge_pte_none(pte));
4197 unmap_ref_private(mm, vma, old_page, haddr);
4198 BUG_ON(huge_pte_none(pte));
4199 spin_lock(ptl);
4200 ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
4201 if (likely(ptep &&
4202 pte_same(huge_ptep_get(ptep), pte)))
4203 goto retry_avoidcopy;
4204 /*
4205 * race occurs while re-acquiring page table
4206 * lock, and our job is done.
4207 */
4208 return 0;
4209 }
4210
4211 ret = vmf_error(PTR_ERR(new_page));
4212 goto out_release_old;
4213 }
4214
4215 /*
4216 * When the original hugepage is shared one, it does not have
4217 * anon_vma prepared.
4218 */
4219 if (unlikely(anon_vma_prepare(vma))) {
4220 ret = VM_FAULT_OOM;
4221 goto out_release_all;
4222 }
4223
4224 copy_user_huge_page(new_page, old_page, address, vma,
4225 pages_per_huge_page(h));
4226 __SetPageUptodate(new_page);
4227
4228 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, haddr,
4229 haddr + huge_page_size(h));
4230 mmu_notifier_invalidate_range_start(&range);
4231
4232 /*
4233 * Retake the page table lock to check for racing updates
4234 * before the page tables are altered
4235 */
4236 spin_lock(ptl);
4237 ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
4238 if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
4239 ClearPagePrivate(new_page);
4240
4241 /* Break COW */
4242 huge_ptep_clear_flush(vma, haddr, ptep);
4243 mmu_notifier_invalidate_range(mm, range.start, range.end);
4244 set_huge_pte_at(mm, haddr, ptep,
4245 make_huge_pte(vma, new_page, 1));
4246 page_remove_rmap(old_page, true);
4247 hugepage_add_new_anon_rmap(new_page, vma, haddr);
4248 set_page_huge_active(new_page);
4249 /* Make the old page be freed below */
4250 new_page = old_page;
4251 }
4252 spin_unlock(ptl);
4253 mmu_notifier_invalidate_range_end(&range);
4254out_release_all:
4255 restore_reserve_on_error(h, vma, haddr, new_page);
4256 put_page(new_page);
4257out_release_old:
4258 put_page(old_page);
4259
4260 spin_lock(ptl); /* Caller expects lock to be held */
4261 return ret;
4262}
4263
4264/* Return the pagecache page at a given address within a VMA */
4265static struct page *hugetlbfs_pagecache_page(struct hstate *h,
4266 struct vm_area_struct *vma, unsigned long address)
4267{
4268 struct address_space *mapping;
4269 pgoff_t idx;
4270
4271 mapping = vma->vm_file->f_mapping;
4272 idx = vma_hugecache_offset(h, vma, address);
4273
4274 return find_lock_page(mapping, idx);
4275}
4276
4277/*
4278 * Return whether there is a pagecache page to back given address within VMA.
4279 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
4280 */
4281static bool hugetlbfs_pagecache_present(struct hstate *h,
4282 struct vm_area_struct *vma, unsigned long address)
4283{
4284 struct address_space *mapping;
4285 pgoff_t idx;
4286 struct page *page;
4287
4288 mapping = vma->vm_file->f_mapping;
4289 idx = vma_hugecache_offset(h, vma, address);
4290
4291 page = find_get_page(mapping, idx);
4292 if (page)
4293 put_page(page);
4294 return page != NULL;
4295}
4296
4297int huge_add_to_page_cache(struct page *page, struct address_space *mapping,
4298 pgoff_t idx)
4299{
4300 struct inode *inode = mapping->host;
4301 struct hstate *h = hstate_inode(inode);
4302 int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
4303
4304 if (err)
4305 return err;
4306 ClearPagePrivate(page);
4307
4308 /*
4309 * set page dirty so that it will not be removed from cache/file
4310 * by non-hugetlbfs specific code paths.
4311 */
4312 set_page_dirty(page);
4313
4314 spin_lock(&inode->i_lock);
4315 inode->i_blocks += blocks_per_huge_page(h);
4316 spin_unlock(&inode->i_lock);
4317 return 0;
4318}
4319
4320static vm_fault_t hugetlb_no_page(struct mm_struct *mm,
4321 struct vm_area_struct *vma,
4322 struct address_space *mapping, pgoff_t idx,
4323 unsigned long address, pte_t *ptep, unsigned int flags)
4324{
4325 struct hstate *h = hstate_vma(vma);
4326 vm_fault_t ret = VM_FAULT_SIGBUS;
4327 int anon_rmap = 0;
4328 unsigned long size;
4329 struct page *page;
4330 pte_t new_pte;
4331 spinlock_t *ptl;
4332 unsigned long haddr = address & huge_page_mask(h);
4333 bool new_page = false;
4334
4335 /*
4336 * Currently, we are forced to kill the process in the event the
4337 * original mapper has unmapped pages from the child due to a failed
4338 * COW. Warn that such a situation has occurred as it may not be obvious
4339 */
4340 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
4341 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
4342 current->pid);
4343 return ret;
4344 }
4345
4346 /*
4347 * We can not race with truncation due to holding i_mmap_rwsem.
4348 * i_size is modified when holding i_mmap_rwsem, so check here
4349 * once for faults beyond end of file.
4350 */
4351 size = i_size_read(mapping->host) >> huge_page_shift(h);
4352 if (idx >= size)
4353 goto out;
4354
4355retry:
4356 page = find_lock_page(mapping, idx);
4357 if (!page) {
4358 /*
4359 * Check for page in userfault range
4360 */
4361 if (userfaultfd_missing(vma)) {
4362 u32 hash;
4363 struct vm_fault vmf = {
4364 .vma = vma,
4365 .address = haddr,
4366 .flags = flags,
4367 /*
4368 * Hard to debug if it ends up being
4369 * used by a callee that assumes
4370 * something about the other
4371 * uninitialized fields... same as in
4372 * memory.c
4373 */
4374 };
4375
4376 /*
4377 * hugetlb_fault_mutex and i_mmap_rwsem must be
4378 * dropped before handling userfault. Reacquire
4379 * after handling fault to make calling code simpler.
4380 */
4381 hash = hugetlb_fault_mutex_hash(mapping, idx);
4382 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
4383 i_mmap_unlock_read(mapping);
4384 ret = handle_userfault(&vmf, VM_UFFD_MISSING);
4385 i_mmap_lock_read(mapping);
4386 mutex_lock(&hugetlb_fault_mutex_table[hash]);
4387 goto out;
4388 }
4389
4390 page = alloc_huge_page(vma, haddr, 0);
4391 if (IS_ERR(page)) {
4392 /*
4393 * Returning error will result in faulting task being
4394 * sent SIGBUS. The hugetlb fault mutex prevents two
4395 * tasks from racing to fault in the same page which
4396 * could result in false unable to allocate errors.
4397 * Page migration does not take the fault mutex, but
4398 * does a clear then write of pte's under page table
4399 * lock. Page fault code could race with migration,
4400 * notice the clear pte and try to allocate a page
4401 * here. Before returning error, get ptl and make
4402 * sure there really is no pte entry.
4403 */
4404 ptl = huge_pte_lock(h, mm, ptep);
4405 if (!huge_pte_none(huge_ptep_get(ptep))) {
4406 ret = 0;
4407 spin_unlock(ptl);
4408 goto out;
4409 }
4410 spin_unlock(ptl);
4411 ret = vmf_error(PTR_ERR(page));
4412 goto out;
4413 }
4414 clear_huge_page(page, address, pages_per_huge_page(h));
4415 __SetPageUptodate(page);
4416 new_page = true;
4417
4418 if (vma->vm_flags & VM_MAYSHARE) {
4419 int err = huge_add_to_page_cache(page, mapping, idx);
4420 if (err) {
4421 put_page(page);
4422 if (err == -EEXIST)
4423 goto retry;
4424 goto out;
4425 }
4426 } else {
4427 lock_page(page);
4428 if (unlikely(anon_vma_prepare(vma))) {
4429 ret = VM_FAULT_OOM;
4430 goto backout_unlocked;
4431 }
4432 anon_rmap = 1;
4433 }
4434 } else {
4435 /*
4436 * If memory error occurs between mmap() and fault, some process
4437 * don't have hwpoisoned swap entry for errored virtual address.
4438 * So we need to block hugepage fault by PG_hwpoison bit check.
4439 */
4440 if (unlikely(PageHWPoison(page))) {
4441 ret = VM_FAULT_HWPOISON |
4442 VM_FAULT_SET_HINDEX(hstate_index(h));
4443 goto backout_unlocked;
4444 }
4445 }
4446
4447 /*
4448 * If we are going to COW a private mapping later, we examine the
4449 * pending reservations for this page now. This will ensure that
4450 * any allocations necessary to record that reservation occur outside
4451 * the spinlock.
4452 */
4453 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
4454 if (vma_needs_reservation(h, vma, haddr) < 0) {
4455 ret = VM_FAULT_OOM;
4456 goto backout_unlocked;
4457 }
4458 /* Just decrements count, does not deallocate */
4459 vma_end_reservation(h, vma, haddr);
4460 }
4461
4462 ptl = huge_pte_lock(h, mm, ptep);
4463 ret = 0;
4464 if (!huge_pte_none(huge_ptep_get(ptep)))
4465 goto backout;
4466
4467 if (anon_rmap) {
4468 ClearPagePrivate(page);
4469 hugepage_add_new_anon_rmap(page, vma, haddr);
4470 } else
4471 page_dup_rmap(page, true);
4472 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
4473 && (vma->vm_flags & VM_SHARED)));
4474 set_huge_pte_at(mm, haddr, ptep, new_pte);
4475
4476 hugetlb_count_add(pages_per_huge_page(h), mm);
4477 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
4478 /* Optimization, do the COW without a second fault */
4479 ret = hugetlb_cow(mm, vma, address, ptep, page, ptl);
4480 }
4481
4482 spin_unlock(ptl);
4483
4484 /*
4485 * Only make newly allocated pages active. Existing pages found
4486 * in the pagecache could be !page_huge_active() if they have been
4487 * isolated for migration.
4488 */
4489 if (new_page)
4490 set_page_huge_active(page);
4491
4492 unlock_page(page);
4493out:
4494 return ret;
4495
4496backout:
4497 spin_unlock(ptl);
4498backout_unlocked:
4499 unlock_page(page);
4500 restore_reserve_on_error(h, vma, haddr, page);
4501 put_page(page);
4502 goto out;
4503}
4504
4505#ifdef CONFIG_SMP
4506u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
4507{
4508 unsigned long key[2];
4509 u32 hash;
4510
4511 key[0] = (unsigned long) mapping;
4512 key[1] = idx;
4513
4514 hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0);
4515
4516 return hash & (num_fault_mutexes - 1);
4517}
4518#else
4519/*
4520 * For uniprocesor systems we always use a single mutex, so just
4521 * return 0 and avoid the hashing overhead.
4522 */
4523u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
4524{
4525 return 0;
4526}
4527#endif
4528
4529vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
4530 unsigned long address, unsigned int flags)
4531{
4532 pte_t *ptep, entry;
4533 spinlock_t *ptl;
4534 vm_fault_t ret;
4535 u32 hash;
4536 pgoff_t idx;
4537 struct page *page = NULL;
4538 struct page *pagecache_page = NULL;
4539 struct hstate *h = hstate_vma(vma);
4540 struct address_space *mapping;
4541 int need_wait_lock = 0;
4542 unsigned long haddr = address & huge_page_mask(h);
4543
4544 ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
4545 if (ptep) {
4546 /*
4547 * Since we hold no locks, ptep could be stale. That is
4548 * OK as we are only making decisions based on content and
4549 * not actually modifying content here.
4550 */
4551 entry = huge_ptep_get(ptep);
4552 if (unlikely(is_hugetlb_entry_migration(entry))) {
4553 migration_entry_wait_huge(vma, mm, ptep);
4554 return 0;
4555 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
4556 return VM_FAULT_HWPOISON_LARGE |
4557 VM_FAULT_SET_HINDEX(hstate_index(h));
4558 }
4559
4560 /*
4561 * Acquire i_mmap_rwsem before calling huge_pte_alloc and hold
4562 * until finished with ptep. This serves two purposes:
4563 * 1) It prevents huge_pmd_unshare from being called elsewhere
4564 * and making the ptep no longer valid.
4565 * 2) It synchronizes us with i_size modifications during truncation.
4566 *
4567 * ptep could have already be assigned via huge_pte_offset. That
4568 * is OK, as huge_pte_alloc will return the same value unless
4569 * something has changed.
4570 */
4571 mapping = vma->vm_file->f_mapping;
4572 i_mmap_lock_read(mapping);
4573 ptep = huge_pte_alloc(mm, haddr, huge_page_size(h));
4574 if (!ptep) {
4575 i_mmap_unlock_read(mapping);
4576 return VM_FAULT_OOM;
4577 }
4578
4579 /*
4580 * Serialize hugepage allocation and instantiation, so that we don't
4581 * get spurious allocation failures if two CPUs race to instantiate
4582 * the same page in the page cache.
4583 */
4584 idx = vma_hugecache_offset(h, vma, haddr);
4585 hash = hugetlb_fault_mutex_hash(mapping, idx);
4586 mutex_lock(&hugetlb_fault_mutex_table[hash]);
4587
4588 entry = huge_ptep_get(ptep);
4589 if (huge_pte_none(entry)) {
4590 ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
4591 goto out_mutex;
4592 }
4593
4594 ret = 0;
4595
4596 /*
4597 * entry could be a migration/hwpoison entry at this point, so this
4598 * check prevents the kernel from going below assuming that we have
4599 * an active hugepage in pagecache. This goto expects the 2nd page
4600 * fault, and is_hugetlb_entry_(migration|hwpoisoned) check will
4601 * properly handle it.
4602 */
4603 if (!pte_present(entry))
4604 goto out_mutex;
4605
4606 /*
4607 * If we are going to COW the mapping later, we examine the pending
4608 * reservations for this page now. This will ensure that any
4609 * allocations necessary to record that reservation occur outside the
4610 * spinlock. For private mappings, we also lookup the pagecache
4611 * page now as it is used to determine if a reservation has been
4612 * consumed.
4613 */
4614 if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
4615 if (vma_needs_reservation(h, vma, haddr) < 0) {
4616 ret = VM_FAULT_OOM;
4617 goto out_mutex;
4618 }
4619 /* Just decrements count, does not deallocate */
4620 vma_end_reservation(h, vma, haddr);
4621
4622 if (!(vma->vm_flags & VM_MAYSHARE))
4623 pagecache_page = hugetlbfs_pagecache_page(h,
4624 vma, haddr);
4625 }
4626
4627 ptl = huge_pte_lock(h, mm, ptep);
4628
4629 /* Check for a racing update before calling hugetlb_cow */
4630 if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
4631 goto out_ptl;
4632
4633 /*
4634 * hugetlb_cow() requires page locks of pte_page(entry) and
4635 * pagecache_page, so here we need take the former one
4636 * when page != pagecache_page or !pagecache_page.
4637 */
4638 page = pte_page(entry);
4639 if (page != pagecache_page)
4640 if (!trylock_page(page)) {
4641 need_wait_lock = 1;
4642 goto out_ptl;
4643 }
4644
4645 get_page(page);
4646
4647 if (flags & FAULT_FLAG_WRITE) {
4648 if (!huge_pte_write(entry)) {
4649 ret = hugetlb_cow(mm, vma, address, ptep,
4650 pagecache_page, ptl);
4651 goto out_put_page;
4652 }
4653 entry = huge_pte_mkdirty(entry);
4654 }
4655 entry = pte_mkyoung(entry);
4656 if (huge_ptep_set_access_flags(vma, haddr, ptep, entry,
4657 flags & FAULT_FLAG_WRITE))
4658 update_mmu_cache(vma, haddr, ptep);
4659out_put_page:
4660 if (page != pagecache_page)
4661 unlock_page(page);
4662 put_page(page);
4663out_ptl:
4664 spin_unlock(ptl);
4665
4666 if (pagecache_page) {
4667 unlock_page(pagecache_page);
4668 put_page(pagecache_page);
4669 }
4670out_mutex:
4671 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
4672 i_mmap_unlock_read(mapping);
4673 /*
4674 * Generally it's safe to hold refcount during waiting page lock. But
4675 * here we just wait to defer the next page fault to avoid busy loop and
4676 * the page is not used after unlocked before returning from the current
4677 * page fault. So we are safe from accessing freed page, even if we wait
4678 * here without taking refcount.
4679 */
4680 if (need_wait_lock)
4681 wait_on_page_locked(page);
4682 return ret;
4683}
4684
4685/*
4686 * Used by userfaultfd UFFDIO_COPY. Based on mcopy_atomic_pte with
4687 * modifications for huge pages.
4688 */
4689int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm,
4690 pte_t *dst_pte,
4691 struct vm_area_struct *dst_vma,
4692 unsigned long dst_addr,
4693 unsigned long src_addr,
4694 struct page **pagep)
4695{
4696 struct address_space *mapping;
4697 pgoff_t idx;
4698 unsigned long size;
4699 int vm_shared = dst_vma->vm_flags & VM_SHARED;
4700 struct hstate *h = hstate_vma(dst_vma);
4701 pte_t _dst_pte;
4702 spinlock_t *ptl;
4703 int ret;
4704 struct page *page;
4705
4706 if (!*pagep) {
4707 ret = -ENOMEM;
4708 page = alloc_huge_page(dst_vma, dst_addr, 0);
4709 if (IS_ERR(page))
4710 goto out;
4711
4712 ret = copy_huge_page_from_user(page,
4713 (const void __user *) src_addr,
4714 pages_per_huge_page(h), false);
4715
4716 /* fallback to copy_from_user outside mmap_lock */
4717 if (unlikely(ret)) {
4718 ret = -ENOENT;
4719 *pagep = page;
4720 /* don't free the page */
4721 goto out;
4722 }
4723 } else {
4724 page = *pagep;
4725 *pagep = NULL;
4726 }
4727
4728 /*
4729 * The memory barrier inside __SetPageUptodate makes sure that
4730 * preceding stores to the page contents become visible before
4731 * the set_pte_at() write.
4732 */
4733 __SetPageUptodate(page);
4734
4735 mapping = dst_vma->vm_file->f_mapping;
4736 idx = vma_hugecache_offset(h, dst_vma, dst_addr);
4737
4738 /*
4739 * If shared, add to page cache
4740 */
4741 if (vm_shared) {
4742 size = i_size_read(mapping->host) >> huge_page_shift(h);
4743 ret = -EFAULT;
4744 if (idx >= size)
4745 goto out_release_nounlock;
4746
4747 /*
4748 * Serialization between remove_inode_hugepages() and
4749 * huge_add_to_page_cache() below happens through the
4750 * hugetlb_fault_mutex_table that here must be hold by
4751 * the caller.
4752 */
4753 ret = huge_add_to_page_cache(page, mapping, idx);
4754 if (ret)
4755 goto out_release_nounlock;
4756 }
4757
4758 ptl = huge_pte_lockptr(h, dst_mm, dst_pte);
4759 spin_lock(ptl);
4760
4761 /*
4762 * Recheck the i_size after holding PT lock to make sure not
4763 * to leave any page mapped (as page_mapped()) beyond the end
4764 * of the i_size (remove_inode_hugepages() is strict about
4765 * enforcing that). If we bail out here, we'll also leave a
4766 * page in the radix tree in the vm_shared case beyond the end
4767 * of the i_size, but remove_inode_hugepages() will take care
4768 * of it as soon as we drop the hugetlb_fault_mutex_table.
4769 */
4770 size = i_size_read(mapping->host) >> huge_page_shift(h);
4771 ret = -EFAULT;
4772 if (idx >= size)
4773 goto out_release_unlock;
4774
4775 ret = -EEXIST;
4776 if (!huge_pte_none(huge_ptep_get(dst_pte)))
4777 goto out_release_unlock;
4778
4779 if (vm_shared) {
4780 page_dup_rmap(page, true);
4781 } else {
4782 ClearPagePrivate(page);
4783 hugepage_add_new_anon_rmap(page, dst_vma, dst_addr);
4784 }
4785
4786 _dst_pte = make_huge_pte(dst_vma, page, dst_vma->vm_flags & VM_WRITE);
4787 if (dst_vma->vm_flags & VM_WRITE)
4788 _dst_pte = huge_pte_mkdirty(_dst_pte);
4789 _dst_pte = pte_mkyoung(_dst_pte);
4790
4791 set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
4792
4793 (void)huge_ptep_set_access_flags(dst_vma, dst_addr, dst_pte, _dst_pte,
4794 dst_vma->vm_flags & VM_WRITE);
4795 hugetlb_count_add(pages_per_huge_page(h), dst_mm);
4796
4797 /* No need to invalidate - it was non-present before */
4798 update_mmu_cache(dst_vma, dst_addr, dst_pte);
4799
4800 spin_unlock(ptl);
4801 set_page_huge_active(page);
4802 if (vm_shared)
4803 unlock_page(page);
4804 ret = 0;
4805out:
4806 return ret;
4807out_release_unlock:
4808 spin_unlock(ptl);
4809 if (vm_shared)
4810 unlock_page(page);
4811out_release_nounlock:
4812 put_page(page);
4813 goto out;
4814}
4815
4816long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
4817 struct page **pages, struct vm_area_struct **vmas,
4818 unsigned long *position, unsigned long *nr_pages,
4819 long i, unsigned int flags, int *locked)
4820{
4821 unsigned long pfn_offset;
4822 unsigned long vaddr = *position;
4823 unsigned long remainder = *nr_pages;
4824 struct hstate *h = hstate_vma(vma);
4825 int err = -EFAULT;
4826
4827 while (vaddr < vma->vm_end && remainder) {
4828 pte_t *pte;
4829 spinlock_t *ptl = NULL;
4830 int absent;
4831 struct page *page;
4832
4833 /*
4834 * If we have a pending SIGKILL, don't keep faulting pages and
4835 * potentially allocating memory.
4836 */
4837 if (fatal_signal_pending(current)) {
4838 remainder = 0;
4839 break;
4840 }
4841
4842 /*
4843 * Some archs (sparc64, sh*) have multiple pte_ts to
4844 * each hugepage. We have to make sure we get the
4845 * first, for the page indexing below to work.
4846 *
4847 * Note that page table lock is not held when pte is null.
4848 */
4849 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h),
4850 huge_page_size(h));
4851 if (pte)
4852 ptl = huge_pte_lock(h, mm, pte);
4853 absent = !pte || huge_pte_none(huge_ptep_get(pte));
4854
4855 /*
4856 * When coredumping, it suits get_dump_page if we just return
4857 * an error where there's an empty slot with no huge pagecache
4858 * to back it. This way, we avoid allocating a hugepage, and
4859 * the sparse dumpfile avoids allocating disk blocks, but its
4860 * huge holes still show up with zeroes where they need to be.
4861 */
4862 if (absent && (flags & FOLL_DUMP) &&
4863 !hugetlbfs_pagecache_present(h, vma, vaddr)) {
4864 if (pte)
4865 spin_unlock(ptl);
4866 remainder = 0;
4867 break;
4868 }
4869
4870 /*
4871 * We need call hugetlb_fault for both hugepages under migration
4872 * (in which case hugetlb_fault waits for the migration,) and
4873 * hwpoisoned hugepages (in which case we need to prevent the
4874 * caller from accessing to them.) In order to do this, we use
4875 * here is_swap_pte instead of is_hugetlb_entry_migration and
4876 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
4877 * both cases, and because we can't follow correct pages
4878 * directly from any kind of swap entries.
4879 */
4880 if (absent || is_swap_pte(huge_ptep_get(pte)) ||
4881 ((flags & FOLL_WRITE) &&
4882 !huge_pte_write(huge_ptep_get(pte)))) {
4883 vm_fault_t ret;
4884 unsigned int fault_flags = 0;
4885
4886 if (pte)
4887 spin_unlock(ptl);
4888 if (flags & FOLL_WRITE)
4889 fault_flags |= FAULT_FLAG_WRITE;
4890 if (locked)
4891 fault_flags |= FAULT_FLAG_ALLOW_RETRY |
4892 FAULT_FLAG_KILLABLE;
4893 if (flags & FOLL_NOWAIT)
4894 fault_flags |= FAULT_FLAG_ALLOW_RETRY |
4895 FAULT_FLAG_RETRY_NOWAIT;
4896 if (flags & FOLL_TRIED) {
4897 /*
4898 * Note: FAULT_FLAG_ALLOW_RETRY and
4899 * FAULT_FLAG_TRIED can co-exist
4900 */
4901 fault_flags |= FAULT_FLAG_TRIED;
4902 }
4903 ret = hugetlb_fault(mm, vma, vaddr, fault_flags);
4904 if (ret & VM_FAULT_ERROR) {
4905 err = vm_fault_to_errno(ret, flags);
4906 remainder = 0;
4907 break;
4908 }
4909 if (ret & VM_FAULT_RETRY) {
4910 if (locked &&
4911 !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
4912 *locked = 0;
4913 *nr_pages = 0;
4914 /*
4915 * VM_FAULT_RETRY must not return an
4916 * error, it will return zero
4917 * instead.
4918 *
4919 * No need to update "position" as the
4920 * caller will not check it after
4921 * *nr_pages is set to 0.
4922 */
4923 return i;
4924 }
4925 continue;
4926 }
4927
4928 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
4929 page = pte_page(huge_ptep_get(pte));
4930
4931 /*
4932 * If subpage information not requested, update counters
4933 * and skip the same_page loop below.
4934 */
4935 if (!pages && !vmas && !pfn_offset &&
4936 (vaddr + huge_page_size(h) < vma->vm_end) &&
4937 (remainder >= pages_per_huge_page(h))) {
4938 vaddr += huge_page_size(h);
4939 remainder -= pages_per_huge_page(h);
4940 i += pages_per_huge_page(h);
4941 spin_unlock(ptl);
4942 continue;
4943 }
4944
4945same_page:
4946 if (pages) {
4947 pages[i] = mem_map_offset(page, pfn_offset);
4948 /*
4949 * try_grab_page() should always succeed here, because:
4950 * a) we hold the ptl lock, and b) we've just checked
4951 * that the huge page is present in the page tables. If
4952 * the huge page is present, then the tail pages must
4953 * also be present. The ptl prevents the head page and
4954 * tail pages from being rearranged in any way. So this
4955 * page must be available at this point, unless the page
4956 * refcount overflowed:
4957 */
4958 if (WARN_ON_ONCE(!try_grab_page(pages[i], flags))) {
4959 spin_unlock(ptl);
4960 remainder = 0;
4961 err = -ENOMEM;
4962 break;
4963 }
4964 }
4965
4966 if (vmas)
4967 vmas[i] = vma;
4968
4969 vaddr += PAGE_SIZE;
4970 ++pfn_offset;
4971 --remainder;
4972 ++i;
4973 if (vaddr < vma->vm_end && remainder &&
4974 pfn_offset < pages_per_huge_page(h)) {
4975 /*
4976 * We use pfn_offset to avoid touching the pageframes
4977 * of this compound page.
4978 */
4979 goto same_page;
4980 }
4981 spin_unlock(ptl);
4982 }
4983 *nr_pages = remainder;
4984 /*
4985 * setting position is actually required only if remainder is
4986 * not zero but it's faster not to add a "if (remainder)"
4987 * branch.
4988 */
4989 *position = vaddr;
4990
4991 return i ? i : err;
4992}
4993
4994#ifndef __HAVE_ARCH_FLUSH_HUGETLB_TLB_RANGE
4995/*
4996 * ARCHes with special requirements for evicting HUGETLB backing TLB entries can
4997 * implement this.
4998 */
4999#define flush_hugetlb_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end)
5000#endif
5001
5002unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
5003 unsigned long address, unsigned long end, pgprot_t newprot)
5004{
5005 struct mm_struct *mm = vma->vm_mm;
5006 unsigned long start = address;
5007 pte_t *ptep;
5008 pte_t pte;
5009 struct hstate *h = hstate_vma(vma);
5010 unsigned long pages = 0;
5011 bool shared_pmd = false;
5012 struct mmu_notifier_range range;
5013
5014 /*
5015 * In the case of shared PMDs, the area to flush could be beyond
5016 * start/end. Set range.start/range.end to cover the maximum possible
5017 * range if PMD sharing is possible.
5018 */
5019 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA,
5020 0, vma, mm, start, end);
5021 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
5022
5023 BUG_ON(address >= end);
5024 flush_cache_range(vma, range.start, range.end);
5025
5026 mmu_notifier_invalidate_range_start(&range);
5027 i_mmap_lock_write(vma->vm_file->f_mapping);
5028 for (; address < end; address += huge_page_size(h)) {
5029 spinlock_t *ptl;
5030 ptep = huge_pte_offset(mm, address, huge_page_size(h));
5031 if (!ptep)
5032 continue;
5033 ptl = huge_pte_lock(h, mm, ptep);
5034 if (huge_pmd_unshare(mm, vma, &address, ptep)) {
5035 pages++;
5036 spin_unlock(ptl);
5037 shared_pmd = true;
5038 continue;
5039 }
5040 pte = huge_ptep_get(ptep);
5041 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
5042 spin_unlock(ptl);
5043 continue;
5044 }
5045 if (unlikely(is_hugetlb_entry_migration(pte))) {
5046 swp_entry_t entry = pte_to_swp_entry(pte);
5047
5048 if (is_write_migration_entry(entry)) {
5049 pte_t newpte;
5050
5051 make_migration_entry_read(&entry);
5052 newpte = swp_entry_to_pte(entry);
5053 set_huge_swap_pte_at(mm, address, ptep,
5054 newpte, huge_page_size(h));
5055 pages++;
5056 }
5057 spin_unlock(ptl);
5058 continue;
5059 }
5060 if (!huge_pte_none(pte)) {
5061 pte_t old_pte;
5062
5063 old_pte = huge_ptep_modify_prot_start(vma, address, ptep);
5064 pte = pte_mkhuge(huge_pte_modify(old_pte, newprot));
5065 pte = arch_make_huge_pte(pte, vma, NULL, 0);
5066 huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte);
5067 pages++;
5068 }
5069 spin_unlock(ptl);
5070 }
5071 /*
5072 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
5073 * may have cleared our pud entry and done put_page on the page table:
5074 * once we release i_mmap_rwsem, another task can do the final put_page
5075 * and that page table be reused and filled with junk. If we actually
5076 * did unshare a page of pmds, flush the range corresponding to the pud.
5077 */
5078 if (shared_pmd)
5079 flush_hugetlb_tlb_range(vma, range.start, range.end);
5080 else
5081 flush_hugetlb_tlb_range(vma, start, end);
5082 /*
5083 * No need to call mmu_notifier_invalidate_range() we are downgrading
5084 * page table protection not changing it to point to a new page.
5085 *
5086 * See Documentation/vm/mmu_notifier.rst
5087 */
5088 i_mmap_unlock_write(vma->vm_file->f_mapping);
5089 mmu_notifier_invalidate_range_end(&range);
5090
5091 return pages << h->order;
5092}
5093
5094int hugetlb_reserve_pages(struct inode *inode,
5095 long from, long to,
5096 struct vm_area_struct *vma,
5097 vm_flags_t vm_flags)
5098{
5099 long ret, chg, add = -1;
5100 struct hstate *h = hstate_inode(inode);
5101 struct hugepage_subpool *spool = subpool_inode(inode);
5102 struct resv_map *resv_map;
5103 struct hugetlb_cgroup *h_cg = NULL;
5104 long gbl_reserve, regions_needed = 0;
5105
5106 /* This should never happen */
5107 if (from > to) {
5108 VM_WARN(1, "%s called with a negative range\n", __func__);
5109 return -EINVAL;
5110 }
5111
5112 /*
5113 * Only apply hugepage reservation if asked. At fault time, an
5114 * attempt will be made for VM_NORESERVE to allocate a page
5115 * without using reserves
5116 */
5117 if (vm_flags & VM_NORESERVE)
5118 return 0;
5119
5120 /*
5121 * Shared mappings base their reservation on the number of pages that
5122 * are already allocated on behalf of the file. Private mappings need
5123 * to reserve the full area even if read-only as mprotect() may be
5124 * called to make the mapping read-write. Assume !vma is a shm mapping
5125 */
5126 if (!vma || vma->vm_flags & VM_MAYSHARE) {
5127 /*
5128 * resv_map can not be NULL as hugetlb_reserve_pages is only
5129 * called for inodes for which resv_maps were created (see
5130 * hugetlbfs_get_inode).
5131 */
5132 resv_map = inode_resv_map(inode);
5133
5134 chg = region_chg(resv_map, from, to, ®ions_needed);
5135
5136 } else {
5137 /* Private mapping. */
5138 resv_map = resv_map_alloc();
5139 if (!resv_map)
5140 return -ENOMEM;
5141
5142 chg = to - from;
5143
5144 set_vma_resv_map(vma, resv_map);
5145 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
5146 }
5147
5148 if (chg < 0) {
5149 ret = chg;
5150 goto out_err;
5151 }
5152
5153 ret = hugetlb_cgroup_charge_cgroup_rsvd(
5154 hstate_index(h), chg * pages_per_huge_page(h), &h_cg);
5155
5156 if (ret < 0) {
5157 ret = -ENOMEM;
5158 goto out_err;
5159 }
5160
5161 if (vma && !(vma->vm_flags & VM_MAYSHARE) && h_cg) {
5162 /* For private mappings, the hugetlb_cgroup uncharge info hangs
5163 * of the resv_map.
5164 */
5165 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, h_cg, h);
5166 }
5167
5168 /*
5169 * There must be enough pages in the subpool for the mapping. If
5170 * the subpool has a minimum size, there may be some global
5171 * reservations already in place (gbl_reserve).
5172 */
5173 gbl_reserve = hugepage_subpool_get_pages(spool, chg);
5174 if (gbl_reserve < 0) {
5175 ret = -ENOSPC;
5176 goto out_uncharge_cgroup;
5177 }
5178
5179 /*
5180 * Check enough hugepages are available for the reservation.
5181 * Hand the pages back to the subpool if there are not
5182 */
5183 ret = hugetlb_acct_memory(h, gbl_reserve);
5184 if (ret < 0) {
5185 goto out_put_pages;
5186 }
5187
5188 /*
5189 * Account for the reservations made. Shared mappings record regions
5190 * that have reservations as they are shared by multiple VMAs.
5191 * When the last VMA disappears, the region map says how much
5192 * the reservation was and the page cache tells how much of
5193 * the reservation was consumed. Private mappings are per-VMA and
5194 * only the consumed reservations are tracked. When the VMA
5195 * disappears, the original reservation is the VMA size and the
5196 * consumed reservations are stored in the map. Hence, nothing
5197 * else has to be done for private mappings here
5198 */
5199 if (!vma || vma->vm_flags & VM_MAYSHARE) {
5200 add = region_add(resv_map, from, to, regions_needed, h, h_cg);
5201
5202 if (unlikely(add < 0)) {
5203 hugetlb_acct_memory(h, -gbl_reserve);
5204 goto out_put_pages;
5205 } else if (unlikely(chg > add)) {
5206 /*
5207 * pages in this range were added to the reserve
5208 * map between region_chg and region_add. This
5209 * indicates a race with alloc_huge_page. Adjust
5210 * the subpool and reserve counts modified above
5211 * based on the difference.
5212 */
5213 long rsv_adjust;
5214
5215 hugetlb_cgroup_uncharge_cgroup_rsvd(
5216 hstate_index(h),
5217 (chg - add) * pages_per_huge_page(h), h_cg);
5218
5219 rsv_adjust = hugepage_subpool_put_pages(spool,
5220 chg - add);
5221 hugetlb_acct_memory(h, -rsv_adjust);
5222 }
5223 }
5224 return 0;
5225out_put_pages:
5226 /* put back original number of pages, chg */
5227 (void)hugepage_subpool_put_pages(spool, chg);
5228out_uncharge_cgroup:
5229 hugetlb_cgroup_uncharge_cgroup_rsvd(hstate_index(h),
5230 chg * pages_per_huge_page(h), h_cg);
5231out_err:
5232 if (!vma || vma->vm_flags & VM_MAYSHARE)
5233 /* Only call region_abort if the region_chg succeeded but the
5234 * region_add failed or didn't run.
5235 */
5236 if (chg >= 0 && add < 0)
5237 region_abort(resv_map, from, to, regions_needed);
5238 if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
5239 kref_put(&resv_map->refs, resv_map_release);
5240 return ret;
5241}
5242
5243long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
5244 long freed)
5245{
5246 struct hstate *h = hstate_inode(inode);
5247 struct resv_map *resv_map = inode_resv_map(inode);
5248 long chg = 0;
5249 struct hugepage_subpool *spool = subpool_inode(inode);
5250 long gbl_reserve;
5251
5252 /*
5253 * Since this routine can be called in the evict inode path for all
5254 * hugetlbfs inodes, resv_map could be NULL.
5255 */
5256 if (resv_map) {
5257 chg = region_del(resv_map, start, end);
5258 /*
5259 * region_del() can fail in the rare case where a region
5260 * must be split and another region descriptor can not be
5261 * allocated. If end == LONG_MAX, it will not fail.
5262 */
5263 if (chg < 0)
5264 return chg;
5265 }
5266
5267 spin_lock(&inode->i_lock);
5268 inode->i_blocks -= (blocks_per_huge_page(h) * freed);
5269 spin_unlock(&inode->i_lock);
5270
5271 /*
5272 * If the subpool has a minimum size, the number of global
5273 * reservations to be released may be adjusted.
5274 */
5275 gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
5276 hugetlb_acct_memory(h, -gbl_reserve);
5277
5278 return 0;
5279}
5280
5281#ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
5282static unsigned long page_table_shareable(struct vm_area_struct *svma,
5283 struct vm_area_struct *vma,
5284 unsigned long addr, pgoff_t idx)
5285{
5286 unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
5287 svma->vm_start;
5288 unsigned long sbase = saddr & PUD_MASK;
5289 unsigned long s_end = sbase + PUD_SIZE;
5290
5291 /* Allow segments to share if only one is marked locked */
5292 unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
5293 unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
5294
5295 /*
5296 * match the virtual addresses, permission and the alignment of the
5297 * page table page.
5298 */
5299 if (pmd_index(addr) != pmd_index(saddr) ||
5300 vm_flags != svm_flags ||
5301 sbase < svma->vm_start || svma->vm_end < s_end)
5302 return 0;
5303
5304 return saddr;
5305}
5306
5307static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr)
5308{
5309 unsigned long base = addr & PUD_MASK;
5310 unsigned long end = base + PUD_SIZE;
5311
5312 /*
5313 * check on proper vm_flags and page table alignment
5314 */
5315 if (vma->vm_flags & VM_MAYSHARE && range_in_vma(vma, base, end))
5316 return true;
5317 return false;
5318}
5319
5320/*
5321 * Determine if start,end range within vma could be mapped by shared pmd.
5322 * If yes, adjust start and end to cover range associated with possible
5323 * shared pmd mappings.
5324 */
5325void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
5326 unsigned long *start, unsigned long *end)
5327{
5328 unsigned long a_start, a_end;
5329
5330 if (!(vma->vm_flags & VM_MAYSHARE))
5331 return;
5332
5333 /* Extend the range to be PUD aligned for a worst case scenario */
5334 a_start = ALIGN_DOWN(*start, PUD_SIZE);
5335 a_end = ALIGN(*end, PUD_SIZE);
5336
5337 /*
5338 * Intersect the range with the vma range, since pmd sharing won't be
5339 * across vma after all
5340 */
5341 *start = max(vma->vm_start, a_start);
5342 *end = min(vma->vm_end, a_end);
5343}
5344
5345/*
5346 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
5347 * and returns the corresponding pte. While this is not necessary for the
5348 * !shared pmd case because we can allocate the pmd later as well, it makes the
5349 * code much cleaner.
5350 *
5351 * This routine must be called with i_mmap_rwsem held in at least read mode.
5352 * For hugetlbfs, this prevents removal of any page table entries associated
5353 * with the address space. This is important as we are setting up sharing
5354 * based on existing page table entries (mappings).
5355 */
5356pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
5357{
5358 struct vm_area_struct *vma = find_vma(mm, addr);
5359 struct address_space *mapping = vma->vm_file->f_mapping;
5360 pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
5361 vma->vm_pgoff;
5362 struct vm_area_struct *svma;
5363 unsigned long saddr;
5364 pte_t *spte = NULL;
5365 pte_t *pte;
5366 spinlock_t *ptl;
5367
5368 if (!vma_shareable(vma, addr))
5369 return (pte_t *)pmd_alloc(mm, pud, addr);
5370
5371 vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
5372 if (svma == vma)
5373 continue;
5374
5375 saddr = page_table_shareable(svma, vma, addr, idx);
5376 if (saddr) {
5377 spte = huge_pte_offset(svma->vm_mm, saddr,
5378 vma_mmu_pagesize(svma));
5379 if (spte) {
5380 get_page(virt_to_page(spte));
5381 break;
5382 }
5383 }
5384 }
5385
5386 if (!spte)
5387 goto out;
5388
5389 ptl = huge_pte_lock(hstate_vma(vma), mm, spte);
5390 if (pud_none(*pud)) {
5391 pud_populate(mm, pud,
5392 (pmd_t *)((unsigned long)spte & PAGE_MASK));
5393 mm_inc_nr_pmds(mm);
5394 } else {
5395 put_page(virt_to_page(spte));
5396 }
5397 spin_unlock(ptl);
5398out:
5399 pte = (pte_t *)pmd_alloc(mm, pud, addr);
5400 return pte;
5401}
5402
5403/*
5404 * unmap huge page backed by shared pte.
5405 *
5406 * Hugetlb pte page is ref counted at the time of mapping. If pte is shared
5407 * indicated by page_count > 1, unmap is achieved by clearing pud and
5408 * decrementing the ref count. If count == 1, the pte page is not shared.
5409 *
5410 * Called with page table lock held and i_mmap_rwsem held in write mode.
5411 *
5412 * returns: 1 successfully unmapped a shared pte page
5413 * 0 the underlying pte page is not shared, or it is the last user
5414 */
5415int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
5416 unsigned long *addr, pte_t *ptep)
5417{
5418 pgd_t *pgd = pgd_offset(mm, *addr);
5419 p4d_t *p4d = p4d_offset(pgd, *addr);
5420 pud_t *pud = pud_offset(p4d, *addr);
5421
5422 i_mmap_assert_write_locked(vma->vm_file->f_mapping);
5423 BUG_ON(page_count(virt_to_page(ptep)) == 0);
5424 if (page_count(virt_to_page(ptep)) == 1)
5425 return 0;
5426
5427 pud_clear(pud);
5428 put_page(virt_to_page(ptep));
5429 mm_dec_nr_pmds(mm);
5430 *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
5431 return 1;
5432}
5433#define want_pmd_share() (1)
5434#else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
5435pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
5436{
5437 return NULL;
5438}
5439
5440int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
5441 unsigned long *addr, pte_t *ptep)
5442{
5443 return 0;
5444}
5445
5446void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
5447 unsigned long *start, unsigned long *end)
5448{
5449}
5450#define want_pmd_share() (0)
5451#endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
5452
5453#ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
5454pte_t *huge_pte_alloc(struct mm_struct *mm,
5455 unsigned long addr, unsigned long sz)
5456{
5457 pgd_t *pgd;
5458 p4d_t *p4d;
5459 pud_t *pud;
5460 pte_t *pte = NULL;
5461
5462 pgd = pgd_offset(mm, addr);
5463 p4d = p4d_alloc(mm, pgd, addr);
5464 if (!p4d)
5465 return NULL;
5466 pud = pud_alloc(mm, p4d, addr);
5467 if (pud) {
5468 if (sz == PUD_SIZE) {
5469 pte = (pte_t *)pud;
5470 } else {
5471 BUG_ON(sz != PMD_SIZE);
5472 if (want_pmd_share() && pud_none(*pud))
5473 pte = huge_pmd_share(mm, addr, pud);
5474 else
5475 pte = (pte_t *)pmd_alloc(mm, pud, addr);
5476 }
5477 }
5478 BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte));
5479
5480 return pte;
5481}
5482
5483/*
5484 * huge_pte_offset() - Walk the page table to resolve the hugepage
5485 * entry at address @addr
5486 *
5487 * Return: Pointer to page table entry (PUD or PMD) for
5488 * address @addr, or NULL if a !p*d_present() entry is encountered and the
5489 * size @sz doesn't match the hugepage size at this level of the page
5490 * table.
5491 */
5492pte_t *huge_pte_offset(struct mm_struct *mm,
5493 unsigned long addr, unsigned long sz)
5494{
5495 pgd_t *pgd;
5496 p4d_t *p4d;
5497 pud_t *pud;
5498 pmd_t *pmd;
5499
5500 pgd = pgd_offset(mm, addr);
5501 if (!pgd_present(*pgd))
5502 return NULL;
5503 p4d = p4d_offset(pgd, addr);
5504 if (!p4d_present(*p4d))
5505 return NULL;
5506
5507 pud = pud_offset(p4d, addr);
5508 if (sz == PUD_SIZE)
5509 /* must be pud huge, non-present or none */
5510 return (pte_t *)pud;
5511 if (!pud_present(*pud))
5512 return NULL;
5513 /* must have a valid entry and size to go further */
5514
5515 pmd = pmd_offset(pud, addr);
5516 /* must be pmd huge, non-present or none */
5517 return (pte_t *)pmd;
5518}
5519
5520#endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
5521
5522/*
5523 * These functions are overwritable if your architecture needs its own
5524 * behavior.
5525 */
5526struct page * __weak
5527follow_huge_addr(struct mm_struct *mm, unsigned long address,
5528 int write)
5529{
5530 return ERR_PTR(-EINVAL);
5531}
5532
5533struct page * __weak
5534follow_huge_pd(struct vm_area_struct *vma,
5535 unsigned long address, hugepd_t hpd, int flags, int pdshift)
5536{
5537 WARN(1, "hugepd follow called with no support for hugepage directory format\n");
5538 return NULL;
5539}
5540
5541struct page * __weak
5542follow_huge_pmd(struct mm_struct *mm, unsigned long address,
5543 pmd_t *pmd, int flags)
5544{
5545 struct page *page = NULL;
5546 spinlock_t *ptl;
5547 pte_t pte;
5548
5549 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
5550 if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
5551 (FOLL_PIN | FOLL_GET)))
5552 return NULL;
5553
5554retry:
5555 ptl = pmd_lockptr(mm, pmd);
5556 spin_lock(ptl);
5557 /*
5558 * make sure that the address range covered by this pmd is not
5559 * unmapped from other threads.
5560 */
5561 if (!pmd_huge(*pmd))
5562 goto out;
5563 pte = huge_ptep_get((pte_t *)pmd);
5564 if (pte_present(pte)) {
5565 page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
5566 /*
5567 * try_grab_page() should always succeed here, because: a) we
5568 * hold the pmd (ptl) lock, and b) we've just checked that the
5569 * huge pmd (head) page is present in the page tables. The ptl
5570 * prevents the head page and tail pages from being rearranged
5571 * in any way. So this page must be available at this point,
5572 * unless the page refcount overflowed:
5573 */
5574 if (WARN_ON_ONCE(!try_grab_page(page, flags))) {
5575 page = NULL;
5576 goto out;
5577 }
5578 } else {
5579 if (is_hugetlb_entry_migration(pte)) {
5580 spin_unlock(ptl);
5581 __migration_entry_wait(mm, (pte_t *)pmd, ptl);
5582 goto retry;
5583 }
5584 /*
5585 * hwpoisoned entry is treated as no_page_table in
5586 * follow_page_mask().
5587 */
5588 }
5589out:
5590 spin_unlock(ptl);
5591 return page;
5592}
5593
5594struct page * __weak
5595follow_huge_pud(struct mm_struct *mm, unsigned long address,
5596 pud_t *pud, int flags)
5597{
5598 if (flags & (FOLL_GET | FOLL_PIN))
5599 return NULL;
5600
5601 return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
5602}
5603
5604struct page * __weak
5605follow_huge_pgd(struct mm_struct *mm, unsigned long address, pgd_t *pgd, int flags)
5606{
5607 if (flags & (FOLL_GET | FOLL_PIN))
5608 return NULL;
5609
5610 return pte_page(*(pte_t *)pgd) + ((address & ~PGDIR_MASK) >> PAGE_SHIFT);
5611}
5612
5613bool isolate_huge_page(struct page *page, struct list_head *list)
5614{
5615 bool ret = true;
5616
5617 VM_BUG_ON_PAGE(!PageHead(page), page);
5618 spin_lock(&hugetlb_lock);
5619 if (!page_huge_active(page) || !get_page_unless_zero(page)) {
5620 ret = false;
5621 goto unlock;
5622 }
5623 clear_page_huge_active(page);
5624 list_move_tail(&page->lru, list);
5625unlock:
5626 spin_unlock(&hugetlb_lock);
5627 return ret;
5628}
5629
5630void putback_active_hugepage(struct page *page)
5631{
5632 VM_BUG_ON_PAGE(!PageHead(page), page);
5633 spin_lock(&hugetlb_lock);
5634 set_page_huge_active(page);
5635 list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
5636 spin_unlock(&hugetlb_lock);
5637 put_page(page);
5638}
5639
5640void move_hugetlb_state(struct page *oldpage, struct page *newpage, int reason)
5641{
5642 struct hstate *h = page_hstate(oldpage);
5643
5644 hugetlb_cgroup_migrate(oldpage, newpage);
5645 set_page_owner_migrate_reason(newpage, reason);
5646
5647 /*
5648 * transfer temporary state of the new huge page. This is
5649 * reverse to other transitions because the newpage is going to
5650 * be final while the old one will be freed so it takes over
5651 * the temporary status.
5652 *
5653 * Also note that we have to transfer the per-node surplus state
5654 * here as well otherwise the global surplus count will not match
5655 * the per-node's.
5656 */
5657 if (PageHugeTemporary(newpage)) {
5658 int old_nid = page_to_nid(oldpage);
5659 int new_nid = page_to_nid(newpage);
5660
5661 SetPageHugeTemporary(oldpage);
5662 ClearPageHugeTemporary(newpage);
5663
5664 spin_lock(&hugetlb_lock);
5665 if (h->surplus_huge_pages_node[old_nid]) {
5666 h->surplus_huge_pages_node[old_nid]--;
5667 h->surplus_huge_pages_node[new_nid]++;
5668 }
5669 spin_unlock(&hugetlb_lock);
5670 }
5671}
5672
5673#ifdef CONFIG_CMA
5674static bool cma_reserve_called __initdata;
5675
5676static int __init cmdline_parse_hugetlb_cma(char *p)
5677{
5678 hugetlb_cma_size = memparse(p, &p);
5679 return 0;
5680}
5681
5682early_param("hugetlb_cma", cmdline_parse_hugetlb_cma);
5683
5684void __init hugetlb_cma_reserve(int order)
5685{
5686 unsigned long size, reserved, per_node;
5687 int nid;
5688
5689 cma_reserve_called = true;
5690
5691 if (!hugetlb_cma_size)
5692 return;
5693
5694 if (hugetlb_cma_size < (PAGE_SIZE << order)) {
5695 pr_warn("hugetlb_cma: cma area should be at least %lu MiB\n",
5696 (PAGE_SIZE << order) / SZ_1M);
5697 return;
5698 }
5699
5700 /*
5701 * If 3 GB area is requested on a machine with 4 numa nodes,
5702 * let's allocate 1 GB on first three nodes and ignore the last one.
5703 */
5704 per_node = DIV_ROUND_UP(hugetlb_cma_size, nr_online_nodes);
5705 pr_info("hugetlb_cma: reserve %lu MiB, up to %lu MiB per node\n",
5706 hugetlb_cma_size / SZ_1M, per_node / SZ_1M);
5707
5708 reserved = 0;
5709 for_each_node_state(nid, N_ONLINE) {
5710 int res;
5711 char name[20];
5712
5713 size = min(per_node, hugetlb_cma_size - reserved);
5714 size = round_up(size, PAGE_SIZE << order);
5715
5716 snprintf(name, 20, "hugetlb%d", nid);
5717 res = cma_declare_contiguous_nid(0, size, 0, PAGE_SIZE << order,
5718 0, false, name,
5719 &hugetlb_cma[nid], nid);
5720 if (res) {
5721 pr_warn("hugetlb_cma: reservation failed: err %d, node %d",
5722 res, nid);
5723 continue;
5724 }
5725
5726 reserved += size;
5727 pr_info("hugetlb_cma: reserved %lu MiB on node %d\n",
5728 size / SZ_1M, nid);
5729
5730 if (reserved >= hugetlb_cma_size)
5731 break;
5732 }
5733}
5734
5735void __init hugetlb_cma_check(void)
5736{
5737 if (!hugetlb_cma_size || cma_reserve_called)
5738 return;
5739
5740 pr_warn("hugetlb_cma: the option isn't supported by current arch\n");
5741}
5742
5743#endif /* CONFIG_CMA */