Linux Audio

Check our new training course

Loading...
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0
   2/* Copyright(c) 1999 - 2018 Intel Corporation. */
   3
   4/* 82562G 10/100 Network Connection
   5 * 82562G-2 10/100 Network Connection
   6 * 82562GT 10/100 Network Connection
   7 * 82562GT-2 10/100 Network Connection
   8 * 82562V 10/100 Network Connection
   9 * 82562V-2 10/100 Network Connection
  10 * 82566DC-2 Gigabit Network Connection
  11 * 82566DC Gigabit Network Connection
  12 * 82566DM-2 Gigabit Network Connection
  13 * 82566DM Gigabit Network Connection
  14 * 82566MC Gigabit Network Connection
  15 * 82566MM Gigabit Network Connection
  16 * 82567LM Gigabit Network Connection
  17 * 82567LF Gigabit Network Connection
  18 * 82567V Gigabit Network Connection
  19 * 82567LM-2 Gigabit Network Connection
  20 * 82567LF-2 Gigabit Network Connection
  21 * 82567V-2 Gigabit Network Connection
  22 * 82567LF-3 Gigabit Network Connection
  23 * 82567LM-3 Gigabit Network Connection
  24 * 82567LM-4 Gigabit Network Connection
  25 * 82577LM Gigabit Network Connection
  26 * 82577LC Gigabit Network Connection
  27 * 82578DM Gigabit Network Connection
  28 * 82578DC Gigabit Network Connection
  29 * 82579LM Gigabit Network Connection
  30 * 82579V Gigabit Network Connection
  31 * Ethernet Connection I217-LM
  32 * Ethernet Connection I217-V
  33 * Ethernet Connection I218-V
  34 * Ethernet Connection I218-LM
  35 * Ethernet Connection (2) I218-LM
  36 * Ethernet Connection (2) I218-V
  37 * Ethernet Connection (3) I218-LM
  38 * Ethernet Connection (3) I218-V
  39 */
  40
  41#include "e1000.h"
  42
  43/* ICH GbE Flash Hardware Sequencing Flash Status Register bit breakdown */
  44/* Offset 04h HSFSTS */
  45union ich8_hws_flash_status {
  46	struct ich8_hsfsts {
  47		u16 flcdone:1;	/* bit 0 Flash Cycle Done */
  48		u16 flcerr:1;	/* bit 1 Flash Cycle Error */
  49		u16 dael:1;	/* bit 2 Direct Access error Log */
  50		u16 berasesz:2;	/* bit 4:3 Sector Erase Size */
  51		u16 flcinprog:1;	/* bit 5 flash cycle in Progress */
  52		u16 reserved1:2;	/* bit 13:6 Reserved */
  53		u16 reserved2:6;	/* bit 13:6 Reserved */
  54		u16 fldesvalid:1;	/* bit 14 Flash Descriptor Valid */
  55		u16 flockdn:1;	/* bit 15 Flash Config Lock-Down */
  56	} hsf_status;
  57	u16 regval;
  58};
  59
  60/* ICH GbE Flash Hardware Sequencing Flash control Register bit breakdown */
  61/* Offset 06h FLCTL */
  62union ich8_hws_flash_ctrl {
  63	struct ich8_hsflctl {
  64		u16 flcgo:1;	/* 0 Flash Cycle Go */
  65		u16 flcycle:2;	/* 2:1 Flash Cycle */
  66		u16 reserved:5;	/* 7:3 Reserved  */
  67		u16 fldbcount:2;	/* 9:8 Flash Data Byte Count */
  68		u16 flockdn:6;	/* 15:10 Reserved */
  69	} hsf_ctrl;
  70	u16 regval;
  71};
  72
  73/* ICH Flash Region Access Permissions */
  74union ich8_hws_flash_regacc {
  75	struct ich8_flracc {
  76		u32 grra:8;	/* 0:7 GbE region Read Access */
  77		u32 grwa:8;	/* 8:15 GbE region Write Access */
  78		u32 gmrag:8;	/* 23:16 GbE Master Read Access Grant */
  79		u32 gmwag:8;	/* 31:24 GbE Master Write Access Grant */
  80	} hsf_flregacc;
  81	u16 regval;
  82};
  83
  84/* ICH Flash Protected Region */
  85union ich8_flash_protected_range {
  86	struct ich8_pr {
  87		u32 base:13;	/* 0:12 Protected Range Base */
  88		u32 reserved1:2;	/* 13:14 Reserved */
  89		u32 rpe:1;	/* 15 Read Protection Enable */
  90		u32 limit:13;	/* 16:28 Protected Range Limit */
  91		u32 reserved2:2;	/* 29:30 Reserved */
  92		u32 wpe:1;	/* 31 Write Protection Enable */
  93	} range;
  94	u32 regval;
  95};
  96
  97static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw);
  98static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw);
  99static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank);
 100static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
 101						u32 offset, u8 byte);
 102static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
 103					 u8 *data);
 104static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
 105					 u16 *data);
 106static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
 107					 u8 size, u16 *data);
 108static s32 e1000_read_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset,
 109					   u32 *data);
 110static s32 e1000_read_flash_dword_ich8lan(struct e1000_hw *hw,
 111					  u32 offset, u32 *data);
 112static s32 e1000_write_flash_data32_ich8lan(struct e1000_hw *hw,
 113					    u32 offset, u32 data);
 114static s32 e1000_retry_write_flash_dword_ich8lan(struct e1000_hw *hw,
 115						 u32 offset, u32 dword);
 116static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw);
 117static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw);
 118static s32 e1000_led_on_ich8lan(struct e1000_hw *hw);
 119static s32 e1000_led_off_ich8lan(struct e1000_hw *hw);
 120static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw);
 121static s32 e1000_setup_led_pchlan(struct e1000_hw *hw);
 122static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw);
 123static s32 e1000_led_on_pchlan(struct e1000_hw *hw);
 124static s32 e1000_led_off_pchlan(struct e1000_hw *hw);
 125static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active);
 126static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw);
 127static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw);
 128static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link);
 129static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw);
 130static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw);
 131static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw);
 132static int e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index);
 133static int e1000_rar_set_pch_lpt(struct e1000_hw *hw, u8 *addr, u32 index);
 134static u32 e1000_rar_get_count_pch_lpt(struct e1000_hw *hw);
 135static s32 e1000_k1_workaround_lv(struct e1000_hw *hw);
 136static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate);
 137static s32 e1000_disable_ulp_lpt_lp(struct e1000_hw *hw, bool force);
 138static s32 e1000_setup_copper_link_pch_lpt(struct e1000_hw *hw);
 139static s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state);
 140
 141static inline u16 __er16flash(struct e1000_hw *hw, unsigned long reg)
 142{
 143	return readw(hw->flash_address + reg);
 144}
 145
 146static inline u32 __er32flash(struct e1000_hw *hw, unsigned long reg)
 147{
 148	return readl(hw->flash_address + reg);
 149}
 150
 151static inline void __ew16flash(struct e1000_hw *hw, unsigned long reg, u16 val)
 152{
 153	writew(val, hw->flash_address + reg);
 154}
 155
 156static inline void __ew32flash(struct e1000_hw *hw, unsigned long reg, u32 val)
 157{
 158	writel(val, hw->flash_address + reg);
 159}
 160
 161#define er16flash(reg)		__er16flash(hw, (reg))
 162#define er32flash(reg)		__er32flash(hw, (reg))
 163#define ew16flash(reg, val)	__ew16flash(hw, (reg), (val))
 164#define ew32flash(reg, val)	__ew32flash(hw, (reg), (val))
 165
 166/**
 167 *  e1000_phy_is_accessible_pchlan - Check if able to access PHY registers
 168 *  @hw: pointer to the HW structure
 169 *
 170 *  Test access to the PHY registers by reading the PHY ID registers.  If
 171 *  the PHY ID is already known (e.g. resume path) compare it with known ID,
 172 *  otherwise assume the read PHY ID is correct if it is valid.
 173 *
 174 *  Assumes the sw/fw/hw semaphore is already acquired.
 175 **/
 176static bool e1000_phy_is_accessible_pchlan(struct e1000_hw *hw)
 177{
 178	u16 phy_reg = 0;
 179	u32 phy_id = 0;
 180	s32 ret_val = 0;
 181	u16 retry_count;
 182	u32 mac_reg = 0;
 183
 184	for (retry_count = 0; retry_count < 2; retry_count++) {
 185		ret_val = e1e_rphy_locked(hw, MII_PHYSID1, &phy_reg);
 186		if (ret_val || (phy_reg == 0xFFFF))
 187			continue;
 188		phy_id = (u32)(phy_reg << 16);
 189
 190		ret_val = e1e_rphy_locked(hw, MII_PHYSID2, &phy_reg);
 191		if (ret_val || (phy_reg == 0xFFFF)) {
 192			phy_id = 0;
 193			continue;
 194		}
 195		phy_id |= (u32)(phy_reg & PHY_REVISION_MASK);
 196		break;
 197	}
 198
 199	if (hw->phy.id) {
 200		if (hw->phy.id == phy_id)
 201			goto out;
 202	} else if (phy_id) {
 203		hw->phy.id = phy_id;
 204		hw->phy.revision = (u32)(phy_reg & ~PHY_REVISION_MASK);
 205		goto out;
 206	}
 207
 208	/* In case the PHY needs to be in mdio slow mode,
 209	 * set slow mode and try to get the PHY id again.
 210	 */
 211	if (hw->mac.type < e1000_pch_lpt) {
 212		hw->phy.ops.release(hw);
 213		ret_val = e1000_set_mdio_slow_mode_hv(hw);
 214		if (!ret_val)
 215			ret_val = e1000e_get_phy_id(hw);
 216		hw->phy.ops.acquire(hw);
 217	}
 218
 219	if (ret_val)
 220		return false;
 221out:
 222	if (hw->mac.type >= e1000_pch_lpt) {
 223		/* Only unforce SMBus if ME is not active */
 224		if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
 225			/* Switching PHY interface always returns MDI error
 226			 * so disable retry mechanism to avoid wasting time
 227			 */
 228			e1000e_disable_phy_retry(hw);
 229
 230			/* Unforce SMBus mode in PHY */
 231			e1e_rphy_locked(hw, CV_SMB_CTRL, &phy_reg);
 232			phy_reg &= ~CV_SMB_CTRL_FORCE_SMBUS;
 233			e1e_wphy_locked(hw, CV_SMB_CTRL, phy_reg);
 234
 235			e1000e_enable_phy_retry(hw);
 236
 237			/* Unforce SMBus mode in MAC */
 238			mac_reg = er32(CTRL_EXT);
 239			mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
 240			ew32(CTRL_EXT, mac_reg);
 241		}
 242	}
 243
 244	return true;
 245}
 246
 247/**
 248 *  e1000_toggle_lanphypc_pch_lpt - toggle the LANPHYPC pin value
 249 *  @hw: pointer to the HW structure
 250 *
 251 *  Toggling the LANPHYPC pin value fully power-cycles the PHY and is
 252 *  used to reset the PHY to a quiescent state when necessary.
 253 **/
 254static void e1000_toggle_lanphypc_pch_lpt(struct e1000_hw *hw)
 255{
 256	u32 mac_reg;
 257
 258	/* Set Phy Config Counter to 50msec */
 259	mac_reg = er32(FEXTNVM3);
 260	mac_reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK;
 261	mac_reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC;
 262	ew32(FEXTNVM3, mac_reg);
 263
 264	/* Toggle LANPHYPC Value bit */
 265	mac_reg = er32(CTRL);
 266	mac_reg |= E1000_CTRL_LANPHYPC_OVERRIDE;
 267	mac_reg &= ~E1000_CTRL_LANPHYPC_VALUE;
 268	ew32(CTRL, mac_reg);
 269	e1e_flush();
 270	usleep_range(10, 20);
 271	mac_reg &= ~E1000_CTRL_LANPHYPC_OVERRIDE;
 272	ew32(CTRL, mac_reg);
 273	e1e_flush();
 274
 275	if (hw->mac.type < e1000_pch_lpt) {
 276		msleep(50);
 277	} else {
 278		u16 count = 20;
 279
 280		do {
 281			usleep_range(5000, 6000);
 282		} while (!(er32(CTRL_EXT) & E1000_CTRL_EXT_LPCD) && count--);
 283
 284		msleep(30);
 285	}
 286}
 287
 288/**
 289 *  e1000_init_phy_workarounds_pchlan - PHY initialization workarounds
 290 *  @hw: pointer to the HW structure
 291 *
 292 *  Workarounds/flow necessary for PHY initialization during driver load
 293 *  and resume paths.
 294 **/
 295static s32 e1000_init_phy_workarounds_pchlan(struct e1000_hw *hw)
 296{
 297	struct e1000_adapter *adapter = hw->adapter;
 298	u32 mac_reg, fwsm = er32(FWSM);
 299	s32 ret_val;
 300
 301	/* Gate automatic PHY configuration by hardware on managed and
 302	 * non-managed 82579 and newer adapters.
 303	 */
 304	e1000_gate_hw_phy_config_ich8lan(hw, true);
 305
 306	/* It is not possible to be certain of the current state of ULP
 307	 * so forcibly disable it.
 308	 */
 309	hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_unknown;
 310	ret_val = e1000_disable_ulp_lpt_lp(hw, true);
 311	if (ret_val)
 312		e_warn("Failed to disable ULP\n");
 313
 314	ret_val = hw->phy.ops.acquire(hw);
 315	if (ret_val) {
 316		e_dbg("Failed to initialize PHY flow\n");
 317		goto out;
 318	}
 319
 320	/* There is no guarantee that the PHY is accessible at this time
 321	 * so disable retry mechanism to avoid wasting time
 322	 */
 323	e1000e_disable_phy_retry(hw);
 324
 325	/* The MAC-PHY interconnect may be in SMBus mode.  If the PHY is
 326	 * inaccessible and resetting the PHY is not blocked, toggle the
 327	 * LANPHYPC Value bit to force the interconnect to PCIe mode.
 328	 */
 329	switch (hw->mac.type) {
 330	case e1000_pch_lpt:
 331	case e1000_pch_spt:
 332	case e1000_pch_cnp:
 333	case e1000_pch_tgp:
 334	case e1000_pch_adp:
 335	case e1000_pch_mtp:
 336	case e1000_pch_lnp:
 337	case e1000_pch_ptp:
 338	case e1000_pch_nvp:
 339		if (e1000_phy_is_accessible_pchlan(hw))
 340			break;
 341
 342		/* Before toggling LANPHYPC, see if PHY is accessible by
 343		 * forcing MAC to SMBus mode first.
 344		 */
 345		mac_reg = er32(CTRL_EXT);
 346		mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
 347		ew32(CTRL_EXT, mac_reg);
 348
 349		/* Wait 50 milliseconds for MAC to finish any retries
 350		 * that it might be trying to perform from previous
 351		 * attempts to acknowledge any phy read requests.
 352		 */
 353		msleep(50);
 354
 355		fallthrough;
 356	case e1000_pch2lan:
 357		if (e1000_phy_is_accessible_pchlan(hw))
 358			break;
 359
 360		fallthrough;
 361	case e1000_pchlan:
 362		if ((hw->mac.type == e1000_pchlan) &&
 363		    (fwsm & E1000_ICH_FWSM_FW_VALID))
 364			break;
 365
 366		if (hw->phy.ops.check_reset_block(hw)) {
 367			e_dbg("Required LANPHYPC toggle blocked by ME\n");
 368			ret_val = -E1000_ERR_PHY;
 369			break;
 370		}
 371
 372		/* Toggle LANPHYPC Value bit */
 373		e1000_toggle_lanphypc_pch_lpt(hw);
 374		if (hw->mac.type >= e1000_pch_lpt) {
 375			if (e1000_phy_is_accessible_pchlan(hw))
 376				break;
 377
 378			/* Toggling LANPHYPC brings the PHY out of SMBus mode
 379			 * so ensure that the MAC is also out of SMBus mode
 380			 */
 381			mac_reg = er32(CTRL_EXT);
 382			mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
 383			ew32(CTRL_EXT, mac_reg);
 384
 385			if (e1000_phy_is_accessible_pchlan(hw))
 386				break;
 387
 388			ret_val = -E1000_ERR_PHY;
 389		}
 390		break;
 391	default:
 392		break;
 393	}
 394
 395	e1000e_enable_phy_retry(hw);
 396
 397	hw->phy.ops.release(hw);
 398	if (!ret_val) {
 399
 400		/* Check to see if able to reset PHY.  Print error if not */
 401		if (hw->phy.ops.check_reset_block(hw)) {
 402			e_err("Reset blocked by ME\n");
 403			goto out;
 404		}
 405
 406		/* Reset the PHY before any access to it.  Doing so, ensures
 407		 * that the PHY is in a known good state before we read/write
 408		 * PHY registers.  The generic reset is sufficient here,
 409		 * because we haven't determined the PHY type yet.
 410		 */
 411		ret_val = e1000e_phy_hw_reset_generic(hw);
 412		if (ret_val)
 413			goto out;
 414
 415		/* On a successful reset, possibly need to wait for the PHY
 416		 * to quiesce to an accessible state before returning control
 417		 * to the calling function.  If the PHY does not quiesce, then
 418		 * return E1000E_BLK_PHY_RESET, as this is the condition that
 419		 *  the PHY is in.
 420		 */
 421		ret_val = hw->phy.ops.check_reset_block(hw);
 422		if (ret_val)
 423			e_err("ME blocked access to PHY after reset\n");
 424	}
 425
 426out:
 427	/* Ungate automatic PHY configuration on non-managed 82579 */
 428	if ((hw->mac.type == e1000_pch2lan) &&
 429	    !(fwsm & E1000_ICH_FWSM_FW_VALID)) {
 430		usleep_range(10000, 11000);
 431		e1000_gate_hw_phy_config_ich8lan(hw, false);
 432	}
 433
 434	return ret_val;
 435}
 436
 437/**
 438 *  e1000_init_phy_params_pchlan - Initialize PHY function pointers
 439 *  @hw: pointer to the HW structure
 440 *
 441 *  Initialize family-specific PHY parameters and function pointers.
 442 **/
 443static s32 e1000_init_phy_params_pchlan(struct e1000_hw *hw)
 444{
 445	struct e1000_phy_info *phy = &hw->phy;
 446	s32 ret_val;
 447
 448	phy->addr = 1;
 449	phy->reset_delay_us = 100;
 450
 451	phy->ops.set_page = e1000_set_page_igp;
 452	phy->ops.read_reg = e1000_read_phy_reg_hv;
 453	phy->ops.read_reg_locked = e1000_read_phy_reg_hv_locked;
 454	phy->ops.read_reg_page = e1000_read_phy_reg_page_hv;
 455	phy->ops.set_d0_lplu_state = e1000_set_lplu_state_pchlan;
 456	phy->ops.set_d3_lplu_state = e1000_set_lplu_state_pchlan;
 457	phy->ops.write_reg = e1000_write_phy_reg_hv;
 458	phy->ops.write_reg_locked = e1000_write_phy_reg_hv_locked;
 459	phy->ops.write_reg_page = e1000_write_phy_reg_page_hv;
 460	phy->ops.power_up = e1000_power_up_phy_copper;
 461	phy->ops.power_down = e1000_power_down_phy_copper_ich8lan;
 462	phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
 463
 464	phy->id = e1000_phy_unknown;
 465
 466	if (hw->mac.type == e1000_pch_mtp) {
 467		phy->retry_count = 2;
 468		e1000e_enable_phy_retry(hw);
 469	}
 470
 471	ret_val = e1000_init_phy_workarounds_pchlan(hw);
 472	if (ret_val)
 473		return ret_val;
 474
 475	if (phy->id == e1000_phy_unknown)
 476		switch (hw->mac.type) {
 477		default:
 478			ret_val = e1000e_get_phy_id(hw);
 479			if (ret_val)
 480				return ret_val;
 481			if ((phy->id != 0) && (phy->id != PHY_REVISION_MASK))
 482				break;
 483			fallthrough;
 484		case e1000_pch2lan:
 485		case e1000_pch_lpt:
 486		case e1000_pch_spt:
 487		case e1000_pch_cnp:
 488		case e1000_pch_tgp:
 489		case e1000_pch_adp:
 490		case e1000_pch_mtp:
 491		case e1000_pch_lnp:
 492		case e1000_pch_ptp:
 493		case e1000_pch_nvp:
 494			/* In case the PHY needs to be in mdio slow mode,
 495			 * set slow mode and try to get the PHY id again.
 496			 */
 497			ret_val = e1000_set_mdio_slow_mode_hv(hw);
 498			if (ret_val)
 499				return ret_val;
 500			ret_val = e1000e_get_phy_id(hw);
 501			if (ret_val)
 502				return ret_val;
 503			break;
 504		}
 505	phy->type = e1000e_get_phy_type_from_id(phy->id);
 506
 507	switch (phy->type) {
 508	case e1000_phy_82577:
 509	case e1000_phy_82579:
 510	case e1000_phy_i217:
 511		phy->ops.check_polarity = e1000_check_polarity_82577;
 512		phy->ops.force_speed_duplex =
 513		    e1000_phy_force_speed_duplex_82577;
 514		phy->ops.get_cable_length = e1000_get_cable_length_82577;
 515		phy->ops.get_info = e1000_get_phy_info_82577;
 516		phy->ops.commit = e1000e_phy_sw_reset;
 517		break;
 518	case e1000_phy_82578:
 519		phy->ops.check_polarity = e1000_check_polarity_m88;
 520		phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88;
 521		phy->ops.get_cable_length = e1000e_get_cable_length_m88;
 522		phy->ops.get_info = e1000e_get_phy_info_m88;
 523		break;
 524	default:
 525		ret_val = -E1000_ERR_PHY;
 526		break;
 527	}
 528
 529	return ret_val;
 530}
 531
 532/**
 533 *  e1000_init_phy_params_ich8lan - Initialize PHY function pointers
 534 *  @hw: pointer to the HW structure
 535 *
 536 *  Initialize family-specific PHY parameters and function pointers.
 537 **/
 538static s32 e1000_init_phy_params_ich8lan(struct e1000_hw *hw)
 539{
 540	struct e1000_phy_info *phy = &hw->phy;
 541	s32 ret_val;
 542	u16 i = 0;
 543
 544	phy->addr = 1;
 545	phy->reset_delay_us = 100;
 546
 547	phy->ops.power_up = e1000_power_up_phy_copper;
 548	phy->ops.power_down = e1000_power_down_phy_copper_ich8lan;
 549
 550	/* We may need to do this twice - once for IGP and if that fails,
 551	 * we'll set BM func pointers and try again
 552	 */
 553	ret_val = e1000e_determine_phy_address(hw);
 554	if (ret_val) {
 555		phy->ops.write_reg = e1000e_write_phy_reg_bm;
 556		phy->ops.read_reg = e1000e_read_phy_reg_bm;
 557		ret_val = e1000e_determine_phy_address(hw);
 558		if (ret_val) {
 559			e_dbg("Cannot determine PHY addr. Erroring out\n");
 560			return ret_val;
 561		}
 562	}
 563
 564	phy->id = 0;
 565	while ((e1000_phy_unknown == e1000e_get_phy_type_from_id(phy->id)) &&
 566	       (i++ < 100)) {
 567		usleep_range(1000, 1100);
 568		ret_val = e1000e_get_phy_id(hw);
 569		if (ret_val)
 570			return ret_val;
 571	}
 572
 573	/* Verify phy id */
 574	switch (phy->id) {
 575	case IGP03E1000_E_PHY_ID:
 576		phy->type = e1000_phy_igp_3;
 577		phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
 578		phy->ops.read_reg_locked = e1000e_read_phy_reg_igp_locked;
 579		phy->ops.write_reg_locked = e1000e_write_phy_reg_igp_locked;
 580		phy->ops.get_info = e1000e_get_phy_info_igp;
 581		phy->ops.check_polarity = e1000_check_polarity_igp;
 582		phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_igp;
 583		break;
 584	case IFE_E_PHY_ID:
 585	case IFE_PLUS_E_PHY_ID:
 586	case IFE_C_E_PHY_ID:
 587		phy->type = e1000_phy_ife;
 588		phy->autoneg_mask = E1000_ALL_NOT_GIG;
 589		phy->ops.get_info = e1000_get_phy_info_ife;
 590		phy->ops.check_polarity = e1000_check_polarity_ife;
 591		phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_ife;
 592		break;
 593	case BME1000_E_PHY_ID:
 594		phy->type = e1000_phy_bm;
 595		phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
 596		phy->ops.read_reg = e1000e_read_phy_reg_bm;
 597		phy->ops.write_reg = e1000e_write_phy_reg_bm;
 598		phy->ops.commit = e1000e_phy_sw_reset;
 599		phy->ops.get_info = e1000e_get_phy_info_m88;
 600		phy->ops.check_polarity = e1000_check_polarity_m88;
 601		phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88;
 602		break;
 603	default:
 604		return -E1000_ERR_PHY;
 605	}
 606
 607	return 0;
 608}
 609
 610/**
 611 *  e1000_init_nvm_params_ich8lan - Initialize NVM function pointers
 612 *  @hw: pointer to the HW structure
 613 *
 614 *  Initialize family-specific NVM parameters and function
 615 *  pointers.
 616 **/
 617static s32 e1000_init_nvm_params_ich8lan(struct e1000_hw *hw)
 618{
 619	struct e1000_nvm_info *nvm = &hw->nvm;
 620	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
 621	u32 gfpreg, sector_base_addr, sector_end_addr;
 622	u16 i;
 623	u32 nvm_size;
 624
 625	nvm->type = e1000_nvm_flash_sw;
 626
 627	if (hw->mac.type >= e1000_pch_spt) {
 628		/* in SPT, gfpreg doesn't exist. NVM size is taken from the
 629		 * STRAP register. This is because in SPT the GbE Flash region
 630		 * is no longer accessed through the flash registers. Instead,
 631		 * the mechanism has changed, and the Flash region access
 632		 * registers are now implemented in GbE memory space.
 633		 */
 634		nvm->flash_base_addr = 0;
 635		nvm_size = (((er32(STRAP) >> 1) & 0x1F) + 1)
 636		    * NVM_SIZE_MULTIPLIER;
 637		nvm->flash_bank_size = nvm_size / 2;
 638		/* Adjust to word count */
 639		nvm->flash_bank_size /= sizeof(u16);
 640		/* Set the base address for flash register access */
 641		hw->flash_address = hw->hw_addr + E1000_FLASH_BASE_ADDR;
 642	} else {
 643		/* Can't read flash registers if register set isn't mapped. */
 644		if (!hw->flash_address) {
 645			e_dbg("ERROR: Flash registers not mapped\n");
 646			return -E1000_ERR_CONFIG;
 647		}
 648
 649		gfpreg = er32flash(ICH_FLASH_GFPREG);
 650
 651		/* sector_X_addr is a "sector"-aligned address (4096 bytes)
 652		 * Add 1 to sector_end_addr since this sector is included in
 653		 * the overall size.
 654		 */
 655		sector_base_addr = gfpreg & FLASH_GFPREG_BASE_MASK;
 656		sector_end_addr = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK) + 1;
 657
 658		/* flash_base_addr is byte-aligned */
 659		nvm->flash_base_addr = sector_base_addr
 660		    << FLASH_SECTOR_ADDR_SHIFT;
 661
 662		/* find total size of the NVM, then cut in half since the total
 663		 * size represents two separate NVM banks.
 664		 */
 665		nvm->flash_bank_size = ((sector_end_addr - sector_base_addr)
 666					<< FLASH_SECTOR_ADDR_SHIFT);
 667		nvm->flash_bank_size /= 2;
 668		/* Adjust to word count */
 669		nvm->flash_bank_size /= sizeof(u16);
 670	}
 671
 672	nvm->word_size = E1000_ICH8_SHADOW_RAM_WORDS;
 673
 674	/* Clear shadow ram */
 675	for (i = 0; i < nvm->word_size; i++) {
 676		dev_spec->shadow_ram[i].modified = false;
 677		dev_spec->shadow_ram[i].value = 0xFFFF;
 678	}
 679
 680	return 0;
 681}
 682
 683/**
 684 *  e1000_init_mac_params_ich8lan - Initialize MAC function pointers
 685 *  @hw: pointer to the HW structure
 686 *
 687 *  Initialize family-specific MAC parameters and function
 688 *  pointers.
 689 **/
 690static s32 e1000_init_mac_params_ich8lan(struct e1000_hw *hw)
 691{
 692	struct e1000_mac_info *mac = &hw->mac;
 693
 694	/* Set media type function pointer */
 695	hw->phy.media_type = e1000_media_type_copper;
 696
 697	/* Set mta register count */
 698	mac->mta_reg_count = 32;
 699	/* Set rar entry count */
 700	mac->rar_entry_count = E1000_ICH_RAR_ENTRIES;
 701	if (mac->type == e1000_ich8lan)
 702		mac->rar_entry_count--;
 703	/* FWSM register */
 704	mac->has_fwsm = true;
 705	/* ARC subsystem not supported */
 706	mac->arc_subsystem_valid = false;
 707	/* Adaptive IFS supported */
 708	mac->adaptive_ifs = true;
 709
 710	/* LED and other operations */
 711	switch (mac->type) {
 712	case e1000_ich8lan:
 713	case e1000_ich9lan:
 714	case e1000_ich10lan:
 715		/* check management mode */
 716		mac->ops.check_mng_mode = e1000_check_mng_mode_ich8lan;
 717		/* ID LED init */
 718		mac->ops.id_led_init = e1000e_id_led_init_generic;
 719		/* blink LED */
 720		mac->ops.blink_led = e1000e_blink_led_generic;
 721		/* setup LED */
 722		mac->ops.setup_led = e1000e_setup_led_generic;
 723		/* cleanup LED */
 724		mac->ops.cleanup_led = e1000_cleanup_led_ich8lan;
 725		/* turn on/off LED */
 726		mac->ops.led_on = e1000_led_on_ich8lan;
 727		mac->ops.led_off = e1000_led_off_ich8lan;
 728		break;
 729	case e1000_pch2lan:
 730		mac->rar_entry_count = E1000_PCH2_RAR_ENTRIES;
 731		mac->ops.rar_set = e1000_rar_set_pch2lan;
 732		fallthrough;
 733	case e1000_pch_lpt:
 734	case e1000_pch_spt:
 735	case e1000_pch_cnp:
 736	case e1000_pch_tgp:
 737	case e1000_pch_adp:
 738	case e1000_pch_mtp:
 739	case e1000_pch_lnp:
 740	case e1000_pch_ptp:
 741	case e1000_pch_nvp:
 742	case e1000_pchlan:
 743		/* check management mode */
 744		mac->ops.check_mng_mode = e1000_check_mng_mode_pchlan;
 745		/* ID LED init */
 746		mac->ops.id_led_init = e1000_id_led_init_pchlan;
 747		/* setup LED */
 748		mac->ops.setup_led = e1000_setup_led_pchlan;
 749		/* cleanup LED */
 750		mac->ops.cleanup_led = e1000_cleanup_led_pchlan;
 751		/* turn on/off LED */
 752		mac->ops.led_on = e1000_led_on_pchlan;
 753		mac->ops.led_off = e1000_led_off_pchlan;
 754		break;
 755	default:
 756		break;
 757	}
 758
 759	if (mac->type >= e1000_pch_lpt) {
 760		mac->rar_entry_count = E1000_PCH_LPT_RAR_ENTRIES;
 761		mac->ops.rar_set = e1000_rar_set_pch_lpt;
 762		mac->ops.setup_physical_interface =
 763		    e1000_setup_copper_link_pch_lpt;
 764		mac->ops.rar_get_count = e1000_rar_get_count_pch_lpt;
 765	}
 766
 767	/* Enable PCS Lock-loss workaround for ICH8 */
 768	if (mac->type == e1000_ich8lan)
 769		e1000e_set_kmrn_lock_loss_workaround_ich8lan(hw, true);
 770
 771	return 0;
 772}
 773
 774/**
 775 *  __e1000_access_emi_reg_locked - Read/write EMI register
 776 *  @hw: pointer to the HW structure
 777 *  @address: EMI address to program
 778 *  @data: pointer to value to read/write from/to the EMI address
 779 *  @read: boolean flag to indicate read or write
 780 *
 781 *  This helper function assumes the SW/FW/HW Semaphore is already acquired.
 782 **/
 783static s32 __e1000_access_emi_reg_locked(struct e1000_hw *hw, u16 address,
 784					 u16 *data, bool read)
 785{
 786	s32 ret_val;
 787
 788	ret_val = e1e_wphy_locked(hw, I82579_EMI_ADDR, address);
 789	if (ret_val)
 790		return ret_val;
 791
 792	if (read)
 793		ret_val = e1e_rphy_locked(hw, I82579_EMI_DATA, data);
 794	else
 795		ret_val = e1e_wphy_locked(hw, I82579_EMI_DATA, *data);
 796
 797	return ret_val;
 798}
 799
 800/**
 801 *  e1000_read_emi_reg_locked - Read Extended Management Interface register
 802 *  @hw: pointer to the HW structure
 803 *  @addr: EMI address to program
 804 *  @data: value to be read from the EMI address
 805 *
 806 *  Assumes the SW/FW/HW Semaphore is already acquired.
 807 **/
 808s32 e1000_read_emi_reg_locked(struct e1000_hw *hw, u16 addr, u16 *data)
 809{
 810	return __e1000_access_emi_reg_locked(hw, addr, data, true);
 811}
 812
 813/**
 814 *  e1000_write_emi_reg_locked - Write Extended Management Interface register
 815 *  @hw: pointer to the HW structure
 816 *  @addr: EMI address to program
 817 *  @data: value to be written to the EMI address
 818 *
 819 *  Assumes the SW/FW/HW Semaphore is already acquired.
 820 **/
 821s32 e1000_write_emi_reg_locked(struct e1000_hw *hw, u16 addr, u16 data)
 822{
 823	return __e1000_access_emi_reg_locked(hw, addr, &data, false);
 824}
 825
 826/**
 827 *  e1000_set_eee_pchlan - Enable/disable EEE support
 828 *  @hw: pointer to the HW structure
 829 *
 830 *  Enable/disable EEE based on setting in dev_spec structure, the duplex of
 831 *  the link and the EEE capabilities of the link partner.  The LPI Control
 832 *  register bits will remain set only if/when link is up.
 833 *
 834 *  EEE LPI must not be asserted earlier than one second after link is up.
 835 *  On 82579, EEE LPI should not be enabled until such time otherwise there
 836 *  can be link issues with some switches.  Other devices can have EEE LPI
 837 *  enabled immediately upon link up since they have a timer in hardware which
 838 *  prevents LPI from being asserted too early.
 839 **/
 840s32 e1000_set_eee_pchlan(struct e1000_hw *hw)
 841{
 842	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
 843	s32 ret_val;
 844	u16 lpa, pcs_status, adv, adv_addr, lpi_ctrl, data;
 845
 846	switch (hw->phy.type) {
 847	case e1000_phy_82579:
 848		lpa = I82579_EEE_LP_ABILITY;
 849		pcs_status = I82579_EEE_PCS_STATUS;
 850		adv_addr = I82579_EEE_ADVERTISEMENT;
 851		break;
 852	case e1000_phy_i217:
 853		lpa = I217_EEE_LP_ABILITY;
 854		pcs_status = I217_EEE_PCS_STATUS;
 855		adv_addr = I217_EEE_ADVERTISEMENT;
 856		break;
 857	default:
 858		return 0;
 859	}
 860
 861	ret_val = hw->phy.ops.acquire(hw);
 862	if (ret_val)
 863		return ret_val;
 864
 865	ret_val = e1e_rphy_locked(hw, I82579_LPI_CTRL, &lpi_ctrl);
 866	if (ret_val)
 867		goto release;
 868
 869	/* Clear bits that enable EEE in various speeds */
 870	lpi_ctrl &= ~I82579_LPI_CTRL_ENABLE_MASK;
 871
 872	/* Enable EEE if not disabled by user */
 873	if (!dev_spec->eee_disable) {
 874		/* Save off link partner's EEE ability */
 875		ret_val = e1000_read_emi_reg_locked(hw, lpa,
 876						    &dev_spec->eee_lp_ability);
 877		if (ret_val)
 878			goto release;
 879
 880		/* Read EEE advertisement */
 881		ret_val = e1000_read_emi_reg_locked(hw, adv_addr, &adv);
 882		if (ret_val)
 883			goto release;
 884
 885		/* Enable EEE only for speeds in which the link partner is
 886		 * EEE capable and for which we advertise EEE.
 887		 */
 888		if (adv & dev_spec->eee_lp_ability & I82579_EEE_1000_SUPPORTED)
 889			lpi_ctrl |= I82579_LPI_CTRL_1000_ENABLE;
 890
 891		if (adv & dev_spec->eee_lp_ability & I82579_EEE_100_SUPPORTED) {
 892			e1e_rphy_locked(hw, MII_LPA, &data);
 893			if (data & LPA_100FULL)
 894				lpi_ctrl |= I82579_LPI_CTRL_100_ENABLE;
 895			else
 896				/* EEE is not supported in 100Half, so ignore
 897				 * partner's EEE in 100 ability if full-duplex
 898				 * is not advertised.
 899				 */
 900				dev_spec->eee_lp_ability &=
 901				    ~I82579_EEE_100_SUPPORTED;
 902		}
 903	}
 904
 905	if (hw->phy.type == e1000_phy_82579) {
 906		ret_val = e1000_read_emi_reg_locked(hw, I82579_LPI_PLL_SHUT,
 907						    &data);
 908		if (ret_val)
 909			goto release;
 910
 911		data &= ~I82579_LPI_100_PLL_SHUT;
 912		ret_val = e1000_write_emi_reg_locked(hw, I82579_LPI_PLL_SHUT,
 913						     data);
 914	}
 915
 916	/* R/Clr IEEE MMD 3.1 bits 11:10 - Tx/Rx LPI Received */
 917	ret_val = e1000_read_emi_reg_locked(hw, pcs_status, &data);
 918	if (ret_val)
 919		goto release;
 920
 921	ret_val = e1e_wphy_locked(hw, I82579_LPI_CTRL, lpi_ctrl);
 922release:
 923	hw->phy.ops.release(hw);
 924
 925	return ret_val;
 926}
 927
 928/**
 929 *  e1000_k1_workaround_lpt_lp - K1 workaround on Lynxpoint-LP
 930 *  @hw:   pointer to the HW structure
 931 *  @link: link up bool flag
 932 *
 933 *  When K1 is enabled for 1Gbps, the MAC can miss 2 DMA completion indications
 934 *  preventing further DMA write requests.  Workaround the issue by disabling
 935 *  the de-assertion of the clock request when in 1Gpbs mode.
 936 *  Also, set appropriate Tx re-transmission timeouts for 10 and 100Half link
 937 *  speeds in order to avoid Tx hangs.
 938 **/
 939static s32 e1000_k1_workaround_lpt_lp(struct e1000_hw *hw, bool link)
 940{
 941	u32 fextnvm6 = er32(FEXTNVM6);
 942	u32 status = er32(STATUS);
 943	s32 ret_val = 0;
 944	u16 reg;
 945
 946	if (link && (status & E1000_STATUS_SPEED_1000)) {
 947		ret_val = hw->phy.ops.acquire(hw);
 948		if (ret_val)
 949			return ret_val;
 950
 951		ret_val =
 952		    e1000e_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
 953						&reg);
 954		if (ret_val)
 955			goto release;
 956
 957		ret_val =
 958		    e1000e_write_kmrn_reg_locked(hw,
 959						 E1000_KMRNCTRLSTA_K1_CONFIG,
 960						 reg &
 961						 ~E1000_KMRNCTRLSTA_K1_ENABLE);
 962		if (ret_val)
 963			goto release;
 964
 965		usleep_range(10, 20);
 966
 967		ew32(FEXTNVM6, fextnvm6 | E1000_FEXTNVM6_REQ_PLL_CLK);
 968
 969		ret_val =
 970		    e1000e_write_kmrn_reg_locked(hw,
 971						 E1000_KMRNCTRLSTA_K1_CONFIG,
 972						 reg);
 973release:
 974		hw->phy.ops.release(hw);
 975	} else {
 976		/* clear FEXTNVM6 bit 8 on link down or 10/100 */
 977		fextnvm6 &= ~E1000_FEXTNVM6_REQ_PLL_CLK;
 978
 979		if ((hw->phy.revision > 5) || !link ||
 980		    ((status & E1000_STATUS_SPEED_100) &&
 981		     (status & E1000_STATUS_FD)))
 982			goto update_fextnvm6;
 983
 984		ret_val = e1e_rphy(hw, I217_INBAND_CTRL, &reg);
 985		if (ret_val)
 986			return ret_val;
 987
 988		/* Clear link status transmit timeout */
 989		reg &= ~I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_MASK;
 990
 991		if (status & E1000_STATUS_SPEED_100) {
 992			/* Set inband Tx timeout to 5x10us for 100Half */
 993			reg |= 5 << I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_SHIFT;
 994
 995			/* Do not extend the K1 entry latency for 100Half */
 996			fextnvm6 &= ~E1000_FEXTNVM6_ENABLE_K1_ENTRY_CONDITION;
 997		} else {
 998			/* Set inband Tx timeout to 50x10us for 10Full/Half */
 999			reg |= 50 <<
1000			    I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_SHIFT;
1001
1002			/* Extend the K1 entry latency for 10 Mbps */
1003			fextnvm6 |= E1000_FEXTNVM6_ENABLE_K1_ENTRY_CONDITION;
1004		}
1005
1006		ret_val = e1e_wphy(hw, I217_INBAND_CTRL, reg);
1007		if (ret_val)
1008			return ret_val;
1009
1010update_fextnvm6:
1011		ew32(FEXTNVM6, fextnvm6);
1012	}
1013
1014	return ret_val;
1015}
1016
1017/**
1018 *  e1000_platform_pm_pch_lpt - Set platform power management values
1019 *  @hw: pointer to the HW structure
1020 *  @link: bool indicating link status
1021 *
1022 *  Set the Latency Tolerance Reporting (LTR) values for the "PCIe-like"
1023 *  GbE MAC in the Lynx Point PCH based on Rx buffer size and link speed
1024 *  when link is up (which must not exceed the maximum latency supported
1025 *  by the platform), otherwise specify there is no LTR requirement.
1026 *  Unlike true-PCIe devices which set the LTR maximum snoop/no-snoop
1027 *  latencies in the LTR Extended Capability Structure in the PCIe Extended
1028 *  Capability register set, on this device LTR is set by writing the
1029 *  equivalent snoop/no-snoop latencies in the LTRV register in the MAC and
1030 *  set the SEND bit to send an Intel On-chip System Fabric sideband (IOSF-SB)
1031 *  message to the PMC.
1032 **/
1033static s32 e1000_platform_pm_pch_lpt(struct e1000_hw *hw, bool link)
1034{
1035	u32 reg = link << (E1000_LTRV_REQ_SHIFT + E1000_LTRV_NOSNOOP_SHIFT) |
1036	    link << E1000_LTRV_REQ_SHIFT | E1000_LTRV_SEND;
1037	u32 max_ltr_enc_d = 0;	/* maximum LTR decoded by platform */
1038	u32 lat_enc_d = 0;	/* latency decoded */
1039	u16 lat_enc = 0;	/* latency encoded */
1040
1041	if (link) {
1042		u16 speed, duplex, scale = 0;
1043		u16 max_snoop, max_nosnoop;
1044		u16 max_ltr_enc;	/* max LTR latency encoded */
1045		u64 value;
1046		u32 rxa;
1047
1048		if (!hw->adapter->max_frame_size) {
1049			e_dbg("max_frame_size not set.\n");
1050			return -E1000_ERR_CONFIG;
1051		}
1052
1053		hw->mac.ops.get_link_up_info(hw, &speed, &duplex);
1054		if (!speed) {
1055			e_dbg("Speed not set.\n");
1056			return -E1000_ERR_CONFIG;
1057		}
1058
1059		/* Rx Packet Buffer Allocation size (KB) */
1060		rxa = er32(PBA) & E1000_PBA_RXA_MASK;
1061
1062		/* Determine the maximum latency tolerated by the device.
1063		 *
1064		 * Per the PCIe spec, the tolerated latencies are encoded as
1065		 * a 3-bit encoded scale (only 0-5 are valid) multiplied by
1066		 * a 10-bit value (0-1023) to provide a range from 1 ns to
1067		 * 2^25*(2^10-1) ns.  The scale is encoded as 0=2^0ns,
1068		 * 1=2^5ns, 2=2^10ns,...5=2^25ns.
1069		 */
1070		rxa *= 512;
1071		value = (rxa > hw->adapter->max_frame_size) ?
1072			(rxa - hw->adapter->max_frame_size) * (16000 / speed) :
1073			0;
1074
1075		while (value > PCI_LTR_VALUE_MASK) {
1076			scale++;
1077			value = DIV_ROUND_UP(value, BIT(5));
1078		}
1079		if (scale > E1000_LTRV_SCALE_MAX) {
1080			e_dbg("Invalid LTR latency scale %d\n", scale);
1081			return -E1000_ERR_CONFIG;
1082		}
1083		lat_enc = (u16)((scale << PCI_LTR_SCALE_SHIFT) | value);
1084
1085		/* Determine the maximum latency tolerated by the platform */
1086		pci_read_config_word(hw->adapter->pdev, E1000_PCI_LTR_CAP_LPT,
1087				     &max_snoop);
1088		pci_read_config_word(hw->adapter->pdev,
1089				     E1000_PCI_LTR_CAP_LPT + 2, &max_nosnoop);
1090		max_ltr_enc = max_t(u16, max_snoop, max_nosnoop);
1091
1092		lat_enc_d = (lat_enc & E1000_LTRV_VALUE_MASK) *
1093			     (1U << (E1000_LTRV_SCALE_FACTOR *
1094			     FIELD_GET(E1000_LTRV_SCALE_MASK, lat_enc)));
1095
1096		max_ltr_enc_d = (max_ltr_enc & E1000_LTRV_VALUE_MASK) *
1097			(1U << (E1000_LTRV_SCALE_FACTOR *
1098				FIELD_GET(E1000_LTRV_SCALE_MASK, max_ltr_enc)));
1099
1100		if (lat_enc_d > max_ltr_enc_d)
1101			lat_enc = max_ltr_enc;
1102	}
1103
1104	/* Set Snoop and No-Snoop latencies the same */
1105	reg |= lat_enc | (lat_enc << E1000_LTRV_NOSNOOP_SHIFT);
1106	ew32(LTRV, reg);
1107
1108	return 0;
1109}
1110
1111/**
1112 *  e1000e_force_smbus - Force interfaces to transition to SMBUS mode.
1113 *  @hw: pointer to the HW structure
1114 *
1115 *  Force the MAC and the PHY to SMBUS mode. Assumes semaphore already
1116 *  acquired.
1117 *
1118 * Return: 0 on success, negative errno on failure.
1119 **/
1120static s32 e1000e_force_smbus(struct e1000_hw *hw)
1121{
1122	u16 smb_ctrl = 0;
1123	u32 ctrl_ext;
1124	s32 ret_val;
1125
1126	/* Switching PHY interface always returns MDI error
1127	 * so disable retry mechanism to avoid wasting time
1128	 */
1129	e1000e_disable_phy_retry(hw);
1130
1131	/* Force SMBus mode in the PHY */
1132	ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL, &smb_ctrl);
1133	if (ret_val) {
1134		e1000e_enable_phy_retry(hw);
1135		return ret_val;
1136	}
1137
1138	smb_ctrl |= CV_SMB_CTRL_FORCE_SMBUS;
1139	e1000_write_phy_reg_hv_locked(hw, CV_SMB_CTRL, smb_ctrl);
1140
1141	e1000e_enable_phy_retry(hw);
1142
1143	/* Force SMBus mode in the MAC */
1144	ctrl_ext = er32(CTRL_EXT);
1145	ctrl_ext |= E1000_CTRL_EXT_FORCE_SMBUS;
1146	ew32(CTRL_EXT, ctrl_ext);
1147
1148	return 0;
1149}
1150
1151/**
1152 *  e1000_enable_ulp_lpt_lp - configure Ultra Low Power mode for LynxPoint-LP
1153 *  @hw: pointer to the HW structure
1154 *  @to_sx: boolean indicating a system power state transition to Sx
1155 *
1156 *  When link is down, configure ULP mode to significantly reduce the power
1157 *  to the PHY.  If on a Manageability Engine (ME) enabled system, tell the
1158 *  ME firmware to start the ULP configuration.  If not on an ME enabled
1159 *  system, configure the ULP mode by software.
1160 */
1161s32 e1000_enable_ulp_lpt_lp(struct e1000_hw *hw, bool to_sx)
1162{
1163	u32 mac_reg;
1164	s32 ret_val = 0;
1165	u16 phy_reg;
1166	u16 oem_reg = 0;
1167
1168	if ((hw->mac.type < e1000_pch_lpt) ||
1169	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_LM) ||
1170	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_V) ||
1171	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_LM2) ||
1172	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_V2) ||
1173	    (hw->dev_spec.ich8lan.ulp_state == e1000_ulp_state_on))
1174		return 0;
1175
1176	if (er32(FWSM) & E1000_ICH_FWSM_FW_VALID) {
1177		/* Request ME configure ULP mode in the PHY */
1178		mac_reg = er32(H2ME);
1179		mac_reg |= E1000_H2ME_ULP | E1000_H2ME_ENFORCE_SETTINGS;
1180		ew32(H2ME, mac_reg);
1181
1182		goto out;
1183	}
1184
1185	if (!to_sx) {
1186		int i = 0;
1187
1188		/* Poll up to 5 seconds for Cable Disconnected indication */
1189		while (!(er32(FEXT) & E1000_FEXT_PHY_CABLE_DISCONNECTED)) {
1190			/* Bail if link is re-acquired */
1191			if (er32(STATUS) & E1000_STATUS_LU)
1192				return -E1000_ERR_PHY;
1193
1194			if (i++ == 100)
1195				break;
1196
1197			msleep(50);
1198		}
1199		e_dbg("CABLE_DISCONNECTED %s set after %dmsec\n",
1200		      (er32(FEXT) &
1201		       E1000_FEXT_PHY_CABLE_DISCONNECTED) ? "" : "not", i * 50);
1202	}
1203
1204	ret_val = hw->phy.ops.acquire(hw);
1205	if (ret_val)
1206		goto out;
1207
1208	ret_val = e1000e_force_smbus(hw);
1209	if (ret_val) {
1210		e_dbg("Failed to force SMBUS: %d\n", ret_val);
1211		goto release;
1212	}
 
 
 
 
 
 
1213
1214	/* Si workaround for ULP entry flow on i127/rev6 h/w.  Enable
1215	 * LPLU and disable Gig speed when entering ULP
1216	 */
1217	if ((hw->phy.type == e1000_phy_i217) && (hw->phy.revision == 6)) {
1218		ret_val = e1000_read_phy_reg_hv_locked(hw, HV_OEM_BITS,
1219						       &oem_reg);
1220		if (ret_val)
1221			goto release;
1222
1223		phy_reg = oem_reg;
1224		phy_reg |= HV_OEM_BITS_LPLU | HV_OEM_BITS_GBE_DIS;
1225
1226		ret_val = e1000_write_phy_reg_hv_locked(hw, HV_OEM_BITS,
1227							phy_reg);
1228
1229		if (ret_val)
1230			goto release;
1231	}
1232
1233	/* Set Inband ULP Exit, Reset to SMBus mode and
1234	 * Disable SMBus Release on PERST# in PHY
1235	 */
1236	ret_val = e1000_read_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, &phy_reg);
1237	if (ret_val)
1238		goto release;
1239	phy_reg |= (I218_ULP_CONFIG1_RESET_TO_SMBUS |
1240		    I218_ULP_CONFIG1_DISABLE_SMB_PERST);
1241	if (to_sx) {
1242		if (er32(WUFC) & E1000_WUFC_LNKC)
1243			phy_reg |= I218_ULP_CONFIG1_WOL_HOST;
1244		else
1245			phy_reg &= ~I218_ULP_CONFIG1_WOL_HOST;
1246
1247		phy_reg |= I218_ULP_CONFIG1_STICKY_ULP;
1248		phy_reg &= ~I218_ULP_CONFIG1_INBAND_EXIT;
1249	} else {
1250		phy_reg |= I218_ULP_CONFIG1_INBAND_EXIT;
1251		phy_reg &= ~I218_ULP_CONFIG1_STICKY_ULP;
1252		phy_reg &= ~I218_ULP_CONFIG1_WOL_HOST;
1253	}
1254	e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1255
1256	/* Set Disable SMBus Release on PERST# in MAC */
1257	mac_reg = er32(FEXTNVM7);
1258	mac_reg |= E1000_FEXTNVM7_DISABLE_SMB_PERST;
1259	ew32(FEXTNVM7, mac_reg);
1260
1261	/* Commit ULP changes in PHY by starting auto ULP configuration */
1262	phy_reg |= I218_ULP_CONFIG1_START;
1263	e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1264
1265	if ((hw->phy.type == e1000_phy_i217) && (hw->phy.revision == 6) &&
1266	    to_sx && (er32(STATUS) & E1000_STATUS_LU)) {
1267		ret_val = e1000_write_phy_reg_hv_locked(hw, HV_OEM_BITS,
1268							oem_reg);
1269		if (ret_val)
1270			goto release;
1271	}
1272
1273release:
1274	hw->phy.ops.release(hw);
1275out:
1276	if (ret_val)
1277		e_dbg("Error in ULP enable flow: %d\n", ret_val);
1278	else
1279		hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_on;
1280
1281	return ret_val;
1282}
1283
1284/**
1285 *  e1000_disable_ulp_lpt_lp - unconfigure Ultra Low Power mode for LynxPoint-LP
1286 *  @hw: pointer to the HW structure
1287 *  @force: boolean indicating whether or not to force disabling ULP
1288 *
1289 *  Un-configure ULP mode when link is up, the system is transitioned from
1290 *  Sx or the driver is unloaded.  If on a Manageability Engine (ME) enabled
1291 *  system, poll for an indication from ME that ULP has been un-configured.
1292 *  If not on an ME enabled system, un-configure the ULP mode by software.
1293 *
1294 *  During nominal operation, this function is called when link is acquired
1295 *  to disable ULP mode (force=false); otherwise, for example when unloading
1296 *  the driver or during Sx->S0 transitions, this is called with force=true
1297 *  to forcibly disable ULP.
1298 */
1299static s32 e1000_disable_ulp_lpt_lp(struct e1000_hw *hw, bool force)
1300{
1301	s32 ret_val = 0;
1302	u32 mac_reg;
1303	u16 phy_reg;
1304	int i = 0;
1305
1306	if ((hw->mac.type < e1000_pch_lpt) ||
1307	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_LM) ||
1308	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_V) ||
1309	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_LM2) ||
1310	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_V2) ||
1311	    (hw->dev_spec.ich8lan.ulp_state == e1000_ulp_state_off))
1312		return 0;
1313
1314	if (er32(FWSM) & E1000_ICH_FWSM_FW_VALID) {
1315		struct e1000_adapter *adapter = hw->adapter;
1316		bool firmware_bug = false;
1317
1318		if (force) {
1319			/* Request ME un-configure ULP mode in the PHY */
1320			mac_reg = er32(H2ME);
1321			mac_reg &= ~E1000_H2ME_ULP;
1322			mac_reg |= E1000_H2ME_ENFORCE_SETTINGS;
1323			ew32(H2ME, mac_reg);
1324		}
1325
1326		/* Poll up to 2.5 seconds for ME to clear ULP_CFG_DONE.
1327		 * If this takes more than 1 second, show a warning indicating a
1328		 * firmware bug
1329		 */
1330		while (er32(FWSM) & E1000_FWSM_ULP_CFG_DONE) {
1331			if (i++ == 250) {
1332				ret_val = -E1000_ERR_PHY;
1333				goto out;
1334			}
1335			if (i > 100 && !firmware_bug)
1336				firmware_bug = true;
1337
1338			usleep_range(10000, 11000);
1339		}
1340		if (firmware_bug)
1341			e_warn("ULP_CONFIG_DONE took %d msec. This is a firmware bug\n",
1342			       i * 10);
1343		else
1344			e_dbg("ULP_CONFIG_DONE cleared after %d msec\n",
1345			      i * 10);
1346
1347		if (force) {
1348			mac_reg = er32(H2ME);
1349			mac_reg &= ~E1000_H2ME_ENFORCE_SETTINGS;
1350			ew32(H2ME, mac_reg);
1351		} else {
1352			/* Clear H2ME.ULP after ME ULP configuration */
1353			mac_reg = er32(H2ME);
1354			mac_reg &= ~E1000_H2ME_ULP;
1355			ew32(H2ME, mac_reg);
1356		}
1357
1358		goto out;
1359	}
1360
1361	ret_val = hw->phy.ops.acquire(hw);
1362	if (ret_val)
1363		goto out;
1364
1365	if (force)
1366		/* Toggle LANPHYPC Value bit */
1367		e1000_toggle_lanphypc_pch_lpt(hw);
1368
1369	/* Switching PHY interface always returns MDI error
1370	 * so disable retry mechanism to avoid wasting time
1371	 */
1372	e1000e_disable_phy_retry(hw);
1373
1374	/* Unforce SMBus mode in PHY */
1375	ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL, &phy_reg);
1376	if (ret_val) {
1377		/* The MAC might be in PCIe mode, so temporarily force to
1378		 * SMBus mode in order to access the PHY.
1379		 */
1380		mac_reg = er32(CTRL_EXT);
1381		mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
1382		ew32(CTRL_EXT, mac_reg);
1383
1384		msleep(50);
1385
1386		ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL,
1387						       &phy_reg);
1388		if (ret_val)
1389			goto release;
1390	}
1391	phy_reg &= ~CV_SMB_CTRL_FORCE_SMBUS;
1392	e1000_write_phy_reg_hv_locked(hw, CV_SMB_CTRL, phy_reg);
1393
1394	e1000e_enable_phy_retry(hw);
1395
1396	/* Unforce SMBus mode in MAC */
1397	mac_reg = er32(CTRL_EXT);
1398	mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
1399	ew32(CTRL_EXT, mac_reg);
1400
1401	/* When ULP mode was previously entered, K1 was disabled by the
1402	 * hardware.  Re-Enable K1 in the PHY when exiting ULP.
1403	 */
1404	ret_val = e1000_read_phy_reg_hv_locked(hw, HV_PM_CTRL, &phy_reg);
1405	if (ret_val)
1406		goto release;
1407	phy_reg |= HV_PM_CTRL_K1_ENABLE;
1408	e1000_write_phy_reg_hv_locked(hw, HV_PM_CTRL, phy_reg);
1409
1410	/* Clear ULP enabled configuration */
1411	ret_val = e1000_read_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, &phy_reg);
1412	if (ret_val)
1413		goto release;
1414	phy_reg &= ~(I218_ULP_CONFIG1_IND |
1415		     I218_ULP_CONFIG1_STICKY_ULP |
1416		     I218_ULP_CONFIG1_RESET_TO_SMBUS |
1417		     I218_ULP_CONFIG1_WOL_HOST |
1418		     I218_ULP_CONFIG1_INBAND_EXIT |
1419		     I218_ULP_CONFIG1_EN_ULP_LANPHYPC |
1420		     I218_ULP_CONFIG1_DIS_CLR_STICKY_ON_PERST |
1421		     I218_ULP_CONFIG1_DISABLE_SMB_PERST);
1422	e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1423
1424	/* Commit ULP changes by starting auto ULP configuration */
1425	phy_reg |= I218_ULP_CONFIG1_START;
1426	e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1427
1428	/* Clear Disable SMBus Release on PERST# in MAC */
1429	mac_reg = er32(FEXTNVM7);
1430	mac_reg &= ~E1000_FEXTNVM7_DISABLE_SMB_PERST;
1431	ew32(FEXTNVM7, mac_reg);
1432
1433release:
1434	hw->phy.ops.release(hw);
1435	if (force) {
1436		e1000_phy_hw_reset(hw);
1437		msleep(50);
1438	}
1439out:
1440	if (ret_val)
1441		e_dbg("Error in ULP disable flow: %d\n", ret_val);
1442	else
1443		hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_off;
1444
1445	return ret_val;
1446}
1447
1448/**
1449 *  e1000_check_for_copper_link_ich8lan - Check for link (Copper)
1450 *  @hw: pointer to the HW structure
1451 *
1452 *  Checks to see of the link status of the hardware has changed.  If a
1453 *  change in link status has been detected, then we read the PHY registers
1454 *  to get the current speed/duplex if link exists.
1455 **/
1456static s32 e1000_check_for_copper_link_ich8lan(struct e1000_hw *hw)
1457{
1458	struct e1000_mac_info *mac = &hw->mac;
1459	s32 ret_val, tipg_reg = 0;
1460	u16 emi_addr, emi_val = 0;
1461	bool link;
1462	u16 phy_reg;
1463
1464	/* We only want to go out to the PHY registers to see if Auto-Neg
1465	 * has completed and/or if our link status has changed.  The
1466	 * get_link_status flag is set upon receiving a Link Status
1467	 * Change or Rx Sequence Error interrupt.
1468	 */
1469	if (!mac->get_link_status)
1470		return 0;
1471	mac->get_link_status = false;
1472
1473	/* First we want to see if the MII Status Register reports
1474	 * link.  If so, then we want to get the current speed/duplex
1475	 * of the PHY.
1476	 */
1477	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
1478	if (ret_val)
1479		goto out;
1480
1481	if (hw->mac.type == e1000_pchlan) {
1482		ret_val = e1000_k1_gig_workaround_hv(hw, link);
1483		if (ret_val)
1484			goto out;
1485	}
1486
1487	/* When connected at 10Mbps half-duplex, some parts are excessively
1488	 * aggressive resulting in many collisions. To avoid this, increase
1489	 * the IPG and reduce Rx latency in the PHY.
1490	 */
1491	if ((hw->mac.type >= e1000_pch2lan) && link) {
1492		u16 speed, duplex;
1493
1494		e1000e_get_speed_and_duplex_copper(hw, &speed, &duplex);
1495		tipg_reg = er32(TIPG);
1496		tipg_reg &= ~E1000_TIPG_IPGT_MASK;
1497
1498		if (duplex == HALF_DUPLEX && speed == SPEED_10) {
1499			tipg_reg |= 0xFF;
1500			/* Reduce Rx latency in analog PHY */
1501			emi_val = 0;
1502		} else if (hw->mac.type >= e1000_pch_spt &&
1503			   duplex == FULL_DUPLEX && speed != SPEED_1000) {
1504			tipg_reg |= 0xC;
1505			emi_val = 1;
1506		} else {
1507
1508			/* Roll back the default values */
1509			tipg_reg |= 0x08;
1510			emi_val = 1;
1511		}
1512
1513		ew32(TIPG, tipg_reg);
1514
1515		ret_val = hw->phy.ops.acquire(hw);
1516		if (ret_val)
1517			goto out;
1518
1519		if (hw->mac.type == e1000_pch2lan)
1520			emi_addr = I82579_RX_CONFIG;
1521		else
1522			emi_addr = I217_RX_CONFIG;
1523		ret_val = e1000_write_emi_reg_locked(hw, emi_addr, emi_val);
1524
1525		if (hw->mac.type >= e1000_pch_lpt) {
1526			u16 phy_reg;
1527
1528			e1e_rphy_locked(hw, I217_PLL_CLOCK_GATE_REG, &phy_reg);
1529			phy_reg &= ~I217_PLL_CLOCK_GATE_MASK;
1530			if (speed == SPEED_100 || speed == SPEED_10)
1531				phy_reg |= 0x3E8;
1532			else
1533				phy_reg |= 0xFA;
1534			e1e_wphy_locked(hw, I217_PLL_CLOCK_GATE_REG, phy_reg);
1535
1536			if (speed == SPEED_1000) {
1537				hw->phy.ops.read_reg_locked(hw, HV_PM_CTRL,
1538							    &phy_reg);
1539
1540				phy_reg |= HV_PM_CTRL_K1_CLK_REQ;
1541
1542				hw->phy.ops.write_reg_locked(hw, HV_PM_CTRL,
1543							     phy_reg);
1544			}
1545		}
1546		hw->phy.ops.release(hw);
1547
1548		if (ret_val)
1549			goto out;
1550
1551		if (hw->mac.type >= e1000_pch_spt) {
1552			u16 data;
1553			u16 ptr_gap;
1554
1555			if (speed == SPEED_1000) {
1556				ret_val = hw->phy.ops.acquire(hw);
1557				if (ret_val)
1558					goto out;
1559
1560				ret_val = e1e_rphy_locked(hw,
1561							  PHY_REG(776, 20),
1562							  &data);
1563				if (ret_val) {
1564					hw->phy.ops.release(hw);
1565					goto out;
1566				}
1567
1568				ptr_gap = (data & (0x3FF << 2)) >> 2;
1569				if (ptr_gap < 0x18) {
1570					data &= ~(0x3FF << 2);
1571					data |= (0x18 << 2);
1572					ret_val =
1573					    e1e_wphy_locked(hw,
1574							    PHY_REG(776, 20),
1575							    data);
1576				}
1577				hw->phy.ops.release(hw);
1578				if (ret_val)
1579					goto out;
1580			} else {
1581				ret_val = hw->phy.ops.acquire(hw);
1582				if (ret_val)
1583					goto out;
1584
1585				ret_val = e1e_wphy_locked(hw,
1586							  PHY_REG(776, 20),
1587							  0xC023);
1588				hw->phy.ops.release(hw);
1589				if (ret_val)
1590					goto out;
1591
1592			}
1593		}
1594	}
1595
1596	/* I217 Packet Loss issue:
1597	 * ensure that FEXTNVM4 Beacon Duration is set correctly
1598	 * on power up.
1599	 * Set the Beacon Duration for I217 to 8 usec
1600	 */
1601	if (hw->mac.type >= e1000_pch_lpt) {
1602		u32 mac_reg;
1603
1604		mac_reg = er32(FEXTNVM4);
1605		mac_reg &= ~E1000_FEXTNVM4_BEACON_DURATION_MASK;
1606		mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_8USEC;
1607		ew32(FEXTNVM4, mac_reg);
1608	}
1609
1610	/* Work-around I218 hang issue */
1611	if ((hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPTLP_I218_LM) ||
1612	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPTLP_I218_V) ||
1613	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_LM3) ||
1614	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_V3)) {
1615		ret_val = e1000_k1_workaround_lpt_lp(hw, link);
1616		if (ret_val)
1617			goto out;
1618	}
1619	if (hw->mac.type >= e1000_pch_lpt) {
1620		/* Set platform power management values for
1621		 * Latency Tolerance Reporting (LTR)
1622		 */
1623		ret_val = e1000_platform_pm_pch_lpt(hw, link);
1624		if (ret_val)
1625			goto out;
1626	}
1627
1628	/* Clear link partner's EEE ability */
1629	hw->dev_spec.ich8lan.eee_lp_ability = 0;
1630
1631	if (hw->mac.type >= e1000_pch_lpt) {
1632		u32 fextnvm6 = er32(FEXTNVM6);
1633
1634		if (hw->mac.type == e1000_pch_spt) {
1635			/* FEXTNVM6 K1-off workaround - for SPT only */
1636			u32 pcieanacfg = er32(PCIEANACFG);
1637
1638			if (pcieanacfg & E1000_FEXTNVM6_K1_OFF_ENABLE)
1639				fextnvm6 |= E1000_FEXTNVM6_K1_OFF_ENABLE;
1640			else
1641				fextnvm6 &= ~E1000_FEXTNVM6_K1_OFF_ENABLE;
1642		}
1643
1644		ew32(FEXTNVM6, fextnvm6);
1645	}
1646
1647	if (!link)
1648		goto out;
1649
1650	switch (hw->mac.type) {
1651	case e1000_pch2lan:
1652		ret_val = e1000_k1_workaround_lv(hw);
1653		if (ret_val)
1654			return ret_val;
1655		fallthrough;
1656	case e1000_pchlan:
1657		if (hw->phy.type == e1000_phy_82578) {
1658			ret_val = e1000_link_stall_workaround_hv(hw);
1659			if (ret_val)
1660				return ret_val;
1661		}
1662
1663		/* Workaround for PCHx parts in half-duplex:
1664		 * Set the number of preambles removed from the packet
1665		 * when it is passed from the PHY to the MAC to prevent
1666		 * the MAC from misinterpreting the packet type.
1667		 */
1668		e1e_rphy(hw, HV_KMRN_FIFO_CTRLSTA, &phy_reg);
1669		phy_reg &= ~HV_KMRN_FIFO_CTRLSTA_PREAMBLE_MASK;
1670
1671		if ((er32(STATUS) & E1000_STATUS_FD) != E1000_STATUS_FD)
1672			phy_reg |= BIT(HV_KMRN_FIFO_CTRLSTA_PREAMBLE_SHIFT);
1673
1674		e1e_wphy(hw, HV_KMRN_FIFO_CTRLSTA, phy_reg);
1675		break;
1676	default:
1677		break;
1678	}
1679
1680	/* Check if there was DownShift, must be checked
1681	 * immediately after link-up
1682	 */
1683	e1000e_check_downshift(hw);
1684
1685	/* Enable/Disable EEE after link up */
1686	if (hw->phy.type > e1000_phy_82579) {
1687		ret_val = e1000_set_eee_pchlan(hw);
1688		if (ret_val)
1689			return ret_val;
1690	}
1691
1692	/* If we are forcing speed/duplex, then we simply return since
1693	 * we have already determined whether we have link or not.
1694	 */
1695	if (!mac->autoneg)
1696		return -E1000_ERR_CONFIG;
1697
1698	/* Auto-Neg is enabled.  Auto Speed Detection takes care
1699	 * of MAC speed/duplex configuration.  So we only need to
1700	 * configure Collision Distance in the MAC.
1701	 */
1702	mac->ops.config_collision_dist(hw);
1703
1704	/* Configure Flow Control now that Auto-Neg has completed.
1705	 * First, we need to restore the desired flow control
1706	 * settings because we may have had to re-autoneg with a
1707	 * different link partner.
1708	 */
1709	ret_val = e1000e_config_fc_after_link_up(hw);
1710	if (ret_val)
1711		e_dbg("Error configuring flow control\n");
1712
1713	return ret_val;
1714
1715out:
1716	mac->get_link_status = true;
1717	return ret_val;
1718}
1719
1720static s32 e1000_get_variants_ich8lan(struct e1000_adapter *adapter)
1721{
1722	struct e1000_hw *hw = &adapter->hw;
1723	s32 rc;
1724
1725	rc = e1000_init_mac_params_ich8lan(hw);
1726	if (rc)
1727		return rc;
1728
1729	rc = e1000_init_nvm_params_ich8lan(hw);
1730	if (rc)
1731		return rc;
1732
1733	switch (hw->mac.type) {
1734	case e1000_ich8lan:
1735	case e1000_ich9lan:
1736	case e1000_ich10lan:
1737		rc = e1000_init_phy_params_ich8lan(hw);
1738		break;
1739	case e1000_pchlan:
1740	case e1000_pch2lan:
1741	case e1000_pch_lpt:
1742	case e1000_pch_spt:
1743	case e1000_pch_cnp:
1744	case e1000_pch_tgp:
1745	case e1000_pch_adp:
1746	case e1000_pch_mtp:
1747	case e1000_pch_lnp:
1748	case e1000_pch_ptp:
1749	case e1000_pch_nvp:
1750		rc = e1000_init_phy_params_pchlan(hw);
1751		break;
1752	default:
1753		break;
1754	}
1755	if (rc)
1756		return rc;
1757
1758	/* Disable Jumbo Frame support on parts with Intel 10/100 PHY or
1759	 * on parts with MACsec enabled in NVM (reflected in CTRL_EXT).
1760	 */
1761	if ((adapter->hw.phy.type == e1000_phy_ife) ||
1762	    ((adapter->hw.mac.type >= e1000_pch2lan) &&
1763	     (!(er32(CTRL_EXT) & E1000_CTRL_EXT_LSECCK)))) {
1764		adapter->flags &= ~FLAG_HAS_JUMBO_FRAMES;
1765		adapter->max_hw_frame_size = VLAN_ETH_FRAME_LEN + ETH_FCS_LEN;
1766
1767		hw->mac.ops.blink_led = NULL;
1768	}
1769
1770	if ((adapter->hw.mac.type == e1000_ich8lan) &&
1771	    (adapter->hw.phy.type != e1000_phy_ife))
1772		adapter->flags |= FLAG_LSC_GIG_SPEED_DROP;
1773
1774	/* Enable workaround for 82579 w/ ME enabled */
1775	if ((adapter->hw.mac.type == e1000_pch2lan) &&
1776	    (er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
1777		adapter->flags2 |= FLAG2_PCIM2PCI_ARBITER_WA;
1778
1779	return 0;
1780}
1781
1782static DEFINE_MUTEX(nvm_mutex);
1783
1784/**
1785 *  e1000_acquire_nvm_ich8lan - Acquire NVM mutex
1786 *  @hw: pointer to the HW structure
1787 *
1788 *  Acquires the mutex for performing NVM operations.
1789 **/
1790static s32 e1000_acquire_nvm_ich8lan(struct e1000_hw __always_unused *hw)
1791{
1792	mutex_lock(&nvm_mutex);
1793
1794	return 0;
1795}
1796
1797/**
1798 *  e1000_release_nvm_ich8lan - Release NVM mutex
1799 *  @hw: pointer to the HW structure
1800 *
1801 *  Releases the mutex used while performing NVM operations.
1802 **/
1803static void e1000_release_nvm_ich8lan(struct e1000_hw __always_unused *hw)
1804{
1805	mutex_unlock(&nvm_mutex);
1806}
1807
1808/**
1809 *  e1000_acquire_swflag_ich8lan - Acquire software control flag
1810 *  @hw: pointer to the HW structure
1811 *
1812 *  Acquires the software control flag for performing PHY and select
1813 *  MAC CSR accesses.
1814 **/
1815static s32 e1000_acquire_swflag_ich8lan(struct e1000_hw *hw)
1816{
1817	u32 extcnf_ctrl, timeout = PHY_CFG_TIMEOUT;
1818	s32 ret_val = 0;
1819
1820	if (test_and_set_bit(__E1000_ACCESS_SHARED_RESOURCE,
1821			     &hw->adapter->state)) {
1822		e_dbg("contention for Phy access\n");
1823		return -E1000_ERR_PHY;
1824	}
1825
1826	while (timeout) {
1827		extcnf_ctrl = er32(EXTCNF_CTRL);
1828		if (!(extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG))
1829			break;
1830
1831		mdelay(1);
1832		timeout--;
1833	}
1834
1835	if (!timeout) {
1836		e_dbg("SW has already locked the resource.\n");
1837		ret_val = -E1000_ERR_CONFIG;
1838		goto out;
1839	}
1840
1841	timeout = SW_FLAG_TIMEOUT;
1842
1843	extcnf_ctrl |= E1000_EXTCNF_CTRL_SWFLAG;
1844	ew32(EXTCNF_CTRL, extcnf_ctrl);
1845
1846	while (timeout) {
1847		extcnf_ctrl = er32(EXTCNF_CTRL);
1848		if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG)
1849			break;
1850
1851		mdelay(1);
1852		timeout--;
1853	}
1854
1855	if (!timeout) {
1856		e_dbg("Failed to acquire the semaphore, FW or HW has it: FWSM=0x%8.8x EXTCNF_CTRL=0x%8.8x)\n",
1857		      er32(FWSM), extcnf_ctrl);
1858		extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
1859		ew32(EXTCNF_CTRL, extcnf_ctrl);
1860		ret_val = -E1000_ERR_CONFIG;
1861		goto out;
1862	}
1863
1864out:
1865	if (ret_val)
1866		clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
1867
1868	return ret_val;
1869}
1870
1871/**
1872 *  e1000_release_swflag_ich8lan - Release software control flag
1873 *  @hw: pointer to the HW structure
1874 *
1875 *  Releases the software control flag for performing PHY and select
1876 *  MAC CSR accesses.
1877 **/
1878static void e1000_release_swflag_ich8lan(struct e1000_hw *hw)
1879{
1880	u32 extcnf_ctrl;
1881
1882	extcnf_ctrl = er32(EXTCNF_CTRL);
1883
1884	if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG) {
1885		extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
1886		ew32(EXTCNF_CTRL, extcnf_ctrl);
1887	} else {
1888		e_dbg("Semaphore unexpectedly released by sw/fw/hw\n");
1889	}
1890
1891	clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
1892}
1893
1894/**
1895 *  e1000_check_mng_mode_ich8lan - Checks management mode
1896 *  @hw: pointer to the HW structure
1897 *
1898 *  This checks if the adapter has any manageability enabled.
1899 *  This is a function pointer entry point only called by read/write
1900 *  routines for the PHY and NVM parts.
1901 **/
1902static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw)
1903{
1904	u32 fwsm;
1905
1906	fwsm = er32(FWSM);
1907	return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
1908		((fwsm & E1000_FWSM_MODE_MASK) ==
1909		 (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
1910}
1911
1912/**
1913 *  e1000_check_mng_mode_pchlan - Checks management mode
1914 *  @hw: pointer to the HW structure
1915 *
1916 *  This checks if the adapter has iAMT enabled.
1917 *  This is a function pointer entry point only called by read/write
1918 *  routines for the PHY and NVM parts.
1919 **/
1920static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw)
1921{
1922	u32 fwsm;
1923
1924	fwsm = er32(FWSM);
1925	return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
1926	    (fwsm & (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
1927}
1928
1929/**
1930 *  e1000_rar_set_pch2lan - Set receive address register
1931 *  @hw: pointer to the HW structure
1932 *  @addr: pointer to the receive address
1933 *  @index: receive address array register
1934 *
1935 *  Sets the receive address array register at index to the address passed
1936 *  in by addr.  For 82579, RAR[0] is the base address register that is to
1937 *  contain the MAC address but RAR[1-6] are reserved for manageability (ME).
1938 *  Use SHRA[0-3] in place of those reserved for ME.
1939 **/
1940static int e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index)
1941{
1942	u32 rar_low, rar_high;
1943
1944	/* HW expects these in little endian so we reverse the byte order
1945	 * from network order (big endian) to little endian
1946	 */
1947	rar_low = ((u32)addr[0] |
1948		   ((u32)addr[1] << 8) |
1949		   ((u32)addr[2] << 16) | ((u32)addr[3] << 24));
1950
1951	rar_high = ((u32)addr[4] | ((u32)addr[5] << 8));
1952
1953	/* If MAC address zero, no need to set the AV bit */
1954	if (rar_low || rar_high)
1955		rar_high |= E1000_RAH_AV;
1956
1957	if (index == 0) {
1958		ew32(RAL(index), rar_low);
1959		e1e_flush();
1960		ew32(RAH(index), rar_high);
1961		e1e_flush();
1962		return 0;
1963	}
1964
1965	/* RAR[1-6] are owned by manageability.  Skip those and program the
1966	 * next address into the SHRA register array.
1967	 */
1968	if (index < (u32)(hw->mac.rar_entry_count)) {
1969		s32 ret_val;
1970
1971		ret_val = e1000_acquire_swflag_ich8lan(hw);
1972		if (ret_val)
1973			goto out;
1974
1975		ew32(SHRAL(index - 1), rar_low);
1976		e1e_flush();
1977		ew32(SHRAH(index - 1), rar_high);
1978		e1e_flush();
1979
1980		e1000_release_swflag_ich8lan(hw);
1981
1982		/* verify the register updates */
1983		if ((er32(SHRAL(index - 1)) == rar_low) &&
1984		    (er32(SHRAH(index - 1)) == rar_high))
1985			return 0;
1986
1987		e_dbg("SHRA[%d] might be locked by ME - FWSM=0x%8.8x\n",
1988		      (index - 1), er32(FWSM));
1989	}
1990
1991out:
1992	e_dbg("Failed to write receive address at index %d\n", index);
1993	return -E1000_ERR_CONFIG;
1994}
1995
1996/**
1997 *  e1000_rar_get_count_pch_lpt - Get the number of available SHRA
1998 *  @hw: pointer to the HW structure
1999 *
2000 *  Get the number of available receive registers that the Host can
2001 *  program. SHRA[0-10] are the shared receive address registers
2002 *  that are shared between the Host and manageability engine (ME).
2003 *  ME can reserve any number of addresses and the host needs to be
2004 *  able to tell how many available registers it has access to.
2005 **/
2006static u32 e1000_rar_get_count_pch_lpt(struct e1000_hw *hw)
2007{
2008	u32 wlock_mac;
2009	u32 num_entries;
2010
2011	wlock_mac = er32(FWSM) & E1000_FWSM_WLOCK_MAC_MASK;
2012	wlock_mac >>= E1000_FWSM_WLOCK_MAC_SHIFT;
2013
2014	switch (wlock_mac) {
2015	case 0:
2016		/* All SHRA[0..10] and RAR[0] available */
2017		num_entries = hw->mac.rar_entry_count;
2018		break;
2019	case 1:
2020		/* Only RAR[0] available */
2021		num_entries = 1;
2022		break;
2023	default:
2024		/* SHRA[0..(wlock_mac - 1)] available + RAR[0] */
2025		num_entries = wlock_mac + 1;
2026		break;
2027	}
2028
2029	return num_entries;
2030}
2031
2032/**
2033 *  e1000_rar_set_pch_lpt - Set receive address registers
2034 *  @hw: pointer to the HW structure
2035 *  @addr: pointer to the receive address
2036 *  @index: receive address array register
2037 *
2038 *  Sets the receive address register array at index to the address passed
2039 *  in by addr. For LPT, RAR[0] is the base address register that is to
2040 *  contain the MAC address. SHRA[0-10] are the shared receive address
2041 *  registers that are shared between the Host and manageability engine (ME).
2042 **/
2043static int e1000_rar_set_pch_lpt(struct e1000_hw *hw, u8 *addr, u32 index)
2044{
2045	u32 rar_low, rar_high;
2046	u32 wlock_mac;
2047
2048	/* HW expects these in little endian so we reverse the byte order
2049	 * from network order (big endian) to little endian
2050	 */
2051	rar_low = ((u32)addr[0] | ((u32)addr[1] << 8) |
2052		   ((u32)addr[2] << 16) | ((u32)addr[3] << 24));
2053
2054	rar_high = ((u32)addr[4] | ((u32)addr[5] << 8));
2055
2056	/* If MAC address zero, no need to set the AV bit */
2057	if (rar_low || rar_high)
2058		rar_high |= E1000_RAH_AV;
2059
2060	if (index == 0) {
2061		ew32(RAL(index), rar_low);
2062		e1e_flush();
2063		ew32(RAH(index), rar_high);
2064		e1e_flush();
2065		return 0;
2066	}
2067
2068	/* The manageability engine (ME) can lock certain SHRAR registers that
2069	 * it is using - those registers are unavailable for use.
2070	 */
2071	if (index < hw->mac.rar_entry_count) {
2072		wlock_mac = er32(FWSM) & E1000_FWSM_WLOCK_MAC_MASK;
2073		wlock_mac >>= E1000_FWSM_WLOCK_MAC_SHIFT;
2074
2075		/* Check if all SHRAR registers are locked */
2076		if (wlock_mac == 1)
2077			goto out;
2078
2079		if ((wlock_mac == 0) || (index <= wlock_mac)) {
2080			s32 ret_val;
2081
2082			ret_val = e1000_acquire_swflag_ich8lan(hw);
2083
2084			if (ret_val)
2085				goto out;
2086
2087			ew32(SHRAL_PCH_LPT(index - 1), rar_low);
2088			e1e_flush();
2089			ew32(SHRAH_PCH_LPT(index - 1), rar_high);
2090			e1e_flush();
2091
2092			e1000_release_swflag_ich8lan(hw);
2093
2094			/* verify the register updates */
2095			if ((er32(SHRAL_PCH_LPT(index - 1)) == rar_low) &&
2096			    (er32(SHRAH_PCH_LPT(index - 1)) == rar_high))
2097				return 0;
2098		}
2099	}
2100
2101out:
2102	e_dbg("Failed to write receive address at index %d\n", index);
2103	return -E1000_ERR_CONFIG;
2104}
2105
2106/**
2107 *  e1000_check_reset_block_ich8lan - Check if PHY reset is blocked
2108 *  @hw: pointer to the HW structure
2109 *
2110 *  Checks if firmware is blocking the reset of the PHY.
2111 *  This is a function pointer entry point only called by
2112 *  reset routines.
2113 **/
2114static s32 e1000_check_reset_block_ich8lan(struct e1000_hw *hw)
2115{
2116	bool blocked = false;
2117	int i = 0;
2118
2119	while ((blocked = !(er32(FWSM) & E1000_ICH_FWSM_RSPCIPHY)) &&
2120	       (i++ < 30))
2121		usleep_range(10000, 11000);
2122	return blocked ? E1000_BLK_PHY_RESET : 0;
2123}
2124
2125/**
2126 *  e1000_write_smbus_addr - Write SMBus address to PHY needed during Sx states
2127 *  @hw: pointer to the HW structure
2128 *
2129 *  Assumes semaphore already acquired.
2130 *
2131 **/
2132static s32 e1000_write_smbus_addr(struct e1000_hw *hw)
2133{
2134	u16 phy_data;
2135	u32 strap = er32(STRAP);
2136	u32 freq = FIELD_GET(E1000_STRAP_SMT_FREQ_MASK, strap);
 
2137	s32 ret_val;
2138
2139	strap &= E1000_STRAP_SMBUS_ADDRESS_MASK;
2140
2141	ret_val = e1000_read_phy_reg_hv_locked(hw, HV_SMB_ADDR, &phy_data);
2142	if (ret_val)
2143		return ret_val;
2144
2145	phy_data &= ~HV_SMB_ADDR_MASK;
2146	phy_data |= (strap >> E1000_STRAP_SMBUS_ADDRESS_SHIFT);
2147	phy_data |= HV_SMB_ADDR_PEC_EN | HV_SMB_ADDR_VALID;
2148
2149	if (hw->phy.type == e1000_phy_i217) {
2150		/* Restore SMBus frequency */
2151		if (freq--) {
2152			phy_data &= ~HV_SMB_ADDR_FREQ_MASK;
2153			phy_data |= (freq & BIT(0)) <<
2154			    HV_SMB_ADDR_FREQ_LOW_SHIFT;
2155			phy_data |= (freq & BIT(1)) <<
2156			    (HV_SMB_ADDR_FREQ_HIGH_SHIFT - 1);
2157		} else {
2158			e_dbg("Unsupported SMB frequency in PHY\n");
2159		}
2160	}
2161
2162	return e1000_write_phy_reg_hv_locked(hw, HV_SMB_ADDR, phy_data);
2163}
2164
2165/**
2166 *  e1000_sw_lcd_config_ich8lan - SW-based LCD Configuration
2167 *  @hw:   pointer to the HW structure
2168 *
2169 *  SW should configure the LCD from the NVM extended configuration region
2170 *  as a workaround for certain parts.
2171 **/
2172static s32 e1000_sw_lcd_config_ich8lan(struct e1000_hw *hw)
2173{
2174	struct e1000_phy_info *phy = &hw->phy;
2175	u32 i, data, cnf_size, cnf_base_addr, sw_cfg_mask;
2176	s32 ret_val = 0;
2177	u16 word_addr, reg_data, reg_addr, phy_page = 0;
2178
2179	/* Initialize the PHY from the NVM on ICH platforms.  This
2180	 * is needed due to an issue where the NVM configuration is
2181	 * not properly autoloaded after power transitions.
2182	 * Therefore, after each PHY reset, we will load the
2183	 * configuration data out of the NVM manually.
2184	 */
2185	switch (hw->mac.type) {
2186	case e1000_ich8lan:
2187		if (phy->type != e1000_phy_igp_3)
2188			return ret_val;
2189
2190		if ((hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_AMT) ||
2191		    (hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_C)) {
2192			sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG;
2193			break;
2194		}
2195		fallthrough;
2196	case e1000_pchlan:
2197	case e1000_pch2lan:
2198	case e1000_pch_lpt:
2199	case e1000_pch_spt:
2200	case e1000_pch_cnp:
2201	case e1000_pch_tgp:
2202	case e1000_pch_adp:
2203	case e1000_pch_mtp:
2204	case e1000_pch_lnp:
2205	case e1000_pch_ptp:
2206	case e1000_pch_nvp:
2207		sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG_ICH8M;
2208		break;
2209	default:
2210		return ret_val;
2211	}
2212
2213	ret_val = hw->phy.ops.acquire(hw);
2214	if (ret_val)
2215		return ret_val;
2216
2217	data = er32(FEXTNVM);
2218	if (!(data & sw_cfg_mask))
2219		goto release;
2220
2221	/* Make sure HW does not configure LCD from PHY
2222	 * extended configuration before SW configuration
2223	 */
2224	data = er32(EXTCNF_CTRL);
2225	if ((hw->mac.type < e1000_pch2lan) &&
2226	    (data & E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE))
2227		goto release;
2228
2229	cnf_size = er32(EXTCNF_SIZE);
2230	cnf_size &= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_MASK;
2231	cnf_size >>= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_SHIFT;
2232	if (!cnf_size)
2233		goto release;
2234
2235	cnf_base_addr = data & E1000_EXTCNF_CTRL_EXT_CNF_POINTER_MASK;
2236	cnf_base_addr >>= E1000_EXTCNF_CTRL_EXT_CNF_POINTER_SHIFT;
2237
2238	if (((hw->mac.type == e1000_pchlan) &&
2239	     !(data & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)) ||
2240	    (hw->mac.type > e1000_pchlan)) {
2241		/* HW configures the SMBus address and LEDs when the
2242		 * OEM and LCD Write Enable bits are set in the NVM.
2243		 * When both NVM bits are cleared, SW will configure
2244		 * them instead.
2245		 */
2246		ret_val = e1000_write_smbus_addr(hw);
2247		if (ret_val)
2248			goto release;
2249
2250		data = er32(LEDCTL);
2251		ret_val = e1000_write_phy_reg_hv_locked(hw, HV_LED_CONFIG,
2252							(u16)data);
2253		if (ret_val)
2254			goto release;
2255	}
2256
2257	/* Configure LCD from extended configuration region. */
2258
2259	/* cnf_base_addr is in DWORD */
2260	word_addr = (u16)(cnf_base_addr << 1);
2261
2262	for (i = 0; i < cnf_size; i++) {
2263		ret_val = e1000_read_nvm(hw, (word_addr + i * 2), 1, &reg_data);
2264		if (ret_val)
2265			goto release;
2266
2267		ret_val = e1000_read_nvm(hw, (word_addr + i * 2 + 1),
2268					 1, &reg_addr);
2269		if (ret_val)
2270			goto release;
2271
2272		/* Save off the PHY page for future writes. */
2273		if (reg_addr == IGP01E1000_PHY_PAGE_SELECT) {
2274			phy_page = reg_data;
2275			continue;
2276		}
2277
2278		reg_addr &= PHY_REG_MASK;
2279		reg_addr |= phy_page;
2280
2281		ret_val = e1e_wphy_locked(hw, (u32)reg_addr, reg_data);
2282		if (ret_val)
2283			goto release;
2284	}
2285
2286release:
2287	hw->phy.ops.release(hw);
2288	return ret_val;
2289}
2290
2291/**
2292 *  e1000_k1_gig_workaround_hv - K1 Si workaround
2293 *  @hw:   pointer to the HW structure
2294 *  @link: link up bool flag
2295 *
2296 *  If K1 is enabled for 1Gbps, the MAC might stall when transitioning
2297 *  from a lower speed.  This workaround disables K1 whenever link is at 1Gig
2298 *  If link is down, the function will restore the default K1 setting located
2299 *  in the NVM.
2300 **/
2301static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link)
2302{
2303	s32 ret_val = 0;
2304	u16 status_reg = 0;
2305	bool k1_enable = hw->dev_spec.ich8lan.nvm_k1_enabled;
2306
2307	if (hw->mac.type != e1000_pchlan)
2308		return 0;
2309
2310	/* Wrap the whole flow with the sw flag */
2311	ret_val = hw->phy.ops.acquire(hw);
2312	if (ret_val)
2313		return ret_val;
2314
2315	/* Disable K1 when link is 1Gbps, otherwise use the NVM setting */
2316	if (link) {
2317		if (hw->phy.type == e1000_phy_82578) {
2318			ret_val = e1e_rphy_locked(hw, BM_CS_STATUS,
2319						  &status_reg);
2320			if (ret_val)
2321				goto release;
2322
2323			status_reg &= (BM_CS_STATUS_LINK_UP |
2324				       BM_CS_STATUS_RESOLVED |
2325				       BM_CS_STATUS_SPEED_MASK);
2326
2327			if (status_reg == (BM_CS_STATUS_LINK_UP |
2328					   BM_CS_STATUS_RESOLVED |
2329					   BM_CS_STATUS_SPEED_1000))
2330				k1_enable = false;
2331		}
2332
2333		if (hw->phy.type == e1000_phy_82577) {
2334			ret_val = e1e_rphy_locked(hw, HV_M_STATUS, &status_reg);
2335			if (ret_val)
2336				goto release;
2337
2338			status_reg &= (HV_M_STATUS_LINK_UP |
2339				       HV_M_STATUS_AUTONEG_COMPLETE |
2340				       HV_M_STATUS_SPEED_MASK);
2341
2342			if (status_reg == (HV_M_STATUS_LINK_UP |
2343					   HV_M_STATUS_AUTONEG_COMPLETE |
2344					   HV_M_STATUS_SPEED_1000))
2345				k1_enable = false;
2346		}
2347
2348		/* Link stall fix for link up */
2349		ret_val = e1e_wphy_locked(hw, PHY_REG(770, 19), 0x0100);
2350		if (ret_val)
2351			goto release;
2352
2353	} else {
2354		/* Link stall fix for link down */
2355		ret_val = e1e_wphy_locked(hw, PHY_REG(770, 19), 0x4100);
2356		if (ret_val)
2357			goto release;
2358	}
2359
2360	ret_val = e1000_configure_k1_ich8lan(hw, k1_enable);
2361
2362release:
2363	hw->phy.ops.release(hw);
2364
2365	return ret_val;
2366}
2367
2368/**
2369 *  e1000_configure_k1_ich8lan - Configure K1 power state
2370 *  @hw: pointer to the HW structure
2371 *  @k1_enable: K1 state to configure
2372 *
2373 *  Configure the K1 power state based on the provided parameter.
2374 *  Assumes semaphore already acquired.
2375 *
2376 *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
2377 **/
2378s32 e1000_configure_k1_ich8lan(struct e1000_hw *hw, bool k1_enable)
2379{
2380	s32 ret_val;
2381	u32 ctrl_reg = 0;
2382	u32 ctrl_ext = 0;
2383	u32 reg = 0;
2384	u16 kmrn_reg = 0;
2385
2386	ret_val = e1000e_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
2387					      &kmrn_reg);
2388	if (ret_val)
2389		return ret_val;
2390
2391	if (k1_enable)
2392		kmrn_reg |= E1000_KMRNCTRLSTA_K1_ENABLE;
2393	else
2394		kmrn_reg &= ~E1000_KMRNCTRLSTA_K1_ENABLE;
2395
2396	ret_val = e1000e_write_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
2397					       kmrn_reg);
2398	if (ret_val)
2399		return ret_val;
2400
2401	usleep_range(20, 40);
2402	ctrl_ext = er32(CTRL_EXT);
2403	ctrl_reg = er32(CTRL);
2404
2405	reg = ctrl_reg & ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
2406	reg |= E1000_CTRL_FRCSPD;
2407	ew32(CTRL, reg);
2408
2409	ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_SPD_BYPS);
2410	e1e_flush();
2411	usleep_range(20, 40);
2412	ew32(CTRL, ctrl_reg);
2413	ew32(CTRL_EXT, ctrl_ext);
2414	e1e_flush();
2415	usleep_range(20, 40);
2416
2417	return 0;
2418}
2419
2420/**
2421 *  e1000_oem_bits_config_ich8lan - SW-based LCD Configuration
2422 *  @hw:       pointer to the HW structure
2423 *  @d0_state: boolean if entering d0 or d3 device state
2424 *
2425 *  SW will configure Gbe Disable and LPLU based on the NVM. The four bits are
2426 *  collectively called OEM bits.  The OEM Write Enable bit and SW Config bit
2427 *  in NVM determines whether HW should configure LPLU and Gbe Disable.
2428 **/
2429static s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state)
2430{
2431	s32 ret_val = 0;
2432	u32 mac_reg;
2433	u16 oem_reg;
2434
2435	if (hw->mac.type < e1000_pchlan)
2436		return ret_val;
2437
2438	ret_val = hw->phy.ops.acquire(hw);
2439	if (ret_val)
2440		return ret_val;
2441
2442	if (hw->mac.type == e1000_pchlan) {
2443		mac_reg = er32(EXTCNF_CTRL);
2444		if (mac_reg & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)
2445			goto release;
2446	}
2447
2448	mac_reg = er32(FEXTNVM);
2449	if (!(mac_reg & E1000_FEXTNVM_SW_CONFIG_ICH8M))
2450		goto release;
2451
2452	mac_reg = er32(PHY_CTRL);
2453
2454	ret_val = e1e_rphy_locked(hw, HV_OEM_BITS, &oem_reg);
2455	if (ret_val)
2456		goto release;
2457
2458	oem_reg &= ~(HV_OEM_BITS_GBE_DIS | HV_OEM_BITS_LPLU);
2459
2460	if (d0_state) {
2461		if (mac_reg & E1000_PHY_CTRL_GBE_DISABLE)
2462			oem_reg |= HV_OEM_BITS_GBE_DIS;
2463
2464		if (mac_reg & E1000_PHY_CTRL_D0A_LPLU)
2465			oem_reg |= HV_OEM_BITS_LPLU;
2466	} else {
2467		if (mac_reg & (E1000_PHY_CTRL_GBE_DISABLE |
2468			       E1000_PHY_CTRL_NOND0A_GBE_DISABLE))
2469			oem_reg |= HV_OEM_BITS_GBE_DIS;
2470
2471		if (mac_reg & (E1000_PHY_CTRL_D0A_LPLU |
2472			       E1000_PHY_CTRL_NOND0A_LPLU))
2473			oem_reg |= HV_OEM_BITS_LPLU;
2474	}
2475
2476	/* Set Restart auto-neg to activate the bits */
2477	if ((d0_state || (hw->mac.type != e1000_pchlan)) &&
2478	    !hw->phy.ops.check_reset_block(hw))
2479		oem_reg |= HV_OEM_BITS_RESTART_AN;
2480
2481	ret_val = e1e_wphy_locked(hw, HV_OEM_BITS, oem_reg);
2482
2483release:
2484	hw->phy.ops.release(hw);
2485
2486	return ret_val;
2487}
2488
2489/**
2490 *  e1000_set_mdio_slow_mode_hv - Set slow MDIO access mode
2491 *  @hw:   pointer to the HW structure
2492 **/
2493static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw)
2494{
2495	s32 ret_val;
2496	u16 data;
2497
2498	ret_val = e1e_rphy(hw, HV_KMRN_MODE_CTRL, &data);
2499	if (ret_val)
2500		return ret_val;
2501
2502	data |= HV_KMRN_MDIO_SLOW;
2503
2504	ret_val = e1e_wphy(hw, HV_KMRN_MODE_CTRL, data);
2505
2506	return ret_val;
2507}
2508
2509/**
2510 *  e1000_hv_phy_workarounds_ich8lan - apply PHY workarounds
2511 *  @hw: pointer to the HW structure
2512 *
2513 *  A series of PHY workarounds to be done after every PHY reset.
2514 **/
2515static s32 e1000_hv_phy_workarounds_ich8lan(struct e1000_hw *hw)
2516{
2517	s32 ret_val = 0;
2518	u16 phy_data;
2519
2520	if (hw->mac.type != e1000_pchlan)
2521		return 0;
2522
2523	/* Set MDIO slow mode before any other MDIO access */
2524	if (hw->phy.type == e1000_phy_82577) {
2525		ret_val = e1000_set_mdio_slow_mode_hv(hw);
2526		if (ret_val)
2527			return ret_val;
2528	}
2529
2530	if (((hw->phy.type == e1000_phy_82577) &&
2531	     ((hw->phy.revision == 1) || (hw->phy.revision == 2))) ||
2532	    ((hw->phy.type == e1000_phy_82578) && (hw->phy.revision == 1))) {
2533		/* Disable generation of early preamble */
2534		ret_val = e1e_wphy(hw, PHY_REG(769, 25), 0x4431);
2535		if (ret_val)
2536			return ret_val;
2537
2538		/* Preamble tuning for SSC */
2539		ret_val = e1e_wphy(hw, HV_KMRN_FIFO_CTRLSTA, 0xA204);
2540		if (ret_val)
2541			return ret_val;
2542	}
2543
2544	if (hw->phy.type == e1000_phy_82578) {
2545		/* Return registers to default by doing a soft reset then
2546		 * writing 0x3140 to the control register.
2547		 */
2548		if (hw->phy.revision < 2) {
2549			e1000e_phy_sw_reset(hw);
2550			ret_val = e1e_wphy(hw, MII_BMCR, 0x3140);
2551			if (ret_val)
2552				return ret_val;
2553		}
2554	}
2555
2556	/* Select page 0 */
2557	ret_val = hw->phy.ops.acquire(hw);
2558	if (ret_val)
2559		return ret_val;
2560
2561	hw->phy.addr = 1;
2562	ret_val = e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, 0);
2563	hw->phy.ops.release(hw);
2564	if (ret_val)
2565		return ret_val;
2566
2567	/* Configure the K1 Si workaround during phy reset assuming there is
2568	 * link so that it disables K1 if link is in 1Gbps.
2569	 */
2570	ret_val = e1000_k1_gig_workaround_hv(hw, true);
2571	if (ret_val)
2572		return ret_val;
2573
2574	/* Workaround for link disconnects on a busy hub in half duplex */
2575	ret_val = hw->phy.ops.acquire(hw);
2576	if (ret_val)
2577		return ret_val;
2578	ret_val = e1e_rphy_locked(hw, BM_PORT_GEN_CFG, &phy_data);
2579	if (ret_val)
2580		goto release;
2581	ret_val = e1e_wphy_locked(hw, BM_PORT_GEN_CFG, phy_data & 0x00FF);
2582	if (ret_val)
2583		goto release;
2584
2585	/* set MSE higher to enable link to stay up when noise is high */
2586	ret_val = e1000_write_emi_reg_locked(hw, I82577_MSE_THRESHOLD, 0x0034);
2587release:
2588	hw->phy.ops.release(hw);
2589
2590	return ret_val;
2591}
2592
2593/**
2594 *  e1000_copy_rx_addrs_to_phy_ich8lan - Copy Rx addresses from MAC to PHY
2595 *  @hw:   pointer to the HW structure
2596 **/
2597void e1000_copy_rx_addrs_to_phy_ich8lan(struct e1000_hw *hw)
2598{
2599	u32 mac_reg;
2600	u16 i, phy_reg = 0;
2601	s32 ret_val;
2602
2603	ret_val = hw->phy.ops.acquire(hw);
2604	if (ret_val)
2605		return;
2606	ret_val = e1000_enable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2607	if (ret_val)
2608		goto release;
2609
2610	/* Copy both RAL/H (rar_entry_count) and SHRAL/H to PHY */
2611	for (i = 0; i < (hw->mac.rar_entry_count); i++) {
2612		mac_reg = er32(RAL(i));
2613		hw->phy.ops.write_reg_page(hw, BM_RAR_L(i),
2614					   (u16)(mac_reg & 0xFFFF));
2615		hw->phy.ops.write_reg_page(hw, BM_RAR_M(i),
2616					   (u16)((mac_reg >> 16) & 0xFFFF));
2617
2618		mac_reg = er32(RAH(i));
2619		hw->phy.ops.write_reg_page(hw, BM_RAR_H(i),
2620					   (u16)(mac_reg & 0xFFFF));
2621		hw->phy.ops.write_reg_page(hw, BM_RAR_CTRL(i),
2622					   (u16)((mac_reg & E1000_RAH_AV) >> 16));
 
2623	}
2624
2625	e1000_disable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2626
2627release:
2628	hw->phy.ops.release(hw);
2629}
2630
2631/**
2632 *  e1000_lv_jumbo_workaround_ich8lan - required for jumbo frame operation
2633 *  with 82579 PHY
2634 *  @hw: pointer to the HW structure
2635 *  @enable: flag to enable/disable workaround when enabling/disabling jumbos
2636 **/
2637s32 e1000_lv_jumbo_workaround_ich8lan(struct e1000_hw *hw, bool enable)
2638{
2639	s32 ret_val = 0;
2640	u16 phy_reg, data;
2641	u32 mac_reg;
2642	u16 i;
2643
2644	if (hw->mac.type < e1000_pch2lan)
2645		return 0;
2646
2647	/* disable Rx path while enabling/disabling workaround */
2648	e1e_rphy(hw, PHY_REG(769, 20), &phy_reg);
2649	ret_val = e1e_wphy(hw, PHY_REG(769, 20), phy_reg | BIT(14));
2650	if (ret_val)
2651		return ret_val;
2652
2653	if (enable) {
2654		/* Write Rx addresses (rar_entry_count for RAL/H, and
2655		 * SHRAL/H) and initial CRC values to the MAC
2656		 */
2657		for (i = 0; i < hw->mac.rar_entry_count; i++) {
2658			u8 mac_addr[ETH_ALEN] = { 0 };
2659			u32 addr_high, addr_low;
2660
2661			addr_high = er32(RAH(i));
2662			if (!(addr_high & E1000_RAH_AV))
2663				continue;
2664			addr_low = er32(RAL(i));
2665			mac_addr[0] = (addr_low & 0xFF);
2666			mac_addr[1] = ((addr_low >> 8) & 0xFF);
2667			mac_addr[2] = ((addr_low >> 16) & 0xFF);
2668			mac_addr[3] = ((addr_low >> 24) & 0xFF);
2669			mac_addr[4] = (addr_high & 0xFF);
2670			mac_addr[5] = ((addr_high >> 8) & 0xFF);
2671
2672			ew32(PCH_RAICC(i), ~ether_crc_le(ETH_ALEN, mac_addr));
2673		}
2674
2675		/* Write Rx addresses to the PHY */
2676		e1000_copy_rx_addrs_to_phy_ich8lan(hw);
2677
2678		/* Enable jumbo frame workaround in the MAC */
2679		mac_reg = er32(FFLT_DBG);
2680		mac_reg &= ~BIT(14);
2681		mac_reg |= (7 << 15);
2682		ew32(FFLT_DBG, mac_reg);
2683
2684		mac_reg = er32(RCTL);
2685		mac_reg |= E1000_RCTL_SECRC;
2686		ew32(RCTL, mac_reg);
2687
2688		ret_val = e1000e_read_kmrn_reg(hw,
2689					       E1000_KMRNCTRLSTA_CTRL_OFFSET,
2690					       &data);
2691		if (ret_val)
2692			return ret_val;
2693		ret_val = e1000e_write_kmrn_reg(hw,
2694						E1000_KMRNCTRLSTA_CTRL_OFFSET,
2695						data | BIT(0));
2696		if (ret_val)
2697			return ret_val;
2698		ret_val = e1000e_read_kmrn_reg(hw,
2699					       E1000_KMRNCTRLSTA_HD_CTRL,
2700					       &data);
2701		if (ret_val)
2702			return ret_val;
2703		data &= ~(0xF << 8);
2704		data |= (0xB << 8);
2705		ret_val = e1000e_write_kmrn_reg(hw,
2706						E1000_KMRNCTRLSTA_HD_CTRL,
2707						data);
2708		if (ret_val)
2709			return ret_val;
2710
2711		/* Enable jumbo frame workaround in the PHY */
2712		e1e_rphy(hw, PHY_REG(769, 23), &data);
2713		data &= ~(0x7F << 5);
2714		data |= (0x37 << 5);
2715		ret_val = e1e_wphy(hw, PHY_REG(769, 23), data);
2716		if (ret_val)
2717			return ret_val;
2718		e1e_rphy(hw, PHY_REG(769, 16), &data);
2719		data &= ~BIT(13);
2720		ret_val = e1e_wphy(hw, PHY_REG(769, 16), data);
2721		if (ret_val)
2722			return ret_val;
2723		e1e_rphy(hw, PHY_REG(776, 20), &data);
2724		data &= ~(0x3FF << 2);
2725		data |= (E1000_TX_PTR_GAP << 2);
2726		ret_val = e1e_wphy(hw, PHY_REG(776, 20), data);
2727		if (ret_val)
2728			return ret_val;
2729		ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0xF100);
2730		if (ret_val)
2731			return ret_val;
2732		e1e_rphy(hw, HV_PM_CTRL, &data);
2733		ret_val = e1e_wphy(hw, HV_PM_CTRL, data | BIT(10));
2734		if (ret_val)
2735			return ret_val;
2736	} else {
2737		/* Write MAC register values back to h/w defaults */
2738		mac_reg = er32(FFLT_DBG);
2739		mac_reg &= ~(0xF << 14);
2740		ew32(FFLT_DBG, mac_reg);
2741
2742		mac_reg = er32(RCTL);
2743		mac_reg &= ~E1000_RCTL_SECRC;
2744		ew32(RCTL, mac_reg);
2745
2746		ret_val = e1000e_read_kmrn_reg(hw,
2747					       E1000_KMRNCTRLSTA_CTRL_OFFSET,
2748					       &data);
2749		if (ret_val)
2750			return ret_val;
2751		ret_val = e1000e_write_kmrn_reg(hw,
2752						E1000_KMRNCTRLSTA_CTRL_OFFSET,
2753						data & ~BIT(0));
2754		if (ret_val)
2755			return ret_val;
2756		ret_val = e1000e_read_kmrn_reg(hw,
2757					       E1000_KMRNCTRLSTA_HD_CTRL,
2758					       &data);
2759		if (ret_val)
2760			return ret_val;
2761		data &= ~(0xF << 8);
2762		data |= (0xB << 8);
2763		ret_val = e1000e_write_kmrn_reg(hw,
2764						E1000_KMRNCTRLSTA_HD_CTRL,
2765						data);
2766		if (ret_val)
2767			return ret_val;
2768
2769		/* Write PHY register values back to h/w defaults */
2770		e1e_rphy(hw, PHY_REG(769, 23), &data);
2771		data &= ~(0x7F << 5);
2772		ret_val = e1e_wphy(hw, PHY_REG(769, 23), data);
2773		if (ret_val)
2774			return ret_val;
2775		e1e_rphy(hw, PHY_REG(769, 16), &data);
2776		data |= BIT(13);
2777		ret_val = e1e_wphy(hw, PHY_REG(769, 16), data);
2778		if (ret_val)
2779			return ret_val;
2780		e1e_rphy(hw, PHY_REG(776, 20), &data);
2781		data &= ~(0x3FF << 2);
2782		data |= (0x8 << 2);
2783		ret_val = e1e_wphy(hw, PHY_REG(776, 20), data);
2784		if (ret_val)
2785			return ret_val;
2786		ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0x7E00);
2787		if (ret_val)
2788			return ret_val;
2789		e1e_rphy(hw, HV_PM_CTRL, &data);
2790		ret_val = e1e_wphy(hw, HV_PM_CTRL, data & ~BIT(10));
2791		if (ret_val)
2792			return ret_val;
2793	}
2794
2795	/* re-enable Rx path after enabling/disabling workaround */
2796	return e1e_wphy(hw, PHY_REG(769, 20), phy_reg & ~BIT(14));
2797}
2798
2799/**
2800 *  e1000_lv_phy_workarounds_ich8lan - apply ich8 specific workarounds
2801 *  @hw: pointer to the HW structure
2802 *
2803 *  A series of PHY workarounds to be done after every PHY reset.
2804 **/
2805static s32 e1000_lv_phy_workarounds_ich8lan(struct e1000_hw *hw)
2806{
2807	s32 ret_val = 0;
2808
2809	if (hw->mac.type != e1000_pch2lan)
2810		return 0;
2811
2812	/* Set MDIO slow mode before any other MDIO access */
2813	ret_val = e1000_set_mdio_slow_mode_hv(hw);
2814	if (ret_val)
2815		return ret_val;
2816
2817	ret_val = hw->phy.ops.acquire(hw);
2818	if (ret_val)
2819		return ret_val;
2820	/* set MSE higher to enable link to stay up when noise is high */
2821	ret_val = e1000_write_emi_reg_locked(hw, I82579_MSE_THRESHOLD, 0x0034);
2822	if (ret_val)
2823		goto release;
2824	/* drop link after 5 times MSE threshold was reached */
2825	ret_val = e1000_write_emi_reg_locked(hw, I82579_MSE_LINK_DOWN, 0x0005);
2826release:
2827	hw->phy.ops.release(hw);
2828
2829	return ret_val;
2830}
2831
2832/**
2833 *  e1000_k1_workaround_lv - K1 Si workaround
2834 *  @hw:   pointer to the HW structure
2835 *
2836 *  Workaround to set the K1 beacon duration for 82579 parts in 10Mbps
2837 *  Disable K1 in 1000Mbps and 100Mbps
2838 **/
2839static s32 e1000_k1_workaround_lv(struct e1000_hw *hw)
2840{
2841	s32 ret_val = 0;
2842	u16 status_reg = 0;
2843
2844	if (hw->mac.type != e1000_pch2lan)
2845		return 0;
2846
2847	/* Set K1 beacon duration based on 10Mbs speed */
2848	ret_val = e1e_rphy(hw, HV_M_STATUS, &status_reg);
2849	if (ret_val)
2850		return ret_val;
2851
2852	if ((status_reg & (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE))
2853	    == (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE)) {
2854		if (status_reg &
2855		    (HV_M_STATUS_SPEED_1000 | HV_M_STATUS_SPEED_100)) {
2856			u16 pm_phy_reg;
2857
2858			/* LV 1G/100 Packet drop issue wa  */
2859			ret_val = e1e_rphy(hw, HV_PM_CTRL, &pm_phy_reg);
2860			if (ret_val)
2861				return ret_val;
2862			pm_phy_reg &= ~HV_PM_CTRL_K1_ENABLE;
2863			ret_val = e1e_wphy(hw, HV_PM_CTRL, pm_phy_reg);
2864			if (ret_val)
2865				return ret_val;
2866		} else {
2867			u32 mac_reg;
2868
2869			mac_reg = er32(FEXTNVM4);
2870			mac_reg &= ~E1000_FEXTNVM4_BEACON_DURATION_MASK;
2871			mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_16USEC;
2872			ew32(FEXTNVM4, mac_reg);
2873		}
2874	}
2875
2876	return ret_val;
2877}
2878
2879/**
2880 *  e1000_gate_hw_phy_config_ich8lan - disable PHY config via hardware
2881 *  @hw:   pointer to the HW structure
2882 *  @gate: boolean set to true to gate, false to ungate
2883 *
2884 *  Gate/ungate the automatic PHY configuration via hardware; perform
2885 *  the configuration via software instead.
2886 **/
2887static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate)
2888{
2889	u32 extcnf_ctrl;
2890
2891	if (hw->mac.type < e1000_pch2lan)
2892		return;
2893
2894	extcnf_ctrl = er32(EXTCNF_CTRL);
2895
2896	if (gate)
2897		extcnf_ctrl |= E1000_EXTCNF_CTRL_GATE_PHY_CFG;
2898	else
2899		extcnf_ctrl &= ~E1000_EXTCNF_CTRL_GATE_PHY_CFG;
2900
2901	ew32(EXTCNF_CTRL, extcnf_ctrl);
2902}
2903
2904/**
2905 *  e1000_lan_init_done_ich8lan - Check for PHY config completion
2906 *  @hw: pointer to the HW structure
2907 *
2908 *  Check the appropriate indication the MAC has finished configuring the
2909 *  PHY after a software reset.
2910 **/
2911static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw)
2912{
2913	u32 data, loop = E1000_ICH8_LAN_INIT_TIMEOUT;
2914
2915	/* Wait for basic configuration completes before proceeding */
2916	do {
2917		data = er32(STATUS);
2918		data &= E1000_STATUS_LAN_INIT_DONE;
2919		usleep_range(100, 200);
2920	} while ((!data) && --loop);
2921
2922	/* If basic configuration is incomplete before the above loop
2923	 * count reaches 0, loading the configuration from NVM will
2924	 * leave the PHY in a bad state possibly resulting in no link.
2925	 */
2926	if (loop == 0)
2927		e_dbg("LAN_INIT_DONE not set, increase timeout\n");
2928
2929	/* Clear the Init Done bit for the next init event */
2930	data = er32(STATUS);
2931	data &= ~E1000_STATUS_LAN_INIT_DONE;
2932	ew32(STATUS, data);
2933}
2934
2935/**
2936 *  e1000_post_phy_reset_ich8lan - Perform steps required after a PHY reset
2937 *  @hw: pointer to the HW structure
2938 **/
2939static s32 e1000_post_phy_reset_ich8lan(struct e1000_hw *hw)
2940{
2941	s32 ret_val = 0;
2942	u16 reg;
2943
2944	if (hw->phy.ops.check_reset_block(hw))
2945		return 0;
2946
2947	/* Allow time for h/w to get to quiescent state after reset */
2948	usleep_range(10000, 11000);
2949
2950	/* Perform any necessary post-reset workarounds */
2951	switch (hw->mac.type) {
2952	case e1000_pchlan:
2953		ret_val = e1000_hv_phy_workarounds_ich8lan(hw);
2954		if (ret_val)
2955			return ret_val;
2956		break;
2957	case e1000_pch2lan:
2958		ret_val = e1000_lv_phy_workarounds_ich8lan(hw);
2959		if (ret_val)
2960			return ret_val;
2961		break;
2962	default:
2963		break;
2964	}
2965
2966	/* Clear the host wakeup bit after lcd reset */
2967	if (hw->mac.type >= e1000_pchlan) {
2968		e1e_rphy(hw, BM_PORT_GEN_CFG, &reg);
2969		reg &= ~BM_WUC_HOST_WU_BIT;
2970		e1e_wphy(hw, BM_PORT_GEN_CFG, reg);
2971	}
2972
2973	/* Configure the LCD with the extended configuration region in NVM */
2974	ret_val = e1000_sw_lcd_config_ich8lan(hw);
2975	if (ret_val)
2976		return ret_val;
2977
2978	/* Configure the LCD with the OEM bits in NVM */
2979	ret_val = e1000_oem_bits_config_ich8lan(hw, true);
2980
2981	if (hw->mac.type == e1000_pch2lan) {
2982		/* Ungate automatic PHY configuration on non-managed 82579 */
2983		if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
2984			usleep_range(10000, 11000);
2985			e1000_gate_hw_phy_config_ich8lan(hw, false);
2986		}
2987
2988		/* Set EEE LPI Update Timer to 200usec */
2989		ret_val = hw->phy.ops.acquire(hw);
2990		if (ret_val)
2991			return ret_val;
2992		ret_val = e1000_write_emi_reg_locked(hw,
2993						     I82579_LPI_UPDATE_TIMER,
2994						     0x1387);
2995		hw->phy.ops.release(hw);
2996	}
2997
2998	return ret_val;
2999}
3000
3001/**
3002 *  e1000_phy_hw_reset_ich8lan - Performs a PHY reset
3003 *  @hw: pointer to the HW structure
3004 *
3005 *  Resets the PHY
3006 *  This is a function pointer entry point called by drivers
3007 *  or other shared routines.
3008 **/
3009static s32 e1000_phy_hw_reset_ich8lan(struct e1000_hw *hw)
3010{
3011	s32 ret_val = 0;
3012
3013	/* Gate automatic PHY configuration by hardware on non-managed 82579 */
3014	if ((hw->mac.type == e1000_pch2lan) &&
3015	    !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
3016		e1000_gate_hw_phy_config_ich8lan(hw, true);
3017
3018	ret_val = e1000e_phy_hw_reset_generic(hw);
3019	if (ret_val)
3020		return ret_val;
3021
3022	return e1000_post_phy_reset_ich8lan(hw);
3023}
3024
3025/**
3026 *  e1000_set_lplu_state_pchlan - Set Low Power Link Up state
3027 *  @hw: pointer to the HW structure
3028 *  @active: true to enable LPLU, false to disable
3029 *
3030 *  Sets the LPLU state according to the active flag.  For PCH, if OEM write
3031 *  bit are disabled in the NVM, writing the LPLU bits in the MAC will not set
3032 *  the phy speed. This function will manually set the LPLU bit and restart
3033 *  auto-neg as hw would do. D3 and D0 LPLU will call the same function
3034 *  since it configures the same bit.
3035 **/
3036static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active)
3037{
3038	s32 ret_val;
3039	u16 oem_reg;
3040
3041	ret_val = e1e_rphy(hw, HV_OEM_BITS, &oem_reg);
3042	if (ret_val)
3043		return ret_val;
3044
3045	if (active)
3046		oem_reg |= HV_OEM_BITS_LPLU;
3047	else
3048		oem_reg &= ~HV_OEM_BITS_LPLU;
3049
3050	if (!hw->phy.ops.check_reset_block(hw))
3051		oem_reg |= HV_OEM_BITS_RESTART_AN;
3052
3053	return e1e_wphy(hw, HV_OEM_BITS, oem_reg);
3054}
3055
3056/**
3057 *  e1000_set_d0_lplu_state_ich8lan - Set Low Power Linkup D0 state
3058 *  @hw: pointer to the HW structure
3059 *  @active: true to enable LPLU, false to disable
3060 *
3061 *  Sets the LPLU D0 state according to the active flag.  When
3062 *  activating LPLU this function also disables smart speed
3063 *  and vice versa.  LPLU will not be activated unless the
3064 *  device autonegotiation advertisement meets standards of
3065 *  either 10 or 10/100 or 10/100/1000 at all duplexes.
3066 *  This is a function pointer entry point only called by
3067 *  PHY setup routines.
3068 **/
3069static s32 e1000_set_d0_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
3070{
3071	struct e1000_phy_info *phy = &hw->phy;
3072	u32 phy_ctrl;
3073	s32 ret_val = 0;
3074	u16 data;
3075
3076	if (phy->type == e1000_phy_ife)
3077		return 0;
3078
3079	phy_ctrl = er32(PHY_CTRL);
3080
3081	if (active) {
3082		phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
3083		ew32(PHY_CTRL, phy_ctrl);
3084
3085		if (phy->type != e1000_phy_igp_3)
3086			return 0;
3087
3088		/* Call gig speed drop workaround on LPLU before accessing
3089		 * any PHY registers
3090		 */
3091		if (hw->mac.type == e1000_ich8lan)
3092			e1000e_gig_downshift_workaround_ich8lan(hw);
3093
3094		/* When LPLU is enabled, we should disable SmartSpeed */
3095		ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
3096		if (ret_val)
3097			return ret_val;
3098		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3099		ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
3100		if (ret_val)
3101			return ret_val;
3102	} else {
3103		phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
3104		ew32(PHY_CTRL, phy_ctrl);
3105
3106		if (phy->type != e1000_phy_igp_3)
3107			return 0;
3108
3109		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
3110		 * during Dx states where the power conservation is most
3111		 * important.  During driver activity we should enable
3112		 * SmartSpeed, so performance is maintained.
3113		 */
3114		if (phy->smart_speed == e1000_smart_speed_on) {
3115			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3116					   &data);
3117			if (ret_val)
3118				return ret_val;
3119
3120			data |= IGP01E1000_PSCFR_SMART_SPEED;
3121			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3122					   data);
3123			if (ret_val)
3124				return ret_val;
3125		} else if (phy->smart_speed == e1000_smart_speed_off) {
3126			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3127					   &data);
3128			if (ret_val)
3129				return ret_val;
3130
3131			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3132			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3133					   data);
3134			if (ret_val)
3135				return ret_val;
3136		}
3137	}
3138
3139	return 0;
3140}
3141
3142/**
3143 *  e1000_set_d3_lplu_state_ich8lan - Set Low Power Linkup D3 state
3144 *  @hw: pointer to the HW structure
3145 *  @active: true to enable LPLU, false to disable
3146 *
3147 *  Sets the LPLU D3 state according to the active flag.  When
3148 *  activating LPLU this function also disables smart speed
3149 *  and vice versa.  LPLU will not be activated unless the
3150 *  device autonegotiation advertisement meets standards of
3151 *  either 10 or 10/100 or 10/100/1000 at all duplexes.
3152 *  This is a function pointer entry point only called by
3153 *  PHY setup routines.
3154 **/
3155static s32 e1000_set_d3_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
3156{
3157	struct e1000_phy_info *phy = &hw->phy;
3158	u32 phy_ctrl;
3159	s32 ret_val = 0;
3160	u16 data;
3161
3162	phy_ctrl = er32(PHY_CTRL);
3163
3164	if (!active) {
3165		phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU;
3166		ew32(PHY_CTRL, phy_ctrl);
3167
3168		if (phy->type != e1000_phy_igp_3)
3169			return 0;
3170
3171		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
3172		 * during Dx states where the power conservation is most
3173		 * important.  During driver activity we should enable
3174		 * SmartSpeed, so performance is maintained.
3175		 */
3176		if (phy->smart_speed == e1000_smart_speed_on) {
3177			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3178					   &data);
3179			if (ret_val)
3180				return ret_val;
3181
3182			data |= IGP01E1000_PSCFR_SMART_SPEED;
3183			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3184					   data);
3185			if (ret_val)
3186				return ret_val;
3187		} else if (phy->smart_speed == e1000_smart_speed_off) {
3188			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3189					   &data);
3190			if (ret_val)
3191				return ret_val;
3192
3193			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3194			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3195					   data);
3196			if (ret_val)
3197				return ret_val;
3198		}
3199	} else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
3200		   (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
3201		   (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
3202		phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU;
3203		ew32(PHY_CTRL, phy_ctrl);
3204
3205		if (phy->type != e1000_phy_igp_3)
3206			return 0;
3207
3208		/* Call gig speed drop workaround on LPLU before accessing
3209		 * any PHY registers
3210		 */
3211		if (hw->mac.type == e1000_ich8lan)
3212			e1000e_gig_downshift_workaround_ich8lan(hw);
3213
3214		/* When LPLU is enabled, we should disable SmartSpeed */
3215		ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
3216		if (ret_val)
3217			return ret_val;
3218
3219		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3220		ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
3221	}
3222
3223	return ret_val;
3224}
3225
3226/**
3227 *  e1000_valid_nvm_bank_detect_ich8lan - finds out the valid bank 0 or 1
3228 *  @hw: pointer to the HW structure
3229 *  @bank:  pointer to the variable that returns the active bank
3230 *
3231 *  Reads signature byte from the NVM using the flash access registers.
3232 *  Word 0x13 bits 15:14 = 10b indicate a valid signature for that bank.
3233 **/
3234static s32 e1000_valid_nvm_bank_detect_ich8lan(struct e1000_hw *hw, u32 *bank)
3235{
3236	u32 eecd;
3237	struct e1000_nvm_info *nvm = &hw->nvm;
3238	u32 bank1_offset = nvm->flash_bank_size * sizeof(u16);
3239	u32 act_offset = E1000_ICH_NVM_SIG_WORD * 2 + 1;
3240	u32 nvm_dword = 0;
3241	u8 sig_byte = 0;
3242	s32 ret_val;
3243
3244	switch (hw->mac.type) {
3245	case e1000_pch_spt:
3246	case e1000_pch_cnp:
3247	case e1000_pch_tgp:
3248	case e1000_pch_adp:
3249	case e1000_pch_mtp:
3250	case e1000_pch_lnp:
3251	case e1000_pch_ptp:
3252	case e1000_pch_nvp:
3253		bank1_offset = nvm->flash_bank_size;
3254		act_offset = E1000_ICH_NVM_SIG_WORD;
3255
3256		/* set bank to 0 in case flash read fails */
3257		*bank = 0;
3258
3259		/* Check bank 0 */
3260		ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset,
3261							 &nvm_dword);
3262		if (ret_val)
3263			return ret_val;
3264		sig_byte = FIELD_GET(0xFF00, nvm_dword);
3265		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3266		    E1000_ICH_NVM_SIG_VALUE) {
3267			*bank = 0;
3268			return 0;
3269		}
3270
3271		/* Check bank 1 */
3272		ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset +
3273							 bank1_offset,
3274							 &nvm_dword);
3275		if (ret_val)
3276			return ret_val;
3277		sig_byte = FIELD_GET(0xFF00, nvm_dword);
3278		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3279		    E1000_ICH_NVM_SIG_VALUE) {
3280			*bank = 1;
3281			return 0;
3282		}
3283
3284		e_dbg("ERROR: No valid NVM bank present\n");
3285		return -E1000_ERR_NVM;
3286	case e1000_ich8lan:
3287	case e1000_ich9lan:
3288		eecd = er32(EECD);
3289		if ((eecd & E1000_EECD_SEC1VAL_VALID_MASK) ==
3290		    E1000_EECD_SEC1VAL_VALID_MASK) {
3291			if (eecd & E1000_EECD_SEC1VAL)
3292				*bank = 1;
3293			else
3294				*bank = 0;
3295
3296			return 0;
3297		}
3298		e_dbg("Unable to determine valid NVM bank via EEC - reading flash signature\n");
3299		fallthrough;
3300	default:
3301		/* set bank to 0 in case flash read fails */
3302		*bank = 0;
3303
3304		/* Check bank 0 */
3305		ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset,
3306							&sig_byte);
3307		if (ret_val)
3308			return ret_val;
3309		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3310		    E1000_ICH_NVM_SIG_VALUE) {
3311			*bank = 0;
3312			return 0;
3313		}
3314
3315		/* Check bank 1 */
3316		ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset +
3317							bank1_offset,
3318							&sig_byte);
3319		if (ret_val)
3320			return ret_val;
3321		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3322		    E1000_ICH_NVM_SIG_VALUE) {
3323			*bank = 1;
3324			return 0;
3325		}
3326
3327		e_dbg("ERROR: No valid NVM bank present\n");
3328		return -E1000_ERR_NVM;
3329	}
3330}
3331
3332/**
3333 *  e1000_read_nvm_spt - NVM access for SPT
3334 *  @hw: pointer to the HW structure
3335 *  @offset: The offset (in bytes) of the word(s) to read.
3336 *  @words: Size of data to read in words.
3337 *  @data: pointer to the word(s) to read at offset.
3338 *
3339 *  Reads a word(s) from the NVM
3340 **/
3341static s32 e1000_read_nvm_spt(struct e1000_hw *hw, u16 offset, u16 words,
3342			      u16 *data)
3343{
3344	struct e1000_nvm_info *nvm = &hw->nvm;
3345	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3346	u32 act_offset;
3347	s32 ret_val = 0;
3348	u32 bank = 0;
3349	u32 dword = 0;
3350	u16 offset_to_read;
3351	u16 i;
3352
3353	if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
3354	    (words == 0)) {
3355		e_dbg("nvm parameter(s) out of bounds\n");
3356		ret_val = -E1000_ERR_NVM;
3357		goto out;
3358	}
3359
3360	nvm->ops.acquire(hw);
3361
3362	ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3363	if (ret_val) {
3364		e_dbg("Could not detect valid bank, assuming bank 0\n");
3365		bank = 0;
3366	}
3367
3368	act_offset = (bank) ? nvm->flash_bank_size : 0;
3369	act_offset += offset;
3370
3371	ret_val = 0;
3372
3373	for (i = 0; i < words; i += 2) {
3374		if (words - i == 1) {
3375			if (dev_spec->shadow_ram[offset + i].modified) {
3376				data[i] =
3377				    dev_spec->shadow_ram[offset + i].value;
3378			} else {
3379				offset_to_read = act_offset + i -
3380				    ((act_offset + i) % 2);
3381				ret_val =
3382				  e1000_read_flash_dword_ich8lan(hw,
3383								 offset_to_read,
3384								 &dword);
3385				if (ret_val)
3386					break;
3387				if ((act_offset + i) % 2 == 0)
3388					data[i] = (u16)(dword & 0xFFFF);
3389				else
3390					data[i] = (u16)((dword >> 16) & 0xFFFF);
3391			}
3392		} else {
3393			offset_to_read = act_offset + i;
3394			if (!(dev_spec->shadow_ram[offset + i].modified) ||
3395			    !(dev_spec->shadow_ram[offset + i + 1].modified)) {
3396				ret_val =
3397				  e1000_read_flash_dword_ich8lan(hw,
3398								 offset_to_read,
3399								 &dword);
3400				if (ret_val)
3401					break;
3402			}
3403			if (dev_spec->shadow_ram[offset + i].modified)
3404				data[i] =
3405				    dev_spec->shadow_ram[offset + i].value;
3406			else
3407				data[i] = (u16)(dword & 0xFFFF);
3408			if (dev_spec->shadow_ram[offset + i].modified)
3409				data[i + 1] =
3410				    dev_spec->shadow_ram[offset + i + 1].value;
3411			else
3412				data[i + 1] = (u16)(dword >> 16 & 0xFFFF);
3413		}
3414	}
3415
3416	nvm->ops.release(hw);
3417
3418out:
3419	if (ret_val)
3420		e_dbg("NVM read error: %d\n", ret_val);
3421
3422	return ret_val;
3423}
3424
3425/**
3426 *  e1000_read_nvm_ich8lan - Read word(s) from the NVM
3427 *  @hw: pointer to the HW structure
3428 *  @offset: The offset (in bytes) of the word(s) to read.
3429 *  @words: Size of data to read in words
3430 *  @data: Pointer to the word(s) to read at offset.
3431 *
3432 *  Reads a word(s) from the NVM using the flash access registers.
3433 **/
3434static s32 e1000_read_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
3435				  u16 *data)
3436{
3437	struct e1000_nvm_info *nvm = &hw->nvm;
3438	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3439	u32 act_offset;
3440	s32 ret_val = 0;
3441	u32 bank = 0;
3442	u16 i, word;
3443
3444	if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
3445	    (words == 0)) {
3446		e_dbg("nvm parameter(s) out of bounds\n");
3447		ret_val = -E1000_ERR_NVM;
3448		goto out;
3449	}
3450
3451	nvm->ops.acquire(hw);
3452
3453	ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3454	if (ret_val) {
3455		e_dbg("Could not detect valid bank, assuming bank 0\n");
3456		bank = 0;
3457	}
3458
3459	act_offset = (bank) ? nvm->flash_bank_size : 0;
3460	act_offset += offset;
3461
3462	ret_val = 0;
3463	for (i = 0; i < words; i++) {
3464		if (dev_spec->shadow_ram[offset + i].modified) {
3465			data[i] = dev_spec->shadow_ram[offset + i].value;
3466		} else {
3467			ret_val = e1000_read_flash_word_ich8lan(hw,
3468								act_offset + i,
3469								&word);
3470			if (ret_val)
3471				break;
3472			data[i] = word;
3473		}
3474	}
3475
3476	nvm->ops.release(hw);
3477
3478out:
3479	if (ret_val)
3480		e_dbg("NVM read error: %d\n", ret_val);
3481
3482	return ret_val;
3483}
3484
3485/**
3486 *  e1000_flash_cycle_init_ich8lan - Initialize flash
3487 *  @hw: pointer to the HW structure
3488 *
3489 *  This function does initial flash setup so that a new read/write/erase cycle
3490 *  can be started.
3491 **/
3492static s32 e1000_flash_cycle_init_ich8lan(struct e1000_hw *hw)
3493{
3494	union ich8_hws_flash_status hsfsts;
3495	s32 ret_val = -E1000_ERR_NVM;
3496
3497	hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3498
3499	/* Check if the flash descriptor is valid */
3500	if (!hsfsts.hsf_status.fldesvalid) {
3501		e_dbg("Flash descriptor invalid.  SW Sequencing must be used.\n");
3502		return -E1000_ERR_NVM;
3503	}
3504
3505	/* Clear FCERR and DAEL in hw status by writing 1 */
3506	hsfsts.hsf_status.flcerr = 1;
3507	hsfsts.hsf_status.dael = 1;
3508	if (hw->mac.type >= e1000_pch_spt)
3509		ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval & 0xFFFF);
3510	else
3511		ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
3512
3513	/* Either we should have a hardware SPI cycle in progress
3514	 * bit to check against, in order to start a new cycle or
3515	 * FDONE bit should be changed in the hardware so that it
3516	 * is 1 after hardware reset, which can then be used as an
3517	 * indication whether a cycle is in progress or has been
3518	 * completed.
3519	 */
3520
3521	if (!hsfsts.hsf_status.flcinprog) {
3522		/* There is no cycle running at present,
3523		 * so we can start a cycle.
3524		 * Begin by setting Flash Cycle Done.
3525		 */
3526		hsfsts.hsf_status.flcdone = 1;
3527		if (hw->mac.type >= e1000_pch_spt)
3528			ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval & 0xFFFF);
3529		else
3530			ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
3531		ret_val = 0;
3532	} else {
3533		s32 i;
3534
3535		/* Otherwise poll for sometime so the current
3536		 * cycle has a chance to end before giving up.
3537		 */
3538		for (i = 0; i < ICH_FLASH_READ_COMMAND_TIMEOUT; i++) {
3539			hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3540			if (!hsfsts.hsf_status.flcinprog) {
3541				ret_val = 0;
3542				break;
3543			}
3544			udelay(1);
3545		}
3546		if (!ret_val) {
3547			/* Successful in waiting for previous cycle to timeout,
3548			 * now set the Flash Cycle Done.
3549			 */
3550			hsfsts.hsf_status.flcdone = 1;
3551			if (hw->mac.type >= e1000_pch_spt)
3552				ew32flash(ICH_FLASH_HSFSTS,
3553					  hsfsts.regval & 0xFFFF);
3554			else
3555				ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
3556		} else {
3557			e_dbg("Flash controller busy, cannot get access\n");
3558		}
3559	}
3560
3561	return ret_val;
3562}
3563
3564/**
3565 *  e1000_flash_cycle_ich8lan - Starts flash cycle (read/write/erase)
3566 *  @hw: pointer to the HW structure
3567 *  @timeout: maximum time to wait for completion
3568 *
3569 *  This function starts a flash cycle and waits for its completion.
3570 **/
3571static s32 e1000_flash_cycle_ich8lan(struct e1000_hw *hw, u32 timeout)
3572{
3573	union ich8_hws_flash_ctrl hsflctl;
3574	union ich8_hws_flash_status hsfsts;
3575	u32 i = 0;
3576
3577	/* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */
3578	if (hw->mac.type >= e1000_pch_spt)
3579		hsflctl.regval = er32flash(ICH_FLASH_HSFSTS) >> 16;
3580	else
3581		hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
3582	hsflctl.hsf_ctrl.flcgo = 1;
3583
3584	if (hw->mac.type >= e1000_pch_spt)
3585		ew32flash(ICH_FLASH_HSFSTS, hsflctl.regval << 16);
3586	else
3587		ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
3588
3589	/* wait till FDONE bit is set to 1 */
3590	do {
3591		hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3592		if (hsfsts.hsf_status.flcdone)
3593			break;
3594		udelay(1);
3595	} while (i++ < timeout);
3596
3597	if (hsfsts.hsf_status.flcdone && !hsfsts.hsf_status.flcerr)
3598		return 0;
3599
3600	return -E1000_ERR_NVM;
3601}
3602
3603/**
3604 *  e1000_read_flash_dword_ich8lan - Read dword from flash
3605 *  @hw: pointer to the HW structure
3606 *  @offset: offset to data location
3607 *  @data: pointer to the location for storing the data
3608 *
3609 *  Reads the flash dword at offset into data.  Offset is converted
3610 *  to bytes before read.
3611 **/
3612static s32 e1000_read_flash_dword_ich8lan(struct e1000_hw *hw, u32 offset,
3613					  u32 *data)
3614{
3615	/* Must convert word offset into bytes. */
3616	offset <<= 1;
3617	return e1000_read_flash_data32_ich8lan(hw, offset, data);
3618}
3619
3620/**
3621 *  e1000_read_flash_word_ich8lan - Read word from flash
3622 *  @hw: pointer to the HW structure
3623 *  @offset: offset to data location
3624 *  @data: pointer to the location for storing the data
3625 *
3626 *  Reads the flash word at offset into data.  Offset is converted
3627 *  to bytes before read.
3628 **/
3629static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
3630					 u16 *data)
3631{
3632	/* Must convert offset into bytes. */
3633	offset <<= 1;
3634
3635	return e1000_read_flash_data_ich8lan(hw, offset, 2, data);
3636}
3637
3638/**
3639 *  e1000_read_flash_byte_ich8lan - Read byte from flash
3640 *  @hw: pointer to the HW structure
3641 *  @offset: The offset of the byte to read.
3642 *  @data: Pointer to a byte to store the value read.
3643 *
3644 *  Reads a single byte from the NVM using the flash access registers.
3645 **/
3646static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
3647					 u8 *data)
3648{
3649	s32 ret_val;
3650	u16 word = 0;
3651
3652	/* In SPT, only 32 bits access is supported,
3653	 * so this function should not be called.
3654	 */
3655	if (hw->mac.type >= e1000_pch_spt)
3656		return -E1000_ERR_NVM;
3657	else
3658		ret_val = e1000_read_flash_data_ich8lan(hw, offset, 1, &word);
3659
3660	if (ret_val)
3661		return ret_val;
3662
3663	*data = (u8)word;
3664
3665	return 0;
3666}
3667
3668/**
3669 *  e1000_read_flash_data_ich8lan - Read byte or word from NVM
3670 *  @hw: pointer to the HW structure
3671 *  @offset: The offset (in bytes) of the byte or word to read.
3672 *  @size: Size of data to read, 1=byte 2=word
3673 *  @data: Pointer to the word to store the value read.
3674 *
3675 *  Reads a byte or word from the NVM using the flash access registers.
3676 **/
3677static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
3678					 u8 size, u16 *data)
3679{
3680	union ich8_hws_flash_status hsfsts;
3681	union ich8_hws_flash_ctrl hsflctl;
3682	u32 flash_linear_addr;
3683	u32 flash_data = 0;
3684	s32 ret_val = -E1000_ERR_NVM;
3685	u8 count = 0;
3686
3687	if (size < 1 || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
3688		return -E1000_ERR_NVM;
3689
3690	flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
3691			     hw->nvm.flash_base_addr);
3692
3693	do {
3694		udelay(1);
3695		/* Steps */
3696		ret_val = e1000_flash_cycle_init_ich8lan(hw);
3697		if (ret_val)
3698			break;
3699
3700		hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
3701		/* 0b/1b corresponds to 1 or 2 byte size, respectively. */
3702		hsflctl.hsf_ctrl.fldbcount = size - 1;
3703		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
3704		ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
3705
3706		ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
3707
3708		ret_val =
3709		    e1000_flash_cycle_ich8lan(hw,
3710					      ICH_FLASH_READ_COMMAND_TIMEOUT);
3711
3712		/* Check if FCERR is set to 1, if set to 1, clear it
3713		 * and try the whole sequence a few more times, else
3714		 * read in (shift in) the Flash Data0, the order is
3715		 * least significant byte first msb to lsb
3716		 */
3717		if (!ret_val) {
3718			flash_data = er32flash(ICH_FLASH_FDATA0);
3719			if (size == 1)
3720				*data = (u8)(flash_data & 0x000000FF);
3721			else if (size == 2)
3722				*data = (u16)(flash_data & 0x0000FFFF);
3723			break;
3724		} else {
3725			/* If we've gotten here, then things are probably
3726			 * completely hosed, but if the error condition is
3727			 * detected, it won't hurt to give it another try...
3728			 * ICH_FLASH_CYCLE_REPEAT_COUNT times.
3729			 */
3730			hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3731			if (hsfsts.hsf_status.flcerr) {
3732				/* Repeat for some time before giving up. */
3733				continue;
3734			} else if (!hsfsts.hsf_status.flcdone) {
3735				e_dbg("Timeout error - flash cycle did not complete.\n");
3736				break;
3737			}
3738		}
3739	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
3740
3741	return ret_val;
3742}
3743
3744/**
3745 *  e1000_read_flash_data32_ich8lan - Read dword from NVM
3746 *  @hw: pointer to the HW structure
3747 *  @offset: The offset (in bytes) of the dword to read.
3748 *  @data: Pointer to the dword to store the value read.
3749 *
3750 *  Reads a byte or word from the NVM using the flash access registers.
3751 **/
3752
3753static s32 e1000_read_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset,
3754					   u32 *data)
3755{
3756	union ich8_hws_flash_status hsfsts;
3757	union ich8_hws_flash_ctrl hsflctl;
3758	u32 flash_linear_addr;
3759	s32 ret_val = -E1000_ERR_NVM;
3760	u8 count = 0;
3761
3762	if (offset > ICH_FLASH_LINEAR_ADDR_MASK || hw->mac.type < e1000_pch_spt)
3763		return -E1000_ERR_NVM;
3764	flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
3765			     hw->nvm.flash_base_addr);
3766
3767	do {
3768		udelay(1);
3769		/* Steps */
3770		ret_val = e1000_flash_cycle_init_ich8lan(hw);
3771		if (ret_val)
3772			break;
3773		/* In SPT, This register is in Lan memory space, not flash.
3774		 * Therefore, only 32 bit access is supported
3775		 */
3776		hsflctl.regval = er32flash(ICH_FLASH_HSFSTS) >> 16;
3777
3778		/* 0b/1b corresponds to 1 or 2 byte size, respectively. */
3779		hsflctl.hsf_ctrl.fldbcount = sizeof(u32) - 1;
3780		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
3781		/* In SPT, This register is in Lan memory space, not flash.
3782		 * Therefore, only 32 bit access is supported
3783		 */
3784		ew32flash(ICH_FLASH_HSFSTS, (u32)hsflctl.regval << 16);
3785		ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
3786
3787		ret_val =
3788		   e1000_flash_cycle_ich8lan(hw,
3789					     ICH_FLASH_READ_COMMAND_TIMEOUT);
3790
3791		/* Check if FCERR is set to 1, if set to 1, clear it
3792		 * and try the whole sequence a few more times, else
3793		 * read in (shift in) the Flash Data0, the order is
3794		 * least significant byte first msb to lsb
3795		 */
3796		if (!ret_val) {
3797			*data = er32flash(ICH_FLASH_FDATA0);
3798			break;
3799		} else {
3800			/* If we've gotten here, then things are probably
3801			 * completely hosed, but if the error condition is
3802			 * detected, it won't hurt to give it another try...
3803			 * ICH_FLASH_CYCLE_REPEAT_COUNT times.
3804			 */
3805			hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3806			if (hsfsts.hsf_status.flcerr) {
3807				/* Repeat for some time before giving up. */
3808				continue;
3809			} else if (!hsfsts.hsf_status.flcdone) {
3810				e_dbg("Timeout error - flash cycle did not complete.\n");
3811				break;
3812			}
3813		}
3814	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
3815
3816	return ret_val;
3817}
3818
3819/**
3820 *  e1000_write_nvm_ich8lan - Write word(s) to the NVM
3821 *  @hw: pointer to the HW structure
3822 *  @offset: The offset (in bytes) of the word(s) to write.
3823 *  @words: Size of data to write in words
3824 *  @data: Pointer to the word(s) to write at offset.
3825 *
3826 *  Writes a byte or word to the NVM using the flash access registers.
3827 **/
3828static s32 e1000_write_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
3829				   u16 *data)
3830{
3831	struct e1000_nvm_info *nvm = &hw->nvm;
3832	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3833	u16 i;
3834
3835	if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
3836	    (words == 0)) {
3837		e_dbg("nvm parameter(s) out of bounds\n");
3838		return -E1000_ERR_NVM;
3839	}
3840
3841	nvm->ops.acquire(hw);
3842
3843	for (i = 0; i < words; i++) {
3844		dev_spec->shadow_ram[offset + i].modified = true;
3845		dev_spec->shadow_ram[offset + i].value = data[i];
3846	}
3847
3848	nvm->ops.release(hw);
3849
3850	return 0;
3851}
3852
3853/**
3854 *  e1000_update_nvm_checksum_spt - Update the checksum for NVM
3855 *  @hw: pointer to the HW structure
3856 *
3857 *  The NVM checksum is updated by calling the generic update_nvm_checksum,
3858 *  which writes the checksum to the shadow ram.  The changes in the shadow
3859 *  ram are then committed to the EEPROM by processing each bank at a time
3860 *  checking for the modified bit and writing only the pending changes.
3861 *  After a successful commit, the shadow ram is cleared and is ready for
3862 *  future writes.
3863 **/
3864static s32 e1000_update_nvm_checksum_spt(struct e1000_hw *hw)
3865{
3866	struct e1000_nvm_info *nvm = &hw->nvm;
3867	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3868	u32 i, act_offset, new_bank_offset, old_bank_offset, bank;
3869	s32 ret_val;
3870	u32 dword = 0;
3871
3872	ret_val = e1000e_update_nvm_checksum_generic(hw);
3873	if (ret_val)
3874		goto out;
3875
3876	if (nvm->type != e1000_nvm_flash_sw)
3877		goto out;
3878
3879	nvm->ops.acquire(hw);
3880
3881	/* We're writing to the opposite bank so if we're on bank 1,
3882	 * write to bank 0 etc.  We also need to erase the segment that
3883	 * is going to be written
3884	 */
3885	ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3886	if (ret_val) {
3887		e_dbg("Could not detect valid bank, assuming bank 0\n");
3888		bank = 0;
3889	}
3890
3891	if (bank == 0) {
3892		new_bank_offset = nvm->flash_bank_size;
3893		old_bank_offset = 0;
3894		ret_val = e1000_erase_flash_bank_ich8lan(hw, 1);
3895		if (ret_val)
3896			goto release;
3897	} else {
3898		old_bank_offset = nvm->flash_bank_size;
3899		new_bank_offset = 0;
3900		ret_val = e1000_erase_flash_bank_ich8lan(hw, 0);
3901		if (ret_val)
3902			goto release;
3903	}
3904	for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i += 2) {
3905		/* Determine whether to write the value stored
3906		 * in the other NVM bank or a modified value stored
3907		 * in the shadow RAM
3908		 */
3909		ret_val = e1000_read_flash_dword_ich8lan(hw,
3910							 i + old_bank_offset,
3911							 &dword);
3912
3913		if (dev_spec->shadow_ram[i].modified) {
3914			dword &= 0xffff0000;
3915			dword |= (dev_spec->shadow_ram[i].value & 0xffff);
3916		}
3917		if (dev_spec->shadow_ram[i + 1].modified) {
3918			dword &= 0x0000ffff;
3919			dword |= ((dev_spec->shadow_ram[i + 1].value & 0xffff)
3920				  << 16);
3921		}
3922		if (ret_val)
3923			break;
3924
3925		/* If the word is 0x13, then make sure the signature bits
3926		 * (15:14) are 11b until the commit has completed.
3927		 * This will allow us to write 10b which indicates the
3928		 * signature is valid.  We want to do this after the write
3929		 * has completed so that we don't mark the segment valid
3930		 * while the write is still in progress
3931		 */
3932		if (i == E1000_ICH_NVM_SIG_WORD - 1)
3933			dword |= E1000_ICH_NVM_SIG_MASK << 16;
3934
3935		/* Convert offset to bytes. */
3936		act_offset = (i + new_bank_offset) << 1;
3937
3938		usleep_range(100, 200);
3939
3940		/* Write the data to the new bank. Offset in words */
3941		act_offset = i + new_bank_offset;
3942		ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset,
3943								dword);
3944		if (ret_val)
3945			break;
3946	}
3947
3948	/* Don't bother writing the segment valid bits if sector
3949	 * programming failed.
3950	 */
3951	if (ret_val) {
3952		/* Possibly read-only, see e1000e_write_protect_nvm_ich8lan() */
3953		e_dbg("Flash commit failed.\n");
3954		goto release;
3955	}
3956
3957	/* Finally validate the new segment by setting bit 15:14
3958	 * to 10b in word 0x13 , this can be done without an
3959	 * erase as well since these bits are 11 to start with
3960	 * and we need to change bit 14 to 0b
3961	 */
3962	act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD;
3963
3964	/*offset in words but we read dword */
3965	--act_offset;
3966	ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset, &dword);
3967
3968	if (ret_val)
3969		goto release;
3970
3971	dword &= 0xBFFFFFFF;
3972	ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset, dword);
3973
3974	if (ret_val)
3975		goto release;
3976
 
 
 
 
 
 
 
3977	/* offset in words but we read dword */
3978	act_offset = old_bank_offset + E1000_ICH_NVM_SIG_WORD - 1;
3979	ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset, &dword);
3980
3981	if (ret_val)
3982		goto release;
3983
3984	dword &= 0x00FFFFFF;
3985	ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset, dword);
3986
3987	if (ret_val)
3988		goto release;
3989
3990	/* Great!  Everything worked, we can now clear the cached entries. */
3991	for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
3992		dev_spec->shadow_ram[i].modified = false;
3993		dev_spec->shadow_ram[i].value = 0xFFFF;
3994	}
3995
3996release:
3997	nvm->ops.release(hw);
3998
3999	/* Reload the EEPROM, or else modifications will not appear
4000	 * until after the next adapter reset.
4001	 */
4002	if (!ret_val) {
4003		nvm->ops.reload(hw);
4004		usleep_range(10000, 11000);
4005	}
4006
4007out:
4008	if (ret_val)
4009		e_dbg("NVM update error: %d\n", ret_val);
4010
4011	return ret_val;
4012}
4013
4014/**
4015 *  e1000_update_nvm_checksum_ich8lan - Update the checksum for NVM
4016 *  @hw: pointer to the HW structure
4017 *
4018 *  The NVM checksum is updated by calling the generic update_nvm_checksum,
4019 *  which writes the checksum to the shadow ram.  The changes in the shadow
4020 *  ram are then committed to the EEPROM by processing each bank at a time
4021 *  checking for the modified bit and writing only the pending changes.
4022 *  After a successful commit, the shadow ram is cleared and is ready for
4023 *  future writes.
4024 **/
4025static s32 e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw)
4026{
4027	struct e1000_nvm_info *nvm = &hw->nvm;
4028	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
4029	u32 i, act_offset, new_bank_offset, old_bank_offset, bank;
4030	s32 ret_val;
4031	u16 data = 0;
4032
4033	ret_val = e1000e_update_nvm_checksum_generic(hw);
4034	if (ret_val)
4035		goto out;
4036
4037	if (nvm->type != e1000_nvm_flash_sw)
4038		goto out;
4039
4040	nvm->ops.acquire(hw);
4041
4042	/* We're writing to the opposite bank so if we're on bank 1,
4043	 * write to bank 0 etc.  We also need to erase the segment that
4044	 * is going to be written
4045	 */
4046	ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
4047	if (ret_val) {
4048		e_dbg("Could not detect valid bank, assuming bank 0\n");
4049		bank = 0;
4050	}
4051
4052	if (bank == 0) {
4053		new_bank_offset = nvm->flash_bank_size;
4054		old_bank_offset = 0;
4055		ret_val = e1000_erase_flash_bank_ich8lan(hw, 1);
4056		if (ret_val)
4057			goto release;
4058	} else {
4059		old_bank_offset = nvm->flash_bank_size;
4060		new_bank_offset = 0;
4061		ret_val = e1000_erase_flash_bank_ich8lan(hw, 0);
4062		if (ret_val)
4063			goto release;
4064	}
4065	for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
4066		if (dev_spec->shadow_ram[i].modified) {
4067			data = dev_spec->shadow_ram[i].value;
4068		} else {
4069			ret_val = e1000_read_flash_word_ich8lan(hw, i +
4070								old_bank_offset,
4071								&data);
4072			if (ret_val)
4073				break;
4074		}
4075
4076		/* If the word is 0x13, then make sure the signature bits
4077		 * (15:14) are 11b until the commit has completed.
4078		 * This will allow us to write 10b which indicates the
4079		 * signature is valid.  We want to do this after the write
4080		 * has completed so that we don't mark the segment valid
4081		 * while the write is still in progress
4082		 */
4083		if (i == E1000_ICH_NVM_SIG_WORD)
4084			data |= E1000_ICH_NVM_SIG_MASK;
4085
4086		/* Convert offset to bytes. */
4087		act_offset = (i + new_bank_offset) << 1;
4088
4089		usleep_range(100, 200);
4090		/* Write the bytes to the new bank. */
4091		ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
4092							       act_offset,
4093							       (u8)data);
4094		if (ret_val)
4095			break;
4096
4097		usleep_range(100, 200);
4098		ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
4099							       act_offset + 1,
4100							       (u8)(data >> 8));
4101		if (ret_val)
4102			break;
4103	}
4104
4105	/* Don't bother writing the segment valid bits if sector
4106	 * programming failed.
4107	 */
4108	if (ret_val) {
4109		/* Possibly read-only, see e1000e_write_protect_nvm_ich8lan() */
4110		e_dbg("Flash commit failed.\n");
4111		goto release;
4112	}
4113
4114	/* Finally validate the new segment by setting bit 15:14
4115	 * to 10b in word 0x13 , this can be done without an
4116	 * erase as well since these bits are 11 to start with
4117	 * and we need to change bit 14 to 0b
4118	 */
4119	act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD;
4120	ret_val = e1000_read_flash_word_ich8lan(hw, act_offset, &data);
4121	if (ret_val)
4122		goto release;
4123
4124	data &= 0xBFFF;
4125	ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
4126						       act_offset * 2 + 1,
4127						       (u8)(data >> 8));
4128	if (ret_val)
4129		goto release;
4130
4131	/* And invalidate the previously valid segment by setting
4132	 * its signature word (0x13) high_byte to 0b. This can be
4133	 * done without an erase because flash erase sets all bits
4134	 * to 1's. We can write 1's to 0's without an erase
4135	 */
4136	act_offset = (old_bank_offset + E1000_ICH_NVM_SIG_WORD) * 2 + 1;
4137	ret_val = e1000_retry_write_flash_byte_ich8lan(hw, act_offset, 0);
4138	if (ret_val)
4139		goto release;
4140
4141	/* Great!  Everything worked, we can now clear the cached entries. */
4142	for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
4143		dev_spec->shadow_ram[i].modified = false;
4144		dev_spec->shadow_ram[i].value = 0xFFFF;
4145	}
4146
4147release:
4148	nvm->ops.release(hw);
4149
4150	/* Reload the EEPROM, or else modifications will not appear
4151	 * until after the next adapter reset.
4152	 */
4153	if (!ret_val) {
4154		nvm->ops.reload(hw);
4155		usleep_range(10000, 11000);
4156	}
4157
4158out:
4159	if (ret_val)
4160		e_dbg("NVM update error: %d\n", ret_val);
4161
4162	return ret_val;
4163}
4164
4165/**
4166 *  e1000_validate_nvm_checksum_ich8lan - Validate EEPROM checksum
4167 *  @hw: pointer to the HW structure
4168 *
4169 *  Check to see if checksum needs to be fixed by reading bit 6 in word 0x19.
4170 *  If the bit is 0, that the EEPROM had been modified, but the checksum was not
4171 *  calculated, in which case we need to calculate the checksum and set bit 6.
4172 **/
4173static s32 e1000_validate_nvm_checksum_ich8lan(struct e1000_hw *hw)
4174{
4175	s32 ret_val;
4176	u16 data;
4177	u16 word;
4178	u16 valid_csum_mask;
4179
4180	/* Read NVM and check Invalid Image CSUM bit.  If this bit is 0,
4181	 * the checksum needs to be fixed.  This bit is an indication that
4182	 * the NVM was prepared by OEM software and did not calculate
4183	 * the checksum...a likely scenario.
4184	 */
4185	switch (hw->mac.type) {
4186	case e1000_pch_lpt:
4187	case e1000_pch_spt:
4188	case e1000_pch_cnp:
4189	case e1000_pch_tgp:
4190	case e1000_pch_adp:
4191	case e1000_pch_mtp:
4192	case e1000_pch_lnp:
4193	case e1000_pch_ptp:
4194	case e1000_pch_nvp:
4195		word = NVM_COMPAT;
4196		valid_csum_mask = NVM_COMPAT_VALID_CSUM;
4197		break;
4198	default:
4199		word = NVM_FUTURE_INIT_WORD1;
4200		valid_csum_mask = NVM_FUTURE_INIT_WORD1_VALID_CSUM;
4201		break;
4202	}
4203
4204	ret_val = e1000_read_nvm(hw, word, 1, &data);
4205	if (ret_val)
4206		return ret_val;
4207
4208	if (!(data & valid_csum_mask)) {
4209		e_dbg("NVM Checksum valid bit not set\n");
4210
4211		if (hw->mac.type < e1000_pch_tgp) {
4212			data |= valid_csum_mask;
4213			ret_val = e1000_write_nvm(hw, word, 1, &data);
4214			if (ret_val)
4215				return ret_val;
4216			ret_val = e1000e_update_nvm_checksum(hw);
4217			if (ret_val)
4218				return ret_val;
4219		}
4220	}
4221
4222	return e1000e_validate_nvm_checksum_generic(hw);
4223}
4224
4225/**
4226 *  e1000e_write_protect_nvm_ich8lan - Make the NVM read-only
4227 *  @hw: pointer to the HW structure
4228 *
4229 *  To prevent malicious write/erase of the NVM, set it to be read-only
4230 *  so that the hardware ignores all write/erase cycles of the NVM via
4231 *  the flash control registers.  The shadow-ram copy of the NVM will
4232 *  still be updated, however any updates to this copy will not stick
4233 *  across driver reloads.
4234 **/
4235void e1000e_write_protect_nvm_ich8lan(struct e1000_hw *hw)
4236{
4237	struct e1000_nvm_info *nvm = &hw->nvm;
4238	union ich8_flash_protected_range pr0;
4239	union ich8_hws_flash_status hsfsts;
4240	u32 gfpreg;
4241
4242	nvm->ops.acquire(hw);
4243
4244	gfpreg = er32flash(ICH_FLASH_GFPREG);
4245
4246	/* Write-protect GbE Sector of NVM */
4247	pr0.regval = er32flash(ICH_FLASH_PR0);
4248	pr0.range.base = gfpreg & FLASH_GFPREG_BASE_MASK;
4249	pr0.range.limit = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK);
4250	pr0.range.wpe = true;
4251	ew32flash(ICH_FLASH_PR0, pr0.regval);
4252
4253	/* Lock down a subset of GbE Flash Control Registers, e.g.
4254	 * PR0 to prevent the write-protection from being lifted.
4255	 * Once FLOCKDN is set, the registers protected by it cannot
4256	 * be written until FLOCKDN is cleared by a hardware reset.
4257	 */
4258	hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4259	hsfsts.hsf_status.flockdn = true;
4260	ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval);
4261
4262	nvm->ops.release(hw);
4263}
4264
4265/**
4266 *  e1000_write_flash_data_ich8lan - Writes bytes to the NVM
4267 *  @hw: pointer to the HW structure
4268 *  @offset: The offset (in bytes) of the byte/word to read.
4269 *  @size: Size of data to read, 1=byte 2=word
4270 *  @data: The byte(s) to write to the NVM.
4271 *
4272 *  Writes one/two bytes to the NVM using the flash access registers.
4273 **/
4274static s32 e1000_write_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
4275					  u8 size, u16 data)
4276{
4277	union ich8_hws_flash_status hsfsts;
4278	union ich8_hws_flash_ctrl hsflctl;
4279	u32 flash_linear_addr;
4280	u32 flash_data = 0;
4281	s32 ret_val;
4282	u8 count = 0;
4283
4284	if (hw->mac.type >= e1000_pch_spt) {
4285		if (size != 4 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
4286			return -E1000_ERR_NVM;
4287	} else {
4288		if (size < 1 || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
4289			return -E1000_ERR_NVM;
4290	}
4291
4292	flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
4293			     hw->nvm.flash_base_addr);
4294
4295	do {
4296		udelay(1);
4297		/* Steps */
4298		ret_val = e1000_flash_cycle_init_ich8lan(hw);
4299		if (ret_val)
4300			break;
4301		/* In SPT, This register is in Lan memory space, not
4302		 * flash.  Therefore, only 32 bit access is supported
4303		 */
4304		if (hw->mac.type >= e1000_pch_spt)
4305			hsflctl.regval = er32flash(ICH_FLASH_HSFSTS) >> 16;
4306		else
4307			hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
4308
4309		/* 0b/1b corresponds to 1 or 2 byte size, respectively. */
4310		hsflctl.hsf_ctrl.fldbcount = size - 1;
4311		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
4312		/* In SPT, This register is in Lan memory space,
4313		 * not flash.  Therefore, only 32 bit access is
4314		 * supported
4315		 */
4316		if (hw->mac.type >= e1000_pch_spt)
4317			ew32flash(ICH_FLASH_HSFSTS, hsflctl.regval << 16);
4318		else
4319			ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
4320
4321		ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
4322
4323		if (size == 1)
4324			flash_data = (u32)data & 0x00FF;
4325		else
4326			flash_data = (u32)data;
4327
4328		ew32flash(ICH_FLASH_FDATA0, flash_data);
4329
4330		/* check if FCERR is set to 1 , if set to 1, clear it
4331		 * and try the whole sequence a few more times else done
4332		 */
4333		ret_val =
4334		    e1000_flash_cycle_ich8lan(hw,
4335					      ICH_FLASH_WRITE_COMMAND_TIMEOUT);
4336		if (!ret_val)
4337			break;
4338
4339		/* If we're here, then things are most likely
4340		 * completely hosed, but if the error condition
4341		 * is detected, it won't hurt to give it another
4342		 * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
4343		 */
4344		hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4345		if (hsfsts.hsf_status.flcerr)
4346			/* Repeat for some time before giving up. */
4347			continue;
4348		if (!hsfsts.hsf_status.flcdone) {
4349			e_dbg("Timeout error - flash cycle did not complete.\n");
4350			break;
4351		}
4352	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
4353
4354	return ret_val;
4355}
4356
4357/**
4358*  e1000_write_flash_data32_ich8lan - Writes 4 bytes to the NVM
4359*  @hw: pointer to the HW structure
4360*  @offset: The offset (in bytes) of the dwords to read.
4361*  @data: The 4 bytes to write to the NVM.
4362*
4363*  Writes one/two/four bytes to the NVM using the flash access registers.
4364**/
4365static s32 e1000_write_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset,
4366					    u32 data)
4367{
4368	union ich8_hws_flash_status hsfsts;
4369	union ich8_hws_flash_ctrl hsflctl;
4370	u32 flash_linear_addr;
4371	s32 ret_val;
4372	u8 count = 0;
4373
4374	if (hw->mac.type >= e1000_pch_spt) {
4375		if (offset > ICH_FLASH_LINEAR_ADDR_MASK)
4376			return -E1000_ERR_NVM;
4377	}
4378	flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
4379			     hw->nvm.flash_base_addr);
4380	do {
4381		udelay(1);
4382		/* Steps */
4383		ret_val = e1000_flash_cycle_init_ich8lan(hw);
4384		if (ret_val)
4385			break;
4386
4387		/* In SPT, This register is in Lan memory space, not
4388		 * flash.  Therefore, only 32 bit access is supported
4389		 */
4390		if (hw->mac.type >= e1000_pch_spt)
4391			hsflctl.regval = er32flash(ICH_FLASH_HSFSTS)
4392			    >> 16;
4393		else
4394			hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
4395
4396		hsflctl.hsf_ctrl.fldbcount = sizeof(u32) - 1;
4397		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
4398
4399		/* In SPT, This register is in Lan memory space,
4400		 * not flash.  Therefore, only 32 bit access is
4401		 * supported
4402		 */
4403		if (hw->mac.type >= e1000_pch_spt)
4404			ew32flash(ICH_FLASH_HSFSTS, hsflctl.regval << 16);
4405		else
4406			ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
4407
4408		ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
4409
4410		ew32flash(ICH_FLASH_FDATA0, data);
4411
4412		/* check if FCERR is set to 1 , if set to 1, clear it
4413		 * and try the whole sequence a few more times else done
4414		 */
4415		ret_val =
4416		   e1000_flash_cycle_ich8lan(hw,
4417					     ICH_FLASH_WRITE_COMMAND_TIMEOUT);
4418
4419		if (!ret_val)
4420			break;
4421
4422		/* If we're here, then things are most likely
4423		 * completely hosed, but if the error condition
4424		 * is detected, it won't hurt to give it another
4425		 * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
4426		 */
4427		hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4428
4429		if (hsfsts.hsf_status.flcerr)
4430			/* Repeat for some time before giving up. */
4431			continue;
4432		if (!hsfsts.hsf_status.flcdone) {
4433			e_dbg("Timeout error - flash cycle did not complete.\n");
4434			break;
4435		}
4436	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
4437
4438	return ret_val;
4439}
4440
4441/**
4442 *  e1000_write_flash_byte_ich8lan - Write a single byte to NVM
4443 *  @hw: pointer to the HW structure
4444 *  @offset: The index of the byte to read.
4445 *  @data: The byte to write to the NVM.
4446 *
4447 *  Writes a single byte to the NVM using the flash access registers.
4448 **/
4449static s32 e1000_write_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
4450					  u8 data)
4451{
4452	u16 word = (u16)data;
4453
4454	return e1000_write_flash_data_ich8lan(hw, offset, 1, word);
4455}
4456
4457/**
4458*  e1000_retry_write_flash_dword_ich8lan - Writes a dword to NVM
4459*  @hw: pointer to the HW structure
4460*  @offset: The offset of the word to write.
4461*  @dword: The dword to write to the NVM.
4462*
4463*  Writes a single dword to the NVM using the flash access registers.
4464*  Goes through a retry algorithm before giving up.
4465**/
4466static s32 e1000_retry_write_flash_dword_ich8lan(struct e1000_hw *hw,
4467						 u32 offset, u32 dword)
4468{
4469	s32 ret_val;
4470	u16 program_retries;
4471
4472	/* Must convert word offset into bytes. */
4473	offset <<= 1;
4474	ret_val = e1000_write_flash_data32_ich8lan(hw, offset, dword);
4475
4476	if (!ret_val)
4477		return ret_val;
4478	for (program_retries = 0; program_retries < 100; program_retries++) {
4479		e_dbg("Retrying Byte %8.8X at offset %u\n", dword, offset);
4480		usleep_range(100, 200);
4481		ret_val = e1000_write_flash_data32_ich8lan(hw, offset, dword);
4482		if (!ret_val)
4483			break;
4484	}
4485	if (program_retries == 100)
4486		return -E1000_ERR_NVM;
4487
4488	return 0;
4489}
4490
4491/**
4492 *  e1000_retry_write_flash_byte_ich8lan - Writes a single byte to NVM
4493 *  @hw: pointer to the HW structure
4494 *  @offset: The offset of the byte to write.
4495 *  @byte: The byte to write to the NVM.
4496 *
4497 *  Writes a single byte to the NVM using the flash access registers.
4498 *  Goes through a retry algorithm before giving up.
4499 **/
4500static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
4501						u32 offset, u8 byte)
4502{
4503	s32 ret_val;
4504	u16 program_retries;
4505
4506	ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
4507	if (!ret_val)
4508		return ret_val;
4509
4510	for (program_retries = 0; program_retries < 100; program_retries++) {
4511		e_dbg("Retrying Byte %2.2X at offset %u\n", byte, offset);
4512		usleep_range(100, 200);
4513		ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
4514		if (!ret_val)
4515			break;
4516	}
4517	if (program_retries == 100)
4518		return -E1000_ERR_NVM;
4519
4520	return 0;
4521}
4522
4523/**
4524 *  e1000_erase_flash_bank_ich8lan - Erase a bank (4k) from NVM
4525 *  @hw: pointer to the HW structure
4526 *  @bank: 0 for first bank, 1 for second bank, etc.
4527 *
4528 *  Erases the bank specified. Each bank is a 4k block. Banks are 0 based.
4529 *  bank N is 4096 * N + flash_reg_addr.
4530 **/
4531static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank)
4532{
4533	struct e1000_nvm_info *nvm = &hw->nvm;
4534	union ich8_hws_flash_status hsfsts;
4535	union ich8_hws_flash_ctrl hsflctl;
4536	u32 flash_linear_addr;
4537	/* bank size is in 16bit words - adjust to bytes */
4538	u32 flash_bank_size = nvm->flash_bank_size * 2;
4539	s32 ret_val;
4540	s32 count = 0;
4541	s32 j, iteration, sector_size;
4542
4543	hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4544
4545	/* Determine HW Sector size: Read BERASE bits of hw flash status
4546	 * register
4547	 * 00: The Hw sector is 256 bytes, hence we need to erase 16
4548	 *     consecutive sectors.  The start index for the nth Hw sector
4549	 *     can be calculated as = bank * 4096 + n * 256
4550	 * 01: The Hw sector is 4K bytes, hence we need to erase 1 sector.
4551	 *     The start index for the nth Hw sector can be calculated
4552	 *     as = bank * 4096
4553	 * 10: The Hw sector is 8K bytes, nth sector = bank * 8192
4554	 *     (ich9 only, otherwise error condition)
4555	 * 11: The Hw sector is 64K bytes, nth sector = bank * 65536
4556	 */
4557	switch (hsfsts.hsf_status.berasesz) {
4558	case 0:
4559		/* Hw sector size 256 */
4560		sector_size = ICH_FLASH_SEG_SIZE_256;
4561		iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_256;
4562		break;
4563	case 1:
4564		sector_size = ICH_FLASH_SEG_SIZE_4K;
4565		iteration = 1;
4566		break;
4567	case 2:
4568		sector_size = ICH_FLASH_SEG_SIZE_8K;
4569		iteration = 1;
4570		break;
4571	case 3:
4572		sector_size = ICH_FLASH_SEG_SIZE_64K;
4573		iteration = 1;
4574		break;
4575	default:
4576		return -E1000_ERR_NVM;
4577	}
4578
4579	/* Start with the base address, then add the sector offset. */
4580	flash_linear_addr = hw->nvm.flash_base_addr;
4581	flash_linear_addr += (bank) ? flash_bank_size : 0;
4582
4583	for (j = 0; j < iteration; j++) {
4584		do {
4585			u32 timeout = ICH_FLASH_ERASE_COMMAND_TIMEOUT;
4586
4587			/* Steps */
4588			ret_val = e1000_flash_cycle_init_ich8lan(hw);
4589			if (ret_val)
4590				return ret_val;
4591
4592			/* Write a value 11 (block Erase) in Flash
4593			 * Cycle field in hw flash control
4594			 */
4595			if (hw->mac.type >= e1000_pch_spt)
4596				hsflctl.regval =
4597				    er32flash(ICH_FLASH_HSFSTS) >> 16;
4598			else
4599				hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
4600
4601			hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_ERASE;
4602			if (hw->mac.type >= e1000_pch_spt)
4603				ew32flash(ICH_FLASH_HSFSTS,
4604					  hsflctl.regval << 16);
4605			else
4606				ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
4607
4608			/* Write the last 24 bits of an index within the
4609			 * block into Flash Linear address field in Flash
4610			 * Address.
4611			 */
4612			flash_linear_addr += (j * sector_size);
4613			ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
4614
4615			ret_val = e1000_flash_cycle_ich8lan(hw, timeout);
4616			if (!ret_val)
4617				break;
4618
4619			/* Check if FCERR is set to 1.  If 1,
4620			 * clear it and try the whole sequence
4621			 * a few more times else Done
4622			 */
4623			hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4624			if (hsfsts.hsf_status.flcerr)
4625				/* repeat for some time before giving up */
4626				continue;
4627			else if (!hsfsts.hsf_status.flcdone)
4628				return ret_val;
4629		} while (++count < ICH_FLASH_CYCLE_REPEAT_COUNT);
4630	}
4631
4632	return 0;
4633}
4634
4635/**
4636 *  e1000_valid_led_default_ich8lan - Set the default LED settings
4637 *  @hw: pointer to the HW structure
4638 *  @data: Pointer to the LED settings
4639 *
4640 *  Reads the LED default settings from the NVM to data.  If the NVM LED
4641 *  settings is all 0's or F's, set the LED default to a valid LED default
4642 *  setting.
4643 **/
4644static s32 e1000_valid_led_default_ich8lan(struct e1000_hw *hw, u16 *data)
4645{
4646	s32 ret_val;
4647
4648	ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
4649	if (ret_val) {
4650		e_dbg("NVM Read Error\n");
4651		return ret_val;
4652	}
4653
4654	if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF)
4655		*data = ID_LED_DEFAULT_ICH8LAN;
4656
4657	return 0;
4658}
4659
4660/**
4661 *  e1000_id_led_init_pchlan - store LED configurations
4662 *  @hw: pointer to the HW structure
4663 *
4664 *  PCH does not control LEDs via the LEDCTL register, rather it uses
4665 *  the PHY LED configuration register.
4666 *
4667 *  PCH also does not have an "always on" or "always off" mode which
4668 *  complicates the ID feature.  Instead of using the "on" mode to indicate
4669 *  in ledctl_mode2 the LEDs to use for ID (see e1000e_id_led_init_generic()),
4670 *  use "link_up" mode.  The LEDs will still ID on request if there is no
4671 *  link based on logic in e1000_led_[on|off]_pchlan().
4672 **/
4673static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw)
4674{
4675	struct e1000_mac_info *mac = &hw->mac;
4676	s32 ret_val;
4677	const u32 ledctl_on = E1000_LEDCTL_MODE_LINK_UP;
4678	const u32 ledctl_off = E1000_LEDCTL_MODE_LINK_UP | E1000_PHY_LED0_IVRT;
4679	u16 data, i, temp, shift;
4680
4681	/* Get default ID LED modes */
4682	ret_val = hw->nvm.ops.valid_led_default(hw, &data);
4683	if (ret_val)
4684		return ret_val;
4685
4686	mac->ledctl_default = er32(LEDCTL);
4687	mac->ledctl_mode1 = mac->ledctl_default;
4688	mac->ledctl_mode2 = mac->ledctl_default;
4689
4690	for (i = 0; i < 4; i++) {
4691		temp = (data >> (i << 2)) & E1000_LEDCTL_LED0_MODE_MASK;
4692		shift = (i * 5);
4693		switch (temp) {
4694		case ID_LED_ON1_DEF2:
4695		case ID_LED_ON1_ON2:
4696		case ID_LED_ON1_OFF2:
4697			mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
4698			mac->ledctl_mode1 |= (ledctl_on << shift);
4699			break;
4700		case ID_LED_OFF1_DEF2:
4701		case ID_LED_OFF1_ON2:
4702		case ID_LED_OFF1_OFF2:
4703			mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
4704			mac->ledctl_mode1 |= (ledctl_off << shift);
4705			break;
4706		default:
4707			/* Do nothing */
4708			break;
4709		}
4710		switch (temp) {
4711		case ID_LED_DEF1_ON2:
4712		case ID_LED_ON1_ON2:
4713		case ID_LED_OFF1_ON2:
4714			mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
4715			mac->ledctl_mode2 |= (ledctl_on << shift);
4716			break;
4717		case ID_LED_DEF1_OFF2:
4718		case ID_LED_ON1_OFF2:
4719		case ID_LED_OFF1_OFF2:
4720			mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
4721			mac->ledctl_mode2 |= (ledctl_off << shift);
4722			break;
4723		default:
4724			/* Do nothing */
4725			break;
4726		}
4727	}
4728
4729	return 0;
4730}
4731
4732/**
4733 *  e1000_get_bus_info_ich8lan - Get/Set the bus type and width
4734 *  @hw: pointer to the HW structure
4735 *
4736 *  ICH8 use the PCI Express bus, but does not contain a PCI Express Capability
4737 *  register, so the bus width is hard coded.
4738 **/
4739static s32 e1000_get_bus_info_ich8lan(struct e1000_hw *hw)
4740{
4741	struct e1000_bus_info *bus = &hw->bus;
4742	s32 ret_val;
4743
4744	ret_val = e1000e_get_bus_info_pcie(hw);
4745
4746	/* ICH devices are "PCI Express"-ish.  They have
4747	 * a configuration space, but do not contain
4748	 * PCI Express Capability registers, so bus width
4749	 * must be hardcoded.
4750	 */
4751	if (bus->width == e1000_bus_width_unknown)
4752		bus->width = e1000_bus_width_pcie_x1;
4753
4754	return ret_val;
4755}
4756
4757/**
4758 *  e1000_reset_hw_ich8lan - Reset the hardware
4759 *  @hw: pointer to the HW structure
4760 *
4761 *  Does a full reset of the hardware which includes a reset of the PHY and
4762 *  MAC.
4763 **/
4764static s32 e1000_reset_hw_ich8lan(struct e1000_hw *hw)
4765{
4766	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
4767	u16 kum_cfg;
4768	u32 ctrl, reg;
4769	s32 ret_val;
4770
4771	/* Prevent the PCI-E bus from sticking if there is no TLP connection
4772	 * on the last TLP read/write transaction when MAC is reset.
4773	 */
4774	ret_val = e1000e_disable_pcie_master(hw);
4775	if (ret_val)
4776		e_dbg("PCI-E Master disable polling has failed.\n");
4777
4778	e_dbg("Masking off all interrupts\n");
4779	ew32(IMC, 0xffffffff);
4780
4781	/* Disable the Transmit and Receive units.  Then delay to allow
4782	 * any pending transactions to complete before we hit the MAC
4783	 * with the global reset.
4784	 */
4785	ew32(RCTL, 0);
4786	ew32(TCTL, E1000_TCTL_PSP);
4787	e1e_flush();
4788
4789	usleep_range(10000, 11000);
4790
4791	/* Workaround for ICH8 bit corruption issue in FIFO memory */
4792	if (hw->mac.type == e1000_ich8lan) {
4793		/* Set Tx and Rx buffer allocation to 8k apiece. */
4794		ew32(PBA, E1000_PBA_8K);
4795		/* Set Packet Buffer Size to 16k. */
4796		ew32(PBS, E1000_PBS_16K);
4797	}
4798
4799	if (hw->mac.type == e1000_pchlan) {
4800		/* Save the NVM K1 bit setting */
4801		ret_val = e1000_read_nvm(hw, E1000_NVM_K1_CONFIG, 1, &kum_cfg);
4802		if (ret_val)
4803			return ret_val;
4804
4805		if (kum_cfg & E1000_NVM_K1_ENABLE)
4806			dev_spec->nvm_k1_enabled = true;
4807		else
4808			dev_spec->nvm_k1_enabled = false;
4809	}
4810
4811	ctrl = er32(CTRL);
4812
4813	if (!hw->phy.ops.check_reset_block(hw)) {
4814		/* Full-chip reset requires MAC and PHY reset at the same
4815		 * time to make sure the interface between MAC and the
4816		 * external PHY is reset.
4817		 */
4818		ctrl |= E1000_CTRL_PHY_RST;
4819
4820		/* Gate automatic PHY configuration by hardware on
4821		 * non-managed 82579
4822		 */
4823		if ((hw->mac.type == e1000_pch2lan) &&
4824		    !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
4825			e1000_gate_hw_phy_config_ich8lan(hw, true);
4826	}
4827	ret_val = e1000_acquire_swflag_ich8lan(hw);
4828	e_dbg("Issuing a global reset to ich8lan\n");
4829	ew32(CTRL, (ctrl | E1000_CTRL_RST));
4830	/* cannot issue a flush here because it hangs the hardware */
4831	msleep(20);
4832
4833	/* Set Phy Config Counter to 50msec */
4834	if (hw->mac.type == e1000_pch2lan) {
4835		reg = er32(FEXTNVM3);
4836		reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK;
4837		reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC;
4838		ew32(FEXTNVM3, reg);
4839	}
4840
4841	if (!ret_val)
4842		clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
4843
4844	if (ctrl & E1000_CTRL_PHY_RST) {
4845		ret_val = hw->phy.ops.get_cfg_done(hw);
4846		if (ret_val)
4847			return ret_val;
4848
4849		ret_val = e1000_post_phy_reset_ich8lan(hw);
4850		if (ret_val)
4851			return ret_val;
4852	}
4853
4854	/* For PCH, this write will make sure that any noise
4855	 * will be detected as a CRC error and be dropped rather than show up
4856	 * as a bad packet to the DMA engine.
4857	 */
4858	if (hw->mac.type == e1000_pchlan)
4859		ew32(CRC_OFFSET, 0x65656565);
4860
4861	ew32(IMC, 0xffffffff);
4862	er32(ICR);
4863
4864	reg = er32(KABGTXD);
4865	reg |= E1000_KABGTXD_BGSQLBIAS;
4866	ew32(KABGTXD, reg);
4867
4868	return 0;
4869}
4870
4871/**
4872 *  e1000_init_hw_ich8lan - Initialize the hardware
4873 *  @hw: pointer to the HW structure
4874 *
4875 *  Prepares the hardware for transmit and receive by doing the following:
4876 *   - initialize hardware bits
4877 *   - initialize LED identification
4878 *   - setup receive address registers
4879 *   - setup flow control
4880 *   - setup transmit descriptors
4881 *   - clear statistics
4882 **/
4883static s32 e1000_init_hw_ich8lan(struct e1000_hw *hw)
4884{
4885	struct e1000_mac_info *mac = &hw->mac;
4886	u32 ctrl_ext, txdctl, snoop, fflt_dbg;
4887	s32 ret_val;
4888	u16 i;
4889
4890	e1000_initialize_hw_bits_ich8lan(hw);
4891
4892	/* Initialize identification LED */
4893	ret_val = mac->ops.id_led_init(hw);
4894	/* An error is not fatal and we should not stop init due to this */
4895	if (ret_val)
4896		e_dbg("Error initializing identification LED\n");
4897
4898	/* Setup the receive address. */
4899	e1000e_init_rx_addrs(hw, mac->rar_entry_count);
4900
4901	/* Zero out the Multicast HASH table */
4902	e_dbg("Zeroing the MTA\n");
4903	for (i = 0; i < mac->mta_reg_count; i++)
4904		E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
4905
4906	/* The 82578 Rx buffer will stall if wakeup is enabled in host and
4907	 * the ME.  Disable wakeup by clearing the host wakeup bit.
4908	 * Reset the phy after disabling host wakeup to reset the Rx buffer.
4909	 */
4910	if (hw->phy.type == e1000_phy_82578) {
4911		e1e_rphy(hw, BM_PORT_GEN_CFG, &i);
4912		i &= ~BM_WUC_HOST_WU_BIT;
4913		e1e_wphy(hw, BM_PORT_GEN_CFG, i);
4914		ret_val = e1000_phy_hw_reset_ich8lan(hw);
4915		if (ret_val)
4916			return ret_val;
4917	}
4918
4919	/* Setup link and flow control */
4920	ret_val = mac->ops.setup_link(hw);
4921
4922	/* Set the transmit descriptor write-back policy for both queues */
4923	txdctl = er32(TXDCTL(0));
4924	txdctl = ((txdctl & ~E1000_TXDCTL_WTHRESH) |
4925		  E1000_TXDCTL_FULL_TX_DESC_WB);
4926	txdctl = ((txdctl & ~E1000_TXDCTL_PTHRESH) |
4927		  E1000_TXDCTL_MAX_TX_DESC_PREFETCH);
4928	ew32(TXDCTL(0), txdctl);
4929	txdctl = er32(TXDCTL(1));
4930	txdctl = ((txdctl & ~E1000_TXDCTL_WTHRESH) |
4931		  E1000_TXDCTL_FULL_TX_DESC_WB);
4932	txdctl = ((txdctl & ~E1000_TXDCTL_PTHRESH) |
4933		  E1000_TXDCTL_MAX_TX_DESC_PREFETCH);
4934	ew32(TXDCTL(1), txdctl);
4935
4936	/* ICH8 has opposite polarity of no_snoop bits.
4937	 * By default, we should use snoop behavior.
4938	 */
4939	if (mac->type == e1000_ich8lan)
4940		snoop = PCIE_ICH8_SNOOP_ALL;
4941	else
4942		snoop = (u32)~(PCIE_NO_SNOOP_ALL);
4943	e1000e_set_pcie_no_snoop(hw, snoop);
4944
4945	/* Enable workaround for packet loss issue on TGP PCH
4946	 * Do not gate DMA clock from the modPHY block
4947	 */
4948	if (mac->type >= e1000_pch_tgp) {
4949		fflt_dbg = er32(FFLT_DBG);
4950		fflt_dbg |= E1000_FFLT_DBG_DONT_GATE_WAKE_DMA_CLK;
4951		ew32(FFLT_DBG, fflt_dbg);
4952	}
4953
4954	ctrl_ext = er32(CTRL_EXT);
4955	ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
4956	ew32(CTRL_EXT, ctrl_ext);
4957
4958	/* Clear all of the statistics registers (clear on read).  It is
4959	 * important that we do this after we have tried to establish link
4960	 * because the symbol error count will increment wildly if there
4961	 * is no link.
4962	 */
4963	e1000_clear_hw_cntrs_ich8lan(hw);
4964
4965	return ret_val;
4966}
4967
4968/**
4969 *  e1000_initialize_hw_bits_ich8lan - Initialize required hardware bits
4970 *  @hw: pointer to the HW structure
4971 *
4972 *  Sets/Clears required hardware bits necessary for correctly setting up the
4973 *  hardware for transmit and receive.
4974 **/
4975static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw)
4976{
4977	u32 reg;
4978
4979	/* Extended Device Control */
4980	reg = er32(CTRL_EXT);
4981	reg |= BIT(22);
4982	/* Enable PHY low-power state when MAC is at D3 w/o WoL */
4983	if (hw->mac.type >= e1000_pchlan)
4984		reg |= E1000_CTRL_EXT_PHYPDEN;
4985	ew32(CTRL_EXT, reg);
4986
4987	/* Transmit Descriptor Control 0 */
4988	reg = er32(TXDCTL(0));
4989	reg |= BIT(22);
4990	ew32(TXDCTL(0), reg);
4991
4992	/* Transmit Descriptor Control 1 */
4993	reg = er32(TXDCTL(1));
4994	reg |= BIT(22);
4995	ew32(TXDCTL(1), reg);
4996
4997	/* Transmit Arbitration Control 0 */
4998	reg = er32(TARC(0));
4999	if (hw->mac.type == e1000_ich8lan)
5000		reg |= BIT(28) | BIT(29);
5001	reg |= BIT(23) | BIT(24) | BIT(26) | BIT(27);
5002	ew32(TARC(0), reg);
5003
5004	/* Transmit Arbitration Control 1 */
5005	reg = er32(TARC(1));
5006	if (er32(TCTL) & E1000_TCTL_MULR)
5007		reg &= ~BIT(28);
5008	else
5009		reg |= BIT(28);
5010	reg |= BIT(24) | BIT(26) | BIT(30);
5011	ew32(TARC(1), reg);
5012
5013	/* Device Status */
5014	if (hw->mac.type == e1000_ich8lan) {
5015		reg = er32(STATUS);
5016		reg &= ~BIT(31);
5017		ew32(STATUS, reg);
5018	}
5019
5020	/* work-around descriptor data corruption issue during nfs v2 udp
5021	 * traffic, just disable the nfs filtering capability
5022	 */
5023	reg = er32(RFCTL);
5024	reg |= (E1000_RFCTL_NFSW_DIS | E1000_RFCTL_NFSR_DIS);
5025
5026	/* Disable IPv6 extension header parsing because some malformed
5027	 * IPv6 headers can hang the Rx.
5028	 */
5029	if (hw->mac.type == e1000_ich8lan)
5030		reg |= (E1000_RFCTL_IPV6_EX_DIS | E1000_RFCTL_NEW_IPV6_EXT_DIS);
5031	ew32(RFCTL, reg);
5032
5033	/* Enable ECC on Lynxpoint */
5034	if (hw->mac.type >= e1000_pch_lpt) {
5035		reg = er32(PBECCSTS);
5036		reg |= E1000_PBECCSTS_ECC_ENABLE;
5037		ew32(PBECCSTS, reg);
5038
5039		reg = er32(CTRL);
5040		reg |= E1000_CTRL_MEHE;
5041		ew32(CTRL, reg);
5042	}
5043}
5044
5045/**
5046 *  e1000_setup_link_ich8lan - Setup flow control and link settings
5047 *  @hw: pointer to the HW structure
5048 *
5049 *  Determines which flow control settings to use, then configures flow
5050 *  control.  Calls the appropriate media-specific link configuration
5051 *  function.  Assuming the adapter has a valid link partner, a valid link
5052 *  should be established.  Assumes the hardware has previously been reset
5053 *  and the transmitter and receiver are not enabled.
5054 **/
5055static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw)
5056{
5057	s32 ret_val;
5058
5059	if (hw->phy.ops.check_reset_block(hw))
5060		return 0;
5061
5062	/* ICH parts do not have a word in the NVM to determine
5063	 * the default flow control setting, so we explicitly
5064	 * set it to full.
5065	 */
5066	if (hw->fc.requested_mode == e1000_fc_default) {
5067		/* Workaround h/w hang when Tx flow control enabled */
5068		if (hw->mac.type == e1000_pchlan)
5069			hw->fc.requested_mode = e1000_fc_rx_pause;
5070		else
5071			hw->fc.requested_mode = e1000_fc_full;
5072	}
5073
5074	/* Save off the requested flow control mode for use later.  Depending
5075	 * on the link partner's capabilities, we may or may not use this mode.
5076	 */
5077	hw->fc.current_mode = hw->fc.requested_mode;
5078
5079	e_dbg("After fix-ups FlowControl is now = %x\n", hw->fc.current_mode);
5080
5081	/* Continue to configure the copper link. */
5082	ret_val = hw->mac.ops.setup_physical_interface(hw);
5083	if (ret_val)
5084		return ret_val;
5085
5086	ew32(FCTTV, hw->fc.pause_time);
5087	if ((hw->phy.type == e1000_phy_82578) ||
5088	    (hw->phy.type == e1000_phy_82579) ||
5089	    (hw->phy.type == e1000_phy_i217) ||
5090	    (hw->phy.type == e1000_phy_82577)) {
5091		ew32(FCRTV_PCH, hw->fc.refresh_time);
5092
5093		ret_val = e1e_wphy(hw, PHY_REG(BM_PORT_CTRL_PAGE, 27),
5094				   hw->fc.pause_time);
5095		if (ret_val)
5096			return ret_val;
5097	}
5098
5099	return e1000e_set_fc_watermarks(hw);
5100}
5101
5102/**
5103 *  e1000_setup_copper_link_ich8lan - Configure MAC/PHY interface
5104 *  @hw: pointer to the HW structure
5105 *
5106 *  Configures the kumeran interface to the PHY to wait the appropriate time
5107 *  when polling the PHY, then call the generic setup_copper_link to finish
5108 *  configuring the copper link.
5109 **/
5110static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw)
5111{
5112	u32 ctrl;
5113	s32 ret_val;
5114	u16 reg_data;
5115
5116	ctrl = er32(CTRL);
5117	ctrl |= E1000_CTRL_SLU;
5118	ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
5119	ew32(CTRL, ctrl);
5120
5121	/* Set the mac to wait the maximum time between each iteration
5122	 * and increase the max iterations when polling the phy;
5123	 * this fixes erroneous timeouts at 10Mbps.
5124	 */
5125	ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_TIMEOUTS, 0xFFFF);
5126	if (ret_val)
5127		return ret_val;
5128	ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
5129				       &reg_data);
5130	if (ret_val)
5131		return ret_val;
5132	reg_data |= 0x3F;
5133	ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
5134					reg_data);
5135	if (ret_val)
5136		return ret_val;
5137
5138	switch (hw->phy.type) {
5139	case e1000_phy_igp_3:
5140		ret_val = e1000e_copper_link_setup_igp(hw);
5141		if (ret_val)
5142			return ret_val;
5143		break;
5144	case e1000_phy_bm:
5145	case e1000_phy_82578:
5146		ret_val = e1000e_copper_link_setup_m88(hw);
5147		if (ret_val)
5148			return ret_val;
5149		break;
5150	case e1000_phy_82577:
5151	case e1000_phy_82579:
5152		ret_val = e1000_copper_link_setup_82577(hw);
5153		if (ret_val)
5154			return ret_val;
5155		break;
5156	case e1000_phy_ife:
5157		ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &reg_data);
5158		if (ret_val)
5159			return ret_val;
5160
5161		reg_data &= ~IFE_PMC_AUTO_MDIX;
5162
5163		switch (hw->phy.mdix) {
5164		case 1:
5165			reg_data &= ~IFE_PMC_FORCE_MDIX;
5166			break;
5167		case 2:
5168			reg_data |= IFE_PMC_FORCE_MDIX;
5169			break;
5170		case 0:
5171		default:
5172			reg_data |= IFE_PMC_AUTO_MDIX;
5173			break;
5174		}
5175		ret_val = e1e_wphy(hw, IFE_PHY_MDIX_CONTROL, reg_data);
5176		if (ret_val)
5177			return ret_val;
5178		break;
5179	default:
5180		break;
5181	}
5182
5183	return e1000e_setup_copper_link(hw);
5184}
5185
5186/**
5187 *  e1000_setup_copper_link_pch_lpt - Configure MAC/PHY interface
5188 *  @hw: pointer to the HW structure
5189 *
5190 *  Calls the PHY specific link setup function and then calls the
5191 *  generic setup_copper_link to finish configuring the link for
5192 *  Lynxpoint PCH devices
5193 **/
5194static s32 e1000_setup_copper_link_pch_lpt(struct e1000_hw *hw)
5195{
5196	u32 ctrl;
5197	s32 ret_val;
5198
5199	ctrl = er32(CTRL);
5200	ctrl |= E1000_CTRL_SLU;
5201	ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
5202	ew32(CTRL, ctrl);
5203
5204	ret_val = e1000_copper_link_setup_82577(hw);
5205	if (ret_val)
5206		return ret_val;
5207
5208	return e1000e_setup_copper_link(hw);
5209}
5210
5211/**
5212 *  e1000_get_link_up_info_ich8lan - Get current link speed and duplex
5213 *  @hw: pointer to the HW structure
5214 *  @speed: pointer to store current link speed
5215 *  @duplex: pointer to store the current link duplex
5216 *
5217 *  Calls the generic get_speed_and_duplex to retrieve the current link
5218 *  information and then calls the Kumeran lock loss workaround for links at
5219 *  gigabit speeds.
5220 **/
5221static s32 e1000_get_link_up_info_ich8lan(struct e1000_hw *hw, u16 *speed,
5222					  u16 *duplex)
5223{
5224	s32 ret_val;
5225
5226	ret_val = e1000e_get_speed_and_duplex_copper(hw, speed, duplex);
5227	if (ret_val)
5228		return ret_val;
5229
5230	if ((hw->mac.type == e1000_ich8lan) &&
5231	    (hw->phy.type == e1000_phy_igp_3) && (*speed == SPEED_1000)) {
5232		ret_val = e1000_kmrn_lock_loss_workaround_ich8lan(hw);
5233	}
5234
5235	return ret_val;
5236}
5237
5238/**
5239 *  e1000_kmrn_lock_loss_workaround_ich8lan - Kumeran workaround
5240 *  @hw: pointer to the HW structure
5241 *
5242 *  Work-around for 82566 Kumeran PCS lock loss:
5243 *  On link status change (i.e. PCI reset, speed change) and link is up and
5244 *  speed is gigabit-
5245 *    0) if workaround is optionally disabled do nothing
5246 *    1) wait 1ms for Kumeran link to come up
5247 *    2) check Kumeran Diagnostic register PCS lock loss bit
5248 *    3) if not set the link is locked (all is good), otherwise...
5249 *    4) reset the PHY
5250 *    5) repeat up to 10 times
5251 *  Note: this is only called for IGP3 copper when speed is 1gb.
5252 **/
5253static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw)
5254{
5255	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
5256	u32 phy_ctrl;
5257	s32 ret_val;
5258	u16 i, data;
5259	bool link;
5260
5261	if (!dev_spec->kmrn_lock_loss_workaround_enabled)
5262		return 0;
5263
5264	/* Make sure link is up before proceeding.  If not just return.
5265	 * Attempting this while link is negotiating fouled up link
5266	 * stability
5267	 */
5268	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
5269	if (!link)
5270		return 0;
5271
5272	for (i = 0; i < 10; i++) {
5273		/* read once to clear */
5274		ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
5275		if (ret_val)
5276			return ret_val;
5277		/* and again to get new status */
5278		ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
5279		if (ret_val)
5280			return ret_val;
5281
5282		/* check for PCS lock */
5283		if (!(data & IGP3_KMRN_DIAG_PCS_LOCK_LOSS))
5284			return 0;
5285
5286		/* Issue PHY reset */
5287		e1000_phy_hw_reset(hw);
5288		mdelay(5);
5289	}
5290	/* Disable GigE link negotiation */
5291	phy_ctrl = er32(PHY_CTRL);
5292	phy_ctrl |= (E1000_PHY_CTRL_GBE_DISABLE |
5293		     E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
5294	ew32(PHY_CTRL, phy_ctrl);
5295
5296	/* Call gig speed drop workaround on Gig disable before accessing
5297	 * any PHY registers
5298	 */
5299	e1000e_gig_downshift_workaround_ich8lan(hw);
5300
5301	/* unable to acquire PCS lock */
5302	return -E1000_ERR_PHY;
5303}
5304
5305/**
5306 *  e1000e_set_kmrn_lock_loss_workaround_ich8lan - Set Kumeran workaround state
5307 *  @hw: pointer to the HW structure
5308 *  @state: boolean value used to set the current Kumeran workaround state
5309 *
5310 *  If ICH8, set the current Kumeran workaround state (enabled - true
5311 *  /disabled - false).
5312 **/
5313void e1000e_set_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw,
5314						  bool state)
5315{
5316	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
5317
5318	if (hw->mac.type != e1000_ich8lan) {
5319		e_dbg("Workaround applies to ICH8 only.\n");
5320		return;
5321	}
5322
5323	dev_spec->kmrn_lock_loss_workaround_enabled = state;
5324}
5325
5326/**
5327 *  e1000e_igp3_phy_powerdown_workaround_ich8lan - Power down workaround on D3
5328 *  @hw: pointer to the HW structure
5329 *
5330 *  Workaround for 82566 power-down on D3 entry:
5331 *    1) disable gigabit link
5332 *    2) write VR power-down enable
5333 *    3) read it back
5334 *  Continue if successful, else issue LCD reset and repeat
5335 **/
5336void e1000e_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw *hw)
5337{
5338	u32 reg;
5339	u16 data;
5340	u8 retry = 0;
5341
5342	if (hw->phy.type != e1000_phy_igp_3)
5343		return;
5344
5345	/* Try the workaround twice (if needed) */
5346	do {
5347		/* Disable link */
5348		reg = er32(PHY_CTRL);
5349		reg |= (E1000_PHY_CTRL_GBE_DISABLE |
5350			E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
5351		ew32(PHY_CTRL, reg);
5352
5353		/* Call gig speed drop workaround on Gig disable before
5354		 * accessing any PHY registers
5355		 */
5356		if (hw->mac.type == e1000_ich8lan)
5357			e1000e_gig_downshift_workaround_ich8lan(hw);
5358
5359		/* Write VR power-down enable */
5360		e1e_rphy(hw, IGP3_VR_CTRL, &data);
5361		data &= ~IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
5362		e1e_wphy(hw, IGP3_VR_CTRL, data | IGP3_VR_CTRL_MODE_SHUTDOWN);
5363
5364		/* Read it back and test */
5365		e1e_rphy(hw, IGP3_VR_CTRL, &data);
5366		data &= IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
5367		if ((data == IGP3_VR_CTRL_MODE_SHUTDOWN) || retry)
5368			break;
5369
5370		/* Issue PHY reset and repeat at most one more time */
5371		reg = er32(CTRL);
5372		ew32(CTRL, reg | E1000_CTRL_PHY_RST);
5373		retry++;
5374	} while (retry);
5375}
5376
5377/**
5378 *  e1000e_gig_downshift_workaround_ich8lan - WoL from S5 stops working
5379 *  @hw: pointer to the HW structure
5380 *
5381 *  Steps to take when dropping from 1Gb/s (eg. link cable removal (LSC),
5382 *  LPLU, Gig disable, MDIC PHY reset):
5383 *    1) Set Kumeran Near-end loopback
5384 *    2) Clear Kumeran Near-end loopback
5385 *  Should only be called for ICH8[m] devices with any 1G Phy.
5386 **/
5387void e1000e_gig_downshift_workaround_ich8lan(struct e1000_hw *hw)
5388{
5389	s32 ret_val;
5390	u16 reg_data;
5391
5392	if ((hw->mac.type != e1000_ich8lan) || (hw->phy.type == e1000_phy_ife))
5393		return;
5394
5395	ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
5396				       &reg_data);
5397	if (ret_val)
5398		return;
5399	reg_data |= E1000_KMRNCTRLSTA_DIAG_NELPBK;
5400	ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
5401					reg_data);
5402	if (ret_val)
5403		return;
5404	reg_data &= ~E1000_KMRNCTRLSTA_DIAG_NELPBK;
5405	e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET, reg_data);
5406}
5407
5408/**
5409 *  e1000_suspend_workarounds_ich8lan - workarounds needed during S0->Sx
5410 *  @hw: pointer to the HW structure
5411 *
5412 *  During S0 to Sx transition, it is possible the link remains at gig
5413 *  instead of negotiating to a lower speed.  Before going to Sx, set
5414 *  'Gig Disable' to force link speed negotiation to a lower speed based on
5415 *  the LPLU setting in the NVM or custom setting.  For PCH and newer parts,
5416 *  the OEM bits PHY register (LED, GbE disable and LPLU configurations) also
5417 *  needs to be written.
5418 *  Parts that support (and are linked to a partner which support) EEE in
5419 *  100Mbps should disable LPLU since 100Mbps w/ EEE requires less power
5420 *  than 10Mbps w/o EEE.
5421 **/
5422void e1000_suspend_workarounds_ich8lan(struct e1000_hw *hw)
5423{
5424	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
5425	u32 phy_ctrl;
5426	s32 ret_val;
5427
5428	phy_ctrl = er32(PHY_CTRL);
5429	phy_ctrl |= E1000_PHY_CTRL_GBE_DISABLE;
5430
5431	if (hw->phy.type == e1000_phy_i217) {
5432		u16 phy_reg, device_id = hw->adapter->pdev->device;
5433
5434		if ((device_id == E1000_DEV_ID_PCH_LPTLP_I218_LM) ||
5435		    (device_id == E1000_DEV_ID_PCH_LPTLP_I218_V) ||
5436		    (device_id == E1000_DEV_ID_PCH_I218_LM3) ||
5437		    (device_id == E1000_DEV_ID_PCH_I218_V3) ||
5438		    (hw->mac.type >= e1000_pch_spt)) {
5439			u32 fextnvm6 = er32(FEXTNVM6);
5440
5441			ew32(FEXTNVM6, fextnvm6 & ~E1000_FEXTNVM6_REQ_PLL_CLK);
5442		}
5443
5444		ret_val = hw->phy.ops.acquire(hw);
5445		if (ret_val)
5446			goto out;
5447
5448		if (!dev_spec->eee_disable) {
5449			u16 eee_advert;
5450
5451			ret_val =
5452			    e1000_read_emi_reg_locked(hw,
5453						      I217_EEE_ADVERTISEMENT,
5454						      &eee_advert);
5455			if (ret_val)
5456				goto release;
5457
5458			/* Disable LPLU if both link partners support 100BaseT
5459			 * EEE and 100Full is advertised on both ends of the
5460			 * link, and enable Auto Enable LPI since there will
5461			 * be no driver to enable LPI while in Sx.
5462			 */
5463			if ((eee_advert & I82579_EEE_100_SUPPORTED) &&
5464			    (dev_spec->eee_lp_ability &
5465			     I82579_EEE_100_SUPPORTED) &&
5466			    (hw->phy.autoneg_advertised & ADVERTISE_100_FULL)) {
5467				phy_ctrl &= ~(E1000_PHY_CTRL_D0A_LPLU |
5468					      E1000_PHY_CTRL_NOND0A_LPLU);
5469
5470				/* Set Auto Enable LPI after link up */
5471				e1e_rphy_locked(hw,
5472						I217_LPI_GPIO_CTRL, &phy_reg);
5473				phy_reg |= I217_LPI_GPIO_CTRL_AUTO_EN_LPI;
5474				e1e_wphy_locked(hw,
5475						I217_LPI_GPIO_CTRL, phy_reg);
5476			}
5477		}
5478
5479		/* For i217 Intel Rapid Start Technology support,
5480		 * when the system is going into Sx and no manageability engine
5481		 * is present, the driver must configure proxy to reset only on
5482		 * power good.  LPI (Low Power Idle) state must also reset only
5483		 * on power good, as well as the MTA (Multicast table array).
5484		 * The SMBus release must also be disabled on LCD reset.
5485		 */
5486		if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
5487			/* Enable proxy to reset only on power good. */
5488			e1e_rphy_locked(hw, I217_PROXY_CTRL, &phy_reg);
5489			phy_reg |= I217_PROXY_CTRL_AUTO_DISABLE;
5490			e1e_wphy_locked(hw, I217_PROXY_CTRL, phy_reg);
5491
5492			/* Set bit enable LPI (EEE) to reset only on
5493			 * power good.
5494			 */
5495			e1e_rphy_locked(hw, I217_SxCTRL, &phy_reg);
5496			phy_reg |= I217_SxCTRL_ENABLE_LPI_RESET;
5497			e1e_wphy_locked(hw, I217_SxCTRL, phy_reg);
5498
5499			/* Disable the SMB release on LCD reset. */
5500			e1e_rphy_locked(hw, I217_MEMPWR, &phy_reg);
5501			phy_reg &= ~I217_MEMPWR_DISABLE_SMB_RELEASE;
5502			e1e_wphy_locked(hw, I217_MEMPWR, phy_reg);
5503		}
5504
5505		/* Enable MTA to reset for Intel Rapid Start Technology
5506		 * Support
5507		 */
5508		e1e_rphy_locked(hw, I217_CGFREG, &phy_reg);
5509		phy_reg |= I217_CGFREG_ENABLE_MTA_RESET;
5510		e1e_wphy_locked(hw, I217_CGFREG, phy_reg);
5511
5512release:
5513		hw->phy.ops.release(hw);
5514	}
5515out:
5516	ew32(PHY_CTRL, phy_ctrl);
5517
5518	if (hw->mac.type == e1000_ich8lan)
5519		e1000e_gig_downshift_workaround_ich8lan(hw);
5520
5521	if (hw->mac.type >= e1000_pchlan) {
5522		e1000_oem_bits_config_ich8lan(hw, false);
5523
5524		/* Reset PHY to activate OEM bits on 82577/8 */
5525		if (hw->mac.type == e1000_pchlan)
5526			e1000e_phy_hw_reset_generic(hw);
5527
5528		ret_val = hw->phy.ops.acquire(hw);
5529		if (ret_val)
5530			return;
5531		e1000_write_smbus_addr(hw);
5532		hw->phy.ops.release(hw);
5533	}
5534}
5535
5536/**
5537 *  e1000_resume_workarounds_pchlan - workarounds needed during Sx->S0
5538 *  @hw: pointer to the HW structure
5539 *
5540 *  During Sx to S0 transitions on non-managed devices or managed devices
5541 *  on which PHY resets are not blocked, if the PHY registers cannot be
5542 *  accessed properly by the s/w toggle the LANPHYPC value to power cycle
5543 *  the PHY.
5544 *  On i217, setup Intel Rapid Start Technology.
5545 **/
5546void e1000_resume_workarounds_pchlan(struct e1000_hw *hw)
5547{
5548	s32 ret_val;
5549
5550	if (hw->mac.type < e1000_pch2lan)
5551		return;
5552
5553	ret_val = e1000_init_phy_workarounds_pchlan(hw);
5554	if (ret_val) {
5555		e_dbg("Failed to init PHY flow ret_val=%d\n", ret_val);
5556		return;
5557	}
5558
5559	/* For i217 Intel Rapid Start Technology support when the system
5560	 * is transitioning from Sx and no manageability engine is present
5561	 * configure SMBus to restore on reset, disable proxy, and enable
5562	 * the reset on MTA (Multicast table array).
5563	 */
5564	if (hw->phy.type == e1000_phy_i217) {
5565		u16 phy_reg;
5566
5567		ret_val = hw->phy.ops.acquire(hw);
5568		if (ret_val) {
5569			e_dbg("Failed to setup iRST\n");
5570			return;
5571		}
5572
5573		/* Clear Auto Enable LPI after link up */
5574		e1e_rphy_locked(hw, I217_LPI_GPIO_CTRL, &phy_reg);
5575		phy_reg &= ~I217_LPI_GPIO_CTRL_AUTO_EN_LPI;
5576		e1e_wphy_locked(hw, I217_LPI_GPIO_CTRL, phy_reg);
5577
5578		if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
5579			/* Restore clear on SMB if no manageability engine
5580			 * is present
5581			 */
5582			ret_val = e1e_rphy_locked(hw, I217_MEMPWR, &phy_reg);
5583			if (ret_val)
5584				goto release;
5585			phy_reg |= I217_MEMPWR_DISABLE_SMB_RELEASE;
5586			e1e_wphy_locked(hw, I217_MEMPWR, phy_reg);
5587
5588			/* Disable Proxy */
5589			e1e_wphy_locked(hw, I217_PROXY_CTRL, 0);
5590		}
5591		/* Enable reset on MTA */
5592		ret_val = e1e_rphy_locked(hw, I217_CGFREG, &phy_reg);
5593		if (ret_val)
5594			goto release;
5595		phy_reg &= ~I217_CGFREG_ENABLE_MTA_RESET;
5596		e1e_wphy_locked(hw, I217_CGFREG, phy_reg);
5597release:
5598		if (ret_val)
5599			e_dbg("Error %d in resume workarounds\n", ret_val);
5600		hw->phy.ops.release(hw);
5601	}
5602}
5603
5604/**
5605 *  e1000_cleanup_led_ich8lan - Restore the default LED operation
5606 *  @hw: pointer to the HW structure
5607 *
5608 *  Return the LED back to the default configuration.
5609 **/
5610static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw)
5611{
5612	if (hw->phy.type == e1000_phy_ife)
5613		return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0);
5614
5615	ew32(LEDCTL, hw->mac.ledctl_default);
5616	return 0;
5617}
5618
5619/**
5620 *  e1000_led_on_ich8lan - Turn LEDs on
5621 *  @hw: pointer to the HW structure
5622 *
5623 *  Turn on the LEDs.
5624 **/
5625static s32 e1000_led_on_ich8lan(struct e1000_hw *hw)
5626{
5627	if (hw->phy.type == e1000_phy_ife)
5628		return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
5629				(IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_ON));
5630
5631	ew32(LEDCTL, hw->mac.ledctl_mode2);
5632	return 0;
5633}
5634
5635/**
5636 *  e1000_led_off_ich8lan - Turn LEDs off
5637 *  @hw: pointer to the HW structure
5638 *
5639 *  Turn off the LEDs.
5640 **/
5641static s32 e1000_led_off_ich8lan(struct e1000_hw *hw)
5642{
5643	if (hw->phy.type == e1000_phy_ife)
5644		return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
5645				(IFE_PSCL_PROBE_MODE |
5646				 IFE_PSCL_PROBE_LEDS_OFF));
5647
5648	ew32(LEDCTL, hw->mac.ledctl_mode1);
5649	return 0;
5650}
5651
5652/**
5653 *  e1000_setup_led_pchlan - Configures SW controllable LED
5654 *  @hw: pointer to the HW structure
5655 *
5656 *  This prepares the SW controllable LED for use.
5657 **/
5658static s32 e1000_setup_led_pchlan(struct e1000_hw *hw)
5659{
5660	return e1e_wphy(hw, HV_LED_CONFIG, (u16)hw->mac.ledctl_mode1);
5661}
5662
5663/**
5664 *  e1000_cleanup_led_pchlan - Restore the default LED operation
5665 *  @hw: pointer to the HW structure
5666 *
5667 *  Return the LED back to the default configuration.
5668 **/
5669static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw)
5670{
5671	return e1e_wphy(hw, HV_LED_CONFIG, (u16)hw->mac.ledctl_default);
5672}
5673
5674/**
5675 *  e1000_led_on_pchlan - Turn LEDs on
5676 *  @hw: pointer to the HW structure
5677 *
5678 *  Turn on the LEDs.
5679 **/
5680static s32 e1000_led_on_pchlan(struct e1000_hw *hw)
5681{
5682	u16 data = (u16)hw->mac.ledctl_mode2;
5683	u32 i, led;
5684
5685	/* If no link, then turn LED on by setting the invert bit
5686	 * for each LED that's mode is "link_up" in ledctl_mode2.
5687	 */
5688	if (!(er32(STATUS) & E1000_STATUS_LU)) {
5689		for (i = 0; i < 3; i++) {
5690			led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
5691			if ((led & E1000_PHY_LED0_MODE_MASK) !=
5692			    E1000_LEDCTL_MODE_LINK_UP)
5693				continue;
5694			if (led & E1000_PHY_LED0_IVRT)
5695				data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
5696			else
5697				data |= (E1000_PHY_LED0_IVRT << (i * 5));
5698		}
5699	}
5700
5701	return e1e_wphy(hw, HV_LED_CONFIG, data);
5702}
5703
5704/**
5705 *  e1000_led_off_pchlan - Turn LEDs off
5706 *  @hw: pointer to the HW structure
5707 *
5708 *  Turn off the LEDs.
5709 **/
5710static s32 e1000_led_off_pchlan(struct e1000_hw *hw)
5711{
5712	u16 data = (u16)hw->mac.ledctl_mode1;
5713	u32 i, led;
5714
5715	/* If no link, then turn LED off by clearing the invert bit
5716	 * for each LED that's mode is "link_up" in ledctl_mode1.
5717	 */
5718	if (!(er32(STATUS) & E1000_STATUS_LU)) {
5719		for (i = 0; i < 3; i++) {
5720			led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
5721			if ((led & E1000_PHY_LED0_MODE_MASK) !=
5722			    E1000_LEDCTL_MODE_LINK_UP)
5723				continue;
5724			if (led & E1000_PHY_LED0_IVRT)
5725				data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
5726			else
5727				data |= (E1000_PHY_LED0_IVRT << (i * 5));
5728		}
5729	}
5730
5731	return e1e_wphy(hw, HV_LED_CONFIG, data);
5732}
5733
5734/**
5735 *  e1000_get_cfg_done_ich8lan - Read config done bit after Full or PHY reset
5736 *  @hw: pointer to the HW structure
5737 *
5738 *  Read appropriate register for the config done bit for completion status
5739 *  and configure the PHY through s/w for EEPROM-less parts.
5740 *
5741 *  NOTE: some silicon which is EEPROM-less will fail trying to read the
5742 *  config done bit, so only an error is logged and continues.  If we were
5743 *  to return with error, EEPROM-less silicon would not be able to be reset
5744 *  or change link.
5745 **/
5746static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw)
5747{
5748	s32 ret_val = 0;
5749	u32 bank = 0;
5750	u32 status;
5751
5752	e1000e_get_cfg_done_generic(hw);
5753
5754	/* Wait for indication from h/w that it has completed basic config */
5755	if (hw->mac.type >= e1000_ich10lan) {
5756		e1000_lan_init_done_ich8lan(hw);
5757	} else {
5758		ret_val = e1000e_get_auto_rd_done(hw);
5759		if (ret_val) {
5760			/* When auto config read does not complete, do not
5761			 * return with an error. This can happen in situations
5762			 * where there is no eeprom and prevents getting link.
5763			 */
5764			e_dbg("Auto Read Done did not complete\n");
5765			ret_val = 0;
5766		}
5767	}
5768
5769	/* Clear PHY Reset Asserted bit */
5770	status = er32(STATUS);
5771	if (status & E1000_STATUS_PHYRA)
5772		ew32(STATUS, status & ~E1000_STATUS_PHYRA);
5773	else
5774		e_dbg("PHY Reset Asserted not set - needs delay\n");
5775
5776	/* If EEPROM is not marked present, init the IGP 3 PHY manually */
5777	if (hw->mac.type <= e1000_ich9lan) {
5778		if (!(er32(EECD) & E1000_EECD_PRES) &&
5779		    (hw->phy.type == e1000_phy_igp_3)) {
5780			e1000e_phy_init_script_igp3(hw);
5781		}
5782	} else {
5783		if (e1000_valid_nvm_bank_detect_ich8lan(hw, &bank)) {
5784			/* Maybe we should do a basic PHY config */
5785			e_dbg("EEPROM not present\n");
5786			ret_val = -E1000_ERR_CONFIG;
5787		}
5788	}
5789
5790	return ret_val;
5791}
5792
5793/**
5794 * e1000_power_down_phy_copper_ich8lan - Remove link during PHY power down
5795 * @hw: pointer to the HW structure
5796 *
5797 * In the case of a PHY power down to save power, or to turn off link during a
5798 * driver unload, or wake on lan is not enabled, remove the link.
5799 **/
5800static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw)
5801{
5802	/* If the management interface is not enabled, then power down */
5803	if (!(hw->mac.ops.check_mng_mode(hw) ||
5804	      hw->phy.ops.check_reset_block(hw)))
5805		e1000_power_down_phy_copper(hw);
5806}
5807
5808/**
5809 *  e1000_clear_hw_cntrs_ich8lan - Clear statistical counters
5810 *  @hw: pointer to the HW structure
5811 *
5812 *  Clears hardware counters specific to the silicon family and calls
5813 *  clear_hw_cntrs_generic to clear all general purpose counters.
5814 **/
5815static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw)
5816{
5817	u16 phy_data;
5818	s32 ret_val;
5819
5820	e1000e_clear_hw_cntrs_base(hw);
5821
5822	er32(ALGNERRC);
5823	er32(RXERRC);
5824	er32(TNCRS);
5825	er32(CEXTERR);
5826	er32(TSCTC);
5827	er32(TSCTFC);
5828
5829	er32(MGTPRC);
5830	er32(MGTPDC);
5831	er32(MGTPTC);
5832
5833	er32(IAC);
5834	er32(ICRXOC);
5835
5836	/* Clear PHY statistics registers */
5837	if ((hw->phy.type == e1000_phy_82578) ||
5838	    (hw->phy.type == e1000_phy_82579) ||
5839	    (hw->phy.type == e1000_phy_i217) ||
5840	    (hw->phy.type == e1000_phy_82577)) {
5841		ret_val = hw->phy.ops.acquire(hw);
5842		if (ret_val)
5843			return;
5844		ret_val = hw->phy.ops.set_page(hw,
5845					       HV_STATS_PAGE << IGP_PAGE_SHIFT);
5846		if (ret_val)
5847			goto release;
5848		hw->phy.ops.read_reg_page(hw, HV_SCC_UPPER, &phy_data);
5849		hw->phy.ops.read_reg_page(hw, HV_SCC_LOWER, &phy_data);
5850		hw->phy.ops.read_reg_page(hw, HV_ECOL_UPPER, &phy_data);
5851		hw->phy.ops.read_reg_page(hw, HV_ECOL_LOWER, &phy_data);
5852		hw->phy.ops.read_reg_page(hw, HV_MCC_UPPER, &phy_data);
5853		hw->phy.ops.read_reg_page(hw, HV_MCC_LOWER, &phy_data);
5854		hw->phy.ops.read_reg_page(hw, HV_LATECOL_UPPER, &phy_data);
5855		hw->phy.ops.read_reg_page(hw, HV_LATECOL_LOWER, &phy_data);
5856		hw->phy.ops.read_reg_page(hw, HV_COLC_UPPER, &phy_data);
5857		hw->phy.ops.read_reg_page(hw, HV_COLC_LOWER, &phy_data);
5858		hw->phy.ops.read_reg_page(hw, HV_DC_UPPER, &phy_data);
5859		hw->phy.ops.read_reg_page(hw, HV_DC_LOWER, &phy_data);
5860		hw->phy.ops.read_reg_page(hw, HV_TNCRS_UPPER, &phy_data);
5861		hw->phy.ops.read_reg_page(hw, HV_TNCRS_LOWER, &phy_data);
5862release:
5863		hw->phy.ops.release(hw);
5864	}
5865}
5866
5867static const struct e1000_mac_operations ich8_mac_ops = {
5868	/* check_mng_mode dependent on mac type */
5869	.check_for_link		= e1000_check_for_copper_link_ich8lan,
5870	/* cleanup_led dependent on mac type */
5871	.clear_hw_cntrs		= e1000_clear_hw_cntrs_ich8lan,
5872	.get_bus_info		= e1000_get_bus_info_ich8lan,
5873	.set_lan_id		= e1000_set_lan_id_single_port,
5874	.get_link_up_info	= e1000_get_link_up_info_ich8lan,
5875	/* led_on dependent on mac type */
5876	/* led_off dependent on mac type */
5877	.update_mc_addr_list	= e1000e_update_mc_addr_list_generic,
5878	.reset_hw		= e1000_reset_hw_ich8lan,
5879	.init_hw		= e1000_init_hw_ich8lan,
5880	.setup_link		= e1000_setup_link_ich8lan,
5881	.setup_physical_interface = e1000_setup_copper_link_ich8lan,
5882	/* id_led_init dependent on mac type */
5883	.config_collision_dist	= e1000e_config_collision_dist_generic,
5884	.rar_set		= e1000e_rar_set_generic,
5885	.rar_get_count		= e1000e_rar_get_count_generic,
5886};
5887
5888static const struct e1000_phy_operations ich8_phy_ops = {
5889	.acquire		= e1000_acquire_swflag_ich8lan,
5890	.check_reset_block	= e1000_check_reset_block_ich8lan,
5891	.commit			= NULL,
5892	.get_cfg_done		= e1000_get_cfg_done_ich8lan,
5893	.get_cable_length	= e1000e_get_cable_length_igp_2,
5894	.read_reg		= e1000e_read_phy_reg_igp,
5895	.release		= e1000_release_swflag_ich8lan,
5896	.reset			= e1000_phy_hw_reset_ich8lan,
5897	.set_d0_lplu_state	= e1000_set_d0_lplu_state_ich8lan,
5898	.set_d3_lplu_state	= e1000_set_d3_lplu_state_ich8lan,
5899	.write_reg		= e1000e_write_phy_reg_igp,
5900};
5901
5902static const struct e1000_nvm_operations ich8_nvm_ops = {
5903	.acquire		= e1000_acquire_nvm_ich8lan,
5904	.read			= e1000_read_nvm_ich8lan,
5905	.release		= e1000_release_nvm_ich8lan,
5906	.reload			= e1000e_reload_nvm_generic,
5907	.update			= e1000_update_nvm_checksum_ich8lan,
5908	.valid_led_default	= e1000_valid_led_default_ich8lan,
5909	.validate		= e1000_validate_nvm_checksum_ich8lan,
5910	.write			= e1000_write_nvm_ich8lan,
5911};
5912
5913static const struct e1000_nvm_operations spt_nvm_ops = {
5914	.acquire		= e1000_acquire_nvm_ich8lan,
5915	.release		= e1000_release_nvm_ich8lan,
5916	.read			= e1000_read_nvm_spt,
5917	.update			= e1000_update_nvm_checksum_spt,
5918	.reload			= e1000e_reload_nvm_generic,
5919	.valid_led_default	= e1000_valid_led_default_ich8lan,
5920	.validate		= e1000_validate_nvm_checksum_ich8lan,
5921	.write			= e1000_write_nvm_ich8lan,
5922};
5923
5924const struct e1000_info e1000_ich8_info = {
5925	.mac			= e1000_ich8lan,
5926	.flags			= FLAG_HAS_WOL
5927				  | FLAG_IS_ICH
5928				  | FLAG_HAS_CTRLEXT_ON_LOAD
5929				  | FLAG_HAS_AMT
5930				  | FLAG_HAS_FLASH
5931				  | FLAG_APME_IN_WUC,
5932	.pba			= 8,
5933	.max_hw_frame_size	= VLAN_ETH_FRAME_LEN + ETH_FCS_LEN,
5934	.get_variants		= e1000_get_variants_ich8lan,
5935	.mac_ops		= &ich8_mac_ops,
5936	.phy_ops		= &ich8_phy_ops,
5937	.nvm_ops		= &ich8_nvm_ops,
5938};
5939
5940const struct e1000_info e1000_ich9_info = {
5941	.mac			= e1000_ich9lan,
5942	.flags			= FLAG_HAS_JUMBO_FRAMES
5943				  | FLAG_IS_ICH
5944				  | FLAG_HAS_WOL
5945				  | FLAG_HAS_CTRLEXT_ON_LOAD
5946				  | FLAG_HAS_AMT
5947				  | FLAG_HAS_FLASH
5948				  | FLAG_APME_IN_WUC,
5949	.pba			= 18,
5950	.max_hw_frame_size	= DEFAULT_JUMBO,
5951	.get_variants		= e1000_get_variants_ich8lan,
5952	.mac_ops		= &ich8_mac_ops,
5953	.phy_ops		= &ich8_phy_ops,
5954	.nvm_ops		= &ich8_nvm_ops,
5955};
5956
5957const struct e1000_info e1000_ich10_info = {
5958	.mac			= e1000_ich10lan,
5959	.flags			= FLAG_HAS_JUMBO_FRAMES
5960				  | FLAG_IS_ICH
5961				  | FLAG_HAS_WOL
5962				  | FLAG_HAS_CTRLEXT_ON_LOAD
5963				  | FLAG_HAS_AMT
5964				  | FLAG_HAS_FLASH
5965				  | FLAG_APME_IN_WUC,
5966	.pba			= 18,
5967	.max_hw_frame_size	= DEFAULT_JUMBO,
5968	.get_variants		= e1000_get_variants_ich8lan,
5969	.mac_ops		= &ich8_mac_ops,
5970	.phy_ops		= &ich8_phy_ops,
5971	.nvm_ops		= &ich8_nvm_ops,
5972};
5973
5974const struct e1000_info e1000_pch_info = {
5975	.mac			= e1000_pchlan,
5976	.flags			= FLAG_IS_ICH
5977				  | FLAG_HAS_WOL
5978				  | FLAG_HAS_CTRLEXT_ON_LOAD
5979				  | FLAG_HAS_AMT
5980				  | FLAG_HAS_FLASH
5981				  | FLAG_HAS_JUMBO_FRAMES
5982				  | FLAG_DISABLE_FC_PAUSE_TIME /* errata */
5983				  | FLAG_APME_IN_WUC,
5984	.flags2			= FLAG2_HAS_PHY_STATS,
5985	.pba			= 26,
5986	.max_hw_frame_size	= 4096,
5987	.get_variants		= e1000_get_variants_ich8lan,
5988	.mac_ops		= &ich8_mac_ops,
5989	.phy_ops		= &ich8_phy_ops,
5990	.nvm_ops		= &ich8_nvm_ops,
5991};
5992
5993const struct e1000_info e1000_pch2_info = {
5994	.mac			= e1000_pch2lan,
5995	.flags			= FLAG_IS_ICH
5996				  | FLAG_HAS_WOL
5997				  | FLAG_HAS_HW_TIMESTAMP
5998				  | FLAG_HAS_CTRLEXT_ON_LOAD
5999				  | FLAG_HAS_AMT
6000				  | FLAG_HAS_FLASH
6001				  | FLAG_HAS_JUMBO_FRAMES
6002				  | FLAG_APME_IN_WUC,
6003	.flags2			= FLAG2_HAS_PHY_STATS
6004				  | FLAG2_HAS_EEE
6005				  | FLAG2_CHECK_SYSTIM_OVERFLOW,
6006	.pba			= 26,
6007	.max_hw_frame_size	= 9022,
6008	.get_variants		= e1000_get_variants_ich8lan,
6009	.mac_ops		= &ich8_mac_ops,
6010	.phy_ops		= &ich8_phy_ops,
6011	.nvm_ops		= &ich8_nvm_ops,
6012};
6013
6014const struct e1000_info e1000_pch_lpt_info = {
6015	.mac			= e1000_pch_lpt,
6016	.flags			= FLAG_IS_ICH
6017				  | FLAG_HAS_WOL
6018				  | FLAG_HAS_HW_TIMESTAMP
6019				  | FLAG_HAS_CTRLEXT_ON_LOAD
6020				  | FLAG_HAS_AMT
6021				  | FLAG_HAS_FLASH
6022				  | FLAG_HAS_JUMBO_FRAMES
6023				  | FLAG_APME_IN_WUC,
6024	.flags2			= FLAG2_HAS_PHY_STATS
6025				  | FLAG2_HAS_EEE
6026				  | FLAG2_CHECK_SYSTIM_OVERFLOW,
6027	.pba			= 26,
6028	.max_hw_frame_size	= 9022,
6029	.get_variants		= e1000_get_variants_ich8lan,
6030	.mac_ops		= &ich8_mac_ops,
6031	.phy_ops		= &ich8_phy_ops,
6032	.nvm_ops		= &ich8_nvm_ops,
6033};
6034
6035const struct e1000_info e1000_pch_spt_info = {
6036	.mac			= e1000_pch_spt,
6037	.flags			= FLAG_IS_ICH
6038				  | FLAG_HAS_WOL
6039				  | FLAG_HAS_HW_TIMESTAMP
6040				  | FLAG_HAS_CTRLEXT_ON_LOAD
6041				  | FLAG_HAS_AMT
6042				  | FLAG_HAS_FLASH
6043				  | FLAG_HAS_JUMBO_FRAMES
6044				  | FLAG_APME_IN_WUC,
6045	.flags2			= FLAG2_HAS_PHY_STATS
6046				  | FLAG2_HAS_EEE,
6047	.pba			= 26,
6048	.max_hw_frame_size	= 9022,
6049	.get_variants		= e1000_get_variants_ich8lan,
6050	.mac_ops		= &ich8_mac_ops,
6051	.phy_ops		= &ich8_phy_ops,
6052	.nvm_ops		= &spt_nvm_ops,
6053};
6054
6055const struct e1000_info e1000_pch_cnp_info = {
6056	.mac			= e1000_pch_cnp,
6057	.flags			= FLAG_IS_ICH
6058				  | FLAG_HAS_WOL
6059				  | FLAG_HAS_HW_TIMESTAMP
6060				  | FLAG_HAS_CTRLEXT_ON_LOAD
6061				  | FLAG_HAS_AMT
6062				  | FLAG_HAS_FLASH
6063				  | FLAG_HAS_JUMBO_FRAMES
6064				  | FLAG_APME_IN_WUC,
6065	.flags2			= FLAG2_HAS_PHY_STATS
6066				  | FLAG2_HAS_EEE,
6067	.pba			= 26,
6068	.max_hw_frame_size	= 9022,
6069	.get_variants		= e1000_get_variants_ich8lan,
6070	.mac_ops		= &ich8_mac_ops,
6071	.phy_ops		= &ich8_phy_ops,
6072	.nvm_ops		= &spt_nvm_ops,
6073};
6074
6075const struct e1000_info e1000_pch_tgp_info = {
6076	.mac			= e1000_pch_tgp,
6077	.flags			= FLAG_IS_ICH
6078				  | FLAG_HAS_WOL
6079				  | FLAG_HAS_HW_TIMESTAMP
6080				  | FLAG_HAS_CTRLEXT_ON_LOAD
6081				  | FLAG_HAS_AMT
6082				  | FLAG_HAS_FLASH
6083				  | FLAG_HAS_JUMBO_FRAMES
6084				  | FLAG_APME_IN_WUC,
6085	.flags2			= FLAG2_HAS_PHY_STATS
6086				  | FLAG2_HAS_EEE,
6087	.pba			= 26,
6088	.max_hw_frame_size	= 9022,
6089	.get_variants		= e1000_get_variants_ich8lan,
6090	.mac_ops		= &ich8_mac_ops,
6091	.phy_ops		= &ich8_phy_ops,
6092	.nvm_ops		= &spt_nvm_ops,
6093};
6094
6095const struct e1000_info e1000_pch_adp_info = {
6096	.mac			= e1000_pch_adp,
6097	.flags			= FLAG_IS_ICH
6098				  | FLAG_HAS_WOL
6099				  | FLAG_HAS_HW_TIMESTAMP
6100				  | FLAG_HAS_CTRLEXT_ON_LOAD
6101				  | FLAG_HAS_AMT
6102				  | FLAG_HAS_FLASH
6103				  | FLAG_HAS_JUMBO_FRAMES
6104				  | FLAG_APME_IN_WUC,
6105	.flags2			= FLAG2_HAS_PHY_STATS
6106				  | FLAG2_HAS_EEE,
6107	.pba			= 26,
6108	.max_hw_frame_size	= 9022,
6109	.get_variants		= e1000_get_variants_ich8lan,
6110	.mac_ops		= &ich8_mac_ops,
6111	.phy_ops		= &ich8_phy_ops,
6112	.nvm_ops		= &spt_nvm_ops,
6113};
6114
6115const struct e1000_info e1000_pch_mtp_info = {
6116	.mac			= e1000_pch_mtp,
6117	.flags			= FLAG_IS_ICH
6118				  | FLAG_HAS_WOL
6119				  | FLAG_HAS_HW_TIMESTAMP
6120				  | FLAG_HAS_CTRLEXT_ON_LOAD
6121				  | FLAG_HAS_AMT
6122				  | FLAG_HAS_FLASH
6123				  | FLAG_HAS_JUMBO_FRAMES
6124				  | FLAG_APME_IN_WUC,
6125	.flags2			= FLAG2_HAS_PHY_STATS
6126				  | FLAG2_HAS_EEE,
6127	.pba			= 26,
6128	.max_hw_frame_size	= 9022,
6129	.get_variants		= e1000_get_variants_ich8lan,
6130	.mac_ops		= &ich8_mac_ops,
6131	.phy_ops		= &ich8_phy_ops,
6132	.nvm_ops		= &spt_nvm_ops,
6133};
v5.9
   1// SPDX-License-Identifier: GPL-2.0
   2/* Copyright(c) 1999 - 2018 Intel Corporation. */
   3
   4/* 82562G 10/100 Network Connection
   5 * 82562G-2 10/100 Network Connection
   6 * 82562GT 10/100 Network Connection
   7 * 82562GT-2 10/100 Network Connection
   8 * 82562V 10/100 Network Connection
   9 * 82562V-2 10/100 Network Connection
  10 * 82566DC-2 Gigabit Network Connection
  11 * 82566DC Gigabit Network Connection
  12 * 82566DM-2 Gigabit Network Connection
  13 * 82566DM Gigabit Network Connection
  14 * 82566MC Gigabit Network Connection
  15 * 82566MM Gigabit Network Connection
  16 * 82567LM Gigabit Network Connection
  17 * 82567LF Gigabit Network Connection
  18 * 82567V Gigabit Network Connection
  19 * 82567LM-2 Gigabit Network Connection
  20 * 82567LF-2 Gigabit Network Connection
  21 * 82567V-2 Gigabit Network Connection
  22 * 82567LF-3 Gigabit Network Connection
  23 * 82567LM-3 Gigabit Network Connection
  24 * 82567LM-4 Gigabit Network Connection
  25 * 82577LM Gigabit Network Connection
  26 * 82577LC Gigabit Network Connection
  27 * 82578DM Gigabit Network Connection
  28 * 82578DC Gigabit Network Connection
  29 * 82579LM Gigabit Network Connection
  30 * 82579V Gigabit Network Connection
  31 * Ethernet Connection I217-LM
  32 * Ethernet Connection I217-V
  33 * Ethernet Connection I218-V
  34 * Ethernet Connection I218-LM
  35 * Ethernet Connection (2) I218-LM
  36 * Ethernet Connection (2) I218-V
  37 * Ethernet Connection (3) I218-LM
  38 * Ethernet Connection (3) I218-V
  39 */
  40
  41#include "e1000.h"
  42
  43/* ICH GbE Flash Hardware Sequencing Flash Status Register bit breakdown */
  44/* Offset 04h HSFSTS */
  45union ich8_hws_flash_status {
  46	struct ich8_hsfsts {
  47		u16 flcdone:1;	/* bit 0 Flash Cycle Done */
  48		u16 flcerr:1;	/* bit 1 Flash Cycle Error */
  49		u16 dael:1;	/* bit 2 Direct Access error Log */
  50		u16 berasesz:2;	/* bit 4:3 Sector Erase Size */
  51		u16 flcinprog:1;	/* bit 5 flash cycle in Progress */
  52		u16 reserved1:2;	/* bit 13:6 Reserved */
  53		u16 reserved2:6;	/* bit 13:6 Reserved */
  54		u16 fldesvalid:1;	/* bit 14 Flash Descriptor Valid */
  55		u16 flockdn:1;	/* bit 15 Flash Config Lock-Down */
  56	} hsf_status;
  57	u16 regval;
  58};
  59
  60/* ICH GbE Flash Hardware Sequencing Flash control Register bit breakdown */
  61/* Offset 06h FLCTL */
  62union ich8_hws_flash_ctrl {
  63	struct ich8_hsflctl {
  64		u16 flcgo:1;	/* 0 Flash Cycle Go */
  65		u16 flcycle:2;	/* 2:1 Flash Cycle */
  66		u16 reserved:5;	/* 7:3 Reserved  */
  67		u16 fldbcount:2;	/* 9:8 Flash Data Byte Count */
  68		u16 flockdn:6;	/* 15:10 Reserved */
  69	} hsf_ctrl;
  70	u16 regval;
  71};
  72
  73/* ICH Flash Region Access Permissions */
  74union ich8_hws_flash_regacc {
  75	struct ich8_flracc {
  76		u32 grra:8;	/* 0:7 GbE region Read Access */
  77		u32 grwa:8;	/* 8:15 GbE region Write Access */
  78		u32 gmrag:8;	/* 23:16 GbE Master Read Access Grant */
  79		u32 gmwag:8;	/* 31:24 GbE Master Write Access Grant */
  80	} hsf_flregacc;
  81	u16 regval;
  82};
  83
  84/* ICH Flash Protected Region */
  85union ich8_flash_protected_range {
  86	struct ich8_pr {
  87		u32 base:13;	/* 0:12 Protected Range Base */
  88		u32 reserved1:2;	/* 13:14 Reserved */
  89		u32 rpe:1;	/* 15 Read Protection Enable */
  90		u32 limit:13;	/* 16:28 Protected Range Limit */
  91		u32 reserved2:2;	/* 29:30 Reserved */
  92		u32 wpe:1;	/* 31 Write Protection Enable */
  93	} range;
  94	u32 regval;
  95};
  96
  97static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw);
  98static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw);
  99static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank);
 100static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
 101						u32 offset, u8 byte);
 102static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
 103					 u8 *data);
 104static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
 105					 u16 *data);
 106static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
 107					 u8 size, u16 *data);
 108static s32 e1000_read_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset,
 109					   u32 *data);
 110static s32 e1000_read_flash_dword_ich8lan(struct e1000_hw *hw,
 111					  u32 offset, u32 *data);
 112static s32 e1000_write_flash_data32_ich8lan(struct e1000_hw *hw,
 113					    u32 offset, u32 data);
 114static s32 e1000_retry_write_flash_dword_ich8lan(struct e1000_hw *hw,
 115						 u32 offset, u32 dword);
 116static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw);
 117static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw);
 118static s32 e1000_led_on_ich8lan(struct e1000_hw *hw);
 119static s32 e1000_led_off_ich8lan(struct e1000_hw *hw);
 120static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw);
 121static s32 e1000_setup_led_pchlan(struct e1000_hw *hw);
 122static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw);
 123static s32 e1000_led_on_pchlan(struct e1000_hw *hw);
 124static s32 e1000_led_off_pchlan(struct e1000_hw *hw);
 125static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active);
 126static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw);
 127static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw);
 128static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link);
 129static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw);
 130static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw);
 131static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw);
 132static int e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index);
 133static int e1000_rar_set_pch_lpt(struct e1000_hw *hw, u8 *addr, u32 index);
 134static u32 e1000_rar_get_count_pch_lpt(struct e1000_hw *hw);
 135static s32 e1000_k1_workaround_lv(struct e1000_hw *hw);
 136static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate);
 137static s32 e1000_disable_ulp_lpt_lp(struct e1000_hw *hw, bool force);
 138static s32 e1000_setup_copper_link_pch_lpt(struct e1000_hw *hw);
 139static s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state);
 140
 141static inline u16 __er16flash(struct e1000_hw *hw, unsigned long reg)
 142{
 143	return readw(hw->flash_address + reg);
 144}
 145
 146static inline u32 __er32flash(struct e1000_hw *hw, unsigned long reg)
 147{
 148	return readl(hw->flash_address + reg);
 149}
 150
 151static inline void __ew16flash(struct e1000_hw *hw, unsigned long reg, u16 val)
 152{
 153	writew(val, hw->flash_address + reg);
 154}
 155
 156static inline void __ew32flash(struct e1000_hw *hw, unsigned long reg, u32 val)
 157{
 158	writel(val, hw->flash_address + reg);
 159}
 160
 161#define er16flash(reg)		__er16flash(hw, (reg))
 162#define er32flash(reg)		__er32flash(hw, (reg))
 163#define ew16flash(reg, val)	__ew16flash(hw, (reg), (val))
 164#define ew32flash(reg, val)	__ew32flash(hw, (reg), (val))
 165
 166/**
 167 *  e1000_phy_is_accessible_pchlan - Check if able to access PHY registers
 168 *  @hw: pointer to the HW structure
 169 *
 170 *  Test access to the PHY registers by reading the PHY ID registers.  If
 171 *  the PHY ID is already known (e.g. resume path) compare it with known ID,
 172 *  otherwise assume the read PHY ID is correct if it is valid.
 173 *
 174 *  Assumes the sw/fw/hw semaphore is already acquired.
 175 **/
 176static bool e1000_phy_is_accessible_pchlan(struct e1000_hw *hw)
 177{
 178	u16 phy_reg = 0;
 179	u32 phy_id = 0;
 180	s32 ret_val = 0;
 181	u16 retry_count;
 182	u32 mac_reg = 0;
 183
 184	for (retry_count = 0; retry_count < 2; retry_count++) {
 185		ret_val = e1e_rphy_locked(hw, MII_PHYSID1, &phy_reg);
 186		if (ret_val || (phy_reg == 0xFFFF))
 187			continue;
 188		phy_id = (u32)(phy_reg << 16);
 189
 190		ret_val = e1e_rphy_locked(hw, MII_PHYSID2, &phy_reg);
 191		if (ret_val || (phy_reg == 0xFFFF)) {
 192			phy_id = 0;
 193			continue;
 194		}
 195		phy_id |= (u32)(phy_reg & PHY_REVISION_MASK);
 196		break;
 197	}
 198
 199	if (hw->phy.id) {
 200		if (hw->phy.id == phy_id)
 201			goto out;
 202	} else if (phy_id) {
 203		hw->phy.id = phy_id;
 204		hw->phy.revision = (u32)(phy_reg & ~PHY_REVISION_MASK);
 205		goto out;
 206	}
 207
 208	/* In case the PHY needs to be in mdio slow mode,
 209	 * set slow mode and try to get the PHY id again.
 210	 */
 211	if (hw->mac.type < e1000_pch_lpt) {
 212		hw->phy.ops.release(hw);
 213		ret_val = e1000_set_mdio_slow_mode_hv(hw);
 214		if (!ret_val)
 215			ret_val = e1000e_get_phy_id(hw);
 216		hw->phy.ops.acquire(hw);
 217	}
 218
 219	if (ret_val)
 220		return false;
 221out:
 222	if (hw->mac.type >= e1000_pch_lpt) {
 223		/* Only unforce SMBus if ME is not active */
 224		if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
 
 
 
 
 
 225			/* Unforce SMBus mode in PHY */
 226			e1e_rphy_locked(hw, CV_SMB_CTRL, &phy_reg);
 227			phy_reg &= ~CV_SMB_CTRL_FORCE_SMBUS;
 228			e1e_wphy_locked(hw, CV_SMB_CTRL, phy_reg);
 229
 
 
 230			/* Unforce SMBus mode in MAC */
 231			mac_reg = er32(CTRL_EXT);
 232			mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
 233			ew32(CTRL_EXT, mac_reg);
 234		}
 235	}
 236
 237	return true;
 238}
 239
 240/**
 241 *  e1000_toggle_lanphypc_pch_lpt - toggle the LANPHYPC pin value
 242 *  @hw: pointer to the HW structure
 243 *
 244 *  Toggling the LANPHYPC pin value fully power-cycles the PHY and is
 245 *  used to reset the PHY to a quiescent state when necessary.
 246 **/
 247static void e1000_toggle_lanphypc_pch_lpt(struct e1000_hw *hw)
 248{
 249	u32 mac_reg;
 250
 251	/* Set Phy Config Counter to 50msec */
 252	mac_reg = er32(FEXTNVM3);
 253	mac_reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK;
 254	mac_reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC;
 255	ew32(FEXTNVM3, mac_reg);
 256
 257	/* Toggle LANPHYPC Value bit */
 258	mac_reg = er32(CTRL);
 259	mac_reg |= E1000_CTRL_LANPHYPC_OVERRIDE;
 260	mac_reg &= ~E1000_CTRL_LANPHYPC_VALUE;
 261	ew32(CTRL, mac_reg);
 262	e1e_flush();
 263	usleep_range(10, 20);
 264	mac_reg &= ~E1000_CTRL_LANPHYPC_OVERRIDE;
 265	ew32(CTRL, mac_reg);
 266	e1e_flush();
 267
 268	if (hw->mac.type < e1000_pch_lpt) {
 269		msleep(50);
 270	} else {
 271		u16 count = 20;
 272
 273		do {
 274			usleep_range(5000, 6000);
 275		} while (!(er32(CTRL_EXT) & E1000_CTRL_EXT_LPCD) && count--);
 276
 277		msleep(30);
 278	}
 279}
 280
 281/**
 282 *  e1000_init_phy_workarounds_pchlan - PHY initialization workarounds
 283 *  @hw: pointer to the HW structure
 284 *
 285 *  Workarounds/flow necessary for PHY initialization during driver load
 286 *  and resume paths.
 287 **/
 288static s32 e1000_init_phy_workarounds_pchlan(struct e1000_hw *hw)
 289{
 290	struct e1000_adapter *adapter = hw->adapter;
 291	u32 mac_reg, fwsm = er32(FWSM);
 292	s32 ret_val;
 293
 294	/* Gate automatic PHY configuration by hardware on managed and
 295	 * non-managed 82579 and newer adapters.
 296	 */
 297	e1000_gate_hw_phy_config_ich8lan(hw, true);
 298
 299	/* It is not possible to be certain of the current state of ULP
 300	 * so forcibly disable it.
 301	 */
 302	hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_unknown;
 303	ret_val = e1000_disable_ulp_lpt_lp(hw, true);
 304	if (ret_val)
 305		e_warn("Failed to disable ULP\n");
 306
 307	ret_val = hw->phy.ops.acquire(hw);
 308	if (ret_val) {
 309		e_dbg("Failed to initialize PHY flow\n");
 310		goto out;
 311	}
 312
 
 
 
 
 
 313	/* The MAC-PHY interconnect may be in SMBus mode.  If the PHY is
 314	 * inaccessible and resetting the PHY is not blocked, toggle the
 315	 * LANPHYPC Value bit to force the interconnect to PCIe mode.
 316	 */
 317	switch (hw->mac.type) {
 318	case e1000_pch_lpt:
 319	case e1000_pch_spt:
 320	case e1000_pch_cnp:
 321	case e1000_pch_tgp:
 322	case e1000_pch_adp:
 
 
 
 
 323		if (e1000_phy_is_accessible_pchlan(hw))
 324			break;
 325
 326		/* Before toggling LANPHYPC, see if PHY is accessible by
 327		 * forcing MAC to SMBus mode first.
 328		 */
 329		mac_reg = er32(CTRL_EXT);
 330		mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
 331		ew32(CTRL_EXT, mac_reg);
 332
 333		/* Wait 50 milliseconds for MAC to finish any retries
 334		 * that it might be trying to perform from previous
 335		 * attempts to acknowledge any phy read requests.
 336		 */
 337		msleep(50);
 338
 339		fallthrough;
 340	case e1000_pch2lan:
 341		if (e1000_phy_is_accessible_pchlan(hw))
 342			break;
 343
 344		fallthrough;
 345	case e1000_pchlan:
 346		if ((hw->mac.type == e1000_pchlan) &&
 347		    (fwsm & E1000_ICH_FWSM_FW_VALID))
 348			break;
 349
 350		if (hw->phy.ops.check_reset_block(hw)) {
 351			e_dbg("Required LANPHYPC toggle blocked by ME\n");
 352			ret_val = -E1000_ERR_PHY;
 353			break;
 354		}
 355
 356		/* Toggle LANPHYPC Value bit */
 357		e1000_toggle_lanphypc_pch_lpt(hw);
 358		if (hw->mac.type >= e1000_pch_lpt) {
 359			if (e1000_phy_is_accessible_pchlan(hw))
 360				break;
 361
 362			/* Toggling LANPHYPC brings the PHY out of SMBus mode
 363			 * so ensure that the MAC is also out of SMBus mode
 364			 */
 365			mac_reg = er32(CTRL_EXT);
 366			mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
 367			ew32(CTRL_EXT, mac_reg);
 368
 369			if (e1000_phy_is_accessible_pchlan(hw))
 370				break;
 371
 372			ret_val = -E1000_ERR_PHY;
 373		}
 374		break;
 375	default:
 376		break;
 377	}
 378
 
 
 379	hw->phy.ops.release(hw);
 380	if (!ret_val) {
 381
 382		/* Check to see if able to reset PHY.  Print error if not */
 383		if (hw->phy.ops.check_reset_block(hw)) {
 384			e_err("Reset blocked by ME\n");
 385			goto out;
 386		}
 387
 388		/* Reset the PHY before any access to it.  Doing so, ensures
 389		 * that the PHY is in a known good state before we read/write
 390		 * PHY registers.  The generic reset is sufficient here,
 391		 * because we haven't determined the PHY type yet.
 392		 */
 393		ret_val = e1000e_phy_hw_reset_generic(hw);
 394		if (ret_val)
 395			goto out;
 396
 397		/* On a successful reset, possibly need to wait for the PHY
 398		 * to quiesce to an accessible state before returning control
 399		 * to the calling function.  If the PHY does not quiesce, then
 400		 * return E1000E_BLK_PHY_RESET, as this is the condition that
 401		 *  the PHY is in.
 402		 */
 403		ret_val = hw->phy.ops.check_reset_block(hw);
 404		if (ret_val)
 405			e_err("ME blocked access to PHY after reset\n");
 406	}
 407
 408out:
 409	/* Ungate automatic PHY configuration on non-managed 82579 */
 410	if ((hw->mac.type == e1000_pch2lan) &&
 411	    !(fwsm & E1000_ICH_FWSM_FW_VALID)) {
 412		usleep_range(10000, 11000);
 413		e1000_gate_hw_phy_config_ich8lan(hw, false);
 414	}
 415
 416	return ret_val;
 417}
 418
 419/**
 420 *  e1000_init_phy_params_pchlan - Initialize PHY function pointers
 421 *  @hw: pointer to the HW structure
 422 *
 423 *  Initialize family-specific PHY parameters and function pointers.
 424 **/
 425static s32 e1000_init_phy_params_pchlan(struct e1000_hw *hw)
 426{
 427	struct e1000_phy_info *phy = &hw->phy;
 428	s32 ret_val;
 429
 430	phy->addr = 1;
 431	phy->reset_delay_us = 100;
 432
 433	phy->ops.set_page = e1000_set_page_igp;
 434	phy->ops.read_reg = e1000_read_phy_reg_hv;
 435	phy->ops.read_reg_locked = e1000_read_phy_reg_hv_locked;
 436	phy->ops.read_reg_page = e1000_read_phy_reg_page_hv;
 437	phy->ops.set_d0_lplu_state = e1000_set_lplu_state_pchlan;
 438	phy->ops.set_d3_lplu_state = e1000_set_lplu_state_pchlan;
 439	phy->ops.write_reg = e1000_write_phy_reg_hv;
 440	phy->ops.write_reg_locked = e1000_write_phy_reg_hv_locked;
 441	phy->ops.write_reg_page = e1000_write_phy_reg_page_hv;
 442	phy->ops.power_up = e1000_power_up_phy_copper;
 443	phy->ops.power_down = e1000_power_down_phy_copper_ich8lan;
 444	phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
 445
 446	phy->id = e1000_phy_unknown;
 447
 
 
 
 
 
 448	ret_val = e1000_init_phy_workarounds_pchlan(hw);
 449	if (ret_val)
 450		return ret_val;
 451
 452	if (phy->id == e1000_phy_unknown)
 453		switch (hw->mac.type) {
 454		default:
 455			ret_val = e1000e_get_phy_id(hw);
 456			if (ret_val)
 457				return ret_val;
 458			if ((phy->id != 0) && (phy->id != PHY_REVISION_MASK))
 459				break;
 460			fallthrough;
 461		case e1000_pch2lan:
 462		case e1000_pch_lpt:
 463		case e1000_pch_spt:
 464		case e1000_pch_cnp:
 465		case e1000_pch_tgp:
 466		case e1000_pch_adp:
 
 
 
 
 467			/* In case the PHY needs to be in mdio slow mode,
 468			 * set slow mode and try to get the PHY id again.
 469			 */
 470			ret_val = e1000_set_mdio_slow_mode_hv(hw);
 471			if (ret_val)
 472				return ret_val;
 473			ret_val = e1000e_get_phy_id(hw);
 474			if (ret_val)
 475				return ret_val;
 476			break;
 477		}
 478	phy->type = e1000e_get_phy_type_from_id(phy->id);
 479
 480	switch (phy->type) {
 481	case e1000_phy_82577:
 482	case e1000_phy_82579:
 483	case e1000_phy_i217:
 484		phy->ops.check_polarity = e1000_check_polarity_82577;
 485		phy->ops.force_speed_duplex =
 486		    e1000_phy_force_speed_duplex_82577;
 487		phy->ops.get_cable_length = e1000_get_cable_length_82577;
 488		phy->ops.get_info = e1000_get_phy_info_82577;
 489		phy->ops.commit = e1000e_phy_sw_reset;
 490		break;
 491	case e1000_phy_82578:
 492		phy->ops.check_polarity = e1000_check_polarity_m88;
 493		phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88;
 494		phy->ops.get_cable_length = e1000e_get_cable_length_m88;
 495		phy->ops.get_info = e1000e_get_phy_info_m88;
 496		break;
 497	default:
 498		ret_val = -E1000_ERR_PHY;
 499		break;
 500	}
 501
 502	return ret_val;
 503}
 504
 505/**
 506 *  e1000_init_phy_params_ich8lan - Initialize PHY function pointers
 507 *  @hw: pointer to the HW structure
 508 *
 509 *  Initialize family-specific PHY parameters and function pointers.
 510 **/
 511static s32 e1000_init_phy_params_ich8lan(struct e1000_hw *hw)
 512{
 513	struct e1000_phy_info *phy = &hw->phy;
 514	s32 ret_val;
 515	u16 i = 0;
 516
 517	phy->addr = 1;
 518	phy->reset_delay_us = 100;
 519
 520	phy->ops.power_up = e1000_power_up_phy_copper;
 521	phy->ops.power_down = e1000_power_down_phy_copper_ich8lan;
 522
 523	/* We may need to do this twice - once for IGP and if that fails,
 524	 * we'll set BM func pointers and try again
 525	 */
 526	ret_val = e1000e_determine_phy_address(hw);
 527	if (ret_val) {
 528		phy->ops.write_reg = e1000e_write_phy_reg_bm;
 529		phy->ops.read_reg = e1000e_read_phy_reg_bm;
 530		ret_val = e1000e_determine_phy_address(hw);
 531		if (ret_val) {
 532			e_dbg("Cannot determine PHY addr. Erroring out\n");
 533			return ret_val;
 534		}
 535	}
 536
 537	phy->id = 0;
 538	while ((e1000_phy_unknown == e1000e_get_phy_type_from_id(phy->id)) &&
 539	       (i++ < 100)) {
 540		usleep_range(1000, 1100);
 541		ret_val = e1000e_get_phy_id(hw);
 542		if (ret_val)
 543			return ret_val;
 544	}
 545
 546	/* Verify phy id */
 547	switch (phy->id) {
 548	case IGP03E1000_E_PHY_ID:
 549		phy->type = e1000_phy_igp_3;
 550		phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
 551		phy->ops.read_reg_locked = e1000e_read_phy_reg_igp_locked;
 552		phy->ops.write_reg_locked = e1000e_write_phy_reg_igp_locked;
 553		phy->ops.get_info = e1000e_get_phy_info_igp;
 554		phy->ops.check_polarity = e1000_check_polarity_igp;
 555		phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_igp;
 556		break;
 557	case IFE_E_PHY_ID:
 558	case IFE_PLUS_E_PHY_ID:
 559	case IFE_C_E_PHY_ID:
 560		phy->type = e1000_phy_ife;
 561		phy->autoneg_mask = E1000_ALL_NOT_GIG;
 562		phy->ops.get_info = e1000_get_phy_info_ife;
 563		phy->ops.check_polarity = e1000_check_polarity_ife;
 564		phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_ife;
 565		break;
 566	case BME1000_E_PHY_ID:
 567		phy->type = e1000_phy_bm;
 568		phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
 569		phy->ops.read_reg = e1000e_read_phy_reg_bm;
 570		phy->ops.write_reg = e1000e_write_phy_reg_bm;
 571		phy->ops.commit = e1000e_phy_sw_reset;
 572		phy->ops.get_info = e1000e_get_phy_info_m88;
 573		phy->ops.check_polarity = e1000_check_polarity_m88;
 574		phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88;
 575		break;
 576	default:
 577		return -E1000_ERR_PHY;
 578	}
 579
 580	return 0;
 581}
 582
 583/**
 584 *  e1000_init_nvm_params_ich8lan - Initialize NVM function pointers
 585 *  @hw: pointer to the HW structure
 586 *
 587 *  Initialize family-specific NVM parameters and function
 588 *  pointers.
 589 **/
 590static s32 e1000_init_nvm_params_ich8lan(struct e1000_hw *hw)
 591{
 592	struct e1000_nvm_info *nvm = &hw->nvm;
 593	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
 594	u32 gfpreg, sector_base_addr, sector_end_addr;
 595	u16 i;
 596	u32 nvm_size;
 597
 598	nvm->type = e1000_nvm_flash_sw;
 599
 600	if (hw->mac.type >= e1000_pch_spt) {
 601		/* in SPT, gfpreg doesn't exist. NVM size is taken from the
 602		 * STRAP register. This is because in SPT the GbE Flash region
 603		 * is no longer accessed through the flash registers. Instead,
 604		 * the mechanism has changed, and the Flash region access
 605		 * registers are now implemented in GbE memory space.
 606		 */
 607		nvm->flash_base_addr = 0;
 608		nvm_size = (((er32(STRAP) >> 1) & 0x1F) + 1)
 609		    * NVM_SIZE_MULTIPLIER;
 610		nvm->flash_bank_size = nvm_size / 2;
 611		/* Adjust to word count */
 612		nvm->flash_bank_size /= sizeof(u16);
 613		/* Set the base address for flash register access */
 614		hw->flash_address = hw->hw_addr + E1000_FLASH_BASE_ADDR;
 615	} else {
 616		/* Can't read flash registers if register set isn't mapped. */
 617		if (!hw->flash_address) {
 618			e_dbg("ERROR: Flash registers not mapped\n");
 619			return -E1000_ERR_CONFIG;
 620		}
 621
 622		gfpreg = er32flash(ICH_FLASH_GFPREG);
 623
 624		/* sector_X_addr is a "sector"-aligned address (4096 bytes)
 625		 * Add 1 to sector_end_addr since this sector is included in
 626		 * the overall size.
 627		 */
 628		sector_base_addr = gfpreg & FLASH_GFPREG_BASE_MASK;
 629		sector_end_addr = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK) + 1;
 630
 631		/* flash_base_addr is byte-aligned */
 632		nvm->flash_base_addr = sector_base_addr
 633		    << FLASH_SECTOR_ADDR_SHIFT;
 634
 635		/* find total size of the NVM, then cut in half since the total
 636		 * size represents two separate NVM banks.
 637		 */
 638		nvm->flash_bank_size = ((sector_end_addr - sector_base_addr)
 639					<< FLASH_SECTOR_ADDR_SHIFT);
 640		nvm->flash_bank_size /= 2;
 641		/* Adjust to word count */
 642		nvm->flash_bank_size /= sizeof(u16);
 643	}
 644
 645	nvm->word_size = E1000_ICH8_SHADOW_RAM_WORDS;
 646
 647	/* Clear shadow ram */
 648	for (i = 0; i < nvm->word_size; i++) {
 649		dev_spec->shadow_ram[i].modified = false;
 650		dev_spec->shadow_ram[i].value = 0xFFFF;
 651	}
 652
 653	return 0;
 654}
 655
 656/**
 657 *  e1000_init_mac_params_ich8lan - Initialize MAC function pointers
 658 *  @hw: pointer to the HW structure
 659 *
 660 *  Initialize family-specific MAC parameters and function
 661 *  pointers.
 662 **/
 663static s32 e1000_init_mac_params_ich8lan(struct e1000_hw *hw)
 664{
 665	struct e1000_mac_info *mac = &hw->mac;
 666
 667	/* Set media type function pointer */
 668	hw->phy.media_type = e1000_media_type_copper;
 669
 670	/* Set mta register count */
 671	mac->mta_reg_count = 32;
 672	/* Set rar entry count */
 673	mac->rar_entry_count = E1000_ICH_RAR_ENTRIES;
 674	if (mac->type == e1000_ich8lan)
 675		mac->rar_entry_count--;
 676	/* FWSM register */
 677	mac->has_fwsm = true;
 678	/* ARC subsystem not supported */
 679	mac->arc_subsystem_valid = false;
 680	/* Adaptive IFS supported */
 681	mac->adaptive_ifs = true;
 682
 683	/* LED and other operations */
 684	switch (mac->type) {
 685	case e1000_ich8lan:
 686	case e1000_ich9lan:
 687	case e1000_ich10lan:
 688		/* check management mode */
 689		mac->ops.check_mng_mode = e1000_check_mng_mode_ich8lan;
 690		/* ID LED init */
 691		mac->ops.id_led_init = e1000e_id_led_init_generic;
 692		/* blink LED */
 693		mac->ops.blink_led = e1000e_blink_led_generic;
 694		/* setup LED */
 695		mac->ops.setup_led = e1000e_setup_led_generic;
 696		/* cleanup LED */
 697		mac->ops.cleanup_led = e1000_cleanup_led_ich8lan;
 698		/* turn on/off LED */
 699		mac->ops.led_on = e1000_led_on_ich8lan;
 700		mac->ops.led_off = e1000_led_off_ich8lan;
 701		break;
 702	case e1000_pch2lan:
 703		mac->rar_entry_count = E1000_PCH2_RAR_ENTRIES;
 704		mac->ops.rar_set = e1000_rar_set_pch2lan;
 705		fallthrough;
 706	case e1000_pch_lpt:
 707	case e1000_pch_spt:
 708	case e1000_pch_cnp:
 709	case e1000_pch_tgp:
 710	case e1000_pch_adp:
 
 
 
 
 711	case e1000_pchlan:
 712		/* check management mode */
 713		mac->ops.check_mng_mode = e1000_check_mng_mode_pchlan;
 714		/* ID LED init */
 715		mac->ops.id_led_init = e1000_id_led_init_pchlan;
 716		/* setup LED */
 717		mac->ops.setup_led = e1000_setup_led_pchlan;
 718		/* cleanup LED */
 719		mac->ops.cleanup_led = e1000_cleanup_led_pchlan;
 720		/* turn on/off LED */
 721		mac->ops.led_on = e1000_led_on_pchlan;
 722		mac->ops.led_off = e1000_led_off_pchlan;
 723		break;
 724	default:
 725		break;
 726	}
 727
 728	if (mac->type >= e1000_pch_lpt) {
 729		mac->rar_entry_count = E1000_PCH_LPT_RAR_ENTRIES;
 730		mac->ops.rar_set = e1000_rar_set_pch_lpt;
 731		mac->ops.setup_physical_interface =
 732		    e1000_setup_copper_link_pch_lpt;
 733		mac->ops.rar_get_count = e1000_rar_get_count_pch_lpt;
 734	}
 735
 736	/* Enable PCS Lock-loss workaround for ICH8 */
 737	if (mac->type == e1000_ich8lan)
 738		e1000e_set_kmrn_lock_loss_workaround_ich8lan(hw, true);
 739
 740	return 0;
 741}
 742
 743/**
 744 *  __e1000_access_emi_reg_locked - Read/write EMI register
 745 *  @hw: pointer to the HW structure
 746 *  @addr: EMI address to program
 747 *  @data: pointer to value to read/write from/to the EMI address
 748 *  @read: boolean flag to indicate read or write
 749 *
 750 *  This helper function assumes the SW/FW/HW Semaphore is already acquired.
 751 **/
 752static s32 __e1000_access_emi_reg_locked(struct e1000_hw *hw, u16 address,
 753					 u16 *data, bool read)
 754{
 755	s32 ret_val;
 756
 757	ret_val = e1e_wphy_locked(hw, I82579_EMI_ADDR, address);
 758	if (ret_val)
 759		return ret_val;
 760
 761	if (read)
 762		ret_val = e1e_rphy_locked(hw, I82579_EMI_DATA, data);
 763	else
 764		ret_val = e1e_wphy_locked(hw, I82579_EMI_DATA, *data);
 765
 766	return ret_val;
 767}
 768
 769/**
 770 *  e1000_read_emi_reg_locked - Read Extended Management Interface register
 771 *  @hw: pointer to the HW structure
 772 *  @addr: EMI address to program
 773 *  @data: value to be read from the EMI address
 774 *
 775 *  Assumes the SW/FW/HW Semaphore is already acquired.
 776 **/
 777s32 e1000_read_emi_reg_locked(struct e1000_hw *hw, u16 addr, u16 *data)
 778{
 779	return __e1000_access_emi_reg_locked(hw, addr, data, true);
 780}
 781
 782/**
 783 *  e1000_write_emi_reg_locked - Write Extended Management Interface register
 784 *  @hw: pointer to the HW structure
 785 *  @addr: EMI address to program
 786 *  @data: value to be written to the EMI address
 787 *
 788 *  Assumes the SW/FW/HW Semaphore is already acquired.
 789 **/
 790s32 e1000_write_emi_reg_locked(struct e1000_hw *hw, u16 addr, u16 data)
 791{
 792	return __e1000_access_emi_reg_locked(hw, addr, &data, false);
 793}
 794
 795/**
 796 *  e1000_set_eee_pchlan - Enable/disable EEE support
 797 *  @hw: pointer to the HW structure
 798 *
 799 *  Enable/disable EEE based on setting in dev_spec structure, the duplex of
 800 *  the link and the EEE capabilities of the link partner.  The LPI Control
 801 *  register bits will remain set only if/when link is up.
 802 *
 803 *  EEE LPI must not be asserted earlier than one second after link is up.
 804 *  On 82579, EEE LPI should not be enabled until such time otherwise there
 805 *  can be link issues with some switches.  Other devices can have EEE LPI
 806 *  enabled immediately upon link up since they have a timer in hardware which
 807 *  prevents LPI from being asserted too early.
 808 **/
 809s32 e1000_set_eee_pchlan(struct e1000_hw *hw)
 810{
 811	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
 812	s32 ret_val;
 813	u16 lpa, pcs_status, adv, adv_addr, lpi_ctrl, data;
 814
 815	switch (hw->phy.type) {
 816	case e1000_phy_82579:
 817		lpa = I82579_EEE_LP_ABILITY;
 818		pcs_status = I82579_EEE_PCS_STATUS;
 819		adv_addr = I82579_EEE_ADVERTISEMENT;
 820		break;
 821	case e1000_phy_i217:
 822		lpa = I217_EEE_LP_ABILITY;
 823		pcs_status = I217_EEE_PCS_STATUS;
 824		adv_addr = I217_EEE_ADVERTISEMENT;
 825		break;
 826	default:
 827		return 0;
 828	}
 829
 830	ret_val = hw->phy.ops.acquire(hw);
 831	if (ret_val)
 832		return ret_val;
 833
 834	ret_val = e1e_rphy_locked(hw, I82579_LPI_CTRL, &lpi_ctrl);
 835	if (ret_val)
 836		goto release;
 837
 838	/* Clear bits that enable EEE in various speeds */
 839	lpi_ctrl &= ~I82579_LPI_CTRL_ENABLE_MASK;
 840
 841	/* Enable EEE if not disabled by user */
 842	if (!dev_spec->eee_disable) {
 843		/* Save off link partner's EEE ability */
 844		ret_val = e1000_read_emi_reg_locked(hw, lpa,
 845						    &dev_spec->eee_lp_ability);
 846		if (ret_val)
 847			goto release;
 848
 849		/* Read EEE advertisement */
 850		ret_val = e1000_read_emi_reg_locked(hw, adv_addr, &adv);
 851		if (ret_val)
 852			goto release;
 853
 854		/* Enable EEE only for speeds in which the link partner is
 855		 * EEE capable and for which we advertise EEE.
 856		 */
 857		if (adv & dev_spec->eee_lp_ability & I82579_EEE_1000_SUPPORTED)
 858			lpi_ctrl |= I82579_LPI_CTRL_1000_ENABLE;
 859
 860		if (adv & dev_spec->eee_lp_ability & I82579_EEE_100_SUPPORTED) {
 861			e1e_rphy_locked(hw, MII_LPA, &data);
 862			if (data & LPA_100FULL)
 863				lpi_ctrl |= I82579_LPI_CTRL_100_ENABLE;
 864			else
 865				/* EEE is not supported in 100Half, so ignore
 866				 * partner's EEE in 100 ability if full-duplex
 867				 * is not advertised.
 868				 */
 869				dev_spec->eee_lp_ability &=
 870				    ~I82579_EEE_100_SUPPORTED;
 871		}
 872	}
 873
 874	if (hw->phy.type == e1000_phy_82579) {
 875		ret_val = e1000_read_emi_reg_locked(hw, I82579_LPI_PLL_SHUT,
 876						    &data);
 877		if (ret_val)
 878			goto release;
 879
 880		data &= ~I82579_LPI_100_PLL_SHUT;
 881		ret_val = e1000_write_emi_reg_locked(hw, I82579_LPI_PLL_SHUT,
 882						     data);
 883	}
 884
 885	/* R/Clr IEEE MMD 3.1 bits 11:10 - Tx/Rx LPI Received */
 886	ret_val = e1000_read_emi_reg_locked(hw, pcs_status, &data);
 887	if (ret_val)
 888		goto release;
 889
 890	ret_val = e1e_wphy_locked(hw, I82579_LPI_CTRL, lpi_ctrl);
 891release:
 892	hw->phy.ops.release(hw);
 893
 894	return ret_val;
 895}
 896
 897/**
 898 *  e1000_k1_workaround_lpt_lp - K1 workaround on Lynxpoint-LP
 899 *  @hw:   pointer to the HW structure
 900 *  @link: link up bool flag
 901 *
 902 *  When K1 is enabled for 1Gbps, the MAC can miss 2 DMA completion indications
 903 *  preventing further DMA write requests.  Workaround the issue by disabling
 904 *  the de-assertion of the clock request when in 1Gpbs mode.
 905 *  Also, set appropriate Tx re-transmission timeouts for 10 and 100Half link
 906 *  speeds in order to avoid Tx hangs.
 907 **/
 908static s32 e1000_k1_workaround_lpt_lp(struct e1000_hw *hw, bool link)
 909{
 910	u32 fextnvm6 = er32(FEXTNVM6);
 911	u32 status = er32(STATUS);
 912	s32 ret_val = 0;
 913	u16 reg;
 914
 915	if (link && (status & E1000_STATUS_SPEED_1000)) {
 916		ret_val = hw->phy.ops.acquire(hw);
 917		if (ret_val)
 918			return ret_val;
 919
 920		ret_val =
 921		    e1000e_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
 922						&reg);
 923		if (ret_val)
 924			goto release;
 925
 926		ret_val =
 927		    e1000e_write_kmrn_reg_locked(hw,
 928						 E1000_KMRNCTRLSTA_K1_CONFIG,
 929						 reg &
 930						 ~E1000_KMRNCTRLSTA_K1_ENABLE);
 931		if (ret_val)
 932			goto release;
 933
 934		usleep_range(10, 20);
 935
 936		ew32(FEXTNVM6, fextnvm6 | E1000_FEXTNVM6_REQ_PLL_CLK);
 937
 938		ret_val =
 939		    e1000e_write_kmrn_reg_locked(hw,
 940						 E1000_KMRNCTRLSTA_K1_CONFIG,
 941						 reg);
 942release:
 943		hw->phy.ops.release(hw);
 944	} else {
 945		/* clear FEXTNVM6 bit 8 on link down or 10/100 */
 946		fextnvm6 &= ~E1000_FEXTNVM6_REQ_PLL_CLK;
 947
 948		if ((hw->phy.revision > 5) || !link ||
 949		    ((status & E1000_STATUS_SPEED_100) &&
 950		     (status & E1000_STATUS_FD)))
 951			goto update_fextnvm6;
 952
 953		ret_val = e1e_rphy(hw, I217_INBAND_CTRL, &reg);
 954		if (ret_val)
 955			return ret_val;
 956
 957		/* Clear link status transmit timeout */
 958		reg &= ~I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_MASK;
 959
 960		if (status & E1000_STATUS_SPEED_100) {
 961			/* Set inband Tx timeout to 5x10us for 100Half */
 962			reg |= 5 << I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_SHIFT;
 963
 964			/* Do not extend the K1 entry latency for 100Half */
 965			fextnvm6 &= ~E1000_FEXTNVM6_ENABLE_K1_ENTRY_CONDITION;
 966		} else {
 967			/* Set inband Tx timeout to 50x10us for 10Full/Half */
 968			reg |= 50 <<
 969			    I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_SHIFT;
 970
 971			/* Extend the K1 entry latency for 10 Mbps */
 972			fextnvm6 |= E1000_FEXTNVM6_ENABLE_K1_ENTRY_CONDITION;
 973		}
 974
 975		ret_val = e1e_wphy(hw, I217_INBAND_CTRL, reg);
 976		if (ret_val)
 977			return ret_val;
 978
 979update_fextnvm6:
 980		ew32(FEXTNVM6, fextnvm6);
 981	}
 982
 983	return ret_val;
 984}
 985
 986/**
 987 *  e1000_platform_pm_pch_lpt - Set platform power management values
 988 *  @hw: pointer to the HW structure
 989 *  @link: bool indicating link status
 990 *
 991 *  Set the Latency Tolerance Reporting (LTR) values for the "PCIe-like"
 992 *  GbE MAC in the Lynx Point PCH based on Rx buffer size and link speed
 993 *  when link is up (which must not exceed the maximum latency supported
 994 *  by the platform), otherwise specify there is no LTR requirement.
 995 *  Unlike true-PCIe devices which set the LTR maximum snoop/no-snoop
 996 *  latencies in the LTR Extended Capability Structure in the PCIe Extended
 997 *  Capability register set, on this device LTR is set by writing the
 998 *  equivalent snoop/no-snoop latencies in the LTRV register in the MAC and
 999 *  set the SEND bit to send an Intel On-chip System Fabric sideband (IOSF-SB)
1000 *  message to the PMC.
1001 **/
1002static s32 e1000_platform_pm_pch_lpt(struct e1000_hw *hw, bool link)
1003{
1004	u32 reg = link << (E1000_LTRV_REQ_SHIFT + E1000_LTRV_NOSNOOP_SHIFT) |
1005	    link << E1000_LTRV_REQ_SHIFT | E1000_LTRV_SEND;
 
 
1006	u16 lat_enc = 0;	/* latency encoded */
1007
1008	if (link) {
1009		u16 speed, duplex, scale = 0;
1010		u16 max_snoop, max_nosnoop;
1011		u16 max_ltr_enc;	/* max LTR latency encoded */
1012		u64 value;
1013		u32 rxa;
1014
1015		if (!hw->adapter->max_frame_size) {
1016			e_dbg("max_frame_size not set.\n");
1017			return -E1000_ERR_CONFIG;
1018		}
1019
1020		hw->mac.ops.get_link_up_info(hw, &speed, &duplex);
1021		if (!speed) {
1022			e_dbg("Speed not set.\n");
1023			return -E1000_ERR_CONFIG;
1024		}
1025
1026		/* Rx Packet Buffer Allocation size (KB) */
1027		rxa = er32(PBA) & E1000_PBA_RXA_MASK;
1028
1029		/* Determine the maximum latency tolerated by the device.
1030		 *
1031		 * Per the PCIe spec, the tolerated latencies are encoded as
1032		 * a 3-bit encoded scale (only 0-5 are valid) multiplied by
1033		 * a 10-bit value (0-1023) to provide a range from 1 ns to
1034		 * 2^25*(2^10-1) ns.  The scale is encoded as 0=2^0ns,
1035		 * 1=2^5ns, 2=2^10ns,...5=2^25ns.
1036		 */
1037		rxa *= 512;
1038		value = (rxa > hw->adapter->max_frame_size) ?
1039			(rxa - hw->adapter->max_frame_size) * (16000 / speed) :
1040			0;
1041
1042		while (value > PCI_LTR_VALUE_MASK) {
1043			scale++;
1044			value = DIV_ROUND_UP(value, BIT(5));
1045		}
1046		if (scale > E1000_LTRV_SCALE_MAX) {
1047			e_dbg("Invalid LTR latency scale %d\n", scale);
1048			return -E1000_ERR_CONFIG;
1049		}
1050		lat_enc = (u16)((scale << PCI_LTR_SCALE_SHIFT) | value);
1051
1052		/* Determine the maximum latency tolerated by the platform */
1053		pci_read_config_word(hw->adapter->pdev, E1000_PCI_LTR_CAP_LPT,
1054				     &max_snoop);
1055		pci_read_config_word(hw->adapter->pdev,
1056				     E1000_PCI_LTR_CAP_LPT + 2, &max_nosnoop);
1057		max_ltr_enc = max_t(u16, max_snoop, max_nosnoop);
1058
1059		if (lat_enc > max_ltr_enc)
 
 
 
 
 
 
 
 
1060			lat_enc = max_ltr_enc;
1061	}
1062
1063	/* Set Snoop and No-Snoop latencies the same */
1064	reg |= lat_enc | (lat_enc << E1000_LTRV_NOSNOOP_SHIFT);
1065	ew32(LTRV, reg);
1066
1067	return 0;
1068}
1069
1070/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1071 *  e1000_enable_ulp_lpt_lp - configure Ultra Low Power mode for LynxPoint-LP
1072 *  @hw: pointer to the HW structure
1073 *  @to_sx: boolean indicating a system power state transition to Sx
1074 *
1075 *  When link is down, configure ULP mode to significantly reduce the power
1076 *  to the PHY.  If on a Manageability Engine (ME) enabled system, tell the
1077 *  ME firmware to start the ULP configuration.  If not on an ME enabled
1078 *  system, configure the ULP mode by software.
1079 */
1080s32 e1000_enable_ulp_lpt_lp(struct e1000_hw *hw, bool to_sx)
1081{
1082	u32 mac_reg;
1083	s32 ret_val = 0;
1084	u16 phy_reg;
1085	u16 oem_reg = 0;
1086
1087	if ((hw->mac.type < e1000_pch_lpt) ||
1088	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_LM) ||
1089	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_V) ||
1090	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_LM2) ||
1091	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_V2) ||
1092	    (hw->dev_spec.ich8lan.ulp_state == e1000_ulp_state_on))
1093		return 0;
1094
1095	if (er32(FWSM) & E1000_ICH_FWSM_FW_VALID) {
1096		/* Request ME configure ULP mode in the PHY */
1097		mac_reg = er32(H2ME);
1098		mac_reg |= E1000_H2ME_ULP | E1000_H2ME_ENFORCE_SETTINGS;
1099		ew32(H2ME, mac_reg);
1100
1101		goto out;
1102	}
1103
1104	if (!to_sx) {
1105		int i = 0;
1106
1107		/* Poll up to 5 seconds for Cable Disconnected indication */
1108		while (!(er32(FEXT) & E1000_FEXT_PHY_CABLE_DISCONNECTED)) {
1109			/* Bail if link is re-acquired */
1110			if (er32(STATUS) & E1000_STATUS_LU)
1111				return -E1000_ERR_PHY;
1112
1113			if (i++ == 100)
1114				break;
1115
1116			msleep(50);
1117		}
1118		e_dbg("CABLE_DISCONNECTED %s set after %dmsec\n",
1119		      (er32(FEXT) &
1120		       E1000_FEXT_PHY_CABLE_DISCONNECTED) ? "" : "not", i * 50);
1121	}
1122
1123	ret_val = hw->phy.ops.acquire(hw);
1124	if (ret_val)
1125		goto out;
1126
1127	/* Force SMBus mode in PHY */
1128	ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL, &phy_reg);
1129	if (ret_val)
1130		goto release;
1131	phy_reg |= CV_SMB_CTRL_FORCE_SMBUS;
1132	e1000_write_phy_reg_hv_locked(hw, CV_SMB_CTRL, phy_reg);
1133
1134	/* Force SMBus mode in MAC */
1135	mac_reg = er32(CTRL_EXT);
1136	mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
1137	ew32(CTRL_EXT, mac_reg);
1138
1139	/* Si workaround for ULP entry flow on i127/rev6 h/w.  Enable
1140	 * LPLU and disable Gig speed when entering ULP
1141	 */
1142	if ((hw->phy.type == e1000_phy_i217) && (hw->phy.revision == 6)) {
1143		ret_val = e1000_read_phy_reg_hv_locked(hw, HV_OEM_BITS,
1144						       &oem_reg);
1145		if (ret_val)
1146			goto release;
1147
1148		phy_reg = oem_reg;
1149		phy_reg |= HV_OEM_BITS_LPLU | HV_OEM_BITS_GBE_DIS;
1150
1151		ret_val = e1000_write_phy_reg_hv_locked(hw, HV_OEM_BITS,
1152							phy_reg);
1153
1154		if (ret_val)
1155			goto release;
1156	}
1157
1158	/* Set Inband ULP Exit, Reset to SMBus mode and
1159	 * Disable SMBus Release on PERST# in PHY
1160	 */
1161	ret_val = e1000_read_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, &phy_reg);
1162	if (ret_val)
1163		goto release;
1164	phy_reg |= (I218_ULP_CONFIG1_RESET_TO_SMBUS |
1165		    I218_ULP_CONFIG1_DISABLE_SMB_PERST);
1166	if (to_sx) {
1167		if (er32(WUFC) & E1000_WUFC_LNKC)
1168			phy_reg |= I218_ULP_CONFIG1_WOL_HOST;
1169		else
1170			phy_reg &= ~I218_ULP_CONFIG1_WOL_HOST;
1171
1172		phy_reg |= I218_ULP_CONFIG1_STICKY_ULP;
1173		phy_reg &= ~I218_ULP_CONFIG1_INBAND_EXIT;
1174	} else {
1175		phy_reg |= I218_ULP_CONFIG1_INBAND_EXIT;
1176		phy_reg &= ~I218_ULP_CONFIG1_STICKY_ULP;
1177		phy_reg &= ~I218_ULP_CONFIG1_WOL_HOST;
1178	}
1179	e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1180
1181	/* Set Disable SMBus Release on PERST# in MAC */
1182	mac_reg = er32(FEXTNVM7);
1183	mac_reg |= E1000_FEXTNVM7_DISABLE_SMB_PERST;
1184	ew32(FEXTNVM7, mac_reg);
1185
1186	/* Commit ULP changes in PHY by starting auto ULP configuration */
1187	phy_reg |= I218_ULP_CONFIG1_START;
1188	e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1189
1190	if ((hw->phy.type == e1000_phy_i217) && (hw->phy.revision == 6) &&
1191	    to_sx && (er32(STATUS) & E1000_STATUS_LU)) {
1192		ret_val = e1000_write_phy_reg_hv_locked(hw, HV_OEM_BITS,
1193							oem_reg);
1194		if (ret_val)
1195			goto release;
1196	}
1197
1198release:
1199	hw->phy.ops.release(hw);
1200out:
1201	if (ret_val)
1202		e_dbg("Error in ULP enable flow: %d\n", ret_val);
1203	else
1204		hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_on;
1205
1206	return ret_val;
1207}
1208
1209/**
1210 *  e1000_disable_ulp_lpt_lp - unconfigure Ultra Low Power mode for LynxPoint-LP
1211 *  @hw: pointer to the HW structure
1212 *  @force: boolean indicating whether or not to force disabling ULP
1213 *
1214 *  Un-configure ULP mode when link is up, the system is transitioned from
1215 *  Sx or the driver is unloaded.  If on a Manageability Engine (ME) enabled
1216 *  system, poll for an indication from ME that ULP has been un-configured.
1217 *  If not on an ME enabled system, un-configure the ULP mode by software.
1218 *
1219 *  During nominal operation, this function is called when link is acquired
1220 *  to disable ULP mode (force=false); otherwise, for example when unloading
1221 *  the driver or during Sx->S0 transitions, this is called with force=true
1222 *  to forcibly disable ULP.
1223 */
1224static s32 e1000_disable_ulp_lpt_lp(struct e1000_hw *hw, bool force)
1225{
1226	s32 ret_val = 0;
1227	u32 mac_reg;
1228	u16 phy_reg;
1229	int i = 0;
1230
1231	if ((hw->mac.type < e1000_pch_lpt) ||
1232	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_LM) ||
1233	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_V) ||
1234	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_LM2) ||
1235	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_V2) ||
1236	    (hw->dev_spec.ich8lan.ulp_state == e1000_ulp_state_off))
1237		return 0;
1238
1239	if (er32(FWSM) & E1000_ICH_FWSM_FW_VALID) {
 
 
 
1240		if (force) {
1241			/* Request ME un-configure ULP mode in the PHY */
1242			mac_reg = er32(H2ME);
1243			mac_reg &= ~E1000_H2ME_ULP;
1244			mac_reg |= E1000_H2ME_ENFORCE_SETTINGS;
1245			ew32(H2ME, mac_reg);
1246		}
1247
1248		/* Poll up to 300msec for ME to clear ULP_CFG_DONE. */
 
 
 
1249		while (er32(FWSM) & E1000_FWSM_ULP_CFG_DONE) {
1250			if (i++ == 30) {
1251				ret_val = -E1000_ERR_PHY;
1252				goto out;
1253			}
 
 
1254
1255			usleep_range(10000, 11000);
1256		}
1257		e_dbg("ULP_CONFIG_DONE cleared after %dmsec\n", i * 10);
 
 
 
 
 
1258
1259		if (force) {
1260			mac_reg = er32(H2ME);
1261			mac_reg &= ~E1000_H2ME_ENFORCE_SETTINGS;
1262			ew32(H2ME, mac_reg);
1263		} else {
1264			/* Clear H2ME.ULP after ME ULP configuration */
1265			mac_reg = er32(H2ME);
1266			mac_reg &= ~E1000_H2ME_ULP;
1267			ew32(H2ME, mac_reg);
1268		}
1269
1270		goto out;
1271	}
1272
1273	ret_val = hw->phy.ops.acquire(hw);
1274	if (ret_val)
1275		goto out;
1276
1277	if (force)
1278		/* Toggle LANPHYPC Value bit */
1279		e1000_toggle_lanphypc_pch_lpt(hw);
1280
 
 
 
 
 
1281	/* Unforce SMBus mode in PHY */
1282	ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL, &phy_reg);
1283	if (ret_val) {
1284		/* The MAC might be in PCIe mode, so temporarily force to
1285		 * SMBus mode in order to access the PHY.
1286		 */
1287		mac_reg = er32(CTRL_EXT);
1288		mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
1289		ew32(CTRL_EXT, mac_reg);
1290
1291		msleep(50);
1292
1293		ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL,
1294						       &phy_reg);
1295		if (ret_val)
1296			goto release;
1297	}
1298	phy_reg &= ~CV_SMB_CTRL_FORCE_SMBUS;
1299	e1000_write_phy_reg_hv_locked(hw, CV_SMB_CTRL, phy_reg);
1300
 
 
1301	/* Unforce SMBus mode in MAC */
1302	mac_reg = er32(CTRL_EXT);
1303	mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
1304	ew32(CTRL_EXT, mac_reg);
1305
1306	/* When ULP mode was previously entered, K1 was disabled by the
1307	 * hardware.  Re-Enable K1 in the PHY when exiting ULP.
1308	 */
1309	ret_val = e1000_read_phy_reg_hv_locked(hw, HV_PM_CTRL, &phy_reg);
1310	if (ret_val)
1311		goto release;
1312	phy_reg |= HV_PM_CTRL_K1_ENABLE;
1313	e1000_write_phy_reg_hv_locked(hw, HV_PM_CTRL, phy_reg);
1314
1315	/* Clear ULP enabled configuration */
1316	ret_val = e1000_read_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, &phy_reg);
1317	if (ret_val)
1318		goto release;
1319	phy_reg &= ~(I218_ULP_CONFIG1_IND |
1320		     I218_ULP_CONFIG1_STICKY_ULP |
1321		     I218_ULP_CONFIG1_RESET_TO_SMBUS |
1322		     I218_ULP_CONFIG1_WOL_HOST |
1323		     I218_ULP_CONFIG1_INBAND_EXIT |
1324		     I218_ULP_CONFIG1_EN_ULP_LANPHYPC |
1325		     I218_ULP_CONFIG1_DIS_CLR_STICKY_ON_PERST |
1326		     I218_ULP_CONFIG1_DISABLE_SMB_PERST);
1327	e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1328
1329	/* Commit ULP changes by starting auto ULP configuration */
1330	phy_reg |= I218_ULP_CONFIG1_START;
1331	e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1332
1333	/* Clear Disable SMBus Release on PERST# in MAC */
1334	mac_reg = er32(FEXTNVM7);
1335	mac_reg &= ~E1000_FEXTNVM7_DISABLE_SMB_PERST;
1336	ew32(FEXTNVM7, mac_reg);
1337
1338release:
1339	hw->phy.ops.release(hw);
1340	if (force) {
1341		e1000_phy_hw_reset(hw);
1342		msleep(50);
1343	}
1344out:
1345	if (ret_val)
1346		e_dbg("Error in ULP disable flow: %d\n", ret_val);
1347	else
1348		hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_off;
1349
1350	return ret_val;
1351}
1352
1353/**
1354 *  e1000_check_for_copper_link_ich8lan - Check for link (Copper)
1355 *  @hw: pointer to the HW structure
1356 *
1357 *  Checks to see of the link status of the hardware has changed.  If a
1358 *  change in link status has been detected, then we read the PHY registers
1359 *  to get the current speed/duplex if link exists.
1360 **/
1361static s32 e1000_check_for_copper_link_ich8lan(struct e1000_hw *hw)
1362{
1363	struct e1000_mac_info *mac = &hw->mac;
1364	s32 ret_val, tipg_reg = 0;
1365	u16 emi_addr, emi_val = 0;
1366	bool link;
1367	u16 phy_reg;
1368
1369	/* We only want to go out to the PHY registers to see if Auto-Neg
1370	 * has completed and/or if our link status has changed.  The
1371	 * get_link_status flag is set upon receiving a Link Status
1372	 * Change or Rx Sequence Error interrupt.
1373	 */
1374	if (!mac->get_link_status)
1375		return 0;
1376	mac->get_link_status = false;
1377
1378	/* First we want to see if the MII Status Register reports
1379	 * link.  If so, then we want to get the current speed/duplex
1380	 * of the PHY.
1381	 */
1382	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
1383	if (ret_val)
1384		goto out;
1385
1386	if (hw->mac.type == e1000_pchlan) {
1387		ret_val = e1000_k1_gig_workaround_hv(hw, link);
1388		if (ret_val)
1389			goto out;
1390	}
1391
1392	/* When connected at 10Mbps half-duplex, some parts are excessively
1393	 * aggressive resulting in many collisions. To avoid this, increase
1394	 * the IPG and reduce Rx latency in the PHY.
1395	 */
1396	if ((hw->mac.type >= e1000_pch2lan) && link) {
1397		u16 speed, duplex;
1398
1399		e1000e_get_speed_and_duplex_copper(hw, &speed, &duplex);
1400		tipg_reg = er32(TIPG);
1401		tipg_reg &= ~E1000_TIPG_IPGT_MASK;
1402
1403		if (duplex == HALF_DUPLEX && speed == SPEED_10) {
1404			tipg_reg |= 0xFF;
1405			/* Reduce Rx latency in analog PHY */
1406			emi_val = 0;
1407		} else if (hw->mac.type >= e1000_pch_spt &&
1408			   duplex == FULL_DUPLEX && speed != SPEED_1000) {
1409			tipg_reg |= 0xC;
1410			emi_val = 1;
1411		} else {
1412
1413			/* Roll back the default values */
1414			tipg_reg |= 0x08;
1415			emi_val = 1;
1416		}
1417
1418		ew32(TIPG, tipg_reg);
1419
1420		ret_val = hw->phy.ops.acquire(hw);
1421		if (ret_val)
1422			goto out;
1423
1424		if (hw->mac.type == e1000_pch2lan)
1425			emi_addr = I82579_RX_CONFIG;
1426		else
1427			emi_addr = I217_RX_CONFIG;
1428		ret_val = e1000_write_emi_reg_locked(hw, emi_addr, emi_val);
1429
1430		if (hw->mac.type >= e1000_pch_lpt) {
1431			u16 phy_reg;
1432
1433			e1e_rphy_locked(hw, I217_PLL_CLOCK_GATE_REG, &phy_reg);
1434			phy_reg &= ~I217_PLL_CLOCK_GATE_MASK;
1435			if (speed == SPEED_100 || speed == SPEED_10)
1436				phy_reg |= 0x3E8;
1437			else
1438				phy_reg |= 0xFA;
1439			e1e_wphy_locked(hw, I217_PLL_CLOCK_GATE_REG, phy_reg);
1440
1441			if (speed == SPEED_1000) {
1442				hw->phy.ops.read_reg_locked(hw, HV_PM_CTRL,
1443							    &phy_reg);
1444
1445				phy_reg |= HV_PM_CTRL_K1_CLK_REQ;
1446
1447				hw->phy.ops.write_reg_locked(hw, HV_PM_CTRL,
1448							     phy_reg);
1449			}
1450		}
1451		hw->phy.ops.release(hw);
1452
1453		if (ret_val)
1454			goto out;
1455
1456		if (hw->mac.type >= e1000_pch_spt) {
1457			u16 data;
1458			u16 ptr_gap;
1459
1460			if (speed == SPEED_1000) {
1461				ret_val = hw->phy.ops.acquire(hw);
1462				if (ret_val)
1463					goto out;
1464
1465				ret_val = e1e_rphy_locked(hw,
1466							  PHY_REG(776, 20),
1467							  &data);
1468				if (ret_val) {
1469					hw->phy.ops.release(hw);
1470					goto out;
1471				}
1472
1473				ptr_gap = (data & (0x3FF << 2)) >> 2;
1474				if (ptr_gap < 0x18) {
1475					data &= ~(0x3FF << 2);
1476					data |= (0x18 << 2);
1477					ret_val =
1478					    e1e_wphy_locked(hw,
1479							    PHY_REG(776, 20),
1480							    data);
1481				}
1482				hw->phy.ops.release(hw);
1483				if (ret_val)
1484					goto out;
1485			} else {
1486				ret_val = hw->phy.ops.acquire(hw);
1487				if (ret_val)
1488					goto out;
1489
1490				ret_val = e1e_wphy_locked(hw,
1491							  PHY_REG(776, 20),
1492							  0xC023);
1493				hw->phy.ops.release(hw);
1494				if (ret_val)
1495					goto out;
1496
1497			}
1498		}
1499	}
1500
1501	/* I217 Packet Loss issue:
1502	 * ensure that FEXTNVM4 Beacon Duration is set correctly
1503	 * on power up.
1504	 * Set the Beacon Duration for I217 to 8 usec
1505	 */
1506	if (hw->mac.type >= e1000_pch_lpt) {
1507		u32 mac_reg;
1508
1509		mac_reg = er32(FEXTNVM4);
1510		mac_reg &= ~E1000_FEXTNVM4_BEACON_DURATION_MASK;
1511		mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_8USEC;
1512		ew32(FEXTNVM4, mac_reg);
1513	}
1514
1515	/* Work-around I218 hang issue */
1516	if ((hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPTLP_I218_LM) ||
1517	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPTLP_I218_V) ||
1518	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_LM3) ||
1519	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_V3)) {
1520		ret_val = e1000_k1_workaround_lpt_lp(hw, link);
1521		if (ret_val)
1522			goto out;
1523	}
1524	if (hw->mac.type >= e1000_pch_lpt) {
1525		/* Set platform power management values for
1526		 * Latency Tolerance Reporting (LTR)
1527		 */
1528		ret_val = e1000_platform_pm_pch_lpt(hw, link);
1529		if (ret_val)
1530			goto out;
1531	}
1532
1533	/* Clear link partner's EEE ability */
1534	hw->dev_spec.ich8lan.eee_lp_ability = 0;
1535
1536	if (hw->mac.type >= e1000_pch_lpt) {
1537		u32 fextnvm6 = er32(FEXTNVM6);
1538
1539		if (hw->mac.type == e1000_pch_spt) {
1540			/* FEXTNVM6 K1-off workaround - for SPT only */
1541			u32 pcieanacfg = er32(PCIEANACFG);
1542
1543			if (pcieanacfg & E1000_FEXTNVM6_K1_OFF_ENABLE)
1544				fextnvm6 |= E1000_FEXTNVM6_K1_OFF_ENABLE;
1545			else
1546				fextnvm6 &= ~E1000_FEXTNVM6_K1_OFF_ENABLE;
1547		}
1548
1549		ew32(FEXTNVM6, fextnvm6);
1550	}
1551
1552	if (!link)
1553		goto out;
1554
1555	switch (hw->mac.type) {
1556	case e1000_pch2lan:
1557		ret_val = e1000_k1_workaround_lv(hw);
1558		if (ret_val)
1559			return ret_val;
1560		fallthrough;
1561	case e1000_pchlan:
1562		if (hw->phy.type == e1000_phy_82578) {
1563			ret_val = e1000_link_stall_workaround_hv(hw);
1564			if (ret_val)
1565				return ret_val;
1566		}
1567
1568		/* Workaround for PCHx parts in half-duplex:
1569		 * Set the number of preambles removed from the packet
1570		 * when it is passed from the PHY to the MAC to prevent
1571		 * the MAC from misinterpreting the packet type.
1572		 */
1573		e1e_rphy(hw, HV_KMRN_FIFO_CTRLSTA, &phy_reg);
1574		phy_reg &= ~HV_KMRN_FIFO_CTRLSTA_PREAMBLE_MASK;
1575
1576		if ((er32(STATUS) & E1000_STATUS_FD) != E1000_STATUS_FD)
1577			phy_reg |= BIT(HV_KMRN_FIFO_CTRLSTA_PREAMBLE_SHIFT);
1578
1579		e1e_wphy(hw, HV_KMRN_FIFO_CTRLSTA, phy_reg);
1580		break;
1581	default:
1582		break;
1583	}
1584
1585	/* Check if there was DownShift, must be checked
1586	 * immediately after link-up
1587	 */
1588	e1000e_check_downshift(hw);
1589
1590	/* Enable/Disable EEE after link up */
1591	if (hw->phy.type > e1000_phy_82579) {
1592		ret_val = e1000_set_eee_pchlan(hw);
1593		if (ret_val)
1594			return ret_val;
1595	}
1596
1597	/* If we are forcing speed/duplex, then we simply return since
1598	 * we have already determined whether we have link or not.
1599	 */
1600	if (!mac->autoneg)
1601		return -E1000_ERR_CONFIG;
1602
1603	/* Auto-Neg is enabled.  Auto Speed Detection takes care
1604	 * of MAC speed/duplex configuration.  So we only need to
1605	 * configure Collision Distance in the MAC.
1606	 */
1607	mac->ops.config_collision_dist(hw);
1608
1609	/* Configure Flow Control now that Auto-Neg has completed.
1610	 * First, we need to restore the desired flow control
1611	 * settings because we may have had to re-autoneg with a
1612	 * different link partner.
1613	 */
1614	ret_val = e1000e_config_fc_after_link_up(hw);
1615	if (ret_val)
1616		e_dbg("Error configuring flow control\n");
1617
1618	return ret_val;
1619
1620out:
1621	mac->get_link_status = true;
1622	return ret_val;
1623}
1624
1625static s32 e1000_get_variants_ich8lan(struct e1000_adapter *adapter)
1626{
1627	struct e1000_hw *hw = &adapter->hw;
1628	s32 rc;
1629
1630	rc = e1000_init_mac_params_ich8lan(hw);
1631	if (rc)
1632		return rc;
1633
1634	rc = e1000_init_nvm_params_ich8lan(hw);
1635	if (rc)
1636		return rc;
1637
1638	switch (hw->mac.type) {
1639	case e1000_ich8lan:
1640	case e1000_ich9lan:
1641	case e1000_ich10lan:
1642		rc = e1000_init_phy_params_ich8lan(hw);
1643		break;
1644	case e1000_pchlan:
1645	case e1000_pch2lan:
1646	case e1000_pch_lpt:
1647	case e1000_pch_spt:
1648	case e1000_pch_cnp:
1649	case e1000_pch_tgp:
1650	case e1000_pch_adp:
 
 
 
 
1651		rc = e1000_init_phy_params_pchlan(hw);
1652		break;
1653	default:
1654		break;
1655	}
1656	if (rc)
1657		return rc;
1658
1659	/* Disable Jumbo Frame support on parts with Intel 10/100 PHY or
1660	 * on parts with MACsec enabled in NVM (reflected in CTRL_EXT).
1661	 */
1662	if ((adapter->hw.phy.type == e1000_phy_ife) ||
1663	    ((adapter->hw.mac.type >= e1000_pch2lan) &&
1664	     (!(er32(CTRL_EXT) & E1000_CTRL_EXT_LSECCK)))) {
1665		adapter->flags &= ~FLAG_HAS_JUMBO_FRAMES;
1666		adapter->max_hw_frame_size = VLAN_ETH_FRAME_LEN + ETH_FCS_LEN;
1667
1668		hw->mac.ops.blink_led = NULL;
1669	}
1670
1671	if ((adapter->hw.mac.type == e1000_ich8lan) &&
1672	    (adapter->hw.phy.type != e1000_phy_ife))
1673		adapter->flags |= FLAG_LSC_GIG_SPEED_DROP;
1674
1675	/* Enable workaround for 82579 w/ ME enabled */
1676	if ((adapter->hw.mac.type == e1000_pch2lan) &&
1677	    (er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
1678		adapter->flags2 |= FLAG2_PCIM2PCI_ARBITER_WA;
1679
1680	return 0;
1681}
1682
1683static DEFINE_MUTEX(nvm_mutex);
1684
1685/**
1686 *  e1000_acquire_nvm_ich8lan - Acquire NVM mutex
1687 *  @hw: pointer to the HW structure
1688 *
1689 *  Acquires the mutex for performing NVM operations.
1690 **/
1691static s32 e1000_acquire_nvm_ich8lan(struct e1000_hw __always_unused *hw)
1692{
1693	mutex_lock(&nvm_mutex);
1694
1695	return 0;
1696}
1697
1698/**
1699 *  e1000_release_nvm_ich8lan - Release NVM mutex
1700 *  @hw: pointer to the HW structure
1701 *
1702 *  Releases the mutex used while performing NVM operations.
1703 **/
1704static void e1000_release_nvm_ich8lan(struct e1000_hw __always_unused *hw)
1705{
1706	mutex_unlock(&nvm_mutex);
1707}
1708
1709/**
1710 *  e1000_acquire_swflag_ich8lan - Acquire software control flag
1711 *  @hw: pointer to the HW structure
1712 *
1713 *  Acquires the software control flag for performing PHY and select
1714 *  MAC CSR accesses.
1715 **/
1716static s32 e1000_acquire_swflag_ich8lan(struct e1000_hw *hw)
1717{
1718	u32 extcnf_ctrl, timeout = PHY_CFG_TIMEOUT;
1719	s32 ret_val = 0;
1720
1721	if (test_and_set_bit(__E1000_ACCESS_SHARED_RESOURCE,
1722			     &hw->adapter->state)) {
1723		e_dbg("contention for Phy access\n");
1724		return -E1000_ERR_PHY;
1725	}
1726
1727	while (timeout) {
1728		extcnf_ctrl = er32(EXTCNF_CTRL);
1729		if (!(extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG))
1730			break;
1731
1732		mdelay(1);
1733		timeout--;
1734	}
1735
1736	if (!timeout) {
1737		e_dbg("SW has already locked the resource.\n");
1738		ret_val = -E1000_ERR_CONFIG;
1739		goto out;
1740	}
1741
1742	timeout = SW_FLAG_TIMEOUT;
1743
1744	extcnf_ctrl |= E1000_EXTCNF_CTRL_SWFLAG;
1745	ew32(EXTCNF_CTRL, extcnf_ctrl);
1746
1747	while (timeout) {
1748		extcnf_ctrl = er32(EXTCNF_CTRL);
1749		if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG)
1750			break;
1751
1752		mdelay(1);
1753		timeout--;
1754	}
1755
1756	if (!timeout) {
1757		e_dbg("Failed to acquire the semaphore, FW or HW has it: FWSM=0x%8.8x EXTCNF_CTRL=0x%8.8x)\n",
1758		      er32(FWSM), extcnf_ctrl);
1759		extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
1760		ew32(EXTCNF_CTRL, extcnf_ctrl);
1761		ret_val = -E1000_ERR_CONFIG;
1762		goto out;
1763	}
1764
1765out:
1766	if (ret_val)
1767		clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
1768
1769	return ret_val;
1770}
1771
1772/**
1773 *  e1000_release_swflag_ich8lan - Release software control flag
1774 *  @hw: pointer to the HW structure
1775 *
1776 *  Releases the software control flag for performing PHY and select
1777 *  MAC CSR accesses.
1778 **/
1779static void e1000_release_swflag_ich8lan(struct e1000_hw *hw)
1780{
1781	u32 extcnf_ctrl;
1782
1783	extcnf_ctrl = er32(EXTCNF_CTRL);
1784
1785	if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG) {
1786		extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
1787		ew32(EXTCNF_CTRL, extcnf_ctrl);
1788	} else {
1789		e_dbg("Semaphore unexpectedly released by sw/fw/hw\n");
1790	}
1791
1792	clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
1793}
1794
1795/**
1796 *  e1000_check_mng_mode_ich8lan - Checks management mode
1797 *  @hw: pointer to the HW structure
1798 *
1799 *  This checks if the adapter has any manageability enabled.
1800 *  This is a function pointer entry point only called by read/write
1801 *  routines for the PHY and NVM parts.
1802 **/
1803static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw)
1804{
1805	u32 fwsm;
1806
1807	fwsm = er32(FWSM);
1808	return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
1809		((fwsm & E1000_FWSM_MODE_MASK) ==
1810		 (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
1811}
1812
1813/**
1814 *  e1000_check_mng_mode_pchlan - Checks management mode
1815 *  @hw: pointer to the HW structure
1816 *
1817 *  This checks if the adapter has iAMT enabled.
1818 *  This is a function pointer entry point only called by read/write
1819 *  routines for the PHY and NVM parts.
1820 **/
1821static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw)
1822{
1823	u32 fwsm;
1824
1825	fwsm = er32(FWSM);
1826	return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
1827	    (fwsm & (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
1828}
1829
1830/**
1831 *  e1000_rar_set_pch2lan - Set receive address register
1832 *  @hw: pointer to the HW structure
1833 *  @addr: pointer to the receive address
1834 *  @index: receive address array register
1835 *
1836 *  Sets the receive address array register at index to the address passed
1837 *  in by addr.  For 82579, RAR[0] is the base address register that is to
1838 *  contain the MAC address but RAR[1-6] are reserved for manageability (ME).
1839 *  Use SHRA[0-3] in place of those reserved for ME.
1840 **/
1841static int e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index)
1842{
1843	u32 rar_low, rar_high;
1844
1845	/* HW expects these in little endian so we reverse the byte order
1846	 * from network order (big endian) to little endian
1847	 */
1848	rar_low = ((u32)addr[0] |
1849		   ((u32)addr[1] << 8) |
1850		   ((u32)addr[2] << 16) | ((u32)addr[3] << 24));
1851
1852	rar_high = ((u32)addr[4] | ((u32)addr[5] << 8));
1853
1854	/* If MAC address zero, no need to set the AV bit */
1855	if (rar_low || rar_high)
1856		rar_high |= E1000_RAH_AV;
1857
1858	if (index == 0) {
1859		ew32(RAL(index), rar_low);
1860		e1e_flush();
1861		ew32(RAH(index), rar_high);
1862		e1e_flush();
1863		return 0;
1864	}
1865
1866	/* RAR[1-6] are owned by manageability.  Skip those and program the
1867	 * next address into the SHRA register array.
1868	 */
1869	if (index < (u32)(hw->mac.rar_entry_count)) {
1870		s32 ret_val;
1871
1872		ret_val = e1000_acquire_swflag_ich8lan(hw);
1873		if (ret_val)
1874			goto out;
1875
1876		ew32(SHRAL(index - 1), rar_low);
1877		e1e_flush();
1878		ew32(SHRAH(index - 1), rar_high);
1879		e1e_flush();
1880
1881		e1000_release_swflag_ich8lan(hw);
1882
1883		/* verify the register updates */
1884		if ((er32(SHRAL(index - 1)) == rar_low) &&
1885		    (er32(SHRAH(index - 1)) == rar_high))
1886			return 0;
1887
1888		e_dbg("SHRA[%d] might be locked by ME - FWSM=0x%8.8x\n",
1889		      (index - 1), er32(FWSM));
1890	}
1891
1892out:
1893	e_dbg("Failed to write receive address at index %d\n", index);
1894	return -E1000_ERR_CONFIG;
1895}
1896
1897/**
1898 *  e1000_rar_get_count_pch_lpt - Get the number of available SHRA
1899 *  @hw: pointer to the HW structure
1900 *
1901 *  Get the number of available receive registers that the Host can
1902 *  program. SHRA[0-10] are the shared receive address registers
1903 *  that are shared between the Host and manageability engine (ME).
1904 *  ME can reserve any number of addresses and the host needs to be
1905 *  able to tell how many available registers it has access to.
1906 **/
1907static u32 e1000_rar_get_count_pch_lpt(struct e1000_hw *hw)
1908{
1909	u32 wlock_mac;
1910	u32 num_entries;
1911
1912	wlock_mac = er32(FWSM) & E1000_FWSM_WLOCK_MAC_MASK;
1913	wlock_mac >>= E1000_FWSM_WLOCK_MAC_SHIFT;
1914
1915	switch (wlock_mac) {
1916	case 0:
1917		/* All SHRA[0..10] and RAR[0] available */
1918		num_entries = hw->mac.rar_entry_count;
1919		break;
1920	case 1:
1921		/* Only RAR[0] available */
1922		num_entries = 1;
1923		break;
1924	default:
1925		/* SHRA[0..(wlock_mac - 1)] available + RAR[0] */
1926		num_entries = wlock_mac + 1;
1927		break;
1928	}
1929
1930	return num_entries;
1931}
1932
1933/**
1934 *  e1000_rar_set_pch_lpt - Set receive address registers
1935 *  @hw: pointer to the HW structure
1936 *  @addr: pointer to the receive address
1937 *  @index: receive address array register
1938 *
1939 *  Sets the receive address register array at index to the address passed
1940 *  in by addr. For LPT, RAR[0] is the base address register that is to
1941 *  contain the MAC address. SHRA[0-10] are the shared receive address
1942 *  registers that are shared between the Host and manageability engine (ME).
1943 **/
1944static int e1000_rar_set_pch_lpt(struct e1000_hw *hw, u8 *addr, u32 index)
1945{
1946	u32 rar_low, rar_high;
1947	u32 wlock_mac;
1948
1949	/* HW expects these in little endian so we reverse the byte order
1950	 * from network order (big endian) to little endian
1951	 */
1952	rar_low = ((u32)addr[0] | ((u32)addr[1] << 8) |
1953		   ((u32)addr[2] << 16) | ((u32)addr[3] << 24));
1954
1955	rar_high = ((u32)addr[4] | ((u32)addr[5] << 8));
1956
1957	/* If MAC address zero, no need to set the AV bit */
1958	if (rar_low || rar_high)
1959		rar_high |= E1000_RAH_AV;
1960
1961	if (index == 0) {
1962		ew32(RAL(index), rar_low);
1963		e1e_flush();
1964		ew32(RAH(index), rar_high);
1965		e1e_flush();
1966		return 0;
1967	}
1968
1969	/* The manageability engine (ME) can lock certain SHRAR registers that
1970	 * it is using - those registers are unavailable for use.
1971	 */
1972	if (index < hw->mac.rar_entry_count) {
1973		wlock_mac = er32(FWSM) & E1000_FWSM_WLOCK_MAC_MASK;
1974		wlock_mac >>= E1000_FWSM_WLOCK_MAC_SHIFT;
1975
1976		/* Check if all SHRAR registers are locked */
1977		if (wlock_mac == 1)
1978			goto out;
1979
1980		if ((wlock_mac == 0) || (index <= wlock_mac)) {
1981			s32 ret_val;
1982
1983			ret_val = e1000_acquire_swflag_ich8lan(hw);
1984
1985			if (ret_val)
1986				goto out;
1987
1988			ew32(SHRAL_PCH_LPT(index - 1), rar_low);
1989			e1e_flush();
1990			ew32(SHRAH_PCH_LPT(index - 1), rar_high);
1991			e1e_flush();
1992
1993			e1000_release_swflag_ich8lan(hw);
1994
1995			/* verify the register updates */
1996			if ((er32(SHRAL_PCH_LPT(index - 1)) == rar_low) &&
1997			    (er32(SHRAH_PCH_LPT(index - 1)) == rar_high))
1998				return 0;
1999		}
2000	}
2001
2002out:
2003	e_dbg("Failed to write receive address at index %d\n", index);
2004	return -E1000_ERR_CONFIG;
2005}
2006
2007/**
2008 *  e1000_check_reset_block_ich8lan - Check if PHY reset is blocked
2009 *  @hw: pointer to the HW structure
2010 *
2011 *  Checks if firmware is blocking the reset of the PHY.
2012 *  This is a function pointer entry point only called by
2013 *  reset routines.
2014 **/
2015static s32 e1000_check_reset_block_ich8lan(struct e1000_hw *hw)
2016{
2017	bool blocked = false;
2018	int i = 0;
2019
2020	while ((blocked = !(er32(FWSM) & E1000_ICH_FWSM_RSPCIPHY)) &&
2021	       (i++ < 30))
2022		usleep_range(10000, 11000);
2023	return blocked ? E1000_BLK_PHY_RESET : 0;
2024}
2025
2026/**
2027 *  e1000_write_smbus_addr - Write SMBus address to PHY needed during Sx states
2028 *  @hw: pointer to the HW structure
2029 *
2030 *  Assumes semaphore already acquired.
2031 *
2032 **/
2033static s32 e1000_write_smbus_addr(struct e1000_hw *hw)
2034{
2035	u16 phy_data;
2036	u32 strap = er32(STRAP);
2037	u32 freq = (strap & E1000_STRAP_SMT_FREQ_MASK) >>
2038	    E1000_STRAP_SMT_FREQ_SHIFT;
2039	s32 ret_val;
2040
2041	strap &= E1000_STRAP_SMBUS_ADDRESS_MASK;
2042
2043	ret_val = e1000_read_phy_reg_hv_locked(hw, HV_SMB_ADDR, &phy_data);
2044	if (ret_val)
2045		return ret_val;
2046
2047	phy_data &= ~HV_SMB_ADDR_MASK;
2048	phy_data |= (strap >> E1000_STRAP_SMBUS_ADDRESS_SHIFT);
2049	phy_data |= HV_SMB_ADDR_PEC_EN | HV_SMB_ADDR_VALID;
2050
2051	if (hw->phy.type == e1000_phy_i217) {
2052		/* Restore SMBus frequency */
2053		if (freq--) {
2054			phy_data &= ~HV_SMB_ADDR_FREQ_MASK;
2055			phy_data |= (freq & BIT(0)) <<
2056			    HV_SMB_ADDR_FREQ_LOW_SHIFT;
2057			phy_data |= (freq & BIT(1)) <<
2058			    (HV_SMB_ADDR_FREQ_HIGH_SHIFT - 1);
2059		} else {
2060			e_dbg("Unsupported SMB frequency in PHY\n");
2061		}
2062	}
2063
2064	return e1000_write_phy_reg_hv_locked(hw, HV_SMB_ADDR, phy_data);
2065}
2066
2067/**
2068 *  e1000_sw_lcd_config_ich8lan - SW-based LCD Configuration
2069 *  @hw:   pointer to the HW structure
2070 *
2071 *  SW should configure the LCD from the NVM extended configuration region
2072 *  as a workaround for certain parts.
2073 **/
2074static s32 e1000_sw_lcd_config_ich8lan(struct e1000_hw *hw)
2075{
2076	struct e1000_phy_info *phy = &hw->phy;
2077	u32 i, data, cnf_size, cnf_base_addr, sw_cfg_mask;
2078	s32 ret_val = 0;
2079	u16 word_addr, reg_data, reg_addr, phy_page = 0;
2080
2081	/* Initialize the PHY from the NVM on ICH platforms.  This
2082	 * is needed due to an issue where the NVM configuration is
2083	 * not properly autoloaded after power transitions.
2084	 * Therefore, after each PHY reset, we will load the
2085	 * configuration data out of the NVM manually.
2086	 */
2087	switch (hw->mac.type) {
2088	case e1000_ich8lan:
2089		if (phy->type != e1000_phy_igp_3)
2090			return ret_val;
2091
2092		if ((hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_AMT) ||
2093		    (hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_C)) {
2094			sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG;
2095			break;
2096		}
2097		fallthrough;
2098	case e1000_pchlan:
2099	case e1000_pch2lan:
2100	case e1000_pch_lpt:
2101	case e1000_pch_spt:
2102	case e1000_pch_cnp:
2103	case e1000_pch_tgp:
2104	case e1000_pch_adp:
 
 
 
 
2105		sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG_ICH8M;
2106		break;
2107	default:
2108		return ret_val;
2109	}
2110
2111	ret_val = hw->phy.ops.acquire(hw);
2112	if (ret_val)
2113		return ret_val;
2114
2115	data = er32(FEXTNVM);
2116	if (!(data & sw_cfg_mask))
2117		goto release;
2118
2119	/* Make sure HW does not configure LCD from PHY
2120	 * extended configuration before SW configuration
2121	 */
2122	data = er32(EXTCNF_CTRL);
2123	if ((hw->mac.type < e1000_pch2lan) &&
2124	    (data & E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE))
2125		goto release;
2126
2127	cnf_size = er32(EXTCNF_SIZE);
2128	cnf_size &= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_MASK;
2129	cnf_size >>= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_SHIFT;
2130	if (!cnf_size)
2131		goto release;
2132
2133	cnf_base_addr = data & E1000_EXTCNF_CTRL_EXT_CNF_POINTER_MASK;
2134	cnf_base_addr >>= E1000_EXTCNF_CTRL_EXT_CNF_POINTER_SHIFT;
2135
2136	if (((hw->mac.type == e1000_pchlan) &&
2137	     !(data & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)) ||
2138	    (hw->mac.type > e1000_pchlan)) {
2139		/* HW configures the SMBus address and LEDs when the
2140		 * OEM and LCD Write Enable bits are set in the NVM.
2141		 * When both NVM bits are cleared, SW will configure
2142		 * them instead.
2143		 */
2144		ret_val = e1000_write_smbus_addr(hw);
2145		if (ret_val)
2146			goto release;
2147
2148		data = er32(LEDCTL);
2149		ret_val = e1000_write_phy_reg_hv_locked(hw, HV_LED_CONFIG,
2150							(u16)data);
2151		if (ret_val)
2152			goto release;
2153	}
2154
2155	/* Configure LCD from extended configuration region. */
2156
2157	/* cnf_base_addr is in DWORD */
2158	word_addr = (u16)(cnf_base_addr << 1);
2159
2160	for (i = 0; i < cnf_size; i++) {
2161		ret_val = e1000_read_nvm(hw, (word_addr + i * 2), 1, &reg_data);
2162		if (ret_val)
2163			goto release;
2164
2165		ret_val = e1000_read_nvm(hw, (word_addr + i * 2 + 1),
2166					 1, &reg_addr);
2167		if (ret_val)
2168			goto release;
2169
2170		/* Save off the PHY page for future writes. */
2171		if (reg_addr == IGP01E1000_PHY_PAGE_SELECT) {
2172			phy_page = reg_data;
2173			continue;
2174		}
2175
2176		reg_addr &= PHY_REG_MASK;
2177		reg_addr |= phy_page;
2178
2179		ret_val = e1e_wphy_locked(hw, (u32)reg_addr, reg_data);
2180		if (ret_val)
2181			goto release;
2182	}
2183
2184release:
2185	hw->phy.ops.release(hw);
2186	return ret_val;
2187}
2188
2189/**
2190 *  e1000_k1_gig_workaround_hv - K1 Si workaround
2191 *  @hw:   pointer to the HW structure
2192 *  @link: link up bool flag
2193 *
2194 *  If K1 is enabled for 1Gbps, the MAC might stall when transitioning
2195 *  from a lower speed.  This workaround disables K1 whenever link is at 1Gig
2196 *  If link is down, the function will restore the default K1 setting located
2197 *  in the NVM.
2198 **/
2199static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link)
2200{
2201	s32 ret_val = 0;
2202	u16 status_reg = 0;
2203	bool k1_enable = hw->dev_spec.ich8lan.nvm_k1_enabled;
2204
2205	if (hw->mac.type != e1000_pchlan)
2206		return 0;
2207
2208	/* Wrap the whole flow with the sw flag */
2209	ret_val = hw->phy.ops.acquire(hw);
2210	if (ret_val)
2211		return ret_val;
2212
2213	/* Disable K1 when link is 1Gbps, otherwise use the NVM setting */
2214	if (link) {
2215		if (hw->phy.type == e1000_phy_82578) {
2216			ret_val = e1e_rphy_locked(hw, BM_CS_STATUS,
2217						  &status_reg);
2218			if (ret_val)
2219				goto release;
2220
2221			status_reg &= (BM_CS_STATUS_LINK_UP |
2222				       BM_CS_STATUS_RESOLVED |
2223				       BM_CS_STATUS_SPEED_MASK);
2224
2225			if (status_reg == (BM_CS_STATUS_LINK_UP |
2226					   BM_CS_STATUS_RESOLVED |
2227					   BM_CS_STATUS_SPEED_1000))
2228				k1_enable = false;
2229		}
2230
2231		if (hw->phy.type == e1000_phy_82577) {
2232			ret_val = e1e_rphy_locked(hw, HV_M_STATUS, &status_reg);
2233			if (ret_val)
2234				goto release;
2235
2236			status_reg &= (HV_M_STATUS_LINK_UP |
2237				       HV_M_STATUS_AUTONEG_COMPLETE |
2238				       HV_M_STATUS_SPEED_MASK);
2239
2240			if (status_reg == (HV_M_STATUS_LINK_UP |
2241					   HV_M_STATUS_AUTONEG_COMPLETE |
2242					   HV_M_STATUS_SPEED_1000))
2243				k1_enable = false;
2244		}
2245
2246		/* Link stall fix for link up */
2247		ret_val = e1e_wphy_locked(hw, PHY_REG(770, 19), 0x0100);
2248		if (ret_val)
2249			goto release;
2250
2251	} else {
2252		/* Link stall fix for link down */
2253		ret_val = e1e_wphy_locked(hw, PHY_REG(770, 19), 0x4100);
2254		if (ret_val)
2255			goto release;
2256	}
2257
2258	ret_val = e1000_configure_k1_ich8lan(hw, k1_enable);
2259
2260release:
2261	hw->phy.ops.release(hw);
2262
2263	return ret_val;
2264}
2265
2266/**
2267 *  e1000_configure_k1_ich8lan - Configure K1 power state
2268 *  @hw: pointer to the HW structure
2269 *  @enable: K1 state to configure
2270 *
2271 *  Configure the K1 power state based on the provided parameter.
2272 *  Assumes semaphore already acquired.
2273 *
2274 *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
2275 **/
2276s32 e1000_configure_k1_ich8lan(struct e1000_hw *hw, bool k1_enable)
2277{
2278	s32 ret_val;
2279	u32 ctrl_reg = 0;
2280	u32 ctrl_ext = 0;
2281	u32 reg = 0;
2282	u16 kmrn_reg = 0;
2283
2284	ret_val = e1000e_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
2285					      &kmrn_reg);
2286	if (ret_val)
2287		return ret_val;
2288
2289	if (k1_enable)
2290		kmrn_reg |= E1000_KMRNCTRLSTA_K1_ENABLE;
2291	else
2292		kmrn_reg &= ~E1000_KMRNCTRLSTA_K1_ENABLE;
2293
2294	ret_val = e1000e_write_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
2295					       kmrn_reg);
2296	if (ret_val)
2297		return ret_val;
2298
2299	usleep_range(20, 40);
2300	ctrl_ext = er32(CTRL_EXT);
2301	ctrl_reg = er32(CTRL);
2302
2303	reg = ctrl_reg & ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
2304	reg |= E1000_CTRL_FRCSPD;
2305	ew32(CTRL, reg);
2306
2307	ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_SPD_BYPS);
2308	e1e_flush();
2309	usleep_range(20, 40);
2310	ew32(CTRL, ctrl_reg);
2311	ew32(CTRL_EXT, ctrl_ext);
2312	e1e_flush();
2313	usleep_range(20, 40);
2314
2315	return 0;
2316}
2317
2318/**
2319 *  e1000_oem_bits_config_ich8lan - SW-based LCD Configuration
2320 *  @hw:       pointer to the HW structure
2321 *  @d0_state: boolean if entering d0 or d3 device state
2322 *
2323 *  SW will configure Gbe Disable and LPLU based on the NVM. The four bits are
2324 *  collectively called OEM bits.  The OEM Write Enable bit and SW Config bit
2325 *  in NVM determines whether HW should configure LPLU and Gbe Disable.
2326 **/
2327static s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state)
2328{
2329	s32 ret_val = 0;
2330	u32 mac_reg;
2331	u16 oem_reg;
2332
2333	if (hw->mac.type < e1000_pchlan)
2334		return ret_val;
2335
2336	ret_val = hw->phy.ops.acquire(hw);
2337	if (ret_val)
2338		return ret_val;
2339
2340	if (hw->mac.type == e1000_pchlan) {
2341		mac_reg = er32(EXTCNF_CTRL);
2342		if (mac_reg & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)
2343			goto release;
2344	}
2345
2346	mac_reg = er32(FEXTNVM);
2347	if (!(mac_reg & E1000_FEXTNVM_SW_CONFIG_ICH8M))
2348		goto release;
2349
2350	mac_reg = er32(PHY_CTRL);
2351
2352	ret_val = e1e_rphy_locked(hw, HV_OEM_BITS, &oem_reg);
2353	if (ret_val)
2354		goto release;
2355
2356	oem_reg &= ~(HV_OEM_BITS_GBE_DIS | HV_OEM_BITS_LPLU);
2357
2358	if (d0_state) {
2359		if (mac_reg & E1000_PHY_CTRL_GBE_DISABLE)
2360			oem_reg |= HV_OEM_BITS_GBE_DIS;
2361
2362		if (mac_reg & E1000_PHY_CTRL_D0A_LPLU)
2363			oem_reg |= HV_OEM_BITS_LPLU;
2364	} else {
2365		if (mac_reg & (E1000_PHY_CTRL_GBE_DISABLE |
2366			       E1000_PHY_CTRL_NOND0A_GBE_DISABLE))
2367			oem_reg |= HV_OEM_BITS_GBE_DIS;
2368
2369		if (mac_reg & (E1000_PHY_CTRL_D0A_LPLU |
2370			       E1000_PHY_CTRL_NOND0A_LPLU))
2371			oem_reg |= HV_OEM_BITS_LPLU;
2372	}
2373
2374	/* Set Restart auto-neg to activate the bits */
2375	if ((d0_state || (hw->mac.type != e1000_pchlan)) &&
2376	    !hw->phy.ops.check_reset_block(hw))
2377		oem_reg |= HV_OEM_BITS_RESTART_AN;
2378
2379	ret_val = e1e_wphy_locked(hw, HV_OEM_BITS, oem_reg);
2380
2381release:
2382	hw->phy.ops.release(hw);
2383
2384	return ret_val;
2385}
2386
2387/**
2388 *  e1000_set_mdio_slow_mode_hv - Set slow MDIO access mode
2389 *  @hw:   pointer to the HW structure
2390 **/
2391static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw)
2392{
2393	s32 ret_val;
2394	u16 data;
2395
2396	ret_val = e1e_rphy(hw, HV_KMRN_MODE_CTRL, &data);
2397	if (ret_val)
2398		return ret_val;
2399
2400	data |= HV_KMRN_MDIO_SLOW;
2401
2402	ret_val = e1e_wphy(hw, HV_KMRN_MODE_CTRL, data);
2403
2404	return ret_val;
2405}
2406
2407/**
2408 *  e1000_hv_phy_workarounds_ich8lan - A series of Phy workarounds to be
2409 *  done after every PHY reset.
 
 
2410 **/
2411static s32 e1000_hv_phy_workarounds_ich8lan(struct e1000_hw *hw)
2412{
2413	s32 ret_val = 0;
2414	u16 phy_data;
2415
2416	if (hw->mac.type != e1000_pchlan)
2417		return 0;
2418
2419	/* Set MDIO slow mode before any other MDIO access */
2420	if (hw->phy.type == e1000_phy_82577) {
2421		ret_val = e1000_set_mdio_slow_mode_hv(hw);
2422		if (ret_val)
2423			return ret_val;
2424	}
2425
2426	if (((hw->phy.type == e1000_phy_82577) &&
2427	     ((hw->phy.revision == 1) || (hw->phy.revision == 2))) ||
2428	    ((hw->phy.type == e1000_phy_82578) && (hw->phy.revision == 1))) {
2429		/* Disable generation of early preamble */
2430		ret_val = e1e_wphy(hw, PHY_REG(769, 25), 0x4431);
2431		if (ret_val)
2432			return ret_val;
2433
2434		/* Preamble tuning for SSC */
2435		ret_val = e1e_wphy(hw, HV_KMRN_FIFO_CTRLSTA, 0xA204);
2436		if (ret_val)
2437			return ret_val;
2438	}
2439
2440	if (hw->phy.type == e1000_phy_82578) {
2441		/* Return registers to default by doing a soft reset then
2442		 * writing 0x3140 to the control register.
2443		 */
2444		if (hw->phy.revision < 2) {
2445			e1000e_phy_sw_reset(hw);
2446			ret_val = e1e_wphy(hw, MII_BMCR, 0x3140);
2447			if (ret_val)
2448				return ret_val;
2449		}
2450	}
2451
2452	/* Select page 0 */
2453	ret_val = hw->phy.ops.acquire(hw);
2454	if (ret_val)
2455		return ret_val;
2456
2457	hw->phy.addr = 1;
2458	ret_val = e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, 0);
2459	hw->phy.ops.release(hw);
2460	if (ret_val)
2461		return ret_val;
2462
2463	/* Configure the K1 Si workaround during phy reset assuming there is
2464	 * link so that it disables K1 if link is in 1Gbps.
2465	 */
2466	ret_val = e1000_k1_gig_workaround_hv(hw, true);
2467	if (ret_val)
2468		return ret_val;
2469
2470	/* Workaround for link disconnects on a busy hub in half duplex */
2471	ret_val = hw->phy.ops.acquire(hw);
2472	if (ret_val)
2473		return ret_val;
2474	ret_val = e1e_rphy_locked(hw, BM_PORT_GEN_CFG, &phy_data);
2475	if (ret_val)
2476		goto release;
2477	ret_val = e1e_wphy_locked(hw, BM_PORT_GEN_CFG, phy_data & 0x00FF);
2478	if (ret_val)
2479		goto release;
2480
2481	/* set MSE higher to enable link to stay up when noise is high */
2482	ret_val = e1000_write_emi_reg_locked(hw, I82577_MSE_THRESHOLD, 0x0034);
2483release:
2484	hw->phy.ops.release(hw);
2485
2486	return ret_val;
2487}
2488
2489/**
2490 *  e1000_copy_rx_addrs_to_phy_ich8lan - Copy Rx addresses from MAC to PHY
2491 *  @hw:   pointer to the HW structure
2492 **/
2493void e1000_copy_rx_addrs_to_phy_ich8lan(struct e1000_hw *hw)
2494{
2495	u32 mac_reg;
2496	u16 i, phy_reg = 0;
2497	s32 ret_val;
2498
2499	ret_val = hw->phy.ops.acquire(hw);
2500	if (ret_val)
2501		return;
2502	ret_val = e1000_enable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2503	if (ret_val)
2504		goto release;
2505
2506	/* Copy both RAL/H (rar_entry_count) and SHRAL/H to PHY */
2507	for (i = 0; i < (hw->mac.rar_entry_count); i++) {
2508		mac_reg = er32(RAL(i));
2509		hw->phy.ops.write_reg_page(hw, BM_RAR_L(i),
2510					   (u16)(mac_reg & 0xFFFF));
2511		hw->phy.ops.write_reg_page(hw, BM_RAR_M(i),
2512					   (u16)((mac_reg >> 16) & 0xFFFF));
2513
2514		mac_reg = er32(RAH(i));
2515		hw->phy.ops.write_reg_page(hw, BM_RAR_H(i),
2516					   (u16)(mac_reg & 0xFFFF));
2517		hw->phy.ops.write_reg_page(hw, BM_RAR_CTRL(i),
2518					   (u16)((mac_reg & E1000_RAH_AV)
2519						 >> 16));
2520	}
2521
2522	e1000_disable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2523
2524release:
2525	hw->phy.ops.release(hw);
2526}
2527
2528/**
2529 *  e1000_lv_jumbo_workaround_ich8lan - required for jumbo frame operation
2530 *  with 82579 PHY
2531 *  @hw: pointer to the HW structure
2532 *  @enable: flag to enable/disable workaround when enabling/disabling jumbos
2533 **/
2534s32 e1000_lv_jumbo_workaround_ich8lan(struct e1000_hw *hw, bool enable)
2535{
2536	s32 ret_val = 0;
2537	u16 phy_reg, data;
2538	u32 mac_reg;
2539	u16 i;
2540
2541	if (hw->mac.type < e1000_pch2lan)
2542		return 0;
2543
2544	/* disable Rx path while enabling/disabling workaround */
2545	e1e_rphy(hw, PHY_REG(769, 20), &phy_reg);
2546	ret_val = e1e_wphy(hw, PHY_REG(769, 20), phy_reg | BIT(14));
2547	if (ret_val)
2548		return ret_val;
2549
2550	if (enable) {
2551		/* Write Rx addresses (rar_entry_count for RAL/H, and
2552		 * SHRAL/H) and initial CRC values to the MAC
2553		 */
2554		for (i = 0; i < hw->mac.rar_entry_count; i++) {
2555			u8 mac_addr[ETH_ALEN] = { 0 };
2556			u32 addr_high, addr_low;
2557
2558			addr_high = er32(RAH(i));
2559			if (!(addr_high & E1000_RAH_AV))
2560				continue;
2561			addr_low = er32(RAL(i));
2562			mac_addr[0] = (addr_low & 0xFF);
2563			mac_addr[1] = ((addr_low >> 8) & 0xFF);
2564			mac_addr[2] = ((addr_low >> 16) & 0xFF);
2565			mac_addr[3] = ((addr_low >> 24) & 0xFF);
2566			mac_addr[4] = (addr_high & 0xFF);
2567			mac_addr[5] = ((addr_high >> 8) & 0xFF);
2568
2569			ew32(PCH_RAICC(i), ~ether_crc_le(ETH_ALEN, mac_addr));
2570		}
2571
2572		/* Write Rx addresses to the PHY */
2573		e1000_copy_rx_addrs_to_phy_ich8lan(hw);
2574
2575		/* Enable jumbo frame workaround in the MAC */
2576		mac_reg = er32(FFLT_DBG);
2577		mac_reg &= ~BIT(14);
2578		mac_reg |= (7 << 15);
2579		ew32(FFLT_DBG, mac_reg);
2580
2581		mac_reg = er32(RCTL);
2582		mac_reg |= E1000_RCTL_SECRC;
2583		ew32(RCTL, mac_reg);
2584
2585		ret_val = e1000e_read_kmrn_reg(hw,
2586					       E1000_KMRNCTRLSTA_CTRL_OFFSET,
2587					       &data);
2588		if (ret_val)
2589			return ret_val;
2590		ret_val = e1000e_write_kmrn_reg(hw,
2591						E1000_KMRNCTRLSTA_CTRL_OFFSET,
2592						data | BIT(0));
2593		if (ret_val)
2594			return ret_val;
2595		ret_val = e1000e_read_kmrn_reg(hw,
2596					       E1000_KMRNCTRLSTA_HD_CTRL,
2597					       &data);
2598		if (ret_val)
2599			return ret_val;
2600		data &= ~(0xF << 8);
2601		data |= (0xB << 8);
2602		ret_val = e1000e_write_kmrn_reg(hw,
2603						E1000_KMRNCTRLSTA_HD_CTRL,
2604						data);
2605		if (ret_val)
2606			return ret_val;
2607
2608		/* Enable jumbo frame workaround in the PHY */
2609		e1e_rphy(hw, PHY_REG(769, 23), &data);
2610		data &= ~(0x7F << 5);
2611		data |= (0x37 << 5);
2612		ret_val = e1e_wphy(hw, PHY_REG(769, 23), data);
2613		if (ret_val)
2614			return ret_val;
2615		e1e_rphy(hw, PHY_REG(769, 16), &data);
2616		data &= ~BIT(13);
2617		ret_val = e1e_wphy(hw, PHY_REG(769, 16), data);
2618		if (ret_val)
2619			return ret_val;
2620		e1e_rphy(hw, PHY_REG(776, 20), &data);
2621		data &= ~(0x3FF << 2);
2622		data |= (E1000_TX_PTR_GAP << 2);
2623		ret_val = e1e_wphy(hw, PHY_REG(776, 20), data);
2624		if (ret_val)
2625			return ret_val;
2626		ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0xF100);
2627		if (ret_val)
2628			return ret_val;
2629		e1e_rphy(hw, HV_PM_CTRL, &data);
2630		ret_val = e1e_wphy(hw, HV_PM_CTRL, data | BIT(10));
2631		if (ret_val)
2632			return ret_val;
2633	} else {
2634		/* Write MAC register values back to h/w defaults */
2635		mac_reg = er32(FFLT_DBG);
2636		mac_reg &= ~(0xF << 14);
2637		ew32(FFLT_DBG, mac_reg);
2638
2639		mac_reg = er32(RCTL);
2640		mac_reg &= ~E1000_RCTL_SECRC;
2641		ew32(RCTL, mac_reg);
2642
2643		ret_val = e1000e_read_kmrn_reg(hw,
2644					       E1000_KMRNCTRLSTA_CTRL_OFFSET,
2645					       &data);
2646		if (ret_val)
2647			return ret_val;
2648		ret_val = e1000e_write_kmrn_reg(hw,
2649						E1000_KMRNCTRLSTA_CTRL_OFFSET,
2650						data & ~BIT(0));
2651		if (ret_val)
2652			return ret_val;
2653		ret_val = e1000e_read_kmrn_reg(hw,
2654					       E1000_KMRNCTRLSTA_HD_CTRL,
2655					       &data);
2656		if (ret_val)
2657			return ret_val;
2658		data &= ~(0xF << 8);
2659		data |= (0xB << 8);
2660		ret_val = e1000e_write_kmrn_reg(hw,
2661						E1000_KMRNCTRLSTA_HD_CTRL,
2662						data);
2663		if (ret_val)
2664			return ret_val;
2665
2666		/* Write PHY register values back to h/w defaults */
2667		e1e_rphy(hw, PHY_REG(769, 23), &data);
2668		data &= ~(0x7F << 5);
2669		ret_val = e1e_wphy(hw, PHY_REG(769, 23), data);
2670		if (ret_val)
2671			return ret_val;
2672		e1e_rphy(hw, PHY_REG(769, 16), &data);
2673		data |= BIT(13);
2674		ret_val = e1e_wphy(hw, PHY_REG(769, 16), data);
2675		if (ret_val)
2676			return ret_val;
2677		e1e_rphy(hw, PHY_REG(776, 20), &data);
2678		data &= ~(0x3FF << 2);
2679		data |= (0x8 << 2);
2680		ret_val = e1e_wphy(hw, PHY_REG(776, 20), data);
2681		if (ret_val)
2682			return ret_val;
2683		ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0x7E00);
2684		if (ret_val)
2685			return ret_val;
2686		e1e_rphy(hw, HV_PM_CTRL, &data);
2687		ret_val = e1e_wphy(hw, HV_PM_CTRL, data & ~BIT(10));
2688		if (ret_val)
2689			return ret_val;
2690	}
2691
2692	/* re-enable Rx path after enabling/disabling workaround */
2693	return e1e_wphy(hw, PHY_REG(769, 20), phy_reg & ~BIT(14));
2694}
2695
2696/**
2697 *  e1000_lv_phy_workarounds_ich8lan - A series of Phy workarounds to be
2698 *  done after every PHY reset.
 
 
2699 **/
2700static s32 e1000_lv_phy_workarounds_ich8lan(struct e1000_hw *hw)
2701{
2702	s32 ret_val = 0;
2703
2704	if (hw->mac.type != e1000_pch2lan)
2705		return 0;
2706
2707	/* Set MDIO slow mode before any other MDIO access */
2708	ret_val = e1000_set_mdio_slow_mode_hv(hw);
2709	if (ret_val)
2710		return ret_val;
2711
2712	ret_val = hw->phy.ops.acquire(hw);
2713	if (ret_val)
2714		return ret_val;
2715	/* set MSE higher to enable link to stay up when noise is high */
2716	ret_val = e1000_write_emi_reg_locked(hw, I82579_MSE_THRESHOLD, 0x0034);
2717	if (ret_val)
2718		goto release;
2719	/* drop link after 5 times MSE threshold was reached */
2720	ret_val = e1000_write_emi_reg_locked(hw, I82579_MSE_LINK_DOWN, 0x0005);
2721release:
2722	hw->phy.ops.release(hw);
2723
2724	return ret_val;
2725}
2726
2727/**
2728 *  e1000_k1_gig_workaround_lv - K1 Si workaround
2729 *  @hw:   pointer to the HW structure
2730 *
2731 *  Workaround to set the K1 beacon duration for 82579 parts in 10Mbps
2732 *  Disable K1 in 1000Mbps and 100Mbps
2733 **/
2734static s32 e1000_k1_workaround_lv(struct e1000_hw *hw)
2735{
2736	s32 ret_val = 0;
2737	u16 status_reg = 0;
2738
2739	if (hw->mac.type != e1000_pch2lan)
2740		return 0;
2741
2742	/* Set K1 beacon duration based on 10Mbs speed */
2743	ret_val = e1e_rphy(hw, HV_M_STATUS, &status_reg);
2744	if (ret_val)
2745		return ret_val;
2746
2747	if ((status_reg & (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE))
2748	    == (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE)) {
2749		if (status_reg &
2750		    (HV_M_STATUS_SPEED_1000 | HV_M_STATUS_SPEED_100)) {
2751			u16 pm_phy_reg;
2752
2753			/* LV 1G/100 Packet drop issue wa  */
2754			ret_val = e1e_rphy(hw, HV_PM_CTRL, &pm_phy_reg);
2755			if (ret_val)
2756				return ret_val;
2757			pm_phy_reg &= ~HV_PM_CTRL_K1_ENABLE;
2758			ret_val = e1e_wphy(hw, HV_PM_CTRL, pm_phy_reg);
2759			if (ret_val)
2760				return ret_val;
2761		} else {
2762			u32 mac_reg;
2763
2764			mac_reg = er32(FEXTNVM4);
2765			mac_reg &= ~E1000_FEXTNVM4_BEACON_DURATION_MASK;
2766			mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_16USEC;
2767			ew32(FEXTNVM4, mac_reg);
2768		}
2769	}
2770
2771	return ret_val;
2772}
2773
2774/**
2775 *  e1000_gate_hw_phy_config_ich8lan - disable PHY config via hardware
2776 *  @hw:   pointer to the HW structure
2777 *  @gate: boolean set to true to gate, false to ungate
2778 *
2779 *  Gate/ungate the automatic PHY configuration via hardware; perform
2780 *  the configuration via software instead.
2781 **/
2782static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate)
2783{
2784	u32 extcnf_ctrl;
2785
2786	if (hw->mac.type < e1000_pch2lan)
2787		return;
2788
2789	extcnf_ctrl = er32(EXTCNF_CTRL);
2790
2791	if (gate)
2792		extcnf_ctrl |= E1000_EXTCNF_CTRL_GATE_PHY_CFG;
2793	else
2794		extcnf_ctrl &= ~E1000_EXTCNF_CTRL_GATE_PHY_CFG;
2795
2796	ew32(EXTCNF_CTRL, extcnf_ctrl);
2797}
2798
2799/**
2800 *  e1000_lan_init_done_ich8lan - Check for PHY config completion
2801 *  @hw: pointer to the HW structure
2802 *
2803 *  Check the appropriate indication the MAC has finished configuring the
2804 *  PHY after a software reset.
2805 **/
2806static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw)
2807{
2808	u32 data, loop = E1000_ICH8_LAN_INIT_TIMEOUT;
2809
2810	/* Wait for basic configuration completes before proceeding */
2811	do {
2812		data = er32(STATUS);
2813		data &= E1000_STATUS_LAN_INIT_DONE;
2814		usleep_range(100, 200);
2815	} while ((!data) && --loop);
2816
2817	/* If basic configuration is incomplete before the above loop
2818	 * count reaches 0, loading the configuration from NVM will
2819	 * leave the PHY in a bad state possibly resulting in no link.
2820	 */
2821	if (loop == 0)
2822		e_dbg("LAN_INIT_DONE not set, increase timeout\n");
2823
2824	/* Clear the Init Done bit for the next init event */
2825	data = er32(STATUS);
2826	data &= ~E1000_STATUS_LAN_INIT_DONE;
2827	ew32(STATUS, data);
2828}
2829
2830/**
2831 *  e1000_post_phy_reset_ich8lan - Perform steps required after a PHY reset
2832 *  @hw: pointer to the HW structure
2833 **/
2834static s32 e1000_post_phy_reset_ich8lan(struct e1000_hw *hw)
2835{
2836	s32 ret_val = 0;
2837	u16 reg;
2838
2839	if (hw->phy.ops.check_reset_block(hw))
2840		return 0;
2841
2842	/* Allow time for h/w to get to quiescent state after reset */
2843	usleep_range(10000, 11000);
2844
2845	/* Perform any necessary post-reset workarounds */
2846	switch (hw->mac.type) {
2847	case e1000_pchlan:
2848		ret_val = e1000_hv_phy_workarounds_ich8lan(hw);
2849		if (ret_val)
2850			return ret_val;
2851		break;
2852	case e1000_pch2lan:
2853		ret_val = e1000_lv_phy_workarounds_ich8lan(hw);
2854		if (ret_val)
2855			return ret_val;
2856		break;
2857	default:
2858		break;
2859	}
2860
2861	/* Clear the host wakeup bit after lcd reset */
2862	if (hw->mac.type >= e1000_pchlan) {
2863		e1e_rphy(hw, BM_PORT_GEN_CFG, &reg);
2864		reg &= ~BM_WUC_HOST_WU_BIT;
2865		e1e_wphy(hw, BM_PORT_GEN_CFG, reg);
2866	}
2867
2868	/* Configure the LCD with the extended configuration region in NVM */
2869	ret_val = e1000_sw_lcd_config_ich8lan(hw);
2870	if (ret_val)
2871		return ret_val;
2872
2873	/* Configure the LCD with the OEM bits in NVM */
2874	ret_val = e1000_oem_bits_config_ich8lan(hw, true);
2875
2876	if (hw->mac.type == e1000_pch2lan) {
2877		/* Ungate automatic PHY configuration on non-managed 82579 */
2878		if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
2879			usleep_range(10000, 11000);
2880			e1000_gate_hw_phy_config_ich8lan(hw, false);
2881		}
2882
2883		/* Set EEE LPI Update Timer to 200usec */
2884		ret_val = hw->phy.ops.acquire(hw);
2885		if (ret_val)
2886			return ret_val;
2887		ret_val = e1000_write_emi_reg_locked(hw,
2888						     I82579_LPI_UPDATE_TIMER,
2889						     0x1387);
2890		hw->phy.ops.release(hw);
2891	}
2892
2893	return ret_val;
2894}
2895
2896/**
2897 *  e1000_phy_hw_reset_ich8lan - Performs a PHY reset
2898 *  @hw: pointer to the HW structure
2899 *
2900 *  Resets the PHY
2901 *  This is a function pointer entry point called by drivers
2902 *  or other shared routines.
2903 **/
2904static s32 e1000_phy_hw_reset_ich8lan(struct e1000_hw *hw)
2905{
2906	s32 ret_val = 0;
2907
2908	/* Gate automatic PHY configuration by hardware on non-managed 82579 */
2909	if ((hw->mac.type == e1000_pch2lan) &&
2910	    !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
2911		e1000_gate_hw_phy_config_ich8lan(hw, true);
2912
2913	ret_val = e1000e_phy_hw_reset_generic(hw);
2914	if (ret_val)
2915		return ret_val;
2916
2917	return e1000_post_phy_reset_ich8lan(hw);
2918}
2919
2920/**
2921 *  e1000_set_lplu_state_pchlan - Set Low Power Link Up state
2922 *  @hw: pointer to the HW structure
2923 *  @active: true to enable LPLU, false to disable
2924 *
2925 *  Sets the LPLU state according to the active flag.  For PCH, if OEM write
2926 *  bit are disabled in the NVM, writing the LPLU bits in the MAC will not set
2927 *  the phy speed. This function will manually set the LPLU bit and restart
2928 *  auto-neg as hw would do. D3 and D0 LPLU will call the same function
2929 *  since it configures the same bit.
2930 **/
2931static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active)
2932{
2933	s32 ret_val;
2934	u16 oem_reg;
2935
2936	ret_val = e1e_rphy(hw, HV_OEM_BITS, &oem_reg);
2937	if (ret_val)
2938		return ret_val;
2939
2940	if (active)
2941		oem_reg |= HV_OEM_BITS_LPLU;
2942	else
2943		oem_reg &= ~HV_OEM_BITS_LPLU;
2944
2945	if (!hw->phy.ops.check_reset_block(hw))
2946		oem_reg |= HV_OEM_BITS_RESTART_AN;
2947
2948	return e1e_wphy(hw, HV_OEM_BITS, oem_reg);
2949}
2950
2951/**
2952 *  e1000_set_d0_lplu_state_ich8lan - Set Low Power Linkup D0 state
2953 *  @hw: pointer to the HW structure
2954 *  @active: true to enable LPLU, false to disable
2955 *
2956 *  Sets the LPLU D0 state according to the active flag.  When
2957 *  activating LPLU this function also disables smart speed
2958 *  and vice versa.  LPLU will not be activated unless the
2959 *  device autonegotiation advertisement meets standards of
2960 *  either 10 or 10/100 or 10/100/1000 at all duplexes.
2961 *  This is a function pointer entry point only called by
2962 *  PHY setup routines.
2963 **/
2964static s32 e1000_set_d0_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
2965{
2966	struct e1000_phy_info *phy = &hw->phy;
2967	u32 phy_ctrl;
2968	s32 ret_val = 0;
2969	u16 data;
2970
2971	if (phy->type == e1000_phy_ife)
2972		return 0;
2973
2974	phy_ctrl = er32(PHY_CTRL);
2975
2976	if (active) {
2977		phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
2978		ew32(PHY_CTRL, phy_ctrl);
2979
2980		if (phy->type != e1000_phy_igp_3)
2981			return 0;
2982
2983		/* Call gig speed drop workaround on LPLU before accessing
2984		 * any PHY registers
2985		 */
2986		if (hw->mac.type == e1000_ich8lan)
2987			e1000e_gig_downshift_workaround_ich8lan(hw);
2988
2989		/* When LPLU is enabled, we should disable SmartSpeed */
2990		ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
2991		if (ret_val)
2992			return ret_val;
2993		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2994		ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
2995		if (ret_val)
2996			return ret_val;
2997	} else {
2998		phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
2999		ew32(PHY_CTRL, phy_ctrl);
3000
3001		if (phy->type != e1000_phy_igp_3)
3002			return 0;
3003
3004		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
3005		 * during Dx states where the power conservation is most
3006		 * important.  During driver activity we should enable
3007		 * SmartSpeed, so performance is maintained.
3008		 */
3009		if (phy->smart_speed == e1000_smart_speed_on) {
3010			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3011					   &data);
3012			if (ret_val)
3013				return ret_val;
3014
3015			data |= IGP01E1000_PSCFR_SMART_SPEED;
3016			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3017					   data);
3018			if (ret_val)
3019				return ret_val;
3020		} else if (phy->smart_speed == e1000_smart_speed_off) {
3021			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3022					   &data);
3023			if (ret_val)
3024				return ret_val;
3025
3026			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3027			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3028					   data);
3029			if (ret_val)
3030				return ret_val;
3031		}
3032	}
3033
3034	return 0;
3035}
3036
3037/**
3038 *  e1000_set_d3_lplu_state_ich8lan - Set Low Power Linkup D3 state
3039 *  @hw: pointer to the HW structure
3040 *  @active: true to enable LPLU, false to disable
3041 *
3042 *  Sets the LPLU D3 state according to the active flag.  When
3043 *  activating LPLU this function also disables smart speed
3044 *  and vice versa.  LPLU will not be activated unless the
3045 *  device autonegotiation advertisement meets standards of
3046 *  either 10 or 10/100 or 10/100/1000 at all duplexes.
3047 *  This is a function pointer entry point only called by
3048 *  PHY setup routines.
3049 **/
3050static s32 e1000_set_d3_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
3051{
3052	struct e1000_phy_info *phy = &hw->phy;
3053	u32 phy_ctrl;
3054	s32 ret_val = 0;
3055	u16 data;
3056
3057	phy_ctrl = er32(PHY_CTRL);
3058
3059	if (!active) {
3060		phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU;
3061		ew32(PHY_CTRL, phy_ctrl);
3062
3063		if (phy->type != e1000_phy_igp_3)
3064			return 0;
3065
3066		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
3067		 * during Dx states where the power conservation is most
3068		 * important.  During driver activity we should enable
3069		 * SmartSpeed, so performance is maintained.
3070		 */
3071		if (phy->smart_speed == e1000_smart_speed_on) {
3072			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3073					   &data);
3074			if (ret_val)
3075				return ret_val;
3076
3077			data |= IGP01E1000_PSCFR_SMART_SPEED;
3078			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3079					   data);
3080			if (ret_val)
3081				return ret_val;
3082		} else if (phy->smart_speed == e1000_smart_speed_off) {
3083			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3084					   &data);
3085			if (ret_val)
3086				return ret_val;
3087
3088			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3089			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3090					   data);
3091			if (ret_val)
3092				return ret_val;
3093		}
3094	} else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
3095		   (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
3096		   (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
3097		phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU;
3098		ew32(PHY_CTRL, phy_ctrl);
3099
3100		if (phy->type != e1000_phy_igp_3)
3101			return 0;
3102
3103		/* Call gig speed drop workaround on LPLU before accessing
3104		 * any PHY registers
3105		 */
3106		if (hw->mac.type == e1000_ich8lan)
3107			e1000e_gig_downshift_workaround_ich8lan(hw);
3108
3109		/* When LPLU is enabled, we should disable SmartSpeed */
3110		ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
3111		if (ret_val)
3112			return ret_val;
3113
3114		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3115		ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
3116	}
3117
3118	return ret_val;
3119}
3120
3121/**
3122 *  e1000_valid_nvm_bank_detect_ich8lan - finds out the valid bank 0 or 1
3123 *  @hw: pointer to the HW structure
3124 *  @bank:  pointer to the variable that returns the active bank
3125 *
3126 *  Reads signature byte from the NVM using the flash access registers.
3127 *  Word 0x13 bits 15:14 = 10b indicate a valid signature for that bank.
3128 **/
3129static s32 e1000_valid_nvm_bank_detect_ich8lan(struct e1000_hw *hw, u32 *bank)
3130{
3131	u32 eecd;
3132	struct e1000_nvm_info *nvm = &hw->nvm;
3133	u32 bank1_offset = nvm->flash_bank_size * sizeof(u16);
3134	u32 act_offset = E1000_ICH_NVM_SIG_WORD * 2 + 1;
3135	u32 nvm_dword = 0;
3136	u8 sig_byte = 0;
3137	s32 ret_val;
3138
3139	switch (hw->mac.type) {
3140	case e1000_pch_spt:
3141	case e1000_pch_cnp:
3142	case e1000_pch_tgp:
3143	case e1000_pch_adp:
 
 
 
 
3144		bank1_offset = nvm->flash_bank_size;
3145		act_offset = E1000_ICH_NVM_SIG_WORD;
3146
3147		/* set bank to 0 in case flash read fails */
3148		*bank = 0;
3149
3150		/* Check bank 0 */
3151		ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset,
3152							 &nvm_dword);
3153		if (ret_val)
3154			return ret_val;
3155		sig_byte = (u8)((nvm_dword & 0xFF00) >> 8);
3156		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3157		    E1000_ICH_NVM_SIG_VALUE) {
3158			*bank = 0;
3159			return 0;
3160		}
3161
3162		/* Check bank 1 */
3163		ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset +
3164							 bank1_offset,
3165							 &nvm_dword);
3166		if (ret_val)
3167			return ret_val;
3168		sig_byte = (u8)((nvm_dword & 0xFF00) >> 8);
3169		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3170		    E1000_ICH_NVM_SIG_VALUE) {
3171			*bank = 1;
3172			return 0;
3173		}
3174
3175		e_dbg("ERROR: No valid NVM bank present\n");
3176		return -E1000_ERR_NVM;
3177	case e1000_ich8lan:
3178	case e1000_ich9lan:
3179		eecd = er32(EECD);
3180		if ((eecd & E1000_EECD_SEC1VAL_VALID_MASK) ==
3181		    E1000_EECD_SEC1VAL_VALID_MASK) {
3182			if (eecd & E1000_EECD_SEC1VAL)
3183				*bank = 1;
3184			else
3185				*bank = 0;
3186
3187			return 0;
3188		}
3189		e_dbg("Unable to determine valid NVM bank via EEC - reading flash signature\n");
3190		fallthrough;
3191	default:
3192		/* set bank to 0 in case flash read fails */
3193		*bank = 0;
3194
3195		/* Check bank 0 */
3196		ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset,
3197							&sig_byte);
3198		if (ret_val)
3199			return ret_val;
3200		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3201		    E1000_ICH_NVM_SIG_VALUE) {
3202			*bank = 0;
3203			return 0;
3204		}
3205
3206		/* Check bank 1 */
3207		ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset +
3208							bank1_offset,
3209							&sig_byte);
3210		if (ret_val)
3211			return ret_val;
3212		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3213		    E1000_ICH_NVM_SIG_VALUE) {
3214			*bank = 1;
3215			return 0;
3216		}
3217
3218		e_dbg("ERROR: No valid NVM bank present\n");
3219		return -E1000_ERR_NVM;
3220	}
3221}
3222
3223/**
3224 *  e1000_read_nvm_spt - NVM access for SPT
3225 *  @hw: pointer to the HW structure
3226 *  @offset: The offset (in bytes) of the word(s) to read.
3227 *  @words: Size of data to read in words.
3228 *  @data: pointer to the word(s) to read at offset.
3229 *
3230 *  Reads a word(s) from the NVM
3231 **/
3232static s32 e1000_read_nvm_spt(struct e1000_hw *hw, u16 offset, u16 words,
3233			      u16 *data)
3234{
3235	struct e1000_nvm_info *nvm = &hw->nvm;
3236	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3237	u32 act_offset;
3238	s32 ret_val = 0;
3239	u32 bank = 0;
3240	u32 dword = 0;
3241	u16 offset_to_read;
3242	u16 i;
3243
3244	if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
3245	    (words == 0)) {
3246		e_dbg("nvm parameter(s) out of bounds\n");
3247		ret_val = -E1000_ERR_NVM;
3248		goto out;
3249	}
3250
3251	nvm->ops.acquire(hw);
3252
3253	ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3254	if (ret_val) {
3255		e_dbg("Could not detect valid bank, assuming bank 0\n");
3256		bank = 0;
3257	}
3258
3259	act_offset = (bank) ? nvm->flash_bank_size : 0;
3260	act_offset += offset;
3261
3262	ret_val = 0;
3263
3264	for (i = 0; i < words; i += 2) {
3265		if (words - i == 1) {
3266			if (dev_spec->shadow_ram[offset + i].modified) {
3267				data[i] =
3268				    dev_spec->shadow_ram[offset + i].value;
3269			} else {
3270				offset_to_read = act_offset + i -
3271				    ((act_offset + i) % 2);
3272				ret_val =
3273				  e1000_read_flash_dword_ich8lan(hw,
3274								 offset_to_read,
3275								 &dword);
3276				if (ret_val)
3277					break;
3278				if ((act_offset + i) % 2 == 0)
3279					data[i] = (u16)(dword & 0xFFFF);
3280				else
3281					data[i] = (u16)((dword >> 16) & 0xFFFF);
3282			}
3283		} else {
3284			offset_to_read = act_offset + i;
3285			if (!(dev_spec->shadow_ram[offset + i].modified) ||
3286			    !(dev_spec->shadow_ram[offset + i + 1].modified)) {
3287				ret_val =
3288				  e1000_read_flash_dword_ich8lan(hw,
3289								 offset_to_read,
3290								 &dword);
3291				if (ret_val)
3292					break;
3293			}
3294			if (dev_spec->shadow_ram[offset + i].modified)
3295				data[i] =
3296				    dev_spec->shadow_ram[offset + i].value;
3297			else
3298				data[i] = (u16)(dword & 0xFFFF);
3299			if (dev_spec->shadow_ram[offset + i].modified)
3300				data[i + 1] =
3301				    dev_spec->shadow_ram[offset + i + 1].value;
3302			else
3303				data[i + 1] = (u16)(dword >> 16 & 0xFFFF);
3304		}
3305	}
3306
3307	nvm->ops.release(hw);
3308
3309out:
3310	if (ret_val)
3311		e_dbg("NVM read error: %d\n", ret_val);
3312
3313	return ret_val;
3314}
3315
3316/**
3317 *  e1000_read_nvm_ich8lan - Read word(s) from the NVM
3318 *  @hw: pointer to the HW structure
3319 *  @offset: The offset (in bytes) of the word(s) to read.
3320 *  @words: Size of data to read in words
3321 *  @data: Pointer to the word(s) to read at offset.
3322 *
3323 *  Reads a word(s) from the NVM using the flash access registers.
3324 **/
3325static s32 e1000_read_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
3326				  u16 *data)
3327{
3328	struct e1000_nvm_info *nvm = &hw->nvm;
3329	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3330	u32 act_offset;
3331	s32 ret_val = 0;
3332	u32 bank = 0;
3333	u16 i, word;
3334
3335	if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
3336	    (words == 0)) {
3337		e_dbg("nvm parameter(s) out of bounds\n");
3338		ret_val = -E1000_ERR_NVM;
3339		goto out;
3340	}
3341
3342	nvm->ops.acquire(hw);
3343
3344	ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3345	if (ret_val) {
3346		e_dbg("Could not detect valid bank, assuming bank 0\n");
3347		bank = 0;
3348	}
3349
3350	act_offset = (bank) ? nvm->flash_bank_size : 0;
3351	act_offset += offset;
3352
3353	ret_val = 0;
3354	for (i = 0; i < words; i++) {
3355		if (dev_spec->shadow_ram[offset + i].modified) {
3356			data[i] = dev_spec->shadow_ram[offset + i].value;
3357		} else {
3358			ret_val = e1000_read_flash_word_ich8lan(hw,
3359								act_offset + i,
3360								&word);
3361			if (ret_val)
3362				break;
3363			data[i] = word;
3364		}
3365	}
3366
3367	nvm->ops.release(hw);
3368
3369out:
3370	if (ret_val)
3371		e_dbg("NVM read error: %d\n", ret_val);
3372
3373	return ret_val;
3374}
3375
3376/**
3377 *  e1000_flash_cycle_init_ich8lan - Initialize flash
3378 *  @hw: pointer to the HW structure
3379 *
3380 *  This function does initial flash setup so that a new read/write/erase cycle
3381 *  can be started.
3382 **/
3383static s32 e1000_flash_cycle_init_ich8lan(struct e1000_hw *hw)
3384{
3385	union ich8_hws_flash_status hsfsts;
3386	s32 ret_val = -E1000_ERR_NVM;
3387
3388	hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3389
3390	/* Check if the flash descriptor is valid */
3391	if (!hsfsts.hsf_status.fldesvalid) {
3392		e_dbg("Flash descriptor invalid.  SW Sequencing must be used.\n");
3393		return -E1000_ERR_NVM;
3394	}
3395
3396	/* Clear FCERR and DAEL in hw status by writing 1 */
3397	hsfsts.hsf_status.flcerr = 1;
3398	hsfsts.hsf_status.dael = 1;
3399	if (hw->mac.type >= e1000_pch_spt)
3400		ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval & 0xFFFF);
3401	else
3402		ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
3403
3404	/* Either we should have a hardware SPI cycle in progress
3405	 * bit to check against, in order to start a new cycle or
3406	 * FDONE bit should be changed in the hardware so that it
3407	 * is 1 after hardware reset, which can then be used as an
3408	 * indication whether a cycle is in progress or has been
3409	 * completed.
3410	 */
3411
3412	if (!hsfsts.hsf_status.flcinprog) {
3413		/* There is no cycle running at present,
3414		 * so we can start a cycle.
3415		 * Begin by setting Flash Cycle Done.
3416		 */
3417		hsfsts.hsf_status.flcdone = 1;
3418		if (hw->mac.type >= e1000_pch_spt)
3419			ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval & 0xFFFF);
3420		else
3421			ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
3422		ret_val = 0;
3423	} else {
3424		s32 i;
3425
3426		/* Otherwise poll for sometime so the current
3427		 * cycle has a chance to end before giving up.
3428		 */
3429		for (i = 0; i < ICH_FLASH_READ_COMMAND_TIMEOUT; i++) {
3430			hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3431			if (!hsfsts.hsf_status.flcinprog) {
3432				ret_val = 0;
3433				break;
3434			}
3435			udelay(1);
3436		}
3437		if (!ret_val) {
3438			/* Successful in waiting for previous cycle to timeout,
3439			 * now set the Flash Cycle Done.
3440			 */
3441			hsfsts.hsf_status.flcdone = 1;
3442			if (hw->mac.type >= e1000_pch_spt)
3443				ew32flash(ICH_FLASH_HSFSTS,
3444					  hsfsts.regval & 0xFFFF);
3445			else
3446				ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
3447		} else {
3448			e_dbg("Flash controller busy, cannot get access\n");
3449		}
3450	}
3451
3452	return ret_val;
3453}
3454
3455/**
3456 *  e1000_flash_cycle_ich8lan - Starts flash cycle (read/write/erase)
3457 *  @hw: pointer to the HW structure
3458 *  @timeout: maximum time to wait for completion
3459 *
3460 *  This function starts a flash cycle and waits for its completion.
3461 **/
3462static s32 e1000_flash_cycle_ich8lan(struct e1000_hw *hw, u32 timeout)
3463{
3464	union ich8_hws_flash_ctrl hsflctl;
3465	union ich8_hws_flash_status hsfsts;
3466	u32 i = 0;
3467
3468	/* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */
3469	if (hw->mac.type >= e1000_pch_spt)
3470		hsflctl.regval = er32flash(ICH_FLASH_HSFSTS) >> 16;
3471	else
3472		hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
3473	hsflctl.hsf_ctrl.flcgo = 1;
3474
3475	if (hw->mac.type >= e1000_pch_spt)
3476		ew32flash(ICH_FLASH_HSFSTS, hsflctl.regval << 16);
3477	else
3478		ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
3479
3480	/* wait till FDONE bit is set to 1 */
3481	do {
3482		hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3483		if (hsfsts.hsf_status.flcdone)
3484			break;
3485		udelay(1);
3486	} while (i++ < timeout);
3487
3488	if (hsfsts.hsf_status.flcdone && !hsfsts.hsf_status.flcerr)
3489		return 0;
3490
3491	return -E1000_ERR_NVM;
3492}
3493
3494/**
3495 *  e1000_read_flash_dword_ich8lan - Read dword from flash
3496 *  @hw: pointer to the HW structure
3497 *  @offset: offset to data location
3498 *  @data: pointer to the location for storing the data
3499 *
3500 *  Reads the flash dword at offset into data.  Offset is converted
3501 *  to bytes before read.
3502 **/
3503static s32 e1000_read_flash_dword_ich8lan(struct e1000_hw *hw, u32 offset,
3504					  u32 *data)
3505{
3506	/* Must convert word offset into bytes. */
3507	offset <<= 1;
3508	return e1000_read_flash_data32_ich8lan(hw, offset, data);
3509}
3510
3511/**
3512 *  e1000_read_flash_word_ich8lan - Read word from flash
3513 *  @hw: pointer to the HW structure
3514 *  @offset: offset to data location
3515 *  @data: pointer to the location for storing the data
3516 *
3517 *  Reads the flash word at offset into data.  Offset is converted
3518 *  to bytes before read.
3519 **/
3520static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
3521					 u16 *data)
3522{
3523	/* Must convert offset into bytes. */
3524	offset <<= 1;
3525
3526	return e1000_read_flash_data_ich8lan(hw, offset, 2, data);
3527}
3528
3529/**
3530 *  e1000_read_flash_byte_ich8lan - Read byte from flash
3531 *  @hw: pointer to the HW structure
3532 *  @offset: The offset of the byte to read.
3533 *  @data: Pointer to a byte to store the value read.
3534 *
3535 *  Reads a single byte from the NVM using the flash access registers.
3536 **/
3537static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
3538					 u8 *data)
3539{
3540	s32 ret_val;
3541	u16 word = 0;
3542
3543	/* In SPT, only 32 bits access is supported,
3544	 * so this function should not be called.
3545	 */
3546	if (hw->mac.type >= e1000_pch_spt)
3547		return -E1000_ERR_NVM;
3548	else
3549		ret_val = e1000_read_flash_data_ich8lan(hw, offset, 1, &word);
3550
3551	if (ret_val)
3552		return ret_val;
3553
3554	*data = (u8)word;
3555
3556	return 0;
3557}
3558
3559/**
3560 *  e1000_read_flash_data_ich8lan - Read byte or word from NVM
3561 *  @hw: pointer to the HW structure
3562 *  @offset: The offset (in bytes) of the byte or word to read.
3563 *  @size: Size of data to read, 1=byte 2=word
3564 *  @data: Pointer to the word to store the value read.
3565 *
3566 *  Reads a byte or word from the NVM using the flash access registers.
3567 **/
3568static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
3569					 u8 size, u16 *data)
3570{
3571	union ich8_hws_flash_status hsfsts;
3572	union ich8_hws_flash_ctrl hsflctl;
3573	u32 flash_linear_addr;
3574	u32 flash_data = 0;
3575	s32 ret_val = -E1000_ERR_NVM;
3576	u8 count = 0;
3577
3578	if (size < 1 || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
3579		return -E1000_ERR_NVM;
3580
3581	flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
3582			     hw->nvm.flash_base_addr);
3583
3584	do {
3585		udelay(1);
3586		/* Steps */
3587		ret_val = e1000_flash_cycle_init_ich8lan(hw);
3588		if (ret_val)
3589			break;
3590
3591		hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
3592		/* 0b/1b corresponds to 1 or 2 byte size, respectively. */
3593		hsflctl.hsf_ctrl.fldbcount = size - 1;
3594		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
3595		ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
3596
3597		ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
3598
3599		ret_val =
3600		    e1000_flash_cycle_ich8lan(hw,
3601					      ICH_FLASH_READ_COMMAND_TIMEOUT);
3602
3603		/* Check if FCERR is set to 1, if set to 1, clear it
3604		 * and try the whole sequence a few more times, else
3605		 * read in (shift in) the Flash Data0, the order is
3606		 * least significant byte first msb to lsb
3607		 */
3608		if (!ret_val) {
3609			flash_data = er32flash(ICH_FLASH_FDATA0);
3610			if (size == 1)
3611				*data = (u8)(flash_data & 0x000000FF);
3612			else if (size == 2)
3613				*data = (u16)(flash_data & 0x0000FFFF);
3614			break;
3615		} else {
3616			/* If we've gotten here, then things are probably
3617			 * completely hosed, but if the error condition is
3618			 * detected, it won't hurt to give it another try...
3619			 * ICH_FLASH_CYCLE_REPEAT_COUNT times.
3620			 */
3621			hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3622			if (hsfsts.hsf_status.flcerr) {
3623				/* Repeat for some time before giving up. */
3624				continue;
3625			} else if (!hsfsts.hsf_status.flcdone) {
3626				e_dbg("Timeout error - flash cycle did not complete.\n");
3627				break;
3628			}
3629		}
3630	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
3631
3632	return ret_val;
3633}
3634
3635/**
3636 *  e1000_read_flash_data32_ich8lan - Read dword from NVM
3637 *  @hw: pointer to the HW structure
3638 *  @offset: The offset (in bytes) of the dword to read.
3639 *  @data: Pointer to the dword to store the value read.
3640 *
3641 *  Reads a byte or word from the NVM using the flash access registers.
3642 **/
3643
3644static s32 e1000_read_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset,
3645					   u32 *data)
3646{
3647	union ich8_hws_flash_status hsfsts;
3648	union ich8_hws_flash_ctrl hsflctl;
3649	u32 flash_linear_addr;
3650	s32 ret_val = -E1000_ERR_NVM;
3651	u8 count = 0;
3652
3653	if (offset > ICH_FLASH_LINEAR_ADDR_MASK || hw->mac.type < e1000_pch_spt)
3654		return -E1000_ERR_NVM;
3655	flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
3656			     hw->nvm.flash_base_addr);
3657
3658	do {
3659		udelay(1);
3660		/* Steps */
3661		ret_val = e1000_flash_cycle_init_ich8lan(hw);
3662		if (ret_val)
3663			break;
3664		/* In SPT, This register is in Lan memory space, not flash.
3665		 * Therefore, only 32 bit access is supported
3666		 */
3667		hsflctl.regval = er32flash(ICH_FLASH_HSFSTS) >> 16;
3668
3669		/* 0b/1b corresponds to 1 or 2 byte size, respectively. */
3670		hsflctl.hsf_ctrl.fldbcount = sizeof(u32) - 1;
3671		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
3672		/* In SPT, This register is in Lan memory space, not flash.
3673		 * Therefore, only 32 bit access is supported
3674		 */
3675		ew32flash(ICH_FLASH_HSFSTS, (u32)hsflctl.regval << 16);
3676		ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
3677
3678		ret_val =
3679		   e1000_flash_cycle_ich8lan(hw,
3680					     ICH_FLASH_READ_COMMAND_TIMEOUT);
3681
3682		/* Check if FCERR is set to 1, if set to 1, clear it
3683		 * and try the whole sequence a few more times, else
3684		 * read in (shift in) the Flash Data0, the order is
3685		 * least significant byte first msb to lsb
3686		 */
3687		if (!ret_val) {
3688			*data = er32flash(ICH_FLASH_FDATA0);
3689			break;
3690		} else {
3691			/* If we've gotten here, then things are probably
3692			 * completely hosed, but if the error condition is
3693			 * detected, it won't hurt to give it another try...
3694			 * ICH_FLASH_CYCLE_REPEAT_COUNT times.
3695			 */
3696			hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3697			if (hsfsts.hsf_status.flcerr) {
3698				/* Repeat for some time before giving up. */
3699				continue;
3700			} else if (!hsfsts.hsf_status.flcdone) {
3701				e_dbg("Timeout error - flash cycle did not complete.\n");
3702				break;
3703			}
3704		}
3705	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
3706
3707	return ret_val;
3708}
3709
3710/**
3711 *  e1000_write_nvm_ich8lan - Write word(s) to the NVM
3712 *  @hw: pointer to the HW structure
3713 *  @offset: The offset (in bytes) of the word(s) to write.
3714 *  @words: Size of data to write in words
3715 *  @data: Pointer to the word(s) to write at offset.
3716 *
3717 *  Writes a byte or word to the NVM using the flash access registers.
3718 **/
3719static s32 e1000_write_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
3720				   u16 *data)
3721{
3722	struct e1000_nvm_info *nvm = &hw->nvm;
3723	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3724	u16 i;
3725
3726	if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
3727	    (words == 0)) {
3728		e_dbg("nvm parameter(s) out of bounds\n");
3729		return -E1000_ERR_NVM;
3730	}
3731
3732	nvm->ops.acquire(hw);
3733
3734	for (i = 0; i < words; i++) {
3735		dev_spec->shadow_ram[offset + i].modified = true;
3736		dev_spec->shadow_ram[offset + i].value = data[i];
3737	}
3738
3739	nvm->ops.release(hw);
3740
3741	return 0;
3742}
3743
3744/**
3745 *  e1000_update_nvm_checksum_spt - Update the checksum for NVM
3746 *  @hw: pointer to the HW structure
3747 *
3748 *  The NVM checksum is updated by calling the generic update_nvm_checksum,
3749 *  which writes the checksum to the shadow ram.  The changes in the shadow
3750 *  ram are then committed to the EEPROM by processing each bank at a time
3751 *  checking for the modified bit and writing only the pending changes.
3752 *  After a successful commit, the shadow ram is cleared and is ready for
3753 *  future writes.
3754 **/
3755static s32 e1000_update_nvm_checksum_spt(struct e1000_hw *hw)
3756{
3757	struct e1000_nvm_info *nvm = &hw->nvm;
3758	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3759	u32 i, act_offset, new_bank_offset, old_bank_offset, bank;
3760	s32 ret_val;
3761	u32 dword = 0;
3762
3763	ret_val = e1000e_update_nvm_checksum_generic(hw);
3764	if (ret_val)
3765		goto out;
3766
3767	if (nvm->type != e1000_nvm_flash_sw)
3768		goto out;
3769
3770	nvm->ops.acquire(hw);
3771
3772	/* We're writing to the opposite bank so if we're on bank 1,
3773	 * write to bank 0 etc.  We also need to erase the segment that
3774	 * is going to be written
3775	 */
3776	ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3777	if (ret_val) {
3778		e_dbg("Could not detect valid bank, assuming bank 0\n");
3779		bank = 0;
3780	}
3781
3782	if (bank == 0) {
3783		new_bank_offset = nvm->flash_bank_size;
3784		old_bank_offset = 0;
3785		ret_val = e1000_erase_flash_bank_ich8lan(hw, 1);
3786		if (ret_val)
3787			goto release;
3788	} else {
3789		old_bank_offset = nvm->flash_bank_size;
3790		new_bank_offset = 0;
3791		ret_val = e1000_erase_flash_bank_ich8lan(hw, 0);
3792		if (ret_val)
3793			goto release;
3794	}
3795	for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i += 2) {
3796		/* Determine whether to write the value stored
3797		 * in the other NVM bank or a modified value stored
3798		 * in the shadow RAM
3799		 */
3800		ret_val = e1000_read_flash_dword_ich8lan(hw,
3801							 i + old_bank_offset,
3802							 &dword);
3803
3804		if (dev_spec->shadow_ram[i].modified) {
3805			dword &= 0xffff0000;
3806			dword |= (dev_spec->shadow_ram[i].value & 0xffff);
3807		}
3808		if (dev_spec->shadow_ram[i + 1].modified) {
3809			dword &= 0x0000ffff;
3810			dword |= ((dev_spec->shadow_ram[i + 1].value & 0xffff)
3811				  << 16);
3812		}
3813		if (ret_val)
3814			break;
3815
3816		/* If the word is 0x13, then make sure the signature bits
3817		 * (15:14) are 11b until the commit has completed.
3818		 * This will allow us to write 10b which indicates the
3819		 * signature is valid.  We want to do this after the write
3820		 * has completed so that we don't mark the segment valid
3821		 * while the write is still in progress
3822		 */
3823		if (i == E1000_ICH_NVM_SIG_WORD - 1)
3824			dword |= E1000_ICH_NVM_SIG_MASK << 16;
3825
3826		/* Convert offset to bytes. */
3827		act_offset = (i + new_bank_offset) << 1;
3828
3829		usleep_range(100, 200);
3830
3831		/* Write the data to the new bank. Offset in words */
3832		act_offset = i + new_bank_offset;
3833		ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset,
3834								dword);
3835		if (ret_val)
3836			break;
3837	}
3838
3839	/* Don't bother writing the segment valid bits if sector
3840	 * programming failed.
3841	 */
3842	if (ret_val) {
3843		/* Possibly read-only, see e1000e_write_protect_nvm_ich8lan() */
3844		e_dbg("Flash commit failed.\n");
3845		goto release;
3846	}
3847
3848	/* Finally validate the new segment by setting bit 15:14
3849	 * to 10b in word 0x13 , this can be done without an
3850	 * erase as well since these bits are 11 to start with
3851	 * and we need to change bit 14 to 0b
3852	 */
3853	act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD;
3854
3855	/*offset in words but we read dword */
3856	--act_offset;
3857	ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset, &dword);
3858
3859	if (ret_val)
3860		goto release;
3861
3862	dword &= 0xBFFFFFFF;
3863	ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset, dword);
3864
3865	if (ret_val)
3866		goto release;
3867
3868	/* And invalidate the previously valid segment by setting
3869	 * its signature word (0x13) high_byte to 0b. This can be
3870	 * done without an erase because flash erase sets all bits
3871	 * to 1's. We can write 1's to 0's without an erase
3872	 */
3873	act_offset = (old_bank_offset + E1000_ICH_NVM_SIG_WORD) * 2 + 1;
3874
3875	/* offset in words but we read dword */
3876	act_offset = old_bank_offset + E1000_ICH_NVM_SIG_WORD - 1;
3877	ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset, &dword);
3878
3879	if (ret_val)
3880		goto release;
3881
3882	dword &= 0x00FFFFFF;
3883	ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset, dword);
3884
3885	if (ret_val)
3886		goto release;
3887
3888	/* Great!  Everything worked, we can now clear the cached entries. */
3889	for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
3890		dev_spec->shadow_ram[i].modified = false;
3891		dev_spec->shadow_ram[i].value = 0xFFFF;
3892	}
3893
3894release:
3895	nvm->ops.release(hw);
3896
3897	/* Reload the EEPROM, or else modifications will not appear
3898	 * until after the next adapter reset.
3899	 */
3900	if (!ret_val) {
3901		nvm->ops.reload(hw);
3902		usleep_range(10000, 11000);
3903	}
3904
3905out:
3906	if (ret_val)
3907		e_dbg("NVM update error: %d\n", ret_val);
3908
3909	return ret_val;
3910}
3911
3912/**
3913 *  e1000_update_nvm_checksum_ich8lan - Update the checksum for NVM
3914 *  @hw: pointer to the HW structure
3915 *
3916 *  The NVM checksum is updated by calling the generic update_nvm_checksum,
3917 *  which writes the checksum to the shadow ram.  The changes in the shadow
3918 *  ram are then committed to the EEPROM by processing each bank at a time
3919 *  checking for the modified bit and writing only the pending changes.
3920 *  After a successful commit, the shadow ram is cleared and is ready for
3921 *  future writes.
3922 **/
3923static s32 e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw)
3924{
3925	struct e1000_nvm_info *nvm = &hw->nvm;
3926	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3927	u32 i, act_offset, new_bank_offset, old_bank_offset, bank;
3928	s32 ret_val;
3929	u16 data = 0;
3930
3931	ret_val = e1000e_update_nvm_checksum_generic(hw);
3932	if (ret_val)
3933		goto out;
3934
3935	if (nvm->type != e1000_nvm_flash_sw)
3936		goto out;
3937
3938	nvm->ops.acquire(hw);
3939
3940	/* We're writing to the opposite bank so if we're on bank 1,
3941	 * write to bank 0 etc.  We also need to erase the segment that
3942	 * is going to be written
3943	 */
3944	ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3945	if (ret_val) {
3946		e_dbg("Could not detect valid bank, assuming bank 0\n");
3947		bank = 0;
3948	}
3949
3950	if (bank == 0) {
3951		new_bank_offset = nvm->flash_bank_size;
3952		old_bank_offset = 0;
3953		ret_val = e1000_erase_flash_bank_ich8lan(hw, 1);
3954		if (ret_val)
3955			goto release;
3956	} else {
3957		old_bank_offset = nvm->flash_bank_size;
3958		new_bank_offset = 0;
3959		ret_val = e1000_erase_flash_bank_ich8lan(hw, 0);
3960		if (ret_val)
3961			goto release;
3962	}
3963	for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
3964		if (dev_spec->shadow_ram[i].modified) {
3965			data = dev_spec->shadow_ram[i].value;
3966		} else {
3967			ret_val = e1000_read_flash_word_ich8lan(hw, i +
3968								old_bank_offset,
3969								&data);
3970			if (ret_val)
3971				break;
3972		}
3973
3974		/* If the word is 0x13, then make sure the signature bits
3975		 * (15:14) are 11b until the commit has completed.
3976		 * This will allow us to write 10b which indicates the
3977		 * signature is valid.  We want to do this after the write
3978		 * has completed so that we don't mark the segment valid
3979		 * while the write is still in progress
3980		 */
3981		if (i == E1000_ICH_NVM_SIG_WORD)
3982			data |= E1000_ICH_NVM_SIG_MASK;
3983
3984		/* Convert offset to bytes. */
3985		act_offset = (i + new_bank_offset) << 1;
3986
3987		usleep_range(100, 200);
3988		/* Write the bytes to the new bank. */
3989		ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
3990							       act_offset,
3991							       (u8)data);
3992		if (ret_val)
3993			break;
3994
3995		usleep_range(100, 200);
3996		ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
3997							       act_offset + 1,
3998							       (u8)(data >> 8));
3999		if (ret_val)
4000			break;
4001	}
4002
4003	/* Don't bother writing the segment valid bits if sector
4004	 * programming failed.
4005	 */
4006	if (ret_val) {
4007		/* Possibly read-only, see e1000e_write_protect_nvm_ich8lan() */
4008		e_dbg("Flash commit failed.\n");
4009		goto release;
4010	}
4011
4012	/* Finally validate the new segment by setting bit 15:14
4013	 * to 10b in word 0x13 , this can be done without an
4014	 * erase as well since these bits are 11 to start with
4015	 * and we need to change bit 14 to 0b
4016	 */
4017	act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD;
4018	ret_val = e1000_read_flash_word_ich8lan(hw, act_offset, &data);
4019	if (ret_val)
4020		goto release;
4021
4022	data &= 0xBFFF;
4023	ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
4024						       act_offset * 2 + 1,
4025						       (u8)(data >> 8));
4026	if (ret_val)
4027		goto release;
4028
4029	/* And invalidate the previously valid segment by setting
4030	 * its signature word (0x13) high_byte to 0b. This can be
4031	 * done without an erase because flash erase sets all bits
4032	 * to 1's. We can write 1's to 0's without an erase
4033	 */
4034	act_offset = (old_bank_offset + E1000_ICH_NVM_SIG_WORD) * 2 + 1;
4035	ret_val = e1000_retry_write_flash_byte_ich8lan(hw, act_offset, 0);
4036	if (ret_val)
4037		goto release;
4038
4039	/* Great!  Everything worked, we can now clear the cached entries. */
4040	for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
4041		dev_spec->shadow_ram[i].modified = false;
4042		dev_spec->shadow_ram[i].value = 0xFFFF;
4043	}
4044
4045release:
4046	nvm->ops.release(hw);
4047
4048	/* Reload the EEPROM, or else modifications will not appear
4049	 * until after the next adapter reset.
4050	 */
4051	if (!ret_val) {
4052		nvm->ops.reload(hw);
4053		usleep_range(10000, 11000);
4054	}
4055
4056out:
4057	if (ret_val)
4058		e_dbg("NVM update error: %d\n", ret_val);
4059
4060	return ret_val;
4061}
4062
4063/**
4064 *  e1000_validate_nvm_checksum_ich8lan - Validate EEPROM checksum
4065 *  @hw: pointer to the HW structure
4066 *
4067 *  Check to see if checksum needs to be fixed by reading bit 6 in word 0x19.
4068 *  If the bit is 0, that the EEPROM had been modified, but the checksum was not
4069 *  calculated, in which case we need to calculate the checksum and set bit 6.
4070 **/
4071static s32 e1000_validate_nvm_checksum_ich8lan(struct e1000_hw *hw)
4072{
4073	s32 ret_val;
4074	u16 data;
4075	u16 word;
4076	u16 valid_csum_mask;
4077
4078	/* Read NVM and check Invalid Image CSUM bit.  If this bit is 0,
4079	 * the checksum needs to be fixed.  This bit is an indication that
4080	 * the NVM was prepared by OEM software and did not calculate
4081	 * the checksum...a likely scenario.
4082	 */
4083	switch (hw->mac.type) {
4084	case e1000_pch_lpt:
4085	case e1000_pch_spt:
4086	case e1000_pch_cnp:
4087	case e1000_pch_tgp:
4088	case e1000_pch_adp:
 
 
 
 
4089		word = NVM_COMPAT;
4090		valid_csum_mask = NVM_COMPAT_VALID_CSUM;
4091		break;
4092	default:
4093		word = NVM_FUTURE_INIT_WORD1;
4094		valid_csum_mask = NVM_FUTURE_INIT_WORD1_VALID_CSUM;
4095		break;
4096	}
4097
4098	ret_val = e1000_read_nvm(hw, word, 1, &data);
4099	if (ret_val)
4100		return ret_val;
4101
4102	if (!(data & valid_csum_mask)) {
4103		data |= valid_csum_mask;
4104		ret_val = e1000_write_nvm(hw, word, 1, &data);
4105		if (ret_val)
4106			return ret_val;
4107		ret_val = e1000e_update_nvm_checksum(hw);
4108		if (ret_val)
4109			return ret_val;
 
 
 
 
4110	}
4111
4112	return e1000e_validate_nvm_checksum_generic(hw);
4113}
4114
4115/**
4116 *  e1000e_write_protect_nvm_ich8lan - Make the NVM read-only
4117 *  @hw: pointer to the HW structure
4118 *
4119 *  To prevent malicious write/erase of the NVM, set it to be read-only
4120 *  so that the hardware ignores all write/erase cycles of the NVM via
4121 *  the flash control registers.  The shadow-ram copy of the NVM will
4122 *  still be updated, however any updates to this copy will not stick
4123 *  across driver reloads.
4124 **/
4125void e1000e_write_protect_nvm_ich8lan(struct e1000_hw *hw)
4126{
4127	struct e1000_nvm_info *nvm = &hw->nvm;
4128	union ich8_flash_protected_range pr0;
4129	union ich8_hws_flash_status hsfsts;
4130	u32 gfpreg;
4131
4132	nvm->ops.acquire(hw);
4133
4134	gfpreg = er32flash(ICH_FLASH_GFPREG);
4135
4136	/* Write-protect GbE Sector of NVM */
4137	pr0.regval = er32flash(ICH_FLASH_PR0);
4138	pr0.range.base = gfpreg & FLASH_GFPREG_BASE_MASK;
4139	pr0.range.limit = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK);
4140	pr0.range.wpe = true;
4141	ew32flash(ICH_FLASH_PR0, pr0.regval);
4142
4143	/* Lock down a subset of GbE Flash Control Registers, e.g.
4144	 * PR0 to prevent the write-protection from being lifted.
4145	 * Once FLOCKDN is set, the registers protected by it cannot
4146	 * be written until FLOCKDN is cleared by a hardware reset.
4147	 */
4148	hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4149	hsfsts.hsf_status.flockdn = true;
4150	ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval);
4151
4152	nvm->ops.release(hw);
4153}
4154
4155/**
4156 *  e1000_write_flash_data_ich8lan - Writes bytes to the NVM
4157 *  @hw: pointer to the HW structure
4158 *  @offset: The offset (in bytes) of the byte/word to read.
4159 *  @size: Size of data to read, 1=byte 2=word
4160 *  @data: The byte(s) to write to the NVM.
4161 *
4162 *  Writes one/two bytes to the NVM using the flash access registers.
4163 **/
4164static s32 e1000_write_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
4165					  u8 size, u16 data)
4166{
4167	union ich8_hws_flash_status hsfsts;
4168	union ich8_hws_flash_ctrl hsflctl;
4169	u32 flash_linear_addr;
4170	u32 flash_data = 0;
4171	s32 ret_val;
4172	u8 count = 0;
4173
4174	if (hw->mac.type >= e1000_pch_spt) {
4175		if (size != 4 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
4176			return -E1000_ERR_NVM;
4177	} else {
4178		if (size < 1 || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
4179			return -E1000_ERR_NVM;
4180	}
4181
4182	flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
4183			     hw->nvm.flash_base_addr);
4184
4185	do {
4186		udelay(1);
4187		/* Steps */
4188		ret_val = e1000_flash_cycle_init_ich8lan(hw);
4189		if (ret_val)
4190			break;
4191		/* In SPT, This register is in Lan memory space, not
4192		 * flash.  Therefore, only 32 bit access is supported
4193		 */
4194		if (hw->mac.type >= e1000_pch_spt)
4195			hsflctl.regval = er32flash(ICH_FLASH_HSFSTS) >> 16;
4196		else
4197			hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
4198
4199		/* 0b/1b corresponds to 1 or 2 byte size, respectively. */
4200		hsflctl.hsf_ctrl.fldbcount = size - 1;
4201		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
4202		/* In SPT, This register is in Lan memory space,
4203		 * not flash.  Therefore, only 32 bit access is
4204		 * supported
4205		 */
4206		if (hw->mac.type >= e1000_pch_spt)
4207			ew32flash(ICH_FLASH_HSFSTS, hsflctl.regval << 16);
4208		else
4209			ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
4210
4211		ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
4212
4213		if (size == 1)
4214			flash_data = (u32)data & 0x00FF;
4215		else
4216			flash_data = (u32)data;
4217
4218		ew32flash(ICH_FLASH_FDATA0, flash_data);
4219
4220		/* check if FCERR is set to 1 , if set to 1, clear it
4221		 * and try the whole sequence a few more times else done
4222		 */
4223		ret_val =
4224		    e1000_flash_cycle_ich8lan(hw,
4225					      ICH_FLASH_WRITE_COMMAND_TIMEOUT);
4226		if (!ret_val)
4227			break;
4228
4229		/* If we're here, then things are most likely
4230		 * completely hosed, but if the error condition
4231		 * is detected, it won't hurt to give it another
4232		 * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
4233		 */
4234		hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4235		if (hsfsts.hsf_status.flcerr)
4236			/* Repeat for some time before giving up. */
4237			continue;
4238		if (!hsfsts.hsf_status.flcdone) {
4239			e_dbg("Timeout error - flash cycle did not complete.\n");
4240			break;
4241		}
4242	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
4243
4244	return ret_val;
4245}
4246
4247/**
4248*  e1000_write_flash_data32_ich8lan - Writes 4 bytes to the NVM
4249*  @hw: pointer to the HW structure
4250*  @offset: The offset (in bytes) of the dwords to read.
4251*  @data: The 4 bytes to write to the NVM.
4252*
4253*  Writes one/two/four bytes to the NVM using the flash access registers.
4254**/
4255static s32 e1000_write_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset,
4256					    u32 data)
4257{
4258	union ich8_hws_flash_status hsfsts;
4259	union ich8_hws_flash_ctrl hsflctl;
4260	u32 flash_linear_addr;
4261	s32 ret_val;
4262	u8 count = 0;
4263
4264	if (hw->mac.type >= e1000_pch_spt) {
4265		if (offset > ICH_FLASH_LINEAR_ADDR_MASK)
4266			return -E1000_ERR_NVM;
4267	}
4268	flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
4269			     hw->nvm.flash_base_addr);
4270	do {
4271		udelay(1);
4272		/* Steps */
4273		ret_val = e1000_flash_cycle_init_ich8lan(hw);
4274		if (ret_val)
4275			break;
4276
4277		/* In SPT, This register is in Lan memory space, not
4278		 * flash.  Therefore, only 32 bit access is supported
4279		 */
4280		if (hw->mac.type >= e1000_pch_spt)
4281			hsflctl.regval = er32flash(ICH_FLASH_HSFSTS)
4282			    >> 16;
4283		else
4284			hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
4285
4286		hsflctl.hsf_ctrl.fldbcount = sizeof(u32) - 1;
4287		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
4288
4289		/* In SPT, This register is in Lan memory space,
4290		 * not flash.  Therefore, only 32 bit access is
4291		 * supported
4292		 */
4293		if (hw->mac.type >= e1000_pch_spt)
4294			ew32flash(ICH_FLASH_HSFSTS, hsflctl.regval << 16);
4295		else
4296			ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
4297
4298		ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
4299
4300		ew32flash(ICH_FLASH_FDATA0, data);
4301
4302		/* check if FCERR is set to 1 , if set to 1, clear it
4303		 * and try the whole sequence a few more times else done
4304		 */
4305		ret_val =
4306		   e1000_flash_cycle_ich8lan(hw,
4307					     ICH_FLASH_WRITE_COMMAND_TIMEOUT);
4308
4309		if (!ret_val)
4310			break;
4311
4312		/* If we're here, then things are most likely
4313		 * completely hosed, but if the error condition
4314		 * is detected, it won't hurt to give it another
4315		 * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
4316		 */
4317		hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4318
4319		if (hsfsts.hsf_status.flcerr)
4320			/* Repeat for some time before giving up. */
4321			continue;
4322		if (!hsfsts.hsf_status.flcdone) {
4323			e_dbg("Timeout error - flash cycle did not complete.\n");
4324			break;
4325		}
4326	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
4327
4328	return ret_val;
4329}
4330
4331/**
4332 *  e1000_write_flash_byte_ich8lan - Write a single byte to NVM
4333 *  @hw: pointer to the HW structure
4334 *  @offset: The index of the byte to read.
4335 *  @data: The byte to write to the NVM.
4336 *
4337 *  Writes a single byte to the NVM using the flash access registers.
4338 **/
4339static s32 e1000_write_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
4340					  u8 data)
4341{
4342	u16 word = (u16)data;
4343
4344	return e1000_write_flash_data_ich8lan(hw, offset, 1, word);
4345}
4346
4347/**
4348*  e1000_retry_write_flash_dword_ich8lan - Writes a dword to NVM
4349*  @hw: pointer to the HW structure
4350*  @offset: The offset of the word to write.
4351*  @dword: The dword to write to the NVM.
4352*
4353*  Writes a single dword to the NVM using the flash access registers.
4354*  Goes through a retry algorithm before giving up.
4355**/
4356static s32 e1000_retry_write_flash_dword_ich8lan(struct e1000_hw *hw,
4357						 u32 offset, u32 dword)
4358{
4359	s32 ret_val;
4360	u16 program_retries;
4361
4362	/* Must convert word offset into bytes. */
4363	offset <<= 1;
4364	ret_val = e1000_write_flash_data32_ich8lan(hw, offset, dword);
4365
4366	if (!ret_val)
4367		return ret_val;
4368	for (program_retries = 0; program_retries < 100; program_retries++) {
4369		e_dbg("Retrying Byte %8.8X at offset %u\n", dword, offset);
4370		usleep_range(100, 200);
4371		ret_val = e1000_write_flash_data32_ich8lan(hw, offset, dword);
4372		if (!ret_val)
4373			break;
4374	}
4375	if (program_retries == 100)
4376		return -E1000_ERR_NVM;
4377
4378	return 0;
4379}
4380
4381/**
4382 *  e1000_retry_write_flash_byte_ich8lan - Writes a single byte to NVM
4383 *  @hw: pointer to the HW structure
4384 *  @offset: The offset of the byte to write.
4385 *  @byte: The byte to write to the NVM.
4386 *
4387 *  Writes a single byte to the NVM using the flash access registers.
4388 *  Goes through a retry algorithm before giving up.
4389 **/
4390static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
4391						u32 offset, u8 byte)
4392{
4393	s32 ret_val;
4394	u16 program_retries;
4395
4396	ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
4397	if (!ret_val)
4398		return ret_val;
4399
4400	for (program_retries = 0; program_retries < 100; program_retries++) {
4401		e_dbg("Retrying Byte %2.2X at offset %u\n", byte, offset);
4402		usleep_range(100, 200);
4403		ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
4404		if (!ret_val)
4405			break;
4406	}
4407	if (program_retries == 100)
4408		return -E1000_ERR_NVM;
4409
4410	return 0;
4411}
4412
4413/**
4414 *  e1000_erase_flash_bank_ich8lan - Erase a bank (4k) from NVM
4415 *  @hw: pointer to the HW structure
4416 *  @bank: 0 for first bank, 1 for second bank, etc.
4417 *
4418 *  Erases the bank specified. Each bank is a 4k block. Banks are 0 based.
4419 *  bank N is 4096 * N + flash_reg_addr.
4420 **/
4421static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank)
4422{
4423	struct e1000_nvm_info *nvm = &hw->nvm;
4424	union ich8_hws_flash_status hsfsts;
4425	union ich8_hws_flash_ctrl hsflctl;
4426	u32 flash_linear_addr;
4427	/* bank size is in 16bit words - adjust to bytes */
4428	u32 flash_bank_size = nvm->flash_bank_size * 2;
4429	s32 ret_val;
4430	s32 count = 0;
4431	s32 j, iteration, sector_size;
4432
4433	hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4434
4435	/* Determine HW Sector size: Read BERASE bits of hw flash status
4436	 * register
4437	 * 00: The Hw sector is 256 bytes, hence we need to erase 16
4438	 *     consecutive sectors.  The start index for the nth Hw sector
4439	 *     can be calculated as = bank * 4096 + n * 256
4440	 * 01: The Hw sector is 4K bytes, hence we need to erase 1 sector.
4441	 *     The start index for the nth Hw sector can be calculated
4442	 *     as = bank * 4096
4443	 * 10: The Hw sector is 8K bytes, nth sector = bank * 8192
4444	 *     (ich9 only, otherwise error condition)
4445	 * 11: The Hw sector is 64K bytes, nth sector = bank * 65536
4446	 */
4447	switch (hsfsts.hsf_status.berasesz) {
4448	case 0:
4449		/* Hw sector size 256 */
4450		sector_size = ICH_FLASH_SEG_SIZE_256;
4451		iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_256;
4452		break;
4453	case 1:
4454		sector_size = ICH_FLASH_SEG_SIZE_4K;
4455		iteration = 1;
4456		break;
4457	case 2:
4458		sector_size = ICH_FLASH_SEG_SIZE_8K;
4459		iteration = 1;
4460		break;
4461	case 3:
4462		sector_size = ICH_FLASH_SEG_SIZE_64K;
4463		iteration = 1;
4464		break;
4465	default:
4466		return -E1000_ERR_NVM;
4467	}
4468
4469	/* Start with the base address, then add the sector offset. */
4470	flash_linear_addr = hw->nvm.flash_base_addr;
4471	flash_linear_addr += (bank) ? flash_bank_size : 0;
4472
4473	for (j = 0; j < iteration; j++) {
4474		do {
4475			u32 timeout = ICH_FLASH_ERASE_COMMAND_TIMEOUT;
4476
4477			/* Steps */
4478			ret_val = e1000_flash_cycle_init_ich8lan(hw);
4479			if (ret_val)
4480				return ret_val;
4481
4482			/* Write a value 11 (block Erase) in Flash
4483			 * Cycle field in hw flash control
4484			 */
4485			if (hw->mac.type >= e1000_pch_spt)
4486				hsflctl.regval =
4487				    er32flash(ICH_FLASH_HSFSTS) >> 16;
4488			else
4489				hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
4490
4491			hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_ERASE;
4492			if (hw->mac.type >= e1000_pch_spt)
4493				ew32flash(ICH_FLASH_HSFSTS,
4494					  hsflctl.regval << 16);
4495			else
4496				ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
4497
4498			/* Write the last 24 bits of an index within the
4499			 * block into Flash Linear address field in Flash
4500			 * Address.
4501			 */
4502			flash_linear_addr += (j * sector_size);
4503			ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
4504
4505			ret_val = e1000_flash_cycle_ich8lan(hw, timeout);
4506			if (!ret_val)
4507				break;
4508
4509			/* Check if FCERR is set to 1.  If 1,
4510			 * clear it and try the whole sequence
4511			 * a few more times else Done
4512			 */
4513			hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4514			if (hsfsts.hsf_status.flcerr)
4515				/* repeat for some time before giving up */
4516				continue;
4517			else if (!hsfsts.hsf_status.flcdone)
4518				return ret_val;
4519		} while (++count < ICH_FLASH_CYCLE_REPEAT_COUNT);
4520	}
4521
4522	return 0;
4523}
4524
4525/**
4526 *  e1000_valid_led_default_ich8lan - Set the default LED settings
4527 *  @hw: pointer to the HW structure
4528 *  @data: Pointer to the LED settings
4529 *
4530 *  Reads the LED default settings from the NVM to data.  If the NVM LED
4531 *  settings is all 0's or F's, set the LED default to a valid LED default
4532 *  setting.
4533 **/
4534static s32 e1000_valid_led_default_ich8lan(struct e1000_hw *hw, u16 *data)
4535{
4536	s32 ret_val;
4537
4538	ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
4539	if (ret_val) {
4540		e_dbg("NVM Read Error\n");
4541		return ret_val;
4542	}
4543
4544	if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF)
4545		*data = ID_LED_DEFAULT_ICH8LAN;
4546
4547	return 0;
4548}
4549
4550/**
4551 *  e1000_id_led_init_pchlan - store LED configurations
4552 *  @hw: pointer to the HW structure
4553 *
4554 *  PCH does not control LEDs via the LEDCTL register, rather it uses
4555 *  the PHY LED configuration register.
4556 *
4557 *  PCH also does not have an "always on" or "always off" mode which
4558 *  complicates the ID feature.  Instead of using the "on" mode to indicate
4559 *  in ledctl_mode2 the LEDs to use for ID (see e1000e_id_led_init_generic()),
4560 *  use "link_up" mode.  The LEDs will still ID on request if there is no
4561 *  link based on logic in e1000_led_[on|off]_pchlan().
4562 **/
4563static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw)
4564{
4565	struct e1000_mac_info *mac = &hw->mac;
4566	s32 ret_val;
4567	const u32 ledctl_on = E1000_LEDCTL_MODE_LINK_UP;
4568	const u32 ledctl_off = E1000_LEDCTL_MODE_LINK_UP | E1000_PHY_LED0_IVRT;
4569	u16 data, i, temp, shift;
4570
4571	/* Get default ID LED modes */
4572	ret_val = hw->nvm.ops.valid_led_default(hw, &data);
4573	if (ret_val)
4574		return ret_val;
4575
4576	mac->ledctl_default = er32(LEDCTL);
4577	mac->ledctl_mode1 = mac->ledctl_default;
4578	mac->ledctl_mode2 = mac->ledctl_default;
4579
4580	for (i = 0; i < 4; i++) {
4581		temp = (data >> (i << 2)) & E1000_LEDCTL_LED0_MODE_MASK;
4582		shift = (i * 5);
4583		switch (temp) {
4584		case ID_LED_ON1_DEF2:
4585		case ID_LED_ON1_ON2:
4586		case ID_LED_ON1_OFF2:
4587			mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
4588			mac->ledctl_mode1 |= (ledctl_on << shift);
4589			break;
4590		case ID_LED_OFF1_DEF2:
4591		case ID_LED_OFF1_ON2:
4592		case ID_LED_OFF1_OFF2:
4593			mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
4594			mac->ledctl_mode1 |= (ledctl_off << shift);
4595			break;
4596		default:
4597			/* Do nothing */
4598			break;
4599		}
4600		switch (temp) {
4601		case ID_LED_DEF1_ON2:
4602		case ID_LED_ON1_ON2:
4603		case ID_LED_OFF1_ON2:
4604			mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
4605			mac->ledctl_mode2 |= (ledctl_on << shift);
4606			break;
4607		case ID_LED_DEF1_OFF2:
4608		case ID_LED_ON1_OFF2:
4609		case ID_LED_OFF1_OFF2:
4610			mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
4611			mac->ledctl_mode2 |= (ledctl_off << shift);
4612			break;
4613		default:
4614			/* Do nothing */
4615			break;
4616		}
4617	}
4618
4619	return 0;
4620}
4621
4622/**
4623 *  e1000_get_bus_info_ich8lan - Get/Set the bus type and width
4624 *  @hw: pointer to the HW structure
4625 *
4626 *  ICH8 use the PCI Express bus, but does not contain a PCI Express Capability
4627 *  register, so the the bus width is hard coded.
4628 **/
4629static s32 e1000_get_bus_info_ich8lan(struct e1000_hw *hw)
4630{
4631	struct e1000_bus_info *bus = &hw->bus;
4632	s32 ret_val;
4633
4634	ret_val = e1000e_get_bus_info_pcie(hw);
4635
4636	/* ICH devices are "PCI Express"-ish.  They have
4637	 * a configuration space, but do not contain
4638	 * PCI Express Capability registers, so bus width
4639	 * must be hardcoded.
4640	 */
4641	if (bus->width == e1000_bus_width_unknown)
4642		bus->width = e1000_bus_width_pcie_x1;
4643
4644	return ret_val;
4645}
4646
4647/**
4648 *  e1000_reset_hw_ich8lan - Reset the hardware
4649 *  @hw: pointer to the HW structure
4650 *
4651 *  Does a full reset of the hardware which includes a reset of the PHY and
4652 *  MAC.
4653 **/
4654static s32 e1000_reset_hw_ich8lan(struct e1000_hw *hw)
4655{
4656	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
4657	u16 kum_cfg;
4658	u32 ctrl, reg;
4659	s32 ret_val;
4660
4661	/* Prevent the PCI-E bus from sticking if there is no TLP connection
4662	 * on the last TLP read/write transaction when MAC is reset.
4663	 */
4664	ret_val = e1000e_disable_pcie_master(hw);
4665	if (ret_val)
4666		e_dbg("PCI-E Master disable polling has failed.\n");
4667
4668	e_dbg("Masking off all interrupts\n");
4669	ew32(IMC, 0xffffffff);
4670
4671	/* Disable the Transmit and Receive units.  Then delay to allow
4672	 * any pending transactions to complete before we hit the MAC
4673	 * with the global reset.
4674	 */
4675	ew32(RCTL, 0);
4676	ew32(TCTL, E1000_TCTL_PSP);
4677	e1e_flush();
4678
4679	usleep_range(10000, 11000);
4680
4681	/* Workaround for ICH8 bit corruption issue in FIFO memory */
4682	if (hw->mac.type == e1000_ich8lan) {
4683		/* Set Tx and Rx buffer allocation to 8k apiece. */
4684		ew32(PBA, E1000_PBA_8K);
4685		/* Set Packet Buffer Size to 16k. */
4686		ew32(PBS, E1000_PBS_16K);
4687	}
4688
4689	if (hw->mac.type == e1000_pchlan) {
4690		/* Save the NVM K1 bit setting */
4691		ret_val = e1000_read_nvm(hw, E1000_NVM_K1_CONFIG, 1, &kum_cfg);
4692		if (ret_val)
4693			return ret_val;
4694
4695		if (kum_cfg & E1000_NVM_K1_ENABLE)
4696			dev_spec->nvm_k1_enabled = true;
4697		else
4698			dev_spec->nvm_k1_enabled = false;
4699	}
4700
4701	ctrl = er32(CTRL);
4702
4703	if (!hw->phy.ops.check_reset_block(hw)) {
4704		/* Full-chip reset requires MAC and PHY reset at the same
4705		 * time to make sure the interface between MAC and the
4706		 * external PHY is reset.
4707		 */
4708		ctrl |= E1000_CTRL_PHY_RST;
4709
4710		/* Gate automatic PHY configuration by hardware on
4711		 * non-managed 82579
4712		 */
4713		if ((hw->mac.type == e1000_pch2lan) &&
4714		    !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
4715			e1000_gate_hw_phy_config_ich8lan(hw, true);
4716	}
4717	ret_val = e1000_acquire_swflag_ich8lan(hw);
4718	e_dbg("Issuing a global reset to ich8lan\n");
4719	ew32(CTRL, (ctrl | E1000_CTRL_RST));
4720	/* cannot issue a flush here because it hangs the hardware */
4721	msleep(20);
4722
4723	/* Set Phy Config Counter to 50msec */
4724	if (hw->mac.type == e1000_pch2lan) {
4725		reg = er32(FEXTNVM3);
4726		reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK;
4727		reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC;
4728		ew32(FEXTNVM3, reg);
4729	}
4730
4731	if (!ret_val)
4732		clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
4733
4734	if (ctrl & E1000_CTRL_PHY_RST) {
4735		ret_val = hw->phy.ops.get_cfg_done(hw);
4736		if (ret_val)
4737			return ret_val;
4738
4739		ret_val = e1000_post_phy_reset_ich8lan(hw);
4740		if (ret_val)
4741			return ret_val;
4742	}
4743
4744	/* For PCH, this write will make sure that any noise
4745	 * will be detected as a CRC error and be dropped rather than show up
4746	 * as a bad packet to the DMA engine.
4747	 */
4748	if (hw->mac.type == e1000_pchlan)
4749		ew32(CRC_OFFSET, 0x65656565);
4750
4751	ew32(IMC, 0xffffffff);
4752	er32(ICR);
4753
4754	reg = er32(KABGTXD);
4755	reg |= E1000_KABGTXD_BGSQLBIAS;
4756	ew32(KABGTXD, reg);
4757
4758	return 0;
4759}
4760
4761/**
4762 *  e1000_init_hw_ich8lan - Initialize the hardware
4763 *  @hw: pointer to the HW structure
4764 *
4765 *  Prepares the hardware for transmit and receive by doing the following:
4766 *   - initialize hardware bits
4767 *   - initialize LED identification
4768 *   - setup receive address registers
4769 *   - setup flow control
4770 *   - setup transmit descriptors
4771 *   - clear statistics
4772 **/
4773static s32 e1000_init_hw_ich8lan(struct e1000_hw *hw)
4774{
4775	struct e1000_mac_info *mac = &hw->mac;
4776	u32 ctrl_ext, txdctl, snoop;
4777	s32 ret_val;
4778	u16 i;
4779
4780	e1000_initialize_hw_bits_ich8lan(hw);
4781
4782	/* Initialize identification LED */
4783	ret_val = mac->ops.id_led_init(hw);
4784	/* An error is not fatal and we should not stop init due to this */
4785	if (ret_val)
4786		e_dbg("Error initializing identification LED\n");
4787
4788	/* Setup the receive address. */
4789	e1000e_init_rx_addrs(hw, mac->rar_entry_count);
4790
4791	/* Zero out the Multicast HASH table */
4792	e_dbg("Zeroing the MTA\n");
4793	for (i = 0; i < mac->mta_reg_count; i++)
4794		E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
4795
4796	/* The 82578 Rx buffer will stall if wakeup is enabled in host and
4797	 * the ME.  Disable wakeup by clearing the host wakeup bit.
4798	 * Reset the phy after disabling host wakeup to reset the Rx buffer.
4799	 */
4800	if (hw->phy.type == e1000_phy_82578) {
4801		e1e_rphy(hw, BM_PORT_GEN_CFG, &i);
4802		i &= ~BM_WUC_HOST_WU_BIT;
4803		e1e_wphy(hw, BM_PORT_GEN_CFG, i);
4804		ret_val = e1000_phy_hw_reset_ich8lan(hw);
4805		if (ret_val)
4806			return ret_val;
4807	}
4808
4809	/* Setup link and flow control */
4810	ret_val = mac->ops.setup_link(hw);
4811
4812	/* Set the transmit descriptor write-back policy for both queues */
4813	txdctl = er32(TXDCTL(0));
4814	txdctl = ((txdctl & ~E1000_TXDCTL_WTHRESH) |
4815		  E1000_TXDCTL_FULL_TX_DESC_WB);
4816	txdctl = ((txdctl & ~E1000_TXDCTL_PTHRESH) |
4817		  E1000_TXDCTL_MAX_TX_DESC_PREFETCH);
4818	ew32(TXDCTL(0), txdctl);
4819	txdctl = er32(TXDCTL(1));
4820	txdctl = ((txdctl & ~E1000_TXDCTL_WTHRESH) |
4821		  E1000_TXDCTL_FULL_TX_DESC_WB);
4822	txdctl = ((txdctl & ~E1000_TXDCTL_PTHRESH) |
4823		  E1000_TXDCTL_MAX_TX_DESC_PREFETCH);
4824	ew32(TXDCTL(1), txdctl);
4825
4826	/* ICH8 has opposite polarity of no_snoop bits.
4827	 * By default, we should use snoop behavior.
4828	 */
4829	if (mac->type == e1000_ich8lan)
4830		snoop = PCIE_ICH8_SNOOP_ALL;
4831	else
4832		snoop = (u32)~(PCIE_NO_SNOOP_ALL);
4833	e1000e_set_pcie_no_snoop(hw, snoop);
4834
 
 
 
 
 
 
 
 
 
4835	ctrl_ext = er32(CTRL_EXT);
4836	ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
4837	ew32(CTRL_EXT, ctrl_ext);
4838
4839	/* Clear all of the statistics registers (clear on read).  It is
4840	 * important that we do this after we have tried to establish link
4841	 * because the symbol error count will increment wildly if there
4842	 * is no link.
4843	 */
4844	e1000_clear_hw_cntrs_ich8lan(hw);
4845
4846	return ret_val;
4847}
4848
4849/**
4850 *  e1000_initialize_hw_bits_ich8lan - Initialize required hardware bits
4851 *  @hw: pointer to the HW structure
4852 *
4853 *  Sets/Clears required hardware bits necessary for correctly setting up the
4854 *  hardware for transmit and receive.
4855 **/
4856static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw)
4857{
4858	u32 reg;
4859
4860	/* Extended Device Control */
4861	reg = er32(CTRL_EXT);
4862	reg |= BIT(22);
4863	/* Enable PHY low-power state when MAC is at D3 w/o WoL */
4864	if (hw->mac.type >= e1000_pchlan)
4865		reg |= E1000_CTRL_EXT_PHYPDEN;
4866	ew32(CTRL_EXT, reg);
4867
4868	/* Transmit Descriptor Control 0 */
4869	reg = er32(TXDCTL(0));
4870	reg |= BIT(22);
4871	ew32(TXDCTL(0), reg);
4872
4873	/* Transmit Descriptor Control 1 */
4874	reg = er32(TXDCTL(1));
4875	reg |= BIT(22);
4876	ew32(TXDCTL(1), reg);
4877
4878	/* Transmit Arbitration Control 0 */
4879	reg = er32(TARC(0));
4880	if (hw->mac.type == e1000_ich8lan)
4881		reg |= BIT(28) | BIT(29);
4882	reg |= BIT(23) | BIT(24) | BIT(26) | BIT(27);
4883	ew32(TARC(0), reg);
4884
4885	/* Transmit Arbitration Control 1 */
4886	reg = er32(TARC(1));
4887	if (er32(TCTL) & E1000_TCTL_MULR)
4888		reg &= ~BIT(28);
4889	else
4890		reg |= BIT(28);
4891	reg |= BIT(24) | BIT(26) | BIT(30);
4892	ew32(TARC(1), reg);
4893
4894	/* Device Status */
4895	if (hw->mac.type == e1000_ich8lan) {
4896		reg = er32(STATUS);
4897		reg &= ~BIT(31);
4898		ew32(STATUS, reg);
4899	}
4900
4901	/* work-around descriptor data corruption issue during nfs v2 udp
4902	 * traffic, just disable the nfs filtering capability
4903	 */
4904	reg = er32(RFCTL);
4905	reg |= (E1000_RFCTL_NFSW_DIS | E1000_RFCTL_NFSR_DIS);
4906
4907	/* Disable IPv6 extension header parsing because some malformed
4908	 * IPv6 headers can hang the Rx.
4909	 */
4910	if (hw->mac.type == e1000_ich8lan)
4911		reg |= (E1000_RFCTL_IPV6_EX_DIS | E1000_RFCTL_NEW_IPV6_EXT_DIS);
4912	ew32(RFCTL, reg);
4913
4914	/* Enable ECC on Lynxpoint */
4915	if (hw->mac.type >= e1000_pch_lpt) {
4916		reg = er32(PBECCSTS);
4917		reg |= E1000_PBECCSTS_ECC_ENABLE;
4918		ew32(PBECCSTS, reg);
4919
4920		reg = er32(CTRL);
4921		reg |= E1000_CTRL_MEHE;
4922		ew32(CTRL, reg);
4923	}
4924}
4925
4926/**
4927 *  e1000_setup_link_ich8lan - Setup flow control and link settings
4928 *  @hw: pointer to the HW structure
4929 *
4930 *  Determines which flow control settings to use, then configures flow
4931 *  control.  Calls the appropriate media-specific link configuration
4932 *  function.  Assuming the adapter has a valid link partner, a valid link
4933 *  should be established.  Assumes the hardware has previously been reset
4934 *  and the transmitter and receiver are not enabled.
4935 **/
4936static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw)
4937{
4938	s32 ret_val;
4939
4940	if (hw->phy.ops.check_reset_block(hw))
4941		return 0;
4942
4943	/* ICH parts do not have a word in the NVM to determine
4944	 * the default flow control setting, so we explicitly
4945	 * set it to full.
4946	 */
4947	if (hw->fc.requested_mode == e1000_fc_default) {
4948		/* Workaround h/w hang when Tx flow control enabled */
4949		if (hw->mac.type == e1000_pchlan)
4950			hw->fc.requested_mode = e1000_fc_rx_pause;
4951		else
4952			hw->fc.requested_mode = e1000_fc_full;
4953	}
4954
4955	/* Save off the requested flow control mode for use later.  Depending
4956	 * on the link partner's capabilities, we may or may not use this mode.
4957	 */
4958	hw->fc.current_mode = hw->fc.requested_mode;
4959
4960	e_dbg("After fix-ups FlowControl is now = %x\n", hw->fc.current_mode);
4961
4962	/* Continue to configure the copper link. */
4963	ret_val = hw->mac.ops.setup_physical_interface(hw);
4964	if (ret_val)
4965		return ret_val;
4966
4967	ew32(FCTTV, hw->fc.pause_time);
4968	if ((hw->phy.type == e1000_phy_82578) ||
4969	    (hw->phy.type == e1000_phy_82579) ||
4970	    (hw->phy.type == e1000_phy_i217) ||
4971	    (hw->phy.type == e1000_phy_82577)) {
4972		ew32(FCRTV_PCH, hw->fc.refresh_time);
4973
4974		ret_val = e1e_wphy(hw, PHY_REG(BM_PORT_CTRL_PAGE, 27),
4975				   hw->fc.pause_time);
4976		if (ret_val)
4977			return ret_val;
4978	}
4979
4980	return e1000e_set_fc_watermarks(hw);
4981}
4982
4983/**
4984 *  e1000_setup_copper_link_ich8lan - Configure MAC/PHY interface
4985 *  @hw: pointer to the HW structure
4986 *
4987 *  Configures the kumeran interface to the PHY to wait the appropriate time
4988 *  when polling the PHY, then call the generic setup_copper_link to finish
4989 *  configuring the copper link.
4990 **/
4991static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw)
4992{
4993	u32 ctrl;
4994	s32 ret_val;
4995	u16 reg_data;
4996
4997	ctrl = er32(CTRL);
4998	ctrl |= E1000_CTRL_SLU;
4999	ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
5000	ew32(CTRL, ctrl);
5001
5002	/* Set the mac to wait the maximum time between each iteration
5003	 * and increase the max iterations when polling the phy;
5004	 * this fixes erroneous timeouts at 10Mbps.
5005	 */
5006	ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_TIMEOUTS, 0xFFFF);
5007	if (ret_val)
5008		return ret_val;
5009	ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
5010				       &reg_data);
5011	if (ret_val)
5012		return ret_val;
5013	reg_data |= 0x3F;
5014	ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
5015					reg_data);
5016	if (ret_val)
5017		return ret_val;
5018
5019	switch (hw->phy.type) {
5020	case e1000_phy_igp_3:
5021		ret_val = e1000e_copper_link_setup_igp(hw);
5022		if (ret_val)
5023			return ret_val;
5024		break;
5025	case e1000_phy_bm:
5026	case e1000_phy_82578:
5027		ret_val = e1000e_copper_link_setup_m88(hw);
5028		if (ret_val)
5029			return ret_val;
5030		break;
5031	case e1000_phy_82577:
5032	case e1000_phy_82579:
5033		ret_val = e1000_copper_link_setup_82577(hw);
5034		if (ret_val)
5035			return ret_val;
5036		break;
5037	case e1000_phy_ife:
5038		ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &reg_data);
5039		if (ret_val)
5040			return ret_val;
5041
5042		reg_data &= ~IFE_PMC_AUTO_MDIX;
5043
5044		switch (hw->phy.mdix) {
5045		case 1:
5046			reg_data &= ~IFE_PMC_FORCE_MDIX;
5047			break;
5048		case 2:
5049			reg_data |= IFE_PMC_FORCE_MDIX;
5050			break;
5051		case 0:
5052		default:
5053			reg_data |= IFE_PMC_AUTO_MDIX;
5054			break;
5055		}
5056		ret_val = e1e_wphy(hw, IFE_PHY_MDIX_CONTROL, reg_data);
5057		if (ret_val)
5058			return ret_val;
5059		break;
5060	default:
5061		break;
5062	}
5063
5064	return e1000e_setup_copper_link(hw);
5065}
5066
5067/**
5068 *  e1000_setup_copper_link_pch_lpt - Configure MAC/PHY interface
5069 *  @hw: pointer to the HW structure
5070 *
5071 *  Calls the PHY specific link setup function and then calls the
5072 *  generic setup_copper_link to finish configuring the link for
5073 *  Lynxpoint PCH devices
5074 **/
5075static s32 e1000_setup_copper_link_pch_lpt(struct e1000_hw *hw)
5076{
5077	u32 ctrl;
5078	s32 ret_val;
5079
5080	ctrl = er32(CTRL);
5081	ctrl |= E1000_CTRL_SLU;
5082	ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
5083	ew32(CTRL, ctrl);
5084
5085	ret_val = e1000_copper_link_setup_82577(hw);
5086	if (ret_val)
5087		return ret_val;
5088
5089	return e1000e_setup_copper_link(hw);
5090}
5091
5092/**
5093 *  e1000_get_link_up_info_ich8lan - Get current link speed and duplex
5094 *  @hw: pointer to the HW structure
5095 *  @speed: pointer to store current link speed
5096 *  @duplex: pointer to store the current link duplex
5097 *
5098 *  Calls the generic get_speed_and_duplex to retrieve the current link
5099 *  information and then calls the Kumeran lock loss workaround for links at
5100 *  gigabit speeds.
5101 **/
5102static s32 e1000_get_link_up_info_ich8lan(struct e1000_hw *hw, u16 *speed,
5103					  u16 *duplex)
5104{
5105	s32 ret_val;
5106
5107	ret_val = e1000e_get_speed_and_duplex_copper(hw, speed, duplex);
5108	if (ret_val)
5109		return ret_val;
5110
5111	if ((hw->mac.type == e1000_ich8lan) &&
5112	    (hw->phy.type == e1000_phy_igp_3) && (*speed == SPEED_1000)) {
5113		ret_val = e1000_kmrn_lock_loss_workaround_ich8lan(hw);
5114	}
5115
5116	return ret_val;
5117}
5118
5119/**
5120 *  e1000_kmrn_lock_loss_workaround_ich8lan - Kumeran workaround
5121 *  @hw: pointer to the HW structure
5122 *
5123 *  Work-around for 82566 Kumeran PCS lock loss:
5124 *  On link status change (i.e. PCI reset, speed change) and link is up and
5125 *  speed is gigabit-
5126 *    0) if workaround is optionally disabled do nothing
5127 *    1) wait 1ms for Kumeran link to come up
5128 *    2) check Kumeran Diagnostic register PCS lock loss bit
5129 *    3) if not set the link is locked (all is good), otherwise...
5130 *    4) reset the PHY
5131 *    5) repeat up to 10 times
5132 *  Note: this is only called for IGP3 copper when speed is 1gb.
5133 **/
5134static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw)
5135{
5136	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
5137	u32 phy_ctrl;
5138	s32 ret_val;
5139	u16 i, data;
5140	bool link;
5141
5142	if (!dev_spec->kmrn_lock_loss_workaround_enabled)
5143		return 0;
5144
5145	/* Make sure link is up before proceeding.  If not just return.
5146	 * Attempting this while link is negotiating fouled up link
5147	 * stability
5148	 */
5149	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
5150	if (!link)
5151		return 0;
5152
5153	for (i = 0; i < 10; i++) {
5154		/* read once to clear */
5155		ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
5156		if (ret_val)
5157			return ret_val;
5158		/* and again to get new status */
5159		ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
5160		if (ret_val)
5161			return ret_val;
5162
5163		/* check for PCS lock */
5164		if (!(data & IGP3_KMRN_DIAG_PCS_LOCK_LOSS))
5165			return 0;
5166
5167		/* Issue PHY reset */
5168		e1000_phy_hw_reset(hw);
5169		mdelay(5);
5170	}
5171	/* Disable GigE link negotiation */
5172	phy_ctrl = er32(PHY_CTRL);
5173	phy_ctrl |= (E1000_PHY_CTRL_GBE_DISABLE |
5174		     E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
5175	ew32(PHY_CTRL, phy_ctrl);
5176
5177	/* Call gig speed drop workaround on Gig disable before accessing
5178	 * any PHY registers
5179	 */
5180	e1000e_gig_downshift_workaround_ich8lan(hw);
5181
5182	/* unable to acquire PCS lock */
5183	return -E1000_ERR_PHY;
5184}
5185
5186/**
5187 *  e1000e_set_kmrn_lock_loss_workaround_ich8lan - Set Kumeran workaround state
5188 *  @hw: pointer to the HW structure
5189 *  @state: boolean value used to set the current Kumeran workaround state
5190 *
5191 *  If ICH8, set the current Kumeran workaround state (enabled - true
5192 *  /disabled - false).
5193 **/
5194void e1000e_set_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw,
5195						  bool state)
5196{
5197	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
5198
5199	if (hw->mac.type != e1000_ich8lan) {
5200		e_dbg("Workaround applies to ICH8 only.\n");
5201		return;
5202	}
5203
5204	dev_spec->kmrn_lock_loss_workaround_enabled = state;
5205}
5206
5207/**
5208 *  e1000_ipg3_phy_powerdown_workaround_ich8lan - Power down workaround on D3
5209 *  @hw: pointer to the HW structure
5210 *
5211 *  Workaround for 82566 power-down on D3 entry:
5212 *    1) disable gigabit link
5213 *    2) write VR power-down enable
5214 *    3) read it back
5215 *  Continue if successful, else issue LCD reset and repeat
5216 **/
5217void e1000e_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw *hw)
5218{
5219	u32 reg;
5220	u16 data;
5221	u8 retry = 0;
5222
5223	if (hw->phy.type != e1000_phy_igp_3)
5224		return;
5225
5226	/* Try the workaround twice (if needed) */
5227	do {
5228		/* Disable link */
5229		reg = er32(PHY_CTRL);
5230		reg |= (E1000_PHY_CTRL_GBE_DISABLE |
5231			E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
5232		ew32(PHY_CTRL, reg);
5233
5234		/* Call gig speed drop workaround on Gig disable before
5235		 * accessing any PHY registers
5236		 */
5237		if (hw->mac.type == e1000_ich8lan)
5238			e1000e_gig_downshift_workaround_ich8lan(hw);
5239
5240		/* Write VR power-down enable */
5241		e1e_rphy(hw, IGP3_VR_CTRL, &data);
5242		data &= ~IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
5243		e1e_wphy(hw, IGP3_VR_CTRL, data | IGP3_VR_CTRL_MODE_SHUTDOWN);
5244
5245		/* Read it back and test */
5246		e1e_rphy(hw, IGP3_VR_CTRL, &data);
5247		data &= IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
5248		if ((data == IGP3_VR_CTRL_MODE_SHUTDOWN) || retry)
5249			break;
5250
5251		/* Issue PHY reset and repeat at most one more time */
5252		reg = er32(CTRL);
5253		ew32(CTRL, reg | E1000_CTRL_PHY_RST);
5254		retry++;
5255	} while (retry);
5256}
5257
5258/**
5259 *  e1000e_gig_downshift_workaround_ich8lan - WoL from S5 stops working
5260 *  @hw: pointer to the HW structure
5261 *
5262 *  Steps to take when dropping from 1Gb/s (eg. link cable removal (LSC),
5263 *  LPLU, Gig disable, MDIC PHY reset):
5264 *    1) Set Kumeran Near-end loopback
5265 *    2) Clear Kumeran Near-end loopback
5266 *  Should only be called for ICH8[m] devices with any 1G Phy.
5267 **/
5268void e1000e_gig_downshift_workaround_ich8lan(struct e1000_hw *hw)
5269{
5270	s32 ret_val;
5271	u16 reg_data;
5272
5273	if ((hw->mac.type != e1000_ich8lan) || (hw->phy.type == e1000_phy_ife))
5274		return;
5275
5276	ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
5277				       &reg_data);
5278	if (ret_val)
5279		return;
5280	reg_data |= E1000_KMRNCTRLSTA_DIAG_NELPBK;
5281	ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
5282					reg_data);
5283	if (ret_val)
5284		return;
5285	reg_data &= ~E1000_KMRNCTRLSTA_DIAG_NELPBK;
5286	e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET, reg_data);
5287}
5288
5289/**
5290 *  e1000_suspend_workarounds_ich8lan - workarounds needed during S0->Sx
5291 *  @hw: pointer to the HW structure
5292 *
5293 *  During S0 to Sx transition, it is possible the link remains at gig
5294 *  instead of negotiating to a lower speed.  Before going to Sx, set
5295 *  'Gig Disable' to force link speed negotiation to a lower speed based on
5296 *  the LPLU setting in the NVM or custom setting.  For PCH and newer parts,
5297 *  the OEM bits PHY register (LED, GbE disable and LPLU configurations) also
5298 *  needs to be written.
5299 *  Parts that support (and are linked to a partner which support) EEE in
5300 *  100Mbps should disable LPLU since 100Mbps w/ EEE requires less power
5301 *  than 10Mbps w/o EEE.
5302 **/
5303void e1000_suspend_workarounds_ich8lan(struct e1000_hw *hw)
5304{
5305	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
5306	u32 phy_ctrl;
5307	s32 ret_val;
5308
5309	phy_ctrl = er32(PHY_CTRL);
5310	phy_ctrl |= E1000_PHY_CTRL_GBE_DISABLE;
5311
5312	if (hw->phy.type == e1000_phy_i217) {
5313		u16 phy_reg, device_id = hw->adapter->pdev->device;
5314
5315		if ((device_id == E1000_DEV_ID_PCH_LPTLP_I218_LM) ||
5316		    (device_id == E1000_DEV_ID_PCH_LPTLP_I218_V) ||
5317		    (device_id == E1000_DEV_ID_PCH_I218_LM3) ||
5318		    (device_id == E1000_DEV_ID_PCH_I218_V3) ||
5319		    (hw->mac.type >= e1000_pch_spt)) {
5320			u32 fextnvm6 = er32(FEXTNVM6);
5321
5322			ew32(FEXTNVM6, fextnvm6 & ~E1000_FEXTNVM6_REQ_PLL_CLK);
5323		}
5324
5325		ret_val = hw->phy.ops.acquire(hw);
5326		if (ret_val)
5327			goto out;
5328
5329		if (!dev_spec->eee_disable) {
5330			u16 eee_advert;
5331
5332			ret_val =
5333			    e1000_read_emi_reg_locked(hw,
5334						      I217_EEE_ADVERTISEMENT,
5335						      &eee_advert);
5336			if (ret_val)
5337				goto release;
5338
5339			/* Disable LPLU if both link partners support 100BaseT
5340			 * EEE and 100Full is advertised on both ends of the
5341			 * link, and enable Auto Enable LPI since there will
5342			 * be no driver to enable LPI while in Sx.
5343			 */
5344			if ((eee_advert & I82579_EEE_100_SUPPORTED) &&
5345			    (dev_spec->eee_lp_ability &
5346			     I82579_EEE_100_SUPPORTED) &&
5347			    (hw->phy.autoneg_advertised & ADVERTISE_100_FULL)) {
5348				phy_ctrl &= ~(E1000_PHY_CTRL_D0A_LPLU |
5349					      E1000_PHY_CTRL_NOND0A_LPLU);
5350
5351				/* Set Auto Enable LPI after link up */
5352				e1e_rphy_locked(hw,
5353						I217_LPI_GPIO_CTRL, &phy_reg);
5354				phy_reg |= I217_LPI_GPIO_CTRL_AUTO_EN_LPI;
5355				e1e_wphy_locked(hw,
5356						I217_LPI_GPIO_CTRL, phy_reg);
5357			}
5358		}
5359
5360		/* For i217 Intel Rapid Start Technology support,
5361		 * when the system is going into Sx and no manageability engine
5362		 * is present, the driver must configure proxy to reset only on
5363		 * power good.  LPI (Low Power Idle) state must also reset only
5364		 * on power good, as well as the MTA (Multicast table array).
5365		 * The SMBus release must also be disabled on LCD reset.
5366		 */
5367		if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
5368			/* Enable proxy to reset only on power good. */
5369			e1e_rphy_locked(hw, I217_PROXY_CTRL, &phy_reg);
5370			phy_reg |= I217_PROXY_CTRL_AUTO_DISABLE;
5371			e1e_wphy_locked(hw, I217_PROXY_CTRL, phy_reg);
5372
5373			/* Set bit enable LPI (EEE) to reset only on
5374			 * power good.
5375			 */
5376			e1e_rphy_locked(hw, I217_SxCTRL, &phy_reg);
5377			phy_reg |= I217_SxCTRL_ENABLE_LPI_RESET;
5378			e1e_wphy_locked(hw, I217_SxCTRL, phy_reg);
5379
5380			/* Disable the SMB release on LCD reset. */
5381			e1e_rphy_locked(hw, I217_MEMPWR, &phy_reg);
5382			phy_reg &= ~I217_MEMPWR_DISABLE_SMB_RELEASE;
5383			e1e_wphy_locked(hw, I217_MEMPWR, phy_reg);
5384		}
5385
5386		/* Enable MTA to reset for Intel Rapid Start Technology
5387		 * Support
5388		 */
5389		e1e_rphy_locked(hw, I217_CGFREG, &phy_reg);
5390		phy_reg |= I217_CGFREG_ENABLE_MTA_RESET;
5391		e1e_wphy_locked(hw, I217_CGFREG, phy_reg);
5392
5393release:
5394		hw->phy.ops.release(hw);
5395	}
5396out:
5397	ew32(PHY_CTRL, phy_ctrl);
5398
5399	if (hw->mac.type == e1000_ich8lan)
5400		e1000e_gig_downshift_workaround_ich8lan(hw);
5401
5402	if (hw->mac.type >= e1000_pchlan) {
5403		e1000_oem_bits_config_ich8lan(hw, false);
5404
5405		/* Reset PHY to activate OEM bits on 82577/8 */
5406		if (hw->mac.type == e1000_pchlan)
5407			e1000e_phy_hw_reset_generic(hw);
5408
5409		ret_val = hw->phy.ops.acquire(hw);
5410		if (ret_val)
5411			return;
5412		e1000_write_smbus_addr(hw);
5413		hw->phy.ops.release(hw);
5414	}
5415}
5416
5417/**
5418 *  e1000_resume_workarounds_pchlan - workarounds needed during Sx->S0
5419 *  @hw: pointer to the HW structure
5420 *
5421 *  During Sx to S0 transitions on non-managed devices or managed devices
5422 *  on which PHY resets are not blocked, if the PHY registers cannot be
5423 *  accessed properly by the s/w toggle the LANPHYPC value to power cycle
5424 *  the PHY.
5425 *  On i217, setup Intel Rapid Start Technology.
5426 **/
5427void e1000_resume_workarounds_pchlan(struct e1000_hw *hw)
5428{
5429	s32 ret_val;
5430
5431	if (hw->mac.type < e1000_pch2lan)
5432		return;
5433
5434	ret_val = e1000_init_phy_workarounds_pchlan(hw);
5435	if (ret_val) {
5436		e_dbg("Failed to init PHY flow ret_val=%d\n", ret_val);
5437		return;
5438	}
5439
5440	/* For i217 Intel Rapid Start Technology support when the system
5441	 * is transitioning from Sx and no manageability engine is present
5442	 * configure SMBus to restore on reset, disable proxy, and enable
5443	 * the reset on MTA (Multicast table array).
5444	 */
5445	if (hw->phy.type == e1000_phy_i217) {
5446		u16 phy_reg;
5447
5448		ret_val = hw->phy.ops.acquire(hw);
5449		if (ret_val) {
5450			e_dbg("Failed to setup iRST\n");
5451			return;
5452		}
5453
5454		/* Clear Auto Enable LPI after link up */
5455		e1e_rphy_locked(hw, I217_LPI_GPIO_CTRL, &phy_reg);
5456		phy_reg &= ~I217_LPI_GPIO_CTRL_AUTO_EN_LPI;
5457		e1e_wphy_locked(hw, I217_LPI_GPIO_CTRL, phy_reg);
5458
5459		if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
5460			/* Restore clear on SMB if no manageability engine
5461			 * is present
5462			 */
5463			ret_val = e1e_rphy_locked(hw, I217_MEMPWR, &phy_reg);
5464			if (ret_val)
5465				goto release;
5466			phy_reg |= I217_MEMPWR_DISABLE_SMB_RELEASE;
5467			e1e_wphy_locked(hw, I217_MEMPWR, phy_reg);
5468
5469			/* Disable Proxy */
5470			e1e_wphy_locked(hw, I217_PROXY_CTRL, 0);
5471		}
5472		/* Enable reset on MTA */
5473		ret_val = e1e_rphy_locked(hw, I217_CGFREG, &phy_reg);
5474		if (ret_val)
5475			goto release;
5476		phy_reg &= ~I217_CGFREG_ENABLE_MTA_RESET;
5477		e1e_wphy_locked(hw, I217_CGFREG, phy_reg);
5478release:
5479		if (ret_val)
5480			e_dbg("Error %d in resume workarounds\n", ret_val);
5481		hw->phy.ops.release(hw);
5482	}
5483}
5484
5485/**
5486 *  e1000_cleanup_led_ich8lan - Restore the default LED operation
5487 *  @hw: pointer to the HW structure
5488 *
5489 *  Return the LED back to the default configuration.
5490 **/
5491static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw)
5492{
5493	if (hw->phy.type == e1000_phy_ife)
5494		return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0);
5495
5496	ew32(LEDCTL, hw->mac.ledctl_default);
5497	return 0;
5498}
5499
5500/**
5501 *  e1000_led_on_ich8lan - Turn LEDs on
5502 *  @hw: pointer to the HW structure
5503 *
5504 *  Turn on the LEDs.
5505 **/
5506static s32 e1000_led_on_ich8lan(struct e1000_hw *hw)
5507{
5508	if (hw->phy.type == e1000_phy_ife)
5509		return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
5510				(IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_ON));
5511
5512	ew32(LEDCTL, hw->mac.ledctl_mode2);
5513	return 0;
5514}
5515
5516/**
5517 *  e1000_led_off_ich8lan - Turn LEDs off
5518 *  @hw: pointer to the HW structure
5519 *
5520 *  Turn off the LEDs.
5521 **/
5522static s32 e1000_led_off_ich8lan(struct e1000_hw *hw)
5523{
5524	if (hw->phy.type == e1000_phy_ife)
5525		return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
5526				(IFE_PSCL_PROBE_MODE |
5527				 IFE_PSCL_PROBE_LEDS_OFF));
5528
5529	ew32(LEDCTL, hw->mac.ledctl_mode1);
5530	return 0;
5531}
5532
5533/**
5534 *  e1000_setup_led_pchlan - Configures SW controllable LED
5535 *  @hw: pointer to the HW structure
5536 *
5537 *  This prepares the SW controllable LED for use.
5538 **/
5539static s32 e1000_setup_led_pchlan(struct e1000_hw *hw)
5540{
5541	return e1e_wphy(hw, HV_LED_CONFIG, (u16)hw->mac.ledctl_mode1);
5542}
5543
5544/**
5545 *  e1000_cleanup_led_pchlan - Restore the default LED operation
5546 *  @hw: pointer to the HW structure
5547 *
5548 *  Return the LED back to the default configuration.
5549 **/
5550static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw)
5551{
5552	return e1e_wphy(hw, HV_LED_CONFIG, (u16)hw->mac.ledctl_default);
5553}
5554
5555/**
5556 *  e1000_led_on_pchlan - Turn LEDs on
5557 *  @hw: pointer to the HW structure
5558 *
5559 *  Turn on the LEDs.
5560 **/
5561static s32 e1000_led_on_pchlan(struct e1000_hw *hw)
5562{
5563	u16 data = (u16)hw->mac.ledctl_mode2;
5564	u32 i, led;
5565
5566	/* If no link, then turn LED on by setting the invert bit
5567	 * for each LED that's mode is "link_up" in ledctl_mode2.
5568	 */
5569	if (!(er32(STATUS) & E1000_STATUS_LU)) {
5570		for (i = 0; i < 3; i++) {
5571			led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
5572			if ((led & E1000_PHY_LED0_MODE_MASK) !=
5573			    E1000_LEDCTL_MODE_LINK_UP)
5574				continue;
5575			if (led & E1000_PHY_LED0_IVRT)
5576				data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
5577			else
5578				data |= (E1000_PHY_LED0_IVRT << (i * 5));
5579		}
5580	}
5581
5582	return e1e_wphy(hw, HV_LED_CONFIG, data);
5583}
5584
5585/**
5586 *  e1000_led_off_pchlan - Turn LEDs off
5587 *  @hw: pointer to the HW structure
5588 *
5589 *  Turn off the LEDs.
5590 **/
5591static s32 e1000_led_off_pchlan(struct e1000_hw *hw)
5592{
5593	u16 data = (u16)hw->mac.ledctl_mode1;
5594	u32 i, led;
5595
5596	/* If no link, then turn LED off by clearing the invert bit
5597	 * for each LED that's mode is "link_up" in ledctl_mode1.
5598	 */
5599	if (!(er32(STATUS) & E1000_STATUS_LU)) {
5600		for (i = 0; i < 3; i++) {
5601			led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
5602			if ((led & E1000_PHY_LED0_MODE_MASK) !=
5603			    E1000_LEDCTL_MODE_LINK_UP)
5604				continue;
5605			if (led & E1000_PHY_LED0_IVRT)
5606				data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
5607			else
5608				data |= (E1000_PHY_LED0_IVRT << (i * 5));
5609		}
5610	}
5611
5612	return e1e_wphy(hw, HV_LED_CONFIG, data);
5613}
5614
5615/**
5616 *  e1000_get_cfg_done_ich8lan - Read config done bit after Full or PHY reset
5617 *  @hw: pointer to the HW structure
5618 *
5619 *  Read appropriate register for the config done bit for completion status
5620 *  and configure the PHY through s/w for EEPROM-less parts.
5621 *
5622 *  NOTE: some silicon which is EEPROM-less will fail trying to read the
5623 *  config done bit, so only an error is logged and continues.  If we were
5624 *  to return with error, EEPROM-less silicon would not be able to be reset
5625 *  or change link.
5626 **/
5627static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw)
5628{
5629	s32 ret_val = 0;
5630	u32 bank = 0;
5631	u32 status;
5632
5633	e1000e_get_cfg_done_generic(hw);
5634
5635	/* Wait for indication from h/w that it has completed basic config */
5636	if (hw->mac.type >= e1000_ich10lan) {
5637		e1000_lan_init_done_ich8lan(hw);
5638	} else {
5639		ret_val = e1000e_get_auto_rd_done(hw);
5640		if (ret_val) {
5641			/* When auto config read does not complete, do not
5642			 * return with an error. This can happen in situations
5643			 * where there is no eeprom and prevents getting link.
5644			 */
5645			e_dbg("Auto Read Done did not complete\n");
5646			ret_val = 0;
5647		}
5648	}
5649
5650	/* Clear PHY Reset Asserted bit */
5651	status = er32(STATUS);
5652	if (status & E1000_STATUS_PHYRA)
5653		ew32(STATUS, status & ~E1000_STATUS_PHYRA);
5654	else
5655		e_dbg("PHY Reset Asserted not set - needs delay\n");
5656
5657	/* If EEPROM is not marked present, init the IGP 3 PHY manually */
5658	if (hw->mac.type <= e1000_ich9lan) {
5659		if (!(er32(EECD) & E1000_EECD_PRES) &&
5660		    (hw->phy.type == e1000_phy_igp_3)) {
5661			e1000e_phy_init_script_igp3(hw);
5662		}
5663	} else {
5664		if (e1000_valid_nvm_bank_detect_ich8lan(hw, &bank)) {
5665			/* Maybe we should do a basic PHY config */
5666			e_dbg("EEPROM not present\n");
5667			ret_val = -E1000_ERR_CONFIG;
5668		}
5669	}
5670
5671	return ret_val;
5672}
5673
5674/**
5675 * e1000_power_down_phy_copper_ich8lan - Remove link during PHY power down
5676 * @hw: pointer to the HW structure
5677 *
5678 * In the case of a PHY power down to save power, or to turn off link during a
5679 * driver unload, or wake on lan is not enabled, remove the link.
5680 **/
5681static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw)
5682{
5683	/* If the management interface is not enabled, then power down */
5684	if (!(hw->mac.ops.check_mng_mode(hw) ||
5685	      hw->phy.ops.check_reset_block(hw)))
5686		e1000_power_down_phy_copper(hw);
5687}
5688
5689/**
5690 *  e1000_clear_hw_cntrs_ich8lan - Clear statistical counters
5691 *  @hw: pointer to the HW structure
5692 *
5693 *  Clears hardware counters specific to the silicon family and calls
5694 *  clear_hw_cntrs_generic to clear all general purpose counters.
5695 **/
5696static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw)
5697{
5698	u16 phy_data;
5699	s32 ret_val;
5700
5701	e1000e_clear_hw_cntrs_base(hw);
5702
5703	er32(ALGNERRC);
5704	er32(RXERRC);
5705	er32(TNCRS);
5706	er32(CEXTERR);
5707	er32(TSCTC);
5708	er32(TSCTFC);
5709
5710	er32(MGTPRC);
5711	er32(MGTPDC);
5712	er32(MGTPTC);
5713
5714	er32(IAC);
5715	er32(ICRXOC);
5716
5717	/* Clear PHY statistics registers */
5718	if ((hw->phy.type == e1000_phy_82578) ||
5719	    (hw->phy.type == e1000_phy_82579) ||
5720	    (hw->phy.type == e1000_phy_i217) ||
5721	    (hw->phy.type == e1000_phy_82577)) {
5722		ret_val = hw->phy.ops.acquire(hw);
5723		if (ret_val)
5724			return;
5725		ret_val = hw->phy.ops.set_page(hw,
5726					       HV_STATS_PAGE << IGP_PAGE_SHIFT);
5727		if (ret_val)
5728			goto release;
5729		hw->phy.ops.read_reg_page(hw, HV_SCC_UPPER, &phy_data);
5730		hw->phy.ops.read_reg_page(hw, HV_SCC_LOWER, &phy_data);
5731		hw->phy.ops.read_reg_page(hw, HV_ECOL_UPPER, &phy_data);
5732		hw->phy.ops.read_reg_page(hw, HV_ECOL_LOWER, &phy_data);
5733		hw->phy.ops.read_reg_page(hw, HV_MCC_UPPER, &phy_data);
5734		hw->phy.ops.read_reg_page(hw, HV_MCC_LOWER, &phy_data);
5735		hw->phy.ops.read_reg_page(hw, HV_LATECOL_UPPER, &phy_data);
5736		hw->phy.ops.read_reg_page(hw, HV_LATECOL_LOWER, &phy_data);
5737		hw->phy.ops.read_reg_page(hw, HV_COLC_UPPER, &phy_data);
5738		hw->phy.ops.read_reg_page(hw, HV_COLC_LOWER, &phy_data);
5739		hw->phy.ops.read_reg_page(hw, HV_DC_UPPER, &phy_data);
5740		hw->phy.ops.read_reg_page(hw, HV_DC_LOWER, &phy_data);
5741		hw->phy.ops.read_reg_page(hw, HV_TNCRS_UPPER, &phy_data);
5742		hw->phy.ops.read_reg_page(hw, HV_TNCRS_LOWER, &phy_data);
5743release:
5744		hw->phy.ops.release(hw);
5745	}
5746}
5747
5748static const struct e1000_mac_operations ich8_mac_ops = {
5749	/* check_mng_mode dependent on mac type */
5750	.check_for_link		= e1000_check_for_copper_link_ich8lan,
5751	/* cleanup_led dependent on mac type */
5752	.clear_hw_cntrs		= e1000_clear_hw_cntrs_ich8lan,
5753	.get_bus_info		= e1000_get_bus_info_ich8lan,
5754	.set_lan_id		= e1000_set_lan_id_single_port,
5755	.get_link_up_info	= e1000_get_link_up_info_ich8lan,
5756	/* led_on dependent on mac type */
5757	/* led_off dependent on mac type */
5758	.update_mc_addr_list	= e1000e_update_mc_addr_list_generic,
5759	.reset_hw		= e1000_reset_hw_ich8lan,
5760	.init_hw		= e1000_init_hw_ich8lan,
5761	.setup_link		= e1000_setup_link_ich8lan,
5762	.setup_physical_interface = e1000_setup_copper_link_ich8lan,
5763	/* id_led_init dependent on mac type */
5764	.config_collision_dist	= e1000e_config_collision_dist_generic,
5765	.rar_set		= e1000e_rar_set_generic,
5766	.rar_get_count		= e1000e_rar_get_count_generic,
5767};
5768
5769static const struct e1000_phy_operations ich8_phy_ops = {
5770	.acquire		= e1000_acquire_swflag_ich8lan,
5771	.check_reset_block	= e1000_check_reset_block_ich8lan,
5772	.commit			= NULL,
5773	.get_cfg_done		= e1000_get_cfg_done_ich8lan,
5774	.get_cable_length	= e1000e_get_cable_length_igp_2,
5775	.read_reg		= e1000e_read_phy_reg_igp,
5776	.release		= e1000_release_swflag_ich8lan,
5777	.reset			= e1000_phy_hw_reset_ich8lan,
5778	.set_d0_lplu_state	= e1000_set_d0_lplu_state_ich8lan,
5779	.set_d3_lplu_state	= e1000_set_d3_lplu_state_ich8lan,
5780	.write_reg		= e1000e_write_phy_reg_igp,
5781};
5782
5783static const struct e1000_nvm_operations ich8_nvm_ops = {
5784	.acquire		= e1000_acquire_nvm_ich8lan,
5785	.read			= e1000_read_nvm_ich8lan,
5786	.release		= e1000_release_nvm_ich8lan,
5787	.reload			= e1000e_reload_nvm_generic,
5788	.update			= e1000_update_nvm_checksum_ich8lan,
5789	.valid_led_default	= e1000_valid_led_default_ich8lan,
5790	.validate		= e1000_validate_nvm_checksum_ich8lan,
5791	.write			= e1000_write_nvm_ich8lan,
5792};
5793
5794static const struct e1000_nvm_operations spt_nvm_ops = {
5795	.acquire		= e1000_acquire_nvm_ich8lan,
5796	.release		= e1000_release_nvm_ich8lan,
5797	.read			= e1000_read_nvm_spt,
5798	.update			= e1000_update_nvm_checksum_spt,
5799	.reload			= e1000e_reload_nvm_generic,
5800	.valid_led_default	= e1000_valid_led_default_ich8lan,
5801	.validate		= e1000_validate_nvm_checksum_ich8lan,
5802	.write			= e1000_write_nvm_ich8lan,
5803};
5804
5805const struct e1000_info e1000_ich8_info = {
5806	.mac			= e1000_ich8lan,
5807	.flags			= FLAG_HAS_WOL
5808				  | FLAG_IS_ICH
5809				  | FLAG_HAS_CTRLEXT_ON_LOAD
5810				  | FLAG_HAS_AMT
5811				  | FLAG_HAS_FLASH
5812				  | FLAG_APME_IN_WUC,
5813	.pba			= 8,
5814	.max_hw_frame_size	= VLAN_ETH_FRAME_LEN + ETH_FCS_LEN,
5815	.get_variants		= e1000_get_variants_ich8lan,
5816	.mac_ops		= &ich8_mac_ops,
5817	.phy_ops		= &ich8_phy_ops,
5818	.nvm_ops		= &ich8_nvm_ops,
5819};
5820
5821const struct e1000_info e1000_ich9_info = {
5822	.mac			= e1000_ich9lan,
5823	.flags			= FLAG_HAS_JUMBO_FRAMES
5824				  | FLAG_IS_ICH
5825				  | FLAG_HAS_WOL
5826				  | FLAG_HAS_CTRLEXT_ON_LOAD
5827				  | FLAG_HAS_AMT
5828				  | FLAG_HAS_FLASH
5829				  | FLAG_APME_IN_WUC,
5830	.pba			= 18,
5831	.max_hw_frame_size	= DEFAULT_JUMBO,
5832	.get_variants		= e1000_get_variants_ich8lan,
5833	.mac_ops		= &ich8_mac_ops,
5834	.phy_ops		= &ich8_phy_ops,
5835	.nvm_ops		= &ich8_nvm_ops,
5836};
5837
5838const struct e1000_info e1000_ich10_info = {
5839	.mac			= e1000_ich10lan,
5840	.flags			= FLAG_HAS_JUMBO_FRAMES
5841				  | FLAG_IS_ICH
5842				  | FLAG_HAS_WOL
5843				  | FLAG_HAS_CTRLEXT_ON_LOAD
5844				  | FLAG_HAS_AMT
5845				  | FLAG_HAS_FLASH
5846				  | FLAG_APME_IN_WUC,
5847	.pba			= 18,
5848	.max_hw_frame_size	= DEFAULT_JUMBO,
5849	.get_variants		= e1000_get_variants_ich8lan,
5850	.mac_ops		= &ich8_mac_ops,
5851	.phy_ops		= &ich8_phy_ops,
5852	.nvm_ops		= &ich8_nvm_ops,
5853};
5854
5855const struct e1000_info e1000_pch_info = {
5856	.mac			= e1000_pchlan,
5857	.flags			= FLAG_IS_ICH
5858				  | FLAG_HAS_WOL
5859				  | FLAG_HAS_CTRLEXT_ON_LOAD
5860				  | FLAG_HAS_AMT
5861				  | FLAG_HAS_FLASH
5862				  | FLAG_HAS_JUMBO_FRAMES
5863				  | FLAG_DISABLE_FC_PAUSE_TIME /* errata */
5864				  | FLAG_APME_IN_WUC,
5865	.flags2			= FLAG2_HAS_PHY_STATS,
5866	.pba			= 26,
5867	.max_hw_frame_size	= 4096,
5868	.get_variants		= e1000_get_variants_ich8lan,
5869	.mac_ops		= &ich8_mac_ops,
5870	.phy_ops		= &ich8_phy_ops,
5871	.nvm_ops		= &ich8_nvm_ops,
5872};
5873
5874const struct e1000_info e1000_pch2_info = {
5875	.mac			= e1000_pch2lan,
5876	.flags			= FLAG_IS_ICH
5877				  | FLAG_HAS_WOL
5878				  | FLAG_HAS_HW_TIMESTAMP
5879				  | FLAG_HAS_CTRLEXT_ON_LOAD
5880				  | FLAG_HAS_AMT
5881				  | FLAG_HAS_FLASH
5882				  | FLAG_HAS_JUMBO_FRAMES
5883				  | FLAG_APME_IN_WUC,
5884	.flags2			= FLAG2_HAS_PHY_STATS
5885				  | FLAG2_HAS_EEE
5886				  | FLAG2_CHECK_SYSTIM_OVERFLOW,
5887	.pba			= 26,
5888	.max_hw_frame_size	= 9022,
5889	.get_variants		= e1000_get_variants_ich8lan,
5890	.mac_ops		= &ich8_mac_ops,
5891	.phy_ops		= &ich8_phy_ops,
5892	.nvm_ops		= &ich8_nvm_ops,
5893};
5894
5895const struct e1000_info e1000_pch_lpt_info = {
5896	.mac			= e1000_pch_lpt,
5897	.flags			= FLAG_IS_ICH
5898				  | FLAG_HAS_WOL
5899				  | FLAG_HAS_HW_TIMESTAMP
5900				  | FLAG_HAS_CTRLEXT_ON_LOAD
5901				  | FLAG_HAS_AMT
5902				  | FLAG_HAS_FLASH
5903				  | FLAG_HAS_JUMBO_FRAMES
5904				  | FLAG_APME_IN_WUC,
5905	.flags2			= FLAG2_HAS_PHY_STATS
5906				  | FLAG2_HAS_EEE
5907				  | FLAG2_CHECK_SYSTIM_OVERFLOW,
5908	.pba			= 26,
5909	.max_hw_frame_size	= 9022,
5910	.get_variants		= e1000_get_variants_ich8lan,
5911	.mac_ops		= &ich8_mac_ops,
5912	.phy_ops		= &ich8_phy_ops,
5913	.nvm_ops		= &ich8_nvm_ops,
5914};
5915
5916const struct e1000_info e1000_pch_spt_info = {
5917	.mac			= e1000_pch_spt,
5918	.flags			= FLAG_IS_ICH
5919				  | FLAG_HAS_WOL
5920				  | FLAG_HAS_HW_TIMESTAMP
5921				  | FLAG_HAS_CTRLEXT_ON_LOAD
5922				  | FLAG_HAS_AMT
5923				  | FLAG_HAS_FLASH
5924				  | FLAG_HAS_JUMBO_FRAMES
5925				  | FLAG_APME_IN_WUC,
5926	.flags2			= FLAG2_HAS_PHY_STATS
5927				  | FLAG2_HAS_EEE,
5928	.pba			= 26,
5929	.max_hw_frame_size	= 9022,
5930	.get_variants		= e1000_get_variants_ich8lan,
5931	.mac_ops		= &ich8_mac_ops,
5932	.phy_ops		= &ich8_phy_ops,
5933	.nvm_ops		= &spt_nvm_ops,
5934};
5935
5936const struct e1000_info e1000_pch_cnp_info = {
5937	.mac			= e1000_pch_cnp,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5938	.flags			= FLAG_IS_ICH
5939				  | FLAG_HAS_WOL
5940				  | FLAG_HAS_HW_TIMESTAMP
5941				  | FLAG_HAS_CTRLEXT_ON_LOAD
5942				  | FLAG_HAS_AMT
5943				  | FLAG_HAS_FLASH
5944				  | FLAG_HAS_JUMBO_FRAMES
5945				  | FLAG_APME_IN_WUC,
5946	.flags2			= FLAG2_HAS_PHY_STATS
5947				  | FLAG2_HAS_EEE,
5948	.pba			= 26,
5949	.max_hw_frame_size	= 9022,
5950	.get_variants		= e1000_get_variants_ich8lan,
5951	.mac_ops		= &ich8_mac_ops,
5952	.phy_ops		= &ich8_phy_ops,
5953	.nvm_ops		= &spt_nvm_ops,
5954};