Linux Audio

Check our new training course

Yocto / OpenEmbedded training

Mar 24-27, 2025, special US time zones
Register
Loading...
Note: File does not exist in v5.9.
   1// SPDX-License-Identifier: GPL-2.0-only
   2/* Copyright (C) 2023 Intel Corporation */
   3
   4#include <net/libeth/rx.h>
   5#include <net/libeth/tx.h>
   6
   7#include "idpf.h"
   8
   9/**
  10 * idpf_tx_singleq_csum - Enable tx checksum offloads
  11 * @skb: pointer to skb
  12 * @off: pointer to struct that holds offload parameters
  13 *
  14 * Returns 0 or error (negative) if checksum offload cannot be executed, 1
  15 * otherwise.
  16 */
  17static int idpf_tx_singleq_csum(struct sk_buff *skb,
  18				struct idpf_tx_offload_params *off)
  19{
  20	u32 l4_len, l3_len, l2_len;
  21	union {
  22		struct iphdr *v4;
  23		struct ipv6hdr *v6;
  24		unsigned char *hdr;
  25	} ip;
  26	union {
  27		struct tcphdr *tcp;
  28		unsigned char *hdr;
  29	} l4;
  30	u32 offset, cmd = 0;
  31	u8 l4_proto = 0;
  32	__be16 frag_off;
  33	bool is_tso;
  34
  35	if (skb->ip_summed != CHECKSUM_PARTIAL)
  36		return 0;
  37
  38	ip.hdr = skb_network_header(skb);
  39	l4.hdr = skb_transport_header(skb);
  40
  41	/* compute outer L2 header size */
  42	l2_len = ip.hdr - skb->data;
  43	offset = FIELD_PREP(0x3F << IDPF_TX_DESC_LEN_MACLEN_S, l2_len / 2);
  44	is_tso = !!(off->tx_flags & IDPF_TX_FLAGS_TSO);
  45	if (skb->encapsulation) {
  46		u32 tunnel = 0;
  47
  48		/* define outer network header type */
  49		if (off->tx_flags & IDPF_TX_FLAGS_IPV4) {
  50			/* The stack computes the IP header already, the only
  51			 * time we need the hardware to recompute it is in the
  52			 * case of TSO.
  53			 */
  54			tunnel |= is_tso ?
  55				  IDPF_TX_CTX_EXT_IP_IPV4 :
  56				  IDPF_TX_CTX_EXT_IP_IPV4_NO_CSUM;
  57
  58			l4_proto = ip.v4->protocol;
  59		} else if (off->tx_flags & IDPF_TX_FLAGS_IPV6) {
  60			tunnel |= IDPF_TX_CTX_EXT_IP_IPV6;
  61
  62			l4_proto = ip.v6->nexthdr;
  63			if (ipv6_ext_hdr(l4_proto))
  64				ipv6_skip_exthdr(skb, skb_network_offset(skb) +
  65						 sizeof(*ip.v6),
  66						 &l4_proto, &frag_off);
  67		}
  68
  69		/* define outer transport */
  70		switch (l4_proto) {
  71		case IPPROTO_UDP:
  72			tunnel |= IDPF_TXD_CTX_UDP_TUNNELING;
  73			break;
  74		case IPPROTO_GRE:
  75			tunnel |= IDPF_TXD_CTX_GRE_TUNNELING;
  76			break;
  77		case IPPROTO_IPIP:
  78		case IPPROTO_IPV6:
  79			l4.hdr = skb_inner_network_header(skb);
  80			break;
  81		default:
  82			if (is_tso)
  83				return -1;
  84
  85			skb_checksum_help(skb);
  86
  87			return 0;
  88		}
  89		off->tx_flags |= IDPF_TX_FLAGS_TUNNEL;
  90
  91		/* compute outer L3 header size */
  92		tunnel |= FIELD_PREP(IDPF_TXD_CTX_QW0_TUNN_EXT_IPLEN_M,
  93				     (l4.hdr - ip.hdr) / 4);
  94
  95		/* switch IP header pointer from outer to inner header */
  96		ip.hdr = skb_inner_network_header(skb);
  97
  98		/* compute tunnel header size */
  99		tunnel |= FIELD_PREP(IDPF_TXD_CTX_QW0_TUNN_NATLEN_M,
 100				     (ip.hdr - l4.hdr) / 2);
 101
 102		/* indicate if we need to offload outer UDP header */
 103		if (is_tso &&
 104		    !(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) &&
 105		    (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM))
 106			tunnel |= IDPF_TXD_CTX_QW0_TUNN_L4T_CS_M;
 107
 108		/* record tunnel offload values */
 109		off->cd_tunneling |= tunnel;
 110
 111		/* switch L4 header pointer from outer to inner */
 112		l4.hdr = skb_inner_transport_header(skb);
 113		l4_proto = 0;
 114
 115		/* reset type as we transition from outer to inner headers */
 116		off->tx_flags &= ~(IDPF_TX_FLAGS_IPV4 | IDPF_TX_FLAGS_IPV6);
 117		if (ip.v4->version == 4)
 118			off->tx_flags |= IDPF_TX_FLAGS_IPV4;
 119		if (ip.v6->version == 6)
 120			off->tx_flags |= IDPF_TX_FLAGS_IPV6;
 121	}
 122
 123	/* Enable IP checksum offloads */
 124	if (off->tx_flags & IDPF_TX_FLAGS_IPV4) {
 125		l4_proto = ip.v4->protocol;
 126		/* See comment above regarding need for HW to recompute IP
 127		 * header checksum in the case of TSO.
 128		 */
 129		if (is_tso)
 130			cmd |= IDPF_TX_DESC_CMD_IIPT_IPV4_CSUM;
 131		else
 132			cmd |= IDPF_TX_DESC_CMD_IIPT_IPV4;
 133
 134	} else if (off->tx_flags & IDPF_TX_FLAGS_IPV6) {
 135		cmd |= IDPF_TX_DESC_CMD_IIPT_IPV6;
 136		l4_proto = ip.v6->nexthdr;
 137		if (ipv6_ext_hdr(l4_proto))
 138			ipv6_skip_exthdr(skb, skb_network_offset(skb) +
 139					 sizeof(*ip.v6), &l4_proto,
 140					 &frag_off);
 141	} else {
 142		return -1;
 143	}
 144
 145	/* compute inner L3 header size */
 146	l3_len = l4.hdr - ip.hdr;
 147	offset |= (l3_len / 4) << IDPF_TX_DESC_LEN_IPLEN_S;
 148
 149	/* Enable L4 checksum offloads */
 150	switch (l4_proto) {
 151	case IPPROTO_TCP:
 152		/* enable checksum offloads */
 153		cmd |= IDPF_TX_DESC_CMD_L4T_EOFT_TCP;
 154		l4_len = l4.tcp->doff;
 155		break;
 156	case IPPROTO_UDP:
 157		/* enable UDP checksum offload */
 158		cmd |= IDPF_TX_DESC_CMD_L4T_EOFT_UDP;
 159		l4_len = sizeof(struct udphdr) >> 2;
 160		break;
 161	case IPPROTO_SCTP:
 162		/* enable SCTP checksum offload */
 163		cmd |= IDPF_TX_DESC_CMD_L4T_EOFT_SCTP;
 164		l4_len = sizeof(struct sctphdr) >> 2;
 165		break;
 166	default:
 167		if (is_tso)
 168			return -1;
 169
 170		skb_checksum_help(skb);
 171
 172		return 0;
 173	}
 174
 175	offset |= l4_len << IDPF_TX_DESC_LEN_L4_LEN_S;
 176	off->td_cmd |= cmd;
 177	off->hdr_offsets |= offset;
 178
 179	return 1;
 180}
 181
 182/**
 183 * idpf_tx_singleq_map - Build the Tx base descriptor
 184 * @tx_q: queue to send buffer on
 185 * @first: first buffer info buffer to use
 186 * @offloads: pointer to struct that holds offload parameters
 187 *
 188 * This function loops over the skb data pointed to by *first
 189 * and gets a physical address for each memory location and programs
 190 * it and the length into the transmit base mode descriptor.
 191 */
 192static void idpf_tx_singleq_map(struct idpf_tx_queue *tx_q,
 193				struct idpf_tx_buf *first,
 194				struct idpf_tx_offload_params *offloads)
 195{
 196	u32 offsets = offloads->hdr_offsets;
 197	struct idpf_tx_buf *tx_buf = first;
 198	struct idpf_base_tx_desc *tx_desc;
 199	struct sk_buff *skb = first->skb;
 200	u64 td_cmd = offloads->td_cmd;
 201	unsigned int data_len, size;
 202	u16 i = tx_q->next_to_use;
 203	struct netdev_queue *nq;
 204	skb_frag_t *frag;
 205	dma_addr_t dma;
 206	u64 td_tag = 0;
 207
 208	data_len = skb->data_len;
 209	size = skb_headlen(skb);
 210
 211	tx_desc = &tx_q->base_tx[i];
 212
 213	dma = dma_map_single(tx_q->dev, skb->data, size, DMA_TO_DEVICE);
 214
 215	/* write each descriptor with CRC bit */
 216	if (idpf_queue_has(CRC_EN, tx_q))
 217		td_cmd |= IDPF_TX_DESC_CMD_ICRC;
 218
 219	for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
 220		unsigned int max_data = IDPF_TX_MAX_DESC_DATA_ALIGNED;
 221
 222		if (dma_mapping_error(tx_q->dev, dma))
 223			return idpf_tx_dma_map_error(tx_q, skb, first, i);
 224
 225		/* record length, and DMA address */
 226		dma_unmap_len_set(tx_buf, len, size);
 227		dma_unmap_addr_set(tx_buf, dma, dma);
 228		tx_buf->type = LIBETH_SQE_FRAG;
 229
 230		/* align size to end of page */
 231		max_data += -dma & (IDPF_TX_MAX_READ_REQ_SIZE - 1);
 232		tx_desc->buf_addr = cpu_to_le64(dma);
 233
 234		/* account for data chunks larger than the hardware
 235		 * can handle
 236		 */
 237		while (unlikely(size > IDPF_TX_MAX_DESC_DATA)) {
 238			tx_desc->qw1 = idpf_tx_singleq_build_ctob(td_cmd,
 239								  offsets,
 240								  max_data,
 241								  td_tag);
 242			if (unlikely(++i == tx_q->desc_count)) {
 243				tx_buf = &tx_q->tx_buf[0];
 244				tx_desc = &tx_q->base_tx[0];
 245				i = 0;
 246			} else {
 247				tx_buf++;
 248				tx_desc++;
 249			}
 250
 251			tx_buf->type = LIBETH_SQE_EMPTY;
 252
 253			dma += max_data;
 254			size -= max_data;
 255
 256			max_data = IDPF_TX_MAX_DESC_DATA_ALIGNED;
 257			tx_desc->buf_addr = cpu_to_le64(dma);
 258		}
 259
 260		if (!data_len)
 261			break;
 262
 263		tx_desc->qw1 = idpf_tx_singleq_build_ctob(td_cmd, offsets,
 264							  size, td_tag);
 265
 266		if (unlikely(++i == tx_q->desc_count)) {
 267			tx_buf = &tx_q->tx_buf[0];
 268			tx_desc = &tx_q->base_tx[0];
 269			i = 0;
 270		} else {
 271			tx_buf++;
 272			tx_desc++;
 273		}
 274
 275		size = skb_frag_size(frag);
 276		data_len -= size;
 277
 278		dma = skb_frag_dma_map(tx_q->dev, frag, 0, size,
 279				       DMA_TO_DEVICE);
 280	}
 281
 282	skb_tx_timestamp(first->skb);
 283
 284	/* write last descriptor with RS and EOP bits */
 285	td_cmd |= (u64)(IDPF_TX_DESC_CMD_EOP | IDPF_TX_DESC_CMD_RS);
 286
 287	tx_desc->qw1 = idpf_tx_singleq_build_ctob(td_cmd, offsets,
 288						  size, td_tag);
 289
 290	first->type = LIBETH_SQE_SKB;
 291	first->rs_idx = i;
 292
 293	IDPF_SINGLEQ_BUMP_RING_IDX(tx_q, i);
 294
 295	nq = netdev_get_tx_queue(tx_q->netdev, tx_q->idx);
 296	netdev_tx_sent_queue(nq, first->bytes);
 297
 298	idpf_tx_buf_hw_update(tx_q, i, netdev_xmit_more());
 299}
 300
 301/**
 302 * idpf_tx_singleq_get_ctx_desc - grab next desc and update buffer ring
 303 * @txq: queue to put context descriptor on
 304 *
 305 * Since the TX buffer rings mimics the descriptor ring, update the tx buffer
 306 * ring entry to reflect that this index is a context descriptor
 307 */
 308static struct idpf_base_tx_ctx_desc *
 309idpf_tx_singleq_get_ctx_desc(struct idpf_tx_queue *txq)
 310{
 311	struct idpf_base_tx_ctx_desc *ctx_desc;
 312	int ntu = txq->next_to_use;
 313
 314	txq->tx_buf[ntu].type = LIBETH_SQE_CTX;
 315
 316	ctx_desc = &txq->base_ctx[ntu];
 317
 318	IDPF_SINGLEQ_BUMP_RING_IDX(txq, ntu);
 319	txq->next_to_use = ntu;
 320
 321	return ctx_desc;
 322}
 323
 324/**
 325 * idpf_tx_singleq_build_ctx_desc - populate context descriptor
 326 * @txq: queue to send buffer on
 327 * @offload: offload parameter structure
 328 **/
 329static void idpf_tx_singleq_build_ctx_desc(struct idpf_tx_queue *txq,
 330					   struct idpf_tx_offload_params *offload)
 331{
 332	struct idpf_base_tx_ctx_desc *desc = idpf_tx_singleq_get_ctx_desc(txq);
 333	u64 qw1 = (u64)IDPF_TX_DESC_DTYPE_CTX;
 334
 335	if (offload->tso_segs) {
 336		qw1 |= IDPF_TX_CTX_DESC_TSO << IDPF_TXD_CTX_QW1_CMD_S;
 337		qw1 |= FIELD_PREP(IDPF_TXD_CTX_QW1_TSO_LEN_M,
 338				  offload->tso_len);
 339		qw1 |= FIELD_PREP(IDPF_TXD_CTX_QW1_MSS_M, offload->mss);
 340
 341		u64_stats_update_begin(&txq->stats_sync);
 342		u64_stats_inc(&txq->q_stats.lso_pkts);
 343		u64_stats_update_end(&txq->stats_sync);
 344	}
 345
 346	desc->qw0.tunneling_params = cpu_to_le32(offload->cd_tunneling);
 347
 348	desc->qw0.l2tag2 = 0;
 349	desc->qw0.rsvd1 = 0;
 350	desc->qw1 = cpu_to_le64(qw1);
 351}
 352
 353/**
 354 * idpf_tx_singleq_frame - Sends buffer on Tx ring using base descriptors
 355 * @skb: send buffer
 356 * @tx_q: queue to send buffer on
 357 *
 358 * Returns NETDEV_TX_OK if sent, else an error code
 359 */
 360netdev_tx_t idpf_tx_singleq_frame(struct sk_buff *skb,
 361				  struct idpf_tx_queue *tx_q)
 362{
 363	struct idpf_tx_offload_params offload = { };
 364	struct idpf_tx_buf *first;
 365	unsigned int count;
 366	__be16 protocol;
 367	int csum, tso;
 368
 369	count = idpf_tx_desc_count_required(tx_q, skb);
 370	if (unlikely(!count))
 371		return idpf_tx_drop_skb(tx_q, skb);
 372
 373	if (idpf_tx_maybe_stop_common(tx_q,
 374				      count + IDPF_TX_DESCS_PER_CACHE_LINE +
 375				      IDPF_TX_DESCS_FOR_CTX)) {
 376		idpf_tx_buf_hw_update(tx_q, tx_q->next_to_use, false);
 377
 378		u64_stats_update_begin(&tx_q->stats_sync);
 379		u64_stats_inc(&tx_q->q_stats.q_busy);
 380		u64_stats_update_end(&tx_q->stats_sync);
 381
 382		return NETDEV_TX_BUSY;
 383	}
 384
 385	protocol = vlan_get_protocol(skb);
 386	if (protocol == htons(ETH_P_IP))
 387		offload.tx_flags |= IDPF_TX_FLAGS_IPV4;
 388	else if (protocol == htons(ETH_P_IPV6))
 389		offload.tx_flags |= IDPF_TX_FLAGS_IPV6;
 390
 391	tso = idpf_tso(skb, &offload);
 392	if (tso < 0)
 393		goto out_drop;
 394
 395	csum = idpf_tx_singleq_csum(skb, &offload);
 396	if (csum < 0)
 397		goto out_drop;
 398
 399	if (tso || offload.cd_tunneling)
 400		idpf_tx_singleq_build_ctx_desc(tx_q, &offload);
 401
 402	/* record the location of the first descriptor for this packet */
 403	first = &tx_q->tx_buf[tx_q->next_to_use];
 404	first->skb = skb;
 405
 406	if (tso) {
 407		first->packets = offload.tso_segs;
 408		first->bytes = skb->len + ((first->packets - 1) * offload.tso_hdr_len);
 409	} else {
 410		first->bytes = max_t(unsigned int, skb->len, ETH_ZLEN);
 411		first->packets = 1;
 412	}
 413	idpf_tx_singleq_map(tx_q, first, &offload);
 414
 415	return NETDEV_TX_OK;
 416
 417out_drop:
 418	return idpf_tx_drop_skb(tx_q, skb);
 419}
 420
 421/**
 422 * idpf_tx_singleq_clean - Reclaim resources from queue
 423 * @tx_q: Tx queue to clean
 424 * @napi_budget: Used to determine if we are in netpoll
 425 * @cleaned: returns number of packets cleaned
 426 *
 427 */
 428static bool idpf_tx_singleq_clean(struct idpf_tx_queue *tx_q, int napi_budget,
 429				  int *cleaned)
 430{
 431	struct libeth_sq_napi_stats ss = { };
 432	struct idpf_base_tx_desc *tx_desc;
 433	u32 budget = tx_q->clean_budget;
 434	s16 ntc = tx_q->next_to_clean;
 435	struct libeth_cq_pp cp = {
 436		.dev	= tx_q->dev,
 437		.ss	= &ss,
 438		.napi	= napi_budget,
 439	};
 440	struct idpf_netdev_priv *np;
 441	struct idpf_tx_buf *tx_buf;
 442	struct netdev_queue *nq;
 443	bool dont_wake;
 444
 445	tx_desc = &tx_q->base_tx[ntc];
 446	tx_buf = &tx_q->tx_buf[ntc];
 447	ntc -= tx_q->desc_count;
 448
 449	do {
 450		struct idpf_base_tx_desc *eop_desc;
 451
 452		/* If this entry in the ring was used as a context descriptor,
 453		 * it's corresponding entry in the buffer ring will indicate as
 454		 * such. We can skip this descriptor since there is no buffer
 455		 * to clean.
 456		 */
 457		if (unlikely(tx_buf->type <= LIBETH_SQE_CTX)) {
 458			tx_buf->type = LIBETH_SQE_EMPTY;
 459			goto fetch_next_txq_desc;
 460		}
 461
 462		if (unlikely(tx_buf->type != LIBETH_SQE_SKB))
 463			break;
 464
 465		/* prevent any other reads prior to type */
 466		smp_rmb();
 467
 468		eop_desc = &tx_q->base_tx[tx_buf->rs_idx];
 469
 470		/* if the descriptor isn't done, no work yet to do */
 471		if (!(eop_desc->qw1 &
 472		      cpu_to_le64(IDPF_TX_DESC_DTYPE_DESC_DONE)))
 473			break;
 474
 475		/* update the statistics for this packet */
 476		libeth_tx_complete(tx_buf, &cp);
 477
 478		/* unmap remaining buffers */
 479		while (tx_desc != eop_desc) {
 480			tx_buf++;
 481			tx_desc++;
 482			ntc++;
 483			if (unlikely(!ntc)) {
 484				ntc -= tx_q->desc_count;
 485				tx_buf = tx_q->tx_buf;
 486				tx_desc = &tx_q->base_tx[0];
 487			}
 488
 489			/* unmap any remaining paged data */
 490			libeth_tx_complete(tx_buf, &cp);
 491		}
 492
 493		/* update budget only if we did something */
 494		budget--;
 495
 496fetch_next_txq_desc:
 497		tx_buf++;
 498		tx_desc++;
 499		ntc++;
 500		if (unlikely(!ntc)) {
 501			ntc -= tx_q->desc_count;
 502			tx_buf = tx_q->tx_buf;
 503			tx_desc = &tx_q->base_tx[0];
 504		}
 505	} while (likely(budget));
 506
 507	ntc += tx_q->desc_count;
 508	tx_q->next_to_clean = ntc;
 509
 510	*cleaned += ss.packets;
 511
 512	u64_stats_update_begin(&tx_q->stats_sync);
 513	u64_stats_add(&tx_q->q_stats.packets, ss.packets);
 514	u64_stats_add(&tx_q->q_stats.bytes, ss.bytes);
 515	u64_stats_update_end(&tx_q->stats_sync);
 516
 517	np = netdev_priv(tx_q->netdev);
 518	nq = netdev_get_tx_queue(tx_q->netdev, tx_q->idx);
 519
 520	dont_wake = np->state != __IDPF_VPORT_UP ||
 521		    !netif_carrier_ok(tx_q->netdev);
 522	__netif_txq_completed_wake(nq, ss.packets, ss.bytes,
 523				   IDPF_DESC_UNUSED(tx_q), IDPF_TX_WAKE_THRESH,
 524				   dont_wake);
 525
 526	return !!budget;
 527}
 528
 529/**
 530 * idpf_tx_singleq_clean_all - Clean all Tx queues
 531 * @q_vec: queue vector
 532 * @budget: Used to determine if we are in netpoll
 533 * @cleaned: returns number of packets cleaned
 534 *
 535 * Returns false if clean is not complete else returns true
 536 */
 537static bool idpf_tx_singleq_clean_all(struct idpf_q_vector *q_vec, int budget,
 538				      int *cleaned)
 539{
 540	u16 num_txq = q_vec->num_txq;
 541	bool clean_complete = true;
 542	int i, budget_per_q;
 543
 544	budget_per_q = num_txq ? max(budget / num_txq, 1) : 0;
 545	for (i = 0; i < num_txq; i++) {
 546		struct idpf_tx_queue *q;
 547
 548		q = q_vec->tx[i];
 549		clean_complete &= idpf_tx_singleq_clean(q, budget_per_q,
 550							cleaned);
 551	}
 552
 553	return clean_complete;
 554}
 555
 556/**
 557 * idpf_rx_singleq_test_staterr - tests bits in Rx descriptor
 558 * status and error fields
 559 * @rx_desc: pointer to receive descriptor (in le64 format)
 560 * @stat_err_bits: value to mask
 561 *
 562 * This function does some fast chicanery in order to return the
 563 * value of the mask which is really only used for boolean tests.
 564 * The status_error_ptype_len doesn't need to be shifted because it begins
 565 * at offset zero.
 566 */
 567static bool idpf_rx_singleq_test_staterr(const union virtchnl2_rx_desc *rx_desc,
 568					 const u64 stat_err_bits)
 569{
 570	return !!(rx_desc->base_wb.qword1.status_error_ptype_len &
 571		  cpu_to_le64(stat_err_bits));
 572}
 573
 574/**
 575 * idpf_rx_singleq_is_non_eop - process handling of non-EOP buffers
 576 * @rx_desc: Rx descriptor for current buffer
 577 */
 578static bool idpf_rx_singleq_is_non_eop(const union virtchnl2_rx_desc *rx_desc)
 579{
 580	/* if we are the last buffer then there is nothing else to do */
 581	if (likely(idpf_rx_singleq_test_staterr(rx_desc, IDPF_RXD_EOF_SINGLEQ)))
 582		return false;
 583
 584	return true;
 585}
 586
 587/**
 588 * idpf_rx_singleq_csum - Indicate in skb if checksum is good
 589 * @rxq: Rx ring being processed
 590 * @skb: skb currently being received and modified
 591 * @csum_bits: checksum bits from descriptor
 592 * @decoded: the packet type decoded by hardware
 593 *
 594 * skb->protocol must be set before this function is called
 595 */
 596static void idpf_rx_singleq_csum(struct idpf_rx_queue *rxq,
 597				 struct sk_buff *skb,
 598				 struct idpf_rx_csum_decoded csum_bits,
 599				 struct libeth_rx_pt decoded)
 600{
 601	bool ipv4, ipv6;
 602
 603	/* check if Rx checksum is enabled */
 604	if (!libeth_rx_pt_has_checksum(rxq->netdev, decoded))
 605		return;
 606
 607	/* check if HW has decoded the packet and checksum */
 608	if (unlikely(!csum_bits.l3l4p))
 609		return;
 610
 611	ipv4 = libeth_rx_pt_get_ip_ver(decoded) == LIBETH_RX_PT_OUTER_IPV4;
 612	ipv6 = libeth_rx_pt_get_ip_ver(decoded) == LIBETH_RX_PT_OUTER_IPV6;
 613
 614	/* Check if there were any checksum errors */
 615	if (unlikely(ipv4 && (csum_bits.ipe || csum_bits.eipe)))
 616		goto checksum_fail;
 617
 618	/* Device could not do any checksum offload for certain extension
 619	 * headers as indicated by setting IPV6EXADD bit
 620	 */
 621	if (unlikely(ipv6 && csum_bits.ipv6exadd))
 622		return;
 623
 624	/* check for L4 errors and handle packets that were not able to be
 625	 * checksummed due to arrival speed
 626	 */
 627	if (unlikely(csum_bits.l4e))
 628		goto checksum_fail;
 629
 630	if (unlikely(csum_bits.nat && csum_bits.eudpe))
 631		goto checksum_fail;
 632
 633	/* Handle packets that were not able to be checksummed due to arrival
 634	 * speed, in this case the stack can compute the csum.
 635	 */
 636	if (unlikely(csum_bits.pprs))
 637		return;
 638
 639	/* If there is an outer header present that might contain a checksum
 640	 * we need to bump the checksum level by 1 to reflect the fact that
 641	 * we are indicating we validated the inner checksum.
 642	 */
 643	if (decoded.tunnel_type >= LIBETH_RX_PT_TUNNEL_IP_GRENAT)
 644		skb->csum_level = 1;
 645
 646	skb->ip_summed = CHECKSUM_UNNECESSARY;
 647	return;
 648
 649checksum_fail:
 650	u64_stats_update_begin(&rxq->stats_sync);
 651	u64_stats_inc(&rxq->q_stats.hw_csum_err);
 652	u64_stats_update_end(&rxq->stats_sync);
 653}
 654
 655/**
 656 * idpf_rx_singleq_base_csum - Indicate in skb if hw indicated a good cksum
 657 * @rx_desc: the receive descriptor
 658 *
 659 * This function only operates on the VIRTCHNL2_RXDID_1_32B_BASE_M base 32byte
 660 * descriptor writeback format.
 661 *
 662 * Return: parsed checksum status.
 663 **/
 664static struct idpf_rx_csum_decoded
 665idpf_rx_singleq_base_csum(const union virtchnl2_rx_desc *rx_desc)
 666{
 667	struct idpf_rx_csum_decoded csum_bits = { };
 668	u32 rx_error, rx_status;
 669	u64 qword;
 670
 671	qword = le64_to_cpu(rx_desc->base_wb.qword1.status_error_ptype_len);
 672
 673	rx_status = FIELD_GET(VIRTCHNL2_RX_BASE_DESC_QW1_STATUS_M, qword);
 674	rx_error = FIELD_GET(VIRTCHNL2_RX_BASE_DESC_QW1_ERROR_M, qword);
 675
 676	csum_bits.ipe = FIELD_GET(VIRTCHNL2_RX_BASE_DESC_ERROR_IPE_M, rx_error);
 677	csum_bits.eipe = FIELD_GET(VIRTCHNL2_RX_BASE_DESC_ERROR_EIPE_M,
 678				   rx_error);
 679	csum_bits.l4e = FIELD_GET(VIRTCHNL2_RX_BASE_DESC_ERROR_L4E_M, rx_error);
 680	csum_bits.pprs = FIELD_GET(VIRTCHNL2_RX_BASE_DESC_ERROR_PPRS_M,
 681				   rx_error);
 682	csum_bits.l3l4p = FIELD_GET(VIRTCHNL2_RX_BASE_DESC_STATUS_L3L4P_M,
 683				    rx_status);
 684	csum_bits.ipv6exadd = FIELD_GET(VIRTCHNL2_RX_BASE_DESC_STATUS_IPV6EXADD_M,
 685					rx_status);
 686
 687	return csum_bits;
 688}
 689
 690/**
 691 * idpf_rx_singleq_flex_csum - Indicate in skb if hw indicated a good cksum
 692 * @rx_desc: the receive descriptor
 693 *
 694 * This function only operates on the VIRTCHNL2_RXDID_2_FLEX_SQ_NIC flexible
 695 * descriptor writeback format.
 696 *
 697 * Return: parsed checksum status.
 698 **/
 699static struct idpf_rx_csum_decoded
 700idpf_rx_singleq_flex_csum(const union virtchnl2_rx_desc *rx_desc)
 701{
 702	struct idpf_rx_csum_decoded csum_bits = { };
 703	u16 rx_status0, rx_status1;
 704
 705	rx_status0 = le16_to_cpu(rx_desc->flex_nic_wb.status_error0);
 706	rx_status1 = le16_to_cpu(rx_desc->flex_nic_wb.status_error1);
 707
 708	csum_bits.ipe = FIELD_GET(VIRTCHNL2_RX_FLEX_DESC_STATUS0_XSUM_IPE_M,
 709				  rx_status0);
 710	csum_bits.eipe = FIELD_GET(VIRTCHNL2_RX_FLEX_DESC_STATUS0_XSUM_EIPE_M,
 711				   rx_status0);
 712	csum_bits.l4e = FIELD_GET(VIRTCHNL2_RX_FLEX_DESC_STATUS0_XSUM_L4E_M,
 713				  rx_status0);
 714	csum_bits.eudpe = FIELD_GET(VIRTCHNL2_RX_FLEX_DESC_STATUS0_XSUM_EUDPE_M,
 715				    rx_status0);
 716	csum_bits.l3l4p = FIELD_GET(VIRTCHNL2_RX_FLEX_DESC_STATUS0_L3L4P_M,
 717				    rx_status0);
 718	csum_bits.ipv6exadd = FIELD_GET(VIRTCHNL2_RX_FLEX_DESC_STATUS0_IPV6EXADD_M,
 719					rx_status0);
 720	csum_bits.nat = FIELD_GET(VIRTCHNL2_RX_FLEX_DESC_STATUS1_NAT_M,
 721				  rx_status1);
 722
 723	return csum_bits;
 724}
 725
 726/**
 727 * idpf_rx_singleq_base_hash - set the hash value in the skb
 728 * @rx_q: Rx completion queue
 729 * @skb: skb currently being received and modified
 730 * @rx_desc: specific descriptor
 731 * @decoded: Decoded Rx packet type related fields
 732 *
 733 * This function only operates on the VIRTCHNL2_RXDID_1_32B_BASE_M base 32byte
 734 * descriptor writeback format.
 735 **/
 736static void idpf_rx_singleq_base_hash(struct idpf_rx_queue *rx_q,
 737				      struct sk_buff *skb,
 738				      const union virtchnl2_rx_desc *rx_desc,
 739				      struct libeth_rx_pt decoded)
 740{
 741	u64 mask, qw1;
 742
 743	if (!libeth_rx_pt_has_hash(rx_q->netdev, decoded))
 744		return;
 745
 746	mask = VIRTCHNL2_RX_BASE_DESC_FLTSTAT_RSS_HASH_M;
 747	qw1 = le64_to_cpu(rx_desc->base_wb.qword1.status_error_ptype_len);
 748
 749	if (FIELD_GET(mask, qw1) == mask) {
 750		u32 hash = le32_to_cpu(rx_desc->base_wb.qword0.hi_dword.rss);
 751
 752		libeth_rx_pt_set_hash(skb, hash, decoded);
 753	}
 754}
 755
 756/**
 757 * idpf_rx_singleq_flex_hash - set the hash value in the skb
 758 * @rx_q: Rx completion queue
 759 * @skb: skb currently being received and modified
 760 * @rx_desc: specific descriptor
 761 * @decoded: Decoded Rx packet type related fields
 762 *
 763 * This function only operates on the VIRTCHNL2_RXDID_2_FLEX_SQ_NIC flexible
 764 * descriptor writeback format.
 765 **/
 766static void idpf_rx_singleq_flex_hash(struct idpf_rx_queue *rx_q,
 767				      struct sk_buff *skb,
 768				      const union virtchnl2_rx_desc *rx_desc,
 769				      struct libeth_rx_pt decoded)
 770{
 771	if (!libeth_rx_pt_has_hash(rx_q->netdev, decoded))
 772		return;
 773
 774	if (FIELD_GET(VIRTCHNL2_RX_FLEX_DESC_STATUS0_RSS_VALID_M,
 775		      le16_to_cpu(rx_desc->flex_nic_wb.status_error0))) {
 776		u32 hash = le32_to_cpu(rx_desc->flex_nic_wb.rss_hash);
 777
 778		libeth_rx_pt_set_hash(skb, hash, decoded);
 779	}
 780}
 781
 782/**
 783 * idpf_rx_singleq_process_skb_fields - Populate skb header fields from Rx
 784 * descriptor
 785 * @rx_q: Rx ring being processed
 786 * @skb: pointer to current skb being populated
 787 * @rx_desc: descriptor for skb
 788 * @ptype: packet type
 789 *
 790 * This function checks the ring, descriptor, and packet information in
 791 * order to populate the hash, checksum, VLAN, protocol, and
 792 * other fields within the skb.
 793 */
 794static void
 795idpf_rx_singleq_process_skb_fields(struct idpf_rx_queue *rx_q,
 796				   struct sk_buff *skb,
 797				   const union virtchnl2_rx_desc *rx_desc,
 798				   u16 ptype)
 799{
 800	struct libeth_rx_pt decoded = rx_q->rx_ptype_lkup[ptype];
 801	struct idpf_rx_csum_decoded csum_bits;
 802
 803	/* modifies the skb - consumes the enet header */
 804	skb->protocol = eth_type_trans(skb, rx_q->netdev);
 805
 806	/* Check if we're using base mode descriptor IDs */
 807	if (rx_q->rxdids == VIRTCHNL2_RXDID_1_32B_BASE_M) {
 808		idpf_rx_singleq_base_hash(rx_q, skb, rx_desc, decoded);
 809		csum_bits = idpf_rx_singleq_base_csum(rx_desc);
 810	} else {
 811		idpf_rx_singleq_flex_hash(rx_q, skb, rx_desc, decoded);
 812		csum_bits = idpf_rx_singleq_flex_csum(rx_desc);
 813	}
 814
 815	idpf_rx_singleq_csum(rx_q, skb, csum_bits, decoded);
 816	skb_record_rx_queue(skb, rx_q->idx);
 817}
 818
 819/**
 820 * idpf_rx_buf_hw_update - Store the new tail and head values
 821 * @rxq: queue to bump
 822 * @val: new head index
 823 */
 824static void idpf_rx_buf_hw_update(struct idpf_rx_queue *rxq, u32 val)
 825{
 826	rxq->next_to_use = val;
 827
 828	if (unlikely(!rxq->tail))
 829		return;
 830
 831	/* writel has an implicit memory barrier */
 832	writel(val, rxq->tail);
 833}
 834
 835/**
 836 * idpf_rx_singleq_buf_hw_alloc_all - Replace used receive buffers
 837 * @rx_q: queue for which the hw buffers are allocated
 838 * @cleaned_count: number of buffers to replace
 839 *
 840 * Returns false if all allocations were successful, true if any fail
 841 */
 842bool idpf_rx_singleq_buf_hw_alloc_all(struct idpf_rx_queue *rx_q,
 843				      u16 cleaned_count)
 844{
 845	struct virtchnl2_singleq_rx_buf_desc *desc;
 846	const struct libeth_fq_fp fq = {
 847		.pp		= rx_q->pp,
 848		.fqes		= rx_q->rx_buf,
 849		.truesize	= rx_q->truesize,
 850		.count		= rx_q->desc_count,
 851	};
 852	u16 nta = rx_q->next_to_alloc;
 853
 854	if (!cleaned_count)
 855		return false;
 856
 857	desc = &rx_q->single_buf[nta];
 858
 859	do {
 860		dma_addr_t addr;
 861
 862		addr = libeth_rx_alloc(&fq, nta);
 863		if (addr == DMA_MAPPING_ERROR)
 864			break;
 865
 866		/* Refresh the desc even if buffer_addrs didn't change
 867		 * because each write-back erases this info.
 868		 */
 869		desc->pkt_addr = cpu_to_le64(addr);
 870		desc->hdr_addr = 0;
 871		desc++;
 872
 873		nta++;
 874		if (unlikely(nta == rx_q->desc_count)) {
 875			desc = &rx_q->single_buf[0];
 876			nta = 0;
 877		}
 878
 879		cleaned_count--;
 880	} while (cleaned_count);
 881
 882	if (rx_q->next_to_alloc != nta) {
 883		idpf_rx_buf_hw_update(rx_q, nta);
 884		rx_q->next_to_alloc = nta;
 885	}
 886
 887	return !!cleaned_count;
 888}
 889
 890/**
 891 * idpf_rx_singleq_extract_base_fields - Extract fields from the Rx descriptor
 892 * @rx_desc: the descriptor to process
 893 * @fields: storage for extracted values
 894 *
 895 * Decode the Rx descriptor and extract relevant information including the
 896 * size and Rx packet type.
 897 *
 898 * This function only operates on the VIRTCHNL2_RXDID_1_32B_BASE_M base 32byte
 899 * descriptor writeback format.
 900 */
 901static void
 902idpf_rx_singleq_extract_base_fields(const union virtchnl2_rx_desc *rx_desc,
 903				    struct idpf_rx_extracted *fields)
 904{
 905	u64 qword;
 906
 907	qword = le64_to_cpu(rx_desc->base_wb.qword1.status_error_ptype_len);
 908
 909	fields->size = FIELD_GET(VIRTCHNL2_RX_BASE_DESC_QW1_LEN_PBUF_M, qword);
 910	fields->rx_ptype = FIELD_GET(VIRTCHNL2_RX_BASE_DESC_QW1_PTYPE_M, qword);
 911}
 912
 913/**
 914 * idpf_rx_singleq_extract_flex_fields - Extract fields from the Rx descriptor
 915 * @rx_desc: the descriptor to process
 916 * @fields: storage for extracted values
 917 *
 918 * Decode the Rx descriptor and extract relevant information including the
 919 * size and Rx packet type.
 920 *
 921 * This function only operates on the VIRTCHNL2_RXDID_2_FLEX_SQ_NIC flexible
 922 * descriptor writeback format.
 923 */
 924static void
 925idpf_rx_singleq_extract_flex_fields(const union virtchnl2_rx_desc *rx_desc,
 926				    struct idpf_rx_extracted *fields)
 927{
 928	fields->size = FIELD_GET(VIRTCHNL2_RX_FLEX_DESC_PKT_LEN_M,
 929				 le16_to_cpu(rx_desc->flex_nic_wb.pkt_len));
 930	fields->rx_ptype = FIELD_GET(VIRTCHNL2_RX_FLEX_DESC_PTYPE_M,
 931				     le16_to_cpu(rx_desc->flex_nic_wb.ptype_flex_flags0));
 932}
 933
 934/**
 935 * idpf_rx_singleq_extract_fields - Extract fields from the Rx descriptor
 936 * @rx_q: Rx descriptor queue
 937 * @rx_desc: the descriptor to process
 938 * @fields: storage for extracted values
 939 *
 940 */
 941static void
 942idpf_rx_singleq_extract_fields(const struct idpf_rx_queue *rx_q,
 943			       const union virtchnl2_rx_desc *rx_desc,
 944			       struct idpf_rx_extracted *fields)
 945{
 946	if (rx_q->rxdids == VIRTCHNL2_RXDID_1_32B_BASE_M)
 947		idpf_rx_singleq_extract_base_fields(rx_desc, fields);
 948	else
 949		idpf_rx_singleq_extract_flex_fields(rx_desc, fields);
 950}
 951
 952/**
 953 * idpf_rx_singleq_clean - Reclaim resources after receive completes
 954 * @rx_q: rx queue to clean
 955 * @budget: Total limit on number of packets to process
 956 *
 957 * Returns true if there's any budget left (e.g. the clean is finished)
 958 */
 959static int idpf_rx_singleq_clean(struct idpf_rx_queue *rx_q, int budget)
 960{
 961	unsigned int total_rx_bytes = 0, total_rx_pkts = 0;
 962	struct sk_buff *skb = rx_q->skb;
 963	u16 ntc = rx_q->next_to_clean;
 964	u16 cleaned_count = 0;
 965	bool failure = false;
 966
 967	/* Process Rx packets bounded by budget */
 968	while (likely(total_rx_pkts < (unsigned int)budget)) {
 969		struct idpf_rx_extracted fields = { };
 970		union virtchnl2_rx_desc *rx_desc;
 971		struct idpf_rx_buf *rx_buf;
 972
 973		/* get the Rx desc from Rx queue based on 'next_to_clean' */
 974		rx_desc = &rx_q->rx[ntc];
 975
 976		/* status_error_ptype_len will always be zero for unused
 977		 * descriptors because it's cleared in cleanup, and overlaps
 978		 * with hdr_addr which is always zero because packet split
 979		 * isn't used, if the hardware wrote DD then the length will be
 980		 * non-zero
 981		 */
 982#define IDPF_RXD_DD VIRTCHNL2_RX_BASE_DESC_STATUS_DD_M
 983		if (!idpf_rx_singleq_test_staterr(rx_desc,
 984						  IDPF_RXD_DD))
 985			break;
 986
 987		/* This memory barrier is needed to keep us from reading
 988		 * any other fields out of the rx_desc
 989		 */
 990		dma_rmb();
 991
 992		idpf_rx_singleq_extract_fields(rx_q, rx_desc, &fields);
 993
 994		rx_buf = &rx_q->rx_buf[ntc];
 995		if (!libeth_rx_sync_for_cpu(rx_buf, fields.size))
 996			goto skip_data;
 997
 998		if (skb)
 999			idpf_rx_add_frag(rx_buf, skb, fields.size);
1000		else
1001			skb = idpf_rx_build_skb(rx_buf, fields.size);
1002
1003		/* exit if we failed to retrieve a buffer */
1004		if (!skb)
1005			break;
1006
1007skip_data:
1008		rx_buf->page = NULL;
1009
1010		IDPF_SINGLEQ_BUMP_RING_IDX(rx_q, ntc);
1011		cleaned_count++;
1012
1013		/* skip if it is non EOP desc */
1014		if (idpf_rx_singleq_is_non_eop(rx_desc) || unlikely(!skb))
1015			continue;
1016
1017#define IDPF_RXD_ERR_S FIELD_PREP(VIRTCHNL2_RX_BASE_DESC_QW1_ERROR_M, \
1018				  VIRTCHNL2_RX_BASE_DESC_ERROR_RXE_M)
1019		if (unlikely(idpf_rx_singleq_test_staterr(rx_desc,
1020							  IDPF_RXD_ERR_S))) {
1021			dev_kfree_skb_any(skb);
1022			skb = NULL;
1023			continue;
1024		}
1025
1026		/* pad skb if needed (to make valid ethernet frame) */
1027		if (eth_skb_pad(skb)) {
1028			skb = NULL;
1029			continue;
1030		}
1031
1032		/* probably a little skewed due to removing CRC */
1033		total_rx_bytes += skb->len;
1034
1035		/* protocol */
1036		idpf_rx_singleq_process_skb_fields(rx_q, skb,
1037						   rx_desc, fields.rx_ptype);
1038
1039		/* send completed skb up the stack */
1040		napi_gro_receive(rx_q->pp->p.napi, skb);
1041		skb = NULL;
1042
1043		/* update budget accounting */
1044		total_rx_pkts++;
1045	}
1046
1047	rx_q->skb = skb;
1048
1049	rx_q->next_to_clean = ntc;
1050
1051	page_pool_nid_changed(rx_q->pp, numa_mem_id());
1052	if (cleaned_count)
1053		failure = idpf_rx_singleq_buf_hw_alloc_all(rx_q, cleaned_count);
1054
1055	u64_stats_update_begin(&rx_q->stats_sync);
1056	u64_stats_add(&rx_q->q_stats.packets, total_rx_pkts);
1057	u64_stats_add(&rx_q->q_stats.bytes, total_rx_bytes);
1058	u64_stats_update_end(&rx_q->stats_sync);
1059
1060	/* guarantee a trip back through this routine if there was a failure */
1061	return failure ? budget : (int)total_rx_pkts;
1062}
1063
1064/**
1065 * idpf_rx_singleq_clean_all - Clean all Rx queues
1066 * @q_vec: queue vector
1067 * @budget: Used to determine if we are in netpoll
1068 * @cleaned: returns number of packets cleaned
1069 *
1070 * Returns false if clean is not complete else returns true
1071 */
1072static bool idpf_rx_singleq_clean_all(struct idpf_q_vector *q_vec, int budget,
1073				      int *cleaned)
1074{
1075	u16 num_rxq = q_vec->num_rxq;
1076	bool clean_complete = true;
1077	int budget_per_q, i;
1078
1079	/* We attempt to distribute budget to each Rx queue fairly, but don't
1080	 * allow the budget to go below 1 because that would exit polling early.
1081	 */
1082	budget_per_q = num_rxq ? max(budget / num_rxq, 1) : 0;
1083	for (i = 0; i < num_rxq; i++) {
1084		struct idpf_rx_queue *rxq = q_vec->rx[i];
1085		int pkts_cleaned_per_q;
1086
1087		pkts_cleaned_per_q = idpf_rx_singleq_clean(rxq, budget_per_q);
1088
1089		/* if we clean as many as budgeted, we must not be done */
1090		if (pkts_cleaned_per_q >= budget_per_q)
1091			clean_complete = false;
1092		*cleaned += pkts_cleaned_per_q;
1093	}
1094
1095	return clean_complete;
1096}
1097
1098/**
1099 * idpf_vport_singleq_napi_poll - NAPI handler
1100 * @napi: struct from which you get q_vector
1101 * @budget: budget provided by stack
1102 */
1103int idpf_vport_singleq_napi_poll(struct napi_struct *napi, int budget)
1104{
1105	struct idpf_q_vector *q_vector =
1106				container_of(napi, struct idpf_q_vector, napi);
1107	bool clean_complete;
1108	int work_done = 0;
1109
1110	/* Handle case where we are called by netpoll with a budget of 0 */
1111	if (budget <= 0) {
1112		idpf_tx_singleq_clean_all(q_vector, budget, &work_done);
1113
1114		return budget;
1115	}
1116
1117	clean_complete = idpf_rx_singleq_clean_all(q_vector, budget,
1118						   &work_done);
1119	clean_complete &= idpf_tx_singleq_clean_all(q_vector, budget,
1120						    &work_done);
1121
1122	/* If work not completed, return budget and polling will return */
1123	if (!clean_complete) {
1124		idpf_vport_intr_set_wb_on_itr(q_vector);
1125		return budget;
1126	}
1127
1128	work_done = min_t(int, work_done, budget - 1);
1129
1130	/* Exit the polling mode, but don't re-enable interrupts if stack might
1131	 * poll us due to busy-polling
1132	 */
1133	if (likely(napi_complete_done(napi, work_done)))
1134		idpf_vport_intr_update_itr_ena_irq(q_vector);
1135	else
1136		idpf_vport_intr_set_wb_on_itr(q_vector);
1137
1138	return work_done;
1139}