Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Generic hugetlb support.
4 * (C) Nadia Yvette Chambers, April 2004
5 */
6#include <linux/list.h>
7#include <linux/init.h>
8#include <linux/mm.h>
9#include <linux/seq_file.h>
10#include <linux/sysctl.h>
11#include <linux/highmem.h>
12#include <linux/mmu_notifier.h>
13#include <linux/nodemask.h>
14#include <linux/pagemap.h>
15#include <linux/mempolicy.h>
16#include <linux/compiler.h>
17#include <linux/cpuset.h>
18#include <linux/mutex.h>
19#include <linux/memblock.h>
20#include <linux/sysfs.h>
21#include <linux/slab.h>
22#include <linux/sched/mm.h>
23#include <linux/mmdebug.h>
24#include <linux/sched/signal.h>
25#include <linux/rmap.h>
26#include <linux/string_helpers.h>
27#include <linux/swap.h>
28#include <linux/swapops.h>
29#include <linux/jhash.h>
30#include <linux/numa.h>
31#include <linux/llist.h>
32#include <linux/cma.h>
33#include <linux/migrate.h>
34#include <linux/nospec.h>
35#include <linux/delayacct.h>
36#include <linux/memory.h>
37#include <linux/mm_inline.h>
38#include <linux/padata.h>
39
40#include <asm/page.h>
41#include <asm/pgalloc.h>
42#include <asm/tlb.h>
43
44#include <linux/io.h>
45#include <linux/hugetlb.h>
46#include <linux/hugetlb_cgroup.h>
47#include <linux/node.h>
48#include <linux/page_owner.h>
49#include "internal.h"
50#include "hugetlb_vmemmap.h"
51
52int hugetlb_max_hstate __read_mostly;
53unsigned int default_hstate_idx;
54struct hstate hstates[HUGE_MAX_HSTATE];
55
56#ifdef CONFIG_CMA
57static struct cma *hugetlb_cma[MAX_NUMNODES];
58static unsigned long hugetlb_cma_size_in_node[MAX_NUMNODES] __initdata;
59#endif
60static unsigned long hugetlb_cma_size __initdata;
61
62__initdata struct list_head huge_boot_pages[MAX_NUMNODES];
63
64/* for command line parsing */
65static struct hstate * __initdata parsed_hstate;
66static unsigned long __initdata default_hstate_max_huge_pages;
67static bool __initdata parsed_valid_hugepagesz = true;
68static bool __initdata parsed_default_hugepagesz;
69static unsigned int default_hugepages_in_node[MAX_NUMNODES] __initdata;
70
71/*
72 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
73 * free_huge_pages, and surplus_huge_pages.
74 */
75__cacheline_aligned_in_smp DEFINE_SPINLOCK(hugetlb_lock);
76
77/*
78 * Serializes faults on the same logical page. This is used to
79 * prevent spurious OOMs when the hugepage pool is fully utilized.
80 */
81static int num_fault_mutexes __ro_after_init;
82struct mutex *hugetlb_fault_mutex_table __ro_after_init;
83
84/* Forward declaration */
85static int hugetlb_acct_memory(struct hstate *h, long delta);
86static void hugetlb_vma_lock_free(struct vm_area_struct *vma);
87static void hugetlb_vma_lock_alloc(struct vm_area_struct *vma);
88static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma);
89static void hugetlb_unshare_pmds(struct vm_area_struct *vma,
90 unsigned long start, unsigned long end);
91static struct resv_map *vma_resv_map(struct vm_area_struct *vma);
92
93static void hugetlb_free_folio(struct folio *folio)
94{
95#ifdef CONFIG_CMA
96 int nid = folio_nid(folio);
97
98 if (cma_free_folio(hugetlb_cma[nid], folio))
99 return;
100#endif
101 folio_put(folio);
102}
103
104static inline bool subpool_is_free(struct hugepage_subpool *spool)
105{
106 if (spool->count)
107 return false;
108 if (spool->max_hpages != -1)
109 return spool->used_hpages == 0;
110 if (spool->min_hpages != -1)
111 return spool->rsv_hpages == spool->min_hpages;
112
113 return true;
114}
115
116static inline void unlock_or_release_subpool(struct hugepage_subpool *spool,
117 unsigned long irq_flags)
118{
119 spin_unlock_irqrestore(&spool->lock, irq_flags);
120
121 /* If no pages are used, and no other handles to the subpool
122 * remain, give up any reservations based on minimum size and
123 * free the subpool */
124 if (subpool_is_free(spool)) {
125 if (spool->min_hpages != -1)
126 hugetlb_acct_memory(spool->hstate,
127 -spool->min_hpages);
128 kfree(spool);
129 }
130}
131
132struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
133 long min_hpages)
134{
135 struct hugepage_subpool *spool;
136
137 spool = kzalloc(sizeof(*spool), GFP_KERNEL);
138 if (!spool)
139 return NULL;
140
141 spin_lock_init(&spool->lock);
142 spool->count = 1;
143 spool->max_hpages = max_hpages;
144 spool->hstate = h;
145 spool->min_hpages = min_hpages;
146
147 if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
148 kfree(spool);
149 return NULL;
150 }
151 spool->rsv_hpages = min_hpages;
152
153 return spool;
154}
155
156void hugepage_put_subpool(struct hugepage_subpool *spool)
157{
158 unsigned long flags;
159
160 spin_lock_irqsave(&spool->lock, flags);
161 BUG_ON(!spool->count);
162 spool->count--;
163 unlock_or_release_subpool(spool, flags);
164}
165
166/*
167 * Subpool accounting for allocating and reserving pages.
168 * Return -ENOMEM if there are not enough resources to satisfy the
169 * request. Otherwise, return the number of pages by which the
170 * global pools must be adjusted (upward). The returned value may
171 * only be different than the passed value (delta) in the case where
172 * a subpool minimum size must be maintained.
173 */
174static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
175 long delta)
176{
177 long ret = delta;
178
179 if (!spool)
180 return ret;
181
182 spin_lock_irq(&spool->lock);
183
184 if (spool->max_hpages != -1) { /* maximum size accounting */
185 if ((spool->used_hpages + delta) <= spool->max_hpages)
186 spool->used_hpages += delta;
187 else {
188 ret = -ENOMEM;
189 goto unlock_ret;
190 }
191 }
192
193 /* minimum size accounting */
194 if (spool->min_hpages != -1 && spool->rsv_hpages) {
195 if (delta > spool->rsv_hpages) {
196 /*
197 * Asking for more reserves than those already taken on
198 * behalf of subpool. Return difference.
199 */
200 ret = delta - spool->rsv_hpages;
201 spool->rsv_hpages = 0;
202 } else {
203 ret = 0; /* reserves already accounted for */
204 spool->rsv_hpages -= delta;
205 }
206 }
207
208unlock_ret:
209 spin_unlock_irq(&spool->lock);
210 return ret;
211}
212
213/*
214 * Subpool accounting for freeing and unreserving pages.
215 * Return the number of global page reservations that must be dropped.
216 * The return value may only be different than the passed value (delta)
217 * in the case where a subpool minimum size must be maintained.
218 */
219static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
220 long delta)
221{
222 long ret = delta;
223 unsigned long flags;
224
225 if (!spool)
226 return delta;
227
228 spin_lock_irqsave(&spool->lock, flags);
229
230 if (spool->max_hpages != -1) /* maximum size accounting */
231 spool->used_hpages -= delta;
232
233 /* minimum size accounting */
234 if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
235 if (spool->rsv_hpages + delta <= spool->min_hpages)
236 ret = 0;
237 else
238 ret = spool->rsv_hpages + delta - spool->min_hpages;
239
240 spool->rsv_hpages += delta;
241 if (spool->rsv_hpages > spool->min_hpages)
242 spool->rsv_hpages = spool->min_hpages;
243 }
244
245 /*
246 * If hugetlbfs_put_super couldn't free spool due to an outstanding
247 * quota reference, free it now.
248 */
249 unlock_or_release_subpool(spool, flags);
250
251 return ret;
252}
253
254static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
255{
256 return HUGETLBFS_SB(inode->i_sb)->spool;
257}
258
259static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
260{
261 return subpool_inode(file_inode(vma->vm_file));
262}
263
264/*
265 * hugetlb vma_lock helper routines
266 */
267void hugetlb_vma_lock_read(struct vm_area_struct *vma)
268{
269 if (__vma_shareable_lock(vma)) {
270 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
271
272 down_read(&vma_lock->rw_sema);
273 } else if (__vma_private_lock(vma)) {
274 struct resv_map *resv_map = vma_resv_map(vma);
275
276 down_read(&resv_map->rw_sema);
277 }
278}
279
280void hugetlb_vma_unlock_read(struct vm_area_struct *vma)
281{
282 if (__vma_shareable_lock(vma)) {
283 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
284
285 up_read(&vma_lock->rw_sema);
286 } else if (__vma_private_lock(vma)) {
287 struct resv_map *resv_map = vma_resv_map(vma);
288
289 up_read(&resv_map->rw_sema);
290 }
291}
292
293void hugetlb_vma_lock_write(struct vm_area_struct *vma)
294{
295 if (__vma_shareable_lock(vma)) {
296 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
297
298 down_write(&vma_lock->rw_sema);
299 } else if (__vma_private_lock(vma)) {
300 struct resv_map *resv_map = vma_resv_map(vma);
301
302 down_write(&resv_map->rw_sema);
303 }
304}
305
306void hugetlb_vma_unlock_write(struct vm_area_struct *vma)
307{
308 if (__vma_shareable_lock(vma)) {
309 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
310
311 up_write(&vma_lock->rw_sema);
312 } else if (__vma_private_lock(vma)) {
313 struct resv_map *resv_map = vma_resv_map(vma);
314
315 up_write(&resv_map->rw_sema);
316 }
317}
318
319int hugetlb_vma_trylock_write(struct vm_area_struct *vma)
320{
321
322 if (__vma_shareable_lock(vma)) {
323 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
324
325 return down_write_trylock(&vma_lock->rw_sema);
326 } else if (__vma_private_lock(vma)) {
327 struct resv_map *resv_map = vma_resv_map(vma);
328
329 return down_write_trylock(&resv_map->rw_sema);
330 }
331
332 return 1;
333}
334
335void hugetlb_vma_assert_locked(struct vm_area_struct *vma)
336{
337 if (__vma_shareable_lock(vma)) {
338 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
339
340 lockdep_assert_held(&vma_lock->rw_sema);
341 } else if (__vma_private_lock(vma)) {
342 struct resv_map *resv_map = vma_resv_map(vma);
343
344 lockdep_assert_held(&resv_map->rw_sema);
345 }
346}
347
348void hugetlb_vma_lock_release(struct kref *kref)
349{
350 struct hugetlb_vma_lock *vma_lock = container_of(kref,
351 struct hugetlb_vma_lock, refs);
352
353 kfree(vma_lock);
354}
355
356static void __hugetlb_vma_unlock_write_put(struct hugetlb_vma_lock *vma_lock)
357{
358 struct vm_area_struct *vma = vma_lock->vma;
359
360 /*
361 * vma_lock structure may or not be released as a result of put,
362 * it certainly will no longer be attached to vma so clear pointer.
363 * Semaphore synchronizes access to vma_lock->vma field.
364 */
365 vma_lock->vma = NULL;
366 vma->vm_private_data = NULL;
367 up_write(&vma_lock->rw_sema);
368 kref_put(&vma_lock->refs, hugetlb_vma_lock_release);
369}
370
371static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma)
372{
373 if (__vma_shareable_lock(vma)) {
374 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
375
376 __hugetlb_vma_unlock_write_put(vma_lock);
377 } else if (__vma_private_lock(vma)) {
378 struct resv_map *resv_map = vma_resv_map(vma);
379
380 /* no free for anon vmas, but still need to unlock */
381 up_write(&resv_map->rw_sema);
382 }
383}
384
385static void hugetlb_vma_lock_free(struct vm_area_struct *vma)
386{
387 /*
388 * Only present in sharable vmas.
389 */
390 if (!vma || !__vma_shareable_lock(vma))
391 return;
392
393 if (vma->vm_private_data) {
394 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
395
396 down_write(&vma_lock->rw_sema);
397 __hugetlb_vma_unlock_write_put(vma_lock);
398 }
399}
400
401static void hugetlb_vma_lock_alloc(struct vm_area_struct *vma)
402{
403 struct hugetlb_vma_lock *vma_lock;
404
405 /* Only establish in (flags) sharable vmas */
406 if (!vma || !(vma->vm_flags & VM_MAYSHARE))
407 return;
408
409 /* Should never get here with non-NULL vm_private_data */
410 if (vma->vm_private_data)
411 return;
412
413 vma_lock = kmalloc(sizeof(*vma_lock), GFP_KERNEL);
414 if (!vma_lock) {
415 /*
416 * If we can not allocate structure, then vma can not
417 * participate in pmd sharing. This is only a possible
418 * performance enhancement and memory saving issue.
419 * However, the lock is also used to synchronize page
420 * faults with truncation. If the lock is not present,
421 * unlikely races could leave pages in a file past i_size
422 * until the file is removed. Warn in the unlikely case of
423 * allocation failure.
424 */
425 pr_warn_once("HugeTLB: unable to allocate vma specific lock\n");
426 return;
427 }
428
429 kref_init(&vma_lock->refs);
430 init_rwsem(&vma_lock->rw_sema);
431 vma_lock->vma = vma;
432 vma->vm_private_data = vma_lock;
433}
434
435/* Helper that removes a struct file_region from the resv_map cache and returns
436 * it for use.
437 */
438static struct file_region *
439get_file_region_entry_from_cache(struct resv_map *resv, long from, long to)
440{
441 struct file_region *nrg;
442
443 VM_BUG_ON(resv->region_cache_count <= 0);
444
445 resv->region_cache_count--;
446 nrg = list_first_entry(&resv->region_cache, struct file_region, link);
447 list_del(&nrg->link);
448
449 nrg->from = from;
450 nrg->to = to;
451
452 return nrg;
453}
454
455static void copy_hugetlb_cgroup_uncharge_info(struct file_region *nrg,
456 struct file_region *rg)
457{
458#ifdef CONFIG_CGROUP_HUGETLB
459 nrg->reservation_counter = rg->reservation_counter;
460 nrg->css = rg->css;
461 if (rg->css)
462 css_get(rg->css);
463#endif
464}
465
466/* Helper that records hugetlb_cgroup uncharge info. */
467static void record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup *h_cg,
468 struct hstate *h,
469 struct resv_map *resv,
470 struct file_region *nrg)
471{
472#ifdef CONFIG_CGROUP_HUGETLB
473 if (h_cg) {
474 nrg->reservation_counter =
475 &h_cg->rsvd_hugepage[hstate_index(h)];
476 nrg->css = &h_cg->css;
477 /*
478 * The caller will hold exactly one h_cg->css reference for the
479 * whole contiguous reservation region. But this area might be
480 * scattered when there are already some file_regions reside in
481 * it. As a result, many file_regions may share only one css
482 * reference. In order to ensure that one file_region must hold
483 * exactly one h_cg->css reference, we should do css_get for
484 * each file_region and leave the reference held by caller
485 * untouched.
486 */
487 css_get(&h_cg->css);
488 if (!resv->pages_per_hpage)
489 resv->pages_per_hpage = pages_per_huge_page(h);
490 /* pages_per_hpage should be the same for all entries in
491 * a resv_map.
492 */
493 VM_BUG_ON(resv->pages_per_hpage != pages_per_huge_page(h));
494 } else {
495 nrg->reservation_counter = NULL;
496 nrg->css = NULL;
497 }
498#endif
499}
500
501static void put_uncharge_info(struct file_region *rg)
502{
503#ifdef CONFIG_CGROUP_HUGETLB
504 if (rg->css)
505 css_put(rg->css);
506#endif
507}
508
509static bool has_same_uncharge_info(struct file_region *rg,
510 struct file_region *org)
511{
512#ifdef CONFIG_CGROUP_HUGETLB
513 return rg->reservation_counter == org->reservation_counter &&
514 rg->css == org->css;
515
516#else
517 return true;
518#endif
519}
520
521static void coalesce_file_region(struct resv_map *resv, struct file_region *rg)
522{
523 struct file_region *nrg, *prg;
524
525 prg = list_prev_entry(rg, link);
526 if (&prg->link != &resv->regions && prg->to == rg->from &&
527 has_same_uncharge_info(prg, rg)) {
528 prg->to = rg->to;
529
530 list_del(&rg->link);
531 put_uncharge_info(rg);
532 kfree(rg);
533
534 rg = prg;
535 }
536
537 nrg = list_next_entry(rg, link);
538 if (&nrg->link != &resv->regions && nrg->from == rg->to &&
539 has_same_uncharge_info(nrg, rg)) {
540 nrg->from = rg->from;
541
542 list_del(&rg->link);
543 put_uncharge_info(rg);
544 kfree(rg);
545 }
546}
547
548static inline long
549hugetlb_resv_map_add(struct resv_map *map, struct list_head *rg, long from,
550 long to, struct hstate *h, struct hugetlb_cgroup *cg,
551 long *regions_needed)
552{
553 struct file_region *nrg;
554
555 if (!regions_needed) {
556 nrg = get_file_region_entry_from_cache(map, from, to);
557 record_hugetlb_cgroup_uncharge_info(cg, h, map, nrg);
558 list_add(&nrg->link, rg);
559 coalesce_file_region(map, nrg);
560 } else
561 *regions_needed += 1;
562
563 return to - from;
564}
565
566/*
567 * Must be called with resv->lock held.
568 *
569 * Calling this with regions_needed != NULL will count the number of pages
570 * to be added but will not modify the linked list. And regions_needed will
571 * indicate the number of file_regions needed in the cache to carry out to add
572 * the regions for this range.
573 */
574static long add_reservation_in_range(struct resv_map *resv, long f, long t,
575 struct hugetlb_cgroup *h_cg,
576 struct hstate *h, long *regions_needed)
577{
578 long add = 0;
579 struct list_head *head = &resv->regions;
580 long last_accounted_offset = f;
581 struct file_region *iter, *trg = NULL;
582 struct list_head *rg = NULL;
583
584 if (regions_needed)
585 *regions_needed = 0;
586
587 /* In this loop, we essentially handle an entry for the range
588 * [last_accounted_offset, iter->from), at every iteration, with some
589 * bounds checking.
590 */
591 list_for_each_entry_safe(iter, trg, head, link) {
592 /* Skip irrelevant regions that start before our range. */
593 if (iter->from < f) {
594 /* If this region ends after the last accounted offset,
595 * then we need to update last_accounted_offset.
596 */
597 if (iter->to > last_accounted_offset)
598 last_accounted_offset = iter->to;
599 continue;
600 }
601
602 /* When we find a region that starts beyond our range, we've
603 * finished.
604 */
605 if (iter->from >= t) {
606 rg = iter->link.prev;
607 break;
608 }
609
610 /* Add an entry for last_accounted_offset -> iter->from, and
611 * update last_accounted_offset.
612 */
613 if (iter->from > last_accounted_offset)
614 add += hugetlb_resv_map_add(resv, iter->link.prev,
615 last_accounted_offset,
616 iter->from, h, h_cg,
617 regions_needed);
618
619 last_accounted_offset = iter->to;
620 }
621
622 /* Handle the case where our range extends beyond
623 * last_accounted_offset.
624 */
625 if (!rg)
626 rg = head->prev;
627 if (last_accounted_offset < t)
628 add += hugetlb_resv_map_add(resv, rg, last_accounted_offset,
629 t, h, h_cg, regions_needed);
630
631 return add;
632}
633
634/* Must be called with resv->lock acquired. Will drop lock to allocate entries.
635 */
636static int allocate_file_region_entries(struct resv_map *resv,
637 int regions_needed)
638 __must_hold(&resv->lock)
639{
640 LIST_HEAD(allocated_regions);
641 int to_allocate = 0, i = 0;
642 struct file_region *trg = NULL, *rg = NULL;
643
644 VM_BUG_ON(regions_needed < 0);
645
646 /*
647 * Check for sufficient descriptors in the cache to accommodate
648 * the number of in progress add operations plus regions_needed.
649 *
650 * This is a while loop because when we drop the lock, some other call
651 * to region_add or region_del may have consumed some region_entries,
652 * so we keep looping here until we finally have enough entries for
653 * (adds_in_progress + regions_needed).
654 */
655 while (resv->region_cache_count <
656 (resv->adds_in_progress + regions_needed)) {
657 to_allocate = resv->adds_in_progress + regions_needed -
658 resv->region_cache_count;
659
660 /* At this point, we should have enough entries in the cache
661 * for all the existing adds_in_progress. We should only be
662 * needing to allocate for regions_needed.
663 */
664 VM_BUG_ON(resv->region_cache_count < resv->adds_in_progress);
665
666 spin_unlock(&resv->lock);
667 for (i = 0; i < to_allocate; i++) {
668 trg = kmalloc(sizeof(*trg), GFP_KERNEL);
669 if (!trg)
670 goto out_of_memory;
671 list_add(&trg->link, &allocated_regions);
672 }
673
674 spin_lock(&resv->lock);
675
676 list_splice(&allocated_regions, &resv->region_cache);
677 resv->region_cache_count += to_allocate;
678 }
679
680 return 0;
681
682out_of_memory:
683 list_for_each_entry_safe(rg, trg, &allocated_regions, link) {
684 list_del(&rg->link);
685 kfree(rg);
686 }
687 return -ENOMEM;
688}
689
690/*
691 * Add the huge page range represented by [f, t) to the reserve
692 * map. Regions will be taken from the cache to fill in this range.
693 * Sufficient regions should exist in the cache due to the previous
694 * call to region_chg with the same range, but in some cases the cache will not
695 * have sufficient entries due to races with other code doing region_add or
696 * region_del. The extra needed entries will be allocated.
697 *
698 * regions_needed is the out value provided by a previous call to region_chg.
699 *
700 * Return the number of new huge pages added to the map. This number is greater
701 * than or equal to zero. If file_region entries needed to be allocated for
702 * this operation and we were not able to allocate, it returns -ENOMEM.
703 * region_add of regions of length 1 never allocate file_regions and cannot
704 * fail; region_chg will always allocate at least 1 entry and a region_add for
705 * 1 page will only require at most 1 entry.
706 */
707static long region_add(struct resv_map *resv, long f, long t,
708 long in_regions_needed, struct hstate *h,
709 struct hugetlb_cgroup *h_cg)
710{
711 long add = 0, actual_regions_needed = 0;
712
713 spin_lock(&resv->lock);
714retry:
715
716 /* Count how many regions are actually needed to execute this add. */
717 add_reservation_in_range(resv, f, t, NULL, NULL,
718 &actual_regions_needed);
719
720 /*
721 * Check for sufficient descriptors in the cache to accommodate
722 * this add operation. Note that actual_regions_needed may be greater
723 * than in_regions_needed, as the resv_map may have been modified since
724 * the region_chg call. In this case, we need to make sure that we
725 * allocate extra entries, such that we have enough for all the
726 * existing adds_in_progress, plus the excess needed for this
727 * operation.
728 */
729 if (actual_regions_needed > in_regions_needed &&
730 resv->region_cache_count <
731 resv->adds_in_progress +
732 (actual_regions_needed - in_regions_needed)) {
733 /* region_add operation of range 1 should never need to
734 * allocate file_region entries.
735 */
736 VM_BUG_ON(t - f <= 1);
737
738 if (allocate_file_region_entries(
739 resv, actual_regions_needed - in_regions_needed)) {
740 return -ENOMEM;
741 }
742
743 goto retry;
744 }
745
746 add = add_reservation_in_range(resv, f, t, h_cg, h, NULL);
747
748 resv->adds_in_progress -= in_regions_needed;
749
750 spin_unlock(&resv->lock);
751 return add;
752}
753
754/*
755 * Examine the existing reserve map and determine how many
756 * huge pages in the specified range [f, t) are NOT currently
757 * represented. This routine is called before a subsequent
758 * call to region_add that will actually modify the reserve
759 * map to add the specified range [f, t). region_chg does
760 * not change the number of huge pages represented by the
761 * map. A number of new file_region structures is added to the cache as a
762 * placeholder, for the subsequent region_add call to use. At least 1
763 * file_region structure is added.
764 *
765 * out_regions_needed is the number of regions added to the
766 * resv->adds_in_progress. This value needs to be provided to a follow up call
767 * to region_add or region_abort for proper accounting.
768 *
769 * Returns the number of huge pages that need to be added to the existing
770 * reservation map for the range [f, t). This number is greater or equal to
771 * zero. -ENOMEM is returned if a new file_region structure or cache entry
772 * is needed and can not be allocated.
773 */
774static long region_chg(struct resv_map *resv, long f, long t,
775 long *out_regions_needed)
776{
777 long chg = 0;
778
779 spin_lock(&resv->lock);
780
781 /* Count how many hugepages in this range are NOT represented. */
782 chg = add_reservation_in_range(resv, f, t, NULL, NULL,
783 out_regions_needed);
784
785 if (*out_regions_needed == 0)
786 *out_regions_needed = 1;
787
788 if (allocate_file_region_entries(resv, *out_regions_needed))
789 return -ENOMEM;
790
791 resv->adds_in_progress += *out_regions_needed;
792
793 spin_unlock(&resv->lock);
794 return chg;
795}
796
797/*
798 * Abort the in progress add operation. The adds_in_progress field
799 * of the resv_map keeps track of the operations in progress between
800 * calls to region_chg and region_add. Operations are sometimes
801 * aborted after the call to region_chg. In such cases, region_abort
802 * is called to decrement the adds_in_progress counter. regions_needed
803 * is the value returned by the region_chg call, it is used to decrement
804 * the adds_in_progress counter.
805 *
806 * NOTE: The range arguments [f, t) are not needed or used in this
807 * routine. They are kept to make reading the calling code easier as
808 * arguments will match the associated region_chg call.
809 */
810static void region_abort(struct resv_map *resv, long f, long t,
811 long regions_needed)
812{
813 spin_lock(&resv->lock);
814 VM_BUG_ON(!resv->region_cache_count);
815 resv->adds_in_progress -= regions_needed;
816 spin_unlock(&resv->lock);
817}
818
819/*
820 * Delete the specified range [f, t) from the reserve map. If the
821 * t parameter is LONG_MAX, this indicates that ALL regions after f
822 * should be deleted. Locate the regions which intersect [f, t)
823 * and either trim, delete or split the existing regions.
824 *
825 * Returns the number of huge pages deleted from the reserve map.
826 * In the normal case, the return value is zero or more. In the
827 * case where a region must be split, a new region descriptor must
828 * be allocated. If the allocation fails, -ENOMEM will be returned.
829 * NOTE: If the parameter t == LONG_MAX, then we will never split
830 * a region and possibly return -ENOMEM. Callers specifying
831 * t == LONG_MAX do not need to check for -ENOMEM error.
832 */
833static long region_del(struct resv_map *resv, long f, long t)
834{
835 struct list_head *head = &resv->regions;
836 struct file_region *rg, *trg;
837 struct file_region *nrg = NULL;
838 long del = 0;
839
840retry:
841 spin_lock(&resv->lock);
842 list_for_each_entry_safe(rg, trg, head, link) {
843 /*
844 * Skip regions before the range to be deleted. file_region
845 * ranges are normally of the form [from, to). However, there
846 * may be a "placeholder" entry in the map which is of the form
847 * (from, to) with from == to. Check for placeholder entries
848 * at the beginning of the range to be deleted.
849 */
850 if (rg->to <= f && (rg->to != rg->from || rg->to != f))
851 continue;
852
853 if (rg->from >= t)
854 break;
855
856 if (f > rg->from && t < rg->to) { /* Must split region */
857 /*
858 * Check for an entry in the cache before dropping
859 * lock and attempting allocation.
860 */
861 if (!nrg &&
862 resv->region_cache_count > resv->adds_in_progress) {
863 nrg = list_first_entry(&resv->region_cache,
864 struct file_region,
865 link);
866 list_del(&nrg->link);
867 resv->region_cache_count--;
868 }
869
870 if (!nrg) {
871 spin_unlock(&resv->lock);
872 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
873 if (!nrg)
874 return -ENOMEM;
875 goto retry;
876 }
877
878 del += t - f;
879 hugetlb_cgroup_uncharge_file_region(
880 resv, rg, t - f, false);
881
882 /* New entry for end of split region */
883 nrg->from = t;
884 nrg->to = rg->to;
885
886 copy_hugetlb_cgroup_uncharge_info(nrg, rg);
887
888 INIT_LIST_HEAD(&nrg->link);
889
890 /* Original entry is trimmed */
891 rg->to = f;
892
893 list_add(&nrg->link, &rg->link);
894 nrg = NULL;
895 break;
896 }
897
898 if (f <= rg->from && t >= rg->to) { /* Remove entire region */
899 del += rg->to - rg->from;
900 hugetlb_cgroup_uncharge_file_region(resv, rg,
901 rg->to - rg->from, true);
902 list_del(&rg->link);
903 kfree(rg);
904 continue;
905 }
906
907 if (f <= rg->from) { /* Trim beginning of region */
908 hugetlb_cgroup_uncharge_file_region(resv, rg,
909 t - rg->from, false);
910
911 del += t - rg->from;
912 rg->from = t;
913 } else { /* Trim end of region */
914 hugetlb_cgroup_uncharge_file_region(resv, rg,
915 rg->to - f, false);
916
917 del += rg->to - f;
918 rg->to = f;
919 }
920 }
921
922 spin_unlock(&resv->lock);
923 kfree(nrg);
924 return del;
925}
926
927/*
928 * A rare out of memory error was encountered which prevented removal of
929 * the reserve map region for a page. The huge page itself was free'ed
930 * and removed from the page cache. This routine will adjust the subpool
931 * usage count, and the global reserve count if needed. By incrementing
932 * these counts, the reserve map entry which could not be deleted will
933 * appear as a "reserved" entry instead of simply dangling with incorrect
934 * counts.
935 */
936void hugetlb_fix_reserve_counts(struct inode *inode)
937{
938 struct hugepage_subpool *spool = subpool_inode(inode);
939 long rsv_adjust;
940 bool reserved = false;
941
942 rsv_adjust = hugepage_subpool_get_pages(spool, 1);
943 if (rsv_adjust > 0) {
944 struct hstate *h = hstate_inode(inode);
945
946 if (!hugetlb_acct_memory(h, 1))
947 reserved = true;
948 } else if (!rsv_adjust) {
949 reserved = true;
950 }
951
952 if (!reserved)
953 pr_warn("hugetlb: Huge Page Reserved count may go negative.\n");
954}
955
956/*
957 * Count and return the number of huge pages in the reserve map
958 * that intersect with the range [f, t).
959 */
960static long region_count(struct resv_map *resv, long f, long t)
961{
962 struct list_head *head = &resv->regions;
963 struct file_region *rg;
964 long chg = 0;
965
966 spin_lock(&resv->lock);
967 /* Locate each segment we overlap with, and count that overlap. */
968 list_for_each_entry(rg, head, link) {
969 long seg_from;
970 long seg_to;
971
972 if (rg->to <= f)
973 continue;
974 if (rg->from >= t)
975 break;
976
977 seg_from = max(rg->from, f);
978 seg_to = min(rg->to, t);
979
980 chg += seg_to - seg_from;
981 }
982 spin_unlock(&resv->lock);
983
984 return chg;
985}
986
987/*
988 * Convert the address within this vma to the page offset within
989 * the mapping, huge page units here.
990 */
991static pgoff_t vma_hugecache_offset(struct hstate *h,
992 struct vm_area_struct *vma, unsigned long address)
993{
994 return ((address - vma->vm_start) >> huge_page_shift(h)) +
995 (vma->vm_pgoff >> huge_page_order(h));
996}
997
998/**
999 * vma_kernel_pagesize - Page size granularity for this VMA.
1000 * @vma: The user mapping.
1001 *
1002 * Folios in this VMA will be aligned to, and at least the size of the
1003 * number of bytes returned by this function.
1004 *
1005 * Return: The default size of the folios allocated when backing a VMA.
1006 */
1007unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
1008{
1009 if (vma->vm_ops && vma->vm_ops->pagesize)
1010 return vma->vm_ops->pagesize(vma);
1011 return PAGE_SIZE;
1012}
1013EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
1014
1015/*
1016 * Return the page size being used by the MMU to back a VMA. In the majority
1017 * of cases, the page size used by the kernel matches the MMU size. On
1018 * architectures where it differs, an architecture-specific 'strong'
1019 * version of this symbol is required.
1020 */
1021__weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
1022{
1023 return vma_kernel_pagesize(vma);
1024}
1025
1026/*
1027 * Flags for MAP_PRIVATE reservations. These are stored in the bottom
1028 * bits of the reservation map pointer, which are always clear due to
1029 * alignment.
1030 */
1031#define HPAGE_RESV_OWNER (1UL << 0)
1032#define HPAGE_RESV_UNMAPPED (1UL << 1)
1033#define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
1034
1035/*
1036 * These helpers are used to track how many pages are reserved for
1037 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
1038 * is guaranteed to have their future faults succeed.
1039 *
1040 * With the exception of hugetlb_dup_vma_private() which is called at fork(),
1041 * the reserve counters are updated with the hugetlb_lock held. It is safe
1042 * to reset the VMA at fork() time as it is not in use yet and there is no
1043 * chance of the global counters getting corrupted as a result of the values.
1044 *
1045 * The private mapping reservation is represented in a subtly different
1046 * manner to a shared mapping. A shared mapping has a region map associated
1047 * with the underlying file, this region map represents the backing file
1048 * pages which have ever had a reservation assigned which this persists even
1049 * after the page is instantiated. A private mapping has a region map
1050 * associated with the original mmap which is attached to all VMAs which
1051 * reference it, this region map represents those offsets which have consumed
1052 * reservation ie. where pages have been instantiated.
1053 */
1054static unsigned long get_vma_private_data(struct vm_area_struct *vma)
1055{
1056 return (unsigned long)vma->vm_private_data;
1057}
1058
1059static void set_vma_private_data(struct vm_area_struct *vma,
1060 unsigned long value)
1061{
1062 vma->vm_private_data = (void *)value;
1063}
1064
1065static void
1066resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map *resv_map,
1067 struct hugetlb_cgroup *h_cg,
1068 struct hstate *h)
1069{
1070#ifdef CONFIG_CGROUP_HUGETLB
1071 if (!h_cg || !h) {
1072 resv_map->reservation_counter = NULL;
1073 resv_map->pages_per_hpage = 0;
1074 resv_map->css = NULL;
1075 } else {
1076 resv_map->reservation_counter =
1077 &h_cg->rsvd_hugepage[hstate_index(h)];
1078 resv_map->pages_per_hpage = pages_per_huge_page(h);
1079 resv_map->css = &h_cg->css;
1080 }
1081#endif
1082}
1083
1084struct resv_map *resv_map_alloc(void)
1085{
1086 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
1087 struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
1088
1089 if (!resv_map || !rg) {
1090 kfree(resv_map);
1091 kfree(rg);
1092 return NULL;
1093 }
1094
1095 kref_init(&resv_map->refs);
1096 spin_lock_init(&resv_map->lock);
1097 INIT_LIST_HEAD(&resv_map->regions);
1098 init_rwsem(&resv_map->rw_sema);
1099
1100 resv_map->adds_in_progress = 0;
1101 /*
1102 * Initialize these to 0. On shared mappings, 0's here indicate these
1103 * fields don't do cgroup accounting. On private mappings, these will be
1104 * re-initialized to the proper values, to indicate that hugetlb cgroup
1105 * reservations are to be un-charged from here.
1106 */
1107 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, NULL, NULL);
1108
1109 INIT_LIST_HEAD(&resv_map->region_cache);
1110 list_add(&rg->link, &resv_map->region_cache);
1111 resv_map->region_cache_count = 1;
1112
1113 return resv_map;
1114}
1115
1116void resv_map_release(struct kref *ref)
1117{
1118 struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
1119 struct list_head *head = &resv_map->region_cache;
1120 struct file_region *rg, *trg;
1121
1122 /* Clear out any active regions before we release the map. */
1123 region_del(resv_map, 0, LONG_MAX);
1124
1125 /* ... and any entries left in the cache */
1126 list_for_each_entry_safe(rg, trg, head, link) {
1127 list_del(&rg->link);
1128 kfree(rg);
1129 }
1130
1131 VM_BUG_ON(resv_map->adds_in_progress);
1132
1133 kfree(resv_map);
1134}
1135
1136static inline struct resv_map *inode_resv_map(struct inode *inode)
1137{
1138 /*
1139 * At inode evict time, i_mapping may not point to the original
1140 * address space within the inode. This original address space
1141 * contains the pointer to the resv_map. So, always use the
1142 * address space embedded within the inode.
1143 * The VERY common case is inode->mapping == &inode->i_data but,
1144 * this may not be true for device special inodes.
1145 */
1146 return (struct resv_map *)(&inode->i_data)->i_private_data;
1147}
1148
1149static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
1150{
1151 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1152 if (vma->vm_flags & VM_MAYSHARE) {
1153 struct address_space *mapping = vma->vm_file->f_mapping;
1154 struct inode *inode = mapping->host;
1155
1156 return inode_resv_map(inode);
1157
1158 } else {
1159 return (struct resv_map *)(get_vma_private_data(vma) &
1160 ~HPAGE_RESV_MASK);
1161 }
1162}
1163
1164static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
1165{
1166 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1167 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
1168
1169 set_vma_private_data(vma, (unsigned long)map);
1170}
1171
1172static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
1173{
1174 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1175 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
1176
1177 set_vma_private_data(vma, get_vma_private_data(vma) | flags);
1178}
1179
1180static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
1181{
1182 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1183
1184 return (get_vma_private_data(vma) & flag) != 0;
1185}
1186
1187bool __vma_private_lock(struct vm_area_struct *vma)
1188{
1189 return !(vma->vm_flags & VM_MAYSHARE) &&
1190 get_vma_private_data(vma) & ~HPAGE_RESV_MASK &&
1191 is_vma_resv_set(vma, HPAGE_RESV_OWNER);
1192}
1193
1194void hugetlb_dup_vma_private(struct vm_area_struct *vma)
1195{
1196 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1197 /*
1198 * Clear vm_private_data
1199 * - For shared mappings this is a per-vma semaphore that may be
1200 * allocated in a subsequent call to hugetlb_vm_op_open.
1201 * Before clearing, make sure pointer is not associated with vma
1202 * as this will leak the structure. This is the case when called
1203 * via clear_vma_resv_huge_pages() and hugetlb_vm_op_open has already
1204 * been called to allocate a new structure.
1205 * - For MAP_PRIVATE mappings, this is the reserve map which does
1206 * not apply to children. Faults generated by the children are
1207 * not guaranteed to succeed, even if read-only.
1208 */
1209 if (vma->vm_flags & VM_MAYSHARE) {
1210 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
1211
1212 if (vma_lock && vma_lock->vma != vma)
1213 vma->vm_private_data = NULL;
1214 } else
1215 vma->vm_private_data = NULL;
1216}
1217
1218/*
1219 * Reset and decrement one ref on hugepage private reservation.
1220 * Called with mm->mmap_lock writer semaphore held.
1221 * This function should be only used by move_vma() and operate on
1222 * same sized vma. It should never come here with last ref on the
1223 * reservation.
1224 */
1225void clear_vma_resv_huge_pages(struct vm_area_struct *vma)
1226{
1227 /*
1228 * Clear the old hugetlb private page reservation.
1229 * It has already been transferred to new_vma.
1230 *
1231 * During a mremap() operation of a hugetlb vma we call move_vma()
1232 * which copies vma into new_vma and unmaps vma. After the copy
1233 * operation both new_vma and vma share a reference to the resv_map
1234 * struct, and at that point vma is about to be unmapped. We don't
1235 * want to return the reservation to the pool at unmap of vma because
1236 * the reservation still lives on in new_vma, so simply decrement the
1237 * ref here and remove the resv_map reference from this vma.
1238 */
1239 struct resv_map *reservations = vma_resv_map(vma);
1240
1241 if (reservations && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1242 resv_map_put_hugetlb_cgroup_uncharge_info(reservations);
1243 kref_put(&reservations->refs, resv_map_release);
1244 }
1245
1246 hugetlb_dup_vma_private(vma);
1247}
1248
1249/* Returns true if the VMA has associated reserve pages */
1250static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
1251{
1252 if (vma->vm_flags & VM_NORESERVE) {
1253 /*
1254 * This address is already reserved by other process(chg == 0),
1255 * so, we should decrement reserved count. Without decrementing,
1256 * reserve count remains after releasing inode, because this
1257 * allocated page will go into page cache and is regarded as
1258 * coming from reserved pool in releasing step. Currently, we
1259 * don't have any other solution to deal with this situation
1260 * properly, so add work-around here.
1261 */
1262 if (vma->vm_flags & VM_MAYSHARE && chg == 0)
1263 return true;
1264 else
1265 return false;
1266 }
1267
1268 /* Shared mappings always use reserves */
1269 if (vma->vm_flags & VM_MAYSHARE) {
1270 /*
1271 * We know VM_NORESERVE is not set. Therefore, there SHOULD
1272 * be a region map for all pages. The only situation where
1273 * there is no region map is if a hole was punched via
1274 * fallocate. In this case, there really are no reserves to
1275 * use. This situation is indicated if chg != 0.
1276 */
1277 if (chg)
1278 return false;
1279 else
1280 return true;
1281 }
1282
1283 /*
1284 * Only the process that called mmap() has reserves for
1285 * private mappings.
1286 */
1287 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1288 /*
1289 * Like the shared case above, a hole punch or truncate
1290 * could have been performed on the private mapping.
1291 * Examine the value of chg to determine if reserves
1292 * actually exist or were previously consumed.
1293 * Very Subtle - The value of chg comes from a previous
1294 * call to vma_needs_reserves(). The reserve map for
1295 * private mappings has different (opposite) semantics
1296 * than that of shared mappings. vma_needs_reserves()
1297 * has already taken this difference in semantics into
1298 * account. Therefore, the meaning of chg is the same
1299 * as in the shared case above. Code could easily be
1300 * combined, but keeping it separate draws attention to
1301 * subtle differences.
1302 */
1303 if (chg)
1304 return false;
1305 else
1306 return true;
1307 }
1308
1309 return false;
1310}
1311
1312static void enqueue_hugetlb_folio(struct hstate *h, struct folio *folio)
1313{
1314 int nid = folio_nid(folio);
1315
1316 lockdep_assert_held(&hugetlb_lock);
1317 VM_BUG_ON_FOLIO(folio_ref_count(folio), folio);
1318
1319 list_move(&folio->lru, &h->hugepage_freelists[nid]);
1320 h->free_huge_pages++;
1321 h->free_huge_pages_node[nid]++;
1322 folio_set_hugetlb_freed(folio);
1323}
1324
1325static struct folio *dequeue_hugetlb_folio_node_exact(struct hstate *h,
1326 int nid)
1327{
1328 struct folio *folio;
1329 bool pin = !!(current->flags & PF_MEMALLOC_PIN);
1330
1331 lockdep_assert_held(&hugetlb_lock);
1332 list_for_each_entry(folio, &h->hugepage_freelists[nid], lru) {
1333 if (pin && !folio_is_longterm_pinnable(folio))
1334 continue;
1335
1336 if (folio_test_hwpoison(folio))
1337 continue;
1338
1339 list_move(&folio->lru, &h->hugepage_activelist);
1340 folio_ref_unfreeze(folio, 1);
1341 folio_clear_hugetlb_freed(folio);
1342 h->free_huge_pages--;
1343 h->free_huge_pages_node[nid]--;
1344 return folio;
1345 }
1346
1347 return NULL;
1348}
1349
1350static struct folio *dequeue_hugetlb_folio_nodemask(struct hstate *h, gfp_t gfp_mask,
1351 int nid, nodemask_t *nmask)
1352{
1353 unsigned int cpuset_mems_cookie;
1354 struct zonelist *zonelist;
1355 struct zone *zone;
1356 struct zoneref *z;
1357 int node = NUMA_NO_NODE;
1358
1359 /* 'nid' should not be NUMA_NO_NODE. Try to catch any misuse of it and rectifiy. */
1360 if (nid == NUMA_NO_NODE)
1361 nid = numa_node_id();
1362
1363 zonelist = node_zonelist(nid, gfp_mask);
1364
1365retry_cpuset:
1366 cpuset_mems_cookie = read_mems_allowed_begin();
1367 for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
1368 struct folio *folio;
1369
1370 if (!cpuset_zone_allowed(zone, gfp_mask))
1371 continue;
1372 /*
1373 * no need to ask again on the same node. Pool is node rather than
1374 * zone aware
1375 */
1376 if (zone_to_nid(zone) == node)
1377 continue;
1378 node = zone_to_nid(zone);
1379
1380 folio = dequeue_hugetlb_folio_node_exact(h, node);
1381 if (folio)
1382 return folio;
1383 }
1384 if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
1385 goto retry_cpuset;
1386
1387 return NULL;
1388}
1389
1390static unsigned long available_huge_pages(struct hstate *h)
1391{
1392 return h->free_huge_pages - h->resv_huge_pages;
1393}
1394
1395static struct folio *dequeue_hugetlb_folio_vma(struct hstate *h,
1396 struct vm_area_struct *vma,
1397 unsigned long address, long chg)
1398{
1399 struct folio *folio = NULL;
1400 struct mempolicy *mpol;
1401 gfp_t gfp_mask;
1402 nodemask_t *nodemask;
1403 int nid;
1404
1405 /*
1406 * A child process with MAP_PRIVATE mappings created by their parent
1407 * have no page reserves. This check ensures that reservations are
1408 * not "stolen". The child may still get SIGKILLed
1409 */
1410 if (!vma_has_reserves(vma, chg) && !available_huge_pages(h))
1411 goto err;
1412
1413 gfp_mask = htlb_alloc_mask(h);
1414 nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
1415
1416 if (mpol_is_preferred_many(mpol)) {
1417 folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask,
1418 nid, nodemask);
1419
1420 /* Fallback to all nodes if page==NULL */
1421 nodemask = NULL;
1422 }
1423
1424 if (!folio)
1425 folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask,
1426 nid, nodemask);
1427
1428 if (folio && vma_has_reserves(vma, chg)) {
1429 folio_set_hugetlb_restore_reserve(folio);
1430 h->resv_huge_pages--;
1431 }
1432
1433 mpol_cond_put(mpol);
1434 return folio;
1435
1436err:
1437 return NULL;
1438}
1439
1440/*
1441 * common helper functions for hstate_next_node_to_{alloc|free}.
1442 * We may have allocated or freed a huge page based on a different
1443 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
1444 * be outside of *nodes_allowed. Ensure that we use an allowed
1445 * node for alloc or free.
1446 */
1447static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
1448{
1449 nid = next_node_in(nid, *nodes_allowed);
1450 VM_BUG_ON(nid >= MAX_NUMNODES);
1451
1452 return nid;
1453}
1454
1455static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
1456{
1457 if (!node_isset(nid, *nodes_allowed))
1458 nid = next_node_allowed(nid, nodes_allowed);
1459 return nid;
1460}
1461
1462/*
1463 * returns the previously saved node ["this node"] from which to
1464 * allocate a persistent huge page for the pool and advance the
1465 * next node from which to allocate, handling wrap at end of node
1466 * mask.
1467 */
1468static int hstate_next_node_to_alloc(int *next_node,
1469 nodemask_t *nodes_allowed)
1470{
1471 int nid;
1472
1473 VM_BUG_ON(!nodes_allowed);
1474
1475 nid = get_valid_node_allowed(*next_node, nodes_allowed);
1476 *next_node = next_node_allowed(nid, nodes_allowed);
1477
1478 return nid;
1479}
1480
1481/*
1482 * helper for remove_pool_hugetlb_folio() - return the previously saved
1483 * node ["this node"] from which to free a huge page. Advance the
1484 * next node id whether or not we find a free huge page to free so
1485 * that the next attempt to free addresses the next node.
1486 */
1487static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1488{
1489 int nid;
1490
1491 VM_BUG_ON(!nodes_allowed);
1492
1493 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1494 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1495
1496 return nid;
1497}
1498
1499#define for_each_node_mask_to_alloc(next_node, nr_nodes, node, mask) \
1500 for (nr_nodes = nodes_weight(*mask); \
1501 nr_nodes > 0 && \
1502 ((node = hstate_next_node_to_alloc(next_node, mask)) || 1); \
1503 nr_nodes--)
1504
1505#define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \
1506 for (nr_nodes = nodes_weight(*mask); \
1507 nr_nodes > 0 && \
1508 ((node = hstate_next_node_to_free(hs, mask)) || 1); \
1509 nr_nodes--)
1510
1511#ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
1512#ifdef CONFIG_CONTIG_ALLOC
1513static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask,
1514 int nid, nodemask_t *nodemask)
1515{
1516 struct folio *folio;
1517 int order = huge_page_order(h);
1518 bool retried = false;
1519
1520 if (nid == NUMA_NO_NODE)
1521 nid = numa_mem_id();
1522retry:
1523 folio = NULL;
1524#ifdef CONFIG_CMA
1525 {
1526 int node;
1527
1528 if (hugetlb_cma[nid])
1529 folio = cma_alloc_folio(hugetlb_cma[nid], order, gfp_mask);
1530
1531 if (!folio && !(gfp_mask & __GFP_THISNODE)) {
1532 for_each_node_mask(node, *nodemask) {
1533 if (node == nid || !hugetlb_cma[node])
1534 continue;
1535
1536 folio = cma_alloc_folio(hugetlb_cma[node], order, gfp_mask);
1537 if (folio)
1538 break;
1539 }
1540 }
1541 }
1542#endif
1543 if (!folio) {
1544 folio = folio_alloc_gigantic(order, gfp_mask, nid, nodemask);
1545 if (!folio)
1546 return NULL;
1547 }
1548
1549 if (folio_ref_freeze(folio, 1))
1550 return folio;
1551
1552 pr_warn("HugeTLB: unexpected refcount on PFN %lu\n", folio_pfn(folio));
1553 hugetlb_free_folio(folio);
1554 if (!retried) {
1555 retried = true;
1556 goto retry;
1557 }
1558 return NULL;
1559}
1560
1561#else /* !CONFIG_CONTIG_ALLOC */
1562static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask,
1563 int nid, nodemask_t *nodemask)
1564{
1565 return NULL;
1566}
1567#endif /* CONFIG_CONTIG_ALLOC */
1568
1569#else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
1570static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask,
1571 int nid, nodemask_t *nodemask)
1572{
1573 return NULL;
1574}
1575#endif
1576
1577/*
1578 * Remove hugetlb folio from lists.
1579 * If vmemmap exists for the folio, clear the hugetlb flag so that the
1580 * folio appears as just a compound page. Otherwise, wait until after
1581 * allocating vmemmap to clear the flag.
1582 *
1583 * Must be called with hugetlb lock held.
1584 */
1585static void remove_hugetlb_folio(struct hstate *h, struct folio *folio,
1586 bool adjust_surplus)
1587{
1588 int nid = folio_nid(folio);
1589
1590 VM_BUG_ON_FOLIO(hugetlb_cgroup_from_folio(folio), folio);
1591 VM_BUG_ON_FOLIO(hugetlb_cgroup_from_folio_rsvd(folio), folio);
1592
1593 lockdep_assert_held(&hugetlb_lock);
1594 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1595 return;
1596
1597 list_del(&folio->lru);
1598
1599 if (folio_test_hugetlb_freed(folio)) {
1600 folio_clear_hugetlb_freed(folio);
1601 h->free_huge_pages--;
1602 h->free_huge_pages_node[nid]--;
1603 }
1604 if (adjust_surplus) {
1605 h->surplus_huge_pages--;
1606 h->surplus_huge_pages_node[nid]--;
1607 }
1608
1609 /*
1610 * We can only clear the hugetlb flag after allocating vmemmap
1611 * pages. Otherwise, someone (memory error handling) may try to write
1612 * to tail struct pages.
1613 */
1614 if (!folio_test_hugetlb_vmemmap_optimized(folio))
1615 __folio_clear_hugetlb(folio);
1616
1617 h->nr_huge_pages--;
1618 h->nr_huge_pages_node[nid]--;
1619}
1620
1621static void add_hugetlb_folio(struct hstate *h, struct folio *folio,
1622 bool adjust_surplus)
1623{
1624 int nid = folio_nid(folio);
1625
1626 VM_BUG_ON_FOLIO(!folio_test_hugetlb_vmemmap_optimized(folio), folio);
1627
1628 lockdep_assert_held(&hugetlb_lock);
1629
1630 INIT_LIST_HEAD(&folio->lru);
1631 h->nr_huge_pages++;
1632 h->nr_huge_pages_node[nid]++;
1633
1634 if (adjust_surplus) {
1635 h->surplus_huge_pages++;
1636 h->surplus_huge_pages_node[nid]++;
1637 }
1638
1639 __folio_set_hugetlb(folio);
1640 folio_change_private(folio, NULL);
1641 /*
1642 * We have to set hugetlb_vmemmap_optimized again as above
1643 * folio_change_private(folio, NULL) cleared it.
1644 */
1645 folio_set_hugetlb_vmemmap_optimized(folio);
1646
1647 arch_clear_hugetlb_flags(folio);
1648 enqueue_hugetlb_folio(h, folio);
1649}
1650
1651static void __update_and_free_hugetlb_folio(struct hstate *h,
1652 struct folio *folio)
1653{
1654 bool clear_flag = folio_test_hugetlb_vmemmap_optimized(folio);
1655
1656 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1657 return;
1658
1659 /*
1660 * If we don't know which subpages are hwpoisoned, we can't free
1661 * the hugepage, so it's leaked intentionally.
1662 */
1663 if (folio_test_hugetlb_raw_hwp_unreliable(folio))
1664 return;
1665
1666 /*
1667 * If folio is not vmemmap optimized (!clear_flag), then the folio
1668 * is no longer identified as a hugetlb page. hugetlb_vmemmap_restore_folio
1669 * can only be passed hugetlb pages and will BUG otherwise.
1670 */
1671 if (clear_flag && hugetlb_vmemmap_restore_folio(h, folio)) {
1672 spin_lock_irq(&hugetlb_lock);
1673 /*
1674 * If we cannot allocate vmemmap pages, just refuse to free the
1675 * page and put the page back on the hugetlb free list and treat
1676 * as a surplus page.
1677 */
1678 add_hugetlb_folio(h, folio, true);
1679 spin_unlock_irq(&hugetlb_lock);
1680 return;
1681 }
1682
1683 /*
1684 * If vmemmap pages were allocated above, then we need to clear the
1685 * hugetlb flag under the hugetlb lock.
1686 */
1687 if (folio_test_hugetlb(folio)) {
1688 spin_lock_irq(&hugetlb_lock);
1689 __folio_clear_hugetlb(folio);
1690 spin_unlock_irq(&hugetlb_lock);
1691 }
1692
1693 /*
1694 * Move PageHWPoison flag from head page to the raw error pages,
1695 * which makes any healthy subpages reusable.
1696 */
1697 if (unlikely(folio_test_hwpoison(folio)))
1698 folio_clear_hugetlb_hwpoison(folio);
1699
1700 folio_ref_unfreeze(folio, 1);
1701
1702 INIT_LIST_HEAD(&folio->_deferred_list);
1703 hugetlb_free_folio(folio);
1704}
1705
1706/*
1707 * As update_and_free_hugetlb_folio() can be called under any context, so we cannot
1708 * use GFP_KERNEL to allocate vmemmap pages. However, we can defer the
1709 * actual freeing in a workqueue to prevent from using GFP_ATOMIC to allocate
1710 * the vmemmap pages.
1711 *
1712 * free_hpage_workfn() locklessly retrieves the linked list of pages to be
1713 * freed and frees them one-by-one. As the page->mapping pointer is going
1714 * to be cleared in free_hpage_workfn() anyway, it is reused as the llist_node
1715 * structure of a lockless linked list of huge pages to be freed.
1716 */
1717static LLIST_HEAD(hpage_freelist);
1718
1719static void free_hpage_workfn(struct work_struct *work)
1720{
1721 struct llist_node *node;
1722
1723 node = llist_del_all(&hpage_freelist);
1724
1725 while (node) {
1726 struct folio *folio;
1727 struct hstate *h;
1728
1729 folio = container_of((struct address_space **)node,
1730 struct folio, mapping);
1731 node = node->next;
1732 folio->mapping = NULL;
1733 /*
1734 * The VM_BUG_ON_FOLIO(!folio_test_hugetlb(folio), folio) in
1735 * folio_hstate() is going to trigger because a previous call to
1736 * remove_hugetlb_folio() will clear the hugetlb bit, so do
1737 * not use folio_hstate() directly.
1738 */
1739 h = size_to_hstate(folio_size(folio));
1740
1741 __update_and_free_hugetlb_folio(h, folio);
1742
1743 cond_resched();
1744 }
1745}
1746static DECLARE_WORK(free_hpage_work, free_hpage_workfn);
1747
1748static inline void flush_free_hpage_work(struct hstate *h)
1749{
1750 if (hugetlb_vmemmap_optimizable(h))
1751 flush_work(&free_hpage_work);
1752}
1753
1754static void update_and_free_hugetlb_folio(struct hstate *h, struct folio *folio,
1755 bool atomic)
1756{
1757 if (!folio_test_hugetlb_vmemmap_optimized(folio) || !atomic) {
1758 __update_and_free_hugetlb_folio(h, folio);
1759 return;
1760 }
1761
1762 /*
1763 * Defer freeing to avoid using GFP_ATOMIC to allocate vmemmap pages.
1764 *
1765 * Only call schedule_work() if hpage_freelist is previously
1766 * empty. Otherwise, schedule_work() had been called but the workfn
1767 * hasn't retrieved the list yet.
1768 */
1769 if (llist_add((struct llist_node *)&folio->mapping, &hpage_freelist))
1770 schedule_work(&free_hpage_work);
1771}
1772
1773static void bulk_vmemmap_restore_error(struct hstate *h,
1774 struct list_head *folio_list,
1775 struct list_head *non_hvo_folios)
1776{
1777 struct folio *folio, *t_folio;
1778
1779 if (!list_empty(non_hvo_folios)) {
1780 /*
1781 * Free any restored hugetlb pages so that restore of the
1782 * entire list can be retried.
1783 * The idea is that in the common case of ENOMEM errors freeing
1784 * hugetlb pages with vmemmap we will free up memory so that we
1785 * can allocate vmemmap for more hugetlb pages.
1786 */
1787 list_for_each_entry_safe(folio, t_folio, non_hvo_folios, lru) {
1788 list_del(&folio->lru);
1789 spin_lock_irq(&hugetlb_lock);
1790 __folio_clear_hugetlb(folio);
1791 spin_unlock_irq(&hugetlb_lock);
1792 update_and_free_hugetlb_folio(h, folio, false);
1793 cond_resched();
1794 }
1795 } else {
1796 /*
1797 * In the case where there are no folios which can be
1798 * immediately freed, we loop through the list trying to restore
1799 * vmemmap individually in the hope that someone elsewhere may
1800 * have done something to cause success (such as freeing some
1801 * memory). If unable to restore a hugetlb page, the hugetlb
1802 * page is made a surplus page and removed from the list.
1803 * If are able to restore vmemmap and free one hugetlb page, we
1804 * quit processing the list to retry the bulk operation.
1805 */
1806 list_for_each_entry_safe(folio, t_folio, folio_list, lru)
1807 if (hugetlb_vmemmap_restore_folio(h, folio)) {
1808 list_del(&folio->lru);
1809 spin_lock_irq(&hugetlb_lock);
1810 add_hugetlb_folio(h, folio, true);
1811 spin_unlock_irq(&hugetlb_lock);
1812 } else {
1813 list_del(&folio->lru);
1814 spin_lock_irq(&hugetlb_lock);
1815 __folio_clear_hugetlb(folio);
1816 spin_unlock_irq(&hugetlb_lock);
1817 update_and_free_hugetlb_folio(h, folio, false);
1818 cond_resched();
1819 break;
1820 }
1821 }
1822}
1823
1824static void update_and_free_pages_bulk(struct hstate *h,
1825 struct list_head *folio_list)
1826{
1827 long ret;
1828 struct folio *folio, *t_folio;
1829 LIST_HEAD(non_hvo_folios);
1830
1831 /*
1832 * First allocate required vmemmmap (if necessary) for all folios.
1833 * Carefully handle errors and free up any available hugetlb pages
1834 * in an effort to make forward progress.
1835 */
1836retry:
1837 ret = hugetlb_vmemmap_restore_folios(h, folio_list, &non_hvo_folios);
1838 if (ret < 0) {
1839 bulk_vmemmap_restore_error(h, folio_list, &non_hvo_folios);
1840 goto retry;
1841 }
1842
1843 /*
1844 * At this point, list should be empty, ret should be >= 0 and there
1845 * should only be pages on the non_hvo_folios list.
1846 * Do note that the non_hvo_folios list could be empty.
1847 * Without HVO enabled, ret will be 0 and there is no need to call
1848 * __folio_clear_hugetlb as this was done previously.
1849 */
1850 VM_WARN_ON(!list_empty(folio_list));
1851 VM_WARN_ON(ret < 0);
1852 if (!list_empty(&non_hvo_folios) && ret) {
1853 spin_lock_irq(&hugetlb_lock);
1854 list_for_each_entry(folio, &non_hvo_folios, lru)
1855 __folio_clear_hugetlb(folio);
1856 spin_unlock_irq(&hugetlb_lock);
1857 }
1858
1859 list_for_each_entry_safe(folio, t_folio, &non_hvo_folios, lru) {
1860 update_and_free_hugetlb_folio(h, folio, false);
1861 cond_resched();
1862 }
1863}
1864
1865struct hstate *size_to_hstate(unsigned long size)
1866{
1867 struct hstate *h;
1868
1869 for_each_hstate(h) {
1870 if (huge_page_size(h) == size)
1871 return h;
1872 }
1873 return NULL;
1874}
1875
1876void free_huge_folio(struct folio *folio)
1877{
1878 /*
1879 * Can't pass hstate in here because it is called from the
1880 * generic mm code.
1881 */
1882 struct hstate *h = folio_hstate(folio);
1883 int nid = folio_nid(folio);
1884 struct hugepage_subpool *spool = hugetlb_folio_subpool(folio);
1885 bool restore_reserve;
1886 unsigned long flags;
1887
1888 VM_BUG_ON_FOLIO(folio_ref_count(folio), folio);
1889 VM_BUG_ON_FOLIO(folio_mapcount(folio), folio);
1890
1891 hugetlb_set_folio_subpool(folio, NULL);
1892 if (folio_test_anon(folio))
1893 __ClearPageAnonExclusive(&folio->page);
1894 folio->mapping = NULL;
1895 restore_reserve = folio_test_hugetlb_restore_reserve(folio);
1896 folio_clear_hugetlb_restore_reserve(folio);
1897
1898 /*
1899 * If HPageRestoreReserve was set on page, page allocation consumed a
1900 * reservation. If the page was associated with a subpool, there
1901 * would have been a page reserved in the subpool before allocation
1902 * via hugepage_subpool_get_pages(). Since we are 'restoring' the
1903 * reservation, do not call hugepage_subpool_put_pages() as this will
1904 * remove the reserved page from the subpool.
1905 */
1906 if (!restore_reserve) {
1907 /*
1908 * A return code of zero implies that the subpool will be
1909 * under its minimum size if the reservation is not restored
1910 * after page is free. Therefore, force restore_reserve
1911 * operation.
1912 */
1913 if (hugepage_subpool_put_pages(spool, 1) == 0)
1914 restore_reserve = true;
1915 }
1916
1917 spin_lock_irqsave(&hugetlb_lock, flags);
1918 folio_clear_hugetlb_migratable(folio);
1919 hugetlb_cgroup_uncharge_folio(hstate_index(h),
1920 pages_per_huge_page(h), folio);
1921 hugetlb_cgroup_uncharge_folio_rsvd(hstate_index(h),
1922 pages_per_huge_page(h), folio);
1923 lruvec_stat_mod_folio(folio, NR_HUGETLB, -pages_per_huge_page(h));
1924 mem_cgroup_uncharge(folio);
1925 if (restore_reserve)
1926 h->resv_huge_pages++;
1927
1928 if (folio_test_hugetlb_temporary(folio)) {
1929 remove_hugetlb_folio(h, folio, false);
1930 spin_unlock_irqrestore(&hugetlb_lock, flags);
1931 update_and_free_hugetlb_folio(h, folio, true);
1932 } else if (h->surplus_huge_pages_node[nid]) {
1933 /* remove the page from active list */
1934 remove_hugetlb_folio(h, folio, true);
1935 spin_unlock_irqrestore(&hugetlb_lock, flags);
1936 update_and_free_hugetlb_folio(h, folio, true);
1937 } else {
1938 arch_clear_hugetlb_flags(folio);
1939 enqueue_hugetlb_folio(h, folio);
1940 spin_unlock_irqrestore(&hugetlb_lock, flags);
1941 }
1942}
1943
1944/*
1945 * Must be called with the hugetlb lock held
1946 */
1947static void __prep_account_new_huge_page(struct hstate *h, int nid)
1948{
1949 lockdep_assert_held(&hugetlb_lock);
1950 h->nr_huge_pages++;
1951 h->nr_huge_pages_node[nid]++;
1952}
1953
1954static void init_new_hugetlb_folio(struct hstate *h, struct folio *folio)
1955{
1956 __folio_set_hugetlb(folio);
1957 INIT_LIST_HEAD(&folio->lru);
1958 hugetlb_set_folio_subpool(folio, NULL);
1959 set_hugetlb_cgroup(folio, NULL);
1960 set_hugetlb_cgroup_rsvd(folio, NULL);
1961}
1962
1963static void __prep_new_hugetlb_folio(struct hstate *h, struct folio *folio)
1964{
1965 init_new_hugetlb_folio(h, folio);
1966 hugetlb_vmemmap_optimize_folio(h, folio);
1967}
1968
1969static void prep_new_hugetlb_folio(struct hstate *h, struct folio *folio, int nid)
1970{
1971 __prep_new_hugetlb_folio(h, folio);
1972 spin_lock_irq(&hugetlb_lock);
1973 __prep_account_new_huge_page(h, nid);
1974 spin_unlock_irq(&hugetlb_lock);
1975}
1976
1977/*
1978 * Find and lock address space (mapping) in write mode.
1979 *
1980 * Upon entry, the folio is locked which means that folio_mapping() is
1981 * stable. Due to locking order, we can only trylock_write. If we can
1982 * not get the lock, simply return NULL to caller.
1983 */
1984struct address_space *hugetlb_folio_mapping_lock_write(struct folio *folio)
1985{
1986 struct address_space *mapping = folio_mapping(folio);
1987
1988 if (!mapping)
1989 return mapping;
1990
1991 if (i_mmap_trylock_write(mapping))
1992 return mapping;
1993
1994 return NULL;
1995}
1996
1997static struct folio *alloc_buddy_hugetlb_folio(struct hstate *h,
1998 gfp_t gfp_mask, int nid, nodemask_t *nmask,
1999 nodemask_t *node_alloc_noretry)
2000{
2001 int order = huge_page_order(h);
2002 struct folio *folio;
2003 bool alloc_try_hard = true;
2004 bool retry = true;
2005
2006 /*
2007 * By default we always try hard to allocate the folio with
2008 * __GFP_RETRY_MAYFAIL flag. However, if we are allocating folios in
2009 * a loop (to adjust global huge page counts) and previous allocation
2010 * failed, do not continue to try hard on the same node. Use the
2011 * node_alloc_noretry bitmap to manage this state information.
2012 */
2013 if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry))
2014 alloc_try_hard = false;
2015 if (alloc_try_hard)
2016 gfp_mask |= __GFP_RETRY_MAYFAIL;
2017 if (nid == NUMA_NO_NODE)
2018 nid = numa_mem_id();
2019retry:
2020 folio = __folio_alloc(gfp_mask, order, nid, nmask);
2021 /* Ensure hugetlb folio won't have large_rmappable flag set. */
2022 if (folio)
2023 folio_clear_large_rmappable(folio);
2024
2025 if (folio && !folio_ref_freeze(folio, 1)) {
2026 folio_put(folio);
2027 if (retry) { /* retry once */
2028 retry = false;
2029 goto retry;
2030 }
2031 /* WOW! twice in a row. */
2032 pr_warn("HugeTLB unexpected inflated folio ref count\n");
2033 folio = NULL;
2034 }
2035
2036 /*
2037 * If we did not specify __GFP_RETRY_MAYFAIL, but still got a
2038 * folio this indicates an overall state change. Clear bit so
2039 * that we resume normal 'try hard' allocations.
2040 */
2041 if (node_alloc_noretry && folio && !alloc_try_hard)
2042 node_clear(nid, *node_alloc_noretry);
2043
2044 /*
2045 * If we tried hard to get a folio but failed, set bit so that
2046 * subsequent attempts will not try as hard until there is an
2047 * overall state change.
2048 */
2049 if (node_alloc_noretry && !folio && alloc_try_hard)
2050 node_set(nid, *node_alloc_noretry);
2051
2052 if (!folio) {
2053 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
2054 return NULL;
2055 }
2056
2057 __count_vm_event(HTLB_BUDDY_PGALLOC);
2058 return folio;
2059}
2060
2061static struct folio *only_alloc_fresh_hugetlb_folio(struct hstate *h,
2062 gfp_t gfp_mask, int nid, nodemask_t *nmask,
2063 nodemask_t *node_alloc_noretry)
2064{
2065 struct folio *folio;
2066
2067 if (hstate_is_gigantic(h))
2068 folio = alloc_gigantic_folio(h, gfp_mask, nid, nmask);
2069 else
2070 folio = alloc_buddy_hugetlb_folio(h, gfp_mask, nid, nmask, node_alloc_noretry);
2071 if (folio)
2072 init_new_hugetlb_folio(h, folio);
2073 return folio;
2074}
2075
2076/*
2077 * Common helper to allocate a fresh hugetlb page. All specific allocators
2078 * should use this function to get new hugetlb pages
2079 *
2080 * Note that returned page is 'frozen': ref count of head page and all tail
2081 * pages is zero.
2082 */
2083static struct folio *alloc_fresh_hugetlb_folio(struct hstate *h,
2084 gfp_t gfp_mask, int nid, nodemask_t *nmask)
2085{
2086 struct folio *folio;
2087
2088 if (hstate_is_gigantic(h))
2089 folio = alloc_gigantic_folio(h, gfp_mask, nid, nmask);
2090 else
2091 folio = alloc_buddy_hugetlb_folio(h, gfp_mask, nid, nmask, NULL);
2092 if (!folio)
2093 return NULL;
2094
2095 prep_new_hugetlb_folio(h, folio, folio_nid(folio));
2096 return folio;
2097}
2098
2099static void prep_and_add_allocated_folios(struct hstate *h,
2100 struct list_head *folio_list)
2101{
2102 unsigned long flags;
2103 struct folio *folio, *tmp_f;
2104
2105 /* Send list for bulk vmemmap optimization processing */
2106 hugetlb_vmemmap_optimize_folios(h, folio_list);
2107
2108 /* Add all new pool pages to free lists in one lock cycle */
2109 spin_lock_irqsave(&hugetlb_lock, flags);
2110 list_for_each_entry_safe(folio, tmp_f, folio_list, lru) {
2111 __prep_account_new_huge_page(h, folio_nid(folio));
2112 enqueue_hugetlb_folio(h, folio);
2113 }
2114 spin_unlock_irqrestore(&hugetlb_lock, flags);
2115}
2116
2117/*
2118 * Allocates a fresh hugetlb page in a node interleaved manner. The page
2119 * will later be added to the appropriate hugetlb pool.
2120 */
2121static struct folio *alloc_pool_huge_folio(struct hstate *h,
2122 nodemask_t *nodes_allowed,
2123 nodemask_t *node_alloc_noretry,
2124 int *next_node)
2125{
2126 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
2127 int nr_nodes, node;
2128
2129 for_each_node_mask_to_alloc(next_node, nr_nodes, node, nodes_allowed) {
2130 struct folio *folio;
2131
2132 folio = only_alloc_fresh_hugetlb_folio(h, gfp_mask, node,
2133 nodes_allowed, node_alloc_noretry);
2134 if (folio)
2135 return folio;
2136 }
2137
2138 return NULL;
2139}
2140
2141/*
2142 * Remove huge page from pool from next node to free. Attempt to keep
2143 * persistent huge pages more or less balanced over allowed nodes.
2144 * This routine only 'removes' the hugetlb page. The caller must make
2145 * an additional call to free the page to low level allocators.
2146 * Called with hugetlb_lock locked.
2147 */
2148static struct folio *remove_pool_hugetlb_folio(struct hstate *h,
2149 nodemask_t *nodes_allowed, bool acct_surplus)
2150{
2151 int nr_nodes, node;
2152 struct folio *folio = NULL;
2153
2154 lockdep_assert_held(&hugetlb_lock);
2155 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2156 /*
2157 * If we're returning unused surplus pages, only examine
2158 * nodes with surplus pages.
2159 */
2160 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
2161 !list_empty(&h->hugepage_freelists[node])) {
2162 folio = list_entry(h->hugepage_freelists[node].next,
2163 struct folio, lru);
2164 remove_hugetlb_folio(h, folio, acct_surplus);
2165 break;
2166 }
2167 }
2168
2169 return folio;
2170}
2171
2172/*
2173 * Dissolve a given free hugetlb folio into free buddy pages. This function
2174 * does nothing for in-use hugetlb folios and non-hugetlb folios.
2175 * This function returns values like below:
2176 *
2177 * -ENOMEM: failed to allocate vmemmap pages to free the freed hugepages
2178 * when the system is under memory pressure and the feature of
2179 * freeing unused vmemmap pages associated with each hugetlb page
2180 * is enabled.
2181 * -EBUSY: failed to dissolved free hugepages or the hugepage is in-use
2182 * (allocated or reserved.)
2183 * 0: successfully dissolved free hugepages or the page is not a
2184 * hugepage (considered as already dissolved)
2185 */
2186int dissolve_free_hugetlb_folio(struct folio *folio)
2187{
2188 int rc = -EBUSY;
2189
2190retry:
2191 /* Not to disrupt normal path by vainly holding hugetlb_lock */
2192 if (!folio_test_hugetlb(folio))
2193 return 0;
2194
2195 spin_lock_irq(&hugetlb_lock);
2196 if (!folio_test_hugetlb(folio)) {
2197 rc = 0;
2198 goto out;
2199 }
2200
2201 if (!folio_ref_count(folio)) {
2202 struct hstate *h = folio_hstate(folio);
2203 if (!available_huge_pages(h))
2204 goto out;
2205
2206 /*
2207 * We should make sure that the page is already on the free list
2208 * when it is dissolved.
2209 */
2210 if (unlikely(!folio_test_hugetlb_freed(folio))) {
2211 spin_unlock_irq(&hugetlb_lock);
2212 cond_resched();
2213
2214 /*
2215 * Theoretically, we should return -EBUSY when we
2216 * encounter this race. In fact, we have a chance
2217 * to successfully dissolve the page if we do a
2218 * retry. Because the race window is quite small.
2219 * If we seize this opportunity, it is an optimization
2220 * for increasing the success rate of dissolving page.
2221 */
2222 goto retry;
2223 }
2224
2225 remove_hugetlb_folio(h, folio, false);
2226 h->max_huge_pages--;
2227 spin_unlock_irq(&hugetlb_lock);
2228
2229 /*
2230 * Normally update_and_free_hugtlb_folio will allocate required vmemmmap
2231 * before freeing the page. update_and_free_hugtlb_folio will fail to
2232 * free the page if it can not allocate required vmemmap. We
2233 * need to adjust max_huge_pages if the page is not freed.
2234 * Attempt to allocate vmemmmap here so that we can take
2235 * appropriate action on failure.
2236 *
2237 * The folio_test_hugetlb check here is because
2238 * remove_hugetlb_folio will clear hugetlb folio flag for
2239 * non-vmemmap optimized hugetlb folios.
2240 */
2241 if (folio_test_hugetlb(folio)) {
2242 rc = hugetlb_vmemmap_restore_folio(h, folio);
2243 if (rc) {
2244 spin_lock_irq(&hugetlb_lock);
2245 add_hugetlb_folio(h, folio, false);
2246 h->max_huge_pages++;
2247 goto out;
2248 }
2249 } else
2250 rc = 0;
2251
2252 update_and_free_hugetlb_folio(h, folio, false);
2253 return rc;
2254 }
2255out:
2256 spin_unlock_irq(&hugetlb_lock);
2257 return rc;
2258}
2259
2260/*
2261 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
2262 * make specified memory blocks removable from the system.
2263 * Note that this will dissolve a free gigantic hugepage completely, if any
2264 * part of it lies within the given range.
2265 * Also note that if dissolve_free_hugetlb_folio() returns with an error, all
2266 * free hugetlb folios that were dissolved before that error are lost.
2267 */
2268int dissolve_free_hugetlb_folios(unsigned long start_pfn, unsigned long end_pfn)
2269{
2270 unsigned long pfn;
2271 struct folio *folio;
2272 int rc = 0;
2273 unsigned int order;
2274 struct hstate *h;
2275
2276 if (!hugepages_supported())
2277 return rc;
2278
2279 order = huge_page_order(&default_hstate);
2280 for_each_hstate(h)
2281 order = min(order, huge_page_order(h));
2282
2283 for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << order) {
2284 folio = pfn_folio(pfn);
2285 rc = dissolve_free_hugetlb_folio(folio);
2286 if (rc)
2287 break;
2288 }
2289
2290 return rc;
2291}
2292
2293/*
2294 * Allocates a fresh surplus page from the page allocator.
2295 */
2296static struct folio *alloc_surplus_hugetlb_folio(struct hstate *h,
2297 gfp_t gfp_mask, int nid, nodemask_t *nmask)
2298{
2299 struct folio *folio = NULL;
2300
2301 if (hstate_is_gigantic(h))
2302 return NULL;
2303
2304 spin_lock_irq(&hugetlb_lock);
2305 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages)
2306 goto out_unlock;
2307 spin_unlock_irq(&hugetlb_lock);
2308
2309 folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask);
2310 if (!folio)
2311 return NULL;
2312
2313 spin_lock_irq(&hugetlb_lock);
2314 /*
2315 * We could have raced with the pool size change.
2316 * Double check that and simply deallocate the new page
2317 * if we would end up overcommiting the surpluses. Abuse
2318 * temporary page to workaround the nasty free_huge_folio
2319 * codeflow
2320 */
2321 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
2322 folio_set_hugetlb_temporary(folio);
2323 spin_unlock_irq(&hugetlb_lock);
2324 free_huge_folio(folio);
2325 return NULL;
2326 }
2327
2328 h->surplus_huge_pages++;
2329 h->surplus_huge_pages_node[folio_nid(folio)]++;
2330
2331out_unlock:
2332 spin_unlock_irq(&hugetlb_lock);
2333
2334 return folio;
2335}
2336
2337static struct folio *alloc_migrate_hugetlb_folio(struct hstate *h, gfp_t gfp_mask,
2338 int nid, nodemask_t *nmask)
2339{
2340 struct folio *folio;
2341
2342 if (hstate_is_gigantic(h))
2343 return NULL;
2344
2345 folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask);
2346 if (!folio)
2347 return NULL;
2348
2349 /* fresh huge pages are frozen */
2350 folio_ref_unfreeze(folio, 1);
2351 /*
2352 * We do not account these pages as surplus because they are only
2353 * temporary and will be released properly on the last reference
2354 */
2355 folio_set_hugetlb_temporary(folio);
2356
2357 return folio;
2358}
2359
2360/*
2361 * Use the VMA's mpolicy to allocate a huge page from the buddy.
2362 */
2363static
2364struct folio *alloc_buddy_hugetlb_folio_with_mpol(struct hstate *h,
2365 struct vm_area_struct *vma, unsigned long addr)
2366{
2367 struct folio *folio = NULL;
2368 struct mempolicy *mpol;
2369 gfp_t gfp_mask = htlb_alloc_mask(h);
2370 int nid;
2371 nodemask_t *nodemask;
2372
2373 nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
2374 if (mpol_is_preferred_many(mpol)) {
2375 gfp_t gfp = gfp_mask & ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL);
2376
2377 folio = alloc_surplus_hugetlb_folio(h, gfp, nid, nodemask);
2378
2379 /* Fallback to all nodes if page==NULL */
2380 nodemask = NULL;
2381 }
2382
2383 if (!folio)
2384 folio = alloc_surplus_hugetlb_folio(h, gfp_mask, nid, nodemask);
2385 mpol_cond_put(mpol);
2386 return folio;
2387}
2388
2389struct folio *alloc_hugetlb_folio_reserve(struct hstate *h, int preferred_nid,
2390 nodemask_t *nmask, gfp_t gfp_mask)
2391{
2392 struct folio *folio;
2393
2394 spin_lock_irq(&hugetlb_lock);
2395 folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask, preferred_nid,
2396 nmask);
2397 if (folio) {
2398 VM_BUG_ON(!h->resv_huge_pages);
2399 h->resv_huge_pages--;
2400 }
2401
2402 spin_unlock_irq(&hugetlb_lock);
2403 return folio;
2404}
2405
2406/* folio migration callback function */
2407struct folio *alloc_hugetlb_folio_nodemask(struct hstate *h, int preferred_nid,
2408 nodemask_t *nmask, gfp_t gfp_mask, bool allow_alloc_fallback)
2409{
2410 spin_lock_irq(&hugetlb_lock);
2411 if (available_huge_pages(h)) {
2412 struct folio *folio;
2413
2414 folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask,
2415 preferred_nid, nmask);
2416 if (folio) {
2417 spin_unlock_irq(&hugetlb_lock);
2418 return folio;
2419 }
2420 }
2421 spin_unlock_irq(&hugetlb_lock);
2422
2423 /* We cannot fallback to other nodes, as we could break the per-node pool. */
2424 if (!allow_alloc_fallback)
2425 gfp_mask |= __GFP_THISNODE;
2426
2427 return alloc_migrate_hugetlb_folio(h, gfp_mask, preferred_nid, nmask);
2428}
2429
2430static nodemask_t *policy_mbind_nodemask(gfp_t gfp)
2431{
2432#ifdef CONFIG_NUMA
2433 struct mempolicy *mpol = get_task_policy(current);
2434
2435 /*
2436 * Only enforce MPOL_BIND policy which overlaps with cpuset policy
2437 * (from policy_nodemask) specifically for hugetlb case
2438 */
2439 if (mpol->mode == MPOL_BIND &&
2440 (apply_policy_zone(mpol, gfp_zone(gfp)) &&
2441 cpuset_nodemask_valid_mems_allowed(&mpol->nodes)))
2442 return &mpol->nodes;
2443#endif
2444 return NULL;
2445}
2446
2447/*
2448 * Increase the hugetlb pool such that it can accommodate a reservation
2449 * of size 'delta'.
2450 */
2451static int gather_surplus_pages(struct hstate *h, long delta)
2452 __must_hold(&hugetlb_lock)
2453{
2454 LIST_HEAD(surplus_list);
2455 struct folio *folio, *tmp;
2456 int ret;
2457 long i;
2458 long needed, allocated;
2459 bool alloc_ok = true;
2460 int node;
2461 nodemask_t *mbind_nodemask = policy_mbind_nodemask(htlb_alloc_mask(h));
2462
2463 lockdep_assert_held(&hugetlb_lock);
2464 needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
2465 if (needed <= 0) {
2466 h->resv_huge_pages += delta;
2467 return 0;
2468 }
2469
2470 allocated = 0;
2471
2472 ret = -ENOMEM;
2473retry:
2474 spin_unlock_irq(&hugetlb_lock);
2475 for (i = 0; i < needed; i++) {
2476 folio = NULL;
2477 for_each_node_mask(node, cpuset_current_mems_allowed) {
2478 if (!mbind_nodemask || node_isset(node, *mbind_nodemask)) {
2479 folio = alloc_surplus_hugetlb_folio(h, htlb_alloc_mask(h),
2480 node, NULL);
2481 if (folio)
2482 break;
2483 }
2484 }
2485 if (!folio) {
2486 alloc_ok = false;
2487 break;
2488 }
2489 list_add(&folio->lru, &surplus_list);
2490 cond_resched();
2491 }
2492 allocated += i;
2493
2494 /*
2495 * After retaking hugetlb_lock, we need to recalculate 'needed'
2496 * because either resv_huge_pages or free_huge_pages may have changed.
2497 */
2498 spin_lock_irq(&hugetlb_lock);
2499 needed = (h->resv_huge_pages + delta) -
2500 (h->free_huge_pages + allocated);
2501 if (needed > 0) {
2502 if (alloc_ok)
2503 goto retry;
2504 /*
2505 * We were not able to allocate enough pages to
2506 * satisfy the entire reservation so we free what
2507 * we've allocated so far.
2508 */
2509 goto free;
2510 }
2511 /*
2512 * The surplus_list now contains _at_least_ the number of extra pages
2513 * needed to accommodate the reservation. Add the appropriate number
2514 * of pages to the hugetlb pool and free the extras back to the buddy
2515 * allocator. Commit the entire reservation here to prevent another
2516 * process from stealing the pages as they are added to the pool but
2517 * before they are reserved.
2518 */
2519 needed += allocated;
2520 h->resv_huge_pages += delta;
2521 ret = 0;
2522
2523 /* Free the needed pages to the hugetlb pool */
2524 list_for_each_entry_safe(folio, tmp, &surplus_list, lru) {
2525 if ((--needed) < 0)
2526 break;
2527 /* Add the page to the hugetlb allocator */
2528 enqueue_hugetlb_folio(h, folio);
2529 }
2530free:
2531 spin_unlock_irq(&hugetlb_lock);
2532
2533 /*
2534 * Free unnecessary surplus pages to the buddy allocator.
2535 * Pages have no ref count, call free_huge_folio directly.
2536 */
2537 list_for_each_entry_safe(folio, tmp, &surplus_list, lru)
2538 free_huge_folio(folio);
2539 spin_lock_irq(&hugetlb_lock);
2540
2541 return ret;
2542}
2543
2544/*
2545 * This routine has two main purposes:
2546 * 1) Decrement the reservation count (resv_huge_pages) by the value passed
2547 * in unused_resv_pages. This corresponds to the prior adjustments made
2548 * to the associated reservation map.
2549 * 2) Free any unused surplus pages that may have been allocated to satisfy
2550 * the reservation. As many as unused_resv_pages may be freed.
2551 */
2552static void return_unused_surplus_pages(struct hstate *h,
2553 unsigned long unused_resv_pages)
2554{
2555 unsigned long nr_pages;
2556 LIST_HEAD(page_list);
2557
2558 lockdep_assert_held(&hugetlb_lock);
2559 /* Uncommit the reservation */
2560 h->resv_huge_pages -= unused_resv_pages;
2561
2562 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
2563 goto out;
2564
2565 /*
2566 * Part (or even all) of the reservation could have been backed
2567 * by pre-allocated pages. Only free surplus pages.
2568 */
2569 nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
2570
2571 /*
2572 * We want to release as many surplus pages as possible, spread
2573 * evenly across all nodes with memory. Iterate across these nodes
2574 * until we can no longer free unreserved surplus pages. This occurs
2575 * when the nodes with surplus pages have no free pages.
2576 * remove_pool_hugetlb_folio() will balance the freed pages across the
2577 * on-line nodes with memory and will handle the hstate accounting.
2578 */
2579 while (nr_pages--) {
2580 struct folio *folio;
2581
2582 folio = remove_pool_hugetlb_folio(h, &node_states[N_MEMORY], 1);
2583 if (!folio)
2584 goto out;
2585
2586 list_add(&folio->lru, &page_list);
2587 }
2588
2589out:
2590 spin_unlock_irq(&hugetlb_lock);
2591 update_and_free_pages_bulk(h, &page_list);
2592 spin_lock_irq(&hugetlb_lock);
2593}
2594
2595
2596/*
2597 * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
2598 * are used by the huge page allocation routines to manage reservations.
2599 *
2600 * vma_needs_reservation is called to determine if the huge page at addr
2601 * within the vma has an associated reservation. If a reservation is
2602 * needed, the value 1 is returned. The caller is then responsible for
2603 * managing the global reservation and subpool usage counts. After
2604 * the huge page has been allocated, vma_commit_reservation is called
2605 * to add the page to the reservation map. If the page allocation fails,
2606 * the reservation must be ended instead of committed. vma_end_reservation
2607 * is called in such cases.
2608 *
2609 * In the normal case, vma_commit_reservation returns the same value
2610 * as the preceding vma_needs_reservation call. The only time this
2611 * is not the case is if a reserve map was changed between calls. It
2612 * is the responsibility of the caller to notice the difference and
2613 * take appropriate action.
2614 *
2615 * vma_add_reservation is used in error paths where a reservation must
2616 * be restored when a newly allocated huge page must be freed. It is
2617 * to be called after calling vma_needs_reservation to determine if a
2618 * reservation exists.
2619 *
2620 * vma_del_reservation is used in error paths where an entry in the reserve
2621 * map was created during huge page allocation and must be removed. It is to
2622 * be called after calling vma_needs_reservation to determine if a reservation
2623 * exists.
2624 */
2625enum vma_resv_mode {
2626 VMA_NEEDS_RESV,
2627 VMA_COMMIT_RESV,
2628 VMA_END_RESV,
2629 VMA_ADD_RESV,
2630 VMA_DEL_RESV,
2631};
2632static long __vma_reservation_common(struct hstate *h,
2633 struct vm_area_struct *vma, unsigned long addr,
2634 enum vma_resv_mode mode)
2635{
2636 struct resv_map *resv;
2637 pgoff_t idx;
2638 long ret;
2639 long dummy_out_regions_needed;
2640
2641 resv = vma_resv_map(vma);
2642 if (!resv)
2643 return 1;
2644
2645 idx = vma_hugecache_offset(h, vma, addr);
2646 switch (mode) {
2647 case VMA_NEEDS_RESV:
2648 ret = region_chg(resv, idx, idx + 1, &dummy_out_regions_needed);
2649 /* We assume that vma_reservation_* routines always operate on
2650 * 1 page, and that adding to resv map a 1 page entry can only
2651 * ever require 1 region.
2652 */
2653 VM_BUG_ON(dummy_out_regions_needed != 1);
2654 break;
2655 case VMA_COMMIT_RESV:
2656 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2657 /* region_add calls of range 1 should never fail. */
2658 VM_BUG_ON(ret < 0);
2659 break;
2660 case VMA_END_RESV:
2661 region_abort(resv, idx, idx + 1, 1);
2662 ret = 0;
2663 break;
2664 case VMA_ADD_RESV:
2665 if (vma->vm_flags & VM_MAYSHARE) {
2666 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2667 /* region_add calls of range 1 should never fail. */
2668 VM_BUG_ON(ret < 0);
2669 } else {
2670 region_abort(resv, idx, idx + 1, 1);
2671 ret = region_del(resv, idx, idx + 1);
2672 }
2673 break;
2674 case VMA_DEL_RESV:
2675 if (vma->vm_flags & VM_MAYSHARE) {
2676 region_abort(resv, idx, idx + 1, 1);
2677 ret = region_del(resv, idx, idx + 1);
2678 } else {
2679 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2680 /* region_add calls of range 1 should never fail. */
2681 VM_BUG_ON(ret < 0);
2682 }
2683 break;
2684 default:
2685 BUG();
2686 }
2687
2688 if (vma->vm_flags & VM_MAYSHARE || mode == VMA_DEL_RESV)
2689 return ret;
2690 /*
2691 * We know private mapping must have HPAGE_RESV_OWNER set.
2692 *
2693 * In most cases, reserves always exist for private mappings.
2694 * However, a file associated with mapping could have been
2695 * hole punched or truncated after reserves were consumed.
2696 * As subsequent fault on such a range will not use reserves.
2697 * Subtle - The reserve map for private mappings has the
2698 * opposite meaning than that of shared mappings. If NO
2699 * entry is in the reserve map, it means a reservation exists.
2700 * If an entry exists in the reserve map, it means the
2701 * reservation has already been consumed. As a result, the
2702 * return value of this routine is the opposite of the
2703 * value returned from reserve map manipulation routines above.
2704 */
2705 if (ret > 0)
2706 return 0;
2707 if (ret == 0)
2708 return 1;
2709 return ret;
2710}
2711
2712static long vma_needs_reservation(struct hstate *h,
2713 struct vm_area_struct *vma, unsigned long addr)
2714{
2715 return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
2716}
2717
2718static long vma_commit_reservation(struct hstate *h,
2719 struct vm_area_struct *vma, unsigned long addr)
2720{
2721 return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
2722}
2723
2724static void vma_end_reservation(struct hstate *h,
2725 struct vm_area_struct *vma, unsigned long addr)
2726{
2727 (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
2728}
2729
2730static long vma_add_reservation(struct hstate *h,
2731 struct vm_area_struct *vma, unsigned long addr)
2732{
2733 return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
2734}
2735
2736static long vma_del_reservation(struct hstate *h,
2737 struct vm_area_struct *vma, unsigned long addr)
2738{
2739 return __vma_reservation_common(h, vma, addr, VMA_DEL_RESV);
2740}
2741
2742/*
2743 * This routine is called to restore reservation information on error paths.
2744 * It should ONLY be called for folios allocated via alloc_hugetlb_folio(),
2745 * and the hugetlb mutex should remain held when calling this routine.
2746 *
2747 * It handles two specific cases:
2748 * 1) A reservation was in place and the folio consumed the reservation.
2749 * hugetlb_restore_reserve is set in the folio.
2750 * 2) No reservation was in place for the page, so hugetlb_restore_reserve is
2751 * not set. However, alloc_hugetlb_folio always updates the reserve map.
2752 *
2753 * In case 1, free_huge_folio later in the error path will increment the
2754 * global reserve count. But, free_huge_folio does not have enough context
2755 * to adjust the reservation map. This case deals primarily with private
2756 * mappings. Adjust the reserve map here to be consistent with global
2757 * reserve count adjustments to be made by free_huge_folio. Make sure the
2758 * reserve map indicates there is a reservation present.
2759 *
2760 * In case 2, simply undo reserve map modifications done by alloc_hugetlb_folio.
2761 */
2762void restore_reserve_on_error(struct hstate *h, struct vm_area_struct *vma,
2763 unsigned long address, struct folio *folio)
2764{
2765 long rc = vma_needs_reservation(h, vma, address);
2766
2767 if (folio_test_hugetlb_restore_reserve(folio)) {
2768 if (unlikely(rc < 0))
2769 /*
2770 * Rare out of memory condition in reserve map
2771 * manipulation. Clear hugetlb_restore_reserve so
2772 * that global reserve count will not be incremented
2773 * by free_huge_folio. This will make it appear
2774 * as though the reservation for this folio was
2775 * consumed. This may prevent the task from
2776 * faulting in the folio at a later time. This
2777 * is better than inconsistent global huge page
2778 * accounting of reserve counts.
2779 */
2780 folio_clear_hugetlb_restore_reserve(folio);
2781 else if (rc)
2782 (void)vma_add_reservation(h, vma, address);
2783 else
2784 vma_end_reservation(h, vma, address);
2785 } else {
2786 if (!rc) {
2787 /*
2788 * This indicates there is an entry in the reserve map
2789 * not added by alloc_hugetlb_folio. We know it was added
2790 * before the alloc_hugetlb_folio call, otherwise
2791 * hugetlb_restore_reserve would be set on the folio.
2792 * Remove the entry so that a subsequent allocation
2793 * does not consume a reservation.
2794 */
2795 rc = vma_del_reservation(h, vma, address);
2796 if (rc < 0)
2797 /*
2798 * VERY rare out of memory condition. Since
2799 * we can not delete the entry, set
2800 * hugetlb_restore_reserve so that the reserve
2801 * count will be incremented when the folio
2802 * is freed. This reserve will be consumed
2803 * on a subsequent allocation.
2804 */
2805 folio_set_hugetlb_restore_reserve(folio);
2806 } else if (rc < 0) {
2807 /*
2808 * Rare out of memory condition from
2809 * vma_needs_reservation call. Memory allocation is
2810 * only attempted if a new entry is needed. Therefore,
2811 * this implies there is not an entry in the
2812 * reserve map.
2813 *
2814 * For shared mappings, no entry in the map indicates
2815 * no reservation. We are done.
2816 */
2817 if (!(vma->vm_flags & VM_MAYSHARE))
2818 /*
2819 * For private mappings, no entry indicates
2820 * a reservation is present. Since we can
2821 * not add an entry, set hugetlb_restore_reserve
2822 * on the folio so reserve count will be
2823 * incremented when freed. This reserve will
2824 * be consumed on a subsequent allocation.
2825 */
2826 folio_set_hugetlb_restore_reserve(folio);
2827 } else
2828 /*
2829 * No reservation present, do nothing
2830 */
2831 vma_end_reservation(h, vma, address);
2832 }
2833}
2834
2835/*
2836 * alloc_and_dissolve_hugetlb_folio - Allocate a new folio and dissolve
2837 * the old one
2838 * @h: struct hstate old page belongs to
2839 * @old_folio: Old folio to dissolve
2840 * @list: List to isolate the page in case we need to
2841 * Returns 0 on success, otherwise negated error.
2842 */
2843static int alloc_and_dissolve_hugetlb_folio(struct hstate *h,
2844 struct folio *old_folio, struct list_head *list)
2845{
2846 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
2847 int nid = folio_nid(old_folio);
2848 struct folio *new_folio = NULL;
2849 int ret = 0;
2850
2851retry:
2852 spin_lock_irq(&hugetlb_lock);
2853 if (!folio_test_hugetlb(old_folio)) {
2854 /*
2855 * Freed from under us. Drop new_folio too.
2856 */
2857 goto free_new;
2858 } else if (folio_ref_count(old_folio)) {
2859 bool isolated;
2860
2861 /*
2862 * Someone has grabbed the folio, try to isolate it here.
2863 * Fail with -EBUSY if not possible.
2864 */
2865 spin_unlock_irq(&hugetlb_lock);
2866 isolated = isolate_hugetlb(old_folio, list);
2867 ret = isolated ? 0 : -EBUSY;
2868 spin_lock_irq(&hugetlb_lock);
2869 goto free_new;
2870 } else if (!folio_test_hugetlb_freed(old_folio)) {
2871 /*
2872 * Folio's refcount is 0 but it has not been enqueued in the
2873 * freelist yet. Race window is small, so we can succeed here if
2874 * we retry.
2875 */
2876 spin_unlock_irq(&hugetlb_lock);
2877 cond_resched();
2878 goto retry;
2879 } else {
2880 if (!new_folio) {
2881 spin_unlock_irq(&hugetlb_lock);
2882 new_folio = alloc_buddy_hugetlb_folio(h, gfp_mask, nid,
2883 NULL, NULL);
2884 if (!new_folio)
2885 return -ENOMEM;
2886 __prep_new_hugetlb_folio(h, new_folio);
2887 goto retry;
2888 }
2889
2890 /*
2891 * Ok, old_folio is still a genuine free hugepage. Remove it from
2892 * the freelist and decrease the counters. These will be
2893 * incremented again when calling __prep_account_new_huge_page()
2894 * and enqueue_hugetlb_folio() for new_folio. The counters will
2895 * remain stable since this happens under the lock.
2896 */
2897 remove_hugetlb_folio(h, old_folio, false);
2898
2899 /*
2900 * Ref count on new_folio is already zero as it was dropped
2901 * earlier. It can be directly added to the pool free list.
2902 */
2903 __prep_account_new_huge_page(h, nid);
2904 enqueue_hugetlb_folio(h, new_folio);
2905
2906 /*
2907 * Folio has been replaced, we can safely free the old one.
2908 */
2909 spin_unlock_irq(&hugetlb_lock);
2910 update_and_free_hugetlb_folio(h, old_folio, false);
2911 }
2912
2913 return ret;
2914
2915free_new:
2916 spin_unlock_irq(&hugetlb_lock);
2917 if (new_folio)
2918 update_and_free_hugetlb_folio(h, new_folio, false);
2919
2920 return ret;
2921}
2922
2923int isolate_or_dissolve_huge_page(struct page *page, struct list_head *list)
2924{
2925 struct hstate *h;
2926 struct folio *folio = page_folio(page);
2927 int ret = -EBUSY;
2928
2929 /*
2930 * The page might have been dissolved from under our feet, so make sure
2931 * to carefully check the state under the lock.
2932 * Return success when racing as if we dissolved the page ourselves.
2933 */
2934 spin_lock_irq(&hugetlb_lock);
2935 if (folio_test_hugetlb(folio)) {
2936 h = folio_hstate(folio);
2937 } else {
2938 spin_unlock_irq(&hugetlb_lock);
2939 return 0;
2940 }
2941 spin_unlock_irq(&hugetlb_lock);
2942
2943 /*
2944 * Fence off gigantic pages as there is a cyclic dependency between
2945 * alloc_contig_range and them. Return -ENOMEM as this has the effect
2946 * of bailing out right away without further retrying.
2947 */
2948 if (hstate_is_gigantic(h))
2949 return -ENOMEM;
2950
2951 if (folio_ref_count(folio) && isolate_hugetlb(folio, list))
2952 ret = 0;
2953 else if (!folio_ref_count(folio))
2954 ret = alloc_and_dissolve_hugetlb_folio(h, folio, list);
2955
2956 return ret;
2957}
2958
2959struct folio *alloc_hugetlb_folio(struct vm_area_struct *vma,
2960 unsigned long addr, int avoid_reserve)
2961{
2962 struct hugepage_subpool *spool = subpool_vma(vma);
2963 struct hstate *h = hstate_vma(vma);
2964 struct folio *folio;
2965 long map_chg, map_commit, nr_pages = pages_per_huge_page(h);
2966 long gbl_chg;
2967 int memcg_charge_ret, ret, idx;
2968 struct hugetlb_cgroup *h_cg = NULL;
2969 struct mem_cgroup *memcg;
2970 bool deferred_reserve;
2971 gfp_t gfp = htlb_alloc_mask(h) | __GFP_RETRY_MAYFAIL;
2972
2973 memcg = get_mem_cgroup_from_current();
2974 memcg_charge_ret = mem_cgroup_hugetlb_try_charge(memcg, gfp, nr_pages);
2975 if (memcg_charge_ret == -ENOMEM) {
2976 mem_cgroup_put(memcg);
2977 return ERR_PTR(-ENOMEM);
2978 }
2979
2980 idx = hstate_index(h);
2981 /*
2982 * Examine the region/reserve map to determine if the process
2983 * has a reservation for the page to be allocated. A return
2984 * code of zero indicates a reservation exists (no change).
2985 */
2986 map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
2987 if (map_chg < 0) {
2988 if (!memcg_charge_ret)
2989 mem_cgroup_cancel_charge(memcg, nr_pages);
2990 mem_cgroup_put(memcg);
2991 return ERR_PTR(-ENOMEM);
2992 }
2993
2994 /*
2995 * Processes that did not create the mapping will have no
2996 * reserves as indicated by the region/reserve map. Check
2997 * that the allocation will not exceed the subpool limit.
2998 * Allocations for MAP_NORESERVE mappings also need to be
2999 * checked against any subpool limit.
3000 */
3001 if (map_chg || avoid_reserve) {
3002 gbl_chg = hugepage_subpool_get_pages(spool, 1);
3003 if (gbl_chg < 0)
3004 goto out_end_reservation;
3005 }
3006
3007 /* If this allocation is not consuming a reservation, charge it now.
3008 */
3009 deferred_reserve = map_chg || avoid_reserve;
3010 if (deferred_reserve) {
3011 ret = hugetlb_cgroup_charge_cgroup_rsvd(
3012 idx, pages_per_huge_page(h), &h_cg);
3013 if (ret)
3014 goto out_subpool_put;
3015 }
3016
3017 ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
3018 if (ret)
3019 goto out_uncharge_cgroup_reservation;
3020
3021 spin_lock_irq(&hugetlb_lock);
3022 /*
3023 * glb_chg is passed to indicate whether or not a page must be taken
3024 * from the global free pool (global change). gbl_chg == 0 indicates
3025 * a reservation exists for the allocation.
3026 */
3027 folio = dequeue_hugetlb_folio_vma(h, vma, addr, gbl_chg);
3028 if (!folio) {
3029 spin_unlock_irq(&hugetlb_lock);
3030 folio = alloc_buddy_hugetlb_folio_with_mpol(h, vma, addr);
3031 if (!folio)
3032 goto out_uncharge_cgroup;
3033 spin_lock_irq(&hugetlb_lock);
3034 if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
3035 folio_set_hugetlb_restore_reserve(folio);
3036 h->resv_huge_pages--;
3037 }
3038 list_add(&folio->lru, &h->hugepage_activelist);
3039 folio_ref_unfreeze(folio, 1);
3040 /* Fall through */
3041 }
3042
3043 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, folio);
3044 /* If allocation is not consuming a reservation, also store the
3045 * hugetlb_cgroup pointer on the page.
3046 */
3047 if (deferred_reserve) {
3048 hugetlb_cgroup_commit_charge_rsvd(idx, pages_per_huge_page(h),
3049 h_cg, folio);
3050 }
3051
3052 spin_unlock_irq(&hugetlb_lock);
3053
3054 hugetlb_set_folio_subpool(folio, spool);
3055
3056 map_commit = vma_commit_reservation(h, vma, addr);
3057 if (unlikely(map_chg > map_commit)) {
3058 /*
3059 * The page was added to the reservation map between
3060 * vma_needs_reservation and vma_commit_reservation.
3061 * This indicates a race with hugetlb_reserve_pages.
3062 * Adjust for the subpool count incremented above AND
3063 * in hugetlb_reserve_pages for the same page. Also,
3064 * the reservation count added in hugetlb_reserve_pages
3065 * no longer applies.
3066 */
3067 long rsv_adjust;
3068
3069 rsv_adjust = hugepage_subpool_put_pages(spool, 1);
3070 hugetlb_acct_memory(h, -rsv_adjust);
3071 if (deferred_reserve) {
3072 spin_lock_irq(&hugetlb_lock);
3073 hugetlb_cgroup_uncharge_folio_rsvd(hstate_index(h),
3074 pages_per_huge_page(h), folio);
3075 spin_unlock_irq(&hugetlb_lock);
3076 }
3077 }
3078
3079 if (!memcg_charge_ret)
3080 mem_cgroup_commit_charge(folio, memcg);
3081 lruvec_stat_mod_folio(folio, NR_HUGETLB, pages_per_huge_page(h));
3082 mem_cgroup_put(memcg);
3083
3084 return folio;
3085
3086out_uncharge_cgroup:
3087 hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
3088out_uncharge_cgroup_reservation:
3089 if (deferred_reserve)
3090 hugetlb_cgroup_uncharge_cgroup_rsvd(idx, pages_per_huge_page(h),
3091 h_cg);
3092out_subpool_put:
3093 if (map_chg || avoid_reserve)
3094 hugepage_subpool_put_pages(spool, 1);
3095out_end_reservation:
3096 vma_end_reservation(h, vma, addr);
3097 if (!memcg_charge_ret)
3098 mem_cgroup_cancel_charge(memcg, nr_pages);
3099 mem_cgroup_put(memcg);
3100 return ERR_PTR(-ENOSPC);
3101}
3102
3103int alloc_bootmem_huge_page(struct hstate *h, int nid)
3104 __attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
3105int __alloc_bootmem_huge_page(struct hstate *h, int nid)
3106{
3107 struct huge_bootmem_page *m = NULL; /* initialize for clang */
3108 int nr_nodes, node = nid;
3109
3110 /* do node specific alloc */
3111 if (nid != NUMA_NO_NODE) {
3112 m = memblock_alloc_try_nid_raw(huge_page_size(h), huge_page_size(h),
3113 0, MEMBLOCK_ALLOC_ACCESSIBLE, nid);
3114 if (!m)
3115 return 0;
3116 goto found;
3117 }
3118 /* allocate from next node when distributing huge pages */
3119 for_each_node_mask_to_alloc(&h->next_nid_to_alloc, nr_nodes, node, &node_states[N_MEMORY]) {
3120 m = memblock_alloc_try_nid_raw(
3121 huge_page_size(h), huge_page_size(h),
3122 0, MEMBLOCK_ALLOC_ACCESSIBLE, node);
3123 /*
3124 * Use the beginning of the huge page to store the
3125 * huge_bootmem_page struct (until gather_bootmem
3126 * puts them into the mem_map).
3127 */
3128 if (!m)
3129 return 0;
3130 goto found;
3131 }
3132
3133found:
3134
3135 /*
3136 * Only initialize the head struct page in memmap_init_reserved_pages,
3137 * rest of the struct pages will be initialized by the HugeTLB
3138 * subsystem itself.
3139 * The head struct page is used to get folio information by the HugeTLB
3140 * subsystem like zone id and node id.
3141 */
3142 memblock_reserved_mark_noinit(virt_to_phys((void *)m + PAGE_SIZE),
3143 huge_page_size(h) - PAGE_SIZE);
3144 /* Put them into a private list first because mem_map is not up yet */
3145 INIT_LIST_HEAD(&m->list);
3146 list_add(&m->list, &huge_boot_pages[node]);
3147 m->hstate = h;
3148 return 1;
3149}
3150
3151/* Initialize [start_page:end_page_number] tail struct pages of a hugepage */
3152static void __init hugetlb_folio_init_tail_vmemmap(struct folio *folio,
3153 unsigned long start_page_number,
3154 unsigned long end_page_number)
3155{
3156 enum zone_type zone = zone_idx(folio_zone(folio));
3157 int nid = folio_nid(folio);
3158 unsigned long head_pfn = folio_pfn(folio);
3159 unsigned long pfn, end_pfn = head_pfn + end_page_number;
3160 int ret;
3161
3162 for (pfn = head_pfn + start_page_number; pfn < end_pfn; pfn++) {
3163 struct page *page = pfn_to_page(pfn);
3164
3165 __ClearPageReserved(folio_page(folio, pfn - head_pfn));
3166 __init_single_page(page, pfn, zone, nid);
3167 prep_compound_tail((struct page *)folio, pfn - head_pfn);
3168 ret = page_ref_freeze(page, 1);
3169 VM_BUG_ON(!ret);
3170 }
3171}
3172
3173static void __init hugetlb_folio_init_vmemmap(struct folio *folio,
3174 struct hstate *h,
3175 unsigned long nr_pages)
3176{
3177 int ret;
3178
3179 /* Prepare folio head */
3180 __folio_clear_reserved(folio);
3181 __folio_set_head(folio);
3182 ret = folio_ref_freeze(folio, 1);
3183 VM_BUG_ON(!ret);
3184 /* Initialize the necessary tail struct pages */
3185 hugetlb_folio_init_tail_vmemmap(folio, 1, nr_pages);
3186 prep_compound_head((struct page *)folio, huge_page_order(h));
3187}
3188
3189static void __init prep_and_add_bootmem_folios(struct hstate *h,
3190 struct list_head *folio_list)
3191{
3192 unsigned long flags;
3193 struct folio *folio, *tmp_f;
3194
3195 /* Send list for bulk vmemmap optimization processing */
3196 hugetlb_vmemmap_optimize_folios(h, folio_list);
3197
3198 list_for_each_entry_safe(folio, tmp_f, folio_list, lru) {
3199 if (!folio_test_hugetlb_vmemmap_optimized(folio)) {
3200 /*
3201 * If HVO fails, initialize all tail struct pages
3202 * We do not worry about potential long lock hold
3203 * time as this is early in boot and there should
3204 * be no contention.
3205 */
3206 hugetlb_folio_init_tail_vmemmap(folio,
3207 HUGETLB_VMEMMAP_RESERVE_PAGES,
3208 pages_per_huge_page(h));
3209 }
3210 /* Subdivide locks to achieve better parallel performance */
3211 spin_lock_irqsave(&hugetlb_lock, flags);
3212 __prep_account_new_huge_page(h, folio_nid(folio));
3213 enqueue_hugetlb_folio(h, folio);
3214 spin_unlock_irqrestore(&hugetlb_lock, flags);
3215 }
3216}
3217
3218/*
3219 * Put bootmem huge pages into the standard lists after mem_map is up.
3220 * Note: This only applies to gigantic (order > MAX_PAGE_ORDER) pages.
3221 */
3222static void __init gather_bootmem_prealloc_node(unsigned long nid)
3223{
3224 LIST_HEAD(folio_list);
3225 struct huge_bootmem_page *m;
3226 struct hstate *h = NULL, *prev_h = NULL;
3227
3228 list_for_each_entry(m, &huge_boot_pages[nid], list) {
3229 struct page *page = virt_to_page(m);
3230 struct folio *folio = (void *)page;
3231
3232 h = m->hstate;
3233 /*
3234 * It is possible to have multiple huge page sizes (hstates)
3235 * in this list. If so, process each size separately.
3236 */
3237 if (h != prev_h && prev_h != NULL)
3238 prep_and_add_bootmem_folios(prev_h, &folio_list);
3239 prev_h = h;
3240
3241 VM_BUG_ON(!hstate_is_gigantic(h));
3242 WARN_ON(folio_ref_count(folio) != 1);
3243
3244 hugetlb_folio_init_vmemmap(folio, h,
3245 HUGETLB_VMEMMAP_RESERVE_PAGES);
3246 init_new_hugetlb_folio(h, folio);
3247 list_add(&folio->lru, &folio_list);
3248
3249 /*
3250 * We need to restore the 'stolen' pages to totalram_pages
3251 * in order to fix confusing memory reports from free(1) and
3252 * other side-effects, like CommitLimit going negative.
3253 */
3254 adjust_managed_page_count(page, pages_per_huge_page(h));
3255 cond_resched();
3256 }
3257
3258 prep_and_add_bootmem_folios(h, &folio_list);
3259}
3260
3261static void __init gather_bootmem_prealloc_parallel(unsigned long start,
3262 unsigned long end, void *arg)
3263{
3264 int nid;
3265
3266 for (nid = start; nid < end; nid++)
3267 gather_bootmem_prealloc_node(nid);
3268}
3269
3270static void __init gather_bootmem_prealloc(void)
3271{
3272 struct padata_mt_job job = {
3273 .thread_fn = gather_bootmem_prealloc_parallel,
3274 .fn_arg = NULL,
3275 .start = 0,
3276 .size = nr_node_ids,
3277 .align = 1,
3278 .min_chunk = 1,
3279 .max_threads = num_node_state(N_MEMORY),
3280 .numa_aware = true,
3281 };
3282
3283 padata_do_multithreaded(&job);
3284}
3285
3286static void __init hugetlb_hstate_alloc_pages_onenode(struct hstate *h, int nid)
3287{
3288 unsigned long i;
3289 char buf[32];
3290 LIST_HEAD(folio_list);
3291
3292 for (i = 0; i < h->max_huge_pages_node[nid]; ++i) {
3293 if (hstate_is_gigantic(h)) {
3294 if (!alloc_bootmem_huge_page(h, nid))
3295 break;
3296 } else {
3297 struct folio *folio;
3298 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
3299
3300 folio = only_alloc_fresh_hugetlb_folio(h, gfp_mask, nid,
3301 &node_states[N_MEMORY], NULL);
3302 if (!folio)
3303 break;
3304 list_add(&folio->lru, &folio_list);
3305 }
3306 cond_resched();
3307 }
3308
3309 if (!list_empty(&folio_list))
3310 prep_and_add_allocated_folios(h, &folio_list);
3311
3312 if (i == h->max_huge_pages_node[nid])
3313 return;
3314
3315 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3316 pr_warn("HugeTLB: allocating %u of page size %s failed node%d. Only allocated %lu hugepages.\n",
3317 h->max_huge_pages_node[nid], buf, nid, i);
3318 h->max_huge_pages -= (h->max_huge_pages_node[nid] - i);
3319 h->max_huge_pages_node[nid] = i;
3320}
3321
3322static bool __init hugetlb_hstate_alloc_pages_specific_nodes(struct hstate *h)
3323{
3324 int i;
3325 bool node_specific_alloc = false;
3326
3327 for_each_online_node(i) {
3328 if (h->max_huge_pages_node[i] > 0) {
3329 hugetlb_hstate_alloc_pages_onenode(h, i);
3330 node_specific_alloc = true;
3331 }
3332 }
3333
3334 return node_specific_alloc;
3335}
3336
3337static void __init hugetlb_hstate_alloc_pages_errcheck(unsigned long allocated, struct hstate *h)
3338{
3339 if (allocated < h->max_huge_pages) {
3340 char buf[32];
3341
3342 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3343 pr_warn("HugeTLB: allocating %lu of page size %s failed. Only allocated %lu hugepages.\n",
3344 h->max_huge_pages, buf, allocated);
3345 h->max_huge_pages = allocated;
3346 }
3347}
3348
3349static void __init hugetlb_pages_alloc_boot_node(unsigned long start, unsigned long end, void *arg)
3350{
3351 struct hstate *h = (struct hstate *)arg;
3352 int i, num = end - start;
3353 nodemask_t node_alloc_noretry;
3354 LIST_HEAD(folio_list);
3355 int next_node = first_online_node;
3356
3357 /* Bit mask controlling how hard we retry per-node allocations.*/
3358 nodes_clear(node_alloc_noretry);
3359
3360 for (i = 0; i < num; ++i) {
3361 struct folio *folio = alloc_pool_huge_folio(h, &node_states[N_MEMORY],
3362 &node_alloc_noretry, &next_node);
3363 if (!folio)
3364 break;
3365
3366 list_move(&folio->lru, &folio_list);
3367 cond_resched();
3368 }
3369
3370 prep_and_add_allocated_folios(h, &folio_list);
3371}
3372
3373static unsigned long __init hugetlb_gigantic_pages_alloc_boot(struct hstate *h)
3374{
3375 unsigned long i;
3376
3377 for (i = 0; i < h->max_huge_pages; ++i) {
3378 if (!alloc_bootmem_huge_page(h, NUMA_NO_NODE))
3379 break;
3380 cond_resched();
3381 }
3382
3383 return i;
3384}
3385
3386static unsigned long __init hugetlb_pages_alloc_boot(struct hstate *h)
3387{
3388 struct padata_mt_job job = {
3389 .fn_arg = h,
3390 .align = 1,
3391 .numa_aware = true
3392 };
3393
3394 job.thread_fn = hugetlb_pages_alloc_boot_node;
3395 job.start = 0;
3396 job.size = h->max_huge_pages;
3397
3398 /*
3399 * job.max_threads is twice the num_node_state(N_MEMORY),
3400 *
3401 * Tests below indicate that a multiplier of 2 significantly improves
3402 * performance, and although larger values also provide improvements,
3403 * the gains are marginal.
3404 *
3405 * Therefore, choosing 2 as the multiplier strikes a good balance between
3406 * enhancing parallel processing capabilities and maintaining efficient
3407 * resource management.
3408 *
3409 * +------------+-------+-------+-------+-------+-------+
3410 * | multiplier | 1 | 2 | 3 | 4 | 5 |
3411 * +------------+-------+-------+-------+-------+-------+
3412 * | 256G 2node | 358ms | 215ms | 157ms | 134ms | 126ms |
3413 * | 2T 4node | 979ms | 679ms | 543ms | 489ms | 481ms |
3414 * | 50G 2node | 71ms | 44ms | 37ms | 30ms | 31ms |
3415 * +------------+-------+-------+-------+-------+-------+
3416 */
3417 job.max_threads = num_node_state(N_MEMORY) * 2;
3418 job.min_chunk = h->max_huge_pages / num_node_state(N_MEMORY) / 2;
3419 padata_do_multithreaded(&job);
3420
3421 return h->nr_huge_pages;
3422}
3423
3424/*
3425 * NOTE: this routine is called in different contexts for gigantic and
3426 * non-gigantic pages.
3427 * - For gigantic pages, this is called early in the boot process and
3428 * pages are allocated from memblock allocated or something similar.
3429 * Gigantic pages are actually added to pools later with the routine
3430 * gather_bootmem_prealloc.
3431 * - For non-gigantic pages, this is called later in the boot process after
3432 * all of mm is up and functional. Pages are allocated from buddy and
3433 * then added to hugetlb pools.
3434 */
3435static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
3436{
3437 unsigned long allocated;
3438 static bool initialized __initdata;
3439
3440 /* skip gigantic hugepages allocation if hugetlb_cma enabled */
3441 if (hstate_is_gigantic(h) && hugetlb_cma_size) {
3442 pr_warn_once("HugeTLB: hugetlb_cma is enabled, skip boot time allocation\n");
3443 return;
3444 }
3445
3446 /* hugetlb_hstate_alloc_pages will be called many times, initialize huge_boot_pages once */
3447 if (!initialized) {
3448 int i = 0;
3449
3450 for (i = 0; i < MAX_NUMNODES; i++)
3451 INIT_LIST_HEAD(&huge_boot_pages[i]);
3452 initialized = true;
3453 }
3454
3455 /* do node specific alloc */
3456 if (hugetlb_hstate_alloc_pages_specific_nodes(h))
3457 return;
3458
3459 /* below will do all node balanced alloc */
3460 if (hstate_is_gigantic(h))
3461 allocated = hugetlb_gigantic_pages_alloc_boot(h);
3462 else
3463 allocated = hugetlb_pages_alloc_boot(h);
3464
3465 hugetlb_hstate_alloc_pages_errcheck(allocated, h);
3466}
3467
3468static void __init hugetlb_init_hstates(void)
3469{
3470 struct hstate *h, *h2;
3471
3472 for_each_hstate(h) {
3473 /* oversize hugepages were init'ed in early boot */
3474 if (!hstate_is_gigantic(h))
3475 hugetlb_hstate_alloc_pages(h);
3476
3477 /*
3478 * Set demote order for each hstate. Note that
3479 * h->demote_order is initially 0.
3480 * - We can not demote gigantic pages if runtime freeing
3481 * is not supported, so skip this.
3482 * - If CMA allocation is possible, we can not demote
3483 * HUGETLB_PAGE_ORDER or smaller size pages.
3484 */
3485 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
3486 continue;
3487 if (hugetlb_cma_size && h->order <= HUGETLB_PAGE_ORDER)
3488 continue;
3489 for_each_hstate(h2) {
3490 if (h2 == h)
3491 continue;
3492 if (h2->order < h->order &&
3493 h2->order > h->demote_order)
3494 h->demote_order = h2->order;
3495 }
3496 }
3497}
3498
3499static void __init report_hugepages(void)
3500{
3501 struct hstate *h;
3502
3503 for_each_hstate(h) {
3504 char buf[32];
3505
3506 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3507 pr_info("HugeTLB: registered %s page size, pre-allocated %ld pages\n",
3508 buf, h->free_huge_pages);
3509 pr_info("HugeTLB: %d KiB vmemmap can be freed for a %s page\n",
3510 hugetlb_vmemmap_optimizable_size(h) / SZ_1K, buf);
3511 }
3512}
3513
3514#ifdef CONFIG_HIGHMEM
3515static void try_to_free_low(struct hstate *h, unsigned long count,
3516 nodemask_t *nodes_allowed)
3517{
3518 int i;
3519 LIST_HEAD(page_list);
3520
3521 lockdep_assert_held(&hugetlb_lock);
3522 if (hstate_is_gigantic(h))
3523 return;
3524
3525 /*
3526 * Collect pages to be freed on a list, and free after dropping lock
3527 */
3528 for_each_node_mask(i, *nodes_allowed) {
3529 struct folio *folio, *next;
3530 struct list_head *freel = &h->hugepage_freelists[i];
3531 list_for_each_entry_safe(folio, next, freel, lru) {
3532 if (count >= h->nr_huge_pages)
3533 goto out;
3534 if (folio_test_highmem(folio))
3535 continue;
3536 remove_hugetlb_folio(h, folio, false);
3537 list_add(&folio->lru, &page_list);
3538 }
3539 }
3540
3541out:
3542 spin_unlock_irq(&hugetlb_lock);
3543 update_and_free_pages_bulk(h, &page_list);
3544 spin_lock_irq(&hugetlb_lock);
3545}
3546#else
3547static inline void try_to_free_low(struct hstate *h, unsigned long count,
3548 nodemask_t *nodes_allowed)
3549{
3550}
3551#endif
3552
3553/*
3554 * Increment or decrement surplus_huge_pages. Keep node-specific counters
3555 * balanced by operating on them in a round-robin fashion.
3556 * Returns 1 if an adjustment was made.
3557 */
3558static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
3559 int delta)
3560{
3561 int nr_nodes, node;
3562
3563 lockdep_assert_held(&hugetlb_lock);
3564 VM_BUG_ON(delta != -1 && delta != 1);
3565
3566 if (delta < 0) {
3567 for_each_node_mask_to_alloc(&h->next_nid_to_alloc, nr_nodes, node, nodes_allowed) {
3568 if (h->surplus_huge_pages_node[node])
3569 goto found;
3570 }
3571 } else {
3572 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
3573 if (h->surplus_huge_pages_node[node] <
3574 h->nr_huge_pages_node[node])
3575 goto found;
3576 }
3577 }
3578 return 0;
3579
3580found:
3581 h->surplus_huge_pages += delta;
3582 h->surplus_huge_pages_node[node] += delta;
3583 return 1;
3584}
3585
3586#define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
3587static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid,
3588 nodemask_t *nodes_allowed)
3589{
3590 unsigned long min_count;
3591 unsigned long allocated;
3592 struct folio *folio;
3593 LIST_HEAD(page_list);
3594 NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL);
3595
3596 /*
3597 * Bit mask controlling how hard we retry per-node allocations.
3598 * If we can not allocate the bit mask, do not attempt to allocate
3599 * the requested huge pages.
3600 */
3601 if (node_alloc_noretry)
3602 nodes_clear(*node_alloc_noretry);
3603 else
3604 return -ENOMEM;
3605
3606 /*
3607 * resize_lock mutex prevents concurrent adjustments to number of
3608 * pages in hstate via the proc/sysfs interfaces.
3609 */
3610 mutex_lock(&h->resize_lock);
3611 flush_free_hpage_work(h);
3612 spin_lock_irq(&hugetlb_lock);
3613
3614 /*
3615 * Check for a node specific request.
3616 * Changing node specific huge page count may require a corresponding
3617 * change to the global count. In any case, the passed node mask
3618 * (nodes_allowed) will restrict alloc/free to the specified node.
3619 */
3620 if (nid != NUMA_NO_NODE) {
3621 unsigned long old_count = count;
3622
3623 count += persistent_huge_pages(h) -
3624 (h->nr_huge_pages_node[nid] -
3625 h->surplus_huge_pages_node[nid]);
3626 /*
3627 * User may have specified a large count value which caused the
3628 * above calculation to overflow. In this case, they wanted
3629 * to allocate as many huge pages as possible. Set count to
3630 * largest possible value to align with their intention.
3631 */
3632 if (count < old_count)
3633 count = ULONG_MAX;
3634 }
3635
3636 /*
3637 * Gigantic pages runtime allocation depend on the capability for large
3638 * page range allocation.
3639 * If the system does not provide this feature, return an error when
3640 * the user tries to allocate gigantic pages but let the user free the
3641 * boottime allocated gigantic pages.
3642 */
3643 if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) {
3644 if (count > persistent_huge_pages(h)) {
3645 spin_unlock_irq(&hugetlb_lock);
3646 mutex_unlock(&h->resize_lock);
3647 NODEMASK_FREE(node_alloc_noretry);
3648 return -EINVAL;
3649 }
3650 /* Fall through to decrease pool */
3651 }
3652
3653 /*
3654 * Increase the pool size
3655 * First take pages out of surplus state. Then make up the
3656 * remaining difference by allocating fresh huge pages.
3657 *
3658 * We might race with alloc_surplus_hugetlb_folio() here and be unable
3659 * to convert a surplus huge page to a normal huge page. That is
3660 * not critical, though, it just means the overall size of the
3661 * pool might be one hugepage larger than it needs to be, but
3662 * within all the constraints specified by the sysctls.
3663 */
3664 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
3665 if (!adjust_pool_surplus(h, nodes_allowed, -1))
3666 break;
3667 }
3668
3669 allocated = 0;
3670 while (count > (persistent_huge_pages(h) + allocated)) {
3671 /*
3672 * If this allocation races such that we no longer need the
3673 * page, free_huge_folio will handle it by freeing the page
3674 * and reducing the surplus.
3675 */
3676 spin_unlock_irq(&hugetlb_lock);
3677
3678 /* yield cpu to avoid soft lockup */
3679 cond_resched();
3680
3681 folio = alloc_pool_huge_folio(h, nodes_allowed,
3682 node_alloc_noretry,
3683 &h->next_nid_to_alloc);
3684 if (!folio) {
3685 prep_and_add_allocated_folios(h, &page_list);
3686 spin_lock_irq(&hugetlb_lock);
3687 goto out;
3688 }
3689
3690 list_add(&folio->lru, &page_list);
3691 allocated++;
3692
3693 /* Bail for signals. Probably ctrl-c from user */
3694 if (signal_pending(current)) {
3695 prep_and_add_allocated_folios(h, &page_list);
3696 spin_lock_irq(&hugetlb_lock);
3697 goto out;
3698 }
3699
3700 spin_lock_irq(&hugetlb_lock);
3701 }
3702
3703 /* Add allocated pages to the pool */
3704 if (!list_empty(&page_list)) {
3705 spin_unlock_irq(&hugetlb_lock);
3706 prep_and_add_allocated_folios(h, &page_list);
3707 spin_lock_irq(&hugetlb_lock);
3708 }
3709
3710 /*
3711 * Decrease the pool size
3712 * First return free pages to the buddy allocator (being careful
3713 * to keep enough around to satisfy reservations). Then place
3714 * pages into surplus state as needed so the pool will shrink
3715 * to the desired size as pages become free.
3716 *
3717 * By placing pages into the surplus state independent of the
3718 * overcommit value, we are allowing the surplus pool size to
3719 * exceed overcommit. There are few sane options here. Since
3720 * alloc_surplus_hugetlb_folio() is checking the global counter,
3721 * though, we'll note that we're not allowed to exceed surplus
3722 * and won't grow the pool anywhere else. Not until one of the
3723 * sysctls are changed, or the surplus pages go out of use.
3724 */
3725 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
3726 min_count = max(count, min_count);
3727 try_to_free_low(h, min_count, nodes_allowed);
3728
3729 /*
3730 * Collect pages to be removed on list without dropping lock
3731 */
3732 while (min_count < persistent_huge_pages(h)) {
3733 folio = remove_pool_hugetlb_folio(h, nodes_allowed, 0);
3734 if (!folio)
3735 break;
3736
3737 list_add(&folio->lru, &page_list);
3738 }
3739 /* free the pages after dropping lock */
3740 spin_unlock_irq(&hugetlb_lock);
3741 update_and_free_pages_bulk(h, &page_list);
3742 flush_free_hpage_work(h);
3743 spin_lock_irq(&hugetlb_lock);
3744
3745 while (count < persistent_huge_pages(h)) {
3746 if (!adjust_pool_surplus(h, nodes_allowed, 1))
3747 break;
3748 }
3749out:
3750 h->max_huge_pages = persistent_huge_pages(h);
3751 spin_unlock_irq(&hugetlb_lock);
3752 mutex_unlock(&h->resize_lock);
3753
3754 NODEMASK_FREE(node_alloc_noretry);
3755
3756 return 0;
3757}
3758
3759static long demote_free_hugetlb_folios(struct hstate *src, struct hstate *dst,
3760 struct list_head *src_list)
3761{
3762 long rc;
3763 struct folio *folio, *next;
3764 LIST_HEAD(dst_list);
3765 LIST_HEAD(ret_list);
3766
3767 rc = hugetlb_vmemmap_restore_folios(src, src_list, &ret_list);
3768 list_splice_init(&ret_list, src_list);
3769
3770 /*
3771 * Taking target hstate mutex synchronizes with set_max_huge_pages.
3772 * Without the mutex, pages added to target hstate could be marked
3773 * as surplus.
3774 *
3775 * Note that we already hold src->resize_lock. To prevent deadlock,
3776 * use the convention of always taking larger size hstate mutex first.
3777 */
3778 mutex_lock(&dst->resize_lock);
3779
3780 list_for_each_entry_safe(folio, next, src_list, lru) {
3781 int i;
3782
3783 if (folio_test_hugetlb_vmemmap_optimized(folio))
3784 continue;
3785
3786 list_del(&folio->lru);
3787
3788 split_page_owner(&folio->page, huge_page_order(src), huge_page_order(dst));
3789 pgalloc_tag_split(folio, huge_page_order(src), huge_page_order(dst));
3790
3791 for (i = 0; i < pages_per_huge_page(src); i += pages_per_huge_page(dst)) {
3792 struct page *page = folio_page(folio, i);
3793
3794 page->mapping = NULL;
3795 clear_compound_head(page);
3796 prep_compound_page(page, dst->order);
3797
3798 init_new_hugetlb_folio(dst, page_folio(page));
3799 list_add(&page->lru, &dst_list);
3800 }
3801 }
3802
3803 prep_and_add_allocated_folios(dst, &dst_list);
3804
3805 mutex_unlock(&dst->resize_lock);
3806
3807 return rc;
3808}
3809
3810static long demote_pool_huge_page(struct hstate *src, nodemask_t *nodes_allowed,
3811 unsigned long nr_to_demote)
3812 __must_hold(&hugetlb_lock)
3813{
3814 int nr_nodes, node;
3815 struct hstate *dst;
3816 long rc = 0;
3817 long nr_demoted = 0;
3818
3819 lockdep_assert_held(&hugetlb_lock);
3820
3821 /* We should never get here if no demote order */
3822 if (!src->demote_order) {
3823 pr_warn("HugeTLB: NULL demote order passed to demote_pool_huge_page.\n");
3824 return -EINVAL; /* internal error */
3825 }
3826 dst = size_to_hstate(PAGE_SIZE << src->demote_order);
3827
3828 for_each_node_mask_to_free(src, nr_nodes, node, nodes_allowed) {
3829 LIST_HEAD(list);
3830 struct folio *folio, *next;
3831
3832 list_for_each_entry_safe(folio, next, &src->hugepage_freelists[node], lru) {
3833 if (folio_test_hwpoison(folio))
3834 continue;
3835
3836 remove_hugetlb_folio(src, folio, false);
3837 list_add(&folio->lru, &list);
3838
3839 if (++nr_demoted == nr_to_demote)
3840 break;
3841 }
3842
3843 spin_unlock_irq(&hugetlb_lock);
3844
3845 rc = demote_free_hugetlb_folios(src, dst, &list);
3846
3847 spin_lock_irq(&hugetlb_lock);
3848
3849 list_for_each_entry_safe(folio, next, &list, lru) {
3850 list_del(&folio->lru);
3851 add_hugetlb_folio(src, folio, false);
3852
3853 nr_demoted--;
3854 }
3855
3856 if (rc < 0 || nr_demoted == nr_to_demote)
3857 break;
3858 }
3859
3860 /*
3861 * Not absolutely necessary, but for consistency update max_huge_pages
3862 * based on pool changes for the demoted page.
3863 */
3864 src->max_huge_pages -= nr_demoted;
3865 dst->max_huge_pages += nr_demoted << (huge_page_order(src) - huge_page_order(dst));
3866
3867 if (rc < 0)
3868 return rc;
3869
3870 if (nr_demoted)
3871 return nr_demoted;
3872 /*
3873 * Only way to get here is if all pages on free lists are poisoned.
3874 * Return -EBUSY so that caller will not retry.
3875 */
3876 return -EBUSY;
3877}
3878
3879#define HSTATE_ATTR_RO(_name) \
3880 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
3881
3882#define HSTATE_ATTR_WO(_name) \
3883 static struct kobj_attribute _name##_attr = __ATTR_WO(_name)
3884
3885#define HSTATE_ATTR(_name) \
3886 static struct kobj_attribute _name##_attr = __ATTR_RW(_name)
3887
3888static struct kobject *hugepages_kobj;
3889static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
3890
3891static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
3892
3893static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
3894{
3895 int i;
3896
3897 for (i = 0; i < HUGE_MAX_HSTATE; i++)
3898 if (hstate_kobjs[i] == kobj) {
3899 if (nidp)
3900 *nidp = NUMA_NO_NODE;
3901 return &hstates[i];
3902 }
3903
3904 return kobj_to_node_hstate(kobj, nidp);
3905}
3906
3907static ssize_t nr_hugepages_show_common(struct kobject *kobj,
3908 struct kobj_attribute *attr, char *buf)
3909{
3910 struct hstate *h;
3911 unsigned long nr_huge_pages;
3912 int nid;
3913
3914 h = kobj_to_hstate(kobj, &nid);
3915 if (nid == NUMA_NO_NODE)
3916 nr_huge_pages = h->nr_huge_pages;
3917 else
3918 nr_huge_pages = h->nr_huge_pages_node[nid];
3919
3920 return sysfs_emit(buf, "%lu\n", nr_huge_pages);
3921}
3922
3923static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
3924 struct hstate *h, int nid,
3925 unsigned long count, size_t len)
3926{
3927 int err;
3928 nodemask_t nodes_allowed, *n_mask;
3929
3930 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
3931 return -EINVAL;
3932
3933 if (nid == NUMA_NO_NODE) {
3934 /*
3935 * global hstate attribute
3936 */
3937 if (!(obey_mempolicy &&
3938 init_nodemask_of_mempolicy(&nodes_allowed)))
3939 n_mask = &node_states[N_MEMORY];
3940 else
3941 n_mask = &nodes_allowed;
3942 } else {
3943 /*
3944 * Node specific request. count adjustment happens in
3945 * set_max_huge_pages() after acquiring hugetlb_lock.
3946 */
3947 init_nodemask_of_node(&nodes_allowed, nid);
3948 n_mask = &nodes_allowed;
3949 }
3950
3951 err = set_max_huge_pages(h, count, nid, n_mask);
3952
3953 return err ? err : len;
3954}
3955
3956static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
3957 struct kobject *kobj, const char *buf,
3958 size_t len)
3959{
3960 struct hstate *h;
3961 unsigned long count;
3962 int nid;
3963 int err;
3964
3965 err = kstrtoul(buf, 10, &count);
3966 if (err)
3967 return err;
3968
3969 h = kobj_to_hstate(kobj, &nid);
3970 return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
3971}
3972
3973static ssize_t nr_hugepages_show(struct kobject *kobj,
3974 struct kobj_attribute *attr, char *buf)
3975{
3976 return nr_hugepages_show_common(kobj, attr, buf);
3977}
3978
3979static ssize_t nr_hugepages_store(struct kobject *kobj,
3980 struct kobj_attribute *attr, const char *buf, size_t len)
3981{
3982 return nr_hugepages_store_common(false, kobj, buf, len);
3983}
3984HSTATE_ATTR(nr_hugepages);
3985
3986#ifdef CONFIG_NUMA
3987
3988/*
3989 * hstate attribute for optionally mempolicy-based constraint on persistent
3990 * huge page alloc/free.
3991 */
3992static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
3993 struct kobj_attribute *attr,
3994 char *buf)
3995{
3996 return nr_hugepages_show_common(kobj, attr, buf);
3997}
3998
3999static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
4000 struct kobj_attribute *attr, const char *buf, size_t len)
4001{
4002 return nr_hugepages_store_common(true, kobj, buf, len);
4003}
4004HSTATE_ATTR(nr_hugepages_mempolicy);
4005#endif
4006
4007
4008static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
4009 struct kobj_attribute *attr, char *buf)
4010{
4011 struct hstate *h = kobj_to_hstate(kobj, NULL);
4012 return sysfs_emit(buf, "%lu\n", h->nr_overcommit_huge_pages);
4013}
4014
4015static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
4016 struct kobj_attribute *attr, const char *buf, size_t count)
4017{
4018 int err;
4019 unsigned long input;
4020 struct hstate *h = kobj_to_hstate(kobj, NULL);
4021
4022 if (hstate_is_gigantic(h))
4023 return -EINVAL;
4024
4025 err = kstrtoul(buf, 10, &input);
4026 if (err)
4027 return err;
4028
4029 spin_lock_irq(&hugetlb_lock);
4030 h->nr_overcommit_huge_pages = input;
4031 spin_unlock_irq(&hugetlb_lock);
4032
4033 return count;
4034}
4035HSTATE_ATTR(nr_overcommit_hugepages);
4036
4037static ssize_t free_hugepages_show(struct kobject *kobj,
4038 struct kobj_attribute *attr, char *buf)
4039{
4040 struct hstate *h;
4041 unsigned long free_huge_pages;
4042 int nid;
4043
4044 h = kobj_to_hstate(kobj, &nid);
4045 if (nid == NUMA_NO_NODE)
4046 free_huge_pages = h->free_huge_pages;
4047 else
4048 free_huge_pages = h->free_huge_pages_node[nid];
4049
4050 return sysfs_emit(buf, "%lu\n", free_huge_pages);
4051}
4052HSTATE_ATTR_RO(free_hugepages);
4053
4054static ssize_t resv_hugepages_show(struct kobject *kobj,
4055 struct kobj_attribute *attr, char *buf)
4056{
4057 struct hstate *h = kobj_to_hstate(kobj, NULL);
4058 return sysfs_emit(buf, "%lu\n", h->resv_huge_pages);
4059}
4060HSTATE_ATTR_RO(resv_hugepages);
4061
4062static ssize_t surplus_hugepages_show(struct kobject *kobj,
4063 struct kobj_attribute *attr, char *buf)
4064{
4065 struct hstate *h;
4066 unsigned long surplus_huge_pages;
4067 int nid;
4068
4069 h = kobj_to_hstate(kobj, &nid);
4070 if (nid == NUMA_NO_NODE)
4071 surplus_huge_pages = h->surplus_huge_pages;
4072 else
4073 surplus_huge_pages = h->surplus_huge_pages_node[nid];
4074
4075 return sysfs_emit(buf, "%lu\n", surplus_huge_pages);
4076}
4077HSTATE_ATTR_RO(surplus_hugepages);
4078
4079static ssize_t demote_store(struct kobject *kobj,
4080 struct kobj_attribute *attr, const char *buf, size_t len)
4081{
4082 unsigned long nr_demote;
4083 unsigned long nr_available;
4084 nodemask_t nodes_allowed, *n_mask;
4085 struct hstate *h;
4086 int err;
4087 int nid;
4088
4089 err = kstrtoul(buf, 10, &nr_demote);
4090 if (err)
4091 return err;
4092 h = kobj_to_hstate(kobj, &nid);
4093
4094 if (nid != NUMA_NO_NODE) {
4095 init_nodemask_of_node(&nodes_allowed, nid);
4096 n_mask = &nodes_allowed;
4097 } else {
4098 n_mask = &node_states[N_MEMORY];
4099 }
4100
4101 /* Synchronize with other sysfs operations modifying huge pages */
4102 mutex_lock(&h->resize_lock);
4103 spin_lock_irq(&hugetlb_lock);
4104
4105 while (nr_demote) {
4106 long rc;
4107
4108 /*
4109 * Check for available pages to demote each time thorough the
4110 * loop as demote_pool_huge_page will drop hugetlb_lock.
4111 */
4112 if (nid != NUMA_NO_NODE)
4113 nr_available = h->free_huge_pages_node[nid];
4114 else
4115 nr_available = h->free_huge_pages;
4116 nr_available -= h->resv_huge_pages;
4117 if (!nr_available)
4118 break;
4119
4120 rc = demote_pool_huge_page(h, n_mask, nr_demote);
4121 if (rc < 0) {
4122 err = rc;
4123 break;
4124 }
4125
4126 nr_demote -= rc;
4127 }
4128
4129 spin_unlock_irq(&hugetlb_lock);
4130 mutex_unlock(&h->resize_lock);
4131
4132 if (err)
4133 return err;
4134 return len;
4135}
4136HSTATE_ATTR_WO(demote);
4137
4138static ssize_t demote_size_show(struct kobject *kobj,
4139 struct kobj_attribute *attr, char *buf)
4140{
4141 struct hstate *h = kobj_to_hstate(kobj, NULL);
4142 unsigned long demote_size = (PAGE_SIZE << h->demote_order) / SZ_1K;
4143
4144 return sysfs_emit(buf, "%lukB\n", demote_size);
4145}
4146
4147static ssize_t demote_size_store(struct kobject *kobj,
4148 struct kobj_attribute *attr,
4149 const char *buf, size_t count)
4150{
4151 struct hstate *h, *demote_hstate;
4152 unsigned long demote_size;
4153 unsigned int demote_order;
4154
4155 demote_size = (unsigned long)memparse(buf, NULL);
4156
4157 demote_hstate = size_to_hstate(demote_size);
4158 if (!demote_hstate)
4159 return -EINVAL;
4160 demote_order = demote_hstate->order;
4161 if (demote_order < HUGETLB_PAGE_ORDER)
4162 return -EINVAL;
4163
4164 /* demote order must be smaller than hstate order */
4165 h = kobj_to_hstate(kobj, NULL);
4166 if (demote_order >= h->order)
4167 return -EINVAL;
4168
4169 /* resize_lock synchronizes access to demote size and writes */
4170 mutex_lock(&h->resize_lock);
4171 h->demote_order = demote_order;
4172 mutex_unlock(&h->resize_lock);
4173
4174 return count;
4175}
4176HSTATE_ATTR(demote_size);
4177
4178static struct attribute *hstate_attrs[] = {
4179 &nr_hugepages_attr.attr,
4180 &nr_overcommit_hugepages_attr.attr,
4181 &free_hugepages_attr.attr,
4182 &resv_hugepages_attr.attr,
4183 &surplus_hugepages_attr.attr,
4184#ifdef CONFIG_NUMA
4185 &nr_hugepages_mempolicy_attr.attr,
4186#endif
4187 NULL,
4188};
4189
4190static const struct attribute_group hstate_attr_group = {
4191 .attrs = hstate_attrs,
4192};
4193
4194static struct attribute *hstate_demote_attrs[] = {
4195 &demote_size_attr.attr,
4196 &demote_attr.attr,
4197 NULL,
4198};
4199
4200static const struct attribute_group hstate_demote_attr_group = {
4201 .attrs = hstate_demote_attrs,
4202};
4203
4204static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
4205 struct kobject **hstate_kobjs,
4206 const struct attribute_group *hstate_attr_group)
4207{
4208 int retval;
4209 int hi = hstate_index(h);
4210
4211 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
4212 if (!hstate_kobjs[hi])
4213 return -ENOMEM;
4214
4215 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
4216 if (retval) {
4217 kobject_put(hstate_kobjs[hi]);
4218 hstate_kobjs[hi] = NULL;
4219 return retval;
4220 }
4221
4222 if (h->demote_order) {
4223 retval = sysfs_create_group(hstate_kobjs[hi],
4224 &hstate_demote_attr_group);
4225 if (retval) {
4226 pr_warn("HugeTLB unable to create demote interfaces for %s\n", h->name);
4227 sysfs_remove_group(hstate_kobjs[hi], hstate_attr_group);
4228 kobject_put(hstate_kobjs[hi]);
4229 hstate_kobjs[hi] = NULL;
4230 return retval;
4231 }
4232 }
4233
4234 return 0;
4235}
4236
4237#ifdef CONFIG_NUMA
4238static bool hugetlb_sysfs_initialized __ro_after_init;
4239
4240/*
4241 * node_hstate/s - associate per node hstate attributes, via their kobjects,
4242 * with node devices in node_devices[] using a parallel array. The array
4243 * index of a node device or _hstate == node id.
4244 * This is here to avoid any static dependency of the node device driver, in
4245 * the base kernel, on the hugetlb module.
4246 */
4247struct node_hstate {
4248 struct kobject *hugepages_kobj;
4249 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
4250};
4251static struct node_hstate node_hstates[MAX_NUMNODES];
4252
4253/*
4254 * A subset of global hstate attributes for node devices
4255 */
4256static struct attribute *per_node_hstate_attrs[] = {
4257 &nr_hugepages_attr.attr,
4258 &free_hugepages_attr.attr,
4259 &surplus_hugepages_attr.attr,
4260 NULL,
4261};
4262
4263static const struct attribute_group per_node_hstate_attr_group = {
4264 .attrs = per_node_hstate_attrs,
4265};
4266
4267/*
4268 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
4269 * Returns node id via non-NULL nidp.
4270 */
4271static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
4272{
4273 int nid;
4274
4275 for (nid = 0; nid < nr_node_ids; nid++) {
4276 struct node_hstate *nhs = &node_hstates[nid];
4277 int i;
4278 for (i = 0; i < HUGE_MAX_HSTATE; i++)
4279 if (nhs->hstate_kobjs[i] == kobj) {
4280 if (nidp)
4281 *nidp = nid;
4282 return &hstates[i];
4283 }
4284 }
4285
4286 BUG();
4287 return NULL;
4288}
4289
4290/*
4291 * Unregister hstate attributes from a single node device.
4292 * No-op if no hstate attributes attached.
4293 */
4294void hugetlb_unregister_node(struct node *node)
4295{
4296 struct hstate *h;
4297 struct node_hstate *nhs = &node_hstates[node->dev.id];
4298
4299 if (!nhs->hugepages_kobj)
4300 return; /* no hstate attributes */
4301
4302 for_each_hstate(h) {
4303 int idx = hstate_index(h);
4304 struct kobject *hstate_kobj = nhs->hstate_kobjs[idx];
4305
4306 if (!hstate_kobj)
4307 continue;
4308 if (h->demote_order)
4309 sysfs_remove_group(hstate_kobj, &hstate_demote_attr_group);
4310 sysfs_remove_group(hstate_kobj, &per_node_hstate_attr_group);
4311 kobject_put(hstate_kobj);
4312 nhs->hstate_kobjs[idx] = NULL;
4313 }
4314
4315 kobject_put(nhs->hugepages_kobj);
4316 nhs->hugepages_kobj = NULL;
4317}
4318
4319
4320/*
4321 * Register hstate attributes for a single node device.
4322 * No-op if attributes already registered.
4323 */
4324void hugetlb_register_node(struct node *node)
4325{
4326 struct hstate *h;
4327 struct node_hstate *nhs = &node_hstates[node->dev.id];
4328 int err;
4329
4330 if (!hugetlb_sysfs_initialized)
4331 return;
4332
4333 if (nhs->hugepages_kobj)
4334 return; /* already allocated */
4335
4336 nhs->hugepages_kobj = kobject_create_and_add("hugepages",
4337 &node->dev.kobj);
4338 if (!nhs->hugepages_kobj)
4339 return;
4340
4341 for_each_hstate(h) {
4342 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
4343 nhs->hstate_kobjs,
4344 &per_node_hstate_attr_group);
4345 if (err) {
4346 pr_err("HugeTLB: Unable to add hstate %s for node %d\n",
4347 h->name, node->dev.id);
4348 hugetlb_unregister_node(node);
4349 break;
4350 }
4351 }
4352}
4353
4354/*
4355 * hugetlb init time: register hstate attributes for all registered node
4356 * devices of nodes that have memory. All on-line nodes should have
4357 * registered their associated device by this time.
4358 */
4359static void __init hugetlb_register_all_nodes(void)
4360{
4361 int nid;
4362
4363 for_each_online_node(nid)
4364 hugetlb_register_node(node_devices[nid]);
4365}
4366#else /* !CONFIG_NUMA */
4367
4368static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
4369{
4370 BUG();
4371 if (nidp)
4372 *nidp = -1;
4373 return NULL;
4374}
4375
4376static void hugetlb_register_all_nodes(void) { }
4377
4378#endif
4379
4380#ifdef CONFIG_CMA
4381static void __init hugetlb_cma_check(void);
4382#else
4383static inline __init void hugetlb_cma_check(void)
4384{
4385}
4386#endif
4387
4388static void __init hugetlb_sysfs_init(void)
4389{
4390 struct hstate *h;
4391 int err;
4392
4393 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
4394 if (!hugepages_kobj)
4395 return;
4396
4397 for_each_hstate(h) {
4398 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
4399 hstate_kobjs, &hstate_attr_group);
4400 if (err)
4401 pr_err("HugeTLB: Unable to add hstate %s", h->name);
4402 }
4403
4404#ifdef CONFIG_NUMA
4405 hugetlb_sysfs_initialized = true;
4406#endif
4407 hugetlb_register_all_nodes();
4408}
4409
4410#ifdef CONFIG_SYSCTL
4411static void hugetlb_sysctl_init(void);
4412#else
4413static inline void hugetlb_sysctl_init(void) { }
4414#endif
4415
4416static int __init hugetlb_init(void)
4417{
4418 int i;
4419
4420 BUILD_BUG_ON(sizeof_field(struct page, private) * BITS_PER_BYTE <
4421 __NR_HPAGEFLAGS);
4422
4423 if (!hugepages_supported()) {
4424 if (hugetlb_max_hstate || default_hstate_max_huge_pages)
4425 pr_warn("HugeTLB: huge pages not supported, ignoring associated command-line parameters\n");
4426 return 0;
4427 }
4428
4429 /*
4430 * Make sure HPAGE_SIZE (HUGETLB_PAGE_ORDER) hstate exists. Some
4431 * architectures depend on setup being done here.
4432 */
4433 hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
4434 if (!parsed_default_hugepagesz) {
4435 /*
4436 * If we did not parse a default huge page size, set
4437 * default_hstate_idx to HPAGE_SIZE hstate. And, if the
4438 * number of huge pages for this default size was implicitly
4439 * specified, set that here as well.
4440 * Note that the implicit setting will overwrite an explicit
4441 * setting. A warning will be printed in this case.
4442 */
4443 default_hstate_idx = hstate_index(size_to_hstate(HPAGE_SIZE));
4444 if (default_hstate_max_huge_pages) {
4445 if (default_hstate.max_huge_pages) {
4446 char buf[32];
4447
4448 string_get_size(huge_page_size(&default_hstate),
4449 1, STRING_UNITS_2, buf, 32);
4450 pr_warn("HugeTLB: Ignoring hugepages=%lu associated with %s page size\n",
4451 default_hstate.max_huge_pages, buf);
4452 pr_warn("HugeTLB: Using hugepages=%lu for number of default huge pages\n",
4453 default_hstate_max_huge_pages);
4454 }
4455 default_hstate.max_huge_pages =
4456 default_hstate_max_huge_pages;
4457
4458 for_each_online_node(i)
4459 default_hstate.max_huge_pages_node[i] =
4460 default_hugepages_in_node[i];
4461 }
4462 }
4463
4464 hugetlb_cma_check();
4465 hugetlb_init_hstates();
4466 gather_bootmem_prealloc();
4467 report_hugepages();
4468
4469 hugetlb_sysfs_init();
4470 hugetlb_cgroup_file_init();
4471 hugetlb_sysctl_init();
4472
4473#ifdef CONFIG_SMP
4474 num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
4475#else
4476 num_fault_mutexes = 1;
4477#endif
4478 hugetlb_fault_mutex_table =
4479 kmalloc_array(num_fault_mutexes, sizeof(struct mutex),
4480 GFP_KERNEL);
4481 BUG_ON(!hugetlb_fault_mutex_table);
4482
4483 for (i = 0; i < num_fault_mutexes; i++)
4484 mutex_init(&hugetlb_fault_mutex_table[i]);
4485 return 0;
4486}
4487subsys_initcall(hugetlb_init);
4488
4489/* Overwritten by architectures with more huge page sizes */
4490bool __init __attribute((weak)) arch_hugetlb_valid_size(unsigned long size)
4491{
4492 return size == HPAGE_SIZE;
4493}
4494
4495void __init hugetlb_add_hstate(unsigned int order)
4496{
4497 struct hstate *h;
4498 unsigned long i;
4499
4500 if (size_to_hstate(PAGE_SIZE << order)) {
4501 return;
4502 }
4503 BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
4504 BUG_ON(order < order_base_2(__NR_USED_SUBPAGE));
4505 h = &hstates[hugetlb_max_hstate++];
4506 __mutex_init(&h->resize_lock, "resize mutex", &h->resize_key);
4507 h->order = order;
4508 h->mask = ~(huge_page_size(h) - 1);
4509 for (i = 0; i < MAX_NUMNODES; ++i)
4510 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
4511 INIT_LIST_HEAD(&h->hugepage_activelist);
4512 h->next_nid_to_alloc = first_memory_node;
4513 h->next_nid_to_free = first_memory_node;
4514 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
4515 huge_page_size(h)/SZ_1K);
4516
4517 parsed_hstate = h;
4518}
4519
4520bool __init __weak hugetlb_node_alloc_supported(void)
4521{
4522 return true;
4523}
4524
4525static void __init hugepages_clear_pages_in_node(void)
4526{
4527 if (!hugetlb_max_hstate) {
4528 default_hstate_max_huge_pages = 0;
4529 memset(default_hugepages_in_node, 0,
4530 sizeof(default_hugepages_in_node));
4531 } else {
4532 parsed_hstate->max_huge_pages = 0;
4533 memset(parsed_hstate->max_huge_pages_node, 0,
4534 sizeof(parsed_hstate->max_huge_pages_node));
4535 }
4536}
4537
4538/*
4539 * hugepages command line processing
4540 * hugepages normally follows a valid hugepagsz or default_hugepagsz
4541 * specification. If not, ignore the hugepages value. hugepages can also
4542 * be the first huge page command line option in which case it implicitly
4543 * specifies the number of huge pages for the default size.
4544 */
4545static int __init hugepages_setup(char *s)
4546{
4547 unsigned long *mhp;
4548 static unsigned long *last_mhp;
4549 int node = NUMA_NO_NODE;
4550 int count;
4551 unsigned long tmp;
4552 char *p = s;
4553
4554 if (!parsed_valid_hugepagesz) {
4555 pr_warn("HugeTLB: hugepages=%s does not follow a valid hugepagesz, ignoring\n", s);
4556 parsed_valid_hugepagesz = true;
4557 return 1;
4558 }
4559
4560 /*
4561 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter
4562 * yet, so this hugepages= parameter goes to the "default hstate".
4563 * Otherwise, it goes with the previously parsed hugepagesz or
4564 * default_hugepagesz.
4565 */
4566 else if (!hugetlb_max_hstate)
4567 mhp = &default_hstate_max_huge_pages;
4568 else
4569 mhp = &parsed_hstate->max_huge_pages;
4570
4571 if (mhp == last_mhp) {
4572 pr_warn("HugeTLB: hugepages= specified twice without interleaving hugepagesz=, ignoring hugepages=%s\n", s);
4573 return 1;
4574 }
4575
4576 while (*p) {
4577 count = 0;
4578 if (sscanf(p, "%lu%n", &tmp, &count) != 1)
4579 goto invalid;
4580 /* Parameter is node format */
4581 if (p[count] == ':') {
4582 if (!hugetlb_node_alloc_supported()) {
4583 pr_warn("HugeTLB: architecture can't support node specific alloc, ignoring!\n");
4584 return 1;
4585 }
4586 if (tmp >= MAX_NUMNODES || !node_online(tmp))
4587 goto invalid;
4588 node = array_index_nospec(tmp, MAX_NUMNODES);
4589 p += count + 1;
4590 /* Parse hugepages */
4591 if (sscanf(p, "%lu%n", &tmp, &count) != 1)
4592 goto invalid;
4593 if (!hugetlb_max_hstate)
4594 default_hugepages_in_node[node] = tmp;
4595 else
4596 parsed_hstate->max_huge_pages_node[node] = tmp;
4597 *mhp += tmp;
4598 /* Go to parse next node*/
4599 if (p[count] == ',')
4600 p += count + 1;
4601 else
4602 break;
4603 } else {
4604 if (p != s)
4605 goto invalid;
4606 *mhp = tmp;
4607 break;
4608 }
4609 }
4610
4611 /*
4612 * Global state is always initialized later in hugetlb_init.
4613 * But we need to allocate gigantic hstates here early to still
4614 * use the bootmem allocator.
4615 */
4616 if (hugetlb_max_hstate && hstate_is_gigantic(parsed_hstate))
4617 hugetlb_hstate_alloc_pages(parsed_hstate);
4618
4619 last_mhp = mhp;
4620
4621 return 1;
4622
4623invalid:
4624 pr_warn("HugeTLB: Invalid hugepages parameter %s\n", p);
4625 hugepages_clear_pages_in_node();
4626 return 1;
4627}
4628__setup("hugepages=", hugepages_setup);
4629
4630/*
4631 * hugepagesz command line processing
4632 * A specific huge page size can only be specified once with hugepagesz.
4633 * hugepagesz is followed by hugepages on the command line. The global
4634 * variable 'parsed_valid_hugepagesz' is used to determine if prior
4635 * hugepagesz argument was valid.
4636 */
4637static int __init hugepagesz_setup(char *s)
4638{
4639 unsigned long size;
4640 struct hstate *h;
4641
4642 parsed_valid_hugepagesz = false;
4643 size = (unsigned long)memparse(s, NULL);
4644
4645 if (!arch_hugetlb_valid_size(size)) {
4646 pr_err("HugeTLB: unsupported hugepagesz=%s\n", s);
4647 return 1;
4648 }
4649
4650 h = size_to_hstate(size);
4651 if (h) {
4652 /*
4653 * hstate for this size already exists. This is normally
4654 * an error, but is allowed if the existing hstate is the
4655 * default hstate. More specifically, it is only allowed if
4656 * the number of huge pages for the default hstate was not
4657 * previously specified.
4658 */
4659 if (!parsed_default_hugepagesz || h != &default_hstate ||
4660 default_hstate.max_huge_pages) {
4661 pr_warn("HugeTLB: hugepagesz=%s specified twice, ignoring\n", s);
4662 return 1;
4663 }
4664
4665 /*
4666 * No need to call hugetlb_add_hstate() as hstate already
4667 * exists. But, do set parsed_hstate so that a following
4668 * hugepages= parameter will be applied to this hstate.
4669 */
4670 parsed_hstate = h;
4671 parsed_valid_hugepagesz = true;
4672 return 1;
4673 }
4674
4675 hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
4676 parsed_valid_hugepagesz = true;
4677 return 1;
4678}
4679__setup("hugepagesz=", hugepagesz_setup);
4680
4681/*
4682 * default_hugepagesz command line input
4683 * Only one instance of default_hugepagesz allowed on command line.
4684 */
4685static int __init default_hugepagesz_setup(char *s)
4686{
4687 unsigned long size;
4688 int i;
4689
4690 parsed_valid_hugepagesz = false;
4691 if (parsed_default_hugepagesz) {
4692 pr_err("HugeTLB: default_hugepagesz previously specified, ignoring %s\n", s);
4693 return 1;
4694 }
4695
4696 size = (unsigned long)memparse(s, NULL);
4697
4698 if (!arch_hugetlb_valid_size(size)) {
4699 pr_err("HugeTLB: unsupported default_hugepagesz=%s\n", s);
4700 return 1;
4701 }
4702
4703 hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
4704 parsed_valid_hugepagesz = true;
4705 parsed_default_hugepagesz = true;
4706 default_hstate_idx = hstate_index(size_to_hstate(size));
4707
4708 /*
4709 * The number of default huge pages (for this size) could have been
4710 * specified as the first hugetlb parameter: hugepages=X. If so,
4711 * then default_hstate_max_huge_pages is set. If the default huge
4712 * page size is gigantic (> MAX_PAGE_ORDER), then the pages must be
4713 * allocated here from bootmem allocator.
4714 */
4715 if (default_hstate_max_huge_pages) {
4716 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
4717 for_each_online_node(i)
4718 default_hstate.max_huge_pages_node[i] =
4719 default_hugepages_in_node[i];
4720 if (hstate_is_gigantic(&default_hstate))
4721 hugetlb_hstate_alloc_pages(&default_hstate);
4722 default_hstate_max_huge_pages = 0;
4723 }
4724
4725 return 1;
4726}
4727__setup("default_hugepagesz=", default_hugepagesz_setup);
4728
4729static unsigned int allowed_mems_nr(struct hstate *h)
4730{
4731 int node;
4732 unsigned int nr = 0;
4733 nodemask_t *mbind_nodemask;
4734 unsigned int *array = h->free_huge_pages_node;
4735 gfp_t gfp_mask = htlb_alloc_mask(h);
4736
4737 mbind_nodemask = policy_mbind_nodemask(gfp_mask);
4738 for_each_node_mask(node, cpuset_current_mems_allowed) {
4739 if (!mbind_nodemask || node_isset(node, *mbind_nodemask))
4740 nr += array[node];
4741 }
4742
4743 return nr;
4744}
4745
4746#ifdef CONFIG_SYSCTL
4747static int proc_hugetlb_doulongvec_minmax(const struct ctl_table *table, int write,
4748 void *buffer, size_t *length,
4749 loff_t *ppos, unsigned long *out)
4750{
4751 struct ctl_table dup_table;
4752
4753 /*
4754 * In order to avoid races with __do_proc_doulongvec_minmax(), we
4755 * can duplicate the @table and alter the duplicate of it.
4756 */
4757 dup_table = *table;
4758 dup_table.data = out;
4759
4760 return proc_doulongvec_minmax(&dup_table, write, buffer, length, ppos);
4761}
4762
4763static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
4764 const struct ctl_table *table, int write,
4765 void *buffer, size_t *length, loff_t *ppos)
4766{
4767 struct hstate *h = &default_hstate;
4768 unsigned long tmp = h->max_huge_pages;
4769 int ret;
4770
4771 if (!hugepages_supported())
4772 return -EOPNOTSUPP;
4773
4774 ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
4775 &tmp);
4776 if (ret)
4777 goto out;
4778
4779 if (write)
4780 ret = __nr_hugepages_store_common(obey_mempolicy, h,
4781 NUMA_NO_NODE, tmp, *length);
4782out:
4783 return ret;
4784}
4785
4786static int hugetlb_sysctl_handler(const struct ctl_table *table, int write,
4787 void *buffer, size_t *length, loff_t *ppos)
4788{
4789
4790 return hugetlb_sysctl_handler_common(false, table, write,
4791 buffer, length, ppos);
4792}
4793
4794#ifdef CONFIG_NUMA
4795static int hugetlb_mempolicy_sysctl_handler(const struct ctl_table *table, int write,
4796 void *buffer, size_t *length, loff_t *ppos)
4797{
4798 return hugetlb_sysctl_handler_common(true, table, write,
4799 buffer, length, ppos);
4800}
4801#endif /* CONFIG_NUMA */
4802
4803static int hugetlb_overcommit_handler(const struct ctl_table *table, int write,
4804 void *buffer, size_t *length, loff_t *ppos)
4805{
4806 struct hstate *h = &default_hstate;
4807 unsigned long tmp;
4808 int ret;
4809
4810 if (!hugepages_supported())
4811 return -EOPNOTSUPP;
4812
4813 tmp = h->nr_overcommit_huge_pages;
4814
4815 if (write && hstate_is_gigantic(h))
4816 return -EINVAL;
4817
4818 ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
4819 &tmp);
4820 if (ret)
4821 goto out;
4822
4823 if (write) {
4824 spin_lock_irq(&hugetlb_lock);
4825 h->nr_overcommit_huge_pages = tmp;
4826 spin_unlock_irq(&hugetlb_lock);
4827 }
4828out:
4829 return ret;
4830}
4831
4832static struct ctl_table hugetlb_table[] = {
4833 {
4834 .procname = "nr_hugepages",
4835 .data = NULL,
4836 .maxlen = sizeof(unsigned long),
4837 .mode = 0644,
4838 .proc_handler = hugetlb_sysctl_handler,
4839 },
4840#ifdef CONFIG_NUMA
4841 {
4842 .procname = "nr_hugepages_mempolicy",
4843 .data = NULL,
4844 .maxlen = sizeof(unsigned long),
4845 .mode = 0644,
4846 .proc_handler = &hugetlb_mempolicy_sysctl_handler,
4847 },
4848#endif
4849 {
4850 .procname = "hugetlb_shm_group",
4851 .data = &sysctl_hugetlb_shm_group,
4852 .maxlen = sizeof(gid_t),
4853 .mode = 0644,
4854 .proc_handler = proc_dointvec,
4855 },
4856 {
4857 .procname = "nr_overcommit_hugepages",
4858 .data = NULL,
4859 .maxlen = sizeof(unsigned long),
4860 .mode = 0644,
4861 .proc_handler = hugetlb_overcommit_handler,
4862 },
4863};
4864
4865static void hugetlb_sysctl_init(void)
4866{
4867 register_sysctl_init("vm", hugetlb_table);
4868}
4869#endif /* CONFIG_SYSCTL */
4870
4871void hugetlb_report_meminfo(struct seq_file *m)
4872{
4873 struct hstate *h;
4874 unsigned long total = 0;
4875
4876 if (!hugepages_supported())
4877 return;
4878
4879 for_each_hstate(h) {
4880 unsigned long count = h->nr_huge_pages;
4881
4882 total += huge_page_size(h) * count;
4883
4884 if (h == &default_hstate)
4885 seq_printf(m,
4886 "HugePages_Total: %5lu\n"
4887 "HugePages_Free: %5lu\n"
4888 "HugePages_Rsvd: %5lu\n"
4889 "HugePages_Surp: %5lu\n"
4890 "Hugepagesize: %8lu kB\n",
4891 count,
4892 h->free_huge_pages,
4893 h->resv_huge_pages,
4894 h->surplus_huge_pages,
4895 huge_page_size(h) / SZ_1K);
4896 }
4897
4898 seq_printf(m, "Hugetlb: %8lu kB\n", total / SZ_1K);
4899}
4900
4901int hugetlb_report_node_meminfo(char *buf, int len, int nid)
4902{
4903 struct hstate *h = &default_hstate;
4904
4905 if (!hugepages_supported())
4906 return 0;
4907
4908 return sysfs_emit_at(buf, len,
4909 "Node %d HugePages_Total: %5u\n"
4910 "Node %d HugePages_Free: %5u\n"
4911 "Node %d HugePages_Surp: %5u\n",
4912 nid, h->nr_huge_pages_node[nid],
4913 nid, h->free_huge_pages_node[nid],
4914 nid, h->surplus_huge_pages_node[nid]);
4915}
4916
4917void hugetlb_show_meminfo_node(int nid)
4918{
4919 struct hstate *h;
4920
4921 if (!hugepages_supported())
4922 return;
4923
4924 for_each_hstate(h)
4925 printk("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
4926 nid,
4927 h->nr_huge_pages_node[nid],
4928 h->free_huge_pages_node[nid],
4929 h->surplus_huge_pages_node[nid],
4930 huge_page_size(h) / SZ_1K);
4931}
4932
4933void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
4934{
4935 seq_printf(m, "HugetlbPages:\t%8lu kB\n",
4936 K(atomic_long_read(&mm->hugetlb_usage)));
4937}
4938
4939/* Return the number pages of memory we physically have, in PAGE_SIZE units. */
4940unsigned long hugetlb_total_pages(void)
4941{
4942 struct hstate *h;
4943 unsigned long nr_total_pages = 0;
4944
4945 for_each_hstate(h)
4946 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
4947 return nr_total_pages;
4948}
4949
4950static int hugetlb_acct_memory(struct hstate *h, long delta)
4951{
4952 int ret = -ENOMEM;
4953
4954 if (!delta)
4955 return 0;
4956
4957 spin_lock_irq(&hugetlb_lock);
4958 /*
4959 * When cpuset is configured, it breaks the strict hugetlb page
4960 * reservation as the accounting is done on a global variable. Such
4961 * reservation is completely rubbish in the presence of cpuset because
4962 * the reservation is not checked against page availability for the
4963 * current cpuset. Application can still potentially OOM'ed by kernel
4964 * with lack of free htlb page in cpuset that the task is in.
4965 * Attempt to enforce strict accounting with cpuset is almost
4966 * impossible (or too ugly) because cpuset is too fluid that
4967 * task or memory node can be dynamically moved between cpusets.
4968 *
4969 * The change of semantics for shared hugetlb mapping with cpuset is
4970 * undesirable. However, in order to preserve some of the semantics,
4971 * we fall back to check against current free page availability as
4972 * a best attempt and hopefully to minimize the impact of changing
4973 * semantics that cpuset has.
4974 *
4975 * Apart from cpuset, we also have memory policy mechanism that
4976 * also determines from which node the kernel will allocate memory
4977 * in a NUMA system. So similar to cpuset, we also should consider
4978 * the memory policy of the current task. Similar to the description
4979 * above.
4980 */
4981 if (delta > 0) {
4982 if (gather_surplus_pages(h, delta) < 0)
4983 goto out;
4984
4985 if (delta > allowed_mems_nr(h)) {
4986 return_unused_surplus_pages(h, delta);
4987 goto out;
4988 }
4989 }
4990
4991 ret = 0;
4992 if (delta < 0)
4993 return_unused_surplus_pages(h, (unsigned long) -delta);
4994
4995out:
4996 spin_unlock_irq(&hugetlb_lock);
4997 return ret;
4998}
4999
5000static void hugetlb_vm_op_open(struct vm_area_struct *vma)
5001{
5002 struct resv_map *resv = vma_resv_map(vma);
5003
5004 /*
5005 * HPAGE_RESV_OWNER indicates a private mapping.
5006 * This new VMA should share its siblings reservation map if present.
5007 * The VMA will only ever have a valid reservation map pointer where
5008 * it is being copied for another still existing VMA. As that VMA
5009 * has a reference to the reservation map it cannot disappear until
5010 * after this open call completes. It is therefore safe to take a
5011 * new reference here without additional locking.
5012 */
5013 if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
5014 resv_map_dup_hugetlb_cgroup_uncharge_info(resv);
5015 kref_get(&resv->refs);
5016 }
5017
5018 /*
5019 * vma_lock structure for sharable mappings is vma specific.
5020 * Clear old pointer (if copied via vm_area_dup) and allocate
5021 * new structure. Before clearing, make sure vma_lock is not
5022 * for this vma.
5023 */
5024 if (vma->vm_flags & VM_MAYSHARE) {
5025 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
5026
5027 if (vma_lock) {
5028 if (vma_lock->vma != vma) {
5029 vma->vm_private_data = NULL;
5030 hugetlb_vma_lock_alloc(vma);
5031 } else
5032 pr_warn("HugeTLB: vma_lock already exists in %s.\n", __func__);
5033 } else
5034 hugetlb_vma_lock_alloc(vma);
5035 }
5036}
5037
5038static void hugetlb_vm_op_close(struct vm_area_struct *vma)
5039{
5040 struct hstate *h = hstate_vma(vma);
5041 struct resv_map *resv;
5042 struct hugepage_subpool *spool = subpool_vma(vma);
5043 unsigned long reserve, start, end;
5044 long gbl_reserve;
5045
5046 hugetlb_vma_lock_free(vma);
5047
5048 resv = vma_resv_map(vma);
5049 if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
5050 return;
5051
5052 start = vma_hugecache_offset(h, vma, vma->vm_start);
5053 end = vma_hugecache_offset(h, vma, vma->vm_end);
5054
5055 reserve = (end - start) - region_count(resv, start, end);
5056 hugetlb_cgroup_uncharge_counter(resv, start, end);
5057 if (reserve) {
5058 /*
5059 * Decrement reserve counts. The global reserve count may be
5060 * adjusted if the subpool has a minimum size.
5061 */
5062 gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
5063 hugetlb_acct_memory(h, -gbl_reserve);
5064 }
5065
5066 kref_put(&resv->refs, resv_map_release);
5067}
5068
5069static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
5070{
5071 if (addr & ~(huge_page_mask(hstate_vma(vma))))
5072 return -EINVAL;
5073
5074 /*
5075 * PMD sharing is only possible for PUD_SIZE-aligned address ranges
5076 * in HugeTLB VMAs. If we will lose PUD_SIZE alignment due to this
5077 * split, unshare PMDs in the PUD_SIZE interval surrounding addr now.
5078 */
5079 if (addr & ~PUD_MASK) {
5080 /*
5081 * hugetlb_vm_op_split is called right before we attempt to
5082 * split the VMA. We will need to unshare PMDs in the old and
5083 * new VMAs, so let's unshare before we split.
5084 */
5085 unsigned long floor = addr & PUD_MASK;
5086 unsigned long ceil = floor + PUD_SIZE;
5087
5088 if (floor >= vma->vm_start && ceil <= vma->vm_end)
5089 hugetlb_unshare_pmds(vma, floor, ceil);
5090 }
5091
5092 return 0;
5093}
5094
5095static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma)
5096{
5097 return huge_page_size(hstate_vma(vma));
5098}
5099
5100/*
5101 * We cannot handle pagefaults against hugetlb pages at all. They cause
5102 * handle_mm_fault() to try to instantiate regular-sized pages in the
5103 * hugepage VMA. do_page_fault() is supposed to trap this, so BUG is we get
5104 * this far.
5105 */
5106static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf)
5107{
5108 BUG();
5109 return 0;
5110}
5111
5112/*
5113 * When a new function is introduced to vm_operations_struct and added
5114 * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops.
5115 * This is because under System V memory model, mappings created via
5116 * shmget/shmat with "huge page" specified are backed by hugetlbfs files,
5117 * their original vm_ops are overwritten with shm_vm_ops.
5118 */
5119const struct vm_operations_struct hugetlb_vm_ops = {
5120 .fault = hugetlb_vm_op_fault,
5121 .open = hugetlb_vm_op_open,
5122 .close = hugetlb_vm_op_close,
5123 .may_split = hugetlb_vm_op_split,
5124 .pagesize = hugetlb_vm_op_pagesize,
5125};
5126
5127static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
5128 int writable)
5129{
5130 pte_t entry;
5131 unsigned int shift = huge_page_shift(hstate_vma(vma));
5132
5133 if (writable) {
5134 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
5135 vma->vm_page_prot)));
5136 } else {
5137 entry = huge_pte_wrprotect(mk_huge_pte(page,
5138 vma->vm_page_prot));
5139 }
5140 entry = pte_mkyoung(entry);
5141 entry = arch_make_huge_pte(entry, shift, vma->vm_flags);
5142
5143 return entry;
5144}
5145
5146static void set_huge_ptep_writable(struct vm_area_struct *vma,
5147 unsigned long address, pte_t *ptep)
5148{
5149 pte_t entry;
5150
5151 entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(vma->vm_mm, address, ptep)));
5152 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
5153 update_mmu_cache(vma, address, ptep);
5154}
5155
5156bool is_hugetlb_entry_migration(pte_t pte)
5157{
5158 swp_entry_t swp;
5159
5160 if (huge_pte_none(pte) || pte_present(pte))
5161 return false;
5162 swp = pte_to_swp_entry(pte);
5163 if (is_migration_entry(swp))
5164 return true;
5165 else
5166 return false;
5167}
5168
5169bool is_hugetlb_entry_hwpoisoned(pte_t pte)
5170{
5171 swp_entry_t swp;
5172
5173 if (huge_pte_none(pte) || pte_present(pte))
5174 return false;
5175 swp = pte_to_swp_entry(pte);
5176 if (is_hwpoison_entry(swp))
5177 return true;
5178 else
5179 return false;
5180}
5181
5182static void
5183hugetlb_install_folio(struct vm_area_struct *vma, pte_t *ptep, unsigned long addr,
5184 struct folio *new_folio, pte_t old, unsigned long sz)
5185{
5186 pte_t newpte = make_huge_pte(vma, &new_folio->page, 1);
5187
5188 __folio_mark_uptodate(new_folio);
5189 hugetlb_add_new_anon_rmap(new_folio, vma, addr);
5190 if (userfaultfd_wp(vma) && huge_pte_uffd_wp(old))
5191 newpte = huge_pte_mkuffd_wp(newpte);
5192 set_huge_pte_at(vma->vm_mm, addr, ptep, newpte, sz);
5193 hugetlb_count_add(pages_per_huge_page(hstate_vma(vma)), vma->vm_mm);
5194 folio_set_hugetlb_migratable(new_folio);
5195}
5196
5197int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
5198 struct vm_area_struct *dst_vma,
5199 struct vm_area_struct *src_vma)
5200{
5201 pte_t *src_pte, *dst_pte, entry;
5202 struct folio *pte_folio;
5203 unsigned long addr;
5204 bool cow = is_cow_mapping(src_vma->vm_flags);
5205 struct hstate *h = hstate_vma(src_vma);
5206 unsigned long sz = huge_page_size(h);
5207 unsigned long npages = pages_per_huge_page(h);
5208 struct mmu_notifier_range range;
5209 unsigned long last_addr_mask;
5210 int ret = 0;
5211
5212 if (cow) {
5213 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, src,
5214 src_vma->vm_start,
5215 src_vma->vm_end);
5216 mmu_notifier_invalidate_range_start(&range);
5217 vma_assert_write_locked(src_vma);
5218 raw_write_seqcount_begin(&src->write_protect_seq);
5219 } else {
5220 /*
5221 * For shared mappings the vma lock must be held before
5222 * calling hugetlb_walk() in the src vma. Otherwise, the
5223 * returned ptep could go away if part of a shared pmd and
5224 * another thread calls huge_pmd_unshare.
5225 */
5226 hugetlb_vma_lock_read(src_vma);
5227 }
5228
5229 last_addr_mask = hugetlb_mask_last_page(h);
5230 for (addr = src_vma->vm_start; addr < src_vma->vm_end; addr += sz) {
5231 spinlock_t *src_ptl, *dst_ptl;
5232 src_pte = hugetlb_walk(src_vma, addr, sz);
5233 if (!src_pte) {
5234 addr |= last_addr_mask;
5235 continue;
5236 }
5237 dst_pte = huge_pte_alloc(dst, dst_vma, addr, sz);
5238 if (!dst_pte) {
5239 ret = -ENOMEM;
5240 break;
5241 }
5242
5243 /*
5244 * If the pagetables are shared don't copy or take references.
5245 *
5246 * dst_pte == src_pte is the common case of src/dest sharing.
5247 * However, src could have 'unshared' and dst shares with
5248 * another vma. So page_count of ptep page is checked instead
5249 * to reliably determine whether pte is shared.
5250 */
5251 if (page_count(virt_to_page(dst_pte)) > 1) {
5252 addr |= last_addr_mask;
5253 continue;
5254 }
5255
5256 dst_ptl = huge_pte_lock(h, dst, dst_pte);
5257 src_ptl = huge_pte_lockptr(h, src, src_pte);
5258 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
5259 entry = huge_ptep_get(src_vma->vm_mm, addr, src_pte);
5260again:
5261 if (huge_pte_none(entry)) {
5262 /*
5263 * Skip if src entry none.
5264 */
5265 ;
5266 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry))) {
5267 if (!userfaultfd_wp(dst_vma))
5268 entry = huge_pte_clear_uffd_wp(entry);
5269 set_huge_pte_at(dst, addr, dst_pte, entry, sz);
5270 } else if (unlikely(is_hugetlb_entry_migration(entry))) {
5271 swp_entry_t swp_entry = pte_to_swp_entry(entry);
5272 bool uffd_wp = pte_swp_uffd_wp(entry);
5273
5274 if (!is_readable_migration_entry(swp_entry) && cow) {
5275 /*
5276 * COW mappings require pages in both
5277 * parent and child to be set to read.
5278 */
5279 swp_entry = make_readable_migration_entry(
5280 swp_offset(swp_entry));
5281 entry = swp_entry_to_pte(swp_entry);
5282 if (userfaultfd_wp(src_vma) && uffd_wp)
5283 entry = pte_swp_mkuffd_wp(entry);
5284 set_huge_pte_at(src, addr, src_pte, entry, sz);
5285 }
5286 if (!userfaultfd_wp(dst_vma))
5287 entry = huge_pte_clear_uffd_wp(entry);
5288 set_huge_pte_at(dst, addr, dst_pte, entry, sz);
5289 } else if (unlikely(is_pte_marker(entry))) {
5290 pte_marker marker = copy_pte_marker(
5291 pte_to_swp_entry(entry), dst_vma);
5292
5293 if (marker)
5294 set_huge_pte_at(dst, addr, dst_pte,
5295 make_pte_marker(marker), sz);
5296 } else {
5297 entry = huge_ptep_get(src_vma->vm_mm, addr, src_pte);
5298 pte_folio = page_folio(pte_page(entry));
5299 folio_get(pte_folio);
5300
5301 /*
5302 * Failing to duplicate the anon rmap is a rare case
5303 * where we see pinned hugetlb pages while they're
5304 * prone to COW. We need to do the COW earlier during
5305 * fork.
5306 *
5307 * When pre-allocating the page or copying data, we
5308 * need to be without the pgtable locks since we could
5309 * sleep during the process.
5310 */
5311 if (!folio_test_anon(pte_folio)) {
5312 hugetlb_add_file_rmap(pte_folio);
5313 } else if (hugetlb_try_dup_anon_rmap(pte_folio, src_vma)) {
5314 pte_t src_pte_old = entry;
5315 struct folio *new_folio;
5316
5317 spin_unlock(src_ptl);
5318 spin_unlock(dst_ptl);
5319 /* Do not use reserve as it's private owned */
5320 new_folio = alloc_hugetlb_folio(dst_vma, addr, 1);
5321 if (IS_ERR(new_folio)) {
5322 folio_put(pte_folio);
5323 ret = PTR_ERR(new_folio);
5324 break;
5325 }
5326 ret = copy_user_large_folio(new_folio, pte_folio,
5327 addr, dst_vma);
5328 folio_put(pte_folio);
5329 if (ret) {
5330 folio_put(new_folio);
5331 break;
5332 }
5333
5334 /* Install the new hugetlb folio if src pte stable */
5335 dst_ptl = huge_pte_lock(h, dst, dst_pte);
5336 src_ptl = huge_pte_lockptr(h, src, src_pte);
5337 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
5338 entry = huge_ptep_get(src_vma->vm_mm, addr, src_pte);
5339 if (!pte_same(src_pte_old, entry)) {
5340 restore_reserve_on_error(h, dst_vma, addr,
5341 new_folio);
5342 folio_put(new_folio);
5343 /* huge_ptep of dst_pte won't change as in child */
5344 goto again;
5345 }
5346 hugetlb_install_folio(dst_vma, dst_pte, addr,
5347 new_folio, src_pte_old, sz);
5348 spin_unlock(src_ptl);
5349 spin_unlock(dst_ptl);
5350 continue;
5351 }
5352
5353 if (cow) {
5354 /*
5355 * No need to notify as we are downgrading page
5356 * table protection not changing it to point
5357 * to a new page.
5358 *
5359 * See Documentation/mm/mmu_notifier.rst
5360 */
5361 huge_ptep_set_wrprotect(src, addr, src_pte);
5362 entry = huge_pte_wrprotect(entry);
5363 }
5364
5365 if (!userfaultfd_wp(dst_vma))
5366 entry = huge_pte_clear_uffd_wp(entry);
5367
5368 set_huge_pte_at(dst, addr, dst_pte, entry, sz);
5369 hugetlb_count_add(npages, dst);
5370 }
5371 spin_unlock(src_ptl);
5372 spin_unlock(dst_ptl);
5373 }
5374
5375 if (cow) {
5376 raw_write_seqcount_end(&src->write_protect_seq);
5377 mmu_notifier_invalidate_range_end(&range);
5378 } else {
5379 hugetlb_vma_unlock_read(src_vma);
5380 }
5381
5382 return ret;
5383}
5384
5385static void move_huge_pte(struct vm_area_struct *vma, unsigned long old_addr,
5386 unsigned long new_addr, pte_t *src_pte, pte_t *dst_pte,
5387 unsigned long sz)
5388{
5389 bool need_clear_uffd_wp = vma_has_uffd_without_event_remap(vma);
5390 struct hstate *h = hstate_vma(vma);
5391 struct mm_struct *mm = vma->vm_mm;
5392 spinlock_t *src_ptl, *dst_ptl;
5393 pte_t pte;
5394
5395 dst_ptl = huge_pte_lock(h, mm, dst_pte);
5396 src_ptl = huge_pte_lockptr(h, mm, src_pte);
5397
5398 /*
5399 * We don't have to worry about the ordering of src and dst ptlocks
5400 * because exclusive mmap_lock (or the i_mmap_lock) prevents deadlock.
5401 */
5402 if (src_ptl != dst_ptl)
5403 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
5404
5405 pte = huge_ptep_get_and_clear(mm, old_addr, src_pte, sz);
5406
5407 if (need_clear_uffd_wp && pte_marker_uffd_wp(pte))
5408 huge_pte_clear(mm, new_addr, dst_pte, sz);
5409 else {
5410 if (need_clear_uffd_wp) {
5411 if (pte_present(pte))
5412 pte = huge_pte_clear_uffd_wp(pte);
5413 else if (is_swap_pte(pte))
5414 pte = pte_swp_clear_uffd_wp(pte);
5415 }
5416 set_huge_pte_at(mm, new_addr, dst_pte, pte, sz);
5417 }
5418
5419 if (src_ptl != dst_ptl)
5420 spin_unlock(src_ptl);
5421 spin_unlock(dst_ptl);
5422}
5423
5424int move_hugetlb_page_tables(struct vm_area_struct *vma,
5425 struct vm_area_struct *new_vma,
5426 unsigned long old_addr, unsigned long new_addr,
5427 unsigned long len)
5428{
5429 struct hstate *h = hstate_vma(vma);
5430 struct address_space *mapping = vma->vm_file->f_mapping;
5431 unsigned long sz = huge_page_size(h);
5432 struct mm_struct *mm = vma->vm_mm;
5433 unsigned long old_end = old_addr + len;
5434 unsigned long last_addr_mask;
5435 pte_t *src_pte, *dst_pte;
5436 struct mmu_notifier_range range;
5437 bool shared_pmd = false;
5438
5439 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, old_addr,
5440 old_end);
5441 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
5442 /*
5443 * In case of shared PMDs, we should cover the maximum possible
5444 * range.
5445 */
5446 flush_cache_range(vma, range.start, range.end);
5447
5448 mmu_notifier_invalidate_range_start(&range);
5449 last_addr_mask = hugetlb_mask_last_page(h);
5450 /* Prevent race with file truncation */
5451 hugetlb_vma_lock_write(vma);
5452 i_mmap_lock_write(mapping);
5453 for (; old_addr < old_end; old_addr += sz, new_addr += sz) {
5454 src_pte = hugetlb_walk(vma, old_addr, sz);
5455 if (!src_pte) {
5456 old_addr |= last_addr_mask;
5457 new_addr |= last_addr_mask;
5458 continue;
5459 }
5460 if (huge_pte_none(huge_ptep_get(mm, old_addr, src_pte)))
5461 continue;
5462
5463 if (huge_pmd_unshare(mm, vma, old_addr, src_pte)) {
5464 shared_pmd = true;
5465 old_addr |= last_addr_mask;
5466 new_addr |= last_addr_mask;
5467 continue;
5468 }
5469
5470 dst_pte = huge_pte_alloc(mm, new_vma, new_addr, sz);
5471 if (!dst_pte)
5472 break;
5473
5474 move_huge_pte(vma, old_addr, new_addr, src_pte, dst_pte, sz);
5475 }
5476
5477 if (shared_pmd)
5478 flush_hugetlb_tlb_range(vma, range.start, range.end);
5479 else
5480 flush_hugetlb_tlb_range(vma, old_end - len, old_end);
5481 mmu_notifier_invalidate_range_end(&range);
5482 i_mmap_unlock_write(mapping);
5483 hugetlb_vma_unlock_write(vma);
5484
5485 return len + old_addr - old_end;
5486}
5487
5488void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
5489 unsigned long start, unsigned long end,
5490 struct page *ref_page, zap_flags_t zap_flags)
5491{
5492 struct mm_struct *mm = vma->vm_mm;
5493 unsigned long address;
5494 pte_t *ptep;
5495 pte_t pte;
5496 spinlock_t *ptl;
5497 struct page *page;
5498 struct hstate *h = hstate_vma(vma);
5499 unsigned long sz = huge_page_size(h);
5500 bool adjust_reservation = false;
5501 unsigned long last_addr_mask;
5502 bool force_flush = false;
5503
5504 WARN_ON(!is_vm_hugetlb_page(vma));
5505 BUG_ON(start & ~huge_page_mask(h));
5506 BUG_ON(end & ~huge_page_mask(h));
5507
5508 /*
5509 * This is a hugetlb vma, all the pte entries should point
5510 * to huge page.
5511 */
5512 tlb_change_page_size(tlb, sz);
5513 tlb_start_vma(tlb, vma);
5514
5515 last_addr_mask = hugetlb_mask_last_page(h);
5516 address = start;
5517 for (; address < end; address += sz) {
5518 ptep = hugetlb_walk(vma, address, sz);
5519 if (!ptep) {
5520 address |= last_addr_mask;
5521 continue;
5522 }
5523
5524 ptl = huge_pte_lock(h, mm, ptep);
5525 if (huge_pmd_unshare(mm, vma, address, ptep)) {
5526 spin_unlock(ptl);
5527 tlb_flush_pmd_range(tlb, address & PUD_MASK, PUD_SIZE);
5528 force_flush = true;
5529 address |= last_addr_mask;
5530 continue;
5531 }
5532
5533 pte = huge_ptep_get(mm, address, ptep);
5534 if (huge_pte_none(pte)) {
5535 spin_unlock(ptl);
5536 continue;
5537 }
5538
5539 /*
5540 * Migrating hugepage or HWPoisoned hugepage is already
5541 * unmapped and its refcount is dropped, so just clear pte here.
5542 */
5543 if (unlikely(!pte_present(pte))) {
5544 /*
5545 * If the pte was wr-protected by uffd-wp in any of the
5546 * swap forms, meanwhile the caller does not want to
5547 * drop the uffd-wp bit in this zap, then replace the
5548 * pte with a marker.
5549 */
5550 if (pte_swp_uffd_wp_any(pte) &&
5551 !(zap_flags & ZAP_FLAG_DROP_MARKER))
5552 set_huge_pte_at(mm, address, ptep,
5553 make_pte_marker(PTE_MARKER_UFFD_WP),
5554 sz);
5555 else
5556 huge_pte_clear(mm, address, ptep, sz);
5557 spin_unlock(ptl);
5558 continue;
5559 }
5560
5561 page = pte_page(pte);
5562 /*
5563 * If a reference page is supplied, it is because a specific
5564 * page is being unmapped, not a range. Ensure the page we
5565 * are about to unmap is the actual page of interest.
5566 */
5567 if (ref_page) {
5568 if (page != ref_page) {
5569 spin_unlock(ptl);
5570 continue;
5571 }
5572 /*
5573 * Mark the VMA as having unmapped its page so that
5574 * future faults in this VMA will fail rather than
5575 * looking like data was lost
5576 */
5577 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
5578 }
5579
5580 pte = huge_ptep_get_and_clear(mm, address, ptep, sz);
5581 tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
5582 if (huge_pte_dirty(pte))
5583 set_page_dirty(page);
5584 /* Leave a uffd-wp pte marker if needed */
5585 if (huge_pte_uffd_wp(pte) &&
5586 !(zap_flags & ZAP_FLAG_DROP_MARKER))
5587 set_huge_pte_at(mm, address, ptep,
5588 make_pte_marker(PTE_MARKER_UFFD_WP),
5589 sz);
5590 hugetlb_count_sub(pages_per_huge_page(h), mm);
5591 hugetlb_remove_rmap(page_folio(page));
5592
5593 /*
5594 * Restore the reservation for anonymous page, otherwise the
5595 * backing page could be stolen by someone.
5596 * If there we are freeing a surplus, do not set the restore
5597 * reservation bit.
5598 */
5599 if (!h->surplus_huge_pages && __vma_private_lock(vma) &&
5600 folio_test_anon(page_folio(page))) {
5601 folio_set_hugetlb_restore_reserve(page_folio(page));
5602 /* Reservation to be adjusted after the spin lock */
5603 adjust_reservation = true;
5604 }
5605
5606 spin_unlock(ptl);
5607
5608 /*
5609 * Adjust the reservation for the region that will have the
5610 * reserve restored. Keep in mind that vma_needs_reservation() changes
5611 * resv->adds_in_progress if it succeeds. If this is not done,
5612 * do_exit() will not see it, and will keep the reservation
5613 * forever.
5614 */
5615 if (adjust_reservation) {
5616 int rc = vma_needs_reservation(h, vma, address);
5617
5618 if (rc < 0)
5619 /* Pressumably allocate_file_region_entries failed
5620 * to allocate a file_region struct. Clear
5621 * hugetlb_restore_reserve so that global reserve
5622 * count will not be incremented by free_huge_folio.
5623 * Act as if we consumed the reservation.
5624 */
5625 folio_clear_hugetlb_restore_reserve(page_folio(page));
5626 else if (rc)
5627 vma_add_reservation(h, vma, address);
5628 }
5629
5630 tlb_remove_page_size(tlb, page, huge_page_size(h));
5631 /*
5632 * Bail out after unmapping reference page if supplied
5633 */
5634 if (ref_page)
5635 break;
5636 }
5637 tlb_end_vma(tlb, vma);
5638
5639 /*
5640 * If we unshared PMDs, the TLB flush was not recorded in mmu_gather. We
5641 * could defer the flush until now, since by holding i_mmap_rwsem we
5642 * guaranteed that the last refernece would not be dropped. But we must
5643 * do the flushing before we return, as otherwise i_mmap_rwsem will be
5644 * dropped and the last reference to the shared PMDs page might be
5645 * dropped as well.
5646 *
5647 * In theory we could defer the freeing of the PMD pages as well, but
5648 * huge_pmd_unshare() relies on the exact page_count for the PMD page to
5649 * detect sharing, so we cannot defer the release of the page either.
5650 * Instead, do flush now.
5651 */
5652 if (force_flush)
5653 tlb_flush_mmu_tlbonly(tlb);
5654}
5655
5656void __hugetlb_zap_begin(struct vm_area_struct *vma,
5657 unsigned long *start, unsigned long *end)
5658{
5659 if (!vma->vm_file) /* hugetlbfs_file_mmap error */
5660 return;
5661
5662 adjust_range_if_pmd_sharing_possible(vma, start, end);
5663 hugetlb_vma_lock_write(vma);
5664 if (vma->vm_file)
5665 i_mmap_lock_write(vma->vm_file->f_mapping);
5666}
5667
5668void __hugetlb_zap_end(struct vm_area_struct *vma,
5669 struct zap_details *details)
5670{
5671 zap_flags_t zap_flags = details ? details->zap_flags : 0;
5672
5673 if (!vma->vm_file) /* hugetlbfs_file_mmap error */
5674 return;
5675
5676 if (zap_flags & ZAP_FLAG_UNMAP) { /* final unmap */
5677 /*
5678 * Unlock and free the vma lock before releasing i_mmap_rwsem.
5679 * When the vma_lock is freed, this makes the vma ineligible
5680 * for pmd sharing. And, i_mmap_rwsem is required to set up
5681 * pmd sharing. This is important as page tables for this
5682 * unmapped range will be asynchrously deleted. If the page
5683 * tables are shared, there will be issues when accessed by
5684 * someone else.
5685 */
5686 __hugetlb_vma_unlock_write_free(vma);
5687 } else {
5688 hugetlb_vma_unlock_write(vma);
5689 }
5690
5691 if (vma->vm_file)
5692 i_mmap_unlock_write(vma->vm_file->f_mapping);
5693}
5694
5695void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
5696 unsigned long end, struct page *ref_page,
5697 zap_flags_t zap_flags)
5698{
5699 struct mmu_notifier_range range;
5700 struct mmu_gather tlb;
5701
5702 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
5703 start, end);
5704 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
5705 mmu_notifier_invalidate_range_start(&range);
5706 tlb_gather_mmu(&tlb, vma->vm_mm);
5707
5708 __unmap_hugepage_range(&tlb, vma, start, end, ref_page, zap_flags);
5709
5710 mmu_notifier_invalidate_range_end(&range);
5711 tlb_finish_mmu(&tlb);
5712}
5713
5714/*
5715 * This is called when the original mapper is failing to COW a MAP_PRIVATE
5716 * mapping it owns the reserve page for. The intention is to unmap the page
5717 * from other VMAs and let the children be SIGKILLed if they are faulting the
5718 * same region.
5719 */
5720static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
5721 struct page *page, unsigned long address)
5722{
5723 struct hstate *h = hstate_vma(vma);
5724 struct vm_area_struct *iter_vma;
5725 struct address_space *mapping;
5726 pgoff_t pgoff;
5727
5728 /*
5729 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
5730 * from page cache lookup which is in HPAGE_SIZE units.
5731 */
5732 address = address & huge_page_mask(h);
5733 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
5734 vma->vm_pgoff;
5735 mapping = vma->vm_file->f_mapping;
5736
5737 /*
5738 * Take the mapping lock for the duration of the table walk. As
5739 * this mapping should be shared between all the VMAs,
5740 * __unmap_hugepage_range() is called as the lock is already held
5741 */
5742 i_mmap_lock_write(mapping);
5743 vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
5744 /* Do not unmap the current VMA */
5745 if (iter_vma == vma)
5746 continue;
5747
5748 /*
5749 * Shared VMAs have their own reserves and do not affect
5750 * MAP_PRIVATE accounting but it is possible that a shared
5751 * VMA is using the same page so check and skip such VMAs.
5752 */
5753 if (iter_vma->vm_flags & VM_MAYSHARE)
5754 continue;
5755
5756 /*
5757 * Unmap the page from other VMAs without their own reserves.
5758 * They get marked to be SIGKILLed if they fault in these
5759 * areas. This is because a future no-page fault on this VMA
5760 * could insert a zeroed page instead of the data existing
5761 * from the time of fork. This would look like data corruption
5762 */
5763 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
5764 unmap_hugepage_range(iter_vma, address,
5765 address + huge_page_size(h), page, 0);
5766 }
5767 i_mmap_unlock_write(mapping);
5768}
5769
5770/*
5771 * hugetlb_wp() should be called with page lock of the original hugepage held.
5772 * Called with hugetlb_fault_mutex_table held and pte_page locked so we
5773 * cannot race with other handlers or page migration.
5774 * Keep the pte_same checks anyway to make transition from the mutex easier.
5775 */
5776static vm_fault_t hugetlb_wp(struct folio *pagecache_folio,
5777 struct vm_fault *vmf)
5778{
5779 struct vm_area_struct *vma = vmf->vma;
5780 struct mm_struct *mm = vma->vm_mm;
5781 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
5782 pte_t pte = huge_ptep_get(mm, vmf->address, vmf->pte);
5783 struct hstate *h = hstate_vma(vma);
5784 struct folio *old_folio;
5785 struct folio *new_folio;
5786 int outside_reserve = 0;
5787 vm_fault_t ret = 0;
5788 struct mmu_notifier_range range;
5789
5790 /*
5791 * Never handle CoW for uffd-wp protected pages. It should be only
5792 * handled when the uffd-wp protection is removed.
5793 *
5794 * Note that only the CoW optimization path (in hugetlb_no_page())
5795 * can trigger this, because hugetlb_fault() will always resolve
5796 * uffd-wp bit first.
5797 */
5798 if (!unshare && huge_pte_uffd_wp(pte))
5799 return 0;
5800
5801 /*
5802 * hugetlb does not support FOLL_FORCE-style write faults that keep the
5803 * PTE mapped R/O such as maybe_mkwrite() would do.
5804 */
5805 if (WARN_ON_ONCE(!unshare && !(vma->vm_flags & VM_WRITE)))
5806 return VM_FAULT_SIGSEGV;
5807
5808 /* Let's take out MAP_SHARED mappings first. */
5809 if (vma->vm_flags & VM_MAYSHARE) {
5810 set_huge_ptep_writable(vma, vmf->address, vmf->pte);
5811 return 0;
5812 }
5813
5814 old_folio = page_folio(pte_page(pte));
5815
5816 delayacct_wpcopy_start();
5817
5818retry_avoidcopy:
5819 /*
5820 * If no-one else is actually using this page, we're the exclusive
5821 * owner and can reuse this page.
5822 *
5823 * Note that we don't rely on the (safer) folio refcount here, because
5824 * copying the hugetlb folio when there are unexpected (temporary)
5825 * folio references could harm simple fork()+exit() users when
5826 * we run out of free hugetlb folios: we would have to kill processes
5827 * in scenarios that used to work. As a side effect, there can still
5828 * be leaks between processes, for example, with FOLL_GET users.
5829 */
5830 if (folio_mapcount(old_folio) == 1 && folio_test_anon(old_folio)) {
5831 if (!PageAnonExclusive(&old_folio->page)) {
5832 folio_move_anon_rmap(old_folio, vma);
5833 SetPageAnonExclusive(&old_folio->page);
5834 }
5835 if (likely(!unshare))
5836 set_huge_ptep_writable(vma, vmf->address, vmf->pte);
5837
5838 delayacct_wpcopy_end();
5839 return 0;
5840 }
5841 VM_BUG_ON_PAGE(folio_test_anon(old_folio) &&
5842 PageAnonExclusive(&old_folio->page), &old_folio->page);
5843
5844 /*
5845 * If the process that created a MAP_PRIVATE mapping is about to
5846 * perform a COW due to a shared page count, attempt to satisfy
5847 * the allocation without using the existing reserves. The pagecache
5848 * page is used to determine if the reserve at this address was
5849 * consumed or not. If reserves were used, a partial faulted mapping
5850 * at the time of fork() could consume its reserves on COW instead
5851 * of the full address range.
5852 */
5853 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
5854 old_folio != pagecache_folio)
5855 outside_reserve = 1;
5856
5857 folio_get(old_folio);
5858
5859 /*
5860 * Drop page table lock as buddy allocator may be called. It will
5861 * be acquired again before returning to the caller, as expected.
5862 */
5863 spin_unlock(vmf->ptl);
5864 new_folio = alloc_hugetlb_folio(vma, vmf->address, outside_reserve);
5865
5866 if (IS_ERR(new_folio)) {
5867 /*
5868 * If a process owning a MAP_PRIVATE mapping fails to COW,
5869 * it is due to references held by a child and an insufficient
5870 * huge page pool. To guarantee the original mappers
5871 * reliability, unmap the page from child processes. The child
5872 * may get SIGKILLed if it later faults.
5873 */
5874 if (outside_reserve) {
5875 struct address_space *mapping = vma->vm_file->f_mapping;
5876 pgoff_t idx;
5877 u32 hash;
5878
5879 folio_put(old_folio);
5880 /*
5881 * Drop hugetlb_fault_mutex and vma_lock before
5882 * unmapping. unmapping needs to hold vma_lock
5883 * in write mode. Dropping vma_lock in read mode
5884 * here is OK as COW mappings do not interact with
5885 * PMD sharing.
5886 *
5887 * Reacquire both after unmap operation.
5888 */
5889 idx = vma_hugecache_offset(h, vma, vmf->address);
5890 hash = hugetlb_fault_mutex_hash(mapping, idx);
5891 hugetlb_vma_unlock_read(vma);
5892 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5893
5894 unmap_ref_private(mm, vma, &old_folio->page,
5895 vmf->address);
5896
5897 mutex_lock(&hugetlb_fault_mutex_table[hash]);
5898 hugetlb_vma_lock_read(vma);
5899 spin_lock(vmf->ptl);
5900 vmf->pte = hugetlb_walk(vma, vmf->address,
5901 huge_page_size(h));
5902 if (likely(vmf->pte &&
5903 pte_same(huge_ptep_get(mm, vmf->address, vmf->pte), pte)))
5904 goto retry_avoidcopy;
5905 /*
5906 * race occurs while re-acquiring page table
5907 * lock, and our job is done.
5908 */
5909 delayacct_wpcopy_end();
5910 return 0;
5911 }
5912
5913 ret = vmf_error(PTR_ERR(new_folio));
5914 goto out_release_old;
5915 }
5916
5917 /*
5918 * When the original hugepage is shared one, it does not have
5919 * anon_vma prepared.
5920 */
5921 ret = __vmf_anon_prepare(vmf);
5922 if (unlikely(ret))
5923 goto out_release_all;
5924
5925 if (copy_user_large_folio(new_folio, old_folio, vmf->real_address, vma)) {
5926 ret = VM_FAULT_HWPOISON_LARGE | VM_FAULT_SET_HINDEX(hstate_index(h));
5927 goto out_release_all;
5928 }
5929 __folio_mark_uptodate(new_folio);
5930
5931 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, vmf->address,
5932 vmf->address + huge_page_size(h));
5933 mmu_notifier_invalidate_range_start(&range);
5934
5935 /*
5936 * Retake the page table lock to check for racing updates
5937 * before the page tables are altered
5938 */
5939 spin_lock(vmf->ptl);
5940 vmf->pte = hugetlb_walk(vma, vmf->address, huge_page_size(h));
5941 if (likely(vmf->pte && pte_same(huge_ptep_get(mm, vmf->address, vmf->pte), pte))) {
5942 pte_t newpte = make_huge_pte(vma, &new_folio->page, !unshare);
5943
5944 /* Break COW or unshare */
5945 huge_ptep_clear_flush(vma, vmf->address, vmf->pte);
5946 hugetlb_remove_rmap(old_folio);
5947 hugetlb_add_new_anon_rmap(new_folio, vma, vmf->address);
5948 if (huge_pte_uffd_wp(pte))
5949 newpte = huge_pte_mkuffd_wp(newpte);
5950 set_huge_pte_at(mm, vmf->address, vmf->pte, newpte,
5951 huge_page_size(h));
5952 folio_set_hugetlb_migratable(new_folio);
5953 /* Make the old page be freed below */
5954 new_folio = old_folio;
5955 }
5956 spin_unlock(vmf->ptl);
5957 mmu_notifier_invalidate_range_end(&range);
5958out_release_all:
5959 /*
5960 * No restore in case of successful pagetable update (Break COW or
5961 * unshare)
5962 */
5963 if (new_folio != old_folio)
5964 restore_reserve_on_error(h, vma, vmf->address, new_folio);
5965 folio_put(new_folio);
5966out_release_old:
5967 folio_put(old_folio);
5968
5969 spin_lock(vmf->ptl); /* Caller expects lock to be held */
5970
5971 delayacct_wpcopy_end();
5972 return ret;
5973}
5974
5975/*
5976 * Return whether there is a pagecache page to back given address within VMA.
5977 */
5978bool hugetlbfs_pagecache_present(struct hstate *h,
5979 struct vm_area_struct *vma, unsigned long address)
5980{
5981 struct address_space *mapping = vma->vm_file->f_mapping;
5982 pgoff_t idx = linear_page_index(vma, address);
5983 struct folio *folio;
5984
5985 folio = filemap_get_folio(mapping, idx);
5986 if (IS_ERR(folio))
5987 return false;
5988 folio_put(folio);
5989 return true;
5990}
5991
5992int hugetlb_add_to_page_cache(struct folio *folio, struct address_space *mapping,
5993 pgoff_t idx)
5994{
5995 struct inode *inode = mapping->host;
5996 struct hstate *h = hstate_inode(inode);
5997 int err;
5998
5999 idx <<= huge_page_order(h);
6000 __folio_set_locked(folio);
6001 err = __filemap_add_folio(mapping, folio, idx, GFP_KERNEL, NULL);
6002
6003 if (unlikely(err)) {
6004 __folio_clear_locked(folio);
6005 return err;
6006 }
6007 folio_clear_hugetlb_restore_reserve(folio);
6008
6009 /*
6010 * mark folio dirty so that it will not be removed from cache/file
6011 * by non-hugetlbfs specific code paths.
6012 */
6013 folio_mark_dirty(folio);
6014
6015 spin_lock(&inode->i_lock);
6016 inode->i_blocks += blocks_per_huge_page(h);
6017 spin_unlock(&inode->i_lock);
6018 return 0;
6019}
6020
6021static inline vm_fault_t hugetlb_handle_userfault(struct vm_fault *vmf,
6022 struct address_space *mapping,
6023 unsigned long reason)
6024{
6025 u32 hash;
6026
6027 /*
6028 * vma_lock and hugetlb_fault_mutex must be dropped before handling
6029 * userfault. Also mmap_lock could be dropped due to handling
6030 * userfault, any vma operation should be careful from here.
6031 */
6032 hugetlb_vma_unlock_read(vmf->vma);
6033 hash = hugetlb_fault_mutex_hash(mapping, vmf->pgoff);
6034 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6035 return handle_userfault(vmf, reason);
6036}
6037
6038/*
6039 * Recheck pte with pgtable lock. Returns true if pte didn't change, or
6040 * false if pte changed or is changing.
6041 */
6042static bool hugetlb_pte_stable(struct hstate *h, struct mm_struct *mm, unsigned long addr,
6043 pte_t *ptep, pte_t old_pte)
6044{
6045 spinlock_t *ptl;
6046 bool same;
6047
6048 ptl = huge_pte_lock(h, mm, ptep);
6049 same = pte_same(huge_ptep_get(mm, addr, ptep), old_pte);
6050 spin_unlock(ptl);
6051
6052 return same;
6053}
6054
6055static vm_fault_t hugetlb_no_page(struct address_space *mapping,
6056 struct vm_fault *vmf)
6057{
6058 struct vm_area_struct *vma = vmf->vma;
6059 struct mm_struct *mm = vma->vm_mm;
6060 struct hstate *h = hstate_vma(vma);
6061 vm_fault_t ret = VM_FAULT_SIGBUS;
6062 int anon_rmap = 0;
6063 unsigned long size;
6064 struct folio *folio;
6065 pte_t new_pte;
6066 bool new_folio, new_pagecache_folio = false;
6067 u32 hash = hugetlb_fault_mutex_hash(mapping, vmf->pgoff);
6068
6069 /*
6070 * Currently, we are forced to kill the process in the event the
6071 * original mapper has unmapped pages from the child due to a failed
6072 * COW/unsharing. Warn that such a situation has occurred as it may not
6073 * be obvious.
6074 */
6075 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
6076 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
6077 current->pid);
6078 goto out;
6079 }
6080
6081 /*
6082 * Use page lock to guard against racing truncation
6083 * before we get page_table_lock.
6084 */
6085 new_folio = false;
6086 folio = filemap_lock_hugetlb_folio(h, mapping, vmf->pgoff);
6087 if (IS_ERR(folio)) {
6088 size = i_size_read(mapping->host) >> huge_page_shift(h);
6089 if (vmf->pgoff >= size)
6090 goto out;
6091 /* Check for page in userfault range */
6092 if (userfaultfd_missing(vma)) {
6093 /*
6094 * Since hugetlb_no_page() was examining pte
6095 * without pgtable lock, we need to re-test under
6096 * lock because the pte may not be stable and could
6097 * have changed from under us. Try to detect
6098 * either changed or during-changing ptes and retry
6099 * properly when needed.
6100 *
6101 * Note that userfaultfd is actually fine with
6102 * false positives (e.g. caused by pte changed),
6103 * but not wrong logical events (e.g. caused by
6104 * reading a pte during changing). The latter can
6105 * confuse the userspace, so the strictness is very
6106 * much preferred. E.g., MISSING event should
6107 * never happen on the page after UFFDIO_COPY has
6108 * correctly installed the page and returned.
6109 */
6110 if (!hugetlb_pte_stable(h, mm, vmf->address, vmf->pte, vmf->orig_pte)) {
6111 ret = 0;
6112 goto out;
6113 }
6114
6115 return hugetlb_handle_userfault(vmf, mapping,
6116 VM_UFFD_MISSING);
6117 }
6118
6119 if (!(vma->vm_flags & VM_MAYSHARE)) {
6120 ret = __vmf_anon_prepare(vmf);
6121 if (unlikely(ret))
6122 goto out;
6123 }
6124
6125 folio = alloc_hugetlb_folio(vma, vmf->address, 0);
6126 if (IS_ERR(folio)) {
6127 /*
6128 * Returning error will result in faulting task being
6129 * sent SIGBUS. The hugetlb fault mutex prevents two
6130 * tasks from racing to fault in the same page which
6131 * could result in false unable to allocate errors.
6132 * Page migration does not take the fault mutex, but
6133 * does a clear then write of pte's under page table
6134 * lock. Page fault code could race with migration,
6135 * notice the clear pte and try to allocate a page
6136 * here. Before returning error, get ptl and make
6137 * sure there really is no pte entry.
6138 */
6139 if (hugetlb_pte_stable(h, mm, vmf->address, vmf->pte, vmf->orig_pte))
6140 ret = vmf_error(PTR_ERR(folio));
6141 else
6142 ret = 0;
6143 goto out;
6144 }
6145 folio_zero_user(folio, vmf->real_address);
6146 __folio_mark_uptodate(folio);
6147 new_folio = true;
6148
6149 if (vma->vm_flags & VM_MAYSHARE) {
6150 int err = hugetlb_add_to_page_cache(folio, mapping,
6151 vmf->pgoff);
6152 if (err) {
6153 /*
6154 * err can't be -EEXIST which implies someone
6155 * else consumed the reservation since hugetlb
6156 * fault mutex is held when add a hugetlb page
6157 * to the page cache. So it's safe to call
6158 * restore_reserve_on_error() here.
6159 */
6160 restore_reserve_on_error(h, vma, vmf->address,
6161 folio);
6162 folio_put(folio);
6163 ret = VM_FAULT_SIGBUS;
6164 goto out;
6165 }
6166 new_pagecache_folio = true;
6167 } else {
6168 folio_lock(folio);
6169 anon_rmap = 1;
6170 }
6171 } else {
6172 /*
6173 * If memory error occurs between mmap() and fault, some process
6174 * don't have hwpoisoned swap entry for errored virtual address.
6175 * So we need to block hugepage fault by PG_hwpoison bit check.
6176 */
6177 if (unlikely(folio_test_hwpoison(folio))) {
6178 ret = VM_FAULT_HWPOISON_LARGE |
6179 VM_FAULT_SET_HINDEX(hstate_index(h));
6180 goto backout_unlocked;
6181 }
6182
6183 /* Check for page in userfault range. */
6184 if (userfaultfd_minor(vma)) {
6185 folio_unlock(folio);
6186 folio_put(folio);
6187 /* See comment in userfaultfd_missing() block above */
6188 if (!hugetlb_pte_stable(h, mm, vmf->address, vmf->pte, vmf->orig_pte)) {
6189 ret = 0;
6190 goto out;
6191 }
6192 return hugetlb_handle_userfault(vmf, mapping,
6193 VM_UFFD_MINOR);
6194 }
6195 }
6196
6197 /*
6198 * If we are going to COW a private mapping later, we examine the
6199 * pending reservations for this page now. This will ensure that
6200 * any allocations necessary to record that reservation occur outside
6201 * the spinlock.
6202 */
6203 if ((vmf->flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
6204 if (vma_needs_reservation(h, vma, vmf->address) < 0) {
6205 ret = VM_FAULT_OOM;
6206 goto backout_unlocked;
6207 }
6208 /* Just decrements count, does not deallocate */
6209 vma_end_reservation(h, vma, vmf->address);
6210 }
6211
6212 vmf->ptl = huge_pte_lock(h, mm, vmf->pte);
6213 ret = 0;
6214 /* If pte changed from under us, retry */
6215 if (!pte_same(huge_ptep_get(mm, vmf->address, vmf->pte), vmf->orig_pte))
6216 goto backout;
6217
6218 if (anon_rmap)
6219 hugetlb_add_new_anon_rmap(folio, vma, vmf->address);
6220 else
6221 hugetlb_add_file_rmap(folio);
6222 new_pte = make_huge_pte(vma, &folio->page, ((vma->vm_flags & VM_WRITE)
6223 && (vma->vm_flags & VM_SHARED)));
6224 /*
6225 * If this pte was previously wr-protected, keep it wr-protected even
6226 * if populated.
6227 */
6228 if (unlikely(pte_marker_uffd_wp(vmf->orig_pte)))
6229 new_pte = huge_pte_mkuffd_wp(new_pte);
6230 set_huge_pte_at(mm, vmf->address, vmf->pte, new_pte, huge_page_size(h));
6231
6232 hugetlb_count_add(pages_per_huge_page(h), mm);
6233 if ((vmf->flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
6234 /* Optimization, do the COW without a second fault */
6235 ret = hugetlb_wp(folio, vmf);
6236 }
6237
6238 spin_unlock(vmf->ptl);
6239
6240 /*
6241 * Only set hugetlb_migratable in newly allocated pages. Existing pages
6242 * found in the pagecache may not have hugetlb_migratable if they have
6243 * been isolated for migration.
6244 */
6245 if (new_folio)
6246 folio_set_hugetlb_migratable(folio);
6247
6248 folio_unlock(folio);
6249out:
6250 hugetlb_vma_unlock_read(vma);
6251
6252 /*
6253 * We must check to release the per-VMA lock. __vmf_anon_prepare() is
6254 * the only way ret can be set to VM_FAULT_RETRY.
6255 */
6256 if (unlikely(ret & VM_FAULT_RETRY))
6257 vma_end_read(vma);
6258
6259 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6260 return ret;
6261
6262backout:
6263 spin_unlock(vmf->ptl);
6264backout_unlocked:
6265 if (new_folio && !new_pagecache_folio)
6266 restore_reserve_on_error(h, vma, vmf->address, folio);
6267
6268 folio_unlock(folio);
6269 folio_put(folio);
6270 goto out;
6271}
6272
6273#ifdef CONFIG_SMP
6274u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
6275{
6276 unsigned long key[2];
6277 u32 hash;
6278
6279 key[0] = (unsigned long) mapping;
6280 key[1] = idx;
6281
6282 hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0);
6283
6284 return hash & (num_fault_mutexes - 1);
6285}
6286#else
6287/*
6288 * For uniprocessor systems we always use a single mutex, so just
6289 * return 0 and avoid the hashing overhead.
6290 */
6291u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
6292{
6293 return 0;
6294}
6295#endif
6296
6297vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
6298 unsigned long address, unsigned int flags)
6299{
6300 vm_fault_t ret;
6301 u32 hash;
6302 struct folio *folio = NULL;
6303 struct folio *pagecache_folio = NULL;
6304 struct hstate *h = hstate_vma(vma);
6305 struct address_space *mapping;
6306 int need_wait_lock = 0;
6307 struct vm_fault vmf = {
6308 .vma = vma,
6309 .address = address & huge_page_mask(h),
6310 .real_address = address,
6311 .flags = flags,
6312 .pgoff = vma_hugecache_offset(h, vma,
6313 address & huge_page_mask(h)),
6314 /* TODO: Track hugetlb faults using vm_fault */
6315
6316 /*
6317 * Some fields may not be initialized, be careful as it may
6318 * be hard to debug if called functions make assumptions
6319 */
6320 };
6321
6322 /*
6323 * Serialize hugepage allocation and instantiation, so that we don't
6324 * get spurious allocation failures if two CPUs race to instantiate
6325 * the same page in the page cache.
6326 */
6327 mapping = vma->vm_file->f_mapping;
6328 hash = hugetlb_fault_mutex_hash(mapping, vmf.pgoff);
6329 mutex_lock(&hugetlb_fault_mutex_table[hash]);
6330
6331 /*
6332 * Acquire vma lock before calling huge_pte_alloc and hold
6333 * until finished with vmf.pte. This prevents huge_pmd_unshare from
6334 * being called elsewhere and making the vmf.pte no longer valid.
6335 */
6336 hugetlb_vma_lock_read(vma);
6337 vmf.pte = huge_pte_alloc(mm, vma, vmf.address, huge_page_size(h));
6338 if (!vmf.pte) {
6339 hugetlb_vma_unlock_read(vma);
6340 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6341 return VM_FAULT_OOM;
6342 }
6343
6344 vmf.orig_pte = huge_ptep_get(mm, vmf.address, vmf.pte);
6345 if (huge_pte_none_mostly(vmf.orig_pte)) {
6346 if (is_pte_marker(vmf.orig_pte)) {
6347 pte_marker marker =
6348 pte_marker_get(pte_to_swp_entry(vmf.orig_pte));
6349
6350 if (marker & PTE_MARKER_POISONED) {
6351 ret = VM_FAULT_HWPOISON_LARGE |
6352 VM_FAULT_SET_HINDEX(hstate_index(h));
6353 goto out_mutex;
6354 } else if (WARN_ON_ONCE(marker & PTE_MARKER_GUARD)) {
6355 /* This isn't supported in hugetlb. */
6356 ret = VM_FAULT_SIGSEGV;
6357 goto out_mutex;
6358 }
6359 }
6360
6361 /*
6362 * Other PTE markers should be handled the same way as none PTE.
6363 *
6364 * hugetlb_no_page will drop vma lock and hugetlb fault
6365 * mutex internally, which make us return immediately.
6366 */
6367 return hugetlb_no_page(mapping, &vmf);
6368 }
6369
6370 ret = 0;
6371
6372 /*
6373 * vmf.orig_pte could be a migration/hwpoison vmf.orig_pte at this
6374 * point, so this check prevents the kernel from going below assuming
6375 * that we have an active hugepage in pagecache. This goto expects
6376 * the 2nd page fault, and is_hugetlb_entry_(migration|hwpoisoned)
6377 * check will properly handle it.
6378 */
6379 if (!pte_present(vmf.orig_pte)) {
6380 if (unlikely(is_hugetlb_entry_migration(vmf.orig_pte))) {
6381 /*
6382 * Release the hugetlb fault lock now, but retain
6383 * the vma lock, because it is needed to guard the
6384 * huge_pte_lockptr() later in
6385 * migration_entry_wait_huge(). The vma lock will
6386 * be released there.
6387 */
6388 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6389 migration_entry_wait_huge(vma, vmf.address, vmf.pte);
6390 return 0;
6391 } else if (unlikely(is_hugetlb_entry_hwpoisoned(vmf.orig_pte)))
6392 ret = VM_FAULT_HWPOISON_LARGE |
6393 VM_FAULT_SET_HINDEX(hstate_index(h));
6394 goto out_mutex;
6395 }
6396
6397 /*
6398 * If we are going to COW/unshare the mapping later, we examine the
6399 * pending reservations for this page now. This will ensure that any
6400 * allocations necessary to record that reservation occur outside the
6401 * spinlock. Also lookup the pagecache page now as it is used to
6402 * determine if a reservation has been consumed.
6403 */
6404 if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) &&
6405 !(vma->vm_flags & VM_MAYSHARE) && !huge_pte_write(vmf.orig_pte)) {
6406 if (vma_needs_reservation(h, vma, vmf.address) < 0) {
6407 ret = VM_FAULT_OOM;
6408 goto out_mutex;
6409 }
6410 /* Just decrements count, does not deallocate */
6411 vma_end_reservation(h, vma, vmf.address);
6412
6413 pagecache_folio = filemap_lock_hugetlb_folio(h, mapping,
6414 vmf.pgoff);
6415 if (IS_ERR(pagecache_folio))
6416 pagecache_folio = NULL;
6417 }
6418
6419 vmf.ptl = huge_pte_lock(h, mm, vmf.pte);
6420
6421 /* Check for a racing update before calling hugetlb_wp() */
6422 if (unlikely(!pte_same(vmf.orig_pte, huge_ptep_get(mm, vmf.address, vmf.pte))))
6423 goto out_ptl;
6424
6425 /* Handle userfault-wp first, before trying to lock more pages */
6426 if (userfaultfd_wp(vma) && huge_pte_uffd_wp(huge_ptep_get(mm, vmf.address, vmf.pte)) &&
6427 (flags & FAULT_FLAG_WRITE) && !huge_pte_write(vmf.orig_pte)) {
6428 if (!userfaultfd_wp_async(vma)) {
6429 spin_unlock(vmf.ptl);
6430 if (pagecache_folio) {
6431 folio_unlock(pagecache_folio);
6432 folio_put(pagecache_folio);
6433 }
6434 hugetlb_vma_unlock_read(vma);
6435 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6436 return handle_userfault(&vmf, VM_UFFD_WP);
6437 }
6438
6439 vmf.orig_pte = huge_pte_clear_uffd_wp(vmf.orig_pte);
6440 set_huge_pte_at(mm, vmf.address, vmf.pte, vmf.orig_pte,
6441 huge_page_size(hstate_vma(vma)));
6442 /* Fallthrough to CoW */
6443 }
6444
6445 /*
6446 * hugetlb_wp() requires page locks of pte_page(vmf.orig_pte) and
6447 * pagecache_folio, so here we need take the former one
6448 * when folio != pagecache_folio or !pagecache_folio.
6449 */
6450 folio = page_folio(pte_page(vmf.orig_pte));
6451 if (folio != pagecache_folio)
6452 if (!folio_trylock(folio)) {
6453 need_wait_lock = 1;
6454 goto out_ptl;
6455 }
6456
6457 folio_get(folio);
6458
6459 if (flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) {
6460 if (!huge_pte_write(vmf.orig_pte)) {
6461 ret = hugetlb_wp(pagecache_folio, &vmf);
6462 goto out_put_page;
6463 } else if (likely(flags & FAULT_FLAG_WRITE)) {
6464 vmf.orig_pte = huge_pte_mkdirty(vmf.orig_pte);
6465 }
6466 }
6467 vmf.orig_pte = pte_mkyoung(vmf.orig_pte);
6468 if (huge_ptep_set_access_flags(vma, vmf.address, vmf.pte, vmf.orig_pte,
6469 flags & FAULT_FLAG_WRITE))
6470 update_mmu_cache(vma, vmf.address, vmf.pte);
6471out_put_page:
6472 if (folio != pagecache_folio)
6473 folio_unlock(folio);
6474 folio_put(folio);
6475out_ptl:
6476 spin_unlock(vmf.ptl);
6477
6478 if (pagecache_folio) {
6479 folio_unlock(pagecache_folio);
6480 folio_put(pagecache_folio);
6481 }
6482out_mutex:
6483 hugetlb_vma_unlock_read(vma);
6484
6485 /*
6486 * We must check to release the per-VMA lock. __vmf_anon_prepare() in
6487 * hugetlb_wp() is the only way ret can be set to VM_FAULT_RETRY.
6488 */
6489 if (unlikely(ret & VM_FAULT_RETRY))
6490 vma_end_read(vma);
6491
6492 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6493 /*
6494 * Generally it's safe to hold refcount during waiting page lock. But
6495 * here we just wait to defer the next page fault to avoid busy loop and
6496 * the page is not used after unlocked before returning from the current
6497 * page fault. So we are safe from accessing freed page, even if we wait
6498 * here without taking refcount.
6499 */
6500 if (need_wait_lock)
6501 folio_wait_locked(folio);
6502 return ret;
6503}
6504
6505#ifdef CONFIG_USERFAULTFD
6506/*
6507 * Can probably be eliminated, but still used by hugetlb_mfill_atomic_pte().
6508 */
6509static struct folio *alloc_hugetlb_folio_vma(struct hstate *h,
6510 struct vm_area_struct *vma, unsigned long address)
6511{
6512 struct mempolicy *mpol;
6513 nodemask_t *nodemask;
6514 struct folio *folio;
6515 gfp_t gfp_mask;
6516 int node;
6517
6518 gfp_mask = htlb_alloc_mask(h);
6519 node = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
6520 /*
6521 * This is used to allocate a temporary hugetlb to hold the copied
6522 * content, which will then be copied again to the final hugetlb
6523 * consuming a reservation. Set the alloc_fallback to false to indicate
6524 * that breaking the per-node hugetlb pool is not allowed in this case.
6525 */
6526 folio = alloc_hugetlb_folio_nodemask(h, node, nodemask, gfp_mask, false);
6527 mpol_cond_put(mpol);
6528
6529 return folio;
6530}
6531
6532/*
6533 * Used by userfaultfd UFFDIO_* ioctls. Based on userfaultfd's mfill_atomic_pte
6534 * with modifications for hugetlb pages.
6535 */
6536int hugetlb_mfill_atomic_pte(pte_t *dst_pte,
6537 struct vm_area_struct *dst_vma,
6538 unsigned long dst_addr,
6539 unsigned long src_addr,
6540 uffd_flags_t flags,
6541 struct folio **foliop)
6542{
6543 struct mm_struct *dst_mm = dst_vma->vm_mm;
6544 bool is_continue = uffd_flags_mode_is(flags, MFILL_ATOMIC_CONTINUE);
6545 bool wp_enabled = (flags & MFILL_ATOMIC_WP);
6546 struct hstate *h = hstate_vma(dst_vma);
6547 struct address_space *mapping = dst_vma->vm_file->f_mapping;
6548 pgoff_t idx = vma_hugecache_offset(h, dst_vma, dst_addr);
6549 unsigned long size = huge_page_size(h);
6550 int vm_shared = dst_vma->vm_flags & VM_SHARED;
6551 pte_t _dst_pte;
6552 spinlock_t *ptl;
6553 int ret = -ENOMEM;
6554 struct folio *folio;
6555 int writable;
6556 bool folio_in_pagecache = false;
6557
6558 if (uffd_flags_mode_is(flags, MFILL_ATOMIC_POISON)) {
6559 ptl = huge_pte_lock(h, dst_mm, dst_pte);
6560
6561 /* Don't overwrite any existing PTEs (even markers) */
6562 if (!huge_pte_none(huge_ptep_get(dst_mm, dst_addr, dst_pte))) {
6563 spin_unlock(ptl);
6564 return -EEXIST;
6565 }
6566
6567 _dst_pte = make_pte_marker(PTE_MARKER_POISONED);
6568 set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte, size);
6569
6570 /* No need to invalidate - it was non-present before */
6571 update_mmu_cache(dst_vma, dst_addr, dst_pte);
6572
6573 spin_unlock(ptl);
6574 return 0;
6575 }
6576
6577 if (is_continue) {
6578 ret = -EFAULT;
6579 folio = filemap_lock_hugetlb_folio(h, mapping, idx);
6580 if (IS_ERR(folio))
6581 goto out;
6582 folio_in_pagecache = true;
6583 } else if (!*foliop) {
6584 /* If a folio already exists, then it's UFFDIO_COPY for
6585 * a non-missing case. Return -EEXIST.
6586 */
6587 if (vm_shared &&
6588 hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
6589 ret = -EEXIST;
6590 goto out;
6591 }
6592
6593 folio = alloc_hugetlb_folio(dst_vma, dst_addr, 0);
6594 if (IS_ERR(folio)) {
6595 ret = -ENOMEM;
6596 goto out;
6597 }
6598
6599 ret = copy_folio_from_user(folio, (const void __user *) src_addr,
6600 false);
6601
6602 /* fallback to copy_from_user outside mmap_lock */
6603 if (unlikely(ret)) {
6604 ret = -ENOENT;
6605 /* Free the allocated folio which may have
6606 * consumed a reservation.
6607 */
6608 restore_reserve_on_error(h, dst_vma, dst_addr, folio);
6609 folio_put(folio);
6610
6611 /* Allocate a temporary folio to hold the copied
6612 * contents.
6613 */
6614 folio = alloc_hugetlb_folio_vma(h, dst_vma, dst_addr);
6615 if (!folio) {
6616 ret = -ENOMEM;
6617 goto out;
6618 }
6619 *foliop = folio;
6620 /* Set the outparam foliop and return to the caller to
6621 * copy the contents outside the lock. Don't free the
6622 * folio.
6623 */
6624 goto out;
6625 }
6626 } else {
6627 if (vm_shared &&
6628 hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
6629 folio_put(*foliop);
6630 ret = -EEXIST;
6631 *foliop = NULL;
6632 goto out;
6633 }
6634
6635 folio = alloc_hugetlb_folio(dst_vma, dst_addr, 0);
6636 if (IS_ERR(folio)) {
6637 folio_put(*foliop);
6638 ret = -ENOMEM;
6639 *foliop = NULL;
6640 goto out;
6641 }
6642 ret = copy_user_large_folio(folio, *foliop, dst_addr, dst_vma);
6643 folio_put(*foliop);
6644 *foliop = NULL;
6645 if (ret) {
6646 folio_put(folio);
6647 goto out;
6648 }
6649 }
6650
6651 /*
6652 * If we just allocated a new page, we need a memory barrier to ensure
6653 * that preceding stores to the page become visible before the
6654 * set_pte_at() write. The memory barrier inside __folio_mark_uptodate
6655 * is what we need.
6656 *
6657 * In the case where we have not allocated a new page (is_continue),
6658 * the page must already be uptodate. UFFDIO_CONTINUE already includes
6659 * an earlier smp_wmb() to ensure that prior stores will be visible
6660 * before the set_pte_at() write.
6661 */
6662 if (!is_continue)
6663 __folio_mark_uptodate(folio);
6664 else
6665 WARN_ON_ONCE(!folio_test_uptodate(folio));
6666
6667 /* Add shared, newly allocated pages to the page cache. */
6668 if (vm_shared && !is_continue) {
6669 ret = -EFAULT;
6670 if (idx >= (i_size_read(mapping->host) >> huge_page_shift(h)))
6671 goto out_release_nounlock;
6672
6673 /*
6674 * Serialization between remove_inode_hugepages() and
6675 * hugetlb_add_to_page_cache() below happens through the
6676 * hugetlb_fault_mutex_table that here must be hold by
6677 * the caller.
6678 */
6679 ret = hugetlb_add_to_page_cache(folio, mapping, idx);
6680 if (ret)
6681 goto out_release_nounlock;
6682 folio_in_pagecache = true;
6683 }
6684
6685 ptl = huge_pte_lock(h, dst_mm, dst_pte);
6686
6687 ret = -EIO;
6688 if (folio_test_hwpoison(folio))
6689 goto out_release_unlock;
6690
6691 /*
6692 * We allow to overwrite a pte marker: consider when both MISSING|WP
6693 * registered, we firstly wr-protect a none pte which has no page cache
6694 * page backing it, then access the page.
6695 */
6696 ret = -EEXIST;
6697 if (!huge_pte_none_mostly(huge_ptep_get(dst_mm, dst_addr, dst_pte)))
6698 goto out_release_unlock;
6699
6700 if (folio_in_pagecache)
6701 hugetlb_add_file_rmap(folio);
6702 else
6703 hugetlb_add_new_anon_rmap(folio, dst_vma, dst_addr);
6704
6705 /*
6706 * For either: (1) CONTINUE on a non-shared VMA, or (2) UFFDIO_COPY
6707 * with wp flag set, don't set pte write bit.
6708 */
6709 if (wp_enabled || (is_continue && !vm_shared))
6710 writable = 0;
6711 else
6712 writable = dst_vma->vm_flags & VM_WRITE;
6713
6714 _dst_pte = make_huge_pte(dst_vma, &folio->page, writable);
6715 /*
6716 * Always mark UFFDIO_COPY page dirty; note that this may not be
6717 * extremely important for hugetlbfs for now since swapping is not
6718 * supported, but we should still be clear in that this page cannot be
6719 * thrown away at will, even if write bit not set.
6720 */
6721 _dst_pte = huge_pte_mkdirty(_dst_pte);
6722 _dst_pte = pte_mkyoung(_dst_pte);
6723
6724 if (wp_enabled)
6725 _dst_pte = huge_pte_mkuffd_wp(_dst_pte);
6726
6727 set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte, size);
6728
6729 hugetlb_count_add(pages_per_huge_page(h), dst_mm);
6730
6731 /* No need to invalidate - it was non-present before */
6732 update_mmu_cache(dst_vma, dst_addr, dst_pte);
6733
6734 spin_unlock(ptl);
6735 if (!is_continue)
6736 folio_set_hugetlb_migratable(folio);
6737 if (vm_shared || is_continue)
6738 folio_unlock(folio);
6739 ret = 0;
6740out:
6741 return ret;
6742out_release_unlock:
6743 spin_unlock(ptl);
6744 if (vm_shared || is_continue)
6745 folio_unlock(folio);
6746out_release_nounlock:
6747 if (!folio_in_pagecache)
6748 restore_reserve_on_error(h, dst_vma, dst_addr, folio);
6749 folio_put(folio);
6750 goto out;
6751}
6752#endif /* CONFIG_USERFAULTFD */
6753
6754long hugetlb_change_protection(struct vm_area_struct *vma,
6755 unsigned long address, unsigned long end,
6756 pgprot_t newprot, unsigned long cp_flags)
6757{
6758 struct mm_struct *mm = vma->vm_mm;
6759 unsigned long start = address;
6760 pte_t *ptep;
6761 pte_t pte;
6762 struct hstate *h = hstate_vma(vma);
6763 long pages = 0, psize = huge_page_size(h);
6764 bool shared_pmd = false;
6765 struct mmu_notifier_range range;
6766 unsigned long last_addr_mask;
6767 bool uffd_wp = cp_flags & MM_CP_UFFD_WP;
6768 bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE;
6769
6770 /*
6771 * In the case of shared PMDs, the area to flush could be beyond
6772 * start/end. Set range.start/range.end to cover the maximum possible
6773 * range if PMD sharing is possible.
6774 */
6775 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA,
6776 0, mm, start, end);
6777 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
6778
6779 BUG_ON(address >= end);
6780 flush_cache_range(vma, range.start, range.end);
6781
6782 mmu_notifier_invalidate_range_start(&range);
6783 hugetlb_vma_lock_write(vma);
6784 i_mmap_lock_write(vma->vm_file->f_mapping);
6785 last_addr_mask = hugetlb_mask_last_page(h);
6786 for (; address < end; address += psize) {
6787 spinlock_t *ptl;
6788 ptep = hugetlb_walk(vma, address, psize);
6789 if (!ptep) {
6790 if (!uffd_wp) {
6791 address |= last_addr_mask;
6792 continue;
6793 }
6794 /*
6795 * Userfaultfd wr-protect requires pgtable
6796 * pre-allocations to install pte markers.
6797 */
6798 ptep = huge_pte_alloc(mm, vma, address, psize);
6799 if (!ptep) {
6800 pages = -ENOMEM;
6801 break;
6802 }
6803 }
6804 ptl = huge_pte_lock(h, mm, ptep);
6805 if (huge_pmd_unshare(mm, vma, address, ptep)) {
6806 /*
6807 * When uffd-wp is enabled on the vma, unshare
6808 * shouldn't happen at all. Warn about it if it
6809 * happened due to some reason.
6810 */
6811 WARN_ON_ONCE(uffd_wp || uffd_wp_resolve);
6812 pages++;
6813 spin_unlock(ptl);
6814 shared_pmd = true;
6815 address |= last_addr_mask;
6816 continue;
6817 }
6818 pte = huge_ptep_get(mm, address, ptep);
6819 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
6820 /* Nothing to do. */
6821 } else if (unlikely(is_hugetlb_entry_migration(pte))) {
6822 swp_entry_t entry = pte_to_swp_entry(pte);
6823 struct page *page = pfn_swap_entry_to_page(entry);
6824 pte_t newpte = pte;
6825
6826 if (is_writable_migration_entry(entry)) {
6827 if (PageAnon(page))
6828 entry = make_readable_exclusive_migration_entry(
6829 swp_offset(entry));
6830 else
6831 entry = make_readable_migration_entry(
6832 swp_offset(entry));
6833 newpte = swp_entry_to_pte(entry);
6834 pages++;
6835 }
6836
6837 if (uffd_wp)
6838 newpte = pte_swp_mkuffd_wp(newpte);
6839 else if (uffd_wp_resolve)
6840 newpte = pte_swp_clear_uffd_wp(newpte);
6841 if (!pte_same(pte, newpte))
6842 set_huge_pte_at(mm, address, ptep, newpte, psize);
6843 } else if (unlikely(is_pte_marker(pte))) {
6844 /*
6845 * Do nothing on a poison marker; page is
6846 * corrupted, permissons do not apply. Here
6847 * pte_marker_uffd_wp()==true implies !poison
6848 * because they're mutual exclusive.
6849 */
6850 if (pte_marker_uffd_wp(pte) && uffd_wp_resolve)
6851 /* Safe to modify directly (non-present->none). */
6852 huge_pte_clear(mm, address, ptep, psize);
6853 } else if (!huge_pte_none(pte)) {
6854 pte_t old_pte;
6855 unsigned int shift = huge_page_shift(hstate_vma(vma));
6856
6857 old_pte = huge_ptep_modify_prot_start(vma, address, ptep);
6858 pte = huge_pte_modify(old_pte, newprot);
6859 pte = arch_make_huge_pte(pte, shift, vma->vm_flags);
6860 if (uffd_wp)
6861 pte = huge_pte_mkuffd_wp(pte);
6862 else if (uffd_wp_resolve)
6863 pte = huge_pte_clear_uffd_wp(pte);
6864 huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte);
6865 pages++;
6866 } else {
6867 /* None pte */
6868 if (unlikely(uffd_wp))
6869 /* Safe to modify directly (none->non-present). */
6870 set_huge_pte_at(mm, address, ptep,
6871 make_pte_marker(PTE_MARKER_UFFD_WP),
6872 psize);
6873 }
6874 spin_unlock(ptl);
6875 }
6876 /*
6877 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
6878 * may have cleared our pud entry and done put_page on the page table:
6879 * once we release i_mmap_rwsem, another task can do the final put_page
6880 * and that page table be reused and filled with junk. If we actually
6881 * did unshare a page of pmds, flush the range corresponding to the pud.
6882 */
6883 if (shared_pmd)
6884 flush_hugetlb_tlb_range(vma, range.start, range.end);
6885 else
6886 flush_hugetlb_tlb_range(vma, start, end);
6887 /*
6888 * No need to call mmu_notifier_arch_invalidate_secondary_tlbs() we are
6889 * downgrading page table protection not changing it to point to a new
6890 * page.
6891 *
6892 * See Documentation/mm/mmu_notifier.rst
6893 */
6894 i_mmap_unlock_write(vma->vm_file->f_mapping);
6895 hugetlb_vma_unlock_write(vma);
6896 mmu_notifier_invalidate_range_end(&range);
6897
6898 return pages > 0 ? (pages << h->order) : pages;
6899}
6900
6901/* Return true if reservation was successful, false otherwise. */
6902bool hugetlb_reserve_pages(struct inode *inode,
6903 long from, long to,
6904 struct vm_area_struct *vma,
6905 vm_flags_t vm_flags)
6906{
6907 long chg = -1, add = -1;
6908 struct hstate *h = hstate_inode(inode);
6909 struct hugepage_subpool *spool = subpool_inode(inode);
6910 struct resv_map *resv_map;
6911 struct hugetlb_cgroup *h_cg = NULL;
6912 long gbl_reserve, regions_needed = 0;
6913
6914 /* This should never happen */
6915 if (from > to) {
6916 VM_WARN(1, "%s called with a negative range\n", __func__);
6917 return false;
6918 }
6919
6920 /*
6921 * vma specific semaphore used for pmd sharing and fault/truncation
6922 * synchronization
6923 */
6924 hugetlb_vma_lock_alloc(vma);
6925
6926 /*
6927 * Only apply hugepage reservation if asked. At fault time, an
6928 * attempt will be made for VM_NORESERVE to allocate a page
6929 * without using reserves
6930 */
6931 if (vm_flags & VM_NORESERVE)
6932 return true;
6933
6934 /*
6935 * Shared mappings base their reservation on the number of pages that
6936 * are already allocated on behalf of the file. Private mappings need
6937 * to reserve the full area even if read-only as mprotect() may be
6938 * called to make the mapping read-write. Assume !vma is a shm mapping
6939 */
6940 if (!vma || vma->vm_flags & VM_MAYSHARE) {
6941 /*
6942 * resv_map can not be NULL as hugetlb_reserve_pages is only
6943 * called for inodes for which resv_maps were created (see
6944 * hugetlbfs_get_inode).
6945 */
6946 resv_map = inode_resv_map(inode);
6947
6948 chg = region_chg(resv_map, from, to, ®ions_needed);
6949 } else {
6950 /* Private mapping. */
6951 resv_map = resv_map_alloc();
6952 if (!resv_map)
6953 goto out_err;
6954
6955 chg = to - from;
6956
6957 set_vma_resv_map(vma, resv_map);
6958 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
6959 }
6960
6961 if (chg < 0)
6962 goto out_err;
6963
6964 if (hugetlb_cgroup_charge_cgroup_rsvd(hstate_index(h),
6965 chg * pages_per_huge_page(h), &h_cg) < 0)
6966 goto out_err;
6967
6968 if (vma && !(vma->vm_flags & VM_MAYSHARE) && h_cg) {
6969 /* For private mappings, the hugetlb_cgroup uncharge info hangs
6970 * of the resv_map.
6971 */
6972 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, h_cg, h);
6973 }
6974
6975 /*
6976 * There must be enough pages in the subpool for the mapping. If
6977 * the subpool has a minimum size, there may be some global
6978 * reservations already in place (gbl_reserve).
6979 */
6980 gbl_reserve = hugepage_subpool_get_pages(spool, chg);
6981 if (gbl_reserve < 0)
6982 goto out_uncharge_cgroup;
6983
6984 /*
6985 * Check enough hugepages are available for the reservation.
6986 * Hand the pages back to the subpool if there are not
6987 */
6988 if (hugetlb_acct_memory(h, gbl_reserve) < 0)
6989 goto out_put_pages;
6990
6991 /*
6992 * Account for the reservations made. Shared mappings record regions
6993 * that have reservations as they are shared by multiple VMAs.
6994 * When the last VMA disappears, the region map says how much
6995 * the reservation was and the page cache tells how much of
6996 * the reservation was consumed. Private mappings are per-VMA and
6997 * only the consumed reservations are tracked. When the VMA
6998 * disappears, the original reservation is the VMA size and the
6999 * consumed reservations are stored in the map. Hence, nothing
7000 * else has to be done for private mappings here
7001 */
7002 if (!vma || vma->vm_flags & VM_MAYSHARE) {
7003 add = region_add(resv_map, from, to, regions_needed, h, h_cg);
7004
7005 if (unlikely(add < 0)) {
7006 hugetlb_acct_memory(h, -gbl_reserve);
7007 goto out_put_pages;
7008 } else if (unlikely(chg > add)) {
7009 /*
7010 * pages in this range were added to the reserve
7011 * map between region_chg and region_add. This
7012 * indicates a race with alloc_hugetlb_folio. Adjust
7013 * the subpool and reserve counts modified above
7014 * based on the difference.
7015 */
7016 long rsv_adjust;
7017
7018 /*
7019 * hugetlb_cgroup_uncharge_cgroup_rsvd() will put the
7020 * reference to h_cg->css. See comment below for detail.
7021 */
7022 hugetlb_cgroup_uncharge_cgroup_rsvd(
7023 hstate_index(h),
7024 (chg - add) * pages_per_huge_page(h), h_cg);
7025
7026 rsv_adjust = hugepage_subpool_put_pages(spool,
7027 chg - add);
7028 hugetlb_acct_memory(h, -rsv_adjust);
7029 } else if (h_cg) {
7030 /*
7031 * The file_regions will hold their own reference to
7032 * h_cg->css. So we should release the reference held
7033 * via hugetlb_cgroup_charge_cgroup_rsvd() when we are
7034 * done.
7035 */
7036 hugetlb_cgroup_put_rsvd_cgroup(h_cg);
7037 }
7038 }
7039 return true;
7040
7041out_put_pages:
7042 /* put back original number of pages, chg */
7043 (void)hugepage_subpool_put_pages(spool, chg);
7044out_uncharge_cgroup:
7045 hugetlb_cgroup_uncharge_cgroup_rsvd(hstate_index(h),
7046 chg * pages_per_huge_page(h), h_cg);
7047out_err:
7048 hugetlb_vma_lock_free(vma);
7049 if (!vma || vma->vm_flags & VM_MAYSHARE)
7050 /* Only call region_abort if the region_chg succeeded but the
7051 * region_add failed or didn't run.
7052 */
7053 if (chg >= 0 && add < 0)
7054 region_abort(resv_map, from, to, regions_needed);
7055 if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
7056 kref_put(&resv_map->refs, resv_map_release);
7057 set_vma_resv_map(vma, NULL);
7058 }
7059 return false;
7060}
7061
7062long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
7063 long freed)
7064{
7065 struct hstate *h = hstate_inode(inode);
7066 struct resv_map *resv_map = inode_resv_map(inode);
7067 long chg = 0;
7068 struct hugepage_subpool *spool = subpool_inode(inode);
7069 long gbl_reserve;
7070
7071 /*
7072 * Since this routine can be called in the evict inode path for all
7073 * hugetlbfs inodes, resv_map could be NULL.
7074 */
7075 if (resv_map) {
7076 chg = region_del(resv_map, start, end);
7077 /*
7078 * region_del() can fail in the rare case where a region
7079 * must be split and another region descriptor can not be
7080 * allocated. If end == LONG_MAX, it will not fail.
7081 */
7082 if (chg < 0)
7083 return chg;
7084 }
7085
7086 spin_lock(&inode->i_lock);
7087 inode->i_blocks -= (blocks_per_huge_page(h) * freed);
7088 spin_unlock(&inode->i_lock);
7089
7090 /*
7091 * If the subpool has a minimum size, the number of global
7092 * reservations to be released may be adjusted.
7093 *
7094 * Note that !resv_map implies freed == 0. So (chg - freed)
7095 * won't go negative.
7096 */
7097 gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
7098 hugetlb_acct_memory(h, -gbl_reserve);
7099
7100 return 0;
7101}
7102
7103#ifdef CONFIG_HUGETLB_PMD_PAGE_TABLE_SHARING
7104static unsigned long page_table_shareable(struct vm_area_struct *svma,
7105 struct vm_area_struct *vma,
7106 unsigned long addr, pgoff_t idx)
7107{
7108 unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
7109 svma->vm_start;
7110 unsigned long sbase = saddr & PUD_MASK;
7111 unsigned long s_end = sbase + PUD_SIZE;
7112
7113 /* Allow segments to share if only one is marked locked */
7114 unsigned long vm_flags = vma->vm_flags & ~VM_LOCKED_MASK;
7115 unsigned long svm_flags = svma->vm_flags & ~VM_LOCKED_MASK;
7116
7117 /*
7118 * match the virtual addresses, permission and the alignment of the
7119 * page table page.
7120 *
7121 * Also, vma_lock (vm_private_data) is required for sharing.
7122 */
7123 if (pmd_index(addr) != pmd_index(saddr) ||
7124 vm_flags != svm_flags ||
7125 !range_in_vma(svma, sbase, s_end) ||
7126 !svma->vm_private_data)
7127 return 0;
7128
7129 return saddr;
7130}
7131
7132bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
7133{
7134 unsigned long start = addr & PUD_MASK;
7135 unsigned long end = start + PUD_SIZE;
7136
7137#ifdef CONFIG_USERFAULTFD
7138 if (uffd_disable_huge_pmd_share(vma))
7139 return false;
7140#endif
7141 /*
7142 * check on proper vm_flags and page table alignment
7143 */
7144 if (!(vma->vm_flags & VM_MAYSHARE))
7145 return false;
7146 if (!vma->vm_private_data) /* vma lock required for sharing */
7147 return false;
7148 if (!range_in_vma(vma, start, end))
7149 return false;
7150 return true;
7151}
7152
7153/*
7154 * Determine if start,end range within vma could be mapped by shared pmd.
7155 * If yes, adjust start and end to cover range associated with possible
7156 * shared pmd mappings.
7157 */
7158void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
7159 unsigned long *start, unsigned long *end)
7160{
7161 unsigned long v_start = ALIGN(vma->vm_start, PUD_SIZE),
7162 v_end = ALIGN_DOWN(vma->vm_end, PUD_SIZE);
7163
7164 /*
7165 * vma needs to span at least one aligned PUD size, and the range
7166 * must be at least partially within in.
7167 */
7168 if (!(vma->vm_flags & VM_MAYSHARE) || !(v_end > v_start) ||
7169 (*end <= v_start) || (*start >= v_end))
7170 return;
7171
7172 /* Extend the range to be PUD aligned for a worst case scenario */
7173 if (*start > v_start)
7174 *start = ALIGN_DOWN(*start, PUD_SIZE);
7175
7176 if (*end < v_end)
7177 *end = ALIGN(*end, PUD_SIZE);
7178}
7179
7180/*
7181 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
7182 * and returns the corresponding pte. While this is not necessary for the
7183 * !shared pmd case because we can allocate the pmd later as well, it makes the
7184 * code much cleaner. pmd allocation is essential for the shared case because
7185 * pud has to be populated inside the same i_mmap_rwsem section - otherwise
7186 * racing tasks could either miss the sharing (see huge_pte_offset) or select a
7187 * bad pmd for sharing.
7188 */
7189pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
7190 unsigned long addr, pud_t *pud)
7191{
7192 struct address_space *mapping = vma->vm_file->f_mapping;
7193 pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
7194 vma->vm_pgoff;
7195 struct vm_area_struct *svma;
7196 unsigned long saddr;
7197 pte_t *spte = NULL;
7198 pte_t *pte;
7199
7200 i_mmap_lock_read(mapping);
7201 vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
7202 if (svma == vma)
7203 continue;
7204
7205 saddr = page_table_shareable(svma, vma, addr, idx);
7206 if (saddr) {
7207 spte = hugetlb_walk(svma, saddr,
7208 vma_mmu_pagesize(svma));
7209 if (spte) {
7210 ptdesc_pmd_pts_inc(virt_to_ptdesc(spte));
7211 break;
7212 }
7213 }
7214 }
7215
7216 if (!spte)
7217 goto out;
7218
7219 spin_lock(&mm->page_table_lock);
7220 if (pud_none(*pud)) {
7221 pud_populate(mm, pud,
7222 (pmd_t *)((unsigned long)spte & PAGE_MASK));
7223 mm_inc_nr_pmds(mm);
7224 } else {
7225 ptdesc_pmd_pts_dec(virt_to_ptdesc(spte));
7226 }
7227 spin_unlock(&mm->page_table_lock);
7228out:
7229 pte = (pte_t *)pmd_alloc(mm, pud, addr);
7230 i_mmap_unlock_read(mapping);
7231 return pte;
7232}
7233
7234/*
7235 * unmap huge page backed by shared pte.
7236 *
7237 * Called with page table lock held.
7238 *
7239 * returns: 1 successfully unmapped a shared pte page
7240 * 0 the underlying pte page is not shared, or it is the last user
7241 */
7242int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
7243 unsigned long addr, pte_t *ptep)
7244{
7245 unsigned long sz = huge_page_size(hstate_vma(vma));
7246 pgd_t *pgd = pgd_offset(mm, addr);
7247 p4d_t *p4d = p4d_offset(pgd, addr);
7248 pud_t *pud = pud_offset(p4d, addr);
7249
7250 i_mmap_assert_write_locked(vma->vm_file->f_mapping);
7251 hugetlb_vma_assert_locked(vma);
7252 if (sz != PMD_SIZE)
7253 return 0;
7254 if (!ptdesc_pmd_pts_count(virt_to_ptdesc(ptep)))
7255 return 0;
7256
7257 pud_clear(pud);
7258 ptdesc_pmd_pts_dec(virt_to_ptdesc(ptep));
7259 mm_dec_nr_pmds(mm);
7260 return 1;
7261}
7262
7263#else /* !CONFIG_HUGETLB_PMD_PAGE_TABLE_SHARING */
7264
7265pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
7266 unsigned long addr, pud_t *pud)
7267{
7268 return NULL;
7269}
7270
7271int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
7272 unsigned long addr, pte_t *ptep)
7273{
7274 return 0;
7275}
7276
7277void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
7278 unsigned long *start, unsigned long *end)
7279{
7280}
7281
7282bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
7283{
7284 return false;
7285}
7286#endif /* CONFIG_HUGETLB_PMD_PAGE_TABLE_SHARING */
7287
7288#ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
7289pte_t *huge_pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
7290 unsigned long addr, unsigned long sz)
7291{
7292 pgd_t *pgd;
7293 p4d_t *p4d;
7294 pud_t *pud;
7295 pte_t *pte = NULL;
7296
7297 pgd = pgd_offset(mm, addr);
7298 p4d = p4d_alloc(mm, pgd, addr);
7299 if (!p4d)
7300 return NULL;
7301 pud = pud_alloc(mm, p4d, addr);
7302 if (pud) {
7303 if (sz == PUD_SIZE) {
7304 pte = (pte_t *)pud;
7305 } else {
7306 BUG_ON(sz != PMD_SIZE);
7307 if (want_pmd_share(vma, addr) && pud_none(*pud))
7308 pte = huge_pmd_share(mm, vma, addr, pud);
7309 else
7310 pte = (pte_t *)pmd_alloc(mm, pud, addr);
7311 }
7312 }
7313
7314 if (pte) {
7315 pte_t pteval = ptep_get_lockless(pte);
7316
7317 BUG_ON(pte_present(pteval) && !pte_huge(pteval));
7318 }
7319
7320 return pte;
7321}
7322
7323/*
7324 * huge_pte_offset() - Walk the page table to resolve the hugepage
7325 * entry at address @addr
7326 *
7327 * Return: Pointer to page table entry (PUD or PMD) for
7328 * address @addr, or NULL if a !p*d_present() entry is encountered and the
7329 * size @sz doesn't match the hugepage size at this level of the page
7330 * table.
7331 */
7332pte_t *huge_pte_offset(struct mm_struct *mm,
7333 unsigned long addr, unsigned long sz)
7334{
7335 pgd_t *pgd;
7336 p4d_t *p4d;
7337 pud_t *pud;
7338 pmd_t *pmd;
7339
7340 pgd = pgd_offset(mm, addr);
7341 if (!pgd_present(*pgd))
7342 return NULL;
7343 p4d = p4d_offset(pgd, addr);
7344 if (!p4d_present(*p4d))
7345 return NULL;
7346
7347 pud = pud_offset(p4d, addr);
7348 if (sz == PUD_SIZE)
7349 /* must be pud huge, non-present or none */
7350 return (pte_t *)pud;
7351 if (!pud_present(*pud))
7352 return NULL;
7353 /* must have a valid entry and size to go further */
7354
7355 pmd = pmd_offset(pud, addr);
7356 /* must be pmd huge, non-present or none */
7357 return (pte_t *)pmd;
7358}
7359
7360/*
7361 * Return a mask that can be used to update an address to the last huge
7362 * page in a page table page mapping size. Used to skip non-present
7363 * page table entries when linearly scanning address ranges. Architectures
7364 * with unique huge page to page table relationships can define their own
7365 * version of this routine.
7366 */
7367unsigned long hugetlb_mask_last_page(struct hstate *h)
7368{
7369 unsigned long hp_size = huge_page_size(h);
7370
7371 if (hp_size == PUD_SIZE)
7372 return P4D_SIZE - PUD_SIZE;
7373 else if (hp_size == PMD_SIZE)
7374 return PUD_SIZE - PMD_SIZE;
7375 else
7376 return 0UL;
7377}
7378
7379#else
7380
7381/* See description above. Architectures can provide their own version. */
7382__weak unsigned long hugetlb_mask_last_page(struct hstate *h)
7383{
7384#ifdef CONFIG_HUGETLB_PMD_PAGE_TABLE_SHARING
7385 if (huge_page_size(h) == PMD_SIZE)
7386 return PUD_SIZE - PMD_SIZE;
7387#endif
7388 return 0UL;
7389}
7390
7391#endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
7392
7393bool isolate_hugetlb(struct folio *folio, struct list_head *list)
7394{
7395 bool ret = true;
7396
7397 spin_lock_irq(&hugetlb_lock);
7398 if (!folio_test_hugetlb(folio) ||
7399 !folio_test_hugetlb_migratable(folio) ||
7400 !folio_try_get(folio)) {
7401 ret = false;
7402 goto unlock;
7403 }
7404 folio_clear_hugetlb_migratable(folio);
7405 list_move_tail(&folio->lru, list);
7406unlock:
7407 spin_unlock_irq(&hugetlb_lock);
7408 return ret;
7409}
7410
7411int get_hwpoison_hugetlb_folio(struct folio *folio, bool *hugetlb, bool unpoison)
7412{
7413 int ret = 0;
7414
7415 *hugetlb = false;
7416 spin_lock_irq(&hugetlb_lock);
7417 if (folio_test_hugetlb(folio)) {
7418 *hugetlb = true;
7419 if (folio_test_hugetlb_freed(folio))
7420 ret = 0;
7421 else if (folio_test_hugetlb_migratable(folio) || unpoison)
7422 ret = folio_try_get(folio);
7423 else
7424 ret = -EBUSY;
7425 }
7426 spin_unlock_irq(&hugetlb_lock);
7427 return ret;
7428}
7429
7430int get_huge_page_for_hwpoison(unsigned long pfn, int flags,
7431 bool *migratable_cleared)
7432{
7433 int ret;
7434
7435 spin_lock_irq(&hugetlb_lock);
7436 ret = __get_huge_page_for_hwpoison(pfn, flags, migratable_cleared);
7437 spin_unlock_irq(&hugetlb_lock);
7438 return ret;
7439}
7440
7441void folio_putback_active_hugetlb(struct folio *folio)
7442{
7443 spin_lock_irq(&hugetlb_lock);
7444 folio_set_hugetlb_migratable(folio);
7445 list_move_tail(&folio->lru, &(folio_hstate(folio))->hugepage_activelist);
7446 spin_unlock_irq(&hugetlb_lock);
7447 folio_put(folio);
7448}
7449
7450void move_hugetlb_state(struct folio *old_folio, struct folio *new_folio, int reason)
7451{
7452 struct hstate *h = folio_hstate(old_folio);
7453
7454 hugetlb_cgroup_migrate(old_folio, new_folio);
7455 set_page_owner_migrate_reason(&new_folio->page, reason);
7456
7457 /*
7458 * transfer temporary state of the new hugetlb folio. This is
7459 * reverse to other transitions because the newpage is going to
7460 * be final while the old one will be freed so it takes over
7461 * the temporary status.
7462 *
7463 * Also note that we have to transfer the per-node surplus state
7464 * here as well otherwise the global surplus count will not match
7465 * the per-node's.
7466 */
7467 if (folio_test_hugetlb_temporary(new_folio)) {
7468 int old_nid = folio_nid(old_folio);
7469 int new_nid = folio_nid(new_folio);
7470
7471 folio_set_hugetlb_temporary(old_folio);
7472 folio_clear_hugetlb_temporary(new_folio);
7473
7474
7475 /*
7476 * There is no need to transfer the per-node surplus state
7477 * when we do not cross the node.
7478 */
7479 if (new_nid == old_nid)
7480 return;
7481 spin_lock_irq(&hugetlb_lock);
7482 if (h->surplus_huge_pages_node[old_nid]) {
7483 h->surplus_huge_pages_node[old_nid]--;
7484 h->surplus_huge_pages_node[new_nid]++;
7485 }
7486 spin_unlock_irq(&hugetlb_lock);
7487 }
7488}
7489
7490static void hugetlb_unshare_pmds(struct vm_area_struct *vma,
7491 unsigned long start,
7492 unsigned long end)
7493{
7494 struct hstate *h = hstate_vma(vma);
7495 unsigned long sz = huge_page_size(h);
7496 struct mm_struct *mm = vma->vm_mm;
7497 struct mmu_notifier_range range;
7498 unsigned long address;
7499 spinlock_t *ptl;
7500 pte_t *ptep;
7501
7502 if (!(vma->vm_flags & VM_MAYSHARE))
7503 return;
7504
7505 if (start >= end)
7506 return;
7507
7508 flush_cache_range(vma, start, end);
7509 /*
7510 * No need to call adjust_range_if_pmd_sharing_possible(), because
7511 * we have already done the PUD_SIZE alignment.
7512 */
7513 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm,
7514 start, end);
7515 mmu_notifier_invalidate_range_start(&range);
7516 hugetlb_vma_lock_write(vma);
7517 i_mmap_lock_write(vma->vm_file->f_mapping);
7518 for (address = start; address < end; address += PUD_SIZE) {
7519 ptep = hugetlb_walk(vma, address, sz);
7520 if (!ptep)
7521 continue;
7522 ptl = huge_pte_lock(h, mm, ptep);
7523 huge_pmd_unshare(mm, vma, address, ptep);
7524 spin_unlock(ptl);
7525 }
7526 flush_hugetlb_tlb_range(vma, start, end);
7527 i_mmap_unlock_write(vma->vm_file->f_mapping);
7528 hugetlb_vma_unlock_write(vma);
7529 /*
7530 * No need to call mmu_notifier_arch_invalidate_secondary_tlbs(), see
7531 * Documentation/mm/mmu_notifier.rst.
7532 */
7533 mmu_notifier_invalidate_range_end(&range);
7534}
7535
7536/*
7537 * This function will unconditionally remove all the shared pmd pgtable entries
7538 * within the specific vma for a hugetlbfs memory range.
7539 */
7540void hugetlb_unshare_all_pmds(struct vm_area_struct *vma)
7541{
7542 hugetlb_unshare_pmds(vma, ALIGN(vma->vm_start, PUD_SIZE),
7543 ALIGN_DOWN(vma->vm_end, PUD_SIZE));
7544}
7545
7546#ifdef CONFIG_CMA
7547static bool cma_reserve_called __initdata;
7548
7549static int __init cmdline_parse_hugetlb_cma(char *p)
7550{
7551 int nid, count = 0;
7552 unsigned long tmp;
7553 char *s = p;
7554
7555 while (*s) {
7556 if (sscanf(s, "%lu%n", &tmp, &count) != 1)
7557 break;
7558
7559 if (s[count] == ':') {
7560 if (tmp >= MAX_NUMNODES)
7561 break;
7562 nid = array_index_nospec(tmp, MAX_NUMNODES);
7563
7564 s += count + 1;
7565 tmp = memparse(s, &s);
7566 hugetlb_cma_size_in_node[nid] = tmp;
7567 hugetlb_cma_size += tmp;
7568
7569 /*
7570 * Skip the separator if have one, otherwise
7571 * break the parsing.
7572 */
7573 if (*s == ',')
7574 s++;
7575 else
7576 break;
7577 } else {
7578 hugetlb_cma_size = memparse(p, &p);
7579 break;
7580 }
7581 }
7582
7583 return 0;
7584}
7585
7586early_param("hugetlb_cma", cmdline_parse_hugetlb_cma);
7587
7588void __init hugetlb_cma_reserve(int order)
7589{
7590 unsigned long size, reserved, per_node;
7591 bool node_specific_cma_alloc = false;
7592 int nid;
7593
7594 /*
7595 * HugeTLB CMA reservation is required for gigantic
7596 * huge pages which could not be allocated via the
7597 * page allocator. Just warn if there is any change
7598 * breaking this assumption.
7599 */
7600 VM_WARN_ON(order <= MAX_PAGE_ORDER);
7601 cma_reserve_called = true;
7602
7603 if (!hugetlb_cma_size)
7604 return;
7605
7606 for (nid = 0; nid < MAX_NUMNODES; nid++) {
7607 if (hugetlb_cma_size_in_node[nid] == 0)
7608 continue;
7609
7610 if (!node_online(nid)) {
7611 pr_warn("hugetlb_cma: invalid node %d specified\n", nid);
7612 hugetlb_cma_size -= hugetlb_cma_size_in_node[nid];
7613 hugetlb_cma_size_in_node[nid] = 0;
7614 continue;
7615 }
7616
7617 if (hugetlb_cma_size_in_node[nid] < (PAGE_SIZE << order)) {
7618 pr_warn("hugetlb_cma: cma area of node %d should be at least %lu MiB\n",
7619 nid, (PAGE_SIZE << order) / SZ_1M);
7620 hugetlb_cma_size -= hugetlb_cma_size_in_node[nid];
7621 hugetlb_cma_size_in_node[nid] = 0;
7622 } else {
7623 node_specific_cma_alloc = true;
7624 }
7625 }
7626
7627 /* Validate the CMA size again in case some invalid nodes specified. */
7628 if (!hugetlb_cma_size)
7629 return;
7630
7631 if (hugetlb_cma_size < (PAGE_SIZE << order)) {
7632 pr_warn("hugetlb_cma: cma area should be at least %lu MiB\n",
7633 (PAGE_SIZE << order) / SZ_1M);
7634 hugetlb_cma_size = 0;
7635 return;
7636 }
7637
7638 if (!node_specific_cma_alloc) {
7639 /*
7640 * If 3 GB area is requested on a machine with 4 numa nodes,
7641 * let's allocate 1 GB on first three nodes and ignore the last one.
7642 */
7643 per_node = DIV_ROUND_UP(hugetlb_cma_size, nr_online_nodes);
7644 pr_info("hugetlb_cma: reserve %lu MiB, up to %lu MiB per node\n",
7645 hugetlb_cma_size / SZ_1M, per_node / SZ_1M);
7646 }
7647
7648 reserved = 0;
7649 for_each_online_node(nid) {
7650 int res;
7651 char name[CMA_MAX_NAME];
7652
7653 if (node_specific_cma_alloc) {
7654 if (hugetlb_cma_size_in_node[nid] == 0)
7655 continue;
7656
7657 size = hugetlb_cma_size_in_node[nid];
7658 } else {
7659 size = min(per_node, hugetlb_cma_size - reserved);
7660 }
7661
7662 size = round_up(size, PAGE_SIZE << order);
7663
7664 snprintf(name, sizeof(name), "hugetlb%d", nid);
7665 /*
7666 * Note that 'order per bit' is based on smallest size that
7667 * may be returned to CMA allocator in the case of
7668 * huge page demotion.
7669 */
7670 res = cma_declare_contiguous_nid(0, size, 0,
7671 PAGE_SIZE << order,
7672 HUGETLB_PAGE_ORDER, false, name,
7673 &hugetlb_cma[nid], nid);
7674 if (res) {
7675 pr_warn("hugetlb_cma: reservation failed: err %d, node %d",
7676 res, nid);
7677 continue;
7678 }
7679
7680 reserved += size;
7681 pr_info("hugetlb_cma: reserved %lu MiB on node %d\n",
7682 size / SZ_1M, nid);
7683
7684 if (reserved >= hugetlb_cma_size)
7685 break;
7686 }
7687
7688 if (!reserved)
7689 /*
7690 * hugetlb_cma_size is used to determine if allocations from
7691 * cma are possible. Set to zero if no cma regions are set up.
7692 */
7693 hugetlb_cma_size = 0;
7694}
7695
7696static void __init hugetlb_cma_check(void)
7697{
7698 if (!hugetlb_cma_size || cma_reserve_called)
7699 return;
7700
7701 pr_warn("hugetlb_cma: the option isn't supported by current arch\n");
7702}
7703
7704#endif /* CONFIG_CMA */
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Generic hugetlb support.
4 * (C) Nadia Yvette Chambers, April 2004
5 */
6#include <linux/list.h>
7#include <linux/init.h>
8#include <linux/mm.h>
9#include <linux/seq_file.h>
10#include <linux/sysctl.h>
11#include <linux/highmem.h>
12#include <linux/mmu_notifier.h>
13#include <linux/nodemask.h>
14#include <linux/pagemap.h>
15#include <linux/mempolicy.h>
16#include <linux/compiler.h>
17#include <linux/cpuset.h>
18#include <linux/mutex.h>
19#include <linux/memblock.h>
20#include <linux/sysfs.h>
21#include <linux/slab.h>
22#include <linux/sched/mm.h>
23#include <linux/mmdebug.h>
24#include <linux/sched/signal.h>
25#include <linux/rmap.h>
26#include <linux/string_helpers.h>
27#include <linux/swap.h>
28#include <linux/swapops.h>
29#include <linux/jhash.h>
30#include <linux/numa.h>
31#include <linux/llist.h>
32#include <linux/cma.h>
33#include <linux/migrate.h>
34#include <linux/nospec.h>
35#include <linux/delayacct.h>
36#include <linux/memory.h>
37
38#include <asm/page.h>
39#include <asm/pgalloc.h>
40#include <asm/tlb.h>
41
42#include <linux/io.h>
43#include <linux/hugetlb.h>
44#include <linux/hugetlb_cgroup.h>
45#include <linux/node.h>
46#include <linux/page_owner.h>
47#include "internal.h"
48#include "hugetlb_vmemmap.h"
49
50int hugetlb_max_hstate __read_mostly;
51unsigned int default_hstate_idx;
52struct hstate hstates[HUGE_MAX_HSTATE];
53
54#ifdef CONFIG_CMA
55static struct cma *hugetlb_cma[MAX_NUMNODES];
56static unsigned long hugetlb_cma_size_in_node[MAX_NUMNODES] __initdata;
57static bool hugetlb_cma_folio(struct folio *folio, unsigned int order)
58{
59 return cma_pages_valid(hugetlb_cma[folio_nid(folio)], &folio->page,
60 1 << order);
61}
62#else
63static bool hugetlb_cma_folio(struct folio *folio, unsigned int order)
64{
65 return false;
66}
67#endif
68static unsigned long hugetlb_cma_size __initdata;
69
70__initdata LIST_HEAD(huge_boot_pages);
71
72/* for command line parsing */
73static struct hstate * __initdata parsed_hstate;
74static unsigned long __initdata default_hstate_max_huge_pages;
75static bool __initdata parsed_valid_hugepagesz = true;
76static bool __initdata parsed_default_hugepagesz;
77static unsigned int default_hugepages_in_node[MAX_NUMNODES] __initdata;
78
79/*
80 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
81 * free_huge_pages, and surplus_huge_pages.
82 */
83DEFINE_SPINLOCK(hugetlb_lock);
84
85/*
86 * Serializes faults on the same logical page. This is used to
87 * prevent spurious OOMs when the hugepage pool is fully utilized.
88 */
89static int num_fault_mutexes;
90struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
91
92/* Forward declaration */
93static int hugetlb_acct_memory(struct hstate *h, long delta);
94static void hugetlb_vma_lock_free(struct vm_area_struct *vma);
95static void hugetlb_vma_lock_alloc(struct vm_area_struct *vma);
96static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma);
97static void hugetlb_unshare_pmds(struct vm_area_struct *vma,
98 unsigned long start, unsigned long end);
99
100static inline bool subpool_is_free(struct hugepage_subpool *spool)
101{
102 if (spool->count)
103 return false;
104 if (spool->max_hpages != -1)
105 return spool->used_hpages == 0;
106 if (spool->min_hpages != -1)
107 return spool->rsv_hpages == spool->min_hpages;
108
109 return true;
110}
111
112static inline void unlock_or_release_subpool(struct hugepage_subpool *spool,
113 unsigned long irq_flags)
114{
115 spin_unlock_irqrestore(&spool->lock, irq_flags);
116
117 /* If no pages are used, and no other handles to the subpool
118 * remain, give up any reservations based on minimum size and
119 * free the subpool */
120 if (subpool_is_free(spool)) {
121 if (spool->min_hpages != -1)
122 hugetlb_acct_memory(spool->hstate,
123 -spool->min_hpages);
124 kfree(spool);
125 }
126}
127
128struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
129 long min_hpages)
130{
131 struct hugepage_subpool *spool;
132
133 spool = kzalloc(sizeof(*spool), GFP_KERNEL);
134 if (!spool)
135 return NULL;
136
137 spin_lock_init(&spool->lock);
138 spool->count = 1;
139 spool->max_hpages = max_hpages;
140 spool->hstate = h;
141 spool->min_hpages = min_hpages;
142
143 if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
144 kfree(spool);
145 return NULL;
146 }
147 spool->rsv_hpages = min_hpages;
148
149 return spool;
150}
151
152void hugepage_put_subpool(struct hugepage_subpool *spool)
153{
154 unsigned long flags;
155
156 spin_lock_irqsave(&spool->lock, flags);
157 BUG_ON(!spool->count);
158 spool->count--;
159 unlock_or_release_subpool(spool, flags);
160}
161
162/*
163 * Subpool accounting for allocating and reserving pages.
164 * Return -ENOMEM if there are not enough resources to satisfy the
165 * request. Otherwise, return the number of pages by which the
166 * global pools must be adjusted (upward). The returned value may
167 * only be different than the passed value (delta) in the case where
168 * a subpool minimum size must be maintained.
169 */
170static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
171 long delta)
172{
173 long ret = delta;
174
175 if (!spool)
176 return ret;
177
178 spin_lock_irq(&spool->lock);
179
180 if (spool->max_hpages != -1) { /* maximum size accounting */
181 if ((spool->used_hpages + delta) <= spool->max_hpages)
182 spool->used_hpages += delta;
183 else {
184 ret = -ENOMEM;
185 goto unlock_ret;
186 }
187 }
188
189 /* minimum size accounting */
190 if (spool->min_hpages != -1 && spool->rsv_hpages) {
191 if (delta > spool->rsv_hpages) {
192 /*
193 * Asking for more reserves than those already taken on
194 * behalf of subpool. Return difference.
195 */
196 ret = delta - spool->rsv_hpages;
197 spool->rsv_hpages = 0;
198 } else {
199 ret = 0; /* reserves already accounted for */
200 spool->rsv_hpages -= delta;
201 }
202 }
203
204unlock_ret:
205 spin_unlock_irq(&spool->lock);
206 return ret;
207}
208
209/*
210 * Subpool accounting for freeing and unreserving pages.
211 * Return the number of global page reservations that must be dropped.
212 * The return value may only be different than the passed value (delta)
213 * in the case where a subpool minimum size must be maintained.
214 */
215static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
216 long delta)
217{
218 long ret = delta;
219 unsigned long flags;
220
221 if (!spool)
222 return delta;
223
224 spin_lock_irqsave(&spool->lock, flags);
225
226 if (spool->max_hpages != -1) /* maximum size accounting */
227 spool->used_hpages -= delta;
228
229 /* minimum size accounting */
230 if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
231 if (spool->rsv_hpages + delta <= spool->min_hpages)
232 ret = 0;
233 else
234 ret = spool->rsv_hpages + delta - spool->min_hpages;
235
236 spool->rsv_hpages += delta;
237 if (spool->rsv_hpages > spool->min_hpages)
238 spool->rsv_hpages = spool->min_hpages;
239 }
240
241 /*
242 * If hugetlbfs_put_super couldn't free spool due to an outstanding
243 * quota reference, free it now.
244 */
245 unlock_or_release_subpool(spool, flags);
246
247 return ret;
248}
249
250static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
251{
252 return HUGETLBFS_SB(inode->i_sb)->spool;
253}
254
255static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
256{
257 return subpool_inode(file_inode(vma->vm_file));
258}
259
260/*
261 * hugetlb vma_lock helper routines
262 */
263static bool __vma_shareable_lock(struct vm_area_struct *vma)
264{
265 return vma->vm_flags & (VM_MAYSHARE | VM_SHARED) &&
266 vma->vm_private_data;
267}
268
269void hugetlb_vma_lock_read(struct vm_area_struct *vma)
270{
271 if (__vma_shareable_lock(vma)) {
272 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
273
274 down_read(&vma_lock->rw_sema);
275 }
276}
277
278void hugetlb_vma_unlock_read(struct vm_area_struct *vma)
279{
280 if (__vma_shareable_lock(vma)) {
281 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
282
283 up_read(&vma_lock->rw_sema);
284 }
285}
286
287void hugetlb_vma_lock_write(struct vm_area_struct *vma)
288{
289 if (__vma_shareable_lock(vma)) {
290 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
291
292 down_write(&vma_lock->rw_sema);
293 }
294}
295
296void hugetlb_vma_unlock_write(struct vm_area_struct *vma)
297{
298 if (__vma_shareable_lock(vma)) {
299 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
300
301 up_write(&vma_lock->rw_sema);
302 }
303}
304
305int hugetlb_vma_trylock_write(struct vm_area_struct *vma)
306{
307 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
308
309 if (!__vma_shareable_lock(vma))
310 return 1;
311
312 return down_write_trylock(&vma_lock->rw_sema);
313}
314
315void hugetlb_vma_assert_locked(struct vm_area_struct *vma)
316{
317 if (__vma_shareable_lock(vma)) {
318 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
319
320 lockdep_assert_held(&vma_lock->rw_sema);
321 }
322}
323
324void hugetlb_vma_lock_release(struct kref *kref)
325{
326 struct hugetlb_vma_lock *vma_lock = container_of(kref,
327 struct hugetlb_vma_lock, refs);
328
329 kfree(vma_lock);
330}
331
332static void __hugetlb_vma_unlock_write_put(struct hugetlb_vma_lock *vma_lock)
333{
334 struct vm_area_struct *vma = vma_lock->vma;
335
336 /*
337 * vma_lock structure may or not be released as a result of put,
338 * it certainly will no longer be attached to vma so clear pointer.
339 * Semaphore synchronizes access to vma_lock->vma field.
340 */
341 vma_lock->vma = NULL;
342 vma->vm_private_data = NULL;
343 up_write(&vma_lock->rw_sema);
344 kref_put(&vma_lock->refs, hugetlb_vma_lock_release);
345}
346
347static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma)
348{
349 if (__vma_shareable_lock(vma)) {
350 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
351
352 __hugetlb_vma_unlock_write_put(vma_lock);
353 }
354}
355
356static void hugetlb_vma_lock_free(struct vm_area_struct *vma)
357{
358 /*
359 * Only present in sharable vmas.
360 */
361 if (!vma || !__vma_shareable_lock(vma))
362 return;
363
364 if (vma->vm_private_data) {
365 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
366
367 down_write(&vma_lock->rw_sema);
368 __hugetlb_vma_unlock_write_put(vma_lock);
369 }
370}
371
372static void hugetlb_vma_lock_alloc(struct vm_area_struct *vma)
373{
374 struct hugetlb_vma_lock *vma_lock;
375
376 /* Only establish in (flags) sharable vmas */
377 if (!vma || !(vma->vm_flags & VM_MAYSHARE))
378 return;
379
380 /* Should never get here with non-NULL vm_private_data */
381 if (vma->vm_private_data)
382 return;
383
384 vma_lock = kmalloc(sizeof(*vma_lock), GFP_KERNEL);
385 if (!vma_lock) {
386 /*
387 * If we can not allocate structure, then vma can not
388 * participate in pmd sharing. This is only a possible
389 * performance enhancement and memory saving issue.
390 * However, the lock is also used to synchronize page
391 * faults with truncation. If the lock is not present,
392 * unlikely races could leave pages in a file past i_size
393 * until the file is removed. Warn in the unlikely case of
394 * allocation failure.
395 */
396 pr_warn_once("HugeTLB: unable to allocate vma specific lock\n");
397 return;
398 }
399
400 kref_init(&vma_lock->refs);
401 init_rwsem(&vma_lock->rw_sema);
402 vma_lock->vma = vma;
403 vma->vm_private_data = vma_lock;
404}
405
406/* Helper that removes a struct file_region from the resv_map cache and returns
407 * it for use.
408 */
409static struct file_region *
410get_file_region_entry_from_cache(struct resv_map *resv, long from, long to)
411{
412 struct file_region *nrg;
413
414 VM_BUG_ON(resv->region_cache_count <= 0);
415
416 resv->region_cache_count--;
417 nrg = list_first_entry(&resv->region_cache, struct file_region, link);
418 list_del(&nrg->link);
419
420 nrg->from = from;
421 nrg->to = to;
422
423 return nrg;
424}
425
426static void copy_hugetlb_cgroup_uncharge_info(struct file_region *nrg,
427 struct file_region *rg)
428{
429#ifdef CONFIG_CGROUP_HUGETLB
430 nrg->reservation_counter = rg->reservation_counter;
431 nrg->css = rg->css;
432 if (rg->css)
433 css_get(rg->css);
434#endif
435}
436
437/* Helper that records hugetlb_cgroup uncharge info. */
438static void record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup *h_cg,
439 struct hstate *h,
440 struct resv_map *resv,
441 struct file_region *nrg)
442{
443#ifdef CONFIG_CGROUP_HUGETLB
444 if (h_cg) {
445 nrg->reservation_counter =
446 &h_cg->rsvd_hugepage[hstate_index(h)];
447 nrg->css = &h_cg->css;
448 /*
449 * The caller will hold exactly one h_cg->css reference for the
450 * whole contiguous reservation region. But this area might be
451 * scattered when there are already some file_regions reside in
452 * it. As a result, many file_regions may share only one css
453 * reference. In order to ensure that one file_region must hold
454 * exactly one h_cg->css reference, we should do css_get for
455 * each file_region and leave the reference held by caller
456 * untouched.
457 */
458 css_get(&h_cg->css);
459 if (!resv->pages_per_hpage)
460 resv->pages_per_hpage = pages_per_huge_page(h);
461 /* pages_per_hpage should be the same for all entries in
462 * a resv_map.
463 */
464 VM_BUG_ON(resv->pages_per_hpage != pages_per_huge_page(h));
465 } else {
466 nrg->reservation_counter = NULL;
467 nrg->css = NULL;
468 }
469#endif
470}
471
472static void put_uncharge_info(struct file_region *rg)
473{
474#ifdef CONFIG_CGROUP_HUGETLB
475 if (rg->css)
476 css_put(rg->css);
477#endif
478}
479
480static bool has_same_uncharge_info(struct file_region *rg,
481 struct file_region *org)
482{
483#ifdef CONFIG_CGROUP_HUGETLB
484 return rg->reservation_counter == org->reservation_counter &&
485 rg->css == org->css;
486
487#else
488 return true;
489#endif
490}
491
492static void coalesce_file_region(struct resv_map *resv, struct file_region *rg)
493{
494 struct file_region *nrg, *prg;
495
496 prg = list_prev_entry(rg, link);
497 if (&prg->link != &resv->regions && prg->to == rg->from &&
498 has_same_uncharge_info(prg, rg)) {
499 prg->to = rg->to;
500
501 list_del(&rg->link);
502 put_uncharge_info(rg);
503 kfree(rg);
504
505 rg = prg;
506 }
507
508 nrg = list_next_entry(rg, link);
509 if (&nrg->link != &resv->regions && nrg->from == rg->to &&
510 has_same_uncharge_info(nrg, rg)) {
511 nrg->from = rg->from;
512
513 list_del(&rg->link);
514 put_uncharge_info(rg);
515 kfree(rg);
516 }
517}
518
519static inline long
520hugetlb_resv_map_add(struct resv_map *map, struct list_head *rg, long from,
521 long to, struct hstate *h, struct hugetlb_cgroup *cg,
522 long *regions_needed)
523{
524 struct file_region *nrg;
525
526 if (!regions_needed) {
527 nrg = get_file_region_entry_from_cache(map, from, to);
528 record_hugetlb_cgroup_uncharge_info(cg, h, map, nrg);
529 list_add(&nrg->link, rg);
530 coalesce_file_region(map, nrg);
531 } else
532 *regions_needed += 1;
533
534 return to - from;
535}
536
537/*
538 * Must be called with resv->lock held.
539 *
540 * Calling this with regions_needed != NULL will count the number of pages
541 * to be added but will not modify the linked list. And regions_needed will
542 * indicate the number of file_regions needed in the cache to carry out to add
543 * the regions for this range.
544 */
545static long add_reservation_in_range(struct resv_map *resv, long f, long t,
546 struct hugetlb_cgroup *h_cg,
547 struct hstate *h, long *regions_needed)
548{
549 long add = 0;
550 struct list_head *head = &resv->regions;
551 long last_accounted_offset = f;
552 struct file_region *iter, *trg = NULL;
553 struct list_head *rg = NULL;
554
555 if (regions_needed)
556 *regions_needed = 0;
557
558 /* In this loop, we essentially handle an entry for the range
559 * [last_accounted_offset, iter->from), at every iteration, with some
560 * bounds checking.
561 */
562 list_for_each_entry_safe(iter, trg, head, link) {
563 /* Skip irrelevant regions that start before our range. */
564 if (iter->from < f) {
565 /* If this region ends after the last accounted offset,
566 * then we need to update last_accounted_offset.
567 */
568 if (iter->to > last_accounted_offset)
569 last_accounted_offset = iter->to;
570 continue;
571 }
572
573 /* When we find a region that starts beyond our range, we've
574 * finished.
575 */
576 if (iter->from >= t) {
577 rg = iter->link.prev;
578 break;
579 }
580
581 /* Add an entry for last_accounted_offset -> iter->from, and
582 * update last_accounted_offset.
583 */
584 if (iter->from > last_accounted_offset)
585 add += hugetlb_resv_map_add(resv, iter->link.prev,
586 last_accounted_offset,
587 iter->from, h, h_cg,
588 regions_needed);
589
590 last_accounted_offset = iter->to;
591 }
592
593 /* Handle the case where our range extends beyond
594 * last_accounted_offset.
595 */
596 if (!rg)
597 rg = head->prev;
598 if (last_accounted_offset < t)
599 add += hugetlb_resv_map_add(resv, rg, last_accounted_offset,
600 t, h, h_cg, regions_needed);
601
602 return add;
603}
604
605/* Must be called with resv->lock acquired. Will drop lock to allocate entries.
606 */
607static int allocate_file_region_entries(struct resv_map *resv,
608 int regions_needed)
609 __must_hold(&resv->lock)
610{
611 LIST_HEAD(allocated_regions);
612 int to_allocate = 0, i = 0;
613 struct file_region *trg = NULL, *rg = NULL;
614
615 VM_BUG_ON(regions_needed < 0);
616
617 /*
618 * Check for sufficient descriptors in the cache to accommodate
619 * the number of in progress add operations plus regions_needed.
620 *
621 * This is a while loop because when we drop the lock, some other call
622 * to region_add or region_del may have consumed some region_entries,
623 * so we keep looping here until we finally have enough entries for
624 * (adds_in_progress + regions_needed).
625 */
626 while (resv->region_cache_count <
627 (resv->adds_in_progress + regions_needed)) {
628 to_allocate = resv->adds_in_progress + regions_needed -
629 resv->region_cache_count;
630
631 /* At this point, we should have enough entries in the cache
632 * for all the existing adds_in_progress. We should only be
633 * needing to allocate for regions_needed.
634 */
635 VM_BUG_ON(resv->region_cache_count < resv->adds_in_progress);
636
637 spin_unlock(&resv->lock);
638 for (i = 0; i < to_allocate; i++) {
639 trg = kmalloc(sizeof(*trg), GFP_KERNEL);
640 if (!trg)
641 goto out_of_memory;
642 list_add(&trg->link, &allocated_regions);
643 }
644
645 spin_lock(&resv->lock);
646
647 list_splice(&allocated_regions, &resv->region_cache);
648 resv->region_cache_count += to_allocate;
649 }
650
651 return 0;
652
653out_of_memory:
654 list_for_each_entry_safe(rg, trg, &allocated_regions, link) {
655 list_del(&rg->link);
656 kfree(rg);
657 }
658 return -ENOMEM;
659}
660
661/*
662 * Add the huge page range represented by [f, t) to the reserve
663 * map. Regions will be taken from the cache to fill in this range.
664 * Sufficient regions should exist in the cache due to the previous
665 * call to region_chg with the same range, but in some cases the cache will not
666 * have sufficient entries due to races with other code doing region_add or
667 * region_del. The extra needed entries will be allocated.
668 *
669 * regions_needed is the out value provided by a previous call to region_chg.
670 *
671 * Return the number of new huge pages added to the map. This number is greater
672 * than or equal to zero. If file_region entries needed to be allocated for
673 * this operation and we were not able to allocate, it returns -ENOMEM.
674 * region_add of regions of length 1 never allocate file_regions and cannot
675 * fail; region_chg will always allocate at least 1 entry and a region_add for
676 * 1 page will only require at most 1 entry.
677 */
678static long region_add(struct resv_map *resv, long f, long t,
679 long in_regions_needed, struct hstate *h,
680 struct hugetlb_cgroup *h_cg)
681{
682 long add = 0, actual_regions_needed = 0;
683
684 spin_lock(&resv->lock);
685retry:
686
687 /* Count how many regions are actually needed to execute this add. */
688 add_reservation_in_range(resv, f, t, NULL, NULL,
689 &actual_regions_needed);
690
691 /*
692 * Check for sufficient descriptors in the cache to accommodate
693 * this add operation. Note that actual_regions_needed may be greater
694 * than in_regions_needed, as the resv_map may have been modified since
695 * the region_chg call. In this case, we need to make sure that we
696 * allocate extra entries, such that we have enough for all the
697 * existing adds_in_progress, plus the excess needed for this
698 * operation.
699 */
700 if (actual_regions_needed > in_regions_needed &&
701 resv->region_cache_count <
702 resv->adds_in_progress +
703 (actual_regions_needed - in_regions_needed)) {
704 /* region_add operation of range 1 should never need to
705 * allocate file_region entries.
706 */
707 VM_BUG_ON(t - f <= 1);
708
709 if (allocate_file_region_entries(
710 resv, actual_regions_needed - in_regions_needed)) {
711 return -ENOMEM;
712 }
713
714 goto retry;
715 }
716
717 add = add_reservation_in_range(resv, f, t, h_cg, h, NULL);
718
719 resv->adds_in_progress -= in_regions_needed;
720
721 spin_unlock(&resv->lock);
722 return add;
723}
724
725/*
726 * Examine the existing reserve map and determine how many
727 * huge pages in the specified range [f, t) are NOT currently
728 * represented. This routine is called before a subsequent
729 * call to region_add that will actually modify the reserve
730 * map to add the specified range [f, t). region_chg does
731 * not change the number of huge pages represented by the
732 * map. A number of new file_region structures is added to the cache as a
733 * placeholder, for the subsequent region_add call to use. At least 1
734 * file_region structure is added.
735 *
736 * out_regions_needed is the number of regions added to the
737 * resv->adds_in_progress. This value needs to be provided to a follow up call
738 * to region_add or region_abort for proper accounting.
739 *
740 * Returns the number of huge pages that need to be added to the existing
741 * reservation map for the range [f, t). This number is greater or equal to
742 * zero. -ENOMEM is returned if a new file_region structure or cache entry
743 * is needed and can not be allocated.
744 */
745static long region_chg(struct resv_map *resv, long f, long t,
746 long *out_regions_needed)
747{
748 long chg = 0;
749
750 spin_lock(&resv->lock);
751
752 /* Count how many hugepages in this range are NOT represented. */
753 chg = add_reservation_in_range(resv, f, t, NULL, NULL,
754 out_regions_needed);
755
756 if (*out_regions_needed == 0)
757 *out_regions_needed = 1;
758
759 if (allocate_file_region_entries(resv, *out_regions_needed))
760 return -ENOMEM;
761
762 resv->adds_in_progress += *out_regions_needed;
763
764 spin_unlock(&resv->lock);
765 return chg;
766}
767
768/*
769 * Abort the in progress add operation. The adds_in_progress field
770 * of the resv_map keeps track of the operations in progress between
771 * calls to region_chg and region_add. Operations are sometimes
772 * aborted after the call to region_chg. In such cases, region_abort
773 * is called to decrement the adds_in_progress counter. regions_needed
774 * is the value returned by the region_chg call, it is used to decrement
775 * the adds_in_progress counter.
776 *
777 * NOTE: The range arguments [f, t) are not needed or used in this
778 * routine. They are kept to make reading the calling code easier as
779 * arguments will match the associated region_chg call.
780 */
781static void region_abort(struct resv_map *resv, long f, long t,
782 long regions_needed)
783{
784 spin_lock(&resv->lock);
785 VM_BUG_ON(!resv->region_cache_count);
786 resv->adds_in_progress -= regions_needed;
787 spin_unlock(&resv->lock);
788}
789
790/*
791 * Delete the specified range [f, t) from the reserve map. If the
792 * t parameter is LONG_MAX, this indicates that ALL regions after f
793 * should be deleted. Locate the regions which intersect [f, t)
794 * and either trim, delete or split the existing regions.
795 *
796 * Returns the number of huge pages deleted from the reserve map.
797 * In the normal case, the return value is zero or more. In the
798 * case where a region must be split, a new region descriptor must
799 * be allocated. If the allocation fails, -ENOMEM will be returned.
800 * NOTE: If the parameter t == LONG_MAX, then we will never split
801 * a region and possibly return -ENOMEM. Callers specifying
802 * t == LONG_MAX do not need to check for -ENOMEM error.
803 */
804static long region_del(struct resv_map *resv, long f, long t)
805{
806 struct list_head *head = &resv->regions;
807 struct file_region *rg, *trg;
808 struct file_region *nrg = NULL;
809 long del = 0;
810
811retry:
812 spin_lock(&resv->lock);
813 list_for_each_entry_safe(rg, trg, head, link) {
814 /*
815 * Skip regions before the range to be deleted. file_region
816 * ranges are normally of the form [from, to). However, there
817 * may be a "placeholder" entry in the map which is of the form
818 * (from, to) with from == to. Check for placeholder entries
819 * at the beginning of the range to be deleted.
820 */
821 if (rg->to <= f && (rg->to != rg->from || rg->to != f))
822 continue;
823
824 if (rg->from >= t)
825 break;
826
827 if (f > rg->from && t < rg->to) { /* Must split region */
828 /*
829 * Check for an entry in the cache before dropping
830 * lock and attempting allocation.
831 */
832 if (!nrg &&
833 resv->region_cache_count > resv->adds_in_progress) {
834 nrg = list_first_entry(&resv->region_cache,
835 struct file_region,
836 link);
837 list_del(&nrg->link);
838 resv->region_cache_count--;
839 }
840
841 if (!nrg) {
842 spin_unlock(&resv->lock);
843 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
844 if (!nrg)
845 return -ENOMEM;
846 goto retry;
847 }
848
849 del += t - f;
850 hugetlb_cgroup_uncharge_file_region(
851 resv, rg, t - f, false);
852
853 /* New entry for end of split region */
854 nrg->from = t;
855 nrg->to = rg->to;
856
857 copy_hugetlb_cgroup_uncharge_info(nrg, rg);
858
859 INIT_LIST_HEAD(&nrg->link);
860
861 /* Original entry is trimmed */
862 rg->to = f;
863
864 list_add(&nrg->link, &rg->link);
865 nrg = NULL;
866 break;
867 }
868
869 if (f <= rg->from && t >= rg->to) { /* Remove entire region */
870 del += rg->to - rg->from;
871 hugetlb_cgroup_uncharge_file_region(resv, rg,
872 rg->to - rg->from, true);
873 list_del(&rg->link);
874 kfree(rg);
875 continue;
876 }
877
878 if (f <= rg->from) { /* Trim beginning of region */
879 hugetlb_cgroup_uncharge_file_region(resv, rg,
880 t - rg->from, false);
881
882 del += t - rg->from;
883 rg->from = t;
884 } else { /* Trim end of region */
885 hugetlb_cgroup_uncharge_file_region(resv, rg,
886 rg->to - f, false);
887
888 del += rg->to - f;
889 rg->to = f;
890 }
891 }
892
893 spin_unlock(&resv->lock);
894 kfree(nrg);
895 return del;
896}
897
898/*
899 * A rare out of memory error was encountered which prevented removal of
900 * the reserve map region for a page. The huge page itself was free'ed
901 * and removed from the page cache. This routine will adjust the subpool
902 * usage count, and the global reserve count if needed. By incrementing
903 * these counts, the reserve map entry which could not be deleted will
904 * appear as a "reserved" entry instead of simply dangling with incorrect
905 * counts.
906 */
907void hugetlb_fix_reserve_counts(struct inode *inode)
908{
909 struct hugepage_subpool *spool = subpool_inode(inode);
910 long rsv_adjust;
911 bool reserved = false;
912
913 rsv_adjust = hugepage_subpool_get_pages(spool, 1);
914 if (rsv_adjust > 0) {
915 struct hstate *h = hstate_inode(inode);
916
917 if (!hugetlb_acct_memory(h, 1))
918 reserved = true;
919 } else if (!rsv_adjust) {
920 reserved = true;
921 }
922
923 if (!reserved)
924 pr_warn("hugetlb: Huge Page Reserved count may go negative.\n");
925}
926
927/*
928 * Count and return the number of huge pages in the reserve map
929 * that intersect with the range [f, t).
930 */
931static long region_count(struct resv_map *resv, long f, long t)
932{
933 struct list_head *head = &resv->regions;
934 struct file_region *rg;
935 long chg = 0;
936
937 spin_lock(&resv->lock);
938 /* Locate each segment we overlap with, and count that overlap. */
939 list_for_each_entry(rg, head, link) {
940 long seg_from;
941 long seg_to;
942
943 if (rg->to <= f)
944 continue;
945 if (rg->from >= t)
946 break;
947
948 seg_from = max(rg->from, f);
949 seg_to = min(rg->to, t);
950
951 chg += seg_to - seg_from;
952 }
953 spin_unlock(&resv->lock);
954
955 return chg;
956}
957
958/*
959 * Convert the address within this vma to the page offset within
960 * the mapping, in pagecache page units; huge pages here.
961 */
962static pgoff_t vma_hugecache_offset(struct hstate *h,
963 struct vm_area_struct *vma, unsigned long address)
964{
965 return ((address - vma->vm_start) >> huge_page_shift(h)) +
966 (vma->vm_pgoff >> huge_page_order(h));
967}
968
969pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
970 unsigned long address)
971{
972 return vma_hugecache_offset(hstate_vma(vma), vma, address);
973}
974EXPORT_SYMBOL_GPL(linear_hugepage_index);
975
976/*
977 * Return the size of the pages allocated when backing a VMA. In the majority
978 * cases this will be same size as used by the page table entries.
979 */
980unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
981{
982 if (vma->vm_ops && vma->vm_ops->pagesize)
983 return vma->vm_ops->pagesize(vma);
984 return PAGE_SIZE;
985}
986EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
987
988/*
989 * Return the page size being used by the MMU to back a VMA. In the majority
990 * of cases, the page size used by the kernel matches the MMU size. On
991 * architectures where it differs, an architecture-specific 'strong'
992 * version of this symbol is required.
993 */
994__weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
995{
996 return vma_kernel_pagesize(vma);
997}
998
999/*
1000 * Flags for MAP_PRIVATE reservations. These are stored in the bottom
1001 * bits of the reservation map pointer, which are always clear due to
1002 * alignment.
1003 */
1004#define HPAGE_RESV_OWNER (1UL << 0)
1005#define HPAGE_RESV_UNMAPPED (1UL << 1)
1006#define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
1007
1008/*
1009 * These helpers are used to track how many pages are reserved for
1010 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
1011 * is guaranteed to have their future faults succeed.
1012 *
1013 * With the exception of hugetlb_dup_vma_private() which is called at fork(),
1014 * the reserve counters are updated with the hugetlb_lock held. It is safe
1015 * to reset the VMA at fork() time as it is not in use yet and there is no
1016 * chance of the global counters getting corrupted as a result of the values.
1017 *
1018 * The private mapping reservation is represented in a subtly different
1019 * manner to a shared mapping. A shared mapping has a region map associated
1020 * with the underlying file, this region map represents the backing file
1021 * pages which have ever had a reservation assigned which this persists even
1022 * after the page is instantiated. A private mapping has a region map
1023 * associated with the original mmap which is attached to all VMAs which
1024 * reference it, this region map represents those offsets which have consumed
1025 * reservation ie. where pages have been instantiated.
1026 */
1027static unsigned long get_vma_private_data(struct vm_area_struct *vma)
1028{
1029 return (unsigned long)vma->vm_private_data;
1030}
1031
1032static void set_vma_private_data(struct vm_area_struct *vma,
1033 unsigned long value)
1034{
1035 vma->vm_private_data = (void *)value;
1036}
1037
1038static void
1039resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map *resv_map,
1040 struct hugetlb_cgroup *h_cg,
1041 struct hstate *h)
1042{
1043#ifdef CONFIG_CGROUP_HUGETLB
1044 if (!h_cg || !h) {
1045 resv_map->reservation_counter = NULL;
1046 resv_map->pages_per_hpage = 0;
1047 resv_map->css = NULL;
1048 } else {
1049 resv_map->reservation_counter =
1050 &h_cg->rsvd_hugepage[hstate_index(h)];
1051 resv_map->pages_per_hpage = pages_per_huge_page(h);
1052 resv_map->css = &h_cg->css;
1053 }
1054#endif
1055}
1056
1057struct resv_map *resv_map_alloc(void)
1058{
1059 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
1060 struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
1061
1062 if (!resv_map || !rg) {
1063 kfree(resv_map);
1064 kfree(rg);
1065 return NULL;
1066 }
1067
1068 kref_init(&resv_map->refs);
1069 spin_lock_init(&resv_map->lock);
1070 INIT_LIST_HEAD(&resv_map->regions);
1071
1072 resv_map->adds_in_progress = 0;
1073 /*
1074 * Initialize these to 0. On shared mappings, 0's here indicate these
1075 * fields don't do cgroup accounting. On private mappings, these will be
1076 * re-initialized to the proper values, to indicate that hugetlb cgroup
1077 * reservations are to be un-charged from here.
1078 */
1079 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, NULL, NULL);
1080
1081 INIT_LIST_HEAD(&resv_map->region_cache);
1082 list_add(&rg->link, &resv_map->region_cache);
1083 resv_map->region_cache_count = 1;
1084
1085 return resv_map;
1086}
1087
1088void resv_map_release(struct kref *ref)
1089{
1090 struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
1091 struct list_head *head = &resv_map->region_cache;
1092 struct file_region *rg, *trg;
1093
1094 /* Clear out any active regions before we release the map. */
1095 region_del(resv_map, 0, LONG_MAX);
1096
1097 /* ... and any entries left in the cache */
1098 list_for_each_entry_safe(rg, trg, head, link) {
1099 list_del(&rg->link);
1100 kfree(rg);
1101 }
1102
1103 VM_BUG_ON(resv_map->adds_in_progress);
1104
1105 kfree(resv_map);
1106}
1107
1108static inline struct resv_map *inode_resv_map(struct inode *inode)
1109{
1110 /*
1111 * At inode evict time, i_mapping may not point to the original
1112 * address space within the inode. This original address space
1113 * contains the pointer to the resv_map. So, always use the
1114 * address space embedded within the inode.
1115 * The VERY common case is inode->mapping == &inode->i_data but,
1116 * this may not be true for device special inodes.
1117 */
1118 return (struct resv_map *)(&inode->i_data)->private_data;
1119}
1120
1121static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
1122{
1123 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1124 if (vma->vm_flags & VM_MAYSHARE) {
1125 struct address_space *mapping = vma->vm_file->f_mapping;
1126 struct inode *inode = mapping->host;
1127
1128 return inode_resv_map(inode);
1129
1130 } else {
1131 return (struct resv_map *)(get_vma_private_data(vma) &
1132 ~HPAGE_RESV_MASK);
1133 }
1134}
1135
1136static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
1137{
1138 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1139 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
1140
1141 set_vma_private_data(vma, (get_vma_private_data(vma) &
1142 HPAGE_RESV_MASK) | (unsigned long)map);
1143}
1144
1145static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
1146{
1147 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1148 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
1149
1150 set_vma_private_data(vma, get_vma_private_data(vma) | flags);
1151}
1152
1153static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
1154{
1155 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1156
1157 return (get_vma_private_data(vma) & flag) != 0;
1158}
1159
1160void hugetlb_dup_vma_private(struct vm_area_struct *vma)
1161{
1162 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1163 /*
1164 * Clear vm_private_data
1165 * - For shared mappings this is a per-vma semaphore that may be
1166 * allocated in a subsequent call to hugetlb_vm_op_open.
1167 * Before clearing, make sure pointer is not associated with vma
1168 * as this will leak the structure. This is the case when called
1169 * via clear_vma_resv_huge_pages() and hugetlb_vm_op_open has already
1170 * been called to allocate a new structure.
1171 * - For MAP_PRIVATE mappings, this is the reserve map which does
1172 * not apply to children. Faults generated by the children are
1173 * not guaranteed to succeed, even if read-only.
1174 */
1175 if (vma->vm_flags & VM_MAYSHARE) {
1176 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
1177
1178 if (vma_lock && vma_lock->vma != vma)
1179 vma->vm_private_data = NULL;
1180 } else
1181 vma->vm_private_data = NULL;
1182}
1183
1184/*
1185 * Reset and decrement one ref on hugepage private reservation.
1186 * Called with mm->mmap_lock writer semaphore held.
1187 * This function should be only used by move_vma() and operate on
1188 * same sized vma. It should never come here with last ref on the
1189 * reservation.
1190 */
1191void clear_vma_resv_huge_pages(struct vm_area_struct *vma)
1192{
1193 /*
1194 * Clear the old hugetlb private page reservation.
1195 * It has already been transferred to new_vma.
1196 *
1197 * During a mremap() operation of a hugetlb vma we call move_vma()
1198 * which copies vma into new_vma and unmaps vma. After the copy
1199 * operation both new_vma and vma share a reference to the resv_map
1200 * struct, and at that point vma is about to be unmapped. We don't
1201 * want to return the reservation to the pool at unmap of vma because
1202 * the reservation still lives on in new_vma, so simply decrement the
1203 * ref here and remove the resv_map reference from this vma.
1204 */
1205 struct resv_map *reservations = vma_resv_map(vma);
1206
1207 if (reservations && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1208 resv_map_put_hugetlb_cgroup_uncharge_info(reservations);
1209 kref_put(&reservations->refs, resv_map_release);
1210 }
1211
1212 hugetlb_dup_vma_private(vma);
1213}
1214
1215/* Returns true if the VMA has associated reserve pages */
1216static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
1217{
1218 if (vma->vm_flags & VM_NORESERVE) {
1219 /*
1220 * This address is already reserved by other process(chg == 0),
1221 * so, we should decrement reserved count. Without decrementing,
1222 * reserve count remains after releasing inode, because this
1223 * allocated page will go into page cache and is regarded as
1224 * coming from reserved pool in releasing step. Currently, we
1225 * don't have any other solution to deal with this situation
1226 * properly, so add work-around here.
1227 */
1228 if (vma->vm_flags & VM_MAYSHARE && chg == 0)
1229 return true;
1230 else
1231 return false;
1232 }
1233
1234 /* Shared mappings always use reserves */
1235 if (vma->vm_flags & VM_MAYSHARE) {
1236 /*
1237 * We know VM_NORESERVE is not set. Therefore, there SHOULD
1238 * be a region map for all pages. The only situation where
1239 * there is no region map is if a hole was punched via
1240 * fallocate. In this case, there really are no reserves to
1241 * use. This situation is indicated if chg != 0.
1242 */
1243 if (chg)
1244 return false;
1245 else
1246 return true;
1247 }
1248
1249 /*
1250 * Only the process that called mmap() has reserves for
1251 * private mappings.
1252 */
1253 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1254 /*
1255 * Like the shared case above, a hole punch or truncate
1256 * could have been performed on the private mapping.
1257 * Examine the value of chg to determine if reserves
1258 * actually exist or were previously consumed.
1259 * Very Subtle - The value of chg comes from a previous
1260 * call to vma_needs_reserves(). The reserve map for
1261 * private mappings has different (opposite) semantics
1262 * than that of shared mappings. vma_needs_reserves()
1263 * has already taken this difference in semantics into
1264 * account. Therefore, the meaning of chg is the same
1265 * as in the shared case above. Code could easily be
1266 * combined, but keeping it separate draws attention to
1267 * subtle differences.
1268 */
1269 if (chg)
1270 return false;
1271 else
1272 return true;
1273 }
1274
1275 return false;
1276}
1277
1278static void enqueue_hugetlb_folio(struct hstate *h, struct folio *folio)
1279{
1280 int nid = folio_nid(folio);
1281
1282 lockdep_assert_held(&hugetlb_lock);
1283 VM_BUG_ON_FOLIO(folio_ref_count(folio), folio);
1284
1285 list_move(&folio->lru, &h->hugepage_freelists[nid]);
1286 h->free_huge_pages++;
1287 h->free_huge_pages_node[nid]++;
1288 folio_set_hugetlb_freed(folio);
1289}
1290
1291static struct page *dequeue_huge_page_node_exact(struct hstate *h, int nid)
1292{
1293 struct page *page;
1294 bool pin = !!(current->flags & PF_MEMALLOC_PIN);
1295
1296 lockdep_assert_held(&hugetlb_lock);
1297 list_for_each_entry(page, &h->hugepage_freelists[nid], lru) {
1298 if (pin && !is_longterm_pinnable_page(page))
1299 continue;
1300
1301 if (PageHWPoison(page))
1302 continue;
1303
1304 list_move(&page->lru, &h->hugepage_activelist);
1305 set_page_refcounted(page);
1306 ClearHPageFreed(page);
1307 h->free_huge_pages--;
1308 h->free_huge_pages_node[nid]--;
1309 return page;
1310 }
1311
1312 return NULL;
1313}
1314
1315static struct page *dequeue_huge_page_nodemask(struct hstate *h, gfp_t gfp_mask, int nid,
1316 nodemask_t *nmask)
1317{
1318 unsigned int cpuset_mems_cookie;
1319 struct zonelist *zonelist;
1320 struct zone *zone;
1321 struct zoneref *z;
1322 int node = NUMA_NO_NODE;
1323
1324 zonelist = node_zonelist(nid, gfp_mask);
1325
1326retry_cpuset:
1327 cpuset_mems_cookie = read_mems_allowed_begin();
1328 for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
1329 struct page *page;
1330
1331 if (!cpuset_zone_allowed(zone, gfp_mask))
1332 continue;
1333 /*
1334 * no need to ask again on the same node. Pool is node rather than
1335 * zone aware
1336 */
1337 if (zone_to_nid(zone) == node)
1338 continue;
1339 node = zone_to_nid(zone);
1340
1341 page = dequeue_huge_page_node_exact(h, node);
1342 if (page)
1343 return page;
1344 }
1345 if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
1346 goto retry_cpuset;
1347
1348 return NULL;
1349}
1350
1351static unsigned long available_huge_pages(struct hstate *h)
1352{
1353 return h->free_huge_pages - h->resv_huge_pages;
1354}
1355
1356static struct page *dequeue_huge_page_vma(struct hstate *h,
1357 struct vm_area_struct *vma,
1358 unsigned long address, int avoid_reserve,
1359 long chg)
1360{
1361 struct page *page = NULL;
1362 struct mempolicy *mpol;
1363 gfp_t gfp_mask;
1364 nodemask_t *nodemask;
1365 int nid;
1366
1367 /*
1368 * A child process with MAP_PRIVATE mappings created by their parent
1369 * have no page reserves. This check ensures that reservations are
1370 * not "stolen". The child may still get SIGKILLed
1371 */
1372 if (!vma_has_reserves(vma, chg) && !available_huge_pages(h))
1373 goto err;
1374
1375 /* If reserves cannot be used, ensure enough pages are in the pool */
1376 if (avoid_reserve && !available_huge_pages(h))
1377 goto err;
1378
1379 gfp_mask = htlb_alloc_mask(h);
1380 nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
1381
1382 if (mpol_is_preferred_many(mpol)) {
1383 page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
1384
1385 /* Fallback to all nodes if page==NULL */
1386 nodemask = NULL;
1387 }
1388
1389 if (!page)
1390 page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
1391
1392 if (page && !avoid_reserve && vma_has_reserves(vma, chg)) {
1393 SetHPageRestoreReserve(page);
1394 h->resv_huge_pages--;
1395 }
1396
1397 mpol_cond_put(mpol);
1398 return page;
1399
1400err:
1401 return NULL;
1402}
1403
1404/*
1405 * common helper functions for hstate_next_node_to_{alloc|free}.
1406 * We may have allocated or freed a huge page based on a different
1407 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
1408 * be outside of *nodes_allowed. Ensure that we use an allowed
1409 * node for alloc or free.
1410 */
1411static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
1412{
1413 nid = next_node_in(nid, *nodes_allowed);
1414 VM_BUG_ON(nid >= MAX_NUMNODES);
1415
1416 return nid;
1417}
1418
1419static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
1420{
1421 if (!node_isset(nid, *nodes_allowed))
1422 nid = next_node_allowed(nid, nodes_allowed);
1423 return nid;
1424}
1425
1426/*
1427 * returns the previously saved node ["this node"] from which to
1428 * allocate a persistent huge page for the pool and advance the
1429 * next node from which to allocate, handling wrap at end of node
1430 * mask.
1431 */
1432static int hstate_next_node_to_alloc(struct hstate *h,
1433 nodemask_t *nodes_allowed)
1434{
1435 int nid;
1436
1437 VM_BUG_ON(!nodes_allowed);
1438
1439 nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
1440 h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
1441
1442 return nid;
1443}
1444
1445/*
1446 * helper for remove_pool_huge_page() - return the previously saved
1447 * node ["this node"] from which to free a huge page. Advance the
1448 * next node id whether or not we find a free huge page to free so
1449 * that the next attempt to free addresses the next node.
1450 */
1451static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1452{
1453 int nid;
1454
1455 VM_BUG_ON(!nodes_allowed);
1456
1457 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1458 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1459
1460 return nid;
1461}
1462
1463#define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask) \
1464 for (nr_nodes = nodes_weight(*mask); \
1465 nr_nodes > 0 && \
1466 ((node = hstate_next_node_to_alloc(hs, mask)) || 1); \
1467 nr_nodes--)
1468
1469#define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \
1470 for (nr_nodes = nodes_weight(*mask); \
1471 nr_nodes > 0 && \
1472 ((node = hstate_next_node_to_free(hs, mask)) || 1); \
1473 nr_nodes--)
1474
1475/* used to demote non-gigantic_huge pages as well */
1476static void __destroy_compound_gigantic_folio(struct folio *folio,
1477 unsigned int order, bool demote)
1478{
1479 int i;
1480 int nr_pages = 1 << order;
1481 struct page *p;
1482
1483 atomic_set(folio_mapcount_ptr(folio), 0);
1484 atomic_set(folio_subpages_mapcount_ptr(folio), 0);
1485 atomic_set(folio_pincount_ptr(folio), 0);
1486
1487 for (i = 1; i < nr_pages; i++) {
1488 p = folio_page(folio, i);
1489 p->mapping = NULL;
1490 clear_compound_head(p);
1491 if (!demote)
1492 set_page_refcounted(p);
1493 }
1494
1495 folio_set_compound_order(folio, 0);
1496 __folio_clear_head(folio);
1497}
1498
1499static void destroy_compound_hugetlb_folio_for_demote(struct folio *folio,
1500 unsigned int order)
1501{
1502 __destroy_compound_gigantic_folio(folio, order, true);
1503}
1504
1505#ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
1506static void destroy_compound_gigantic_folio(struct folio *folio,
1507 unsigned int order)
1508{
1509 __destroy_compound_gigantic_folio(folio, order, false);
1510}
1511
1512static void free_gigantic_folio(struct folio *folio, unsigned int order)
1513{
1514 /*
1515 * If the page isn't allocated using the cma allocator,
1516 * cma_release() returns false.
1517 */
1518#ifdef CONFIG_CMA
1519 int nid = folio_nid(folio);
1520
1521 if (cma_release(hugetlb_cma[nid], &folio->page, 1 << order))
1522 return;
1523#endif
1524
1525 free_contig_range(folio_pfn(folio), 1 << order);
1526}
1527
1528#ifdef CONFIG_CONTIG_ALLOC
1529static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask,
1530 int nid, nodemask_t *nodemask)
1531{
1532 struct page *page;
1533 unsigned long nr_pages = pages_per_huge_page(h);
1534 if (nid == NUMA_NO_NODE)
1535 nid = numa_mem_id();
1536
1537#ifdef CONFIG_CMA
1538 {
1539 int node;
1540
1541 if (hugetlb_cma[nid]) {
1542 page = cma_alloc(hugetlb_cma[nid], nr_pages,
1543 huge_page_order(h), true);
1544 if (page)
1545 return page_folio(page);
1546 }
1547
1548 if (!(gfp_mask & __GFP_THISNODE)) {
1549 for_each_node_mask(node, *nodemask) {
1550 if (node == nid || !hugetlb_cma[node])
1551 continue;
1552
1553 page = cma_alloc(hugetlb_cma[node], nr_pages,
1554 huge_page_order(h), true);
1555 if (page)
1556 return page_folio(page);
1557 }
1558 }
1559 }
1560#endif
1561
1562 page = alloc_contig_pages(nr_pages, gfp_mask, nid, nodemask);
1563 return page ? page_folio(page) : NULL;
1564}
1565
1566#else /* !CONFIG_CONTIG_ALLOC */
1567static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask,
1568 int nid, nodemask_t *nodemask)
1569{
1570 return NULL;
1571}
1572#endif /* CONFIG_CONTIG_ALLOC */
1573
1574#else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
1575static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask,
1576 int nid, nodemask_t *nodemask)
1577{
1578 return NULL;
1579}
1580static inline void free_gigantic_folio(struct folio *folio,
1581 unsigned int order) { }
1582static inline void destroy_compound_gigantic_folio(struct folio *folio,
1583 unsigned int order) { }
1584#endif
1585
1586/*
1587 * Remove hugetlb folio from lists, and update dtor so that the folio appears
1588 * as just a compound page.
1589 *
1590 * A reference is held on the folio, except in the case of demote.
1591 *
1592 * Must be called with hugetlb lock held.
1593 */
1594static void __remove_hugetlb_folio(struct hstate *h, struct folio *folio,
1595 bool adjust_surplus,
1596 bool demote)
1597{
1598 int nid = folio_nid(folio);
1599
1600 VM_BUG_ON_FOLIO(hugetlb_cgroup_from_folio(folio), folio);
1601 VM_BUG_ON_FOLIO(hugetlb_cgroup_from_folio_rsvd(folio), folio);
1602
1603 lockdep_assert_held(&hugetlb_lock);
1604 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1605 return;
1606
1607 list_del(&folio->lru);
1608
1609 if (folio_test_hugetlb_freed(folio)) {
1610 h->free_huge_pages--;
1611 h->free_huge_pages_node[nid]--;
1612 }
1613 if (adjust_surplus) {
1614 h->surplus_huge_pages--;
1615 h->surplus_huge_pages_node[nid]--;
1616 }
1617
1618 /*
1619 * Very subtle
1620 *
1621 * For non-gigantic pages set the destructor to the normal compound
1622 * page dtor. This is needed in case someone takes an additional
1623 * temporary ref to the page, and freeing is delayed until they drop
1624 * their reference.
1625 *
1626 * For gigantic pages set the destructor to the null dtor. This
1627 * destructor will never be called. Before freeing the gigantic
1628 * page destroy_compound_gigantic_folio will turn the folio into a
1629 * simple group of pages. After this the destructor does not
1630 * apply.
1631 *
1632 * This handles the case where more than one ref is held when and
1633 * after update_and_free_hugetlb_folio is called.
1634 *
1635 * In the case of demote we do not ref count the page as it will soon
1636 * be turned into a page of smaller size.
1637 */
1638 if (!demote)
1639 folio_ref_unfreeze(folio, 1);
1640 if (hstate_is_gigantic(h))
1641 folio_set_compound_dtor(folio, NULL_COMPOUND_DTOR);
1642 else
1643 folio_set_compound_dtor(folio, COMPOUND_PAGE_DTOR);
1644
1645 h->nr_huge_pages--;
1646 h->nr_huge_pages_node[nid]--;
1647}
1648
1649static void remove_hugetlb_folio(struct hstate *h, struct folio *folio,
1650 bool adjust_surplus)
1651{
1652 __remove_hugetlb_folio(h, folio, adjust_surplus, false);
1653}
1654
1655static void remove_hugetlb_folio_for_demote(struct hstate *h, struct folio *folio,
1656 bool adjust_surplus)
1657{
1658 __remove_hugetlb_folio(h, folio, adjust_surplus, true);
1659}
1660
1661static void add_hugetlb_folio(struct hstate *h, struct folio *folio,
1662 bool adjust_surplus)
1663{
1664 int zeroed;
1665 int nid = folio_nid(folio);
1666
1667 VM_BUG_ON_FOLIO(!folio_test_hugetlb_vmemmap_optimized(folio), folio);
1668
1669 lockdep_assert_held(&hugetlb_lock);
1670
1671 INIT_LIST_HEAD(&folio->lru);
1672 h->nr_huge_pages++;
1673 h->nr_huge_pages_node[nid]++;
1674
1675 if (adjust_surplus) {
1676 h->surplus_huge_pages++;
1677 h->surplus_huge_pages_node[nid]++;
1678 }
1679
1680 folio_set_compound_dtor(folio, HUGETLB_PAGE_DTOR);
1681 folio_change_private(folio, NULL);
1682 /*
1683 * We have to set hugetlb_vmemmap_optimized again as above
1684 * folio_change_private(folio, NULL) cleared it.
1685 */
1686 folio_set_hugetlb_vmemmap_optimized(folio);
1687
1688 /*
1689 * This folio is about to be managed by the hugetlb allocator and
1690 * should have no users. Drop our reference, and check for others
1691 * just in case.
1692 */
1693 zeroed = folio_put_testzero(folio);
1694 if (unlikely(!zeroed))
1695 /*
1696 * It is VERY unlikely soneone else has taken a ref on
1697 * the page. In this case, we simply return as the
1698 * hugetlb destructor (free_huge_page) will be called
1699 * when this other ref is dropped.
1700 */
1701 return;
1702
1703 arch_clear_hugepage_flags(&folio->page);
1704 enqueue_hugetlb_folio(h, folio);
1705}
1706
1707static void __update_and_free_page(struct hstate *h, struct page *page)
1708{
1709 int i;
1710 struct folio *folio = page_folio(page);
1711 struct page *subpage;
1712
1713 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1714 return;
1715
1716 /*
1717 * If we don't know which subpages are hwpoisoned, we can't free
1718 * the hugepage, so it's leaked intentionally.
1719 */
1720 if (folio_test_hugetlb_raw_hwp_unreliable(folio))
1721 return;
1722
1723 if (hugetlb_vmemmap_restore(h, page)) {
1724 spin_lock_irq(&hugetlb_lock);
1725 /*
1726 * If we cannot allocate vmemmap pages, just refuse to free the
1727 * page and put the page back on the hugetlb free list and treat
1728 * as a surplus page.
1729 */
1730 add_hugetlb_folio(h, folio, true);
1731 spin_unlock_irq(&hugetlb_lock);
1732 return;
1733 }
1734
1735 /*
1736 * Move PageHWPoison flag from head page to the raw error pages,
1737 * which makes any healthy subpages reusable.
1738 */
1739 if (unlikely(folio_test_hwpoison(folio)))
1740 hugetlb_clear_page_hwpoison(&folio->page);
1741
1742 for (i = 0; i < pages_per_huge_page(h); i++) {
1743 subpage = folio_page(folio, i);
1744 subpage->flags &= ~(1 << PG_locked | 1 << PG_error |
1745 1 << PG_referenced | 1 << PG_dirty |
1746 1 << PG_active | 1 << PG_private |
1747 1 << PG_writeback);
1748 }
1749
1750 /*
1751 * Non-gigantic pages demoted from CMA allocated gigantic pages
1752 * need to be given back to CMA in free_gigantic_folio.
1753 */
1754 if (hstate_is_gigantic(h) ||
1755 hugetlb_cma_folio(folio, huge_page_order(h))) {
1756 destroy_compound_gigantic_folio(folio, huge_page_order(h));
1757 free_gigantic_folio(folio, huge_page_order(h));
1758 } else {
1759 __free_pages(page, huge_page_order(h));
1760 }
1761}
1762
1763/*
1764 * As update_and_free_hugetlb_folio() can be called under any context, so we cannot
1765 * use GFP_KERNEL to allocate vmemmap pages. However, we can defer the
1766 * actual freeing in a workqueue to prevent from using GFP_ATOMIC to allocate
1767 * the vmemmap pages.
1768 *
1769 * free_hpage_workfn() locklessly retrieves the linked list of pages to be
1770 * freed and frees them one-by-one. As the page->mapping pointer is going
1771 * to be cleared in free_hpage_workfn() anyway, it is reused as the llist_node
1772 * structure of a lockless linked list of huge pages to be freed.
1773 */
1774static LLIST_HEAD(hpage_freelist);
1775
1776static void free_hpage_workfn(struct work_struct *work)
1777{
1778 struct llist_node *node;
1779
1780 node = llist_del_all(&hpage_freelist);
1781
1782 while (node) {
1783 struct page *page;
1784 struct hstate *h;
1785
1786 page = container_of((struct address_space **)node,
1787 struct page, mapping);
1788 node = node->next;
1789 page->mapping = NULL;
1790 /*
1791 * The VM_BUG_ON_PAGE(!PageHuge(page), page) in page_hstate()
1792 * is going to trigger because a previous call to
1793 * remove_hugetlb_folio() will call folio_set_compound_dtor
1794 * (folio, NULL_COMPOUND_DTOR), so do not use page_hstate()
1795 * directly.
1796 */
1797 h = size_to_hstate(page_size(page));
1798
1799 __update_and_free_page(h, page);
1800
1801 cond_resched();
1802 }
1803}
1804static DECLARE_WORK(free_hpage_work, free_hpage_workfn);
1805
1806static inline void flush_free_hpage_work(struct hstate *h)
1807{
1808 if (hugetlb_vmemmap_optimizable(h))
1809 flush_work(&free_hpage_work);
1810}
1811
1812static void update_and_free_hugetlb_folio(struct hstate *h, struct folio *folio,
1813 bool atomic)
1814{
1815 if (!folio_test_hugetlb_vmemmap_optimized(folio) || !atomic) {
1816 __update_and_free_page(h, &folio->page);
1817 return;
1818 }
1819
1820 /*
1821 * Defer freeing to avoid using GFP_ATOMIC to allocate vmemmap pages.
1822 *
1823 * Only call schedule_work() if hpage_freelist is previously
1824 * empty. Otherwise, schedule_work() had been called but the workfn
1825 * hasn't retrieved the list yet.
1826 */
1827 if (llist_add((struct llist_node *)&folio->mapping, &hpage_freelist))
1828 schedule_work(&free_hpage_work);
1829}
1830
1831static void update_and_free_pages_bulk(struct hstate *h, struct list_head *list)
1832{
1833 struct page *page, *t_page;
1834 struct folio *folio;
1835
1836 list_for_each_entry_safe(page, t_page, list, lru) {
1837 folio = page_folio(page);
1838 update_and_free_hugetlb_folio(h, folio, false);
1839 cond_resched();
1840 }
1841}
1842
1843struct hstate *size_to_hstate(unsigned long size)
1844{
1845 struct hstate *h;
1846
1847 for_each_hstate(h) {
1848 if (huge_page_size(h) == size)
1849 return h;
1850 }
1851 return NULL;
1852}
1853
1854void free_huge_page(struct page *page)
1855{
1856 /*
1857 * Can't pass hstate in here because it is called from the
1858 * compound page destructor.
1859 */
1860 struct folio *folio = page_folio(page);
1861 struct hstate *h = folio_hstate(folio);
1862 int nid = folio_nid(folio);
1863 struct hugepage_subpool *spool = hugetlb_folio_subpool(folio);
1864 bool restore_reserve;
1865 unsigned long flags;
1866
1867 VM_BUG_ON_FOLIO(folio_ref_count(folio), folio);
1868 VM_BUG_ON_FOLIO(folio_mapcount(folio), folio);
1869
1870 hugetlb_set_folio_subpool(folio, NULL);
1871 if (folio_test_anon(folio))
1872 __ClearPageAnonExclusive(&folio->page);
1873 folio->mapping = NULL;
1874 restore_reserve = folio_test_hugetlb_restore_reserve(folio);
1875 folio_clear_hugetlb_restore_reserve(folio);
1876
1877 /*
1878 * If HPageRestoreReserve was set on page, page allocation consumed a
1879 * reservation. If the page was associated with a subpool, there
1880 * would have been a page reserved in the subpool before allocation
1881 * via hugepage_subpool_get_pages(). Since we are 'restoring' the
1882 * reservation, do not call hugepage_subpool_put_pages() as this will
1883 * remove the reserved page from the subpool.
1884 */
1885 if (!restore_reserve) {
1886 /*
1887 * A return code of zero implies that the subpool will be
1888 * under its minimum size if the reservation is not restored
1889 * after page is free. Therefore, force restore_reserve
1890 * operation.
1891 */
1892 if (hugepage_subpool_put_pages(spool, 1) == 0)
1893 restore_reserve = true;
1894 }
1895
1896 spin_lock_irqsave(&hugetlb_lock, flags);
1897 folio_clear_hugetlb_migratable(folio);
1898 hugetlb_cgroup_uncharge_folio(hstate_index(h),
1899 pages_per_huge_page(h), folio);
1900 hugetlb_cgroup_uncharge_folio_rsvd(hstate_index(h),
1901 pages_per_huge_page(h), folio);
1902 if (restore_reserve)
1903 h->resv_huge_pages++;
1904
1905 if (folio_test_hugetlb_temporary(folio)) {
1906 remove_hugetlb_folio(h, folio, false);
1907 spin_unlock_irqrestore(&hugetlb_lock, flags);
1908 update_and_free_hugetlb_folio(h, folio, true);
1909 } else if (h->surplus_huge_pages_node[nid]) {
1910 /* remove the page from active list */
1911 remove_hugetlb_folio(h, folio, true);
1912 spin_unlock_irqrestore(&hugetlb_lock, flags);
1913 update_and_free_hugetlb_folio(h, folio, true);
1914 } else {
1915 arch_clear_hugepage_flags(page);
1916 enqueue_hugetlb_folio(h, folio);
1917 spin_unlock_irqrestore(&hugetlb_lock, flags);
1918 }
1919}
1920
1921/*
1922 * Must be called with the hugetlb lock held
1923 */
1924static void __prep_account_new_huge_page(struct hstate *h, int nid)
1925{
1926 lockdep_assert_held(&hugetlb_lock);
1927 h->nr_huge_pages++;
1928 h->nr_huge_pages_node[nid]++;
1929}
1930
1931static void __prep_new_hugetlb_folio(struct hstate *h, struct folio *folio)
1932{
1933 hugetlb_vmemmap_optimize(h, &folio->page);
1934 INIT_LIST_HEAD(&folio->lru);
1935 folio_set_compound_dtor(folio, HUGETLB_PAGE_DTOR);
1936 hugetlb_set_folio_subpool(folio, NULL);
1937 set_hugetlb_cgroup(folio, NULL);
1938 set_hugetlb_cgroup_rsvd(folio, NULL);
1939}
1940
1941static void prep_new_hugetlb_folio(struct hstate *h, struct folio *folio, int nid)
1942{
1943 __prep_new_hugetlb_folio(h, folio);
1944 spin_lock_irq(&hugetlb_lock);
1945 __prep_account_new_huge_page(h, nid);
1946 spin_unlock_irq(&hugetlb_lock);
1947}
1948
1949static bool __prep_compound_gigantic_folio(struct folio *folio,
1950 unsigned int order, bool demote)
1951{
1952 int i, j;
1953 int nr_pages = 1 << order;
1954 struct page *p;
1955
1956 __folio_clear_reserved(folio);
1957 __folio_set_head(folio);
1958 /* we rely on prep_new_hugetlb_folio to set the destructor */
1959 folio_set_compound_order(folio, order);
1960 for (i = 0; i < nr_pages; i++) {
1961 p = folio_page(folio, i);
1962
1963 /*
1964 * For gigantic hugepages allocated through bootmem at
1965 * boot, it's safer to be consistent with the not-gigantic
1966 * hugepages and clear the PG_reserved bit from all tail pages
1967 * too. Otherwise drivers using get_user_pages() to access tail
1968 * pages may get the reference counting wrong if they see
1969 * PG_reserved set on a tail page (despite the head page not
1970 * having PG_reserved set). Enforcing this consistency between
1971 * head and tail pages allows drivers to optimize away a check
1972 * on the head page when they need know if put_page() is needed
1973 * after get_user_pages().
1974 */
1975 if (i != 0) /* head page cleared above */
1976 __ClearPageReserved(p);
1977 /*
1978 * Subtle and very unlikely
1979 *
1980 * Gigantic 'page allocators' such as memblock or cma will
1981 * return a set of pages with each page ref counted. We need
1982 * to turn this set of pages into a compound page with tail
1983 * page ref counts set to zero. Code such as speculative page
1984 * cache adding could take a ref on a 'to be' tail page.
1985 * We need to respect any increased ref count, and only set
1986 * the ref count to zero if count is currently 1. If count
1987 * is not 1, we return an error. An error return indicates
1988 * the set of pages can not be converted to a gigantic page.
1989 * The caller who allocated the pages should then discard the
1990 * pages using the appropriate free interface.
1991 *
1992 * In the case of demote, the ref count will be zero.
1993 */
1994 if (!demote) {
1995 if (!page_ref_freeze(p, 1)) {
1996 pr_warn("HugeTLB page can not be used due to unexpected inflated ref count\n");
1997 goto out_error;
1998 }
1999 } else {
2000 VM_BUG_ON_PAGE(page_count(p), p);
2001 }
2002 if (i != 0)
2003 set_compound_head(p, &folio->page);
2004 }
2005 atomic_set(folio_mapcount_ptr(folio), -1);
2006 atomic_set(folio_subpages_mapcount_ptr(folio), 0);
2007 atomic_set(folio_pincount_ptr(folio), 0);
2008 return true;
2009
2010out_error:
2011 /* undo page modifications made above */
2012 for (j = 0; j < i; j++) {
2013 p = folio_page(folio, j);
2014 if (j != 0)
2015 clear_compound_head(p);
2016 set_page_refcounted(p);
2017 }
2018 /* need to clear PG_reserved on remaining tail pages */
2019 for (; j < nr_pages; j++) {
2020 p = folio_page(folio, j);
2021 __ClearPageReserved(p);
2022 }
2023 folio_set_compound_order(folio, 0);
2024 __folio_clear_head(folio);
2025 return false;
2026}
2027
2028static bool prep_compound_gigantic_folio(struct folio *folio,
2029 unsigned int order)
2030{
2031 return __prep_compound_gigantic_folio(folio, order, false);
2032}
2033
2034static bool prep_compound_gigantic_folio_for_demote(struct folio *folio,
2035 unsigned int order)
2036{
2037 return __prep_compound_gigantic_folio(folio, order, true);
2038}
2039
2040/*
2041 * PageHuge() only returns true for hugetlbfs pages, but not for normal or
2042 * transparent huge pages. See the PageTransHuge() documentation for more
2043 * details.
2044 */
2045int PageHuge(struct page *page)
2046{
2047 if (!PageCompound(page))
2048 return 0;
2049
2050 page = compound_head(page);
2051 return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
2052}
2053EXPORT_SYMBOL_GPL(PageHuge);
2054
2055/*
2056 * PageHeadHuge() only returns true for hugetlbfs head page, but not for
2057 * normal or transparent huge pages.
2058 */
2059int PageHeadHuge(struct page *page_head)
2060{
2061 if (!PageHead(page_head))
2062 return 0;
2063
2064 return page_head[1].compound_dtor == HUGETLB_PAGE_DTOR;
2065}
2066EXPORT_SYMBOL_GPL(PageHeadHuge);
2067
2068/*
2069 * Find and lock address space (mapping) in write mode.
2070 *
2071 * Upon entry, the page is locked which means that page_mapping() is
2072 * stable. Due to locking order, we can only trylock_write. If we can
2073 * not get the lock, simply return NULL to caller.
2074 */
2075struct address_space *hugetlb_page_mapping_lock_write(struct page *hpage)
2076{
2077 struct address_space *mapping = page_mapping(hpage);
2078
2079 if (!mapping)
2080 return mapping;
2081
2082 if (i_mmap_trylock_write(mapping))
2083 return mapping;
2084
2085 return NULL;
2086}
2087
2088pgoff_t hugetlb_basepage_index(struct page *page)
2089{
2090 struct page *page_head = compound_head(page);
2091 pgoff_t index = page_index(page_head);
2092 unsigned long compound_idx;
2093
2094 if (compound_order(page_head) >= MAX_ORDER)
2095 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
2096 else
2097 compound_idx = page - page_head;
2098
2099 return (index << compound_order(page_head)) + compound_idx;
2100}
2101
2102static struct folio *alloc_buddy_hugetlb_folio(struct hstate *h,
2103 gfp_t gfp_mask, int nid, nodemask_t *nmask,
2104 nodemask_t *node_alloc_noretry)
2105{
2106 int order = huge_page_order(h);
2107 struct page *page;
2108 bool alloc_try_hard = true;
2109 bool retry = true;
2110
2111 /*
2112 * By default we always try hard to allocate the page with
2113 * __GFP_RETRY_MAYFAIL flag. However, if we are allocating pages in
2114 * a loop (to adjust global huge page counts) and previous allocation
2115 * failed, do not continue to try hard on the same node. Use the
2116 * node_alloc_noretry bitmap to manage this state information.
2117 */
2118 if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry))
2119 alloc_try_hard = false;
2120 gfp_mask |= __GFP_COMP|__GFP_NOWARN;
2121 if (alloc_try_hard)
2122 gfp_mask |= __GFP_RETRY_MAYFAIL;
2123 if (nid == NUMA_NO_NODE)
2124 nid = numa_mem_id();
2125retry:
2126 page = __alloc_pages(gfp_mask, order, nid, nmask);
2127
2128 /* Freeze head page */
2129 if (page && !page_ref_freeze(page, 1)) {
2130 __free_pages(page, order);
2131 if (retry) { /* retry once */
2132 retry = false;
2133 goto retry;
2134 }
2135 /* WOW! twice in a row. */
2136 pr_warn("HugeTLB head page unexpected inflated ref count\n");
2137 page = NULL;
2138 }
2139
2140 /*
2141 * If we did not specify __GFP_RETRY_MAYFAIL, but still got a page this
2142 * indicates an overall state change. Clear bit so that we resume
2143 * normal 'try hard' allocations.
2144 */
2145 if (node_alloc_noretry && page && !alloc_try_hard)
2146 node_clear(nid, *node_alloc_noretry);
2147
2148 /*
2149 * If we tried hard to get a page but failed, set bit so that
2150 * subsequent attempts will not try as hard until there is an
2151 * overall state change.
2152 */
2153 if (node_alloc_noretry && !page && alloc_try_hard)
2154 node_set(nid, *node_alloc_noretry);
2155
2156 if (!page) {
2157 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
2158 return NULL;
2159 }
2160
2161 __count_vm_event(HTLB_BUDDY_PGALLOC);
2162 return page_folio(page);
2163}
2164
2165/*
2166 * Common helper to allocate a fresh hugetlb page. All specific allocators
2167 * should use this function to get new hugetlb pages
2168 *
2169 * Note that returned page is 'frozen': ref count of head page and all tail
2170 * pages is zero.
2171 */
2172static struct folio *alloc_fresh_hugetlb_folio(struct hstate *h,
2173 gfp_t gfp_mask, int nid, nodemask_t *nmask,
2174 nodemask_t *node_alloc_noretry)
2175{
2176 struct folio *folio;
2177 bool retry = false;
2178
2179retry:
2180 if (hstate_is_gigantic(h))
2181 folio = alloc_gigantic_folio(h, gfp_mask, nid, nmask);
2182 else
2183 folio = alloc_buddy_hugetlb_folio(h, gfp_mask,
2184 nid, nmask, node_alloc_noretry);
2185 if (!folio)
2186 return NULL;
2187 if (hstate_is_gigantic(h)) {
2188 if (!prep_compound_gigantic_folio(folio, huge_page_order(h))) {
2189 /*
2190 * Rare failure to convert pages to compound page.
2191 * Free pages and try again - ONCE!
2192 */
2193 free_gigantic_folio(folio, huge_page_order(h));
2194 if (!retry) {
2195 retry = true;
2196 goto retry;
2197 }
2198 return NULL;
2199 }
2200 }
2201 prep_new_hugetlb_folio(h, folio, folio_nid(folio));
2202
2203 return folio;
2204}
2205
2206/*
2207 * Allocates a fresh page to the hugetlb allocator pool in the node interleaved
2208 * manner.
2209 */
2210static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
2211 nodemask_t *node_alloc_noretry)
2212{
2213 struct folio *folio;
2214 int nr_nodes, node;
2215 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
2216
2217 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
2218 folio = alloc_fresh_hugetlb_folio(h, gfp_mask, node,
2219 nodes_allowed, node_alloc_noretry);
2220 if (folio) {
2221 free_huge_page(&folio->page); /* free it into the hugepage allocator */
2222 return 1;
2223 }
2224 }
2225
2226 return 0;
2227}
2228
2229/*
2230 * Remove huge page from pool from next node to free. Attempt to keep
2231 * persistent huge pages more or less balanced over allowed nodes.
2232 * This routine only 'removes' the hugetlb page. The caller must make
2233 * an additional call to free the page to low level allocators.
2234 * Called with hugetlb_lock locked.
2235 */
2236static struct page *remove_pool_huge_page(struct hstate *h,
2237 nodemask_t *nodes_allowed,
2238 bool acct_surplus)
2239{
2240 int nr_nodes, node;
2241 struct page *page = NULL;
2242 struct folio *folio;
2243
2244 lockdep_assert_held(&hugetlb_lock);
2245 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2246 /*
2247 * If we're returning unused surplus pages, only examine
2248 * nodes with surplus pages.
2249 */
2250 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
2251 !list_empty(&h->hugepage_freelists[node])) {
2252 page = list_entry(h->hugepage_freelists[node].next,
2253 struct page, lru);
2254 folio = page_folio(page);
2255 remove_hugetlb_folio(h, folio, acct_surplus);
2256 break;
2257 }
2258 }
2259
2260 return page;
2261}
2262
2263/*
2264 * Dissolve a given free hugepage into free buddy pages. This function does
2265 * nothing for in-use hugepages and non-hugepages.
2266 * This function returns values like below:
2267 *
2268 * -ENOMEM: failed to allocate vmemmap pages to free the freed hugepages
2269 * when the system is under memory pressure and the feature of
2270 * freeing unused vmemmap pages associated with each hugetlb page
2271 * is enabled.
2272 * -EBUSY: failed to dissolved free hugepages or the hugepage is in-use
2273 * (allocated or reserved.)
2274 * 0: successfully dissolved free hugepages or the page is not a
2275 * hugepage (considered as already dissolved)
2276 */
2277int dissolve_free_huge_page(struct page *page)
2278{
2279 int rc = -EBUSY;
2280 struct folio *folio = page_folio(page);
2281
2282retry:
2283 /* Not to disrupt normal path by vainly holding hugetlb_lock */
2284 if (!folio_test_hugetlb(folio))
2285 return 0;
2286
2287 spin_lock_irq(&hugetlb_lock);
2288 if (!folio_test_hugetlb(folio)) {
2289 rc = 0;
2290 goto out;
2291 }
2292
2293 if (!folio_ref_count(folio)) {
2294 struct hstate *h = folio_hstate(folio);
2295 if (!available_huge_pages(h))
2296 goto out;
2297
2298 /*
2299 * We should make sure that the page is already on the free list
2300 * when it is dissolved.
2301 */
2302 if (unlikely(!folio_test_hugetlb_freed(folio))) {
2303 spin_unlock_irq(&hugetlb_lock);
2304 cond_resched();
2305
2306 /*
2307 * Theoretically, we should return -EBUSY when we
2308 * encounter this race. In fact, we have a chance
2309 * to successfully dissolve the page if we do a
2310 * retry. Because the race window is quite small.
2311 * If we seize this opportunity, it is an optimization
2312 * for increasing the success rate of dissolving page.
2313 */
2314 goto retry;
2315 }
2316
2317 remove_hugetlb_folio(h, folio, false);
2318 h->max_huge_pages--;
2319 spin_unlock_irq(&hugetlb_lock);
2320
2321 /*
2322 * Normally update_and_free_hugtlb_folio will allocate required vmemmmap
2323 * before freeing the page. update_and_free_hugtlb_folio will fail to
2324 * free the page if it can not allocate required vmemmap. We
2325 * need to adjust max_huge_pages if the page is not freed.
2326 * Attempt to allocate vmemmmap here so that we can take
2327 * appropriate action on failure.
2328 */
2329 rc = hugetlb_vmemmap_restore(h, &folio->page);
2330 if (!rc) {
2331 update_and_free_hugetlb_folio(h, folio, false);
2332 } else {
2333 spin_lock_irq(&hugetlb_lock);
2334 add_hugetlb_folio(h, folio, false);
2335 h->max_huge_pages++;
2336 spin_unlock_irq(&hugetlb_lock);
2337 }
2338
2339 return rc;
2340 }
2341out:
2342 spin_unlock_irq(&hugetlb_lock);
2343 return rc;
2344}
2345
2346/*
2347 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
2348 * make specified memory blocks removable from the system.
2349 * Note that this will dissolve a free gigantic hugepage completely, if any
2350 * part of it lies within the given range.
2351 * Also note that if dissolve_free_huge_page() returns with an error, all
2352 * free hugepages that were dissolved before that error are lost.
2353 */
2354int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
2355{
2356 unsigned long pfn;
2357 struct page *page;
2358 int rc = 0;
2359 unsigned int order;
2360 struct hstate *h;
2361
2362 if (!hugepages_supported())
2363 return rc;
2364
2365 order = huge_page_order(&default_hstate);
2366 for_each_hstate(h)
2367 order = min(order, huge_page_order(h));
2368
2369 for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << order) {
2370 page = pfn_to_page(pfn);
2371 rc = dissolve_free_huge_page(page);
2372 if (rc)
2373 break;
2374 }
2375
2376 return rc;
2377}
2378
2379/*
2380 * Allocates a fresh surplus page from the page allocator.
2381 */
2382static struct page *alloc_surplus_huge_page(struct hstate *h, gfp_t gfp_mask,
2383 int nid, nodemask_t *nmask)
2384{
2385 struct folio *folio = NULL;
2386
2387 if (hstate_is_gigantic(h))
2388 return NULL;
2389
2390 spin_lock_irq(&hugetlb_lock);
2391 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages)
2392 goto out_unlock;
2393 spin_unlock_irq(&hugetlb_lock);
2394
2395 folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask, NULL);
2396 if (!folio)
2397 return NULL;
2398
2399 spin_lock_irq(&hugetlb_lock);
2400 /*
2401 * We could have raced with the pool size change.
2402 * Double check that and simply deallocate the new page
2403 * if we would end up overcommiting the surpluses. Abuse
2404 * temporary page to workaround the nasty free_huge_page
2405 * codeflow
2406 */
2407 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
2408 folio_set_hugetlb_temporary(folio);
2409 spin_unlock_irq(&hugetlb_lock);
2410 free_huge_page(&folio->page);
2411 return NULL;
2412 }
2413
2414 h->surplus_huge_pages++;
2415 h->surplus_huge_pages_node[folio_nid(folio)]++;
2416
2417out_unlock:
2418 spin_unlock_irq(&hugetlb_lock);
2419
2420 return &folio->page;
2421}
2422
2423static struct page *alloc_migrate_huge_page(struct hstate *h, gfp_t gfp_mask,
2424 int nid, nodemask_t *nmask)
2425{
2426 struct folio *folio;
2427
2428 if (hstate_is_gigantic(h))
2429 return NULL;
2430
2431 folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask, NULL);
2432 if (!folio)
2433 return NULL;
2434
2435 /* fresh huge pages are frozen */
2436 folio_ref_unfreeze(folio, 1);
2437 /*
2438 * We do not account these pages as surplus because they are only
2439 * temporary and will be released properly on the last reference
2440 */
2441 folio_set_hugetlb_temporary(folio);
2442
2443 return &folio->page;
2444}
2445
2446/*
2447 * Use the VMA's mpolicy to allocate a huge page from the buddy.
2448 */
2449static
2450struct page *alloc_buddy_huge_page_with_mpol(struct hstate *h,
2451 struct vm_area_struct *vma, unsigned long addr)
2452{
2453 struct page *page = NULL;
2454 struct mempolicy *mpol;
2455 gfp_t gfp_mask = htlb_alloc_mask(h);
2456 int nid;
2457 nodemask_t *nodemask;
2458
2459 nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
2460 if (mpol_is_preferred_many(mpol)) {
2461 gfp_t gfp = gfp_mask | __GFP_NOWARN;
2462
2463 gfp &= ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL);
2464 page = alloc_surplus_huge_page(h, gfp, nid, nodemask);
2465
2466 /* Fallback to all nodes if page==NULL */
2467 nodemask = NULL;
2468 }
2469
2470 if (!page)
2471 page = alloc_surplus_huge_page(h, gfp_mask, nid, nodemask);
2472 mpol_cond_put(mpol);
2473 return page;
2474}
2475
2476/* page migration callback function */
2477struct page *alloc_huge_page_nodemask(struct hstate *h, int preferred_nid,
2478 nodemask_t *nmask, gfp_t gfp_mask)
2479{
2480 spin_lock_irq(&hugetlb_lock);
2481 if (available_huge_pages(h)) {
2482 struct page *page;
2483
2484 page = dequeue_huge_page_nodemask(h, gfp_mask, preferred_nid, nmask);
2485 if (page) {
2486 spin_unlock_irq(&hugetlb_lock);
2487 return page;
2488 }
2489 }
2490 spin_unlock_irq(&hugetlb_lock);
2491
2492 return alloc_migrate_huge_page(h, gfp_mask, preferred_nid, nmask);
2493}
2494
2495/* mempolicy aware migration callback */
2496struct page *alloc_huge_page_vma(struct hstate *h, struct vm_area_struct *vma,
2497 unsigned long address)
2498{
2499 struct mempolicy *mpol;
2500 nodemask_t *nodemask;
2501 struct page *page;
2502 gfp_t gfp_mask;
2503 int node;
2504
2505 gfp_mask = htlb_alloc_mask(h);
2506 node = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
2507 page = alloc_huge_page_nodemask(h, node, nodemask, gfp_mask);
2508 mpol_cond_put(mpol);
2509
2510 return page;
2511}
2512
2513/*
2514 * Increase the hugetlb pool such that it can accommodate a reservation
2515 * of size 'delta'.
2516 */
2517static int gather_surplus_pages(struct hstate *h, long delta)
2518 __must_hold(&hugetlb_lock)
2519{
2520 LIST_HEAD(surplus_list);
2521 struct page *page, *tmp;
2522 int ret;
2523 long i;
2524 long needed, allocated;
2525 bool alloc_ok = true;
2526
2527 lockdep_assert_held(&hugetlb_lock);
2528 needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
2529 if (needed <= 0) {
2530 h->resv_huge_pages += delta;
2531 return 0;
2532 }
2533
2534 allocated = 0;
2535
2536 ret = -ENOMEM;
2537retry:
2538 spin_unlock_irq(&hugetlb_lock);
2539 for (i = 0; i < needed; i++) {
2540 page = alloc_surplus_huge_page(h, htlb_alloc_mask(h),
2541 NUMA_NO_NODE, NULL);
2542 if (!page) {
2543 alloc_ok = false;
2544 break;
2545 }
2546 list_add(&page->lru, &surplus_list);
2547 cond_resched();
2548 }
2549 allocated += i;
2550
2551 /*
2552 * After retaking hugetlb_lock, we need to recalculate 'needed'
2553 * because either resv_huge_pages or free_huge_pages may have changed.
2554 */
2555 spin_lock_irq(&hugetlb_lock);
2556 needed = (h->resv_huge_pages + delta) -
2557 (h->free_huge_pages + allocated);
2558 if (needed > 0) {
2559 if (alloc_ok)
2560 goto retry;
2561 /*
2562 * We were not able to allocate enough pages to
2563 * satisfy the entire reservation so we free what
2564 * we've allocated so far.
2565 */
2566 goto free;
2567 }
2568 /*
2569 * The surplus_list now contains _at_least_ the number of extra pages
2570 * needed to accommodate the reservation. Add the appropriate number
2571 * of pages to the hugetlb pool and free the extras back to the buddy
2572 * allocator. Commit the entire reservation here to prevent another
2573 * process from stealing the pages as they are added to the pool but
2574 * before they are reserved.
2575 */
2576 needed += allocated;
2577 h->resv_huge_pages += delta;
2578 ret = 0;
2579
2580 /* Free the needed pages to the hugetlb pool */
2581 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
2582 if ((--needed) < 0)
2583 break;
2584 /* Add the page to the hugetlb allocator */
2585 enqueue_hugetlb_folio(h, page_folio(page));
2586 }
2587free:
2588 spin_unlock_irq(&hugetlb_lock);
2589
2590 /*
2591 * Free unnecessary surplus pages to the buddy allocator.
2592 * Pages have no ref count, call free_huge_page directly.
2593 */
2594 list_for_each_entry_safe(page, tmp, &surplus_list, lru)
2595 free_huge_page(page);
2596 spin_lock_irq(&hugetlb_lock);
2597
2598 return ret;
2599}
2600
2601/*
2602 * This routine has two main purposes:
2603 * 1) Decrement the reservation count (resv_huge_pages) by the value passed
2604 * in unused_resv_pages. This corresponds to the prior adjustments made
2605 * to the associated reservation map.
2606 * 2) Free any unused surplus pages that may have been allocated to satisfy
2607 * the reservation. As many as unused_resv_pages may be freed.
2608 */
2609static void return_unused_surplus_pages(struct hstate *h,
2610 unsigned long unused_resv_pages)
2611{
2612 unsigned long nr_pages;
2613 struct page *page;
2614 LIST_HEAD(page_list);
2615
2616 lockdep_assert_held(&hugetlb_lock);
2617 /* Uncommit the reservation */
2618 h->resv_huge_pages -= unused_resv_pages;
2619
2620 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
2621 goto out;
2622
2623 /*
2624 * Part (or even all) of the reservation could have been backed
2625 * by pre-allocated pages. Only free surplus pages.
2626 */
2627 nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
2628
2629 /*
2630 * We want to release as many surplus pages as possible, spread
2631 * evenly across all nodes with memory. Iterate across these nodes
2632 * until we can no longer free unreserved surplus pages. This occurs
2633 * when the nodes with surplus pages have no free pages.
2634 * remove_pool_huge_page() will balance the freed pages across the
2635 * on-line nodes with memory and will handle the hstate accounting.
2636 */
2637 while (nr_pages--) {
2638 page = remove_pool_huge_page(h, &node_states[N_MEMORY], 1);
2639 if (!page)
2640 goto out;
2641
2642 list_add(&page->lru, &page_list);
2643 }
2644
2645out:
2646 spin_unlock_irq(&hugetlb_lock);
2647 update_and_free_pages_bulk(h, &page_list);
2648 spin_lock_irq(&hugetlb_lock);
2649}
2650
2651
2652/*
2653 * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
2654 * are used by the huge page allocation routines to manage reservations.
2655 *
2656 * vma_needs_reservation is called to determine if the huge page at addr
2657 * within the vma has an associated reservation. If a reservation is
2658 * needed, the value 1 is returned. The caller is then responsible for
2659 * managing the global reservation and subpool usage counts. After
2660 * the huge page has been allocated, vma_commit_reservation is called
2661 * to add the page to the reservation map. If the page allocation fails,
2662 * the reservation must be ended instead of committed. vma_end_reservation
2663 * is called in such cases.
2664 *
2665 * In the normal case, vma_commit_reservation returns the same value
2666 * as the preceding vma_needs_reservation call. The only time this
2667 * is not the case is if a reserve map was changed between calls. It
2668 * is the responsibility of the caller to notice the difference and
2669 * take appropriate action.
2670 *
2671 * vma_add_reservation is used in error paths where a reservation must
2672 * be restored when a newly allocated huge page must be freed. It is
2673 * to be called after calling vma_needs_reservation to determine if a
2674 * reservation exists.
2675 *
2676 * vma_del_reservation is used in error paths where an entry in the reserve
2677 * map was created during huge page allocation and must be removed. It is to
2678 * be called after calling vma_needs_reservation to determine if a reservation
2679 * exists.
2680 */
2681enum vma_resv_mode {
2682 VMA_NEEDS_RESV,
2683 VMA_COMMIT_RESV,
2684 VMA_END_RESV,
2685 VMA_ADD_RESV,
2686 VMA_DEL_RESV,
2687};
2688static long __vma_reservation_common(struct hstate *h,
2689 struct vm_area_struct *vma, unsigned long addr,
2690 enum vma_resv_mode mode)
2691{
2692 struct resv_map *resv;
2693 pgoff_t idx;
2694 long ret;
2695 long dummy_out_regions_needed;
2696
2697 resv = vma_resv_map(vma);
2698 if (!resv)
2699 return 1;
2700
2701 idx = vma_hugecache_offset(h, vma, addr);
2702 switch (mode) {
2703 case VMA_NEEDS_RESV:
2704 ret = region_chg(resv, idx, idx + 1, &dummy_out_regions_needed);
2705 /* We assume that vma_reservation_* routines always operate on
2706 * 1 page, and that adding to resv map a 1 page entry can only
2707 * ever require 1 region.
2708 */
2709 VM_BUG_ON(dummy_out_regions_needed != 1);
2710 break;
2711 case VMA_COMMIT_RESV:
2712 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2713 /* region_add calls of range 1 should never fail. */
2714 VM_BUG_ON(ret < 0);
2715 break;
2716 case VMA_END_RESV:
2717 region_abort(resv, idx, idx + 1, 1);
2718 ret = 0;
2719 break;
2720 case VMA_ADD_RESV:
2721 if (vma->vm_flags & VM_MAYSHARE) {
2722 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2723 /* region_add calls of range 1 should never fail. */
2724 VM_BUG_ON(ret < 0);
2725 } else {
2726 region_abort(resv, idx, idx + 1, 1);
2727 ret = region_del(resv, idx, idx + 1);
2728 }
2729 break;
2730 case VMA_DEL_RESV:
2731 if (vma->vm_flags & VM_MAYSHARE) {
2732 region_abort(resv, idx, idx + 1, 1);
2733 ret = region_del(resv, idx, idx + 1);
2734 } else {
2735 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2736 /* region_add calls of range 1 should never fail. */
2737 VM_BUG_ON(ret < 0);
2738 }
2739 break;
2740 default:
2741 BUG();
2742 }
2743
2744 if (vma->vm_flags & VM_MAYSHARE || mode == VMA_DEL_RESV)
2745 return ret;
2746 /*
2747 * We know private mapping must have HPAGE_RESV_OWNER set.
2748 *
2749 * In most cases, reserves always exist for private mappings.
2750 * However, a file associated with mapping could have been
2751 * hole punched or truncated after reserves were consumed.
2752 * As subsequent fault on such a range will not use reserves.
2753 * Subtle - The reserve map for private mappings has the
2754 * opposite meaning than that of shared mappings. If NO
2755 * entry is in the reserve map, it means a reservation exists.
2756 * If an entry exists in the reserve map, it means the
2757 * reservation has already been consumed. As a result, the
2758 * return value of this routine is the opposite of the
2759 * value returned from reserve map manipulation routines above.
2760 */
2761 if (ret > 0)
2762 return 0;
2763 if (ret == 0)
2764 return 1;
2765 return ret;
2766}
2767
2768static long vma_needs_reservation(struct hstate *h,
2769 struct vm_area_struct *vma, unsigned long addr)
2770{
2771 return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
2772}
2773
2774static long vma_commit_reservation(struct hstate *h,
2775 struct vm_area_struct *vma, unsigned long addr)
2776{
2777 return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
2778}
2779
2780static void vma_end_reservation(struct hstate *h,
2781 struct vm_area_struct *vma, unsigned long addr)
2782{
2783 (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
2784}
2785
2786static long vma_add_reservation(struct hstate *h,
2787 struct vm_area_struct *vma, unsigned long addr)
2788{
2789 return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
2790}
2791
2792static long vma_del_reservation(struct hstate *h,
2793 struct vm_area_struct *vma, unsigned long addr)
2794{
2795 return __vma_reservation_common(h, vma, addr, VMA_DEL_RESV);
2796}
2797
2798/*
2799 * This routine is called to restore reservation information on error paths.
2800 * It should ONLY be called for pages allocated via alloc_huge_page(), and
2801 * the hugetlb mutex should remain held when calling this routine.
2802 *
2803 * It handles two specific cases:
2804 * 1) A reservation was in place and the page consumed the reservation.
2805 * HPageRestoreReserve is set in the page.
2806 * 2) No reservation was in place for the page, so HPageRestoreReserve is
2807 * not set. However, alloc_huge_page always updates the reserve map.
2808 *
2809 * In case 1, free_huge_page later in the error path will increment the
2810 * global reserve count. But, free_huge_page does not have enough context
2811 * to adjust the reservation map. This case deals primarily with private
2812 * mappings. Adjust the reserve map here to be consistent with global
2813 * reserve count adjustments to be made by free_huge_page. Make sure the
2814 * reserve map indicates there is a reservation present.
2815 *
2816 * In case 2, simply undo reserve map modifications done by alloc_huge_page.
2817 */
2818void restore_reserve_on_error(struct hstate *h, struct vm_area_struct *vma,
2819 unsigned long address, struct page *page)
2820{
2821 long rc = vma_needs_reservation(h, vma, address);
2822
2823 if (HPageRestoreReserve(page)) {
2824 if (unlikely(rc < 0))
2825 /*
2826 * Rare out of memory condition in reserve map
2827 * manipulation. Clear HPageRestoreReserve so that
2828 * global reserve count will not be incremented
2829 * by free_huge_page. This will make it appear
2830 * as though the reservation for this page was
2831 * consumed. This may prevent the task from
2832 * faulting in the page at a later time. This
2833 * is better than inconsistent global huge page
2834 * accounting of reserve counts.
2835 */
2836 ClearHPageRestoreReserve(page);
2837 else if (rc)
2838 (void)vma_add_reservation(h, vma, address);
2839 else
2840 vma_end_reservation(h, vma, address);
2841 } else {
2842 if (!rc) {
2843 /*
2844 * This indicates there is an entry in the reserve map
2845 * not added by alloc_huge_page. We know it was added
2846 * before the alloc_huge_page call, otherwise
2847 * HPageRestoreReserve would be set on the page.
2848 * Remove the entry so that a subsequent allocation
2849 * does not consume a reservation.
2850 */
2851 rc = vma_del_reservation(h, vma, address);
2852 if (rc < 0)
2853 /*
2854 * VERY rare out of memory condition. Since
2855 * we can not delete the entry, set
2856 * HPageRestoreReserve so that the reserve
2857 * count will be incremented when the page
2858 * is freed. This reserve will be consumed
2859 * on a subsequent allocation.
2860 */
2861 SetHPageRestoreReserve(page);
2862 } else if (rc < 0) {
2863 /*
2864 * Rare out of memory condition from
2865 * vma_needs_reservation call. Memory allocation is
2866 * only attempted if a new entry is needed. Therefore,
2867 * this implies there is not an entry in the
2868 * reserve map.
2869 *
2870 * For shared mappings, no entry in the map indicates
2871 * no reservation. We are done.
2872 */
2873 if (!(vma->vm_flags & VM_MAYSHARE))
2874 /*
2875 * For private mappings, no entry indicates
2876 * a reservation is present. Since we can
2877 * not add an entry, set SetHPageRestoreReserve
2878 * on the page so reserve count will be
2879 * incremented when freed. This reserve will
2880 * be consumed on a subsequent allocation.
2881 */
2882 SetHPageRestoreReserve(page);
2883 } else
2884 /*
2885 * No reservation present, do nothing
2886 */
2887 vma_end_reservation(h, vma, address);
2888 }
2889}
2890
2891/*
2892 * alloc_and_dissolve_hugetlb_folio - Allocate a new folio and dissolve
2893 * the old one
2894 * @h: struct hstate old page belongs to
2895 * @old_folio: Old folio to dissolve
2896 * @list: List to isolate the page in case we need to
2897 * Returns 0 on success, otherwise negated error.
2898 */
2899static int alloc_and_dissolve_hugetlb_folio(struct hstate *h,
2900 struct folio *old_folio, struct list_head *list)
2901{
2902 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
2903 int nid = folio_nid(old_folio);
2904 struct folio *new_folio;
2905 int ret = 0;
2906
2907 /*
2908 * Before dissolving the folio, we need to allocate a new one for the
2909 * pool to remain stable. Here, we allocate the folio and 'prep' it
2910 * by doing everything but actually updating counters and adding to
2911 * the pool. This simplifies and let us do most of the processing
2912 * under the lock.
2913 */
2914 new_folio = alloc_buddy_hugetlb_folio(h, gfp_mask, nid, NULL, NULL);
2915 if (!new_folio)
2916 return -ENOMEM;
2917 __prep_new_hugetlb_folio(h, new_folio);
2918
2919retry:
2920 spin_lock_irq(&hugetlb_lock);
2921 if (!folio_test_hugetlb(old_folio)) {
2922 /*
2923 * Freed from under us. Drop new_folio too.
2924 */
2925 goto free_new;
2926 } else if (folio_ref_count(old_folio)) {
2927 /*
2928 * Someone has grabbed the folio, try to isolate it here.
2929 * Fail with -EBUSY if not possible.
2930 */
2931 spin_unlock_irq(&hugetlb_lock);
2932 ret = isolate_hugetlb(&old_folio->page, list);
2933 spin_lock_irq(&hugetlb_lock);
2934 goto free_new;
2935 } else if (!folio_test_hugetlb_freed(old_folio)) {
2936 /*
2937 * Folio's refcount is 0 but it has not been enqueued in the
2938 * freelist yet. Race window is small, so we can succeed here if
2939 * we retry.
2940 */
2941 spin_unlock_irq(&hugetlb_lock);
2942 cond_resched();
2943 goto retry;
2944 } else {
2945 /*
2946 * Ok, old_folio is still a genuine free hugepage. Remove it from
2947 * the freelist and decrease the counters. These will be
2948 * incremented again when calling __prep_account_new_huge_page()
2949 * and enqueue_hugetlb_folio() for new_folio. The counters will
2950 * remain stable since this happens under the lock.
2951 */
2952 remove_hugetlb_folio(h, old_folio, false);
2953
2954 /*
2955 * Ref count on new_folio is already zero as it was dropped
2956 * earlier. It can be directly added to the pool free list.
2957 */
2958 __prep_account_new_huge_page(h, nid);
2959 enqueue_hugetlb_folio(h, new_folio);
2960
2961 /*
2962 * Folio has been replaced, we can safely free the old one.
2963 */
2964 spin_unlock_irq(&hugetlb_lock);
2965 update_and_free_hugetlb_folio(h, old_folio, false);
2966 }
2967
2968 return ret;
2969
2970free_new:
2971 spin_unlock_irq(&hugetlb_lock);
2972 /* Folio has a zero ref count, but needs a ref to be freed */
2973 folio_ref_unfreeze(new_folio, 1);
2974 update_and_free_hugetlb_folio(h, new_folio, false);
2975
2976 return ret;
2977}
2978
2979int isolate_or_dissolve_huge_page(struct page *page, struct list_head *list)
2980{
2981 struct hstate *h;
2982 struct folio *folio = page_folio(page);
2983 int ret = -EBUSY;
2984
2985 /*
2986 * The page might have been dissolved from under our feet, so make sure
2987 * to carefully check the state under the lock.
2988 * Return success when racing as if we dissolved the page ourselves.
2989 */
2990 spin_lock_irq(&hugetlb_lock);
2991 if (folio_test_hugetlb(folio)) {
2992 h = folio_hstate(folio);
2993 } else {
2994 spin_unlock_irq(&hugetlb_lock);
2995 return 0;
2996 }
2997 spin_unlock_irq(&hugetlb_lock);
2998
2999 /*
3000 * Fence off gigantic pages as there is a cyclic dependency between
3001 * alloc_contig_range and them. Return -ENOMEM as this has the effect
3002 * of bailing out right away without further retrying.
3003 */
3004 if (hstate_is_gigantic(h))
3005 return -ENOMEM;
3006
3007 if (folio_ref_count(folio) && !isolate_hugetlb(&folio->page, list))
3008 ret = 0;
3009 else if (!folio_ref_count(folio))
3010 ret = alloc_and_dissolve_hugetlb_folio(h, folio, list);
3011
3012 return ret;
3013}
3014
3015struct page *alloc_huge_page(struct vm_area_struct *vma,
3016 unsigned long addr, int avoid_reserve)
3017{
3018 struct hugepage_subpool *spool = subpool_vma(vma);
3019 struct hstate *h = hstate_vma(vma);
3020 struct page *page;
3021 struct folio *folio;
3022 long map_chg, map_commit;
3023 long gbl_chg;
3024 int ret, idx;
3025 struct hugetlb_cgroup *h_cg;
3026 bool deferred_reserve;
3027
3028 idx = hstate_index(h);
3029 /*
3030 * Examine the region/reserve map to determine if the process
3031 * has a reservation for the page to be allocated. A return
3032 * code of zero indicates a reservation exists (no change).
3033 */
3034 map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
3035 if (map_chg < 0)
3036 return ERR_PTR(-ENOMEM);
3037
3038 /*
3039 * Processes that did not create the mapping will have no
3040 * reserves as indicated by the region/reserve map. Check
3041 * that the allocation will not exceed the subpool limit.
3042 * Allocations for MAP_NORESERVE mappings also need to be
3043 * checked against any subpool limit.
3044 */
3045 if (map_chg || avoid_reserve) {
3046 gbl_chg = hugepage_subpool_get_pages(spool, 1);
3047 if (gbl_chg < 0) {
3048 vma_end_reservation(h, vma, addr);
3049 return ERR_PTR(-ENOSPC);
3050 }
3051
3052 /*
3053 * Even though there was no reservation in the region/reserve
3054 * map, there could be reservations associated with the
3055 * subpool that can be used. This would be indicated if the
3056 * return value of hugepage_subpool_get_pages() is zero.
3057 * However, if avoid_reserve is specified we still avoid even
3058 * the subpool reservations.
3059 */
3060 if (avoid_reserve)
3061 gbl_chg = 1;
3062 }
3063
3064 /* If this allocation is not consuming a reservation, charge it now.
3065 */
3066 deferred_reserve = map_chg || avoid_reserve;
3067 if (deferred_reserve) {
3068 ret = hugetlb_cgroup_charge_cgroup_rsvd(
3069 idx, pages_per_huge_page(h), &h_cg);
3070 if (ret)
3071 goto out_subpool_put;
3072 }
3073
3074 ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
3075 if (ret)
3076 goto out_uncharge_cgroup_reservation;
3077
3078 spin_lock_irq(&hugetlb_lock);
3079 /*
3080 * glb_chg is passed to indicate whether or not a page must be taken
3081 * from the global free pool (global change). gbl_chg == 0 indicates
3082 * a reservation exists for the allocation.
3083 */
3084 page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
3085 if (!page) {
3086 spin_unlock_irq(&hugetlb_lock);
3087 page = alloc_buddy_huge_page_with_mpol(h, vma, addr);
3088 if (!page)
3089 goto out_uncharge_cgroup;
3090 spin_lock_irq(&hugetlb_lock);
3091 if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
3092 SetHPageRestoreReserve(page);
3093 h->resv_huge_pages--;
3094 }
3095 list_add(&page->lru, &h->hugepage_activelist);
3096 set_page_refcounted(page);
3097 /* Fall through */
3098 }
3099 folio = page_folio(page);
3100 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
3101 /* If allocation is not consuming a reservation, also store the
3102 * hugetlb_cgroup pointer on the page.
3103 */
3104 if (deferred_reserve) {
3105 hugetlb_cgroup_commit_charge_rsvd(idx, pages_per_huge_page(h),
3106 h_cg, page);
3107 }
3108
3109 spin_unlock_irq(&hugetlb_lock);
3110
3111 hugetlb_set_page_subpool(page, spool);
3112
3113 map_commit = vma_commit_reservation(h, vma, addr);
3114 if (unlikely(map_chg > map_commit)) {
3115 /*
3116 * The page was added to the reservation map between
3117 * vma_needs_reservation and vma_commit_reservation.
3118 * This indicates a race with hugetlb_reserve_pages.
3119 * Adjust for the subpool count incremented above AND
3120 * in hugetlb_reserve_pages for the same page. Also,
3121 * the reservation count added in hugetlb_reserve_pages
3122 * no longer applies.
3123 */
3124 long rsv_adjust;
3125
3126 rsv_adjust = hugepage_subpool_put_pages(spool, 1);
3127 hugetlb_acct_memory(h, -rsv_adjust);
3128 if (deferred_reserve)
3129 hugetlb_cgroup_uncharge_folio_rsvd(hstate_index(h),
3130 pages_per_huge_page(h), folio);
3131 }
3132 return page;
3133
3134out_uncharge_cgroup:
3135 hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
3136out_uncharge_cgroup_reservation:
3137 if (deferred_reserve)
3138 hugetlb_cgroup_uncharge_cgroup_rsvd(idx, pages_per_huge_page(h),
3139 h_cg);
3140out_subpool_put:
3141 if (map_chg || avoid_reserve)
3142 hugepage_subpool_put_pages(spool, 1);
3143 vma_end_reservation(h, vma, addr);
3144 return ERR_PTR(-ENOSPC);
3145}
3146
3147int alloc_bootmem_huge_page(struct hstate *h, int nid)
3148 __attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
3149int __alloc_bootmem_huge_page(struct hstate *h, int nid)
3150{
3151 struct huge_bootmem_page *m = NULL; /* initialize for clang */
3152 int nr_nodes, node;
3153
3154 /* do node specific alloc */
3155 if (nid != NUMA_NO_NODE) {
3156 m = memblock_alloc_try_nid_raw(huge_page_size(h), huge_page_size(h),
3157 0, MEMBLOCK_ALLOC_ACCESSIBLE, nid);
3158 if (!m)
3159 return 0;
3160 goto found;
3161 }
3162 /* allocate from next node when distributing huge pages */
3163 for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
3164 m = memblock_alloc_try_nid_raw(
3165 huge_page_size(h), huge_page_size(h),
3166 0, MEMBLOCK_ALLOC_ACCESSIBLE, node);
3167 /*
3168 * Use the beginning of the huge page to store the
3169 * huge_bootmem_page struct (until gather_bootmem
3170 * puts them into the mem_map).
3171 */
3172 if (!m)
3173 return 0;
3174 goto found;
3175 }
3176
3177found:
3178 /* Put them into a private list first because mem_map is not up yet */
3179 INIT_LIST_HEAD(&m->list);
3180 list_add(&m->list, &huge_boot_pages);
3181 m->hstate = h;
3182 return 1;
3183}
3184
3185/*
3186 * Put bootmem huge pages into the standard lists after mem_map is up.
3187 * Note: This only applies to gigantic (order > MAX_ORDER) pages.
3188 */
3189static void __init gather_bootmem_prealloc(void)
3190{
3191 struct huge_bootmem_page *m;
3192
3193 list_for_each_entry(m, &huge_boot_pages, list) {
3194 struct page *page = virt_to_page(m);
3195 struct folio *folio = page_folio(page);
3196 struct hstate *h = m->hstate;
3197
3198 VM_BUG_ON(!hstate_is_gigantic(h));
3199 WARN_ON(folio_ref_count(folio) != 1);
3200 if (prep_compound_gigantic_folio(folio, huge_page_order(h))) {
3201 WARN_ON(folio_test_reserved(folio));
3202 prep_new_hugetlb_folio(h, folio, folio_nid(folio));
3203 free_huge_page(page); /* add to the hugepage allocator */
3204 } else {
3205 /* VERY unlikely inflated ref count on a tail page */
3206 free_gigantic_folio(folio, huge_page_order(h));
3207 }
3208
3209 /*
3210 * We need to restore the 'stolen' pages to totalram_pages
3211 * in order to fix confusing memory reports from free(1) and
3212 * other side-effects, like CommitLimit going negative.
3213 */
3214 adjust_managed_page_count(page, pages_per_huge_page(h));
3215 cond_resched();
3216 }
3217}
3218static void __init hugetlb_hstate_alloc_pages_onenode(struct hstate *h, int nid)
3219{
3220 unsigned long i;
3221 char buf[32];
3222
3223 for (i = 0; i < h->max_huge_pages_node[nid]; ++i) {
3224 if (hstate_is_gigantic(h)) {
3225 if (!alloc_bootmem_huge_page(h, nid))
3226 break;
3227 } else {
3228 struct folio *folio;
3229 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
3230
3231 folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid,
3232 &node_states[N_MEMORY], NULL);
3233 if (!folio)
3234 break;
3235 free_huge_page(&folio->page); /* free it into the hugepage allocator */
3236 }
3237 cond_resched();
3238 }
3239 if (i == h->max_huge_pages_node[nid])
3240 return;
3241
3242 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3243 pr_warn("HugeTLB: allocating %u of page size %s failed node%d. Only allocated %lu hugepages.\n",
3244 h->max_huge_pages_node[nid], buf, nid, i);
3245 h->max_huge_pages -= (h->max_huge_pages_node[nid] - i);
3246 h->max_huge_pages_node[nid] = i;
3247}
3248
3249static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
3250{
3251 unsigned long i;
3252 nodemask_t *node_alloc_noretry;
3253 bool node_specific_alloc = false;
3254
3255 /* skip gigantic hugepages allocation if hugetlb_cma enabled */
3256 if (hstate_is_gigantic(h) && hugetlb_cma_size) {
3257 pr_warn_once("HugeTLB: hugetlb_cma is enabled, skip boot time allocation\n");
3258 return;
3259 }
3260
3261 /* do node specific alloc */
3262 for_each_online_node(i) {
3263 if (h->max_huge_pages_node[i] > 0) {
3264 hugetlb_hstate_alloc_pages_onenode(h, i);
3265 node_specific_alloc = true;
3266 }
3267 }
3268
3269 if (node_specific_alloc)
3270 return;
3271
3272 /* below will do all node balanced alloc */
3273 if (!hstate_is_gigantic(h)) {
3274 /*
3275 * Bit mask controlling how hard we retry per-node allocations.
3276 * Ignore errors as lower level routines can deal with
3277 * node_alloc_noretry == NULL. If this kmalloc fails at boot
3278 * time, we are likely in bigger trouble.
3279 */
3280 node_alloc_noretry = kmalloc(sizeof(*node_alloc_noretry),
3281 GFP_KERNEL);
3282 } else {
3283 /* allocations done at boot time */
3284 node_alloc_noretry = NULL;
3285 }
3286
3287 /* bit mask controlling how hard we retry per-node allocations */
3288 if (node_alloc_noretry)
3289 nodes_clear(*node_alloc_noretry);
3290
3291 for (i = 0; i < h->max_huge_pages; ++i) {
3292 if (hstate_is_gigantic(h)) {
3293 if (!alloc_bootmem_huge_page(h, NUMA_NO_NODE))
3294 break;
3295 } else if (!alloc_pool_huge_page(h,
3296 &node_states[N_MEMORY],
3297 node_alloc_noretry))
3298 break;
3299 cond_resched();
3300 }
3301 if (i < h->max_huge_pages) {
3302 char buf[32];
3303
3304 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3305 pr_warn("HugeTLB: allocating %lu of page size %s failed. Only allocated %lu hugepages.\n",
3306 h->max_huge_pages, buf, i);
3307 h->max_huge_pages = i;
3308 }
3309 kfree(node_alloc_noretry);
3310}
3311
3312static void __init hugetlb_init_hstates(void)
3313{
3314 struct hstate *h, *h2;
3315
3316 for_each_hstate(h) {
3317 /* oversize hugepages were init'ed in early boot */
3318 if (!hstate_is_gigantic(h))
3319 hugetlb_hstate_alloc_pages(h);
3320
3321 /*
3322 * Set demote order for each hstate. Note that
3323 * h->demote_order is initially 0.
3324 * - We can not demote gigantic pages if runtime freeing
3325 * is not supported, so skip this.
3326 * - If CMA allocation is possible, we can not demote
3327 * HUGETLB_PAGE_ORDER or smaller size pages.
3328 */
3329 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
3330 continue;
3331 if (hugetlb_cma_size && h->order <= HUGETLB_PAGE_ORDER)
3332 continue;
3333 for_each_hstate(h2) {
3334 if (h2 == h)
3335 continue;
3336 if (h2->order < h->order &&
3337 h2->order > h->demote_order)
3338 h->demote_order = h2->order;
3339 }
3340 }
3341}
3342
3343static void __init report_hugepages(void)
3344{
3345 struct hstate *h;
3346
3347 for_each_hstate(h) {
3348 char buf[32];
3349
3350 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3351 pr_info("HugeTLB: registered %s page size, pre-allocated %ld pages\n",
3352 buf, h->free_huge_pages);
3353 pr_info("HugeTLB: %d KiB vmemmap can be freed for a %s page\n",
3354 hugetlb_vmemmap_optimizable_size(h) / SZ_1K, buf);
3355 }
3356}
3357
3358#ifdef CONFIG_HIGHMEM
3359static void try_to_free_low(struct hstate *h, unsigned long count,
3360 nodemask_t *nodes_allowed)
3361{
3362 int i;
3363 LIST_HEAD(page_list);
3364
3365 lockdep_assert_held(&hugetlb_lock);
3366 if (hstate_is_gigantic(h))
3367 return;
3368
3369 /*
3370 * Collect pages to be freed on a list, and free after dropping lock
3371 */
3372 for_each_node_mask(i, *nodes_allowed) {
3373 struct page *page, *next;
3374 struct list_head *freel = &h->hugepage_freelists[i];
3375 list_for_each_entry_safe(page, next, freel, lru) {
3376 if (count >= h->nr_huge_pages)
3377 goto out;
3378 if (PageHighMem(page))
3379 continue;
3380 remove_hugetlb_folio(h, page_folio(page), false);
3381 list_add(&page->lru, &page_list);
3382 }
3383 }
3384
3385out:
3386 spin_unlock_irq(&hugetlb_lock);
3387 update_and_free_pages_bulk(h, &page_list);
3388 spin_lock_irq(&hugetlb_lock);
3389}
3390#else
3391static inline void try_to_free_low(struct hstate *h, unsigned long count,
3392 nodemask_t *nodes_allowed)
3393{
3394}
3395#endif
3396
3397/*
3398 * Increment or decrement surplus_huge_pages. Keep node-specific counters
3399 * balanced by operating on them in a round-robin fashion.
3400 * Returns 1 if an adjustment was made.
3401 */
3402static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
3403 int delta)
3404{
3405 int nr_nodes, node;
3406
3407 lockdep_assert_held(&hugetlb_lock);
3408 VM_BUG_ON(delta != -1 && delta != 1);
3409
3410 if (delta < 0) {
3411 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
3412 if (h->surplus_huge_pages_node[node])
3413 goto found;
3414 }
3415 } else {
3416 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
3417 if (h->surplus_huge_pages_node[node] <
3418 h->nr_huge_pages_node[node])
3419 goto found;
3420 }
3421 }
3422 return 0;
3423
3424found:
3425 h->surplus_huge_pages += delta;
3426 h->surplus_huge_pages_node[node] += delta;
3427 return 1;
3428}
3429
3430#define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
3431static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid,
3432 nodemask_t *nodes_allowed)
3433{
3434 unsigned long min_count, ret;
3435 struct page *page;
3436 LIST_HEAD(page_list);
3437 NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL);
3438
3439 /*
3440 * Bit mask controlling how hard we retry per-node allocations.
3441 * If we can not allocate the bit mask, do not attempt to allocate
3442 * the requested huge pages.
3443 */
3444 if (node_alloc_noretry)
3445 nodes_clear(*node_alloc_noretry);
3446 else
3447 return -ENOMEM;
3448
3449 /*
3450 * resize_lock mutex prevents concurrent adjustments to number of
3451 * pages in hstate via the proc/sysfs interfaces.
3452 */
3453 mutex_lock(&h->resize_lock);
3454 flush_free_hpage_work(h);
3455 spin_lock_irq(&hugetlb_lock);
3456
3457 /*
3458 * Check for a node specific request.
3459 * Changing node specific huge page count may require a corresponding
3460 * change to the global count. In any case, the passed node mask
3461 * (nodes_allowed) will restrict alloc/free to the specified node.
3462 */
3463 if (nid != NUMA_NO_NODE) {
3464 unsigned long old_count = count;
3465
3466 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
3467 /*
3468 * User may have specified a large count value which caused the
3469 * above calculation to overflow. In this case, they wanted
3470 * to allocate as many huge pages as possible. Set count to
3471 * largest possible value to align with their intention.
3472 */
3473 if (count < old_count)
3474 count = ULONG_MAX;
3475 }
3476
3477 /*
3478 * Gigantic pages runtime allocation depend on the capability for large
3479 * page range allocation.
3480 * If the system does not provide this feature, return an error when
3481 * the user tries to allocate gigantic pages but let the user free the
3482 * boottime allocated gigantic pages.
3483 */
3484 if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) {
3485 if (count > persistent_huge_pages(h)) {
3486 spin_unlock_irq(&hugetlb_lock);
3487 mutex_unlock(&h->resize_lock);
3488 NODEMASK_FREE(node_alloc_noretry);
3489 return -EINVAL;
3490 }
3491 /* Fall through to decrease pool */
3492 }
3493
3494 /*
3495 * Increase the pool size
3496 * First take pages out of surplus state. Then make up the
3497 * remaining difference by allocating fresh huge pages.
3498 *
3499 * We might race with alloc_surplus_huge_page() here and be unable
3500 * to convert a surplus huge page to a normal huge page. That is
3501 * not critical, though, it just means the overall size of the
3502 * pool might be one hugepage larger than it needs to be, but
3503 * within all the constraints specified by the sysctls.
3504 */
3505 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
3506 if (!adjust_pool_surplus(h, nodes_allowed, -1))
3507 break;
3508 }
3509
3510 while (count > persistent_huge_pages(h)) {
3511 /*
3512 * If this allocation races such that we no longer need the
3513 * page, free_huge_page will handle it by freeing the page
3514 * and reducing the surplus.
3515 */
3516 spin_unlock_irq(&hugetlb_lock);
3517
3518 /* yield cpu to avoid soft lockup */
3519 cond_resched();
3520
3521 ret = alloc_pool_huge_page(h, nodes_allowed,
3522 node_alloc_noretry);
3523 spin_lock_irq(&hugetlb_lock);
3524 if (!ret)
3525 goto out;
3526
3527 /* Bail for signals. Probably ctrl-c from user */
3528 if (signal_pending(current))
3529 goto out;
3530 }
3531
3532 /*
3533 * Decrease the pool size
3534 * First return free pages to the buddy allocator (being careful
3535 * to keep enough around to satisfy reservations). Then place
3536 * pages into surplus state as needed so the pool will shrink
3537 * to the desired size as pages become free.
3538 *
3539 * By placing pages into the surplus state independent of the
3540 * overcommit value, we are allowing the surplus pool size to
3541 * exceed overcommit. There are few sane options here. Since
3542 * alloc_surplus_huge_page() is checking the global counter,
3543 * though, we'll note that we're not allowed to exceed surplus
3544 * and won't grow the pool anywhere else. Not until one of the
3545 * sysctls are changed, or the surplus pages go out of use.
3546 */
3547 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
3548 min_count = max(count, min_count);
3549 try_to_free_low(h, min_count, nodes_allowed);
3550
3551 /*
3552 * Collect pages to be removed on list without dropping lock
3553 */
3554 while (min_count < persistent_huge_pages(h)) {
3555 page = remove_pool_huge_page(h, nodes_allowed, 0);
3556 if (!page)
3557 break;
3558
3559 list_add(&page->lru, &page_list);
3560 }
3561 /* free the pages after dropping lock */
3562 spin_unlock_irq(&hugetlb_lock);
3563 update_and_free_pages_bulk(h, &page_list);
3564 flush_free_hpage_work(h);
3565 spin_lock_irq(&hugetlb_lock);
3566
3567 while (count < persistent_huge_pages(h)) {
3568 if (!adjust_pool_surplus(h, nodes_allowed, 1))
3569 break;
3570 }
3571out:
3572 h->max_huge_pages = persistent_huge_pages(h);
3573 spin_unlock_irq(&hugetlb_lock);
3574 mutex_unlock(&h->resize_lock);
3575
3576 NODEMASK_FREE(node_alloc_noretry);
3577
3578 return 0;
3579}
3580
3581static int demote_free_huge_page(struct hstate *h, struct page *page)
3582{
3583 int i, nid = page_to_nid(page);
3584 struct hstate *target_hstate;
3585 struct folio *folio = page_folio(page);
3586 struct page *subpage;
3587 int rc = 0;
3588
3589 target_hstate = size_to_hstate(PAGE_SIZE << h->demote_order);
3590
3591 remove_hugetlb_folio_for_demote(h, folio, false);
3592 spin_unlock_irq(&hugetlb_lock);
3593
3594 rc = hugetlb_vmemmap_restore(h, page);
3595 if (rc) {
3596 /* Allocation of vmemmmap failed, we can not demote page */
3597 spin_lock_irq(&hugetlb_lock);
3598 set_page_refcounted(page);
3599 add_hugetlb_folio(h, page_folio(page), false);
3600 return rc;
3601 }
3602
3603 /*
3604 * Use destroy_compound_hugetlb_folio_for_demote for all huge page
3605 * sizes as it will not ref count pages.
3606 */
3607 destroy_compound_hugetlb_folio_for_demote(folio, huge_page_order(h));
3608
3609 /*
3610 * Taking target hstate mutex synchronizes with set_max_huge_pages.
3611 * Without the mutex, pages added to target hstate could be marked
3612 * as surplus.
3613 *
3614 * Note that we already hold h->resize_lock. To prevent deadlock,
3615 * use the convention of always taking larger size hstate mutex first.
3616 */
3617 mutex_lock(&target_hstate->resize_lock);
3618 for (i = 0; i < pages_per_huge_page(h);
3619 i += pages_per_huge_page(target_hstate)) {
3620 subpage = nth_page(page, i);
3621 folio = page_folio(subpage);
3622 if (hstate_is_gigantic(target_hstate))
3623 prep_compound_gigantic_folio_for_demote(folio,
3624 target_hstate->order);
3625 else
3626 prep_compound_page(subpage, target_hstate->order);
3627 set_page_private(subpage, 0);
3628 prep_new_hugetlb_folio(target_hstate, folio, nid);
3629 free_huge_page(subpage);
3630 }
3631 mutex_unlock(&target_hstate->resize_lock);
3632
3633 spin_lock_irq(&hugetlb_lock);
3634
3635 /*
3636 * Not absolutely necessary, but for consistency update max_huge_pages
3637 * based on pool changes for the demoted page.
3638 */
3639 h->max_huge_pages--;
3640 target_hstate->max_huge_pages +=
3641 pages_per_huge_page(h) / pages_per_huge_page(target_hstate);
3642
3643 return rc;
3644}
3645
3646static int demote_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
3647 __must_hold(&hugetlb_lock)
3648{
3649 int nr_nodes, node;
3650 struct page *page;
3651
3652 lockdep_assert_held(&hugetlb_lock);
3653
3654 /* We should never get here if no demote order */
3655 if (!h->demote_order) {
3656 pr_warn("HugeTLB: NULL demote order passed to demote_pool_huge_page.\n");
3657 return -EINVAL; /* internal error */
3658 }
3659
3660 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
3661 list_for_each_entry(page, &h->hugepage_freelists[node], lru) {
3662 if (PageHWPoison(page))
3663 continue;
3664
3665 return demote_free_huge_page(h, page);
3666 }
3667 }
3668
3669 /*
3670 * Only way to get here is if all pages on free lists are poisoned.
3671 * Return -EBUSY so that caller will not retry.
3672 */
3673 return -EBUSY;
3674}
3675
3676#define HSTATE_ATTR_RO(_name) \
3677 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
3678
3679#define HSTATE_ATTR_WO(_name) \
3680 static struct kobj_attribute _name##_attr = __ATTR_WO(_name)
3681
3682#define HSTATE_ATTR(_name) \
3683 static struct kobj_attribute _name##_attr = __ATTR_RW(_name)
3684
3685static struct kobject *hugepages_kobj;
3686static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
3687
3688static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
3689
3690static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
3691{
3692 int i;
3693
3694 for (i = 0; i < HUGE_MAX_HSTATE; i++)
3695 if (hstate_kobjs[i] == kobj) {
3696 if (nidp)
3697 *nidp = NUMA_NO_NODE;
3698 return &hstates[i];
3699 }
3700
3701 return kobj_to_node_hstate(kobj, nidp);
3702}
3703
3704static ssize_t nr_hugepages_show_common(struct kobject *kobj,
3705 struct kobj_attribute *attr, char *buf)
3706{
3707 struct hstate *h;
3708 unsigned long nr_huge_pages;
3709 int nid;
3710
3711 h = kobj_to_hstate(kobj, &nid);
3712 if (nid == NUMA_NO_NODE)
3713 nr_huge_pages = h->nr_huge_pages;
3714 else
3715 nr_huge_pages = h->nr_huge_pages_node[nid];
3716
3717 return sysfs_emit(buf, "%lu\n", nr_huge_pages);
3718}
3719
3720static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
3721 struct hstate *h, int nid,
3722 unsigned long count, size_t len)
3723{
3724 int err;
3725 nodemask_t nodes_allowed, *n_mask;
3726
3727 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
3728 return -EINVAL;
3729
3730 if (nid == NUMA_NO_NODE) {
3731 /*
3732 * global hstate attribute
3733 */
3734 if (!(obey_mempolicy &&
3735 init_nodemask_of_mempolicy(&nodes_allowed)))
3736 n_mask = &node_states[N_MEMORY];
3737 else
3738 n_mask = &nodes_allowed;
3739 } else {
3740 /*
3741 * Node specific request. count adjustment happens in
3742 * set_max_huge_pages() after acquiring hugetlb_lock.
3743 */
3744 init_nodemask_of_node(&nodes_allowed, nid);
3745 n_mask = &nodes_allowed;
3746 }
3747
3748 err = set_max_huge_pages(h, count, nid, n_mask);
3749
3750 return err ? err : len;
3751}
3752
3753static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
3754 struct kobject *kobj, const char *buf,
3755 size_t len)
3756{
3757 struct hstate *h;
3758 unsigned long count;
3759 int nid;
3760 int err;
3761
3762 err = kstrtoul(buf, 10, &count);
3763 if (err)
3764 return err;
3765
3766 h = kobj_to_hstate(kobj, &nid);
3767 return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
3768}
3769
3770static ssize_t nr_hugepages_show(struct kobject *kobj,
3771 struct kobj_attribute *attr, char *buf)
3772{
3773 return nr_hugepages_show_common(kobj, attr, buf);
3774}
3775
3776static ssize_t nr_hugepages_store(struct kobject *kobj,
3777 struct kobj_attribute *attr, const char *buf, size_t len)
3778{
3779 return nr_hugepages_store_common(false, kobj, buf, len);
3780}
3781HSTATE_ATTR(nr_hugepages);
3782
3783#ifdef CONFIG_NUMA
3784
3785/*
3786 * hstate attribute for optionally mempolicy-based constraint on persistent
3787 * huge page alloc/free.
3788 */
3789static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
3790 struct kobj_attribute *attr,
3791 char *buf)
3792{
3793 return nr_hugepages_show_common(kobj, attr, buf);
3794}
3795
3796static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
3797 struct kobj_attribute *attr, const char *buf, size_t len)
3798{
3799 return nr_hugepages_store_common(true, kobj, buf, len);
3800}
3801HSTATE_ATTR(nr_hugepages_mempolicy);
3802#endif
3803
3804
3805static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
3806 struct kobj_attribute *attr, char *buf)
3807{
3808 struct hstate *h = kobj_to_hstate(kobj, NULL);
3809 return sysfs_emit(buf, "%lu\n", h->nr_overcommit_huge_pages);
3810}
3811
3812static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
3813 struct kobj_attribute *attr, const char *buf, size_t count)
3814{
3815 int err;
3816 unsigned long input;
3817 struct hstate *h = kobj_to_hstate(kobj, NULL);
3818
3819 if (hstate_is_gigantic(h))
3820 return -EINVAL;
3821
3822 err = kstrtoul(buf, 10, &input);
3823 if (err)
3824 return err;
3825
3826 spin_lock_irq(&hugetlb_lock);
3827 h->nr_overcommit_huge_pages = input;
3828 spin_unlock_irq(&hugetlb_lock);
3829
3830 return count;
3831}
3832HSTATE_ATTR(nr_overcommit_hugepages);
3833
3834static ssize_t free_hugepages_show(struct kobject *kobj,
3835 struct kobj_attribute *attr, char *buf)
3836{
3837 struct hstate *h;
3838 unsigned long free_huge_pages;
3839 int nid;
3840
3841 h = kobj_to_hstate(kobj, &nid);
3842 if (nid == NUMA_NO_NODE)
3843 free_huge_pages = h->free_huge_pages;
3844 else
3845 free_huge_pages = h->free_huge_pages_node[nid];
3846
3847 return sysfs_emit(buf, "%lu\n", free_huge_pages);
3848}
3849HSTATE_ATTR_RO(free_hugepages);
3850
3851static ssize_t resv_hugepages_show(struct kobject *kobj,
3852 struct kobj_attribute *attr, char *buf)
3853{
3854 struct hstate *h = kobj_to_hstate(kobj, NULL);
3855 return sysfs_emit(buf, "%lu\n", h->resv_huge_pages);
3856}
3857HSTATE_ATTR_RO(resv_hugepages);
3858
3859static ssize_t surplus_hugepages_show(struct kobject *kobj,
3860 struct kobj_attribute *attr, char *buf)
3861{
3862 struct hstate *h;
3863 unsigned long surplus_huge_pages;
3864 int nid;
3865
3866 h = kobj_to_hstate(kobj, &nid);
3867 if (nid == NUMA_NO_NODE)
3868 surplus_huge_pages = h->surplus_huge_pages;
3869 else
3870 surplus_huge_pages = h->surplus_huge_pages_node[nid];
3871
3872 return sysfs_emit(buf, "%lu\n", surplus_huge_pages);
3873}
3874HSTATE_ATTR_RO(surplus_hugepages);
3875
3876static ssize_t demote_store(struct kobject *kobj,
3877 struct kobj_attribute *attr, const char *buf, size_t len)
3878{
3879 unsigned long nr_demote;
3880 unsigned long nr_available;
3881 nodemask_t nodes_allowed, *n_mask;
3882 struct hstate *h;
3883 int err;
3884 int nid;
3885
3886 err = kstrtoul(buf, 10, &nr_demote);
3887 if (err)
3888 return err;
3889 h = kobj_to_hstate(kobj, &nid);
3890
3891 if (nid != NUMA_NO_NODE) {
3892 init_nodemask_of_node(&nodes_allowed, nid);
3893 n_mask = &nodes_allowed;
3894 } else {
3895 n_mask = &node_states[N_MEMORY];
3896 }
3897
3898 /* Synchronize with other sysfs operations modifying huge pages */
3899 mutex_lock(&h->resize_lock);
3900 spin_lock_irq(&hugetlb_lock);
3901
3902 while (nr_demote) {
3903 /*
3904 * Check for available pages to demote each time thorough the
3905 * loop as demote_pool_huge_page will drop hugetlb_lock.
3906 */
3907 if (nid != NUMA_NO_NODE)
3908 nr_available = h->free_huge_pages_node[nid];
3909 else
3910 nr_available = h->free_huge_pages;
3911 nr_available -= h->resv_huge_pages;
3912 if (!nr_available)
3913 break;
3914
3915 err = demote_pool_huge_page(h, n_mask);
3916 if (err)
3917 break;
3918
3919 nr_demote--;
3920 }
3921
3922 spin_unlock_irq(&hugetlb_lock);
3923 mutex_unlock(&h->resize_lock);
3924
3925 if (err)
3926 return err;
3927 return len;
3928}
3929HSTATE_ATTR_WO(demote);
3930
3931static ssize_t demote_size_show(struct kobject *kobj,
3932 struct kobj_attribute *attr, char *buf)
3933{
3934 struct hstate *h = kobj_to_hstate(kobj, NULL);
3935 unsigned long demote_size = (PAGE_SIZE << h->demote_order) / SZ_1K;
3936
3937 return sysfs_emit(buf, "%lukB\n", demote_size);
3938}
3939
3940static ssize_t demote_size_store(struct kobject *kobj,
3941 struct kobj_attribute *attr,
3942 const char *buf, size_t count)
3943{
3944 struct hstate *h, *demote_hstate;
3945 unsigned long demote_size;
3946 unsigned int demote_order;
3947
3948 demote_size = (unsigned long)memparse(buf, NULL);
3949
3950 demote_hstate = size_to_hstate(demote_size);
3951 if (!demote_hstate)
3952 return -EINVAL;
3953 demote_order = demote_hstate->order;
3954 if (demote_order < HUGETLB_PAGE_ORDER)
3955 return -EINVAL;
3956
3957 /* demote order must be smaller than hstate order */
3958 h = kobj_to_hstate(kobj, NULL);
3959 if (demote_order >= h->order)
3960 return -EINVAL;
3961
3962 /* resize_lock synchronizes access to demote size and writes */
3963 mutex_lock(&h->resize_lock);
3964 h->demote_order = demote_order;
3965 mutex_unlock(&h->resize_lock);
3966
3967 return count;
3968}
3969HSTATE_ATTR(demote_size);
3970
3971static struct attribute *hstate_attrs[] = {
3972 &nr_hugepages_attr.attr,
3973 &nr_overcommit_hugepages_attr.attr,
3974 &free_hugepages_attr.attr,
3975 &resv_hugepages_attr.attr,
3976 &surplus_hugepages_attr.attr,
3977#ifdef CONFIG_NUMA
3978 &nr_hugepages_mempolicy_attr.attr,
3979#endif
3980 NULL,
3981};
3982
3983static const struct attribute_group hstate_attr_group = {
3984 .attrs = hstate_attrs,
3985};
3986
3987static struct attribute *hstate_demote_attrs[] = {
3988 &demote_size_attr.attr,
3989 &demote_attr.attr,
3990 NULL,
3991};
3992
3993static const struct attribute_group hstate_demote_attr_group = {
3994 .attrs = hstate_demote_attrs,
3995};
3996
3997static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
3998 struct kobject **hstate_kobjs,
3999 const struct attribute_group *hstate_attr_group)
4000{
4001 int retval;
4002 int hi = hstate_index(h);
4003
4004 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
4005 if (!hstate_kobjs[hi])
4006 return -ENOMEM;
4007
4008 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
4009 if (retval) {
4010 kobject_put(hstate_kobjs[hi]);
4011 hstate_kobjs[hi] = NULL;
4012 return retval;
4013 }
4014
4015 if (h->demote_order) {
4016 retval = sysfs_create_group(hstate_kobjs[hi],
4017 &hstate_demote_attr_group);
4018 if (retval) {
4019 pr_warn("HugeTLB unable to create demote interfaces for %s\n", h->name);
4020 sysfs_remove_group(hstate_kobjs[hi], hstate_attr_group);
4021 kobject_put(hstate_kobjs[hi]);
4022 hstate_kobjs[hi] = NULL;
4023 return retval;
4024 }
4025 }
4026
4027 return 0;
4028}
4029
4030#ifdef CONFIG_NUMA
4031static bool hugetlb_sysfs_initialized __ro_after_init;
4032
4033/*
4034 * node_hstate/s - associate per node hstate attributes, via their kobjects,
4035 * with node devices in node_devices[] using a parallel array. The array
4036 * index of a node device or _hstate == node id.
4037 * This is here to avoid any static dependency of the node device driver, in
4038 * the base kernel, on the hugetlb module.
4039 */
4040struct node_hstate {
4041 struct kobject *hugepages_kobj;
4042 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
4043};
4044static struct node_hstate node_hstates[MAX_NUMNODES];
4045
4046/*
4047 * A subset of global hstate attributes for node devices
4048 */
4049static struct attribute *per_node_hstate_attrs[] = {
4050 &nr_hugepages_attr.attr,
4051 &free_hugepages_attr.attr,
4052 &surplus_hugepages_attr.attr,
4053 NULL,
4054};
4055
4056static const struct attribute_group per_node_hstate_attr_group = {
4057 .attrs = per_node_hstate_attrs,
4058};
4059
4060/*
4061 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
4062 * Returns node id via non-NULL nidp.
4063 */
4064static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
4065{
4066 int nid;
4067
4068 for (nid = 0; nid < nr_node_ids; nid++) {
4069 struct node_hstate *nhs = &node_hstates[nid];
4070 int i;
4071 for (i = 0; i < HUGE_MAX_HSTATE; i++)
4072 if (nhs->hstate_kobjs[i] == kobj) {
4073 if (nidp)
4074 *nidp = nid;
4075 return &hstates[i];
4076 }
4077 }
4078
4079 BUG();
4080 return NULL;
4081}
4082
4083/*
4084 * Unregister hstate attributes from a single node device.
4085 * No-op if no hstate attributes attached.
4086 */
4087void hugetlb_unregister_node(struct node *node)
4088{
4089 struct hstate *h;
4090 struct node_hstate *nhs = &node_hstates[node->dev.id];
4091
4092 if (!nhs->hugepages_kobj)
4093 return; /* no hstate attributes */
4094
4095 for_each_hstate(h) {
4096 int idx = hstate_index(h);
4097 struct kobject *hstate_kobj = nhs->hstate_kobjs[idx];
4098
4099 if (!hstate_kobj)
4100 continue;
4101 if (h->demote_order)
4102 sysfs_remove_group(hstate_kobj, &hstate_demote_attr_group);
4103 sysfs_remove_group(hstate_kobj, &per_node_hstate_attr_group);
4104 kobject_put(hstate_kobj);
4105 nhs->hstate_kobjs[idx] = NULL;
4106 }
4107
4108 kobject_put(nhs->hugepages_kobj);
4109 nhs->hugepages_kobj = NULL;
4110}
4111
4112
4113/*
4114 * Register hstate attributes for a single node device.
4115 * No-op if attributes already registered.
4116 */
4117void hugetlb_register_node(struct node *node)
4118{
4119 struct hstate *h;
4120 struct node_hstate *nhs = &node_hstates[node->dev.id];
4121 int err;
4122
4123 if (!hugetlb_sysfs_initialized)
4124 return;
4125
4126 if (nhs->hugepages_kobj)
4127 return; /* already allocated */
4128
4129 nhs->hugepages_kobj = kobject_create_and_add("hugepages",
4130 &node->dev.kobj);
4131 if (!nhs->hugepages_kobj)
4132 return;
4133
4134 for_each_hstate(h) {
4135 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
4136 nhs->hstate_kobjs,
4137 &per_node_hstate_attr_group);
4138 if (err) {
4139 pr_err("HugeTLB: Unable to add hstate %s for node %d\n",
4140 h->name, node->dev.id);
4141 hugetlb_unregister_node(node);
4142 break;
4143 }
4144 }
4145}
4146
4147/*
4148 * hugetlb init time: register hstate attributes for all registered node
4149 * devices of nodes that have memory. All on-line nodes should have
4150 * registered their associated device by this time.
4151 */
4152static void __init hugetlb_register_all_nodes(void)
4153{
4154 int nid;
4155
4156 for_each_online_node(nid)
4157 hugetlb_register_node(node_devices[nid]);
4158}
4159#else /* !CONFIG_NUMA */
4160
4161static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
4162{
4163 BUG();
4164 if (nidp)
4165 *nidp = -1;
4166 return NULL;
4167}
4168
4169static void hugetlb_register_all_nodes(void) { }
4170
4171#endif
4172
4173#ifdef CONFIG_CMA
4174static void __init hugetlb_cma_check(void);
4175#else
4176static inline __init void hugetlb_cma_check(void)
4177{
4178}
4179#endif
4180
4181static void __init hugetlb_sysfs_init(void)
4182{
4183 struct hstate *h;
4184 int err;
4185
4186 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
4187 if (!hugepages_kobj)
4188 return;
4189
4190 for_each_hstate(h) {
4191 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
4192 hstate_kobjs, &hstate_attr_group);
4193 if (err)
4194 pr_err("HugeTLB: Unable to add hstate %s", h->name);
4195 }
4196
4197#ifdef CONFIG_NUMA
4198 hugetlb_sysfs_initialized = true;
4199#endif
4200 hugetlb_register_all_nodes();
4201}
4202
4203static int __init hugetlb_init(void)
4204{
4205 int i;
4206
4207 BUILD_BUG_ON(sizeof_field(struct page, private) * BITS_PER_BYTE <
4208 __NR_HPAGEFLAGS);
4209
4210 if (!hugepages_supported()) {
4211 if (hugetlb_max_hstate || default_hstate_max_huge_pages)
4212 pr_warn("HugeTLB: huge pages not supported, ignoring associated command-line parameters\n");
4213 return 0;
4214 }
4215
4216 /*
4217 * Make sure HPAGE_SIZE (HUGETLB_PAGE_ORDER) hstate exists. Some
4218 * architectures depend on setup being done here.
4219 */
4220 hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
4221 if (!parsed_default_hugepagesz) {
4222 /*
4223 * If we did not parse a default huge page size, set
4224 * default_hstate_idx to HPAGE_SIZE hstate. And, if the
4225 * number of huge pages for this default size was implicitly
4226 * specified, set that here as well.
4227 * Note that the implicit setting will overwrite an explicit
4228 * setting. A warning will be printed in this case.
4229 */
4230 default_hstate_idx = hstate_index(size_to_hstate(HPAGE_SIZE));
4231 if (default_hstate_max_huge_pages) {
4232 if (default_hstate.max_huge_pages) {
4233 char buf[32];
4234
4235 string_get_size(huge_page_size(&default_hstate),
4236 1, STRING_UNITS_2, buf, 32);
4237 pr_warn("HugeTLB: Ignoring hugepages=%lu associated with %s page size\n",
4238 default_hstate.max_huge_pages, buf);
4239 pr_warn("HugeTLB: Using hugepages=%lu for number of default huge pages\n",
4240 default_hstate_max_huge_pages);
4241 }
4242 default_hstate.max_huge_pages =
4243 default_hstate_max_huge_pages;
4244
4245 for_each_online_node(i)
4246 default_hstate.max_huge_pages_node[i] =
4247 default_hugepages_in_node[i];
4248 }
4249 }
4250
4251 hugetlb_cma_check();
4252 hugetlb_init_hstates();
4253 gather_bootmem_prealloc();
4254 report_hugepages();
4255
4256 hugetlb_sysfs_init();
4257 hugetlb_cgroup_file_init();
4258
4259#ifdef CONFIG_SMP
4260 num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
4261#else
4262 num_fault_mutexes = 1;
4263#endif
4264 hugetlb_fault_mutex_table =
4265 kmalloc_array(num_fault_mutexes, sizeof(struct mutex),
4266 GFP_KERNEL);
4267 BUG_ON(!hugetlb_fault_mutex_table);
4268
4269 for (i = 0; i < num_fault_mutexes; i++)
4270 mutex_init(&hugetlb_fault_mutex_table[i]);
4271 return 0;
4272}
4273subsys_initcall(hugetlb_init);
4274
4275/* Overwritten by architectures with more huge page sizes */
4276bool __init __attribute((weak)) arch_hugetlb_valid_size(unsigned long size)
4277{
4278 return size == HPAGE_SIZE;
4279}
4280
4281void __init hugetlb_add_hstate(unsigned int order)
4282{
4283 struct hstate *h;
4284 unsigned long i;
4285
4286 if (size_to_hstate(PAGE_SIZE << order)) {
4287 return;
4288 }
4289 BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
4290 BUG_ON(order == 0);
4291 h = &hstates[hugetlb_max_hstate++];
4292 mutex_init(&h->resize_lock);
4293 h->order = order;
4294 h->mask = ~(huge_page_size(h) - 1);
4295 for (i = 0; i < MAX_NUMNODES; ++i)
4296 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
4297 INIT_LIST_HEAD(&h->hugepage_activelist);
4298 h->next_nid_to_alloc = first_memory_node;
4299 h->next_nid_to_free = first_memory_node;
4300 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
4301 huge_page_size(h)/SZ_1K);
4302
4303 parsed_hstate = h;
4304}
4305
4306bool __init __weak hugetlb_node_alloc_supported(void)
4307{
4308 return true;
4309}
4310
4311static void __init hugepages_clear_pages_in_node(void)
4312{
4313 if (!hugetlb_max_hstate) {
4314 default_hstate_max_huge_pages = 0;
4315 memset(default_hugepages_in_node, 0,
4316 sizeof(default_hugepages_in_node));
4317 } else {
4318 parsed_hstate->max_huge_pages = 0;
4319 memset(parsed_hstate->max_huge_pages_node, 0,
4320 sizeof(parsed_hstate->max_huge_pages_node));
4321 }
4322}
4323
4324/*
4325 * hugepages command line processing
4326 * hugepages normally follows a valid hugepagsz or default_hugepagsz
4327 * specification. If not, ignore the hugepages value. hugepages can also
4328 * be the first huge page command line option in which case it implicitly
4329 * specifies the number of huge pages for the default size.
4330 */
4331static int __init hugepages_setup(char *s)
4332{
4333 unsigned long *mhp;
4334 static unsigned long *last_mhp;
4335 int node = NUMA_NO_NODE;
4336 int count;
4337 unsigned long tmp;
4338 char *p = s;
4339
4340 if (!parsed_valid_hugepagesz) {
4341 pr_warn("HugeTLB: hugepages=%s does not follow a valid hugepagesz, ignoring\n", s);
4342 parsed_valid_hugepagesz = true;
4343 return 1;
4344 }
4345
4346 /*
4347 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter
4348 * yet, so this hugepages= parameter goes to the "default hstate".
4349 * Otherwise, it goes with the previously parsed hugepagesz or
4350 * default_hugepagesz.
4351 */
4352 else if (!hugetlb_max_hstate)
4353 mhp = &default_hstate_max_huge_pages;
4354 else
4355 mhp = &parsed_hstate->max_huge_pages;
4356
4357 if (mhp == last_mhp) {
4358 pr_warn("HugeTLB: hugepages= specified twice without interleaving hugepagesz=, ignoring hugepages=%s\n", s);
4359 return 1;
4360 }
4361
4362 while (*p) {
4363 count = 0;
4364 if (sscanf(p, "%lu%n", &tmp, &count) != 1)
4365 goto invalid;
4366 /* Parameter is node format */
4367 if (p[count] == ':') {
4368 if (!hugetlb_node_alloc_supported()) {
4369 pr_warn("HugeTLB: architecture can't support node specific alloc, ignoring!\n");
4370 return 1;
4371 }
4372 if (tmp >= MAX_NUMNODES || !node_online(tmp))
4373 goto invalid;
4374 node = array_index_nospec(tmp, MAX_NUMNODES);
4375 p += count + 1;
4376 /* Parse hugepages */
4377 if (sscanf(p, "%lu%n", &tmp, &count) != 1)
4378 goto invalid;
4379 if (!hugetlb_max_hstate)
4380 default_hugepages_in_node[node] = tmp;
4381 else
4382 parsed_hstate->max_huge_pages_node[node] = tmp;
4383 *mhp += tmp;
4384 /* Go to parse next node*/
4385 if (p[count] == ',')
4386 p += count + 1;
4387 else
4388 break;
4389 } else {
4390 if (p != s)
4391 goto invalid;
4392 *mhp = tmp;
4393 break;
4394 }
4395 }
4396
4397 /*
4398 * Global state is always initialized later in hugetlb_init.
4399 * But we need to allocate gigantic hstates here early to still
4400 * use the bootmem allocator.
4401 */
4402 if (hugetlb_max_hstate && hstate_is_gigantic(parsed_hstate))
4403 hugetlb_hstate_alloc_pages(parsed_hstate);
4404
4405 last_mhp = mhp;
4406
4407 return 1;
4408
4409invalid:
4410 pr_warn("HugeTLB: Invalid hugepages parameter %s\n", p);
4411 hugepages_clear_pages_in_node();
4412 return 1;
4413}
4414__setup("hugepages=", hugepages_setup);
4415
4416/*
4417 * hugepagesz command line processing
4418 * A specific huge page size can only be specified once with hugepagesz.
4419 * hugepagesz is followed by hugepages on the command line. The global
4420 * variable 'parsed_valid_hugepagesz' is used to determine if prior
4421 * hugepagesz argument was valid.
4422 */
4423static int __init hugepagesz_setup(char *s)
4424{
4425 unsigned long size;
4426 struct hstate *h;
4427
4428 parsed_valid_hugepagesz = false;
4429 size = (unsigned long)memparse(s, NULL);
4430
4431 if (!arch_hugetlb_valid_size(size)) {
4432 pr_err("HugeTLB: unsupported hugepagesz=%s\n", s);
4433 return 1;
4434 }
4435
4436 h = size_to_hstate(size);
4437 if (h) {
4438 /*
4439 * hstate for this size already exists. This is normally
4440 * an error, but is allowed if the existing hstate is the
4441 * default hstate. More specifically, it is only allowed if
4442 * the number of huge pages for the default hstate was not
4443 * previously specified.
4444 */
4445 if (!parsed_default_hugepagesz || h != &default_hstate ||
4446 default_hstate.max_huge_pages) {
4447 pr_warn("HugeTLB: hugepagesz=%s specified twice, ignoring\n", s);
4448 return 1;
4449 }
4450
4451 /*
4452 * No need to call hugetlb_add_hstate() as hstate already
4453 * exists. But, do set parsed_hstate so that a following
4454 * hugepages= parameter will be applied to this hstate.
4455 */
4456 parsed_hstate = h;
4457 parsed_valid_hugepagesz = true;
4458 return 1;
4459 }
4460
4461 hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
4462 parsed_valid_hugepagesz = true;
4463 return 1;
4464}
4465__setup("hugepagesz=", hugepagesz_setup);
4466
4467/*
4468 * default_hugepagesz command line input
4469 * Only one instance of default_hugepagesz allowed on command line.
4470 */
4471static int __init default_hugepagesz_setup(char *s)
4472{
4473 unsigned long size;
4474 int i;
4475
4476 parsed_valid_hugepagesz = false;
4477 if (parsed_default_hugepagesz) {
4478 pr_err("HugeTLB: default_hugepagesz previously specified, ignoring %s\n", s);
4479 return 1;
4480 }
4481
4482 size = (unsigned long)memparse(s, NULL);
4483
4484 if (!arch_hugetlb_valid_size(size)) {
4485 pr_err("HugeTLB: unsupported default_hugepagesz=%s\n", s);
4486 return 1;
4487 }
4488
4489 hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
4490 parsed_valid_hugepagesz = true;
4491 parsed_default_hugepagesz = true;
4492 default_hstate_idx = hstate_index(size_to_hstate(size));
4493
4494 /*
4495 * The number of default huge pages (for this size) could have been
4496 * specified as the first hugetlb parameter: hugepages=X. If so,
4497 * then default_hstate_max_huge_pages is set. If the default huge
4498 * page size is gigantic (>= MAX_ORDER), then the pages must be
4499 * allocated here from bootmem allocator.
4500 */
4501 if (default_hstate_max_huge_pages) {
4502 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
4503 for_each_online_node(i)
4504 default_hstate.max_huge_pages_node[i] =
4505 default_hugepages_in_node[i];
4506 if (hstate_is_gigantic(&default_hstate))
4507 hugetlb_hstate_alloc_pages(&default_hstate);
4508 default_hstate_max_huge_pages = 0;
4509 }
4510
4511 return 1;
4512}
4513__setup("default_hugepagesz=", default_hugepagesz_setup);
4514
4515static nodemask_t *policy_mbind_nodemask(gfp_t gfp)
4516{
4517#ifdef CONFIG_NUMA
4518 struct mempolicy *mpol = get_task_policy(current);
4519
4520 /*
4521 * Only enforce MPOL_BIND policy which overlaps with cpuset policy
4522 * (from policy_nodemask) specifically for hugetlb case
4523 */
4524 if (mpol->mode == MPOL_BIND &&
4525 (apply_policy_zone(mpol, gfp_zone(gfp)) &&
4526 cpuset_nodemask_valid_mems_allowed(&mpol->nodes)))
4527 return &mpol->nodes;
4528#endif
4529 return NULL;
4530}
4531
4532static unsigned int allowed_mems_nr(struct hstate *h)
4533{
4534 int node;
4535 unsigned int nr = 0;
4536 nodemask_t *mbind_nodemask;
4537 unsigned int *array = h->free_huge_pages_node;
4538 gfp_t gfp_mask = htlb_alloc_mask(h);
4539
4540 mbind_nodemask = policy_mbind_nodemask(gfp_mask);
4541 for_each_node_mask(node, cpuset_current_mems_allowed) {
4542 if (!mbind_nodemask || node_isset(node, *mbind_nodemask))
4543 nr += array[node];
4544 }
4545
4546 return nr;
4547}
4548
4549#ifdef CONFIG_SYSCTL
4550static int proc_hugetlb_doulongvec_minmax(struct ctl_table *table, int write,
4551 void *buffer, size_t *length,
4552 loff_t *ppos, unsigned long *out)
4553{
4554 struct ctl_table dup_table;
4555
4556 /*
4557 * In order to avoid races with __do_proc_doulongvec_minmax(), we
4558 * can duplicate the @table and alter the duplicate of it.
4559 */
4560 dup_table = *table;
4561 dup_table.data = out;
4562
4563 return proc_doulongvec_minmax(&dup_table, write, buffer, length, ppos);
4564}
4565
4566static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
4567 struct ctl_table *table, int write,
4568 void *buffer, size_t *length, loff_t *ppos)
4569{
4570 struct hstate *h = &default_hstate;
4571 unsigned long tmp = h->max_huge_pages;
4572 int ret;
4573
4574 if (!hugepages_supported())
4575 return -EOPNOTSUPP;
4576
4577 ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
4578 &tmp);
4579 if (ret)
4580 goto out;
4581
4582 if (write)
4583 ret = __nr_hugepages_store_common(obey_mempolicy, h,
4584 NUMA_NO_NODE, tmp, *length);
4585out:
4586 return ret;
4587}
4588
4589int hugetlb_sysctl_handler(struct ctl_table *table, int write,
4590 void *buffer, size_t *length, loff_t *ppos)
4591{
4592
4593 return hugetlb_sysctl_handler_common(false, table, write,
4594 buffer, length, ppos);
4595}
4596
4597#ifdef CONFIG_NUMA
4598int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
4599 void *buffer, size_t *length, loff_t *ppos)
4600{
4601 return hugetlb_sysctl_handler_common(true, table, write,
4602 buffer, length, ppos);
4603}
4604#endif /* CONFIG_NUMA */
4605
4606int hugetlb_overcommit_handler(struct ctl_table *table, int write,
4607 void *buffer, size_t *length, loff_t *ppos)
4608{
4609 struct hstate *h = &default_hstate;
4610 unsigned long tmp;
4611 int ret;
4612
4613 if (!hugepages_supported())
4614 return -EOPNOTSUPP;
4615
4616 tmp = h->nr_overcommit_huge_pages;
4617
4618 if (write && hstate_is_gigantic(h))
4619 return -EINVAL;
4620
4621 ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
4622 &tmp);
4623 if (ret)
4624 goto out;
4625
4626 if (write) {
4627 spin_lock_irq(&hugetlb_lock);
4628 h->nr_overcommit_huge_pages = tmp;
4629 spin_unlock_irq(&hugetlb_lock);
4630 }
4631out:
4632 return ret;
4633}
4634
4635#endif /* CONFIG_SYSCTL */
4636
4637void hugetlb_report_meminfo(struct seq_file *m)
4638{
4639 struct hstate *h;
4640 unsigned long total = 0;
4641
4642 if (!hugepages_supported())
4643 return;
4644
4645 for_each_hstate(h) {
4646 unsigned long count = h->nr_huge_pages;
4647
4648 total += huge_page_size(h) * count;
4649
4650 if (h == &default_hstate)
4651 seq_printf(m,
4652 "HugePages_Total: %5lu\n"
4653 "HugePages_Free: %5lu\n"
4654 "HugePages_Rsvd: %5lu\n"
4655 "HugePages_Surp: %5lu\n"
4656 "Hugepagesize: %8lu kB\n",
4657 count,
4658 h->free_huge_pages,
4659 h->resv_huge_pages,
4660 h->surplus_huge_pages,
4661 huge_page_size(h) / SZ_1K);
4662 }
4663
4664 seq_printf(m, "Hugetlb: %8lu kB\n", total / SZ_1K);
4665}
4666
4667int hugetlb_report_node_meminfo(char *buf, int len, int nid)
4668{
4669 struct hstate *h = &default_hstate;
4670
4671 if (!hugepages_supported())
4672 return 0;
4673
4674 return sysfs_emit_at(buf, len,
4675 "Node %d HugePages_Total: %5u\n"
4676 "Node %d HugePages_Free: %5u\n"
4677 "Node %d HugePages_Surp: %5u\n",
4678 nid, h->nr_huge_pages_node[nid],
4679 nid, h->free_huge_pages_node[nid],
4680 nid, h->surplus_huge_pages_node[nid]);
4681}
4682
4683void hugetlb_show_meminfo_node(int nid)
4684{
4685 struct hstate *h;
4686
4687 if (!hugepages_supported())
4688 return;
4689
4690 for_each_hstate(h)
4691 printk("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
4692 nid,
4693 h->nr_huge_pages_node[nid],
4694 h->free_huge_pages_node[nid],
4695 h->surplus_huge_pages_node[nid],
4696 huge_page_size(h) / SZ_1K);
4697}
4698
4699void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
4700{
4701 seq_printf(m, "HugetlbPages:\t%8lu kB\n",
4702 atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
4703}
4704
4705/* Return the number pages of memory we physically have, in PAGE_SIZE units. */
4706unsigned long hugetlb_total_pages(void)
4707{
4708 struct hstate *h;
4709 unsigned long nr_total_pages = 0;
4710
4711 for_each_hstate(h)
4712 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
4713 return nr_total_pages;
4714}
4715
4716static int hugetlb_acct_memory(struct hstate *h, long delta)
4717{
4718 int ret = -ENOMEM;
4719
4720 if (!delta)
4721 return 0;
4722
4723 spin_lock_irq(&hugetlb_lock);
4724 /*
4725 * When cpuset is configured, it breaks the strict hugetlb page
4726 * reservation as the accounting is done on a global variable. Such
4727 * reservation is completely rubbish in the presence of cpuset because
4728 * the reservation is not checked against page availability for the
4729 * current cpuset. Application can still potentially OOM'ed by kernel
4730 * with lack of free htlb page in cpuset that the task is in.
4731 * Attempt to enforce strict accounting with cpuset is almost
4732 * impossible (or too ugly) because cpuset is too fluid that
4733 * task or memory node can be dynamically moved between cpusets.
4734 *
4735 * The change of semantics for shared hugetlb mapping with cpuset is
4736 * undesirable. However, in order to preserve some of the semantics,
4737 * we fall back to check against current free page availability as
4738 * a best attempt and hopefully to minimize the impact of changing
4739 * semantics that cpuset has.
4740 *
4741 * Apart from cpuset, we also have memory policy mechanism that
4742 * also determines from which node the kernel will allocate memory
4743 * in a NUMA system. So similar to cpuset, we also should consider
4744 * the memory policy of the current task. Similar to the description
4745 * above.
4746 */
4747 if (delta > 0) {
4748 if (gather_surplus_pages(h, delta) < 0)
4749 goto out;
4750
4751 if (delta > allowed_mems_nr(h)) {
4752 return_unused_surplus_pages(h, delta);
4753 goto out;
4754 }
4755 }
4756
4757 ret = 0;
4758 if (delta < 0)
4759 return_unused_surplus_pages(h, (unsigned long) -delta);
4760
4761out:
4762 spin_unlock_irq(&hugetlb_lock);
4763 return ret;
4764}
4765
4766static void hugetlb_vm_op_open(struct vm_area_struct *vma)
4767{
4768 struct resv_map *resv = vma_resv_map(vma);
4769
4770 /*
4771 * HPAGE_RESV_OWNER indicates a private mapping.
4772 * This new VMA should share its siblings reservation map if present.
4773 * The VMA will only ever have a valid reservation map pointer where
4774 * it is being copied for another still existing VMA. As that VMA
4775 * has a reference to the reservation map it cannot disappear until
4776 * after this open call completes. It is therefore safe to take a
4777 * new reference here without additional locking.
4778 */
4779 if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
4780 resv_map_dup_hugetlb_cgroup_uncharge_info(resv);
4781 kref_get(&resv->refs);
4782 }
4783
4784 /*
4785 * vma_lock structure for sharable mappings is vma specific.
4786 * Clear old pointer (if copied via vm_area_dup) and allocate
4787 * new structure. Before clearing, make sure vma_lock is not
4788 * for this vma.
4789 */
4790 if (vma->vm_flags & VM_MAYSHARE) {
4791 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
4792
4793 if (vma_lock) {
4794 if (vma_lock->vma != vma) {
4795 vma->vm_private_data = NULL;
4796 hugetlb_vma_lock_alloc(vma);
4797 } else
4798 pr_warn("HugeTLB: vma_lock already exists in %s.\n", __func__);
4799 } else
4800 hugetlb_vma_lock_alloc(vma);
4801 }
4802}
4803
4804static void hugetlb_vm_op_close(struct vm_area_struct *vma)
4805{
4806 struct hstate *h = hstate_vma(vma);
4807 struct resv_map *resv;
4808 struct hugepage_subpool *spool = subpool_vma(vma);
4809 unsigned long reserve, start, end;
4810 long gbl_reserve;
4811
4812 hugetlb_vma_lock_free(vma);
4813
4814 resv = vma_resv_map(vma);
4815 if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
4816 return;
4817
4818 start = vma_hugecache_offset(h, vma, vma->vm_start);
4819 end = vma_hugecache_offset(h, vma, vma->vm_end);
4820
4821 reserve = (end - start) - region_count(resv, start, end);
4822 hugetlb_cgroup_uncharge_counter(resv, start, end);
4823 if (reserve) {
4824 /*
4825 * Decrement reserve counts. The global reserve count may be
4826 * adjusted if the subpool has a minimum size.
4827 */
4828 gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
4829 hugetlb_acct_memory(h, -gbl_reserve);
4830 }
4831
4832 kref_put(&resv->refs, resv_map_release);
4833}
4834
4835static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
4836{
4837 if (addr & ~(huge_page_mask(hstate_vma(vma))))
4838 return -EINVAL;
4839
4840 /*
4841 * PMD sharing is only possible for PUD_SIZE-aligned address ranges
4842 * in HugeTLB VMAs. If we will lose PUD_SIZE alignment due to this
4843 * split, unshare PMDs in the PUD_SIZE interval surrounding addr now.
4844 */
4845 if (addr & ~PUD_MASK) {
4846 /*
4847 * hugetlb_vm_op_split is called right before we attempt to
4848 * split the VMA. We will need to unshare PMDs in the old and
4849 * new VMAs, so let's unshare before we split.
4850 */
4851 unsigned long floor = addr & PUD_MASK;
4852 unsigned long ceil = floor + PUD_SIZE;
4853
4854 if (floor >= vma->vm_start && ceil <= vma->vm_end)
4855 hugetlb_unshare_pmds(vma, floor, ceil);
4856 }
4857
4858 return 0;
4859}
4860
4861static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma)
4862{
4863 return huge_page_size(hstate_vma(vma));
4864}
4865
4866/*
4867 * We cannot handle pagefaults against hugetlb pages at all. They cause
4868 * handle_mm_fault() to try to instantiate regular-sized pages in the
4869 * hugepage VMA. do_page_fault() is supposed to trap this, so BUG is we get
4870 * this far.
4871 */
4872static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf)
4873{
4874 BUG();
4875 return 0;
4876}
4877
4878/*
4879 * When a new function is introduced to vm_operations_struct and added
4880 * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops.
4881 * This is because under System V memory model, mappings created via
4882 * shmget/shmat with "huge page" specified are backed by hugetlbfs files,
4883 * their original vm_ops are overwritten with shm_vm_ops.
4884 */
4885const struct vm_operations_struct hugetlb_vm_ops = {
4886 .fault = hugetlb_vm_op_fault,
4887 .open = hugetlb_vm_op_open,
4888 .close = hugetlb_vm_op_close,
4889 .may_split = hugetlb_vm_op_split,
4890 .pagesize = hugetlb_vm_op_pagesize,
4891};
4892
4893static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
4894 int writable)
4895{
4896 pte_t entry;
4897 unsigned int shift = huge_page_shift(hstate_vma(vma));
4898
4899 if (writable) {
4900 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
4901 vma->vm_page_prot)));
4902 } else {
4903 entry = huge_pte_wrprotect(mk_huge_pte(page,
4904 vma->vm_page_prot));
4905 }
4906 entry = pte_mkyoung(entry);
4907 entry = arch_make_huge_pte(entry, shift, vma->vm_flags);
4908
4909 return entry;
4910}
4911
4912static void set_huge_ptep_writable(struct vm_area_struct *vma,
4913 unsigned long address, pte_t *ptep)
4914{
4915 pte_t entry;
4916
4917 entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
4918 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
4919 update_mmu_cache(vma, address, ptep);
4920}
4921
4922bool is_hugetlb_entry_migration(pte_t pte)
4923{
4924 swp_entry_t swp;
4925
4926 if (huge_pte_none(pte) || pte_present(pte))
4927 return false;
4928 swp = pte_to_swp_entry(pte);
4929 if (is_migration_entry(swp))
4930 return true;
4931 else
4932 return false;
4933}
4934
4935static bool is_hugetlb_entry_hwpoisoned(pte_t pte)
4936{
4937 swp_entry_t swp;
4938
4939 if (huge_pte_none(pte) || pte_present(pte))
4940 return false;
4941 swp = pte_to_swp_entry(pte);
4942 if (is_hwpoison_entry(swp))
4943 return true;
4944 else
4945 return false;
4946}
4947
4948static void
4949hugetlb_install_page(struct vm_area_struct *vma, pte_t *ptep, unsigned long addr,
4950 struct page *new_page)
4951{
4952 __SetPageUptodate(new_page);
4953 hugepage_add_new_anon_rmap(new_page, vma, addr);
4954 set_huge_pte_at(vma->vm_mm, addr, ptep, make_huge_pte(vma, new_page, 1));
4955 hugetlb_count_add(pages_per_huge_page(hstate_vma(vma)), vma->vm_mm);
4956 SetHPageMigratable(new_page);
4957}
4958
4959int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
4960 struct vm_area_struct *dst_vma,
4961 struct vm_area_struct *src_vma)
4962{
4963 pte_t *src_pte, *dst_pte, entry;
4964 struct page *ptepage;
4965 unsigned long addr;
4966 bool cow = is_cow_mapping(src_vma->vm_flags);
4967 struct hstate *h = hstate_vma(src_vma);
4968 unsigned long sz = huge_page_size(h);
4969 unsigned long npages = pages_per_huge_page(h);
4970 struct mmu_notifier_range range;
4971 unsigned long last_addr_mask;
4972 int ret = 0;
4973
4974 if (cow) {
4975 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, src_vma, src,
4976 src_vma->vm_start,
4977 src_vma->vm_end);
4978 mmu_notifier_invalidate_range_start(&range);
4979 mmap_assert_write_locked(src);
4980 raw_write_seqcount_begin(&src->write_protect_seq);
4981 } else {
4982 /*
4983 * For shared mappings the vma lock must be held before
4984 * calling huge_pte_offset in the src vma. Otherwise, the
4985 * returned ptep could go away if part of a shared pmd and
4986 * another thread calls huge_pmd_unshare.
4987 */
4988 hugetlb_vma_lock_read(src_vma);
4989 }
4990
4991 last_addr_mask = hugetlb_mask_last_page(h);
4992 for (addr = src_vma->vm_start; addr < src_vma->vm_end; addr += sz) {
4993 spinlock_t *src_ptl, *dst_ptl;
4994 src_pte = huge_pte_offset(src, addr, sz);
4995 if (!src_pte) {
4996 addr |= last_addr_mask;
4997 continue;
4998 }
4999 dst_pte = huge_pte_alloc(dst, dst_vma, addr, sz);
5000 if (!dst_pte) {
5001 ret = -ENOMEM;
5002 break;
5003 }
5004
5005 /*
5006 * If the pagetables are shared don't copy or take references.
5007 *
5008 * dst_pte == src_pte is the common case of src/dest sharing.
5009 * However, src could have 'unshared' and dst shares with
5010 * another vma. So page_count of ptep page is checked instead
5011 * to reliably determine whether pte is shared.
5012 */
5013 if (page_count(virt_to_page(dst_pte)) > 1) {
5014 addr |= last_addr_mask;
5015 continue;
5016 }
5017
5018 dst_ptl = huge_pte_lock(h, dst, dst_pte);
5019 src_ptl = huge_pte_lockptr(h, src, src_pte);
5020 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
5021 entry = huge_ptep_get(src_pte);
5022again:
5023 if (huge_pte_none(entry)) {
5024 /*
5025 * Skip if src entry none.
5026 */
5027 ;
5028 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry))) {
5029 bool uffd_wp = huge_pte_uffd_wp(entry);
5030
5031 if (!userfaultfd_wp(dst_vma) && uffd_wp)
5032 entry = huge_pte_clear_uffd_wp(entry);
5033 set_huge_pte_at(dst, addr, dst_pte, entry);
5034 } else if (unlikely(is_hugetlb_entry_migration(entry))) {
5035 swp_entry_t swp_entry = pte_to_swp_entry(entry);
5036 bool uffd_wp = huge_pte_uffd_wp(entry);
5037
5038 if (!is_readable_migration_entry(swp_entry) && cow) {
5039 /*
5040 * COW mappings require pages in both
5041 * parent and child to be set to read.
5042 */
5043 swp_entry = make_readable_migration_entry(
5044 swp_offset(swp_entry));
5045 entry = swp_entry_to_pte(swp_entry);
5046 if (userfaultfd_wp(src_vma) && uffd_wp)
5047 entry = huge_pte_mkuffd_wp(entry);
5048 set_huge_pte_at(src, addr, src_pte, entry);
5049 }
5050 if (!userfaultfd_wp(dst_vma) && uffd_wp)
5051 entry = huge_pte_clear_uffd_wp(entry);
5052 set_huge_pte_at(dst, addr, dst_pte, entry);
5053 } else if (unlikely(is_pte_marker(entry))) {
5054 /* No swap on hugetlb */
5055 WARN_ON_ONCE(
5056 is_swapin_error_entry(pte_to_swp_entry(entry)));
5057 /*
5058 * We copy the pte marker only if the dst vma has
5059 * uffd-wp enabled.
5060 */
5061 if (userfaultfd_wp(dst_vma))
5062 set_huge_pte_at(dst, addr, dst_pte, entry);
5063 } else {
5064 entry = huge_ptep_get(src_pte);
5065 ptepage = pte_page(entry);
5066 get_page(ptepage);
5067
5068 /*
5069 * Failing to duplicate the anon rmap is a rare case
5070 * where we see pinned hugetlb pages while they're
5071 * prone to COW. We need to do the COW earlier during
5072 * fork.
5073 *
5074 * When pre-allocating the page or copying data, we
5075 * need to be without the pgtable locks since we could
5076 * sleep during the process.
5077 */
5078 if (!PageAnon(ptepage)) {
5079 page_dup_file_rmap(ptepage, true);
5080 } else if (page_try_dup_anon_rmap(ptepage, true,
5081 src_vma)) {
5082 pte_t src_pte_old = entry;
5083 struct page *new;
5084
5085 spin_unlock(src_ptl);
5086 spin_unlock(dst_ptl);
5087 /* Do not use reserve as it's private owned */
5088 new = alloc_huge_page(dst_vma, addr, 1);
5089 if (IS_ERR(new)) {
5090 put_page(ptepage);
5091 ret = PTR_ERR(new);
5092 break;
5093 }
5094 copy_user_huge_page(new, ptepage, addr, dst_vma,
5095 npages);
5096 put_page(ptepage);
5097
5098 /* Install the new huge page if src pte stable */
5099 dst_ptl = huge_pte_lock(h, dst, dst_pte);
5100 src_ptl = huge_pte_lockptr(h, src, src_pte);
5101 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
5102 entry = huge_ptep_get(src_pte);
5103 if (!pte_same(src_pte_old, entry)) {
5104 restore_reserve_on_error(h, dst_vma, addr,
5105 new);
5106 put_page(new);
5107 /* huge_ptep of dst_pte won't change as in child */
5108 goto again;
5109 }
5110 hugetlb_install_page(dst_vma, dst_pte, addr, new);
5111 spin_unlock(src_ptl);
5112 spin_unlock(dst_ptl);
5113 continue;
5114 }
5115
5116 if (cow) {
5117 /*
5118 * No need to notify as we are downgrading page
5119 * table protection not changing it to point
5120 * to a new page.
5121 *
5122 * See Documentation/mm/mmu_notifier.rst
5123 */
5124 huge_ptep_set_wrprotect(src, addr, src_pte);
5125 entry = huge_pte_wrprotect(entry);
5126 }
5127
5128 set_huge_pte_at(dst, addr, dst_pte, entry);
5129 hugetlb_count_add(npages, dst);
5130 }
5131 spin_unlock(src_ptl);
5132 spin_unlock(dst_ptl);
5133 }
5134
5135 if (cow) {
5136 raw_write_seqcount_end(&src->write_protect_seq);
5137 mmu_notifier_invalidate_range_end(&range);
5138 } else {
5139 hugetlb_vma_unlock_read(src_vma);
5140 }
5141
5142 return ret;
5143}
5144
5145static void move_huge_pte(struct vm_area_struct *vma, unsigned long old_addr,
5146 unsigned long new_addr, pte_t *src_pte, pte_t *dst_pte)
5147{
5148 struct hstate *h = hstate_vma(vma);
5149 struct mm_struct *mm = vma->vm_mm;
5150 spinlock_t *src_ptl, *dst_ptl;
5151 pte_t pte;
5152
5153 dst_ptl = huge_pte_lock(h, mm, dst_pte);
5154 src_ptl = huge_pte_lockptr(h, mm, src_pte);
5155
5156 /*
5157 * We don't have to worry about the ordering of src and dst ptlocks
5158 * because exclusive mmap_lock (or the i_mmap_lock) prevents deadlock.
5159 */
5160 if (src_ptl != dst_ptl)
5161 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
5162
5163 pte = huge_ptep_get_and_clear(mm, old_addr, src_pte);
5164 set_huge_pte_at(mm, new_addr, dst_pte, pte);
5165
5166 if (src_ptl != dst_ptl)
5167 spin_unlock(src_ptl);
5168 spin_unlock(dst_ptl);
5169}
5170
5171int move_hugetlb_page_tables(struct vm_area_struct *vma,
5172 struct vm_area_struct *new_vma,
5173 unsigned long old_addr, unsigned long new_addr,
5174 unsigned long len)
5175{
5176 struct hstate *h = hstate_vma(vma);
5177 struct address_space *mapping = vma->vm_file->f_mapping;
5178 unsigned long sz = huge_page_size(h);
5179 struct mm_struct *mm = vma->vm_mm;
5180 unsigned long old_end = old_addr + len;
5181 unsigned long last_addr_mask;
5182 pte_t *src_pte, *dst_pte;
5183 struct mmu_notifier_range range;
5184 bool shared_pmd = false;
5185
5186 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, old_addr,
5187 old_end);
5188 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
5189 /*
5190 * In case of shared PMDs, we should cover the maximum possible
5191 * range.
5192 */
5193 flush_cache_range(vma, range.start, range.end);
5194
5195 mmu_notifier_invalidate_range_start(&range);
5196 last_addr_mask = hugetlb_mask_last_page(h);
5197 /* Prevent race with file truncation */
5198 hugetlb_vma_lock_write(vma);
5199 i_mmap_lock_write(mapping);
5200 for (; old_addr < old_end; old_addr += sz, new_addr += sz) {
5201 src_pte = huge_pte_offset(mm, old_addr, sz);
5202 if (!src_pte) {
5203 old_addr |= last_addr_mask;
5204 new_addr |= last_addr_mask;
5205 continue;
5206 }
5207 if (huge_pte_none(huge_ptep_get(src_pte)))
5208 continue;
5209
5210 if (huge_pmd_unshare(mm, vma, old_addr, src_pte)) {
5211 shared_pmd = true;
5212 old_addr |= last_addr_mask;
5213 new_addr |= last_addr_mask;
5214 continue;
5215 }
5216
5217 dst_pte = huge_pte_alloc(mm, new_vma, new_addr, sz);
5218 if (!dst_pte)
5219 break;
5220
5221 move_huge_pte(vma, old_addr, new_addr, src_pte, dst_pte);
5222 }
5223
5224 if (shared_pmd)
5225 flush_tlb_range(vma, range.start, range.end);
5226 else
5227 flush_tlb_range(vma, old_end - len, old_end);
5228 mmu_notifier_invalidate_range_end(&range);
5229 i_mmap_unlock_write(mapping);
5230 hugetlb_vma_unlock_write(vma);
5231
5232 return len + old_addr - old_end;
5233}
5234
5235static void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
5236 unsigned long start, unsigned long end,
5237 struct page *ref_page, zap_flags_t zap_flags)
5238{
5239 struct mm_struct *mm = vma->vm_mm;
5240 unsigned long address;
5241 pte_t *ptep;
5242 pte_t pte;
5243 spinlock_t *ptl;
5244 struct page *page;
5245 struct hstate *h = hstate_vma(vma);
5246 unsigned long sz = huge_page_size(h);
5247 unsigned long last_addr_mask;
5248 bool force_flush = false;
5249
5250 WARN_ON(!is_vm_hugetlb_page(vma));
5251 BUG_ON(start & ~huge_page_mask(h));
5252 BUG_ON(end & ~huge_page_mask(h));
5253
5254 /*
5255 * This is a hugetlb vma, all the pte entries should point
5256 * to huge page.
5257 */
5258 tlb_change_page_size(tlb, sz);
5259 tlb_start_vma(tlb, vma);
5260
5261 last_addr_mask = hugetlb_mask_last_page(h);
5262 address = start;
5263 for (; address < end; address += sz) {
5264 ptep = huge_pte_offset(mm, address, sz);
5265 if (!ptep) {
5266 address |= last_addr_mask;
5267 continue;
5268 }
5269
5270 ptl = huge_pte_lock(h, mm, ptep);
5271 if (huge_pmd_unshare(mm, vma, address, ptep)) {
5272 spin_unlock(ptl);
5273 tlb_flush_pmd_range(tlb, address & PUD_MASK, PUD_SIZE);
5274 force_flush = true;
5275 address |= last_addr_mask;
5276 continue;
5277 }
5278
5279 pte = huge_ptep_get(ptep);
5280 if (huge_pte_none(pte)) {
5281 spin_unlock(ptl);
5282 continue;
5283 }
5284
5285 /*
5286 * Migrating hugepage or HWPoisoned hugepage is already
5287 * unmapped and its refcount is dropped, so just clear pte here.
5288 */
5289 if (unlikely(!pte_present(pte))) {
5290 /*
5291 * If the pte was wr-protected by uffd-wp in any of the
5292 * swap forms, meanwhile the caller does not want to
5293 * drop the uffd-wp bit in this zap, then replace the
5294 * pte with a marker.
5295 */
5296 if (pte_swp_uffd_wp_any(pte) &&
5297 !(zap_flags & ZAP_FLAG_DROP_MARKER))
5298 set_huge_pte_at(mm, address, ptep,
5299 make_pte_marker(PTE_MARKER_UFFD_WP));
5300 else
5301 huge_pte_clear(mm, address, ptep, sz);
5302 spin_unlock(ptl);
5303 continue;
5304 }
5305
5306 page = pte_page(pte);
5307 /*
5308 * If a reference page is supplied, it is because a specific
5309 * page is being unmapped, not a range. Ensure the page we
5310 * are about to unmap is the actual page of interest.
5311 */
5312 if (ref_page) {
5313 if (page != ref_page) {
5314 spin_unlock(ptl);
5315 continue;
5316 }
5317 /*
5318 * Mark the VMA as having unmapped its page so that
5319 * future faults in this VMA will fail rather than
5320 * looking like data was lost
5321 */
5322 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
5323 }
5324
5325 pte = huge_ptep_get_and_clear(mm, address, ptep);
5326 tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
5327 if (huge_pte_dirty(pte))
5328 set_page_dirty(page);
5329 /* Leave a uffd-wp pte marker if needed */
5330 if (huge_pte_uffd_wp(pte) &&
5331 !(zap_flags & ZAP_FLAG_DROP_MARKER))
5332 set_huge_pte_at(mm, address, ptep,
5333 make_pte_marker(PTE_MARKER_UFFD_WP));
5334 hugetlb_count_sub(pages_per_huge_page(h), mm);
5335 page_remove_rmap(page, vma, true);
5336
5337 spin_unlock(ptl);
5338 tlb_remove_page_size(tlb, page, huge_page_size(h));
5339 /*
5340 * Bail out after unmapping reference page if supplied
5341 */
5342 if (ref_page)
5343 break;
5344 }
5345 tlb_end_vma(tlb, vma);
5346
5347 /*
5348 * If we unshared PMDs, the TLB flush was not recorded in mmu_gather. We
5349 * could defer the flush until now, since by holding i_mmap_rwsem we
5350 * guaranteed that the last refernece would not be dropped. But we must
5351 * do the flushing before we return, as otherwise i_mmap_rwsem will be
5352 * dropped and the last reference to the shared PMDs page might be
5353 * dropped as well.
5354 *
5355 * In theory we could defer the freeing of the PMD pages as well, but
5356 * huge_pmd_unshare() relies on the exact page_count for the PMD page to
5357 * detect sharing, so we cannot defer the release of the page either.
5358 * Instead, do flush now.
5359 */
5360 if (force_flush)
5361 tlb_flush_mmu_tlbonly(tlb);
5362}
5363
5364void __unmap_hugepage_range_final(struct mmu_gather *tlb,
5365 struct vm_area_struct *vma, unsigned long start,
5366 unsigned long end, struct page *ref_page,
5367 zap_flags_t zap_flags)
5368{
5369 hugetlb_vma_lock_write(vma);
5370 i_mmap_lock_write(vma->vm_file->f_mapping);
5371
5372 /* mmu notification performed in caller */
5373 __unmap_hugepage_range(tlb, vma, start, end, ref_page, zap_flags);
5374
5375 if (zap_flags & ZAP_FLAG_UNMAP) { /* final unmap */
5376 /*
5377 * Unlock and free the vma lock before releasing i_mmap_rwsem.
5378 * When the vma_lock is freed, this makes the vma ineligible
5379 * for pmd sharing. And, i_mmap_rwsem is required to set up
5380 * pmd sharing. This is important as page tables for this
5381 * unmapped range will be asynchrously deleted. If the page
5382 * tables are shared, there will be issues when accessed by
5383 * someone else.
5384 */
5385 __hugetlb_vma_unlock_write_free(vma);
5386 i_mmap_unlock_write(vma->vm_file->f_mapping);
5387 } else {
5388 i_mmap_unlock_write(vma->vm_file->f_mapping);
5389 hugetlb_vma_unlock_write(vma);
5390 }
5391}
5392
5393void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
5394 unsigned long end, struct page *ref_page,
5395 zap_flags_t zap_flags)
5396{
5397 struct mmu_notifier_range range;
5398 struct mmu_gather tlb;
5399
5400 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
5401 start, end);
5402 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
5403 mmu_notifier_invalidate_range_start(&range);
5404 tlb_gather_mmu(&tlb, vma->vm_mm);
5405
5406 __unmap_hugepage_range(&tlb, vma, start, end, ref_page, zap_flags);
5407
5408 mmu_notifier_invalidate_range_end(&range);
5409 tlb_finish_mmu(&tlb);
5410}
5411
5412/*
5413 * This is called when the original mapper is failing to COW a MAP_PRIVATE
5414 * mapping it owns the reserve page for. The intention is to unmap the page
5415 * from other VMAs and let the children be SIGKILLed if they are faulting the
5416 * same region.
5417 */
5418static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
5419 struct page *page, unsigned long address)
5420{
5421 struct hstate *h = hstate_vma(vma);
5422 struct vm_area_struct *iter_vma;
5423 struct address_space *mapping;
5424 pgoff_t pgoff;
5425
5426 /*
5427 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
5428 * from page cache lookup which is in HPAGE_SIZE units.
5429 */
5430 address = address & huge_page_mask(h);
5431 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
5432 vma->vm_pgoff;
5433 mapping = vma->vm_file->f_mapping;
5434
5435 /*
5436 * Take the mapping lock for the duration of the table walk. As
5437 * this mapping should be shared between all the VMAs,
5438 * __unmap_hugepage_range() is called as the lock is already held
5439 */
5440 i_mmap_lock_write(mapping);
5441 vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
5442 /* Do not unmap the current VMA */
5443 if (iter_vma == vma)
5444 continue;
5445
5446 /*
5447 * Shared VMAs have their own reserves and do not affect
5448 * MAP_PRIVATE accounting but it is possible that a shared
5449 * VMA is using the same page so check and skip such VMAs.
5450 */
5451 if (iter_vma->vm_flags & VM_MAYSHARE)
5452 continue;
5453
5454 /*
5455 * Unmap the page from other VMAs without their own reserves.
5456 * They get marked to be SIGKILLed if they fault in these
5457 * areas. This is because a future no-page fault on this VMA
5458 * could insert a zeroed page instead of the data existing
5459 * from the time of fork. This would look like data corruption
5460 */
5461 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
5462 unmap_hugepage_range(iter_vma, address,
5463 address + huge_page_size(h), page, 0);
5464 }
5465 i_mmap_unlock_write(mapping);
5466}
5467
5468/*
5469 * hugetlb_wp() should be called with page lock of the original hugepage held.
5470 * Called with hugetlb_fault_mutex_table held and pte_page locked so we
5471 * cannot race with other handlers or page migration.
5472 * Keep the pte_same checks anyway to make transition from the mutex easier.
5473 */
5474static vm_fault_t hugetlb_wp(struct mm_struct *mm, struct vm_area_struct *vma,
5475 unsigned long address, pte_t *ptep, unsigned int flags,
5476 struct page *pagecache_page, spinlock_t *ptl)
5477{
5478 const bool unshare = flags & FAULT_FLAG_UNSHARE;
5479 pte_t pte;
5480 struct hstate *h = hstate_vma(vma);
5481 struct page *old_page, *new_page;
5482 int outside_reserve = 0;
5483 vm_fault_t ret = 0;
5484 unsigned long haddr = address & huge_page_mask(h);
5485 struct mmu_notifier_range range;
5486
5487 /*
5488 * hugetlb does not support FOLL_FORCE-style write faults that keep the
5489 * PTE mapped R/O such as maybe_mkwrite() would do.
5490 */
5491 if (WARN_ON_ONCE(!unshare && !(vma->vm_flags & VM_WRITE)))
5492 return VM_FAULT_SIGSEGV;
5493
5494 /* Let's take out MAP_SHARED mappings first. */
5495 if (vma->vm_flags & VM_MAYSHARE) {
5496 set_huge_ptep_writable(vma, haddr, ptep);
5497 return 0;
5498 }
5499
5500 pte = huge_ptep_get(ptep);
5501 old_page = pte_page(pte);
5502
5503 delayacct_wpcopy_start();
5504
5505retry_avoidcopy:
5506 /*
5507 * If no-one else is actually using this page, we're the exclusive
5508 * owner and can reuse this page.
5509 */
5510 if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
5511 if (!PageAnonExclusive(old_page))
5512 page_move_anon_rmap(old_page, vma);
5513 if (likely(!unshare))
5514 set_huge_ptep_writable(vma, haddr, ptep);
5515
5516 delayacct_wpcopy_end();
5517 return 0;
5518 }
5519 VM_BUG_ON_PAGE(PageAnon(old_page) && PageAnonExclusive(old_page),
5520 old_page);
5521
5522 /*
5523 * If the process that created a MAP_PRIVATE mapping is about to
5524 * perform a COW due to a shared page count, attempt to satisfy
5525 * the allocation without using the existing reserves. The pagecache
5526 * page is used to determine if the reserve at this address was
5527 * consumed or not. If reserves were used, a partial faulted mapping
5528 * at the time of fork() could consume its reserves on COW instead
5529 * of the full address range.
5530 */
5531 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
5532 old_page != pagecache_page)
5533 outside_reserve = 1;
5534
5535 get_page(old_page);
5536
5537 /*
5538 * Drop page table lock as buddy allocator may be called. It will
5539 * be acquired again before returning to the caller, as expected.
5540 */
5541 spin_unlock(ptl);
5542 new_page = alloc_huge_page(vma, haddr, outside_reserve);
5543
5544 if (IS_ERR(new_page)) {
5545 /*
5546 * If a process owning a MAP_PRIVATE mapping fails to COW,
5547 * it is due to references held by a child and an insufficient
5548 * huge page pool. To guarantee the original mappers
5549 * reliability, unmap the page from child processes. The child
5550 * may get SIGKILLed if it later faults.
5551 */
5552 if (outside_reserve) {
5553 struct address_space *mapping = vma->vm_file->f_mapping;
5554 pgoff_t idx;
5555 u32 hash;
5556
5557 put_page(old_page);
5558 /*
5559 * Drop hugetlb_fault_mutex and vma_lock before
5560 * unmapping. unmapping needs to hold vma_lock
5561 * in write mode. Dropping vma_lock in read mode
5562 * here is OK as COW mappings do not interact with
5563 * PMD sharing.
5564 *
5565 * Reacquire both after unmap operation.
5566 */
5567 idx = vma_hugecache_offset(h, vma, haddr);
5568 hash = hugetlb_fault_mutex_hash(mapping, idx);
5569 hugetlb_vma_unlock_read(vma);
5570 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5571
5572 unmap_ref_private(mm, vma, old_page, haddr);
5573
5574 mutex_lock(&hugetlb_fault_mutex_table[hash]);
5575 hugetlb_vma_lock_read(vma);
5576 spin_lock(ptl);
5577 ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
5578 if (likely(ptep &&
5579 pte_same(huge_ptep_get(ptep), pte)))
5580 goto retry_avoidcopy;
5581 /*
5582 * race occurs while re-acquiring page table
5583 * lock, and our job is done.
5584 */
5585 delayacct_wpcopy_end();
5586 return 0;
5587 }
5588
5589 ret = vmf_error(PTR_ERR(new_page));
5590 goto out_release_old;
5591 }
5592
5593 /*
5594 * When the original hugepage is shared one, it does not have
5595 * anon_vma prepared.
5596 */
5597 if (unlikely(anon_vma_prepare(vma))) {
5598 ret = VM_FAULT_OOM;
5599 goto out_release_all;
5600 }
5601
5602 copy_user_huge_page(new_page, old_page, address, vma,
5603 pages_per_huge_page(h));
5604 __SetPageUptodate(new_page);
5605
5606 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, haddr,
5607 haddr + huge_page_size(h));
5608 mmu_notifier_invalidate_range_start(&range);
5609
5610 /*
5611 * Retake the page table lock to check for racing updates
5612 * before the page tables are altered
5613 */
5614 spin_lock(ptl);
5615 ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
5616 if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
5617 /* Break COW or unshare */
5618 huge_ptep_clear_flush(vma, haddr, ptep);
5619 mmu_notifier_invalidate_range(mm, range.start, range.end);
5620 page_remove_rmap(old_page, vma, true);
5621 hugepage_add_new_anon_rmap(new_page, vma, haddr);
5622 set_huge_pte_at(mm, haddr, ptep,
5623 make_huge_pte(vma, new_page, !unshare));
5624 SetHPageMigratable(new_page);
5625 /* Make the old page be freed below */
5626 new_page = old_page;
5627 }
5628 spin_unlock(ptl);
5629 mmu_notifier_invalidate_range_end(&range);
5630out_release_all:
5631 /*
5632 * No restore in case of successful pagetable update (Break COW or
5633 * unshare)
5634 */
5635 if (new_page != old_page)
5636 restore_reserve_on_error(h, vma, haddr, new_page);
5637 put_page(new_page);
5638out_release_old:
5639 put_page(old_page);
5640
5641 spin_lock(ptl); /* Caller expects lock to be held */
5642
5643 delayacct_wpcopy_end();
5644 return ret;
5645}
5646
5647/*
5648 * Return whether there is a pagecache page to back given address within VMA.
5649 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
5650 */
5651static bool hugetlbfs_pagecache_present(struct hstate *h,
5652 struct vm_area_struct *vma, unsigned long address)
5653{
5654 struct address_space *mapping;
5655 pgoff_t idx;
5656 struct page *page;
5657
5658 mapping = vma->vm_file->f_mapping;
5659 idx = vma_hugecache_offset(h, vma, address);
5660
5661 page = find_get_page(mapping, idx);
5662 if (page)
5663 put_page(page);
5664 return page != NULL;
5665}
5666
5667int hugetlb_add_to_page_cache(struct page *page, struct address_space *mapping,
5668 pgoff_t idx)
5669{
5670 struct folio *folio = page_folio(page);
5671 struct inode *inode = mapping->host;
5672 struct hstate *h = hstate_inode(inode);
5673 int err;
5674
5675 __folio_set_locked(folio);
5676 err = __filemap_add_folio(mapping, folio, idx, GFP_KERNEL, NULL);
5677
5678 if (unlikely(err)) {
5679 __folio_clear_locked(folio);
5680 return err;
5681 }
5682 ClearHPageRestoreReserve(page);
5683
5684 /*
5685 * mark folio dirty so that it will not be removed from cache/file
5686 * by non-hugetlbfs specific code paths.
5687 */
5688 folio_mark_dirty(folio);
5689
5690 spin_lock(&inode->i_lock);
5691 inode->i_blocks += blocks_per_huge_page(h);
5692 spin_unlock(&inode->i_lock);
5693 return 0;
5694}
5695
5696static inline vm_fault_t hugetlb_handle_userfault(struct vm_area_struct *vma,
5697 struct address_space *mapping,
5698 pgoff_t idx,
5699 unsigned int flags,
5700 unsigned long haddr,
5701 unsigned long addr,
5702 unsigned long reason)
5703{
5704 u32 hash;
5705 struct vm_fault vmf = {
5706 .vma = vma,
5707 .address = haddr,
5708 .real_address = addr,
5709 .flags = flags,
5710
5711 /*
5712 * Hard to debug if it ends up being
5713 * used by a callee that assumes
5714 * something about the other
5715 * uninitialized fields... same as in
5716 * memory.c
5717 */
5718 };
5719
5720 /*
5721 * vma_lock and hugetlb_fault_mutex must be dropped before handling
5722 * userfault. Also mmap_lock could be dropped due to handling
5723 * userfault, any vma operation should be careful from here.
5724 */
5725 hugetlb_vma_unlock_read(vma);
5726 hash = hugetlb_fault_mutex_hash(mapping, idx);
5727 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5728 return handle_userfault(&vmf, reason);
5729}
5730
5731/*
5732 * Recheck pte with pgtable lock. Returns true if pte didn't change, or
5733 * false if pte changed or is changing.
5734 */
5735static bool hugetlb_pte_stable(struct hstate *h, struct mm_struct *mm,
5736 pte_t *ptep, pte_t old_pte)
5737{
5738 spinlock_t *ptl;
5739 bool same;
5740
5741 ptl = huge_pte_lock(h, mm, ptep);
5742 same = pte_same(huge_ptep_get(ptep), old_pte);
5743 spin_unlock(ptl);
5744
5745 return same;
5746}
5747
5748static vm_fault_t hugetlb_no_page(struct mm_struct *mm,
5749 struct vm_area_struct *vma,
5750 struct address_space *mapping, pgoff_t idx,
5751 unsigned long address, pte_t *ptep,
5752 pte_t old_pte, unsigned int flags)
5753{
5754 struct hstate *h = hstate_vma(vma);
5755 vm_fault_t ret = VM_FAULT_SIGBUS;
5756 int anon_rmap = 0;
5757 unsigned long size;
5758 struct page *page;
5759 pte_t new_pte;
5760 spinlock_t *ptl;
5761 unsigned long haddr = address & huge_page_mask(h);
5762 bool new_page, new_pagecache_page = false;
5763 u32 hash = hugetlb_fault_mutex_hash(mapping, idx);
5764
5765 /*
5766 * Currently, we are forced to kill the process in the event the
5767 * original mapper has unmapped pages from the child due to a failed
5768 * COW/unsharing. Warn that such a situation has occurred as it may not
5769 * be obvious.
5770 */
5771 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
5772 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
5773 current->pid);
5774 goto out;
5775 }
5776
5777 /*
5778 * Use page lock to guard against racing truncation
5779 * before we get page_table_lock.
5780 */
5781 new_page = false;
5782 page = find_lock_page(mapping, idx);
5783 if (!page) {
5784 size = i_size_read(mapping->host) >> huge_page_shift(h);
5785 if (idx >= size)
5786 goto out;
5787 /* Check for page in userfault range */
5788 if (userfaultfd_missing(vma)) {
5789 /*
5790 * Since hugetlb_no_page() was examining pte
5791 * without pgtable lock, we need to re-test under
5792 * lock because the pte may not be stable and could
5793 * have changed from under us. Try to detect
5794 * either changed or during-changing ptes and retry
5795 * properly when needed.
5796 *
5797 * Note that userfaultfd is actually fine with
5798 * false positives (e.g. caused by pte changed),
5799 * but not wrong logical events (e.g. caused by
5800 * reading a pte during changing). The latter can
5801 * confuse the userspace, so the strictness is very
5802 * much preferred. E.g., MISSING event should
5803 * never happen on the page after UFFDIO_COPY has
5804 * correctly installed the page and returned.
5805 */
5806 if (!hugetlb_pte_stable(h, mm, ptep, old_pte)) {
5807 ret = 0;
5808 goto out;
5809 }
5810
5811 return hugetlb_handle_userfault(vma, mapping, idx, flags,
5812 haddr, address,
5813 VM_UFFD_MISSING);
5814 }
5815
5816 page = alloc_huge_page(vma, haddr, 0);
5817 if (IS_ERR(page)) {
5818 /*
5819 * Returning error will result in faulting task being
5820 * sent SIGBUS. The hugetlb fault mutex prevents two
5821 * tasks from racing to fault in the same page which
5822 * could result in false unable to allocate errors.
5823 * Page migration does not take the fault mutex, but
5824 * does a clear then write of pte's under page table
5825 * lock. Page fault code could race with migration,
5826 * notice the clear pte and try to allocate a page
5827 * here. Before returning error, get ptl and make
5828 * sure there really is no pte entry.
5829 */
5830 if (hugetlb_pte_stable(h, mm, ptep, old_pte))
5831 ret = vmf_error(PTR_ERR(page));
5832 else
5833 ret = 0;
5834 goto out;
5835 }
5836 clear_huge_page(page, address, pages_per_huge_page(h));
5837 __SetPageUptodate(page);
5838 new_page = true;
5839
5840 if (vma->vm_flags & VM_MAYSHARE) {
5841 int err = hugetlb_add_to_page_cache(page, mapping, idx);
5842 if (err) {
5843 /*
5844 * err can't be -EEXIST which implies someone
5845 * else consumed the reservation since hugetlb
5846 * fault mutex is held when add a hugetlb page
5847 * to the page cache. So it's safe to call
5848 * restore_reserve_on_error() here.
5849 */
5850 restore_reserve_on_error(h, vma, haddr, page);
5851 put_page(page);
5852 goto out;
5853 }
5854 new_pagecache_page = true;
5855 } else {
5856 lock_page(page);
5857 if (unlikely(anon_vma_prepare(vma))) {
5858 ret = VM_FAULT_OOM;
5859 goto backout_unlocked;
5860 }
5861 anon_rmap = 1;
5862 }
5863 } else {
5864 /*
5865 * If memory error occurs between mmap() and fault, some process
5866 * don't have hwpoisoned swap entry for errored virtual address.
5867 * So we need to block hugepage fault by PG_hwpoison bit check.
5868 */
5869 if (unlikely(PageHWPoison(page))) {
5870 ret = VM_FAULT_HWPOISON_LARGE |
5871 VM_FAULT_SET_HINDEX(hstate_index(h));
5872 goto backout_unlocked;
5873 }
5874
5875 /* Check for page in userfault range. */
5876 if (userfaultfd_minor(vma)) {
5877 unlock_page(page);
5878 put_page(page);
5879 /* See comment in userfaultfd_missing() block above */
5880 if (!hugetlb_pte_stable(h, mm, ptep, old_pte)) {
5881 ret = 0;
5882 goto out;
5883 }
5884 return hugetlb_handle_userfault(vma, mapping, idx, flags,
5885 haddr, address,
5886 VM_UFFD_MINOR);
5887 }
5888 }
5889
5890 /*
5891 * If we are going to COW a private mapping later, we examine the
5892 * pending reservations for this page now. This will ensure that
5893 * any allocations necessary to record that reservation occur outside
5894 * the spinlock.
5895 */
5896 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
5897 if (vma_needs_reservation(h, vma, haddr) < 0) {
5898 ret = VM_FAULT_OOM;
5899 goto backout_unlocked;
5900 }
5901 /* Just decrements count, does not deallocate */
5902 vma_end_reservation(h, vma, haddr);
5903 }
5904
5905 ptl = huge_pte_lock(h, mm, ptep);
5906 ret = 0;
5907 /* If pte changed from under us, retry */
5908 if (!pte_same(huge_ptep_get(ptep), old_pte))
5909 goto backout;
5910
5911 if (anon_rmap)
5912 hugepage_add_new_anon_rmap(page, vma, haddr);
5913 else
5914 page_dup_file_rmap(page, true);
5915 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
5916 && (vma->vm_flags & VM_SHARED)));
5917 /*
5918 * If this pte was previously wr-protected, keep it wr-protected even
5919 * if populated.
5920 */
5921 if (unlikely(pte_marker_uffd_wp(old_pte)))
5922 new_pte = huge_pte_wrprotect(huge_pte_mkuffd_wp(new_pte));
5923 set_huge_pte_at(mm, haddr, ptep, new_pte);
5924
5925 hugetlb_count_add(pages_per_huge_page(h), mm);
5926 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
5927 /* Optimization, do the COW without a second fault */
5928 ret = hugetlb_wp(mm, vma, address, ptep, flags, page, ptl);
5929 }
5930
5931 spin_unlock(ptl);
5932
5933 /*
5934 * Only set HPageMigratable in newly allocated pages. Existing pages
5935 * found in the pagecache may not have HPageMigratableset if they have
5936 * been isolated for migration.
5937 */
5938 if (new_page)
5939 SetHPageMigratable(page);
5940
5941 unlock_page(page);
5942out:
5943 hugetlb_vma_unlock_read(vma);
5944 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5945 return ret;
5946
5947backout:
5948 spin_unlock(ptl);
5949backout_unlocked:
5950 if (new_page && !new_pagecache_page)
5951 restore_reserve_on_error(h, vma, haddr, page);
5952
5953 unlock_page(page);
5954 put_page(page);
5955 goto out;
5956}
5957
5958#ifdef CONFIG_SMP
5959u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
5960{
5961 unsigned long key[2];
5962 u32 hash;
5963
5964 key[0] = (unsigned long) mapping;
5965 key[1] = idx;
5966
5967 hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0);
5968
5969 return hash & (num_fault_mutexes - 1);
5970}
5971#else
5972/*
5973 * For uniprocessor systems we always use a single mutex, so just
5974 * return 0 and avoid the hashing overhead.
5975 */
5976u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
5977{
5978 return 0;
5979}
5980#endif
5981
5982vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
5983 unsigned long address, unsigned int flags)
5984{
5985 pte_t *ptep, entry;
5986 spinlock_t *ptl;
5987 vm_fault_t ret;
5988 u32 hash;
5989 pgoff_t idx;
5990 struct page *page = NULL;
5991 struct page *pagecache_page = NULL;
5992 struct hstate *h = hstate_vma(vma);
5993 struct address_space *mapping;
5994 int need_wait_lock = 0;
5995 unsigned long haddr = address & huge_page_mask(h);
5996
5997 ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
5998 if (ptep) {
5999 /*
6000 * Since we hold no locks, ptep could be stale. That is
6001 * OK as we are only making decisions based on content and
6002 * not actually modifying content here.
6003 */
6004 entry = huge_ptep_get(ptep);
6005 if (unlikely(is_hugetlb_entry_migration(entry))) {
6006 migration_entry_wait_huge(vma, ptep);
6007 return 0;
6008 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
6009 return VM_FAULT_HWPOISON_LARGE |
6010 VM_FAULT_SET_HINDEX(hstate_index(h));
6011 }
6012
6013 /*
6014 * Serialize hugepage allocation and instantiation, so that we don't
6015 * get spurious allocation failures if two CPUs race to instantiate
6016 * the same page in the page cache.
6017 */
6018 mapping = vma->vm_file->f_mapping;
6019 idx = vma_hugecache_offset(h, vma, haddr);
6020 hash = hugetlb_fault_mutex_hash(mapping, idx);
6021 mutex_lock(&hugetlb_fault_mutex_table[hash]);
6022
6023 /*
6024 * Acquire vma lock before calling huge_pte_alloc and hold
6025 * until finished with ptep. This prevents huge_pmd_unshare from
6026 * being called elsewhere and making the ptep no longer valid.
6027 *
6028 * ptep could have already be assigned via huge_pte_offset. That
6029 * is OK, as huge_pte_alloc will return the same value unless
6030 * something has changed.
6031 */
6032 hugetlb_vma_lock_read(vma);
6033 ptep = huge_pte_alloc(mm, vma, haddr, huge_page_size(h));
6034 if (!ptep) {
6035 hugetlb_vma_unlock_read(vma);
6036 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6037 return VM_FAULT_OOM;
6038 }
6039
6040 entry = huge_ptep_get(ptep);
6041 /* PTE markers should be handled the same way as none pte */
6042 if (huge_pte_none_mostly(entry))
6043 /*
6044 * hugetlb_no_page will drop vma lock and hugetlb fault
6045 * mutex internally, which make us return immediately.
6046 */
6047 return hugetlb_no_page(mm, vma, mapping, idx, address, ptep,
6048 entry, flags);
6049
6050 ret = 0;
6051
6052 /*
6053 * entry could be a migration/hwpoison entry at this point, so this
6054 * check prevents the kernel from going below assuming that we have
6055 * an active hugepage in pagecache. This goto expects the 2nd page
6056 * fault, and is_hugetlb_entry_(migration|hwpoisoned) check will
6057 * properly handle it.
6058 */
6059 if (!pte_present(entry))
6060 goto out_mutex;
6061
6062 /*
6063 * If we are going to COW/unshare the mapping later, we examine the
6064 * pending reservations for this page now. This will ensure that any
6065 * allocations necessary to record that reservation occur outside the
6066 * spinlock. Also lookup the pagecache page now as it is used to
6067 * determine if a reservation has been consumed.
6068 */
6069 if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) &&
6070 !(vma->vm_flags & VM_MAYSHARE) && !huge_pte_write(entry)) {
6071 if (vma_needs_reservation(h, vma, haddr) < 0) {
6072 ret = VM_FAULT_OOM;
6073 goto out_mutex;
6074 }
6075 /* Just decrements count, does not deallocate */
6076 vma_end_reservation(h, vma, haddr);
6077
6078 pagecache_page = find_lock_page(mapping, idx);
6079 }
6080
6081 ptl = huge_pte_lock(h, mm, ptep);
6082
6083 /* Check for a racing update before calling hugetlb_wp() */
6084 if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
6085 goto out_ptl;
6086
6087 /* Handle userfault-wp first, before trying to lock more pages */
6088 if (userfaultfd_wp(vma) && huge_pte_uffd_wp(huge_ptep_get(ptep)) &&
6089 (flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
6090 struct vm_fault vmf = {
6091 .vma = vma,
6092 .address = haddr,
6093 .real_address = address,
6094 .flags = flags,
6095 };
6096
6097 spin_unlock(ptl);
6098 if (pagecache_page) {
6099 unlock_page(pagecache_page);
6100 put_page(pagecache_page);
6101 }
6102 hugetlb_vma_unlock_read(vma);
6103 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6104 return handle_userfault(&vmf, VM_UFFD_WP);
6105 }
6106
6107 /*
6108 * hugetlb_wp() requires page locks of pte_page(entry) and
6109 * pagecache_page, so here we need take the former one
6110 * when page != pagecache_page or !pagecache_page.
6111 */
6112 page = pte_page(entry);
6113 if (page != pagecache_page)
6114 if (!trylock_page(page)) {
6115 need_wait_lock = 1;
6116 goto out_ptl;
6117 }
6118
6119 get_page(page);
6120
6121 if (flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) {
6122 if (!huge_pte_write(entry)) {
6123 ret = hugetlb_wp(mm, vma, address, ptep, flags,
6124 pagecache_page, ptl);
6125 goto out_put_page;
6126 } else if (likely(flags & FAULT_FLAG_WRITE)) {
6127 entry = huge_pte_mkdirty(entry);
6128 }
6129 }
6130 entry = pte_mkyoung(entry);
6131 if (huge_ptep_set_access_flags(vma, haddr, ptep, entry,
6132 flags & FAULT_FLAG_WRITE))
6133 update_mmu_cache(vma, haddr, ptep);
6134out_put_page:
6135 if (page != pagecache_page)
6136 unlock_page(page);
6137 put_page(page);
6138out_ptl:
6139 spin_unlock(ptl);
6140
6141 if (pagecache_page) {
6142 unlock_page(pagecache_page);
6143 put_page(pagecache_page);
6144 }
6145out_mutex:
6146 hugetlb_vma_unlock_read(vma);
6147 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6148 /*
6149 * Generally it's safe to hold refcount during waiting page lock. But
6150 * here we just wait to defer the next page fault to avoid busy loop and
6151 * the page is not used after unlocked before returning from the current
6152 * page fault. So we are safe from accessing freed page, even if we wait
6153 * here without taking refcount.
6154 */
6155 if (need_wait_lock)
6156 wait_on_page_locked(page);
6157 return ret;
6158}
6159
6160#ifdef CONFIG_USERFAULTFD
6161/*
6162 * Used by userfaultfd UFFDIO_COPY. Based on mcopy_atomic_pte with
6163 * modifications for huge pages.
6164 */
6165int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm,
6166 pte_t *dst_pte,
6167 struct vm_area_struct *dst_vma,
6168 unsigned long dst_addr,
6169 unsigned long src_addr,
6170 enum mcopy_atomic_mode mode,
6171 struct page **pagep,
6172 bool wp_copy)
6173{
6174 bool is_continue = (mode == MCOPY_ATOMIC_CONTINUE);
6175 struct hstate *h = hstate_vma(dst_vma);
6176 struct address_space *mapping = dst_vma->vm_file->f_mapping;
6177 pgoff_t idx = vma_hugecache_offset(h, dst_vma, dst_addr);
6178 unsigned long size;
6179 int vm_shared = dst_vma->vm_flags & VM_SHARED;
6180 pte_t _dst_pte;
6181 spinlock_t *ptl;
6182 int ret = -ENOMEM;
6183 struct page *page;
6184 int writable;
6185 bool page_in_pagecache = false;
6186
6187 if (is_continue) {
6188 ret = -EFAULT;
6189 page = find_lock_page(mapping, idx);
6190 if (!page)
6191 goto out;
6192 page_in_pagecache = true;
6193 } else if (!*pagep) {
6194 /* If a page already exists, then it's UFFDIO_COPY for
6195 * a non-missing case. Return -EEXIST.
6196 */
6197 if (vm_shared &&
6198 hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
6199 ret = -EEXIST;
6200 goto out;
6201 }
6202
6203 page = alloc_huge_page(dst_vma, dst_addr, 0);
6204 if (IS_ERR(page)) {
6205 ret = -ENOMEM;
6206 goto out;
6207 }
6208
6209 ret = copy_huge_page_from_user(page,
6210 (const void __user *) src_addr,
6211 pages_per_huge_page(h), false);
6212
6213 /* fallback to copy_from_user outside mmap_lock */
6214 if (unlikely(ret)) {
6215 ret = -ENOENT;
6216 /* Free the allocated page which may have
6217 * consumed a reservation.
6218 */
6219 restore_reserve_on_error(h, dst_vma, dst_addr, page);
6220 put_page(page);
6221
6222 /* Allocate a temporary page to hold the copied
6223 * contents.
6224 */
6225 page = alloc_huge_page_vma(h, dst_vma, dst_addr);
6226 if (!page) {
6227 ret = -ENOMEM;
6228 goto out;
6229 }
6230 *pagep = page;
6231 /* Set the outparam pagep and return to the caller to
6232 * copy the contents outside the lock. Don't free the
6233 * page.
6234 */
6235 goto out;
6236 }
6237 } else {
6238 if (vm_shared &&
6239 hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
6240 put_page(*pagep);
6241 ret = -EEXIST;
6242 *pagep = NULL;
6243 goto out;
6244 }
6245
6246 page = alloc_huge_page(dst_vma, dst_addr, 0);
6247 if (IS_ERR(page)) {
6248 put_page(*pagep);
6249 ret = -ENOMEM;
6250 *pagep = NULL;
6251 goto out;
6252 }
6253 copy_user_huge_page(page, *pagep, dst_addr, dst_vma,
6254 pages_per_huge_page(h));
6255 put_page(*pagep);
6256 *pagep = NULL;
6257 }
6258
6259 /*
6260 * The memory barrier inside __SetPageUptodate makes sure that
6261 * preceding stores to the page contents become visible before
6262 * the set_pte_at() write.
6263 */
6264 __SetPageUptodate(page);
6265
6266 /* Add shared, newly allocated pages to the page cache. */
6267 if (vm_shared && !is_continue) {
6268 size = i_size_read(mapping->host) >> huge_page_shift(h);
6269 ret = -EFAULT;
6270 if (idx >= size)
6271 goto out_release_nounlock;
6272
6273 /*
6274 * Serialization between remove_inode_hugepages() and
6275 * hugetlb_add_to_page_cache() below happens through the
6276 * hugetlb_fault_mutex_table that here must be hold by
6277 * the caller.
6278 */
6279 ret = hugetlb_add_to_page_cache(page, mapping, idx);
6280 if (ret)
6281 goto out_release_nounlock;
6282 page_in_pagecache = true;
6283 }
6284
6285 ptl = huge_pte_lock(h, dst_mm, dst_pte);
6286
6287 ret = -EIO;
6288 if (PageHWPoison(page))
6289 goto out_release_unlock;
6290
6291 /*
6292 * We allow to overwrite a pte marker: consider when both MISSING|WP
6293 * registered, we firstly wr-protect a none pte which has no page cache
6294 * page backing it, then access the page.
6295 */
6296 ret = -EEXIST;
6297 if (!huge_pte_none_mostly(huge_ptep_get(dst_pte)))
6298 goto out_release_unlock;
6299
6300 if (page_in_pagecache)
6301 page_dup_file_rmap(page, true);
6302 else
6303 hugepage_add_new_anon_rmap(page, dst_vma, dst_addr);
6304
6305 /*
6306 * For either: (1) CONTINUE on a non-shared VMA, or (2) UFFDIO_COPY
6307 * with wp flag set, don't set pte write bit.
6308 */
6309 if (wp_copy || (is_continue && !vm_shared))
6310 writable = 0;
6311 else
6312 writable = dst_vma->vm_flags & VM_WRITE;
6313
6314 _dst_pte = make_huge_pte(dst_vma, page, writable);
6315 /*
6316 * Always mark UFFDIO_COPY page dirty; note that this may not be
6317 * extremely important for hugetlbfs for now since swapping is not
6318 * supported, but we should still be clear in that this page cannot be
6319 * thrown away at will, even if write bit not set.
6320 */
6321 _dst_pte = huge_pte_mkdirty(_dst_pte);
6322 _dst_pte = pte_mkyoung(_dst_pte);
6323
6324 if (wp_copy)
6325 _dst_pte = huge_pte_mkuffd_wp(_dst_pte);
6326
6327 set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
6328
6329 hugetlb_count_add(pages_per_huge_page(h), dst_mm);
6330
6331 /* No need to invalidate - it was non-present before */
6332 update_mmu_cache(dst_vma, dst_addr, dst_pte);
6333
6334 spin_unlock(ptl);
6335 if (!is_continue)
6336 SetHPageMigratable(page);
6337 if (vm_shared || is_continue)
6338 unlock_page(page);
6339 ret = 0;
6340out:
6341 return ret;
6342out_release_unlock:
6343 spin_unlock(ptl);
6344 if (vm_shared || is_continue)
6345 unlock_page(page);
6346out_release_nounlock:
6347 if (!page_in_pagecache)
6348 restore_reserve_on_error(h, dst_vma, dst_addr, page);
6349 put_page(page);
6350 goto out;
6351}
6352#endif /* CONFIG_USERFAULTFD */
6353
6354static void record_subpages_vmas(struct page *page, struct vm_area_struct *vma,
6355 int refs, struct page **pages,
6356 struct vm_area_struct **vmas)
6357{
6358 int nr;
6359
6360 for (nr = 0; nr < refs; nr++) {
6361 if (likely(pages))
6362 pages[nr] = nth_page(page, nr);
6363 if (vmas)
6364 vmas[nr] = vma;
6365 }
6366}
6367
6368static inline bool __follow_hugetlb_must_fault(struct vm_area_struct *vma,
6369 unsigned int flags, pte_t *pte,
6370 bool *unshare)
6371{
6372 pte_t pteval = huge_ptep_get(pte);
6373
6374 *unshare = false;
6375 if (is_swap_pte(pteval))
6376 return true;
6377 if (huge_pte_write(pteval))
6378 return false;
6379 if (flags & FOLL_WRITE)
6380 return true;
6381 if (gup_must_unshare(vma, flags, pte_page(pteval))) {
6382 *unshare = true;
6383 return true;
6384 }
6385 return false;
6386}
6387
6388struct page *hugetlb_follow_page_mask(struct vm_area_struct *vma,
6389 unsigned long address, unsigned int flags)
6390{
6391 struct hstate *h = hstate_vma(vma);
6392 struct mm_struct *mm = vma->vm_mm;
6393 unsigned long haddr = address & huge_page_mask(h);
6394 struct page *page = NULL;
6395 spinlock_t *ptl;
6396 pte_t *pte, entry;
6397
6398 /*
6399 * FOLL_PIN is not supported for follow_page(). Ordinary GUP goes via
6400 * follow_hugetlb_page().
6401 */
6402 if (WARN_ON_ONCE(flags & FOLL_PIN))
6403 return NULL;
6404
6405retry:
6406 pte = huge_pte_offset(mm, haddr, huge_page_size(h));
6407 if (!pte)
6408 return NULL;
6409
6410 ptl = huge_pte_lock(h, mm, pte);
6411 entry = huge_ptep_get(pte);
6412 if (pte_present(entry)) {
6413 page = pte_page(entry) +
6414 ((address & ~huge_page_mask(h)) >> PAGE_SHIFT);
6415 /*
6416 * Note that page may be a sub-page, and with vmemmap
6417 * optimizations the page struct may be read only.
6418 * try_grab_page() will increase the ref count on the
6419 * head page, so this will be OK.
6420 *
6421 * try_grab_page() should always be able to get the page here,
6422 * because we hold the ptl lock and have verified pte_present().
6423 */
6424 if (try_grab_page(page, flags)) {
6425 page = NULL;
6426 goto out;
6427 }
6428 } else {
6429 if (is_hugetlb_entry_migration(entry)) {
6430 spin_unlock(ptl);
6431 __migration_entry_wait_huge(pte, ptl);
6432 goto retry;
6433 }
6434 /*
6435 * hwpoisoned entry is treated as no_page_table in
6436 * follow_page_mask().
6437 */
6438 }
6439out:
6440 spin_unlock(ptl);
6441 return page;
6442}
6443
6444long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
6445 struct page **pages, struct vm_area_struct **vmas,
6446 unsigned long *position, unsigned long *nr_pages,
6447 long i, unsigned int flags, int *locked)
6448{
6449 unsigned long pfn_offset;
6450 unsigned long vaddr = *position;
6451 unsigned long remainder = *nr_pages;
6452 struct hstate *h = hstate_vma(vma);
6453 int err = -EFAULT, refs;
6454
6455 while (vaddr < vma->vm_end && remainder) {
6456 pte_t *pte;
6457 spinlock_t *ptl = NULL;
6458 bool unshare = false;
6459 int absent;
6460 struct page *page;
6461
6462 /*
6463 * If we have a pending SIGKILL, don't keep faulting pages and
6464 * potentially allocating memory.
6465 */
6466 if (fatal_signal_pending(current)) {
6467 remainder = 0;
6468 break;
6469 }
6470
6471 /*
6472 * Some archs (sparc64, sh*) have multiple pte_ts to
6473 * each hugepage. We have to make sure we get the
6474 * first, for the page indexing below to work.
6475 *
6476 * Note that page table lock is not held when pte is null.
6477 */
6478 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h),
6479 huge_page_size(h));
6480 if (pte)
6481 ptl = huge_pte_lock(h, mm, pte);
6482 absent = !pte || huge_pte_none(huge_ptep_get(pte));
6483
6484 /*
6485 * When coredumping, it suits get_dump_page if we just return
6486 * an error where there's an empty slot with no huge pagecache
6487 * to back it. This way, we avoid allocating a hugepage, and
6488 * the sparse dumpfile avoids allocating disk blocks, but its
6489 * huge holes still show up with zeroes where they need to be.
6490 */
6491 if (absent && (flags & FOLL_DUMP) &&
6492 !hugetlbfs_pagecache_present(h, vma, vaddr)) {
6493 if (pte)
6494 spin_unlock(ptl);
6495 remainder = 0;
6496 break;
6497 }
6498
6499 /*
6500 * We need call hugetlb_fault for both hugepages under migration
6501 * (in which case hugetlb_fault waits for the migration,) and
6502 * hwpoisoned hugepages (in which case we need to prevent the
6503 * caller from accessing to them.) In order to do this, we use
6504 * here is_swap_pte instead of is_hugetlb_entry_migration and
6505 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
6506 * both cases, and because we can't follow correct pages
6507 * directly from any kind of swap entries.
6508 */
6509 if (absent ||
6510 __follow_hugetlb_must_fault(vma, flags, pte, &unshare)) {
6511 vm_fault_t ret;
6512 unsigned int fault_flags = 0;
6513
6514 if (pte)
6515 spin_unlock(ptl);
6516 if (flags & FOLL_WRITE)
6517 fault_flags |= FAULT_FLAG_WRITE;
6518 else if (unshare)
6519 fault_flags |= FAULT_FLAG_UNSHARE;
6520 if (locked) {
6521 fault_flags |= FAULT_FLAG_ALLOW_RETRY |
6522 FAULT_FLAG_KILLABLE;
6523 if (flags & FOLL_INTERRUPTIBLE)
6524 fault_flags |= FAULT_FLAG_INTERRUPTIBLE;
6525 }
6526 if (flags & FOLL_NOWAIT)
6527 fault_flags |= FAULT_FLAG_ALLOW_RETRY |
6528 FAULT_FLAG_RETRY_NOWAIT;
6529 if (flags & FOLL_TRIED) {
6530 /*
6531 * Note: FAULT_FLAG_ALLOW_RETRY and
6532 * FAULT_FLAG_TRIED can co-exist
6533 */
6534 fault_flags |= FAULT_FLAG_TRIED;
6535 }
6536 ret = hugetlb_fault(mm, vma, vaddr, fault_flags);
6537 if (ret & VM_FAULT_ERROR) {
6538 err = vm_fault_to_errno(ret, flags);
6539 remainder = 0;
6540 break;
6541 }
6542 if (ret & VM_FAULT_RETRY) {
6543 if (locked &&
6544 !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
6545 *locked = 0;
6546 *nr_pages = 0;
6547 /*
6548 * VM_FAULT_RETRY must not return an
6549 * error, it will return zero
6550 * instead.
6551 *
6552 * No need to update "position" as the
6553 * caller will not check it after
6554 * *nr_pages is set to 0.
6555 */
6556 return i;
6557 }
6558 continue;
6559 }
6560
6561 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
6562 page = pte_page(huge_ptep_get(pte));
6563
6564 VM_BUG_ON_PAGE((flags & FOLL_PIN) && PageAnon(page) &&
6565 !PageAnonExclusive(page), page);
6566
6567 /*
6568 * If subpage information not requested, update counters
6569 * and skip the same_page loop below.
6570 */
6571 if (!pages && !vmas && !pfn_offset &&
6572 (vaddr + huge_page_size(h) < vma->vm_end) &&
6573 (remainder >= pages_per_huge_page(h))) {
6574 vaddr += huge_page_size(h);
6575 remainder -= pages_per_huge_page(h);
6576 i += pages_per_huge_page(h);
6577 spin_unlock(ptl);
6578 continue;
6579 }
6580
6581 /* vaddr may not be aligned to PAGE_SIZE */
6582 refs = min3(pages_per_huge_page(h) - pfn_offset, remainder,
6583 (vma->vm_end - ALIGN_DOWN(vaddr, PAGE_SIZE)) >> PAGE_SHIFT);
6584
6585 if (pages || vmas)
6586 record_subpages_vmas(nth_page(page, pfn_offset),
6587 vma, refs,
6588 likely(pages) ? pages + i : NULL,
6589 vmas ? vmas + i : NULL);
6590
6591 if (pages) {
6592 /*
6593 * try_grab_folio() should always succeed here,
6594 * because: a) we hold the ptl lock, and b) we've just
6595 * checked that the huge page is present in the page
6596 * tables. If the huge page is present, then the tail
6597 * pages must also be present. The ptl prevents the
6598 * head page and tail pages from being rearranged in
6599 * any way. As this is hugetlb, the pages will never
6600 * be p2pdma or not longterm pinable. So this page
6601 * must be available at this point, unless the page
6602 * refcount overflowed:
6603 */
6604 if (WARN_ON_ONCE(!try_grab_folio(pages[i], refs,
6605 flags))) {
6606 spin_unlock(ptl);
6607 remainder = 0;
6608 err = -ENOMEM;
6609 break;
6610 }
6611 }
6612
6613 vaddr += (refs << PAGE_SHIFT);
6614 remainder -= refs;
6615 i += refs;
6616
6617 spin_unlock(ptl);
6618 }
6619 *nr_pages = remainder;
6620 /*
6621 * setting position is actually required only if remainder is
6622 * not zero but it's faster not to add a "if (remainder)"
6623 * branch.
6624 */
6625 *position = vaddr;
6626
6627 return i ? i : err;
6628}
6629
6630unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
6631 unsigned long address, unsigned long end,
6632 pgprot_t newprot, unsigned long cp_flags)
6633{
6634 struct mm_struct *mm = vma->vm_mm;
6635 unsigned long start = address;
6636 pte_t *ptep;
6637 pte_t pte;
6638 struct hstate *h = hstate_vma(vma);
6639 unsigned long pages = 0, psize = huge_page_size(h);
6640 bool shared_pmd = false;
6641 struct mmu_notifier_range range;
6642 unsigned long last_addr_mask;
6643 bool uffd_wp = cp_flags & MM_CP_UFFD_WP;
6644 bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE;
6645
6646 /*
6647 * In the case of shared PMDs, the area to flush could be beyond
6648 * start/end. Set range.start/range.end to cover the maximum possible
6649 * range if PMD sharing is possible.
6650 */
6651 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA,
6652 0, vma, mm, start, end);
6653 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
6654
6655 BUG_ON(address >= end);
6656 flush_cache_range(vma, range.start, range.end);
6657
6658 mmu_notifier_invalidate_range_start(&range);
6659 hugetlb_vma_lock_write(vma);
6660 i_mmap_lock_write(vma->vm_file->f_mapping);
6661 last_addr_mask = hugetlb_mask_last_page(h);
6662 for (; address < end; address += psize) {
6663 spinlock_t *ptl;
6664 ptep = huge_pte_offset(mm, address, psize);
6665 if (!ptep) {
6666 if (!uffd_wp) {
6667 address |= last_addr_mask;
6668 continue;
6669 }
6670 /*
6671 * Userfaultfd wr-protect requires pgtable
6672 * pre-allocations to install pte markers.
6673 */
6674 ptep = huge_pte_alloc(mm, vma, address, psize);
6675 if (!ptep)
6676 break;
6677 }
6678 ptl = huge_pte_lock(h, mm, ptep);
6679 if (huge_pmd_unshare(mm, vma, address, ptep)) {
6680 /*
6681 * When uffd-wp is enabled on the vma, unshare
6682 * shouldn't happen at all. Warn about it if it
6683 * happened due to some reason.
6684 */
6685 WARN_ON_ONCE(uffd_wp || uffd_wp_resolve);
6686 pages++;
6687 spin_unlock(ptl);
6688 shared_pmd = true;
6689 address |= last_addr_mask;
6690 continue;
6691 }
6692 pte = huge_ptep_get(ptep);
6693 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
6694 /* Nothing to do. */
6695 } else if (unlikely(is_hugetlb_entry_migration(pte))) {
6696 swp_entry_t entry = pte_to_swp_entry(pte);
6697 struct page *page = pfn_swap_entry_to_page(entry);
6698 pte_t newpte = pte;
6699
6700 if (is_writable_migration_entry(entry)) {
6701 if (PageAnon(page))
6702 entry = make_readable_exclusive_migration_entry(
6703 swp_offset(entry));
6704 else
6705 entry = make_readable_migration_entry(
6706 swp_offset(entry));
6707 newpte = swp_entry_to_pte(entry);
6708 pages++;
6709 }
6710
6711 if (uffd_wp)
6712 newpte = pte_swp_mkuffd_wp(newpte);
6713 else if (uffd_wp_resolve)
6714 newpte = pte_swp_clear_uffd_wp(newpte);
6715 if (!pte_same(pte, newpte))
6716 set_huge_pte_at(mm, address, ptep, newpte);
6717 } else if (unlikely(is_pte_marker(pte))) {
6718 /* No other markers apply for now. */
6719 WARN_ON_ONCE(!pte_marker_uffd_wp(pte));
6720 if (uffd_wp_resolve)
6721 /* Safe to modify directly (non-present->none). */
6722 huge_pte_clear(mm, address, ptep, psize);
6723 } else if (!huge_pte_none(pte)) {
6724 pte_t old_pte;
6725 unsigned int shift = huge_page_shift(hstate_vma(vma));
6726
6727 old_pte = huge_ptep_modify_prot_start(vma, address, ptep);
6728 pte = huge_pte_modify(old_pte, newprot);
6729 pte = arch_make_huge_pte(pte, shift, vma->vm_flags);
6730 if (uffd_wp)
6731 pte = huge_pte_mkuffd_wp(huge_pte_wrprotect(pte));
6732 else if (uffd_wp_resolve)
6733 pte = huge_pte_clear_uffd_wp(pte);
6734 huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte);
6735 pages++;
6736 } else {
6737 /* None pte */
6738 if (unlikely(uffd_wp))
6739 /* Safe to modify directly (none->non-present). */
6740 set_huge_pte_at(mm, address, ptep,
6741 make_pte_marker(PTE_MARKER_UFFD_WP));
6742 }
6743 spin_unlock(ptl);
6744 }
6745 /*
6746 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
6747 * may have cleared our pud entry and done put_page on the page table:
6748 * once we release i_mmap_rwsem, another task can do the final put_page
6749 * and that page table be reused and filled with junk. If we actually
6750 * did unshare a page of pmds, flush the range corresponding to the pud.
6751 */
6752 if (shared_pmd)
6753 flush_hugetlb_tlb_range(vma, range.start, range.end);
6754 else
6755 flush_hugetlb_tlb_range(vma, start, end);
6756 /*
6757 * No need to call mmu_notifier_invalidate_range() we are downgrading
6758 * page table protection not changing it to point to a new page.
6759 *
6760 * See Documentation/mm/mmu_notifier.rst
6761 */
6762 i_mmap_unlock_write(vma->vm_file->f_mapping);
6763 hugetlb_vma_unlock_write(vma);
6764 mmu_notifier_invalidate_range_end(&range);
6765
6766 return pages << h->order;
6767}
6768
6769/* Return true if reservation was successful, false otherwise. */
6770bool hugetlb_reserve_pages(struct inode *inode,
6771 long from, long to,
6772 struct vm_area_struct *vma,
6773 vm_flags_t vm_flags)
6774{
6775 long chg, add = -1;
6776 struct hstate *h = hstate_inode(inode);
6777 struct hugepage_subpool *spool = subpool_inode(inode);
6778 struct resv_map *resv_map;
6779 struct hugetlb_cgroup *h_cg = NULL;
6780 long gbl_reserve, regions_needed = 0;
6781
6782 /* This should never happen */
6783 if (from > to) {
6784 VM_WARN(1, "%s called with a negative range\n", __func__);
6785 return false;
6786 }
6787
6788 /*
6789 * vma specific semaphore used for pmd sharing and fault/truncation
6790 * synchronization
6791 */
6792 hugetlb_vma_lock_alloc(vma);
6793
6794 /*
6795 * Only apply hugepage reservation if asked. At fault time, an
6796 * attempt will be made for VM_NORESERVE to allocate a page
6797 * without using reserves
6798 */
6799 if (vm_flags & VM_NORESERVE)
6800 return true;
6801
6802 /*
6803 * Shared mappings base their reservation on the number of pages that
6804 * are already allocated on behalf of the file. Private mappings need
6805 * to reserve the full area even if read-only as mprotect() may be
6806 * called to make the mapping read-write. Assume !vma is a shm mapping
6807 */
6808 if (!vma || vma->vm_flags & VM_MAYSHARE) {
6809 /*
6810 * resv_map can not be NULL as hugetlb_reserve_pages is only
6811 * called for inodes for which resv_maps were created (see
6812 * hugetlbfs_get_inode).
6813 */
6814 resv_map = inode_resv_map(inode);
6815
6816 chg = region_chg(resv_map, from, to, ®ions_needed);
6817 } else {
6818 /* Private mapping. */
6819 resv_map = resv_map_alloc();
6820 if (!resv_map)
6821 goto out_err;
6822
6823 chg = to - from;
6824
6825 set_vma_resv_map(vma, resv_map);
6826 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
6827 }
6828
6829 if (chg < 0)
6830 goto out_err;
6831
6832 if (hugetlb_cgroup_charge_cgroup_rsvd(hstate_index(h),
6833 chg * pages_per_huge_page(h), &h_cg) < 0)
6834 goto out_err;
6835
6836 if (vma && !(vma->vm_flags & VM_MAYSHARE) && h_cg) {
6837 /* For private mappings, the hugetlb_cgroup uncharge info hangs
6838 * of the resv_map.
6839 */
6840 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, h_cg, h);
6841 }
6842
6843 /*
6844 * There must be enough pages in the subpool for the mapping. If
6845 * the subpool has a minimum size, there may be some global
6846 * reservations already in place (gbl_reserve).
6847 */
6848 gbl_reserve = hugepage_subpool_get_pages(spool, chg);
6849 if (gbl_reserve < 0)
6850 goto out_uncharge_cgroup;
6851
6852 /*
6853 * Check enough hugepages are available for the reservation.
6854 * Hand the pages back to the subpool if there are not
6855 */
6856 if (hugetlb_acct_memory(h, gbl_reserve) < 0)
6857 goto out_put_pages;
6858
6859 /*
6860 * Account for the reservations made. Shared mappings record regions
6861 * that have reservations as they are shared by multiple VMAs.
6862 * When the last VMA disappears, the region map says how much
6863 * the reservation was and the page cache tells how much of
6864 * the reservation was consumed. Private mappings are per-VMA and
6865 * only the consumed reservations are tracked. When the VMA
6866 * disappears, the original reservation is the VMA size and the
6867 * consumed reservations are stored in the map. Hence, nothing
6868 * else has to be done for private mappings here
6869 */
6870 if (!vma || vma->vm_flags & VM_MAYSHARE) {
6871 add = region_add(resv_map, from, to, regions_needed, h, h_cg);
6872
6873 if (unlikely(add < 0)) {
6874 hugetlb_acct_memory(h, -gbl_reserve);
6875 goto out_put_pages;
6876 } else if (unlikely(chg > add)) {
6877 /*
6878 * pages in this range were added to the reserve
6879 * map between region_chg and region_add. This
6880 * indicates a race with alloc_huge_page. Adjust
6881 * the subpool and reserve counts modified above
6882 * based on the difference.
6883 */
6884 long rsv_adjust;
6885
6886 /*
6887 * hugetlb_cgroup_uncharge_cgroup_rsvd() will put the
6888 * reference to h_cg->css. See comment below for detail.
6889 */
6890 hugetlb_cgroup_uncharge_cgroup_rsvd(
6891 hstate_index(h),
6892 (chg - add) * pages_per_huge_page(h), h_cg);
6893
6894 rsv_adjust = hugepage_subpool_put_pages(spool,
6895 chg - add);
6896 hugetlb_acct_memory(h, -rsv_adjust);
6897 } else if (h_cg) {
6898 /*
6899 * The file_regions will hold their own reference to
6900 * h_cg->css. So we should release the reference held
6901 * via hugetlb_cgroup_charge_cgroup_rsvd() when we are
6902 * done.
6903 */
6904 hugetlb_cgroup_put_rsvd_cgroup(h_cg);
6905 }
6906 }
6907 return true;
6908
6909out_put_pages:
6910 /* put back original number of pages, chg */
6911 (void)hugepage_subpool_put_pages(spool, chg);
6912out_uncharge_cgroup:
6913 hugetlb_cgroup_uncharge_cgroup_rsvd(hstate_index(h),
6914 chg * pages_per_huge_page(h), h_cg);
6915out_err:
6916 hugetlb_vma_lock_free(vma);
6917 if (!vma || vma->vm_flags & VM_MAYSHARE)
6918 /* Only call region_abort if the region_chg succeeded but the
6919 * region_add failed or didn't run.
6920 */
6921 if (chg >= 0 && add < 0)
6922 region_abort(resv_map, from, to, regions_needed);
6923 if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
6924 kref_put(&resv_map->refs, resv_map_release);
6925 return false;
6926}
6927
6928long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
6929 long freed)
6930{
6931 struct hstate *h = hstate_inode(inode);
6932 struct resv_map *resv_map = inode_resv_map(inode);
6933 long chg = 0;
6934 struct hugepage_subpool *spool = subpool_inode(inode);
6935 long gbl_reserve;
6936
6937 /*
6938 * Since this routine can be called in the evict inode path for all
6939 * hugetlbfs inodes, resv_map could be NULL.
6940 */
6941 if (resv_map) {
6942 chg = region_del(resv_map, start, end);
6943 /*
6944 * region_del() can fail in the rare case where a region
6945 * must be split and another region descriptor can not be
6946 * allocated. If end == LONG_MAX, it will not fail.
6947 */
6948 if (chg < 0)
6949 return chg;
6950 }
6951
6952 spin_lock(&inode->i_lock);
6953 inode->i_blocks -= (blocks_per_huge_page(h) * freed);
6954 spin_unlock(&inode->i_lock);
6955
6956 /*
6957 * If the subpool has a minimum size, the number of global
6958 * reservations to be released may be adjusted.
6959 *
6960 * Note that !resv_map implies freed == 0. So (chg - freed)
6961 * won't go negative.
6962 */
6963 gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
6964 hugetlb_acct_memory(h, -gbl_reserve);
6965
6966 return 0;
6967}
6968
6969#ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
6970static unsigned long page_table_shareable(struct vm_area_struct *svma,
6971 struct vm_area_struct *vma,
6972 unsigned long addr, pgoff_t idx)
6973{
6974 unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
6975 svma->vm_start;
6976 unsigned long sbase = saddr & PUD_MASK;
6977 unsigned long s_end = sbase + PUD_SIZE;
6978
6979 /* Allow segments to share if only one is marked locked */
6980 unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
6981 unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
6982
6983 /*
6984 * match the virtual addresses, permission and the alignment of the
6985 * page table page.
6986 *
6987 * Also, vma_lock (vm_private_data) is required for sharing.
6988 */
6989 if (pmd_index(addr) != pmd_index(saddr) ||
6990 vm_flags != svm_flags ||
6991 !range_in_vma(svma, sbase, s_end) ||
6992 !svma->vm_private_data)
6993 return 0;
6994
6995 return saddr;
6996}
6997
6998bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
6999{
7000 unsigned long start = addr & PUD_MASK;
7001 unsigned long end = start + PUD_SIZE;
7002
7003#ifdef CONFIG_USERFAULTFD
7004 if (uffd_disable_huge_pmd_share(vma))
7005 return false;
7006#endif
7007 /*
7008 * check on proper vm_flags and page table alignment
7009 */
7010 if (!(vma->vm_flags & VM_MAYSHARE))
7011 return false;
7012 if (!vma->vm_private_data) /* vma lock required for sharing */
7013 return false;
7014 if (!range_in_vma(vma, start, end))
7015 return false;
7016 return true;
7017}
7018
7019/*
7020 * Determine if start,end range within vma could be mapped by shared pmd.
7021 * If yes, adjust start and end to cover range associated with possible
7022 * shared pmd mappings.
7023 */
7024void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
7025 unsigned long *start, unsigned long *end)
7026{
7027 unsigned long v_start = ALIGN(vma->vm_start, PUD_SIZE),
7028 v_end = ALIGN_DOWN(vma->vm_end, PUD_SIZE);
7029
7030 /*
7031 * vma needs to span at least one aligned PUD size, and the range
7032 * must be at least partially within in.
7033 */
7034 if (!(vma->vm_flags & VM_MAYSHARE) || !(v_end > v_start) ||
7035 (*end <= v_start) || (*start >= v_end))
7036 return;
7037
7038 /* Extend the range to be PUD aligned for a worst case scenario */
7039 if (*start > v_start)
7040 *start = ALIGN_DOWN(*start, PUD_SIZE);
7041
7042 if (*end < v_end)
7043 *end = ALIGN(*end, PUD_SIZE);
7044}
7045
7046/*
7047 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
7048 * and returns the corresponding pte. While this is not necessary for the
7049 * !shared pmd case because we can allocate the pmd later as well, it makes the
7050 * code much cleaner. pmd allocation is essential for the shared case because
7051 * pud has to be populated inside the same i_mmap_rwsem section - otherwise
7052 * racing tasks could either miss the sharing (see huge_pte_offset) or select a
7053 * bad pmd for sharing.
7054 */
7055pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
7056 unsigned long addr, pud_t *pud)
7057{
7058 struct address_space *mapping = vma->vm_file->f_mapping;
7059 pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
7060 vma->vm_pgoff;
7061 struct vm_area_struct *svma;
7062 unsigned long saddr;
7063 pte_t *spte = NULL;
7064 pte_t *pte;
7065 spinlock_t *ptl;
7066
7067 i_mmap_lock_read(mapping);
7068 vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
7069 if (svma == vma)
7070 continue;
7071
7072 saddr = page_table_shareable(svma, vma, addr, idx);
7073 if (saddr) {
7074 spte = huge_pte_offset(svma->vm_mm, saddr,
7075 vma_mmu_pagesize(svma));
7076 if (spte) {
7077 get_page(virt_to_page(spte));
7078 break;
7079 }
7080 }
7081 }
7082
7083 if (!spte)
7084 goto out;
7085
7086 ptl = huge_pte_lock(hstate_vma(vma), mm, spte);
7087 if (pud_none(*pud)) {
7088 pud_populate(mm, pud,
7089 (pmd_t *)((unsigned long)spte & PAGE_MASK));
7090 mm_inc_nr_pmds(mm);
7091 } else {
7092 put_page(virt_to_page(spte));
7093 }
7094 spin_unlock(ptl);
7095out:
7096 pte = (pte_t *)pmd_alloc(mm, pud, addr);
7097 i_mmap_unlock_read(mapping);
7098 return pte;
7099}
7100
7101/*
7102 * unmap huge page backed by shared pte.
7103 *
7104 * Hugetlb pte page is ref counted at the time of mapping. If pte is shared
7105 * indicated by page_count > 1, unmap is achieved by clearing pud and
7106 * decrementing the ref count. If count == 1, the pte page is not shared.
7107 *
7108 * Called with page table lock held.
7109 *
7110 * returns: 1 successfully unmapped a shared pte page
7111 * 0 the underlying pte page is not shared, or it is the last user
7112 */
7113int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
7114 unsigned long addr, pte_t *ptep)
7115{
7116 pgd_t *pgd = pgd_offset(mm, addr);
7117 p4d_t *p4d = p4d_offset(pgd, addr);
7118 pud_t *pud = pud_offset(p4d, addr);
7119
7120 i_mmap_assert_write_locked(vma->vm_file->f_mapping);
7121 hugetlb_vma_assert_locked(vma);
7122 BUG_ON(page_count(virt_to_page(ptep)) == 0);
7123 if (page_count(virt_to_page(ptep)) == 1)
7124 return 0;
7125
7126 pud_clear(pud);
7127 put_page(virt_to_page(ptep));
7128 mm_dec_nr_pmds(mm);
7129 return 1;
7130}
7131
7132#else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
7133
7134pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
7135 unsigned long addr, pud_t *pud)
7136{
7137 return NULL;
7138}
7139
7140int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
7141 unsigned long addr, pte_t *ptep)
7142{
7143 return 0;
7144}
7145
7146void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
7147 unsigned long *start, unsigned long *end)
7148{
7149}
7150
7151bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
7152{
7153 return false;
7154}
7155#endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
7156
7157#ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
7158pte_t *huge_pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
7159 unsigned long addr, unsigned long sz)
7160{
7161 pgd_t *pgd;
7162 p4d_t *p4d;
7163 pud_t *pud;
7164 pte_t *pte = NULL;
7165
7166 pgd = pgd_offset(mm, addr);
7167 p4d = p4d_alloc(mm, pgd, addr);
7168 if (!p4d)
7169 return NULL;
7170 pud = pud_alloc(mm, p4d, addr);
7171 if (pud) {
7172 if (sz == PUD_SIZE) {
7173 pte = (pte_t *)pud;
7174 } else {
7175 BUG_ON(sz != PMD_SIZE);
7176 if (want_pmd_share(vma, addr) && pud_none(*pud))
7177 pte = huge_pmd_share(mm, vma, addr, pud);
7178 else
7179 pte = (pte_t *)pmd_alloc(mm, pud, addr);
7180 }
7181 }
7182 BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte));
7183
7184 return pte;
7185}
7186
7187/*
7188 * huge_pte_offset() - Walk the page table to resolve the hugepage
7189 * entry at address @addr
7190 *
7191 * Return: Pointer to page table entry (PUD or PMD) for
7192 * address @addr, or NULL if a !p*d_present() entry is encountered and the
7193 * size @sz doesn't match the hugepage size at this level of the page
7194 * table.
7195 */
7196pte_t *huge_pte_offset(struct mm_struct *mm,
7197 unsigned long addr, unsigned long sz)
7198{
7199 pgd_t *pgd;
7200 p4d_t *p4d;
7201 pud_t *pud;
7202 pmd_t *pmd;
7203
7204 pgd = pgd_offset(mm, addr);
7205 if (!pgd_present(*pgd))
7206 return NULL;
7207 p4d = p4d_offset(pgd, addr);
7208 if (!p4d_present(*p4d))
7209 return NULL;
7210
7211 pud = pud_offset(p4d, addr);
7212 if (sz == PUD_SIZE)
7213 /* must be pud huge, non-present or none */
7214 return (pte_t *)pud;
7215 if (!pud_present(*pud))
7216 return NULL;
7217 /* must have a valid entry and size to go further */
7218
7219 pmd = pmd_offset(pud, addr);
7220 /* must be pmd huge, non-present or none */
7221 return (pte_t *)pmd;
7222}
7223
7224/*
7225 * Return a mask that can be used to update an address to the last huge
7226 * page in a page table page mapping size. Used to skip non-present
7227 * page table entries when linearly scanning address ranges. Architectures
7228 * with unique huge page to page table relationships can define their own
7229 * version of this routine.
7230 */
7231unsigned long hugetlb_mask_last_page(struct hstate *h)
7232{
7233 unsigned long hp_size = huge_page_size(h);
7234
7235 if (hp_size == PUD_SIZE)
7236 return P4D_SIZE - PUD_SIZE;
7237 else if (hp_size == PMD_SIZE)
7238 return PUD_SIZE - PMD_SIZE;
7239 else
7240 return 0UL;
7241}
7242
7243#else
7244
7245/* See description above. Architectures can provide their own version. */
7246__weak unsigned long hugetlb_mask_last_page(struct hstate *h)
7247{
7248#ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
7249 if (huge_page_size(h) == PMD_SIZE)
7250 return PUD_SIZE - PMD_SIZE;
7251#endif
7252 return 0UL;
7253}
7254
7255#endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
7256
7257/*
7258 * These functions are overwritable if your architecture needs its own
7259 * behavior.
7260 */
7261int isolate_hugetlb(struct page *page, struct list_head *list)
7262{
7263 int ret = 0;
7264
7265 spin_lock_irq(&hugetlb_lock);
7266 if (!PageHeadHuge(page) ||
7267 !HPageMigratable(page) ||
7268 !get_page_unless_zero(page)) {
7269 ret = -EBUSY;
7270 goto unlock;
7271 }
7272 ClearHPageMigratable(page);
7273 list_move_tail(&page->lru, list);
7274unlock:
7275 spin_unlock_irq(&hugetlb_lock);
7276 return ret;
7277}
7278
7279int get_hwpoison_huge_page(struct page *page, bool *hugetlb, bool unpoison)
7280{
7281 int ret = 0;
7282
7283 *hugetlb = false;
7284 spin_lock_irq(&hugetlb_lock);
7285 if (PageHeadHuge(page)) {
7286 *hugetlb = true;
7287 if (HPageFreed(page))
7288 ret = 0;
7289 else if (HPageMigratable(page) || unpoison)
7290 ret = get_page_unless_zero(page);
7291 else
7292 ret = -EBUSY;
7293 }
7294 spin_unlock_irq(&hugetlb_lock);
7295 return ret;
7296}
7297
7298int get_huge_page_for_hwpoison(unsigned long pfn, int flags,
7299 bool *migratable_cleared)
7300{
7301 int ret;
7302
7303 spin_lock_irq(&hugetlb_lock);
7304 ret = __get_huge_page_for_hwpoison(pfn, flags, migratable_cleared);
7305 spin_unlock_irq(&hugetlb_lock);
7306 return ret;
7307}
7308
7309void putback_active_hugepage(struct page *page)
7310{
7311 spin_lock_irq(&hugetlb_lock);
7312 SetHPageMigratable(page);
7313 list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
7314 spin_unlock_irq(&hugetlb_lock);
7315 put_page(page);
7316}
7317
7318void move_hugetlb_state(struct folio *old_folio, struct folio *new_folio, int reason)
7319{
7320 struct hstate *h = folio_hstate(old_folio);
7321
7322 hugetlb_cgroup_migrate(old_folio, new_folio);
7323 set_page_owner_migrate_reason(&new_folio->page, reason);
7324
7325 /*
7326 * transfer temporary state of the new hugetlb folio. This is
7327 * reverse to other transitions because the newpage is going to
7328 * be final while the old one will be freed so it takes over
7329 * the temporary status.
7330 *
7331 * Also note that we have to transfer the per-node surplus state
7332 * here as well otherwise the global surplus count will not match
7333 * the per-node's.
7334 */
7335 if (folio_test_hugetlb_temporary(new_folio)) {
7336 int old_nid = folio_nid(old_folio);
7337 int new_nid = folio_nid(new_folio);
7338
7339 folio_set_hugetlb_temporary(old_folio);
7340 folio_clear_hugetlb_temporary(new_folio);
7341
7342
7343 /*
7344 * There is no need to transfer the per-node surplus state
7345 * when we do not cross the node.
7346 */
7347 if (new_nid == old_nid)
7348 return;
7349 spin_lock_irq(&hugetlb_lock);
7350 if (h->surplus_huge_pages_node[old_nid]) {
7351 h->surplus_huge_pages_node[old_nid]--;
7352 h->surplus_huge_pages_node[new_nid]++;
7353 }
7354 spin_unlock_irq(&hugetlb_lock);
7355 }
7356}
7357
7358static void hugetlb_unshare_pmds(struct vm_area_struct *vma,
7359 unsigned long start,
7360 unsigned long end)
7361{
7362 struct hstate *h = hstate_vma(vma);
7363 unsigned long sz = huge_page_size(h);
7364 struct mm_struct *mm = vma->vm_mm;
7365 struct mmu_notifier_range range;
7366 unsigned long address;
7367 spinlock_t *ptl;
7368 pte_t *ptep;
7369
7370 if (!(vma->vm_flags & VM_MAYSHARE))
7371 return;
7372
7373 if (start >= end)
7374 return;
7375
7376 flush_cache_range(vma, start, end);
7377 /*
7378 * No need to call adjust_range_if_pmd_sharing_possible(), because
7379 * we have already done the PUD_SIZE alignment.
7380 */
7381 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
7382 start, end);
7383 mmu_notifier_invalidate_range_start(&range);
7384 hugetlb_vma_lock_write(vma);
7385 i_mmap_lock_write(vma->vm_file->f_mapping);
7386 for (address = start; address < end; address += PUD_SIZE) {
7387 ptep = huge_pte_offset(mm, address, sz);
7388 if (!ptep)
7389 continue;
7390 ptl = huge_pte_lock(h, mm, ptep);
7391 huge_pmd_unshare(mm, vma, address, ptep);
7392 spin_unlock(ptl);
7393 }
7394 flush_hugetlb_tlb_range(vma, start, end);
7395 i_mmap_unlock_write(vma->vm_file->f_mapping);
7396 hugetlb_vma_unlock_write(vma);
7397 /*
7398 * No need to call mmu_notifier_invalidate_range(), see
7399 * Documentation/mm/mmu_notifier.rst.
7400 */
7401 mmu_notifier_invalidate_range_end(&range);
7402}
7403
7404/*
7405 * This function will unconditionally remove all the shared pmd pgtable entries
7406 * within the specific vma for a hugetlbfs memory range.
7407 */
7408void hugetlb_unshare_all_pmds(struct vm_area_struct *vma)
7409{
7410 hugetlb_unshare_pmds(vma, ALIGN(vma->vm_start, PUD_SIZE),
7411 ALIGN_DOWN(vma->vm_end, PUD_SIZE));
7412}
7413
7414#ifdef CONFIG_CMA
7415static bool cma_reserve_called __initdata;
7416
7417static int __init cmdline_parse_hugetlb_cma(char *p)
7418{
7419 int nid, count = 0;
7420 unsigned long tmp;
7421 char *s = p;
7422
7423 while (*s) {
7424 if (sscanf(s, "%lu%n", &tmp, &count) != 1)
7425 break;
7426
7427 if (s[count] == ':') {
7428 if (tmp >= MAX_NUMNODES)
7429 break;
7430 nid = array_index_nospec(tmp, MAX_NUMNODES);
7431
7432 s += count + 1;
7433 tmp = memparse(s, &s);
7434 hugetlb_cma_size_in_node[nid] = tmp;
7435 hugetlb_cma_size += tmp;
7436
7437 /*
7438 * Skip the separator if have one, otherwise
7439 * break the parsing.
7440 */
7441 if (*s == ',')
7442 s++;
7443 else
7444 break;
7445 } else {
7446 hugetlb_cma_size = memparse(p, &p);
7447 break;
7448 }
7449 }
7450
7451 return 0;
7452}
7453
7454early_param("hugetlb_cma", cmdline_parse_hugetlb_cma);
7455
7456void __init hugetlb_cma_reserve(int order)
7457{
7458 unsigned long size, reserved, per_node;
7459 bool node_specific_cma_alloc = false;
7460 int nid;
7461
7462 cma_reserve_called = true;
7463
7464 if (!hugetlb_cma_size)
7465 return;
7466
7467 for (nid = 0; nid < MAX_NUMNODES; nid++) {
7468 if (hugetlb_cma_size_in_node[nid] == 0)
7469 continue;
7470
7471 if (!node_online(nid)) {
7472 pr_warn("hugetlb_cma: invalid node %d specified\n", nid);
7473 hugetlb_cma_size -= hugetlb_cma_size_in_node[nid];
7474 hugetlb_cma_size_in_node[nid] = 0;
7475 continue;
7476 }
7477
7478 if (hugetlb_cma_size_in_node[nid] < (PAGE_SIZE << order)) {
7479 pr_warn("hugetlb_cma: cma area of node %d should be at least %lu MiB\n",
7480 nid, (PAGE_SIZE << order) / SZ_1M);
7481 hugetlb_cma_size -= hugetlb_cma_size_in_node[nid];
7482 hugetlb_cma_size_in_node[nid] = 0;
7483 } else {
7484 node_specific_cma_alloc = true;
7485 }
7486 }
7487
7488 /* Validate the CMA size again in case some invalid nodes specified. */
7489 if (!hugetlb_cma_size)
7490 return;
7491
7492 if (hugetlb_cma_size < (PAGE_SIZE << order)) {
7493 pr_warn("hugetlb_cma: cma area should be at least %lu MiB\n",
7494 (PAGE_SIZE << order) / SZ_1M);
7495 hugetlb_cma_size = 0;
7496 return;
7497 }
7498
7499 if (!node_specific_cma_alloc) {
7500 /*
7501 * If 3 GB area is requested on a machine with 4 numa nodes,
7502 * let's allocate 1 GB on first three nodes and ignore the last one.
7503 */
7504 per_node = DIV_ROUND_UP(hugetlb_cma_size, nr_online_nodes);
7505 pr_info("hugetlb_cma: reserve %lu MiB, up to %lu MiB per node\n",
7506 hugetlb_cma_size / SZ_1M, per_node / SZ_1M);
7507 }
7508
7509 reserved = 0;
7510 for_each_online_node(nid) {
7511 int res;
7512 char name[CMA_MAX_NAME];
7513
7514 if (node_specific_cma_alloc) {
7515 if (hugetlb_cma_size_in_node[nid] == 0)
7516 continue;
7517
7518 size = hugetlb_cma_size_in_node[nid];
7519 } else {
7520 size = min(per_node, hugetlb_cma_size - reserved);
7521 }
7522
7523 size = round_up(size, PAGE_SIZE << order);
7524
7525 snprintf(name, sizeof(name), "hugetlb%d", nid);
7526 /*
7527 * Note that 'order per bit' is based on smallest size that
7528 * may be returned to CMA allocator in the case of
7529 * huge page demotion.
7530 */
7531 res = cma_declare_contiguous_nid(0, size, 0,
7532 PAGE_SIZE << HUGETLB_PAGE_ORDER,
7533 0, false, name,
7534 &hugetlb_cma[nid], nid);
7535 if (res) {
7536 pr_warn("hugetlb_cma: reservation failed: err %d, node %d",
7537 res, nid);
7538 continue;
7539 }
7540
7541 reserved += size;
7542 pr_info("hugetlb_cma: reserved %lu MiB on node %d\n",
7543 size / SZ_1M, nid);
7544
7545 if (reserved >= hugetlb_cma_size)
7546 break;
7547 }
7548
7549 if (!reserved)
7550 /*
7551 * hugetlb_cma_size is used to determine if allocations from
7552 * cma are possible. Set to zero if no cma regions are set up.
7553 */
7554 hugetlb_cma_size = 0;
7555}
7556
7557static void __init hugetlb_cma_check(void)
7558{
7559 if (!hugetlb_cma_size || cma_reserve_called)
7560 return;
7561
7562 pr_warn("hugetlb_cma: the option isn't supported by current arch\n");
7563}
7564
7565#endif /* CONFIG_CMA */