Linux Audio

Check our new training course

Linux kernel drivers training

May 6-19, 2025
Register
Loading...
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0
   2/* Copyright(c) 2013 - 2018 Intel Corporation. */
   3
   4#include <linux/bpf_trace.h>
   5#include <linux/net/intel/libie/rx.h>
   6#include <linux/prefetch.h>
   7#include <linux/sctp.h>
   8#include <net/mpls.h>
   9#include <net/xdp.h>
  10#include "i40e_txrx_common.h"
  11#include "i40e_trace.h"
 
 
  12#include "i40e_xsk.h"
  13
  14#define I40E_TXD_CMD (I40E_TX_DESC_CMD_EOP | I40E_TX_DESC_CMD_RS)
  15/**
  16 * i40e_fdir - Generate a Flow Director descriptor based on fdata
  17 * @tx_ring: Tx ring to send buffer on
  18 * @fdata: Flow director filter data
  19 * @add: Indicate if we are adding a rule or deleting one
  20 *
  21 **/
  22static void i40e_fdir(struct i40e_ring *tx_ring,
  23		      struct i40e_fdir_filter *fdata, bool add)
  24{
  25	struct i40e_filter_program_desc *fdir_desc;
  26	struct i40e_pf *pf = tx_ring->vsi->back;
  27	u32 flex_ptype, dtype_cmd, vsi_id;
  28	u16 i;
  29
  30	/* grab the next descriptor */
  31	i = tx_ring->next_to_use;
  32	fdir_desc = I40E_TX_FDIRDESC(tx_ring, i);
  33
  34	i++;
  35	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
  36
  37	flex_ptype = FIELD_PREP(I40E_TXD_FLTR_QW0_QINDEX_MASK, fdata->q_index);
 
 
 
 
  38
  39	flex_ptype |= FIELD_PREP(I40E_TXD_FLTR_QW0_FLEXOFF_MASK,
  40				 fdata->flex_off);
  41
  42	flex_ptype |= FIELD_PREP(I40E_TXD_FLTR_QW0_PCTYPE_MASK, fdata->pctype);
 
  43
  44	/* Use LAN VSI Id if not programmed by user */
  45	vsi_id = fdata->dest_vsi ? : i40e_pf_get_main_vsi(pf)->id;
  46	flex_ptype |= FIELD_PREP(I40E_TXD_FLTR_QW0_DEST_VSI_MASK, vsi_id);
 
  47
  48	dtype_cmd = I40E_TX_DESC_DTYPE_FILTER_PROG;
  49
  50	dtype_cmd |= add ?
  51		     I40E_FILTER_PROGRAM_DESC_PCMD_ADD_UPDATE <<
  52		     I40E_TXD_FLTR_QW1_PCMD_SHIFT :
  53		     I40E_FILTER_PROGRAM_DESC_PCMD_REMOVE <<
  54		     I40E_TXD_FLTR_QW1_PCMD_SHIFT;
  55
  56	dtype_cmd |= FIELD_PREP(I40E_TXD_FLTR_QW1_DEST_MASK, fdata->dest_ctl);
 
  57
  58	dtype_cmd |= FIELD_PREP(I40E_TXD_FLTR_QW1_FD_STATUS_MASK,
  59				fdata->fd_status);
  60
  61	if (fdata->cnt_index) {
  62		dtype_cmd |= I40E_TXD_FLTR_QW1_CNT_ENA_MASK;
  63		dtype_cmd |= FIELD_PREP(I40E_TXD_FLTR_QW1_CNTINDEX_MASK,
  64					fdata->cnt_index);
 
  65	}
  66
  67	fdir_desc->qindex_flex_ptype_vsi = cpu_to_le32(flex_ptype);
  68	fdir_desc->rsvd = cpu_to_le32(0);
  69	fdir_desc->dtype_cmd_cntindex = cpu_to_le32(dtype_cmd);
  70	fdir_desc->fd_id = cpu_to_le32(fdata->fd_id);
  71}
  72
  73#define I40E_FD_CLEAN_DELAY 10
  74/**
  75 * i40e_program_fdir_filter - Program a Flow Director filter
  76 * @fdir_data: Packet data that will be filter parameters
  77 * @raw_packet: the pre-allocated packet buffer for FDir
  78 * @pf: The PF pointer
  79 * @add: True for add/update, False for remove
  80 **/
  81static int i40e_program_fdir_filter(struct i40e_fdir_filter *fdir_data,
  82				    u8 *raw_packet, struct i40e_pf *pf,
  83				    bool add)
  84{
  85	struct i40e_tx_buffer *tx_buf, *first;
  86	struct i40e_tx_desc *tx_desc;
  87	struct i40e_ring *tx_ring;
  88	struct i40e_vsi *vsi;
  89	struct device *dev;
  90	dma_addr_t dma;
  91	u32 td_cmd = 0;
  92	u16 i;
  93
  94	/* find existing FDIR VSI */
  95	vsi = i40e_find_vsi_by_type(pf, I40E_VSI_FDIR);
  96	if (!vsi)
  97		return -ENOENT;
  98
  99	tx_ring = vsi->tx_rings[0];
 100	dev = tx_ring->dev;
 101
 102	/* we need two descriptors to add/del a filter and we can wait */
 103	for (i = I40E_FD_CLEAN_DELAY; I40E_DESC_UNUSED(tx_ring) < 2; i--) {
 104		if (!i)
 105			return -EAGAIN;
 106		msleep_interruptible(1);
 107	}
 108
 109	dma = dma_map_single(dev, raw_packet,
 110			     I40E_FDIR_MAX_RAW_PACKET_SIZE, DMA_TO_DEVICE);
 111	if (dma_mapping_error(dev, dma))
 112		goto dma_fail;
 113
 114	/* grab the next descriptor */
 115	i = tx_ring->next_to_use;
 116	first = &tx_ring->tx_bi[i];
 117	i40e_fdir(tx_ring, fdir_data, add);
 118
 119	/* Now program a dummy descriptor */
 120	i = tx_ring->next_to_use;
 121	tx_desc = I40E_TX_DESC(tx_ring, i);
 122	tx_buf = &tx_ring->tx_bi[i];
 123
 124	tx_ring->next_to_use = ((i + 1) < tx_ring->count) ? i + 1 : 0;
 125
 126	memset(tx_buf, 0, sizeof(struct i40e_tx_buffer));
 127
 128	/* record length, and DMA address */
 129	dma_unmap_len_set(tx_buf, len, I40E_FDIR_MAX_RAW_PACKET_SIZE);
 130	dma_unmap_addr_set(tx_buf, dma, dma);
 131
 132	tx_desc->buffer_addr = cpu_to_le64(dma);
 133	td_cmd = I40E_TXD_CMD | I40E_TX_DESC_CMD_DUMMY;
 134
 135	tx_buf->tx_flags = I40E_TX_FLAGS_FD_SB;
 136	tx_buf->raw_buf = (void *)raw_packet;
 137
 138	tx_desc->cmd_type_offset_bsz =
 139		build_ctob(td_cmd, 0, I40E_FDIR_MAX_RAW_PACKET_SIZE, 0);
 140
 141	/* Force memory writes to complete before letting h/w
 142	 * know there are new descriptors to fetch.
 143	 */
 144	wmb();
 145
 146	/* Mark the data descriptor to be watched */
 147	first->next_to_watch = tx_desc;
 148
 149	writel(tx_ring->next_to_use, tx_ring->tail);
 150	return 0;
 151
 152dma_fail:
 153	return -1;
 154}
 155
 
 
 156/**
 157 * i40e_create_dummy_packet - Constructs dummy packet for HW
 158 * @dummy_packet: preallocated space for dummy packet
 159 * @ipv4: is layer 3 packet of version 4 or 6
 160 * @l4proto: next level protocol used in data portion of l3
 161 * @data: filter data
 162 *
 163 * Returns address of layer 4 protocol dummy packet.
 164 **/
 165static char *i40e_create_dummy_packet(u8 *dummy_packet, bool ipv4, u8 l4proto,
 166				      struct i40e_fdir_filter *data)
 167{
 168	bool is_vlan = !!data->vlan_tag;
 169	struct vlan_hdr vlan = {};
 170	struct ipv6hdr ipv6 = {};
 171	struct ethhdr eth = {};
 172	struct iphdr ip = {};
 173	u8 *tmp;
 174
 175	if (ipv4) {
 176		eth.h_proto = cpu_to_be16(ETH_P_IP);
 177		ip.protocol = l4proto;
 178		ip.version = 0x4;
 179		ip.ihl = 0x5;
 180
 181		ip.daddr = data->dst_ip;
 182		ip.saddr = data->src_ip;
 183	} else {
 184		eth.h_proto = cpu_to_be16(ETH_P_IPV6);
 185		ipv6.nexthdr = l4proto;
 186		ipv6.version = 0x6;
 187
 188		memcpy(&ipv6.saddr.in6_u.u6_addr32, data->src_ip6,
 189		       sizeof(__be32) * 4);
 190		memcpy(&ipv6.daddr.in6_u.u6_addr32, data->dst_ip6,
 191		       sizeof(__be32) * 4);
 192	}
 193
 194	if (is_vlan) {
 195		vlan.h_vlan_TCI = data->vlan_tag;
 196		vlan.h_vlan_encapsulated_proto = eth.h_proto;
 197		eth.h_proto = data->vlan_etype;
 198	}
 199
 200	tmp = dummy_packet;
 201	memcpy(tmp, &eth, sizeof(eth));
 202	tmp += sizeof(eth);
 203
 204	if (is_vlan) {
 205		memcpy(tmp, &vlan, sizeof(vlan));
 206		tmp += sizeof(vlan);
 207	}
 208
 209	if (ipv4) {
 210		memcpy(tmp, &ip, sizeof(ip));
 211		tmp += sizeof(ip);
 212	} else {
 213		memcpy(tmp, &ipv6, sizeof(ipv6));
 214		tmp += sizeof(ipv6);
 215	}
 216
 217	return tmp;
 218}
 219
 220/**
 221 * i40e_create_dummy_udp_packet - helper function to create UDP packet
 222 * @raw_packet: preallocated space for dummy packet
 223 * @ipv4: is layer 3 packet of version 4 or 6
 224 * @l4proto: next level protocol used in data portion of l3
 225 * @data: filter data
 226 *
 227 * Helper function to populate udp fields.
 228 **/
 229static void i40e_create_dummy_udp_packet(u8 *raw_packet, bool ipv4, u8 l4proto,
 230					 struct i40e_fdir_filter *data)
 
 231{
 
 232	struct udphdr *udp;
 233	u8 *tmp;
 234
 235	tmp = i40e_create_dummy_packet(raw_packet, ipv4, IPPROTO_UDP, data);
 236	udp = (struct udphdr *)(tmp);
 237	udp->dest = data->dst_port;
 238	udp->source = data->src_port;
 239}
 240
 241/**
 242 * i40e_create_dummy_tcp_packet - helper function to create TCP packet
 243 * @raw_packet: preallocated space for dummy packet
 244 * @ipv4: is layer 3 packet of version 4 or 6
 245 * @l4proto: next level protocol used in data portion of l3
 246 * @data: filter data
 247 *
 248 * Helper function to populate tcp fields.
 249 **/
 250static void i40e_create_dummy_tcp_packet(u8 *raw_packet, bool ipv4, u8 l4proto,
 251					 struct i40e_fdir_filter *data)
 252{
 253	struct tcphdr *tcp;
 254	u8 *tmp;
 255	/* Dummy tcp packet */
 256	static const char tcp_packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
 257		0x50, 0x11, 0x0, 0x72, 0, 0, 0, 0};
 258
 259	tmp = i40e_create_dummy_packet(raw_packet, ipv4, IPPROTO_TCP, data);
 260
 261	tcp = (struct tcphdr *)tmp;
 262	memcpy(tcp, tcp_packet, sizeof(tcp_packet));
 263	tcp->dest = data->dst_port;
 264	tcp->source = data->src_port;
 265}
 266
 267/**
 268 * i40e_create_dummy_sctp_packet - helper function to create SCTP packet
 269 * @raw_packet: preallocated space for dummy packet
 270 * @ipv4: is layer 3 packet of version 4 or 6
 271 * @l4proto: next level protocol used in data portion of l3
 272 * @data: filter data
 273 *
 274 * Helper function to populate sctp fields.
 275 **/
 276static void i40e_create_dummy_sctp_packet(u8 *raw_packet, bool ipv4,
 277					  u8 l4proto,
 278					  struct i40e_fdir_filter *data)
 279{
 280	struct sctphdr *sctp;
 281	u8 *tmp;
 282
 283	tmp = i40e_create_dummy_packet(raw_packet, ipv4, IPPROTO_SCTP, data);
 284
 285	sctp = (struct sctphdr *)tmp;
 286	sctp->dest = data->dst_port;
 287	sctp->source = data->src_port;
 288}
 289
 290/**
 291 * i40e_prepare_fdir_filter - Prepare and program fdir filter
 292 * @pf: physical function to attach filter to
 293 * @fd_data: filter data
 294 * @add: add or delete filter
 295 * @packet_addr: address of dummy packet, used in filtering
 296 * @payload_offset: offset from dummy packet address to user defined data
 297 * @pctype: Packet type for which filter is used
 298 *
 299 * Helper function to offset data of dummy packet, program it and
 300 * handle errors.
 301 **/
 302static int i40e_prepare_fdir_filter(struct i40e_pf *pf,
 303				    struct i40e_fdir_filter *fd_data,
 304				    bool add, char *packet_addr,
 305				    int payload_offset, u8 pctype)
 306{
 307	int ret;
 308
 309	if (fd_data->flex_filter) {
 310		u8 *payload;
 311		__be16 pattern = fd_data->flex_word;
 312		u16 off = fd_data->flex_offset;
 313
 314		payload = packet_addr + payload_offset;
 315
 316		/* If user provided vlan, offset payload by vlan header length */
 317		if (!!fd_data->vlan_tag)
 318			payload += VLAN_HLEN;
 319
 320		*((__force __be16 *)(payload + off)) = pattern;
 321	}
 322
 323	fd_data->pctype = pctype;
 324	ret = i40e_program_fdir_filter(fd_data, packet_addr, pf, add);
 325	if (ret) {
 326		dev_info(&pf->pdev->dev,
 327			 "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
 328			 fd_data->pctype, fd_data->fd_id, ret);
 329		/* Free the packet buffer since it wasn't added to the ring */
 
 330		return -EOPNOTSUPP;
 331	} else if (I40E_DEBUG_FD & pf->hw.debug_mask) {
 332		if (add)
 333			dev_info(&pf->pdev->dev,
 334				 "Filter OK for PCTYPE %d loc = %d\n",
 335				 fd_data->pctype, fd_data->fd_id);
 336		else
 337			dev_info(&pf->pdev->dev,
 338				 "Filter deleted for PCTYPE %d loc = %d\n",
 339				 fd_data->pctype, fd_data->fd_id);
 340	}
 341
 342	return ret;
 343}
 
 
 344
 345/**
 346 * i40e_change_filter_num - Prepare and program fdir filter
 347 * @ipv4: is layer 3 packet of version 4 or 6
 348 * @add: add or delete filter
 349 * @ipv4_filter_num: field to update
 350 * @ipv6_filter_num: field to update
 351 *
 352 * Update filter number field for pf.
 353 **/
 354static void i40e_change_filter_num(bool ipv4, bool add, u16 *ipv4_filter_num,
 355				   u16 *ipv6_filter_num)
 356{
 357	if (add) {
 358		if (ipv4)
 359			(*ipv4_filter_num)++;
 360		else
 361			(*ipv6_filter_num)++;
 362	} else {
 363		if (ipv4)
 364			(*ipv4_filter_num)--;
 365		else
 366			(*ipv6_filter_num)--;
 367	}
 368}
 369
 370#define I40E_UDPIP_DUMMY_PACKET_LEN	42
 371#define I40E_UDPIP6_DUMMY_PACKET_LEN	62
 372/**
 373 * i40e_add_del_fdir_udp - Add/Remove UDP filters
 374 * @vsi: pointer to the targeted VSI
 375 * @fd_data: the flow director data required for the FDir descriptor
 376 * @add: true adds a filter, false removes it
 377 * @ipv4: true is v4, false is v6
 378 *
 379 * Returns 0 if the filters were successfully added or removed
 380 **/
 381static int i40e_add_del_fdir_udp(struct i40e_vsi *vsi,
 382				 struct i40e_fdir_filter *fd_data,
 383				 bool add,
 384				 bool ipv4)
 385{
 386	struct i40e_pf *pf = vsi->back;
 
 
 387	u8 *raw_packet;
 388	int ret;
 
 
 
 
 
 389
 390	raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
 391	if (!raw_packet)
 392		return -ENOMEM;
 
 393
 394	i40e_create_dummy_udp_packet(raw_packet, ipv4, IPPROTO_UDP, fd_data);
 
 
 
 
 
 
 
 395
 396	if (ipv4)
 397		ret = i40e_prepare_fdir_filter
 398			(pf, fd_data, add, raw_packet,
 399			 I40E_UDPIP_DUMMY_PACKET_LEN,
 400			 I40E_FILTER_PCTYPE_NONF_IPV4_UDP);
 401	else
 402		ret = i40e_prepare_fdir_filter
 403			(pf, fd_data, add, raw_packet,
 404			 I40E_UDPIP6_DUMMY_PACKET_LEN,
 405			 I40E_FILTER_PCTYPE_NONF_IPV6_UDP);
 406
 407	if (ret) {
 408		kfree(raw_packet);
 409		return ret;
 410	}
 411
 412	i40e_change_filter_num(ipv4, add, &pf->fd_udp4_filter_cnt,
 413			       &pf->fd_udp6_filter_cnt);
 414
 415	return 0;
 416}
 417
 418#define I40E_TCPIP_DUMMY_PACKET_LEN	54
 419#define I40E_TCPIP6_DUMMY_PACKET_LEN	74
 420/**
 421 * i40e_add_del_fdir_tcp - Add/Remove TCPv4 filters
 422 * @vsi: pointer to the targeted VSI
 423 * @fd_data: the flow director data required for the FDir descriptor
 424 * @add: true adds a filter, false removes it
 425 * @ipv4: true is v4, false is v6
 426 *
 427 * Returns 0 if the filters were successfully added or removed
 428 **/
 429static int i40e_add_del_fdir_tcp(struct i40e_vsi *vsi,
 430				 struct i40e_fdir_filter *fd_data,
 431				 bool add,
 432				 bool ipv4)
 433{
 434	struct i40e_pf *pf = vsi->back;
 435	u8 *raw_packet;
 436	int ret;
 437
 438	raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
 439	if (!raw_packet)
 440		return -ENOMEM;
 441
 442	i40e_create_dummy_tcp_packet(raw_packet, ipv4, IPPROTO_TCP, fd_data);
 443	if (ipv4)
 444		ret = i40e_prepare_fdir_filter
 445			(pf, fd_data, add, raw_packet,
 446			 I40E_TCPIP_DUMMY_PACKET_LEN,
 447			 I40E_FILTER_PCTYPE_NONF_IPV4_TCP);
 448	else
 449		ret = i40e_prepare_fdir_filter
 450			(pf, fd_data, add, raw_packet,
 451			 I40E_TCPIP6_DUMMY_PACKET_LEN,
 452			 I40E_FILTER_PCTYPE_NONF_IPV6_TCP);
 453
 454	if (ret) {
 
 
 
 
 455		kfree(raw_packet);
 456		return ret;
 
 
 
 
 
 
 
 
 457	}
 458
 459	i40e_change_filter_num(ipv4, add, &pf->fd_tcp4_filter_cnt,
 460			       &pf->fd_tcp6_filter_cnt);
 461
 462	if (add) {
 463		if (test_bit(I40E_FLAG_FD_ATR_ENA, pf->flags) &&
 
 464		    I40E_DEBUG_FD & pf->hw.debug_mask)
 465			dev_info(&pf->pdev->dev, "Forcing ATR off, sideband rules for TCP/IPv4 flow being applied\n");
 466		set_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state);
 
 
 467	}
 
 468	return 0;
 469}
 470
 471#define I40E_SCTPIP_DUMMY_PACKET_LEN	46
 472#define I40E_SCTPIP6_DUMMY_PACKET_LEN	66
 473/**
 474 * i40e_add_del_fdir_sctp - Add/Remove SCTPv4 Flow Director filters for
 475 * a specific flow spec
 476 * @vsi: pointer to the targeted VSI
 477 * @fd_data: the flow director data required for the FDir descriptor
 478 * @add: true adds a filter, false removes it
 479 * @ipv4: true is v4, false is v6
 480 *
 481 * Returns 0 if the filters were successfully added or removed
 482 **/
 483static int i40e_add_del_fdir_sctp(struct i40e_vsi *vsi,
 484				  struct i40e_fdir_filter *fd_data,
 485				  bool add,
 486				  bool ipv4)
 487{
 488	struct i40e_pf *pf = vsi->back;
 
 
 489	u8 *raw_packet;
 490	int ret;
 
 
 
 
 491
 492	raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
 493	if (!raw_packet)
 494		return -ENOMEM;
 
 495
 496	i40e_create_dummy_sctp_packet(raw_packet, ipv4, IPPROTO_SCTP, fd_data);
 
 
 
 
 
 
 
 497
 498	if (ipv4)
 499		ret = i40e_prepare_fdir_filter
 500			(pf, fd_data, add, raw_packet,
 501			 I40E_SCTPIP_DUMMY_PACKET_LEN,
 502			 I40E_FILTER_PCTYPE_NONF_IPV4_SCTP);
 503	else
 504		ret = i40e_prepare_fdir_filter
 505			(pf, fd_data, add, raw_packet,
 506			 I40E_SCTPIP6_DUMMY_PACKET_LEN,
 507			 I40E_FILTER_PCTYPE_NONF_IPV6_SCTP);
 508
 
 
 509	if (ret) {
 
 
 
 
 510		kfree(raw_packet);
 511		return ret;
 
 
 
 
 
 
 
 
 
 512	}
 513
 514	i40e_change_filter_num(ipv4, add, &pf->fd_sctp4_filter_cnt,
 515			       &pf->fd_sctp6_filter_cnt);
 
 
 516
 517	return 0;
 518}
 519
 520#define I40E_IP_DUMMY_PACKET_LEN	34
 521#define I40E_IP6_DUMMY_PACKET_LEN	54
 522/**
 523 * i40e_add_del_fdir_ip - Add/Remove IPv4 Flow Director filters for
 524 * a specific flow spec
 525 * @vsi: pointer to the targeted VSI
 526 * @fd_data: the flow director data required for the FDir descriptor
 527 * @add: true adds a filter, false removes it
 528 * @ipv4: true is v4, false is v6
 529 *
 530 * Returns 0 if the filters were successfully added or removed
 531 **/
 532static int i40e_add_del_fdir_ip(struct i40e_vsi *vsi,
 533				struct i40e_fdir_filter *fd_data,
 534				bool add,
 535				bool ipv4)
 536{
 537	struct i40e_pf *pf = vsi->back;
 538	int payload_offset;
 539	u8 *raw_packet;
 540	int iter_start;
 541	int iter_end;
 542	int ret;
 543	int i;
 
 
 
 544
 545	if (ipv4) {
 546		iter_start = I40E_FILTER_PCTYPE_NONF_IPV4_OTHER;
 547		iter_end = I40E_FILTER_PCTYPE_FRAG_IPV4;
 548	} else {
 549		iter_start = I40E_FILTER_PCTYPE_NONF_IPV6_OTHER;
 550		iter_end = I40E_FILTER_PCTYPE_FRAG_IPV6;
 551	}
 552
 553	for (i = iter_start; i <= iter_end; i++) {
 554		raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
 555		if (!raw_packet)
 556			return -ENOMEM;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 557
 558		/* IPv6 no header option differs from IPv4 */
 559		(void)i40e_create_dummy_packet
 560			(raw_packet, ipv4, (ipv4) ? IPPROTO_IP : IPPROTO_NONE,
 561			 fd_data);
 562
 563		payload_offset = (ipv4) ? I40E_IP_DUMMY_PACKET_LEN :
 564			I40E_IP6_DUMMY_PACKET_LEN;
 565		ret = i40e_prepare_fdir_filter(pf, fd_data, add, raw_packet,
 566					       payload_offset, i);
 567		if (ret)
 568			goto err;
 
 
 
 
 
 
 
 
 
 
 569	}
 570
 571	i40e_change_filter_num(ipv4, add, &pf->fd_ip4_filter_cnt,
 572			       &pf->fd_ip6_filter_cnt);
 
 
 573
 574	return 0;
 575err:
 576	kfree(raw_packet);
 577	return ret;
 578}
 579
 580/**
 581 * i40e_add_del_fdir - Build raw packets to add/del fdir filter
 582 * @vsi: pointer to the targeted VSI
 583 * @input: filter to add or delete
 584 * @add: true adds a filter, false removes it
 585 *
 586 **/
 587int i40e_add_del_fdir(struct i40e_vsi *vsi,
 588		      struct i40e_fdir_filter *input, bool add)
 589{
 590	enum ip_ver { ipv6 = 0, ipv4 = 1 };
 591	struct i40e_pf *pf = vsi->back;
 592	int ret;
 593
 594	switch (input->flow_type & ~FLOW_EXT) {
 595	case TCP_V4_FLOW:
 596		ret = i40e_add_del_fdir_tcp(vsi, input, add, ipv4);
 597		break;
 598	case UDP_V4_FLOW:
 599		ret = i40e_add_del_fdir_udp(vsi, input, add, ipv4);
 600		break;
 601	case SCTP_V4_FLOW:
 602		ret = i40e_add_del_fdir_sctp(vsi, input, add, ipv4);
 603		break;
 604	case TCP_V6_FLOW:
 605		ret = i40e_add_del_fdir_tcp(vsi, input, add, ipv6);
 606		break;
 607	case UDP_V6_FLOW:
 608		ret = i40e_add_del_fdir_udp(vsi, input, add, ipv6);
 609		break;
 610	case SCTP_V6_FLOW:
 611		ret = i40e_add_del_fdir_sctp(vsi, input, add, ipv6);
 612		break;
 613	case IP_USER_FLOW:
 614		switch (input->ipl4_proto) {
 615		case IPPROTO_TCP:
 616			ret = i40e_add_del_fdir_tcp(vsi, input, add, ipv4);
 617			break;
 618		case IPPROTO_UDP:
 619			ret = i40e_add_del_fdir_udp(vsi, input, add, ipv4);
 620			break;
 621		case IPPROTO_SCTP:
 622			ret = i40e_add_del_fdir_sctp(vsi, input, add, ipv4);
 623			break;
 624		case IPPROTO_IP:
 625			ret = i40e_add_del_fdir_ip(vsi, input, add, ipv4);
 626			break;
 627		default:
 628			/* We cannot support masking based on protocol */
 629			dev_info(&pf->pdev->dev, "Unsupported IPv4 protocol 0x%02x\n",
 630				 input->ipl4_proto);
 631			return -EINVAL;
 632		}
 633		break;
 634	case IPV6_USER_FLOW:
 635		switch (input->ipl4_proto) {
 636		case IPPROTO_TCP:
 637			ret = i40e_add_del_fdir_tcp(vsi, input, add, ipv6);
 638			break;
 639		case IPPROTO_UDP:
 640			ret = i40e_add_del_fdir_udp(vsi, input, add, ipv6);
 641			break;
 642		case IPPROTO_SCTP:
 643			ret = i40e_add_del_fdir_sctp(vsi, input, add, ipv6);
 644			break;
 645		case IPPROTO_IP:
 646			ret = i40e_add_del_fdir_ip(vsi, input, add, ipv6);
 647			break;
 648		default:
 649			/* We cannot support masking based on protocol */
 650			dev_info(&pf->pdev->dev, "Unsupported IPv6 protocol 0x%02x\n",
 651				 input->ipl4_proto);
 652			return -EINVAL;
 653		}
 654		break;
 655	default:
 656		dev_info(&pf->pdev->dev, "Unsupported flow type 0x%02x\n",
 657			 input->flow_type);
 658		return -EINVAL;
 659	}
 660
 661	/* The buffer allocated here will be normally be freed by
 662	 * i40e_clean_fdir_tx_irq() as it reclaims resources after transmit
 663	 * completion. In the event of an error adding the buffer to the FDIR
 664	 * ring, it will immediately be freed. It may also be freed by
 665	 * i40e_clean_tx_ring() when closing the VSI.
 666	 */
 667	return ret;
 668}
 669
 670/**
 671 * i40e_fd_handle_status - check the Programming Status for FD
 672 * @rx_ring: the Rx ring for this descriptor
 673 * @qword0_raw: qword0
 674 * @qword1: qword1 after le_to_cpu
 675 * @prog_id: the id originally used for programming
 676 *
 677 * This is used to verify if the FD programming or invalidation
 678 * requested by SW to the HW is successful or not and take actions accordingly.
 679 **/
 680static void i40e_fd_handle_status(struct i40e_ring *rx_ring, u64 qword0_raw,
 681				  u64 qword1, u8 prog_id)
 682{
 683	struct i40e_pf *pf = rx_ring->vsi->back;
 684	struct pci_dev *pdev = pf->pdev;
 685	struct i40e_16b_rx_wb_qw0 *qw0;
 686	u32 fcnt_prog, fcnt_avail;
 687	u32 error;
 688
 689	qw0 = (struct i40e_16b_rx_wb_qw0 *)&qword0_raw;
 690	error = FIELD_GET(I40E_RX_PROG_STATUS_DESC_QW1_ERROR_MASK, qword1);
 
 691
 692	if (error == BIT(I40E_RX_PROG_STATUS_DESC_FD_TBL_FULL_SHIFT)) {
 693		pf->fd_inv = le32_to_cpu(qw0->hi_dword.fd_id);
 694		if (qw0->hi_dword.fd_id != 0 ||
 695		    (I40E_DEBUG_FD & pf->hw.debug_mask))
 696			dev_warn(&pdev->dev, "ntuple filter loc = %d, could not be added\n",
 697				 pf->fd_inv);
 698
 699		/* Check if the programming error is for ATR.
 700		 * If so, auto disable ATR and set a state for
 701		 * flush in progress. Next time we come here if flush is in
 702		 * progress do nothing, once flush is complete the state will
 703		 * be cleared.
 704		 */
 705		if (test_bit(__I40E_FD_FLUSH_REQUESTED, pf->state))
 706			return;
 707
 708		pf->fd_add_err++;
 709		/* store the current atr filter count */
 710		pf->fd_atr_cnt = i40e_get_current_atr_cnt(pf);
 711
 712		if (qw0->hi_dword.fd_id == 0 &&
 713		    test_bit(__I40E_FD_SB_AUTO_DISABLED, pf->state)) {
 714			/* These set_bit() calls aren't atomic with the
 715			 * test_bit() here, but worse case we potentially
 716			 * disable ATR and queue a flush right after SB
 717			 * support is re-enabled. That shouldn't cause an
 718			 * issue in practice
 719			 */
 720			set_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state);
 721			set_bit(__I40E_FD_FLUSH_REQUESTED, pf->state);
 722		}
 723
 724		/* filter programming failed most likely due to table full */
 725		fcnt_prog = i40e_get_global_fd_count(pf);
 726		fcnt_avail = pf->fdir_pf_filter_count;
 727		/* If ATR is running fcnt_prog can quickly change,
 728		 * if we are very close to full, it makes sense to disable
 729		 * FD ATR/SB and then re-enable it when there is room.
 730		 */
 731		if (fcnt_prog >= (fcnt_avail - I40E_FDIR_BUFFER_FULL_MARGIN)) {
 732			if (test_bit(I40E_FLAG_FD_SB_ENA, pf->flags) &&
 733			    !test_and_set_bit(__I40E_FD_SB_AUTO_DISABLED,
 734					      pf->state))
 735				if (I40E_DEBUG_FD & pf->hw.debug_mask)
 736					dev_warn(&pdev->dev, "FD filter space full, new ntuple rules will not be added\n");
 737		}
 738	} else if (error == BIT(I40E_RX_PROG_STATUS_DESC_NO_FD_ENTRY_SHIFT)) {
 739		if (I40E_DEBUG_FD & pf->hw.debug_mask)
 740			dev_info(&pdev->dev, "ntuple filter fd_id = %d, could not be removed\n",
 741				 qw0->hi_dword.fd_id);
 742	}
 743}
 744
 745/**
 746 * i40e_unmap_and_free_tx_resource - Release a Tx buffer
 747 * @ring:      the ring that owns the buffer
 748 * @tx_buffer: the buffer to free
 749 **/
 750static void i40e_unmap_and_free_tx_resource(struct i40e_ring *ring,
 751					    struct i40e_tx_buffer *tx_buffer)
 752{
 753	if (tx_buffer->skb) {
 754		if (tx_buffer->tx_flags & I40E_TX_FLAGS_FD_SB)
 755			kfree(tx_buffer->raw_buf);
 756		else if (ring_is_xdp(ring))
 757			xdp_return_frame(tx_buffer->xdpf);
 758		else
 759			dev_kfree_skb_any(tx_buffer->skb);
 760		if (dma_unmap_len(tx_buffer, len))
 761			dma_unmap_single(ring->dev,
 762					 dma_unmap_addr(tx_buffer, dma),
 763					 dma_unmap_len(tx_buffer, len),
 764					 DMA_TO_DEVICE);
 765	} else if (dma_unmap_len(tx_buffer, len)) {
 766		dma_unmap_page(ring->dev,
 767			       dma_unmap_addr(tx_buffer, dma),
 768			       dma_unmap_len(tx_buffer, len),
 769			       DMA_TO_DEVICE);
 770	}
 771
 772	tx_buffer->next_to_watch = NULL;
 773	tx_buffer->skb = NULL;
 774	dma_unmap_len_set(tx_buffer, len, 0);
 775	/* tx_buffer must be completely set up in the transmit path */
 776}
 777
 778/**
 779 * i40e_clean_tx_ring - Free any empty Tx buffers
 780 * @tx_ring: ring to be cleaned
 781 **/
 782void i40e_clean_tx_ring(struct i40e_ring *tx_ring)
 783{
 784	unsigned long bi_size;
 785	u16 i;
 786
 787	if (ring_is_xdp(tx_ring) && tx_ring->xsk_pool) {
 788		i40e_xsk_clean_tx_ring(tx_ring);
 789	} else {
 790		/* ring already cleared, nothing to do */
 791		if (!tx_ring->tx_bi)
 792			return;
 793
 794		/* Free all the Tx ring sk_buffs */
 795		for (i = 0; i < tx_ring->count; i++)
 796			i40e_unmap_and_free_tx_resource(tx_ring,
 797							&tx_ring->tx_bi[i]);
 798	}
 799
 800	bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
 801	memset(tx_ring->tx_bi, 0, bi_size);
 802
 803	/* Zero out the descriptor ring */
 804	memset(tx_ring->desc, 0, tx_ring->size);
 805
 806	tx_ring->next_to_use = 0;
 807	tx_ring->next_to_clean = 0;
 808
 809	if (!tx_ring->netdev)
 810		return;
 811
 812	/* cleanup Tx queue statistics */
 813	netdev_tx_reset_queue(txring_txq(tx_ring));
 814}
 815
 816/**
 817 * i40e_free_tx_resources - Free Tx resources per queue
 818 * @tx_ring: Tx descriptor ring for a specific queue
 819 *
 820 * Free all transmit software resources
 821 **/
 822void i40e_free_tx_resources(struct i40e_ring *tx_ring)
 823{
 824	i40e_clean_tx_ring(tx_ring);
 825	kfree(tx_ring->tx_bi);
 826	tx_ring->tx_bi = NULL;
 827
 828	if (tx_ring->desc) {
 829		dma_free_coherent(tx_ring->dev, tx_ring->size,
 830				  tx_ring->desc, tx_ring->dma);
 831		tx_ring->desc = NULL;
 832	}
 833}
 834
 835/**
 836 * i40e_get_tx_pending - how many tx descriptors not processed
 837 * @ring: the ring of descriptors
 838 * @in_sw: use SW variables
 839 *
 840 * Since there is no access to the ring head register
 841 * in XL710, we need to use our local copies
 842 **/
 843u32 i40e_get_tx_pending(struct i40e_ring *ring, bool in_sw)
 844{
 845	u32 head, tail;
 846
 847	if (!in_sw) {
 848		head = i40e_get_head(ring);
 849		tail = readl(ring->tail);
 850	} else {
 851		head = ring->next_to_clean;
 852		tail = ring->next_to_use;
 853	}
 854
 855	if (head != tail)
 856		return (head < tail) ?
 857			tail - head : (tail + ring->count - head);
 858
 859	return 0;
 860}
 861
 862/**
 863 * i40e_detect_recover_hung - Function to detect and recover hung_queues
 864 * @pf: pointer to PF struct
 865 *
 866 * LAN VSI has netdev and netdev has TX queues. This function is to check
 867 * each of those TX queues if they are hung, trigger recovery by issuing
 868 * SW interrupt.
 869 **/
 870void i40e_detect_recover_hung(struct i40e_pf *pf)
 871{
 872	struct i40e_vsi *vsi = i40e_pf_get_main_vsi(pf);
 873	struct i40e_ring *tx_ring = NULL;
 874	struct net_device *netdev;
 875	unsigned int i;
 876	int packets;
 877
 878	if (!vsi)
 879		return;
 880
 881	if (test_bit(__I40E_VSI_DOWN, vsi->state))
 882		return;
 883
 884	netdev = vsi->netdev;
 885	if (!netdev)
 886		return;
 887
 888	if (!netif_carrier_ok(netdev))
 889		return;
 890
 891	for (i = 0; i < vsi->num_queue_pairs; i++) {
 892		tx_ring = vsi->tx_rings[i];
 893		if (tx_ring && tx_ring->desc) {
 894			/* If packet counter has not changed the queue is
 895			 * likely stalled, so force an interrupt for this
 896			 * queue.
 897			 *
 898			 * prev_pkt_ctr would be negative if there was no
 899			 * pending work.
 900			 */
 901			packets = tx_ring->stats.packets & INT_MAX;
 902			if (tx_ring->tx_stats.prev_pkt_ctr == packets) {
 903				i40e_force_wb(vsi, tx_ring->q_vector);
 904				continue;
 905			}
 906
 907			/* Memory barrier between read of packet count and call
 908			 * to i40e_get_tx_pending()
 909			 */
 910			smp_rmb();
 911			tx_ring->tx_stats.prev_pkt_ctr =
 912			    i40e_get_tx_pending(tx_ring, true) ? packets : -1;
 913		}
 914	}
 915}
 916
 917/**
 918 * i40e_clean_tx_irq - Reclaim resources after transmit completes
 919 * @vsi: the VSI we care about
 920 * @tx_ring: Tx ring to clean
 921 * @napi_budget: Used to determine if we are in netpoll
 922 * @tx_cleaned: Out parameter set to the number of TXes cleaned
 923 *
 924 * Returns true if there's any budget left (e.g. the clean is finished)
 925 **/
 926static bool i40e_clean_tx_irq(struct i40e_vsi *vsi,
 927			      struct i40e_ring *tx_ring, int napi_budget,
 928			      unsigned int *tx_cleaned)
 929{
 930	int i = tx_ring->next_to_clean;
 931	struct i40e_tx_buffer *tx_buf;
 932	struct i40e_tx_desc *tx_head;
 933	struct i40e_tx_desc *tx_desc;
 934	unsigned int total_bytes = 0, total_packets = 0;
 935	unsigned int budget = vsi->work_limit;
 936
 937	tx_buf = &tx_ring->tx_bi[i];
 938	tx_desc = I40E_TX_DESC(tx_ring, i);
 939	i -= tx_ring->count;
 940
 941	tx_head = I40E_TX_DESC(tx_ring, i40e_get_head(tx_ring));
 942
 943	do {
 944		struct i40e_tx_desc *eop_desc = tx_buf->next_to_watch;
 945
 946		/* if next_to_watch is not set then there is no work pending */
 947		if (!eop_desc)
 948			break;
 949
 950		/* prevent any other reads prior to eop_desc */
 951		smp_rmb();
 952
 953		i40e_trace(clean_tx_irq, tx_ring, tx_desc, tx_buf);
 954		/* we have caught up to head, no work left to do */
 955		if (tx_head == tx_desc)
 956			break;
 957
 958		/* clear next_to_watch to prevent false hangs */
 959		tx_buf->next_to_watch = NULL;
 960
 961		/* update the statistics for this packet */
 962		total_bytes += tx_buf->bytecount;
 963		total_packets += tx_buf->gso_segs;
 964
 965		/* free the skb/XDP data */
 966		if (ring_is_xdp(tx_ring))
 967			xdp_return_frame(tx_buf->xdpf);
 968		else
 969			napi_consume_skb(tx_buf->skb, napi_budget);
 970
 971		/* unmap skb header data */
 972		dma_unmap_single(tx_ring->dev,
 973				 dma_unmap_addr(tx_buf, dma),
 974				 dma_unmap_len(tx_buf, len),
 975				 DMA_TO_DEVICE);
 976
 977		/* clear tx_buffer data */
 978		tx_buf->skb = NULL;
 979		dma_unmap_len_set(tx_buf, len, 0);
 980
 981		/* unmap remaining buffers */
 982		while (tx_desc != eop_desc) {
 983			i40e_trace(clean_tx_irq_unmap,
 984				   tx_ring, tx_desc, tx_buf);
 985
 986			tx_buf++;
 987			tx_desc++;
 988			i++;
 989			if (unlikely(!i)) {
 990				i -= tx_ring->count;
 991				tx_buf = tx_ring->tx_bi;
 992				tx_desc = I40E_TX_DESC(tx_ring, 0);
 993			}
 994
 995			/* unmap any remaining paged data */
 996			if (dma_unmap_len(tx_buf, len)) {
 997				dma_unmap_page(tx_ring->dev,
 998					       dma_unmap_addr(tx_buf, dma),
 999					       dma_unmap_len(tx_buf, len),
1000					       DMA_TO_DEVICE);
1001				dma_unmap_len_set(tx_buf, len, 0);
1002			}
1003		}
1004
1005		/* move us one more past the eop_desc for start of next pkt */
1006		tx_buf++;
1007		tx_desc++;
1008		i++;
1009		if (unlikely(!i)) {
1010			i -= tx_ring->count;
1011			tx_buf = tx_ring->tx_bi;
1012			tx_desc = I40E_TX_DESC(tx_ring, 0);
1013		}
1014
1015		prefetch(tx_desc);
1016
1017		/* update budget accounting */
1018		budget--;
1019	} while (likely(budget));
1020
1021	i += tx_ring->count;
1022	tx_ring->next_to_clean = i;
1023	i40e_update_tx_stats(tx_ring, total_packets, total_bytes);
1024	i40e_arm_wb(tx_ring, vsi, budget);
1025
1026	if (ring_is_xdp(tx_ring))
1027		return !!budget;
1028
1029	/* notify netdev of completed buffers */
1030	netdev_tx_completed_queue(txring_txq(tx_ring),
1031				  total_packets, total_bytes);
1032
1033#define TX_WAKE_THRESHOLD ((s16)(DESC_NEEDED * 2))
1034	if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) &&
1035		     (I40E_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) {
1036		/* Make sure that anybody stopping the queue after this
1037		 * sees the new next_to_clean.
1038		 */
1039		smp_mb();
1040		if (__netif_subqueue_stopped(tx_ring->netdev,
1041					     tx_ring->queue_index) &&
1042		   !test_bit(__I40E_VSI_DOWN, vsi->state)) {
1043			netif_wake_subqueue(tx_ring->netdev,
1044					    tx_ring->queue_index);
1045			++tx_ring->tx_stats.restart_queue;
1046		}
1047	}
1048
1049	*tx_cleaned = total_packets;
1050	return !!budget;
1051}
1052
1053/**
1054 * i40e_enable_wb_on_itr - Arm hardware to do a wb, interrupts are not enabled
1055 * @vsi: the VSI we care about
1056 * @q_vector: the vector on which to enable writeback
1057 *
1058 **/
1059static void i40e_enable_wb_on_itr(struct i40e_vsi *vsi,
1060				  struct i40e_q_vector *q_vector)
1061{
1062	u16 flags = q_vector->tx.ring[0].flags;
1063	u32 val;
1064
1065	if (!(flags & I40E_TXR_FLAGS_WB_ON_ITR))
1066		return;
1067
1068	if (q_vector->arm_wb_state)
1069		return;
1070
1071	if (test_bit(I40E_FLAG_MSIX_ENA, vsi->back->flags)) {
1072		val = I40E_PFINT_DYN_CTLN_WB_ON_ITR_MASK |
1073		      I40E_PFINT_DYN_CTLN_ITR_INDX_MASK; /* set noitr */
1074
1075		wr32(&vsi->back->hw,
1076		     I40E_PFINT_DYN_CTLN(q_vector->reg_idx),
1077		     val);
1078	} else {
1079		val = I40E_PFINT_DYN_CTL0_WB_ON_ITR_MASK |
1080		      I40E_PFINT_DYN_CTL0_ITR_INDX_MASK; /* set noitr */
1081
1082		wr32(&vsi->back->hw, I40E_PFINT_DYN_CTL0, val);
1083	}
1084	q_vector->arm_wb_state = true;
1085}
1086
1087/**
1088 * i40e_force_wb - Issue SW Interrupt so HW does a wb
1089 * @vsi: the VSI we care about
1090 * @q_vector: the vector  on which to force writeback
1091 *
1092 **/
1093void i40e_force_wb(struct i40e_vsi *vsi, struct i40e_q_vector *q_vector)
1094{
1095	if (test_bit(I40E_FLAG_MSIX_ENA, vsi->back->flags)) {
1096		u32 val = I40E_PFINT_DYN_CTLN_INTENA_MASK |
1097			  I40E_PFINT_DYN_CTLN_ITR_INDX_MASK | /* set noitr */
1098			  I40E_PFINT_DYN_CTLN_SWINT_TRIG_MASK |
1099			  I40E_PFINT_DYN_CTLN_SW_ITR_INDX_ENA_MASK;
1100			  /* allow 00 to be written to the index */
1101
1102		wr32(&vsi->back->hw,
1103		     I40E_PFINT_DYN_CTLN(q_vector->reg_idx), val);
1104	} else {
1105		u32 val = I40E_PFINT_DYN_CTL0_INTENA_MASK |
1106			  I40E_PFINT_DYN_CTL0_ITR_INDX_MASK | /* set noitr */
1107			  I40E_PFINT_DYN_CTL0_SWINT_TRIG_MASK |
1108			  I40E_PFINT_DYN_CTL0_SW_ITR_INDX_ENA_MASK;
1109			/* allow 00 to be written to the index */
1110
1111		wr32(&vsi->back->hw, I40E_PFINT_DYN_CTL0, val);
1112	}
1113}
1114
1115static inline bool i40e_container_is_rx(struct i40e_q_vector *q_vector,
1116					struct i40e_ring_container *rc)
1117{
1118	return &q_vector->rx == rc;
1119}
1120
1121static inline unsigned int i40e_itr_divisor(struct i40e_q_vector *q_vector)
1122{
1123	unsigned int divisor;
1124
1125	switch (q_vector->vsi->back->hw.phy.link_info.link_speed) {
1126	case I40E_LINK_SPEED_40GB:
1127		divisor = I40E_ITR_ADAPTIVE_MIN_INC * 1024;
1128		break;
1129	case I40E_LINK_SPEED_25GB:
1130	case I40E_LINK_SPEED_20GB:
1131		divisor = I40E_ITR_ADAPTIVE_MIN_INC * 512;
1132		break;
1133	default:
1134	case I40E_LINK_SPEED_10GB:
1135		divisor = I40E_ITR_ADAPTIVE_MIN_INC * 256;
1136		break;
1137	case I40E_LINK_SPEED_1GB:
1138	case I40E_LINK_SPEED_100MB:
1139		divisor = I40E_ITR_ADAPTIVE_MIN_INC * 32;
1140		break;
1141	}
1142
1143	return divisor;
1144}
1145
1146/**
1147 * i40e_update_itr - update the dynamic ITR value based on statistics
1148 * @q_vector: structure containing interrupt and ring information
1149 * @rc: structure containing ring performance data
1150 *
1151 * Stores a new ITR value based on packets and byte
1152 * counts during the last interrupt.  The advantage of per interrupt
1153 * computation is faster updates and more accurate ITR for the current
1154 * traffic pattern.  Constants in this function were computed
1155 * based on theoretical maximum wire speed and thresholds were set based
1156 * on testing data as well as attempting to minimize response time
1157 * while increasing bulk throughput.
1158 **/
1159static void i40e_update_itr(struct i40e_q_vector *q_vector,
1160			    struct i40e_ring_container *rc)
1161{
1162	unsigned int avg_wire_size, packets, bytes, itr;
1163	unsigned long next_update = jiffies;
1164
1165	/* If we don't have any rings just leave ourselves set for maximum
1166	 * possible latency so we take ourselves out of the equation.
1167	 */
1168	if (!rc->ring || !ITR_IS_DYNAMIC(rc->ring->itr_setting))
1169		return;
1170
1171	/* For Rx we want to push the delay up and default to low latency.
1172	 * for Tx we want to pull the delay down and default to high latency.
1173	 */
1174	itr = i40e_container_is_rx(q_vector, rc) ?
1175	      I40E_ITR_ADAPTIVE_MIN_USECS | I40E_ITR_ADAPTIVE_LATENCY :
1176	      I40E_ITR_ADAPTIVE_MAX_USECS | I40E_ITR_ADAPTIVE_LATENCY;
1177
1178	/* If we didn't update within up to 1 - 2 jiffies we can assume
1179	 * that either packets are coming in so slow there hasn't been
1180	 * any work, or that there is so much work that NAPI is dealing
1181	 * with interrupt moderation and we don't need to do anything.
1182	 */
1183	if (time_after(next_update, rc->next_update))
1184		goto clear_counts;
1185
1186	/* If itr_countdown is set it means we programmed an ITR within
1187	 * the last 4 interrupt cycles. This has a side effect of us
1188	 * potentially firing an early interrupt. In order to work around
1189	 * this we need to throw out any data received for a few
1190	 * interrupts following the update.
1191	 */
1192	if (q_vector->itr_countdown) {
1193		itr = rc->target_itr;
1194		goto clear_counts;
1195	}
1196
1197	packets = rc->total_packets;
1198	bytes = rc->total_bytes;
1199
1200	if (i40e_container_is_rx(q_vector, rc)) {
1201		/* If Rx there are 1 to 4 packets and bytes are less than
1202		 * 9000 assume insufficient data to use bulk rate limiting
1203		 * approach unless Tx is already in bulk rate limiting. We
1204		 * are likely latency driven.
1205		 */
1206		if (packets && packets < 4 && bytes < 9000 &&
1207		    (q_vector->tx.target_itr & I40E_ITR_ADAPTIVE_LATENCY)) {
1208			itr = I40E_ITR_ADAPTIVE_LATENCY;
1209			goto adjust_by_size;
1210		}
1211	} else if (packets < 4) {
1212		/* If we have Tx and Rx ITR maxed and Tx ITR is running in
1213		 * bulk mode and we are receiving 4 or fewer packets just
1214		 * reset the ITR_ADAPTIVE_LATENCY bit for latency mode so
1215		 * that the Rx can relax.
1216		 */
1217		if (rc->target_itr == I40E_ITR_ADAPTIVE_MAX_USECS &&
1218		    (q_vector->rx.target_itr & I40E_ITR_MASK) ==
1219		     I40E_ITR_ADAPTIVE_MAX_USECS)
1220			goto clear_counts;
1221	} else if (packets > 32) {
1222		/* If we have processed over 32 packets in a single interrupt
1223		 * for Tx assume we need to switch over to "bulk" mode.
1224		 */
1225		rc->target_itr &= ~I40E_ITR_ADAPTIVE_LATENCY;
1226	}
1227
1228	/* We have no packets to actually measure against. This means
1229	 * either one of the other queues on this vector is active or
1230	 * we are a Tx queue doing TSO with too high of an interrupt rate.
1231	 *
1232	 * Between 4 and 56 we can assume that our current interrupt delay
1233	 * is only slightly too low. As such we should increase it by a small
1234	 * fixed amount.
1235	 */
1236	if (packets < 56) {
1237		itr = rc->target_itr + I40E_ITR_ADAPTIVE_MIN_INC;
1238		if ((itr & I40E_ITR_MASK) > I40E_ITR_ADAPTIVE_MAX_USECS) {
1239			itr &= I40E_ITR_ADAPTIVE_LATENCY;
1240			itr += I40E_ITR_ADAPTIVE_MAX_USECS;
1241		}
1242		goto clear_counts;
1243	}
1244
1245	if (packets <= 256) {
1246		itr = min(q_vector->tx.current_itr, q_vector->rx.current_itr);
1247		itr &= I40E_ITR_MASK;
1248
1249		/* Between 56 and 112 is our "goldilocks" zone where we are
1250		 * working out "just right". Just report that our current
1251		 * ITR is good for us.
1252		 */
1253		if (packets <= 112)
1254			goto clear_counts;
1255
1256		/* If packet count is 128 or greater we are likely looking
1257		 * at a slight overrun of the delay we want. Try halving
1258		 * our delay to see if that will cut the number of packets
1259		 * in half per interrupt.
1260		 */
1261		itr /= 2;
1262		itr &= I40E_ITR_MASK;
1263		if (itr < I40E_ITR_ADAPTIVE_MIN_USECS)
1264			itr = I40E_ITR_ADAPTIVE_MIN_USECS;
1265
1266		goto clear_counts;
1267	}
1268
1269	/* The paths below assume we are dealing with a bulk ITR since
1270	 * number of packets is greater than 256. We are just going to have
1271	 * to compute a value and try to bring the count under control,
1272	 * though for smaller packet sizes there isn't much we can do as
1273	 * NAPI polling will likely be kicking in sooner rather than later.
1274	 */
1275	itr = I40E_ITR_ADAPTIVE_BULK;
1276
1277adjust_by_size:
1278	/* If packet counts are 256 or greater we can assume we have a gross
1279	 * overestimation of what the rate should be. Instead of trying to fine
1280	 * tune it just use the formula below to try and dial in an exact value
1281	 * give the current packet size of the frame.
1282	 */
1283	avg_wire_size = bytes / packets;
1284
1285	/* The following is a crude approximation of:
1286	 *  wmem_default / (size + overhead) = desired_pkts_per_int
1287	 *  rate / bits_per_byte / (size + ethernet overhead) = pkt_rate
1288	 *  (desired_pkt_rate / pkt_rate) * usecs_per_sec = ITR value
1289	 *
1290	 * Assuming wmem_default is 212992 and overhead is 640 bytes per
1291	 * packet, (256 skb, 64 headroom, 320 shared info), we can reduce the
1292	 * formula down to
1293	 *
1294	 *  (170 * (size + 24)) / (size + 640) = ITR
1295	 *
1296	 * We first do some math on the packet size and then finally bitshift
1297	 * by 8 after rounding up. We also have to account for PCIe link speed
1298	 * difference as ITR scales based on this.
1299	 */
1300	if (avg_wire_size <= 60) {
1301		/* Start at 250k ints/sec */
1302		avg_wire_size = 4096;
1303	} else if (avg_wire_size <= 380) {
1304		/* 250K ints/sec to 60K ints/sec */
1305		avg_wire_size *= 40;
1306		avg_wire_size += 1696;
1307	} else if (avg_wire_size <= 1084) {
1308		/* 60K ints/sec to 36K ints/sec */
1309		avg_wire_size *= 15;
1310		avg_wire_size += 11452;
1311	} else if (avg_wire_size <= 1980) {
1312		/* 36K ints/sec to 30K ints/sec */
1313		avg_wire_size *= 5;
1314		avg_wire_size += 22420;
1315	} else {
1316		/* plateau at a limit of 30K ints/sec */
1317		avg_wire_size = 32256;
1318	}
1319
1320	/* If we are in low latency mode halve our delay which doubles the
1321	 * rate to somewhere between 100K to 16K ints/sec
1322	 */
1323	if (itr & I40E_ITR_ADAPTIVE_LATENCY)
1324		avg_wire_size /= 2;
1325
1326	/* Resultant value is 256 times larger than it needs to be. This
1327	 * gives us room to adjust the value as needed to either increase
1328	 * or decrease the value based on link speeds of 10G, 2.5G, 1G, etc.
1329	 *
1330	 * Use addition as we have already recorded the new latency flag
1331	 * for the ITR value.
1332	 */
1333	itr += DIV_ROUND_UP(avg_wire_size, i40e_itr_divisor(q_vector)) *
1334	       I40E_ITR_ADAPTIVE_MIN_INC;
1335
1336	if ((itr & I40E_ITR_MASK) > I40E_ITR_ADAPTIVE_MAX_USECS) {
1337		itr &= I40E_ITR_ADAPTIVE_LATENCY;
1338		itr += I40E_ITR_ADAPTIVE_MAX_USECS;
1339	}
1340
1341clear_counts:
1342	/* write back value */
1343	rc->target_itr = itr;
1344
1345	/* next update should occur within next jiffy */
1346	rc->next_update = next_update + 1;
1347
1348	rc->total_bytes = 0;
1349	rc->total_packets = 0;
1350}
1351
1352static struct i40e_rx_buffer *i40e_rx_bi(struct i40e_ring *rx_ring, u32 idx)
1353{
1354	return &rx_ring->rx_bi[idx];
1355}
1356
1357/**
1358 * i40e_reuse_rx_page - page flip buffer and store it back on the ring
1359 * @rx_ring: rx descriptor ring to store buffers on
1360 * @old_buff: donor buffer to have page reused
1361 *
1362 * Synchronizes page for reuse by the adapter
1363 **/
1364static void i40e_reuse_rx_page(struct i40e_ring *rx_ring,
1365			       struct i40e_rx_buffer *old_buff)
1366{
1367	struct i40e_rx_buffer *new_buff;
1368	u16 nta = rx_ring->next_to_alloc;
1369
1370	new_buff = i40e_rx_bi(rx_ring, nta);
1371
1372	/* update, and store next to alloc */
1373	nta++;
1374	rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
1375
1376	/* transfer page from old buffer to new buffer */
1377	new_buff->dma		= old_buff->dma;
1378	new_buff->page		= old_buff->page;
1379	new_buff->page_offset	= old_buff->page_offset;
1380	new_buff->pagecnt_bias	= old_buff->pagecnt_bias;
1381
 
 
1382	/* clear contents of buffer_info */
1383	old_buff->page = NULL;
1384}
1385
1386/**
1387 * i40e_clean_programming_status - clean the programming status descriptor
1388 * @rx_ring: the rx ring that has this descriptor
1389 * @qword0_raw: qword0
1390 * @qword1: qword1 representing status_error_len in CPU ordering
1391 *
1392 * Flow director should handle FD_FILTER_STATUS to check its filter programming
1393 * status being successful or not and take actions accordingly. FCoE should
1394 * handle its context/filter programming/invalidation status and take actions.
1395 *
1396 * Returns an i40e_rx_buffer to reuse if the cleanup occurred, otherwise NULL.
1397 **/
1398void i40e_clean_programming_status(struct i40e_ring *rx_ring, u64 qword0_raw,
1399				   u64 qword1)
1400{
1401	u8 id;
1402
1403	id = FIELD_GET(I40E_RX_PROG_STATUS_DESC_QW1_PROGID_MASK, qword1);
 
1404
1405	if (id == I40E_RX_PROG_STATUS_DESC_FD_FILTER_STATUS)
1406		i40e_fd_handle_status(rx_ring, qword0_raw, qword1, id);
1407}
1408
1409/**
1410 * i40e_setup_tx_descriptors - Allocate the Tx descriptors
1411 * @tx_ring: the tx ring to set up
1412 *
1413 * Return 0 on success, negative on error
1414 **/
1415int i40e_setup_tx_descriptors(struct i40e_ring *tx_ring)
1416{
1417	struct device *dev = tx_ring->dev;
1418	int bi_size;
1419
1420	if (!dev)
1421		return -ENOMEM;
1422
1423	/* warn if we are about to overwrite the pointer */
1424	WARN_ON(tx_ring->tx_bi);
1425	bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
1426	tx_ring->tx_bi = kzalloc(bi_size, GFP_KERNEL);
1427	if (!tx_ring->tx_bi)
1428		goto err;
1429
1430	u64_stats_init(&tx_ring->syncp);
1431
1432	/* round up to nearest 4K */
1433	tx_ring->size = tx_ring->count * sizeof(struct i40e_tx_desc);
1434	/* add u32 for head writeback, align after this takes care of
1435	 * guaranteeing this is at least one cache line in size
1436	 */
1437	tx_ring->size += sizeof(u32);
1438	tx_ring->size = ALIGN(tx_ring->size, 4096);
1439	tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
1440					   &tx_ring->dma, GFP_KERNEL);
1441	if (!tx_ring->desc) {
1442		dev_info(dev, "Unable to allocate memory for the Tx descriptor ring, size=%d\n",
1443			 tx_ring->size);
1444		goto err;
1445	}
1446
1447	tx_ring->next_to_use = 0;
1448	tx_ring->next_to_clean = 0;
1449	tx_ring->tx_stats.prev_pkt_ctr = -1;
1450	return 0;
1451
1452err:
1453	kfree(tx_ring->tx_bi);
1454	tx_ring->tx_bi = NULL;
1455	return -ENOMEM;
1456}
1457
 
 
 
 
 
 
 
 
1458static void i40e_clear_rx_bi(struct i40e_ring *rx_ring)
1459{
1460	memset(rx_ring->rx_bi, 0, sizeof(*rx_ring->rx_bi) * rx_ring->count);
1461}
1462
1463/**
1464 * i40e_clean_rx_ring - Free Rx buffers
1465 * @rx_ring: ring to be cleaned
1466 **/
1467void i40e_clean_rx_ring(struct i40e_ring *rx_ring)
1468{
1469	u16 i;
1470
1471	/* ring already cleared, nothing to do */
1472	if (!rx_ring->rx_bi)
1473		return;
1474
1475	if (rx_ring->xsk_pool) {
 
 
 
 
 
1476		i40e_xsk_clean_rx_ring(rx_ring);
1477		goto skip_free;
1478	}
1479
1480	/* Free all the Rx ring sk_buffs */
1481	for (i = 0; i < rx_ring->count; i++) {
1482		struct i40e_rx_buffer *rx_bi = i40e_rx_bi(rx_ring, i);
1483
1484		if (!rx_bi->page)
1485			continue;
1486
1487		/* Invalidate cache lines that may have been written to by
1488		 * device so that we avoid corrupting memory.
1489		 */
1490		dma_sync_single_range_for_cpu(rx_ring->dev,
1491					      rx_bi->dma,
1492					      rx_bi->page_offset,
1493					      rx_ring->rx_buf_len,
1494					      DMA_FROM_DEVICE);
1495
1496		/* free resources associated with mapping */
1497		dma_unmap_page_attrs(rx_ring->dev, rx_bi->dma,
1498				     i40e_rx_pg_size(rx_ring),
1499				     DMA_FROM_DEVICE,
1500				     I40E_RX_DMA_ATTR);
1501
1502		__page_frag_cache_drain(rx_bi->page, rx_bi->pagecnt_bias);
1503
1504		rx_bi->page = NULL;
1505		rx_bi->page_offset = 0;
1506	}
1507
1508skip_free:
1509	if (rx_ring->xsk_pool)
1510		i40e_clear_rx_bi_zc(rx_ring);
1511	else
1512		i40e_clear_rx_bi(rx_ring);
1513
1514	/* Zero out the descriptor ring */
1515	memset(rx_ring->desc, 0, rx_ring->size);
1516
1517	rx_ring->next_to_alloc = 0;
1518	rx_ring->next_to_clean = 0;
1519	rx_ring->next_to_process = 0;
1520	rx_ring->next_to_use = 0;
1521}
1522
1523/**
1524 * i40e_free_rx_resources - Free Rx resources
1525 * @rx_ring: ring to clean the resources from
1526 *
1527 * Free all receive software resources
1528 **/
1529void i40e_free_rx_resources(struct i40e_ring *rx_ring)
1530{
1531	i40e_clean_rx_ring(rx_ring);
1532	if (rx_ring->vsi->type == I40E_VSI_MAIN)
1533		xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
1534	rx_ring->xdp_prog = NULL;
1535	kfree(rx_ring->rx_bi);
1536	rx_ring->rx_bi = NULL;
1537
1538	if (rx_ring->desc) {
1539		dma_free_coherent(rx_ring->dev, rx_ring->size,
1540				  rx_ring->desc, rx_ring->dma);
1541		rx_ring->desc = NULL;
1542	}
1543}
1544
1545/**
1546 * i40e_setup_rx_descriptors - Allocate Rx descriptors
1547 * @rx_ring: Rx descriptor ring (for a specific queue) to setup
1548 *
1549 * Returns 0 on success, negative on failure
1550 **/
1551int i40e_setup_rx_descriptors(struct i40e_ring *rx_ring)
1552{
1553	struct device *dev = rx_ring->dev;
 
1554
1555	u64_stats_init(&rx_ring->syncp);
1556
1557	/* Round up to nearest 4K */
1558	rx_ring->size = rx_ring->count * sizeof(union i40e_rx_desc);
1559	rx_ring->size = ALIGN(rx_ring->size, 4096);
1560	rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
1561					   &rx_ring->dma, GFP_KERNEL);
1562
1563	if (!rx_ring->desc) {
1564		dev_info(dev, "Unable to allocate memory for the Rx descriptor ring, size=%d\n",
1565			 rx_ring->size);
1566		return -ENOMEM;
1567	}
1568
1569	rx_ring->next_to_alloc = 0;
1570	rx_ring->next_to_clean = 0;
1571	rx_ring->next_to_process = 0;
1572	rx_ring->next_to_use = 0;
1573
1574	rx_ring->xdp_prog = rx_ring->vsi->xdp_prog;
 
 
 
 
 
 
1575
1576	rx_ring->rx_bi =
1577		kcalloc(rx_ring->count, sizeof(*rx_ring->rx_bi), GFP_KERNEL);
1578	if (!rx_ring->rx_bi)
1579		return -ENOMEM;
1580
1581	return 0;
1582}
1583
1584/**
1585 * i40e_release_rx_desc - Store the new tail and head values
1586 * @rx_ring: ring to bump
1587 * @val: new head index
1588 **/
1589void i40e_release_rx_desc(struct i40e_ring *rx_ring, u32 val)
1590{
1591	rx_ring->next_to_use = val;
1592
1593	/* update next to alloc since we have filled the ring */
1594	rx_ring->next_to_alloc = val;
1595
1596	/* Force memory writes to complete before letting h/w
1597	 * know there are new descriptors to fetch.  (Only
1598	 * applicable for weak-ordered memory model archs,
1599	 * such as IA-64).
1600	 */
1601	wmb();
1602	writel(val, rx_ring->tail);
1603}
1604
1605#if (PAGE_SIZE >= 8192)
 
 
 
 
 
 
 
 
 
 
1606static unsigned int i40e_rx_frame_truesize(struct i40e_ring *rx_ring,
1607					   unsigned int size)
1608{
1609	unsigned int truesize;
1610
1611	truesize = rx_ring->rx_offset ?
1612		SKB_DATA_ALIGN(size + rx_ring->rx_offset) +
 
 
 
1613		SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) :
1614		SKB_DATA_ALIGN(size);
 
1615	return truesize;
1616}
1617#endif
1618
1619/**
1620 * i40e_alloc_mapped_page - recycle or make a new page
1621 * @rx_ring: ring to use
1622 * @bi: rx_buffer struct to modify
1623 *
1624 * Returns true if the page was successfully allocated or
1625 * reused.
1626 **/
1627static bool i40e_alloc_mapped_page(struct i40e_ring *rx_ring,
1628				   struct i40e_rx_buffer *bi)
1629{
1630	struct page *page = bi->page;
1631	dma_addr_t dma;
1632
1633	/* since we are recycling buffers we should seldom need to alloc */
1634	if (likely(page)) {
1635		rx_ring->rx_stats.page_reuse_count++;
1636		return true;
1637	}
1638
1639	/* alloc new page for storage */
1640	page = dev_alloc_pages(i40e_rx_pg_order(rx_ring));
1641	if (unlikely(!page)) {
1642		rx_ring->rx_stats.alloc_page_failed++;
1643		return false;
1644	}
1645
1646	rx_ring->rx_stats.page_alloc_count++;
1647
1648	/* map page for use */
1649	dma = dma_map_page_attrs(rx_ring->dev, page, 0,
1650				 i40e_rx_pg_size(rx_ring),
1651				 DMA_FROM_DEVICE,
1652				 I40E_RX_DMA_ATTR);
1653
1654	/* if mapping failed free memory back to system since
1655	 * there isn't much point in holding memory we can't use
1656	 */
1657	if (dma_mapping_error(rx_ring->dev, dma)) {
1658		__free_pages(page, i40e_rx_pg_order(rx_ring));
1659		rx_ring->rx_stats.alloc_page_failed++;
1660		return false;
1661	}
1662
1663	bi->dma = dma;
1664	bi->page = page;
1665	bi->page_offset = rx_ring->rx_offset;
1666	page_ref_add(page, USHRT_MAX - 1);
1667	bi->pagecnt_bias = USHRT_MAX;
1668
1669	return true;
1670}
1671
1672/**
1673 * i40e_alloc_rx_buffers - Replace used receive buffers
1674 * @rx_ring: ring to place buffers on
1675 * @cleaned_count: number of buffers to replace
1676 *
1677 * Returns false if all allocations were successful, true if any fail
1678 **/
1679bool i40e_alloc_rx_buffers(struct i40e_ring *rx_ring, u16 cleaned_count)
1680{
1681	u16 ntu = rx_ring->next_to_use;
1682	union i40e_rx_desc *rx_desc;
1683	struct i40e_rx_buffer *bi;
1684
1685	/* do nothing if no valid netdev defined */
1686	if (!rx_ring->netdev || !cleaned_count)
1687		return false;
1688
1689	rx_desc = I40E_RX_DESC(rx_ring, ntu);
1690	bi = i40e_rx_bi(rx_ring, ntu);
1691
1692	do {
1693		if (!i40e_alloc_mapped_page(rx_ring, bi))
1694			goto no_buffers;
1695
1696		/* sync the buffer for use by the device */
1697		dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
1698						 bi->page_offset,
1699						 rx_ring->rx_buf_len,
1700						 DMA_FROM_DEVICE);
1701
1702		/* Refresh the desc even if buffer_addrs didn't change
1703		 * because each write-back erases this info.
1704		 */
1705		rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
1706
1707		rx_desc++;
1708		bi++;
1709		ntu++;
1710		if (unlikely(ntu == rx_ring->count)) {
1711			rx_desc = I40E_RX_DESC(rx_ring, 0);
1712			bi = i40e_rx_bi(rx_ring, 0);
1713			ntu = 0;
1714		}
1715
1716		/* clear the status bits for the next_to_use descriptor */
1717		rx_desc->wb.qword1.status_error_len = 0;
1718
1719		cleaned_count--;
1720	} while (cleaned_count);
1721
1722	if (rx_ring->next_to_use != ntu)
1723		i40e_release_rx_desc(rx_ring, ntu);
1724
1725	return false;
1726
1727no_buffers:
1728	if (rx_ring->next_to_use != ntu)
1729		i40e_release_rx_desc(rx_ring, ntu);
1730
1731	/* make sure to come back via polling to try again after
1732	 * allocation failure
1733	 */
1734	return true;
1735}
1736
1737/**
1738 * i40e_rx_checksum - Indicate in skb if hw indicated a good cksum
1739 * @vsi: the VSI we care about
1740 * @skb: skb currently being received and modified
1741 * @rx_desc: the receive descriptor
1742 **/
1743static inline void i40e_rx_checksum(struct i40e_vsi *vsi,
1744				    struct sk_buff *skb,
1745				    union i40e_rx_desc *rx_desc)
1746{
1747	struct libeth_rx_pt decoded;
1748	u32 rx_error, rx_status;
1749	bool ipv4, ipv6;
1750	u8 ptype;
1751	u64 qword;
1752
 
 
 
 
 
 
 
 
1753	skb->ip_summed = CHECKSUM_NONE;
1754
1755	qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1756	ptype = FIELD_GET(I40E_RXD_QW1_PTYPE_MASK, qword);
1757
1758	decoded = libie_rx_pt_parse(ptype);
1759	if (!libeth_rx_pt_has_checksum(vsi->netdev, decoded))
1760		return;
1761
1762	rx_error = FIELD_GET(I40E_RXD_QW1_ERROR_MASK, qword);
1763	rx_status = FIELD_GET(I40E_RXD_QW1_STATUS_MASK, qword);
1764
1765	/* did the hardware decode the packet and checksum? */
1766	if (!(rx_status & BIT(I40E_RX_DESC_STATUS_L3L4P_SHIFT)))
1767		return;
1768
1769	ipv4 = libeth_rx_pt_get_ip_ver(decoded) == LIBETH_RX_PT_OUTER_IPV4;
1770	ipv6 = libeth_rx_pt_get_ip_ver(decoded) == LIBETH_RX_PT_OUTER_IPV6;
 
 
 
 
 
 
1771
1772	if (ipv4 &&
1773	    (rx_error & (BIT(I40E_RX_DESC_ERROR_IPE_SHIFT) |
1774			 BIT(I40E_RX_DESC_ERROR_EIPE_SHIFT))))
1775		goto checksum_fail;
1776
1777	/* likely incorrect csum if alternate IP extension headers found */
1778	if (ipv6 &&
1779	    rx_status & BIT(I40E_RX_DESC_STATUS_IPV6EXADD_SHIFT))
1780		/* don't increment checksum err here, non-fatal err */
1781		return;
1782
1783	/* there was some L4 error, count error and punt packet to the stack */
1784	if (rx_error & BIT(I40E_RX_DESC_ERROR_L4E_SHIFT))
1785		goto checksum_fail;
1786
1787	/* handle packets that were not able to be checksummed due
1788	 * to arrival speed, in this case the stack can compute
1789	 * the csum.
1790	 */
1791	if (rx_error & BIT(I40E_RX_DESC_ERROR_PPRS_SHIFT))
1792		return;
1793
1794	/* If there is an outer header present that might contain a checksum
1795	 * we need to bump the checksum level by 1 to reflect the fact that
1796	 * we are indicating we validated the inner checksum.
1797	 */
1798	if (decoded.tunnel_type >= LIBETH_RX_PT_TUNNEL_IP_GRENAT)
1799		skb->csum_level = 1;
1800
1801	skb->ip_summed = CHECKSUM_UNNECESSARY;
 
 
 
 
 
 
 
 
 
 
1802	return;
1803
1804checksum_fail:
1805	vsi->back->hw_csum_rx_error++;
1806}
1807
1808/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1809 * i40e_rx_hash - set the hash value in the skb
1810 * @ring: descriptor ring
1811 * @rx_desc: specific descriptor
1812 * @skb: skb currently being received and modified
1813 * @rx_ptype: Rx packet type
1814 **/
1815static inline void i40e_rx_hash(struct i40e_ring *ring,
1816				union i40e_rx_desc *rx_desc,
1817				struct sk_buff *skb,
1818				u8 rx_ptype)
1819{
1820	struct libeth_rx_pt decoded;
1821	u32 hash;
1822	const __le64 rss_mask =
1823		cpu_to_le64((u64)I40E_RX_DESC_FLTSTAT_RSS_HASH <<
1824			    I40E_RX_DESC_STATUS_FLTSTAT_SHIFT);
1825
1826	decoded = libie_rx_pt_parse(rx_ptype);
1827	if (!libeth_rx_pt_has_hash(ring->netdev, decoded))
1828		return;
1829
1830	if ((rx_desc->wb.qword1.status_error_len & rss_mask) == rss_mask) {
1831		hash = le32_to_cpu(rx_desc->wb.qword0.hi_dword.rss);
1832		libeth_rx_pt_set_hash(skb, hash, decoded);
1833	}
1834}
1835
1836/**
1837 * i40e_process_skb_fields - Populate skb header fields from Rx descriptor
1838 * @rx_ring: rx descriptor ring packet is being transacted on
1839 * @rx_desc: pointer to the EOP Rx descriptor
1840 * @skb: pointer to current skb being populated
 
1841 *
1842 * This function checks the ring, descriptor, and packet information in
1843 * order to populate the hash, checksum, VLAN, protocol, and
1844 * other fields within the skb.
1845 **/
1846void i40e_process_skb_fields(struct i40e_ring *rx_ring,
1847			     union i40e_rx_desc *rx_desc, struct sk_buff *skb)
1848{
1849	u64 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1850	u32 rx_status = FIELD_GET(I40E_RXD_QW1_STATUS_MASK, qword);
 
1851	u32 tsynvalid = rx_status & I40E_RXD_QW1_STATUS_TSYNVALID_MASK;
1852	u32 tsyn = FIELD_GET(I40E_RXD_QW1_STATUS_TSYNINDX_MASK, rx_status);
1853	u8 rx_ptype = FIELD_GET(I40E_RXD_QW1_PTYPE_MASK, qword);
 
 
1854
1855	if (unlikely(tsynvalid))
1856		i40e_ptp_rx_hwtstamp(rx_ring->vsi->back, skb, tsyn);
1857
1858	i40e_rx_hash(rx_ring, rx_desc, skb, rx_ptype);
1859
1860	i40e_rx_checksum(rx_ring->vsi, skb, rx_desc);
1861
1862	skb_record_rx_queue(skb, rx_ring->queue_index);
1863
1864	if (qword & BIT(I40E_RX_DESC_STATUS_L2TAG1P_SHIFT)) {
1865		__le16 vlan_tag = rx_desc->wb.qword0.lo_dword.l2tag1;
1866
1867		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
1868				       le16_to_cpu(vlan_tag));
1869	}
1870
1871	/* modifies the skb - consumes the enet header */
1872	skb->protocol = eth_type_trans(skb, rx_ring->netdev);
1873}
1874
1875/**
1876 * i40e_cleanup_headers - Correct empty headers
1877 * @rx_ring: rx descriptor ring packet is being transacted on
1878 * @skb: pointer to current skb being fixed
1879 * @rx_desc: pointer to the EOP Rx descriptor
1880 *
 
 
 
1881 * In addition if skb is not at least 60 bytes we need to pad it so that
1882 * it is large enough to qualify as a valid Ethernet frame.
1883 *
1884 * Returns true if an error was encountered and skb was freed.
1885 **/
1886static bool i40e_cleanup_headers(struct i40e_ring *rx_ring, struct sk_buff *skb,
1887				 union i40e_rx_desc *rx_desc)
1888
1889{
 
 
 
 
1890	/* ERR_MASK will only have valid bits if EOP set, and
1891	 * what we are doing here is actually checking
1892	 * I40E_RX_DESC_ERROR_RXE_SHIFT, since it is the zeroth bit in
1893	 * the error field
1894	 */
1895	if (unlikely(i40e_test_staterr(rx_desc,
1896				       BIT(I40E_RXD_QW1_ERROR_SHIFT)))) {
1897		dev_kfree_skb_any(skb);
1898		return true;
1899	}
1900
1901	/* if eth_skb_pad returns an error the skb was freed */
1902	if (eth_skb_pad(skb))
1903		return true;
1904
1905	return false;
1906}
1907
1908/**
1909 * i40e_can_reuse_rx_page - Determine if page can be reused for another Rx
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1910 * @rx_buffer: buffer containing the page
1911 * @rx_stats: rx stats structure for the rx ring
1912 *
1913 * If page is reusable, we have a green light for calling i40e_reuse_rx_page,
1914 * which will assign the current buffer to the buffer that next_to_alloc is
1915 * pointing to; otherwise, the DMA mapping needs to be destroyed and
1916 * page freed.
1917 *
1918 * rx_stats will be updated to indicate whether the page was waived
1919 * or busy if it could not be reused.
1920 */
1921static bool i40e_can_reuse_rx_page(struct i40e_rx_buffer *rx_buffer,
1922				   struct i40e_rx_queue_stats *rx_stats)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1923{
1924	unsigned int pagecnt_bias = rx_buffer->pagecnt_bias;
1925	struct page *page = rx_buffer->page;
1926
1927	/* Is any reuse possible? */
1928	if (!dev_page_is_reusable(page)) {
1929		rx_stats->page_waive_count++;
1930		return false;
1931	}
1932
1933#if (PAGE_SIZE < 8192)
1934	/* if we are only owner of page we can reuse it */
1935	if (unlikely((rx_buffer->page_count - pagecnt_bias) > 1)) {
1936		rx_stats->page_busy_count++;
1937		return false;
1938	}
1939#else
1940#define I40E_LAST_OFFSET \
1941	(SKB_WITH_OVERHEAD(PAGE_SIZE) - I40E_RXBUFFER_2048)
1942	if (rx_buffer->page_offset > I40E_LAST_OFFSET) {
1943		rx_stats->page_busy_count++;
1944		return false;
1945	}
1946#endif
1947
1948	/* If we have drained the page fragment pool we need to update
1949	 * the pagecnt_bias and page count so that we fully restock the
1950	 * number of references the driver holds.
1951	 */
1952	if (unlikely(pagecnt_bias == 1)) {
1953		page_ref_add(page, USHRT_MAX - 1);
1954		rx_buffer->pagecnt_bias = USHRT_MAX;
1955	}
1956
1957	return true;
1958}
1959
1960/**
1961 * i40e_rx_buffer_flip - adjusted rx_buffer to point to an unused region
1962 * @rx_buffer: Rx buffer to adjust
1963 * @truesize: Size of adjustment
1964 **/
1965static void i40e_rx_buffer_flip(struct i40e_rx_buffer *rx_buffer,
1966				unsigned int truesize)
 
 
 
 
 
 
 
 
 
1967{
1968#if (PAGE_SIZE < 8192)
 
 
 
 
 
 
 
 
 
 
1969	rx_buffer->page_offset ^= truesize;
1970#else
1971	rx_buffer->page_offset += truesize;
1972#endif
1973}
1974
1975/**
1976 * i40e_get_rx_buffer - Fetch Rx buffer and synchronize data for use
1977 * @rx_ring: rx descriptor ring to transact packets on
1978 * @size: size of buffer to add to skb
1979 *
1980 * This function will pull an Rx buffer from the ring and synchronize it
1981 * for use by the CPU.
1982 */
1983static struct i40e_rx_buffer *i40e_get_rx_buffer(struct i40e_ring *rx_ring,
1984						 const unsigned int size)
1985{
1986	struct i40e_rx_buffer *rx_buffer;
1987
1988	rx_buffer = i40e_rx_bi(rx_ring, rx_ring->next_to_process);
1989	rx_buffer->page_count =
1990#if (PAGE_SIZE < 8192)
1991		page_count(rx_buffer->page);
1992#else
1993		0;
1994#endif
1995	prefetch_page_address(rx_buffer->page);
1996
1997	/* we are reusing so sync this buffer for CPU use */
1998	dma_sync_single_range_for_cpu(rx_ring->dev,
1999				      rx_buffer->dma,
2000				      rx_buffer->page_offset,
2001				      size,
2002				      DMA_FROM_DEVICE);
2003
2004	/* We have pulled a buffer for use, so decrement pagecnt_bias */
2005	rx_buffer->pagecnt_bias--;
2006
2007	return rx_buffer;
2008}
2009
2010/**
2011 * i40e_put_rx_buffer - Clean up used buffer and either recycle or free
2012 * @rx_ring: rx descriptor ring to transact packets on
2013 * @rx_buffer: rx buffer to pull data from
2014 *
2015 * This function will clean up the contents of the rx_buffer.  It will
2016 * either recycle the buffer or unmap it and free the associated resources.
2017 */
2018static void i40e_put_rx_buffer(struct i40e_ring *rx_ring,
2019			       struct i40e_rx_buffer *rx_buffer)
2020{
2021	if (i40e_can_reuse_rx_page(rx_buffer, &rx_ring->rx_stats)) {
2022		/* hand second half of page back to the ring */
2023		i40e_reuse_rx_page(rx_ring, rx_buffer);
2024	} else {
2025		/* we are not reusing the buffer so unmap it */
2026		dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma,
2027				     i40e_rx_pg_size(rx_ring),
2028				     DMA_FROM_DEVICE, I40E_RX_DMA_ATTR);
2029		__page_frag_cache_drain(rx_buffer->page,
2030					rx_buffer->pagecnt_bias);
2031		/* clear contents of buffer_info */
2032		rx_buffer->page = NULL;
2033	}
2034}
2035
2036/**
2037 * i40e_process_rx_buffs- Processing of buffers post XDP prog or on error
2038 * @rx_ring: Rx descriptor ring to transact packets on
2039 * @xdp_res: Result of the XDP program
2040 * @xdp: xdp_buff pointing to the data
2041 **/
2042static void i40e_process_rx_buffs(struct i40e_ring *rx_ring, int xdp_res,
2043				  struct xdp_buff *xdp)
2044{
2045	u32 nr_frags = xdp_get_shared_info_from_buff(xdp)->nr_frags;
2046	u32 next = rx_ring->next_to_clean, i = 0;
2047	struct i40e_rx_buffer *rx_buffer;
2048
2049	xdp->flags = 0;
2050
2051	while (1) {
2052		rx_buffer = i40e_rx_bi(rx_ring, next);
2053		if (++next == rx_ring->count)
2054			next = 0;
2055
2056		if (!rx_buffer->page)
2057			continue;
2058
2059		if (xdp_res != I40E_XDP_CONSUMED)
2060			i40e_rx_buffer_flip(rx_buffer, xdp->frame_sz);
2061		else if (i++ <= nr_frags)
2062			rx_buffer->pagecnt_bias++;
2063
2064		/* EOP buffer will be put in i40e_clean_rx_irq() */
2065		if (next == rx_ring->next_to_process)
2066			return;
2067
2068		i40e_put_rx_buffer(rx_ring, rx_buffer);
2069	}
2070}
2071
2072/**
2073 * i40e_construct_skb - Allocate skb and populate it
2074 * @rx_ring: rx descriptor ring to transact packets on
 
2075 * @xdp: xdp_buff pointing to the data
2076 *
2077 * This function allocates an skb.  It then populates it with the page
2078 * data from the current receive descriptor, taking care to set up the
2079 * skb correctly.
2080 */
2081static struct sk_buff *i40e_construct_skb(struct i40e_ring *rx_ring,
 
2082					  struct xdp_buff *xdp)
2083{
2084	unsigned int size = xdp->data_end - xdp->data;
2085	struct i40e_rx_buffer *rx_buffer;
2086	struct skb_shared_info *sinfo;
 
 
 
2087	unsigned int headlen;
2088	struct sk_buff *skb;
2089	u32 nr_frags = 0;
2090
2091	/* prefetch first cache line of first page */
2092	net_prefetch(xdp->data);
2093
 
 
2094	/* Note, we get here by enabling legacy-rx via:
2095	 *
2096	 *    ethtool --set-priv-flags <dev> legacy-rx on
2097	 *
2098	 * In this mode, we currently get 0 extra XDP headroom as
2099	 * opposed to having legacy-rx off, where we process XDP
2100	 * packets going to stack via i40e_build_skb(). The latter
2101	 * provides us currently with 192 bytes of headroom.
2102	 *
2103	 * For i40e_construct_skb() mode it means that the
2104	 * xdp->data_meta will always point to xdp->data, since
2105	 * the helper cannot expand the head. Should this ever
2106	 * change in future for legacy-rx mode on, then lets also
2107	 * add xdp->data_meta handling here.
2108	 */
2109
2110	/* allocate a skb to store the frags */
2111	skb = napi_alloc_skb(&rx_ring->q_vector->napi, I40E_RX_HDR_SIZE);
 
 
2112	if (unlikely(!skb))
2113		return NULL;
2114
2115	/* Determine available headroom for copy */
2116	headlen = size;
2117	if (headlen > I40E_RX_HDR_SIZE)
2118		headlen = eth_get_headlen(skb->dev, xdp->data,
2119					  I40E_RX_HDR_SIZE);
2120
2121	/* align pull length to size of long to optimize memcpy performance */
2122	memcpy(__skb_put(skb, headlen), xdp->data,
2123	       ALIGN(headlen, sizeof(long)));
2124
2125	if (unlikely(xdp_buff_has_frags(xdp))) {
2126		sinfo = xdp_get_shared_info_from_buff(xdp);
2127		nr_frags = sinfo->nr_frags;
2128	}
2129	rx_buffer = i40e_rx_bi(rx_ring, rx_ring->next_to_clean);
2130	/* update all of the pointers */
2131	size -= headlen;
2132	if (size) {
2133		if (unlikely(nr_frags >= MAX_SKB_FRAGS)) {
2134			dev_kfree_skb(skb);
2135			return NULL;
2136		}
2137		skb_add_rx_frag(skb, 0, rx_buffer->page,
2138				rx_buffer->page_offset + headlen,
2139				size, xdp->frame_sz);
 
2140		/* buffer is used by skb, update page_offset */
2141		i40e_rx_buffer_flip(rx_buffer, xdp->frame_sz);
 
 
 
 
2142	} else {
2143		/* buffer is unused, reset bias back to rx_buffer */
2144		rx_buffer->pagecnt_bias++;
2145	}
2146
2147	if (unlikely(xdp_buff_has_frags(xdp))) {
2148		struct skb_shared_info *skinfo = skb_shinfo(skb);
2149
2150		memcpy(&skinfo->frags[skinfo->nr_frags], &sinfo->frags[0],
2151		       sizeof(skb_frag_t) * nr_frags);
2152
2153		xdp_update_skb_shared_info(skb, skinfo->nr_frags + nr_frags,
2154					   sinfo->xdp_frags_size,
2155					   nr_frags * xdp->frame_sz,
2156					   xdp_buff_is_frag_pfmemalloc(xdp));
2157
2158		/* First buffer has already been processed, so bump ntc */
2159		if (++rx_ring->next_to_clean == rx_ring->count)
2160			rx_ring->next_to_clean = 0;
2161
2162		i40e_process_rx_buffs(rx_ring, I40E_XDP_PASS, xdp);
2163	}
2164
2165	return skb;
2166}
2167
2168/**
2169 * i40e_build_skb - Build skb around an existing buffer
2170 * @rx_ring: Rx descriptor ring to transact packets on
 
2171 * @xdp: xdp_buff pointing to the data
2172 *
2173 * This function builds an skb around an existing Rx buffer, taking care
2174 * to set up the skb correctly and avoid any memcpy overhead.
2175 */
2176static struct sk_buff *i40e_build_skb(struct i40e_ring *rx_ring,
 
2177				      struct xdp_buff *xdp)
2178{
2179	unsigned int metasize = xdp->data - xdp->data_meta;
2180	struct skb_shared_info *sinfo;
 
 
 
 
 
 
2181	struct sk_buff *skb;
2182	u32 nr_frags;
2183
2184	/* Prefetch first cache line of first page. If xdp->data_meta
2185	 * is unused, this points exactly as xdp->data, otherwise we
2186	 * likely have a consumer accessing first few bytes of meta
2187	 * data, and then actual data.
2188	 */
2189	net_prefetch(xdp->data_meta);
2190
2191	if (unlikely(xdp_buff_has_frags(xdp))) {
2192		sinfo = xdp_get_shared_info_from_buff(xdp);
2193		nr_frags = sinfo->nr_frags;
2194	}
2195
2196	/* build an skb around the page buffer */
2197	skb = napi_build_skb(xdp->data_hard_start, xdp->frame_sz);
2198	if (unlikely(!skb))
2199		return NULL;
2200
2201	/* update pointers within the skb to store the data */
2202	skb_reserve(skb, xdp->data - xdp->data_hard_start);
2203	__skb_put(skb, xdp->data_end - xdp->data);
2204	if (metasize)
2205		skb_metadata_set(skb, metasize);
2206
2207	if (unlikely(xdp_buff_has_frags(xdp))) {
2208		xdp_update_skb_shared_info(skb, nr_frags,
2209					   sinfo->xdp_frags_size,
2210					   nr_frags * xdp->frame_sz,
2211					   xdp_buff_is_frag_pfmemalloc(xdp));
 
 
 
 
2212
2213		i40e_process_rx_buffs(rx_ring, I40E_XDP_PASS, xdp);
 
 
 
 
 
 
 
 
 
 
 
 
 
2214	} else {
2215		struct i40e_rx_buffer *rx_buffer;
2216
2217		rx_buffer = i40e_rx_bi(rx_ring, rx_ring->next_to_clean);
2218		/* buffer is used by skb, update page_offset */
2219		i40e_rx_buffer_flip(rx_buffer, xdp->frame_sz);
 
 
 
2220	}
2221
2222	return skb;
2223}
2224
2225/**
2226 * i40e_is_non_eop - process handling of non-EOP buffers
2227 * @rx_ring: Rx ring being processed
2228 * @rx_desc: Rx descriptor for current buffer
 
2229 *
2230 * If the buffer is an EOP buffer, this function exits returning false,
2231 * otherwise return true indicating that this is in fact a non-EOP buffer.
2232 */
2233bool i40e_is_non_eop(struct i40e_ring *rx_ring,
2234		     union i40e_rx_desc *rx_desc)
 
 
 
2235{
 
 
 
 
 
 
 
 
2236	/* if we are the last buffer then there is nothing else to do */
2237#define I40E_RXD_EOF BIT(I40E_RX_DESC_STATUS_EOF_SHIFT)
2238	if (likely(i40e_test_staterr(rx_desc, I40E_RXD_EOF)))
2239		return false;
2240
2241	rx_ring->rx_stats.non_eop_descs++;
2242
2243	return true;
2244}
2245
2246static int i40e_xmit_xdp_ring(struct xdp_frame *xdpf,
2247			      struct i40e_ring *xdp_ring);
2248
2249int i40e_xmit_xdp_tx_ring(struct xdp_buff *xdp, struct i40e_ring *xdp_ring)
2250{
2251	struct xdp_frame *xdpf = xdp_convert_buff_to_frame(xdp);
2252
2253	if (unlikely(!xdpf))
2254		return I40E_XDP_CONSUMED;
2255
2256	return i40e_xmit_xdp_ring(xdpf, xdp_ring);
2257}
2258
2259/**
2260 * i40e_run_xdp - run an XDP program
2261 * @rx_ring: Rx ring being processed
2262 * @xdp: XDP buffer containing the frame
2263 * @xdp_prog: XDP program to run
2264 **/
2265static int i40e_run_xdp(struct i40e_ring *rx_ring, struct xdp_buff *xdp, struct bpf_prog *xdp_prog)
 
2266{
2267	int err, result = I40E_XDP_PASS;
2268	struct i40e_ring *xdp_ring;
 
2269	u32 act;
2270
 
 
 
2271	if (!xdp_prog)
2272		goto xdp_out;
2273
2274	prefetchw(xdp->data_hard_start); /* xdp_frame write */
2275
2276	act = bpf_prog_run_xdp(xdp_prog, xdp);
2277	switch (act) {
2278	case XDP_PASS:
2279		break;
2280	case XDP_TX:
2281		xdp_ring = rx_ring->vsi->xdp_rings[rx_ring->queue_index];
2282		result = i40e_xmit_xdp_tx_ring(xdp, xdp_ring);
2283		if (result == I40E_XDP_CONSUMED)
2284			goto out_failure;
2285		break;
2286	case XDP_REDIRECT:
2287		err = xdp_do_redirect(rx_ring->netdev, xdp, xdp_prog);
2288		if (err)
2289			goto out_failure;
2290		result = I40E_XDP_REDIR;
2291		break;
2292	default:
2293		bpf_warn_invalid_xdp_action(rx_ring->netdev, xdp_prog, act);
2294		fallthrough;
2295	case XDP_ABORTED:
2296out_failure:
2297		trace_xdp_exception(rx_ring->netdev, xdp_prog, act);
2298		fallthrough; /* handle aborts by dropping packet */
2299	case XDP_DROP:
2300		result = I40E_XDP_CONSUMED;
2301		break;
2302	}
2303xdp_out:
2304	return result;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2305}
2306
2307/**
2308 * i40e_xdp_ring_update_tail - Updates the XDP Tx ring tail register
2309 * @xdp_ring: XDP Tx ring
2310 *
2311 * This function updates the XDP Tx ring tail register.
2312 **/
2313void i40e_xdp_ring_update_tail(struct i40e_ring *xdp_ring)
2314{
2315	/* Force memory writes to complete before letting h/w
2316	 * know there are new descriptors to fetch.
2317	 */
2318	wmb();
2319	writel_relaxed(xdp_ring->next_to_use, xdp_ring->tail);
2320}
2321
2322/**
2323 * i40e_update_rx_stats - Update Rx ring statistics
2324 * @rx_ring: rx descriptor ring
2325 * @total_rx_bytes: number of bytes received
2326 * @total_rx_packets: number of packets received
2327 *
2328 * This function updates the Rx ring statistics.
2329 **/
2330void i40e_update_rx_stats(struct i40e_ring *rx_ring,
2331			  unsigned int total_rx_bytes,
2332			  unsigned int total_rx_packets)
2333{
2334	u64_stats_update_begin(&rx_ring->syncp);
2335	rx_ring->stats.packets += total_rx_packets;
2336	rx_ring->stats.bytes += total_rx_bytes;
2337	u64_stats_update_end(&rx_ring->syncp);
2338	rx_ring->q_vector->rx.total_packets += total_rx_packets;
2339	rx_ring->q_vector->rx.total_bytes += total_rx_bytes;
2340}
2341
2342/**
2343 * i40e_finalize_xdp_rx - Bump XDP Tx tail and/or flush redirect map
2344 * @rx_ring: Rx ring
2345 * @xdp_res: Result of the receive batch
2346 *
2347 * This function bumps XDP Tx tail and/or flush redirect map, and
2348 * should be called when a batch of packets has been processed in the
2349 * napi loop.
2350 **/
2351void i40e_finalize_xdp_rx(struct i40e_ring *rx_ring, unsigned int xdp_res)
2352{
2353	if (xdp_res & I40E_XDP_REDIR)
2354		xdp_do_flush();
2355
2356	if (xdp_res & I40E_XDP_TX) {
2357		struct i40e_ring *xdp_ring =
2358			rx_ring->vsi->xdp_rings[rx_ring->queue_index];
2359
2360		i40e_xdp_ring_update_tail(xdp_ring);
2361	}
2362}
2363
2364/**
2365 * i40e_inc_ntp: Advance the next_to_process index
2366 * @rx_ring: Rx ring
2367 **/
2368static void i40e_inc_ntp(struct i40e_ring *rx_ring)
2369{
2370	u32 ntp = rx_ring->next_to_process + 1;
2371
2372	ntp = (ntp < rx_ring->count) ? ntp : 0;
2373	rx_ring->next_to_process = ntp;
2374	prefetch(I40E_RX_DESC(rx_ring, ntp));
2375}
2376
2377/**
2378 * i40e_add_xdp_frag: Add a frag to xdp_buff
2379 * @xdp: xdp_buff pointing to the data
2380 * @nr_frags: return number of buffers for the packet
2381 * @rx_buffer: rx_buffer holding data of the current frag
2382 * @size: size of data of current frag
2383 */
2384static int i40e_add_xdp_frag(struct xdp_buff *xdp, u32 *nr_frags,
2385			     struct i40e_rx_buffer *rx_buffer, u32 size)
2386{
2387	struct skb_shared_info *sinfo = xdp_get_shared_info_from_buff(xdp);
2388
2389	if (!xdp_buff_has_frags(xdp)) {
2390		sinfo->nr_frags = 0;
2391		sinfo->xdp_frags_size = 0;
2392		xdp_buff_set_frags_flag(xdp);
2393	} else if (unlikely(sinfo->nr_frags >= MAX_SKB_FRAGS)) {
2394		/* Overflowing packet: All frags need to be dropped */
2395		return -ENOMEM;
2396	}
2397
2398	__skb_fill_page_desc_noacc(sinfo, sinfo->nr_frags++, rx_buffer->page,
2399				   rx_buffer->page_offset, size);
2400
2401	sinfo->xdp_frags_size += size;
2402
2403	if (page_is_pfmemalloc(rx_buffer->page))
2404		xdp_buff_set_frag_pfmemalloc(xdp);
2405	*nr_frags = sinfo->nr_frags;
2406
2407	return 0;
2408}
2409
2410/**
2411 * i40e_consume_xdp_buff - Consume all the buffers of the packet and update ntc
2412 * @rx_ring: rx descriptor ring to transact packets on
2413 * @xdp: xdp_buff pointing to the data
2414 * @rx_buffer: rx_buffer of eop desc
2415 */
2416static void i40e_consume_xdp_buff(struct i40e_ring *rx_ring,
2417				  struct xdp_buff *xdp,
2418				  struct i40e_rx_buffer *rx_buffer)
2419{
2420	i40e_process_rx_buffs(rx_ring, I40E_XDP_CONSUMED, xdp);
2421	i40e_put_rx_buffer(rx_ring, rx_buffer);
2422	rx_ring->next_to_clean = rx_ring->next_to_process;
2423	xdp->data = NULL;
2424}
2425
2426/**
2427 * i40e_clean_rx_irq - Clean completed descriptors from Rx ring - bounce buf
2428 * @rx_ring: rx descriptor ring to transact packets on
2429 * @budget: Total limit on number of packets to process
2430 * @rx_cleaned: Out parameter of the number of packets processed
2431 *
2432 * This function provides a "bounce buffer" approach to Rx interrupt
2433 * processing.  The advantage to this is that on systems that have
2434 * expensive overhead for IOMMU access this provides a means of avoiding
2435 * it by maintaining the mapping of the page to the system.
2436 *
2437 * Returns amount of work completed
2438 **/
2439static int i40e_clean_rx_irq(struct i40e_ring *rx_ring, int budget,
2440			     unsigned int *rx_cleaned)
2441{
2442	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
 
2443	u16 cleaned_count = I40E_DESC_UNUSED(rx_ring);
2444	u16 clean_threshold = rx_ring->count / 2;
2445	unsigned int offset = rx_ring->rx_offset;
2446	struct xdp_buff *xdp = &rx_ring->xdp;
2447	unsigned int xdp_xmit = 0;
2448	struct bpf_prog *xdp_prog;
2449	bool failure = false;
2450	int xdp_res = 0;
2451
2452	xdp_prog = READ_ONCE(rx_ring->xdp_prog);
 
 
 
2453
2454	while (likely(total_rx_packets < (unsigned int)budget)) {
2455		u16 ntp = rx_ring->next_to_process;
2456		struct i40e_rx_buffer *rx_buffer;
2457		union i40e_rx_desc *rx_desc;
2458		struct sk_buff *skb;
2459		unsigned int size;
2460		u32 nfrags = 0;
2461		bool neop;
2462		u64 qword;
2463
2464		/* return some buffers to hardware, one at a time is too slow */
2465		if (cleaned_count >= clean_threshold) {
2466			failure = failure ||
2467				  i40e_alloc_rx_buffers(rx_ring, cleaned_count);
2468			cleaned_count = 0;
2469		}
2470
2471		rx_desc = I40E_RX_DESC(rx_ring, ntp);
2472
2473		/* status_error_len will always be zero for unused descriptors
2474		 * because it's cleared in cleanup, and overlaps with hdr_addr
2475		 * which is always zero because packet split isn't used, if the
2476		 * hardware wrote DD then the length will be non-zero
2477		 */
2478		qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
2479
2480		/* This memory barrier is needed to keep us from reading
2481		 * any other fields out of the rx_desc until we have
2482		 * verified the descriptor has been written back.
2483		 */
2484		dma_rmb();
2485
2486		if (i40e_rx_is_programming_status(qword)) {
2487			i40e_clean_programming_status(rx_ring,
2488						      rx_desc->raw.qword[0],
2489						      qword);
2490			rx_buffer = i40e_rx_bi(rx_ring, ntp);
2491			i40e_inc_ntp(rx_ring);
2492			i40e_reuse_rx_page(rx_ring, rx_buffer);
2493			/* Update ntc and bump cleaned count if not in the
2494			 * middle of mb packet.
2495			 */
2496			if (rx_ring->next_to_clean == ntp) {
2497				rx_ring->next_to_clean =
2498					rx_ring->next_to_process;
2499				cleaned_count++;
2500			}
2501			continue;
2502		}
2503
2504		size = FIELD_GET(I40E_RXD_QW1_LENGTH_PBUF_MASK, qword);
 
2505		if (!size)
2506			break;
2507
2508		i40e_trace(clean_rx_irq, rx_ring, rx_desc, xdp);
2509		/* retrieve a buffer from the ring */
2510		rx_buffer = i40e_get_rx_buffer(rx_ring, size);
2511
2512		neop = i40e_is_non_eop(rx_ring, rx_desc);
2513		i40e_inc_ntp(rx_ring);
2514
2515		if (!xdp->data) {
2516			unsigned char *hard_start;
2517
2518			hard_start = page_address(rx_buffer->page) +
2519				     rx_buffer->page_offset - offset;
2520			xdp_prepare_buff(xdp, hard_start, offset, size, true);
2521#if (PAGE_SIZE > 4096)
2522			/* At larger PAGE_SIZE, frame_sz depend on len size */
2523			xdp->frame_sz = i40e_rx_frame_truesize(rx_ring, size);
2524#endif
2525		} else if (i40e_add_xdp_frag(xdp, &nfrags, rx_buffer, size) &&
2526			   !neop) {
2527			/* Overflowing packet: Drop all frags on EOP */
2528			i40e_consume_xdp_buff(rx_ring, xdp, rx_buffer);
2529			break;
2530		}
2531
2532		if (neop)
2533			continue;
2534
2535		xdp_res = i40e_run_xdp(rx_ring, xdp, xdp_prog);
2536
2537		if (xdp_res) {
2538			xdp_xmit |= xdp_res & (I40E_XDP_TX | I40E_XDP_REDIR);
2539
2540			if (unlikely(xdp_buff_has_frags(xdp))) {
2541				i40e_process_rx_buffs(rx_ring, xdp_res, xdp);
2542				size = xdp_get_buff_len(xdp);
2543			} else if (xdp_res & (I40E_XDP_TX | I40E_XDP_REDIR)) {
2544				i40e_rx_buffer_flip(rx_buffer, xdp->frame_sz);
2545			} else {
2546				rx_buffer->pagecnt_bias++;
2547			}
2548			total_rx_bytes += size;
 
 
 
 
 
2549		} else {
2550			if (ring_uses_build_skb(rx_ring))
2551				skb = i40e_build_skb(rx_ring, xdp);
2552			else
2553				skb = i40e_construct_skb(rx_ring, xdp);
2554
2555			/* drop if we failed to retrieve a buffer */
2556			if (!skb) {
2557				rx_ring->rx_stats.alloc_buff_failed++;
2558				i40e_consume_xdp_buff(rx_ring, xdp, rx_buffer);
2559				break;
2560			}
2561
2562			if (i40e_cleanup_headers(rx_ring, skb, rx_desc))
2563				goto process_next;
 
 
 
 
2564
2565			/* probably a little skewed due to removing CRC */
2566			total_rx_bytes += skb->len;
2567
2568			/* populate checksum, VLAN, and protocol */
2569			i40e_process_skb_fields(rx_ring, rx_desc, skb);
2570
2571			i40e_trace(clean_rx_irq_rx, rx_ring, rx_desc, xdp);
2572			napi_gro_receive(&rx_ring->q_vector->napi, skb);
 
2573		}
2574
 
 
 
 
 
 
 
 
 
 
2575		/* update budget accounting */
2576		total_rx_packets++;
2577process_next:
2578		cleaned_count += nfrags + 1;
2579		i40e_put_rx_buffer(rx_ring, rx_buffer);
2580		rx_ring->next_to_clean = rx_ring->next_to_process;
2581
2582		xdp->data = NULL;
2583	}
2584
2585	i40e_finalize_xdp_rx(rx_ring, xdp_xmit);
 
2586
2587	i40e_update_rx_stats(rx_ring, total_rx_bytes, total_rx_packets);
2588
2589	*rx_cleaned = total_rx_packets;
2590
2591	/* guarantee a trip back through this routine if there was a failure */
2592	return failure ? budget : (int)total_rx_packets;
2593}
2594
2595/**
2596 * i40e_buildreg_itr - build a value for writing to I40E_PFINT_DYN_CTLN register
2597 * @itr_idx: interrupt throttling index
2598 * @interval: interrupt throttling interval value in usecs
2599 * @force_swint: force software interrupt
2600 *
2601 * The function builds a value for I40E_PFINT_DYN_CTLN register that
2602 * is used to update interrupt throttling interval for specified ITR index
2603 * and optionally enforces a software interrupt. If the @itr_idx is equal
2604 * to I40E_ITR_NONE then no interval change is applied and only @force_swint
2605 * parameter is taken into account. If the interval change and enforced
2606 * software interrupt are not requested then the built value just enables
2607 * appropriate vector interrupt.
2608 **/
2609static u32 i40e_buildreg_itr(enum i40e_dyn_idx itr_idx, u16 interval,
2610			     bool force_swint)
2611{
2612	u32 val;
2613
2614	/* We don't bother with setting the CLEARPBA bit as the data sheet
2615	 * points out doing so is "meaningless since it was already
2616	 * auto-cleared". The auto-clearing happens when the interrupt is
2617	 * asserted.
2618	 *
2619	 * Hardware errata 28 for also indicates that writing to a
2620	 * xxINT_DYN_CTLx CSR with INTENA_MSK (bit 31) set to 0 will clear
2621	 * an event in the PBA anyway so we need to rely on the automask
2622	 * to hold pending events for us until the interrupt is re-enabled
2623	 *
2624	 * We have to shift the given value as it is reported in microseconds
2625	 * and the register value is recorded in 2 microsecond units.
 
 
2626	 */
2627	interval >>= 1;
2628
2629	/* 1. Enable vector interrupt
2630	 * 2. Update the interval for the specified ITR index
2631	 *    (I40E_ITR_NONE in the register is used to indicate that
2632	 *     no interval update is requested)
2633	 */
2634	val = I40E_PFINT_DYN_CTLN_INTENA_MASK |
2635	      FIELD_PREP(I40E_PFINT_DYN_CTLN_ITR_INDX_MASK, itr_idx) |
2636	      FIELD_PREP(I40E_PFINT_DYN_CTLN_INTERVAL_MASK, interval);
2637
2638	/* 3. Enforce software interrupt trigger if requested
2639	 *    (These software interrupts rate is limited by ITR2 that is
2640	 *     set to 20K interrupts per second)
2641	 */
2642	if (force_swint)
2643		val |= I40E_PFINT_DYN_CTLN_SWINT_TRIG_MASK |
2644		       I40E_PFINT_DYN_CTLN_SW_ITR_INDX_ENA_MASK |
2645		       FIELD_PREP(I40E_PFINT_DYN_CTLN_SW_ITR_INDX_MASK,
2646				  I40E_SW_ITR);
2647
2648	return val;
2649}
2650
 
 
 
2651/* The act of updating the ITR will cause it to immediately trigger. In order
2652 * to prevent this from throwing off adaptive update statistics we defer the
2653 * update so that it can only happen so often. So after either Tx or Rx are
2654 * updated we make the adaptive scheme wait until either the ITR completely
2655 * expires via the next_update expiration or we have been through at least
2656 * 3 interrupts.
2657 */
2658#define ITR_COUNTDOWN_START 3
2659
2660/**
2661 * i40e_update_enable_itr - Update itr and re-enable MSIX interrupt
2662 * @vsi: the VSI we care about
2663 * @q_vector: q_vector for which itr is being updated and interrupt enabled
2664 *
2665 **/
2666static inline void i40e_update_enable_itr(struct i40e_vsi *vsi,
2667					  struct i40e_q_vector *q_vector)
2668{
2669	enum i40e_dyn_idx itr_idx = I40E_ITR_NONE;
2670	struct i40e_hw *hw = &vsi->back->hw;
2671	u16 interval = 0;
2672	u32 itr_val;
2673
2674	/* If we don't have MSIX, then we only need to re-enable icr0 */
2675	if (!test_bit(I40E_FLAG_MSIX_ENA, vsi->back->flags)) {
2676		i40e_irq_dynamic_enable_icr0(vsi->back);
2677		return;
2678	}
2679
2680	/* These will do nothing if dynamic updates are not enabled */
2681	i40e_update_itr(q_vector, &q_vector->tx);
2682	i40e_update_itr(q_vector, &q_vector->rx);
2683
2684	/* This block of logic allows us to get away with only updating
2685	 * one ITR value with each interrupt. The idea is to perform a
2686	 * pseudo-lazy update with the following criteria.
2687	 *
2688	 * 1. Rx is given higher priority than Tx if both are in same state
2689	 * 2. If we must reduce an ITR that is given highest priority.
2690	 * 3. We then give priority to increasing ITR based on amount.
2691	 */
2692	if (q_vector->rx.target_itr < q_vector->rx.current_itr) {
2693		/* Rx ITR needs to be reduced, this is highest priority */
2694		itr_idx = I40E_RX_ITR;
2695		interval = q_vector->rx.target_itr;
2696		q_vector->rx.current_itr = q_vector->rx.target_itr;
2697		q_vector->itr_countdown = ITR_COUNTDOWN_START;
2698	} else if ((q_vector->tx.target_itr < q_vector->tx.current_itr) ||
2699		   ((q_vector->rx.target_itr - q_vector->rx.current_itr) <
2700		    (q_vector->tx.target_itr - q_vector->tx.current_itr))) {
2701		/* Tx ITR needs to be reduced, this is second priority
2702		 * Tx ITR needs to be increased more than Rx, fourth priority
2703		 */
2704		itr_idx = I40E_TX_ITR;
2705		interval = q_vector->tx.target_itr;
2706		q_vector->tx.current_itr = q_vector->tx.target_itr;
2707		q_vector->itr_countdown = ITR_COUNTDOWN_START;
2708	} else if (q_vector->rx.current_itr != q_vector->rx.target_itr) {
2709		/* Rx ITR needs to be increased, third priority */
2710		itr_idx = I40E_RX_ITR;
2711		interval = q_vector->rx.target_itr;
2712		q_vector->rx.current_itr = q_vector->rx.target_itr;
2713		q_vector->itr_countdown = ITR_COUNTDOWN_START;
2714	} else {
2715		/* No ITR update, lowest priority */
 
2716		if (q_vector->itr_countdown)
2717			q_vector->itr_countdown--;
2718	}
2719
2720	/* Do not update interrupt control register if VSI is down */
2721	if (test_bit(__I40E_VSI_DOWN, vsi->state))
2722		return;
2723
2724	/* Update ITR interval if necessary and enforce software interrupt
2725	 * if we are exiting busy poll.
2726	 */
2727	if (q_vector->in_busy_poll) {
2728		itr_val = i40e_buildreg_itr(itr_idx, interval, true);
2729		q_vector->in_busy_poll = false;
2730	} else {
2731		itr_val = i40e_buildreg_itr(itr_idx, interval, false);
2732	}
2733	wr32(hw, I40E_PFINT_DYN_CTLN(q_vector->reg_idx), itr_val);
2734}
2735
2736/**
2737 * i40e_napi_poll - NAPI polling Rx/Tx cleanup routine
2738 * @napi: napi struct with our devices info in it
2739 * @budget: amount of work driver is allowed to do this pass, in packets
2740 *
2741 * This function will clean all queues associated with a q_vector.
2742 *
2743 * Returns the amount of work done
2744 **/
2745int i40e_napi_poll(struct napi_struct *napi, int budget)
2746{
2747	struct i40e_q_vector *q_vector =
2748			       container_of(napi, struct i40e_q_vector, napi);
2749	struct i40e_vsi *vsi = q_vector->vsi;
2750	struct i40e_ring *ring;
2751	bool tx_clean_complete = true;
2752	bool rx_clean_complete = true;
2753	unsigned int tx_cleaned = 0;
2754	unsigned int rx_cleaned = 0;
2755	bool clean_complete = true;
2756	bool arm_wb = false;
2757	int budget_per_ring;
2758	int work_done = 0;
2759
2760	if (test_bit(__I40E_VSI_DOWN, vsi->state)) {
2761		napi_complete(napi);
2762		return 0;
2763	}
2764
2765	/* Since the actual Tx work is minimal, we can give the Tx a larger
2766	 * budget and be more aggressive about cleaning up the Tx descriptors.
2767	 */
2768	i40e_for_each_ring(ring, q_vector->tx) {
2769		bool wd = ring->xsk_pool ?
2770			  i40e_clean_xdp_tx_irq(vsi, ring) :
2771			  i40e_clean_tx_irq(vsi, ring, budget, &tx_cleaned);
2772
2773		if (!wd) {
2774			clean_complete = tx_clean_complete = false;
2775			continue;
2776		}
2777		arm_wb |= ring->arm_wb;
2778		ring->arm_wb = false;
2779	}
2780
2781	/* Handle case where we are called by netpoll with a budget of 0 */
2782	if (budget <= 0)
2783		goto tx_only;
2784
2785	/* normally we have 1 Rx ring per q_vector */
2786	if (unlikely(q_vector->num_ringpairs > 1))
2787		/* We attempt to distribute budget to each Rx queue fairly, but
2788		 * don't allow the budget to go below 1 because that would exit
2789		 * polling early.
2790		 */
2791		budget_per_ring = max_t(int, budget / q_vector->num_ringpairs, 1);
2792	else
2793		/* Max of 1 Rx ring in this q_vector so give it the budget */
2794		budget_per_ring = budget;
2795
2796	i40e_for_each_ring(ring, q_vector->rx) {
2797		int cleaned = ring->xsk_pool ?
2798			      i40e_clean_rx_irq_zc(ring, budget_per_ring) :
2799			      i40e_clean_rx_irq(ring, budget_per_ring, &rx_cleaned);
2800
2801		work_done += cleaned;
2802		/* if we clean as many as budgeted, we must not be done */
2803		if (cleaned >= budget_per_ring)
2804			clean_complete = rx_clean_complete = false;
2805	}
2806
2807	if (!i40e_enabled_xdp_vsi(vsi))
2808		trace_i40e_napi_poll(napi, q_vector, budget, budget_per_ring, rx_cleaned,
2809				     tx_cleaned, rx_clean_complete, tx_clean_complete);
2810
2811	/* If work not completed, return budget and polling will return */
2812	if (!clean_complete) {
2813		int cpu_id = smp_processor_id();
2814
2815		/* It is possible that the interrupt affinity has changed but,
2816		 * if the cpu is pegged at 100%, polling will never exit while
2817		 * traffic continues and the interrupt will be stuck on this
2818		 * cpu.  We check to make sure affinity is correct before we
2819		 * continue to poll, otherwise we must stop polling so the
2820		 * interrupt can move to the correct cpu.
2821		 */
2822		if (!cpumask_test_cpu(cpu_id, &q_vector->affinity_mask)) {
2823			/* Tell napi that we are done polling */
2824			napi_complete_done(napi, work_done);
2825
2826			/* Force an interrupt */
2827			i40e_force_wb(vsi, q_vector);
2828
2829			/* Return budget-1 so that polling stops */
2830			return budget - 1;
2831		}
2832tx_only:
2833		if (arm_wb) {
2834			q_vector->tx.ring[0].tx_stats.tx_force_wb++;
2835			i40e_enable_wb_on_itr(vsi, q_vector);
2836		}
2837		return budget;
2838	}
2839
2840	if (q_vector->tx.ring[0].flags & I40E_TXR_FLAGS_WB_ON_ITR)
2841		q_vector->arm_wb_state = false;
2842
2843	/* Exit the polling mode, but don't re-enable interrupts if stack might
2844	 * poll us due to busy-polling
2845	 */
2846	if (likely(napi_complete_done(napi, work_done)))
2847		i40e_update_enable_itr(vsi, q_vector);
2848	else
2849		q_vector->in_busy_poll = true;
2850
2851	return min(work_done, budget - 1);
2852}
2853
2854/**
2855 * i40e_atr - Add a Flow Director ATR filter
2856 * @tx_ring:  ring to add programming descriptor to
2857 * @skb:      send buffer
2858 * @tx_flags: send tx flags
2859 **/
2860static void i40e_atr(struct i40e_ring *tx_ring, struct sk_buff *skb,
2861		     u32 tx_flags)
2862{
2863	struct i40e_filter_program_desc *fdir_desc;
2864	struct i40e_pf *pf = tx_ring->vsi->back;
2865	union {
2866		unsigned char *network;
2867		struct iphdr *ipv4;
2868		struct ipv6hdr *ipv6;
2869	} hdr;
2870	struct tcphdr *th;
2871	unsigned int hlen;
2872	u32 flex_ptype, dtype_cmd;
2873	int l4_proto;
2874	u16 i;
2875
2876	/* make sure ATR is enabled */
2877	if (!test_bit(I40E_FLAG_FD_ATR_ENA, pf->flags))
2878		return;
2879
2880	if (test_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state))
2881		return;
2882
2883	/* if sampling is disabled do nothing */
2884	if (!tx_ring->atr_sample_rate)
2885		return;
2886
2887	/* Currently only IPv4/IPv6 with TCP is supported */
2888	if (!(tx_flags & (I40E_TX_FLAGS_IPV4 | I40E_TX_FLAGS_IPV6)))
2889		return;
2890
2891	/* snag network header to get L4 type and address */
2892	hdr.network = (tx_flags & I40E_TX_FLAGS_UDP_TUNNEL) ?
2893		      skb_inner_network_header(skb) : skb_network_header(skb);
2894
2895	/* Note: tx_flags gets modified to reflect inner protocols in
2896	 * tx_enable_csum function if encap is enabled.
2897	 */
2898	if (tx_flags & I40E_TX_FLAGS_IPV4) {
2899		/* access ihl as u8 to avoid unaligned access on ia64 */
2900		hlen = (hdr.network[0] & 0x0F) << 2;
2901		l4_proto = hdr.ipv4->protocol;
2902	} else {
2903		/* find the start of the innermost ipv6 header */
2904		unsigned int inner_hlen = hdr.network - skb->data;
2905		unsigned int h_offset = inner_hlen;
2906
2907		/* this function updates h_offset to the end of the header */
2908		l4_proto =
2909		  ipv6_find_hdr(skb, &h_offset, IPPROTO_TCP, NULL, NULL);
2910		/* hlen will contain our best estimate of the tcp header */
2911		hlen = h_offset - inner_hlen;
2912	}
2913
2914	if (l4_proto != IPPROTO_TCP)
2915		return;
2916
2917	th = (struct tcphdr *)(hdr.network + hlen);
2918
2919	/* Due to lack of space, no more new filters can be programmed */
2920	if (th->syn && test_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state))
2921		return;
2922	if (test_bit(I40E_FLAG_HW_ATR_EVICT_ENA, pf->flags)) {
2923		/* HW ATR eviction will take care of removing filters on FIN
2924		 * and RST packets.
2925		 */
2926		if (th->fin || th->rst)
2927			return;
2928	}
2929
2930	tx_ring->atr_count++;
2931
2932	/* sample on all syn/fin/rst packets or once every atr sample rate */
2933	if (!th->fin &&
2934	    !th->syn &&
2935	    !th->rst &&
2936	    (tx_ring->atr_count < tx_ring->atr_sample_rate))
2937		return;
2938
2939	tx_ring->atr_count = 0;
2940
2941	/* grab the next descriptor */
2942	i = tx_ring->next_to_use;
2943	fdir_desc = I40E_TX_FDIRDESC(tx_ring, i);
2944
2945	i++;
2946	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
2947
2948	flex_ptype = FIELD_PREP(I40E_TXD_FLTR_QW0_QINDEX_MASK,
2949				tx_ring->queue_index);
2950	flex_ptype |= (tx_flags & I40E_TX_FLAGS_IPV4) ?
2951		      (I40E_FILTER_PCTYPE_NONF_IPV4_TCP <<
2952		       I40E_TXD_FLTR_QW0_PCTYPE_SHIFT) :
2953		      (I40E_FILTER_PCTYPE_NONF_IPV6_TCP <<
2954		       I40E_TXD_FLTR_QW0_PCTYPE_SHIFT);
2955
2956	flex_ptype |= tx_ring->vsi->id << I40E_TXD_FLTR_QW0_DEST_VSI_SHIFT;
2957
2958	dtype_cmd = I40E_TX_DESC_DTYPE_FILTER_PROG;
2959
2960	dtype_cmd |= (th->fin || th->rst) ?
2961		     (I40E_FILTER_PROGRAM_DESC_PCMD_REMOVE <<
2962		      I40E_TXD_FLTR_QW1_PCMD_SHIFT) :
2963		     (I40E_FILTER_PROGRAM_DESC_PCMD_ADD_UPDATE <<
2964		      I40E_TXD_FLTR_QW1_PCMD_SHIFT);
2965
2966	dtype_cmd |= I40E_FILTER_PROGRAM_DESC_DEST_DIRECT_PACKET_QINDEX <<
2967		     I40E_TXD_FLTR_QW1_DEST_SHIFT;
2968
2969	dtype_cmd |= I40E_FILTER_PROGRAM_DESC_FD_STATUS_FD_ID <<
2970		     I40E_TXD_FLTR_QW1_FD_STATUS_SHIFT;
2971
2972	dtype_cmd |= I40E_TXD_FLTR_QW1_CNT_ENA_MASK;
2973	if (!(tx_flags & I40E_TX_FLAGS_UDP_TUNNEL))
2974		dtype_cmd |=
2975			FIELD_PREP(I40E_TXD_FLTR_QW1_CNTINDEX_MASK,
2976				   I40E_FD_ATR_STAT_IDX(pf->hw.pf_id));
 
2977	else
2978		dtype_cmd |=
2979			FIELD_PREP(I40E_TXD_FLTR_QW1_CNTINDEX_MASK,
2980				   I40E_FD_ATR_TUNNEL_STAT_IDX(pf->hw.pf_id));
 
2981
2982	if (test_bit(I40E_FLAG_HW_ATR_EVICT_ENA, pf->flags))
2983		dtype_cmd |= I40E_TXD_FLTR_QW1_ATR_MASK;
2984
2985	fdir_desc->qindex_flex_ptype_vsi = cpu_to_le32(flex_ptype);
2986	fdir_desc->rsvd = cpu_to_le32(0);
2987	fdir_desc->dtype_cmd_cntindex = cpu_to_le32(dtype_cmd);
2988	fdir_desc->fd_id = cpu_to_le32(0);
2989}
2990
2991/**
2992 * i40e_tx_prepare_vlan_flags - prepare generic TX VLAN tagging flags for HW
2993 * @skb:     send buffer
2994 * @tx_ring: ring to send buffer on
2995 * @flags:   the tx flags to be set
2996 *
2997 * Checks the skb and set up correspondingly several generic transmit flags
2998 * related to VLAN tagging for the HW, such as VLAN, DCB, etc.
2999 *
3000 * Returns error code indicate the frame should be dropped upon error and the
3001 * otherwise  returns 0 to indicate the flags has been set properly.
3002 **/
3003static inline int i40e_tx_prepare_vlan_flags(struct sk_buff *skb,
3004					     struct i40e_ring *tx_ring,
3005					     u32 *flags)
3006{
3007	__be16 protocol = skb->protocol;
3008	u32  tx_flags = 0;
3009
3010	if (protocol == htons(ETH_P_8021Q) &&
3011	    !(tx_ring->netdev->features & NETIF_F_HW_VLAN_CTAG_TX)) {
3012		/* When HW VLAN acceleration is turned off by the user the
3013		 * stack sets the protocol to 8021q so that the driver
3014		 * can take any steps required to support the SW only
3015		 * VLAN handling.  In our case the driver doesn't need
3016		 * to take any further steps so just set the protocol
3017		 * to the encapsulated ethertype.
3018		 */
3019		skb->protocol = vlan_get_protocol(skb);
3020		goto out;
3021	}
3022
3023	/* if we have a HW VLAN tag being added, default to the HW one */
3024	if (skb_vlan_tag_present(skb)) {
3025		tx_flags |= skb_vlan_tag_get(skb) << I40E_TX_FLAGS_VLAN_SHIFT;
3026		tx_flags |= I40E_TX_FLAGS_HW_VLAN;
3027	/* else if it is a SW VLAN, check the next protocol and store the tag */
3028	} else if (protocol == htons(ETH_P_8021Q)) {
3029		struct vlan_hdr *vhdr, _vhdr;
3030
3031		vhdr = skb_header_pointer(skb, ETH_HLEN, sizeof(_vhdr), &_vhdr);
3032		if (!vhdr)
3033			return -EINVAL;
3034
3035		protocol = vhdr->h_vlan_encapsulated_proto;
3036		tx_flags |= ntohs(vhdr->h_vlan_TCI) << I40E_TX_FLAGS_VLAN_SHIFT;
3037		tx_flags |= I40E_TX_FLAGS_SW_VLAN;
3038	}
3039
3040	if (!test_bit(I40E_FLAG_DCB_ENA, tx_ring->vsi->back->flags))
3041		goto out;
3042
3043	/* Insert 802.1p priority into VLAN header */
3044	if ((tx_flags & (I40E_TX_FLAGS_HW_VLAN | I40E_TX_FLAGS_SW_VLAN)) ||
3045	    (skb->priority != TC_PRIO_CONTROL)) {
3046		tx_flags &= ~I40E_TX_FLAGS_VLAN_PRIO_MASK;
3047		tx_flags |= (skb->priority & 0x7) <<
3048				I40E_TX_FLAGS_VLAN_PRIO_SHIFT;
3049		if (tx_flags & I40E_TX_FLAGS_SW_VLAN) {
3050			struct vlan_ethhdr *vhdr;
3051			int rc;
3052
3053			rc = skb_cow_head(skb, 0);
3054			if (rc < 0)
3055				return rc;
3056			vhdr = skb_vlan_eth_hdr(skb);
3057			vhdr->h_vlan_TCI = htons(tx_flags >>
3058						 I40E_TX_FLAGS_VLAN_SHIFT);
3059		} else {
3060			tx_flags |= I40E_TX_FLAGS_HW_VLAN;
3061		}
3062	}
3063
3064out:
3065	*flags = tx_flags;
3066	return 0;
3067}
3068
3069/**
3070 * i40e_tso - set up the tso context descriptor
3071 * @first:    pointer to first Tx buffer for xmit
3072 * @hdr_len:  ptr to the size of the packet header
3073 * @cd_type_cmd_tso_mss: Quad Word 1
3074 *
3075 * Returns 0 if no TSO can happen, 1 if tso is going, or error
3076 **/
3077static int i40e_tso(struct i40e_tx_buffer *first, u8 *hdr_len,
3078		    u64 *cd_type_cmd_tso_mss)
3079{
3080	struct sk_buff *skb = first->skb;
3081	u64 cd_cmd, cd_tso_len, cd_mss;
3082	__be16 protocol;
3083	union {
3084		struct iphdr *v4;
3085		struct ipv6hdr *v6;
3086		unsigned char *hdr;
3087	} ip;
3088	union {
3089		struct tcphdr *tcp;
3090		struct udphdr *udp;
3091		unsigned char *hdr;
3092	} l4;
3093	u32 paylen, l4_offset;
3094	u16 gso_size;
3095	int err;
3096
3097	if (skb->ip_summed != CHECKSUM_PARTIAL)
3098		return 0;
3099
3100	if (!skb_is_gso(skb))
3101		return 0;
3102
3103	err = skb_cow_head(skb, 0);
3104	if (err < 0)
3105		return err;
3106
3107	protocol = vlan_get_protocol(skb);
3108
3109	if (eth_p_mpls(protocol))
3110		ip.hdr = skb_inner_network_header(skb);
3111	else
3112		ip.hdr = skb_network_header(skb);
3113	l4.hdr = skb_checksum_start(skb);
3114
3115	/* initialize outer IP header fields */
3116	if (ip.v4->version == 4) {
3117		ip.v4->tot_len = 0;
3118		ip.v4->check = 0;
3119
3120		first->tx_flags |= I40E_TX_FLAGS_TSO;
3121	} else {
3122		ip.v6->payload_len = 0;
3123		first->tx_flags |= I40E_TX_FLAGS_TSO;
3124	}
3125
3126	if (skb_shinfo(skb)->gso_type & (SKB_GSO_GRE |
3127					 SKB_GSO_GRE_CSUM |
3128					 SKB_GSO_IPXIP4 |
3129					 SKB_GSO_IPXIP6 |
3130					 SKB_GSO_UDP_TUNNEL |
3131					 SKB_GSO_UDP_TUNNEL_CSUM)) {
3132		if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) &&
3133		    (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM)) {
3134			l4.udp->len = 0;
3135
3136			/* determine offset of outer transport header */
3137			l4_offset = l4.hdr - skb->data;
3138
3139			/* remove payload length from outer checksum */
3140			paylen = skb->len - l4_offset;
3141			csum_replace_by_diff(&l4.udp->check,
3142					     (__force __wsum)htonl(paylen));
3143		}
3144
3145		/* reset pointers to inner headers */
3146		ip.hdr = skb_inner_network_header(skb);
3147		l4.hdr = skb_inner_transport_header(skb);
3148
3149		/* initialize inner IP header fields */
3150		if (ip.v4->version == 4) {
3151			ip.v4->tot_len = 0;
3152			ip.v4->check = 0;
3153		} else {
3154			ip.v6->payload_len = 0;
3155		}
3156	}
3157
3158	/* determine offset of inner transport header */
3159	l4_offset = l4.hdr - skb->data;
3160
3161	/* remove payload length from inner checksum */
3162	paylen = skb->len - l4_offset;
3163
3164	if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) {
3165		csum_replace_by_diff(&l4.udp->check, (__force __wsum)htonl(paylen));
3166		/* compute length of segmentation header */
3167		*hdr_len = sizeof(*l4.udp) + l4_offset;
3168	} else {
3169		csum_replace_by_diff(&l4.tcp->check, (__force __wsum)htonl(paylen));
3170		/* compute length of segmentation header */
3171		*hdr_len = (l4.tcp->doff * 4) + l4_offset;
3172	}
3173
3174	/* pull values out of skb_shinfo */
3175	gso_size = skb_shinfo(skb)->gso_size;
 
3176
3177	/* update GSO size and bytecount with header size */
3178	first->gso_segs = skb_shinfo(skb)->gso_segs;
3179	first->bytecount += (first->gso_segs - 1) * *hdr_len;
3180
3181	/* find the field values */
3182	cd_cmd = I40E_TX_CTX_DESC_TSO;
3183	cd_tso_len = skb->len - *hdr_len;
3184	cd_mss = gso_size;
3185	*cd_type_cmd_tso_mss |= (cd_cmd << I40E_TXD_CTX_QW1_CMD_SHIFT) |
3186				(cd_tso_len << I40E_TXD_CTX_QW1_TSO_LEN_SHIFT) |
3187				(cd_mss << I40E_TXD_CTX_QW1_MSS_SHIFT);
3188	return 1;
3189}
3190
3191/**
3192 * i40e_tsyn - set up the tsyn context descriptor
3193 * @tx_ring:  ptr to the ring to send
3194 * @skb:      ptr to the skb we're sending
3195 * @tx_flags: the collected send information
3196 * @cd_type_cmd_tso_mss: Quad Word 1
3197 *
3198 * Returns 0 if no Tx timestamp can happen and 1 if the timestamp will happen
3199 **/
3200static int i40e_tsyn(struct i40e_ring *tx_ring, struct sk_buff *skb,
3201		     u32 tx_flags, u64 *cd_type_cmd_tso_mss)
3202{
3203	struct i40e_pf *pf;
3204
3205	if (likely(!(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)))
3206		return 0;
3207
3208	/* Tx timestamps cannot be sampled when doing TSO */
3209	if (tx_flags & I40E_TX_FLAGS_TSO)
3210		return 0;
3211
3212	/* only timestamp the outbound packet if the user has requested it and
3213	 * we are not already transmitting a packet to be timestamped
3214	 */
3215	pf = i40e_netdev_to_pf(tx_ring->netdev);
3216	if (!test_bit(I40E_FLAG_PTP_ENA, pf->flags))
3217		return 0;
3218
3219	if (pf->ptp_tx &&
3220	    !test_and_set_bit_lock(__I40E_PTP_TX_IN_PROGRESS, pf->state)) {
3221		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
3222		pf->ptp_tx_start = jiffies;
3223		pf->ptp_tx_skb = skb_get(skb);
3224	} else {
3225		pf->tx_hwtstamp_skipped++;
3226		return 0;
3227	}
3228
3229	*cd_type_cmd_tso_mss |= (u64)I40E_TX_CTX_DESC_TSYN <<
3230				I40E_TXD_CTX_QW1_CMD_SHIFT;
3231
3232	return 1;
3233}
3234
3235/**
3236 * i40e_tx_enable_csum - Enable Tx checksum offloads
3237 * @skb: send buffer
3238 * @tx_flags: pointer to Tx flags currently set
3239 * @td_cmd: Tx descriptor command bits to set
3240 * @td_offset: Tx descriptor header offsets to set
3241 * @tx_ring: Tx descriptor ring
3242 * @cd_tunneling: ptr to context desc bits
3243 **/
3244static int i40e_tx_enable_csum(struct sk_buff *skb, u32 *tx_flags,
3245			       u32 *td_cmd, u32 *td_offset,
3246			       struct i40e_ring *tx_ring,
3247			       u32 *cd_tunneling)
3248{
3249	union {
3250		struct iphdr *v4;
3251		struct ipv6hdr *v6;
3252		unsigned char *hdr;
3253	} ip;
3254	union {
3255		struct tcphdr *tcp;
3256		struct udphdr *udp;
3257		unsigned char *hdr;
3258	} l4;
3259	unsigned char *exthdr;
3260	u32 offset, cmd = 0;
3261	__be16 frag_off;
3262	__be16 protocol;
3263	u8 l4_proto = 0;
3264
3265	if (skb->ip_summed != CHECKSUM_PARTIAL)
3266		return 0;
3267
3268	protocol = vlan_get_protocol(skb);
3269
3270	if (eth_p_mpls(protocol)) {
3271		ip.hdr = skb_inner_network_header(skb);
3272		l4.hdr = skb_checksum_start(skb);
3273	} else {
3274		ip.hdr = skb_network_header(skb);
3275		l4.hdr = skb_transport_header(skb);
3276	}
3277
3278	/* set the tx_flags to indicate the IP protocol type. this is
3279	 * required so that checksum header computation below is accurate.
3280	 */
3281	if (ip.v4->version == 4)
3282		*tx_flags |= I40E_TX_FLAGS_IPV4;
3283	else
3284		*tx_flags |= I40E_TX_FLAGS_IPV6;
3285
3286	/* compute outer L2 header size */
3287	offset = ((ip.hdr - skb->data) / 2) << I40E_TX_DESC_LENGTH_MACLEN_SHIFT;
3288
3289	if (skb->encapsulation) {
3290		u32 tunnel = 0;
3291		/* define outer network header type */
3292		if (*tx_flags & I40E_TX_FLAGS_IPV4) {
3293			tunnel |= (*tx_flags & I40E_TX_FLAGS_TSO) ?
3294				  I40E_TX_CTX_EXT_IP_IPV4 :
3295				  I40E_TX_CTX_EXT_IP_IPV4_NO_CSUM;
3296
3297			l4_proto = ip.v4->protocol;
3298		} else if (*tx_flags & I40E_TX_FLAGS_IPV6) {
3299			int ret;
3300
3301			tunnel |= I40E_TX_CTX_EXT_IP_IPV6;
3302
3303			exthdr = ip.hdr + sizeof(*ip.v6);
3304			l4_proto = ip.v6->nexthdr;
3305			ret = ipv6_skip_exthdr(skb, exthdr - skb->data,
3306					       &l4_proto, &frag_off);
3307			if (ret < 0)
3308				return -1;
3309		}
3310
3311		/* define outer transport */
3312		switch (l4_proto) {
3313		case IPPROTO_UDP:
3314			tunnel |= I40E_TXD_CTX_UDP_TUNNELING;
3315			*tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL;
3316			break;
3317		case IPPROTO_GRE:
3318			tunnel |= I40E_TXD_CTX_GRE_TUNNELING;
3319			*tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL;
3320			break;
3321		case IPPROTO_IPIP:
3322		case IPPROTO_IPV6:
3323			*tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL;
3324			l4.hdr = skb_inner_network_header(skb);
3325			break;
3326		default:
3327			if (*tx_flags & I40E_TX_FLAGS_TSO)
3328				return -1;
3329
3330			skb_checksum_help(skb);
3331			return 0;
3332		}
3333
3334		/* compute outer L3 header size */
3335		tunnel |= ((l4.hdr - ip.hdr) / 4) <<
3336			  I40E_TXD_CTX_QW0_EXT_IPLEN_SHIFT;
3337
3338		/* switch IP header pointer from outer to inner header */
3339		ip.hdr = skb_inner_network_header(skb);
3340
3341		/* compute tunnel header size */
3342		tunnel |= ((ip.hdr - l4.hdr) / 2) <<
3343			  I40E_TXD_CTX_QW0_NATLEN_SHIFT;
3344
3345		/* indicate if we need to offload outer UDP header */
3346		if ((*tx_flags & I40E_TX_FLAGS_TSO) &&
3347		    !(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) &&
3348		    (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM))
3349			tunnel |= I40E_TXD_CTX_QW0_L4T_CS_MASK;
3350
3351		/* record tunnel offload values */
3352		*cd_tunneling |= tunnel;
3353
3354		/* switch L4 header pointer from outer to inner */
3355		l4.hdr = skb_inner_transport_header(skb);
3356		l4_proto = 0;
3357
3358		/* reset type as we transition from outer to inner headers */
3359		*tx_flags &= ~(I40E_TX_FLAGS_IPV4 | I40E_TX_FLAGS_IPV6);
3360		if (ip.v4->version == 4)
3361			*tx_flags |= I40E_TX_FLAGS_IPV4;
3362		if (ip.v6->version == 6)
3363			*tx_flags |= I40E_TX_FLAGS_IPV6;
3364	}
3365
3366	/* Enable IP checksum offloads */
3367	if (*tx_flags & I40E_TX_FLAGS_IPV4) {
3368		l4_proto = ip.v4->protocol;
3369		/* the stack computes the IP header already, the only time we
3370		 * need the hardware to recompute it is in the case of TSO.
3371		 */
3372		cmd |= (*tx_flags & I40E_TX_FLAGS_TSO) ?
3373		       I40E_TX_DESC_CMD_IIPT_IPV4_CSUM :
3374		       I40E_TX_DESC_CMD_IIPT_IPV4;
3375	} else if (*tx_flags & I40E_TX_FLAGS_IPV6) {
3376		cmd |= I40E_TX_DESC_CMD_IIPT_IPV6;
3377
3378		exthdr = ip.hdr + sizeof(*ip.v6);
3379		l4_proto = ip.v6->nexthdr;
3380		if (l4.hdr != exthdr)
3381			ipv6_skip_exthdr(skb, exthdr - skb->data,
3382					 &l4_proto, &frag_off);
3383	}
3384
3385	/* compute inner L3 header size */
3386	offset |= ((l4.hdr - ip.hdr) / 4) << I40E_TX_DESC_LENGTH_IPLEN_SHIFT;
3387
3388	/* Enable L4 checksum offloads */
3389	switch (l4_proto) {
3390	case IPPROTO_TCP:
3391		/* enable checksum offloads */
3392		cmd |= I40E_TX_DESC_CMD_L4T_EOFT_TCP;
3393		offset |= l4.tcp->doff << I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
3394		break;
3395	case IPPROTO_SCTP:
3396		/* enable SCTP checksum offload */
3397		cmd |= I40E_TX_DESC_CMD_L4T_EOFT_SCTP;
3398		offset |= (sizeof(struct sctphdr) >> 2) <<
3399			  I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
3400		break;
3401	case IPPROTO_UDP:
3402		/* enable UDP checksum offload */
3403		cmd |= I40E_TX_DESC_CMD_L4T_EOFT_UDP;
3404		offset |= (sizeof(struct udphdr) >> 2) <<
3405			  I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
3406		break;
3407	default:
3408		if (*tx_flags & I40E_TX_FLAGS_TSO)
3409			return -1;
3410		skb_checksum_help(skb);
3411		return 0;
3412	}
3413
3414	*td_cmd |= cmd;
3415	*td_offset |= offset;
3416
3417	return 1;
3418}
3419
3420/**
3421 * i40e_create_tx_ctx - Build the Tx context descriptor
3422 * @tx_ring:  ring to create the descriptor on
3423 * @cd_type_cmd_tso_mss: Quad Word 1
3424 * @cd_tunneling: Quad Word 0 - bits 0-31
3425 * @cd_l2tag2: Quad Word 0 - bits 32-63
3426 **/
3427static void i40e_create_tx_ctx(struct i40e_ring *tx_ring,
3428			       const u64 cd_type_cmd_tso_mss,
3429			       const u32 cd_tunneling, const u32 cd_l2tag2)
3430{
3431	struct i40e_tx_context_desc *context_desc;
3432	int i = tx_ring->next_to_use;
3433
3434	if ((cd_type_cmd_tso_mss == I40E_TX_DESC_DTYPE_CONTEXT) &&
3435	    !cd_tunneling && !cd_l2tag2)
3436		return;
3437
3438	/* grab the next descriptor */
3439	context_desc = I40E_TX_CTXTDESC(tx_ring, i);
3440
3441	i++;
3442	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
3443
3444	/* cpu_to_le32 and assign to struct fields */
3445	context_desc->tunneling_params = cpu_to_le32(cd_tunneling);
3446	context_desc->l2tag2 = cpu_to_le16(cd_l2tag2);
3447	context_desc->rsvd = cpu_to_le16(0);
3448	context_desc->type_cmd_tso_mss = cpu_to_le64(cd_type_cmd_tso_mss);
3449}
3450
3451/**
3452 * __i40e_maybe_stop_tx - 2nd level check for tx stop conditions
3453 * @tx_ring: the ring to be checked
3454 * @size:    the size buffer we want to assure is available
3455 *
3456 * Returns -EBUSY if a stop is needed, else 0
3457 **/
3458int __i40e_maybe_stop_tx(struct i40e_ring *tx_ring, int size)
3459{
3460	netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
3461	/* Memory barrier before checking head and tail */
3462	smp_mb();
3463
3464	++tx_ring->tx_stats.tx_stopped;
3465
3466	/* Check again in a case another CPU has just made room available. */
3467	if (likely(I40E_DESC_UNUSED(tx_ring) < size))
3468		return -EBUSY;
3469
3470	/* A reprieve! - use start_queue because it doesn't call schedule */
3471	netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index);
3472	++tx_ring->tx_stats.restart_queue;
3473	return 0;
3474}
3475
3476/**
3477 * __i40e_chk_linearize - Check if there are more than 8 buffers per packet
3478 * @skb:      send buffer
3479 *
3480 * Note: Our HW can't DMA more than 8 buffers to build a packet on the wire
3481 * and so we need to figure out the cases where we need to linearize the skb.
3482 *
3483 * For TSO we need to count the TSO header and segment payload separately.
3484 * As such we need to check cases where we have 7 fragments or more as we
3485 * can potentially require 9 DMA transactions, 1 for the TSO header, 1 for
3486 * the segment payload in the first descriptor, and another 7 for the
3487 * fragments.
3488 **/
3489bool __i40e_chk_linearize(struct sk_buff *skb)
3490{
3491	const skb_frag_t *frag, *stale;
3492	int nr_frags, sum;
3493
3494	/* no need to check if number of frags is less than 7 */
3495	nr_frags = skb_shinfo(skb)->nr_frags;
3496	if (nr_frags < (I40E_MAX_BUFFER_TXD - 1))
3497		return false;
3498
3499	/* We need to walk through the list and validate that each group
3500	 * of 6 fragments totals at least gso_size.
3501	 */
3502	nr_frags -= I40E_MAX_BUFFER_TXD - 2;
3503	frag = &skb_shinfo(skb)->frags[0];
3504
3505	/* Initialize size to the negative value of gso_size minus 1.  We
3506	 * use this as the worst case scenerio in which the frag ahead
3507	 * of us only provides one byte which is why we are limited to 6
3508	 * descriptors for a single transmit as the header and previous
3509	 * fragment are already consuming 2 descriptors.
3510	 */
3511	sum = 1 - skb_shinfo(skb)->gso_size;
3512
3513	/* Add size of frags 0 through 4 to create our initial sum */
3514	sum += skb_frag_size(frag++);
3515	sum += skb_frag_size(frag++);
3516	sum += skb_frag_size(frag++);
3517	sum += skb_frag_size(frag++);
3518	sum += skb_frag_size(frag++);
3519
3520	/* Walk through fragments adding latest fragment, testing it, and
3521	 * then removing stale fragments from the sum.
3522	 */
3523	for (stale = &skb_shinfo(skb)->frags[0];; stale++) {
3524		int stale_size = skb_frag_size(stale);
3525
3526		sum += skb_frag_size(frag++);
3527
3528		/* The stale fragment may present us with a smaller
3529		 * descriptor than the actual fragment size. To account
3530		 * for that we need to remove all the data on the front and
3531		 * figure out what the remainder would be in the last
3532		 * descriptor associated with the fragment.
3533		 */
3534		if (stale_size > I40E_MAX_DATA_PER_TXD) {
3535			int align_pad = -(skb_frag_off(stale)) &
3536					(I40E_MAX_READ_REQ_SIZE - 1);
3537
3538			sum -= align_pad;
3539			stale_size -= align_pad;
3540
3541			do {
3542				sum -= I40E_MAX_DATA_PER_TXD_ALIGNED;
3543				stale_size -= I40E_MAX_DATA_PER_TXD_ALIGNED;
3544			} while (stale_size > I40E_MAX_DATA_PER_TXD);
3545		}
3546
3547		/* if sum is negative we failed to make sufficient progress */
3548		if (sum < 0)
3549			return true;
3550
3551		if (!nr_frags--)
3552			break;
3553
3554		sum -= stale_size;
3555	}
3556
3557	return false;
3558}
3559
3560/**
3561 * i40e_tx_map - Build the Tx descriptor
3562 * @tx_ring:  ring to send buffer on
3563 * @skb:      send buffer
3564 * @first:    first buffer info buffer to use
3565 * @tx_flags: collected send information
3566 * @hdr_len:  size of the packet header
3567 * @td_cmd:   the command field in the descriptor
3568 * @td_offset: offset for checksum or crc
3569 *
3570 * Returns 0 on success, -1 on failure to DMA
3571 **/
3572static inline int i40e_tx_map(struct i40e_ring *tx_ring, struct sk_buff *skb,
3573			      struct i40e_tx_buffer *first, u32 tx_flags,
3574			      const u8 hdr_len, u32 td_cmd, u32 td_offset)
3575{
3576	unsigned int data_len = skb->data_len;
3577	unsigned int size = skb_headlen(skb);
3578	skb_frag_t *frag;
3579	struct i40e_tx_buffer *tx_bi;
3580	struct i40e_tx_desc *tx_desc;
3581	u16 i = tx_ring->next_to_use;
3582	u32 td_tag = 0;
3583	dma_addr_t dma;
3584	u16 desc_count = 1;
3585
3586	if (tx_flags & I40E_TX_FLAGS_HW_VLAN) {
3587		td_cmd |= I40E_TX_DESC_CMD_IL2TAG1;
3588		td_tag = FIELD_GET(I40E_TX_FLAGS_VLAN_MASK, tx_flags);
 
3589	}
3590
3591	first->tx_flags = tx_flags;
3592
3593	dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
3594
3595	tx_desc = I40E_TX_DESC(tx_ring, i);
3596	tx_bi = first;
3597
3598	for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
3599		unsigned int max_data = I40E_MAX_DATA_PER_TXD_ALIGNED;
3600
3601		if (dma_mapping_error(tx_ring->dev, dma))
3602			goto dma_error;
3603
3604		/* record length, and DMA address */
3605		dma_unmap_len_set(tx_bi, len, size);
3606		dma_unmap_addr_set(tx_bi, dma, dma);
3607
3608		/* align size to end of page */
3609		max_data += -dma & (I40E_MAX_READ_REQ_SIZE - 1);
3610		tx_desc->buffer_addr = cpu_to_le64(dma);
3611
3612		while (unlikely(size > I40E_MAX_DATA_PER_TXD)) {
3613			tx_desc->cmd_type_offset_bsz =
3614				build_ctob(td_cmd, td_offset,
3615					   max_data, td_tag);
3616
3617			tx_desc++;
3618			i++;
3619			desc_count++;
3620
3621			if (i == tx_ring->count) {
3622				tx_desc = I40E_TX_DESC(tx_ring, 0);
3623				i = 0;
3624			}
3625
3626			dma += max_data;
3627			size -= max_data;
3628
3629			max_data = I40E_MAX_DATA_PER_TXD_ALIGNED;
3630			tx_desc->buffer_addr = cpu_to_le64(dma);
3631		}
3632
3633		if (likely(!data_len))
3634			break;
3635
3636		tx_desc->cmd_type_offset_bsz = build_ctob(td_cmd, td_offset,
3637							  size, td_tag);
3638
3639		tx_desc++;
3640		i++;
3641		desc_count++;
3642
3643		if (i == tx_ring->count) {
3644			tx_desc = I40E_TX_DESC(tx_ring, 0);
3645			i = 0;
3646		}
3647
3648		size = skb_frag_size(frag);
3649		data_len -= size;
3650
3651		dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
3652				       DMA_TO_DEVICE);
3653
3654		tx_bi = &tx_ring->tx_bi[i];
3655	}
3656
3657	netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
3658
3659	i++;
3660	if (i == tx_ring->count)
3661		i = 0;
3662
3663	tx_ring->next_to_use = i;
3664
3665	i40e_maybe_stop_tx(tx_ring, DESC_NEEDED);
3666
3667	/* write last descriptor with EOP bit */
3668	td_cmd |= I40E_TX_DESC_CMD_EOP;
3669
3670	/* We OR these values together to check both against 4 (WB_STRIDE)
3671	 * below. This is safe since we don't re-use desc_count afterwards.
3672	 */
3673	desc_count |= ++tx_ring->packet_stride;
3674
3675	if (desc_count >= WB_STRIDE) {
3676		/* write last descriptor with RS bit set */
3677		td_cmd |= I40E_TX_DESC_CMD_RS;
3678		tx_ring->packet_stride = 0;
3679	}
3680
3681	tx_desc->cmd_type_offset_bsz =
3682			build_ctob(td_cmd, td_offset, size, td_tag);
3683
3684	skb_tx_timestamp(skb);
3685
3686	/* Force memory writes to complete before letting h/w know there
3687	 * are new descriptors to fetch.
3688	 *
3689	 * We also use this memory barrier to make certain all of the
3690	 * status bits have been updated before next_to_watch is written.
3691	 */
3692	wmb();
3693
3694	/* set next_to_watch value indicating a packet is present */
3695	first->next_to_watch = tx_desc;
3696
3697	/* notify HW of packet */
3698	if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more()) {
3699		writel(i, tx_ring->tail);
3700	}
3701
3702	return 0;
3703
3704dma_error:
3705	dev_info(tx_ring->dev, "TX DMA map failed\n");
3706
3707	/* clear dma mappings for failed tx_bi map */
3708	for (;;) {
3709		tx_bi = &tx_ring->tx_bi[i];
3710		i40e_unmap_and_free_tx_resource(tx_ring, tx_bi);
3711		if (tx_bi == first)
3712			break;
3713		if (i == 0)
3714			i = tx_ring->count;
3715		i--;
3716	}
3717
3718	tx_ring->next_to_use = i;
3719
3720	return -1;
3721}
3722
3723static u16 i40e_swdcb_skb_tx_hash(struct net_device *dev,
3724				  const struct sk_buff *skb,
3725				  u16 num_tx_queues)
3726{
3727	u32 jhash_initval_salt = 0xd631614b;
3728	u32 hash;
3729
3730	if (skb->sk && skb->sk->sk_hash)
3731		hash = skb->sk->sk_hash;
3732	else
3733		hash = (__force u16)skb->protocol ^ skb->hash;
3734
3735	hash = jhash_1word(hash, jhash_initval_salt);
3736
3737	return (u16)(((u64)hash * num_tx_queues) >> 32);
3738}
3739
3740u16 i40e_lan_select_queue(struct net_device *netdev,
3741			  struct sk_buff *skb,
3742			  struct net_device __always_unused *sb_dev)
3743{
3744	struct i40e_netdev_priv *np = netdev_priv(netdev);
3745	struct i40e_vsi *vsi = np->vsi;
3746	struct i40e_hw *hw;
3747	u16 qoffset;
3748	u16 qcount;
3749	u8 tclass;
3750	u16 hash;
3751	u8 prio;
3752
3753	/* is DCB enabled at all? */
3754	if (vsi->tc_config.numtc == 1 ||
3755	    i40e_is_tc_mqprio_enabled(vsi->back))
3756		return netdev_pick_tx(netdev, skb, sb_dev);
3757
3758	prio = skb->priority;
3759	hw = &vsi->back->hw;
3760	tclass = hw->local_dcbx_config.etscfg.prioritytable[prio];
3761	/* sanity check */
3762	if (unlikely(!(vsi->tc_config.enabled_tc & BIT(tclass))))
3763		tclass = 0;
3764
3765	/* select a queue assigned for the given TC */
3766	qcount = vsi->tc_config.tc_info[tclass].qcount;
3767	hash = i40e_swdcb_skb_tx_hash(netdev, skb, qcount);
3768
3769	qoffset = vsi->tc_config.tc_info[tclass].qoffset;
3770	return qoffset + hash;
3771}
3772
3773/**
3774 * i40e_xmit_xdp_ring - transmits an XDP buffer to an XDP Tx ring
3775 * @xdpf: data to transmit
3776 * @xdp_ring: XDP Tx ring
3777 **/
3778static int i40e_xmit_xdp_ring(struct xdp_frame *xdpf,
3779			      struct i40e_ring *xdp_ring)
3780{
3781	struct skb_shared_info *sinfo = xdp_get_shared_info_from_frame(xdpf);
3782	u8 nr_frags = unlikely(xdp_frame_has_frags(xdpf)) ? sinfo->nr_frags : 0;
3783	u16 i = 0, index = xdp_ring->next_to_use;
3784	struct i40e_tx_buffer *tx_head = &xdp_ring->tx_bi[index];
3785	struct i40e_tx_buffer *tx_bi = tx_head;
3786	struct i40e_tx_desc *tx_desc = I40E_TX_DESC(xdp_ring, index);
3787	void *data = xdpf->data;
3788	u32 size = xdpf->len;
 
3789
3790	if (unlikely(I40E_DESC_UNUSED(xdp_ring) < 1 + nr_frags)) {
3791		xdp_ring->tx_stats.tx_busy++;
3792		return I40E_XDP_CONSUMED;
3793	}
 
 
 
3794
3795	tx_head->bytecount = xdp_get_frame_len(xdpf);
3796	tx_head->gso_segs = 1;
3797	tx_head->xdpf = xdpf;
3798
3799	for (;;) {
3800		dma_addr_t dma;
3801
3802		dma = dma_map_single(xdp_ring->dev, data, size, DMA_TO_DEVICE);
3803		if (dma_mapping_error(xdp_ring->dev, dma))
3804			goto unmap;
3805
3806		/* record length, and DMA address */
3807		dma_unmap_len_set(tx_bi, len, size);
3808		dma_unmap_addr_set(tx_bi, dma, dma);
3809
3810		tx_desc->buffer_addr = cpu_to_le64(dma);
3811		tx_desc->cmd_type_offset_bsz =
3812			build_ctob(I40E_TX_DESC_CMD_ICRC, 0, size, 0);
3813
3814		if (++index == xdp_ring->count)
3815			index = 0;
3816
3817		if (i == nr_frags)
3818			break;
3819
3820		tx_bi = &xdp_ring->tx_bi[index];
3821		tx_desc = I40E_TX_DESC(xdp_ring, index);
3822
3823		data = skb_frag_address(&sinfo->frags[i]);
3824		size = skb_frag_size(&sinfo->frags[i]);
3825		i++;
3826	}
3827
3828	tx_desc->cmd_type_offset_bsz |=
3829		cpu_to_le64(I40E_TXD_CMD << I40E_TXD_QW1_CMD_SHIFT);
 
 
 
3830
3831	/* Make certain all of the status bits have been updated
3832	 * before next_to_watch is written.
3833	 */
3834	smp_wmb();
3835
3836	xdp_ring->xdp_tx_active++;
 
 
 
3837
3838	tx_head->next_to_watch = tx_desc;
3839	xdp_ring->next_to_use = index;
3840
3841	return I40E_XDP_TX;
3842
3843unmap:
3844	for (;;) {
3845		tx_bi = &xdp_ring->tx_bi[index];
3846		if (dma_unmap_len(tx_bi, len))
3847			dma_unmap_page(xdp_ring->dev,
3848				       dma_unmap_addr(tx_bi, dma),
3849				       dma_unmap_len(tx_bi, len),
3850				       DMA_TO_DEVICE);
3851		dma_unmap_len_set(tx_bi, len, 0);
3852		if (tx_bi == tx_head)
3853			break;
3854
3855		if (!index)
3856			index += xdp_ring->count;
3857		index--;
3858	}
3859
3860	return I40E_XDP_CONSUMED;
3861}
3862
3863/**
3864 * i40e_xmit_frame_ring - Sends buffer on Tx ring
3865 * @skb:     send buffer
3866 * @tx_ring: ring to send buffer on
3867 *
3868 * Returns NETDEV_TX_OK if sent, else an error code
3869 **/
3870static netdev_tx_t i40e_xmit_frame_ring(struct sk_buff *skb,
3871					struct i40e_ring *tx_ring)
3872{
3873	u64 cd_type_cmd_tso_mss = I40E_TX_DESC_DTYPE_CONTEXT;
3874	u32 cd_tunneling = 0, cd_l2tag2 = 0;
3875	struct i40e_tx_buffer *first;
3876	u32 td_offset = 0;
3877	u32 tx_flags = 0;
 
3878	u32 td_cmd = 0;
3879	u8 hdr_len = 0;
3880	int tso, count;
3881	int tsyn;
3882
3883	/* prefetch the data, we'll need it later */
3884	prefetch(skb->data);
3885
3886	i40e_trace(xmit_frame_ring, skb, tx_ring);
3887
3888	count = i40e_xmit_descriptor_count(skb);
3889	if (i40e_chk_linearize(skb, count)) {
3890		if (__skb_linearize(skb)) {
3891			dev_kfree_skb_any(skb);
3892			return NETDEV_TX_OK;
3893		}
3894		count = i40e_txd_use_count(skb->len);
3895		tx_ring->tx_stats.tx_linearize++;
3896	}
3897
3898	/* need: 1 descriptor per page * PAGE_SIZE/I40E_MAX_DATA_PER_TXD,
3899	 *       + 1 desc for skb_head_len/I40E_MAX_DATA_PER_TXD,
3900	 *       + 4 desc gap to avoid the cache line where head is,
3901	 *       + 1 desc for context descriptor,
3902	 * otherwise try next time
3903	 */
3904	if (i40e_maybe_stop_tx(tx_ring, count + 4 + 1)) {
3905		tx_ring->tx_stats.tx_busy++;
3906		return NETDEV_TX_BUSY;
3907	}
3908
3909	/* record the location of the first descriptor for this packet */
3910	first = &tx_ring->tx_bi[tx_ring->next_to_use];
3911	first->skb = skb;
3912	first->bytecount = skb->len;
3913	first->gso_segs = 1;
3914
3915	/* prepare the xmit flags */
3916	if (i40e_tx_prepare_vlan_flags(skb, tx_ring, &tx_flags))
3917		goto out_drop;
3918
 
 
 
 
 
 
 
 
 
3919	tso = i40e_tso(first, &hdr_len, &cd_type_cmd_tso_mss);
3920
3921	if (tso < 0)
3922		goto out_drop;
3923	else if (tso)
3924		tx_flags |= I40E_TX_FLAGS_TSO;
3925
3926	/* Always offload the checksum, since it's in the data descriptor */
3927	tso = i40e_tx_enable_csum(skb, &tx_flags, &td_cmd, &td_offset,
3928				  tx_ring, &cd_tunneling);
3929	if (tso < 0)
3930		goto out_drop;
3931
3932	tsyn = i40e_tsyn(tx_ring, skb, tx_flags, &cd_type_cmd_tso_mss);
3933
3934	if (tsyn)
3935		tx_flags |= I40E_TX_FLAGS_TSYN;
3936
3937	/* always enable CRC insertion offload */
3938	td_cmd |= I40E_TX_DESC_CMD_ICRC;
3939
3940	i40e_create_tx_ctx(tx_ring, cd_type_cmd_tso_mss,
3941			   cd_tunneling, cd_l2tag2);
3942
3943	/* Add Flow Director ATR if it's enabled.
3944	 *
3945	 * NOTE: this must always be directly before the data descriptor.
3946	 */
3947	i40e_atr(tx_ring, skb, tx_flags);
3948
3949	if (i40e_tx_map(tx_ring, skb, first, tx_flags, hdr_len,
3950			td_cmd, td_offset))
3951		goto cleanup_tx_tstamp;
3952
3953	return NETDEV_TX_OK;
3954
3955out_drop:
3956	i40e_trace(xmit_frame_ring_drop, first->skb, tx_ring);
3957	dev_kfree_skb_any(first->skb);
3958	first->skb = NULL;
3959cleanup_tx_tstamp:
3960	if (unlikely(tx_flags & I40E_TX_FLAGS_TSYN)) {
3961		struct i40e_pf *pf = i40e_netdev_to_pf(tx_ring->netdev);
3962
3963		dev_kfree_skb_any(pf->ptp_tx_skb);
3964		pf->ptp_tx_skb = NULL;
3965		clear_bit_unlock(__I40E_PTP_TX_IN_PROGRESS, pf->state);
3966	}
3967
3968	return NETDEV_TX_OK;
3969}
3970
3971/**
3972 * i40e_lan_xmit_frame - Selects the correct VSI and Tx queue to send buffer
3973 * @skb:    send buffer
3974 * @netdev: network interface device structure
3975 *
3976 * Returns NETDEV_TX_OK if sent, else an error code
3977 **/
3978netdev_tx_t i40e_lan_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
3979{
3980	struct i40e_netdev_priv *np = netdev_priv(netdev);
3981	struct i40e_vsi *vsi = np->vsi;
3982	struct i40e_ring *tx_ring = vsi->tx_rings[skb->queue_mapping];
3983
3984	/* hardware can't handle really short frames, hardware padding works
3985	 * beyond this point
3986	 */
3987	if (skb_put_padto(skb, I40E_MIN_TX_LEN))
3988		return NETDEV_TX_OK;
3989
3990	return i40e_xmit_frame_ring(skb, tx_ring);
3991}
3992
3993/**
3994 * i40e_xdp_xmit - Implements ndo_xdp_xmit
3995 * @dev: netdev
3996 * @n: number of frames
3997 * @frames: array of XDP buffer pointers
3998 * @flags: XDP extra info
3999 *
4000 * Returns number of frames successfully sent. Failed frames
4001 * will be free'ed by XDP core.
4002 *
4003 * For error cases, a negative errno code is returned and no-frames
4004 * are transmitted (caller must handle freeing frames).
4005 **/
4006int i40e_xdp_xmit(struct net_device *dev, int n, struct xdp_frame **frames,
4007		  u32 flags)
4008{
4009	struct i40e_netdev_priv *np = netdev_priv(dev);
4010	unsigned int queue_index = smp_processor_id();
4011	struct i40e_vsi *vsi = np->vsi;
4012	struct i40e_pf *pf = vsi->back;
4013	struct i40e_ring *xdp_ring;
4014	int nxmit = 0;
4015	int i;
4016
4017	if (test_bit(__I40E_VSI_DOWN, vsi->state))
4018		return -ENETDOWN;
4019
4020	if (!i40e_enabled_xdp_vsi(vsi) || queue_index >= vsi->num_queue_pairs ||
4021	    test_bit(__I40E_CONFIG_BUSY, pf->state))
4022		return -ENXIO;
4023
4024	if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK))
4025		return -EINVAL;
4026
4027	xdp_ring = vsi->xdp_rings[queue_index];
4028
4029	for (i = 0; i < n; i++) {
4030		struct xdp_frame *xdpf = frames[i];
4031		int err;
4032
4033		err = i40e_xmit_xdp_ring(xdpf, xdp_ring);
4034		if (err != I40E_XDP_TX)
4035			break;
4036		nxmit++;
 
4037	}
4038
4039	if (unlikely(flags & XDP_XMIT_FLUSH))
4040		i40e_xdp_ring_update_tail(xdp_ring);
4041
4042	return nxmit;
4043}
v5.9
   1// SPDX-License-Identifier: GPL-2.0
   2/* Copyright(c) 2013 - 2018 Intel Corporation. */
   3
 
 
   4#include <linux/prefetch.h>
   5#include <linux/bpf_trace.h>
 
   6#include <net/xdp.h>
   7#include "i40e.h"
   8#include "i40e_trace.h"
   9#include "i40e_prototype.h"
  10#include "i40e_txrx_common.h"
  11#include "i40e_xsk.h"
  12
  13#define I40E_TXD_CMD (I40E_TX_DESC_CMD_EOP | I40E_TX_DESC_CMD_RS)
  14/**
  15 * i40e_fdir - Generate a Flow Director descriptor based on fdata
  16 * @tx_ring: Tx ring to send buffer on
  17 * @fdata: Flow director filter data
  18 * @add: Indicate if we are adding a rule or deleting one
  19 *
  20 **/
  21static void i40e_fdir(struct i40e_ring *tx_ring,
  22		      struct i40e_fdir_filter *fdata, bool add)
  23{
  24	struct i40e_filter_program_desc *fdir_desc;
  25	struct i40e_pf *pf = tx_ring->vsi->back;
  26	u32 flex_ptype, dtype_cmd;
  27	u16 i;
  28
  29	/* grab the next descriptor */
  30	i = tx_ring->next_to_use;
  31	fdir_desc = I40E_TX_FDIRDESC(tx_ring, i);
  32
  33	i++;
  34	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
  35
  36	flex_ptype = I40E_TXD_FLTR_QW0_QINDEX_MASK &
  37		     (fdata->q_index << I40E_TXD_FLTR_QW0_QINDEX_SHIFT);
  38
  39	flex_ptype |= I40E_TXD_FLTR_QW0_FLEXOFF_MASK &
  40		      (fdata->flex_off << I40E_TXD_FLTR_QW0_FLEXOFF_SHIFT);
  41
  42	flex_ptype |= I40E_TXD_FLTR_QW0_PCTYPE_MASK &
  43		      (fdata->pctype << I40E_TXD_FLTR_QW0_PCTYPE_SHIFT);
  44
  45	flex_ptype |= I40E_TXD_FLTR_QW0_PCTYPE_MASK &
  46		      (fdata->flex_offset << I40E_TXD_FLTR_QW0_FLEXOFF_SHIFT);
  47
  48	/* Use LAN VSI Id if not programmed by user */
  49	flex_ptype |= I40E_TXD_FLTR_QW0_DEST_VSI_MASK &
  50		      ((u32)(fdata->dest_vsi ? : pf->vsi[pf->lan_vsi]->id) <<
  51		       I40E_TXD_FLTR_QW0_DEST_VSI_SHIFT);
  52
  53	dtype_cmd = I40E_TX_DESC_DTYPE_FILTER_PROG;
  54
  55	dtype_cmd |= add ?
  56		     I40E_FILTER_PROGRAM_DESC_PCMD_ADD_UPDATE <<
  57		     I40E_TXD_FLTR_QW1_PCMD_SHIFT :
  58		     I40E_FILTER_PROGRAM_DESC_PCMD_REMOVE <<
  59		     I40E_TXD_FLTR_QW1_PCMD_SHIFT;
  60
  61	dtype_cmd |= I40E_TXD_FLTR_QW1_DEST_MASK &
  62		     (fdata->dest_ctl << I40E_TXD_FLTR_QW1_DEST_SHIFT);
  63
  64	dtype_cmd |= I40E_TXD_FLTR_QW1_FD_STATUS_MASK &
  65		     (fdata->fd_status << I40E_TXD_FLTR_QW1_FD_STATUS_SHIFT);
  66
  67	if (fdata->cnt_index) {
  68		dtype_cmd |= I40E_TXD_FLTR_QW1_CNT_ENA_MASK;
  69		dtype_cmd |= I40E_TXD_FLTR_QW1_CNTINDEX_MASK &
  70			     ((u32)fdata->cnt_index <<
  71			      I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT);
  72	}
  73
  74	fdir_desc->qindex_flex_ptype_vsi = cpu_to_le32(flex_ptype);
  75	fdir_desc->rsvd = cpu_to_le32(0);
  76	fdir_desc->dtype_cmd_cntindex = cpu_to_le32(dtype_cmd);
  77	fdir_desc->fd_id = cpu_to_le32(fdata->fd_id);
  78}
  79
  80#define I40E_FD_CLEAN_DELAY 10
  81/**
  82 * i40e_program_fdir_filter - Program a Flow Director filter
  83 * @fdir_data: Packet data that will be filter parameters
  84 * @raw_packet: the pre-allocated packet buffer for FDir
  85 * @pf: The PF pointer
  86 * @add: True for add/update, False for remove
  87 **/
  88static int i40e_program_fdir_filter(struct i40e_fdir_filter *fdir_data,
  89				    u8 *raw_packet, struct i40e_pf *pf,
  90				    bool add)
  91{
  92	struct i40e_tx_buffer *tx_buf, *first;
  93	struct i40e_tx_desc *tx_desc;
  94	struct i40e_ring *tx_ring;
  95	struct i40e_vsi *vsi;
  96	struct device *dev;
  97	dma_addr_t dma;
  98	u32 td_cmd = 0;
  99	u16 i;
 100
 101	/* find existing FDIR VSI */
 102	vsi = i40e_find_vsi_by_type(pf, I40E_VSI_FDIR);
 103	if (!vsi)
 104		return -ENOENT;
 105
 106	tx_ring = vsi->tx_rings[0];
 107	dev = tx_ring->dev;
 108
 109	/* we need two descriptors to add/del a filter and we can wait */
 110	for (i = I40E_FD_CLEAN_DELAY; I40E_DESC_UNUSED(tx_ring) < 2; i--) {
 111		if (!i)
 112			return -EAGAIN;
 113		msleep_interruptible(1);
 114	}
 115
 116	dma = dma_map_single(dev, raw_packet,
 117			     I40E_FDIR_MAX_RAW_PACKET_SIZE, DMA_TO_DEVICE);
 118	if (dma_mapping_error(dev, dma))
 119		goto dma_fail;
 120
 121	/* grab the next descriptor */
 122	i = tx_ring->next_to_use;
 123	first = &tx_ring->tx_bi[i];
 124	i40e_fdir(tx_ring, fdir_data, add);
 125
 126	/* Now program a dummy descriptor */
 127	i = tx_ring->next_to_use;
 128	tx_desc = I40E_TX_DESC(tx_ring, i);
 129	tx_buf = &tx_ring->tx_bi[i];
 130
 131	tx_ring->next_to_use = ((i + 1) < tx_ring->count) ? i + 1 : 0;
 132
 133	memset(tx_buf, 0, sizeof(struct i40e_tx_buffer));
 134
 135	/* record length, and DMA address */
 136	dma_unmap_len_set(tx_buf, len, I40E_FDIR_MAX_RAW_PACKET_SIZE);
 137	dma_unmap_addr_set(tx_buf, dma, dma);
 138
 139	tx_desc->buffer_addr = cpu_to_le64(dma);
 140	td_cmd = I40E_TXD_CMD | I40E_TX_DESC_CMD_DUMMY;
 141
 142	tx_buf->tx_flags = I40E_TX_FLAGS_FD_SB;
 143	tx_buf->raw_buf = (void *)raw_packet;
 144
 145	tx_desc->cmd_type_offset_bsz =
 146		build_ctob(td_cmd, 0, I40E_FDIR_MAX_RAW_PACKET_SIZE, 0);
 147
 148	/* Force memory writes to complete before letting h/w
 149	 * know there are new descriptors to fetch.
 150	 */
 151	wmb();
 152
 153	/* Mark the data descriptor to be watched */
 154	first->next_to_watch = tx_desc;
 155
 156	writel(tx_ring->next_to_use, tx_ring->tail);
 157	return 0;
 158
 159dma_fail:
 160	return -1;
 161}
 162
 163#define IP_HEADER_OFFSET 14
 164#define I40E_UDPIP_DUMMY_PACKET_LEN 42
 165/**
 166 * i40e_add_del_fdir_udpv4 - Add/Remove UDPv4 filters
 167 * @vsi: pointer to the targeted VSI
 168 * @fd_data: the flow director data required for the FDir descriptor
 169 * @add: true adds a filter, false removes it
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 170 *
 171 * Returns 0 if the filters were successfully added or removed
 172 **/
 173static int i40e_add_del_fdir_udpv4(struct i40e_vsi *vsi,
 174				   struct i40e_fdir_filter *fd_data,
 175				   bool add)
 176{
 177	struct i40e_pf *pf = vsi->back;
 178	struct udphdr *udp;
 179	struct iphdr *ip;
 180	u8 *raw_packet;
 181	int ret;
 182	static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0,
 183		0x45, 0, 0, 0x1c, 0, 0, 0x40, 0, 0x40, 0x11, 0, 0, 0, 0, 0, 0,
 184		0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 185
 186	raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
 187	if (!raw_packet)
 188		return -ENOMEM;
 189	memcpy(raw_packet, packet, I40E_UDPIP_DUMMY_PACKET_LEN);
 190
 191	ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET);
 192	udp = (struct udphdr *)(raw_packet + IP_HEADER_OFFSET
 193	      + sizeof(struct iphdr));
 194
 195	ip->daddr = fd_data->dst_ip;
 196	udp->dest = fd_data->dst_port;
 197	ip->saddr = fd_data->src_ip;
 198	udp->source = fd_data->src_port;
 
 
 
 
 
 
 
 
 
 
 199
 200	if (fd_data->flex_filter) {
 201		u8 *payload = raw_packet + I40E_UDPIP_DUMMY_PACKET_LEN;
 202		__be16 pattern = fd_data->flex_word;
 203		u16 off = fd_data->flex_offset;
 204
 
 
 
 
 
 
 205		*((__force __be16 *)(payload + off)) = pattern;
 206	}
 207
 208	fd_data->pctype = I40E_FILTER_PCTYPE_NONF_IPV4_UDP;
 209	ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add);
 210	if (ret) {
 211		dev_info(&pf->pdev->dev,
 212			 "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
 213			 fd_data->pctype, fd_data->fd_id, ret);
 214		/* Free the packet buffer since it wasn't added to the ring */
 215		kfree(raw_packet);
 216		return -EOPNOTSUPP;
 217	} else if (I40E_DEBUG_FD & pf->hw.debug_mask) {
 218		if (add)
 219			dev_info(&pf->pdev->dev,
 220				 "Filter OK for PCTYPE %d loc = %d\n",
 221				 fd_data->pctype, fd_data->fd_id);
 222		else
 223			dev_info(&pf->pdev->dev,
 224				 "Filter deleted for PCTYPE %d loc = %d\n",
 225				 fd_data->pctype, fd_data->fd_id);
 226	}
 227
 228	if (add)
 229		pf->fd_udp4_filter_cnt++;
 230	else
 231		pf->fd_udp4_filter_cnt--;
 232
 233	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 234}
 235
 236#define I40E_TCPIP_DUMMY_PACKET_LEN 54
 
 237/**
 238 * i40e_add_del_fdir_tcpv4 - Add/Remove TCPv4 filters
 239 * @vsi: pointer to the targeted VSI
 240 * @fd_data: the flow director data required for the FDir descriptor
 241 * @add: true adds a filter, false removes it
 
 242 *
 243 * Returns 0 if the filters were successfully added or removed
 244 **/
 245static int i40e_add_del_fdir_tcpv4(struct i40e_vsi *vsi,
 246				   struct i40e_fdir_filter *fd_data,
 247				   bool add)
 
 248{
 249	struct i40e_pf *pf = vsi->back;
 250	struct tcphdr *tcp;
 251	struct iphdr *ip;
 252	u8 *raw_packet;
 253	int ret;
 254	/* Dummy packet */
 255	static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0,
 256		0x45, 0, 0, 0x28, 0, 0, 0x40, 0, 0x40, 0x6, 0, 0, 0, 0, 0, 0,
 257		0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x80, 0x11,
 258		0x0, 0x72, 0, 0, 0, 0};
 259
 260	raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
 261	if (!raw_packet)
 262		return -ENOMEM;
 263	memcpy(raw_packet, packet, I40E_TCPIP_DUMMY_PACKET_LEN);
 264
 265	ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET);
 266	tcp = (struct tcphdr *)(raw_packet + IP_HEADER_OFFSET
 267	      + sizeof(struct iphdr));
 268
 269	ip->daddr = fd_data->dst_ip;
 270	tcp->dest = fd_data->dst_port;
 271	ip->saddr = fd_data->src_ip;
 272	tcp->source = fd_data->src_port;
 273
 274	if (fd_data->flex_filter) {
 275		u8 *payload = raw_packet + I40E_TCPIP_DUMMY_PACKET_LEN;
 276		__be16 pattern = fd_data->flex_word;
 277		u16 off = fd_data->flex_offset;
 
 
 
 
 
 
 278
 279		*((__force __be16 *)(payload + off)) = pattern;
 
 
 280	}
 281
 282	fd_data->pctype = I40E_FILTER_PCTYPE_NONF_IPV4_TCP;
 283	ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 284	if (ret) {
 285		dev_info(&pf->pdev->dev,
 286			 "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
 287			 fd_data->pctype, fd_data->fd_id, ret);
 288		/* Free the packet buffer since it wasn't added to the ring */
 289		kfree(raw_packet);
 290		return -EOPNOTSUPP;
 291	} else if (I40E_DEBUG_FD & pf->hw.debug_mask) {
 292		if (add)
 293			dev_info(&pf->pdev->dev, "Filter OK for PCTYPE %d loc = %d)\n",
 294				 fd_data->pctype, fd_data->fd_id);
 295		else
 296			dev_info(&pf->pdev->dev,
 297				 "Filter deleted for PCTYPE %d loc = %d\n",
 298				 fd_data->pctype, fd_data->fd_id);
 299	}
 300
 
 
 
 301	if (add) {
 302		pf->fd_tcp4_filter_cnt++;
 303		if ((pf->flags & I40E_FLAG_FD_ATR_ENABLED) &&
 304		    I40E_DEBUG_FD & pf->hw.debug_mask)
 305			dev_info(&pf->pdev->dev, "Forcing ATR off, sideband rules for TCP/IPv4 flow being applied\n");
 306		set_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state);
 307	} else {
 308		pf->fd_tcp4_filter_cnt--;
 309	}
 310
 311	return 0;
 312}
 313
 314#define I40E_SCTPIP_DUMMY_PACKET_LEN 46
 
 315/**
 316 * i40e_add_del_fdir_sctpv4 - Add/Remove SCTPv4 Flow Director filters for
 317 * a specific flow spec
 318 * @vsi: pointer to the targeted VSI
 319 * @fd_data: the flow director data required for the FDir descriptor
 320 * @add: true adds a filter, false removes it
 
 321 *
 322 * Returns 0 if the filters were successfully added or removed
 323 **/
 324static int i40e_add_del_fdir_sctpv4(struct i40e_vsi *vsi,
 325				    struct i40e_fdir_filter *fd_data,
 326				    bool add)
 
 327{
 328	struct i40e_pf *pf = vsi->back;
 329	struct sctphdr *sctp;
 330	struct iphdr *ip;
 331	u8 *raw_packet;
 332	int ret;
 333	/* Dummy packet */
 334	static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0,
 335		0x45, 0, 0, 0x20, 0, 0, 0x40, 0, 0x40, 0x84, 0, 0, 0, 0, 0, 0,
 336		0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
 337
 338	raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
 339	if (!raw_packet)
 340		return -ENOMEM;
 341	memcpy(raw_packet, packet, I40E_SCTPIP_DUMMY_PACKET_LEN);
 342
 343	ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET);
 344	sctp = (struct sctphdr *)(raw_packet + IP_HEADER_OFFSET
 345	      + sizeof(struct iphdr));
 346
 347	ip->daddr = fd_data->dst_ip;
 348	sctp->dest = fd_data->dst_port;
 349	ip->saddr = fd_data->src_ip;
 350	sctp->source = fd_data->src_port;
 351
 352	if (fd_data->flex_filter) {
 353		u8 *payload = raw_packet + I40E_SCTPIP_DUMMY_PACKET_LEN;
 354		__be16 pattern = fd_data->flex_word;
 355		u16 off = fd_data->flex_offset;
 356
 357		*((__force __be16 *)(payload + off)) = pattern;
 358	}
 
 
 
 359
 360	fd_data->pctype = I40E_FILTER_PCTYPE_NONF_IPV4_SCTP;
 361	ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add);
 362	if (ret) {
 363		dev_info(&pf->pdev->dev,
 364			 "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
 365			 fd_data->pctype, fd_data->fd_id, ret);
 366		/* Free the packet buffer since it wasn't added to the ring */
 367		kfree(raw_packet);
 368		return -EOPNOTSUPP;
 369	} else if (I40E_DEBUG_FD & pf->hw.debug_mask) {
 370		if (add)
 371			dev_info(&pf->pdev->dev,
 372				 "Filter OK for PCTYPE %d loc = %d\n",
 373				 fd_data->pctype, fd_data->fd_id);
 374		else
 375			dev_info(&pf->pdev->dev,
 376				 "Filter deleted for PCTYPE %d loc = %d\n",
 377				 fd_data->pctype, fd_data->fd_id);
 378	}
 379
 380	if (add)
 381		pf->fd_sctp4_filter_cnt++;
 382	else
 383		pf->fd_sctp4_filter_cnt--;
 384
 385	return 0;
 386}
 387
 388#define I40E_IP_DUMMY_PACKET_LEN 34
 
 389/**
 390 * i40e_add_del_fdir_ipv4 - Add/Remove IPv4 Flow Director filters for
 391 * a specific flow spec
 392 * @vsi: pointer to the targeted VSI
 393 * @fd_data: the flow director data required for the FDir descriptor
 394 * @add: true adds a filter, false removes it
 
 395 *
 396 * Returns 0 if the filters were successfully added or removed
 397 **/
 398static int i40e_add_del_fdir_ipv4(struct i40e_vsi *vsi,
 399				  struct i40e_fdir_filter *fd_data,
 400				  bool add)
 
 401{
 402	struct i40e_pf *pf = vsi->back;
 403	struct iphdr *ip;
 404	u8 *raw_packet;
 
 
 405	int ret;
 406	int i;
 407	static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0,
 408		0x45, 0, 0, 0x14, 0, 0, 0x40, 0, 0x40, 0x10, 0, 0, 0, 0, 0, 0,
 409		0, 0, 0, 0};
 410
 411	for (i = I40E_FILTER_PCTYPE_NONF_IPV4_OTHER;
 412	     i <= I40E_FILTER_PCTYPE_FRAG_IPV4;	i++) {
 
 
 
 
 
 
 
 413		raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
 414		if (!raw_packet)
 415			return -ENOMEM;
 416		memcpy(raw_packet, packet, I40E_IP_DUMMY_PACKET_LEN);
 417		ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET);
 418
 419		ip->saddr = fd_data->src_ip;
 420		ip->daddr = fd_data->dst_ip;
 421		ip->protocol = 0;
 422
 423		if (fd_data->flex_filter) {
 424			u8 *payload = raw_packet + I40E_IP_DUMMY_PACKET_LEN;
 425			__be16 pattern = fd_data->flex_word;
 426			u16 off = fd_data->flex_offset;
 427
 428			*((__force __be16 *)(payload + off)) = pattern;
 429		}
 430
 431		fd_data->pctype = i;
 432		ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add);
 433		if (ret) {
 434			dev_info(&pf->pdev->dev,
 435				 "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
 436				 fd_data->pctype, fd_data->fd_id, ret);
 437			/* The packet buffer wasn't added to the ring so we
 438			 * need to free it now.
 439			 */
 440			kfree(raw_packet);
 441			return -EOPNOTSUPP;
 442		} else if (I40E_DEBUG_FD & pf->hw.debug_mask) {
 443			if (add)
 444				dev_info(&pf->pdev->dev,
 445					 "Filter OK for PCTYPE %d loc = %d\n",
 446					 fd_data->pctype, fd_data->fd_id);
 447			else
 448				dev_info(&pf->pdev->dev,
 449					 "Filter deleted for PCTYPE %d loc = %d\n",
 450					 fd_data->pctype, fd_data->fd_id);
 451		}
 452	}
 453
 454	if (add)
 455		pf->fd_ip4_filter_cnt++;
 456	else
 457		pf->fd_ip4_filter_cnt--;
 458
 459	return 0;
 
 
 
 460}
 461
 462/**
 463 * i40e_add_del_fdir - Build raw packets to add/del fdir filter
 464 * @vsi: pointer to the targeted VSI
 465 * @input: filter to add or delete
 466 * @add: true adds a filter, false removes it
 467 *
 468 **/
 469int i40e_add_del_fdir(struct i40e_vsi *vsi,
 470		      struct i40e_fdir_filter *input, bool add)
 471{
 
 472	struct i40e_pf *pf = vsi->back;
 473	int ret;
 474
 475	switch (input->flow_type & ~FLOW_EXT) {
 476	case TCP_V4_FLOW:
 477		ret = i40e_add_del_fdir_tcpv4(vsi, input, add);
 478		break;
 479	case UDP_V4_FLOW:
 480		ret = i40e_add_del_fdir_udpv4(vsi, input, add);
 481		break;
 482	case SCTP_V4_FLOW:
 483		ret = i40e_add_del_fdir_sctpv4(vsi, input, add);
 
 
 
 
 
 
 
 
 
 484		break;
 485	case IP_USER_FLOW:
 486		switch (input->ip4_proto) {
 487		case IPPROTO_TCP:
 488			ret = i40e_add_del_fdir_tcpv4(vsi, input, add);
 489			break;
 490		case IPPROTO_UDP:
 491			ret = i40e_add_del_fdir_udpv4(vsi, input, add);
 492			break;
 493		case IPPROTO_SCTP:
 494			ret = i40e_add_del_fdir_sctpv4(vsi, input, add);
 495			break;
 496		case IPPROTO_IP:
 497			ret = i40e_add_del_fdir_ipv4(vsi, input, add);
 498			break;
 499		default:
 500			/* We cannot support masking based on protocol */
 501			dev_info(&pf->pdev->dev, "Unsupported IPv4 protocol 0x%02x\n",
 502				 input->ip4_proto);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 503			return -EINVAL;
 504		}
 505		break;
 506	default:
 507		dev_info(&pf->pdev->dev, "Unsupported flow type 0x%02x\n",
 508			 input->flow_type);
 509		return -EINVAL;
 510	}
 511
 512	/* The buffer allocated here will be normally be freed by
 513	 * i40e_clean_fdir_tx_irq() as it reclaims resources after transmit
 514	 * completion. In the event of an error adding the buffer to the FDIR
 515	 * ring, it will immediately be freed. It may also be freed by
 516	 * i40e_clean_tx_ring() when closing the VSI.
 517	 */
 518	return ret;
 519}
 520
 521/**
 522 * i40e_fd_handle_status - check the Programming Status for FD
 523 * @rx_ring: the Rx ring for this descriptor
 524 * @qword0_raw: qword0
 525 * @qword1: qword1 after le_to_cpu
 526 * @prog_id: the id originally used for programming
 527 *
 528 * This is used to verify if the FD programming or invalidation
 529 * requested by SW to the HW is successful or not and take actions accordingly.
 530 **/
 531static void i40e_fd_handle_status(struct i40e_ring *rx_ring, u64 qword0_raw,
 532				  u64 qword1, u8 prog_id)
 533{
 534	struct i40e_pf *pf = rx_ring->vsi->back;
 535	struct pci_dev *pdev = pf->pdev;
 536	struct i40e_32b_rx_wb_qw0 *qw0;
 537	u32 fcnt_prog, fcnt_avail;
 538	u32 error;
 539
 540	qw0 = (struct i40e_32b_rx_wb_qw0 *)&qword0_raw;
 541	error = (qword1 & I40E_RX_PROG_STATUS_DESC_QW1_ERROR_MASK) >>
 542		I40E_RX_PROG_STATUS_DESC_QW1_ERROR_SHIFT;
 543
 544	if (error == BIT(I40E_RX_PROG_STATUS_DESC_FD_TBL_FULL_SHIFT)) {
 545		pf->fd_inv = le32_to_cpu(qw0->hi_dword.fd_id);
 546		if (qw0->hi_dword.fd_id != 0 ||
 547		    (I40E_DEBUG_FD & pf->hw.debug_mask))
 548			dev_warn(&pdev->dev, "ntuple filter loc = %d, could not be added\n",
 549				 pf->fd_inv);
 550
 551		/* Check if the programming error is for ATR.
 552		 * If so, auto disable ATR and set a state for
 553		 * flush in progress. Next time we come here if flush is in
 554		 * progress do nothing, once flush is complete the state will
 555		 * be cleared.
 556		 */
 557		if (test_bit(__I40E_FD_FLUSH_REQUESTED, pf->state))
 558			return;
 559
 560		pf->fd_add_err++;
 561		/* store the current atr filter count */
 562		pf->fd_atr_cnt = i40e_get_current_atr_cnt(pf);
 563
 564		if (qw0->hi_dword.fd_id == 0 &&
 565		    test_bit(__I40E_FD_SB_AUTO_DISABLED, pf->state)) {
 566			/* These set_bit() calls aren't atomic with the
 567			 * test_bit() here, but worse case we potentially
 568			 * disable ATR and queue a flush right after SB
 569			 * support is re-enabled. That shouldn't cause an
 570			 * issue in practice
 571			 */
 572			set_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state);
 573			set_bit(__I40E_FD_FLUSH_REQUESTED, pf->state);
 574		}
 575
 576		/* filter programming failed most likely due to table full */
 577		fcnt_prog = i40e_get_global_fd_count(pf);
 578		fcnt_avail = pf->fdir_pf_filter_count;
 579		/* If ATR is running fcnt_prog can quickly change,
 580		 * if we are very close to full, it makes sense to disable
 581		 * FD ATR/SB and then re-enable it when there is room.
 582		 */
 583		if (fcnt_prog >= (fcnt_avail - I40E_FDIR_BUFFER_FULL_MARGIN)) {
 584			if ((pf->flags & I40E_FLAG_FD_SB_ENABLED) &&
 585			    !test_and_set_bit(__I40E_FD_SB_AUTO_DISABLED,
 586					      pf->state))
 587				if (I40E_DEBUG_FD & pf->hw.debug_mask)
 588					dev_warn(&pdev->dev, "FD filter space full, new ntuple rules will not be added\n");
 589		}
 590	} else if (error == BIT(I40E_RX_PROG_STATUS_DESC_NO_FD_ENTRY_SHIFT)) {
 591		if (I40E_DEBUG_FD & pf->hw.debug_mask)
 592			dev_info(&pdev->dev, "ntuple filter fd_id = %d, could not be removed\n",
 593				 qw0->hi_dword.fd_id);
 594	}
 595}
 596
 597/**
 598 * i40e_unmap_and_free_tx_resource - Release a Tx buffer
 599 * @ring:      the ring that owns the buffer
 600 * @tx_buffer: the buffer to free
 601 **/
 602static void i40e_unmap_and_free_tx_resource(struct i40e_ring *ring,
 603					    struct i40e_tx_buffer *tx_buffer)
 604{
 605	if (tx_buffer->skb) {
 606		if (tx_buffer->tx_flags & I40E_TX_FLAGS_FD_SB)
 607			kfree(tx_buffer->raw_buf);
 608		else if (ring_is_xdp(ring))
 609			xdp_return_frame(tx_buffer->xdpf);
 610		else
 611			dev_kfree_skb_any(tx_buffer->skb);
 612		if (dma_unmap_len(tx_buffer, len))
 613			dma_unmap_single(ring->dev,
 614					 dma_unmap_addr(tx_buffer, dma),
 615					 dma_unmap_len(tx_buffer, len),
 616					 DMA_TO_DEVICE);
 617	} else if (dma_unmap_len(tx_buffer, len)) {
 618		dma_unmap_page(ring->dev,
 619			       dma_unmap_addr(tx_buffer, dma),
 620			       dma_unmap_len(tx_buffer, len),
 621			       DMA_TO_DEVICE);
 622	}
 623
 624	tx_buffer->next_to_watch = NULL;
 625	tx_buffer->skb = NULL;
 626	dma_unmap_len_set(tx_buffer, len, 0);
 627	/* tx_buffer must be completely set up in the transmit path */
 628}
 629
 630/**
 631 * i40e_clean_tx_ring - Free any empty Tx buffers
 632 * @tx_ring: ring to be cleaned
 633 **/
 634void i40e_clean_tx_ring(struct i40e_ring *tx_ring)
 635{
 636	unsigned long bi_size;
 637	u16 i;
 638
 639	if (ring_is_xdp(tx_ring) && tx_ring->xsk_umem) {
 640		i40e_xsk_clean_tx_ring(tx_ring);
 641	} else {
 642		/* ring already cleared, nothing to do */
 643		if (!tx_ring->tx_bi)
 644			return;
 645
 646		/* Free all the Tx ring sk_buffs */
 647		for (i = 0; i < tx_ring->count; i++)
 648			i40e_unmap_and_free_tx_resource(tx_ring,
 649							&tx_ring->tx_bi[i]);
 650	}
 651
 652	bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
 653	memset(tx_ring->tx_bi, 0, bi_size);
 654
 655	/* Zero out the descriptor ring */
 656	memset(tx_ring->desc, 0, tx_ring->size);
 657
 658	tx_ring->next_to_use = 0;
 659	tx_ring->next_to_clean = 0;
 660
 661	if (!tx_ring->netdev)
 662		return;
 663
 664	/* cleanup Tx queue statistics */
 665	netdev_tx_reset_queue(txring_txq(tx_ring));
 666}
 667
 668/**
 669 * i40e_free_tx_resources - Free Tx resources per queue
 670 * @tx_ring: Tx descriptor ring for a specific queue
 671 *
 672 * Free all transmit software resources
 673 **/
 674void i40e_free_tx_resources(struct i40e_ring *tx_ring)
 675{
 676	i40e_clean_tx_ring(tx_ring);
 677	kfree(tx_ring->tx_bi);
 678	tx_ring->tx_bi = NULL;
 679
 680	if (tx_ring->desc) {
 681		dma_free_coherent(tx_ring->dev, tx_ring->size,
 682				  tx_ring->desc, tx_ring->dma);
 683		tx_ring->desc = NULL;
 684	}
 685}
 686
 687/**
 688 * i40e_get_tx_pending - how many tx descriptors not processed
 689 * @ring: the ring of descriptors
 690 * @in_sw: use SW variables
 691 *
 692 * Since there is no access to the ring head register
 693 * in XL710, we need to use our local copies
 694 **/
 695u32 i40e_get_tx_pending(struct i40e_ring *ring, bool in_sw)
 696{
 697	u32 head, tail;
 698
 699	if (!in_sw) {
 700		head = i40e_get_head(ring);
 701		tail = readl(ring->tail);
 702	} else {
 703		head = ring->next_to_clean;
 704		tail = ring->next_to_use;
 705	}
 706
 707	if (head != tail)
 708		return (head < tail) ?
 709			tail - head : (tail + ring->count - head);
 710
 711	return 0;
 712}
 713
 714/**
 715 * i40e_detect_recover_hung - Function to detect and recover hung_queues
 716 * @vsi:  pointer to vsi struct with tx queues
 717 *
 718 * VSI has netdev and netdev has TX queues. This function is to check each of
 719 * those TX queues if they are hung, trigger recovery by issuing SW interrupt.
 
 720 **/
 721void i40e_detect_recover_hung(struct i40e_vsi *vsi)
 722{
 
 723	struct i40e_ring *tx_ring = NULL;
 724	struct net_device *netdev;
 725	unsigned int i;
 726	int packets;
 727
 728	if (!vsi)
 729		return;
 730
 731	if (test_bit(__I40E_VSI_DOWN, vsi->state))
 732		return;
 733
 734	netdev = vsi->netdev;
 735	if (!netdev)
 736		return;
 737
 738	if (!netif_carrier_ok(netdev))
 739		return;
 740
 741	for (i = 0; i < vsi->num_queue_pairs; i++) {
 742		tx_ring = vsi->tx_rings[i];
 743		if (tx_ring && tx_ring->desc) {
 744			/* If packet counter has not changed the queue is
 745			 * likely stalled, so force an interrupt for this
 746			 * queue.
 747			 *
 748			 * prev_pkt_ctr would be negative if there was no
 749			 * pending work.
 750			 */
 751			packets = tx_ring->stats.packets & INT_MAX;
 752			if (tx_ring->tx_stats.prev_pkt_ctr == packets) {
 753				i40e_force_wb(vsi, tx_ring->q_vector);
 754				continue;
 755			}
 756
 757			/* Memory barrier between read of packet count and call
 758			 * to i40e_get_tx_pending()
 759			 */
 760			smp_rmb();
 761			tx_ring->tx_stats.prev_pkt_ctr =
 762			    i40e_get_tx_pending(tx_ring, true) ? packets : -1;
 763		}
 764	}
 765}
 766
 767/**
 768 * i40e_clean_tx_irq - Reclaim resources after transmit completes
 769 * @vsi: the VSI we care about
 770 * @tx_ring: Tx ring to clean
 771 * @napi_budget: Used to determine if we are in netpoll
 
 772 *
 773 * Returns true if there's any budget left (e.g. the clean is finished)
 774 **/
 775static bool i40e_clean_tx_irq(struct i40e_vsi *vsi,
 776			      struct i40e_ring *tx_ring, int napi_budget)
 
 777{
 778	int i = tx_ring->next_to_clean;
 779	struct i40e_tx_buffer *tx_buf;
 780	struct i40e_tx_desc *tx_head;
 781	struct i40e_tx_desc *tx_desc;
 782	unsigned int total_bytes = 0, total_packets = 0;
 783	unsigned int budget = vsi->work_limit;
 784
 785	tx_buf = &tx_ring->tx_bi[i];
 786	tx_desc = I40E_TX_DESC(tx_ring, i);
 787	i -= tx_ring->count;
 788
 789	tx_head = I40E_TX_DESC(tx_ring, i40e_get_head(tx_ring));
 790
 791	do {
 792		struct i40e_tx_desc *eop_desc = tx_buf->next_to_watch;
 793
 794		/* if next_to_watch is not set then there is no work pending */
 795		if (!eop_desc)
 796			break;
 797
 798		/* prevent any other reads prior to eop_desc */
 799		smp_rmb();
 800
 801		i40e_trace(clean_tx_irq, tx_ring, tx_desc, tx_buf);
 802		/* we have caught up to head, no work left to do */
 803		if (tx_head == tx_desc)
 804			break;
 805
 806		/* clear next_to_watch to prevent false hangs */
 807		tx_buf->next_to_watch = NULL;
 808
 809		/* update the statistics for this packet */
 810		total_bytes += tx_buf->bytecount;
 811		total_packets += tx_buf->gso_segs;
 812
 813		/* free the skb/XDP data */
 814		if (ring_is_xdp(tx_ring))
 815			xdp_return_frame(tx_buf->xdpf);
 816		else
 817			napi_consume_skb(tx_buf->skb, napi_budget);
 818
 819		/* unmap skb header data */
 820		dma_unmap_single(tx_ring->dev,
 821				 dma_unmap_addr(tx_buf, dma),
 822				 dma_unmap_len(tx_buf, len),
 823				 DMA_TO_DEVICE);
 824
 825		/* clear tx_buffer data */
 826		tx_buf->skb = NULL;
 827		dma_unmap_len_set(tx_buf, len, 0);
 828
 829		/* unmap remaining buffers */
 830		while (tx_desc != eop_desc) {
 831			i40e_trace(clean_tx_irq_unmap,
 832				   tx_ring, tx_desc, tx_buf);
 833
 834			tx_buf++;
 835			tx_desc++;
 836			i++;
 837			if (unlikely(!i)) {
 838				i -= tx_ring->count;
 839				tx_buf = tx_ring->tx_bi;
 840				tx_desc = I40E_TX_DESC(tx_ring, 0);
 841			}
 842
 843			/* unmap any remaining paged data */
 844			if (dma_unmap_len(tx_buf, len)) {
 845				dma_unmap_page(tx_ring->dev,
 846					       dma_unmap_addr(tx_buf, dma),
 847					       dma_unmap_len(tx_buf, len),
 848					       DMA_TO_DEVICE);
 849				dma_unmap_len_set(tx_buf, len, 0);
 850			}
 851		}
 852
 853		/* move us one more past the eop_desc for start of next pkt */
 854		tx_buf++;
 855		tx_desc++;
 856		i++;
 857		if (unlikely(!i)) {
 858			i -= tx_ring->count;
 859			tx_buf = tx_ring->tx_bi;
 860			tx_desc = I40E_TX_DESC(tx_ring, 0);
 861		}
 862
 863		prefetch(tx_desc);
 864
 865		/* update budget accounting */
 866		budget--;
 867	} while (likely(budget));
 868
 869	i += tx_ring->count;
 870	tx_ring->next_to_clean = i;
 871	i40e_update_tx_stats(tx_ring, total_packets, total_bytes);
 872	i40e_arm_wb(tx_ring, vsi, budget);
 873
 874	if (ring_is_xdp(tx_ring))
 875		return !!budget;
 876
 877	/* notify netdev of completed buffers */
 878	netdev_tx_completed_queue(txring_txq(tx_ring),
 879				  total_packets, total_bytes);
 880
 881#define TX_WAKE_THRESHOLD ((s16)(DESC_NEEDED * 2))
 882	if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) &&
 883		     (I40E_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) {
 884		/* Make sure that anybody stopping the queue after this
 885		 * sees the new next_to_clean.
 886		 */
 887		smp_mb();
 888		if (__netif_subqueue_stopped(tx_ring->netdev,
 889					     tx_ring->queue_index) &&
 890		   !test_bit(__I40E_VSI_DOWN, vsi->state)) {
 891			netif_wake_subqueue(tx_ring->netdev,
 892					    tx_ring->queue_index);
 893			++tx_ring->tx_stats.restart_queue;
 894		}
 895	}
 896
 
 897	return !!budget;
 898}
 899
 900/**
 901 * i40e_enable_wb_on_itr - Arm hardware to do a wb, interrupts are not enabled
 902 * @vsi: the VSI we care about
 903 * @q_vector: the vector on which to enable writeback
 904 *
 905 **/
 906static void i40e_enable_wb_on_itr(struct i40e_vsi *vsi,
 907				  struct i40e_q_vector *q_vector)
 908{
 909	u16 flags = q_vector->tx.ring[0].flags;
 910	u32 val;
 911
 912	if (!(flags & I40E_TXR_FLAGS_WB_ON_ITR))
 913		return;
 914
 915	if (q_vector->arm_wb_state)
 916		return;
 917
 918	if (vsi->back->flags & I40E_FLAG_MSIX_ENABLED) {
 919		val = I40E_PFINT_DYN_CTLN_WB_ON_ITR_MASK |
 920		      I40E_PFINT_DYN_CTLN_ITR_INDX_MASK; /* set noitr */
 921
 922		wr32(&vsi->back->hw,
 923		     I40E_PFINT_DYN_CTLN(q_vector->reg_idx),
 924		     val);
 925	} else {
 926		val = I40E_PFINT_DYN_CTL0_WB_ON_ITR_MASK |
 927		      I40E_PFINT_DYN_CTL0_ITR_INDX_MASK; /* set noitr */
 928
 929		wr32(&vsi->back->hw, I40E_PFINT_DYN_CTL0, val);
 930	}
 931	q_vector->arm_wb_state = true;
 932}
 933
 934/**
 935 * i40e_force_wb - Issue SW Interrupt so HW does a wb
 936 * @vsi: the VSI we care about
 937 * @q_vector: the vector  on which to force writeback
 938 *
 939 **/
 940void i40e_force_wb(struct i40e_vsi *vsi, struct i40e_q_vector *q_vector)
 941{
 942	if (vsi->back->flags & I40E_FLAG_MSIX_ENABLED) {
 943		u32 val = I40E_PFINT_DYN_CTLN_INTENA_MASK |
 944			  I40E_PFINT_DYN_CTLN_ITR_INDX_MASK | /* set noitr */
 945			  I40E_PFINT_DYN_CTLN_SWINT_TRIG_MASK |
 946			  I40E_PFINT_DYN_CTLN_SW_ITR_INDX_ENA_MASK;
 947			  /* allow 00 to be written to the index */
 948
 949		wr32(&vsi->back->hw,
 950		     I40E_PFINT_DYN_CTLN(q_vector->reg_idx), val);
 951	} else {
 952		u32 val = I40E_PFINT_DYN_CTL0_INTENA_MASK |
 953			  I40E_PFINT_DYN_CTL0_ITR_INDX_MASK | /* set noitr */
 954			  I40E_PFINT_DYN_CTL0_SWINT_TRIG_MASK |
 955			  I40E_PFINT_DYN_CTL0_SW_ITR_INDX_ENA_MASK;
 956			/* allow 00 to be written to the index */
 957
 958		wr32(&vsi->back->hw, I40E_PFINT_DYN_CTL0, val);
 959	}
 960}
 961
 962static inline bool i40e_container_is_rx(struct i40e_q_vector *q_vector,
 963					struct i40e_ring_container *rc)
 964{
 965	return &q_vector->rx == rc;
 966}
 967
 968static inline unsigned int i40e_itr_divisor(struct i40e_q_vector *q_vector)
 969{
 970	unsigned int divisor;
 971
 972	switch (q_vector->vsi->back->hw.phy.link_info.link_speed) {
 973	case I40E_LINK_SPEED_40GB:
 974		divisor = I40E_ITR_ADAPTIVE_MIN_INC * 1024;
 975		break;
 976	case I40E_LINK_SPEED_25GB:
 977	case I40E_LINK_SPEED_20GB:
 978		divisor = I40E_ITR_ADAPTIVE_MIN_INC * 512;
 979		break;
 980	default:
 981	case I40E_LINK_SPEED_10GB:
 982		divisor = I40E_ITR_ADAPTIVE_MIN_INC * 256;
 983		break;
 984	case I40E_LINK_SPEED_1GB:
 985	case I40E_LINK_SPEED_100MB:
 986		divisor = I40E_ITR_ADAPTIVE_MIN_INC * 32;
 987		break;
 988	}
 989
 990	return divisor;
 991}
 992
 993/**
 994 * i40e_update_itr - update the dynamic ITR value based on statistics
 995 * @q_vector: structure containing interrupt and ring information
 996 * @rc: structure containing ring performance data
 997 *
 998 * Stores a new ITR value based on packets and byte
 999 * counts during the last interrupt.  The advantage of per interrupt
1000 * computation is faster updates and more accurate ITR for the current
1001 * traffic pattern.  Constants in this function were computed
1002 * based on theoretical maximum wire speed and thresholds were set based
1003 * on testing data as well as attempting to minimize response time
1004 * while increasing bulk throughput.
1005 **/
1006static void i40e_update_itr(struct i40e_q_vector *q_vector,
1007			    struct i40e_ring_container *rc)
1008{
1009	unsigned int avg_wire_size, packets, bytes, itr;
1010	unsigned long next_update = jiffies;
1011
1012	/* If we don't have any rings just leave ourselves set for maximum
1013	 * possible latency so we take ourselves out of the equation.
1014	 */
1015	if (!rc->ring || !ITR_IS_DYNAMIC(rc->ring->itr_setting))
1016		return;
1017
1018	/* For Rx we want to push the delay up and default to low latency.
1019	 * for Tx we want to pull the delay down and default to high latency.
1020	 */
1021	itr = i40e_container_is_rx(q_vector, rc) ?
1022	      I40E_ITR_ADAPTIVE_MIN_USECS | I40E_ITR_ADAPTIVE_LATENCY :
1023	      I40E_ITR_ADAPTIVE_MAX_USECS | I40E_ITR_ADAPTIVE_LATENCY;
1024
1025	/* If we didn't update within up to 1 - 2 jiffies we can assume
1026	 * that either packets are coming in so slow there hasn't been
1027	 * any work, or that there is so much work that NAPI is dealing
1028	 * with interrupt moderation and we don't need to do anything.
1029	 */
1030	if (time_after(next_update, rc->next_update))
1031		goto clear_counts;
1032
1033	/* If itr_countdown is set it means we programmed an ITR within
1034	 * the last 4 interrupt cycles. This has a side effect of us
1035	 * potentially firing an early interrupt. In order to work around
1036	 * this we need to throw out any data received for a few
1037	 * interrupts following the update.
1038	 */
1039	if (q_vector->itr_countdown) {
1040		itr = rc->target_itr;
1041		goto clear_counts;
1042	}
1043
1044	packets = rc->total_packets;
1045	bytes = rc->total_bytes;
1046
1047	if (i40e_container_is_rx(q_vector, rc)) {
1048		/* If Rx there are 1 to 4 packets and bytes are less than
1049		 * 9000 assume insufficient data to use bulk rate limiting
1050		 * approach unless Tx is already in bulk rate limiting. We
1051		 * are likely latency driven.
1052		 */
1053		if (packets && packets < 4 && bytes < 9000 &&
1054		    (q_vector->tx.target_itr & I40E_ITR_ADAPTIVE_LATENCY)) {
1055			itr = I40E_ITR_ADAPTIVE_LATENCY;
1056			goto adjust_by_size;
1057		}
1058	} else if (packets < 4) {
1059		/* If we have Tx and Rx ITR maxed and Tx ITR is running in
1060		 * bulk mode and we are receiving 4 or fewer packets just
1061		 * reset the ITR_ADAPTIVE_LATENCY bit for latency mode so
1062		 * that the Rx can relax.
1063		 */
1064		if (rc->target_itr == I40E_ITR_ADAPTIVE_MAX_USECS &&
1065		    (q_vector->rx.target_itr & I40E_ITR_MASK) ==
1066		     I40E_ITR_ADAPTIVE_MAX_USECS)
1067			goto clear_counts;
1068	} else if (packets > 32) {
1069		/* If we have processed over 32 packets in a single interrupt
1070		 * for Tx assume we need to switch over to "bulk" mode.
1071		 */
1072		rc->target_itr &= ~I40E_ITR_ADAPTIVE_LATENCY;
1073	}
1074
1075	/* We have no packets to actually measure against. This means
1076	 * either one of the other queues on this vector is active or
1077	 * we are a Tx queue doing TSO with too high of an interrupt rate.
1078	 *
1079	 * Between 4 and 56 we can assume that our current interrupt delay
1080	 * is only slightly too low. As such we should increase it by a small
1081	 * fixed amount.
1082	 */
1083	if (packets < 56) {
1084		itr = rc->target_itr + I40E_ITR_ADAPTIVE_MIN_INC;
1085		if ((itr & I40E_ITR_MASK) > I40E_ITR_ADAPTIVE_MAX_USECS) {
1086			itr &= I40E_ITR_ADAPTIVE_LATENCY;
1087			itr += I40E_ITR_ADAPTIVE_MAX_USECS;
1088		}
1089		goto clear_counts;
1090	}
1091
1092	if (packets <= 256) {
1093		itr = min(q_vector->tx.current_itr, q_vector->rx.current_itr);
1094		itr &= I40E_ITR_MASK;
1095
1096		/* Between 56 and 112 is our "goldilocks" zone where we are
1097		 * working out "just right". Just report that our current
1098		 * ITR is good for us.
1099		 */
1100		if (packets <= 112)
1101			goto clear_counts;
1102
1103		/* If packet count is 128 or greater we are likely looking
1104		 * at a slight overrun of the delay we want. Try halving
1105		 * our delay to see if that will cut the number of packets
1106		 * in half per interrupt.
1107		 */
1108		itr /= 2;
1109		itr &= I40E_ITR_MASK;
1110		if (itr < I40E_ITR_ADAPTIVE_MIN_USECS)
1111			itr = I40E_ITR_ADAPTIVE_MIN_USECS;
1112
1113		goto clear_counts;
1114	}
1115
1116	/* The paths below assume we are dealing with a bulk ITR since
1117	 * number of packets is greater than 256. We are just going to have
1118	 * to compute a value and try to bring the count under control,
1119	 * though for smaller packet sizes there isn't much we can do as
1120	 * NAPI polling will likely be kicking in sooner rather than later.
1121	 */
1122	itr = I40E_ITR_ADAPTIVE_BULK;
1123
1124adjust_by_size:
1125	/* If packet counts are 256 or greater we can assume we have a gross
1126	 * overestimation of what the rate should be. Instead of trying to fine
1127	 * tune it just use the formula below to try and dial in an exact value
1128	 * give the current packet size of the frame.
1129	 */
1130	avg_wire_size = bytes / packets;
1131
1132	/* The following is a crude approximation of:
1133	 *  wmem_default / (size + overhead) = desired_pkts_per_int
1134	 *  rate / bits_per_byte / (size + ethernet overhead) = pkt_rate
1135	 *  (desired_pkt_rate / pkt_rate) * usecs_per_sec = ITR value
1136	 *
1137	 * Assuming wmem_default is 212992 and overhead is 640 bytes per
1138	 * packet, (256 skb, 64 headroom, 320 shared info), we can reduce the
1139	 * formula down to
1140	 *
1141	 *  (170 * (size + 24)) / (size + 640) = ITR
1142	 *
1143	 * We first do some math on the packet size and then finally bitshift
1144	 * by 8 after rounding up. We also have to account for PCIe link speed
1145	 * difference as ITR scales based on this.
1146	 */
1147	if (avg_wire_size <= 60) {
1148		/* Start at 250k ints/sec */
1149		avg_wire_size = 4096;
1150	} else if (avg_wire_size <= 380) {
1151		/* 250K ints/sec to 60K ints/sec */
1152		avg_wire_size *= 40;
1153		avg_wire_size += 1696;
1154	} else if (avg_wire_size <= 1084) {
1155		/* 60K ints/sec to 36K ints/sec */
1156		avg_wire_size *= 15;
1157		avg_wire_size += 11452;
1158	} else if (avg_wire_size <= 1980) {
1159		/* 36K ints/sec to 30K ints/sec */
1160		avg_wire_size *= 5;
1161		avg_wire_size += 22420;
1162	} else {
1163		/* plateau at a limit of 30K ints/sec */
1164		avg_wire_size = 32256;
1165	}
1166
1167	/* If we are in low latency mode halve our delay which doubles the
1168	 * rate to somewhere between 100K to 16K ints/sec
1169	 */
1170	if (itr & I40E_ITR_ADAPTIVE_LATENCY)
1171		avg_wire_size /= 2;
1172
1173	/* Resultant value is 256 times larger than it needs to be. This
1174	 * gives us room to adjust the value as needed to either increase
1175	 * or decrease the value based on link speeds of 10G, 2.5G, 1G, etc.
1176	 *
1177	 * Use addition as we have already recorded the new latency flag
1178	 * for the ITR value.
1179	 */
1180	itr += DIV_ROUND_UP(avg_wire_size, i40e_itr_divisor(q_vector)) *
1181	       I40E_ITR_ADAPTIVE_MIN_INC;
1182
1183	if ((itr & I40E_ITR_MASK) > I40E_ITR_ADAPTIVE_MAX_USECS) {
1184		itr &= I40E_ITR_ADAPTIVE_LATENCY;
1185		itr += I40E_ITR_ADAPTIVE_MAX_USECS;
1186	}
1187
1188clear_counts:
1189	/* write back value */
1190	rc->target_itr = itr;
1191
1192	/* next update should occur within next jiffy */
1193	rc->next_update = next_update + 1;
1194
1195	rc->total_bytes = 0;
1196	rc->total_packets = 0;
1197}
1198
1199static struct i40e_rx_buffer *i40e_rx_bi(struct i40e_ring *rx_ring, u32 idx)
1200{
1201	return &rx_ring->rx_bi[idx];
1202}
1203
1204/**
1205 * i40e_reuse_rx_page - page flip buffer and store it back on the ring
1206 * @rx_ring: rx descriptor ring to store buffers on
1207 * @old_buff: donor buffer to have page reused
1208 *
1209 * Synchronizes page for reuse by the adapter
1210 **/
1211static void i40e_reuse_rx_page(struct i40e_ring *rx_ring,
1212			       struct i40e_rx_buffer *old_buff)
1213{
1214	struct i40e_rx_buffer *new_buff;
1215	u16 nta = rx_ring->next_to_alloc;
1216
1217	new_buff = i40e_rx_bi(rx_ring, nta);
1218
1219	/* update, and store next to alloc */
1220	nta++;
1221	rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
1222
1223	/* transfer page from old buffer to new buffer */
1224	new_buff->dma		= old_buff->dma;
1225	new_buff->page		= old_buff->page;
1226	new_buff->page_offset	= old_buff->page_offset;
1227	new_buff->pagecnt_bias	= old_buff->pagecnt_bias;
1228
1229	rx_ring->rx_stats.page_reuse_count++;
1230
1231	/* clear contents of buffer_info */
1232	old_buff->page = NULL;
1233}
1234
1235/**
1236 * i40e_clean_programming_status - clean the programming status descriptor
1237 * @rx_ring: the rx ring that has this descriptor
1238 * @qword0_raw: qword0
1239 * @qword1: qword1 representing status_error_len in CPU ordering
1240 *
1241 * Flow director should handle FD_FILTER_STATUS to check its filter programming
1242 * status being successful or not and take actions accordingly. FCoE should
1243 * handle its context/filter programming/invalidation status and take actions.
1244 *
1245 * Returns an i40e_rx_buffer to reuse if the cleanup occurred, otherwise NULL.
1246 **/
1247void i40e_clean_programming_status(struct i40e_ring *rx_ring, u64 qword0_raw,
1248				   u64 qword1)
1249{
1250	u8 id;
1251
1252	id = (qword1 & I40E_RX_PROG_STATUS_DESC_QW1_PROGID_MASK) >>
1253		  I40E_RX_PROG_STATUS_DESC_QW1_PROGID_SHIFT;
1254
1255	if (id == I40E_RX_PROG_STATUS_DESC_FD_FILTER_STATUS)
1256		i40e_fd_handle_status(rx_ring, qword0_raw, qword1, id);
1257}
1258
1259/**
1260 * i40e_setup_tx_descriptors - Allocate the Tx descriptors
1261 * @tx_ring: the tx ring to set up
1262 *
1263 * Return 0 on success, negative on error
1264 **/
1265int i40e_setup_tx_descriptors(struct i40e_ring *tx_ring)
1266{
1267	struct device *dev = tx_ring->dev;
1268	int bi_size;
1269
1270	if (!dev)
1271		return -ENOMEM;
1272
1273	/* warn if we are about to overwrite the pointer */
1274	WARN_ON(tx_ring->tx_bi);
1275	bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
1276	tx_ring->tx_bi = kzalloc(bi_size, GFP_KERNEL);
1277	if (!tx_ring->tx_bi)
1278		goto err;
1279
1280	u64_stats_init(&tx_ring->syncp);
1281
1282	/* round up to nearest 4K */
1283	tx_ring->size = tx_ring->count * sizeof(struct i40e_tx_desc);
1284	/* add u32 for head writeback, align after this takes care of
1285	 * guaranteeing this is at least one cache line in size
1286	 */
1287	tx_ring->size += sizeof(u32);
1288	tx_ring->size = ALIGN(tx_ring->size, 4096);
1289	tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
1290					   &tx_ring->dma, GFP_KERNEL);
1291	if (!tx_ring->desc) {
1292		dev_info(dev, "Unable to allocate memory for the Tx descriptor ring, size=%d\n",
1293			 tx_ring->size);
1294		goto err;
1295	}
1296
1297	tx_ring->next_to_use = 0;
1298	tx_ring->next_to_clean = 0;
1299	tx_ring->tx_stats.prev_pkt_ctr = -1;
1300	return 0;
1301
1302err:
1303	kfree(tx_ring->tx_bi);
1304	tx_ring->tx_bi = NULL;
1305	return -ENOMEM;
1306}
1307
1308int i40e_alloc_rx_bi(struct i40e_ring *rx_ring)
1309{
1310	unsigned long sz = sizeof(*rx_ring->rx_bi) * rx_ring->count;
1311
1312	rx_ring->rx_bi = kzalloc(sz, GFP_KERNEL);
1313	return rx_ring->rx_bi ? 0 : -ENOMEM;
1314}
1315
1316static void i40e_clear_rx_bi(struct i40e_ring *rx_ring)
1317{
1318	memset(rx_ring->rx_bi, 0, sizeof(*rx_ring->rx_bi) * rx_ring->count);
1319}
1320
1321/**
1322 * i40e_clean_rx_ring - Free Rx buffers
1323 * @rx_ring: ring to be cleaned
1324 **/
1325void i40e_clean_rx_ring(struct i40e_ring *rx_ring)
1326{
1327	u16 i;
1328
1329	/* ring already cleared, nothing to do */
1330	if (!rx_ring->rx_bi)
1331		return;
1332
1333	if (rx_ring->skb) {
1334		dev_kfree_skb(rx_ring->skb);
1335		rx_ring->skb = NULL;
1336	}
1337
1338	if (rx_ring->xsk_umem) {
1339		i40e_xsk_clean_rx_ring(rx_ring);
1340		goto skip_free;
1341	}
1342
1343	/* Free all the Rx ring sk_buffs */
1344	for (i = 0; i < rx_ring->count; i++) {
1345		struct i40e_rx_buffer *rx_bi = i40e_rx_bi(rx_ring, i);
1346
1347		if (!rx_bi->page)
1348			continue;
1349
1350		/* Invalidate cache lines that may have been written to by
1351		 * device so that we avoid corrupting memory.
1352		 */
1353		dma_sync_single_range_for_cpu(rx_ring->dev,
1354					      rx_bi->dma,
1355					      rx_bi->page_offset,
1356					      rx_ring->rx_buf_len,
1357					      DMA_FROM_DEVICE);
1358
1359		/* free resources associated with mapping */
1360		dma_unmap_page_attrs(rx_ring->dev, rx_bi->dma,
1361				     i40e_rx_pg_size(rx_ring),
1362				     DMA_FROM_DEVICE,
1363				     I40E_RX_DMA_ATTR);
1364
1365		__page_frag_cache_drain(rx_bi->page, rx_bi->pagecnt_bias);
1366
1367		rx_bi->page = NULL;
1368		rx_bi->page_offset = 0;
1369	}
1370
1371skip_free:
1372	if (rx_ring->xsk_umem)
1373		i40e_clear_rx_bi_zc(rx_ring);
1374	else
1375		i40e_clear_rx_bi(rx_ring);
1376
1377	/* Zero out the descriptor ring */
1378	memset(rx_ring->desc, 0, rx_ring->size);
1379
1380	rx_ring->next_to_alloc = 0;
1381	rx_ring->next_to_clean = 0;
 
1382	rx_ring->next_to_use = 0;
1383}
1384
1385/**
1386 * i40e_free_rx_resources - Free Rx resources
1387 * @rx_ring: ring to clean the resources from
1388 *
1389 * Free all receive software resources
1390 **/
1391void i40e_free_rx_resources(struct i40e_ring *rx_ring)
1392{
1393	i40e_clean_rx_ring(rx_ring);
1394	if (rx_ring->vsi->type == I40E_VSI_MAIN)
1395		xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
1396	rx_ring->xdp_prog = NULL;
1397	kfree(rx_ring->rx_bi);
1398	rx_ring->rx_bi = NULL;
1399
1400	if (rx_ring->desc) {
1401		dma_free_coherent(rx_ring->dev, rx_ring->size,
1402				  rx_ring->desc, rx_ring->dma);
1403		rx_ring->desc = NULL;
1404	}
1405}
1406
1407/**
1408 * i40e_setup_rx_descriptors - Allocate Rx descriptors
1409 * @rx_ring: Rx descriptor ring (for a specific queue) to setup
1410 *
1411 * Returns 0 on success, negative on failure
1412 **/
1413int i40e_setup_rx_descriptors(struct i40e_ring *rx_ring)
1414{
1415	struct device *dev = rx_ring->dev;
1416	int err;
1417
1418	u64_stats_init(&rx_ring->syncp);
1419
1420	/* Round up to nearest 4K */
1421	rx_ring->size = rx_ring->count * sizeof(union i40e_32byte_rx_desc);
1422	rx_ring->size = ALIGN(rx_ring->size, 4096);
1423	rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
1424					   &rx_ring->dma, GFP_KERNEL);
1425
1426	if (!rx_ring->desc) {
1427		dev_info(dev, "Unable to allocate memory for the Rx descriptor ring, size=%d\n",
1428			 rx_ring->size);
1429		return -ENOMEM;
1430	}
1431
1432	rx_ring->next_to_alloc = 0;
1433	rx_ring->next_to_clean = 0;
 
1434	rx_ring->next_to_use = 0;
1435
1436	/* XDP RX-queue info only needed for RX rings exposed to XDP */
1437	if (rx_ring->vsi->type == I40E_VSI_MAIN) {
1438		err = xdp_rxq_info_reg(&rx_ring->xdp_rxq, rx_ring->netdev,
1439				       rx_ring->queue_index);
1440		if (err < 0)
1441			return err;
1442	}
1443
1444	rx_ring->xdp_prog = rx_ring->vsi->xdp_prog;
 
 
 
1445
1446	return 0;
1447}
1448
1449/**
1450 * i40e_release_rx_desc - Store the new tail and head values
1451 * @rx_ring: ring to bump
1452 * @val: new head index
1453 **/
1454void i40e_release_rx_desc(struct i40e_ring *rx_ring, u32 val)
1455{
1456	rx_ring->next_to_use = val;
1457
1458	/* update next to alloc since we have filled the ring */
1459	rx_ring->next_to_alloc = val;
1460
1461	/* Force memory writes to complete before letting h/w
1462	 * know there are new descriptors to fetch.  (Only
1463	 * applicable for weak-ordered memory model archs,
1464	 * such as IA-64).
1465	 */
1466	wmb();
1467	writel(val, rx_ring->tail);
1468}
1469
1470/**
1471 * i40e_rx_offset - Return expected offset into page to access data
1472 * @rx_ring: Ring we are requesting offset of
1473 *
1474 * Returns the offset value for ring into the data buffer.
1475 */
1476static inline unsigned int i40e_rx_offset(struct i40e_ring *rx_ring)
1477{
1478	return ring_uses_build_skb(rx_ring) ? I40E_SKB_PAD : 0;
1479}
1480
1481static unsigned int i40e_rx_frame_truesize(struct i40e_ring *rx_ring,
1482					   unsigned int size)
1483{
1484	unsigned int truesize;
1485
1486#if (PAGE_SIZE < 8192)
1487	truesize = i40e_rx_pg_size(rx_ring) / 2; /* Must be power-of-2 */
1488#else
1489	truesize = i40e_rx_offset(rx_ring) ?
1490		SKB_DATA_ALIGN(size + i40e_rx_offset(rx_ring)) +
1491		SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) :
1492		SKB_DATA_ALIGN(size);
1493#endif
1494	return truesize;
1495}
 
1496
1497/**
1498 * i40e_alloc_mapped_page - recycle or make a new page
1499 * @rx_ring: ring to use
1500 * @bi: rx_buffer struct to modify
1501 *
1502 * Returns true if the page was successfully allocated or
1503 * reused.
1504 **/
1505static bool i40e_alloc_mapped_page(struct i40e_ring *rx_ring,
1506				   struct i40e_rx_buffer *bi)
1507{
1508	struct page *page = bi->page;
1509	dma_addr_t dma;
1510
1511	/* since we are recycling buffers we should seldom need to alloc */
1512	if (likely(page)) {
1513		rx_ring->rx_stats.page_reuse_count++;
1514		return true;
1515	}
1516
1517	/* alloc new page for storage */
1518	page = dev_alloc_pages(i40e_rx_pg_order(rx_ring));
1519	if (unlikely(!page)) {
1520		rx_ring->rx_stats.alloc_page_failed++;
1521		return false;
1522	}
1523
 
 
1524	/* map page for use */
1525	dma = dma_map_page_attrs(rx_ring->dev, page, 0,
1526				 i40e_rx_pg_size(rx_ring),
1527				 DMA_FROM_DEVICE,
1528				 I40E_RX_DMA_ATTR);
1529
1530	/* if mapping failed free memory back to system since
1531	 * there isn't much point in holding memory we can't use
1532	 */
1533	if (dma_mapping_error(rx_ring->dev, dma)) {
1534		__free_pages(page, i40e_rx_pg_order(rx_ring));
1535		rx_ring->rx_stats.alloc_page_failed++;
1536		return false;
1537	}
1538
1539	bi->dma = dma;
1540	bi->page = page;
1541	bi->page_offset = i40e_rx_offset(rx_ring);
1542	page_ref_add(page, USHRT_MAX - 1);
1543	bi->pagecnt_bias = USHRT_MAX;
1544
1545	return true;
1546}
1547
1548/**
1549 * i40e_alloc_rx_buffers - Replace used receive buffers
1550 * @rx_ring: ring to place buffers on
1551 * @cleaned_count: number of buffers to replace
1552 *
1553 * Returns false if all allocations were successful, true if any fail
1554 **/
1555bool i40e_alloc_rx_buffers(struct i40e_ring *rx_ring, u16 cleaned_count)
1556{
1557	u16 ntu = rx_ring->next_to_use;
1558	union i40e_rx_desc *rx_desc;
1559	struct i40e_rx_buffer *bi;
1560
1561	/* do nothing if no valid netdev defined */
1562	if (!rx_ring->netdev || !cleaned_count)
1563		return false;
1564
1565	rx_desc = I40E_RX_DESC(rx_ring, ntu);
1566	bi = i40e_rx_bi(rx_ring, ntu);
1567
1568	do {
1569		if (!i40e_alloc_mapped_page(rx_ring, bi))
1570			goto no_buffers;
1571
1572		/* sync the buffer for use by the device */
1573		dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
1574						 bi->page_offset,
1575						 rx_ring->rx_buf_len,
1576						 DMA_FROM_DEVICE);
1577
1578		/* Refresh the desc even if buffer_addrs didn't change
1579		 * because each write-back erases this info.
1580		 */
1581		rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
1582
1583		rx_desc++;
1584		bi++;
1585		ntu++;
1586		if (unlikely(ntu == rx_ring->count)) {
1587			rx_desc = I40E_RX_DESC(rx_ring, 0);
1588			bi = i40e_rx_bi(rx_ring, 0);
1589			ntu = 0;
1590		}
1591
1592		/* clear the status bits for the next_to_use descriptor */
1593		rx_desc->wb.qword1.status_error_len = 0;
1594
1595		cleaned_count--;
1596	} while (cleaned_count);
1597
1598	if (rx_ring->next_to_use != ntu)
1599		i40e_release_rx_desc(rx_ring, ntu);
1600
1601	return false;
1602
1603no_buffers:
1604	if (rx_ring->next_to_use != ntu)
1605		i40e_release_rx_desc(rx_ring, ntu);
1606
1607	/* make sure to come back via polling to try again after
1608	 * allocation failure
1609	 */
1610	return true;
1611}
1612
1613/**
1614 * i40e_rx_checksum - Indicate in skb if hw indicated a good cksum
1615 * @vsi: the VSI we care about
1616 * @skb: skb currently being received and modified
1617 * @rx_desc: the receive descriptor
1618 **/
1619static inline void i40e_rx_checksum(struct i40e_vsi *vsi,
1620				    struct sk_buff *skb,
1621				    union i40e_rx_desc *rx_desc)
1622{
1623	struct i40e_rx_ptype_decoded decoded;
1624	u32 rx_error, rx_status;
1625	bool ipv4, ipv6;
1626	u8 ptype;
1627	u64 qword;
1628
1629	qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1630	ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >> I40E_RXD_QW1_PTYPE_SHIFT;
1631	rx_error = (qword & I40E_RXD_QW1_ERROR_MASK) >>
1632		   I40E_RXD_QW1_ERROR_SHIFT;
1633	rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >>
1634		    I40E_RXD_QW1_STATUS_SHIFT;
1635	decoded = decode_rx_desc_ptype(ptype);
1636
1637	skb->ip_summed = CHECKSUM_NONE;
1638
1639	skb_checksum_none_assert(skb);
 
1640
1641	/* Rx csum enabled and ip headers found? */
1642	if (!(vsi->netdev->features & NETIF_F_RXCSUM))
1643		return;
1644
 
 
 
1645	/* did the hardware decode the packet and checksum? */
1646	if (!(rx_status & BIT(I40E_RX_DESC_STATUS_L3L4P_SHIFT)))
1647		return;
1648
1649	/* both known and outer_ip must be set for the below code to work */
1650	if (!(decoded.known && decoded.outer_ip))
1651		return;
1652
1653	ipv4 = (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP) &&
1654	       (decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV4);
1655	ipv6 = (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP) &&
1656	       (decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV6);
1657
1658	if (ipv4 &&
1659	    (rx_error & (BIT(I40E_RX_DESC_ERROR_IPE_SHIFT) |
1660			 BIT(I40E_RX_DESC_ERROR_EIPE_SHIFT))))
1661		goto checksum_fail;
1662
1663	/* likely incorrect csum if alternate IP extension headers found */
1664	if (ipv6 &&
1665	    rx_status & BIT(I40E_RX_DESC_STATUS_IPV6EXADD_SHIFT))
1666		/* don't increment checksum err here, non-fatal err */
1667		return;
1668
1669	/* there was some L4 error, count error and punt packet to the stack */
1670	if (rx_error & BIT(I40E_RX_DESC_ERROR_L4E_SHIFT))
1671		goto checksum_fail;
1672
1673	/* handle packets that were not able to be checksummed due
1674	 * to arrival speed, in this case the stack can compute
1675	 * the csum.
1676	 */
1677	if (rx_error & BIT(I40E_RX_DESC_ERROR_PPRS_SHIFT))
1678		return;
1679
1680	/* If there is an outer header present that might contain a checksum
1681	 * we need to bump the checksum level by 1 to reflect the fact that
1682	 * we are indicating we validated the inner checksum.
1683	 */
1684	if (decoded.tunnel_type >= I40E_RX_PTYPE_TUNNEL_IP_GRENAT)
1685		skb->csum_level = 1;
1686
1687	/* Only report checksum unnecessary for TCP, UDP, or SCTP */
1688	switch (decoded.inner_prot) {
1689	case I40E_RX_PTYPE_INNER_PROT_TCP:
1690	case I40E_RX_PTYPE_INNER_PROT_UDP:
1691	case I40E_RX_PTYPE_INNER_PROT_SCTP:
1692		skb->ip_summed = CHECKSUM_UNNECESSARY;
1693		fallthrough;
1694	default:
1695		break;
1696	}
1697
1698	return;
1699
1700checksum_fail:
1701	vsi->back->hw_csum_rx_error++;
1702}
1703
1704/**
1705 * i40e_ptype_to_htype - get a hash type
1706 * @ptype: the ptype value from the descriptor
1707 *
1708 * Returns a hash type to be used by skb_set_hash
1709 **/
1710static inline int i40e_ptype_to_htype(u8 ptype)
1711{
1712	struct i40e_rx_ptype_decoded decoded = decode_rx_desc_ptype(ptype);
1713
1714	if (!decoded.known)
1715		return PKT_HASH_TYPE_NONE;
1716
1717	if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
1718	    decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY4)
1719		return PKT_HASH_TYPE_L4;
1720	else if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
1721		 decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY3)
1722		return PKT_HASH_TYPE_L3;
1723	else
1724		return PKT_HASH_TYPE_L2;
1725}
1726
1727/**
1728 * i40e_rx_hash - set the hash value in the skb
1729 * @ring: descriptor ring
1730 * @rx_desc: specific descriptor
1731 * @skb: skb currently being received and modified
1732 * @rx_ptype: Rx packet type
1733 **/
1734static inline void i40e_rx_hash(struct i40e_ring *ring,
1735				union i40e_rx_desc *rx_desc,
1736				struct sk_buff *skb,
1737				u8 rx_ptype)
1738{
 
1739	u32 hash;
1740	const __le64 rss_mask =
1741		cpu_to_le64((u64)I40E_RX_DESC_FLTSTAT_RSS_HASH <<
1742			    I40E_RX_DESC_STATUS_FLTSTAT_SHIFT);
1743
1744	if (!(ring->netdev->features & NETIF_F_RXHASH))
 
1745		return;
1746
1747	if ((rx_desc->wb.qword1.status_error_len & rss_mask) == rss_mask) {
1748		hash = le32_to_cpu(rx_desc->wb.qword0.hi_dword.rss);
1749		skb_set_hash(skb, hash, i40e_ptype_to_htype(rx_ptype));
1750	}
1751}
1752
1753/**
1754 * i40e_process_skb_fields - Populate skb header fields from Rx descriptor
1755 * @rx_ring: rx descriptor ring packet is being transacted on
1756 * @rx_desc: pointer to the EOP Rx descriptor
1757 * @skb: pointer to current skb being populated
1758 * @rx_ptype: the packet type decoded by hardware
1759 *
1760 * This function checks the ring, descriptor, and packet information in
1761 * order to populate the hash, checksum, VLAN, protocol, and
1762 * other fields within the skb.
1763 **/
1764void i40e_process_skb_fields(struct i40e_ring *rx_ring,
1765			     union i40e_rx_desc *rx_desc, struct sk_buff *skb)
1766{
1767	u64 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1768	u32 rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >>
1769			I40E_RXD_QW1_STATUS_SHIFT;
1770	u32 tsynvalid = rx_status & I40E_RXD_QW1_STATUS_TSYNVALID_MASK;
1771	u32 tsyn = (rx_status & I40E_RXD_QW1_STATUS_TSYNINDX_MASK) >>
1772		   I40E_RXD_QW1_STATUS_TSYNINDX_SHIFT;
1773	u8 rx_ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >>
1774		      I40E_RXD_QW1_PTYPE_SHIFT;
1775
1776	if (unlikely(tsynvalid))
1777		i40e_ptp_rx_hwtstamp(rx_ring->vsi->back, skb, tsyn);
1778
1779	i40e_rx_hash(rx_ring, rx_desc, skb, rx_ptype);
1780
1781	i40e_rx_checksum(rx_ring->vsi, skb, rx_desc);
1782
1783	skb_record_rx_queue(skb, rx_ring->queue_index);
1784
1785	if (qword & BIT(I40E_RX_DESC_STATUS_L2TAG1P_SHIFT)) {
1786		u16 vlan_tag = rx_desc->wb.qword0.lo_dword.l2tag1;
1787
1788		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
1789				       le16_to_cpu(vlan_tag));
1790	}
1791
1792	/* modifies the skb - consumes the enet header */
1793	skb->protocol = eth_type_trans(skb, rx_ring->netdev);
1794}
1795
1796/**
1797 * i40e_cleanup_headers - Correct empty headers
1798 * @rx_ring: rx descriptor ring packet is being transacted on
1799 * @skb: pointer to current skb being fixed
1800 * @rx_desc: pointer to the EOP Rx descriptor
1801 *
1802 * Also address the case where we are pulling data in on pages only
1803 * and as such no data is present in the skb header.
1804 *
1805 * In addition if skb is not at least 60 bytes we need to pad it so that
1806 * it is large enough to qualify as a valid Ethernet frame.
1807 *
1808 * Returns true if an error was encountered and skb was freed.
1809 **/
1810static bool i40e_cleanup_headers(struct i40e_ring *rx_ring, struct sk_buff *skb,
1811				 union i40e_rx_desc *rx_desc)
1812
1813{
1814	/* XDP packets use error pointer so abort at this point */
1815	if (IS_ERR(skb))
1816		return true;
1817
1818	/* ERR_MASK will only have valid bits if EOP set, and
1819	 * what we are doing here is actually checking
1820	 * I40E_RX_DESC_ERROR_RXE_SHIFT, since it is the zeroth bit in
1821	 * the error field
1822	 */
1823	if (unlikely(i40e_test_staterr(rx_desc,
1824				       BIT(I40E_RXD_QW1_ERROR_SHIFT)))) {
1825		dev_kfree_skb_any(skb);
1826		return true;
1827	}
1828
1829	/* if eth_skb_pad returns an error the skb was freed */
1830	if (eth_skb_pad(skb))
1831		return true;
1832
1833	return false;
1834}
1835
1836/**
1837 * i40e_page_is_reusable - check if any reuse is possible
1838 * @page: page struct to check
1839 *
1840 * A page is not reusable if it was allocated under low memory
1841 * conditions, or it's not in the same NUMA node as this CPU.
1842 */
1843static inline bool i40e_page_is_reusable(struct page *page)
1844{
1845	return (page_to_nid(page) == numa_mem_id()) &&
1846		!page_is_pfmemalloc(page);
1847}
1848
1849/**
1850 * i40e_can_reuse_rx_page - Determine if this page can be reused by
1851 * the adapter for another receive
1852 *
1853 * @rx_buffer: buffer containing the page
 
1854 *
1855 * If page is reusable, rx_buffer->page_offset is adjusted to point to
1856 * an unused region in the page.
 
 
1857 *
1858 * For small pages, @truesize will be a constant value, half the size
1859 * of the memory at page.  We'll attempt to alternate between high and
1860 * low halves of the page, with one half ready for use by the hardware
1861 * and the other half being consumed by the stack.  We use the page
1862 * ref count to determine whether the stack has finished consuming the
1863 * portion of this page that was passed up with a previous packet.  If
1864 * the page ref count is >1, we'll assume the "other" half page is
1865 * still busy, and this page cannot be reused.
1866 *
1867 * For larger pages, @truesize will be the actual space used by the
1868 * received packet (adjusted upward to an even multiple of the cache
1869 * line size).  This will advance through the page by the amount
1870 * actually consumed by the received packets while there is still
1871 * space for a buffer.  Each region of larger pages will be used at
1872 * most once, after which the page will not be reused.
1873 *
1874 * In either case, if the page is reusable its refcount is increased.
1875 **/
1876static bool i40e_can_reuse_rx_page(struct i40e_rx_buffer *rx_buffer)
1877{
1878	unsigned int pagecnt_bias = rx_buffer->pagecnt_bias;
1879	struct page *page = rx_buffer->page;
1880
1881	/* Is any reuse possible? */
1882	if (unlikely(!i40e_page_is_reusable(page)))
 
1883		return false;
 
1884
1885#if (PAGE_SIZE < 8192)
1886	/* if we are only owner of page we can reuse it */
1887	if (unlikely((page_count(page) - pagecnt_bias) > 1))
 
1888		return false;
 
1889#else
1890#define I40E_LAST_OFFSET \
1891	(SKB_WITH_OVERHEAD(PAGE_SIZE) - I40E_RXBUFFER_2048)
1892	if (rx_buffer->page_offset > I40E_LAST_OFFSET)
 
1893		return false;
 
1894#endif
1895
1896	/* If we have drained the page fragment pool we need to update
1897	 * the pagecnt_bias and page count so that we fully restock the
1898	 * number of references the driver holds.
1899	 */
1900	if (unlikely(pagecnt_bias == 1)) {
1901		page_ref_add(page, USHRT_MAX - 1);
1902		rx_buffer->pagecnt_bias = USHRT_MAX;
1903	}
1904
1905	return true;
1906}
1907
1908/**
1909 * i40e_add_rx_frag - Add contents of Rx buffer to sk_buff
1910 * @rx_ring: rx descriptor ring to transact packets on
1911 * @rx_buffer: buffer containing page to add
1912 * @skb: sk_buff to place the data into
1913 * @size: packet length from rx_desc
1914 *
1915 * This function will add the data contained in rx_buffer->page to the skb.
1916 * It will just attach the page as a frag to the skb.
1917 *
1918 * The function will then update the page offset.
1919 **/
1920static void i40e_add_rx_frag(struct i40e_ring *rx_ring,
1921			     struct i40e_rx_buffer *rx_buffer,
1922			     struct sk_buff *skb,
1923			     unsigned int size)
1924{
1925#if (PAGE_SIZE < 8192)
1926	unsigned int truesize = i40e_rx_pg_size(rx_ring) / 2;
1927#else
1928	unsigned int truesize = SKB_DATA_ALIGN(size + i40e_rx_offset(rx_ring));
1929#endif
1930
1931	skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page,
1932			rx_buffer->page_offset, size, truesize);
1933
1934	/* page is being used so we must update the page offset */
1935#if (PAGE_SIZE < 8192)
1936	rx_buffer->page_offset ^= truesize;
1937#else
1938	rx_buffer->page_offset += truesize;
1939#endif
1940}
1941
1942/**
1943 * i40e_get_rx_buffer - Fetch Rx buffer and synchronize data for use
1944 * @rx_ring: rx descriptor ring to transact packets on
1945 * @size: size of buffer to add to skb
1946 *
1947 * This function will pull an Rx buffer from the ring and synchronize it
1948 * for use by the CPU.
1949 */
1950static struct i40e_rx_buffer *i40e_get_rx_buffer(struct i40e_ring *rx_ring,
1951						 const unsigned int size)
1952{
1953	struct i40e_rx_buffer *rx_buffer;
1954
1955	rx_buffer = i40e_rx_bi(rx_ring, rx_ring->next_to_clean);
1956	prefetchw(rx_buffer->page);
 
 
 
 
 
 
1957
1958	/* we are reusing so sync this buffer for CPU use */
1959	dma_sync_single_range_for_cpu(rx_ring->dev,
1960				      rx_buffer->dma,
1961				      rx_buffer->page_offset,
1962				      size,
1963				      DMA_FROM_DEVICE);
1964
1965	/* We have pulled a buffer for use, so decrement pagecnt_bias */
1966	rx_buffer->pagecnt_bias--;
1967
1968	return rx_buffer;
1969}
1970
1971/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1972 * i40e_construct_skb - Allocate skb and populate it
1973 * @rx_ring: rx descriptor ring to transact packets on
1974 * @rx_buffer: rx buffer to pull data from
1975 * @xdp: xdp_buff pointing to the data
1976 *
1977 * This function allocates an skb.  It then populates it with the page
1978 * data from the current receive descriptor, taking care to set up the
1979 * skb correctly.
1980 */
1981static struct sk_buff *i40e_construct_skb(struct i40e_ring *rx_ring,
1982					  struct i40e_rx_buffer *rx_buffer,
1983					  struct xdp_buff *xdp)
1984{
1985	unsigned int size = xdp->data_end - xdp->data;
1986#if (PAGE_SIZE < 8192)
1987	unsigned int truesize = i40e_rx_pg_size(rx_ring) / 2;
1988#else
1989	unsigned int truesize = SKB_DATA_ALIGN(size);
1990#endif
1991	unsigned int headlen;
1992	struct sk_buff *skb;
 
1993
1994	/* prefetch first cache line of first page */
1995	prefetch(xdp->data);
1996#if L1_CACHE_BYTES < 128
1997	prefetch(xdp->data + L1_CACHE_BYTES);
1998#endif
1999	/* Note, we get here by enabling legacy-rx via:
2000	 *
2001	 *    ethtool --set-priv-flags <dev> legacy-rx on
2002	 *
2003	 * In this mode, we currently get 0 extra XDP headroom as
2004	 * opposed to having legacy-rx off, where we process XDP
2005	 * packets going to stack via i40e_build_skb(). The latter
2006	 * provides us currently with 192 bytes of headroom.
2007	 *
2008	 * For i40e_construct_skb() mode it means that the
2009	 * xdp->data_meta will always point to xdp->data, since
2010	 * the helper cannot expand the head. Should this ever
2011	 * change in future for legacy-rx mode on, then lets also
2012	 * add xdp->data_meta handling here.
2013	 */
2014
2015	/* allocate a skb to store the frags */
2016	skb = __napi_alloc_skb(&rx_ring->q_vector->napi,
2017			       I40E_RX_HDR_SIZE,
2018			       GFP_ATOMIC | __GFP_NOWARN);
2019	if (unlikely(!skb))
2020		return NULL;
2021
2022	/* Determine available headroom for copy */
2023	headlen = size;
2024	if (headlen > I40E_RX_HDR_SIZE)
2025		headlen = eth_get_headlen(skb->dev, xdp->data,
2026					  I40E_RX_HDR_SIZE);
2027
2028	/* align pull length to size of long to optimize memcpy performance */
2029	memcpy(__skb_put(skb, headlen), xdp->data,
2030	       ALIGN(headlen, sizeof(long)));
2031
 
 
 
 
 
2032	/* update all of the pointers */
2033	size -= headlen;
2034	if (size) {
 
 
 
 
2035		skb_add_rx_frag(skb, 0, rx_buffer->page,
2036				rx_buffer->page_offset + headlen,
2037				size, truesize);
2038
2039		/* buffer is used by skb, update page_offset */
2040#if (PAGE_SIZE < 8192)
2041		rx_buffer->page_offset ^= truesize;
2042#else
2043		rx_buffer->page_offset += truesize;
2044#endif
2045	} else {
2046		/* buffer is unused, reset bias back to rx_buffer */
2047		rx_buffer->pagecnt_bias++;
2048	}
2049
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2050	return skb;
2051}
2052
2053/**
2054 * i40e_build_skb - Build skb around an existing buffer
2055 * @rx_ring: Rx descriptor ring to transact packets on
2056 * @rx_buffer: Rx buffer to pull data from
2057 * @xdp: xdp_buff pointing to the data
2058 *
2059 * This function builds an skb around an existing Rx buffer, taking care
2060 * to set up the skb correctly and avoid any memcpy overhead.
2061 */
2062static struct sk_buff *i40e_build_skb(struct i40e_ring *rx_ring,
2063				      struct i40e_rx_buffer *rx_buffer,
2064				      struct xdp_buff *xdp)
2065{
2066	unsigned int metasize = xdp->data - xdp->data_meta;
2067#if (PAGE_SIZE < 8192)
2068	unsigned int truesize = i40e_rx_pg_size(rx_ring) / 2;
2069#else
2070	unsigned int truesize = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
2071				SKB_DATA_ALIGN(xdp->data_end -
2072					       xdp->data_hard_start);
2073#endif
2074	struct sk_buff *skb;
 
2075
2076	/* Prefetch first cache line of first page. If xdp->data_meta
2077	 * is unused, this points exactly as xdp->data, otherwise we
2078	 * likely have a consumer accessing first few bytes of meta
2079	 * data, and then actual data.
2080	 */
2081	prefetch(xdp->data_meta);
2082#if L1_CACHE_BYTES < 128
2083	prefetch(xdp->data_meta + L1_CACHE_BYTES);
2084#endif
 
 
 
2085	/* build an skb around the page buffer */
2086	skb = build_skb(xdp->data_hard_start, truesize);
2087	if (unlikely(!skb))
2088		return NULL;
2089
2090	/* update pointers within the skb to store the data */
2091	skb_reserve(skb, xdp->data - xdp->data_hard_start);
2092	__skb_put(skb, xdp->data_end - xdp->data);
2093	if (metasize)
2094		skb_metadata_set(skb, metasize);
2095
2096	/* buffer is used by skb, update page_offset */
2097#if (PAGE_SIZE < 8192)
2098	rx_buffer->page_offset ^= truesize;
2099#else
2100	rx_buffer->page_offset += truesize;
2101#endif
2102
2103	return skb;
2104}
2105
2106/**
2107 * i40e_put_rx_buffer - Clean up used buffer and either recycle or free
2108 * @rx_ring: rx descriptor ring to transact packets on
2109 * @rx_buffer: rx buffer to pull data from
2110 *
2111 * This function will clean up the contents of the rx_buffer.  It will
2112 * either recycle the buffer or unmap it and free the associated resources.
2113 */
2114static void i40e_put_rx_buffer(struct i40e_ring *rx_ring,
2115			       struct i40e_rx_buffer *rx_buffer)
2116{
2117	if (i40e_can_reuse_rx_page(rx_buffer)) {
2118		/* hand second half of page back to the ring */
2119		i40e_reuse_rx_page(rx_ring, rx_buffer);
2120	} else {
2121		/* we are not reusing the buffer so unmap it */
2122		dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma,
2123				     i40e_rx_pg_size(rx_ring),
2124				     DMA_FROM_DEVICE, I40E_RX_DMA_ATTR);
2125		__page_frag_cache_drain(rx_buffer->page,
2126					rx_buffer->pagecnt_bias);
2127		/* clear contents of buffer_info */
2128		rx_buffer->page = NULL;
2129	}
 
 
2130}
2131
2132/**
2133 * i40e_is_non_eop - process handling of non-EOP buffers
2134 * @rx_ring: Rx ring being processed
2135 * @rx_desc: Rx descriptor for current buffer
2136 * @skb: Current socket buffer containing buffer in progress
2137 *
2138 * This function updates next to clean.  If the buffer is an EOP buffer
2139 * this function exits returning false, otherwise it will place the
2140 * sk_buff in the next buffer to be chained and return true indicating
2141 * that this is in fact a non-EOP buffer.
2142 **/
2143static bool i40e_is_non_eop(struct i40e_ring *rx_ring,
2144			    union i40e_rx_desc *rx_desc,
2145			    struct sk_buff *skb)
2146{
2147	u32 ntc = rx_ring->next_to_clean + 1;
2148
2149	/* fetch, update, and store next to clean */
2150	ntc = (ntc < rx_ring->count) ? ntc : 0;
2151	rx_ring->next_to_clean = ntc;
2152
2153	prefetch(I40E_RX_DESC(rx_ring, ntc));
2154
2155	/* if we are the last buffer then there is nothing else to do */
2156#define I40E_RXD_EOF BIT(I40E_RX_DESC_STATUS_EOF_SHIFT)
2157	if (likely(i40e_test_staterr(rx_desc, I40E_RXD_EOF)))
2158		return false;
2159
2160	rx_ring->rx_stats.non_eop_descs++;
2161
2162	return true;
2163}
2164
2165static int i40e_xmit_xdp_ring(struct xdp_frame *xdpf,
2166			      struct i40e_ring *xdp_ring);
2167
2168int i40e_xmit_xdp_tx_ring(struct xdp_buff *xdp, struct i40e_ring *xdp_ring)
2169{
2170	struct xdp_frame *xdpf = xdp_convert_buff_to_frame(xdp);
2171
2172	if (unlikely(!xdpf))
2173		return I40E_XDP_CONSUMED;
2174
2175	return i40e_xmit_xdp_ring(xdpf, xdp_ring);
2176}
2177
2178/**
2179 * i40e_run_xdp - run an XDP program
2180 * @rx_ring: Rx ring being processed
2181 * @xdp: XDP buffer containing the frame
 
2182 **/
2183static struct sk_buff *i40e_run_xdp(struct i40e_ring *rx_ring,
2184				    struct xdp_buff *xdp)
2185{
2186	int err, result = I40E_XDP_PASS;
2187	struct i40e_ring *xdp_ring;
2188	struct bpf_prog *xdp_prog;
2189	u32 act;
2190
2191	rcu_read_lock();
2192	xdp_prog = READ_ONCE(rx_ring->xdp_prog);
2193
2194	if (!xdp_prog)
2195		goto xdp_out;
2196
2197	prefetchw(xdp->data_hard_start); /* xdp_frame write */
2198
2199	act = bpf_prog_run_xdp(xdp_prog, xdp);
2200	switch (act) {
2201	case XDP_PASS:
2202		break;
2203	case XDP_TX:
2204		xdp_ring = rx_ring->vsi->xdp_rings[rx_ring->queue_index];
2205		result = i40e_xmit_xdp_tx_ring(xdp, xdp_ring);
 
 
2206		break;
2207	case XDP_REDIRECT:
2208		err = xdp_do_redirect(rx_ring->netdev, xdp, xdp_prog);
2209		result = !err ? I40E_XDP_REDIR : I40E_XDP_CONSUMED;
 
 
2210		break;
2211	default:
2212		bpf_warn_invalid_xdp_action(act);
2213		fallthrough;
2214	case XDP_ABORTED:
 
2215		trace_xdp_exception(rx_ring->netdev, xdp_prog, act);
2216		fallthrough; /* handle aborts by dropping packet */
2217	case XDP_DROP:
2218		result = I40E_XDP_CONSUMED;
2219		break;
2220	}
2221xdp_out:
2222	rcu_read_unlock();
2223	return ERR_PTR(-result);
2224}
2225
2226/**
2227 * i40e_rx_buffer_flip - adjusted rx_buffer to point to an unused region
2228 * @rx_ring: Rx ring
2229 * @rx_buffer: Rx buffer to adjust
2230 * @size: Size of adjustment
2231 **/
2232static void i40e_rx_buffer_flip(struct i40e_ring *rx_ring,
2233				struct i40e_rx_buffer *rx_buffer,
2234				unsigned int size)
2235{
2236	unsigned int truesize = i40e_rx_frame_truesize(rx_ring, size);
2237
2238#if (PAGE_SIZE < 8192)
2239	rx_buffer->page_offset ^= truesize;
2240#else
2241	rx_buffer->page_offset += truesize;
2242#endif
2243}
2244
2245/**
2246 * i40e_xdp_ring_update_tail - Updates the XDP Tx ring tail register
2247 * @xdp_ring: XDP Tx ring
2248 *
2249 * This function updates the XDP Tx ring tail register.
2250 **/
2251void i40e_xdp_ring_update_tail(struct i40e_ring *xdp_ring)
2252{
2253	/* Force memory writes to complete before letting h/w
2254	 * know there are new descriptors to fetch.
2255	 */
2256	wmb();
2257	writel_relaxed(xdp_ring->next_to_use, xdp_ring->tail);
2258}
2259
2260/**
2261 * i40e_update_rx_stats - Update Rx ring statistics
2262 * @rx_ring: rx descriptor ring
2263 * @total_rx_bytes: number of bytes received
2264 * @total_rx_packets: number of packets received
2265 *
2266 * This function updates the Rx ring statistics.
2267 **/
2268void i40e_update_rx_stats(struct i40e_ring *rx_ring,
2269			  unsigned int total_rx_bytes,
2270			  unsigned int total_rx_packets)
2271{
2272	u64_stats_update_begin(&rx_ring->syncp);
2273	rx_ring->stats.packets += total_rx_packets;
2274	rx_ring->stats.bytes += total_rx_bytes;
2275	u64_stats_update_end(&rx_ring->syncp);
2276	rx_ring->q_vector->rx.total_packets += total_rx_packets;
2277	rx_ring->q_vector->rx.total_bytes += total_rx_bytes;
2278}
2279
2280/**
2281 * i40e_finalize_xdp_rx - Bump XDP Tx tail and/or flush redirect map
2282 * @rx_ring: Rx ring
2283 * @xdp_res: Result of the receive batch
2284 *
2285 * This function bumps XDP Tx tail and/or flush redirect map, and
2286 * should be called when a batch of packets has been processed in the
2287 * napi loop.
2288 **/
2289void i40e_finalize_xdp_rx(struct i40e_ring *rx_ring, unsigned int xdp_res)
2290{
2291	if (xdp_res & I40E_XDP_REDIR)
2292		xdp_do_flush_map();
2293
2294	if (xdp_res & I40E_XDP_TX) {
2295		struct i40e_ring *xdp_ring =
2296			rx_ring->vsi->xdp_rings[rx_ring->queue_index];
2297
2298		i40e_xdp_ring_update_tail(xdp_ring);
2299	}
2300}
2301
2302/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2303 * i40e_clean_rx_irq - Clean completed descriptors from Rx ring - bounce buf
2304 * @rx_ring: rx descriptor ring to transact packets on
2305 * @budget: Total limit on number of packets to process
 
2306 *
2307 * This function provides a "bounce buffer" approach to Rx interrupt
2308 * processing.  The advantage to this is that on systems that have
2309 * expensive overhead for IOMMU access this provides a means of avoiding
2310 * it by maintaining the mapping of the page to the system.
2311 *
2312 * Returns amount of work completed
2313 **/
2314static int i40e_clean_rx_irq(struct i40e_ring *rx_ring, int budget)
 
2315{
2316	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
2317	struct sk_buff *skb = rx_ring->skb;
2318	u16 cleaned_count = I40E_DESC_UNUSED(rx_ring);
 
 
 
2319	unsigned int xdp_xmit = 0;
 
2320	bool failure = false;
2321	struct xdp_buff xdp;
2322
2323#if (PAGE_SIZE < 8192)
2324	xdp.frame_sz = i40e_rx_frame_truesize(rx_ring, 0);
2325#endif
2326	xdp.rxq = &rx_ring->xdp_rxq;
2327
2328	while (likely(total_rx_packets < (unsigned int)budget)) {
 
2329		struct i40e_rx_buffer *rx_buffer;
2330		union i40e_rx_desc *rx_desc;
 
2331		unsigned int size;
 
 
2332		u64 qword;
2333
2334		/* return some buffers to hardware, one at a time is too slow */
2335		if (cleaned_count >= I40E_RX_BUFFER_WRITE) {
2336			failure = failure ||
2337				  i40e_alloc_rx_buffers(rx_ring, cleaned_count);
2338			cleaned_count = 0;
2339		}
2340
2341		rx_desc = I40E_RX_DESC(rx_ring, rx_ring->next_to_clean);
2342
2343		/* status_error_len will always be zero for unused descriptors
2344		 * because it's cleared in cleanup, and overlaps with hdr_addr
2345		 * which is always zero because packet split isn't used, if the
2346		 * hardware wrote DD then the length will be non-zero
2347		 */
2348		qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
2349
2350		/* This memory barrier is needed to keep us from reading
2351		 * any other fields out of the rx_desc until we have
2352		 * verified the descriptor has been written back.
2353		 */
2354		dma_rmb();
2355
2356		if (i40e_rx_is_programming_status(qword)) {
2357			i40e_clean_programming_status(rx_ring,
2358						      rx_desc->raw.qword[0],
2359						      qword);
2360			rx_buffer = i40e_rx_bi(rx_ring, rx_ring->next_to_clean);
2361			i40e_inc_ntc(rx_ring);
2362			i40e_reuse_rx_page(rx_ring, rx_buffer);
2363			cleaned_count++;
 
 
 
 
 
 
 
2364			continue;
2365		}
2366
2367		size = (qword & I40E_RXD_QW1_LENGTH_PBUF_MASK) >>
2368		       I40E_RXD_QW1_LENGTH_PBUF_SHIFT;
2369		if (!size)
2370			break;
2371
2372		i40e_trace(clean_rx_irq, rx_ring, rx_desc, skb);
 
2373		rx_buffer = i40e_get_rx_buffer(rx_ring, size);
2374
2375		/* retrieve a buffer from the ring */
2376		if (!skb) {
2377			xdp.data = page_address(rx_buffer->page) +
2378				   rx_buffer->page_offset;
2379			xdp.data_meta = xdp.data;
2380			xdp.data_hard_start = xdp.data -
2381					      i40e_rx_offset(rx_ring);
2382			xdp.data_end = xdp.data + size;
 
2383#if (PAGE_SIZE > 4096)
2384			/* At larger PAGE_SIZE, frame_sz depend on len size */
2385			xdp.frame_sz = i40e_rx_frame_truesize(rx_ring, size);
2386#endif
2387			skb = i40e_run_xdp(rx_ring, &xdp);
 
 
 
 
2388		}
2389
2390		if (IS_ERR(skb)) {
2391			unsigned int xdp_res = -PTR_ERR(skb);
 
 
2392
2393			if (xdp_res & (I40E_XDP_TX | I40E_XDP_REDIR)) {
2394				xdp_xmit |= xdp_res;
2395				i40e_rx_buffer_flip(rx_ring, rx_buffer, size);
 
 
 
 
 
2396			} else {
2397				rx_buffer->pagecnt_bias++;
2398			}
2399			total_rx_bytes += size;
2400			total_rx_packets++;
2401		} else if (skb) {
2402			i40e_add_rx_frag(rx_ring, rx_buffer, skb, size);
2403		} else if (ring_uses_build_skb(rx_ring)) {
2404			skb = i40e_build_skb(rx_ring, rx_buffer, &xdp);
2405		} else {
2406			skb = i40e_construct_skb(rx_ring, rx_buffer, &xdp);
2407		}
 
 
 
 
 
 
 
 
 
2408
2409		/* exit if we failed to retrieve a buffer */
2410		if (!skb) {
2411			rx_ring->rx_stats.alloc_buff_failed++;
2412			rx_buffer->pagecnt_bias++;
2413			break;
2414		}
2415
2416		i40e_put_rx_buffer(rx_ring, rx_buffer);
2417		cleaned_count++;
2418
2419		if (i40e_is_non_eop(rx_ring, rx_desc, skb))
2420			continue;
2421
2422		if (i40e_cleanup_headers(rx_ring, skb, rx_desc)) {
2423			skb = NULL;
2424			continue;
2425		}
2426
2427		/* probably a little skewed due to removing CRC */
2428		total_rx_bytes += skb->len;
2429
2430		/* populate checksum, VLAN, and protocol */
2431		i40e_process_skb_fields(rx_ring, rx_desc, skb);
2432
2433		i40e_trace(clean_rx_irq_rx, rx_ring, rx_desc, skb);
2434		napi_gro_receive(&rx_ring->q_vector->napi, skb);
2435		skb = NULL;
2436
2437		/* update budget accounting */
2438		total_rx_packets++;
 
 
 
 
 
 
2439	}
2440
2441	i40e_finalize_xdp_rx(rx_ring, xdp_xmit);
2442	rx_ring->skb = skb;
2443
2444	i40e_update_rx_stats(rx_ring, total_rx_bytes, total_rx_packets);
2445
 
 
2446	/* guarantee a trip back through this routine if there was a failure */
2447	return failure ? budget : (int)total_rx_packets;
2448}
2449
2450static inline u32 i40e_buildreg_itr(const int type, u16 itr)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2451{
2452	u32 val;
2453
2454	/* We don't bother with setting the CLEARPBA bit as the data sheet
2455	 * points out doing so is "meaningless since it was already
2456	 * auto-cleared". The auto-clearing happens when the interrupt is
2457	 * asserted.
2458	 *
2459	 * Hardware errata 28 for also indicates that writing to a
2460	 * xxINT_DYN_CTLx CSR with INTENA_MSK (bit 31) set to 0 will clear
2461	 * an event in the PBA anyway so we need to rely on the automask
2462	 * to hold pending events for us until the interrupt is re-enabled
2463	 *
2464	 * The itr value is reported in microseconds, and the register
2465	 * value is recorded in 2 microsecond units. For this reason we
2466	 * only need to shift by the interval shift - 1 instead of the
2467	 * full value.
2468	 */
2469	itr &= I40E_ITR_MASK;
2470
 
 
 
 
 
2471	val = I40E_PFINT_DYN_CTLN_INTENA_MASK |
2472	      (type << I40E_PFINT_DYN_CTLN_ITR_INDX_SHIFT) |
2473	      (itr << (I40E_PFINT_DYN_CTLN_INTERVAL_SHIFT - 1));
 
 
 
 
 
 
 
 
 
 
2474
2475	return val;
2476}
2477
2478/* a small macro to shorten up some long lines */
2479#define INTREG I40E_PFINT_DYN_CTLN
2480
2481/* The act of updating the ITR will cause it to immediately trigger. In order
2482 * to prevent this from throwing off adaptive update statistics we defer the
2483 * update so that it can only happen so often. So after either Tx or Rx are
2484 * updated we make the adaptive scheme wait until either the ITR completely
2485 * expires via the next_update expiration or we have been through at least
2486 * 3 interrupts.
2487 */
2488#define ITR_COUNTDOWN_START 3
2489
2490/**
2491 * i40e_update_enable_itr - Update itr and re-enable MSIX interrupt
2492 * @vsi: the VSI we care about
2493 * @q_vector: q_vector for which itr is being updated and interrupt enabled
2494 *
2495 **/
2496static inline void i40e_update_enable_itr(struct i40e_vsi *vsi,
2497					  struct i40e_q_vector *q_vector)
2498{
 
2499	struct i40e_hw *hw = &vsi->back->hw;
2500	u32 intval;
 
2501
2502	/* If we don't have MSIX, then we only need to re-enable icr0 */
2503	if (!(vsi->back->flags & I40E_FLAG_MSIX_ENABLED)) {
2504		i40e_irq_dynamic_enable_icr0(vsi->back);
2505		return;
2506	}
2507
2508	/* These will do nothing if dynamic updates are not enabled */
2509	i40e_update_itr(q_vector, &q_vector->tx);
2510	i40e_update_itr(q_vector, &q_vector->rx);
2511
2512	/* This block of logic allows us to get away with only updating
2513	 * one ITR value with each interrupt. The idea is to perform a
2514	 * pseudo-lazy update with the following criteria.
2515	 *
2516	 * 1. Rx is given higher priority than Tx if both are in same state
2517	 * 2. If we must reduce an ITR that is given highest priority.
2518	 * 3. We then give priority to increasing ITR based on amount.
2519	 */
2520	if (q_vector->rx.target_itr < q_vector->rx.current_itr) {
2521		/* Rx ITR needs to be reduced, this is highest priority */
2522		intval = i40e_buildreg_itr(I40E_RX_ITR,
2523					   q_vector->rx.target_itr);
2524		q_vector->rx.current_itr = q_vector->rx.target_itr;
2525		q_vector->itr_countdown = ITR_COUNTDOWN_START;
2526	} else if ((q_vector->tx.target_itr < q_vector->tx.current_itr) ||
2527		   ((q_vector->rx.target_itr - q_vector->rx.current_itr) <
2528		    (q_vector->tx.target_itr - q_vector->tx.current_itr))) {
2529		/* Tx ITR needs to be reduced, this is second priority
2530		 * Tx ITR needs to be increased more than Rx, fourth priority
2531		 */
2532		intval = i40e_buildreg_itr(I40E_TX_ITR,
2533					   q_vector->tx.target_itr);
2534		q_vector->tx.current_itr = q_vector->tx.target_itr;
2535		q_vector->itr_countdown = ITR_COUNTDOWN_START;
2536	} else if (q_vector->rx.current_itr != q_vector->rx.target_itr) {
2537		/* Rx ITR needs to be increased, third priority */
2538		intval = i40e_buildreg_itr(I40E_RX_ITR,
2539					   q_vector->rx.target_itr);
2540		q_vector->rx.current_itr = q_vector->rx.target_itr;
2541		q_vector->itr_countdown = ITR_COUNTDOWN_START;
2542	} else {
2543		/* No ITR update, lowest priority */
2544		intval = i40e_buildreg_itr(I40E_ITR_NONE, 0);
2545		if (q_vector->itr_countdown)
2546			q_vector->itr_countdown--;
2547	}
2548
2549	if (!test_bit(__I40E_VSI_DOWN, vsi->state))
2550		wr32(hw, INTREG(q_vector->reg_idx), intval);
 
 
 
 
 
 
 
 
 
 
 
 
2551}
2552
2553/**
2554 * i40e_napi_poll - NAPI polling Rx/Tx cleanup routine
2555 * @napi: napi struct with our devices info in it
2556 * @budget: amount of work driver is allowed to do this pass, in packets
2557 *
2558 * This function will clean all queues associated with a q_vector.
2559 *
2560 * Returns the amount of work done
2561 **/
2562int i40e_napi_poll(struct napi_struct *napi, int budget)
2563{
2564	struct i40e_q_vector *q_vector =
2565			       container_of(napi, struct i40e_q_vector, napi);
2566	struct i40e_vsi *vsi = q_vector->vsi;
2567	struct i40e_ring *ring;
 
 
 
 
2568	bool clean_complete = true;
2569	bool arm_wb = false;
2570	int budget_per_ring;
2571	int work_done = 0;
2572
2573	if (test_bit(__I40E_VSI_DOWN, vsi->state)) {
2574		napi_complete(napi);
2575		return 0;
2576	}
2577
2578	/* Since the actual Tx work is minimal, we can give the Tx a larger
2579	 * budget and be more aggressive about cleaning up the Tx descriptors.
2580	 */
2581	i40e_for_each_ring(ring, q_vector->tx) {
2582		bool wd = ring->xsk_umem ?
2583			  i40e_clean_xdp_tx_irq(vsi, ring) :
2584			  i40e_clean_tx_irq(vsi, ring, budget);
2585
2586		if (!wd) {
2587			clean_complete = false;
2588			continue;
2589		}
2590		arm_wb |= ring->arm_wb;
2591		ring->arm_wb = false;
2592	}
2593
2594	/* Handle case where we are called by netpoll with a budget of 0 */
2595	if (budget <= 0)
2596		goto tx_only;
2597
2598	/* normally we have 1 Rx ring per q_vector */
2599	if (unlikely(q_vector->num_ringpairs > 1))
2600		/* We attempt to distribute budget to each Rx queue fairly, but
2601		 * don't allow the budget to go below 1 because that would exit
2602		 * polling early.
2603		 */
2604		budget_per_ring = max_t(int, budget / q_vector->num_ringpairs, 1);
2605	else
2606		/* Max of 1 Rx ring in this q_vector so give it the budget */
2607		budget_per_ring = budget;
2608
2609	i40e_for_each_ring(ring, q_vector->rx) {
2610		int cleaned = ring->xsk_umem ?
2611			      i40e_clean_rx_irq_zc(ring, budget_per_ring) :
2612			      i40e_clean_rx_irq(ring, budget_per_ring);
2613
2614		work_done += cleaned;
2615		/* if we clean as many as budgeted, we must not be done */
2616		if (cleaned >= budget_per_ring)
2617			clean_complete = false;
2618	}
2619
 
 
 
 
2620	/* If work not completed, return budget and polling will return */
2621	if (!clean_complete) {
2622		int cpu_id = smp_processor_id();
2623
2624		/* It is possible that the interrupt affinity has changed but,
2625		 * if the cpu is pegged at 100%, polling will never exit while
2626		 * traffic continues and the interrupt will be stuck on this
2627		 * cpu.  We check to make sure affinity is correct before we
2628		 * continue to poll, otherwise we must stop polling so the
2629		 * interrupt can move to the correct cpu.
2630		 */
2631		if (!cpumask_test_cpu(cpu_id, &q_vector->affinity_mask)) {
2632			/* Tell napi that we are done polling */
2633			napi_complete_done(napi, work_done);
2634
2635			/* Force an interrupt */
2636			i40e_force_wb(vsi, q_vector);
2637
2638			/* Return budget-1 so that polling stops */
2639			return budget - 1;
2640		}
2641tx_only:
2642		if (arm_wb) {
2643			q_vector->tx.ring[0].tx_stats.tx_force_wb++;
2644			i40e_enable_wb_on_itr(vsi, q_vector);
2645		}
2646		return budget;
2647	}
2648
2649	if (vsi->back->flags & I40E_TXR_FLAGS_WB_ON_ITR)
2650		q_vector->arm_wb_state = false;
2651
2652	/* Exit the polling mode, but don't re-enable interrupts if stack might
2653	 * poll us due to busy-polling
2654	 */
2655	if (likely(napi_complete_done(napi, work_done)))
2656		i40e_update_enable_itr(vsi, q_vector);
 
 
2657
2658	return min(work_done, budget - 1);
2659}
2660
2661/**
2662 * i40e_atr - Add a Flow Director ATR filter
2663 * @tx_ring:  ring to add programming descriptor to
2664 * @skb:      send buffer
2665 * @tx_flags: send tx flags
2666 **/
2667static void i40e_atr(struct i40e_ring *tx_ring, struct sk_buff *skb,
2668		     u32 tx_flags)
2669{
2670	struct i40e_filter_program_desc *fdir_desc;
2671	struct i40e_pf *pf = tx_ring->vsi->back;
2672	union {
2673		unsigned char *network;
2674		struct iphdr *ipv4;
2675		struct ipv6hdr *ipv6;
2676	} hdr;
2677	struct tcphdr *th;
2678	unsigned int hlen;
2679	u32 flex_ptype, dtype_cmd;
2680	int l4_proto;
2681	u16 i;
2682
2683	/* make sure ATR is enabled */
2684	if (!(pf->flags & I40E_FLAG_FD_ATR_ENABLED))
2685		return;
2686
2687	if (test_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state))
2688		return;
2689
2690	/* if sampling is disabled do nothing */
2691	if (!tx_ring->atr_sample_rate)
2692		return;
2693
2694	/* Currently only IPv4/IPv6 with TCP is supported */
2695	if (!(tx_flags & (I40E_TX_FLAGS_IPV4 | I40E_TX_FLAGS_IPV6)))
2696		return;
2697
2698	/* snag network header to get L4 type and address */
2699	hdr.network = (tx_flags & I40E_TX_FLAGS_UDP_TUNNEL) ?
2700		      skb_inner_network_header(skb) : skb_network_header(skb);
2701
2702	/* Note: tx_flags gets modified to reflect inner protocols in
2703	 * tx_enable_csum function if encap is enabled.
2704	 */
2705	if (tx_flags & I40E_TX_FLAGS_IPV4) {
2706		/* access ihl as u8 to avoid unaligned access on ia64 */
2707		hlen = (hdr.network[0] & 0x0F) << 2;
2708		l4_proto = hdr.ipv4->protocol;
2709	} else {
2710		/* find the start of the innermost ipv6 header */
2711		unsigned int inner_hlen = hdr.network - skb->data;
2712		unsigned int h_offset = inner_hlen;
2713
2714		/* this function updates h_offset to the end of the header */
2715		l4_proto =
2716		  ipv6_find_hdr(skb, &h_offset, IPPROTO_TCP, NULL, NULL);
2717		/* hlen will contain our best estimate of the tcp header */
2718		hlen = h_offset - inner_hlen;
2719	}
2720
2721	if (l4_proto != IPPROTO_TCP)
2722		return;
2723
2724	th = (struct tcphdr *)(hdr.network + hlen);
2725
2726	/* Due to lack of space, no more new filters can be programmed */
2727	if (th->syn && test_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state))
2728		return;
2729	if (pf->flags & I40E_FLAG_HW_ATR_EVICT_ENABLED) {
2730		/* HW ATR eviction will take care of removing filters on FIN
2731		 * and RST packets.
2732		 */
2733		if (th->fin || th->rst)
2734			return;
2735	}
2736
2737	tx_ring->atr_count++;
2738
2739	/* sample on all syn/fin/rst packets or once every atr sample rate */
2740	if (!th->fin &&
2741	    !th->syn &&
2742	    !th->rst &&
2743	    (tx_ring->atr_count < tx_ring->atr_sample_rate))
2744		return;
2745
2746	tx_ring->atr_count = 0;
2747
2748	/* grab the next descriptor */
2749	i = tx_ring->next_to_use;
2750	fdir_desc = I40E_TX_FDIRDESC(tx_ring, i);
2751
2752	i++;
2753	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
2754
2755	flex_ptype = (tx_ring->queue_index << I40E_TXD_FLTR_QW0_QINDEX_SHIFT) &
2756		      I40E_TXD_FLTR_QW0_QINDEX_MASK;
2757	flex_ptype |= (tx_flags & I40E_TX_FLAGS_IPV4) ?
2758		      (I40E_FILTER_PCTYPE_NONF_IPV4_TCP <<
2759		       I40E_TXD_FLTR_QW0_PCTYPE_SHIFT) :
2760		      (I40E_FILTER_PCTYPE_NONF_IPV6_TCP <<
2761		       I40E_TXD_FLTR_QW0_PCTYPE_SHIFT);
2762
2763	flex_ptype |= tx_ring->vsi->id << I40E_TXD_FLTR_QW0_DEST_VSI_SHIFT;
2764
2765	dtype_cmd = I40E_TX_DESC_DTYPE_FILTER_PROG;
2766
2767	dtype_cmd |= (th->fin || th->rst) ?
2768		     (I40E_FILTER_PROGRAM_DESC_PCMD_REMOVE <<
2769		      I40E_TXD_FLTR_QW1_PCMD_SHIFT) :
2770		     (I40E_FILTER_PROGRAM_DESC_PCMD_ADD_UPDATE <<
2771		      I40E_TXD_FLTR_QW1_PCMD_SHIFT);
2772
2773	dtype_cmd |= I40E_FILTER_PROGRAM_DESC_DEST_DIRECT_PACKET_QINDEX <<
2774		     I40E_TXD_FLTR_QW1_DEST_SHIFT;
2775
2776	dtype_cmd |= I40E_FILTER_PROGRAM_DESC_FD_STATUS_FD_ID <<
2777		     I40E_TXD_FLTR_QW1_FD_STATUS_SHIFT;
2778
2779	dtype_cmd |= I40E_TXD_FLTR_QW1_CNT_ENA_MASK;
2780	if (!(tx_flags & I40E_TX_FLAGS_UDP_TUNNEL))
2781		dtype_cmd |=
2782			((u32)I40E_FD_ATR_STAT_IDX(pf->hw.pf_id) <<
2783			I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT) &
2784			I40E_TXD_FLTR_QW1_CNTINDEX_MASK;
2785	else
2786		dtype_cmd |=
2787			((u32)I40E_FD_ATR_TUNNEL_STAT_IDX(pf->hw.pf_id) <<
2788			I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT) &
2789			I40E_TXD_FLTR_QW1_CNTINDEX_MASK;
2790
2791	if (pf->flags & I40E_FLAG_HW_ATR_EVICT_ENABLED)
2792		dtype_cmd |= I40E_TXD_FLTR_QW1_ATR_MASK;
2793
2794	fdir_desc->qindex_flex_ptype_vsi = cpu_to_le32(flex_ptype);
2795	fdir_desc->rsvd = cpu_to_le32(0);
2796	fdir_desc->dtype_cmd_cntindex = cpu_to_le32(dtype_cmd);
2797	fdir_desc->fd_id = cpu_to_le32(0);
2798}
2799
2800/**
2801 * i40e_tx_prepare_vlan_flags - prepare generic TX VLAN tagging flags for HW
2802 * @skb:     send buffer
2803 * @tx_ring: ring to send buffer on
2804 * @flags:   the tx flags to be set
2805 *
2806 * Checks the skb and set up correspondingly several generic transmit flags
2807 * related to VLAN tagging for the HW, such as VLAN, DCB, etc.
2808 *
2809 * Returns error code indicate the frame should be dropped upon error and the
2810 * otherwise  returns 0 to indicate the flags has been set properly.
2811 **/
2812static inline int i40e_tx_prepare_vlan_flags(struct sk_buff *skb,
2813					     struct i40e_ring *tx_ring,
2814					     u32 *flags)
2815{
2816	__be16 protocol = skb->protocol;
2817	u32  tx_flags = 0;
2818
2819	if (protocol == htons(ETH_P_8021Q) &&
2820	    !(tx_ring->netdev->features & NETIF_F_HW_VLAN_CTAG_TX)) {
2821		/* When HW VLAN acceleration is turned off by the user the
2822		 * stack sets the protocol to 8021q so that the driver
2823		 * can take any steps required to support the SW only
2824		 * VLAN handling.  In our case the driver doesn't need
2825		 * to take any further steps so just set the protocol
2826		 * to the encapsulated ethertype.
2827		 */
2828		skb->protocol = vlan_get_protocol(skb);
2829		goto out;
2830	}
2831
2832	/* if we have a HW VLAN tag being added, default to the HW one */
2833	if (skb_vlan_tag_present(skb)) {
2834		tx_flags |= skb_vlan_tag_get(skb) << I40E_TX_FLAGS_VLAN_SHIFT;
2835		tx_flags |= I40E_TX_FLAGS_HW_VLAN;
2836	/* else if it is a SW VLAN, check the next protocol and store the tag */
2837	} else if (protocol == htons(ETH_P_8021Q)) {
2838		struct vlan_hdr *vhdr, _vhdr;
2839
2840		vhdr = skb_header_pointer(skb, ETH_HLEN, sizeof(_vhdr), &_vhdr);
2841		if (!vhdr)
2842			return -EINVAL;
2843
2844		protocol = vhdr->h_vlan_encapsulated_proto;
2845		tx_flags |= ntohs(vhdr->h_vlan_TCI) << I40E_TX_FLAGS_VLAN_SHIFT;
2846		tx_flags |= I40E_TX_FLAGS_SW_VLAN;
2847	}
2848
2849	if (!(tx_ring->vsi->back->flags & I40E_FLAG_DCB_ENABLED))
2850		goto out;
2851
2852	/* Insert 802.1p priority into VLAN header */
2853	if ((tx_flags & (I40E_TX_FLAGS_HW_VLAN | I40E_TX_FLAGS_SW_VLAN)) ||
2854	    (skb->priority != TC_PRIO_CONTROL)) {
2855		tx_flags &= ~I40E_TX_FLAGS_VLAN_PRIO_MASK;
2856		tx_flags |= (skb->priority & 0x7) <<
2857				I40E_TX_FLAGS_VLAN_PRIO_SHIFT;
2858		if (tx_flags & I40E_TX_FLAGS_SW_VLAN) {
2859			struct vlan_ethhdr *vhdr;
2860			int rc;
2861
2862			rc = skb_cow_head(skb, 0);
2863			if (rc < 0)
2864				return rc;
2865			vhdr = (struct vlan_ethhdr *)skb->data;
2866			vhdr->h_vlan_TCI = htons(tx_flags >>
2867						 I40E_TX_FLAGS_VLAN_SHIFT);
2868		} else {
2869			tx_flags |= I40E_TX_FLAGS_HW_VLAN;
2870		}
2871	}
2872
2873out:
2874	*flags = tx_flags;
2875	return 0;
2876}
2877
2878/**
2879 * i40e_tso - set up the tso context descriptor
2880 * @first:    pointer to first Tx buffer for xmit
2881 * @hdr_len:  ptr to the size of the packet header
2882 * @cd_type_cmd_tso_mss: Quad Word 1
2883 *
2884 * Returns 0 if no TSO can happen, 1 if tso is going, or error
2885 **/
2886static int i40e_tso(struct i40e_tx_buffer *first, u8 *hdr_len,
2887		    u64 *cd_type_cmd_tso_mss)
2888{
2889	struct sk_buff *skb = first->skb;
2890	u64 cd_cmd, cd_tso_len, cd_mss;
 
2891	union {
2892		struct iphdr *v4;
2893		struct ipv6hdr *v6;
2894		unsigned char *hdr;
2895	} ip;
2896	union {
2897		struct tcphdr *tcp;
2898		struct udphdr *udp;
2899		unsigned char *hdr;
2900	} l4;
2901	u32 paylen, l4_offset;
2902	u16 gso_segs, gso_size;
2903	int err;
2904
2905	if (skb->ip_summed != CHECKSUM_PARTIAL)
2906		return 0;
2907
2908	if (!skb_is_gso(skb))
2909		return 0;
2910
2911	err = skb_cow_head(skb, 0);
2912	if (err < 0)
2913		return err;
2914
2915	ip.hdr = skb_network_header(skb);
2916	l4.hdr = skb_transport_header(skb);
 
 
 
 
 
2917
2918	/* initialize outer IP header fields */
2919	if (ip.v4->version == 4) {
2920		ip.v4->tot_len = 0;
2921		ip.v4->check = 0;
 
 
2922	} else {
2923		ip.v6->payload_len = 0;
 
2924	}
2925
2926	if (skb_shinfo(skb)->gso_type & (SKB_GSO_GRE |
2927					 SKB_GSO_GRE_CSUM |
2928					 SKB_GSO_IPXIP4 |
2929					 SKB_GSO_IPXIP6 |
2930					 SKB_GSO_UDP_TUNNEL |
2931					 SKB_GSO_UDP_TUNNEL_CSUM)) {
2932		if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) &&
2933		    (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM)) {
2934			l4.udp->len = 0;
2935
2936			/* determine offset of outer transport header */
2937			l4_offset = l4.hdr - skb->data;
2938
2939			/* remove payload length from outer checksum */
2940			paylen = skb->len - l4_offset;
2941			csum_replace_by_diff(&l4.udp->check,
2942					     (__force __wsum)htonl(paylen));
2943		}
2944
2945		/* reset pointers to inner headers */
2946		ip.hdr = skb_inner_network_header(skb);
2947		l4.hdr = skb_inner_transport_header(skb);
2948
2949		/* initialize inner IP header fields */
2950		if (ip.v4->version == 4) {
2951			ip.v4->tot_len = 0;
2952			ip.v4->check = 0;
2953		} else {
2954			ip.v6->payload_len = 0;
2955		}
2956	}
2957
2958	/* determine offset of inner transport header */
2959	l4_offset = l4.hdr - skb->data;
2960
2961	/* remove payload length from inner checksum */
2962	paylen = skb->len - l4_offset;
2963
2964	if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) {
2965		csum_replace_by_diff(&l4.udp->check, (__force __wsum)htonl(paylen));
2966		/* compute length of segmentation header */
2967		*hdr_len = sizeof(*l4.udp) + l4_offset;
2968	} else {
2969		csum_replace_by_diff(&l4.tcp->check, (__force __wsum)htonl(paylen));
2970		/* compute length of segmentation header */
2971		*hdr_len = (l4.tcp->doff * 4) + l4_offset;
2972	}
2973
2974	/* pull values out of skb_shinfo */
2975	gso_size = skb_shinfo(skb)->gso_size;
2976	gso_segs = skb_shinfo(skb)->gso_segs;
2977
2978	/* update GSO size and bytecount with header size */
2979	first->gso_segs = gso_segs;
2980	first->bytecount += (first->gso_segs - 1) * *hdr_len;
2981
2982	/* find the field values */
2983	cd_cmd = I40E_TX_CTX_DESC_TSO;
2984	cd_tso_len = skb->len - *hdr_len;
2985	cd_mss = gso_size;
2986	*cd_type_cmd_tso_mss |= (cd_cmd << I40E_TXD_CTX_QW1_CMD_SHIFT) |
2987				(cd_tso_len << I40E_TXD_CTX_QW1_TSO_LEN_SHIFT) |
2988				(cd_mss << I40E_TXD_CTX_QW1_MSS_SHIFT);
2989	return 1;
2990}
2991
2992/**
2993 * i40e_tsyn - set up the tsyn context descriptor
2994 * @tx_ring:  ptr to the ring to send
2995 * @skb:      ptr to the skb we're sending
2996 * @tx_flags: the collected send information
2997 * @cd_type_cmd_tso_mss: Quad Word 1
2998 *
2999 * Returns 0 if no Tx timestamp can happen and 1 if the timestamp will happen
3000 **/
3001static int i40e_tsyn(struct i40e_ring *tx_ring, struct sk_buff *skb,
3002		     u32 tx_flags, u64 *cd_type_cmd_tso_mss)
3003{
3004	struct i40e_pf *pf;
3005
3006	if (likely(!(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)))
3007		return 0;
3008
3009	/* Tx timestamps cannot be sampled when doing TSO */
3010	if (tx_flags & I40E_TX_FLAGS_TSO)
3011		return 0;
3012
3013	/* only timestamp the outbound packet if the user has requested it and
3014	 * we are not already transmitting a packet to be timestamped
3015	 */
3016	pf = i40e_netdev_to_pf(tx_ring->netdev);
3017	if (!(pf->flags & I40E_FLAG_PTP))
3018		return 0;
3019
3020	if (pf->ptp_tx &&
3021	    !test_and_set_bit_lock(__I40E_PTP_TX_IN_PROGRESS, pf->state)) {
3022		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
3023		pf->ptp_tx_start = jiffies;
3024		pf->ptp_tx_skb = skb_get(skb);
3025	} else {
3026		pf->tx_hwtstamp_skipped++;
3027		return 0;
3028	}
3029
3030	*cd_type_cmd_tso_mss |= (u64)I40E_TX_CTX_DESC_TSYN <<
3031				I40E_TXD_CTX_QW1_CMD_SHIFT;
3032
3033	return 1;
3034}
3035
3036/**
3037 * i40e_tx_enable_csum - Enable Tx checksum offloads
3038 * @skb: send buffer
3039 * @tx_flags: pointer to Tx flags currently set
3040 * @td_cmd: Tx descriptor command bits to set
3041 * @td_offset: Tx descriptor header offsets to set
3042 * @tx_ring: Tx descriptor ring
3043 * @cd_tunneling: ptr to context desc bits
3044 **/
3045static int i40e_tx_enable_csum(struct sk_buff *skb, u32 *tx_flags,
3046			       u32 *td_cmd, u32 *td_offset,
3047			       struct i40e_ring *tx_ring,
3048			       u32 *cd_tunneling)
3049{
3050	union {
3051		struct iphdr *v4;
3052		struct ipv6hdr *v6;
3053		unsigned char *hdr;
3054	} ip;
3055	union {
3056		struct tcphdr *tcp;
3057		struct udphdr *udp;
3058		unsigned char *hdr;
3059	} l4;
3060	unsigned char *exthdr;
3061	u32 offset, cmd = 0;
3062	__be16 frag_off;
 
3063	u8 l4_proto = 0;
3064
3065	if (skb->ip_summed != CHECKSUM_PARTIAL)
3066		return 0;
3067
3068	ip.hdr = skb_network_header(skb);
3069	l4.hdr = skb_transport_header(skb);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3070
3071	/* compute outer L2 header size */
3072	offset = ((ip.hdr - skb->data) / 2) << I40E_TX_DESC_LENGTH_MACLEN_SHIFT;
3073
3074	if (skb->encapsulation) {
3075		u32 tunnel = 0;
3076		/* define outer network header type */
3077		if (*tx_flags & I40E_TX_FLAGS_IPV4) {
3078			tunnel |= (*tx_flags & I40E_TX_FLAGS_TSO) ?
3079				  I40E_TX_CTX_EXT_IP_IPV4 :
3080				  I40E_TX_CTX_EXT_IP_IPV4_NO_CSUM;
3081
3082			l4_proto = ip.v4->protocol;
3083		} else if (*tx_flags & I40E_TX_FLAGS_IPV6) {
 
 
3084			tunnel |= I40E_TX_CTX_EXT_IP_IPV6;
3085
3086			exthdr = ip.hdr + sizeof(*ip.v6);
3087			l4_proto = ip.v6->nexthdr;
3088			if (l4.hdr != exthdr)
3089				ipv6_skip_exthdr(skb, exthdr - skb->data,
3090						 &l4_proto, &frag_off);
 
3091		}
3092
3093		/* define outer transport */
3094		switch (l4_proto) {
3095		case IPPROTO_UDP:
3096			tunnel |= I40E_TXD_CTX_UDP_TUNNELING;
3097			*tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL;
3098			break;
3099		case IPPROTO_GRE:
3100			tunnel |= I40E_TXD_CTX_GRE_TUNNELING;
3101			*tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL;
3102			break;
3103		case IPPROTO_IPIP:
3104		case IPPROTO_IPV6:
3105			*tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL;
3106			l4.hdr = skb_inner_network_header(skb);
3107			break;
3108		default:
3109			if (*tx_flags & I40E_TX_FLAGS_TSO)
3110				return -1;
3111
3112			skb_checksum_help(skb);
3113			return 0;
3114		}
3115
3116		/* compute outer L3 header size */
3117		tunnel |= ((l4.hdr - ip.hdr) / 4) <<
3118			  I40E_TXD_CTX_QW0_EXT_IPLEN_SHIFT;
3119
3120		/* switch IP header pointer from outer to inner header */
3121		ip.hdr = skb_inner_network_header(skb);
3122
3123		/* compute tunnel header size */
3124		tunnel |= ((ip.hdr - l4.hdr) / 2) <<
3125			  I40E_TXD_CTX_QW0_NATLEN_SHIFT;
3126
3127		/* indicate if we need to offload outer UDP header */
3128		if ((*tx_flags & I40E_TX_FLAGS_TSO) &&
3129		    !(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) &&
3130		    (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM))
3131			tunnel |= I40E_TXD_CTX_QW0_L4T_CS_MASK;
3132
3133		/* record tunnel offload values */
3134		*cd_tunneling |= tunnel;
3135
3136		/* switch L4 header pointer from outer to inner */
3137		l4.hdr = skb_inner_transport_header(skb);
3138		l4_proto = 0;
3139
3140		/* reset type as we transition from outer to inner headers */
3141		*tx_flags &= ~(I40E_TX_FLAGS_IPV4 | I40E_TX_FLAGS_IPV6);
3142		if (ip.v4->version == 4)
3143			*tx_flags |= I40E_TX_FLAGS_IPV4;
3144		if (ip.v6->version == 6)
3145			*tx_flags |= I40E_TX_FLAGS_IPV6;
3146	}
3147
3148	/* Enable IP checksum offloads */
3149	if (*tx_flags & I40E_TX_FLAGS_IPV4) {
3150		l4_proto = ip.v4->protocol;
3151		/* the stack computes the IP header already, the only time we
3152		 * need the hardware to recompute it is in the case of TSO.
3153		 */
3154		cmd |= (*tx_flags & I40E_TX_FLAGS_TSO) ?
3155		       I40E_TX_DESC_CMD_IIPT_IPV4_CSUM :
3156		       I40E_TX_DESC_CMD_IIPT_IPV4;
3157	} else if (*tx_flags & I40E_TX_FLAGS_IPV6) {
3158		cmd |= I40E_TX_DESC_CMD_IIPT_IPV6;
3159
3160		exthdr = ip.hdr + sizeof(*ip.v6);
3161		l4_proto = ip.v6->nexthdr;
3162		if (l4.hdr != exthdr)
3163			ipv6_skip_exthdr(skb, exthdr - skb->data,
3164					 &l4_proto, &frag_off);
3165	}
3166
3167	/* compute inner L3 header size */
3168	offset |= ((l4.hdr - ip.hdr) / 4) << I40E_TX_DESC_LENGTH_IPLEN_SHIFT;
3169
3170	/* Enable L4 checksum offloads */
3171	switch (l4_proto) {
3172	case IPPROTO_TCP:
3173		/* enable checksum offloads */
3174		cmd |= I40E_TX_DESC_CMD_L4T_EOFT_TCP;
3175		offset |= l4.tcp->doff << I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
3176		break;
3177	case IPPROTO_SCTP:
3178		/* enable SCTP checksum offload */
3179		cmd |= I40E_TX_DESC_CMD_L4T_EOFT_SCTP;
3180		offset |= (sizeof(struct sctphdr) >> 2) <<
3181			  I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
3182		break;
3183	case IPPROTO_UDP:
3184		/* enable UDP checksum offload */
3185		cmd |= I40E_TX_DESC_CMD_L4T_EOFT_UDP;
3186		offset |= (sizeof(struct udphdr) >> 2) <<
3187			  I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
3188		break;
3189	default:
3190		if (*tx_flags & I40E_TX_FLAGS_TSO)
3191			return -1;
3192		skb_checksum_help(skb);
3193		return 0;
3194	}
3195
3196	*td_cmd |= cmd;
3197	*td_offset |= offset;
3198
3199	return 1;
3200}
3201
3202/**
3203 * i40e_create_tx_ctx Build the Tx context descriptor
3204 * @tx_ring:  ring to create the descriptor on
3205 * @cd_type_cmd_tso_mss: Quad Word 1
3206 * @cd_tunneling: Quad Word 0 - bits 0-31
3207 * @cd_l2tag2: Quad Word 0 - bits 32-63
3208 **/
3209static void i40e_create_tx_ctx(struct i40e_ring *tx_ring,
3210			       const u64 cd_type_cmd_tso_mss,
3211			       const u32 cd_tunneling, const u32 cd_l2tag2)
3212{
3213	struct i40e_tx_context_desc *context_desc;
3214	int i = tx_ring->next_to_use;
3215
3216	if ((cd_type_cmd_tso_mss == I40E_TX_DESC_DTYPE_CONTEXT) &&
3217	    !cd_tunneling && !cd_l2tag2)
3218		return;
3219
3220	/* grab the next descriptor */
3221	context_desc = I40E_TX_CTXTDESC(tx_ring, i);
3222
3223	i++;
3224	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
3225
3226	/* cpu_to_le32 and assign to struct fields */
3227	context_desc->tunneling_params = cpu_to_le32(cd_tunneling);
3228	context_desc->l2tag2 = cpu_to_le16(cd_l2tag2);
3229	context_desc->rsvd = cpu_to_le16(0);
3230	context_desc->type_cmd_tso_mss = cpu_to_le64(cd_type_cmd_tso_mss);
3231}
3232
3233/**
3234 * __i40e_maybe_stop_tx - 2nd level check for tx stop conditions
3235 * @tx_ring: the ring to be checked
3236 * @size:    the size buffer we want to assure is available
3237 *
3238 * Returns -EBUSY if a stop is needed, else 0
3239 **/
3240int __i40e_maybe_stop_tx(struct i40e_ring *tx_ring, int size)
3241{
3242	netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
3243	/* Memory barrier before checking head and tail */
3244	smp_mb();
3245
 
 
3246	/* Check again in a case another CPU has just made room available. */
3247	if (likely(I40E_DESC_UNUSED(tx_ring) < size))
3248		return -EBUSY;
3249
3250	/* A reprieve! - use start_queue because it doesn't call schedule */
3251	netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index);
3252	++tx_ring->tx_stats.restart_queue;
3253	return 0;
3254}
3255
3256/**
3257 * __i40e_chk_linearize - Check if there are more than 8 buffers per packet
3258 * @skb:      send buffer
3259 *
3260 * Note: Our HW can't DMA more than 8 buffers to build a packet on the wire
3261 * and so we need to figure out the cases where we need to linearize the skb.
3262 *
3263 * For TSO we need to count the TSO header and segment payload separately.
3264 * As such we need to check cases where we have 7 fragments or more as we
3265 * can potentially require 9 DMA transactions, 1 for the TSO header, 1 for
3266 * the segment payload in the first descriptor, and another 7 for the
3267 * fragments.
3268 **/
3269bool __i40e_chk_linearize(struct sk_buff *skb)
3270{
3271	const skb_frag_t *frag, *stale;
3272	int nr_frags, sum;
3273
3274	/* no need to check if number of frags is less than 7 */
3275	nr_frags = skb_shinfo(skb)->nr_frags;
3276	if (nr_frags < (I40E_MAX_BUFFER_TXD - 1))
3277		return false;
3278
3279	/* We need to walk through the list and validate that each group
3280	 * of 6 fragments totals at least gso_size.
3281	 */
3282	nr_frags -= I40E_MAX_BUFFER_TXD - 2;
3283	frag = &skb_shinfo(skb)->frags[0];
3284
3285	/* Initialize size to the negative value of gso_size minus 1.  We
3286	 * use this as the worst case scenerio in which the frag ahead
3287	 * of us only provides one byte which is why we are limited to 6
3288	 * descriptors for a single transmit as the header and previous
3289	 * fragment are already consuming 2 descriptors.
3290	 */
3291	sum = 1 - skb_shinfo(skb)->gso_size;
3292
3293	/* Add size of frags 0 through 4 to create our initial sum */
3294	sum += skb_frag_size(frag++);
3295	sum += skb_frag_size(frag++);
3296	sum += skb_frag_size(frag++);
3297	sum += skb_frag_size(frag++);
3298	sum += skb_frag_size(frag++);
3299
3300	/* Walk through fragments adding latest fragment, testing it, and
3301	 * then removing stale fragments from the sum.
3302	 */
3303	for (stale = &skb_shinfo(skb)->frags[0];; stale++) {
3304		int stale_size = skb_frag_size(stale);
3305
3306		sum += skb_frag_size(frag++);
3307
3308		/* The stale fragment may present us with a smaller
3309		 * descriptor than the actual fragment size. To account
3310		 * for that we need to remove all the data on the front and
3311		 * figure out what the remainder would be in the last
3312		 * descriptor associated with the fragment.
3313		 */
3314		if (stale_size > I40E_MAX_DATA_PER_TXD) {
3315			int align_pad = -(skb_frag_off(stale)) &
3316					(I40E_MAX_READ_REQ_SIZE - 1);
3317
3318			sum -= align_pad;
3319			stale_size -= align_pad;
3320
3321			do {
3322				sum -= I40E_MAX_DATA_PER_TXD_ALIGNED;
3323				stale_size -= I40E_MAX_DATA_PER_TXD_ALIGNED;
3324			} while (stale_size > I40E_MAX_DATA_PER_TXD);
3325		}
3326
3327		/* if sum is negative we failed to make sufficient progress */
3328		if (sum < 0)
3329			return true;
3330
3331		if (!nr_frags--)
3332			break;
3333
3334		sum -= stale_size;
3335	}
3336
3337	return false;
3338}
3339
3340/**
3341 * i40e_tx_map - Build the Tx descriptor
3342 * @tx_ring:  ring to send buffer on
3343 * @skb:      send buffer
3344 * @first:    first buffer info buffer to use
3345 * @tx_flags: collected send information
3346 * @hdr_len:  size of the packet header
3347 * @td_cmd:   the command field in the descriptor
3348 * @td_offset: offset for checksum or crc
3349 *
3350 * Returns 0 on success, -1 on failure to DMA
3351 **/
3352static inline int i40e_tx_map(struct i40e_ring *tx_ring, struct sk_buff *skb,
3353			      struct i40e_tx_buffer *first, u32 tx_flags,
3354			      const u8 hdr_len, u32 td_cmd, u32 td_offset)
3355{
3356	unsigned int data_len = skb->data_len;
3357	unsigned int size = skb_headlen(skb);
3358	skb_frag_t *frag;
3359	struct i40e_tx_buffer *tx_bi;
3360	struct i40e_tx_desc *tx_desc;
3361	u16 i = tx_ring->next_to_use;
3362	u32 td_tag = 0;
3363	dma_addr_t dma;
3364	u16 desc_count = 1;
3365
3366	if (tx_flags & I40E_TX_FLAGS_HW_VLAN) {
3367		td_cmd |= I40E_TX_DESC_CMD_IL2TAG1;
3368		td_tag = (tx_flags & I40E_TX_FLAGS_VLAN_MASK) >>
3369			 I40E_TX_FLAGS_VLAN_SHIFT;
3370	}
3371
3372	first->tx_flags = tx_flags;
3373
3374	dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
3375
3376	tx_desc = I40E_TX_DESC(tx_ring, i);
3377	tx_bi = first;
3378
3379	for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
3380		unsigned int max_data = I40E_MAX_DATA_PER_TXD_ALIGNED;
3381
3382		if (dma_mapping_error(tx_ring->dev, dma))
3383			goto dma_error;
3384
3385		/* record length, and DMA address */
3386		dma_unmap_len_set(tx_bi, len, size);
3387		dma_unmap_addr_set(tx_bi, dma, dma);
3388
3389		/* align size to end of page */
3390		max_data += -dma & (I40E_MAX_READ_REQ_SIZE - 1);
3391		tx_desc->buffer_addr = cpu_to_le64(dma);
3392
3393		while (unlikely(size > I40E_MAX_DATA_PER_TXD)) {
3394			tx_desc->cmd_type_offset_bsz =
3395				build_ctob(td_cmd, td_offset,
3396					   max_data, td_tag);
3397
3398			tx_desc++;
3399			i++;
3400			desc_count++;
3401
3402			if (i == tx_ring->count) {
3403				tx_desc = I40E_TX_DESC(tx_ring, 0);
3404				i = 0;
3405			}
3406
3407			dma += max_data;
3408			size -= max_data;
3409
3410			max_data = I40E_MAX_DATA_PER_TXD_ALIGNED;
3411			tx_desc->buffer_addr = cpu_to_le64(dma);
3412		}
3413
3414		if (likely(!data_len))
3415			break;
3416
3417		tx_desc->cmd_type_offset_bsz = build_ctob(td_cmd, td_offset,
3418							  size, td_tag);
3419
3420		tx_desc++;
3421		i++;
3422		desc_count++;
3423
3424		if (i == tx_ring->count) {
3425			tx_desc = I40E_TX_DESC(tx_ring, 0);
3426			i = 0;
3427		}
3428
3429		size = skb_frag_size(frag);
3430		data_len -= size;
3431
3432		dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
3433				       DMA_TO_DEVICE);
3434
3435		tx_bi = &tx_ring->tx_bi[i];
3436	}
3437
3438	netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
3439
3440	i++;
3441	if (i == tx_ring->count)
3442		i = 0;
3443
3444	tx_ring->next_to_use = i;
3445
3446	i40e_maybe_stop_tx(tx_ring, DESC_NEEDED);
3447
3448	/* write last descriptor with EOP bit */
3449	td_cmd |= I40E_TX_DESC_CMD_EOP;
3450
3451	/* We OR these values together to check both against 4 (WB_STRIDE)
3452	 * below. This is safe since we don't re-use desc_count afterwards.
3453	 */
3454	desc_count |= ++tx_ring->packet_stride;
3455
3456	if (desc_count >= WB_STRIDE) {
3457		/* write last descriptor with RS bit set */
3458		td_cmd |= I40E_TX_DESC_CMD_RS;
3459		tx_ring->packet_stride = 0;
3460	}
3461
3462	tx_desc->cmd_type_offset_bsz =
3463			build_ctob(td_cmd, td_offset, size, td_tag);
3464
3465	skb_tx_timestamp(skb);
3466
3467	/* Force memory writes to complete before letting h/w know there
3468	 * are new descriptors to fetch.
3469	 *
3470	 * We also use this memory barrier to make certain all of the
3471	 * status bits have been updated before next_to_watch is written.
3472	 */
3473	wmb();
3474
3475	/* set next_to_watch value indicating a packet is present */
3476	first->next_to_watch = tx_desc;
3477
3478	/* notify HW of packet */
3479	if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more()) {
3480		writel(i, tx_ring->tail);
3481	}
3482
3483	return 0;
3484
3485dma_error:
3486	dev_info(tx_ring->dev, "TX DMA map failed\n");
3487
3488	/* clear dma mappings for failed tx_bi map */
3489	for (;;) {
3490		tx_bi = &tx_ring->tx_bi[i];
3491		i40e_unmap_and_free_tx_resource(tx_ring, tx_bi);
3492		if (tx_bi == first)
3493			break;
3494		if (i == 0)
3495			i = tx_ring->count;
3496		i--;
3497	}
3498
3499	tx_ring->next_to_use = i;
3500
3501	return -1;
3502}
3503
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3504/**
3505 * i40e_xmit_xdp_ring - transmits an XDP buffer to an XDP Tx ring
3506 * @xdp: data to transmit
3507 * @xdp_ring: XDP Tx ring
3508 **/
3509static int i40e_xmit_xdp_ring(struct xdp_frame *xdpf,
3510			      struct i40e_ring *xdp_ring)
3511{
3512	u16 i = xdp_ring->next_to_use;
3513	struct i40e_tx_buffer *tx_bi;
3514	struct i40e_tx_desc *tx_desc;
 
 
 
3515	void *data = xdpf->data;
3516	u32 size = xdpf->len;
3517	dma_addr_t dma;
3518
3519	if (!unlikely(I40E_DESC_UNUSED(xdp_ring))) {
3520		xdp_ring->tx_stats.tx_busy++;
3521		return I40E_XDP_CONSUMED;
3522	}
3523	dma = dma_map_single(xdp_ring->dev, data, size, DMA_TO_DEVICE);
3524	if (dma_mapping_error(xdp_ring->dev, dma))
3525		return I40E_XDP_CONSUMED;
3526
3527	tx_bi = &xdp_ring->tx_bi[i];
3528	tx_bi->bytecount = size;
3529	tx_bi->gso_segs = 1;
3530	tx_bi->xdpf = xdpf;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3531
3532	/* record length, and DMA address */
3533	dma_unmap_len_set(tx_bi, len, size);
3534	dma_unmap_addr_set(tx_bi, dma, dma);
 
3535
3536	tx_desc = I40E_TX_DESC(xdp_ring, i);
3537	tx_desc->buffer_addr = cpu_to_le64(dma);
3538	tx_desc->cmd_type_offset_bsz = build_ctob(I40E_TX_DESC_CMD_ICRC
3539						  | I40E_TXD_CMD,
3540						  0, size, 0);
3541
3542	/* Make certain all of the status bits have been updated
3543	 * before next_to_watch is written.
3544	 */
3545	smp_wmb();
3546
3547	xdp_ring->xdp_tx_active++;
3548	i++;
3549	if (i == xdp_ring->count)
3550		i = 0;
3551
3552	tx_bi->next_to_watch = tx_desc;
3553	xdp_ring->next_to_use = i;
3554
3555	return I40E_XDP_TX;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3556}
3557
3558/**
3559 * i40e_xmit_frame_ring - Sends buffer on Tx ring
3560 * @skb:     send buffer
3561 * @tx_ring: ring to send buffer on
3562 *
3563 * Returns NETDEV_TX_OK if sent, else an error code
3564 **/
3565static netdev_tx_t i40e_xmit_frame_ring(struct sk_buff *skb,
3566					struct i40e_ring *tx_ring)
3567{
3568	u64 cd_type_cmd_tso_mss = I40E_TX_DESC_DTYPE_CONTEXT;
3569	u32 cd_tunneling = 0, cd_l2tag2 = 0;
3570	struct i40e_tx_buffer *first;
3571	u32 td_offset = 0;
3572	u32 tx_flags = 0;
3573	__be16 protocol;
3574	u32 td_cmd = 0;
3575	u8 hdr_len = 0;
3576	int tso, count;
3577	int tsyn;
3578
3579	/* prefetch the data, we'll need it later */
3580	prefetch(skb->data);
3581
3582	i40e_trace(xmit_frame_ring, skb, tx_ring);
3583
3584	count = i40e_xmit_descriptor_count(skb);
3585	if (i40e_chk_linearize(skb, count)) {
3586		if (__skb_linearize(skb)) {
3587			dev_kfree_skb_any(skb);
3588			return NETDEV_TX_OK;
3589		}
3590		count = i40e_txd_use_count(skb->len);
3591		tx_ring->tx_stats.tx_linearize++;
3592	}
3593
3594	/* need: 1 descriptor per page * PAGE_SIZE/I40E_MAX_DATA_PER_TXD,
3595	 *       + 1 desc for skb_head_len/I40E_MAX_DATA_PER_TXD,
3596	 *       + 4 desc gap to avoid the cache line where head is,
3597	 *       + 1 desc for context descriptor,
3598	 * otherwise try next time
3599	 */
3600	if (i40e_maybe_stop_tx(tx_ring, count + 4 + 1)) {
3601		tx_ring->tx_stats.tx_busy++;
3602		return NETDEV_TX_BUSY;
3603	}
3604
3605	/* record the location of the first descriptor for this packet */
3606	first = &tx_ring->tx_bi[tx_ring->next_to_use];
3607	first->skb = skb;
3608	first->bytecount = skb->len;
3609	first->gso_segs = 1;
3610
3611	/* prepare the xmit flags */
3612	if (i40e_tx_prepare_vlan_flags(skb, tx_ring, &tx_flags))
3613		goto out_drop;
3614
3615	/* obtain protocol of skb */
3616	protocol = vlan_get_protocol(skb);
3617
3618	/* setup IPv4/IPv6 offloads */
3619	if (protocol == htons(ETH_P_IP))
3620		tx_flags |= I40E_TX_FLAGS_IPV4;
3621	else if (protocol == htons(ETH_P_IPV6))
3622		tx_flags |= I40E_TX_FLAGS_IPV6;
3623
3624	tso = i40e_tso(first, &hdr_len, &cd_type_cmd_tso_mss);
3625
3626	if (tso < 0)
3627		goto out_drop;
3628	else if (tso)
3629		tx_flags |= I40E_TX_FLAGS_TSO;
3630
3631	/* Always offload the checksum, since it's in the data descriptor */
3632	tso = i40e_tx_enable_csum(skb, &tx_flags, &td_cmd, &td_offset,
3633				  tx_ring, &cd_tunneling);
3634	if (tso < 0)
3635		goto out_drop;
3636
3637	tsyn = i40e_tsyn(tx_ring, skb, tx_flags, &cd_type_cmd_tso_mss);
3638
3639	if (tsyn)
3640		tx_flags |= I40E_TX_FLAGS_TSYN;
3641
3642	/* always enable CRC insertion offload */
3643	td_cmd |= I40E_TX_DESC_CMD_ICRC;
3644
3645	i40e_create_tx_ctx(tx_ring, cd_type_cmd_tso_mss,
3646			   cd_tunneling, cd_l2tag2);
3647
3648	/* Add Flow Director ATR if it's enabled.
3649	 *
3650	 * NOTE: this must always be directly before the data descriptor.
3651	 */
3652	i40e_atr(tx_ring, skb, tx_flags);
3653
3654	if (i40e_tx_map(tx_ring, skb, first, tx_flags, hdr_len,
3655			td_cmd, td_offset))
3656		goto cleanup_tx_tstamp;
3657
3658	return NETDEV_TX_OK;
3659
3660out_drop:
3661	i40e_trace(xmit_frame_ring_drop, first->skb, tx_ring);
3662	dev_kfree_skb_any(first->skb);
3663	first->skb = NULL;
3664cleanup_tx_tstamp:
3665	if (unlikely(tx_flags & I40E_TX_FLAGS_TSYN)) {
3666		struct i40e_pf *pf = i40e_netdev_to_pf(tx_ring->netdev);
3667
3668		dev_kfree_skb_any(pf->ptp_tx_skb);
3669		pf->ptp_tx_skb = NULL;
3670		clear_bit_unlock(__I40E_PTP_TX_IN_PROGRESS, pf->state);
3671	}
3672
3673	return NETDEV_TX_OK;
3674}
3675
3676/**
3677 * i40e_lan_xmit_frame - Selects the correct VSI and Tx queue to send buffer
3678 * @skb:    send buffer
3679 * @netdev: network interface device structure
3680 *
3681 * Returns NETDEV_TX_OK if sent, else an error code
3682 **/
3683netdev_tx_t i40e_lan_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
3684{
3685	struct i40e_netdev_priv *np = netdev_priv(netdev);
3686	struct i40e_vsi *vsi = np->vsi;
3687	struct i40e_ring *tx_ring = vsi->tx_rings[skb->queue_mapping];
3688
3689	/* hardware can't handle really short frames, hardware padding works
3690	 * beyond this point
3691	 */
3692	if (skb_put_padto(skb, I40E_MIN_TX_LEN))
3693		return NETDEV_TX_OK;
3694
3695	return i40e_xmit_frame_ring(skb, tx_ring);
3696}
3697
3698/**
3699 * i40e_xdp_xmit - Implements ndo_xdp_xmit
3700 * @dev: netdev
3701 * @xdp: XDP buffer
 
 
3702 *
3703 * Returns number of frames successfully sent. Frames that fail are
3704 * free'ed via XDP return API.
3705 *
3706 * For error cases, a negative errno code is returned and no-frames
3707 * are transmitted (caller must handle freeing frames).
3708 **/
3709int i40e_xdp_xmit(struct net_device *dev, int n, struct xdp_frame **frames,
3710		  u32 flags)
3711{
3712	struct i40e_netdev_priv *np = netdev_priv(dev);
3713	unsigned int queue_index = smp_processor_id();
3714	struct i40e_vsi *vsi = np->vsi;
3715	struct i40e_pf *pf = vsi->back;
3716	struct i40e_ring *xdp_ring;
3717	int drops = 0;
3718	int i;
3719
3720	if (test_bit(__I40E_VSI_DOWN, vsi->state))
3721		return -ENETDOWN;
3722
3723	if (!i40e_enabled_xdp_vsi(vsi) || queue_index >= vsi->num_queue_pairs ||
3724	    test_bit(__I40E_CONFIG_BUSY, pf->state))
3725		return -ENXIO;
3726
3727	if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK))
3728		return -EINVAL;
3729
3730	xdp_ring = vsi->xdp_rings[queue_index];
3731
3732	for (i = 0; i < n; i++) {
3733		struct xdp_frame *xdpf = frames[i];
3734		int err;
3735
3736		err = i40e_xmit_xdp_ring(xdpf, xdp_ring);
3737		if (err != I40E_XDP_TX) {
3738			xdp_return_frame_rx_napi(xdpf);
3739			drops++;
3740		}
3741	}
3742
3743	if (unlikely(flags & XDP_XMIT_FLUSH))
3744		i40e_xdp_ring_update_tail(xdp_ring);
3745
3746	return n - drops;
3747}