Linux Audio

Check our new training course

Loading...
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0
   2/* Copyright(c) 2013 - 2018 Intel Corporation. */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   3
   4#include <linux/bpf_trace.h>
   5#include <linux/net/intel/libie/rx.h>
   6#include <linux/prefetch.h>
   7#include <linux/sctp.h>
   8#include <net/mpls.h>
   9#include <net/xdp.h>
  10#include "i40e_txrx_common.h"
  11#include "i40e_trace.h"
  12#include "i40e_xsk.h"
 
 
 
 
 
 
 
  13
  14#define I40E_TXD_CMD (I40E_TX_DESC_CMD_EOP | I40E_TX_DESC_CMD_RS)
  15/**
  16 * i40e_fdir - Generate a Flow Director descriptor based on fdata
  17 * @tx_ring: Tx ring to send buffer on
  18 * @fdata: Flow director filter data
  19 * @add: Indicate if we are adding a rule or deleting one
  20 *
  21 **/
  22static void i40e_fdir(struct i40e_ring *tx_ring,
  23		      struct i40e_fdir_filter *fdata, bool add)
  24{
  25	struct i40e_filter_program_desc *fdir_desc;
  26	struct i40e_pf *pf = tx_ring->vsi->back;
  27	u32 flex_ptype, dtype_cmd, vsi_id;
  28	u16 i;
  29
  30	/* grab the next descriptor */
  31	i = tx_ring->next_to_use;
  32	fdir_desc = I40E_TX_FDIRDESC(tx_ring, i);
  33
  34	i++;
  35	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
  36
  37	flex_ptype = FIELD_PREP(I40E_TXD_FLTR_QW0_QINDEX_MASK, fdata->q_index);
 
  38
  39	flex_ptype |= FIELD_PREP(I40E_TXD_FLTR_QW0_FLEXOFF_MASK,
  40				 fdata->flex_off);
  41
  42	flex_ptype |= FIELD_PREP(I40E_TXD_FLTR_QW0_PCTYPE_MASK, fdata->pctype);
 
  43
  44	/* Use LAN VSI Id if not programmed by user */
  45	vsi_id = fdata->dest_vsi ? : i40e_pf_get_main_vsi(pf)->id;
  46	flex_ptype |= FIELD_PREP(I40E_TXD_FLTR_QW0_DEST_VSI_MASK, vsi_id);
 
  47
  48	dtype_cmd = I40E_TX_DESC_DTYPE_FILTER_PROG;
  49
  50	dtype_cmd |= add ?
  51		     I40E_FILTER_PROGRAM_DESC_PCMD_ADD_UPDATE <<
  52		     I40E_TXD_FLTR_QW1_PCMD_SHIFT :
  53		     I40E_FILTER_PROGRAM_DESC_PCMD_REMOVE <<
  54		     I40E_TXD_FLTR_QW1_PCMD_SHIFT;
  55
  56	dtype_cmd |= FIELD_PREP(I40E_TXD_FLTR_QW1_DEST_MASK, fdata->dest_ctl);
 
  57
  58	dtype_cmd |= FIELD_PREP(I40E_TXD_FLTR_QW1_FD_STATUS_MASK,
  59				fdata->fd_status);
  60
  61	if (fdata->cnt_index) {
  62		dtype_cmd |= I40E_TXD_FLTR_QW1_CNT_ENA_MASK;
  63		dtype_cmd |= FIELD_PREP(I40E_TXD_FLTR_QW1_CNTINDEX_MASK,
  64					fdata->cnt_index);
 
  65	}
  66
  67	fdir_desc->qindex_flex_ptype_vsi = cpu_to_le32(flex_ptype);
  68	fdir_desc->rsvd = cpu_to_le32(0);
  69	fdir_desc->dtype_cmd_cntindex = cpu_to_le32(dtype_cmd);
  70	fdir_desc->fd_id = cpu_to_le32(fdata->fd_id);
  71}
  72
  73#define I40E_FD_CLEAN_DELAY 10
  74/**
  75 * i40e_program_fdir_filter - Program a Flow Director filter
  76 * @fdir_data: Packet data that will be filter parameters
  77 * @raw_packet: the pre-allocated packet buffer for FDir
  78 * @pf: The PF pointer
  79 * @add: True for add/update, False for remove
  80 **/
  81static int i40e_program_fdir_filter(struct i40e_fdir_filter *fdir_data,
  82				    u8 *raw_packet, struct i40e_pf *pf,
  83				    bool add)
  84{
  85	struct i40e_tx_buffer *tx_buf, *first;
  86	struct i40e_tx_desc *tx_desc;
  87	struct i40e_ring *tx_ring;
  88	struct i40e_vsi *vsi;
  89	struct device *dev;
  90	dma_addr_t dma;
  91	u32 td_cmd = 0;
  92	u16 i;
  93
  94	/* find existing FDIR VSI */
  95	vsi = i40e_find_vsi_by_type(pf, I40E_VSI_FDIR);
  96	if (!vsi)
  97		return -ENOENT;
  98
  99	tx_ring = vsi->tx_rings[0];
 100	dev = tx_ring->dev;
 101
 102	/* we need two descriptors to add/del a filter and we can wait */
 103	for (i = I40E_FD_CLEAN_DELAY; I40E_DESC_UNUSED(tx_ring) < 2; i--) {
 104		if (!i)
 105			return -EAGAIN;
 106		msleep_interruptible(1);
 107	}
 108
 109	dma = dma_map_single(dev, raw_packet,
 110			     I40E_FDIR_MAX_RAW_PACKET_SIZE, DMA_TO_DEVICE);
 111	if (dma_mapping_error(dev, dma))
 112		goto dma_fail;
 113
 114	/* grab the next descriptor */
 115	i = tx_ring->next_to_use;
 116	first = &tx_ring->tx_bi[i];
 117	i40e_fdir(tx_ring, fdir_data, add);
 118
 119	/* Now program a dummy descriptor */
 120	i = tx_ring->next_to_use;
 121	tx_desc = I40E_TX_DESC(tx_ring, i);
 122	tx_buf = &tx_ring->tx_bi[i];
 123
 124	tx_ring->next_to_use = ((i + 1) < tx_ring->count) ? i + 1 : 0;
 125
 126	memset(tx_buf, 0, sizeof(struct i40e_tx_buffer));
 127
 128	/* record length, and DMA address */
 129	dma_unmap_len_set(tx_buf, len, I40E_FDIR_MAX_RAW_PACKET_SIZE);
 130	dma_unmap_addr_set(tx_buf, dma, dma);
 131
 132	tx_desc->buffer_addr = cpu_to_le64(dma);
 133	td_cmd = I40E_TXD_CMD | I40E_TX_DESC_CMD_DUMMY;
 134
 135	tx_buf->tx_flags = I40E_TX_FLAGS_FD_SB;
 136	tx_buf->raw_buf = (void *)raw_packet;
 137
 138	tx_desc->cmd_type_offset_bsz =
 139		build_ctob(td_cmd, 0, I40E_FDIR_MAX_RAW_PACKET_SIZE, 0);
 140
 141	/* Force memory writes to complete before letting h/w
 142	 * know there are new descriptors to fetch.
 143	 */
 144	wmb();
 145
 146	/* Mark the data descriptor to be watched */
 147	first->next_to_watch = tx_desc;
 148
 149	writel(tx_ring->next_to_use, tx_ring->tail);
 150	return 0;
 151
 152dma_fail:
 153	return -1;
 154}
 155
 
 
 156/**
 157 * i40e_create_dummy_packet - Constructs dummy packet for HW
 158 * @dummy_packet: preallocated space for dummy packet
 159 * @ipv4: is layer 3 packet of version 4 or 6
 160 * @l4proto: next level protocol used in data portion of l3
 161 * @data: filter data
 162 *
 163 * Returns address of layer 4 protocol dummy packet.
 164 **/
 165static char *i40e_create_dummy_packet(u8 *dummy_packet, bool ipv4, u8 l4proto,
 166				      struct i40e_fdir_filter *data)
 167{
 168	bool is_vlan = !!data->vlan_tag;
 169	struct vlan_hdr vlan = {};
 170	struct ipv6hdr ipv6 = {};
 171	struct ethhdr eth = {};
 172	struct iphdr ip = {};
 173	u8 *tmp;
 174
 175	if (ipv4) {
 176		eth.h_proto = cpu_to_be16(ETH_P_IP);
 177		ip.protocol = l4proto;
 178		ip.version = 0x4;
 179		ip.ihl = 0x5;
 180
 181		ip.daddr = data->dst_ip;
 182		ip.saddr = data->src_ip;
 183	} else {
 184		eth.h_proto = cpu_to_be16(ETH_P_IPV6);
 185		ipv6.nexthdr = l4proto;
 186		ipv6.version = 0x6;
 187
 188		memcpy(&ipv6.saddr.in6_u.u6_addr32, data->src_ip6,
 189		       sizeof(__be32) * 4);
 190		memcpy(&ipv6.daddr.in6_u.u6_addr32, data->dst_ip6,
 191		       sizeof(__be32) * 4);
 192	}
 193
 194	if (is_vlan) {
 195		vlan.h_vlan_TCI = data->vlan_tag;
 196		vlan.h_vlan_encapsulated_proto = eth.h_proto;
 197		eth.h_proto = data->vlan_etype;
 198	}
 199
 200	tmp = dummy_packet;
 201	memcpy(tmp, &eth, sizeof(eth));
 202	tmp += sizeof(eth);
 203
 204	if (is_vlan) {
 205		memcpy(tmp, &vlan, sizeof(vlan));
 206		tmp += sizeof(vlan);
 207	}
 208
 209	if (ipv4) {
 210		memcpy(tmp, &ip, sizeof(ip));
 211		tmp += sizeof(ip);
 212	} else {
 213		memcpy(tmp, &ipv6, sizeof(ipv6));
 214		tmp += sizeof(ipv6);
 215	}
 216
 217	return tmp;
 218}
 219
 220/**
 221 * i40e_create_dummy_udp_packet - helper function to create UDP packet
 222 * @raw_packet: preallocated space for dummy packet
 223 * @ipv4: is layer 3 packet of version 4 or 6
 224 * @l4proto: next level protocol used in data portion of l3
 225 * @data: filter data
 226 *
 227 * Helper function to populate udp fields.
 228 **/
 229static void i40e_create_dummy_udp_packet(u8 *raw_packet, bool ipv4, u8 l4proto,
 230					 struct i40e_fdir_filter *data)
 
 231{
 
 232	struct udphdr *udp;
 233	u8 *tmp;
 234
 235	tmp = i40e_create_dummy_packet(raw_packet, ipv4, IPPROTO_UDP, data);
 236	udp = (struct udphdr *)(tmp);
 237	udp->dest = data->dst_port;
 238	udp->source = data->src_port;
 239}
 240
 241/**
 242 * i40e_create_dummy_tcp_packet - helper function to create TCP packet
 243 * @raw_packet: preallocated space for dummy packet
 244 * @ipv4: is layer 3 packet of version 4 or 6
 245 * @l4proto: next level protocol used in data portion of l3
 246 * @data: filter data
 247 *
 248 * Helper function to populate tcp fields.
 249 **/
 250static void i40e_create_dummy_tcp_packet(u8 *raw_packet, bool ipv4, u8 l4proto,
 251					 struct i40e_fdir_filter *data)
 252{
 253	struct tcphdr *tcp;
 254	u8 *tmp;
 255	/* Dummy tcp packet */
 256	static const char tcp_packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
 257		0x50, 0x11, 0x0, 0x72, 0, 0, 0, 0};
 258
 259	tmp = i40e_create_dummy_packet(raw_packet, ipv4, IPPROTO_TCP, data);
 260
 261	tcp = (struct tcphdr *)tmp;
 262	memcpy(tcp, tcp_packet, sizeof(tcp_packet));
 263	tcp->dest = data->dst_port;
 264	tcp->source = data->src_port;
 265}
 266
 267/**
 268 * i40e_create_dummy_sctp_packet - helper function to create SCTP packet
 269 * @raw_packet: preallocated space for dummy packet
 270 * @ipv4: is layer 3 packet of version 4 or 6
 271 * @l4proto: next level protocol used in data portion of l3
 272 * @data: filter data
 273 *
 274 * Helper function to populate sctp fields.
 275 **/
 276static void i40e_create_dummy_sctp_packet(u8 *raw_packet, bool ipv4,
 277					  u8 l4proto,
 278					  struct i40e_fdir_filter *data)
 279{
 280	struct sctphdr *sctp;
 281	u8 *tmp;
 282
 283	tmp = i40e_create_dummy_packet(raw_packet, ipv4, IPPROTO_SCTP, data);
 284
 285	sctp = (struct sctphdr *)tmp;
 286	sctp->dest = data->dst_port;
 287	sctp->source = data->src_port;
 288}
 289
 290/**
 291 * i40e_prepare_fdir_filter - Prepare and program fdir filter
 292 * @pf: physical function to attach filter to
 293 * @fd_data: filter data
 294 * @add: add or delete filter
 295 * @packet_addr: address of dummy packet, used in filtering
 296 * @payload_offset: offset from dummy packet address to user defined data
 297 * @pctype: Packet type for which filter is used
 298 *
 299 * Helper function to offset data of dummy packet, program it and
 300 * handle errors.
 301 **/
 302static int i40e_prepare_fdir_filter(struct i40e_pf *pf,
 303				    struct i40e_fdir_filter *fd_data,
 304				    bool add, char *packet_addr,
 305				    int payload_offset, u8 pctype)
 306{
 307	int ret;
 
 
 
 308
 309	if (fd_data->flex_filter) {
 310		u8 *payload;
 311		__be16 pattern = fd_data->flex_word;
 312		u16 off = fd_data->flex_offset;
 313
 314		payload = packet_addr + payload_offset;
 315
 316		/* If user provided vlan, offset payload by vlan header length */
 317		if (!!fd_data->vlan_tag)
 318			payload += VLAN_HLEN;
 319
 320		*((__force __be16 *)(payload + off)) = pattern;
 321	}
 
 
 
 
 
 
 322
 323	fd_data->pctype = pctype;
 324	ret = i40e_program_fdir_filter(fd_data, packet_addr, pf, add);
 325	if (ret) {
 326		dev_info(&pf->pdev->dev,
 327			 "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
 328			 fd_data->pctype, fd_data->fd_id, ret);
 329		/* Free the packet buffer since it wasn't added to the ring */
 330		return -EOPNOTSUPP;
 331	} else if (I40E_DEBUG_FD & pf->hw.debug_mask) {
 332		if (add)
 333			dev_info(&pf->pdev->dev,
 334				 "Filter OK for PCTYPE %d loc = %d\n",
 335				 fd_data->pctype, fd_data->fd_id);
 336		else
 337			dev_info(&pf->pdev->dev,
 338				 "Filter deleted for PCTYPE %d loc = %d\n",
 339				 fd_data->pctype, fd_data->fd_id);
 340	}
 341
 342	return ret;
 343}
 344
 345/**
 346 * i40e_change_filter_num - Prepare and program fdir filter
 347 * @ipv4: is layer 3 packet of version 4 or 6
 348 * @add: add or delete filter
 349 * @ipv4_filter_num: field to update
 350 * @ipv6_filter_num: field to update
 351 *
 352 * Update filter number field for pf.
 353 **/
 354static void i40e_change_filter_num(bool ipv4, bool add, u16 *ipv4_filter_num,
 355				   u16 *ipv6_filter_num)
 356{
 357	if (add) {
 358		if (ipv4)
 359			(*ipv4_filter_num)++;
 360		else
 361			(*ipv6_filter_num)++;
 362	} else {
 363		if (ipv4)
 364			(*ipv4_filter_num)--;
 365		else
 366			(*ipv6_filter_num)--;
 367	}
 368}
 369
 370#define I40E_UDPIP_DUMMY_PACKET_LEN	42
 371#define I40E_UDPIP6_DUMMY_PACKET_LEN	62
 372/**
 373 * i40e_add_del_fdir_udp - Add/Remove UDP filters
 374 * @vsi: pointer to the targeted VSI
 375 * @fd_data: the flow director data required for the FDir descriptor
 376 * @add: true adds a filter, false removes it
 377 * @ipv4: true is v4, false is v6
 378 *
 379 * Returns 0 if the filters were successfully added or removed
 380 **/
 381static int i40e_add_del_fdir_udp(struct i40e_vsi *vsi,
 382				 struct i40e_fdir_filter *fd_data,
 383				 bool add,
 384				 bool ipv4)
 385{
 386	struct i40e_pf *pf = vsi->back;
 387	u8 *raw_packet;
 388	int ret;
 389
 390	raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
 391	if (!raw_packet)
 392		return -ENOMEM;
 393
 394	i40e_create_dummy_udp_packet(raw_packet, ipv4, IPPROTO_UDP, fd_data);
 395
 396	if (ipv4)
 397		ret = i40e_prepare_fdir_filter
 398			(pf, fd_data, add, raw_packet,
 399			 I40E_UDPIP_DUMMY_PACKET_LEN,
 400			 I40E_FILTER_PCTYPE_NONF_IPV4_UDP);
 401	else
 402		ret = i40e_prepare_fdir_filter
 403			(pf, fd_data, add, raw_packet,
 404			 I40E_UDPIP6_DUMMY_PACKET_LEN,
 405			 I40E_FILTER_PCTYPE_NONF_IPV6_UDP);
 406
 407	if (ret) {
 408		kfree(raw_packet);
 409		return ret;
 410	}
 411
 412	i40e_change_filter_num(ipv4, add, &pf->fd_udp4_filter_cnt,
 413			       &pf->fd_udp6_filter_cnt);
 414
 415	return 0;
 416}
 417
 418#define I40E_TCPIP_DUMMY_PACKET_LEN	54
 419#define I40E_TCPIP6_DUMMY_PACKET_LEN	74
 420/**
 421 * i40e_add_del_fdir_tcp - Add/Remove TCPv4 filters
 422 * @vsi: pointer to the targeted VSI
 423 * @fd_data: the flow director data required for the FDir descriptor
 424 * @add: true adds a filter, false removes it
 425 * @ipv4: true is v4, false is v6
 426 *
 427 * Returns 0 if the filters were successfully added or removed
 428 **/
 429static int i40e_add_del_fdir_tcp(struct i40e_vsi *vsi,
 430				 struct i40e_fdir_filter *fd_data,
 431				 bool add,
 432				 bool ipv4)
 433{
 434	struct i40e_pf *pf = vsi->back;
 
 
 
 435	u8 *raw_packet;
 436	int ret;
 
 
 
 
 
 437
 438	raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
 439	if (!raw_packet)
 440		return -ENOMEM;
 
 441
 442	i40e_create_dummy_tcp_packet(raw_packet, ipv4, IPPROTO_TCP, fd_data);
 443	if (ipv4)
 444		ret = i40e_prepare_fdir_filter
 445			(pf, fd_data, add, raw_packet,
 446			 I40E_TCPIP_DUMMY_PACKET_LEN,
 447			 I40E_FILTER_PCTYPE_NONF_IPV4_TCP);
 448	else
 449		ret = i40e_prepare_fdir_filter
 450			(pf, fd_data, add, raw_packet,
 451			 I40E_TCPIP6_DUMMY_PACKET_LEN,
 452			 I40E_FILTER_PCTYPE_NONF_IPV6_TCP);
 453
 454	if (ret) {
 455		kfree(raw_packet);
 456		return ret;
 457	}
 458
 459	i40e_change_filter_num(ipv4, add, &pf->fd_tcp4_filter_cnt,
 460			       &pf->fd_tcp6_filter_cnt);
 461
 462	if (add) {
 463		if (test_bit(I40E_FLAG_FD_ATR_ENA, pf->flags) &&
 
 464		    I40E_DEBUG_FD & pf->hw.debug_mask)
 465			dev_info(&pf->pdev->dev, "Forcing ATR off, sideband rules for TCP/IPv4 flow being applied\n");
 466		set_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state);
 
 
 
 
 
 
 
 
 
 467	}
 468	return 0;
 469}
 470
 471#define I40E_SCTPIP_DUMMY_PACKET_LEN	46
 472#define I40E_SCTPIP6_DUMMY_PACKET_LEN	66
 473/**
 474 * i40e_add_del_fdir_sctp - Add/Remove SCTPv4 Flow Director filters for
 475 * a specific flow spec
 476 * @vsi: pointer to the targeted VSI
 477 * @fd_data: the flow director data required for the FDir descriptor
 478 * @add: true adds a filter, false removes it
 479 * @ipv4: true is v4, false is v6
 480 *
 481 * Returns 0 if the filters were successfully added or removed
 482 **/
 483static int i40e_add_del_fdir_sctp(struct i40e_vsi *vsi,
 484				  struct i40e_fdir_filter *fd_data,
 485				  bool add,
 486				  bool ipv4)
 487{
 488	struct i40e_pf *pf = vsi->back;
 489	u8 *raw_packet;
 490	int ret;
 491
 492	raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
 493	if (!raw_packet)
 494		return -ENOMEM;
 495
 496	i40e_create_dummy_sctp_packet(raw_packet, ipv4, IPPROTO_SCTP, fd_data);
 497
 498	if (ipv4)
 499		ret = i40e_prepare_fdir_filter
 500			(pf, fd_data, add, raw_packet,
 501			 I40E_SCTPIP_DUMMY_PACKET_LEN,
 502			 I40E_FILTER_PCTYPE_NONF_IPV4_SCTP);
 503	else
 504		ret = i40e_prepare_fdir_filter
 505			(pf, fd_data, add, raw_packet,
 506			 I40E_SCTPIP6_DUMMY_PACKET_LEN,
 507			 I40E_FILTER_PCTYPE_NONF_IPV6_SCTP);
 508
 509	if (ret) {
 510		kfree(raw_packet);
 511		return ret;
 
 
 
 
 
 
 
 
 
 
 512	}
 513
 514	i40e_change_filter_num(ipv4, add, &pf->fd_sctp4_filter_cnt,
 515			       &pf->fd_sctp6_filter_cnt);
 516
 517	return 0;
 518}
 519
 520#define I40E_IP_DUMMY_PACKET_LEN	34
 521#define I40E_IP6_DUMMY_PACKET_LEN	54
 522/**
 523 * i40e_add_del_fdir_ip - Add/Remove IPv4 Flow Director filters for
 524 * a specific flow spec
 525 * @vsi: pointer to the targeted VSI
 526 * @fd_data: the flow director data required for the FDir descriptor
 527 * @add: true adds a filter, false removes it
 528 * @ipv4: true is v4, false is v6
 529 *
 530 * Returns 0 if the filters were successfully added or removed
 531 **/
 532static int i40e_add_del_fdir_ip(struct i40e_vsi *vsi,
 533				struct i40e_fdir_filter *fd_data,
 534				bool add,
 535				bool ipv4)
 536{
 537	struct i40e_pf *pf = vsi->back;
 538	int payload_offset;
 
 539	u8 *raw_packet;
 540	int iter_start;
 541	int iter_end;
 542	int ret;
 543	int i;
 
 
 
 544
 545	if (ipv4) {
 546		iter_start = I40E_FILTER_PCTYPE_NONF_IPV4_OTHER;
 547		iter_end = I40E_FILTER_PCTYPE_FRAG_IPV4;
 548	} else {
 549		iter_start = I40E_FILTER_PCTYPE_NONF_IPV6_OTHER;
 550		iter_end = I40E_FILTER_PCTYPE_FRAG_IPV6;
 551	}
 552
 553	for (i = iter_start; i <= iter_end; i++) {
 554		raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
 555		if (!raw_packet)
 556			return -ENOMEM;
 
 
 
 
 
 
 
 
 
 557
 558		/* IPv6 no header option differs from IPv4 */
 559		(void)i40e_create_dummy_packet
 560			(raw_packet, ipv4, (ipv4) ? IPPROTO_IP : IPPROTO_NONE,
 561			 fd_data);
 562
 563		payload_offset = (ipv4) ? I40E_IP_DUMMY_PACKET_LEN :
 564			I40E_IP6_DUMMY_PACKET_LEN;
 565		ret = i40e_prepare_fdir_filter(pf, fd_data, add, raw_packet,
 566					       payload_offset, i);
 567		if (ret)
 568			goto err;
 
 
 
 
 569	}
 570
 571	i40e_change_filter_num(ipv4, add, &pf->fd_ip4_filter_cnt,
 572			       &pf->fd_ip6_filter_cnt);
 573
 574	return 0;
 575err:
 576	kfree(raw_packet);
 577	return ret;
 578}
 579
 580/**
 581 * i40e_add_del_fdir - Build raw packets to add/del fdir filter
 582 * @vsi: pointer to the targeted VSI
 583 * @input: filter to add or delete
 584 * @add: true adds a filter, false removes it
 585 *
 586 **/
 587int i40e_add_del_fdir(struct i40e_vsi *vsi,
 588		      struct i40e_fdir_filter *input, bool add)
 589{
 590	enum ip_ver { ipv6 = 0, ipv4 = 1 };
 591	struct i40e_pf *pf = vsi->back;
 592	int ret;
 593
 594	switch (input->flow_type & ~FLOW_EXT) {
 595	case TCP_V4_FLOW:
 596		ret = i40e_add_del_fdir_tcp(vsi, input, add, ipv4);
 597		break;
 598	case UDP_V4_FLOW:
 599		ret = i40e_add_del_fdir_udp(vsi, input, add, ipv4);
 600		break;
 601	case SCTP_V4_FLOW:
 602		ret = i40e_add_del_fdir_sctp(vsi, input, add, ipv4);
 603		break;
 604	case TCP_V6_FLOW:
 605		ret = i40e_add_del_fdir_tcp(vsi, input, add, ipv6);
 606		break;
 607	case UDP_V6_FLOW:
 608		ret = i40e_add_del_fdir_udp(vsi, input, add, ipv6);
 609		break;
 610	case SCTP_V6_FLOW:
 611		ret = i40e_add_del_fdir_sctp(vsi, input, add, ipv6);
 612		break;
 613	case IP_USER_FLOW:
 614		switch (input->ipl4_proto) {
 615		case IPPROTO_TCP:
 616			ret = i40e_add_del_fdir_tcp(vsi, input, add, ipv4);
 617			break;
 618		case IPPROTO_UDP:
 619			ret = i40e_add_del_fdir_udp(vsi, input, add, ipv4);
 620			break;
 621		case IPPROTO_SCTP:
 622			ret = i40e_add_del_fdir_sctp(vsi, input, add, ipv4);
 623			break;
 624		case IPPROTO_IP:
 625			ret = i40e_add_del_fdir_ip(vsi, input, add, ipv4);
 626			break;
 627		default:
 628			/* We cannot support masking based on protocol */
 629			dev_info(&pf->pdev->dev, "Unsupported IPv4 protocol 0x%02x\n",
 630				 input->ipl4_proto);
 631			return -EINVAL;
 632		}
 633		break;
 634	case IPV6_USER_FLOW:
 635		switch (input->ipl4_proto) {
 636		case IPPROTO_TCP:
 637			ret = i40e_add_del_fdir_tcp(vsi, input, add, ipv6);
 638			break;
 639		case IPPROTO_UDP:
 640			ret = i40e_add_del_fdir_udp(vsi, input, add, ipv6);
 641			break;
 642		case IPPROTO_SCTP:
 643			ret = i40e_add_del_fdir_sctp(vsi, input, add, ipv6);
 644			break;
 645		case IPPROTO_IP:
 646			ret = i40e_add_del_fdir_ip(vsi, input, add, ipv6);
 647			break;
 648		default:
 649			/* We cannot support masking based on protocol */
 650			dev_info(&pf->pdev->dev, "Unsupported IPv6 protocol 0x%02x\n",
 651				 input->ipl4_proto);
 652			return -EINVAL;
 653		}
 654		break;
 655	default:
 656		dev_info(&pf->pdev->dev, "Unsupported flow type 0x%02x\n",
 
 657			 input->flow_type);
 658		return -EINVAL;
 659	}
 660
 661	/* The buffer allocated here will be normally be freed by
 662	 * i40e_clean_fdir_tx_irq() as it reclaims resources after transmit
 663	 * completion. In the event of an error adding the buffer to the FDIR
 664	 * ring, it will immediately be freed. It may also be freed by
 665	 * i40e_clean_tx_ring() when closing the VSI.
 666	 */
 667	return ret;
 668}
 669
 670/**
 671 * i40e_fd_handle_status - check the Programming Status for FD
 672 * @rx_ring: the Rx ring for this descriptor
 673 * @qword0_raw: qword0
 674 * @qword1: qword1 after le_to_cpu
 675 * @prog_id: the id originally used for programming
 676 *
 677 * This is used to verify if the FD programming or invalidation
 678 * requested by SW to the HW is successful or not and take actions accordingly.
 679 **/
 680static void i40e_fd_handle_status(struct i40e_ring *rx_ring, u64 qword0_raw,
 681				  u64 qword1, u8 prog_id)
 682{
 683	struct i40e_pf *pf = rx_ring->vsi->back;
 684	struct pci_dev *pdev = pf->pdev;
 685	struct i40e_16b_rx_wb_qw0 *qw0;
 686	u32 fcnt_prog, fcnt_avail;
 687	u32 error;
 
 688
 689	qw0 = (struct i40e_16b_rx_wb_qw0 *)&qword0_raw;
 690	error = FIELD_GET(I40E_RX_PROG_STATUS_DESC_QW1_ERROR_MASK, qword1);
 
 691
 692	if (error == BIT(I40E_RX_PROG_STATUS_DESC_FD_TBL_FULL_SHIFT)) {
 693		pf->fd_inv = le32_to_cpu(qw0->hi_dword.fd_id);
 694		if (qw0->hi_dword.fd_id != 0 ||
 695		    (I40E_DEBUG_FD & pf->hw.debug_mask))
 696			dev_warn(&pdev->dev, "ntuple filter loc = %d, could not be added\n",
 697				 pf->fd_inv);
 698
 699		/* Check if the programming error is for ATR.
 700		 * If so, auto disable ATR and set a state for
 701		 * flush in progress. Next time we come here if flush is in
 702		 * progress do nothing, once flush is complete the state will
 703		 * be cleared.
 704		 */
 705		if (test_bit(__I40E_FD_FLUSH_REQUESTED, pf->state))
 706			return;
 707
 708		pf->fd_add_err++;
 709		/* store the current atr filter count */
 710		pf->fd_atr_cnt = i40e_get_current_atr_cnt(pf);
 711
 712		if (qw0->hi_dword.fd_id == 0 &&
 713		    test_bit(__I40E_FD_SB_AUTO_DISABLED, pf->state)) {
 714			/* These set_bit() calls aren't atomic with the
 715			 * test_bit() here, but worse case we potentially
 716			 * disable ATR and queue a flush right after SB
 717			 * support is re-enabled. That shouldn't cause an
 718			 * issue in practice
 719			 */
 720			set_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state);
 721			set_bit(__I40E_FD_FLUSH_REQUESTED, pf->state);
 722		}
 723
 724		/* filter programming failed most likely due to table full */
 725		fcnt_prog = i40e_get_global_fd_count(pf);
 726		fcnt_avail = pf->fdir_pf_filter_count;
 727		/* If ATR is running fcnt_prog can quickly change,
 728		 * if we are very close to full, it makes sense to disable
 729		 * FD ATR/SB and then re-enable it when there is room.
 730		 */
 731		if (fcnt_prog >= (fcnt_avail - I40E_FDIR_BUFFER_FULL_MARGIN)) {
 732			if (test_bit(I40E_FLAG_FD_SB_ENA, pf->flags) &&
 733			    !test_and_set_bit(__I40E_FD_SB_AUTO_DISABLED,
 734					      pf->state))
 735				if (I40E_DEBUG_FD & pf->hw.debug_mask)
 736					dev_warn(&pdev->dev, "FD filter space full, new ntuple rules will not be added\n");
 
 
 
 737		}
 738	} else if (error == BIT(I40E_RX_PROG_STATUS_DESC_NO_FD_ENTRY_SHIFT)) {
 739		if (I40E_DEBUG_FD & pf->hw.debug_mask)
 740			dev_info(&pdev->dev, "ntuple filter fd_id = %d, could not be removed\n",
 741				 qw0->hi_dword.fd_id);
 742	}
 743}
 744
 745/**
 746 * i40e_unmap_and_free_tx_resource - Release a Tx buffer
 747 * @ring:      the ring that owns the buffer
 748 * @tx_buffer: the buffer to free
 749 **/
 750static void i40e_unmap_and_free_tx_resource(struct i40e_ring *ring,
 751					    struct i40e_tx_buffer *tx_buffer)
 752{
 753	if (tx_buffer->skb) {
 754		if (tx_buffer->tx_flags & I40E_TX_FLAGS_FD_SB)
 755			kfree(tx_buffer->raw_buf);
 756		else if (ring_is_xdp(ring))
 757			xdp_return_frame(tx_buffer->xdpf);
 758		else
 759			dev_kfree_skb_any(tx_buffer->skb);
 760		if (dma_unmap_len(tx_buffer, len))
 761			dma_unmap_single(ring->dev,
 762					 dma_unmap_addr(tx_buffer, dma),
 763					 dma_unmap_len(tx_buffer, len),
 764					 DMA_TO_DEVICE);
 765	} else if (dma_unmap_len(tx_buffer, len)) {
 766		dma_unmap_page(ring->dev,
 767			       dma_unmap_addr(tx_buffer, dma),
 768			       dma_unmap_len(tx_buffer, len),
 769			       DMA_TO_DEVICE);
 770	}
 771
 772	tx_buffer->next_to_watch = NULL;
 773	tx_buffer->skb = NULL;
 774	dma_unmap_len_set(tx_buffer, len, 0);
 775	/* tx_buffer must be completely set up in the transmit path */
 776}
 777
 778/**
 779 * i40e_clean_tx_ring - Free any empty Tx buffers
 780 * @tx_ring: ring to be cleaned
 781 **/
 782void i40e_clean_tx_ring(struct i40e_ring *tx_ring)
 783{
 784	unsigned long bi_size;
 785	u16 i;
 786
 787	if (ring_is_xdp(tx_ring) && tx_ring->xsk_pool) {
 788		i40e_xsk_clean_tx_ring(tx_ring);
 789	} else {
 790		/* ring already cleared, nothing to do */
 791		if (!tx_ring->tx_bi)
 792			return;
 793
 794		/* Free all the Tx ring sk_buffs */
 795		for (i = 0; i < tx_ring->count; i++)
 796			i40e_unmap_and_free_tx_resource(tx_ring,
 797							&tx_ring->tx_bi[i]);
 798	}
 799
 800	bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
 801	memset(tx_ring->tx_bi, 0, bi_size);
 802
 803	/* Zero out the descriptor ring */
 804	memset(tx_ring->desc, 0, tx_ring->size);
 805
 806	tx_ring->next_to_use = 0;
 807	tx_ring->next_to_clean = 0;
 808
 809	if (!tx_ring->netdev)
 810		return;
 811
 812	/* cleanup Tx queue statistics */
 813	netdev_tx_reset_queue(txring_txq(tx_ring));
 814}
 815
 816/**
 817 * i40e_free_tx_resources - Free Tx resources per queue
 818 * @tx_ring: Tx descriptor ring for a specific queue
 819 *
 820 * Free all transmit software resources
 821 **/
 822void i40e_free_tx_resources(struct i40e_ring *tx_ring)
 823{
 824	i40e_clean_tx_ring(tx_ring);
 825	kfree(tx_ring->tx_bi);
 826	tx_ring->tx_bi = NULL;
 827
 828	if (tx_ring->desc) {
 829		dma_free_coherent(tx_ring->dev, tx_ring->size,
 830				  tx_ring->desc, tx_ring->dma);
 831		tx_ring->desc = NULL;
 832	}
 833}
 834
 835/**
 836 * i40e_get_tx_pending - how many tx descriptors not processed
 837 * @ring: the ring of descriptors
 838 * @in_sw: use SW variables
 839 *
 840 * Since there is no access to the ring head register
 841 * in XL710, we need to use our local copies
 842 **/
 843u32 i40e_get_tx_pending(struct i40e_ring *ring, bool in_sw)
 844{
 845	u32 head, tail;
 846
 847	if (!in_sw) {
 848		head = i40e_get_head(ring);
 849		tail = readl(ring->tail);
 850	} else {
 851		head = ring->next_to_clean;
 852		tail = ring->next_to_use;
 853	}
 854
 855	if (head != tail)
 856		return (head < tail) ?
 857			tail - head : (tail + ring->count - head);
 858
 859	return 0;
 860}
 861
 862/**
 863 * i40e_detect_recover_hung - Function to detect and recover hung_queues
 864 * @pf: pointer to PF struct
 865 *
 866 * LAN VSI has netdev and netdev has TX queues. This function is to check
 867 * each of those TX queues if they are hung, trigger recovery by issuing
 868 * SW interrupt.
 869 **/
 870void i40e_detect_recover_hung(struct i40e_pf *pf)
 871{
 872	struct i40e_vsi *vsi = i40e_pf_get_main_vsi(pf);
 873	struct i40e_ring *tx_ring = NULL;
 874	struct net_device *netdev;
 875	unsigned int i;
 876	int packets;
 877
 878	if (!vsi)
 879		return;
 880
 881	if (test_bit(__I40E_VSI_DOWN, vsi->state))
 882		return;
 883
 884	netdev = vsi->netdev;
 885	if (!netdev)
 886		return;
 887
 888	if (!netif_carrier_ok(netdev))
 889		return;
 890
 891	for (i = 0; i < vsi->num_queue_pairs; i++) {
 892		tx_ring = vsi->tx_rings[i];
 893		if (tx_ring && tx_ring->desc) {
 894			/* If packet counter has not changed the queue is
 895			 * likely stalled, so force an interrupt for this
 896			 * queue.
 897			 *
 898			 * prev_pkt_ctr would be negative if there was no
 899			 * pending work.
 900			 */
 901			packets = tx_ring->stats.packets & INT_MAX;
 902			if (tx_ring->tx_stats.prev_pkt_ctr == packets) {
 903				i40e_force_wb(vsi, tx_ring->q_vector);
 904				continue;
 905			}
 906
 907			/* Memory barrier between read of packet count and call
 908			 * to i40e_get_tx_pending()
 909			 */
 910			smp_rmb();
 911			tx_ring->tx_stats.prev_pkt_ctr =
 912			    i40e_get_tx_pending(tx_ring, true) ? packets : -1;
 913		}
 914	}
 915}
 916
 917/**
 918 * i40e_clean_tx_irq - Reclaim resources after transmit completes
 919 * @vsi: the VSI we care about
 920 * @tx_ring: Tx ring to clean
 921 * @napi_budget: Used to determine if we are in netpoll
 922 * @tx_cleaned: Out parameter set to the number of TXes cleaned
 923 *
 924 * Returns true if there's any budget left (e.g. the clean is finished)
 925 **/
 926static bool i40e_clean_tx_irq(struct i40e_vsi *vsi,
 927			      struct i40e_ring *tx_ring, int napi_budget,
 928			      unsigned int *tx_cleaned)
 929{
 930	int i = tx_ring->next_to_clean;
 931	struct i40e_tx_buffer *tx_buf;
 932	struct i40e_tx_desc *tx_head;
 933	struct i40e_tx_desc *tx_desc;
 934	unsigned int total_bytes = 0, total_packets = 0;
 935	unsigned int budget = vsi->work_limit;
 936
 937	tx_buf = &tx_ring->tx_bi[i];
 938	tx_desc = I40E_TX_DESC(tx_ring, i);
 939	i -= tx_ring->count;
 940
 941	tx_head = I40E_TX_DESC(tx_ring, i40e_get_head(tx_ring));
 942
 943	do {
 944		struct i40e_tx_desc *eop_desc = tx_buf->next_to_watch;
 945
 946		/* if next_to_watch is not set then there is no work pending */
 947		if (!eop_desc)
 948			break;
 949
 950		/* prevent any other reads prior to eop_desc */
 951		smp_rmb();
 952
 953		i40e_trace(clean_tx_irq, tx_ring, tx_desc, tx_buf);
 954		/* we have caught up to head, no work left to do */
 955		if (tx_head == tx_desc)
 956			break;
 957
 958		/* clear next_to_watch to prevent false hangs */
 959		tx_buf->next_to_watch = NULL;
 960
 961		/* update the statistics for this packet */
 962		total_bytes += tx_buf->bytecount;
 963		total_packets += tx_buf->gso_segs;
 964
 965		/* free the skb/XDP data */
 966		if (ring_is_xdp(tx_ring))
 967			xdp_return_frame(tx_buf->xdpf);
 968		else
 969			napi_consume_skb(tx_buf->skb, napi_budget);
 970
 971		/* unmap skb header data */
 972		dma_unmap_single(tx_ring->dev,
 973				 dma_unmap_addr(tx_buf, dma),
 974				 dma_unmap_len(tx_buf, len),
 975				 DMA_TO_DEVICE);
 976
 977		/* clear tx_buffer data */
 978		tx_buf->skb = NULL;
 979		dma_unmap_len_set(tx_buf, len, 0);
 980
 981		/* unmap remaining buffers */
 982		while (tx_desc != eop_desc) {
 983			i40e_trace(clean_tx_irq_unmap,
 984				   tx_ring, tx_desc, tx_buf);
 985
 986			tx_buf++;
 987			tx_desc++;
 988			i++;
 989			if (unlikely(!i)) {
 990				i -= tx_ring->count;
 991				tx_buf = tx_ring->tx_bi;
 992				tx_desc = I40E_TX_DESC(tx_ring, 0);
 993			}
 994
 995			/* unmap any remaining paged data */
 996			if (dma_unmap_len(tx_buf, len)) {
 997				dma_unmap_page(tx_ring->dev,
 998					       dma_unmap_addr(tx_buf, dma),
 999					       dma_unmap_len(tx_buf, len),
1000					       DMA_TO_DEVICE);
1001				dma_unmap_len_set(tx_buf, len, 0);
1002			}
1003		}
1004
1005		/* move us one more past the eop_desc for start of next pkt */
1006		tx_buf++;
1007		tx_desc++;
1008		i++;
1009		if (unlikely(!i)) {
1010			i -= tx_ring->count;
1011			tx_buf = tx_ring->tx_bi;
1012			tx_desc = I40E_TX_DESC(tx_ring, 0);
1013		}
1014
1015		prefetch(tx_desc);
1016
1017		/* update budget accounting */
1018		budget--;
1019	} while (likely(budget));
1020
1021	i += tx_ring->count;
1022	tx_ring->next_to_clean = i;
1023	i40e_update_tx_stats(tx_ring, total_packets, total_bytes);
1024	i40e_arm_wb(tx_ring, vsi, budget);
 
 
 
 
 
 
 
 
 
 
 
 
1025
1026	if (ring_is_xdp(tx_ring))
1027		return !!budget;
 
 
 
 
1028
1029	/* notify netdev of completed buffers */
1030	netdev_tx_completed_queue(txring_txq(tx_ring),
1031				  total_packets, total_bytes);
1032
1033#define TX_WAKE_THRESHOLD ((s16)(DESC_NEEDED * 2))
1034	if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) &&
1035		     (I40E_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) {
1036		/* Make sure that anybody stopping the queue after this
1037		 * sees the new next_to_clean.
1038		 */
1039		smp_mb();
1040		if (__netif_subqueue_stopped(tx_ring->netdev,
1041					     tx_ring->queue_index) &&
1042		   !test_bit(__I40E_VSI_DOWN, vsi->state)) {
1043			netif_wake_subqueue(tx_ring->netdev,
1044					    tx_ring->queue_index);
1045			++tx_ring->tx_stats.restart_queue;
1046		}
1047	}
1048
1049	*tx_cleaned = total_packets;
1050	return !!budget;
1051}
1052
1053/**
1054 * i40e_enable_wb_on_itr - Arm hardware to do a wb, interrupts are not enabled
1055 * @vsi: the VSI we care about
1056 * @q_vector: the vector on which to enable writeback
1057 *
1058 **/
1059static void i40e_enable_wb_on_itr(struct i40e_vsi *vsi,
1060				  struct i40e_q_vector *q_vector)
1061{
1062	u16 flags = q_vector->tx.ring[0].flags;
1063	u32 val;
1064
1065	if (!(flags & I40E_TXR_FLAGS_WB_ON_ITR))
1066		return;
1067
1068	if (q_vector->arm_wb_state)
1069		return;
1070
1071	if (test_bit(I40E_FLAG_MSIX_ENA, vsi->back->flags)) {
1072		val = I40E_PFINT_DYN_CTLN_WB_ON_ITR_MASK |
1073		      I40E_PFINT_DYN_CTLN_ITR_INDX_MASK; /* set noitr */
1074
1075		wr32(&vsi->back->hw,
1076		     I40E_PFINT_DYN_CTLN(q_vector->reg_idx),
1077		     val);
1078	} else {
1079		val = I40E_PFINT_DYN_CTL0_WB_ON_ITR_MASK |
1080		      I40E_PFINT_DYN_CTL0_ITR_INDX_MASK; /* set noitr */
1081
1082		wr32(&vsi->back->hw, I40E_PFINT_DYN_CTL0, val);
1083	}
1084	q_vector->arm_wb_state = true;
1085}
1086
1087/**
1088 * i40e_force_wb - Issue SW Interrupt so HW does a wb
1089 * @vsi: the VSI we care about
1090 * @q_vector: the vector  on which to force writeback
1091 *
1092 **/
1093void i40e_force_wb(struct i40e_vsi *vsi, struct i40e_q_vector *q_vector)
1094{
1095	if (test_bit(I40E_FLAG_MSIX_ENA, vsi->back->flags)) {
1096		u32 val = I40E_PFINT_DYN_CTLN_INTENA_MASK |
1097			  I40E_PFINT_DYN_CTLN_ITR_INDX_MASK | /* set noitr */
1098			  I40E_PFINT_DYN_CTLN_SWINT_TRIG_MASK |
1099			  I40E_PFINT_DYN_CTLN_SW_ITR_INDX_ENA_MASK;
1100			  /* allow 00 to be written to the index */
1101
1102		wr32(&vsi->back->hw,
1103		     I40E_PFINT_DYN_CTLN(q_vector->reg_idx), val);
 
1104	} else {
1105		u32 val = I40E_PFINT_DYN_CTL0_INTENA_MASK |
1106			  I40E_PFINT_DYN_CTL0_ITR_INDX_MASK | /* set noitr */
1107			  I40E_PFINT_DYN_CTL0_SWINT_TRIG_MASK |
1108			  I40E_PFINT_DYN_CTL0_SW_ITR_INDX_ENA_MASK;
1109			/* allow 00 to be written to the index */
1110
1111		wr32(&vsi->back->hw, I40E_PFINT_DYN_CTL0, val);
1112	}
1113}
1114
1115static inline bool i40e_container_is_rx(struct i40e_q_vector *q_vector,
1116					struct i40e_ring_container *rc)
1117{
1118	return &q_vector->rx == rc;
1119}
1120
1121static inline unsigned int i40e_itr_divisor(struct i40e_q_vector *q_vector)
1122{
1123	unsigned int divisor;
1124
1125	switch (q_vector->vsi->back->hw.phy.link_info.link_speed) {
1126	case I40E_LINK_SPEED_40GB:
1127		divisor = I40E_ITR_ADAPTIVE_MIN_INC * 1024;
1128		break;
1129	case I40E_LINK_SPEED_25GB:
1130	case I40E_LINK_SPEED_20GB:
1131		divisor = I40E_ITR_ADAPTIVE_MIN_INC * 512;
1132		break;
1133	default:
1134	case I40E_LINK_SPEED_10GB:
1135		divisor = I40E_ITR_ADAPTIVE_MIN_INC * 256;
1136		break;
1137	case I40E_LINK_SPEED_1GB:
1138	case I40E_LINK_SPEED_100MB:
1139		divisor = I40E_ITR_ADAPTIVE_MIN_INC * 32;
1140		break;
1141	}
1142
1143	return divisor;
1144}
1145
1146/**
1147 * i40e_update_itr - update the dynamic ITR value based on statistics
1148 * @q_vector: structure containing interrupt and ring information
1149 * @rc: structure containing ring performance data
1150 *
1151 * Stores a new ITR value based on packets and byte
1152 * counts during the last interrupt.  The advantage of per interrupt
1153 * computation is faster updates and more accurate ITR for the current
1154 * traffic pattern.  Constants in this function were computed
1155 * based on theoretical maximum wire speed and thresholds were set based
1156 * on testing data as well as attempting to minimize response time
 
 
1157 * while increasing bulk throughput.
1158 **/
1159static void i40e_update_itr(struct i40e_q_vector *q_vector,
1160			    struct i40e_ring_container *rc)
1161{
1162	unsigned int avg_wire_size, packets, bytes, itr;
1163	unsigned long next_update = jiffies;
1164
1165	/* If we don't have any rings just leave ourselves set for maximum
1166	 * possible latency so we take ourselves out of the equation.
1167	 */
1168	if (!rc->ring || !ITR_IS_DYNAMIC(rc->ring->itr_setting))
1169		return;
1170
1171	/* For Rx we want to push the delay up and default to low latency.
1172	 * for Tx we want to pull the delay down and default to high latency.
1173	 */
1174	itr = i40e_container_is_rx(q_vector, rc) ?
1175	      I40E_ITR_ADAPTIVE_MIN_USECS | I40E_ITR_ADAPTIVE_LATENCY :
1176	      I40E_ITR_ADAPTIVE_MAX_USECS | I40E_ITR_ADAPTIVE_LATENCY;
1177
1178	/* If we didn't update within up to 1 - 2 jiffies we can assume
1179	 * that either packets are coming in so slow there hasn't been
1180	 * any work, or that there is so much work that NAPI is dealing
1181	 * with interrupt moderation and we don't need to do anything.
1182	 */
1183	if (time_after(next_update, rc->next_update))
1184		goto clear_counts;
1185
1186	/* If itr_countdown is set it means we programmed an ITR within
1187	 * the last 4 interrupt cycles. This has a side effect of us
1188	 * potentially firing an early interrupt. In order to work around
1189	 * this we need to throw out any data received for a few
1190	 * interrupts following the update.
1191	 */
1192	if (q_vector->itr_countdown) {
1193		itr = rc->target_itr;
1194		goto clear_counts;
1195	}
1196
1197	packets = rc->total_packets;
1198	bytes = rc->total_bytes;
1199
1200	if (i40e_container_is_rx(q_vector, rc)) {
1201		/* If Rx there are 1 to 4 packets and bytes are less than
1202		 * 9000 assume insufficient data to use bulk rate limiting
1203		 * approach unless Tx is already in bulk rate limiting. We
1204		 * are likely latency driven.
1205		 */
1206		if (packets && packets < 4 && bytes < 9000 &&
1207		    (q_vector->tx.target_itr & I40E_ITR_ADAPTIVE_LATENCY)) {
1208			itr = I40E_ITR_ADAPTIVE_LATENCY;
1209			goto adjust_by_size;
1210		}
1211	} else if (packets < 4) {
1212		/* If we have Tx and Rx ITR maxed and Tx ITR is running in
1213		 * bulk mode and we are receiving 4 or fewer packets just
1214		 * reset the ITR_ADAPTIVE_LATENCY bit for latency mode so
1215		 * that the Rx can relax.
1216		 */
1217		if (rc->target_itr == I40E_ITR_ADAPTIVE_MAX_USECS &&
1218		    (q_vector->rx.target_itr & I40E_ITR_MASK) ==
1219		     I40E_ITR_ADAPTIVE_MAX_USECS)
1220			goto clear_counts;
1221	} else if (packets > 32) {
1222		/* If we have processed over 32 packets in a single interrupt
1223		 * for Tx assume we need to switch over to "bulk" mode.
1224		 */
1225		rc->target_itr &= ~I40E_ITR_ADAPTIVE_LATENCY;
1226	}
1227
1228	/* We have no packets to actually measure against. This means
1229	 * either one of the other queues on this vector is active or
1230	 * we are a Tx queue doing TSO with too high of an interrupt rate.
1231	 *
1232	 * Between 4 and 56 we can assume that our current interrupt delay
1233	 * is only slightly too low. As such we should increase it by a small
1234	 * fixed amount.
1235	 */
1236	if (packets < 56) {
1237		itr = rc->target_itr + I40E_ITR_ADAPTIVE_MIN_INC;
1238		if ((itr & I40E_ITR_MASK) > I40E_ITR_ADAPTIVE_MAX_USECS) {
1239			itr &= I40E_ITR_ADAPTIVE_LATENCY;
1240			itr += I40E_ITR_ADAPTIVE_MAX_USECS;
1241		}
1242		goto clear_counts;
1243	}
1244
1245	if (packets <= 256) {
1246		itr = min(q_vector->tx.current_itr, q_vector->rx.current_itr);
1247		itr &= I40E_ITR_MASK;
1248
1249		/* Between 56 and 112 is our "goldilocks" zone where we are
1250		 * working out "just right". Just report that our current
1251		 * ITR is good for us.
1252		 */
1253		if (packets <= 112)
1254			goto clear_counts;
1255
1256		/* If packet count is 128 or greater we are likely looking
1257		 * at a slight overrun of the delay we want. Try halving
1258		 * our delay to see if that will cut the number of packets
1259		 * in half per interrupt.
1260		 */
1261		itr /= 2;
1262		itr &= I40E_ITR_MASK;
1263		if (itr < I40E_ITR_ADAPTIVE_MIN_USECS)
1264			itr = I40E_ITR_ADAPTIVE_MIN_USECS;
1265
1266		goto clear_counts;
1267	}
1268
1269	/* The paths below assume we are dealing with a bulk ITR since
1270	 * number of packets is greater than 256. We are just going to have
1271	 * to compute a value and try to bring the count under control,
1272	 * though for smaller packet sizes there isn't much we can do as
1273	 * NAPI polling will likely be kicking in sooner rather than later.
1274	 */
1275	itr = I40E_ITR_ADAPTIVE_BULK;
1276
1277adjust_by_size:
1278	/* If packet counts are 256 or greater we can assume we have a gross
1279	 * overestimation of what the rate should be. Instead of trying to fine
1280	 * tune it just use the formula below to try and dial in an exact value
1281	 * give the current packet size of the frame.
1282	 */
1283	avg_wire_size = bytes / packets;
1284
1285	/* The following is a crude approximation of:
1286	 *  wmem_default / (size + overhead) = desired_pkts_per_int
1287	 *  rate / bits_per_byte / (size + ethernet overhead) = pkt_rate
1288	 *  (desired_pkt_rate / pkt_rate) * usecs_per_sec = ITR value
1289	 *
1290	 * Assuming wmem_default is 212992 and overhead is 640 bytes per
1291	 * packet, (256 skb, 64 headroom, 320 shared info), we can reduce the
1292	 * formula down to
1293	 *
1294	 *  (170 * (size + 24)) / (size + 640) = ITR
1295	 *
1296	 * We first do some math on the packet size and then finally bitshift
1297	 * by 8 after rounding up. We also have to account for PCIe link speed
1298	 * difference as ITR scales based on this.
1299	 */
1300	if (avg_wire_size <= 60) {
1301		/* Start at 250k ints/sec */
1302		avg_wire_size = 4096;
1303	} else if (avg_wire_size <= 380) {
1304		/* 250K ints/sec to 60K ints/sec */
1305		avg_wire_size *= 40;
1306		avg_wire_size += 1696;
1307	} else if (avg_wire_size <= 1084) {
1308		/* 60K ints/sec to 36K ints/sec */
1309		avg_wire_size *= 15;
1310		avg_wire_size += 11452;
1311	} else if (avg_wire_size <= 1980) {
1312		/* 36K ints/sec to 30K ints/sec */
1313		avg_wire_size *= 5;
1314		avg_wire_size += 22420;
1315	} else {
1316		/* plateau at a limit of 30K ints/sec */
1317		avg_wire_size = 32256;
 
 
1318	}
1319
1320	/* If we are in low latency mode halve our delay which doubles the
1321	 * rate to somewhere between 100K to 16K ints/sec
1322	 */
1323	if (itr & I40E_ITR_ADAPTIVE_LATENCY)
1324		avg_wire_size /= 2;
1325
1326	/* Resultant value is 256 times larger than it needs to be. This
1327	 * gives us room to adjust the value as needed to either increase
1328	 * or decrease the value based on link speeds of 10G, 2.5G, 1G, etc.
1329	 *
1330	 * Use addition as we have already recorded the new latency flag
1331	 * for the ITR value.
1332	 */
1333	itr += DIV_ROUND_UP(avg_wire_size, i40e_itr_divisor(q_vector)) *
1334	       I40E_ITR_ADAPTIVE_MIN_INC;
1335
1336	if ((itr & I40E_ITR_MASK) > I40E_ITR_ADAPTIVE_MAX_USECS) {
1337		itr &= I40E_ITR_ADAPTIVE_LATENCY;
1338		itr += I40E_ITR_ADAPTIVE_MAX_USECS;
 
 
 
 
 
 
 
 
 
1339	}
1340
1341clear_counts:
1342	/* write back value */
1343	rc->target_itr = itr;
1344
1345	/* next update should occur within next jiffy */
1346	rc->next_update = next_update + 1;
1347
1348	rc->total_bytes = 0;
1349	rc->total_packets = 0;
1350}
1351
1352static struct i40e_rx_buffer *i40e_rx_bi(struct i40e_ring *rx_ring, u32 idx)
1353{
1354	return &rx_ring->rx_bi[idx];
1355}
1356
1357/**
1358 * i40e_reuse_rx_page - page flip buffer and store it back on the ring
1359 * @rx_ring: rx descriptor ring to store buffers on
1360 * @old_buff: donor buffer to have page reused
1361 *
1362 * Synchronizes page for reuse by the adapter
1363 **/
1364static void i40e_reuse_rx_page(struct i40e_ring *rx_ring,
1365			       struct i40e_rx_buffer *old_buff)
1366{
1367	struct i40e_rx_buffer *new_buff;
1368	u16 nta = rx_ring->next_to_alloc;
1369
1370	new_buff = i40e_rx_bi(rx_ring, nta);
1371
1372	/* update, and store next to alloc */
1373	nta++;
1374	rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
1375
1376	/* transfer page from old buffer to new buffer */
1377	new_buff->dma		= old_buff->dma;
1378	new_buff->page		= old_buff->page;
1379	new_buff->page_offset	= old_buff->page_offset;
1380	new_buff->pagecnt_bias	= old_buff->pagecnt_bias;
1381
1382	/* clear contents of buffer_info */
1383	old_buff->page = NULL;
1384}
1385
1386/**
1387 * i40e_clean_programming_status - clean the programming status descriptor
1388 * @rx_ring: the rx ring that has this descriptor
1389 * @qword0_raw: qword0
1390 * @qword1: qword1 representing status_error_len in CPU ordering
1391 *
1392 * Flow director should handle FD_FILTER_STATUS to check its filter programming
1393 * status being successful or not and take actions accordingly. FCoE should
1394 * handle its context/filter programming/invalidation status and take actions.
1395 *
1396 * Returns an i40e_rx_buffer to reuse if the cleanup occurred, otherwise NULL.
1397 **/
1398void i40e_clean_programming_status(struct i40e_ring *rx_ring, u64 qword0_raw,
1399				   u64 qword1)
1400{
 
1401	u8 id;
1402
1403	id = FIELD_GET(I40E_RX_PROG_STATUS_DESC_QW1_PROGID_MASK, qword1);
 
 
1404
1405	if (id == I40E_RX_PROG_STATUS_DESC_FD_FILTER_STATUS)
1406		i40e_fd_handle_status(rx_ring, qword0_raw, qword1, id);
 
 
 
 
 
1407}
1408
1409/**
1410 * i40e_setup_tx_descriptors - Allocate the Tx descriptors
1411 * @tx_ring: the tx ring to set up
1412 *
1413 * Return 0 on success, negative on error
1414 **/
1415int i40e_setup_tx_descriptors(struct i40e_ring *tx_ring)
1416{
1417	struct device *dev = tx_ring->dev;
1418	int bi_size;
1419
1420	if (!dev)
1421		return -ENOMEM;
1422
1423	/* warn if we are about to overwrite the pointer */
1424	WARN_ON(tx_ring->tx_bi);
1425	bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
1426	tx_ring->tx_bi = kzalloc(bi_size, GFP_KERNEL);
1427	if (!tx_ring->tx_bi)
1428		goto err;
1429
1430	u64_stats_init(&tx_ring->syncp);
1431
1432	/* round up to nearest 4K */
1433	tx_ring->size = tx_ring->count * sizeof(struct i40e_tx_desc);
1434	/* add u32 for head writeback, align after this takes care of
1435	 * guaranteeing this is at least one cache line in size
1436	 */
1437	tx_ring->size += sizeof(u32);
1438	tx_ring->size = ALIGN(tx_ring->size, 4096);
1439	tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
1440					   &tx_ring->dma, GFP_KERNEL);
1441	if (!tx_ring->desc) {
1442		dev_info(dev, "Unable to allocate memory for the Tx descriptor ring, size=%d\n",
1443			 tx_ring->size);
1444		goto err;
1445	}
1446
1447	tx_ring->next_to_use = 0;
1448	tx_ring->next_to_clean = 0;
1449	tx_ring->tx_stats.prev_pkt_ctr = -1;
1450	return 0;
1451
1452err:
1453	kfree(tx_ring->tx_bi);
1454	tx_ring->tx_bi = NULL;
1455	return -ENOMEM;
1456}
1457
1458static void i40e_clear_rx_bi(struct i40e_ring *rx_ring)
1459{
1460	memset(rx_ring->rx_bi, 0, sizeof(*rx_ring->rx_bi) * rx_ring->count);
1461}
1462
1463/**
1464 * i40e_clean_rx_ring - Free Rx buffers
1465 * @rx_ring: ring to be cleaned
1466 **/
1467void i40e_clean_rx_ring(struct i40e_ring *rx_ring)
1468{
 
 
1469	u16 i;
1470
1471	/* ring already cleared, nothing to do */
1472	if (!rx_ring->rx_bi)
1473		return;
1474
1475	if (rx_ring->xsk_pool) {
1476		i40e_xsk_clean_rx_ring(rx_ring);
1477		goto skip_free;
1478	}
1479
1480	/* Free all the Rx ring sk_buffs */
1481	for (i = 0; i < rx_ring->count; i++) {
1482		struct i40e_rx_buffer *rx_bi = i40e_rx_bi(rx_ring, i);
1483
 
 
 
 
1484		if (!rx_bi->page)
1485			continue;
1486
1487		/* Invalidate cache lines that may have been written to by
1488		 * device so that we avoid corrupting memory.
1489		 */
1490		dma_sync_single_range_for_cpu(rx_ring->dev,
1491					      rx_bi->dma,
1492					      rx_bi->page_offset,
1493					      rx_ring->rx_buf_len,
1494					      DMA_FROM_DEVICE);
1495
1496		/* free resources associated with mapping */
1497		dma_unmap_page_attrs(rx_ring->dev, rx_bi->dma,
1498				     i40e_rx_pg_size(rx_ring),
1499				     DMA_FROM_DEVICE,
1500				     I40E_RX_DMA_ATTR);
1501
1502		__page_frag_cache_drain(rx_bi->page, rx_bi->pagecnt_bias);
1503
1504		rx_bi->page = NULL;
1505		rx_bi->page_offset = 0;
1506	}
1507
1508skip_free:
1509	if (rx_ring->xsk_pool)
1510		i40e_clear_rx_bi_zc(rx_ring);
1511	else
1512		i40e_clear_rx_bi(rx_ring);
1513
1514	/* Zero out the descriptor ring */
1515	memset(rx_ring->desc, 0, rx_ring->size);
1516
1517	rx_ring->next_to_alloc = 0;
1518	rx_ring->next_to_clean = 0;
1519	rx_ring->next_to_process = 0;
1520	rx_ring->next_to_use = 0;
1521}
1522
1523/**
1524 * i40e_free_rx_resources - Free Rx resources
1525 * @rx_ring: ring to clean the resources from
1526 *
1527 * Free all receive software resources
1528 **/
1529void i40e_free_rx_resources(struct i40e_ring *rx_ring)
1530{
1531	i40e_clean_rx_ring(rx_ring);
1532	if (rx_ring->vsi->type == I40E_VSI_MAIN)
1533		xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
1534	rx_ring->xdp_prog = NULL;
1535	kfree(rx_ring->rx_bi);
1536	rx_ring->rx_bi = NULL;
1537
1538	if (rx_ring->desc) {
1539		dma_free_coherent(rx_ring->dev, rx_ring->size,
1540				  rx_ring->desc, rx_ring->dma);
1541		rx_ring->desc = NULL;
1542	}
1543}
1544
1545/**
1546 * i40e_setup_rx_descriptors - Allocate Rx descriptors
1547 * @rx_ring: Rx descriptor ring (for a specific queue) to setup
1548 *
1549 * Returns 0 on success, negative on failure
1550 **/
1551int i40e_setup_rx_descriptors(struct i40e_ring *rx_ring)
1552{
1553	struct device *dev = rx_ring->dev;
 
 
 
 
 
 
 
 
1554
1555	u64_stats_init(&rx_ring->syncp);
1556
1557	/* Round up to nearest 4K */
1558	rx_ring->size = rx_ring->count * sizeof(union i40e_rx_desc);
1559	rx_ring->size = ALIGN(rx_ring->size, 4096);
1560	rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
1561					   &rx_ring->dma, GFP_KERNEL);
1562
1563	if (!rx_ring->desc) {
1564		dev_info(dev, "Unable to allocate memory for the Rx descriptor ring, size=%d\n",
1565			 rx_ring->size);
1566		return -ENOMEM;
1567	}
1568
1569	rx_ring->next_to_alloc = 0;
1570	rx_ring->next_to_clean = 0;
1571	rx_ring->next_to_process = 0;
1572	rx_ring->next_to_use = 0;
1573
1574	rx_ring->xdp_prog = rx_ring->vsi->xdp_prog;
1575
1576	rx_ring->rx_bi =
1577		kcalloc(rx_ring->count, sizeof(*rx_ring->rx_bi), GFP_KERNEL);
1578	if (!rx_ring->rx_bi)
1579		return -ENOMEM;
1580
1581	return 0;
 
 
 
 
1582}
1583
1584/**
1585 * i40e_release_rx_desc - Store the new tail and head values
1586 * @rx_ring: ring to bump
1587 * @val: new head index
1588 **/
1589void i40e_release_rx_desc(struct i40e_ring *rx_ring, u32 val)
1590{
1591	rx_ring->next_to_use = val;
1592
1593	/* update next to alloc since we have filled the ring */
1594	rx_ring->next_to_alloc = val;
1595
1596	/* Force memory writes to complete before letting h/w
1597	 * know there are new descriptors to fetch.  (Only
1598	 * applicable for weak-ordered memory model archs,
1599	 * such as IA-64).
1600	 */
1601	wmb();
1602	writel(val, rx_ring->tail);
1603}
1604
1605#if (PAGE_SIZE >= 8192)
1606static unsigned int i40e_rx_frame_truesize(struct i40e_ring *rx_ring,
1607					   unsigned int size)
1608{
1609	unsigned int truesize;
1610
1611	truesize = rx_ring->rx_offset ?
1612		SKB_DATA_ALIGN(size + rx_ring->rx_offset) +
1613		SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) :
1614		SKB_DATA_ALIGN(size);
1615	return truesize;
1616}
1617#endif
1618
1619/**
1620 * i40e_alloc_mapped_page - recycle or make a new page
1621 * @rx_ring: ring to use
1622 * @bi: rx_buffer struct to modify
1623 *
1624 * Returns true if the page was successfully allocated or
1625 * reused.
1626 **/
1627static bool i40e_alloc_mapped_page(struct i40e_ring *rx_ring,
1628				   struct i40e_rx_buffer *bi)
1629{
1630	struct page *page = bi->page;
1631	dma_addr_t dma;
1632
1633	/* since we are recycling buffers we should seldom need to alloc */
1634	if (likely(page)) {
1635		rx_ring->rx_stats.page_reuse_count++;
1636		return true;
1637	}
1638
1639	/* alloc new page for storage */
1640	page = dev_alloc_pages(i40e_rx_pg_order(rx_ring));
1641	if (unlikely(!page)) {
1642		rx_ring->rx_stats.alloc_page_failed++;
1643		return false;
1644	}
1645
1646	rx_ring->rx_stats.page_alloc_count++;
1647
1648	/* map page for use */
1649	dma = dma_map_page_attrs(rx_ring->dev, page, 0,
1650				 i40e_rx_pg_size(rx_ring),
1651				 DMA_FROM_DEVICE,
1652				 I40E_RX_DMA_ATTR);
1653
1654	/* if mapping failed free memory back to system since
1655	 * there isn't much point in holding memory we can't use
1656	 */
1657	if (dma_mapping_error(rx_ring->dev, dma)) {
1658		__free_pages(page, i40e_rx_pg_order(rx_ring));
1659		rx_ring->rx_stats.alloc_page_failed++;
1660		return false;
1661	}
1662
1663	bi->dma = dma;
1664	bi->page = page;
1665	bi->page_offset = rx_ring->rx_offset;
1666	page_ref_add(page, USHRT_MAX - 1);
1667	bi->pagecnt_bias = USHRT_MAX;
1668
1669	return true;
1670}
1671
1672/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1673 * i40e_alloc_rx_buffers - Replace used receive buffers
1674 * @rx_ring: ring to place buffers on
1675 * @cleaned_count: number of buffers to replace
1676 *
1677 * Returns false if all allocations were successful, true if any fail
1678 **/
1679bool i40e_alloc_rx_buffers(struct i40e_ring *rx_ring, u16 cleaned_count)
1680{
1681	u16 ntu = rx_ring->next_to_use;
1682	union i40e_rx_desc *rx_desc;
1683	struct i40e_rx_buffer *bi;
1684
1685	/* do nothing if no valid netdev defined */
1686	if (!rx_ring->netdev || !cleaned_count)
1687		return false;
1688
1689	rx_desc = I40E_RX_DESC(rx_ring, ntu);
1690	bi = i40e_rx_bi(rx_ring, ntu);
1691
1692	do {
1693		if (!i40e_alloc_mapped_page(rx_ring, bi))
1694			goto no_buffers;
1695
1696		/* sync the buffer for use by the device */
1697		dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
1698						 bi->page_offset,
1699						 rx_ring->rx_buf_len,
1700						 DMA_FROM_DEVICE);
1701
1702		/* Refresh the desc even if buffer_addrs didn't change
1703		 * because each write-back erases this info.
1704		 */
1705		rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
1706
1707		rx_desc++;
1708		bi++;
1709		ntu++;
1710		if (unlikely(ntu == rx_ring->count)) {
1711			rx_desc = I40E_RX_DESC(rx_ring, 0);
1712			bi = i40e_rx_bi(rx_ring, 0);
1713			ntu = 0;
1714		}
1715
1716		/* clear the status bits for the next_to_use descriptor */
1717		rx_desc->wb.qword1.status_error_len = 0;
1718
1719		cleaned_count--;
1720	} while (cleaned_count);
1721
1722	if (rx_ring->next_to_use != ntu)
1723		i40e_release_rx_desc(rx_ring, ntu);
1724
1725	return false;
1726
1727no_buffers:
1728	if (rx_ring->next_to_use != ntu)
1729		i40e_release_rx_desc(rx_ring, ntu);
1730
1731	/* make sure to come back via polling to try again after
1732	 * allocation failure
1733	 */
1734	return true;
1735}
1736
1737/**
1738 * i40e_rx_checksum - Indicate in skb if hw indicated a good cksum
1739 * @vsi: the VSI we care about
1740 * @skb: skb currently being received and modified
1741 * @rx_desc: the receive descriptor
 
 
1742 **/
1743static inline void i40e_rx_checksum(struct i40e_vsi *vsi,
1744				    struct sk_buff *skb,
1745				    union i40e_rx_desc *rx_desc)
1746{
1747	struct libeth_rx_pt decoded;
1748	u32 rx_error, rx_status;
1749	bool ipv4, ipv6;
1750	u8 ptype;
1751	u64 qword;
1752
 
 
 
 
 
 
 
 
1753	skb->ip_summed = CHECKSUM_NONE;
1754
1755	qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1756	ptype = FIELD_GET(I40E_RXD_QW1_PTYPE_MASK, qword);
1757
1758	decoded = libie_rx_pt_parse(ptype);
1759	if (!libeth_rx_pt_has_checksum(vsi->netdev, decoded))
1760		return;
1761
1762	rx_error = FIELD_GET(I40E_RXD_QW1_ERROR_MASK, qword);
1763	rx_status = FIELD_GET(I40E_RXD_QW1_STATUS_MASK, qword);
1764
1765	/* did the hardware decode the packet and checksum? */
1766	if (!(rx_status & BIT(I40E_RX_DESC_STATUS_L3L4P_SHIFT)))
1767		return;
1768
1769	ipv4 = libeth_rx_pt_get_ip_ver(decoded) == LIBETH_RX_PT_OUTER_IPV4;
1770	ipv6 = libeth_rx_pt_get_ip_ver(decoded) == LIBETH_RX_PT_OUTER_IPV6;
 
 
 
 
 
 
1771
1772	if (ipv4 &&
1773	    (rx_error & (BIT(I40E_RX_DESC_ERROR_IPE_SHIFT) |
1774			 BIT(I40E_RX_DESC_ERROR_EIPE_SHIFT))))
1775		goto checksum_fail;
1776
1777	/* likely incorrect csum if alternate IP extension headers found */
1778	if (ipv6 &&
1779	    rx_status & BIT(I40E_RX_DESC_STATUS_IPV6EXADD_SHIFT))
1780		/* don't increment checksum err here, non-fatal err */
1781		return;
1782
1783	/* there was some L4 error, count error and punt packet to the stack */
1784	if (rx_error & BIT(I40E_RX_DESC_ERROR_L4E_SHIFT))
1785		goto checksum_fail;
1786
1787	/* handle packets that were not able to be checksummed due
1788	 * to arrival speed, in this case the stack can compute
1789	 * the csum.
1790	 */
1791	if (rx_error & BIT(I40E_RX_DESC_ERROR_PPRS_SHIFT))
1792		return;
1793
1794	/* If there is an outer header present that might contain a checksum
1795	 * we need to bump the checksum level by 1 to reflect the fact that
1796	 * we are indicating we validated the inner checksum.
1797	 */
1798	if (decoded.tunnel_type >= LIBETH_RX_PT_TUNNEL_IP_GRENAT)
1799		skb->csum_level = 1;
1800
1801	skb->ip_summed = CHECKSUM_UNNECESSARY;
 
 
 
 
 
 
 
 
 
 
1802	return;
1803
1804checksum_fail:
1805	vsi->back->hw_csum_rx_error++;
1806}
1807
1808/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1809 * i40e_rx_hash - set the hash value in the skb
1810 * @ring: descriptor ring
1811 * @rx_desc: specific descriptor
1812 * @skb: skb currently being received and modified
1813 * @rx_ptype: Rx packet type
1814 **/
1815static inline void i40e_rx_hash(struct i40e_ring *ring,
1816				union i40e_rx_desc *rx_desc,
1817				struct sk_buff *skb,
1818				u8 rx_ptype)
1819{
1820	struct libeth_rx_pt decoded;
1821	u32 hash;
1822	const __le64 rss_mask =
1823		cpu_to_le64((u64)I40E_RX_DESC_FLTSTAT_RSS_HASH <<
1824			    I40E_RX_DESC_STATUS_FLTSTAT_SHIFT);
1825
1826	decoded = libie_rx_pt_parse(rx_ptype);
1827	if (!libeth_rx_pt_has_hash(ring->netdev, decoded))
1828		return;
1829
1830	if ((rx_desc->wb.qword1.status_error_len & rss_mask) == rss_mask) {
1831		hash = le32_to_cpu(rx_desc->wb.qword0.hi_dword.rss);
1832		libeth_rx_pt_set_hash(skb, hash, decoded);
1833	}
1834}
1835
1836/**
1837 * i40e_process_skb_fields - Populate skb header fields from Rx descriptor
1838 * @rx_ring: rx descriptor ring packet is being transacted on
1839 * @rx_desc: pointer to the EOP Rx descriptor
1840 * @skb: pointer to current skb being populated
 
1841 *
1842 * This function checks the ring, descriptor, and packet information in
1843 * order to populate the hash, checksum, VLAN, protocol, and
1844 * other fields within the skb.
1845 **/
 
1846void i40e_process_skb_fields(struct i40e_ring *rx_ring,
1847			     union i40e_rx_desc *rx_desc, struct sk_buff *skb)
 
1848{
1849	u64 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1850	u32 rx_status = FIELD_GET(I40E_RXD_QW1_STATUS_MASK, qword);
 
1851	u32 tsynvalid = rx_status & I40E_RXD_QW1_STATUS_TSYNVALID_MASK;
1852	u32 tsyn = FIELD_GET(I40E_RXD_QW1_STATUS_TSYNINDX_MASK, rx_status);
1853	u8 rx_ptype = FIELD_GET(I40E_RXD_QW1_PTYPE_MASK, qword);
1854
1855	if (unlikely(tsynvalid))
1856		i40e_ptp_rx_hwtstamp(rx_ring->vsi->back, skb, tsyn);
1857
1858	i40e_rx_hash(rx_ring, rx_desc, skb, rx_ptype);
1859
 
 
 
1860	i40e_rx_checksum(rx_ring->vsi, skb, rx_desc);
1861
1862	skb_record_rx_queue(skb, rx_ring->queue_index);
 
1863
1864	if (qword & BIT(I40E_RX_DESC_STATUS_L2TAG1P_SHIFT)) {
1865		__le16 vlan_tag = rx_desc->wb.qword0.lo_dword.l2tag1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1866
1867		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
1868				       le16_to_cpu(vlan_tag));
1869	}
 
 
1870
1871	/* modifies the skb - consumes the enet header */
1872	skb->protocol = eth_type_trans(skb, rx_ring->netdev);
 
 
 
 
 
 
 
 
 
 
 
1873}
1874
1875/**
1876 * i40e_cleanup_headers - Correct empty headers
1877 * @rx_ring: rx descriptor ring packet is being transacted on
1878 * @skb: pointer to current skb being fixed
1879 * @rx_desc: pointer to the EOP Rx descriptor
 
 
1880 *
1881 * In addition if skb is not at least 60 bytes we need to pad it so that
1882 * it is large enough to qualify as a valid Ethernet frame.
1883 *
1884 * Returns true if an error was encountered and skb was freed.
1885 **/
1886static bool i40e_cleanup_headers(struct i40e_ring *rx_ring, struct sk_buff *skb,
1887				 union i40e_rx_desc *rx_desc)
1888
1889{
1890	/* ERR_MASK will only have valid bits if EOP set, and
1891	 * what we are doing here is actually checking
1892	 * I40E_RX_DESC_ERROR_RXE_SHIFT, since it is the zeroth bit in
1893	 * the error field
1894	 */
1895	if (unlikely(i40e_test_staterr(rx_desc,
1896				       BIT(I40E_RXD_QW1_ERROR_SHIFT)))) {
1897		dev_kfree_skb_any(skb);
1898		return true;
1899	}
1900
1901	/* if eth_skb_pad returns an error the skb was freed */
1902	if (eth_skb_pad(skb))
1903		return true;
1904
1905	return false;
1906}
1907
1908/**
1909 * i40e_can_reuse_rx_page - Determine if page can be reused for another Rx
1910 * @rx_buffer: buffer containing the page
1911 * @rx_stats: rx stats structure for the rx ring
1912 *
1913 * If page is reusable, we have a green light for calling i40e_reuse_rx_page,
1914 * which will assign the current buffer to the buffer that next_to_alloc is
1915 * pointing to; otherwise, the DMA mapping needs to be destroyed and
1916 * page freed.
1917 *
1918 * rx_stats will be updated to indicate whether the page was waived
1919 * or busy if it could not be reused.
1920 */
1921static bool i40e_can_reuse_rx_page(struct i40e_rx_buffer *rx_buffer,
1922				   struct i40e_rx_queue_stats *rx_stats)
1923{
1924	unsigned int pagecnt_bias = rx_buffer->pagecnt_bias;
1925	struct page *page = rx_buffer->page;
1926
1927	/* Is any reuse possible? */
1928	if (!dev_page_is_reusable(page)) {
1929		rx_stats->page_waive_count++;
1930		return false;
1931	}
1932
1933#if (PAGE_SIZE < 8192)
1934	/* if we are only owner of page we can reuse it */
1935	if (unlikely((rx_buffer->page_count - pagecnt_bias) > 1)) {
1936		rx_stats->page_busy_count++;
1937		return false;
1938	}
1939#else
1940#define I40E_LAST_OFFSET \
1941	(SKB_WITH_OVERHEAD(PAGE_SIZE) - I40E_RXBUFFER_2048)
1942	if (rx_buffer->page_offset > I40E_LAST_OFFSET) {
1943		rx_stats->page_busy_count++;
1944		return false;
1945	}
1946#endif
1947
1948	/* If we have drained the page fragment pool we need to update
1949	 * the pagecnt_bias and page count so that we fully restock the
1950	 * number of references the driver holds.
1951	 */
1952	if (unlikely(pagecnt_bias == 1)) {
1953		page_ref_add(page, USHRT_MAX - 1);
1954		rx_buffer->pagecnt_bias = USHRT_MAX;
1955	}
1956
1957	return true;
 
1958}
1959
1960/**
1961 * i40e_rx_buffer_flip - adjusted rx_buffer to point to an unused region
1962 * @rx_buffer: Rx buffer to adjust
1963 * @truesize: Size of adjustment
1964 **/
1965static void i40e_rx_buffer_flip(struct i40e_rx_buffer *rx_buffer,
1966				unsigned int truesize)
1967{
1968#if (PAGE_SIZE < 8192)
1969	rx_buffer->page_offset ^= truesize;
1970#else
1971	rx_buffer->page_offset += truesize;
1972#endif
1973}
1974
1975/**
1976 * i40e_get_rx_buffer - Fetch Rx buffer and synchronize data for use
1977 * @rx_ring: rx descriptor ring to transact packets on
1978 * @size: size of buffer to add to skb
1979 *
1980 * This function will pull an Rx buffer from the ring and synchronize it
1981 * for use by the CPU.
1982 */
1983static struct i40e_rx_buffer *i40e_get_rx_buffer(struct i40e_ring *rx_ring,
1984						 const unsigned int size)
 
 
 
 
 
 
 
 
 
1985{
1986	struct i40e_rx_buffer *rx_buffer;
1987
1988	rx_buffer = i40e_rx_bi(rx_ring, rx_ring->next_to_process);
1989	rx_buffer->page_count =
1990#if (PAGE_SIZE < 8192)
1991		page_count(rx_buffer->page);
1992#else
1993		0;
 
1994#endif
1995	prefetch_page_address(rx_buffer->page);
1996
1997	/* we are reusing so sync this buffer for CPU use */
1998	dma_sync_single_range_for_cpu(rx_ring->dev,
1999				      rx_buffer->dma,
2000				      rx_buffer->page_offset,
2001				      size,
2002				      DMA_FROM_DEVICE);
2003
2004	/* We have pulled a buffer for use, so decrement pagecnt_bias */
2005	rx_buffer->pagecnt_bias--;
2006
2007	return rx_buffer;
2008}
 
2009
2010/**
2011 * i40e_put_rx_buffer - Clean up used buffer and either recycle or free
2012 * @rx_ring: rx descriptor ring to transact packets on
2013 * @rx_buffer: rx buffer to pull data from
2014 *
2015 * This function will clean up the contents of the rx_buffer.  It will
2016 * either recycle the buffer or unmap it and free the associated resources.
2017 */
2018static void i40e_put_rx_buffer(struct i40e_ring *rx_ring,
2019			       struct i40e_rx_buffer *rx_buffer)
2020{
2021	if (i40e_can_reuse_rx_page(rx_buffer, &rx_ring->rx_stats)) {
2022		/* hand second half of page back to the ring */
2023		i40e_reuse_rx_page(rx_ring, rx_buffer);
2024	} else {
2025		/* we are not reusing the buffer so unmap it */
2026		dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma,
2027				     i40e_rx_pg_size(rx_ring),
2028				     DMA_FROM_DEVICE, I40E_RX_DMA_ATTR);
2029		__page_frag_cache_drain(rx_buffer->page,
2030					rx_buffer->pagecnt_bias);
2031		/* clear contents of buffer_info */
2032		rx_buffer->page = NULL;
2033	}
2034}
2035
2036/**
2037 * i40e_process_rx_buffs- Processing of buffers post XDP prog or on error
2038 * @rx_ring: Rx descriptor ring to transact packets on
2039 * @xdp_res: Result of the XDP program
2040 * @xdp: xdp_buff pointing to the data
2041 **/
2042static void i40e_process_rx_buffs(struct i40e_ring *rx_ring, int xdp_res,
2043				  struct xdp_buff *xdp)
2044{
2045	u32 nr_frags = xdp_get_shared_info_from_buff(xdp)->nr_frags;
2046	u32 next = rx_ring->next_to_clean, i = 0;
2047	struct i40e_rx_buffer *rx_buffer;
2048
2049	xdp->flags = 0;
 
 
2050
2051	while (1) {
2052		rx_buffer = i40e_rx_bi(rx_ring, next);
2053		if (++next == rx_ring->count)
2054			next = 0;
2055
2056		if (!rx_buffer->page)
2057			continue;
 
 
 
2058
2059		if (xdp_res != I40E_XDP_CONSUMED)
2060			i40e_rx_buffer_flip(rx_buffer, xdp->frame_sz);
2061		else if (i++ <= nr_frags)
2062			rx_buffer->pagecnt_bias++;
2063
2064		/* EOP buffer will be put in i40e_clean_rx_irq() */
2065		if (next == rx_ring->next_to_process)
2066			return;
 
2067
2068		i40e_put_rx_buffer(rx_ring, rx_buffer);
2069	}
2070}
2071
2072/**
2073 * i40e_construct_skb - Allocate skb and populate it
2074 * @rx_ring: rx descriptor ring to transact packets on
2075 * @xdp: xdp_buff pointing to the data
2076 *
2077 * This function allocates an skb.  It then populates it with the page
2078 * data from the current receive descriptor, taking care to set up the
2079 * skb correctly.
 
2080 */
2081static struct sk_buff *i40e_construct_skb(struct i40e_ring *rx_ring,
2082					  struct xdp_buff *xdp)
 
2083{
2084	unsigned int size = xdp->data_end - xdp->data;
2085	struct i40e_rx_buffer *rx_buffer;
2086	struct skb_shared_info *sinfo;
2087	unsigned int headlen;
2088	struct sk_buff *skb;
2089	u32 nr_frags = 0;
2090
2091	/* prefetch first cache line of first page */
2092	net_prefetch(xdp->data);
 
2093
2094	/* Note, we get here by enabling legacy-rx via:
2095	 *
2096	 *    ethtool --set-priv-flags <dev> legacy-rx on
2097	 *
2098	 * In this mode, we currently get 0 extra XDP headroom as
2099	 * opposed to having legacy-rx off, where we process XDP
2100	 * packets going to stack via i40e_build_skb(). The latter
2101	 * provides us currently with 192 bytes of headroom.
2102	 *
2103	 * For i40e_construct_skb() mode it means that the
2104	 * xdp->data_meta will always point to xdp->data, since
2105	 * the helper cannot expand the head. Should this ever
2106	 * change in future for legacy-rx mode on, then lets also
2107	 * add xdp->data_meta handling here.
2108	 */
2109
2110	/* allocate a skb to store the frags */
2111	skb = napi_alloc_skb(&rx_ring->q_vector->napi, I40E_RX_HDR_SIZE);
2112	if (unlikely(!skb))
2113		return NULL;
2114
2115	/* Determine available headroom for copy */
2116	headlen = size;
2117	if (headlen > I40E_RX_HDR_SIZE)
2118		headlen = eth_get_headlen(skb->dev, xdp->data,
2119					  I40E_RX_HDR_SIZE);
2120
2121	/* align pull length to size of long to optimize memcpy performance */
2122	memcpy(__skb_put(skb, headlen), xdp->data,
2123	       ALIGN(headlen, sizeof(long)));
2124
2125	if (unlikely(xdp_buff_has_frags(xdp))) {
2126		sinfo = xdp_get_shared_info_from_buff(xdp);
2127		nr_frags = sinfo->nr_frags;
2128	}
2129	rx_buffer = i40e_rx_bi(rx_ring, rx_ring->next_to_clean);
2130	/* update all of the pointers */
2131	size -= headlen;
2132	if (size) {
2133		if (unlikely(nr_frags >= MAX_SKB_FRAGS)) {
2134			dev_kfree_skb(skb);
 
 
2135			return NULL;
2136		}
2137		skb_add_rx_frag(skb, 0, rx_buffer->page,
2138				rx_buffer->page_offset + headlen,
2139				size, xdp->frame_sz);
2140		/* buffer is used by skb, update page_offset */
2141		i40e_rx_buffer_flip(rx_buffer, xdp->frame_sz);
2142	} else {
2143		/* buffer is unused, reset bias back to rx_buffer */
2144		rx_buffer->pagecnt_bias++;
2145	}
2146
2147	if (unlikely(xdp_buff_has_frags(xdp))) {
2148		struct skb_shared_info *skinfo = skb_shinfo(skb);
2149
2150		memcpy(&skinfo->frags[skinfo->nr_frags], &sinfo->frags[0],
2151		       sizeof(skb_frag_t) * nr_frags);
2152
2153		xdp_update_skb_shared_info(skb, skinfo->nr_frags + nr_frags,
2154					   sinfo->xdp_frags_size,
2155					   nr_frags * xdp->frame_sz,
2156					   xdp_buff_is_frag_pfmemalloc(xdp));
2157
2158		/* First buffer has already been processed, so bump ntc */
2159		if (++rx_ring->next_to_clean == rx_ring->count)
2160			rx_ring->next_to_clean = 0;
2161
2162		i40e_process_rx_buffs(rx_ring, I40E_XDP_PASS, xdp);
2163	}
2164
2165	return skb;
2166}
2167
2168/**
2169 * i40e_build_skb - Build skb around an existing buffer
2170 * @rx_ring: Rx descriptor ring to transact packets on
2171 * @xdp: xdp_buff pointing to the data
2172 *
2173 * This function builds an skb around an existing Rx buffer, taking care
2174 * to set up the skb correctly and avoid any memcpy overhead.
2175 */
2176static struct sk_buff *i40e_build_skb(struct i40e_ring *rx_ring,
2177				      struct xdp_buff *xdp)
2178{
2179	unsigned int metasize = xdp->data - xdp->data_meta;
2180	struct skb_shared_info *sinfo;
2181	struct sk_buff *skb;
2182	u32 nr_frags;
2183
2184	/* Prefetch first cache line of first page. If xdp->data_meta
2185	 * is unused, this points exactly as xdp->data, otherwise we
2186	 * likely have a consumer accessing first few bytes of meta
2187	 * data, and then actual data.
2188	 */
2189	net_prefetch(xdp->data_meta);
2190
2191	if (unlikely(xdp_buff_has_frags(xdp))) {
2192		sinfo = xdp_get_shared_info_from_buff(xdp);
2193		nr_frags = sinfo->nr_frags;
2194	}
2195
2196	/* build an skb around the page buffer */
2197	skb = napi_build_skb(xdp->data_hard_start, xdp->frame_sz);
2198	if (unlikely(!skb))
2199		return NULL;
2200
2201	/* update pointers within the skb to store the data */
2202	skb_reserve(skb, xdp->data - xdp->data_hard_start);
2203	__skb_put(skb, xdp->data_end - xdp->data);
2204	if (metasize)
2205		skb_metadata_set(skb, metasize);
2206
2207	if (unlikely(xdp_buff_has_frags(xdp))) {
2208		xdp_update_skb_shared_info(skb, nr_frags,
2209					   sinfo->xdp_frags_size,
2210					   nr_frags * xdp->frame_sz,
2211					   xdp_buff_is_frag_pfmemalloc(xdp));
2212
2213		i40e_process_rx_buffs(rx_ring, I40E_XDP_PASS, xdp);
 
 
 
 
2214	} else {
2215		struct i40e_rx_buffer *rx_buffer;
2216
2217		rx_buffer = i40e_rx_bi(rx_ring, rx_ring->next_to_clean);
2218		/* buffer is used by skb, update page_offset */
2219		i40e_rx_buffer_flip(rx_buffer, xdp->frame_sz);
2220	}
2221
 
 
 
2222	return skb;
2223}
2224
2225/**
2226 * i40e_is_non_eop - process handling of non-EOP buffers
2227 * @rx_ring: Rx ring being processed
2228 * @rx_desc: Rx descriptor for current buffer
 
2229 *
2230 * If the buffer is an EOP buffer, this function exits returning false,
2231 * otherwise return true indicating that this is in fact a non-EOP buffer.
2232 */
2233bool i40e_is_non_eop(struct i40e_ring *rx_ring,
2234		     union i40e_rx_desc *rx_desc)
 
 
 
2235{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2236	/* if we are the last buffer then there is nothing else to do */
2237#define I40E_RXD_EOF BIT(I40E_RX_DESC_STATUS_EOF_SHIFT)
2238	if (likely(i40e_test_staterr(rx_desc, I40E_RXD_EOF)))
2239		return false;
2240
 
 
2241	rx_ring->rx_stats.non_eop_descs++;
2242
2243	return true;
2244}
2245
2246static int i40e_xmit_xdp_ring(struct xdp_frame *xdpf,
2247			      struct i40e_ring *xdp_ring);
2248
2249int i40e_xmit_xdp_tx_ring(struct xdp_buff *xdp, struct i40e_ring *xdp_ring)
2250{
2251	struct xdp_frame *xdpf = xdp_convert_buff_to_frame(xdp);
2252
2253	if (unlikely(!xdpf))
2254		return I40E_XDP_CONSUMED;
2255
2256	return i40e_xmit_xdp_ring(xdpf, xdp_ring);
2257}
2258
2259/**
2260 * i40e_run_xdp - run an XDP program
2261 * @rx_ring: Rx ring being processed
2262 * @xdp: XDP buffer containing the frame
2263 * @xdp_prog: XDP program to run
2264 **/
2265static int i40e_run_xdp(struct i40e_ring *rx_ring, struct xdp_buff *xdp, struct bpf_prog *xdp_prog)
2266{
2267	int err, result = I40E_XDP_PASS;
2268	struct i40e_ring *xdp_ring;
2269	u32 act;
2270
2271	if (!xdp_prog)
2272		goto xdp_out;
2273
2274	prefetchw(xdp->data_hard_start); /* xdp_frame write */
2275
2276	act = bpf_prog_run_xdp(xdp_prog, xdp);
2277	switch (act) {
2278	case XDP_PASS:
2279		break;
2280	case XDP_TX:
2281		xdp_ring = rx_ring->vsi->xdp_rings[rx_ring->queue_index];
2282		result = i40e_xmit_xdp_tx_ring(xdp, xdp_ring);
2283		if (result == I40E_XDP_CONSUMED)
2284			goto out_failure;
2285		break;
2286	case XDP_REDIRECT:
2287		err = xdp_do_redirect(rx_ring->netdev, xdp, xdp_prog);
2288		if (err)
2289			goto out_failure;
2290		result = I40E_XDP_REDIR;
2291		break;
2292	default:
2293		bpf_warn_invalid_xdp_action(rx_ring->netdev, xdp_prog, act);
2294		fallthrough;
2295	case XDP_ABORTED:
2296out_failure:
2297		trace_xdp_exception(rx_ring->netdev, xdp_prog, act);
2298		fallthrough; /* handle aborts by dropping packet */
2299	case XDP_DROP:
2300		result = I40E_XDP_CONSUMED;
2301		break;
2302	}
2303xdp_out:
2304	return result;
2305}
2306
2307/**
2308 * i40e_xdp_ring_update_tail - Updates the XDP Tx ring tail register
2309 * @xdp_ring: XDP Tx ring
2310 *
2311 * This function updates the XDP Tx ring tail register.
2312 **/
2313void i40e_xdp_ring_update_tail(struct i40e_ring *xdp_ring)
2314{
2315	/* Force memory writes to complete before letting h/w
2316	 * know there are new descriptors to fetch.
2317	 */
2318	wmb();
2319	writel_relaxed(xdp_ring->next_to_use, xdp_ring->tail);
2320}
2321
2322/**
2323 * i40e_update_rx_stats - Update Rx ring statistics
2324 * @rx_ring: rx descriptor ring
2325 * @total_rx_bytes: number of bytes received
2326 * @total_rx_packets: number of packets received
2327 *
2328 * This function updates the Rx ring statistics.
2329 **/
2330void i40e_update_rx_stats(struct i40e_ring *rx_ring,
2331			  unsigned int total_rx_bytes,
2332			  unsigned int total_rx_packets)
2333{
2334	u64_stats_update_begin(&rx_ring->syncp);
2335	rx_ring->stats.packets += total_rx_packets;
2336	rx_ring->stats.bytes += total_rx_bytes;
2337	u64_stats_update_end(&rx_ring->syncp);
2338	rx_ring->q_vector->rx.total_packets += total_rx_packets;
2339	rx_ring->q_vector->rx.total_bytes += total_rx_bytes;
2340}
2341
2342/**
2343 * i40e_finalize_xdp_rx - Bump XDP Tx tail and/or flush redirect map
2344 * @rx_ring: Rx ring
2345 * @xdp_res: Result of the receive batch
2346 *
2347 * This function bumps XDP Tx tail and/or flush redirect map, and
2348 * should be called when a batch of packets has been processed in the
2349 * napi loop.
2350 **/
2351void i40e_finalize_xdp_rx(struct i40e_ring *rx_ring, unsigned int xdp_res)
2352{
2353	if (xdp_res & I40E_XDP_REDIR)
2354		xdp_do_flush();
2355
2356	if (xdp_res & I40E_XDP_TX) {
2357		struct i40e_ring *xdp_ring =
2358			rx_ring->vsi->xdp_rings[rx_ring->queue_index];
2359
2360		i40e_xdp_ring_update_tail(xdp_ring);
2361	}
2362}
2363
2364/**
2365 * i40e_inc_ntp: Advance the next_to_process index
2366 * @rx_ring: Rx ring
2367 **/
2368static void i40e_inc_ntp(struct i40e_ring *rx_ring)
2369{
2370	u32 ntp = rx_ring->next_to_process + 1;
2371
2372	ntp = (ntp < rx_ring->count) ? ntp : 0;
2373	rx_ring->next_to_process = ntp;
2374	prefetch(I40E_RX_DESC(rx_ring, ntp));
2375}
2376
2377/**
2378 * i40e_add_xdp_frag: Add a frag to xdp_buff
2379 * @xdp: xdp_buff pointing to the data
2380 * @nr_frags: return number of buffers for the packet
2381 * @rx_buffer: rx_buffer holding data of the current frag
2382 * @size: size of data of current frag
2383 */
2384static int i40e_add_xdp_frag(struct xdp_buff *xdp, u32 *nr_frags,
2385			     struct i40e_rx_buffer *rx_buffer, u32 size)
2386{
2387	struct skb_shared_info *sinfo = xdp_get_shared_info_from_buff(xdp);
2388
2389	if (!xdp_buff_has_frags(xdp)) {
2390		sinfo->nr_frags = 0;
2391		sinfo->xdp_frags_size = 0;
2392		xdp_buff_set_frags_flag(xdp);
2393	} else if (unlikely(sinfo->nr_frags >= MAX_SKB_FRAGS)) {
2394		/* Overflowing packet: All frags need to be dropped */
2395		return -ENOMEM;
2396	}
2397
2398	__skb_fill_page_desc_noacc(sinfo, sinfo->nr_frags++, rx_buffer->page,
2399				   rx_buffer->page_offset, size);
2400
2401	sinfo->xdp_frags_size += size;
2402
2403	if (page_is_pfmemalloc(rx_buffer->page))
2404		xdp_buff_set_frag_pfmemalloc(xdp);
2405	*nr_frags = sinfo->nr_frags;
2406
2407	return 0;
2408}
2409
2410/**
2411 * i40e_consume_xdp_buff - Consume all the buffers of the packet and update ntc
2412 * @rx_ring: rx descriptor ring to transact packets on
2413 * @xdp: xdp_buff pointing to the data
2414 * @rx_buffer: rx_buffer of eop desc
2415 */
2416static void i40e_consume_xdp_buff(struct i40e_ring *rx_ring,
2417				  struct xdp_buff *xdp,
2418				  struct i40e_rx_buffer *rx_buffer)
2419{
2420	i40e_process_rx_buffs(rx_ring, I40E_XDP_CONSUMED, xdp);
2421	i40e_put_rx_buffer(rx_ring, rx_buffer);
2422	rx_ring->next_to_clean = rx_ring->next_to_process;
2423	xdp->data = NULL;
2424}
2425
2426/**
2427 * i40e_clean_rx_irq - Clean completed descriptors from Rx ring - bounce buf
2428 * @rx_ring: rx descriptor ring to transact packets on
2429 * @budget: Total limit on number of packets to process
2430 * @rx_cleaned: Out parameter of the number of packets processed
2431 *
2432 * This function provides a "bounce buffer" approach to Rx interrupt
2433 * processing.  The advantage to this is that on systems that have
2434 * expensive overhead for IOMMU access this provides a means of avoiding
2435 * it by maintaining the mapping of the page to the system.
2436 *
2437 * Returns amount of work completed
2438 **/
2439static int i40e_clean_rx_irq(struct i40e_ring *rx_ring, int budget,
2440			     unsigned int *rx_cleaned)
2441{
2442	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
2443	u16 cleaned_count = I40E_DESC_UNUSED(rx_ring);
2444	u16 clean_threshold = rx_ring->count / 2;
2445	unsigned int offset = rx_ring->rx_offset;
2446	struct xdp_buff *xdp = &rx_ring->xdp;
2447	unsigned int xdp_xmit = 0;
2448	struct bpf_prog *xdp_prog;
2449	bool failure = false;
2450	int xdp_res = 0;
2451
2452	xdp_prog = READ_ONCE(rx_ring->xdp_prog);
2453
2454	while (likely(total_rx_packets < (unsigned int)budget)) {
2455		u16 ntp = rx_ring->next_to_process;
2456		struct i40e_rx_buffer *rx_buffer;
2457		union i40e_rx_desc *rx_desc;
2458		struct sk_buff *skb;
2459		unsigned int size;
2460		u32 nfrags = 0;
2461		bool neop;
2462		u64 qword;
2463
2464		/* return some buffers to hardware, one at a time is too slow */
2465		if (cleaned_count >= clean_threshold) {
2466			failure = failure ||
2467				  i40e_alloc_rx_buffers(rx_ring, cleaned_count);
2468			cleaned_count = 0;
2469		}
2470
2471		rx_desc = I40E_RX_DESC(rx_ring, ntp);
2472
2473		/* status_error_len will always be zero for unused descriptors
2474		 * because it's cleared in cleanup, and overlaps with hdr_addr
2475		 * which is always zero because packet split isn't used, if the
2476		 * hardware wrote DD then the length will be non-zero
2477		 */
2478		qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
 
 
2479
2480		/* This memory barrier is needed to keep us from reading
2481		 * any other fields out of the rx_desc until we have
2482		 * verified the descriptor has been written back.
2483		 */
2484		dma_rmb();
2485
2486		if (i40e_rx_is_programming_status(qword)) {
2487			i40e_clean_programming_status(rx_ring,
2488						      rx_desc->raw.qword[0],
2489						      qword);
2490			rx_buffer = i40e_rx_bi(rx_ring, ntp);
2491			i40e_inc_ntp(rx_ring);
2492			i40e_reuse_rx_page(rx_ring, rx_buffer);
2493			/* Update ntc and bump cleaned count if not in the
2494			 * middle of mb packet.
2495			 */
2496			if (rx_ring->next_to_clean == ntp) {
2497				rx_ring->next_to_clean =
2498					rx_ring->next_to_process;
2499				cleaned_count++;
2500			}
2501			continue;
2502		}
2503
2504		size = FIELD_GET(I40E_RXD_QW1_LENGTH_PBUF_MASK, qword);
2505		if (!size)
2506			break;
2507
2508		i40e_trace(clean_rx_irq, rx_ring, rx_desc, xdp);
2509		/* retrieve a buffer from the ring */
2510		rx_buffer = i40e_get_rx_buffer(rx_ring, size);
2511
2512		neop = i40e_is_non_eop(rx_ring, rx_desc);
2513		i40e_inc_ntp(rx_ring);
2514
2515		if (!xdp->data) {
2516			unsigned char *hard_start;
2517
2518			hard_start = page_address(rx_buffer->page) +
2519				     rx_buffer->page_offset - offset;
2520			xdp_prepare_buff(xdp, hard_start, offset, size, true);
2521#if (PAGE_SIZE > 4096)
2522			/* At larger PAGE_SIZE, frame_sz depend on len size */
2523			xdp->frame_sz = i40e_rx_frame_truesize(rx_ring, size);
2524#endif
2525		} else if (i40e_add_xdp_frag(xdp, &nfrags, rx_buffer, size) &&
2526			   !neop) {
2527			/* Overflowing packet: Drop all frags on EOP */
2528			i40e_consume_xdp_buff(rx_ring, xdp, rx_buffer);
2529			break;
2530		}
2531
2532		if (neop)
2533			continue;
2534
2535		xdp_res = i40e_run_xdp(rx_ring, xdp, xdp_prog);
 
 
 
 
 
 
 
 
2536
2537		if (xdp_res) {
2538			xdp_xmit |= xdp_res & (I40E_XDP_TX | I40E_XDP_REDIR);
2539
2540			if (unlikely(xdp_buff_has_frags(xdp))) {
2541				i40e_process_rx_buffs(rx_ring, xdp_res, xdp);
2542				size = xdp_get_buff_len(xdp);
2543			} else if (xdp_res & (I40E_XDP_TX | I40E_XDP_REDIR)) {
2544				i40e_rx_buffer_flip(rx_buffer, xdp->frame_sz);
2545			} else {
2546				rx_buffer->pagecnt_bias++;
2547			}
2548			total_rx_bytes += size;
2549		} else {
2550			if (ring_uses_build_skb(rx_ring))
2551				skb = i40e_build_skb(rx_ring, xdp);
2552			else
2553				skb = i40e_construct_skb(rx_ring, xdp);
2554
2555			/* drop if we failed to retrieve a buffer */
2556			if (!skb) {
2557				rx_ring->rx_stats.alloc_buff_failed++;
2558				i40e_consume_xdp_buff(rx_ring, xdp, rx_buffer);
2559				break;
2560			}
2561
2562			if (i40e_cleanup_headers(rx_ring, skb, rx_desc))
2563				goto process_next;
2564
2565			/* probably a little skewed due to removing CRC */
2566			total_rx_bytes += skb->len;
 
 
 
 
 
 
2567
2568			/* populate checksum, VLAN, and protocol */
2569			i40e_process_skb_fields(rx_ring, rx_desc, skb);
2570
2571			i40e_trace(clean_rx_irq_rx, rx_ring, rx_desc, xdp);
2572			napi_gro_receive(&rx_ring->q_vector->napi, skb);
2573		}
2574
2575		/* update budget accounting */
2576		total_rx_packets++;
2577process_next:
2578		cleaned_count += nfrags + 1;
2579		i40e_put_rx_buffer(rx_ring, rx_buffer);
2580		rx_ring->next_to_clean = rx_ring->next_to_process;
2581
2582		xdp->data = NULL;
2583	}
2584
2585	i40e_finalize_xdp_rx(rx_ring, xdp_xmit);
2586
2587	i40e_update_rx_stats(rx_ring, total_rx_bytes, total_rx_packets);
2588
2589	*rx_cleaned = total_rx_packets;
 
2590
2591	/* guarantee a trip back through this routine if there was a failure */
2592	return failure ? budget : (int)total_rx_packets;
2593}
2594
2595/**
2596 * i40e_buildreg_itr - build a value for writing to I40E_PFINT_DYN_CTLN register
2597 * @itr_idx: interrupt throttling index
2598 * @interval: interrupt throttling interval value in usecs
2599 * @force_swint: force software interrupt
2600 *
2601 * The function builds a value for I40E_PFINT_DYN_CTLN register that
2602 * is used to update interrupt throttling interval for specified ITR index
2603 * and optionally enforces a software interrupt. If the @itr_idx is equal
2604 * to I40E_ITR_NONE then no interval change is applied and only @force_swint
2605 * parameter is taken into account. If the interval change and enforced
2606 * software interrupt are not requested then the built value just enables
2607 * appropriate vector interrupt.
2608 **/
2609static u32 i40e_buildreg_itr(enum i40e_dyn_idx itr_idx, u16 interval,
2610			     bool force_swint)
2611{
2612	u32 val;
2613
2614	/* We don't bother with setting the CLEARPBA bit as the data sheet
2615	 * points out doing so is "meaningless since it was already
2616	 * auto-cleared". The auto-clearing happens when the interrupt is
2617	 * asserted.
2618	 *
2619	 * Hardware errata 28 for also indicates that writing to a
2620	 * xxINT_DYN_CTLx CSR with INTENA_MSK (bit 31) set to 0 will clear
2621	 * an event in the PBA anyway so we need to rely on the automask
2622	 * to hold pending events for us until the interrupt is re-enabled
2623	 *
2624	 * We have to shift the given value as it is reported in microseconds
2625	 * and the register value is recorded in 2 microsecond units.
2626	 */
2627	interval >>= 1;
2628
2629	/* 1. Enable vector interrupt
2630	 * 2. Update the interval for the specified ITR index
2631	 *    (I40E_ITR_NONE in the register is used to indicate that
2632	 *     no interval update is requested)
2633	 */
2634	val = I40E_PFINT_DYN_CTLN_INTENA_MASK |
2635	      FIELD_PREP(I40E_PFINT_DYN_CTLN_ITR_INDX_MASK, itr_idx) |
2636	      FIELD_PREP(I40E_PFINT_DYN_CTLN_INTERVAL_MASK, interval);
2637
2638	/* 3. Enforce software interrupt trigger if requested
2639	 *    (These software interrupts rate is limited by ITR2 that is
2640	 *     set to 20K interrupts per second)
2641	 */
2642	if (force_swint)
2643		val |= I40E_PFINT_DYN_CTLN_SWINT_TRIG_MASK |
2644		       I40E_PFINT_DYN_CTLN_SW_ITR_INDX_ENA_MASK |
2645		       FIELD_PREP(I40E_PFINT_DYN_CTLN_SW_ITR_INDX_MASK,
2646				  I40E_SW_ITR);
2647
2648	return val;
2649}
2650
2651/* The act of updating the ITR will cause it to immediately trigger. In order
2652 * to prevent this from throwing off adaptive update statistics we defer the
2653 * update so that it can only happen so often. So after either Tx or Rx are
2654 * updated we make the adaptive scheme wait until either the ITR completely
2655 * expires via the next_update expiration or we have been through at least
2656 * 3 interrupts.
2657 */
2658#define ITR_COUNTDOWN_START 3
 
 
 
2659
2660/**
2661 * i40e_update_enable_itr - Update itr and re-enable MSIX interrupt
2662 * @vsi: the VSI we care about
2663 * @q_vector: q_vector for which itr is being updated and interrupt enabled
2664 *
2665 **/
2666static inline void i40e_update_enable_itr(struct i40e_vsi *vsi,
2667					  struct i40e_q_vector *q_vector)
2668{
2669	enum i40e_dyn_idx itr_idx = I40E_ITR_NONE;
2670	struct i40e_hw *hw = &vsi->back->hw;
2671	u16 interval = 0;
2672	u32 itr_val;
 
 
 
2673
2674	/* If we don't have MSIX, then we only need to re-enable icr0 */
2675	if (!test_bit(I40E_FLAG_MSIX_ENA, vsi->back->flags)) {
2676		i40e_irq_dynamic_enable_icr0(vsi->back);
2677		return;
 
 
 
 
 
 
 
 
 
 
2678	}
2679
2680	/* These will do nothing if dynamic updates are not enabled */
2681	i40e_update_itr(q_vector, &q_vector->tx);
2682	i40e_update_itr(q_vector, &q_vector->rx);
2683
2684	/* This block of logic allows us to get away with only updating
2685	 * one ITR value with each interrupt. The idea is to perform a
2686	 * pseudo-lazy update with the following criteria.
2687	 *
2688	 * 1. Rx is given higher priority than Tx if both are in same state
2689	 * 2. If we must reduce an ITR that is given highest priority.
2690	 * 3. We then give priority to increasing ITR based on amount.
2691	 */
2692	if (q_vector->rx.target_itr < q_vector->rx.current_itr) {
2693		/* Rx ITR needs to be reduced, this is highest priority */
2694		itr_idx = I40E_RX_ITR;
2695		interval = q_vector->rx.target_itr;
2696		q_vector->rx.current_itr = q_vector->rx.target_itr;
2697		q_vector->itr_countdown = ITR_COUNTDOWN_START;
2698	} else if ((q_vector->tx.target_itr < q_vector->tx.current_itr) ||
2699		   ((q_vector->rx.target_itr - q_vector->rx.current_itr) <
2700		    (q_vector->tx.target_itr - q_vector->tx.current_itr))) {
2701		/* Tx ITR needs to be reduced, this is second priority
2702		 * Tx ITR needs to be increased more than Rx, fourth priority
2703		 */
2704		itr_idx = I40E_TX_ITR;
2705		interval = q_vector->tx.target_itr;
2706		q_vector->tx.current_itr = q_vector->tx.target_itr;
2707		q_vector->itr_countdown = ITR_COUNTDOWN_START;
2708	} else if (q_vector->rx.current_itr != q_vector->rx.target_itr) {
2709		/* Rx ITR needs to be increased, third priority */
2710		itr_idx = I40E_RX_ITR;
2711		interval = q_vector->rx.target_itr;
2712		q_vector->rx.current_itr = q_vector->rx.target_itr;
2713		q_vector->itr_countdown = ITR_COUNTDOWN_START;
2714	} else {
2715		/* No ITR update, lowest priority */
2716		if (q_vector->itr_countdown)
2717			q_vector->itr_countdown--;
2718	}
2719
2720	/* Do not update interrupt control register if VSI is down */
2721	if (test_bit(__I40E_VSI_DOWN, vsi->state))
2722		return;
 
2723
2724	/* Update ITR interval if necessary and enforce software interrupt
2725	 * if we are exiting busy poll.
2726	 */
2727	if (q_vector->in_busy_poll) {
2728		itr_val = i40e_buildreg_itr(itr_idx, interval, true);
2729		q_vector->in_busy_poll = false;
2730	} else {
2731		itr_val = i40e_buildreg_itr(itr_idx, interval, false);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2732	}
2733	wr32(hw, I40E_PFINT_DYN_CTLN(q_vector->reg_idx), itr_val);
 
 
 
 
 
 
 
 
2734}
2735
2736/**
2737 * i40e_napi_poll - NAPI polling Rx/Tx cleanup routine
2738 * @napi: napi struct with our devices info in it
2739 * @budget: amount of work driver is allowed to do this pass, in packets
2740 *
2741 * This function will clean all queues associated with a q_vector.
2742 *
2743 * Returns the amount of work done
2744 **/
2745int i40e_napi_poll(struct napi_struct *napi, int budget)
2746{
2747	struct i40e_q_vector *q_vector =
2748			       container_of(napi, struct i40e_q_vector, napi);
2749	struct i40e_vsi *vsi = q_vector->vsi;
2750	struct i40e_ring *ring;
2751	bool tx_clean_complete = true;
2752	bool rx_clean_complete = true;
2753	unsigned int tx_cleaned = 0;
2754	unsigned int rx_cleaned = 0;
2755	bool clean_complete = true;
2756	bool arm_wb = false;
2757	int budget_per_ring;
2758	int work_done = 0;
2759
2760	if (test_bit(__I40E_VSI_DOWN, vsi->state)) {
2761		napi_complete(napi);
2762		return 0;
2763	}
2764
 
 
2765	/* Since the actual Tx work is minimal, we can give the Tx a larger
2766	 * budget and be more aggressive about cleaning up the Tx descriptors.
2767	 */
2768	i40e_for_each_ring(ring, q_vector->tx) {
2769		bool wd = ring->xsk_pool ?
2770			  i40e_clean_xdp_tx_irq(vsi, ring) :
2771			  i40e_clean_tx_irq(vsi, ring, budget, &tx_cleaned);
2772
2773		if (!wd) {
2774			clean_complete = tx_clean_complete = false;
2775			continue;
2776		}
2777		arm_wb |= ring->arm_wb;
2778		ring->arm_wb = false;
2779	}
2780
2781	/* Handle case where we are called by netpoll with a budget of 0 */
2782	if (budget <= 0)
2783		goto tx_only;
2784
2785	/* normally we have 1 Rx ring per q_vector */
2786	if (unlikely(q_vector->num_ringpairs > 1))
2787		/* We attempt to distribute budget to each Rx queue fairly, but
2788		 * don't allow the budget to go below 1 because that would exit
2789		 * polling early.
2790		 */
2791		budget_per_ring = max_t(int, budget / q_vector->num_ringpairs, 1);
2792	else
2793		/* Max of 1 Rx ring in this q_vector so give it the budget */
2794		budget_per_ring = budget;
2795
2796	i40e_for_each_ring(ring, q_vector->rx) {
2797		int cleaned = ring->xsk_pool ?
2798			      i40e_clean_rx_irq_zc(ring, budget_per_ring) :
2799			      i40e_clean_rx_irq(ring, budget_per_ring, &rx_cleaned);
2800
2801		work_done += cleaned;
2802		/* if we clean as many as budgeted, we must not be done */
2803		if (cleaned >= budget_per_ring)
2804			clean_complete = rx_clean_complete = false;
2805	}
2806
2807	if (!i40e_enabled_xdp_vsi(vsi))
2808		trace_i40e_napi_poll(napi, q_vector, budget, budget_per_ring, rx_cleaned,
2809				     tx_cleaned, rx_clean_complete, tx_clean_complete);
2810
2811	/* If work not completed, return budget and polling will return */
2812	if (!clean_complete) {
 
2813		int cpu_id = smp_processor_id();
2814
2815		/* It is possible that the interrupt affinity has changed but,
2816		 * if the cpu is pegged at 100%, polling will never exit while
2817		 * traffic continues and the interrupt will be stuck on this
2818		 * cpu.  We check to make sure affinity is correct before we
2819		 * continue to poll, otherwise we must stop polling so the
2820		 * interrupt can move to the correct cpu.
2821		 */
2822		if (!cpumask_test_cpu(cpu_id, &q_vector->affinity_mask)) {
2823			/* Tell napi that we are done polling */
2824			napi_complete_done(napi, work_done);
2825
2826			/* Force an interrupt */
2827			i40e_force_wb(vsi, q_vector);
2828
2829			/* Return budget-1 so that polling stops */
2830			return budget - 1;
2831		}
2832tx_only:
2833		if (arm_wb) {
2834			q_vector->tx.ring[0].tx_stats.tx_force_wb++;
2835			i40e_enable_wb_on_itr(vsi, q_vector);
 
 
2836		}
2837		return budget;
2838	}
2839
2840	if (q_vector->tx.ring[0].flags & I40E_TXR_FLAGS_WB_ON_ITR)
2841		q_vector->arm_wb_state = false;
2842
2843	/* Exit the polling mode, but don't re-enable interrupts if stack might
2844	 * poll us due to busy-polling
2845	 */
2846	if (likely(napi_complete_done(napi, work_done)))
2847		i40e_update_enable_itr(vsi, q_vector);
 
 
 
 
 
 
2848	else
2849		q_vector->in_busy_poll = true;
2850
2851	return min(work_done, budget - 1);
2852}
2853
2854/**
2855 * i40e_atr - Add a Flow Director ATR filter
2856 * @tx_ring:  ring to add programming descriptor to
2857 * @skb:      send buffer
2858 * @tx_flags: send tx flags
2859 **/
2860static void i40e_atr(struct i40e_ring *tx_ring, struct sk_buff *skb,
2861		     u32 tx_flags)
2862{
2863	struct i40e_filter_program_desc *fdir_desc;
2864	struct i40e_pf *pf = tx_ring->vsi->back;
2865	union {
2866		unsigned char *network;
2867		struct iphdr *ipv4;
2868		struct ipv6hdr *ipv6;
2869	} hdr;
2870	struct tcphdr *th;
2871	unsigned int hlen;
2872	u32 flex_ptype, dtype_cmd;
2873	int l4_proto;
2874	u16 i;
2875
2876	/* make sure ATR is enabled */
2877	if (!test_bit(I40E_FLAG_FD_ATR_ENA, pf->flags))
2878		return;
2879
2880	if (test_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state))
2881		return;
2882
2883	/* if sampling is disabled do nothing */
2884	if (!tx_ring->atr_sample_rate)
2885		return;
2886
2887	/* Currently only IPv4/IPv6 with TCP is supported */
2888	if (!(tx_flags & (I40E_TX_FLAGS_IPV4 | I40E_TX_FLAGS_IPV6)))
2889		return;
2890
2891	/* snag network header to get L4 type and address */
2892	hdr.network = (tx_flags & I40E_TX_FLAGS_UDP_TUNNEL) ?
2893		      skb_inner_network_header(skb) : skb_network_header(skb);
2894
2895	/* Note: tx_flags gets modified to reflect inner protocols in
2896	 * tx_enable_csum function if encap is enabled.
2897	 */
2898	if (tx_flags & I40E_TX_FLAGS_IPV4) {
2899		/* access ihl as u8 to avoid unaligned access on ia64 */
2900		hlen = (hdr.network[0] & 0x0F) << 2;
2901		l4_proto = hdr.ipv4->protocol;
2902	} else {
2903		/* find the start of the innermost ipv6 header */
2904		unsigned int inner_hlen = hdr.network - skb->data;
2905		unsigned int h_offset = inner_hlen;
2906
2907		/* this function updates h_offset to the end of the header */
2908		l4_proto =
2909		  ipv6_find_hdr(skb, &h_offset, IPPROTO_TCP, NULL, NULL);
2910		/* hlen will contain our best estimate of the tcp header */
2911		hlen = h_offset - inner_hlen;
2912	}
2913
2914	if (l4_proto != IPPROTO_TCP)
2915		return;
2916
2917	th = (struct tcphdr *)(hdr.network + hlen);
2918
2919	/* Due to lack of space, no more new filters can be programmed */
2920	if (th->syn && test_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state))
2921		return;
2922	if (test_bit(I40E_FLAG_HW_ATR_EVICT_ENA, pf->flags)) {
 
2923		/* HW ATR eviction will take care of removing filters on FIN
2924		 * and RST packets.
2925		 */
2926		if (th->fin || th->rst)
2927			return;
2928	}
2929
2930	tx_ring->atr_count++;
2931
2932	/* sample on all syn/fin/rst packets or once every atr sample rate */
2933	if (!th->fin &&
2934	    !th->syn &&
2935	    !th->rst &&
2936	    (tx_ring->atr_count < tx_ring->atr_sample_rate))
2937		return;
2938
2939	tx_ring->atr_count = 0;
2940
2941	/* grab the next descriptor */
2942	i = tx_ring->next_to_use;
2943	fdir_desc = I40E_TX_FDIRDESC(tx_ring, i);
2944
2945	i++;
2946	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
2947
2948	flex_ptype = FIELD_PREP(I40E_TXD_FLTR_QW0_QINDEX_MASK,
2949				tx_ring->queue_index);
2950	flex_ptype |= (tx_flags & I40E_TX_FLAGS_IPV4) ?
2951		      (I40E_FILTER_PCTYPE_NONF_IPV4_TCP <<
2952		       I40E_TXD_FLTR_QW0_PCTYPE_SHIFT) :
2953		      (I40E_FILTER_PCTYPE_NONF_IPV6_TCP <<
2954		       I40E_TXD_FLTR_QW0_PCTYPE_SHIFT);
2955
2956	flex_ptype |= tx_ring->vsi->id << I40E_TXD_FLTR_QW0_DEST_VSI_SHIFT;
2957
2958	dtype_cmd = I40E_TX_DESC_DTYPE_FILTER_PROG;
2959
2960	dtype_cmd |= (th->fin || th->rst) ?
2961		     (I40E_FILTER_PROGRAM_DESC_PCMD_REMOVE <<
2962		      I40E_TXD_FLTR_QW1_PCMD_SHIFT) :
2963		     (I40E_FILTER_PROGRAM_DESC_PCMD_ADD_UPDATE <<
2964		      I40E_TXD_FLTR_QW1_PCMD_SHIFT);
2965
2966	dtype_cmd |= I40E_FILTER_PROGRAM_DESC_DEST_DIRECT_PACKET_QINDEX <<
2967		     I40E_TXD_FLTR_QW1_DEST_SHIFT;
2968
2969	dtype_cmd |= I40E_FILTER_PROGRAM_DESC_FD_STATUS_FD_ID <<
2970		     I40E_TXD_FLTR_QW1_FD_STATUS_SHIFT;
2971
2972	dtype_cmd |= I40E_TXD_FLTR_QW1_CNT_ENA_MASK;
2973	if (!(tx_flags & I40E_TX_FLAGS_UDP_TUNNEL))
2974		dtype_cmd |=
2975			FIELD_PREP(I40E_TXD_FLTR_QW1_CNTINDEX_MASK,
2976				   I40E_FD_ATR_STAT_IDX(pf->hw.pf_id));
 
2977	else
2978		dtype_cmd |=
2979			FIELD_PREP(I40E_TXD_FLTR_QW1_CNTINDEX_MASK,
2980				   I40E_FD_ATR_TUNNEL_STAT_IDX(pf->hw.pf_id));
 
2981
2982	if (test_bit(I40E_FLAG_HW_ATR_EVICT_ENA, pf->flags))
 
2983		dtype_cmd |= I40E_TXD_FLTR_QW1_ATR_MASK;
2984
2985	fdir_desc->qindex_flex_ptype_vsi = cpu_to_le32(flex_ptype);
2986	fdir_desc->rsvd = cpu_to_le32(0);
2987	fdir_desc->dtype_cmd_cntindex = cpu_to_le32(dtype_cmd);
2988	fdir_desc->fd_id = cpu_to_le32(0);
2989}
2990
2991/**
2992 * i40e_tx_prepare_vlan_flags - prepare generic TX VLAN tagging flags for HW
2993 * @skb:     send buffer
2994 * @tx_ring: ring to send buffer on
2995 * @flags:   the tx flags to be set
2996 *
2997 * Checks the skb and set up correspondingly several generic transmit flags
2998 * related to VLAN tagging for the HW, such as VLAN, DCB, etc.
2999 *
3000 * Returns error code indicate the frame should be dropped upon error and the
3001 * otherwise  returns 0 to indicate the flags has been set properly.
3002 **/
 
 
 
 
 
3003static inline int i40e_tx_prepare_vlan_flags(struct sk_buff *skb,
3004					     struct i40e_ring *tx_ring,
3005					     u32 *flags)
 
3006{
3007	__be16 protocol = skb->protocol;
3008	u32  tx_flags = 0;
3009
3010	if (protocol == htons(ETH_P_8021Q) &&
3011	    !(tx_ring->netdev->features & NETIF_F_HW_VLAN_CTAG_TX)) {
3012		/* When HW VLAN acceleration is turned off by the user the
3013		 * stack sets the protocol to 8021q so that the driver
3014		 * can take any steps required to support the SW only
3015		 * VLAN handling.  In our case the driver doesn't need
3016		 * to take any further steps so just set the protocol
3017		 * to the encapsulated ethertype.
3018		 */
3019		skb->protocol = vlan_get_protocol(skb);
3020		goto out;
3021	}
3022
3023	/* if we have a HW VLAN tag being added, default to the HW one */
3024	if (skb_vlan_tag_present(skb)) {
3025		tx_flags |= skb_vlan_tag_get(skb) << I40E_TX_FLAGS_VLAN_SHIFT;
3026		tx_flags |= I40E_TX_FLAGS_HW_VLAN;
3027	/* else if it is a SW VLAN, check the next protocol and store the tag */
3028	} else if (protocol == htons(ETH_P_8021Q)) {
3029		struct vlan_hdr *vhdr, _vhdr;
3030
3031		vhdr = skb_header_pointer(skb, ETH_HLEN, sizeof(_vhdr), &_vhdr);
3032		if (!vhdr)
3033			return -EINVAL;
3034
3035		protocol = vhdr->h_vlan_encapsulated_proto;
3036		tx_flags |= ntohs(vhdr->h_vlan_TCI) << I40E_TX_FLAGS_VLAN_SHIFT;
3037		tx_flags |= I40E_TX_FLAGS_SW_VLAN;
3038	}
3039
3040	if (!test_bit(I40E_FLAG_DCB_ENA, tx_ring->vsi->back->flags))
3041		goto out;
3042
3043	/* Insert 802.1p priority into VLAN header */
3044	if ((tx_flags & (I40E_TX_FLAGS_HW_VLAN | I40E_TX_FLAGS_SW_VLAN)) ||
3045	    (skb->priority != TC_PRIO_CONTROL)) {
3046		tx_flags &= ~I40E_TX_FLAGS_VLAN_PRIO_MASK;
3047		tx_flags |= (skb->priority & 0x7) <<
3048				I40E_TX_FLAGS_VLAN_PRIO_SHIFT;
3049		if (tx_flags & I40E_TX_FLAGS_SW_VLAN) {
3050			struct vlan_ethhdr *vhdr;
3051			int rc;
3052
3053			rc = skb_cow_head(skb, 0);
3054			if (rc < 0)
3055				return rc;
3056			vhdr = skb_vlan_eth_hdr(skb);
3057			vhdr->h_vlan_TCI = htons(tx_flags >>
3058						 I40E_TX_FLAGS_VLAN_SHIFT);
3059		} else {
3060			tx_flags |= I40E_TX_FLAGS_HW_VLAN;
3061		}
3062	}
3063
3064out:
3065	*flags = tx_flags;
3066	return 0;
3067}
3068
3069/**
3070 * i40e_tso - set up the tso context descriptor
3071 * @first:    pointer to first Tx buffer for xmit
3072 * @hdr_len:  ptr to the size of the packet header
3073 * @cd_type_cmd_tso_mss: Quad Word 1
3074 *
3075 * Returns 0 if no TSO can happen, 1 if tso is going, or error
3076 **/
3077static int i40e_tso(struct i40e_tx_buffer *first, u8 *hdr_len,
3078		    u64 *cd_type_cmd_tso_mss)
3079{
3080	struct sk_buff *skb = first->skb;
3081	u64 cd_cmd, cd_tso_len, cd_mss;
3082	__be16 protocol;
3083	union {
3084		struct iphdr *v4;
3085		struct ipv6hdr *v6;
3086		unsigned char *hdr;
3087	} ip;
3088	union {
3089		struct tcphdr *tcp;
3090		struct udphdr *udp;
3091		unsigned char *hdr;
3092	} l4;
3093	u32 paylen, l4_offset;
3094	u16 gso_size;
3095	int err;
3096
3097	if (skb->ip_summed != CHECKSUM_PARTIAL)
3098		return 0;
3099
3100	if (!skb_is_gso(skb))
3101		return 0;
3102
3103	err = skb_cow_head(skb, 0);
3104	if (err < 0)
3105		return err;
3106
3107	protocol = vlan_get_protocol(skb);
3108
3109	if (eth_p_mpls(protocol))
3110		ip.hdr = skb_inner_network_header(skb);
3111	else
3112		ip.hdr = skb_network_header(skb);
3113	l4.hdr = skb_checksum_start(skb);
3114
3115	/* initialize outer IP header fields */
3116	if (ip.v4->version == 4) {
3117		ip.v4->tot_len = 0;
3118		ip.v4->check = 0;
3119
3120		first->tx_flags |= I40E_TX_FLAGS_TSO;
3121	} else {
3122		ip.v6->payload_len = 0;
3123		first->tx_flags |= I40E_TX_FLAGS_TSO;
3124	}
3125
3126	if (skb_shinfo(skb)->gso_type & (SKB_GSO_GRE |
3127					 SKB_GSO_GRE_CSUM |
3128					 SKB_GSO_IPXIP4 |
3129					 SKB_GSO_IPXIP6 |
3130					 SKB_GSO_UDP_TUNNEL |
3131					 SKB_GSO_UDP_TUNNEL_CSUM)) {
3132		if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) &&
3133		    (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM)) {
3134			l4.udp->len = 0;
3135
3136			/* determine offset of outer transport header */
3137			l4_offset = l4.hdr - skb->data;
3138
3139			/* remove payload length from outer checksum */
3140			paylen = skb->len - l4_offset;
3141			csum_replace_by_diff(&l4.udp->check,
3142					     (__force __wsum)htonl(paylen));
3143		}
3144
3145		/* reset pointers to inner headers */
3146		ip.hdr = skb_inner_network_header(skb);
3147		l4.hdr = skb_inner_transport_header(skb);
3148
3149		/* initialize inner IP header fields */
3150		if (ip.v4->version == 4) {
3151			ip.v4->tot_len = 0;
3152			ip.v4->check = 0;
3153		} else {
3154			ip.v6->payload_len = 0;
3155		}
3156	}
3157
3158	/* determine offset of inner transport header */
3159	l4_offset = l4.hdr - skb->data;
3160
3161	/* remove payload length from inner checksum */
3162	paylen = skb->len - l4_offset;
 
3163
3164	if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) {
3165		csum_replace_by_diff(&l4.udp->check, (__force __wsum)htonl(paylen));
3166		/* compute length of segmentation header */
3167		*hdr_len = sizeof(*l4.udp) + l4_offset;
3168	} else {
3169		csum_replace_by_diff(&l4.tcp->check, (__force __wsum)htonl(paylen));
3170		/* compute length of segmentation header */
3171		*hdr_len = (l4.tcp->doff * 4) + l4_offset;
3172	}
3173
3174	/* pull values out of skb_shinfo */
3175	gso_size = skb_shinfo(skb)->gso_size;
3176
3177	/* update GSO size and bytecount with header size */
3178	first->gso_segs = skb_shinfo(skb)->gso_segs;
3179	first->bytecount += (first->gso_segs - 1) * *hdr_len;
3180
3181	/* find the field values */
3182	cd_cmd = I40E_TX_CTX_DESC_TSO;
3183	cd_tso_len = skb->len - *hdr_len;
3184	cd_mss = gso_size;
3185	*cd_type_cmd_tso_mss |= (cd_cmd << I40E_TXD_CTX_QW1_CMD_SHIFT) |
3186				(cd_tso_len << I40E_TXD_CTX_QW1_TSO_LEN_SHIFT) |
3187				(cd_mss << I40E_TXD_CTX_QW1_MSS_SHIFT);
3188	return 1;
3189}
3190
3191/**
3192 * i40e_tsyn - set up the tsyn context descriptor
3193 * @tx_ring:  ptr to the ring to send
3194 * @skb:      ptr to the skb we're sending
3195 * @tx_flags: the collected send information
3196 * @cd_type_cmd_tso_mss: Quad Word 1
3197 *
3198 * Returns 0 if no Tx timestamp can happen and 1 if the timestamp will happen
3199 **/
3200static int i40e_tsyn(struct i40e_ring *tx_ring, struct sk_buff *skb,
3201		     u32 tx_flags, u64 *cd_type_cmd_tso_mss)
3202{
3203	struct i40e_pf *pf;
3204
3205	if (likely(!(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)))
3206		return 0;
3207
3208	/* Tx timestamps cannot be sampled when doing TSO */
3209	if (tx_flags & I40E_TX_FLAGS_TSO)
3210		return 0;
3211
3212	/* only timestamp the outbound packet if the user has requested it and
3213	 * we are not already transmitting a packet to be timestamped
3214	 */
3215	pf = i40e_netdev_to_pf(tx_ring->netdev);
3216	if (!test_bit(I40E_FLAG_PTP_ENA, pf->flags))
3217		return 0;
3218
3219	if (pf->ptp_tx &&
3220	    !test_and_set_bit_lock(__I40E_PTP_TX_IN_PROGRESS, pf->state)) {
3221		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
3222		pf->ptp_tx_start = jiffies;
3223		pf->ptp_tx_skb = skb_get(skb);
3224	} else {
3225		pf->tx_hwtstamp_skipped++;
3226		return 0;
3227	}
3228
3229	*cd_type_cmd_tso_mss |= (u64)I40E_TX_CTX_DESC_TSYN <<
3230				I40E_TXD_CTX_QW1_CMD_SHIFT;
3231
3232	return 1;
3233}
3234
3235/**
3236 * i40e_tx_enable_csum - Enable Tx checksum offloads
3237 * @skb: send buffer
3238 * @tx_flags: pointer to Tx flags currently set
3239 * @td_cmd: Tx descriptor command bits to set
3240 * @td_offset: Tx descriptor header offsets to set
3241 * @tx_ring: Tx descriptor ring
3242 * @cd_tunneling: ptr to context desc bits
3243 **/
3244static int i40e_tx_enable_csum(struct sk_buff *skb, u32 *tx_flags,
3245			       u32 *td_cmd, u32 *td_offset,
3246			       struct i40e_ring *tx_ring,
3247			       u32 *cd_tunneling)
3248{
3249	union {
3250		struct iphdr *v4;
3251		struct ipv6hdr *v6;
3252		unsigned char *hdr;
3253	} ip;
3254	union {
3255		struct tcphdr *tcp;
3256		struct udphdr *udp;
3257		unsigned char *hdr;
3258	} l4;
3259	unsigned char *exthdr;
3260	u32 offset, cmd = 0;
3261	__be16 frag_off;
3262	__be16 protocol;
3263	u8 l4_proto = 0;
3264
3265	if (skb->ip_summed != CHECKSUM_PARTIAL)
3266		return 0;
3267
3268	protocol = vlan_get_protocol(skb);
3269
3270	if (eth_p_mpls(protocol)) {
3271		ip.hdr = skb_inner_network_header(skb);
3272		l4.hdr = skb_checksum_start(skb);
3273	} else {
3274		ip.hdr = skb_network_header(skb);
3275		l4.hdr = skb_transport_header(skb);
3276	}
3277
3278	/* set the tx_flags to indicate the IP protocol type. this is
3279	 * required so that checksum header computation below is accurate.
3280	 */
3281	if (ip.v4->version == 4)
3282		*tx_flags |= I40E_TX_FLAGS_IPV4;
3283	else
3284		*tx_flags |= I40E_TX_FLAGS_IPV6;
3285
3286	/* compute outer L2 header size */
3287	offset = ((ip.hdr - skb->data) / 2) << I40E_TX_DESC_LENGTH_MACLEN_SHIFT;
3288
3289	if (skb->encapsulation) {
3290		u32 tunnel = 0;
3291		/* define outer network header type */
3292		if (*tx_flags & I40E_TX_FLAGS_IPV4) {
3293			tunnel |= (*tx_flags & I40E_TX_FLAGS_TSO) ?
3294				  I40E_TX_CTX_EXT_IP_IPV4 :
3295				  I40E_TX_CTX_EXT_IP_IPV4_NO_CSUM;
3296
3297			l4_proto = ip.v4->protocol;
3298		} else if (*tx_flags & I40E_TX_FLAGS_IPV6) {
3299			int ret;
3300
3301			tunnel |= I40E_TX_CTX_EXT_IP_IPV6;
3302
3303			exthdr = ip.hdr + sizeof(*ip.v6);
3304			l4_proto = ip.v6->nexthdr;
3305			ret = ipv6_skip_exthdr(skb, exthdr - skb->data,
3306					       &l4_proto, &frag_off);
3307			if (ret < 0)
3308				return -1;
3309		}
3310
3311		/* define outer transport */
3312		switch (l4_proto) {
3313		case IPPROTO_UDP:
3314			tunnel |= I40E_TXD_CTX_UDP_TUNNELING;
3315			*tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL;
3316			break;
3317		case IPPROTO_GRE:
3318			tunnel |= I40E_TXD_CTX_GRE_TUNNELING;
3319			*tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL;
3320			break;
3321		case IPPROTO_IPIP:
3322		case IPPROTO_IPV6:
3323			*tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL;
3324			l4.hdr = skb_inner_network_header(skb);
3325			break;
3326		default:
3327			if (*tx_flags & I40E_TX_FLAGS_TSO)
3328				return -1;
3329
3330			skb_checksum_help(skb);
3331			return 0;
3332		}
3333
3334		/* compute outer L3 header size */
3335		tunnel |= ((l4.hdr - ip.hdr) / 4) <<
3336			  I40E_TXD_CTX_QW0_EXT_IPLEN_SHIFT;
3337
3338		/* switch IP header pointer from outer to inner header */
3339		ip.hdr = skb_inner_network_header(skb);
3340
3341		/* compute tunnel header size */
3342		tunnel |= ((ip.hdr - l4.hdr) / 2) <<
3343			  I40E_TXD_CTX_QW0_NATLEN_SHIFT;
3344
3345		/* indicate if we need to offload outer UDP header */
3346		if ((*tx_flags & I40E_TX_FLAGS_TSO) &&
3347		    !(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) &&
3348		    (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM))
3349			tunnel |= I40E_TXD_CTX_QW0_L4T_CS_MASK;
3350
3351		/* record tunnel offload values */
3352		*cd_tunneling |= tunnel;
3353
3354		/* switch L4 header pointer from outer to inner */
3355		l4.hdr = skb_inner_transport_header(skb);
3356		l4_proto = 0;
3357
3358		/* reset type as we transition from outer to inner headers */
3359		*tx_flags &= ~(I40E_TX_FLAGS_IPV4 | I40E_TX_FLAGS_IPV6);
3360		if (ip.v4->version == 4)
3361			*tx_flags |= I40E_TX_FLAGS_IPV4;
3362		if (ip.v6->version == 6)
3363			*tx_flags |= I40E_TX_FLAGS_IPV6;
3364	}
3365
3366	/* Enable IP checksum offloads */
3367	if (*tx_flags & I40E_TX_FLAGS_IPV4) {
3368		l4_proto = ip.v4->protocol;
3369		/* the stack computes the IP header already, the only time we
3370		 * need the hardware to recompute it is in the case of TSO.
3371		 */
3372		cmd |= (*tx_flags & I40E_TX_FLAGS_TSO) ?
3373		       I40E_TX_DESC_CMD_IIPT_IPV4_CSUM :
3374		       I40E_TX_DESC_CMD_IIPT_IPV4;
3375	} else if (*tx_flags & I40E_TX_FLAGS_IPV6) {
3376		cmd |= I40E_TX_DESC_CMD_IIPT_IPV6;
3377
3378		exthdr = ip.hdr + sizeof(*ip.v6);
3379		l4_proto = ip.v6->nexthdr;
3380		if (l4.hdr != exthdr)
3381			ipv6_skip_exthdr(skb, exthdr - skb->data,
3382					 &l4_proto, &frag_off);
3383	}
3384
3385	/* compute inner L3 header size */
3386	offset |= ((l4.hdr - ip.hdr) / 4) << I40E_TX_DESC_LENGTH_IPLEN_SHIFT;
3387
3388	/* Enable L4 checksum offloads */
3389	switch (l4_proto) {
3390	case IPPROTO_TCP:
3391		/* enable checksum offloads */
3392		cmd |= I40E_TX_DESC_CMD_L4T_EOFT_TCP;
3393		offset |= l4.tcp->doff << I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
3394		break;
3395	case IPPROTO_SCTP:
3396		/* enable SCTP checksum offload */
3397		cmd |= I40E_TX_DESC_CMD_L4T_EOFT_SCTP;
3398		offset |= (sizeof(struct sctphdr) >> 2) <<
3399			  I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
3400		break;
3401	case IPPROTO_UDP:
3402		/* enable UDP checksum offload */
3403		cmd |= I40E_TX_DESC_CMD_L4T_EOFT_UDP;
3404		offset |= (sizeof(struct udphdr) >> 2) <<
3405			  I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
3406		break;
3407	default:
3408		if (*tx_flags & I40E_TX_FLAGS_TSO)
3409			return -1;
3410		skb_checksum_help(skb);
3411		return 0;
3412	}
3413
3414	*td_cmd |= cmd;
3415	*td_offset |= offset;
3416
3417	return 1;
3418}
3419
3420/**
3421 * i40e_create_tx_ctx - Build the Tx context descriptor
3422 * @tx_ring:  ring to create the descriptor on
3423 * @cd_type_cmd_tso_mss: Quad Word 1
3424 * @cd_tunneling: Quad Word 0 - bits 0-31
3425 * @cd_l2tag2: Quad Word 0 - bits 32-63
3426 **/
3427static void i40e_create_tx_ctx(struct i40e_ring *tx_ring,
3428			       const u64 cd_type_cmd_tso_mss,
3429			       const u32 cd_tunneling, const u32 cd_l2tag2)
3430{
3431	struct i40e_tx_context_desc *context_desc;
3432	int i = tx_ring->next_to_use;
3433
3434	if ((cd_type_cmd_tso_mss == I40E_TX_DESC_DTYPE_CONTEXT) &&
3435	    !cd_tunneling && !cd_l2tag2)
3436		return;
3437
3438	/* grab the next descriptor */
3439	context_desc = I40E_TX_CTXTDESC(tx_ring, i);
3440
3441	i++;
3442	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
3443
3444	/* cpu_to_le32 and assign to struct fields */
3445	context_desc->tunneling_params = cpu_to_le32(cd_tunneling);
3446	context_desc->l2tag2 = cpu_to_le16(cd_l2tag2);
3447	context_desc->rsvd = cpu_to_le16(0);
3448	context_desc->type_cmd_tso_mss = cpu_to_le64(cd_type_cmd_tso_mss);
3449}
3450
3451/**
3452 * __i40e_maybe_stop_tx - 2nd level check for tx stop conditions
3453 * @tx_ring: the ring to be checked
3454 * @size:    the size buffer we want to assure is available
3455 *
3456 * Returns -EBUSY if a stop is needed, else 0
3457 **/
3458int __i40e_maybe_stop_tx(struct i40e_ring *tx_ring, int size)
3459{
3460	netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
3461	/* Memory barrier before checking head and tail */
3462	smp_mb();
3463
3464	++tx_ring->tx_stats.tx_stopped;
3465
3466	/* Check again in a case another CPU has just made room available. */
3467	if (likely(I40E_DESC_UNUSED(tx_ring) < size))
3468		return -EBUSY;
3469
3470	/* A reprieve! - use start_queue because it doesn't call schedule */
3471	netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index);
3472	++tx_ring->tx_stats.restart_queue;
3473	return 0;
3474}
3475
3476/**
3477 * __i40e_chk_linearize - Check if there are more than 8 buffers per packet
3478 * @skb:      send buffer
3479 *
3480 * Note: Our HW can't DMA more than 8 buffers to build a packet on the wire
3481 * and so we need to figure out the cases where we need to linearize the skb.
3482 *
3483 * For TSO we need to count the TSO header and segment payload separately.
3484 * As such we need to check cases where we have 7 fragments or more as we
3485 * can potentially require 9 DMA transactions, 1 for the TSO header, 1 for
3486 * the segment payload in the first descriptor, and another 7 for the
3487 * fragments.
3488 **/
3489bool __i40e_chk_linearize(struct sk_buff *skb)
3490{
3491	const skb_frag_t *frag, *stale;
3492	int nr_frags, sum;
3493
3494	/* no need to check if number of frags is less than 7 */
3495	nr_frags = skb_shinfo(skb)->nr_frags;
3496	if (nr_frags < (I40E_MAX_BUFFER_TXD - 1))
3497		return false;
3498
3499	/* We need to walk through the list and validate that each group
3500	 * of 6 fragments totals at least gso_size.
3501	 */
3502	nr_frags -= I40E_MAX_BUFFER_TXD - 2;
3503	frag = &skb_shinfo(skb)->frags[0];
3504
3505	/* Initialize size to the negative value of gso_size minus 1.  We
3506	 * use this as the worst case scenerio in which the frag ahead
3507	 * of us only provides one byte which is why we are limited to 6
3508	 * descriptors for a single transmit as the header and previous
3509	 * fragment are already consuming 2 descriptors.
3510	 */
3511	sum = 1 - skb_shinfo(skb)->gso_size;
3512
3513	/* Add size of frags 0 through 4 to create our initial sum */
3514	sum += skb_frag_size(frag++);
3515	sum += skb_frag_size(frag++);
3516	sum += skb_frag_size(frag++);
3517	sum += skb_frag_size(frag++);
3518	sum += skb_frag_size(frag++);
3519
3520	/* Walk through fragments adding latest fragment, testing it, and
3521	 * then removing stale fragments from the sum.
3522	 */
3523	for (stale = &skb_shinfo(skb)->frags[0];; stale++) {
3524		int stale_size = skb_frag_size(stale);
3525
3526		sum += skb_frag_size(frag++);
3527
3528		/* The stale fragment may present us with a smaller
3529		 * descriptor than the actual fragment size. To account
3530		 * for that we need to remove all the data on the front and
3531		 * figure out what the remainder would be in the last
3532		 * descriptor associated with the fragment.
3533		 */
3534		if (stale_size > I40E_MAX_DATA_PER_TXD) {
3535			int align_pad = -(skb_frag_off(stale)) &
3536					(I40E_MAX_READ_REQ_SIZE - 1);
3537
3538			sum -= align_pad;
3539			stale_size -= align_pad;
3540
3541			do {
3542				sum -= I40E_MAX_DATA_PER_TXD_ALIGNED;
3543				stale_size -= I40E_MAX_DATA_PER_TXD_ALIGNED;
3544			} while (stale_size > I40E_MAX_DATA_PER_TXD);
3545		}
3546
3547		/* if sum is negative we failed to make sufficient progress */
3548		if (sum < 0)
3549			return true;
3550
3551		if (!nr_frags--)
3552			break;
3553
3554		sum -= stale_size;
3555	}
3556
3557	return false;
3558}
3559
3560/**
3561 * i40e_tx_map - Build the Tx descriptor
3562 * @tx_ring:  ring to send buffer on
3563 * @skb:      send buffer
3564 * @first:    first buffer info buffer to use
3565 * @tx_flags: collected send information
3566 * @hdr_len:  size of the packet header
3567 * @td_cmd:   the command field in the descriptor
3568 * @td_offset: offset for checksum or crc
3569 *
3570 * Returns 0 on success, -1 on failure to DMA
3571 **/
3572static inline int i40e_tx_map(struct i40e_ring *tx_ring, struct sk_buff *skb,
3573			      struct i40e_tx_buffer *first, u32 tx_flags,
3574			      const u8 hdr_len, u32 td_cmd, u32 td_offset)
 
 
 
 
 
 
3575{
3576	unsigned int data_len = skb->data_len;
3577	unsigned int size = skb_headlen(skb);
3578	skb_frag_t *frag;
3579	struct i40e_tx_buffer *tx_bi;
3580	struct i40e_tx_desc *tx_desc;
3581	u16 i = tx_ring->next_to_use;
3582	u32 td_tag = 0;
3583	dma_addr_t dma;
 
3584	u16 desc_count = 1;
3585
3586	if (tx_flags & I40E_TX_FLAGS_HW_VLAN) {
3587		td_cmd |= I40E_TX_DESC_CMD_IL2TAG1;
3588		td_tag = FIELD_GET(I40E_TX_FLAGS_VLAN_MASK, tx_flags);
 
3589	}
3590
 
 
 
 
 
 
 
 
 
3591	first->tx_flags = tx_flags;
3592
3593	dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
3594
3595	tx_desc = I40E_TX_DESC(tx_ring, i);
3596	tx_bi = first;
3597
3598	for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
3599		unsigned int max_data = I40E_MAX_DATA_PER_TXD_ALIGNED;
3600
3601		if (dma_mapping_error(tx_ring->dev, dma))
3602			goto dma_error;
3603
3604		/* record length, and DMA address */
3605		dma_unmap_len_set(tx_bi, len, size);
3606		dma_unmap_addr_set(tx_bi, dma, dma);
3607
3608		/* align size to end of page */
3609		max_data += -dma & (I40E_MAX_READ_REQ_SIZE - 1);
3610		tx_desc->buffer_addr = cpu_to_le64(dma);
3611
3612		while (unlikely(size > I40E_MAX_DATA_PER_TXD)) {
3613			tx_desc->cmd_type_offset_bsz =
3614				build_ctob(td_cmd, td_offset,
3615					   max_data, td_tag);
3616
3617			tx_desc++;
3618			i++;
3619			desc_count++;
3620
3621			if (i == tx_ring->count) {
3622				tx_desc = I40E_TX_DESC(tx_ring, 0);
3623				i = 0;
3624			}
3625
3626			dma += max_data;
3627			size -= max_data;
3628
3629			max_data = I40E_MAX_DATA_PER_TXD_ALIGNED;
3630			tx_desc->buffer_addr = cpu_to_le64(dma);
3631		}
3632
3633		if (likely(!data_len))
3634			break;
3635
3636		tx_desc->cmd_type_offset_bsz = build_ctob(td_cmd, td_offset,
3637							  size, td_tag);
3638
3639		tx_desc++;
3640		i++;
3641		desc_count++;
3642
3643		if (i == tx_ring->count) {
3644			tx_desc = I40E_TX_DESC(tx_ring, 0);
3645			i = 0;
3646		}
3647
3648		size = skb_frag_size(frag);
3649		data_len -= size;
3650
3651		dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
3652				       DMA_TO_DEVICE);
3653
3654		tx_bi = &tx_ring->tx_bi[i];
3655	}
3656
3657	netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
3658
3659	i++;
3660	if (i == tx_ring->count)
3661		i = 0;
3662
3663	tx_ring->next_to_use = i;
3664
3665	i40e_maybe_stop_tx(tx_ring, DESC_NEEDED);
3666
3667	/* write last descriptor with EOP bit */
3668	td_cmd |= I40E_TX_DESC_CMD_EOP;
3669
3670	/* We OR these values together to check both against 4 (WB_STRIDE)
3671	 * below. This is safe since we don't re-use desc_count afterwards.
 
3672	 */
3673	desc_count |= ++tx_ring->packet_stride;
3674
3675	if (desc_count >= WB_STRIDE) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3676		/* write last descriptor with RS bit set */
3677		td_cmd |= I40E_TX_DESC_CMD_RS;
3678		tx_ring->packet_stride = 0;
3679	}
3680
3681	tx_desc->cmd_type_offset_bsz =
3682			build_ctob(td_cmd, td_offset, size, td_tag);
3683
3684	skb_tx_timestamp(skb);
3685
3686	/* Force memory writes to complete before letting h/w know there
3687	 * are new descriptors to fetch.
3688	 *
3689	 * We also use this memory barrier to make certain all of the
3690	 * status bits have been updated before next_to_watch is written.
3691	 */
3692	wmb();
3693
3694	/* set next_to_watch value indicating a packet is present */
3695	first->next_to_watch = tx_desc;
3696
3697	/* notify HW of packet */
3698	if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more()) {
3699		writel(i, tx_ring->tail);
 
 
 
 
 
3700	}
3701
3702	return 0;
3703
3704dma_error:
3705	dev_info(tx_ring->dev, "TX DMA map failed\n");
3706
3707	/* clear dma mappings for failed tx_bi map */
3708	for (;;) {
3709		tx_bi = &tx_ring->tx_bi[i];
3710		i40e_unmap_and_free_tx_resource(tx_ring, tx_bi);
3711		if (tx_bi == first)
3712			break;
3713		if (i == 0)
3714			i = tx_ring->count;
3715		i--;
3716	}
3717
3718	tx_ring->next_to_use = i;
3719
3720	return -1;
3721}
3722
3723static u16 i40e_swdcb_skb_tx_hash(struct net_device *dev,
3724				  const struct sk_buff *skb,
3725				  u16 num_tx_queues)
3726{
3727	u32 jhash_initval_salt = 0xd631614b;
3728	u32 hash;
3729
3730	if (skb->sk && skb->sk->sk_hash)
3731		hash = skb->sk->sk_hash;
3732	else
3733		hash = (__force u16)skb->protocol ^ skb->hash;
3734
3735	hash = jhash_1word(hash, jhash_initval_salt);
3736
3737	return (u16)(((u64)hash * num_tx_queues) >> 32);
3738}
3739
3740u16 i40e_lan_select_queue(struct net_device *netdev,
3741			  struct sk_buff *skb,
3742			  struct net_device __always_unused *sb_dev)
3743{
3744	struct i40e_netdev_priv *np = netdev_priv(netdev);
3745	struct i40e_vsi *vsi = np->vsi;
3746	struct i40e_hw *hw;
3747	u16 qoffset;
3748	u16 qcount;
3749	u8 tclass;
3750	u16 hash;
3751	u8 prio;
3752
3753	/* is DCB enabled at all? */
3754	if (vsi->tc_config.numtc == 1 ||
3755	    i40e_is_tc_mqprio_enabled(vsi->back))
3756		return netdev_pick_tx(netdev, skb, sb_dev);
3757
3758	prio = skb->priority;
3759	hw = &vsi->back->hw;
3760	tclass = hw->local_dcbx_config.etscfg.prioritytable[prio];
3761	/* sanity check */
3762	if (unlikely(!(vsi->tc_config.enabled_tc & BIT(tclass))))
3763		tclass = 0;
3764
3765	/* select a queue assigned for the given TC */
3766	qcount = vsi->tc_config.tc_info[tclass].qcount;
3767	hash = i40e_swdcb_skb_tx_hash(netdev, skb, qcount);
3768
3769	qoffset = vsi->tc_config.tc_info[tclass].qoffset;
3770	return qoffset + hash;
3771}
3772
3773/**
3774 * i40e_xmit_xdp_ring - transmits an XDP buffer to an XDP Tx ring
3775 * @xdpf: data to transmit
3776 * @xdp_ring: XDP Tx ring
3777 **/
3778static int i40e_xmit_xdp_ring(struct xdp_frame *xdpf,
3779			      struct i40e_ring *xdp_ring)
3780{
3781	struct skb_shared_info *sinfo = xdp_get_shared_info_from_frame(xdpf);
3782	u8 nr_frags = unlikely(xdp_frame_has_frags(xdpf)) ? sinfo->nr_frags : 0;
3783	u16 i = 0, index = xdp_ring->next_to_use;
3784	struct i40e_tx_buffer *tx_head = &xdp_ring->tx_bi[index];
3785	struct i40e_tx_buffer *tx_bi = tx_head;
3786	struct i40e_tx_desc *tx_desc = I40E_TX_DESC(xdp_ring, index);
3787	void *data = xdpf->data;
3788	u32 size = xdpf->len;
3789
3790	if (unlikely(I40E_DESC_UNUSED(xdp_ring) < 1 + nr_frags)) {
3791		xdp_ring->tx_stats.tx_busy++;
3792		return I40E_XDP_CONSUMED;
3793	}
3794
3795	tx_head->bytecount = xdp_get_frame_len(xdpf);
3796	tx_head->gso_segs = 1;
3797	tx_head->xdpf = xdpf;
3798
3799	for (;;) {
3800		dma_addr_t dma;
3801
3802		dma = dma_map_single(xdp_ring->dev, data, size, DMA_TO_DEVICE);
3803		if (dma_mapping_error(xdp_ring->dev, dma))
3804			goto unmap;
3805
3806		/* record length, and DMA address */
3807		dma_unmap_len_set(tx_bi, len, size);
3808		dma_unmap_addr_set(tx_bi, dma, dma);
3809
3810		tx_desc->buffer_addr = cpu_to_le64(dma);
3811		tx_desc->cmd_type_offset_bsz =
3812			build_ctob(I40E_TX_DESC_CMD_ICRC, 0, size, 0);
3813
3814		if (++index == xdp_ring->count)
3815			index = 0;
3816
3817		if (i == nr_frags)
3818			break;
3819
3820		tx_bi = &xdp_ring->tx_bi[index];
3821		tx_desc = I40E_TX_DESC(xdp_ring, index);
3822
3823		data = skb_frag_address(&sinfo->frags[i]);
3824		size = skb_frag_size(&sinfo->frags[i]);
3825		i++;
3826	}
3827
3828	tx_desc->cmd_type_offset_bsz |=
3829		cpu_to_le64(I40E_TXD_CMD << I40E_TXD_QW1_CMD_SHIFT);
3830
3831	/* Make certain all of the status bits have been updated
3832	 * before next_to_watch is written.
3833	 */
3834	smp_wmb();
3835
3836	xdp_ring->xdp_tx_active++;
3837
3838	tx_head->next_to_watch = tx_desc;
3839	xdp_ring->next_to_use = index;
3840
3841	return I40E_XDP_TX;
3842
3843unmap:
3844	for (;;) {
3845		tx_bi = &xdp_ring->tx_bi[index];
3846		if (dma_unmap_len(tx_bi, len))
3847			dma_unmap_page(xdp_ring->dev,
3848				       dma_unmap_addr(tx_bi, dma),
3849				       dma_unmap_len(tx_bi, len),
3850				       DMA_TO_DEVICE);
3851		dma_unmap_len_set(tx_bi, len, 0);
3852		if (tx_bi == tx_head)
3853			break;
3854
3855		if (!index)
3856			index += xdp_ring->count;
3857		index--;
3858	}
3859
3860	return I40E_XDP_CONSUMED;
3861}
3862
3863/**
3864 * i40e_xmit_frame_ring - Sends buffer on Tx ring
3865 * @skb:     send buffer
3866 * @tx_ring: ring to send buffer on
3867 *
3868 * Returns NETDEV_TX_OK if sent, else an error code
3869 **/
3870static netdev_tx_t i40e_xmit_frame_ring(struct sk_buff *skb,
3871					struct i40e_ring *tx_ring)
3872{
3873	u64 cd_type_cmd_tso_mss = I40E_TX_DESC_DTYPE_CONTEXT;
3874	u32 cd_tunneling = 0, cd_l2tag2 = 0;
3875	struct i40e_tx_buffer *first;
3876	u32 td_offset = 0;
3877	u32 tx_flags = 0;
 
3878	u32 td_cmd = 0;
3879	u8 hdr_len = 0;
3880	int tso, count;
3881	int tsyn;
3882
3883	/* prefetch the data, we'll need it later */
3884	prefetch(skb->data);
3885
3886	i40e_trace(xmit_frame_ring, skb, tx_ring);
3887
3888	count = i40e_xmit_descriptor_count(skb);
3889	if (i40e_chk_linearize(skb, count)) {
3890		if (__skb_linearize(skb)) {
3891			dev_kfree_skb_any(skb);
3892			return NETDEV_TX_OK;
3893		}
3894		count = i40e_txd_use_count(skb->len);
3895		tx_ring->tx_stats.tx_linearize++;
3896	}
3897
3898	/* need: 1 descriptor per page * PAGE_SIZE/I40E_MAX_DATA_PER_TXD,
3899	 *       + 1 desc for skb_head_len/I40E_MAX_DATA_PER_TXD,
3900	 *       + 4 desc gap to avoid the cache line where head is,
3901	 *       + 1 desc for context descriptor,
3902	 * otherwise try next time
3903	 */
3904	if (i40e_maybe_stop_tx(tx_ring, count + 4 + 1)) {
3905		tx_ring->tx_stats.tx_busy++;
3906		return NETDEV_TX_BUSY;
3907	}
3908
3909	/* record the location of the first descriptor for this packet */
3910	first = &tx_ring->tx_bi[tx_ring->next_to_use];
3911	first->skb = skb;
3912	first->bytecount = skb->len;
3913	first->gso_segs = 1;
3914
3915	/* prepare the xmit flags */
3916	if (i40e_tx_prepare_vlan_flags(skb, tx_ring, &tx_flags))
3917		goto out_drop;
3918
3919	tso = i40e_tso(first, &hdr_len, &cd_type_cmd_tso_mss);
 
 
 
 
 
 
 
 
 
 
 
 
3920
3921	if (tso < 0)
3922		goto out_drop;
3923	else if (tso)
3924		tx_flags |= I40E_TX_FLAGS_TSO;
3925
3926	/* Always offload the checksum, since it's in the data descriptor */
3927	tso = i40e_tx_enable_csum(skb, &tx_flags, &td_cmd, &td_offset,
3928				  tx_ring, &cd_tunneling);
3929	if (tso < 0)
3930		goto out_drop;
3931
3932	tsyn = i40e_tsyn(tx_ring, skb, tx_flags, &cd_type_cmd_tso_mss);
3933
3934	if (tsyn)
3935		tx_flags |= I40E_TX_FLAGS_TSYN;
3936
 
 
3937	/* always enable CRC insertion offload */
3938	td_cmd |= I40E_TX_DESC_CMD_ICRC;
3939
3940	i40e_create_tx_ctx(tx_ring, cd_type_cmd_tso_mss,
3941			   cd_tunneling, cd_l2tag2);
3942
3943	/* Add Flow Director ATR if it's enabled.
3944	 *
3945	 * NOTE: this must always be directly before the data descriptor.
3946	 */
3947	i40e_atr(tx_ring, skb, tx_flags);
3948
3949	if (i40e_tx_map(tx_ring, skb, first, tx_flags, hdr_len,
3950			td_cmd, td_offset))
3951		goto cleanup_tx_tstamp;
3952
3953	return NETDEV_TX_OK;
3954
3955out_drop:
3956	i40e_trace(xmit_frame_ring_drop, first->skb, tx_ring);
3957	dev_kfree_skb_any(first->skb);
3958	first->skb = NULL;
3959cleanup_tx_tstamp:
3960	if (unlikely(tx_flags & I40E_TX_FLAGS_TSYN)) {
3961		struct i40e_pf *pf = i40e_netdev_to_pf(tx_ring->netdev);
3962
3963		dev_kfree_skb_any(pf->ptp_tx_skb);
3964		pf->ptp_tx_skb = NULL;
3965		clear_bit_unlock(__I40E_PTP_TX_IN_PROGRESS, pf->state);
3966	}
3967
3968	return NETDEV_TX_OK;
3969}
3970
3971/**
3972 * i40e_lan_xmit_frame - Selects the correct VSI and Tx queue to send buffer
3973 * @skb:    send buffer
3974 * @netdev: network interface device structure
3975 *
3976 * Returns NETDEV_TX_OK if sent, else an error code
3977 **/
3978netdev_tx_t i40e_lan_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
3979{
3980	struct i40e_netdev_priv *np = netdev_priv(netdev);
3981	struct i40e_vsi *vsi = np->vsi;
3982	struct i40e_ring *tx_ring = vsi->tx_rings[skb->queue_mapping];
3983
3984	/* hardware can't handle really short frames, hardware padding works
3985	 * beyond this point
3986	 */
3987	if (skb_put_padto(skb, I40E_MIN_TX_LEN))
3988		return NETDEV_TX_OK;
3989
3990	return i40e_xmit_frame_ring(skb, tx_ring);
3991}
3992
3993/**
3994 * i40e_xdp_xmit - Implements ndo_xdp_xmit
3995 * @dev: netdev
3996 * @n: number of frames
3997 * @frames: array of XDP buffer pointers
3998 * @flags: XDP extra info
3999 *
4000 * Returns number of frames successfully sent. Failed frames
4001 * will be free'ed by XDP core.
4002 *
4003 * For error cases, a negative errno code is returned and no-frames
4004 * are transmitted (caller must handle freeing frames).
4005 **/
4006int i40e_xdp_xmit(struct net_device *dev, int n, struct xdp_frame **frames,
4007		  u32 flags)
4008{
4009	struct i40e_netdev_priv *np = netdev_priv(dev);
4010	unsigned int queue_index = smp_processor_id();
4011	struct i40e_vsi *vsi = np->vsi;
4012	struct i40e_pf *pf = vsi->back;
4013	struct i40e_ring *xdp_ring;
4014	int nxmit = 0;
4015	int i;
4016
4017	if (test_bit(__I40E_VSI_DOWN, vsi->state))
4018		return -ENETDOWN;
4019
4020	if (!i40e_enabled_xdp_vsi(vsi) || queue_index >= vsi->num_queue_pairs ||
4021	    test_bit(__I40E_CONFIG_BUSY, pf->state))
4022		return -ENXIO;
4023
4024	if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK))
4025		return -EINVAL;
4026
4027	xdp_ring = vsi->xdp_rings[queue_index];
4028
4029	for (i = 0; i < n; i++) {
4030		struct xdp_frame *xdpf = frames[i];
4031		int err;
4032
4033		err = i40e_xmit_xdp_ring(xdpf, xdp_ring);
4034		if (err != I40E_XDP_TX)
4035			break;
4036		nxmit++;
4037	}
4038
4039	if (unlikely(flags & XDP_XMIT_FLUSH))
4040		i40e_xdp_ring_update_tail(xdp_ring);
4041
4042	return nxmit;
4043}
v4.10.11
   1/*******************************************************************************
   2 *
   3 * Intel Ethernet Controller XL710 Family Linux Driver
   4 * Copyright(c) 2013 - 2016 Intel Corporation.
   5 *
   6 * This program is free software; you can redistribute it and/or modify it
   7 * under the terms and conditions of the GNU General Public License,
   8 * version 2, as published by the Free Software Foundation.
   9 *
  10 * This program is distributed in the hope it will be useful, but WITHOUT
  11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  13 * more details.
  14 *
  15 * You should have received a copy of the GNU General Public License along
  16 * with this program.  If not, see <http://www.gnu.org/licenses/>.
  17 *
  18 * The full GNU General Public License is included in this distribution in
  19 * the file called "COPYING".
  20 *
  21 * Contact Information:
  22 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
  23 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
  24 *
  25 ******************************************************************************/
  26
 
 
  27#include <linux/prefetch.h>
  28#include <net/busy_poll.h>
  29#include "i40e.h"
  30#include "i40e_prototype.h"
  31
  32static inline __le64 build_ctob(u32 td_cmd, u32 td_offset, unsigned int size,
  33				u32 td_tag)
  34{
  35	return cpu_to_le64(I40E_TX_DESC_DTYPE_DATA |
  36			   ((u64)td_cmd  << I40E_TXD_QW1_CMD_SHIFT) |
  37			   ((u64)td_offset << I40E_TXD_QW1_OFFSET_SHIFT) |
  38			   ((u64)size  << I40E_TXD_QW1_TX_BUF_SZ_SHIFT) |
  39			   ((u64)td_tag  << I40E_TXD_QW1_L2TAG1_SHIFT));
  40}
  41
  42#define I40E_TXD_CMD (I40E_TX_DESC_CMD_EOP | I40E_TX_DESC_CMD_RS)
  43/**
  44 * i40e_fdir - Generate a Flow Director descriptor based on fdata
  45 * @tx_ring: Tx ring to send buffer on
  46 * @fdata: Flow director filter data
  47 * @add: Indicate if we are adding a rule or deleting one
  48 *
  49 **/
  50static void i40e_fdir(struct i40e_ring *tx_ring,
  51		      struct i40e_fdir_filter *fdata, bool add)
  52{
  53	struct i40e_filter_program_desc *fdir_desc;
  54	struct i40e_pf *pf = tx_ring->vsi->back;
  55	u32 flex_ptype, dtype_cmd;
  56	u16 i;
  57
  58	/* grab the next descriptor */
  59	i = tx_ring->next_to_use;
  60	fdir_desc = I40E_TX_FDIRDESC(tx_ring, i);
  61
  62	i++;
  63	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
  64
  65	flex_ptype = I40E_TXD_FLTR_QW0_QINDEX_MASK &
  66		     (fdata->q_index << I40E_TXD_FLTR_QW0_QINDEX_SHIFT);
  67
  68	flex_ptype |= I40E_TXD_FLTR_QW0_FLEXOFF_MASK &
  69		      (fdata->flex_off << I40E_TXD_FLTR_QW0_FLEXOFF_SHIFT);
  70
  71	flex_ptype |= I40E_TXD_FLTR_QW0_PCTYPE_MASK &
  72		      (fdata->pctype << I40E_TXD_FLTR_QW0_PCTYPE_SHIFT);
  73
  74	/* Use LAN VSI Id if not programmed by user */
  75	flex_ptype |= I40E_TXD_FLTR_QW0_DEST_VSI_MASK &
  76		      ((u32)(fdata->dest_vsi ? : pf->vsi[pf->lan_vsi]->id) <<
  77		       I40E_TXD_FLTR_QW0_DEST_VSI_SHIFT);
  78
  79	dtype_cmd = I40E_TX_DESC_DTYPE_FILTER_PROG;
  80
  81	dtype_cmd |= add ?
  82		     I40E_FILTER_PROGRAM_DESC_PCMD_ADD_UPDATE <<
  83		     I40E_TXD_FLTR_QW1_PCMD_SHIFT :
  84		     I40E_FILTER_PROGRAM_DESC_PCMD_REMOVE <<
  85		     I40E_TXD_FLTR_QW1_PCMD_SHIFT;
  86
  87	dtype_cmd |= I40E_TXD_FLTR_QW1_DEST_MASK &
  88		     (fdata->dest_ctl << I40E_TXD_FLTR_QW1_DEST_SHIFT);
  89
  90	dtype_cmd |= I40E_TXD_FLTR_QW1_FD_STATUS_MASK &
  91		     (fdata->fd_status << I40E_TXD_FLTR_QW1_FD_STATUS_SHIFT);
  92
  93	if (fdata->cnt_index) {
  94		dtype_cmd |= I40E_TXD_FLTR_QW1_CNT_ENA_MASK;
  95		dtype_cmd |= I40E_TXD_FLTR_QW1_CNTINDEX_MASK &
  96			     ((u32)fdata->cnt_index <<
  97			      I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT);
  98	}
  99
 100	fdir_desc->qindex_flex_ptype_vsi = cpu_to_le32(flex_ptype);
 101	fdir_desc->rsvd = cpu_to_le32(0);
 102	fdir_desc->dtype_cmd_cntindex = cpu_to_le32(dtype_cmd);
 103	fdir_desc->fd_id = cpu_to_le32(fdata->fd_id);
 104}
 105
 106#define I40E_FD_CLEAN_DELAY 10
 107/**
 108 * i40e_program_fdir_filter - Program a Flow Director filter
 109 * @fdir_data: Packet data that will be filter parameters
 110 * @raw_packet: the pre-allocated packet buffer for FDir
 111 * @pf: The PF pointer
 112 * @add: True for add/update, False for remove
 113 **/
 114static int i40e_program_fdir_filter(struct i40e_fdir_filter *fdir_data,
 115				    u8 *raw_packet, struct i40e_pf *pf,
 116				    bool add)
 117{
 118	struct i40e_tx_buffer *tx_buf, *first;
 119	struct i40e_tx_desc *tx_desc;
 120	struct i40e_ring *tx_ring;
 121	struct i40e_vsi *vsi;
 122	struct device *dev;
 123	dma_addr_t dma;
 124	u32 td_cmd = 0;
 125	u16 i;
 126
 127	/* find existing FDIR VSI */
 128	vsi = i40e_find_vsi_by_type(pf, I40E_VSI_FDIR);
 129	if (!vsi)
 130		return -ENOENT;
 131
 132	tx_ring = vsi->tx_rings[0];
 133	dev = tx_ring->dev;
 134
 135	/* we need two descriptors to add/del a filter and we can wait */
 136	for (i = I40E_FD_CLEAN_DELAY; I40E_DESC_UNUSED(tx_ring) < 2; i--) {
 137		if (!i)
 138			return -EAGAIN;
 139		msleep_interruptible(1);
 140	}
 141
 142	dma = dma_map_single(dev, raw_packet,
 143			     I40E_FDIR_MAX_RAW_PACKET_SIZE, DMA_TO_DEVICE);
 144	if (dma_mapping_error(dev, dma))
 145		goto dma_fail;
 146
 147	/* grab the next descriptor */
 148	i = tx_ring->next_to_use;
 149	first = &tx_ring->tx_bi[i];
 150	i40e_fdir(tx_ring, fdir_data, add);
 151
 152	/* Now program a dummy descriptor */
 153	i = tx_ring->next_to_use;
 154	tx_desc = I40E_TX_DESC(tx_ring, i);
 155	tx_buf = &tx_ring->tx_bi[i];
 156
 157	tx_ring->next_to_use = ((i + 1) < tx_ring->count) ? i + 1 : 0;
 158
 159	memset(tx_buf, 0, sizeof(struct i40e_tx_buffer));
 160
 161	/* record length, and DMA address */
 162	dma_unmap_len_set(tx_buf, len, I40E_FDIR_MAX_RAW_PACKET_SIZE);
 163	dma_unmap_addr_set(tx_buf, dma, dma);
 164
 165	tx_desc->buffer_addr = cpu_to_le64(dma);
 166	td_cmd = I40E_TXD_CMD | I40E_TX_DESC_CMD_DUMMY;
 167
 168	tx_buf->tx_flags = I40E_TX_FLAGS_FD_SB;
 169	tx_buf->raw_buf = (void *)raw_packet;
 170
 171	tx_desc->cmd_type_offset_bsz =
 172		build_ctob(td_cmd, 0, I40E_FDIR_MAX_RAW_PACKET_SIZE, 0);
 173
 174	/* Force memory writes to complete before letting h/w
 175	 * know there are new descriptors to fetch.
 176	 */
 177	wmb();
 178
 179	/* Mark the data descriptor to be watched */
 180	first->next_to_watch = tx_desc;
 181
 182	writel(tx_ring->next_to_use, tx_ring->tail);
 183	return 0;
 184
 185dma_fail:
 186	return -1;
 187}
 188
 189#define IP_HEADER_OFFSET 14
 190#define I40E_UDPIP_DUMMY_PACKET_LEN 42
 191/**
 192 * i40e_add_del_fdir_udpv4 - Add/Remove UDPv4 filters
 193 * @vsi: pointer to the targeted VSI
 194 * @fd_data: the flow director data required for the FDir descriptor
 195 * @add: true adds a filter, false removes it
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 196 *
 197 * Returns 0 if the filters were successfully added or removed
 198 **/
 199static int i40e_add_del_fdir_udpv4(struct i40e_vsi *vsi,
 200				   struct i40e_fdir_filter *fd_data,
 201				   bool add)
 202{
 203	struct i40e_pf *pf = vsi->back;
 204	struct udphdr *udp;
 205	struct iphdr *ip;
 206	bool err = false;
 207	u8 *raw_packet;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 208	int ret;
 209	static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0,
 210		0x45, 0, 0, 0x1c, 0, 0, 0x40, 0, 0x40, 0x11, 0, 0, 0, 0, 0, 0,
 211		0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
 212
 213	raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
 214	if (!raw_packet)
 215		return -ENOMEM;
 216	memcpy(raw_packet, packet, I40E_UDPIP_DUMMY_PACKET_LEN);
 
 
 
 
 
 
 217
 218	ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET);
 219	udp = (struct udphdr *)(raw_packet + IP_HEADER_OFFSET
 220	      + sizeof(struct iphdr));
 221
 222	ip->daddr = fd_data->dst_ip[0];
 223	udp->dest = fd_data->dst_port;
 224	ip->saddr = fd_data->src_ip[0];
 225	udp->source = fd_data->src_port;
 226
 227	fd_data->pctype = I40E_FILTER_PCTYPE_NONF_IPV4_UDP;
 228	ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add);
 229	if (ret) {
 230		dev_info(&pf->pdev->dev,
 231			 "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
 232			 fd_data->pctype, fd_data->fd_id, ret);
 233		err = true;
 
 234	} else if (I40E_DEBUG_FD & pf->hw.debug_mask) {
 235		if (add)
 236			dev_info(&pf->pdev->dev,
 237				 "Filter OK for PCTYPE %d loc = %d\n",
 238				 fd_data->pctype, fd_data->fd_id);
 239		else
 240			dev_info(&pf->pdev->dev,
 241				 "Filter deleted for PCTYPE %d loc = %d\n",
 242				 fd_data->pctype, fd_data->fd_id);
 243	}
 244	if (err)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 245		kfree(raw_packet);
 
 
 246
 247	return err ? -EOPNOTSUPP : 0;
 
 
 
 248}
 249
 250#define I40E_TCPIP_DUMMY_PACKET_LEN 54
 
 251/**
 252 * i40e_add_del_fdir_tcpv4 - Add/Remove TCPv4 filters
 253 * @vsi: pointer to the targeted VSI
 254 * @fd_data: the flow director data required for the FDir descriptor
 255 * @add: true adds a filter, false removes it
 
 256 *
 257 * Returns 0 if the filters were successfully added or removed
 258 **/
 259static int i40e_add_del_fdir_tcpv4(struct i40e_vsi *vsi,
 260				   struct i40e_fdir_filter *fd_data,
 261				   bool add)
 
 262{
 263	struct i40e_pf *pf = vsi->back;
 264	struct tcphdr *tcp;
 265	struct iphdr *ip;
 266	bool err = false;
 267	u8 *raw_packet;
 268	int ret;
 269	/* Dummy packet */
 270	static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0,
 271		0x45, 0, 0, 0x28, 0, 0, 0x40, 0, 0x40, 0x6, 0, 0, 0, 0, 0, 0,
 272		0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x80, 0x11,
 273		0x0, 0x72, 0, 0, 0, 0};
 274
 275	raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
 276	if (!raw_packet)
 277		return -ENOMEM;
 278	memcpy(raw_packet, packet, I40E_TCPIP_DUMMY_PACKET_LEN);
 279
 280	ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET);
 281	tcp = (struct tcphdr *)(raw_packet + IP_HEADER_OFFSET
 282	      + sizeof(struct iphdr));
 283
 284	ip->daddr = fd_data->dst_ip[0];
 285	tcp->dest = fd_data->dst_port;
 286	ip->saddr = fd_data->src_ip[0];
 287	tcp->source = fd_data->src_port;
 
 
 
 
 
 
 
 
 
 
 
 288
 289	if (add) {
 290		pf->fd_tcp_rule++;
 291		if ((pf->flags & I40E_FLAG_FD_ATR_ENABLED) &&
 292		    I40E_DEBUG_FD & pf->hw.debug_mask)
 293			dev_info(&pf->pdev->dev, "Forcing ATR off, sideband rules for TCP/IPv4 flow being applied\n");
 294		pf->auto_disable_flags |= I40E_FLAG_FD_ATR_ENABLED;
 295	} else {
 296		pf->fd_tcp_rule = (pf->fd_tcp_rule > 0) ?
 297				  (pf->fd_tcp_rule - 1) : 0;
 298		if (pf->fd_tcp_rule == 0) {
 299			if ((pf->flags & I40E_FLAG_FD_ATR_ENABLED) &&
 300			    I40E_DEBUG_FD & pf->hw.debug_mask)
 301				dev_info(&pf->pdev->dev, "ATR re-enabled due to no sideband TCP/IPv4 rules\n");
 302			pf->auto_disable_flags &= ~I40E_FLAG_FD_ATR_ENABLED;
 303		}
 304	}
 
 
 305
 306	fd_data->pctype = I40E_FILTER_PCTYPE_NONF_IPV4_TCP;
 307	ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 308
 309	if (ret) {
 310		dev_info(&pf->pdev->dev,
 311			 "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
 312			 fd_data->pctype, fd_data->fd_id, ret);
 313		err = true;
 314	} else if (I40E_DEBUG_FD & pf->hw.debug_mask) {
 315		if (add)
 316			dev_info(&pf->pdev->dev, "Filter OK for PCTYPE %d loc = %d)\n",
 317				 fd_data->pctype, fd_data->fd_id);
 318		else
 319			dev_info(&pf->pdev->dev,
 320				 "Filter deleted for PCTYPE %d loc = %d\n",
 321				 fd_data->pctype, fd_data->fd_id);
 322	}
 323
 324	if (err)
 325		kfree(raw_packet);
 326
 327	return err ? -EOPNOTSUPP : 0;
 328}
 329
 330#define I40E_IP_DUMMY_PACKET_LEN 34
 
 331/**
 332 * i40e_add_del_fdir_ipv4 - Add/Remove IPv4 Flow Director filters for
 333 * a specific flow spec
 334 * @vsi: pointer to the targeted VSI
 335 * @fd_data: the flow director data required for the FDir descriptor
 336 * @add: true adds a filter, false removes it
 
 337 *
 338 * Returns 0 if the filters were successfully added or removed
 339 **/
 340static int i40e_add_del_fdir_ipv4(struct i40e_vsi *vsi,
 341				  struct i40e_fdir_filter *fd_data,
 342				  bool add)
 
 343{
 344	struct i40e_pf *pf = vsi->back;
 345	struct iphdr *ip;
 346	bool err = false;
 347	u8 *raw_packet;
 
 
 348	int ret;
 349	int i;
 350	static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0,
 351		0x45, 0, 0, 0x14, 0, 0, 0x40, 0, 0x40, 0x10, 0, 0, 0, 0, 0, 0,
 352		0, 0, 0, 0};
 353
 354	for (i = I40E_FILTER_PCTYPE_NONF_IPV4_OTHER;
 355	     i <= I40E_FILTER_PCTYPE_FRAG_IPV4;	i++) {
 
 
 
 
 
 
 
 356		raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
 357		if (!raw_packet)
 358			return -ENOMEM;
 359		memcpy(raw_packet, packet, I40E_IP_DUMMY_PACKET_LEN);
 360		ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET);
 361
 362		ip->saddr = fd_data->src_ip[0];
 363		ip->daddr = fd_data->dst_ip[0];
 364		ip->protocol = 0;
 365
 366		fd_data->pctype = i;
 367		ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add);
 368
 369		if (ret) {
 370			dev_info(&pf->pdev->dev,
 371				 "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
 372				 fd_data->pctype, fd_data->fd_id, ret);
 373			err = true;
 374		} else if (I40E_DEBUG_FD & pf->hw.debug_mask) {
 375			if (add)
 376				dev_info(&pf->pdev->dev,
 377					 "Filter OK for PCTYPE %d loc = %d\n",
 378					 fd_data->pctype, fd_data->fd_id);
 379			else
 380				dev_info(&pf->pdev->dev,
 381					 "Filter deleted for PCTYPE %d loc = %d\n",
 382					 fd_data->pctype, fd_data->fd_id);
 383		}
 384	}
 385
 386	if (err)
 387		kfree(raw_packet);
 388
 389	return err ? -EOPNOTSUPP : 0;
 
 
 
 390}
 391
 392/**
 393 * i40e_add_del_fdir - Build raw packets to add/del fdir filter
 394 * @vsi: pointer to the targeted VSI
 395 * @cmd: command to get or set RX flow classification rules
 396 * @add: true adds a filter, false removes it
 397 *
 398 **/
 399int i40e_add_del_fdir(struct i40e_vsi *vsi,
 400		      struct i40e_fdir_filter *input, bool add)
 401{
 
 402	struct i40e_pf *pf = vsi->back;
 403	int ret;
 404
 405	switch (input->flow_type & ~FLOW_EXT) {
 406	case TCP_V4_FLOW:
 407		ret = i40e_add_del_fdir_tcpv4(vsi, input, add);
 408		break;
 409	case UDP_V4_FLOW:
 410		ret = i40e_add_del_fdir_udpv4(vsi, input, add);
 
 
 
 
 
 
 
 
 
 
 
 
 411		break;
 412	case IP_USER_FLOW:
 413		switch (input->ip4_proto) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 414		case IPPROTO_TCP:
 415			ret = i40e_add_del_fdir_tcpv4(vsi, input, add);
 416			break;
 417		case IPPROTO_UDP:
 418			ret = i40e_add_del_fdir_udpv4(vsi, input, add);
 
 
 
 419			break;
 420		case IPPROTO_IP:
 421			ret = i40e_add_del_fdir_ipv4(vsi, input, add);
 422			break;
 423		default:
 424			/* We cannot support masking based on protocol */
 425			goto unsupported_flow;
 
 
 426		}
 427		break;
 428	default:
 429unsupported_flow:
 430		dev_info(&pf->pdev->dev, "Could not specify spec type %d\n",
 431			 input->flow_type);
 432		ret = -EINVAL;
 433	}
 434
 435	/* The buffer allocated here is freed by the i40e_clean_tx_ring() */
 
 
 
 
 
 436	return ret;
 437}
 438
 439/**
 440 * i40e_fd_handle_status - check the Programming Status for FD
 441 * @rx_ring: the Rx ring for this descriptor
 442 * @rx_desc: the Rx descriptor for programming Status, not a packet descriptor.
 
 443 * @prog_id: the id originally used for programming
 444 *
 445 * This is used to verify if the FD programming or invalidation
 446 * requested by SW to the HW is successful or not and take actions accordingly.
 447 **/
 448static void i40e_fd_handle_status(struct i40e_ring *rx_ring,
 449				  union i40e_rx_desc *rx_desc, u8 prog_id)
 450{
 451	struct i40e_pf *pf = rx_ring->vsi->back;
 452	struct pci_dev *pdev = pf->pdev;
 
 453	u32 fcnt_prog, fcnt_avail;
 454	u32 error;
 455	u64 qw;
 456
 457	qw = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
 458	error = (qw & I40E_RX_PROG_STATUS_DESC_QW1_ERROR_MASK) >>
 459		I40E_RX_PROG_STATUS_DESC_QW1_ERROR_SHIFT;
 460
 461	if (error == BIT(I40E_RX_PROG_STATUS_DESC_FD_TBL_FULL_SHIFT)) {
 462		pf->fd_inv = le32_to_cpu(rx_desc->wb.qword0.hi_dword.fd_id);
 463		if ((rx_desc->wb.qword0.hi_dword.fd_id != 0) ||
 464		    (I40E_DEBUG_FD & pf->hw.debug_mask))
 465			dev_warn(&pdev->dev, "ntuple filter loc = %d, could not be added\n",
 466				 pf->fd_inv);
 467
 468		/* Check if the programming error is for ATR.
 469		 * If so, auto disable ATR and set a state for
 470		 * flush in progress. Next time we come here if flush is in
 471		 * progress do nothing, once flush is complete the state will
 472		 * be cleared.
 473		 */
 474		if (test_bit(__I40E_FD_FLUSH_REQUESTED, &pf->state))
 475			return;
 476
 477		pf->fd_add_err++;
 478		/* store the current atr filter count */
 479		pf->fd_atr_cnt = i40e_get_current_atr_cnt(pf);
 480
 481		if ((rx_desc->wb.qword0.hi_dword.fd_id == 0) &&
 482		    (pf->auto_disable_flags & I40E_FLAG_FD_SB_ENABLED)) {
 483			pf->auto_disable_flags |= I40E_FLAG_FD_ATR_ENABLED;
 484			set_bit(__I40E_FD_FLUSH_REQUESTED, &pf->state);
 
 
 
 
 
 
 485		}
 486
 487		/* filter programming failed most likely due to table full */
 488		fcnt_prog = i40e_get_global_fd_count(pf);
 489		fcnt_avail = pf->fdir_pf_filter_count;
 490		/* If ATR is running fcnt_prog can quickly change,
 491		 * if we are very close to full, it makes sense to disable
 492		 * FD ATR/SB and then re-enable it when there is room.
 493		 */
 494		if (fcnt_prog >= (fcnt_avail - I40E_FDIR_BUFFER_FULL_MARGIN)) {
 495			if ((pf->flags & I40E_FLAG_FD_SB_ENABLED) &&
 496			    !(pf->auto_disable_flags &
 497				     I40E_FLAG_FD_SB_ENABLED)) {
 498				if (I40E_DEBUG_FD & pf->hw.debug_mask)
 499					dev_warn(&pdev->dev, "FD filter space full, new ntuple rules will not be added\n");
 500				pf->auto_disable_flags |=
 501							I40E_FLAG_FD_SB_ENABLED;
 502			}
 503		}
 504	} else if (error == BIT(I40E_RX_PROG_STATUS_DESC_NO_FD_ENTRY_SHIFT)) {
 505		if (I40E_DEBUG_FD & pf->hw.debug_mask)
 506			dev_info(&pdev->dev, "ntuple filter fd_id = %d, could not be removed\n",
 507				 rx_desc->wb.qword0.hi_dword.fd_id);
 508	}
 509}
 510
 511/**
 512 * i40e_unmap_and_free_tx_resource - Release a Tx buffer
 513 * @ring:      the ring that owns the buffer
 514 * @tx_buffer: the buffer to free
 515 **/
 516static void i40e_unmap_and_free_tx_resource(struct i40e_ring *ring,
 517					    struct i40e_tx_buffer *tx_buffer)
 518{
 519	if (tx_buffer->skb) {
 520		if (tx_buffer->tx_flags & I40E_TX_FLAGS_FD_SB)
 521			kfree(tx_buffer->raw_buf);
 
 
 522		else
 523			dev_kfree_skb_any(tx_buffer->skb);
 524		if (dma_unmap_len(tx_buffer, len))
 525			dma_unmap_single(ring->dev,
 526					 dma_unmap_addr(tx_buffer, dma),
 527					 dma_unmap_len(tx_buffer, len),
 528					 DMA_TO_DEVICE);
 529	} else if (dma_unmap_len(tx_buffer, len)) {
 530		dma_unmap_page(ring->dev,
 531			       dma_unmap_addr(tx_buffer, dma),
 532			       dma_unmap_len(tx_buffer, len),
 533			       DMA_TO_DEVICE);
 534	}
 535
 536	tx_buffer->next_to_watch = NULL;
 537	tx_buffer->skb = NULL;
 538	dma_unmap_len_set(tx_buffer, len, 0);
 539	/* tx_buffer must be completely set up in the transmit path */
 540}
 541
 542/**
 543 * i40e_clean_tx_ring - Free any empty Tx buffers
 544 * @tx_ring: ring to be cleaned
 545 **/
 546void i40e_clean_tx_ring(struct i40e_ring *tx_ring)
 547{
 548	unsigned long bi_size;
 549	u16 i;
 550
 551	/* ring already cleared, nothing to do */
 552	if (!tx_ring->tx_bi)
 553		return;
 
 
 
 554
 555	/* Free all the Tx ring sk_buffs */
 556	for (i = 0; i < tx_ring->count; i++)
 557		i40e_unmap_and_free_tx_resource(tx_ring, &tx_ring->tx_bi[i]);
 
 
 558
 559	bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
 560	memset(tx_ring->tx_bi, 0, bi_size);
 561
 562	/* Zero out the descriptor ring */
 563	memset(tx_ring->desc, 0, tx_ring->size);
 564
 565	tx_ring->next_to_use = 0;
 566	tx_ring->next_to_clean = 0;
 567
 568	if (!tx_ring->netdev)
 569		return;
 570
 571	/* cleanup Tx queue statistics */
 572	netdev_tx_reset_queue(txring_txq(tx_ring));
 573}
 574
 575/**
 576 * i40e_free_tx_resources - Free Tx resources per queue
 577 * @tx_ring: Tx descriptor ring for a specific queue
 578 *
 579 * Free all transmit software resources
 580 **/
 581void i40e_free_tx_resources(struct i40e_ring *tx_ring)
 582{
 583	i40e_clean_tx_ring(tx_ring);
 584	kfree(tx_ring->tx_bi);
 585	tx_ring->tx_bi = NULL;
 586
 587	if (tx_ring->desc) {
 588		dma_free_coherent(tx_ring->dev, tx_ring->size,
 589				  tx_ring->desc, tx_ring->dma);
 590		tx_ring->desc = NULL;
 591	}
 592}
 593
 594/**
 595 * i40e_get_tx_pending - how many tx descriptors not processed
 596 * @tx_ring: the ring of descriptors
 597 * @in_sw: is tx_pending being checked in SW or HW
 598 *
 599 * Since there is no access to the ring head register
 600 * in XL710, we need to use our local copies
 601 **/
 602u32 i40e_get_tx_pending(struct i40e_ring *ring, bool in_sw)
 603{
 604	u32 head, tail;
 605
 606	if (!in_sw)
 607		head = i40e_get_head(ring);
 608	else
 
 609		head = ring->next_to_clean;
 610	tail = readl(ring->tail);
 
 611
 612	if (head != tail)
 613		return (head < tail) ?
 614			tail - head : (tail + ring->count - head);
 615
 616	return 0;
 617}
 618
 619#define WB_STRIDE 4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 620
 621/**
 622 * i40e_clean_tx_irq - Reclaim resources after transmit completes
 623 * @vsi: the VSI we care about
 624 * @tx_ring: Tx ring to clean
 625 * @napi_budget: Used to determine if we are in netpoll
 
 626 *
 627 * Returns true if there's any budget left (e.g. the clean is finished)
 628 **/
 629static bool i40e_clean_tx_irq(struct i40e_vsi *vsi,
 630			      struct i40e_ring *tx_ring, int napi_budget)
 
 631{
 632	u16 i = tx_ring->next_to_clean;
 633	struct i40e_tx_buffer *tx_buf;
 634	struct i40e_tx_desc *tx_head;
 635	struct i40e_tx_desc *tx_desc;
 636	unsigned int total_bytes = 0, total_packets = 0;
 637	unsigned int budget = vsi->work_limit;
 638
 639	tx_buf = &tx_ring->tx_bi[i];
 640	tx_desc = I40E_TX_DESC(tx_ring, i);
 641	i -= tx_ring->count;
 642
 643	tx_head = I40E_TX_DESC(tx_ring, i40e_get_head(tx_ring));
 644
 645	do {
 646		struct i40e_tx_desc *eop_desc = tx_buf->next_to_watch;
 647
 648		/* if next_to_watch is not set then there is no work pending */
 649		if (!eop_desc)
 650			break;
 651
 652		/* prevent any other reads prior to eop_desc */
 653		read_barrier_depends();
 654
 
 655		/* we have caught up to head, no work left to do */
 656		if (tx_head == tx_desc)
 657			break;
 658
 659		/* clear next_to_watch to prevent false hangs */
 660		tx_buf->next_to_watch = NULL;
 661
 662		/* update the statistics for this packet */
 663		total_bytes += tx_buf->bytecount;
 664		total_packets += tx_buf->gso_segs;
 665
 666		/* free the skb */
 667		napi_consume_skb(tx_buf->skb, napi_budget);
 
 
 
 668
 669		/* unmap skb header data */
 670		dma_unmap_single(tx_ring->dev,
 671				 dma_unmap_addr(tx_buf, dma),
 672				 dma_unmap_len(tx_buf, len),
 673				 DMA_TO_DEVICE);
 674
 675		/* clear tx_buffer data */
 676		tx_buf->skb = NULL;
 677		dma_unmap_len_set(tx_buf, len, 0);
 678
 679		/* unmap remaining buffers */
 680		while (tx_desc != eop_desc) {
 
 
 681
 682			tx_buf++;
 683			tx_desc++;
 684			i++;
 685			if (unlikely(!i)) {
 686				i -= tx_ring->count;
 687				tx_buf = tx_ring->tx_bi;
 688				tx_desc = I40E_TX_DESC(tx_ring, 0);
 689			}
 690
 691			/* unmap any remaining paged data */
 692			if (dma_unmap_len(tx_buf, len)) {
 693				dma_unmap_page(tx_ring->dev,
 694					       dma_unmap_addr(tx_buf, dma),
 695					       dma_unmap_len(tx_buf, len),
 696					       DMA_TO_DEVICE);
 697				dma_unmap_len_set(tx_buf, len, 0);
 698			}
 699		}
 700
 701		/* move us one more past the eop_desc for start of next pkt */
 702		tx_buf++;
 703		tx_desc++;
 704		i++;
 705		if (unlikely(!i)) {
 706			i -= tx_ring->count;
 707			tx_buf = tx_ring->tx_bi;
 708			tx_desc = I40E_TX_DESC(tx_ring, 0);
 709		}
 710
 711		prefetch(tx_desc);
 712
 713		/* update budget accounting */
 714		budget--;
 715	} while (likely(budget));
 716
 717	i += tx_ring->count;
 718	tx_ring->next_to_clean = i;
 719	u64_stats_update_begin(&tx_ring->syncp);
 720	tx_ring->stats.bytes += total_bytes;
 721	tx_ring->stats.packets += total_packets;
 722	u64_stats_update_end(&tx_ring->syncp);
 723	tx_ring->q_vector->tx.total_bytes += total_bytes;
 724	tx_ring->q_vector->tx.total_packets += total_packets;
 725
 726	if (tx_ring->flags & I40E_TXR_FLAGS_WB_ON_ITR) {
 727		/* check to see if there are < 4 descriptors
 728		 * waiting to be written back, then kick the hardware to force
 729		 * them to be written back in case we stay in NAPI.
 730		 * In this mode on X722 we do not enable Interrupt.
 731		 */
 732		unsigned int j = i40e_get_tx_pending(tx_ring, false);
 733
 734		if (budget &&
 735		    ((j / WB_STRIDE) == 0) && (j > 0) &&
 736		    !test_bit(__I40E_DOWN, &vsi->state) &&
 737		    (I40E_DESC_UNUSED(tx_ring) != tx_ring->count))
 738			tx_ring->arm_wb = true;
 739	}
 740
 741	/* notify netdev of completed buffers */
 742	netdev_tx_completed_queue(txring_txq(tx_ring),
 743				  total_packets, total_bytes);
 744
 745#define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
 746	if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) &&
 747		     (I40E_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) {
 748		/* Make sure that anybody stopping the queue after this
 749		 * sees the new next_to_clean.
 750		 */
 751		smp_mb();
 752		if (__netif_subqueue_stopped(tx_ring->netdev,
 753					     tx_ring->queue_index) &&
 754		   !test_bit(__I40E_DOWN, &vsi->state)) {
 755			netif_wake_subqueue(tx_ring->netdev,
 756					    tx_ring->queue_index);
 757			++tx_ring->tx_stats.restart_queue;
 758		}
 759	}
 760
 
 761	return !!budget;
 762}
 763
 764/**
 765 * i40e_enable_wb_on_itr - Arm hardware to do a wb, interrupts are not enabled
 766 * @vsi: the VSI we care about
 767 * @q_vector: the vector on which to enable writeback
 768 *
 769 **/
 770static void i40e_enable_wb_on_itr(struct i40e_vsi *vsi,
 771				  struct i40e_q_vector *q_vector)
 772{
 773	u16 flags = q_vector->tx.ring[0].flags;
 774	u32 val;
 775
 776	if (!(flags & I40E_TXR_FLAGS_WB_ON_ITR))
 777		return;
 778
 779	if (q_vector->arm_wb_state)
 780		return;
 781
 782	if (vsi->back->flags & I40E_FLAG_MSIX_ENABLED) {
 783		val = I40E_PFINT_DYN_CTLN_WB_ON_ITR_MASK |
 784		      I40E_PFINT_DYN_CTLN_ITR_INDX_MASK; /* set noitr */
 785
 786		wr32(&vsi->back->hw,
 787		     I40E_PFINT_DYN_CTLN(q_vector->v_idx + vsi->base_vector - 1),
 788		     val);
 789	} else {
 790		val = I40E_PFINT_DYN_CTL0_WB_ON_ITR_MASK |
 791		      I40E_PFINT_DYN_CTL0_ITR_INDX_MASK; /* set noitr */
 792
 793		wr32(&vsi->back->hw, I40E_PFINT_DYN_CTL0, val);
 794	}
 795	q_vector->arm_wb_state = true;
 796}
 797
 798/**
 799 * i40e_force_wb - Issue SW Interrupt so HW does a wb
 800 * @vsi: the VSI we care about
 801 * @q_vector: the vector  on which to force writeback
 802 *
 803 **/
 804void i40e_force_wb(struct i40e_vsi *vsi, struct i40e_q_vector *q_vector)
 805{
 806	if (vsi->back->flags & I40E_FLAG_MSIX_ENABLED) {
 807		u32 val = I40E_PFINT_DYN_CTLN_INTENA_MASK |
 808			  I40E_PFINT_DYN_CTLN_ITR_INDX_MASK | /* set noitr */
 809			  I40E_PFINT_DYN_CTLN_SWINT_TRIG_MASK |
 810			  I40E_PFINT_DYN_CTLN_SW_ITR_INDX_ENA_MASK;
 811			  /* allow 00 to be written to the index */
 812
 813		wr32(&vsi->back->hw,
 814		     I40E_PFINT_DYN_CTLN(q_vector->v_idx +
 815					 vsi->base_vector - 1), val);
 816	} else {
 817		u32 val = I40E_PFINT_DYN_CTL0_INTENA_MASK |
 818			  I40E_PFINT_DYN_CTL0_ITR_INDX_MASK | /* set noitr */
 819			  I40E_PFINT_DYN_CTL0_SWINT_TRIG_MASK |
 820			  I40E_PFINT_DYN_CTL0_SW_ITR_INDX_ENA_MASK;
 821			/* allow 00 to be written to the index */
 822
 823		wr32(&vsi->back->hw, I40E_PFINT_DYN_CTL0, val);
 824	}
 825}
 826
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 827/**
 828 * i40e_set_new_dynamic_itr - Find new ITR level
 
 829 * @rc: structure containing ring performance data
 830 *
 831 * Returns true if ITR changed, false if not
 832 *
 833 * Stores a new ITR value based on packets and byte counts during
 834 * the last interrupt.  The advantage of per interrupt computation
 835 * is faster updates and more accurate ITR for the current traffic
 836 * pattern.  Constants in this function were computed based on
 837 * theoretical maximum wire speed and thresholds were set based on
 838 * testing data as well as attempting to minimize response time
 839 * while increasing bulk throughput.
 840 **/
 841static bool i40e_set_new_dynamic_itr(struct i40e_ring_container *rc)
 
 842{
 843	enum i40e_latency_range new_latency_range = rc->latency_range;
 844	struct i40e_q_vector *qv = rc->ring->q_vector;
 845	u32 new_itr = rc->itr;
 846	int bytes_per_int;
 847	int usecs;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 848
 849	if (rc->total_packets == 0 || !rc->itr)
 850		return false;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 851
 852	/* simple throttlerate management
 853	 *   0-10MB/s   lowest (50000 ints/s)
 854	 *  10-20MB/s   low    (20000 ints/s)
 855	 *  20-1249MB/s bulk   (18000 ints/s)
 856	 *  > 40000 Rx packets per second (8000 ints/s)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 857	 *
 858	 * The math works out because the divisor is in 10^(-6) which
 859	 * turns the bytes/us input value into MB/s values, but
 860	 * make sure to use usecs, as the register values written
 861	 * are in 2 usec increments in the ITR registers, and make sure
 862	 * to use the smoothed values that the countdown timer gives us.
 863	 */
 864	usecs = (rc->itr << 1) * ITR_COUNTDOWN_START;
 865	bytes_per_int = rc->total_bytes / usecs;
 866
 867	switch (new_latency_range) {
 868	case I40E_LOWEST_LATENCY:
 869		if (bytes_per_int > 10)
 870			new_latency_range = I40E_LOW_LATENCY;
 871		break;
 872	case I40E_LOW_LATENCY:
 873		if (bytes_per_int > 20)
 874			new_latency_range = I40E_BULK_LATENCY;
 875		else if (bytes_per_int <= 10)
 876			new_latency_range = I40E_LOWEST_LATENCY;
 877		break;
 878	case I40E_BULK_LATENCY:
 879	case I40E_ULTRA_LATENCY:
 880	default:
 881		if (bytes_per_int <= 20)
 882			new_latency_range = I40E_LOW_LATENCY;
 883		break;
 884	}
 885
 886	/* this is to adjust RX more aggressively when streaming small
 887	 * packets.  The value of 40000 was picked as it is just beyond
 888	 * what the hardware can receive per second if in low latency
 889	 * mode.
 890	 */
 891#define RX_ULTRA_PACKET_RATE 40000
 892
 893	if ((((rc->total_packets * 1000000) / usecs) > RX_ULTRA_PACKET_RATE) &&
 894	    (&qv->rx == rc))
 895		new_latency_range = I40E_ULTRA_LATENCY;
 896
 897	rc->latency_range = new_latency_range;
 898
 899	switch (new_latency_range) {
 900	case I40E_LOWEST_LATENCY:
 901		new_itr = I40E_ITR_50K;
 902		break;
 903	case I40E_LOW_LATENCY:
 904		new_itr = I40E_ITR_20K;
 905		break;
 906	case I40E_BULK_LATENCY:
 907		new_itr = I40E_ITR_18K;
 908		break;
 909	case I40E_ULTRA_LATENCY:
 910		new_itr = I40E_ITR_8K;
 911		break;
 912	default:
 913		break;
 914	}
 915
 
 
 
 
 
 
 
 916	rc->total_bytes = 0;
 917	rc->total_packets = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 918
 919	if (new_itr != rc->itr) {
 920		rc->itr = new_itr;
 921		return true;
 922	}
 
 923
 924	return false;
 
 925}
 926
 927/**
 928 * i40e_clean_programming_status - clean the programming status descriptor
 929 * @rx_ring: the rx ring that has this descriptor
 930 * @rx_desc: the rx descriptor written back by HW
 
 931 *
 932 * Flow director should handle FD_FILTER_STATUS to check its filter programming
 933 * status being successful or not and take actions accordingly. FCoE should
 934 * handle its context/filter programming/invalidation status and take actions.
 935 *
 
 936 **/
 937static void i40e_clean_programming_status(struct i40e_ring *rx_ring,
 938					  union i40e_rx_desc *rx_desc)
 939{
 940	u64 qw;
 941	u8 id;
 942
 943	qw = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
 944	id = (qw & I40E_RX_PROG_STATUS_DESC_QW1_PROGID_MASK) >>
 945		  I40E_RX_PROG_STATUS_DESC_QW1_PROGID_SHIFT;
 946
 947	if (id == I40E_RX_PROG_STATUS_DESC_FD_FILTER_STATUS)
 948		i40e_fd_handle_status(rx_ring, rx_desc, id);
 949#ifdef I40E_FCOE
 950	else if ((id == I40E_RX_PROG_STATUS_DESC_FCOE_CTXT_PROG_STATUS) ||
 951		 (id == I40E_RX_PROG_STATUS_DESC_FCOE_CTXT_INVL_STATUS))
 952		i40e_fcoe_handle_status(rx_ring, rx_desc, id);
 953#endif
 954}
 955
 956/**
 957 * i40e_setup_tx_descriptors - Allocate the Tx descriptors
 958 * @tx_ring: the tx ring to set up
 959 *
 960 * Return 0 on success, negative on error
 961 **/
 962int i40e_setup_tx_descriptors(struct i40e_ring *tx_ring)
 963{
 964	struct device *dev = tx_ring->dev;
 965	int bi_size;
 966
 967	if (!dev)
 968		return -ENOMEM;
 969
 970	/* warn if we are about to overwrite the pointer */
 971	WARN_ON(tx_ring->tx_bi);
 972	bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
 973	tx_ring->tx_bi = kzalloc(bi_size, GFP_KERNEL);
 974	if (!tx_ring->tx_bi)
 975		goto err;
 976
 
 
 977	/* round up to nearest 4K */
 978	tx_ring->size = tx_ring->count * sizeof(struct i40e_tx_desc);
 979	/* add u32 for head writeback, align after this takes care of
 980	 * guaranteeing this is at least one cache line in size
 981	 */
 982	tx_ring->size += sizeof(u32);
 983	tx_ring->size = ALIGN(tx_ring->size, 4096);
 984	tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
 985					   &tx_ring->dma, GFP_KERNEL);
 986	if (!tx_ring->desc) {
 987		dev_info(dev, "Unable to allocate memory for the Tx descriptor ring, size=%d\n",
 988			 tx_ring->size);
 989		goto err;
 990	}
 991
 992	tx_ring->next_to_use = 0;
 993	tx_ring->next_to_clean = 0;
 
 994	return 0;
 995
 996err:
 997	kfree(tx_ring->tx_bi);
 998	tx_ring->tx_bi = NULL;
 999	return -ENOMEM;
1000}
1001
 
 
 
 
 
1002/**
1003 * i40e_clean_rx_ring - Free Rx buffers
1004 * @rx_ring: ring to be cleaned
1005 **/
1006void i40e_clean_rx_ring(struct i40e_ring *rx_ring)
1007{
1008	struct device *dev = rx_ring->dev;
1009	unsigned long bi_size;
1010	u16 i;
1011
1012	/* ring already cleared, nothing to do */
1013	if (!rx_ring->rx_bi)
1014		return;
1015
 
 
 
 
 
1016	/* Free all the Rx ring sk_buffs */
1017	for (i = 0; i < rx_ring->count; i++) {
1018		struct i40e_rx_buffer *rx_bi = &rx_ring->rx_bi[i];
1019
1020		if (rx_bi->skb) {
1021			dev_kfree_skb(rx_bi->skb);
1022			rx_bi->skb = NULL;
1023		}
1024		if (!rx_bi->page)
1025			continue;
1026
1027		dma_unmap_page(dev, rx_bi->dma, PAGE_SIZE, DMA_FROM_DEVICE);
1028		__free_pages(rx_bi->page, 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1029
1030		rx_bi->page = NULL;
1031		rx_bi->page_offset = 0;
1032	}
1033
1034	bi_size = sizeof(struct i40e_rx_buffer) * rx_ring->count;
1035	memset(rx_ring->rx_bi, 0, bi_size);
 
 
 
1036
1037	/* Zero out the descriptor ring */
1038	memset(rx_ring->desc, 0, rx_ring->size);
1039
1040	rx_ring->next_to_alloc = 0;
1041	rx_ring->next_to_clean = 0;
 
1042	rx_ring->next_to_use = 0;
1043}
1044
1045/**
1046 * i40e_free_rx_resources - Free Rx resources
1047 * @rx_ring: ring to clean the resources from
1048 *
1049 * Free all receive software resources
1050 **/
1051void i40e_free_rx_resources(struct i40e_ring *rx_ring)
1052{
1053	i40e_clean_rx_ring(rx_ring);
 
 
 
1054	kfree(rx_ring->rx_bi);
1055	rx_ring->rx_bi = NULL;
1056
1057	if (rx_ring->desc) {
1058		dma_free_coherent(rx_ring->dev, rx_ring->size,
1059				  rx_ring->desc, rx_ring->dma);
1060		rx_ring->desc = NULL;
1061	}
1062}
1063
1064/**
1065 * i40e_setup_rx_descriptors - Allocate Rx descriptors
1066 * @rx_ring: Rx descriptor ring (for a specific queue) to setup
1067 *
1068 * Returns 0 on success, negative on failure
1069 **/
1070int i40e_setup_rx_descriptors(struct i40e_ring *rx_ring)
1071{
1072	struct device *dev = rx_ring->dev;
1073	int bi_size;
1074
1075	/* warn if we are about to overwrite the pointer */
1076	WARN_ON(rx_ring->rx_bi);
1077	bi_size = sizeof(struct i40e_rx_buffer) * rx_ring->count;
1078	rx_ring->rx_bi = kzalloc(bi_size, GFP_KERNEL);
1079	if (!rx_ring->rx_bi)
1080		goto err;
1081
1082	u64_stats_init(&rx_ring->syncp);
1083
1084	/* Round up to nearest 4K */
1085	rx_ring->size = rx_ring->count * sizeof(union i40e_32byte_rx_desc);
1086	rx_ring->size = ALIGN(rx_ring->size, 4096);
1087	rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
1088					   &rx_ring->dma, GFP_KERNEL);
1089
1090	if (!rx_ring->desc) {
1091		dev_info(dev, "Unable to allocate memory for the Rx descriptor ring, size=%d\n",
1092			 rx_ring->size);
1093		goto err;
1094	}
1095
1096	rx_ring->next_to_alloc = 0;
1097	rx_ring->next_to_clean = 0;
 
1098	rx_ring->next_to_use = 0;
1099
 
 
 
 
 
 
 
1100	return 0;
1101err:
1102	kfree(rx_ring->rx_bi);
1103	rx_ring->rx_bi = NULL;
1104	return -ENOMEM;
1105}
1106
1107/**
1108 * i40e_release_rx_desc - Store the new tail and head values
1109 * @rx_ring: ring to bump
1110 * @val: new head index
1111 **/
1112static inline void i40e_release_rx_desc(struct i40e_ring *rx_ring, u32 val)
1113{
1114	rx_ring->next_to_use = val;
1115
1116	/* update next to alloc since we have filled the ring */
1117	rx_ring->next_to_alloc = val;
1118
1119	/* Force memory writes to complete before letting h/w
1120	 * know there are new descriptors to fetch.  (Only
1121	 * applicable for weak-ordered memory model archs,
1122	 * such as IA-64).
1123	 */
1124	wmb();
1125	writel(val, rx_ring->tail);
1126}
1127
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1128/**
1129 * i40e_alloc_mapped_page - recycle or make a new page
1130 * @rx_ring: ring to use
1131 * @bi: rx_buffer struct to modify
1132 *
1133 * Returns true if the page was successfully allocated or
1134 * reused.
1135 **/
1136static bool i40e_alloc_mapped_page(struct i40e_ring *rx_ring,
1137				   struct i40e_rx_buffer *bi)
1138{
1139	struct page *page = bi->page;
1140	dma_addr_t dma;
1141
1142	/* since we are recycling buffers we should seldom need to alloc */
1143	if (likely(page)) {
1144		rx_ring->rx_stats.page_reuse_count++;
1145		return true;
1146	}
1147
1148	/* alloc new page for storage */
1149	page = dev_alloc_page();
1150	if (unlikely(!page)) {
1151		rx_ring->rx_stats.alloc_page_failed++;
1152		return false;
1153	}
1154
 
 
1155	/* map page for use */
1156	dma = dma_map_page(rx_ring->dev, page, 0, PAGE_SIZE, DMA_FROM_DEVICE);
 
 
 
1157
1158	/* if mapping failed free memory back to system since
1159	 * there isn't much point in holding memory we can't use
1160	 */
1161	if (dma_mapping_error(rx_ring->dev, dma)) {
1162		__free_pages(page, 0);
1163		rx_ring->rx_stats.alloc_page_failed++;
1164		return false;
1165	}
1166
1167	bi->dma = dma;
1168	bi->page = page;
1169	bi->page_offset = 0;
 
 
1170
1171	return true;
1172}
1173
1174/**
1175 * i40e_receive_skb - Send a completed packet up the stack
1176 * @rx_ring:  rx ring in play
1177 * @skb: packet to send up
1178 * @vlan_tag: vlan tag for packet
1179 **/
1180static void i40e_receive_skb(struct i40e_ring *rx_ring,
1181			     struct sk_buff *skb, u16 vlan_tag)
1182{
1183	struct i40e_q_vector *q_vector = rx_ring->q_vector;
1184
1185	if ((rx_ring->netdev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
1186	    (vlan_tag & VLAN_VID_MASK))
1187		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tag);
1188
1189	napi_gro_receive(&q_vector->napi, skb);
1190}
1191
1192/**
1193 * i40e_alloc_rx_buffers - Replace used receive buffers
1194 * @rx_ring: ring to place buffers on
1195 * @cleaned_count: number of buffers to replace
1196 *
1197 * Returns false if all allocations were successful, true if any fail
1198 **/
1199bool i40e_alloc_rx_buffers(struct i40e_ring *rx_ring, u16 cleaned_count)
1200{
1201	u16 ntu = rx_ring->next_to_use;
1202	union i40e_rx_desc *rx_desc;
1203	struct i40e_rx_buffer *bi;
1204
1205	/* do nothing if no valid netdev defined */
1206	if (!rx_ring->netdev || !cleaned_count)
1207		return false;
1208
1209	rx_desc = I40E_RX_DESC(rx_ring, ntu);
1210	bi = &rx_ring->rx_bi[ntu];
1211
1212	do {
1213		if (!i40e_alloc_mapped_page(rx_ring, bi))
1214			goto no_buffers;
1215
 
 
 
 
 
 
1216		/* Refresh the desc even if buffer_addrs didn't change
1217		 * because each write-back erases this info.
1218		 */
1219		rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
1220
1221		rx_desc++;
1222		bi++;
1223		ntu++;
1224		if (unlikely(ntu == rx_ring->count)) {
1225			rx_desc = I40E_RX_DESC(rx_ring, 0);
1226			bi = rx_ring->rx_bi;
1227			ntu = 0;
1228		}
1229
1230		/* clear the status bits for the next_to_use descriptor */
1231		rx_desc->wb.qword1.status_error_len = 0;
1232
1233		cleaned_count--;
1234	} while (cleaned_count);
1235
1236	if (rx_ring->next_to_use != ntu)
1237		i40e_release_rx_desc(rx_ring, ntu);
1238
1239	return false;
1240
1241no_buffers:
1242	if (rx_ring->next_to_use != ntu)
1243		i40e_release_rx_desc(rx_ring, ntu);
1244
1245	/* make sure to come back via polling to try again after
1246	 * allocation failure
1247	 */
1248	return true;
1249}
1250
1251/**
1252 * i40e_rx_checksum - Indicate in skb if hw indicated a good cksum
1253 * @vsi: the VSI we care about
1254 * @skb: skb currently being received and modified
1255 * @rx_desc: the receive descriptor
1256 *
1257 * skb->protocol must be set before this function is called
1258 **/
1259static inline void i40e_rx_checksum(struct i40e_vsi *vsi,
1260				    struct sk_buff *skb,
1261				    union i40e_rx_desc *rx_desc)
1262{
1263	struct i40e_rx_ptype_decoded decoded;
1264	u32 rx_error, rx_status;
1265	bool ipv4, ipv6;
1266	u8 ptype;
1267	u64 qword;
1268
1269	qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1270	ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >> I40E_RXD_QW1_PTYPE_SHIFT;
1271	rx_error = (qword & I40E_RXD_QW1_ERROR_MASK) >>
1272		   I40E_RXD_QW1_ERROR_SHIFT;
1273	rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >>
1274		    I40E_RXD_QW1_STATUS_SHIFT;
1275	decoded = decode_rx_desc_ptype(ptype);
1276
1277	skb->ip_summed = CHECKSUM_NONE;
1278
1279	skb_checksum_none_assert(skb);
 
1280
1281	/* Rx csum enabled and ip headers found? */
1282	if (!(vsi->netdev->features & NETIF_F_RXCSUM))
1283		return;
1284
 
 
 
1285	/* did the hardware decode the packet and checksum? */
1286	if (!(rx_status & BIT(I40E_RX_DESC_STATUS_L3L4P_SHIFT)))
1287		return;
1288
1289	/* both known and outer_ip must be set for the below code to work */
1290	if (!(decoded.known && decoded.outer_ip))
1291		return;
1292
1293	ipv4 = (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP) &&
1294	       (decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV4);
1295	ipv6 = (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP) &&
1296	       (decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV6);
1297
1298	if (ipv4 &&
1299	    (rx_error & (BIT(I40E_RX_DESC_ERROR_IPE_SHIFT) |
1300			 BIT(I40E_RX_DESC_ERROR_EIPE_SHIFT))))
1301		goto checksum_fail;
1302
1303	/* likely incorrect csum if alternate IP extension headers found */
1304	if (ipv6 &&
1305	    rx_status & BIT(I40E_RX_DESC_STATUS_IPV6EXADD_SHIFT))
1306		/* don't increment checksum err here, non-fatal err */
1307		return;
1308
1309	/* there was some L4 error, count error and punt packet to the stack */
1310	if (rx_error & BIT(I40E_RX_DESC_ERROR_L4E_SHIFT))
1311		goto checksum_fail;
1312
1313	/* handle packets that were not able to be checksummed due
1314	 * to arrival speed, in this case the stack can compute
1315	 * the csum.
1316	 */
1317	if (rx_error & BIT(I40E_RX_DESC_ERROR_PPRS_SHIFT))
1318		return;
1319
1320	/* If there is an outer header present that might contain a checksum
1321	 * we need to bump the checksum level by 1 to reflect the fact that
1322	 * we are indicating we validated the inner checksum.
1323	 */
1324	if (decoded.tunnel_type >= I40E_RX_PTYPE_TUNNEL_IP_GRENAT)
1325		skb->csum_level = 1;
1326
1327	/* Only report checksum unnecessary for TCP, UDP, or SCTP */
1328	switch (decoded.inner_prot) {
1329	case I40E_RX_PTYPE_INNER_PROT_TCP:
1330	case I40E_RX_PTYPE_INNER_PROT_UDP:
1331	case I40E_RX_PTYPE_INNER_PROT_SCTP:
1332		skb->ip_summed = CHECKSUM_UNNECESSARY;
1333		/* fall though */
1334	default:
1335		break;
1336	}
1337
1338	return;
1339
1340checksum_fail:
1341	vsi->back->hw_csum_rx_error++;
1342}
1343
1344/**
1345 * i40e_ptype_to_htype - get a hash type
1346 * @ptype: the ptype value from the descriptor
1347 *
1348 * Returns a hash type to be used by skb_set_hash
1349 **/
1350static inline int i40e_ptype_to_htype(u8 ptype)
1351{
1352	struct i40e_rx_ptype_decoded decoded = decode_rx_desc_ptype(ptype);
1353
1354	if (!decoded.known)
1355		return PKT_HASH_TYPE_NONE;
1356
1357	if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
1358	    decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY4)
1359		return PKT_HASH_TYPE_L4;
1360	else if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
1361		 decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY3)
1362		return PKT_HASH_TYPE_L3;
1363	else
1364		return PKT_HASH_TYPE_L2;
1365}
1366
1367/**
1368 * i40e_rx_hash - set the hash value in the skb
1369 * @ring: descriptor ring
1370 * @rx_desc: specific descriptor
 
 
1371 **/
1372static inline void i40e_rx_hash(struct i40e_ring *ring,
1373				union i40e_rx_desc *rx_desc,
1374				struct sk_buff *skb,
1375				u8 rx_ptype)
1376{
 
1377	u32 hash;
1378	const __le64 rss_mask =
1379		cpu_to_le64((u64)I40E_RX_DESC_FLTSTAT_RSS_HASH <<
1380			    I40E_RX_DESC_STATUS_FLTSTAT_SHIFT);
1381
1382	if (!(ring->netdev->features & NETIF_F_RXHASH))
 
1383		return;
1384
1385	if ((rx_desc->wb.qword1.status_error_len & rss_mask) == rss_mask) {
1386		hash = le32_to_cpu(rx_desc->wb.qword0.hi_dword.rss);
1387		skb_set_hash(skb, hash, i40e_ptype_to_htype(rx_ptype));
1388	}
1389}
1390
1391/**
1392 * i40e_process_skb_fields - Populate skb header fields from Rx descriptor
1393 * @rx_ring: rx descriptor ring packet is being transacted on
1394 * @rx_desc: pointer to the EOP Rx descriptor
1395 * @skb: pointer to current skb being populated
1396 * @rx_ptype: the packet type decoded by hardware
1397 *
1398 * This function checks the ring, descriptor, and packet information in
1399 * order to populate the hash, checksum, VLAN, protocol, and
1400 * other fields within the skb.
1401 **/
1402static inline
1403void i40e_process_skb_fields(struct i40e_ring *rx_ring,
1404			     union i40e_rx_desc *rx_desc, struct sk_buff *skb,
1405			     u8 rx_ptype)
1406{
1407	u64 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1408	u32 rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >>
1409			I40E_RXD_QW1_STATUS_SHIFT;
1410	u32 tsynvalid = rx_status & I40E_RXD_QW1_STATUS_TSYNVALID_MASK;
1411	u32 tsyn = (rx_status & I40E_RXD_QW1_STATUS_TSYNINDX_MASK) >>
1412		   I40E_RXD_QW1_STATUS_TSYNINDX_SHIFT;
1413
1414	if (unlikely(tsynvalid))
1415		i40e_ptp_rx_hwtstamp(rx_ring->vsi->back, skb, tsyn);
1416
1417	i40e_rx_hash(rx_ring, rx_desc, skb, rx_ptype);
1418
1419	/* modifies the skb - consumes the enet header */
1420	skb->protocol = eth_type_trans(skb, rx_ring->netdev);
1421
1422	i40e_rx_checksum(rx_ring->vsi, skb, rx_desc);
1423
1424	skb_record_rx_queue(skb, rx_ring->queue_index);
1425}
1426
1427/**
1428 * i40e_pull_tail - i40e specific version of skb_pull_tail
1429 * @rx_ring: rx descriptor ring packet is being transacted on
1430 * @skb: pointer to current skb being adjusted
1431 *
1432 * This function is an i40e specific version of __pskb_pull_tail.  The
1433 * main difference between this version and the original function is that
1434 * this function can make several assumptions about the state of things
1435 * that allow for significant optimizations versus the standard function.
1436 * As a result we can do things like drop a frag and maintain an accurate
1437 * truesize for the skb.
1438 */
1439static void i40e_pull_tail(struct i40e_ring *rx_ring, struct sk_buff *skb)
1440{
1441	struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[0];
1442	unsigned char *va;
1443	unsigned int pull_len;
1444
1445	/* it is valid to use page_address instead of kmap since we are
1446	 * working with pages allocated out of the lomem pool per
1447	 * alloc_page(GFP_ATOMIC)
1448	 */
1449	va = skb_frag_address(frag);
1450
1451	/* we need the header to contain the greater of either ETH_HLEN or
1452	 * 60 bytes if the skb->len is less than 60 for skb_pad.
1453	 */
1454	pull_len = eth_get_headlen(va, I40E_RX_HDR_SIZE);
1455
1456	/* align pull length to size of long to optimize memcpy performance */
1457	skb_copy_to_linear_data(skb, va, ALIGN(pull_len, sizeof(long)));
1458
1459	/* update all of the pointers */
1460	skb_frag_size_sub(frag, pull_len);
1461	frag->page_offset += pull_len;
1462	skb->data_len -= pull_len;
1463	skb->tail += pull_len;
1464}
1465
1466/**
1467 * i40e_cleanup_headers - Correct empty headers
1468 * @rx_ring: rx descriptor ring packet is being transacted on
1469 * @skb: pointer to current skb being fixed
1470 *
1471 * Also address the case where we are pulling data in on pages only
1472 * and as such no data is present in the skb header.
1473 *
1474 * In addition if skb is not at least 60 bytes we need to pad it so that
1475 * it is large enough to qualify as a valid Ethernet frame.
1476 *
1477 * Returns true if an error was encountered and skb was freed.
1478 **/
1479static bool i40e_cleanup_headers(struct i40e_ring *rx_ring, struct sk_buff *skb)
 
 
1480{
1481	/* place header in linear portion of buffer */
1482	if (skb_is_nonlinear(skb))
1483		i40e_pull_tail(rx_ring, skb);
 
 
 
 
 
 
 
1484
1485	/* if eth_skb_pad returns an error the skb was freed */
1486	if (eth_skb_pad(skb))
1487		return true;
1488
1489	return false;
1490}
1491
1492/**
1493 * i40e_reuse_rx_page - page flip buffer and store it back on the ring
1494 * @rx_ring: rx descriptor ring to store buffers on
1495 * @old_buff: donor buffer to have page reused
 
 
 
 
 
1496 *
1497 * Synchronizes page for reuse by the adapter
1498 **/
1499static void i40e_reuse_rx_page(struct i40e_ring *rx_ring,
1500			       struct i40e_rx_buffer *old_buff)
 
1501{
1502	struct i40e_rx_buffer *new_buff;
1503	u16 nta = rx_ring->next_to_alloc;
 
 
 
 
 
 
1504
1505	new_buff = &rx_ring->rx_bi[nta];
 
 
 
 
 
 
 
 
 
 
 
 
 
1506
1507	/* update, and store next to alloc */
1508	nta++;
1509	rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
 
 
 
 
 
1510
1511	/* transfer page from old buffer to new buffer */
1512	*new_buff = *old_buff;
1513}
1514
1515/**
1516 * i40e_page_is_reserved - check if reuse is possible
1517 * @page: page struct to check
1518 */
1519static inline bool i40e_page_is_reserved(struct page *page)
 
 
1520{
1521	return (page_to_nid(page) != numa_mem_id()) || page_is_pfmemalloc(page);
 
 
 
 
1522}
1523
1524/**
1525 * i40e_add_rx_frag - Add contents of Rx buffer to sk_buff
1526 * @rx_ring: rx descriptor ring to transact packets on
1527 * @rx_buffer: buffer containing page to add
1528 * @rx_desc: descriptor containing length of buffer written by hardware
1529 * @skb: sk_buff to place the data into
1530 *
1531 * This function will add the data contained in rx_buffer->page to the skb.
1532 * This is done either through a direct copy if the data in the buffer is
1533 * less than the skb header size, otherwise it will just attach the page as
1534 * a frag to the skb.
1535 *
1536 * The function will then update the page offset if necessary and return
1537 * true if the buffer can be reused by the adapter.
1538 **/
1539static bool i40e_add_rx_frag(struct i40e_ring *rx_ring,
1540			     struct i40e_rx_buffer *rx_buffer,
1541			     union i40e_rx_desc *rx_desc,
1542			     struct sk_buff *skb)
1543{
1544	struct page *page = rx_buffer->page;
1545	u64 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1546	unsigned int size = (qword & I40E_RXD_QW1_LENGTH_PBUF_MASK) >>
1547			    I40E_RXD_QW1_LENGTH_PBUF_SHIFT;
1548#if (PAGE_SIZE < 8192)
1549	unsigned int truesize = I40E_RXBUFFER_2048;
1550#else
1551	unsigned int truesize = ALIGN(size, L1_CACHE_BYTES);
1552	unsigned int last_offset = PAGE_SIZE - I40E_RXBUFFER_2048;
1553#endif
 
1554
1555	/* will the data fit in the skb we allocated? if so, just
1556	 * copy it as it is pretty small anyway
1557	 */
1558	if ((size <= I40E_RX_HDR_SIZE) && !skb_is_nonlinear(skb)) {
1559		unsigned char *va = page_address(page) + rx_buffer->page_offset;
 
1560
1561		memcpy(__skb_put(skb, size), va, ALIGN(size, sizeof(long)));
 
1562
1563		/* page is not reserved, we can reuse buffer as-is */
1564		if (likely(!i40e_page_is_reserved(page)))
1565			return true;
1566
1567		/* this page cannot be reused so discard it */
1568		__free_pages(page, 0);
1569		return false;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1570	}
 
1571
1572	skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
1573			rx_buffer->page_offset, size, truesize);
 
 
 
 
 
 
 
 
 
 
1574
1575	/* avoid re-using remote pages */
1576	if (unlikely(i40e_page_is_reserved(page)))
1577		return false;
1578
1579#if (PAGE_SIZE < 8192)
1580	/* if we are only owner of page we can reuse it */
1581	if (unlikely(page_count(page) != 1))
1582		return false;
1583
1584	/* flip page offset to other buffer */
1585	rx_buffer->page_offset ^= truesize;
1586#else
1587	/* move offset up to the next cache line */
1588	rx_buffer->page_offset += truesize;
1589
1590	if (rx_buffer->page_offset > last_offset)
1591		return false;
1592#endif
 
1593
1594	/* Even if we own the page, we are not allowed to use atomic_set()
1595	 * This would break get_page_unless_zero() users.
1596	 */
1597	get_page(rx_buffer->page);
1598
1599	return true;
 
1600}
1601
1602/**
1603 * i40e_fetch_rx_buffer - Allocate skb and populate it
1604 * @rx_ring: rx descriptor ring to transact packets on
1605 * @rx_desc: descriptor containing info written by hardware
1606 *
1607 * This function allocates an skb on the fly, and populates it with the page
1608 * data from the current receive descriptor, taking care to set up the skb
1609 * correctly, as well as handling calling the page recycle function if
1610 * necessary.
1611 */
1612static inline
1613struct sk_buff *i40e_fetch_rx_buffer(struct i40e_ring *rx_ring,
1614				     union i40e_rx_desc *rx_desc)
1615{
 
1616	struct i40e_rx_buffer *rx_buffer;
 
 
1617	struct sk_buff *skb;
1618	struct page *page;
1619
1620	rx_buffer = &rx_ring->rx_bi[rx_ring->next_to_clean];
1621	page = rx_buffer->page;
1622	prefetchw(page);
1623
1624	skb = rx_buffer->skb;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1625
1626	if (likely(!skb)) {
1627		void *page_addr = page_address(page) + rx_buffer->page_offset;
 
1628
1629		/* prefetch first cache line of first page */
1630		prefetch(page_addr);
1631#if L1_CACHE_BYTES < 128
1632		prefetch(page_addr + L1_CACHE_BYTES);
1633#endif
1634
1635		/* allocate a skb to store the frags */
1636		skb = __napi_alloc_skb(&rx_ring->q_vector->napi,
1637				       I40E_RX_HDR_SIZE,
1638				       GFP_ATOMIC | __GFP_NOWARN);
1639		if (unlikely(!skb)) {
1640			rx_ring->rx_stats.alloc_buff_failed++;
1641			return NULL;
1642		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1643
1644		/* we will be copying header into skb->data in
1645		 * pskb_may_pull so it is in our interest to prefetch
1646		 * it now to avoid a possible cache miss
1647		 */
1648		prefetchw(skb->data);
1649	} else {
1650		rx_buffer->skb = NULL;
 
 
 
1651	}
1652
1653	/* we are reusing so sync this buffer for CPU use */
1654	dma_sync_single_range_for_cpu(rx_ring->dev,
1655				      rx_buffer->dma,
1656				      rx_buffer->page_offset,
1657				      I40E_RXBUFFER_2048,
1658				      DMA_FROM_DEVICE);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1659
1660	/* pull page into skb */
1661	if (i40e_add_rx_frag(rx_ring, rx_buffer, rx_desc, skb)) {
1662		/* hand second half of page back to the ring */
1663		i40e_reuse_rx_page(rx_ring, rx_buffer);
1664		rx_ring->rx_stats.page_reuse_count++;
1665	} else {
1666		/* we are not reusing the buffer so unmap it */
1667		dma_unmap_page(rx_ring->dev, rx_buffer->dma, PAGE_SIZE,
1668			       DMA_FROM_DEVICE);
 
 
1669	}
1670
1671	/* clear contents of buffer_info */
1672	rx_buffer->page = NULL;
1673
1674	return skb;
1675}
1676
1677/**
1678 * i40e_is_non_eop - process handling of non-EOP buffers
1679 * @rx_ring: Rx ring being processed
1680 * @rx_desc: Rx descriptor for current buffer
1681 * @skb: Current socket buffer containing buffer in progress
1682 *
1683 * This function updates next to clean.  If the buffer is an EOP buffer
1684 * this function exits returning false, otherwise it will place the
1685 * sk_buff in the next buffer to be chained and return true indicating
1686 * that this is in fact a non-EOP buffer.
1687 **/
1688static bool i40e_is_non_eop(struct i40e_ring *rx_ring,
1689			    union i40e_rx_desc *rx_desc,
1690			    struct sk_buff *skb)
1691{
1692	u32 ntc = rx_ring->next_to_clean + 1;
1693
1694	/* fetch, update, and store next to clean */
1695	ntc = (ntc < rx_ring->count) ? ntc : 0;
1696	rx_ring->next_to_clean = ntc;
1697
1698	prefetch(I40E_RX_DESC(rx_ring, ntc));
1699
1700#define staterrlen rx_desc->wb.qword1.status_error_len
1701	if (unlikely(i40e_rx_is_programming_status(le64_to_cpu(staterrlen)))) {
1702		i40e_clean_programming_status(rx_ring, rx_desc);
1703		rx_ring->rx_bi[ntc].skb = skb;
1704		return true;
1705	}
1706	/* if we are the last buffer then there is nothing else to do */
1707#define I40E_RXD_EOF BIT(I40E_RX_DESC_STATUS_EOF_SHIFT)
1708	if (likely(i40e_test_staterr(rx_desc, I40E_RXD_EOF)))
1709		return false;
1710
1711	/* place skb in next buffer to be received */
1712	rx_ring->rx_bi[ntc].skb = skb;
1713	rx_ring->rx_stats.non_eop_descs++;
1714
1715	return true;
1716}
1717
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1718/**
1719 * i40e_clean_rx_irq - Clean completed descriptors from Rx ring - bounce buf
1720 * @rx_ring: rx descriptor ring to transact packets on
1721 * @budget: Total limit on number of packets to process
 
1722 *
1723 * This function provides a "bounce buffer" approach to Rx interrupt
1724 * processing.  The advantage to this is that on systems that have
1725 * expensive overhead for IOMMU access this provides a means of avoiding
1726 * it by maintaining the mapping of the page to the system.
1727 *
1728 * Returns amount of work completed
1729 **/
1730static int i40e_clean_rx_irq(struct i40e_ring *rx_ring, int budget)
 
1731{
1732	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
1733	u16 cleaned_count = I40E_DESC_UNUSED(rx_ring);
 
 
 
 
 
1734	bool failure = false;
 
 
 
1735
1736	while (likely(total_rx_packets < budget)) {
 
 
1737		union i40e_rx_desc *rx_desc;
1738		struct sk_buff *skb;
1739		u16 vlan_tag;
1740		u8 rx_ptype;
 
1741		u64 qword;
1742
1743		/* return some buffers to hardware, one at a time is too slow */
1744		if (cleaned_count >= I40E_RX_BUFFER_WRITE) {
1745			failure = failure ||
1746				  i40e_alloc_rx_buffers(rx_ring, cleaned_count);
1747			cleaned_count = 0;
1748		}
1749
1750		rx_desc = I40E_RX_DESC(rx_ring, rx_ring->next_to_clean);
1751
1752		/* status_error_len will always be zero for unused descriptors
1753		 * because it's cleared in cleanup, and overlaps with hdr_addr
1754		 * which is always zero because packet split isn't used, if the
1755		 * hardware wrote DD then it will be non-zero
1756		 */
1757		if (!i40e_test_staterr(rx_desc,
1758				       BIT(I40E_RX_DESC_STATUS_DD_SHIFT)))
1759			break;
1760
1761		/* This memory barrier is needed to keep us from reading
1762		 * any other fields out of the rx_desc until we know the
1763		 * DD bit is set.
1764		 */
1765		dma_rmb();
1766
1767		skb = i40e_fetch_rx_buffer(rx_ring, rx_desc);
1768		if (!skb)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1769			break;
1770
1771		cleaned_count++;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1772
1773		if (i40e_is_non_eop(rx_ring, rx_desc, skb))
1774			continue;
1775
1776		/* ERR_MASK will only have valid bits if EOP set, and
1777		 * what we are doing here is actually checking
1778		 * I40E_RX_DESC_ERROR_RXE_SHIFT, since it is the zeroth bit in
1779		 * the error field
1780		 */
1781		if (unlikely(i40e_test_staterr(rx_desc, BIT(I40E_RXD_QW1_ERROR_SHIFT)))) {
1782			dev_kfree_skb_any(skb);
1783			continue;
1784		}
1785
1786		if (i40e_cleanup_headers(rx_ring, skb))
1787			continue;
1788
1789		/* probably a little skewed due to removing CRC */
1790		total_rx_bytes += skb->len;
 
 
 
 
 
 
 
 
 
 
 
 
1791
1792		qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1793		rx_ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >>
1794			   I40E_RXD_QW1_PTYPE_SHIFT;
 
 
 
1795
1796		/* populate checksum, VLAN, and protocol */
1797		i40e_process_skb_fields(rx_ring, rx_desc, skb, rx_ptype);
1798
1799#ifdef I40E_FCOE
1800		if (unlikely(
1801		    i40e_rx_is_fcoe(rx_ptype) &&
1802		    !i40e_fcoe_handle_offload(rx_ring, rx_desc, skb))) {
1803			dev_kfree_skb_any(skb);
1804			continue;
1805		}
1806#endif
1807
1808		vlan_tag = (qword & BIT(I40E_RX_DESC_STATUS_L2TAG1P_SHIFT)) ?
1809			   le16_to_cpu(rx_desc->wb.qword0.lo_dword.l2tag1) : 0;
1810
1811		i40e_receive_skb(rx_ring, skb, vlan_tag);
 
 
1812
1813		/* update budget accounting */
1814		total_rx_packets++;
 
 
 
 
 
 
1815	}
1816
1817	u64_stats_update_begin(&rx_ring->syncp);
1818	rx_ring->stats.packets += total_rx_packets;
1819	rx_ring->stats.bytes += total_rx_bytes;
1820	u64_stats_update_end(&rx_ring->syncp);
1821	rx_ring->q_vector->rx.total_packets += total_rx_packets;
1822	rx_ring->q_vector->rx.total_bytes += total_rx_bytes;
1823
1824	/* guarantee a trip back through this routine if there was a failure */
1825	return failure ? budget : total_rx_packets;
1826}
1827
1828static u32 i40e_buildreg_itr(const int type, const u16 itr)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1829{
1830	u32 val;
1831
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1832	val = I40E_PFINT_DYN_CTLN_INTENA_MASK |
1833	      /* Don't clear PBA because that can cause lost interrupts that
1834	       * came in while we were cleaning/polling
1835	       */
1836	      (type << I40E_PFINT_DYN_CTLN_ITR_INDX_SHIFT) |
1837	      (itr << I40E_PFINT_DYN_CTLN_INTERVAL_SHIFT);
 
 
 
 
 
 
 
1838
1839	return val;
1840}
1841
1842/* a small macro to shorten up some long lines */
1843#define INTREG I40E_PFINT_DYN_CTLN
1844static inline int get_rx_itr_enabled(struct i40e_vsi *vsi, int idx)
1845{
1846	return !!(vsi->rx_rings[idx]->rx_itr_setting);
1847}
1848
1849static inline int get_tx_itr_enabled(struct i40e_vsi *vsi, int idx)
1850{
1851	return !!(vsi->tx_rings[idx]->tx_itr_setting);
1852}
1853
1854/**
1855 * i40e_update_enable_itr - Update itr and re-enable MSIX interrupt
1856 * @vsi: the VSI we care about
1857 * @q_vector: q_vector for which itr is being updated and interrupt enabled
1858 *
1859 **/
1860static inline void i40e_update_enable_itr(struct i40e_vsi *vsi,
1861					  struct i40e_q_vector *q_vector)
1862{
 
1863	struct i40e_hw *hw = &vsi->back->hw;
1864	bool rx = false, tx = false;
1865	u32 rxval, txval;
1866	int vector;
1867	int idx = q_vector->v_idx;
1868	int rx_itr_setting, tx_itr_setting;
1869
1870	vector = (q_vector->v_idx + vsi->base_vector);
1871
1872	/* avoid dynamic calculation if in countdown mode OR if
1873	 * all dynamic is disabled
1874	 */
1875	rxval = txval = i40e_buildreg_itr(I40E_ITR_NONE, 0);
1876
1877	rx_itr_setting = get_rx_itr_enabled(vsi, idx);
1878	tx_itr_setting = get_tx_itr_enabled(vsi, idx);
1879
1880	if (q_vector->itr_countdown > 0 ||
1881	    (!ITR_IS_DYNAMIC(rx_itr_setting) &&
1882	     !ITR_IS_DYNAMIC(tx_itr_setting))) {
1883		goto enable_int;
1884	}
1885
1886	if (ITR_IS_DYNAMIC(tx_itr_setting)) {
1887		rx = i40e_set_new_dynamic_itr(&q_vector->rx);
1888		rxval = i40e_buildreg_itr(I40E_RX_ITR, q_vector->rx.itr);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1889	}
1890
1891	if (ITR_IS_DYNAMIC(tx_itr_setting)) {
1892		tx = i40e_set_new_dynamic_itr(&q_vector->tx);
1893		txval = i40e_buildreg_itr(I40E_TX_ITR, q_vector->tx.itr);
1894	}
1895
1896	if (rx || tx) {
1897		/* get the higher of the two ITR adjustments and
1898		 * use the same value for both ITR registers
1899		 * when in adaptive mode (Rx and/or Tx)
1900		 */
1901		u16 itr = max(q_vector->tx.itr, q_vector->rx.itr);
1902
1903		q_vector->tx.itr = q_vector->rx.itr = itr;
1904		txval = i40e_buildreg_itr(I40E_TX_ITR, itr);
1905		tx = true;
1906		rxval = i40e_buildreg_itr(I40E_RX_ITR, itr);
1907		rx = true;
1908	}
1909
1910	/* only need to enable the interrupt once, but need
1911	 * to possibly update both ITR values
1912	 */
1913	if (rx) {
1914		/* set the INTENA_MSK_MASK so that this first write
1915		 * won't actually enable the interrupt, instead just
1916		 * updating the ITR (it's bit 31 PF and VF)
1917		 */
1918		rxval |= BIT(31);
1919		/* don't check _DOWN because interrupt isn't being enabled */
1920		wr32(hw, INTREG(vector - 1), rxval);
1921	}
1922
1923enable_int:
1924	if (!test_bit(__I40E_DOWN, &vsi->state))
1925		wr32(hw, INTREG(vector - 1), txval);
1926
1927	if (q_vector->itr_countdown)
1928		q_vector->itr_countdown--;
1929	else
1930		q_vector->itr_countdown = ITR_COUNTDOWN_START;
1931}
1932
1933/**
1934 * i40e_napi_poll - NAPI polling Rx/Tx cleanup routine
1935 * @napi: napi struct with our devices info in it
1936 * @budget: amount of work driver is allowed to do this pass, in packets
1937 *
1938 * This function will clean all queues associated with a q_vector.
1939 *
1940 * Returns the amount of work done
1941 **/
1942int i40e_napi_poll(struct napi_struct *napi, int budget)
1943{
1944	struct i40e_q_vector *q_vector =
1945			       container_of(napi, struct i40e_q_vector, napi);
1946	struct i40e_vsi *vsi = q_vector->vsi;
1947	struct i40e_ring *ring;
 
 
 
 
1948	bool clean_complete = true;
1949	bool arm_wb = false;
1950	int budget_per_ring;
1951	int work_done = 0;
1952
1953	if (test_bit(__I40E_DOWN, &vsi->state)) {
1954		napi_complete(napi);
1955		return 0;
1956	}
1957
1958	/* Clear hung_detected bit */
1959	clear_bit(I40E_Q_VECTOR_HUNG_DETECT, &q_vector->hung_detected);
1960	/* Since the actual Tx work is minimal, we can give the Tx a larger
1961	 * budget and be more aggressive about cleaning up the Tx descriptors.
1962	 */
1963	i40e_for_each_ring(ring, q_vector->tx) {
1964		if (!i40e_clean_tx_irq(vsi, ring, budget)) {
1965			clean_complete = false;
 
 
 
 
1966			continue;
1967		}
1968		arm_wb |= ring->arm_wb;
1969		ring->arm_wb = false;
1970	}
1971
1972	/* Handle case where we are called by netpoll with a budget of 0 */
1973	if (budget <= 0)
1974		goto tx_only;
1975
1976	/* We attempt to distribute budget to each Rx queue fairly, but don't
1977	 * allow the budget to go below 1 because that would exit polling early.
1978	 */
1979	budget_per_ring = max(budget/q_vector->num_ringpairs, 1);
 
 
 
 
 
 
1980
1981	i40e_for_each_ring(ring, q_vector->rx) {
1982		int cleaned = i40e_clean_rx_irq(ring, budget_per_ring);
 
 
1983
1984		work_done += cleaned;
1985		/* if we clean as many as budgeted, we must not be done */
1986		if (cleaned >= budget_per_ring)
1987			clean_complete = false;
1988	}
1989
 
 
 
 
1990	/* If work not completed, return budget and polling will return */
1991	if (!clean_complete) {
1992		const cpumask_t *aff_mask = &q_vector->affinity_mask;
1993		int cpu_id = smp_processor_id();
1994
1995		/* It is possible that the interrupt affinity has changed but,
1996		 * if the cpu is pegged at 100%, polling will never exit while
1997		 * traffic continues and the interrupt will be stuck on this
1998		 * cpu.  We check to make sure affinity is correct before we
1999		 * continue to poll, otherwise we must stop polling so the
2000		 * interrupt can move to the correct cpu.
2001		 */
2002		if (likely(cpumask_test_cpu(cpu_id, aff_mask) ||
2003			   !(vsi->back->flags & I40E_FLAG_MSIX_ENABLED))) {
 
 
 
 
 
 
 
 
2004tx_only:
2005			if (arm_wb) {
2006				q_vector->tx.ring[0].tx_stats.tx_force_wb++;
2007				i40e_enable_wb_on_itr(vsi, q_vector);
2008			}
2009			return budget;
2010		}
 
2011	}
2012
2013	if (vsi->back->flags & I40E_TXR_FLAGS_WB_ON_ITR)
2014		q_vector->arm_wb_state = false;
2015
2016	/* Work is done so exit the polling mode and re-enable the interrupt */
2017	napi_complete_done(napi, work_done);
2018
2019	/* If we're prematurely stopping polling to fix the interrupt
2020	 * affinity we want to make sure polling starts back up so we
2021	 * issue a call to i40e_force_wb which triggers a SW interrupt.
2022	 */
2023	if (!clean_complete)
2024		i40e_force_wb(vsi, q_vector);
2025	else if (!(vsi->back->flags & I40E_FLAG_MSIX_ENABLED))
2026		i40e_irq_dynamic_enable_icr0(vsi->back, false);
2027	else
2028		i40e_update_enable_itr(vsi, q_vector);
2029
2030	return min(work_done, budget - 1);
2031}
2032
2033/**
2034 * i40e_atr - Add a Flow Director ATR filter
2035 * @tx_ring:  ring to add programming descriptor to
2036 * @skb:      send buffer
2037 * @tx_flags: send tx flags
2038 **/
2039static void i40e_atr(struct i40e_ring *tx_ring, struct sk_buff *skb,
2040		     u32 tx_flags)
2041{
2042	struct i40e_filter_program_desc *fdir_desc;
2043	struct i40e_pf *pf = tx_ring->vsi->back;
2044	union {
2045		unsigned char *network;
2046		struct iphdr *ipv4;
2047		struct ipv6hdr *ipv6;
2048	} hdr;
2049	struct tcphdr *th;
2050	unsigned int hlen;
2051	u32 flex_ptype, dtype_cmd;
2052	int l4_proto;
2053	u16 i;
2054
2055	/* make sure ATR is enabled */
2056	if (!(pf->flags & I40E_FLAG_FD_ATR_ENABLED))
2057		return;
2058
2059	if ((pf->auto_disable_flags & I40E_FLAG_FD_ATR_ENABLED))
2060		return;
2061
2062	/* if sampling is disabled do nothing */
2063	if (!tx_ring->atr_sample_rate)
2064		return;
2065
2066	/* Currently only IPv4/IPv6 with TCP is supported */
2067	if (!(tx_flags & (I40E_TX_FLAGS_IPV4 | I40E_TX_FLAGS_IPV6)))
2068		return;
2069
2070	/* snag network header to get L4 type and address */
2071	hdr.network = (tx_flags & I40E_TX_FLAGS_UDP_TUNNEL) ?
2072		      skb_inner_network_header(skb) : skb_network_header(skb);
2073
2074	/* Note: tx_flags gets modified to reflect inner protocols in
2075	 * tx_enable_csum function if encap is enabled.
2076	 */
2077	if (tx_flags & I40E_TX_FLAGS_IPV4) {
2078		/* access ihl as u8 to avoid unaligned access on ia64 */
2079		hlen = (hdr.network[0] & 0x0F) << 2;
2080		l4_proto = hdr.ipv4->protocol;
2081	} else {
2082		hlen = hdr.network - skb->data;
2083		l4_proto = ipv6_find_hdr(skb, &hlen, IPPROTO_TCP, NULL, NULL);
2084		hlen -= hdr.network - skb->data;
 
 
 
 
 
 
2085	}
2086
2087	if (l4_proto != IPPROTO_TCP)
2088		return;
2089
2090	th = (struct tcphdr *)(hdr.network + hlen);
2091
2092	/* Due to lack of space, no more new filters can be programmed */
2093	if (th->syn && (pf->auto_disable_flags & I40E_FLAG_FD_ATR_ENABLED))
2094		return;
2095	if ((pf->flags & I40E_FLAG_HW_ATR_EVICT_CAPABLE) &&
2096	    (!(pf->auto_disable_flags & I40E_FLAG_HW_ATR_EVICT_CAPABLE))) {
2097		/* HW ATR eviction will take care of removing filters on FIN
2098		 * and RST packets.
2099		 */
2100		if (th->fin || th->rst)
2101			return;
2102	}
2103
2104	tx_ring->atr_count++;
2105
2106	/* sample on all syn/fin/rst packets or once every atr sample rate */
2107	if (!th->fin &&
2108	    !th->syn &&
2109	    !th->rst &&
2110	    (tx_ring->atr_count < tx_ring->atr_sample_rate))
2111		return;
2112
2113	tx_ring->atr_count = 0;
2114
2115	/* grab the next descriptor */
2116	i = tx_ring->next_to_use;
2117	fdir_desc = I40E_TX_FDIRDESC(tx_ring, i);
2118
2119	i++;
2120	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
2121
2122	flex_ptype = (tx_ring->queue_index << I40E_TXD_FLTR_QW0_QINDEX_SHIFT) &
2123		      I40E_TXD_FLTR_QW0_QINDEX_MASK;
2124	flex_ptype |= (tx_flags & I40E_TX_FLAGS_IPV4) ?
2125		      (I40E_FILTER_PCTYPE_NONF_IPV4_TCP <<
2126		       I40E_TXD_FLTR_QW0_PCTYPE_SHIFT) :
2127		      (I40E_FILTER_PCTYPE_NONF_IPV6_TCP <<
2128		       I40E_TXD_FLTR_QW0_PCTYPE_SHIFT);
2129
2130	flex_ptype |= tx_ring->vsi->id << I40E_TXD_FLTR_QW0_DEST_VSI_SHIFT;
2131
2132	dtype_cmd = I40E_TX_DESC_DTYPE_FILTER_PROG;
2133
2134	dtype_cmd |= (th->fin || th->rst) ?
2135		     (I40E_FILTER_PROGRAM_DESC_PCMD_REMOVE <<
2136		      I40E_TXD_FLTR_QW1_PCMD_SHIFT) :
2137		     (I40E_FILTER_PROGRAM_DESC_PCMD_ADD_UPDATE <<
2138		      I40E_TXD_FLTR_QW1_PCMD_SHIFT);
2139
2140	dtype_cmd |= I40E_FILTER_PROGRAM_DESC_DEST_DIRECT_PACKET_QINDEX <<
2141		     I40E_TXD_FLTR_QW1_DEST_SHIFT;
2142
2143	dtype_cmd |= I40E_FILTER_PROGRAM_DESC_FD_STATUS_FD_ID <<
2144		     I40E_TXD_FLTR_QW1_FD_STATUS_SHIFT;
2145
2146	dtype_cmd |= I40E_TXD_FLTR_QW1_CNT_ENA_MASK;
2147	if (!(tx_flags & I40E_TX_FLAGS_UDP_TUNNEL))
2148		dtype_cmd |=
2149			((u32)I40E_FD_ATR_STAT_IDX(pf->hw.pf_id) <<
2150			I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT) &
2151			I40E_TXD_FLTR_QW1_CNTINDEX_MASK;
2152	else
2153		dtype_cmd |=
2154			((u32)I40E_FD_ATR_TUNNEL_STAT_IDX(pf->hw.pf_id) <<
2155			I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT) &
2156			I40E_TXD_FLTR_QW1_CNTINDEX_MASK;
2157
2158	if ((pf->flags & I40E_FLAG_HW_ATR_EVICT_CAPABLE) &&
2159	    (!(pf->auto_disable_flags & I40E_FLAG_HW_ATR_EVICT_CAPABLE)))
2160		dtype_cmd |= I40E_TXD_FLTR_QW1_ATR_MASK;
2161
2162	fdir_desc->qindex_flex_ptype_vsi = cpu_to_le32(flex_ptype);
2163	fdir_desc->rsvd = cpu_to_le32(0);
2164	fdir_desc->dtype_cmd_cntindex = cpu_to_le32(dtype_cmd);
2165	fdir_desc->fd_id = cpu_to_le32(0);
2166}
2167
2168/**
2169 * i40e_tx_prepare_vlan_flags - prepare generic TX VLAN tagging flags for HW
2170 * @skb:     send buffer
2171 * @tx_ring: ring to send buffer on
2172 * @flags:   the tx flags to be set
2173 *
2174 * Checks the skb and set up correspondingly several generic transmit flags
2175 * related to VLAN tagging for the HW, such as VLAN, DCB, etc.
2176 *
2177 * Returns error code indicate the frame should be dropped upon error and the
2178 * otherwise  returns 0 to indicate the flags has been set properly.
2179 **/
2180#ifdef I40E_FCOE
2181inline int i40e_tx_prepare_vlan_flags(struct sk_buff *skb,
2182				      struct i40e_ring *tx_ring,
2183				      u32 *flags)
2184#else
2185static inline int i40e_tx_prepare_vlan_flags(struct sk_buff *skb,
2186					     struct i40e_ring *tx_ring,
2187					     u32 *flags)
2188#endif
2189{
2190	__be16 protocol = skb->protocol;
2191	u32  tx_flags = 0;
2192
2193	if (protocol == htons(ETH_P_8021Q) &&
2194	    !(tx_ring->netdev->features & NETIF_F_HW_VLAN_CTAG_TX)) {
2195		/* When HW VLAN acceleration is turned off by the user the
2196		 * stack sets the protocol to 8021q so that the driver
2197		 * can take any steps required to support the SW only
2198		 * VLAN handling.  In our case the driver doesn't need
2199		 * to take any further steps so just set the protocol
2200		 * to the encapsulated ethertype.
2201		 */
2202		skb->protocol = vlan_get_protocol(skb);
2203		goto out;
2204	}
2205
2206	/* if we have a HW VLAN tag being added, default to the HW one */
2207	if (skb_vlan_tag_present(skb)) {
2208		tx_flags |= skb_vlan_tag_get(skb) << I40E_TX_FLAGS_VLAN_SHIFT;
2209		tx_flags |= I40E_TX_FLAGS_HW_VLAN;
2210	/* else if it is a SW VLAN, check the next protocol and store the tag */
2211	} else if (protocol == htons(ETH_P_8021Q)) {
2212		struct vlan_hdr *vhdr, _vhdr;
2213
2214		vhdr = skb_header_pointer(skb, ETH_HLEN, sizeof(_vhdr), &_vhdr);
2215		if (!vhdr)
2216			return -EINVAL;
2217
2218		protocol = vhdr->h_vlan_encapsulated_proto;
2219		tx_flags |= ntohs(vhdr->h_vlan_TCI) << I40E_TX_FLAGS_VLAN_SHIFT;
2220		tx_flags |= I40E_TX_FLAGS_SW_VLAN;
2221	}
2222
2223	if (!(tx_ring->vsi->back->flags & I40E_FLAG_DCB_ENABLED))
2224		goto out;
2225
2226	/* Insert 802.1p priority into VLAN header */
2227	if ((tx_flags & (I40E_TX_FLAGS_HW_VLAN | I40E_TX_FLAGS_SW_VLAN)) ||
2228	    (skb->priority != TC_PRIO_CONTROL)) {
2229		tx_flags &= ~I40E_TX_FLAGS_VLAN_PRIO_MASK;
2230		tx_flags |= (skb->priority & 0x7) <<
2231				I40E_TX_FLAGS_VLAN_PRIO_SHIFT;
2232		if (tx_flags & I40E_TX_FLAGS_SW_VLAN) {
2233			struct vlan_ethhdr *vhdr;
2234			int rc;
2235
2236			rc = skb_cow_head(skb, 0);
2237			if (rc < 0)
2238				return rc;
2239			vhdr = (struct vlan_ethhdr *)skb->data;
2240			vhdr->h_vlan_TCI = htons(tx_flags >>
2241						 I40E_TX_FLAGS_VLAN_SHIFT);
2242		} else {
2243			tx_flags |= I40E_TX_FLAGS_HW_VLAN;
2244		}
2245	}
2246
2247out:
2248	*flags = tx_flags;
2249	return 0;
2250}
2251
2252/**
2253 * i40e_tso - set up the tso context descriptor
2254 * @skb:      ptr to the skb we're sending
2255 * @hdr_len:  ptr to the size of the packet header
2256 * @cd_type_cmd_tso_mss: Quad Word 1
2257 *
2258 * Returns 0 if no TSO can happen, 1 if tso is going, or error
2259 **/
2260static int i40e_tso(struct sk_buff *skb, u8 *hdr_len, u64 *cd_type_cmd_tso_mss)
 
2261{
 
2262	u64 cd_cmd, cd_tso_len, cd_mss;
 
2263	union {
2264		struct iphdr *v4;
2265		struct ipv6hdr *v6;
2266		unsigned char *hdr;
2267	} ip;
2268	union {
2269		struct tcphdr *tcp;
2270		struct udphdr *udp;
2271		unsigned char *hdr;
2272	} l4;
2273	u32 paylen, l4_offset;
 
2274	int err;
2275
2276	if (skb->ip_summed != CHECKSUM_PARTIAL)
2277		return 0;
2278
2279	if (!skb_is_gso(skb))
2280		return 0;
2281
2282	err = skb_cow_head(skb, 0);
2283	if (err < 0)
2284		return err;
2285
2286	ip.hdr = skb_network_header(skb);
2287	l4.hdr = skb_transport_header(skb);
 
 
 
 
 
2288
2289	/* initialize outer IP header fields */
2290	if (ip.v4->version == 4) {
2291		ip.v4->tot_len = 0;
2292		ip.v4->check = 0;
 
 
2293	} else {
2294		ip.v6->payload_len = 0;
 
2295	}
2296
2297	if (skb_shinfo(skb)->gso_type & (SKB_GSO_GRE |
2298					 SKB_GSO_GRE_CSUM |
2299					 SKB_GSO_IPXIP4 |
2300					 SKB_GSO_IPXIP6 |
2301					 SKB_GSO_UDP_TUNNEL |
2302					 SKB_GSO_UDP_TUNNEL_CSUM)) {
2303		if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) &&
2304		    (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM)) {
2305			l4.udp->len = 0;
2306
2307			/* determine offset of outer transport header */
2308			l4_offset = l4.hdr - skb->data;
2309
2310			/* remove payload length from outer checksum */
2311			paylen = skb->len - l4_offset;
2312			csum_replace_by_diff(&l4.udp->check, htonl(paylen));
 
2313		}
2314
2315		/* reset pointers to inner headers */
2316		ip.hdr = skb_inner_network_header(skb);
2317		l4.hdr = skb_inner_transport_header(skb);
2318
2319		/* initialize inner IP header fields */
2320		if (ip.v4->version == 4) {
2321			ip.v4->tot_len = 0;
2322			ip.v4->check = 0;
2323		} else {
2324			ip.v6->payload_len = 0;
2325		}
2326	}
2327
2328	/* determine offset of inner transport header */
2329	l4_offset = l4.hdr - skb->data;
2330
2331	/* remove payload length from inner checksum */
2332	paylen = skb->len - l4_offset;
2333	csum_replace_by_diff(&l4.tcp->check, htonl(paylen));
2334
2335	/* compute length of segmentation header */
2336	*hdr_len = (l4.tcp->doff * 4) + l4_offset;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2337
2338	/* find the field values */
2339	cd_cmd = I40E_TX_CTX_DESC_TSO;
2340	cd_tso_len = skb->len - *hdr_len;
2341	cd_mss = skb_shinfo(skb)->gso_size;
2342	*cd_type_cmd_tso_mss |= (cd_cmd << I40E_TXD_CTX_QW1_CMD_SHIFT) |
2343				(cd_tso_len << I40E_TXD_CTX_QW1_TSO_LEN_SHIFT) |
2344				(cd_mss << I40E_TXD_CTX_QW1_MSS_SHIFT);
2345	return 1;
2346}
2347
2348/**
2349 * i40e_tsyn - set up the tsyn context descriptor
2350 * @tx_ring:  ptr to the ring to send
2351 * @skb:      ptr to the skb we're sending
2352 * @tx_flags: the collected send information
2353 * @cd_type_cmd_tso_mss: Quad Word 1
2354 *
2355 * Returns 0 if no Tx timestamp can happen and 1 if the timestamp will happen
2356 **/
2357static int i40e_tsyn(struct i40e_ring *tx_ring, struct sk_buff *skb,
2358		     u32 tx_flags, u64 *cd_type_cmd_tso_mss)
2359{
2360	struct i40e_pf *pf;
2361
2362	if (likely(!(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)))
2363		return 0;
2364
2365	/* Tx timestamps cannot be sampled when doing TSO */
2366	if (tx_flags & I40E_TX_FLAGS_TSO)
2367		return 0;
2368
2369	/* only timestamp the outbound packet if the user has requested it and
2370	 * we are not already transmitting a packet to be timestamped
2371	 */
2372	pf = i40e_netdev_to_pf(tx_ring->netdev);
2373	if (!(pf->flags & I40E_FLAG_PTP))
2374		return 0;
2375
2376	if (pf->ptp_tx &&
2377	    !test_and_set_bit_lock(__I40E_PTP_TX_IN_PROGRESS, &pf->state)) {
2378		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
 
2379		pf->ptp_tx_skb = skb_get(skb);
2380	} else {
 
2381		return 0;
2382	}
2383
2384	*cd_type_cmd_tso_mss |= (u64)I40E_TX_CTX_DESC_TSYN <<
2385				I40E_TXD_CTX_QW1_CMD_SHIFT;
2386
2387	return 1;
2388}
2389
2390/**
2391 * i40e_tx_enable_csum - Enable Tx checksum offloads
2392 * @skb: send buffer
2393 * @tx_flags: pointer to Tx flags currently set
2394 * @td_cmd: Tx descriptor command bits to set
2395 * @td_offset: Tx descriptor header offsets to set
2396 * @tx_ring: Tx descriptor ring
2397 * @cd_tunneling: ptr to context desc bits
2398 **/
2399static int i40e_tx_enable_csum(struct sk_buff *skb, u32 *tx_flags,
2400			       u32 *td_cmd, u32 *td_offset,
2401			       struct i40e_ring *tx_ring,
2402			       u32 *cd_tunneling)
2403{
2404	union {
2405		struct iphdr *v4;
2406		struct ipv6hdr *v6;
2407		unsigned char *hdr;
2408	} ip;
2409	union {
2410		struct tcphdr *tcp;
2411		struct udphdr *udp;
2412		unsigned char *hdr;
2413	} l4;
2414	unsigned char *exthdr;
2415	u32 offset, cmd = 0;
2416	__be16 frag_off;
 
2417	u8 l4_proto = 0;
2418
2419	if (skb->ip_summed != CHECKSUM_PARTIAL)
2420		return 0;
2421
2422	ip.hdr = skb_network_header(skb);
2423	l4.hdr = skb_transport_header(skb);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2424
2425	/* compute outer L2 header size */
2426	offset = ((ip.hdr - skb->data) / 2) << I40E_TX_DESC_LENGTH_MACLEN_SHIFT;
2427
2428	if (skb->encapsulation) {
2429		u32 tunnel = 0;
2430		/* define outer network header type */
2431		if (*tx_flags & I40E_TX_FLAGS_IPV4) {
2432			tunnel |= (*tx_flags & I40E_TX_FLAGS_TSO) ?
2433				  I40E_TX_CTX_EXT_IP_IPV4 :
2434				  I40E_TX_CTX_EXT_IP_IPV4_NO_CSUM;
2435
2436			l4_proto = ip.v4->protocol;
2437		} else if (*tx_flags & I40E_TX_FLAGS_IPV6) {
 
 
2438			tunnel |= I40E_TX_CTX_EXT_IP_IPV6;
2439
2440			exthdr = ip.hdr + sizeof(*ip.v6);
2441			l4_proto = ip.v6->nexthdr;
2442			if (l4.hdr != exthdr)
2443				ipv6_skip_exthdr(skb, exthdr - skb->data,
2444						 &l4_proto, &frag_off);
 
2445		}
2446
2447		/* define outer transport */
2448		switch (l4_proto) {
2449		case IPPROTO_UDP:
2450			tunnel |= I40E_TXD_CTX_UDP_TUNNELING;
2451			*tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL;
2452			break;
2453		case IPPROTO_GRE:
2454			tunnel |= I40E_TXD_CTX_GRE_TUNNELING;
2455			*tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL;
2456			break;
2457		case IPPROTO_IPIP:
2458		case IPPROTO_IPV6:
2459			*tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL;
2460			l4.hdr = skb_inner_network_header(skb);
2461			break;
2462		default:
2463			if (*tx_flags & I40E_TX_FLAGS_TSO)
2464				return -1;
2465
2466			skb_checksum_help(skb);
2467			return 0;
2468		}
2469
2470		/* compute outer L3 header size */
2471		tunnel |= ((l4.hdr - ip.hdr) / 4) <<
2472			  I40E_TXD_CTX_QW0_EXT_IPLEN_SHIFT;
2473
2474		/* switch IP header pointer from outer to inner header */
2475		ip.hdr = skb_inner_network_header(skb);
2476
2477		/* compute tunnel header size */
2478		tunnel |= ((ip.hdr - l4.hdr) / 2) <<
2479			  I40E_TXD_CTX_QW0_NATLEN_SHIFT;
2480
2481		/* indicate if we need to offload outer UDP header */
2482		if ((*tx_flags & I40E_TX_FLAGS_TSO) &&
2483		    !(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) &&
2484		    (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM))
2485			tunnel |= I40E_TXD_CTX_QW0_L4T_CS_MASK;
2486
2487		/* record tunnel offload values */
2488		*cd_tunneling |= tunnel;
2489
2490		/* switch L4 header pointer from outer to inner */
2491		l4.hdr = skb_inner_transport_header(skb);
2492		l4_proto = 0;
2493
2494		/* reset type as we transition from outer to inner headers */
2495		*tx_flags &= ~(I40E_TX_FLAGS_IPV4 | I40E_TX_FLAGS_IPV6);
2496		if (ip.v4->version == 4)
2497			*tx_flags |= I40E_TX_FLAGS_IPV4;
2498		if (ip.v6->version == 6)
2499			*tx_flags |= I40E_TX_FLAGS_IPV6;
2500	}
2501
2502	/* Enable IP checksum offloads */
2503	if (*tx_flags & I40E_TX_FLAGS_IPV4) {
2504		l4_proto = ip.v4->protocol;
2505		/* the stack computes the IP header already, the only time we
2506		 * need the hardware to recompute it is in the case of TSO.
2507		 */
2508		cmd |= (*tx_flags & I40E_TX_FLAGS_TSO) ?
2509		       I40E_TX_DESC_CMD_IIPT_IPV4_CSUM :
2510		       I40E_TX_DESC_CMD_IIPT_IPV4;
2511	} else if (*tx_flags & I40E_TX_FLAGS_IPV6) {
2512		cmd |= I40E_TX_DESC_CMD_IIPT_IPV6;
2513
2514		exthdr = ip.hdr + sizeof(*ip.v6);
2515		l4_proto = ip.v6->nexthdr;
2516		if (l4.hdr != exthdr)
2517			ipv6_skip_exthdr(skb, exthdr - skb->data,
2518					 &l4_proto, &frag_off);
2519	}
2520
2521	/* compute inner L3 header size */
2522	offset |= ((l4.hdr - ip.hdr) / 4) << I40E_TX_DESC_LENGTH_IPLEN_SHIFT;
2523
2524	/* Enable L4 checksum offloads */
2525	switch (l4_proto) {
2526	case IPPROTO_TCP:
2527		/* enable checksum offloads */
2528		cmd |= I40E_TX_DESC_CMD_L4T_EOFT_TCP;
2529		offset |= l4.tcp->doff << I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
2530		break;
2531	case IPPROTO_SCTP:
2532		/* enable SCTP checksum offload */
2533		cmd |= I40E_TX_DESC_CMD_L4T_EOFT_SCTP;
2534		offset |= (sizeof(struct sctphdr) >> 2) <<
2535			  I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
2536		break;
2537	case IPPROTO_UDP:
2538		/* enable UDP checksum offload */
2539		cmd |= I40E_TX_DESC_CMD_L4T_EOFT_UDP;
2540		offset |= (sizeof(struct udphdr) >> 2) <<
2541			  I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
2542		break;
2543	default:
2544		if (*tx_flags & I40E_TX_FLAGS_TSO)
2545			return -1;
2546		skb_checksum_help(skb);
2547		return 0;
2548	}
2549
2550	*td_cmd |= cmd;
2551	*td_offset |= offset;
2552
2553	return 1;
2554}
2555
2556/**
2557 * i40e_create_tx_ctx Build the Tx context descriptor
2558 * @tx_ring:  ring to create the descriptor on
2559 * @cd_type_cmd_tso_mss: Quad Word 1
2560 * @cd_tunneling: Quad Word 0 - bits 0-31
2561 * @cd_l2tag2: Quad Word 0 - bits 32-63
2562 **/
2563static void i40e_create_tx_ctx(struct i40e_ring *tx_ring,
2564			       const u64 cd_type_cmd_tso_mss,
2565			       const u32 cd_tunneling, const u32 cd_l2tag2)
2566{
2567	struct i40e_tx_context_desc *context_desc;
2568	int i = tx_ring->next_to_use;
2569
2570	if ((cd_type_cmd_tso_mss == I40E_TX_DESC_DTYPE_CONTEXT) &&
2571	    !cd_tunneling && !cd_l2tag2)
2572		return;
2573
2574	/* grab the next descriptor */
2575	context_desc = I40E_TX_CTXTDESC(tx_ring, i);
2576
2577	i++;
2578	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
2579
2580	/* cpu_to_le32 and assign to struct fields */
2581	context_desc->tunneling_params = cpu_to_le32(cd_tunneling);
2582	context_desc->l2tag2 = cpu_to_le16(cd_l2tag2);
2583	context_desc->rsvd = cpu_to_le16(0);
2584	context_desc->type_cmd_tso_mss = cpu_to_le64(cd_type_cmd_tso_mss);
2585}
2586
2587/**
2588 * __i40e_maybe_stop_tx - 2nd level check for tx stop conditions
2589 * @tx_ring: the ring to be checked
2590 * @size:    the size buffer we want to assure is available
2591 *
2592 * Returns -EBUSY if a stop is needed, else 0
2593 **/
2594int __i40e_maybe_stop_tx(struct i40e_ring *tx_ring, int size)
2595{
2596	netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
2597	/* Memory barrier before checking head and tail */
2598	smp_mb();
2599
 
 
2600	/* Check again in a case another CPU has just made room available. */
2601	if (likely(I40E_DESC_UNUSED(tx_ring) < size))
2602		return -EBUSY;
2603
2604	/* A reprieve! - use start_queue because it doesn't call schedule */
2605	netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index);
2606	++tx_ring->tx_stats.restart_queue;
2607	return 0;
2608}
2609
2610/**
2611 * __i40e_chk_linearize - Check if there are more than 8 buffers per packet
2612 * @skb:      send buffer
2613 *
2614 * Note: Our HW can't DMA more than 8 buffers to build a packet on the wire
2615 * and so we need to figure out the cases where we need to linearize the skb.
2616 *
2617 * For TSO we need to count the TSO header and segment payload separately.
2618 * As such we need to check cases where we have 7 fragments or more as we
2619 * can potentially require 9 DMA transactions, 1 for the TSO header, 1 for
2620 * the segment payload in the first descriptor, and another 7 for the
2621 * fragments.
2622 **/
2623bool __i40e_chk_linearize(struct sk_buff *skb)
2624{
2625	const struct skb_frag_struct *frag, *stale;
2626	int nr_frags, sum;
2627
2628	/* no need to check if number of frags is less than 7 */
2629	nr_frags = skb_shinfo(skb)->nr_frags;
2630	if (nr_frags < (I40E_MAX_BUFFER_TXD - 1))
2631		return false;
2632
2633	/* We need to walk through the list and validate that each group
2634	 * of 6 fragments totals at least gso_size.
2635	 */
2636	nr_frags -= I40E_MAX_BUFFER_TXD - 2;
2637	frag = &skb_shinfo(skb)->frags[0];
2638
2639	/* Initialize size to the negative value of gso_size minus 1.  We
2640	 * use this as the worst case scenerio in which the frag ahead
2641	 * of us only provides one byte which is why we are limited to 6
2642	 * descriptors for a single transmit as the header and previous
2643	 * fragment are already consuming 2 descriptors.
2644	 */
2645	sum = 1 - skb_shinfo(skb)->gso_size;
2646
2647	/* Add size of frags 0 through 4 to create our initial sum */
2648	sum += skb_frag_size(frag++);
2649	sum += skb_frag_size(frag++);
2650	sum += skb_frag_size(frag++);
2651	sum += skb_frag_size(frag++);
2652	sum += skb_frag_size(frag++);
2653
2654	/* Walk through fragments adding latest fragment, testing it, and
2655	 * then removing stale fragments from the sum.
2656	 */
2657	stale = &skb_shinfo(skb)->frags[0];
2658	for (;;) {
 
2659		sum += skb_frag_size(frag++);
2660
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2661		/* if sum is negative we failed to make sufficient progress */
2662		if (sum < 0)
2663			return true;
2664
2665		if (!nr_frags--)
2666			break;
2667
2668		sum -= skb_frag_size(stale++);
2669	}
2670
2671	return false;
2672}
2673
2674/**
2675 * i40e_tx_map - Build the Tx descriptor
2676 * @tx_ring:  ring to send buffer on
2677 * @skb:      send buffer
2678 * @first:    first buffer info buffer to use
2679 * @tx_flags: collected send information
2680 * @hdr_len:  size of the packet header
2681 * @td_cmd:   the command field in the descriptor
2682 * @td_offset: offset for checksum or crc
 
 
2683 **/
2684#ifdef I40E_FCOE
2685inline void i40e_tx_map(struct i40e_ring *tx_ring, struct sk_buff *skb,
2686			struct i40e_tx_buffer *first, u32 tx_flags,
2687			const u8 hdr_len, u32 td_cmd, u32 td_offset)
2688#else
2689static inline void i40e_tx_map(struct i40e_ring *tx_ring, struct sk_buff *skb,
2690			       struct i40e_tx_buffer *first, u32 tx_flags,
2691			       const u8 hdr_len, u32 td_cmd, u32 td_offset)
2692#endif
2693{
2694	unsigned int data_len = skb->data_len;
2695	unsigned int size = skb_headlen(skb);
2696	struct skb_frag_struct *frag;
2697	struct i40e_tx_buffer *tx_bi;
2698	struct i40e_tx_desc *tx_desc;
2699	u16 i = tx_ring->next_to_use;
2700	u32 td_tag = 0;
2701	dma_addr_t dma;
2702	u16 gso_segs;
2703	u16 desc_count = 1;
2704
2705	if (tx_flags & I40E_TX_FLAGS_HW_VLAN) {
2706		td_cmd |= I40E_TX_DESC_CMD_IL2TAG1;
2707		td_tag = (tx_flags & I40E_TX_FLAGS_VLAN_MASK) >>
2708			 I40E_TX_FLAGS_VLAN_SHIFT;
2709	}
2710
2711	if (tx_flags & (I40E_TX_FLAGS_TSO | I40E_TX_FLAGS_FSO))
2712		gso_segs = skb_shinfo(skb)->gso_segs;
2713	else
2714		gso_segs = 1;
2715
2716	/* multiply data chunks by size of headers */
2717	first->bytecount = skb->len - hdr_len + (gso_segs * hdr_len);
2718	first->gso_segs = gso_segs;
2719	first->skb = skb;
2720	first->tx_flags = tx_flags;
2721
2722	dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
2723
2724	tx_desc = I40E_TX_DESC(tx_ring, i);
2725	tx_bi = first;
2726
2727	for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
2728		unsigned int max_data = I40E_MAX_DATA_PER_TXD_ALIGNED;
2729
2730		if (dma_mapping_error(tx_ring->dev, dma))
2731			goto dma_error;
2732
2733		/* record length, and DMA address */
2734		dma_unmap_len_set(tx_bi, len, size);
2735		dma_unmap_addr_set(tx_bi, dma, dma);
2736
2737		/* align size to end of page */
2738		max_data += -dma & (I40E_MAX_READ_REQ_SIZE - 1);
2739		tx_desc->buffer_addr = cpu_to_le64(dma);
2740
2741		while (unlikely(size > I40E_MAX_DATA_PER_TXD)) {
2742			tx_desc->cmd_type_offset_bsz =
2743				build_ctob(td_cmd, td_offset,
2744					   max_data, td_tag);
2745
2746			tx_desc++;
2747			i++;
2748			desc_count++;
2749
2750			if (i == tx_ring->count) {
2751				tx_desc = I40E_TX_DESC(tx_ring, 0);
2752				i = 0;
2753			}
2754
2755			dma += max_data;
2756			size -= max_data;
2757
2758			max_data = I40E_MAX_DATA_PER_TXD_ALIGNED;
2759			tx_desc->buffer_addr = cpu_to_le64(dma);
2760		}
2761
2762		if (likely(!data_len))
2763			break;
2764
2765		tx_desc->cmd_type_offset_bsz = build_ctob(td_cmd, td_offset,
2766							  size, td_tag);
2767
2768		tx_desc++;
2769		i++;
2770		desc_count++;
2771
2772		if (i == tx_ring->count) {
2773			tx_desc = I40E_TX_DESC(tx_ring, 0);
2774			i = 0;
2775		}
2776
2777		size = skb_frag_size(frag);
2778		data_len -= size;
2779
2780		dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
2781				       DMA_TO_DEVICE);
2782
2783		tx_bi = &tx_ring->tx_bi[i];
2784	}
2785
2786	netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
2787
2788	i++;
2789	if (i == tx_ring->count)
2790		i = 0;
2791
2792	tx_ring->next_to_use = i;
2793
2794	i40e_maybe_stop_tx(tx_ring, DESC_NEEDED);
2795
2796	/* write last descriptor with EOP bit */
2797	td_cmd |= I40E_TX_DESC_CMD_EOP;
2798
2799	/* We can OR these values together as they both are checked against
2800	 * 4 below and at this point desc_count will be used as a boolean value
2801	 * after this if/else block.
2802	 */
2803	desc_count |= ++tx_ring->packet_stride;
2804
2805	/* Algorithm to optimize tail and RS bit setting:
2806	 * if queue is stopped
2807	 *	mark RS bit
2808	 *	reset packet counter
2809	 * else if xmit_more is supported and is true
2810	 *	advance packet counter to 4
2811	 *	reset desc_count to 0
2812	 *
2813	 * if desc_count >= 4
2814	 *	mark RS bit
2815	 *	reset packet counter
2816	 * if desc_count > 0
2817	 *	update tail
2818	 *
2819	 * Note: If there are less than 4 descriptors
2820	 * pending and interrupts were disabled the service task will
2821	 * trigger a force WB.
2822	 */
2823	if (netif_xmit_stopped(txring_txq(tx_ring))) {
2824		goto do_rs;
2825	} else if (skb->xmit_more) {
2826		/* set stride to arm on next packet and reset desc_count */
2827		tx_ring->packet_stride = WB_STRIDE;
2828		desc_count = 0;
2829	} else if (desc_count >= WB_STRIDE) {
2830do_rs:
2831		/* write last descriptor with RS bit set */
2832		td_cmd |= I40E_TX_DESC_CMD_RS;
2833		tx_ring->packet_stride = 0;
2834	}
2835
2836	tx_desc->cmd_type_offset_bsz =
2837			build_ctob(td_cmd, td_offset, size, td_tag);
2838
 
 
2839	/* Force memory writes to complete before letting h/w know there
2840	 * are new descriptors to fetch.
2841	 *
2842	 * We also use this memory barrier to make certain all of the
2843	 * status bits have been updated before next_to_watch is written.
2844	 */
2845	wmb();
2846
2847	/* set next_to_watch value indicating a packet is present */
2848	first->next_to_watch = tx_desc;
2849
2850	/* notify HW of packet */
2851	if (desc_count) {
2852		writel(i, tx_ring->tail);
2853
2854		/* we need this if more than one processor can write to our tail
2855		 * at a time, it synchronizes IO on IA64/Altix systems
2856		 */
2857		mmiowb();
2858	}
2859
2860	return;
2861
2862dma_error:
2863	dev_info(tx_ring->dev, "TX DMA map failed\n");
2864
2865	/* clear dma mappings for failed tx_bi map */
2866	for (;;) {
2867		tx_bi = &tx_ring->tx_bi[i];
2868		i40e_unmap_and_free_tx_resource(tx_ring, tx_bi);
2869		if (tx_bi == first)
2870			break;
2871		if (i == 0)
2872			i = tx_ring->count;
2873		i--;
2874	}
2875
2876	tx_ring->next_to_use = i;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2877}
2878
2879/**
2880 * i40e_xmit_frame_ring - Sends buffer on Tx ring
2881 * @skb:     send buffer
2882 * @tx_ring: ring to send buffer on
2883 *
2884 * Returns NETDEV_TX_OK if sent, else an error code
2885 **/
2886static netdev_tx_t i40e_xmit_frame_ring(struct sk_buff *skb,
2887					struct i40e_ring *tx_ring)
2888{
2889	u64 cd_type_cmd_tso_mss = I40E_TX_DESC_DTYPE_CONTEXT;
2890	u32 cd_tunneling = 0, cd_l2tag2 = 0;
2891	struct i40e_tx_buffer *first;
2892	u32 td_offset = 0;
2893	u32 tx_flags = 0;
2894	__be16 protocol;
2895	u32 td_cmd = 0;
2896	u8 hdr_len = 0;
2897	int tso, count;
2898	int tsyn;
2899
2900	/* prefetch the data, we'll need it later */
2901	prefetch(skb->data);
2902
 
 
2903	count = i40e_xmit_descriptor_count(skb);
2904	if (i40e_chk_linearize(skb, count)) {
2905		if (__skb_linearize(skb))
2906			goto out_drop;
 
 
2907		count = i40e_txd_use_count(skb->len);
2908		tx_ring->tx_stats.tx_linearize++;
2909	}
2910
2911	/* need: 1 descriptor per page * PAGE_SIZE/I40E_MAX_DATA_PER_TXD,
2912	 *       + 1 desc for skb_head_len/I40E_MAX_DATA_PER_TXD,
2913	 *       + 4 desc gap to avoid the cache line where head is,
2914	 *       + 1 desc for context descriptor,
2915	 * otherwise try next time
2916	 */
2917	if (i40e_maybe_stop_tx(tx_ring, count + 4 + 1)) {
2918		tx_ring->tx_stats.tx_busy++;
2919		return NETDEV_TX_BUSY;
2920	}
2921
 
 
 
 
 
 
2922	/* prepare the xmit flags */
2923	if (i40e_tx_prepare_vlan_flags(skb, tx_ring, &tx_flags))
2924		goto out_drop;
2925
2926	/* obtain protocol of skb */
2927	protocol = vlan_get_protocol(skb);
2928
2929	/* record the location of the first descriptor for this packet */
2930	first = &tx_ring->tx_bi[tx_ring->next_to_use];
2931
2932	/* setup IPv4/IPv6 offloads */
2933	if (protocol == htons(ETH_P_IP))
2934		tx_flags |= I40E_TX_FLAGS_IPV4;
2935	else if (protocol == htons(ETH_P_IPV6))
2936		tx_flags |= I40E_TX_FLAGS_IPV6;
2937
2938	tso = i40e_tso(skb, &hdr_len, &cd_type_cmd_tso_mss);
2939
2940	if (tso < 0)
2941		goto out_drop;
2942	else if (tso)
2943		tx_flags |= I40E_TX_FLAGS_TSO;
2944
2945	/* Always offload the checksum, since it's in the data descriptor */
2946	tso = i40e_tx_enable_csum(skb, &tx_flags, &td_cmd, &td_offset,
2947				  tx_ring, &cd_tunneling);
2948	if (tso < 0)
2949		goto out_drop;
2950
2951	tsyn = i40e_tsyn(tx_ring, skb, tx_flags, &cd_type_cmd_tso_mss);
2952
2953	if (tsyn)
2954		tx_flags |= I40E_TX_FLAGS_TSYN;
2955
2956	skb_tx_timestamp(skb);
2957
2958	/* always enable CRC insertion offload */
2959	td_cmd |= I40E_TX_DESC_CMD_ICRC;
2960
2961	i40e_create_tx_ctx(tx_ring, cd_type_cmd_tso_mss,
2962			   cd_tunneling, cd_l2tag2);
2963
2964	/* Add Flow Director ATR if it's enabled.
2965	 *
2966	 * NOTE: this must always be directly before the data descriptor.
2967	 */
2968	i40e_atr(tx_ring, skb, tx_flags);
2969
2970	i40e_tx_map(tx_ring, skb, first, tx_flags, hdr_len,
2971		    td_cmd, td_offset);
 
2972
2973	return NETDEV_TX_OK;
2974
2975out_drop:
2976	dev_kfree_skb_any(skb);
 
 
 
 
 
 
 
 
 
 
 
2977	return NETDEV_TX_OK;
2978}
2979
2980/**
2981 * i40e_lan_xmit_frame - Selects the correct VSI and Tx queue to send buffer
2982 * @skb:    send buffer
2983 * @netdev: network interface device structure
2984 *
2985 * Returns NETDEV_TX_OK if sent, else an error code
2986 **/
2987netdev_tx_t i40e_lan_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
2988{
2989	struct i40e_netdev_priv *np = netdev_priv(netdev);
2990	struct i40e_vsi *vsi = np->vsi;
2991	struct i40e_ring *tx_ring = vsi->tx_rings[skb->queue_mapping];
2992
2993	/* hardware can't handle really short frames, hardware padding works
2994	 * beyond this point
2995	 */
2996	if (skb_put_padto(skb, I40E_MIN_TX_LEN))
2997		return NETDEV_TX_OK;
2998
2999	return i40e_xmit_frame_ring(skb, tx_ring);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3000}