Linux Audio

Check our new training course

Loading...
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (c) Microsoft Corporation.
   4 *
   5 * Author:
   6 *   Jake Oshins <jakeo@microsoft.com>
   7 *
   8 * This driver acts as a paravirtual front-end for PCI Express root buses.
   9 * When a PCI Express function (either an entire device or an SR-IOV
  10 * Virtual Function) is being passed through to the VM, this driver exposes
  11 * a new bus to the guest VM.  This is modeled as a root PCI bus because
  12 * no bridges are being exposed to the VM.  In fact, with a "Generation 2"
  13 * VM within Hyper-V, there may seem to be no PCI bus at all in the VM
  14 * until a device as been exposed using this driver.
  15 *
  16 * Each root PCI bus has its own PCI domain, which is called "Segment" in
  17 * the PCI Firmware Specifications.  Thus while each device passed through
  18 * to the VM using this front-end will appear at "device 0", the domain will
  19 * be unique.  Typically, each bus will have one PCI function on it, though
  20 * this driver does support more than one.
  21 *
  22 * In order to map the interrupts from the device through to the guest VM,
  23 * this driver also implements an IRQ Domain, which handles interrupts (either
  24 * MSI or MSI-X) associated with the functions on the bus.  As interrupts are
  25 * set up, torn down, or reaffined, this driver communicates with the
  26 * underlying hypervisor to adjust the mappings in the I/O MMU so that each
  27 * interrupt will be delivered to the correct virtual processor at the right
  28 * vector.  This driver does not support level-triggered (line-based)
  29 * interrupts, and will report that the Interrupt Line register in the
  30 * function's configuration space is zero.
  31 *
  32 * The rest of this driver mostly maps PCI concepts onto underlying Hyper-V
  33 * facilities.  For instance, the configuration space of a function exposed
  34 * by Hyper-V is mapped into a single page of memory space, and the
  35 * read and write handlers for config space must be aware of this mechanism.
  36 * Similarly, device setup and teardown involves messages sent to and from
  37 * the PCI back-end driver in Hyper-V.
  38 */
  39
  40#include <linux/kernel.h>
  41#include <linux/module.h>
  42#include <linux/pci.h>
  43#include <linux/pci-ecam.h>
  44#include <linux/delay.h>
  45#include <linux/semaphore.h>
 
 
 
  46#include <linux/irq.h>
  47#include <linux/msi.h>
  48#include <linux/hyperv.h>
  49#include <linux/refcount.h>
  50#include <linux/irqdomain.h>
  51#include <linux/acpi.h>
  52#include <linux/sizes.h>
  53#include <asm/mshyperv.h>
  54
  55/*
  56 * Protocol versions. The low word is the minor version, the high word the
  57 * major version.
  58 */
  59
  60#define PCI_MAKE_VERSION(major, minor) ((u32)(((major) << 16) | (minor)))
  61#define PCI_MAJOR_VERSION(version) ((u32)(version) >> 16)
  62#define PCI_MINOR_VERSION(version) ((u32)(version) & 0xff)
  63
  64enum pci_protocol_version_t {
  65	PCI_PROTOCOL_VERSION_1_1 = PCI_MAKE_VERSION(1, 1),	/* Win10 */
  66	PCI_PROTOCOL_VERSION_1_2 = PCI_MAKE_VERSION(1, 2),	/* RS1 */
  67	PCI_PROTOCOL_VERSION_1_3 = PCI_MAKE_VERSION(1, 3),	/* Vibranium */
  68	PCI_PROTOCOL_VERSION_1_4 = PCI_MAKE_VERSION(1, 4),	/* WS2022 */
  69};
  70
  71#define CPU_AFFINITY_ALL	-1ULL
  72
  73/*
  74 * Supported protocol versions in the order of probing - highest go
  75 * first.
  76 */
  77static enum pci_protocol_version_t pci_protocol_versions[] = {
  78	PCI_PROTOCOL_VERSION_1_4,
  79	PCI_PROTOCOL_VERSION_1_3,
  80	PCI_PROTOCOL_VERSION_1_2,
  81	PCI_PROTOCOL_VERSION_1_1,
  82};
  83
 
 
 
 
 
  84#define PCI_CONFIG_MMIO_LENGTH	0x2000
  85#define CFG_PAGE_OFFSET 0x1000
  86#define CFG_PAGE_SIZE (PCI_CONFIG_MMIO_LENGTH - CFG_PAGE_OFFSET)
  87
  88#define MAX_SUPPORTED_MSI_MESSAGES 0x400
  89
  90#define STATUS_REVISION_MISMATCH 0xC0000059
  91
  92/* space for 32bit serial number as string */
  93#define SLOT_NAME_SIZE 11
  94
  95/*
  96 * Size of requestor for VMbus; the value is based on the observation
  97 * that having more than one request outstanding is 'rare', and so 64
  98 * should be generous in ensuring that we don't ever run out.
  99 */
 100#define HV_PCI_RQSTOR_SIZE 64
 101
 102/*
 103 * Message Types
 104 */
 105
 106enum pci_message_type {
 107	/*
 108	 * Version 1.1
 109	 */
 110	PCI_MESSAGE_BASE                = 0x42490000,
 111	PCI_BUS_RELATIONS               = PCI_MESSAGE_BASE + 0,
 112	PCI_QUERY_BUS_RELATIONS         = PCI_MESSAGE_BASE + 1,
 113	PCI_POWER_STATE_CHANGE          = PCI_MESSAGE_BASE + 4,
 114	PCI_QUERY_RESOURCE_REQUIREMENTS = PCI_MESSAGE_BASE + 5,
 115	PCI_QUERY_RESOURCE_RESOURCES    = PCI_MESSAGE_BASE + 6,
 116	PCI_BUS_D0ENTRY                 = PCI_MESSAGE_BASE + 7,
 117	PCI_BUS_D0EXIT                  = PCI_MESSAGE_BASE + 8,
 118	PCI_READ_BLOCK                  = PCI_MESSAGE_BASE + 9,
 119	PCI_WRITE_BLOCK                 = PCI_MESSAGE_BASE + 0xA,
 120	PCI_EJECT                       = PCI_MESSAGE_BASE + 0xB,
 121	PCI_QUERY_STOP                  = PCI_MESSAGE_BASE + 0xC,
 122	PCI_REENABLE                    = PCI_MESSAGE_BASE + 0xD,
 123	PCI_QUERY_STOP_FAILED           = PCI_MESSAGE_BASE + 0xE,
 124	PCI_EJECTION_COMPLETE           = PCI_MESSAGE_BASE + 0xF,
 125	PCI_RESOURCES_ASSIGNED          = PCI_MESSAGE_BASE + 0x10,
 126	PCI_RESOURCES_RELEASED          = PCI_MESSAGE_BASE + 0x11,
 127	PCI_INVALIDATE_BLOCK            = PCI_MESSAGE_BASE + 0x12,
 128	PCI_QUERY_PROTOCOL_VERSION      = PCI_MESSAGE_BASE + 0x13,
 129	PCI_CREATE_INTERRUPT_MESSAGE    = PCI_MESSAGE_BASE + 0x14,
 130	PCI_DELETE_INTERRUPT_MESSAGE    = PCI_MESSAGE_BASE + 0x15,
 131	PCI_RESOURCES_ASSIGNED2		= PCI_MESSAGE_BASE + 0x16,
 132	PCI_CREATE_INTERRUPT_MESSAGE2	= PCI_MESSAGE_BASE + 0x17,
 133	PCI_DELETE_INTERRUPT_MESSAGE2	= PCI_MESSAGE_BASE + 0x18, /* unused */
 134	PCI_BUS_RELATIONS2		= PCI_MESSAGE_BASE + 0x19,
 135	PCI_RESOURCES_ASSIGNED3         = PCI_MESSAGE_BASE + 0x1A,
 136	PCI_CREATE_INTERRUPT_MESSAGE3   = PCI_MESSAGE_BASE + 0x1B,
 137	PCI_MESSAGE_MAXIMUM
 138};
 139
 140/*
 141 * Structures defining the virtual PCI Express protocol.
 142 */
 143
 144union pci_version {
 145	struct {
 146		u16 minor_version;
 147		u16 major_version;
 148	} parts;
 149	u32 version;
 150} __packed;
 151
 152/*
 153 * Function numbers are 8-bits wide on Express, as interpreted through ARI,
 154 * which is all this driver does.  This representation is the one used in
 155 * Windows, which is what is expected when sending this back and forth with
 156 * the Hyper-V parent partition.
 157 */
 158union win_slot_encoding {
 159	struct {
 160		u32	dev:5;
 161		u32	func:3;
 162		u32	reserved:24;
 163	} bits;
 164	u32 slot;
 165} __packed;
 166
 167/*
 168 * Pretty much as defined in the PCI Specifications.
 169 */
 170struct pci_function_description {
 171	u16	v_id;	/* vendor ID */
 172	u16	d_id;	/* device ID */
 173	u8	rev;
 174	u8	prog_intf;
 175	u8	subclass;
 176	u8	base_class;
 177	u32	subsystem_id;
 178	union win_slot_encoding win_slot;
 179	u32	ser;	/* serial number */
 180} __packed;
 181
 182enum pci_device_description_flags {
 183	HV_PCI_DEVICE_FLAG_NONE			= 0x0,
 184	HV_PCI_DEVICE_FLAG_NUMA_AFFINITY	= 0x1,
 185};
 186
 187struct pci_function_description2 {
 188	u16	v_id;	/* vendor ID */
 189	u16	d_id;	/* device ID */
 190	u8	rev;
 191	u8	prog_intf;
 192	u8	subclass;
 193	u8	base_class;
 194	u32	subsystem_id;
 195	union	win_slot_encoding win_slot;
 196	u32	ser;	/* serial number */
 197	u32	flags;
 198	u16	virtual_numa_node;
 199	u16	reserved;
 200} __packed;
 201
 202/**
 203 * struct hv_msi_desc
 204 * @vector:		IDT entry
 205 * @delivery_mode:	As defined in Intel's Programmer's
 206 *			Reference Manual, Volume 3, Chapter 8.
 207 * @vector_count:	Number of contiguous entries in the
 208 *			Interrupt Descriptor Table that are
 209 *			occupied by this Message-Signaled
 210 *			Interrupt. For "MSI", as first defined
 211 *			in PCI 2.2, this can be between 1 and
 212 *			32. For "MSI-X," as first defined in PCI
 213 *			3.0, this must be 1, as each MSI-X table
 214 *			entry would have its own descriptor.
 215 * @reserved:		Empty space
 216 * @cpu_mask:		All the target virtual processors.
 217 */
 218struct hv_msi_desc {
 219	u8	vector;
 220	u8	delivery_mode;
 221	u16	vector_count;
 222	u32	reserved;
 223	u64	cpu_mask;
 224} __packed;
 225
 226/**
 227 * struct hv_msi_desc2 - 1.2 version of hv_msi_desc
 228 * @vector:		IDT entry
 229 * @delivery_mode:	As defined in Intel's Programmer's
 230 *			Reference Manual, Volume 3, Chapter 8.
 231 * @vector_count:	Number of contiguous entries in the
 232 *			Interrupt Descriptor Table that are
 233 *			occupied by this Message-Signaled
 234 *			Interrupt. For "MSI", as first defined
 235 *			in PCI 2.2, this can be between 1 and
 236 *			32. For "MSI-X," as first defined in PCI
 237 *			3.0, this must be 1, as each MSI-X table
 238 *			entry would have its own descriptor.
 239 * @processor_count:	number of bits enabled in array.
 240 * @processor_array:	All the target virtual processors.
 241 */
 242struct hv_msi_desc2 {
 243	u8	vector;
 244	u8	delivery_mode;
 245	u16	vector_count;
 246	u16	processor_count;
 247	u16	processor_array[32];
 248} __packed;
 249
 250/*
 251 * struct hv_msi_desc3 - 1.3 version of hv_msi_desc
 252 *	Everything is the same as in 'hv_msi_desc2' except that the size of the
 253 *	'vector' field is larger to support bigger vector values. For ex: LPI
 254 *	vectors on ARM.
 255 */
 256struct hv_msi_desc3 {
 257	u32	vector;
 258	u8	delivery_mode;
 259	u8	reserved;
 260	u16	vector_count;
 261	u16	processor_count;
 262	u16	processor_array[32];
 263} __packed;
 264
 265/**
 266 * struct tran_int_desc
 267 * @reserved:		unused, padding
 268 * @vector_count:	same as in hv_msi_desc
 269 * @data:		This is the "data payload" value that is
 270 *			written by the device when it generates
 271 *			a message-signaled interrupt, either MSI
 272 *			or MSI-X.
 273 * @address:		This is the address to which the data
 274 *			payload is written on interrupt
 275 *			generation.
 276 */
 277struct tran_int_desc {
 278	u16	reserved;
 279	u16	vector_count;
 280	u32	data;
 281	u64	address;
 282} __packed;
 283
 284/*
 285 * A generic message format for virtual PCI.
 286 * Specific message formats are defined later in the file.
 287 */
 288
 289struct pci_message {
 290	u32 type;
 291} __packed;
 292
 293struct pci_child_message {
 294	struct pci_message message_type;
 295	union win_slot_encoding wslot;
 296} __packed;
 297
 298struct pci_incoming_message {
 299	struct vmpacket_descriptor hdr;
 300	struct pci_message message_type;
 301} __packed;
 302
 303struct pci_response {
 304	struct vmpacket_descriptor hdr;
 305	s32 status;			/* negative values are failures */
 306} __packed;
 307
 308struct pci_packet {
 309	void (*completion_func)(void *context, struct pci_response *resp,
 310				int resp_packet_size);
 311	void *compl_ctxt;
 312
 313	struct pci_message message[];
 314};
 315
 316/*
 317 * Specific message types supporting the PCI protocol.
 318 */
 319
 320/*
 321 * Version negotiation message. Sent from the guest to the host.
 322 * The guest is free to try different versions until the host
 323 * accepts the version.
 324 *
 325 * pci_version: The protocol version requested.
 326 * is_last_attempt: If TRUE, this is the last version guest will request.
 327 * reservedz: Reserved field, set to zero.
 328 */
 329
 330struct pci_version_request {
 331	struct pci_message message_type;
 332	u32 protocol_version;
 333} __packed;
 334
 335/*
 336 * Bus D0 Entry.  This is sent from the guest to the host when the virtual
 337 * bus (PCI Express port) is ready for action.
 338 */
 339
 340struct pci_bus_d0_entry {
 341	struct pci_message message_type;
 342	u32 reserved;
 343	u64 mmio_base;
 344} __packed;
 345
 346struct pci_bus_relations {
 347	struct pci_incoming_message incoming;
 348	u32 device_count;
 349	struct pci_function_description func[];
 350} __packed;
 351
 352struct pci_bus_relations2 {
 353	struct pci_incoming_message incoming;
 354	u32 device_count;
 355	struct pci_function_description2 func[];
 356} __packed;
 357
 358struct pci_q_res_req_response {
 359	struct vmpacket_descriptor hdr;
 360	s32 status;			/* negative values are failures */
 361	u32 probed_bar[PCI_STD_NUM_BARS];
 362} __packed;
 363
 364struct pci_set_power {
 365	struct pci_message message_type;
 366	union win_slot_encoding wslot;
 367	u32 power_state;		/* In Windows terms */
 368	u32 reserved;
 369} __packed;
 370
 371struct pci_set_power_response {
 372	struct vmpacket_descriptor hdr;
 373	s32 status;			/* negative values are failures */
 374	union win_slot_encoding wslot;
 375	u32 resultant_state;		/* In Windows terms */
 376	u32 reserved;
 377} __packed;
 378
 379struct pci_resources_assigned {
 380	struct pci_message message_type;
 381	union win_slot_encoding wslot;
 382	u8 memory_range[0x14][6];	/* not used here */
 383	u32 msi_descriptors;
 384	u32 reserved[4];
 385} __packed;
 386
 387struct pci_resources_assigned2 {
 388	struct pci_message message_type;
 389	union win_slot_encoding wslot;
 390	u8 memory_range[0x14][6];	/* not used here */
 391	u32 msi_descriptor_count;
 392	u8 reserved[70];
 393} __packed;
 394
 395struct pci_create_interrupt {
 396	struct pci_message message_type;
 397	union win_slot_encoding wslot;
 398	struct hv_msi_desc int_desc;
 399} __packed;
 400
 401struct pci_create_int_response {
 402	struct pci_response response;
 403	u32 reserved;
 404	struct tran_int_desc int_desc;
 405} __packed;
 406
 407struct pci_create_interrupt2 {
 408	struct pci_message message_type;
 409	union win_slot_encoding wslot;
 410	struct hv_msi_desc2 int_desc;
 411} __packed;
 412
 413struct pci_create_interrupt3 {
 414	struct pci_message message_type;
 415	union win_slot_encoding wslot;
 416	struct hv_msi_desc3 int_desc;
 417} __packed;
 418
 419struct pci_delete_interrupt {
 420	struct pci_message message_type;
 421	union win_slot_encoding wslot;
 422	struct tran_int_desc int_desc;
 423} __packed;
 424
 425/*
 426 * Note: the VM must pass a valid block id, wslot and bytes_requested.
 427 */
 428struct pci_read_block {
 429	struct pci_message message_type;
 430	u32 block_id;
 431	union win_slot_encoding wslot;
 432	u32 bytes_requested;
 433} __packed;
 434
 435struct pci_read_block_response {
 436	struct vmpacket_descriptor hdr;
 437	u32 status;
 438	u8 bytes[HV_CONFIG_BLOCK_SIZE_MAX];
 439} __packed;
 440
 441/*
 442 * Note: the VM must pass a valid block id, wslot and byte_count.
 443 */
 444struct pci_write_block {
 445	struct pci_message message_type;
 446	u32 block_id;
 447	union win_slot_encoding wslot;
 448	u32 byte_count;
 449	u8 bytes[HV_CONFIG_BLOCK_SIZE_MAX];
 450} __packed;
 451
 452struct pci_dev_inval_block {
 453	struct pci_incoming_message incoming;
 454	union win_slot_encoding wslot;
 455	u64 block_mask;
 456} __packed;
 457
 458struct pci_dev_incoming {
 459	struct pci_incoming_message incoming;
 460	union win_slot_encoding wslot;
 461} __packed;
 462
 463struct pci_eject_response {
 464	struct pci_message message_type;
 465	union win_slot_encoding wslot;
 466	u32 status;
 467} __packed;
 468
 469static int pci_ring_size = VMBUS_RING_SIZE(SZ_16K);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 470
 471/*
 472 * Driver specific state.
 473 */
 474
 475enum hv_pcibus_state {
 476	hv_pcibus_init = 0,
 477	hv_pcibus_probed,
 478	hv_pcibus_installed,
 479	hv_pcibus_removing,
 480	hv_pcibus_maximum
 481};
 482
 483struct hv_pcibus_device {
 484#ifdef CONFIG_X86
 485	struct pci_sysdata sysdata;
 486#elif defined(CONFIG_ARM64)
 487	struct pci_config_window sysdata;
 488#endif
 489	struct pci_host_bridge *bridge;
 490	struct fwnode_handle *fwnode;
 491	/* Protocol version negotiated with the host */
 492	enum pci_protocol_version_t protocol_version;
 493
 494	struct mutex state_lock;
 495	enum hv_pcibus_state state;
 496
 497	struct hv_device *hdev;
 498	resource_size_t low_mmio_space;
 499	resource_size_t high_mmio_space;
 500	struct resource *mem_config;
 501	struct resource *low_mmio_res;
 502	struct resource *high_mmio_res;
 503	struct completion *survey_event;
 
 504	struct pci_bus *pci_bus;
 505	spinlock_t config_lock;	/* Avoid two threads writing index page */
 506	spinlock_t device_list_lock;	/* Protect lists below */
 507	void __iomem *cfg_addr;
 508
 
 
 509	struct list_head children;
 510	struct list_head dr_list;
 511
 512	struct msi_domain_info msi_info;
 
 513	struct irq_domain *irq_domain;
 514
 
 
 515	struct workqueue_struct *wq;
 516
 517	/* Highest slot of child device with resources allocated */
 518	int wslot_res_allocated;
 519	bool use_calls; /* Use hypercalls to access mmio cfg space */
 
 
 
 520};
 521
 522/*
 523 * Tracks "Device Relations" messages from the host, which must be both
 524 * processed in order and deferred so that they don't run in the context
 525 * of the incoming packet callback.
 526 */
 527struct hv_dr_work {
 528	struct work_struct wrk;
 529	struct hv_pcibus_device *bus;
 530};
 531
 532struct hv_pcidev_description {
 533	u16	v_id;	/* vendor ID */
 534	u16	d_id;	/* device ID */
 535	u8	rev;
 536	u8	prog_intf;
 537	u8	subclass;
 538	u8	base_class;
 539	u32	subsystem_id;
 540	union	win_slot_encoding win_slot;
 541	u32	ser;	/* serial number */
 542	u32	flags;
 543	u16	virtual_numa_node;
 544};
 545
 546struct hv_dr_state {
 547	struct list_head list_entry;
 548	u32 device_count;
 549	struct hv_pcidev_description func[] __counted_by(device_count);
 
 
 
 
 
 
 
 
 550};
 551
 552struct hv_pci_dev {
 553	/* List protected by pci_rescan_remove_lock */
 554	struct list_head list_entry;
 555	refcount_t refs;
 
 556	struct pci_slot *pci_slot;
 557	struct hv_pcidev_description desc;
 558	bool reported_missing;
 559	struct hv_pcibus_device *hbus;
 560	struct work_struct wrk;
 561
 562	void (*block_invalidate)(void *context, u64 block_mask);
 563	void *invalidate_context;
 564
 565	/*
 566	 * What would be observed if one wrote 0xFFFFFFFF to a BAR and then
 567	 * read it back, for each of the BAR offsets within config space.
 568	 */
 569	u32 probed_bar[PCI_STD_NUM_BARS];
 570};
 571
 572struct hv_pci_compl {
 573	struct completion host_event;
 574	s32 completion_status;
 575};
 576
 577static void hv_pci_onchannelcallback(void *context);
 578
 579#ifdef CONFIG_X86
 580#define DELIVERY_MODE	APIC_DELIVERY_MODE_FIXED
 581#define FLOW_HANDLER	handle_edge_irq
 582#define FLOW_NAME	"edge"
 583
 584static int hv_pci_irqchip_init(void)
 585{
 586	return 0;
 587}
 588
 589static struct irq_domain *hv_pci_get_root_domain(void)
 590{
 591	return x86_vector_domain;
 592}
 593
 594static unsigned int hv_msi_get_int_vector(struct irq_data *data)
 595{
 596	struct irq_cfg *cfg = irqd_cfg(data);
 597
 598	return cfg->vector;
 599}
 600
 601#define hv_msi_prepare		pci_msi_prepare
 602
 603/**
 604 * hv_arch_irq_unmask() - "Unmask" the IRQ by setting its current
 605 * affinity.
 606 * @data:	Describes the IRQ
 607 *
 608 * Build new a destination for the MSI and make a hypercall to
 609 * update the Interrupt Redirection Table. "Device Logical ID"
 610 * is built out of this PCI bus's instance GUID and the function
 611 * number of the device.
 612 */
 613static void hv_arch_irq_unmask(struct irq_data *data)
 614{
 615	struct msi_desc *msi_desc = irq_data_get_msi_desc(data);
 616	struct hv_retarget_device_interrupt *params;
 617	struct tran_int_desc *int_desc;
 618	struct hv_pcibus_device *hbus;
 619	const struct cpumask *dest;
 620	cpumask_var_t tmp;
 621	struct pci_bus *pbus;
 622	struct pci_dev *pdev;
 623	unsigned long flags;
 624	u32 var_size = 0;
 625	int cpu, nr_bank;
 626	u64 res;
 627
 628	dest = irq_data_get_effective_affinity_mask(data);
 629	pdev = msi_desc_to_pci_dev(msi_desc);
 630	pbus = pdev->bus;
 631	hbus = container_of(pbus->sysdata, struct hv_pcibus_device, sysdata);
 632	int_desc = data->chip_data;
 633	if (!int_desc) {
 634		dev_warn(&hbus->hdev->device, "%s() can not unmask irq %u\n",
 635			 __func__, data->irq);
 636		return;
 637	}
 638
 639	local_irq_save(flags);
 640
 641	params = *this_cpu_ptr(hyperv_pcpu_input_arg);
 642	memset(params, 0, sizeof(*params));
 643	params->partition_id = HV_PARTITION_ID_SELF;
 644	params->int_entry.source = HV_INTERRUPT_SOURCE_MSI;
 645	params->int_entry.msi_entry.address.as_uint32 = int_desc->address & 0xffffffff;
 646	params->int_entry.msi_entry.data.as_uint32 = int_desc->data;
 647	params->device_id = (hbus->hdev->dev_instance.b[5] << 24) |
 648			   (hbus->hdev->dev_instance.b[4] << 16) |
 649			   (hbus->hdev->dev_instance.b[7] << 8) |
 650			   (hbus->hdev->dev_instance.b[6] & 0xf8) |
 651			   PCI_FUNC(pdev->devfn);
 652	params->int_target.vector = hv_msi_get_int_vector(data);
 653
 654	if (hbus->protocol_version >= PCI_PROTOCOL_VERSION_1_2) {
 655		/*
 656		 * PCI_PROTOCOL_VERSION_1_2 supports the VP_SET version of the
 657		 * HVCALL_RETARGET_INTERRUPT hypercall, which also coincides
 658		 * with >64 VP support.
 659		 * ms_hyperv.hints & HV_X64_EX_PROCESSOR_MASKS_RECOMMENDED
 660		 * is not sufficient for this hypercall.
 661		 */
 662		params->int_target.flags |=
 663			HV_DEVICE_INTERRUPT_TARGET_PROCESSOR_SET;
 664
 665		if (!alloc_cpumask_var(&tmp, GFP_ATOMIC)) {
 666			res = 1;
 667			goto out;
 668		}
 669
 670		cpumask_and(tmp, dest, cpu_online_mask);
 671		nr_bank = cpumask_to_vpset(&params->int_target.vp_set, tmp);
 672		free_cpumask_var(tmp);
 673
 674		if (nr_bank <= 0) {
 675			res = 1;
 676			goto out;
 677		}
 678
 679		/*
 680		 * var-sized hypercall, var-size starts after vp_mask (thus
 681		 * vp_set.format does not count, but vp_set.valid_bank_mask
 682		 * does).
 683		 */
 684		var_size = 1 + nr_bank;
 685	} else {
 686		for_each_cpu_and(cpu, dest, cpu_online_mask) {
 687			params->int_target.vp_mask |=
 688				(1ULL << hv_cpu_number_to_vp_number(cpu));
 689		}
 690	}
 691
 692	res = hv_do_hypercall(HVCALL_RETARGET_INTERRUPT | (var_size << 17),
 693			      params, NULL);
 694
 695out:
 696	local_irq_restore(flags);
 697
 698	/*
 699	 * During hibernation, when a CPU is offlined, the kernel tries
 700	 * to move the interrupt to the remaining CPUs that haven't
 701	 * been offlined yet. In this case, the below hv_do_hypercall()
 702	 * always fails since the vmbus channel has been closed:
 703	 * refer to cpu_disable_common() -> fixup_irqs() ->
 704	 * irq_migrate_all_off_this_cpu() -> migrate_one_irq().
 705	 *
 706	 * Suppress the error message for hibernation because the failure
 707	 * during hibernation does not matter (at this time all the devices
 708	 * have been frozen). Note: the correct affinity info is still updated
 709	 * into the irqdata data structure in migrate_one_irq() ->
 710	 * irq_do_set_affinity(), so later when the VM resumes,
 711	 * hv_pci_restore_msi_state() is able to correctly restore the
 712	 * interrupt with the correct affinity.
 713	 */
 714	if (!hv_result_success(res) && hbus->state != hv_pcibus_removing)
 715		dev_err(&hbus->hdev->device,
 716			"%s() failed: %#llx", __func__, res);
 717}
 718#elif defined(CONFIG_ARM64)
 719/*
 720 * SPI vectors to use for vPCI; arch SPIs range is [32, 1019], but leaving a bit
 721 * of room at the start to allow for SPIs to be specified through ACPI and
 722 * starting with a power of two to satisfy power of 2 multi-MSI requirement.
 723 */
 724#define HV_PCI_MSI_SPI_START	64
 725#define HV_PCI_MSI_SPI_NR	(1020 - HV_PCI_MSI_SPI_START)
 726#define DELIVERY_MODE		0
 727#define FLOW_HANDLER		NULL
 728#define FLOW_NAME		NULL
 729#define hv_msi_prepare		NULL
 730
 731struct hv_pci_chip_data {
 732	DECLARE_BITMAP(spi_map, HV_PCI_MSI_SPI_NR);
 733	struct mutex	map_lock;
 734};
 735
 736/* Hyper-V vPCI MSI GIC IRQ domain */
 737static struct irq_domain *hv_msi_gic_irq_domain;
 738
 739/* Hyper-V PCI MSI IRQ chip */
 740static struct irq_chip hv_arm64_msi_irq_chip = {
 741	.name = "MSI",
 742	.irq_set_affinity = irq_chip_set_affinity_parent,
 743	.irq_eoi = irq_chip_eoi_parent,
 744	.irq_mask = irq_chip_mask_parent,
 745	.irq_unmask = irq_chip_unmask_parent
 746};
 747
 748static unsigned int hv_msi_get_int_vector(struct irq_data *irqd)
 749{
 750	return irqd->parent_data->hwirq;
 751}
 752
 753/*
 754 * @nr_bm_irqs:		Indicates the number of IRQs that were allocated from
 755 *			the bitmap.
 756 * @nr_dom_irqs:	Indicates the number of IRQs that were allocated from
 757 *			the parent domain.
 758 */
 759static void hv_pci_vec_irq_free(struct irq_domain *domain,
 760				unsigned int virq,
 761				unsigned int nr_bm_irqs,
 762				unsigned int nr_dom_irqs)
 763{
 764	struct hv_pci_chip_data *chip_data = domain->host_data;
 765	struct irq_data *d = irq_domain_get_irq_data(domain, virq);
 766	int first = d->hwirq - HV_PCI_MSI_SPI_START;
 767	int i;
 768
 769	mutex_lock(&chip_data->map_lock);
 770	bitmap_release_region(chip_data->spi_map,
 771			      first,
 772			      get_count_order(nr_bm_irqs));
 773	mutex_unlock(&chip_data->map_lock);
 774	for (i = 0; i < nr_dom_irqs; i++) {
 775		if (i)
 776			d = irq_domain_get_irq_data(domain, virq + i);
 777		irq_domain_reset_irq_data(d);
 778	}
 779
 780	irq_domain_free_irqs_parent(domain, virq, nr_dom_irqs);
 781}
 782
 783static void hv_pci_vec_irq_domain_free(struct irq_domain *domain,
 784				       unsigned int virq,
 785				       unsigned int nr_irqs)
 786{
 787	hv_pci_vec_irq_free(domain, virq, nr_irqs, nr_irqs);
 788}
 789
 790static int hv_pci_vec_alloc_device_irq(struct irq_domain *domain,
 791				       unsigned int nr_irqs,
 792				       irq_hw_number_t *hwirq)
 793{
 794	struct hv_pci_chip_data *chip_data = domain->host_data;
 795	int index;
 796
 797	/* Find and allocate region from the SPI bitmap */
 798	mutex_lock(&chip_data->map_lock);
 799	index = bitmap_find_free_region(chip_data->spi_map,
 800					HV_PCI_MSI_SPI_NR,
 801					get_count_order(nr_irqs));
 802	mutex_unlock(&chip_data->map_lock);
 803	if (index < 0)
 804		return -ENOSPC;
 805
 806	*hwirq = index + HV_PCI_MSI_SPI_START;
 807
 808	return 0;
 809}
 810
 811static int hv_pci_vec_irq_gic_domain_alloc(struct irq_domain *domain,
 812					   unsigned int virq,
 813					   irq_hw_number_t hwirq)
 814{
 815	struct irq_fwspec fwspec;
 816	struct irq_data *d;
 817	int ret;
 818
 819	fwspec.fwnode = domain->parent->fwnode;
 820	fwspec.param_count = 2;
 821	fwspec.param[0] = hwirq;
 822	fwspec.param[1] = IRQ_TYPE_EDGE_RISING;
 823
 824	ret = irq_domain_alloc_irqs_parent(domain, virq, 1, &fwspec);
 825	if (ret)
 826		return ret;
 827
 828	/*
 829	 * Since the interrupt specifier is not coming from ACPI or DT, the
 830	 * trigger type will need to be set explicitly. Otherwise, it will be
 831	 * set to whatever is in the GIC configuration.
 832	 */
 833	d = irq_domain_get_irq_data(domain->parent, virq);
 834
 835	return d->chip->irq_set_type(d, IRQ_TYPE_EDGE_RISING);
 836}
 837
 838static int hv_pci_vec_irq_domain_alloc(struct irq_domain *domain,
 839				       unsigned int virq, unsigned int nr_irqs,
 840				       void *args)
 841{
 842	irq_hw_number_t hwirq;
 843	unsigned int i;
 844	int ret;
 845
 846	ret = hv_pci_vec_alloc_device_irq(domain, nr_irqs, &hwirq);
 847	if (ret)
 848		return ret;
 849
 850	for (i = 0; i < nr_irqs; i++) {
 851		ret = hv_pci_vec_irq_gic_domain_alloc(domain, virq + i,
 852						      hwirq + i);
 853		if (ret) {
 854			hv_pci_vec_irq_free(domain, virq, nr_irqs, i);
 855			return ret;
 856		}
 857
 858		irq_domain_set_hwirq_and_chip(domain, virq + i,
 859					      hwirq + i,
 860					      &hv_arm64_msi_irq_chip,
 861					      domain->host_data);
 862		pr_debug("pID:%d vID:%u\n", (int)(hwirq + i), virq + i);
 863	}
 864
 865	return 0;
 866}
 867
 868/*
 869 * Pick the first cpu as the irq affinity that can be temporarily used for
 870 * composing MSI from the hypervisor. GIC will eventually set the right
 871 * affinity for the irq and the 'unmask' will retarget the interrupt to that
 872 * cpu.
 873 */
 874static int hv_pci_vec_irq_domain_activate(struct irq_domain *domain,
 875					  struct irq_data *irqd, bool reserve)
 876{
 877	int cpu = cpumask_first(cpu_present_mask);
 878
 879	irq_data_update_effective_affinity(irqd, cpumask_of(cpu));
 880
 881	return 0;
 882}
 883
 884static const struct irq_domain_ops hv_pci_domain_ops = {
 885	.alloc	= hv_pci_vec_irq_domain_alloc,
 886	.free	= hv_pci_vec_irq_domain_free,
 887	.activate = hv_pci_vec_irq_domain_activate,
 888};
 889
 890static int hv_pci_irqchip_init(void)
 891{
 892	static struct hv_pci_chip_data *chip_data;
 893	struct fwnode_handle *fn = NULL;
 894	int ret = -ENOMEM;
 895
 896	chip_data = kzalloc(sizeof(*chip_data), GFP_KERNEL);
 897	if (!chip_data)
 898		return ret;
 899
 900	mutex_init(&chip_data->map_lock);
 901	fn = irq_domain_alloc_named_fwnode("hv_vpci_arm64");
 902	if (!fn)
 903		goto free_chip;
 904
 905	/*
 906	 * IRQ domain once enabled, should not be removed since there is no
 907	 * way to ensure that all the corresponding devices are also gone and
 908	 * no interrupts will be generated.
 909	 */
 910	hv_msi_gic_irq_domain = acpi_irq_create_hierarchy(0, HV_PCI_MSI_SPI_NR,
 911							  fn, &hv_pci_domain_ops,
 912							  chip_data);
 913
 914	if (!hv_msi_gic_irq_domain) {
 915		pr_err("Failed to create Hyper-V arm64 vPCI MSI IRQ domain\n");
 916		goto free_chip;
 917	}
 918
 919	return 0;
 920
 921free_chip:
 922	kfree(chip_data);
 923	if (fn)
 924		irq_domain_free_fwnode(fn);
 925
 926	return ret;
 927}
 928
 929static struct irq_domain *hv_pci_get_root_domain(void)
 930{
 931	return hv_msi_gic_irq_domain;
 932}
 933
 934/*
 935 * SPIs are used for interrupts of PCI devices and SPIs is managed via GICD
 936 * registers which Hyper-V already supports, so no hypercall needed.
 937 */
 938static void hv_arch_irq_unmask(struct irq_data *data) { }
 939#endif /* CONFIG_ARM64 */
 940
 941/**
 942 * hv_pci_generic_compl() - Invoked for a completion packet
 943 * @context:		Set up by the sender of the packet.
 944 * @resp:		The response packet
 945 * @resp_packet_size:	Size in bytes of the packet
 946 *
 947 * This function is used to trigger an event and report status
 948 * for any message for which the completion packet contains a
 949 * status and nothing else.
 950 */
 951static void hv_pci_generic_compl(void *context, struct pci_response *resp,
 952				 int resp_packet_size)
 953{
 954	struct hv_pci_compl *comp_pkt = context;
 955
 956	comp_pkt->completion_status = resp->status;
 
 
 
 
 957	complete(&comp_pkt->host_event);
 958}
 959
 960static struct hv_pci_dev *get_pcichild_wslot(struct hv_pcibus_device *hbus,
 961						u32 wslot);
 962
 963static void get_pcichild(struct hv_pci_dev *hpdev)
 964{
 965	refcount_inc(&hpdev->refs);
 966}
 967
 968static void put_pcichild(struct hv_pci_dev *hpdev)
 969{
 970	if (refcount_dec_and_test(&hpdev->refs))
 971		kfree(hpdev);
 972}
 973
 
 
 
 974/*
 975 * There is no good way to get notified from vmbus_onoffer_rescind(),
 976 * so let's use polling here, since this is not a hot path.
 977 */
 978static int wait_for_response(struct hv_device *hdev,
 979			     struct completion *comp)
 980{
 981	while (true) {
 982		if (hdev->channel->rescind) {
 983			dev_warn_once(&hdev->device, "The device is gone.\n");
 984			return -ENODEV;
 985		}
 986
 987		if (wait_for_completion_timeout(comp, HZ / 10))
 988			break;
 989	}
 990
 991	return 0;
 992}
 993
 994/**
 995 * devfn_to_wslot() - Convert from Linux PCI slot to Windows
 996 * @devfn:	The Linux representation of PCI slot
 997 *
 998 * Windows uses a slightly different representation of PCI slot.
 999 *
1000 * Return: The Windows representation
1001 */
1002static u32 devfn_to_wslot(int devfn)
1003{
1004	union win_slot_encoding wslot;
1005
1006	wslot.slot = 0;
1007	wslot.bits.dev = PCI_SLOT(devfn);
1008	wslot.bits.func = PCI_FUNC(devfn);
1009
1010	return wslot.slot;
1011}
1012
1013/**
1014 * wslot_to_devfn() - Convert from Windows PCI slot to Linux
1015 * @wslot:	The Windows representation of PCI slot
1016 *
1017 * Windows uses a slightly different representation of PCI slot.
1018 *
1019 * Return: The Linux representation
1020 */
1021static int wslot_to_devfn(u32 wslot)
1022{
1023	union win_slot_encoding slot_no;
1024
1025	slot_no.slot = wslot;
1026	return PCI_DEVFN(slot_no.bits.dev, slot_no.bits.func);
1027}
1028
1029static void hv_pci_read_mmio(struct device *dev, phys_addr_t gpa, int size, u32 *val)
1030{
1031	struct hv_mmio_read_input *in;
1032	struct hv_mmio_read_output *out;
1033	u64 ret;
1034
1035	/*
1036	 * Must be called with interrupts disabled so it is safe
1037	 * to use the per-cpu input argument page.  Use it for
1038	 * both input and output.
1039	 */
1040	in = *this_cpu_ptr(hyperv_pcpu_input_arg);
1041	out = *this_cpu_ptr(hyperv_pcpu_input_arg) + sizeof(*in);
1042	in->gpa = gpa;
1043	in->size = size;
1044
1045	ret = hv_do_hypercall(HVCALL_MMIO_READ, in, out);
1046	if (hv_result_success(ret)) {
1047		switch (size) {
1048		case 1:
1049			*val = *(u8 *)(out->data);
1050			break;
1051		case 2:
1052			*val = *(u16 *)(out->data);
1053			break;
1054		default:
1055			*val = *(u32 *)(out->data);
1056			break;
1057		}
1058	} else
1059		dev_err(dev, "MMIO read hypercall error %llx addr %llx size %d\n",
1060				ret, gpa, size);
1061}
1062
1063static void hv_pci_write_mmio(struct device *dev, phys_addr_t gpa, int size, u32 val)
1064{
1065	struct hv_mmio_write_input *in;
1066	u64 ret;
1067
1068	/*
1069	 * Must be called with interrupts disabled so it is safe
1070	 * to use the per-cpu input argument memory.
1071	 */
1072	in = *this_cpu_ptr(hyperv_pcpu_input_arg);
1073	in->gpa = gpa;
1074	in->size = size;
1075	switch (size) {
1076	case 1:
1077		*(u8 *)(in->data) = val;
1078		break;
1079	case 2:
1080		*(u16 *)(in->data) = val;
1081		break;
1082	default:
1083		*(u32 *)(in->data) = val;
1084		break;
1085	}
1086
1087	ret = hv_do_hypercall(HVCALL_MMIO_WRITE, in, NULL);
1088	if (!hv_result_success(ret))
1089		dev_err(dev, "MMIO write hypercall error %llx addr %llx size %d\n",
1090				ret, gpa, size);
1091}
1092
1093/*
1094 * PCI Configuration Space for these root PCI buses is implemented as a pair
1095 * of pages in memory-mapped I/O space.  Writing to the first page chooses
1096 * the PCI function being written or read.  Once the first page has been
1097 * written to, the following page maps in the entire configuration space of
1098 * the function.
1099 */
1100
1101/**
1102 * _hv_pcifront_read_config() - Internal PCI config read
1103 * @hpdev:	The PCI driver's representation of the device
1104 * @where:	Offset within config space
1105 * @size:	Size of the transfer
1106 * @val:	Pointer to the buffer receiving the data
1107 */
1108static void _hv_pcifront_read_config(struct hv_pci_dev *hpdev, int where,
1109				     int size, u32 *val)
1110{
1111	struct hv_pcibus_device *hbus = hpdev->hbus;
1112	struct device *dev = &hbus->hdev->device;
1113	int offset = where + CFG_PAGE_OFFSET;
1114	unsigned long flags;
 
1115
1116	/*
1117	 * If the attempt is to read the IDs or the ROM BAR, simulate that.
1118	 */
1119	if (where + size <= PCI_COMMAND) {
1120		memcpy(val, ((u8 *)&hpdev->desc.v_id) + where, size);
1121	} else if (where >= PCI_CLASS_REVISION && where + size <=
1122		   PCI_CACHE_LINE_SIZE) {
1123		memcpy(val, ((u8 *)&hpdev->desc.rev) + where -
1124		       PCI_CLASS_REVISION, size);
1125	} else if (where >= PCI_SUBSYSTEM_VENDOR_ID && where + size <=
1126		   PCI_ROM_ADDRESS) {
1127		memcpy(val, (u8 *)&hpdev->desc.subsystem_id + where -
1128		       PCI_SUBSYSTEM_VENDOR_ID, size);
1129	} else if (where >= PCI_ROM_ADDRESS && where + size <=
1130		   PCI_CAPABILITY_LIST) {
1131		/* ROM BARs are unimplemented */
1132		*val = 0;
1133	} else if ((where >= PCI_INTERRUPT_LINE && where + size <= PCI_INTERRUPT_PIN) ||
1134		   (where >= PCI_INTERRUPT_PIN && where + size <= PCI_MIN_GNT)) {
1135		/*
1136		 * Interrupt Line and Interrupt PIN are hard-wired to zero
1137		 * because this front-end only supports message-signaled
1138		 * interrupts.
1139		 */
1140		*val = 0;
1141	} else if (where + size <= CFG_PAGE_SIZE) {
1142
1143		spin_lock_irqsave(&hbus->config_lock, flags);
1144		if (hbus->use_calls) {
1145			phys_addr_t addr = hbus->mem_config->start + offset;
1146
1147			hv_pci_write_mmio(dev, hbus->mem_config->start, 4,
1148						hpdev->desc.win_slot.slot);
1149			hv_pci_read_mmio(dev, addr, size, val);
1150		} else {
1151			void __iomem *addr = hbus->cfg_addr + offset;
1152
1153			/* Choose the function to be read. (See comment above) */
1154			writel(hpdev->desc.win_slot.slot, hbus->cfg_addr);
1155			/* Make sure the function was chosen before reading. */
1156			mb();
1157			/* Read from that function's config space. */
1158			switch (size) {
1159			case 1:
1160				*val = readb(addr);
1161				break;
1162			case 2:
1163				*val = readw(addr);
1164				break;
1165			default:
1166				*val = readl(addr);
1167				break;
1168			}
1169			/*
1170			 * Make sure the read was done before we release the
1171			 * spinlock allowing consecutive reads/writes.
1172			 */
1173			mb();
1174		}
1175		spin_unlock_irqrestore(&hbus->config_lock, flags);
 
 
 
 
 
1176	} else {
1177		dev_err(dev, "Attempt to read beyond a function's config space.\n");
 
1178	}
1179}
1180
1181static u16 hv_pcifront_get_vendor_id(struct hv_pci_dev *hpdev)
1182{
1183	struct hv_pcibus_device *hbus = hpdev->hbus;
1184	struct device *dev = &hbus->hdev->device;
1185	u32 val;
1186	u16 ret;
1187	unsigned long flags;
 
 
1188
1189	spin_lock_irqsave(&hbus->config_lock, flags);
1190
1191	if (hbus->use_calls) {
1192		phys_addr_t addr = hbus->mem_config->start +
1193					 CFG_PAGE_OFFSET + PCI_VENDOR_ID;
1194
1195		hv_pci_write_mmio(dev, hbus->mem_config->start, 4,
1196					hpdev->desc.win_slot.slot);
1197		hv_pci_read_mmio(dev, addr, 2, &val);
1198		ret = val;  /* Truncates to 16 bits */
1199	} else {
1200		void __iomem *addr = hbus->cfg_addr + CFG_PAGE_OFFSET +
1201					     PCI_VENDOR_ID;
1202		/* Choose the function to be read. (See comment above) */
1203		writel(hpdev->desc.win_slot.slot, hbus->cfg_addr);
1204		/* Make sure the function was chosen before we start reading. */
1205		mb();
1206		/* Read from that function's config space. */
1207		ret = readw(addr);
1208		/*
1209		 * mb() is not required here, because the
1210		 * spin_unlock_irqrestore() is a barrier.
1211		 */
1212	}
1213
1214	spin_unlock_irqrestore(&hbus->config_lock, flags);
1215
1216	return ret;
1217}
1218
1219/**
1220 * _hv_pcifront_write_config() - Internal PCI config write
1221 * @hpdev:	The PCI driver's representation of the device
1222 * @where:	Offset within config space
1223 * @size:	Size of the transfer
1224 * @val:	The data being transferred
1225 */
1226static void _hv_pcifront_write_config(struct hv_pci_dev *hpdev, int where,
1227				      int size, u32 val)
1228{
1229	struct hv_pcibus_device *hbus = hpdev->hbus;
1230	struct device *dev = &hbus->hdev->device;
1231	int offset = where + CFG_PAGE_OFFSET;
1232	unsigned long flags;
 
1233
1234	if (where >= PCI_SUBSYSTEM_VENDOR_ID &&
1235	    where + size <= PCI_CAPABILITY_LIST) {
1236		/* SSIDs and ROM BARs are read-only */
1237	} else if (where >= PCI_COMMAND && where + size <= CFG_PAGE_SIZE) {
1238		spin_lock_irqsave(&hbus->config_lock, flags);
1239
1240		if (hbus->use_calls) {
1241			phys_addr_t addr = hbus->mem_config->start + offset;
1242
1243			hv_pci_write_mmio(dev, hbus->mem_config->start, 4,
1244						hpdev->desc.win_slot.slot);
1245			hv_pci_write_mmio(dev, addr, size, val);
1246		} else {
1247			void __iomem *addr = hbus->cfg_addr + offset;
1248
1249			/* Choose the function to write. (See comment above) */
1250			writel(hpdev->desc.win_slot.slot, hbus->cfg_addr);
1251			/* Make sure the function was chosen before writing. */
1252			wmb();
1253			/* Write to that function's config space. */
1254			switch (size) {
1255			case 1:
1256				writeb(val, addr);
1257				break;
1258			case 2:
1259				writew(val, addr);
1260				break;
1261			default:
1262				writel(val, addr);
1263				break;
1264			}
1265			/*
1266			 * Make sure the write was done before we release the
1267			 * spinlock allowing consecutive reads/writes.
1268			 */
1269			mb();
1270		}
1271		spin_unlock_irqrestore(&hbus->config_lock, flags);
 
 
 
 
 
1272	} else {
1273		dev_err(dev, "Attempt to write beyond a function's config space.\n");
 
1274	}
1275}
1276
1277/**
1278 * hv_pcifront_read_config() - Read configuration space
1279 * @bus: PCI Bus structure
1280 * @devfn: Device/function
1281 * @where: Offset from base
1282 * @size: Byte/word/dword
1283 * @val: Value to be read
1284 *
1285 * Return: PCIBIOS_SUCCESSFUL on success
1286 *	   PCIBIOS_DEVICE_NOT_FOUND on failure
1287 */
1288static int hv_pcifront_read_config(struct pci_bus *bus, unsigned int devfn,
1289				   int where, int size, u32 *val)
1290{
1291	struct hv_pcibus_device *hbus =
1292		container_of(bus->sysdata, struct hv_pcibus_device, sysdata);
1293	struct hv_pci_dev *hpdev;
1294
1295	hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(devfn));
1296	if (!hpdev)
1297		return PCIBIOS_DEVICE_NOT_FOUND;
1298
1299	_hv_pcifront_read_config(hpdev, where, size, val);
1300
1301	put_pcichild(hpdev);
1302	return PCIBIOS_SUCCESSFUL;
1303}
1304
1305/**
1306 * hv_pcifront_write_config() - Write configuration space
1307 * @bus: PCI Bus structure
1308 * @devfn: Device/function
1309 * @where: Offset from base
1310 * @size: Byte/word/dword
1311 * @val: Value to be written to device
1312 *
1313 * Return: PCIBIOS_SUCCESSFUL on success
1314 *	   PCIBIOS_DEVICE_NOT_FOUND on failure
1315 */
1316static int hv_pcifront_write_config(struct pci_bus *bus, unsigned int devfn,
1317				    int where, int size, u32 val)
1318{
1319	struct hv_pcibus_device *hbus =
1320	    container_of(bus->sysdata, struct hv_pcibus_device, sysdata);
1321	struct hv_pci_dev *hpdev;
1322
1323	hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(devfn));
1324	if (!hpdev)
1325		return PCIBIOS_DEVICE_NOT_FOUND;
1326
1327	_hv_pcifront_write_config(hpdev, where, size, val);
1328
1329	put_pcichild(hpdev);
1330	return PCIBIOS_SUCCESSFUL;
1331}
1332
1333/* PCIe operations */
1334static struct pci_ops hv_pcifront_ops = {
1335	.read  = hv_pcifront_read_config,
1336	.write = hv_pcifront_write_config,
1337};
1338
1339/*
1340 * Paravirtual backchannel
1341 *
1342 * Hyper-V SR-IOV provides a backchannel mechanism in software for
1343 * communication between a VF driver and a PF driver.  These
1344 * "configuration blocks" are similar in concept to PCI configuration space,
1345 * but instead of doing reads and writes in 32-bit chunks through a very slow
1346 * path, packets of up to 128 bytes can be sent or received asynchronously.
1347 *
1348 * Nearly every SR-IOV device contains just such a communications channel in
1349 * hardware, so using this one in software is usually optional.  Using the
1350 * software channel, however, allows driver implementers to leverage software
1351 * tools that fuzz the communications channel looking for vulnerabilities.
1352 *
1353 * The usage model for these packets puts the responsibility for reading or
1354 * writing on the VF driver.  The VF driver sends a read or a write packet,
1355 * indicating which "block" is being referred to by number.
1356 *
1357 * If the PF driver wishes to initiate communication, it can "invalidate" one or
1358 * more of the first 64 blocks.  This invalidation is delivered via a callback
1359 * supplied by the VF driver by this driver.
1360 *
1361 * No protocol is implied, except that supplied by the PF and VF drivers.
1362 */
1363
1364struct hv_read_config_compl {
1365	struct hv_pci_compl comp_pkt;
1366	void *buf;
1367	unsigned int len;
1368	unsigned int bytes_returned;
1369};
1370
1371/**
1372 * hv_pci_read_config_compl() - Invoked when a response packet
1373 * for a read config block operation arrives.
1374 * @context:		Identifies the read config operation
1375 * @resp:		The response packet itself
1376 * @resp_packet_size:	Size in bytes of the response packet
1377 */
1378static void hv_pci_read_config_compl(void *context, struct pci_response *resp,
1379				     int resp_packet_size)
1380{
1381	struct hv_read_config_compl *comp = context;
1382	struct pci_read_block_response *read_resp =
1383		(struct pci_read_block_response *)resp;
1384	unsigned int data_len, hdr_len;
1385
1386	hdr_len = offsetof(struct pci_read_block_response, bytes);
1387	if (resp_packet_size < hdr_len) {
1388		comp->comp_pkt.completion_status = -1;
1389		goto out;
1390	}
1391
1392	data_len = resp_packet_size - hdr_len;
1393	if (data_len > 0 && read_resp->status == 0) {
1394		comp->bytes_returned = min(comp->len, data_len);
1395		memcpy(comp->buf, read_resp->bytes, comp->bytes_returned);
1396	} else {
1397		comp->bytes_returned = 0;
1398	}
1399
1400	comp->comp_pkt.completion_status = read_resp->status;
1401out:
1402	complete(&comp->comp_pkt.host_event);
1403}
1404
1405/**
1406 * hv_read_config_block() - Sends a read config block request to
1407 * the back-end driver running in the Hyper-V parent partition.
1408 * @pdev:		The PCI driver's representation for this device.
1409 * @buf:		Buffer into which the config block will be copied.
1410 * @len:		Size in bytes of buf.
1411 * @block_id:		Identifies the config block which has been requested.
1412 * @bytes_returned:	Size which came back from the back-end driver.
1413 *
1414 * Return: 0 on success, -errno on failure
1415 */
1416static int hv_read_config_block(struct pci_dev *pdev, void *buf,
1417				unsigned int len, unsigned int block_id,
1418				unsigned int *bytes_returned)
1419{
1420	struct hv_pcibus_device *hbus =
1421		container_of(pdev->bus->sysdata, struct hv_pcibus_device,
1422			     sysdata);
1423	struct {
1424		struct pci_packet pkt;
1425		char buf[sizeof(struct pci_read_block)];
1426	} pkt;
1427	struct hv_read_config_compl comp_pkt;
1428	struct pci_read_block *read_blk;
1429	int ret;
1430
1431	if (len == 0 || len > HV_CONFIG_BLOCK_SIZE_MAX)
1432		return -EINVAL;
1433
1434	init_completion(&comp_pkt.comp_pkt.host_event);
1435	comp_pkt.buf = buf;
1436	comp_pkt.len = len;
1437
1438	memset(&pkt, 0, sizeof(pkt));
1439	pkt.pkt.completion_func = hv_pci_read_config_compl;
1440	pkt.pkt.compl_ctxt = &comp_pkt;
1441	read_blk = (struct pci_read_block *)&pkt.pkt.message;
1442	read_blk->message_type.type = PCI_READ_BLOCK;
1443	read_blk->wslot.slot = devfn_to_wslot(pdev->devfn);
1444	read_blk->block_id = block_id;
1445	read_blk->bytes_requested = len;
1446
1447	ret = vmbus_sendpacket(hbus->hdev->channel, read_blk,
1448			       sizeof(*read_blk), (unsigned long)&pkt.pkt,
1449			       VM_PKT_DATA_INBAND,
1450			       VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
1451	if (ret)
1452		return ret;
1453
1454	ret = wait_for_response(hbus->hdev, &comp_pkt.comp_pkt.host_event);
1455	if (ret)
1456		return ret;
1457
1458	if (comp_pkt.comp_pkt.completion_status != 0 ||
1459	    comp_pkt.bytes_returned == 0) {
1460		dev_err(&hbus->hdev->device,
1461			"Read Config Block failed: 0x%x, bytes_returned=%d\n",
1462			comp_pkt.comp_pkt.completion_status,
1463			comp_pkt.bytes_returned);
1464		return -EIO;
1465	}
1466
1467	*bytes_returned = comp_pkt.bytes_returned;
1468	return 0;
1469}
1470
1471/**
1472 * hv_pci_write_config_compl() - Invoked when a response packet for a write
1473 * config block operation arrives.
1474 * @context:		Identifies the write config operation
1475 * @resp:		The response packet itself
1476 * @resp_packet_size:	Size in bytes of the response packet
1477 */
1478static void hv_pci_write_config_compl(void *context, struct pci_response *resp,
1479				      int resp_packet_size)
1480{
1481	struct hv_pci_compl *comp_pkt = context;
1482
1483	comp_pkt->completion_status = resp->status;
1484	complete(&comp_pkt->host_event);
1485}
1486
1487/**
1488 * hv_write_config_block() - Sends a write config block request to the
1489 * back-end driver running in the Hyper-V parent partition.
1490 * @pdev:		The PCI driver's representation for this device.
1491 * @buf:		Buffer from which the config block will	be copied.
1492 * @len:		Size in bytes of buf.
1493 * @block_id:		Identifies the config block which is being written.
1494 *
1495 * Return: 0 on success, -errno on failure
1496 */
1497static int hv_write_config_block(struct pci_dev *pdev, void *buf,
1498				unsigned int len, unsigned int block_id)
1499{
1500	struct hv_pcibus_device *hbus =
1501		container_of(pdev->bus->sysdata, struct hv_pcibus_device,
1502			     sysdata);
1503	struct {
1504		struct pci_packet pkt;
1505		char buf[sizeof(struct pci_write_block)];
1506		u32 reserved;
1507	} pkt;
1508	struct hv_pci_compl comp_pkt;
1509	struct pci_write_block *write_blk;
1510	u32 pkt_size;
1511	int ret;
1512
1513	if (len == 0 || len > HV_CONFIG_BLOCK_SIZE_MAX)
1514		return -EINVAL;
1515
1516	init_completion(&comp_pkt.host_event);
1517
1518	memset(&pkt, 0, sizeof(pkt));
1519	pkt.pkt.completion_func = hv_pci_write_config_compl;
1520	pkt.pkt.compl_ctxt = &comp_pkt;
1521	write_blk = (struct pci_write_block *)&pkt.pkt.message;
1522	write_blk->message_type.type = PCI_WRITE_BLOCK;
1523	write_blk->wslot.slot = devfn_to_wslot(pdev->devfn);
1524	write_blk->block_id = block_id;
1525	write_blk->byte_count = len;
1526	memcpy(write_blk->bytes, buf, len);
1527	pkt_size = offsetof(struct pci_write_block, bytes) + len;
1528	/*
1529	 * This quirk is required on some hosts shipped around 2018, because
1530	 * these hosts don't check the pkt_size correctly (new hosts have been
1531	 * fixed since early 2019). The quirk is also safe on very old hosts
1532	 * and new hosts, because, on them, what really matters is the length
1533	 * specified in write_blk->byte_count.
1534	 */
1535	pkt_size += sizeof(pkt.reserved);
1536
1537	ret = vmbus_sendpacket(hbus->hdev->channel, write_blk, pkt_size,
1538			       (unsigned long)&pkt.pkt, VM_PKT_DATA_INBAND,
1539			       VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
1540	if (ret)
1541		return ret;
1542
1543	ret = wait_for_response(hbus->hdev, &comp_pkt.host_event);
1544	if (ret)
1545		return ret;
1546
1547	if (comp_pkt.completion_status != 0) {
1548		dev_err(&hbus->hdev->device,
1549			"Write Config Block failed: 0x%x\n",
1550			comp_pkt.completion_status);
1551		return -EIO;
1552	}
1553
1554	return 0;
1555}
1556
1557/**
1558 * hv_register_block_invalidate() - Invoked when a config block invalidation
1559 * arrives from the back-end driver.
1560 * @pdev:		The PCI driver's representation for this device.
1561 * @context:		Identifies the device.
1562 * @block_invalidate:	Identifies all of the blocks being invalidated.
1563 *
1564 * Return: 0 on success, -errno on failure
1565 */
1566static int hv_register_block_invalidate(struct pci_dev *pdev, void *context,
1567					void (*block_invalidate)(void *context,
1568								 u64 block_mask))
1569{
1570	struct hv_pcibus_device *hbus =
1571		container_of(pdev->bus->sysdata, struct hv_pcibus_device,
1572			     sysdata);
1573	struct hv_pci_dev *hpdev;
1574
1575	hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(pdev->devfn));
1576	if (!hpdev)
1577		return -ENODEV;
1578
1579	hpdev->block_invalidate = block_invalidate;
1580	hpdev->invalidate_context = context;
1581
1582	put_pcichild(hpdev);
1583	return 0;
1584
1585}
1586
1587/* Interrupt management hooks */
1588static void hv_int_desc_free(struct hv_pci_dev *hpdev,
1589			     struct tran_int_desc *int_desc)
1590{
1591	struct pci_delete_interrupt *int_pkt;
1592	struct {
1593		struct pci_packet pkt;
1594		u8 buffer[sizeof(struct pci_delete_interrupt)];
1595	} ctxt;
1596
1597	if (!int_desc->vector_count) {
1598		kfree(int_desc);
1599		return;
1600	}
1601	memset(&ctxt, 0, sizeof(ctxt));
1602	int_pkt = (struct pci_delete_interrupt *)&ctxt.pkt.message;
1603	int_pkt->message_type.type =
1604		PCI_DELETE_INTERRUPT_MESSAGE;
1605	int_pkt->wslot.slot = hpdev->desc.win_slot.slot;
1606	int_pkt->int_desc = *int_desc;
1607	vmbus_sendpacket(hpdev->hbus->hdev->channel, int_pkt, sizeof(*int_pkt),
1608			 0, VM_PKT_DATA_INBAND, 0);
1609	kfree(int_desc);
1610}
1611
1612/**
1613 * hv_msi_free() - Free the MSI.
1614 * @domain:	The interrupt domain pointer
1615 * @info:	Extra MSI-related context
1616 * @irq:	Identifies the IRQ.
1617 *
1618 * The Hyper-V parent partition and hypervisor are tracking the
1619 * messages that are in use, keeping the interrupt redirection
1620 * table up to date.  This callback sends a message that frees
1621 * the IRT entry and related tracking nonsense.
1622 */
1623static void hv_msi_free(struct irq_domain *domain, struct msi_domain_info *info,
1624			unsigned int irq)
1625{
1626	struct hv_pcibus_device *hbus;
1627	struct hv_pci_dev *hpdev;
1628	struct pci_dev *pdev;
1629	struct tran_int_desc *int_desc;
1630	struct irq_data *irq_data = irq_domain_get_irq_data(domain, irq);
1631	struct msi_desc *msi = irq_data_get_msi_desc(irq_data);
1632
1633	pdev = msi_desc_to_pci_dev(msi);
1634	hbus = info->data;
1635	int_desc = irq_data_get_irq_chip_data(irq_data);
1636	if (!int_desc)
1637		return;
1638
1639	irq_data->chip_data = NULL;
1640	hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(pdev->devfn));
1641	if (!hpdev) {
1642		kfree(int_desc);
1643		return;
1644	}
1645
1646	hv_int_desc_free(hpdev, int_desc);
1647	put_pcichild(hpdev);
1648}
1649
 
 
 
 
 
 
 
 
1650static void hv_irq_mask(struct irq_data *data)
1651{
1652	pci_msi_mask_irq(data);
1653	if (data->parent_data->chip->irq_mask)
1654		irq_chip_mask_parent(data);
1655}
1656
 
 
 
 
 
 
 
 
 
 
1657static void hv_irq_unmask(struct irq_data *data)
1658{
1659	hv_arch_irq_unmask(data);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1660
1661	if (data->parent_data->chip->irq_unmask)
1662		irq_chip_unmask_parent(data);
1663	pci_msi_unmask_irq(data);
1664}
1665
1666struct compose_comp_ctxt {
1667	struct hv_pci_compl comp_pkt;
1668	struct tran_int_desc int_desc;
1669};
1670
1671static void hv_pci_compose_compl(void *context, struct pci_response *resp,
1672				 int resp_packet_size)
1673{
1674	struct compose_comp_ctxt *comp_pkt = context;
1675	struct pci_create_int_response *int_resp =
1676		(struct pci_create_int_response *)resp;
1677
1678	if (resp_packet_size < sizeof(*int_resp)) {
1679		comp_pkt->comp_pkt.completion_status = -1;
1680		goto out;
1681	}
1682	comp_pkt->comp_pkt.completion_status = resp->status;
1683	comp_pkt->int_desc = int_resp->int_desc;
1684out:
1685	complete(&comp_pkt->comp_pkt.host_event);
1686}
1687
1688static u32 hv_compose_msi_req_v1(
1689	struct pci_create_interrupt *int_pkt,
1690	u32 slot, u8 vector, u16 vector_count)
1691{
1692	int_pkt->message_type.type = PCI_CREATE_INTERRUPT_MESSAGE;
1693	int_pkt->wslot.slot = slot;
1694	int_pkt->int_desc.vector = vector;
1695	int_pkt->int_desc.vector_count = vector_count;
1696	int_pkt->int_desc.delivery_mode = DELIVERY_MODE;
1697
1698	/*
1699	 * Create MSI w/ dummy vCPU set, overwritten by subsequent retarget in
1700	 * hv_irq_unmask().
1701	 */
1702	int_pkt->int_desc.cpu_mask = CPU_AFFINITY_ALL;
1703
1704	return sizeof(*int_pkt);
1705}
1706
1707/*
1708 * The vCPU selected by hv_compose_multi_msi_req_get_cpu() and
1709 * hv_compose_msi_req_get_cpu() is a "dummy" vCPU because the final vCPU to be
1710 * interrupted is specified later in hv_irq_unmask() and communicated to Hyper-V
1711 * via the HVCALL_RETARGET_INTERRUPT hypercall. But the choice of dummy vCPU is
1712 * not irrelevant because Hyper-V chooses the physical CPU to handle the
1713 * interrupts based on the vCPU specified in message sent to the vPCI VSP in
1714 * hv_compose_msi_msg(). Hyper-V's choice of pCPU is not visible to the guest,
1715 * but assigning too many vPCI device interrupts to the same pCPU can cause a
1716 * performance bottleneck. So we spread out the dummy vCPUs to influence Hyper-V
1717 * to spread out the pCPUs that it selects.
1718 *
1719 * For the single-MSI and MSI-X cases, it's OK for hv_compose_msi_req_get_cpu()
1720 * to always return the same dummy vCPU, because a second call to
1721 * hv_compose_msi_msg() contains the "real" vCPU, causing Hyper-V to choose a
1722 * new pCPU for the interrupt. But for the multi-MSI case, the second call to
1723 * hv_compose_msi_msg() exits without sending a message to the vPCI VSP, so the
1724 * original dummy vCPU is used. This dummy vCPU must be round-robin'ed so that
1725 * the pCPUs are spread out. All interrupts for a multi-MSI device end up using
1726 * the same pCPU, even though the vCPUs will be spread out by later calls
1727 * to hv_irq_unmask(), but that is the best we can do now.
1728 *
1729 * With Hyper-V in Nov 2022, the HVCALL_RETARGET_INTERRUPT hypercall does *not*
1730 * cause Hyper-V to reselect the pCPU based on the specified vCPU. Such an
1731 * enhancement is planned for a future version. With that enhancement, the
1732 * dummy vCPU selection won't matter, and interrupts for the same multi-MSI
1733 * device will be spread across multiple pCPUs.
1734 */
1735
1736/*
1737 * Create MSI w/ dummy vCPU set targeting just one vCPU, overwritten
1738 * by subsequent retarget in hv_irq_unmask().
1739 */
1740static int hv_compose_msi_req_get_cpu(const struct cpumask *affinity)
1741{
1742	return cpumask_first_and(affinity, cpu_online_mask);
1743}
1744
1745/*
1746 * Make sure the dummy vCPU values for multi-MSI don't all point to vCPU0.
1747 */
1748static int hv_compose_multi_msi_req_get_cpu(void)
1749{
1750	static DEFINE_SPINLOCK(multi_msi_cpu_lock);
1751
1752	/* -1 means starting with CPU 0 */
1753	static int cpu_next = -1;
1754
1755	unsigned long flags;
1756	int cpu;
1757
1758	spin_lock_irqsave(&multi_msi_cpu_lock, flags);
1759
1760	cpu_next = cpumask_next_wrap(cpu_next, cpu_online_mask, nr_cpu_ids,
1761				     false);
1762	cpu = cpu_next;
1763
1764	spin_unlock_irqrestore(&multi_msi_cpu_lock, flags);
1765
1766	return cpu;
1767}
1768
1769static u32 hv_compose_msi_req_v2(
1770	struct pci_create_interrupt2 *int_pkt, int cpu,
1771	u32 slot, u8 vector, u16 vector_count)
1772{
1773	int_pkt->message_type.type = PCI_CREATE_INTERRUPT_MESSAGE2;
1774	int_pkt->wslot.slot = slot;
1775	int_pkt->int_desc.vector = vector;
1776	int_pkt->int_desc.vector_count = vector_count;
1777	int_pkt->int_desc.delivery_mode = DELIVERY_MODE;
1778	int_pkt->int_desc.processor_array[0] =
1779		hv_cpu_number_to_vp_number(cpu);
1780	int_pkt->int_desc.processor_count = 1;
1781
1782	return sizeof(*int_pkt);
1783}
1784
1785static u32 hv_compose_msi_req_v3(
1786	struct pci_create_interrupt3 *int_pkt, int cpu,
1787	u32 slot, u32 vector, u16 vector_count)
1788{
1789	int_pkt->message_type.type = PCI_CREATE_INTERRUPT_MESSAGE3;
1790	int_pkt->wslot.slot = slot;
1791	int_pkt->int_desc.vector = vector;
1792	int_pkt->int_desc.reserved = 0;
1793	int_pkt->int_desc.vector_count = vector_count;
1794	int_pkt->int_desc.delivery_mode = DELIVERY_MODE;
1795	int_pkt->int_desc.processor_array[0] =
1796		hv_cpu_number_to_vp_number(cpu);
1797	int_pkt->int_desc.processor_count = 1;
1798
1799	return sizeof(*int_pkt);
1800}
1801
1802/**
1803 * hv_compose_msi_msg() - Supplies a valid MSI address/data
1804 * @data:	Everything about this MSI
1805 * @msg:	Buffer that is filled in by this function
1806 *
1807 * This function unpacks the IRQ looking for target CPU set, IDT
1808 * vector and mode and sends a message to the parent partition
1809 * asking for a mapping for that tuple in this partition.  The
1810 * response supplies a data value and address to which that data
1811 * should be written to trigger that interrupt.
1812 */
1813static void hv_compose_msi_msg(struct irq_data *data, struct msi_msg *msg)
1814{
 
1815	struct hv_pcibus_device *hbus;
1816	struct vmbus_channel *channel;
1817	struct hv_pci_dev *hpdev;
1818	struct pci_bus *pbus;
1819	struct pci_dev *pdev;
1820	const struct cpumask *dest;
 
1821	struct compose_comp_ctxt comp;
1822	struct tran_int_desc *int_desc;
1823	struct msi_desc *msi_desc;
1824	/*
1825	 * vector_count should be u16: see hv_msi_desc, hv_msi_desc2
1826	 * and hv_msi_desc3. vector must be u32: see hv_msi_desc3.
1827	 */
1828	u16 vector_count;
1829	u32 vector;
1830	struct {
1831		struct pci_packet pci_pkt;
1832		union {
1833			struct pci_create_interrupt v1;
1834			struct pci_create_interrupt2 v2;
1835			struct pci_create_interrupt3 v3;
1836		} int_pkts;
1837	} __packed ctxt;
1838	bool multi_msi;
1839	u64 trans_id;
1840	u32 size;
1841	int ret;
1842	int cpu;
1843
1844	msi_desc  = irq_data_get_msi_desc(data);
1845	multi_msi = !msi_desc->pci.msi_attrib.is_msix &&
1846		    msi_desc->nvec_used > 1;
1847
1848	/* Reuse the previous allocation */
1849	if (data->chip_data && multi_msi) {
1850		int_desc = data->chip_data;
1851		msg->address_hi = int_desc->address >> 32;
1852		msg->address_lo = int_desc->address & 0xffffffff;
1853		msg->data = int_desc->data;
1854		return;
1855	}
1856
1857	pdev = msi_desc_to_pci_dev(msi_desc);
1858	dest = irq_data_get_effective_affinity_mask(data);
1859	pbus = pdev->bus;
1860	hbus = container_of(pbus->sysdata, struct hv_pcibus_device, sysdata);
1861	channel = hbus->hdev->channel;
1862	hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(pdev->devfn));
1863	if (!hpdev)
1864		goto return_null_message;
1865
1866	/* Free any previous message that might have already been composed. */
1867	if (data->chip_data && !multi_msi) {
1868		int_desc = data->chip_data;
1869		data->chip_data = NULL;
1870		hv_int_desc_free(hpdev, int_desc);
1871	}
1872
1873	int_desc = kzalloc(sizeof(*int_desc), GFP_ATOMIC);
1874	if (!int_desc)
1875		goto drop_reference;
1876
1877	if (multi_msi) {
1878		/*
1879		 * If this is not the first MSI of Multi MSI, we already have
1880		 * a mapping.  Can exit early.
1881		 */
1882		if (msi_desc->irq != data->irq) {
1883			data->chip_data = int_desc;
1884			int_desc->address = msi_desc->msg.address_lo |
1885					    (u64)msi_desc->msg.address_hi << 32;
1886			int_desc->data = msi_desc->msg.data +
1887					 (data->irq - msi_desc->irq);
1888			msg->address_hi = msi_desc->msg.address_hi;
1889			msg->address_lo = msi_desc->msg.address_lo;
1890			msg->data = int_desc->data;
1891			put_pcichild(hpdev);
1892			return;
1893		}
1894		/*
1895		 * The vector we select here is a dummy value.  The correct
1896		 * value gets sent to the hypervisor in unmask().  This needs
1897		 * to be aligned with the count, and also not zero.  Multi-msi
1898		 * is powers of 2 up to 32, so 32 will always work here.
1899		 */
1900		vector = 32;
1901		vector_count = msi_desc->nvec_used;
1902		cpu = hv_compose_multi_msi_req_get_cpu();
1903	} else {
1904		vector = hv_msi_get_int_vector(data);
1905		vector_count = 1;
1906		cpu = hv_compose_msi_req_get_cpu(dest);
1907	}
1908
1909	/*
1910	 * hv_compose_msi_req_v1 and v2 are for x86 only, meaning 'vector'
1911	 * can't exceed u8. Cast 'vector' down to u8 for v1/v2 explicitly
1912	 * for better readability.
1913	 */
1914	memset(&ctxt, 0, sizeof(ctxt));
1915	init_completion(&comp.comp_pkt.host_event);
1916	ctxt.pci_pkt.completion_func = hv_pci_compose_compl;
1917	ctxt.pci_pkt.compl_ctxt = &comp;
1918
1919	switch (hbus->protocol_version) {
1920	case PCI_PROTOCOL_VERSION_1_1:
1921		size = hv_compose_msi_req_v1(&ctxt.int_pkts.v1,
 
1922					hpdev->desc.win_slot.slot,
1923					(u8)vector,
1924					vector_count);
1925		break;
1926
1927	case PCI_PROTOCOL_VERSION_1_2:
1928	case PCI_PROTOCOL_VERSION_1_3:
1929		size = hv_compose_msi_req_v2(&ctxt.int_pkts.v2,
1930					cpu,
1931					hpdev->desc.win_slot.slot,
1932					(u8)vector,
1933					vector_count);
1934		break;
1935
1936	case PCI_PROTOCOL_VERSION_1_4:
1937		size = hv_compose_msi_req_v3(&ctxt.int_pkts.v3,
1938					cpu,
1939					hpdev->desc.win_slot.slot,
1940					vector,
1941					vector_count);
1942		break;
1943
1944	default:
1945		/* As we only negotiate protocol versions known to this driver,
1946		 * this path should never hit. However, this is it not a hot
1947		 * path so we print a message to aid future updates.
1948		 */
1949		dev_err(&hbus->hdev->device,
1950			"Unexpected vPCI protocol, update driver.");
1951		goto free_int_desc;
1952	}
1953
1954	ret = vmbus_sendpacket_getid(hpdev->hbus->hdev->channel, &ctxt.int_pkts,
1955				     size, (unsigned long)&ctxt.pci_pkt,
1956				     &trans_id, VM_PKT_DATA_INBAND,
1957				     VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
1958	if (ret) {
1959		dev_err(&hbus->hdev->device,
1960			"Sending request for interrupt failed: 0x%x",
1961			comp.comp_pkt.completion_status);
1962		goto free_int_desc;
1963	}
1964
1965	/*
1966	 * Prevents hv_pci_onchannelcallback() from running concurrently
1967	 * in the tasklet.
1968	 */
1969	tasklet_disable_in_atomic(&channel->callback_event);
1970
1971	/*
1972	 * Since this function is called with IRQ locks held, can't
1973	 * do normal wait for completion; instead poll.
1974	 */
1975	while (!try_wait_for_completion(&comp.comp_pkt.host_event)) {
1976		unsigned long flags;
1977
1978		/* 0xFFFF means an invalid PCI VENDOR ID. */
1979		if (hv_pcifront_get_vendor_id(hpdev) == 0xFFFF) {
1980			dev_err_once(&hbus->hdev->device,
1981				     "the device has gone\n");
1982			goto enable_tasklet;
1983		}
1984
1985		/*
1986		 * Make sure that the ring buffer data structure doesn't get
1987		 * freed while we dereference the ring buffer pointer.  Test
1988		 * for the channel's onchannel_callback being NULL within a
1989		 * sched_lock critical section.  See also the inline comments
1990		 * in vmbus_reset_channel_cb().
 
 
1991		 */
1992		spin_lock_irqsave(&channel->sched_lock, flags);
1993		if (unlikely(channel->onchannel_callback == NULL)) {
1994			spin_unlock_irqrestore(&channel->sched_lock, flags);
1995			goto enable_tasklet;
 
 
 
 
 
 
 
1996		}
1997		hv_pci_onchannelcallback(hbus);
1998		spin_unlock_irqrestore(&channel->sched_lock, flags);
1999
2000		udelay(100);
2001	}
2002
2003	tasklet_enable(&channel->callback_event);
2004
2005	if (comp.comp_pkt.completion_status < 0) {
2006		dev_err(&hbus->hdev->device,
2007			"Request for interrupt failed: 0x%x",
2008			comp.comp_pkt.completion_status);
2009		goto free_int_desc;
2010	}
2011
2012	/*
2013	 * Record the assignment so that this can be unwound later. Using
2014	 * irq_set_chip_data() here would be appropriate, but the lock it takes
2015	 * is already held.
2016	 */
2017	*int_desc = comp.int_desc;
2018	data->chip_data = int_desc;
2019
2020	/* Pass up the result. */
2021	msg->address_hi = comp.int_desc.address >> 32;
2022	msg->address_lo = comp.int_desc.address & 0xffffffff;
2023	msg->data = comp.int_desc.data;
2024
2025	put_pcichild(hpdev);
2026	return;
2027
2028enable_tasklet:
2029	tasklet_enable(&channel->callback_event);
2030	/*
2031	 * The completion packet on the stack becomes invalid after 'return';
2032	 * remove the ID from the VMbus requestor if the identifier is still
2033	 * mapped to/associated with the packet.  (The identifier could have
2034	 * been 're-used', i.e., already removed and (re-)mapped.)
2035	 *
2036	 * Cf. hv_pci_onchannelcallback().
2037	 */
2038	vmbus_request_addr_match(channel, trans_id, (unsigned long)&ctxt.pci_pkt);
2039free_int_desc:
2040	kfree(int_desc);
2041drop_reference:
2042	put_pcichild(hpdev);
2043return_null_message:
2044	msg->address_hi = 0;
2045	msg->address_lo = 0;
2046	msg->data = 0;
2047}
2048
2049/* HW Interrupt Chip Descriptor */
2050static struct irq_chip hv_msi_irq_chip = {
2051	.name			= "Hyper-V PCIe MSI",
2052	.irq_compose_msi_msg	= hv_compose_msi_msg,
2053	.irq_set_affinity	= irq_chip_set_affinity_parent,
2054#ifdef CONFIG_X86
2055	.irq_ack		= irq_chip_ack_parent,
2056#elif defined(CONFIG_ARM64)
2057	.irq_eoi		= irq_chip_eoi_parent,
2058#endif
2059	.irq_mask		= hv_irq_mask,
2060	.irq_unmask		= hv_irq_unmask,
2061};
2062
 
 
 
 
 
 
2063static struct msi_domain_ops hv_msi_ops = {
2064	.msi_prepare	= hv_msi_prepare,
 
 
2065	.msi_free	= hv_msi_free,
2066};
2067
2068/**
2069 * hv_pcie_init_irq_domain() - Initialize IRQ domain
2070 * @hbus:	The root PCI bus
2071 *
2072 * This function creates an IRQ domain which will be used for
2073 * interrupts from devices that have been passed through.  These
2074 * devices only support MSI and MSI-X, not line-based interrupts
2075 * or simulations of line-based interrupts through PCIe's
2076 * fabric-layer messages.  Because interrupts are remapped, we
2077 * can support multi-message MSI here.
2078 *
2079 * Return: '0' on success and error value on failure
2080 */
2081static int hv_pcie_init_irq_domain(struct hv_pcibus_device *hbus)
2082{
2083	hbus->msi_info.chip = &hv_msi_irq_chip;
2084	hbus->msi_info.ops = &hv_msi_ops;
2085	hbus->msi_info.flags = (MSI_FLAG_USE_DEF_DOM_OPS |
2086		MSI_FLAG_USE_DEF_CHIP_OPS | MSI_FLAG_MULTI_PCI_MSI |
2087		MSI_FLAG_PCI_MSIX);
2088	hbus->msi_info.handler = FLOW_HANDLER;
2089	hbus->msi_info.handler_name = FLOW_NAME;
2090	hbus->msi_info.data = hbus;
2091	hbus->irq_domain = pci_msi_create_irq_domain(hbus->fwnode,
2092						     &hbus->msi_info,
2093						     hv_pci_get_root_domain());
2094	if (!hbus->irq_domain) {
2095		dev_err(&hbus->hdev->device,
2096			"Failed to build an MSI IRQ domain\n");
2097		return -ENODEV;
2098	}
2099
2100	dev_set_msi_domain(&hbus->bridge->dev, hbus->irq_domain);
2101
2102	return 0;
2103}
2104
2105/**
2106 * get_bar_size() - Get the address space consumed by a BAR
2107 * @bar_val:	Value that a BAR returned after -1 was written
2108 *              to it.
2109 *
2110 * This function returns the size of the BAR, rounded up to 1
2111 * page.  It has to be rounded up because the hypervisor's page
2112 * table entry that maps the BAR into the VM can't specify an
2113 * offset within a page.  The invariant is that the hypervisor
2114 * must place any BARs of smaller than page length at the
2115 * beginning of a page.
2116 *
2117 * Return:	Size in bytes of the consumed MMIO space.
2118 */
2119static u64 get_bar_size(u64 bar_val)
2120{
2121	return round_up((1 + ~(bar_val & PCI_BASE_ADDRESS_MEM_MASK)),
2122			PAGE_SIZE);
2123}
2124
2125/**
2126 * survey_child_resources() - Total all MMIO requirements
2127 * @hbus:	Root PCI bus, as understood by this driver
2128 */
2129static void survey_child_resources(struct hv_pcibus_device *hbus)
2130{
2131	struct hv_pci_dev *hpdev;
2132	resource_size_t bar_size = 0;
2133	unsigned long flags;
2134	struct completion *event;
2135	u64 bar_val;
2136	int i;
2137
2138	/* If nobody is waiting on the answer, don't compute it. */
2139	event = xchg(&hbus->survey_event, NULL);
2140	if (!event)
2141		return;
2142
2143	/* If the answer has already been computed, go with it. */
2144	if (hbus->low_mmio_space || hbus->high_mmio_space) {
2145		complete(event);
2146		return;
2147	}
2148
2149	spin_lock_irqsave(&hbus->device_list_lock, flags);
2150
2151	/*
2152	 * Due to an interesting quirk of the PCI spec, all memory regions
2153	 * for a child device are a power of 2 in size and aligned in memory,
2154	 * so it's sufficient to just add them up without tracking alignment.
2155	 */
2156	list_for_each_entry(hpdev, &hbus->children, list_entry) {
2157		for (i = 0; i < PCI_STD_NUM_BARS; i++) {
2158			if (hpdev->probed_bar[i] & PCI_BASE_ADDRESS_SPACE_IO)
2159				dev_err(&hbus->hdev->device,
2160					"There's an I/O BAR in this list!\n");
2161
2162			if (hpdev->probed_bar[i] != 0) {
2163				/*
2164				 * A probed BAR has all the upper bits set that
2165				 * can be changed.
2166				 */
2167
2168				bar_val = hpdev->probed_bar[i];
2169				if (bar_val & PCI_BASE_ADDRESS_MEM_TYPE_64)
2170					bar_val |=
2171					((u64)hpdev->probed_bar[++i] << 32);
2172				else
2173					bar_val |= 0xffffffff00000000ULL;
2174
2175				bar_size = get_bar_size(bar_val);
2176
2177				if (bar_val & PCI_BASE_ADDRESS_MEM_TYPE_64)
2178					hbus->high_mmio_space += bar_size;
2179				else
2180					hbus->low_mmio_space += bar_size;
2181			}
2182		}
2183	}
2184
2185	spin_unlock_irqrestore(&hbus->device_list_lock, flags);
2186	complete(event);
2187}
2188
2189/**
2190 * prepopulate_bars() - Fill in BARs with defaults
2191 * @hbus:	Root PCI bus, as understood by this driver
2192 *
2193 * The core PCI driver code seems much, much happier if the BARs
2194 * for a device have values upon first scan. So fill them in.
2195 * The algorithm below works down from large sizes to small,
2196 * attempting to pack the assignments optimally. The assumption,
2197 * enforced in other parts of the code, is that the beginning of
2198 * the memory-mapped I/O space will be aligned on the largest
2199 * BAR size.
2200 */
2201static void prepopulate_bars(struct hv_pcibus_device *hbus)
2202{
2203	resource_size_t high_size = 0;
2204	resource_size_t low_size = 0;
2205	resource_size_t high_base = 0;
2206	resource_size_t low_base = 0;
2207	resource_size_t bar_size;
2208	struct hv_pci_dev *hpdev;
2209	unsigned long flags;
2210	u64 bar_val;
2211	u32 command;
2212	bool high;
2213	int i;
2214
2215	if (hbus->low_mmio_space) {
2216		low_size = 1ULL << (63 - __builtin_clzll(hbus->low_mmio_space));
2217		low_base = hbus->low_mmio_res->start;
2218	}
2219
2220	if (hbus->high_mmio_space) {
2221		high_size = 1ULL <<
2222			(63 - __builtin_clzll(hbus->high_mmio_space));
2223		high_base = hbus->high_mmio_res->start;
2224	}
2225
2226	spin_lock_irqsave(&hbus->device_list_lock, flags);
2227
2228	/*
2229	 * Clear the memory enable bit, in case it's already set. This occurs
2230	 * in the suspend path of hibernation, where the device is suspended,
2231	 * resumed and suspended again: see hibernation_snapshot() and
2232	 * hibernation_platform_enter().
2233	 *
2234	 * If the memory enable bit is already set, Hyper-V silently ignores
2235	 * the below BAR updates, and the related PCI device driver can not
2236	 * work, because reading from the device register(s) always returns
2237	 * 0xFFFFFFFF (PCI_ERROR_RESPONSE).
2238	 */
2239	list_for_each_entry(hpdev, &hbus->children, list_entry) {
2240		_hv_pcifront_read_config(hpdev, PCI_COMMAND, 2, &command);
2241		command &= ~PCI_COMMAND_MEMORY;
2242		_hv_pcifront_write_config(hpdev, PCI_COMMAND, 2, command);
2243	}
2244
2245	/* Pick addresses for the BARs. */
2246	do {
2247		list_for_each_entry(hpdev, &hbus->children, list_entry) {
2248			for (i = 0; i < PCI_STD_NUM_BARS; i++) {
2249				bar_val = hpdev->probed_bar[i];
2250				if (bar_val == 0)
2251					continue;
2252				high = bar_val & PCI_BASE_ADDRESS_MEM_TYPE_64;
2253				if (high) {
2254					bar_val |=
2255						((u64)hpdev->probed_bar[i + 1]
2256						 << 32);
2257				} else {
2258					bar_val |= 0xffffffffULL << 32;
2259				}
2260				bar_size = get_bar_size(bar_val);
2261				if (high) {
2262					if (high_size != bar_size) {
2263						i++;
2264						continue;
2265					}
2266					_hv_pcifront_write_config(hpdev,
2267						PCI_BASE_ADDRESS_0 + (4 * i),
2268						4,
2269						(u32)(high_base & 0xffffff00));
2270					i++;
2271					_hv_pcifront_write_config(hpdev,
2272						PCI_BASE_ADDRESS_0 + (4 * i),
2273						4, (u32)(high_base >> 32));
2274					high_base += bar_size;
2275				} else {
2276					if (low_size != bar_size)
2277						continue;
2278					_hv_pcifront_write_config(hpdev,
2279						PCI_BASE_ADDRESS_0 + (4 * i),
2280						4,
2281						(u32)(low_base & 0xffffff00));
2282					low_base += bar_size;
2283				}
2284			}
2285			if (high_size <= 1 && low_size <= 1) {
2286				/*
2287				 * No need to set the PCI_COMMAND_MEMORY bit as
2288				 * the core PCI driver doesn't require the bit
2289				 * to be pre-set. Actually here we intentionally
2290				 * keep the bit off so that the PCI BAR probing
2291				 * in the core PCI driver doesn't cause Hyper-V
2292				 * to unnecessarily unmap/map the virtual BARs
2293				 * from/to the physical BARs multiple times.
2294				 * This reduces the VM boot time significantly
2295				 * if the BAR sizes are huge.
2296				 */
2297				break;
2298			}
2299		}
2300
2301		high_size >>= 1;
2302		low_size >>= 1;
2303	}  while (high_size || low_size);
2304
2305	spin_unlock_irqrestore(&hbus->device_list_lock, flags);
2306}
2307
2308/*
2309 * Assign entries in sysfs pci slot directory.
2310 *
2311 * Note that this function does not need to lock the children list
2312 * because it is called from pci_devices_present_work which
2313 * is serialized with hv_eject_device_work because they are on the
2314 * same ordered workqueue. Therefore hbus->children list will not change
2315 * even when pci_create_slot sleeps.
2316 */
2317static void hv_pci_assign_slots(struct hv_pcibus_device *hbus)
2318{
2319	struct hv_pci_dev *hpdev;
2320	char name[SLOT_NAME_SIZE];
2321	int slot_nr;
2322
2323	list_for_each_entry(hpdev, &hbus->children, list_entry) {
2324		if (hpdev->pci_slot)
2325			continue;
2326
2327		slot_nr = PCI_SLOT(wslot_to_devfn(hpdev->desc.win_slot.slot));
2328		snprintf(name, SLOT_NAME_SIZE, "%u", hpdev->desc.ser);
2329		hpdev->pci_slot = pci_create_slot(hbus->bridge->bus, slot_nr,
2330					  name, NULL);
2331		if (IS_ERR(hpdev->pci_slot)) {
2332			pr_warn("pci_create slot %s failed\n", name);
2333			hpdev->pci_slot = NULL;
2334		}
2335	}
2336}
2337
2338/*
2339 * Remove entries in sysfs pci slot directory.
2340 */
2341static void hv_pci_remove_slots(struct hv_pcibus_device *hbus)
2342{
2343	struct hv_pci_dev *hpdev;
2344
2345	list_for_each_entry(hpdev, &hbus->children, list_entry) {
2346		if (!hpdev->pci_slot)
2347			continue;
2348		pci_destroy_slot(hpdev->pci_slot);
2349		hpdev->pci_slot = NULL;
2350	}
2351}
2352
2353/*
2354 * Set NUMA node for the devices on the bus
2355 */
2356static void hv_pci_assign_numa_node(struct hv_pcibus_device *hbus)
2357{
2358	struct pci_dev *dev;
2359	struct pci_bus *bus = hbus->bridge->bus;
2360	struct hv_pci_dev *hv_dev;
2361
2362	list_for_each_entry(dev, &bus->devices, bus_list) {
2363		hv_dev = get_pcichild_wslot(hbus, devfn_to_wslot(dev->devfn));
2364		if (!hv_dev)
2365			continue;
2366
2367		if (hv_dev->desc.flags & HV_PCI_DEVICE_FLAG_NUMA_AFFINITY &&
2368		    hv_dev->desc.virtual_numa_node < num_possible_nodes())
2369			/*
2370			 * The kernel may boot with some NUMA nodes offline
2371			 * (e.g. in a KDUMP kernel) or with NUMA disabled via
2372			 * "numa=off". In those cases, adjust the host provided
2373			 * NUMA node to a valid NUMA node used by the kernel.
2374			 */
2375			set_dev_node(&dev->dev,
2376				     numa_map_to_online_node(
2377					     hv_dev->desc.virtual_numa_node));
2378
2379		put_pcichild(hv_dev);
2380	}
2381}
2382
2383/**
2384 * create_root_hv_pci_bus() - Expose a new root PCI bus
2385 * @hbus:	Root PCI bus, as understood by this driver
2386 *
2387 * Return: 0 on success, -errno on failure
2388 */
2389static int create_root_hv_pci_bus(struct hv_pcibus_device *hbus)
2390{
2391	int error;
2392	struct pci_host_bridge *bridge = hbus->bridge;
 
 
 
 
 
 
2393
2394	bridge->dev.parent = &hbus->hdev->device;
2395	bridge->sysdata = &hbus->sysdata;
2396	bridge->ops = &hv_pcifront_ops;
2397
2398	error = pci_scan_root_bus_bridge(bridge);
2399	if (error)
2400		return error;
2401
2402	pci_lock_rescan_remove();
2403	hv_pci_assign_numa_node(hbus);
2404	pci_bus_assign_resources(bridge->bus);
2405	hv_pci_assign_slots(hbus);
2406	pci_bus_add_devices(bridge->bus);
2407	pci_unlock_rescan_remove();
2408	hbus->state = hv_pcibus_installed;
2409	return 0;
2410}
2411
2412struct q_res_req_compl {
2413	struct completion host_event;
2414	struct hv_pci_dev *hpdev;
2415};
2416
2417/**
2418 * q_resource_requirements() - Query Resource Requirements
2419 * @context:		The completion context.
2420 * @resp:		The response that came from the host.
2421 * @resp_packet_size:	The size in bytes of resp.
2422 *
2423 * This function is invoked on completion of a Query Resource
2424 * Requirements packet.
2425 */
2426static void q_resource_requirements(void *context, struct pci_response *resp,
2427				    int resp_packet_size)
2428{
2429	struct q_res_req_compl *completion = context;
2430	struct pci_q_res_req_response *q_res_req =
2431		(struct pci_q_res_req_response *)resp;
2432	s32 status;
2433	int i;
2434
2435	status = (resp_packet_size < sizeof(*q_res_req)) ? -1 : resp->status;
2436	if (status < 0) {
2437		dev_err(&completion->hpdev->hbus->hdev->device,
2438			"query resource requirements failed: %x\n",
2439			status);
2440	} else {
2441		for (i = 0; i < PCI_STD_NUM_BARS; i++) {
2442			completion->hpdev->probed_bar[i] =
2443				q_res_req->probed_bar[i];
2444		}
2445	}
2446
2447	complete(&completion->host_event);
2448}
2449
2450/**
2451 * new_pcichild_device() - Create a new child device
2452 * @hbus:	The internal struct tracking this root PCI bus.
2453 * @desc:	The information supplied so far from the host
2454 *              about the device.
2455 *
2456 * This function creates the tracking structure for a new child
2457 * device and kicks off the process of figuring out what it is.
2458 *
2459 * Return: Pointer to the new tracking struct
2460 */
2461static struct hv_pci_dev *new_pcichild_device(struct hv_pcibus_device *hbus,
2462		struct hv_pcidev_description *desc)
2463{
2464	struct hv_pci_dev *hpdev;
2465	struct pci_child_message *res_req;
2466	struct q_res_req_compl comp_pkt;
2467	struct {
2468		struct pci_packet init_packet;
2469		u8 buffer[sizeof(struct pci_child_message)];
2470	} pkt;
2471	unsigned long flags;
2472	int ret;
2473
2474	hpdev = kzalloc(sizeof(*hpdev), GFP_KERNEL);
2475	if (!hpdev)
2476		return NULL;
2477
2478	hpdev->hbus = hbus;
2479
2480	memset(&pkt, 0, sizeof(pkt));
2481	init_completion(&comp_pkt.host_event);
2482	comp_pkt.hpdev = hpdev;
2483	pkt.init_packet.compl_ctxt = &comp_pkt;
2484	pkt.init_packet.completion_func = q_resource_requirements;
2485	res_req = (struct pci_child_message *)&pkt.init_packet.message;
2486	res_req->message_type.type = PCI_QUERY_RESOURCE_REQUIREMENTS;
2487	res_req->wslot.slot = desc->win_slot.slot;
2488
2489	ret = vmbus_sendpacket(hbus->hdev->channel, res_req,
2490			       sizeof(struct pci_child_message),
2491			       (unsigned long)&pkt.init_packet,
2492			       VM_PKT_DATA_INBAND,
2493			       VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
2494	if (ret)
2495		goto error;
2496
2497	if (wait_for_response(hbus->hdev, &comp_pkt.host_event))
2498		goto error;
2499
2500	hpdev->desc = *desc;
2501	refcount_set(&hpdev->refs, 1);
2502	get_pcichild(hpdev);
2503	spin_lock_irqsave(&hbus->device_list_lock, flags);
2504
2505	list_add_tail(&hpdev->list_entry, &hbus->children);
2506	spin_unlock_irqrestore(&hbus->device_list_lock, flags);
2507	return hpdev;
2508
2509error:
2510	kfree(hpdev);
2511	return NULL;
2512}
2513
2514/**
2515 * get_pcichild_wslot() - Find device from slot
2516 * @hbus:	Root PCI bus, as understood by this driver
2517 * @wslot:	Location on the bus
2518 *
2519 * This function looks up a PCI device and returns the internal
2520 * representation of it.  It acquires a reference on it, so that
2521 * the device won't be deleted while somebody is using it.  The
2522 * caller is responsible for calling put_pcichild() to release
2523 * this reference.
2524 *
2525 * Return:	Internal representation of a PCI device
2526 */
2527static struct hv_pci_dev *get_pcichild_wslot(struct hv_pcibus_device *hbus,
2528					     u32 wslot)
2529{
2530	unsigned long flags;
2531	struct hv_pci_dev *iter, *hpdev = NULL;
2532
2533	spin_lock_irqsave(&hbus->device_list_lock, flags);
2534	list_for_each_entry(iter, &hbus->children, list_entry) {
2535		if (iter->desc.win_slot.slot == wslot) {
2536			hpdev = iter;
2537			get_pcichild(hpdev);
2538			break;
2539		}
2540	}
2541	spin_unlock_irqrestore(&hbus->device_list_lock, flags);
2542
2543	return hpdev;
2544}
2545
2546/**
2547 * pci_devices_present_work() - Handle new list of child devices
2548 * @work:	Work struct embedded in struct hv_dr_work
2549 *
2550 * "Bus Relations" is the Windows term for "children of this
2551 * bus."  The terminology is preserved here for people trying to
2552 * debug the interaction between Hyper-V and Linux.  This
2553 * function is called when the parent partition reports a list
2554 * of functions that should be observed under this PCI Express
2555 * port (bus).
2556 *
2557 * This function updates the list, and must tolerate being
2558 * called multiple times with the same information.  The typical
2559 * number of child devices is one, with very atypical cases
2560 * involving three or four, so the algorithms used here can be
2561 * simple and inefficient.
2562 *
2563 * It must also treat the omission of a previously observed device as
2564 * notification that the device no longer exists.
2565 *
2566 * Note that this function is serialized with hv_eject_device_work(),
2567 * because both are pushed to the ordered workqueue hbus->wq.
2568 */
2569static void pci_devices_present_work(struct work_struct *work)
2570{
2571	u32 child_no;
2572	bool found;
2573	struct hv_pcidev_description *new_desc;
2574	struct hv_pci_dev *hpdev;
2575	struct hv_pcibus_device *hbus;
2576	struct list_head removed;
2577	struct hv_dr_work *dr_wrk;
2578	struct hv_dr_state *dr = NULL;
2579	unsigned long flags;
2580
2581	dr_wrk = container_of(work, struct hv_dr_work, wrk);
2582	hbus = dr_wrk->bus;
2583	kfree(dr_wrk);
2584
2585	INIT_LIST_HEAD(&removed);
2586
2587	/* Pull this off the queue and process it if it was the last one. */
2588	spin_lock_irqsave(&hbus->device_list_lock, flags);
2589	while (!list_empty(&hbus->dr_list)) {
2590		dr = list_first_entry(&hbus->dr_list, struct hv_dr_state,
2591				      list_entry);
2592		list_del(&dr->list_entry);
2593
2594		/* Throw this away if the list still has stuff in it. */
2595		if (!list_empty(&hbus->dr_list)) {
2596			kfree(dr);
2597			continue;
2598		}
2599	}
2600	spin_unlock_irqrestore(&hbus->device_list_lock, flags);
2601
2602	if (!dr)
 
2603		return;
2604
2605	mutex_lock(&hbus->state_lock);
2606
2607	/* First, mark all existing children as reported missing. */
2608	spin_lock_irqsave(&hbus->device_list_lock, flags);
2609	list_for_each_entry(hpdev, &hbus->children, list_entry) {
2610		hpdev->reported_missing = true;
2611	}
2612	spin_unlock_irqrestore(&hbus->device_list_lock, flags);
2613
2614	/* Next, add back any reported devices. */
2615	for (child_no = 0; child_no < dr->device_count; child_no++) {
2616		found = false;
2617		new_desc = &dr->func[child_no];
2618
2619		spin_lock_irqsave(&hbus->device_list_lock, flags);
2620		list_for_each_entry(hpdev, &hbus->children, list_entry) {
2621			if ((hpdev->desc.win_slot.slot == new_desc->win_slot.slot) &&
2622			    (hpdev->desc.v_id == new_desc->v_id) &&
2623			    (hpdev->desc.d_id == new_desc->d_id) &&
2624			    (hpdev->desc.ser == new_desc->ser)) {
2625				hpdev->reported_missing = false;
2626				found = true;
2627			}
2628		}
2629		spin_unlock_irqrestore(&hbus->device_list_lock, flags);
2630
2631		if (!found) {
2632			hpdev = new_pcichild_device(hbus, new_desc);
2633			if (!hpdev)
2634				dev_err(&hbus->hdev->device,
2635					"couldn't record a child device.\n");
2636		}
2637	}
2638
2639	/* Move missing children to a list on the stack. */
2640	spin_lock_irqsave(&hbus->device_list_lock, flags);
2641	do {
2642		found = false;
2643		list_for_each_entry(hpdev, &hbus->children, list_entry) {
2644			if (hpdev->reported_missing) {
2645				found = true;
2646				put_pcichild(hpdev);
2647				list_move_tail(&hpdev->list_entry, &removed);
2648				break;
2649			}
2650		}
2651	} while (found);
2652	spin_unlock_irqrestore(&hbus->device_list_lock, flags);
2653
2654	/* Delete everything that should no longer exist. */
2655	while (!list_empty(&removed)) {
2656		hpdev = list_first_entry(&removed, struct hv_pci_dev,
2657					 list_entry);
2658		list_del(&hpdev->list_entry);
2659
2660		if (hpdev->pci_slot)
2661			pci_destroy_slot(hpdev->pci_slot);
2662
2663		put_pcichild(hpdev);
2664	}
2665
2666	switch (hbus->state) {
2667	case hv_pcibus_installed:
2668		/*
2669		 * Tell the core to rescan bus
2670		 * because there may have been changes.
2671		 */
2672		pci_lock_rescan_remove();
2673		pci_scan_child_bus(hbus->bridge->bus);
2674		hv_pci_assign_numa_node(hbus);
2675		hv_pci_assign_slots(hbus);
2676		pci_unlock_rescan_remove();
2677		break;
2678
2679	case hv_pcibus_init:
2680	case hv_pcibus_probed:
2681		survey_child_resources(hbus);
2682		break;
2683
2684	default:
2685		break;
2686	}
2687
2688	mutex_unlock(&hbus->state_lock);
2689
2690	kfree(dr);
2691}
2692
2693/**
2694 * hv_pci_start_relations_work() - Queue work to start device discovery
2695 * @hbus:	Root PCI bus, as understood by this driver
2696 * @dr:		The list of children returned from host
2697 *
2698 * Return:  0 on success, -errno on failure
 
2699 */
2700static int hv_pci_start_relations_work(struct hv_pcibus_device *hbus,
2701				       struct hv_dr_state *dr)
2702{
 
2703	struct hv_dr_work *dr_wrk;
2704	unsigned long flags;
2705	bool pending_dr;
2706
2707	if (hbus->state == hv_pcibus_removing) {
2708		dev_info(&hbus->hdev->device,
2709			 "PCI VMBus BUS_RELATIONS: ignored\n");
2710		return -ENOENT;
2711	}
2712
2713	dr_wrk = kzalloc(sizeof(*dr_wrk), GFP_NOWAIT);
2714	if (!dr_wrk)
2715		return -ENOMEM;
 
 
 
 
 
 
 
 
2716
2717	INIT_WORK(&dr_wrk->wrk, pci_devices_present_work);
2718	dr_wrk->bus = hbus;
 
 
 
 
 
 
2719
2720	spin_lock_irqsave(&hbus->device_list_lock, flags);
2721	/*
2722	 * If pending_dr is true, we have already queued a work,
2723	 * which will see the new dr. Otherwise, we need to
2724	 * queue a new work.
2725	 */
2726	pending_dr = !list_empty(&hbus->dr_list);
2727	list_add_tail(&dr->list_entry, &hbus->dr_list);
2728	spin_unlock_irqrestore(&hbus->device_list_lock, flags);
2729
2730	if (pending_dr)
2731		kfree(dr_wrk);
2732	else
 
2733		queue_work(hbus->wq, &dr_wrk->wrk);
2734
2735	return 0;
2736}
2737
2738/**
2739 * hv_pci_devices_present() - Handle list of new children
2740 * @hbus:      Root PCI bus, as understood by this driver
2741 * @relations: Packet from host listing children
2742 *
2743 * Process a new list of devices on the bus. The list of devices is
2744 * discovered by VSP and sent to us via VSP message PCI_BUS_RELATIONS,
2745 * whenever a new list of devices for this bus appears.
2746 */
2747static void hv_pci_devices_present(struct hv_pcibus_device *hbus,
2748				   struct pci_bus_relations *relations)
2749{
2750	struct hv_dr_state *dr;
2751	int i;
2752
2753	dr = kzalloc(struct_size(dr, func, relations->device_count),
2754		     GFP_NOWAIT);
2755	if (!dr)
2756		return;
2757
2758	dr->device_count = relations->device_count;
2759	for (i = 0; i < dr->device_count; i++) {
2760		dr->func[i].v_id = relations->func[i].v_id;
2761		dr->func[i].d_id = relations->func[i].d_id;
2762		dr->func[i].rev = relations->func[i].rev;
2763		dr->func[i].prog_intf = relations->func[i].prog_intf;
2764		dr->func[i].subclass = relations->func[i].subclass;
2765		dr->func[i].base_class = relations->func[i].base_class;
2766		dr->func[i].subsystem_id = relations->func[i].subsystem_id;
2767		dr->func[i].win_slot = relations->func[i].win_slot;
2768		dr->func[i].ser = relations->func[i].ser;
2769	}
2770
2771	if (hv_pci_start_relations_work(hbus, dr))
2772		kfree(dr);
2773}
2774
2775/**
2776 * hv_pci_devices_present2() - Handle list of new children
2777 * @hbus:	Root PCI bus, as understood by this driver
2778 * @relations:	Packet from host listing children
2779 *
2780 * This function is the v2 version of hv_pci_devices_present()
2781 */
2782static void hv_pci_devices_present2(struct hv_pcibus_device *hbus,
2783				    struct pci_bus_relations2 *relations)
2784{
2785	struct hv_dr_state *dr;
2786	int i;
2787
2788	dr = kzalloc(struct_size(dr, func, relations->device_count),
2789		     GFP_NOWAIT);
2790	if (!dr)
2791		return;
2792
2793	dr->device_count = relations->device_count;
2794	for (i = 0; i < dr->device_count; i++) {
2795		dr->func[i].v_id = relations->func[i].v_id;
2796		dr->func[i].d_id = relations->func[i].d_id;
2797		dr->func[i].rev = relations->func[i].rev;
2798		dr->func[i].prog_intf = relations->func[i].prog_intf;
2799		dr->func[i].subclass = relations->func[i].subclass;
2800		dr->func[i].base_class = relations->func[i].base_class;
2801		dr->func[i].subsystem_id = relations->func[i].subsystem_id;
2802		dr->func[i].win_slot = relations->func[i].win_slot;
2803		dr->func[i].ser = relations->func[i].ser;
2804		dr->func[i].flags = relations->func[i].flags;
2805		dr->func[i].virtual_numa_node =
2806			relations->func[i].virtual_numa_node;
2807	}
2808
2809	if (hv_pci_start_relations_work(hbus, dr))
2810		kfree(dr);
2811}
2812
2813/**
2814 * hv_eject_device_work() - Asynchronously handles ejection
2815 * @work:	Work struct embedded in internal device struct
2816 *
2817 * This function handles ejecting a device.  Windows will
2818 * attempt to gracefully eject a device, waiting 60 seconds to
2819 * hear back from the guest OS that this completed successfully.
2820 * If this timer expires, the device will be forcibly removed.
2821 */
2822static void hv_eject_device_work(struct work_struct *work)
2823{
2824	struct pci_eject_response *ejct_pkt;
2825	struct hv_pcibus_device *hbus;
2826	struct hv_pci_dev *hpdev;
2827	struct pci_dev *pdev;
2828	unsigned long flags;
2829	int wslot;
2830	struct {
2831		struct pci_packet pkt;
2832		u8 buffer[sizeof(struct pci_eject_response)];
2833	} ctxt;
2834
2835	hpdev = container_of(work, struct hv_pci_dev, wrk);
2836	hbus = hpdev->hbus;
2837
2838	mutex_lock(&hbus->state_lock);
2839
2840	/*
2841	 * Ejection can come before or after the PCI bus has been set up, so
2842	 * attempt to find it and tear down the bus state, if it exists.  This
2843	 * must be done without constructs like pci_domain_nr(hbus->bridge->bus)
2844	 * because hbus->bridge->bus may not exist yet.
2845	 */
2846	wslot = wslot_to_devfn(hpdev->desc.win_slot.slot);
2847	pdev = pci_get_domain_bus_and_slot(hbus->bridge->domain_nr, 0, wslot);
2848	if (pdev) {
2849		pci_lock_rescan_remove();
2850		pci_stop_and_remove_bus_device(pdev);
2851		pci_dev_put(pdev);
2852		pci_unlock_rescan_remove();
2853	}
2854
2855	spin_lock_irqsave(&hbus->device_list_lock, flags);
2856	list_del(&hpdev->list_entry);
2857	spin_unlock_irqrestore(&hbus->device_list_lock, flags);
2858
2859	if (hpdev->pci_slot)
2860		pci_destroy_slot(hpdev->pci_slot);
2861
2862	memset(&ctxt, 0, sizeof(ctxt));
2863	ejct_pkt = (struct pci_eject_response *)&ctxt.pkt.message;
2864	ejct_pkt->message_type.type = PCI_EJECTION_COMPLETE;
2865	ejct_pkt->wslot.slot = hpdev->desc.win_slot.slot;
2866	vmbus_sendpacket(hbus->hdev->channel, ejct_pkt,
2867			 sizeof(*ejct_pkt), 0,
2868			 VM_PKT_DATA_INBAND, 0);
2869
2870	/* For the get_pcichild() in hv_pci_eject_device() */
2871	put_pcichild(hpdev);
2872	/* For the two refs got in new_pcichild_device() */
2873	put_pcichild(hpdev);
2874	put_pcichild(hpdev);
2875	/* hpdev has been freed. Do not use it any more. */
2876
2877	mutex_unlock(&hbus->state_lock);
2878}
2879
2880/**
2881 * hv_pci_eject_device() - Handles device ejection
2882 * @hpdev:	Internal device tracking struct
2883 *
2884 * This function is invoked when an ejection packet arrives.  It
2885 * just schedules work so that we don't re-enter the packet
2886 * delivery code handling the ejection.
2887 */
2888static void hv_pci_eject_device(struct hv_pci_dev *hpdev)
2889{
2890	struct hv_pcibus_device *hbus = hpdev->hbus;
2891	struct hv_device *hdev = hbus->hdev;
2892
2893	if (hbus->state == hv_pcibus_removing) {
2894		dev_info(&hdev->device, "PCI VMBus EJECT: ignored\n");
2895		return;
2896	}
2897
2898	get_pcichild(hpdev);
2899	INIT_WORK(&hpdev->wrk, hv_eject_device_work);
2900	queue_work(hbus->wq, &hpdev->wrk);
 
2901}
2902
2903/**
2904 * hv_pci_onchannelcallback() - Handles incoming packets
2905 * @context:	Internal bus tracking struct
2906 *
2907 * This function is invoked whenever the host sends a packet to
2908 * this channel (which is private to this root PCI bus).
2909 */
2910static void hv_pci_onchannelcallback(void *context)
2911{
2912	const int packet_size = 0x100;
2913	int ret;
2914	struct hv_pcibus_device *hbus = context;
2915	struct vmbus_channel *chan = hbus->hdev->channel;
2916	u32 bytes_recvd;
2917	u64 req_id, req_addr;
2918	struct vmpacket_descriptor *desc;
2919	unsigned char *buffer;
2920	int bufferlen = packet_size;
2921	struct pci_packet *comp_packet;
2922	struct pci_response *response;
2923	struct pci_incoming_message *new_message;
2924	struct pci_bus_relations *bus_rel;
2925	struct pci_bus_relations2 *bus_rel2;
2926	struct pci_dev_inval_block *inval;
2927	struct pci_dev_incoming *dev_message;
2928	struct hv_pci_dev *hpdev;
2929	unsigned long flags;
2930
2931	buffer = kmalloc(bufferlen, GFP_ATOMIC);
2932	if (!buffer)
2933		return;
2934
2935	while (1) {
2936		ret = vmbus_recvpacket_raw(chan, buffer, bufferlen,
2937					   &bytes_recvd, &req_id);
2938
2939		if (ret == -ENOBUFS) {
2940			kfree(buffer);
2941			/* Handle large packet */
2942			bufferlen = bytes_recvd;
2943			buffer = kmalloc(bytes_recvd, GFP_ATOMIC);
2944			if (!buffer)
2945				return;
2946			continue;
2947		}
2948
2949		/* Zero length indicates there are no more packets. */
2950		if (ret || !bytes_recvd)
2951			break;
2952
2953		/*
2954		 * All incoming packets must be at least as large as a
2955		 * response.
2956		 */
2957		if (bytes_recvd <= sizeof(struct pci_response))
2958			continue;
2959		desc = (struct vmpacket_descriptor *)buffer;
2960
2961		switch (desc->type) {
2962		case VM_PKT_COMP:
2963
2964			lock_requestor(chan, flags);
2965			req_addr = __vmbus_request_addr_match(chan, req_id,
2966							      VMBUS_RQST_ADDR_ANY);
2967			if (req_addr == VMBUS_RQST_ERROR) {
2968				unlock_requestor(chan, flags);
2969				dev_err(&hbus->hdev->device,
2970					"Invalid transaction ID %llx\n",
2971					req_id);
2972				break;
2973			}
2974			comp_packet = (struct pci_packet *)req_addr;
2975			response = (struct pci_response *)buffer;
2976			/*
2977			 * Call ->completion_func() within the critical section to make
2978			 * sure that the packet pointer is still valid during the call:
2979			 * here 'valid' means that there's a task still waiting for the
2980			 * completion, and that the packet data is still on the waiting
2981			 * task's stack.  Cf. hv_compose_msi_msg().
2982			 */
 
 
2983			comp_packet->completion_func(comp_packet->compl_ctxt,
2984						     response,
2985						     bytes_recvd);
2986			unlock_requestor(chan, flags);
2987			break;
2988
2989		case VM_PKT_DATA_INBAND:
2990
2991			new_message = (struct pci_incoming_message *)buffer;
2992			switch (new_message->message_type.type) {
2993			case PCI_BUS_RELATIONS:
2994
2995				bus_rel = (struct pci_bus_relations *)buffer;
2996				if (bytes_recvd < sizeof(*bus_rel) ||
2997				    bytes_recvd <
2998					struct_size(bus_rel, func,
2999						    bus_rel->device_count)) {
3000					dev_err(&hbus->hdev->device,
3001						"bus relations too small\n");
3002					break;
3003				}
3004
3005				hv_pci_devices_present(hbus, bus_rel);
3006				break;
3007
3008			case PCI_BUS_RELATIONS2:
3009
3010				bus_rel2 = (struct pci_bus_relations2 *)buffer;
3011				if (bytes_recvd < sizeof(*bus_rel2) ||
3012				    bytes_recvd <
3013					struct_size(bus_rel2, func,
3014						    bus_rel2->device_count)) {
3015					dev_err(&hbus->hdev->device,
3016						"bus relations v2 too small\n");
3017					break;
3018				}
3019
3020				hv_pci_devices_present2(hbus, bus_rel2);
3021				break;
3022
3023			case PCI_EJECT:
3024
3025				dev_message = (struct pci_dev_incoming *)buffer;
3026				if (bytes_recvd < sizeof(*dev_message)) {
3027					dev_err(&hbus->hdev->device,
3028						"eject message too small\n");
3029					break;
3030				}
3031				hpdev = get_pcichild_wslot(hbus,
3032						      dev_message->wslot.slot);
3033				if (hpdev) {
3034					hv_pci_eject_device(hpdev);
3035					put_pcichild(hpdev);
3036				}
3037				break;
3038
3039			case PCI_INVALIDATE_BLOCK:
3040
3041				inval = (struct pci_dev_inval_block *)buffer;
3042				if (bytes_recvd < sizeof(*inval)) {
3043					dev_err(&hbus->hdev->device,
3044						"invalidate message too small\n");
3045					break;
3046				}
3047				hpdev = get_pcichild_wslot(hbus,
3048							   inval->wslot.slot);
3049				if (hpdev) {
3050					if (hpdev->block_invalidate) {
3051						hpdev->block_invalidate(
3052						    hpdev->invalidate_context,
3053						    inval->block_mask);
3054					}
3055					put_pcichild(hpdev);
3056				}
3057				break;
3058
3059			default:
3060				dev_warn(&hbus->hdev->device,
3061					"Unimplemented protocol message %x\n",
3062					new_message->message_type.type);
3063				break;
3064			}
3065			break;
3066
3067		default:
3068			dev_err(&hbus->hdev->device,
3069				"unhandled packet type %d, tid %llx len %d\n",
3070				desc->type, req_id, bytes_recvd);
3071			break;
3072		}
3073	}
3074
3075	kfree(buffer);
3076}
3077
3078/**
3079 * hv_pci_protocol_negotiation() - Set up protocol
3080 * @hdev:		VMBus's tracking struct for this root PCI bus.
3081 * @version:		Array of supported channel protocol versions in
3082 *			the order of probing - highest go first.
3083 * @num_version:	Number of elements in the version array.
3084 *
3085 * This driver is intended to support running on Windows 10
3086 * (server) and later versions. It will not run on earlier
3087 * versions, as they assume that many of the operations which
3088 * Linux needs accomplished with a spinlock held were done via
3089 * asynchronous messaging via VMBus.  Windows 10 increases the
3090 * surface area of PCI emulation so that these actions can take
3091 * place by suspending a virtual processor for their duration.
3092 *
3093 * This function negotiates the channel protocol version,
3094 * failing if the host doesn't support the necessary protocol
3095 * level.
3096 */
3097static int hv_pci_protocol_negotiation(struct hv_device *hdev,
3098				       enum pci_protocol_version_t version[],
3099				       int num_version)
3100{
3101	struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
3102	struct pci_version_request *version_req;
3103	struct hv_pci_compl comp_pkt;
3104	struct pci_packet *pkt;
3105	int ret;
3106	int i;
3107
3108	/*
3109	 * Initiate the handshake with the host and negotiate
3110	 * a version that the host can support. We start with the
3111	 * highest version number and go down if the host cannot
3112	 * support it.
3113	 */
3114	pkt = kzalloc(sizeof(*pkt) + sizeof(*version_req), GFP_KERNEL);
3115	if (!pkt)
3116		return -ENOMEM;
3117
3118	init_completion(&comp_pkt.host_event);
3119	pkt->completion_func = hv_pci_generic_compl;
3120	pkt->compl_ctxt = &comp_pkt;
3121	version_req = (struct pci_version_request *)&pkt->message;
3122	version_req->message_type.type = PCI_QUERY_PROTOCOL_VERSION;
3123
3124	for (i = 0; i < num_version; i++) {
3125		version_req->protocol_version = version[i];
3126		ret = vmbus_sendpacket(hdev->channel, version_req,
3127				sizeof(struct pci_version_request),
3128				(unsigned long)pkt, VM_PKT_DATA_INBAND,
3129				VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
3130		if (!ret)
3131			ret = wait_for_response(hdev, &comp_pkt.host_event);
3132
3133		if (ret) {
3134			dev_err(&hdev->device,
3135				"PCI Pass-through VSP failed to request version: %d",
3136				ret);
3137			goto exit;
3138		}
3139
3140		if (comp_pkt.completion_status >= 0) {
3141			hbus->protocol_version = version[i];
3142			dev_info(&hdev->device,
3143				"PCI VMBus probing: Using version %#x\n",
3144				hbus->protocol_version);
3145			goto exit;
3146		}
3147
3148		if (comp_pkt.completion_status != STATUS_REVISION_MISMATCH) {
3149			dev_err(&hdev->device,
3150				"PCI Pass-through VSP failed version request: %#x",
3151				comp_pkt.completion_status);
3152			ret = -EPROTO;
3153			goto exit;
3154		}
3155
3156		reinit_completion(&comp_pkt.host_event);
3157	}
3158
3159	dev_err(&hdev->device,
3160		"PCI pass-through VSP failed to find supported version");
3161	ret = -EPROTO;
3162
3163exit:
3164	kfree(pkt);
3165	return ret;
3166}
3167
3168/**
3169 * hv_pci_free_bridge_windows() - Release memory regions for the
3170 * bus
3171 * @hbus:	Root PCI bus, as understood by this driver
3172 */
3173static void hv_pci_free_bridge_windows(struct hv_pcibus_device *hbus)
3174{
3175	/*
3176	 * Set the resources back to the way they looked when they
3177	 * were allocated by setting IORESOURCE_BUSY again.
3178	 */
3179
3180	if (hbus->low_mmio_space && hbus->low_mmio_res) {
3181		hbus->low_mmio_res->flags |= IORESOURCE_BUSY;
3182		vmbus_free_mmio(hbus->low_mmio_res->start,
3183				resource_size(hbus->low_mmio_res));
3184	}
3185
3186	if (hbus->high_mmio_space && hbus->high_mmio_res) {
3187		hbus->high_mmio_res->flags |= IORESOURCE_BUSY;
3188		vmbus_free_mmio(hbus->high_mmio_res->start,
3189				resource_size(hbus->high_mmio_res));
3190	}
3191}
3192
3193/**
3194 * hv_pci_allocate_bridge_windows() - Allocate memory regions
3195 * for the bus
3196 * @hbus:	Root PCI bus, as understood by this driver
3197 *
3198 * This function calls vmbus_allocate_mmio(), which is itself a
3199 * bit of a compromise.  Ideally, we might change the pnp layer
3200 * in the kernel such that it comprehends either PCI devices
3201 * which are "grandchildren of ACPI," with some intermediate bus
3202 * node (in this case, VMBus) or change it such that it
3203 * understands VMBus.  The pnp layer, however, has been declared
3204 * deprecated, and not subject to change.
3205 *
3206 * The workaround, implemented here, is to ask VMBus to allocate
3207 * MMIO space for this bus.  VMBus itself knows which ranges are
3208 * appropriate by looking at its own ACPI objects.  Then, after
3209 * these ranges are claimed, they're modified to look like they
3210 * would have looked if the ACPI and pnp code had allocated
3211 * bridge windows.  These descriptors have to exist in this form
3212 * in order to satisfy the code which will get invoked when the
3213 * endpoint PCI function driver calls request_mem_region() or
3214 * request_mem_region_exclusive().
3215 *
3216 * Return: 0 on success, -errno on failure
3217 */
3218static int hv_pci_allocate_bridge_windows(struct hv_pcibus_device *hbus)
3219{
3220	resource_size_t align;
3221	int ret;
3222
3223	if (hbus->low_mmio_space) {
3224		align = 1ULL << (63 - __builtin_clzll(hbus->low_mmio_space));
3225		ret = vmbus_allocate_mmio(&hbus->low_mmio_res, hbus->hdev, 0,
3226					  (u64)(u32)0xffffffff,
3227					  hbus->low_mmio_space,
3228					  align, false);
3229		if (ret) {
3230			dev_err(&hbus->hdev->device,
3231				"Need %#llx of low MMIO space. Consider reconfiguring the VM.\n",
3232				hbus->low_mmio_space);
3233			return ret;
3234		}
3235
3236		/* Modify this resource to become a bridge window. */
3237		hbus->low_mmio_res->flags |= IORESOURCE_WINDOW;
3238		hbus->low_mmio_res->flags &= ~IORESOURCE_BUSY;
3239		pci_add_resource(&hbus->bridge->windows, hbus->low_mmio_res);
 
3240	}
3241
3242	if (hbus->high_mmio_space) {
3243		align = 1ULL << (63 - __builtin_clzll(hbus->high_mmio_space));
3244		ret = vmbus_allocate_mmio(&hbus->high_mmio_res, hbus->hdev,
3245					  0x100000000, -1,
3246					  hbus->high_mmio_space, align,
3247					  false);
3248		if (ret) {
3249			dev_err(&hbus->hdev->device,
3250				"Need %#llx of high MMIO space. Consider reconfiguring the VM.\n",
3251				hbus->high_mmio_space);
3252			goto release_low_mmio;
3253		}
3254
3255		/* Modify this resource to become a bridge window. */
3256		hbus->high_mmio_res->flags |= IORESOURCE_WINDOW;
3257		hbus->high_mmio_res->flags &= ~IORESOURCE_BUSY;
3258		pci_add_resource(&hbus->bridge->windows, hbus->high_mmio_res);
 
3259	}
3260
3261	return 0;
3262
3263release_low_mmio:
3264	if (hbus->low_mmio_res) {
3265		vmbus_free_mmio(hbus->low_mmio_res->start,
3266				resource_size(hbus->low_mmio_res));
3267	}
3268
3269	return ret;
3270}
3271
3272/**
3273 * hv_allocate_config_window() - Find MMIO space for PCI Config
3274 * @hbus:	Root PCI bus, as understood by this driver
3275 *
3276 * This function claims memory-mapped I/O space for accessing
3277 * configuration space for the functions on this bus.
3278 *
3279 * Return: 0 on success, -errno on failure
3280 */
3281static int hv_allocate_config_window(struct hv_pcibus_device *hbus)
3282{
3283	int ret;
3284
3285	/*
3286	 * Set up a region of MMIO space to use for accessing configuration
3287	 * space.
3288	 */
3289	ret = vmbus_allocate_mmio(&hbus->mem_config, hbus->hdev, 0, -1,
3290				  PCI_CONFIG_MMIO_LENGTH, 0x1000, false);
3291	if (ret)
3292		return ret;
3293
3294	/*
3295	 * vmbus_allocate_mmio() gets used for allocating both device endpoint
3296	 * resource claims (those which cannot be overlapped) and the ranges
3297	 * which are valid for the children of this bus, which are intended
3298	 * to be overlapped by those children.  Set the flag on this claim
3299	 * meaning that this region can't be overlapped.
3300	 */
3301
3302	hbus->mem_config->flags |= IORESOURCE_BUSY;
3303
3304	return 0;
3305}
3306
3307static void hv_free_config_window(struct hv_pcibus_device *hbus)
3308{
3309	vmbus_free_mmio(hbus->mem_config->start, PCI_CONFIG_MMIO_LENGTH);
3310}
3311
3312static int hv_pci_bus_exit(struct hv_device *hdev, bool keep_devs);
3313
3314/**
3315 * hv_pci_enter_d0() - Bring the "bus" into the D0 power state
3316 * @hdev:	VMBus's tracking struct for this root PCI bus
3317 *
3318 * Return: 0 on success, -errno on failure
3319 */
3320static int hv_pci_enter_d0(struct hv_device *hdev)
3321{
3322	struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
3323	struct pci_bus_d0_entry *d0_entry;
3324	struct hv_pci_compl comp_pkt;
3325	struct pci_packet *pkt;
3326	bool retry = true;
3327	int ret;
3328
3329enter_d0_retry:
3330	/*
3331	 * Tell the host that the bus is ready to use, and moved into the
3332	 * powered-on state.  This includes telling the host which region
3333	 * of memory-mapped I/O space has been chosen for configuration space
3334	 * access.
3335	 */
3336	pkt = kzalloc(sizeof(*pkt) + sizeof(*d0_entry), GFP_KERNEL);
3337	if (!pkt)
3338		return -ENOMEM;
3339
3340	init_completion(&comp_pkt.host_event);
3341	pkt->completion_func = hv_pci_generic_compl;
3342	pkt->compl_ctxt = &comp_pkt;
3343	d0_entry = (struct pci_bus_d0_entry *)&pkt->message;
3344	d0_entry->message_type.type = PCI_BUS_D0ENTRY;
3345	d0_entry->mmio_base = hbus->mem_config->start;
3346
3347	ret = vmbus_sendpacket(hdev->channel, d0_entry, sizeof(*d0_entry),
3348			       (unsigned long)pkt, VM_PKT_DATA_INBAND,
3349			       VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
3350	if (!ret)
3351		ret = wait_for_response(hdev, &comp_pkt.host_event);
3352
3353	if (ret)
3354		goto exit;
3355
3356	/*
3357	 * In certain case (Kdump) the pci device of interest was
3358	 * not cleanly shut down and resource is still held on host
3359	 * side, the host could return invalid device status.
3360	 * We need to explicitly request host to release the resource
3361	 * and try to enter D0 again.
3362	 */
3363	if (comp_pkt.completion_status < 0 && retry) {
3364		retry = false;
3365
3366		dev_err(&hdev->device, "Retrying D0 Entry\n");
3367
3368		/*
3369		 * Hv_pci_bus_exit() calls hv_send_resource_released()
3370		 * to free up resources of its child devices.
3371		 * In the kdump kernel we need to set the
3372		 * wslot_res_allocated to 255 so it scans all child
3373		 * devices to release resources allocated in the
3374		 * normal kernel before panic happened.
3375		 */
3376		hbus->wslot_res_allocated = 255;
3377
3378		ret = hv_pci_bus_exit(hdev, true);
3379
3380		if (ret == 0) {
3381			kfree(pkt);
3382			goto enter_d0_retry;
3383		}
3384		dev_err(&hdev->device,
3385			"Retrying D0 failed with ret %d\n", ret);
3386	}
3387
3388	if (comp_pkt.completion_status < 0) {
3389		dev_err(&hdev->device,
3390			"PCI Pass-through VSP failed D0 Entry with status %x\n",
3391			comp_pkt.completion_status);
3392		ret = -EPROTO;
3393		goto exit;
3394	}
3395
3396	ret = 0;
3397
3398exit:
3399	kfree(pkt);
3400	return ret;
3401}
3402
3403/**
3404 * hv_pci_query_relations() - Ask host to send list of child
3405 * devices
3406 * @hdev:	VMBus's tracking struct for this root PCI bus
3407 *
3408 * Return: 0 on success, -errno on failure
3409 */
3410static int hv_pci_query_relations(struct hv_device *hdev)
3411{
3412	struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
3413	struct pci_message message;
3414	struct completion comp;
3415	int ret;
3416
3417	/* Ask the host to send along the list of child devices */
3418	init_completion(&comp);
3419	if (cmpxchg(&hbus->survey_event, NULL, &comp))
3420		return -ENOTEMPTY;
3421
3422	memset(&message, 0, sizeof(message));
3423	message.type = PCI_QUERY_BUS_RELATIONS;
3424
3425	ret = vmbus_sendpacket(hdev->channel, &message, sizeof(message),
3426			       0, VM_PKT_DATA_INBAND, 0);
3427	if (!ret)
3428		ret = wait_for_response(hdev, &comp);
3429
3430	/*
3431	 * In the case of fast device addition/removal, it's possible that
3432	 * vmbus_sendpacket() or wait_for_response() returns -ENODEV but we
3433	 * already got a PCI_BUS_RELATIONS* message from the host and the
3434	 * channel callback already scheduled a work to hbus->wq, which can be
3435	 * running pci_devices_present_work() -> survey_child_resources() ->
3436	 * complete(&hbus->survey_event), even after hv_pci_query_relations()
3437	 * exits and the stack variable 'comp' is no longer valid; as a result,
3438	 * a hang or a page fault may happen when the complete() calls
3439	 * raw_spin_lock_irqsave(). Flush hbus->wq before we exit from
3440	 * hv_pci_query_relations() to avoid the issues. Note: if 'ret' is
3441	 * -ENODEV, there can't be any more work item scheduled to hbus->wq
3442	 * after the flush_workqueue(): see vmbus_onoffer_rescind() ->
3443	 * vmbus_reset_channel_cb(), vmbus_rescind_cleanup() ->
3444	 * channel->rescind = true.
3445	 */
3446	flush_workqueue(hbus->wq);
3447
3448	return ret;
3449}
3450
3451/**
3452 * hv_send_resources_allocated() - Report local resource choices
3453 * @hdev:	VMBus's tracking struct for this root PCI bus
3454 *
3455 * The host OS is expecting to be sent a request as a message
3456 * which contains all the resources that the device will use.
3457 * The response contains those same resources, "translated"
3458 * which is to say, the values which should be used by the
3459 * hardware, when it delivers an interrupt.  (MMIO resources are
3460 * used in local terms.)  This is nice for Windows, and lines up
3461 * with the FDO/PDO split, which doesn't exist in Linux.  Linux
3462 * is deeply expecting to scan an emulated PCI configuration
3463 * space.  So this message is sent here only to drive the state
3464 * machine on the host forward.
3465 *
3466 * Return: 0 on success, -errno on failure
3467 */
3468static int hv_send_resources_allocated(struct hv_device *hdev)
3469{
3470	struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
3471	struct pci_resources_assigned *res_assigned;
3472	struct pci_resources_assigned2 *res_assigned2;
3473	struct hv_pci_compl comp_pkt;
3474	struct hv_pci_dev *hpdev;
3475	struct pci_packet *pkt;
3476	size_t size_res;
3477	int wslot;
3478	int ret;
3479
3480	size_res = (hbus->protocol_version < PCI_PROTOCOL_VERSION_1_2)
3481			? sizeof(*res_assigned) : sizeof(*res_assigned2);
3482
3483	pkt = kmalloc(sizeof(*pkt) + size_res, GFP_KERNEL);
3484	if (!pkt)
3485		return -ENOMEM;
3486
3487	ret = 0;
3488
3489	for (wslot = 0; wslot < 256; wslot++) {
3490		hpdev = get_pcichild_wslot(hbus, wslot);
3491		if (!hpdev)
3492			continue;
3493
3494		memset(pkt, 0, sizeof(*pkt) + size_res);
3495		init_completion(&comp_pkt.host_event);
3496		pkt->completion_func = hv_pci_generic_compl;
3497		pkt->compl_ctxt = &comp_pkt;
3498
3499		if (hbus->protocol_version < PCI_PROTOCOL_VERSION_1_2) {
3500			res_assigned =
3501				(struct pci_resources_assigned *)&pkt->message;
3502			res_assigned->message_type.type =
3503				PCI_RESOURCES_ASSIGNED;
3504			res_assigned->wslot.slot = hpdev->desc.win_slot.slot;
3505		} else {
3506			res_assigned2 =
3507				(struct pci_resources_assigned2 *)&pkt->message;
3508			res_assigned2->message_type.type =
3509				PCI_RESOURCES_ASSIGNED2;
3510			res_assigned2->wslot.slot = hpdev->desc.win_slot.slot;
3511		}
3512		put_pcichild(hpdev);
3513
3514		ret = vmbus_sendpacket(hdev->channel, &pkt->message,
3515				size_res, (unsigned long)pkt,
3516				VM_PKT_DATA_INBAND,
3517				VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
3518		if (!ret)
3519			ret = wait_for_response(hdev, &comp_pkt.host_event);
3520		if (ret)
3521			break;
3522
3523		if (comp_pkt.completion_status < 0) {
3524			ret = -EPROTO;
3525			dev_err(&hdev->device,
3526				"resource allocated returned 0x%x",
3527				comp_pkt.completion_status);
3528			break;
3529		}
3530
3531		hbus->wslot_res_allocated = wslot;
3532	}
3533
3534	kfree(pkt);
3535	return ret;
3536}
3537
3538/**
3539 * hv_send_resources_released() - Report local resources
3540 * released
3541 * @hdev:	VMBus's tracking struct for this root PCI bus
3542 *
3543 * Return: 0 on success, -errno on failure
3544 */
3545static int hv_send_resources_released(struct hv_device *hdev)
3546{
3547	struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
3548	struct pci_child_message pkt;
3549	struct hv_pci_dev *hpdev;
3550	int wslot;
3551	int ret;
3552
3553	for (wslot = hbus->wslot_res_allocated; wslot >= 0; wslot--) {
3554		hpdev = get_pcichild_wslot(hbus, wslot);
3555		if (!hpdev)
3556			continue;
3557
3558		memset(&pkt, 0, sizeof(pkt));
3559		pkt.message_type.type = PCI_RESOURCES_RELEASED;
3560		pkt.wslot.slot = hpdev->desc.win_slot.slot;
3561
3562		put_pcichild(hpdev);
3563
3564		ret = vmbus_sendpacket(hdev->channel, &pkt, sizeof(pkt), 0,
3565				       VM_PKT_DATA_INBAND, 0);
3566		if (ret)
3567			return ret;
3568
3569		hbus->wslot_res_allocated = wslot - 1;
3570	}
3571
3572	hbus->wslot_res_allocated = -1;
3573
3574	return 0;
3575}
3576
 
 
 
 
 
 
 
 
 
 
 
3577#define HVPCI_DOM_MAP_SIZE (64 * 1024)
3578static DECLARE_BITMAP(hvpci_dom_map, HVPCI_DOM_MAP_SIZE);
3579
3580/*
3581 * PCI domain number 0 is used by emulated devices on Gen1 VMs, so define 0
3582 * as invalid for passthrough PCI devices of this driver.
3583 */
3584#define HVPCI_DOM_INVALID 0
3585
3586/**
3587 * hv_get_dom_num() - Get a valid PCI domain number
3588 * Check if the PCI domain number is in use, and return another number if
3589 * it is in use.
3590 *
3591 * @dom: Requested domain number
3592 *
3593 * return: domain number on success, HVPCI_DOM_INVALID on failure
3594 */
3595static u16 hv_get_dom_num(u16 dom)
3596{
3597	unsigned int i;
3598
3599	if (test_and_set_bit(dom, hvpci_dom_map) == 0)
3600		return dom;
3601
3602	for_each_clear_bit(i, hvpci_dom_map, HVPCI_DOM_MAP_SIZE) {
3603		if (test_and_set_bit(i, hvpci_dom_map) == 0)
3604			return i;
3605	}
3606
3607	return HVPCI_DOM_INVALID;
3608}
3609
3610/**
3611 * hv_put_dom_num() - Mark the PCI domain number as free
3612 * @dom: Domain number to be freed
3613 */
3614static void hv_put_dom_num(u16 dom)
3615{
3616	clear_bit(dom, hvpci_dom_map);
3617}
3618
3619/**
3620 * hv_pci_probe() - New VMBus channel probe, for a root PCI bus
3621 * @hdev:	VMBus's tracking struct for this root PCI bus
3622 * @dev_id:	Identifies the device itself
3623 *
3624 * Return: 0 on success, -errno on failure
3625 */
3626static int hv_pci_probe(struct hv_device *hdev,
3627			const struct hv_vmbus_device_id *dev_id)
3628{
3629	struct pci_host_bridge *bridge;
3630	struct hv_pcibus_device *hbus;
3631	u16 dom_req, dom;
3632	char *name;
3633	int ret;
3634
3635	bridge = devm_pci_alloc_host_bridge(&hdev->device, 0);
3636	if (!bridge)
3637		return -ENOMEM;
 
 
3638
3639	hbus = kzalloc(sizeof(*hbus), GFP_KERNEL);
3640	if (!hbus)
3641		return -ENOMEM;
3642
3643	hbus->bridge = bridge;
3644	mutex_init(&hbus->state_lock);
3645	hbus->state = hv_pcibus_init;
3646	hbus->wslot_res_allocated = -1;
3647
3648	/*
3649	 * The PCI bus "domain" is what is called "segment" in ACPI and other
3650	 * specs. Pull it from the instance ID, to get something usually
3651	 * unique. In rare cases of collision, we will find out another number
3652	 * not in use.
3653	 *
3654	 * Note that, since this code only runs in a Hyper-V VM, Hyper-V
3655	 * together with this guest driver can guarantee that (1) The only
3656	 * domain used by Gen1 VMs for something that looks like a physical
3657	 * PCI bus (which is actually emulated by the hypervisor) is domain 0.
3658	 * (2) There will be no overlap between domains (after fixing possible
3659	 * collisions) in the same VM.
3660	 */
3661	dom_req = hdev->dev_instance.b[5] << 8 | hdev->dev_instance.b[4];
3662	dom = hv_get_dom_num(dom_req);
3663
3664	if (dom == HVPCI_DOM_INVALID) {
3665		dev_err(&hdev->device,
3666			"Unable to use dom# 0x%x or other numbers", dom_req);
3667		ret = -EINVAL;
3668		goto free_bus;
3669	}
3670
3671	if (dom != dom_req)
3672		dev_info(&hdev->device,
3673			 "PCI dom# 0x%x has collision, using 0x%x",
3674			 dom_req, dom);
3675
3676	hbus->bridge->domain_nr = dom;
3677#ifdef CONFIG_X86
3678	hbus->sysdata.domain = dom;
3679	hbus->use_calls = !!(ms_hyperv.hints & HV_X64_USE_MMIO_HYPERCALLS);
3680#elif defined(CONFIG_ARM64)
3681	/*
3682	 * Set the PCI bus parent to be the corresponding VMbus
3683	 * device. Then the VMbus device will be assigned as the
3684	 * ACPI companion in pcibios_root_bridge_prepare() and
3685	 * pci_dma_configure() will propagate device coherence
3686	 * information to devices created on the bus.
3687	 */
3688	hbus->sysdata.parent = hdev->device.parent;
3689	hbus->use_calls = false;
3690#endif
3691
3692	hbus->hdev = hdev;
 
3693	INIT_LIST_HEAD(&hbus->children);
3694	INIT_LIST_HEAD(&hbus->dr_list);
 
3695	spin_lock_init(&hbus->config_lock);
3696	spin_lock_init(&hbus->device_list_lock);
 
 
3697	hbus->wq = alloc_ordered_workqueue("hv_pci_%x", 0,
3698					   hbus->bridge->domain_nr);
3699	if (!hbus->wq) {
3700		ret = -ENOMEM;
3701		goto free_dom;
3702	}
3703
3704	hdev->channel->next_request_id_callback = vmbus_next_request_id;
3705	hdev->channel->request_addr_callback = vmbus_request_addr;
3706	hdev->channel->rqstor_size = HV_PCI_RQSTOR_SIZE;
3707
3708	ret = vmbus_open(hdev->channel, pci_ring_size, pci_ring_size, NULL, 0,
3709			 hv_pci_onchannelcallback, hbus);
3710	if (ret)
3711		goto destroy_wq;
3712
3713	hv_set_drvdata(hdev, hbus);
3714
3715	ret = hv_pci_protocol_negotiation(hdev, pci_protocol_versions,
3716					  ARRAY_SIZE(pci_protocol_versions));
3717	if (ret)
3718		goto close;
3719
3720	ret = hv_allocate_config_window(hbus);
3721	if (ret)
3722		goto close;
3723
3724	hbus->cfg_addr = ioremap(hbus->mem_config->start,
3725				 PCI_CONFIG_MMIO_LENGTH);
3726	if (!hbus->cfg_addr) {
3727		dev_err(&hdev->device,
3728			"Unable to map a virtual address for config space\n");
3729		ret = -ENOMEM;
3730		goto free_config;
3731	}
3732
3733	name = kasprintf(GFP_KERNEL, "%pUL", &hdev->dev_instance);
3734	if (!name) {
3735		ret = -ENOMEM;
3736		goto unmap;
3737	}
3738
3739	hbus->fwnode = irq_domain_alloc_named_fwnode(name);
3740	kfree(name);
3741	if (!hbus->fwnode) {
3742		ret = -ENOMEM;
3743		goto unmap;
3744	}
3745
3746	ret = hv_pcie_init_irq_domain(hbus);
3747	if (ret)
3748		goto free_fwnode;
3749
3750	ret = hv_pci_query_relations(hdev);
3751	if (ret)
3752		goto free_irq_domain;
3753
3754	mutex_lock(&hbus->state_lock);
3755
3756	ret = hv_pci_enter_d0(hdev);
3757	if (ret)
3758		goto release_state_lock;
3759
3760	ret = hv_pci_allocate_bridge_windows(hbus);
3761	if (ret)
3762		goto exit_d0;
3763
3764	ret = hv_send_resources_allocated(hdev);
3765	if (ret)
3766		goto free_windows;
3767
3768	prepopulate_bars(hbus);
3769
3770	hbus->state = hv_pcibus_probed;
3771
3772	ret = create_root_hv_pci_bus(hbus);
3773	if (ret)
3774		goto free_windows;
3775
3776	mutex_unlock(&hbus->state_lock);
3777	return 0;
3778
3779free_windows:
3780	hv_pci_free_bridge_windows(hbus);
3781exit_d0:
3782	(void) hv_pci_bus_exit(hdev, true);
3783release_state_lock:
3784	mutex_unlock(&hbus->state_lock);
3785free_irq_domain:
3786	irq_domain_remove(hbus->irq_domain);
3787free_fwnode:
3788	irq_domain_free_fwnode(hbus->fwnode);
3789unmap:
3790	iounmap(hbus->cfg_addr);
3791free_config:
3792	hv_free_config_window(hbus);
3793close:
3794	vmbus_close(hdev->channel);
3795destroy_wq:
3796	destroy_workqueue(hbus->wq);
3797free_dom:
3798	hv_put_dom_num(hbus->bridge->domain_nr);
3799free_bus:
3800	kfree(hbus);
3801	return ret;
3802}
3803
3804static int hv_pci_bus_exit(struct hv_device *hdev, bool keep_devs)
3805{
3806	struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
3807	struct vmbus_channel *chan = hdev->channel;
3808	struct {
3809		struct pci_packet teardown_packet;
3810		u8 buffer[sizeof(struct pci_message)];
3811	} pkt;
 
3812	struct hv_pci_compl comp_pkt;
3813	struct hv_pci_dev *hpdev, *tmp;
3814	unsigned long flags;
3815	u64 trans_id;
3816	int ret;
3817
3818	/*
3819	 * After the host sends the RESCIND_CHANNEL message, it doesn't
3820	 * access the per-channel ringbuffer any longer.
3821	 */
3822	if (chan->rescind)
3823		return 0;
3824
3825	if (!keep_devs) {
3826		struct list_head removed;
3827
3828		/* Move all present children to the list on stack */
3829		INIT_LIST_HEAD(&removed);
3830		spin_lock_irqsave(&hbus->device_list_lock, flags);
3831		list_for_each_entry_safe(hpdev, tmp, &hbus->children, list_entry)
3832			list_move_tail(&hpdev->list_entry, &removed);
3833		spin_unlock_irqrestore(&hbus->device_list_lock, flags);
3834
3835		/* Remove all children in the list */
3836		list_for_each_entry_safe(hpdev, tmp, &removed, list_entry) {
3837			list_del(&hpdev->list_entry);
3838			if (hpdev->pci_slot)
3839				pci_destroy_slot(hpdev->pci_slot);
3840			/* For the two refs got in new_pcichild_device() */
3841			put_pcichild(hpdev);
3842			put_pcichild(hpdev);
3843		}
3844	}
3845
3846	ret = hv_send_resources_released(hdev);
3847	if (ret) {
3848		dev_err(&hdev->device,
3849			"Couldn't send resources released packet(s)\n");
3850		return ret;
3851	}
3852
3853	memset(&pkt.teardown_packet, 0, sizeof(pkt.teardown_packet));
3854	init_completion(&comp_pkt.host_event);
3855	pkt.teardown_packet.completion_func = hv_pci_generic_compl;
3856	pkt.teardown_packet.compl_ctxt = &comp_pkt;
3857	pkt.teardown_packet.message[0].type = PCI_BUS_D0EXIT;
3858
3859	ret = vmbus_sendpacket_getid(chan, &pkt.teardown_packet.message,
3860				     sizeof(struct pci_message),
3861				     (unsigned long)&pkt.teardown_packet,
3862				     &trans_id, VM_PKT_DATA_INBAND,
3863				     VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
3864	if (ret)
3865		return ret;
3866
3867	if (wait_for_completion_timeout(&comp_pkt.host_event, 10 * HZ) == 0) {
3868		/*
3869		 * The completion packet on the stack becomes invalid after
3870		 * 'return'; remove the ID from the VMbus requestor if the
3871		 * identifier is still mapped to/associated with the packet.
3872		 *
3873		 * Cf. hv_pci_onchannelcallback().
3874		 */
3875		vmbus_request_addr_match(chan, trans_id,
3876					 (unsigned long)&pkt.teardown_packet);
3877		return -ETIMEDOUT;
3878	}
3879
3880	return 0;
3881}
3882
3883/**
3884 * hv_pci_remove() - Remove routine for this VMBus channel
3885 * @hdev:	VMBus's tracking struct for this root PCI bus
 
 
3886 */
3887static void hv_pci_remove(struct hv_device *hdev)
3888{
3889	struct hv_pcibus_device *hbus;
3890
3891	hbus = hv_get_drvdata(hdev);
3892	if (hbus->state == hv_pcibus_installed) {
3893		tasklet_disable(&hdev->channel->callback_event);
3894		hbus->state = hv_pcibus_removing;
3895		tasklet_enable(&hdev->channel->callback_event);
3896		destroy_workqueue(hbus->wq);
3897		hbus->wq = NULL;
3898		/*
3899		 * At this point, no work is running or can be scheduled
3900		 * on hbus-wq. We can't race with hv_pci_devices_present()
3901		 * or hv_pci_eject_device(), it's safe to proceed.
3902		 */
3903
3904		/* Remove the bus from PCI's point of view. */
3905		pci_lock_rescan_remove();
3906		pci_stop_root_bus(hbus->bridge->bus);
3907		hv_pci_remove_slots(hbus);
3908		pci_remove_root_bus(hbus->bridge->bus);
3909		pci_unlock_rescan_remove();
 
3910	}
3911
3912	hv_pci_bus_exit(hdev, false);
3913
3914	vmbus_close(hdev->channel);
3915
3916	iounmap(hbus->cfg_addr);
3917	hv_free_config_window(hbus);
 
3918	hv_pci_free_bridge_windows(hbus);
3919	irq_domain_remove(hbus->irq_domain);
3920	irq_domain_free_fwnode(hbus->fwnode);
3921
3922	hv_put_dom_num(hbus->bridge->domain_nr);
3923
3924	kfree(hbus);
3925}
3926
3927static int hv_pci_suspend(struct hv_device *hdev)
3928{
3929	struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
3930	enum hv_pcibus_state old_state;
3931	int ret;
3932
3933	/*
3934	 * hv_pci_suspend() must make sure there are no pending work items
3935	 * before calling vmbus_close(), since it runs in a process context
3936	 * as a callback in dpm_suspend().  When it starts to run, the channel
3937	 * callback hv_pci_onchannelcallback(), which runs in a tasklet
3938	 * context, can be still running concurrently and scheduling new work
3939	 * items onto hbus->wq in hv_pci_devices_present() and
3940	 * hv_pci_eject_device(), and the work item handlers can access the
3941	 * vmbus channel, which can be being closed by hv_pci_suspend(), e.g.
3942	 * the work item handler pci_devices_present_work() ->
3943	 * new_pcichild_device() writes to the vmbus channel.
3944	 *
3945	 * To eliminate the race, hv_pci_suspend() disables the channel
3946	 * callback tasklet, sets hbus->state to hv_pcibus_removing, and
3947	 * re-enables the tasklet. This way, when hv_pci_suspend() proceeds,
3948	 * it knows that no new work item can be scheduled, and then it flushes
3949	 * hbus->wq and safely closes the vmbus channel.
3950	 */
3951	tasklet_disable(&hdev->channel->callback_event);
3952
3953	/* Change the hbus state to prevent new work items. */
3954	old_state = hbus->state;
3955	if (hbus->state == hv_pcibus_installed)
3956		hbus->state = hv_pcibus_removing;
3957
3958	tasklet_enable(&hdev->channel->callback_event);
3959
3960	if (old_state != hv_pcibus_installed)
3961		return -EINVAL;
3962
3963	flush_workqueue(hbus->wq);
3964
3965	ret = hv_pci_bus_exit(hdev, true);
3966	if (ret)
3967		return ret;
3968
3969	vmbus_close(hdev->channel);
3970
3971	return 0;
3972}
3973
3974static int hv_pci_restore_msi_msg(struct pci_dev *pdev, void *arg)
3975{
3976	struct irq_data *irq_data;
3977	struct msi_desc *entry;
3978	int ret = 0;
3979
3980	if (!pdev->msi_enabled && !pdev->msix_enabled)
3981		return 0;
3982
3983	msi_lock_descs(&pdev->dev);
3984	msi_for_each_desc(entry, &pdev->dev, MSI_DESC_ASSOCIATED) {
3985		irq_data = irq_get_irq_data(entry->irq);
3986		if (WARN_ON_ONCE(!irq_data)) {
3987			ret = -EINVAL;
3988			break;
3989		}
3990
3991		hv_compose_msi_msg(irq_data, &entry->msg);
3992	}
3993	msi_unlock_descs(&pdev->dev);
3994
3995	return ret;
3996}
3997
3998/*
3999 * Upon resume, pci_restore_msi_state() -> ... ->  __pci_write_msi_msg()
4000 * directly writes the MSI/MSI-X registers via MMIO, but since Hyper-V
4001 * doesn't trap and emulate the MMIO accesses, here hv_compose_msi_msg()
4002 * must be used to ask Hyper-V to re-create the IOMMU Interrupt Remapping
4003 * Table entries.
4004 */
4005static void hv_pci_restore_msi_state(struct hv_pcibus_device *hbus)
4006{
4007	pci_walk_bus(hbus->bridge->bus, hv_pci_restore_msi_msg, NULL);
4008}
4009
4010static int hv_pci_resume(struct hv_device *hdev)
4011{
4012	struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
4013	enum pci_protocol_version_t version[1];
4014	int ret;
4015
4016	hbus->state = hv_pcibus_init;
4017
4018	hdev->channel->next_request_id_callback = vmbus_next_request_id;
4019	hdev->channel->request_addr_callback = vmbus_request_addr;
4020	hdev->channel->rqstor_size = HV_PCI_RQSTOR_SIZE;
4021
4022	ret = vmbus_open(hdev->channel, pci_ring_size, pci_ring_size, NULL, 0,
4023			 hv_pci_onchannelcallback, hbus);
4024	if (ret)
4025		return ret;
4026
4027	/* Only use the version that was in use before hibernation. */
4028	version[0] = hbus->protocol_version;
4029	ret = hv_pci_protocol_negotiation(hdev, version, 1);
4030	if (ret)
4031		goto out;
4032
4033	ret = hv_pci_query_relations(hdev);
4034	if (ret)
4035		goto out;
4036
4037	mutex_lock(&hbus->state_lock);
4038
4039	ret = hv_pci_enter_d0(hdev);
4040	if (ret)
4041		goto release_state_lock;
4042
4043	ret = hv_send_resources_allocated(hdev);
4044	if (ret)
4045		goto release_state_lock;
4046
4047	prepopulate_bars(hbus);
4048
4049	hv_pci_restore_msi_state(hbus);
4050
4051	hbus->state = hv_pcibus_installed;
4052	mutex_unlock(&hbus->state_lock);
4053	return 0;
4054
4055release_state_lock:
4056	mutex_unlock(&hbus->state_lock);
4057out:
4058	vmbus_close(hdev->channel);
4059	return ret;
4060}
4061
4062static const struct hv_vmbus_device_id hv_pci_id_table[] = {
4063	/* PCI Pass-through Class ID */
4064	/* 44C4F61D-4444-4400-9D52-802E27EDE19F */
4065	{ HV_PCIE_GUID, },
4066	{ },
4067};
4068
4069MODULE_DEVICE_TABLE(vmbus, hv_pci_id_table);
4070
4071static struct hv_driver hv_pci_drv = {
4072	.name		= "hv_pci",
4073	.id_table	= hv_pci_id_table,
4074	.probe		= hv_pci_probe,
4075	.remove		= hv_pci_remove,
4076	.suspend	= hv_pci_suspend,
4077	.resume		= hv_pci_resume,
4078};
4079
4080static void __exit exit_hv_pci_drv(void)
4081{
4082	vmbus_driver_unregister(&hv_pci_drv);
4083
4084	hvpci_block_ops.read_block = NULL;
4085	hvpci_block_ops.write_block = NULL;
4086	hvpci_block_ops.reg_blk_invalidate = NULL;
4087}
4088
4089static int __init init_hv_pci_drv(void)
4090{
4091	int ret;
4092
4093	if (!hv_is_hyperv_initialized())
4094		return -ENODEV;
4095
4096	ret = hv_pci_irqchip_init();
4097	if (ret)
4098		return ret;
4099
4100	/* Set the invalid domain number's bit, so it will not be used */
4101	set_bit(HVPCI_DOM_INVALID, hvpci_dom_map);
4102
4103	/* Initialize PCI block r/w interface */
4104	hvpci_block_ops.read_block = hv_read_config_block;
4105	hvpci_block_ops.write_block = hv_write_config_block;
4106	hvpci_block_ops.reg_blk_invalidate = hv_register_block_invalidate;
4107
4108	return vmbus_driver_register(&hv_pci_drv);
4109}
4110
4111module_init(init_hv_pci_drv);
4112module_exit(exit_hv_pci_drv);
4113
4114MODULE_DESCRIPTION("Hyper-V PCI");
4115MODULE_LICENSE("GPL v2");
v5.4
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (c) Microsoft Corporation.
   4 *
   5 * Author:
   6 *   Jake Oshins <jakeo@microsoft.com>
   7 *
   8 * This driver acts as a paravirtual front-end for PCI Express root buses.
   9 * When a PCI Express function (either an entire device or an SR-IOV
  10 * Virtual Function) is being passed through to the VM, this driver exposes
  11 * a new bus to the guest VM.  This is modeled as a root PCI bus because
  12 * no bridges are being exposed to the VM.  In fact, with a "Generation 2"
  13 * VM within Hyper-V, there may seem to be no PCI bus at all in the VM
  14 * until a device as been exposed using this driver.
  15 *
  16 * Each root PCI bus has its own PCI domain, which is called "Segment" in
  17 * the PCI Firmware Specifications.  Thus while each device passed through
  18 * to the VM using this front-end will appear at "device 0", the domain will
  19 * be unique.  Typically, each bus will have one PCI function on it, though
  20 * this driver does support more than one.
  21 *
  22 * In order to map the interrupts from the device through to the guest VM,
  23 * this driver also implements an IRQ Domain, which handles interrupts (either
  24 * MSI or MSI-X) associated with the functions on the bus.  As interrupts are
  25 * set up, torn down, or reaffined, this driver communicates with the
  26 * underlying hypervisor to adjust the mappings in the I/O MMU so that each
  27 * interrupt will be delivered to the correct virtual processor at the right
  28 * vector.  This driver does not support level-triggered (line-based)
  29 * interrupts, and will report that the Interrupt Line register in the
  30 * function's configuration space is zero.
  31 *
  32 * The rest of this driver mostly maps PCI concepts onto underlying Hyper-V
  33 * facilities.  For instance, the configuration space of a function exposed
  34 * by Hyper-V is mapped into a single page of memory space, and the
  35 * read and write handlers for config space must be aware of this mechanism.
  36 * Similarly, device setup and teardown involves messages sent to and from
  37 * the PCI back-end driver in Hyper-V.
  38 */
  39
  40#include <linux/kernel.h>
  41#include <linux/module.h>
  42#include <linux/pci.h>
 
  43#include <linux/delay.h>
  44#include <linux/semaphore.h>
  45#include <linux/irqdomain.h>
  46#include <asm/irqdomain.h>
  47#include <asm/apic.h>
  48#include <linux/irq.h>
  49#include <linux/msi.h>
  50#include <linux/hyperv.h>
  51#include <linux/refcount.h>
 
 
 
  52#include <asm/mshyperv.h>
  53
  54/*
  55 * Protocol versions. The low word is the minor version, the high word the
  56 * major version.
  57 */
  58
  59#define PCI_MAKE_VERSION(major, minor) ((u32)(((major) << 16) | (minor)))
  60#define PCI_MAJOR_VERSION(version) ((u32)(version) >> 16)
  61#define PCI_MINOR_VERSION(version) ((u32)(version) & 0xff)
  62
  63enum pci_protocol_version_t {
  64	PCI_PROTOCOL_VERSION_1_1 = PCI_MAKE_VERSION(1, 1),	/* Win10 */
  65	PCI_PROTOCOL_VERSION_1_2 = PCI_MAKE_VERSION(1, 2),	/* RS1 */
 
 
  66};
  67
  68#define CPU_AFFINITY_ALL	-1ULL
  69
  70/*
  71 * Supported protocol versions in the order of probing - highest go
  72 * first.
  73 */
  74static enum pci_protocol_version_t pci_protocol_versions[] = {
 
 
  75	PCI_PROTOCOL_VERSION_1_2,
  76	PCI_PROTOCOL_VERSION_1_1,
  77};
  78
  79/*
  80 * Protocol version negotiated by hv_pci_protocol_negotiation().
  81 */
  82static enum pci_protocol_version_t pci_protocol_version;
  83
  84#define PCI_CONFIG_MMIO_LENGTH	0x2000
  85#define CFG_PAGE_OFFSET 0x1000
  86#define CFG_PAGE_SIZE (PCI_CONFIG_MMIO_LENGTH - CFG_PAGE_OFFSET)
  87
  88#define MAX_SUPPORTED_MSI_MESSAGES 0x400
  89
  90#define STATUS_REVISION_MISMATCH 0xC0000059
  91
  92/* space for 32bit serial number as string */
  93#define SLOT_NAME_SIZE 11
  94
  95/*
 
 
 
 
 
 
 
  96 * Message Types
  97 */
  98
  99enum pci_message_type {
 100	/*
 101	 * Version 1.1
 102	 */
 103	PCI_MESSAGE_BASE                = 0x42490000,
 104	PCI_BUS_RELATIONS               = PCI_MESSAGE_BASE + 0,
 105	PCI_QUERY_BUS_RELATIONS         = PCI_MESSAGE_BASE + 1,
 106	PCI_POWER_STATE_CHANGE          = PCI_MESSAGE_BASE + 4,
 107	PCI_QUERY_RESOURCE_REQUIREMENTS = PCI_MESSAGE_BASE + 5,
 108	PCI_QUERY_RESOURCE_RESOURCES    = PCI_MESSAGE_BASE + 6,
 109	PCI_BUS_D0ENTRY                 = PCI_MESSAGE_BASE + 7,
 110	PCI_BUS_D0EXIT                  = PCI_MESSAGE_BASE + 8,
 111	PCI_READ_BLOCK                  = PCI_MESSAGE_BASE + 9,
 112	PCI_WRITE_BLOCK                 = PCI_MESSAGE_BASE + 0xA,
 113	PCI_EJECT                       = PCI_MESSAGE_BASE + 0xB,
 114	PCI_QUERY_STOP                  = PCI_MESSAGE_BASE + 0xC,
 115	PCI_REENABLE                    = PCI_MESSAGE_BASE + 0xD,
 116	PCI_QUERY_STOP_FAILED           = PCI_MESSAGE_BASE + 0xE,
 117	PCI_EJECTION_COMPLETE           = PCI_MESSAGE_BASE + 0xF,
 118	PCI_RESOURCES_ASSIGNED          = PCI_MESSAGE_BASE + 0x10,
 119	PCI_RESOURCES_RELEASED          = PCI_MESSAGE_BASE + 0x11,
 120	PCI_INVALIDATE_BLOCK            = PCI_MESSAGE_BASE + 0x12,
 121	PCI_QUERY_PROTOCOL_VERSION      = PCI_MESSAGE_BASE + 0x13,
 122	PCI_CREATE_INTERRUPT_MESSAGE    = PCI_MESSAGE_BASE + 0x14,
 123	PCI_DELETE_INTERRUPT_MESSAGE    = PCI_MESSAGE_BASE + 0x15,
 124	PCI_RESOURCES_ASSIGNED2		= PCI_MESSAGE_BASE + 0x16,
 125	PCI_CREATE_INTERRUPT_MESSAGE2	= PCI_MESSAGE_BASE + 0x17,
 126	PCI_DELETE_INTERRUPT_MESSAGE2	= PCI_MESSAGE_BASE + 0x18, /* unused */
 
 
 
 127	PCI_MESSAGE_MAXIMUM
 128};
 129
 130/*
 131 * Structures defining the virtual PCI Express protocol.
 132 */
 133
 134union pci_version {
 135	struct {
 136		u16 minor_version;
 137		u16 major_version;
 138	} parts;
 139	u32 version;
 140} __packed;
 141
 142/*
 143 * Function numbers are 8-bits wide on Express, as interpreted through ARI,
 144 * which is all this driver does.  This representation is the one used in
 145 * Windows, which is what is expected when sending this back and forth with
 146 * the Hyper-V parent partition.
 147 */
 148union win_slot_encoding {
 149	struct {
 150		u32	dev:5;
 151		u32	func:3;
 152		u32	reserved:24;
 153	} bits;
 154	u32 slot;
 155} __packed;
 156
 157/*
 158 * Pretty much as defined in the PCI Specifications.
 159 */
 160struct pci_function_description {
 161	u16	v_id;	/* vendor ID */
 162	u16	d_id;	/* device ID */
 163	u8	rev;
 164	u8	prog_intf;
 165	u8	subclass;
 166	u8	base_class;
 167	u32	subsystem_id;
 168	union win_slot_encoding win_slot;
 169	u32	ser;	/* serial number */
 170} __packed;
 171
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 172/**
 173 * struct hv_msi_desc
 174 * @vector:		IDT entry
 175 * @delivery_mode:	As defined in Intel's Programmer's
 176 *			Reference Manual, Volume 3, Chapter 8.
 177 * @vector_count:	Number of contiguous entries in the
 178 *			Interrupt Descriptor Table that are
 179 *			occupied by this Message-Signaled
 180 *			Interrupt. For "MSI", as first defined
 181 *			in PCI 2.2, this can be between 1 and
 182 *			32. For "MSI-X," as first defined in PCI
 183 *			3.0, this must be 1, as each MSI-X table
 184 *			entry would have its own descriptor.
 185 * @reserved:		Empty space
 186 * @cpu_mask:		All the target virtual processors.
 187 */
 188struct hv_msi_desc {
 189	u8	vector;
 190	u8	delivery_mode;
 191	u16	vector_count;
 192	u32	reserved;
 193	u64	cpu_mask;
 194} __packed;
 195
 196/**
 197 * struct hv_msi_desc2 - 1.2 version of hv_msi_desc
 198 * @vector:		IDT entry
 199 * @delivery_mode:	As defined in Intel's Programmer's
 200 *			Reference Manual, Volume 3, Chapter 8.
 201 * @vector_count:	Number of contiguous entries in the
 202 *			Interrupt Descriptor Table that are
 203 *			occupied by this Message-Signaled
 204 *			Interrupt. For "MSI", as first defined
 205 *			in PCI 2.2, this can be between 1 and
 206 *			32. For "MSI-X," as first defined in PCI
 207 *			3.0, this must be 1, as each MSI-X table
 208 *			entry would have its own descriptor.
 209 * @processor_count:	number of bits enabled in array.
 210 * @processor_array:	All the target virtual processors.
 211 */
 212struct hv_msi_desc2 {
 213	u8	vector;
 214	u8	delivery_mode;
 215	u16	vector_count;
 216	u16	processor_count;
 217	u16	processor_array[32];
 218} __packed;
 219
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 220/**
 221 * struct tran_int_desc
 222 * @reserved:		unused, padding
 223 * @vector_count:	same as in hv_msi_desc
 224 * @data:		This is the "data payload" value that is
 225 *			written by the device when it generates
 226 *			a message-signaled interrupt, either MSI
 227 *			or MSI-X.
 228 * @address:		This is the address to which the data
 229 *			payload is written on interrupt
 230 *			generation.
 231 */
 232struct tran_int_desc {
 233	u16	reserved;
 234	u16	vector_count;
 235	u32	data;
 236	u64	address;
 237} __packed;
 238
 239/*
 240 * A generic message format for virtual PCI.
 241 * Specific message formats are defined later in the file.
 242 */
 243
 244struct pci_message {
 245	u32 type;
 246} __packed;
 247
 248struct pci_child_message {
 249	struct pci_message message_type;
 250	union win_slot_encoding wslot;
 251} __packed;
 252
 253struct pci_incoming_message {
 254	struct vmpacket_descriptor hdr;
 255	struct pci_message message_type;
 256} __packed;
 257
 258struct pci_response {
 259	struct vmpacket_descriptor hdr;
 260	s32 status;			/* negative values are failures */
 261} __packed;
 262
 263struct pci_packet {
 264	void (*completion_func)(void *context, struct pci_response *resp,
 265				int resp_packet_size);
 266	void *compl_ctxt;
 267
 268	struct pci_message message[0];
 269};
 270
 271/*
 272 * Specific message types supporting the PCI protocol.
 273 */
 274
 275/*
 276 * Version negotiation message. Sent from the guest to the host.
 277 * The guest is free to try different versions until the host
 278 * accepts the version.
 279 *
 280 * pci_version: The protocol version requested.
 281 * is_last_attempt: If TRUE, this is the last version guest will request.
 282 * reservedz: Reserved field, set to zero.
 283 */
 284
 285struct pci_version_request {
 286	struct pci_message message_type;
 287	u32 protocol_version;
 288} __packed;
 289
 290/*
 291 * Bus D0 Entry.  This is sent from the guest to the host when the virtual
 292 * bus (PCI Express port) is ready for action.
 293 */
 294
 295struct pci_bus_d0_entry {
 296	struct pci_message message_type;
 297	u32 reserved;
 298	u64 mmio_base;
 299} __packed;
 300
 301struct pci_bus_relations {
 302	struct pci_incoming_message incoming;
 303	u32 device_count;
 304	struct pci_function_description func[0];
 
 
 
 
 
 
 305} __packed;
 306
 307struct pci_q_res_req_response {
 308	struct vmpacket_descriptor hdr;
 309	s32 status;			/* negative values are failures */
 310	u32 probed_bar[6];
 311} __packed;
 312
 313struct pci_set_power {
 314	struct pci_message message_type;
 315	union win_slot_encoding wslot;
 316	u32 power_state;		/* In Windows terms */
 317	u32 reserved;
 318} __packed;
 319
 320struct pci_set_power_response {
 321	struct vmpacket_descriptor hdr;
 322	s32 status;			/* negative values are failures */
 323	union win_slot_encoding wslot;
 324	u32 resultant_state;		/* In Windows terms */
 325	u32 reserved;
 326} __packed;
 327
 328struct pci_resources_assigned {
 329	struct pci_message message_type;
 330	union win_slot_encoding wslot;
 331	u8 memory_range[0x14][6];	/* not used here */
 332	u32 msi_descriptors;
 333	u32 reserved[4];
 334} __packed;
 335
 336struct pci_resources_assigned2 {
 337	struct pci_message message_type;
 338	union win_slot_encoding wslot;
 339	u8 memory_range[0x14][6];	/* not used here */
 340	u32 msi_descriptor_count;
 341	u8 reserved[70];
 342} __packed;
 343
 344struct pci_create_interrupt {
 345	struct pci_message message_type;
 346	union win_slot_encoding wslot;
 347	struct hv_msi_desc int_desc;
 348} __packed;
 349
 350struct pci_create_int_response {
 351	struct pci_response response;
 352	u32 reserved;
 353	struct tran_int_desc int_desc;
 354} __packed;
 355
 356struct pci_create_interrupt2 {
 357	struct pci_message message_type;
 358	union win_slot_encoding wslot;
 359	struct hv_msi_desc2 int_desc;
 360} __packed;
 361
 
 
 
 
 
 
 362struct pci_delete_interrupt {
 363	struct pci_message message_type;
 364	union win_slot_encoding wslot;
 365	struct tran_int_desc int_desc;
 366} __packed;
 367
 368/*
 369 * Note: the VM must pass a valid block id, wslot and bytes_requested.
 370 */
 371struct pci_read_block {
 372	struct pci_message message_type;
 373	u32 block_id;
 374	union win_slot_encoding wslot;
 375	u32 bytes_requested;
 376} __packed;
 377
 378struct pci_read_block_response {
 379	struct vmpacket_descriptor hdr;
 380	u32 status;
 381	u8 bytes[HV_CONFIG_BLOCK_SIZE_MAX];
 382} __packed;
 383
 384/*
 385 * Note: the VM must pass a valid block id, wslot and byte_count.
 386 */
 387struct pci_write_block {
 388	struct pci_message message_type;
 389	u32 block_id;
 390	union win_slot_encoding wslot;
 391	u32 byte_count;
 392	u8 bytes[HV_CONFIG_BLOCK_SIZE_MAX];
 393} __packed;
 394
 395struct pci_dev_inval_block {
 396	struct pci_incoming_message incoming;
 397	union win_slot_encoding wslot;
 398	u64 block_mask;
 399} __packed;
 400
 401struct pci_dev_incoming {
 402	struct pci_incoming_message incoming;
 403	union win_slot_encoding wslot;
 404} __packed;
 405
 406struct pci_eject_response {
 407	struct pci_message message_type;
 408	union win_slot_encoding wslot;
 409	u32 status;
 410} __packed;
 411
 412static int pci_ring_size = (4 * PAGE_SIZE);
 413
 414/*
 415 * Definitions or interrupt steering hypercall.
 416 */
 417#define HV_PARTITION_ID_SELF		((u64)-1)
 418#define HVCALL_RETARGET_INTERRUPT	0x7e
 419
 420struct hv_interrupt_entry {
 421	u32	source;			/* 1 for MSI(-X) */
 422	u32	reserved1;
 423	u32	address;
 424	u32	data;
 425};
 426
 427/*
 428 * flags for hv_device_interrupt_target.flags
 429 */
 430#define HV_DEVICE_INTERRUPT_TARGET_MULTICAST		1
 431#define HV_DEVICE_INTERRUPT_TARGET_PROCESSOR_SET	2
 432
 433struct hv_device_interrupt_target {
 434	u32	vector;
 435	u32	flags;
 436	union {
 437		u64		 vp_mask;
 438		struct hv_vpset vp_set;
 439	};
 440};
 441
 442struct retarget_msi_interrupt {
 443	u64	partition_id;		/* use "self" */
 444	u64	device_id;
 445	struct hv_interrupt_entry int_entry;
 446	u64	reserved2;
 447	struct hv_device_interrupt_target int_target;
 448} __packed __aligned(8);
 449
 450/*
 451 * Driver specific state.
 452 */
 453
 454enum hv_pcibus_state {
 455	hv_pcibus_init = 0,
 456	hv_pcibus_probed,
 457	hv_pcibus_installed,
 458	hv_pcibus_removed,
 459	hv_pcibus_maximum
 460};
 461
 462struct hv_pcibus_device {
 
 463	struct pci_sysdata sysdata;
 
 
 
 
 
 
 
 
 
 464	enum hv_pcibus_state state;
 465	refcount_t remove_lock;
 466	struct hv_device *hdev;
 467	resource_size_t low_mmio_space;
 468	resource_size_t high_mmio_space;
 469	struct resource *mem_config;
 470	struct resource *low_mmio_res;
 471	struct resource *high_mmio_res;
 472	struct completion *survey_event;
 473	struct completion remove_event;
 474	struct pci_bus *pci_bus;
 475	spinlock_t config_lock;	/* Avoid two threads writing index page */
 476	spinlock_t device_list_lock;	/* Protect lists below */
 477	void __iomem *cfg_addr;
 478
 479	struct list_head resources_for_children;
 480
 481	struct list_head children;
 482	struct list_head dr_list;
 483
 484	struct msi_domain_info msi_info;
 485	struct msi_controller msi_chip;
 486	struct irq_domain *irq_domain;
 487
 488	spinlock_t retarget_msi_interrupt_lock;
 489
 490	struct workqueue_struct *wq;
 491
 492	/* hypercall arg, must not cross page boundary */
 493	struct retarget_msi_interrupt retarget_msi_interrupt_params;
 494
 495	/*
 496	 * Don't put anything here: retarget_msi_interrupt_params must be last
 497	 */
 498};
 499
 500/*
 501 * Tracks "Device Relations" messages from the host, which must be both
 502 * processed in order and deferred so that they don't run in the context
 503 * of the incoming packet callback.
 504 */
 505struct hv_dr_work {
 506	struct work_struct wrk;
 507	struct hv_pcibus_device *bus;
 508};
 509
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 510struct hv_dr_state {
 511	struct list_head list_entry;
 512	u32 device_count;
 513	struct pci_function_description func[0];
 514};
 515
 516enum hv_pcichild_state {
 517	hv_pcichild_init = 0,
 518	hv_pcichild_requirements,
 519	hv_pcichild_resourced,
 520	hv_pcichild_ejecting,
 521	hv_pcichild_maximum
 522};
 523
 524struct hv_pci_dev {
 525	/* List protected by pci_rescan_remove_lock */
 526	struct list_head list_entry;
 527	refcount_t refs;
 528	enum hv_pcichild_state state;
 529	struct pci_slot *pci_slot;
 530	struct pci_function_description desc;
 531	bool reported_missing;
 532	struct hv_pcibus_device *hbus;
 533	struct work_struct wrk;
 534
 535	void (*block_invalidate)(void *context, u64 block_mask);
 536	void *invalidate_context;
 537
 538	/*
 539	 * What would be observed if one wrote 0xFFFFFFFF to a BAR and then
 540	 * read it back, for each of the BAR offsets within config space.
 541	 */
 542	u32 probed_bar[6];
 543};
 544
 545struct hv_pci_compl {
 546	struct completion host_event;
 547	s32 completion_status;
 548};
 549
 550static void hv_pci_onchannelcallback(void *context);
 551
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 552/**
 553 * hv_pci_generic_compl() - Invoked for a completion packet
 554 * @context:		Set up by the sender of the packet.
 555 * @resp:		The response packet
 556 * @resp_packet_size:	Size in bytes of the packet
 557 *
 558 * This function is used to trigger an event and report status
 559 * for any message for which the completion packet contains a
 560 * status and nothing else.
 561 */
 562static void hv_pci_generic_compl(void *context, struct pci_response *resp,
 563				 int resp_packet_size)
 564{
 565	struct hv_pci_compl *comp_pkt = context;
 566
 567	if (resp_packet_size >= offsetofend(struct pci_response, status))
 568		comp_pkt->completion_status = resp->status;
 569	else
 570		comp_pkt->completion_status = -1;
 571
 572	complete(&comp_pkt->host_event);
 573}
 574
 575static struct hv_pci_dev *get_pcichild_wslot(struct hv_pcibus_device *hbus,
 576						u32 wslot);
 577
 578static void get_pcichild(struct hv_pci_dev *hpdev)
 579{
 580	refcount_inc(&hpdev->refs);
 581}
 582
 583static void put_pcichild(struct hv_pci_dev *hpdev)
 584{
 585	if (refcount_dec_and_test(&hpdev->refs))
 586		kfree(hpdev);
 587}
 588
 589static void get_hvpcibus(struct hv_pcibus_device *hv_pcibus);
 590static void put_hvpcibus(struct hv_pcibus_device *hv_pcibus);
 591
 592/*
 593 * There is no good way to get notified from vmbus_onoffer_rescind(),
 594 * so let's use polling here, since this is not a hot path.
 595 */
 596static int wait_for_response(struct hv_device *hdev,
 597			     struct completion *comp)
 598{
 599	while (true) {
 600		if (hdev->channel->rescind) {
 601			dev_warn_once(&hdev->device, "The device is gone.\n");
 602			return -ENODEV;
 603		}
 604
 605		if (wait_for_completion_timeout(comp, HZ / 10))
 606			break;
 607	}
 608
 609	return 0;
 610}
 611
 612/**
 613 * devfn_to_wslot() - Convert from Linux PCI slot to Windows
 614 * @devfn:	The Linux representation of PCI slot
 615 *
 616 * Windows uses a slightly different representation of PCI slot.
 617 *
 618 * Return: The Windows representation
 619 */
 620static u32 devfn_to_wslot(int devfn)
 621{
 622	union win_slot_encoding wslot;
 623
 624	wslot.slot = 0;
 625	wslot.bits.dev = PCI_SLOT(devfn);
 626	wslot.bits.func = PCI_FUNC(devfn);
 627
 628	return wslot.slot;
 629}
 630
 631/**
 632 * wslot_to_devfn() - Convert from Windows PCI slot to Linux
 633 * @wslot:	The Windows representation of PCI slot
 634 *
 635 * Windows uses a slightly different representation of PCI slot.
 636 *
 637 * Return: The Linux representation
 638 */
 639static int wslot_to_devfn(u32 wslot)
 640{
 641	union win_slot_encoding slot_no;
 642
 643	slot_no.slot = wslot;
 644	return PCI_DEVFN(slot_no.bits.dev, slot_no.bits.func);
 645}
 646
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 647/*
 648 * PCI Configuration Space for these root PCI buses is implemented as a pair
 649 * of pages in memory-mapped I/O space.  Writing to the first page chooses
 650 * the PCI function being written or read.  Once the first page has been
 651 * written to, the following page maps in the entire configuration space of
 652 * the function.
 653 */
 654
 655/**
 656 * _hv_pcifront_read_config() - Internal PCI config read
 657 * @hpdev:	The PCI driver's representation of the device
 658 * @where:	Offset within config space
 659 * @size:	Size of the transfer
 660 * @val:	Pointer to the buffer receiving the data
 661 */
 662static void _hv_pcifront_read_config(struct hv_pci_dev *hpdev, int where,
 663				     int size, u32 *val)
 664{
 
 
 
 665	unsigned long flags;
 666	void __iomem *addr = hpdev->hbus->cfg_addr + CFG_PAGE_OFFSET + where;
 667
 668	/*
 669	 * If the attempt is to read the IDs or the ROM BAR, simulate that.
 670	 */
 671	if (where + size <= PCI_COMMAND) {
 672		memcpy(val, ((u8 *)&hpdev->desc.v_id) + where, size);
 673	} else if (where >= PCI_CLASS_REVISION && where + size <=
 674		   PCI_CACHE_LINE_SIZE) {
 675		memcpy(val, ((u8 *)&hpdev->desc.rev) + where -
 676		       PCI_CLASS_REVISION, size);
 677	} else if (where >= PCI_SUBSYSTEM_VENDOR_ID && where + size <=
 678		   PCI_ROM_ADDRESS) {
 679		memcpy(val, (u8 *)&hpdev->desc.subsystem_id + where -
 680		       PCI_SUBSYSTEM_VENDOR_ID, size);
 681	} else if (where >= PCI_ROM_ADDRESS && where + size <=
 682		   PCI_CAPABILITY_LIST) {
 683		/* ROM BARs are unimplemented */
 684		*val = 0;
 685	} else if (where >= PCI_INTERRUPT_LINE && where + size <=
 686		   PCI_INTERRUPT_PIN) {
 687		/*
 688		 * Interrupt Line and Interrupt PIN are hard-wired to zero
 689		 * because this front-end only supports message-signaled
 690		 * interrupts.
 691		 */
 692		*val = 0;
 693	} else if (where + size <= CFG_PAGE_SIZE) {
 694		spin_lock_irqsave(&hpdev->hbus->config_lock, flags);
 695		/* Choose the function to be read. (See comment above) */
 696		writel(hpdev->desc.win_slot.slot, hpdev->hbus->cfg_addr);
 697		/* Make sure the function was chosen before we start reading. */
 698		mb();
 699		/* Read from that function's config space. */
 700		switch (size) {
 701		case 1:
 702			*val = readb(addr);
 703			break;
 704		case 2:
 705			*val = readw(addr);
 706			break;
 707		default:
 708			*val = readl(addr);
 709			break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 710		}
 711		/*
 712		 * Make sure the read was done before we release the spinlock
 713		 * allowing consecutive reads/writes.
 714		 */
 715		mb();
 716		spin_unlock_irqrestore(&hpdev->hbus->config_lock, flags);
 717	} else {
 718		dev_err(&hpdev->hbus->hdev->device,
 719			"Attempt to read beyond a function's config space.\n");
 720	}
 721}
 722
 723static u16 hv_pcifront_get_vendor_id(struct hv_pci_dev *hpdev)
 724{
 
 
 
 725	u16 ret;
 726	unsigned long flags;
 727	void __iomem *addr = hpdev->hbus->cfg_addr + CFG_PAGE_OFFSET +
 728			     PCI_VENDOR_ID;
 729
 730	spin_lock_irqsave(&hpdev->hbus->config_lock, flags);
 731
 732	/* Choose the function to be read. (See comment above) */
 733	writel(hpdev->desc.win_slot.slot, hpdev->hbus->cfg_addr);
 734	/* Make sure the function was chosen before we start reading. */
 735	mb();
 736	/* Read from that function's config space. */
 737	ret = readw(addr);
 738	/*
 739	 * mb() is not required here, because the spin_unlock_irqrestore()
 740	 * is a barrier.
 741	 */
 
 
 
 
 
 
 
 
 
 
 
 
 742
 743	spin_unlock_irqrestore(&hpdev->hbus->config_lock, flags);
 744
 745	return ret;
 746}
 747
 748/**
 749 * _hv_pcifront_write_config() - Internal PCI config write
 750 * @hpdev:	The PCI driver's representation of the device
 751 * @where:	Offset within config space
 752 * @size:	Size of the transfer
 753 * @val:	The data being transferred
 754 */
 755static void _hv_pcifront_write_config(struct hv_pci_dev *hpdev, int where,
 756				      int size, u32 val)
 757{
 
 
 
 758	unsigned long flags;
 759	void __iomem *addr = hpdev->hbus->cfg_addr + CFG_PAGE_OFFSET + where;
 760
 761	if (where >= PCI_SUBSYSTEM_VENDOR_ID &&
 762	    where + size <= PCI_CAPABILITY_LIST) {
 763		/* SSIDs and ROM BARs are read-only */
 764	} else if (where >= PCI_COMMAND && where + size <= CFG_PAGE_SIZE) {
 765		spin_lock_irqsave(&hpdev->hbus->config_lock, flags);
 766		/* Choose the function to be written. (See comment above) */
 767		writel(hpdev->desc.win_slot.slot, hpdev->hbus->cfg_addr);
 768		/* Make sure the function was chosen before we start writing. */
 769		wmb();
 770		/* Write to that function's config space. */
 771		switch (size) {
 772		case 1:
 773			writeb(val, addr);
 774			break;
 775		case 2:
 776			writew(val, addr);
 777			break;
 778		default:
 779			writel(val, addr);
 780			break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 781		}
 782		/*
 783		 * Make sure the write was done before we release the spinlock
 784		 * allowing consecutive reads/writes.
 785		 */
 786		mb();
 787		spin_unlock_irqrestore(&hpdev->hbus->config_lock, flags);
 788	} else {
 789		dev_err(&hpdev->hbus->hdev->device,
 790			"Attempt to write beyond a function's config space.\n");
 791	}
 792}
 793
 794/**
 795 * hv_pcifront_read_config() - Read configuration space
 796 * @bus: PCI Bus structure
 797 * @devfn: Device/function
 798 * @where: Offset from base
 799 * @size: Byte/word/dword
 800 * @val: Value to be read
 801 *
 802 * Return: PCIBIOS_SUCCESSFUL on success
 803 *	   PCIBIOS_DEVICE_NOT_FOUND on failure
 804 */
 805static int hv_pcifront_read_config(struct pci_bus *bus, unsigned int devfn,
 806				   int where, int size, u32 *val)
 807{
 808	struct hv_pcibus_device *hbus =
 809		container_of(bus->sysdata, struct hv_pcibus_device, sysdata);
 810	struct hv_pci_dev *hpdev;
 811
 812	hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(devfn));
 813	if (!hpdev)
 814		return PCIBIOS_DEVICE_NOT_FOUND;
 815
 816	_hv_pcifront_read_config(hpdev, where, size, val);
 817
 818	put_pcichild(hpdev);
 819	return PCIBIOS_SUCCESSFUL;
 820}
 821
 822/**
 823 * hv_pcifront_write_config() - Write configuration space
 824 * @bus: PCI Bus structure
 825 * @devfn: Device/function
 826 * @where: Offset from base
 827 * @size: Byte/word/dword
 828 * @val: Value to be written to device
 829 *
 830 * Return: PCIBIOS_SUCCESSFUL on success
 831 *	   PCIBIOS_DEVICE_NOT_FOUND on failure
 832 */
 833static int hv_pcifront_write_config(struct pci_bus *bus, unsigned int devfn,
 834				    int where, int size, u32 val)
 835{
 836	struct hv_pcibus_device *hbus =
 837	    container_of(bus->sysdata, struct hv_pcibus_device, sysdata);
 838	struct hv_pci_dev *hpdev;
 839
 840	hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(devfn));
 841	if (!hpdev)
 842		return PCIBIOS_DEVICE_NOT_FOUND;
 843
 844	_hv_pcifront_write_config(hpdev, where, size, val);
 845
 846	put_pcichild(hpdev);
 847	return PCIBIOS_SUCCESSFUL;
 848}
 849
 850/* PCIe operations */
 851static struct pci_ops hv_pcifront_ops = {
 852	.read  = hv_pcifront_read_config,
 853	.write = hv_pcifront_write_config,
 854};
 855
 856/*
 857 * Paravirtual backchannel
 858 *
 859 * Hyper-V SR-IOV provides a backchannel mechanism in software for
 860 * communication between a VF driver and a PF driver.  These
 861 * "configuration blocks" are similar in concept to PCI configuration space,
 862 * but instead of doing reads and writes in 32-bit chunks through a very slow
 863 * path, packets of up to 128 bytes can be sent or received asynchronously.
 864 *
 865 * Nearly every SR-IOV device contains just such a communications channel in
 866 * hardware, so using this one in software is usually optional.  Using the
 867 * software channel, however, allows driver implementers to leverage software
 868 * tools that fuzz the communications channel looking for vulnerabilities.
 869 *
 870 * The usage model for these packets puts the responsibility for reading or
 871 * writing on the VF driver.  The VF driver sends a read or a write packet,
 872 * indicating which "block" is being referred to by number.
 873 *
 874 * If the PF driver wishes to initiate communication, it can "invalidate" one or
 875 * more of the first 64 blocks.  This invalidation is delivered via a callback
 876 * supplied by the VF driver by this driver.
 877 *
 878 * No protocol is implied, except that supplied by the PF and VF drivers.
 879 */
 880
 881struct hv_read_config_compl {
 882	struct hv_pci_compl comp_pkt;
 883	void *buf;
 884	unsigned int len;
 885	unsigned int bytes_returned;
 886};
 887
 888/**
 889 * hv_pci_read_config_compl() - Invoked when a response packet
 890 * for a read config block operation arrives.
 891 * @context:		Identifies the read config operation
 892 * @resp:		The response packet itself
 893 * @resp_packet_size:	Size in bytes of the response packet
 894 */
 895static void hv_pci_read_config_compl(void *context, struct pci_response *resp,
 896				     int resp_packet_size)
 897{
 898	struct hv_read_config_compl *comp = context;
 899	struct pci_read_block_response *read_resp =
 900		(struct pci_read_block_response *)resp;
 901	unsigned int data_len, hdr_len;
 902
 903	hdr_len = offsetof(struct pci_read_block_response, bytes);
 904	if (resp_packet_size < hdr_len) {
 905		comp->comp_pkt.completion_status = -1;
 906		goto out;
 907	}
 908
 909	data_len = resp_packet_size - hdr_len;
 910	if (data_len > 0 && read_resp->status == 0) {
 911		comp->bytes_returned = min(comp->len, data_len);
 912		memcpy(comp->buf, read_resp->bytes, comp->bytes_returned);
 913	} else {
 914		comp->bytes_returned = 0;
 915	}
 916
 917	comp->comp_pkt.completion_status = read_resp->status;
 918out:
 919	complete(&comp->comp_pkt.host_event);
 920}
 921
 922/**
 923 * hv_read_config_block() - Sends a read config block request to
 924 * the back-end driver running in the Hyper-V parent partition.
 925 * @pdev:		The PCI driver's representation for this device.
 926 * @buf:		Buffer into which the config block will be copied.
 927 * @len:		Size in bytes of buf.
 928 * @block_id:		Identifies the config block which has been requested.
 929 * @bytes_returned:	Size which came back from the back-end driver.
 930 *
 931 * Return: 0 on success, -errno on failure
 932 */
 933int hv_read_config_block(struct pci_dev *pdev, void *buf, unsigned int len,
 934			 unsigned int block_id, unsigned int *bytes_returned)
 
 935{
 936	struct hv_pcibus_device *hbus =
 937		container_of(pdev->bus->sysdata, struct hv_pcibus_device,
 938			     sysdata);
 939	struct {
 940		struct pci_packet pkt;
 941		char buf[sizeof(struct pci_read_block)];
 942	} pkt;
 943	struct hv_read_config_compl comp_pkt;
 944	struct pci_read_block *read_blk;
 945	int ret;
 946
 947	if (len == 0 || len > HV_CONFIG_BLOCK_SIZE_MAX)
 948		return -EINVAL;
 949
 950	init_completion(&comp_pkt.comp_pkt.host_event);
 951	comp_pkt.buf = buf;
 952	comp_pkt.len = len;
 953
 954	memset(&pkt, 0, sizeof(pkt));
 955	pkt.pkt.completion_func = hv_pci_read_config_compl;
 956	pkt.pkt.compl_ctxt = &comp_pkt;
 957	read_blk = (struct pci_read_block *)&pkt.pkt.message;
 958	read_blk->message_type.type = PCI_READ_BLOCK;
 959	read_blk->wslot.slot = devfn_to_wslot(pdev->devfn);
 960	read_blk->block_id = block_id;
 961	read_blk->bytes_requested = len;
 962
 963	ret = vmbus_sendpacket(hbus->hdev->channel, read_blk,
 964			       sizeof(*read_blk), (unsigned long)&pkt.pkt,
 965			       VM_PKT_DATA_INBAND,
 966			       VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
 967	if (ret)
 968		return ret;
 969
 970	ret = wait_for_response(hbus->hdev, &comp_pkt.comp_pkt.host_event);
 971	if (ret)
 972		return ret;
 973
 974	if (comp_pkt.comp_pkt.completion_status != 0 ||
 975	    comp_pkt.bytes_returned == 0) {
 976		dev_err(&hbus->hdev->device,
 977			"Read Config Block failed: 0x%x, bytes_returned=%d\n",
 978			comp_pkt.comp_pkt.completion_status,
 979			comp_pkt.bytes_returned);
 980		return -EIO;
 981	}
 982
 983	*bytes_returned = comp_pkt.bytes_returned;
 984	return 0;
 985}
 986
 987/**
 988 * hv_pci_write_config_compl() - Invoked when a response packet for a write
 989 * config block operation arrives.
 990 * @context:		Identifies the write config operation
 991 * @resp:		The response packet itself
 992 * @resp_packet_size:	Size in bytes of the response packet
 993 */
 994static void hv_pci_write_config_compl(void *context, struct pci_response *resp,
 995				      int resp_packet_size)
 996{
 997	struct hv_pci_compl *comp_pkt = context;
 998
 999	comp_pkt->completion_status = resp->status;
1000	complete(&comp_pkt->host_event);
1001}
1002
1003/**
1004 * hv_write_config_block() - Sends a write config block request to the
1005 * back-end driver running in the Hyper-V parent partition.
1006 * @pdev:		The PCI driver's representation for this device.
1007 * @buf:		Buffer from which the config block will	be copied.
1008 * @len:		Size in bytes of buf.
1009 * @block_id:		Identifies the config block which is being written.
1010 *
1011 * Return: 0 on success, -errno on failure
1012 */
1013int hv_write_config_block(struct pci_dev *pdev, void *buf, unsigned int len,
1014			  unsigned int block_id)
1015{
1016	struct hv_pcibus_device *hbus =
1017		container_of(pdev->bus->sysdata, struct hv_pcibus_device,
1018			     sysdata);
1019	struct {
1020		struct pci_packet pkt;
1021		char buf[sizeof(struct pci_write_block)];
1022		u32 reserved;
1023	} pkt;
1024	struct hv_pci_compl comp_pkt;
1025	struct pci_write_block *write_blk;
1026	u32 pkt_size;
1027	int ret;
1028
1029	if (len == 0 || len > HV_CONFIG_BLOCK_SIZE_MAX)
1030		return -EINVAL;
1031
1032	init_completion(&comp_pkt.host_event);
1033
1034	memset(&pkt, 0, sizeof(pkt));
1035	pkt.pkt.completion_func = hv_pci_write_config_compl;
1036	pkt.pkt.compl_ctxt = &comp_pkt;
1037	write_blk = (struct pci_write_block *)&pkt.pkt.message;
1038	write_blk->message_type.type = PCI_WRITE_BLOCK;
1039	write_blk->wslot.slot = devfn_to_wslot(pdev->devfn);
1040	write_blk->block_id = block_id;
1041	write_blk->byte_count = len;
1042	memcpy(write_blk->bytes, buf, len);
1043	pkt_size = offsetof(struct pci_write_block, bytes) + len;
1044	/*
1045	 * This quirk is required on some hosts shipped around 2018, because
1046	 * these hosts don't check the pkt_size correctly (new hosts have been
1047	 * fixed since early 2019). The quirk is also safe on very old hosts
1048	 * and new hosts, because, on them, what really matters is the length
1049	 * specified in write_blk->byte_count.
1050	 */
1051	pkt_size += sizeof(pkt.reserved);
1052
1053	ret = vmbus_sendpacket(hbus->hdev->channel, write_blk, pkt_size,
1054			       (unsigned long)&pkt.pkt, VM_PKT_DATA_INBAND,
1055			       VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
1056	if (ret)
1057		return ret;
1058
1059	ret = wait_for_response(hbus->hdev, &comp_pkt.host_event);
1060	if (ret)
1061		return ret;
1062
1063	if (comp_pkt.completion_status != 0) {
1064		dev_err(&hbus->hdev->device,
1065			"Write Config Block failed: 0x%x\n",
1066			comp_pkt.completion_status);
1067		return -EIO;
1068	}
1069
1070	return 0;
1071}
1072
1073/**
1074 * hv_register_block_invalidate() - Invoked when a config block invalidation
1075 * arrives from the back-end driver.
1076 * @pdev:		The PCI driver's representation for this device.
1077 * @context:		Identifies the device.
1078 * @block_invalidate:	Identifies all of the blocks being invalidated.
1079 *
1080 * Return: 0 on success, -errno on failure
1081 */
1082int hv_register_block_invalidate(struct pci_dev *pdev, void *context,
1083				 void (*block_invalidate)(void *context,
1084							  u64 block_mask))
1085{
1086	struct hv_pcibus_device *hbus =
1087		container_of(pdev->bus->sysdata, struct hv_pcibus_device,
1088			     sysdata);
1089	struct hv_pci_dev *hpdev;
1090
1091	hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(pdev->devfn));
1092	if (!hpdev)
1093		return -ENODEV;
1094
1095	hpdev->block_invalidate = block_invalidate;
1096	hpdev->invalidate_context = context;
1097
1098	put_pcichild(hpdev);
1099	return 0;
1100
1101}
1102
1103/* Interrupt management hooks */
1104static void hv_int_desc_free(struct hv_pci_dev *hpdev,
1105			     struct tran_int_desc *int_desc)
1106{
1107	struct pci_delete_interrupt *int_pkt;
1108	struct {
1109		struct pci_packet pkt;
1110		u8 buffer[sizeof(struct pci_delete_interrupt)];
1111	} ctxt;
1112
 
 
 
 
1113	memset(&ctxt, 0, sizeof(ctxt));
1114	int_pkt = (struct pci_delete_interrupt *)&ctxt.pkt.message;
1115	int_pkt->message_type.type =
1116		PCI_DELETE_INTERRUPT_MESSAGE;
1117	int_pkt->wslot.slot = hpdev->desc.win_slot.slot;
1118	int_pkt->int_desc = *int_desc;
1119	vmbus_sendpacket(hpdev->hbus->hdev->channel, int_pkt, sizeof(*int_pkt),
1120			 (unsigned long)&ctxt.pkt, VM_PKT_DATA_INBAND, 0);
1121	kfree(int_desc);
1122}
1123
1124/**
1125 * hv_msi_free() - Free the MSI.
1126 * @domain:	The interrupt domain pointer
1127 * @info:	Extra MSI-related context
1128 * @irq:	Identifies the IRQ.
1129 *
1130 * The Hyper-V parent partition and hypervisor are tracking the
1131 * messages that are in use, keeping the interrupt redirection
1132 * table up to date.  This callback sends a message that frees
1133 * the IRT entry and related tracking nonsense.
1134 */
1135static void hv_msi_free(struct irq_domain *domain, struct msi_domain_info *info,
1136			unsigned int irq)
1137{
1138	struct hv_pcibus_device *hbus;
1139	struct hv_pci_dev *hpdev;
1140	struct pci_dev *pdev;
1141	struct tran_int_desc *int_desc;
1142	struct irq_data *irq_data = irq_domain_get_irq_data(domain, irq);
1143	struct msi_desc *msi = irq_data_get_msi_desc(irq_data);
1144
1145	pdev = msi_desc_to_pci_dev(msi);
1146	hbus = info->data;
1147	int_desc = irq_data_get_irq_chip_data(irq_data);
1148	if (!int_desc)
1149		return;
1150
1151	irq_data->chip_data = NULL;
1152	hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(pdev->devfn));
1153	if (!hpdev) {
1154		kfree(int_desc);
1155		return;
1156	}
1157
1158	hv_int_desc_free(hpdev, int_desc);
1159	put_pcichild(hpdev);
1160}
1161
1162static int hv_set_affinity(struct irq_data *data, const struct cpumask *dest,
1163			   bool force)
1164{
1165	struct irq_data *parent = data->parent_data;
1166
1167	return parent->chip->irq_set_affinity(parent, dest, force);
1168}
1169
1170static void hv_irq_mask(struct irq_data *data)
1171{
1172	pci_msi_mask_irq(data);
 
 
1173}
1174
1175/**
1176 * hv_irq_unmask() - "Unmask" the IRQ by setting its current
1177 * affinity.
1178 * @data:	Describes the IRQ
1179 *
1180 * Build new a destination for the MSI and make a hypercall to
1181 * update the Interrupt Redirection Table. "Device Logical ID"
1182 * is built out of this PCI bus's instance GUID and the function
1183 * number of the device.
1184 */
1185static void hv_irq_unmask(struct irq_data *data)
1186{
1187	struct msi_desc *msi_desc = irq_data_get_msi_desc(data);
1188	struct irq_cfg *cfg = irqd_cfg(data);
1189	struct retarget_msi_interrupt *params;
1190	struct hv_pcibus_device *hbus;
1191	struct cpumask *dest;
1192	cpumask_var_t tmp;
1193	struct pci_bus *pbus;
1194	struct pci_dev *pdev;
1195	unsigned long flags;
1196	u32 var_size = 0;
1197	int cpu, nr_bank;
1198	u64 res;
1199
1200	dest = irq_data_get_effective_affinity_mask(data);
1201	pdev = msi_desc_to_pci_dev(msi_desc);
1202	pbus = pdev->bus;
1203	hbus = container_of(pbus->sysdata, struct hv_pcibus_device, sysdata);
1204
1205	spin_lock_irqsave(&hbus->retarget_msi_interrupt_lock, flags);
1206
1207	params = &hbus->retarget_msi_interrupt_params;
1208	memset(params, 0, sizeof(*params));
1209	params->partition_id = HV_PARTITION_ID_SELF;
1210	params->int_entry.source = 1; /* MSI(-X) */
1211	params->int_entry.address = msi_desc->msg.address_lo;
1212	params->int_entry.data = msi_desc->msg.data;
1213	params->device_id = (hbus->hdev->dev_instance.b[5] << 24) |
1214			   (hbus->hdev->dev_instance.b[4] << 16) |
1215			   (hbus->hdev->dev_instance.b[7] << 8) |
1216			   (hbus->hdev->dev_instance.b[6] & 0xf8) |
1217			   PCI_FUNC(pdev->devfn);
1218	params->int_target.vector = cfg->vector;
1219
1220	/*
1221	 * Honoring apic->irq_delivery_mode set to dest_Fixed by
1222	 * setting the HV_DEVICE_INTERRUPT_TARGET_MULTICAST flag results in a
1223	 * spurious interrupt storm. Not doing so does not seem to have a
1224	 * negative effect (yet?).
1225	 */
1226
1227	if (pci_protocol_version >= PCI_PROTOCOL_VERSION_1_2) {
1228		/*
1229		 * PCI_PROTOCOL_VERSION_1_2 supports the VP_SET version of the
1230		 * HVCALL_RETARGET_INTERRUPT hypercall, which also coincides
1231		 * with >64 VP support.
1232		 * ms_hyperv.hints & HV_X64_EX_PROCESSOR_MASKS_RECOMMENDED
1233		 * is not sufficient for this hypercall.
1234		 */
1235		params->int_target.flags |=
1236			HV_DEVICE_INTERRUPT_TARGET_PROCESSOR_SET;
1237
1238		if (!alloc_cpumask_var(&tmp, GFP_ATOMIC)) {
1239			res = 1;
1240			goto exit_unlock;
1241		}
1242
1243		cpumask_and(tmp, dest, cpu_online_mask);
1244		nr_bank = cpumask_to_vpset(&params->int_target.vp_set, tmp);
1245		free_cpumask_var(tmp);
1246
1247		if (nr_bank <= 0) {
1248			res = 1;
1249			goto exit_unlock;
1250		}
1251
1252		/*
1253		 * var-sized hypercall, var-size starts after vp_mask (thus
1254		 * vp_set.format does not count, but vp_set.valid_bank_mask
1255		 * does).
1256		 */
1257		var_size = 1 + nr_bank;
1258	} else {
1259		for_each_cpu_and(cpu, dest, cpu_online_mask) {
1260			params->int_target.vp_mask |=
1261				(1ULL << hv_cpu_number_to_vp_number(cpu));
1262		}
1263	}
1264
1265	res = hv_do_hypercall(HVCALL_RETARGET_INTERRUPT | (var_size << 17),
1266			      params, NULL);
1267
1268exit_unlock:
1269	spin_unlock_irqrestore(&hbus->retarget_msi_interrupt_lock, flags);
1270
1271	if (res) {
1272		dev_err(&hbus->hdev->device,
1273			"%s() failed: %#llx", __func__, res);
1274		return;
1275	}
1276
 
 
1277	pci_msi_unmask_irq(data);
1278}
1279
1280struct compose_comp_ctxt {
1281	struct hv_pci_compl comp_pkt;
1282	struct tran_int_desc int_desc;
1283};
1284
1285static void hv_pci_compose_compl(void *context, struct pci_response *resp,
1286				 int resp_packet_size)
1287{
1288	struct compose_comp_ctxt *comp_pkt = context;
1289	struct pci_create_int_response *int_resp =
1290		(struct pci_create_int_response *)resp;
1291
 
 
 
 
1292	comp_pkt->comp_pkt.completion_status = resp->status;
1293	comp_pkt->int_desc = int_resp->int_desc;
 
1294	complete(&comp_pkt->comp_pkt.host_event);
1295}
1296
1297static u32 hv_compose_msi_req_v1(
1298	struct pci_create_interrupt *int_pkt, struct cpumask *affinity,
1299	u32 slot, u8 vector)
1300{
1301	int_pkt->message_type.type = PCI_CREATE_INTERRUPT_MESSAGE;
1302	int_pkt->wslot.slot = slot;
1303	int_pkt->int_desc.vector = vector;
1304	int_pkt->int_desc.vector_count = 1;
1305	int_pkt->int_desc.delivery_mode = dest_Fixed;
1306
1307	/*
1308	 * Create MSI w/ dummy vCPU set, overwritten by subsequent retarget in
1309	 * hv_irq_unmask().
1310	 */
1311	int_pkt->int_desc.cpu_mask = CPU_AFFINITY_ALL;
1312
1313	return sizeof(*int_pkt);
1314}
1315
1316static u32 hv_compose_msi_req_v2(
1317	struct pci_create_interrupt2 *int_pkt, struct cpumask *affinity,
1318	u32 slot, u8 vector)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1319{
 
 
 
 
 
 
1320	int cpu;
1321
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1322	int_pkt->message_type.type = PCI_CREATE_INTERRUPT_MESSAGE2;
1323	int_pkt->wslot.slot = slot;
1324	int_pkt->int_desc.vector = vector;
1325	int_pkt->int_desc.vector_count = 1;
1326	int_pkt->int_desc.delivery_mode = dest_Fixed;
 
 
 
 
 
 
1327
1328	/*
1329	 * Create MSI w/ dummy vCPU set targeting just one vCPU, overwritten
1330	 * by subsequent retarget in hv_irq_unmask().
1331	 */
1332	cpu = cpumask_first_and(affinity, cpu_online_mask);
 
 
 
 
 
1333	int_pkt->int_desc.processor_array[0] =
1334		hv_cpu_number_to_vp_number(cpu);
1335	int_pkt->int_desc.processor_count = 1;
1336
1337	return sizeof(*int_pkt);
1338}
1339
1340/**
1341 * hv_compose_msi_msg() - Supplies a valid MSI address/data
1342 * @data:	Everything about this MSI
1343 * @msg:	Buffer that is filled in by this function
1344 *
1345 * This function unpacks the IRQ looking for target CPU set, IDT
1346 * vector and mode and sends a message to the parent partition
1347 * asking for a mapping for that tuple in this partition.  The
1348 * response supplies a data value and address to which that data
1349 * should be written to trigger that interrupt.
1350 */
1351static void hv_compose_msi_msg(struct irq_data *data, struct msi_msg *msg)
1352{
1353	struct irq_cfg *cfg = irqd_cfg(data);
1354	struct hv_pcibus_device *hbus;
 
1355	struct hv_pci_dev *hpdev;
1356	struct pci_bus *pbus;
1357	struct pci_dev *pdev;
1358	struct cpumask *dest;
1359	unsigned long flags;
1360	struct compose_comp_ctxt comp;
1361	struct tran_int_desc *int_desc;
 
 
 
 
 
 
 
1362	struct {
1363		struct pci_packet pci_pkt;
1364		union {
1365			struct pci_create_interrupt v1;
1366			struct pci_create_interrupt2 v2;
 
1367		} int_pkts;
1368	} __packed ctxt;
1369
 
1370	u32 size;
1371	int ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1372
1373	pdev = msi_desc_to_pci_dev(irq_data_get_msi_desc(data));
1374	dest = irq_data_get_effective_affinity_mask(data);
1375	pbus = pdev->bus;
1376	hbus = container_of(pbus->sysdata, struct hv_pcibus_device, sysdata);
 
1377	hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(pdev->devfn));
1378	if (!hpdev)
1379		goto return_null_message;
1380
1381	/* Free any previous message that might have already been composed. */
1382	if (data->chip_data) {
1383		int_desc = data->chip_data;
1384		data->chip_data = NULL;
1385		hv_int_desc_free(hpdev, int_desc);
1386	}
1387
1388	int_desc = kzalloc(sizeof(*int_desc), GFP_ATOMIC);
1389	if (!int_desc)
1390		goto drop_reference;
1391
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1392	memset(&ctxt, 0, sizeof(ctxt));
1393	init_completion(&comp.comp_pkt.host_event);
1394	ctxt.pci_pkt.completion_func = hv_pci_compose_compl;
1395	ctxt.pci_pkt.compl_ctxt = &comp;
1396
1397	switch (pci_protocol_version) {
1398	case PCI_PROTOCOL_VERSION_1_1:
1399		size = hv_compose_msi_req_v1(&ctxt.int_pkts.v1,
1400					dest,
1401					hpdev->desc.win_slot.slot,
1402					cfg->vector);
 
1403		break;
1404
1405	case PCI_PROTOCOL_VERSION_1_2:
 
1406		size = hv_compose_msi_req_v2(&ctxt.int_pkts.v2,
1407					dest,
 
 
 
 
 
 
 
 
1408					hpdev->desc.win_slot.slot,
1409					cfg->vector);
 
1410		break;
1411
1412	default:
1413		/* As we only negotiate protocol versions known to this driver,
1414		 * this path should never hit. However, this is it not a hot
1415		 * path so we print a message to aid future updates.
1416		 */
1417		dev_err(&hbus->hdev->device,
1418			"Unexpected vPCI protocol, update driver.");
1419		goto free_int_desc;
1420	}
1421
1422	ret = vmbus_sendpacket(hpdev->hbus->hdev->channel, &ctxt.int_pkts,
1423			       size, (unsigned long)&ctxt.pci_pkt,
1424			       VM_PKT_DATA_INBAND,
1425			       VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
1426	if (ret) {
1427		dev_err(&hbus->hdev->device,
1428			"Sending request for interrupt failed: 0x%x",
1429			comp.comp_pkt.completion_status);
1430		goto free_int_desc;
1431	}
1432
1433	/*
 
 
 
 
 
 
1434	 * Since this function is called with IRQ locks held, can't
1435	 * do normal wait for completion; instead poll.
1436	 */
1437	while (!try_wait_for_completion(&comp.comp_pkt.host_event)) {
 
 
1438		/* 0xFFFF means an invalid PCI VENDOR ID. */
1439		if (hv_pcifront_get_vendor_id(hpdev) == 0xFFFF) {
1440			dev_err_once(&hbus->hdev->device,
1441				     "the device has gone\n");
1442			goto free_int_desc;
1443		}
1444
1445		/*
1446		 * When the higher level interrupt code calls us with
1447		 * interrupt disabled, we must poll the channel by calling
1448		 * the channel callback directly when channel->target_cpu is
1449		 * the current CPU. When the higher level interrupt code
1450		 * calls us with interrupt enabled, let's add the
1451		 * local_irq_save()/restore() to avoid race:
1452		 * hv_pci_onchannelcallback() can also run in tasklet.
1453		 */
1454		local_irq_save(flags);
1455
1456		if (hbus->hdev->channel->target_cpu == smp_processor_id())
1457			hv_pci_onchannelcallback(hbus);
1458
1459		local_irq_restore(flags);
1460
1461		if (hpdev->state == hv_pcichild_ejecting) {
1462			dev_err_once(&hbus->hdev->device,
1463				     "the device is being ejected\n");
1464			goto free_int_desc;
1465		}
 
 
1466
1467		udelay(100);
1468	}
1469
 
 
1470	if (comp.comp_pkt.completion_status < 0) {
1471		dev_err(&hbus->hdev->device,
1472			"Request for interrupt failed: 0x%x",
1473			comp.comp_pkt.completion_status);
1474		goto free_int_desc;
1475	}
1476
1477	/*
1478	 * Record the assignment so that this can be unwound later. Using
1479	 * irq_set_chip_data() here would be appropriate, but the lock it takes
1480	 * is already held.
1481	 */
1482	*int_desc = comp.int_desc;
1483	data->chip_data = int_desc;
1484
1485	/* Pass up the result. */
1486	msg->address_hi = comp.int_desc.address >> 32;
1487	msg->address_lo = comp.int_desc.address & 0xffffffff;
1488	msg->data = comp.int_desc.data;
1489
1490	put_pcichild(hpdev);
1491	return;
1492
 
 
 
 
 
 
 
 
 
 
 
1493free_int_desc:
1494	kfree(int_desc);
1495drop_reference:
1496	put_pcichild(hpdev);
1497return_null_message:
1498	msg->address_hi = 0;
1499	msg->address_lo = 0;
1500	msg->data = 0;
1501}
1502
1503/* HW Interrupt Chip Descriptor */
1504static struct irq_chip hv_msi_irq_chip = {
1505	.name			= "Hyper-V PCIe MSI",
1506	.irq_compose_msi_msg	= hv_compose_msi_msg,
1507	.irq_set_affinity	= hv_set_affinity,
 
1508	.irq_ack		= irq_chip_ack_parent,
 
 
 
1509	.irq_mask		= hv_irq_mask,
1510	.irq_unmask		= hv_irq_unmask,
1511};
1512
1513static irq_hw_number_t hv_msi_domain_ops_get_hwirq(struct msi_domain_info *info,
1514						   msi_alloc_info_t *arg)
1515{
1516	return arg->msi_hwirq;
1517}
1518
1519static struct msi_domain_ops hv_msi_ops = {
1520	.get_hwirq	= hv_msi_domain_ops_get_hwirq,
1521	.msi_prepare	= pci_msi_prepare,
1522	.set_desc	= pci_msi_set_desc,
1523	.msi_free	= hv_msi_free,
1524};
1525
1526/**
1527 * hv_pcie_init_irq_domain() - Initialize IRQ domain
1528 * @hbus:	The root PCI bus
1529 *
1530 * This function creates an IRQ domain which will be used for
1531 * interrupts from devices that have been passed through.  These
1532 * devices only support MSI and MSI-X, not line-based interrupts
1533 * or simulations of line-based interrupts through PCIe's
1534 * fabric-layer messages.  Because interrupts are remapped, we
1535 * can support multi-message MSI here.
1536 *
1537 * Return: '0' on success and error value on failure
1538 */
1539static int hv_pcie_init_irq_domain(struct hv_pcibus_device *hbus)
1540{
1541	hbus->msi_info.chip = &hv_msi_irq_chip;
1542	hbus->msi_info.ops = &hv_msi_ops;
1543	hbus->msi_info.flags = (MSI_FLAG_USE_DEF_DOM_OPS |
1544		MSI_FLAG_USE_DEF_CHIP_OPS | MSI_FLAG_MULTI_PCI_MSI |
1545		MSI_FLAG_PCI_MSIX);
1546	hbus->msi_info.handler = handle_edge_irq;
1547	hbus->msi_info.handler_name = "edge";
1548	hbus->msi_info.data = hbus;
1549	hbus->irq_domain = pci_msi_create_irq_domain(hbus->sysdata.fwnode,
1550						     &hbus->msi_info,
1551						     x86_vector_domain);
1552	if (!hbus->irq_domain) {
1553		dev_err(&hbus->hdev->device,
1554			"Failed to build an MSI IRQ domain\n");
1555		return -ENODEV;
1556	}
1557
 
 
1558	return 0;
1559}
1560
1561/**
1562 * get_bar_size() - Get the address space consumed by a BAR
1563 * @bar_val:	Value that a BAR returned after -1 was written
1564 *              to it.
1565 *
1566 * This function returns the size of the BAR, rounded up to 1
1567 * page.  It has to be rounded up because the hypervisor's page
1568 * table entry that maps the BAR into the VM can't specify an
1569 * offset within a page.  The invariant is that the hypervisor
1570 * must place any BARs of smaller than page length at the
1571 * beginning of a page.
1572 *
1573 * Return:	Size in bytes of the consumed MMIO space.
1574 */
1575static u64 get_bar_size(u64 bar_val)
1576{
1577	return round_up((1 + ~(bar_val & PCI_BASE_ADDRESS_MEM_MASK)),
1578			PAGE_SIZE);
1579}
1580
1581/**
1582 * survey_child_resources() - Total all MMIO requirements
1583 * @hbus:	Root PCI bus, as understood by this driver
1584 */
1585static void survey_child_resources(struct hv_pcibus_device *hbus)
1586{
1587	struct hv_pci_dev *hpdev;
1588	resource_size_t bar_size = 0;
1589	unsigned long flags;
1590	struct completion *event;
1591	u64 bar_val;
1592	int i;
1593
1594	/* If nobody is waiting on the answer, don't compute it. */
1595	event = xchg(&hbus->survey_event, NULL);
1596	if (!event)
1597		return;
1598
1599	/* If the answer has already been computed, go with it. */
1600	if (hbus->low_mmio_space || hbus->high_mmio_space) {
1601		complete(event);
1602		return;
1603	}
1604
1605	spin_lock_irqsave(&hbus->device_list_lock, flags);
1606
1607	/*
1608	 * Due to an interesting quirk of the PCI spec, all memory regions
1609	 * for a child device are a power of 2 in size and aligned in memory,
1610	 * so it's sufficient to just add them up without tracking alignment.
1611	 */
1612	list_for_each_entry(hpdev, &hbus->children, list_entry) {
1613		for (i = 0; i < 6; i++) {
1614			if (hpdev->probed_bar[i] & PCI_BASE_ADDRESS_SPACE_IO)
1615				dev_err(&hbus->hdev->device,
1616					"There's an I/O BAR in this list!\n");
1617
1618			if (hpdev->probed_bar[i] != 0) {
1619				/*
1620				 * A probed BAR has all the upper bits set that
1621				 * can be changed.
1622				 */
1623
1624				bar_val = hpdev->probed_bar[i];
1625				if (bar_val & PCI_BASE_ADDRESS_MEM_TYPE_64)
1626					bar_val |=
1627					((u64)hpdev->probed_bar[++i] << 32);
1628				else
1629					bar_val |= 0xffffffff00000000ULL;
1630
1631				bar_size = get_bar_size(bar_val);
1632
1633				if (bar_val & PCI_BASE_ADDRESS_MEM_TYPE_64)
1634					hbus->high_mmio_space += bar_size;
1635				else
1636					hbus->low_mmio_space += bar_size;
1637			}
1638		}
1639	}
1640
1641	spin_unlock_irqrestore(&hbus->device_list_lock, flags);
1642	complete(event);
1643}
1644
1645/**
1646 * prepopulate_bars() - Fill in BARs with defaults
1647 * @hbus:	Root PCI bus, as understood by this driver
1648 *
1649 * The core PCI driver code seems much, much happier if the BARs
1650 * for a device have values upon first scan. So fill them in.
1651 * The algorithm below works down from large sizes to small,
1652 * attempting to pack the assignments optimally. The assumption,
1653 * enforced in other parts of the code, is that the beginning of
1654 * the memory-mapped I/O space will be aligned on the largest
1655 * BAR size.
1656 */
1657static void prepopulate_bars(struct hv_pcibus_device *hbus)
1658{
1659	resource_size_t high_size = 0;
1660	resource_size_t low_size = 0;
1661	resource_size_t high_base = 0;
1662	resource_size_t low_base = 0;
1663	resource_size_t bar_size;
1664	struct hv_pci_dev *hpdev;
1665	unsigned long flags;
1666	u64 bar_val;
1667	u32 command;
1668	bool high;
1669	int i;
1670
1671	if (hbus->low_mmio_space) {
1672		low_size = 1ULL << (63 - __builtin_clzll(hbus->low_mmio_space));
1673		low_base = hbus->low_mmio_res->start;
1674	}
1675
1676	if (hbus->high_mmio_space) {
1677		high_size = 1ULL <<
1678			(63 - __builtin_clzll(hbus->high_mmio_space));
1679		high_base = hbus->high_mmio_res->start;
1680	}
1681
1682	spin_lock_irqsave(&hbus->device_list_lock, flags);
1683
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1684	/* Pick addresses for the BARs. */
1685	do {
1686		list_for_each_entry(hpdev, &hbus->children, list_entry) {
1687			for (i = 0; i < 6; i++) {
1688				bar_val = hpdev->probed_bar[i];
1689				if (bar_val == 0)
1690					continue;
1691				high = bar_val & PCI_BASE_ADDRESS_MEM_TYPE_64;
1692				if (high) {
1693					bar_val |=
1694						((u64)hpdev->probed_bar[i + 1]
1695						 << 32);
1696				} else {
1697					bar_val |= 0xffffffffULL << 32;
1698				}
1699				bar_size = get_bar_size(bar_val);
1700				if (high) {
1701					if (high_size != bar_size) {
1702						i++;
1703						continue;
1704					}
1705					_hv_pcifront_write_config(hpdev,
1706						PCI_BASE_ADDRESS_0 + (4 * i),
1707						4,
1708						(u32)(high_base & 0xffffff00));
1709					i++;
1710					_hv_pcifront_write_config(hpdev,
1711						PCI_BASE_ADDRESS_0 + (4 * i),
1712						4, (u32)(high_base >> 32));
1713					high_base += bar_size;
1714				} else {
1715					if (low_size != bar_size)
1716						continue;
1717					_hv_pcifront_write_config(hpdev,
1718						PCI_BASE_ADDRESS_0 + (4 * i),
1719						4,
1720						(u32)(low_base & 0xffffff00));
1721					low_base += bar_size;
1722				}
1723			}
1724			if (high_size <= 1 && low_size <= 1) {
1725				/* Set the memory enable bit. */
1726				_hv_pcifront_read_config(hpdev, PCI_COMMAND, 2,
1727							 &command);
1728				command |= PCI_COMMAND_MEMORY;
1729				_hv_pcifront_write_config(hpdev, PCI_COMMAND, 2,
1730							  command);
 
 
 
 
 
1731				break;
1732			}
1733		}
1734
1735		high_size >>= 1;
1736		low_size >>= 1;
1737	}  while (high_size || low_size);
1738
1739	spin_unlock_irqrestore(&hbus->device_list_lock, flags);
1740}
1741
1742/*
1743 * Assign entries in sysfs pci slot directory.
1744 *
1745 * Note that this function does not need to lock the children list
1746 * because it is called from pci_devices_present_work which
1747 * is serialized with hv_eject_device_work because they are on the
1748 * same ordered workqueue. Therefore hbus->children list will not change
1749 * even when pci_create_slot sleeps.
1750 */
1751static void hv_pci_assign_slots(struct hv_pcibus_device *hbus)
1752{
1753	struct hv_pci_dev *hpdev;
1754	char name[SLOT_NAME_SIZE];
1755	int slot_nr;
1756
1757	list_for_each_entry(hpdev, &hbus->children, list_entry) {
1758		if (hpdev->pci_slot)
1759			continue;
1760
1761		slot_nr = PCI_SLOT(wslot_to_devfn(hpdev->desc.win_slot.slot));
1762		snprintf(name, SLOT_NAME_SIZE, "%u", hpdev->desc.ser);
1763		hpdev->pci_slot = pci_create_slot(hbus->pci_bus, slot_nr,
1764					  name, NULL);
1765		if (IS_ERR(hpdev->pci_slot)) {
1766			pr_warn("pci_create slot %s failed\n", name);
1767			hpdev->pci_slot = NULL;
1768		}
1769	}
1770}
1771
1772/*
1773 * Remove entries in sysfs pci slot directory.
1774 */
1775static void hv_pci_remove_slots(struct hv_pcibus_device *hbus)
1776{
1777	struct hv_pci_dev *hpdev;
1778
1779	list_for_each_entry(hpdev, &hbus->children, list_entry) {
1780		if (!hpdev->pci_slot)
1781			continue;
1782		pci_destroy_slot(hpdev->pci_slot);
1783		hpdev->pci_slot = NULL;
1784	}
1785}
1786
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1787/**
1788 * create_root_hv_pci_bus() - Expose a new root PCI bus
1789 * @hbus:	Root PCI bus, as understood by this driver
1790 *
1791 * Return: 0 on success, -errno on failure
1792 */
1793static int create_root_hv_pci_bus(struct hv_pcibus_device *hbus)
1794{
1795	/* Register the device */
1796	hbus->pci_bus = pci_create_root_bus(&hbus->hdev->device,
1797					    0, /* bus number is always zero */
1798					    &hv_pcifront_ops,
1799					    &hbus->sysdata,
1800					    &hbus->resources_for_children);
1801	if (!hbus->pci_bus)
1802		return -ENODEV;
1803
1804	hbus->pci_bus->msi = &hbus->msi_chip;
1805	hbus->pci_bus->msi->dev = &hbus->hdev->device;
 
 
 
 
 
1806
1807	pci_lock_rescan_remove();
1808	pci_scan_child_bus(hbus->pci_bus);
1809	pci_bus_assign_resources(hbus->pci_bus);
1810	hv_pci_assign_slots(hbus);
1811	pci_bus_add_devices(hbus->pci_bus);
1812	pci_unlock_rescan_remove();
1813	hbus->state = hv_pcibus_installed;
1814	return 0;
1815}
1816
1817struct q_res_req_compl {
1818	struct completion host_event;
1819	struct hv_pci_dev *hpdev;
1820};
1821
1822/**
1823 * q_resource_requirements() - Query Resource Requirements
1824 * @context:		The completion context.
1825 * @resp:		The response that came from the host.
1826 * @resp_packet_size:	The size in bytes of resp.
1827 *
1828 * This function is invoked on completion of a Query Resource
1829 * Requirements packet.
1830 */
1831static void q_resource_requirements(void *context, struct pci_response *resp,
1832				    int resp_packet_size)
1833{
1834	struct q_res_req_compl *completion = context;
1835	struct pci_q_res_req_response *q_res_req =
1836		(struct pci_q_res_req_response *)resp;
 
1837	int i;
1838
1839	if (resp->status < 0) {
 
1840		dev_err(&completion->hpdev->hbus->hdev->device,
1841			"query resource requirements failed: %x\n",
1842			resp->status);
1843	} else {
1844		for (i = 0; i < 6; i++) {
1845			completion->hpdev->probed_bar[i] =
1846				q_res_req->probed_bar[i];
1847		}
1848	}
1849
1850	complete(&completion->host_event);
1851}
1852
1853/**
1854 * new_pcichild_device() - Create a new child device
1855 * @hbus:	The internal struct tracking this root PCI bus.
1856 * @desc:	The information supplied so far from the host
1857 *              about the device.
1858 *
1859 * This function creates the tracking structure for a new child
1860 * device and kicks off the process of figuring out what it is.
1861 *
1862 * Return: Pointer to the new tracking struct
1863 */
1864static struct hv_pci_dev *new_pcichild_device(struct hv_pcibus_device *hbus,
1865		struct pci_function_description *desc)
1866{
1867	struct hv_pci_dev *hpdev;
1868	struct pci_child_message *res_req;
1869	struct q_res_req_compl comp_pkt;
1870	struct {
1871		struct pci_packet init_packet;
1872		u8 buffer[sizeof(struct pci_child_message)];
1873	} pkt;
1874	unsigned long flags;
1875	int ret;
1876
1877	hpdev = kzalloc(sizeof(*hpdev), GFP_KERNEL);
1878	if (!hpdev)
1879		return NULL;
1880
1881	hpdev->hbus = hbus;
1882
1883	memset(&pkt, 0, sizeof(pkt));
1884	init_completion(&comp_pkt.host_event);
1885	comp_pkt.hpdev = hpdev;
1886	pkt.init_packet.compl_ctxt = &comp_pkt;
1887	pkt.init_packet.completion_func = q_resource_requirements;
1888	res_req = (struct pci_child_message *)&pkt.init_packet.message;
1889	res_req->message_type.type = PCI_QUERY_RESOURCE_REQUIREMENTS;
1890	res_req->wslot.slot = desc->win_slot.slot;
1891
1892	ret = vmbus_sendpacket(hbus->hdev->channel, res_req,
1893			       sizeof(struct pci_child_message),
1894			       (unsigned long)&pkt.init_packet,
1895			       VM_PKT_DATA_INBAND,
1896			       VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
1897	if (ret)
1898		goto error;
1899
1900	if (wait_for_response(hbus->hdev, &comp_pkt.host_event))
1901		goto error;
1902
1903	hpdev->desc = *desc;
1904	refcount_set(&hpdev->refs, 1);
1905	get_pcichild(hpdev);
1906	spin_lock_irqsave(&hbus->device_list_lock, flags);
1907
1908	list_add_tail(&hpdev->list_entry, &hbus->children);
1909	spin_unlock_irqrestore(&hbus->device_list_lock, flags);
1910	return hpdev;
1911
1912error:
1913	kfree(hpdev);
1914	return NULL;
1915}
1916
1917/**
1918 * get_pcichild_wslot() - Find device from slot
1919 * @hbus:	Root PCI bus, as understood by this driver
1920 * @wslot:	Location on the bus
1921 *
1922 * This function looks up a PCI device and returns the internal
1923 * representation of it.  It acquires a reference on it, so that
1924 * the device won't be deleted while somebody is using it.  The
1925 * caller is responsible for calling put_pcichild() to release
1926 * this reference.
1927 *
1928 * Return:	Internal representation of a PCI device
1929 */
1930static struct hv_pci_dev *get_pcichild_wslot(struct hv_pcibus_device *hbus,
1931					     u32 wslot)
1932{
1933	unsigned long flags;
1934	struct hv_pci_dev *iter, *hpdev = NULL;
1935
1936	spin_lock_irqsave(&hbus->device_list_lock, flags);
1937	list_for_each_entry(iter, &hbus->children, list_entry) {
1938		if (iter->desc.win_slot.slot == wslot) {
1939			hpdev = iter;
1940			get_pcichild(hpdev);
1941			break;
1942		}
1943	}
1944	spin_unlock_irqrestore(&hbus->device_list_lock, flags);
1945
1946	return hpdev;
1947}
1948
1949/**
1950 * pci_devices_present_work() - Handle new list of child devices
1951 * @work:	Work struct embedded in struct hv_dr_work
1952 *
1953 * "Bus Relations" is the Windows term for "children of this
1954 * bus."  The terminology is preserved here for people trying to
1955 * debug the interaction between Hyper-V and Linux.  This
1956 * function is called when the parent partition reports a list
1957 * of functions that should be observed under this PCI Express
1958 * port (bus).
1959 *
1960 * This function updates the list, and must tolerate being
1961 * called multiple times with the same information.  The typical
1962 * number of child devices is one, with very atypical cases
1963 * involving three or four, so the algorithms used here can be
1964 * simple and inefficient.
1965 *
1966 * It must also treat the omission of a previously observed device as
1967 * notification that the device no longer exists.
1968 *
1969 * Note that this function is serialized with hv_eject_device_work(),
1970 * because both are pushed to the ordered workqueue hbus->wq.
1971 */
1972static void pci_devices_present_work(struct work_struct *work)
1973{
1974	u32 child_no;
1975	bool found;
1976	struct pci_function_description *new_desc;
1977	struct hv_pci_dev *hpdev;
1978	struct hv_pcibus_device *hbus;
1979	struct list_head removed;
1980	struct hv_dr_work *dr_wrk;
1981	struct hv_dr_state *dr = NULL;
1982	unsigned long flags;
1983
1984	dr_wrk = container_of(work, struct hv_dr_work, wrk);
1985	hbus = dr_wrk->bus;
1986	kfree(dr_wrk);
1987
1988	INIT_LIST_HEAD(&removed);
1989
1990	/* Pull this off the queue and process it if it was the last one. */
1991	spin_lock_irqsave(&hbus->device_list_lock, flags);
1992	while (!list_empty(&hbus->dr_list)) {
1993		dr = list_first_entry(&hbus->dr_list, struct hv_dr_state,
1994				      list_entry);
1995		list_del(&dr->list_entry);
1996
1997		/* Throw this away if the list still has stuff in it. */
1998		if (!list_empty(&hbus->dr_list)) {
1999			kfree(dr);
2000			continue;
2001		}
2002	}
2003	spin_unlock_irqrestore(&hbus->device_list_lock, flags);
2004
2005	if (!dr) {
2006		put_hvpcibus(hbus);
2007		return;
2008	}
 
2009
2010	/* First, mark all existing children as reported missing. */
2011	spin_lock_irqsave(&hbus->device_list_lock, flags);
2012	list_for_each_entry(hpdev, &hbus->children, list_entry) {
2013		hpdev->reported_missing = true;
2014	}
2015	spin_unlock_irqrestore(&hbus->device_list_lock, flags);
2016
2017	/* Next, add back any reported devices. */
2018	for (child_no = 0; child_no < dr->device_count; child_no++) {
2019		found = false;
2020		new_desc = &dr->func[child_no];
2021
2022		spin_lock_irqsave(&hbus->device_list_lock, flags);
2023		list_for_each_entry(hpdev, &hbus->children, list_entry) {
2024			if ((hpdev->desc.win_slot.slot == new_desc->win_slot.slot) &&
2025			    (hpdev->desc.v_id == new_desc->v_id) &&
2026			    (hpdev->desc.d_id == new_desc->d_id) &&
2027			    (hpdev->desc.ser == new_desc->ser)) {
2028				hpdev->reported_missing = false;
2029				found = true;
2030			}
2031		}
2032		spin_unlock_irqrestore(&hbus->device_list_lock, flags);
2033
2034		if (!found) {
2035			hpdev = new_pcichild_device(hbus, new_desc);
2036			if (!hpdev)
2037				dev_err(&hbus->hdev->device,
2038					"couldn't record a child device.\n");
2039		}
2040	}
2041
2042	/* Move missing children to a list on the stack. */
2043	spin_lock_irqsave(&hbus->device_list_lock, flags);
2044	do {
2045		found = false;
2046		list_for_each_entry(hpdev, &hbus->children, list_entry) {
2047			if (hpdev->reported_missing) {
2048				found = true;
2049				put_pcichild(hpdev);
2050				list_move_tail(&hpdev->list_entry, &removed);
2051				break;
2052			}
2053		}
2054	} while (found);
2055	spin_unlock_irqrestore(&hbus->device_list_lock, flags);
2056
2057	/* Delete everything that should no longer exist. */
2058	while (!list_empty(&removed)) {
2059		hpdev = list_first_entry(&removed, struct hv_pci_dev,
2060					 list_entry);
2061		list_del(&hpdev->list_entry);
2062
2063		if (hpdev->pci_slot)
2064			pci_destroy_slot(hpdev->pci_slot);
2065
2066		put_pcichild(hpdev);
2067	}
2068
2069	switch (hbus->state) {
2070	case hv_pcibus_installed:
2071		/*
2072		 * Tell the core to rescan bus
2073		 * because there may have been changes.
2074		 */
2075		pci_lock_rescan_remove();
2076		pci_scan_child_bus(hbus->pci_bus);
 
2077		hv_pci_assign_slots(hbus);
2078		pci_unlock_rescan_remove();
2079		break;
2080
2081	case hv_pcibus_init:
2082	case hv_pcibus_probed:
2083		survey_child_resources(hbus);
2084		break;
2085
2086	default:
2087		break;
2088	}
2089
2090	put_hvpcibus(hbus);
 
2091	kfree(dr);
2092}
2093
2094/**
2095 * hv_pci_devices_present() - Handles list of new children
2096 * @hbus:	Root PCI bus, as understood by this driver
2097 * @relations:	Packet from host listing children
2098 *
2099 * This function is invoked whenever a new list of devices for
2100 * this bus appears.
2101 */
2102static void hv_pci_devices_present(struct hv_pcibus_device *hbus,
2103				   struct pci_bus_relations *relations)
2104{
2105	struct hv_dr_state *dr;
2106	struct hv_dr_work *dr_wrk;
2107	unsigned long flags;
2108	bool pending_dr;
2109
 
 
 
 
 
 
2110	dr_wrk = kzalloc(sizeof(*dr_wrk), GFP_NOWAIT);
2111	if (!dr_wrk)
2112		return;
2113
2114	dr = kzalloc(offsetof(struct hv_dr_state, func) +
2115		     (sizeof(struct pci_function_description) *
2116		      (relations->device_count)), GFP_NOWAIT);
2117	if (!dr)  {
2118		kfree(dr_wrk);
2119		return;
2120	}
2121
2122	INIT_WORK(&dr_wrk->wrk, pci_devices_present_work);
2123	dr_wrk->bus = hbus;
2124	dr->device_count = relations->device_count;
2125	if (dr->device_count != 0) {
2126		memcpy(dr->func, relations->func,
2127		       sizeof(struct pci_function_description) *
2128		       dr->device_count);
2129	}
2130
2131	spin_lock_irqsave(&hbus->device_list_lock, flags);
2132	/*
2133	 * If pending_dr is true, we have already queued a work,
2134	 * which will see the new dr. Otherwise, we need to
2135	 * queue a new work.
2136	 */
2137	pending_dr = !list_empty(&hbus->dr_list);
2138	list_add_tail(&dr->list_entry, &hbus->dr_list);
2139	spin_unlock_irqrestore(&hbus->device_list_lock, flags);
2140
2141	if (pending_dr) {
2142		kfree(dr_wrk);
2143	} else {
2144		get_hvpcibus(hbus);
2145		queue_work(hbus->wq, &dr_wrk->wrk);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2146	}
 
 
 
2147}
2148
2149/**
2150 * hv_eject_device_work() - Asynchronously handles ejection
2151 * @work:	Work struct embedded in internal device struct
2152 *
2153 * This function handles ejecting a device.  Windows will
2154 * attempt to gracefully eject a device, waiting 60 seconds to
2155 * hear back from the guest OS that this completed successfully.
2156 * If this timer expires, the device will be forcibly removed.
2157 */
2158static void hv_eject_device_work(struct work_struct *work)
2159{
2160	struct pci_eject_response *ejct_pkt;
2161	struct hv_pcibus_device *hbus;
2162	struct hv_pci_dev *hpdev;
2163	struct pci_dev *pdev;
2164	unsigned long flags;
2165	int wslot;
2166	struct {
2167		struct pci_packet pkt;
2168		u8 buffer[sizeof(struct pci_eject_response)];
2169	} ctxt;
2170
2171	hpdev = container_of(work, struct hv_pci_dev, wrk);
2172	hbus = hpdev->hbus;
2173
2174	WARN_ON(hpdev->state != hv_pcichild_ejecting);
2175
2176	/*
2177	 * Ejection can come before or after the PCI bus has been set up, so
2178	 * attempt to find it and tear down the bus state, if it exists.  This
2179	 * must be done without constructs like pci_domain_nr(hbus->pci_bus)
2180	 * because hbus->pci_bus may not exist yet.
2181	 */
2182	wslot = wslot_to_devfn(hpdev->desc.win_slot.slot);
2183	pdev = pci_get_domain_bus_and_slot(hbus->sysdata.domain, 0, wslot);
2184	if (pdev) {
2185		pci_lock_rescan_remove();
2186		pci_stop_and_remove_bus_device(pdev);
2187		pci_dev_put(pdev);
2188		pci_unlock_rescan_remove();
2189	}
2190
2191	spin_lock_irqsave(&hbus->device_list_lock, flags);
2192	list_del(&hpdev->list_entry);
2193	spin_unlock_irqrestore(&hbus->device_list_lock, flags);
2194
2195	if (hpdev->pci_slot)
2196		pci_destroy_slot(hpdev->pci_slot);
2197
2198	memset(&ctxt, 0, sizeof(ctxt));
2199	ejct_pkt = (struct pci_eject_response *)&ctxt.pkt.message;
2200	ejct_pkt->message_type.type = PCI_EJECTION_COMPLETE;
2201	ejct_pkt->wslot.slot = hpdev->desc.win_slot.slot;
2202	vmbus_sendpacket(hbus->hdev->channel, ejct_pkt,
2203			 sizeof(*ejct_pkt), (unsigned long)&ctxt.pkt,
2204			 VM_PKT_DATA_INBAND, 0);
2205
2206	/* For the get_pcichild() in hv_pci_eject_device() */
2207	put_pcichild(hpdev);
2208	/* For the two refs got in new_pcichild_device() */
2209	put_pcichild(hpdev);
2210	put_pcichild(hpdev);
2211	/* hpdev has been freed. Do not use it any more. */
2212
2213	put_hvpcibus(hbus);
2214}
2215
2216/**
2217 * hv_pci_eject_device() - Handles device ejection
2218 * @hpdev:	Internal device tracking struct
2219 *
2220 * This function is invoked when an ejection packet arrives.  It
2221 * just schedules work so that we don't re-enter the packet
2222 * delivery code handling the ejection.
2223 */
2224static void hv_pci_eject_device(struct hv_pci_dev *hpdev)
2225{
2226	hpdev->state = hv_pcichild_ejecting;
 
 
 
 
 
 
 
2227	get_pcichild(hpdev);
2228	INIT_WORK(&hpdev->wrk, hv_eject_device_work);
2229	get_hvpcibus(hpdev->hbus);
2230	queue_work(hpdev->hbus->wq, &hpdev->wrk);
2231}
2232
2233/**
2234 * hv_pci_onchannelcallback() - Handles incoming packets
2235 * @context:	Internal bus tracking struct
2236 *
2237 * This function is invoked whenever the host sends a packet to
2238 * this channel (which is private to this root PCI bus).
2239 */
2240static void hv_pci_onchannelcallback(void *context)
2241{
2242	const int packet_size = 0x100;
2243	int ret;
2244	struct hv_pcibus_device *hbus = context;
 
2245	u32 bytes_recvd;
2246	u64 req_id;
2247	struct vmpacket_descriptor *desc;
2248	unsigned char *buffer;
2249	int bufferlen = packet_size;
2250	struct pci_packet *comp_packet;
2251	struct pci_response *response;
2252	struct pci_incoming_message *new_message;
2253	struct pci_bus_relations *bus_rel;
 
2254	struct pci_dev_inval_block *inval;
2255	struct pci_dev_incoming *dev_message;
2256	struct hv_pci_dev *hpdev;
 
2257
2258	buffer = kmalloc(bufferlen, GFP_ATOMIC);
2259	if (!buffer)
2260		return;
2261
2262	while (1) {
2263		ret = vmbus_recvpacket_raw(hbus->hdev->channel, buffer,
2264					   bufferlen, &bytes_recvd, &req_id);
2265
2266		if (ret == -ENOBUFS) {
2267			kfree(buffer);
2268			/* Handle large packet */
2269			bufferlen = bytes_recvd;
2270			buffer = kmalloc(bytes_recvd, GFP_ATOMIC);
2271			if (!buffer)
2272				return;
2273			continue;
2274		}
2275
2276		/* Zero length indicates there are no more packets. */
2277		if (ret || !bytes_recvd)
2278			break;
2279
2280		/*
2281		 * All incoming packets must be at least as large as a
2282		 * response.
2283		 */
2284		if (bytes_recvd <= sizeof(struct pci_response))
2285			continue;
2286		desc = (struct vmpacket_descriptor *)buffer;
2287
2288		switch (desc->type) {
2289		case VM_PKT_COMP:
2290
 
 
 
 
 
 
 
 
 
 
 
 
2291			/*
2292			 * The host is trusted, and thus it's safe to interpret
2293			 * this transaction ID as a pointer.
 
 
 
2294			 */
2295			comp_packet = (struct pci_packet *)req_id;
2296			response = (struct pci_response *)buffer;
2297			comp_packet->completion_func(comp_packet->compl_ctxt,
2298						     response,
2299						     bytes_recvd);
 
2300			break;
2301
2302		case VM_PKT_DATA_INBAND:
2303
2304			new_message = (struct pci_incoming_message *)buffer;
2305			switch (new_message->message_type.type) {
2306			case PCI_BUS_RELATIONS:
2307
2308				bus_rel = (struct pci_bus_relations *)buffer;
2309				if (bytes_recvd <
2310				    offsetof(struct pci_bus_relations, func) +
2311				    (sizeof(struct pci_function_description) *
2312				     (bus_rel->device_count))) {
2313					dev_err(&hbus->hdev->device,
2314						"bus relations too small\n");
2315					break;
2316				}
2317
2318				hv_pci_devices_present(hbus, bus_rel);
2319				break;
2320
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2321			case PCI_EJECT:
2322
2323				dev_message = (struct pci_dev_incoming *)buffer;
 
 
 
 
 
2324				hpdev = get_pcichild_wslot(hbus,
2325						      dev_message->wslot.slot);
2326				if (hpdev) {
2327					hv_pci_eject_device(hpdev);
2328					put_pcichild(hpdev);
2329				}
2330				break;
2331
2332			case PCI_INVALIDATE_BLOCK:
2333
2334				inval = (struct pci_dev_inval_block *)buffer;
 
 
 
 
 
2335				hpdev = get_pcichild_wslot(hbus,
2336							   inval->wslot.slot);
2337				if (hpdev) {
2338					if (hpdev->block_invalidate) {
2339						hpdev->block_invalidate(
2340						    hpdev->invalidate_context,
2341						    inval->block_mask);
2342					}
2343					put_pcichild(hpdev);
2344				}
2345				break;
2346
2347			default:
2348				dev_warn(&hbus->hdev->device,
2349					"Unimplemented protocol message %x\n",
2350					new_message->message_type.type);
2351				break;
2352			}
2353			break;
2354
2355		default:
2356			dev_err(&hbus->hdev->device,
2357				"unhandled packet type %d, tid %llx len %d\n",
2358				desc->type, req_id, bytes_recvd);
2359			break;
2360		}
2361	}
2362
2363	kfree(buffer);
2364}
2365
2366/**
2367 * hv_pci_protocol_negotiation() - Set up protocol
2368 * @hdev:	VMBus's tracking struct for this root PCI bus
 
 
 
2369 *
2370 * This driver is intended to support running on Windows 10
2371 * (server) and later versions. It will not run on earlier
2372 * versions, as they assume that many of the operations which
2373 * Linux needs accomplished with a spinlock held were done via
2374 * asynchronous messaging via VMBus.  Windows 10 increases the
2375 * surface area of PCI emulation so that these actions can take
2376 * place by suspending a virtual processor for their duration.
2377 *
2378 * This function negotiates the channel protocol version,
2379 * failing if the host doesn't support the necessary protocol
2380 * level.
2381 */
2382static int hv_pci_protocol_negotiation(struct hv_device *hdev)
 
 
2383{
 
2384	struct pci_version_request *version_req;
2385	struct hv_pci_compl comp_pkt;
2386	struct pci_packet *pkt;
2387	int ret;
2388	int i;
2389
2390	/*
2391	 * Initiate the handshake with the host and negotiate
2392	 * a version that the host can support. We start with the
2393	 * highest version number and go down if the host cannot
2394	 * support it.
2395	 */
2396	pkt = kzalloc(sizeof(*pkt) + sizeof(*version_req), GFP_KERNEL);
2397	if (!pkt)
2398		return -ENOMEM;
2399
2400	init_completion(&comp_pkt.host_event);
2401	pkt->completion_func = hv_pci_generic_compl;
2402	pkt->compl_ctxt = &comp_pkt;
2403	version_req = (struct pci_version_request *)&pkt->message;
2404	version_req->message_type.type = PCI_QUERY_PROTOCOL_VERSION;
2405
2406	for (i = 0; i < ARRAY_SIZE(pci_protocol_versions); i++) {
2407		version_req->protocol_version = pci_protocol_versions[i];
2408		ret = vmbus_sendpacket(hdev->channel, version_req,
2409				sizeof(struct pci_version_request),
2410				(unsigned long)pkt, VM_PKT_DATA_INBAND,
2411				VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
2412		if (!ret)
2413			ret = wait_for_response(hdev, &comp_pkt.host_event);
2414
2415		if (ret) {
2416			dev_err(&hdev->device,
2417				"PCI Pass-through VSP failed to request version: %d",
2418				ret);
2419			goto exit;
2420		}
2421
2422		if (comp_pkt.completion_status >= 0) {
2423			pci_protocol_version = pci_protocol_versions[i];
2424			dev_info(&hdev->device,
2425				"PCI VMBus probing: Using version %#x\n",
2426				pci_protocol_version);
2427			goto exit;
2428		}
2429
2430		if (comp_pkt.completion_status != STATUS_REVISION_MISMATCH) {
2431			dev_err(&hdev->device,
2432				"PCI Pass-through VSP failed version request: %#x",
2433				comp_pkt.completion_status);
2434			ret = -EPROTO;
2435			goto exit;
2436		}
2437
2438		reinit_completion(&comp_pkt.host_event);
2439	}
2440
2441	dev_err(&hdev->device,
2442		"PCI pass-through VSP failed to find supported version");
2443	ret = -EPROTO;
2444
2445exit:
2446	kfree(pkt);
2447	return ret;
2448}
2449
2450/**
2451 * hv_pci_free_bridge_windows() - Release memory regions for the
2452 * bus
2453 * @hbus:	Root PCI bus, as understood by this driver
2454 */
2455static void hv_pci_free_bridge_windows(struct hv_pcibus_device *hbus)
2456{
2457	/*
2458	 * Set the resources back to the way they looked when they
2459	 * were allocated by setting IORESOURCE_BUSY again.
2460	 */
2461
2462	if (hbus->low_mmio_space && hbus->low_mmio_res) {
2463		hbus->low_mmio_res->flags |= IORESOURCE_BUSY;
2464		vmbus_free_mmio(hbus->low_mmio_res->start,
2465				resource_size(hbus->low_mmio_res));
2466	}
2467
2468	if (hbus->high_mmio_space && hbus->high_mmio_res) {
2469		hbus->high_mmio_res->flags |= IORESOURCE_BUSY;
2470		vmbus_free_mmio(hbus->high_mmio_res->start,
2471				resource_size(hbus->high_mmio_res));
2472	}
2473}
2474
2475/**
2476 * hv_pci_allocate_bridge_windows() - Allocate memory regions
2477 * for the bus
2478 * @hbus:	Root PCI bus, as understood by this driver
2479 *
2480 * This function calls vmbus_allocate_mmio(), which is itself a
2481 * bit of a compromise.  Ideally, we might change the pnp layer
2482 * in the kernel such that it comprehends either PCI devices
2483 * which are "grandchildren of ACPI," with some intermediate bus
2484 * node (in this case, VMBus) or change it such that it
2485 * understands VMBus.  The pnp layer, however, has been declared
2486 * deprecated, and not subject to change.
2487 *
2488 * The workaround, implemented here, is to ask VMBus to allocate
2489 * MMIO space for this bus.  VMBus itself knows which ranges are
2490 * appropriate by looking at its own ACPI objects.  Then, after
2491 * these ranges are claimed, they're modified to look like they
2492 * would have looked if the ACPI and pnp code had allocated
2493 * bridge windows.  These descriptors have to exist in this form
2494 * in order to satisfy the code which will get invoked when the
2495 * endpoint PCI function driver calls request_mem_region() or
2496 * request_mem_region_exclusive().
2497 *
2498 * Return: 0 on success, -errno on failure
2499 */
2500static int hv_pci_allocate_bridge_windows(struct hv_pcibus_device *hbus)
2501{
2502	resource_size_t align;
2503	int ret;
2504
2505	if (hbus->low_mmio_space) {
2506		align = 1ULL << (63 - __builtin_clzll(hbus->low_mmio_space));
2507		ret = vmbus_allocate_mmio(&hbus->low_mmio_res, hbus->hdev, 0,
2508					  (u64)(u32)0xffffffff,
2509					  hbus->low_mmio_space,
2510					  align, false);
2511		if (ret) {
2512			dev_err(&hbus->hdev->device,
2513				"Need %#llx of low MMIO space. Consider reconfiguring the VM.\n",
2514				hbus->low_mmio_space);
2515			return ret;
2516		}
2517
2518		/* Modify this resource to become a bridge window. */
2519		hbus->low_mmio_res->flags |= IORESOURCE_WINDOW;
2520		hbus->low_mmio_res->flags &= ~IORESOURCE_BUSY;
2521		pci_add_resource(&hbus->resources_for_children,
2522				 hbus->low_mmio_res);
2523	}
2524
2525	if (hbus->high_mmio_space) {
2526		align = 1ULL << (63 - __builtin_clzll(hbus->high_mmio_space));
2527		ret = vmbus_allocate_mmio(&hbus->high_mmio_res, hbus->hdev,
2528					  0x100000000, -1,
2529					  hbus->high_mmio_space, align,
2530					  false);
2531		if (ret) {
2532			dev_err(&hbus->hdev->device,
2533				"Need %#llx of high MMIO space. Consider reconfiguring the VM.\n",
2534				hbus->high_mmio_space);
2535			goto release_low_mmio;
2536		}
2537
2538		/* Modify this resource to become a bridge window. */
2539		hbus->high_mmio_res->flags |= IORESOURCE_WINDOW;
2540		hbus->high_mmio_res->flags &= ~IORESOURCE_BUSY;
2541		pci_add_resource(&hbus->resources_for_children,
2542				 hbus->high_mmio_res);
2543	}
2544
2545	return 0;
2546
2547release_low_mmio:
2548	if (hbus->low_mmio_res) {
2549		vmbus_free_mmio(hbus->low_mmio_res->start,
2550				resource_size(hbus->low_mmio_res));
2551	}
2552
2553	return ret;
2554}
2555
2556/**
2557 * hv_allocate_config_window() - Find MMIO space for PCI Config
2558 * @hbus:	Root PCI bus, as understood by this driver
2559 *
2560 * This function claims memory-mapped I/O space for accessing
2561 * configuration space for the functions on this bus.
2562 *
2563 * Return: 0 on success, -errno on failure
2564 */
2565static int hv_allocate_config_window(struct hv_pcibus_device *hbus)
2566{
2567	int ret;
2568
2569	/*
2570	 * Set up a region of MMIO space to use for accessing configuration
2571	 * space.
2572	 */
2573	ret = vmbus_allocate_mmio(&hbus->mem_config, hbus->hdev, 0, -1,
2574				  PCI_CONFIG_MMIO_LENGTH, 0x1000, false);
2575	if (ret)
2576		return ret;
2577
2578	/*
2579	 * vmbus_allocate_mmio() gets used for allocating both device endpoint
2580	 * resource claims (those which cannot be overlapped) and the ranges
2581	 * which are valid for the children of this bus, which are intended
2582	 * to be overlapped by those children.  Set the flag on this claim
2583	 * meaning that this region can't be overlapped.
2584	 */
2585
2586	hbus->mem_config->flags |= IORESOURCE_BUSY;
2587
2588	return 0;
2589}
2590
2591static void hv_free_config_window(struct hv_pcibus_device *hbus)
2592{
2593	vmbus_free_mmio(hbus->mem_config->start, PCI_CONFIG_MMIO_LENGTH);
2594}
2595
 
 
2596/**
2597 * hv_pci_enter_d0() - Bring the "bus" into the D0 power state
2598 * @hdev:	VMBus's tracking struct for this root PCI bus
2599 *
2600 * Return: 0 on success, -errno on failure
2601 */
2602static int hv_pci_enter_d0(struct hv_device *hdev)
2603{
2604	struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
2605	struct pci_bus_d0_entry *d0_entry;
2606	struct hv_pci_compl comp_pkt;
2607	struct pci_packet *pkt;
 
2608	int ret;
2609
 
2610	/*
2611	 * Tell the host that the bus is ready to use, and moved into the
2612	 * powered-on state.  This includes telling the host which region
2613	 * of memory-mapped I/O space has been chosen for configuration space
2614	 * access.
2615	 */
2616	pkt = kzalloc(sizeof(*pkt) + sizeof(*d0_entry), GFP_KERNEL);
2617	if (!pkt)
2618		return -ENOMEM;
2619
2620	init_completion(&comp_pkt.host_event);
2621	pkt->completion_func = hv_pci_generic_compl;
2622	pkt->compl_ctxt = &comp_pkt;
2623	d0_entry = (struct pci_bus_d0_entry *)&pkt->message;
2624	d0_entry->message_type.type = PCI_BUS_D0ENTRY;
2625	d0_entry->mmio_base = hbus->mem_config->start;
2626
2627	ret = vmbus_sendpacket(hdev->channel, d0_entry, sizeof(*d0_entry),
2628			       (unsigned long)pkt, VM_PKT_DATA_INBAND,
2629			       VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
2630	if (!ret)
2631		ret = wait_for_response(hdev, &comp_pkt.host_event);
2632
2633	if (ret)
2634		goto exit;
2635
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2636	if (comp_pkt.completion_status < 0) {
2637		dev_err(&hdev->device,
2638			"PCI Pass-through VSP failed D0 Entry with status %x\n",
2639			comp_pkt.completion_status);
2640		ret = -EPROTO;
2641		goto exit;
2642	}
2643
2644	ret = 0;
2645
2646exit:
2647	kfree(pkt);
2648	return ret;
2649}
2650
2651/**
2652 * hv_pci_query_relations() - Ask host to send list of child
2653 * devices
2654 * @hdev:	VMBus's tracking struct for this root PCI bus
2655 *
2656 * Return: 0 on success, -errno on failure
2657 */
2658static int hv_pci_query_relations(struct hv_device *hdev)
2659{
2660	struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
2661	struct pci_message message;
2662	struct completion comp;
2663	int ret;
2664
2665	/* Ask the host to send along the list of child devices */
2666	init_completion(&comp);
2667	if (cmpxchg(&hbus->survey_event, NULL, &comp))
2668		return -ENOTEMPTY;
2669
2670	memset(&message, 0, sizeof(message));
2671	message.type = PCI_QUERY_BUS_RELATIONS;
2672
2673	ret = vmbus_sendpacket(hdev->channel, &message, sizeof(message),
2674			       0, VM_PKT_DATA_INBAND, 0);
2675	if (!ret)
2676		ret = wait_for_response(hdev, &comp);
2677
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2678	return ret;
2679}
2680
2681/**
2682 * hv_send_resources_allocated() - Report local resource choices
2683 * @hdev:	VMBus's tracking struct for this root PCI bus
2684 *
2685 * The host OS is expecting to be sent a request as a message
2686 * which contains all the resources that the device will use.
2687 * The response contains those same resources, "translated"
2688 * which is to say, the values which should be used by the
2689 * hardware, when it delivers an interrupt.  (MMIO resources are
2690 * used in local terms.)  This is nice for Windows, and lines up
2691 * with the FDO/PDO split, which doesn't exist in Linux.  Linux
2692 * is deeply expecting to scan an emulated PCI configuration
2693 * space.  So this message is sent here only to drive the state
2694 * machine on the host forward.
2695 *
2696 * Return: 0 on success, -errno on failure
2697 */
2698static int hv_send_resources_allocated(struct hv_device *hdev)
2699{
2700	struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
2701	struct pci_resources_assigned *res_assigned;
2702	struct pci_resources_assigned2 *res_assigned2;
2703	struct hv_pci_compl comp_pkt;
2704	struct hv_pci_dev *hpdev;
2705	struct pci_packet *pkt;
2706	size_t size_res;
2707	u32 wslot;
2708	int ret;
2709
2710	size_res = (pci_protocol_version < PCI_PROTOCOL_VERSION_1_2)
2711			? sizeof(*res_assigned) : sizeof(*res_assigned2);
2712
2713	pkt = kmalloc(sizeof(*pkt) + size_res, GFP_KERNEL);
2714	if (!pkt)
2715		return -ENOMEM;
2716
2717	ret = 0;
2718
2719	for (wslot = 0; wslot < 256; wslot++) {
2720		hpdev = get_pcichild_wslot(hbus, wslot);
2721		if (!hpdev)
2722			continue;
2723
2724		memset(pkt, 0, sizeof(*pkt) + size_res);
2725		init_completion(&comp_pkt.host_event);
2726		pkt->completion_func = hv_pci_generic_compl;
2727		pkt->compl_ctxt = &comp_pkt;
2728
2729		if (pci_protocol_version < PCI_PROTOCOL_VERSION_1_2) {
2730			res_assigned =
2731				(struct pci_resources_assigned *)&pkt->message;
2732			res_assigned->message_type.type =
2733				PCI_RESOURCES_ASSIGNED;
2734			res_assigned->wslot.slot = hpdev->desc.win_slot.slot;
2735		} else {
2736			res_assigned2 =
2737				(struct pci_resources_assigned2 *)&pkt->message;
2738			res_assigned2->message_type.type =
2739				PCI_RESOURCES_ASSIGNED2;
2740			res_assigned2->wslot.slot = hpdev->desc.win_slot.slot;
2741		}
2742		put_pcichild(hpdev);
2743
2744		ret = vmbus_sendpacket(hdev->channel, &pkt->message,
2745				size_res, (unsigned long)pkt,
2746				VM_PKT_DATA_INBAND,
2747				VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
2748		if (!ret)
2749			ret = wait_for_response(hdev, &comp_pkt.host_event);
2750		if (ret)
2751			break;
2752
2753		if (comp_pkt.completion_status < 0) {
2754			ret = -EPROTO;
2755			dev_err(&hdev->device,
2756				"resource allocated returned 0x%x",
2757				comp_pkt.completion_status);
2758			break;
2759		}
 
 
2760	}
2761
2762	kfree(pkt);
2763	return ret;
2764}
2765
2766/**
2767 * hv_send_resources_released() - Report local resources
2768 * released
2769 * @hdev:	VMBus's tracking struct for this root PCI bus
2770 *
2771 * Return: 0 on success, -errno on failure
2772 */
2773static int hv_send_resources_released(struct hv_device *hdev)
2774{
2775	struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
2776	struct pci_child_message pkt;
2777	struct hv_pci_dev *hpdev;
2778	u32 wslot;
2779	int ret;
2780
2781	for (wslot = 0; wslot < 256; wslot++) {
2782		hpdev = get_pcichild_wslot(hbus, wslot);
2783		if (!hpdev)
2784			continue;
2785
2786		memset(&pkt, 0, sizeof(pkt));
2787		pkt.message_type.type = PCI_RESOURCES_RELEASED;
2788		pkt.wslot.slot = hpdev->desc.win_slot.slot;
2789
2790		put_pcichild(hpdev);
2791
2792		ret = vmbus_sendpacket(hdev->channel, &pkt, sizeof(pkt), 0,
2793				       VM_PKT_DATA_INBAND, 0);
2794		if (ret)
2795			return ret;
 
 
2796	}
2797
 
 
2798	return 0;
2799}
2800
2801static void get_hvpcibus(struct hv_pcibus_device *hbus)
2802{
2803	refcount_inc(&hbus->remove_lock);
2804}
2805
2806static void put_hvpcibus(struct hv_pcibus_device *hbus)
2807{
2808	if (refcount_dec_and_test(&hbus->remove_lock))
2809		complete(&hbus->remove_event);
2810}
2811
2812#define HVPCI_DOM_MAP_SIZE (64 * 1024)
2813static DECLARE_BITMAP(hvpci_dom_map, HVPCI_DOM_MAP_SIZE);
2814
2815/*
2816 * PCI domain number 0 is used by emulated devices on Gen1 VMs, so define 0
2817 * as invalid for passthrough PCI devices of this driver.
2818 */
2819#define HVPCI_DOM_INVALID 0
2820
2821/**
2822 * hv_get_dom_num() - Get a valid PCI domain number
2823 * Check if the PCI domain number is in use, and return another number if
2824 * it is in use.
2825 *
2826 * @dom: Requested domain number
2827 *
2828 * return: domain number on success, HVPCI_DOM_INVALID on failure
2829 */
2830static u16 hv_get_dom_num(u16 dom)
2831{
2832	unsigned int i;
2833
2834	if (test_and_set_bit(dom, hvpci_dom_map) == 0)
2835		return dom;
2836
2837	for_each_clear_bit(i, hvpci_dom_map, HVPCI_DOM_MAP_SIZE) {
2838		if (test_and_set_bit(i, hvpci_dom_map) == 0)
2839			return i;
2840	}
2841
2842	return HVPCI_DOM_INVALID;
2843}
2844
2845/**
2846 * hv_put_dom_num() - Mark the PCI domain number as free
2847 * @dom: Domain number to be freed
2848 */
2849static void hv_put_dom_num(u16 dom)
2850{
2851	clear_bit(dom, hvpci_dom_map);
2852}
2853
2854/**
2855 * hv_pci_probe() - New VMBus channel probe, for a root PCI bus
2856 * @hdev:	VMBus's tracking struct for this root PCI bus
2857 * @dev_id:	Identifies the device itself
2858 *
2859 * Return: 0 on success, -errno on failure
2860 */
2861static int hv_pci_probe(struct hv_device *hdev,
2862			const struct hv_vmbus_device_id *dev_id)
2863{
 
2864	struct hv_pcibus_device *hbus;
2865	u16 dom_req, dom;
2866	char *name;
2867	int ret;
2868
2869	/*
2870	 * hv_pcibus_device contains the hypercall arguments for retargeting in
2871	 * hv_irq_unmask(). Those must not cross a page boundary.
2872	 */
2873	BUILD_BUG_ON(sizeof(*hbus) > PAGE_SIZE);
2874
2875	hbus = (struct hv_pcibus_device *)get_zeroed_page(GFP_KERNEL);
2876	if (!hbus)
2877		return -ENOMEM;
 
 
 
2878	hbus->state = hv_pcibus_init;
 
2879
2880	/*
2881	 * The PCI bus "domain" is what is called "segment" in ACPI and other
2882	 * specs. Pull it from the instance ID, to get something usually
2883	 * unique. In rare cases of collision, we will find out another number
2884	 * not in use.
2885	 *
2886	 * Note that, since this code only runs in a Hyper-V VM, Hyper-V
2887	 * together with this guest driver can guarantee that (1) The only
2888	 * domain used by Gen1 VMs for something that looks like a physical
2889	 * PCI bus (which is actually emulated by the hypervisor) is domain 0.
2890	 * (2) There will be no overlap between domains (after fixing possible
2891	 * collisions) in the same VM.
2892	 */
2893	dom_req = hdev->dev_instance.b[5] << 8 | hdev->dev_instance.b[4];
2894	dom = hv_get_dom_num(dom_req);
2895
2896	if (dom == HVPCI_DOM_INVALID) {
2897		dev_err(&hdev->device,
2898			"Unable to use dom# 0x%hx or other numbers", dom_req);
2899		ret = -EINVAL;
2900		goto free_bus;
2901	}
2902
2903	if (dom != dom_req)
2904		dev_info(&hdev->device,
2905			 "PCI dom# 0x%hx has collision, using 0x%hx",
2906			 dom_req, dom);
2907
 
 
2908	hbus->sysdata.domain = dom;
 
 
 
 
 
 
 
 
 
 
 
 
2909
2910	hbus->hdev = hdev;
2911	refcount_set(&hbus->remove_lock, 1);
2912	INIT_LIST_HEAD(&hbus->children);
2913	INIT_LIST_HEAD(&hbus->dr_list);
2914	INIT_LIST_HEAD(&hbus->resources_for_children);
2915	spin_lock_init(&hbus->config_lock);
2916	spin_lock_init(&hbus->device_list_lock);
2917	spin_lock_init(&hbus->retarget_msi_interrupt_lock);
2918	init_completion(&hbus->remove_event);
2919	hbus->wq = alloc_ordered_workqueue("hv_pci_%x", 0,
2920					   hbus->sysdata.domain);
2921	if (!hbus->wq) {
2922		ret = -ENOMEM;
2923		goto free_dom;
2924	}
2925
 
 
 
 
2926	ret = vmbus_open(hdev->channel, pci_ring_size, pci_ring_size, NULL, 0,
2927			 hv_pci_onchannelcallback, hbus);
2928	if (ret)
2929		goto destroy_wq;
2930
2931	hv_set_drvdata(hdev, hbus);
2932
2933	ret = hv_pci_protocol_negotiation(hdev);
 
2934	if (ret)
2935		goto close;
2936
2937	ret = hv_allocate_config_window(hbus);
2938	if (ret)
2939		goto close;
2940
2941	hbus->cfg_addr = ioremap(hbus->mem_config->start,
2942				 PCI_CONFIG_MMIO_LENGTH);
2943	if (!hbus->cfg_addr) {
2944		dev_err(&hdev->device,
2945			"Unable to map a virtual address for config space\n");
2946		ret = -ENOMEM;
2947		goto free_config;
2948	}
2949
2950	name = kasprintf(GFP_KERNEL, "%pUL", &hdev->dev_instance);
2951	if (!name) {
2952		ret = -ENOMEM;
2953		goto unmap;
2954	}
2955
2956	hbus->sysdata.fwnode = irq_domain_alloc_named_fwnode(name);
2957	kfree(name);
2958	if (!hbus->sysdata.fwnode) {
2959		ret = -ENOMEM;
2960		goto unmap;
2961	}
2962
2963	ret = hv_pcie_init_irq_domain(hbus);
2964	if (ret)
2965		goto free_fwnode;
2966
2967	ret = hv_pci_query_relations(hdev);
2968	if (ret)
2969		goto free_irq_domain;
2970
 
 
2971	ret = hv_pci_enter_d0(hdev);
2972	if (ret)
2973		goto free_irq_domain;
2974
2975	ret = hv_pci_allocate_bridge_windows(hbus);
2976	if (ret)
2977		goto free_irq_domain;
2978
2979	ret = hv_send_resources_allocated(hdev);
2980	if (ret)
2981		goto free_windows;
2982
2983	prepopulate_bars(hbus);
2984
2985	hbus->state = hv_pcibus_probed;
2986
2987	ret = create_root_hv_pci_bus(hbus);
2988	if (ret)
2989		goto free_windows;
2990
 
2991	return 0;
2992
2993free_windows:
2994	hv_pci_free_bridge_windows(hbus);
 
 
 
 
2995free_irq_domain:
2996	irq_domain_remove(hbus->irq_domain);
2997free_fwnode:
2998	irq_domain_free_fwnode(hbus->sysdata.fwnode);
2999unmap:
3000	iounmap(hbus->cfg_addr);
3001free_config:
3002	hv_free_config_window(hbus);
3003close:
3004	vmbus_close(hdev->channel);
3005destroy_wq:
3006	destroy_workqueue(hbus->wq);
3007free_dom:
3008	hv_put_dom_num(hbus->sysdata.domain);
3009free_bus:
3010	free_page((unsigned long)hbus);
3011	return ret;
3012}
3013
3014static void hv_pci_bus_exit(struct hv_device *hdev)
3015{
3016	struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
 
3017	struct {
3018		struct pci_packet teardown_packet;
3019		u8 buffer[sizeof(struct pci_message)];
3020	} pkt;
3021	struct pci_bus_relations relations;
3022	struct hv_pci_compl comp_pkt;
 
 
 
3023	int ret;
3024
3025	/*
3026	 * After the host sends the RESCIND_CHANNEL message, it doesn't
3027	 * access the per-channel ringbuffer any longer.
3028	 */
3029	if (hdev->channel->rescind)
3030		return;
 
 
 
3031
3032	/* Delete any children which might still exist. */
3033	memset(&relations, 0, sizeof(relations));
3034	hv_pci_devices_present(hbus, &relations);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3035
3036	ret = hv_send_resources_released(hdev);
3037	if (ret)
3038		dev_err(&hdev->device,
3039			"Couldn't send resources released packet(s)\n");
 
 
3040
3041	memset(&pkt.teardown_packet, 0, sizeof(pkt.teardown_packet));
3042	init_completion(&comp_pkt.host_event);
3043	pkt.teardown_packet.completion_func = hv_pci_generic_compl;
3044	pkt.teardown_packet.compl_ctxt = &comp_pkt;
3045	pkt.teardown_packet.message[0].type = PCI_BUS_D0EXIT;
3046
3047	ret = vmbus_sendpacket(hdev->channel, &pkt.teardown_packet.message,
3048			       sizeof(struct pci_message),
3049			       (unsigned long)&pkt.teardown_packet,
3050			       VM_PKT_DATA_INBAND,
3051			       VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
3052	if (!ret)
3053		wait_for_completion_timeout(&comp_pkt.host_event, 10 * HZ);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3054}
3055
3056/**
3057 * hv_pci_remove() - Remove routine for this VMBus channel
3058 * @hdev:	VMBus's tracking struct for this root PCI bus
3059 *
3060 * Return: 0 on success, -errno on failure
3061 */
3062static int hv_pci_remove(struct hv_device *hdev)
3063{
3064	struct hv_pcibus_device *hbus;
3065
3066	hbus = hv_get_drvdata(hdev);
3067	if (hbus->state == hv_pcibus_installed) {
 
 
 
 
 
 
 
 
 
 
 
3068		/* Remove the bus from PCI's point of view. */
3069		pci_lock_rescan_remove();
3070		pci_stop_root_bus(hbus->pci_bus);
3071		hv_pci_remove_slots(hbus);
3072		pci_remove_root_bus(hbus->pci_bus);
3073		pci_unlock_rescan_remove();
3074		hbus->state = hv_pcibus_removed;
3075	}
3076
3077	hv_pci_bus_exit(hdev);
3078
3079	vmbus_close(hdev->channel);
3080
3081	iounmap(hbus->cfg_addr);
3082	hv_free_config_window(hbus);
3083	pci_free_resource_list(&hbus->resources_for_children);
3084	hv_pci_free_bridge_windows(hbus);
3085	irq_domain_remove(hbus->irq_domain);
3086	irq_domain_free_fwnode(hbus->sysdata.fwnode);
3087	put_hvpcibus(hbus);
3088	wait_for_completion(&hbus->remove_event);
3089	destroy_workqueue(hbus->wq);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3090
3091	hv_put_dom_num(hbus->sysdata.domain);
3092
3093	free_page((unsigned long)hbus);
 
3094	return 0;
 
 
 
 
 
 
3095}
3096
3097static const struct hv_vmbus_device_id hv_pci_id_table[] = {
3098	/* PCI Pass-through Class ID */
3099	/* 44C4F61D-4444-4400-9D52-802E27EDE19F */
3100	{ HV_PCIE_GUID, },
3101	{ },
3102};
3103
3104MODULE_DEVICE_TABLE(vmbus, hv_pci_id_table);
3105
3106static struct hv_driver hv_pci_drv = {
3107	.name		= "hv_pci",
3108	.id_table	= hv_pci_id_table,
3109	.probe		= hv_pci_probe,
3110	.remove		= hv_pci_remove,
 
 
3111};
3112
3113static void __exit exit_hv_pci_drv(void)
3114{
3115	vmbus_driver_unregister(&hv_pci_drv);
3116
3117	hvpci_block_ops.read_block = NULL;
3118	hvpci_block_ops.write_block = NULL;
3119	hvpci_block_ops.reg_blk_invalidate = NULL;
3120}
3121
3122static int __init init_hv_pci_drv(void)
3123{
 
 
 
 
 
 
 
 
 
3124	/* Set the invalid domain number's bit, so it will not be used */
3125	set_bit(HVPCI_DOM_INVALID, hvpci_dom_map);
3126
3127	/* Initialize PCI block r/w interface */
3128	hvpci_block_ops.read_block = hv_read_config_block;
3129	hvpci_block_ops.write_block = hv_write_config_block;
3130	hvpci_block_ops.reg_blk_invalidate = hv_register_block_invalidate;
3131
3132	return vmbus_driver_register(&hv_pci_drv);
3133}
3134
3135module_init(init_hv_pci_drv);
3136module_exit(exit_hv_pci_drv);
3137
3138MODULE_DESCRIPTION("Hyper-V PCI");
3139MODULE_LICENSE("GPL v2");