Loading...
1// SPDX-License-Identifier: GPL-2.0
2/* Copyright(c) 2013 - 2018 Intel Corporation. */
3
4#include <linux/bpf_trace.h>
5#include <linux/net/intel/libie/rx.h>
6#include <linux/prefetch.h>
7#include <linux/sctp.h>
8#include <net/mpls.h>
9#include <net/xdp.h>
10#include "i40e_txrx_common.h"
11#include "i40e_trace.h"
12#include "i40e_xsk.h"
13
14#define I40E_TXD_CMD (I40E_TX_DESC_CMD_EOP | I40E_TX_DESC_CMD_RS)
15/**
16 * i40e_fdir - Generate a Flow Director descriptor based on fdata
17 * @tx_ring: Tx ring to send buffer on
18 * @fdata: Flow director filter data
19 * @add: Indicate if we are adding a rule or deleting one
20 *
21 **/
22static void i40e_fdir(struct i40e_ring *tx_ring,
23 struct i40e_fdir_filter *fdata, bool add)
24{
25 struct i40e_filter_program_desc *fdir_desc;
26 struct i40e_pf *pf = tx_ring->vsi->back;
27 u32 flex_ptype, dtype_cmd, vsi_id;
28 u16 i;
29
30 /* grab the next descriptor */
31 i = tx_ring->next_to_use;
32 fdir_desc = I40E_TX_FDIRDESC(tx_ring, i);
33
34 i++;
35 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
36
37 flex_ptype = FIELD_PREP(I40E_TXD_FLTR_QW0_QINDEX_MASK, fdata->q_index);
38
39 flex_ptype |= FIELD_PREP(I40E_TXD_FLTR_QW0_FLEXOFF_MASK,
40 fdata->flex_off);
41
42 flex_ptype |= FIELD_PREP(I40E_TXD_FLTR_QW0_PCTYPE_MASK, fdata->pctype);
43
44 /* Use LAN VSI Id if not programmed by user */
45 vsi_id = fdata->dest_vsi ? : i40e_pf_get_main_vsi(pf)->id;
46 flex_ptype |= FIELD_PREP(I40E_TXD_FLTR_QW0_DEST_VSI_MASK, vsi_id);
47
48 dtype_cmd = I40E_TX_DESC_DTYPE_FILTER_PROG;
49
50 dtype_cmd |= add ?
51 I40E_FILTER_PROGRAM_DESC_PCMD_ADD_UPDATE <<
52 I40E_TXD_FLTR_QW1_PCMD_SHIFT :
53 I40E_FILTER_PROGRAM_DESC_PCMD_REMOVE <<
54 I40E_TXD_FLTR_QW1_PCMD_SHIFT;
55
56 dtype_cmd |= FIELD_PREP(I40E_TXD_FLTR_QW1_DEST_MASK, fdata->dest_ctl);
57
58 dtype_cmd |= FIELD_PREP(I40E_TXD_FLTR_QW1_FD_STATUS_MASK,
59 fdata->fd_status);
60
61 if (fdata->cnt_index) {
62 dtype_cmd |= I40E_TXD_FLTR_QW1_CNT_ENA_MASK;
63 dtype_cmd |= FIELD_PREP(I40E_TXD_FLTR_QW1_CNTINDEX_MASK,
64 fdata->cnt_index);
65 }
66
67 fdir_desc->qindex_flex_ptype_vsi = cpu_to_le32(flex_ptype);
68 fdir_desc->rsvd = cpu_to_le32(0);
69 fdir_desc->dtype_cmd_cntindex = cpu_to_le32(dtype_cmd);
70 fdir_desc->fd_id = cpu_to_le32(fdata->fd_id);
71}
72
73#define I40E_FD_CLEAN_DELAY 10
74/**
75 * i40e_program_fdir_filter - Program a Flow Director filter
76 * @fdir_data: Packet data that will be filter parameters
77 * @raw_packet: the pre-allocated packet buffer for FDir
78 * @pf: The PF pointer
79 * @add: True for add/update, False for remove
80 **/
81static int i40e_program_fdir_filter(struct i40e_fdir_filter *fdir_data,
82 u8 *raw_packet, struct i40e_pf *pf,
83 bool add)
84{
85 struct i40e_tx_buffer *tx_buf, *first;
86 struct i40e_tx_desc *tx_desc;
87 struct i40e_ring *tx_ring;
88 struct i40e_vsi *vsi;
89 struct device *dev;
90 dma_addr_t dma;
91 u32 td_cmd = 0;
92 u16 i;
93
94 /* find existing FDIR VSI */
95 vsi = i40e_find_vsi_by_type(pf, I40E_VSI_FDIR);
96 if (!vsi)
97 return -ENOENT;
98
99 tx_ring = vsi->tx_rings[0];
100 dev = tx_ring->dev;
101
102 /* we need two descriptors to add/del a filter and we can wait */
103 for (i = I40E_FD_CLEAN_DELAY; I40E_DESC_UNUSED(tx_ring) < 2; i--) {
104 if (!i)
105 return -EAGAIN;
106 msleep_interruptible(1);
107 }
108
109 dma = dma_map_single(dev, raw_packet,
110 I40E_FDIR_MAX_RAW_PACKET_SIZE, DMA_TO_DEVICE);
111 if (dma_mapping_error(dev, dma))
112 goto dma_fail;
113
114 /* grab the next descriptor */
115 i = tx_ring->next_to_use;
116 first = &tx_ring->tx_bi[i];
117 i40e_fdir(tx_ring, fdir_data, add);
118
119 /* Now program a dummy descriptor */
120 i = tx_ring->next_to_use;
121 tx_desc = I40E_TX_DESC(tx_ring, i);
122 tx_buf = &tx_ring->tx_bi[i];
123
124 tx_ring->next_to_use = ((i + 1) < tx_ring->count) ? i + 1 : 0;
125
126 memset(tx_buf, 0, sizeof(struct i40e_tx_buffer));
127
128 /* record length, and DMA address */
129 dma_unmap_len_set(tx_buf, len, I40E_FDIR_MAX_RAW_PACKET_SIZE);
130 dma_unmap_addr_set(tx_buf, dma, dma);
131
132 tx_desc->buffer_addr = cpu_to_le64(dma);
133 td_cmd = I40E_TXD_CMD | I40E_TX_DESC_CMD_DUMMY;
134
135 tx_buf->tx_flags = I40E_TX_FLAGS_FD_SB;
136 tx_buf->raw_buf = (void *)raw_packet;
137
138 tx_desc->cmd_type_offset_bsz =
139 build_ctob(td_cmd, 0, I40E_FDIR_MAX_RAW_PACKET_SIZE, 0);
140
141 /* Force memory writes to complete before letting h/w
142 * know there are new descriptors to fetch.
143 */
144 wmb();
145
146 /* Mark the data descriptor to be watched */
147 first->next_to_watch = tx_desc;
148
149 writel(tx_ring->next_to_use, tx_ring->tail);
150 return 0;
151
152dma_fail:
153 return -1;
154}
155
156/**
157 * i40e_create_dummy_packet - Constructs dummy packet for HW
158 * @dummy_packet: preallocated space for dummy packet
159 * @ipv4: is layer 3 packet of version 4 or 6
160 * @l4proto: next level protocol used in data portion of l3
161 * @data: filter data
162 *
163 * Returns address of layer 4 protocol dummy packet.
164 **/
165static char *i40e_create_dummy_packet(u8 *dummy_packet, bool ipv4, u8 l4proto,
166 struct i40e_fdir_filter *data)
167{
168 bool is_vlan = !!data->vlan_tag;
169 struct vlan_hdr vlan = {};
170 struct ipv6hdr ipv6 = {};
171 struct ethhdr eth = {};
172 struct iphdr ip = {};
173 u8 *tmp;
174
175 if (ipv4) {
176 eth.h_proto = cpu_to_be16(ETH_P_IP);
177 ip.protocol = l4proto;
178 ip.version = 0x4;
179 ip.ihl = 0x5;
180
181 ip.daddr = data->dst_ip;
182 ip.saddr = data->src_ip;
183 } else {
184 eth.h_proto = cpu_to_be16(ETH_P_IPV6);
185 ipv6.nexthdr = l4proto;
186 ipv6.version = 0x6;
187
188 memcpy(&ipv6.saddr.in6_u.u6_addr32, data->src_ip6,
189 sizeof(__be32) * 4);
190 memcpy(&ipv6.daddr.in6_u.u6_addr32, data->dst_ip6,
191 sizeof(__be32) * 4);
192 }
193
194 if (is_vlan) {
195 vlan.h_vlan_TCI = data->vlan_tag;
196 vlan.h_vlan_encapsulated_proto = eth.h_proto;
197 eth.h_proto = data->vlan_etype;
198 }
199
200 tmp = dummy_packet;
201 memcpy(tmp, ð, sizeof(eth));
202 tmp += sizeof(eth);
203
204 if (is_vlan) {
205 memcpy(tmp, &vlan, sizeof(vlan));
206 tmp += sizeof(vlan);
207 }
208
209 if (ipv4) {
210 memcpy(tmp, &ip, sizeof(ip));
211 tmp += sizeof(ip);
212 } else {
213 memcpy(tmp, &ipv6, sizeof(ipv6));
214 tmp += sizeof(ipv6);
215 }
216
217 return tmp;
218}
219
220/**
221 * i40e_create_dummy_udp_packet - helper function to create UDP packet
222 * @raw_packet: preallocated space for dummy packet
223 * @ipv4: is layer 3 packet of version 4 or 6
224 * @l4proto: next level protocol used in data portion of l3
225 * @data: filter data
226 *
227 * Helper function to populate udp fields.
228 **/
229static void i40e_create_dummy_udp_packet(u8 *raw_packet, bool ipv4, u8 l4proto,
230 struct i40e_fdir_filter *data)
231{
232 struct udphdr *udp;
233 u8 *tmp;
234
235 tmp = i40e_create_dummy_packet(raw_packet, ipv4, IPPROTO_UDP, data);
236 udp = (struct udphdr *)(tmp);
237 udp->dest = data->dst_port;
238 udp->source = data->src_port;
239}
240
241/**
242 * i40e_create_dummy_tcp_packet - helper function to create TCP packet
243 * @raw_packet: preallocated space for dummy packet
244 * @ipv4: is layer 3 packet of version 4 or 6
245 * @l4proto: next level protocol used in data portion of l3
246 * @data: filter data
247 *
248 * Helper function to populate tcp fields.
249 **/
250static void i40e_create_dummy_tcp_packet(u8 *raw_packet, bool ipv4, u8 l4proto,
251 struct i40e_fdir_filter *data)
252{
253 struct tcphdr *tcp;
254 u8 *tmp;
255 /* Dummy tcp packet */
256 static const char tcp_packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
257 0x50, 0x11, 0x0, 0x72, 0, 0, 0, 0};
258
259 tmp = i40e_create_dummy_packet(raw_packet, ipv4, IPPROTO_TCP, data);
260
261 tcp = (struct tcphdr *)tmp;
262 memcpy(tcp, tcp_packet, sizeof(tcp_packet));
263 tcp->dest = data->dst_port;
264 tcp->source = data->src_port;
265}
266
267/**
268 * i40e_create_dummy_sctp_packet - helper function to create SCTP packet
269 * @raw_packet: preallocated space for dummy packet
270 * @ipv4: is layer 3 packet of version 4 or 6
271 * @l4proto: next level protocol used in data portion of l3
272 * @data: filter data
273 *
274 * Helper function to populate sctp fields.
275 **/
276static void i40e_create_dummy_sctp_packet(u8 *raw_packet, bool ipv4,
277 u8 l4proto,
278 struct i40e_fdir_filter *data)
279{
280 struct sctphdr *sctp;
281 u8 *tmp;
282
283 tmp = i40e_create_dummy_packet(raw_packet, ipv4, IPPROTO_SCTP, data);
284
285 sctp = (struct sctphdr *)tmp;
286 sctp->dest = data->dst_port;
287 sctp->source = data->src_port;
288}
289
290/**
291 * i40e_prepare_fdir_filter - Prepare and program fdir filter
292 * @pf: physical function to attach filter to
293 * @fd_data: filter data
294 * @add: add or delete filter
295 * @packet_addr: address of dummy packet, used in filtering
296 * @payload_offset: offset from dummy packet address to user defined data
297 * @pctype: Packet type for which filter is used
298 *
299 * Helper function to offset data of dummy packet, program it and
300 * handle errors.
301 **/
302static int i40e_prepare_fdir_filter(struct i40e_pf *pf,
303 struct i40e_fdir_filter *fd_data,
304 bool add, char *packet_addr,
305 int payload_offset, u8 pctype)
306{
307 int ret;
308
309 if (fd_data->flex_filter) {
310 u8 *payload;
311 __be16 pattern = fd_data->flex_word;
312 u16 off = fd_data->flex_offset;
313
314 payload = packet_addr + payload_offset;
315
316 /* If user provided vlan, offset payload by vlan header length */
317 if (!!fd_data->vlan_tag)
318 payload += VLAN_HLEN;
319
320 *((__force __be16 *)(payload + off)) = pattern;
321 }
322
323 fd_data->pctype = pctype;
324 ret = i40e_program_fdir_filter(fd_data, packet_addr, pf, add);
325 if (ret) {
326 dev_info(&pf->pdev->dev,
327 "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
328 fd_data->pctype, fd_data->fd_id, ret);
329 /* Free the packet buffer since it wasn't added to the ring */
330 return -EOPNOTSUPP;
331 } else if (I40E_DEBUG_FD & pf->hw.debug_mask) {
332 if (add)
333 dev_info(&pf->pdev->dev,
334 "Filter OK for PCTYPE %d loc = %d\n",
335 fd_data->pctype, fd_data->fd_id);
336 else
337 dev_info(&pf->pdev->dev,
338 "Filter deleted for PCTYPE %d loc = %d\n",
339 fd_data->pctype, fd_data->fd_id);
340 }
341
342 return ret;
343}
344
345/**
346 * i40e_change_filter_num - Prepare and program fdir filter
347 * @ipv4: is layer 3 packet of version 4 or 6
348 * @add: add or delete filter
349 * @ipv4_filter_num: field to update
350 * @ipv6_filter_num: field to update
351 *
352 * Update filter number field for pf.
353 **/
354static void i40e_change_filter_num(bool ipv4, bool add, u16 *ipv4_filter_num,
355 u16 *ipv6_filter_num)
356{
357 if (add) {
358 if (ipv4)
359 (*ipv4_filter_num)++;
360 else
361 (*ipv6_filter_num)++;
362 } else {
363 if (ipv4)
364 (*ipv4_filter_num)--;
365 else
366 (*ipv6_filter_num)--;
367 }
368}
369
370#define I40E_UDPIP_DUMMY_PACKET_LEN 42
371#define I40E_UDPIP6_DUMMY_PACKET_LEN 62
372/**
373 * i40e_add_del_fdir_udp - Add/Remove UDP filters
374 * @vsi: pointer to the targeted VSI
375 * @fd_data: the flow director data required for the FDir descriptor
376 * @add: true adds a filter, false removes it
377 * @ipv4: true is v4, false is v6
378 *
379 * Returns 0 if the filters were successfully added or removed
380 **/
381static int i40e_add_del_fdir_udp(struct i40e_vsi *vsi,
382 struct i40e_fdir_filter *fd_data,
383 bool add,
384 bool ipv4)
385{
386 struct i40e_pf *pf = vsi->back;
387 u8 *raw_packet;
388 int ret;
389
390 raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
391 if (!raw_packet)
392 return -ENOMEM;
393
394 i40e_create_dummy_udp_packet(raw_packet, ipv4, IPPROTO_UDP, fd_data);
395
396 if (ipv4)
397 ret = i40e_prepare_fdir_filter
398 (pf, fd_data, add, raw_packet,
399 I40E_UDPIP_DUMMY_PACKET_LEN,
400 I40E_FILTER_PCTYPE_NONF_IPV4_UDP);
401 else
402 ret = i40e_prepare_fdir_filter
403 (pf, fd_data, add, raw_packet,
404 I40E_UDPIP6_DUMMY_PACKET_LEN,
405 I40E_FILTER_PCTYPE_NONF_IPV6_UDP);
406
407 if (ret) {
408 kfree(raw_packet);
409 return ret;
410 }
411
412 i40e_change_filter_num(ipv4, add, &pf->fd_udp4_filter_cnt,
413 &pf->fd_udp6_filter_cnt);
414
415 return 0;
416}
417
418#define I40E_TCPIP_DUMMY_PACKET_LEN 54
419#define I40E_TCPIP6_DUMMY_PACKET_LEN 74
420/**
421 * i40e_add_del_fdir_tcp - Add/Remove TCPv4 filters
422 * @vsi: pointer to the targeted VSI
423 * @fd_data: the flow director data required for the FDir descriptor
424 * @add: true adds a filter, false removes it
425 * @ipv4: true is v4, false is v6
426 *
427 * Returns 0 if the filters were successfully added or removed
428 **/
429static int i40e_add_del_fdir_tcp(struct i40e_vsi *vsi,
430 struct i40e_fdir_filter *fd_data,
431 bool add,
432 bool ipv4)
433{
434 struct i40e_pf *pf = vsi->back;
435 u8 *raw_packet;
436 int ret;
437
438 raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
439 if (!raw_packet)
440 return -ENOMEM;
441
442 i40e_create_dummy_tcp_packet(raw_packet, ipv4, IPPROTO_TCP, fd_data);
443 if (ipv4)
444 ret = i40e_prepare_fdir_filter
445 (pf, fd_data, add, raw_packet,
446 I40E_TCPIP_DUMMY_PACKET_LEN,
447 I40E_FILTER_PCTYPE_NONF_IPV4_TCP);
448 else
449 ret = i40e_prepare_fdir_filter
450 (pf, fd_data, add, raw_packet,
451 I40E_TCPIP6_DUMMY_PACKET_LEN,
452 I40E_FILTER_PCTYPE_NONF_IPV6_TCP);
453
454 if (ret) {
455 kfree(raw_packet);
456 return ret;
457 }
458
459 i40e_change_filter_num(ipv4, add, &pf->fd_tcp4_filter_cnt,
460 &pf->fd_tcp6_filter_cnt);
461
462 if (add) {
463 if (test_bit(I40E_FLAG_FD_ATR_ENA, pf->flags) &&
464 I40E_DEBUG_FD & pf->hw.debug_mask)
465 dev_info(&pf->pdev->dev, "Forcing ATR off, sideband rules for TCP/IPv4 flow being applied\n");
466 set_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state);
467 }
468 return 0;
469}
470
471#define I40E_SCTPIP_DUMMY_PACKET_LEN 46
472#define I40E_SCTPIP6_DUMMY_PACKET_LEN 66
473/**
474 * i40e_add_del_fdir_sctp - Add/Remove SCTPv4 Flow Director filters for
475 * a specific flow spec
476 * @vsi: pointer to the targeted VSI
477 * @fd_data: the flow director data required for the FDir descriptor
478 * @add: true adds a filter, false removes it
479 * @ipv4: true is v4, false is v6
480 *
481 * Returns 0 if the filters were successfully added or removed
482 **/
483static int i40e_add_del_fdir_sctp(struct i40e_vsi *vsi,
484 struct i40e_fdir_filter *fd_data,
485 bool add,
486 bool ipv4)
487{
488 struct i40e_pf *pf = vsi->back;
489 u8 *raw_packet;
490 int ret;
491
492 raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
493 if (!raw_packet)
494 return -ENOMEM;
495
496 i40e_create_dummy_sctp_packet(raw_packet, ipv4, IPPROTO_SCTP, fd_data);
497
498 if (ipv4)
499 ret = i40e_prepare_fdir_filter
500 (pf, fd_data, add, raw_packet,
501 I40E_SCTPIP_DUMMY_PACKET_LEN,
502 I40E_FILTER_PCTYPE_NONF_IPV4_SCTP);
503 else
504 ret = i40e_prepare_fdir_filter
505 (pf, fd_data, add, raw_packet,
506 I40E_SCTPIP6_DUMMY_PACKET_LEN,
507 I40E_FILTER_PCTYPE_NONF_IPV6_SCTP);
508
509 if (ret) {
510 kfree(raw_packet);
511 return ret;
512 }
513
514 i40e_change_filter_num(ipv4, add, &pf->fd_sctp4_filter_cnt,
515 &pf->fd_sctp6_filter_cnt);
516
517 return 0;
518}
519
520#define I40E_IP_DUMMY_PACKET_LEN 34
521#define I40E_IP6_DUMMY_PACKET_LEN 54
522/**
523 * i40e_add_del_fdir_ip - Add/Remove IPv4 Flow Director filters for
524 * a specific flow spec
525 * @vsi: pointer to the targeted VSI
526 * @fd_data: the flow director data required for the FDir descriptor
527 * @add: true adds a filter, false removes it
528 * @ipv4: true is v4, false is v6
529 *
530 * Returns 0 if the filters were successfully added or removed
531 **/
532static int i40e_add_del_fdir_ip(struct i40e_vsi *vsi,
533 struct i40e_fdir_filter *fd_data,
534 bool add,
535 bool ipv4)
536{
537 struct i40e_pf *pf = vsi->back;
538 int payload_offset;
539 u8 *raw_packet;
540 int iter_start;
541 int iter_end;
542 int ret;
543 int i;
544
545 if (ipv4) {
546 iter_start = I40E_FILTER_PCTYPE_NONF_IPV4_OTHER;
547 iter_end = I40E_FILTER_PCTYPE_FRAG_IPV4;
548 } else {
549 iter_start = I40E_FILTER_PCTYPE_NONF_IPV6_OTHER;
550 iter_end = I40E_FILTER_PCTYPE_FRAG_IPV6;
551 }
552
553 for (i = iter_start; i <= iter_end; i++) {
554 raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
555 if (!raw_packet)
556 return -ENOMEM;
557
558 /* IPv6 no header option differs from IPv4 */
559 (void)i40e_create_dummy_packet
560 (raw_packet, ipv4, (ipv4) ? IPPROTO_IP : IPPROTO_NONE,
561 fd_data);
562
563 payload_offset = (ipv4) ? I40E_IP_DUMMY_PACKET_LEN :
564 I40E_IP6_DUMMY_PACKET_LEN;
565 ret = i40e_prepare_fdir_filter(pf, fd_data, add, raw_packet,
566 payload_offset, i);
567 if (ret)
568 goto err;
569 }
570
571 i40e_change_filter_num(ipv4, add, &pf->fd_ip4_filter_cnt,
572 &pf->fd_ip6_filter_cnt);
573
574 return 0;
575err:
576 kfree(raw_packet);
577 return ret;
578}
579
580/**
581 * i40e_add_del_fdir - Build raw packets to add/del fdir filter
582 * @vsi: pointer to the targeted VSI
583 * @input: filter to add or delete
584 * @add: true adds a filter, false removes it
585 *
586 **/
587int i40e_add_del_fdir(struct i40e_vsi *vsi,
588 struct i40e_fdir_filter *input, bool add)
589{
590 enum ip_ver { ipv6 = 0, ipv4 = 1 };
591 struct i40e_pf *pf = vsi->back;
592 int ret;
593
594 switch (input->flow_type & ~FLOW_EXT) {
595 case TCP_V4_FLOW:
596 ret = i40e_add_del_fdir_tcp(vsi, input, add, ipv4);
597 break;
598 case UDP_V4_FLOW:
599 ret = i40e_add_del_fdir_udp(vsi, input, add, ipv4);
600 break;
601 case SCTP_V4_FLOW:
602 ret = i40e_add_del_fdir_sctp(vsi, input, add, ipv4);
603 break;
604 case TCP_V6_FLOW:
605 ret = i40e_add_del_fdir_tcp(vsi, input, add, ipv6);
606 break;
607 case UDP_V6_FLOW:
608 ret = i40e_add_del_fdir_udp(vsi, input, add, ipv6);
609 break;
610 case SCTP_V6_FLOW:
611 ret = i40e_add_del_fdir_sctp(vsi, input, add, ipv6);
612 break;
613 case IP_USER_FLOW:
614 switch (input->ipl4_proto) {
615 case IPPROTO_TCP:
616 ret = i40e_add_del_fdir_tcp(vsi, input, add, ipv4);
617 break;
618 case IPPROTO_UDP:
619 ret = i40e_add_del_fdir_udp(vsi, input, add, ipv4);
620 break;
621 case IPPROTO_SCTP:
622 ret = i40e_add_del_fdir_sctp(vsi, input, add, ipv4);
623 break;
624 case IPPROTO_IP:
625 ret = i40e_add_del_fdir_ip(vsi, input, add, ipv4);
626 break;
627 default:
628 /* We cannot support masking based on protocol */
629 dev_info(&pf->pdev->dev, "Unsupported IPv4 protocol 0x%02x\n",
630 input->ipl4_proto);
631 return -EINVAL;
632 }
633 break;
634 case IPV6_USER_FLOW:
635 switch (input->ipl4_proto) {
636 case IPPROTO_TCP:
637 ret = i40e_add_del_fdir_tcp(vsi, input, add, ipv6);
638 break;
639 case IPPROTO_UDP:
640 ret = i40e_add_del_fdir_udp(vsi, input, add, ipv6);
641 break;
642 case IPPROTO_SCTP:
643 ret = i40e_add_del_fdir_sctp(vsi, input, add, ipv6);
644 break;
645 case IPPROTO_IP:
646 ret = i40e_add_del_fdir_ip(vsi, input, add, ipv6);
647 break;
648 default:
649 /* We cannot support masking based on protocol */
650 dev_info(&pf->pdev->dev, "Unsupported IPv6 protocol 0x%02x\n",
651 input->ipl4_proto);
652 return -EINVAL;
653 }
654 break;
655 default:
656 dev_info(&pf->pdev->dev, "Unsupported flow type 0x%02x\n",
657 input->flow_type);
658 return -EINVAL;
659 }
660
661 /* The buffer allocated here will be normally be freed by
662 * i40e_clean_fdir_tx_irq() as it reclaims resources after transmit
663 * completion. In the event of an error adding the buffer to the FDIR
664 * ring, it will immediately be freed. It may also be freed by
665 * i40e_clean_tx_ring() when closing the VSI.
666 */
667 return ret;
668}
669
670/**
671 * i40e_fd_handle_status - check the Programming Status for FD
672 * @rx_ring: the Rx ring for this descriptor
673 * @qword0_raw: qword0
674 * @qword1: qword1 after le_to_cpu
675 * @prog_id: the id originally used for programming
676 *
677 * This is used to verify if the FD programming or invalidation
678 * requested by SW to the HW is successful or not and take actions accordingly.
679 **/
680static void i40e_fd_handle_status(struct i40e_ring *rx_ring, u64 qword0_raw,
681 u64 qword1, u8 prog_id)
682{
683 struct i40e_pf *pf = rx_ring->vsi->back;
684 struct pci_dev *pdev = pf->pdev;
685 struct i40e_16b_rx_wb_qw0 *qw0;
686 u32 fcnt_prog, fcnt_avail;
687 u32 error;
688
689 qw0 = (struct i40e_16b_rx_wb_qw0 *)&qword0_raw;
690 error = FIELD_GET(I40E_RX_PROG_STATUS_DESC_QW1_ERROR_MASK, qword1);
691
692 if (error == BIT(I40E_RX_PROG_STATUS_DESC_FD_TBL_FULL_SHIFT)) {
693 pf->fd_inv = le32_to_cpu(qw0->hi_dword.fd_id);
694 if (qw0->hi_dword.fd_id != 0 ||
695 (I40E_DEBUG_FD & pf->hw.debug_mask))
696 dev_warn(&pdev->dev, "ntuple filter loc = %d, could not be added\n",
697 pf->fd_inv);
698
699 /* Check if the programming error is for ATR.
700 * If so, auto disable ATR and set a state for
701 * flush in progress. Next time we come here if flush is in
702 * progress do nothing, once flush is complete the state will
703 * be cleared.
704 */
705 if (test_bit(__I40E_FD_FLUSH_REQUESTED, pf->state))
706 return;
707
708 pf->fd_add_err++;
709 /* store the current atr filter count */
710 pf->fd_atr_cnt = i40e_get_current_atr_cnt(pf);
711
712 if (qw0->hi_dword.fd_id == 0 &&
713 test_bit(__I40E_FD_SB_AUTO_DISABLED, pf->state)) {
714 /* These set_bit() calls aren't atomic with the
715 * test_bit() here, but worse case we potentially
716 * disable ATR and queue a flush right after SB
717 * support is re-enabled. That shouldn't cause an
718 * issue in practice
719 */
720 set_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state);
721 set_bit(__I40E_FD_FLUSH_REQUESTED, pf->state);
722 }
723
724 /* filter programming failed most likely due to table full */
725 fcnt_prog = i40e_get_global_fd_count(pf);
726 fcnt_avail = pf->fdir_pf_filter_count;
727 /* If ATR is running fcnt_prog can quickly change,
728 * if we are very close to full, it makes sense to disable
729 * FD ATR/SB and then re-enable it when there is room.
730 */
731 if (fcnt_prog >= (fcnt_avail - I40E_FDIR_BUFFER_FULL_MARGIN)) {
732 if (test_bit(I40E_FLAG_FD_SB_ENA, pf->flags) &&
733 !test_and_set_bit(__I40E_FD_SB_AUTO_DISABLED,
734 pf->state))
735 if (I40E_DEBUG_FD & pf->hw.debug_mask)
736 dev_warn(&pdev->dev, "FD filter space full, new ntuple rules will not be added\n");
737 }
738 } else if (error == BIT(I40E_RX_PROG_STATUS_DESC_NO_FD_ENTRY_SHIFT)) {
739 if (I40E_DEBUG_FD & pf->hw.debug_mask)
740 dev_info(&pdev->dev, "ntuple filter fd_id = %d, could not be removed\n",
741 qw0->hi_dword.fd_id);
742 }
743}
744
745/**
746 * i40e_unmap_and_free_tx_resource - Release a Tx buffer
747 * @ring: the ring that owns the buffer
748 * @tx_buffer: the buffer to free
749 **/
750static void i40e_unmap_and_free_tx_resource(struct i40e_ring *ring,
751 struct i40e_tx_buffer *tx_buffer)
752{
753 if (tx_buffer->skb) {
754 if (tx_buffer->tx_flags & I40E_TX_FLAGS_FD_SB)
755 kfree(tx_buffer->raw_buf);
756 else if (ring_is_xdp(ring))
757 xdp_return_frame(tx_buffer->xdpf);
758 else
759 dev_kfree_skb_any(tx_buffer->skb);
760 if (dma_unmap_len(tx_buffer, len))
761 dma_unmap_single(ring->dev,
762 dma_unmap_addr(tx_buffer, dma),
763 dma_unmap_len(tx_buffer, len),
764 DMA_TO_DEVICE);
765 } else if (dma_unmap_len(tx_buffer, len)) {
766 dma_unmap_page(ring->dev,
767 dma_unmap_addr(tx_buffer, dma),
768 dma_unmap_len(tx_buffer, len),
769 DMA_TO_DEVICE);
770 }
771
772 tx_buffer->next_to_watch = NULL;
773 tx_buffer->skb = NULL;
774 dma_unmap_len_set(tx_buffer, len, 0);
775 /* tx_buffer must be completely set up in the transmit path */
776}
777
778/**
779 * i40e_clean_tx_ring - Free any empty Tx buffers
780 * @tx_ring: ring to be cleaned
781 **/
782void i40e_clean_tx_ring(struct i40e_ring *tx_ring)
783{
784 unsigned long bi_size;
785 u16 i;
786
787 if (ring_is_xdp(tx_ring) && tx_ring->xsk_pool) {
788 i40e_xsk_clean_tx_ring(tx_ring);
789 } else {
790 /* ring already cleared, nothing to do */
791 if (!tx_ring->tx_bi)
792 return;
793
794 /* Free all the Tx ring sk_buffs */
795 for (i = 0; i < tx_ring->count; i++)
796 i40e_unmap_and_free_tx_resource(tx_ring,
797 &tx_ring->tx_bi[i]);
798 }
799
800 bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
801 memset(tx_ring->tx_bi, 0, bi_size);
802
803 /* Zero out the descriptor ring */
804 memset(tx_ring->desc, 0, tx_ring->size);
805
806 tx_ring->next_to_use = 0;
807 tx_ring->next_to_clean = 0;
808
809 if (!tx_ring->netdev)
810 return;
811
812 /* cleanup Tx queue statistics */
813 netdev_tx_reset_queue(txring_txq(tx_ring));
814}
815
816/**
817 * i40e_free_tx_resources - Free Tx resources per queue
818 * @tx_ring: Tx descriptor ring for a specific queue
819 *
820 * Free all transmit software resources
821 **/
822void i40e_free_tx_resources(struct i40e_ring *tx_ring)
823{
824 i40e_clean_tx_ring(tx_ring);
825 kfree(tx_ring->tx_bi);
826 tx_ring->tx_bi = NULL;
827
828 if (tx_ring->desc) {
829 dma_free_coherent(tx_ring->dev, tx_ring->size,
830 tx_ring->desc, tx_ring->dma);
831 tx_ring->desc = NULL;
832 }
833}
834
835/**
836 * i40e_get_tx_pending - how many tx descriptors not processed
837 * @ring: the ring of descriptors
838 * @in_sw: use SW variables
839 *
840 * Since there is no access to the ring head register
841 * in XL710, we need to use our local copies
842 **/
843u32 i40e_get_tx_pending(struct i40e_ring *ring, bool in_sw)
844{
845 u32 head, tail;
846
847 if (!in_sw) {
848 head = i40e_get_head(ring);
849 tail = readl(ring->tail);
850 } else {
851 head = ring->next_to_clean;
852 tail = ring->next_to_use;
853 }
854
855 if (head != tail)
856 return (head < tail) ?
857 tail - head : (tail + ring->count - head);
858
859 return 0;
860}
861
862/**
863 * i40e_detect_recover_hung - Function to detect and recover hung_queues
864 * @pf: pointer to PF struct
865 *
866 * LAN VSI has netdev and netdev has TX queues. This function is to check
867 * each of those TX queues if they are hung, trigger recovery by issuing
868 * SW interrupt.
869 **/
870void i40e_detect_recover_hung(struct i40e_pf *pf)
871{
872 struct i40e_vsi *vsi = i40e_pf_get_main_vsi(pf);
873 struct i40e_ring *tx_ring = NULL;
874 struct net_device *netdev;
875 unsigned int i;
876 int packets;
877
878 if (!vsi)
879 return;
880
881 if (test_bit(__I40E_VSI_DOWN, vsi->state))
882 return;
883
884 netdev = vsi->netdev;
885 if (!netdev)
886 return;
887
888 if (!netif_carrier_ok(netdev))
889 return;
890
891 for (i = 0; i < vsi->num_queue_pairs; i++) {
892 tx_ring = vsi->tx_rings[i];
893 if (tx_ring && tx_ring->desc) {
894 /* If packet counter has not changed the queue is
895 * likely stalled, so force an interrupt for this
896 * queue.
897 *
898 * prev_pkt_ctr would be negative if there was no
899 * pending work.
900 */
901 packets = tx_ring->stats.packets & INT_MAX;
902 if (tx_ring->tx_stats.prev_pkt_ctr == packets) {
903 i40e_force_wb(vsi, tx_ring->q_vector);
904 continue;
905 }
906
907 /* Memory barrier between read of packet count and call
908 * to i40e_get_tx_pending()
909 */
910 smp_rmb();
911 tx_ring->tx_stats.prev_pkt_ctr =
912 i40e_get_tx_pending(tx_ring, true) ? packets : -1;
913 }
914 }
915}
916
917/**
918 * i40e_clean_tx_irq - Reclaim resources after transmit completes
919 * @vsi: the VSI we care about
920 * @tx_ring: Tx ring to clean
921 * @napi_budget: Used to determine if we are in netpoll
922 * @tx_cleaned: Out parameter set to the number of TXes cleaned
923 *
924 * Returns true if there's any budget left (e.g. the clean is finished)
925 **/
926static bool i40e_clean_tx_irq(struct i40e_vsi *vsi,
927 struct i40e_ring *tx_ring, int napi_budget,
928 unsigned int *tx_cleaned)
929{
930 int i = tx_ring->next_to_clean;
931 struct i40e_tx_buffer *tx_buf;
932 struct i40e_tx_desc *tx_head;
933 struct i40e_tx_desc *tx_desc;
934 unsigned int total_bytes = 0, total_packets = 0;
935 unsigned int budget = vsi->work_limit;
936
937 tx_buf = &tx_ring->tx_bi[i];
938 tx_desc = I40E_TX_DESC(tx_ring, i);
939 i -= tx_ring->count;
940
941 tx_head = I40E_TX_DESC(tx_ring, i40e_get_head(tx_ring));
942
943 do {
944 struct i40e_tx_desc *eop_desc = tx_buf->next_to_watch;
945
946 /* if next_to_watch is not set then there is no work pending */
947 if (!eop_desc)
948 break;
949
950 /* prevent any other reads prior to eop_desc */
951 smp_rmb();
952
953 i40e_trace(clean_tx_irq, tx_ring, tx_desc, tx_buf);
954 /* we have caught up to head, no work left to do */
955 if (tx_head == tx_desc)
956 break;
957
958 /* clear next_to_watch to prevent false hangs */
959 tx_buf->next_to_watch = NULL;
960
961 /* update the statistics for this packet */
962 total_bytes += tx_buf->bytecount;
963 total_packets += tx_buf->gso_segs;
964
965 /* free the skb/XDP data */
966 if (ring_is_xdp(tx_ring))
967 xdp_return_frame(tx_buf->xdpf);
968 else
969 napi_consume_skb(tx_buf->skb, napi_budget);
970
971 /* unmap skb header data */
972 dma_unmap_single(tx_ring->dev,
973 dma_unmap_addr(tx_buf, dma),
974 dma_unmap_len(tx_buf, len),
975 DMA_TO_DEVICE);
976
977 /* clear tx_buffer data */
978 tx_buf->skb = NULL;
979 dma_unmap_len_set(tx_buf, len, 0);
980
981 /* unmap remaining buffers */
982 while (tx_desc != eop_desc) {
983 i40e_trace(clean_tx_irq_unmap,
984 tx_ring, tx_desc, tx_buf);
985
986 tx_buf++;
987 tx_desc++;
988 i++;
989 if (unlikely(!i)) {
990 i -= tx_ring->count;
991 tx_buf = tx_ring->tx_bi;
992 tx_desc = I40E_TX_DESC(tx_ring, 0);
993 }
994
995 /* unmap any remaining paged data */
996 if (dma_unmap_len(tx_buf, len)) {
997 dma_unmap_page(tx_ring->dev,
998 dma_unmap_addr(tx_buf, dma),
999 dma_unmap_len(tx_buf, len),
1000 DMA_TO_DEVICE);
1001 dma_unmap_len_set(tx_buf, len, 0);
1002 }
1003 }
1004
1005 /* move us one more past the eop_desc for start of next pkt */
1006 tx_buf++;
1007 tx_desc++;
1008 i++;
1009 if (unlikely(!i)) {
1010 i -= tx_ring->count;
1011 tx_buf = tx_ring->tx_bi;
1012 tx_desc = I40E_TX_DESC(tx_ring, 0);
1013 }
1014
1015 prefetch(tx_desc);
1016
1017 /* update budget accounting */
1018 budget--;
1019 } while (likely(budget));
1020
1021 i += tx_ring->count;
1022 tx_ring->next_to_clean = i;
1023 i40e_update_tx_stats(tx_ring, total_packets, total_bytes);
1024 i40e_arm_wb(tx_ring, vsi, budget);
1025
1026 if (ring_is_xdp(tx_ring))
1027 return !!budget;
1028
1029 /* notify netdev of completed buffers */
1030 netdev_tx_completed_queue(txring_txq(tx_ring),
1031 total_packets, total_bytes);
1032
1033#define TX_WAKE_THRESHOLD ((s16)(DESC_NEEDED * 2))
1034 if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) &&
1035 (I40E_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) {
1036 /* Make sure that anybody stopping the queue after this
1037 * sees the new next_to_clean.
1038 */
1039 smp_mb();
1040 if (__netif_subqueue_stopped(tx_ring->netdev,
1041 tx_ring->queue_index) &&
1042 !test_bit(__I40E_VSI_DOWN, vsi->state)) {
1043 netif_wake_subqueue(tx_ring->netdev,
1044 tx_ring->queue_index);
1045 ++tx_ring->tx_stats.restart_queue;
1046 }
1047 }
1048
1049 *tx_cleaned = total_packets;
1050 return !!budget;
1051}
1052
1053/**
1054 * i40e_enable_wb_on_itr - Arm hardware to do a wb, interrupts are not enabled
1055 * @vsi: the VSI we care about
1056 * @q_vector: the vector on which to enable writeback
1057 *
1058 **/
1059static void i40e_enable_wb_on_itr(struct i40e_vsi *vsi,
1060 struct i40e_q_vector *q_vector)
1061{
1062 u16 flags = q_vector->tx.ring[0].flags;
1063 u32 val;
1064
1065 if (!(flags & I40E_TXR_FLAGS_WB_ON_ITR))
1066 return;
1067
1068 if (q_vector->arm_wb_state)
1069 return;
1070
1071 if (test_bit(I40E_FLAG_MSIX_ENA, vsi->back->flags)) {
1072 val = I40E_PFINT_DYN_CTLN_WB_ON_ITR_MASK |
1073 I40E_PFINT_DYN_CTLN_ITR_INDX_MASK; /* set noitr */
1074
1075 wr32(&vsi->back->hw,
1076 I40E_PFINT_DYN_CTLN(q_vector->reg_idx),
1077 val);
1078 } else {
1079 val = I40E_PFINT_DYN_CTL0_WB_ON_ITR_MASK |
1080 I40E_PFINT_DYN_CTL0_ITR_INDX_MASK; /* set noitr */
1081
1082 wr32(&vsi->back->hw, I40E_PFINT_DYN_CTL0, val);
1083 }
1084 q_vector->arm_wb_state = true;
1085}
1086
1087/**
1088 * i40e_force_wb - Issue SW Interrupt so HW does a wb
1089 * @vsi: the VSI we care about
1090 * @q_vector: the vector on which to force writeback
1091 *
1092 **/
1093void i40e_force_wb(struct i40e_vsi *vsi, struct i40e_q_vector *q_vector)
1094{
1095 if (test_bit(I40E_FLAG_MSIX_ENA, vsi->back->flags)) {
1096 u32 val = I40E_PFINT_DYN_CTLN_INTENA_MASK |
1097 I40E_PFINT_DYN_CTLN_ITR_INDX_MASK | /* set noitr */
1098 I40E_PFINT_DYN_CTLN_SWINT_TRIG_MASK |
1099 I40E_PFINT_DYN_CTLN_SW_ITR_INDX_ENA_MASK;
1100 /* allow 00 to be written to the index */
1101
1102 wr32(&vsi->back->hw,
1103 I40E_PFINT_DYN_CTLN(q_vector->reg_idx), val);
1104 } else {
1105 u32 val = I40E_PFINT_DYN_CTL0_INTENA_MASK |
1106 I40E_PFINT_DYN_CTL0_ITR_INDX_MASK | /* set noitr */
1107 I40E_PFINT_DYN_CTL0_SWINT_TRIG_MASK |
1108 I40E_PFINT_DYN_CTL0_SW_ITR_INDX_ENA_MASK;
1109 /* allow 00 to be written to the index */
1110
1111 wr32(&vsi->back->hw, I40E_PFINT_DYN_CTL0, val);
1112 }
1113}
1114
1115static inline bool i40e_container_is_rx(struct i40e_q_vector *q_vector,
1116 struct i40e_ring_container *rc)
1117{
1118 return &q_vector->rx == rc;
1119}
1120
1121static inline unsigned int i40e_itr_divisor(struct i40e_q_vector *q_vector)
1122{
1123 unsigned int divisor;
1124
1125 switch (q_vector->vsi->back->hw.phy.link_info.link_speed) {
1126 case I40E_LINK_SPEED_40GB:
1127 divisor = I40E_ITR_ADAPTIVE_MIN_INC * 1024;
1128 break;
1129 case I40E_LINK_SPEED_25GB:
1130 case I40E_LINK_SPEED_20GB:
1131 divisor = I40E_ITR_ADAPTIVE_MIN_INC * 512;
1132 break;
1133 default:
1134 case I40E_LINK_SPEED_10GB:
1135 divisor = I40E_ITR_ADAPTIVE_MIN_INC * 256;
1136 break;
1137 case I40E_LINK_SPEED_1GB:
1138 case I40E_LINK_SPEED_100MB:
1139 divisor = I40E_ITR_ADAPTIVE_MIN_INC * 32;
1140 break;
1141 }
1142
1143 return divisor;
1144}
1145
1146/**
1147 * i40e_update_itr - update the dynamic ITR value based on statistics
1148 * @q_vector: structure containing interrupt and ring information
1149 * @rc: structure containing ring performance data
1150 *
1151 * Stores a new ITR value based on packets and byte
1152 * counts during the last interrupt. The advantage of per interrupt
1153 * computation is faster updates and more accurate ITR for the current
1154 * traffic pattern. Constants in this function were computed
1155 * based on theoretical maximum wire speed and thresholds were set based
1156 * on testing data as well as attempting to minimize response time
1157 * while increasing bulk throughput.
1158 **/
1159static void i40e_update_itr(struct i40e_q_vector *q_vector,
1160 struct i40e_ring_container *rc)
1161{
1162 unsigned int avg_wire_size, packets, bytes, itr;
1163 unsigned long next_update = jiffies;
1164
1165 /* If we don't have any rings just leave ourselves set for maximum
1166 * possible latency so we take ourselves out of the equation.
1167 */
1168 if (!rc->ring || !ITR_IS_DYNAMIC(rc->ring->itr_setting))
1169 return;
1170
1171 /* For Rx we want to push the delay up and default to low latency.
1172 * for Tx we want to pull the delay down and default to high latency.
1173 */
1174 itr = i40e_container_is_rx(q_vector, rc) ?
1175 I40E_ITR_ADAPTIVE_MIN_USECS | I40E_ITR_ADAPTIVE_LATENCY :
1176 I40E_ITR_ADAPTIVE_MAX_USECS | I40E_ITR_ADAPTIVE_LATENCY;
1177
1178 /* If we didn't update within up to 1 - 2 jiffies we can assume
1179 * that either packets are coming in so slow there hasn't been
1180 * any work, or that there is so much work that NAPI is dealing
1181 * with interrupt moderation and we don't need to do anything.
1182 */
1183 if (time_after(next_update, rc->next_update))
1184 goto clear_counts;
1185
1186 /* If itr_countdown is set it means we programmed an ITR within
1187 * the last 4 interrupt cycles. This has a side effect of us
1188 * potentially firing an early interrupt. In order to work around
1189 * this we need to throw out any data received for a few
1190 * interrupts following the update.
1191 */
1192 if (q_vector->itr_countdown) {
1193 itr = rc->target_itr;
1194 goto clear_counts;
1195 }
1196
1197 packets = rc->total_packets;
1198 bytes = rc->total_bytes;
1199
1200 if (i40e_container_is_rx(q_vector, rc)) {
1201 /* If Rx there are 1 to 4 packets and bytes are less than
1202 * 9000 assume insufficient data to use bulk rate limiting
1203 * approach unless Tx is already in bulk rate limiting. We
1204 * are likely latency driven.
1205 */
1206 if (packets && packets < 4 && bytes < 9000 &&
1207 (q_vector->tx.target_itr & I40E_ITR_ADAPTIVE_LATENCY)) {
1208 itr = I40E_ITR_ADAPTIVE_LATENCY;
1209 goto adjust_by_size;
1210 }
1211 } else if (packets < 4) {
1212 /* If we have Tx and Rx ITR maxed and Tx ITR is running in
1213 * bulk mode and we are receiving 4 or fewer packets just
1214 * reset the ITR_ADAPTIVE_LATENCY bit for latency mode so
1215 * that the Rx can relax.
1216 */
1217 if (rc->target_itr == I40E_ITR_ADAPTIVE_MAX_USECS &&
1218 (q_vector->rx.target_itr & I40E_ITR_MASK) ==
1219 I40E_ITR_ADAPTIVE_MAX_USECS)
1220 goto clear_counts;
1221 } else if (packets > 32) {
1222 /* If we have processed over 32 packets in a single interrupt
1223 * for Tx assume we need to switch over to "bulk" mode.
1224 */
1225 rc->target_itr &= ~I40E_ITR_ADAPTIVE_LATENCY;
1226 }
1227
1228 /* We have no packets to actually measure against. This means
1229 * either one of the other queues on this vector is active or
1230 * we are a Tx queue doing TSO with too high of an interrupt rate.
1231 *
1232 * Between 4 and 56 we can assume that our current interrupt delay
1233 * is only slightly too low. As such we should increase it by a small
1234 * fixed amount.
1235 */
1236 if (packets < 56) {
1237 itr = rc->target_itr + I40E_ITR_ADAPTIVE_MIN_INC;
1238 if ((itr & I40E_ITR_MASK) > I40E_ITR_ADAPTIVE_MAX_USECS) {
1239 itr &= I40E_ITR_ADAPTIVE_LATENCY;
1240 itr += I40E_ITR_ADAPTIVE_MAX_USECS;
1241 }
1242 goto clear_counts;
1243 }
1244
1245 if (packets <= 256) {
1246 itr = min(q_vector->tx.current_itr, q_vector->rx.current_itr);
1247 itr &= I40E_ITR_MASK;
1248
1249 /* Between 56 and 112 is our "goldilocks" zone where we are
1250 * working out "just right". Just report that our current
1251 * ITR is good for us.
1252 */
1253 if (packets <= 112)
1254 goto clear_counts;
1255
1256 /* If packet count is 128 or greater we are likely looking
1257 * at a slight overrun of the delay we want. Try halving
1258 * our delay to see if that will cut the number of packets
1259 * in half per interrupt.
1260 */
1261 itr /= 2;
1262 itr &= I40E_ITR_MASK;
1263 if (itr < I40E_ITR_ADAPTIVE_MIN_USECS)
1264 itr = I40E_ITR_ADAPTIVE_MIN_USECS;
1265
1266 goto clear_counts;
1267 }
1268
1269 /* The paths below assume we are dealing with a bulk ITR since
1270 * number of packets is greater than 256. We are just going to have
1271 * to compute a value and try to bring the count under control,
1272 * though for smaller packet sizes there isn't much we can do as
1273 * NAPI polling will likely be kicking in sooner rather than later.
1274 */
1275 itr = I40E_ITR_ADAPTIVE_BULK;
1276
1277adjust_by_size:
1278 /* If packet counts are 256 or greater we can assume we have a gross
1279 * overestimation of what the rate should be. Instead of trying to fine
1280 * tune it just use the formula below to try and dial in an exact value
1281 * give the current packet size of the frame.
1282 */
1283 avg_wire_size = bytes / packets;
1284
1285 /* The following is a crude approximation of:
1286 * wmem_default / (size + overhead) = desired_pkts_per_int
1287 * rate / bits_per_byte / (size + ethernet overhead) = pkt_rate
1288 * (desired_pkt_rate / pkt_rate) * usecs_per_sec = ITR value
1289 *
1290 * Assuming wmem_default is 212992 and overhead is 640 bytes per
1291 * packet, (256 skb, 64 headroom, 320 shared info), we can reduce the
1292 * formula down to
1293 *
1294 * (170 * (size + 24)) / (size + 640) = ITR
1295 *
1296 * We first do some math on the packet size and then finally bitshift
1297 * by 8 after rounding up. We also have to account for PCIe link speed
1298 * difference as ITR scales based on this.
1299 */
1300 if (avg_wire_size <= 60) {
1301 /* Start at 250k ints/sec */
1302 avg_wire_size = 4096;
1303 } else if (avg_wire_size <= 380) {
1304 /* 250K ints/sec to 60K ints/sec */
1305 avg_wire_size *= 40;
1306 avg_wire_size += 1696;
1307 } else if (avg_wire_size <= 1084) {
1308 /* 60K ints/sec to 36K ints/sec */
1309 avg_wire_size *= 15;
1310 avg_wire_size += 11452;
1311 } else if (avg_wire_size <= 1980) {
1312 /* 36K ints/sec to 30K ints/sec */
1313 avg_wire_size *= 5;
1314 avg_wire_size += 22420;
1315 } else {
1316 /* plateau at a limit of 30K ints/sec */
1317 avg_wire_size = 32256;
1318 }
1319
1320 /* If we are in low latency mode halve our delay which doubles the
1321 * rate to somewhere between 100K to 16K ints/sec
1322 */
1323 if (itr & I40E_ITR_ADAPTIVE_LATENCY)
1324 avg_wire_size /= 2;
1325
1326 /* Resultant value is 256 times larger than it needs to be. This
1327 * gives us room to adjust the value as needed to either increase
1328 * or decrease the value based on link speeds of 10G, 2.5G, 1G, etc.
1329 *
1330 * Use addition as we have already recorded the new latency flag
1331 * for the ITR value.
1332 */
1333 itr += DIV_ROUND_UP(avg_wire_size, i40e_itr_divisor(q_vector)) *
1334 I40E_ITR_ADAPTIVE_MIN_INC;
1335
1336 if ((itr & I40E_ITR_MASK) > I40E_ITR_ADAPTIVE_MAX_USECS) {
1337 itr &= I40E_ITR_ADAPTIVE_LATENCY;
1338 itr += I40E_ITR_ADAPTIVE_MAX_USECS;
1339 }
1340
1341clear_counts:
1342 /* write back value */
1343 rc->target_itr = itr;
1344
1345 /* next update should occur within next jiffy */
1346 rc->next_update = next_update + 1;
1347
1348 rc->total_bytes = 0;
1349 rc->total_packets = 0;
1350}
1351
1352static struct i40e_rx_buffer *i40e_rx_bi(struct i40e_ring *rx_ring, u32 idx)
1353{
1354 return &rx_ring->rx_bi[idx];
1355}
1356
1357/**
1358 * i40e_reuse_rx_page - page flip buffer and store it back on the ring
1359 * @rx_ring: rx descriptor ring to store buffers on
1360 * @old_buff: donor buffer to have page reused
1361 *
1362 * Synchronizes page for reuse by the adapter
1363 **/
1364static void i40e_reuse_rx_page(struct i40e_ring *rx_ring,
1365 struct i40e_rx_buffer *old_buff)
1366{
1367 struct i40e_rx_buffer *new_buff;
1368 u16 nta = rx_ring->next_to_alloc;
1369
1370 new_buff = i40e_rx_bi(rx_ring, nta);
1371
1372 /* update, and store next to alloc */
1373 nta++;
1374 rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
1375
1376 /* transfer page from old buffer to new buffer */
1377 new_buff->dma = old_buff->dma;
1378 new_buff->page = old_buff->page;
1379 new_buff->page_offset = old_buff->page_offset;
1380 new_buff->pagecnt_bias = old_buff->pagecnt_bias;
1381
1382 /* clear contents of buffer_info */
1383 old_buff->page = NULL;
1384}
1385
1386/**
1387 * i40e_clean_programming_status - clean the programming status descriptor
1388 * @rx_ring: the rx ring that has this descriptor
1389 * @qword0_raw: qword0
1390 * @qword1: qword1 representing status_error_len in CPU ordering
1391 *
1392 * Flow director should handle FD_FILTER_STATUS to check its filter programming
1393 * status being successful or not and take actions accordingly. FCoE should
1394 * handle its context/filter programming/invalidation status and take actions.
1395 *
1396 * Returns an i40e_rx_buffer to reuse if the cleanup occurred, otherwise NULL.
1397 **/
1398void i40e_clean_programming_status(struct i40e_ring *rx_ring, u64 qword0_raw,
1399 u64 qword1)
1400{
1401 u8 id;
1402
1403 id = FIELD_GET(I40E_RX_PROG_STATUS_DESC_QW1_PROGID_MASK, qword1);
1404
1405 if (id == I40E_RX_PROG_STATUS_DESC_FD_FILTER_STATUS)
1406 i40e_fd_handle_status(rx_ring, qword0_raw, qword1, id);
1407}
1408
1409/**
1410 * i40e_setup_tx_descriptors - Allocate the Tx descriptors
1411 * @tx_ring: the tx ring to set up
1412 *
1413 * Return 0 on success, negative on error
1414 **/
1415int i40e_setup_tx_descriptors(struct i40e_ring *tx_ring)
1416{
1417 struct device *dev = tx_ring->dev;
1418 int bi_size;
1419
1420 if (!dev)
1421 return -ENOMEM;
1422
1423 /* warn if we are about to overwrite the pointer */
1424 WARN_ON(tx_ring->tx_bi);
1425 bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
1426 tx_ring->tx_bi = kzalloc(bi_size, GFP_KERNEL);
1427 if (!tx_ring->tx_bi)
1428 goto err;
1429
1430 u64_stats_init(&tx_ring->syncp);
1431
1432 /* round up to nearest 4K */
1433 tx_ring->size = tx_ring->count * sizeof(struct i40e_tx_desc);
1434 /* add u32 for head writeback, align after this takes care of
1435 * guaranteeing this is at least one cache line in size
1436 */
1437 tx_ring->size += sizeof(u32);
1438 tx_ring->size = ALIGN(tx_ring->size, 4096);
1439 tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
1440 &tx_ring->dma, GFP_KERNEL);
1441 if (!tx_ring->desc) {
1442 dev_info(dev, "Unable to allocate memory for the Tx descriptor ring, size=%d\n",
1443 tx_ring->size);
1444 goto err;
1445 }
1446
1447 tx_ring->next_to_use = 0;
1448 tx_ring->next_to_clean = 0;
1449 tx_ring->tx_stats.prev_pkt_ctr = -1;
1450 return 0;
1451
1452err:
1453 kfree(tx_ring->tx_bi);
1454 tx_ring->tx_bi = NULL;
1455 return -ENOMEM;
1456}
1457
1458static void i40e_clear_rx_bi(struct i40e_ring *rx_ring)
1459{
1460 memset(rx_ring->rx_bi, 0, sizeof(*rx_ring->rx_bi) * rx_ring->count);
1461}
1462
1463/**
1464 * i40e_clean_rx_ring - Free Rx buffers
1465 * @rx_ring: ring to be cleaned
1466 **/
1467void i40e_clean_rx_ring(struct i40e_ring *rx_ring)
1468{
1469 u16 i;
1470
1471 /* ring already cleared, nothing to do */
1472 if (!rx_ring->rx_bi)
1473 return;
1474
1475 if (rx_ring->xsk_pool) {
1476 i40e_xsk_clean_rx_ring(rx_ring);
1477 goto skip_free;
1478 }
1479
1480 /* Free all the Rx ring sk_buffs */
1481 for (i = 0; i < rx_ring->count; i++) {
1482 struct i40e_rx_buffer *rx_bi = i40e_rx_bi(rx_ring, i);
1483
1484 if (!rx_bi->page)
1485 continue;
1486
1487 /* Invalidate cache lines that may have been written to by
1488 * device so that we avoid corrupting memory.
1489 */
1490 dma_sync_single_range_for_cpu(rx_ring->dev,
1491 rx_bi->dma,
1492 rx_bi->page_offset,
1493 rx_ring->rx_buf_len,
1494 DMA_FROM_DEVICE);
1495
1496 /* free resources associated with mapping */
1497 dma_unmap_page_attrs(rx_ring->dev, rx_bi->dma,
1498 i40e_rx_pg_size(rx_ring),
1499 DMA_FROM_DEVICE,
1500 I40E_RX_DMA_ATTR);
1501
1502 __page_frag_cache_drain(rx_bi->page, rx_bi->pagecnt_bias);
1503
1504 rx_bi->page = NULL;
1505 rx_bi->page_offset = 0;
1506 }
1507
1508skip_free:
1509 if (rx_ring->xsk_pool)
1510 i40e_clear_rx_bi_zc(rx_ring);
1511 else
1512 i40e_clear_rx_bi(rx_ring);
1513
1514 /* Zero out the descriptor ring */
1515 memset(rx_ring->desc, 0, rx_ring->size);
1516
1517 rx_ring->next_to_alloc = 0;
1518 rx_ring->next_to_clean = 0;
1519 rx_ring->next_to_process = 0;
1520 rx_ring->next_to_use = 0;
1521}
1522
1523/**
1524 * i40e_free_rx_resources - Free Rx resources
1525 * @rx_ring: ring to clean the resources from
1526 *
1527 * Free all receive software resources
1528 **/
1529void i40e_free_rx_resources(struct i40e_ring *rx_ring)
1530{
1531 i40e_clean_rx_ring(rx_ring);
1532 if (rx_ring->vsi->type == I40E_VSI_MAIN)
1533 xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
1534 rx_ring->xdp_prog = NULL;
1535 kfree(rx_ring->rx_bi);
1536 rx_ring->rx_bi = NULL;
1537
1538 if (rx_ring->desc) {
1539 dma_free_coherent(rx_ring->dev, rx_ring->size,
1540 rx_ring->desc, rx_ring->dma);
1541 rx_ring->desc = NULL;
1542 }
1543}
1544
1545/**
1546 * i40e_setup_rx_descriptors - Allocate Rx descriptors
1547 * @rx_ring: Rx descriptor ring (for a specific queue) to setup
1548 *
1549 * Returns 0 on success, negative on failure
1550 **/
1551int i40e_setup_rx_descriptors(struct i40e_ring *rx_ring)
1552{
1553 struct device *dev = rx_ring->dev;
1554
1555 u64_stats_init(&rx_ring->syncp);
1556
1557 /* Round up to nearest 4K */
1558 rx_ring->size = rx_ring->count * sizeof(union i40e_rx_desc);
1559 rx_ring->size = ALIGN(rx_ring->size, 4096);
1560 rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
1561 &rx_ring->dma, GFP_KERNEL);
1562
1563 if (!rx_ring->desc) {
1564 dev_info(dev, "Unable to allocate memory for the Rx descriptor ring, size=%d\n",
1565 rx_ring->size);
1566 return -ENOMEM;
1567 }
1568
1569 rx_ring->next_to_alloc = 0;
1570 rx_ring->next_to_clean = 0;
1571 rx_ring->next_to_process = 0;
1572 rx_ring->next_to_use = 0;
1573
1574 rx_ring->xdp_prog = rx_ring->vsi->xdp_prog;
1575
1576 rx_ring->rx_bi =
1577 kcalloc(rx_ring->count, sizeof(*rx_ring->rx_bi), GFP_KERNEL);
1578 if (!rx_ring->rx_bi)
1579 return -ENOMEM;
1580
1581 return 0;
1582}
1583
1584/**
1585 * i40e_release_rx_desc - Store the new tail and head values
1586 * @rx_ring: ring to bump
1587 * @val: new head index
1588 **/
1589void i40e_release_rx_desc(struct i40e_ring *rx_ring, u32 val)
1590{
1591 rx_ring->next_to_use = val;
1592
1593 /* update next to alloc since we have filled the ring */
1594 rx_ring->next_to_alloc = val;
1595
1596 /* Force memory writes to complete before letting h/w
1597 * know there are new descriptors to fetch. (Only
1598 * applicable for weak-ordered memory model archs,
1599 * such as IA-64).
1600 */
1601 wmb();
1602 writel(val, rx_ring->tail);
1603}
1604
1605#if (PAGE_SIZE >= 8192)
1606static unsigned int i40e_rx_frame_truesize(struct i40e_ring *rx_ring,
1607 unsigned int size)
1608{
1609 unsigned int truesize;
1610
1611 truesize = rx_ring->rx_offset ?
1612 SKB_DATA_ALIGN(size + rx_ring->rx_offset) +
1613 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) :
1614 SKB_DATA_ALIGN(size);
1615 return truesize;
1616}
1617#endif
1618
1619/**
1620 * i40e_alloc_mapped_page - recycle or make a new page
1621 * @rx_ring: ring to use
1622 * @bi: rx_buffer struct to modify
1623 *
1624 * Returns true if the page was successfully allocated or
1625 * reused.
1626 **/
1627static bool i40e_alloc_mapped_page(struct i40e_ring *rx_ring,
1628 struct i40e_rx_buffer *bi)
1629{
1630 struct page *page = bi->page;
1631 dma_addr_t dma;
1632
1633 /* since we are recycling buffers we should seldom need to alloc */
1634 if (likely(page)) {
1635 rx_ring->rx_stats.page_reuse_count++;
1636 return true;
1637 }
1638
1639 /* alloc new page for storage */
1640 page = dev_alloc_pages(i40e_rx_pg_order(rx_ring));
1641 if (unlikely(!page)) {
1642 rx_ring->rx_stats.alloc_page_failed++;
1643 return false;
1644 }
1645
1646 rx_ring->rx_stats.page_alloc_count++;
1647
1648 /* map page for use */
1649 dma = dma_map_page_attrs(rx_ring->dev, page, 0,
1650 i40e_rx_pg_size(rx_ring),
1651 DMA_FROM_DEVICE,
1652 I40E_RX_DMA_ATTR);
1653
1654 /* if mapping failed free memory back to system since
1655 * there isn't much point in holding memory we can't use
1656 */
1657 if (dma_mapping_error(rx_ring->dev, dma)) {
1658 __free_pages(page, i40e_rx_pg_order(rx_ring));
1659 rx_ring->rx_stats.alloc_page_failed++;
1660 return false;
1661 }
1662
1663 bi->dma = dma;
1664 bi->page = page;
1665 bi->page_offset = rx_ring->rx_offset;
1666 page_ref_add(page, USHRT_MAX - 1);
1667 bi->pagecnt_bias = USHRT_MAX;
1668
1669 return true;
1670}
1671
1672/**
1673 * i40e_alloc_rx_buffers - Replace used receive buffers
1674 * @rx_ring: ring to place buffers on
1675 * @cleaned_count: number of buffers to replace
1676 *
1677 * Returns false if all allocations were successful, true if any fail
1678 **/
1679bool i40e_alloc_rx_buffers(struct i40e_ring *rx_ring, u16 cleaned_count)
1680{
1681 u16 ntu = rx_ring->next_to_use;
1682 union i40e_rx_desc *rx_desc;
1683 struct i40e_rx_buffer *bi;
1684
1685 /* do nothing if no valid netdev defined */
1686 if (!rx_ring->netdev || !cleaned_count)
1687 return false;
1688
1689 rx_desc = I40E_RX_DESC(rx_ring, ntu);
1690 bi = i40e_rx_bi(rx_ring, ntu);
1691
1692 do {
1693 if (!i40e_alloc_mapped_page(rx_ring, bi))
1694 goto no_buffers;
1695
1696 /* sync the buffer for use by the device */
1697 dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
1698 bi->page_offset,
1699 rx_ring->rx_buf_len,
1700 DMA_FROM_DEVICE);
1701
1702 /* Refresh the desc even if buffer_addrs didn't change
1703 * because each write-back erases this info.
1704 */
1705 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
1706
1707 rx_desc++;
1708 bi++;
1709 ntu++;
1710 if (unlikely(ntu == rx_ring->count)) {
1711 rx_desc = I40E_RX_DESC(rx_ring, 0);
1712 bi = i40e_rx_bi(rx_ring, 0);
1713 ntu = 0;
1714 }
1715
1716 /* clear the status bits for the next_to_use descriptor */
1717 rx_desc->wb.qword1.status_error_len = 0;
1718
1719 cleaned_count--;
1720 } while (cleaned_count);
1721
1722 if (rx_ring->next_to_use != ntu)
1723 i40e_release_rx_desc(rx_ring, ntu);
1724
1725 return false;
1726
1727no_buffers:
1728 if (rx_ring->next_to_use != ntu)
1729 i40e_release_rx_desc(rx_ring, ntu);
1730
1731 /* make sure to come back via polling to try again after
1732 * allocation failure
1733 */
1734 return true;
1735}
1736
1737/**
1738 * i40e_rx_checksum - Indicate in skb if hw indicated a good cksum
1739 * @vsi: the VSI we care about
1740 * @skb: skb currently being received and modified
1741 * @rx_desc: the receive descriptor
1742 **/
1743static inline void i40e_rx_checksum(struct i40e_vsi *vsi,
1744 struct sk_buff *skb,
1745 union i40e_rx_desc *rx_desc)
1746{
1747 struct libeth_rx_pt decoded;
1748 u32 rx_error, rx_status;
1749 bool ipv4, ipv6;
1750 u8 ptype;
1751 u64 qword;
1752
1753 skb->ip_summed = CHECKSUM_NONE;
1754
1755 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1756 ptype = FIELD_GET(I40E_RXD_QW1_PTYPE_MASK, qword);
1757
1758 decoded = libie_rx_pt_parse(ptype);
1759 if (!libeth_rx_pt_has_checksum(vsi->netdev, decoded))
1760 return;
1761
1762 rx_error = FIELD_GET(I40E_RXD_QW1_ERROR_MASK, qword);
1763 rx_status = FIELD_GET(I40E_RXD_QW1_STATUS_MASK, qword);
1764
1765 /* did the hardware decode the packet and checksum? */
1766 if (!(rx_status & BIT(I40E_RX_DESC_STATUS_L3L4P_SHIFT)))
1767 return;
1768
1769 ipv4 = libeth_rx_pt_get_ip_ver(decoded) == LIBETH_RX_PT_OUTER_IPV4;
1770 ipv6 = libeth_rx_pt_get_ip_ver(decoded) == LIBETH_RX_PT_OUTER_IPV6;
1771
1772 if (ipv4 &&
1773 (rx_error & (BIT(I40E_RX_DESC_ERROR_IPE_SHIFT) |
1774 BIT(I40E_RX_DESC_ERROR_EIPE_SHIFT))))
1775 goto checksum_fail;
1776
1777 /* likely incorrect csum if alternate IP extension headers found */
1778 if (ipv6 &&
1779 rx_status & BIT(I40E_RX_DESC_STATUS_IPV6EXADD_SHIFT))
1780 /* don't increment checksum err here, non-fatal err */
1781 return;
1782
1783 /* there was some L4 error, count error and punt packet to the stack */
1784 if (rx_error & BIT(I40E_RX_DESC_ERROR_L4E_SHIFT))
1785 goto checksum_fail;
1786
1787 /* handle packets that were not able to be checksummed due
1788 * to arrival speed, in this case the stack can compute
1789 * the csum.
1790 */
1791 if (rx_error & BIT(I40E_RX_DESC_ERROR_PPRS_SHIFT))
1792 return;
1793
1794 /* If there is an outer header present that might contain a checksum
1795 * we need to bump the checksum level by 1 to reflect the fact that
1796 * we are indicating we validated the inner checksum.
1797 */
1798 if (decoded.tunnel_type >= LIBETH_RX_PT_TUNNEL_IP_GRENAT)
1799 skb->csum_level = 1;
1800
1801 skb->ip_summed = CHECKSUM_UNNECESSARY;
1802 return;
1803
1804checksum_fail:
1805 vsi->back->hw_csum_rx_error++;
1806}
1807
1808/**
1809 * i40e_rx_hash - set the hash value in the skb
1810 * @ring: descriptor ring
1811 * @rx_desc: specific descriptor
1812 * @skb: skb currently being received and modified
1813 * @rx_ptype: Rx packet type
1814 **/
1815static inline void i40e_rx_hash(struct i40e_ring *ring,
1816 union i40e_rx_desc *rx_desc,
1817 struct sk_buff *skb,
1818 u8 rx_ptype)
1819{
1820 struct libeth_rx_pt decoded;
1821 u32 hash;
1822 const __le64 rss_mask =
1823 cpu_to_le64((u64)I40E_RX_DESC_FLTSTAT_RSS_HASH <<
1824 I40E_RX_DESC_STATUS_FLTSTAT_SHIFT);
1825
1826 decoded = libie_rx_pt_parse(rx_ptype);
1827 if (!libeth_rx_pt_has_hash(ring->netdev, decoded))
1828 return;
1829
1830 if ((rx_desc->wb.qword1.status_error_len & rss_mask) == rss_mask) {
1831 hash = le32_to_cpu(rx_desc->wb.qword0.hi_dword.rss);
1832 libeth_rx_pt_set_hash(skb, hash, decoded);
1833 }
1834}
1835
1836/**
1837 * i40e_process_skb_fields - Populate skb header fields from Rx descriptor
1838 * @rx_ring: rx descriptor ring packet is being transacted on
1839 * @rx_desc: pointer to the EOP Rx descriptor
1840 * @skb: pointer to current skb being populated
1841 *
1842 * This function checks the ring, descriptor, and packet information in
1843 * order to populate the hash, checksum, VLAN, protocol, and
1844 * other fields within the skb.
1845 **/
1846void i40e_process_skb_fields(struct i40e_ring *rx_ring,
1847 union i40e_rx_desc *rx_desc, struct sk_buff *skb)
1848{
1849 u64 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1850 u32 rx_status = FIELD_GET(I40E_RXD_QW1_STATUS_MASK, qword);
1851 u32 tsynvalid = rx_status & I40E_RXD_QW1_STATUS_TSYNVALID_MASK;
1852 u32 tsyn = FIELD_GET(I40E_RXD_QW1_STATUS_TSYNINDX_MASK, rx_status);
1853 u8 rx_ptype = FIELD_GET(I40E_RXD_QW1_PTYPE_MASK, qword);
1854
1855 if (unlikely(tsynvalid))
1856 i40e_ptp_rx_hwtstamp(rx_ring->vsi->back, skb, tsyn);
1857
1858 i40e_rx_hash(rx_ring, rx_desc, skb, rx_ptype);
1859
1860 i40e_rx_checksum(rx_ring->vsi, skb, rx_desc);
1861
1862 skb_record_rx_queue(skb, rx_ring->queue_index);
1863
1864 if (qword & BIT(I40E_RX_DESC_STATUS_L2TAG1P_SHIFT)) {
1865 __le16 vlan_tag = rx_desc->wb.qword0.lo_dword.l2tag1;
1866
1867 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
1868 le16_to_cpu(vlan_tag));
1869 }
1870
1871 /* modifies the skb - consumes the enet header */
1872 skb->protocol = eth_type_trans(skb, rx_ring->netdev);
1873}
1874
1875/**
1876 * i40e_cleanup_headers - Correct empty headers
1877 * @rx_ring: rx descriptor ring packet is being transacted on
1878 * @skb: pointer to current skb being fixed
1879 * @rx_desc: pointer to the EOP Rx descriptor
1880 *
1881 * In addition if skb is not at least 60 bytes we need to pad it so that
1882 * it is large enough to qualify as a valid Ethernet frame.
1883 *
1884 * Returns true if an error was encountered and skb was freed.
1885 **/
1886static bool i40e_cleanup_headers(struct i40e_ring *rx_ring, struct sk_buff *skb,
1887 union i40e_rx_desc *rx_desc)
1888
1889{
1890 /* ERR_MASK will only have valid bits if EOP set, and
1891 * what we are doing here is actually checking
1892 * I40E_RX_DESC_ERROR_RXE_SHIFT, since it is the zeroth bit in
1893 * the error field
1894 */
1895 if (unlikely(i40e_test_staterr(rx_desc,
1896 BIT(I40E_RXD_QW1_ERROR_SHIFT)))) {
1897 dev_kfree_skb_any(skb);
1898 return true;
1899 }
1900
1901 /* if eth_skb_pad returns an error the skb was freed */
1902 if (eth_skb_pad(skb))
1903 return true;
1904
1905 return false;
1906}
1907
1908/**
1909 * i40e_can_reuse_rx_page - Determine if page can be reused for another Rx
1910 * @rx_buffer: buffer containing the page
1911 * @rx_stats: rx stats structure for the rx ring
1912 *
1913 * If page is reusable, we have a green light for calling i40e_reuse_rx_page,
1914 * which will assign the current buffer to the buffer that next_to_alloc is
1915 * pointing to; otherwise, the DMA mapping needs to be destroyed and
1916 * page freed.
1917 *
1918 * rx_stats will be updated to indicate whether the page was waived
1919 * or busy if it could not be reused.
1920 */
1921static bool i40e_can_reuse_rx_page(struct i40e_rx_buffer *rx_buffer,
1922 struct i40e_rx_queue_stats *rx_stats)
1923{
1924 unsigned int pagecnt_bias = rx_buffer->pagecnt_bias;
1925 struct page *page = rx_buffer->page;
1926
1927 /* Is any reuse possible? */
1928 if (!dev_page_is_reusable(page)) {
1929 rx_stats->page_waive_count++;
1930 return false;
1931 }
1932
1933#if (PAGE_SIZE < 8192)
1934 /* if we are only owner of page we can reuse it */
1935 if (unlikely((rx_buffer->page_count - pagecnt_bias) > 1)) {
1936 rx_stats->page_busy_count++;
1937 return false;
1938 }
1939#else
1940#define I40E_LAST_OFFSET \
1941 (SKB_WITH_OVERHEAD(PAGE_SIZE) - I40E_RXBUFFER_2048)
1942 if (rx_buffer->page_offset > I40E_LAST_OFFSET) {
1943 rx_stats->page_busy_count++;
1944 return false;
1945 }
1946#endif
1947
1948 /* If we have drained the page fragment pool we need to update
1949 * the pagecnt_bias and page count so that we fully restock the
1950 * number of references the driver holds.
1951 */
1952 if (unlikely(pagecnt_bias == 1)) {
1953 page_ref_add(page, USHRT_MAX - 1);
1954 rx_buffer->pagecnt_bias = USHRT_MAX;
1955 }
1956
1957 return true;
1958}
1959
1960/**
1961 * i40e_rx_buffer_flip - adjusted rx_buffer to point to an unused region
1962 * @rx_buffer: Rx buffer to adjust
1963 * @truesize: Size of adjustment
1964 **/
1965static void i40e_rx_buffer_flip(struct i40e_rx_buffer *rx_buffer,
1966 unsigned int truesize)
1967{
1968#if (PAGE_SIZE < 8192)
1969 rx_buffer->page_offset ^= truesize;
1970#else
1971 rx_buffer->page_offset += truesize;
1972#endif
1973}
1974
1975/**
1976 * i40e_get_rx_buffer - Fetch Rx buffer and synchronize data for use
1977 * @rx_ring: rx descriptor ring to transact packets on
1978 * @size: size of buffer to add to skb
1979 *
1980 * This function will pull an Rx buffer from the ring and synchronize it
1981 * for use by the CPU.
1982 */
1983static struct i40e_rx_buffer *i40e_get_rx_buffer(struct i40e_ring *rx_ring,
1984 const unsigned int size)
1985{
1986 struct i40e_rx_buffer *rx_buffer;
1987
1988 rx_buffer = i40e_rx_bi(rx_ring, rx_ring->next_to_process);
1989 rx_buffer->page_count =
1990#if (PAGE_SIZE < 8192)
1991 page_count(rx_buffer->page);
1992#else
1993 0;
1994#endif
1995 prefetch_page_address(rx_buffer->page);
1996
1997 /* we are reusing so sync this buffer for CPU use */
1998 dma_sync_single_range_for_cpu(rx_ring->dev,
1999 rx_buffer->dma,
2000 rx_buffer->page_offset,
2001 size,
2002 DMA_FROM_DEVICE);
2003
2004 /* We have pulled a buffer for use, so decrement pagecnt_bias */
2005 rx_buffer->pagecnt_bias--;
2006
2007 return rx_buffer;
2008}
2009
2010/**
2011 * i40e_put_rx_buffer - Clean up used buffer and either recycle or free
2012 * @rx_ring: rx descriptor ring to transact packets on
2013 * @rx_buffer: rx buffer to pull data from
2014 *
2015 * This function will clean up the contents of the rx_buffer. It will
2016 * either recycle the buffer or unmap it and free the associated resources.
2017 */
2018static void i40e_put_rx_buffer(struct i40e_ring *rx_ring,
2019 struct i40e_rx_buffer *rx_buffer)
2020{
2021 if (i40e_can_reuse_rx_page(rx_buffer, &rx_ring->rx_stats)) {
2022 /* hand second half of page back to the ring */
2023 i40e_reuse_rx_page(rx_ring, rx_buffer);
2024 } else {
2025 /* we are not reusing the buffer so unmap it */
2026 dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma,
2027 i40e_rx_pg_size(rx_ring),
2028 DMA_FROM_DEVICE, I40E_RX_DMA_ATTR);
2029 __page_frag_cache_drain(rx_buffer->page,
2030 rx_buffer->pagecnt_bias);
2031 /* clear contents of buffer_info */
2032 rx_buffer->page = NULL;
2033 }
2034}
2035
2036/**
2037 * i40e_process_rx_buffs- Processing of buffers post XDP prog or on error
2038 * @rx_ring: Rx descriptor ring to transact packets on
2039 * @xdp_res: Result of the XDP program
2040 * @xdp: xdp_buff pointing to the data
2041 **/
2042static void i40e_process_rx_buffs(struct i40e_ring *rx_ring, int xdp_res,
2043 struct xdp_buff *xdp)
2044{
2045 u32 nr_frags = xdp_get_shared_info_from_buff(xdp)->nr_frags;
2046 u32 next = rx_ring->next_to_clean, i = 0;
2047 struct i40e_rx_buffer *rx_buffer;
2048
2049 xdp->flags = 0;
2050
2051 while (1) {
2052 rx_buffer = i40e_rx_bi(rx_ring, next);
2053 if (++next == rx_ring->count)
2054 next = 0;
2055
2056 if (!rx_buffer->page)
2057 continue;
2058
2059 if (xdp_res != I40E_XDP_CONSUMED)
2060 i40e_rx_buffer_flip(rx_buffer, xdp->frame_sz);
2061 else if (i++ <= nr_frags)
2062 rx_buffer->pagecnt_bias++;
2063
2064 /* EOP buffer will be put in i40e_clean_rx_irq() */
2065 if (next == rx_ring->next_to_process)
2066 return;
2067
2068 i40e_put_rx_buffer(rx_ring, rx_buffer);
2069 }
2070}
2071
2072/**
2073 * i40e_construct_skb - Allocate skb and populate it
2074 * @rx_ring: rx descriptor ring to transact packets on
2075 * @xdp: xdp_buff pointing to the data
2076 *
2077 * This function allocates an skb. It then populates it with the page
2078 * data from the current receive descriptor, taking care to set up the
2079 * skb correctly.
2080 */
2081static struct sk_buff *i40e_construct_skb(struct i40e_ring *rx_ring,
2082 struct xdp_buff *xdp)
2083{
2084 unsigned int size = xdp->data_end - xdp->data;
2085 struct i40e_rx_buffer *rx_buffer;
2086 struct skb_shared_info *sinfo;
2087 unsigned int headlen;
2088 struct sk_buff *skb;
2089 u32 nr_frags = 0;
2090
2091 /* prefetch first cache line of first page */
2092 net_prefetch(xdp->data);
2093
2094 /* Note, we get here by enabling legacy-rx via:
2095 *
2096 * ethtool --set-priv-flags <dev> legacy-rx on
2097 *
2098 * In this mode, we currently get 0 extra XDP headroom as
2099 * opposed to having legacy-rx off, where we process XDP
2100 * packets going to stack via i40e_build_skb(). The latter
2101 * provides us currently with 192 bytes of headroom.
2102 *
2103 * For i40e_construct_skb() mode it means that the
2104 * xdp->data_meta will always point to xdp->data, since
2105 * the helper cannot expand the head. Should this ever
2106 * change in future for legacy-rx mode on, then lets also
2107 * add xdp->data_meta handling here.
2108 */
2109
2110 /* allocate a skb to store the frags */
2111 skb = napi_alloc_skb(&rx_ring->q_vector->napi, I40E_RX_HDR_SIZE);
2112 if (unlikely(!skb))
2113 return NULL;
2114
2115 /* Determine available headroom for copy */
2116 headlen = size;
2117 if (headlen > I40E_RX_HDR_SIZE)
2118 headlen = eth_get_headlen(skb->dev, xdp->data,
2119 I40E_RX_HDR_SIZE);
2120
2121 /* align pull length to size of long to optimize memcpy performance */
2122 memcpy(__skb_put(skb, headlen), xdp->data,
2123 ALIGN(headlen, sizeof(long)));
2124
2125 if (unlikely(xdp_buff_has_frags(xdp))) {
2126 sinfo = xdp_get_shared_info_from_buff(xdp);
2127 nr_frags = sinfo->nr_frags;
2128 }
2129 rx_buffer = i40e_rx_bi(rx_ring, rx_ring->next_to_clean);
2130 /* update all of the pointers */
2131 size -= headlen;
2132 if (size) {
2133 if (unlikely(nr_frags >= MAX_SKB_FRAGS)) {
2134 dev_kfree_skb(skb);
2135 return NULL;
2136 }
2137 skb_add_rx_frag(skb, 0, rx_buffer->page,
2138 rx_buffer->page_offset + headlen,
2139 size, xdp->frame_sz);
2140 /* buffer is used by skb, update page_offset */
2141 i40e_rx_buffer_flip(rx_buffer, xdp->frame_sz);
2142 } else {
2143 /* buffer is unused, reset bias back to rx_buffer */
2144 rx_buffer->pagecnt_bias++;
2145 }
2146
2147 if (unlikely(xdp_buff_has_frags(xdp))) {
2148 struct skb_shared_info *skinfo = skb_shinfo(skb);
2149
2150 memcpy(&skinfo->frags[skinfo->nr_frags], &sinfo->frags[0],
2151 sizeof(skb_frag_t) * nr_frags);
2152
2153 xdp_update_skb_shared_info(skb, skinfo->nr_frags + nr_frags,
2154 sinfo->xdp_frags_size,
2155 nr_frags * xdp->frame_sz,
2156 xdp_buff_is_frag_pfmemalloc(xdp));
2157
2158 /* First buffer has already been processed, so bump ntc */
2159 if (++rx_ring->next_to_clean == rx_ring->count)
2160 rx_ring->next_to_clean = 0;
2161
2162 i40e_process_rx_buffs(rx_ring, I40E_XDP_PASS, xdp);
2163 }
2164
2165 return skb;
2166}
2167
2168/**
2169 * i40e_build_skb - Build skb around an existing buffer
2170 * @rx_ring: Rx descriptor ring to transact packets on
2171 * @xdp: xdp_buff pointing to the data
2172 *
2173 * This function builds an skb around an existing Rx buffer, taking care
2174 * to set up the skb correctly and avoid any memcpy overhead.
2175 */
2176static struct sk_buff *i40e_build_skb(struct i40e_ring *rx_ring,
2177 struct xdp_buff *xdp)
2178{
2179 unsigned int metasize = xdp->data - xdp->data_meta;
2180 struct skb_shared_info *sinfo;
2181 struct sk_buff *skb;
2182 u32 nr_frags;
2183
2184 /* Prefetch first cache line of first page. If xdp->data_meta
2185 * is unused, this points exactly as xdp->data, otherwise we
2186 * likely have a consumer accessing first few bytes of meta
2187 * data, and then actual data.
2188 */
2189 net_prefetch(xdp->data_meta);
2190
2191 if (unlikely(xdp_buff_has_frags(xdp))) {
2192 sinfo = xdp_get_shared_info_from_buff(xdp);
2193 nr_frags = sinfo->nr_frags;
2194 }
2195
2196 /* build an skb around the page buffer */
2197 skb = napi_build_skb(xdp->data_hard_start, xdp->frame_sz);
2198 if (unlikely(!skb))
2199 return NULL;
2200
2201 /* update pointers within the skb to store the data */
2202 skb_reserve(skb, xdp->data - xdp->data_hard_start);
2203 __skb_put(skb, xdp->data_end - xdp->data);
2204 if (metasize)
2205 skb_metadata_set(skb, metasize);
2206
2207 if (unlikely(xdp_buff_has_frags(xdp))) {
2208 xdp_update_skb_shared_info(skb, nr_frags,
2209 sinfo->xdp_frags_size,
2210 nr_frags * xdp->frame_sz,
2211 xdp_buff_is_frag_pfmemalloc(xdp));
2212
2213 i40e_process_rx_buffs(rx_ring, I40E_XDP_PASS, xdp);
2214 } else {
2215 struct i40e_rx_buffer *rx_buffer;
2216
2217 rx_buffer = i40e_rx_bi(rx_ring, rx_ring->next_to_clean);
2218 /* buffer is used by skb, update page_offset */
2219 i40e_rx_buffer_flip(rx_buffer, xdp->frame_sz);
2220 }
2221
2222 return skb;
2223}
2224
2225/**
2226 * i40e_is_non_eop - process handling of non-EOP buffers
2227 * @rx_ring: Rx ring being processed
2228 * @rx_desc: Rx descriptor for current buffer
2229 *
2230 * If the buffer is an EOP buffer, this function exits returning false,
2231 * otherwise return true indicating that this is in fact a non-EOP buffer.
2232 */
2233bool i40e_is_non_eop(struct i40e_ring *rx_ring,
2234 union i40e_rx_desc *rx_desc)
2235{
2236 /* if we are the last buffer then there is nothing else to do */
2237#define I40E_RXD_EOF BIT(I40E_RX_DESC_STATUS_EOF_SHIFT)
2238 if (likely(i40e_test_staterr(rx_desc, I40E_RXD_EOF)))
2239 return false;
2240
2241 rx_ring->rx_stats.non_eop_descs++;
2242
2243 return true;
2244}
2245
2246static int i40e_xmit_xdp_ring(struct xdp_frame *xdpf,
2247 struct i40e_ring *xdp_ring);
2248
2249int i40e_xmit_xdp_tx_ring(struct xdp_buff *xdp, struct i40e_ring *xdp_ring)
2250{
2251 struct xdp_frame *xdpf = xdp_convert_buff_to_frame(xdp);
2252
2253 if (unlikely(!xdpf))
2254 return I40E_XDP_CONSUMED;
2255
2256 return i40e_xmit_xdp_ring(xdpf, xdp_ring);
2257}
2258
2259/**
2260 * i40e_run_xdp - run an XDP program
2261 * @rx_ring: Rx ring being processed
2262 * @xdp: XDP buffer containing the frame
2263 * @xdp_prog: XDP program to run
2264 **/
2265static int i40e_run_xdp(struct i40e_ring *rx_ring, struct xdp_buff *xdp, struct bpf_prog *xdp_prog)
2266{
2267 int err, result = I40E_XDP_PASS;
2268 struct i40e_ring *xdp_ring;
2269 u32 act;
2270
2271 if (!xdp_prog)
2272 goto xdp_out;
2273
2274 prefetchw(xdp->data_hard_start); /* xdp_frame write */
2275
2276 act = bpf_prog_run_xdp(xdp_prog, xdp);
2277 switch (act) {
2278 case XDP_PASS:
2279 break;
2280 case XDP_TX:
2281 xdp_ring = rx_ring->vsi->xdp_rings[rx_ring->queue_index];
2282 result = i40e_xmit_xdp_tx_ring(xdp, xdp_ring);
2283 if (result == I40E_XDP_CONSUMED)
2284 goto out_failure;
2285 break;
2286 case XDP_REDIRECT:
2287 err = xdp_do_redirect(rx_ring->netdev, xdp, xdp_prog);
2288 if (err)
2289 goto out_failure;
2290 result = I40E_XDP_REDIR;
2291 break;
2292 default:
2293 bpf_warn_invalid_xdp_action(rx_ring->netdev, xdp_prog, act);
2294 fallthrough;
2295 case XDP_ABORTED:
2296out_failure:
2297 trace_xdp_exception(rx_ring->netdev, xdp_prog, act);
2298 fallthrough; /* handle aborts by dropping packet */
2299 case XDP_DROP:
2300 result = I40E_XDP_CONSUMED;
2301 break;
2302 }
2303xdp_out:
2304 return result;
2305}
2306
2307/**
2308 * i40e_xdp_ring_update_tail - Updates the XDP Tx ring tail register
2309 * @xdp_ring: XDP Tx ring
2310 *
2311 * This function updates the XDP Tx ring tail register.
2312 **/
2313void i40e_xdp_ring_update_tail(struct i40e_ring *xdp_ring)
2314{
2315 /* Force memory writes to complete before letting h/w
2316 * know there are new descriptors to fetch.
2317 */
2318 wmb();
2319 writel_relaxed(xdp_ring->next_to_use, xdp_ring->tail);
2320}
2321
2322/**
2323 * i40e_update_rx_stats - Update Rx ring statistics
2324 * @rx_ring: rx descriptor ring
2325 * @total_rx_bytes: number of bytes received
2326 * @total_rx_packets: number of packets received
2327 *
2328 * This function updates the Rx ring statistics.
2329 **/
2330void i40e_update_rx_stats(struct i40e_ring *rx_ring,
2331 unsigned int total_rx_bytes,
2332 unsigned int total_rx_packets)
2333{
2334 u64_stats_update_begin(&rx_ring->syncp);
2335 rx_ring->stats.packets += total_rx_packets;
2336 rx_ring->stats.bytes += total_rx_bytes;
2337 u64_stats_update_end(&rx_ring->syncp);
2338 rx_ring->q_vector->rx.total_packets += total_rx_packets;
2339 rx_ring->q_vector->rx.total_bytes += total_rx_bytes;
2340}
2341
2342/**
2343 * i40e_finalize_xdp_rx - Bump XDP Tx tail and/or flush redirect map
2344 * @rx_ring: Rx ring
2345 * @xdp_res: Result of the receive batch
2346 *
2347 * This function bumps XDP Tx tail and/or flush redirect map, and
2348 * should be called when a batch of packets has been processed in the
2349 * napi loop.
2350 **/
2351void i40e_finalize_xdp_rx(struct i40e_ring *rx_ring, unsigned int xdp_res)
2352{
2353 if (xdp_res & I40E_XDP_REDIR)
2354 xdp_do_flush();
2355
2356 if (xdp_res & I40E_XDP_TX) {
2357 struct i40e_ring *xdp_ring =
2358 rx_ring->vsi->xdp_rings[rx_ring->queue_index];
2359
2360 i40e_xdp_ring_update_tail(xdp_ring);
2361 }
2362}
2363
2364/**
2365 * i40e_inc_ntp: Advance the next_to_process index
2366 * @rx_ring: Rx ring
2367 **/
2368static void i40e_inc_ntp(struct i40e_ring *rx_ring)
2369{
2370 u32 ntp = rx_ring->next_to_process + 1;
2371
2372 ntp = (ntp < rx_ring->count) ? ntp : 0;
2373 rx_ring->next_to_process = ntp;
2374 prefetch(I40E_RX_DESC(rx_ring, ntp));
2375}
2376
2377/**
2378 * i40e_add_xdp_frag: Add a frag to xdp_buff
2379 * @xdp: xdp_buff pointing to the data
2380 * @nr_frags: return number of buffers for the packet
2381 * @rx_buffer: rx_buffer holding data of the current frag
2382 * @size: size of data of current frag
2383 */
2384static int i40e_add_xdp_frag(struct xdp_buff *xdp, u32 *nr_frags,
2385 struct i40e_rx_buffer *rx_buffer, u32 size)
2386{
2387 struct skb_shared_info *sinfo = xdp_get_shared_info_from_buff(xdp);
2388
2389 if (!xdp_buff_has_frags(xdp)) {
2390 sinfo->nr_frags = 0;
2391 sinfo->xdp_frags_size = 0;
2392 xdp_buff_set_frags_flag(xdp);
2393 } else if (unlikely(sinfo->nr_frags >= MAX_SKB_FRAGS)) {
2394 /* Overflowing packet: All frags need to be dropped */
2395 return -ENOMEM;
2396 }
2397
2398 __skb_fill_page_desc_noacc(sinfo, sinfo->nr_frags++, rx_buffer->page,
2399 rx_buffer->page_offset, size);
2400
2401 sinfo->xdp_frags_size += size;
2402
2403 if (page_is_pfmemalloc(rx_buffer->page))
2404 xdp_buff_set_frag_pfmemalloc(xdp);
2405 *nr_frags = sinfo->nr_frags;
2406
2407 return 0;
2408}
2409
2410/**
2411 * i40e_consume_xdp_buff - Consume all the buffers of the packet and update ntc
2412 * @rx_ring: rx descriptor ring to transact packets on
2413 * @xdp: xdp_buff pointing to the data
2414 * @rx_buffer: rx_buffer of eop desc
2415 */
2416static void i40e_consume_xdp_buff(struct i40e_ring *rx_ring,
2417 struct xdp_buff *xdp,
2418 struct i40e_rx_buffer *rx_buffer)
2419{
2420 i40e_process_rx_buffs(rx_ring, I40E_XDP_CONSUMED, xdp);
2421 i40e_put_rx_buffer(rx_ring, rx_buffer);
2422 rx_ring->next_to_clean = rx_ring->next_to_process;
2423 xdp->data = NULL;
2424}
2425
2426/**
2427 * i40e_clean_rx_irq - Clean completed descriptors from Rx ring - bounce buf
2428 * @rx_ring: rx descriptor ring to transact packets on
2429 * @budget: Total limit on number of packets to process
2430 * @rx_cleaned: Out parameter of the number of packets processed
2431 *
2432 * This function provides a "bounce buffer" approach to Rx interrupt
2433 * processing. The advantage to this is that on systems that have
2434 * expensive overhead for IOMMU access this provides a means of avoiding
2435 * it by maintaining the mapping of the page to the system.
2436 *
2437 * Returns amount of work completed
2438 **/
2439static int i40e_clean_rx_irq(struct i40e_ring *rx_ring, int budget,
2440 unsigned int *rx_cleaned)
2441{
2442 unsigned int total_rx_bytes = 0, total_rx_packets = 0;
2443 u16 cleaned_count = I40E_DESC_UNUSED(rx_ring);
2444 u16 clean_threshold = rx_ring->count / 2;
2445 unsigned int offset = rx_ring->rx_offset;
2446 struct xdp_buff *xdp = &rx_ring->xdp;
2447 unsigned int xdp_xmit = 0;
2448 struct bpf_prog *xdp_prog;
2449 bool failure = false;
2450 int xdp_res = 0;
2451
2452 xdp_prog = READ_ONCE(rx_ring->xdp_prog);
2453
2454 while (likely(total_rx_packets < (unsigned int)budget)) {
2455 u16 ntp = rx_ring->next_to_process;
2456 struct i40e_rx_buffer *rx_buffer;
2457 union i40e_rx_desc *rx_desc;
2458 struct sk_buff *skb;
2459 unsigned int size;
2460 u32 nfrags = 0;
2461 bool neop;
2462 u64 qword;
2463
2464 /* return some buffers to hardware, one at a time is too slow */
2465 if (cleaned_count >= clean_threshold) {
2466 failure = failure ||
2467 i40e_alloc_rx_buffers(rx_ring, cleaned_count);
2468 cleaned_count = 0;
2469 }
2470
2471 rx_desc = I40E_RX_DESC(rx_ring, ntp);
2472
2473 /* status_error_len will always be zero for unused descriptors
2474 * because it's cleared in cleanup, and overlaps with hdr_addr
2475 * which is always zero because packet split isn't used, if the
2476 * hardware wrote DD then the length will be non-zero
2477 */
2478 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
2479
2480 /* This memory barrier is needed to keep us from reading
2481 * any other fields out of the rx_desc until we have
2482 * verified the descriptor has been written back.
2483 */
2484 dma_rmb();
2485
2486 if (i40e_rx_is_programming_status(qword)) {
2487 i40e_clean_programming_status(rx_ring,
2488 rx_desc->raw.qword[0],
2489 qword);
2490 rx_buffer = i40e_rx_bi(rx_ring, ntp);
2491 i40e_inc_ntp(rx_ring);
2492 i40e_reuse_rx_page(rx_ring, rx_buffer);
2493 /* Update ntc and bump cleaned count if not in the
2494 * middle of mb packet.
2495 */
2496 if (rx_ring->next_to_clean == ntp) {
2497 rx_ring->next_to_clean =
2498 rx_ring->next_to_process;
2499 cleaned_count++;
2500 }
2501 continue;
2502 }
2503
2504 size = FIELD_GET(I40E_RXD_QW1_LENGTH_PBUF_MASK, qword);
2505 if (!size)
2506 break;
2507
2508 i40e_trace(clean_rx_irq, rx_ring, rx_desc, xdp);
2509 /* retrieve a buffer from the ring */
2510 rx_buffer = i40e_get_rx_buffer(rx_ring, size);
2511
2512 neop = i40e_is_non_eop(rx_ring, rx_desc);
2513 i40e_inc_ntp(rx_ring);
2514
2515 if (!xdp->data) {
2516 unsigned char *hard_start;
2517
2518 hard_start = page_address(rx_buffer->page) +
2519 rx_buffer->page_offset - offset;
2520 xdp_prepare_buff(xdp, hard_start, offset, size, true);
2521#if (PAGE_SIZE > 4096)
2522 /* At larger PAGE_SIZE, frame_sz depend on len size */
2523 xdp->frame_sz = i40e_rx_frame_truesize(rx_ring, size);
2524#endif
2525 } else if (i40e_add_xdp_frag(xdp, &nfrags, rx_buffer, size) &&
2526 !neop) {
2527 /* Overflowing packet: Drop all frags on EOP */
2528 i40e_consume_xdp_buff(rx_ring, xdp, rx_buffer);
2529 break;
2530 }
2531
2532 if (neop)
2533 continue;
2534
2535 xdp_res = i40e_run_xdp(rx_ring, xdp, xdp_prog);
2536
2537 if (xdp_res) {
2538 xdp_xmit |= xdp_res & (I40E_XDP_TX | I40E_XDP_REDIR);
2539
2540 if (unlikely(xdp_buff_has_frags(xdp))) {
2541 i40e_process_rx_buffs(rx_ring, xdp_res, xdp);
2542 size = xdp_get_buff_len(xdp);
2543 } else if (xdp_res & (I40E_XDP_TX | I40E_XDP_REDIR)) {
2544 i40e_rx_buffer_flip(rx_buffer, xdp->frame_sz);
2545 } else {
2546 rx_buffer->pagecnt_bias++;
2547 }
2548 total_rx_bytes += size;
2549 } else {
2550 if (ring_uses_build_skb(rx_ring))
2551 skb = i40e_build_skb(rx_ring, xdp);
2552 else
2553 skb = i40e_construct_skb(rx_ring, xdp);
2554
2555 /* drop if we failed to retrieve a buffer */
2556 if (!skb) {
2557 rx_ring->rx_stats.alloc_buff_failed++;
2558 i40e_consume_xdp_buff(rx_ring, xdp, rx_buffer);
2559 break;
2560 }
2561
2562 if (i40e_cleanup_headers(rx_ring, skb, rx_desc))
2563 goto process_next;
2564
2565 /* probably a little skewed due to removing CRC */
2566 total_rx_bytes += skb->len;
2567
2568 /* populate checksum, VLAN, and protocol */
2569 i40e_process_skb_fields(rx_ring, rx_desc, skb);
2570
2571 i40e_trace(clean_rx_irq_rx, rx_ring, rx_desc, xdp);
2572 napi_gro_receive(&rx_ring->q_vector->napi, skb);
2573 }
2574
2575 /* update budget accounting */
2576 total_rx_packets++;
2577process_next:
2578 cleaned_count += nfrags + 1;
2579 i40e_put_rx_buffer(rx_ring, rx_buffer);
2580 rx_ring->next_to_clean = rx_ring->next_to_process;
2581
2582 xdp->data = NULL;
2583 }
2584
2585 i40e_finalize_xdp_rx(rx_ring, xdp_xmit);
2586
2587 i40e_update_rx_stats(rx_ring, total_rx_bytes, total_rx_packets);
2588
2589 *rx_cleaned = total_rx_packets;
2590
2591 /* guarantee a trip back through this routine if there was a failure */
2592 return failure ? budget : (int)total_rx_packets;
2593}
2594
2595/**
2596 * i40e_buildreg_itr - build a value for writing to I40E_PFINT_DYN_CTLN register
2597 * @itr_idx: interrupt throttling index
2598 * @interval: interrupt throttling interval value in usecs
2599 * @force_swint: force software interrupt
2600 *
2601 * The function builds a value for I40E_PFINT_DYN_CTLN register that
2602 * is used to update interrupt throttling interval for specified ITR index
2603 * and optionally enforces a software interrupt. If the @itr_idx is equal
2604 * to I40E_ITR_NONE then no interval change is applied and only @force_swint
2605 * parameter is taken into account. If the interval change and enforced
2606 * software interrupt are not requested then the built value just enables
2607 * appropriate vector interrupt.
2608 **/
2609static u32 i40e_buildreg_itr(enum i40e_dyn_idx itr_idx, u16 interval,
2610 bool force_swint)
2611{
2612 u32 val;
2613
2614 /* We don't bother with setting the CLEARPBA bit as the data sheet
2615 * points out doing so is "meaningless since it was already
2616 * auto-cleared". The auto-clearing happens when the interrupt is
2617 * asserted.
2618 *
2619 * Hardware errata 28 for also indicates that writing to a
2620 * xxINT_DYN_CTLx CSR with INTENA_MSK (bit 31) set to 0 will clear
2621 * an event in the PBA anyway so we need to rely on the automask
2622 * to hold pending events for us until the interrupt is re-enabled
2623 *
2624 * We have to shift the given value as it is reported in microseconds
2625 * and the register value is recorded in 2 microsecond units.
2626 */
2627 interval >>= 1;
2628
2629 /* 1. Enable vector interrupt
2630 * 2. Update the interval for the specified ITR index
2631 * (I40E_ITR_NONE in the register is used to indicate that
2632 * no interval update is requested)
2633 */
2634 val = I40E_PFINT_DYN_CTLN_INTENA_MASK |
2635 FIELD_PREP(I40E_PFINT_DYN_CTLN_ITR_INDX_MASK, itr_idx) |
2636 FIELD_PREP(I40E_PFINT_DYN_CTLN_INTERVAL_MASK, interval);
2637
2638 /* 3. Enforce software interrupt trigger if requested
2639 * (These software interrupts rate is limited by ITR2 that is
2640 * set to 20K interrupts per second)
2641 */
2642 if (force_swint)
2643 val |= I40E_PFINT_DYN_CTLN_SWINT_TRIG_MASK |
2644 I40E_PFINT_DYN_CTLN_SW_ITR_INDX_ENA_MASK |
2645 FIELD_PREP(I40E_PFINT_DYN_CTLN_SW_ITR_INDX_MASK,
2646 I40E_SW_ITR);
2647
2648 return val;
2649}
2650
2651/* The act of updating the ITR will cause it to immediately trigger. In order
2652 * to prevent this from throwing off adaptive update statistics we defer the
2653 * update so that it can only happen so often. So after either Tx or Rx are
2654 * updated we make the adaptive scheme wait until either the ITR completely
2655 * expires via the next_update expiration or we have been through at least
2656 * 3 interrupts.
2657 */
2658#define ITR_COUNTDOWN_START 3
2659
2660/**
2661 * i40e_update_enable_itr - Update itr and re-enable MSIX interrupt
2662 * @vsi: the VSI we care about
2663 * @q_vector: q_vector for which itr is being updated and interrupt enabled
2664 *
2665 **/
2666static inline void i40e_update_enable_itr(struct i40e_vsi *vsi,
2667 struct i40e_q_vector *q_vector)
2668{
2669 enum i40e_dyn_idx itr_idx = I40E_ITR_NONE;
2670 struct i40e_hw *hw = &vsi->back->hw;
2671 u16 interval = 0;
2672 u32 itr_val;
2673
2674 /* If we don't have MSIX, then we only need to re-enable icr0 */
2675 if (!test_bit(I40E_FLAG_MSIX_ENA, vsi->back->flags)) {
2676 i40e_irq_dynamic_enable_icr0(vsi->back);
2677 return;
2678 }
2679
2680 /* These will do nothing if dynamic updates are not enabled */
2681 i40e_update_itr(q_vector, &q_vector->tx);
2682 i40e_update_itr(q_vector, &q_vector->rx);
2683
2684 /* This block of logic allows us to get away with only updating
2685 * one ITR value with each interrupt. The idea is to perform a
2686 * pseudo-lazy update with the following criteria.
2687 *
2688 * 1. Rx is given higher priority than Tx if both are in same state
2689 * 2. If we must reduce an ITR that is given highest priority.
2690 * 3. We then give priority to increasing ITR based on amount.
2691 */
2692 if (q_vector->rx.target_itr < q_vector->rx.current_itr) {
2693 /* Rx ITR needs to be reduced, this is highest priority */
2694 itr_idx = I40E_RX_ITR;
2695 interval = q_vector->rx.target_itr;
2696 q_vector->rx.current_itr = q_vector->rx.target_itr;
2697 q_vector->itr_countdown = ITR_COUNTDOWN_START;
2698 } else if ((q_vector->tx.target_itr < q_vector->tx.current_itr) ||
2699 ((q_vector->rx.target_itr - q_vector->rx.current_itr) <
2700 (q_vector->tx.target_itr - q_vector->tx.current_itr))) {
2701 /* Tx ITR needs to be reduced, this is second priority
2702 * Tx ITR needs to be increased more than Rx, fourth priority
2703 */
2704 itr_idx = I40E_TX_ITR;
2705 interval = q_vector->tx.target_itr;
2706 q_vector->tx.current_itr = q_vector->tx.target_itr;
2707 q_vector->itr_countdown = ITR_COUNTDOWN_START;
2708 } else if (q_vector->rx.current_itr != q_vector->rx.target_itr) {
2709 /* Rx ITR needs to be increased, third priority */
2710 itr_idx = I40E_RX_ITR;
2711 interval = q_vector->rx.target_itr;
2712 q_vector->rx.current_itr = q_vector->rx.target_itr;
2713 q_vector->itr_countdown = ITR_COUNTDOWN_START;
2714 } else {
2715 /* No ITR update, lowest priority */
2716 if (q_vector->itr_countdown)
2717 q_vector->itr_countdown--;
2718 }
2719
2720 /* Do not update interrupt control register if VSI is down */
2721 if (test_bit(__I40E_VSI_DOWN, vsi->state))
2722 return;
2723
2724 /* Update ITR interval if necessary and enforce software interrupt
2725 * if we are exiting busy poll.
2726 */
2727 if (q_vector->in_busy_poll) {
2728 itr_val = i40e_buildreg_itr(itr_idx, interval, true);
2729 q_vector->in_busy_poll = false;
2730 } else {
2731 itr_val = i40e_buildreg_itr(itr_idx, interval, false);
2732 }
2733 wr32(hw, I40E_PFINT_DYN_CTLN(q_vector->reg_idx), itr_val);
2734}
2735
2736/**
2737 * i40e_napi_poll - NAPI polling Rx/Tx cleanup routine
2738 * @napi: napi struct with our devices info in it
2739 * @budget: amount of work driver is allowed to do this pass, in packets
2740 *
2741 * This function will clean all queues associated with a q_vector.
2742 *
2743 * Returns the amount of work done
2744 **/
2745int i40e_napi_poll(struct napi_struct *napi, int budget)
2746{
2747 struct i40e_q_vector *q_vector =
2748 container_of(napi, struct i40e_q_vector, napi);
2749 struct i40e_vsi *vsi = q_vector->vsi;
2750 struct i40e_ring *ring;
2751 bool tx_clean_complete = true;
2752 bool rx_clean_complete = true;
2753 unsigned int tx_cleaned = 0;
2754 unsigned int rx_cleaned = 0;
2755 bool clean_complete = true;
2756 bool arm_wb = false;
2757 int budget_per_ring;
2758 int work_done = 0;
2759
2760 if (test_bit(__I40E_VSI_DOWN, vsi->state)) {
2761 napi_complete(napi);
2762 return 0;
2763 }
2764
2765 /* Since the actual Tx work is minimal, we can give the Tx a larger
2766 * budget and be more aggressive about cleaning up the Tx descriptors.
2767 */
2768 i40e_for_each_ring(ring, q_vector->tx) {
2769 bool wd = ring->xsk_pool ?
2770 i40e_clean_xdp_tx_irq(vsi, ring) :
2771 i40e_clean_tx_irq(vsi, ring, budget, &tx_cleaned);
2772
2773 if (!wd) {
2774 clean_complete = tx_clean_complete = false;
2775 continue;
2776 }
2777 arm_wb |= ring->arm_wb;
2778 ring->arm_wb = false;
2779 }
2780
2781 /* Handle case where we are called by netpoll with a budget of 0 */
2782 if (budget <= 0)
2783 goto tx_only;
2784
2785 /* normally we have 1 Rx ring per q_vector */
2786 if (unlikely(q_vector->num_ringpairs > 1))
2787 /* We attempt to distribute budget to each Rx queue fairly, but
2788 * don't allow the budget to go below 1 because that would exit
2789 * polling early.
2790 */
2791 budget_per_ring = max_t(int, budget / q_vector->num_ringpairs, 1);
2792 else
2793 /* Max of 1 Rx ring in this q_vector so give it the budget */
2794 budget_per_ring = budget;
2795
2796 i40e_for_each_ring(ring, q_vector->rx) {
2797 int cleaned = ring->xsk_pool ?
2798 i40e_clean_rx_irq_zc(ring, budget_per_ring) :
2799 i40e_clean_rx_irq(ring, budget_per_ring, &rx_cleaned);
2800
2801 work_done += cleaned;
2802 /* if we clean as many as budgeted, we must not be done */
2803 if (cleaned >= budget_per_ring)
2804 clean_complete = rx_clean_complete = false;
2805 }
2806
2807 if (!i40e_enabled_xdp_vsi(vsi))
2808 trace_i40e_napi_poll(napi, q_vector, budget, budget_per_ring, rx_cleaned,
2809 tx_cleaned, rx_clean_complete, tx_clean_complete);
2810
2811 /* If work not completed, return budget and polling will return */
2812 if (!clean_complete) {
2813 int cpu_id = smp_processor_id();
2814
2815 /* It is possible that the interrupt affinity has changed but,
2816 * if the cpu is pegged at 100%, polling will never exit while
2817 * traffic continues and the interrupt will be stuck on this
2818 * cpu. We check to make sure affinity is correct before we
2819 * continue to poll, otherwise we must stop polling so the
2820 * interrupt can move to the correct cpu.
2821 */
2822 if (!cpumask_test_cpu(cpu_id, &q_vector->affinity_mask)) {
2823 /* Tell napi that we are done polling */
2824 napi_complete_done(napi, work_done);
2825
2826 /* Force an interrupt */
2827 i40e_force_wb(vsi, q_vector);
2828
2829 /* Return budget-1 so that polling stops */
2830 return budget - 1;
2831 }
2832tx_only:
2833 if (arm_wb) {
2834 q_vector->tx.ring[0].tx_stats.tx_force_wb++;
2835 i40e_enable_wb_on_itr(vsi, q_vector);
2836 }
2837 return budget;
2838 }
2839
2840 if (q_vector->tx.ring[0].flags & I40E_TXR_FLAGS_WB_ON_ITR)
2841 q_vector->arm_wb_state = false;
2842
2843 /* Exit the polling mode, but don't re-enable interrupts if stack might
2844 * poll us due to busy-polling
2845 */
2846 if (likely(napi_complete_done(napi, work_done)))
2847 i40e_update_enable_itr(vsi, q_vector);
2848 else
2849 q_vector->in_busy_poll = true;
2850
2851 return min(work_done, budget - 1);
2852}
2853
2854/**
2855 * i40e_atr - Add a Flow Director ATR filter
2856 * @tx_ring: ring to add programming descriptor to
2857 * @skb: send buffer
2858 * @tx_flags: send tx flags
2859 **/
2860static void i40e_atr(struct i40e_ring *tx_ring, struct sk_buff *skb,
2861 u32 tx_flags)
2862{
2863 struct i40e_filter_program_desc *fdir_desc;
2864 struct i40e_pf *pf = tx_ring->vsi->back;
2865 union {
2866 unsigned char *network;
2867 struct iphdr *ipv4;
2868 struct ipv6hdr *ipv6;
2869 } hdr;
2870 struct tcphdr *th;
2871 unsigned int hlen;
2872 u32 flex_ptype, dtype_cmd;
2873 int l4_proto;
2874 u16 i;
2875
2876 /* make sure ATR is enabled */
2877 if (!test_bit(I40E_FLAG_FD_ATR_ENA, pf->flags))
2878 return;
2879
2880 if (test_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state))
2881 return;
2882
2883 /* if sampling is disabled do nothing */
2884 if (!tx_ring->atr_sample_rate)
2885 return;
2886
2887 /* Currently only IPv4/IPv6 with TCP is supported */
2888 if (!(tx_flags & (I40E_TX_FLAGS_IPV4 | I40E_TX_FLAGS_IPV6)))
2889 return;
2890
2891 /* snag network header to get L4 type and address */
2892 hdr.network = (tx_flags & I40E_TX_FLAGS_UDP_TUNNEL) ?
2893 skb_inner_network_header(skb) : skb_network_header(skb);
2894
2895 /* Note: tx_flags gets modified to reflect inner protocols in
2896 * tx_enable_csum function if encap is enabled.
2897 */
2898 if (tx_flags & I40E_TX_FLAGS_IPV4) {
2899 /* access ihl as u8 to avoid unaligned access on ia64 */
2900 hlen = (hdr.network[0] & 0x0F) << 2;
2901 l4_proto = hdr.ipv4->protocol;
2902 } else {
2903 /* find the start of the innermost ipv6 header */
2904 unsigned int inner_hlen = hdr.network - skb->data;
2905 unsigned int h_offset = inner_hlen;
2906
2907 /* this function updates h_offset to the end of the header */
2908 l4_proto =
2909 ipv6_find_hdr(skb, &h_offset, IPPROTO_TCP, NULL, NULL);
2910 /* hlen will contain our best estimate of the tcp header */
2911 hlen = h_offset - inner_hlen;
2912 }
2913
2914 if (l4_proto != IPPROTO_TCP)
2915 return;
2916
2917 th = (struct tcphdr *)(hdr.network + hlen);
2918
2919 /* Due to lack of space, no more new filters can be programmed */
2920 if (th->syn && test_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state))
2921 return;
2922 if (test_bit(I40E_FLAG_HW_ATR_EVICT_ENA, pf->flags)) {
2923 /* HW ATR eviction will take care of removing filters on FIN
2924 * and RST packets.
2925 */
2926 if (th->fin || th->rst)
2927 return;
2928 }
2929
2930 tx_ring->atr_count++;
2931
2932 /* sample on all syn/fin/rst packets or once every atr sample rate */
2933 if (!th->fin &&
2934 !th->syn &&
2935 !th->rst &&
2936 (tx_ring->atr_count < tx_ring->atr_sample_rate))
2937 return;
2938
2939 tx_ring->atr_count = 0;
2940
2941 /* grab the next descriptor */
2942 i = tx_ring->next_to_use;
2943 fdir_desc = I40E_TX_FDIRDESC(tx_ring, i);
2944
2945 i++;
2946 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
2947
2948 flex_ptype = FIELD_PREP(I40E_TXD_FLTR_QW0_QINDEX_MASK,
2949 tx_ring->queue_index);
2950 flex_ptype |= (tx_flags & I40E_TX_FLAGS_IPV4) ?
2951 (I40E_FILTER_PCTYPE_NONF_IPV4_TCP <<
2952 I40E_TXD_FLTR_QW0_PCTYPE_SHIFT) :
2953 (I40E_FILTER_PCTYPE_NONF_IPV6_TCP <<
2954 I40E_TXD_FLTR_QW0_PCTYPE_SHIFT);
2955
2956 flex_ptype |= tx_ring->vsi->id << I40E_TXD_FLTR_QW0_DEST_VSI_SHIFT;
2957
2958 dtype_cmd = I40E_TX_DESC_DTYPE_FILTER_PROG;
2959
2960 dtype_cmd |= (th->fin || th->rst) ?
2961 (I40E_FILTER_PROGRAM_DESC_PCMD_REMOVE <<
2962 I40E_TXD_FLTR_QW1_PCMD_SHIFT) :
2963 (I40E_FILTER_PROGRAM_DESC_PCMD_ADD_UPDATE <<
2964 I40E_TXD_FLTR_QW1_PCMD_SHIFT);
2965
2966 dtype_cmd |= I40E_FILTER_PROGRAM_DESC_DEST_DIRECT_PACKET_QINDEX <<
2967 I40E_TXD_FLTR_QW1_DEST_SHIFT;
2968
2969 dtype_cmd |= I40E_FILTER_PROGRAM_DESC_FD_STATUS_FD_ID <<
2970 I40E_TXD_FLTR_QW1_FD_STATUS_SHIFT;
2971
2972 dtype_cmd |= I40E_TXD_FLTR_QW1_CNT_ENA_MASK;
2973 if (!(tx_flags & I40E_TX_FLAGS_UDP_TUNNEL))
2974 dtype_cmd |=
2975 FIELD_PREP(I40E_TXD_FLTR_QW1_CNTINDEX_MASK,
2976 I40E_FD_ATR_STAT_IDX(pf->hw.pf_id));
2977 else
2978 dtype_cmd |=
2979 FIELD_PREP(I40E_TXD_FLTR_QW1_CNTINDEX_MASK,
2980 I40E_FD_ATR_TUNNEL_STAT_IDX(pf->hw.pf_id));
2981
2982 if (test_bit(I40E_FLAG_HW_ATR_EVICT_ENA, pf->flags))
2983 dtype_cmd |= I40E_TXD_FLTR_QW1_ATR_MASK;
2984
2985 fdir_desc->qindex_flex_ptype_vsi = cpu_to_le32(flex_ptype);
2986 fdir_desc->rsvd = cpu_to_le32(0);
2987 fdir_desc->dtype_cmd_cntindex = cpu_to_le32(dtype_cmd);
2988 fdir_desc->fd_id = cpu_to_le32(0);
2989}
2990
2991/**
2992 * i40e_tx_prepare_vlan_flags - prepare generic TX VLAN tagging flags for HW
2993 * @skb: send buffer
2994 * @tx_ring: ring to send buffer on
2995 * @flags: the tx flags to be set
2996 *
2997 * Checks the skb and set up correspondingly several generic transmit flags
2998 * related to VLAN tagging for the HW, such as VLAN, DCB, etc.
2999 *
3000 * Returns error code indicate the frame should be dropped upon error and the
3001 * otherwise returns 0 to indicate the flags has been set properly.
3002 **/
3003static inline int i40e_tx_prepare_vlan_flags(struct sk_buff *skb,
3004 struct i40e_ring *tx_ring,
3005 u32 *flags)
3006{
3007 __be16 protocol = skb->protocol;
3008 u32 tx_flags = 0;
3009
3010 if (protocol == htons(ETH_P_8021Q) &&
3011 !(tx_ring->netdev->features & NETIF_F_HW_VLAN_CTAG_TX)) {
3012 /* When HW VLAN acceleration is turned off by the user the
3013 * stack sets the protocol to 8021q so that the driver
3014 * can take any steps required to support the SW only
3015 * VLAN handling. In our case the driver doesn't need
3016 * to take any further steps so just set the protocol
3017 * to the encapsulated ethertype.
3018 */
3019 skb->protocol = vlan_get_protocol(skb);
3020 goto out;
3021 }
3022
3023 /* if we have a HW VLAN tag being added, default to the HW one */
3024 if (skb_vlan_tag_present(skb)) {
3025 tx_flags |= skb_vlan_tag_get(skb) << I40E_TX_FLAGS_VLAN_SHIFT;
3026 tx_flags |= I40E_TX_FLAGS_HW_VLAN;
3027 /* else if it is a SW VLAN, check the next protocol and store the tag */
3028 } else if (protocol == htons(ETH_P_8021Q)) {
3029 struct vlan_hdr *vhdr, _vhdr;
3030
3031 vhdr = skb_header_pointer(skb, ETH_HLEN, sizeof(_vhdr), &_vhdr);
3032 if (!vhdr)
3033 return -EINVAL;
3034
3035 protocol = vhdr->h_vlan_encapsulated_proto;
3036 tx_flags |= ntohs(vhdr->h_vlan_TCI) << I40E_TX_FLAGS_VLAN_SHIFT;
3037 tx_flags |= I40E_TX_FLAGS_SW_VLAN;
3038 }
3039
3040 if (!test_bit(I40E_FLAG_DCB_ENA, tx_ring->vsi->back->flags))
3041 goto out;
3042
3043 /* Insert 802.1p priority into VLAN header */
3044 if ((tx_flags & (I40E_TX_FLAGS_HW_VLAN | I40E_TX_FLAGS_SW_VLAN)) ||
3045 (skb->priority != TC_PRIO_CONTROL)) {
3046 tx_flags &= ~I40E_TX_FLAGS_VLAN_PRIO_MASK;
3047 tx_flags |= (skb->priority & 0x7) <<
3048 I40E_TX_FLAGS_VLAN_PRIO_SHIFT;
3049 if (tx_flags & I40E_TX_FLAGS_SW_VLAN) {
3050 struct vlan_ethhdr *vhdr;
3051 int rc;
3052
3053 rc = skb_cow_head(skb, 0);
3054 if (rc < 0)
3055 return rc;
3056 vhdr = skb_vlan_eth_hdr(skb);
3057 vhdr->h_vlan_TCI = htons(tx_flags >>
3058 I40E_TX_FLAGS_VLAN_SHIFT);
3059 } else {
3060 tx_flags |= I40E_TX_FLAGS_HW_VLAN;
3061 }
3062 }
3063
3064out:
3065 *flags = tx_flags;
3066 return 0;
3067}
3068
3069/**
3070 * i40e_tso - set up the tso context descriptor
3071 * @first: pointer to first Tx buffer for xmit
3072 * @hdr_len: ptr to the size of the packet header
3073 * @cd_type_cmd_tso_mss: Quad Word 1
3074 *
3075 * Returns 0 if no TSO can happen, 1 if tso is going, or error
3076 **/
3077static int i40e_tso(struct i40e_tx_buffer *first, u8 *hdr_len,
3078 u64 *cd_type_cmd_tso_mss)
3079{
3080 struct sk_buff *skb = first->skb;
3081 u64 cd_cmd, cd_tso_len, cd_mss;
3082 __be16 protocol;
3083 union {
3084 struct iphdr *v4;
3085 struct ipv6hdr *v6;
3086 unsigned char *hdr;
3087 } ip;
3088 union {
3089 struct tcphdr *tcp;
3090 struct udphdr *udp;
3091 unsigned char *hdr;
3092 } l4;
3093 u32 paylen, l4_offset;
3094 u16 gso_size;
3095 int err;
3096
3097 if (skb->ip_summed != CHECKSUM_PARTIAL)
3098 return 0;
3099
3100 if (!skb_is_gso(skb))
3101 return 0;
3102
3103 err = skb_cow_head(skb, 0);
3104 if (err < 0)
3105 return err;
3106
3107 protocol = vlan_get_protocol(skb);
3108
3109 if (eth_p_mpls(protocol))
3110 ip.hdr = skb_inner_network_header(skb);
3111 else
3112 ip.hdr = skb_network_header(skb);
3113 l4.hdr = skb_checksum_start(skb);
3114
3115 /* initialize outer IP header fields */
3116 if (ip.v4->version == 4) {
3117 ip.v4->tot_len = 0;
3118 ip.v4->check = 0;
3119
3120 first->tx_flags |= I40E_TX_FLAGS_TSO;
3121 } else {
3122 ip.v6->payload_len = 0;
3123 first->tx_flags |= I40E_TX_FLAGS_TSO;
3124 }
3125
3126 if (skb_shinfo(skb)->gso_type & (SKB_GSO_GRE |
3127 SKB_GSO_GRE_CSUM |
3128 SKB_GSO_IPXIP4 |
3129 SKB_GSO_IPXIP6 |
3130 SKB_GSO_UDP_TUNNEL |
3131 SKB_GSO_UDP_TUNNEL_CSUM)) {
3132 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) &&
3133 (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM)) {
3134 l4.udp->len = 0;
3135
3136 /* determine offset of outer transport header */
3137 l4_offset = l4.hdr - skb->data;
3138
3139 /* remove payload length from outer checksum */
3140 paylen = skb->len - l4_offset;
3141 csum_replace_by_diff(&l4.udp->check,
3142 (__force __wsum)htonl(paylen));
3143 }
3144
3145 /* reset pointers to inner headers */
3146 ip.hdr = skb_inner_network_header(skb);
3147 l4.hdr = skb_inner_transport_header(skb);
3148
3149 /* initialize inner IP header fields */
3150 if (ip.v4->version == 4) {
3151 ip.v4->tot_len = 0;
3152 ip.v4->check = 0;
3153 } else {
3154 ip.v6->payload_len = 0;
3155 }
3156 }
3157
3158 /* determine offset of inner transport header */
3159 l4_offset = l4.hdr - skb->data;
3160
3161 /* remove payload length from inner checksum */
3162 paylen = skb->len - l4_offset;
3163
3164 if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) {
3165 csum_replace_by_diff(&l4.udp->check, (__force __wsum)htonl(paylen));
3166 /* compute length of segmentation header */
3167 *hdr_len = sizeof(*l4.udp) + l4_offset;
3168 } else {
3169 csum_replace_by_diff(&l4.tcp->check, (__force __wsum)htonl(paylen));
3170 /* compute length of segmentation header */
3171 *hdr_len = (l4.tcp->doff * 4) + l4_offset;
3172 }
3173
3174 /* pull values out of skb_shinfo */
3175 gso_size = skb_shinfo(skb)->gso_size;
3176
3177 /* update GSO size and bytecount with header size */
3178 first->gso_segs = skb_shinfo(skb)->gso_segs;
3179 first->bytecount += (first->gso_segs - 1) * *hdr_len;
3180
3181 /* find the field values */
3182 cd_cmd = I40E_TX_CTX_DESC_TSO;
3183 cd_tso_len = skb->len - *hdr_len;
3184 cd_mss = gso_size;
3185 *cd_type_cmd_tso_mss |= (cd_cmd << I40E_TXD_CTX_QW1_CMD_SHIFT) |
3186 (cd_tso_len << I40E_TXD_CTX_QW1_TSO_LEN_SHIFT) |
3187 (cd_mss << I40E_TXD_CTX_QW1_MSS_SHIFT);
3188 return 1;
3189}
3190
3191/**
3192 * i40e_tsyn - set up the tsyn context descriptor
3193 * @tx_ring: ptr to the ring to send
3194 * @skb: ptr to the skb we're sending
3195 * @tx_flags: the collected send information
3196 * @cd_type_cmd_tso_mss: Quad Word 1
3197 *
3198 * Returns 0 if no Tx timestamp can happen and 1 if the timestamp will happen
3199 **/
3200static int i40e_tsyn(struct i40e_ring *tx_ring, struct sk_buff *skb,
3201 u32 tx_flags, u64 *cd_type_cmd_tso_mss)
3202{
3203 struct i40e_pf *pf;
3204
3205 if (likely(!(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)))
3206 return 0;
3207
3208 /* Tx timestamps cannot be sampled when doing TSO */
3209 if (tx_flags & I40E_TX_FLAGS_TSO)
3210 return 0;
3211
3212 /* only timestamp the outbound packet if the user has requested it and
3213 * we are not already transmitting a packet to be timestamped
3214 */
3215 pf = i40e_netdev_to_pf(tx_ring->netdev);
3216 if (!test_bit(I40E_FLAG_PTP_ENA, pf->flags))
3217 return 0;
3218
3219 if (pf->ptp_tx &&
3220 !test_and_set_bit_lock(__I40E_PTP_TX_IN_PROGRESS, pf->state)) {
3221 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
3222 pf->ptp_tx_start = jiffies;
3223 pf->ptp_tx_skb = skb_get(skb);
3224 } else {
3225 pf->tx_hwtstamp_skipped++;
3226 return 0;
3227 }
3228
3229 *cd_type_cmd_tso_mss |= (u64)I40E_TX_CTX_DESC_TSYN <<
3230 I40E_TXD_CTX_QW1_CMD_SHIFT;
3231
3232 return 1;
3233}
3234
3235/**
3236 * i40e_tx_enable_csum - Enable Tx checksum offloads
3237 * @skb: send buffer
3238 * @tx_flags: pointer to Tx flags currently set
3239 * @td_cmd: Tx descriptor command bits to set
3240 * @td_offset: Tx descriptor header offsets to set
3241 * @tx_ring: Tx descriptor ring
3242 * @cd_tunneling: ptr to context desc bits
3243 **/
3244static int i40e_tx_enable_csum(struct sk_buff *skb, u32 *tx_flags,
3245 u32 *td_cmd, u32 *td_offset,
3246 struct i40e_ring *tx_ring,
3247 u32 *cd_tunneling)
3248{
3249 union {
3250 struct iphdr *v4;
3251 struct ipv6hdr *v6;
3252 unsigned char *hdr;
3253 } ip;
3254 union {
3255 struct tcphdr *tcp;
3256 struct udphdr *udp;
3257 unsigned char *hdr;
3258 } l4;
3259 unsigned char *exthdr;
3260 u32 offset, cmd = 0;
3261 __be16 frag_off;
3262 __be16 protocol;
3263 u8 l4_proto = 0;
3264
3265 if (skb->ip_summed != CHECKSUM_PARTIAL)
3266 return 0;
3267
3268 protocol = vlan_get_protocol(skb);
3269
3270 if (eth_p_mpls(protocol)) {
3271 ip.hdr = skb_inner_network_header(skb);
3272 l4.hdr = skb_checksum_start(skb);
3273 } else {
3274 ip.hdr = skb_network_header(skb);
3275 l4.hdr = skb_transport_header(skb);
3276 }
3277
3278 /* set the tx_flags to indicate the IP protocol type. this is
3279 * required so that checksum header computation below is accurate.
3280 */
3281 if (ip.v4->version == 4)
3282 *tx_flags |= I40E_TX_FLAGS_IPV4;
3283 else
3284 *tx_flags |= I40E_TX_FLAGS_IPV6;
3285
3286 /* compute outer L2 header size */
3287 offset = ((ip.hdr - skb->data) / 2) << I40E_TX_DESC_LENGTH_MACLEN_SHIFT;
3288
3289 if (skb->encapsulation) {
3290 u32 tunnel = 0;
3291 /* define outer network header type */
3292 if (*tx_flags & I40E_TX_FLAGS_IPV4) {
3293 tunnel |= (*tx_flags & I40E_TX_FLAGS_TSO) ?
3294 I40E_TX_CTX_EXT_IP_IPV4 :
3295 I40E_TX_CTX_EXT_IP_IPV4_NO_CSUM;
3296
3297 l4_proto = ip.v4->protocol;
3298 } else if (*tx_flags & I40E_TX_FLAGS_IPV6) {
3299 int ret;
3300
3301 tunnel |= I40E_TX_CTX_EXT_IP_IPV6;
3302
3303 exthdr = ip.hdr + sizeof(*ip.v6);
3304 l4_proto = ip.v6->nexthdr;
3305 ret = ipv6_skip_exthdr(skb, exthdr - skb->data,
3306 &l4_proto, &frag_off);
3307 if (ret < 0)
3308 return -1;
3309 }
3310
3311 /* define outer transport */
3312 switch (l4_proto) {
3313 case IPPROTO_UDP:
3314 tunnel |= I40E_TXD_CTX_UDP_TUNNELING;
3315 *tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL;
3316 break;
3317 case IPPROTO_GRE:
3318 tunnel |= I40E_TXD_CTX_GRE_TUNNELING;
3319 *tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL;
3320 break;
3321 case IPPROTO_IPIP:
3322 case IPPROTO_IPV6:
3323 *tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL;
3324 l4.hdr = skb_inner_network_header(skb);
3325 break;
3326 default:
3327 if (*tx_flags & I40E_TX_FLAGS_TSO)
3328 return -1;
3329
3330 skb_checksum_help(skb);
3331 return 0;
3332 }
3333
3334 /* compute outer L3 header size */
3335 tunnel |= ((l4.hdr - ip.hdr) / 4) <<
3336 I40E_TXD_CTX_QW0_EXT_IPLEN_SHIFT;
3337
3338 /* switch IP header pointer from outer to inner header */
3339 ip.hdr = skb_inner_network_header(skb);
3340
3341 /* compute tunnel header size */
3342 tunnel |= ((ip.hdr - l4.hdr) / 2) <<
3343 I40E_TXD_CTX_QW0_NATLEN_SHIFT;
3344
3345 /* indicate if we need to offload outer UDP header */
3346 if ((*tx_flags & I40E_TX_FLAGS_TSO) &&
3347 !(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) &&
3348 (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM))
3349 tunnel |= I40E_TXD_CTX_QW0_L4T_CS_MASK;
3350
3351 /* record tunnel offload values */
3352 *cd_tunneling |= tunnel;
3353
3354 /* switch L4 header pointer from outer to inner */
3355 l4.hdr = skb_inner_transport_header(skb);
3356 l4_proto = 0;
3357
3358 /* reset type as we transition from outer to inner headers */
3359 *tx_flags &= ~(I40E_TX_FLAGS_IPV4 | I40E_TX_FLAGS_IPV6);
3360 if (ip.v4->version == 4)
3361 *tx_flags |= I40E_TX_FLAGS_IPV4;
3362 if (ip.v6->version == 6)
3363 *tx_flags |= I40E_TX_FLAGS_IPV6;
3364 }
3365
3366 /* Enable IP checksum offloads */
3367 if (*tx_flags & I40E_TX_FLAGS_IPV4) {
3368 l4_proto = ip.v4->protocol;
3369 /* the stack computes the IP header already, the only time we
3370 * need the hardware to recompute it is in the case of TSO.
3371 */
3372 cmd |= (*tx_flags & I40E_TX_FLAGS_TSO) ?
3373 I40E_TX_DESC_CMD_IIPT_IPV4_CSUM :
3374 I40E_TX_DESC_CMD_IIPT_IPV4;
3375 } else if (*tx_flags & I40E_TX_FLAGS_IPV6) {
3376 cmd |= I40E_TX_DESC_CMD_IIPT_IPV6;
3377
3378 exthdr = ip.hdr + sizeof(*ip.v6);
3379 l4_proto = ip.v6->nexthdr;
3380 if (l4.hdr != exthdr)
3381 ipv6_skip_exthdr(skb, exthdr - skb->data,
3382 &l4_proto, &frag_off);
3383 }
3384
3385 /* compute inner L3 header size */
3386 offset |= ((l4.hdr - ip.hdr) / 4) << I40E_TX_DESC_LENGTH_IPLEN_SHIFT;
3387
3388 /* Enable L4 checksum offloads */
3389 switch (l4_proto) {
3390 case IPPROTO_TCP:
3391 /* enable checksum offloads */
3392 cmd |= I40E_TX_DESC_CMD_L4T_EOFT_TCP;
3393 offset |= l4.tcp->doff << I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
3394 break;
3395 case IPPROTO_SCTP:
3396 /* enable SCTP checksum offload */
3397 cmd |= I40E_TX_DESC_CMD_L4T_EOFT_SCTP;
3398 offset |= (sizeof(struct sctphdr) >> 2) <<
3399 I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
3400 break;
3401 case IPPROTO_UDP:
3402 /* enable UDP checksum offload */
3403 cmd |= I40E_TX_DESC_CMD_L4T_EOFT_UDP;
3404 offset |= (sizeof(struct udphdr) >> 2) <<
3405 I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
3406 break;
3407 default:
3408 if (*tx_flags & I40E_TX_FLAGS_TSO)
3409 return -1;
3410 skb_checksum_help(skb);
3411 return 0;
3412 }
3413
3414 *td_cmd |= cmd;
3415 *td_offset |= offset;
3416
3417 return 1;
3418}
3419
3420/**
3421 * i40e_create_tx_ctx - Build the Tx context descriptor
3422 * @tx_ring: ring to create the descriptor on
3423 * @cd_type_cmd_tso_mss: Quad Word 1
3424 * @cd_tunneling: Quad Word 0 - bits 0-31
3425 * @cd_l2tag2: Quad Word 0 - bits 32-63
3426 **/
3427static void i40e_create_tx_ctx(struct i40e_ring *tx_ring,
3428 const u64 cd_type_cmd_tso_mss,
3429 const u32 cd_tunneling, const u32 cd_l2tag2)
3430{
3431 struct i40e_tx_context_desc *context_desc;
3432 int i = tx_ring->next_to_use;
3433
3434 if ((cd_type_cmd_tso_mss == I40E_TX_DESC_DTYPE_CONTEXT) &&
3435 !cd_tunneling && !cd_l2tag2)
3436 return;
3437
3438 /* grab the next descriptor */
3439 context_desc = I40E_TX_CTXTDESC(tx_ring, i);
3440
3441 i++;
3442 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
3443
3444 /* cpu_to_le32 and assign to struct fields */
3445 context_desc->tunneling_params = cpu_to_le32(cd_tunneling);
3446 context_desc->l2tag2 = cpu_to_le16(cd_l2tag2);
3447 context_desc->rsvd = cpu_to_le16(0);
3448 context_desc->type_cmd_tso_mss = cpu_to_le64(cd_type_cmd_tso_mss);
3449}
3450
3451/**
3452 * __i40e_maybe_stop_tx - 2nd level check for tx stop conditions
3453 * @tx_ring: the ring to be checked
3454 * @size: the size buffer we want to assure is available
3455 *
3456 * Returns -EBUSY if a stop is needed, else 0
3457 **/
3458int __i40e_maybe_stop_tx(struct i40e_ring *tx_ring, int size)
3459{
3460 netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
3461 /* Memory barrier before checking head and tail */
3462 smp_mb();
3463
3464 ++tx_ring->tx_stats.tx_stopped;
3465
3466 /* Check again in a case another CPU has just made room available. */
3467 if (likely(I40E_DESC_UNUSED(tx_ring) < size))
3468 return -EBUSY;
3469
3470 /* A reprieve! - use start_queue because it doesn't call schedule */
3471 netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index);
3472 ++tx_ring->tx_stats.restart_queue;
3473 return 0;
3474}
3475
3476/**
3477 * __i40e_chk_linearize - Check if there are more than 8 buffers per packet
3478 * @skb: send buffer
3479 *
3480 * Note: Our HW can't DMA more than 8 buffers to build a packet on the wire
3481 * and so we need to figure out the cases where we need to linearize the skb.
3482 *
3483 * For TSO we need to count the TSO header and segment payload separately.
3484 * As such we need to check cases where we have 7 fragments or more as we
3485 * can potentially require 9 DMA transactions, 1 for the TSO header, 1 for
3486 * the segment payload in the first descriptor, and another 7 for the
3487 * fragments.
3488 **/
3489bool __i40e_chk_linearize(struct sk_buff *skb)
3490{
3491 const skb_frag_t *frag, *stale;
3492 int nr_frags, sum;
3493
3494 /* no need to check if number of frags is less than 7 */
3495 nr_frags = skb_shinfo(skb)->nr_frags;
3496 if (nr_frags < (I40E_MAX_BUFFER_TXD - 1))
3497 return false;
3498
3499 /* We need to walk through the list and validate that each group
3500 * of 6 fragments totals at least gso_size.
3501 */
3502 nr_frags -= I40E_MAX_BUFFER_TXD - 2;
3503 frag = &skb_shinfo(skb)->frags[0];
3504
3505 /* Initialize size to the negative value of gso_size minus 1. We
3506 * use this as the worst case scenerio in which the frag ahead
3507 * of us only provides one byte which is why we are limited to 6
3508 * descriptors for a single transmit as the header and previous
3509 * fragment are already consuming 2 descriptors.
3510 */
3511 sum = 1 - skb_shinfo(skb)->gso_size;
3512
3513 /* Add size of frags 0 through 4 to create our initial sum */
3514 sum += skb_frag_size(frag++);
3515 sum += skb_frag_size(frag++);
3516 sum += skb_frag_size(frag++);
3517 sum += skb_frag_size(frag++);
3518 sum += skb_frag_size(frag++);
3519
3520 /* Walk through fragments adding latest fragment, testing it, and
3521 * then removing stale fragments from the sum.
3522 */
3523 for (stale = &skb_shinfo(skb)->frags[0];; stale++) {
3524 int stale_size = skb_frag_size(stale);
3525
3526 sum += skb_frag_size(frag++);
3527
3528 /* The stale fragment may present us with a smaller
3529 * descriptor than the actual fragment size. To account
3530 * for that we need to remove all the data on the front and
3531 * figure out what the remainder would be in the last
3532 * descriptor associated with the fragment.
3533 */
3534 if (stale_size > I40E_MAX_DATA_PER_TXD) {
3535 int align_pad = -(skb_frag_off(stale)) &
3536 (I40E_MAX_READ_REQ_SIZE - 1);
3537
3538 sum -= align_pad;
3539 stale_size -= align_pad;
3540
3541 do {
3542 sum -= I40E_MAX_DATA_PER_TXD_ALIGNED;
3543 stale_size -= I40E_MAX_DATA_PER_TXD_ALIGNED;
3544 } while (stale_size > I40E_MAX_DATA_PER_TXD);
3545 }
3546
3547 /* if sum is negative we failed to make sufficient progress */
3548 if (sum < 0)
3549 return true;
3550
3551 if (!nr_frags--)
3552 break;
3553
3554 sum -= stale_size;
3555 }
3556
3557 return false;
3558}
3559
3560/**
3561 * i40e_tx_map - Build the Tx descriptor
3562 * @tx_ring: ring to send buffer on
3563 * @skb: send buffer
3564 * @first: first buffer info buffer to use
3565 * @tx_flags: collected send information
3566 * @hdr_len: size of the packet header
3567 * @td_cmd: the command field in the descriptor
3568 * @td_offset: offset for checksum or crc
3569 *
3570 * Returns 0 on success, -1 on failure to DMA
3571 **/
3572static inline int i40e_tx_map(struct i40e_ring *tx_ring, struct sk_buff *skb,
3573 struct i40e_tx_buffer *first, u32 tx_flags,
3574 const u8 hdr_len, u32 td_cmd, u32 td_offset)
3575{
3576 unsigned int data_len = skb->data_len;
3577 unsigned int size = skb_headlen(skb);
3578 skb_frag_t *frag;
3579 struct i40e_tx_buffer *tx_bi;
3580 struct i40e_tx_desc *tx_desc;
3581 u16 i = tx_ring->next_to_use;
3582 u32 td_tag = 0;
3583 dma_addr_t dma;
3584 u16 desc_count = 1;
3585
3586 if (tx_flags & I40E_TX_FLAGS_HW_VLAN) {
3587 td_cmd |= I40E_TX_DESC_CMD_IL2TAG1;
3588 td_tag = FIELD_GET(I40E_TX_FLAGS_VLAN_MASK, tx_flags);
3589 }
3590
3591 first->tx_flags = tx_flags;
3592
3593 dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
3594
3595 tx_desc = I40E_TX_DESC(tx_ring, i);
3596 tx_bi = first;
3597
3598 for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
3599 unsigned int max_data = I40E_MAX_DATA_PER_TXD_ALIGNED;
3600
3601 if (dma_mapping_error(tx_ring->dev, dma))
3602 goto dma_error;
3603
3604 /* record length, and DMA address */
3605 dma_unmap_len_set(tx_bi, len, size);
3606 dma_unmap_addr_set(tx_bi, dma, dma);
3607
3608 /* align size to end of page */
3609 max_data += -dma & (I40E_MAX_READ_REQ_SIZE - 1);
3610 tx_desc->buffer_addr = cpu_to_le64(dma);
3611
3612 while (unlikely(size > I40E_MAX_DATA_PER_TXD)) {
3613 tx_desc->cmd_type_offset_bsz =
3614 build_ctob(td_cmd, td_offset,
3615 max_data, td_tag);
3616
3617 tx_desc++;
3618 i++;
3619 desc_count++;
3620
3621 if (i == tx_ring->count) {
3622 tx_desc = I40E_TX_DESC(tx_ring, 0);
3623 i = 0;
3624 }
3625
3626 dma += max_data;
3627 size -= max_data;
3628
3629 max_data = I40E_MAX_DATA_PER_TXD_ALIGNED;
3630 tx_desc->buffer_addr = cpu_to_le64(dma);
3631 }
3632
3633 if (likely(!data_len))
3634 break;
3635
3636 tx_desc->cmd_type_offset_bsz = build_ctob(td_cmd, td_offset,
3637 size, td_tag);
3638
3639 tx_desc++;
3640 i++;
3641 desc_count++;
3642
3643 if (i == tx_ring->count) {
3644 tx_desc = I40E_TX_DESC(tx_ring, 0);
3645 i = 0;
3646 }
3647
3648 size = skb_frag_size(frag);
3649 data_len -= size;
3650
3651 dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
3652 DMA_TO_DEVICE);
3653
3654 tx_bi = &tx_ring->tx_bi[i];
3655 }
3656
3657 netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
3658
3659 i++;
3660 if (i == tx_ring->count)
3661 i = 0;
3662
3663 tx_ring->next_to_use = i;
3664
3665 i40e_maybe_stop_tx(tx_ring, DESC_NEEDED);
3666
3667 /* write last descriptor with EOP bit */
3668 td_cmd |= I40E_TX_DESC_CMD_EOP;
3669
3670 /* We OR these values together to check both against 4 (WB_STRIDE)
3671 * below. This is safe since we don't re-use desc_count afterwards.
3672 */
3673 desc_count |= ++tx_ring->packet_stride;
3674
3675 if (desc_count >= WB_STRIDE) {
3676 /* write last descriptor with RS bit set */
3677 td_cmd |= I40E_TX_DESC_CMD_RS;
3678 tx_ring->packet_stride = 0;
3679 }
3680
3681 tx_desc->cmd_type_offset_bsz =
3682 build_ctob(td_cmd, td_offset, size, td_tag);
3683
3684 skb_tx_timestamp(skb);
3685
3686 /* Force memory writes to complete before letting h/w know there
3687 * are new descriptors to fetch.
3688 *
3689 * We also use this memory barrier to make certain all of the
3690 * status bits have been updated before next_to_watch is written.
3691 */
3692 wmb();
3693
3694 /* set next_to_watch value indicating a packet is present */
3695 first->next_to_watch = tx_desc;
3696
3697 /* notify HW of packet */
3698 if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more()) {
3699 writel(i, tx_ring->tail);
3700 }
3701
3702 return 0;
3703
3704dma_error:
3705 dev_info(tx_ring->dev, "TX DMA map failed\n");
3706
3707 /* clear dma mappings for failed tx_bi map */
3708 for (;;) {
3709 tx_bi = &tx_ring->tx_bi[i];
3710 i40e_unmap_and_free_tx_resource(tx_ring, tx_bi);
3711 if (tx_bi == first)
3712 break;
3713 if (i == 0)
3714 i = tx_ring->count;
3715 i--;
3716 }
3717
3718 tx_ring->next_to_use = i;
3719
3720 return -1;
3721}
3722
3723static u16 i40e_swdcb_skb_tx_hash(struct net_device *dev,
3724 const struct sk_buff *skb,
3725 u16 num_tx_queues)
3726{
3727 u32 jhash_initval_salt = 0xd631614b;
3728 u32 hash;
3729
3730 if (skb->sk && skb->sk->sk_hash)
3731 hash = skb->sk->sk_hash;
3732 else
3733 hash = (__force u16)skb->protocol ^ skb->hash;
3734
3735 hash = jhash_1word(hash, jhash_initval_salt);
3736
3737 return (u16)(((u64)hash * num_tx_queues) >> 32);
3738}
3739
3740u16 i40e_lan_select_queue(struct net_device *netdev,
3741 struct sk_buff *skb,
3742 struct net_device __always_unused *sb_dev)
3743{
3744 struct i40e_netdev_priv *np = netdev_priv(netdev);
3745 struct i40e_vsi *vsi = np->vsi;
3746 struct i40e_hw *hw;
3747 u16 qoffset;
3748 u16 qcount;
3749 u8 tclass;
3750 u16 hash;
3751 u8 prio;
3752
3753 /* is DCB enabled at all? */
3754 if (vsi->tc_config.numtc == 1 ||
3755 i40e_is_tc_mqprio_enabled(vsi->back))
3756 return netdev_pick_tx(netdev, skb, sb_dev);
3757
3758 prio = skb->priority;
3759 hw = &vsi->back->hw;
3760 tclass = hw->local_dcbx_config.etscfg.prioritytable[prio];
3761 /* sanity check */
3762 if (unlikely(!(vsi->tc_config.enabled_tc & BIT(tclass))))
3763 tclass = 0;
3764
3765 /* select a queue assigned for the given TC */
3766 qcount = vsi->tc_config.tc_info[tclass].qcount;
3767 hash = i40e_swdcb_skb_tx_hash(netdev, skb, qcount);
3768
3769 qoffset = vsi->tc_config.tc_info[tclass].qoffset;
3770 return qoffset + hash;
3771}
3772
3773/**
3774 * i40e_xmit_xdp_ring - transmits an XDP buffer to an XDP Tx ring
3775 * @xdpf: data to transmit
3776 * @xdp_ring: XDP Tx ring
3777 **/
3778static int i40e_xmit_xdp_ring(struct xdp_frame *xdpf,
3779 struct i40e_ring *xdp_ring)
3780{
3781 struct skb_shared_info *sinfo = xdp_get_shared_info_from_frame(xdpf);
3782 u8 nr_frags = unlikely(xdp_frame_has_frags(xdpf)) ? sinfo->nr_frags : 0;
3783 u16 i = 0, index = xdp_ring->next_to_use;
3784 struct i40e_tx_buffer *tx_head = &xdp_ring->tx_bi[index];
3785 struct i40e_tx_buffer *tx_bi = tx_head;
3786 struct i40e_tx_desc *tx_desc = I40E_TX_DESC(xdp_ring, index);
3787 void *data = xdpf->data;
3788 u32 size = xdpf->len;
3789
3790 if (unlikely(I40E_DESC_UNUSED(xdp_ring) < 1 + nr_frags)) {
3791 xdp_ring->tx_stats.tx_busy++;
3792 return I40E_XDP_CONSUMED;
3793 }
3794
3795 tx_head->bytecount = xdp_get_frame_len(xdpf);
3796 tx_head->gso_segs = 1;
3797 tx_head->xdpf = xdpf;
3798
3799 for (;;) {
3800 dma_addr_t dma;
3801
3802 dma = dma_map_single(xdp_ring->dev, data, size, DMA_TO_DEVICE);
3803 if (dma_mapping_error(xdp_ring->dev, dma))
3804 goto unmap;
3805
3806 /* record length, and DMA address */
3807 dma_unmap_len_set(tx_bi, len, size);
3808 dma_unmap_addr_set(tx_bi, dma, dma);
3809
3810 tx_desc->buffer_addr = cpu_to_le64(dma);
3811 tx_desc->cmd_type_offset_bsz =
3812 build_ctob(I40E_TX_DESC_CMD_ICRC, 0, size, 0);
3813
3814 if (++index == xdp_ring->count)
3815 index = 0;
3816
3817 if (i == nr_frags)
3818 break;
3819
3820 tx_bi = &xdp_ring->tx_bi[index];
3821 tx_desc = I40E_TX_DESC(xdp_ring, index);
3822
3823 data = skb_frag_address(&sinfo->frags[i]);
3824 size = skb_frag_size(&sinfo->frags[i]);
3825 i++;
3826 }
3827
3828 tx_desc->cmd_type_offset_bsz |=
3829 cpu_to_le64(I40E_TXD_CMD << I40E_TXD_QW1_CMD_SHIFT);
3830
3831 /* Make certain all of the status bits have been updated
3832 * before next_to_watch is written.
3833 */
3834 smp_wmb();
3835
3836 xdp_ring->xdp_tx_active++;
3837
3838 tx_head->next_to_watch = tx_desc;
3839 xdp_ring->next_to_use = index;
3840
3841 return I40E_XDP_TX;
3842
3843unmap:
3844 for (;;) {
3845 tx_bi = &xdp_ring->tx_bi[index];
3846 if (dma_unmap_len(tx_bi, len))
3847 dma_unmap_page(xdp_ring->dev,
3848 dma_unmap_addr(tx_bi, dma),
3849 dma_unmap_len(tx_bi, len),
3850 DMA_TO_DEVICE);
3851 dma_unmap_len_set(tx_bi, len, 0);
3852 if (tx_bi == tx_head)
3853 break;
3854
3855 if (!index)
3856 index += xdp_ring->count;
3857 index--;
3858 }
3859
3860 return I40E_XDP_CONSUMED;
3861}
3862
3863/**
3864 * i40e_xmit_frame_ring - Sends buffer on Tx ring
3865 * @skb: send buffer
3866 * @tx_ring: ring to send buffer on
3867 *
3868 * Returns NETDEV_TX_OK if sent, else an error code
3869 **/
3870static netdev_tx_t i40e_xmit_frame_ring(struct sk_buff *skb,
3871 struct i40e_ring *tx_ring)
3872{
3873 u64 cd_type_cmd_tso_mss = I40E_TX_DESC_DTYPE_CONTEXT;
3874 u32 cd_tunneling = 0, cd_l2tag2 = 0;
3875 struct i40e_tx_buffer *first;
3876 u32 td_offset = 0;
3877 u32 tx_flags = 0;
3878 u32 td_cmd = 0;
3879 u8 hdr_len = 0;
3880 int tso, count;
3881 int tsyn;
3882
3883 /* prefetch the data, we'll need it later */
3884 prefetch(skb->data);
3885
3886 i40e_trace(xmit_frame_ring, skb, tx_ring);
3887
3888 count = i40e_xmit_descriptor_count(skb);
3889 if (i40e_chk_linearize(skb, count)) {
3890 if (__skb_linearize(skb)) {
3891 dev_kfree_skb_any(skb);
3892 return NETDEV_TX_OK;
3893 }
3894 count = i40e_txd_use_count(skb->len);
3895 tx_ring->tx_stats.tx_linearize++;
3896 }
3897
3898 /* need: 1 descriptor per page * PAGE_SIZE/I40E_MAX_DATA_PER_TXD,
3899 * + 1 desc for skb_head_len/I40E_MAX_DATA_PER_TXD,
3900 * + 4 desc gap to avoid the cache line where head is,
3901 * + 1 desc for context descriptor,
3902 * otherwise try next time
3903 */
3904 if (i40e_maybe_stop_tx(tx_ring, count + 4 + 1)) {
3905 tx_ring->tx_stats.tx_busy++;
3906 return NETDEV_TX_BUSY;
3907 }
3908
3909 /* record the location of the first descriptor for this packet */
3910 first = &tx_ring->tx_bi[tx_ring->next_to_use];
3911 first->skb = skb;
3912 first->bytecount = skb->len;
3913 first->gso_segs = 1;
3914
3915 /* prepare the xmit flags */
3916 if (i40e_tx_prepare_vlan_flags(skb, tx_ring, &tx_flags))
3917 goto out_drop;
3918
3919 tso = i40e_tso(first, &hdr_len, &cd_type_cmd_tso_mss);
3920
3921 if (tso < 0)
3922 goto out_drop;
3923 else if (tso)
3924 tx_flags |= I40E_TX_FLAGS_TSO;
3925
3926 /* Always offload the checksum, since it's in the data descriptor */
3927 tso = i40e_tx_enable_csum(skb, &tx_flags, &td_cmd, &td_offset,
3928 tx_ring, &cd_tunneling);
3929 if (tso < 0)
3930 goto out_drop;
3931
3932 tsyn = i40e_tsyn(tx_ring, skb, tx_flags, &cd_type_cmd_tso_mss);
3933
3934 if (tsyn)
3935 tx_flags |= I40E_TX_FLAGS_TSYN;
3936
3937 /* always enable CRC insertion offload */
3938 td_cmd |= I40E_TX_DESC_CMD_ICRC;
3939
3940 i40e_create_tx_ctx(tx_ring, cd_type_cmd_tso_mss,
3941 cd_tunneling, cd_l2tag2);
3942
3943 /* Add Flow Director ATR if it's enabled.
3944 *
3945 * NOTE: this must always be directly before the data descriptor.
3946 */
3947 i40e_atr(tx_ring, skb, tx_flags);
3948
3949 if (i40e_tx_map(tx_ring, skb, first, tx_flags, hdr_len,
3950 td_cmd, td_offset))
3951 goto cleanup_tx_tstamp;
3952
3953 return NETDEV_TX_OK;
3954
3955out_drop:
3956 i40e_trace(xmit_frame_ring_drop, first->skb, tx_ring);
3957 dev_kfree_skb_any(first->skb);
3958 first->skb = NULL;
3959cleanup_tx_tstamp:
3960 if (unlikely(tx_flags & I40E_TX_FLAGS_TSYN)) {
3961 struct i40e_pf *pf = i40e_netdev_to_pf(tx_ring->netdev);
3962
3963 dev_kfree_skb_any(pf->ptp_tx_skb);
3964 pf->ptp_tx_skb = NULL;
3965 clear_bit_unlock(__I40E_PTP_TX_IN_PROGRESS, pf->state);
3966 }
3967
3968 return NETDEV_TX_OK;
3969}
3970
3971/**
3972 * i40e_lan_xmit_frame - Selects the correct VSI and Tx queue to send buffer
3973 * @skb: send buffer
3974 * @netdev: network interface device structure
3975 *
3976 * Returns NETDEV_TX_OK if sent, else an error code
3977 **/
3978netdev_tx_t i40e_lan_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
3979{
3980 struct i40e_netdev_priv *np = netdev_priv(netdev);
3981 struct i40e_vsi *vsi = np->vsi;
3982 struct i40e_ring *tx_ring = vsi->tx_rings[skb->queue_mapping];
3983
3984 /* hardware can't handle really short frames, hardware padding works
3985 * beyond this point
3986 */
3987 if (skb_put_padto(skb, I40E_MIN_TX_LEN))
3988 return NETDEV_TX_OK;
3989
3990 return i40e_xmit_frame_ring(skb, tx_ring);
3991}
3992
3993/**
3994 * i40e_xdp_xmit - Implements ndo_xdp_xmit
3995 * @dev: netdev
3996 * @n: number of frames
3997 * @frames: array of XDP buffer pointers
3998 * @flags: XDP extra info
3999 *
4000 * Returns number of frames successfully sent. Failed frames
4001 * will be free'ed by XDP core.
4002 *
4003 * For error cases, a negative errno code is returned and no-frames
4004 * are transmitted (caller must handle freeing frames).
4005 **/
4006int i40e_xdp_xmit(struct net_device *dev, int n, struct xdp_frame **frames,
4007 u32 flags)
4008{
4009 struct i40e_netdev_priv *np = netdev_priv(dev);
4010 unsigned int queue_index = smp_processor_id();
4011 struct i40e_vsi *vsi = np->vsi;
4012 struct i40e_pf *pf = vsi->back;
4013 struct i40e_ring *xdp_ring;
4014 int nxmit = 0;
4015 int i;
4016
4017 if (test_bit(__I40E_VSI_DOWN, vsi->state))
4018 return -ENETDOWN;
4019
4020 if (!i40e_enabled_xdp_vsi(vsi) || queue_index >= vsi->num_queue_pairs ||
4021 test_bit(__I40E_CONFIG_BUSY, pf->state))
4022 return -ENXIO;
4023
4024 if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK))
4025 return -EINVAL;
4026
4027 xdp_ring = vsi->xdp_rings[queue_index];
4028
4029 for (i = 0; i < n; i++) {
4030 struct xdp_frame *xdpf = frames[i];
4031 int err;
4032
4033 err = i40e_xmit_xdp_ring(xdpf, xdp_ring);
4034 if (err != I40E_XDP_TX)
4035 break;
4036 nxmit++;
4037 }
4038
4039 if (unlikely(flags & XDP_XMIT_FLUSH))
4040 i40e_xdp_ring_update_tail(xdp_ring);
4041
4042 return nxmit;
4043}
1// SPDX-License-Identifier: GPL-2.0
2/* Copyright(c) 2013 - 2018 Intel Corporation. */
3
4#include <linux/prefetch.h>
5#include <linux/bpf_trace.h>
6#include <net/xdp.h>
7#include "i40e.h"
8#include "i40e_trace.h"
9#include "i40e_prototype.h"
10#include "i40e_txrx_common.h"
11#include "i40e_xsk.h"
12
13#define I40E_TXD_CMD (I40E_TX_DESC_CMD_EOP | I40E_TX_DESC_CMD_RS)
14/**
15 * i40e_fdir - Generate a Flow Director descriptor based on fdata
16 * @tx_ring: Tx ring to send buffer on
17 * @fdata: Flow director filter data
18 * @add: Indicate if we are adding a rule or deleting one
19 *
20 **/
21static void i40e_fdir(struct i40e_ring *tx_ring,
22 struct i40e_fdir_filter *fdata, bool add)
23{
24 struct i40e_filter_program_desc *fdir_desc;
25 struct i40e_pf *pf = tx_ring->vsi->back;
26 u32 flex_ptype, dtype_cmd;
27 u16 i;
28
29 /* grab the next descriptor */
30 i = tx_ring->next_to_use;
31 fdir_desc = I40E_TX_FDIRDESC(tx_ring, i);
32
33 i++;
34 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
35
36 flex_ptype = I40E_TXD_FLTR_QW0_QINDEX_MASK &
37 (fdata->q_index << I40E_TXD_FLTR_QW0_QINDEX_SHIFT);
38
39 flex_ptype |= I40E_TXD_FLTR_QW0_FLEXOFF_MASK &
40 (fdata->flex_off << I40E_TXD_FLTR_QW0_FLEXOFF_SHIFT);
41
42 flex_ptype |= I40E_TXD_FLTR_QW0_PCTYPE_MASK &
43 (fdata->pctype << I40E_TXD_FLTR_QW0_PCTYPE_SHIFT);
44
45 flex_ptype |= I40E_TXD_FLTR_QW0_PCTYPE_MASK &
46 (fdata->flex_offset << I40E_TXD_FLTR_QW0_FLEXOFF_SHIFT);
47
48 /* Use LAN VSI Id if not programmed by user */
49 flex_ptype |= I40E_TXD_FLTR_QW0_DEST_VSI_MASK &
50 ((u32)(fdata->dest_vsi ? : pf->vsi[pf->lan_vsi]->id) <<
51 I40E_TXD_FLTR_QW0_DEST_VSI_SHIFT);
52
53 dtype_cmd = I40E_TX_DESC_DTYPE_FILTER_PROG;
54
55 dtype_cmd |= add ?
56 I40E_FILTER_PROGRAM_DESC_PCMD_ADD_UPDATE <<
57 I40E_TXD_FLTR_QW1_PCMD_SHIFT :
58 I40E_FILTER_PROGRAM_DESC_PCMD_REMOVE <<
59 I40E_TXD_FLTR_QW1_PCMD_SHIFT;
60
61 dtype_cmd |= I40E_TXD_FLTR_QW1_DEST_MASK &
62 (fdata->dest_ctl << I40E_TXD_FLTR_QW1_DEST_SHIFT);
63
64 dtype_cmd |= I40E_TXD_FLTR_QW1_FD_STATUS_MASK &
65 (fdata->fd_status << I40E_TXD_FLTR_QW1_FD_STATUS_SHIFT);
66
67 if (fdata->cnt_index) {
68 dtype_cmd |= I40E_TXD_FLTR_QW1_CNT_ENA_MASK;
69 dtype_cmd |= I40E_TXD_FLTR_QW1_CNTINDEX_MASK &
70 ((u32)fdata->cnt_index <<
71 I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT);
72 }
73
74 fdir_desc->qindex_flex_ptype_vsi = cpu_to_le32(flex_ptype);
75 fdir_desc->rsvd = cpu_to_le32(0);
76 fdir_desc->dtype_cmd_cntindex = cpu_to_le32(dtype_cmd);
77 fdir_desc->fd_id = cpu_to_le32(fdata->fd_id);
78}
79
80#define I40E_FD_CLEAN_DELAY 10
81/**
82 * i40e_program_fdir_filter - Program a Flow Director filter
83 * @fdir_data: Packet data that will be filter parameters
84 * @raw_packet: the pre-allocated packet buffer for FDir
85 * @pf: The PF pointer
86 * @add: True for add/update, False for remove
87 **/
88static int i40e_program_fdir_filter(struct i40e_fdir_filter *fdir_data,
89 u8 *raw_packet, struct i40e_pf *pf,
90 bool add)
91{
92 struct i40e_tx_buffer *tx_buf, *first;
93 struct i40e_tx_desc *tx_desc;
94 struct i40e_ring *tx_ring;
95 struct i40e_vsi *vsi;
96 struct device *dev;
97 dma_addr_t dma;
98 u32 td_cmd = 0;
99 u16 i;
100
101 /* find existing FDIR VSI */
102 vsi = i40e_find_vsi_by_type(pf, I40E_VSI_FDIR);
103 if (!vsi)
104 return -ENOENT;
105
106 tx_ring = vsi->tx_rings[0];
107 dev = tx_ring->dev;
108
109 /* we need two descriptors to add/del a filter and we can wait */
110 for (i = I40E_FD_CLEAN_DELAY; I40E_DESC_UNUSED(tx_ring) < 2; i--) {
111 if (!i)
112 return -EAGAIN;
113 msleep_interruptible(1);
114 }
115
116 dma = dma_map_single(dev, raw_packet,
117 I40E_FDIR_MAX_RAW_PACKET_SIZE, DMA_TO_DEVICE);
118 if (dma_mapping_error(dev, dma))
119 goto dma_fail;
120
121 /* grab the next descriptor */
122 i = tx_ring->next_to_use;
123 first = &tx_ring->tx_bi[i];
124 i40e_fdir(tx_ring, fdir_data, add);
125
126 /* Now program a dummy descriptor */
127 i = tx_ring->next_to_use;
128 tx_desc = I40E_TX_DESC(tx_ring, i);
129 tx_buf = &tx_ring->tx_bi[i];
130
131 tx_ring->next_to_use = ((i + 1) < tx_ring->count) ? i + 1 : 0;
132
133 memset(tx_buf, 0, sizeof(struct i40e_tx_buffer));
134
135 /* record length, and DMA address */
136 dma_unmap_len_set(tx_buf, len, I40E_FDIR_MAX_RAW_PACKET_SIZE);
137 dma_unmap_addr_set(tx_buf, dma, dma);
138
139 tx_desc->buffer_addr = cpu_to_le64(dma);
140 td_cmd = I40E_TXD_CMD | I40E_TX_DESC_CMD_DUMMY;
141
142 tx_buf->tx_flags = I40E_TX_FLAGS_FD_SB;
143 tx_buf->raw_buf = (void *)raw_packet;
144
145 tx_desc->cmd_type_offset_bsz =
146 build_ctob(td_cmd, 0, I40E_FDIR_MAX_RAW_PACKET_SIZE, 0);
147
148 /* Force memory writes to complete before letting h/w
149 * know there are new descriptors to fetch.
150 */
151 wmb();
152
153 /* Mark the data descriptor to be watched */
154 first->next_to_watch = tx_desc;
155
156 writel(tx_ring->next_to_use, tx_ring->tail);
157 return 0;
158
159dma_fail:
160 return -1;
161}
162
163#define IP_HEADER_OFFSET 14
164#define I40E_UDPIP_DUMMY_PACKET_LEN 42
165/**
166 * i40e_add_del_fdir_udpv4 - Add/Remove UDPv4 filters
167 * @vsi: pointer to the targeted VSI
168 * @fd_data: the flow director data required for the FDir descriptor
169 * @add: true adds a filter, false removes it
170 *
171 * Returns 0 if the filters were successfully added or removed
172 **/
173static int i40e_add_del_fdir_udpv4(struct i40e_vsi *vsi,
174 struct i40e_fdir_filter *fd_data,
175 bool add)
176{
177 struct i40e_pf *pf = vsi->back;
178 struct udphdr *udp;
179 struct iphdr *ip;
180 u8 *raw_packet;
181 int ret;
182 static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0,
183 0x45, 0, 0, 0x1c, 0, 0, 0x40, 0, 0x40, 0x11, 0, 0, 0, 0, 0, 0,
184 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
185
186 raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
187 if (!raw_packet)
188 return -ENOMEM;
189 memcpy(raw_packet, packet, I40E_UDPIP_DUMMY_PACKET_LEN);
190
191 ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET);
192 udp = (struct udphdr *)(raw_packet + IP_HEADER_OFFSET
193 + sizeof(struct iphdr));
194
195 ip->daddr = fd_data->dst_ip;
196 udp->dest = fd_data->dst_port;
197 ip->saddr = fd_data->src_ip;
198 udp->source = fd_data->src_port;
199
200 if (fd_data->flex_filter) {
201 u8 *payload = raw_packet + I40E_UDPIP_DUMMY_PACKET_LEN;
202 __be16 pattern = fd_data->flex_word;
203 u16 off = fd_data->flex_offset;
204
205 *((__force __be16 *)(payload + off)) = pattern;
206 }
207
208 fd_data->pctype = I40E_FILTER_PCTYPE_NONF_IPV4_UDP;
209 ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add);
210 if (ret) {
211 dev_info(&pf->pdev->dev,
212 "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
213 fd_data->pctype, fd_data->fd_id, ret);
214 /* Free the packet buffer since it wasn't added to the ring */
215 kfree(raw_packet);
216 return -EOPNOTSUPP;
217 } else if (I40E_DEBUG_FD & pf->hw.debug_mask) {
218 if (add)
219 dev_info(&pf->pdev->dev,
220 "Filter OK for PCTYPE %d loc = %d\n",
221 fd_data->pctype, fd_data->fd_id);
222 else
223 dev_info(&pf->pdev->dev,
224 "Filter deleted for PCTYPE %d loc = %d\n",
225 fd_data->pctype, fd_data->fd_id);
226 }
227
228 if (add)
229 pf->fd_udp4_filter_cnt++;
230 else
231 pf->fd_udp4_filter_cnt--;
232
233 return 0;
234}
235
236#define I40E_TCPIP_DUMMY_PACKET_LEN 54
237/**
238 * i40e_add_del_fdir_tcpv4 - Add/Remove TCPv4 filters
239 * @vsi: pointer to the targeted VSI
240 * @fd_data: the flow director data required for the FDir descriptor
241 * @add: true adds a filter, false removes it
242 *
243 * Returns 0 if the filters were successfully added or removed
244 **/
245static int i40e_add_del_fdir_tcpv4(struct i40e_vsi *vsi,
246 struct i40e_fdir_filter *fd_data,
247 bool add)
248{
249 struct i40e_pf *pf = vsi->back;
250 struct tcphdr *tcp;
251 struct iphdr *ip;
252 u8 *raw_packet;
253 int ret;
254 /* Dummy packet */
255 static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0,
256 0x45, 0, 0, 0x28, 0, 0, 0x40, 0, 0x40, 0x6, 0, 0, 0, 0, 0, 0,
257 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x80, 0x11,
258 0x0, 0x72, 0, 0, 0, 0};
259
260 raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
261 if (!raw_packet)
262 return -ENOMEM;
263 memcpy(raw_packet, packet, I40E_TCPIP_DUMMY_PACKET_LEN);
264
265 ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET);
266 tcp = (struct tcphdr *)(raw_packet + IP_HEADER_OFFSET
267 + sizeof(struct iphdr));
268
269 ip->daddr = fd_data->dst_ip;
270 tcp->dest = fd_data->dst_port;
271 ip->saddr = fd_data->src_ip;
272 tcp->source = fd_data->src_port;
273
274 if (fd_data->flex_filter) {
275 u8 *payload = raw_packet + I40E_TCPIP_DUMMY_PACKET_LEN;
276 __be16 pattern = fd_data->flex_word;
277 u16 off = fd_data->flex_offset;
278
279 *((__force __be16 *)(payload + off)) = pattern;
280 }
281
282 fd_data->pctype = I40E_FILTER_PCTYPE_NONF_IPV4_TCP;
283 ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add);
284 if (ret) {
285 dev_info(&pf->pdev->dev,
286 "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
287 fd_data->pctype, fd_data->fd_id, ret);
288 /* Free the packet buffer since it wasn't added to the ring */
289 kfree(raw_packet);
290 return -EOPNOTSUPP;
291 } else if (I40E_DEBUG_FD & pf->hw.debug_mask) {
292 if (add)
293 dev_info(&pf->pdev->dev, "Filter OK for PCTYPE %d loc = %d)\n",
294 fd_data->pctype, fd_data->fd_id);
295 else
296 dev_info(&pf->pdev->dev,
297 "Filter deleted for PCTYPE %d loc = %d\n",
298 fd_data->pctype, fd_data->fd_id);
299 }
300
301 if (add) {
302 pf->fd_tcp4_filter_cnt++;
303 if ((pf->flags & I40E_FLAG_FD_ATR_ENABLED) &&
304 I40E_DEBUG_FD & pf->hw.debug_mask)
305 dev_info(&pf->pdev->dev, "Forcing ATR off, sideband rules for TCP/IPv4 flow being applied\n");
306 set_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state);
307 } else {
308 pf->fd_tcp4_filter_cnt--;
309 }
310
311 return 0;
312}
313
314#define I40E_SCTPIP_DUMMY_PACKET_LEN 46
315/**
316 * i40e_add_del_fdir_sctpv4 - Add/Remove SCTPv4 Flow Director filters for
317 * a specific flow spec
318 * @vsi: pointer to the targeted VSI
319 * @fd_data: the flow director data required for the FDir descriptor
320 * @add: true adds a filter, false removes it
321 *
322 * Returns 0 if the filters were successfully added or removed
323 **/
324static int i40e_add_del_fdir_sctpv4(struct i40e_vsi *vsi,
325 struct i40e_fdir_filter *fd_data,
326 bool add)
327{
328 struct i40e_pf *pf = vsi->back;
329 struct sctphdr *sctp;
330 struct iphdr *ip;
331 u8 *raw_packet;
332 int ret;
333 /* Dummy packet */
334 static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0,
335 0x45, 0, 0, 0x20, 0, 0, 0x40, 0, 0x40, 0x84, 0, 0, 0, 0, 0, 0,
336 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
337
338 raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
339 if (!raw_packet)
340 return -ENOMEM;
341 memcpy(raw_packet, packet, I40E_SCTPIP_DUMMY_PACKET_LEN);
342
343 ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET);
344 sctp = (struct sctphdr *)(raw_packet + IP_HEADER_OFFSET
345 + sizeof(struct iphdr));
346
347 ip->daddr = fd_data->dst_ip;
348 sctp->dest = fd_data->dst_port;
349 ip->saddr = fd_data->src_ip;
350 sctp->source = fd_data->src_port;
351
352 if (fd_data->flex_filter) {
353 u8 *payload = raw_packet + I40E_SCTPIP_DUMMY_PACKET_LEN;
354 __be16 pattern = fd_data->flex_word;
355 u16 off = fd_data->flex_offset;
356
357 *((__force __be16 *)(payload + off)) = pattern;
358 }
359
360 fd_data->pctype = I40E_FILTER_PCTYPE_NONF_IPV4_SCTP;
361 ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add);
362 if (ret) {
363 dev_info(&pf->pdev->dev,
364 "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
365 fd_data->pctype, fd_data->fd_id, ret);
366 /* Free the packet buffer since it wasn't added to the ring */
367 kfree(raw_packet);
368 return -EOPNOTSUPP;
369 } else if (I40E_DEBUG_FD & pf->hw.debug_mask) {
370 if (add)
371 dev_info(&pf->pdev->dev,
372 "Filter OK for PCTYPE %d loc = %d\n",
373 fd_data->pctype, fd_data->fd_id);
374 else
375 dev_info(&pf->pdev->dev,
376 "Filter deleted for PCTYPE %d loc = %d\n",
377 fd_data->pctype, fd_data->fd_id);
378 }
379
380 if (add)
381 pf->fd_sctp4_filter_cnt++;
382 else
383 pf->fd_sctp4_filter_cnt--;
384
385 return 0;
386}
387
388#define I40E_IP_DUMMY_PACKET_LEN 34
389/**
390 * i40e_add_del_fdir_ipv4 - Add/Remove IPv4 Flow Director filters for
391 * a specific flow spec
392 * @vsi: pointer to the targeted VSI
393 * @fd_data: the flow director data required for the FDir descriptor
394 * @add: true adds a filter, false removes it
395 *
396 * Returns 0 if the filters were successfully added or removed
397 **/
398static int i40e_add_del_fdir_ipv4(struct i40e_vsi *vsi,
399 struct i40e_fdir_filter *fd_data,
400 bool add)
401{
402 struct i40e_pf *pf = vsi->back;
403 struct iphdr *ip;
404 u8 *raw_packet;
405 int ret;
406 int i;
407 static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0,
408 0x45, 0, 0, 0x14, 0, 0, 0x40, 0, 0x40, 0x10, 0, 0, 0, 0, 0, 0,
409 0, 0, 0, 0};
410
411 for (i = I40E_FILTER_PCTYPE_NONF_IPV4_OTHER;
412 i <= I40E_FILTER_PCTYPE_FRAG_IPV4; i++) {
413 raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
414 if (!raw_packet)
415 return -ENOMEM;
416 memcpy(raw_packet, packet, I40E_IP_DUMMY_PACKET_LEN);
417 ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET);
418
419 ip->saddr = fd_data->src_ip;
420 ip->daddr = fd_data->dst_ip;
421 ip->protocol = 0;
422
423 if (fd_data->flex_filter) {
424 u8 *payload = raw_packet + I40E_IP_DUMMY_PACKET_LEN;
425 __be16 pattern = fd_data->flex_word;
426 u16 off = fd_data->flex_offset;
427
428 *((__force __be16 *)(payload + off)) = pattern;
429 }
430
431 fd_data->pctype = i;
432 ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add);
433 if (ret) {
434 dev_info(&pf->pdev->dev,
435 "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
436 fd_data->pctype, fd_data->fd_id, ret);
437 /* The packet buffer wasn't added to the ring so we
438 * need to free it now.
439 */
440 kfree(raw_packet);
441 return -EOPNOTSUPP;
442 } else if (I40E_DEBUG_FD & pf->hw.debug_mask) {
443 if (add)
444 dev_info(&pf->pdev->dev,
445 "Filter OK for PCTYPE %d loc = %d\n",
446 fd_data->pctype, fd_data->fd_id);
447 else
448 dev_info(&pf->pdev->dev,
449 "Filter deleted for PCTYPE %d loc = %d\n",
450 fd_data->pctype, fd_data->fd_id);
451 }
452 }
453
454 if (add)
455 pf->fd_ip4_filter_cnt++;
456 else
457 pf->fd_ip4_filter_cnt--;
458
459 return 0;
460}
461
462/**
463 * i40e_add_del_fdir - Build raw packets to add/del fdir filter
464 * @vsi: pointer to the targeted VSI
465 * @input: filter to add or delete
466 * @add: true adds a filter, false removes it
467 *
468 **/
469int i40e_add_del_fdir(struct i40e_vsi *vsi,
470 struct i40e_fdir_filter *input, bool add)
471{
472 struct i40e_pf *pf = vsi->back;
473 int ret;
474
475 switch (input->flow_type & ~FLOW_EXT) {
476 case TCP_V4_FLOW:
477 ret = i40e_add_del_fdir_tcpv4(vsi, input, add);
478 break;
479 case UDP_V4_FLOW:
480 ret = i40e_add_del_fdir_udpv4(vsi, input, add);
481 break;
482 case SCTP_V4_FLOW:
483 ret = i40e_add_del_fdir_sctpv4(vsi, input, add);
484 break;
485 case IP_USER_FLOW:
486 switch (input->ip4_proto) {
487 case IPPROTO_TCP:
488 ret = i40e_add_del_fdir_tcpv4(vsi, input, add);
489 break;
490 case IPPROTO_UDP:
491 ret = i40e_add_del_fdir_udpv4(vsi, input, add);
492 break;
493 case IPPROTO_SCTP:
494 ret = i40e_add_del_fdir_sctpv4(vsi, input, add);
495 break;
496 case IPPROTO_IP:
497 ret = i40e_add_del_fdir_ipv4(vsi, input, add);
498 break;
499 default:
500 /* We cannot support masking based on protocol */
501 dev_info(&pf->pdev->dev, "Unsupported IPv4 protocol 0x%02x\n",
502 input->ip4_proto);
503 return -EINVAL;
504 }
505 break;
506 default:
507 dev_info(&pf->pdev->dev, "Unsupported flow type 0x%02x\n",
508 input->flow_type);
509 return -EINVAL;
510 }
511
512 /* The buffer allocated here will be normally be freed by
513 * i40e_clean_fdir_tx_irq() as it reclaims resources after transmit
514 * completion. In the event of an error adding the buffer to the FDIR
515 * ring, it will immediately be freed. It may also be freed by
516 * i40e_clean_tx_ring() when closing the VSI.
517 */
518 return ret;
519}
520
521/**
522 * i40e_fd_handle_status - check the Programming Status for FD
523 * @rx_ring: the Rx ring for this descriptor
524 * @qword0_raw: qword0
525 * @qword1: qword1 after le_to_cpu
526 * @prog_id: the id originally used for programming
527 *
528 * This is used to verify if the FD programming or invalidation
529 * requested by SW to the HW is successful or not and take actions accordingly.
530 **/
531static void i40e_fd_handle_status(struct i40e_ring *rx_ring, u64 qword0_raw,
532 u64 qword1, u8 prog_id)
533{
534 struct i40e_pf *pf = rx_ring->vsi->back;
535 struct pci_dev *pdev = pf->pdev;
536 struct i40e_32b_rx_wb_qw0 *qw0;
537 u32 fcnt_prog, fcnt_avail;
538 u32 error;
539
540 qw0 = (struct i40e_32b_rx_wb_qw0 *)&qword0_raw;
541 error = (qword1 & I40E_RX_PROG_STATUS_DESC_QW1_ERROR_MASK) >>
542 I40E_RX_PROG_STATUS_DESC_QW1_ERROR_SHIFT;
543
544 if (error == BIT(I40E_RX_PROG_STATUS_DESC_FD_TBL_FULL_SHIFT)) {
545 pf->fd_inv = le32_to_cpu(qw0->hi_dword.fd_id);
546 if (qw0->hi_dword.fd_id != 0 ||
547 (I40E_DEBUG_FD & pf->hw.debug_mask))
548 dev_warn(&pdev->dev, "ntuple filter loc = %d, could not be added\n",
549 pf->fd_inv);
550
551 /* Check if the programming error is for ATR.
552 * If so, auto disable ATR and set a state for
553 * flush in progress. Next time we come here if flush is in
554 * progress do nothing, once flush is complete the state will
555 * be cleared.
556 */
557 if (test_bit(__I40E_FD_FLUSH_REQUESTED, pf->state))
558 return;
559
560 pf->fd_add_err++;
561 /* store the current atr filter count */
562 pf->fd_atr_cnt = i40e_get_current_atr_cnt(pf);
563
564 if (qw0->hi_dword.fd_id == 0 &&
565 test_bit(__I40E_FD_SB_AUTO_DISABLED, pf->state)) {
566 /* These set_bit() calls aren't atomic with the
567 * test_bit() here, but worse case we potentially
568 * disable ATR and queue a flush right after SB
569 * support is re-enabled. That shouldn't cause an
570 * issue in practice
571 */
572 set_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state);
573 set_bit(__I40E_FD_FLUSH_REQUESTED, pf->state);
574 }
575
576 /* filter programming failed most likely due to table full */
577 fcnt_prog = i40e_get_global_fd_count(pf);
578 fcnt_avail = pf->fdir_pf_filter_count;
579 /* If ATR is running fcnt_prog can quickly change,
580 * if we are very close to full, it makes sense to disable
581 * FD ATR/SB and then re-enable it when there is room.
582 */
583 if (fcnt_prog >= (fcnt_avail - I40E_FDIR_BUFFER_FULL_MARGIN)) {
584 if ((pf->flags & I40E_FLAG_FD_SB_ENABLED) &&
585 !test_and_set_bit(__I40E_FD_SB_AUTO_DISABLED,
586 pf->state))
587 if (I40E_DEBUG_FD & pf->hw.debug_mask)
588 dev_warn(&pdev->dev, "FD filter space full, new ntuple rules will not be added\n");
589 }
590 } else if (error == BIT(I40E_RX_PROG_STATUS_DESC_NO_FD_ENTRY_SHIFT)) {
591 if (I40E_DEBUG_FD & pf->hw.debug_mask)
592 dev_info(&pdev->dev, "ntuple filter fd_id = %d, could not be removed\n",
593 qw0->hi_dword.fd_id);
594 }
595}
596
597/**
598 * i40e_unmap_and_free_tx_resource - Release a Tx buffer
599 * @ring: the ring that owns the buffer
600 * @tx_buffer: the buffer to free
601 **/
602static void i40e_unmap_and_free_tx_resource(struct i40e_ring *ring,
603 struct i40e_tx_buffer *tx_buffer)
604{
605 if (tx_buffer->skb) {
606 if (tx_buffer->tx_flags & I40E_TX_FLAGS_FD_SB)
607 kfree(tx_buffer->raw_buf);
608 else if (ring_is_xdp(ring))
609 xdp_return_frame(tx_buffer->xdpf);
610 else
611 dev_kfree_skb_any(tx_buffer->skb);
612 if (dma_unmap_len(tx_buffer, len))
613 dma_unmap_single(ring->dev,
614 dma_unmap_addr(tx_buffer, dma),
615 dma_unmap_len(tx_buffer, len),
616 DMA_TO_DEVICE);
617 } else if (dma_unmap_len(tx_buffer, len)) {
618 dma_unmap_page(ring->dev,
619 dma_unmap_addr(tx_buffer, dma),
620 dma_unmap_len(tx_buffer, len),
621 DMA_TO_DEVICE);
622 }
623
624 tx_buffer->next_to_watch = NULL;
625 tx_buffer->skb = NULL;
626 dma_unmap_len_set(tx_buffer, len, 0);
627 /* tx_buffer must be completely set up in the transmit path */
628}
629
630/**
631 * i40e_clean_tx_ring - Free any empty Tx buffers
632 * @tx_ring: ring to be cleaned
633 **/
634void i40e_clean_tx_ring(struct i40e_ring *tx_ring)
635{
636 unsigned long bi_size;
637 u16 i;
638
639 if (ring_is_xdp(tx_ring) && tx_ring->xsk_umem) {
640 i40e_xsk_clean_tx_ring(tx_ring);
641 } else {
642 /* ring already cleared, nothing to do */
643 if (!tx_ring->tx_bi)
644 return;
645
646 /* Free all the Tx ring sk_buffs */
647 for (i = 0; i < tx_ring->count; i++)
648 i40e_unmap_and_free_tx_resource(tx_ring,
649 &tx_ring->tx_bi[i]);
650 }
651
652 bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
653 memset(tx_ring->tx_bi, 0, bi_size);
654
655 /* Zero out the descriptor ring */
656 memset(tx_ring->desc, 0, tx_ring->size);
657
658 tx_ring->next_to_use = 0;
659 tx_ring->next_to_clean = 0;
660
661 if (!tx_ring->netdev)
662 return;
663
664 /* cleanup Tx queue statistics */
665 netdev_tx_reset_queue(txring_txq(tx_ring));
666}
667
668/**
669 * i40e_free_tx_resources - Free Tx resources per queue
670 * @tx_ring: Tx descriptor ring for a specific queue
671 *
672 * Free all transmit software resources
673 **/
674void i40e_free_tx_resources(struct i40e_ring *tx_ring)
675{
676 i40e_clean_tx_ring(tx_ring);
677 kfree(tx_ring->tx_bi);
678 tx_ring->tx_bi = NULL;
679
680 if (tx_ring->desc) {
681 dma_free_coherent(tx_ring->dev, tx_ring->size,
682 tx_ring->desc, tx_ring->dma);
683 tx_ring->desc = NULL;
684 }
685}
686
687/**
688 * i40e_get_tx_pending - how many tx descriptors not processed
689 * @ring: the ring of descriptors
690 * @in_sw: use SW variables
691 *
692 * Since there is no access to the ring head register
693 * in XL710, we need to use our local copies
694 **/
695u32 i40e_get_tx_pending(struct i40e_ring *ring, bool in_sw)
696{
697 u32 head, tail;
698
699 if (!in_sw) {
700 head = i40e_get_head(ring);
701 tail = readl(ring->tail);
702 } else {
703 head = ring->next_to_clean;
704 tail = ring->next_to_use;
705 }
706
707 if (head != tail)
708 return (head < tail) ?
709 tail - head : (tail + ring->count - head);
710
711 return 0;
712}
713
714/**
715 * i40e_detect_recover_hung - Function to detect and recover hung_queues
716 * @vsi: pointer to vsi struct with tx queues
717 *
718 * VSI has netdev and netdev has TX queues. This function is to check each of
719 * those TX queues if they are hung, trigger recovery by issuing SW interrupt.
720 **/
721void i40e_detect_recover_hung(struct i40e_vsi *vsi)
722{
723 struct i40e_ring *tx_ring = NULL;
724 struct net_device *netdev;
725 unsigned int i;
726 int packets;
727
728 if (!vsi)
729 return;
730
731 if (test_bit(__I40E_VSI_DOWN, vsi->state))
732 return;
733
734 netdev = vsi->netdev;
735 if (!netdev)
736 return;
737
738 if (!netif_carrier_ok(netdev))
739 return;
740
741 for (i = 0; i < vsi->num_queue_pairs; i++) {
742 tx_ring = vsi->tx_rings[i];
743 if (tx_ring && tx_ring->desc) {
744 /* If packet counter has not changed the queue is
745 * likely stalled, so force an interrupt for this
746 * queue.
747 *
748 * prev_pkt_ctr would be negative if there was no
749 * pending work.
750 */
751 packets = tx_ring->stats.packets & INT_MAX;
752 if (tx_ring->tx_stats.prev_pkt_ctr == packets) {
753 i40e_force_wb(vsi, tx_ring->q_vector);
754 continue;
755 }
756
757 /* Memory barrier between read of packet count and call
758 * to i40e_get_tx_pending()
759 */
760 smp_rmb();
761 tx_ring->tx_stats.prev_pkt_ctr =
762 i40e_get_tx_pending(tx_ring, true) ? packets : -1;
763 }
764 }
765}
766
767/**
768 * i40e_clean_tx_irq - Reclaim resources after transmit completes
769 * @vsi: the VSI we care about
770 * @tx_ring: Tx ring to clean
771 * @napi_budget: Used to determine if we are in netpoll
772 *
773 * Returns true if there's any budget left (e.g. the clean is finished)
774 **/
775static bool i40e_clean_tx_irq(struct i40e_vsi *vsi,
776 struct i40e_ring *tx_ring, int napi_budget)
777{
778 int i = tx_ring->next_to_clean;
779 struct i40e_tx_buffer *tx_buf;
780 struct i40e_tx_desc *tx_head;
781 struct i40e_tx_desc *tx_desc;
782 unsigned int total_bytes = 0, total_packets = 0;
783 unsigned int budget = vsi->work_limit;
784
785 tx_buf = &tx_ring->tx_bi[i];
786 tx_desc = I40E_TX_DESC(tx_ring, i);
787 i -= tx_ring->count;
788
789 tx_head = I40E_TX_DESC(tx_ring, i40e_get_head(tx_ring));
790
791 do {
792 struct i40e_tx_desc *eop_desc = tx_buf->next_to_watch;
793
794 /* if next_to_watch is not set then there is no work pending */
795 if (!eop_desc)
796 break;
797
798 /* prevent any other reads prior to eop_desc */
799 smp_rmb();
800
801 i40e_trace(clean_tx_irq, tx_ring, tx_desc, tx_buf);
802 /* we have caught up to head, no work left to do */
803 if (tx_head == tx_desc)
804 break;
805
806 /* clear next_to_watch to prevent false hangs */
807 tx_buf->next_to_watch = NULL;
808
809 /* update the statistics for this packet */
810 total_bytes += tx_buf->bytecount;
811 total_packets += tx_buf->gso_segs;
812
813 /* free the skb/XDP data */
814 if (ring_is_xdp(tx_ring))
815 xdp_return_frame(tx_buf->xdpf);
816 else
817 napi_consume_skb(tx_buf->skb, napi_budget);
818
819 /* unmap skb header data */
820 dma_unmap_single(tx_ring->dev,
821 dma_unmap_addr(tx_buf, dma),
822 dma_unmap_len(tx_buf, len),
823 DMA_TO_DEVICE);
824
825 /* clear tx_buffer data */
826 tx_buf->skb = NULL;
827 dma_unmap_len_set(tx_buf, len, 0);
828
829 /* unmap remaining buffers */
830 while (tx_desc != eop_desc) {
831 i40e_trace(clean_tx_irq_unmap,
832 tx_ring, tx_desc, tx_buf);
833
834 tx_buf++;
835 tx_desc++;
836 i++;
837 if (unlikely(!i)) {
838 i -= tx_ring->count;
839 tx_buf = tx_ring->tx_bi;
840 tx_desc = I40E_TX_DESC(tx_ring, 0);
841 }
842
843 /* unmap any remaining paged data */
844 if (dma_unmap_len(tx_buf, len)) {
845 dma_unmap_page(tx_ring->dev,
846 dma_unmap_addr(tx_buf, dma),
847 dma_unmap_len(tx_buf, len),
848 DMA_TO_DEVICE);
849 dma_unmap_len_set(tx_buf, len, 0);
850 }
851 }
852
853 /* move us one more past the eop_desc for start of next pkt */
854 tx_buf++;
855 tx_desc++;
856 i++;
857 if (unlikely(!i)) {
858 i -= tx_ring->count;
859 tx_buf = tx_ring->tx_bi;
860 tx_desc = I40E_TX_DESC(tx_ring, 0);
861 }
862
863 prefetch(tx_desc);
864
865 /* update budget accounting */
866 budget--;
867 } while (likely(budget));
868
869 i += tx_ring->count;
870 tx_ring->next_to_clean = i;
871 i40e_update_tx_stats(tx_ring, total_packets, total_bytes);
872 i40e_arm_wb(tx_ring, vsi, budget);
873
874 if (ring_is_xdp(tx_ring))
875 return !!budget;
876
877 /* notify netdev of completed buffers */
878 netdev_tx_completed_queue(txring_txq(tx_ring),
879 total_packets, total_bytes);
880
881#define TX_WAKE_THRESHOLD ((s16)(DESC_NEEDED * 2))
882 if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) &&
883 (I40E_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) {
884 /* Make sure that anybody stopping the queue after this
885 * sees the new next_to_clean.
886 */
887 smp_mb();
888 if (__netif_subqueue_stopped(tx_ring->netdev,
889 tx_ring->queue_index) &&
890 !test_bit(__I40E_VSI_DOWN, vsi->state)) {
891 netif_wake_subqueue(tx_ring->netdev,
892 tx_ring->queue_index);
893 ++tx_ring->tx_stats.restart_queue;
894 }
895 }
896
897 return !!budget;
898}
899
900/**
901 * i40e_enable_wb_on_itr - Arm hardware to do a wb, interrupts are not enabled
902 * @vsi: the VSI we care about
903 * @q_vector: the vector on which to enable writeback
904 *
905 **/
906static void i40e_enable_wb_on_itr(struct i40e_vsi *vsi,
907 struct i40e_q_vector *q_vector)
908{
909 u16 flags = q_vector->tx.ring[0].flags;
910 u32 val;
911
912 if (!(flags & I40E_TXR_FLAGS_WB_ON_ITR))
913 return;
914
915 if (q_vector->arm_wb_state)
916 return;
917
918 if (vsi->back->flags & I40E_FLAG_MSIX_ENABLED) {
919 val = I40E_PFINT_DYN_CTLN_WB_ON_ITR_MASK |
920 I40E_PFINT_DYN_CTLN_ITR_INDX_MASK; /* set noitr */
921
922 wr32(&vsi->back->hw,
923 I40E_PFINT_DYN_CTLN(q_vector->reg_idx),
924 val);
925 } else {
926 val = I40E_PFINT_DYN_CTL0_WB_ON_ITR_MASK |
927 I40E_PFINT_DYN_CTL0_ITR_INDX_MASK; /* set noitr */
928
929 wr32(&vsi->back->hw, I40E_PFINT_DYN_CTL0, val);
930 }
931 q_vector->arm_wb_state = true;
932}
933
934/**
935 * i40e_force_wb - Issue SW Interrupt so HW does a wb
936 * @vsi: the VSI we care about
937 * @q_vector: the vector on which to force writeback
938 *
939 **/
940void i40e_force_wb(struct i40e_vsi *vsi, struct i40e_q_vector *q_vector)
941{
942 if (vsi->back->flags & I40E_FLAG_MSIX_ENABLED) {
943 u32 val = I40E_PFINT_DYN_CTLN_INTENA_MASK |
944 I40E_PFINT_DYN_CTLN_ITR_INDX_MASK | /* set noitr */
945 I40E_PFINT_DYN_CTLN_SWINT_TRIG_MASK |
946 I40E_PFINT_DYN_CTLN_SW_ITR_INDX_ENA_MASK;
947 /* allow 00 to be written to the index */
948
949 wr32(&vsi->back->hw,
950 I40E_PFINT_DYN_CTLN(q_vector->reg_idx), val);
951 } else {
952 u32 val = I40E_PFINT_DYN_CTL0_INTENA_MASK |
953 I40E_PFINT_DYN_CTL0_ITR_INDX_MASK | /* set noitr */
954 I40E_PFINT_DYN_CTL0_SWINT_TRIG_MASK |
955 I40E_PFINT_DYN_CTL0_SW_ITR_INDX_ENA_MASK;
956 /* allow 00 to be written to the index */
957
958 wr32(&vsi->back->hw, I40E_PFINT_DYN_CTL0, val);
959 }
960}
961
962static inline bool i40e_container_is_rx(struct i40e_q_vector *q_vector,
963 struct i40e_ring_container *rc)
964{
965 return &q_vector->rx == rc;
966}
967
968static inline unsigned int i40e_itr_divisor(struct i40e_q_vector *q_vector)
969{
970 unsigned int divisor;
971
972 switch (q_vector->vsi->back->hw.phy.link_info.link_speed) {
973 case I40E_LINK_SPEED_40GB:
974 divisor = I40E_ITR_ADAPTIVE_MIN_INC * 1024;
975 break;
976 case I40E_LINK_SPEED_25GB:
977 case I40E_LINK_SPEED_20GB:
978 divisor = I40E_ITR_ADAPTIVE_MIN_INC * 512;
979 break;
980 default:
981 case I40E_LINK_SPEED_10GB:
982 divisor = I40E_ITR_ADAPTIVE_MIN_INC * 256;
983 break;
984 case I40E_LINK_SPEED_1GB:
985 case I40E_LINK_SPEED_100MB:
986 divisor = I40E_ITR_ADAPTIVE_MIN_INC * 32;
987 break;
988 }
989
990 return divisor;
991}
992
993/**
994 * i40e_update_itr - update the dynamic ITR value based on statistics
995 * @q_vector: structure containing interrupt and ring information
996 * @rc: structure containing ring performance data
997 *
998 * Stores a new ITR value based on packets and byte
999 * counts during the last interrupt. The advantage of per interrupt
1000 * computation is faster updates and more accurate ITR for the current
1001 * traffic pattern. Constants in this function were computed
1002 * based on theoretical maximum wire speed and thresholds were set based
1003 * on testing data as well as attempting to minimize response time
1004 * while increasing bulk throughput.
1005 **/
1006static void i40e_update_itr(struct i40e_q_vector *q_vector,
1007 struct i40e_ring_container *rc)
1008{
1009 unsigned int avg_wire_size, packets, bytes, itr;
1010 unsigned long next_update = jiffies;
1011
1012 /* If we don't have any rings just leave ourselves set for maximum
1013 * possible latency so we take ourselves out of the equation.
1014 */
1015 if (!rc->ring || !ITR_IS_DYNAMIC(rc->ring->itr_setting))
1016 return;
1017
1018 /* For Rx we want to push the delay up and default to low latency.
1019 * for Tx we want to pull the delay down and default to high latency.
1020 */
1021 itr = i40e_container_is_rx(q_vector, rc) ?
1022 I40E_ITR_ADAPTIVE_MIN_USECS | I40E_ITR_ADAPTIVE_LATENCY :
1023 I40E_ITR_ADAPTIVE_MAX_USECS | I40E_ITR_ADAPTIVE_LATENCY;
1024
1025 /* If we didn't update within up to 1 - 2 jiffies we can assume
1026 * that either packets are coming in so slow there hasn't been
1027 * any work, or that there is so much work that NAPI is dealing
1028 * with interrupt moderation and we don't need to do anything.
1029 */
1030 if (time_after(next_update, rc->next_update))
1031 goto clear_counts;
1032
1033 /* If itr_countdown is set it means we programmed an ITR within
1034 * the last 4 interrupt cycles. This has a side effect of us
1035 * potentially firing an early interrupt. In order to work around
1036 * this we need to throw out any data received for a few
1037 * interrupts following the update.
1038 */
1039 if (q_vector->itr_countdown) {
1040 itr = rc->target_itr;
1041 goto clear_counts;
1042 }
1043
1044 packets = rc->total_packets;
1045 bytes = rc->total_bytes;
1046
1047 if (i40e_container_is_rx(q_vector, rc)) {
1048 /* If Rx there are 1 to 4 packets and bytes are less than
1049 * 9000 assume insufficient data to use bulk rate limiting
1050 * approach unless Tx is already in bulk rate limiting. We
1051 * are likely latency driven.
1052 */
1053 if (packets && packets < 4 && bytes < 9000 &&
1054 (q_vector->tx.target_itr & I40E_ITR_ADAPTIVE_LATENCY)) {
1055 itr = I40E_ITR_ADAPTIVE_LATENCY;
1056 goto adjust_by_size;
1057 }
1058 } else if (packets < 4) {
1059 /* If we have Tx and Rx ITR maxed and Tx ITR is running in
1060 * bulk mode and we are receiving 4 or fewer packets just
1061 * reset the ITR_ADAPTIVE_LATENCY bit for latency mode so
1062 * that the Rx can relax.
1063 */
1064 if (rc->target_itr == I40E_ITR_ADAPTIVE_MAX_USECS &&
1065 (q_vector->rx.target_itr & I40E_ITR_MASK) ==
1066 I40E_ITR_ADAPTIVE_MAX_USECS)
1067 goto clear_counts;
1068 } else if (packets > 32) {
1069 /* If we have processed over 32 packets in a single interrupt
1070 * for Tx assume we need to switch over to "bulk" mode.
1071 */
1072 rc->target_itr &= ~I40E_ITR_ADAPTIVE_LATENCY;
1073 }
1074
1075 /* We have no packets to actually measure against. This means
1076 * either one of the other queues on this vector is active or
1077 * we are a Tx queue doing TSO with too high of an interrupt rate.
1078 *
1079 * Between 4 and 56 we can assume that our current interrupt delay
1080 * is only slightly too low. As such we should increase it by a small
1081 * fixed amount.
1082 */
1083 if (packets < 56) {
1084 itr = rc->target_itr + I40E_ITR_ADAPTIVE_MIN_INC;
1085 if ((itr & I40E_ITR_MASK) > I40E_ITR_ADAPTIVE_MAX_USECS) {
1086 itr &= I40E_ITR_ADAPTIVE_LATENCY;
1087 itr += I40E_ITR_ADAPTIVE_MAX_USECS;
1088 }
1089 goto clear_counts;
1090 }
1091
1092 if (packets <= 256) {
1093 itr = min(q_vector->tx.current_itr, q_vector->rx.current_itr);
1094 itr &= I40E_ITR_MASK;
1095
1096 /* Between 56 and 112 is our "goldilocks" zone where we are
1097 * working out "just right". Just report that our current
1098 * ITR is good for us.
1099 */
1100 if (packets <= 112)
1101 goto clear_counts;
1102
1103 /* If packet count is 128 or greater we are likely looking
1104 * at a slight overrun of the delay we want. Try halving
1105 * our delay to see if that will cut the number of packets
1106 * in half per interrupt.
1107 */
1108 itr /= 2;
1109 itr &= I40E_ITR_MASK;
1110 if (itr < I40E_ITR_ADAPTIVE_MIN_USECS)
1111 itr = I40E_ITR_ADAPTIVE_MIN_USECS;
1112
1113 goto clear_counts;
1114 }
1115
1116 /* The paths below assume we are dealing with a bulk ITR since
1117 * number of packets is greater than 256. We are just going to have
1118 * to compute a value and try to bring the count under control,
1119 * though for smaller packet sizes there isn't much we can do as
1120 * NAPI polling will likely be kicking in sooner rather than later.
1121 */
1122 itr = I40E_ITR_ADAPTIVE_BULK;
1123
1124adjust_by_size:
1125 /* If packet counts are 256 or greater we can assume we have a gross
1126 * overestimation of what the rate should be. Instead of trying to fine
1127 * tune it just use the formula below to try and dial in an exact value
1128 * give the current packet size of the frame.
1129 */
1130 avg_wire_size = bytes / packets;
1131
1132 /* The following is a crude approximation of:
1133 * wmem_default / (size + overhead) = desired_pkts_per_int
1134 * rate / bits_per_byte / (size + ethernet overhead) = pkt_rate
1135 * (desired_pkt_rate / pkt_rate) * usecs_per_sec = ITR value
1136 *
1137 * Assuming wmem_default is 212992 and overhead is 640 bytes per
1138 * packet, (256 skb, 64 headroom, 320 shared info), we can reduce the
1139 * formula down to
1140 *
1141 * (170 * (size + 24)) / (size + 640) = ITR
1142 *
1143 * We first do some math on the packet size and then finally bitshift
1144 * by 8 after rounding up. We also have to account for PCIe link speed
1145 * difference as ITR scales based on this.
1146 */
1147 if (avg_wire_size <= 60) {
1148 /* Start at 250k ints/sec */
1149 avg_wire_size = 4096;
1150 } else if (avg_wire_size <= 380) {
1151 /* 250K ints/sec to 60K ints/sec */
1152 avg_wire_size *= 40;
1153 avg_wire_size += 1696;
1154 } else if (avg_wire_size <= 1084) {
1155 /* 60K ints/sec to 36K ints/sec */
1156 avg_wire_size *= 15;
1157 avg_wire_size += 11452;
1158 } else if (avg_wire_size <= 1980) {
1159 /* 36K ints/sec to 30K ints/sec */
1160 avg_wire_size *= 5;
1161 avg_wire_size += 22420;
1162 } else {
1163 /* plateau at a limit of 30K ints/sec */
1164 avg_wire_size = 32256;
1165 }
1166
1167 /* If we are in low latency mode halve our delay which doubles the
1168 * rate to somewhere between 100K to 16K ints/sec
1169 */
1170 if (itr & I40E_ITR_ADAPTIVE_LATENCY)
1171 avg_wire_size /= 2;
1172
1173 /* Resultant value is 256 times larger than it needs to be. This
1174 * gives us room to adjust the value as needed to either increase
1175 * or decrease the value based on link speeds of 10G, 2.5G, 1G, etc.
1176 *
1177 * Use addition as we have already recorded the new latency flag
1178 * for the ITR value.
1179 */
1180 itr += DIV_ROUND_UP(avg_wire_size, i40e_itr_divisor(q_vector)) *
1181 I40E_ITR_ADAPTIVE_MIN_INC;
1182
1183 if ((itr & I40E_ITR_MASK) > I40E_ITR_ADAPTIVE_MAX_USECS) {
1184 itr &= I40E_ITR_ADAPTIVE_LATENCY;
1185 itr += I40E_ITR_ADAPTIVE_MAX_USECS;
1186 }
1187
1188clear_counts:
1189 /* write back value */
1190 rc->target_itr = itr;
1191
1192 /* next update should occur within next jiffy */
1193 rc->next_update = next_update + 1;
1194
1195 rc->total_bytes = 0;
1196 rc->total_packets = 0;
1197}
1198
1199static struct i40e_rx_buffer *i40e_rx_bi(struct i40e_ring *rx_ring, u32 idx)
1200{
1201 return &rx_ring->rx_bi[idx];
1202}
1203
1204/**
1205 * i40e_reuse_rx_page - page flip buffer and store it back on the ring
1206 * @rx_ring: rx descriptor ring to store buffers on
1207 * @old_buff: donor buffer to have page reused
1208 *
1209 * Synchronizes page for reuse by the adapter
1210 **/
1211static void i40e_reuse_rx_page(struct i40e_ring *rx_ring,
1212 struct i40e_rx_buffer *old_buff)
1213{
1214 struct i40e_rx_buffer *new_buff;
1215 u16 nta = rx_ring->next_to_alloc;
1216
1217 new_buff = i40e_rx_bi(rx_ring, nta);
1218
1219 /* update, and store next to alloc */
1220 nta++;
1221 rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
1222
1223 /* transfer page from old buffer to new buffer */
1224 new_buff->dma = old_buff->dma;
1225 new_buff->page = old_buff->page;
1226 new_buff->page_offset = old_buff->page_offset;
1227 new_buff->pagecnt_bias = old_buff->pagecnt_bias;
1228
1229 rx_ring->rx_stats.page_reuse_count++;
1230
1231 /* clear contents of buffer_info */
1232 old_buff->page = NULL;
1233}
1234
1235/**
1236 * i40e_clean_programming_status - clean the programming status descriptor
1237 * @rx_ring: the rx ring that has this descriptor
1238 * @qword0_raw: qword0
1239 * @qword1: qword1 representing status_error_len in CPU ordering
1240 *
1241 * Flow director should handle FD_FILTER_STATUS to check its filter programming
1242 * status being successful or not and take actions accordingly. FCoE should
1243 * handle its context/filter programming/invalidation status and take actions.
1244 *
1245 * Returns an i40e_rx_buffer to reuse if the cleanup occurred, otherwise NULL.
1246 **/
1247void i40e_clean_programming_status(struct i40e_ring *rx_ring, u64 qword0_raw,
1248 u64 qword1)
1249{
1250 u8 id;
1251
1252 id = (qword1 & I40E_RX_PROG_STATUS_DESC_QW1_PROGID_MASK) >>
1253 I40E_RX_PROG_STATUS_DESC_QW1_PROGID_SHIFT;
1254
1255 if (id == I40E_RX_PROG_STATUS_DESC_FD_FILTER_STATUS)
1256 i40e_fd_handle_status(rx_ring, qword0_raw, qword1, id);
1257}
1258
1259/**
1260 * i40e_setup_tx_descriptors - Allocate the Tx descriptors
1261 * @tx_ring: the tx ring to set up
1262 *
1263 * Return 0 on success, negative on error
1264 **/
1265int i40e_setup_tx_descriptors(struct i40e_ring *tx_ring)
1266{
1267 struct device *dev = tx_ring->dev;
1268 int bi_size;
1269
1270 if (!dev)
1271 return -ENOMEM;
1272
1273 /* warn if we are about to overwrite the pointer */
1274 WARN_ON(tx_ring->tx_bi);
1275 bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
1276 tx_ring->tx_bi = kzalloc(bi_size, GFP_KERNEL);
1277 if (!tx_ring->tx_bi)
1278 goto err;
1279
1280 u64_stats_init(&tx_ring->syncp);
1281
1282 /* round up to nearest 4K */
1283 tx_ring->size = tx_ring->count * sizeof(struct i40e_tx_desc);
1284 /* add u32 for head writeback, align after this takes care of
1285 * guaranteeing this is at least one cache line in size
1286 */
1287 tx_ring->size += sizeof(u32);
1288 tx_ring->size = ALIGN(tx_ring->size, 4096);
1289 tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
1290 &tx_ring->dma, GFP_KERNEL);
1291 if (!tx_ring->desc) {
1292 dev_info(dev, "Unable to allocate memory for the Tx descriptor ring, size=%d\n",
1293 tx_ring->size);
1294 goto err;
1295 }
1296
1297 tx_ring->next_to_use = 0;
1298 tx_ring->next_to_clean = 0;
1299 tx_ring->tx_stats.prev_pkt_ctr = -1;
1300 return 0;
1301
1302err:
1303 kfree(tx_ring->tx_bi);
1304 tx_ring->tx_bi = NULL;
1305 return -ENOMEM;
1306}
1307
1308int i40e_alloc_rx_bi(struct i40e_ring *rx_ring)
1309{
1310 unsigned long sz = sizeof(*rx_ring->rx_bi) * rx_ring->count;
1311
1312 rx_ring->rx_bi = kzalloc(sz, GFP_KERNEL);
1313 return rx_ring->rx_bi ? 0 : -ENOMEM;
1314}
1315
1316static void i40e_clear_rx_bi(struct i40e_ring *rx_ring)
1317{
1318 memset(rx_ring->rx_bi, 0, sizeof(*rx_ring->rx_bi) * rx_ring->count);
1319}
1320
1321/**
1322 * i40e_clean_rx_ring - Free Rx buffers
1323 * @rx_ring: ring to be cleaned
1324 **/
1325void i40e_clean_rx_ring(struct i40e_ring *rx_ring)
1326{
1327 u16 i;
1328
1329 /* ring already cleared, nothing to do */
1330 if (!rx_ring->rx_bi)
1331 return;
1332
1333 if (rx_ring->skb) {
1334 dev_kfree_skb(rx_ring->skb);
1335 rx_ring->skb = NULL;
1336 }
1337
1338 if (rx_ring->xsk_umem) {
1339 i40e_xsk_clean_rx_ring(rx_ring);
1340 goto skip_free;
1341 }
1342
1343 /* Free all the Rx ring sk_buffs */
1344 for (i = 0; i < rx_ring->count; i++) {
1345 struct i40e_rx_buffer *rx_bi = i40e_rx_bi(rx_ring, i);
1346
1347 if (!rx_bi->page)
1348 continue;
1349
1350 /* Invalidate cache lines that may have been written to by
1351 * device so that we avoid corrupting memory.
1352 */
1353 dma_sync_single_range_for_cpu(rx_ring->dev,
1354 rx_bi->dma,
1355 rx_bi->page_offset,
1356 rx_ring->rx_buf_len,
1357 DMA_FROM_DEVICE);
1358
1359 /* free resources associated with mapping */
1360 dma_unmap_page_attrs(rx_ring->dev, rx_bi->dma,
1361 i40e_rx_pg_size(rx_ring),
1362 DMA_FROM_DEVICE,
1363 I40E_RX_DMA_ATTR);
1364
1365 __page_frag_cache_drain(rx_bi->page, rx_bi->pagecnt_bias);
1366
1367 rx_bi->page = NULL;
1368 rx_bi->page_offset = 0;
1369 }
1370
1371skip_free:
1372 if (rx_ring->xsk_umem)
1373 i40e_clear_rx_bi_zc(rx_ring);
1374 else
1375 i40e_clear_rx_bi(rx_ring);
1376
1377 /* Zero out the descriptor ring */
1378 memset(rx_ring->desc, 0, rx_ring->size);
1379
1380 rx_ring->next_to_alloc = 0;
1381 rx_ring->next_to_clean = 0;
1382 rx_ring->next_to_use = 0;
1383}
1384
1385/**
1386 * i40e_free_rx_resources - Free Rx resources
1387 * @rx_ring: ring to clean the resources from
1388 *
1389 * Free all receive software resources
1390 **/
1391void i40e_free_rx_resources(struct i40e_ring *rx_ring)
1392{
1393 i40e_clean_rx_ring(rx_ring);
1394 if (rx_ring->vsi->type == I40E_VSI_MAIN)
1395 xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
1396 rx_ring->xdp_prog = NULL;
1397 kfree(rx_ring->rx_bi);
1398 rx_ring->rx_bi = NULL;
1399
1400 if (rx_ring->desc) {
1401 dma_free_coherent(rx_ring->dev, rx_ring->size,
1402 rx_ring->desc, rx_ring->dma);
1403 rx_ring->desc = NULL;
1404 }
1405}
1406
1407/**
1408 * i40e_setup_rx_descriptors - Allocate Rx descriptors
1409 * @rx_ring: Rx descriptor ring (for a specific queue) to setup
1410 *
1411 * Returns 0 on success, negative on failure
1412 **/
1413int i40e_setup_rx_descriptors(struct i40e_ring *rx_ring)
1414{
1415 struct device *dev = rx_ring->dev;
1416 int err;
1417
1418 u64_stats_init(&rx_ring->syncp);
1419
1420 /* Round up to nearest 4K */
1421 rx_ring->size = rx_ring->count * sizeof(union i40e_32byte_rx_desc);
1422 rx_ring->size = ALIGN(rx_ring->size, 4096);
1423 rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
1424 &rx_ring->dma, GFP_KERNEL);
1425
1426 if (!rx_ring->desc) {
1427 dev_info(dev, "Unable to allocate memory for the Rx descriptor ring, size=%d\n",
1428 rx_ring->size);
1429 return -ENOMEM;
1430 }
1431
1432 rx_ring->next_to_alloc = 0;
1433 rx_ring->next_to_clean = 0;
1434 rx_ring->next_to_use = 0;
1435
1436 /* XDP RX-queue info only needed for RX rings exposed to XDP */
1437 if (rx_ring->vsi->type == I40E_VSI_MAIN) {
1438 err = xdp_rxq_info_reg(&rx_ring->xdp_rxq, rx_ring->netdev,
1439 rx_ring->queue_index);
1440 if (err < 0)
1441 return err;
1442 }
1443
1444 rx_ring->xdp_prog = rx_ring->vsi->xdp_prog;
1445
1446 return 0;
1447}
1448
1449/**
1450 * i40e_release_rx_desc - Store the new tail and head values
1451 * @rx_ring: ring to bump
1452 * @val: new head index
1453 **/
1454void i40e_release_rx_desc(struct i40e_ring *rx_ring, u32 val)
1455{
1456 rx_ring->next_to_use = val;
1457
1458 /* update next to alloc since we have filled the ring */
1459 rx_ring->next_to_alloc = val;
1460
1461 /* Force memory writes to complete before letting h/w
1462 * know there are new descriptors to fetch. (Only
1463 * applicable for weak-ordered memory model archs,
1464 * such as IA-64).
1465 */
1466 wmb();
1467 writel(val, rx_ring->tail);
1468}
1469
1470/**
1471 * i40e_rx_offset - Return expected offset into page to access data
1472 * @rx_ring: Ring we are requesting offset of
1473 *
1474 * Returns the offset value for ring into the data buffer.
1475 */
1476static inline unsigned int i40e_rx_offset(struct i40e_ring *rx_ring)
1477{
1478 return ring_uses_build_skb(rx_ring) ? I40E_SKB_PAD : 0;
1479}
1480
1481static unsigned int i40e_rx_frame_truesize(struct i40e_ring *rx_ring,
1482 unsigned int size)
1483{
1484 unsigned int truesize;
1485
1486#if (PAGE_SIZE < 8192)
1487 truesize = i40e_rx_pg_size(rx_ring) / 2; /* Must be power-of-2 */
1488#else
1489 truesize = i40e_rx_offset(rx_ring) ?
1490 SKB_DATA_ALIGN(size + i40e_rx_offset(rx_ring)) +
1491 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) :
1492 SKB_DATA_ALIGN(size);
1493#endif
1494 return truesize;
1495}
1496
1497/**
1498 * i40e_alloc_mapped_page - recycle or make a new page
1499 * @rx_ring: ring to use
1500 * @bi: rx_buffer struct to modify
1501 *
1502 * Returns true if the page was successfully allocated or
1503 * reused.
1504 **/
1505static bool i40e_alloc_mapped_page(struct i40e_ring *rx_ring,
1506 struct i40e_rx_buffer *bi)
1507{
1508 struct page *page = bi->page;
1509 dma_addr_t dma;
1510
1511 /* since we are recycling buffers we should seldom need to alloc */
1512 if (likely(page)) {
1513 rx_ring->rx_stats.page_reuse_count++;
1514 return true;
1515 }
1516
1517 /* alloc new page for storage */
1518 page = dev_alloc_pages(i40e_rx_pg_order(rx_ring));
1519 if (unlikely(!page)) {
1520 rx_ring->rx_stats.alloc_page_failed++;
1521 return false;
1522 }
1523
1524 /* map page for use */
1525 dma = dma_map_page_attrs(rx_ring->dev, page, 0,
1526 i40e_rx_pg_size(rx_ring),
1527 DMA_FROM_DEVICE,
1528 I40E_RX_DMA_ATTR);
1529
1530 /* if mapping failed free memory back to system since
1531 * there isn't much point in holding memory we can't use
1532 */
1533 if (dma_mapping_error(rx_ring->dev, dma)) {
1534 __free_pages(page, i40e_rx_pg_order(rx_ring));
1535 rx_ring->rx_stats.alloc_page_failed++;
1536 return false;
1537 }
1538
1539 bi->dma = dma;
1540 bi->page = page;
1541 bi->page_offset = i40e_rx_offset(rx_ring);
1542 page_ref_add(page, USHRT_MAX - 1);
1543 bi->pagecnt_bias = USHRT_MAX;
1544
1545 return true;
1546}
1547
1548/**
1549 * i40e_alloc_rx_buffers - Replace used receive buffers
1550 * @rx_ring: ring to place buffers on
1551 * @cleaned_count: number of buffers to replace
1552 *
1553 * Returns false if all allocations were successful, true if any fail
1554 **/
1555bool i40e_alloc_rx_buffers(struct i40e_ring *rx_ring, u16 cleaned_count)
1556{
1557 u16 ntu = rx_ring->next_to_use;
1558 union i40e_rx_desc *rx_desc;
1559 struct i40e_rx_buffer *bi;
1560
1561 /* do nothing if no valid netdev defined */
1562 if (!rx_ring->netdev || !cleaned_count)
1563 return false;
1564
1565 rx_desc = I40E_RX_DESC(rx_ring, ntu);
1566 bi = i40e_rx_bi(rx_ring, ntu);
1567
1568 do {
1569 if (!i40e_alloc_mapped_page(rx_ring, bi))
1570 goto no_buffers;
1571
1572 /* sync the buffer for use by the device */
1573 dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
1574 bi->page_offset,
1575 rx_ring->rx_buf_len,
1576 DMA_FROM_DEVICE);
1577
1578 /* Refresh the desc even if buffer_addrs didn't change
1579 * because each write-back erases this info.
1580 */
1581 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
1582
1583 rx_desc++;
1584 bi++;
1585 ntu++;
1586 if (unlikely(ntu == rx_ring->count)) {
1587 rx_desc = I40E_RX_DESC(rx_ring, 0);
1588 bi = i40e_rx_bi(rx_ring, 0);
1589 ntu = 0;
1590 }
1591
1592 /* clear the status bits for the next_to_use descriptor */
1593 rx_desc->wb.qword1.status_error_len = 0;
1594
1595 cleaned_count--;
1596 } while (cleaned_count);
1597
1598 if (rx_ring->next_to_use != ntu)
1599 i40e_release_rx_desc(rx_ring, ntu);
1600
1601 return false;
1602
1603no_buffers:
1604 if (rx_ring->next_to_use != ntu)
1605 i40e_release_rx_desc(rx_ring, ntu);
1606
1607 /* make sure to come back via polling to try again after
1608 * allocation failure
1609 */
1610 return true;
1611}
1612
1613/**
1614 * i40e_rx_checksum - Indicate in skb if hw indicated a good cksum
1615 * @vsi: the VSI we care about
1616 * @skb: skb currently being received and modified
1617 * @rx_desc: the receive descriptor
1618 **/
1619static inline void i40e_rx_checksum(struct i40e_vsi *vsi,
1620 struct sk_buff *skb,
1621 union i40e_rx_desc *rx_desc)
1622{
1623 struct i40e_rx_ptype_decoded decoded;
1624 u32 rx_error, rx_status;
1625 bool ipv4, ipv6;
1626 u8 ptype;
1627 u64 qword;
1628
1629 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1630 ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >> I40E_RXD_QW1_PTYPE_SHIFT;
1631 rx_error = (qword & I40E_RXD_QW1_ERROR_MASK) >>
1632 I40E_RXD_QW1_ERROR_SHIFT;
1633 rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >>
1634 I40E_RXD_QW1_STATUS_SHIFT;
1635 decoded = decode_rx_desc_ptype(ptype);
1636
1637 skb->ip_summed = CHECKSUM_NONE;
1638
1639 skb_checksum_none_assert(skb);
1640
1641 /* Rx csum enabled and ip headers found? */
1642 if (!(vsi->netdev->features & NETIF_F_RXCSUM))
1643 return;
1644
1645 /* did the hardware decode the packet and checksum? */
1646 if (!(rx_status & BIT(I40E_RX_DESC_STATUS_L3L4P_SHIFT)))
1647 return;
1648
1649 /* both known and outer_ip must be set for the below code to work */
1650 if (!(decoded.known && decoded.outer_ip))
1651 return;
1652
1653 ipv4 = (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP) &&
1654 (decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV4);
1655 ipv6 = (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP) &&
1656 (decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV6);
1657
1658 if (ipv4 &&
1659 (rx_error & (BIT(I40E_RX_DESC_ERROR_IPE_SHIFT) |
1660 BIT(I40E_RX_DESC_ERROR_EIPE_SHIFT))))
1661 goto checksum_fail;
1662
1663 /* likely incorrect csum if alternate IP extension headers found */
1664 if (ipv6 &&
1665 rx_status & BIT(I40E_RX_DESC_STATUS_IPV6EXADD_SHIFT))
1666 /* don't increment checksum err here, non-fatal err */
1667 return;
1668
1669 /* there was some L4 error, count error and punt packet to the stack */
1670 if (rx_error & BIT(I40E_RX_DESC_ERROR_L4E_SHIFT))
1671 goto checksum_fail;
1672
1673 /* handle packets that were not able to be checksummed due
1674 * to arrival speed, in this case the stack can compute
1675 * the csum.
1676 */
1677 if (rx_error & BIT(I40E_RX_DESC_ERROR_PPRS_SHIFT))
1678 return;
1679
1680 /* If there is an outer header present that might contain a checksum
1681 * we need to bump the checksum level by 1 to reflect the fact that
1682 * we are indicating we validated the inner checksum.
1683 */
1684 if (decoded.tunnel_type >= I40E_RX_PTYPE_TUNNEL_IP_GRENAT)
1685 skb->csum_level = 1;
1686
1687 /* Only report checksum unnecessary for TCP, UDP, or SCTP */
1688 switch (decoded.inner_prot) {
1689 case I40E_RX_PTYPE_INNER_PROT_TCP:
1690 case I40E_RX_PTYPE_INNER_PROT_UDP:
1691 case I40E_RX_PTYPE_INNER_PROT_SCTP:
1692 skb->ip_summed = CHECKSUM_UNNECESSARY;
1693 fallthrough;
1694 default:
1695 break;
1696 }
1697
1698 return;
1699
1700checksum_fail:
1701 vsi->back->hw_csum_rx_error++;
1702}
1703
1704/**
1705 * i40e_ptype_to_htype - get a hash type
1706 * @ptype: the ptype value from the descriptor
1707 *
1708 * Returns a hash type to be used by skb_set_hash
1709 **/
1710static inline int i40e_ptype_to_htype(u8 ptype)
1711{
1712 struct i40e_rx_ptype_decoded decoded = decode_rx_desc_ptype(ptype);
1713
1714 if (!decoded.known)
1715 return PKT_HASH_TYPE_NONE;
1716
1717 if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
1718 decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY4)
1719 return PKT_HASH_TYPE_L4;
1720 else if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
1721 decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY3)
1722 return PKT_HASH_TYPE_L3;
1723 else
1724 return PKT_HASH_TYPE_L2;
1725}
1726
1727/**
1728 * i40e_rx_hash - set the hash value in the skb
1729 * @ring: descriptor ring
1730 * @rx_desc: specific descriptor
1731 * @skb: skb currently being received and modified
1732 * @rx_ptype: Rx packet type
1733 **/
1734static inline void i40e_rx_hash(struct i40e_ring *ring,
1735 union i40e_rx_desc *rx_desc,
1736 struct sk_buff *skb,
1737 u8 rx_ptype)
1738{
1739 u32 hash;
1740 const __le64 rss_mask =
1741 cpu_to_le64((u64)I40E_RX_DESC_FLTSTAT_RSS_HASH <<
1742 I40E_RX_DESC_STATUS_FLTSTAT_SHIFT);
1743
1744 if (!(ring->netdev->features & NETIF_F_RXHASH))
1745 return;
1746
1747 if ((rx_desc->wb.qword1.status_error_len & rss_mask) == rss_mask) {
1748 hash = le32_to_cpu(rx_desc->wb.qword0.hi_dword.rss);
1749 skb_set_hash(skb, hash, i40e_ptype_to_htype(rx_ptype));
1750 }
1751}
1752
1753/**
1754 * i40e_process_skb_fields - Populate skb header fields from Rx descriptor
1755 * @rx_ring: rx descriptor ring packet is being transacted on
1756 * @rx_desc: pointer to the EOP Rx descriptor
1757 * @skb: pointer to current skb being populated
1758 * @rx_ptype: the packet type decoded by hardware
1759 *
1760 * This function checks the ring, descriptor, and packet information in
1761 * order to populate the hash, checksum, VLAN, protocol, and
1762 * other fields within the skb.
1763 **/
1764void i40e_process_skb_fields(struct i40e_ring *rx_ring,
1765 union i40e_rx_desc *rx_desc, struct sk_buff *skb)
1766{
1767 u64 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1768 u32 rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >>
1769 I40E_RXD_QW1_STATUS_SHIFT;
1770 u32 tsynvalid = rx_status & I40E_RXD_QW1_STATUS_TSYNVALID_MASK;
1771 u32 tsyn = (rx_status & I40E_RXD_QW1_STATUS_TSYNINDX_MASK) >>
1772 I40E_RXD_QW1_STATUS_TSYNINDX_SHIFT;
1773 u8 rx_ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >>
1774 I40E_RXD_QW1_PTYPE_SHIFT;
1775
1776 if (unlikely(tsynvalid))
1777 i40e_ptp_rx_hwtstamp(rx_ring->vsi->back, skb, tsyn);
1778
1779 i40e_rx_hash(rx_ring, rx_desc, skb, rx_ptype);
1780
1781 i40e_rx_checksum(rx_ring->vsi, skb, rx_desc);
1782
1783 skb_record_rx_queue(skb, rx_ring->queue_index);
1784
1785 if (qword & BIT(I40E_RX_DESC_STATUS_L2TAG1P_SHIFT)) {
1786 u16 vlan_tag = rx_desc->wb.qword0.lo_dword.l2tag1;
1787
1788 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
1789 le16_to_cpu(vlan_tag));
1790 }
1791
1792 /* modifies the skb - consumes the enet header */
1793 skb->protocol = eth_type_trans(skb, rx_ring->netdev);
1794}
1795
1796/**
1797 * i40e_cleanup_headers - Correct empty headers
1798 * @rx_ring: rx descriptor ring packet is being transacted on
1799 * @skb: pointer to current skb being fixed
1800 * @rx_desc: pointer to the EOP Rx descriptor
1801 *
1802 * Also address the case where we are pulling data in on pages only
1803 * and as such no data is present in the skb header.
1804 *
1805 * In addition if skb is not at least 60 bytes we need to pad it so that
1806 * it is large enough to qualify as a valid Ethernet frame.
1807 *
1808 * Returns true if an error was encountered and skb was freed.
1809 **/
1810static bool i40e_cleanup_headers(struct i40e_ring *rx_ring, struct sk_buff *skb,
1811 union i40e_rx_desc *rx_desc)
1812
1813{
1814 /* XDP packets use error pointer so abort at this point */
1815 if (IS_ERR(skb))
1816 return true;
1817
1818 /* ERR_MASK will only have valid bits if EOP set, and
1819 * what we are doing here is actually checking
1820 * I40E_RX_DESC_ERROR_RXE_SHIFT, since it is the zeroth bit in
1821 * the error field
1822 */
1823 if (unlikely(i40e_test_staterr(rx_desc,
1824 BIT(I40E_RXD_QW1_ERROR_SHIFT)))) {
1825 dev_kfree_skb_any(skb);
1826 return true;
1827 }
1828
1829 /* if eth_skb_pad returns an error the skb was freed */
1830 if (eth_skb_pad(skb))
1831 return true;
1832
1833 return false;
1834}
1835
1836/**
1837 * i40e_page_is_reusable - check if any reuse is possible
1838 * @page: page struct to check
1839 *
1840 * A page is not reusable if it was allocated under low memory
1841 * conditions, or it's not in the same NUMA node as this CPU.
1842 */
1843static inline bool i40e_page_is_reusable(struct page *page)
1844{
1845 return (page_to_nid(page) == numa_mem_id()) &&
1846 !page_is_pfmemalloc(page);
1847}
1848
1849/**
1850 * i40e_can_reuse_rx_page - Determine if this page can be reused by
1851 * the adapter for another receive
1852 *
1853 * @rx_buffer: buffer containing the page
1854 *
1855 * If page is reusable, rx_buffer->page_offset is adjusted to point to
1856 * an unused region in the page.
1857 *
1858 * For small pages, @truesize will be a constant value, half the size
1859 * of the memory at page. We'll attempt to alternate between high and
1860 * low halves of the page, with one half ready for use by the hardware
1861 * and the other half being consumed by the stack. We use the page
1862 * ref count to determine whether the stack has finished consuming the
1863 * portion of this page that was passed up with a previous packet. If
1864 * the page ref count is >1, we'll assume the "other" half page is
1865 * still busy, and this page cannot be reused.
1866 *
1867 * For larger pages, @truesize will be the actual space used by the
1868 * received packet (adjusted upward to an even multiple of the cache
1869 * line size). This will advance through the page by the amount
1870 * actually consumed by the received packets while there is still
1871 * space for a buffer. Each region of larger pages will be used at
1872 * most once, after which the page will not be reused.
1873 *
1874 * In either case, if the page is reusable its refcount is increased.
1875 **/
1876static bool i40e_can_reuse_rx_page(struct i40e_rx_buffer *rx_buffer)
1877{
1878 unsigned int pagecnt_bias = rx_buffer->pagecnt_bias;
1879 struct page *page = rx_buffer->page;
1880
1881 /* Is any reuse possible? */
1882 if (unlikely(!i40e_page_is_reusable(page)))
1883 return false;
1884
1885#if (PAGE_SIZE < 8192)
1886 /* if we are only owner of page we can reuse it */
1887 if (unlikely((page_count(page) - pagecnt_bias) > 1))
1888 return false;
1889#else
1890#define I40E_LAST_OFFSET \
1891 (SKB_WITH_OVERHEAD(PAGE_SIZE) - I40E_RXBUFFER_2048)
1892 if (rx_buffer->page_offset > I40E_LAST_OFFSET)
1893 return false;
1894#endif
1895
1896 /* If we have drained the page fragment pool we need to update
1897 * the pagecnt_bias and page count so that we fully restock the
1898 * number of references the driver holds.
1899 */
1900 if (unlikely(pagecnt_bias == 1)) {
1901 page_ref_add(page, USHRT_MAX - 1);
1902 rx_buffer->pagecnt_bias = USHRT_MAX;
1903 }
1904
1905 return true;
1906}
1907
1908/**
1909 * i40e_add_rx_frag - Add contents of Rx buffer to sk_buff
1910 * @rx_ring: rx descriptor ring to transact packets on
1911 * @rx_buffer: buffer containing page to add
1912 * @skb: sk_buff to place the data into
1913 * @size: packet length from rx_desc
1914 *
1915 * This function will add the data contained in rx_buffer->page to the skb.
1916 * It will just attach the page as a frag to the skb.
1917 *
1918 * The function will then update the page offset.
1919 **/
1920static void i40e_add_rx_frag(struct i40e_ring *rx_ring,
1921 struct i40e_rx_buffer *rx_buffer,
1922 struct sk_buff *skb,
1923 unsigned int size)
1924{
1925#if (PAGE_SIZE < 8192)
1926 unsigned int truesize = i40e_rx_pg_size(rx_ring) / 2;
1927#else
1928 unsigned int truesize = SKB_DATA_ALIGN(size + i40e_rx_offset(rx_ring));
1929#endif
1930
1931 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page,
1932 rx_buffer->page_offset, size, truesize);
1933
1934 /* page is being used so we must update the page offset */
1935#if (PAGE_SIZE < 8192)
1936 rx_buffer->page_offset ^= truesize;
1937#else
1938 rx_buffer->page_offset += truesize;
1939#endif
1940}
1941
1942/**
1943 * i40e_get_rx_buffer - Fetch Rx buffer and synchronize data for use
1944 * @rx_ring: rx descriptor ring to transact packets on
1945 * @size: size of buffer to add to skb
1946 *
1947 * This function will pull an Rx buffer from the ring and synchronize it
1948 * for use by the CPU.
1949 */
1950static struct i40e_rx_buffer *i40e_get_rx_buffer(struct i40e_ring *rx_ring,
1951 const unsigned int size)
1952{
1953 struct i40e_rx_buffer *rx_buffer;
1954
1955 rx_buffer = i40e_rx_bi(rx_ring, rx_ring->next_to_clean);
1956 prefetchw(rx_buffer->page);
1957
1958 /* we are reusing so sync this buffer for CPU use */
1959 dma_sync_single_range_for_cpu(rx_ring->dev,
1960 rx_buffer->dma,
1961 rx_buffer->page_offset,
1962 size,
1963 DMA_FROM_DEVICE);
1964
1965 /* We have pulled a buffer for use, so decrement pagecnt_bias */
1966 rx_buffer->pagecnt_bias--;
1967
1968 return rx_buffer;
1969}
1970
1971/**
1972 * i40e_construct_skb - Allocate skb and populate it
1973 * @rx_ring: rx descriptor ring to transact packets on
1974 * @rx_buffer: rx buffer to pull data from
1975 * @xdp: xdp_buff pointing to the data
1976 *
1977 * This function allocates an skb. It then populates it with the page
1978 * data from the current receive descriptor, taking care to set up the
1979 * skb correctly.
1980 */
1981static struct sk_buff *i40e_construct_skb(struct i40e_ring *rx_ring,
1982 struct i40e_rx_buffer *rx_buffer,
1983 struct xdp_buff *xdp)
1984{
1985 unsigned int size = xdp->data_end - xdp->data;
1986#if (PAGE_SIZE < 8192)
1987 unsigned int truesize = i40e_rx_pg_size(rx_ring) / 2;
1988#else
1989 unsigned int truesize = SKB_DATA_ALIGN(size);
1990#endif
1991 unsigned int headlen;
1992 struct sk_buff *skb;
1993
1994 /* prefetch first cache line of first page */
1995 prefetch(xdp->data);
1996#if L1_CACHE_BYTES < 128
1997 prefetch(xdp->data + L1_CACHE_BYTES);
1998#endif
1999 /* Note, we get here by enabling legacy-rx via:
2000 *
2001 * ethtool --set-priv-flags <dev> legacy-rx on
2002 *
2003 * In this mode, we currently get 0 extra XDP headroom as
2004 * opposed to having legacy-rx off, where we process XDP
2005 * packets going to stack via i40e_build_skb(). The latter
2006 * provides us currently with 192 bytes of headroom.
2007 *
2008 * For i40e_construct_skb() mode it means that the
2009 * xdp->data_meta will always point to xdp->data, since
2010 * the helper cannot expand the head. Should this ever
2011 * change in future for legacy-rx mode on, then lets also
2012 * add xdp->data_meta handling here.
2013 */
2014
2015 /* allocate a skb to store the frags */
2016 skb = __napi_alloc_skb(&rx_ring->q_vector->napi,
2017 I40E_RX_HDR_SIZE,
2018 GFP_ATOMIC | __GFP_NOWARN);
2019 if (unlikely(!skb))
2020 return NULL;
2021
2022 /* Determine available headroom for copy */
2023 headlen = size;
2024 if (headlen > I40E_RX_HDR_SIZE)
2025 headlen = eth_get_headlen(skb->dev, xdp->data,
2026 I40E_RX_HDR_SIZE);
2027
2028 /* align pull length to size of long to optimize memcpy performance */
2029 memcpy(__skb_put(skb, headlen), xdp->data,
2030 ALIGN(headlen, sizeof(long)));
2031
2032 /* update all of the pointers */
2033 size -= headlen;
2034 if (size) {
2035 skb_add_rx_frag(skb, 0, rx_buffer->page,
2036 rx_buffer->page_offset + headlen,
2037 size, truesize);
2038
2039 /* buffer is used by skb, update page_offset */
2040#if (PAGE_SIZE < 8192)
2041 rx_buffer->page_offset ^= truesize;
2042#else
2043 rx_buffer->page_offset += truesize;
2044#endif
2045 } else {
2046 /* buffer is unused, reset bias back to rx_buffer */
2047 rx_buffer->pagecnt_bias++;
2048 }
2049
2050 return skb;
2051}
2052
2053/**
2054 * i40e_build_skb - Build skb around an existing buffer
2055 * @rx_ring: Rx descriptor ring to transact packets on
2056 * @rx_buffer: Rx buffer to pull data from
2057 * @xdp: xdp_buff pointing to the data
2058 *
2059 * This function builds an skb around an existing Rx buffer, taking care
2060 * to set up the skb correctly and avoid any memcpy overhead.
2061 */
2062static struct sk_buff *i40e_build_skb(struct i40e_ring *rx_ring,
2063 struct i40e_rx_buffer *rx_buffer,
2064 struct xdp_buff *xdp)
2065{
2066 unsigned int metasize = xdp->data - xdp->data_meta;
2067#if (PAGE_SIZE < 8192)
2068 unsigned int truesize = i40e_rx_pg_size(rx_ring) / 2;
2069#else
2070 unsigned int truesize = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
2071 SKB_DATA_ALIGN(xdp->data_end -
2072 xdp->data_hard_start);
2073#endif
2074 struct sk_buff *skb;
2075
2076 /* Prefetch first cache line of first page. If xdp->data_meta
2077 * is unused, this points exactly as xdp->data, otherwise we
2078 * likely have a consumer accessing first few bytes of meta
2079 * data, and then actual data.
2080 */
2081 prefetch(xdp->data_meta);
2082#if L1_CACHE_BYTES < 128
2083 prefetch(xdp->data_meta + L1_CACHE_BYTES);
2084#endif
2085 /* build an skb around the page buffer */
2086 skb = build_skb(xdp->data_hard_start, truesize);
2087 if (unlikely(!skb))
2088 return NULL;
2089
2090 /* update pointers within the skb to store the data */
2091 skb_reserve(skb, xdp->data - xdp->data_hard_start);
2092 __skb_put(skb, xdp->data_end - xdp->data);
2093 if (metasize)
2094 skb_metadata_set(skb, metasize);
2095
2096 /* buffer is used by skb, update page_offset */
2097#if (PAGE_SIZE < 8192)
2098 rx_buffer->page_offset ^= truesize;
2099#else
2100 rx_buffer->page_offset += truesize;
2101#endif
2102
2103 return skb;
2104}
2105
2106/**
2107 * i40e_put_rx_buffer - Clean up used buffer and either recycle or free
2108 * @rx_ring: rx descriptor ring to transact packets on
2109 * @rx_buffer: rx buffer to pull data from
2110 *
2111 * This function will clean up the contents of the rx_buffer. It will
2112 * either recycle the buffer or unmap it and free the associated resources.
2113 */
2114static void i40e_put_rx_buffer(struct i40e_ring *rx_ring,
2115 struct i40e_rx_buffer *rx_buffer)
2116{
2117 if (i40e_can_reuse_rx_page(rx_buffer)) {
2118 /* hand second half of page back to the ring */
2119 i40e_reuse_rx_page(rx_ring, rx_buffer);
2120 } else {
2121 /* we are not reusing the buffer so unmap it */
2122 dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma,
2123 i40e_rx_pg_size(rx_ring),
2124 DMA_FROM_DEVICE, I40E_RX_DMA_ATTR);
2125 __page_frag_cache_drain(rx_buffer->page,
2126 rx_buffer->pagecnt_bias);
2127 /* clear contents of buffer_info */
2128 rx_buffer->page = NULL;
2129 }
2130}
2131
2132/**
2133 * i40e_is_non_eop - process handling of non-EOP buffers
2134 * @rx_ring: Rx ring being processed
2135 * @rx_desc: Rx descriptor for current buffer
2136 * @skb: Current socket buffer containing buffer in progress
2137 *
2138 * This function updates next to clean. If the buffer is an EOP buffer
2139 * this function exits returning false, otherwise it will place the
2140 * sk_buff in the next buffer to be chained and return true indicating
2141 * that this is in fact a non-EOP buffer.
2142 **/
2143static bool i40e_is_non_eop(struct i40e_ring *rx_ring,
2144 union i40e_rx_desc *rx_desc,
2145 struct sk_buff *skb)
2146{
2147 u32 ntc = rx_ring->next_to_clean + 1;
2148
2149 /* fetch, update, and store next to clean */
2150 ntc = (ntc < rx_ring->count) ? ntc : 0;
2151 rx_ring->next_to_clean = ntc;
2152
2153 prefetch(I40E_RX_DESC(rx_ring, ntc));
2154
2155 /* if we are the last buffer then there is nothing else to do */
2156#define I40E_RXD_EOF BIT(I40E_RX_DESC_STATUS_EOF_SHIFT)
2157 if (likely(i40e_test_staterr(rx_desc, I40E_RXD_EOF)))
2158 return false;
2159
2160 rx_ring->rx_stats.non_eop_descs++;
2161
2162 return true;
2163}
2164
2165static int i40e_xmit_xdp_ring(struct xdp_frame *xdpf,
2166 struct i40e_ring *xdp_ring);
2167
2168int i40e_xmit_xdp_tx_ring(struct xdp_buff *xdp, struct i40e_ring *xdp_ring)
2169{
2170 struct xdp_frame *xdpf = xdp_convert_buff_to_frame(xdp);
2171
2172 if (unlikely(!xdpf))
2173 return I40E_XDP_CONSUMED;
2174
2175 return i40e_xmit_xdp_ring(xdpf, xdp_ring);
2176}
2177
2178/**
2179 * i40e_run_xdp - run an XDP program
2180 * @rx_ring: Rx ring being processed
2181 * @xdp: XDP buffer containing the frame
2182 **/
2183static struct sk_buff *i40e_run_xdp(struct i40e_ring *rx_ring,
2184 struct xdp_buff *xdp)
2185{
2186 int err, result = I40E_XDP_PASS;
2187 struct i40e_ring *xdp_ring;
2188 struct bpf_prog *xdp_prog;
2189 u32 act;
2190
2191 rcu_read_lock();
2192 xdp_prog = READ_ONCE(rx_ring->xdp_prog);
2193
2194 if (!xdp_prog)
2195 goto xdp_out;
2196
2197 prefetchw(xdp->data_hard_start); /* xdp_frame write */
2198
2199 act = bpf_prog_run_xdp(xdp_prog, xdp);
2200 switch (act) {
2201 case XDP_PASS:
2202 break;
2203 case XDP_TX:
2204 xdp_ring = rx_ring->vsi->xdp_rings[rx_ring->queue_index];
2205 result = i40e_xmit_xdp_tx_ring(xdp, xdp_ring);
2206 break;
2207 case XDP_REDIRECT:
2208 err = xdp_do_redirect(rx_ring->netdev, xdp, xdp_prog);
2209 result = !err ? I40E_XDP_REDIR : I40E_XDP_CONSUMED;
2210 break;
2211 default:
2212 bpf_warn_invalid_xdp_action(act);
2213 fallthrough;
2214 case XDP_ABORTED:
2215 trace_xdp_exception(rx_ring->netdev, xdp_prog, act);
2216 fallthrough; /* handle aborts by dropping packet */
2217 case XDP_DROP:
2218 result = I40E_XDP_CONSUMED;
2219 break;
2220 }
2221xdp_out:
2222 rcu_read_unlock();
2223 return ERR_PTR(-result);
2224}
2225
2226/**
2227 * i40e_rx_buffer_flip - adjusted rx_buffer to point to an unused region
2228 * @rx_ring: Rx ring
2229 * @rx_buffer: Rx buffer to adjust
2230 * @size: Size of adjustment
2231 **/
2232static void i40e_rx_buffer_flip(struct i40e_ring *rx_ring,
2233 struct i40e_rx_buffer *rx_buffer,
2234 unsigned int size)
2235{
2236 unsigned int truesize = i40e_rx_frame_truesize(rx_ring, size);
2237
2238#if (PAGE_SIZE < 8192)
2239 rx_buffer->page_offset ^= truesize;
2240#else
2241 rx_buffer->page_offset += truesize;
2242#endif
2243}
2244
2245/**
2246 * i40e_xdp_ring_update_tail - Updates the XDP Tx ring tail register
2247 * @xdp_ring: XDP Tx ring
2248 *
2249 * This function updates the XDP Tx ring tail register.
2250 **/
2251void i40e_xdp_ring_update_tail(struct i40e_ring *xdp_ring)
2252{
2253 /* Force memory writes to complete before letting h/w
2254 * know there are new descriptors to fetch.
2255 */
2256 wmb();
2257 writel_relaxed(xdp_ring->next_to_use, xdp_ring->tail);
2258}
2259
2260/**
2261 * i40e_update_rx_stats - Update Rx ring statistics
2262 * @rx_ring: rx descriptor ring
2263 * @total_rx_bytes: number of bytes received
2264 * @total_rx_packets: number of packets received
2265 *
2266 * This function updates the Rx ring statistics.
2267 **/
2268void i40e_update_rx_stats(struct i40e_ring *rx_ring,
2269 unsigned int total_rx_bytes,
2270 unsigned int total_rx_packets)
2271{
2272 u64_stats_update_begin(&rx_ring->syncp);
2273 rx_ring->stats.packets += total_rx_packets;
2274 rx_ring->stats.bytes += total_rx_bytes;
2275 u64_stats_update_end(&rx_ring->syncp);
2276 rx_ring->q_vector->rx.total_packets += total_rx_packets;
2277 rx_ring->q_vector->rx.total_bytes += total_rx_bytes;
2278}
2279
2280/**
2281 * i40e_finalize_xdp_rx - Bump XDP Tx tail and/or flush redirect map
2282 * @rx_ring: Rx ring
2283 * @xdp_res: Result of the receive batch
2284 *
2285 * This function bumps XDP Tx tail and/or flush redirect map, and
2286 * should be called when a batch of packets has been processed in the
2287 * napi loop.
2288 **/
2289void i40e_finalize_xdp_rx(struct i40e_ring *rx_ring, unsigned int xdp_res)
2290{
2291 if (xdp_res & I40E_XDP_REDIR)
2292 xdp_do_flush_map();
2293
2294 if (xdp_res & I40E_XDP_TX) {
2295 struct i40e_ring *xdp_ring =
2296 rx_ring->vsi->xdp_rings[rx_ring->queue_index];
2297
2298 i40e_xdp_ring_update_tail(xdp_ring);
2299 }
2300}
2301
2302/**
2303 * i40e_clean_rx_irq - Clean completed descriptors from Rx ring - bounce buf
2304 * @rx_ring: rx descriptor ring to transact packets on
2305 * @budget: Total limit on number of packets to process
2306 *
2307 * This function provides a "bounce buffer" approach to Rx interrupt
2308 * processing. The advantage to this is that on systems that have
2309 * expensive overhead for IOMMU access this provides a means of avoiding
2310 * it by maintaining the mapping of the page to the system.
2311 *
2312 * Returns amount of work completed
2313 **/
2314static int i40e_clean_rx_irq(struct i40e_ring *rx_ring, int budget)
2315{
2316 unsigned int total_rx_bytes = 0, total_rx_packets = 0;
2317 struct sk_buff *skb = rx_ring->skb;
2318 u16 cleaned_count = I40E_DESC_UNUSED(rx_ring);
2319 unsigned int xdp_xmit = 0;
2320 bool failure = false;
2321 struct xdp_buff xdp;
2322
2323#if (PAGE_SIZE < 8192)
2324 xdp.frame_sz = i40e_rx_frame_truesize(rx_ring, 0);
2325#endif
2326 xdp.rxq = &rx_ring->xdp_rxq;
2327
2328 while (likely(total_rx_packets < (unsigned int)budget)) {
2329 struct i40e_rx_buffer *rx_buffer;
2330 union i40e_rx_desc *rx_desc;
2331 unsigned int size;
2332 u64 qword;
2333
2334 /* return some buffers to hardware, one at a time is too slow */
2335 if (cleaned_count >= I40E_RX_BUFFER_WRITE) {
2336 failure = failure ||
2337 i40e_alloc_rx_buffers(rx_ring, cleaned_count);
2338 cleaned_count = 0;
2339 }
2340
2341 rx_desc = I40E_RX_DESC(rx_ring, rx_ring->next_to_clean);
2342
2343 /* status_error_len will always be zero for unused descriptors
2344 * because it's cleared in cleanup, and overlaps with hdr_addr
2345 * which is always zero because packet split isn't used, if the
2346 * hardware wrote DD then the length will be non-zero
2347 */
2348 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
2349
2350 /* This memory barrier is needed to keep us from reading
2351 * any other fields out of the rx_desc until we have
2352 * verified the descriptor has been written back.
2353 */
2354 dma_rmb();
2355
2356 if (i40e_rx_is_programming_status(qword)) {
2357 i40e_clean_programming_status(rx_ring,
2358 rx_desc->raw.qword[0],
2359 qword);
2360 rx_buffer = i40e_rx_bi(rx_ring, rx_ring->next_to_clean);
2361 i40e_inc_ntc(rx_ring);
2362 i40e_reuse_rx_page(rx_ring, rx_buffer);
2363 cleaned_count++;
2364 continue;
2365 }
2366
2367 size = (qword & I40E_RXD_QW1_LENGTH_PBUF_MASK) >>
2368 I40E_RXD_QW1_LENGTH_PBUF_SHIFT;
2369 if (!size)
2370 break;
2371
2372 i40e_trace(clean_rx_irq, rx_ring, rx_desc, skb);
2373 rx_buffer = i40e_get_rx_buffer(rx_ring, size);
2374
2375 /* retrieve a buffer from the ring */
2376 if (!skb) {
2377 xdp.data = page_address(rx_buffer->page) +
2378 rx_buffer->page_offset;
2379 xdp.data_meta = xdp.data;
2380 xdp.data_hard_start = xdp.data -
2381 i40e_rx_offset(rx_ring);
2382 xdp.data_end = xdp.data + size;
2383#if (PAGE_SIZE > 4096)
2384 /* At larger PAGE_SIZE, frame_sz depend on len size */
2385 xdp.frame_sz = i40e_rx_frame_truesize(rx_ring, size);
2386#endif
2387 skb = i40e_run_xdp(rx_ring, &xdp);
2388 }
2389
2390 if (IS_ERR(skb)) {
2391 unsigned int xdp_res = -PTR_ERR(skb);
2392
2393 if (xdp_res & (I40E_XDP_TX | I40E_XDP_REDIR)) {
2394 xdp_xmit |= xdp_res;
2395 i40e_rx_buffer_flip(rx_ring, rx_buffer, size);
2396 } else {
2397 rx_buffer->pagecnt_bias++;
2398 }
2399 total_rx_bytes += size;
2400 total_rx_packets++;
2401 } else if (skb) {
2402 i40e_add_rx_frag(rx_ring, rx_buffer, skb, size);
2403 } else if (ring_uses_build_skb(rx_ring)) {
2404 skb = i40e_build_skb(rx_ring, rx_buffer, &xdp);
2405 } else {
2406 skb = i40e_construct_skb(rx_ring, rx_buffer, &xdp);
2407 }
2408
2409 /* exit if we failed to retrieve a buffer */
2410 if (!skb) {
2411 rx_ring->rx_stats.alloc_buff_failed++;
2412 rx_buffer->pagecnt_bias++;
2413 break;
2414 }
2415
2416 i40e_put_rx_buffer(rx_ring, rx_buffer);
2417 cleaned_count++;
2418
2419 if (i40e_is_non_eop(rx_ring, rx_desc, skb))
2420 continue;
2421
2422 if (i40e_cleanup_headers(rx_ring, skb, rx_desc)) {
2423 skb = NULL;
2424 continue;
2425 }
2426
2427 /* probably a little skewed due to removing CRC */
2428 total_rx_bytes += skb->len;
2429
2430 /* populate checksum, VLAN, and protocol */
2431 i40e_process_skb_fields(rx_ring, rx_desc, skb);
2432
2433 i40e_trace(clean_rx_irq_rx, rx_ring, rx_desc, skb);
2434 napi_gro_receive(&rx_ring->q_vector->napi, skb);
2435 skb = NULL;
2436
2437 /* update budget accounting */
2438 total_rx_packets++;
2439 }
2440
2441 i40e_finalize_xdp_rx(rx_ring, xdp_xmit);
2442 rx_ring->skb = skb;
2443
2444 i40e_update_rx_stats(rx_ring, total_rx_bytes, total_rx_packets);
2445
2446 /* guarantee a trip back through this routine if there was a failure */
2447 return failure ? budget : (int)total_rx_packets;
2448}
2449
2450static inline u32 i40e_buildreg_itr(const int type, u16 itr)
2451{
2452 u32 val;
2453
2454 /* We don't bother with setting the CLEARPBA bit as the data sheet
2455 * points out doing so is "meaningless since it was already
2456 * auto-cleared". The auto-clearing happens when the interrupt is
2457 * asserted.
2458 *
2459 * Hardware errata 28 for also indicates that writing to a
2460 * xxINT_DYN_CTLx CSR with INTENA_MSK (bit 31) set to 0 will clear
2461 * an event in the PBA anyway so we need to rely on the automask
2462 * to hold pending events for us until the interrupt is re-enabled
2463 *
2464 * The itr value is reported in microseconds, and the register
2465 * value is recorded in 2 microsecond units. For this reason we
2466 * only need to shift by the interval shift - 1 instead of the
2467 * full value.
2468 */
2469 itr &= I40E_ITR_MASK;
2470
2471 val = I40E_PFINT_DYN_CTLN_INTENA_MASK |
2472 (type << I40E_PFINT_DYN_CTLN_ITR_INDX_SHIFT) |
2473 (itr << (I40E_PFINT_DYN_CTLN_INTERVAL_SHIFT - 1));
2474
2475 return val;
2476}
2477
2478/* a small macro to shorten up some long lines */
2479#define INTREG I40E_PFINT_DYN_CTLN
2480
2481/* The act of updating the ITR will cause it to immediately trigger. In order
2482 * to prevent this from throwing off adaptive update statistics we defer the
2483 * update so that it can only happen so often. So after either Tx or Rx are
2484 * updated we make the adaptive scheme wait until either the ITR completely
2485 * expires via the next_update expiration or we have been through at least
2486 * 3 interrupts.
2487 */
2488#define ITR_COUNTDOWN_START 3
2489
2490/**
2491 * i40e_update_enable_itr - Update itr and re-enable MSIX interrupt
2492 * @vsi: the VSI we care about
2493 * @q_vector: q_vector for which itr is being updated and interrupt enabled
2494 *
2495 **/
2496static inline void i40e_update_enable_itr(struct i40e_vsi *vsi,
2497 struct i40e_q_vector *q_vector)
2498{
2499 struct i40e_hw *hw = &vsi->back->hw;
2500 u32 intval;
2501
2502 /* If we don't have MSIX, then we only need to re-enable icr0 */
2503 if (!(vsi->back->flags & I40E_FLAG_MSIX_ENABLED)) {
2504 i40e_irq_dynamic_enable_icr0(vsi->back);
2505 return;
2506 }
2507
2508 /* These will do nothing if dynamic updates are not enabled */
2509 i40e_update_itr(q_vector, &q_vector->tx);
2510 i40e_update_itr(q_vector, &q_vector->rx);
2511
2512 /* This block of logic allows us to get away with only updating
2513 * one ITR value with each interrupt. The idea is to perform a
2514 * pseudo-lazy update with the following criteria.
2515 *
2516 * 1. Rx is given higher priority than Tx if both are in same state
2517 * 2. If we must reduce an ITR that is given highest priority.
2518 * 3. We then give priority to increasing ITR based on amount.
2519 */
2520 if (q_vector->rx.target_itr < q_vector->rx.current_itr) {
2521 /* Rx ITR needs to be reduced, this is highest priority */
2522 intval = i40e_buildreg_itr(I40E_RX_ITR,
2523 q_vector->rx.target_itr);
2524 q_vector->rx.current_itr = q_vector->rx.target_itr;
2525 q_vector->itr_countdown = ITR_COUNTDOWN_START;
2526 } else if ((q_vector->tx.target_itr < q_vector->tx.current_itr) ||
2527 ((q_vector->rx.target_itr - q_vector->rx.current_itr) <
2528 (q_vector->tx.target_itr - q_vector->tx.current_itr))) {
2529 /* Tx ITR needs to be reduced, this is second priority
2530 * Tx ITR needs to be increased more than Rx, fourth priority
2531 */
2532 intval = i40e_buildreg_itr(I40E_TX_ITR,
2533 q_vector->tx.target_itr);
2534 q_vector->tx.current_itr = q_vector->tx.target_itr;
2535 q_vector->itr_countdown = ITR_COUNTDOWN_START;
2536 } else if (q_vector->rx.current_itr != q_vector->rx.target_itr) {
2537 /* Rx ITR needs to be increased, third priority */
2538 intval = i40e_buildreg_itr(I40E_RX_ITR,
2539 q_vector->rx.target_itr);
2540 q_vector->rx.current_itr = q_vector->rx.target_itr;
2541 q_vector->itr_countdown = ITR_COUNTDOWN_START;
2542 } else {
2543 /* No ITR update, lowest priority */
2544 intval = i40e_buildreg_itr(I40E_ITR_NONE, 0);
2545 if (q_vector->itr_countdown)
2546 q_vector->itr_countdown--;
2547 }
2548
2549 if (!test_bit(__I40E_VSI_DOWN, vsi->state))
2550 wr32(hw, INTREG(q_vector->reg_idx), intval);
2551}
2552
2553/**
2554 * i40e_napi_poll - NAPI polling Rx/Tx cleanup routine
2555 * @napi: napi struct with our devices info in it
2556 * @budget: amount of work driver is allowed to do this pass, in packets
2557 *
2558 * This function will clean all queues associated with a q_vector.
2559 *
2560 * Returns the amount of work done
2561 **/
2562int i40e_napi_poll(struct napi_struct *napi, int budget)
2563{
2564 struct i40e_q_vector *q_vector =
2565 container_of(napi, struct i40e_q_vector, napi);
2566 struct i40e_vsi *vsi = q_vector->vsi;
2567 struct i40e_ring *ring;
2568 bool clean_complete = true;
2569 bool arm_wb = false;
2570 int budget_per_ring;
2571 int work_done = 0;
2572
2573 if (test_bit(__I40E_VSI_DOWN, vsi->state)) {
2574 napi_complete(napi);
2575 return 0;
2576 }
2577
2578 /* Since the actual Tx work is minimal, we can give the Tx a larger
2579 * budget and be more aggressive about cleaning up the Tx descriptors.
2580 */
2581 i40e_for_each_ring(ring, q_vector->tx) {
2582 bool wd = ring->xsk_umem ?
2583 i40e_clean_xdp_tx_irq(vsi, ring) :
2584 i40e_clean_tx_irq(vsi, ring, budget);
2585
2586 if (!wd) {
2587 clean_complete = false;
2588 continue;
2589 }
2590 arm_wb |= ring->arm_wb;
2591 ring->arm_wb = false;
2592 }
2593
2594 /* Handle case where we are called by netpoll with a budget of 0 */
2595 if (budget <= 0)
2596 goto tx_only;
2597
2598 /* normally we have 1 Rx ring per q_vector */
2599 if (unlikely(q_vector->num_ringpairs > 1))
2600 /* We attempt to distribute budget to each Rx queue fairly, but
2601 * don't allow the budget to go below 1 because that would exit
2602 * polling early.
2603 */
2604 budget_per_ring = max_t(int, budget / q_vector->num_ringpairs, 1);
2605 else
2606 /* Max of 1 Rx ring in this q_vector so give it the budget */
2607 budget_per_ring = budget;
2608
2609 i40e_for_each_ring(ring, q_vector->rx) {
2610 int cleaned = ring->xsk_umem ?
2611 i40e_clean_rx_irq_zc(ring, budget_per_ring) :
2612 i40e_clean_rx_irq(ring, budget_per_ring);
2613
2614 work_done += cleaned;
2615 /* if we clean as many as budgeted, we must not be done */
2616 if (cleaned >= budget_per_ring)
2617 clean_complete = false;
2618 }
2619
2620 /* If work not completed, return budget and polling will return */
2621 if (!clean_complete) {
2622 int cpu_id = smp_processor_id();
2623
2624 /* It is possible that the interrupt affinity has changed but,
2625 * if the cpu is pegged at 100%, polling will never exit while
2626 * traffic continues and the interrupt will be stuck on this
2627 * cpu. We check to make sure affinity is correct before we
2628 * continue to poll, otherwise we must stop polling so the
2629 * interrupt can move to the correct cpu.
2630 */
2631 if (!cpumask_test_cpu(cpu_id, &q_vector->affinity_mask)) {
2632 /* Tell napi that we are done polling */
2633 napi_complete_done(napi, work_done);
2634
2635 /* Force an interrupt */
2636 i40e_force_wb(vsi, q_vector);
2637
2638 /* Return budget-1 so that polling stops */
2639 return budget - 1;
2640 }
2641tx_only:
2642 if (arm_wb) {
2643 q_vector->tx.ring[0].tx_stats.tx_force_wb++;
2644 i40e_enable_wb_on_itr(vsi, q_vector);
2645 }
2646 return budget;
2647 }
2648
2649 if (vsi->back->flags & I40E_TXR_FLAGS_WB_ON_ITR)
2650 q_vector->arm_wb_state = false;
2651
2652 /* Exit the polling mode, but don't re-enable interrupts if stack might
2653 * poll us due to busy-polling
2654 */
2655 if (likely(napi_complete_done(napi, work_done)))
2656 i40e_update_enable_itr(vsi, q_vector);
2657
2658 return min(work_done, budget - 1);
2659}
2660
2661/**
2662 * i40e_atr - Add a Flow Director ATR filter
2663 * @tx_ring: ring to add programming descriptor to
2664 * @skb: send buffer
2665 * @tx_flags: send tx flags
2666 **/
2667static void i40e_atr(struct i40e_ring *tx_ring, struct sk_buff *skb,
2668 u32 tx_flags)
2669{
2670 struct i40e_filter_program_desc *fdir_desc;
2671 struct i40e_pf *pf = tx_ring->vsi->back;
2672 union {
2673 unsigned char *network;
2674 struct iphdr *ipv4;
2675 struct ipv6hdr *ipv6;
2676 } hdr;
2677 struct tcphdr *th;
2678 unsigned int hlen;
2679 u32 flex_ptype, dtype_cmd;
2680 int l4_proto;
2681 u16 i;
2682
2683 /* make sure ATR is enabled */
2684 if (!(pf->flags & I40E_FLAG_FD_ATR_ENABLED))
2685 return;
2686
2687 if (test_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state))
2688 return;
2689
2690 /* if sampling is disabled do nothing */
2691 if (!tx_ring->atr_sample_rate)
2692 return;
2693
2694 /* Currently only IPv4/IPv6 with TCP is supported */
2695 if (!(tx_flags & (I40E_TX_FLAGS_IPV4 | I40E_TX_FLAGS_IPV6)))
2696 return;
2697
2698 /* snag network header to get L4 type and address */
2699 hdr.network = (tx_flags & I40E_TX_FLAGS_UDP_TUNNEL) ?
2700 skb_inner_network_header(skb) : skb_network_header(skb);
2701
2702 /* Note: tx_flags gets modified to reflect inner protocols in
2703 * tx_enable_csum function if encap is enabled.
2704 */
2705 if (tx_flags & I40E_TX_FLAGS_IPV4) {
2706 /* access ihl as u8 to avoid unaligned access on ia64 */
2707 hlen = (hdr.network[0] & 0x0F) << 2;
2708 l4_proto = hdr.ipv4->protocol;
2709 } else {
2710 /* find the start of the innermost ipv6 header */
2711 unsigned int inner_hlen = hdr.network - skb->data;
2712 unsigned int h_offset = inner_hlen;
2713
2714 /* this function updates h_offset to the end of the header */
2715 l4_proto =
2716 ipv6_find_hdr(skb, &h_offset, IPPROTO_TCP, NULL, NULL);
2717 /* hlen will contain our best estimate of the tcp header */
2718 hlen = h_offset - inner_hlen;
2719 }
2720
2721 if (l4_proto != IPPROTO_TCP)
2722 return;
2723
2724 th = (struct tcphdr *)(hdr.network + hlen);
2725
2726 /* Due to lack of space, no more new filters can be programmed */
2727 if (th->syn && test_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state))
2728 return;
2729 if (pf->flags & I40E_FLAG_HW_ATR_EVICT_ENABLED) {
2730 /* HW ATR eviction will take care of removing filters on FIN
2731 * and RST packets.
2732 */
2733 if (th->fin || th->rst)
2734 return;
2735 }
2736
2737 tx_ring->atr_count++;
2738
2739 /* sample on all syn/fin/rst packets or once every atr sample rate */
2740 if (!th->fin &&
2741 !th->syn &&
2742 !th->rst &&
2743 (tx_ring->atr_count < tx_ring->atr_sample_rate))
2744 return;
2745
2746 tx_ring->atr_count = 0;
2747
2748 /* grab the next descriptor */
2749 i = tx_ring->next_to_use;
2750 fdir_desc = I40E_TX_FDIRDESC(tx_ring, i);
2751
2752 i++;
2753 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
2754
2755 flex_ptype = (tx_ring->queue_index << I40E_TXD_FLTR_QW0_QINDEX_SHIFT) &
2756 I40E_TXD_FLTR_QW0_QINDEX_MASK;
2757 flex_ptype |= (tx_flags & I40E_TX_FLAGS_IPV4) ?
2758 (I40E_FILTER_PCTYPE_NONF_IPV4_TCP <<
2759 I40E_TXD_FLTR_QW0_PCTYPE_SHIFT) :
2760 (I40E_FILTER_PCTYPE_NONF_IPV6_TCP <<
2761 I40E_TXD_FLTR_QW0_PCTYPE_SHIFT);
2762
2763 flex_ptype |= tx_ring->vsi->id << I40E_TXD_FLTR_QW0_DEST_VSI_SHIFT;
2764
2765 dtype_cmd = I40E_TX_DESC_DTYPE_FILTER_PROG;
2766
2767 dtype_cmd |= (th->fin || th->rst) ?
2768 (I40E_FILTER_PROGRAM_DESC_PCMD_REMOVE <<
2769 I40E_TXD_FLTR_QW1_PCMD_SHIFT) :
2770 (I40E_FILTER_PROGRAM_DESC_PCMD_ADD_UPDATE <<
2771 I40E_TXD_FLTR_QW1_PCMD_SHIFT);
2772
2773 dtype_cmd |= I40E_FILTER_PROGRAM_DESC_DEST_DIRECT_PACKET_QINDEX <<
2774 I40E_TXD_FLTR_QW1_DEST_SHIFT;
2775
2776 dtype_cmd |= I40E_FILTER_PROGRAM_DESC_FD_STATUS_FD_ID <<
2777 I40E_TXD_FLTR_QW1_FD_STATUS_SHIFT;
2778
2779 dtype_cmd |= I40E_TXD_FLTR_QW1_CNT_ENA_MASK;
2780 if (!(tx_flags & I40E_TX_FLAGS_UDP_TUNNEL))
2781 dtype_cmd |=
2782 ((u32)I40E_FD_ATR_STAT_IDX(pf->hw.pf_id) <<
2783 I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT) &
2784 I40E_TXD_FLTR_QW1_CNTINDEX_MASK;
2785 else
2786 dtype_cmd |=
2787 ((u32)I40E_FD_ATR_TUNNEL_STAT_IDX(pf->hw.pf_id) <<
2788 I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT) &
2789 I40E_TXD_FLTR_QW1_CNTINDEX_MASK;
2790
2791 if (pf->flags & I40E_FLAG_HW_ATR_EVICT_ENABLED)
2792 dtype_cmd |= I40E_TXD_FLTR_QW1_ATR_MASK;
2793
2794 fdir_desc->qindex_flex_ptype_vsi = cpu_to_le32(flex_ptype);
2795 fdir_desc->rsvd = cpu_to_le32(0);
2796 fdir_desc->dtype_cmd_cntindex = cpu_to_le32(dtype_cmd);
2797 fdir_desc->fd_id = cpu_to_le32(0);
2798}
2799
2800/**
2801 * i40e_tx_prepare_vlan_flags - prepare generic TX VLAN tagging flags for HW
2802 * @skb: send buffer
2803 * @tx_ring: ring to send buffer on
2804 * @flags: the tx flags to be set
2805 *
2806 * Checks the skb and set up correspondingly several generic transmit flags
2807 * related to VLAN tagging for the HW, such as VLAN, DCB, etc.
2808 *
2809 * Returns error code indicate the frame should be dropped upon error and the
2810 * otherwise returns 0 to indicate the flags has been set properly.
2811 **/
2812static inline int i40e_tx_prepare_vlan_flags(struct sk_buff *skb,
2813 struct i40e_ring *tx_ring,
2814 u32 *flags)
2815{
2816 __be16 protocol = skb->protocol;
2817 u32 tx_flags = 0;
2818
2819 if (protocol == htons(ETH_P_8021Q) &&
2820 !(tx_ring->netdev->features & NETIF_F_HW_VLAN_CTAG_TX)) {
2821 /* When HW VLAN acceleration is turned off by the user the
2822 * stack sets the protocol to 8021q so that the driver
2823 * can take any steps required to support the SW only
2824 * VLAN handling. In our case the driver doesn't need
2825 * to take any further steps so just set the protocol
2826 * to the encapsulated ethertype.
2827 */
2828 skb->protocol = vlan_get_protocol(skb);
2829 goto out;
2830 }
2831
2832 /* if we have a HW VLAN tag being added, default to the HW one */
2833 if (skb_vlan_tag_present(skb)) {
2834 tx_flags |= skb_vlan_tag_get(skb) << I40E_TX_FLAGS_VLAN_SHIFT;
2835 tx_flags |= I40E_TX_FLAGS_HW_VLAN;
2836 /* else if it is a SW VLAN, check the next protocol and store the tag */
2837 } else if (protocol == htons(ETH_P_8021Q)) {
2838 struct vlan_hdr *vhdr, _vhdr;
2839
2840 vhdr = skb_header_pointer(skb, ETH_HLEN, sizeof(_vhdr), &_vhdr);
2841 if (!vhdr)
2842 return -EINVAL;
2843
2844 protocol = vhdr->h_vlan_encapsulated_proto;
2845 tx_flags |= ntohs(vhdr->h_vlan_TCI) << I40E_TX_FLAGS_VLAN_SHIFT;
2846 tx_flags |= I40E_TX_FLAGS_SW_VLAN;
2847 }
2848
2849 if (!(tx_ring->vsi->back->flags & I40E_FLAG_DCB_ENABLED))
2850 goto out;
2851
2852 /* Insert 802.1p priority into VLAN header */
2853 if ((tx_flags & (I40E_TX_FLAGS_HW_VLAN | I40E_TX_FLAGS_SW_VLAN)) ||
2854 (skb->priority != TC_PRIO_CONTROL)) {
2855 tx_flags &= ~I40E_TX_FLAGS_VLAN_PRIO_MASK;
2856 tx_flags |= (skb->priority & 0x7) <<
2857 I40E_TX_FLAGS_VLAN_PRIO_SHIFT;
2858 if (tx_flags & I40E_TX_FLAGS_SW_VLAN) {
2859 struct vlan_ethhdr *vhdr;
2860 int rc;
2861
2862 rc = skb_cow_head(skb, 0);
2863 if (rc < 0)
2864 return rc;
2865 vhdr = (struct vlan_ethhdr *)skb->data;
2866 vhdr->h_vlan_TCI = htons(tx_flags >>
2867 I40E_TX_FLAGS_VLAN_SHIFT);
2868 } else {
2869 tx_flags |= I40E_TX_FLAGS_HW_VLAN;
2870 }
2871 }
2872
2873out:
2874 *flags = tx_flags;
2875 return 0;
2876}
2877
2878/**
2879 * i40e_tso - set up the tso context descriptor
2880 * @first: pointer to first Tx buffer for xmit
2881 * @hdr_len: ptr to the size of the packet header
2882 * @cd_type_cmd_tso_mss: Quad Word 1
2883 *
2884 * Returns 0 if no TSO can happen, 1 if tso is going, or error
2885 **/
2886static int i40e_tso(struct i40e_tx_buffer *first, u8 *hdr_len,
2887 u64 *cd_type_cmd_tso_mss)
2888{
2889 struct sk_buff *skb = first->skb;
2890 u64 cd_cmd, cd_tso_len, cd_mss;
2891 union {
2892 struct iphdr *v4;
2893 struct ipv6hdr *v6;
2894 unsigned char *hdr;
2895 } ip;
2896 union {
2897 struct tcphdr *tcp;
2898 struct udphdr *udp;
2899 unsigned char *hdr;
2900 } l4;
2901 u32 paylen, l4_offset;
2902 u16 gso_segs, gso_size;
2903 int err;
2904
2905 if (skb->ip_summed != CHECKSUM_PARTIAL)
2906 return 0;
2907
2908 if (!skb_is_gso(skb))
2909 return 0;
2910
2911 err = skb_cow_head(skb, 0);
2912 if (err < 0)
2913 return err;
2914
2915 ip.hdr = skb_network_header(skb);
2916 l4.hdr = skb_transport_header(skb);
2917
2918 /* initialize outer IP header fields */
2919 if (ip.v4->version == 4) {
2920 ip.v4->tot_len = 0;
2921 ip.v4->check = 0;
2922 } else {
2923 ip.v6->payload_len = 0;
2924 }
2925
2926 if (skb_shinfo(skb)->gso_type & (SKB_GSO_GRE |
2927 SKB_GSO_GRE_CSUM |
2928 SKB_GSO_IPXIP4 |
2929 SKB_GSO_IPXIP6 |
2930 SKB_GSO_UDP_TUNNEL |
2931 SKB_GSO_UDP_TUNNEL_CSUM)) {
2932 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) &&
2933 (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM)) {
2934 l4.udp->len = 0;
2935
2936 /* determine offset of outer transport header */
2937 l4_offset = l4.hdr - skb->data;
2938
2939 /* remove payload length from outer checksum */
2940 paylen = skb->len - l4_offset;
2941 csum_replace_by_diff(&l4.udp->check,
2942 (__force __wsum)htonl(paylen));
2943 }
2944
2945 /* reset pointers to inner headers */
2946 ip.hdr = skb_inner_network_header(skb);
2947 l4.hdr = skb_inner_transport_header(skb);
2948
2949 /* initialize inner IP header fields */
2950 if (ip.v4->version == 4) {
2951 ip.v4->tot_len = 0;
2952 ip.v4->check = 0;
2953 } else {
2954 ip.v6->payload_len = 0;
2955 }
2956 }
2957
2958 /* determine offset of inner transport header */
2959 l4_offset = l4.hdr - skb->data;
2960
2961 /* remove payload length from inner checksum */
2962 paylen = skb->len - l4_offset;
2963
2964 if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) {
2965 csum_replace_by_diff(&l4.udp->check, (__force __wsum)htonl(paylen));
2966 /* compute length of segmentation header */
2967 *hdr_len = sizeof(*l4.udp) + l4_offset;
2968 } else {
2969 csum_replace_by_diff(&l4.tcp->check, (__force __wsum)htonl(paylen));
2970 /* compute length of segmentation header */
2971 *hdr_len = (l4.tcp->doff * 4) + l4_offset;
2972 }
2973
2974 /* pull values out of skb_shinfo */
2975 gso_size = skb_shinfo(skb)->gso_size;
2976 gso_segs = skb_shinfo(skb)->gso_segs;
2977
2978 /* update GSO size and bytecount with header size */
2979 first->gso_segs = gso_segs;
2980 first->bytecount += (first->gso_segs - 1) * *hdr_len;
2981
2982 /* find the field values */
2983 cd_cmd = I40E_TX_CTX_DESC_TSO;
2984 cd_tso_len = skb->len - *hdr_len;
2985 cd_mss = gso_size;
2986 *cd_type_cmd_tso_mss |= (cd_cmd << I40E_TXD_CTX_QW1_CMD_SHIFT) |
2987 (cd_tso_len << I40E_TXD_CTX_QW1_TSO_LEN_SHIFT) |
2988 (cd_mss << I40E_TXD_CTX_QW1_MSS_SHIFT);
2989 return 1;
2990}
2991
2992/**
2993 * i40e_tsyn - set up the tsyn context descriptor
2994 * @tx_ring: ptr to the ring to send
2995 * @skb: ptr to the skb we're sending
2996 * @tx_flags: the collected send information
2997 * @cd_type_cmd_tso_mss: Quad Word 1
2998 *
2999 * Returns 0 if no Tx timestamp can happen and 1 if the timestamp will happen
3000 **/
3001static int i40e_tsyn(struct i40e_ring *tx_ring, struct sk_buff *skb,
3002 u32 tx_flags, u64 *cd_type_cmd_tso_mss)
3003{
3004 struct i40e_pf *pf;
3005
3006 if (likely(!(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)))
3007 return 0;
3008
3009 /* Tx timestamps cannot be sampled when doing TSO */
3010 if (tx_flags & I40E_TX_FLAGS_TSO)
3011 return 0;
3012
3013 /* only timestamp the outbound packet if the user has requested it and
3014 * we are not already transmitting a packet to be timestamped
3015 */
3016 pf = i40e_netdev_to_pf(tx_ring->netdev);
3017 if (!(pf->flags & I40E_FLAG_PTP))
3018 return 0;
3019
3020 if (pf->ptp_tx &&
3021 !test_and_set_bit_lock(__I40E_PTP_TX_IN_PROGRESS, pf->state)) {
3022 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
3023 pf->ptp_tx_start = jiffies;
3024 pf->ptp_tx_skb = skb_get(skb);
3025 } else {
3026 pf->tx_hwtstamp_skipped++;
3027 return 0;
3028 }
3029
3030 *cd_type_cmd_tso_mss |= (u64)I40E_TX_CTX_DESC_TSYN <<
3031 I40E_TXD_CTX_QW1_CMD_SHIFT;
3032
3033 return 1;
3034}
3035
3036/**
3037 * i40e_tx_enable_csum - Enable Tx checksum offloads
3038 * @skb: send buffer
3039 * @tx_flags: pointer to Tx flags currently set
3040 * @td_cmd: Tx descriptor command bits to set
3041 * @td_offset: Tx descriptor header offsets to set
3042 * @tx_ring: Tx descriptor ring
3043 * @cd_tunneling: ptr to context desc bits
3044 **/
3045static int i40e_tx_enable_csum(struct sk_buff *skb, u32 *tx_flags,
3046 u32 *td_cmd, u32 *td_offset,
3047 struct i40e_ring *tx_ring,
3048 u32 *cd_tunneling)
3049{
3050 union {
3051 struct iphdr *v4;
3052 struct ipv6hdr *v6;
3053 unsigned char *hdr;
3054 } ip;
3055 union {
3056 struct tcphdr *tcp;
3057 struct udphdr *udp;
3058 unsigned char *hdr;
3059 } l4;
3060 unsigned char *exthdr;
3061 u32 offset, cmd = 0;
3062 __be16 frag_off;
3063 u8 l4_proto = 0;
3064
3065 if (skb->ip_summed != CHECKSUM_PARTIAL)
3066 return 0;
3067
3068 ip.hdr = skb_network_header(skb);
3069 l4.hdr = skb_transport_header(skb);
3070
3071 /* compute outer L2 header size */
3072 offset = ((ip.hdr - skb->data) / 2) << I40E_TX_DESC_LENGTH_MACLEN_SHIFT;
3073
3074 if (skb->encapsulation) {
3075 u32 tunnel = 0;
3076 /* define outer network header type */
3077 if (*tx_flags & I40E_TX_FLAGS_IPV4) {
3078 tunnel |= (*tx_flags & I40E_TX_FLAGS_TSO) ?
3079 I40E_TX_CTX_EXT_IP_IPV4 :
3080 I40E_TX_CTX_EXT_IP_IPV4_NO_CSUM;
3081
3082 l4_proto = ip.v4->protocol;
3083 } else if (*tx_flags & I40E_TX_FLAGS_IPV6) {
3084 tunnel |= I40E_TX_CTX_EXT_IP_IPV6;
3085
3086 exthdr = ip.hdr + sizeof(*ip.v6);
3087 l4_proto = ip.v6->nexthdr;
3088 if (l4.hdr != exthdr)
3089 ipv6_skip_exthdr(skb, exthdr - skb->data,
3090 &l4_proto, &frag_off);
3091 }
3092
3093 /* define outer transport */
3094 switch (l4_proto) {
3095 case IPPROTO_UDP:
3096 tunnel |= I40E_TXD_CTX_UDP_TUNNELING;
3097 *tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL;
3098 break;
3099 case IPPROTO_GRE:
3100 tunnel |= I40E_TXD_CTX_GRE_TUNNELING;
3101 *tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL;
3102 break;
3103 case IPPROTO_IPIP:
3104 case IPPROTO_IPV6:
3105 *tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL;
3106 l4.hdr = skb_inner_network_header(skb);
3107 break;
3108 default:
3109 if (*tx_flags & I40E_TX_FLAGS_TSO)
3110 return -1;
3111
3112 skb_checksum_help(skb);
3113 return 0;
3114 }
3115
3116 /* compute outer L3 header size */
3117 tunnel |= ((l4.hdr - ip.hdr) / 4) <<
3118 I40E_TXD_CTX_QW0_EXT_IPLEN_SHIFT;
3119
3120 /* switch IP header pointer from outer to inner header */
3121 ip.hdr = skb_inner_network_header(skb);
3122
3123 /* compute tunnel header size */
3124 tunnel |= ((ip.hdr - l4.hdr) / 2) <<
3125 I40E_TXD_CTX_QW0_NATLEN_SHIFT;
3126
3127 /* indicate if we need to offload outer UDP header */
3128 if ((*tx_flags & I40E_TX_FLAGS_TSO) &&
3129 !(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) &&
3130 (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM))
3131 tunnel |= I40E_TXD_CTX_QW0_L4T_CS_MASK;
3132
3133 /* record tunnel offload values */
3134 *cd_tunneling |= tunnel;
3135
3136 /* switch L4 header pointer from outer to inner */
3137 l4.hdr = skb_inner_transport_header(skb);
3138 l4_proto = 0;
3139
3140 /* reset type as we transition from outer to inner headers */
3141 *tx_flags &= ~(I40E_TX_FLAGS_IPV4 | I40E_TX_FLAGS_IPV6);
3142 if (ip.v4->version == 4)
3143 *tx_flags |= I40E_TX_FLAGS_IPV4;
3144 if (ip.v6->version == 6)
3145 *tx_flags |= I40E_TX_FLAGS_IPV6;
3146 }
3147
3148 /* Enable IP checksum offloads */
3149 if (*tx_flags & I40E_TX_FLAGS_IPV4) {
3150 l4_proto = ip.v4->protocol;
3151 /* the stack computes the IP header already, the only time we
3152 * need the hardware to recompute it is in the case of TSO.
3153 */
3154 cmd |= (*tx_flags & I40E_TX_FLAGS_TSO) ?
3155 I40E_TX_DESC_CMD_IIPT_IPV4_CSUM :
3156 I40E_TX_DESC_CMD_IIPT_IPV4;
3157 } else if (*tx_flags & I40E_TX_FLAGS_IPV6) {
3158 cmd |= I40E_TX_DESC_CMD_IIPT_IPV6;
3159
3160 exthdr = ip.hdr + sizeof(*ip.v6);
3161 l4_proto = ip.v6->nexthdr;
3162 if (l4.hdr != exthdr)
3163 ipv6_skip_exthdr(skb, exthdr - skb->data,
3164 &l4_proto, &frag_off);
3165 }
3166
3167 /* compute inner L3 header size */
3168 offset |= ((l4.hdr - ip.hdr) / 4) << I40E_TX_DESC_LENGTH_IPLEN_SHIFT;
3169
3170 /* Enable L4 checksum offloads */
3171 switch (l4_proto) {
3172 case IPPROTO_TCP:
3173 /* enable checksum offloads */
3174 cmd |= I40E_TX_DESC_CMD_L4T_EOFT_TCP;
3175 offset |= l4.tcp->doff << I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
3176 break;
3177 case IPPROTO_SCTP:
3178 /* enable SCTP checksum offload */
3179 cmd |= I40E_TX_DESC_CMD_L4T_EOFT_SCTP;
3180 offset |= (sizeof(struct sctphdr) >> 2) <<
3181 I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
3182 break;
3183 case IPPROTO_UDP:
3184 /* enable UDP checksum offload */
3185 cmd |= I40E_TX_DESC_CMD_L4T_EOFT_UDP;
3186 offset |= (sizeof(struct udphdr) >> 2) <<
3187 I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
3188 break;
3189 default:
3190 if (*tx_flags & I40E_TX_FLAGS_TSO)
3191 return -1;
3192 skb_checksum_help(skb);
3193 return 0;
3194 }
3195
3196 *td_cmd |= cmd;
3197 *td_offset |= offset;
3198
3199 return 1;
3200}
3201
3202/**
3203 * i40e_create_tx_ctx Build the Tx context descriptor
3204 * @tx_ring: ring to create the descriptor on
3205 * @cd_type_cmd_tso_mss: Quad Word 1
3206 * @cd_tunneling: Quad Word 0 - bits 0-31
3207 * @cd_l2tag2: Quad Word 0 - bits 32-63
3208 **/
3209static void i40e_create_tx_ctx(struct i40e_ring *tx_ring,
3210 const u64 cd_type_cmd_tso_mss,
3211 const u32 cd_tunneling, const u32 cd_l2tag2)
3212{
3213 struct i40e_tx_context_desc *context_desc;
3214 int i = tx_ring->next_to_use;
3215
3216 if ((cd_type_cmd_tso_mss == I40E_TX_DESC_DTYPE_CONTEXT) &&
3217 !cd_tunneling && !cd_l2tag2)
3218 return;
3219
3220 /* grab the next descriptor */
3221 context_desc = I40E_TX_CTXTDESC(tx_ring, i);
3222
3223 i++;
3224 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
3225
3226 /* cpu_to_le32 and assign to struct fields */
3227 context_desc->tunneling_params = cpu_to_le32(cd_tunneling);
3228 context_desc->l2tag2 = cpu_to_le16(cd_l2tag2);
3229 context_desc->rsvd = cpu_to_le16(0);
3230 context_desc->type_cmd_tso_mss = cpu_to_le64(cd_type_cmd_tso_mss);
3231}
3232
3233/**
3234 * __i40e_maybe_stop_tx - 2nd level check for tx stop conditions
3235 * @tx_ring: the ring to be checked
3236 * @size: the size buffer we want to assure is available
3237 *
3238 * Returns -EBUSY if a stop is needed, else 0
3239 **/
3240int __i40e_maybe_stop_tx(struct i40e_ring *tx_ring, int size)
3241{
3242 netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
3243 /* Memory barrier before checking head and tail */
3244 smp_mb();
3245
3246 /* Check again in a case another CPU has just made room available. */
3247 if (likely(I40E_DESC_UNUSED(tx_ring) < size))
3248 return -EBUSY;
3249
3250 /* A reprieve! - use start_queue because it doesn't call schedule */
3251 netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index);
3252 ++tx_ring->tx_stats.restart_queue;
3253 return 0;
3254}
3255
3256/**
3257 * __i40e_chk_linearize - Check if there are more than 8 buffers per packet
3258 * @skb: send buffer
3259 *
3260 * Note: Our HW can't DMA more than 8 buffers to build a packet on the wire
3261 * and so we need to figure out the cases where we need to linearize the skb.
3262 *
3263 * For TSO we need to count the TSO header and segment payload separately.
3264 * As such we need to check cases where we have 7 fragments or more as we
3265 * can potentially require 9 DMA transactions, 1 for the TSO header, 1 for
3266 * the segment payload in the first descriptor, and another 7 for the
3267 * fragments.
3268 **/
3269bool __i40e_chk_linearize(struct sk_buff *skb)
3270{
3271 const skb_frag_t *frag, *stale;
3272 int nr_frags, sum;
3273
3274 /* no need to check if number of frags is less than 7 */
3275 nr_frags = skb_shinfo(skb)->nr_frags;
3276 if (nr_frags < (I40E_MAX_BUFFER_TXD - 1))
3277 return false;
3278
3279 /* We need to walk through the list and validate that each group
3280 * of 6 fragments totals at least gso_size.
3281 */
3282 nr_frags -= I40E_MAX_BUFFER_TXD - 2;
3283 frag = &skb_shinfo(skb)->frags[0];
3284
3285 /* Initialize size to the negative value of gso_size minus 1. We
3286 * use this as the worst case scenerio in which the frag ahead
3287 * of us only provides one byte which is why we are limited to 6
3288 * descriptors for a single transmit as the header and previous
3289 * fragment are already consuming 2 descriptors.
3290 */
3291 sum = 1 - skb_shinfo(skb)->gso_size;
3292
3293 /* Add size of frags 0 through 4 to create our initial sum */
3294 sum += skb_frag_size(frag++);
3295 sum += skb_frag_size(frag++);
3296 sum += skb_frag_size(frag++);
3297 sum += skb_frag_size(frag++);
3298 sum += skb_frag_size(frag++);
3299
3300 /* Walk through fragments adding latest fragment, testing it, and
3301 * then removing stale fragments from the sum.
3302 */
3303 for (stale = &skb_shinfo(skb)->frags[0];; stale++) {
3304 int stale_size = skb_frag_size(stale);
3305
3306 sum += skb_frag_size(frag++);
3307
3308 /* The stale fragment may present us with a smaller
3309 * descriptor than the actual fragment size. To account
3310 * for that we need to remove all the data on the front and
3311 * figure out what the remainder would be in the last
3312 * descriptor associated with the fragment.
3313 */
3314 if (stale_size > I40E_MAX_DATA_PER_TXD) {
3315 int align_pad = -(skb_frag_off(stale)) &
3316 (I40E_MAX_READ_REQ_SIZE - 1);
3317
3318 sum -= align_pad;
3319 stale_size -= align_pad;
3320
3321 do {
3322 sum -= I40E_MAX_DATA_PER_TXD_ALIGNED;
3323 stale_size -= I40E_MAX_DATA_PER_TXD_ALIGNED;
3324 } while (stale_size > I40E_MAX_DATA_PER_TXD);
3325 }
3326
3327 /* if sum is negative we failed to make sufficient progress */
3328 if (sum < 0)
3329 return true;
3330
3331 if (!nr_frags--)
3332 break;
3333
3334 sum -= stale_size;
3335 }
3336
3337 return false;
3338}
3339
3340/**
3341 * i40e_tx_map - Build the Tx descriptor
3342 * @tx_ring: ring to send buffer on
3343 * @skb: send buffer
3344 * @first: first buffer info buffer to use
3345 * @tx_flags: collected send information
3346 * @hdr_len: size of the packet header
3347 * @td_cmd: the command field in the descriptor
3348 * @td_offset: offset for checksum or crc
3349 *
3350 * Returns 0 on success, -1 on failure to DMA
3351 **/
3352static inline int i40e_tx_map(struct i40e_ring *tx_ring, struct sk_buff *skb,
3353 struct i40e_tx_buffer *first, u32 tx_flags,
3354 const u8 hdr_len, u32 td_cmd, u32 td_offset)
3355{
3356 unsigned int data_len = skb->data_len;
3357 unsigned int size = skb_headlen(skb);
3358 skb_frag_t *frag;
3359 struct i40e_tx_buffer *tx_bi;
3360 struct i40e_tx_desc *tx_desc;
3361 u16 i = tx_ring->next_to_use;
3362 u32 td_tag = 0;
3363 dma_addr_t dma;
3364 u16 desc_count = 1;
3365
3366 if (tx_flags & I40E_TX_FLAGS_HW_VLAN) {
3367 td_cmd |= I40E_TX_DESC_CMD_IL2TAG1;
3368 td_tag = (tx_flags & I40E_TX_FLAGS_VLAN_MASK) >>
3369 I40E_TX_FLAGS_VLAN_SHIFT;
3370 }
3371
3372 first->tx_flags = tx_flags;
3373
3374 dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
3375
3376 tx_desc = I40E_TX_DESC(tx_ring, i);
3377 tx_bi = first;
3378
3379 for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
3380 unsigned int max_data = I40E_MAX_DATA_PER_TXD_ALIGNED;
3381
3382 if (dma_mapping_error(tx_ring->dev, dma))
3383 goto dma_error;
3384
3385 /* record length, and DMA address */
3386 dma_unmap_len_set(tx_bi, len, size);
3387 dma_unmap_addr_set(tx_bi, dma, dma);
3388
3389 /* align size to end of page */
3390 max_data += -dma & (I40E_MAX_READ_REQ_SIZE - 1);
3391 tx_desc->buffer_addr = cpu_to_le64(dma);
3392
3393 while (unlikely(size > I40E_MAX_DATA_PER_TXD)) {
3394 tx_desc->cmd_type_offset_bsz =
3395 build_ctob(td_cmd, td_offset,
3396 max_data, td_tag);
3397
3398 tx_desc++;
3399 i++;
3400 desc_count++;
3401
3402 if (i == tx_ring->count) {
3403 tx_desc = I40E_TX_DESC(tx_ring, 0);
3404 i = 0;
3405 }
3406
3407 dma += max_data;
3408 size -= max_data;
3409
3410 max_data = I40E_MAX_DATA_PER_TXD_ALIGNED;
3411 tx_desc->buffer_addr = cpu_to_le64(dma);
3412 }
3413
3414 if (likely(!data_len))
3415 break;
3416
3417 tx_desc->cmd_type_offset_bsz = build_ctob(td_cmd, td_offset,
3418 size, td_tag);
3419
3420 tx_desc++;
3421 i++;
3422 desc_count++;
3423
3424 if (i == tx_ring->count) {
3425 tx_desc = I40E_TX_DESC(tx_ring, 0);
3426 i = 0;
3427 }
3428
3429 size = skb_frag_size(frag);
3430 data_len -= size;
3431
3432 dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
3433 DMA_TO_DEVICE);
3434
3435 tx_bi = &tx_ring->tx_bi[i];
3436 }
3437
3438 netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
3439
3440 i++;
3441 if (i == tx_ring->count)
3442 i = 0;
3443
3444 tx_ring->next_to_use = i;
3445
3446 i40e_maybe_stop_tx(tx_ring, DESC_NEEDED);
3447
3448 /* write last descriptor with EOP bit */
3449 td_cmd |= I40E_TX_DESC_CMD_EOP;
3450
3451 /* We OR these values together to check both against 4 (WB_STRIDE)
3452 * below. This is safe since we don't re-use desc_count afterwards.
3453 */
3454 desc_count |= ++tx_ring->packet_stride;
3455
3456 if (desc_count >= WB_STRIDE) {
3457 /* write last descriptor with RS bit set */
3458 td_cmd |= I40E_TX_DESC_CMD_RS;
3459 tx_ring->packet_stride = 0;
3460 }
3461
3462 tx_desc->cmd_type_offset_bsz =
3463 build_ctob(td_cmd, td_offset, size, td_tag);
3464
3465 skb_tx_timestamp(skb);
3466
3467 /* Force memory writes to complete before letting h/w know there
3468 * are new descriptors to fetch.
3469 *
3470 * We also use this memory barrier to make certain all of the
3471 * status bits have been updated before next_to_watch is written.
3472 */
3473 wmb();
3474
3475 /* set next_to_watch value indicating a packet is present */
3476 first->next_to_watch = tx_desc;
3477
3478 /* notify HW of packet */
3479 if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more()) {
3480 writel(i, tx_ring->tail);
3481 }
3482
3483 return 0;
3484
3485dma_error:
3486 dev_info(tx_ring->dev, "TX DMA map failed\n");
3487
3488 /* clear dma mappings for failed tx_bi map */
3489 for (;;) {
3490 tx_bi = &tx_ring->tx_bi[i];
3491 i40e_unmap_and_free_tx_resource(tx_ring, tx_bi);
3492 if (tx_bi == first)
3493 break;
3494 if (i == 0)
3495 i = tx_ring->count;
3496 i--;
3497 }
3498
3499 tx_ring->next_to_use = i;
3500
3501 return -1;
3502}
3503
3504/**
3505 * i40e_xmit_xdp_ring - transmits an XDP buffer to an XDP Tx ring
3506 * @xdp: data to transmit
3507 * @xdp_ring: XDP Tx ring
3508 **/
3509static int i40e_xmit_xdp_ring(struct xdp_frame *xdpf,
3510 struct i40e_ring *xdp_ring)
3511{
3512 u16 i = xdp_ring->next_to_use;
3513 struct i40e_tx_buffer *tx_bi;
3514 struct i40e_tx_desc *tx_desc;
3515 void *data = xdpf->data;
3516 u32 size = xdpf->len;
3517 dma_addr_t dma;
3518
3519 if (!unlikely(I40E_DESC_UNUSED(xdp_ring))) {
3520 xdp_ring->tx_stats.tx_busy++;
3521 return I40E_XDP_CONSUMED;
3522 }
3523 dma = dma_map_single(xdp_ring->dev, data, size, DMA_TO_DEVICE);
3524 if (dma_mapping_error(xdp_ring->dev, dma))
3525 return I40E_XDP_CONSUMED;
3526
3527 tx_bi = &xdp_ring->tx_bi[i];
3528 tx_bi->bytecount = size;
3529 tx_bi->gso_segs = 1;
3530 tx_bi->xdpf = xdpf;
3531
3532 /* record length, and DMA address */
3533 dma_unmap_len_set(tx_bi, len, size);
3534 dma_unmap_addr_set(tx_bi, dma, dma);
3535
3536 tx_desc = I40E_TX_DESC(xdp_ring, i);
3537 tx_desc->buffer_addr = cpu_to_le64(dma);
3538 tx_desc->cmd_type_offset_bsz = build_ctob(I40E_TX_DESC_CMD_ICRC
3539 | I40E_TXD_CMD,
3540 0, size, 0);
3541
3542 /* Make certain all of the status bits have been updated
3543 * before next_to_watch is written.
3544 */
3545 smp_wmb();
3546
3547 xdp_ring->xdp_tx_active++;
3548 i++;
3549 if (i == xdp_ring->count)
3550 i = 0;
3551
3552 tx_bi->next_to_watch = tx_desc;
3553 xdp_ring->next_to_use = i;
3554
3555 return I40E_XDP_TX;
3556}
3557
3558/**
3559 * i40e_xmit_frame_ring - Sends buffer on Tx ring
3560 * @skb: send buffer
3561 * @tx_ring: ring to send buffer on
3562 *
3563 * Returns NETDEV_TX_OK if sent, else an error code
3564 **/
3565static netdev_tx_t i40e_xmit_frame_ring(struct sk_buff *skb,
3566 struct i40e_ring *tx_ring)
3567{
3568 u64 cd_type_cmd_tso_mss = I40E_TX_DESC_DTYPE_CONTEXT;
3569 u32 cd_tunneling = 0, cd_l2tag2 = 0;
3570 struct i40e_tx_buffer *first;
3571 u32 td_offset = 0;
3572 u32 tx_flags = 0;
3573 __be16 protocol;
3574 u32 td_cmd = 0;
3575 u8 hdr_len = 0;
3576 int tso, count;
3577 int tsyn;
3578
3579 /* prefetch the data, we'll need it later */
3580 prefetch(skb->data);
3581
3582 i40e_trace(xmit_frame_ring, skb, tx_ring);
3583
3584 count = i40e_xmit_descriptor_count(skb);
3585 if (i40e_chk_linearize(skb, count)) {
3586 if (__skb_linearize(skb)) {
3587 dev_kfree_skb_any(skb);
3588 return NETDEV_TX_OK;
3589 }
3590 count = i40e_txd_use_count(skb->len);
3591 tx_ring->tx_stats.tx_linearize++;
3592 }
3593
3594 /* need: 1 descriptor per page * PAGE_SIZE/I40E_MAX_DATA_PER_TXD,
3595 * + 1 desc for skb_head_len/I40E_MAX_DATA_PER_TXD,
3596 * + 4 desc gap to avoid the cache line where head is,
3597 * + 1 desc for context descriptor,
3598 * otherwise try next time
3599 */
3600 if (i40e_maybe_stop_tx(tx_ring, count + 4 + 1)) {
3601 tx_ring->tx_stats.tx_busy++;
3602 return NETDEV_TX_BUSY;
3603 }
3604
3605 /* record the location of the first descriptor for this packet */
3606 first = &tx_ring->tx_bi[tx_ring->next_to_use];
3607 first->skb = skb;
3608 first->bytecount = skb->len;
3609 first->gso_segs = 1;
3610
3611 /* prepare the xmit flags */
3612 if (i40e_tx_prepare_vlan_flags(skb, tx_ring, &tx_flags))
3613 goto out_drop;
3614
3615 /* obtain protocol of skb */
3616 protocol = vlan_get_protocol(skb);
3617
3618 /* setup IPv4/IPv6 offloads */
3619 if (protocol == htons(ETH_P_IP))
3620 tx_flags |= I40E_TX_FLAGS_IPV4;
3621 else if (protocol == htons(ETH_P_IPV6))
3622 tx_flags |= I40E_TX_FLAGS_IPV6;
3623
3624 tso = i40e_tso(first, &hdr_len, &cd_type_cmd_tso_mss);
3625
3626 if (tso < 0)
3627 goto out_drop;
3628 else if (tso)
3629 tx_flags |= I40E_TX_FLAGS_TSO;
3630
3631 /* Always offload the checksum, since it's in the data descriptor */
3632 tso = i40e_tx_enable_csum(skb, &tx_flags, &td_cmd, &td_offset,
3633 tx_ring, &cd_tunneling);
3634 if (tso < 0)
3635 goto out_drop;
3636
3637 tsyn = i40e_tsyn(tx_ring, skb, tx_flags, &cd_type_cmd_tso_mss);
3638
3639 if (tsyn)
3640 tx_flags |= I40E_TX_FLAGS_TSYN;
3641
3642 /* always enable CRC insertion offload */
3643 td_cmd |= I40E_TX_DESC_CMD_ICRC;
3644
3645 i40e_create_tx_ctx(tx_ring, cd_type_cmd_tso_mss,
3646 cd_tunneling, cd_l2tag2);
3647
3648 /* Add Flow Director ATR if it's enabled.
3649 *
3650 * NOTE: this must always be directly before the data descriptor.
3651 */
3652 i40e_atr(tx_ring, skb, tx_flags);
3653
3654 if (i40e_tx_map(tx_ring, skb, first, tx_flags, hdr_len,
3655 td_cmd, td_offset))
3656 goto cleanup_tx_tstamp;
3657
3658 return NETDEV_TX_OK;
3659
3660out_drop:
3661 i40e_trace(xmit_frame_ring_drop, first->skb, tx_ring);
3662 dev_kfree_skb_any(first->skb);
3663 first->skb = NULL;
3664cleanup_tx_tstamp:
3665 if (unlikely(tx_flags & I40E_TX_FLAGS_TSYN)) {
3666 struct i40e_pf *pf = i40e_netdev_to_pf(tx_ring->netdev);
3667
3668 dev_kfree_skb_any(pf->ptp_tx_skb);
3669 pf->ptp_tx_skb = NULL;
3670 clear_bit_unlock(__I40E_PTP_TX_IN_PROGRESS, pf->state);
3671 }
3672
3673 return NETDEV_TX_OK;
3674}
3675
3676/**
3677 * i40e_lan_xmit_frame - Selects the correct VSI and Tx queue to send buffer
3678 * @skb: send buffer
3679 * @netdev: network interface device structure
3680 *
3681 * Returns NETDEV_TX_OK if sent, else an error code
3682 **/
3683netdev_tx_t i40e_lan_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
3684{
3685 struct i40e_netdev_priv *np = netdev_priv(netdev);
3686 struct i40e_vsi *vsi = np->vsi;
3687 struct i40e_ring *tx_ring = vsi->tx_rings[skb->queue_mapping];
3688
3689 /* hardware can't handle really short frames, hardware padding works
3690 * beyond this point
3691 */
3692 if (skb_put_padto(skb, I40E_MIN_TX_LEN))
3693 return NETDEV_TX_OK;
3694
3695 return i40e_xmit_frame_ring(skb, tx_ring);
3696}
3697
3698/**
3699 * i40e_xdp_xmit - Implements ndo_xdp_xmit
3700 * @dev: netdev
3701 * @xdp: XDP buffer
3702 *
3703 * Returns number of frames successfully sent. Frames that fail are
3704 * free'ed via XDP return API.
3705 *
3706 * For error cases, a negative errno code is returned and no-frames
3707 * are transmitted (caller must handle freeing frames).
3708 **/
3709int i40e_xdp_xmit(struct net_device *dev, int n, struct xdp_frame **frames,
3710 u32 flags)
3711{
3712 struct i40e_netdev_priv *np = netdev_priv(dev);
3713 unsigned int queue_index = smp_processor_id();
3714 struct i40e_vsi *vsi = np->vsi;
3715 struct i40e_pf *pf = vsi->back;
3716 struct i40e_ring *xdp_ring;
3717 int drops = 0;
3718 int i;
3719
3720 if (test_bit(__I40E_VSI_DOWN, vsi->state))
3721 return -ENETDOWN;
3722
3723 if (!i40e_enabled_xdp_vsi(vsi) || queue_index >= vsi->num_queue_pairs ||
3724 test_bit(__I40E_CONFIG_BUSY, pf->state))
3725 return -ENXIO;
3726
3727 if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK))
3728 return -EINVAL;
3729
3730 xdp_ring = vsi->xdp_rings[queue_index];
3731
3732 for (i = 0; i < n; i++) {
3733 struct xdp_frame *xdpf = frames[i];
3734 int err;
3735
3736 err = i40e_xmit_xdp_ring(xdpf, xdp_ring);
3737 if (err != I40E_XDP_TX) {
3738 xdp_return_frame_rx_napi(xdpf);
3739 drops++;
3740 }
3741 }
3742
3743 if (unlikely(flags & XDP_XMIT_FLUSH))
3744 i40e_xdp_ring_update_tail(xdp_ring);
3745
3746 return n - drops;
3747}