Linux Audio

Check our new training course

Linux kernel drivers training

Mar 31-Apr 9, 2025, special US time zones
Register
Loading...
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * core.c - Kernel Live Patching Core
   4 *
   5 * Copyright (C) 2014 Seth Jennings <sjenning@redhat.com>
   6 * Copyright (C) 2014 SUSE
   7 */
   8
   9#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  10
  11#include <linux/module.h>
  12#include <linux/kernel.h>
  13#include <linux/mutex.h>
  14#include <linux/slab.h>
  15#include <linux/list.h>
  16#include <linux/kallsyms.h>
  17#include <linux/livepatch.h>
  18#include <linux/elf.h>
  19#include <linux/moduleloader.h>
  20#include <linux/completion.h>
  21#include <linux/memory.h>
  22#include <linux/rcupdate.h>
  23#include <asm/cacheflush.h>
  24#include "core.h"
  25#include "patch.h"
  26#include "state.h"
  27#include "transition.h"
  28
  29/*
  30 * klp_mutex is a coarse lock which serializes access to klp data.  All
  31 * accesses to klp-related variables and structures must have mutex protection,
  32 * except within the following functions which carefully avoid the need for it:
  33 *
  34 * - klp_ftrace_handler()
  35 * - klp_update_patch_state()
  36 * - __klp_sched_try_switch()
  37 */
  38DEFINE_MUTEX(klp_mutex);
  39
  40/*
  41 * Actively used patches: enabled or in transition. Note that replaced
  42 * or disabled patches are not listed even though the related kernel
  43 * module still can be loaded.
  44 */
  45LIST_HEAD(klp_patches);
  46
  47static struct kobject *klp_root_kobj;
  48
  49static bool klp_is_module(struct klp_object *obj)
  50{
  51	return obj->name;
  52}
  53
  54/* sets obj->mod if object is not vmlinux and module is found */
  55static void klp_find_object_module(struct klp_object *obj)
  56{
  57	struct module *mod;
  58
  59	if (!klp_is_module(obj))
  60		return;
  61
  62	rcu_read_lock_sched();
  63	/*
  64	 * We do not want to block removal of patched modules and therefore
  65	 * we do not take a reference here. The patches are removed by
  66	 * klp_module_going() instead.
  67	 */
  68	mod = find_module(obj->name);
  69	/*
  70	 * Do not mess work of klp_module_coming() and klp_module_going().
  71	 * Note that the patch might still be needed before klp_module_going()
  72	 * is called. Module functions can be called even in the GOING state
  73	 * until mod->exit() finishes. This is especially important for
  74	 * patches that modify semantic of the functions.
  75	 */
  76	if (mod && mod->klp_alive)
  77		obj->mod = mod;
  78
  79	rcu_read_unlock_sched();
  80}
  81
  82static bool klp_initialized(void)
  83{
  84	return !!klp_root_kobj;
  85}
  86
  87static struct klp_func *klp_find_func(struct klp_object *obj,
  88				      struct klp_func *old_func)
  89{
  90	struct klp_func *func;
  91
  92	klp_for_each_func(obj, func) {
  93		if ((strcmp(old_func->old_name, func->old_name) == 0) &&
  94		    (old_func->old_sympos == func->old_sympos)) {
  95			return func;
  96		}
  97	}
  98
  99	return NULL;
 100}
 101
 102static struct klp_object *klp_find_object(struct klp_patch *patch,
 103					  struct klp_object *old_obj)
 104{
 105	struct klp_object *obj;
 106
 107	klp_for_each_object(patch, obj) {
 108		if (klp_is_module(old_obj)) {
 109			if (klp_is_module(obj) &&
 110			    strcmp(old_obj->name, obj->name) == 0) {
 111				return obj;
 112			}
 113		} else if (!klp_is_module(obj)) {
 114			return obj;
 115		}
 116	}
 117
 118	return NULL;
 119}
 120
 121struct klp_find_arg {
 
 122	const char *name;
 123	unsigned long addr;
 124	unsigned long count;
 125	unsigned long pos;
 126};
 127
 128static int klp_match_callback(void *data, unsigned long addr)
 
 129{
 130	struct klp_find_arg *args = data;
 131
 
 
 
 
 
 
 
 
 
 132	args->addr = addr;
 133	args->count++;
 134
 135	/*
 136	 * Finish the search when the symbol is found for the desired position
 137	 * or the position is not defined for a non-unique symbol.
 138	 */
 139	if ((args->pos && (args->count == args->pos)) ||
 140	    (!args->pos && (args->count > 1)))
 141		return 1;
 142
 143	return 0;
 144}
 145
 146static int klp_find_callback(void *data, const char *name, unsigned long addr)
 147{
 148	struct klp_find_arg *args = data;
 149
 150	if (strcmp(args->name, name))
 151		return 0;
 152
 153	return klp_match_callback(data, addr);
 154}
 155
 156static int klp_find_object_symbol(const char *objname, const char *name,
 157				  unsigned long sympos, unsigned long *addr)
 158{
 159	struct klp_find_arg args = {
 
 160		.name = name,
 161		.addr = 0,
 162		.count = 0,
 163		.pos = sympos,
 164	};
 165
 
 166	if (objname)
 167		module_kallsyms_on_each_symbol(objname, klp_find_callback, &args);
 168	else
 169		kallsyms_on_each_match_symbol(klp_match_callback, name, &args);
 
 170
 171	/*
 172	 * Ensure an address was found. If sympos is 0, ensure symbol is unique;
 173	 * otherwise ensure the symbol position count matches sympos.
 174	 */
 175	if (args.addr == 0)
 176		pr_err("symbol '%s' not found in symbol table\n", name);
 177	else if (args.count > 1 && sympos == 0) {
 178		pr_err("unresolvable ambiguity for symbol '%s' in object '%s'\n",
 179		       name, objname);
 180	} else if (sympos != args.count && sympos > 0) {
 181		pr_err("symbol position %lu for symbol '%s' in object '%s' not found\n",
 182		       sympos, name, objname ? objname : "vmlinux");
 183	} else {
 184		*addr = args.addr;
 185		return 0;
 186	}
 187
 188	*addr = 0;
 189	return -EINVAL;
 190}
 191
 192static int klp_resolve_symbols(Elf_Shdr *sechdrs, const char *strtab,
 193			       unsigned int symndx, Elf_Shdr *relasec,
 194			       const char *sec_objname)
 195{
 196	int i, cnt, ret;
 197	char sym_objname[MODULE_NAME_LEN];
 198	char sym_name[KSYM_NAME_LEN];
 199	Elf_Rela *relas;
 200	Elf_Sym *sym;
 201	unsigned long sympos, addr;
 202	bool sym_vmlinux;
 203	bool sec_vmlinux = !strcmp(sec_objname, "vmlinux");
 204
 205	/*
 206	 * Since the field widths for sym_objname and sym_name in the sscanf()
 207	 * call are hard-coded and correspond to MODULE_NAME_LEN and
 208	 * KSYM_NAME_LEN respectively, we must make sure that MODULE_NAME_LEN
 209	 * and KSYM_NAME_LEN have the values we expect them to have.
 210	 *
 211	 * Because the value of MODULE_NAME_LEN can differ among architectures,
 212	 * we use the smallest/strictest upper bound possible (56, based on
 213	 * the current definition of MODULE_NAME_LEN) to prevent overflows.
 214	 */
 215	BUILD_BUG_ON(MODULE_NAME_LEN < 56 || KSYM_NAME_LEN != 512);
 216
 217	relas = (Elf_Rela *) relasec->sh_addr;
 218	/* For each rela in this klp relocation section */
 219	for (i = 0; i < relasec->sh_size / sizeof(Elf_Rela); i++) {
 220		sym = (Elf_Sym *)sechdrs[symndx].sh_addr + ELF_R_SYM(relas[i].r_info);
 221		if (sym->st_shndx != SHN_LIVEPATCH) {
 222			pr_err("symbol %s is not marked as a livepatch symbol\n",
 223			       strtab + sym->st_name);
 224			return -EINVAL;
 225		}
 226
 227		/* Format: .klp.sym.sym_objname.sym_name,sympos */
 228		cnt = sscanf(strtab + sym->st_name,
 229			     ".klp.sym.%55[^.].%511[^,],%lu",
 230			     sym_objname, sym_name, &sympos);
 231		if (cnt != 3) {
 232			pr_err("symbol %s has an incorrectly formatted name\n",
 233			       strtab + sym->st_name);
 234			return -EINVAL;
 235		}
 236
 237		sym_vmlinux = !strcmp(sym_objname, "vmlinux");
 238
 239		/*
 240		 * Prevent module-specific KLP rela sections from referencing
 241		 * vmlinux symbols.  This helps prevent ordering issues with
 242		 * module special section initializations.  Presumably such
 243		 * symbols are exported and normal relas can be used instead.
 244		 */
 245		if (!sec_vmlinux && sym_vmlinux) {
 246			pr_err("invalid access to vmlinux symbol '%s' from module-specific livepatch relocation section\n",
 247			       sym_name);
 248			return -EINVAL;
 249		}
 250
 251		/* klp_find_object_symbol() treats a NULL objname as vmlinux */
 252		ret = klp_find_object_symbol(sym_vmlinux ? NULL : sym_objname,
 253					     sym_name, sympos, &addr);
 254		if (ret)
 255			return ret;
 256
 257		sym->st_value = addr;
 258	}
 259
 260	return 0;
 261}
 262
 263void __weak clear_relocate_add(Elf_Shdr *sechdrs,
 264		   const char *strtab,
 265		   unsigned int symindex,
 266		   unsigned int relsec,
 267		   struct module *me)
 268{
 269}
 270
 271/*
 272 * At a high-level, there are two types of klp relocation sections: those which
 273 * reference symbols which live in vmlinux; and those which reference symbols
 274 * which live in other modules.  This function is called for both types:
 275 *
 276 * 1) When a klp module itself loads, the module code calls this function to
 277 *    write vmlinux-specific klp relocations (.klp.rela.vmlinux.* sections).
 278 *    These relocations are written to the klp module text to allow the patched
 279 *    code/data to reference unexported vmlinux symbols.  They're written as
 280 *    early as possible to ensure that other module init code (.e.g.,
 281 *    jump_label_apply_nops) can access any unexported vmlinux symbols which
 282 *    might be referenced by the klp module's special sections.
 283 *
 284 * 2) When a to-be-patched module loads -- or is already loaded when a
 285 *    corresponding klp module loads -- klp code calls this function to write
 286 *    module-specific klp relocations (.klp.rela.{module}.* sections).  These
 287 *    are written to the klp module text to allow the patched code/data to
 288 *    reference symbols which live in the to-be-patched module or one of its
 289 *    module dependencies.  Exported symbols are supported, in addition to
 290 *    unexported symbols, in order to enable late module patching, which allows
 291 *    the to-be-patched module to be loaded and patched sometime *after* the
 292 *    klp module is loaded.
 293 */
 294static int klp_write_section_relocs(struct module *pmod, Elf_Shdr *sechdrs,
 295				    const char *shstrtab, const char *strtab,
 296				    unsigned int symndx, unsigned int secndx,
 297				    const char *objname, bool apply)
 298{
 299	int cnt, ret;
 300	char sec_objname[MODULE_NAME_LEN];
 301	Elf_Shdr *sec = sechdrs + secndx;
 302
 303	/*
 304	 * Format: .klp.rela.sec_objname.section_name
 305	 * See comment in klp_resolve_symbols() for an explanation
 306	 * of the selected field width value.
 307	 */
 308	cnt = sscanf(shstrtab + sec->sh_name, ".klp.rela.%55[^.]",
 309		     sec_objname);
 310	if (cnt != 1) {
 311		pr_err("section %s has an incorrectly formatted name\n",
 312		       shstrtab + sec->sh_name);
 313		return -EINVAL;
 314	}
 315
 316	if (strcmp(objname ? objname : "vmlinux", sec_objname))
 317		return 0;
 318
 319	if (apply) {
 320		ret = klp_resolve_symbols(sechdrs, strtab, symndx,
 321					  sec, sec_objname);
 322		if (ret)
 323			return ret;
 324
 325		return apply_relocate_add(sechdrs, strtab, symndx, secndx, pmod);
 326	}
 327
 328	clear_relocate_add(sechdrs, strtab, symndx, secndx, pmod);
 329	return 0;
 330}
 331
 332int klp_apply_section_relocs(struct module *pmod, Elf_Shdr *sechdrs,
 333			     const char *shstrtab, const char *strtab,
 334			     unsigned int symndx, unsigned int secndx,
 335			     const char *objname)
 336{
 337	return klp_write_section_relocs(pmod, sechdrs, shstrtab, strtab, symndx,
 338					secndx, objname, true);
 339}
 340
 341/*
 342 * Sysfs Interface
 343 *
 344 * /sys/kernel/livepatch
 345 * /sys/kernel/livepatch/<patch>
 346 * /sys/kernel/livepatch/<patch>/enabled
 347 * /sys/kernel/livepatch/<patch>/transition
 348 * /sys/kernel/livepatch/<patch>/force
 349 * /sys/kernel/livepatch/<patch>/replace
 350 * /sys/kernel/livepatch/<patch>/<object>
 351 * /sys/kernel/livepatch/<patch>/<object>/patched
 352 * /sys/kernel/livepatch/<patch>/<object>/<function,sympos>
 353 */
 354static int __klp_disable_patch(struct klp_patch *patch);
 355
 356static ssize_t enabled_store(struct kobject *kobj, struct kobj_attribute *attr,
 357			     const char *buf, size_t count)
 358{
 359	struct klp_patch *patch;
 360	int ret;
 361	bool enabled;
 362
 363	ret = kstrtobool(buf, &enabled);
 364	if (ret)
 365		return ret;
 366
 367	patch = container_of(kobj, struct klp_patch, kobj);
 368
 369	mutex_lock(&klp_mutex);
 370
 371	if (patch->enabled == enabled) {
 372		/* already in requested state */
 373		ret = -EINVAL;
 374		goto out;
 375	}
 376
 377	/*
 378	 * Allow to reverse a pending transition in both ways. It might be
 379	 * necessary to complete the transition without forcing and breaking
 380	 * the system integrity.
 381	 *
 382	 * Do not allow to re-enable a disabled patch.
 383	 */
 384	if (patch == klp_transition_patch)
 385		klp_reverse_transition();
 386	else if (!enabled)
 387		ret = __klp_disable_patch(patch);
 388	else
 389		ret = -EINVAL;
 390
 391out:
 392	mutex_unlock(&klp_mutex);
 393
 394	if (ret)
 395		return ret;
 396	return count;
 397}
 398
 399static ssize_t enabled_show(struct kobject *kobj,
 400			    struct kobj_attribute *attr, char *buf)
 401{
 402	struct klp_patch *patch;
 403
 404	patch = container_of(kobj, struct klp_patch, kobj);
 405	return sysfs_emit(buf, "%d\n", patch->enabled);
 406}
 407
 408static ssize_t transition_show(struct kobject *kobj,
 409			       struct kobj_attribute *attr, char *buf)
 410{
 411	struct klp_patch *patch;
 412
 413	patch = container_of(kobj, struct klp_patch, kobj);
 414	return sysfs_emit(buf, "%d\n", patch == klp_transition_patch);
 
 415}
 416
 417static ssize_t force_store(struct kobject *kobj, struct kobj_attribute *attr,
 418			   const char *buf, size_t count)
 419{
 420	struct klp_patch *patch;
 421	int ret;
 422	bool val;
 423
 424	ret = kstrtobool(buf, &val);
 425	if (ret)
 426		return ret;
 427
 428	if (!val)
 429		return count;
 430
 431	mutex_lock(&klp_mutex);
 432
 433	patch = container_of(kobj, struct klp_patch, kobj);
 434	if (patch != klp_transition_patch) {
 435		mutex_unlock(&klp_mutex);
 436		return -EINVAL;
 437	}
 438
 439	klp_force_transition();
 440
 441	mutex_unlock(&klp_mutex);
 442
 443	return count;
 444}
 445
 446static ssize_t replace_show(struct kobject *kobj,
 447			    struct kobj_attribute *attr, char *buf)
 448{
 449	struct klp_patch *patch;
 450
 451	patch = container_of(kobj, struct klp_patch, kobj);
 452	return sysfs_emit(buf, "%d\n", patch->replace);
 453}
 454
 455static struct kobj_attribute enabled_kobj_attr = __ATTR_RW(enabled);
 456static struct kobj_attribute transition_kobj_attr = __ATTR_RO(transition);
 457static struct kobj_attribute force_kobj_attr = __ATTR_WO(force);
 458static struct kobj_attribute replace_kobj_attr = __ATTR_RO(replace);
 459static struct attribute *klp_patch_attrs[] = {
 460	&enabled_kobj_attr.attr,
 461	&transition_kobj_attr.attr,
 462	&force_kobj_attr.attr,
 463	&replace_kobj_attr.attr,
 464	NULL
 465};
 466ATTRIBUTE_GROUPS(klp_patch);
 467
 468static ssize_t patched_show(struct kobject *kobj,
 469			    struct kobj_attribute *attr, char *buf)
 470{
 471	struct klp_object *obj;
 472
 473	obj = container_of(kobj, struct klp_object, kobj);
 474	return sysfs_emit(buf, "%d\n", obj->patched);
 475}
 476
 477static struct kobj_attribute patched_kobj_attr = __ATTR_RO(patched);
 478static struct attribute *klp_object_attrs[] = {
 479	&patched_kobj_attr.attr,
 480	NULL,
 481};
 482ATTRIBUTE_GROUPS(klp_object);
 483
 484static void klp_free_object_dynamic(struct klp_object *obj)
 485{
 486	kfree(obj->name);
 487	kfree(obj);
 488}
 489
 490static void klp_init_func_early(struct klp_object *obj,
 491				struct klp_func *func);
 492static void klp_init_object_early(struct klp_patch *patch,
 493				  struct klp_object *obj);
 494
 495static struct klp_object *klp_alloc_object_dynamic(const char *name,
 496						   struct klp_patch *patch)
 497{
 498	struct klp_object *obj;
 499
 500	obj = kzalloc(sizeof(*obj), GFP_KERNEL);
 501	if (!obj)
 502		return NULL;
 503
 504	if (name) {
 505		obj->name = kstrdup(name, GFP_KERNEL);
 506		if (!obj->name) {
 507			kfree(obj);
 508			return NULL;
 509		}
 510	}
 511
 512	klp_init_object_early(patch, obj);
 513	obj->dynamic = true;
 514
 515	return obj;
 516}
 517
 518static void klp_free_func_nop(struct klp_func *func)
 519{
 520	kfree(func->old_name);
 521	kfree(func);
 522}
 523
 524static struct klp_func *klp_alloc_func_nop(struct klp_func *old_func,
 525					   struct klp_object *obj)
 526{
 527	struct klp_func *func;
 528
 529	func = kzalloc(sizeof(*func), GFP_KERNEL);
 530	if (!func)
 531		return NULL;
 532
 533	if (old_func->old_name) {
 534		func->old_name = kstrdup(old_func->old_name, GFP_KERNEL);
 535		if (!func->old_name) {
 536			kfree(func);
 537			return NULL;
 538		}
 539	}
 540
 541	klp_init_func_early(obj, func);
 542	/*
 543	 * func->new_func is same as func->old_func. These addresses are
 544	 * set when the object is loaded, see klp_init_object_loaded().
 545	 */
 546	func->old_sympos = old_func->old_sympos;
 547	func->nop = true;
 548
 549	return func;
 550}
 551
 552static int klp_add_object_nops(struct klp_patch *patch,
 553			       struct klp_object *old_obj)
 554{
 555	struct klp_object *obj;
 556	struct klp_func *func, *old_func;
 557
 558	obj = klp_find_object(patch, old_obj);
 559
 560	if (!obj) {
 561		obj = klp_alloc_object_dynamic(old_obj->name, patch);
 562		if (!obj)
 563			return -ENOMEM;
 564	}
 565
 566	klp_for_each_func(old_obj, old_func) {
 567		func = klp_find_func(obj, old_func);
 568		if (func)
 569			continue;
 570
 571		func = klp_alloc_func_nop(old_func, obj);
 572		if (!func)
 573			return -ENOMEM;
 574	}
 575
 576	return 0;
 577}
 578
 579/*
 580 * Add 'nop' functions which simply return to the caller to run
 581 * the original function. The 'nop' functions are added to a
 582 * patch to facilitate a 'replace' mode.
 583 */
 584static int klp_add_nops(struct klp_patch *patch)
 585{
 586	struct klp_patch *old_patch;
 587	struct klp_object *old_obj;
 588
 589	klp_for_each_patch(old_patch) {
 590		klp_for_each_object(old_patch, old_obj) {
 591			int err;
 592
 593			err = klp_add_object_nops(patch, old_obj);
 594			if (err)
 595				return err;
 596		}
 597	}
 598
 599	return 0;
 600}
 601
 602static void klp_kobj_release_patch(struct kobject *kobj)
 603{
 604	struct klp_patch *patch;
 605
 606	patch = container_of(kobj, struct klp_patch, kobj);
 607	complete(&patch->finish);
 608}
 609
 610static const struct kobj_type klp_ktype_patch = {
 611	.release = klp_kobj_release_patch,
 612	.sysfs_ops = &kobj_sysfs_ops,
 613	.default_groups = klp_patch_groups,
 614};
 615
 616static void klp_kobj_release_object(struct kobject *kobj)
 617{
 618	struct klp_object *obj;
 619
 620	obj = container_of(kobj, struct klp_object, kobj);
 621
 622	if (obj->dynamic)
 623		klp_free_object_dynamic(obj);
 624}
 625
 626static const struct kobj_type klp_ktype_object = {
 627	.release = klp_kobj_release_object,
 628	.sysfs_ops = &kobj_sysfs_ops,
 629	.default_groups = klp_object_groups,
 630};
 631
 632static void klp_kobj_release_func(struct kobject *kobj)
 633{
 634	struct klp_func *func;
 635
 636	func = container_of(kobj, struct klp_func, kobj);
 637
 638	if (func->nop)
 639		klp_free_func_nop(func);
 640}
 641
 642static const struct kobj_type klp_ktype_func = {
 643	.release = klp_kobj_release_func,
 644	.sysfs_ops = &kobj_sysfs_ops,
 645};
 646
 647static void __klp_free_funcs(struct klp_object *obj, bool nops_only)
 648{
 649	struct klp_func *func, *tmp_func;
 650
 651	klp_for_each_func_safe(obj, func, tmp_func) {
 652		if (nops_only && !func->nop)
 653			continue;
 654
 655		list_del(&func->node);
 656		kobject_put(&func->kobj);
 657	}
 658}
 659
 660/* Clean up when a patched object is unloaded */
 661static void klp_free_object_loaded(struct klp_object *obj)
 662{
 663	struct klp_func *func;
 664
 665	obj->mod = NULL;
 666
 667	klp_for_each_func(obj, func) {
 668		func->old_func = NULL;
 669
 670		if (func->nop)
 671			func->new_func = NULL;
 672	}
 673}
 674
 675static void __klp_free_objects(struct klp_patch *patch, bool nops_only)
 676{
 677	struct klp_object *obj, *tmp_obj;
 678
 679	klp_for_each_object_safe(patch, obj, tmp_obj) {
 680		__klp_free_funcs(obj, nops_only);
 681
 682		if (nops_only && !obj->dynamic)
 683			continue;
 684
 685		list_del(&obj->node);
 686		kobject_put(&obj->kobj);
 687	}
 688}
 689
 690static void klp_free_objects(struct klp_patch *patch)
 691{
 692	__klp_free_objects(patch, false);
 693}
 694
 695static void klp_free_objects_dynamic(struct klp_patch *patch)
 696{
 697	__klp_free_objects(patch, true);
 698}
 699
 700/*
 701 * This function implements the free operations that can be called safely
 702 * under klp_mutex.
 703 *
 704 * The operation must be completed by calling klp_free_patch_finish()
 705 * outside klp_mutex.
 706 */
 707static void klp_free_patch_start(struct klp_patch *patch)
 708{
 709	if (!list_empty(&patch->list))
 710		list_del(&patch->list);
 711
 712	klp_free_objects(patch);
 713}
 714
 715/*
 716 * This function implements the free part that must be called outside
 717 * klp_mutex.
 718 *
 719 * It must be called after klp_free_patch_start(). And it has to be
 720 * the last function accessing the livepatch structures when the patch
 721 * gets disabled.
 722 */
 723static void klp_free_patch_finish(struct klp_patch *patch)
 724{
 725	/*
 726	 * Avoid deadlock with enabled_store() sysfs callback by
 727	 * calling this outside klp_mutex. It is safe because
 728	 * this is called when the patch gets disabled and it
 729	 * cannot get enabled again.
 730	 */
 731	kobject_put(&patch->kobj);
 732	wait_for_completion(&patch->finish);
 733
 734	/* Put the module after the last access to struct klp_patch. */
 735	if (!patch->forced)
 736		module_put(patch->mod);
 737}
 738
 739/*
 740 * The livepatch might be freed from sysfs interface created by the patch.
 741 * This work allows to wait until the interface is destroyed in a separate
 742 * context.
 743 */
 744static void klp_free_patch_work_fn(struct work_struct *work)
 745{
 746	struct klp_patch *patch =
 747		container_of(work, struct klp_patch, free_work);
 748
 749	klp_free_patch_finish(patch);
 750}
 751
 752void klp_free_patch_async(struct klp_patch *patch)
 753{
 754	klp_free_patch_start(patch);
 755	schedule_work(&patch->free_work);
 756}
 757
 758void klp_free_replaced_patches_async(struct klp_patch *new_patch)
 759{
 760	struct klp_patch *old_patch, *tmp_patch;
 761
 762	klp_for_each_patch_safe(old_patch, tmp_patch) {
 763		if (old_patch == new_patch)
 764			return;
 765		klp_free_patch_async(old_patch);
 766	}
 767}
 768
 769static int klp_init_func(struct klp_object *obj, struct klp_func *func)
 770{
 771	if (!func->old_name)
 772		return -EINVAL;
 773
 774	/*
 775	 * NOPs get the address later. The patched module must be loaded,
 776	 * see klp_init_object_loaded().
 777	 */
 778	if (!func->new_func && !func->nop)
 779		return -EINVAL;
 780
 781	if (strlen(func->old_name) >= KSYM_NAME_LEN)
 782		return -EINVAL;
 783
 784	INIT_LIST_HEAD(&func->stack_node);
 785	func->patched = false;
 786	func->transition = false;
 787
 788	/* The format for the sysfs directory is <function,sympos> where sympos
 789	 * is the nth occurrence of this symbol in kallsyms for the patched
 790	 * object. If the user selects 0 for old_sympos, then 1 will be used
 791	 * since a unique symbol will be the first occurrence.
 792	 */
 793	return kobject_add(&func->kobj, &obj->kobj, "%s,%lu",
 794			   func->old_name,
 795			   func->old_sympos ? func->old_sympos : 1);
 796}
 797
 798static int klp_write_object_relocs(struct klp_patch *patch,
 799				   struct klp_object *obj,
 800				   bool apply)
 801{
 802	int i, ret;
 803	struct klp_modinfo *info = patch->mod->klp_info;
 804
 805	for (i = 1; i < info->hdr.e_shnum; i++) {
 806		Elf_Shdr *sec = info->sechdrs + i;
 807
 808		if (!(sec->sh_flags & SHF_RELA_LIVEPATCH))
 809			continue;
 810
 811		ret = klp_write_section_relocs(patch->mod, info->sechdrs,
 812					       info->secstrings,
 813					       patch->mod->core_kallsyms.strtab,
 814					       info->symndx, i, obj->name, apply);
 815		if (ret)
 816			return ret;
 817	}
 818
 819	return 0;
 820}
 821
 822static int klp_apply_object_relocs(struct klp_patch *patch,
 823				   struct klp_object *obj)
 824{
 825	return klp_write_object_relocs(patch, obj, true);
 826}
 827
 828static void klp_clear_object_relocs(struct klp_patch *patch,
 829				    struct klp_object *obj)
 830{
 831	klp_write_object_relocs(patch, obj, false);
 832}
 833
 834/* parts of the initialization that is done only when the object is loaded */
 835static int klp_init_object_loaded(struct klp_patch *patch,
 836				  struct klp_object *obj)
 837{
 838	struct klp_func *func;
 839	int ret;
 840
 841	if (klp_is_module(obj)) {
 842		/*
 843		 * Only write module-specific relocations here
 844		 * (.klp.rela.{module}.*).  vmlinux-specific relocations were
 845		 * written earlier during the initialization of the klp module
 846		 * itself.
 847		 */
 848		ret = klp_apply_object_relocs(patch, obj);
 849		if (ret)
 850			return ret;
 851	}
 852
 853	klp_for_each_func(obj, func) {
 854		ret = klp_find_object_symbol(obj->name, func->old_name,
 855					     func->old_sympos,
 856					     (unsigned long *)&func->old_func);
 857		if (ret)
 858			return ret;
 859
 860		ret = kallsyms_lookup_size_offset((unsigned long)func->old_func,
 861						  &func->old_size, NULL);
 862		if (!ret) {
 863			pr_err("kallsyms size lookup failed for '%s'\n",
 864			       func->old_name);
 865			return -ENOENT;
 866		}
 867
 868		if (func->nop)
 869			func->new_func = func->old_func;
 870
 871		ret = kallsyms_lookup_size_offset((unsigned long)func->new_func,
 872						  &func->new_size, NULL);
 873		if (!ret) {
 874			pr_err("kallsyms size lookup failed for '%s' replacement\n",
 875			       func->old_name);
 876			return -ENOENT;
 877		}
 878	}
 879
 880	return 0;
 881}
 882
 883static int klp_init_object(struct klp_patch *patch, struct klp_object *obj)
 884{
 885	struct klp_func *func;
 886	int ret;
 887	const char *name;
 888
 889	if (klp_is_module(obj) && strlen(obj->name) >= MODULE_NAME_LEN)
 890		return -EINVAL;
 891
 892	obj->patched = false;
 893	obj->mod = NULL;
 894
 895	klp_find_object_module(obj);
 896
 897	name = klp_is_module(obj) ? obj->name : "vmlinux";
 898	ret = kobject_add(&obj->kobj, &patch->kobj, "%s", name);
 899	if (ret)
 900		return ret;
 901
 902	klp_for_each_func(obj, func) {
 903		ret = klp_init_func(obj, func);
 904		if (ret)
 905			return ret;
 906	}
 907
 908	if (klp_is_object_loaded(obj))
 909		ret = klp_init_object_loaded(patch, obj);
 910
 911	return ret;
 912}
 913
 914static void klp_init_func_early(struct klp_object *obj,
 915				struct klp_func *func)
 916{
 917	kobject_init(&func->kobj, &klp_ktype_func);
 918	list_add_tail(&func->node, &obj->func_list);
 919}
 920
 921static void klp_init_object_early(struct klp_patch *patch,
 922				  struct klp_object *obj)
 923{
 924	INIT_LIST_HEAD(&obj->func_list);
 925	kobject_init(&obj->kobj, &klp_ktype_object);
 926	list_add_tail(&obj->node, &patch->obj_list);
 927}
 928
 929static void klp_init_patch_early(struct klp_patch *patch)
 930{
 931	struct klp_object *obj;
 932	struct klp_func *func;
 933
 
 
 
 934	INIT_LIST_HEAD(&patch->list);
 935	INIT_LIST_HEAD(&patch->obj_list);
 936	kobject_init(&patch->kobj, &klp_ktype_patch);
 937	patch->enabled = false;
 938	patch->forced = false;
 939	INIT_WORK(&patch->free_work, klp_free_patch_work_fn);
 940	init_completion(&patch->finish);
 941
 942	klp_for_each_object_static(patch, obj) {
 
 
 
 943		klp_init_object_early(patch, obj);
 944
 945		klp_for_each_func_static(obj, func) {
 946			klp_init_func_early(obj, func);
 947		}
 948	}
 
 
 
 
 
 949}
 950
 951static int klp_init_patch(struct klp_patch *patch)
 952{
 953	struct klp_object *obj;
 954	int ret;
 955
 956	ret = kobject_add(&patch->kobj, klp_root_kobj, "%s", patch->mod->name);
 957	if (ret)
 958		return ret;
 959
 960	if (patch->replace) {
 961		ret = klp_add_nops(patch);
 962		if (ret)
 963			return ret;
 964	}
 965
 966	klp_for_each_object(patch, obj) {
 967		ret = klp_init_object(patch, obj);
 968		if (ret)
 969			return ret;
 970	}
 971
 972	list_add_tail(&patch->list, &klp_patches);
 973
 974	return 0;
 975}
 976
 977static int __klp_disable_patch(struct klp_patch *patch)
 978{
 979	struct klp_object *obj;
 980
 981	if (WARN_ON(!patch->enabled))
 982		return -EINVAL;
 983
 984	if (klp_transition_patch)
 985		return -EBUSY;
 986
 987	klp_init_transition(patch, KLP_TRANSITION_UNPATCHED);
 988
 989	klp_for_each_object(patch, obj)
 990		if (obj->patched)
 991			klp_pre_unpatch_callback(obj);
 992
 993	/*
 994	 * Enforce the order of the func->transition writes in
 995	 * klp_init_transition() and the TIF_PATCH_PENDING writes in
 996	 * klp_start_transition().  In the rare case where klp_ftrace_handler()
 997	 * is called shortly after klp_update_patch_state() switches the task,
 998	 * this ensures the handler sees that func->transition is set.
 999	 */
1000	smp_wmb();
1001
1002	klp_start_transition();
1003	patch->enabled = false;
1004	klp_try_complete_transition();
1005
1006	return 0;
1007}
1008
1009static int __klp_enable_patch(struct klp_patch *patch)
1010{
1011	struct klp_object *obj;
1012	int ret;
1013
1014	if (klp_transition_patch)
1015		return -EBUSY;
1016
1017	if (WARN_ON(patch->enabled))
1018		return -EINVAL;
1019
1020	pr_notice("enabling patch '%s'\n", patch->mod->name);
1021
1022	klp_init_transition(patch, KLP_TRANSITION_PATCHED);
1023
1024	/*
1025	 * Enforce the order of the func->transition writes in
1026	 * klp_init_transition() and the ops->func_stack writes in
1027	 * klp_patch_object(), so that klp_ftrace_handler() will see the
1028	 * func->transition updates before the handler is registered and the
1029	 * new funcs become visible to the handler.
1030	 */
1031	smp_wmb();
1032
1033	klp_for_each_object(patch, obj) {
1034		if (!klp_is_object_loaded(obj))
1035			continue;
1036
1037		ret = klp_pre_patch_callback(obj);
1038		if (ret) {
1039			pr_warn("pre-patch callback failed for object '%s'\n",
1040				klp_is_module(obj) ? obj->name : "vmlinux");
1041			goto err;
1042		}
1043
1044		ret = klp_patch_object(obj);
1045		if (ret) {
1046			pr_warn("failed to patch object '%s'\n",
1047				klp_is_module(obj) ? obj->name : "vmlinux");
1048			goto err;
1049		}
1050	}
1051
1052	klp_start_transition();
1053	patch->enabled = true;
1054	klp_try_complete_transition();
1055
1056	return 0;
1057err:
1058	pr_warn("failed to enable patch '%s'\n", patch->mod->name);
1059
1060	klp_cancel_transition();
1061	return ret;
1062}
1063
1064/**
1065 * klp_enable_patch() - enable the livepatch
1066 * @patch:	patch to be enabled
1067 *
1068 * Initializes the data structure associated with the patch, creates the sysfs
1069 * interface, performs the needed symbol lookups and code relocations,
1070 * registers the patched functions with ftrace.
1071 *
1072 * This function is supposed to be called from the livepatch module_init()
1073 * callback.
1074 *
1075 * Return: 0 on success, otherwise error
1076 */
1077int klp_enable_patch(struct klp_patch *patch)
1078{
1079	int ret;
1080	struct klp_object *obj;
1081
1082	if (!patch || !patch->mod || !patch->objs)
1083		return -EINVAL;
1084
1085	klp_for_each_object_static(patch, obj) {
1086		if (!obj->funcs)
1087			return -EINVAL;
1088	}
1089
1090
1091	if (!is_livepatch_module(patch->mod)) {
1092		pr_err("module %s is not marked as a livepatch module\n",
1093		       patch->mod->name);
1094		return -EINVAL;
1095	}
1096
1097	if (!klp_initialized())
1098		return -ENODEV;
1099
1100	if (!klp_have_reliable_stack()) {
1101		pr_warn("This architecture doesn't have support for the livepatch consistency model.\n");
1102		pr_warn("The livepatch transition may never complete.\n");
1103	}
1104
1105	mutex_lock(&klp_mutex);
1106
1107	if (!klp_is_patch_compatible(patch)) {
1108		pr_err("Livepatch patch (%s) is not compatible with the already installed livepatches.\n",
1109			patch->mod->name);
1110		mutex_unlock(&klp_mutex);
1111		return -EINVAL;
1112	}
1113
1114	if (!try_module_get(patch->mod)) {
 
1115		mutex_unlock(&klp_mutex);
1116		return -ENODEV;
1117	}
1118
1119	klp_init_patch_early(patch);
1120
1121	ret = klp_init_patch(patch);
1122	if (ret)
1123		goto err;
1124
1125	ret = __klp_enable_patch(patch);
1126	if (ret)
1127		goto err;
1128
1129	mutex_unlock(&klp_mutex);
1130
1131	return 0;
1132
1133err:
1134	klp_free_patch_start(patch);
1135
1136	mutex_unlock(&klp_mutex);
1137
1138	klp_free_patch_finish(patch);
1139
1140	return ret;
1141}
1142EXPORT_SYMBOL_GPL(klp_enable_patch);
1143
1144/*
1145 * This function unpatches objects from the replaced livepatches.
1146 *
1147 * We could be pretty aggressive here. It is called in the situation where
1148 * these structures are no longer accessed from the ftrace handler.
1149 * All functions are redirected by the klp_transition_patch. They
1150 * use either a new code or they are in the original code because
1151 * of the special nop function patches.
1152 *
1153 * The only exception is when the transition was forced. In this case,
1154 * klp_ftrace_handler() might still see the replaced patch on the stack.
1155 * Fortunately, it is carefully designed to work with removed functions
1156 * thanks to RCU. We only have to keep the patches on the system. Also
1157 * this is handled transparently by patch->module_put.
1158 */
1159void klp_unpatch_replaced_patches(struct klp_patch *new_patch)
1160{
1161	struct klp_patch *old_patch;
1162
1163	klp_for_each_patch(old_patch) {
1164		if (old_patch == new_patch)
1165			return;
1166
1167		old_patch->enabled = false;
1168		klp_unpatch_objects(old_patch);
1169	}
1170}
1171
1172/*
1173 * This function removes the dynamically allocated 'nop' functions.
1174 *
1175 * We could be pretty aggressive. NOPs do not change the existing
1176 * behavior except for adding unnecessary delay by the ftrace handler.
1177 *
1178 * It is safe even when the transition was forced. The ftrace handler
1179 * will see a valid ops->func_stack entry thanks to RCU.
1180 *
1181 * We could even free the NOPs structures. They must be the last entry
1182 * in ops->func_stack. Therefore unregister_ftrace_function() is called.
1183 * It does the same as klp_synchronize_transition() to make sure that
1184 * nobody is inside the ftrace handler once the operation finishes.
1185 *
1186 * IMPORTANT: It must be called right after removing the replaced patches!
1187 */
1188void klp_discard_nops(struct klp_patch *new_patch)
1189{
1190	klp_unpatch_objects_dynamic(klp_transition_patch);
1191	klp_free_objects_dynamic(klp_transition_patch);
1192}
1193
1194/*
1195 * Remove parts of patches that touch a given kernel module. The list of
1196 * patches processed might be limited. When limit is NULL, all patches
1197 * will be handled.
1198 */
1199static void klp_cleanup_module_patches_limited(struct module *mod,
1200					       struct klp_patch *limit)
1201{
1202	struct klp_patch *patch;
1203	struct klp_object *obj;
1204
1205	klp_for_each_patch(patch) {
1206		if (patch == limit)
1207			break;
1208
1209		klp_for_each_object(patch, obj) {
1210			if (!klp_is_module(obj) || strcmp(obj->name, mod->name))
1211				continue;
1212
1213			if (patch != klp_transition_patch)
1214				klp_pre_unpatch_callback(obj);
1215
1216			pr_notice("reverting patch '%s' on unloading module '%s'\n",
1217				  patch->mod->name, obj->mod->name);
1218			klp_unpatch_object(obj);
1219
1220			klp_post_unpatch_callback(obj);
1221			klp_clear_object_relocs(patch, obj);
1222			klp_free_object_loaded(obj);
1223			break;
1224		}
1225	}
1226}
1227
1228int klp_module_coming(struct module *mod)
1229{
1230	int ret;
1231	struct klp_patch *patch;
1232	struct klp_object *obj;
1233
1234	if (WARN_ON(mod->state != MODULE_STATE_COMING))
1235		return -EINVAL;
1236
1237	if (!strcmp(mod->name, "vmlinux")) {
1238		pr_err("vmlinux.ko: invalid module name\n");
1239		return -EINVAL;
1240	}
1241
1242	mutex_lock(&klp_mutex);
1243	/*
1244	 * Each module has to know that klp_module_coming()
1245	 * has been called. We never know what module will
1246	 * get patched by a new patch.
1247	 */
1248	mod->klp_alive = true;
1249
1250	klp_for_each_patch(patch) {
1251		klp_for_each_object(patch, obj) {
1252			if (!klp_is_module(obj) || strcmp(obj->name, mod->name))
1253				continue;
1254
1255			obj->mod = mod;
1256
1257			ret = klp_init_object_loaded(patch, obj);
1258			if (ret) {
1259				pr_warn("failed to initialize patch '%s' for module '%s' (%d)\n",
1260					patch->mod->name, obj->mod->name, ret);
1261				goto err;
1262			}
1263
1264			pr_notice("applying patch '%s' to loading module '%s'\n",
1265				  patch->mod->name, obj->mod->name);
1266
1267			ret = klp_pre_patch_callback(obj);
1268			if (ret) {
1269				pr_warn("pre-patch callback failed for object '%s'\n",
1270					obj->name);
1271				goto err;
1272			}
1273
1274			ret = klp_patch_object(obj);
1275			if (ret) {
1276				pr_warn("failed to apply patch '%s' to module '%s' (%d)\n",
1277					patch->mod->name, obj->mod->name, ret);
1278
1279				klp_post_unpatch_callback(obj);
1280				goto err;
1281			}
1282
1283			if (patch != klp_transition_patch)
1284				klp_post_patch_callback(obj);
1285
1286			break;
1287		}
1288	}
1289
1290	mutex_unlock(&klp_mutex);
1291
1292	return 0;
1293
1294err:
1295	/*
1296	 * If a patch is unsuccessfully applied, return
1297	 * error to the module loader.
1298	 */
1299	pr_warn("patch '%s' failed for module '%s', refusing to load module '%s'\n",
1300		patch->mod->name, obj->mod->name, obj->mod->name);
1301	mod->klp_alive = false;
1302	obj->mod = NULL;
1303	klp_cleanup_module_patches_limited(mod, patch);
1304	mutex_unlock(&klp_mutex);
1305
1306	return ret;
1307}
1308
1309void klp_module_going(struct module *mod)
1310{
1311	if (WARN_ON(mod->state != MODULE_STATE_GOING &&
1312		    mod->state != MODULE_STATE_COMING))
1313		return;
1314
1315	mutex_lock(&klp_mutex);
1316	/*
1317	 * Each module has to know that klp_module_going()
1318	 * has been called. We never know what module will
1319	 * get patched by a new patch.
1320	 */
1321	mod->klp_alive = false;
1322
1323	klp_cleanup_module_patches_limited(mod, NULL);
1324
1325	mutex_unlock(&klp_mutex);
1326}
1327
1328static int __init klp_init(void)
1329{
1330	klp_root_kobj = kobject_create_and_add("livepatch", kernel_kobj);
1331	if (!klp_root_kobj)
1332		return -ENOMEM;
1333
1334	return 0;
1335}
1336
1337module_init(klp_init);
v5.9
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * core.c - Kernel Live Patching Core
   4 *
   5 * Copyright (C) 2014 Seth Jennings <sjenning@redhat.com>
   6 * Copyright (C) 2014 SUSE
   7 */
   8
   9#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  10
  11#include <linux/module.h>
  12#include <linux/kernel.h>
  13#include <linux/mutex.h>
  14#include <linux/slab.h>
  15#include <linux/list.h>
  16#include <linux/kallsyms.h>
  17#include <linux/livepatch.h>
  18#include <linux/elf.h>
  19#include <linux/moduleloader.h>
  20#include <linux/completion.h>
  21#include <linux/memory.h>
 
  22#include <asm/cacheflush.h>
  23#include "core.h"
  24#include "patch.h"
  25#include "state.h"
  26#include "transition.h"
  27
  28/*
  29 * klp_mutex is a coarse lock which serializes access to klp data.  All
  30 * accesses to klp-related variables and structures must have mutex protection,
  31 * except within the following functions which carefully avoid the need for it:
  32 *
  33 * - klp_ftrace_handler()
  34 * - klp_update_patch_state()
 
  35 */
  36DEFINE_MUTEX(klp_mutex);
  37
  38/*
  39 * Actively used patches: enabled or in transition. Note that replaced
  40 * or disabled patches are not listed even though the related kernel
  41 * module still can be loaded.
  42 */
  43LIST_HEAD(klp_patches);
  44
  45static struct kobject *klp_root_kobj;
  46
  47static bool klp_is_module(struct klp_object *obj)
  48{
  49	return obj->name;
  50}
  51
  52/* sets obj->mod if object is not vmlinux and module is found */
  53static void klp_find_object_module(struct klp_object *obj)
  54{
  55	struct module *mod;
  56
  57	if (!klp_is_module(obj))
  58		return;
  59
  60	mutex_lock(&module_mutex);
  61	/*
  62	 * We do not want to block removal of patched modules and therefore
  63	 * we do not take a reference here. The patches are removed by
  64	 * klp_module_going() instead.
  65	 */
  66	mod = find_module(obj->name);
  67	/*
  68	 * Do not mess work of klp_module_coming() and klp_module_going().
  69	 * Note that the patch might still be needed before klp_module_going()
  70	 * is called. Module functions can be called even in the GOING state
  71	 * until mod->exit() finishes. This is especially important for
  72	 * patches that modify semantic of the functions.
  73	 */
  74	if (mod && mod->klp_alive)
  75		obj->mod = mod;
  76
  77	mutex_unlock(&module_mutex);
  78}
  79
  80static bool klp_initialized(void)
  81{
  82	return !!klp_root_kobj;
  83}
  84
  85static struct klp_func *klp_find_func(struct klp_object *obj,
  86				      struct klp_func *old_func)
  87{
  88	struct klp_func *func;
  89
  90	klp_for_each_func(obj, func) {
  91		if ((strcmp(old_func->old_name, func->old_name) == 0) &&
  92		    (old_func->old_sympos == func->old_sympos)) {
  93			return func;
  94		}
  95	}
  96
  97	return NULL;
  98}
  99
 100static struct klp_object *klp_find_object(struct klp_patch *patch,
 101					  struct klp_object *old_obj)
 102{
 103	struct klp_object *obj;
 104
 105	klp_for_each_object(patch, obj) {
 106		if (klp_is_module(old_obj)) {
 107			if (klp_is_module(obj) &&
 108			    strcmp(old_obj->name, obj->name) == 0) {
 109				return obj;
 110			}
 111		} else if (!klp_is_module(obj)) {
 112			return obj;
 113		}
 114	}
 115
 116	return NULL;
 117}
 118
 119struct klp_find_arg {
 120	const char *objname;
 121	const char *name;
 122	unsigned long addr;
 123	unsigned long count;
 124	unsigned long pos;
 125};
 126
 127static int klp_find_callback(void *data, const char *name,
 128			     struct module *mod, unsigned long addr)
 129{
 130	struct klp_find_arg *args = data;
 131
 132	if ((mod && !args->objname) || (!mod && args->objname))
 133		return 0;
 134
 135	if (strcmp(args->name, name))
 136		return 0;
 137
 138	if (args->objname && strcmp(args->objname, mod->name))
 139		return 0;
 140
 141	args->addr = addr;
 142	args->count++;
 143
 144	/*
 145	 * Finish the search when the symbol is found for the desired position
 146	 * or the position is not defined for a non-unique symbol.
 147	 */
 148	if ((args->pos && (args->count == args->pos)) ||
 149	    (!args->pos && (args->count > 1)))
 150		return 1;
 151
 152	return 0;
 153}
 154
 
 
 
 
 
 
 
 
 
 
 155static int klp_find_object_symbol(const char *objname, const char *name,
 156				  unsigned long sympos, unsigned long *addr)
 157{
 158	struct klp_find_arg args = {
 159		.objname = objname,
 160		.name = name,
 161		.addr = 0,
 162		.count = 0,
 163		.pos = sympos,
 164	};
 165
 166	mutex_lock(&module_mutex);
 167	if (objname)
 168		module_kallsyms_on_each_symbol(klp_find_callback, &args);
 169	else
 170		kallsyms_on_each_symbol(klp_find_callback, &args);
 171	mutex_unlock(&module_mutex);
 172
 173	/*
 174	 * Ensure an address was found. If sympos is 0, ensure symbol is unique;
 175	 * otherwise ensure the symbol position count matches sympos.
 176	 */
 177	if (args.addr == 0)
 178		pr_err("symbol '%s' not found in symbol table\n", name);
 179	else if (args.count > 1 && sympos == 0) {
 180		pr_err("unresolvable ambiguity for symbol '%s' in object '%s'\n",
 181		       name, objname);
 182	} else if (sympos != args.count && sympos > 0) {
 183		pr_err("symbol position %lu for symbol '%s' in object '%s' not found\n",
 184		       sympos, name, objname ? objname : "vmlinux");
 185	} else {
 186		*addr = args.addr;
 187		return 0;
 188	}
 189
 190	*addr = 0;
 191	return -EINVAL;
 192}
 193
 194static int klp_resolve_symbols(Elf64_Shdr *sechdrs, const char *strtab,
 195			       unsigned int symndx, Elf_Shdr *relasec,
 196			       const char *sec_objname)
 197{
 198	int i, cnt, ret;
 199	char sym_objname[MODULE_NAME_LEN];
 200	char sym_name[KSYM_NAME_LEN];
 201	Elf_Rela *relas;
 202	Elf_Sym *sym;
 203	unsigned long sympos, addr;
 204	bool sym_vmlinux;
 205	bool sec_vmlinux = !strcmp(sec_objname, "vmlinux");
 206
 207	/*
 208	 * Since the field widths for sym_objname and sym_name in the sscanf()
 209	 * call are hard-coded and correspond to MODULE_NAME_LEN and
 210	 * KSYM_NAME_LEN respectively, we must make sure that MODULE_NAME_LEN
 211	 * and KSYM_NAME_LEN have the values we expect them to have.
 212	 *
 213	 * Because the value of MODULE_NAME_LEN can differ among architectures,
 214	 * we use the smallest/strictest upper bound possible (56, based on
 215	 * the current definition of MODULE_NAME_LEN) to prevent overflows.
 216	 */
 217	BUILD_BUG_ON(MODULE_NAME_LEN < 56 || KSYM_NAME_LEN != 128);
 218
 219	relas = (Elf_Rela *) relasec->sh_addr;
 220	/* For each rela in this klp relocation section */
 221	for (i = 0; i < relasec->sh_size / sizeof(Elf_Rela); i++) {
 222		sym = (Elf64_Sym *)sechdrs[symndx].sh_addr + ELF_R_SYM(relas[i].r_info);
 223		if (sym->st_shndx != SHN_LIVEPATCH) {
 224			pr_err("symbol %s is not marked as a livepatch symbol\n",
 225			       strtab + sym->st_name);
 226			return -EINVAL;
 227		}
 228
 229		/* Format: .klp.sym.sym_objname.sym_name,sympos */
 230		cnt = sscanf(strtab + sym->st_name,
 231			     ".klp.sym.%55[^.].%127[^,],%lu",
 232			     sym_objname, sym_name, &sympos);
 233		if (cnt != 3) {
 234			pr_err("symbol %s has an incorrectly formatted name\n",
 235			       strtab + sym->st_name);
 236			return -EINVAL;
 237		}
 238
 239		sym_vmlinux = !strcmp(sym_objname, "vmlinux");
 240
 241		/*
 242		 * Prevent module-specific KLP rela sections from referencing
 243		 * vmlinux symbols.  This helps prevent ordering issues with
 244		 * module special section initializations.  Presumably such
 245		 * symbols are exported and normal relas can be used instead.
 246		 */
 247		if (!sec_vmlinux && sym_vmlinux) {
 248			pr_err("invalid access to vmlinux symbol '%s' from module-specific livepatch relocation section",
 249			       sym_name);
 250			return -EINVAL;
 251		}
 252
 253		/* klp_find_object_symbol() treats a NULL objname as vmlinux */
 254		ret = klp_find_object_symbol(sym_vmlinux ? NULL : sym_objname,
 255					     sym_name, sympos, &addr);
 256		if (ret)
 257			return ret;
 258
 259		sym->st_value = addr;
 260	}
 261
 262	return 0;
 263}
 264
 
 
 
 
 
 
 
 
 265/*
 266 * At a high-level, there are two types of klp relocation sections: those which
 267 * reference symbols which live in vmlinux; and those which reference symbols
 268 * which live in other modules.  This function is called for both types:
 269 *
 270 * 1) When a klp module itself loads, the module code calls this function to
 271 *    write vmlinux-specific klp relocations (.klp.rela.vmlinux.* sections).
 272 *    These relocations are written to the klp module text to allow the patched
 273 *    code/data to reference unexported vmlinux symbols.  They're written as
 274 *    early as possible to ensure that other module init code (.e.g.,
 275 *    jump_label_apply_nops) can access any unexported vmlinux symbols which
 276 *    might be referenced by the klp module's special sections.
 277 *
 278 * 2) When a to-be-patched module loads -- or is already loaded when a
 279 *    corresponding klp module loads -- klp code calls this function to write
 280 *    module-specific klp relocations (.klp.rela.{module}.* sections).  These
 281 *    are written to the klp module text to allow the patched code/data to
 282 *    reference symbols which live in the to-be-patched module or one of its
 283 *    module dependencies.  Exported symbols are supported, in addition to
 284 *    unexported symbols, in order to enable late module patching, which allows
 285 *    the to-be-patched module to be loaded and patched sometime *after* the
 286 *    klp module is loaded.
 287 */
 288int klp_apply_section_relocs(struct module *pmod, Elf_Shdr *sechdrs,
 289			     const char *shstrtab, const char *strtab,
 290			     unsigned int symndx, unsigned int secndx,
 291			     const char *objname)
 292{
 293	int cnt, ret;
 294	char sec_objname[MODULE_NAME_LEN];
 295	Elf_Shdr *sec = sechdrs + secndx;
 296
 297	/*
 298	 * Format: .klp.rela.sec_objname.section_name
 299	 * See comment in klp_resolve_symbols() for an explanation
 300	 * of the selected field width value.
 301	 */
 302	cnt = sscanf(shstrtab + sec->sh_name, ".klp.rela.%55[^.]",
 303		     sec_objname);
 304	if (cnt != 1) {
 305		pr_err("section %s has an incorrectly formatted name\n",
 306		       shstrtab + sec->sh_name);
 307		return -EINVAL;
 308	}
 309
 310	if (strcmp(objname ? objname : "vmlinux", sec_objname))
 311		return 0;
 312
 313	ret = klp_resolve_symbols(sechdrs, strtab, symndx, sec, sec_objname);
 314	if (ret)
 315		return ret;
 
 
 
 
 
 
 
 
 
 316
 317	return apply_relocate_add(sechdrs, strtab, symndx, secndx, pmod);
 
 
 
 
 
 
 318}
 319
 320/*
 321 * Sysfs Interface
 322 *
 323 * /sys/kernel/livepatch
 324 * /sys/kernel/livepatch/<patch>
 325 * /sys/kernel/livepatch/<patch>/enabled
 326 * /sys/kernel/livepatch/<patch>/transition
 327 * /sys/kernel/livepatch/<patch>/force
 
 328 * /sys/kernel/livepatch/<patch>/<object>
 
 329 * /sys/kernel/livepatch/<patch>/<object>/<function,sympos>
 330 */
 331static int __klp_disable_patch(struct klp_patch *patch);
 332
 333static ssize_t enabled_store(struct kobject *kobj, struct kobj_attribute *attr,
 334			     const char *buf, size_t count)
 335{
 336	struct klp_patch *patch;
 337	int ret;
 338	bool enabled;
 339
 340	ret = kstrtobool(buf, &enabled);
 341	if (ret)
 342		return ret;
 343
 344	patch = container_of(kobj, struct klp_patch, kobj);
 345
 346	mutex_lock(&klp_mutex);
 347
 348	if (patch->enabled == enabled) {
 349		/* already in requested state */
 350		ret = -EINVAL;
 351		goto out;
 352	}
 353
 354	/*
 355	 * Allow to reverse a pending transition in both ways. It might be
 356	 * necessary to complete the transition without forcing and breaking
 357	 * the system integrity.
 358	 *
 359	 * Do not allow to re-enable a disabled patch.
 360	 */
 361	if (patch == klp_transition_patch)
 362		klp_reverse_transition();
 363	else if (!enabled)
 364		ret = __klp_disable_patch(patch);
 365	else
 366		ret = -EINVAL;
 367
 368out:
 369	mutex_unlock(&klp_mutex);
 370
 371	if (ret)
 372		return ret;
 373	return count;
 374}
 375
 376static ssize_t enabled_show(struct kobject *kobj,
 377			    struct kobj_attribute *attr, char *buf)
 378{
 379	struct klp_patch *patch;
 380
 381	patch = container_of(kobj, struct klp_patch, kobj);
 382	return snprintf(buf, PAGE_SIZE-1, "%d\n", patch->enabled);
 383}
 384
 385static ssize_t transition_show(struct kobject *kobj,
 386			       struct kobj_attribute *attr, char *buf)
 387{
 388	struct klp_patch *patch;
 389
 390	patch = container_of(kobj, struct klp_patch, kobj);
 391	return snprintf(buf, PAGE_SIZE-1, "%d\n",
 392			patch == klp_transition_patch);
 393}
 394
 395static ssize_t force_store(struct kobject *kobj, struct kobj_attribute *attr,
 396			   const char *buf, size_t count)
 397{
 398	struct klp_patch *patch;
 399	int ret;
 400	bool val;
 401
 402	ret = kstrtobool(buf, &val);
 403	if (ret)
 404		return ret;
 405
 406	if (!val)
 407		return count;
 408
 409	mutex_lock(&klp_mutex);
 410
 411	patch = container_of(kobj, struct klp_patch, kobj);
 412	if (patch != klp_transition_patch) {
 413		mutex_unlock(&klp_mutex);
 414		return -EINVAL;
 415	}
 416
 417	klp_force_transition();
 418
 419	mutex_unlock(&klp_mutex);
 420
 421	return count;
 422}
 423
 
 
 
 
 
 
 
 
 
 424static struct kobj_attribute enabled_kobj_attr = __ATTR_RW(enabled);
 425static struct kobj_attribute transition_kobj_attr = __ATTR_RO(transition);
 426static struct kobj_attribute force_kobj_attr = __ATTR_WO(force);
 
 427static struct attribute *klp_patch_attrs[] = {
 428	&enabled_kobj_attr.attr,
 429	&transition_kobj_attr.attr,
 430	&force_kobj_attr.attr,
 
 431	NULL
 432};
 433ATTRIBUTE_GROUPS(klp_patch);
 434
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 435static void klp_free_object_dynamic(struct klp_object *obj)
 436{
 437	kfree(obj->name);
 438	kfree(obj);
 439}
 440
 441static void klp_init_func_early(struct klp_object *obj,
 442				struct klp_func *func);
 443static void klp_init_object_early(struct klp_patch *patch,
 444				  struct klp_object *obj);
 445
 446static struct klp_object *klp_alloc_object_dynamic(const char *name,
 447						   struct klp_patch *patch)
 448{
 449	struct klp_object *obj;
 450
 451	obj = kzalloc(sizeof(*obj), GFP_KERNEL);
 452	if (!obj)
 453		return NULL;
 454
 455	if (name) {
 456		obj->name = kstrdup(name, GFP_KERNEL);
 457		if (!obj->name) {
 458			kfree(obj);
 459			return NULL;
 460		}
 461	}
 462
 463	klp_init_object_early(patch, obj);
 464	obj->dynamic = true;
 465
 466	return obj;
 467}
 468
 469static void klp_free_func_nop(struct klp_func *func)
 470{
 471	kfree(func->old_name);
 472	kfree(func);
 473}
 474
 475static struct klp_func *klp_alloc_func_nop(struct klp_func *old_func,
 476					   struct klp_object *obj)
 477{
 478	struct klp_func *func;
 479
 480	func = kzalloc(sizeof(*func), GFP_KERNEL);
 481	if (!func)
 482		return NULL;
 483
 484	if (old_func->old_name) {
 485		func->old_name = kstrdup(old_func->old_name, GFP_KERNEL);
 486		if (!func->old_name) {
 487			kfree(func);
 488			return NULL;
 489		}
 490	}
 491
 492	klp_init_func_early(obj, func);
 493	/*
 494	 * func->new_func is same as func->old_func. These addresses are
 495	 * set when the object is loaded, see klp_init_object_loaded().
 496	 */
 497	func->old_sympos = old_func->old_sympos;
 498	func->nop = true;
 499
 500	return func;
 501}
 502
 503static int klp_add_object_nops(struct klp_patch *patch,
 504			       struct klp_object *old_obj)
 505{
 506	struct klp_object *obj;
 507	struct klp_func *func, *old_func;
 508
 509	obj = klp_find_object(patch, old_obj);
 510
 511	if (!obj) {
 512		obj = klp_alloc_object_dynamic(old_obj->name, patch);
 513		if (!obj)
 514			return -ENOMEM;
 515	}
 516
 517	klp_for_each_func(old_obj, old_func) {
 518		func = klp_find_func(obj, old_func);
 519		if (func)
 520			continue;
 521
 522		func = klp_alloc_func_nop(old_func, obj);
 523		if (!func)
 524			return -ENOMEM;
 525	}
 526
 527	return 0;
 528}
 529
 530/*
 531 * Add 'nop' functions which simply return to the caller to run
 532 * the original function. The 'nop' functions are added to a
 533 * patch to facilitate a 'replace' mode.
 534 */
 535static int klp_add_nops(struct klp_patch *patch)
 536{
 537	struct klp_patch *old_patch;
 538	struct klp_object *old_obj;
 539
 540	klp_for_each_patch(old_patch) {
 541		klp_for_each_object(old_patch, old_obj) {
 542			int err;
 543
 544			err = klp_add_object_nops(patch, old_obj);
 545			if (err)
 546				return err;
 547		}
 548	}
 549
 550	return 0;
 551}
 552
 553static void klp_kobj_release_patch(struct kobject *kobj)
 554{
 555	struct klp_patch *patch;
 556
 557	patch = container_of(kobj, struct klp_patch, kobj);
 558	complete(&patch->finish);
 559}
 560
 561static struct kobj_type klp_ktype_patch = {
 562	.release = klp_kobj_release_patch,
 563	.sysfs_ops = &kobj_sysfs_ops,
 564	.default_groups = klp_patch_groups,
 565};
 566
 567static void klp_kobj_release_object(struct kobject *kobj)
 568{
 569	struct klp_object *obj;
 570
 571	obj = container_of(kobj, struct klp_object, kobj);
 572
 573	if (obj->dynamic)
 574		klp_free_object_dynamic(obj);
 575}
 576
 577static struct kobj_type klp_ktype_object = {
 578	.release = klp_kobj_release_object,
 579	.sysfs_ops = &kobj_sysfs_ops,
 
 580};
 581
 582static void klp_kobj_release_func(struct kobject *kobj)
 583{
 584	struct klp_func *func;
 585
 586	func = container_of(kobj, struct klp_func, kobj);
 587
 588	if (func->nop)
 589		klp_free_func_nop(func);
 590}
 591
 592static struct kobj_type klp_ktype_func = {
 593	.release = klp_kobj_release_func,
 594	.sysfs_ops = &kobj_sysfs_ops,
 595};
 596
 597static void __klp_free_funcs(struct klp_object *obj, bool nops_only)
 598{
 599	struct klp_func *func, *tmp_func;
 600
 601	klp_for_each_func_safe(obj, func, tmp_func) {
 602		if (nops_only && !func->nop)
 603			continue;
 604
 605		list_del(&func->node);
 606		kobject_put(&func->kobj);
 607	}
 608}
 609
 610/* Clean up when a patched object is unloaded */
 611static void klp_free_object_loaded(struct klp_object *obj)
 612{
 613	struct klp_func *func;
 614
 615	obj->mod = NULL;
 616
 617	klp_for_each_func(obj, func) {
 618		func->old_func = NULL;
 619
 620		if (func->nop)
 621			func->new_func = NULL;
 622	}
 623}
 624
 625static void __klp_free_objects(struct klp_patch *patch, bool nops_only)
 626{
 627	struct klp_object *obj, *tmp_obj;
 628
 629	klp_for_each_object_safe(patch, obj, tmp_obj) {
 630		__klp_free_funcs(obj, nops_only);
 631
 632		if (nops_only && !obj->dynamic)
 633			continue;
 634
 635		list_del(&obj->node);
 636		kobject_put(&obj->kobj);
 637	}
 638}
 639
 640static void klp_free_objects(struct klp_patch *patch)
 641{
 642	__klp_free_objects(patch, false);
 643}
 644
 645static void klp_free_objects_dynamic(struct klp_patch *patch)
 646{
 647	__klp_free_objects(patch, true);
 648}
 649
 650/*
 651 * This function implements the free operations that can be called safely
 652 * under klp_mutex.
 653 *
 654 * The operation must be completed by calling klp_free_patch_finish()
 655 * outside klp_mutex.
 656 */
 657static void klp_free_patch_start(struct klp_patch *patch)
 658{
 659	if (!list_empty(&patch->list))
 660		list_del(&patch->list);
 661
 662	klp_free_objects(patch);
 663}
 664
 665/*
 666 * This function implements the free part that must be called outside
 667 * klp_mutex.
 668 *
 669 * It must be called after klp_free_patch_start(). And it has to be
 670 * the last function accessing the livepatch structures when the patch
 671 * gets disabled.
 672 */
 673static void klp_free_patch_finish(struct klp_patch *patch)
 674{
 675	/*
 676	 * Avoid deadlock with enabled_store() sysfs callback by
 677	 * calling this outside klp_mutex. It is safe because
 678	 * this is called when the patch gets disabled and it
 679	 * cannot get enabled again.
 680	 */
 681	kobject_put(&patch->kobj);
 682	wait_for_completion(&patch->finish);
 683
 684	/* Put the module after the last access to struct klp_patch. */
 685	if (!patch->forced)
 686		module_put(patch->mod);
 687}
 688
 689/*
 690 * The livepatch might be freed from sysfs interface created by the patch.
 691 * This work allows to wait until the interface is destroyed in a separate
 692 * context.
 693 */
 694static void klp_free_patch_work_fn(struct work_struct *work)
 695{
 696	struct klp_patch *patch =
 697		container_of(work, struct klp_patch, free_work);
 698
 699	klp_free_patch_finish(patch);
 700}
 701
 702void klp_free_patch_async(struct klp_patch *patch)
 703{
 704	klp_free_patch_start(patch);
 705	schedule_work(&patch->free_work);
 706}
 707
 708void klp_free_replaced_patches_async(struct klp_patch *new_patch)
 709{
 710	struct klp_patch *old_patch, *tmp_patch;
 711
 712	klp_for_each_patch_safe(old_patch, tmp_patch) {
 713		if (old_patch == new_patch)
 714			return;
 715		klp_free_patch_async(old_patch);
 716	}
 717}
 718
 719static int klp_init_func(struct klp_object *obj, struct klp_func *func)
 720{
 721	if (!func->old_name)
 722		return -EINVAL;
 723
 724	/*
 725	 * NOPs get the address later. The patched module must be loaded,
 726	 * see klp_init_object_loaded().
 727	 */
 728	if (!func->new_func && !func->nop)
 729		return -EINVAL;
 730
 731	if (strlen(func->old_name) >= KSYM_NAME_LEN)
 732		return -EINVAL;
 733
 734	INIT_LIST_HEAD(&func->stack_node);
 735	func->patched = false;
 736	func->transition = false;
 737
 738	/* The format for the sysfs directory is <function,sympos> where sympos
 739	 * is the nth occurrence of this symbol in kallsyms for the patched
 740	 * object. If the user selects 0 for old_sympos, then 1 will be used
 741	 * since a unique symbol will be the first occurrence.
 742	 */
 743	return kobject_add(&func->kobj, &obj->kobj, "%s,%lu",
 744			   func->old_name,
 745			   func->old_sympos ? func->old_sympos : 1);
 746}
 747
 748static int klp_apply_object_relocs(struct klp_patch *patch,
 749				   struct klp_object *obj)
 
 750{
 751	int i, ret;
 752	struct klp_modinfo *info = patch->mod->klp_info;
 753
 754	for (i = 1; i < info->hdr.e_shnum; i++) {
 755		Elf_Shdr *sec = info->sechdrs + i;
 756
 757		if (!(sec->sh_flags & SHF_RELA_LIVEPATCH))
 758			continue;
 759
 760		ret = klp_apply_section_relocs(patch->mod, info->sechdrs,
 761					       info->secstrings,
 762					       patch->mod->core_kallsyms.strtab,
 763					       info->symndx, i, obj->name);
 764		if (ret)
 765			return ret;
 766	}
 767
 768	return 0;
 769}
 770
 
 
 
 
 
 
 
 
 
 
 
 
 771/* parts of the initialization that is done only when the object is loaded */
 772static int klp_init_object_loaded(struct klp_patch *patch,
 773				  struct klp_object *obj)
 774{
 775	struct klp_func *func;
 776	int ret;
 777
 778	if (klp_is_module(obj)) {
 779		/*
 780		 * Only write module-specific relocations here
 781		 * (.klp.rela.{module}.*).  vmlinux-specific relocations were
 782		 * written earlier during the initialization of the klp module
 783		 * itself.
 784		 */
 785		ret = klp_apply_object_relocs(patch, obj);
 786		if (ret)
 787			return ret;
 788	}
 789
 790	klp_for_each_func(obj, func) {
 791		ret = klp_find_object_symbol(obj->name, func->old_name,
 792					     func->old_sympos,
 793					     (unsigned long *)&func->old_func);
 794		if (ret)
 795			return ret;
 796
 797		ret = kallsyms_lookup_size_offset((unsigned long)func->old_func,
 798						  &func->old_size, NULL);
 799		if (!ret) {
 800			pr_err("kallsyms size lookup failed for '%s'\n",
 801			       func->old_name);
 802			return -ENOENT;
 803		}
 804
 805		if (func->nop)
 806			func->new_func = func->old_func;
 807
 808		ret = kallsyms_lookup_size_offset((unsigned long)func->new_func,
 809						  &func->new_size, NULL);
 810		if (!ret) {
 811			pr_err("kallsyms size lookup failed for '%s' replacement\n",
 812			       func->old_name);
 813			return -ENOENT;
 814		}
 815	}
 816
 817	return 0;
 818}
 819
 820static int klp_init_object(struct klp_patch *patch, struct klp_object *obj)
 821{
 822	struct klp_func *func;
 823	int ret;
 824	const char *name;
 825
 826	if (klp_is_module(obj) && strlen(obj->name) >= MODULE_NAME_LEN)
 827		return -EINVAL;
 828
 829	obj->patched = false;
 830	obj->mod = NULL;
 831
 832	klp_find_object_module(obj);
 833
 834	name = klp_is_module(obj) ? obj->name : "vmlinux";
 835	ret = kobject_add(&obj->kobj, &patch->kobj, "%s", name);
 836	if (ret)
 837		return ret;
 838
 839	klp_for_each_func(obj, func) {
 840		ret = klp_init_func(obj, func);
 841		if (ret)
 842			return ret;
 843	}
 844
 845	if (klp_is_object_loaded(obj))
 846		ret = klp_init_object_loaded(patch, obj);
 847
 848	return ret;
 849}
 850
 851static void klp_init_func_early(struct klp_object *obj,
 852				struct klp_func *func)
 853{
 854	kobject_init(&func->kobj, &klp_ktype_func);
 855	list_add_tail(&func->node, &obj->func_list);
 856}
 857
 858static void klp_init_object_early(struct klp_patch *patch,
 859				  struct klp_object *obj)
 860{
 861	INIT_LIST_HEAD(&obj->func_list);
 862	kobject_init(&obj->kobj, &klp_ktype_object);
 863	list_add_tail(&obj->node, &patch->obj_list);
 864}
 865
 866static int klp_init_patch_early(struct klp_patch *patch)
 867{
 868	struct klp_object *obj;
 869	struct klp_func *func;
 870
 871	if (!patch->objs)
 872		return -EINVAL;
 873
 874	INIT_LIST_HEAD(&patch->list);
 875	INIT_LIST_HEAD(&patch->obj_list);
 876	kobject_init(&patch->kobj, &klp_ktype_patch);
 877	patch->enabled = false;
 878	patch->forced = false;
 879	INIT_WORK(&patch->free_work, klp_free_patch_work_fn);
 880	init_completion(&patch->finish);
 881
 882	klp_for_each_object_static(patch, obj) {
 883		if (!obj->funcs)
 884			return -EINVAL;
 885
 886		klp_init_object_early(patch, obj);
 887
 888		klp_for_each_func_static(obj, func) {
 889			klp_init_func_early(obj, func);
 890		}
 891	}
 892
 893	if (!try_module_get(patch->mod))
 894		return -ENODEV;
 895
 896	return 0;
 897}
 898
 899static int klp_init_patch(struct klp_patch *patch)
 900{
 901	struct klp_object *obj;
 902	int ret;
 903
 904	ret = kobject_add(&patch->kobj, klp_root_kobj, "%s", patch->mod->name);
 905	if (ret)
 906		return ret;
 907
 908	if (patch->replace) {
 909		ret = klp_add_nops(patch);
 910		if (ret)
 911			return ret;
 912	}
 913
 914	klp_for_each_object(patch, obj) {
 915		ret = klp_init_object(patch, obj);
 916		if (ret)
 917			return ret;
 918	}
 919
 920	list_add_tail(&patch->list, &klp_patches);
 921
 922	return 0;
 923}
 924
 925static int __klp_disable_patch(struct klp_patch *patch)
 926{
 927	struct klp_object *obj;
 928
 929	if (WARN_ON(!patch->enabled))
 930		return -EINVAL;
 931
 932	if (klp_transition_patch)
 933		return -EBUSY;
 934
 935	klp_init_transition(patch, KLP_UNPATCHED);
 936
 937	klp_for_each_object(patch, obj)
 938		if (obj->patched)
 939			klp_pre_unpatch_callback(obj);
 940
 941	/*
 942	 * Enforce the order of the func->transition writes in
 943	 * klp_init_transition() and the TIF_PATCH_PENDING writes in
 944	 * klp_start_transition().  In the rare case where klp_ftrace_handler()
 945	 * is called shortly after klp_update_patch_state() switches the task,
 946	 * this ensures the handler sees that func->transition is set.
 947	 */
 948	smp_wmb();
 949
 950	klp_start_transition();
 951	patch->enabled = false;
 952	klp_try_complete_transition();
 953
 954	return 0;
 955}
 956
 957static int __klp_enable_patch(struct klp_patch *patch)
 958{
 959	struct klp_object *obj;
 960	int ret;
 961
 962	if (klp_transition_patch)
 963		return -EBUSY;
 964
 965	if (WARN_ON(patch->enabled))
 966		return -EINVAL;
 967
 968	pr_notice("enabling patch '%s'\n", patch->mod->name);
 969
 970	klp_init_transition(patch, KLP_PATCHED);
 971
 972	/*
 973	 * Enforce the order of the func->transition writes in
 974	 * klp_init_transition() and the ops->func_stack writes in
 975	 * klp_patch_object(), so that klp_ftrace_handler() will see the
 976	 * func->transition updates before the handler is registered and the
 977	 * new funcs become visible to the handler.
 978	 */
 979	smp_wmb();
 980
 981	klp_for_each_object(patch, obj) {
 982		if (!klp_is_object_loaded(obj))
 983			continue;
 984
 985		ret = klp_pre_patch_callback(obj);
 986		if (ret) {
 987			pr_warn("pre-patch callback failed for object '%s'\n",
 988				klp_is_module(obj) ? obj->name : "vmlinux");
 989			goto err;
 990		}
 991
 992		ret = klp_patch_object(obj);
 993		if (ret) {
 994			pr_warn("failed to patch object '%s'\n",
 995				klp_is_module(obj) ? obj->name : "vmlinux");
 996			goto err;
 997		}
 998	}
 999
1000	klp_start_transition();
1001	patch->enabled = true;
1002	klp_try_complete_transition();
1003
1004	return 0;
1005err:
1006	pr_warn("failed to enable patch '%s'\n", patch->mod->name);
1007
1008	klp_cancel_transition();
1009	return ret;
1010}
1011
1012/**
1013 * klp_enable_patch() - enable the livepatch
1014 * @patch:	patch to be enabled
1015 *
1016 * Initializes the data structure associated with the patch, creates the sysfs
1017 * interface, performs the needed symbol lookups and code relocations,
1018 * registers the patched functions with ftrace.
1019 *
1020 * This function is supposed to be called from the livepatch module_init()
1021 * callback.
1022 *
1023 * Return: 0 on success, otherwise error
1024 */
1025int klp_enable_patch(struct klp_patch *patch)
1026{
1027	int ret;
 
1028
1029	if (!patch || !patch->mod)
1030		return -EINVAL;
1031
 
 
 
 
 
 
1032	if (!is_livepatch_module(patch->mod)) {
1033		pr_err("module %s is not marked as a livepatch module\n",
1034		       patch->mod->name);
1035		return -EINVAL;
1036	}
1037
1038	if (!klp_initialized())
1039		return -ENODEV;
1040
1041	if (!klp_have_reliable_stack()) {
1042		pr_warn("This architecture doesn't have support for the livepatch consistency model.\n");
1043		pr_warn("The livepatch transition may never complete.\n");
1044	}
1045
1046	mutex_lock(&klp_mutex);
1047
1048	if (!klp_is_patch_compatible(patch)) {
1049		pr_err("Livepatch patch (%s) is not compatible with the already installed livepatches.\n",
1050			patch->mod->name);
1051		mutex_unlock(&klp_mutex);
1052		return -EINVAL;
1053	}
1054
1055	ret = klp_init_patch_early(patch);
1056	if (ret) {
1057		mutex_unlock(&klp_mutex);
1058		return ret;
1059	}
1060
 
 
1061	ret = klp_init_patch(patch);
1062	if (ret)
1063		goto err;
1064
1065	ret = __klp_enable_patch(patch);
1066	if (ret)
1067		goto err;
1068
1069	mutex_unlock(&klp_mutex);
1070
1071	return 0;
1072
1073err:
1074	klp_free_patch_start(patch);
1075
1076	mutex_unlock(&klp_mutex);
1077
1078	klp_free_patch_finish(patch);
1079
1080	return ret;
1081}
1082EXPORT_SYMBOL_GPL(klp_enable_patch);
1083
1084/*
1085 * This function unpatches objects from the replaced livepatches.
1086 *
1087 * We could be pretty aggressive here. It is called in the situation where
1088 * these structures are no longer accessed from the ftrace handler.
1089 * All functions are redirected by the klp_transition_patch. They
1090 * use either a new code or they are in the original code because
1091 * of the special nop function patches.
1092 *
1093 * The only exception is when the transition was forced. In this case,
1094 * klp_ftrace_handler() might still see the replaced patch on the stack.
1095 * Fortunately, it is carefully designed to work with removed functions
1096 * thanks to RCU. We only have to keep the patches on the system. Also
1097 * this is handled transparently by patch->module_put.
1098 */
1099void klp_unpatch_replaced_patches(struct klp_patch *new_patch)
1100{
1101	struct klp_patch *old_patch;
1102
1103	klp_for_each_patch(old_patch) {
1104		if (old_patch == new_patch)
1105			return;
1106
1107		old_patch->enabled = false;
1108		klp_unpatch_objects(old_patch);
1109	}
1110}
1111
1112/*
1113 * This function removes the dynamically allocated 'nop' functions.
1114 *
1115 * We could be pretty aggressive. NOPs do not change the existing
1116 * behavior except for adding unnecessary delay by the ftrace handler.
1117 *
1118 * It is safe even when the transition was forced. The ftrace handler
1119 * will see a valid ops->func_stack entry thanks to RCU.
1120 *
1121 * We could even free the NOPs structures. They must be the last entry
1122 * in ops->func_stack. Therefore unregister_ftrace_function() is called.
1123 * It does the same as klp_synchronize_transition() to make sure that
1124 * nobody is inside the ftrace handler once the operation finishes.
1125 *
1126 * IMPORTANT: It must be called right after removing the replaced patches!
1127 */
1128void klp_discard_nops(struct klp_patch *new_patch)
1129{
1130	klp_unpatch_objects_dynamic(klp_transition_patch);
1131	klp_free_objects_dynamic(klp_transition_patch);
1132}
1133
1134/*
1135 * Remove parts of patches that touch a given kernel module. The list of
1136 * patches processed might be limited. When limit is NULL, all patches
1137 * will be handled.
1138 */
1139static void klp_cleanup_module_patches_limited(struct module *mod,
1140					       struct klp_patch *limit)
1141{
1142	struct klp_patch *patch;
1143	struct klp_object *obj;
1144
1145	klp_for_each_patch(patch) {
1146		if (patch == limit)
1147			break;
1148
1149		klp_for_each_object(patch, obj) {
1150			if (!klp_is_module(obj) || strcmp(obj->name, mod->name))
1151				continue;
1152
1153			if (patch != klp_transition_patch)
1154				klp_pre_unpatch_callback(obj);
1155
1156			pr_notice("reverting patch '%s' on unloading module '%s'\n",
1157				  patch->mod->name, obj->mod->name);
1158			klp_unpatch_object(obj);
1159
1160			klp_post_unpatch_callback(obj);
1161
1162			klp_free_object_loaded(obj);
1163			break;
1164		}
1165	}
1166}
1167
1168int klp_module_coming(struct module *mod)
1169{
1170	int ret;
1171	struct klp_patch *patch;
1172	struct klp_object *obj;
1173
1174	if (WARN_ON(mod->state != MODULE_STATE_COMING))
1175		return -EINVAL;
1176
1177	if (!strcmp(mod->name, "vmlinux")) {
1178		pr_err("vmlinux.ko: invalid module name");
1179		return -EINVAL;
1180	}
1181
1182	mutex_lock(&klp_mutex);
1183	/*
1184	 * Each module has to know that klp_module_coming()
1185	 * has been called. We never know what module will
1186	 * get patched by a new patch.
1187	 */
1188	mod->klp_alive = true;
1189
1190	klp_for_each_patch(patch) {
1191		klp_for_each_object(patch, obj) {
1192			if (!klp_is_module(obj) || strcmp(obj->name, mod->name))
1193				continue;
1194
1195			obj->mod = mod;
1196
1197			ret = klp_init_object_loaded(patch, obj);
1198			if (ret) {
1199				pr_warn("failed to initialize patch '%s' for module '%s' (%d)\n",
1200					patch->mod->name, obj->mod->name, ret);
1201				goto err;
1202			}
1203
1204			pr_notice("applying patch '%s' to loading module '%s'\n",
1205				  patch->mod->name, obj->mod->name);
1206
1207			ret = klp_pre_patch_callback(obj);
1208			if (ret) {
1209				pr_warn("pre-patch callback failed for object '%s'\n",
1210					obj->name);
1211				goto err;
1212			}
1213
1214			ret = klp_patch_object(obj);
1215			if (ret) {
1216				pr_warn("failed to apply patch '%s' to module '%s' (%d)\n",
1217					patch->mod->name, obj->mod->name, ret);
1218
1219				klp_post_unpatch_callback(obj);
1220				goto err;
1221			}
1222
1223			if (patch != klp_transition_patch)
1224				klp_post_patch_callback(obj);
1225
1226			break;
1227		}
1228	}
1229
1230	mutex_unlock(&klp_mutex);
1231
1232	return 0;
1233
1234err:
1235	/*
1236	 * If a patch is unsuccessfully applied, return
1237	 * error to the module loader.
1238	 */
1239	pr_warn("patch '%s' failed for module '%s', refusing to load module '%s'\n",
1240		patch->mod->name, obj->mod->name, obj->mod->name);
1241	mod->klp_alive = false;
1242	obj->mod = NULL;
1243	klp_cleanup_module_patches_limited(mod, patch);
1244	mutex_unlock(&klp_mutex);
1245
1246	return ret;
1247}
1248
1249void klp_module_going(struct module *mod)
1250{
1251	if (WARN_ON(mod->state != MODULE_STATE_GOING &&
1252		    mod->state != MODULE_STATE_COMING))
1253		return;
1254
1255	mutex_lock(&klp_mutex);
1256	/*
1257	 * Each module has to know that klp_module_going()
1258	 * has been called. We never know what module will
1259	 * get patched by a new patch.
1260	 */
1261	mod->klp_alive = false;
1262
1263	klp_cleanup_module_patches_limited(mod, NULL);
1264
1265	mutex_unlock(&klp_mutex);
1266}
1267
1268static int __init klp_init(void)
1269{
1270	klp_root_kobj = kobject_create_and_add("livepatch", kernel_kobj);
1271	if (!klp_root_kobj)
1272		return -ENOMEM;
1273
1274	return 0;
1275}
1276
1277module_init(klp_init);