Linux Audio

Check our new training course

Loading...
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (c) Microsoft Corporation.
   4 *
   5 * Author:
   6 *   Jake Oshins <jakeo@microsoft.com>
   7 *
   8 * This driver acts as a paravirtual front-end for PCI Express root buses.
   9 * When a PCI Express function (either an entire device or an SR-IOV
  10 * Virtual Function) is being passed through to the VM, this driver exposes
  11 * a new bus to the guest VM.  This is modeled as a root PCI bus because
  12 * no bridges are being exposed to the VM.  In fact, with a "Generation 2"
  13 * VM within Hyper-V, there may seem to be no PCI bus at all in the VM
  14 * until a device as been exposed using this driver.
  15 *
  16 * Each root PCI bus has its own PCI domain, which is called "Segment" in
  17 * the PCI Firmware Specifications.  Thus while each device passed through
  18 * to the VM using this front-end will appear at "device 0", the domain will
  19 * be unique.  Typically, each bus will have one PCI function on it, though
  20 * this driver does support more than one.
  21 *
  22 * In order to map the interrupts from the device through to the guest VM,
  23 * this driver also implements an IRQ Domain, which handles interrupts (either
  24 * MSI or MSI-X) associated with the functions on the bus.  As interrupts are
  25 * set up, torn down, or reaffined, this driver communicates with the
  26 * underlying hypervisor to adjust the mappings in the I/O MMU so that each
  27 * interrupt will be delivered to the correct virtual processor at the right
  28 * vector.  This driver does not support level-triggered (line-based)
  29 * interrupts, and will report that the Interrupt Line register in the
  30 * function's configuration space is zero.
  31 *
  32 * The rest of this driver mostly maps PCI concepts onto underlying Hyper-V
  33 * facilities.  For instance, the configuration space of a function exposed
  34 * by Hyper-V is mapped into a single page of memory space, and the
  35 * read and write handlers for config space must be aware of this mechanism.
  36 * Similarly, device setup and teardown involves messages sent to and from
  37 * the PCI back-end driver in Hyper-V.
  38 */
  39
  40#include <linux/kernel.h>
  41#include <linux/module.h>
  42#include <linux/pci.h>
  43#include <linux/pci-ecam.h>
  44#include <linux/delay.h>
  45#include <linux/semaphore.h>
 
 
 
  46#include <linux/irq.h>
  47#include <linux/msi.h>
  48#include <linux/hyperv.h>
  49#include <linux/refcount.h>
  50#include <linux/irqdomain.h>
  51#include <linux/acpi.h>
  52#include <linux/sizes.h>
  53#include <asm/mshyperv.h>
  54
  55/*
  56 * Protocol versions. The low word is the minor version, the high word the
  57 * major version.
  58 */
  59
  60#define PCI_MAKE_VERSION(major, minor) ((u32)(((major) << 16) | (minor)))
  61#define PCI_MAJOR_VERSION(version) ((u32)(version) >> 16)
  62#define PCI_MINOR_VERSION(version) ((u32)(version) & 0xff)
  63
  64enum pci_protocol_version_t {
  65	PCI_PROTOCOL_VERSION_1_1 = PCI_MAKE_VERSION(1, 1),	/* Win10 */
  66	PCI_PROTOCOL_VERSION_1_2 = PCI_MAKE_VERSION(1, 2),	/* RS1 */
  67	PCI_PROTOCOL_VERSION_1_3 = PCI_MAKE_VERSION(1, 3),	/* Vibranium */
  68	PCI_PROTOCOL_VERSION_1_4 = PCI_MAKE_VERSION(1, 4),	/* WS2022 */
  69};
  70
  71#define CPU_AFFINITY_ALL	-1ULL
  72
  73/*
  74 * Supported protocol versions in the order of probing - highest go
  75 * first.
  76 */
  77static enum pci_protocol_version_t pci_protocol_versions[] = {
  78	PCI_PROTOCOL_VERSION_1_4,
  79	PCI_PROTOCOL_VERSION_1_3,
  80	PCI_PROTOCOL_VERSION_1_2,
  81	PCI_PROTOCOL_VERSION_1_1,
  82};
  83
  84#define PCI_CONFIG_MMIO_LENGTH	0x2000
  85#define CFG_PAGE_OFFSET 0x1000
  86#define CFG_PAGE_SIZE (PCI_CONFIG_MMIO_LENGTH - CFG_PAGE_OFFSET)
  87
  88#define MAX_SUPPORTED_MSI_MESSAGES 0x400
  89
  90#define STATUS_REVISION_MISMATCH 0xC0000059
  91
  92/* space for 32bit serial number as string */
  93#define SLOT_NAME_SIZE 11
  94
  95/*
  96 * Size of requestor for VMbus; the value is based on the observation
  97 * that having more than one request outstanding is 'rare', and so 64
  98 * should be generous in ensuring that we don't ever run out.
  99 */
 100#define HV_PCI_RQSTOR_SIZE 64
 101
 102/*
 103 * Message Types
 104 */
 105
 106enum pci_message_type {
 107	/*
 108	 * Version 1.1
 109	 */
 110	PCI_MESSAGE_BASE                = 0x42490000,
 111	PCI_BUS_RELATIONS               = PCI_MESSAGE_BASE + 0,
 112	PCI_QUERY_BUS_RELATIONS         = PCI_MESSAGE_BASE + 1,
 113	PCI_POWER_STATE_CHANGE          = PCI_MESSAGE_BASE + 4,
 114	PCI_QUERY_RESOURCE_REQUIREMENTS = PCI_MESSAGE_BASE + 5,
 115	PCI_QUERY_RESOURCE_RESOURCES    = PCI_MESSAGE_BASE + 6,
 116	PCI_BUS_D0ENTRY                 = PCI_MESSAGE_BASE + 7,
 117	PCI_BUS_D0EXIT                  = PCI_MESSAGE_BASE + 8,
 118	PCI_READ_BLOCK                  = PCI_MESSAGE_BASE + 9,
 119	PCI_WRITE_BLOCK                 = PCI_MESSAGE_BASE + 0xA,
 120	PCI_EJECT                       = PCI_MESSAGE_BASE + 0xB,
 121	PCI_QUERY_STOP                  = PCI_MESSAGE_BASE + 0xC,
 122	PCI_REENABLE                    = PCI_MESSAGE_BASE + 0xD,
 123	PCI_QUERY_STOP_FAILED           = PCI_MESSAGE_BASE + 0xE,
 124	PCI_EJECTION_COMPLETE           = PCI_MESSAGE_BASE + 0xF,
 125	PCI_RESOURCES_ASSIGNED          = PCI_MESSAGE_BASE + 0x10,
 126	PCI_RESOURCES_RELEASED          = PCI_MESSAGE_BASE + 0x11,
 127	PCI_INVALIDATE_BLOCK            = PCI_MESSAGE_BASE + 0x12,
 128	PCI_QUERY_PROTOCOL_VERSION      = PCI_MESSAGE_BASE + 0x13,
 129	PCI_CREATE_INTERRUPT_MESSAGE    = PCI_MESSAGE_BASE + 0x14,
 130	PCI_DELETE_INTERRUPT_MESSAGE    = PCI_MESSAGE_BASE + 0x15,
 131	PCI_RESOURCES_ASSIGNED2		= PCI_MESSAGE_BASE + 0x16,
 132	PCI_CREATE_INTERRUPT_MESSAGE2	= PCI_MESSAGE_BASE + 0x17,
 133	PCI_DELETE_INTERRUPT_MESSAGE2	= PCI_MESSAGE_BASE + 0x18, /* unused */
 134	PCI_BUS_RELATIONS2		= PCI_MESSAGE_BASE + 0x19,
 135	PCI_RESOURCES_ASSIGNED3         = PCI_MESSAGE_BASE + 0x1A,
 136	PCI_CREATE_INTERRUPT_MESSAGE3   = PCI_MESSAGE_BASE + 0x1B,
 137	PCI_MESSAGE_MAXIMUM
 138};
 139
 140/*
 141 * Structures defining the virtual PCI Express protocol.
 142 */
 143
 144union pci_version {
 145	struct {
 146		u16 minor_version;
 147		u16 major_version;
 148	} parts;
 149	u32 version;
 150} __packed;
 151
 152/*
 153 * Function numbers are 8-bits wide on Express, as interpreted through ARI,
 154 * which is all this driver does.  This representation is the one used in
 155 * Windows, which is what is expected when sending this back and forth with
 156 * the Hyper-V parent partition.
 157 */
 158union win_slot_encoding {
 159	struct {
 160		u32	dev:5;
 161		u32	func:3;
 162		u32	reserved:24;
 163	} bits;
 164	u32 slot;
 165} __packed;
 166
 167/*
 168 * Pretty much as defined in the PCI Specifications.
 169 */
 170struct pci_function_description {
 171	u16	v_id;	/* vendor ID */
 172	u16	d_id;	/* device ID */
 173	u8	rev;
 174	u8	prog_intf;
 175	u8	subclass;
 176	u8	base_class;
 177	u32	subsystem_id;
 178	union win_slot_encoding win_slot;
 179	u32	ser;	/* serial number */
 180} __packed;
 181
 182enum pci_device_description_flags {
 183	HV_PCI_DEVICE_FLAG_NONE			= 0x0,
 184	HV_PCI_DEVICE_FLAG_NUMA_AFFINITY	= 0x1,
 185};
 186
 187struct pci_function_description2 {
 188	u16	v_id;	/* vendor ID */
 189	u16	d_id;	/* device ID */
 190	u8	rev;
 191	u8	prog_intf;
 192	u8	subclass;
 193	u8	base_class;
 194	u32	subsystem_id;
 195	union	win_slot_encoding win_slot;
 196	u32	ser;	/* serial number */
 197	u32	flags;
 198	u16	virtual_numa_node;
 199	u16	reserved;
 200} __packed;
 201
 202/**
 203 * struct hv_msi_desc
 204 * @vector:		IDT entry
 205 * @delivery_mode:	As defined in Intel's Programmer's
 206 *			Reference Manual, Volume 3, Chapter 8.
 207 * @vector_count:	Number of contiguous entries in the
 208 *			Interrupt Descriptor Table that are
 209 *			occupied by this Message-Signaled
 210 *			Interrupt. For "MSI", as first defined
 211 *			in PCI 2.2, this can be between 1 and
 212 *			32. For "MSI-X," as first defined in PCI
 213 *			3.0, this must be 1, as each MSI-X table
 214 *			entry would have its own descriptor.
 215 * @reserved:		Empty space
 216 * @cpu_mask:		All the target virtual processors.
 217 */
 218struct hv_msi_desc {
 219	u8	vector;
 220	u8	delivery_mode;
 221	u16	vector_count;
 222	u32	reserved;
 223	u64	cpu_mask;
 224} __packed;
 225
 226/**
 227 * struct hv_msi_desc2 - 1.2 version of hv_msi_desc
 228 * @vector:		IDT entry
 229 * @delivery_mode:	As defined in Intel's Programmer's
 230 *			Reference Manual, Volume 3, Chapter 8.
 231 * @vector_count:	Number of contiguous entries in the
 232 *			Interrupt Descriptor Table that are
 233 *			occupied by this Message-Signaled
 234 *			Interrupt. For "MSI", as first defined
 235 *			in PCI 2.2, this can be between 1 and
 236 *			32. For "MSI-X," as first defined in PCI
 237 *			3.0, this must be 1, as each MSI-X table
 238 *			entry would have its own descriptor.
 239 * @processor_count:	number of bits enabled in array.
 240 * @processor_array:	All the target virtual processors.
 241 */
 242struct hv_msi_desc2 {
 243	u8	vector;
 244	u8	delivery_mode;
 245	u16	vector_count;
 246	u16	processor_count;
 247	u16	processor_array[32];
 248} __packed;
 249
 250/*
 251 * struct hv_msi_desc3 - 1.3 version of hv_msi_desc
 252 *	Everything is the same as in 'hv_msi_desc2' except that the size of the
 253 *	'vector' field is larger to support bigger vector values. For ex: LPI
 254 *	vectors on ARM.
 255 */
 256struct hv_msi_desc3 {
 257	u32	vector;
 258	u8	delivery_mode;
 259	u8	reserved;
 260	u16	vector_count;
 261	u16	processor_count;
 262	u16	processor_array[32];
 263} __packed;
 264
 265/**
 266 * struct tran_int_desc
 267 * @reserved:		unused, padding
 268 * @vector_count:	same as in hv_msi_desc
 269 * @data:		This is the "data payload" value that is
 270 *			written by the device when it generates
 271 *			a message-signaled interrupt, either MSI
 272 *			or MSI-X.
 273 * @address:		This is the address to which the data
 274 *			payload is written on interrupt
 275 *			generation.
 276 */
 277struct tran_int_desc {
 278	u16	reserved;
 279	u16	vector_count;
 280	u32	data;
 281	u64	address;
 282} __packed;
 283
 284/*
 285 * A generic message format for virtual PCI.
 286 * Specific message formats are defined later in the file.
 287 */
 288
 289struct pci_message {
 290	u32 type;
 291} __packed;
 292
 293struct pci_child_message {
 294	struct pci_message message_type;
 295	union win_slot_encoding wslot;
 296} __packed;
 297
 298struct pci_incoming_message {
 299	struct vmpacket_descriptor hdr;
 300	struct pci_message message_type;
 301} __packed;
 302
 303struct pci_response {
 304	struct vmpacket_descriptor hdr;
 305	s32 status;			/* negative values are failures */
 306} __packed;
 307
 308struct pci_packet {
 309	void (*completion_func)(void *context, struct pci_response *resp,
 310				int resp_packet_size);
 311	void *compl_ctxt;
 312
 313	struct pci_message message[];
 314};
 315
 316/*
 317 * Specific message types supporting the PCI protocol.
 318 */
 319
 320/*
 321 * Version negotiation message. Sent from the guest to the host.
 322 * The guest is free to try different versions until the host
 323 * accepts the version.
 324 *
 325 * pci_version: The protocol version requested.
 326 * is_last_attempt: If TRUE, this is the last version guest will request.
 327 * reservedz: Reserved field, set to zero.
 328 */
 329
 330struct pci_version_request {
 331	struct pci_message message_type;
 332	u32 protocol_version;
 333} __packed;
 334
 335/*
 336 * Bus D0 Entry.  This is sent from the guest to the host when the virtual
 337 * bus (PCI Express port) is ready for action.
 338 */
 339
 340struct pci_bus_d0_entry {
 341	struct pci_message message_type;
 342	u32 reserved;
 343	u64 mmio_base;
 344} __packed;
 345
 346struct pci_bus_relations {
 347	struct pci_incoming_message incoming;
 348	u32 device_count;
 349	struct pci_function_description func[];
 350} __packed;
 351
 352struct pci_bus_relations2 {
 353	struct pci_incoming_message incoming;
 354	u32 device_count;
 355	struct pci_function_description2 func[];
 356} __packed;
 357
 358struct pci_q_res_req_response {
 359	struct vmpacket_descriptor hdr;
 360	s32 status;			/* negative values are failures */
 361	u32 probed_bar[PCI_STD_NUM_BARS];
 362} __packed;
 363
 364struct pci_set_power {
 365	struct pci_message message_type;
 366	union win_slot_encoding wslot;
 367	u32 power_state;		/* In Windows terms */
 368	u32 reserved;
 369} __packed;
 370
 371struct pci_set_power_response {
 372	struct vmpacket_descriptor hdr;
 373	s32 status;			/* negative values are failures */
 374	union win_slot_encoding wslot;
 375	u32 resultant_state;		/* In Windows terms */
 376	u32 reserved;
 377} __packed;
 378
 379struct pci_resources_assigned {
 380	struct pci_message message_type;
 381	union win_slot_encoding wslot;
 382	u8 memory_range[0x14][6];	/* not used here */
 383	u32 msi_descriptors;
 384	u32 reserved[4];
 385} __packed;
 386
 387struct pci_resources_assigned2 {
 388	struct pci_message message_type;
 389	union win_slot_encoding wslot;
 390	u8 memory_range[0x14][6];	/* not used here */
 391	u32 msi_descriptor_count;
 392	u8 reserved[70];
 393} __packed;
 394
 395struct pci_create_interrupt {
 396	struct pci_message message_type;
 397	union win_slot_encoding wslot;
 398	struct hv_msi_desc int_desc;
 399} __packed;
 400
 401struct pci_create_int_response {
 402	struct pci_response response;
 403	u32 reserved;
 404	struct tran_int_desc int_desc;
 405} __packed;
 406
 407struct pci_create_interrupt2 {
 408	struct pci_message message_type;
 409	union win_slot_encoding wslot;
 410	struct hv_msi_desc2 int_desc;
 411} __packed;
 412
 413struct pci_create_interrupt3 {
 414	struct pci_message message_type;
 415	union win_slot_encoding wslot;
 416	struct hv_msi_desc3 int_desc;
 417} __packed;
 418
 419struct pci_delete_interrupt {
 420	struct pci_message message_type;
 421	union win_slot_encoding wslot;
 422	struct tran_int_desc int_desc;
 423} __packed;
 424
 425/*
 426 * Note: the VM must pass a valid block id, wslot and bytes_requested.
 427 */
 428struct pci_read_block {
 429	struct pci_message message_type;
 430	u32 block_id;
 431	union win_slot_encoding wslot;
 432	u32 bytes_requested;
 433} __packed;
 434
 435struct pci_read_block_response {
 436	struct vmpacket_descriptor hdr;
 437	u32 status;
 438	u8 bytes[HV_CONFIG_BLOCK_SIZE_MAX];
 439} __packed;
 440
 441/*
 442 * Note: the VM must pass a valid block id, wslot and byte_count.
 443 */
 444struct pci_write_block {
 445	struct pci_message message_type;
 446	u32 block_id;
 447	union win_slot_encoding wslot;
 448	u32 byte_count;
 449	u8 bytes[HV_CONFIG_BLOCK_SIZE_MAX];
 450} __packed;
 451
 452struct pci_dev_inval_block {
 453	struct pci_incoming_message incoming;
 454	union win_slot_encoding wslot;
 455	u64 block_mask;
 456} __packed;
 457
 458struct pci_dev_incoming {
 459	struct pci_incoming_message incoming;
 460	union win_slot_encoding wslot;
 461} __packed;
 462
 463struct pci_eject_response {
 464	struct pci_message message_type;
 465	union win_slot_encoding wslot;
 466	u32 status;
 467} __packed;
 468
 469static int pci_ring_size = VMBUS_RING_SIZE(SZ_16K);
 470
 471/*
 472 * Driver specific state.
 473 */
 474
 475enum hv_pcibus_state {
 476	hv_pcibus_init = 0,
 477	hv_pcibus_probed,
 478	hv_pcibus_installed,
 479	hv_pcibus_removing,
 
 480	hv_pcibus_maximum
 481};
 482
 483struct hv_pcibus_device {
 484#ifdef CONFIG_X86
 485	struct pci_sysdata sysdata;
 486#elif defined(CONFIG_ARM64)
 487	struct pci_config_window sysdata;
 488#endif
 489	struct pci_host_bridge *bridge;
 490	struct fwnode_handle *fwnode;
 491	/* Protocol version negotiated with the host */
 492	enum pci_protocol_version_t protocol_version;
 493
 494	struct mutex state_lock;
 495	enum hv_pcibus_state state;
 496
 497	struct hv_device *hdev;
 498	resource_size_t low_mmio_space;
 499	resource_size_t high_mmio_space;
 500	struct resource *mem_config;
 501	struct resource *low_mmio_res;
 502	struct resource *high_mmio_res;
 503	struct completion *survey_event;
 
 504	struct pci_bus *pci_bus;
 505	spinlock_t config_lock;	/* Avoid two threads writing index page */
 506	spinlock_t device_list_lock;	/* Protect lists below */
 507	void __iomem *cfg_addr;
 508
 
 
 509	struct list_head children;
 510	struct list_head dr_list;
 511
 512	struct msi_domain_info msi_info;
 
 513	struct irq_domain *irq_domain;
 514
 
 
 515	struct workqueue_struct *wq;
 516
 517	/* Highest slot of child device with resources allocated */
 518	int wslot_res_allocated;
 519	bool use_calls; /* Use hypercalls to access mmio cfg space */
 
 
 
 
 
 
 520};
 521
 522/*
 523 * Tracks "Device Relations" messages from the host, which must be both
 524 * processed in order and deferred so that they don't run in the context
 525 * of the incoming packet callback.
 526 */
 527struct hv_dr_work {
 528	struct work_struct wrk;
 529	struct hv_pcibus_device *bus;
 530};
 531
 532struct hv_pcidev_description {
 533	u16	v_id;	/* vendor ID */
 534	u16	d_id;	/* device ID */
 535	u8	rev;
 536	u8	prog_intf;
 537	u8	subclass;
 538	u8	base_class;
 539	u32	subsystem_id;
 540	union	win_slot_encoding win_slot;
 541	u32	ser;	/* serial number */
 542	u32	flags;
 543	u16	virtual_numa_node;
 544};
 545
 546struct hv_dr_state {
 547	struct list_head list_entry;
 548	u32 device_count;
 549	struct hv_pcidev_description func[] __counted_by(device_count);
 
 
 
 
 
 
 
 
 550};
 551
 552struct hv_pci_dev {
 553	/* List protected by pci_rescan_remove_lock */
 554	struct list_head list_entry;
 555	refcount_t refs;
 
 556	struct pci_slot *pci_slot;
 557	struct hv_pcidev_description desc;
 558	bool reported_missing;
 559	struct hv_pcibus_device *hbus;
 560	struct work_struct wrk;
 561
 562	void (*block_invalidate)(void *context, u64 block_mask);
 563	void *invalidate_context;
 564
 565	/*
 566	 * What would be observed if one wrote 0xFFFFFFFF to a BAR and then
 567	 * read it back, for each of the BAR offsets within config space.
 568	 */
 569	u32 probed_bar[PCI_STD_NUM_BARS];
 570};
 571
 572struct hv_pci_compl {
 573	struct completion host_event;
 574	s32 completion_status;
 575};
 576
 577static void hv_pci_onchannelcallback(void *context);
 578
 579#ifdef CONFIG_X86
 580#define DELIVERY_MODE	APIC_DELIVERY_MODE_FIXED
 581#define FLOW_HANDLER	handle_edge_irq
 582#define FLOW_NAME	"edge"
 583
 584static int hv_pci_irqchip_init(void)
 585{
 586	return 0;
 587}
 588
 589static struct irq_domain *hv_pci_get_root_domain(void)
 590{
 591	return x86_vector_domain;
 592}
 593
 594static unsigned int hv_msi_get_int_vector(struct irq_data *data)
 595{
 596	struct irq_cfg *cfg = irqd_cfg(data);
 597
 598	return cfg->vector;
 599}
 600
 601#define hv_msi_prepare		pci_msi_prepare
 602
 603/**
 604 * hv_arch_irq_unmask() - "Unmask" the IRQ by setting its current
 605 * affinity.
 606 * @data:	Describes the IRQ
 607 *
 608 * Build new a destination for the MSI and make a hypercall to
 609 * update the Interrupt Redirection Table. "Device Logical ID"
 610 * is built out of this PCI bus's instance GUID and the function
 611 * number of the device.
 612 */
 613static void hv_arch_irq_unmask(struct irq_data *data)
 614{
 615	struct msi_desc *msi_desc = irq_data_get_msi_desc(data);
 616	struct hv_retarget_device_interrupt *params;
 617	struct tran_int_desc *int_desc;
 618	struct hv_pcibus_device *hbus;
 619	const struct cpumask *dest;
 620	cpumask_var_t tmp;
 621	struct pci_bus *pbus;
 622	struct pci_dev *pdev;
 623	unsigned long flags;
 624	u32 var_size = 0;
 625	int cpu, nr_bank;
 626	u64 res;
 627
 628	dest = irq_data_get_effective_affinity_mask(data);
 629	pdev = msi_desc_to_pci_dev(msi_desc);
 630	pbus = pdev->bus;
 631	hbus = container_of(pbus->sysdata, struct hv_pcibus_device, sysdata);
 632	int_desc = data->chip_data;
 633	if (!int_desc) {
 634		dev_warn(&hbus->hdev->device, "%s() can not unmask irq %u\n",
 635			 __func__, data->irq);
 636		return;
 637	}
 638
 639	local_irq_save(flags);
 640
 641	params = *this_cpu_ptr(hyperv_pcpu_input_arg);
 642	memset(params, 0, sizeof(*params));
 643	params->partition_id = HV_PARTITION_ID_SELF;
 644	params->int_entry.source = HV_INTERRUPT_SOURCE_MSI;
 645	params->int_entry.msi_entry.address.as_uint32 = int_desc->address & 0xffffffff;
 646	params->int_entry.msi_entry.data.as_uint32 = int_desc->data;
 647	params->device_id = (hbus->hdev->dev_instance.b[5] << 24) |
 648			   (hbus->hdev->dev_instance.b[4] << 16) |
 649			   (hbus->hdev->dev_instance.b[7] << 8) |
 650			   (hbus->hdev->dev_instance.b[6] & 0xf8) |
 651			   PCI_FUNC(pdev->devfn);
 652	params->int_target.vector = hv_msi_get_int_vector(data);
 653
 654	if (hbus->protocol_version >= PCI_PROTOCOL_VERSION_1_2) {
 655		/*
 656		 * PCI_PROTOCOL_VERSION_1_2 supports the VP_SET version of the
 657		 * HVCALL_RETARGET_INTERRUPT hypercall, which also coincides
 658		 * with >64 VP support.
 659		 * ms_hyperv.hints & HV_X64_EX_PROCESSOR_MASKS_RECOMMENDED
 660		 * is not sufficient for this hypercall.
 661		 */
 662		params->int_target.flags |=
 663			HV_DEVICE_INTERRUPT_TARGET_PROCESSOR_SET;
 664
 665		if (!alloc_cpumask_var(&tmp, GFP_ATOMIC)) {
 666			res = 1;
 667			goto out;
 668		}
 669
 670		cpumask_and(tmp, dest, cpu_online_mask);
 671		nr_bank = cpumask_to_vpset(&params->int_target.vp_set, tmp);
 672		free_cpumask_var(tmp);
 673
 674		if (nr_bank <= 0) {
 675			res = 1;
 676			goto out;
 677		}
 678
 679		/*
 680		 * var-sized hypercall, var-size starts after vp_mask (thus
 681		 * vp_set.format does not count, but vp_set.valid_bank_mask
 682		 * does).
 683		 */
 684		var_size = 1 + nr_bank;
 685	} else {
 686		for_each_cpu_and(cpu, dest, cpu_online_mask) {
 687			params->int_target.vp_mask |=
 688				(1ULL << hv_cpu_number_to_vp_number(cpu));
 689		}
 690	}
 691
 692	res = hv_do_hypercall(HVCALL_RETARGET_INTERRUPT | (var_size << 17),
 693			      params, NULL);
 694
 695out:
 696	local_irq_restore(flags);
 697
 698	/*
 699	 * During hibernation, when a CPU is offlined, the kernel tries
 700	 * to move the interrupt to the remaining CPUs that haven't
 701	 * been offlined yet. In this case, the below hv_do_hypercall()
 702	 * always fails since the vmbus channel has been closed:
 703	 * refer to cpu_disable_common() -> fixup_irqs() ->
 704	 * irq_migrate_all_off_this_cpu() -> migrate_one_irq().
 705	 *
 706	 * Suppress the error message for hibernation because the failure
 707	 * during hibernation does not matter (at this time all the devices
 708	 * have been frozen). Note: the correct affinity info is still updated
 709	 * into the irqdata data structure in migrate_one_irq() ->
 710	 * irq_do_set_affinity(), so later when the VM resumes,
 711	 * hv_pci_restore_msi_state() is able to correctly restore the
 712	 * interrupt with the correct affinity.
 713	 */
 714	if (!hv_result_success(res) && hbus->state != hv_pcibus_removing)
 715		dev_err(&hbus->hdev->device,
 716			"%s() failed: %#llx", __func__, res);
 717}
 718#elif defined(CONFIG_ARM64)
 719/*
 720 * SPI vectors to use for vPCI; arch SPIs range is [32, 1019], but leaving a bit
 721 * of room at the start to allow for SPIs to be specified through ACPI and
 722 * starting with a power of two to satisfy power of 2 multi-MSI requirement.
 723 */
 724#define HV_PCI_MSI_SPI_START	64
 725#define HV_PCI_MSI_SPI_NR	(1020 - HV_PCI_MSI_SPI_START)
 726#define DELIVERY_MODE		0
 727#define FLOW_HANDLER		NULL
 728#define FLOW_NAME		NULL
 729#define hv_msi_prepare		NULL
 730
 731struct hv_pci_chip_data {
 732	DECLARE_BITMAP(spi_map, HV_PCI_MSI_SPI_NR);
 733	struct mutex	map_lock;
 734};
 735
 736/* Hyper-V vPCI MSI GIC IRQ domain */
 737static struct irq_domain *hv_msi_gic_irq_domain;
 738
 739/* Hyper-V PCI MSI IRQ chip */
 740static struct irq_chip hv_arm64_msi_irq_chip = {
 741	.name = "MSI",
 742	.irq_set_affinity = irq_chip_set_affinity_parent,
 743	.irq_eoi = irq_chip_eoi_parent,
 744	.irq_mask = irq_chip_mask_parent,
 745	.irq_unmask = irq_chip_unmask_parent
 746};
 747
 748static unsigned int hv_msi_get_int_vector(struct irq_data *irqd)
 749{
 750	return irqd->parent_data->hwirq;
 751}
 752
 753/*
 754 * @nr_bm_irqs:		Indicates the number of IRQs that were allocated from
 755 *			the bitmap.
 756 * @nr_dom_irqs:	Indicates the number of IRQs that were allocated from
 757 *			the parent domain.
 758 */
 759static void hv_pci_vec_irq_free(struct irq_domain *domain,
 760				unsigned int virq,
 761				unsigned int nr_bm_irqs,
 762				unsigned int nr_dom_irqs)
 763{
 764	struct hv_pci_chip_data *chip_data = domain->host_data;
 765	struct irq_data *d = irq_domain_get_irq_data(domain, virq);
 766	int first = d->hwirq - HV_PCI_MSI_SPI_START;
 767	int i;
 768
 769	mutex_lock(&chip_data->map_lock);
 770	bitmap_release_region(chip_data->spi_map,
 771			      first,
 772			      get_count_order(nr_bm_irqs));
 773	mutex_unlock(&chip_data->map_lock);
 774	for (i = 0; i < nr_dom_irqs; i++) {
 775		if (i)
 776			d = irq_domain_get_irq_data(domain, virq + i);
 777		irq_domain_reset_irq_data(d);
 778	}
 779
 780	irq_domain_free_irqs_parent(domain, virq, nr_dom_irqs);
 781}
 782
 783static void hv_pci_vec_irq_domain_free(struct irq_domain *domain,
 784				       unsigned int virq,
 785				       unsigned int nr_irqs)
 786{
 787	hv_pci_vec_irq_free(domain, virq, nr_irqs, nr_irqs);
 788}
 789
 790static int hv_pci_vec_alloc_device_irq(struct irq_domain *domain,
 791				       unsigned int nr_irqs,
 792				       irq_hw_number_t *hwirq)
 793{
 794	struct hv_pci_chip_data *chip_data = domain->host_data;
 795	int index;
 796
 797	/* Find and allocate region from the SPI bitmap */
 798	mutex_lock(&chip_data->map_lock);
 799	index = bitmap_find_free_region(chip_data->spi_map,
 800					HV_PCI_MSI_SPI_NR,
 801					get_count_order(nr_irqs));
 802	mutex_unlock(&chip_data->map_lock);
 803	if (index < 0)
 804		return -ENOSPC;
 805
 806	*hwirq = index + HV_PCI_MSI_SPI_START;
 807
 808	return 0;
 809}
 810
 811static int hv_pci_vec_irq_gic_domain_alloc(struct irq_domain *domain,
 812					   unsigned int virq,
 813					   irq_hw_number_t hwirq)
 814{
 815	struct irq_fwspec fwspec;
 816	struct irq_data *d;
 817	int ret;
 818
 819	fwspec.fwnode = domain->parent->fwnode;
 820	fwspec.param_count = 2;
 821	fwspec.param[0] = hwirq;
 822	fwspec.param[1] = IRQ_TYPE_EDGE_RISING;
 823
 824	ret = irq_domain_alloc_irqs_parent(domain, virq, 1, &fwspec);
 825	if (ret)
 826		return ret;
 827
 828	/*
 829	 * Since the interrupt specifier is not coming from ACPI or DT, the
 830	 * trigger type will need to be set explicitly. Otherwise, it will be
 831	 * set to whatever is in the GIC configuration.
 832	 */
 833	d = irq_domain_get_irq_data(domain->parent, virq);
 834
 835	return d->chip->irq_set_type(d, IRQ_TYPE_EDGE_RISING);
 836}
 837
 838static int hv_pci_vec_irq_domain_alloc(struct irq_domain *domain,
 839				       unsigned int virq, unsigned int nr_irqs,
 840				       void *args)
 841{
 842	irq_hw_number_t hwirq;
 843	unsigned int i;
 844	int ret;
 845
 846	ret = hv_pci_vec_alloc_device_irq(domain, nr_irqs, &hwirq);
 847	if (ret)
 848		return ret;
 849
 850	for (i = 0; i < nr_irqs; i++) {
 851		ret = hv_pci_vec_irq_gic_domain_alloc(domain, virq + i,
 852						      hwirq + i);
 853		if (ret) {
 854			hv_pci_vec_irq_free(domain, virq, nr_irqs, i);
 855			return ret;
 856		}
 857
 858		irq_domain_set_hwirq_and_chip(domain, virq + i,
 859					      hwirq + i,
 860					      &hv_arm64_msi_irq_chip,
 861					      domain->host_data);
 862		pr_debug("pID:%d vID:%u\n", (int)(hwirq + i), virq + i);
 863	}
 864
 865	return 0;
 866}
 867
 868/*
 869 * Pick the first cpu as the irq affinity that can be temporarily used for
 870 * composing MSI from the hypervisor. GIC will eventually set the right
 871 * affinity for the irq and the 'unmask' will retarget the interrupt to that
 872 * cpu.
 873 */
 874static int hv_pci_vec_irq_domain_activate(struct irq_domain *domain,
 875					  struct irq_data *irqd, bool reserve)
 876{
 877	int cpu = cpumask_first(cpu_present_mask);
 878
 879	irq_data_update_effective_affinity(irqd, cpumask_of(cpu));
 880
 881	return 0;
 882}
 883
 884static const struct irq_domain_ops hv_pci_domain_ops = {
 885	.alloc	= hv_pci_vec_irq_domain_alloc,
 886	.free	= hv_pci_vec_irq_domain_free,
 887	.activate = hv_pci_vec_irq_domain_activate,
 888};
 889
 890static int hv_pci_irqchip_init(void)
 891{
 892	static struct hv_pci_chip_data *chip_data;
 893	struct fwnode_handle *fn = NULL;
 894	int ret = -ENOMEM;
 895
 896	chip_data = kzalloc(sizeof(*chip_data), GFP_KERNEL);
 897	if (!chip_data)
 898		return ret;
 899
 900	mutex_init(&chip_data->map_lock);
 901	fn = irq_domain_alloc_named_fwnode("hv_vpci_arm64");
 902	if (!fn)
 903		goto free_chip;
 904
 905	/*
 906	 * IRQ domain once enabled, should not be removed since there is no
 907	 * way to ensure that all the corresponding devices are also gone and
 908	 * no interrupts will be generated.
 909	 */
 910	hv_msi_gic_irq_domain = acpi_irq_create_hierarchy(0, HV_PCI_MSI_SPI_NR,
 911							  fn, &hv_pci_domain_ops,
 912							  chip_data);
 913
 914	if (!hv_msi_gic_irq_domain) {
 915		pr_err("Failed to create Hyper-V arm64 vPCI MSI IRQ domain\n");
 916		goto free_chip;
 917	}
 918
 919	return 0;
 920
 921free_chip:
 922	kfree(chip_data);
 923	if (fn)
 924		irq_domain_free_fwnode(fn);
 925
 926	return ret;
 927}
 928
 929static struct irq_domain *hv_pci_get_root_domain(void)
 930{
 931	return hv_msi_gic_irq_domain;
 932}
 933
 934/*
 935 * SPIs are used for interrupts of PCI devices and SPIs is managed via GICD
 936 * registers which Hyper-V already supports, so no hypercall needed.
 937 */
 938static void hv_arch_irq_unmask(struct irq_data *data) { }
 939#endif /* CONFIG_ARM64 */
 940
 941/**
 942 * hv_pci_generic_compl() - Invoked for a completion packet
 943 * @context:		Set up by the sender of the packet.
 944 * @resp:		The response packet
 945 * @resp_packet_size:	Size in bytes of the packet
 946 *
 947 * This function is used to trigger an event and report status
 948 * for any message for which the completion packet contains a
 949 * status and nothing else.
 950 */
 951static void hv_pci_generic_compl(void *context, struct pci_response *resp,
 952				 int resp_packet_size)
 953{
 954	struct hv_pci_compl *comp_pkt = context;
 955
 956	comp_pkt->completion_status = resp->status;
 
 
 
 
 957	complete(&comp_pkt->host_event);
 958}
 959
 960static struct hv_pci_dev *get_pcichild_wslot(struct hv_pcibus_device *hbus,
 961						u32 wslot);
 962
 963static void get_pcichild(struct hv_pci_dev *hpdev)
 964{
 965	refcount_inc(&hpdev->refs);
 966}
 967
 968static void put_pcichild(struct hv_pci_dev *hpdev)
 969{
 970	if (refcount_dec_and_test(&hpdev->refs))
 971		kfree(hpdev);
 972}
 973
 
 
 
 974/*
 975 * There is no good way to get notified from vmbus_onoffer_rescind(),
 976 * so let's use polling here, since this is not a hot path.
 977 */
 978static int wait_for_response(struct hv_device *hdev,
 979			     struct completion *comp)
 980{
 981	while (true) {
 982		if (hdev->channel->rescind) {
 983			dev_warn_once(&hdev->device, "The device is gone.\n");
 984			return -ENODEV;
 985		}
 986
 987		if (wait_for_completion_timeout(comp, HZ / 10))
 988			break;
 989	}
 990
 991	return 0;
 992}
 993
 994/**
 995 * devfn_to_wslot() - Convert from Linux PCI slot to Windows
 996 * @devfn:	The Linux representation of PCI slot
 997 *
 998 * Windows uses a slightly different representation of PCI slot.
 999 *
1000 * Return: The Windows representation
1001 */
1002static u32 devfn_to_wslot(int devfn)
1003{
1004	union win_slot_encoding wslot;
1005
1006	wslot.slot = 0;
1007	wslot.bits.dev = PCI_SLOT(devfn);
1008	wslot.bits.func = PCI_FUNC(devfn);
1009
1010	return wslot.slot;
1011}
1012
1013/**
1014 * wslot_to_devfn() - Convert from Windows PCI slot to Linux
1015 * @wslot:	The Windows representation of PCI slot
1016 *
1017 * Windows uses a slightly different representation of PCI slot.
1018 *
1019 * Return: The Linux representation
1020 */
1021static int wslot_to_devfn(u32 wslot)
1022{
1023	union win_slot_encoding slot_no;
1024
1025	slot_no.slot = wslot;
1026	return PCI_DEVFN(slot_no.bits.dev, slot_no.bits.func);
1027}
1028
1029static void hv_pci_read_mmio(struct device *dev, phys_addr_t gpa, int size, u32 *val)
1030{
1031	struct hv_mmio_read_input *in;
1032	struct hv_mmio_read_output *out;
1033	u64 ret;
1034
1035	/*
1036	 * Must be called with interrupts disabled so it is safe
1037	 * to use the per-cpu input argument page.  Use it for
1038	 * both input and output.
1039	 */
1040	in = *this_cpu_ptr(hyperv_pcpu_input_arg);
1041	out = *this_cpu_ptr(hyperv_pcpu_input_arg) + sizeof(*in);
1042	in->gpa = gpa;
1043	in->size = size;
1044
1045	ret = hv_do_hypercall(HVCALL_MMIO_READ, in, out);
1046	if (hv_result_success(ret)) {
1047		switch (size) {
1048		case 1:
1049			*val = *(u8 *)(out->data);
1050			break;
1051		case 2:
1052			*val = *(u16 *)(out->data);
1053			break;
1054		default:
1055			*val = *(u32 *)(out->data);
1056			break;
1057		}
1058	} else
1059		dev_err(dev, "MMIO read hypercall error %llx addr %llx size %d\n",
1060				ret, gpa, size);
1061}
1062
1063static void hv_pci_write_mmio(struct device *dev, phys_addr_t gpa, int size, u32 val)
1064{
1065	struct hv_mmio_write_input *in;
1066	u64 ret;
1067
1068	/*
1069	 * Must be called with interrupts disabled so it is safe
1070	 * to use the per-cpu input argument memory.
1071	 */
1072	in = *this_cpu_ptr(hyperv_pcpu_input_arg);
1073	in->gpa = gpa;
1074	in->size = size;
1075	switch (size) {
1076	case 1:
1077		*(u8 *)(in->data) = val;
1078		break;
1079	case 2:
1080		*(u16 *)(in->data) = val;
1081		break;
1082	default:
1083		*(u32 *)(in->data) = val;
1084		break;
1085	}
1086
1087	ret = hv_do_hypercall(HVCALL_MMIO_WRITE, in, NULL);
1088	if (!hv_result_success(ret))
1089		dev_err(dev, "MMIO write hypercall error %llx addr %llx size %d\n",
1090				ret, gpa, size);
1091}
1092
1093/*
1094 * PCI Configuration Space for these root PCI buses is implemented as a pair
1095 * of pages in memory-mapped I/O space.  Writing to the first page chooses
1096 * the PCI function being written or read.  Once the first page has been
1097 * written to, the following page maps in the entire configuration space of
1098 * the function.
1099 */
1100
1101/**
1102 * _hv_pcifront_read_config() - Internal PCI config read
1103 * @hpdev:	The PCI driver's representation of the device
1104 * @where:	Offset within config space
1105 * @size:	Size of the transfer
1106 * @val:	Pointer to the buffer receiving the data
1107 */
1108static void _hv_pcifront_read_config(struct hv_pci_dev *hpdev, int where,
1109				     int size, u32 *val)
1110{
1111	struct hv_pcibus_device *hbus = hpdev->hbus;
1112	struct device *dev = &hbus->hdev->device;
1113	int offset = where + CFG_PAGE_OFFSET;
1114	unsigned long flags;
 
1115
1116	/*
1117	 * If the attempt is to read the IDs or the ROM BAR, simulate that.
1118	 */
1119	if (where + size <= PCI_COMMAND) {
1120		memcpy(val, ((u8 *)&hpdev->desc.v_id) + where, size);
1121	} else if (where >= PCI_CLASS_REVISION && where + size <=
1122		   PCI_CACHE_LINE_SIZE) {
1123		memcpy(val, ((u8 *)&hpdev->desc.rev) + where -
1124		       PCI_CLASS_REVISION, size);
1125	} else if (where >= PCI_SUBSYSTEM_VENDOR_ID && where + size <=
1126		   PCI_ROM_ADDRESS) {
1127		memcpy(val, (u8 *)&hpdev->desc.subsystem_id + where -
1128		       PCI_SUBSYSTEM_VENDOR_ID, size);
1129	} else if (where >= PCI_ROM_ADDRESS && where + size <=
1130		   PCI_CAPABILITY_LIST) {
1131		/* ROM BARs are unimplemented */
1132		*val = 0;
1133	} else if ((where >= PCI_INTERRUPT_LINE && where + size <= PCI_INTERRUPT_PIN) ||
1134		   (where >= PCI_INTERRUPT_PIN && where + size <= PCI_MIN_GNT)) {
1135		/*
1136		 * Interrupt Line and Interrupt PIN are hard-wired to zero
1137		 * because this front-end only supports message-signaled
1138		 * interrupts.
1139		 */
1140		*val = 0;
1141	} else if (where + size <= CFG_PAGE_SIZE) {
1142
1143		spin_lock_irqsave(&hbus->config_lock, flags);
1144		if (hbus->use_calls) {
1145			phys_addr_t addr = hbus->mem_config->start + offset;
1146
1147			hv_pci_write_mmio(dev, hbus->mem_config->start, 4,
1148						hpdev->desc.win_slot.slot);
1149			hv_pci_read_mmio(dev, addr, size, val);
1150		} else {
1151			void __iomem *addr = hbus->cfg_addr + offset;
1152
1153			/* Choose the function to be read. (See comment above) */
1154			writel(hpdev->desc.win_slot.slot, hbus->cfg_addr);
1155			/* Make sure the function was chosen before reading. */
1156			mb();
1157			/* Read from that function's config space. */
1158			switch (size) {
1159			case 1:
1160				*val = readb(addr);
1161				break;
1162			case 2:
1163				*val = readw(addr);
1164				break;
1165			default:
1166				*val = readl(addr);
1167				break;
1168			}
1169			/*
1170			 * Make sure the read was done before we release the
1171			 * spinlock allowing consecutive reads/writes.
1172			 */
1173			mb();
1174		}
1175		spin_unlock_irqrestore(&hbus->config_lock, flags);
 
 
 
 
 
1176	} else {
1177		dev_err(dev, "Attempt to read beyond a function's config space.\n");
 
1178	}
1179}
1180
1181static u16 hv_pcifront_get_vendor_id(struct hv_pci_dev *hpdev)
1182{
1183	struct hv_pcibus_device *hbus = hpdev->hbus;
1184	struct device *dev = &hbus->hdev->device;
1185	u32 val;
1186	u16 ret;
1187	unsigned long flags;
 
 
1188
1189	spin_lock_irqsave(&hbus->config_lock, flags);
1190
1191	if (hbus->use_calls) {
1192		phys_addr_t addr = hbus->mem_config->start +
1193					 CFG_PAGE_OFFSET + PCI_VENDOR_ID;
1194
1195		hv_pci_write_mmio(dev, hbus->mem_config->start, 4,
1196					hpdev->desc.win_slot.slot);
1197		hv_pci_read_mmio(dev, addr, 2, &val);
1198		ret = val;  /* Truncates to 16 bits */
1199	} else {
1200		void __iomem *addr = hbus->cfg_addr + CFG_PAGE_OFFSET +
1201					     PCI_VENDOR_ID;
1202		/* Choose the function to be read. (See comment above) */
1203		writel(hpdev->desc.win_slot.slot, hbus->cfg_addr);
1204		/* Make sure the function was chosen before we start reading. */
1205		mb();
1206		/* Read from that function's config space. */
1207		ret = readw(addr);
1208		/*
1209		 * mb() is not required here, because the
1210		 * spin_unlock_irqrestore() is a barrier.
1211		 */
1212	}
1213
1214	spin_unlock_irqrestore(&hbus->config_lock, flags);
1215
1216	return ret;
1217}
1218
1219/**
1220 * _hv_pcifront_write_config() - Internal PCI config write
1221 * @hpdev:	The PCI driver's representation of the device
1222 * @where:	Offset within config space
1223 * @size:	Size of the transfer
1224 * @val:	The data being transferred
1225 */
1226static void _hv_pcifront_write_config(struct hv_pci_dev *hpdev, int where,
1227				      int size, u32 val)
1228{
1229	struct hv_pcibus_device *hbus = hpdev->hbus;
1230	struct device *dev = &hbus->hdev->device;
1231	int offset = where + CFG_PAGE_OFFSET;
1232	unsigned long flags;
 
1233
1234	if (where >= PCI_SUBSYSTEM_VENDOR_ID &&
1235	    where + size <= PCI_CAPABILITY_LIST) {
1236		/* SSIDs and ROM BARs are read-only */
1237	} else if (where >= PCI_COMMAND && where + size <= CFG_PAGE_SIZE) {
1238		spin_lock_irqsave(&hbus->config_lock, flags);
1239
1240		if (hbus->use_calls) {
1241			phys_addr_t addr = hbus->mem_config->start + offset;
1242
1243			hv_pci_write_mmio(dev, hbus->mem_config->start, 4,
1244						hpdev->desc.win_slot.slot);
1245			hv_pci_write_mmio(dev, addr, size, val);
1246		} else {
1247			void __iomem *addr = hbus->cfg_addr + offset;
1248
1249			/* Choose the function to write. (See comment above) */
1250			writel(hpdev->desc.win_slot.slot, hbus->cfg_addr);
1251			/* Make sure the function was chosen before writing. */
1252			wmb();
1253			/* Write to that function's config space. */
1254			switch (size) {
1255			case 1:
1256				writeb(val, addr);
1257				break;
1258			case 2:
1259				writew(val, addr);
1260				break;
1261			default:
1262				writel(val, addr);
1263				break;
1264			}
1265			/*
1266			 * Make sure the write was done before we release the
1267			 * spinlock allowing consecutive reads/writes.
1268			 */
1269			mb();
1270		}
1271		spin_unlock_irqrestore(&hbus->config_lock, flags);
 
 
 
 
 
1272	} else {
1273		dev_err(dev, "Attempt to write beyond a function's config space.\n");
 
1274	}
1275}
1276
1277/**
1278 * hv_pcifront_read_config() - Read configuration space
1279 * @bus: PCI Bus structure
1280 * @devfn: Device/function
1281 * @where: Offset from base
1282 * @size: Byte/word/dword
1283 * @val: Value to be read
1284 *
1285 * Return: PCIBIOS_SUCCESSFUL on success
1286 *	   PCIBIOS_DEVICE_NOT_FOUND on failure
1287 */
1288static int hv_pcifront_read_config(struct pci_bus *bus, unsigned int devfn,
1289				   int where, int size, u32 *val)
1290{
1291	struct hv_pcibus_device *hbus =
1292		container_of(bus->sysdata, struct hv_pcibus_device, sysdata);
1293	struct hv_pci_dev *hpdev;
1294
1295	hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(devfn));
1296	if (!hpdev)
1297		return PCIBIOS_DEVICE_NOT_FOUND;
1298
1299	_hv_pcifront_read_config(hpdev, where, size, val);
1300
1301	put_pcichild(hpdev);
1302	return PCIBIOS_SUCCESSFUL;
1303}
1304
1305/**
1306 * hv_pcifront_write_config() - Write configuration space
1307 * @bus: PCI Bus structure
1308 * @devfn: Device/function
1309 * @where: Offset from base
1310 * @size: Byte/word/dword
1311 * @val: Value to be written to device
1312 *
1313 * Return: PCIBIOS_SUCCESSFUL on success
1314 *	   PCIBIOS_DEVICE_NOT_FOUND on failure
1315 */
1316static int hv_pcifront_write_config(struct pci_bus *bus, unsigned int devfn,
1317				    int where, int size, u32 val)
1318{
1319	struct hv_pcibus_device *hbus =
1320	    container_of(bus->sysdata, struct hv_pcibus_device, sysdata);
1321	struct hv_pci_dev *hpdev;
1322
1323	hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(devfn));
1324	if (!hpdev)
1325		return PCIBIOS_DEVICE_NOT_FOUND;
1326
1327	_hv_pcifront_write_config(hpdev, where, size, val);
1328
1329	put_pcichild(hpdev);
1330	return PCIBIOS_SUCCESSFUL;
1331}
1332
1333/* PCIe operations */
1334static struct pci_ops hv_pcifront_ops = {
1335	.read  = hv_pcifront_read_config,
1336	.write = hv_pcifront_write_config,
1337};
1338
1339/*
1340 * Paravirtual backchannel
1341 *
1342 * Hyper-V SR-IOV provides a backchannel mechanism in software for
1343 * communication between a VF driver and a PF driver.  These
1344 * "configuration blocks" are similar in concept to PCI configuration space,
1345 * but instead of doing reads and writes in 32-bit chunks through a very slow
1346 * path, packets of up to 128 bytes can be sent or received asynchronously.
1347 *
1348 * Nearly every SR-IOV device contains just such a communications channel in
1349 * hardware, so using this one in software is usually optional.  Using the
1350 * software channel, however, allows driver implementers to leverage software
1351 * tools that fuzz the communications channel looking for vulnerabilities.
1352 *
1353 * The usage model for these packets puts the responsibility for reading or
1354 * writing on the VF driver.  The VF driver sends a read or a write packet,
1355 * indicating which "block" is being referred to by number.
1356 *
1357 * If the PF driver wishes to initiate communication, it can "invalidate" one or
1358 * more of the first 64 blocks.  This invalidation is delivered via a callback
1359 * supplied by the VF driver by this driver.
1360 *
1361 * No protocol is implied, except that supplied by the PF and VF drivers.
1362 */
1363
1364struct hv_read_config_compl {
1365	struct hv_pci_compl comp_pkt;
1366	void *buf;
1367	unsigned int len;
1368	unsigned int bytes_returned;
1369};
1370
1371/**
1372 * hv_pci_read_config_compl() - Invoked when a response packet
1373 * for a read config block operation arrives.
1374 * @context:		Identifies the read config operation
1375 * @resp:		The response packet itself
1376 * @resp_packet_size:	Size in bytes of the response packet
1377 */
1378static void hv_pci_read_config_compl(void *context, struct pci_response *resp,
1379				     int resp_packet_size)
1380{
1381	struct hv_read_config_compl *comp = context;
1382	struct pci_read_block_response *read_resp =
1383		(struct pci_read_block_response *)resp;
1384	unsigned int data_len, hdr_len;
1385
1386	hdr_len = offsetof(struct pci_read_block_response, bytes);
1387	if (resp_packet_size < hdr_len) {
1388		comp->comp_pkt.completion_status = -1;
1389		goto out;
1390	}
1391
1392	data_len = resp_packet_size - hdr_len;
1393	if (data_len > 0 && read_resp->status == 0) {
1394		comp->bytes_returned = min(comp->len, data_len);
1395		memcpy(comp->buf, read_resp->bytes, comp->bytes_returned);
1396	} else {
1397		comp->bytes_returned = 0;
1398	}
1399
1400	comp->comp_pkt.completion_status = read_resp->status;
1401out:
1402	complete(&comp->comp_pkt.host_event);
1403}
1404
1405/**
1406 * hv_read_config_block() - Sends a read config block request to
1407 * the back-end driver running in the Hyper-V parent partition.
1408 * @pdev:		The PCI driver's representation for this device.
1409 * @buf:		Buffer into which the config block will be copied.
1410 * @len:		Size in bytes of buf.
1411 * @block_id:		Identifies the config block which has been requested.
1412 * @bytes_returned:	Size which came back from the back-end driver.
1413 *
1414 * Return: 0 on success, -errno on failure
1415 */
1416static int hv_read_config_block(struct pci_dev *pdev, void *buf,
1417				unsigned int len, unsigned int block_id,
1418				unsigned int *bytes_returned)
1419{
1420	struct hv_pcibus_device *hbus =
1421		container_of(pdev->bus->sysdata, struct hv_pcibus_device,
1422			     sysdata);
1423	struct {
1424		struct pci_packet pkt;
1425		char buf[sizeof(struct pci_read_block)];
1426	} pkt;
1427	struct hv_read_config_compl comp_pkt;
1428	struct pci_read_block *read_blk;
1429	int ret;
1430
1431	if (len == 0 || len > HV_CONFIG_BLOCK_SIZE_MAX)
1432		return -EINVAL;
1433
1434	init_completion(&comp_pkt.comp_pkt.host_event);
1435	comp_pkt.buf = buf;
1436	comp_pkt.len = len;
1437
1438	memset(&pkt, 0, sizeof(pkt));
1439	pkt.pkt.completion_func = hv_pci_read_config_compl;
1440	pkt.pkt.compl_ctxt = &comp_pkt;
1441	read_blk = (struct pci_read_block *)&pkt.pkt.message;
1442	read_blk->message_type.type = PCI_READ_BLOCK;
1443	read_blk->wslot.slot = devfn_to_wslot(pdev->devfn);
1444	read_blk->block_id = block_id;
1445	read_blk->bytes_requested = len;
1446
1447	ret = vmbus_sendpacket(hbus->hdev->channel, read_blk,
1448			       sizeof(*read_blk), (unsigned long)&pkt.pkt,
1449			       VM_PKT_DATA_INBAND,
1450			       VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
1451	if (ret)
1452		return ret;
1453
1454	ret = wait_for_response(hbus->hdev, &comp_pkt.comp_pkt.host_event);
1455	if (ret)
1456		return ret;
1457
1458	if (comp_pkt.comp_pkt.completion_status != 0 ||
1459	    comp_pkt.bytes_returned == 0) {
1460		dev_err(&hbus->hdev->device,
1461			"Read Config Block failed: 0x%x, bytes_returned=%d\n",
1462			comp_pkt.comp_pkt.completion_status,
1463			comp_pkt.bytes_returned);
1464		return -EIO;
1465	}
1466
1467	*bytes_returned = comp_pkt.bytes_returned;
1468	return 0;
1469}
1470
1471/**
1472 * hv_pci_write_config_compl() - Invoked when a response packet for a write
1473 * config block operation arrives.
1474 * @context:		Identifies the write config operation
1475 * @resp:		The response packet itself
1476 * @resp_packet_size:	Size in bytes of the response packet
1477 */
1478static void hv_pci_write_config_compl(void *context, struct pci_response *resp,
1479				      int resp_packet_size)
1480{
1481	struct hv_pci_compl *comp_pkt = context;
1482
1483	comp_pkt->completion_status = resp->status;
1484	complete(&comp_pkt->host_event);
1485}
1486
1487/**
1488 * hv_write_config_block() - Sends a write config block request to the
1489 * back-end driver running in the Hyper-V parent partition.
1490 * @pdev:		The PCI driver's representation for this device.
1491 * @buf:		Buffer from which the config block will	be copied.
1492 * @len:		Size in bytes of buf.
1493 * @block_id:		Identifies the config block which is being written.
1494 *
1495 * Return: 0 on success, -errno on failure
1496 */
1497static int hv_write_config_block(struct pci_dev *pdev, void *buf,
1498				unsigned int len, unsigned int block_id)
1499{
1500	struct hv_pcibus_device *hbus =
1501		container_of(pdev->bus->sysdata, struct hv_pcibus_device,
1502			     sysdata);
1503	struct {
1504		struct pci_packet pkt;
1505		char buf[sizeof(struct pci_write_block)];
1506		u32 reserved;
1507	} pkt;
1508	struct hv_pci_compl comp_pkt;
1509	struct pci_write_block *write_blk;
1510	u32 pkt_size;
1511	int ret;
1512
1513	if (len == 0 || len > HV_CONFIG_BLOCK_SIZE_MAX)
1514		return -EINVAL;
1515
1516	init_completion(&comp_pkt.host_event);
1517
1518	memset(&pkt, 0, sizeof(pkt));
1519	pkt.pkt.completion_func = hv_pci_write_config_compl;
1520	pkt.pkt.compl_ctxt = &comp_pkt;
1521	write_blk = (struct pci_write_block *)&pkt.pkt.message;
1522	write_blk->message_type.type = PCI_WRITE_BLOCK;
1523	write_blk->wslot.slot = devfn_to_wslot(pdev->devfn);
1524	write_blk->block_id = block_id;
1525	write_blk->byte_count = len;
1526	memcpy(write_blk->bytes, buf, len);
1527	pkt_size = offsetof(struct pci_write_block, bytes) + len;
1528	/*
1529	 * This quirk is required on some hosts shipped around 2018, because
1530	 * these hosts don't check the pkt_size correctly (new hosts have been
1531	 * fixed since early 2019). The quirk is also safe on very old hosts
1532	 * and new hosts, because, on them, what really matters is the length
1533	 * specified in write_blk->byte_count.
1534	 */
1535	pkt_size += sizeof(pkt.reserved);
1536
1537	ret = vmbus_sendpacket(hbus->hdev->channel, write_blk, pkt_size,
1538			       (unsigned long)&pkt.pkt, VM_PKT_DATA_INBAND,
1539			       VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
1540	if (ret)
1541		return ret;
1542
1543	ret = wait_for_response(hbus->hdev, &comp_pkt.host_event);
1544	if (ret)
1545		return ret;
1546
1547	if (comp_pkt.completion_status != 0) {
1548		dev_err(&hbus->hdev->device,
1549			"Write Config Block failed: 0x%x\n",
1550			comp_pkt.completion_status);
1551		return -EIO;
1552	}
1553
1554	return 0;
1555}
1556
1557/**
1558 * hv_register_block_invalidate() - Invoked when a config block invalidation
1559 * arrives from the back-end driver.
1560 * @pdev:		The PCI driver's representation for this device.
1561 * @context:		Identifies the device.
1562 * @block_invalidate:	Identifies all of the blocks being invalidated.
1563 *
1564 * Return: 0 on success, -errno on failure
1565 */
1566static int hv_register_block_invalidate(struct pci_dev *pdev, void *context,
1567					void (*block_invalidate)(void *context,
1568								 u64 block_mask))
1569{
1570	struct hv_pcibus_device *hbus =
1571		container_of(pdev->bus->sysdata, struct hv_pcibus_device,
1572			     sysdata);
1573	struct hv_pci_dev *hpdev;
1574
1575	hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(pdev->devfn));
1576	if (!hpdev)
1577		return -ENODEV;
1578
1579	hpdev->block_invalidate = block_invalidate;
1580	hpdev->invalidate_context = context;
1581
1582	put_pcichild(hpdev);
1583	return 0;
1584
1585}
1586
1587/* Interrupt management hooks */
1588static void hv_int_desc_free(struct hv_pci_dev *hpdev,
1589			     struct tran_int_desc *int_desc)
1590{
1591	struct pci_delete_interrupt *int_pkt;
1592	struct {
1593		struct pci_packet pkt;
1594		u8 buffer[sizeof(struct pci_delete_interrupt)];
1595	} ctxt;
1596
1597	if (!int_desc->vector_count) {
1598		kfree(int_desc);
1599		return;
1600	}
1601	memset(&ctxt, 0, sizeof(ctxt));
1602	int_pkt = (struct pci_delete_interrupt *)&ctxt.pkt.message;
1603	int_pkt->message_type.type =
1604		PCI_DELETE_INTERRUPT_MESSAGE;
1605	int_pkt->wslot.slot = hpdev->desc.win_slot.slot;
1606	int_pkt->int_desc = *int_desc;
1607	vmbus_sendpacket(hpdev->hbus->hdev->channel, int_pkt, sizeof(*int_pkt),
1608			 0, VM_PKT_DATA_INBAND, 0);
1609	kfree(int_desc);
1610}
1611
1612/**
1613 * hv_msi_free() - Free the MSI.
1614 * @domain:	The interrupt domain pointer
1615 * @info:	Extra MSI-related context
1616 * @irq:	Identifies the IRQ.
1617 *
1618 * The Hyper-V parent partition and hypervisor are tracking the
1619 * messages that are in use, keeping the interrupt redirection
1620 * table up to date.  This callback sends a message that frees
1621 * the IRT entry and related tracking nonsense.
1622 */
1623static void hv_msi_free(struct irq_domain *domain, struct msi_domain_info *info,
1624			unsigned int irq)
1625{
1626	struct hv_pcibus_device *hbus;
1627	struct hv_pci_dev *hpdev;
1628	struct pci_dev *pdev;
1629	struct tran_int_desc *int_desc;
1630	struct irq_data *irq_data = irq_domain_get_irq_data(domain, irq);
1631	struct msi_desc *msi = irq_data_get_msi_desc(irq_data);
1632
1633	pdev = msi_desc_to_pci_dev(msi);
1634	hbus = info->data;
1635	int_desc = irq_data_get_irq_chip_data(irq_data);
1636	if (!int_desc)
1637		return;
1638
1639	irq_data->chip_data = NULL;
1640	hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(pdev->devfn));
1641	if (!hpdev) {
1642		kfree(int_desc);
1643		return;
1644	}
1645
1646	hv_int_desc_free(hpdev, int_desc);
1647	put_pcichild(hpdev);
1648}
1649
 
 
 
 
 
 
 
 
1650static void hv_irq_mask(struct irq_data *data)
1651{
1652	pci_msi_mask_irq(data);
1653	if (data->parent_data->chip->irq_mask)
1654		irq_chip_mask_parent(data);
1655}
1656
 
 
 
 
 
 
 
 
 
 
1657static void hv_irq_unmask(struct irq_data *data)
1658{
1659	hv_arch_irq_unmask(data);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1660
1661	if (data->parent_data->chip->irq_unmask)
1662		irq_chip_unmask_parent(data);
1663	pci_msi_unmask_irq(data);
1664}
1665
1666struct compose_comp_ctxt {
1667	struct hv_pci_compl comp_pkt;
1668	struct tran_int_desc int_desc;
1669};
1670
1671static void hv_pci_compose_compl(void *context, struct pci_response *resp,
1672				 int resp_packet_size)
1673{
1674	struct compose_comp_ctxt *comp_pkt = context;
1675	struct pci_create_int_response *int_resp =
1676		(struct pci_create_int_response *)resp;
1677
1678	if (resp_packet_size < sizeof(*int_resp)) {
1679		comp_pkt->comp_pkt.completion_status = -1;
1680		goto out;
1681	}
1682	comp_pkt->comp_pkt.completion_status = resp->status;
1683	comp_pkt->int_desc = int_resp->int_desc;
1684out:
1685	complete(&comp_pkt->comp_pkt.host_event);
1686}
1687
1688static u32 hv_compose_msi_req_v1(
1689	struct pci_create_interrupt *int_pkt,
1690	u32 slot, u8 vector, u16 vector_count)
1691{
1692	int_pkt->message_type.type = PCI_CREATE_INTERRUPT_MESSAGE;
1693	int_pkt->wslot.slot = slot;
1694	int_pkt->int_desc.vector = vector;
1695	int_pkt->int_desc.vector_count = vector_count;
1696	int_pkt->int_desc.delivery_mode = DELIVERY_MODE;
1697
1698	/*
1699	 * Create MSI w/ dummy vCPU set, overwritten by subsequent retarget in
1700	 * hv_irq_unmask().
1701	 */
1702	int_pkt->int_desc.cpu_mask = CPU_AFFINITY_ALL;
1703
1704	return sizeof(*int_pkt);
1705}
1706
1707/*
1708 * The vCPU selected by hv_compose_multi_msi_req_get_cpu() and
1709 * hv_compose_msi_req_get_cpu() is a "dummy" vCPU because the final vCPU to be
1710 * interrupted is specified later in hv_irq_unmask() and communicated to Hyper-V
1711 * via the HVCALL_RETARGET_INTERRUPT hypercall. But the choice of dummy vCPU is
1712 * not irrelevant because Hyper-V chooses the physical CPU to handle the
1713 * interrupts based on the vCPU specified in message sent to the vPCI VSP in
1714 * hv_compose_msi_msg(). Hyper-V's choice of pCPU is not visible to the guest,
1715 * but assigning too many vPCI device interrupts to the same pCPU can cause a
1716 * performance bottleneck. So we spread out the dummy vCPUs to influence Hyper-V
1717 * to spread out the pCPUs that it selects.
1718 *
1719 * For the single-MSI and MSI-X cases, it's OK for hv_compose_msi_req_get_cpu()
1720 * to always return the same dummy vCPU, because a second call to
1721 * hv_compose_msi_msg() contains the "real" vCPU, causing Hyper-V to choose a
1722 * new pCPU for the interrupt. But for the multi-MSI case, the second call to
1723 * hv_compose_msi_msg() exits without sending a message to the vPCI VSP, so the
1724 * original dummy vCPU is used. This dummy vCPU must be round-robin'ed so that
1725 * the pCPUs are spread out. All interrupts for a multi-MSI device end up using
1726 * the same pCPU, even though the vCPUs will be spread out by later calls
1727 * to hv_irq_unmask(), but that is the best we can do now.
1728 *
1729 * With Hyper-V in Nov 2022, the HVCALL_RETARGET_INTERRUPT hypercall does *not*
1730 * cause Hyper-V to reselect the pCPU based on the specified vCPU. Such an
1731 * enhancement is planned for a future version. With that enhancement, the
1732 * dummy vCPU selection won't matter, and interrupts for the same multi-MSI
1733 * device will be spread across multiple pCPUs.
1734 */
1735
1736/*
1737 * Create MSI w/ dummy vCPU set targeting just one vCPU, overwritten
1738 * by subsequent retarget in hv_irq_unmask().
1739 */
1740static int hv_compose_msi_req_get_cpu(const struct cpumask *affinity)
1741{
1742	return cpumask_first_and(affinity, cpu_online_mask);
1743}
1744
1745/*
1746 * Make sure the dummy vCPU values for multi-MSI don't all point to vCPU0.
1747 */
1748static int hv_compose_multi_msi_req_get_cpu(void)
1749{
1750	static DEFINE_SPINLOCK(multi_msi_cpu_lock);
1751
1752	/* -1 means starting with CPU 0 */
1753	static int cpu_next = -1;
1754
1755	unsigned long flags;
1756	int cpu;
1757
1758	spin_lock_irqsave(&multi_msi_cpu_lock, flags);
1759
1760	cpu_next = cpumask_next_wrap(cpu_next, cpu_online_mask, nr_cpu_ids,
1761				     false);
1762	cpu = cpu_next;
1763
1764	spin_unlock_irqrestore(&multi_msi_cpu_lock, flags);
1765
1766	return cpu;
1767}
1768
1769static u32 hv_compose_msi_req_v2(
1770	struct pci_create_interrupt2 *int_pkt, int cpu,
1771	u32 slot, u8 vector, u16 vector_count)
1772{
1773	int_pkt->message_type.type = PCI_CREATE_INTERRUPT_MESSAGE2;
1774	int_pkt->wslot.slot = slot;
1775	int_pkt->int_desc.vector = vector;
1776	int_pkt->int_desc.vector_count = vector_count;
1777	int_pkt->int_desc.delivery_mode = DELIVERY_MODE;
1778	int_pkt->int_desc.processor_array[0] =
1779		hv_cpu_number_to_vp_number(cpu);
1780	int_pkt->int_desc.processor_count = 1;
1781
1782	return sizeof(*int_pkt);
1783}
1784
1785static u32 hv_compose_msi_req_v3(
1786	struct pci_create_interrupt3 *int_pkt, int cpu,
1787	u32 slot, u32 vector, u16 vector_count)
1788{
1789	int_pkt->message_type.type = PCI_CREATE_INTERRUPT_MESSAGE3;
1790	int_pkt->wslot.slot = slot;
1791	int_pkt->int_desc.vector = vector;
1792	int_pkt->int_desc.reserved = 0;
1793	int_pkt->int_desc.vector_count = vector_count;
1794	int_pkt->int_desc.delivery_mode = DELIVERY_MODE;
1795	int_pkt->int_desc.processor_array[0] =
1796		hv_cpu_number_to_vp_number(cpu);
1797	int_pkt->int_desc.processor_count = 1;
1798
1799	return sizeof(*int_pkt);
1800}
1801
1802/**
1803 * hv_compose_msi_msg() - Supplies a valid MSI address/data
1804 * @data:	Everything about this MSI
1805 * @msg:	Buffer that is filled in by this function
1806 *
1807 * This function unpacks the IRQ looking for target CPU set, IDT
1808 * vector and mode and sends a message to the parent partition
1809 * asking for a mapping for that tuple in this partition.  The
1810 * response supplies a data value and address to which that data
1811 * should be written to trigger that interrupt.
1812 */
1813static void hv_compose_msi_msg(struct irq_data *data, struct msi_msg *msg)
1814{
 
1815	struct hv_pcibus_device *hbus;
1816	struct vmbus_channel *channel;
1817	struct hv_pci_dev *hpdev;
1818	struct pci_bus *pbus;
1819	struct pci_dev *pdev;
1820	const struct cpumask *dest;
1821	struct compose_comp_ctxt comp;
1822	struct tran_int_desc *int_desc;
1823	struct msi_desc *msi_desc;
1824	/*
1825	 * vector_count should be u16: see hv_msi_desc, hv_msi_desc2
1826	 * and hv_msi_desc3. vector must be u32: see hv_msi_desc3.
1827	 */
1828	u16 vector_count;
1829	u32 vector;
1830	struct {
1831		struct pci_packet pci_pkt;
1832		union {
1833			struct pci_create_interrupt v1;
1834			struct pci_create_interrupt2 v2;
1835			struct pci_create_interrupt3 v3;
1836		} int_pkts;
1837	} __packed ctxt;
1838	bool multi_msi;
1839	u64 trans_id;
1840	u32 size;
1841	int ret;
1842	int cpu;
1843
1844	msi_desc  = irq_data_get_msi_desc(data);
1845	multi_msi = !msi_desc->pci.msi_attrib.is_msix &&
1846		    msi_desc->nvec_used > 1;
1847
1848	/* Reuse the previous allocation */
1849	if (data->chip_data && multi_msi) {
1850		int_desc = data->chip_data;
1851		msg->address_hi = int_desc->address >> 32;
1852		msg->address_lo = int_desc->address & 0xffffffff;
1853		msg->data = int_desc->data;
1854		return;
1855	}
1856
1857	pdev = msi_desc_to_pci_dev(msi_desc);
1858	dest = irq_data_get_effective_affinity_mask(data);
1859	pbus = pdev->bus;
1860	hbus = container_of(pbus->sysdata, struct hv_pcibus_device, sysdata);
1861	channel = hbus->hdev->channel;
1862	hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(pdev->devfn));
1863	if (!hpdev)
1864		goto return_null_message;
1865
1866	/* Free any previous message that might have already been composed. */
1867	if (data->chip_data && !multi_msi) {
1868		int_desc = data->chip_data;
1869		data->chip_data = NULL;
1870		hv_int_desc_free(hpdev, int_desc);
1871	}
1872
1873	int_desc = kzalloc(sizeof(*int_desc), GFP_ATOMIC);
1874	if (!int_desc)
1875		goto drop_reference;
1876
1877	if (multi_msi) {
1878		/*
1879		 * If this is not the first MSI of Multi MSI, we already have
1880		 * a mapping.  Can exit early.
1881		 */
1882		if (msi_desc->irq != data->irq) {
1883			data->chip_data = int_desc;
1884			int_desc->address = msi_desc->msg.address_lo |
1885					    (u64)msi_desc->msg.address_hi << 32;
1886			int_desc->data = msi_desc->msg.data +
1887					 (data->irq - msi_desc->irq);
1888			msg->address_hi = msi_desc->msg.address_hi;
1889			msg->address_lo = msi_desc->msg.address_lo;
1890			msg->data = int_desc->data;
1891			put_pcichild(hpdev);
1892			return;
1893		}
1894		/*
1895		 * The vector we select here is a dummy value.  The correct
1896		 * value gets sent to the hypervisor in unmask().  This needs
1897		 * to be aligned with the count, and also not zero.  Multi-msi
1898		 * is powers of 2 up to 32, so 32 will always work here.
1899		 */
1900		vector = 32;
1901		vector_count = msi_desc->nvec_used;
1902		cpu = hv_compose_multi_msi_req_get_cpu();
1903	} else {
1904		vector = hv_msi_get_int_vector(data);
1905		vector_count = 1;
1906		cpu = hv_compose_msi_req_get_cpu(dest);
1907	}
1908
1909	/*
1910	 * hv_compose_msi_req_v1 and v2 are for x86 only, meaning 'vector'
1911	 * can't exceed u8. Cast 'vector' down to u8 for v1/v2 explicitly
1912	 * for better readability.
1913	 */
1914	memset(&ctxt, 0, sizeof(ctxt));
1915	init_completion(&comp.comp_pkt.host_event);
1916	ctxt.pci_pkt.completion_func = hv_pci_compose_compl;
1917	ctxt.pci_pkt.compl_ctxt = &comp;
1918
1919	switch (hbus->protocol_version) {
1920	case PCI_PROTOCOL_VERSION_1_1:
1921		size = hv_compose_msi_req_v1(&ctxt.int_pkts.v1,
 
1922					hpdev->desc.win_slot.slot,
1923					(u8)vector,
1924					vector_count);
1925		break;
1926
1927	case PCI_PROTOCOL_VERSION_1_2:
1928	case PCI_PROTOCOL_VERSION_1_3:
1929		size = hv_compose_msi_req_v2(&ctxt.int_pkts.v2,
1930					cpu,
1931					hpdev->desc.win_slot.slot,
1932					(u8)vector,
1933					vector_count);
1934		break;
1935
1936	case PCI_PROTOCOL_VERSION_1_4:
1937		size = hv_compose_msi_req_v3(&ctxt.int_pkts.v3,
1938					cpu,
1939					hpdev->desc.win_slot.slot,
1940					vector,
1941					vector_count);
1942		break;
1943
1944	default:
1945		/* As we only negotiate protocol versions known to this driver,
1946		 * this path should never hit. However, this is it not a hot
1947		 * path so we print a message to aid future updates.
1948		 */
1949		dev_err(&hbus->hdev->device,
1950			"Unexpected vPCI protocol, update driver.");
1951		goto free_int_desc;
1952	}
1953
1954	ret = vmbus_sendpacket_getid(hpdev->hbus->hdev->channel, &ctxt.int_pkts,
1955				     size, (unsigned long)&ctxt.pci_pkt,
1956				     &trans_id, VM_PKT_DATA_INBAND,
1957				     VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
1958	if (ret) {
1959		dev_err(&hbus->hdev->device,
1960			"Sending request for interrupt failed: 0x%x",
1961			comp.comp_pkt.completion_status);
1962		goto free_int_desc;
1963	}
1964
1965	/*
1966	 * Prevents hv_pci_onchannelcallback() from running concurrently
1967	 * in the tasklet.
1968	 */
1969	tasklet_disable_in_atomic(&channel->callback_event);
1970
1971	/*
1972	 * Since this function is called with IRQ locks held, can't
1973	 * do normal wait for completion; instead poll.
1974	 */
1975	while (!try_wait_for_completion(&comp.comp_pkt.host_event)) {
1976		unsigned long flags;
1977
1978		/* 0xFFFF means an invalid PCI VENDOR ID. */
1979		if (hv_pcifront_get_vendor_id(hpdev) == 0xFFFF) {
1980			dev_err_once(&hbus->hdev->device,
1981				     "the device has gone\n");
1982			goto enable_tasklet;
1983		}
1984
1985		/*
1986		 * Make sure that the ring buffer data structure doesn't get
1987		 * freed while we dereference the ring buffer pointer.  Test
1988		 * for the channel's onchannel_callback being NULL within a
1989		 * sched_lock critical section.  See also the inline comments
1990		 * in vmbus_reset_channel_cb().
1991		 */
1992		spin_lock_irqsave(&channel->sched_lock, flags);
1993		if (unlikely(channel->onchannel_callback == NULL)) {
1994			spin_unlock_irqrestore(&channel->sched_lock, flags);
1995			goto enable_tasklet;
1996		}
1997		hv_pci_onchannelcallback(hbus);
1998		spin_unlock_irqrestore(&channel->sched_lock, flags);
1999
 
 
 
 
 
 
2000		udelay(100);
2001	}
2002
2003	tasklet_enable(&channel->callback_event);
2004
2005	if (comp.comp_pkt.completion_status < 0) {
2006		dev_err(&hbus->hdev->device,
2007			"Request for interrupt failed: 0x%x",
2008			comp.comp_pkt.completion_status);
2009		goto free_int_desc;
2010	}
2011
2012	/*
2013	 * Record the assignment so that this can be unwound later. Using
2014	 * irq_set_chip_data() here would be appropriate, but the lock it takes
2015	 * is already held.
2016	 */
2017	*int_desc = comp.int_desc;
2018	data->chip_data = int_desc;
2019
2020	/* Pass up the result. */
2021	msg->address_hi = comp.int_desc.address >> 32;
2022	msg->address_lo = comp.int_desc.address & 0xffffffff;
2023	msg->data = comp.int_desc.data;
2024
2025	put_pcichild(hpdev);
2026	return;
2027
2028enable_tasklet:
2029	tasklet_enable(&channel->callback_event);
2030	/*
2031	 * The completion packet on the stack becomes invalid after 'return';
2032	 * remove the ID from the VMbus requestor if the identifier is still
2033	 * mapped to/associated with the packet.  (The identifier could have
2034	 * been 're-used', i.e., already removed and (re-)mapped.)
2035	 *
2036	 * Cf. hv_pci_onchannelcallback().
2037	 */
2038	vmbus_request_addr_match(channel, trans_id, (unsigned long)&ctxt.pci_pkt);
2039free_int_desc:
2040	kfree(int_desc);
2041drop_reference:
2042	put_pcichild(hpdev);
2043return_null_message:
2044	msg->address_hi = 0;
2045	msg->address_lo = 0;
2046	msg->data = 0;
2047}
2048
2049/* HW Interrupt Chip Descriptor */
2050static struct irq_chip hv_msi_irq_chip = {
2051	.name			= "Hyper-V PCIe MSI",
2052	.irq_compose_msi_msg	= hv_compose_msi_msg,
2053	.irq_set_affinity	= irq_chip_set_affinity_parent,
2054#ifdef CONFIG_X86
2055	.irq_ack		= irq_chip_ack_parent,
2056#elif defined(CONFIG_ARM64)
2057	.irq_eoi		= irq_chip_eoi_parent,
2058#endif
2059	.irq_mask		= hv_irq_mask,
2060	.irq_unmask		= hv_irq_unmask,
2061};
2062
 
 
 
 
 
 
2063static struct msi_domain_ops hv_msi_ops = {
2064	.msi_prepare	= hv_msi_prepare,
 
 
2065	.msi_free	= hv_msi_free,
2066};
2067
2068/**
2069 * hv_pcie_init_irq_domain() - Initialize IRQ domain
2070 * @hbus:	The root PCI bus
2071 *
2072 * This function creates an IRQ domain which will be used for
2073 * interrupts from devices that have been passed through.  These
2074 * devices only support MSI and MSI-X, not line-based interrupts
2075 * or simulations of line-based interrupts through PCIe's
2076 * fabric-layer messages.  Because interrupts are remapped, we
2077 * can support multi-message MSI here.
2078 *
2079 * Return: '0' on success and error value on failure
2080 */
2081static int hv_pcie_init_irq_domain(struct hv_pcibus_device *hbus)
2082{
2083	hbus->msi_info.chip = &hv_msi_irq_chip;
2084	hbus->msi_info.ops = &hv_msi_ops;
2085	hbus->msi_info.flags = (MSI_FLAG_USE_DEF_DOM_OPS |
2086		MSI_FLAG_USE_DEF_CHIP_OPS | MSI_FLAG_MULTI_PCI_MSI |
2087		MSI_FLAG_PCI_MSIX);
2088	hbus->msi_info.handler = FLOW_HANDLER;
2089	hbus->msi_info.handler_name = FLOW_NAME;
2090	hbus->msi_info.data = hbus;
2091	hbus->irq_domain = pci_msi_create_irq_domain(hbus->fwnode,
2092						     &hbus->msi_info,
2093						     hv_pci_get_root_domain());
2094	if (!hbus->irq_domain) {
2095		dev_err(&hbus->hdev->device,
2096			"Failed to build an MSI IRQ domain\n");
2097		return -ENODEV;
2098	}
2099
2100	dev_set_msi_domain(&hbus->bridge->dev, hbus->irq_domain);
2101
2102	return 0;
2103}
2104
2105/**
2106 * get_bar_size() - Get the address space consumed by a BAR
2107 * @bar_val:	Value that a BAR returned after -1 was written
2108 *              to it.
2109 *
2110 * This function returns the size of the BAR, rounded up to 1
2111 * page.  It has to be rounded up because the hypervisor's page
2112 * table entry that maps the BAR into the VM can't specify an
2113 * offset within a page.  The invariant is that the hypervisor
2114 * must place any BARs of smaller than page length at the
2115 * beginning of a page.
2116 *
2117 * Return:	Size in bytes of the consumed MMIO space.
2118 */
2119static u64 get_bar_size(u64 bar_val)
2120{
2121	return round_up((1 + ~(bar_val & PCI_BASE_ADDRESS_MEM_MASK)),
2122			PAGE_SIZE);
2123}
2124
2125/**
2126 * survey_child_resources() - Total all MMIO requirements
2127 * @hbus:	Root PCI bus, as understood by this driver
2128 */
2129static void survey_child_resources(struct hv_pcibus_device *hbus)
2130{
2131	struct hv_pci_dev *hpdev;
2132	resource_size_t bar_size = 0;
2133	unsigned long flags;
2134	struct completion *event;
2135	u64 bar_val;
2136	int i;
2137
2138	/* If nobody is waiting on the answer, don't compute it. */
2139	event = xchg(&hbus->survey_event, NULL);
2140	if (!event)
2141		return;
2142
2143	/* If the answer has already been computed, go with it. */
2144	if (hbus->low_mmio_space || hbus->high_mmio_space) {
2145		complete(event);
2146		return;
2147	}
2148
2149	spin_lock_irqsave(&hbus->device_list_lock, flags);
2150
2151	/*
2152	 * Due to an interesting quirk of the PCI spec, all memory regions
2153	 * for a child device are a power of 2 in size and aligned in memory,
2154	 * so it's sufficient to just add them up without tracking alignment.
2155	 */
2156	list_for_each_entry(hpdev, &hbus->children, list_entry) {
2157		for (i = 0; i < PCI_STD_NUM_BARS; i++) {
2158			if (hpdev->probed_bar[i] & PCI_BASE_ADDRESS_SPACE_IO)
2159				dev_err(&hbus->hdev->device,
2160					"There's an I/O BAR in this list!\n");
2161
2162			if (hpdev->probed_bar[i] != 0) {
2163				/*
2164				 * A probed BAR has all the upper bits set that
2165				 * can be changed.
2166				 */
2167
2168				bar_val = hpdev->probed_bar[i];
2169				if (bar_val & PCI_BASE_ADDRESS_MEM_TYPE_64)
2170					bar_val |=
2171					((u64)hpdev->probed_bar[++i] << 32);
2172				else
2173					bar_val |= 0xffffffff00000000ULL;
2174
2175				bar_size = get_bar_size(bar_val);
2176
2177				if (bar_val & PCI_BASE_ADDRESS_MEM_TYPE_64)
2178					hbus->high_mmio_space += bar_size;
2179				else
2180					hbus->low_mmio_space += bar_size;
2181			}
2182		}
2183	}
2184
2185	spin_unlock_irqrestore(&hbus->device_list_lock, flags);
2186	complete(event);
2187}
2188
2189/**
2190 * prepopulate_bars() - Fill in BARs with defaults
2191 * @hbus:	Root PCI bus, as understood by this driver
2192 *
2193 * The core PCI driver code seems much, much happier if the BARs
2194 * for a device have values upon first scan. So fill them in.
2195 * The algorithm below works down from large sizes to small,
2196 * attempting to pack the assignments optimally. The assumption,
2197 * enforced in other parts of the code, is that the beginning of
2198 * the memory-mapped I/O space will be aligned on the largest
2199 * BAR size.
2200 */
2201static void prepopulate_bars(struct hv_pcibus_device *hbus)
2202{
2203	resource_size_t high_size = 0;
2204	resource_size_t low_size = 0;
2205	resource_size_t high_base = 0;
2206	resource_size_t low_base = 0;
2207	resource_size_t bar_size;
2208	struct hv_pci_dev *hpdev;
2209	unsigned long flags;
2210	u64 bar_val;
2211	u32 command;
2212	bool high;
2213	int i;
2214
2215	if (hbus->low_mmio_space) {
2216		low_size = 1ULL << (63 - __builtin_clzll(hbus->low_mmio_space));
2217		low_base = hbus->low_mmio_res->start;
2218	}
2219
2220	if (hbus->high_mmio_space) {
2221		high_size = 1ULL <<
2222			(63 - __builtin_clzll(hbus->high_mmio_space));
2223		high_base = hbus->high_mmio_res->start;
2224	}
2225
2226	spin_lock_irqsave(&hbus->device_list_lock, flags);
2227
2228	/*
2229	 * Clear the memory enable bit, in case it's already set. This occurs
2230	 * in the suspend path of hibernation, where the device is suspended,
2231	 * resumed and suspended again: see hibernation_snapshot() and
2232	 * hibernation_platform_enter().
2233	 *
2234	 * If the memory enable bit is already set, Hyper-V silently ignores
2235	 * the below BAR updates, and the related PCI device driver can not
2236	 * work, because reading from the device register(s) always returns
2237	 * 0xFFFFFFFF (PCI_ERROR_RESPONSE).
2238	 */
2239	list_for_each_entry(hpdev, &hbus->children, list_entry) {
2240		_hv_pcifront_read_config(hpdev, PCI_COMMAND, 2, &command);
2241		command &= ~PCI_COMMAND_MEMORY;
2242		_hv_pcifront_write_config(hpdev, PCI_COMMAND, 2, command);
2243	}
2244
2245	/* Pick addresses for the BARs. */
2246	do {
2247		list_for_each_entry(hpdev, &hbus->children, list_entry) {
2248			for (i = 0; i < PCI_STD_NUM_BARS; i++) {
2249				bar_val = hpdev->probed_bar[i];
2250				if (bar_val == 0)
2251					continue;
2252				high = bar_val & PCI_BASE_ADDRESS_MEM_TYPE_64;
2253				if (high) {
2254					bar_val |=
2255						((u64)hpdev->probed_bar[i + 1]
2256						 << 32);
2257				} else {
2258					bar_val |= 0xffffffffULL << 32;
2259				}
2260				bar_size = get_bar_size(bar_val);
2261				if (high) {
2262					if (high_size != bar_size) {
2263						i++;
2264						continue;
2265					}
2266					_hv_pcifront_write_config(hpdev,
2267						PCI_BASE_ADDRESS_0 + (4 * i),
2268						4,
2269						(u32)(high_base & 0xffffff00));
2270					i++;
2271					_hv_pcifront_write_config(hpdev,
2272						PCI_BASE_ADDRESS_0 + (4 * i),
2273						4, (u32)(high_base >> 32));
2274					high_base += bar_size;
2275				} else {
2276					if (low_size != bar_size)
2277						continue;
2278					_hv_pcifront_write_config(hpdev,
2279						PCI_BASE_ADDRESS_0 + (4 * i),
2280						4,
2281						(u32)(low_base & 0xffffff00));
2282					low_base += bar_size;
2283				}
2284			}
2285			if (high_size <= 1 && low_size <= 1) {
2286				/*
2287				 * No need to set the PCI_COMMAND_MEMORY bit as
2288				 * the core PCI driver doesn't require the bit
2289				 * to be pre-set. Actually here we intentionally
2290				 * keep the bit off so that the PCI BAR probing
2291				 * in the core PCI driver doesn't cause Hyper-V
2292				 * to unnecessarily unmap/map the virtual BARs
2293				 * from/to the physical BARs multiple times.
2294				 * This reduces the VM boot time significantly
2295				 * if the BAR sizes are huge.
2296				 */
2297				break;
2298			}
2299		}
2300
2301		high_size >>= 1;
2302		low_size >>= 1;
2303	}  while (high_size || low_size);
2304
2305	spin_unlock_irqrestore(&hbus->device_list_lock, flags);
2306}
2307
2308/*
2309 * Assign entries in sysfs pci slot directory.
2310 *
2311 * Note that this function does not need to lock the children list
2312 * because it is called from pci_devices_present_work which
2313 * is serialized with hv_eject_device_work because they are on the
2314 * same ordered workqueue. Therefore hbus->children list will not change
2315 * even when pci_create_slot sleeps.
2316 */
2317static void hv_pci_assign_slots(struct hv_pcibus_device *hbus)
2318{
2319	struct hv_pci_dev *hpdev;
2320	char name[SLOT_NAME_SIZE];
2321	int slot_nr;
2322
2323	list_for_each_entry(hpdev, &hbus->children, list_entry) {
2324		if (hpdev->pci_slot)
2325			continue;
2326
2327		slot_nr = PCI_SLOT(wslot_to_devfn(hpdev->desc.win_slot.slot));
2328		snprintf(name, SLOT_NAME_SIZE, "%u", hpdev->desc.ser);
2329		hpdev->pci_slot = pci_create_slot(hbus->bridge->bus, slot_nr,
2330					  name, NULL);
2331		if (IS_ERR(hpdev->pci_slot)) {
2332			pr_warn("pci_create slot %s failed\n", name);
2333			hpdev->pci_slot = NULL;
2334		}
2335	}
2336}
2337
2338/*
2339 * Remove entries in sysfs pci slot directory.
2340 */
2341static void hv_pci_remove_slots(struct hv_pcibus_device *hbus)
2342{
2343	struct hv_pci_dev *hpdev;
2344
2345	list_for_each_entry(hpdev, &hbus->children, list_entry) {
2346		if (!hpdev->pci_slot)
2347			continue;
2348		pci_destroy_slot(hpdev->pci_slot);
2349		hpdev->pci_slot = NULL;
2350	}
2351}
2352
2353/*
2354 * Set NUMA node for the devices on the bus
2355 */
2356static void hv_pci_assign_numa_node(struct hv_pcibus_device *hbus)
2357{
2358	struct pci_dev *dev;
2359	struct pci_bus *bus = hbus->bridge->bus;
2360	struct hv_pci_dev *hv_dev;
2361
2362	list_for_each_entry(dev, &bus->devices, bus_list) {
2363		hv_dev = get_pcichild_wslot(hbus, devfn_to_wslot(dev->devfn));
2364		if (!hv_dev)
2365			continue;
2366
2367		if (hv_dev->desc.flags & HV_PCI_DEVICE_FLAG_NUMA_AFFINITY &&
2368		    hv_dev->desc.virtual_numa_node < num_possible_nodes())
2369			/*
2370			 * The kernel may boot with some NUMA nodes offline
2371			 * (e.g. in a KDUMP kernel) or with NUMA disabled via
2372			 * "numa=off". In those cases, adjust the host provided
2373			 * NUMA node to a valid NUMA node used by the kernel.
2374			 */
2375			set_dev_node(&dev->dev,
2376				     numa_map_to_online_node(
2377					     hv_dev->desc.virtual_numa_node));
2378
2379		put_pcichild(hv_dev);
2380	}
2381}
2382
2383/**
2384 * create_root_hv_pci_bus() - Expose a new root PCI bus
2385 * @hbus:	Root PCI bus, as understood by this driver
2386 *
2387 * Return: 0 on success, -errno on failure
2388 */
2389static int create_root_hv_pci_bus(struct hv_pcibus_device *hbus)
2390{
2391	int error;
2392	struct pci_host_bridge *bridge = hbus->bridge;
 
 
 
 
 
 
2393
2394	bridge->dev.parent = &hbus->hdev->device;
2395	bridge->sysdata = &hbus->sysdata;
2396	bridge->ops = &hv_pcifront_ops;
2397
2398	error = pci_scan_root_bus_bridge(bridge);
2399	if (error)
2400		return error;
2401
2402	pci_lock_rescan_remove();
 
2403	hv_pci_assign_numa_node(hbus);
2404	pci_bus_assign_resources(bridge->bus);
2405	hv_pci_assign_slots(hbus);
2406	pci_bus_add_devices(bridge->bus);
2407	pci_unlock_rescan_remove();
2408	hbus->state = hv_pcibus_installed;
2409	return 0;
2410}
2411
2412struct q_res_req_compl {
2413	struct completion host_event;
2414	struct hv_pci_dev *hpdev;
2415};
2416
2417/**
2418 * q_resource_requirements() - Query Resource Requirements
2419 * @context:		The completion context.
2420 * @resp:		The response that came from the host.
2421 * @resp_packet_size:	The size in bytes of resp.
2422 *
2423 * This function is invoked on completion of a Query Resource
2424 * Requirements packet.
2425 */
2426static void q_resource_requirements(void *context, struct pci_response *resp,
2427				    int resp_packet_size)
2428{
2429	struct q_res_req_compl *completion = context;
2430	struct pci_q_res_req_response *q_res_req =
2431		(struct pci_q_res_req_response *)resp;
2432	s32 status;
2433	int i;
2434
2435	status = (resp_packet_size < sizeof(*q_res_req)) ? -1 : resp->status;
2436	if (status < 0) {
2437		dev_err(&completion->hpdev->hbus->hdev->device,
2438			"query resource requirements failed: %x\n",
2439			status);
2440	} else {
2441		for (i = 0; i < PCI_STD_NUM_BARS; i++) {
2442			completion->hpdev->probed_bar[i] =
2443				q_res_req->probed_bar[i];
2444		}
2445	}
2446
2447	complete(&completion->host_event);
2448}
2449
2450/**
2451 * new_pcichild_device() - Create a new child device
2452 * @hbus:	The internal struct tracking this root PCI bus.
2453 * @desc:	The information supplied so far from the host
2454 *              about the device.
2455 *
2456 * This function creates the tracking structure for a new child
2457 * device and kicks off the process of figuring out what it is.
2458 *
2459 * Return: Pointer to the new tracking struct
2460 */
2461static struct hv_pci_dev *new_pcichild_device(struct hv_pcibus_device *hbus,
2462		struct hv_pcidev_description *desc)
2463{
2464	struct hv_pci_dev *hpdev;
2465	struct pci_child_message *res_req;
2466	struct q_res_req_compl comp_pkt;
2467	struct {
2468		struct pci_packet init_packet;
2469		u8 buffer[sizeof(struct pci_child_message)];
2470	} pkt;
2471	unsigned long flags;
2472	int ret;
2473
2474	hpdev = kzalloc(sizeof(*hpdev), GFP_KERNEL);
2475	if (!hpdev)
2476		return NULL;
2477
2478	hpdev->hbus = hbus;
2479
2480	memset(&pkt, 0, sizeof(pkt));
2481	init_completion(&comp_pkt.host_event);
2482	comp_pkt.hpdev = hpdev;
2483	pkt.init_packet.compl_ctxt = &comp_pkt;
2484	pkt.init_packet.completion_func = q_resource_requirements;
2485	res_req = (struct pci_child_message *)&pkt.init_packet.message;
2486	res_req->message_type.type = PCI_QUERY_RESOURCE_REQUIREMENTS;
2487	res_req->wslot.slot = desc->win_slot.slot;
2488
2489	ret = vmbus_sendpacket(hbus->hdev->channel, res_req,
2490			       sizeof(struct pci_child_message),
2491			       (unsigned long)&pkt.init_packet,
2492			       VM_PKT_DATA_INBAND,
2493			       VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
2494	if (ret)
2495		goto error;
2496
2497	if (wait_for_response(hbus->hdev, &comp_pkt.host_event))
2498		goto error;
2499
2500	hpdev->desc = *desc;
2501	refcount_set(&hpdev->refs, 1);
2502	get_pcichild(hpdev);
2503	spin_lock_irqsave(&hbus->device_list_lock, flags);
2504
2505	list_add_tail(&hpdev->list_entry, &hbus->children);
2506	spin_unlock_irqrestore(&hbus->device_list_lock, flags);
2507	return hpdev;
2508
2509error:
2510	kfree(hpdev);
2511	return NULL;
2512}
2513
2514/**
2515 * get_pcichild_wslot() - Find device from slot
2516 * @hbus:	Root PCI bus, as understood by this driver
2517 * @wslot:	Location on the bus
2518 *
2519 * This function looks up a PCI device and returns the internal
2520 * representation of it.  It acquires a reference on it, so that
2521 * the device won't be deleted while somebody is using it.  The
2522 * caller is responsible for calling put_pcichild() to release
2523 * this reference.
2524 *
2525 * Return:	Internal representation of a PCI device
2526 */
2527static struct hv_pci_dev *get_pcichild_wslot(struct hv_pcibus_device *hbus,
2528					     u32 wslot)
2529{
2530	unsigned long flags;
2531	struct hv_pci_dev *iter, *hpdev = NULL;
2532
2533	spin_lock_irqsave(&hbus->device_list_lock, flags);
2534	list_for_each_entry(iter, &hbus->children, list_entry) {
2535		if (iter->desc.win_slot.slot == wslot) {
2536			hpdev = iter;
2537			get_pcichild(hpdev);
2538			break;
2539		}
2540	}
2541	spin_unlock_irqrestore(&hbus->device_list_lock, flags);
2542
2543	return hpdev;
2544}
2545
2546/**
2547 * pci_devices_present_work() - Handle new list of child devices
2548 * @work:	Work struct embedded in struct hv_dr_work
2549 *
2550 * "Bus Relations" is the Windows term for "children of this
2551 * bus."  The terminology is preserved here for people trying to
2552 * debug the interaction between Hyper-V and Linux.  This
2553 * function is called when the parent partition reports a list
2554 * of functions that should be observed under this PCI Express
2555 * port (bus).
2556 *
2557 * This function updates the list, and must tolerate being
2558 * called multiple times with the same information.  The typical
2559 * number of child devices is one, with very atypical cases
2560 * involving three or four, so the algorithms used here can be
2561 * simple and inefficient.
2562 *
2563 * It must also treat the omission of a previously observed device as
2564 * notification that the device no longer exists.
2565 *
2566 * Note that this function is serialized with hv_eject_device_work(),
2567 * because both are pushed to the ordered workqueue hbus->wq.
2568 */
2569static void pci_devices_present_work(struct work_struct *work)
2570{
2571	u32 child_no;
2572	bool found;
2573	struct hv_pcidev_description *new_desc;
2574	struct hv_pci_dev *hpdev;
2575	struct hv_pcibus_device *hbus;
2576	struct list_head removed;
2577	struct hv_dr_work *dr_wrk;
2578	struct hv_dr_state *dr = NULL;
2579	unsigned long flags;
2580
2581	dr_wrk = container_of(work, struct hv_dr_work, wrk);
2582	hbus = dr_wrk->bus;
2583	kfree(dr_wrk);
2584
2585	INIT_LIST_HEAD(&removed);
2586
2587	/* Pull this off the queue and process it if it was the last one. */
2588	spin_lock_irqsave(&hbus->device_list_lock, flags);
2589	while (!list_empty(&hbus->dr_list)) {
2590		dr = list_first_entry(&hbus->dr_list, struct hv_dr_state,
2591				      list_entry);
2592		list_del(&dr->list_entry);
2593
2594		/* Throw this away if the list still has stuff in it. */
2595		if (!list_empty(&hbus->dr_list)) {
2596			kfree(dr);
2597			continue;
2598		}
2599	}
2600	spin_unlock_irqrestore(&hbus->device_list_lock, flags);
2601
2602	if (!dr)
 
2603		return;
2604
2605	mutex_lock(&hbus->state_lock);
2606
2607	/* First, mark all existing children as reported missing. */
2608	spin_lock_irqsave(&hbus->device_list_lock, flags);
2609	list_for_each_entry(hpdev, &hbus->children, list_entry) {
2610		hpdev->reported_missing = true;
2611	}
2612	spin_unlock_irqrestore(&hbus->device_list_lock, flags);
2613
2614	/* Next, add back any reported devices. */
2615	for (child_no = 0; child_no < dr->device_count; child_no++) {
2616		found = false;
2617		new_desc = &dr->func[child_no];
2618
2619		spin_lock_irqsave(&hbus->device_list_lock, flags);
2620		list_for_each_entry(hpdev, &hbus->children, list_entry) {
2621			if ((hpdev->desc.win_slot.slot == new_desc->win_slot.slot) &&
2622			    (hpdev->desc.v_id == new_desc->v_id) &&
2623			    (hpdev->desc.d_id == new_desc->d_id) &&
2624			    (hpdev->desc.ser == new_desc->ser)) {
2625				hpdev->reported_missing = false;
2626				found = true;
2627			}
2628		}
2629		spin_unlock_irqrestore(&hbus->device_list_lock, flags);
2630
2631		if (!found) {
2632			hpdev = new_pcichild_device(hbus, new_desc);
2633			if (!hpdev)
2634				dev_err(&hbus->hdev->device,
2635					"couldn't record a child device.\n");
2636		}
2637	}
2638
2639	/* Move missing children to a list on the stack. */
2640	spin_lock_irqsave(&hbus->device_list_lock, flags);
2641	do {
2642		found = false;
2643		list_for_each_entry(hpdev, &hbus->children, list_entry) {
2644			if (hpdev->reported_missing) {
2645				found = true;
2646				put_pcichild(hpdev);
2647				list_move_tail(&hpdev->list_entry, &removed);
2648				break;
2649			}
2650		}
2651	} while (found);
2652	spin_unlock_irqrestore(&hbus->device_list_lock, flags);
2653
2654	/* Delete everything that should no longer exist. */
2655	while (!list_empty(&removed)) {
2656		hpdev = list_first_entry(&removed, struct hv_pci_dev,
2657					 list_entry);
2658		list_del(&hpdev->list_entry);
2659
2660		if (hpdev->pci_slot)
2661			pci_destroy_slot(hpdev->pci_slot);
2662
2663		put_pcichild(hpdev);
2664	}
2665
2666	switch (hbus->state) {
2667	case hv_pcibus_installed:
2668		/*
2669		 * Tell the core to rescan bus
2670		 * because there may have been changes.
2671		 */
2672		pci_lock_rescan_remove();
2673		pci_scan_child_bus(hbus->bridge->bus);
2674		hv_pci_assign_numa_node(hbus);
2675		hv_pci_assign_slots(hbus);
2676		pci_unlock_rescan_remove();
2677		break;
2678
2679	case hv_pcibus_init:
2680	case hv_pcibus_probed:
2681		survey_child_resources(hbus);
2682		break;
2683
2684	default:
2685		break;
2686	}
2687
2688	mutex_unlock(&hbus->state_lock);
2689
2690	kfree(dr);
2691}
2692
2693/**
2694 * hv_pci_start_relations_work() - Queue work to start device discovery
2695 * @hbus:	Root PCI bus, as understood by this driver
2696 * @dr:		The list of children returned from host
2697 *
2698 * Return:  0 on success, -errno on failure
2699 */
2700static int hv_pci_start_relations_work(struct hv_pcibus_device *hbus,
2701				       struct hv_dr_state *dr)
2702{
2703	struct hv_dr_work *dr_wrk;
2704	unsigned long flags;
2705	bool pending_dr;
2706
2707	if (hbus->state == hv_pcibus_removing) {
2708		dev_info(&hbus->hdev->device,
2709			 "PCI VMBus BUS_RELATIONS: ignored\n");
2710		return -ENOENT;
2711	}
2712
2713	dr_wrk = kzalloc(sizeof(*dr_wrk), GFP_NOWAIT);
2714	if (!dr_wrk)
2715		return -ENOMEM;
2716
2717	INIT_WORK(&dr_wrk->wrk, pci_devices_present_work);
2718	dr_wrk->bus = hbus;
2719
2720	spin_lock_irqsave(&hbus->device_list_lock, flags);
2721	/*
2722	 * If pending_dr is true, we have already queued a work,
2723	 * which will see the new dr. Otherwise, we need to
2724	 * queue a new work.
2725	 */
2726	pending_dr = !list_empty(&hbus->dr_list);
2727	list_add_tail(&dr->list_entry, &hbus->dr_list);
2728	spin_unlock_irqrestore(&hbus->device_list_lock, flags);
2729
2730	if (pending_dr)
2731		kfree(dr_wrk);
2732	else
 
2733		queue_work(hbus->wq, &dr_wrk->wrk);
 
2734
2735	return 0;
2736}
2737
2738/**
2739 * hv_pci_devices_present() - Handle list of new children
2740 * @hbus:      Root PCI bus, as understood by this driver
2741 * @relations: Packet from host listing children
2742 *
2743 * Process a new list of devices on the bus. The list of devices is
2744 * discovered by VSP and sent to us via VSP message PCI_BUS_RELATIONS,
2745 * whenever a new list of devices for this bus appears.
2746 */
2747static void hv_pci_devices_present(struct hv_pcibus_device *hbus,
2748				   struct pci_bus_relations *relations)
2749{
2750	struct hv_dr_state *dr;
2751	int i;
2752
2753	dr = kzalloc(struct_size(dr, func, relations->device_count),
2754		     GFP_NOWAIT);
2755	if (!dr)
2756		return;
2757
2758	dr->device_count = relations->device_count;
2759	for (i = 0; i < dr->device_count; i++) {
2760		dr->func[i].v_id = relations->func[i].v_id;
2761		dr->func[i].d_id = relations->func[i].d_id;
2762		dr->func[i].rev = relations->func[i].rev;
2763		dr->func[i].prog_intf = relations->func[i].prog_intf;
2764		dr->func[i].subclass = relations->func[i].subclass;
2765		dr->func[i].base_class = relations->func[i].base_class;
2766		dr->func[i].subsystem_id = relations->func[i].subsystem_id;
2767		dr->func[i].win_slot = relations->func[i].win_slot;
2768		dr->func[i].ser = relations->func[i].ser;
2769	}
2770
2771	if (hv_pci_start_relations_work(hbus, dr))
2772		kfree(dr);
2773}
2774
2775/**
2776 * hv_pci_devices_present2() - Handle list of new children
2777 * @hbus:	Root PCI bus, as understood by this driver
2778 * @relations:	Packet from host listing children
2779 *
2780 * This function is the v2 version of hv_pci_devices_present()
2781 */
2782static void hv_pci_devices_present2(struct hv_pcibus_device *hbus,
2783				    struct pci_bus_relations2 *relations)
2784{
2785	struct hv_dr_state *dr;
2786	int i;
2787
2788	dr = kzalloc(struct_size(dr, func, relations->device_count),
2789		     GFP_NOWAIT);
2790	if (!dr)
2791		return;
2792
2793	dr->device_count = relations->device_count;
2794	for (i = 0; i < dr->device_count; i++) {
2795		dr->func[i].v_id = relations->func[i].v_id;
2796		dr->func[i].d_id = relations->func[i].d_id;
2797		dr->func[i].rev = relations->func[i].rev;
2798		dr->func[i].prog_intf = relations->func[i].prog_intf;
2799		dr->func[i].subclass = relations->func[i].subclass;
2800		dr->func[i].base_class = relations->func[i].base_class;
2801		dr->func[i].subsystem_id = relations->func[i].subsystem_id;
2802		dr->func[i].win_slot = relations->func[i].win_slot;
2803		dr->func[i].ser = relations->func[i].ser;
2804		dr->func[i].flags = relations->func[i].flags;
2805		dr->func[i].virtual_numa_node =
2806			relations->func[i].virtual_numa_node;
2807	}
2808
2809	if (hv_pci_start_relations_work(hbus, dr))
2810		kfree(dr);
2811}
2812
2813/**
2814 * hv_eject_device_work() - Asynchronously handles ejection
2815 * @work:	Work struct embedded in internal device struct
2816 *
2817 * This function handles ejecting a device.  Windows will
2818 * attempt to gracefully eject a device, waiting 60 seconds to
2819 * hear back from the guest OS that this completed successfully.
2820 * If this timer expires, the device will be forcibly removed.
2821 */
2822static void hv_eject_device_work(struct work_struct *work)
2823{
2824	struct pci_eject_response *ejct_pkt;
2825	struct hv_pcibus_device *hbus;
2826	struct hv_pci_dev *hpdev;
2827	struct pci_dev *pdev;
2828	unsigned long flags;
2829	int wslot;
2830	struct {
2831		struct pci_packet pkt;
2832		u8 buffer[sizeof(struct pci_eject_response)];
2833	} ctxt;
2834
2835	hpdev = container_of(work, struct hv_pci_dev, wrk);
2836	hbus = hpdev->hbus;
2837
2838	mutex_lock(&hbus->state_lock);
2839
2840	/*
2841	 * Ejection can come before or after the PCI bus has been set up, so
2842	 * attempt to find it and tear down the bus state, if it exists.  This
2843	 * must be done without constructs like pci_domain_nr(hbus->bridge->bus)
2844	 * because hbus->bridge->bus may not exist yet.
2845	 */
2846	wslot = wslot_to_devfn(hpdev->desc.win_slot.slot);
2847	pdev = pci_get_domain_bus_and_slot(hbus->bridge->domain_nr, 0, wslot);
2848	if (pdev) {
2849		pci_lock_rescan_remove();
2850		pci_stop_and_remove_bus_device(pdev);
2851		pci_dev_put(pdev);
2852		pci_unlock_rescan_remove();
2853	}
2854
2855	spin_lock_irqsave(&hbus->device_list_lock, flags);
2856	list_del(&hpdev->list_entry);
2857	spin_unlock_irqrestore(&hbus->device_list_lock, flags);
2858
2859	if (hpdev->pci_slot)
2860		pci_destroy_slot(hpdev->pci_slot);
2861
2862	memset(&ctxt, 0, sizeof(ctxt));
2863	ejct_pkt = (struct pci_eject_response *)&ctxt.pkt.message;
2864	ejct_pkt->message_type.type = PCI_EJECTION_COMPLETE;
2865	ejct_pkt->wslot.slot = hpdev->desc.win_slot.slot;
2866	vmbus_sendpacket(hbus->hdev->channel, ejct_pkt,
2867			 sizeof(*ejct_pkt), 0,
2868			 VM_PKT_DATA_INBAND, 0);
2869
2870	/* For the get_pcichild() in hv_pci_eject_device() */
2871	put_pcichild(hpdev);
2872	/* For the two refs got in new_pcichild_device() */
2873	put_pcichild(hpdev);
2874	put_pcichild(hpdev);
2875	/* hpdev has been freed. Do not use it any more. */
2876
2877	mutex_unlock(&hbus->state_lock);
2878}
2879
2880/**
2881 * hv_pci_eject_device() - Handles device ejection
2882 * @hpdev:	Internal device tracking struct
2883 *
2884 * This function is invoked when an ejection packet arrives.  It
2885 * just schedules work so that we don't re-enter the packet
2886 * delivery code handling the ejection.
2887 */
2888static void hv_pci_eject_device(struct hv_pci_dev *hpdev)
2889{
2890	struct hv_pcibus_device *hbus = hpdev->hbus;
2891	struct hv_device *hdev = hbus->hdev;
2892
2893	if (hbus->state == hv_pcibus_removing) {
2894		dev_info(&hdev->device, "PCI VMBus EJECT: ignored\n");
2895		return;
2896	}
2897
 
2898	get_pcichild(hpdev);
2899	INIT_WORK(&hpdev->wrk, hv_eject_device_work);
 
2900	queue_work(hbus->wq, &hpdev->wrk);
2901}
2902
2903/**
2904 * hv_pci_onchannelcallback() - Handles incoming packets
2905 * @context:	Internal bus tracking struct
2906 *
2907 * This function is invoked whenever the host sends a packet to
2908 * this channel (which is private to this root PCI bus).
2909 */
2910static void hv_pci_onchannelcallback(void *context)
2911{
2912	const int packet_size = 0x100;
2913	int ret;
2914	struct hv_pcibus_device *hbus = context;
2915	struct vmbus_channel *chan = hbus->hdev->channel;
2916	u32 bytes_recvd;
2917	u64 req_id, req_addr;
2918	struct vmpacket_descriptor *desc;
2919	unsigned char *buffer;
2920	int bufferlen = packet_size;
2921	struct pci_packet *comp_packet;
2922	struct pci_response *response;
2923	struct pci_incoming_message *new_message;
2924	struct pci_bus_relations *bus_rel;
2925	struct pci_bus_relations2 *bus_rel2;
2926	struct pci_dev_inval_block *inval;
2927	struct pci_dev_incoming *dev_message;
2928	struct hv_pci_dev *hpdev;
2929	unsigned long flags;
2930
2931	buffer = kmalloc(bufferlen, GFP_ATOMIC);
2932	if (!buffer)
2933		return;
2934
2935	while (1) {
2936		ret = vmbus_recvpacket_raw(chan, buffer, bufferlen,
2937					   &bytes_recvd, &req_id);
2938
2939		if (ret == -ENOBUFS) {
2940			kfree(buffer);
2941			/* Handle large packet */
2942			bufferlen = bytes_recvd;
2943			buffer = kmalloc(bytes_recvd, GFP_ATOMIC);
2944			if (!buffer)
2945				return;
2946			continue;
2947		}
2948
2949		/* Zero length indicates there are no more packets. */
2950		if (ret || !bytes_recvd)
2951			break;
2952
2953		/*
2954		 * All incoming packets must be at least as large as a
2955		 * response.
2956		 */
2957		if (bytes_recvd <= sizeof(struct pci_response))
2958			continue;
2959		desc = (struct vmpacket_descriptor *)buffer;
2960
2961		switch (desc->type) {
2962		case VM_PKT_COMP:
2963
2964			lock_requestor(chan, flags);
2965			req_addr = __vmbus_request_addr_match(chan, req_id,
2966							      VMBUS_RQST_ADDR_ANY);
2967			if (req_addr == VMBUS_RQST_ERROR) {
2968				unlock_requestor(chan, flags);
2969				dev_err(&hbus->hdev->device,
2970					"Invalid transaction ID %llx\n",
2971					req_id);
2972				break;
2973			}
2974			comp_packet = (struct pci_packet *)req_addr;
2975			response = (struct pci_response *)buffer;
2976			/*
2977			 * Call ->completion_func() within the critical section to make
2978			 * sure that the packet pointer is still valid during the call:
2979			 * here 'valid' means that there's a task still waiting for the
2980			 * completion, and that the packet data is still on the waiting
2981			 * task's stack.  Cf. hv_compose_msi_msg().
2982			 */
 
 
2983			comp_packet->completion_func(comp_packet->compl_ctxt,
2984						     response,
2985						     bytes_recvd);
2986			unlock_requestor(chan, flags);
2987			break;
2988
2989		case VM_PKT_DATA_INBAND:
2990
2991			new_message = (struct pci_incoming_message *)buffer;
2992			switch (new_message->message_type.type) {
2993			case PCI_BUS_RELATIONS:
2994
2995				bus_rel = (struct pci_bus_relations *)buffer;
2996				if (bytes_recvd < sizeof(*bus_rel) ||
2997				    bytes_recvd <
2998					struct_size(bus_rel, func,
2999						    bus_rel->device_count)) {
3000					dev_err(&hbus->hdev->device,
3001						"bus relations too small\n");
3002					break;
3003				}
3004
3005				hv_pci_devices_present(hbus, bus_rel);
3006				break;
3007
3008			case PCI_BUS_RELATIONS2:
3009
3010				bus_rel2 = (struct pci_bus_relations2 *)buffer;
3011				if (bytes_recvd < sizeof(*bus_rel2) ||
3012				    bytes_recvd <
3013					struct_size(bus_rel2, func,
3014						    bus_rel2->device_count)) {
3015					dev_err(&hbus->hdev->device,
3016						"bus relations v2 too small\n");
3017					break;
3018				}
3019
3020				hv_pci_devices_present2(hbus, bus_rel2);
3021				break;
3022
3023			case PCI_EJECT:
3024
3025				dev_message = (struct pci_dev_incoming *)buffer;
3026				if (bytes_recvd < sizeof(*dev_message)) {
3027					dev_err(&hbus->hdev->device,
3028						"eject message too small\n");
3029					break;
3030				}
3031				hpdev = get_pcichild_wslot(hbus,
3032						      dev_message->wslot.slot);
3033				if (hpdev) {
3034					hv_pci_eject_device(hpdev);
3035					put_pcichild(hpdev);
3036				}
3037				break;
3038
3039			case PCI_INVALIDATE_BLOCK:
3040
3041				inval = (struct pci_dev_inval_block *)buffer;
3042				if (bytes_recvd < sizeof(*inval)) {
3043					dev_err(&hbus->hdev->device,
3044						"invalidate message too small\n");
3045					break;
3046				}
3047				hpdev = get_pcichild_wslot(hbus,
3048							   inval->wslot.slot);
3049				if (hpdev) {
3050					if (hpdev->block_invalidate) {
3051						hpdev->block_invalidate(
3052						    hpdev->invalidate_context,
3053						    inval->block_mask);
3054					}
3055					put_pcichild(hpdev);
3056				}
3057				break;
3058
3059			default:
3060				dev_warn(&hbus->hdev->device,
3061					"Unimplemented protocol message %x\n",
3062					new_message->message_type.type);
3063				break;
3064			}
3065			break;
3066
3067		default:
3068			dev_err(&hbus->hdev->device,
3069				"unhandled packet type %d, tid %llx len %d\n",
3070				desc->type, req_id, bytes_recvd);
3071			break;
3072		}
3073	}
3074
3075	kfree(buffer);
3076}
3077
3078/**
3079 * hv_pci_protocol_negotiation() - Set up protocol
3080 * @hdev:		VMBus's tracking struct for this root PCI bus.
3081 * @version:		Array of supported channel protocol versions in
3082 *			the order of probing - highest go first.
3083 * @num_version:	Number of elements in the version array.
3084 *
3085 * This driver is intended to support running on Windows 10
3086 * (server) and later versions. It will not run on earlier
3087 * versions, as they assume that many of the operations which
3088 * Linux needs accomplished with a spinlock held were done via
3089 * asynchronous messaging via VMBus.  Windows 10 increases the
3090 * surface area of PCI emulation so that these actions can take
3091 * place by suspending a virtual processor for their duration.
3092 *
3093 * This function negotiates the channel protocol version,
3094 * failing if the host doesn't support the necessary protocol
3095 * level.
3096 */
3097static int hv_pci_protocol_negotiation(struct hv_device *hdev,
3098				       enum pci_protocol_version_t version[],
3099				       int num_version)
3100{
3101	struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
3102	struct pci_version_request *version_req;
3103	struct hv_pci_compl comp_pkt;
3104	struct pci_packet *pkt;
3105	int ret;
3106	int i;
3107
3108	/*
3109	 * Initiate the handshake with the host and negotiate
3110	 * a version that the host can support. We start with the
3111	 * highest version number and go down if the host cannot
3112	 * support it.
3113	 */
3114	pkt = kzalloc(sizeof(*pkt) + sizeof(*version_req), GFP_KERNEL);
3115	if (!pkt)
3116		return -ENOMEM;
3117
3118	init_completion(&comp_pkt.host_event);
3119	pkt->completion_func = hv_pci_generic_compl;
3120	pkt->compl_ctxt = &comp_pkt;
3121	version_req = (struct pci_version_request *)&pkt->message;
3122	version_req->message_type.type = PCI_QUERY_PROTOCOL_VERSION;
3123
3124	for (i = 0; i < num_version; i++) {
3125		version_req->protocol_version = version[i];
3126		ret = vmbus_sendpacket(hdev->channel, version_req,
3127				sizeof(struct pci_version_request),
3128				(unsigned long)pkt, VM_PKT_DATA_INBAND,
3129				VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
3130		if (!ret)
3131			ret = wait_for_response(hdev, &comp_pkt.host_event);
3132
3133		if (ret) {
3134			dev_err(&hdev->device,
3135				"PCI Pass-through VSP failed to request version: %d",
3136				ret);
3137			goto exit;
3138		}
3139
3140		if (comp_pkt.completion_status >= 0) {
3141			hbus->protocol_version = version[i];
3142			dev_info(&hdev->device,
3143				"PCI VMBus probing: Using version %#x\n",
3144				hbus->protocol_version);
3145			goto exit;
3146		}
3147
3148		if (comp_pkt.completion_status != STATUS_REVISION_MISMATCH) {
3149			dev_err(&hdev->device,
3150				"PCI Pass-through VSP failed version request: %#x",
3151				comp_pkt.completion_status);
3152			ret = -EPROTO;
3153			goto exit;
3154		}
3155
3156		reinit_completion(&comp_pkt.host_event);
3157	}
3158
3159	dev_err(&hdev->device,
3160		"PCI pass-through VSP failed to find supported version");
3161	ret = -EPROTO;
3162
3163exit:
3164	kfree(pkt);
3165	return ret;
3166}
3167
3168/**
3169 * hv_pci_free_bridge_windows() - Release memory regions for the
3170 * bus
3171 * @hbus:	Root PCI bus, as understood by this driver
3172 */
3173static void hv_pci_free_bridge_windows(struct hv_pcibus_device *hbus)
3174{
3175	/*
3176	 * Set the resources back to the way they looked when they
3177	 * were allocated by setting IORESOURCE_BUSY again.
3178	 */
3179
3180	if (hbus->low_mmio_space && hbus->low_mmio_res) {
3181		hbus->low_mmio_res->flags |= IORESOURCE_BUSY;
3182		vmbus_free_mmio(hbus->low_mmio_res->start,
3183				resource_size(hbus->low_mmio_res));
3184	}
3185
3186	if (hbus->high_mmio_space && hbus->high_mmio_res) {
3187		hbus->high_mmio_res->flags |= IORESOURCE_BUSY;
3188		vmbus_free_mmio(hbus->high_mmio_res->start,
3189				resource_size(hbus->high_mmio_res));
3190	}
3191}
3192
3193/**
3194 * hv_pci_allocate_bridge_windows() - Allocate memory regions
3195 * for the bus
3196 * @hbus:	Root PCI bus, as understood by this driver
3197 *
3198 * This function calls vmbus_allocate_mmio(), which is itself a
3199 * bit of a compromise.  Ideally, we might change the pnp layer
3200 * in the kernel such that it comprehends either PCI devices
3201 * which are "grandchildren of ACPI," with some intermediate bus
3202 * node (in this case, VMBus) or change it such that it
3203 * understands VMBus.  The pnp layer, however, has been declared
3204 * deprecated, and not subject to change.
3205 *
3206 * The workaround, implemented here, is to ask VMBus to allocate
3207 * MMIO space for this bus.  VMBus itself knows which ranges are
3208 * appropriate by looking at its own ACPI objects.  Then, after
3209 * these ranges are claimed, they're modified to look like they
3210 * would have looked if the ACPI and pnp code had allocated
3211 * bridge windows.  These descriptors have to exist in this form
3212 * in order to satisfy the code which will get invoked when the
3213 * endpoint PCI function driver calls request_mem_region() or
3214 * request_mem_region_exclusive().
3215 *
3216 * Return: 0 on success, -errno on failure
3217 */
3218static int hv_pci_allocate_bridge_windows(struct hv_pcibus_device *hbus)
3219{
3220	resource_size_t align;
3221	int ret;
3222
3223	if (hbus->low_mmio_space) {
3224		align = 1ULL << (63 - __builtin_clzll(hbus->low_mmio_space));
3225		ret = vmbus_allocate_mmio(&hbus->low_mmio_res, hbus->hdev, 0,
3226					  (u64)(u32)0xffffffff,
3227					  hbus->low_mmio_space,
3228					  align, false);
3229		if (ret) {
3230			dev_err(&hbus->hdev->device,
3231				"Need %#llx of low MMIO space. Consider reconfiguring the VM.\n",
3232				hbus->low_mmio_space);
3233			return ret;
3234		}
3235
3236		/* Modify this resource to become a bridge window. */
3237		hbus->low_mmio_res->flags |= IORESOURCE_WINDOW;
3238		hbus->low_mmio_res->flags &= ~IORESOURCE_BUSY;
3239		pci_add_resource(&hbus->bridge->windows, hbus->low_mmio_res);
 
3240	}
3241
3242	if (hbus->high_mmio_space) {
3243		align = 1ULL << (63 - __builtin_clzll(hbus->high_mmio_space));
3244		ret = vmbus_allocate_mmio(&hbus->high_mmio_res, hbus->hdev,
3245					  0x100000000, -1,
3246					  hbus->high_mmio_space, align,
3247					  false);
3248		if (ret) {
3249			dev_err(&hbus->hdev->device,
3250				"Need %#llx of high MMIO space. Consider reconfiguring the VM.\n",
3251				hbus->high_mmio_space);
3252			goto release_low_mmio;
3253		}
3254
3255		/* Modify this resource to become a bridge window. */
3256		hbus->high_mmio_res->flags |= IORESOURCE_WINDOW;
3257		hbus->high_mmio_res->flags &= ~IORESOURCE_BUSY;
3258		pci_add_resource(&hbus->bridge->windows, hbus->high_mmio_res);
 
3259	}
3260
3261	return 0;
3262
3263release_low_mmio:
3264	if (hbus->low_mmio_res) {
3265		vmbus_free_mmio(hbus->low_mmio_res->start,
3266				resource_size(hbus->low_mmio_res));
3267	}
3268
3269	return ret;
3270}
3271
3272/**
3273 * hv_allocate_config_window() - Find MMIO space for PCI Config
3274 * @hbus:	Root PCI bus, as understood by this driver
3275 *
3276 * This function claims memory-mapped I/O space for accessing
3277 * configuration space for the functions on this bus.
3278 *
3279 * Return: 0 on success, -errno on failure
3280 */
3281static int hv_allocate_config_window(struct hv_pcibus_device *hbus)
3282{
3283	int ret;
3284
3285	/*
3286	 * Set up a region of MMIO space to use for accessing configuration
3287	 * space.
3288	 */
3289	ret = vmbus_allocate_mmio(&hbus->mem_config, hbus->hdev, 0, -1,
3290				  PCI_CONFIG_MMIO_LENGTH, 0x1000, false);
3291	if (ret)
3292		return ret;
3293
3294	/*
3295	 * vmbus_allocate_mmio() gets used for allocating both device endpoint
3296	 * resource claims (those which cannot be overlapped) and the ranges
3297	 * which are valid for the children of this bus, which are intended
3298	 * to be overlapped by those children.  Set the flag on this claim
3299	 * meaning that this region can't be overlapped.
3300	 */
3301
3302	hbus->mem_config->flags |= IORESOURCE_BUSY;
3303
3304	return 0;
3305}
3306
3307static void hv_free_config_window(struct hv_pcibus_device *hbus)
3308{
3309	vmbus_free_mmio(hbus->mem_config->start, PCI_CONFIG_MMIO_LENGTH);
3310}
3311
3312static int hv_pci_bus_exit(struct hv_device *hdev, bool keep_devs);
3313
3314/**
3315 * hv_pci_enter_d0() - Bring the "bus" into the D0 power state
3316 * @hdev:	VMBus's tracking struct for this root PCI bus
3317 *
3318 * Return: 0 on success, -errno on failure
3319 */
3320static int hv_pci_enter_d0(struct hv_device *hdev)
3321{
3322	struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
3323	struct pci_bus_d0_entry *d0_entry;
3324	struct hv_pci_compl comp_pkt;
3325	struct pci_packet *pkt;
3326	bool retry = true;
3327	int ret;
3328
3329enter_d0_retry:
3330	/*
3331	 * Tell the host that the bus is ready to use, and moved into the
3332	 * powered-on state.  This includes telling the host which region
3333	 * of memory-mapped I/O space has been chosen for configuration space
3334	 * access.
3335	 */
3336	pkt = kzalloc(sizeof(*pkt) + sizeof(*d0_entry), GFP_KERNEL);
3337	if (!pkt)
3338		return -ENOMEM;
3339
3340	init_completion(&comp_pkt.host_event);
3341	pkt->completion_func = hv_pci_generic_compl;
3342	pkt->compl_ctxt = &comp_pkt;
3343	d0_entry = (struct pci_bus_d0_entry *)&pkt->message;
3344	d0_entry->message_type.type = PCI_BUS_D0ENTRY;
3345	d0_entry->mmio_base = hbus->mem_config->start;
3346
3347	ret = vmbus_sendpacket(hdev->channel, d0_entry, sizeof(*d0_entry),
3348			       (unsigned long)pkt, VM_PKT_DATA_INBAND,
3349			       VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
3350	if (!ret)
3351		ret = wait_for_response(hdev, &comp_pkt.host_event);
3352
3353	if (ret)
3354		goto exit;
3355
3356	/*
3357	 * In certain case (Kdump) the pci device of interest was
3358	 * not cleanly shut down and resource is still held on host
3359	 * side, the host could return invalid device status.
3360	 * We need to explicitly request host to release the resource
3361	 * and try to enter D0 again.
3362	 */
3363	if (comp_pkt.completion_status < 0 && retry) {
3364		retry = false;
3365
3366		dev_err(&hdev->device, "Retrying D0 Entry\n");
3367
3368		/*
3369		 * Hv_pci_bus_exit() calls hv_send_resource_released()
3370		 * to free up resources of its child devices.
3371		 * In the kdump kernel we need to set the
3372		 * wslot_res_allocated to 255 so it scans all child
3373		 * devices to release resources allocated in the
3374		 * normal kernel before panic happened.
3375		 */
3376		hbus->wslot_res_allocated = 255;
3377
3378		ret = hv_pci_bus_exit(hdev, true);
3379
3380		if (ret == 0) {
3381			kfree(pkt);
3382			goto enter_d0_retry;
3383		}
3384		dev_err(&hdev->device,
3385			"Retrying D0 failed with ret %d\n", ret);
3386	}
3387
3388	if (comp_pkt.completion_status < 0) {
3389		dev_err(&hdev->device,
3390			"PCI Pass-through VSP failed D0 Entry with status %x\n",
3391			comp_pkt.completion_status);
3392		ret = -EPROTO;
3393		goto exit;
3394	}
3395
3396	ret = 0;
3397
3398exit:
3399	kfree(pkt);
3400	return ret;
3401}
3402
3403/**
3404 * hv_pci_query_relations() - Ask host to send list of child
3405 * devices
3406 * @hdev:	VMBus's tracking struct for this root PCI bus
3407 *
3408 * Return: 0 on success, -errno on failure
3409 */
3410static int hv_pci_query_relations(struct hv_device *hdev)
3411{
3412	struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
3413	struct pci_message message;
3414	struct completion comp;
3415	int ret;
3416
3417	/* Ask the host to send along the list of child devices */
3418	init_completion(&comp);
3419	if (cmpxchg(&hbus->survey_event, NULL, &comp))
3420		return -ENOTEMPTY;
3421
3422	memset(&message, 0, sizeof(message));
3423	message.type = PCI_QUERY_BUS_RELATIONS;
3424
3425	ret = vmbus_sendpacket(hdev->channel, &message, sizeof(message),
3426			       0, VM_PKT_DATA_INBAND, 0);
3427	if (!ret)
3428		ret = wait_for_response(hdev, &comp);
3429
3430	/*
3431	 * In the case of fast device addition/removal, it's possible that
3432	 * vmbus_sendpacket() or wait_for_response() returns -ENODEV but we
3433	 * already got a PCI_BUS_RELATIONS* message from the host and the
3434	 * channel callback already scheduled a work to hbus->wq, which can be
3435	 * running pci_devices_present_work() -> survey_child_resources() ->
3436	 * complete(&hbus->survey_event), even after hv_pci_query_relations()
3437	 * exits and the stack variable 'comp' is no longer valid; as a result,
3438	 * a hang or a page fault may happen when the complete() calls
3439	 * raw_spin_lock_irqsave(). Flush hbus->wq before we exit from
3440	 * hv_pci_query_relations() to avoid the issues. Note: if 'ret' is
3441	 * -ENODEV, there can't be any more work item scheduled to hbus->wq
3442	 * after the flush_workqueue(): see vmbus_onoffer_rescind() ->
3443	 * vmbus_reset_channel_cb(), vmbus_rescind_cleanup() ->
3444	 * channel->rescind = true.
3445	 */
3446	flush_workqueue(hbus->wq);
3447
3448	return ret;
3449}
3450
3451/**
3452 * hv_send_resources_allocated() - Report local resource choices
3453 * @hdev:	VMBus's tracking struct for this root PCI bus
3454 *
3455 * The host OS is expecting to be sent a request as a message
3456 * which contains all the resources that the device will use.
3457 * The response contains those same resources, "translated"
3458 * which is to say, the values which should be used by the
3459 * hardware, when it delivers an interrupt.  (MMIO resources are
3460 * used in local terms.)  This is nice for Windows, and lines up
3461 * with the FDO/PDO split, which doesn't exist in Linux.  Linux
3462 * is deeply expecting to scan an emulated PCI configuration
3463 * space.  So this message is sent here only to drive the state
3464 * machine on the host forward.
3465 *
3466 * Return: 0 on success, -errno on failure
3467 */
3468static int hv_send_resources_allocated(struct hv_device *hdev)
3469{
3470	struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
3471	struct pci_resources_assigned *res_assigned;
3472	struct pci_resources_assigned2 *res_assigned2;
3473	struct hv_pci_compl comp_pkt;
3474	struct hv_pci_dev *hpdev;
3475	struct pci_packet *pkt;
3476	size_t size_res;
3477	int wslot;
3478	int ret;
3479
3480	size_res = (hbus->protocol_version < PCI_PROTOCOL_VERSION_1_2)
3481			? sizeof(*res_assigned) : sizeof(*res_assigned2);
3482
3483	pkt = kmalloc(sizeof(*pkt) + size_res, GFP_KERNEL);
3484	if (!pkt)
3485		return -ENOMEM;
3486
3487	ret = 0;
3488
3489	for (wslot = 0; wslot < 256; wslot++) {
3490		hpdev = get_pcichild_wslot(hbus, wslot);
3491		if (!hpdev)
3492			continue;
3493
3494		memset(pkt, 0, sizeof(*pkt) + size_res);
3495		init_completion(&comp_pkt.host_event);
3496		pkt->completion_func = hv_pci_generic_compl;
3497		pkt->compl_ctxt = &comp_pkt;
3498
3499		if (hbus->protocol_version < PCI_PROTOCOL_VERSION_1_2) {
3500			res_assigned =
3501				(struct pci_resources_assigned *)&pkt->message;
3502			res_assigned->message_type.type =
3503				PCI_RESOURCES_ASSIGNED;
3504			res_assigned->wslot.slot = hpdev->desc.win_slot.slot;
3505		} else {
3506			res_assigned2 =
3507				(struct pci_resources_assigned2 *)&pkt->message;
3508			res_assigned2->message_type.type =
3509				PCI_RESOURCES_ASSIGNED2;
3510			res_assigned2->wslot.slot = hpdev->desc.win_slot.slot;
3511		}
3512		put_pcichild(hpdev);
3513
3514		ret = vmbus_sendpacket(hdev->channel, &pkt->message,
3515				size_res, (unsigned long)pkt,
3516				VM_PKT_DATA_INBAND,
3517				VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
3518		if (!ret)
3519			ret = wait_for_response(hdev, &comp_pkt.host_event);
3520		if (ret)
3521			break;
3522
3523		if (comp_pkt.completion_status < 0) {
3524			ret = -EPROTO;
3525			dev_err(&hdev->device,
3526				"resource allocated returned 0x%x",
3527				comp_pkt.completion_status);
3528			break;
3529		}
3530
3531		hbus->wslot_res_allocated = wslot;
3532	}
3533
3534	kfree(pkt);
3535	return ret;
3536}
3537
3538/**
3539 * hv_send_resources_released() - Report local resources
3540 * released
3541 * @hdev:	VMBus's tracking struct for this root PCI bus
3542 *
3543 * Return: 0 on success, -errno on failure
3544 */
3545static int hv_send_resources_released(struct hv_device *hdev)
3546{
3547	struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
3548	struct pci_child_message pkt;
3549	struct hv_pci_dev *hpdev;
3550	int wslot;
3551	int ret;
3552
3553	for (wslot = hbus->wslot_res_allocated; wslot >= 0; wslot--) {
3554		hpdev = get_pcichild_wslot(hbus, wslot);
3555		if (!hpdev)
3556			continue;
3557
3558		memset(&pkt, 0, sizeof(pkt));
3559		pkt.message_type.type = PCI_RESOURCES_RELEASED;
3560		pkt.wslot.slot = hpdev->desc.win_slot.slot;
3561
3562		put_pcichild(hpdev);
3563
3564		ret = vmbus_sendpacket(hdev->channel, &pkt, sizeof(pkt), 0,
3565				       VM_PKT_DATA_INBAND, 0);
3566		if (ret)
3567			return ret;
3568
3569		hbus->wslot_res_allocated = wslot - 1;
3570	}
3571
3572	hbus->wslot_res_allocated = -1;
3573
3574	return 0;
3575}
3576
 
 
 
 
 
 
 
 
 
 
 
3577#define HVPCI_DOM_MAP_SIZE (64 * 1024)
3578static DECLARE_BITMAP(hvpci_dom_map, HVPCI_DOM_MAP_SIZE);
3579
3580/*
3581 * PCI domain number 0 is used by emulated devices on Gen1 VMs, so define 0
3582 * as invalid for passthrough PCI devices of this driver.
3583 */
3584#define HVPCI_DOM_INVALID 0
3585
3586/**
3587 * hv_get_dom_num() - Get a valid PCI domain number
3588 * Check if the PCI domain number is in use, and return another number if
3589 * it is in use.
3590 *
3591 * @dom: Requested domain number
3592 *
3593 * return: domain number on success, HVPCI_DOM_INVALID on failure
3594 */
3595static u16 hv_get_dom_num(u16 dom)
3596{
3597	unsigned int i;
3598
3599	if (test_and_set_bit(dom, hvpci_dom_map) == 0)
3600		return dom;
3601
3602	for_each_clear_bit(i, hvpci_dom_map, HVPCI_DOM_MAP_SIZE) {
3603		if (test_and_set_bit(i, hvpci_dom_map) == 0)
3604			return i;
3605	}
3606
3607	return HVPCI_DOM_INVALID;
3608}
3609
3610/**
3611 * hv_put_dom_num() - Mark the PCI domain number as free
3612 * @dom: Domain number to be freed
3613 */
3614static void hv_put_dom_num(u16 dom)
3615{
3616	clear_bit(dom, hvpci_dom_map);
3617}
3618
3619/**
3620 * hv_pci_probe() - New VMBus channel probe, for a root PCI bus
3621 * @hdev:	VMBus's tracking struct for this root PCI bus
3622 * @dev_id:	Identifies the device itself
3623 *
3624 * Return: 0 on success, -errno on failure
3625 */
3626static int hv_pci_probe(struct hv_device *hdev,
3627			const struct hv_vmbus_device_id *dev_id)
3628{
3629	struct pci_host_bridge *bridge;
3630	struct hv_pcibus_device *hbus;
3631	u16 dom_req, dom;
3632	char *name;
 
3633	int ret;
3634
3635	bridge = devm_pci_alloc_host_bridge(&hdev->device, 0);
3636	if (!bridge)
3637		return -ENOMEM;
 
 
3638
3639	hbus = kzalloc(sizeof(*hbus), GFP_KERNEL);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3640	if (!hbus)
3641		return -ENOMEM;
3642
3643	hbus->bridge = bridge;
3644	mutex_init(&hbus->state_lock);
3645	hbus->state = hv_pcibus_init;
3646	hbus->wslot_res_allocated = -1;
3647
3648	/*
3649	 * The PCI bus "domain" is what is called "segment" in ACPI and other
3650	 * specs. Pull it from the instance ID, to get something usually
3651	 * unique. In rare cases of collision, we will find out another number
3652	 * not in use.
3653	 *
3654	 * Note that, since this code only runs in a Hyper-V VM, Hyper-V
3655	 * together with this guest driver can guarantee that (1) The only
3656	 * domain used by Gen1 VMs for something that looks like a physical
3657	 * PCI bus (which is actually emulated by the hypervisor) is domain 0.
3658	 * (2) There will be no overlap between domains (after fixing possible
3659	 * collisions) in the same VM.
3660	 */
3661	dom_req = hdev->dev_instance.b[5] << 8 | hdev->dev_instance.b[4];
3662	dom = hv_get_dom_num(dom_req);
3663
3664	if (dom == HVPCI_DOM_INVALID) {
3665		dev_err(&hdev->device,
3666			"Unable to use dom# 0x%x or other numbers", dom_req);
3667		ret = -EINVAL;
3668		goto free_bus;
3669	}
3670
3671	if (dom != dom_req)
3672		dev_info(&hdev->device,
3673			 "PCI dom# 0x%x has collision, using 0x%x",
3674			 dom_req, dom);
3675
3676	hbus->bridge->domain_nr = dom;
3677#ifdef CONFIG_X86
3678	hbus->sysdata.domain = dom;
3679	hbus->use_calls = !!(ms_hyperv.hints & HV_X64_USE_MMIO_HYPERCALLS);
3680#elif defined(CONFIG_ARM64)
3681	/*
3682	 * Set the PCI bus parent to be the corresponding VMbus
3683	 * device. Then the VMbus device will be assigned as the
3684	 * ACPI companion in pcibios_root_bridge_prepare() and
3685	 * pci_dma_configure() will propagate device coherence
3686	 * information to devices created on the bus.
3687	 */
3688	hbus->sysdata.parent = hdev->device.parent;
3689	hbus->use_calls = false;
3690#endif
3691
3692	hbus->hdev = hdev;
 
3693	INIT_LIST_HEAD(&hbus->children);
3694	INIT_LIST_HEAD(&hbus->dr_list);
 
3695	spin_lock_init(&hbus->config_lock);
3696	spin_lock_init(&hbus->device_list_lock);
 
 
3697	hbus->wq = alloc_ordered_workqueue("hv_pci_%x", 0,
3698					   hbus->bridge->domain_nr);
3699	if (!hbus->wq) {
3700		ret = -ENOMEM;
3701		goto free_dom;
3702	}
3703
3704	hdev->channel->next_request_id_callback = vmbus_next_request_id;
3705	hdev->channel->request_addr_callback = vmbus_request_addr;
3706	hdev->channel->rqstor_size = HV_PCI_RQSTOR_SIZE;
3707
3708	ret = vmbus_open(hdev->channel, pci_ring_size, pci_ring_size, NULL, 0,
3709			 hv_pci_onchannelcallback, hbus);
3710	if (ret)
3711		goto destroy_wq;
3712
3713	hv_set_drvdata(hdev, hbus);
3714
3715	ret = hv_pci_protocol_negotiation(hdev, pci_protocol_versions,
3716					  ARRAY_SIZE(pci_protocol_versions));
3717	if (ret)
3718		goto close;
3719
3720	ret = hv_allocate_config_window(hbus);
3721	if (ret)
3722		goto close;
3723
3724	hbus->cfg_addr = ioremap(hbus->mem_config->start,
3725				 PCI_CONFIG_MMIO_LENGTH);
3726	if (!hbus->cfg_addr) {
3727		dev_err(&hdev->device,
3728			"Unable to map a virtual address for config space\n");
3729		ret = -ENOMEM;
3730		goto free_config;
3731	}
3732
3733	name = kasprintf(GFP_KERNEL, "%pUL", &hdev->dev_instance);
3734	if (!name) {
3735		ret = -ENOMEM;
3736		goto unmap;
3737	}
3738
3739	hbus->fwnode = irq_domain_alloc_named_fwnode(name);
3740	kfree(name);
3741	if (!hbus->fwnode) {
3742		ret = -ENOMEM;
3743		goto unmap;
3744	}
3745
3746	ret = hv_pcie_init_irq_domain(hbus);
3747	if (ret)
3748		goto free_fwnode;
3749
 
3750	ret = hv_pci_query_relations(hdev);
3751	if (ret)
3752		goto free_irq_domain;
3753
3754	mutex_lock(&hbus->state_lock);
3755
3756	ret = hv_pci_enter_d0(hdev);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3757	if (ret)
3758		goto release_state_lock;
3759
3760	ret = hv_pci_allocate_bridge_windows(hbus);
3761	if (ret)
3762		goto exit_d0;
3763
3764	ret = hv_send_resources_allocated(hdev);
3765	if (ret)
3766		goto free_windows;
3767
3768	prepopulate_bars(hbus);
3769
3770	hbus->state = hv_pcibus_probed;
3771
3772	ret = create_root_hv_pci_bus(hbus);
3773	if (ret)
3774		goto free_windows;
3775
3776	mutex_unlock(&hbus->state_lock);
3777	return 0;
3778
3779free_windows:
3780	hv_pci_free_bridge_windows(hbus);
3781exit_d0:
3782	(void) hv_pci_bus_exit(hdev, true);
3783release_state_lock:
3784	mutex_unlock(&hbus->state_lock);
3785free_irq_domain:
3786	irq_domain_remove(hbus->irq_domain);
3787free_fwnode:
3788	irq_domain_free_fwnode(hbus->fwnode);
3789unmap:
3790	iounmap(hbus->cfg_addr);
3791free_config:
3792	hv_free_config_window(hbus);
3793close:
3794	vmbus_close(hdev->channel);
3795destroy_wq:
3796	destroy_workqueue(hbus->wq);
3797free_dom:
3798	hv_put_dom_num(hbus->bridge->domain_nr);
3799free_bus:
3800	kfree(hbus);
3801	return ret;
3802}
3803
3804static int hv_pci_bus_exit(struct hv_device *hdev, bool keep_devs)
3805{
3806	struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
3807	struct vmbus_channel *chan = hdev->channel;
3808	struct {
3809		struct pci_packet teardown_packet;
3810		u8 buffer[sizeof(struct pci_message)];
3811	} pkt;
 
3812	struct hv_pci_compl comp_pkt;
3813	struct hv_pci_dev *hpdev, *tmp;
3814	unsigned long flags;
3815	u64 trans_id;
3816	int ret;
3817
3818	/*
3819	 * After the host sends the RESCIND_CHANNEL message, it doesn't
3820	 * access the per-channel ringbuffer any longer.
3821	 */
3822	if (chan->rescind)
3823		return 0;
3824
3825	if (!keep_devs) {
3826		struct list_head removed;
3827
3828		/* Move all present children to the list on stack */
3829		INIT_LIST_HEAD(&removed);
3830		spin_lock_irqsave(&hbus->device_list_lock, flags);
3831		list_for_each_entry_safe(hpdev, tmp, &hbus->children, list_entry)
3832			list_move_tail(&hpdev->list_entry, &removed);
3833		spin_unlock_irqrestore(&hbus->device_list_lock, flags);
3834
3835		/* Remove all children in the list */
3836		list_for_each_entry_safe(hpdev, tmp, &removed, list_entry) {
3837			list_del(&hpdev->list_entry);
3838			if (hpdev->pci_slot)
3839				pci_destroy_slot(hpdev->pci_slot);
3840			/* For the two refs got in new_pcichild_device() */
3841			put_pcichild(hpdev);
3842			put_pcichild(hpdev);
3843		}
3844	}
3845
3846	ret = hv_send_resources_released(hdev);
3847	if (ret) {
3848		dev_err(&hdev->device,
3849			"Couldn't send resources released packet(s)\n");
3850		return ret;
3851	}
3852
3853	memset(&pkt.teardown_packet, 0, sizeof(pkt.teardown_packet));
3854	init_completion(&comp_pkt.host_event);
3855	pkt.teardown_packet.completion_func = hv_pci_generic_compl;
3856	pkt.teardown_packet.compl_ctxt = &comp_pkt;
3857	pkt.teardown_packet.message[0].type = PCI_BUS_D0EXIT;
3858
3859	ret = vmbus_sendpacket_getid(chan, &pkt.teardown_packet.message,
3860				     sizeof(struct pci_message),
3861				     (unsigned long)&pkt.teardown_packet,
3862				     &trans_id, VM_PKT_DATA_INBAND,
3863				     VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
3864	if (ret)
3865		return ret;
3866
3867	if (wait_for_completion_timeout(&comp_pkt.host_event, 10 * HZ) == 0) {
3868		/*
3869		 * The completion packet on the stack becomes invalid after
3870		 * 'return'; remove the ID from the VMbus requestor if the
3871		 * identifier is still mapped to/associated with the packet.
3872		 *
3873		 * Cf. hv_pci_onchannelcallback().
3874		 */
3875		vmbus_request_addr_match(chan, trans_id,
3876					 (unsigned long)&pkt.teardown_packet);
3877		return -ETIMEDOUT;
3878	}
3879
3880	return 0;
3881}
3882
3883/**
3884 * hv_pci_remove() - Remove routine for this VMBus channel
3885 * @hdev:	VMBus's tracking struct for this root PCI bus
 
 
3886 */
3887static void hv_pci_remove(struct hv_device *hdev)
3888{
3889	struct hv_pcibus_device *hbus;
 
3890
3891	hbus = hv_get_drvdata(hdev);
3892	if (hbus->state == hv_pcibus_installed) {
3893		tasklet_disable(&hdev->channel->callback_event);
3894		hbus->state = hv_pcibus_removing;
3895		tasklet_enable(&hdev->channel->callback_event);
3896		destroy_workqueue(hbus->wq);
3897		hbus->wq = NULL;
3898		/*
3899		 * At this point, no work is running or can be scheduled
3900		 * on hbus-wq. We can't race with hv_pci_devices_present()
3901		 * or hv_pci_eject_device(), it's safe to proceed.
3902		 */
3903
3904		/* Remove the bus from PCI's point of view. */
3905		pci_lock_rescan_remove();
3906		pci_stop_root_bus(hbus->bridge->bus);
3907		hv_pci_remove_slots(hbus);
3908		pci_remove_root_bus(hbus->bridge->bus);
3909		pci_unlock_rescan_remove();
 
3910	}
3911
3912	hv_pci_bus_exit(hdev, false);
3913
3914	vmbus_close(hdev->channel);
3915
3916	iounmap(hbus->cfg_addr);
3917	hv_free_config_window(hbus);
 
3918	hv_pci_free_bridge_windows(hbus);
3919	irq_domain_remove(hbus->irq_domain);
3920	irq_domain_free_fwnode(hbus->fwnode);
 
 
 
3921
3922	hv_put_dom_num(hbus->bridge->domain_nr);
3923
3924	kfree(hbus);
 
3925}
3926
3927static int hv_pci_suspend(struct hv_device *hdev)
3928{
3929	struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
3930	enum hv_pcibus_state old_state;
3931	int ret;
3932
3933	/*
3934	 * hv_pci_suspend() must make sure there are no pending work items
3935	 * before calling vmbus_close(), since it runs in a process context
3936	 * as a callback in dpm_suspend().  When it starts to run, the channel
3937	 * callback hv_pci_onchannelcallback(), which runs in a tasklet
3938	 * context, can be still running concurrently and scheduling new work
3939	 * items onto hbus->wq in hv_pci_devices_present() and
3940	 * hv_pci_eject_device(), and the work item handlers can access the
3941	 * vmbus channel, which can be being closed by hv_pci_suspend(), e.g.
3942	 * the work item handler pci_devices_present_work() ->
3943	 * new_pcichild_device() writes to the vmbus channel.
3944	 *
3945	 * To eliminate the race, hv_pci_suspend() disables the channel
3946	 * callback tasklet, sets hbus->state to hv_pcibus_removing, and
3947	 * re-enables the tasklet. This way, when hv_pci_suspend() proceeds,
3948	 * it knows that no new work item can be scheduled, and then it flushes
3949	 * hbus->wq and safely closes the vmbus channel.
3950	 */
3951	tasklet_disable(&hdev->channel->callback_event);
3952
3953	/* Change the hbus state to prevent new work items. */
3954	old_state = hbus->state;
3955	if (hbus->state == hv_pcibus_installed)
3956		hbus->state = hv_pcibus_removing;
3957
3958	tasklet_enable(&hdev->channel->callback_event);
3959
3960	if (old_state != hv_pcibus_installed)
3961		return -EINVAL;
3962
3963	flush_workqueue(hbus->wq);
3964
3965	ret = hv_pci_bus_exit(hdev, true);
3966	if (ret)
3967		return ret;
3968
3969	vmbus_close(hdev->channel);
3970
3971	return 0;
3972}
3973
3974static int hv_pci_restore_msi_msg(struct pci_dev *pdev, void *arg)
3975{
3976	struct irq_data *irq_data;
3977	struct msi_desc *entry;
3978	int ret = 0;
3979
3980	if (!pdev->msi_enabled && !pdev->msix_enabled)
3981		return 0;
3982
3983	msi_lock_descs(&pdev->dev);
3984	msi_for_each_desc(entry, &pdev->dev, MSI_DESC_ASSOCIATED) {
3985		irq_data = irq_get_irq_data(entry->irq);
3986		if (WARN_ON_ONCE(!irq_data)) {
3987			ret = -EINVAL;
3988			break;
3989		}
3990
3991		hv_compose_msi_msg(irq_data, &entry->msg);
3992	}
3993	msi_unlock_descs(&pdev->dev);
3994
3995	return ret;
3996}
3997
3998/*
3999 * Upon resume, pci_restore_msi_state() -> ... ->  __pci_write_msi_msg()
4000 * directly writes the MSI/MSI-X registers via MMIO, but since Hyper-V
4001 * doesn't trap and emulate the MMIO accesses, here hv_compose_msi_msg()
4002 * must be used to ask Hyper-V to re-create the IOMMU Interrupt Remapping
4003 * Table entries.
4004 */
4005static void hv_pci_restore_msi_state(struct hv_pcibus_device *hbus)
4006{
4007	pci_walk_bus(hbus->bridge->bus, hv_pci_restore_msi_msg, NULL);
4008}
4009
4010static int hv_pci_resume(struct hv_device *hdev)
4011{
4012	struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
4013	enum pci_protocol_version_t version[1];
4014	int ret;
4015
4016	hbus->state = hv_pcibus_init;
4017
4018	hdev->channel->next_request_id_callback = vmbus_next_request_id;
4019	hdev->channel->request_addr_callback = vmbus_request_addr;
4020	hdev->channel->rqstor_size = HV_PCI_RQSTOR_SIZE;
4021
4022	ret = vmbus_open(hdev->channel, pci_ring_size, pci_ring_size, NULL, 0,
4023			 hv_pci_onchannelcallback, hbus);
4024	if (ret)
4025		return ret;
4026
4027	/* Only use the version that was in use before hibernation. */
4028	version[0] = hbus->protocol_version;
4029	ret = hv_pci_protocol_negotiation(hdev, version, 1);
4030	if (ret)
4031		goto out;
4032
4033	ret = hv_pci_query_relations(hdev);
4034	if (ret)
4035		goto out;
4036
4037	mutex_lock(&hbus->state_lock);
4038
4039	ret = hv_pci_enter_d0(hdev);
4040	if (ret)
4041		goto release_state_lock;
4042
4043	ret = hv_send_resources_allocated(hdev);
4044	if (ret)
4045		goto release_state_lock;
4046
4047	prepopulate_bars(hbus);
4048
4049	hv_pci_restore_msi_state(hbus);
4050
4051	hbus->state = hv_pcibus_installed;
4052	mutex_unlock(&hbus->state_lock);
4053	return 0;
4054
4055release_state_lock:
4056	mutex_unlock(&hbus->state_lock);
4057out:
4058	vmbus_close(hdev->channel);
4059	return ret;
4060}
4061
4062static const struct hv_vmbus_device_id hv_pci_id_table[] = {
4063	/* PCI Pass-through Class ID */
4064	/* 44C4F61D-4444-4400-9D52-802E27EDE19F */
4065	{ HV_PCIE_GUID, },
4066	{ },
4067};
4068
4069MODULE_DEVICE_TABLE(vmbus, hv_pci_id_table);
4070
4071static struct hv_driver hv_pci_drv = {
4072	.name		= "hv_pci",
4073	.id_table	= hv_pci_id_table,
4074	.probe		= hv_pci_probe,
4075	.remove		= hv_pci_remove,
4076	.suspend	= hv_pci_suspend,
4077	.resume		= hv_pci_resume,
4078};
4079
4080static void __exit exit_hv_pci_drv(void)
4081{
4082	vmbus_driver_unregister(&hv_pci_drv);
4083
4084	hvpci_block_ops.read_block = NULL;
4085	hvpci_block_ops.write_block = NULL;
4086	hvpci_block_ops.reg_blk_invalidate = NULL;
4087}
4088
4089static int __init init_hv_pci_drv(void)
4090{
4091	int ret;
4092
4093	if (!hv_is_hyperv_initialized())
4094		return -ENODEV;
4095
4096	ret = hv_pci_irqchip_init();
4097	if (ret)
4098		return ret;
4099
4100	/* Set the invalid domain number's bit, so it will not be used */
4101	set_bit(HVPCI_DOM_INVALID, hvpci_dom_map);
4102
4103	/* Initialize PCI block r/w interface */
4104	hvpci_block_ops.read_block = hv_read_config_block;
4105	hvpci_block_ops.write_block = hv_write_config_block;
4106	hvpci_block_ops.reg_blk_invalidate = hv_register_block_invalidate;
4107
4108	return vmbus_driver_register(&hv_pci_drv);
4109}
4110
4111module_init(init_hv_pci_drv);
4112module_exit(exit_hv_pci_drv);
4113
4114MODULE_DESCRIPTION("Hyper-V PCI");
4115MODULE_LICENSE("GPL v2");
v5.9
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (c) Microsoft Corporation.
   4 *
   5 * Author:
   6 *   Jake Oshins <jakeo@microsoft.com>
   7 *
   8 * This driver acts as a paravirtual front-end for PCI Express root buses.
   9 * When a PCI Express function (either an entire device or an SR-IOV
  10 * Virtual Function) is being passed through to the VM, this driver exposes
  11 * a new bus to the guest VM.  This is modeled as a root PCI bus because
  12 * no bridges are being exposed to the VM.  In fact, with a "Generation 2"
  13 * VM within Hyper-V, there may seem to be no PCI bus at all in the VM
  14 * until a device as been exposed using this driver.
  15 *
  16 * Each root PCI bus has its own PCI domain, which is called "Segment" in
  17 * the PCI Firmware Specifications.  Thus while each device passed through
  18 * to the VM using this front-end will appear at "device 0", the domain will
  19 * be unique.  Typically, each bus will have one PCI function on it, though
  20 * this driver does support more than one.
  21 *
  22 * In order to map the interrupts from the device through to the guest VM,
  23 * this driver also implements an IRQ Domain, which handles interrupts (either
  24 * MSI or MSI-X) associated with the functions on the bus.  As interrupts are
  25 * set up, torn down, or reaffined, this driver communicates with the
  26 * underlying hypervisor to adjust the mappings in the I/O MMU so that each
  27 * interrupt will be delivered to the correct virtual processor at the right
  28 * vector.  This driver does not support level-triggered (line-based)
  29 * interrupts, and will report that the Interrupt Line register in the
  30 * function's configuration space is zero.
  31 *
  32 * The rest of this driver mostly maps PCI concepts onto underlying Hyper-V
  33 * facilities.  For instance, the configuration space of a function exposed
  34 * by Hyper-V is mapped into a single page of memory space, and the
  35 * read and write handlers for config space must be aware of this mechanism.
  36 * Similarly, device setup and teardown involves messages sent to and from
  37 * the PCI back-end driver in Hyper-V.
  38 */
  39
  40#include <linux/kernel.h>
  41#include <linux/module.h>
  42#include <linux/pci.h>
 
  43#include <linux/delay.h>
  44#include <linux/semaphore.h>
  45#include <linux/irqdomain.h>
  46#include <asm/irqdomain.h>
  47#include <asm/apic.h>
  48#include <linux/irq.h>
  49#include <linux/msi.h>
  50#include <linux/hyperv.h>
  51#include <linux/refcount.h>
 
 
 
  52#include <asm/mshyperv.h>
  53
  54/*
  55 * Protocol versions. The low word is the minor version, the high word the
  56 * major version.
  57 */
  58
  59#define PCI_MAKE_VERSION(major, minor) ((u32)(((major) << 16) | (minor)))
  60#define PCI_MAJOR_VERSION(version) ((u32)(version) >> 16)
  61#define PCI_MINOR_VERSION(version) ((u32)(version) & 0xff)
  62
  63enum pci_protocol_version_t {
  64	PCI_PROTOCOL_VERSION_1_1 = PCI_MAKE_VERSION(1, 1),	/* Win10 */
  65	PCI_PROTOCOL_VERSION_1_2 = PCI_MAKE_VERSION(1, 2),	/* RS1 */
  66	PCI_PROTOCOL_VERSION_1_3 = PCI_MAKE_VERSION(1, 3),	/* Vibranium */
 
  67};
  68
  69#define CPU_AFFINITY_ALL	-1ULL
  70
  71/*
  72 * Supported protocol versions in the order of probing - highest go
  73 * first.
  74 */
  75static enum pci_protocol_version_t pci_protocol_versions[] = {
 
  76	PCI_PROTOCOL_VERSION_1_3,
  77	PCI_PROTOCOL_VERSION_1_2,
  78	PCI_PROTOCOL_VERSION_1_1,
  79};
  80
  81#define PCI_CONFIG_MMIO_LENGTH	0x2000
  82#define CFG_PAGE_OFFSET 0x1000
  83#define CFG_PAGE_SIZE (PCI_CONFIG_MMIO_LENGTH - CFG_PAGE_OFFSET)
  84
  85#define MAX_SUPPORTED_MSI_MESSAGES 0x400
  86
  87#define STATUS_REVISION_MISMATCH 0xC0000059
  88
  89/* space for 32bit serial number as string */
  90#define SLOT_NAME_SIZE 11
  91
  92/*
 
 
 
 
 
 
 
  93 * Message Types
  94 */
  95
  96enum pci_message_type {
  97	/*
  98	 * Version 1.1
  99	 */
 100	PCI_MESSAGE_BASE                = 0x42490000,
 101	PCI_BUS_RELATIONS               = PCI_MESSAGE_BASE + 0,
 102	PCI_QUERY_BUS_RELATIONS         = PCI_MESSAGE_BASE + 1,
 103	PCI_POWER_STATE_CHANGE          = PCI_MESSAGE_BASE + 4,
 104	PCI_QUERY_RESOURCE_REQUIREMENTS = PCI_MESSAGE_BASE + 5,
 105	PCI_QUERY_RESOURCE_RESOURCES    = PCI_MESSAGE_BASE + 6,
 106	PCI_BUS_D0ENTRY                 = PCI_MESSAGE_BASE + 7,
 107	PCI_BUS_D0EXIT                  = PCI_MESSAGE_BASE + 8,
 108	PCI_READ_BLOCK                  = PCI_MESSAGE_BASE + 9,
 109	PCI_WRITE_BLOCK                 = PCI_MESSAGE_BASE + 0xA,
 110	PCI_EJECT                       = PCI_MESSAGE_BASE + 0xB,
 111	PCI_QUERY_STOP                  = PCI_MESSAGE_BASE + 0xC,
 112	PCI_REENABLE                    = PCI_MESSAGE_BASE + 0xD,
 113	PCI_QUERY_STOP_FAILED           = PCI_MESSAGE_BASE + 0xE,
 114	PCI_EJECTION_COMPLETE           = PCI_MESSAGE_BASE + 0xF,
 115	PCI_RESOURCES_ASSIGNED          = PCI_MESSAGE_BASE + 0x10,
 116	PCI_RESOURCES_RELEASED          = PCI_MESSAGE_BASE + 0x11,
 117	PCI_INVALIDATE_BLOCK            = PCI_MESSAGE_BASE + 0x12,
 118	PCI_QUERY_PROTOCOL_VERSION      = PCI_MESSAGE_BASE + 0x13,
 119	PCI_CREATE_INTERRUPT_MESSAGE    = PCI_MESSAGE_BASE + 0x14,
 120	PCI_DELETE_INTERRUPT_MESSAGE    = PCI_MESSAGE_BASE + 0x15,
 121	PCI_RESOURCES_ASSIGNED2		= PCI_MESSAGE_BASE + 0x16,
 122	PCI_CREATE_INTERRUPT_MESSAGE2	= PCI_MESSAGE_BASE + 0x17,
 123	PCI_DELETE_INTERRUPT_MESSAGE2	= PCI_MESSAGE_BASE + 0x18, /* unused */
 124	PCI_BUS_RELATIONS2		= PCI_MESSAGE_BASE + 0x19,
 
 
 125	PCI_MESSAGE_MAXIMUM
 126};
 127
 128/*
 129 * Structures defining the virtual PCI Express protocol.
 130 */
 131
 132union pci_version {
 133	struct {
 134		u16 minor_version;
 135		u16 major_version;
 136	} parts;
 137	u32 version;
 138} __packed;
 139
 140/*
 141 * Function numbers are 8-bits wide on Express, as interpreted through ARI,
 142 * which is all this driver does.  This representation is the one used in
 143 * Windows, which is what is expected when sending this back and forth with
 144 * the Hyper-V parent partition.
 145 */
 146union win_slot_encoding {
 147	struct {
 148		u32	dev:5;
 149		u32	func:3;
 150		u32	reserved:24;
 151	} bits;
 152	u32 slot;
 153} __packed;
 154
 155/*
 156 * Pretty much as defined in the PCI Specifications.
 157 */
 158struct pci_function_description {
 159	u16	v_id;	/* vendor ID */
 160	u16	d_id;	/* device ID */
 161	u8	rev;
 162	u8	prog_intf;
 163	u8	subclass;
 164	u8	base_class;
 165	u32	subsystem_id;
 166	union win_slot_encoding win_slot;
 167	u32	ser;	/* serial number */
 168} __packed;
 169
 170enum pci_device_description_flags {
 171	HV_PCI_DEVICE_FLAG_NONE			= 0x0,
 172	HV_PCI_DEVICE_FLAG_NUMA_AFFINITY	= 0x1,
 173};
 174
 175struct pci_function_description2 {
 176	u16	v_id;	/* vendor ID */
 177	u16	d_id;	/* device ID */
 178	u8	rev;
 179	u8	prog_intf;
 180	u8	subclass;
 181	u8	base_class;
 182	u32	subsystem_id;
 183	union	win_slot_encoding win_slot;
 184	u32	ser;	/* serial number */
 185	u32	flags;
 186	u16	virtual_numa_node;
 187	u16	reserved;
 188} __packed;
 189
 190/**
 191 * struct hv_msi_desc
 192 * @vector:		IDT entry
 193 * @delivery_mode:	As defined in Intel's Programmer's
 194 *			Reference Manual, Volume 3, Chapter 8.
 195 * @vector_count:	Number of contiguous entries in the
 196 *			Interrupt Descriptor Table that are
 197 *			occupied by this Message-Signaled
 198 *			Interrupt. For "MSI", as first defined
 199 *			in PCI 2.2, this can be between 1 and
 200 *			32. For "MSI-X," as first defined in PCI
 201 *			3.0, this must be 1, as each MSI-X table
 202 *			entry would have its own descriptor.
 203 * @reserved:		Empty space
 204 * @cpu_mask:		All the target virtual processors.
 205 */
 206struct hv_msi_desc {
 207	u8	vector;
 208	u8	delivery_mode;
 209	u16	vector_count;
 210	u32	reserved;
 211	u64	cpu_mask;
 212} __packed;
 213
 214/**
 215 * struct hv_msi_desc2 - 1.2 version of hv_msi_desc
 216 * @vector:		IDT entry
 217 * @delivery_mode:	As defined in Intel's Programmer's
 218 *			Reference Manual, Volume 3, Chapter 8.
 219 * @vector_count:	Number of contiguous entries in the
 220 *			Interrupt Descriptor Table that are
 221 *			occupied by this Message-Signaled
 222 *			Interrupt. For "MSI", as first defined
 223 *			in PCI 2.2, this can be between 1 and
 224 *			32. For "MSI-X," as first defined in PCI
 225 *			3.0, this must be 1, as each MSI-X table
 226 *			entry would have its own descriptor.
 227 * @processor_count:	number of bits enabled in array.
 228 * @processor_array:	All the target virtual processors.
 229 */
 230struct hv_msi_desc2 {
 231	u8	vector;
 232	u8	delivery_mode;
 233	u16	vector_count;
 234	u16	processor_count;
 235	u16	processor_array[32];
 236} __packed;
 237
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 238/**
 239 * struct tran_int_desc
 240 * @reserved:		unused, padding
 241 * @vector_count:	same as in hv_msi_desc
 242 * @data:		This is the "data payload" value that is
 243 *			written by the device when it generates
 244 *			a message-signaled interrupt, either MSI
 245 *			or MSI-X.
 246 * @address:		This is the address to which the data
 247 *			payload is written on interrupt
 248 *			generation.
 249 */
 250struct tran_int_desc {
 251	u16	reserved;
 252	u16	vector_count;
 253	u32	data;
 254	u64	address;
 255} __packed;
 256
 257/*
 258 * A generic message format for virtual PCI.
 259 * Specific message formats are defined later in the file.
 260 */
 261
 262struct pci_message {
 263	u32 type;
 264} __packed;
 265
 266struct pci_child_message {
 267	struct pci_message message_type;
 268	union win_slot_encoding wslot;
 269} __packed;
 270
 271struct pci_incoming_message {
 272	struct vmpacket_descriptor hdr;
 273	struct pci_message message_type;
 274} __packed;
 275
 276struct pci_response {
 277	struct vmpacket_descriptor hdr;
 278	s32 status;			/* negative values are failures */
 279} __packed;
 280
 281struct pci_packet {
 282	void (*completion_func)(void *context, struct pci_response *resp,
 283				int resp_packet_size);
 284	void *compl_ctxt;
 285
 286	struct pci_message message[];
 287};
 288
 289/*
 290 * Specific message types supporting the PCI protocol.
 291 */
 292
 293/*
 294 * Version negotiation message. Sent from the guest to the host.
 295 * The guest is free to try different versions until the host
 296 * accepts the version.
 297 *
 298 * pci_version: The protocol version requested.
 299 * is_last_attempt: If TRUE, this is the last version guest will request.
 300 * reservedz: Reserved field, set to zero.
 301 */
 302
 303struct pci_version_request {
 304	struct pci_message message_type;
 305	u32 protocol_version;
 306} __packed;
 307
 308/*
 309 * Bus D0 Entry.  This is sent from the guest to the host when the virtual
 310 * bus (PCI Express port) is ready for action.
 311 */
 312
 313struct pci_bus_d0_entry {
 314	struct pci_message message_type;
 315	u32 reserved;
 316	u64 mmio_base;
 317} __packed;
 318
 319struct pci_bus_relations {
 320	struct pci_incoming_message incoming;
 321	u32 device_count;
 322	struct pci_function_description func[];
 323} __packed;
 324
 325struct pci_bus_relations2 {
 326	struct pci_incoming_message incoming;
 327	u32 device_count;
 328	struct pci_function_description2 func[];
 329} __packed;
 330
 331struct pci_q_res_req_response {
 332	struct vmpacket_descriptor hdr;
 333	s32 status;			/* negative values are failures */
 334	u32 probed_bar[PCI_STD_NUM_BARS];
 335} __packed;
 336
 337struct pci_set_power {
 338	struct pci_message message_type;
 339	union win_slot_encoding wslot;
 340	u32 power_state;		/* In Windows terms */
 341	u32 reserved;
 342} __packed;
 343
 344struct pci_set_power_response {
 345	struct vmpacket_descriptor hdr;
 346	s32 status;			/* negative values are failures */
 347	union win_slot_encoding wslot;
 348	u32 resultant_state;		/* In Windows terms */
 349	u32 reserved;
 350} __packed;
 351
 352struct pci_resources_assigned {
 353	struct pci_message message_type;
 354	union win_slot_encoding wslot;
 355	u8 memory_range[0x14][6];	/* not used here */
 356	u32 msi_descriptors;
 357	u32 reserved[4];
 358} __packed;
 359
 360struct pci_resources_assigned2 {
 361	struct pci_message message_type;
 362	union win_slot_encoding wslot;
 363	u8 memory_range[0x14][6];	/* not used here */
 364	u32 msi_descriptor_count;
 365	u8 reserved[70];
 366} __packed;
 367
 368struct pci_create_interrupt {
 369	struct pci_message message_type;
 370	union win_slot_encoding wslot;
 371	struct hv_msi_desc int_desc;
 372} __packed;
 373
 374struct pci_create_int_response {
 375	struct pci_response response;
 376	u32 reserved;
 377	struct tran_int_desc int_desc;
 378} __packed;
 379
 380struct pci_create_interrupt2 {
 381	struct pci_message message_type;
 382	union win_slot_encoding wslot;
 383	struct hv_msi_desc2 int_desc;
 384} __packed;
 385
 
 
 
 
 
 
 386struct pci_delete_interrupt {
 387	struct pci_message message_type;
 388	union win_slot_encoding wslot;
 389	struct tran_int_desc int_desc;
 390} __packed;
 391
 392/*
 393 * Note: the VM must pass a valid block id, wslot and bytes_requested.
 394 */
 395struct pci_read_block {
 396	struct pci_message message_type;
 397	u32 block_id;
 398	union win_slot_encoding wslot;
 399	u32 bytes_requested;
 400} __packed;
 401
 402struct pci_read_block_response {
 403	struct vmpacket_descriptor hdr;
 404	u32 status;
 405	u8 bytes[HV_CONFIG_BLOCK_SIZE_MAX];
 406} __packed;
 407
 408/*
 409 * Note: the VM must pass a valid block id, wslot and byte_count.
 410 */
 411struct pci_write_block {
 412	struct pci_message message_type;
 413	u32 block_id;
 414	union win_slot_encoding wslot;
 415	u32 byte_count;
 416	u8 bytes[HV_CONFIG_BLOCK_SIZE_MAX];
 417} __packed;
 418
 419struct pci_dev_inval_block {
 420	struct pci_incoming_message incoming;
 421	union win_slot_encoding wslot;
 422	u64 block_mask;
 423} __packed;
 424
 425struct pci_dev_incoming {
 426	struct pci_incoming_message incoming;
 427	union win_slot_encoding wslot;
 428} __packed;
 429
 430struct pci_eject_response {
 431	struct pci_message message_type;
 432	union win_slot_encoding wslot;
 433	u32 status;
 434} __packed;
 435
 436static int pci_ring_size = (4 * PAGE_SIZE);
 437
 438/*
 439 * Driver specific state.
 440 */
 441
 442enum hv_pcibus_state {
 443	hv_pcibus_init = 0,
 444	hv_pcibus_probed,
 445	hv_pcibus_installed,
 446	hv_pcibus_removing,
 447	hv_pcibus_removed,
 448	hv_pcibus_maximum
 449};
 450
 451struct hv_pcibus_device {
 
 452	struct pci_sysdata sysdata;
 
 
 
 
 
 453	/* Protocol version negotiated with the host */
 454	enum pci_protocol_version_t protocol_version;
 
 
 455	enum hv_pcibus_state state;
 456	refcount_t remove_lock;
 457	struct hv_device *hdev;
 458	resource_size_t low_mmio_space;
 459	resource_size_t high_mmio_space;
 460	struct resource *mem_config;
 461	struct resource *low_mmio_res;
 462	struct resource *high_mmio_res;
 463	struct completion *survey_event;
 464	struct completion remove_event;
 465	struct pci_bus *pci_bus;
 466	spinlock_t config_lock;	/* Avoid two threads writing index page */
 467	spinlock_t device_list_lock;	/* Protect lists below */
 468	void __iomem *cfg_addr;
 469
 470	struct list_head resources_for_children;
 471
 472	struct list_head children;
 473	struct list_head dr_list;
 474
 475	struct msi_domain_info msi_info;
 476	struct msi_controller msi_chip;
 477	struct irq_domain *irq_domain;
 478
 479	spinlock_t retarget_msi_interrupt_lock;
 480
 481	struct workqueue_struct *wq;
 482
 483	/* Highest slot of child device with resources allocated */
 484	int wslot_res_allocated;
 485
 486	/* hypercall arg, must not cross page boundary */
 487	struct hv_retarget_device_interrupt retarget_msi_interrupt_params;
 488
 489	/*
 490	 * Don't put anything here: retarget_msi_interrupt_params must be last
 491	 */
 492};
 493
 494/*
 495 * Tracks "Device Relations" messages from the host, which must be both
 496 * processed in order and deferred so that they don't run in the context
 497 * of the incoming packet callback.
 498 */
 499struct hv_dr_work {
 500	struct work_struct wrk;
 501	struct hv_pcibus_device *bus;
 502};
 503
 504struct hv_pcidev_description {
 505	u16	v_id;	/* vendor ID */
 506	u16	d_id;	/* device ID */
 507	u8	rev;
 508	u8	prog_intf;
 509	u8	subclass;
 510	u8	base_class;
 511	u32	subsystem_id;
 512	union	win_slot_encoding win_slot;
 513	u32	ser;	/* serial number */
 514	u32	flags;
 515	u16	virtual_numa_node;
 516};
 517
 518struct hv_dr_state {
 519	struct list_head list_entry;
 520	u32 device_count;
 521	struct hv_pcidev_description func[];
 522};
 523
 524enum hv_pcichild_state {
 525	hv_pcichild_init = 0,
 526	hv_pcichild_requirements,
 527	hv_pcichild_resourced,
 528	hv_pcichild_ejecting,
 529	hv_pcichild_maximum
 530};
 531
 532struct hv_pci_dev {
 533	/* List protected by pci_rescan_remove_lock */
 534	struct list_head list_entry;
 535	refcount_t refs;
 536	enum hv_pcichild_state state;
 537	struct pci_slot *pci_slot;
 538	struct hv_pcidev_description desc;
 539	bool reported_missing;
 540	struct hv_pcibus_device *hbus;
 541	struct work_struct wrk;
 542
 543	void (*block_invalidate)(void *context, u64 block_mask);
 544	void *invalidate_context;
 545
 546	/*
 547	 * What would be observed if one wrote 0xFFFFFFFF to a BAR and then
 548	 * read it back, for each of the BAR offsets within config space.
 549	 */
 550	u32 probed_bar[PCI_STD_NUM_BARS];
 551};
 552
 553struct hv_pci_compl {
 554	struct completion host_event;
 555	s32 completion_status;
 556};
 557
 558static void hv_pci_onchannelcallback(void *context);
 559
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 560/**
 561 * hv_pci_generic_compl() - Invoked for a completion packet
 562 * @context:		Set up by the sender of the packet.
 563 * @resp:		The response packet
 564 * @resp_packet_size:	Size in bytes of the packet
 565 *
 566 * This function is used to trigger an event and report status
 567 * for any message for which the completion packet contains a
 568 * status and nothing else.
 569 */
 570static void hv_pci_generic_compl(void *context, struct pci_response *resp,
 571				 int resp_packet_size)
 572{
 573	struct hv_pci_compl *comp_pkt = context;
 574
 575	if (resp_packet_size >= offsetofend(struct pci_response, status))
 576		comp_pkt->completion_status = resp->status;
 577	else
 578		comp_pkt->completion_status = -1;
 579
 580	complete(&comp_pkt->host_event);
 581}
 582
 583static struct hv_pci_dev *get_pcichild_wslot(struct hv_pcibus_device *hbus,
 584						u32 wslot);
 585
 586static void get_pcichild(struct hv_pci_dev *hpdev)
 587{
 588	refcount_inc(&hpdev->refs);
 589}
 590
 591static void put_pcichild(struct hv_pci_dev *hpdev)
 592{
 593	if (refcount_dec_and_test(&hpdev->refs))
 594		kfree(hpdev);
 595}
 596
 597static void get_hvpcibus(struct hv_pcibus_device *hv_pcibus);
 598static void put_hvpcibus(struct hv_pcibus_device *hv_pcibus);
 599
 600/*
 601 * There is no good way to get notified from vmbus_onoffer_rescind(),
 602 * so let's use polling here, since this is not a hot path.
 603 */
 604static int wait_for_response(struct hv_device *hdev,
 605			     struct completion *comp)
 606{
 607	while (true) {
 608		if (hdev->channel->rescind) {
 609			dev_warn_once(&hdev->device, "The device is gone.\n");
 610			return -ENODEV;
 611		}
 612
 613		if (wait_for_completion_timeout(comp, HZ / 10))
 614			break;
 615	}
 616
 617	return 0;
 618}
 619
 620/**
 621 * devfn_to_wslot() - Convert from Linux PCI slot to Windows
 622 * @devfn:	The Linux representation of PCI slot
 623 *
 624 * Windows uses a slightly different representation of PCI slot.
 625 *
 626 * Return: The Windows representation
 627 */
 628static u32 devfn_to_wslot(int devfn)
 629{
 630	union win_slot_encoding wslot;
 631
 632	wslot.slot = 0;
 633	wslot.bits.dev = PCI_SLOT(devfn);
 634	wslot.bits.func = PCI_FUNC(devfn);
 635
 636	return wslot.slot;
 637}
 638
 639/**
 640 * wslot_to_devfn() - Convert from Windows PCI slot to Linux
 641 * @wslot:	The Windows representation of PCI slot
 642 *
 643 * Windows uses a slightly different representation of PCI slot.
 644 *
 645 * Return: The Linux representation
 646 */
 647static int wslot_to_devfn(u32 wslot)
 648{
 649	union win_slot_encoding slot_no;
 650
 651	slot_no.slot = wslot;
 652	return PCI_DEVFN(slot_no.bits.dev, slot_no.bits.func);
 653}
 654
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 655/*
 656 * PCI Configuration Space for these root PCI buses is implemented as a pair
 657 * of pages in memory-mapped I/O space.  Writing to the first page chooses
 658 * the PCI function being written or read.  Once the first page has been
 659 * written to, the following page maps in the entire configuration space of
 660 * the function.
 661 */
 662
 663/**
 664 * _hv_pcifront_read_config() - Internal PCI config read
 665 * @hpdev:	The PCI driver's representation of the device
 666 * @where:	Offset within config space
 667 * @size:	Size of the transfer
 668 * @val:	Pointer to the buffer receiving the data
 669 */
 670static void _hv_pcifront_read_config(struct hv_pci_dev *hpdev, int where,
 671				     int size, u32 *val)
 672{
 
 
 
 673	unsigned long flags;
 674	void __iomem *addr = hpdev->hbus->cfg_addr + CFG_PAGE_OFFSET + where;
 675
 676	/*
 677	 * If the attempt is to read the IDs or the ROM BAR, simulate that.
 678	 */
 679	if (where + size <= PCI_COMMAND) {
 680		memcpy(val, ((u8 *)&hpdev->desc.v_id) + where, size);
 681	} else if (where >= PCI_CLASS_REVISION && where + size <=
 682		   PCI_CACHE_LINE_SIZE) {
 683		memcpy(val, ((u8 *)&hpdev->desc.rev) + where -
 684		       PCI_CLASS_REVISION, size);
 685	} else if (where >= PCI_SUBSYSTEM_VENDOR_ID && where + size <=
 686		   PCI_ROM_ADDRESS) {
 687		memcpy(val, (u8 *)&hpdev->desc.subsystem_id + where -
 688		       PCI_SUBSYSTEM_VENDOR_ID, size);
 689	} else if (where >= PCI_ROM_ADDRESS && where + size <=
 690		   PCI_CAPABILITY_LIST) {
 691		/* ROM BARs are unimplemented */
 692		*val = 0;
 693	} else if (where >= PCI_INTERRUPT_LINE && where + size <=
 694		   PCI_INTERRUPT_PIN) {
 695		/*
 696		 * Interrupt Line and Interrupt PIN are hard-wired to zero
 697		 * because this front-end only supports message-signaled
 698		 * interrupts.
 699		 */
 700		*val = 0;
 701	} else if (where + size <= CFG_PAGE_SIZE) {
 702		spin_lock_irqsave(&hpdev->hbus->config_lock, flags);
 703		/* Choose the function to be read. (See comment above) */
 704		writel(hpdev->desc.win_slot.slot, hpdev->hbus->cfg_addr);
 705		/* Make sure the function was chosen before we start reading. */
 706		mb();
 707		/* Read from that function's config space. */
 708		switch (size) {
 709		case 1:
 710			*val = readb(addr);
 711			break;
 712		case 2:
 713			*val = readw(addr);
 714			break;
 715		default:
 716			*val = readl(addr);
 717			break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 718		}
 719		/*
 720		 * Make sure the read was done before we release the spinlock
 721		 * allowing consecutive reads/writes.
 722		 */
 723		mb();
 724		spin_unlock_irqrestore(&hpdev->hbus->config_lock, flags);
 725	} else {
 726		dev_err(&hpdev->hbus->hdev->device,
 727			"Attempt to read beyond a function's config space.\n");
 728	}
 729}
 730
 731static u16 hv_pcifront_get_vendor_id(struct hv_pci_dev *hpdev)
 732{
 
 
 
 733	u16 ret;
 734	unsigned long flags;
 735	void __iomem *addr = hpdev->hbus->cfg_addr + CFG_PAGE_OFFSET +
 736			     PCI_VENDOR_ID;
 737
 738	spin_lock_irqsave(&hpdev->hbus->config_lock, flags);
 739
 740	/* Choose the function to be read. (See comment above) */
 741	writel(hpdev->desc.win_slot.slot, hpdev->hbus->cfg_addr);
 742	/* Make sure the function was chosen before we start reading. */
 743	mb();
 744	/* Read from that function's config space. */
 745	ret = readw(addr);
 746	/*
 747	 * mb() is not required here, because the spin_unlock_irqrestore()
 748	 * is a barrier.
 749	 */
 
 
 
 
 
 
 
 
 
 
 
 
 750
 751	spin_unlock_irqrestore(&hpdev->hbus->config_lock, flags);
 752
 753	return ret;
 754}
 755
 756/**
 757 * _hv_pcifront_write_config() - Internal PCI config write
 758 * @hpdev:	The PCI driver's representation of the device
 759 * @where:	Offset within config space
 760 * @size:	Size of the transfer
 761 * @val:	The data being transferred
 762 */
 763static void _hv_pcifront_write_config(struct hv_pci_dev *hpdev, int where,
 764				      int size, u32 val)
 765{
 
 
 
 766	unsigned long flags;
 767	void __iomem *addr = hpdev->hbus->cfg_addr + CFG_PAGE_OFFSET + where;
 768
 769	if (where >= PCI_SUBSYSTEM_VENDOR_ID &&
 770	    where + size <= PCI_CAPABILITY_LIST) {
 771		/* SSIDs and ROM BARs are read-only */
 772	} else if (where >= PCI_COMMAND && where + size <= CFG_PAGE_SIZE) {
 773		spin_lock_irqsave(&hpdev->hbus->config_lock, flags);
 774		/* Choose the function to be written. (See comment above) */
 775		writel(hpdev->desc.win_slot.slot, hpdev->hbus->cfg_addr);
 776		/* Make sure the function was chosen before we start writing. */
 777		wmb();
 778		/* Write to that function's config space. */
 779		switch (size) {
 780		case 1:
 781			writeb(val, addr);
 782			break;
 783		case 2:
 784			writew(val, addr);
 785			break;
 786		default:
 787			writel(val, addr);
 788			break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 789		}
 790		/*
 791		 * Make sure the write was done before we release the spinlock
 792		 * allowing consecutive reads/writes.
 793		 */
 794		mb();
 795		spin_unlock_irqrestore(&hpdev->hbus->config_lock, flags);
 796	} else {
 797		dev_err(&hpdev->hbus->hdev->device,
 798			"Attempt to write beyond a function's config space.\n");
 799	}
 800}
 801
 802/**
 803 * hv_pcifront_read_config() - Read configuration space
 804 * @bus: PCI Bus structure
 805 * @devfn: Device/function
 806 * @where: Offset from base
 807 * @size: Byte/word/dword
 808 * @val: Value to be read
 809 *
 810 * Return: PCIBIOS_SUCCESSFUL on success
 811 *	   PCIBIOS_DEVICE_NOT_FOUND on failure
 812 */
 813static int hv_pcifront_read_config(struct pci_bus *bus, unsigned int devfn,
 814				   int where, int size, u32 *val)
 815{
 816	struct hv_pcibus_device *hbus =
 817		container_of(bus->sysdata, struct hv_pcibus_device, sysdata);
 818	struct hv_pci_dev *hpdev;
 819
 820	hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(devfn));
 821	if (!hpdev)
 822		return PCIBIOS_DEVICE_NOT_FOUND;
 823
 824	_hv_pcifront_read_config(hpdev, where, size, val);
 825
 826	put_pcichild(hpdev);
 827	return PCIBIOS_SUCCESSFUL;
 828}
 829
 830/**
 831 * hv_pcifront_write_config() - Write configuration space
 832 * @bus: PCI Bus structure
 833 * @devfn: Device/function
 834 * @where: Offset from base
 835 * @size: Byte/word/dword
 836 * @val: Value to be written to device
 837 *
 838 * Return: PCIBIOS_SUCCESSFUL on success
 839 *	   PCIBIOS_DEVICE_NOT_FOUND on failure
 840 */
 841static int hv_pcifront_write_config(struct pci_bus *bus, unsigned int devfn,
 842				    int where, int size, u32 val)
 843{
 844	struct hv_pcibus_device *hbus =
 845	    container_of(bus->sysdata, struct hv_pcibus_device, sysdata);
 846	struct hv_pci_dev *hpdev;
 847
 848	hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(devfn));
 849	if (!hpdev)
 850		return PCIBIOS_DEVICE_NOT_FOUND;
 851
 852	_hv_pcifront_write_config(hpdev, where, size, val);
 853
 854	put_pcichild(hpdev);
 855	return PCIBIOS_SUCCESSFUL;
 856}
 857
 858/* PCIe operations */
 859static struct pci_ops hv_pcifront_ops = {
 860	.read  = hv_pcifront_read_config,
 861	.write = hv_pcifront_write_config,
 862};
 863
 864/*
 865 * Paravirtual backchannel
 866 *
 867 * Hyper-V SR-IOV provides a backchannel mechanism in software for
 868 * communication between a VF driver and a PF driver.  These
 869 * "configuration blocks" are similar in concept to PCI configuration space,
 870 * but instead of doing reads and writes in 32-bit chunks through a very slow
 871 * path, packets of up to 128 bytes can be sent or received asynchronously.
 872 *
 873 * Nearly every SR-IOV device contains just such a communications channel in
 874 * hardware, so using this one in software is usually optional.  Using the
 875 * software channel, however, allows driver implementers to leverage software
 876 * tools that fuzz the communications channel looking for vulnerabilities.
 877 *
 878 * The usage model for these packets puts the responsibility for reading or
 879 * writing on the VF driver.  The VF driver sends a read or a write packet,
 880 * indicating which "block" is being referred to by number.
 881 *
 882 * If the PF driver wishes to initiate communication, it can "invalidate" one or
 883 * more of the first 64 blocks.  This invalidation is delivered via a callback
 884 * supplied by the VF driver by this driver.
 885 *
 886 * No protocol is implied, except that supplied by the PF and VF drivers.
 887 */
 888
 889struct hv_read_config_compl {
 890	struct hv_pci_compl comp_pkt;
 891	void *buf;
 892	unsigned int len;
 893	unsigned int bytes_returned;
 894};
 895
 896/**
 897 * hv_pci_read_config_compl() - Invoked when a response packet
 898 * for a read config block operation arrives.
 899 * @context:		Identifies the read config operation
 900 * @resp:		The response packet itself
 901 * @resp_packet_size:	Size in bytes of the response packet
 902 */
 903static void hv_pci_read_config_compl(void *context, struct pci_response *resp,
 904				     int resp_packet_size)
 905{
 906	struct hv_read_config_compl *comp = context;
 907	struct pci_read_block_response *read_resp =
 908		(struct pci_read_block_response *)resp;
 909	unsigned int data_len, hdr_len;
 910
 911	hdr_len = offsetof(struct pci_read_block_response, bytes);
 912	if (resp_packet_size < hdr_len) {
 913		comp->comp_pkt.completion_status = -1;
 914		goto out;
 915	}
 916
 917	data_len = resp_packet_size - hdr_len;
 918	if (data_len > 0 && read_resp->status == 0) {
 919		comp->bytes_returned = min(comp->len, data_len);
 920		memcpy(comp->buf, read_resp->bytes, comp->bytes_returned);
 921	} else {
 922		comp->bytes_returned = 0;
 923	}
 924
 925	comp->comp_pkt.completion_status = read_resp->status;
 926out:
 927	complete(&comp->comp_pkt.host_event);
 928}
 929
 930/**
 931 * hv_read_config_block() - Sends a read config block request to
 932 * the back-end driver running in the Hyper-V parent partition.
 933 * @pdev:		The PCI driver's representation for this device.
 934 * @buf:		Buffer into which the config block will be copied.
 935 * @len:		Size in bytes of buf.
 936 * @block_id:		Identifies the config block which has been requested.
 937 * @bytes_returned:	Size which came back from the back-end driver.
 938 *
 939 * Return: 0 on success, -errno on failure
 940 */
 941static int hv_read_config_block(struct pci_dev *pdev, void *buf,
 942				unsigned int len, unsigned int block_id,
 943				unsigned int *bytes_returned)
 944{
 945	struct hv_pcibus_device *hbus =
 946		container_of(pdev->bus->sysdata, struct hv_pcibus_device,
 947			     sysdata);
 948	struct {
 949		struct pci_packet pkt;
 950		char buf[sizeof(struct pci_read_block)];
 951	} pkt;
 952	struct hv_read_config_compl comp_pkt;
 953	struct pci_read_block *read_blk;
 954	int ret;
 955
 956	if (len == 0 || len > HV_CONFIG_BLOCK_SIZE_MAX)
 957		return -EINVAL;
 958
 959	init_completion(&comp_pkt.comp_pkt.host_event);
 960	comp_pkt.buf = buf;
 961	comp_pkt.len = len;
 962
 963	memset(&pkt, 0, sizeof(pkt));
 964	pkt.pkt.completion_func = hv_pci_read_config_compl;
 965	pkt.pkt.compl_ctxt = &comp_pkt;
 966	read_blk = (struct pci_read_block *)&pkt.pkt.message;
 967	read_blk->message_type.type = PCI_READ_BLOCK;
 968	read_blk->wslot.slot = devfn_to_wslot(pdev->devfn);
 969	read_blk->block_id = block_id;
 970	read_blk->bytes_requested = len;
 971
 972	ret = vmbus_sendpacket(hbus->hdev->channel, read_blk,
 973			       sizeof(*read_blk), (unsigned long)&pkt.pkt,
 974			       VM_PKT_DATA_INBAND,
 975			       VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
 976	if (ret)
 977		return ret;
 978
 979	ret = wait_for_response(hbus->hdev, &comp_pkt.comp_pkt.host_event);
 980	if (ret)
 981		return ret;
 982
 983	if (comp_pkt.comp_pkt.completion_status != 0 ||
 984	    comp_pkt.bytes_returned == 0) {
 985		dev_err(&hbus->hdev->device,
 986			"Read Config Block failed: 0x%x, bytes_returned=%d\n",
 987			comp_pkt.comp_pkt.completion_status,
 988			comp_pkt.bytes_returned);
 989		return -EIO;
 990	}
 991
 992	*bytes_returned = comp_pkt.bytes_returned;
 993	return 0;
 994}
 995
 996/**
 997 * hv_pci_write_config_compl() - Invoked when a response packet for a write
 998 * config block operation arrives.
 999 * @context:		Identifies the write config operation
1000 * @resp:		The response packet itself
1001 * @resp_packet_size:	Size in bytes of the response packet
1002 */
1003static void hv_pci_write_config_compl(void *context, struct pci_response *resp,
1004				      int resp_packet_size)
1005{
1006	struct hv_pci_compl *comp_pkt = context;
1007
1008	comp_pkt->completion_status = resp->status;
1009	complete(&comp_pkt->host_event);
1010}
1011
1012/**
1013 * hv_write_config_block() - Sends a write config block request to the
1014 * back-end driver running in the Hyper-V parent partition.
1015 * @pdev:		The PCI driver's representation for this device.
1016 * @buf:		Buffer from which the config block will	be copied.
1017 * @len:		Size in bytes of buf.
1018 * @block_id:		Identifies the config block which is being written.
1019 *
1020 * Return: 0 on success, -errno on failure
1021 */
1022static int hv_write_config_block(struct pci_dev *pdev, void *buf,
1023				unsigned int len, unsigned int block_id)
1024{
1025	struct hv_pcibus_device *hbus =
1026		container_of(pdev->bus->sysdata, struct hv_pcibus_device,
1027			     sysdata);
1028	struct {
1029		struct pci_packet pkt;
1030		char buf[sizeof(struct pci_write_block)];
1031		u32 reserved;
1032	} pkt;
1033	struct hv_pci_compl comp_pkt;
1034	struct pci_write_block *write_blk;
1035	u32 pkt_size;
1036	int ret;
1037
1038	if (len == 0 || len > HV_CONFIG_BLOCK_SIZE_MAX)
1039		return -EINVAL;
1040
1041	init_completion(&comp_pkt.host_event);
1042
1043	memset(&pkt, 0, sizeof(pkt));
1044	pkt.pkt.completion_func = hv_pci_write_config_compl;
1045	pkt.pkt.compl_ctxt = &comp_pkt;
1046	write_blk = (struct pci_write_block *)&pkt.pkt.message;
1047	write_blk->message_type.type = PCI_WRITE_BLOCK;
1048	write_blk->wslot.slot = devfn_to_wslot(pdev->devfn);
1049	write_blk->block_id = block_id;
1050	write_blk->byte_count = len;
1051	memcpy(write_blk->bytes, buf, len);
1052	pkt_size = offsetof(struct pci_write_block, bytes) + len;
1053	/*
1054	 * This quirk is required on some hosts shipped around 2018, because
1055	 * these hosts don't check the pkt_size correctly (new hosts have been
1056	 * fixed since early 2019). The quirk is also safe on very old hosts
1057	 * and new hosts, because, on them, what really matters is the length
1058	 * specified in write_blk->byte_count.
1059	 */
1060	pkt_size += sizeof(pkt.reserved);
1061
1062	ret = vmbus_sendpacket(hbus->hdev->channel, write_blk, pkt_size,
1063			       (unsigned long)&pkt.pkt, VM_PKT_DATA_INBAND,
1064			       VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
1065	if (ret)
1066		return ret;
1067
1068	ret = wait_for_response(hbus->hdev, &comp_pkt.host_event);
1069	if (ret)
1070		return ret;
1071
1072	if (comp_pkt.completion_status != 0) {
1073		dev_err(&hbus->hdev->device,
1074			"Write Config Block failed: 0x%x\n",
1075			comp_pkt.completion_status);
1076		return -EIO;
1077	}
1078
1079	return 0;
1080}
1081
1082/**
1083 * hv_register_block_invalidate() - Invoked when a config block invalidation
1084 * arrives from the back-end driver.
1085 * @pdev:		The PCI driver's representation for this device.
1086 * @context:		Identifies the device.
1087 * @block_invalidate:	Identifies all of the blocks being invalidated.
1088 *
1089 * Return: 0 on success, -errno on failure
1090 */
1091static int hv_register_block_invalidate(struct pci_dev *pdev, void *context,
1092					void (*block_invalidate)(void *context,
1093								 u64 block_mask))
1094{
1095	struct hv_pcibus_device *hbus =
1096		container_of(pdev->bus->sysdata, struct hv_pcibus_device,
1097			     sysdata);
1098	struct hv_pci_dev *hpdev;
1099
1100	hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(pdev->devfn));
1101	if (!hpdev)
1102		return -ENODEV;
1103
1104	hpdev->block_invalidate = block_invalidate;
1105	hpdev->invalidate_context = context;
1106
1107	put_pcichild(hpdev);
1108	return 0;
1109
1110}
1111
1112/* Interrupt management hooks */
1113static void hv_int_desc_free(struct hv_pci_dev *hpdev,
1114			     struct tran_int_desc *int_desc)
1115{
1116	struct pci_delete_interrupt *int_pkt;
1117	struct {
1118		struct pci_packet pkt;
1119		u8 buffer[sizeof(struct pci_delete_interrupt)];
1120	} ctxt;
1121
 
 
 
 
1122	memset(&ctxt, 0, sizeof(ctxt));
1123	int_pkt = (struct pci_delete_interrupt *)&ctxt.pkt.message;
1124	int_pkt->message_type.type =
1125		PCI_DELETE_INTERRUPT_MESSAGE;
1126	int_pkt->wslot.slot = hpdev->desc.win_slot.slot;
1127	int_pkt->int_desc = *int_desc;
1128	vmbus_sendpacket(hpdev->hbus->hdev->channel, int_pkt, sizeof(*int_pkt),
1129			 (unsigned long)&ctxt.pkt, VM_PKT_DATA_INBAND, 0);
1130	kfree(int_desc);
1131}
1132
1133/**
1134 * hv_msi_free() - Free the MSI.
1135 * @domain:	The interrupt domain pointer
1136 * @info:	Extra MSI-related context
1137 * @irq:	Identifies the IRQ.
1138 *
1139 * The Hyper-V parent partition and hypervisor are tracking the
1140 * messages that are in use, keeping the interrupt redirection
1141 * table up to date.  This callback sends a message that frees
1142 * the IRT entry and related tracking nonsense.
1143 */
1144static void hv_msi_free(struct irq_domain *domain, struct msi_domain_info *info,
1145			unsigned int irq)
1146{
1147	struct hv_pcibus_device *hbus;
1148	struct hv_pci_dev *hpdev;
1149	struct pci_dev *pdev;
1150	struct tran_int_desc *int_desc;
1151	struct irq_data *irq_data = irq_domain_get_irq_data(domain, irq);
1152	struct msi_desc *msi = irq_data_get_msi_desc(irq_data);
1153
1154	pdev = msi_desc_to_pci_dev(msi);
1155	hbus = info->data;
1156	int_desc = irq_data_get_irq_chip_data(irq_data);
1157	if (!int_desc)
1158		return;
1159
1160	irq_data->chip_data = NULL;
1161	hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(pdev->devfn));
1162	if (!hpdev) {
1163		kfree(int_desc);
1164		return;
1165	}
1166
1167	hv_int_desc_free(hpdev, int_desc);
1168	put_pcichild(hpdev);
1169}
1170
1171static int hv_set_affinity(struct irq_data *data, const struct cpumask *dest,
1172			   bool force)
1173{
1174	struct irq_data *parent = data->parent_data;
1175
1176	return parent->chip->irq_set_affinity(parent, dest, force);
1177}
1178
1179static void hv_irq_mask(struct irq_data *data)
1180{
1181	pci_msi_mask_irq(data);
 
 
1182}
1183
1184/**
1185 * hv_irq_unmask() - "Unmask" the IRQ by setting its current
1186 * affinity.
1187 * @data:	Describes the IRQ
1188 *
1189 * Build new a destination for the MSI and make a hypercall to
1190 * update the Interrupt Redirection Table. "Device Logical ID"
1191 * is built out of this PCI bus's instance GUID and the function
1192 * number of the device.
1193 */
1194static void hv_irq_unmask(struct irq_data *data)
1195{
1196	struct msi_desc *msi_desc = irq_data_get_msi_desc(data);
1197	struct irq_cfg *cfg = irqd_cfg(data);
1198	struct hv_retarget_device_interrupt *params;
1199	struct hv_pcibus_device *hbus;
1200	struct cpumask *dest;
1201	cpumask_var_t tmp;
1202	struct pci_bus *pbus;
1203	struct pci_dev *pdev;
1204	unsigned long flags;
1205	u32 var_size = 0;
1206	int cpu, nr_bank;
1207	u64 res;
1208
1209	dest = irq_data_get_effective_affinity_mask(data);
1210	pdev = msi_desc_to_pci_dev(msi_desc);
1211	pbus = pdev->bus;
1212	hbus = container_of(pbus->sysdata, struct hv_pcibus_device, sysdata);
1213
1214	spin_lock_irqsave(&hbus->retarget_msi_interrupt_lock, flags);
1215
1216	params = &hbus->retarget_msi_interrupt_params;
1217	memset(params, 0, sizeof(*params));
1218	params->partition_id = HV_PARTITION_ID_SELF;
1219	params->int_entry.source = 1; /* MSI(-X) */
1220	hv_set_msi_entry_from_desc(&params->int_entry.msi_entry, msi_desc);
1221	params->device_id = (hbus->hdev->dev_instance.b[5] << 24) |
1222			   (hbus->hdev->dev_instance.b[4] << 16) |
1223			   (hbus->hdev->dev_instance.b[7] << 8) |
1224			   (hbus->hdev->dev_instance.b[6] & 0xf8) |
1225			   PCI_FUNC(pdev->devfn);
1226	params->int_target.vector = cfg->vector;
1227
1228	/*
1229	 * Honoring apic->irq_delivery_mode set to dest_Fixed by
1230	 * setting the HV_DEVICE_INTERRUPT_TARGET_MULTICAST flag results in a
1231	 * spurious interrupt storm. Not doing so does not seem to have a
1232	 * negative effect (yet?).
1233	 */
1234
1235	if (hbus->protocol_version >= PCI_PROTOCOL_VERSION_1_2) {
1236		/*
1237		 * PCI_PROTOCOL_VERSION_1_2 supports the VP_SET version of the
1238		 * HVCALL_RETARGET_INTERRUPT hypercall, which also coincides
1239		 * with >64 VP support.
1240		 * ms_hyperv.hints & HV_X64_EX_PROCESSOR_MASKS_RECOMMENDED
1241		 * is not sufficient for this hypercall.
1242		 */
1243		params->int_target.flags |=
1244			HV_DEVICE_INTERRUPT_TARGET_PROCESSOR_SET;
1245
1246		if (!alloc_cpumask_var(&tmp, GFP_ATOMIC)) {
1247			res = 1;
1248			goto exit_unlock;
1249		}
1250
1251		cpumask_and(tmp, dest, cpu_online_mask);
1252		nr_bank = cpumask_to_vpset(&params->int_target.vp_set, tmp);
1253		free_cpumask_var(tmp);
1254
1255		if (nr_bank <= 0) {
1256			res = 1;
1257			goto exit_unlock;
1258		}
1259
1260		/*
1261		 * var-sized hypercall, var-size starts after vp_mask (thus
1262		 * vp_set.format does not count, but vp_set.valid_bank_mask
1263		 * does).
1264		 */
1265		var_size = 1 + nr_bank;
1266	} else {
1267		for_each_cpu_and(cpu, dest, cpu_online_mask) {
1268			params->int_target.vp_mask |=
1269				(1ULL << hv_cpu_number_to_vp_number(cpu));
1270		}
1271	}
1272
1273	res = hv_do_hypercall(HVCALL_RETARGET_INTERRUPT | (var_size << 17),
1274			      params, NULL);
1275
1276exit_unlock:
1277	spin_unlock_irqrestore(&hbus->retarget_msi_interrupt_lock, flags);
1278
1279	if (res) {
1280		dev_err(&hbus->hdev->device,
1281			"%s() failed: %#llx", __func__, res);
1282		return;
1283	}
1284
 
 
1285	pci_msi_unmask_irq(data);
1286}
1287
1288struct compose_comp_ctxt {
1289	struct hv_pci_compl comp_pkt;
1290	struct tran_int_desc int_desc;
1291};
1292
1293static void hv_pci_compose_compl(void *context, struct pci_response *resp,
1294				 int resp_packet_size)
1295{
1296	struct compose_comp_ctxt *comp_pkt = context;
1297	struct pci_create_int_response *int_resp =
1298		(struct pci_create_int_response *)resp;
1299
 
 
 
 
1300	comp_pkt->comp_pkt.completion_status = resp->status;
1301	comp_pkt->int_desc = int_resp->int_desc;
 
1302	complete(&comp_pkt->comp_pkt.host_event);
1303}
1304
1305static u32 hv_compose_msi_req_v1(
1306	struct pci_create_interrupt *int_pkt, struct cpumask *affinity,
1307	u32 slot, u8 vector)
1308{
1309	int_pkt->message_type.type = PCI_CREATE_INTERRUPT_MESSAGE;
1310	int_pkt->wslot.slot = slot;
1311	int_pkt->int_desc.vector = vector;
1312	int_pkt->int_desc.vector_count = 1;
1313	int_pkt->int_desc.delivery_mode = dest_Fixed;
1314
1315	/*
1316	 * Create MSI w/ dummy vCPU set, overwritten by subsequent retarget in
1317	 * hv_irq_unmask().
1318	 */
1319	int_pkt->int_desc.cpu_mask = CPU_AFFINITY_ALL;
1320
1321	return sizeof(*int_pkt);
1322}
1323
1324static u32 hv_compose_msi_req_v2(
1325	struct pci_create_interrupt2 *int_pkt, struct cpumask *affinity,
1326	u32 slot, u8 vector)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1327{
 
 
 
 
 
 
1328	int cpu;
1329
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1330	int_pkt->message_type.type = PCI_CREATE_INTERRUPT_MESSAGE2;
1331	int_pkt->wslot.slot = slot;
1332	int_pkt->int_desc.vector = vector;
1333	int_pkt->int_desc.vector_count = 1;
1334	int_pkt->int_desc.delivery_mode = dest_Fixed;
 
 
 
 
 
 
1335
1336	/*
1337	 * Create MSI w/ dummy vCPU set targeting just one vCPU, overwritten
1338	 * by subsequent retarget in hv_irq_unmask().
1339	 */
1340	cpu = cpumask_first_and(affinity, cpu_online_mask);
 
 
 
 
 
1341	int_pkt->int_desc.processor_array[0] =
1342		hv_cpu_number_to_vp_number(cpu);
1343	int_pkt->int_desc.processor_count = 1;
1344
1345	return sizeof(*int_pkt);
1346}
1347
1348/**
1349 * hv_compose_msi_msg() - Supplies a valid MSI address/data
1350 * @data:	Everything about this MSI
1351 * @msg:	Buffer that is filled in by this function
1352 *
1353 * This function unpacks the IRQ looking for target CPU set, IDT
1354 * vector and mode and sends a message to the parent partition
1355 * asking for a mapping for that tuple in this partition.  The
1356 * response supplies a data value and address to which that data
1357 * should be written to trigger that interrupt.
1358 */
1359static void hv_compose_msi_msg(struct irq_data *data, struct msi_msg *msg)
1360{
1361	struct irq_cfg *cfg = irqd_cfg(data);
1362	struct hv_pcibus_device *hbus;
1363	struct vmbus_channel *channel;
1364	struct hv_pci_dev *hpdev;
1365	struct pci_bus *pbus;
1366	struct pci_dev *pdev;
1367	struct cpumask *dest;
1368	struct compose_comp_ctxt comp;
1369	struct tran_int_desc *int_desc;
 
 
 
 
 
 
 
1370	struct {
1371		struct pci_packet pci_pkt;
1372		union {
1373			struct pci_create_interrupt v1;
1374			struct pci_create_interrupt2 v2;
 
1375		} int_pkts;
1376	} __packed ctxt;
1377
 
1378	u32 size;
1379	int ret;
 
1380
1381	pdev = msi_desc_to_pci_dev(irq_data_get_msi_desc(data));
 
 
 
 
 
 
 
 
 
 
 
 
 
1382	dest = irq_data_get_effective_affinity_mask(data);
1383	pbus = pdev->bus;
1384	hbus = container_of(pbus->sysdata, struct hv_pcibus_device, sysdata);
1385	channel = hbus->hdev->channel;
1386	hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(pdev->devfn));
1387	if (!hpdev)
1388		goto return_null_message;
1389
1390	/* Free any previous message that might have already been composed. */
1391	if (data->chip_data) {
1392		int_desc = data->chip_data;
1393		data->chip_data = NULL;
1394		hv_int_desc_free(hpdev, int_desc);
1395	}
1396
1397	int_desc = kzalloc(sizeof(*int_desc), GFP_ATOMIC);
1398	if (!int_desc)
1399		goto drop_reference;
1400
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1401	memset(&ctxt, 0, sizeof(ctxt));
1402	init_completion(&comp.comp_pkt.host_event);
1403	ctxt.pci_pkt.completion_func = hv_pci_compose_compl;
1404	ctxt.pci_pkt.compl_ctxt = &comp;
1405
1406	switch (hbus->protocol_version) {
1407	case PCI_PROTOCOL_VERSION_1_1:
1408		size = hv_compose_msi_req_v1(&ctxt.int_pkts.v1,
1409					dest,
1410					hpdev->desc.win_slot.slot,
1411					cfg->vector);
 
1412		break;
1413
1414	case PCI_PROTOCOL_VERSION_1_2:
1415	case PCI_PROTOCOL_VERSION_1_3:
1416		size = hv_compose_msi_req_v2(&ctxt.int_pkts.v2,
1417					dest,
 
 
 
 
 
 
 
 
1418					hpdev->desc.win_slot.slot,
1419					cfg->vector);
 
1420		break;
1421
1422	default:
1423		/* As we only negotiate protocol versions known to this driver,
1424		 * this path should never hit. However, this is it not a hot
1425		 * path so we print a message to aid future updates.
1426		 */
1427		dev_err(&hbus->hdev->device,
1428			"Unexpected vPCI protocol, update driver.");
1429		goto free_int_desc;
1430	}
1431
1432	ret = vmbus_sendpacket(hpdev->hbus->hdev->channel, &ctxt.int_pkts,
1433			       size, (unsigned long)&ctxt.pci_pkt,
1434			       VM_PKT_DATA_INBAND,
1435			       VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
1436	if (ret) {
1437		dev_err(&hbus->hdev->device,
1438			"Sending request for interrupt failed: 0x%x",
1439			comp.comp_pkt.completion_status);
1440		goto free_int_desc;
1441	}
1442
1443	/*
1444	 * Prevents hv_pci_onchannelcallback() from running concurrently
1445	 * in the tasklet.
1446	 */
1447	tasklet_disable(&channel->callback_event);
1448
1449	/*
1450	 * Since this function is called with IRQ locks held, can't
1451	 * do normal wait for completion; instead poll.
1452	 */
1453	while (!try_wait_for_completion(&comp.comp_pkt.host_event)) {
1454		unsigned long flags;
1455
1456		/* 0xFFFF means an invalid PCI VENDOR ID. */
1457		if (hv_pcifront_get_vendor_id(hpdev) == 0xFFFF) {
1458			dev_err_once(&hbus->hdev->device,
1459				     "the device has gone\n");
1460			goto enable_tasklet;
1461		}
1462
1463		/*
1464		 * Make sure that the ring buffer data structure doesn't get
1465		 * freed while we dereference the ring buffer pointer.  Test
1466		 * for the channel's onchannel_callback being NULL within a
1467		 * sched_lock critical section.  See also the inline comments
1468		 * in vmbus_reset_channel_cb().
1469		 */
1470		spin_lock_irqsave(&channel->sched_lock, flags);
1471		if (unlikely(channel->onchannel_callback == NULL)) {
1472			spin_unlock_irqrestore(&channel->sched_lock, flags);
1473			goto enable_tasklet;
1474		}
1475		hv_pci_onchannelcallback(hbus);
1476		spin_unlock_irqrestore(&channel->sched_lock, flags);
1477
1478		if (hpdev->state == hv_pcichild_ejecting) {
1479			dev_err_once(&hbus->hdev->device,
1480				     "the device is being ejected\n");
1481			goto enable_tasklet;
1482		}
1483
1484		udelay(100);
1485	}
1486
1487	tasklet_enable(&channel->callback_event);
1488
1489	if (comp.comp_pkt.completion_status < 0) {
1490		dev_err(&hbus->hdev->device,
1491			"Request for interrupt failed: 0x%x",
1492			comp.comp_pkt.completion_status);
1493		goto free_int_desc;
1494	}
1495
1496	/*
1497	 * Record the assignment so that this can be unwound later. Using
1498	 * irq_set_chip_data() here would be appropriate, but the lock it takes
1499	 * is already held.
1500	 */
1501	*int_desc = comp.int_desc;
1502	data->chip_data = int_desc;
1503
1504	/* Pass up the result. */
1505	msg->address_hi = comp.int_desc.address >> 32;
1506	msg->address_lo = comp.int_desc.address & 0xffffffff;
1507	msg->data = comp.int_desc.data;
1508
1509	put_pcichild(hpdev);
1510	return;
1511
1512enable_tasklet:
1513	tasklet_enable(&channel->callback_event);
 
 
 
 
 
 
 
 
 
1514free_int_desc:
1515	kfree(int_desc);
1516drop_reference:
1517	put_pcichild(hpdev);
1518return_null_message:
1519	msg->address_hi = 0;
1520	msg->address_lo = 0;
1521	msg->data = 0;
1522}
1523
1524/* HW Interrupt Chip Descriptor */
1525static struct irq_chip hv_msi_irq_chip = {
1526	.name			= "Hyper-V PCIe MSI",
1527	.irq_compose_msi_msg	= hv_compose_msi_msg,
1528	.irq_set_affinity	= hv_set_affinity,
 
1529	.irq_ack		= irq_chip_ack_parent,
 
 
 
1530	.irq_mask		= hv_irq_mask,
1531	.irq_unmask		= hv_irq_unmask,
1532};
1533
1534static irq_hw_number_t hv_msi_domain_ops_get_hwirq(struct msi_domain_info *info,
1535						   msi_alloc_info_t *arg)
1536{
1537	return arg->msi_hwirq;
1538}
1539
1540static struct msi_domain_ops hv_msi_ops = {
1541	.get_hwirq	= hv_msi_domain_ops_get_hwirq,
1542	.msi_prepare	= pci_msi_prepare,
1543	.set_desc	= pci_msi_set_desc,
1544	.msi_free	= hv_msi_free,
1545};
1546
1547/**
1548 * hv_pcie_init_irq_domain() - Initialize IRQ domain
1549 * @hbus:	The root PCI bus
1550 *
1551 * This function creates an IRQ domain which will be used for
1552 * interrupts from devices that have been passed through.  These
1553 * devices only support MSI and MSI-X, not line-based interrupts
1554 * or simulations of line-based interrupts through PCIe's
1555 * fabric-layer messages.  Because interrupts are remapped, we
1556 * can support multi-message MSI here.
1557 *
1558 * Return: '0' on success and error value on failure
1559 */
1560static int hv_pcie_init_irq_domain(struct hv_pcibus_device *hbus)
1561{
1562	hbus->msi_info.chip = &hv_msi_irq_chip;
1563	hbus->msi_info.ops = &hv_msi_ops;
1564	hbus->msi_info.flags = (MSI_FLAG_USE_DEF_DOM_OPS |
1565		MSI_FLAG_USE_DEF_CHIP_OPS | MSI_FLAG_MULTI_PCI_MSI |
1566		MSI_FLAG_PCI_MSIX);
1567	hbus->msi_info.handler = handle_edge_irq;
1568	hbus->msi_info.handler_name = "edge";
1569	hbus->msi_info.data = hbus;
1570	hbus->irq_domain = pci_msi_create_irq_domain(hbus->sysdata.fwnode,
1571						     &hbus->msi_info,
1572						     x86_vector_domain);
1573	if (!hbus->irq_domain) {
1574		dev_err(&hbus->hdev->device,
1575			"Failed to build an MSI IRQ domain\n");
1576		return -ENODEV;
1577	}
1578
 
 
1579	return 0;
1580}
1581
1582/**
1583 * get_bar_size() - Get the address space consumed by a BAR
1584 * @bar_val:	Value that a BAR returned after -1 was written
1585 *              to it.
1586 *
1587 * This function returns the size of the BAR, rounded up to 1
1588 * page.  It has to be rounded up because the hypervisor's page
1589 * table entry that maps the BAR into the VM can't specify an
1590 * offset within a page.  The invariant is that the hypervisor
1591 * must place any BARs of smaller than page length at the
1592 * beginning of a page.
1593 *
1594 * Return:	Size in bytes of the consumed MMIO space.
1595 */
1596static u64 get_bar_size(u64 bar_val)
1597{
1598	return round_up((1 + ~(bar_val & PCI_BASE_ADDRESS_MEM_MASK)),
1599			PAGE_SIZE);
1600}
1601
1602/**
1603 * survey_child_resources() - Total all MMIO requirements
1604 * @hbus:	Root PCI bus, as understood by this driver
1605 */
1606static void survey_child_resources(struct hv_pcibus_device *hbus)
1607{
1608	struct hv_pci_dev *hpdev;
1609	resource_size_t bar_size = 0;
1610	unsigned long flags;
1611	struct completion *event;
1612	u64 bar_val;
1613	int i;
1614
1615	/* If nobody is waiting on the answer, don't compute it. */
1616	event = xchg(&hbus->survey_event, NULL);
1617	if (!event)
1618		return;
1619
1620	/* If the answer has already been computed, go with it. */
1621	if (hbus->low_mmio_space || hbus->high_mmio_space) {
1622		complete(event);
1623		return;
1624	}
1625
1626	spin_lock_irqsave(&hbus->device_list_lock, flags);
1627
1628	/*
1629	 * Due to an interesting quirk of the PCI spec, all memory regions
1630	 * for a child device are a power of 2 in size and aligned in memory,
1631	 * so it's sufficient to just add them up without tracking alignment.
1632	 */
1633	list_for_each_entry(hpdev, &hbus->children, list_entry) {
1634		for (i = 0; i < PCI_STD_NUM_BARS; i++) {
1635			if (hpdev->probed_bar[i] & PCI_BASE_ADDRESS_SPACE_IO)
1636				dev_err(&hbus->hdev->device,
1637					"There's an I/O BAR in this list!\n");
1638
1639			if (hpdev->probed_bar[i] != 0) {
1640				/*
1641				 * A probed BAR has all the upper bits set that
1642				 * can be changed.
1643				 */
1644
1645				bar_val = hpdev->probed_bar[i];
1646				if (bar_val & PCI_BASE_ADDRESS_MEM_TYPE_64)
1647					bar_val |=
1648					((u64)hpdev->probed_bar[++i] << 32);
1649				else
1650					bar_val |= 0xffffffff00000000ULL;
1651
1652				bar_size = get_bar_size(bar_val);
1653
1654				if (bar_val & PCI_BASE_ADDRESS_MEM_TYPE_64)
1655					hbus->high_mmio_space += bar_size;
1656				else
1657					hbus->low_mmio_space += bar_size;
1658			}
1659		}
1660	}
1661
1662	spin_unlock_irqrestore(&hbus->device_list_lock, flags);
1663	complete(event);
1664}
1665
1666/**
1667 * prepopulate_bars() - Fill in BARs with defaults
1668 * @hbus:	Root PCI bus, as understood by this driver
1669 *
1670 * The core PCI driver code seems much, much happier if the BARs
1671 * for a device have values upon first scan. So fill them in.
1672 * The algorithm below works down from large sizes to small,
1673 * attempting to pack the assignments optimally. The assumption,
1674 * enforced in other parts of the code, is that the beginning of
1675 * the memory-mapped I/O space will be aligned on the largest
1676 * BAR size.
1677 */
1678static void prepopulate_bars(struct hv_pcibus_device *hbus)
1679{
1680	resource_size_t high_size = 0;
1681	resource_size_t low_size = 0;
1682	resource_size_t high_base = 0;
1683	resource_size_t low_base = 0;
1684	resource_size_t bar_size;
1685	struct hv_pci_dev *hpdev;
1686	unsigned long flags;
1687	u64 bar_val;
1688	u32 command;
1689	bool high;
1690	int i;
1691
1692	if (hbus->low_mmio_space) {
1693		low_size = 1ULL << (63 - __builtin_clzll(hbus->low_mmio_space));
1694		low_base = hbus->low_mmio_res->start;
1695	}
1696
1697	if (hbus->high_mmio_space) {
1698		high_size = 1ULL <<
1699			(63 - __builtin_clzll(hbus->high_mmio_space));
1700		high_base = hbus->high_mmio_res->start;
1701	}
1702
1703	spin_lock_irqsave(&hbus->device_list_lock, flags);
1704
1705	/*
1706	 * Clear the memory enable bit, in case it's already set. This occurs
1707	 * in the suspend path of hibernation, where the device is suspended,
1708	 * resumed and suspended again: see hibernation_snapshot() and
1709	 * hibernation_platform_enter().
1710	 *
1711	 * If the memory enable bit is already set, Hyper-V sliently ignores
1712	 * the below BAR updates, and the related PCI device driver can not
1713	 * work, because reading from the device register(s) always returns
1714	 * 0xFFFFFFFF.
1715	 */
1716	list_for_each_entry(hpdev, &hbus->children, list_entry) {
1717		_hv_pcifront_read_config(hpdev, PCI_COMMAND, 2, &command);
1718		command &= ~PCI_COMMAND_MEMORY;
1719		_hv_pcifront_write_config(hpdev, PCI_COMMAND, 2, command);
1720	}
1721
1722	/* Pick addresses for the BARs. */
1723	do {
1724		list_for_each_entry(hpdev, &hbus->children, list_entry) {
1725			for (i = 0; i < PCI_STD_NUM_BARS; i++) {
1726				bar_val = hpdev->probed_bar[i];
1727				if (bar_val == 0)
1728					continue;
1729				high = bar_val & PCI_BASE_ADDRESS_MEM_TYPE_64;
1730				if (high) {
1731					bar_val |=
1732						((u64)hpdev->probed_bar[i + 1]
1733						 << 32);
1734				} else {
1735					bar_val |= 0xffffffffULL << 32;
1736				}
1737				bar_size = get_bar_size(bar_val);
1738				if (high) {
1739					if (high_size != bar_size) {
1740						i++;
1741						continue;
1742					}
1743					_hv_pcifront_write_config(hpdev,
1744						PCI_BASE_ADDRESS_0 + (4 * i),
1745						4,
1746						(u32)(high_base & 0xffffff00));
1747					i++;
1748					_hv_pcifront_write_config(hpdev,
1749						PCI_BASE_ADDRESS_0 + (4 * i),
1750						4, (u32)(high_base >> 32));
1751					high_base += bar_size;
1752				} else {
1753					if (low_size != bar_size)
1754						continue;
1755					_hv_pcifront_write_config(hpdev,
1756						PCI_BASE_ADDRESS_0 + (4 * i),
1757						4,
1758						(u32)(low_base & 0xffffff00));
1759					low_base += bar_size;
1760				}
1761			}
1762			if (high_size <= 1 && low_size <= 1) {
1763				/* Set the memory enable bit. */
1764				_hv_pcifront_read_config(hpdev, PCI_COMMAND, 2,
1765							 &command);
1766				command |= PCI_COMMAND_MEMORY;
1767				_hv_pcifront_write_config(hpdev, PCI_COMMAND, 2,
1768							  command);
 
 
 
 
 
1769				break;
1770			}
1771		}
1772
1773		high_size >>= 1;
1774		low_size >>= 1;
1775	}  while (high_size || low_size);
1776
1777	spin_unlock_irqrestore(&hbus->device_list_lock, flags);
1778}
1779
1780/*
1781 * Assign entries in sysfs pci slot directory.
1782 *
1783 * Note that this function does not need to lock the children list
1784 * because it is called from pci_devices_present_work which
1785 * is serialized with hv_eject_device_work because they are on the
1786 * same ordered workqueue. Therefore hbus->children list will not change
1787 * even when pci_create_slot sleeps.
1788 */
1789static void hv_pci_assign_slots(struct hv_pcibus_device *hbus)
1790{
1791	struct hv_pci_dev *hpdev;
1792	char name[SLOT_NAME_SIZE];
1793	int slot_nr;
1794
1795	list_for_each_entry(hpdev, &hbus->children, list_entry) {
1796		if (hpdev->pci_slot)
1797			continue;
1798
1799		slot_nr = PCI_SLOT(wslot_to_devfn(hpdev->desc.win_slot.slot));
1800		snprintf(name, SLOT_NAME_SIZE, "%u", hpdev->desc.ser);
1801		hpdev->pci_slot = pci_create_slot(hbus->pci_bus, slot_nr,
1802					  name, NULL);
1803		if (IS_ERR(hpdev->pci_slot)) {
1804			pr_warn("pci_create slot %s failed\n", name);
1805			hpdev->pci_slot = NULL;
1806		}
1807	}
1808}
1809
1810/*
1811 * Remove entries in sysfs pci slot directory.
1812 */
1813static void hv_pci_remove_slots(struct hv_pcibus_device *hbus)
1814{
1815	struct hv_pci_dev *hpdev;
1816
1817	list_for_each_entry(hpdev, &hbus->children, list_entry) {
1818		if (!hpdev->pci_slot)
1819			continue;
1820		pci_destroy_slot(hpdev->pci_slot);
1821		hpdev->pci_slot = NULL;
1822	}
1823}
1824
1825/*
1826 * Set NUMA node for the devices on the bus
1827 */
1828static void hv_pci_assign_numa_node(struct hv_pcibus_device *hbus)
1829{
1830	struct pci_dev *dev;
1831	struct pci_bus *bus = hbus->pci_bus;
1832	struct hv_pci_dev *hv_dev;
1833
1834	list_for_each_entry(dev, &bus->devices, bus_list) {
1835		hv_dev = get_pcichild_wslot(hbus, devfn_to_wslot(dev->devfn));
1836		if (!hv_dev)
1837			continue;
1838
1839		if (hv_dev->desc.flags & HV_PCI_DEVICE_FLAG_NUMA_AFFINITY)
1840			set_dev_node(&dev->dev, hv_dev->desc.virtual_numa_node);
 
 
 
 
 
 
 
 
 
1841
1842		put_pcichild(hv_dev);
1843	}
1844}
1845
1846/**
1847 * create_root_hv_pci_bus() - Expose a new root PCI bus
1848 * @hbus:	Root PCI bus, as understood by this driver
1849 *
1850 * Return: 0 on success, -errno on failure
1851 */
1852static int create_root_hv_pci_bus(struct hv_pcibus_device *hbus)
1853{
1854	/* Register the device */
1855	hbus->pci_bus = pci_create_root_bus(&hbus->hdev->device,
1856					    0, /* bus number is always zero */
1857					    &hv_pcifront_ops,
1858					    &hbus->sysdata,
1859					    &hbus->resources_for_children);
1860	if (!hbus->pci_bus)
1861		return -ENODEV;
1862
1863	hbus->pci_bus->msi = &hbus->msi_chip;
1864	hbus->pci_bus->msi->dev = &hbus->hdev->device;
 
 
 
 
 
1865
1866	pci_lock_rescan_remove();
1867	pci_scan_child_bus(hbus->pci_bus);
1868	hv_pci_assign_numa_node(hbus);
1869	pci_bus_assign_resources(hbus->pci_bus);
1870	hv_pci_assign_slots(hbus);
1871	pci_bus_add_devices(hbus->pci_bus);
1872	pci_unlock_rescan_remove();
1873	hbus->state = hv_pcibus_installed;
1874	return 0;
1875}
1876
1877struct q_res_req_compl {
1878	struct completion host_event;
1879	struct hv_pci_dev *hpdev;
1880};
1881
1882/**
1883 * q_resource_requirements() - Query Resource Requirements
1884 * @context:		The completion context.
1885 * @resp:		The response that came from the host.
1886 * @resp_packet_size:	The size in bytes of resp.
1887 *
1888 * This function is invoked on completion of a Query Resource
1889 * Requirements packet.
1890 */
1891static void q_resource_requirements(void *context, struct pci_response *resp,
1892				    int resp_packet_size)
1893{
1894	struct q_res_req_compl *completion = context;
1895	struct pci_q_res_req_response *q_res_req =
1896		(struct pci_q_res_req_response *)resp;
 
1897	int i;
1898
1899	if (resp->status < 0) {
 
1900		dev_err(&completion->hpdev->hbus->hdev->device,
1901			"query resource requirements failed: %x\n",
1902			resp->status);
1903	} else {
1904		for (i = 0; i < PCI_STD_NUM_BARS; i++) {
1905			completion->hpdev->probed_bar[i] =
1906				q_res_req->probed_bar[i];
1907		}
1908	}
1909
1910	complete(&completion->host_event);
1911}
1912
1913/**
1914 * new_pcichild_device() - Create a new child device
1915 * @hbus:	The internal struct tracking this root PCI bus.
1916 * @desc:	The information supplied so far from the host
1917 *              about the device.
1918 *
1919 * This function creates the tracking structure for a new child
1920 * device and kicks off the process of figuring out what it is.
1921 *
1922 * Return: Pointer to the new tracking struct
1923 */
1924static struct hv_pci_dev *new_pcichild_device(struct hv_pcibus_device *hbus,
1925		struct hv_pcidev_description *desc)
1926{
1927	struct hv_pci_dev *hpdev;
1928	struct pci_child_message *res_req;
1929	struct q_res_req_compl comp_pkt;
1930	struct {
1931		struct pci_packet init_packet;
1932		u8 buffer[sizeof(struct pci_child_message)];
1933	} pkt;
1934	unsigned long flags;
1935	int ret;
1936
1937	hpdev = kzalloc(sizeof(*hpdev), GFP_KERNEL);
1938	if (!hpdev)
1939		return NULL;
1940
1941	hpdev->hbus = hbus;
1942
1943	memset(&pkt, 0, sizeof(pkt));
1944	init_completion(&comp_pkt.host_event);
1945	comp_pkt.hpdev = hpdev;
1946	pkt.init_packet.compl_ctxt = &comp_pkt;
1947	pkt.init_packet.completion_func = q_resource_requirements;
1948	res_req = (struct pci_child_message *)&pkt.init_packet.message;
1949	res_req->message_type.type = PCI_QUERY_RESOURCE_REQUIREMENTS;
1950	res_req->wslot.slot = desc->win_slot.slot;
1951
1952	ret = vmbus_sendpacket(hbus->hdev->channel, res_req,
1953			       sizeof(struct pci_child_message),
1954			       (unsigned long)&pkt.init_packet,
1955			       VM_PKT_DATA_INBAND,
1956			       VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
1957	if (ret)
1958		goto error;
1959
1960	if (wait_for_response(hbus->hdev, &comp_pkt.host_event))
1961		goto error;
1962
1963	hpdev->desc = *desc;
1964	refcount_set(&hpdev->refs, 1);
1965	get_pcichild(hpdev);
1966	spin_lock_irqsave(&hbus->device_list_lock, flags);
1967
1968	list_add_tail(&hpdev->list_entry, &hbus->children);
1969	spin_unlock_irqrestore(&hbus->device_list_lock, flags);
1970	return hpdev;
1971
1972error:
1973	kfree(hpdev);
1974	return NULL;
1975}
1976
1977/**
1978 * get_pcichild_wslot() - Find device from slot
1979 * @hbus:	Root PCI bus, as understood by this driver
1980 * @wslot:	Location on the bus
1981 *
1982 * This function looks up a PCI device and returns the internal
1983 * representation of it.  It acquires a reference on it, so that
1984 * the device won't be deleted while somebody is using it.  The
1985 * caller is responsible for calling put_pcichild() to release
1986 * this reference.
1987 *
1988 * Return:	Internal representation of a PCI device
1989 */
1990static struct hv_pci_dev *get_pcichild_wslot(struct hv_pcibus_device *hbus,
1991					     u32 wslot)
1992{
1993	unsigned long flags;
1994	struct hv_pci_dev *iter, *hpdev = NULL;
1995
1996	spin_lock_irqsave(&hbus->device_list_lock, flags);
1997	list_for_each_entry(iter, &hbus->children, list_entry) {
1998		if (iter->desc.win_slot.slot == wslot) {
1999			hpdev = iter;
2000			get_pcichild(hpdev);
2001			break;
2002		}
2003	}
2004	spin_unlock_irqrestore(&hbus->device_list_lock, flags);
2005
2006	return hpdev;
2007}
2008
2009/**
2010 * pci_devices_present_work() - Handle new list of child devices
2011 * @work:	Work struct embedded in struct hv_dr_work
2012 *
2013 * "Bus Relations" is the Windows term for "children of this
2014 * bus."  The terminology is preserved here for people trying to
2015 * debug the interaction between Hyper-V and Linux.  This
2016 * function is called when the parent partition reports a list
2017 * of functions that should be observed under this PCI Express
2018 * port (bus).
2019 *
2020 * This function updates the list, and must tolerate being
2021 * called multiple times with the same information.  The typical
2022 * number of child devices is one, with very atypical cases
2023 * involving three or four, so the algorithms used here can be
2024 * simple and inefficient.
2025 *
2026 * It must also treat the omission of a previously observed device as
2027 * notification that the device no longer exists.
2028 *
2029 * Note that this function is serialized with hv_eject_device_work(),
2030 * because both are pushed to the ordered workqueue hbus->wq.
2031 */
2032static void pci_devices_present_work(struct work_struct *work)
2033{
2034	u32 child_no;
2035	bool found;
2036	struct hv_pcidev_description *new_desc;
2037	struct hv_pci_dev *hpdev;
2038	struct hv_pcibus_device *hbus;
2039	struct list_head removed;
2040	struct hv_dr_work *dr_wrk;
2041	struct hv_dr_state *dr = NULL;
2042	unsigned long flags;
2043
2044	dr_wrk = container_of(work, struct hv_dr_work, wrk);
2045	hbus = dr_wrk->bus;
2046	kfree(dr_wrk);
2047
2048	INIT_LIST_HEAD(&removed);
2049
2050	/* Pull this off the queue and process it if it was the last one. */
2051	spin_lock_irqsave(&hbus->device_list_lock, flags);
2052	while (!list_empty(&hbus->dr_list)) {
2053		dr = list_first_entry(&hbus->dr_list, struct hv_dr_state,
2054				      list_entry);
2055		list_del(&dr->list_entry);
2056
2057		/* Throw this away if the list still has stuff in it. */
2058		if (!list_empty(&hbus->dr_list)) {
2059			kfree(dr);
2060			continue;
2061		}
2062	}
2063	spin_unlock_irqrestore(&hbus->device_list_lock, flags);
2064
2065	if (!dr) {
2066		put_hvpcibus(hbus);
2067		return;
2068	}
 
2069
2070	/* First, mark all existing children as reported missing. */
2071	spin_lock_irqsave(&hbus->device_list_lock, flags);
2072	list_for_each_entry(hpdev, &hbus->children, list_entry) {
2073		hpdev->reported_missing = true;
2074	}
2075	spin_unlock_irqrestore(&hbus->device_list_lock, flags);
2076
2077	/* Next, add back any reported devices. */
2078	for (child_no = 0; child_no < dr->device_count; child_no++) {
2079		found = false;
2080		new_desc = &dr->func[child_no];
2081
2082		spin_lock_irqsave(&hbus->device_list_lock, flags);
2083		list_for_each_entry(hpdev, &hbus->children, list_entry) {
2084			if ((hpdev->desc.win_slot.slot == new_desc->win_slot.slot) &&
2085			    (hpdev->desc.v_id == new_desc->v_id) &&
2086			    (hpdev->desc.d_id == new_desc->d_id) &&
2087			    (hpdev->desc.ser == new_desc->ser)) {
2088				hpdev->reported_missing = false;
2089				found = true;
2090			}
2091		}
2092		spin_unlock_irqrestore(&hbus->device_list_lock, flags);
2093
2094		if (!found) {
2095			hpdev = new_pcichild_device(hbus, new_desc);
2096			if (!hpdev)
2097				dev_err(&hbus->hdev->device,
2098					"couldn't record a child device.\n");
2099		}
2100	}
2101
2102	/* Move missing children to a list on the stack. */
2103	spin_lock_irqsave(&hbus->device_list_lock, flags);
2104	do {
2105		found = false;
2106		list_for_each_entry(hpdev, &hbus->children, list_entry) {
2107			if (hpdev->reported_missing) {
2108				found = true;
2109				put_pcichild(hpdev);
2110				list_move_tail(&hpdev->list_entry, &removed);
2111				break;
2112			}
2113		}
2114	} while (found);
2115	spin_unlock_irqrestore(&hbus->device_list_lock, flags);
2116
2117	/* Delete everything that should no longer exist. */
2118	while (!list_empty(&removed)) {
2119		hpdev = list_first_entry(&removed, struct hv_pci_dev,
2120					 list_entry);
2121		list_del(&hpdev->list_entry);
2122
2123		if (hpdev->pci_slot)
2124			pci_destroy_slot(hpdev->pci_slot);
2125
2126		put_pcichild(hpdev);
2127	}
2128
2129	switch (hbus->state) {
2130	case hv_pcibus_installed:
2131		/*
2132		 * Tell the core to rescan bus
2133		 * because there may have been changes.
2134		 */
2135		pci_lock_rescan_remove();
2136		pci_scan_child_bus(hbus->pci_bus);
2137		hv_pci_assign_numa_node(hbus);
2138		hv_pci_assign_slots(hbus);
2139		pci_unlock_rescan_remove();
2140		break;
2141
2142	case hv_pcibus_init:
2143	case hv_pcibus_probed:
2144		survey_child_resources(hbus);
2145		break;
2146
2147	default:
2148		break;
2149	}
2150
2151	put_hvpcibus(hbus);
 
2152	kfree(dr);
2153}
2154
2155/**
2156 * hv_pci_start_relations_work() - Queue work to start device discovery
2157 * @hbus:	Root PCI bus, as understood by this driver
2158 * @dr:		The list of children returned from host
2159 *
2160 * Return:  0 on success, -errno on failure
2161 */
2162static int hv_pci_start_relations_work(struct hv_pcibus_device *hbus,
2163				       struct hv_dr_state *dr)
2164{
2165	struct hv_dr_work *dr_wrk;
2166	unsigned long flags;
2167	bool pending_dr;
2168
2169	if (hbus->state == hv_pcibus_removing) {
2170		dev_info(&hbus->hdev->device,
2171			 "PCI VMBus BUS_RELATIONS: ignored\n");
2172		return -ENOENT;
2173	}
2174
2175	dr_wrk = kzalloc(sizeof(*dr_wrk), GFP_NOWAIT);
2176	if (!dr_wrk)
2177		return -ENOMEM;
2178
2179	INIT_WORK(&dr_wrk->wrk, pci_devices_present_work);
2180	dr_wrk->bus = hbus;
2181
2182	spin_lock_irqsave(&hbus->device_list_lock, flags);
2183	/*
2184	 * If pending_dr is true, we have already queued a work,
2185	 * which will see the new dr. Otherwise, we need to
2186	 * queue a new work.
2187	 */
2188	pending_dr = !list_empty(&hbus->dr_list);
2189	list_add_tail(&dr->list_entry, &hbus->dr_list);
2190	spin_unlock_irqrestore(&hbus->device_list_lock, flags);
2191
2192	if (pending_dr) {
2193		kfree(dr_wrk);
2194	} else {
2195		get_hvpcibus(hbus);
2196		queue_work(hbus->wq, &dr_wrk->wrk);
2197	}
2198
2199	return 0;
2200}
2201
2202/**
2203 * hv_pci_devices_present() - Handle list of new children
2204 * @hbus:      Root PCI bus, as understood by this driver
2205 * @relations: Packet from host listing children
2206 *
2207 * Process a new list of devices on the bus. The list of devices is
2208 * discovered by VSP and sent to us via VSP message PCI_BUS_RELATIONS,
2209 * whenever a new list of devices for this bus appears.
2210 */
2211static void hv_pci_devices_present(struct hv_pcibus_device *hbus,
2212				   struct pci_bus_relations *relations)
2213{
2214	struct hv_dr_state *dr;
2215	int i;
2216
2217	dr = kzalloc(struct_size(dr, func, relations->device_count),
2218		     GFP_NOWAIT);
2219	if (!dr)
2220		return;
2221
2222	dr->device_count = relations->device_count;
2223	for (i = 0; i < dr->device_count; i++) {
2224		dr->func[i].v_id = relations->func[i].v_id;
2225		dr->func[i].d_id = relations->func[i].d_id;
2226		dr->func[i].rev = relations->func[i].rev;
2227		dr->func[i].prog_intf = relations->func[i].prog_intf;
2228		dr->func[i].subclass = relations->func[i].subclass;
2229		dr->func[i].base_class = relations->func[i].base_class;
2230		dr->func[i].subsystem_id = relations->func[i].subsystem_id;
2231		dr->func[i].win_slot = relations->func[i].win_slot;
2232		dr->func[i].ser = relations->func[i].ser;
2233	}
2234
2235	if (hv_pci_start_relations_work(hbus, dr))
2236		kfree(dr);
2237}
2238
2239/**
2240 * hv_pci_devices_present2() - Handle list of new children
2241 * @hbus:	Root PCI bus, as understood by this driver
2242 * @relations:	Packet from host listing children
2243 *
2244 * This function is the v2 version of hv_pci_devices_present()
2245 */
2246static void hv_pci_devices_present2(struct hv_pcibus_device *hbus,
2247				    struct pci_bus_relations2 *relations)
2248{
2249	struct hv_dr_state *dr;
2250	int i;
2251
2252	dr = kzalloc(struct_size(dr, func, relations->device_count),
2253		     GFP_NOWAIT);
2254	if (!dr)
2255		return;
2256
2257	dr->device_count = relations->device_count;
2258	for (i = 0; i < dr->device_count; i++) {
2259		dr->func[i].v_id = relations->func[i].v_id;
2260		dr->func[i].d_id = relations->func[i].d_id;
2261		dr->func[i].rev = relations->func[i].rev;
2262		dr->func[i].prog_intf = relations->func[i].prog_intf;
2263		dr->func[i].subclass = relations->func[i].subclass;
2264		dr->func[i].base_class = relations->func[i].base_class;
2265		dr->func[i].subsystem_id = relations->func[i].subsystem_id;
2266		dr->func[i].win_slot = relations->func[i].win_slot;
2267		dr->func[i].ser = relations->func[i].ser;
2268		dr->func[i].flags = relations->func[i].flags;
2269		dr->func[i].virtual_numa_node =
2270			relations->func[i].virtual_numa_node;
2271	}
2272
2273	if (hv_pci_start_relations_work(hbus, dr))
2274		kfree(dr);
2275}
2276
2277/**
2278 * hv_eject_device_work() - Asynchronously handles ejection
2279 * @work:	Work struct embedded in internal device struct
2280 *
2281 * This function handles ejecting a device.  Windows will
2282 * attempt to gracefully eject a device, waiting 60 seconds to
2283 * hear back from the guest OS that this completed successfully.
2284 * If this timer expires, the device will be forcibly removed.
2285 */
2286static void hv_eject_device_work(struct work_struct *work)
2287{
2288	struct pci_eject_response *ejct_pkt;
2289	struct hv_pcibus_device *hbus;
2290	struct hv_pci_dev *hpdev;
2291	struct pci_dev *pdev;
2292	unsigned long flags;
2293	int wslot;
2294	struct {
2295		struct pci_packet pkt;
2296		u8 buffer[sizeof(struct pci_eject_response)];
2297	} ctxt;
2298
2299	hpdev = container_of(work, struct hv_pci_dev, wrk);
2300	hbus = hpdev->hbus;
2301
2302	WARN_ON(hpdev->state != hv_pcichild_ejecting);
2303
2304	/*
2305	 * Ejection can come before or after the PCI bus has been set up, so
2306	 * attempt to find it and tear down the bus state, if it exists.  This
2307	 * must be done without constructs like pci_domain_nr(hbus->pci_bus)
2308	 * because hbus->pci_bus may not exist yet.
2309	 */
2310	wslot = wslot_to_devfn(hpdev->desc.win_slot.slot);
2311	pdev = pci_get_domain_bus_and_slot(hbus->sysdata.domain, 0, wslot);
2312	if (pdev) {
2313		pci_lock_rescan_remove();
2314		pci_stop_and_remove_bus_device(pdev);
2315		pci_dev_put(pdev);
2316		pci_unlock_rescan_remove();
2317	}
2318
2319	spin_lock_irqsave(&hbus->device_list_lock, flags);
2320	list_del(&hpdev->list_entry);
2321	spin_unlock_irqrestore(&hbus->device_list_lock, flags);
2322
2323	if (hpdev->pci_slot)
2324		pci_destroy_slot(hpdev->pci_slot);
2325
2326	memset(&ctxt, 0, sizeof(ctxt));
2327	ejct_pkt = (struct pci_eject_response *)&ctxt.pkt.message;
2328	ejct_pkt->message_type.type = PCI_EJECTION_COMPLETE;
2329	ejct_pkt->wslot.slot = hpdev->desc.win_slot.slot;
2330	vmbus_sendpacket(hbus->hdev->channel, ejct_pkt,
2331			 sizeof(*ejct_pkt), (unsigned long)&ctxt.pkt,
2332			 VM_PKT_DATA_INBAND, 0);
2333
2334	/* For the get_pcichild() in hv_pci_eject_device() */
2335	put_pcichild(hpdev);
2336	/* For the two refs got in new_pcichild_device() */
2337	put_pcichild(hpdev);
2338	put_pcichild(hpdev);
2339	/* hpdev has been freed. Do not use it any more. */
2340
2341	put_hvpcibus(hbus);
2342}
2343
2344/**
2345 * hv_pci_eject_device() - Handles device ejection
2346 * @hpdev:	Internal device tracking struct
2347 *
2348 * This function is invoked when an ejection packet arrives.  It
2349 * just schedules work so that we don't re-enter the packet
2350 * delivery code handling the ejection.
2351 */
2352static void hv_pci_eject_device(struct hv_pci_dev *hpdev)
2353{
2354	struct hv_pcibus_device *hbus = hpdev->hbus;
2355	struct hv_device *hdev = hbus->hdev;
2356
2357	if (hbus->state == hv_pcibus_removing) {
2358		dev_info(&hdev->device, "PCI VMBus EJECT: ignored\n");
2359		return;
2360	}
2361
2362	hpdev->state = hv_pcichild_ejecting;
2363	get_pcichild(hpdev);
2364	INIT_WORK(&hpdev->wrk, hv_eject_device_work);
2365	get_hvpcibus(hbus);
2366	queue_work(hbus->wq, &hpdev->wrk);
2367}
2368
2369/**
2370 * hv_pci_onchannelcallback() - Handles incoming packets
2371 * @context:	Internal bus tracking struct
2372 *
2373 * This function is invoked whenever the host sends a packet to
2374 * this channel (which is private to this root PCI bus).
2375 */
2376static void hv_pci_onchannelcallback(void *context)
2377{
2378	const int packet_size = 0x100;
2379	int ret;
2380	struct hv_pcibus_device *hbus = context;
 
2381	u32 bytes_recvd;
2382	u64 req_id;
2383	struct vmpacket_descriptor *desc;
2384	unsigned char *buffer;
2385	int bufferlen = packet_size;
2386	struct pci_packet *comp_packet;
2387	struct pci_response *response;
2388	struct pci_incoming_message *new_message;
2389	struct pci_bus_relations *bus_rel;
2390	struct pci_bus_relations2 *bus_rel2;
2391	struct pci_dev_inval_block *inval;
2392	struct pci_dev_incoming *dev_message;
2393	struct hv_pci_dev *hpdev;
 
2394
2395	buffer = kmalloc(bufferlen, GFP_ATOMIC);
2396	if (!buffer)
2397		return;
2398
2399	while (1) {
2400		ret = vmbus_recvpacket_raw(hbus->hdev->channel, buffer,
2401					   bufferlen, &bytes_recvd, &req_id);
2402
2403		if (ret == -ENOBUFS) {
2404			kfree(buffer);
2405			/* Handle large packet */
2406			bufferlen = bytes_recvd;
2407			buffer = kmalloc(bytes_recvd, GFP_ATOMIC);
2408			if (!buffer)
2409				return;
2410			continue;
2411		}
2412
2413		/* Zero length indicates there are no more packets. */
2414		if (ret || !bytes_recvd)
2415			break;
2416
2417		/*
2418		 * All incoming packets must be at least as large as a
2419		 * response.
2420		 */
2421		if (bytes_recvd <= sizeof(struct pci_response))
2422			continue;
2423		desc = (struct vmpacket_descriptor *)buffer;
2424
2425		switch (desc->type) {
2426		case VM_PKT_COMP:
2427
 
 
 
 
 
 
 
 
 
 
 
 
2428			/*
2429			 * The host is trusted, and thus it's safe to interpret
2430			 * this transaction ID as a pointer.
 
 
 
2431			 */
2432			comp_packet = (struct pci_packet *)req_id;
2433			response = (struct pci_response *)buffer;
2434			comp_packet->completion_func(comp_packet->compl_ctxt,
2435						     response,
2436						     bytes_recvd);
 
2437			break;
2438
2439		case VM_PKT_DATA_INBAND:
2440
2441			new_message = (struct pci_incoming_message *)buffer;
2442			switch (new_message->message_type.type) {
2443			case PCI_BUS_RELATIONS:
2444
2445				bus_rel = (struct pci_bus_relations *)buffer;
2446				if (bytes_recvd <
 
2447					struct_size(bus_rel, func,
2448						    bus_rel->device_count)) {
2449					dev_err(&hbus->hdev->device,
2450						"bus relations too small\n");
2451					break;
2452				}
2453
2454				hv_pci_devices_present(hbus, bus_rel);
2455				break;
2456
2457			case PCI_BUS_RELATIONS2:
2458
2459				bus_rel2 = (struct pci_bus_relations2 *)buffer;
2460				if (bytes_recvd <
 
2461					struct_size(bus_rel2, func,
2462						    bus_rel2->device_count)) {
2463					dev_err(&hbus->hdev->device,
2464						"bus relations v2 too small\n");
2465					break;
2466				}
2467
2468				hv_pci_devices_present2(hbus, bus_rel2);
2469				break;
2470
2471			case PCI_EJECT:
2472
2473				dev_message = (struct pci_dev_incoming *)buffer;
 
 
 
 
 
2474				hpdev = get_pcichild_wslot(hbus,
2475						      dev_message->wslot.slot);
2476				if (hpdev) {
2477					hv_pci_eject_device(hpdev);
2478					put_pcichild(hpdev);
2479				}
2480				break;
2481
2482			case PCI_INVALIDATE_BLOCK:
2483
2484				inval = (struct pci_dev_inval_block *)buffer;
 
 
 
 
 
2485				hpdev = get_pcichild_wslot(hbus,
2486							   inval->wslot.slot);
2487				if (hpdev) {
2488					if (hpdev->block_invalidate) {
2489						hpdev->block_invalidate(
2490						    hpdev->invalidate_context,
2491						    inval->block_mask);
2492					}
2493					put_pcichild(hpdev);
2494				}
2495				break;
2496
2497			default:
2498				dev_warn(&hbus->hdev->device,
2499					"Unimplemented protocol message %x\n",
2500					new_message->message_type.type);
2501				break;
2502			}
2503			break;
2504
2505		default:
2506			dev_err(&hbus->hdev->device,
2507				"unhandled packet type %d, tid %llx len %d\n",
2508				desc->type, req_id, bytes_recvd);
2509			break;
2510		}
2511	}
2512
2513	kfree(buffer);
2514}
2515
2516/**
2517 * hv_pci_protocol_negotiation() - Set up protocol
2518 * @hdev:	VMBus's tracking struct for this root PCI bus
 
 
 
2519 *
2520 * This driver is intended to support running on Windows 10
2521 * (server) and later versions. It will not run on earlier
2522 * versions, as they assume that many of the operations which
2523 * Linux needs accomplished with a spinlock held were done via
2524 * asynchronous messaging via VMBus.  Windows 10 increases the
2525 * surface area of PCI emulation so that these actions can take
2526 * place by suspending a virtual processor for their duration.
2527 *
2528 * This function negotiates the channel protocol version,
2529 * failing if the host doesn't support the necessary protocol
2530 * level.
2531 */
2532static int hv_pci_protocol_negotiation(struct hv_device *hdev,
2533				       enum pci_protocol_version_t version[],
2534				       int num_version)
2535{
2536	struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
2537	struct pci_version_request *version_req;
2538	struct hv_pci_compl comp_pkt;
2539	struct pci_packet *pkt;
2540	int ret;
2541	int i;
2542
2543	/*
2544	 * Initiate the handshake with the host and negotiate
2545	 * a version that the host can support. We start with the
2546	 * highest version number and go down if the host cannot
2547	 * support it.
2548	 */
2549	pkt = kzalloc(sizeof(*pkt) + sizeof(*version_req), GFP_KERNEL);
2550	if (!pkt)
2551		return -ENOMEM;
2552
2553	init_completion(&comp_pkt.host_event);
2554	pkt->completion_func = hv_pci_generic_compl;
2555	pkt->compl_ctxt = &comp_pkt;
2556	version_req = (struct pci_version_request *)&pkt->message;
2557	version_req->message_type.type = PCI_QUERY_PROTOCOL_VERSION;
2558
2559	for (i = 0; i < num_version; i++) {
2560		version_req->protocol_version = version[i];
2561		ret = vmbus_sendpacket(hdev->channel, version_req,
2562				sizeof(struct pci_version_request),
2563				(unsigned long)pkt, VM_PKT_DATA_INBAND,
2564				VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
2565		if (!ret)
2566			ret = wait_for_response(hdev, &comp_pkt.host_event);
2567
2568		if (ret) {
2569			dev_err(&hdev->device,
2570				"PCI Pass-through VSP failed to request version: %d",
2571				ret);
2572			goto exit;
2573		}
2574
2575		if (comp_pkt.completion_status >= 0) {
2576			hbus->protocol_version = version[i];
2577			dev_info(&hdev->device,
2578				"PCI VMBus probing: Using version %#x\n",
2579				hbus->protocol_version);
2580			goto exit;
2581		}
2582
2583		if (comp_pkt.completion_status != STATUS_REVISION_MISMATCH) {
2584			dev_err(&hdev->device,
2585				"PCI Pass-through VSP failed version request: %#x",
2586				comp_pkt.completion_status);
2587			ret = -EPROTO;
2588			goto exit;
2589		}
2590
2591		reinit_completion(&comp_pkt.host_event);
2592	}
2593
2594	dev_err(&hdev->device,
2595		"PCI pass-through VSP failed to find supported version");
2596	ret = -EPROTO;
2597
2598exit:
2599	kfree(pkt);
2600	return ret;
2601}
2602
2603/**
2604 * hv_pci_free_bridge_windows() - Release memory regions for the
2605 * bus
2606 * @hbus:	Root PCI bus, as understood by this driver
2607 */
2608static void hv_pci_free_bridge_windows(struct hv_pcibus_device *hbus)
2609{
2610	/*
2611	 * Set the resources back to the way they looked when they
2612	 * were allocated by setting IORESOURCE_BUSY again.
2613	 */
2614
2615	if (hbus->low_mmio_space && hbus->low_mmio_res) {
2616		hbus->low_mmio_res->flags |= IORESOURCE_BUSY;
2617		vmbus_free_mmio(hbus->low_mmio_res->start,
2618				resource_size(hbus->low_mmio_res));
2619	}
2620
2621	if (hbus->high_mmio_space && hbus->high_mmio_res) {
2622		hbus->high_mmio_res->flags |= IORESOURCE_BUSY;
2623		vmbus_free_mmio(hbus->high_mmio_res->start,
2624				resource_size(hbus->high_mmio_res));
2625	}
2626}
2627
2628/**
2629 * hv_pci_allocate_bridge_windows() - Allocate memory regions
2630 * for the bus
2631 * @hbus:	Root PCI bus, as understood by this driver
2632 *
2633 * This function calls vmbus_allocate_mmio(), which is itself a
2634 * bit of a compromise.  Ideally, we might change the pnp layer
2635 * in the kernel such that it comprehends either PCI devices
2636 * which are "grandchildren of ACPI," with some intermediate bus
2637 * node (in this case, VMBus) or change it such that it
2638 * understands VMBus.  The pnp layer, however, has been declared
2639 * deprecated, and not subject to change.
2640 *
2641 * The workaround, implemented here, is to ask VMBus to allocate
2642 * MMIO space for this bus.  VMBus itself knows which ranges are
2643 * appropriate by looking at its own ACPI objects.  Then, after
2644 * these ranges are claimed, they're modified to look like they
2645 * would have looked if the ACPI and pnp code had allocated
2646 * bridge windows.  These descriptors have to exist in this form
2647 * in order to satisfy the code which will get invoked when the
2648 * endpoint PCI function driver calls request_mem_region() or
2649 * request_mem_region_exclusive().
2650 *
2651 * Return: 0 on success, -errno on failure
2652 */
2653static int hv_pci_allocate_bridge_windows(struct hv_pcibus_device *hbus)
2654{
2655	resource_size_t align;
2656	int ret;
2657
2658	if (hbus->low_mmio_space) {
2659		align = 1ULL << (63 - __builtin_clzll(hbus->low_mmio_space));
2660		ret = vmbus_allocate_mmio(&hbus->low_mmio_res, hbus->hdev, 0,
2661					  (u64)(u32)0xffffffff,
2662					  hbus->low_mmio_space,
2663					  align, false);
2664		if (ret) {
2665			dev_err(&hbus->hdev->device,
2666				"Need %#llx of low MMIO space. Consider reconfiguring the VM.\n",
2667				hbus->low_mmio_space);
2668			return ret;
2669		}
2670
2671		/* Modify this resource to become a bridge window. */
2672		hbus->low_mmio_res->flags |= IORESOURCE_WINDOW;
2673		hbus->low_mmio_res->flags &= ~IORESOURCE_BUSY;
2674		pci_add_resource(&hbus->resources_for_children,
2675				 hbus->low_mmio_res);
2676	}
2677
2678	if (hbus->high_mmio_space) {
2679		align = 1ULL << (63 - __builtin_clzll(hbus->high_mmio_space));
2680		ret = vmbus_allocate_mmio(&hbus->high_mmio_res, hbus->hdev,
2681					  0x100000000, -1,
2682					  hbus->high_mmio_space, align,
2683					  false);
2684		if (ret) {
2685			dev_err(&hbus->hdev->device,
2686				"Need %#llx of high MMIO space. Consider reconfiguring the VM.\n",
2687				hbus->high_mmio_space);
2688			goto release_low_mmio;
2689		}
2690
2691		/* Modify this resource to become a bridge window. */
2692		hbus->high_mmio_res->flags |= IORESOURCE_WINDOW;
2693		hbus->high_mmio_res->flags &= ~IORESOURCE_BUSY;
2694		pci_add_resource(&hbus->resources_for_children,
2695				 hbus->high_mmio_res);
2696	}
2697
2698	return 0;
2699
2700release_low_mmio:
2701	if (hbus->low_mmio_res) {
2702		vmbus_free_mmio(hbus->low_mmio_res->start,
2703				resource_size(hbus->low_mmio_res));
2704	}
2705
2706	return ret;
2707}
2708
2709/**
2710 * hv_allocate_config_window() - Find MMIO space for PCI Config
2711 * @hbus:	Root PCI bus, as understood by this driver
2712 *
2713 * This function claims memory-mapped I/O space for accessing
2714 * configuration space for the functions on this bus.
2715 *
2716 * Return: 0 on success, -errno on failure
2717 */
2718static int hv_allocate_config_window(struct hv_pcibus_device *hbus)
2719{
2720	int ret;
2721
2722	/*
2723	 * Set up a region of MMIO space to use for accessing configuration
2724	 * space.
2725	 */
2726	ret = vmbus_allocate_mmio(&hbus->mem_config, hbus->hdev, 0, -1,
2727				  PCI_CONFIG_MMIO_LENGTH, 0x1000, false);
2728	if (ret)
2729		return ret;
2730
2731	/*
2732	 * vmbus_allocate_mmio() gets used for allocating both device endpoint
2733	 * resource claims (those which cannot be overlapped) and the ranges
2734	 * which are valid for the children of this bus, which are intended
2735	 * to be overlapped by those children.  Set the flag on this claim
2736	 * meaning that this region can't be overlapped.
2737	 */
2738
2739	hbus->mem_config->flags |= IORESOURCE_BUSY;
2740
2741	return 0;
2742}
2743
2744static void hv_free_config_window(struct hv_pcibus_device *hbus)
2745{
2746	vmbus_free_mmio(hbus->mem_config->start, PCI_CONFIG_MMIO_LENGTH);
2747}
2748
2749static int hv_pci_bus_exit(struct hv_device *hdev, bool keep_devs);
2750
2751/**
2752 * hv_pci_enter_d0() - Bring the "bus" into the D0 power state
2753 * @hdev:	VMBus's tracking struct for this root PCI bus
2754 *
2755 * Return: 0 on success, -errno on failure
2756 */
2757static int hv_pci_enter_d0(struct hv_device *hdev)
2758{
2759	struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
2760	struct pci_bus_d0_entry *d0_entry;
2761	struct hv_pci_compl comp_pkt;
2762	struct pci_packet *pkt;
 
2763	int ret;
2764
 
2765	/*
2766	 * Tell the host that the bus is ready to use, and moved into the
2767	 * powered-on state.  This includes telling the host which region
2768	 * of memory-mapped I/O space has been chosen for configuration space
2769	 * access.
2770	 */
2771	pkt = kzalloc(sizeof(*pkt) + sizeof(*d0_entry), GFP_KERNEL);
2772	if (!pkt)
2773		return -ENOMEM;
2774
2775	init_completion(&comp_pkt.host_event);
2776	pkt->completion_func = hv_pci_generic_compl;
2777	pkt->compl_ctxt = &comp_pkt;
2778	d0_entry = (struct pci_bus_d0_entry *)&pkt->message;
2779	d0_entry->message_type.type = PCI_BUS_D0ENTRY;
2780	d0_entry->mmio_base = hbus->mem_config->start;
2781
2782	ret = vmbus_sendpacket(hdev->channel, d0_entry, sizeof(*d0_entry),
2783			       (unsigned long)pkt, VM_PKT_DATA_INBAND,
2784			       VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
2785	if (!ret)
2786		ret = wait_for_response(hdev, &comp_pkt.host_event);
2787
2788	if (ret)
2789		goto exit;
2790
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2791	if (comp_pkt.completion_status < 0) {
2792		dev_err(&hdev->device,
2793			"PCI Pass-through VSP failed D0 Entry with status %x\n",
2794			comp_pkt.completion_status);
2795		ret = -EPROTO;
2796		goto exit;
2797	}
2798
2799	ret = 0;
2800
2801exit:
2802	kfree(pkt);
2803	return ret;
2804}
2805
2806/**
2807 * hv_pci_query_relations() - Ask host to send list of child
2808 * devices
2809 * @hdev:	VMBus's tracking struct for this root PCI bus
2810 *
2811 * Return: 0 on success, -errno on failure
2812 */
2813static int hv_pci_query_relations(struct hv_device *hdev)
2814{
2815	struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
2816	struct pci_message message;
2817	struct completion comp;
2818	int ret;
2819
2820	/* Ask the host to send along the list of child devices */
2821	init_completion(&comp);
2822	if (cmpxchg(&hbus->survey_event, NULL, &comp))
2823		return -ENOTEMPTY;
2824
2825	memset(&message, 0, sizeof(message));
2826	message.type = PCI_QUERY_BUS_RELATIONS;
2827
2828	ret = vmbus_sendpacket(hdev->channel, &message, sizeof(message),
2829			       0, VM_PKT_DATA_INBAND, 0);
2830	if (!ret)
2831		ret = wait_for_response(hdev, &comp);
2832
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2833	return ret;
2834}
2835
2836/**
2837 * hv_send_resources_allocated() - Report local resource choices
2838 * @hdev:	VMBus's tracking struct for this root PCI bus
2839 *
2840 * The host OS is expecting to be sent a request as a message
2841 * which contains all the resources that the device will use.
2842 * The response contains those same resources, "translated"
2843 * which is to say, the values which should be used by the
2844 * hardware, when it delivers an interrupt.  (MMIO resources are
2845 * used in local terms.)  This is nice for Windows, and lines up
2846 * with the FDO/PDO split, which doesn't exist in Linux.  Linux
2847 * is deeply expecting to scan an emulated PCI configuration
2848 * space.  So this message is sent here only to drive the state
2849 * machine on the host forward.
2850 *
2851 * Return: 0 on success, -errno on failure
2852 */
2853static int hv_send_resources_allocated(struct hv_device *hdev)
2854{
2855	struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
2856	struct pci_resources_assigned *res_assigned;
2857	struct pci_resources_assigned2 *res_assigned2;
2858	struct hv_pci_compl comp_pkt;
2859	struct hv_pci_dev *hpdev;
2860	struct pci_packet *pkt;
2861	size_t size_res;
2862	int wslot;
2863	int ret;
2864
2865	size_res = (hbus->protocol_version < PCI_PROTOCOL_VERSION_1_2)
2866			? sizeof(*res_assigned) : sizeof(*res_assigned2);
2867
2868	pkt = kmalloc(sizeof(*pkt) + size_res, GFP_KERNEL);
2869	if (!pkt)
2870		return -ENOMEM;
2871
2872	ret = 0;
2873
2874	for (wslot = 0; wslot < 256; wslot++) {
2875		hpdev = get_pcichild_wslot(hbus, wslot);
2876		if (!hpdev)
2877			continue;
2878
2879		memset(pkt, 0, sizeof(*pkt) + size_res);
2880		init_completion(&comp_pkt.host_event);
2881		pkt->completion_func = hv_pci_generic_compl;
2882		pkt->compl_ctxt = &comp_pkt;
2883
2884		if (hbus->protocol_version < PCI_PROTOCOL_VERSION_1_2) {
2885			res_assigned =
2886				(struct pci_resources_assigned *)&pkt->message;
2887			res_assigned->message_type.type =
2888				PCI_RESOURCES_ASSIGNED;
2889			res_assigned->wslot.slot = hpdev->desc.win_slot.slot;
2890		} else {
2891			res_assigned2 =
2892				(struct pci_resources_assigned2 *)&pkt->message;
2893			res_assigned2->message_type.type =
2894				PCI_RESOURCES_ASSIGNED2;
2895			res_assigned2->wslot.slot = hpdev->desc.win_slot.slot;
2896		}
2897		put_pcichild(hpdev);
2898
2899		ret = vmbus_sendpacket(hdev->channel, &pkt->message,
2900				size_res, (unsigned long)pkt,
2901				VM_PKT_DATA_INBAND,
2902				VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
2903		if (!ret)
2904			ret = wait_for_response(hdev, &comp_pkt.host_event);
2905		if (ret)
2906			break;
2907
2908		if (comp_pkt.completion_status < 0) {
2909			ret = -EPROTO;
2910			dev_err(&hdev->device,
2911				"resource allocated returned 0x%x",
2912				comp_pkt.completion_status);
2913			break;
2914		}
2915
2916		hbus->wslot_res_allocated = wslot;
2917	}
2918
2919	kfree(pkt);
2920	return ret;
2921}
2922
2923/**
2924 * hv_send_resources_released() - Report local resources
2925 * released
2926 * @hdev:	VMBus's tracking struct for this root PCI bus
2927 *
2928 * Return: 0 on success, -errno on failure
2929 */
2930static int hv_send_resources_released(struct hv_device *hdev)
2931{
2932	struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
2933	struct pci_child_message pkt;
2934	struct hv_pci_dev *hpdev;
2935	int wslot;
2936	int ret;
2937
2938	for (wslot = hbus->wslot_res_allocated; wslot >= 0; wslot--) {
2939		hpdev = get_pcichild_wslot(hbus, wslot);
2940		if (!hpdev)
2941			continue;
2942
2943		memset(&pkt, 0, sizeof(pkt));
2944		pkt.message_type.type = PCI_RESOURCES_RELEASED;
2945		pkt.wslot.slot = hpdev->desc.win_slot.slot;
2946
2947		put_pcichild(hpdev);
2948
2949		ret = vmbus_sendpacket(hdev->channel, &pkt, sizeof(pkt), 0,
2950				       VM_PKT_DATA_INBAND, 0);
2951		if (ret)
2952			return ret;
2953
2954		hbus->wslot_res_allocated = wslot - 1;
2955	}
2956
2957	hbus->wslot_res_allocated = -1;
2958
2959	return 0;
2960}
2961
2962static void get_hvpcibus(struct hv_pcibus_device *hbus)
2963{
2964	refcount_inc(&hbus->remove_lock);
2965}
2966
2967static void put_hvpcibus(struct hv_pcibus_device *hbus)
2968{
2969	if (refcount_dec_and_test(&hbus->remove_lock))
2970		complete(&hbus->remove_event);
2971}
2972
2973#define HVPCI_DOM_MAP_SIZE (64 * 1024)
2974static DECLARE_BITMAP(hvpci_dom_map, HVPCI_DOM_MAP_SIZE);
2975
2976/*
2977 * PCI domain number 0 is used by emulated devices on Gen1 VMs, so define 0
2978 * as invalid for passthrough PCI devices of this driver.
2979 */
2980#define HVPCI_DOM_INVALID 0
2981
2982/**
2983 * hv_get_dom_num() - Get a valid PCI domain number
2984 * Check if the PCI domain number is in use, and return another number if
2985 * it is in use.
2986 *
2987 * @dom: Requested domain number
2988 *
2989 * return: domain number on success, HVPCI_DOM_INVALID on failure
2990 */
2991static u16 hv_get_dom_num(u16 dom)
2992{
2993	unsigned int i;
2994
2995	if (test_and_set_bit(dom, hvpci_dom_map) == 0)
2996		return dom;
2997
2998	for_each_clear_bit(i, hvpci_dom_map, HVPCI_DOM_MAP_SIZE) {
2999		if (test_and_set_bit(i, hvpci_dom_map) == 0)
3000			return i;
3001	}
3002
3003	return HVPCI_DOM_INVALID;
3004}
3005
3006/**
3007 * hv_put_dom_num() - Mark the PCI domain number as free
3008 * @dom: Domain number to be freed
3009 */
3010static void hv_put_dom_num(u16 dom)
3011{
3012	clear_bit(dom, hvpci_dom_map);
3013}
3014
3015/**
3016 * hv_pci_probe() - New VMBus channel probe, for a root PCI bus
3017 * @hdev:	VMBus's tracking struct for this root PCI bus
3018 * @dev_id:	Identifies the device itself
3019 *
3020 * Return: 0 on success, -errno on failure
3021 */
3022static int hv_pci_probe(struct hv_device *hdev,
3023			const struct hv_vmbus_device_id *dev_id)
3024{
 
3025	struct hv_pcibus_device *hbus;
3026	u16 dom_req, dom;
3027	char *name;
3028	bool enter_d0_retry = true;
3029	int ret;
3030
3031	/*
3032	 * hv_pcibus_device contains the hypercall arguments for retargeting in
3033	 * hv_irq_unmask(). Those must not cross a page boundary.
3034	 */
3035	BUILD_BUG_ON(sizeof(*hbus) > HV_HYP_PAGE_SIZE);
3036
3037	/*
3038	 * With the recent 59bb47985c1d ("mm, sl[aou]b: guarantee natural
3039	 * alignment for kmalloc(power-of-two)"), kzalloc() is able to allocate
3040	 * a 4KB buffer that is guaranteed to be 4KB-aligned. Here the size and
3041	 * alignment of hbus is important because hbus's field
3042	 * retarget_msi_interrupt_params must not cross a 4KB page boundary.
3043	 *
3044	 * Here we prefer kzalloc to get_zeroed_page(), because a buffer
3045	 * allocated by the latter is not tracked and scanned by kmemleak, and
3046	 * hence kmemleak reports the pointer contained in the hbus buffer
3047	 * (i.e. the hpdev struct, which is created in new_pcichild_device() and
3048	 * is tracked by hbus->children) as memory leak (false positive).
3049	 *
3050	 * If the kernel doesn't have 59bb47985c1d, get_zeroed_page() *must* be
3051	 * used to allocate the hbus buffer and we can avoid the kmemleak false
3052	 * positive by using kmemleak_alloc() and kmemleak_free() to ask
3053	 * kmemleak to track and scan the hbus buffer.
3054	 */
3055	hbus = kzalloc(HV_HYP_PAGE_SIZE, GFP_KERNEL);
3056	if (!hbus)
3057		return -ENOMEM;
 
 
 
3058	hbus->state = hv_pcibus_init;
3059	hbus->wslot_res_allocated = -1;
3060
3061	/*
3062	 * The PCI bus "domain" is what is called "segment" in ACPI and other
3063	 * specs. Pull it from the instance ID, to get something usually
3064	 * unique. In rare cases of collision, we will find out another number
3065	 * not in use.
3066	 *
3067	 * Note that, since this code only runs in a Hyper-V VM, Hyper-V
3068	 * together with this guest driver can guarantee that (1) The only
3069	 * domain used by Gen1 VMs for something that looks like a physical
3070	 * PCI bus (which is actually emulated by the hypervisor) is domain 0.
3071	 * (2) There will be no overlap between domains (after fixing possible
3072	 * collisions) in the same VM.
3073	 */
3074	dom_req = hdev->dev_instance.b[5] << 8 | hdev->dev_instance.b[4];
3075	dom = hv_get_dom_num(dom_req);
3076
3077	if (dom == HVPCI_DOM_INVALID) {
3078		dev_err(&hdev->device,
3079			"Unable to use dom# 0x%hx or other numbers", dom_req);
3080		ret = -EINVAL;
3081		goto free_bus;
3082	}
3083
3084	if (dom != dom_req)
3085		dev_info(&hdev->device,
3086			 "PCI dom# 0x%hx has collision, using 0x%hx",
3087			 dom_req, dom);
3088
 
 
3089	hbus->sysdata.domain = dom;
 
 
 
 
 
 
 
 
 
 
 
 
3090
3091	hbus->hdev = hdev;
3092	refcount_set(&hbus->remove_lock, 1);
3093	INIT_LIST_HEAD(&hbus->children);
3094	INIT_LIST_HEAD(&hbus->dr_list);
3095	INIT_LIST_HEAD(&hbus->resources_for_children);
3096	spin_lock_init(&hbus->config_lock);
3097	spin_lock_init(&hbus->device_list_lock);
3098	spin_lock_init(&hbus->retarget_msi_interrupt_lock);
3099	init_completion(&hbus->remove_event);
3100	hbus->wq = alloc_ordered_workqueue("hv_pci_%x", 0,
3101					   hbus->sysdata.domain);
3102	if (!hbus->wq) {
3103		ret = -ENOMEM;
3104		goto free_dom;
3105	}
3106
 
 
 
 
3107	ret = vmbus_open(hdev->channel, pci_ring_size, pci_ring_size, NULL, 0,
3108			 hv_pci_onchannelcallback, hbus);
3109	if (ret)
3110		goto destroy_wq;
3111
3112	hv_set_drvdata(hdev, hbus);
3113
3114	ret = hv_pci_protocol_negotiation(hdev, pci_protocol_versions,
3115					  ARRAY_SIZE(pci_protocol_versions));
3116	if (ret)
3117		goto close;
3118
3119	ret = hv_allocate_config_window(hbus);
3120	if (ret)
3121		goto close;
3122
3123	hbus->cfg_addr = ioremap(hbus->mem_config->start,
3124				 PCI_CONFIG_MMIO_LENGTH);
3125	if (!hbus->cfg_addr) {
3126		dev_err(&hdev->device,
3127			"Unable to map a virtual address for config space\n");
3128		ret = -ENOMEM;
3129		goto free_config;
3130	}
3131
3132	name = kasprintf(GFP_KERNEL, "%pUL", &hdev->dev_instance);
3133	if (!name) {
3134		ret = -ENOMEM;
3135		goto unmap;
3136	}
3137
3138	hbus->sysdata.fwnode = irq_domain_alloc_named_fwnode(name);
3139	kfree(name);
3140	if (!hbus->sysdata.fwnode) {
3141		ret = -ENOMEM;
3142		goto unmap;
3143	}
3144
3145	ret = hv_pcie_init_irq_domain(hbus);
3146	if (ret)
3147		goto free_fwnode;
3148
3149retry:
3150	ret = hv_pci_query_relations(hdev);
3151	if (ret)
3152		goto free_irq_domain;
3153
 
 
3154	ret = hv_pci_enter_d0(hdev);
3155	/*
3156	 * In certain case (Kdump) the pci device of interest was
3157	 * not cleanly shut down and resource is still held on host
3158	 * side, the host could return invalid device status.
3159	 * We need to explicitly request host to release the resource
3160	 * and try to enter D0 again.
3161	 * Since the hv_pci_bus_exit() call releases structures
3162	 * of all its child devices, we need to start the retry from
3163	 * hv_pci_query_relations() call, requesting host to send
3164	 * the synchronous child device relations message before this
3165	 * information is needed in hv_send_resources_allocated()
3166	 * call later.
3167	 */
3168	if (ret == -EPROTO && enter_d0_retry) {
3169		enter_d0_retry = false;
3170
3171		dev_err(&hdev->device, "Retrying D0 Entry\n");
3172
3173		/*
3174		 * Hv_pci_bus_exit() calls hv_send_resources_released()
3175		 * to free up resources of its child devices.
3176		 * In the kdump kernel we need to set the
3177		 * wslot_res_allocated to 255 so it scans all child
3178		 * devices to release resources allocated in the
3179		 * normal kernel before panic happened.
3180		 */
3181		hbus->wslot_res_allocated = 255;
3182		ret = hv_pci_bus_exit(hdev, true);
3183
3184		if (ret == 0)
3185			goto retry;
3186
3187		dev_err(&hdev->device,
3188			"Retrying D0 failed with ret %d\n", ret);
3189	}
3190	if (ret)
3191		goto free_irq_domain;
3192
3193	ret = hv_pci_allocate_bridge_windows(hbus);
3194	if (ret)
3195		goto exit_d0;
3196
3197	ret = hv_send_resources_allocated(hdev);
3198	if (ret)
3199		goto free_windows;
3200
3201	prepopulate_bars(hbus);
3202
3203	hbus->state = hv_pcibus_probed;
3204
3205	ret = create_root_hv_pci_bus(hbus);
3206	if (ret)
3207		goto free_windows;
3208
 
3209	return 0;
3210
3211free_windows:
3212	hv_pci_free_bridge_windows(hbus);
3213exit_d0:
3214	(void) hv_pci_bus_exit(hdev, true);
 
 
3215free_irq_domain:
3216	irq_domain_remove(hbus->irq_domain);
3217free_fwnode:
3218	irq_domain_free_fwnode(hbus->sysdata.fwnode);
3219unmap:
3220	iounmap(hbus->cfg_addr);
3221free_config:
3222	hv_free_config_window(hbus);
3223close:
3224	vmbus_close(hdev->channel);
3225destroy_wq:
3226	destroy_workqueue(hbus->wq);
3227free_dom:
3228	hv_put_dom_num(hbus->sysdata.domain);
3229free_bus:
3230	kfree(hbus);
3231	return ret;
3232}
3233
3234static int hv_pci_bus_exit(struct hv_device *hdev, bool keep_devs)
3235{
3236	struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
 
3237	struct {
3238		struct pci_packet teardown_packet;
3239		u8 buffer[sizeof(struct pci_message)];
3240	} pkt;
3241	struct hv_dr_state *dr;
3242	struct hv_pci_compl comp_pkt;
 
 
 
3243	int ret;
3244
3245	/*
3246	 * After the host sends the RESCIND_CHANNEL message, it doesn't
3247	 * access the per-channel ringbuffer any longer.
3248	 */
3249	if (hdev->channel->rescind)
3250		return 0;
3251
3252	if (!keep_devs) {
3253		/* Delete any children which might still exist. */
3254		dr = kzalloc(sizeof(*dr), GFP_KERNEL);
3255		if (dr && hv_pci_start_relations_work(hbus, dr))
3256			kfree(dr);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3257	}
3258
3259	ret = hv_send_resources_released(hdev);
3260	if (ret) {
3261		dev_err(&hdev->device,
3262			"Couldn't send resources released packet(s)\n");
3263		return ret;
3264	}
3265
3266	memset(&pkt.teardown_packet, 0, sizeof(pkt.teardown_packet));
3267	init_completion(&comp_pkt.host_event);
3268	pkt.teardown_packet.completion_func = hv_pci_generic_compl;
3269	pkt.teardown_packet.compl_ctxt = &comp_pkt;
3270	pkt.teardown_packet.message[0].type = PCI_BUS_D0EXIT;
3271
3272	ret = vmbus_sendpacket(hdev->channel, &pkt.teardown_packet.message,
3273			       sizeof(struct pci_message),
3274			       (unsigned long)&pkt.teardown_packet,
3275			       VM_PKT_DATA_INBAND,
3276			       VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
3277	if (ret)
3278		return ret;
3279
3280	if (wait_for_completion_timeout(&comp_pkt.host_event, 10 * HZ) == 0)
 
 
 
 
 
 
 
 
 
3281		return -ETIMEDOUT;
 
3282
3283	return 0;
3284}
3285
3286/**
3287 * hv_pci_remove() - Remove routine for this VMBus channel
3288 * @hdev:	VMBus's tracking struct for this root PCI bus
3289 *
3290 * Return: 0 on success, -errno on failure
3291 */
3292static int hv_pci_remove(struct hv_device *hdev)
3293{
3294	struct hv_pcibus_device *hbus;
3295	int ret;
3296
3297	hbus = hv_get_drvdata(hdev);
3298	if (hbus->state == hv_pcibus_installed) {
 
 
 
 
 
 
 
 
 
 
 
3299		/* Remove the bus from PCI's point of view. */
3300		pci_lock_rescan_remove();
3301		pci_stop_root_bus(hbus->pci_bus);
3302		hv_pci_remove_slots(hbus);
3303		pci_remove_root_bus(hbus->pci_bus);
3304		pci_unlock_rescan_remove();
3305		hbus->state = hv_pcibus_removed;
3306	}
3307
3308	ret = hv_pci_bus_exit(hdev, false);
3309
3310	vmbus_close(hdev->channel);
3311
3312	iounmap(hbus->cfg_addr);
3313	hv_free_config_window(hbus);
3314	pci_free_resource_list(&hbus->resources_for_children);
3315	hv_pci_free_bridge_windows(hbus);
3316	irq_domain_remove(hbus->irq_domain);
3317	irq_domain_free_fwnode(hbus->sysdata.fwnode);
3318	put_hvpcibus(hbus);
3319	wait_for_completion(&hbus->remove_event);
3320	destroy_workqueue(hbus->wq);
3321
3322	hv_put_dom_num(hbus->sysdata.domain);
3323
3324	kfree(hbus);
3325	return ret;
3326}
3327
3328static int hv_pci_suspend(struct hv_device *hdev)
3329{
3330	struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
3331	enum hv_pcibus_state old_state;
3332	int ret;
3333
3334	/*
3335	 * hv_pci_suspend() must make sure there are no pending work items
3336	 * before calling vmbus_close(), since it runs in a process context
3337	 * as a callback in dpm_suspend().  When it starts to run, the channel
3338	 * callback hv_pci_onchannelcallback(), which runs in a tasklet
3339	 * context, can be still running concurrently and scheduling new work
3340	 * items onto hbus->wq in hv_pci_devices_present() and
3341	 * hv_pci_eject_device(), and the work item handlers can access the
3342	 * vmbus channel, which can be being closed by hv_pci_suspend(), e.g.
3343	 * the work item handler pci_devices_present_work() ->
3344	 * new_pcichild_device() writes to the vmbus channel.
3345	 *
3346	 * To eliminate the race, hv_pci_suspend() disables the channel
3347	 * callback tasklet, sets hbus->state to hv_pcibus_removing, and
3348	 * re-enables the tasklet. This way, when hv_pci_suspend() proceeds,
3349	 * it knows that no new work item can be scheduled, and then it flushes
3350	 * hbus->wq and safely closes the vmbus channel.
3351	 */
3352	tasklet_disable(&hdev->channel->callback_event);
3353
3354	/* Change the hbus state to prevent new work items. */
3355	old_state = hbus->state;
3356	if (hbus->state == hv_pcibus_installed)
3357		hbus->state = hv_pcibus_removing;
3358
3359	tasklet_enable(&hdev->channel->callback_event);
3360
3361	if (old_state != hv_pcibus_installed)
3362		return -EINVAL;
3363
3364	flush_workqueue(hbus->wq);
3365
3366	ret = hv_pci_bus_exit(hdev, true);
3367	if (ret)
3368		return ret;
3369
3370	vmbus_close(hdev->channel);
3371
3372	return 0;
3373}
3374
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3375static int hv_pci_resume(struct hv_device *hdev)
3376{
3377	struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
3378	enum pci_protocol_version_t version[1];
3379	int ret;
3380
3381	hbus->state = hv_pcibus_init;
3382
 
 
 
 
3383	ret = vmbus_open(hdev->channel, pci_ring_size, pci_ring_size, NULL, 0,
3384			 hv_pci_onchannelcallback, hbus);
3385	if (ret)
3386		return ret;
3387
3388	/* Only use the version that was in use before hibernation. */
3389	version[0] = hbus->protocol_version;
3390	ret = hv_pci_protocol_negotiation(hdev, version, 1);
3391	if (ret)
3392		goto out;
3393
3394	ret = hv_pci_query_relations(hdev);
3395	if (ret)
3396		goto out;
3397
 
 
3398	ret = hv_pci_enter_d0(hdev);
3399	if (ret)
3400		goto out;
3401
3402	ret = hv_send_resources_allocated(hdev);
3403	if (ret)
3404		goto out;
3405
3406	prepopulate_bars(hbus);
3407
 
 
3408	hbus->state = hv_pcibus_installed;
 
3409	return 0;
 
 
 
3410out:
3411	vmbus_close(hdev->channel);
3412	return ret;
3413}
3414
3415static const struct hv_vmbus_device_id hv_pci_id_table[] = {
3416	/* PCI Pass-through Class ID */
3417	/* 44C4F61D-4444-4400-9D52-802E27EDE19F */
3418	{ HV_PCIE_GUID, },
3419	{ },
3420};
3421
3422MODULE_DEVICE_TABLE(vmbus, hv_pci_id_table);
3423
3424static struct hv_driver hv_pci_drv = {
3425	.name		= "hv_pci",
3426	.id_table	= hv_pci_id_table,
3427	.probe		= hv_pci_probe,
3428	.remove		= hv_pci_remove,
3429	.suspend	= hv_pci_suspend,
3430	.resume		= hv_pci_resume,
3431};
3432
3433static void __exit exit_hv_pci_drv(void)
3434{
3435	vmbus_driver_unregister(&hv_pci_drv);
3436
3437	hvpci_block_ops.read_block = NULL;
3438	hvpci_block_ops.write_block = NULL;
3439	hvpci_block_ops.reg_blk_invalidate = NULL;
3440}
3441
3442static int __init init_hv_pci_drv(void)
3443{
 
 
 
 
 
 
 
 
 
3444	/* Set the invalid domain number's bit, so it will not be used */
3445	set_bit(HVPCI_DOM_INVALID, hvpci_dom_map);
3446
3447	/* Initialize PCI block r/w interface */
3448	hvpci_block_ops.read_block = hv_read_config_block;
3449	hvpci_block_ops.write_block = hv_write_config_block;
3450	hvpci_block_ops.reg_blk_invalidate = hv_register_block_invalidate;
3451
3452	return vmbus_driver_register(&hv_pci_drv);
3453}
3454
3455module_init(init_hv_pci_drv);
3456module_exit(exit_hv_pci_drv);
3457
3458MODULE_DESCRIPTION("Hyper-V PCI");
3459MODULE_LICENSE("GPL v2");