Linux Audio

Check our new training course

Loading...
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * core.c - Kernel Live Patching Core
   4 *
   5 * Copyright (C) 2014 Seth Jennings <sjenning@redhat.com>
   6 * Copyright (C) 2014 SUSE
   7 */
   8
   9#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  10
  11#include <linux/module.h>
  12#include <linux/kernel.h>
  13#include <linux/mutex.h>
  14#include <linux/slab.h>
  15#include <linux/list.h>
  16#include <linux/kallsyms.h>
  17#include <linux/livepatch.h>
  18#include <linux/elf.h>
  19#include <linux/moduleloader.h>
  20#include <linux/completion.h>
  21#include <linux/memory.h>
  22#include <linux/rcupdate.h>
  23#include <asm/cacheflush.h>
  24#include "core.h"
  25#include "patch.h"
  26#include "state.h"
  27#include "transition.h"
  28
  29/*
  30 * klp_mutex is a coarse lock which serializes access to klp data.  All
  31 * accesses to klp-related variables and structures must have mutex protection,
  32 * except within the following functions which carefully avoid the need for it:
  33 *
  34 * - klp_ftrace_handler()
  35 * - klp_update_patch_state()
  36 * - __klp_sched_try_switch()
  37 */
  38DEFINE_MUTEX(klp_mutex);
  39
  40/*
  41 * Actively used patches: enabled or in transition. Note that replaced
  42 * or disabled patches are not listed even though the related kernel
  43 * module still can be loaded.
  44 */
  45LIST_HEAD(klp_patches);
  46
  47static struct kobject *klp_root_kobj;
  48
  49static bool klp_is_module(struct klp_object *obj)
  50{
  51	return obj->name;
  52}
  53
  54/* sets obj->mod if object is not vmlinux and module is found */
  55static void klp_find_object_module(struct klp_object *obj)
  56{
  57	struct module *mod;
  58
  59	if (!klp_is_module(obj))
  60		return;
  61
  62	rcu_read_lock_sched();
  63	/*
  64	 * We do not want to block removal of patched modules and therefore
  65	 * we do not take a reference here. The patches are removed by
  66	 * klp_module_going() instead.
  67	 */
  68	mod = find_module(obj->name);
  69	/*
  70	 * Do not mess work of klp_module_coming() and klp_module_going().
  71	 * Note that the patch might still be needed before klp_module_going()
  72	 * is called. Module functions can be called even in the GOING state
  73	 * until mod->exit() finishes. This is especially important for
  74	 * patches that modify semantic of the functions.
  75	 */
  76	if (mod && mod->klp_alive)
  77		obj->mod = mod;
  78
  79	rcu_read_unlock_sched();
  80}
  81
  82static bool klp_initialized(void)
  83{
  84	return !!klp_root_kobj;
  85}
  86
  87static struct klp_func *klp_find_func(struct klp_object *obj,
  88				      struct klp_func *old_func)
  89{
  90	struct klp_func *func;
  91
  92	klp_for_each_func(obj, func) {
  93		if ((strcmp(old_func->old_name, func->old_name) == 0) &&
  94		    (old_func->old_sympos == func->old_sympos)) {
  95			return func;
  96		}
  97	}
  98
  99	return NULL;
 100}
 101
 102static struct klp_object *klp_find_object(struct klp_patch *patch,
 103					  struct klp_object *old_obj)
 104{
 105	struct klp_object *obj;
 106
 107	klp_for_each_object(patch, obj) {
 108		if (klp_is_module(old_obj)) {
 109			if (klp_is_module(obj) &&
 110			    strcmp(old_obj->name, obj->name) == 0) {
 111				return obj;
 112			}
 113		} else if (!klp_is_module(obj)) {
 114			return obj;
 115		}
 116	}
 117
 118	return NULL;
 119}
 120
 121struct klp_find_arg {
 
 122	const char *name;
 123	unsigned long addr;
 124	unsigned long count;
 125	unsigned long pos;
 126};
 127
 128static int klp_match_callback(void *data, unsigned long addr)
 
 129{
 130	struct klp_find_arg *args = data;
 131
 
 
 
 
 
 
 
 
 
 132	args->addr = addr;
 133	args->count++;
 134
 135	/*
 136	 * Finish the search when the symbol is found for the desired position
 137	 * or the position is not defined for a non-unique symbol.
 138	 */
 139	if ((args->pos && (args->count == args->pos)) ||
 140	    (!args->pos && (args->count > 1)))
 141		return 1;
 142
 143	return 0;
 144}
 145
 146static int klp_find_callback(void *data, const char *name, unsigned long addr)
 147{
 148	struct klp_find_arg *args = data;
 149
 150	if (strcmp(args->name, name))
 151		return 0;
 152
 153	return klp_match_callback(data, addr);
 154}
 155
 156static int klp_find_object_symbol(const char *objname, const char *name,
 157				  unsigned long sympos, unsigned long *addr)
 158{
 159	struct klp_find_arg args = {
 
 160		.name = name,
 161		.addr = 0,
 162		.count = 0,
 163		.pos = sympos,
 164	};
 165
 166	if (objname)
 167		module_kallsyms_on_each_symbol(objname, klp_find_callback, &args);
 168	else
 169		kallsyms_on_each_match_symbol(klp_match_callback, name, &args);
 170
 171	/*
 172	 * Ensure an address was found. If sympos is 0, ensure symbol is unique;
 173	 * otherwise ensure the symbol position count matches sympos.
 174	 */
 175	if (args.addr == 0)
 176		pr_err("symbol '%s' not found in symbol table\n", name);
 177	else if (args.count > 1 && sympos == 0) {
 178		pr_err("unresolvable ambiguity for symbol '%s' in object '%s'\n",
 179		       name, objname);
 180	} else if (sympos != args.count && sympos > 0) {
 181		pr_err("symbol position %lu for symbol '%s' in object '%s' not found\n",
 182		       sympos, name, objname ? objname : "vmlinux");
 183	} else {
 184		*addr = args.addr;
 185		return 0;
 186	}
 187
 188	*addr = 0;
 189	return -EINVAL;
 190}
 191
 192static int klp_resolve_symbols(Elf_Shdr *sechdrs, const char *strtab,
 193			       unsigned int symndx, Elf_Shdr *relasec,
 194			       const char *sec_objname)
 195{
 196	int i, cnt, ret;
 197	char sym_objname[MODULE_NAME_LEN];
 198	char sym_name[KSYM_NAME_LEN];
 199	Elf_Rela *relas;
 200	Elf_Sym *sym;
 201	unsigned long sympos, addr;
 202	bool sym_vmlinux;
 203	bool sec_vmlinux = !strcmp(sec_objname, "vmlinux");
 204
 205	/*
 206	 * Since the field widths for sym_objname and sym_name in the sscanf()
 207	 * call are hard-coded and correspond to MODULE_NAME_LEN and
 208	 * KSYM_NAME_LEN respectively, we must make sure that MODULE_NAME_LEN
 209	 * and KSYM_NAME_LEN have the values we expect them to have.
 210	 *
 211	 * Because the value of MODULE_NAME_LEN can differ among architectures,
 212	 * we use the smallest/strictest upper bound possible (56, based on
 213	 * the current definition of MODULE_NAME_LEN) to prevent overflows.
 214	 */
 215	BUILD_BUG_ON(MODULE_NAME_LEN < 56 || KSYM_NAME_LEN != 512);
 216
 217	relas = (Elf_Rela *) relasec->sh_addr;
 218	/* For each rela in this klp relocation section */
 219	for (i = 0; i < relasec->sh_size / sizeof(Elf_Rela); i++) {
 220		sym = (Elf_Sym *)sechdrs[symndx].sh_addr + ELF_R_SYM(relas[i].r_info);
 221		if (sym->st_shndx != SHN_LIVEPATCH) {
 222			pr_err("symbol %s is not marked as a livepatch symbol\n",
 223			       strtab + sym->st_name);
 224			return -EINVAL;
 225		}
 226
 227		/* Format: .klp.sym.sym_objname.sym_name,sympos */
 228		cnt = sscanf(strtab + sym->st_name,
 229			     ".klp.sym.%55[^.].%511[^,],%lu",
 230			     sym_objname, sym_name, &sympos);
 231		if (cnt != 3) {
 232			pr_err("symbol %s has an incorrectly formatted name\n",
 233			       strtab + sym->st_name);
 234			return -EINVAL;
 235		}
 236
 237		sym_vmlinux = !strcmp(sym_objname, "vmlinux");
 238
 239		/*
 240		 * Prevent module-specific KLP rela sections from referencing
 241		 * vmlinux symbols.  This helps prevent ordering issues with
 242		 * module special section initializations.  Presumably such
 243		 * symbols are exported and normal relas can be used instead.
 244		 */
 245		if (!sec_vmlinux && sym_vmlinux) {
 246			pr_err("invalid access to vmlinux symbol '%s' from module-specific livepatch relocation section\n",
 247			       sym_name);
 248			return -EINVAL;
 249		}
 250
 251		/* klp_find_object_symbol() treats a NULL objname as vmlinux */
 252		ret = klp_find_object_symbol(sym_vmlinux ? NULL : sym_objname,
 253					     sym_name, sympos, &addr);
 254		if (ret)
 255			return ret;
 256
 257		sym->st_value = addr;
 258	}
 259
 260	return 0;
 261}
 262
 263void __weak clear_relocate_add(Elf_Shdr *sechdrs,
 264		   const char *strtab,
 265		   unsigned int symindex,
 266		   unsigned int relsec,
 267		   struct module *me)
 268{
 269}
 270
 271/*
 272 * At a high-level, there are two types of klp relocation sections: those which
 273 * reference symbols which live in vmlinux; and those which reference symbols
 274 * which live in other modules.  This function is called for both types:
 275 *
 276 * 1) When a klp module itself loads, the module code calls this function to
 277 *    write vmlinux-specific klp relocations (.klp.rela.vmlinux.* sections).
 278 *    These relocations are written to the klp module text to allow the patched
 279 *    code/data to reference unexported vmlinux symbols.  They're written as
 280 *    early as possible to ensure that other module init code (.e.g.,
 281 *    jump_label_apply_nops) can access any unexported vmlinux symbols which
 282 *    might be referenced by the klp module's special sections.
 283 *
 284 * 2) When a to-be-patched module loads -- or is already loaded when a
 285 *    corresponding klp module loads -- klp code calls this function to write
 286 *    module-specific klp relocations (.klp.rela.{module}.* sections).  These
 287 *    are written to the klp module text to allow the patched code/data to
 288 *    reference symbols which live in the to-be-patched module or one of its
 289 *    module dependencies.  Exported symbols are supported, in addition to
 290 *    unexported symbols, in order to enable late module patching, which allows
 291 *    the to-be-patched module to be loaded and patched sometime *after* the
 292 *    klp module is loaded.
 293 */
 294static int klp_write_section_relocs(struct module *pmod, Elf_Shdr *sechdrs,
 295				    const char *shstrtab, const char *strtab,
 296				    unsigned int symndx, unsigned int secndx,
 297				    const char *objname, bool apply)
 298{
 299	int cnt, ret;
 300	char sec_objname[MODULE_NAME_LEN];
 301	Elf_Shdr *sec = sechdrs + secndx;
 302
 303	/*
 304	 * Format: .klp.rela.sec_objname.section_name
 305	 * See comment in klp_resolve_symbols() for an explanation
 306	 * of the selected field width value.
 307	 */
 308	cnt = sscanf(shstrtab + sec->sh_name, ".klp.rela.%55[^.]",
 309		     sec_objname);
 310	if (cnt != 1) {
 311		pr_err("section %s has an incorrectly formatted name\n",
 312		       shstrtab + sec->sh_name);
 313		return -EINVAL;
 314	}
 315
 316	if (strcmp(objname ? objname : "vmlinux", sec_objname))
 317		return 0;
 318
 319	if (apply) {
 320		ret = klp_resolve_symbols(sechdrs, strtab, symndx,
 321					  sec, sec_objname);
 322		if (ret)
 323			return ret;
 324
 325		return apply_relocate_add(sechdrs, strtab, symndx, secndx, pmod);
 326	}
 327
 328	clear_relocate_add(sechdrs, strtab, symndx, secndx, pmod);
 329	return 0;
 330}
 331
 332int klp_apply_section_relocs(struct module *pmod, Elf_Shdr *sechdrs,
 333			     const char *shstrtab, const char *strtab,
 334			     unsigned int symndx, unsigned int secndx,
 335			     const char *objname)
 336{
 337	return klp_write_section_relocs(pmod, sechdrs, shstrtab, strtab, symndx,
 338					secndx, objname, true);
 339}
 340
 341/*
 342 * Sysfs Interface
 343 *
 344 * /sys/kernel/livepatch
 345 * /sys/kernel/livepatch/<patch>
 346 * /sys/kernel/livepatch/<patch>/enabled
 347 * /sys/kernel/livepatch/<patch>/transition
 348 * /sys/kernel/livepatch/<patch>/force
 349 * /sys/kernel/livepatch/<patch>/replace
 350 * /sys/kernel/livepatch/<patch>/<object>
 351 * /sys/kernel/livepatch/<patch>/<object>/patched
 352 * /sys/kernel/livepatch/<patch>/<object>/<function,sympos>
 353 */
 354static int __klp_disable_patch(struct klp_patch *patch);
 355
 356static ssize_t enabled_store(struct kobject *kobj, struct kobj_attribute *attr,
 357			     const char *buf, size_t count)
 358{
 359	struct klp_patch *patch;
 360	int ret;
 361	bool enabled;
 362
 363	ret = kstrtobool(buf, &enabled);
 364	if (ret)
 365		return ret;
 366
 367	patch = container_of(kobj, struct klp_patch, kobj);
 368
 369	mutex_lock(&klp_mutex);
 370
 371	if (patch->enabled == enabled) {
 372		/* already in requested state */
 373		ret = -EINVAL;
 374		goto out;
 375	}
 376
 377	/*
 378	 * Allow to reverse a pending transition in both ways. It might be
 379	 * necessary to complete the transition without forcing and breaking
 380	 * the system integrity.
 381	 *
 382	 * Do not allow to re-enable a disabled patch.
 383	 */
 384	if (patch == klp_transition_patch)
 385		klp_reverse_transition();
 386	else if (!enabled)
 387		ret = __klp_disable_patch(patch);
 388	else
 389		ret = -EINVAL;
 390
 391out:
 392	mutex_unlock(&klp_mutex);
 393
 394	if (ret)
 395		return ret;
 396	return count;
 397}
 398
 399static ssize_t enabled_show(struct kobject *kobj,
 400			    struct kobj_attribute *attr, char *buf)
 401{
 402	struct klp_patch *patch;
 403
 404	patch = container_of(kobj, struct klp_patch, kobj);
 405	return sysfs_emit(buf, "%d\n", patch->enabled);
 406}
 407
 408static ssize_t transition_show(struct kobject *kobj,
 409			       struct kobj_attribute *attr, char *buf)
 410{
 411	struct klp_patch *patch;
 412
 413	patch = container_of(kobj, struct klp_patch, kobj);
 414	return sysfs_emit(buf, "%d\n", patch == klp_transition_patch);
 
 415}
 416
 417static ssize_t force_store(struct kobject *kobj, struct kobj_attribute *attr,
 418			   const char *buf, size_t count)
 419{
 420	struct klp_patch *patch;
 421	int ret;
 422	bool val;
 423
 424	ret = kstrtobool(buf, &val);
 425	if (ret)
 426		return ret;
 427
 428	if (!val)
 429		return count;
 430
 431	mutex_lock(&klp_mutex);
 432
 433	patch = container_of(kobj, struct klp_patch, kobj);
 434	if (patch != klp_transition_patch) {
 435		mutex_unlock(&klp_mutex);
 436		return -EINVAL;
 437	}
 438
 439	klp_force_transition();
 440
 441	mutex_unlock(&klp_mutex);
 442
 443	return count;
 444}
 445
 446static ssize_t replace_show(struct kobject *kobj,
 447			    struct kobj_attribute *attr, char *buf)
 448{
 449	struct klp_patch *patch;
 450
 451	patch = container_of(kobj, struct klp_patch, kobj);
 452	return sysfs_emit(buf, "%d\n", patch->replace);
 453}
 454
 455static struct kobj_attribute enabled_kobj_attr = __ATTR_RW(enabled);
 456static struct kobj_attribute transition_kobj_attr = __ATTR_RO(transition);
 457static struct kobj_attribute force_kobj_attr = __ATTR_WO(force);
 458static struct kobj_attribute replace_kobj_attr = __ATTR_RO(replace);
 459static struct attribute *klp_patch_attrs[] = {
 460	&enabled_kobj_attr.attr,
 461	&transition_kobj_attr.attr,
 462	&force_kobj_attr.attr,
 463	&replace_kobj_attr.attr,
 464	NULL
 465};
 466ATTRIBUTE_GROUPS(klp_patch);
 467
 468static ssize_t patched_show(struct kobject *kobj,
 469			    struct kobj_attribute *attr, char *buf)
 470{
 471	struct klp_object *obj;
 472
 473	obj = container_of(kobj, struct klp_object, kobj);
 474	return sysfs_emit(buf, "%d\n", obj->patched);
 475}
 476
 477static struct kobj_attribute patched_kobj_attr = __ATTR_RO(patched);
 478static struct attribute *klp_object_attrs[] = {
 479	&patched_kobj_attr.attr,
 480	NULL,
 481};
 482ATTRIBUTE_GROUPS(klp_object);
 483
 484static void klp_free_object_dynamic(struct klp_object *obj)
 485{
 486	kfree(obj->name);
 487	kfree(obj);
 488}
 489
 490static void klp_init_func_early(struct klp_object *obj,
 491				struct klp_func *func);
 492static void klp_init_object_early(struct klp_patch *patch,
 493				  struct klp_object *obj);
 494
 495static struct klp_object *klp_alloc_object_dynamic(const char *name,
 496						   struct klp_patch *patch)
 497{
 498	struct klp_object *obj;
 499
 500	obj = kzalloc(sizeof(*obj), GFP_KERNEL);
 501	if (!obj)
 502		return NULL;
 503
 504	if (name) {
 505		obj->name = kstrdup(name, GFP_KERNEL);
 506		if (!obj->name) {
 507			kfree(obj);
 508			return NULL;
 509		}
 510	}
 511
 512	klp_init_object_early(patch, obj);
 513	obj->dynamic = true;
 514
 515	return obj;
 516}
 517
 518static void klp_free_func_nop(struct klp_func *func)
 519{
 520	kfree(func->old_name);
 521	kfree(func);
 522}
 523
 524static struct klp_func *klp_alloc_func_nop(struct klp_func *old_func,
 525					   struct klp_object *obj)
 526{
 527	struct klp_func *func;
 528
 529	func = kzalloc(sizeof(*func), GFP_KERNEL);
 530	if (!func)
 531		return NULL;
 532
 533	if (old_func->old_name) {
 534		func->old_name = kstrdup(old_func->old_name, GFP_KERNEL);
 535		if (!func->old_name) {
 536			kfree(func);
 537			return NULL;
 538		}
 539	}
 540
 541	klp_init_func_early(obj, func);
 542	/*
 543	 * func->new_func is same as func->old_func. These addresses are
 544	 * set when the object is loaded, see klp_init_object_loaded().
 545	 */
 546	func->old_sympos = old_func->old_sympos;
 547	func->nop = true;
 548
 549	return func;
 550}
 551
 552static int klp_add_object_nops(struct klp_patch *patch,
 553			       struct klp_object *old_obj)
 554{
 555	struct klp_object *obj;
 556	struct klp_func *func, *old_func;
 557
 558	obj = klp_find_object(patch, old_obj);
 559
 560	if (!obj) {
 561		obj = klp_alloc_object_dynamic(old_obj->name, patch);
 562		if (!obj)
 563			return -ENOMEM;
 564	}
 565
 566	klp_for_each_func(old_obj, old_func) {
 567		func = klp_find_func(obj, old_func);
 568		if (func)
 569			continue;
 570
 571		func = klp_alloc_func_nop(old_func, obj);
 572		if (!func)
 573			return -ENOMEM;
 574	}
 575
 576	return 0;
 577}
 578
 579/*
 580 * Add 'nop' functions which simply return to the caller to run
 581 * the original function. The 'nop' functions are added to a
 582 * patch to facilitate a 'replace' mode.
 583 */
 584static int klp_add_nops(struct klp_patch *patch)
 585{
 586	struct klp_patch *old_patch;
 587	struct klp_object *old_obj;
 588
 589	klp_for_each_patch(old_patch) {
 590		klp_for_each_object(old_patch, old_obj) {
 591			int err;
 592
 593			err = klp_add_object_nops(patch, old_obj);
 594			if (err)
 595				return err;
 596		}
 597	}
 598
 599	return 0;
 600}
 601
 602static void klp_kobj_release_patch(struct kobject *kobj)
 603{
 604	struct klp_patch *patch;
 605
 606	patch = container_of(kobj, struct klp_patch, kobj);
 607	complete(&patch->finish);
 608}
 609
 610static const struct kobj_type klp_ktype_patch = {
 611	.release = klp_kobj_release_patch,
 612	.sysfs_ops = &kobj_sysfs_ops,
 613	.default_groups = klp_patch_groups,
 614};
 615
 616static void klp_kobj_release_object(struct kobject *kobj)
 617{
 618	struct klp_object *obj;
 619
 620	obj = container_of(kobj, struct klp_object, kobj);
 621
 622	if (obj->dynamic)
 623		klp_free_object_dynamic(obj);
 624}
 625
 626static const struct kobj_type klp_ktype_object = {
 627	.release = klp_kobj_release_object,
 628	.sysfs_ops = &kobj_sysfs_ops,
 629	.default_groups = klp_object_groups,
 630};
 631
 632static void klp_kobj_release_func(struct kobject *kobj)
 633{
 634	struct klp_func *func;
 635
 636	func = container_of(kobj, struct klp_func, kobj);
 637
 638	if (func->nop)
 639		klp_free_func_nop(func);
 640}
 641
 642static const struct kobj_type klp_ktype_func = {
 643	.release = klp_kobj_release_func,
 644	.sysfs_ops = &kobj_sysfs_ops,
 645};
 646
 647static void __klp_free_funcs(struct klp_object *obj, bool nops_only)
 648{
 649	struct klp_func *func, *tmp_func;
 650
 651	klp_for_each_func_safe(obj, func, tmp_func) {
 652		if (nops_only && !func->nop)
 653			continue;
 654
 655		list_del(&func->node);
 656		kobject_put(&func->kobj);
 657	}
 658}
 659
 660/* Clean up when a patched object is unloaded */
 661static void klp_free_object_loaded(struct klp_object *obj)
 662{
 663	struct klp_func *func;
 664
 665	obj->mod = NULL;
 666
 667	klp_for_each_func(obj, func) {
 668		func->old_func = NULL;
 669
 670		if (func->nop)
 671			func->new_func = NULL;
 672	}
 673}
 674
 675static void __klp_free_objects(struct klp_patch *patch, bool nops_only)
 676{
 677	struct klp_object *obj, *tmp_obj;
 678
 679	klp_for_each_object_safe(patch, obj, tmp_obj) {
 680		__klp_free_funcs(obj, nops_only);
 681
 682		if (nops_only && !obj->dynamic)
 683			continue;
 684
 685		list_del(&obj->node);
 686		kobject_put(&obj->kobj);
 687	}
 688}
 689
 690static void klp_free_objects(struct klp_patch *patch)
 691{
 692	__klp_free_objects(patch, false);
 693}
 694
 695static void klp_free_objects_dynamic(struct klp_patch *patch)
 696{
 697	__klp_free_objects(patch, true);
 698}
 699
 700/*
 701 * This function implements the free operations that can be called safely
 702 * under klp_mutex.
 703 *
 704 * The operation must be completed by calling klp_free_patch_finish()
 705 * outside klp_mutex.
 706 */
 707static void klp_free_patch_start(struct klp_patch *patch)
 708{
 709	if (!list_empty(&patch->list))
 710		list_del(&patch->list);
 711
 712	klp_free_objects(patch);
 713}
 714
 715/*
 716 * This function implements the free part that must be called outside
 717 * klp_mutex.
 718 *
 719 * It must be called after klp_free_patch_start(). And it has to be
 720 * the last function accessing the livepatch structures when the patch
 721 * gets disabled.
 722 */
 723static void klp_free_patch_finish(struct klp_patch *patch)
 724{
 725	/*
 726	 * Avoid deadlock with enabled_store() sysfs callback by
 727	 * calling this outside klp_mutex. It is safe because
 728	 * this is called when the patch gets disabled and it
 729	 * cannot get enabled again.
 730	 */
 731	kobject_put(&patch->kobj);
 732	wait_for_completion(&patch->finish);
 733
 734	/* Put the module after the last access to struct klp_patch. */
 735	if (!patch->forced)
 736		module_put(patch->mod);
 737}
 738
 739/*
 740 * The livepatch might be freed from sysfs interface created by the patch.
 741 * This work allows to wait until the interface is destroyed in a separate
 742 * context.
 743 */
 744static void klp_free_patch_work_fn(struct work_struct *work)
 745{
 746	struct klp_patch *patch =
 747		container_of(work, struct klp_patch, free_work);
 748
 749	klp_free_patch_finish(patch);
 750}
 751
 752void klp_free_patch_async(struct klp_patch *patch)
 753{
 754	klp_free_patch_start(patch);
 755	schedule_work(&patch->free_work);
 756}
 757
 758void klp_free_replaced_patches_async(struct klp_patch *new_patch)
 759{
 760	struct klp_patch *old_patch, *tmp_patch;
 761
 762	klp_for_each_patch_safe(old_patch, tmp_patch) {
 763		if (old_patch == new_patch)
 764			return;
 765		klp_free_patch_async(old_patch);
 766	}
 767}
 768
 769static int klp_init_func(struct klp_object *obj, struct klp_func *func)
 770{
 771	if (!func->old_name)
 772		return -EINVAL;
 773
 774	/*
 775	 * NOPs get the address later. The patched module must be loaded,
 776	 * see klp_init_object_loaded().
 777	 */
 778	if (!func->new_func && !func->nop)
 779		return -EINVAL;
 780
 781	if (strlen(func->old_name) >= KSYM_NAME_LEN)
 782		return -EINVAL;
 783
 784	INIT_LIST_HEAD(&func->stack_node);
 785	func->patched = false;
 786	func->transition = false;
 787
 788	/* The format for the sysfs directory is <function,sympos> where sympos
 789	 * is the nth occurrence of this symbol in kallsyms for the patched
 790	 * object. If the user selects 0 for old_sympos, then 1 will be used
 791	 * since a unique symbol will be the first occurrence.
 792	 */
 793	return kobject_add(&func->kobj, &obj->kobj, "%s,%lu",
 794			   func->old_name,
 795			   func->old_sympos ? func->old_sympos : 1);
 796}
 797
 798static int klp_write_object_relocs(struct klp_patch *patch,
 799				   struct klp_object *obj,
 800				   bool apply)
 801{
 802	int i, ret;
 803	struct klp_modinfo *info = patch->mod->klp_info;
 804
 805	for (i = 1; i < info->hdr.e_shnum; i++) {
 806		Elf_Shdr *sec = info->sechdrs + i;
 807
 808		if (!(sec->sh_flags & SHF_RELA_LIVEPATCH))
 809			continue;
 810
 811		ret = klp_write_section_relocs(patch->mod, info->sechdrs,
 812					       info->secstrings,
 813					       patch->mod->core_kallsyms.strtab,
 814					       info->symndx, i, obj->name, apply);
 815		if (ret)
 816			return ret;
 817	}
 818
 819	return 0;
 820}
 821
 822static int klp_apply_object_relocs(struct klp_patch *patch,
 823				   struct klp_object *obj)
 824{
 825	return klp_write_object_relocs(patch, obj, true);
 826}
 827
 828static void klp_clear_object_relocs(struct klp_patch *patch,
 829				    struct klp_object *obj)
 830{
 831	klp_write_object_relocs(patch, obj, false);
 832}
 833
 834/* parts of the initialization that is done only when the object is loaded */
 835static int klp_init_object_loaded(struct klp_patch *patch,
 836				  struct klp_object *obj)
 837{
 838	struct klp_func *func;
 839	int ret;
 840
 841	if (klp_is_module(obj)) {
 842		/*
 843		 * Only write module-specific relocations here
 844		 * (.klp.rela.{module}.*).  vmlinux-specific relocations were
 845		 * written earlier during the initialization of the klp module
 846		 * itself.
 847		 */
 848		ret = klp_apply_object_relocs(patch, obj);
 849		if (ret)
 850			return ret;
 851	}
 852
 853	klp_for_each_func(obj, func) {
 854		ret = klp_find_object_symbol(obj->name, func->old_name,
 855					     func->old_sympos,
 856					     (unsigned long *)&func->old_func);
 857		if (ret)
 858			return ret;
 859
 860		ret = kallsyms_lookup_size_offset((unsigned long)func->old_func,
 861						  &func->old_size, NULL);
 862		if (!ret) {
 863			pr_err("kallsyms size lookup failed for '%s'\n",
 864			       func->old_name);
 865			return -ENOENT;
 866		}
 867
 868		if (func->nop)
 869			func->new_func = func->old_func;
 870
 871		ret = kallsyms_lookup_size_offset((unsigned long)func->new_func,
 872						  &func->new_size, NULL);
 873		if (!ret) {
 874			pr_err("kallsyms size lookup failed for '%s' replacement\n",
 875			       func->old_name);
 876			return -ENOENT;
 877		}
 878	}
 879
 880	return 0;
 881}
 882
 883static int klp_init_object(struct klp_patch *patch, struct klp_object *obj)
 884{
 885	struct klp_func *func;
 886	int ret;
 887	const char *name;
 888
 889	if (klp_is_module(obj) && strlen(obj->name) >= MODULE_NAME_LEN)
 890		return -EINVAL;
 891
 892	obj->patched = false;
 893	obj->mod = NULL;
 894
 895	klp_find_object_module(obj);
 896
 897	name = klp_is_module(obj) ? obj->name : "vmlinux";
 898	ret = kobject_add(&obj->kobj, &patch->kobj, "%s", name);
 899	if (ret)
 900		return ret;
 901
 902	klp_for_each_func(obj, func) {
 903		ret = klp_init_func(obj, func);
 904		if (ret)
 905			return ret;
 906	}
 907
 908	if (klp_is_object_loaded(obj))
 909		ret = klp_init_object_loaded(patch, obj);
 910
 911	return ret;
 912}
 913
 914static void klp_init_func_early(struct klp_object *obj,
 915				struct klp_func *func)
 916{
 917	kobject_init(&func->kobj, &klp_ktype_func);
 918	list_add_tail(&func->node, &obj->func_list);
 919}
 920
 921static void klp_init_object_early(struct klp_patch *patch,
 922				  struct klp_object *obj)
 923{
 924	INIT_LIST_HEAD(&obj->func_list);
 925	kobject_init(&obj->kobj, &klp_ktype_object);
 926	list_add_tail(&obj->node, &patch->obj_list);
 927}
 928
 929static void klp_init_patch_early(struct klp_patch *patch)
 930{
 931	struct klp_object *obj;
 932	struct klp_func *func;
 933
 
 
 
 934	INIT_LIST_HEAD(&patch->list);
 935	INIT_LIST_HEAD(&patch->obj_list);
 936	kobject_init(&patch->kobj, &klp_ktype_patch);
 937	patch->enabled = false;
 938	patch->forced = false;
 939	INIT_WORK(&patch->free_work, klp_free_patch_work_fn);
 940	init_completion(&patch->finish);
 941
 942	klp_for_each_object_static(patch, obj) {
 
 
 
 943		klp_init_object_early(patch, obj);
 944
 945		klp_for_each_func_static(obj, func) {
 946			klp_init_func_early(obj, func);
 947		}
 948	}
 
 
 
 
 
 949}
 950
 951static int klp_init_patch(struct klp_patch *patch)
 952{
 953	struct klp_object *obj;
 954	int ret;
 955
 956	ret = kobject_add(&patch->kobj, klp_root_kobj, "%s", patch->mod->name);
 957	if (ret)
 958		return ret;
 959
 960	if (patch->replace) {
 961		ret = klp_add_nops(patch);
 962		if (ret)
 963			return ret;
 964	}
 965
 966	klp_for_each_object(patch, obj) {
 967		ret = klp_init_object(patch, obj);
 968		if (ret)
 969			return ret;
 970	}
 971
 972	list_add_tail(&patch->list, &klp_patches);
 973
 974	return 0;
 975}
 976
 977static int __klp_disable_patch(struct klp_patch *patch)
 978{
 979	struct klp_object *obj;
 980
 981	if (WARN_ON(!patch->enabled))
 982		return -EINVAL;
 983
 984	if (klp_transition_patch)
 985		return -EBUSY;
 986
 987	klp_init_transition(patch, KLP_TRANSITION_UNPATCHED);
 988
 989	klp_for_each_object(patch, obj)
 990		if (obj->patched)
 991			klp_pre_unpatch_callback(obj);
 992
 993	/*
 994	 * Enforce the order of the func->transition writes in
 995	 * klp_init_transition() and the TIF_PATCH_PENDING writes in
 996	 * klp_start_transition().  In the rare case where klp_ftrace_handler()
 997	 * is called shortly after klp_update_patch_state() switches the task,
 998	 * this ensures the handler sees that func->transition is set.
 999	 */
1000	smp_wmb();
1001
1002	klp_start_transition();
1003	patch->enabled = false;
1004	klp_try_complete_transition();
1005
1006	return 0;
1007}
1008
1009static int __klp_enable_patch(struct klp_patch *patch)
1010{
1011	struct klp_object *obj;
1012	int ret;
1013
1014	if (klp_transition_patch)
1015		return -EBUSY;
1016
1017	if (WARN_ON(patch->enabled))
1018		return -EINVAL;
1019
1020	pr_notice("enabling patch '%s'\n", patch->mod->name);
1021
1022	klp_init_transition(patch, KLP_TRANSITION_PATCHED);
1023
1024	/*
1025	 * Enforce the order of the func->transition writes in
1026	 * klp_init_transition() and the ops->func_stack writes in
1027	 * klp_patch_object(), so that klp_ftrace_handler() will see the
1028	 * func->transition updates before the handler is registered and the
1029	 * new funcs become visible to the handler.
1030	 */
1031	smp_wmb();
1032
1033	klp_for_each_object(patch, obj) {
1034		if (!klp_is_object_loaded(obj))
1035			continue;
1036
1037		ret = klp_pre_patch_callback(obj);
1038		if (ret) {
1039			pr_warn("pre-patch callback failed for object '%s'\n",
1040				klp_is_module(obj) ? obj->name : "vmlinux");
1041			goto err;
1042		}
1043
1044		ret = klp_patch_object(obj);
1045		if (ret) {
1046			pr_warn("failed to patch object '%s'\n",
1047				klp_is_module(obj) ? obj->name : "vmlinux");
1048			goto err;
1049		}
1050	}
1051
1052	klp_start_transition();
1053	patch->enabled = true;
1054	klp_try_complete_transition();
1055
1056	return 0;
1057err:
1058	pr_warn("failed to enable patch '%s'\n", patch->mod->name);
1059
1060	klp_cancel_transition();
1061	return ret;
1062}
1063
1064/**
1065 * klp_enable_patch() - enable the livepatch
1066 * @patch:	patch to be enabled
1067 *
1068 * Initializes the data structure associated with the patch, creates the sysfs
1069 * interface, performs the needed symbol lookups and code relocations,
1070 * registers the patched functions with ftrace.
1071 *
1072 * This function is supposed to be called from the livepatch module_init()
1073 * callback.
1074 *
1075 * Return: 0 on success, otherwise error
1076 */
1077int klp_enable_patch(struct klp_patch *patch)
1078{
1079	int ret;
1080	struct klp_object *obj;
1081
1082	if (!patch || !patch->mod || !patch->objs)
1083		return -EINVAL;
1084
1085	klp_for_each_object_static(patch, obj) {
1086		if (!obj->funcs)
1087			return -EINVAL;
1088	}
1089
1090
1091	if (!is_livepatch_module(patch->mod)) {
1092		pr_err("module %s is not marked as a livepatch module\n",
1093		       patch->mod->name);
1094		return -EINVAL;
1095	}
1096
1097	if (!klp_initialized())
1098		return -ENODEV;
1099
1100	if (!klp_have_reliable_stack()) {
1101		pr_warn("This architecture doesn't have support for the livepatch consistency model.\n");
1102		pr_warn("The livepatch transition may never complete.\n");
1103	}
1104
1105	mutex_lock(&klp_mutex);
1106
1107	if (!klp_is_patch_compatible(patch)) {
1108		pr_err("Livepatch patch (%s) is not compatible with the already installed livepatches.\n",
1109			patch->mod->name);
1110		mutex_unlock(&klp_mutex);
1111		return -EINVAL;
1112	}
1113
1114	if (!try_module_get(patch->mod)) {
 
1115		mutex_unlock(&klp_mutex);
1116		return -ENODEV;
1117	}
1118
1119	klp_init_patch_early(patch);
1120
1121	ret = klp_init_patch(patch);
1122	if (ret)
1123		goto err;
1124
1125	ret = __klp_enable_patch(patch);
1126	if (ret)
1127		goto err;
1128
1129	mutex_unlock(&klp_mutex);
1130
1131	return 0;
1132
1133err:
1134	klp_free_patch_start(patch);
1135
1136	mutex_unlock(&klp_mutex);
1137
1138	klp_free_patch_finish(patch);
1139
1140	return ret;
1141}
1142EXPORT_SYMBOL_GPL(klp_enable_patch);
1143
1144/*
1145 * This function unpatches objects from the replaced livepatches.
1146 *
1147 * We could be pretty aggressive here. It is called in the situation where
1148 * these structures are no longer accessed from the ftrace handler.
1149 * All functions are redirected by the klp_transition_patch. They
1150 * use either a new code or they are in the original code because
1151 * of the special nop function patches.
1152 *
1153 * The only exception is when the transition was forced. In this case,
1154 * klp_ftrace_handler() might still see the replaced patch on the stack.
1155 * Fortunately, it is carefully designed to work with removed functions
1156 * thanks to RCU. We only have to keep the patches on the system. Also
1157 * this is handled transparently by patch->module_put.
1158 */
1159void klp_unpatch_replaced_patches(struct klp_patch *new_patch)
1160{
1161	struct klp_patch *old_patch;
1162
1163	klp_for_each_patch(old_patch) {
1164		if (old_patch == new_patch)
1165			return;
1166
1167		old_patch->enabled = false;
1168		klp_unpatch_objects(old_patch);
1169	}
1170}
1171
1172/*
1173 * This function removes the dynamically allocated 'nop' functions.
1174 *
1175 * We could be pretty aggressive. NOPs do not change the existing
1176 * behavior except for adding unnecessary delay by the ftrace handler.
1177 *
1178 * It is safe even when the transition was forced. The ftrace handler
1179 * will see a valid ops->func_stack entry thanks to RCU.
1180 *
1181 * We could even free the NOPs structures. They must be the last entry
1182 * in ops->func_stack. Therefore unregister_ftrace_function() is called.
1183 * It does the same as klp_synchronize_transition() to make sure that
1184 * nobody is inside the ftrace handler once the operation finishes.
1185 *
1186 * IMPORTANT: It must be called right after removing the replaced patches!
1187 */
1188void klp_discard_nops(struct klp_patch *new_patch)
1189{
1190	klp_unpatch_objects_dynamic(klp_transition_patch);
1191	klp_free_objects_dynamic(klp_transition_patch);
1192}
1193
1194/*
1195 * Remove parts of patches that touch a given kernel module. The list of
1196 * patches processed might be limited. When limit is NULL, all patches
1197 * will be handled.
1198 */
1199static void klp_cleanup_module_patches_limited(struct module *mod,
1200					       struct klp_patch *limit)
1201{
1202	struct klp_patch *patch;
1203	struct klp_object *obj;
1204
1205	klp_for_each_patch(patch) {
1206		if (patch == limit)
1207			break;
1208
1209		klp_for_each_object(patch, obj) {
1210			if (!klp_is_module(obj) || strcmp(obj->name, mod->name))
1211				continue;
1212
1213			if (patch != klp_transition_patch)
1214				klp_pre_unpatch_callback(obj);
1215
1216			pr_notice("reverting patch '%s' on unloading module '%s'\n",
1217				  patch->mod->name, obj->mod->name);
1218			klp_unpatch_object(obj);
1219
1220			klp_post_unpatch_callback(obj);
1221			klp_clear_object_relocs(patch, obj);
1222			klp_free_object_loaded(obj);
1223			break;
1224		}
1225	}
1226}
1227
1228int klp_module_coming(struct module *mod)
1229{
1230	int ret;
1231	struct klp_patch *patch;
1232	struct klp_object *obj;
1233
1234	if (WARN_ON(mod->state != MODULE_STATE_COMING))
1235		return -EINVAL;
1236
1237	if (!strcmp(mod->name, "vmlinux")) {
1238		pr_err("vmlinux.ko: invalid module name\n");
1239		return -EINVAL;
1240	}
1241
1242	mutex_lock(&klp_mutex);
1243	/*
1244	 * Each module has to know that klp_module_coming()
1245	 * has been called. We never know what module will
1246	 * get patched by a new patch.
1247	 */
1248	mod->klp_alive = true;
1249
1250	klp_for_each_patch(patch) {
1251		klp_for_each_object(patch, obj) {
1252			if (!klp_is_module(obj) || strcmp(obj->name, mod->name))
1253				continue;
1254
1255			obj->mod = mod;
1256
1257			ret = klp_init_object_loaded(patch, obj);
1258			if (ret) {
1259				pr_warn("failed to initialize patch '%s' for module '%s' (%d)\n",
1260					patch->mod->name, obj->mod->name, ret);
1261				goto err;
1262			}
1263
1264			pr_notice("applying patch '%s' to loading module '%s'\n",
1265				  patch->mod->name, obj->mod->name);
1266
1267			ret = klp_pre_patch_callback(obj);
1268			if (ret) {
1269				pr_warn("pre-patch callback failed for object '%s'\n",
1270					obj->name);
1271				goto err;
1272			}
1273
1274			ret = klp_patch_object(obj);
1275			if (ret) {
1276				pr_warn("failed to apply patch '%s' to module '%s' (%d)\n",
1277					patch->mod->name, obj->mod->name, ret);
1278
1279				klp_post_unpatch_callback(obj);
1280				goto err;
1281			}
1282
1283			if (patch != klp_transition_patch)
1284				klp_post_patch_callback(obj);
1285
1286			break;
1287		}
1288	}
1289
1290	mutex_unlock(&klp_mutex);
1291
1292	return 0;
1293
1294err:
1295	/*
1296	 * If a patch is unsuccessfully applied, return
1297	 * error to the module loader.
1298	 */
1299	pr_warn("patch '%s' failed for module '%s', refusing to load module '%s'\n",
1300		patch->mod->name, obj->mod->name, obj->mod->name);
1301	mod->klp_alive = false;
1302	obj->mod = NULL;
1303	klp_cleanup_module_patches_limited(mod, patch);
1304	mutex_unlock(&klp_mutex);
1305
1306	return ret;
1307}
1308
1309void klp_module_going(struct module *mod)
1310{
1311	if (WARN_ON(mod->state != MODULE_STATE_GOING &&
1312		    mod->state != MODULE_STATE_COMING))
1313		return;
1314
1315	mutex_lock(&klp_mutex);
1316	/*
1317	 * Each module has to know that klp_module_going()
1318	 * has been called. We never know what module will
1319	 * get patched by a new patch.
1320	 */
1321	mod->klp_alive = false;
1322
1323	klp_cleanup_module_patches_limited(mod, NULL);
1324
1325	mutex_unlock(&klp_mutex);
1326}
1327
1328static int __init klp_init(void)
1329{
1330	klp_root_kobj = kobject_create_and_add("livepatch", kernel_kobj);
1331	if (!klp_root_kobj)
1332		return -ENOMEM;
1333
1334	return 0;
1335}
1336
1337module_init(klp_init);
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * core.c - Kernel Live Patching Core
   4 *
   5 * Copyright (C) 2014 Seth Jennings <sjenning@redhat.com>
   6 * Copyright (C) 2014 SUSE
   7 */
   8
   9#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  10
  11#include <linux/module.h>
  12#include <linux/kernel.h>
  13#include <linux/mutex.h>
  14#include <linux/slab.h>
  15#include <linux/list.h>
  16#include <linux/kallsyms.h>
  17#include <linux/livepatch.h>
  18#include <linux/elf.h>
  19#include <linux/moduleloader.h>
  20#include <linux/completion.h>
  21#include <linux/memory.h>
  22#include <linux/rcupdate.h>
  23#include <asm/cacheflush.h>
  24#include "core.h"
  25#include "patch.h"
  26#include "state.h"
  27#include "transition.h"
  28
  29/*
  30 * klp_mutex is a coarse lock which serializes access to klp data.  All
  31 * accesses to klp-related variables and structures must have mutex protection,
  32 * except within the following functions which carefully avoid the need for it:
  33 *
  34 * - klp_ftrace_handler()
  35 * - klp_update_patch_state()
 
  36 */
  37DEFINE_MUTEX(klp_mutex);
  38
  39/*
  40 * Actively used patches: enabled or in transition. Note that replaced
  41 * or disabled patches are not listed even though the related kernel
  42 * module still can be loaded.
  43 */
  44LIST_HEAD(klp_patches);
  45
  46static struct kobject *klp_root_kobj;
  47
  48static bool klp_is_module(struct klp_object *obj)
  49{
  50	return obj->name;
  51}
  52
  53/* sets obj->mod if object is not vmlinux and module is found */
  54static void klp_find_object_module(struct klp_object *obj)
  55{
  56	struct module *mod;
  57
  58	if (!klp_is_module(obj))
  59		return;
  60
  61	rcu_read_lock_sched();
  62	/*
  63	 * We do not want to block removal of patched modules and therefore
  64	 * we do not take a reference here. The patches are removed by
  65	 * klp_module_going() instead.
  66	 */
  67	mod = find_module(obj->name);
  68	/*
  69	 * Do not mess work of klp_module_coming() and klp_module_going().
  70	 * Note that the patch might still be needed before klp_module_going()
  71	 * is called. Module functions can be called even in the GOING state
  72	 * until mod->exit() finishes. This is especially important for
  73	 * patches that modify semantic of the functions.
  74	 */
  75	if (mod && mod->klp_alive)
  76		obj->mod = mod;
  77
  78	rcu_read_unlock_sched();
  79}
  80
  81static bool klp_initialized(void)
  82{
  83	return !!klp_root_kobj;
  84}
  85
  86static struct klp_func *klp_find_func(struct klp_object *obj,
  87				      struct klp_func *old_func)
  88{
  89	struct klp_func *func;
  90
  91	klp_for_each_func(obj, func) {
  92		if ((strcmp(old_func->old_name, func->old_name) == 0) &&
  93		    (old_func->old_sympos == func->old_sympos)) {
  94			return func;
  95		}
  96	}
  97
  98	return NULL;
  99}
 100
 101static struct klp_object *klp_find_object(struct klp_patch *patch,
 102					  struct klp_object *old_obj)
 103{
 104	struct klp_object *obj;
 105
 106	klp_for_each_object(patch, obj) {
 107		if (klp_is_module(old_obj)) {
 108			if (klp_is_module(obj) &&
 109			    strcmp(old_obj->name, obj->name) == 0) {
 110				return obj;
 111			}
 112		} else if (!klp_is_module(obj)) {
 113			return obj;
 114		}
 115	}
 116
 117	return NULL;
 118}
 119
 120struct klp_find_arg {
 121	const char *objname;
 122	const char *name;
 123	unsigned long addr;
 124	unsigned long count;
 125	unsigned long pos;
 126};
 127
 128static int klp_find_callback(void *data, const char *name,
 129			     struct module *mod, unsigned long addr)
 130{
 131	struct klp_find_arg *args = data;
 132
 133	if ((mod && !args->objname) || (!mod && args->objname))
 134		return 0;
 135
 136	if (strcmp(args->name, name))
 137		return 0;
 138
 139	if (args->objname && strcmp(args->objname, mod->name))
 140		return 0;
 141
 142	args->addr = addr;
 143	args->count++;
 144
 145	/*
 146	 * Finish the search when the symbol is found for the desired position
 147	 * or the position is not defined for a non-unique symbol.
 148	 */
 149	if ((args->pos && (args->count == args->pos)) ||
 150	    (!args->pos && (args->count > 1)))
 151		return 1;
 152
 153	return 0;
 154}
 155
 
 
 
 
 
 
 
 
 
 
 156static int klp_find_object_symbol(const char *objname, const char *name,
 157				  unsigned long sympos, unsigned long *addr)
 158{
 159	struct klp_find_arg args = {
 160		.objname = objname,
 161		.name = name,
 162		.addr = 0,
 163		.count = 0,
 164		.pos = sympos,
 165	};
 166
 167	if (objname)
 168		module_kallsyms_on_each_symbol(klp_find_callback, &args);
 169	else
 170		kallsyms_on_each_symbol(klp_find_callback, &args);
 171
 172	/*
 173	 * Ensure an address was found. If sympos is 0, ensure symbol is unique;
 174	 * otherwise ensure the symbol position count matches sympos.
 175	 */
 176	if (args.addr == 0)
 177		pr_err("symbol '%s' not found in symbol table\n", name);
 178	else if (args.count > 1 && sympos == 0) {
 179		pr_err("unresolvable ambiguity for symbol '%s' in object '%s'\n",
 180		       name, objname);
 181	} else if (sympos != args.count && sympos > 0) {
 182		pr_err("symbol position %lu for symbol '%s' in object '%s' not found\n",
 183		       sympos, name, objname ? objname : "vmlinux");
 184	} else {
 185		*addr = args.addr;
 186		return 0;
 187	}
 188
 189	*addr = 0;
 190	return -EINVAL;
 191}
 192
 193static int klp_resolve_symbols(Elf64_Shdr *sechdrs, const char *strtab,
 194			       unsigned int symndx, Elf_Shdr *relasec,
 195			       const char *sec_objname)
 196{
 197	int i, cnt, ret;
 198	char sym_objname[MODULE_NAME_LEN];
 199	char sym_name[KSYM_NAME_LEN];
 200	Elf_Rela *relas;
 201	Elf_Sym *sym;
 202	unsigned long sympos, addr;
 203	bool sym_vmlinux;
 204	bool sec_vmlinux = !strcmp(sec_objname, "vmlinux");
 205
 206	/*
 207	 * Since the field widths for sym_objname and sym_name in the sscanf()
 208	 * call are hard-coded and correspond to MODULE_NAME_LEN and
 209	 * KSYM_NAME_LEN respectively, we must make sure that MODULE_NAME_LEN
 210	 * and KSYM_NAME_LEN have the values we expect them to have.
 211	 *
 212	 * Because the value of MODULE_NAME_LEN can differ among architectures,
 213	 * we use the smallest/strictest upper bound possible (56, based on
 214	 * the current definition of MODULE_NAME_LEN) to prevent overflows.
 215	 */
 216	BUILD_BUG_ON(MODULE_NAME_LEN < 56 || KSYM_NAME_LEN != 128);
 217
 218	relas = (Elf_Rela *) relasec->sh_addr;
 219	/* For each rela in this klp relocation section */
 220	for (i = 0; i < relasec->sh_size / sizeof(Elf_Rela); i++) {
 221		sym = (Elf64_Sym *)sechdrs[symndx].sh_addr + ELF_R_SYM(relas[i].r_info);
 222		if (sym->st_shndx != SHN_LIVEPATCH) {
 223			pr_err("symbol %s is not marked as a livepatch symbol\n",
 224			       strtab + sym->st_name);
 225			return -EINVAL;
 226		}
 227
 228		/* Format: .klp.sym.sym_objname.sym_name,sympos */
 229		cnt = sscanf(strtab + sym->st_name,
 230			     ".klp.sym.%55[^.].%127[^,],%lu",
 231			     sym_objname, sym_name, &sympos);
 232		if (cnt != 3) {
 233			pr_err("symbol %s has an incorrectly formatted name\n",
 234			       strtab + sym->st_name);
 235			return -EINVAL;
 236		}
 237
 238		sym_vmlinux = !strcmp(sym_objname, "vmlinux");
 239
 240		/*
 241		 * Prevent module-specific KLP rela sections from referencing
 242		 * vmlinux symbols.  This helps prevent ordering issues with
 243		 * module special section initializations.  Presumably such
 244		 * symbols are exported and normal relas can be used instead.
 245		 */
 246		if (!sec_vmlinux && sym_vmlinux) {
 247			pr_err("invalid access to vmlinux symbol '%s' from module-specific livepatch relocation section",
 248			       sym_name);
 249			return -EINVAL;
 250		}
 251
 252		/* klp_find_object_symbol() treats a NULL objname as vmlinux */
 253		ret = klp_find_object_symbol(sym_vmlinux ? NULL : sym_objname,
 254					     sym_name, sympos, &addr);
 255		if (ret)
 256			return ret;
 257
 258		sym->st_value = addr;
 259	}
 260
 261	return 0;
 262}
 263
 
 
 
 
 
 
 
 
 264/*
 265 * At a high-level, there are two types of klp relocation sections: those which
 266 * reference symbols which live in vmlinux; and those which reference symbols
 267 * which live in other modules.  This function is called for both types:
 268 *
 269 * 1) When a klp module itself loads, the module code calls this function to
 270 *    write vmlinux-specific klp relocations (.klp.rela.vmlinux.* sections).
 271 *    These relocations are written to the klp module text to allow the patched
 272 *    code/data to reference unexported vmlinux symbols.  They're written as
 273 *    early as possible to ensure that other module init code (.e.g.,
 274 *    jump_label_apply_nops) can access any unexported vmlinux symbols which
 275 *    might be referenced by the klp module's special sections.
 276 *
 277 * 2) When a to-be-patched module loads -- or is already loaded when a
 278 *    corresponding klp module loads -- klp code calls this function to write
 279 *    module-specific klp relocations (.klp.rela.{module}.* sections).  These
 280 *    are written to the klp module text to allow the patched code/data to
 281 *    reference symbols which live in the to-be-patched module or one of its
 282 *    module dependencies.  Exported symbols are supported, in addition to
 283 *    unexported symbols, in order to enable late module patching, which allows
 284 *    the to-be-patched module to be loaded and patched sometime *after* the
 285 *    klp module is loaded.
 286 */
 287int klp_apply_section_relocs(struct module *pmod, Elf_Shdr *sechdrs,
 288			     const char *shstrtab, const char *strtab,
 289			     unsigned int symndx, unsigned int secndx,
 290			     const char *objname)
 291{
 292	int cnt, ret;
 293	char sec_objname[MODULE_NAME_LEN];
 294	Elf_Shdr *sec = sechdrs + secndx;
 295
 296	/*
 297	 * Format: .klp.rela.sec_objname.section_name
 298	 * See comment in klp_resolve_symbols() for an explanation
 299	 * of the selected field width value.
 300	 */
 301	cnt = sscanf(shstrtab + sec->sh_name, ".klp.rela.%55[^.]",
 302		     sec_objname);
 303	if (cnt != 1) {
 304		pr_err("section %s has an incorrectly formatted name\n",
 305		       shstrtab + sec->sh_name);
 306		return -EINVAL;
 307	}
 308
 309	if (strcmp(objname ? objname : "vmlinux", sec_objname))
 310		return 0;
 311
 312	ret = klp_resolve_symbols(sechdrs, strtab, symndx, sec, sec_objname);
 313	if (ret)
 314		return ret;
 
 
 
 
 
 
 
 
 
 315
 316	return apply_relocate_add(sechdrs, strtab, symndx, secndx, pmod);
 
 
 
 
 
 
 317}
 318
 319/*
 320 * Sysfs Interface
 321 *
 322 * /sys/kernel/livepatch
 323 * /sys/kernel/livepatch/<patch>
 324 * /sys/kernel/livepatch/<patch>/enabled
 325 * /sys/kernel/livepatch/<patch>/transition
 326 * /sys/kernel/livepatch/<patch>/force
 
 327 * /sys/kernel/livepatch/<patch>/<object>
 
 328 * /sys/kernel/livepatch/<patch>/<object>/<function,sympos>
 329 */
 330static int __klp_disable_patch(struct klp_patch *patch);
 331
 332static ssize_t enabled_store(struct kobject *kobj, struct kobj_attribute *attr,
 333			     const char *buf, size_t count)
 334{
 335	struct klp_patch *patch;
 336	int ret;
 337	bool enabled;
 338
 339	ret = kstrtobool(buf, &enabled);
 340	if (ret)
 341		return ret;
 342
 343	patch = container_of(kobj, struct klp_patch, kobj);
 344
 345	mutex_lock(&klp_mutex);
 346
 347	if (patch->enabled == enabled) {
 348		/* already in requested state */
 349		ret = -EINVAL;
 350		goto out;
 351	}
 352
 353	/*
 354	 * Allow to reverse a pending transition in both ways. It might be
 355	 * necessary to complete the transition without forcing and breaking
 356	 * the system integrity.
 357	 *
 358	 * Do not allow to re-enable a disabled patch.
 359	 */
 360	if (patch == klp_transition_patch)
 361		klp_reverse_transition();
 362	else if (!enabled)
 363		ret = __klp_disable_patch(patch);
 364	else
 365		ret = -EINVAL;
 366
 367out:
 368	mutex_unlock(&klp_mutex);
 369
 370	if (ret)
 371		return ret;
 372	return count;
 373}
 374
 375static ssize_t enabled_show(struct kobject *kobj,
 376			    struct kobj_attribute *attr, char *buf)
 377{
 378	struct klp_patch *patch;
 379
 380	patch = container_of(kobj, struct klp_patch, kobj);
 381	return snprintf(buf, PAGE_SIZE-1, "%d\n", patch->enabled);
 382}
 383
 384static ssize_t transition_show(struct kobject *kobj,
 385			       struct kobj_attribute *attr, char *buf)
 386{
 387	struct klp_patch *patch;
 388
 389	patch = container_of(kobj, struct klp_patch, kobj);
 390	return snprintf(buf, PAGE_SIZE-1, "%d\n",
 391			patch == klp_transition_patch);
 392}
 393
 394static ssize_t force_store(struct kobject *kobj, struct kobj_attribute *attr,
 395			   const char *buf, size_t count)
 396{
 397	struct klp_patch *patch;
 398	int ret;
 399	bool val;
 400
 401	ret = kstrtobool(buf, &val);
 402	if (ret)
 403		return ret;
 404
 405	if (!val)
 406		return count;
 407
 408	mutex_lock(&klp_mutex);
 409
 410	patch = container_of(kobj, struct klp_patch, kobj);
 411	if (patch != klp_transition_patch) {
 412		mutex_unlock(&klp_mutex);
 413		return -EINVAL;
 414	}
 415
 416	klp_force_transition();
 417
 418	mutex_unlock(&klp_mutex);
 419
 420	return count;
 421}
 422
 
 
 
 
 
 
 
 
 
 423static struct kobj_attribute enabled_kobj_attr = __ATTR_RW(enabled);
 424static struct kobj_attribute transition_kobj_attr = __ATTR_RO(transition);
 425static struct kobj_attribute force_kobj_attr = __ATTR_WO(force);
 
 426static struct attribute *klp_patch_attrs[] = {
 427	&enabled_kobj_attr.attr,
 428	&transition_kobj_attr.attr,
 429	&force_kobj_attr.attr,
 
 430	NULL
 431};
 432ATTRIBUTE_GROUPS(klp_patch);
 433
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 434static void klp_free_object_dynamic(struct klp_object *obj)
 435{
 436	kfree(obj->name);
 437	kfree(obj);
 438}
 439
 440static void klp_init_func_early(struct klp_object *obj,
 441				struct klp_func *func);
 442static void klp_init_object_early(struct klp_patch *patch,
 443				  struct klp_object *obj);
 444
 445static struct klp_object *klp_alloc_object_dynamic(const char *name,
 446						   struct klp_patch *patch)
 447{
 448	struct klp_object *obj;
 449
 450	obj = kzalloc(sizeof(*obj), GFP_KERNEL);
 451	if (!obj)
 452		return NULL;
 453
 454	if (name) {
 455		obj->name = kstrdup(name, GFP_KERNEL);
 456		if (!obj->name) {
 457			kfree(obj);
 458			return NULL;
 459		}
 460	}
 461
 462	klp_init_object_early(patch, obj);
 463	obj->dynamic = true;
 464
 465	return obj;
 466}
 467
 468static void klp_free_func_nop(struct klp_func *func)
 469{
 470	kfree(func->old_name);
 471	kfree(func);
 472}
 473
 474static struct klp_func *klp_alloc_func_nop(struct klp_func *old_func,
 475					   struct klp_object *obj)
 476{
 477	struct klp_func *func;
 478
 479	func = kzalloc(sizeof(*func), GFP_KERNEL);
 480	if (!func)
 481		return NULL;
 482
 483	if (old_func->old_name) {
 484		func->old_name = kstrdup(old_func->old_name, GFP_KERNEL);
 485		if (!func->old_name) {
 486			kfree(func);
 487			return NULL;
 488		}
 489	}
 490
 491	klp_init_func_early(obj, func);
 492	/*
 493	 * func->new_func is same as func->old_func. These addresses are
 494	 * set when the object is loaded, see klp_init_object_loaded().
 495	 */
 496	func->old_sympos = old_func->old_sympos;
 497	func->nop = true;
 498
 499	return func;
 500}
 501
 502static int klp_add_object_nops(struct klp_patch *patch,
 503			       struct klp_object *old_obj)
 504{
 505	struct klp_object *obj;
 506	struct klp_func *func, *old_func;
 507
 508	obj = klp_find_object(patch, old_obj);
 509
 510	if (!obj) {
 511		obj = klp_alloc_object_dynamic(old_obj->name, patch);
 512		if (!obj)
 513			return -ENOMEM;
 514	}
 515
 516	klp_for_each_func(old_obj, old_func) {
 517		func = klp_find_func(obj, old_func);
 518		if (func)
 519			continue;
 520
 521		func = klp_alloc_func_nop(old_func, obj);
 522		if (!func)
 523			return -ENOMEM;
 524	}
 525
 526	return 0;
 527}
 528
 529/*
 530 * Add 'nop' functions which simply return to the caller to run
 531 * the original function. The 'nop' functions are added to a
 532 * patch to facilitate a 'replace' mode.
 533 */
 534static int klp_add_nops(struct klp_patch *patch)
 535{
 536	struct klp_patch *old_patch;
 537	struct klp_object *old_obj;
 538
 539	klp_for_each_patch(old_patch) {
 540		klp_for_each_object(old_patch, old_obj) {
 541			int err;
 542
 543			err = klp_add_object_nops(patch, old_obj);
 544			if (err)
 545				return err;
 546		}
 547	}
 548
 549	return 0;
 550}
 551
 552static void klp_kobj_release_patch(struct kobject *kobj)
 553{
 554	struct klp_patch *patch;
 555
 556	patch = container_of(kobj, struct klp_patch, kobj);
 557	complete(&patch->finish);
 558}
 559
 560static struct kobj_type klp_ktype_patch = {
 561	.release = klp_kobj_release_patch,
 562	.sysfs_ops = &kobj_sysfs_ops,
 563	.default_groups = klp_patch_groups,
 564};
 565
 566static void klp_kobj_release_object(struct kobject *kobj)
 567{
 568	struct klp_object *obj;
 569
 570	obj = container_of(kobj, struct klp_object, kobj);
 571
 572	if (obj->dynamic)
 573		klp_free_object_dynamic(obj);
 574}
 575
 576static struct kobj_type klp_ktype_object = {
 577	.release = klp_kobj_release_object,
 578	.sysfs_ops = &kobj_sysfs_ops,
 
 579};
 580
 581static void klp_kobj_release_func(struct kobject *kobj)
 582{
 583	struct klp_func *func;
 584
 585	func = container_of(kobj, struct klp_func, kobj);
 586
 587	if (func->nop)
 588		klp_free_func_nop(func);
 589}
 590
 591static struct kobj_type klp_ktype_func = {
 592	.release = klp_kobj_release_func,
 593	.sysfs_ops = &kobj_sysfs_ops,
 594};
 595
 596static void __klp_free_funcs(struct klp_object *obj, bool nops_only)
 597{
 598	struct klp_func *func, *tmp_func;
 599
 600	klp_for_each_func_safe(obj, func, tmp_func) {
 601		if (nops_only && !func->nop)
 602			continue;
 603
 604		list_del(&func->node);
 605		kobject_put(&func->kobj);
 606	}
 607}
 608
 609/* Clean up when a patched object is unloaded */
 610static void klp_free_object_loaded(struct klp_object *obj)
 611{
 612	struct klp_func *func;
 613
 614	obj->mod = NULL;
 615
 616	klp_for_each_func(obj, func) {
 617		func->old_func = NULL;
 618
 619		if (func->nop)
 620			func->new_func = NULL;
 621	}
 622}
 623
 624static void __klp_free_objects(struct klp_patch *patch, bool nops_only)
 625{
 626	struct klp_object *obj, *tmp_obj;
 627
 628	klp_for_each_object_safe(patch, obj, tmp_obj) {
 629		__klp_free_funcs(obj, nops_only);
 630
 631		if (nops_only && !obj->dynamic)
 632			continue;
 633
 634		list_del(&obj->node);
 635		kobject_put(&obj->kobj);
 636	}
 637}
 638
 639static void klp_free_objects(struct klp_patch *patch)
 640{
 641	__klp_free_objects(patch, false);
 642}
 643
 644static void klp_free_objects_dynamic(struct klp_patch *patch)
 645{
 646	__klp_free_objects(patch, true);
 647}
 648
 649/*
 650 * This function implements the free operations that can be called safely
 651 * under klp_mutex.
 652 *
 653 * The operation must be completed by calling klp_free_patch_finish()
 654 * outside klp_mutex.
 655 */
 656static void klp_free_patch_start(struct klp_patch *patch)
 657{
 658	if (!list_empty(&patch->list))
 659		list_del(&patch->list);
 660
 661	klp_free_objects(patch);
 662}
 663
 664/*
 665 * This function implements the free part that must be called outside
 666 * klp_mutex.
 667 *
 668 * It must be called after klp_free_patch_start(). And it has to be
 669 * the last function accessing the livepatch structures when the patch
 670 * gets disabled.
 671 */
 672static void klp_free_patch_finish(struct klp_patch *patch)
 673{
 674	/*
 675	 * Avoid deadlock with enabled_store() sysfs callback by
 676	 * calling this outside klp_mutex. It is safe because
 677	 * this is called when the patch gets disabled and it
 678	 * cannot get enabled again.
 679	 */
 680	kobject_put(&patch->kobj);
 681	wait_for_completion(&patch->finish);
 682
 683	/* Put the module after the last access to struct klp_patch. */
 684	if (!patch->forced)
 685		module_put(patch->mod);
 686}
 687
 688/*
 689 * The livepatch might be freed from sysfs interface created by the patch.
 690 * This work allows to wait until the interface is destroyed in a separate
 691 * context.
 692 */
 693static void klp_free_patch_work_fn(struct work_struct *work)
 694{
 695	struct klp_patch *patch =
 696		container_of(work, struct klp_patch, free_work);
 697
 698	klp_free_patch_finish(patch);
 699}
 700
 701void klp_free_patch_async(struct klp_patch *patch)
 702{
 703	klp_free_patch_start(patch);
 704	schedule_work(&patch->free_work);
 705}
 706
 707void klp_free_replaced_patches_async(struct klp_patch *new_patch)
 708{
 709	struct klp_patch *old_patch, *tmp_patch;
 710
 711	klp_for_each_patch_safe(old_patch, tmp_patch) {
 712		if (old_patch == new_patch)
 713			return;
 714		klp_free_patch_async(old_patch);
 715	}
 716}
 717
 718static int klp_init_func(struct klp_object *obj, struct klp_func *func)
 719{
 720	if (!func->old_name)
 721		return -EINVAL;
 722
 723	/*
 724	 * NOPs get the address later. The patched module must be loaded,
 725	 * see klp_init_object_loaded().
 726	 */
 727	if (!func->new_func && !func->nop)
 728		return -EINVAL;
 729
 730	if (strlen(func->old_name) >= KSYM_NAME_LEN)
 731		return -EINVAL;
 732
 733	INIT_LIST_HEAD(&func->stack_node);
 734	func->patched = false;
 735	func->transition = false;
 736
 737	/* The format for the sysfs directory is <function,sympos> where sympos
 738	 * is the nth occurrence of this symbol in kallsyms for the patched
 739	 * object. If the user selects 0 for old_sympos, then 1 will be used
 740	 * since a unique symbol will be the first occurrence.
 741	 */
 742	return kobject_add(&func->kobj, &obj->kobj, "%s,%lu",
 743			   func->old_name,
 744			   func->old_sympos ? func->old_sympos : 1);
 745}
 746
 747static int klp_apply_object_relocs(struct klp_patch *patch,
 748				   struct klp_object *obj)
 
 749{
 750	int i, ret;
 751	struct klp_modinfo *info = patch->mod->klp_info;
 752
 753	for (i = 1; i < info->hdr.e_shnum; i++) {
 754		Elf_Shdr *sec = info->sechdrs + i;
 755
 756		if (!(sec->sh_flags & SHF_RELA_LIVEPATCH))
 757			continue;
 758
 759		ret = klp_apply_section_relocs(patch->mod, info->sechdrs,
 760					       info->secstrings,
 761					       patch->mod->core_kallsyms.strtab,
 762					       info->symndx, i, obj->name);
 763		if (ret)
 764			return ret;
 765	}
 766
 767	return 0;
 768}
 769
 
 
 
 
 
 
 
 
 
 
 
 
 770/* parts of the initialization that is done only when the object is loaded */
 771static int klp_init_object_loaded(struct klp_patch *patch,
 772				  struct klp_object *obj)
 773{
 774	struct klp_func *func;
 775	int ret;
 776
 777	if (klp_is_module(obj)) {
 778		/*
 779		 * Only write module-specific relocations here
 780		 * (.klp.rela.{module}.*).  vmlinux-specific relocations were
 781		 * written earlier during the initialization of the klp module
 782		 * itself.
 783		 */
 784		ret = klp_apply_object_relocs(patch, obj);
 785		if (ret)
 786			return ret;
 787	}
 788
 789	klp_for_each_func(obj, func) {
 790		ret = klp_find_object_symbol(obj->name, func->old_name,
 791					     func->old_sympos,
 792					     (unsigned long *)&func->old_func);
 793		if (ret)
 794			return ret;
 795
 796		ret = kallsyms_lookup_size_offset((unsigned long)func->old_func,
 797						  &func->old_size, NULL);
 798		if (!ret) {
 799			pr_err("kallsyms size lookup failed for '%s'\n",
 800			       func->old_name);
 801			return -ENOENT;
 802		}
 803
 804		if (func->nop)
 805			func->new_func = func->old_func;
 806
 807		ret = kallsyms_lookup_size_offset((unsigned long)func->new_func,
 808						  &func->new_size, NULL);
 809		if (!ret) {
 810			pr_err("kallsyms size lookup failed for '%s' replacement\n",
 811			       func->old_name);
 812			return -ENOENT;
 813		}
 814	}
 815
 816	return 0;
 817}
 818
 819static int klp_init_object(struct klp_patch *patch, struct klp_object *obj)
 820{
 821	struct klp_func *func;
 822	int ret;
 823	const char *name;
 824
 825	if (klp_is_module(obj) && strlen(obj->name) >= MODULE_NAME_LEN)
 826		return -EINVAL;
 827
 828	obj->patched = false;
 829	obj->mod = NULL;
 830
 831	klp_find_object_module(obj);
 832
 833	name = klp_is_module(obj) ? obj->name : "vmlinux";
 834	ret = kobject_add(&obj->kobj, &patch->kobj, "%s", name);
 835	if (ret)
 836		return ret;
 837
 838	klp_for_each_func(obj, func) {
 839		ret = klp_init_func(obj, func);
 840		if (ret)
 841			return ret;
 842	}
 843
 844	if (klp_is_object_loaded(obj))
 845		ret = klp_init_object_loaded(patch, obj);
 846
 847	return ret;
 848}
 849
 850static void klp_init_func_early(struct klp_object *obj,
 851				struct klp_func *func)
 852{
 853	kobject_init(&func->kobj, &klp_ktype_func);
 854	list_add_tail(&func->node, &obj->func_list);
 855}
 856
 857static void klp_init_object_early(struct klp_patch *patch,
 858				  struct klp_object *obj)
 859{
 860	INIT_LIST_HEAD(&obj->func_list);
 861	kobject_init(&obj->kobj, &klp_ktype_object);
 862	list_add_tail(&obj->node, &patch->obj_list);
 863}
 864
 865static int klp_init_patch_early(struct klp_patch *patch)
 866{
 867	struct klp_object *obj;
 868	struct klp_func *func;
 869
 870	if (!patch->objs)
 871		return -EINVAL;
 872
 873	INIT_LIST_HEAD(&patch->list);
 874	INIT_LIST_HEAD(&patch->obj_list);
 875	kobject_init(&patch->kobj, &klp_ktype_patch);
 876	patch->enabled = false;
 877	patch->forced = false;
 878	INIT_WORK(&patch->free_work, klp_free_patch_work_fn);
 879	init_completion(&patch->finish);
 880
 881	klp_for_each_object_static(patch, obj) {
 882		if (!obj->funcs)
 883			return -EINVAL;
 884
 885		klp_init_object_early(patch, obj);
 886
 887		klp_for_each_func_static(obj, func) {
 888			klp_init_func_early(obj, func);
 889		}
 890	}
 891
 892	if (!try_module_get(patch->mod))
 893		return -ENODEV;
 894
 895	return 0;
 896}
 897
 898static int klp_init_patch(struct klp_patch *patch)
 899{
 900	struct klp_object *obj;
 901	int ret;
 902
 903	ret = kobject_add(&patch->kobj, klp_root_kobj, "%s", patch->mod->name);
 904	if (ret)
 905		return ret;
 906
 907	if (patch->replace) {
 908		ret = klp_add_nops(patch);
 909		if (ret)
 910			return ret;
 911	}
 912
 913	klp_for_each_object(patch, obj) {
 914		ret = klp_init_object(patch, obj);
 915		if (ret)
 916			return ret;
 917	}
 918
 919	list_add_tail(&patch->list, &klp_patches);
 920
 921	return 0;
 922}
 923
 924static int __klp_disable_patch(struct klp_patch *patch)
 925{
 926	struct klp_object *obj;
 927
 928	if (WARN_ON(!patch->enabled))
 929		return -EINVAL;
 930
 931	if (klp_transition_patch)
 932		return -EBUSY;
 933
 934	klp_init_transition(patch, KLP_UNPATCHED);
 935
 936	klp_for_each_object(patch, obj)
 937		if (obj->patched)
 938			klp_pre_unpatch_callback(obj);
 939
 940	/*
 941	 * Enforce the order of the func->transition writes in
 942	 * klp_init_transition() and the TIF_PATCH_PENDING writes in
 943	 * klp_start_transition().  In the rare case where klp_ftrace_handler()
 944	 * is called shortly after klp_update_patch_state() switches the task,
 945	 * this ensures the handler sees that func->transition is set.
 946	 */
 947	smp_wmb();
 948
 949	klp_start_transition();
 950	patch->enabled = false;
 951	klp_try_complete_transition();
 952
 953	return 0;
 954}
 955
 956static int __klp_enable_patch(struct klp_patch *patch)
 957{
 958	struct klp_object *obj;
 959	int ret;
 960
 961	if (klp_transition_patch)
 962		return -EBUSY;
 963
 964	if (WARN_ON(patch->enabled))
 965		return -EINVAL;
 966
 967	pr_notice("enabling patch '%s'\n", patch->mod->name);
 968
 969	klp_init_transition(patch, KLP_PATCHED);
 970
 971	/*
 972	 * Enforce the order of the func->transition writes in
 973	 * klp_init_transition() and the ops->func_stack writes in
 974	 * klp_patch_object(), so that klp_ftrace_handler() will see the
 975	 * func->transition updates before the handler is registered and the
 976	 * new funcs become visible to the handler.
 977	 */
 978	smp_wmb();
 979
 980	klp_for_each_object(patch, obj) {
 981		if (!klp_is_object_loaded(obj))
 982			continue;
 983
 984		ret = klp_pre_patch_callback(obj);
 985		if (ret) {
 986			pr_warn("pre-patch callback failed for object '%s'\n",
 987				klp_is_module(obj) ? obj->name : "vmlinux");
 988			goto err;
 989		}
 990
 991		ret = klp_patch_object(obj);
 992		if (ret) {
 993			pr_warn("failed to patch object '%s'\n",
 994				klp_is_module(obj) ? obj->name : "vmlinux");
 995			goto err;
 996		}
 997	}
 998
 999	klp_start_transition();
1000	patch->enabled = true;
1001	klp_try_complete_transition();
1002
1003	return 0;
1004err:
1005	pr_warn("failed to enable patch '%s'\n", patch->mod->name);
1006
1007	klp_cancel_transition();
1008	return ret;
1009}
1010
1011/**
1012 * klp_enable_patch() - enable the livepatch
1013 * @patch:	patch to be enabled
1014 *
1015 * Initializes the data structure associated with the patch, creates the sysfs
1016 * interface, performs the needed symbol lookups and code relocations,
1017 * registers the patched functions with ftrace.
1018 *
1019 * This function is supposed to be called from the livepatch module_init()
1020 * callback.
1021 *
1022 * Return: 0 on success, otherwise error
1023 */
1024int klp_enable_patch(struct klp_patch *patch)
1025{
1026	int ret;
 
1027
1028	if (!patch || !patch->mod)
1029		return -EINVAL;
1030
 
 
 
 
 
 
1031	if (!is_livepatch_module(patch->mod)) {
1032		pr_err("module %s is not marked as a livepatch module\n",
1033		       patch->mod->name);
1034		return -EINVAL;
1035	}
1036
1037	if (!klp_initialized())
1038		return -ENODEV;
1039
1040	if (!klp_have_reliable_stack()) {
1041		pr_warn("This architecture doesn't have support for the livepatch consistency model.\n");
1042		pr_warn("The livepatch transition may never complete.\n");
1043	}
1044
1045	mutex_lock(&klp_mutex);
1046
1047	if (!klp_is_patch_compatible(patch)) {
1048		pr_err("Livepatch patch (%s) is not compatible with the already installed livepatches.\n",
1049			patch->mod->name);
1050		mutex_unlock(&klp_mutex);
1051		return -EINVAL;
1052	}
1053
1054	ret = klp_init_patch_early(patch);
1055	if (ret) {
1056		mutex_unlock(&klp_mutex);
1057		return ret;
1058	}
1059
 
 
1060	ret = klp_init_patch(patch);
1061	if (ret)
1062		goto err;
1063
1064	ret = __klp_enable_patch(patch);
1065	if (ret)
1066		goto err;
1067
1068	mutex_unlock(&klp_mutex);
1069
1070	return 0;
1071
1072err:
1073	klp_free_patch_start(patch);
1074
1075	mutex_unlock(&klp_mutex);
1076
1077	klp_free_patch_finish(patch);
1078
1079	return ret;
1080}
1081EXPORT_SYMBOL_GPL(klp_enable_patch);
1082
1083/*
1084 * This function unpatches objects from the replaced livepatches.
1085 *
1086 * We could be pretty aggressive here. It is called in the situation where
1087 * these structures are no longer accessed from the ftrace handler.
1088 * All functions are redirected by the klp_transition_patch. They
1089 * use either a new code or they are in the original code because
1090 * of the special nop function patches.
1091 *
1092 * The only exception is when the transition was forced. In this case,
1093 * klp_ftrace_handler() might still see the replaced patch on the stack.
1094 * Fortunately, it is carefully designed to work with removed functions
1095 * thanks to RCU. We only have to keep the patches on the system. Also
1096 * this is handled transparently by patch->module_put.
1097 */
1098void klp_unpatch_replaced_patches(struct klp_patch *new_patch)
1099{
1100	struct klp_patch *old_patch;
1101
1102	klp_for_each_patch(old_patch) {
1103		if (old_patch == new_patch)
1104			return;
1105
1106		old_patch->enabled = false;
1107		klp_unpatch_objects(old_patch);
1108	}
1109}
1110
1111/*
1112 * This function removes the dynamically allocated 'nop' functions.
1113 *
1114 * We could be pretty aggressive. NOPs do not change the existing
1115 * behavior except for adding unnecessary delay by the ftrace handler.
1116 *
1117 * It is safe even when the transition was forced. The ftrace handler
1118 * will see a valid ops->func_stack entry thanks to RCU.
1119 *
1120 * We could even free the NOPs structures. They must be the last entry
1121 * in ops->func_stack. Therefore unregister_ftrace_function() is called.
1122 * It does the same as klp_synchronize_transition() to make sure that
1123 * nobody is inside the ftrace handler once the operation finishes.
1124 *
1125 * IMPORTANT: It must be called right after removing the replaced patches!
1126 */
1127void klp_discard_nops(struct klp_patch *new_patch)
1128{
1129	klp_unpatch_objects_dynamic(klp_transition_patch);
1130	klp_free_objects_dynamic(klp_transition_patch);
1131}
1132
1133/*
1134 * Remove parts of patches that touch a given kernel module. The list of
1135 * patches processed might be limited. When limit is NULL, all patches
1136 * will be handled.
1137 */
1138static void klp_cleanup_module_patches_limited(struct module *mod,
1139					       struct klp_patch *limit)
1140{
1141	struct klp_patch *patch;
1142	struct klp_object *obj;
1143
1144	klp_for_each_patch(patch) {
1145		if (patch == limit)
1146			break;
1147
1148		klp_for_each_object(patch, obj) {
1149			if (!klp_is_module(obj) || strcmp(obj->name, mod->name))
1150				continue;
1151
1152			if (patch != klp_transition_patch)
1153				klp_pre_unpatch_callback(obj);
1154
1155			pr_notice("reverting patch '%s' on unloading module '%s'\n",
1156				  patch->mod->name, obj->mod->name);
1157			klp_unpatch_object(obj);
1158
1159			klp_post_unpatch_callback(obj);
1160
1161			klp_free_object_loaded(obj);
1162			break;
1163		}
1164	}
1165}
1166
1167int klp_module_coming(struct module *mod)
1168{
1169	int ret;
1170	struct klp_patch *patch;
1171	struct klp_object *obj;
1172
1173	if (WARN_ON(mod->state != MODULE_STATE_COMING))
1174		return -EINVAL;
1175
1176	if (!strcmp(mod->name, "vmlinux")) {
1177		pr_err("vmlinux.ko: invalid module name");
1178		return -EINVAL;
1179	}
1180
1181	mutex_lock(&klp_mutex);
1182	/*
1183	 * Each module has to know that klp_module_coming()
1184	 * has been called. We never know what module will
1185	 * get patched by a new patch.
1186	 */
1187	mod->klp_alive = true;
1188
1189	klp_for_each_patch(patch) {
1190		klp_for_each_object(patch, obj) {
1191			if (!klp_is_module(obj) || strcmp(obj->name, mod->name))
1192				continue;
1193
1194			obj->mod = mod;
1195
1196			ret = klp_init_object_loaded(patch, obj);
1197			if (ret) {
1198				pr_warn("failed to initialize patch '%s' for module '%s' (%d)\n",
1199					patch->mod->name, obj->mod->name, ret);
1200				goto err;
1201			}
1202
1203			pr_notice("applying patch '%s' to loading module '%s'\n",
1204				  patch->mod->name, obj->mod->name);
1205
1206			ret = klp_pre_patch_callback(obj);
1207			if (ret) {
1208				pr_warn("pre-patch callback failed for object '%s'\n",
1209					obj->name);
1210				goto err;
1211			}
1212
1213			ret = klp_patch_object(obj);
1214			if (ret) {
1215				pr_warn("failed to apply patch '%s' to module '%s' (%d)\n",
1216					patch->mod->name, obj->mod->name, ret);
1217
1218				klp_post_unpatch_callback(obj);
1219				goto err;
1220			}
1221
1222			if (patch != klp_transition_patch)
1223				klp_post_patch_callback(obj);
1224
1225			break;
1226		}
1227	}
1228
1229	mutex_unlock(&klp_mutex);
1230
1231	return 0;
1232
1233err:
1234	/*
1235	 * If a patch is unsuccessfully applied, return
1236	 * error to the module loader.
1237	 */
1238	pr_warn("patch '%s' failed for module '%s', refusing to load module '%s'\n",
1239		patch->mod->name, obj->mod->name, obj->mod->name);
1240	mod->klp_alive = false;
1241	obj->mod = NULL;
1242	klp_cleanup_module_patches_limited(mod, patch);
1243	mutex_unlock(&klp_mutex);
1244
1245	return ret;
1246}
1247
1248void klp_module_going(struct module *mod)
1249{
1250	if (WARN_ON(mod->state != MODULE_STATE_GOING &&
1251		    mod->state != MODULE_STATE_COMING))
1252		return;
1253
1254	mutex_lock(&klp_mutex);
1255	/*
1256	 * Each module has to know that klp_module_going()
1257	 * has been called. We never know what module will
1258	 * get patched by a new patch.
1259	 */
1260	mod->klp_alive = false;
1261
1262	klp_cleanup_module_patches_limited(mod, NULL);
1263
1264	mutex_unlock(&klp_mutex);
1265}
1266
1267static int __init klp_init(void)
1268{
1269	klp_root_kobj = kobject_create_and_add("livepatch", kernel_kobj);
1270	if (!klp_root_kobj)
1271		return -ENOMEM;
1272
1273	return 0;
1274}
1275
1276module_init(klp_init);