Linux Audio

Check our new training course

Loading...
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0
   2/* Copyright(c) 1999 - 2018 Intel Corporation. */
   3
   4/* 82562G 10/100 Network Connection
   5 * 82562G-2 10/100 Network Connection
   6 * 82562GT 10/100 Network Connection
   7 * 82562GT-2 10/100 Network Connection
   8 * 82562V 10/100 Network Connection
   9 * 82562V-2 10/100 Network Connection
  10 * 82566DC-2 Gigabit Network Connection
  11 * 82566DC Gigabit Network Connection
  12 * 82566DM-2 Gigabit Network Connection
  13 * 82566DM Gigabit Network Connection
  14 * 82566MC Gigabit Network Connection
  15 * 82566MM Gigabit Network Connection
  16 * 82567LM Gigabit Network Connection
  17 * 82567LF Gigabit Network Connection
  18 * 82567V Gigabit Network Connection
  19 * 82567LM-2 Gigabit Network Connection
  20 * 82567LF-2 Gigabit Network Connection
  21 * 82567V-2 Gigabit Network Connection
  22 * 82567LF-3 Gigabit Network Connection
  23 * 82567LM-3 Gigabit Network Connection
  24 * 82567LM-4 Gigabit Network Connection
  25 * 82577LM Gigabit Network Connection
  26 * 82577LC Gigabit Network Connection
  27 * 82578DM Gigabit Network Connection
  28 * 82578DC Gigabit Network Connection
  29 * 82579LM Gigabit Network Connection
  30 * 82579V Gigabit Network Connection
  31 * Ethernet Connection I217-LM
  32 * Ethernet Connection I217-V
  33 * Ethernet Connection I218-V
  34 * Ethernet Connection I218-LM
  35 * Ethernet Connection (2) I218-LM
  36 * Ethernet Connection (2) I218-V
  37 * Ethernet Connection (3) I218-LM
  38 * Ethernet Connection (3) I218-V
  39 */
  40
  41#include "e1000.h"
  42
  43/* ICH GbE Flash Hardware Sequencing Flash Status Register bit breakdown */
  44/* Offset 04h HSFSTS */
  45union ich8_hws_flash_status {
  46	struct ich8_hsfsts {
  47		u16 flcdone:1;	/* bit 0 Flash Cycle Done */
  48		u16 flcerr:1;	/* bit 1 Flash Cycle Error */
  49		u16 dael:1;	/* bit 2 Direct Access error Log */
  50		u16 berasesz:2;	/* bit 4:3 Sector Erase Size */
  51		u16 flcinprog:1;	/* bit 5 flash cycle in Progress */
  52		u16 reserved1:2;	/* bit 13:6 Reserved */
  53		u16 reserved2:6;	/* bit 13:6 Reserved */
  54		u16 fldesvalid:1;	/* bit 14 Flash Descriptor Valid */
  55		u16 flockdn:1;	/* bit 15 Flash Config Lock-Down */
  56	} hsf_status;
  57	u16 regval;
  58};
  59
  60/* ICH GbE Flash Hardware Sequencing Flash control Register bit breakdown */
  61/* Offset 06h FLCTL */
  62union ich8_hws_flash_ctrl {
  63	struct ich8_hsflctl {
  64		u16 flcgo:1;	/* 0 Flash Cycle Go */
  65		u16 flcycle:2;	/* 2:1 Flash Cycle */
  66		u16 reserved:5;	/* 7:3 Reserved  */
  67		u16 fldbcount:2;	/* 9:8 Flash Data Byte Count */
  68		u16 flockdn:6;	/* 15:10 Reserved */
  69	} hsf_ctrl;
  70	u16 regval;
  71};
  72
  73/* ICH Flash Region Access Permissions */
  74union ich8_hws_flash_regacc {
  75	struct ich8_flracc {
  76		u32 grra:8;	/* 0:7 GbE region Read Access */
  77		u32 grwa:8;	/* 8:15 GbE region Write Access */
  78		u32 gmrag:8;	/* 23:16 GbE Master Read Access Grant */
  79		u32 gmwag:8;	/* 31:24 GbE Master Write Access Grant */
  80	} hsf_flregacc;
  81	u16 regval;
  82};
  83
  84/* ICH Flash Protected Region */
  85union ich8_flash_protected_range {
  86	struct ich8_pr {
  87		u32 base:13;	/* 0:12 Protected Range Base */
  88		u32 reserved1:2;	/* 13:14 Reserved */
  89		u32 rpe:1;	/* 15 Read Protection Enable */
  90		u32 limit:13;	/* 16:28 Protected Range Limit */
  91		u32 reserved2:2;	/* 29:30 Reserved */
  92		u32 wpe:1;	/* 31 Write Protection Enable */
  93	} range;
  94	u32 regval;
  95};
  96
  97static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw);
  98static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw);
  99static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank);
 100static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
 101						u32 offset, u8 byte);
 102static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
 103					 u8 *data);
 104static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
 105					 u16 *data);
 106static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
 107					 u8 size, u16 *data);
 108static s32 e1000_read_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset,
 109					   u32 *data);
 110static s32 e1000_read_flash_dword_ich8lan(struct e1000_hw *hw,
 111					  u32 offset, u32 *data);
 112static s32 e1000_write_flash_data32_ich8lan(struct e1000_hw *hw,
 113					    u32 offset, u32 data);
 114static s32 e1000_retry_write_flash_dword_ich8lan(struct e1000_hw *hw,
 115						 u32 offset, u32 dword);
 116static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw);
 117static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw);
 118static s32 e1000_led_on_ich8lan(struct e1000_hw *hw);
 119static s32 e1000_led_off_ich8lan(struct e1000_hw *hw);
 120static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw);
 121static s32 e1000_setup_led_pchlan(struct e1000_hw *hw);
 122static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw);
 123static s32 e1000_led_on_pchlan(struct e1000_hw *hw);
 124static s32 e1000_led_off_pchlan(struct e1000_hw *hw);
 125static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active);
 126static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw);
 127static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw);
 128static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link);
 129static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw);
 130static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw);
 131static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw);
 132static int e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index);
 133static int e1000_rar_set_pch_lpt(struct e1000_hw *hw, u8 *addr, u32 index);
 134static u32 e1000_rar_get_count_pch_lpt(struct e1000_hw *hw);
 135static s32 e1000_k1_workaround_lv(struct e1000_hw *hw);
 136static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate);
 137static s32 e1000_disable_ulp_lpt_lp(struct e1000_hw *hw, bool force);
 138static s32 e1000_setup_copper_link_pch_lpt(struct e1000_hw *hw);
 139static s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state);
 140
 141static inline u16 __er16flash(struct e1000_hw *hw, unsigned long reg)
 142{
 143	return readw(hw->flash_address + reg);
 144}
 145
 146static inline u32 __er32flash(struct e1000_hw *hw, unsigned long reg)
 147{
 148	return readl(hw->flash_address + reg);
 149}
 150
 151static inline void __ew16flash(struct e1000_hw *hw, unsigned long reg, u16 val)
 152{
 153	writew(val, hw->flash_address + reg);
 154}
 155
 156static inline void __ew32flash(struct e1000_hw *hw, unsigned long reg, u32 val)
 157{
 158	writel(val, hw->flash_address + reg);
 159}
 160
 161#define er16flash(reg)		__er16flash(hw, (reg))
 162#define er32flash(reg)		__er32flash(hw, (reg))
 163#define ew16flash(reg, val)	__ew16flash(hw, (reg), (val))
 164#define ew32flash(reg, val)	__ew32flash(hw, (reg), (val))
 165
 166/**
 167 *  e1000_phy_is_accessible_pchlan - Check if able to access PHY registers
 168 *  @hw: pointer to the HW structure
 169 *
 170 *  Test access to the PHY registers by reading the PHY ID registers.  If
 171 *  the PHY ID is already known (e.g. resume path) compare it with known ID,
 172 *  otherwise assume the read PHY ID is correct if it is valid.
 173 *
 174 *  Assumes the sw/fw/hw semaphore is already acquired.
 175 **/
 176static bool e1000_phy_is_accessible_pchlan(struct e1000_hw *hw)
 177{
 178	u16 phy_reg = 0;
 179	u32 phy_id = 0;
 180	s32 ret_val = 0;
 181	u16 retry_count;
 182	u32 mac_reg = 0;
 183
 184	for (retry_count = 0; retry_count < 2; retry_count++) {
 185		ret_val = e1e_rphy_locked(hw, MII_PHYSID1, &phy_reg);
 186		if (ret_val || (phy_reg == 0xFFFF))
 187			continue;
 188		phy_id = (u32)(phy_reg << 16);
 189
 190		ret_val = e1e_rphy_locked(hw, MII_PHYSID2, &phy_reg);
 191		if (ret_val || (phy_reg == 0xFFFF)) {
 192			phy_id = 0;
 193			continue;
 194		}
 195		phy_id |= (u32)(phy_reg & PHY_REVISION_MASK);
 196		break;
 197	}
 198
 199	if (hw->phy.id) {
 200		if (hw->phy.id == phy_id)
 201			goto out;
 202	} else if (phy_id) {
 203		hw->phy.id = phy_id;
 204		hw->phy.revision = (u32)(phy_reg & ~PHY_REVISION_MASK);
 205		goto out;
 206	}
 207
 208	/* In case the PHY needs to be in mdio slow mode,
 209	 * set slow mode and try to get the PHY id again.
 210	 */
 211	if (hw->mac.type < e1000_pch_lpt) {
 212		hw->phy.ops.release(hw);
 213		ret_val = e1000_set_mdio_slow_mode_hv(hw);
 214		if (!ret_val)
 215			ret_val = e1000e_get_phy_id(hw);
 216		hw->phy.ops.acquire(hw);
 217	}
 218
 219	if (ret_val)
 220		return false;
 221out:
 222	if (hw->mac.type >= e1000_pch_lpt) {
 223		/* Only unforce SMBus if ME is not active */
 224		if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
 225			/* Switching PHY interface always returns MDI error
 226			 * so disable retry mechanism to avoid wasting time
 227			 */
 228			e1000e_disable_phy_retry(hw);
 229
 230			/* Unforce SMBus mode in PHY */
 231			e1e_rphy_locked(hw, CV_SMB_CTRL, &phy_reg);
 232			phy_reg &= ~CV_SMB_CTRL_FORCE_SMBUS;
 233			e1e_wphy_locked(hw, CV_SMB_CTRL, phy_reg);
 234
 235			e1000e_enable_phy_retry(hw);
 236
 237			/* Unforce SMBus mode in MAC */
 238			mac_reg = er32(CTRL_EXT);
 239			mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
 240			ew32(CTRL_EXT, mac_reg);
 241		}
 242	}
 243
 244	return true;
 245}
 246
 247/**
 248 *  e1000_toggle_lanphypc_pch_lpt - toggle the LANPHYPC pin value
 249 *  @hw: pointer to the HW structure
 250 *
 251 *  Toggling the LANPHYPC pin value fully power-cycles the PHY and is
 252 *  used to reset the PHY to a quiescent state when necessary.
 253 **/
 254static void e1000_toggle_lanphypc_pch_lpt(struct e1000_hw *hw)
 255{
 256	u32 mac_reg;
 257
 258	/* Set Phy Config Counter to 50msec */
 259	mac_reg = er32(FEXTNVM3);
 260	mac_reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK;
 261	mac_reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC;
 262	ew32(FEXTNVM3, mac_reg);
 263
 264	/* Toggle LANPHYPC Value bit */
 265	mac_reg = er32(CTRL);
 266	mac_reg |= E1000_CTRL_LANPHYPC_OVERRIDE;
 267	mac_reg &= ~E1000_CTRL_LANPHYPC_VALUE;
 268	ew32(CTRL, mac_reg);
 269	e1e_flush();
 270	usleep_range(10, 20);
 271	mac_reg &= ~E1000_CTRL_LANPHYPC_OVERRIDE;
 272	ew32(CTRL, mac_reg);
 273	e1e_flush();
 274
 275	if (hw->mac.type < e1000_pch_lpt) {
 276		msleep(50);
 277	} else {
 278		u16 count = 20;
 279
 280		do {
 281			usleep_range(5000, 6000);
 282		} while (!(er32(CTRL_EXT) & E1000_CTRL_EXT_LPCD) && count--);
 283
 284		msleep(30);
 285	}
 286}
 287
 288/**
 289 *  e1000_init_phy_workarounds_pchlan - PHY initialization workarounds
 290 *  @hw: pointer to the HW structure
 291 *
 292 *  Workarounds/flow necessary for PHY initialization during driver load
 293 *  and resume paths.
 294 **/
 295static s32 e1000_init_phy_workarounds_pchlan(struct e1000_hw *hw)
 296{
 297	struct e1000_adapter *adapter = hw->adapter;
 298	u32 mac_reg, fwsm = er32(FWSM);
 299	s32 ret_val;
 300
 301	/* Gate automatic PHY configuration by hardware on managed and
 302	 * non-managed 82579 and newer adapters.
 303	 */
 304	e1000_gate_hw_phy_config_ich8lan(hw, true);
 305
 306	/* It is not possible to be certain of the current state of ULP
 307	 * so forcibly disable it.
 308	 */
 309	hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_unknown;
 310	ret_val = e1000_disable_ulp_lpt_lp(hw, true);
 311	if (ret_val)
 312		e_warn("Failed to disable ULP\n");
 313
 314	ret_val = hw->phy.ops.acquire(hw);
 315	if (ret_val) {
 316		e_dbg("Failed to initialize PHY flow\n");
 317		goto out;
 318	}
 319
 320	/* There is no guarantee that the PHY is accessible at this time
 321	 * so disable retry mechanism to avoid wasting time
 322	 */
 323	e1000e_disable_phy_retry(hw);
 324
 325	/* The MAC-PHY interconnect may be in SMBus mode.  If the PHY is
 326	 * inaccessible and resetting the PHY is not blocked, toggle the
 327	 * LANPHYPC Value bit to force the interconnect to PCIe mode.
 328	 */
 329	switch (hw->mac.type) {
 330	case e1000_pch_lpt:
 331	case e1000_pch_spt:
 332	case e1000_pch_cnp:
 333	case e1000_pch_tgp:
 334	case e1000_pch_adp:
 335	case e1000_pch_mtp:
 336	case e1000_pch_lnp:
 337	case e1000_pch_ptp:
 338	case e1000_pch_nvp:
 339		if (e1000_phy_is_accessible_pchlan(hw))
 340			break;
 341
 342		/* Before toggling LANPHYPC, see if PHY is accessible by
 343		 * forcing MAC to SMBus mode first.
 344		 */
 345		mac_reg = er32(CTRL_EXT);
 346		mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
 347		ew32(CTRL_EXT, mac_reg);
 348
 349		/* Wait 50 milliseconds for MAC to finish any retries
 350		 * that it might be trying to perform from previous
 351		 * attempts to acknowledge any phy read requests.
 352		 */
 353		msleep(50);
 354
 355		fallthrough;
 356	case e1000_pch2lan:
 357		if (e1000_phy_is_accessible_pchlan(hw))
 358			break;
 359
 360		fallthrough;
 361	case e1000_pchlan:
 362		if ((hw->mac.type == e1000_pchlan) &&
 363		    (fwsm & E1000_ICH_FWSM_FW_VALID))
 364			break;
 365
 366		if (hw->phy.ops.check_reset_block(hw)) {
 367			e_dbg("Required LANPHYPC toggle blocked by ME\n");
 368			ret_val = -E1000_ERR_PHY;
 369			break;
 370		}
 371
 372		/* Toggle LANPHYPC Value bit */
 373		e1000_toggle_lanphypc_pch_lpt(hw);
 374		if (hw->mac.type >= e1000_pch_lpt) {
 375			if (e1000_phy_is_accessible_pchlan(hw))
 376				break;
 377
 378			/* Toggling LANPHYPC brings the PHY out of SMBus mode
 379			 * so ensure that the MAC is also out of SMBus mode
 380			 */
 381			mac_reg = er32(CTRL_EXT);
 382			mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
 383			ew32(CTRL_EXT, mac_reg);
 384
 385			if (e1000_phy_is_accessible_pchlan(hw))
 386				break;
 387
 388			ret_val = -E1000_ERR_PHY;
 389		}
 390		break;
 391	default:
 392		break;
 393	}
 394
 395	e1000e_enable_phy_retry(hw);
 396
 397	hw->phy.ops.release(hw);
 398	if (!ret_val) {
 399
 400		/* Check to see if able to reset PHY.  Print error if not */
 401		if (hw->phy.ops.check_reset_block(hw)) {
 402			e_err("Reset blocked by ME\n");
 403			goto out;
 404		}
 405
 406		/* Reset the PHY before any access to it.  Doing so, ensures
 407		 * that the PHY is in a known good state before we read/write
 408		 * PHY registers.  The generic reset is sufficient here,
 409		 * because we haven't determined the PHY type yet.
 410		 */
 411		ret_val = e1000e_phy_hw_reset_generic(hw);
 412		if (ret_val)
 413			goto out;
 414
 415		/* On a successful reset, possibly need to wait for the PHY
 416		 * to quiesce to an accessible state before returning control
 417		 * to the calling function.  If the PHY does not quiesce, then
 418		 * return E1000E_BLK_PHY_RESET, as this is the condition that
 419		 *  the PHY is in.
 420		 */
 421		ret_val = hw->phy.ops.check_reset_block(hw);
 422		if (ret_val)
 423			e_err("ME blocked access to PHY after reset\n");
 424	}
 425
 426out:
 427	/* Ungate automatic PHY configuration on non-managed 82579 */
 428	if ((hw->mac.type == e1000_pch2lan) &&
 429	    !(fwsm & E1000_ICH_FWSM_FW_VALID)) {
 430		usleep_range(10000, 11000);
 431		e1000_gate_hw_phy_config_ich8lan(hw, false);
 432	}
 433
 434	return ret_val;
 435}
 436
 437/**
 438 *  e1000_init_phy_params_pchlan - Initialize PHY function pointers
 439 *  @hw: pointer to the HW structure
 440 *
 441 *  Initialize family-specific PHY parameters and function pointers.
 442 **/
 443static s32 e1000_init_phy_params_pchlan(struct e1000_hw *hw)
 444{
 445	struct e1000_phy_info *phy = &hw->phy;
 446	s32 ret_val;
 447
 448	phy->addr = 1;
 449	phy->reset_delay_us = 100;
 450
 451	phy->ops.set_page = e1000_set_page_igp;
 452	phy->ops.read_reg = e1000_read_phy_reg_hv;
 453	phy->ops.read_reg_locked = e1000_read_phy_reg_hv_locked;
 454	phy->ops.read_reg_page = e1000_read_phy_reg_page_hv;
 455	phy->ops.set_d0_lplu_state = e1000_set_lplu_state_pchlan;
 456	phy->ops.set_d3_lplu_state = e1000_set_lplu_state_pchlan;
 457	phy->ops.write_reg = e1000_write_phy_reg_hv;
 458	phy->ops.write_reg_locked = e1000_write_phy_reg_hv_locked;
 459	phy->ops.write_reg_page = e1000_write_phy_reg_page_hv;
 460	phy->ops.power_up = e1000_power_up_phy_copper;
 461	phy->ops.power_down = e1000_power_down_phy_copper_ich8lan;
 462	phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
 463
 464	phy->id = e1000_phy_unknown;
 465
 466	if (hw->mac.type == e1000_pch_mtp) {
 467		phy->retry_count = 2;
 468		e1000e_enable_phy_retry(hw);
 469	}
 470
 471	ret_val = e1000_init_phy_workarounds_pchlan(hw);
 472	if (ret_val)
 473		return ret_val;
 474
 475	if (phy->id == e1000_phy_unknown)
 476		switch (hw->mac.type) {
 477		default:
 478			ret_val = e1000e_get_phy_id(hw);
 479			if (ret_val)
 480				return ret_val;
 481			if ((phy->id != 0) && (phy->id != PHY_REVISION_MASK))
 482				break;
 483			fallthrough;
 484		case e1000_pch2lan:
 485		case e1000_pch_lpt:
 486		case e1000_pch_spt:
 487		case e1000_pch_cnp:
 488		case e1000_pch_tgp:
 489		case e1000_pch_adp:
 490		case e1000_pch_mtp:
 491		case e1000_pch_lnp:
 492		case e1000_pch_ptp:
 493		case e1000_pch_nvp:
 494			/* In case the PHY needs to be in mdio slow mode,
 495			 * set slow mode and try to get the PHY id again.
 496			 */
 497			ret_val = e1000_set_mdio_slow_mode_hv(hw);
 498			if (ret_val)
 499				return ret_val;
 500			ret_val = e1000e_get_phy_id(hw);
 501			if (ret_val)
 502				return ret_val;
 503			break;
 504		}
 505	phy->type = e1000e_get_phy_type_from_id(phy->id);
 506
 507	switch (phy->type) {
 508	case e1000_phy_82577:
 509	case e1000_phy_82579:
 510	case e1000_phy_i217:
 511		phy->ops.check_polarity = e1000_check_polarity_82577;
 512		phy->ops.force_speed_duplex =
 513		    e1000_phy_force_speed_duplex_82577;
 514		phy->ops.get_cable_length = e1000_get_cable_length_82577;
 515		phy->ops.get_info = e1000_get_phy_info_82577;
 516		phy->ops.commit = e1000e_phy_sw_reset;
 517		break;
 518	case e1000_phy_82578:
 519		phy->ops.check_polarity = e1000_check_polarity_m88;
 520		phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88;
 521		phy->ops.get_cable_length = e1000e_get_cable_length_m88;
 522		phy->ops.get_info = e1000e_get_phy_info_m88;
 523		break;
 524	default:
 525		ret_val = -E1000_ERR_PHY;
 526		break;
 527	}
 528
 529	return ret_val;
 530}
 531
 532/**
 533 *  e1000_init_phy_params_ich8lan - Initialize PHY function pointers
 534 *  @hw: pointer to the HW structure
 535 *
 536 *  Initialize family-specific PHY parameters and function pointers.
 537 **/
 538static s32 e1000_init_phy_params_ich8lan(struct e1000_hw *hw)
 539{
 540	struct e1000_phy_info *phy = &hw->phy;
 541	s32 ret_val;
 542	u16 i = 0;
 543
 544	phy->addr = 1;
 545	phy->reset_delay_us = 100;
 546
 547	phy->ops.power_up = e1000_power_up_phy_copper;
 548	phy->ops.power_down = e1000_power_down_phy_copper_ich8lan;
 549
 550	/* We may need to do this twice - once for IGP and if that fails,
 551	 * we'll set BM func pointers and try again
 552	 */
 553	ret_val = e1000e_determine_phy_address(hw);
 554	if (ret_val) {
 555		phy->ops.write_reg = e1000e_write_phy_reg_bm;
 556		phy->ops.read_reg = e1000e_read_phy_reg_bm;
 557		ret_val = e1000e_determine_phy_address(hw);
 558		if (ret_val) {
 559			e_dbg("Cannot determine PHY addr. Erroring out\n");
 560			return ret_val;
 561		}
 562	}
 563
 564	phy->id = 0;
 565	while ((e1000_phy_unknown == e1000e_get_phy_type_from_id(phy->id)) &&
 566	       (i++ < 100)) {
 567		usleep_range(1000, 1100);
 568		ret_val = e1000e_get_phy_id(hw);
 569		if (ret_val)
 570			return ret_val;
 571	}
 572
 573	/* Verify phy id */
 574	switch (phy->id) {
 575	case IGP03E1000_E_PHY_ID:
 576		phy->type = e1000_phy_igp_3;
 577		phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
 578		phy->ops.read_reg_locked = e1000e_read_phy_reg_igp_locked;
 579		phy->ops.write_reg_locked = e1000e_write_phy_reg_igp_locked;
 580		phy->ops.get_info = e1000e_get_phy_info_igp;
 581		phy->ops.check_polarity = e1000_check_polarity_igp;
 582		phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_igp;
 583		break;
 584	case IFE_E_PHY_ID:
 585	case IFE_PLUS_E_PHY_ID:
 586	case IFE_C_E_PHY_ID:
 587		phy->type = e1000_phy_ife;
 588		phy->autoneg_mask = E1000_ALL_NOT_GIG;
 589		phy->ops.get_info = e1000_get_phy_info_ife;
 590		phy->ops.check_polarity = e1000_check_polarity_ife;
 591		phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_ife;
 592		break;
 593	case BME1000_E_PHY_ID:
 594		phy->type = e1000_phy_bm;
 595		phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
 596		phy->ops.read_reg = e1000e_read_phy_reg_bm;
 597		phy->ops.write_reg = e1000e_write_phy_reg_bm;
 598		phy->ops.commit = e1000e_phy_sw_reset;
 599		phy->ops.get_info = e1000e_get_phy_info_m88;
 600		phy->ops.check_polarity = e1000_check_polarity_m88;
 601		phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88;
 602		break;
 603	default:
 604		return -E1000_ERR_PHY;
 605	}
 606
 607	return 0;
 608}
 609
 610/**
 611 *  e1000_init_nvm_params_ich8lan - Initialize NVM function pointers
 612 *  @hw: pointer to the HW structure
 613 *
 614 *  Initialize family-specific NVM parameters and function
 615 *  pointers.
 616 **/
 617static s32 e1000_init_nvm_params_ich8lan(struct e1000_hw *hw)
 618{
 619	struct e1000_nvm_info *nvm = &hw->nvm;
 620	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
 621	u32 gfpreg, sector_base_addr, sector_end_addr;
 622	u16 i;
 623	u32 nvm_size;
 624
 625	nvm->type = e1000_nvm_flash_sw;
 626
 627	if (hw->mac.type >= e1000_pch_spt) {
 628		/* in SPT, gfpreg doesn't exist. NVM size is taken from the
 629		 * STRAP register. This is because in SPT the GbE Flash region
 630		 * is no longer accessed through the flash registers. Instead,
 631		 * the mechanism has changed, and the Flash region access
 632		 * registers are now implemented in GbE memory space.
 633		 */
 634		nvm->flash_base_addr = 0;
 635		nvm_size = (((er32(STRAP) >> 1) & 0x1F) + 1)
 636		    * NVM_SIZE_MULTIPLIER;
 637		nvm->flash_bank_size = nvm_size / 2;
 638		/* Adjust to word count */
 639		nvm->flash_bank_size /= sizeof(u16);
 640		/* Set the base address for flash register access */
 641		hw->flash_address = hw->hw_addr + E1000_FLASH_BASE_ADDR;
 642	} else {
 643		/* Can't read flash registers if register set isn't mapped. */
 644		if (!hw->flash_address) {
 645			e_dbg("ERROR: Flash registers not mapped\n");
 646			return -E1000_ERR_CONFIG;
 647		}
 648
 649		gfpreg = er32flash(ICH_FLASH_GFPREG);
 650
 651		/* sector_X_addr is a "sector"-aligned address (4096 bytes)
 652		 * Add 1 to sector_end_addr since this sector is included in
 653		 * the overall size.
 654		 */
 655		sector_base_addr = gfpreg & FLASH_GFPREG_BASE_MASK;
 656		sector_end_addr = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK) + 1;
 657
 658		/* flash_base_addr is byte-aligned */
 659		nvm->flash_base_addr = sector_base_addr
 660		    << FLASH_SECTOR_ADDR_SHIFT;
 661
 662		/* find total size of the NVM, then cut in half since the total
 663		 * size represents two separate NVM banks.
 664		 */
 665		nvm->flash_bank_size = ((sector_end_addr - sector_base_addr)
 666					<< FLASH_SECTOR_ADDR_SHIFT);
 667		nvm->flash_bank_size /= 2;
 668		/* Adjust to word count */
 669		nvm->flash_bank_size /= sizeof(u16);
 670	}
 671
 672	nvm->word_size = E1000_ICH8_SHADOW_RAM_WORDS;
 673
 674	/* Clear shadow ram */
 675	for (i = 0; i < nvm->word_size; i++) {
 676		dev_spec->shadow_ram[i].modified = false;
 677		dev_spec->shadow_ram[i].value = 0xFFFF;
 678	}
 679
 680	return 0;
 681}
 682
 683/**
 684 *  e1000_init_mac_params_ich8lan - Initialize MAC function pointers
 685 *  @hw: pointer to the HW structure
 686 *
 687 *  Initialize family-specific MAC parameters and function
 688 *  pointers.
 689 **/
 690static s32 e1000_init_mac_params_ich8lan(struct e1000_hw *hw)
 691{
 692	struct e1000_mac_info *mac = &hw->mac;
 693
 694	/* Set media type function pointer */
 695	hw->phy.media_type = e1000_media_type_copper;
 696
 697	/* Set mta register count */
 698	mac->mta_reg_count = 32;
 699	/* Set rar entry count */
 700	mac->rar_entry_count = E1000_ICH_RAR_ENTRIES;
 701	if (mac->type == e1000_ich8lan)
 702		mac->rar_entry_count--;
 703	/* FWSM register */
 704	mac->has_fwsm = true;
 705	/* ARC subsystem not supported */
 706	mac->arc_subsystem_valid = false;
 707	/* Adaptive IFS supported */
 708	mac->adaptive_ifs = true;
 709
 710	/* LED and other operations */
 711	switch (mac->type) {
 712	case e1000_ich8lan:
 713	case e1000_ich9lan:
 714	case e1000_ich10lan:
 715		/* check management mode */
 716		mac->ops.check_mng_mode = e1000_check_mng_mode_ich8lan;
 717		/* ID LED init */
 718		mac->ops.id_led_init = e1000e_id_led_init_generic;
 719		/* blink LED */
 720		mac->ops.blink_led = e1000e_blink_led_generic;
 721		/* setup LED */
 722		mac->ops.setup_led = e1000e_setup_led_generic;
 723		/* cleanup LED */
 724		mac->ops.cleanup_led = e1000_cleanup_led_ich8lan;
 725		/* turn on/off LED */
 726		mac->ops.led_on = e1000_led_on_ich8lan;
 727		mac->ops.led_off = e1000_led_off_ich8lan;
 728		break;
 729	case e1000_pch2lan:
 730		mac->rar_entry_count = E1000_PCH2_RAR_ENTRIES;
 731		mac->ops.rar_set = e1000_rar_set_pch2lan;
 732		fallthrough;
 733	case e1000_pch_lpt:
 734	case e1000_pch_spt:
 735	case e1000_pch_cnp:
 736	case e1000_pch_tgp:
 737	case e1000_pch_adp:
 738	case e1000_pch_mtp:
 739	case e1000_pch_lnp:
 740	case e1000_pch_ptp:
 741	case e1000_pch_nvp:
 742	case e1000_pchlan:
 743		/* check management mode */
 744		mac->ops.check_mng_mode = e1000_check_mng_mode_pchlan;
 745		/* ID LED init */
 746		mac->ops.id_led_init = e1000_id_led_init_pchlan;
 747		/* setup LED */
 748		mac->ops.setup_led = e1000_setup_led_pchlan;
 749		/* cleanup LED */
 750		mac->ops.cleanup_led = e1000_cleanup_led_pchlan;
 751		/* turn on/off LED */
 752		mac->ops.led_on = e1000_led_on_pchlan;
 753		mac->ops.led_off = e1000_led_off_pchlan;
 754		break;
 755	default:
 756		break;
 757	}
 758
 759	if (mac->type >= e1000_pch_lpt) {
 760		mac->rar_entry_count = E1000_PCH_LPT_RAR_ENTRIES;
 761		mac->ops.rar_set = e1000_rar_set_pch_lpt;
 762		mac->ops.setup_physical_interface =
 763		    e1000_setup_copper_link_pch_lpt;
 764		mac->ops.rar_get_count = e1000_rar_get_count_pch_lpt;
 765	}
 766
 767	/* Enable PCS Lock-loss workaround for ICH8 */
 768	if (mac->type == e1000_ich8lan)
 769		e1000e_set_kmrn_lock_loss_workaround_ich8lan(hw, true);
 770
 771	return 0;
 772}
 773
 774/**
 775 *  __e1000_access_emi_reg_locked - Read/write EMI register
 776 *  @hw: pointer to the HW structure
 777 *  @address: EMI address to program
 778 *  @data: pointer to value to read/write from/to the EMI address
 779 *  @read: boolean flag to indicate read or write
 780 *
 781 *  This helper function assumes the SW/FW/HW Semaphore is already acquired.
 782 **/
 783static s32 __e1000_access_emi_reg_locked(struct e1000_hw *hw, u16 address,
 784					 u16 *data, bool read)
 785{
 786	s32 ret_val;
 787
 788	ret_val = e1e_wphy_locked(hw, I82579_EMI_ADDR, address);
 789	if (ret_val)
 790		return ret_val;
 791
 792	if (read)
 793		ret_val = e1e_rphy_locked(hw, I82579_EMI_DATA, data);
 794	else
 795		ret_val = e1e_wphy_locked(hw, I82579_EMI_DATA, *data);
 796
 797	return ret_val;
 798}
 799
 800/**
 801 *  e1000_read_emi_reg_locked - Read Extended Management Interface register
 802 *  @hw: pointer to the HW structure
 803 *  @addr: EMI address to program
 804 *  @data: value to be read from the EMI address
 805 *
 806 *  Assumes the SW/FW/HW Semaphore is already acquired.
 807 **/
 808s32 e1000_read_emi_reg_locked(struct e1000_hw *hw, u16 addr, u16 *data)
 809{
 810	return __e1000_access_emi_reg_locked(hw, addr, data, true);
 811}
 812
 813/**
 814 *  e1000_write_emi_reg_locked - Write Extended Management Interface register
 815 *  @hw: pointer to the HW structure
 816 *  @addr: EMI address to program
 817 *  @data: value to be written to the EMI address
 818 *
 819 *  Assumes the SW/FW/HW Semaphore is already acquired.
 820 **/
 821s32 e1000_write_emi_reg_locked(struct e1000_hw *hw, u16 addr, u16 data)
 822{
 823	return __e1000_access_emi_reg_locked(hw, addr, &data, false);
 824}
 825
 826/**
 827 *  e1000_set_eee_pchlan - Enable/disable EEE support
 828 *  @hw: pointer to the HW structure
 829 *
 830 *  Enable/disable EEE based on setting in dev_spec structure, the duplex of
 831 *  the link and the EEE capabilities of the link partner.  The LPI Control
 832 *  register bits will remain set only if/when link is up.
 833 *
 834 *  EEE LPI must not be asserted earlier than one second after link is up.
 835 *  On 82579, EEE LPI should not be enabled until such time otherwise there
 836 *  can be link issues with some switches.  Other devices can have EEE LPI
 837 *  enabled immediately upon link up since they have a timer in hardware which
 838 *  prevents LPI from being asserted too early.
 839 **/
 840s32 e1000_set_eee_pchlan(struct e1000_hw *hw)
 841{
 842	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
 843	s32 ret_val;
 844	u16 lpa, pcs_status, adv, adv_addr, lpi_ctrl, data;
 845
 846	switch (hw->phy.type) {
 847	case e1000_phy_82579:
 848		lpa = I82579_EEE_LP_ABILITY;
 849		pcs_status = I82579_EEE_PCS_STATUS;
 850		adv_addr = I82579_EEE_ADVERTISEMENT;
 851		break;
 852	case e1000_phy_i217:
 853		lpa = I217_EEE_LP_ABILITY;
 854		pcs_status = I217_EEE_PCS_STATUS;
 855		adv_addr = I217_EEE_ADVERTISEMENT;
 856		break;
 857	default:
 858		return 0;
 859	}
 860
 861	ret_val = hw->phy.ops.acquire(hw);
 862	if (ret_val)
 863		return ret_val;
 864
 865	ret_val = e1e_rphy_locked(hw, I82579_LPI_CTRL, &lpi_ctrl);
 866	if (ret_val)
 867		goto release;
 868
 869	/* Clear bits that enable EEE in various speeds */
 870	lpi_ctrl &= ~I82579_LPI_CTRL_ENABLE_MASK;
 871
 872	/* Enable EEE if not disabled by user */
 873	if (!dev_spec->eee_disable) {
 874		/* Save off link partner's EEE ability */
 875		ret_val = e1000_read_emi_reg_locked(hw, lpa,
 876						    &dev_spec->eee_lp_ability);
 877		if (ret_val)
 878			goto release;
 879
 880		/* Read EEE advertisement */
 881		ret_val = e1000_read_emi_reg_locked(hw, adv_addr, &adv);
 882		if (ret_val)
 883			goto release;
 884
 885		/* Enable EEE only for speeds in which the link partner is
 886		 * EEE capable and for which we advertise EEE.
 887		 */
 888		if (adv & dev_spec->eee_lp_ability & I82579_EEE_1000_SUPPORTED)
 889			lpi_ctrl |= I82579_LPI_CTRL_1000_ENABLE;
 890
 891		if (adv & dev_spec->eee_lp_ability & I82579_EEE_100_SUPPORTED) {
 892			e1e_rphy_locked(hw, MII_LPA, &data);
 893			if (data & LPA_100FULL)
 894				lpi_ctrl |= I82579_LPI_CTRL_100_ENABLE;
 895			else
 896				/* EEE is not supported in 100Half, so ignore
 897				 * partner's EEE in 100 ability if full-duplex
 898				 * is not advertised.
 899				 */
 900				dev_spec->eee_lp_ability &=
 901				    ~I82579_EEE_100_SUPPORTED;
 902		}
 903	}
 904
 905	if (hw->phy.type == e1000_phy_82579) {
 906		ret_val = e1000_read_emi_reg_locked(hw, I82579_LPI_PLL_SHUT,
 907						    &data);
 908		if (ret_val)
 909			goto release;
 910
 911		data &= ~I82579_LPI_100_PLL_SHUT;
 912		ret_val = e1000_write_emi_reg_locked(hw, I82579_LPI_PLL_SHUT,
 913						     data);
 914	}
 915
 916	/* R/Clr IEEE MMD 3.1 bits 11:10 - Tx/Rx LPI Received */
 917	ret_val = e1000_read_emi_reg_locked(hw, pcs_status, &data);
 918	if (ret_val)
 919		goto release;
 920
 921	ret_val = e1e_wphy_locked(hw, I82579_LPI_CTRL, lpi_ctrl);
 922release:
 923	hw->phy.ops.release(hw);
 924
 925	return ret_val;
 926}
 927
 928/**
 929 *  e1000_k1_workaround_lpt_lp - K1 workaround on Lynxpoint-LP
 930 *  @hw:   pointer to the HW structure
 931 *  @link: link up bool flag
 932 *
 933 *  When K1 is enabled for 1Gbps, the MAC can miss 2 DMA completion indications
 934 *  preventing further DMA write requests.  Workaround the issue by disabling
 935 *  the de-assertion of the clock request when in 1Gpbs mode.
 936 *  Also, set appropriate Tx re-transmission timeouts for 10 and 100Half link
 937 *  speeds in order to avoid Tx hangs.
 938 **/
 939static s32 e1000_k1_workaround_lpt_lp(struct e1000_hw *hw, bool link)
 940{
 941	u32 fextnvm6 = er32(FEXTNVM6);
 942	u32 status = er32(STATUS);
 943	s32 ret_val = 0;
 944	u16 reg;
 945
 946	if (link && (status & E1000_STATUS_SPEED_1000)) {
 947		ret_val = hw->phy.ops.acquire(hw);
 948		if (ret_val)
 949			return ret_val;
 950
 951		ret_val =
 952		    e1000e_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
 953						&reg);
 954		if (ret_val)
 955			goto release;
 956
 957		ret_val =
 958		    e1000e_write_kmrn_reg_locked(hw,
 959						 E1000_KMRNCTRLSTA_K1_CONFIG,
 960						 reg &
 961						 ~E1000_KMRNCTRLSTA_K1_ENABLE);
 962		if (ret_val)
 963			goto release;
 964
 965		usleep_range(10, 20);
 966
 967		ew32(FEXTNVM6, fextnvm6 | E1000_FEXTNVM6_REQ_PLL_CLK);
 968
 969		ret_val =
 970		    e1000e_write_kmrn_reg_locked(hw,
 971						 E1000_KMRNCTRLSTA_K1_CONFIG,
 972						 reg);
 973release:
 974		hw->phy.ops.release(hw);
 975	} else {
 976		/* clear FEXTNVM6 bit 8 on link down or 10/100 */
 977		fextnvm6 &= ~E1000_FEXTNVM6_REQ_PLL_CLK;
 978
 979		if ((hw->phy.revision > 5) || !link ||
 980		    ((status & E1000_STATUS_SPEED_100) &&
 981		     (status & E1000_STATUS_FD)))
 982			goto update_fextnvm6;
 983
 984		ret_val = e1e_rphy(hw, I217_INBAND_CTRL, &reg);
 985		if (ret_val)
 986			return ret_val;
 987
 988		/* Clear link status transmit timeout */
 989		reg &= ~I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_MASK;
 990
 991		if (status & E1000_STATUS_SPEED_100) {
 992			/* Set inband Tx timeout to 5x10us for 100Half */
 993			reg |= 5 << I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_SHIFT;
 994
 995			/* Do not extend the K1 entry latency for 100Half */
 996			fextnvm6 &= ~E1000_FEXTNVM6_ENABLE_K1_ENTRY_CONDITION;
 997		} else {
 998			/* Set inband Tx timeout to 50x10us for 10Full/Half */
 999			reg |= 50 <<
1000			    I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_SHIFT;
1001
1002			/* Extend the K1 entry latency for 10 Mbps */
1003			fextnvm6 |= E1000_FEXTNVM6_ENABLE_K1_ENTRY_CONDITION;
1004		}
1005
1006		ret_val = e1e_wphy(hw, I217_INBAND_CTRL, reg);
1007		if (ret_val)
1008			return ret_val;
1009
1010update_fextnvm6:
1011		ew32(FEXTNVM6, fextnvm6);
1012	}
1013
1014	return ret_val;
1015}
1016
1017/**
1018 *  e1000_platform_pm_pch_lpt - Set platform power management values
1019 *  @hw: pointer to the HW structure
1020 *  @link: bool indicating link status
1021 *
1022 *  Set the Latency Tolerance Reporting (LTR) values for the "PCIe-like"
1023 *  GbE MAC in the Lynx Point PCH based on Rx buffer size and link speed
1024 *  when link is up (which must not exceed the maximum latency supported
1025 *  by the platform), otherwise specify there is no LTR requirement.
1026 *  Unlike true-PCIe devices which set the LTR maximum snoop/no-snoop
1027 *  latencies in the LTR Extended Capability Structure in the PCIe Extended
1028 *  Capability register set, on this device LTR is set by writing the
1029 *  equivalent snoop/no-snoop latencies in the LTRV register in the MAC and
1030 *  set the SEND bit to send an Intel On-chip System Fabric sideband (IOSF-SB)
1031 *  message to the PMC.
1032 **/
1033static s32 e1000_platform_pm_pch_lpt(struct e1000_hw *hw, bool link)
1034{
1035	u32 reg = link << (E1000_LTRV_REQ_SHIFT + E1000_LTRV_NOSNOOP_SHIFT) |
1036	    link << E1000_LTRV_REQ_SHIFT | E1000_LTRV_SEND;
1037	u32 max_ltr_enc_d = 0;	/* maximum LTR decoded by platform */
1038	u32 lat_enc_d = 0;	/* latency decoded */
1039	u16 lat_enc = 0;	/* latency encoded */
1040
1041	if (link) {
1042		u16 speed, duplex, scale = 0;
1043		u16 max_snoop, max_nosnoop;
1044		u16 max_ltr_enc;	/* max LTR latency encoded */
1045		u64 value;
1046		u32 rxa;
1047
1048		if (!hw->adapter->max_frame_size) {
1049			e_dbg("max_frame_size not set.\n");
1050			return -E1000_ERR_CONFIG;
1051		}
1052
1053		hw->mac.ops.get_link_up_info(hw, &speed, &duplex);
1054		if (!speed) {
1055			e_dbg("Speed not set.\n");
1056			return -E1000_ERR_CONFIG;
1057		}
1058
1059		/* Rx Packet Buffer Allocation size (KB) */
1060		rxa = er32(PBA) & E1000_PBA_RXA_MASK;
1061
1062		/* Determine the maximum latency tolerated by the device.
1063		 *
1064		 * Per the PCIe spec, the tolerated latencies are encoded as
1065		 * a 3-bit encoded scale (only 0-5 are valid) multiplied by
1066		 * a 10-bit value (0-1023) to provide a range from 1 ns to
1067		 * 2^25*(2^10-1) ns.  The scale is encoded as 0=2^0ns,
1068		 * 1=2^5ns, 2=2^10ns,...5=2^25ns.
1069		 */
1070		rxa *= 512;
1071		value = (rxa > hw->adapter->max_frame_size) ?
1072			(rxa - hw->adapter->max_frame_size) * (16000 / speed) :
1073			0;
1074
1075		while (value > PCI_LTR_VALUE_MASK) {
1076			scale++;
1077			value = DIV_ROUND_UP(value, BIT(5));
1078		}
1079		if (scale > E1000_LTRV_SCALE_MAX) {
1080			e_dbg("Invalid LTR latency scale %d\n", scale);
1081			return -E1000_ERR_CONFIG;
1082		}
1083		lat_enc = (u16)((scale << PCI_LTR_SCALE_SHIFT) | value);
1084
1085		/* Determine the maximum latency tolerated by the platform */
1086		pci_read_config_word(hw->adapter->pdev, E1000_PCI_LTR_CAP_LPT,
1087				     &max_snoop);
1088		pci_read_config_word(hw->adapter->pdev,
1089				     E1000_PCI_LTR_CAP_LPT + 2, &max_nosnoop);
1090		max_ltr_enc = max_t(u16, max_snoop, max_nosnoop);
1091
1092		lat_enc_d = (lat_enc & E1000_LTRV_VALUE_MASK) *
1093			     (1U << (E1000_LTRV_SCALE_FACTOR *
1094			     FIELD_GET(E1000_LTRV_SCALE_MASK, lat_enc)));
 
1095
1096		max_ltr_enc_d = (max_ltr_enc & E1000_LTRV_VALUE_MASK) *
1097			(1U << (E1000_LTRV_SCALE_FACTOR *
1098				FIELD_GET(E1000_LTRV_SCALE_MASK, max_ltr_enc)));
 
1099
1100		if (lat_enc_d > max_ltr_enc_d)
1101			lat_enc = max_ltr_enc;
1102	}
1103
1104	/* Set Snoop and No-Snoop latencies the same */
1105	reg |= lat_enc | (lat_enc << E1000_LTRV_NOSNOOP_SHIFT);
1106	ew32(LTRV, reg);
1107
1108	return 0;
1109}
1110
1111/**
1112 *  e1000e_force_smbus - Force interfaces to transition to SMBUS mode.
1113 *  @hw: pointer to the HW structure
1114 *
1115 *  Force the MAC and the PHY to SMBUS mode. Assumes semaphore already
1116 *  acquired.
1117 *
1118 * Return: 0 on success, negative errno on failure.
1119 **/
1120static s32 e1000e_force_smbus(struct e1000_hw *hw)
1121{
1122	u16 smb_ctrl = 0;
1123	u32 ctrl_ext;
1124	s32 ret_val;
1125
1126	/* Switching PHY interface always returns MDI error
1127	 * so disable retry mechanism to avoid wasting time
1128	 */
1129	e1000e_disable_phy_retry(hw);
1130
1131	/* Force SMBus mode in the PHY */
1132	ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL, &smb_ctrl);
1133	if (ret_val) {
1134		e1000e_enable_phy_retry(hw);
1135		return ret_val;
1136	}
1137
1138	smb_ctrl |= CV_SMB_CTRL_FORCE_SMBUS;
1139	e1000_write_phy_reg_hv_locked(hw, CV_SMB_CTRL, smb_ctrl);
1140
1141	e1000e_enable_phy_retry(hw);
1142
1143	/* Force SMBus mode in the MAC */
1144	ctrl_ext = er32(CTRL_EXT);
1145	ctrl_ext |= E1000_CTRL_EXT_FORCE_SMBUS;
1146	ew32(CTRL_EXT, ctrl_ext);
1147
1148	return 0;
1149}
1150
1151/**
1152 *  e1000_enable_ulp_lpt_lp - configure Ultra Low Power mode for LynxPoint-LP
1153 *  @hw: pointer to the HW structure
1154 *  @to_sx: boolean indicating a system power state transition to Sx
1155 *
1156 *  When link is down, configure ULP mode to significantly reduce the power
1157 *  to the PHY.  If on a Manageability Engine (ME) enabled system, tell the
1158 *  ME firmware to start the ULP configuration.  If not on an ME enabled
1159 *  system, configure the ULP mode by software.
1160 */
1161s32 e1000_enable_ulp_lpt_lp(struct e1000_hw *hw, bool to_sx)
1162{
1163	u32 mac_reg;
1164	s32 ret_val = 0;
1165	u16 phy_reg;
1166	u16 oem_reg = 0;
1167
1168	if ((hw->mac.type < e1000_pch_lpt) ||
1169	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_LM) ||
1170	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_V) ||
1171	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_LM2) ||
1172	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_V2) ||
1173	    (hw->dev_spec.ich8lan.ulp_state == e1000_ulp_state_on))
1174		return 0;
1175
1176	if (er32(FWSM) & E1000_ICH_FWSM_FW_VALID) {
1177		/* Request ME configure ULP mode in the PHY */
1178		mac_reg = er32(H2ME);
1179		mac_reg |= E1000_H2ME_ULP | E1000_H2ME_ENFORCE_SETTINGS;
1180		ew32(H2ME, mac_reg);
1181
1182		goto out;
1183	}
1184
1185	if (!to_sx) {
1186		int i = 0;
1187
1188		/* Poll up to 5 seconds for Cable Disconnected indication */
1189		while (!(er32(FEXT) & E1000_FEXT_PHY_CABLE_DISCONNECTED)) {
1190			/* Bail if link is re-acquired */
1191			if (er32(STATUS) & E1000_STATUS_LU)
1192				return -E1000_ERR_PHY;
1193
1194			if (i++ == 100)
1195				break;
1196
1197			msleep(50);
1198		}
1199		e_dbg("CABLE_DISCONNECTED %s set after %dmsec\n",
1200		      (er32(FEXT) &
1201		       E1000_FEXT_PHY_CABLE_DISCONNECTED) ? "" : "not", i * 50);
1202	}
1203
1204	ret_val = hw->phy.ops.acquire(hw);
1205	if (ret_val)
1206		goto out;
1207
1208	ret_val = e1000e_force_smbus(hw);
1209	if (ret_val) {
1210		e_dbg("Failed to force SMBUS: %d\n", ret_val);
1211		goto release;
1212	}
 
 
 
 
 
 
1213
1214	/* Si workaround for ULP entry flow on i127/rev6 h/w.  Enable
1215	 * LPLU and disable Gig speed when entering ULP
1216	 */
1217	if ((hw->phy.type == e1000_phy_i217) && (hw->phy.revision == 6)) {
1218		ret_val = e1000_read_phy_reg_hv_locked(hw, HV_OEM_BITS,
1219						       &oem_reg);
1220		if (ret_val)
1221			goto release;
1222
1223		phy_reg = oem_reg;
1224		phy_reg |= HV_OEM_BITS_LPLU | HV_OEM_BITS_GBE_DIS;
1225
1226		ret_val = e1000_write_phy_reg_hv_locked(hw, HV_OEM_BITS,
1227							phy_reg);
1228
1229		if (ret_val)
1230			goto release;
1231	}
1232
1233	/* Set Inband ULP Exit, Reset to SMBus mode and
1234	 * Disable SMBus Release on PERST# in PHY
1235	 */
1236	ret_val = e1000_read_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, &phy_reg);
1237	if (ret_val)
1238		goto release;
1239	phy_reg |= (I218_ULP_CONFIG1_RESET_TO_SMBUS |
1240		    I218_ULP_CONFIG1_DISABLE_SMB_PERST);
1241	if (to_sx) {
1242		if (er32(WUFC) & E1000_WUFC_LNKC)
1243			phy_reg |= I218_ULP_CONFIG1_WOL_HOST;
1244		else
1245			phy_reg &= ~I218_ULP_CONFIG1_WOL_HOST;
1246
1247		phy_reg |= I218_ULP_CONFIG1_STICKY_ULP;
1248		phy_reg &= ~I218_ULP_CONFIG1_INBAND_EXIT;
1249	} else {
1250		phy_reg |= I218_ULP_CONFIG1_INBAND_EXIT;
1251		phy_reg &= ~I218_ULP_CONFIG1_STICKY_ULP;
1252		phy_reg &= ~I218_ULP_CONFIG1_WOL_HOST;
1253	}
1254	e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1255
1256	/* Set Disable SMBus Release on PERST# in MAC */
1257	mac_reg = er32(FEXTNVM7);
1258	mac_reg |= E1000_FEXTNVM7_DISABLE_SMB_PERST;
1259	ew32(FEXTNVM7, mac_reg);
1260
1261	/* Commit ULP changes in PHY by starting auto ULP configuration */
1262	phy_reg |= I218_ULP_CONFIG1_START;
1263	e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1264
1265	if ((hw->phy.type == e1000_phy_i217) && (hw->phy.revision == 6) &&
1266	    to_sx && (er32(STATUS) & E1000_STATUS_LU)) {
1267		ret_val = e1000_write_phy_reg_hv_locked(hw, HV_OEM_BITS,
1268							oem_reg);
1269		if (ret_val)
1270			goto release;
1271	}
1272
1273release:
1274	hw->phy.ops.release(hw);
1275out:
1276	if (ret_val)
1277		e_dbg("Error in ULP enable flow: %d\n", ret_val);
1278	else
1279		hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_on;
1280
1281	return ret_val;
1282}
1283
1284/**
1285 *  e1000_disable_ulp_lpt_lp - unconfigure Ultra Low Power mode for LynxPoint-LP
1286 *  @hw: pointer to the HW structure
1287 *  @force: boolean indicating whether or not to force disabling ULP
1288 *
1289 *  Un-configure ULP mode when link is up, the system is transitioned from
1290 *  Sx or the driver is unloaded.  If on a Manageability Engine (ME) enabled
1291 *  system, poll for an indication from ME that ULP has been un-configured.
1292 *  If not on an ME enabled system, un-configure the ULP mode by software.
1293 *
1294 *  During nominal operation, this function is called when link is acquired
1295 *  to disable ULP mode (force=false); otherwise, for example when unloading
1296 *  the driver or during Sx->S0 transitions, this is called with force=true
1297 *  to forcibly disable ULP.
1298 */
1299static s32 e1000_disable_ulp_lpt_lp(struct e1000_hw *hw, bool force)
1300{
1301	s32 ret_val = 0;
1302	u32 mac_reg;
1303	u16 phy_reg;
1304	int i = 0;
1305
1306	if ((hw->mac.type < e1000_pch_lpt) ||
1307	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_LM) ||
1308	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_V) ||
1309	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_LM2) ||
1310	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_V2) ||
1311	    (hw->dev_spec.ich8lan.ulp_state == e1000_ulp_state_off))
1312		return 0;
1313
1314	if (er32(FWSM) & E1000_ICH_FWSM_FW_VALID) {
1315		struct e1000_adapter *adapter = hw->adapter;
1316		bool firmware_bug = false;
1317
1318		if (force) {
1319			/* Request ME un-configure ULP mode in the PHY */
1320			mac_reg = er32(H2ME);
1321			mac_reg &= ~E1000_H2ME_ULP;
1322			mac_reg |= E1000_H2ME_ENFORCE_SETTINGS;
1323			ew32(H2ME, mac_reg);
1324		}
1325
1326		/* Poll up to 2.5 seconds for ME to clear ULP_CFG_DONE.
1327		 * If this takes more than 1 second, show a warning indicating a
1328		 * firmware bug
1329		 */
1330		while (er32(FWSM) & E1000_FWSM_ULP_CFG_DONE) {
1331			if (i++ == 250) {
1332				ret_val = -E1000_ERR_PHY;
1333				goto out;
1334			}
1335			if (i > 100 && !firmware_bug)
1336				firmware_bug = true;
1337
1338			usleep_range(10000, 11000);
1339		}
1340		if (firmware_bug)
1341			e_warn("ULP_CONFIG_DONE took %d msec. This is a firmware bug\n",
1342			       i * 10);
1343		else
1344			e_dbg("ULP_CONFIG_DONE cleared after %d msec\n",
1345			      i * 10);
1346
1347		if (force) {
1348			mac_reg = er32(H2ME);
1349			mac_reg &= ~E1000_H2ME_ENFORCE_SETTINGS;
1350			ew32(H2ME, mac_reg);
1351		} else {
1352			/* Clear H2ME.ULP after ME ULP configuration */
1353			mac_reg = er32(H2ME);
1354			mac_reg &= ~E1000_H2ME_ULP;
1355			ew32(H2ME, mac_reg);
1356		}
1357
1358		goto out;
1359	}
1360
1361	ret_val = hw->phy.ops.acquire(hw);
1362	if (ret_val)
1363		goto out;
1364
1365	if (force)
1366		/* Toggle LANPHYPC Value bit */
1367		e1000_toggle_lanphypc_pch_lpt(hw);
1368
1369	/* Switching PHY interface always returns MDI error
1370	 * so disable retry mechanism to avoid wasting time
1371	 */
1372	e1000e_disable_phy_retry(hw);
1373
1374	/* Unforce SMBus mode in PHY */
1375	ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL, &phy_reg);
1376	if (ret_val) {
1377		/* The MAC might be in PCIe mode, so temporarily force to
1378		 * SMBus mode in order to access the PHY.
1379		 */
1380		mac_reg = er32(CTRL_EXT);
1381		mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
1382		ew32(CTRL_EXT, mac_reg);
1383
1384		msleep(50);
1385
1386		ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL,
1387						       &phy_reg);
1388		if (ret_val)
1389			goto release;
1390	}
1391	phy_reg &= ~CV_SMB_CTRL_FORCE_SMBUS;
1392	e1000_write_phy_reg_hv_locked(hw, CV_SMB_CTRL, phy_reg);
1393
1394	e1000e_enable_phy_retry(hw);
1395
1396	/* Unforce SMBus mode in MAC */
1397	mac_reg = er32(CTRL_EXT);
1398	mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
1399	ew32(CTRL_EXT, mac_reg);
1400
1401	/* When ULP mode was previously entered, K1 was disabled by the
1402	 * hardware.  Re-Enable K1 in the PHY when exiting ULP.
1403	 */
1404	ret_val = e1000_read_phy_reg_hv_locked(hw, HV_PM_CTRL, &phy_reg);
1405	if (ret_val)
1406		goto release;
1407	phy_reg |= HV_PM_CTRL_K1_ENABLE;
1408	e1000_write_phy_reg_hv_locked(hw, HV_PM_CTRL, phy_reg);
1409
1410	/* Clear ULP enabled configuration */
1411	ret_val = e1000_read_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, &phy_reg);
1412	if (ret_val)
1413		goto release;
1414	phy_reg &= ~(I218_ULP_CONFIG1_IND |
1415		     I218_ULP_CONFIG1_STICKY_ULP |
1416		     I218_ULP_CONFIG1_RESET_TO_SMBUS |
1417		     I218_ULP_CONFIG1_WOL_HOST |
1418		     I218_ULP_CONFIG1_INBAND_EXIT |
1419		     I218_ULP_CONFIG1_EN_ULP_LANPHYPC |
1420		     I218_ULP_CONFIG1_DIS_CLR_STICKY_ON_PERST |
1421		     I218_ULP_CONFIG1_DISABLE_SMB_PERST);
1422	e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1423
1424	/* Commit ULP changes by starting auto ULP configuration */
1425	phy_reg |= I218_ULP_CONFIG1_START;
1426	e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1427
1428	/* Clear Disable SMBus Release on PERST# in MAC */
1429	mac_reg = er32(FEXTNVM7);
1430	mac_reg &= ~E1000_FEXTNVM7_DISABLE_SMB_PERST;
1431	ew32(FEXTNVM7, mac_reg);
1432
1433release:
1434	hw->phy.ops.release(hw);
1435	if (force) {
1436		e1000_phy_hw_reset(hw);
1437		msleep(50);
1438	}
1439out:
1440	if (ret_val)
1441		e_dbg("Error in ULP disable flow: %d\n", ret_val);
1442	else
1443		hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_off;
1444
1445	return ret_val;
1446}
1447
1448/**
1449 *  e1000_check_for_copper_link_ich8lan - Check for link (Copper)
1450 *  @hw: pointer to the HW structure
1451 *
1452 *  Checks to see of the link status of the hardware has changed.  If a
1453 *  change in link status has been detected, then we read the PHY registers
1454 *  to get the current speed/duplex if link exists.
1455 **/
1456static s32 e1000_check_for_copper_link_ich8lan(struct e1000_hw *hw)
1457{
1458	struct e1000_mac_info *mac = &hw->mac;
1459	s32 ret_val, tipg_reg = 0;
1460	u16 emi_addr, emi_val = 0;
1461	bool link;
1462	u16 phy_reg;
1463
1464	/* We only want to go out to the PHY registers to see if Auto-Neg
1465	 * has completed and/or if our link status has changed.  The
1466	 * get_link_status flag is set upon receiving a Link Status
1467	 * Change or Rx Sequence Error interrupt.
1468	 */
1469	if (!mac->get_link_status)
1470		return 0;
1471	mac->get_link_status = false;
1472
1473	/* First we want to see if the MII Status Register reports
1474	 * link.  If so, then we want to get the current speed/duplex
1475	 * of the PHY.
1476	 */
1477	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
1478	if (ret_val)
1479		goto out;
1480
1481	if (hw->mac.type == e1000_pchlan) {
1482		ret_val = e1000_k1_gig_workaround_hv(hw, link);
1483		if (ret_val)
1484			goto out;
1485	}
1486
1487	/* When connected at 10Mbps half-duplex, some parts are excessively
1488	 * aggressive resulting in many collisions. To avoid this, increase
1489	 * the IPG and reduce Rx latency in the PHY.
1490	 */
1491	if ((hw->mac.type >= e1000_pch2lan) && link) {
1492		u16 speed, duplex;
1493
1494		e1000e_get_speed_and_duplex_copper(hw, &speed, &duplex);
1495		tipg_reg = er32(TIPG);
1496		tipg_reg &= ~E1000_TIPG_IPGT_MASK;
1497
1498		if (duplex == HALF_DUPLEX && speed == SPEED_10) {
1499			tipg_reg |= 0xFF;
1500			/* Reduce Rx latency in analog PHY */
1501			emi_val = 0;
1502		} else if (hw->mac.type >= e1000_pch_spt &&
1503			   duplex == FULL_DUPLEX && speed != SPEED_1000) {
1504			tipg_reg |= 0xC;
1505			emi_val = 1;
1506		} else {
1507
1508			/* Roll back the default values */
1509			tipg_reg |= 0x08;
1510			emi_val = 1;
1511		}
1512
1513		ew32(TIPG, tipg_reg);
1514
1515		ret_val = hw->phy.ops.acquire(hw);
1516		if (ret_val)
1517			goto out;
1518
1519		if (hw->mac.type == e1000_pch2lan)
1520			emi_addr = I82579_RX_CONFIG;
1521		else
1522			emi_addr = I217_RX_CONFIG;
1523		ret_val = e1000_write_emi_reg_locked(hw, emi_addr, emi_val);
1524
1525		if (hw->mac.type >= e1000_pch_lpt) {
1526			u16 phy_reg;
1527
1528			e1e_rphy_locked(hw, I217_PLL_CLOCK_GATE_REG, &phy_reg);
1529			phy_reg &= ~I217_PLL_CLOCK_GATE_MASK;
1530			if (speed == SPEED_100 || speed == SPEED_10)
1531				phy_reg |= 0x3E8;
1532			else
1533				phy_reg |= 0xFA;
1534			e1e_wphy_locked(hw, I217_PLL_CLOCK_GATE_REG, phy_reg);
1535
1536			if (speed == SPEED_1000) {
1537				hw->phy.ops.read_reg_locked(hw, HV_PM_CTRL,
1538							    &phy_reg);
1539
1540				phy_reg |= HV_PM_CTRL_K1_CLK_REQ;
1541
1542				hw->phy.ops.write_reg_locked(hw, HV_PM_CTRL,
1543							     phy_reg);
1544			}
1545		}
1546		hw->phy.ops.release(hw);
1547
1548		if (ret_val)
1549			goto out;
1550
1551		if (hw->mac.type >= e1000_pch_spt) {
1552			u16 data;
1553			u16 ptr_gap;
1554
1555			if (speed == SPEED_1000) {
1556				ret_val = hw->phy.ops.acquire(hw);
1557				if (ret_val)
1558					goto out;
1559
1560				ret_val = e1e_rphy_locked(hw,
1561							  PHY_REG(776, 20),
1562							  &data);
1563				if (ret_val) {
1564					hw->phy.ops.release(hw);
1565					goto out;
1566				}
1567
1568				ptr_gap = (data & (0x3FF << 2)) >> 2;
1569				if (ptr_gap < 0x18) {
1570					data &= ~(0x3FF << 2);
1571					data |= (0x18 << 2);
1572					ret_val =
1573					    e1e_wphy_locked(hw,
1574							    PHY_REG(776, 20),
1575							    data);
1576				}
1577				hw->phy.ops.release(hw);
1578				if (ret_val)
1579					goto out;
1580			} else {
1581				ret_val = hw->phy.ops.acquire(hw);
1582				if (ret_val)
1583					goto out;
1584
1585				ret_val = e1e_wphy_locked(hw,
1586							  PHY_REG(776, 20),
1587							  0xC023);
1588				hw->phy.ops.release(hw);
1589				if (ret_val)
1590					goto out;
1591
1592			}
1593		}
1594	}
1595
1596	/* I217 Packet Loss issue:
1597	 * ensure that FEXTNVM4 Beacon Duration is set correctly
1598	 * on power up.
1599	 * Set the Beacon Duration for I217 to 8 usec
1600	 */
1601	if (hw->mac.type >= e1000_pch_lpt) {
1602		u32 mac_reg;
1603
1604		mac_reg = er32(FEXTNVM4);
1605		mac_reg &= ~E1000_FEXTNVM4_BEACON_DURATION_MASK;
1606		mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_8USEC;
1607		ew32(FEXTNVM4, mac_reg);
1608	}
1609
1610	/* Work-around I218 hang issue */
1611	if ((hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPTLP_I218_LM) ||
1612	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPTLP_I218_V) ||
1613	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_LM3) ||
1614	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_V3)) {
1615		ret_val = e1000_k1_workaround_lpt_lp(hw, link);
1616		if (ret_val)
1617			goto out;
1618	}
1619	if (hw->mac.type >= e1000_pch_lpt) {
1620		/* Set platform power management values for
1621		 * Latency Tolerance Reporting (LTR)
1622		 */
1623		ret_val = e1000_platform_pm_pch_lpt(hw, link);
1624		if (ret_val)
1625			goto out;
1626	}
1627
1628	/* Clear link partner's EEE ability */
1629	hw->dev_spec.ich8lan.eee_lp_ability = 0;
1630
1631	if (hw->mac.type >= e1000_pch_lpt) {
1632		u32 fextnvm6 = er32(FEXTNVM6);
1633
1634		if (hw->mac.type == e1000_pch_spt) {
1635			/* FEXTNVM6 K1-off workaround - for SPT only */
1636			u32 pcieanacfg = er32(PCIEANACFG);
1637
1638			if (pcieanacfg & E1000_FEXTNVM6_K1_OFF_ENABLE)
1639				fextnvm6 |= E1000_FEXTNVM6_K1_OFF_ENABLE;
1640			else
1641				fextnvm6 &= ~E1000_FEXTNVM6_K1_OFF_ENABLE;
1642		}
1643
1644		ew32(FEXTNVM6, fextnvm6);
1645	}
1646
1647	if (!link)
1648		goto out;
1649
1650	switch (hw->mac.type) {
1651	case e1000_pch2lan:
1652		ret_val = e1000_k1_workaround_lv(hw);
1653		if (ret_val)
1654			return ret_val;
1655		fallthrough;
1656	case e1000_pchlan:
1657		if (hw->phy.type == e1000_phy_82578) {
1658			ret_val = e1000_link_stall_workaround_hv(hw);
1659			if (ret_val)
1660				return ret_val;
1661		}
1662
1663		/* Workaround for PCHx parts in half-duplex:
1664		 * Set the number of preambles removed from the packet
1665		 * when it is passed from the PHY to the MAC to prevent
1666		 * the MAC from misinterpreting the packet type.
1667		 */
1668		e1e_rphy(hw, HV_KMRN_FIFO_CTRLSTA, &phy_reg);
1669		phy_reg &= ~HV_KMRN_FIFO_CTRLSTA_PREAMBLE_MASK;
1670
1671		if ((er32(STATUS) & E1000_STATUS_FD) != E1000_STATUS_FD)
1672			phy_reg |= BIT(HV_KMRN_FIFO_CTRLSTA_PREAMBLE_SHIFT);
1673
1674		e1e_wphy(hw, HV_KMRN_FIFO_CTRLSTA, phy_reg);
1675		break;
1676	default:
1677		break;
1678	}
1679
1680	/* Check if there was DownShift, must be checked
1681	 * immediately after link-up
1682	 */
1683	e1000e_check_downshift(hw);
1684
1685	/* Enable/Disable EEE after link up */
1686	if (hw->phy.type > e1000_phy_82579) {
1687		ret_val = e1000_set_eee_pchlan(hw);
1688		if (ret_val)
1689			return ret_val;
1690	}
1691
1692	/* If we are forcing speed/duplex, then we simply return since
1693	 * we have already determined whether we have link or not.
1694	 */
1695	if (!mac->autoneg)
1696		return -E1000_ERR_CONFIG;
1697
1698	/* Auto-Neg is enabled.  Auto Speed Detection takes care
1699	 * of MAC speed/duplex configuration.  So we only need to
1700	 * configure Collision Distance in the MAC.
1701	 */
1702	mac->ops.config_collision_dist(hw);
1703
1704	/* Configure Flow Control now that Auto-Neg has completed.
1705	 * First, we need to restore the desired flow control
1706	 * settings because we may have had to re-autoneg with a
1707	 * different link partner.
1708	 */
1709	ret_val = e1000e_config_fc_after_link_up(hw);
1710	if (ret_val)
1711		e_dbg("Error configuring flow control\n");
1712
1713	return ret_val;
1714
1715out:
1716	mac->get_link_status = true;
1717	return ret_val;
1718}
1719
1720static s32 e1000_get_variants_ich8lan(struct e1000_adapter *adapter)
1721{
1722	struct e1000_hw *hw = &adapter->hw;
1723	s32 rc;
1724
1725	rc = e1000_init_mac_params_ich8lan(hw);
1726	if (rc)
1727		return rc;
1728
1729	rc = e1000_init_nvm_params_ich8lan(hw);
1730	if (rc)
1731		return rc;
1732
1733	switch (hw->mac.type) {
1734	case e1000_ich8lan:
1735	case e1000_ich9lan:
1736	case e1000_ich10lan:
1737		rc = e1000_init_phy_params_ich8lan(hw);
1738		break;
1739	case e1000_pchlan:
1740	case e1000_pch2lan:
1741	case e1000_pch_lpt:
1742	case e1000_pch_spt:
1743	case e1000_pch_cnp:
1744	case e1000_pch_tgp:
1745	case e1000_pch_adp:
1746	case e1000_pch_mtp:
1747	case e1000_pch_lnp:
1748	case e1000_pch_ptp:
1749	case e1000_pch_nvp:
1750		rc = e1000_init_phy_params_pchlan(hw);
1751		break;
1752	default:
1753		break;
1754	}
1755	if (rc)
1756		return rc;
1757
1758	/* Disable Jumbo Frame support on parts with Intel 10/100 PHY or
1759	 * on parts with MACsec enabled in NVM (reflected in CTRL_EXT).
1760	 */
1761	if ((adapter->hw.phy.type == e1000_phy_ife) ||
1762	    ((adapter->hw.mac.type >= e1000_pch2lan) &&
1763	     (!(er32(CTRL_EXT) & E1000_CTRL_EXT_LSECCK)))) {
1764		adapter->flags &= ~FLAG_HAS_JUMBO_FRAMES;
1765		adapter->max_hw_frame_size = VLAN_ETH_FRAME_LEN + ETH_FCS_LEN;
1766
1767		hw->mac.ops.blink_led = NULL;
1768	}
1769
1770	if ((adapter->hw.mac.type == e1000_ich8lan) &&
1771	    (adapter->hw.phy.type != e1000_phy_ife))
1772		adapter->flags |= FLAG_LSC_GIG_SPEED_DROP;
1773
1774	/* Enable workaround for 82579 w/ ME enabled */
1775	if ((adapter->hw.mac.type == e1000_pch2lan) &&
1776	    (er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
1777		adapter->flags2 |= FLAG2_PCIM2PCI_ARBITER_WA;
1778
1779	return 0;
1780}
1781
1782static DEFINE_MUTEX(nvm_mutex);
1783
1784/**
1785 *  e1000_acquire_nvm_ich8lan - Acquire NVM mutex
1786 *  @hw: pointer to the HW structure
1787 *
1788 *  Acquires the mutex for performing NVM operations.
1789 **/
1790static s32 e1000_acquire_nvm_ich8lan(struct e1000_hw __always_unused *hw)
1791{
1792	mutex_lock(&nvm_mutex);
1793
1794	return 0;
1795}
1796
1797/**
1798 *  e1000_release_nvm_ich8lan - Release NVM mutex
1799 *  @hw: pointer to the HW structure
1800 *
1801 *  Releases the mutex used while performing NVM operations.
1802 **/
1803static void e1000_release_nvm_ich8lan(struct e1000_hw __always_unused *hw)
1804{
1805	mutex_unlock(&nvm_mutex);
1806}
1807
1808/**
1809 *  e1000_acquire_swflag_ich8lan - Acquire software control flag
1810 *  @hw: pointer to the HW structure
1811 *
1812 *  Acquires the software control flag for performing PHY and select
1813 *  MAC CSR accesses.
1814 **/
1815static s32 e1000_acquire_swflag_ich8lan(struct e1000_hw *hw)
1816{
1817	u32 extcnf_ctrl, timeout = PHY_CFG_TIMEOUT;
1818	s32 ret_val = 0;
1819
1820	if (test_and_set_bit(__E1000_ACCESS_SHARED_RESOURCE,
1821			     &hw->adapter->state)) {
1822		e_dbg("contention for Phy access\n");
1823		return -E1000_ERR_PHY;
1824	}
1825
1826	while (timeout) {
1827		extcnf_ctrl = er32(EXTCNF_CTRL);
1828		if (!(extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG))
1829			break;
1830
1831		mdelay(1);
1832		timeout--;
1833	}
1834
1835	if (!timeout) {
1836		e_dbg("SW has already locked the resource.\n");
1837		ret_val = -E1000_ERR_CONFIG;
1838		goto out;
1839	}
1840
1841	timeout = SW_FLAG_TIMEOUT;
1842
1843	extcnf_ctrl |= E1000_EXTCNF_CTRL_SWFLAG;
1844	ew32(EXTCNF_CTRL, extcnf_ctrl);
1845
1846	while (timeout) {
1847		extcnf_ctrl = er32(EXTCNF_CTRL);
1848		if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG)
1849			break;
1850
1851		mdelay(1);
1852		timeout--;
1853	}
1854
1855	if (!timeout) {
1856		e_dbg("Failed to acquire the semaphore, FW or HW has it: FWSM=0x%8.8x EXTCNF_CTRL=0x%8.8x)\n",
1857		      er32(FWSM), extcnf_ctrl);
1858		extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
1859		ew32(EXTCNF_CTRL, extcnf_ctrl);
1860		ret_val = -E1000_ERR_CONFIG;
1861		goto out;
1862	}
1863
1864out:
1865	if (ret_val)
1866		clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
1867
1868	return ret_val;
1869}
1870
1871/**
1872 *  e1000_release_swflag_ich8lan - Release software control flag
1873 *  @hw: pointer to the HW structure
1874 *
1875 *  Releases the software control flag for performing PHY and select
1876 *  MAC CSR accesses.
1877 **/
1878static void e1000_release_swflag_ich8lan(struct e1000_hw *hw)
1879{
1880	u32 extcnf_ctrl;
1881
1882	extcnf_ctrl = er32(EXTCNF_CTRL);
1883
1884	if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG) {
1885		extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
1886		ew32(EXTCNF_CTRL, extcnf_ctrl);
1887	} else {
1888		e_dbg("Semaphore unexpectedly released by sw/fw/hw\n");
1889	}
1890
1891	clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
1892}
1893
1894/**
1895 *  e1000_check_mng_mode_ich8lan - Checks management mode
1896 *  @hw: pointer to the HW structure
1897 *
1898 *  This checks if the adapter has any manageability enabled.
1899 *  This is a function pointer entry point only called by read/write
1900 *  routines for the PHY and NVM parts.
1901 **/
1902static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw)
1903{
1904	u32 fwsm;
1905
1906	fwsm = er32(FWSM);
1907	return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
1908		((fwsm & E1000_FWSM_MODE_MASK) ==
1909		 (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
1910}
1911
1912/**
1913 *  e1000_check_mng_mode_pchlan - Checks management mode
1914 *  @hw: pointer to the HW structure
1915 *
1916 *  This checks if the adapter has iAMT enabled.
1917 *  This is a function pointer entry point only called by read/write
1918 *  routines for the PHY and NVM parts.
1919 **/
1920static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw)
1921{
1922	u32 fwsm;
1923
1924	fwsm = er32(FWSM);
1925	return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
1926	    (fwsm & (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
1927}
1928
1929/**
1930 *  e1000_rar_set_pch2lan - Set receive address register
1931 *  @hw: pointer to the HW structure
1932 *  @addr: pointer to the receive address
1933 *  @index: receive address array register
1934 *
1935 *  Sets the receive address array register at index to the address passed
1936 *  in by addr.  For 82579, RAR[0] is the base address register that is to
1937 *  contain the MAC address but RAR[1-6] are reserved for manageability (ME).
1938 *  Use SHRA[0-3] in place of those reserved for ME.
1939 **/
1940static int e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index)
1941{
1942	u32 rar_low, rar_high;
1943
1944	/* HW expects these in little endian so we reverse the byte order
1945	 * from network order (big endian) to little endian
1946	 */
1947	rar_low = ((u32)addr[0] |
1948		   ((u32)addr[1] << 8) |
1949		   ((u32)addr[2] << 16) | ((u32)addr[3] << 24));
1950
1951	rar_high = ((u32)addr[4] | ((u32)addr[5] << 8));
1952
1953	/* If MAC address zero, no need to set the AV bit */
1954	if (rar_low || rar_high)
1955		rar_high |= E1000_RAH_AV;
1956
1957	if (index == 0) {
1958		ew32(RAL(index), rar_low);
1959		e1e_flush();
1960		ew32(RAH(index), rar_high);
1961		e1e_flush();
1962		return 0;
1963	}
1964
1965	/* RAR[1-6] are owned by manageability.  Skip those and program the
1966	 * next address into the SHRA register array.
1967	 */
1968	if (index < (u32)(hw->mac.rar_entry_count)) {
1969		s32 ret_val;
1970
1971		ret_val = e1000_acquire_swflag_ich8lan(hw);
1972		if (ret_val)
1973			goto out;
1974
1975		ew32(SHRAL(index - 1), rar_low);
1976		e1e_flush();
1977		ew32(SHRAH(index - 1), rar_high);
1978		e1e_flush();
1979
1980		e1000_release_swflag_ich8lan(hw);
1981
1982		/* verify the register updates */
1983		if ((er32(SHRAL(index - 1)) == rar_low) &&
1984		    (er32(SHRAH(index - 1)) == rar_high))
1985			return 0;
1986
1987		e_dbg("SHRA[%d] might be locked by ME - FWSM=0x%8.8x\n",
1988		      (index - 1), er32(FWSM));
1989	}
1990
1991out:
1992	e_dbg("Failed to write receive address at index %d\n", index);
1993	return -E1000_ERR_CONFIG;
1994}
1995
1996/**
1997 *  e1000_rar_get_count_pch_lpt - Get the number of available SHRA
1998 *  @hw: pointer to the HW structure
1999 *
2000 *  Get the number of available receive registers that the Host can
2001 *  program. SHRA[0-10] are the shared receive address registers
2002 *  that are shared between the Host and manageability engine (ME).
2003 *  ME can reserve any number of addresses and the host needs to be
2004 *  able to tell how many available registers it has access to.
2005 **/
2006static u32 e1000_rar_get_count_pch_lpt(struct e1000_hw *hw)
2007{
2008	u32 wlock_mac;
2009	u32 num_entries;
2010
2011	wlock_mac = er32(FWSM) & E1000_FWSM_WLOCK_MAC_MASK;
2012	wlock_mac >>= E1000_FWSM_WLOCK_MAC_SHIFT;
2013
2014	switch (wlock_mac) {
2015	case 0:
2016		/* All SHRA[0..10] and RAR[0] available */
2017		num_entries = hw->mac.rar_entry_count;
2018		break;
2019	case 1:
2020		/* Only RAR[0] available */
2021		num_entries = 1;
2022		break;
2023	default:
2024		/* SHRA[0..(wlock_mac - 1)] available + RAR[0] */
2025		num_entries = wlock_mac + 1;
2026		break;
2027	}
2028
2029	return num_entries;
2030}
2031
2032/**
2033 *  e1000_rar_set_pch_lpt - Set receive address registers
2034 *  @hw: pointer to the HW structure
2035 *  @addr: pointer to the receive address
2036 *  @index: receive address array register
2037 *
2038 *  Sets the receive address register array at index to the address passed
2039 *  in by addr. For LPT, RAR[0] is the base address register that is to
2040 *  contain the MAC address. SHRA[0-10] are the shared receive address
2041 *  registers that are shared between the Host and manageability engine (ME).
2042 **/
2043static int e1000_rar_set_pch_lpt(struct e1000_hw *hw, u8 *addr, u32 index)
2044{
2045	u32 rar_low, rar_high;
2046	u32 wlock_mac;
2047
2048	/* HW expects these in little endian so we reverse the byte order
2049	 * from network order (big endian) to little endian
2050	 */
2051	rar_low = ((u32)addr[0] | ((u32)addr[1] << 8) |
2052		   ((u32)addr[2] << 16) | ((u32)addr[3] << 24));
2053
2054	rar_high = ((u32)addr[4] | ((u32)addr[5] << 8));
2055
2056	/* If MAC address zero, no need to set the AV bit */
2057	if (rar_low || rar_high)
2058		rar_high |= E1000_RAH_AV;
2059
2060	if (index == 0) {
2061		ew32(RAL(index), rar_low);
2062		e1e_flush();
2063		ew32(RAH(index), rar_high);
2064		e1e_flush();
2065		return 0;
2066	}
2067
2068	/* The manageability engine (ME) can lock certain SHRAR registers that
2069	 * it is using - those registers are unavailable for use.
2070	 */
2071	if (index < hw->mac.rar_entry_count) {
2072		wlock_mac = er32(FWSM) & E1000_FWSM_WLOCK_MAC_MASK;
2073		wlock_mac >>= E1000_FWSM_WLOCK_MAC_SHIFT;
2074
2075		/* Check if all SHRAR registers are locked */
2076		if (wlock_mac == 1)
2077			goto out;
2078
2079		if ((wlock_mac == 0) || (index <= wlock_mac)) {
2080			s32 ret_val;
2081
2082			ret_val = e1000_acquire_swflag_ich8lan(hw);
2083
2084			if (ret_val)
2085				goto out;
2086
2087			ew32(SHRAL_PCH_LPT(index - 1), rar_low);
2088			e1e_flush();
2089			ew32(SHRAH_PCH_LPT(index - 1), rar_high);
2090			e1e_flush();
2091
2092			e1000_release_swflag_ich8lan(hw);
2093
2094			/* verify the register updates */
2095			if ((er32(SHRAL_PCH_LPT(index - 1)) == rar_low) &&
2096			    (er32(SHRAH_PCH_LPT(index - 1)) == rar_high))
2097				return 0;
2098		}
2099	}
2100
2101out:
2102	e_dbg("Failed to write receive address at index %d\n", index);
2103	return -E1000_ERR_CONFIG;
2104}
2105
2106/**
2107 *  e1000_check_reset_block_ich8lan - Check if PHY reset is blocked
2108 *  @hw: pointer to the HW structure
2109 *
2110 *  Checks if firmware is blocking the reset of the PHY.
2111 *  This is a function pointer entry point only called by
2112 *  reset routines.
2113 **/
2114static s32 e1000_check_reset_block_ich8lan(struct e1000_hw *hw)
2115{
2116	bool blocked = false;
2117	int i = 0;
2118
2119	while ((blocked = !(er32(FWSM) & E1000_ICH_FWSM_RSPCIPHY)) &&
2120	       (i++ < 30))
2121		usleep_range(10000, 11000);
2122	return blocked ? E1000_BLK_PHY_RESET : 0;
2123}
2124
2125/**
2126 *  e1000_write_smbus_addr - Write SMBus address to PHY needed during Sx states
2127 *  @hw: pointer to the HW structure
2128 *
2129 *  Assumes semaphore already acquired.
2130 *
2131 **/
2132static s32 e1000_write_smbus_addr(struct e1000_hw *hw)
2133{
2134	u16 phy_data;
2135	u32 strap = er32(STRAP);
2136	u32 freq = FIELD_GET(E1000_STRAP_SMT_FREQ_MASK, strap);
 
2137	s32 ret_val;
2138
2139	strap &= E1000_STRAP_SMBUS_ADDRESS_MASK;
2140
2141	ret_val = e1000_read_phy_reg_hv_locked(hw, HV_SMB_ADDR, &phy_data);
2142	if (ret_val)
2143		return ret_val;
2144
2145	phy_data &= ~HV_SMB_ADDR_MASK;
2146	phy_data |= (strap >> E1000_STRAP_SMBUS_ADDRESS_SHIFT);
2147	phy_data |= HV_SMB_ADDR_PEC_EN | HV_SMB_ADDR_VALID;
2148
2149	if (hw->phy.type == e1000_phy_i217) {
2150		/* Restore SMBus frequency */
2151		if (freq--) {
2152			phy_data &= ~HV_SMB_ADDR_FREQ_MASK;
2153			phy_data |= (freq & BIT(0)) <<
2154			    HV_SMB_ADDR_FREQ_LOW_SHIFT;
2155			phy_data |= (freq & BIT(1)) <<
2156			    (HV_SMB_ADDR_FREQ_HIGH_SHIFT - 1);
2157		} else {
2158			e_dbg("Unsupported SMB frequency in PHY\n");
2159		}
2160	}
2161
2162	return e1000_write_phy_reg_hv_locked(hw, HV_SMB_ADDR, phy_data);
2163}
2164
2165/**
2166 *  e1000_sw_lcd_config_ich8lan - SW-based LCD Configuration
2167 *  @hw:   pointer to the HW structure
2168 *
2169 *  SW should configure the LCD from the NVM extended configuration region
2170 *  as a workaround for certain parts.
2171 **/
2172static s32 e1000_sw_lcd_config_ich8lan(struct e1000_hw *hw)
2173{
2174	struct e1000_phy_info *phy = &hw->phy;
2175	u32 i, data, cnf_size, cnf_base_addr, sw_cfg_mask;
2176	s32 ret_val = 0;
2177	u16 word_addr, reg_data, reg_addr, phy_page = 0;
2178
2179	/* Initialize the PHY from the NVM on ICH platforms.  This
2180	 * is needed due to an issue where the NVM configuration is
2181	 * not properly autoloaded after power transitions.
2182	 * Therefore, after each PHY reset, we will load the
2183	 * configuration data out of the NVM manually.
2184	 */
2185	switch (hw->mac.type) {
2186	case e1000_ich8lan:
2187		if (phy->type != e1000_phy_igp_3)
2188			return ret_val;
2189
2190		if ((hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_AMT) ||
2191		    (hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_C)) {
2192			sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG;
2193			break;
2194		}
2195		fallthrough;
2196	case e1000_pchlan:
2197	case e1000_pch2lan:
2198	case e1000_pch_lpt:
2199	case e1000_pch_spt:
2200	case e1000_pch_cnp:
2201	case e1000_pch_tgp:
2202	case e1000_pch_adp:
2203	case e1000_pch_mtp:
2204	case e1000_pch_lnp:
2205	case e1000_pch_ptp:
2206	case e1000_pch_nvp:
2207		sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG_ICH8M;
2208		break;
2209	default:
2210		return ret_val;
2211	}
2212
2213	ret_val = hw->phy.ops.acquire(hw);
2214	if (ret_val)
2215		return ret_val;
2216
2217	data = er32(FEXTNVM);
2218	if (!(data & sw_cfg_mask))
2219		goto release;
2220
2221	/* Make sure HW does not configure LCD from PHY
2222	 * extended configuration before SW configuration
2223	 */
2224	data = er32(EXTCNF_CTRL);
2225	if ((hw->mac.type < e1000_pch2lan) &&
2226	    (data & E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE))
2227		goto release;
2228
2229	cnf_size = er32(EXTCNF_SIZE);
2230	cnf_size &= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_MASK;
2231	cnf_size >>= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_SHIFT;
2232	if (!cnf_size)
2233		goto release;
2234
2235	cnf_base_addr = data & E1000_EXTCNF_CTRL_EXT_CNF_POINTER_MASK;
2236	cnf_base_addr >>= E1000_EXTCNF_CTRL_EXT_CNF_POINTER_SHIFT;
2237
2238	if (((hw->mac.type == e1000_pchlan) &&
2239	     !(data & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)) ||
2240	    (hw->mac.type > e1000_pchlan)) {
2241		/* HW configures the SMBus address and LEDs when the
2242		 * OEM and LCD Write Enable bits are set in the NVM.
2243		 * When both NVM bits are cleared, SW will configure
2244		 * them instead.
2245		 */
2246		ret_val = e1000_write_smbus_addr(hw);
2247		if (ret_val)
2248			goto release;
2249
2250		data = er32(LEDCTL);
2251		ret_val = e1000_write_phy_reg_hv_locked(hw, HV_LED_CONFIG,
2252							(u16)data);
2253		if (ret_val)
2254			goto release;
2255	}
2256
2257	/* Configure LCD from extended configuration region. */
2258
2259	/* cnf_base_addr is in DWORD */
2260	word_addr = (u16)(cnf_base_addr << 1);
2261
2262	for (i = 0; i < cnf_size; i++) {
2263		ret_val = e1000_read_nvm(hw, (word_addr + i * 2), 1, &reg_data);
2264		if (ret_val)
2265			goto release;
2266
2267		ret_val = e1000_read_nvm(hw, (word_addr + i * 2 + 1),
2268					 1, &reg_addr);
2269		if (ret_val)
2270			goto release;
2271
2272		/* Save off the PHY page for future writes. */
2273		if (reg_addr == IGP01E1000_PHY_PAGE_SELECT) {
2274			phy_page = reg_data;
2275			continue;
2276		}
2277
2278		reg_addr &= PHY_REG_MASK;
2279		reg_addr |= phy_page;
2280
2281		ret_val = e1e_wphy_locked(hw, (u32)reg_addr, reg_data);
2282		if (ret_val)
2283			goto release;
2284	}
2285
2286release:
2287	hw->phy.ops.release(hw);
2288	return ret_val;
2289}
2290
2291/**
2292 *  e1000_k1_gig_workaround_hv - K1 Si workaround
2293 *  @hw:   pointer to the HW structure
2294 *  @link: link up bool flag
2295 *
2296 *  If K1 is enabled for 1Gbps, the MAC might stall when transitioning
2297 *  from a lower speed.  This workaround disables K1 whenever link is at 1Gig
2298 *  If link is down, the function will restore the default K1 setting located
2299 *  in the NVM.
2300 **/
2301static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link)
2302{
2303	s32 ret_val = 0;
2304	u16 status_reg = 0;
2305	bool k1_enable = hw->dev_spec.ich8lan.nvm_k1_enabled;
2306
2307	if (hw->mac.type != e1000_pchlan)
2308		return 0;
2309
2310	/* Wrap the whole flow with the sw flag */
2311	ret_val = hw->phy.ops.acquire(hw);
2312	if (ret_val)
2313		return ret_val;
2314
2315	/* Disable K1 when link is 1Gbps, otherwise use the NVM setting */
2316	if (link) {
2317		if (hw->phy.type == e1000_phy_82578) {
2318			ret_val = e1e_rphy_locked(hw, BM_CS_STATUS,
2319						  &status_reg);
2320			if (ret_val)
2321				goto release;
2322
2323			status_reg &= (BM_CS_STATUS_LINK_UP |
2324				       BM_CS_STATUS_RESOLVED |
2325				       BM_CS_STATUS_SPEED_MASK);
2326
2327			if (status_reg == (BM_CS_STATUS_LINK_UP |
2328					   BM_CS_STATUS_RESOLVED |
2329					   BM_CS_STATUS_SPEED_1000))
2330				k1_enable = false;
2331		}
2332
2333		if (hw->phy.type == e1000_phy_82577) {
2334			ret_val = e1e_rphy_locked(hw, HV_M_STATUS, &status_reg);
2335			if (ret_val)
2336				goto release;
2337
2338			status_reg &= (HV_M_STATUS_LINK_UP |
2339				       HV_M_STATUS_AUTONEG_COMPLETE |
2340				       HV_M_STATUS_SPEED_MASK);
2341
2342			if (status_reg == (HV_M_STATUS_LINK_UP |
2343					   HV_M_STATUS_AUTONEG_COMPLETE |
2344					   HV_M_STATUS_SPEED_1000))
2345				k1_enable = false;
2346		}
2347
2348		/* Link stall fix for link up */
2349		ret_val = e1e_wphy_locked(hw, PHY_REG(770, 19), 0x0100);
2350		if (ret_val)
2351			goto release;
2352
2353	} else {
2354		/* Link stall fix for link down */
2355		ret_val = e1e_wphy_locked(hw, PHY_REG(770, 19), 0x4100);
2356		if (ret_val)
2357			goto release;
2358	}
2359
2360	ret_val = e1000_configure_k1_ich8lan(hw, k1_enable);
2361
2362release:
2363	hw->phy.ops.release(hw);
2364
2365	return ret_val;
2366}
2367
2368/**
2369 *  e1000_configure_k1_ich8lan - Configure K1 power state
2370 *  @hw: pointer to the HW structure
2371 *  @k1_enable: K1 state to configure
2372 *
2373 *  Configure the K1 power state based on the provided parameter.
2374 *  Assumes semaphore already acquired.
2375 *
2376 *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
2377 **/
2378s32 e1000_configure_k1_ich8lan(struct e1000_hw *hw, bool k1_enable)
2379{
2380	s32 ret_val;
2381	u32 ctrl_reg = 0;
2382	u32 ctrl_ext = 0;
2383	u32 reg = 0;
2384	u16 kmrn_reg = 0;
2385
2386	ret_val = e1000e_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
2387					      &kmrn_reg);
2388	if (ret_val)
2389		return ret_val;
2390
2391	if (k1_enable)
2392		kmrn_reg |= E1000_KMRNCTRLSTA_K1_ENABLE;
2393	else
2394		kmrn_reg &= ~E1000_KMRNCTRLSTA_K1_ENABLE;
2395
2396	ret_val = e1000e_write_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
2397					       kmrn_reg);
2398	if (ret_val)
2399		return ret_val;
2400
2401	usleep_range(20, 40);
2402	ctrl_ext = er32(CTRL_EXT);
2403	ctrl_reg = er32(CTRL);
2404
2405	reg = ctrl_reg & ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
2406	reg |= E1000_CTRL_FRCSPD;
2407	ew32(CTRL, reg);
2408
2409	ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_SPD_BYPS);
2410	e1e_flush();
2411	usleep_range(20, 40);
2412	ew32(CTRL, ctrl_reg);
2413	ew32(CTRL_EXT, ctrl_ext);
2414	e1e_flush();
2415	usleep_range(20, 40);
2416
2417	return 0;
2418}
2419
2420/**
2421 *  e1000_oem_bits_config_ich8lan - SW-based LCD Configuration
2422 *  @hw:       pointer to the HW structure
2423 *  @d0_state: boolean if entering d0 or d3 device state
2424 *
2425 *  SW will configure Gbe Disable and LPLU based on the NVM. The four bits are
2426 *  collectively called OEM bits.  The OEM Write Enable bit and SW Config bit
2427 *  in NVM determines whether HW should configure LPLU and Gbe Disable.
2428 **/
2429static s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state)
2430{
2431	s32 ret_val = 0;
2432	u32 mac_reg;
2433	u16 oem_reg;
2434
2435	if (hw->mac.type < e1000_pchlan)
2436		return ret_val;
2437
2438	ret_val = hw->phy.ops.acquire(hw);
2439	if (ret_val)
2440		return ret_val;
2441
2442	if (hw->mac.type == e1000_pchlan) {
2443		mac_reg = er32(EXTCNF_CTRL);
2444		if (mac_reg & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)
2445			goto release;
2446	}
2447
2448	mac_reg = er32(FEXTNVM);
2449	if (!(mac_reg & E1000_FEXTNVM_SW_CONFIG_ICH8M))
2450		goto release;
2451
2452	mac_reg = er32(PHY_CTRL);
2453
2454	ret_val = e1e_rphy_locked(hw, HV_OEM_BITS, &oem_reg);
2455	if (ret_val)
2456		goto release;
2457
2458	oem_reg &= ~(HV_OEM_BITS_GBE_DIS | HV_OEM_BITS_LPLU);
2459
2460	if (d0_state) {
2461		if (mac_reg & E1000_PHY_CTRL_GBE_DISABLE)
2462			oem_reg |= HV_OEM_BITS_GBE_DIS;
2463
2464		if (mac_reg & E1000_PHY_CTRL_D0A_LPLU)
2465			oem_reg |= HV_OEM_BITS_LPLU;
2466	} else {
2467		if (mac_reg & (E1000_PHY_CTRL_GBE_DISABLE |
2468			       E1000_PHY_CTRL_NOND0A_GBE_DISABLE))
2469			oem_reg |= HV_OEM_BITS_GBE_DIS;
2470
2471		if (mac_reg & (E1000_PHY_CTRL_D0A_LPLU |
2472			       E1000_PHY_CTRL_NOND0A_LPLU))
2473			oem_reg |= HV_OEM_BITS_LPLU;
2474	}
2475
2476	/* Set Restart auto-neg to activate the bits */
2477	if ((d0_state || (hw->mac.type != e1000_pchlan)) &&
2478	    !hw->phy.ops.check_reset_block(hw))
2479		oem_reg |= HV_OEM_BITS_RESTART_AN;
2480
2481	ret_val = e1e_wphy_locked(hw, HV_OEM_BITS, oem_reg);
2482
2483release:
2484	hw->phy.ops.release(hw);
2485
2486	return ret_val;
2487}
2488
2489/**
2490 *  e1000_set_mdio_slow_mode_hv - Set slow MDIO access mode
2491 *  @hw:   pointer to the HW structure
2492 **/
2493static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw)
2494{
2495	s32 ret_val;
2496	u16 data;
2497
2498	ret_val = e1e_rphy(hw, HV_KMRN_MODE_CTRL, &data);
2499	if (ret_val)
2500		return ret_val;
2501
2502	data |= HV_KMRN_MDIO_SLOW;
2503
2504	ret_val = e1e_wphy(hw, HV_KMRN_MODE_CTRL, data);
2505
2506	return ret_val;
2507}
2508
2509/**
2510 *  e1000_hv_phy_workarounds_ich8lan - apply PHY workarounds
2511 *  @hw: pointer to the HW structure
2512 *
2513 *  A series of PHY workarounds to be done after every PHY reset.
2514 **/
2515static s32 e1000_hv_phy_workarounds_ich8lan(struct e1000_hw *hw)
2516{
2517	s32 ret_val = 0;
2518	u16 phy_data;
2519
2520	if (hw->mac.type != e1000_pchlan)
2521		return 0;
2522
2523	/* Set MDIO slow mode before any other MDIO access */
2524	if (hw->phy.type == e1000_phy_82577) {
2525		ret_val = e1000_set_mdio_slow_mode_hv(hw);
2526		if (ret_val)
2527			return ret_val;
2528	}
2529
2530	if (((hw->phy.type == e1000_phy_82577) &&
2531	     ((hw->phy.revision == 1) || (hw->phy.revision == 2))) ||
2532	    ((hw->phy.type == e1000_phy_82578) && (hw->phy.revision == 1))) {
2533		/* Disable generation of early preamble */
2534		ret_val = e1e_wphy(hw, PHY_REG(769, 25), 0x4431);
2535		if (ret_val)
2536			return ret_val;
2537
2538		/* Preamble tuning for SSC */
2539		ret_val = e1e_wphy(hw, HV_KMRN_FIFO_CTRLSTA, 0xA204);
2540		if (ret_val)
2541			return ret_val;
2542	}
2543
2544	if (hw->phy.type == e1000_phy_82578) {
2545		/* Return registers to default by doing a soft reset then
2546		 * writing 0x3140 to the control register.
2547		 */
2548		if (hw->phy.revision < 2) {
2549			e1000e_phy_sw_reset(hw);
2550			ret_val = e1e_wphy(hw, MII_BMCR, 0x3140);
2551			if (ret_val)
2552				return ret_val;
2553		}
2554	}
2555
2556	/* Select page 0 */
2557	ret_val = hw->phy.ops.acquire(hw);
2558	if (ret_val)
2559		return ret_val;
2560
2561	hw->phy.addr = 1;
2562	ret_val = e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, 0);
2563	hw->phy.ops.release(hw);
2564	if (ret_val)
2565		return ret_val;
2566
2567	/* Configure the K1 Si workaround during phy reset assuming there is
2568	 * link so that it disables K1 if link is in 1Gbps.
2569	 */
2570	ret_val = e1000_k1_gig_workaround_hv(hw, true);
2571	if (ret_val)
2572		return ret_val;
2573
2574	/* Workaround for link disconnects on a busy hub in half duplex */
2575	ret_val = hw->phy.ops.acquire(hw);
2576	if (ret_val)
2577		return ret_val;
2578	ret_val = e1e_rphy_locked(hw, BM_PORT_GEN_CFG, &phy_data);
2579	if (ret_val)
2580		goto release;
2581	ret_val = e1e_wphy_locked(hw, BM_PORT_GEN_CFG, phy_data & 0x00FF);
2582	if (ret_val)
2583		goto release;
2584
2585	/* set MSE higher to enable link to stay up when noise is high */
2586	ret_val = e1000_write_emi_reg_locked(hw, I82577_MSE_THRESHOLD, 0x0034);
2587release:
2588	hw->phy.ops.release(hw);
2589
2590	return ret_val;
2591}
2592
2593/**
2594 *  e1000_copy_rx_addrs_to_phy_ich8lan - Copy Rx addresses from MAC to PHY
2595 *  @hw:   pointer to the HW structure
2596 **/
2597void e1000_copy_rx_addrs_to_phy_ich8lan(struct e1000_hw *hw)
2598{
2599	u32 mac_reg;
2600	u16 i, phy_reg = 0;
2601	s32 ret_val;
2602
2603	ret_val = hw->phy.ops.acquire(hw);
2604	if (ret_val)
2605		return;
2606	ret_val = e1000_enable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2607	if (ret_val)
2608		goto release;
2609
2610	/* Copy both RAL/H (rar_entry_count) and SHRAL/H to PHY */
2611	for (i = 0; i < (hw->mac.rar_entry_count); i++) {
2612		mac_reg = er32(RAL(i));
2613		hw->phy.ops.write_reg_page(hw, BM_RAR_L(i),
2614					   (u16)(mac_reg & 0xFFFF));
2615		hw->phy.ops.write_reg_page(hw, BM_RAR_M(i),
2616					   (u16)((mac_reg >> 16) & 0xFFFF));
2617
2618		mac_reg = er32(RAH(i));
2619		hw->phy.ops.write_reg_page(hw, BM_RAR_H(i),
2620					   (u16)(mac_reg & 0xFFFF));
2621		hw->phy.ops.write_reg_page(hw, BM_RAR_CTRL(i),
2622					   (u16)((mac_reg & E1000_RAH_AV) >> 16));
 
2623	}
2624
2625	e1000_disable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2626
2627release:
2628	hw->phy.ops.release(hw);
2629}
2630
2631/**
2632 *  e1000_lv_jumbo_workaround_ich8lan - required for jumbo frame operation
2633 *  with 82579 PHY
2634 *  @hw: pointer to the HW structure
2635 *  @enable: flag to enable/disable workaround when enabling/disabling jumbos
2636 **/
2637s32 e1000_lv_jumbo_workaround_ich8lan(struct e1000_hw *hw, bool enable)
2638{
2639	s32 ret_val = 0;
2640	u16 phy_reg, data;
2641	u32 mac_reg;
2642	u16 i;
2643
2644	if (hw->mac.type < e1000_pch2lan)
2645		return 0;
2646
2647	/* disable Rx path while enabling/disabling workaround */
2648	e1e_rphy(hw, PHY_REG(769, 20), &phy_reg);
2649	ret_val = e1e_wphy(hw, PHY_REG(769, 20), phy_reg | BIT(14));
2650	if (ret_val)
2651		return ret_val;
2652
2653	if (enable) {
2654		/* Write Rx addresses (rar_entry_count for RAL/H, and
2655		 * SHRAL/H) and initial CRC values to the MAC
2656		 */
2657		for (i = 0; i < hw->mac.rar_entry_count; i++) {
2658			u8 mac_addr[ETH_ALEN] = { 0 };
2659			u32 addr_high, addr_low;
2660
2661			addr_high = er32(RAH(i));
2662			if (!(addr_high & E1000_RAH_AV))
2663				continue;
2664			addr_low = er32(RAL(i));
2665			mac_addr[0] = (addr_low & 0xFF);
2666			mac_addr[1] = ((addr_low >> 8) & 0xFF);
2667			mac_addr[2] = ((addr_low >> 16) & 0xFF);
2668			mac_addr[3] = ((addr_low >> 24) & 0xFF);
2669			mac_addr[4] = (addr_high & 0xFF);
2670			mac_addr[5] = ((addr_high >> 8) & 0xFF);
2671
2672			ew32(PCH_RAICC(i), ~ether_crc_le(ETH_ALEN, mac_addr));
2673		}
2674
2675		/* Write Rx addresses to the PHY */
2676		e1000_copy_rx_addrs_to_phy_ich8lan(hw);
2677
2678		/* Enable jumbo frame workaround in the MAC */
2679		mac_reg = er32(FFLT_DBG);
2680		mac_reg &= ~BIT(14);
2681		mac_reg |= (7 << 15);
2682		ew32(FFLT_DBG, mac_reg);
2683
2684		mac_reg = er32(RCTL);
2685		mac_reg |= E1000_RCTL_SECRC;
2686		ew32(RCTL, mac_reg);
2687
2688		ret_val = e1000e_read_kmrn_reg(hw,
2689					       E1000_KMRNCTRLSTA_CTRL_OFFSET,
2690					       &data);
2691		if (ret_val)
2692			return ret_val;
2693		ret_val = e1000e_write_kmrn_reg(hw,
2694						E1000_KMRNCTRLSTA_CTRL_OFFSET,
2695						data | BIT(0));
2696		if (ret_val)
2697			return ret_val;
2698		ret_val = e1000e_read_kmrn_reg(hw,
2699					       E1000_KMRNCTRLSTA_HD_CTRL,
2700					       &data);
2701		if (ret_val)
2702			return ret_val;
2703		data &= ~(0xF << 8);
2704		data |= (0xB << 8);
2705		ret_val = e1000e_write_kmrn_reg(hw,
2706						E1000_KMRNCTRLSTA_HD_CTRL,
2707						data);
2708		if (ret_val)
2709			return ret_val;
2710
2711		/* Enable jumbo frame workaround in the PHY */
2712		e1e_rphy(hw, PHY_REG(769, 23), &data);
2713		data &= ~(0x7F << 5);
2714		data |= (0x37 << 5);
2715		ret_val = e1e_wphy(hw, PHY_REG(769, 23), data);
2716		if (ret_val)
2717			return ret_val;
2718		e1e_rphy(hw, PHY_REG(769, 16), &data);
2719		data &= ~BIT(13);
2720		ret_val = e1e_wphy(hw, PHY_REG(769, 16), data);
2721		if (ret_val)
2722			return ret_val;
2723		e1e_rphy(hw, PHY_REG(776, 20), &data);
2724		data &= ~(0x3FF << 2);
2725		data |= (E1000_TX_PTR_GAP << 2);
2726		ret_val = e1e_wphy(hw, PHY_REG(776, 20), data);
2727		if (ret_val)
2728			return ret_val;
2729		ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0xF100);
2730		if (ret_val)
2731			return ret_val;
2732		e1e_rphy(hw, HV_PM_CTRL, &data);
2733		ret_val = e1e_wphy(hw, HV_PM_CTRL, data | BIT(10));
2734		if (ret_val)
2735			return ret_val;
2736	} else {
2737		/* Write MAC register values back to h/w defaults */
2738		mac_reg = er32(FFLT_DBG);
2739		mac_reg &= ~(0xF << 14);
2740		ew32(FFLT_DBG, mac_reg);
2741
2742		mac_reg = er32(RCTL);
2743		mac_reg &= ~E1000_RCTL_SECRC;
2744		ew32(RCTL, mac_reg);
2745
2746		ret_val = e1000e_read_kmrn_reg(hw,
2747					       E1000_KMRNCTRLSTA_CTRL_OFFSET,
2748					       &data);
2749		if (ret_val)
2750			return ret_val;
2751		ret_val = e1000e_write_kmrn_reg(hw,
2752						E1000_KMRNCTRLSTA_CTRL_OFFSET,
2753						data & ~BIT(0));
2754		if (ret_val)
2755			return ret_val;
2756		ret_val = e1000e_read_kmrn_reg(hw,
2757					       E1000_KMRNCTRLSTA_HD_CTRL,
2758					       &data);
2759		if (ret_val)
2760			return ret_val;
2761		data &= ~(0xF << 8);
2762		data |= (0xB << 8);
2763		ret_val = e1000e_write_kmrn_reg(hw,
2764						E1000_KMRNCTRLSTA_HD_CTRL,
2765						data);
2766		if (ret_val)
2767			return ret_val;
2768
2769		/* Write PHY register values back to h/w defaults */
2770		e1e_rphy(hw, PHY_REG(769, 23), &data);
2771		data &= ~(0x7F << 5);
2772		ret_val = e1e_wphy(hw, PHY_REG(769, 23), data);
2773		if (ret_val)
2774			return ret_val;
2775		e1e_rphy(hw, PHY_REG(769, 16), &data);
2776		data |= BIT(13);
2777		ret_val = e1e_wphy(hw, PHY_REG(769, 16), data);
2778		if (ret_val)
2779			return ret_val;
2780		e1e_rphy(hw, PHY_REG(776, 20), &data);
2781		data &= ~(0x3FF << 2);
2782		data |= (0x8 << 2);
2783		ret_val = e1e_wphy(hw, PHY_REG(776, 20), data);
2784		if (ret_val)
2785			return ret_val;
2786		ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0x7E00);
2787		if (ret_val)
2788			return ret_val;
2789		e1e_rphy(hw, HV_PM_CTRL, &data);
2790		ret_val = e1e_wphy(hw, HV_PM_CTRL, data & ~BIT(10));
2791		if (ret_val)
2792			return ret_val;
2793	}
2794
2795	/* re-enable Rx path after enabling/disabling workaround */
2796	return e1e_wphy(hw, PHY_REG(769, 20), phy_reg & ~BIT(14));
2797}
2798
2799/**
2800 *  e1000_lv_phy_workarounds_ich8lan - apply ich8 specific workarounds
2801 *  @hw: pointer to the HW structure
2802 *
2803 *  A series of PHY workarounds to be done after every PHY reset.
2804 **/
2805static s32 e1000_lv_phy_workarounds_ich8lan(struct e1000_hw *hw)
2806{
2807	s32 ret_val = 0;
2808
2809	if (hw->mac.type != e1000_pch2lan)
2810		return 0;
2811
2812	/* Set MDIO slow mode before any other MDIO access */
2813	ret_val = e1000_set_mdio_slow_mode_hv(hw);
2814	if (ret_val)
2815		return ret_val;
2816
2817	ret_val = hw->phy.ops.acquire(hw);
2818	if (ret_val)
2819		return ret_val;
2820	/* set MSE higher to enable link to stay up when noise is high */
2821	ret_val = e1000_write_emi_reg_locked(hw, I82579_MSE_THRESHOLD, 0x0034);
2822	if (ret_val)
2823		goto release;
2824	/* drop link after 5 times MSE threshold was reached */
2825	ret_val = e1000_write_emi_reg_locked(hw, I82579_MSE_LINK_DOWN, 0x0005);
2826release:
2827	hw->phy.ops.release(hw);
2828
2829	return ret_val;
2830}
2831
2832/**
2833 *  e1000_k1_workaround_lv - K1 Si workaround
2834 *  @hw:   pointer to the HW structure
2835 *
2836 *  Workaround to set the K1 beacon duration for 82579 parts in 10Mbps
2837 *  Disable K1 in 1000Mbps and 100Mbps
2838 **/
2839static s32 e1000_k1_workaround_lv(struct e1000_hw *hw)
2840{
2841	s32 ret_val = 0;
2842	u16 status_reg = 0;
2843
2844	if (hw->mac.type != e1000_pch2lan)
2845		return 0;
2846
2847	/* Set K1 beacon duration based on 10Mbs speed */
2848	ret_val = e1e_rphy(hw, HV_M_STATUS, &status_reg);
2849	if (ret_val)
2850		return ret_val;
2851
2852	if ((status_reg & (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE))
2853	    == (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE)) {
2854		if (status_reg &
2855		    (HV_M_STATUS_SPEED_1000 | HV_M_STATUS_SPEED_100)) {
2856			u16 pm_phy_reg;
2857
2858			/* LV 1G/100 Packet drop issue wa  */
2859			ret_val = e1e_rphy(hw, HV_PM_CTRL, &pm_phy_reg);
2860			if (ret_val)
2861				return ret_val;
2862			pm_phy_reg &= ~HV_PM_CTRL_K1_ENABLE;
2863			ret_val = e1e_wphy(hw, HV_PM_CTRL, pm_phy_reg);
2864			if (ret_val)
2865				return ret_val;
2866		} else {
2867			u32 mac_reg;
2868
2869			mac_reg = er32(FEXTNVM4);
2870			mac_reg &= ~E1000_FEXTNVM4_BEACON_DURATION_MASK;
2871			mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_16USEC;
2872			ew32(FEXTNVM4, mac_reg);
2873		}
2874	}
2875
2876	return ret_val;
2877}
2878
2879/**
2880 *  e1000_gate_hw_phy_config_ich8lan - disable PHY config via hardware
2881 *  @hw:   pointer to the HW structure
2882 *  @gate: boolean set to true to gate, false to ungate
2883 *
2884 *  Gate/ungate the automatic PHY configuration via hardware; perform
2885 *  the configuration via software instead.
2886 **/
2887static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate)
2888{
2889	u32 extcnf_ctrl;
2890
2891	if (hw->mac.type < e1000_pch2lan)
2892		return;
2893
2894	extcnf_ctrl = er32(EXTCNF_CTRL);
2895
2896	if (gate)
2897		extcnf_ctrl |= E1000_EXTCNF_CTRL_GATE_PHY_CFG;
2898	else
2899		extcnf_ctrl &= ~E1000_EXTCNF_CTRL_GATE_PHY_CFG;
2900
2901	ew32(EXTCNF_CTRL, extcnf_ctrl);
2902}
2903
2904/**
2905 *  e1000_lan_init_done_ich8lan - Check for PHY config completion
2906 *  @hw: pointer to the HW structure
2907 *
2908 *  Check the appropriate indication the MAC has finished configuring the
2909 *  PHY after a software reset.
2910 **/
2911static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw)
2912{
2913	u32 data, loop = E1000_ICH8_LAN_INIT_TIMEOUT;
2914
2915	/* Wait for basic configuration completes before proceeding */
2916	do {
2917		data = er32(STATUS);
2918		data &= E1000_STATUS_LAN_INIT_DONE;
2919		usleep_range(100, 200);
2920	} while ((!data) && --loop);
2921
2922	/* If basic configuration is incomplete before the above loop
2923	 * count reaches 0, loading the configuration from NVM will
2924	 * leave the PHY in a bad state possibly resulting in no link.
2925	 */
2926	if (loop == 0)
2927		e_dbg("LAN_INIT_DONE not set, increase timeout\n");
2928
2929	/* Clear the Init Done bit for the next init event */
2930	data = er32(STATUS);
2931	data &= ~E1000_STATUS_LAN_INIT_DONE;
2932	ew32(STATUS, data);
2933}
2934
2935/**
2936 *  e1000_post_phy_reset_ich8lan - Perform steps required after a PHY reset
2937 *  @hw: pointer to the HW structure
2938 **/
2939static s32 e1000_post_phy_reset_ich8lan(struct e1000_hw *hw)
2940{
2941	s32 ret_val = 0;
2942	u16 reg;
2943
2944	if (hw->phy.ops.check_reset_block(hw))
2945		return 0;
2946
2947	/* Allow time for h/w to get to quiescent state after reset */
2948	usleep_range(10000, 11000);
2949
2950	/* Perform any necessary post-reset workarounds */
2951	switch (hw->mac.type) {
2952	case e1000_pchlan:
2953		ret_val = e1000_hv_phy_workarounds_ich8lan(hw);
2954		if (ret_val)
2955			return ret_val;
2956		break;
2957	case e1000_pch2lan:
2958		ret_val = e1000_lv_phy_workarounds_ich8lan(hw);
2959		if (ret_val)
2960			return ret_val;
2961		break;
2962	default:
2963		break;
2964	}
2965
2966	/* Clear the host wakeup bit after lcd reset */
2967	if (hw->mac.type >= e1000_pchlan) {
2968		e1e_rphy(hw, BM_PORT_GEN_CFG, &reg);
2969		reg &= ~BM_WUC_HOST_WU_BIT;
2970		e1e_wphy(hw, BM_PORT_GEN_CFG, reg);
2971	}
2972
2973	/* Configure the LCD with the extended configuration region in NVM */
2974	ret_val = e1000_sw_lcd_config_ich8lan(hw);
2975	if (ret_val)
2976		return ret_val;
2977
2978	/* Configure the LCD with the OEM bits in NVM */
2979	ret_val = e1000_oem_bits_config_ich8lan(hw, true);
2980
2981	if (hw->mac.type == e1000_pch2lan) {
2982		/* Ungate automatic PHY configuration on non-managed 82579 */
2983		if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
2984			usleep_range(10000, 11000);
2985			e1000_gate_hw_phy_config_ich8lan(hw, false);
2986		}
2987
2988		/* Set EEE LPI Update Timer to 200usec */
2989		ret_val = hw->phy.ops.acquire(hw);
2990		if (ret_val)
2991			return ret_val;
2992		ret_val = e1000_write_emi_reg_locked(hw,
2993						     I82579_LPI_UPDATE_TIMER,
2994						     0x1387);
2995		hw->phy.ops.release(hw);
2996	}
2997
2998	return ret_val;
2999}
3000
3001/**
3002 *  e1000_phy_hw_reset_ich8lan - Performs a PHY reset
3003 *  @hw: pointer to the HW structure
3004 *
3005 *  Resets the PHY
3006 *  This is a function pointer entry point called by drivers
3007 *  or other shared routines.
3008 **/
3009static s32 e1000_phy_hw_reset_ich8lan(struct e1000_hw *hw)
3010{
3011	s32 ret_val = 0;
3012
3013	/* Gate automatic PHY configuration by hardware on non-managed 82579 */
3014	if ((hw->mac.type == e1000_pch2lan) &&
3015	    !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
3016		e1000_gate_hw_phy_config_ich8lan(hw, true);
3017
3018	ret_val = e1000e_phy_hw_reset_generic(hw);
3019	if (ret_val)
3020		return ret_val;
3021
3022	return e1000_post_phy_reset_ich8lan(hw);
3023}
3024
3025/**
3026 *  e1000_set_lplu_state_pchlan - Set Low Power Link Up state
3027 *  @hw: pointer to the HW structure
3028 *  @active: true to enable LPLU, false to disable
3029 *
3030 *  Sets the LPLU state according to the active flag.  For PCH, if OEM write
3031 *  bit are disabled in the NVM, writing the LPLU bits in the MAC will not set
3032 *  the phy speed. This function will manually set the LPLU bit and restart
3033 *  auto-neg as hw would do. D3 and D0 LPLU will call the same function
3034 *  since it configures the same bit.
3035 **/
3036static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active)
3037{
3038	s32 ret_val;
3039	u16 oem_reg;
3040
3041	ret_val = e1e_rphy(hw, HV_OEM_BITS, &oem_reg);
3042	if (ret_val)
3043		return ret_val;
3044
3045	if (active)
3046		oem_reg |= HV_OEM_BITS_LPLU;
3047	else
3048		oem_reg &= ~HV_OEM_BITS_LPLU;
3049
3050	if (!hw->phy.ops.check_reset_block(hw))
3051		oem_reg |= HV_OEM_BITS_RESTART_AN;
3052
3053	return e1e_wphy(hw, HV_OEM_BITS, oem_reg);
3054}
3055
3056/**
3057 *  e1000_set_d0_lplu_state_ich8lan - Set Low Power Linkup D0 state
3058 *  @hw: pointer to the HW structure
3059 *  @active: true to enable LPLU, false to disable
3060 *
3061 *  Sets the LPLU D0 state according to the active flag.  When
3062 *  activating LPLU this function also disables smart speed
3063 *  and vice versa.  LPLU will not be activated unless the
3064 *  device autonegotiation advertisement meets standards of
3065 *  either 10 or 10/100 or 10/100/1000 at all duplexes.
3066 *  This is a function pointer entry point only called by
3067 *  PHY setup routines.
3068 **/
3069static s32 e1000_set_d0_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
3070{
3071	struct e1000_phy_info *phy = &hw->phy;
3072	u32 phy_ctrl;
3073	s32 ret_val = 0;
3074	u16 data;
3075
3076	if (phy->type == e1000_phy_ife)
3077		return 0;
3078
3079	phy_ctrl = er32(PHY_CTRL);
3080
3081	if (active) {
3082		phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
3083		ew32(PHY_CTRL, phy_ctrl);
3084
3085		if (phy->type != e1000_phy_igp_3)
3086			return 0;
3087
3088		/* Call gig speed drop workaround on LPLU before accessing
3089		 * any PHY registers
3090		 */
3091		if (hw->mac.type == e1000_ich8lan)
3092			e1000e_gig_downshift_workaround_ich8lan(hw);
3093
3094		/* When LPLU is enabled, we should disable SmartSpeed */
3095		ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
3096		if (ret_val)
3097			return ret_val;
3098		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3099		ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
3100		if (ret_val)
3101			return ret_val;
3102	} else {
3103		phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
3104		ew32(PHY_CTRL, phy_ctrl);
3105
3106		if (phy->type != e1000_phy_igp_3)
3107			return 0;
3108
3109		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
3110		 * during Dx states where the power conservation is most
3111		 * important.  During driver activity we should enable
3112		 * SmartSpeed, so performance is maintained.
3113		 */
3114		if (phy->smart_speed == e1000_smart_speed_on) {
3115			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3116					   &data);
3117			if (ret_val)
3118				return ret_val;
3119
3120			data |= IGP01E1000_PSCFR_SMART_SPEED;
3121			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3122					   data);
3123			if (ret_val)
3124				return ret_val;
3125		} else if (phy->smart_speed == e1000_smart_speed_off) {
3126			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3127					   &data);
3128			if (ret_val)
3129				return ret_val;
3130
3131			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3132			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3133					   data);
3134			if (ret_val)
3135				return ret_val;
3136		}
3137	}
3138
3139	return 0;
3140}
3141
3142/**
3143 *  e1000_set_d3_lplu_state_ich8lan - Set Low Power Linkup D3 state
3144 *  @hw: pointer to the HW structure
3145 *  @active: true to enable LPLU, false to disable
3146 *
3147 *  Sets the LPLU D3 state according to the active flag.  When
3148 *  activating LPLU this function also disables smart speed
3149 *  and vice versa.  LPLU will not be activated unless the
3150 *  device autonegotiation advertisement meets standards of
3151 *  either 10 or 10/100 or 10/100/1000 at all duplexes.
3152 *  This is a function pointer entry point only called by
3153 *  PHY setup routines.
3154 **/
3155static s32 e1000_set_d3_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
3156{
3157	struct e1000_phy_info *phy = &hw->phy;
3158	u32 phy_ctrl;
3159	s32 ret_val = 0;
3160	u16 data;
3161
3162	phy_ctrl = er32(PHY_CTRL);
3163
3164	if (!active) {
3165		phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU;
3166		ew32(PHY_CTRL, phy_ctrl);
3167
3168		if (phy->type != e1000_phy_igp_3)
3169			return 0;
3170
3171		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
3172		 * during Dx states where the power conservation is most
3173		 * important.  During driver activity we should enable
3174		 * SmartSpeed, so performance is maintained.
3175		 */
3176		if (phy->smart_speed == e1000_smart_speed_on) {
3177			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3178					   &data);
3179			if (ret_val)
3180				return ret_val;
3181
3182			data |= IGP01E1000_PSCFR_SMART_SPEED;
3183			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3184					   data);
3185			if (ret_val)
3186				return ret_val;
3187		} else if (phy->smart_speed == e1000_smart_speed_off) {
3188			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3189					   &data);
3190			if (ret_val)
3191				return ret_val;
3192
3193			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3194			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3195					   data);
3196			if (ret_val)
3197				return ret_val;
3198		}
3199	} else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
3200		   (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
3201		   (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
3202		phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU;
3203		ew32(PHY_CTRL, phy_ctrl);
3204
3205		if (phy->type != e1000_phy_igp_3)
3206			return 0;
3207
3208		/* Call gig speed drop workaround on LPLU before accessing
3209		 * any PHY registers
3210		 */
3211		if (hw->mac.type == e1000_ich8lan)
3212			e1000e_gig_downshift_workaround_ich8lan(hw);
3213
3214		/* When LPLU is enabled, we should disable SmartSpeed */
3215		ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
3216		if (ret_val)
3217			return ret_val;
3218
3219		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3220		ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
3221	}
3222
3223	return ret_val;
3224}
3225
3226/**
3227 *  e1000_valid_nvm_bank_detect_ich8lan - finds out the valid bank 0 or 1
3228 *  @hw: pointer to the HW structure
3229 *  @bank:  pointer to the variable that returns the active bank
3230 *
3231 *  Reads signature byte from the NVM using the flash access registers.
3232 *  Word 0x13 bits 15:14 = 10b indicate a valid signature for that bank.
3233 **/
3234static s32 e1000_valid_nvm_bank_detect_ich8lan(struct e1000_hw *hw, u32 *bank)
3235{
3236	u32 eecd;
3237	struct e1000_nvm_info *nvm = &hw->nvm;
3238	u32 bank1_offset = nvm->flash_bank_size * sizeof(u16);
3239	u32 act_offset = E1000_ICH_NVM_SIG_WORD * 2 + 1;
3240	u32 nvm_dword = 0;
3241	u8 sig_byte = 0;
3242	s32 ret_val;
3243
3244	switch (hw->mac.type) {
3245	case e1000_pch_spt:
3246	case e1000_pch_cnp:
3247	case e1000_pch_tgp:
3248	case e1000_pch_adp:
3249	case e1000_pch_mtp:
3250	case e1000_pch_lnp:
3251	case e1000_pch_ptp:
3252	case e1000_pch_nvp:
3253		bank1_offset = nvm->flash_bank_size;
3254		act_offset = E1000_ICH_NVM_SIG_WORD;
3255
3256		/* set bank to 0 in case flash read fails */
3257		*bank = 0;
3258
3259		/* Check bank 0 */
3260		ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset,
3261							 &nvm_dword);
3262		if (ret_val)
3263			return ret_val;
3264		sig_byte = FIELD_GET(0xFF00, nvm_dword);
3265		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3266		    E1000_ICH_NVM_SIG_VALUE) {
3267			*bank = 0;
3268			return 0;
3269		}
3270
3271		/* Check bank 1 */
3272		ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset +
3273							 bank1_offset,
3274							 &nvm_dword);
3275		if (ret_val)
3276			return ret_val;
3277		sig_byte = FIELD_GET(0xFF00, nvm_dword);
3278		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3279		    E1000_ICH_NVM_SIG_VALUE) {
3280			*bank = 1;
3281			return 0;
3282		}
3283
3284		e_dbg("ERROR: No valid NVM bank present\n");
3285		return -E1000_ERR_NVM;
3286	case e1000_ich8lan:
3287	case e1000_ich9lan:
3288		eecd = er32(EECD);
3289		if ((eecd & E1000_EECD_SEC1VAL_VALID_MASK) ==
3290		    E1000_EECD_SEC1VAL_VALID_MASK) {
3291			if (eecd & E1000_EECD_SEC1VAL)
3292				*bank = 1;
3293			else
3294				*bank = 0;
3295
3296			return 0;
3297		}
3298		e_dbg("Unable to determine valid NVM bank via EEC - reading flash signature\n");
3299		fallthrough;
3300	default:
3301		/* set bank to 0 in case flash read fails */
3302		*bank = 0;
3303
3304		/* Check bank 0 */
3305		ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset,
3306							&sig_byte);
3307		if (ret_val)
3308			return ret_val;
3309		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3310		    E1000_ICH_NVM_SIG_VALUE) {
3311			*bank = 0;
3312			return 0;
3313		}
3314
3315		/* Check bank 1 */
3316		ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset +
3317							bank1_offset,
3318							&sig_byte);
3319		if (ret_val)
3320			return ret_val;
3321		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3322		    E1000_ICH_NVM_SIG_VALUE) {
3323			*bank = 1;
3324			return 0;
3325		}
3326
3327		e_dbg("ERROR: No valid NVM bank present\n");
3328		return -E1000_ERR_NVM;
3329	}
3330}
3331
3332/**
3333 *  e1000_read_nvm_spt - NVM access for SPT
3334 *  @hw: pointer to the HW structure
3335 *  @offset: The offset (in bytes) of the word(s) to read.
3336 *  @words: Size of data to read in words.
3337 *  @data: pointer to the word(s) to read at offset.
3338 *
3339 *  Reads a word(s) from the NVM
3340 **/
3341static s32 e1000_read_nvm_spt(struct e1000_hw *hw, u16 offset, u16 words,
3342			      u16 *data)
3343{
3344	struct e1000_nvm_info *nvm = &hw->nvm;
3345	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3346	u32 act_offset;
3347	s32 ret_val = 0;
3348	u32 bank = 0;
3349	u32 dword = 0;
3350	u16 offset_to_read;
3351	u16 i;
3352
3353	if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
3354	    (words == 0)) {
3355		e_dbg("nvm parameter(s) out of bounds\n");
3356		ret_val = -E1000_ERR_NVM;
3357		goto out;
3358	}
3359
3360	nvm->ops.acquire(hw);
3361
3362	ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3363	if (ret_val) {
3364		e_dbg("Could not detect valid bank, assuming bank 0\n");
3365		bank = 0;
3366	}
3367
3368	act_offset = (bank) ? nvm->flash_bank_size : 0;
3369	act_offset += offset;
3370
3371	ret_val = 0;
3372
3373	for (i = 0; i < words; i += 2) {
3374		if (words - i == 1) {
3375			if (dev_spec->shadow_ram[offset + i].modified) {
3376				data[i] =
3377				    dev_spec->shadow_ram[offset + i].value;
3378			} else {
3379				offset_to_read = act_offset + i -
3380				    ((act_offset + i) % 2);
3381				ret_val =
3382				  e1000_read_flash_dword_ich8lan(hw,
3383								 offset_to_read,
3384								 &dword);
3385				if (ret_val)
3386					break;
3387				if ((act_offset + i) % 2 == 0)
3388					data[i] = (u16)(dword & 0xFFFF);
3389				else
3390					data[i] = (u16)((dword >> 16) & 0xFFFF);
3391			}
3392		} else {
3393			offset_to_read = act_offset + i;
3394			if (!(dev_spec->shadow_ram[offset + i].modified) ||
3395			    !(dev_spec->shadow_ram[offset + i + 1].modified)) {
3396				ret_val =
3397				  e1000_read_flash_dword_ich8lan(hw,
3398								 offset_to_read,
3399								 &dword);
3400				if (ret_val)
3401					break;
3402			}
3403			if (dev_spec->shadow_ram[offset + i].modified)
3404				data[i] =
3405				    dev_spec->shadow_ram[offset + i].value;
3406			else
3407				data[i] = (u16)(dword & 0xFFFF);
3408			if (dev_spec->shadow_ram[offset + i].modified)
3409				data[i + 1] =
3410				    dev_spec->shadow_ram[offset + i + 1].value;
3411			else
3412				data[i + 1] = (u16)(dword >> 16 & 0xFFFF);
3413		}
3414	}
3415
3416	nvm->ops.release(hw);
3417
3418out:
3419	if (ret_val)
3420		e_dbg("NVM read error: %d\n", ret_val);
3421
3422	return ret_val;
3423}
3424
3425/**
3426 *  e1000_read_nvm_ich8lan - Read word(s) from the NVM
3427 *  @hw: pointer to the HW structure
3428 *  @offset: The offset (in bytes) of the word(s) to read.
3429 *  @words: Size of data to read in words
3430 *  @data: Pointer to the word(s) to read at offset.
3431 *
3432 *  Reads a word(s) from the NVM using the flash access registers.
3433 **/
3434static s32 e1000_read_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
3435				  u16 *data)
3436{
3437	struct e1000_nvm_info *nvm = &hw->nvm;
3438	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3439	u32 act_offset;
3440	s32 ret_val = 0;
3441	u32 bank = 0;
3442	u16 i, word;
3443
3444	if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
3445	    (words == 0)) {
3446		e_dbg("nvm parameter(s) out of bounds\n");
3447		ret_val = -E1000_ERR_NVM;
3448		goto out;
3449	}
3450
3451	nvm->ops.acquire(hw);
3452
3453	ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3454	if (ret_val) {
3455		e_dbg("Could not detect valid bank, assuming bank 0\n");
3456		bank = 0;
3457	}
3458
3459	act_offset = (bank) ? nvm->flash_bank_size : 0;
3460	act_offset += offset;
3461
3462	ret_val = 0;
3463	for (i = 0; i < words; i++) {
3464		if (dev_spec->shadow_ram[offset + i].modified) {
3465			data[i] = dev_spec->shadow_ram[offset + i].value;
3466		} else {
3467			ret_val = e1000_read_flash_word_ich8lan(hw,
3468								act_offset + i,
3469								&word);
3470			if (ret_val)
3471				break;
3472			data[i] = word;
3473		}
3474	}
3475
3476	nvm->ops.release(hw);
3477
3478out:
3479	if (ret_val)
3480		e_dbg("NVM read error: %d\n", ret_val);
3481
3482	return ret_val;
3483}
3484
3485/**
3486 *  e1000_flash_cycle_init_ich8lan - Initialize flash
3487 *  @hw: pointer to the HW structure
3488 *
3489 *  This function does initial flash setup so that a new read/write/erase cycle
3490 *  can be started.
3491 **/
3492static s32 e1000_flash_cycle_init_ich8lan(struct e1000_hw *hw)
3493{
3494	union ich8_hws_flash_status hsfsts;
3495	s32 ret_val = -E1000_ERR_NVM;
3496
3497	hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3498
3499	/* Check if the flash descriptor is valid */
3500	if (!hsfsts.hsf_status.fldesvalid) {
3501		e_dbg("Flash descriptor invalid.  SW Sequencing must be used.\n");
3502		return -E1000_ERR_NVM;
3503	}
3504
3505	/* Clear FCERR and DAEL in hw status by writing 1 */
3506	hsfsts.hsf_status.flcerr = 1;
3507	hsfsts.hsf_status.dael = 1;
3508	if (hw->mac.type >= e1000_pch_spt)
3509		ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval & 0xFFFF);
3510	else
3511		ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
3512
3513	/* Either we should have a hardware SPI cycle in progress
3514	 * bit to check against, in order to start a new cycle or
3515	 * FDONE bit should be changed in the hardware so that it
3516	 * is 1 after hardware reset, which can then be used as an
3517	 * indication whether a cycle is in progress or has been
3518	 * completed.
3519	 */
3520
3521	if (!hsfsts.hsf_status.flcinprog) {
3522		/* There is no cycle running at present,
3523		 * so we can start a cycle.
3524		 * Begin by setting Flash Cycle Done.
3525		 */
3526		hsfsts.hsf_status.flcdone = 1;
3527		if (hw->mac.type >= e1000_pch_spt)
3528			ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval & 0xFFFF);
3529		else
3530			ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
3531		ret_val = 0;
3532	} else {
3533		s32 i;
3534
3535		/* Otherwise poll for sometime so the current
3536		 * cycle has a chance to end before giving up.
3537		 */
3538		for (i = 0; i < ICH_FLASH_READ_COMMAND_TIMEOUT; i++) {
3539			hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3540			if (!hsfsts.hsf_status.flcinprog) {
3541				ret_val = 0;
3542				break;
3543			}
3544			udelay(1);
3545		}
3546		if (!ret_val) {
3547			/* Successful in waiting for previous cycle to timeout,
3548			 * now set the Flash Cycle Done.
3549			 */
3550			hsfsts.hsf_status.flcdone = 1;
3551			if (hw->mac.type >= e1000_pch_spt)
3552				ew32flash(ICH_FLASH_HSFSTS,
3553					  hsfsts.regval & 0xFFFF);
3554			else
3555				ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
3556		} else {
3557			e_dbg("Flash controller busy, cannot get access\n");
3558		}
3559	}
3560
3561	return ret_val;
3562}
3563
3564/**
3565 *  e1000_flash_cycle_ich8lan - Starts flash cycle (read/write/erase)
3566 *  @hw: pointer to the HW structure
3567 *  @timeout: maximum time to wait for completion
3568 *
3569 *  This function starts a flash cycle and waits for its completion.
3570 **/
3571static s32 e1000_flash_cycle_ich8lan(struct e1000_hw *hw, u32 timeout)
3572{
3573	union ich8_hws_flash_ctrl hsflctl;
3574	union ich8_hws_flash_status hsfsts;
3575	u32 i = 0;
3576
3577	/* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */
3578	if (hw->mac.type >= e1000_pch_spt)
3579		hsflctl.regval = er32flash(ICH_FLASH_HSFSTS) >> 16;
3580	else
3581		hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
3582	hsflctl.hsf_ctrl.flcgo = 1;
3583
3584	if (hw->mac.type >= e1000_pch_spt)
3585		ew32flash(ICH_FLASH_HSFSTS, hsflctl.regval << 16);
3586	else
3587		ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
3588
3589	/* wait till FDONE bit is set to 1 */
3590	do {
3591		hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3592		if (hsfsts.hsf_status.flcdone)
3593			break;
3594		udelay(1);
3595	} while (i++ < timeout);
3596
3597	if (hsfsts.hsf_status.flcdone && !hsfsts.hsf_status.flcerr)
3598		return 0;
3599
3600	return -E1000_ERR_NVM;
3601}
3602
3603/**
3604 *  e1000_read_flash_dword_ich8lan - Read dword from flash
3605 *  @hw: pointer to the HW structure
3606 *  @offset: offset to data location
3607 *  @data: pointer to the location for storing the data
3608 *
3609 *  Reads the flash dword at offset into data.  Offset is converted
3610 *  to bytes before read.
3611 **/
3612static s32 e1000_read_flash_dword_ich8lan(struct e1000_hw *hw, u32 offset,
3613					  u32 *data)
3614{
3615	/* Must convert word offset into bytes. */
3616	offset <<= 1;
3617	return e1000_read_flash_data32_ich8lan(hw, offset, data);
3618}
3619
3620/**
3621 *  e1000_read_flash_word_ich8lan - Read word from flash
3622 *  @hw: pointer to the HW structure
3623 *  @offset: offset to data location
3624 *  @data: pointer to the location for storing the data
3625 *
3626 *  Reads the flash word at offset into data.  Offset is converted
3627 *  to bytes before read.
3628 **/
3629static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
3630					 u16 *data)
3631{
3632	/* Must convert offset into bytes. */
3633	offset <<= 1;
3634
3635	return e1000_read_flash_data_ich8lan(hw, offset, 2, data);
3636}
3637
3638/**
3639 *  e1000_read_flash_byte_ich8lan - Read byte from flash
3640 *  @hw: pointer to the HW structure
3641 *  @offset: The offset of the byte to read.
3642 *  @data: Pointer to a byte to store the value read.
3643 *
3644 *  Reads a single byte from the NVM using the flash access registers.
3645 **/
3646static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
3647					 u8 *data)
3648{
3649	s32 ret_val;
3650	u16 word = 0;
3651
3652	/* In SPT, only 32 bits access is supported,
3653	 * so this function should not be called.
3654	 */
3655	if (hw->mac.type >= e1000_pch_spt)
3656		return -E1000_ERR_NVM;
3657	else
3658		ret_val = e1000_read_flash_data_ich8lan(hw, offset, 1, &word);
3659
3660	if (ret_val)
3661		return ret_val;
3662
3663	*data = (u8)word;
3664
3665	return 0;
3666}
3667
3668/**
3669 *  e1000_read_flash_data_ich8lan - Read byte or word from NVM
3670 *  @hw: pointer to the HW structure
3671 *  @offset: The offset (in bytes) of the byte or word to read.
3672 *  @size: Size of data to read, 1=byte 2=word
3673 *  @data: Pointer to the word to store the value read.
3674 *
3675 *  Reads a byte or word from the NVM using the flash access registers.
3676 **/
3677static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
3678					 u8 size, u16 *data)
3679{
3680	union ich8_hws_flash_status hsfsts;
3681	union ich8_hws_flash_ctrl hsflctl;
3682	u32 flash_linear_addr;
3683	u32 flash_data = 0;
3684	s32 ret_val = -E1000_ERR_NVM;
3685	u8 count = 0;
3686
3687	if (size < 1 || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
3688		return -E1000_ERR_NVM;
3689
3690	flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
3691			     hw->nvm.flash_base_addr);
3692
3693	do {
3694		udelay(1);
3695		/* Steps */
3696		ret_val = e1000_flash_cycle_init_ich8lan(hw);
3697		if (ret_val)
3698			break;
3699
3700		hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
3701		/* 0b/1b corresponds to 1 or 2 byte size, respectively. */
3702		hsflctl.hsf_ctrl.fldbcount = size - 1;
3703		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
3704		ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
3705
3706		ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
3707
3708		ret_val =
3709		    e1000_flash_cycle_ich8lan(hw,
3710					      ICH_FLASH_READ_COMMAND_TIMEOUT);
3711
3712		/* Check if FCERR is set to 1, if set to 1, clear it
3713		 * and try the whole sequence a few more times, else
3714		 * read in (shift in) the Flash Data0, the order is
3715		 * least significant byte first msb to lsb
3716		 */
3717		if (!ret_val) {
3718			flash_data = er32flash(ICH_FLASH_FDATA0);
3719			if (size == 1)
3720				*data = (u8)(flash_data & 0x000000FF);
3721			else if (size == 2)
3722				*data = (u16)(flash_data & 0x0000FFFF);
3723			break;
3724		} else {
3725			/* If we've gotten here, then things are probably
3726			 * completely hosed, but if the error condition is
3727			 * detected, it won't hurt to give it another try...
3728			 * ICH_FLASH_CYCLE_REPEAT_COUNT times.
3729			 */
3730			hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3731			if (hsfsts.hsf_status.flcerr) {
3732				/* Repeat for some time before giving up. */
3733				continue;
3734			} else if (!hsfsts.hsf_status.flcdone) {
3735				e_dbg("Timeout error - flash cycle did not complete.\n");
3736				break;
3737			}
3738		}
3739	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
3740
3741	return ret_val;
3742}
3743
3744/**
3745 *  e1000_read_flash_data32_ich8lan - Read dword from NVM
3746 *  @hw: pointer to the HW structure
3747 *  @offset: The offset (in bytes) of the dword to read.
3748 *  @data: Pointer to the dword to store the value read.
3749 *
3750 *  Reads a byte or word from the NVM using the flash access registers.
3751 **/
3752
3753static s32 e1000_read_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset,
3754					   u32 *data)
3755{
3756	union ich8_hws_flash_status hsfsts;
3757	union ich8_hws_flash_ctrl hsflctl;
3758	u32 flash_linear_addr;
3759	s32 ret_val = -E1000_ERR_NVM;
3760	u8 count = 0;
3761
3762	if (offset > ICH_FLASH_LINEAR_ADDR_MASK || hw->mac.type < e1000_pch_spt)
3763		return -E1000_ERR_NVM;
3764	flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
3765			     hw->nvm.flash_base_addr);
3766
3767	do {
3768		udelay(1);
3769		/* Steps */
3770		ret_val = e1000_flash_cycle_init_ich8lan(hw);
3771		if (ret_val)
3772			break;
3773		/* In SPT, This register is in Lan memory space, not flash.
3774		 * Therefore, only 32 bit access is supported
3775		 */
3776		hsflctl.regval = er32flash(ICH_FLASH_HSFSTS) >> 16;
3777
3778		/* 0b/1b corresponds to 1 or 2 byte size, respectively. */
3779		hsflctl.hsf_ctrl.fldbcount = sizeof(u32) - 1;
3780		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
3781		/* In SPT, This register is in Lan memory space, not flash.
3782		 * Therefore, only 32 bit access is supported
3783		 */
3784		ew32flash(ICH_FLASH_HSFSTS, (u32)hsflctl.regval << 16);
3785		ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
3786
3787		ret_val =
3788		   e1000_flash_cycle_ich8lan(hw,
3789					     ICH_FLASH_READ_COMMAND_TIMEOUT);
3790
3791		/* Check if FCERR is set to 1, if set to 1, clear it
3792		 * and try the whole sequence a few more times, else
3793		 * read in (shift in) the Flash Data0, the order is
3794		 * least significant byte first msb to lsb
3795		 */
3796		if (!ret_val) {
3797			*data = er32flash(ICH_FLASH_FDATA0);
3798			break;
3799		} else {
3800			/* If we've gotten here, then things are probably
3801			 * completely hosed, but if the error condition is
3802			 * detected, it won't hurt to give it another try...
3803			 * ICH_FLASH_CYCLE_REPEAT_COUNT times.
3804			 */
3805			hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3806			if (hsfsts.hsf_status.flcerr) {
3807				/* Repeat for some time before giving up. */
3808				continue;
3809			} else if (!hsfsts.hsf_status.flcdone) {
3810				e_dbg("Timeout error - flash cycle did not complete.\n");
3811				break;
3812			}
3813		}
3814	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
3815
3816	return ret_val;
3817}
3818
3819/**
3820 *  e1000_write_nvm_ich8lan - Write word(s) to the NVM
3821 *  @hw: pointer to the HW structure
3822 *  @offset: The offset (in bytes) of the word(s) to write.
3823 *  @words: Size of data to write in words
3824 *  @data: Pointer to the word(s) to write at offset.
3825 *
3826 *  Writes a byte or word to the NVM using the flash access registers.
3827 **/
3828static s32 e1000_write_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
3829				   u16 *data)
3830{
3831	struct e1000_nvm_info *nvm = &hw->nvm;
3832	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3833	u16 i;
3834
3835	if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
3836	    (words == 0)) {
3837		e_dbg("nvm parameter(s) out of bounds\n");
3838		return -E1000_ERR_NVM;
3839	}
3840
3841	nvm->ops.acquire(hw);
3842
3843	for (i = 0; i < words; i++) {
3844		dev_spec->shadow_ram[offset + i].modified = true;
3845		dev_spec->shadow_ram[offset + i].value = data[i];
3846	}
3847
3848	nvm->ops.release(hw);
3849
3850	return 0;
3851}
3852
3853/**
3854 *  e1000_update_nvm_checksum_spt - Update the checksum for NVM
3855 *  @hw: pointer to the HW structure
3856 *
3857 *  The NVM checksum is updated by calling the generic update_nvm_checksum,
3858 *  which writes the checksum to the shadow ram.  The changes in the shadow
3859 *  ram are then committed to the EEPROM by processing each bank at a time
3860 *  checking for the modified bit and writing only the pending changes.
3861 *  After a successful commit, the shadow ram is cleared and is ready for
3862 *  future writes.
3863 **/
3864static s32 e1000_update_nvm_checksum_spt(struct e1000_hw *hw)
3865{
3866	struct e1000_nvm_info *nvm = &hw->nvm;
3867	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3868	u32 i, act_offset, new_bank_offset, old_bank_offset, bank;
3869	s32 ret_val;
3870	u32 dword = 0;
3871
3872	ret_val = e1000e_update_nvm_checksum_generic(hw);
3873	if (ret_val)
3874		goto out;
3875
3876	if (nvm->type != e1000_nvm_flash_sw)
3877		goto out;
3878
3879	nvm->ops.acquire(hw);
3880
3881	/* We're writing to the opposite bank so if we're on bank 1,
3882	 * write to bank 0 etc.  We also need to erase the segment that
3883	 * is going to be written
3884	 */
3885	ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3886	if (ret_val) {
3887		e_dbg("Could not detect valid bank, assuming bank 0\n");
3888		bank = 0;
3889	}
3890
3891	if (bank == 0) {
3892		new_bank_offset = nvm->flash_bank_size;
3893		old_bank_offset = 0;
3894		ret_val = e1000_erase_flash_bank_ich8lan(hw, 1);
3895		if (ret_val)
3896			goto release;
3897	} else {
3898		old_bank_offset = nvm->flash_bank_size;
3899		new_bank_offset = 0;
3900		ret_val = e1000_erase_flash_bank_ich8lan(hw, 0);
3901		if (ret_val)
3902			goto release;
3903	}
3904	for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i += 2) {
3905		/* Determine whether to write the value stored
3906		 * in the other NVM bank or a modified value stored
3907		 * in the shadow RAM
3908		 */
3909		ret_val = e1000_read_flash_dword_ich8lan(hw,
3910							 i + old_bank_offset,
3911							 &dword);
3912
3913		if (dev_spec->shadow_ram[i].modified) {
3914			dword &= 0xffff0000;
3915			dword |= (dev_spec->shadow_ram[i].value & 0xffff);
3916		}
3917		if (dev_spec->shadow_ram[i + 1].modified) {
3918			dword &= 0x0000ffff;
3919			dword |= ((dev_spec->shadow_ram[i + 1].value & 0xffff)
3920				  << 16);
3921		}
3922		if (ret_val)
3923			break;
3924
3925		/* If the word is 0x13, then make sure the signature bits
3926		 * (15:14) are 11b until the commit has completed.
3927		 * This will allow us to write 10b which indicates the
3928		 * signature is valid.  We want to do this after the write
3929		 * has completed so that we don't mark the segment valid
3930		 * while the write is still in progress
3931		 */
3932		if (i == E1000_ICH_NVM_SIG_WORD - 1)
3933			dword |= E1000_ICH_NVM_SIG_MASK << 16;
3934
3935		/* Convert offset to bytes. */
3936		act_offset = (i + new_bank_offset) << 1;
3937
3938		usleep_range(100, 200);
3939
3940		/* Write the data to the new bank. Offset in words */
3941		act_offset = i + new_bank_offset;
3942		ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset,
3943								dword);
3944		if (ret_val)
3945			break;
3946	}
3947
3948	/* Don't bother writing the segment valid bits if sector
3949	 * programming failed.
3950	 */
3951	if (ret_val) {
3952		/* Possibly read-only, see e1000e_write_protect_nvm_ich8lan() */
3953		e_dbg("Flash commit failed.\n");
3954		goto release;
3955	}
3956
3957	/* Finally validate the new segment by setting bit 15:14
3958	 * to 10b in word 0x13 , this can be done without an
3959	 * erase as well since these bits are 11 to start with
3960	 * and we need to change bit 14 to 0b
3961	 */
3962	act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD;
3963
3964	/*offset in words but we read dword */
3965	--act_offset;
3966	ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset, &dword);
3967
3968	if (ret_val)
3969		goto release;
3970
3971	dword &= 0xBFFFFFFF;
3972	ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset, dword);
3973
3974	if (ret_val)
3975		goto release;
3976
3977	/* offset in words but we read dword */
3978	act_offset = old_bank_offset + E1000_ICH_NVM_SIG_WORD - 1;
3979	ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset, &dword);
3980
3981	if (ret_val)
3982		goto release;
3983
3984	dword &= 0x00FFFFFF;
3985	ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset, dword);
3986
3987	if (ret_val)
3988		goto release;
3989
3990	/* Great!  Everything worked, we can now clear the cached entries. */
3991	for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
3992		dev_spec->shadow_ram[i].modified = false;
3993		dev_spec->shadow_ram[i].value = 0xFFFF;
3994	}
3995
3996release:
3997	nvm->ops.release(hw);
3998
3999	/* Reload the EEPROM, or else modifications will not appear
4000	 * until after the next adapter reset.
4001	 */
4002	if (!ret_val) {
4003		nvm->ops.reload(hw);
4004		usleep_range(10000, 11000);
4005	}
4006
4007out:
4008	if (ret_val)
4009		e_dbg("NVM update error: %d\n", ret_val);
4010
4011	return ret_val;
4012}
4013
4014/**
4015 *  e1000_update_nvm_checksum_ich8lan - Update the checksum for NVM
4016 *  @hw: pointer to the HW structure
4017 *
4018 *  The NVM checksum is updated by calling the generic update_nvm_checksum,
4019 *  which writes the checksum to the shadow ram.  The changes in the shadow
4020 *  ram are then committed to the EEPROM by processing each bank at a time
4021 *  checking for the modified bit and writing only the pending changes.
4022 *  After a successful commit, the shadow ram is cleared and is ready for
4023 *  future writes.
4024 **/
4025static s32 e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw)
4026{
4027	struct e1000_nvm_info *nvm = &hw->nvm;
4028	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
4029	u32 i, act_offset, new_bank_offset, old_bank_offset, bank;
4030	s32 ret_val;
4031	u16 data = 0;
4032
4033	ret_val = e1000e_update_nvm_checksum_generic(hw);
4034	if (ret_val)
4035		goto out;
4036
4037	if (nvm->type != e1000_nvm_flash_sw)
4038		goto out;
4039
4040	nvm->ops.acquire(hw);
4041
4042	/* We're writing to the opposite bank so if we're on bank 1,
4043	 * write to bank 0 etc.  We also need to erase the segment that
4044	 * is going to be written
4045	 */
4046	ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
4047	if (ret_val) {
4048		e_dbg("Could not detect valid bank, assuming bank 0\n");
4049		bank = 0;
4050	}
4051
4052	if (bank == 0) {
4053		new_bank_offset = nvm->flash_bank_size;
4054		old_bank_offset = 0;
4055		ret_val = e1000_erase_flash_bank_ich8lan(hw, 1);
4056		if (ret_val)
4057			goto release;
4058	} else {
4059		old_bank_offset = nvm->flash_bank_size;
4060		new_bank_offset = 0;
4061		ret_val = e1000_erase_flash_bank_ich8lan(hw, 0);
4062		if (ret_val)
4063			goto release;
4064	}
4065	for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
4066		if (dev_spec->shadow_ram[i].modified) {
4067			data = dev_spec->shadow_ram[i].value;
4068		} else {
4069			ret_val = e1000_read_flash_word_ich8lan(hw, i +
4070								old_bank_offset,
4071								&data);
4072			if (ret_val)
4073				break;
4074		}
4075
4076		/* If the word is 0x13, then make sure the signature bits
4077		 * (15:14) are 11b until the commit has completed.
4078		 * This will allow us to write 10b which indicates the
4079		 * signature is valid.  We want to do this after the write
4080		 * has completed so that we don't mark the segment valid
4081		 * while the write is still in progress
4082		 */
4083		if (i == E1000_ICH_NVM_SIG_WORD)
4084			data |= E1000_ICH_NVM_SIG_MASK;
4085
4086		/* Convert offset to bytes. */
4087		act_offset = (i + new_bank_offset) << 1;
4088
4089		usleep_range(100, 200);
4090		/* Write the bytes to the new bank. */
4091		ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
4092							       act_offset,
4093							       (u8)data);
4094		if (ret_val)
4095			break;
4096
4097		usleep_range(100, 200);
4098		ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
4099							       act_offset + 1,
4100							       (u8)(data >> 8));
4101		if (ret_val)
4102			break;
4103	}
4104
4105	/* Don't bother writing the segment valid bits if sector
4106	 * programming failed.
4107	 */
4108	if (ret_val) {
4109		/* Possibly read-only, see e1000e_write_protect_nvm_ich8lan() */
4110		e_dbg("Flash commit failed.\n");
4111		goto release;
4112	}
4113
4114	/* Finally validate the new segment by setting bit 15:14
4115	 * to 10b in word 0x13 , this can be done without an
4116	 * erase as well since these bits are 11 to start with
4117	 * and we need to change bit 14 to 0b
4118	 */
4119	act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD;
4120	ret_val = e1000_read_flash_word_ich8lan(hw, act_offset, &data);
4121	if (ret_val)
4122		goto release;
4123
4124	data &= 0xBFFF;
4125	ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
4126						       act_offset * 2 + 1,
4127						       (u8)(data >> 8));
4128	if (ret_val)
4129		goto release;
4130
4131	/* And invalidate the previously valid segment by setting
4132	 * its signature word (0x13) high_byte to 0b. This can be
4133	 * done without an erase because flash erase sets all bits
4134	 * to 1's. We can write 1's to 0's without an erase
4135	 */
4136	act_offset = (old_bank_offset + E1000_ICH_NVM_SIG_WORD) * 2 + 1;
4137	ret_val = e1000_retry_write_flash_byte_ich8lan(hw, act_offset, 0);
4138	if (ret_val)
4139		goto release;
4140
4141	/* Great!  Everything worked, we can now clear the cached entries. */
4142	for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
4143		dev_spec->shadow_ram[i].modified = false;
4144		dev_spec->shadow_ram[i].value = 0xFFFF;
4145	}
4146
4147release:
4148	nvm->ops.release(hw);
4149
4150	/* Reload the EEPROM, or else modifications will not appear
4151	 * until after the next adapter reset.
4152	 */
4153	if (!ret_val) {
4154		nvm->ops.reload(hw);
4155		usleep_range(10000, 11000);
4156	}
4157
4158out:
4159	if (ret_val)
4160		e_dbg("NVM update error: %d\n", ret_val);
4161
4162	return ret_val;
4163}
4164
4165/**
4166 *  e1000_validate_nvm_checksum_ich8lan - Validate EEPROM checksum
4167 *  @hw: pointer to the HW structure
4168 *
4169 *  Check to see if checksum needs to be fixed by reading bit 6 in word 0x19.
4170 *  If the bit is 0, that the EEPROM had been modified, but the checksum was not
4171 *  calculated, in which case we need to calculate the checksum and set bit 6.
4172 **/
4173static s32 e1000_validate_nvm_checksum_ich8lan(struct e1000_hw *hw)
4174{
4175	s32 ret_val;
4176	u16 data;
4177	u16 word;
4178	u16 valid_csum_mask;
4179
4180	/* Read NVM and check Invalid Image CSUM bit.  If this bit is 0,
4181	 * the checksum needs to be fixed.  This bit is an indication that
4182	 * the NVM was prepared by OEM software and did not calculate
4183	 * the checksum...a likely scenario.
4184	 */
4185	switch (hw->mac.type) {
4186	case e1000_pch_lpt:
4187	case e1000_pch_spt:
4188	case e1000_pch_cnp:
4189	case e1000_pch_tgp:
4190	case e1000_pch_adp:
4191	case e1000_pch_mtp:
4192	case e1000_pch_lnp:
4193	case e1000_pch_ptp:
4194	case e1000_pch_nvp:
4195		word = NVM_COMPAT;
4196		valid_csum_mask = NVM_COMPAT_VALID_CSUM;
4197		break;
4198	default:
4199		word = NVM_FUTURE_INIT_WORD1;
4200		valid_csum_mask = NVM_FUTURE_INIT_WORD1_VALID_CSUM;
4201		break;
4202	}
4203
4204	ret_val = e1000_read_nvm(hw, word, 1, &data);
4205	if (ret_val)
4206		return ret_val;
4207
4208	if (!(data & valid_csum_mask)) {
4209		e_dbg("NVM Checksum valid bit not set\n");
4210
4211		if (hw->mac.type < e1000_pch_tgp) {
4212			data |= valid_csum_mask;
4213			ret_val = e1000_write_nvm(hw, word, 1, &data);
4214			if (ret_val)
4215				return ret_val;
4216			ret_val = e1000e_update_nvm_checksum(hw);
4217			if (ret_val)
4218				return ret_val;
4219		}
4220	}
4221
4222	return e1000e_validate_nvm_checksum_generic(hw);
4223}
4224
4225/**
4226 *  e1000e_write_protect_nvm_ich8lan - Make the NVM read-only
4227 *  @hw: pointer to the HW structure
4228 *
4229 *  To prevent malicious write/erase of the NVM, set it to be read-only
4230 *  so that the hardware ignores all write/erase cycles of the NVM via
4231 *  the flash control registers.  The shadow-ram copy of the NVM will
4232 *  still be updated, however any updates to this copy will not stick
4233 *  across driver reloads.
4234 **/
4235void e1000e_write_protect_nvm_ich8lan(struct e1000_hw *hw)
4236{
4237	struct e1000_nvm_info *nvm = &hw->nvm;
4238	union ich8_flash_protected_range pr0;
4239	union ich8_hws_flash_status hsfsts;
4240	u32 gfpreg;
4241
4242	nvm->ops.acquire(hw);
4243
4244	gfpreg = er32flash(ICH_FLASH_GFPREG);
4245
4246	/* Write-protect GbE Sector of NVM */
4247	pr0.regval = er32flash(ICH_FLASH_PR0);
4248	pr0.range.base = gfpreg & FLASH_GFPREG_BASE_MASK;
4249	pr0.range.limit = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK);
4250	pr0.range.wpe = true;
4251	ew32flash(ICH_FLASH_PR0, pr0.regval);
4252
4253	/* Lock down a subset of GbE Flash Control Registers, e.g.
4254	 * PR0 to prevent the write-protection from being lifted.
4255	 * Once FLOCKDN is set, the registers protected by it cannot
4256	 * be written until FLOCKDN is cleared by a hardware reset.
4257	 */
4258	hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4259	hsfsts.hsf_status.flockdn = true;
4260	ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval);
4261
4262	nvm->ops.release(hw);
4263}
4264
4265/**
4266 *  e1000_write_flash_data_ich8lan - Writes bytes to the NVM
4267 *  @hw: pointer to the HW structure
4268 *  @offset: The offset (in bytes) of the byte/word to read.
4269 *  @size: Size of data to read, 1=byte 2=word
4270 *  @data: The byte(s) to write to the NVM.
4271 *
4272 *  Writes one/two bytes to the NVM using the flash access registers.
4273 **/
4274static s32 e1000_write_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
4275					  u8 size, u16 data)
4276{
4277	union ich8_hws_flash_status hsfsts;
4278	union ich8_hws_flash_ctrl hsflctl;
4279	u32 flash_linear_addr;
4280	u32 flash_data = 0;
4281	s32 ret_val;
4282	u8 count = 0;
4283
4284	if (hw->mac.type >= e1000_pch_spt) {
4285		if (size != 4 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
4286			return -E1000_ERR_NVM;
4287	} else {
4288		if (size < 1 || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
4289			return -E1000_ERR_NVM;
4290	}
4291
4292	flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
4293			     hw->nvm.flash_base_addr);
4294
4295	do {
4296		udelay(1);
4297		/* Steps */
4298		ret_val = e1000_flash_cycle_init_ich8lan(hw);
4299		if (ret_val)
4300			break;
4301		/* In SPT, This register is in Lan memory space, not
4302		 * flash.  Therefore, only 32 bit access is supported
4303		 */
4304		if (hw->mac.type >= e1000_pch_spt)
4305			hsflctl.regval = er32flash(ICH_FLASH_HSFSTS) >> 16;
4306		else
4307			hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
4308
4309		/* 0b/1b corresponds to 1 or 2 byte size, respectively. */
4310		hsflctl.hsf_ctrl.fldbcount = size - 1;
4311		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
4312		/* In SPT, This register is in Lan memory space,
4313		 * not flash.  Therefore, only 32 bit access is
4314		 * supported
4315		 */
4316		if (hw->mac.type >= e1000_pch_spt)
4317			ew32flash(ICH_FLASH_HSFSTS, hsflctl.regval << 16);
4318		else
4319			ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
4320
4321		ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
4322
4323		if (size == 1)
4324			flash_data = (u32)data & 0x00FF;
4325		else
4326			flash_data = (u32)data;
4327
4328		ew32flash(ICH_FLASH_FDATA0, flash_data);
4329
4330		/* check if FCERR is set to 1 , if set to 1, clear it
4331		 * and try the whole sequence a few more times else done
4332		 */
4333		ret_val =
4334		    e1000_flash_cycle_ich8lan(hw,
4335					      ICH_FLASH_WRITE_COMMAND_TIMEOUT);
4336		if (!ret_val)
4337			break;
4338
4339		/* If we're here, then things are most likely
4340		 * completely hosed, but if the error condition
4341		 * is detected, it won't hurt to give it another
4342		 * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
4343		 */
4344		hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4345		if (hsfsts.hsf_status.flcerr)
4346			/* Repeat for some time before giving up. */
4347			continue;
4348		if (!hsfsts.hsf_status.flcdone) {
4349			e_dbg("Timeout error - flash cycle did not complete.\n");
4350			break;
4351		}
4352	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
4353
4354	return ret_val;
4355}
4356
4357/**
4358*  e1000_write_flash_data32_ich8lan - Writes 4 bytes to the NVM
4359*  @hw: pointer to the HW structure
4360*  @offset: The offset (in bytes) of the dwords to read.
4361*  @data: The 4 bytes to write to the NVM.
4362*
4363*  Writes one/two/four bytes to the NVM using the flash access registers.
4364**/
4365static s32 e1000_write_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset,
4366					    u32 data)
4367{
4368	union ich8_hws_flash_status hsfsts;
4369	union ich8_hws_flash_ctrl hsflctl;
4370	u32 flash_linear_addr;
4371	s32 ret_val;
4372	u8 count = 0;
4373
4374	if (hw->mac.type >= e1000_pch_spt) {
4375		if (offset > ICH_FLASH_LINEAR_ADDR_MASK)
4376			return -E1000_ERR_NVM;
4377	}
4378	flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
4379			     hw->nvm.flash_base_addr);
4380	do {
4381		udelay(1);
4382		/* Steps */
4383		ret_val = e1000_flash_cycle_init_ich8lan(hw);
4384		if (ret_val)
4385			break;
4386
4387		/* In SPT, This register is in Lan memory space, not
4388		 * flash.  Therefore, only 32 bit access is supported
4389		 */
4390		if (hw->mac.type >= e1000_pch_spt)
4391			hsflctl.regval = er32flash(ICH_FLASH_HSFSTS)
4392			    >> 16;
4393		else
4394			hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
4395
4396		hsflctl.hsf_ctrl.fldbcount = sizeof(u32) - 1;
4397		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
4398
4399		/* In SPT, This register is in Lan memory space,
4400		 * not flash.  Therefore, only 32 bit access is
4401		 * supported
4402		 */
4403		if (hw->mac.type >= e1000_pch_spt)
4404			ew32flash(ICH_FLASH_HSFSTS, hsflctl.regval << 16);
4405		else
4406			ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
4407
4408		ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
4409
4410		ew32flash(ICH_FLASH_FDATA0, data);
4411
4412		/* check if FCERR is set to 1 , if set to 1, clear it
4413		 * and try the whole sequence a few more times else done
4414		 */
4415		ret_val =
4416		   e1000_flash_cycle_ich8lan(hw,
4417					     ICH_FLASH_WRITE_COMMAND_TIMEOUT);
4418
4419		if (!ret_val)
4420			break;
4421
4422		/* If we're here, then things are most likely
4423		 * completely hosed, but if the error condition
4424		 * is detected, it won't hurt to give it another
4425		 * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
4426		 */
4427		hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4428
4429		if (hsfsts.hsf_status.flcerr)
4430			/* Repeat for some time before giving up. */
4431			continue;
4432		if (!hsfsts.hsf_status.flcdone) {
4433			e_dbg("Timeout error - flash cycle did not complete.\n");
4434			break;
4435		}
4436	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
4437
4438	return ret_val;
4439}
4440
4441/**
4442 *  e1000_write_flash_byte_ich8lan - Write a single byte to NVM
4443 *  @hw: pointer to the HW structure
4444 *  @offset: The index of the byte to read.
4445 *  @data: The byte to write to the NVM.
4446 *
4447 *  Writes a single byte to the NVM using the flash access registers.
4448 **/
4449static s32 e1000_write_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
4450					  u8 data)
4451{
4452	u16 word = (u16)data;
4453
4454	return e1000_write_flash_data_ich8lan(hw, offset, 1, word);
4455}
4456
4457/**
4458*  e1000_retry_write_flash_dword_ich8lan - Writes a dword to NVM
4459*  @hw: pointer to the HW structure
4460*  @offset: The offset of the word to write.
4461*  @dword: The dword to write to the NVM.
4462*
4463*  Writes a single dword to the NVM using the flash access registers.
4464*  Goes through a retry algorithm before giving up.
4465**/
4466static s32 e1000_retry_write_flash_dword_ich8lan(struct e1000_hw *hw,
4467						 u32 offset, u32 dword)
4468{
4469	s32 ret_val;
4470	u16 program_retries;
4471
4472	/* Must convert word offset into bytes. */
4473	offset <<= 1;
4474	ret_val = e1000_write_flash_data32_ich8lan(hw, offset, dword);
4475
4476	if (!ret_val)
4477		return ret_val;
4478	for (program_retries = 0; program_retries < 100; program_retries++) {
4479		e_dbg("Retrying Byte %8.8X at offset %u\n", dword, offset);
4480		usleep_range(100, 200);
4481		ret_val = e1000_write_flash_data32_ich8lan(hw, offset, dword);
4482		if (!ret_val)
4483			break;
4484	}
4485	if (program_retries == 100)
4486		return -E1000_ERR_NVM;
4487
4488	return 0;
4489}
4490
4491/**
4492 *  e1000_retry_write_flash_byte_ich8lan - Writes a single byte to NVM
4493 *  @hw: pointer to the HW structure
4494 *  @offset: The offset of the byte to write.
4495 *  @byte: The byte to write to the NVM.
4496 *
4497 *  Writes a single byte to the NVM using the flash access registers.
4498 *  Goes through a retry algorithm before giving up.
4499 **/
4500static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
4501						u32 offset, u8 byte)
4502{
4503	s32 ret_val;
4504	u16 program_retries;
4505
4506	ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
4507	if (!ret_val)
4508		return ret_val;
4509
4510	for (program_retries = 0; program_retries < 100; program_retries++) {
4511		e_dbg("Retrying Byte %2.2X at offset %u\n", byte, offset);
4512		usleep_range(100, 200);
4513		ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
4514		if (!ret_val)
4515			break;
4516	}
4517	if (program_retries == 100)
4518		return -E1000_ERR_NVM;
4519
4520	return 0;
4521}
4522
4523/**
4524 *  e1000_erase_flash_bank_ich8lan - Erase a bank (4k) from NVM
4525 *  @hw: pointer to the HW structure
4526 *  @bank: 0 for first bank, 1 for second bank, etc.
4527 *
4528 *  Erases the bank specified. Each bank is a 4k block. Banks are 0 based.
4529 *  bank N is 4096 * N + flash_reg_addr.
4530 **/
4531static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank)
4532{
4533	struct e1000_nvm_info *nvm = &hw->nvm;
4534	union ich8_hws_flash_status hsfsts;
4535	union ich8_hws_flash_ctrl hsflctl;
4536	u32 flash_linear_addr;
4537	/* bank size is in 16bit words - adjust to bytes */
4538	u32 flash_bank_size = nvm->flash_bank_size * 2;
4539	s32 ret_val;
4540	s32 count = 0;
4541	s32 j, iteration, sector_size;
4542
4543	hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4544
4545	/* Determine HW Sector size: Read BERASE bits of hw flash status
4546	 * register
4547	 * 00: The Hw sector is 256 bytes, hence we need to erase 16
4548	 *     consecutive sectors.  The start index for the nth Hw sector
4549	 *     can be calculated as = bank * 4096 + n * 256
4550	 * 01: The Hw sector is 4K bytes, hence we need to erase 1 sector.
4551	 *     The start index for the nth Hw sector can be calculated
4552	 *     as = bank * 4096
4553	 * 10: The Hw sector is 8K bytes, nth sector = bank * 8192
4554	 *     (ich9 only, otherwise error condition)
4555	 * 11: The Hw sector is 64K bytes, nth sector = bank * 65536
4556	 */
4557	switch (hsfsts.hsf_status.berasesz) {
4558	case 0:
4559		/* Hw sector size 256 */
4560		sector_size = ICH_FLASH_SEG_SIZE_256;
4561		iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_256;
4562		break;
4563	case 1:
4564		sector_size = ICH_FLASH_SEG_SIZE_4K;
4565		iteration = 1;
4566		break;
4567	case 2:
4568		sector_size = ICH_FLASH_SEG_SIZE_8K;
4569		iteration = 1;
4570		break;
4571	case 3:
4572		sector_size = ICH_FLASH_SEG_SIZE_64K;
4573		iteration = 1;
4574		break;
4575	default:
4576		return -E1000_ERR_NVM;
4577	}
4578
4579	/* Start with the base address, then add the sector offset. */
4580	flash_linear_addr = hw->nvm.flash_base_addr;
4581	flash_linear_addr += (bank) ? flash_bank_size : 0;
4582
4583	for (j = 0; j < iteration; j++) {
4584		do {
4585			u32 timeout = ICH_FLASH_ERASE_COMMAND_TIMEOUT;
4586
4587			/* Steps */
4588			ret_val = e1000_flash_cycle_init_ich8lan(hw);
4589			if (ret_val)
4590				return ret_val;
4591
4592			/* Write a value 11 (block Erase) in Flash
4593			 * Cycle field in hw flash control
4594			 */
4595			if (hw->mac.type >= e1000_pch_spt)
4596				hsflctl.regval =
4597				    er32flash(ICH_FLASH_HSFSTS) >> 16;
4598			else
4599				hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
4600
4601			hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_ERASE;
4602			if (hw->mac.type >= e1000_pch_spt)
4603				ew32flash(ICH_FLASH_HSFSTS,
4604					  hsflctl.regval << 16);
4605			else
4606				ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
4607
4608			/* Write the last 24 bits of an index within the
4609			 * block into Flash Linear address field in Flash
4610			 * Address.
4611			 */
4612			flash_linear_addr += (j * sector_size);
4613			ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
4614
4615			ret_val = e1000_flash_cycle_ich8lan(hw, timeout);
4616			if (!ret_val)
4617				break;
4618
4619			/* Check if FCERR is set to 1.  If 1,
4620			 * clear it and try the whole sequence
4621			 * a few more times else Done
4622			 */
4623			hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4624			if (hsfsts.hsf_status.flcerr)
4625				/* repeat for some time before giving up */
4626				continue;
4627			else if (!hsfsts.hsf_status.flcdone)
4628				return ret_val;
4629		} while (++count < ICH_FLASH_CYCLE_REPEAT_COUNT);
4630	}
4631
4632	return 0;
4633}
4634
4635/**
4636 *  e1000_valid_led_default_ich8lan - Set the default LED settings
4637 *  @hw: pointer to the HW structure
4638 *  @data: Pointer to the LED settings
4639 *
4640 *  Reads the LED default settings from the NVM to data.  If the NVM LED
4641 *  settings is all 0's or F's, set the LED default to a valid LED default
4642 *  setting.
4643 **/
4644static s32 e1000_valid_led_default_ich8lan(struct e1000_hw *hw, u16 *data)
4645{
4646	s32 ret_val;
4647
4648	ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
4649	if (ret_val) {
4650		e_dbg("NVM Read Error\n");
4651		return ret_val;
4652	}
4653
4654	if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF)
4655		*data = ID_LED_DEFAULT_ICH8LAN;
4656
4657	return 0;
4658}
4659
4660/**
4661 *  e1000_id_led_init_pchlan - store LED configurations
4662 *  @hw: pointer to the HW structure
4663 *
4664 *  PCH does not control LEDs via the LEDCTL register, rather it uses
4665 *  the PHY LED configuration register.
4666 *
4667 *  PCH also does not have an "always on" or "always off" mode which
4668 *  complicates the ID feature.  Instead of using the "on" mode to indicate
4669 *  in ledctl_mode2 the LEDs to use for ID (see e1000e_id_led_init_generic()),
4670 *  use "link_up" mode.  The LEDs will still ID on request if there is no
4671 *  link based on logic in e1000_led_[on|off]_pchlan().
4672 **/
4673static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw)
4674{
4675	struct e1000_mac_info *mac = &hw->mac;
4676	s32 ret_val;
4677	const u32 ledctl_on = E1000_LEDCTL_MODE_LINK_UP;
4678	const u32 ledctl_off = E1000_LEDCTL_MODE_LINK_UP | E1000_PHY_LED0_IVRT;
4679	u16 data, i, temp, shift;
4680
4681	/* Get default ID LED modes */
4682	ret_val = hw->nvm.ops.valid_led_default(hw, &data);
4683	if (ret_val)
4684		return ret_val;
4685
4686	mac->ledctl_default = er32(LEDCTL);
4687	mac->ledctl_mode1 = mac->ledctl_default;
4688	mac->ledctl_mode2 = mac->ledctl_default;
4689
4690	for (i = 0; i < 4; i++) {
4691		temp = (data >> (i << 2)) & E1000_LEDCTL_LED0_MODE_MASK;
4692		shift = (i * 5);
4693		switch (temp) {
4694		case ID_LED_ON1_DEF2:
4695		case ID_LED_ON1_ON2:
4696		case ID_LED_ON1_OFF2:
4697			mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
4698			mac->ledctl_mode1 |= (ledctl_on << shift);
4699			break;
4700		case ID_LED_OFF1_DEF2:
4701		case ID_LED_OFF1_ON2:
4702		case ID_LED_OFF1_OFF2:
4703			mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
4704			mac->ledctl_mode1 |= (ledctl_off << shift);
4705			break;
4706		default:
4707			/* Do nothing */
4708			break;
4709		}
4710		switch (temp) {
4711		case ID_LED_DEF1_ON2:
4712		case ID_LED_ON1_ON2:
4713		case ID_LED_OFF1_ON2:
4714			mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
4715			mac->ledctl_mode2 |= (ledctl_on << shift);
4716			break;
4717		case ID_LED_DEF1_OFF2:
4718		case ID_LED_ON1_OFF2:
4719		case ID_LED_OFF1_OFF2:
4720			mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
4721			mac->ledctl_mode2 |= (ledctl_off << shift);
4722			break;
4723		default:
4724			/* Do nothing */
4725			break;
4726		}
4727	}
4728
4729	return 0;
4730}
4731
4732/**
4733 *  e1000_get_bus_info_ich8lan - Get/Set the bus type and width
4734 *  @hw: pointer to the HW structure
4735 *
4736 *  ICH8 use the PCI Express bus, but does not contain a PCI Express Capability
4737 *  register, so the bus width is hard coded.
4738 **/
4739static s32 e1000_get_bus_info_ich8lan(struct e1000_hw *hw)
4740{
4741	struct e1000_bus_info *bus = &hw->bus;
4742	s32 ret_val;
4743
4744	ret_val = e1000e_get_bus_info_pcie(hw);
4745
4746	/* ICH devices are "PCI Express"-ish.  They have
4747	 * a configuration space, but do not contain
4748	 * PCI Express Capability registers, so bus width
4749	 * must be hardcoded.
4750	 */
4751	if (bus->width == e1000_bus_width_unknown)
4752		bus->width = e1000_bus_width_pcie_x1;
4753
4754	return ret_val;
4755}
4756
4757/**
4758 *  e1000_reset_hw_ich8lan - Reset the hardware
4759 *  @hw: pointer to the HW structure
4760 *
4761 *  Does a full reset of the hardware which includes a reset of the PHY and
4762 *  MAC.
4763 **/
4764static s32 e1000_reset_hw_ich8lan(struct e1000_hw *hw)
4765{
4766	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
4767	u16 kum_cfg;
4768	u32 ctrl, reg;
4769	s32 ret_val;
4770
4771	/* Prevent the PCI-E bus from sticking if there is no TLP connection
4772	 * on the last TLP read/write transaction when MAC is reset.
4773	 */
4774	ret_val = e1000e_disable_pcie_master(hw);
4775	if (ret_val)
4776		e_dbg("PCI-E Master disable polling has failed.\n");
4777
4778	e_dbg("Masking off all interrupts\n");
4779	ew32(IMC, 0xffffffff);
4780
4781	/* Disable the Transmit and Receive units.  Then delay to allow
4782	 * any pending transactions to complete before we hit the MAC
4783	 * with the global reset.
4784	 */
4785	ew32(RCTL, 0);
4786	ew32(TCTL, E1000_TCTL_PSP);
4787	e1e_flush();
4788
4789	usleep_range(10000, 11000);
4790
4791	/* Workaround for ICH8 bit corruption issue in FIFO memory */
4792	if (hw->mac.type == e1000_ich8lan) {
4793		/* Set Tx and Rx buffer allocation to 8k apiece. */
4794		ew32(PBA, E1000_PBA_8K);
4795		/* Set Packet Buffer Size to 16k. */
4796		ew32(PBS, E1000_PBS_16K);
4797	}
4798
4799	if (hw->mac.type == e1000_pchlan) {
4800		/* Save the NVM K1 bit setting */
4801		ret_val = e1000_read_nvm(hw, E1000_NVM_K1_CONFIG, 1, &kum_cfg);
4802		if (ret_val)
4803			return ret_val;
4804
4805		if (kum_cfg & E1000_NVM_K1_ENABLE)
4806			dev_spec->nvm_k1_enabled = true;
4807		else
4808			dev_spec->nvm_k1_enabled = false;
4809	}
4810
4811	ctrl = er32(CTRL);
4812
4813	if (!hw->phy.ops.check_reset_block(hw)) {
4814		/* Full-chip reset requires MAC and PHY reset at the same
4815		 * time to make sure the interface between MAC and the
4816		 * external PHY is reset.
4817		 */
4818		ctrl |= E1000_CTRL_PHY_RST;
4819
4820		/* Gate automatic PHY configuration by hardware on
4821		 * non-managed 82579
4822		 */
4823		if ((hw->mac.type == e1000_pch2lan) &&
4824		    !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
4825			e1000_gate_hw_phy_config_ich8lan(hw, true);
4826	}
4827	ret_val = e1000_acquire_swflag_ich8lan(hw);
4828	e_dbg("Issuing a global reset to ich8lan\n");
4829	ew32(CTRL, (ctrl | E1000_CTRL_RST));
4830	/* cannot issue a flush here because it hangs the hardware */
4831	msleep(20);
4832
4833	/* Set Phy Config Counter to 50msec */
4834	if (hw->mac.type == e1000_pch2lan) {
4835		reg = er32(FEXTNVM3);
4836		reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK;
4837		reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC;
4838		ew32(FEXTNVM3, reg);
4839	}
4840
4841	if (!ret_val)
4842		clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
4843
4844	if (ctrl & E1000_CTRL_PHY_RST) {
4845		ret_val = hw->phy.ops.get_cfg_done(hw);
4846		if (ret_val)
4847			return ret_val;
4848
4849		ret_val = e1000_post_phy_reset_ich8lan(hw);
4850		if (ret_val)
4851			return ret_val;
4852	}
4853
4854	/* For PCH, this write will make sure that any noise
4855	 * will be detected as a CRC error and be dropped rather than show up
4856	 * as a bad packet to the DMA engine.
4857	 */
4858	if (hw->mac.type == e1000_pchlan)
4859		ew32(CRC_OFFSET, 0x65656565);
4860
4861	ew32(IMC, 0xffffffff);
4862	er32(ICR);
4863
4864	reg = er32(KABGTXD);
4865	reg |= E1000_KABGTXD_BGSQLBIAS;
4866	ew32(KABGTXD, reg);
4867
4868	return 0;
4869}
4870
4871/**
4872 *  e1000_init_hw_ich8lan - Initialize the hardware
4873 *  @hw: pointer to the HW structure
4874 *
4875 *  Prepares the hardware for transmit and receive by doing the following:
4876 *   - initialize hardware bits
4877 *   - initialize LED identification
4878 *   - setup receive address registers
4879 *   - setup flow control
4880 *   - setup transmit descriptors
4881 *   - clear statistics
4882 **/
4883static s32 e1000_init_hw_ich8lan(struct e1000_hw *hw)
4884{
4885	struct e1000_mac_info *mac = &hw->mac;
4886	u32 ctrl_ext, txdctl, snoop, fflt_dbg;
4887	s32 ret_val;
4888	u16 i;
4889
4890	e1000_initialize_hw_bits_ich8lan(hw);
4891
4892	/* Initialize identification LED */
4893	ret_val = mac->ops.id_led_init(hw);
4894	/* An error is not fatal and we should not stop init due to this */
4895	if (ret_val)
4896		e_dbg("Error initializing identification LED\n");
4897
4898	/* Setup the receive address. */
4899	e1000e_init_rx_addrs(hw, mac->rar_entry_count);
4900
4901	/* Zero out the Multicast HASH table */
4902	e_dbg("Zeroing the MTA\n");
4903	for (i = 0; i < mac->mta_reg_count; i++)
4904		E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
4905
4906	/* The 82578 Rx buffer will stall if wakeup is enabled in host and
4907	 * the ME.  Disable wakeup by clearing the host wakeup bit.
4908	 * Reset the phy after disabling host wakeup to reset the Rx buffer.
4909	 */
4910	if (hw->phy.type == e1000_phy_82578) {
4911		e1e_rphy(hw, BM_PORT_GEN_CFG, &i);
4912		i &= ~BM_WUC_HOST_WU_BIT;
4913		e1e_wphy(hw, BM_PORT_GEN_CFG, i);
4914		ret_val = e1000_phy_hw_reset_ich8lan(hw);
4915		if (ret_val)
4916			return ret_val;
4917	}
4918
4919	/* Setup link and flow control */
4920	ret_val = mac->ops.setup_link(hw);
4921
4922	/* Set the transmit descriptor write-back policy for both queues */
4923	txdctl = er32(TXDCTL(0));
4924	txdctl = ((txdctl & ~E1000_TXDCTL_WTHRESH) |
4925		  E1000_TXDCTL_FULL_TX_DESC_WB);
4926	txdctl = ((txdctl & ~E1000_TXDCTL_PTHRESH) |
4927		  E1000_TXDCTL_MAX_TX_DESC_PREFETCH);
4928	ew32(TXDCTL(0), txdctl);
4929	txdctl = er32(TXDCTL(1));
4930	txdctl = ((txdctl & ~E1000_TXDCTL_WTHRESH) |
4931		  E1000_TXDCTL_FULL_TX_DESC_WB);
4932	txdctl = ((txdctl & ~E1000_TXDCTL_PTHRESH) |
4933		  E1000_TXDCTL_MAX_TX_DESC_PREFETCH);
4934	ew32(TXDCTL(1), txdctl);
4935
4936	/* ICH8 has opposite polarity of no_snoop bits.
4937	 * By default, we should use snoop behavior.
4938	 */
4939	if (mac->type == e1000_ich8lan)
4940		snoop = PCIE_ICH8_SNOOP_ALL;
4941	else
4942		snoop = (u32)~(PCIE_NO_SNOOP_ALL);
4943	e1000e_set_pcie_no_snoop(hw, snoop);
4944
4945	/* Enable workaround for packet loss issue on TGP PCH
4946	 * Do not gate DMA clock from the modPHY block
4947	 */
4948	if (mac->type >= e1000_pch_tgp) {
4949		fflt_dbg = er32(FFLT_DBG);
4950		fflt_dbg |= E1000_FFLT_DBG_DONT_GATE_WAKE_DMA_CLK;
4951		ew32(FFLT_DBG, fflt_dbg);
4952	}
4953
4954	ctrl_ext = er32(CTRL_EXT);
4955	ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
4956	ew32(CTRL_EXT, ctrl_ext);
4957
4958	/* Clear all of the statistics registers (clear on read).  It is
4959	 * important that we do this after we have tried to establish link
4960	 * because the symbol error count will increment wildly if there
4961	 * is no link.
4962	 */
4963	e1000_clear_hw_cntrs_ich8lan(hw);
4964
4965	return ret_val;
4966}
4967
4968/**
4969 *  e1000_initialize_hw_bits_ich8lan - Initialize required hardware bits
4970 *  @hw: pointer to the HW structure
4971 *
4972 *  Sets/Clears required hardware bits necessary for correctly setting up the
4973 *  hardware for transmit and receive.
4974 **/
4975static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw)
4976{
4977	u32 reg;
4978
4979	/* Extended Device Control */
4980	reg = er32(CTRL_EXT);
4981	reg |= BIT(22);
4982	/* Enable PHY low-power state when MAC is at D3 w/o WoL */
4983	if (hw->mac.type >= e1000_pchlan)
4984		reg |= E1000_CTRL_EXT_PHYPDEN;
4985	ew32(CTRL_EXT, reg);
4986
4987	/* Transmit Descriptor Control 0 */
4988	reg = er32(TXDCTL(0));
4989	reg |= BIT(22);
4990	ew32(TXDCTL(0), reg);
4991
4992	/* Transmit Descriptor Control 1 */
4993	reg = er32(TXDCTL(1));
4994	reg |= BIT(22);
4995	ew32(TXDCTL(1), reg);
4996
4997	/* Transmit Arbitration Control 0 */
4998	reg = er32(TARC(0));
4999	if (hw->mac.type == e1000_ich8lan)
5000		reg |= BIT(28) | BIT(29);
5001	reg |= BIT(23) | BIT(24) | BIT(26) | BIT(27);
5002	ew32(TARC(0), reg);
5003
5004	/* Transmit Arbitration Control 1 */
5005	reg = er32(TARC(1));
5006	if (er32(TCTL) & E1000_TCTL_MULR)
5007		reg &= ~BIT(28);
5008	else
5009		reg |= BIT(28);
5010	reg |= BIT(24) | BIT(26) | BIT(30);
5011	ew32(TARC(1), reg);
5012
5013	/* Device Status */
5014	if (hw->mac.type == e1000_ich8lan) {
5015		reg = er32(STATUS);
5016		reg &= ~BIT(31);
5017		ew32(STATUS, reg);
5018	}
5019
5020	/* work-around descriptor data corruption issue during nfs v2 udp
5021	 * traffic, just disable the nfs filtering capability
5022	 */
5023	reg = er32(RFCTL);
5024	reg |= (E1000_RFCTL_NFSW_DIS | E1000_RFCTL_NFSR_DIS);
5025
5026	/* Disable IPv6 extension header parsing because some malformed
5027	 * IPv6 headers can hang the Rx.
5028	 */
5029	if (hw->mac.type == e1000_ich8lan)
5030		reg |= (E1000_RFCTL_IPV6_EX_DIS | E1000_RFCTL_NEW_IPV6_EXT_DIS);
5031	ew32(RFCTL, reg);
5032
5033	/* Enable ECC on Lynxpoint */
5034	if (hw->mac.type >= e1000_pch_lpt) {
5035		reg = er32(PBECCSTS);
5036		reg |= E1000_PBECCSTS_ECC_ENABLE;
5037		ew32(PBECCSTS, reg);
5038
5039		reg = er32(CTRL);
5040		reg |= E1000_CTRL_MEHE;
5041		ew32(CTRL, reg);
5042	}
5043}
5044
5045/**
5046 *  e1000_setup_link_ich8lan - Setup flow control and link settings
5047 *  @hw: pointer to the HW structure
5048 *
5049 *  Determines which flow control settings to use, then configures flow
5050 *  control.  Calls the appropriate media-specific link configuration
5051 *  function.  Assuming the adapter has a valid link partner, a valid link
5052 *  should be established.  Assumes the hardware has previously been reset
5053 *  and the transmitter and receiver are not enabled.
5054 **/
5055static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw)
5056{
5057	s32 ret_val;
5058
5059	if (hw->phy.ops.check_reset_block(hw))
5060		return 0;
5061
5062	/* ICH parts do not have a word in the NVM to determine
5063	 * the default flow control setting, so we explicitly
5064	 * set it to full.
5065	 */
5066	if (hw->fc.requested_mode == e1000_fc_default) {
5067		/* Workaround h/w hang when Tx flow control enabled */
5068		if (hw->mac.type == e1000_pchlan)
5069			hw->fc.requested_mode = e1000_fc_rx_pause;
5070		else
5071			hw->fc.requested_mode = e1000_fc_full;
5072	}
5073
5074	/* Save off the requested flow control mode for use later.  Depending
5075	 * on the link partner's capabilities, we may or may not use this mode.
5076	 */
5077	hw->fc.current_mode = hw->fc.requested_mode;
5078
5079	e_dbg("After fix-ups FlowControl is now = %x\n", hw->fc.current_mode);
5080
5081	/* Continue to configure the copper link. */
5082	ret_val = hw->mac.ops.setup_physical_interface(hw);
5083	if (ret_val)
5084		return ret_val;
5085
5086	ew32(FCTTV, hw->fc.pause_time);
5087	if ((hw->phy.type == e1000_phy_82578) ||
5088	    (hw->phy.type == e1000_phy_82579) ||
5089	    (hw->phy.type == e1000_phy_i217) ||
5090	    (hw->phy.type == e1000_phy_82577)) {
5091		ew32(FCRTV_PCH, hw->fc.refresh_time);
5092
5093		ret_val = e1e_wphy(hw, PHY_REG(BM_PORT_CTRL_PAGE, 27),
5094				   hw->fc.pause_time);
5095		if (ret_val)
5096			return ret_val;
5097	}
5098
5099	return e1000e_set_fc_watermarks(hw);
5100}
5101
5102/**
5103 *  e1000_setup_copper_link_ich8lan - Configure MAC/PHY interface
5104 *  @hw: pointer to the HW structure
5105 *
5106 *  Configures the kumeran interface to the PHY to wait the appropriate time
5107 *  when polling the PHY, then call the generic setup_copper_link to finish
5108 *  configuring the copper link.
5109 **/
5110static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw)
5111{
5112	u32 ctrl;
5113	s32 ret_val;
5114	u16 reg_data;
5115
5116	ctrl = er32(CTRL);
5117	ctrl |= E1000_CTRL_SLU;
5118	ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
5119	ew32(CTRL, ctrl);
5120
5121	/* Set the mac to wait the maximum time between each iteration
5122	 * and increase the max iterations when polling the phy;
5123	 * this fixes erroneous timeouts at 10Mbps.
5124	 */
5125	ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_TIMEOUTS, 0xFFFF);
5126	if (ret_val)
5127		return ret_val;
5128	ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
5129				       &reg_data);
5130	if (ret_val)
5131		return ret_val;
5132	reg_data |= 0x3F;
5133	ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
5134					reg_data);
5135	if (ret_val)
5136		return ret_val;
5137
5138	switch (hw->phy.type) {
5139	case e1000_phy_igp_3:
5140		ret_val = e1000e_copper_link_setup_igp(hw);
5141		if (ret_val)
5142			return ret_val;
5143		break;
5144	case e1000_phy_bm:
5145	case e1000_phy_82578:
5146		ret_val = e1000e_copper_link_setup_m88(hw);
5147		if (ret_val)
5148			return ret_val;
5149		break;
5150	case e1000_phy_82577:
5151	case e1000_phy_82579:
5152		ret_val = e1000_copper_link_setup_82577(hw);
5153		if (ret_val)
5154			return ret_val;
5155		break;
5156	case e1000_phy_ife:
5157		ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &reg_data);
5158		if (ret_val)
5159			return ret_val;
5160
5161		reg_data &= ~IFE_PMC_AUTO_MDIX;
5162
5163		switch (hw->phy.mdix) {
5164		case 1:
5165			reg_data &= ~IFE_PMC_FORCE_MDIX;
5166			break;
5167		case 2:
5168			reg_data |= IFE_PMC_FORCE_MDIX;
5169			break;
5170		case 0:
5171		default:
5172			reg_data |= IFE_PMC_AUTO_MDIX;
5173			break;
5174		}
5175		ret_val = e1e_wphy(hw, IFE_PHY_MDIX_CONTROL, reg_data);
5176		if (ret_val)
5177			return ret_val;
5178		break;
5179	default:
5180		break;
5181	}
5182
5183	return e1000e_setup_copper_link(hw);
5184}
5185
5186/**
5187 *  e1000_setup_copper_link_pch_lpt - Configure MAC/PHY interface
5188 *  @hw: pointer to the HW structure
5189 *
5190 *  Calls the PHY specific link setup function and then calls the
5191 *  generic setup_copper_link to finish configuring the link for
5192 *  Lynxpoint PCH devices
5193 **/
5194static s32 e1000_setup_copper_link_pch_lpt(struct e1000_hw *hw)
5195{
5196	u32 ctrl;
5197	s32 ret_val;
5198
5199	ctrl = er32(CTRL);
5200	ctrl |= E1000_CTRL_SLU;
5201	ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
5202	ew32(CTRL, ctrl);
5203
5204	ret_val = e1000_copper_link_setup_82577(hw);
5205	if (ret_val)
5206		return ret_val;
5207
5208	return e1000e_setup_copper_link(hw);
5209}
5210
5211/**
5212 *  e1000_get_link_up_info_ich8lan - Get current link speed and duplex
5213 *  @hw: pointer to the HW structure
5214 *  @speed: pointer to store current link speed
5215 *  @duplex: pointer to store the current link duplex
5216 *
5217 *  Calls the generic get_speed_and_duplex to retrieve the current link
5218 *  information and then calls the Kumeran lock loss workaround for links at
5219 *  gigabit speeds.
5220 **/
5221static s32 e1000_get_link_up_info_ich8lan(struct e1000_hw *hw, u16 *speed,
5222					  u16 *duplex)
5223{
5224	s32 ret_val;
5225
5226	ret_val = e1000e_get_speed_and_duplex_copper(hw, speed, duplex);
5227	if (ret_val)
5228		return ret_val;
5229
5230	if ((hw->mac.type == e1000_ich8lan) &&
5231	    (hw->phy.type == e1000_phy_igp_3) && (*speed == SPEED_1000)) {
5232		ret_val = e1000_kmrn_lock_loss_workaround_ich8lan(hw);
5233	}
5234
5235	return ret_val;
5236}
5237
5238/**
5239 *  e1000_kmrn_lock_loss_workaround_ich8lan - Kumeran workaround
5240 *  @hw: pointer to the HW structure
5241 *
5242 *  Work-around for 82566 Kumeran PCS lock loss:
5243 *  On link status change (i.e. PCI reset, speed change) and link is up and
5244 *  speed is gigabit-
5245 *    0) if workaround is optionally disabled do nothing
5246 *    1) wait 1ms for Kumeran link to come up
5247 *    2) check Kumeran Diagnostic register PCS lock loss bit
5248 *    3) if not set the link is locked (all is good), otherwise...
5249 *    4) reset the PHY
5250 *    5) repeat up to 10 times
5251 *  Note: this is only called for IGP3 copper when speed is 1gb.
5252 **/
5253static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw)
5254{
5255	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
5256	u32 phy_ctrl;
5257	s32 ret_val;
5258	u16 i, data;
5259	bool link;
5260
5261	if (!dev_spec->kmrn_lock_loss_workaround_enabled)
5262		return 0;
5263
5264	/* Make sure link is up before proceeding.  If not just return.
5265	 * Attempting this while link is negotiating fouled up link
5266	 * stability
5267	 */
5268	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
5269	if (!link)
5270		return 0;
5271
5272	for (i = 0; i < 10; i++) {
5273		/* read once to clear */
5274		ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
5275		if (ret_val)
5276			return ret_val;
5277		/* and again to get new status */
5278		ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
5279		if (ret_val)
5280			return ret_val;
5281
5282		/* check for PCS lock */
5283		if (!(data & IGP3_KMRN_DIAG_PCS_LOCK_LOSS))
5284			return 0;
5285
5286		/* Issue PHY reset */
5287		e1000_phy_hw_reset(hw);
5288		mdelay(5);
5289	}
5290	/* Disable GigE link negotiation */
5291	phy_ctrl = er32(PHY_CTRL);
5292	phy_ctrl |= (E1000_PHY_CTRL_GBE_DISABLE |
5293		     E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
5294	ew32(PHY_CTRL, phy_ctrl);
5295
5296	/* Call gig speed drop workaround on Gig disable before accessing
5297	 * any PHY registers
5298	 */
5299	e1000e_gig_downshift_workaround_ich8lan(hw);
5300
5301	/* unable to acquire PCS lock */
5302	return -E1000_ERR_PHY;
5303}
5304
5305/**
5306 *  e1000e_set_kmrn_lock_loss_workaround_ich8lan - Set Kumeran workaround state
5307 *  @hw: pointer to the HW structure
5308 *  @state: boolean value used to set the current Kumeran workaround state
5309 *
5310 *  If ICH8, set the current Kumeran workaround state (enabled - true
5311 *  /disabled - false).
5312 **/
5313void e1000e_set_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw,
5314						  bool state)
5315{
5316	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
5317
5318	if (hw->mac.type != e1000_ich8lan) {
5319		e_dbg("Workaround applies to ICH8 only.\n");
5320		return;
5321	}
5322
5323	dev_spec->kmrn_lock_loss_workaround_enabled = state;
5324}
5325
5326/**
5327 *  e1000e_igp3_phy_powerdown_workaround_ich8lan - Power down workaround on D3
5328 *  @hw: pointer to the HW structure
5329 *
5330 *  Workaround for 82566 power-down on D3 entry:
5331 *    1) disable gigabit link
5332 *    2) write VR power-down enable
5333 *    3) read it back
5334 *  Continue if successful, else issue LCD reset and repeat
5335 **/
5336void e1000e_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw *hw)
5337{
5338	u32 reg;
5339	u16 data;
5340	u8 retry = 0;
5341
5342	if (hw->phy.type != e1000_phy_igp_3)
5343		return;
5344
5345	/* Try the workaround twice (if needed) */
5346	do {
5347		/* Disable link */
5348		reg = er32(PHY_CTRL);
5349		reg |= (E1000_PHY_CTRL_GBE_DISABLE |
5350			E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
5351		ew32(PHY_CTRL, reg);
5352
5353		/* Call gig speed drop workaround on Gig disable before
5354		 * accessing any PHY registers
5355		 */
5356		if (hw->mac.type == e1000_ich8lan)
5357			e1000e_gig_downshift_workaround_ich8lan(hw);
5358
5359		/* Write VR power-down enable */
5360		e1e_rphy(hw, IGP3_VR_CTRL, &data);
5361		data &= ~IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
5362		e1e_wphy(hw, IGP3_VR_CTRL, data | IGP3_VR_CTRL_MODE_SHUTDOWN);
5363
5364		/* Read it back and test */
5365		e1e_rphy(hw, IGP3_VR_CTRL, &data);
5366		data &= IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
5367		if ((data == IGP3_VR_CTRL_MODE_SHUTDOWN) || retry)
5368			break;
5369
5370		/* Issue PHY reset and repeat at most one more time */
5371		reg = er32(CTRL);
5372		ew32(CTRL, reg | E1000_CTRL_PHY_RST);
5373		retry++;
5374	} while (retry);
5375}
5376
5377/**
5378 *  e1000e_gig_downshift_workaround_ich8lan - WoL from S5 stops working
5379 *  @hw: pointer to the HW structure
5380 *
5381 *  Steps to take when dropping from 1Gb/s (eg. link cable removal (LSC),
5382 *  LPLU, Gig disable, MDIC PHY reset):
5383 *    1) Set Kumeran Near-end loopback
5384 *    2) Clear Kumeran Near-end loopback
5385 *  Should only be called for ICH8[m] devices with any 1G Phy.
5386 **/
5387void e1000e_gig_downshift_workaround_ich8lan(struct e1000_hw *hw)
5388{
5389	s32 ret_val;
5390	u16 reg_data;
5391
5392	if ((hw->mac.type != e1000_ich8lan) || (hw->phy.type == e1000_phy_ife))
5393		return;
5394
5395	ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
5396				       &reg_data);
5397	if (ret_val)
5398		return;
5399	reg_data |= E1000_KMRNCTRLSTA_DIAG_NELPBK;
5400	ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
5401					reg_data);
5402	if (ret_val)
5403		return;
5404	reg_data &= ~E1000_KMRNCTRLSTA_DIAG_NELPBK;
5405	e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET, reg_data);
5406}
5407
5408/**
5409 *  e1000_suspend_workarounds_ich8lan - workarounds needed during S0->Sx
5410 *  @hw: pointer to the HW structure
5411 *
5412 *  During S0 to Sx transition, it is possible the link remains at gig
5413 *  instead of negotiating to a lower speed.  Before going to Sx, set
5414 *  'Gig Disable' to force link speed negotiation to a lower speed based on
5415 *  the LPLU setting in the NVM or custom setting.  For PCH and newer parts,
5416 *  the OEM bits PHY register (LED, GbE disable and LPLU configurations) also
5417 *  needs to be written.
5418 *  Parts that support (and are linked to a partner which support) EEE in
5419 *  100Mbps should disable LPLU since 100Mbps w/ EEE requires less power
5420 *  than 10Mbps w/o EEE.
5421 **/
5422void e1000_suspend_workarounds_ich8lan(struct e1000_hw *hw)
5423{
5424	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
5425	u32 phy_ctrl;
5426	s32 ret_val;
5427
5428	phy_ctrl = er32(PHY_CTRL);
5429	phy_ctrl |= E1000_PHY_CTRL_GBE_DISABLE;
5430
5431	if (hw->phy.type == e1000_phy_i217) {
5432		u16 phy_reg, device_id = hw->adapter->pdev->device;
5433
5434		if ((device_id == E1000_DEV_ID_PCH_LPTLP_I218_LM) ||
5435		    (device_id == E1000_DEV_ID_PCH_LPTLP_I218_V) ||
5436		    (device_id == E1000_DEV_ID_PCH_I218_LM3) ||
5437		    (device_id == E1000_DEV_ID_PCH_I218_V3) ||
5438		    (hw->mac.type >= e1000_pch_spt)) {
5439			u32 fextnvm6 = er32(FEXTNVM6);
5440
5441			ew32(FEXTNVM6, fextnvm6 & ~E1000_FEXTNVM6_REQ_PLL_CLK);
5442		}
5443
5444		ret_val = hw->phy.ops.acquire(hw);
5445		if (ret_val)
5446			goto out;
5447
5448		if (!dev_spec->eee_disable) {
5449			u16 eee_advert;
5450
5451			ret_val =
5452			    e1000_read_emi_reg_locked(hw,
5453						      I217_EEE_ADVERTISEMENT,
5454						      &eee_advert);
5455			if (ret_val)
5456				goto release;
5457
5458			/* Disable LPLU if both link partners support 100BaseT
5459			 * EEE and 100Full is advertised on both ends of the
5460			 * link, and enable Auto Enable LPI since there will
5461			 * be no driver to enable LPI while in Sx.
5462			 */
5463			if ((eee_advert & I82579_EEE_100_SUPPORTED) &&
5464			    (dev_spec->eee_lp_ability &
5465			     I82579_EEE_100_SUPPORTED) &&
5466			    (hw->phy.autoneg_advertised & ADVERTISE_100_FULL)) {
5467				phy_ctrl &= ~(E1000_PHY_CTRL_D0A_LPLU |
5468					      E1000_PHY_CTRL_NOND0A_LPLU);
5469
5470				/* Set Auto Enable LPI after link up */
5471				e1e_rphy_locked(hw,
5472						I217_LPI_GPIO_CTRL, &phy_reg);
5473				phy_reg |= I217_LPI_GPIO_CTRL_AUTO_EN_LPI;
5474				e1e_wphy_locked(hw,
5475						I217_LPI_GPIO_CTRL, phy_reg);
5476			}
5477		}
5478
5479		/* For i217 Intel Rapid Start Technology support,
5480		 * when the system is going into Sx and no manageability engine
5481		 * is present, the driver must configure proxy to reset only on
5482		 * power good.  LPI (Low Power Idle) state must also reset only
5483		 * on power good, as well as the MTA (Multicast table array).
5484		 * The SMBus release must also be disabled on LCD reset.
5485		 */
5486		if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
5487			/* Enable proxy to reset only on power good. */
5488			e1e_rphy_locked(hw, I217_PROXY_CTRL, &phy_reg);
5489			phy_reg |= I217_PROXY_CTRL_AUTO_DISABLE;
5490			e1e_wphy_locked(hw, I217_PROXY_CTRL, phy_reg);
5491
5492			/* Set bit enable LPI (EEE) to reset only on
5493			 * power good.
5494			 */
5495			e1e_rphy_locked(hw, I217_SxCTRL, &phy_reg);
5496			phy_reg |= I217_SxCTRL_ENABLE_LPI_RESET;
5497			e1e_wphy_locked(hw, I217_SxCTRL, phy_reg);
5498
5499			/* Disable the SMB release on LCD reset. */
5500			e1e_rphy_locked(hw, I217_MEMPWR, &phy_reg);
5501			phy_reg &= ~I217_MEMPWR_DISABLE_SMB_RELEASE;
5502			e1e_wphy_locked(hw, I217_MEMPWR, phy_reg);
5503		}
5504
5505		/* Enable MTA to reset for Intel Rapid Start Technology
5506		 * Support
5507		 */
5508		e1e_rphy_locked(hw, I217_CGFREG, &phy_reg);
5509		phy_reg |= I217_CGFREG_ENABLE_MTA_RESET;
5510		e1e_wphy_locked(hw, I217_CGFREG, phy_reg);
5511
5512release:
5513		hw->phy.ops.release(hw);
5514	}
5515out:
5516	ew32(PHY_CTRL, phy_ctrl);
5517
5518	if (hw->mac.type == e1000_ich8lan)
5519		e1000e_gig_downshift_workaround_ich8lan(hw);
5520
5521	if (hw->mac.type >= e1000_pchlan) {
5522		e1000_oem_bits_config_ich8lan(hw, false);
5523
5524		/* Reset PHY to activate OEM bits on 82577/8 */
5525		if (hw->mac.type == e1000_pchlan)
5526			e1000e_phy_hw_reset_generic(hw);
5527
5528		ret_val = hw->phy.ops.acquire(hw);
5529		if (ret_val)
5530			return;
5531		e1000_write_smbus_addr(hw);
5532		hw->phy.ops.release(hw);
5533	}
5534}
5535
5536/**
5537 *  e1000_resume_workarounds_pchlan - workarounds needed during Sx->S0
5538 *  @hw: pointer to the HW structure
5539 *
5540 *  During Sx to S0 transitions on non-managed devices or managed devices
5541 *  on which PHY resets are not blocked, if the PHY registers cannot be
5542 *  accessed properly by the s/w toggle the LANPHYPC value to power cycle
5543 *  the PHY.
5544 *  On i217, setup Intel Rapid Start Technology.
5545 **/
5546void e1000_resume_workarounds_pchlan(struct e1000_hw *hw)
5547{
5548	s32 ret_val;
5549
5550	if (hw->mac.type < e1000_pch2lan)
5551		return;
5552
5553	ret_val = e1000_init_phy_workarounds_pchlan(hw);
5554	if (ret_val) {
5555		e_dbg("Failed to init PHY flow ret_val=%d\n", ret_val);
5556		return;
5557	}
5558
5559	/* For i217 Intel Rapid Start Technology support when the system
5560	 * is transitioning from Sx and no manageability engine is present
5561	 * configure SMBus to restore on reset, disable proxy, and enable
5562	 * the reset on MTA (Multicast table array).
5563	 */
5564	if (hw->phy.type == e1000_phy_i217) {
5565		u16 phy_reg;
5566
5567		ret_val = hw->phy.ops.acquire(hw);
5568		if (ret_val) {
5569			e_dbg("Failed to setup iRST\n");
5570			return;
5571		}
5572
5573		/* Clear Auto Enable LPI after link up */
5574		e1e_rphy_locked(hw, I217_LPI_GPIO_CTRL, &phy_reg);
5575		phy_reg &= ~I217_LPI_GPIO_CTRL_AUTO_EN_LPI;
5576		e1e_wphy_locked(hw, I217_LPI_GPIO_CTRL, phy_reg);
5577
5578		if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
5579			/* Restore clear on SMB if no manageability engine
5580			 * is present
5581			 */
5582			ret_val = e1e_rphy_locked(hw, I217_MEMPWR, &phy_reg);
5583			if (ret_val)
5584				goto release;
5585			phy_reg |= I217_MEMPWR_DISABLE_SMB_RELEASE;
5586			e1e_wphy_locked(hw, I217_MEMPWR, phy_reg);
5587
5588			/* Disable Proxy */
5589			e1e_wphy_locked(hw, I217_PROXY_CTRL, 0);
5590		}
5591		/* Enable reset on MTA */
5592		ret_val = e1e_rphy_locked(hw, I217_CGFREG, &phy_reg);
5593		if (ret_val)
5594			goto release;
5595		phy_reg &= ~I217_CGFREG_ENABLE_MTA_RESET;
5596		e1e_wphy_locked(hw, I217_CGFREG, phy_reg);
5597release:
5598		if (ret_val)
5599			e_dbg("Error %d in resume workarounds\n", ret_val);
5600		hw->phy.ops.release(hw);
5601	}
5602}
5603
5604/**
5605 *  e1000_cleanup_led_ich8lan - Restore the default LED operation
5606 *  @hw: pointer to the HW structure
5607 *
5608 *  Return the LED back to the default configuration.
5609 **/
5610static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw)
5611{
5612	if (hw->phy.type == e1000_phy_ife)
5613		return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0);
5614
5615	ew32(LEDCTL, hw->mac.ledctl_default);
5616	return 0;
5617}
5618
5619/**
5620 *  e1000_led_on_ich8lan - Turn LEDs on
5621 *  @hw: pointer to the HW structure
5622 *
5623 *  Turn on the LEDs.
5624 **/
5625static s32 e1000_led_on_ich8lan(struct e1000_hw *hw)
5626{
5627	if (hw->phy.type == e1000_phy_ife)
5628		return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
5629				(IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_ON));
5630
5631	ew32(LEDCTL, hw->mac.ledctl_mode2);
5632	return 0;
5633}
5634
5635/**
5636 *  e1000_led_off_ich8lan - Turn LEDs off
5637 *  @hw: pointer to the HW structure
5638 *
5639 *  Turn off the LEDs.
5640 **/
5641static s32 e1000_led_off_ich8lan(struct e1000_hw *hw)
5642{
5643	if (hw->phy.type == e1000_phy_ife)
5644		return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
5645				(IFE_PSCL_PROBE_MODE |
5646				 IFE_PSCL_PROBE_LEDS_OFF));
5647
5648	ew32(LEDCTL, hw->mac.ledctl_mode1);
5649	return 0;
5650}
5651
5652/**
5653 *  e1000_setup_led_pchlan - Configures SW controllable LED
5654 *  @hw: pointer to the HW structure
5655 *
5656 *  This prepares the SW controllable LED for use.
5657 **/
5658static s32 e1000_setup_led_pchlan(struct e1000_hw *hw)
5659{
5660	return e1e_wphy(hw, HV_LED_CONFIG, (u16)hw->mac.ledctl_mode1);
5661}
5662
5663/**
5664 *  e1000_cleanup_led_pchlan - Restore the default LED operation
5665 *  @hw: pointer to the HW structure
5666 *
5667 *  Return the LED back to the default configuration.
5668 **/
5669static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw)
5670{
5671	return e1e_wphy(hw, HV_LED_CONFIG, (u16)hw->mac.ledctl_default);
5672}
5673
5674/**
5675 *  e1000_led_on_pchlan - Turn LEDs on
5676 *  @hw: pointer to the HW structure
5677 *
5678 *  Turn on the LEDs.
5679 **/
5680static s32 e1000_led_on_pchlan(struct e1000_hw *hw)
5681{
5682	u16 data = (u16)hw->mac.ledctl_mode2;
5683	u32 i, led;
5684
5685	/* If no link, then turn LED on by setting the invert bit
5686	 * for each LED that's mode is "link_up" in ledctl_mode2.
5687	 */
5688	if (!(er32(STATUS) & E1000_STATUS_LU)) {
5689		for (i = 0; i < 3; i++) {
5690			led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
5691			if ((led & E1000_PHY_LED0_MODE_MASK) !=
5692			    E1000_LEDCTL_MODE_LINK_UP)
5693				continue;
5694			if (led & E1000_PHY_LED0_IVRT)
5695				data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
5696			else
5697				data |= (E1000_PHY_LED0_IVRT << (i * 5));
5698		}
5699	}
5700
5701	return e1e_wphy(hw, HV_LED_CONFIG, data);
5702}
5703
5704/**
5705 *  e1000_led_off_pchlan - Turn LEDs off
5706 *  @hw: pointer to the HW structure
5707 *
5708 *  Turn off the LEDs.
5709 **/
5710static s32 e1000_led_off_pchlan(struct e1000_hw *hw)
5711{
5712	u16 data = (u16)hw->mac.ledctl_mode1;
5713	u32 i, led;
5714
5715	/* If no link, then turn LED off by clearing the invert bit
5716	 * for each LED that's mode is "link_up" in ledctl_mode1.
5717	 */
5718	if (!(er32(STATUS) & E1000_STATUS_LU)) {
5719		for (i = 0; i < 3; i++) {
5720			led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
5721			if ((led & E1000_PHY_LED0_MODE_MASK) !=
5722			    E1000_LEDCTL_MODE_LINK_UP)
5723				continue;
5724			if (led & E1000_PHY_LED0_IVRT)
5725				data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
5726			else
5727				data |= (E1000_PHY_LED0_IVRT << (i * 5));
5728		}
5729	}
5730
5731	return e1e_wphy(hw, HV_LED_CONFIG, data);
5732}
5733
5734/**
5735 *  e1000_get_cfg_done_ich8lan - Read config done bit after Full or PHY reset
5736 *  @hw: pointer to the HW structure
5737 *
5738 *  Read appropriate register for the config done bit for completion status
5739 *  and configure the PHY through s/w for EEPROM-less parts.
5740 *
5741 *  NOTE: some silicon which is EEPROM-less will fail trying to read the
5742 *  config done bit, so only an error is logged and continues.  If we were
5743 *  to return with error, EEPROM-less silicon would not be able to be reset
5744 *  or change link.
5745 **/
5746static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw)
5747{
5748	s32 ret_val = 0;
5749	u32 bank = 0;
5750	u32 status;
5751
5752	e1000e_get_cfg_done_generic(hw);
5753
5754	/* Wait for indication from h/w that it has completed basic config */
5755	if (hw->mac.type >= e1000_ich10lan) {
5756		e1000_lan_init_done_ich8lan(hw);
5757	} else {
5758		ret_val = e1000e_get_auto_rd_done(hw);
5759		if (ret_val) {
5760			/* When auto config read does not complete, do not
5761			 * return with an error. This can happen in situations
5762			 * where there is no eeprom and prevents getting link.
5763			 */
5764			e_dbg("Auto Read Done did not complete\n");
5765			ret_val = 0;
5766		}
5767	}
5768
5769	/* Clear PHY Reset Asserted bit */
5770	status = er32(STATUS);
5771	if (status & E1000_STATUS_PHYRA)
5772		ew32(STATUS, status & ~E1000_STATUS_PHYRA);
5773	else
5774		e_dbg("PHY Reset Asserted not set - needs delay\n");
5775
5776	/* If EEPROM is not marked present, init the IGP 3 PHY manually */
5777	if (hw->mac.type <= e1000_ich9lan) {
5778		if (!(er32(EECD) & E1000_EECD_PRES) &&
5779		    (hw->phy.type == e1000_phy_igp_3)) {
5780			e1000e_phy_init_script_igp3(hw);
5781		}
5782	} else {
5783		if (e1000_valid_nvm_bank_detect_ich8lan(hw, &bank)) {
5784			/* Maybe we should do a basic PHY config */
5785			e_dbg("EEPROM not present\n");
5786			ret_val = -E1000_ERR_CONFIG;
5787		}
5788	}
5789
5790	return ret_val;
5791}
5792
5793/**
5794 * e1000_power_down_phy_copper_ich8lan - Remove link during PHY power down
5795 * @hw: pointer to the HW structure
5796 *
5797 * In the case of a PHY power down to save power, or to turn off link during a
5798 * driver unload, or wake on lan is not enabled, remove the link.
5799 **/
5800static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw)
5801{
5802	/* If the management interface is not enabled, then power down */
5803	if (!(hw->mac.ops.check_mng_mode(hw) ||
5804	      hw->phy.ops.check_reset_block(hw)))
5805		e1000_power_down_phy_copper(hw);
5806}
5807
5808/**
5809 *  e1000_clear_hw_cntrs_ich8lan - Clear statistical counters
5810 *  @hw: pointer to the HW structure
5811 *
5812 *  Clears hardware counters specific to the silicon family and calls
5813 *  clear_hw_cntrs_generic to clear all general purpose counters.
5814 **/
5815static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw)
5816{
5817	u16 phy_data;
5818	s32 ret_val;
5819
5820	e1000e_clear_hw_cntrs_base(hw);
5821
5822	er32(ALGNERRC);
5823	er32(RXERRC);
5824	er32(TNCRS);
5825	er32(CEXTERR);
5826	er32(TSCTC);
5827	er32(TSCTFC);
5828
5829	er32(MGTPRC);
5830	er32(MGTPDC);
5831	er32(MGTPTC);
5832
5833	er32(IAC);
5834	er32(ICRXOC);
5835
5836	/* Clear PHY statistics registers */
5837	if ((hw->phy.type == e1000_phy_82578) ||
5838	    (hw->phy.type == e1000_phy_82579) ||
5839	    (hw->phy.type == e1000_phy_i217) ||
5840	    (hw->phy.type == e1000_phy_82577)) {
5841		ret_val = hw->phy.ops.acquire(hw);
5842		if (ret_val)
5843			return;
5844		ret_val = hw->phy.ops.set_page(hw,
5845					       HV_STATS_PAGE << IGP_PAGE_SHIFT);
5846		if (ret_val)
5847			goto release;
5848		hw->phy.ops.read_reg_page(hw, HV_SCC_UPPER, &phy_data);
5849		hw->phy.ops.read_reg_page(hw, HV_SCC_LOWER, &phy_data);
5850		hw->phy.ops.read_reg_page(hw, HV_ECOL_UPPER, &phy_data);
5851		hw->phy.ops.read_reg_page(hw, HV_ECOL_LOWER, &phy_data);
5852		hw->phy.ops.read_reg_page(hw, HV_MCC_UPPER, &phy_data);
5853		hw->phy.ops.read_reg_page(hw, HV_MCC_LOWER, &phy_data);
5854		hw->phy.ops.read_reg_page(hw, HV_LATECOL_UPPER, &phy_data);
5855		hw->phy.ops.read_reg_page(hw, HV_LATECOL_LOWER, &phy_data);
5856		hw->phy.ops.read_reg_page(hw, HV_COLC_UPPER, &phy_data);
5857		hw->phy.ops.read_reg_page(hw, HV_COLC_LOWER, &phy_data);
5858		hw->phy.ops.read_reg_page(hw, HV_DC_UPPER, &phy_data);
5859		hw->phy.ops.read_reg_page(hw, HV_DC_LOWER, &phy_data);
5860		hw->phy.ops.read_reg_page(hw, HV_TNCRS_UPPER, &phy_data);
5861		hw->phy.ops.read_reg_page(hw, HV_TNCRS_LOWER, &phy_data);
5862release:
5863		hw->phy.ops.release(hw);
5864	}
5865}
5866
5867static const struct e1000_mac_operations ich8_mac_ops = {
5868	/* check_mng_mode dependent on mac type */
5869	.check_for_link		= e1000_check_for_copper_link_ich8lan,
5870	/* cleanup_led dependent on mac type */
5871	.clear_hw_cntrs		= e1000_clear_hw_cntrs_ich8lan,
5872	.get_bus_info		= e1000_get_bus_info_ich8lan,
5873	.set_lan_id		= e1000_set_lan_id_single_port,
5874	.get_link_up_info	= e1000_get_link_up_info_ich8lan,
5875	/* led_on dependent on mac type */
5876	/* led_off dependent on mac type */
5877	.update_mc_addr_list	= e1000e_update_mc_addr_list_generic,
5878	.reset_hw		= e1000_reset_hw_ich8lan,
5879	.init_hw		= e1000_init_hw_ich8lan,
5880	.setup_link		= e1000_setup_link_ich8lan,
5881	.setup_physical_interface = e1000_setup_copper_link_ich8lan,
5882	/* id_led_init dependent on mac type */
5883	.config_collision_dist	= e1000e_config_collision_dist_generic,
5884	.rar_set		= e1000e_rar_set_generic,
5885	.rar_get_count		= e1000e_rar_get_count_generic,
5886};
5887
5888static const struct e1000_phy_operations ich8_phy_ops = {
5889	.acquire		= e1000_acquire_swflag_ich8lan,
5890	.check_reset_block	= e1000_check_reset_block_ich8lan,
5891	.commit			= NULL,
5892	.get_cfg_done		= e1000_get_cfg_done_ich8lan,
5893	.get_cable_length	= e1000e_get_cable_length_igp_2,
5894	.read_reg		= e1000e_read_phy_reg_igp,
5895	.release		= e1000_release_swflag_ich8lan,
5896	.reset			= e1000_phy_hw_reset_ich8lan,
5897	.set_d0_lplu_state	= e1000_set_d0_lplu_state_ich8lan,
5898	.set_d3_lplu_state	= e1000_set_d3_lplu_state_ich8lan,
5899	.write_reg		= e1000e_write_phy_reg_igp,
5900};
5901
5902static const struct e1000_nvm_operations ich8_nvm_ops = {
5903	.acquire		= e1000_acquire_nvm_ich8lan,
5904	.read			= e1000_read_nvm_ich8lan,
5905	.release		= e1000_release_nvm_ich8lan,
5906	.reload			= e1000e_reload_nvm_generic,
5907	.update			= e1000_update_nvm_checksum_ich8lan,
5908	.valid_led_default	= e1000_valid_led_default_ich8lan,
5909	.validate		= e1000_validate_nvm_checksum_ich8lan,
5910	.write			= e1000_write_nvm_ich8lan,
5911};
5912
5913static const struct e1000_nvm_operations spt_nvm_ops = {
5914	.acquire		= e1000_acquire_nvm_ich8lan,
5915	.release		= e1000_release_nvm_ich8lan,
5916	.read			= e1000_read_nvm_spt,
5917	.update			= e1000_update_nvm_checksum_spt,
5918	.reload			= e1000e_reload_nvm_generic,
5919	.valid_led_default	= e1000_valid_led_default_ich8lan,
5920	.validate		= e1000_validate_nvm_checksum_ich8lan,
5921	.write			= e1000_write_nvm_ich8lan,
5922};
5923
5924const struct e1000_info e1000_ich8_info = {
5925	.mac			= e1000_ich8lan,
5926	.flags			= FLAG_HAS_WOL
5927				  | FLAG_IS_ICH
5928				  | FLAG_HAS_CTRLEXT_ON_LOAD
5929				  | FLAG_HAS_AMT
5930				  | FLAG_HAS_FLASH
5931				  | FLAG_APME_IN_WUC,
5932	.pba			= 8,
5933	.max_hw_frame_size	= VLAN_ETH_FRAME_LEN + ETH_FCS_LEN,
5934	.get_variants		= e1000_get_variants_ich8lan,
5935	.mac_ops		= &ich8_mac_ops,
5936	.phy_ops		= &ich8_phy_ops,
5937	.nvm_ops		= &ich8_nvm_ops,
5938};
5939
5940const struct e1000_info e1000_ich9_info = {
5941	.mac			= e1000_ich9lan,
5942	.flags			= FLAG_HAS_JUMBO_FRAMES
5943				  | FLAG_IS_ICH
5944				  | FLAG_HAS_WOL
5945				  | FLAG_HAS_CTRLEXT_ON_LOAD
5946				  | FLAG_HAS_AMT
5947				  | FLAG_HAS_FLASH
5948				  | FLAG_APME_IN_WUC,
5949	.pba			= 18,
5950	.max_hw_frame_size	= DEFAULT_JUMBO,
5951	.get_variants		= e1000_get_variants_ich8lan,
5952	.mac_ops		= &ich8_mac_ops,
5953	.phy_ops		= &ich8_phy_ops,
5954	.nvm_ops		= &ich8_nvm_ops,
5955};
5956
5957const struct e1000_info e1000_ich10_info = {
5958	.mac			= e1000_ich10lan,
5959	.flags			= FLAG_HAS_JUMBO_FRAMES
5960				  | FLAG_IS_ICH
5961				  | FLAG_HAS_WOL
5962				  | FLAG_HAS_CTRLEXT_ON_LOAD
5963				  | FLAG_HAS_AMT
5964				  | FLAG_HAS_FLASH
5965				  | FLAG_APME_IN_WUC,
5966	.pba			= 18,
5967	.max_hw_frame_size	= DEFAULT_JUMBO,
5968	.get_variants		= e1000_get_variants_ich8lan,
5969	.mac_ops		= &ich8_mac_ops,
5970	.phy_ops		= &ich8_phy_ops,
5971	.nvm_ops		= &ich8_nvm_ops,
5972};
5973
5974const struct e1000_info e1000_pch_info = {
5975	.mac			= e1000_pchlan,
5976	.flags			= FLAG_IS_ICH
5977				  | FLAG_HAS_WOL
5978				  | FLAG_HAS_CTRLEXT_ON_LOAD
5979				  | FLAG_HAS_AMT
5980				  | FLAG_HAS_FLASH
5981				  | FLAG_HAS_JUMBO_FRAMES
5982				  | FLAG_DISABLE_FC_PAUSE_TIME /* errata */
5983				  | FLAG_APME_IN_WUC,
5984	.flags2			= FLAG2_HAS_PHY_STATS,
5985	.pba			= 26,
5986	.max_hw_frame_size	= 4096,
5987	.get_variants		= e1000_get_variants_ich8lan,
5988	.mac_ops		= &ich8_mac_ops,
5989	.phy_ops		= &ich8_phy_ops,
5990	.nvm_ops		= &ich8_nvm_ops,
5991};
5992
5993const struct e1000_info e1000_pch2_info = {
5994	.mac			= e1000_pch2lan,
5995	.flags			= FLAG_IS_ICH
5996				  | FLAG_HAS_WOL
5997				  | FLAG_HAS_HW_TIMESTAMP
5998				  | FLAG_HAS_CTRLEXT_ON_LOAD
5999				  | FLAG_HAS_AMT
6000				  | FLAG_HAS_FLASH
6001				  | FLAG_HAS_JUMBO_FRAMES
6002				  | FLAG_APME_IN_WUC,
6003	.flags2			= FLAG2_HAS_PHY_STATS
6004				  | FLAG2_HAS_EEE
6005				  | FLAG2_CHECK_SYSTIM_OVERFLOW,
6006	.pba			= 26,
6007	.max_hw_frame_size	= 9022,
6008	.get_variants		= e1000_get_variants_ich8lan,
6009	.mac_ops		= &ich8_mac_ops,
6010	.phy_ops		= &ich8_phy_ops,
6011	.nvm_ops		= &ich8_nvm_ops,
6012};
6013
6014const struct e1000_info e1000_pch_lpt_info = {
6015	.mac			= e1000_pch_lpt,
6016	.flags			= FLAG_IS_ICH
6017				  | FLAG_HAS_WOL
6018				  | FLAG_HAS_HW_TIMESTAMP
6019				  | FLAG_HAS_CTRLEXT_ON_LOAD
6020				  | FLAG_HAS_AMT
6021				  | FLAG_HAS_FLASH
6022				  | FLAG_HAS_JUMBO_FRAMES
6023				  | FLAG_APME_IN_WUC,
6024	.flags2			= FLAG2_HAS_PHY_STATS
6025				  | FLAG2_HAS_EEE
6026				  | FLAG2_CHECK_SYSTIM_OVERFLOW,
6027	.pba			= 26,
6028	.max_hw_frame_size	= 9022,
6029	.get_variants		= e1000_get_variants_ich8lan,
6030	.mac_ops		= &ich8_mac_ops,
6031	.phy_ops		= &ich8_phy_ops,
6032	.nvm_ops		= &ich8_nvm_ops,
6033};
6034
6035const struct e1000_info e1000_pch_spt_info = {
6036	.mac			= e1000_pch_spt,
6037	.flags			= FLAG_IS_ICH
6038				  | FLAG_HAS_WOL
6039				  | FLAG_HAS_HW_TIMESTAMP
6040				  | FLAG_HAS_CTRLEXT_ON_LOAD
6041				  | FLAG_HAS_AMT
6042				  | FLAG_HAS_FLASH
6043				  | FLAG_HAS_JUMBO_FRAMES
6044				  | FLAG_APME_IN_WUC,
6045	.flags2			= FLAG2_HAS_PHY_STATS
6046				  | FLAG2_HAS_EEE,
6047	.pba			= 26,
6048	.max_hw_frame_size	= 9022,
6049	.get_variants		= e1000_get_variants_ich8lan,
6050	.mac_ops		= &ich8_mac_ops,
6051	.phy_ops		= &ich8_phy_ops,
6052	.nvm_ops		= &spt_nvm_ops,
6053};
6054
6055const struct e1000_info e1000_pch_cnp_info = {
6056	.mac			= e1000_pch_cnp,
6057	.flags			= FLAG_IS_ICH
6058				  | FLAG_HAS_WOL
6059				  | FLAG_HAS_HW_TIMESTAMP
6060				  | FLAG_HAS_CTRLEXT_ON_LOAD
6061				  | FLAG_HAS_AMT
6062				  | FLAG_HAS_FLASH
6063				  | FLAG_HAS_JUMBO_FRAMES
6064				  | FLAG_APME_IN_WUC,
6065	.flags2			= FLAG2_HAS_PHY_STATS
6066				  | FLAG2_HAS_EEE,
6067	.pba			= 26,
6068	.max_hw_frame_size	= 9022,
6069	.get_variants		= e1000_get_variants_ich8lan,
6070	.mac_ops		= &ich8_mac_ops,
6071	.phy_ops		= &ich8_phy_ops,
6072	.nvm_ops		= &spt_nvm_ops,
6073};
6074
6075const struct e1000_info e1000_pch_tgp_info = {
6076	.mac			= e1000_pch_tgp,
6077	.flags			= FLAG_IS_ICH
6078				  | FLAG_HAS_WOL
6079				  | FLAG_HAS_HW_TIMESTAMP
6080				  | FLAG_HAS_CTRLEXT_ON_LOAD
6081				  | FLAG_HAS_AMT
6082				  | FLAG_HAS_FLASH
6083				  | FLAG_HAS_JUMBO_FRAMES
6084				  | FLAG_APME_IN_WUC,
6085	.flags2			= FLAG2_HAS_PHY_STATS
6086				  | FLAG2_HAS_EEE,
6087	.pba			= 26,
6088	.max_hw_frame_size	= 9022,
6089	.get_variants		= e1000_get_variants_ich8lan,
6090	.mac_ops		= &ich8_mac_ops,
6091	.phy_ops		= &ich8_phy_ops,
6092	.nvm_ops		= &spt_nvm_ops,
6093};
6094
6095const struct e1000_info e1000_pch_adp_info = {
6096	.mac			= e1000_pch_adp,
6097	.flags			= FLAG_IS_ICH
6098				  | FLAG_HAS_WOL
6099				  | FLAG_HAS_HW_TIMESTAMP
6100				  | FLAG_HAS_CTRLEXT_ON_LOAD
6101				  | FLAG_HAS_AMT
6102				  | FLAG_HAS_FLASH
6103				  | FLAG_HAS_JUMBO_FRAMES
6104				  | FLAG_APME_IN_WUC,
6105	.flags2			= FLAG2_HAS_PHY_STATS
6106				  | FLAG2_HAS_EEE,
6107	.pba			= 26,
6108	.max_hw_frame_size	= 9022,
6109	.get_variants		= e1000_get_variants_ich8lan,
6110	.mac_ops		= &ich8_mac_ops,
6111	.phy_ops		= &ich8_phy_ops,
6112	.nvm_ops		= &spt_nvm_ops,
6113};
6114
6115const struct e1000_info e1000_pch_mtp_info = {
6116	.mac			= e1000_pch_mtp,
6117	.flags			= FLAG_IS_ICH
6118				  | FLAG_HAS_WOL
6119				  | FLAG_HAS_HW_TIMESTAMP
6120				  | FLAG_HAS_CTRLEXT_ON_LOAD
6121				  | FLAG_HAS_AMT
6122				  | FLAG_HAS_FLASH
6123				  | FLAG_HAS_JUMBO_FRAMES
6124				  | FLAG_APME_IN_WUC,
6125	.flags2			= FLAG2_HAS_PHY_STATS
6126				  | FLAG2_HAS_EEE,
6127	.pba			= 26,
6128	.max_hw_frame_size	= 9022,
6129	.get_variants		= e1000_get_variants_ich8lan,
6130	.mac_ops		= &ich8_mac_ops,
6131	.phy_ops		= &ich8_phy_ops,
6132	.nvm_ops		= &spt_nvm_ops,
6133};
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0
   2/* Copyright(c) 1999 - 2018 Intel Corporation. */
   3
   4/* 82562G 10/100 Network Connection
   5 * 82562G-2 10/100 Network Connection
   6 * 82562GT 10/100 Network Connection
   7 * 82562GT-2 10/100 Network Connection
   8 * 82562V 10/100 Network Connection
   9 * 82562V-2 10/100 Network Connection
  10 * 82566DC-2 Gigabit Network Connection
  11 * 82566DC Gigabit Network Connection
  12 * 82566DM-2 Gigabit Network Connection
  13 * 82566DM Gigabit Network Connection
  14 * 82566MC Gigabit Network Connection
  15 * 82566MM Gigabit Network Connection
  16 * 82567LM Gigabit Network Connection
  17 * 82567LF Gigabit Network Connection
  18 * 82567V Gigabit Network Connection
  19 * 82567LM-2 Gigabit Network Connection
  20 * 82567LF-2 Gigabit Network Connection
  21 * 82567V-2 Gigabit Network Connection
  22 * 82567LF-3 Gigabit Network Connection
  23 * 82567LM-3 Gigabit Network Connection
  24 * 82567LM-4 Gigabit Network Connection
  25 * 82577LM Gigabit Network Connection
  26 * 82577LC Gigabit Network Connection
  27 * 82578DM Gigabit Network Connection
  28 * 82578DC Gigabit Network Connection
  29 * 82579LM Gigabit Network Connection
  30 * 82579V Gigabit Network Connection
  31 * Ethernet Connection I217-LM
  32 * Ethernet Connection I217-V
  33 * Ethernet Connection I218-V
  34 * Ethernet Connection I218-LM
  35 * Ethernet Connection (2) I218-LM
  36 * Ethernet Connection (2) I218-V
  37 * Ethernet Connection (3) I218-LM
  38 * Ethernet Connection (3) I218-V
  39 */
  40
  41#include "e1000.h"
  42
  43/* ICH GbE Flash Hardware Sequencing Flash Status Register bit breakdown */
  44/* Offset 04h HSFSTS */
  45union ich8_hws_flash_status {
  46	struct ich8_hsfsts {
  47		u16 flcdone:1;	/* bit 0 Flash Cycle Done */
  48		u16 flcerr:1;	/* bit 1 Flash Cycle Error */
  49		u16 dael:1;	/* bit 2 Direct Access error Log */
  50		u16 berasesz:2;	/* bit 4:3 Sector Erase Size */
  51		u16 flcinprog:1;	/* bit 5 flash cycle in Progress */
  52		u16 reserved1:2;	/* bit 13:6 Reserved */
  53		u16 reserved2:6;	/* bit 13:6 Reserved */
  54		u16 fldesvalid:1;	/* bit 14 Flash Descriptor Valid */
  55		u16 flockdn:1;	/* bit 15 Flash Config Lock-Down */
  56	} hsf_status;
  57	u16 regval;
  58};
  59
  60/* ICH GbE Flash Hardware Sequencing Flash control Register bit breakdown */
  61/* Offset 06h FLCTL */
  62union ich8_hws_flash_ctrl {
  63	struct ich8_hsflctl {
  64		u16 flcgo:1;	/* 0 Flash Cycle Go */
  65		u16 flcycle:2;	/* 2:1 Flash Cycle */
  66		u16 reserved:5;	/* 7:3 Reserved  */
  67		u16 fldbcount:2;	/* 9:8 Flash Data Byte Count */
  68		u16 flockdn:6;	/* 15:10 Reserved */
  69	} hsf_ctrl;
  70	u16 regval;
  71};
  72
  73/* ICH Flash Region Access Permissions */
  74union ich8_hws_flash_regacc {
  75	struct ich8_flracc {
  76		u32 grra:8;	/* 0:7 GbE region Read Access */
  77		u32 grwa:8;	/* 8:15 GbE region Write Access */
  78		u32 gmrag:8;	/* 23:16 GbE Master Read Access Grant */
  79		u32 gmwag:8;	/* 31:24 GbE Master Write Access Grant */
  80	} hsf_flregacc;
  81	u16 regval;
  82};
  83
  84/* ICH Flash Protected Region */
  85union ich8_flash_protected_range {
  86	struct ich8_pr {
  87		u32 base:13;	/* 0:12 Protected Range Base */
  88		u32 reserved1:2;	/* 13:14 Reserved */
  89		u32 rpe:1;	/* 15 Read Protection Enable */
  90		u32 limit:13;	/* 16:28 Protected Range Limit */
  91		u32 reserved2:2;	/* 29:30 Reserved */
  92		u32 wpe:1;	/* 31 Write Protection Enable */
  93	} range;
  94	u32 regval;
  95};
  96
  97static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw);
  98static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw);
  99static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank);
 100static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
 101						u32 offset, u8 byte);
 102static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
 103					 u8 *data);
 104static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
 105					 u16 *data);
 106static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
 107					 u8 size, u16 *data);
 108static s32 e1000_read_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset,
 109					   u32 *data);
 110static s32 e1000_read_flash_dword_ich8lan(struct e1000_hw *hw,
 111					  u32 offset, u32 *data);
 112static s32 e1000_write_flash_data32_ich8lan(struct e1000_hw *hw,
 113					    u32 offset, u32 data);
 114static s32 e1000_retry_write_flash_dword_ich8lan(struct e1000_hw *hw,
 115						 u32 offset, u32 dword);
 116static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw);
 117static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw);
 118static s32 e1000_led_on_ich8lan(struct e1000_hw *hw);
 119static s32 e1000_led_off_ich8lan(struct e1000_hw *hw);
 120static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw);
 121static s32 e1000_setup_led_pchlan(struct e1000_hw *hw);
 122static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw);
 123static s32 e1000_led_on_pchlan(struct e1000_hw *hw);
 124static s32 e1000_led_off_pchlan(struct e1000_hw *hw);
 125static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active);
 126static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw);
 127static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw);
 128static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link);
 129static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw);
 130static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw);
 131static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw);
 132static int e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index);
 133static int e1000_rar_set_pch_lpt(struct e1000_hw *hw, u8 *addr, u32 index);
 134static u32 e1000_rar_get_count_pch_lpt(struct e1000_hw *hw);
 135static s32 e1000_k1_workaround_lv(struct e1000_hw *hw);
 136static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate);
 137static s32 e1000_disable_ulp_lpt_lp(struct e1000_hw *hw, bool force);
 138static s32 e1000_setup_copper_link_pch_lpt(struct e1000_hw *hw);
 139static s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state);
 140
 141static inline u16 __er16flash(struct e1000_hw *hw, unsigned long reg)
 142{
 143	return readw(hw->flash_address + reg);
 144}
 145
 146static inline u32 __er32flash(struct e1000_hw *hw, unsigned long reg)
 147{
 148	return readl(hw->flash_address + reg);
 149}
 150
 151static inline void __ew16flash(struct e1000_hw *hw, unsigned long reg, u16 val)
 152{
 153	writew(val, hw->flash_address + reg);
 154}
 155
 156static inline void __ew32flash(struct e1000_hw *hw, unsigned long reg, u32 val)
 157{
 158	writel(val, hw->flash_address + reg);
 159}
 160
 161#define er16flash(reg)		__er16flash(hw, (reg))
 162#define er32flash(reg)		__er32flash(hw, (reg))
 163#define ew16flash(reg, val)	__ew16flash(hw, (reg), (val))
 164#define ew32flash(reg, val)	__ew32flash(hw, (reg), (val))
 165
 166/**
 167 *  e1000_phy_is_accessible_pchlan - Check if able to access PHY registers
 168 *  @hw: pointer to the HW structure
 169 *
 170 *  Test access to the PHY registers by reading the PHY ID registers.  If
 171 *  the PHY ID is already known (e.g. resume path) compare it with known ID,
 172 *  otherwise assume the read PHY ID is correct if it is valid.
 173 *
 174 *  Assumes the sw/fw/hw semaphore is already acquired.
 175 **/
 176static bool e1000_phy_is_accessible_pchlan(struct e1000_hw *hw)
 177{
 178	u16 phy_reg = 0;
 179	u32 phy_id = 0;
 180	s32 ret_val = 0;
 181	u16 retry_count;
 182	u32 mac_reg = 0;
 183
 184	for (retry_count = 0; retry_count < 2; retry_count++) {
 185		ret_val = e1e_rphy_locked(hw, MII_PHYSID1, &phy_reg);
 186		if (ret_val || (phy_reg == 0xFFFF))
 187			continue;
 188		phy_id = (u32)(phy_reg << 16);
 189
 190		ret_val = e1e_rphy_locked(hw, MII_PHYSID2, &phy_reg);
 191		if (ret_val || (phy_reg == 0xFFFF)) {
 192			phy_id = 0;
 193			continue;
 194		}
 195		phy_id |= (u32)(phy_reg & PHY_REVISION_MASK);
 196		break;
 197	}
 198
 199	if (hw->phy.id) {
 200		if (hw->phy.id == phy_id)
 201			goto out;
 202	} else if (phy_id) {
 203		hw->phy.id = phy_id;
 204		hw->phy.revision = (u32)(phy_reg & ~PHY_REVISION_MASK);
 205		goto out;
 206	}
 207
 208	/* In case the PHY needs to be in mdio slow mode,
 209	 * set slow mode and try to get the PHY id again.
 210	 */
 211	if (hw->mac.type < e1000_pch_lpt) {
 212		hw->phy.ops.release(hw);
 213		ret_val = e1000_set_mdio_slow_mode_hv(hw);
 214		if (!ret_val)
 215			ret_val = e1000e_get_phy_id(hw);
 216		hw->phy.ops.acquire(hw);
 217	}
 218
 219	if (ret_val)
 220		return false;
 221out:
 222	if (hw->mac.type >= e1000_pch_lpt) {
 223		/* Only unforce SMBus if ME is not active */
 224		if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
 
 
 
 
 
 225			/* Unforce SMBus mode in PHY */
 226			e1e_rphy_locked(hw, CV_SMB_CTRL, &phy_reg);
 227			phy_reg &= ~CV_SMB_CTRL_FORCE_SMBUS;
 228			e1e_wphy_locked(hw, CV_SMB_CTRL, phy_reg);
 229
 
 
 230			/* Unforce SMBus mode in MAC */
 231			mac_reg = er32(CTRL_EXT);
 232			mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
 233			ew32(CTRL_EXT, mac_reg);
 234		}
 235	}
 236
 237	return true;
 238}
 239
 240/**
 241 *  e1000_toggle_lanphypc_pch_lpt - toggle the LANPHYPC pin value
 242 *  @hw: pointer to the HW structure
 243 *
 244 *  Toggling the LANPHYPC pin value fully power-cycles the PHY and is
 245 *  used to reset the PHY to a quiescent state when necessary.
 246 **/
 247static void e1000_toggle_lanphypc_pch_lpt(struct e1000_hw *hw)
 248{
 249	u32 mac_reg;
 250
 251	/* Set Phy Config Counter to 50msec */
 252	mac_reg = er32(FEXTNVM3);
 253	mac_reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK;
 254	mac_reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC;
 255	ew32(FEXTNVM3, mac_reg);
 256
 257	/* Toggle LANPHYPC Value bit */
 258	mac_reg = er32(CTRL);
 259	mac_reg |= E1000_CTRL_LANPHYPC_OVERRIDE;
 260	mac_reg &= ~E1000_CTRL_LANPHYPC_VALUE;
 261	ew32(CTRL, mac_reg);
 262	e1e_flush();
 263	usleep_range(10, 20);
 264	mac_reg &= ~E1000_CTRL_LANPHYPC_OVERRIDE;
 265	ew32(CTRL, mac_reg);
 266	e1e_flush();
 267
 268	if (hw->mac.type < e1000_pch_lpt) {
 269		msleep(50);
 270	} else {
 271		u16 count = 20;
 272
 273		do {
 274			usleep_range(5000, 6000);
 275		} while (!(er32(CTRL_EXT) & E1000_CTRL_EXT_LPCD) && count--);
 276
 277		msleep(30);
 278	}
 279}
 280
 281/**
 282 *  e1000_init_phy_workarounds_pchlan - PHY initialization workarounds
 283 *  @hw: pointer to the HW structure
 284 *
 285 *  Workarounds/flow necessary for PHY initialization during driver load
 286 *  and resume paths.
 287 **/
 288static s32 e1000_init_phy_workarounds_pchlan(struct e1000_hw *hw)
 289{
 290	struct e1000_adapter *adapter = hw->adapter;
 291	u32 mac_reg, fwsm = er32(FWSM);
 292	s32 ret_val;
 293
 294	/* Gate automatic PHY configuration by hardware on managed and
 295	 * non-managed 82579 and newer adapters.
 296	 */
 297	e1000_gate_hw_phy_config_ich8lan(hw, true);
 298
 299	/* It is not possible to be certain of the current state of ULP
 300	 * so forcibly disable it.
 301	 */
 302	hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_unknown;
 303	ret_val = e1000_disable_ulp_lpt_lp(hw, true);
 304	if (ret_val)
 305		e_warn("Failed to disable ULP\n");
 306
 307	ret_val = hw->phy.ops.acquire(hw);
 308	if (ret_val) {
 309		e_dbg("Failed to initialize PHY flow\n");
 310		goto out;
 311	}
 312
 
 
 
 
 
 313	/* The MAC-PHY interconnect may be in SMBus mode.  If the PHY is
 314	 * inaccessible and resetting the PHY is not blocked, toggle the
 315	 * LANPHYPC Value bit to force the interconnect to PCIe mode.
 316	 */
 317	switch (hw->mac.type) {
 318	case e1000_pch_lpt:
 319	case e1000_pch_spt:
 320	case e1000_pch_cnp:
 321	case e1000_pch_tgp:
 322	case e1000_pch_adp:
 323	case e1000_pch_mtp:
 
 
 
 324		if (e1000_phy_is_accessible_pchlan(hw))
 325			break;
 326
 327		/* Before toggling LANPHYPC, see if PHY is accessible by
 328		 * forcing MAC to SMBus mode first.
 329		 */
 330		mac_reg = er32(CTRL_EXT);
 331		mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
 332		ew32(CTRL_EXT, mac_reg);
 333
 334		/* Wait 50 milliseconds for MAC to finish any retries
 335		 * that it might be trying to perform from previous
 336		 * attempts to acknowledge any phy read requests.
 337		 */
 338		msleep(50);
 339
 340		fallthrough;
 341	case e1000_pch2lan:
 342		if (e1000_phy_is_accessible_pchlan(hw))
 343			break;
 344
 345		fallthrough;
 346	case e1000_pchlan:
 347		if ((hw->mac.type == e1000_pchlan) &&
 348		    (fwsm & E1000_ICH_FWSM_FW_VALID))
 349			break;
 350
 351		if (hw->phy.ops.check_reset_block(hw)) {
 352			e_dbg("Required LANPHYPC toggle blocked by ME\n");
 353			ret_val = -E1000_ERR_PHY;
 354			break;
 355		}
 356
 357		/* Toggle LANPHYPC Value bit */
 358		e1000_toggle_lanphypc_pch_lpt(hw);
 359		if (hw->mac.type >= e1000_pch_lpt) {
 360			if (e1000_phy_is_accessible_pchlan(hw))
 361				break;
 362
 363			/* Toggling LANPHYPC brings the PHY out of SMBus mode
 364			 * so ensure that the MAC is also out of SMBus mode
 365			 */
 366			mac_reg = er32(CTRL_EXT);
 367			mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
 368			ew32(CTRL_EXT, mac_reg);
 369
 370			if (e1000_phy_is_accessible_pchlan(hw))
 371				break;
 372
 373			ret_val = -E1000_ERR_PHY;
 374		}
 375		break;
 376	default:
 377		break;
 378	}
 379
 
 
 380	hw->phy.ops.release(hw);
 381	if (!ret_val) {
 382
 383		/* Check to see if able to reset PHY.  Print error if not */
 384		if (hw->phy.ops.check_reset_block(hw)) {
 385			e_err("Reset blocked by ME\n");
 386			goto out;
 387		}
 388
 389		/* Reset the PHY before any access to it.  Doing so, ensures
 390		 * that the PHY is in a known good state before we read/write
 391		 * PHY registers.  The generic reset is sufficient here,
 392		 * because we haven't determined the PHY type yet.
 393		 */
 394		ret_val = e1000e_phy_hw_reset_generic(hw);
 395		if (ret_val)
 396			goto out;
 397
 398		/* On a successful reset, possibly need to wait for the PHY
 399		 * to quiesce to an accessible state before returning control
 400		 * to the calling function.  If the PHY does not quiesce, then
 401		 * return E1000E_BLK_PHY_RESET, as this is the condition that
 402		 *  the PHY is in.
 403		 */
 404		ret_val = hw->phy.ops.check_reset_block(hw);
 405		if (ret_val)
 406			e_err("ME blocked access to PHY after reset\n");
 407	}
 408
 409out:
 410	/* Ungate automatic PHY configuration on non-managed 82579 */
 411	if ((hw->mac.type == e1000_pch2lan) &&
 412	    !(fwsm & E1000_ICH_FWSM_FW_VALID)) {
 413		usleep_range(10000, 11000);
 414		e1000_gate_hw_phy_config_ich8lan(hw, false);
 415	}
 416
 417	return ret_val;
 418}
 419
 420/**
 421 *  e1000_init_phy_params_pchlan - Initialize PHY function pointers
 422 *  @hw: pointer to the HW structure
 423 *
 424 *  Initialize family-specific PHY parameters and function pointers.
 425 **/
 426static s32 e1000_init_phy_params_pchlan(struct e1000_hw *hw)
 427{
 428	struct e1000_phy_info *phy = &hw->phy;
 429	s32 ret_val;
 430
 431	phy->addr = 1;
 432	phy->reset_delay_us = 100;
 433
 434	phy->ops.set_page = e1000_set_page_igp;
 435	phy->ops.read_reg = e1000_read_phy_reg_hv;
 436	phy->ops.read_reg_locked = e1000_read_phy_reg_hv_locked;
 437	phy->ops.read_reg_page = e1000_read_phy_reg_page_hv;
 438	phy->ops.set_d0_lplu_state = e1000_set_lplu_state_pchlan;
 439	phy->ops.set_d3_lplu_state = e1000_set_lplu_state_pchlan;
 440	phy->ops.write_reg = e1000_write_phy_reg_hv;
 441	phy->ops.write_reg_locked = e1000_write_phy_reg_hv_locked;
 442	phy->ops.write_reg_page = e1000_write_phy_reg_page_hv;
 443	phy->ops.power_up = e1000_power_up_phy_copper;
 444	phy->ops.power_down = e1000_power_down_phy_copper_ich8lan;
 445	phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
 446
 447	phy->id = e1000_phy_unknown;
 448
 
 
 
 
 
 449	ret_val = e1000_init_phy_workarounds_pchlan(hw);
 450	if (ret_val)
 451		return ret_val;
 452
 453	if (phy->id == e1000_phy_unknown)
 454		switch (hw->mac.type) {
 455		default:
 456			ret_val = e1000e_get_phy_id(hw);
 457			if (ret_val)
 458				return ret_val;
 459			if ((phy->id != 0) && (phy->id != PHY_REVISION_MASK))
 460				break;
 461			fallthrough;
 462		case e1000_pch2lan:
 463		case e1000_pch_lpt:
 464		case e1000_pch_spt:
 465		case e1000_pch_cnp:
 466		case e1000_pch_tgp:
 467		case e1000_pch_adp:
 468		case e1000_pch_mtp:
 
 
 
 469			/* In case the PHY needs to be in mdio slow mode,
 470			 * set slow mode and try to get the PHY id again.
 471			 */
 472			ret_val = e1000_set_mdio_slow_mode_hv(hw);
 473			if (ret_val)
 474				return ret_val;
 475			ret_val = e1000e_get_phy_id(hw);
 476			if (ret_val)
 477				return ret_val;
 478			break;
 479		}
 480	phy->type = e1000e_get_phy_type_from_id(phy->id);
 481
 482	switch (phy->type) {
 483	case e1000_phy_82577:
 484	case e1000_phy_82579:
 485	case e1000_phy_i217:
 486		phy->ops.check_polarity = e1000_check_polarity_82577;
 487		phy->ops.force_speed_duplex =
 488		    e1000_phy_force_speed_duplex_82577;
 489		phy->ops.get_cable_length = e1000_get_cable_length_82577;
 490		phy->ops.get_info = e1000_get_phy_info_82577;
 491		phy->ops.commit = e1000e_phy_sw_reset;
 492		break;
 493	case e1000_phy_82578:
 494		phy->ops.check_polarity = e1000_check_polarity_m88;
 495		phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88;
 496		phy->ops.get_cable_length = e1000e_get_cable_length_m88;
 497		phy->ops.get_info = e1000e_get_phy_info_m88;
 498		break;
 499	default:
 500		ret_val = -E1000_ERR_PHY;
 501		break;
 502	}
 503
 504	return ret_val;
 505}
 506
 507/**
 508 *  e1000_init_phy_params_ich8lan - Initialize PHY function pointers
 509 *  @hw: pointer to the HW structure
 510 *
 511 *  Initialize family-specific PHY parameters and function pointers.
 512 **/
 513static s32 e1000_init_phy_params_ich8lan(struct e1000_hw *hw)
 514{
 515	struct e1000_phy_info *phy = &hw->phy;
 516	s32 ret_val;
 517	u16 i = 0;
 518
 519	phy->addr = 1;
 520	phy->reset_delay_us = 100;
 521
 522	phy->ops.power_up = e1000_power_up_phy_copper;
 523	phy->ops.power_down = e1000_power_down_phy_copper_ich8lan;
 524
 525	/* We may need to do this twice - once for IGP and if that fails,
 526	 * we'll set BM func pointers and try again
 527	 */
 528	ret_val = e1000e_determine_phy_address(hw);
 529	if (ret_val) {
 530		phy->ops.write_reg = e1000e_write_phy_reg_bm;
 531		phy->ops.read_reg = e1000e_read_phy_reg_bm;
 532		ret_val = e1000e_determine_phy_address(hw);
 533		if (ret_val) {
 534			e_dbg("Cannot determine PHY addr. Erroring out\n");
 535			return ret_val;
 536		}
 537	}
 538
 539	phy->id = 0;
 540	while ((e1000_phy_unknown == e1000e_get_phy_type_from_id(phy->id)) &&
 541	       (i++ < 100)) {
 542		usleep_range(1000, 1100);
 543		ret_val = e1000e_get_phy_id(hw);
 544		if (ret_val)
 545			return ret_val;
 546	}
 547
 548	/* Verify phy id */
 549	switch (phy->id) {
 550	case IGP03E1000_E_PHY_ID:
 551		phy->type = e1000_phy_igp_3;
 552		phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
 553		phy->ops.read_reg_locked = e1000e_read_phy_reg_igp_locked;
 554		phy->ops.write_reg_locked = e1000e_write_phy_reg_igp_locked;
 555		phy->ops.get_info = e1000e_get_phy_info_igp;
 556		phy->ops.check_polarity = e1000_check_polarity_igp;
 557		phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_igp;
 558		break;
 559	case IFE_E_PHY_ID:
 560	case IFE_PLUS_E_PHY_ID:
 561	case IFE_C_E_PHY_ID:
 562		phy->type = e1000_phy_ife;
 563		phy->autoneg_mask = E1000_ALL_NOT_GIG;
 564		phy->ops.get_info = e1000_get_phy_info_ife;
 565		phy->ops.check_polarity = e1000_check_polarity_ife;
 566		phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_ife;
 567		break;
 568	case BME1000_E_PHY_ID:
 569		phy->type = e1000_phy_bm;
 570		phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
 571		phy->ops.read_reg = e1000e_read_phy_reg_bm;
 572		phy->ops.write_reg = e1000e_write_phy_reg_bm;
 573		phy->ops.commit = e1000e_phy_sw_reset;
 574		phy->ops.get_info = e1000e_get_phy_info_m88;
 575		phy->ops.check_polarity = e1000_check_polarity_m88;
 576		phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88;
 577		break;
 578	default:
 579		return -E1000_ERR_PHY;
 580	}
 581
 582	return 0;
 583}
 584
 585/**
 586 *  e1000_init_nvm_params_ich8lan - Initialize NVM function pointers
 587 *  @hw: pointer to the HW structure
 588 *
 589 *  Initialize family-specific NVM parameters and function
 590 *  pointers.
 591 **/
 592static s32 e1000_init_nvm_params_ich8lan(struct e1000_hw *hw)
 593{
 594	struct e1000_nvm_info *nvm = &hw->nvm;
 595	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
 596	u32 gfpreg, sector_base_addr, sector_end_addr;
 597	u16 i;
 598	u32 nvm_size;
 599
 600	nvm->type = e1000_nvm_flash_sw;
 601
 602	if (hw->mac.type >= e1000_pch_spt) {
 603		/* in SPT, gfpreg doesn't exist. NVM size is taken from the
 604		 * STRAP register. This is because in SPT the GbE Flash region
 605		 * is no longer accessed through the flash registers. Instead,
 606		 * the mechanism has changed, and the Flash region access
 607		 * registers are now implemented in GbE memory space.
 608		 */
 609		nvm->flash_base_addr = 0;
 610		nvm_size = (((er32(STRAP) >> 1) & 0x1F) + 1)
 611		    * NVM_SIZE_MULTIPLIER;
 612		nvm->flash_bank_size = nvm_size / 2;
 613		/* Adjust to word count */
 614		nvm->flash_bank_size /= sizeof(u16);
 615		/* Set the base address for flash register access */
 616		hw->flash_address = hw->hw_addr + E1000_FLASH_BASE_ADDR;
 617	} else {
 618		/* Can't read flash registers if register set isn't mapped. */
 619		if (!hw->flash_address) {
 620			e_dbg("ERROR: Flash registers not mapped\n");
 621			return -E1000_ERR_CONFIG;
 622		}
 623
 624		gfpreg = er32flash(ICH_FLASH_GFPREG);
 625
 626		/* sector_X_addr is a "sector"-aligned address (4096 bytes)
 627		 * Add 1 to sector_end_addr since this sector is included in
 628		 * the overall size.
 629		 */
 630		sector_base_addr = gfpreg & FLASH_GFPREG_BASE_MASK;
 631		sector_end_addr = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK) + 1;
 632
 633		/* flash_base_addr is byte-aligned */
 634		nvm->flash_base_addr = sector_base_addr
 635		    << FLASH_SECTOR_ADDR_SHIFT;
 636
 637		/* find total size of the NVM, then cut in half since the total
 638		 * size represents two separate NVM banks.
 639		 */
 640		nvm->flash_bank_size = ((sector_end_addr - sector_base_addr)
 641					<< FLASH_SECTOR_ADDR_SHIFT);
 642		nvm->flash_bank_size /= 2;
 643		/* Adjust to word count */
 644		nvm->flash_bank_size /= sizeof(u16);
 645	}
 646
 647	nvm->word_size = E1000_ICH8_SHADOW_RAM_WORDS;
 648
 649	/* Clear shadow ram */
 650	for (i = 0; i < nvm->word_size; i++) {
 651		dev_spec->shadow_ram[i].modified = false;
 652		dev_spec->shadow_ram[i].value = 0xFFFF;
 653	}
 654
 655	return 0;
 656}
 657
 658/**
 659 *  e1000_init_mac_params_ich8lan - Initialize MAC function pointers
 660 *  @hw: pointer to the HW structure
 661 *
 662 *  Initialize family-specific MAC parameters and function
 663 *  pointers.
 664 **/
 665static s32 e1000_init_mac_params_ich8lan(struct e1000_hw *hw)
 666{
 667	struct e1000_mac_info *mac = &hw->mac;
 668
 669	/* Set media type function pointer */
 670	hw->phy.media_type = e1000_media_type_copper;
 671
 672	/* Set mta register count */
 673	mac->mta_reg_count = 32;
 674	/* Set rar entry count */
 675	mac->rar_entry_count = E1000_ICH_RAR_ENTRIES;
 676	if (mac->type == e1000_ich8lan)
 677		mac->rar_entry_count--;
 678	/* FWSM register */
 679	mac->has_fwsm = true;
 680	/* ARC subsystem not supported */
 681	mac->arc_subsystem_valid = false;
 682	/* Adaptive IFS supported */
 683	mac->adaptive_ifs = true;
 684
 685	/* LED and other operations */
 686	switch (mac->type) {
 687	case e1000_ich8lan:
 688	case e1000_ich9lan:
 689	case e1000_ich10lan:
 690		/* check management mode */
 691		mac->ops.check_mng_mode = e1000_check_mng_mode_ich8lan;
 692		/* ID LED init */
 693		mac->ops.id_led_init = e1000e_id_led_init_generic;
 694		/* blink LED */
 695		mac->ops.blink_led = e1000e_blink_led_generic;
 696		/* setup LED */
 697		mac->ops.setup_led = e1000e_setup_led_generic;
 698		/* cleanup LED */
 699		mac->ops.cleanup_led = e1000_cleanup_led_ich8lan;
 700		/* turn on/off LED */
 701		mac->ops.led_on = e1000_led_on_ich8lan;
 702		mac->ops.led_off = e1000_led_off_ich8lan;
 703		break;
 704	case e1000_pch2lan:
 705		mac->rar_entry_count = E1000_PCH2_RAR_ENTRIES;
 706		mac->ops.rar_set = e1000_rar_set_pch2lan;
 707		fallthrough;
 708	case e1000_pch_lpt:
 709	case e1000_pch_spt:
 710	case e1000_pch_cnp:
 711	case e1000_pch_tgp:
 712	case e1000_pch_adp:
 713	case e1000_pch_mtp:
 
 
 
 714	case e1000_pchlan:
 715		/* check management mode */
 716		mac->ops.check_mng_mode = e1000_check_mng_mode_pchlan;
 717		/* ID LED init */
 718		mac->ops.id_led_init = e1000_id_led_init_pchlan;
 719		/* setup LED */
 720		mac->ops.setup_led = e1000_setup_led_pchlan;
 721		/* cleanup LED */
 722		mac->ops.cleanup_led = e1000_cleanup_led_pchlan;
 723		/* turn on/off LED */
 724		mac->ops.led_on = e1000_led_on_pchlan;
 725		mac->ops.led_off = e1000_led_off_pchlan;
 726		break;
 727	default:
 728		break;
 729	}
 730
 731	if (mac->type >= e1000_pch_lpt) {
 732		mac->rar_entry_count = E1000_PCH_LPT_RAR_ENTRIES;
 733		mac->ops.rar_set = e1000_rar_set_pch_lpt;
 734		mac->ops.setup_physical_interface =
 735		    e1000_setup_copper_link_pch_lpt;
 736		mac->ops.rar_get_count = e1000_rar_get_count_pch_lpt;
 737	}
 738
 739	/* Enable PCS Lock-loss workaround for ICH8 */
 740	if (mac->type == e1000_ich8lan)
 741		e1000e_set_kmrn_lock_loss_workaround_ich8lan(hw, true);
 742
 743	return 0;
 744}
 745
 746/**
 747 *  __e1000_access_emi_reg_locked - Read/write EMI register
 748 *  @hw: pointer to the HW structure
 749 *  @address: EMI address to program
 750 *  @data: pointer to value to read/write from/to the EMI address
 751 *  @read: boolean flag to indicate read or write
 752 *
 753 *  This helper function assumes the SW/FW/HW Semaphore is already acquired.
 754 **/
 755static s32 __e1000_access_emi_reg_locked(struct e1000_hw *hw, u16 address,
 756					 u16 *data, bool read)
 757{
 758	s32 ret_val;
 759
 760	ret_val = e1e_wphy_locked(hw, I82579_EMI_ADDR, address);
 761	if (ret_val)
 762		return ret_val;
 763
 764	if (read)
 765		ret_val = e1e_rphy_locked(hw, I82579_EMI_DATA, data);
 766	else
 767		ret_val = e1e_wphy_locked(hw, I82579_EMI_DATA, *data);
 768
 769	return ret_val;
 770}
 771
 772/**
 773 *  e1000_read_emi_reg_locked - Read Extended Management Interface register
 774 *  @hw: pointer to the HW structure
 775 *  @addr: EMI address to program
 776 *  @data: value to be read from the EMI address
 777 *
 778 *  Assumes the SW/FW/HW Semaphore is already acquired.
 779 **/
 780s32 e1000_read_emi_reg_locked(struct e1000_hw *hw, u16 addr, u16 *data)
 781{
 782	return __e1000_access_emi_reg_locked(hw, addr, data, true);
 783}
 784
 785/**
 786 *  e1000_write_emi_reg_locked - Write Extended Management Interface register
 787 *  @hw: pointer to the HW structure
 788 *  @addr: EMI address to program
 789 *  @data: value to be written to the EMI address
 790 *
 791 *  Assumes the SW/FW/HW Semaphore is already acquired.
 792 **/
 793s32 e1000_write_emi_reg_locked(struct e1000_hw *hw, u16 addr, u16 data)
 794{
 795	return __e1000_access_emi_reg_locked(hw, addr, &data, false);
 796}
 797
 798/**
 799 *  e1000_set_eee_pchlan - Enable/disable EEE support
 800 *  @hw: pointer to the HW structure
 801 *
 802 *  Enable/disable EEE based on setting in dev_spec structure, the duplex of
 803 *  the link and the EEE capabilities of the link partner.  The LPI Control
 804 *  register bits will remain set only if/when link is up.
 805 *
 806 *  EEE LPI must not be asserted earlier than one second after link is up.
 807 *  On 82579, EEE LPI should not be enabled until such time otherwise there
 808 *  can be link issues with some switches.  Other devices can have EEE LPI
 809 *  enabled immediately upon link up since they have a timer in hardware which
 810 *  prevents LPI from being asserted too early.
 811 **/
 812s32 e1000_set_eee_pchlan(struct e1000_hw *hw)
 813{
 814	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
 815	s32 ret_val;
 816	u16 lpa, pcs_status, adv, adv_addr, lpi_ctrl, data;
 817
 818	switch (hw->phy.type) {
 819	case e1000_phy_82579:
 820		lpa = I82579_EEE_LP_ABILITY;
 821		pcs_status = I82579_EEE_PCS_STATUS;
 822		adv_addr = I82579_EEE_ADVERTISEMENT;
 823		break;
 824	case e1000_phy_i217:
 825		lpa = I217_EEE_LP_ABILITY;
 826		pcs_status = I217_EEE_PCS_STATUS;
 827		adv_addr = I217_EEE_ADVERTISEMENT;
 828		break;
 829	default:
 830		return 0;
 831	}
 832
 833	ret_val = hw->phy.ops.acquire(hw);
 834	if (ret_val)
 835		return ret_val;
 836
 837	ret_val = e1e_rphy_locked(hw, I82579_LPI_CTRL, &lpi_ctrl);
 838	if (ret_val)
 839		goto release;
 840
 841	/* Clear bits that enable EEE in various speeds */
 842	lpi_ctrl &= ~I82579_LPI_CTRL_ENABLE_MASK;
 843
 844	/* Enable EEE if not disabled by user */
 845	if (!dev_spec->eee_disable) {
 846		/* Save off link partner's EEE ability */
 847		ret_val = e1000_read_emi_reg_locked(hw, lpa,
 848						    &dev_spec->eee_lp_ability);
 849		if (ret_val)
 850			goto release;
 851
 852		/* Read EEE advertisement */
 853		ret_val = e1000_read_emi_reg_locked(hw, adv_addr, &adv);
 854		if (ret_val)
 855			goto release;
 856
 857		/* Enable EEE only for speeds in which the link partner is
 858		 * EEE capable and for which we advertise EEE.
 859		 */
 860		if (adv & dev_spec->eee_lp_ability & I82579_EEE_1000_SUPPORTED)
 861			lpi_ctrl |= I82579_LPI_CTRL_1000_ENABLE;
 862
 863		if (adv & dev_spec->eee_lp_ability & I82579_EEE_100_SUPPORTED) {
 864			e1e_rphy_locked(hw, MII_LPA, &data);
 865			if (data & LPA_100FULL)
 866				lpi_ctrl |= I82579_LPI_CTRL_100_ENABLE;
 867			else
 868				/* EEE is not supported in 100Half, so ignore
 869				 * partner's EEE in 100 ability if full-duplex
 870				 * is not advertised.
 871				 */
 872				dev_spec->eee_lp_ability &=
 873				    ~I82579_EEE_100_SUPPORTED;
 874		}
 875	}
 876
 877	if (hw->phy.type == e1000_phy_82579) {
 878		ret_val = e1000_read_emi_reg_locked(hw, I82579_LPI_PLL_SHUT,
 879						    &data);
 880		if (ret_val)
 881			goto release;
 882
 883		data &= ~I82579_LPI_100_PLL_SHUT;
 884		ret_val = e1000_write_emi_reg_locked(hw, I82579_LPI_PLL_SHUT,
 885						     data);
 886	}
 887
 888	/* R/Clr IEEE MMD 3.1 bits 11:10 - Tx/Rx LPI Received */
 889	ret_val = e1000_read_emi_reg_locked(hw, pcs_status, &data);
 890	if (ret_val)
 891		goto release;
 892
 893	ret_val = e1e_wphy_locked(hw, I82579_LPI_CTRL, lpi_ctrl);
 894release:
 895	hw->phy.ops.release(hw);
 896
 897	return ret_val;
 898}
 899
 900/**
 901 *  e1000_k1_workaround_lpt_lp - K1 workaround on Lynxpoint-LP
 902 *  @hw:   pointer to the HW structure
 903 *  @link: link up bool flag
 904 *
 905 *  When K1 is enabled for 1Gbps, the MAC can miss 2 DMA completion indications
 906 *  preventing further DMA write requests.  Workaround the issue by disabling
 907 *  the de-assertion of the clock request when in 1Gpbs mode.
 908 *  Also, set appropriate Tx re-transmission timeouts for 10 and 100Half link
 909 *  speeds in order to avoid Tx hangs.
 910 **/
 911static s32 e1000_k1_workaround_lpt_lp(struct e1000_hw *hw, bool link)
 912{
 913	u32 fextnvm6 = er32(FEXTNVM6);
 914	u32 status = er32(STATUS);
 915	s32 ret_val = 0;
 916	u16 reg;
 917
 918	if (link && (status & E1000_STATUS_SPEED_1000)) {
 919		ret_val = hw->phy.ops.acquire(hw);
 920		if (ret_val)
 921			return ret_val;
 922
 923		ret_val =
 924		    e1000e_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
 925						&reg);
 926		if (ret_val)
 927			goto release;
 928
 929		ret_val =
 930		    e1000e_write_kmrn_reg_locked(hw,
 931						 E1000_KMRNCTRLSTA_K1_CONFIG,
 932						 reg &
 933						 ~E1000_KMRNCTRLSTA_K1_ENABLE);
 934		if (ret_val)
 935			goto release;
 936
 937		usleep_range(10, 20);
 938
 939		ew32(FEXTNVM6, fextnvm6 | E1000_FEXTNVM6_REQ_PLL_CLK);
 940
 941		ret_val =
 942		    e1000e_write_kmrn_reg_locked(hw,
 943						 E1000_KMRNCTRLSTA_K1_CONFIG,
 944						 reg);
 945release:
 946		hw->phy.ops.release(hw);
 947	} else {
 948		/* clear FEXTNVM6 bit 8 on link down or 10/100 */
 949		fextnvm6 &= ~E1000_FEXTNVM6_REQ_PLL_CLK;
 950
 951		if ((hw->phy.revision > 5) || !link ||
 952		    ((status & E1000_STATUS_SPEED_100) &&
 953		     (status & E1000_STATUS_FD)))
 954			goto update_fextnvm6;
 955
 956		ret_val = e1e_rphy(hw, I217_INBAND_CTRL, &reg);
 957		if (ret_val)
 958			return ret_val;
 959
 960		/* Clear link status transmit timeout */
 961		reg &= ~I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_MASK;
 962
 963		if (status & E1000_STATUS_SPEED_100) {
 964			/* Set inband Tx timeout to 5x10us for 100Half */
 965			reg |= 5 << I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_SHIFT;
 966
 967			/* Do not extend the K1 entry latency for 100Half */
 968			fextnvm6 &= ~E1000_FEXTNVM6_ENABLE_K1_ENTRY_CONDITION;
 969		} else {
 970			/* Set inband Tx timeout to 50x10us for 10Full/Half */
 971			reg |= 50 <<
 972			    I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_SHIFT;
 973
 974			/* Extend the K1 entry latency for 10 Mbps */
 975			fextnvm6 |= E1000_FEXTNVM6_ENABLE_K1_ENTRY_CONDITION;
 976		}
 977
 978		ret_val = e1e_wphy(hw, I217_INBAND_CTRL, reg);
 979		if (ret_val)
 980			return ret_val;
 981
 982update_fextnvm6:
 983		ew32(FEXTNVM6, fextnvm6);
 984	}
 985
 986	return ret_val;
 987}
 988
 989/**
 990 *  e1000_platform_pm_pch_lpt - Set platform power management values
 991 *  @hw: pointer to the HW structure
 992 *  @link: bool indicating link status
 993 *
 994 *  Set the Latency Tolerance Reporting (LTR) values for the "PCIe-like"
 995 *  GbE MAC in the Lynx Point PCH based on Rx buffer size and link speed
 996 *  when link is up (which must not exceed the maximum latency supported
 997 *  by the platform), otherwise specify there is no LTR requirement.
 998 *  Unlike true-PCIe devices which set the LTR maximum snoop/no-snoop
 999 *  latencies in the LTR Extended Capability Structure in the PCIe Extended
1000 *  Capability register set, on this device LTR is set by writing the
1001 *  equivalent snoop/no-snoop latencies in the LTRV register in the MAC and
1002 *  set the SEND bit to send an Intel On-chip System Fabric sideband (IOSF-SB)
1003 *  message to the PMC.
1004 **/
1005static s32 e1000_platform_pm_pch_lpt(struct e1000_hw *hw, bool link)
1006{
1007	u32 reg = link << (E1000_LTRV_REQ_SHIFT + E1000_LTRV_NOSNOOP_SHIFT) |
1008	    link << E1000_LTRV_REQ_SHIFT | E1000_LTRV_SEND;
1009	u16 max_ltr_enc_d = 0;	/* maximum LTR decoded by platform */
1010	u16 lat_enc_d = 0;	/* latency decoded */
1011	u16 lat_enc = 0;	/* latency encoded */
1012
1013	if (link) {
1014		u16 speed, duplex, scale = 0;
1015		u16 max_snoop, max_nosnoop;
1016		u16 max_ltr_enc;	/* max LTR latency encoded */
1017		u64 value;
1018		u32 rxa;
1019
1020		if (!hw->adapter->max_frame_size) {
1021			e_dbg("max_frame_size not set.\n");
1022			return -E1000_ERR_CONFIG;
1023		}
1024
1025		hw->mac.ops.get_link_up_info(hw, &speed, &duplex);
1026		if (!speed) {
1027			e_dbg("Speed not set.\n");
1028			return -E1000_ERR_CONFIG;
1029		}
1030
1031		/* Rx Packet Buffer Allocation size (KB) */
1032		rxa = er32(PBA) & E1000_PBA_RXA_MASK;
1033
1034		/* Determine the maximum latency tolerated by the device.
1035		 *
1036		 * Per the PCIe spec, the tolerated latencies are encoded as
1037		 * a 3-bit encoded scale (only 0-5 are valid) multiplied by
1038		 * a 10-bit value (0-1023) to provide a range from 1 ns to
1039		 * 2^25*(2^10-1) ns.  The scale is encoded as 0=2^0ns,
1040		 * 1=2^5ns, 2=2^10ns,...5=2^25ns.
1041		 */
1042		rxa *= 512;
1043		value = (rxa > hw->adapter->max_frame_size) ?
1044			(rxa - hw->adapter->max_frame_size) * (16000 / speed) :
1045			0;
1046
1047		while (value > PCI_LTR_VALUE_MASK) {
1048			scale++;
1049			value = DIV_ROUND_UP(value, BIT(5));
1050		}
1051		if (scale > E1000_LTRV_SCALE_MAX) {
1052			e_dbg("Invalid LTR latency scale %d\n", scale);
1053			return -E1000_ERR_CONFIG;
1054		}
1055		lat_enc = (u16)((scale << PCI_LTR_SCALE_SHIFT) | value);
1056
1057		/* Determine the maximum latency tolerated by the platform */
1058		pci_read_config_word(hw->adapter->pdev, E1000_PCI_LTR_CAP_LPT,
1059				     &max_snoop);
1060		pci_read_config_word(hw->adapter->pdev,
1061				     E1000_PCI_LTR_CAP_LPT + 2, &max_nosnoop);
1062		max_ltr_enc = max_t(u16, max_snoop, max_nosnoop);
1063
1064		lat_enc_d = (lat_enc & E1000_LTRV_VALUE_MASK) *
1065			     (1U << (E1000_LTRV_SCALE_FACTOR *
1066			     ((lat_enc & E1000_LTRV_SCALE_MASK)
1067			     >> E1000_LTRV_SCALE_SHIFT)));
1068
1069		max_ltr_enc_d = (max_ltr_enc & E1000_LTRV_VALUE_MASK) *
1070				 (1U << (E1000_LTRV_SCALE_FACTOR *
1071				 ((max_ltr_enc & E1000_LTRV_SCALE_MASK)
1072				 >> E1000_LTRV_SCALE_SHIFT)));
1073
1074		if (lat_enc_d > max_ltr_enc_d)
1075			lat_enc = max_ltr_enc;
1076	}
1077
1078	/* Set Snoop and No-Snoop latencies the same */
1079	reg |= lat_enc | (lat_enc << E1000_LTRV_NOSNOOP_SHIFT);
1080	ew32(LTRV, reg);
1081
1082	return 0;
1083}
1084
1085/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1086 *  e1000_enable_ulp_lpt_lp - configure Ultra Low Power mode for LynxPoint-LP
1087 *  @hw: pointer to the HW structure
1088 *  @to_sx: boolean indicating a system power state transition to Sx
1089 *
1090 *  When link is down, configure ULP mode to significantly reduce the power
1091 *  to the PHY.  If on a Manageability Engine (ME) enabled system, tell the
1092 *  ME firmware to start the ULP configuration.  If not on an ME enabled
1093 *  system, configure the ULP mode by software.
1094 */
1095s32 e1000_enable_ulp_lpt_lp(struct e1000_hw *hw, bool to_sx)
1096{
1097	u32 mac_reg;
1098	s32 ret_val = 0;
1099	u16 phy_reg;
1100	u16 oem_reg = 0;
1101
1102	if ((hw->mac.type < e1000_pch_lpt) ||
1103	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_LM) ||
1104	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_V) ||
1105	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_LM2) ||
1106	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_V2) ||
1107	    (hw->dev_spec.ich8lan.ulp_state == e1000_ulp_state_on))
1108		return 0;
1109
1110	if (er32(FWSM) & E1000_ICH_FWSM_FW_VALID) {
1111		/* Request ME configure ULP mode in the PHY */
1112		mac_reg = er32(H2ME);
1113		mac_reg |= E1000_H2ME_ULP | E1000_H2ME_ENFORCE_SETTINGS;
1114		ew32(H2ME, mac_reg);
1115
1116		goto out;
1117	}
1118
1119	if (!to_sx) {
1120		int i = 0;
1121
1122		/* Poll up to 5 seconds for Cable Disconnected indication */
1123		while (!(er32(FEXT) & E1000_FEXT_PHY_CABLE_DISCONNECTED)) {
1124			/* Bail if link is re-acquired */
1125			if (er32(STATUS) & E1000_STATUS_LU)
1126				return -E1000_ERR_PHY;
1127
1128			if (i++ == 100)
1129				break;
1130
1131			msleep(50);
1132		}
1133		e_dbg("CABLE_DISCONNECTED %s set after %dmsec\n",
1134		      (er32(FEXT) &
1135		       E1000_FEXT_PHY_CABLE_DISCONNECTED) ? "" : "not", i * 50);
1136	}
1137
1138	ret_val = hw->phy.ops.acquire(hw);
1139	if (ret_val)
1140		goto out;
1141
1142	/* Force SMBus mode in PHY */
1143	ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL, &phy_reg);
1144	if (ret_val)
1145		goto release;
1146	phy_reg |= CV_SMB_CTRL_FORCE_SMBUS;
1147	e1000_write_phy_reg_hv_locked(hw, CV_SMB_CTRL, phy_reg);
1148
1149	/* Force SMBus mode in MAC */
1150	mac_reg = er32(CTRL_EXT);
1151	mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
1152	ew32(CTRL_EXT, mac_reg);
1153
1154	/* Si workaround for ULP entry flow on i127/rev6 h/w.  Enable
1155	 * LPLU and disable Gig speed when entering ULP
1156	 */
1157	if ((hw->phy.type == e1000_phy_i217) && (hw->phy.revision == 6)) {
1158		ret_val = e1000_read_phy_reg_hv_locked(hw, HV_OEM_BITS,
1159						       &oem_reg);
1160		if (ret_val)
1161			goto release;
1162
1163		phy_reg = oem_reg;
1164		phy_reg |= HV_OEM_BITS_LPLU | HV_OEM_BITS_GBE_DIS;
1165
1166		ret_val = e1000_write_phy_reg_hv_locked(hw, HV_OEM_BITS,
1167							phy_reg);
1168
1169		if (ret_val)
1170			goto release;
1171	}
1172
1173	/* Set Inband ULP Exit, Reset to SMBus mode and
1174	 * Disable SMBus Release on PERST# in PHY
1175	 */
1176	ret_val = e1000_read_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, &phy_reg);
1177	if (ret_val)
1178		goto release;
1179	phy_reg |= (I218_ULP_CONFIG1_RESET_TO_SMBUS |
1180		    I218_ULP_CONFIG1_DISABLE_SMB_PERST);
1181	if (to_sx) {
1182		if (er32(WUFC) & E1000_WUFC_LNKC)
1183			phy_reg |= I218_ULP_CONFIG1_WOL_HOST;
1184		else
1185			phy_reg &= ~I218_ULP_CONFIG1_WOL_HOST;
1186
1187		phy_reg |= I218_ULP_CONFIG1_STICKY_ULP;
1188		phy_reg &= ~I218_ULP_CONFIG1_INBAND_EXIT;
1189	} else {
1190		phy_reg |= I218_ULP_CONFIG1_INBAND_EXIT;
1191		phy_reg &= ~I218_ULP_CONFIG1_STICKY_ULP;
1192		phy_reg &= ~I218_ULP_CONFIG1_WOL_HOST;
1193	}
1194	e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1195
1196	/* Set Disable SMBus Release on PERST# in MAC */
1197	mac_reg = er32(FEXTNVM7);
1198	mac_reg |= E1000_FEXTNVM7_DISABLE_SMB_PERST;
1199	ew32(FEXTNVM7, mac_reg);
1200
1201	/* Commit ULP changes in PHY by starting auto ULP configuration */
1202	phy_reg |= I218_ULP_CONFIG1_START;
1203	e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1204
1205	if ((hw->phy.type == e1000_phy_i217) && (hw->phy.revision == 6) &&
1206	    to_sx && (er32(STATUS) & E1000_STATUS_LU)) {
1207		ret_val = e1000_write_phy_reg_hv_locked(hw, HV_OEM_BITS,
1208							oem_reg);
1209		if (ret_val)
1210			goto release;
1211	}
1212
1213release:
1214	hw->phy.ops.release(hw);
1215out:
1216	if (ret_val)
1217		e_dbg("Error in ULP enable flow: %d\n", ret_val);
1218	else
1219		hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_on;
1220
1221	return ret_val;
1222}
1223
1224/**
1225 *  e1000_disable_ulp_lpt_lp - unconfigure Ultra Low Power mode for LynxPoint-LP
1226 *  @hw: pointer to the HW structure
1227 *  @force: boolean indicating whether or not to force disabling ULP
1228 *
1229 *  Un-configure ULP mode when link is up, the system is transitioned from
1230 *  Sx or the driver is unloaded.  If on a Manageability Engine (ME) enabled
1231 *  system, poll for an indication from ME that ULP has been un-configured.
1232 *  If not on an ME enabled system, un-configure the ULP mode by software.
1233 *
1234 *  During nominal operation, this function is called when link is acquired
1235 *  to disable ULP mode (force=false); otherwise, for example when unloading
1236 *  the driver or during Sx->S0 transitions, this is called with force=true
1237 *  to forcibly disable ULP.
1238 */
1239static s32 e1000_disable_ulp_lpt_lp(struct e1000_hw *hw, bool force)
1240{
1241	s32 ret_val = 0;
1242	u32 mac_reg;
1243	u16 phy_reg;
1244	int i = 0;
1245
1246	if ((hw->mac.type < e1000_pch_lpt) ||
1247	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_LM) ||
1248	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_V) ||
1249	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_LM2) ||
1250	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_V2) ||
1251	    (hw->dev_spec.ich8lan.ulp_state == e1000_ulp_state_off))
1252		return 0;
1253
1254	if (er32(FWSM) & E1000_ICH_FWSM_FW_VALID) {
1255		struct e1000_adapter *adapter = hw->adapter;
1256		bool firmware_bug = false;
1257
1258		if (force) {
1259			/* Request ME un-configure ULP mode in the PHY */
1260			mac_reg = er32(H2ME);
1261			mac_reg &= ~E1000_H2ME_ULP;
1262			mac_reg |= E1000_H2ME_ENFORCE_SETTINGS;
1263			ew32(H2ME, mac_reg);
1264		}
1265
1266		/* Poll up to 2.5 seconds for ME to clear ULP_CFG_DONE.
1267		 * If this takes more than 1 second, show a warning indicating a
1268		 * firmware bug
1269		 */
1270		while (er32(FWSM) & E1000_FWSM_ULP_CFG_DONE) {
1271			if (i++ == 250) {
1272				ret_val = -E1000_ERR_PHY;
1273				goto out;
1274			}
1275			if (i > 100 && !firmware_bug)
1276				firmware_bug = true;
1277
1278			usleep_range(10000, 11000);
1279		}
1280		if (firmware_bug)
1281			e_warn("ULP_CONFIG_DONE took %dmsec.  This is a firmware bug\n", i * 10);
 
1282		else
1283			e_dbg("ULP_CONFIG_DONE cleared after %dmsec\n", i * 10);
 
1284
1285		if (force) {
1286			mac_reg = er32(H2ME);
1287			mac_reg &= ~E1000_H2ME_ENFORCE_SETTINGS;
1288			ew32(H2ME, mac_reg);
1289		} else {
1290			/* Clear H2ME.ULP after ME ULP configuration */
1291			mac_reg = er32(H2ME);
1292			mac_reg &= ~E1000_H2ME_ULP;
1293			ew32(H2ME, mac_reg);
1294		}
1295
1296		goto out;
1297	}
1298
1299	ret_val = hw->phy.ops.acquire(hw);
1300	if (ret_val)
1301		goto out;
1302
1303	if (force)
1304		/* Toggle LANPHYPC Value bit */
1305		e1000_toggle_lanphypc_pch_lpt(hw);
1306
 
 
 
 
 
1307	/* Unforce SMBus mode in PHY */
1308	ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL, &phy_reg);
1309	if (ret_val) {
1310		/* The MAC might be in PCIe mode, so temporarily force to
1311		 * SMBus mode in order to access the PHY.
1312		 */
1313		mac_reg = er32(CTRL_EXT);
1314		mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
1315		ew32(CTRL_EXT, mac_reg);
1316
1317		msleep(50);
1318
1319		ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL,
1320						       &phy_reg);
1321		if (ret_val)
1322			goto release;
1323	}
1324	phy_reg &= ~CV_SMB_CTRL_FORCE_SMBUS;
1325	e1000_write_phy_reg_hv_locked(hw, CV_SMB_CTRL, phy_reg);
1326
 
 
1327	/* Unforce SMBus mode in MAC */
1328	mac_reg = er32(CTRL_EXT);
1329	mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
1330	ew32(CTRL_EXT, mac_reg);
1331
1332	/* When ULP mode was previously entered, K1 was disabled by the
1333	 * hardware.  Re-Enable K1 in the PHY when exiting ULP.
1334	 */
1335	ret_val = e1000_read_phy_reg_hv_locked(hw, HV_PM_CTRL, &phy_reg);
1336	if (ret_val)
1337		goto release;
1338	phy_reg |= HV_PM_CTRL_K1_ENABLE;
1339	e1000_write_phy_reg_hv_locked(hw, HV_PM_CTRL, phy_reg);
1340
1341	/* Clear ULP enabled configuration */
1342	ret_val = e1000_read_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, &phy_reg);
1343	if (ret_val)
1344		goto release;
1345	phy_reg &= ~(I218_ULP_CONFIG1_IND |
1346		     I218_ULP_CONFIG1_STICKY_ULP |
1347		     I218_ULP_CONFIG1_RESET_TO_SMBUS |
1348		     I218_ULP_CONFIG1_WOL_HOST |
1349		     I218_ULP_CONFIG1_INBAND_EXIT |
1350		     I218_ULP_CONFIG1_EN_ULP_LANPHYPC |
1351		     I218_ULP_CONFIG1_DIS_CLR_STICKY_ON_PERST |
1352		     I218_ULP_CONFIG1_DISABLE_SMB_PERST);
1353	e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1354
1355	/* Commit ULP changes by starting auto ULP configuration */
1356	phy_reg |= I218_ULP_CONFIG1_START;
1357	e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1358
1359	/* Clear Disable SMBus Release on PERST# in MAC */
1360	mac_reg = er32(FEXTNVM7);
1361	mac_reg &= ~E1000_FEXTNVM7_DISABLE_SMB_PERST;
1362	ew32(FEXTNVM7, mac_reg);
1363
1364release:
1365	hw->phy.ops.release(hw);
1366	if (force) {
1367		e1000_phy_hw_reset(hw);
1368		msleep(50);
1369	}
1370out:
1371	if (ret_val)
1372		e_dbg("Error in ULP disable flow: %d\n", ret_val);
1373	else
1374		hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_off;
1375
1376	return ret_val;
1377}
1378
1379/**
1380 *  e1000_check_for_copper_link_ich8lan - Check for link (Copper)
1381 *  @hw: pointer to the HW structure
1382 *
1383 *  Checks to see of the link status of the hardware has changed.  If a
1384 *  change in link status has been detected, then we read the PHY registers
1385 *  to get the current speed/duplex if link exists.
1386 **/
1387static s32 e1000_check_for_copper_link_ich8lan(struct e1000_hw *hw)
1388{
1389	struct e1000_mac_info *mac = &hw->mac;
1390	s32 ret_val, tipg_reg = 0;
1391	u16 emi_addr, emi_val = 0;
1392	bool link;
1393	u16 phy_reg;
1394
1395	/* We only want to go out to the PHY registers to see if Auto-Neg
1396	 * has completed and/or if our link status has changed.  The
1397	 * get_link_status flag is set upon receiving a Link Status
1398	 * Change or Rx Sequence Error interrupt.
1399	 */
1400	if (!mac->get_link_status)
1401		return 0;
1402	mac->get_link_status = false;
1403
1404	/* First we want to see if the MII Status Register reports
1405	 * link.  If so, then we want to get the current speed/duplex
1406	 * of the PHY.
1407	 */
1408	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
1409	if (ret_val)
1410		goto out;
1411
1412	if (hw->mac.type == e1000_pchlan) {
1413		ret_val = e1000_k1_gig_workaround_hv(hw, link);
1414		if (ret_val)
1415			goto out;
1416	}
1417
1418	/* When connected at 10Mbps half-duplex, some parts are excessively
1419	 * aggressive resulting in many collisions. To avoid this, increase
1420	 * the IPG and reduce Rx latency in the PHY.
1421	 */
1422	if ((hw->mac.type >= e1000_pch2lan) && link) {
1423		u16 speed, duplex;
1424
1425		e1000e_get_speed_and_duplex_copper(hw, &speed, &duplex);
1426		tipg_reg = er32(TIPG);
1427		tipg_reg &= ~E1000_TIPG_IPGT_MASK;
1428
1429		if (duplex == HALF_DUPLEX && speed == SPEED_10) {
1430			tipg_reg |= 0xFF;
1431			/* Reduce Rx latency in analog PHY */
1432			emi_val = 0;
1433		} else if (hw->mac.type >= e1000_pch_spt &&
1434			   duplex == FULL_DUPLEX && speed != SPEED_1000) {
1435			tipg_reg |= 0xC;
1436			emi_val = 1;
1437		} else {
1438
1439			/* Roll back the default values */
1440			tipg_reg |= 0x08;
1441			emi_val = 1;
1442		}
1443
1444		ew32(TIPG, tipg_reg);
1445
1446		ret_val = hw->phy.ops.acquire(hw);
1447		if (ret_val)
1448			goto out;
1449
1450		if (hw->mac.type == e1000_pch2lan)
1451			emi_addr = I82579_RX_CONFIG;
1452		else
1453			emi_addr = I217_RX_CONFIG;
1454		ret_val = e1000_write_emi_reg_locked(hw, emi_addr, emi_val);
1455
1456		if (hw->mac.type >= e1000_pch_lpt) {
1457			u16 phy_reg;
1458
1459			e1e_rphy_locked(hw, I217_PLL_CLOCK_GATE_REG, &phy_reg);
1460			phy_reg &= ~I217_PLL_CLOCK_GATE_MASK;
1461			if (speed == SPEED_100 || speed == SPEED_10)
1462				phy_reg |= 0x3E8;
1463			else
1464				phy_reg |= 0xFA;
1465			e1e_wphy_locked(hw, I217_PLL_CLOCK_GATE_REG, phy_reg);
1466
1467			if (speed == SPEED_1000) {
1468				hw->phy.ops.read_reg_locked(hw, HV_PM_CTRL,
1469							    &phy_reg);
1470
1471				phy_reg |= HV_PM_CTRL_K1_CLK_REQ;
1472
1473				hw->phy.ops.write_reg_locked(hw, HV_PM_CTRL,
1474							     phy_reg);
1475			}
1476		}
1477		hw->phy.ops.release(hw);
1478
1479		if (ret_val)
1480			goto out;
1481
1482		if (hw->mac.type >= e1000_pch_spt) {
1483			u16 data;
1484			u16 ptr_gap;
1485
1486			if (speed == SPEED_1000) {
1487				ret_val = hw->phy.ops.acquire(hw);
1488				if (ret_val)
1489					goto out;
1490
1491				ret_val = e1e_rphy_locked(hw,
1492							  PHY_REG(776, 20),
1493							  &data);
1494				if (ret_val) {
1495					hw->phy.ops.release(hw);
1496					goto out;
1497				}
1498
1499				ptr_gap = (data & (0x3FF << 2)) >> 2;
1500				if (ptr_gap < 0x18) {
1501					data &= ~(0x3FF << 2);
1502					data |= (0x18 << 2);
1503					ret_val =
1504					    e1e_wphy_locked(hw,
1505							    PHY_REG(776, 20),
1506							    data);
1507				}
1508				hw->phy.ops.release(hw);
1509				if (ret_val)
1510					goto out;
1511			} else {
1512				ret_val = hw->phy.ops.acquire(hw);
1513				if (ret_val)
1514					goto out;
1515
1516				ret_val = e1e_wphy_locked(hw,
1517							  PHY_REG(776, 20),
1518							  0xC023);
1519				hw->phy.ops.release(hw);
1520				if (ret_val)
1521					goto out;
1522
1523			}
1524		}
1525	}
1526
1527	/* I217 Packet Loss issue:
1528	 * ensure that FEXTNVM4 Beacon Duration is set correctly
1529	 * on power up.
1530	 * Set the Beacon Duration for I217 to 8 usec
1531	 */
1532	if (hw->mac.type >= e1000_pch_lpt) {
1533		u32 mac_reg;
1534
1535		mac_reg = er32(FEXTNVM4);
1536		mac_reg &= ~E1000_FEXTNVM4_BEACON_DURATION_MASK;
1537		mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_8USEC;
1538		ew32(FEXTNVM4, mac_reg);
1539	}
1540
1541	/* Work-around I218 hang issue */
1542	if ((hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPTLP_I218_LM) ||
1543	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPTLP_I218_V) ||
1544	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_LM3) ||
1545	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_V3)) {
1546		ret_val = e1000_k1_workaround_lpt_lp(hw, link);
1547		if (ret_val)
1548			goto out;
1549	}
1550	if (hw->mac.type >= e1000_pch_lpt) {
1551		/* Set platform power management values for
1552		 * Latency Tolerance Reporting (LTR)
1553		 */
1554		ret_val = e1000_platform_pm_pch_lpt(hw, link);
1555		if (ret_val)
1556			goto out;
1557	}
1558
1559	/* Clear link partner's EEE ability */
1560	hw->dev_spec.ich8lan.eee_lp_ability = 0;
1561
1562	if (hw->mac.type >= e1000_pch_lpt) {
1563		u32 fextnvm6 = er32(FEXTNVM6);
1564
1565		if (hw->mac.type == e1000_pch_spt) {
1566			/* FEXTNVM6 K1-off workaround - for SPT only */
1567			u32 pcieanacfg = er32(PCIEANACFG);
1568
1569			if (pcieanacfg & E1000_FEXTNVM6_K1_OFF_ENABLE)
1570				fextnvm6 |= E1000_FEXTNVM6_K1_OFF_ENABLE;
1571			else
1572				fextnvm6 &= ~E1000_FEXTNVM6_K1_OFF_ENABLE;
1573		}
1574
1575		ew32(FEXTNVM6, fextnvm6);
1576	}
1577
1578	if (!link)
1579		goto out;
1580
1581	switch (hw->mac.type) {
1582	case e1000_pch2lan:
1583		ret_val = e1000_k1_workaround_lv(hw);
1584		if (ret_val)
1585			return ret_val;
1586		fallthrough;
1587	case e1000_pchlan:
1588		if (hw->phy.type == e1000_phy_82578) {
1589			ret_val = e1000_link_stall_workaround_hv(hw);
1590			if (ret_val)
1591				return ret_val;
1592		}
1593
1594		/* Workaround for PCHx parts in half-duplex:
1595		 * Set the number of preambles removed from the packet
1596		 * when it is passed from the PHY to the MAC to prevent
1597		 * the MAC from misinterpreting the packet type.
1598		 */
1599		e1e_rphy(hw, HV_KMRN_FIFO_CTRLSTA, &phy_reg);
1600		phy_reg &= ~HV_KMRN_FIFO_CTRLSTA_PREAMBLE_MASK;
1601
1602		if ((er32(STATUS) & E1000_STATUS_FD) != E1000_STATUS_FD)
1603			phy_reg |= BIT(HV_KMRN_FIFO_CTRLSTA_PREAMBLE_SHIFT);
1604
1605		e1e_wphy(hw, HV_KMRN_FIFO_CTRLSTA, phy_reg);
1606		break;
1607	default:
1608		break;
1609	}
1610
1611	/* Check if there was DownShift, must be checked
1612	 * immediately after link-up
1613	 */
1614	e1000e_check_downshift(hw);
1615
1616	/* Enable/Disable EEE after link up */
1617	if (hw->phy.type > e1000_phy_82579) {
1618		ret_val = e1000_set_eee_pchlan(hw);
1619		if (ret_val)
1620			return ret_val;
1621	}
1622
1623	/* If we are forcing speed/duplex, then we simply return since
1624	 * we have already determined whether we have link or not.
1625	 */
1626	if (!mac->autoneg)
1627		return -E1000_ERR_CONFIG;
1628
1629	/* Auto-Neg is enabled.  Auto Speed Detection takes care
1630	 * of MAC speed/duplex configuration.  So we only need to
1631	 * configure Collision Distance in the MAC.
1632	 */
1633	mac->ops.config_collision_dist(hw);
1634
1635	/* Configure Flow Control now that Auto-Neg has completed.
1636	 * First, we need to restore the desired flow control
1637	 * settings because we may have had to re-autoneg with a
1638	 * different link partner.
1639	 */
1640	ret_val = e1000e_config_fc_after_link_up(hw);
1641	if (ret_val)
1642		e_dbg("Error configuring flow control\n");
1643
1644	return ret_val;
1645
1646out:
1647	mac->get_link_status = true;
1648	return ret_val;
1649}
1650
1651static s32 e1000_get_variants_ich8lan(struct e1000_adapter *adapter)
1652{
1653	struct e1000_hw *hw = &adapter->hw;
1654	s32 rc;
1655
1656	rc = e1000_init_mac_params_ich8lan(hw);
1657	if (rc)
1658		return rc;
1659
1660	rc = e1000_init_nvm_params_ich8lan(hw);
1661	if (rc)
1662		return rc;
1663
1664	switch (hw->mac.type) {
1665	case e1000_ich8lan:
1666	case e1000_ich9lan:
1667	case e1000_ich10lan:
1668		rc = e1000_init_phy_params_ich8lan(hw);
1669		break;
1670	case e1000_pchlan:
1671	case e1000_pch2lan:
1672	case e1000_pch_lpt:
1673	case e1000_pch_spt:
1674	case e1000_pch_cnp:
1675	case e1000_pch_tgp:
1676	case e1000_pch_adp:
1677	case e1000_pch_mtp:
 
 
 
1678		rc = e1000_init_phy_params_pchlan(hw);
1679		break;
1680	default:
1681		break;
1682	}
1683	if (rc)
1684		return rc;
1685
1686	/* Disable Jumbo Frame support on parts with Intel 10/100 PHY or
1687	 * on parts with MACsec enabled in NVM (reflected in CTRL_EXT).
1688	 */
1689	if ((adapter->hw.phy.type == e1000_phy_ife) ||
1690	    ((adapter->hw.mac.type >= e1000_pch2lan) &&
1691	     (!(er32(CTRL_EXT) & E1000_CTRL_EXT_LSECCK)))) {
1692		adapter->flags &= ~FLAG_HAS_JUMBO_FRAMES;
1693		adapter->max_hw_frame_size = VLAN_ETH_FRAME_LEN + ETH_FCS_LEN;
1694
1695		hw->mac.ops.blink_led = NULL;
1696	}
1697
1698	if ((adapter->hw.mac.type == e1000_ich8lan) &&
1699	    (adapter->hw.phy.type != e1000_phy_ife))
1700		adapter->flags |= FLAG_LSC_GIG_SPEED_DROP;
1701
1702	/* Enable workaround for 82579 w/ ME enabled */
1703	if ((adapter->hw.mac.type == e1000_pch2lan) &&
1704	    (er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
1705		adapter->flags2 |= FLAG2_PCIM2PCI_ARBITER_WA;
1706
1707	return 0;
1708}
1709
1710static DEFINE_MUTEX(nvm_mutex);
1711
1712/**
1713 *  e1000_acquire_nvm_ich8lan - Acquire NVM mutex
1714 *  @hw: pointer to the HW structure
1715 *
1716 *  Acquires the mutex for performing NVM operations.
1717 **/
1718static s32 e1000_acquire_nvm_ich8lan(struct e1000_hw __always_unused *hw)
1719{
1720	mutex_lock(&nvm_mutex);
1721
1722	return 0;
1723}
1724
1725/**
1726 *  e1000_release_nvm_ich8lan - Release NVM mutex
1727 *  @hw: pointer to the HW structure
1728 *
1729 *  Releases the mutex used while performing NVM operations.
1730 **/
1731static void e1000_release_nvm_ich8lan(struct e1000_hw __always_unused *hw)
1732{
1733	mutex_unlock(&nvm_mutex);
1734}
1735
1736/**
1737 *  e1000_acquire_swflag_ich8lan - Acquire software control flag
1738 *  @hw: pointer to the HW structure
1739 *
1740 *  Acquires the software control flag for performing PHY and select
1741 *  MAC CSR accesses.
1742 **/
1743static s32 e1000_acquire_swflag_ich8lan(struct e1000_hw *hw)
1744{
1745	u32 extcnf_ctrl, timeout = PHY_CFG_TIMEOUT;
1746	s32 ret_val = 0;
1747
1748	if (test_and_set_bit(__E1000_ACCESS_SHARED_RESOURCE,
1749			     &hw->adapter->state)) {
1750		e_dbg("contention for Phy access\n");
1751		return -E1000_ERR_PHY;
1752	}
1753
1754	while (timeout) {
1755		extcnf_ctrl = er32(EXTCNF_CTRL);
1756		if (!(extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG))
1757			break;
1758
1759		mdelay(1);
1760		timeout--;
1761	}
1762
1763	if (!timeout) {
1764		e_dbg("SW has already locked the resource.\n");
1765		ret_val = -E1000_ERR_CONFIG;
1766		goto out;
1767	}
1768
1769	timeout = SW_FLAG_TIMEOUT;
1770
1771	extcnf_ctrl |= E1000_EXTCNF_CTRL_SWFLAG;
1772	ew32(EXTCNF_CTRL, extcnf_ctrl);
1773
1774	while (timeout) {
1775		extcnf_ctrl = er32(EXTCNF_CTRL);
1776		if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG)
1777			break;
1778
1779		mdelay(1);
1780		timeout--;
1781	}
1782
1783	if (!timeout) {
1784		e_dbg("Failed to acquire the semaphore, FW or HW has it: FWSM=0x%8.8x EXTCNF_CTRL=0x%8.8x)\n",
1785		      er32(FWSM), extcnf_ctrl);
1786		extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
1787		ew32(EXTCNF_CTRL, extcnf_ctrl);
1788		ret_val = -E1000_ERR_CONFIG;
1789		goto out;
1790	}
1791
1792out:
1793	if (ret_val)
1794		clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
1795
1796	return ret_val;
1797}
1798
1799/**
1800 *  e1000_release_swflag_ich8lan - Release software control flag
1801 *  @hw: pointer to the HW structure
1802 *
1803 *  Releases the software control flag for performing PHY and select
1804 *  MAC CSR accesses.
1805 **/
1806static void e1000_release_swflag_ich8lan(struct e1000_hw *hw)
1807{
1808	u32 extcnf_ctrl;
1809
1810	extcnf_ctrl = er32(EXTCNF_CTRL);
1811
1812	if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG) {
1813		extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
1814		ew32(EXTCNF_CTRL, extcnf_ctrl);
1815	} else {
1816		e_dbg("Semaphore unexpectedly released by sw/fw/hw\n");
1817	}
1818
1819	clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
1820}
1821
1822/**
1823 *  e1000_check_mng_mode_ich8lan - Checks management mode
1824 *  @hw: pointer to the HW structure
1825 *
1826 *  This checks if the adapter has any manageability enabled.
1827 *  This is a function pointer entry point only called by read/write
1828 *  routines for the PHY and NVM parts.
1829 **/
1830static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw)
1831{
1832	u32 fwsm;
1833
1834	fwsm = er32(FWSM);
1835	return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
1836		((fwsm & E1000_FWSM_MODE_MASK) ==
1837		 (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
1838}
1839
1840/**
1841 *  e1000_check_mng_mode_pchlan - Checks management mode
1842 *  @hw: pointer to the HW structure
1843 *
1844 *  This checks if the adapter has iAMT enabled.
1845 *  This is a function pointer entry point only called by read/write
1846 *  routines for the PHY and NVM parts.
1847 **/
1848static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw)
1849{
1850	u32 fwsm;
1851
1852	fwsm = er32(FWSM);
1853	return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
1854	    (fwsm & (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
1855}
1856
1857/**
1858 *  e1000_rar_set_pch2lan - Set receive address register
1859 *  @hw: pointer to the HW structure
1860 *  @addr: pointer to the receive address
1861 *  @index: receive address array register
1862 *
1863 *  Sets the receive address array register at index to the address passed
1864 *  in by addr.  For 82579, RAR[0] is the base address register that is to
1865 *  contain the MAC address but RAR[1-6] are reserved for manageability (ME).
1866 *  Use SHRA[0-3] in place of those reserved for ME.
1867 **/
1868static int e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index)
1869{
1870	u32 rar_low, rar_high;
1871
1872	/* HW expects these in little endian so we reverse the byte order
1873	 * from network order (big endian) to little endian
1874	 */
1875	rar_low = ((u32)addr[0] |
1876		   ((u32)addr[1] << 8) |
1877		   ((u32)addr[2] << 16) | ((u32)addr[3] << 24));
1878
1879	rar_high = ((u32)addr[4] | ((u32)addr[5] << 8));
1880
1881	/* If MAC address zero, no need to set the AV bit */
1882	if (rar_low || rar_high)
1883		rar_high |= E1000_RAH_AV;
1884
1885	if (index == 0) {
1886		ew32(RAL(index), rar_low);
1887		e1e_flush();
1888		ew32(RAH(index), rar_high);
1889		e1e_flush();
1890		return 0;
1891	}
1892
1893	/* RAR[1-6] are owned by manageability.  Skip those and program the
1894	 * next address into the SHRA register array.
1895	 */
1896	if (index < (u32)(hw->mac.rar_entry_count)) {
1897		s32 ret_val;
1898
1899		ret_val = e1000_acquire_swflag_ich8lan(hw);
1900		if (ret_val)
1901			goto out;
1902
1903		ew32(SHRAL(index - 1), rar_low);
1904		e1e_flush();
1905		ew32(SHRAH(index - 1), rar_high);
1906		e1e_flush();
1907
1908		e1000_release_swflag_ich8lan(hw);
1909
1910		/* verify the register updates */
1911		if ((er32(SHRAL(index - 1)) == rar_low) &&
1912		    (er32(SHRAH(index - 1)) == rar_high))
1913			return 0;
1914
1915		e_dbg("SHRA[%d] might be locked by ME - FWSM=0x%8.8x\n",
1916		      (index - 1), er32(FWSM));
1917	}
1918
1919out:
1920	e_dbg("Failed to write receive address at index %d\n", index);
1921	return -E1000_ERR_CONFIG;
1922}
1923
1924/**
1925 *  e1000_rar_get_count_pch_lpt - Get the number of available SHRA
1926 *  @hw: pointer to the HW structure
1927 *
1928 *  Get the number of available receive registers that the Host can
1929 *  program. SHRA[0-10] are the shared receive address registers
1930 *  that are shared between the Host and manageability engine (ME).
1931 *  ME can reserve any number of addresses and the host needs to be
1932 *  able to tell how many available registers it has access to.
1933 **/
1934static u32 e1000_rar_get_count_pch_lpt(struct e1000_hw *hw)
1935{
1936	u32 wlock_mac;
1937	u32 num_entries;
1938
1939	wlock_mac = er32(FWSM) & E1000_FWSM_WLOCK_MAC_MASK;
1940	wlock_mac >>= E1000_FWSM_WLOCK_MAC_SHIFT;
1941
1942	switch (wlock_mac) {
1943	case 0:
1944		/* All SHRA[0..10] and RAR[0] available */
1945		num_entries = hw->mac.rar_entry_count;
1946		break;
1947	case 1:
1948		/* Only RAR[0] available */
1949		num_entries = 1;
1950		break;
1951	default:
1952		/* SHRA[0..(wlock_mac - 1)] available + RAR[0] */
1953		num_entries = wlock_mac + 1;
1954		break;
1955	}
1956
1957	return num_entries;
1958}
1959
1960/**
1961 *  e1000_rar_set_pch_lpt - Set receive address registers
1962 *  @hw: pointer to the HW structure
1963 *  @addr: pointer to the receive address
1964 *  @index: receive address array register
1965 *
1966 *  Sets the receive address register array at index to the address passed
1967 *  in by addr. For LPT, RAR[0] is the base address register that is to
1968 *  contain the MAC address. SHRA[0-10] are the shared receive address
1969 *  registers that are shared between the Host and manageability engine (ME).
1970 **/
1971static int e1000_rar_set_pch_lpt(struct e1000_hw *hw, u8 *addr, u32 index)
1972{
1973	u32 rar_low, rar_high;
1974	u32 wlock_mac;
1975
1976	/* HW expects these in little endian so we reverse the byte order
1977	 * from network order (big endian) to little endian
1978	 */
1979	rar_low = ((u32)addr[0] | ((u32)addr[1] << 8) |
1980		   ((u32)addr[2] << 16) | ((u32)addr[3] << 24));
1981
1982	rar_high = ((u32)addr[4] | ((u32)addr[5] << 8));
1983
1984	/* If MAC address zero, no need to set the AV bit */
1985	if (rar_low || rar_high)
1986		rar_high |= E1000_RAH_AV;
1987
1988	if (index == 0) {
1989		ew32(RAL(index), rar_low);
1990		e1e_flush();
1991		ew32(RAH(index), rar_high);
1992		e1e_flush();
1993		return 0;
1994	}
1995
1996	/* The manageability engine (ME) can lock certain SHRAR registers that
1997	 * it is using - those registers are unavailable for use.
1998	 */
1999	if (index < hw->mac.rar_entry_count) {
2000		wlock_mac = er32(FWSM) & E1000_FWSM_WLOCK_MAC_MASK;
2001		wlock_mac >>= E1000_FWSM_WLOCK_MAC_SHIFT;
2002
2003		/* Check if all SHRAR registers are locked */
2004		if (wlock_mac == 1)
2005			goto out;
2006
2007		if ((wlock_mac == 0) || (index <= wlock_mac)) {
2008			s32 ret_val;
2009
2010			ret_val = e1000_acquire_swflag_ich8lan(hw);
2011
2012			if (ret_val)
2013				goto out;
2014
2015			ew32(SHRAL_PCH_LPT(index - 1), rar_low);
2016			e1e_flush();
2017			ew32(SHRAH_PCH_LPT(index - 1), rar_high);
2018			e1e_flush();
2019
2020			e1000_release_swflag_ich8lan(hw);
2021
2022			/* verify the register updates */
2023			if ((er32(SHRAL_PCH_LPT(index - 1)) == rar_low) &&
2024			    (er32(SHRAH_PCH_LPT(index - 1)) == rar_high))
2025				return 0;
2026		}
2027	}
2028
2029out:
2030	e_dbg("Failed to write receive address at index %d\n", index);
2031	return -E1000_ERR_CONFIG;
2032}
2033
2034/**
2035 *  e1000_check_reset_block_ich8lan - Check if PHY reset is blocked
2036 *  @hw: pointer to the HW structure
2037 *
2038 *  Checks if firmware is blocking the reset of the PHY.
2039 *  This is a function pointer entry point only called by
2040 *  reset routines.
2041 **/
2042static s32 e1000_check_reset_block_ich8lan(struct e1000_hw *hw)
2043{
2044	bool blocked = false;
2045	int i = 0;
2046
2047	while ((blocked = !(er32(FWSM) & E1000_ICH_FWSM_RSPCIPHY)) &&
2048	       (i++ < 30))
2049		usleep_range(10000, 11000);
2050	return blocked ? E1000_BLK_PHY_RESET : 0;
2051}
2052
2053/**
2054 *  e1000_write_smbus_addr - Write SMBus address to PHY needed during Sx states
2055 *  @hw: pointer to the HW structure
2056 *
2057 *  Assumes semaphore already acquired.
2058 *
2059 **/
2060static s32 e1000_write_smbus_addr(struct e1000_hw *hw)
2061{
2062	u16 phy_data;
2063	u32 strap = er32(STRAP);
2064	u32 freq = (strap & E1000_STRAP_SMT_FREQ_MASK) >>
2065	    E1000_STRAP_SMT_FREQ_SHIFT;
2066	s32 ret_val;
2067
2068	strap &= E1000_STRAP_SMBUS_ADDRESS_MASK;
2069
2070	ret_val = e1000_read_phy_reg_hv_locked(hw, HV_SMB_ADDR, &phy_data);
2071	if (ret_val)
2072		return ret_val;
2073
2074	phy_data &= ~HV_SMB_ADDR_MASK;
2075	phy_data |= (strap >> E1000_STRAP_SMBUS_ADDRESS_SHIFT);
2076	phy_data |= HV_SMB_ADDR_PEC_EN | HV_SMB_ADDR_VALID;
2077
2078	if (hw->phy.type == e1000_phy_i217) {
2079		/* Restore SMBus frequency */
2080		if (freq--) {
2081			phy_data &= ~HV_SMB_ADDR_FREQ_MASK;
2082			phy_data |= (freq & BIT(0)) <<
2083			    HV_SMB_ADDR_FREQ_LOW_SHIFT;
2084			phy_data |= (freq & BIT(1)) <<
2085			    (HV_SMB_ADDR_FREQ_HIGH_SHIFT - 1);
2086		} else {
2087			e_dbg("Unsupported SMB frequency in PHY\n");
2088		}
2089	}
2090
2091	return e1000_write_phy_reg_hv_locked(hw, HV_SMB_ADDR, phy_data);
2092}
2093
2094/**
2095 *  e1000_sw_lcd_config_ich8lan - SW-based LCD Configuration
2096 *  @hw:   pointer to the HW structure
2097 *
2098 *  SW should configure the LCD from the NVM extended configuration region
2099 *  as a workaround for certain parts.
2100 **/
2101static s32 e1000_sw_lcd_config_ich8lan(struct e1000_hw *hw)
2102{
2103	struct e1000_phy_info *phy = &hw->phy;
2104	u32 i, data, cnf_size, cnf_base_addr, sw_cfg_mask;
2105	s32 ret_val = 0;
2106	u16 word_addr, reg_data, reg_addr, phy_page = 0;
2107
2108	/* Initialize the PHY from the NVM on ICH platforms.  This
2109	 * is needed due to an issue where the NVM configuration is
2110	 * not properly autoloaded after power transitions.
2111	 * Therefore, after each PHY reset, we will load the
2112	 * configuration data out of the NVM manually.
2113	 */
2114	switch (hw->mac.type) {
2115	case e1000_ich8lan:
2116		if (phy->type != e1000_phy_igp_3)
2117			return ret_val;
2118
2119		if ((hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_AMT) ||
2120		    (hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_C)) {
2121			sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG;
2122			break;
2123		}
2124		fallthrough;
2125	case e1000_pchlan:
2126	case e1000_pch2lan:
2127	case e1000_pch_lpt:
2128	case e1000_pch_spt:
2129	case e1000_pch_cnp:
2130	case e1000_pch_tgp:
2131	case e1000_pch_adp:
2132	case e1000_pch_mtp:
 
 
 
2133		sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG_ICH8M;
2134		break;
2135	default:
2136		return ret_val;
2137	}
2138
2139	ret_val = hw->phy.ops.acquire(hw);
2140	if (ret_val)
2141		return ret_val;
2142
2143	data = er32(FEXTNVM);
2144	if (!(data & sw_cfg_mask))
2145		goto release;
2146
2147	/* Make sure HW does not configure LCD from PHY
2148	 * extended configuration before SW configuration
2149	 */
2150	data = er32(EXTCNF_CTRL);
2151	if ((hw->mac.type < e1000_pch2lan) &&
2152	    (data & E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE))
2153		goto release;
2154
2155	cnf_size = er32(EXTCNF_SIZE);
2156	cnf_size &= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_MASK;
2157	cnf_size >>= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_SHIFT;
2158	if (!cnf_size)
2159		goto release;
2160
2161	cnf_base_addr = data & E1000_EXTCNF_CTRL_EXT_CNF_POINTER_MASK;
2162	cnf_base_addr >>= E1000_EXTCNF_CTRL_EXT_CNF_POINTER_SHIFT;
2163
2164	if (((hw->mac.type == e1000_pchlan) &&
2165	     !(data & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)) ||
2166	    (hw->mac.type > e1000_pchlan)) {
2167		/* HW configures the SMBus address and LEDs when the
2168		 * OEM and LCD Write Enable bits are set in the NVM.
2169		 * When both NVM bits are cleared, SW will configure
2170		 * them instead.
2171		 */
2172		ret_val = e1000_write_smbus_addr(hw);
2173		if (ret_val)
2174			goto release;
2175
2176		data = er32(LEDCTL);
2177		ret_val = e1000_write_phy_reg_hv_locked(hw, HV_LED_CONFIG,
2178							(u16)data);
2179		if (ret_val)
2180			goto release;
2181	}
2182
2183	/* Configure LCD from extended configuration region. */
2184
2185	/* cnf_base_addr is in DWORD */
2186	word_addr = (u16)(cnf_base_addr << 1);
2187
2188	for (i = 0; i < cnf_size; i++) {
2189		ret_val = e1000_read_nvm(hw, (word_addr + i * 2), 1, &reg_data);
2190		if (ret_val)
2191			goto release;
2192
2193		ret_val = e1000_read_nvm(hw, (word_addr + i * 2 + 1),
2194					 1, &reg_addr);
2195		if (ret_val)
2196			goto release;
2197
2198		/* Save off the PHY page for future writes. */
2199		if (reg_addr == IGP01E1000_PHY_PAGE_SELECT) {
2200			phy_page = reg_data;
2201			continue;
2202		}
2203
2204		reg_addr &= PHY_REG_MASK;
2205		reg_addr |= phy_page;
2206
2207		ret_val = e1e_wphy_locked(hw, (u32)reg_addr, reg_data);
2208		if (ret_val)
2209			goto release;
2210	}
2211
2212release:
2213	hw->phy.ops.release(hw);
2214	return ret_val;
2215}
2216
2217/**
2218 *  e1000_k1_gig_workaround_hv - K1 Si workaround
2219 *  @hw:   pointer to the HW structure
2220 *  @link: link up bool flag
2221 *
2222 *  If K1 is enabled for 1Gbps, the MAC might stall when transitioning
2223 *  from a lower speed.  This workaround disables K1 whenever link is at 1Gig
2224 *  If link is down, the function will restore the default K1 setting located
2225 *  in the NVM.
2226 **/
2227static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link)
2228{
2229	s32 ret_val = 0;
2230	u16 status_reg = 0;
2231	bool k1_enable = hw->dev_spec.ich8lan.nvm_k1_enabled;
2232
2233	if (hw->mac.type != e1000_pchlan)
2234		return 0;
2235
2236	/* Wrap the whole flow with the sw flag */
2237	ret_val = hw->phy.ops.acquire(hw);
2238	if (ret_val)
2239		return ret_val;
2240
2241	/* Disable K1 when link is 1Gbps, otherwise use the NVM setting */
2242	if (link) {
2243		if (hw->phy.type == e1000_phy_82578) {
2244			ret_val = e1e_rphy_locked(hw, BM_CS_STATUS,
2245						  &status_reg);
2246			if (ret_val)
2247				goto release;
2248
2249			status_reg &= (BM_CS_STATUS_LINK_UP |
2250				       BM_CS_STATUS_RESOLVED |
2251				       BM_CS_STATUS_SPEED_MASK);
2252
2253			if (status_reg == (BM_CS_STATUS_LINK_UP |
2254					   BM_CS_STATUS_RESOLVED |
2255					   BM_CS_STATUS_SPEED_1000))
2256				k1_enable = false;
2257		}
2258
2259		if (hw->phy.type == e1000_phy_82577) {
2260			ret_val = e1e_rphy_locked(hw, HV_M_STATUS, &status_reg);
2261			if (ret_val)
2262				goto release;
2263
2264			status_reg &= (HV_M_STATUS_LINK_UP |
2265				       HV_M_STATUS_AUTONEG_COMPLETE |
2266				       HV_M_STATUS_SPEED_MASK);
2267
2268			if (status_reg == (HV_M_STATUS_LINK_UP |
2269					   HV_M_STATUS_AUTONEG_COMPLETE |
2270					   HV_M_STATUS_SPEED_1000))
2271				k1_enable = false;
2272		}
2273
2274		/* Link stall fix for link up */
2275		ret_val = e1e_wphy_locked(hw, PHY_REG(770, 19), 0x0100);
2276		if (ret_val)
2277			goto release;
2278
2279	} else {
2280		/* Link stall fix for link down */
2281		ret_val = e1e_wphy_locked(hw, PHY_REG(770, 19), 0x4100);
2282		if (ret_val)
2283			goto release;
2284	}
2285
2286	ret_val = e1000_configure_k1_ich8lan(hw, k1_enable);
2287
2288release:
2289	hw->phy.ops.release(hw);
2290
2291	return ret_val;
2292}
2293
2294/**
2295 *  e1000_configure_k1_ich8lan - Configure K1 power state
2296 *  @hw: pointer to the HW structure
2297 *  @k1_enable: K1 state to configure
2298 *
2299 *  Configure the K1 power state based on the provided parameter.
2300 *  Assumes semaphore already acquired.
2301 *
2302 *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
2303 **/
2304s32 e1000_configure_k1_ich8lan(struct e1000_hw *hw, bool k1_enable)
2305{
2306	s32 ret_val;
2307	u32 ctrl_reg = 0;
2308	u32 ctrl_ext = 0;
2309	u32 reg = 0;
2310	u16 kmrn_reg = 0;
2311
2312	ret_val = e1000e_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
2313					      &kmrn_reg);
2314	if (ret_val)
2315		return ret_val;
2316
2317	if (k1_enable)
2318		kmrn_reg |= E1000_KMRNCTRLSTA_K1_ENABLE;
2319	else
2320		kmrn_reg &= ~E1000_KMRNCTRLSTA_K1_ENABLE;
2321
2322	ret_val = e1000e_write_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
2323					       kmrn_reg);
2324	if (ret_val)
2325		return ret_val;
2326
2327	usleep_range(20, 40);
2328	ctrl_ext = er32(CTRL_EXT);
2329	ctrl_reg = er32(CTRL);
2330
2331	reg = ctrl_reg & ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
2332	reg |= E1000_CTRL_FRCSPD;
2333	ew32(CTRL, reg);
2334
2335	ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_SPD_BYPS);
2336	e1e_flush();
2337	usleep_range(20, 40);
2338	ew32(CTRL, ctrl_reg);
2339	ew32(CTRL_EXT, ctrl_ext);
2340	e1e_flush();
2341	usleep_range(20, 40);
2342
2343	return 0;
2344}
2345
2346/**
2347 *  e1000_oem_bits_config_ich8lan - SW-based LCD Configuration
2348 *  @hw:       pointer to the HW structure
2349 *  @d0_state: boolean if entering d0 or d3 device state
2350 *
2351 *  SW will configure Gbe Disable and LPLU based on the NVM. The four bits are
2352 *  collectively called OEM bits.  The OEM Write Enable bit and SW Config bit
2353 *  in NVM determines whether HW should configure LPLU and Gbe Disable.
2354 **/
2355static s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state)
2356{
2357	s32 ret_val = 0;
2358	u32 mac_reg;
2359	u16 oem_reg;
2360
2361	if (hw->mac.type < e1000_pchlan)
2362		return ret_val;
2363
2364	ret_val = hw->phy.ops.acquire(hw);
2365	if (ret_val)
2366		return ret_val;
2367
2368	if (hw->mac.type == e1000_pchlan) {
2369		mac_reg = er32(EXTCNF_CTRL);
2370		if (mac_reg & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)
2371			goto release;
2372	}
2373
2374	mac_reg = er32(FEXTNVM);
2375	if (!(mac_reg & E1000_FEXTNVM_SW_CONFIG_ICH8M))
2376		goto release;
2377
2378	mac_reg = er32(PHY_CTRL);
2379
2380	ret_val = e1e_rphy_locked(hw, HV_OEM_BITS, &oem_reg);
2381	if (ret_val)
2382		goto release;
2383
2384	oem_reg &= ~(HV_OEM_BITS_GBE_DIS | HV_OEM_BITS_LPLU);
2385
2386	if (d0_state) {
2387		if (mac_reg & E1000_PHY_CTRL_GBE_DISABLE)
2388			oem_reg |= HV_OEM_BITS_GBE_DIS;
2389
2390		if (mac_reg & E1000_PHY_CTRL_D0A_LPLU)
2391			oem_reg |= HV_OEM_BITS_LPLU;
2392	} else {
2393		if (mac_reg & (E1000_PHY_CTRL_GBE_DISABLE |
2394			       E1000_PHY_CTRL_NOND0A_GBE_DISABLE))
2395			oem_reg |= HV_OEM_BITS_GBE_DIS;
2396
2397		if (mac_reg & (E1000_PHY_CTRL_D0A_LPLU |
2398			       E1000_PHY_CTRL_NOND0A_LPLU))
2399			oem_reg |= HV_OEM_BITS_LPLU;
2400	}
2401
2402	/* Set Restart auto-neg to activate the bits */
2403	if ((d0_state || (hw->mac.type != e1000_pchlan)) &&
2404	    !hw->phy.ops.check_reset_block(hw))
2405		oem_reg |= HV_OEM_BITS_RESTART_AN;
2406
2407	ret_val = e1e_wphy_locked(hw, HV_OEM_BITS, oem_reg);
2408
2409release:
2410	hw->phy.ops.release(hw);
2411
2412	return ret_val;
2413}
2414
2415/**
2416 *  e1000_set_mdio_slow_mode_hv - Set slow MDIO access mode
2417 *  @hw:   pointer to the HW structure
2418 **/
2419static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw)
2420{
2421	s32 ret_val;
2422	u16 data;
2423
2424	ret_val = e1e_rphy(hw, HV_KMRN_MODE_CTRL, &data);
2425	if (ret_val)
2426		return ret_val;
2427
2428	data |= HV_KMRN_MDIO_SLOW;
2429
2430	ret_val = e1e_wphy(hw, HV_KMRN_MODE_CTRL, data);
2431
2432	return ret_val;
2433}
2434
2435/**
2436 *  e1000_hv_phy_workarounds_ich8lan - apply PHY workarounds
2437 *  @hw: pointer to the HW structure
2438 *
2439 *  A series of PHY workarounds to be done after every PHY reset.
2440 **/
2441static s32 e1000_hv_phy_workarounds_ich8lan(struct e1000_hw *hw)
2442{
2443	s32 ret_val = 0;
2444	u16 phy_data;
2445
2446	if (hw->mac.type != e1000_pchlan)
2447		return 0;
2448
2449	/* Set MDIO slow mode before any other MDIO access */
2450	if (hw->phy.type == e1000_phy_82577) {
2451		ret_val = e1000_set_mdio_slow_mode_hv(hw);
2452		if (ret_val)
2453			return ret_val;
2454	}
2455
2456	if (((hw->phy.type == e1000_phy_82577) &&
2457	     ((hw->phy.revision == 1) || (hw->phy.revision == 2))) ||
2458	    ((hw->phy.type == e1000_phy_82578) && (hw->phy.revision == 1))) {
2459		/* Disable generation of early preamble */
2460		ret_val = e1e_wphy(hw, PHY_REG(769, 25), 0x4431);
2461		if (ret_val)
2462			return ret_val;
2463
2464		/* Preamble tuning for SSC */
2465		ret_val = e1e_wphy(hw, HV_KMRN_FIFO_CTRLSTA, 0xA204);
2466		if (ret_val)
2467			return ret_val;
2468	}
2469
2470	if (hw->phy.type == e1000_phy_82578) {
2471		/* Return registers to default by doing a soft reset then
2472		 * writing 0x3140 to the control register.
2473		 */
2474		if (hw->phy.revision < 2) {
2475			e1000e_phy_sw_reset(hw);
2476			ret_val = e1e_wphy(hw, MII_BMCR, 0x3140);
2477			if (ret_val)
2478				return ret_val;
2479		}
2480	}
2481
2482	/* Select page 0 */
2483	ret_val = hw->phy.ops.acquire(hw);
2484	if (ret_val)
2485		return ret_val;
2486
2487	hw->phy.addr = 1;
2488	ret_val = e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, 0);
2489	hw->phy.ops.release(hw);
2490	if (ret_val)
2491		return ret_val;
2492
2493	/* Configure the K1 Si workaround during phy reset assuming there is
2494	 * link so that it disables K1 if link is in 1Gbps.
2495	 */
2496	ret_val = e1000_k1_gig_workaround_hv(hw, true);
2497	if (ret_val)
2498		return ret_val;
2499
2500	/* Workaround for link disconnects on a busy hub in half duplex */
2501	ret_val = hw->phy.ops.acquire(hw);
2502	if (ret_val)
2503		return ret_val;
2504	ret_val = e1e_rphy_locked(hw, BM_PORT_GEN_CFG, &phy_data);
2505	if (ret_val)
2506		goto release;
2507	ret_val = e1e_wphy_locked(hw, BM_PORT_GEN_CFG, phy_data & 0x00FF);
2508	if (ret_val)
2509		goto release;
2510
2511	/* set MSE higher to enable link to stay up when noise is high */
2512	ret_val = e1000_write_emi_reg_locked(hw, I82577_MSE_THRESHOLD, 0x0034);
2513release:
2514	hw->phy.ops.release(hw);
2515
2516	return ret_val;
2517}
2518
2519/**
2520 *  e1000_copy_rx_addrs_to_phy_ich8lan - Copy Rx addresses from MAC to PHY
2521 *  @hw:   pointer to the HW structure
2522 **/
2523void e1000_copy_rx_addrs_to_phy_ich8lan(struct e1000_hw *hw)
2524{
2525	u32 mac_reg;
2526	u16 i, phy_reg = 0;
2527	s32 ret_val;
2528
2529	ret_val = hw->phy.ops.acquire(hw);
2530	if (ret_val)
2531		return;
2532	ret_val = e1000_enable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2533	if (ret_val)
2534		goto release;
2535
2536	/* Copy both RAL/H (rar_entry_count) and SHRAL/H to PHY */
2537	for (i = 0; i < (hw->mac.rar_entry_count); i++) {
2538		mac_reg = er32(RAL(i));
2539		hw->phy.ops.write_reg_page(hw, BM_RAR_L(i),
2540					   (u16)(mac_reg & 0xFFFF));
2541		hw->phy.ops.write_reg_page(hw, BM_RAR_M(i),
2542					   (u16)((mac_reg >> 16) & 0xFFFF));
2543
2544		mac_reg = er32(RAH(i));
2545		hw->phy.ops.write_reg_page(hw, BM_RAR_H(i),
2546					   (u16)(mac_reg & 0xFFFF));
2547		hw->phy.ops.write_reg_page(hw, BM_RAR_CTRL(i),
2548					   (u16)((mac_reg & E1000_RAH_AV)
2549						 >> 16));
2550	}
2551
2552	e1000_disable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2553
2554release:
2555	hw->phy.ops.release(hw);
2556}
2557
2558/**
2559 *  e1000_lv_jumbo_workaround_ich8lan - required for jumbo frame operation
2560 *  with 82579 PHY
2561 *  @hw: pointer to the HW structure
2562 *  @enable: flag to enable/disable workaround when enabling/disabling jumbos
2563 **/
2564s32 e1000_lv_jumbo_workaround_ich8lan(struct e1000_hw *hw, bool enable)
2565{
2566	s32 ret_val = 0;
2567	u16 phy_reg, data;
2568	u32 mac_reg;
2569	u16 i;
2570
2571	if (hw->mac.type < e1000_pch2lan)
2572		return 0;
2573
2574	/* disable Rx path while enabling/disabling workaround */
2575	e1e_rphy(hw, PHY_REG(769, 20), &phy_reg);
2576	ret_val = e1e_wphy(hw, PHY_REG(769, 20), phy_reg | BIT(14));
2577	if (ret_val)
2578		return ret_val;
2579
2580	if (enable) {
2581		/* Write Rx addresses (rar_entry_count for RAL/H, and
2582		 * SHRAL/H) and initial CRC values to the MAC
2583		 */
2584		for (i = 0; i < hw->mac.rar_entry_count; i++) {
2585			u8 mac_addr[ETH_ALEN] = { 0 };
2586			u32 addr_high, addr_low;
2587
2588			addr_high = er32(RAH(i));
2589			if (!(addr_high & E1000_RAH_AV))
2590				continue;
2591			addr_low = er32(RAL(i));
2592			mac_addr[0] = (addr_low & 0xFF);
2593			mac_addr[1] = ((addr_low >> 8) & 0xFF);
2594			mac_addr[2] = ((addr_low >> 16) & 0xFF);
2595			mac_addr[3] = ((addr_low >> 24) & 0xFF);
2596			mac_addr[4] = (addr_high & 0xFF);
2597			mac_addr[5] = ((addr_high >> 8) & 0xFF);
2598
2599			ew32(PCH_RAICC(i), ~ether_crc_le(ETH_ALEN, mac_addr));
2600		}
2601
2602		/* Write Rx addresses to the PHY */
2603		e1000_copy_rx_addrs_to_phy_ich8lan(hw);
2604
2605		/* Enable jumbo frame workaround in the MAC */
2606		mac_reg = er32(FFLT_DBG);
2607		mac_reg &= ~BIT(14);
2608		mac_reg |= (7 << 15);
2609		ew32(FFLT_DBG, mac_reg);
2610
2611		mac_reg = er32(RCTL);
2612		mac_reg |= E1000_RCTL_SECRC;
2613		ew32(RCTL, mac_reg);
2614
2615		ret_val = e1000e_read_kmrn_reg(hw,
2616					       E1000_KMRNCTRLSTA_CTRL_OFFSET,
2617					       &data);
2618		if (ret_val)
2619			return ret_val;
2620		ret_val = e1000e_write_kmrn_reg(hw,
2621						E1000_KMRNCTRLSTA_CTRL_OFFSET,
2622						data | BIT(0));
2623		if (ret_val)
2624			return ret_val;
2625		ret_val = e1000e_read_kmrn_reg(hw,
2626					       E1000_KMRNCTRLSTA_HD_CTRL,
2627					       &data);
2628		if (ret_val)
2629			return ret_val;
2630		data &= ~(0xF << 8);
2631		data |= (0xB << 8);
2632		ret_val = e1000e_write_kmrn_reg(hw,
2633						E1000_KMRNCTRLSTA_HD_CTRL,
2634						data);
2635		if (ret_val)
2636			return ret_val;
2637
2638		/* Enable jumbo frame workaround in the PHY */
2639		e1e_rphy(hw, PHY_REG(769, 23), &data);
2640		data &= ~(0x7F << 5);
2641		data |= (0x37 << 5);
2642		ret_val = e1e_wphy(hw, PHY_REG(769, 23), data);
2643		if (ret_val)
2644			return ret_val;
2645		e1e_rphy(hw, PHY_REG(769, 16), &data);
2646		data &= ~BIT(13);
2647		ret_val = e1e_wphy(hw, PHY_REG(769, 16), data);
2648		if (ret_val)
2649			return ret_val;
2650		e1e_rphy(hw, PHY_REG(776, 20), &data);
2651		data &= ~(0x3FF << 2);
2652		data |= (E1000_TX_PTR_GAP << 2);
2653		ret_val = e1e_wphy(hw, PHY_REG(776, 20), data);
2654		if (ret_val)
2655			return ret_val;
2656		ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0xF100);
2657		if (ret_val)
2658			return ret_val;
2659		e1e_rphy(hw, HV_PM_CTRL, &data);
2660		ret_val = e1e_wphy(hw, HV_PM_CTRL, data | BIT(10));
2661		if (ret_val)
2662			return ret_val;
2663	} else {
2664		/* Write MAC register values back to h/w defaults */
2665		mac_reg = er32(FFLT_DBG);
2666		mac_reg &= ~(0xF << 14);
2667		ew32(FFLT_DBG, mac_reg);
2668
2669		mac_reg = er32(RCTL);
2670		mac_reg &= ~E1000_RCTL_SECRC;
2671		ew32(RCTL, mac_reg);
2672
2673		ret_val = e1000e_read_kmrn_reg(hw,
2674					       E1000_KMRNCTRLSTA_CTRL_OFFSET,
2675					       &data);
2676		if (ret_val)
2677			return ret_val;
2678		ret_val = e1000e_write_kmrn_reg(hw,
2679						E1000_KMRNCTRLSTA_CTRL_OFFSET,
2680						data & ~BIT(0));
2681		if (ret_val)
2682			return ret_val;
2683		ret_val = e1000e_read_kmrn_reg(hw,
2684					       E1000_KMRNCTRLSTA_HD_CTRL,
2685					       &data);
2686		if (ret_val)
2687			return ret_val;
2688		data &= ~(0xF << 8);
2689		data |= (0xB << 8);
2690		ret_val = e1000e_write_kmrn_reg(hw,
2691						E1000_KMRNCTRLSTA_HD_CTRL,
2692						data);
2693		if (ret_val)
2694			return ret_val;
2695
2696		/* Write PHY register values back to h/w defaults */
2697		e1e_rphy(hw, PHY_REG(769, 23), &data);
2698		data &= ~(0x7F << 5);
2699		ret_val = e1e_wphy(hw, PHY_REG(769, 23), data);
2700		if (ret_val)
2701			return ret_val;
2702		e1e_rphy(hw, PHY_REG(769, 16), &data);
2703		data |= BIT(13);
2704		ret_val = e1e_wphy(hw, PHY_REG(769, 16), data);
2705		if (ret_val)
2706			return ret_val;
2707		e1e_rphy(hw, PHY_REG(776, 20), &data);
2708		data &= ~(0x3FF << 2);
2709		data |= (0x8 << 2);
2710		ret_val = e1e_wphy(hw, PHY_REG(776, 20), data);
2711		if (ret_val)
2712			return ret_val;
2713		ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0x7E00);
2714		if (ret_val)
2715			return ret_val;
2716		e1e_rphy(hw, HV_PM_CTRL, &data);
2717		ret_val = e1e_wphy(hw, HV_PM_CTRL, data & ~BIT(10));
2718		if (ret_val)
2719			return ret_val;
2720	}
2721
2722	/* re-enable Rx path after enabling/disabling workaround */
2723	return e1e_wphy(hw, PHY_REG(769, 20), phy_reg & ~BIT(14));
2724}
2725
2726/**
2727 *  e1000_lv_phy_workarounds_ich8lan - apply ich8 specific workarounds
2728 *  @hw: pointer to the HW structure
2729 *
2730 *  A series of PHY workarounds to be done after every PHY reset.
2731 **/
2732static s32 e1000_lv_phy_workarounds_ich8lan(struct e1000_hw *hw)
2733{
2734	s32 ret_val = 0;
2735
2736	if (hw->mac.type != e1000_pch2lan)
2737		return 0;
2738
2739	/* Set MDIO slow mode before any other MDIO access */
2740	ret_val = e1000_set_mdio_slow_mode_hv(hw);
2741	if (ret_val)
2742		return ret_val;
2743
2744	ret_val = hw->phy.ops.acquire(hw);
2745	if (ret_val)
2746		return ret_val;
2747	/* set MSE higher to enable link to stay up when noise is high */
2748	ret_val = e1000_write_emi_reg_locked(hw, I82579_MSE_THRESHOLD, 0x0034);
2749	if (ret_val)
2750		goto release;
2751	/* drop link after 5 times MSE threshold was reached */
2752	ret_val = e1000_write_emi_reg_locked(hw, I82579_MSE_LINK_DOWN, 0x0005);
2753release:
2754	hw->phy.ops.release(hw);
2755
2756	return ret_val;
2757}
2758
2759/**
2760 *  e1000_k1_workaround_lv - K1 Si workaround
2761 *  @hw:   pointer to the HW structure
2762 *
2763 *  Workaround to set the K1 beacon duration for 82579 parts in 10Mbps
2764 *  Disable K1 in 1000Mbps and 100Mbps
2765 **/
2766static s32 e1000_k1_workaround_lv(struct e1000_hw *hw)
2767{
2768	s32 ret_val = 0;
2769	u16 status_reg = 0;
2770
2771	if (hw->mac.type != e1000_pch2lan)
2772		return 0;
2773
2774	/* Set K1 beacon duration based on 10Mbs speed */
2775	ret_val = e1e_rphy(hw, HV_M_STATUS, &status_reg);
2776	if (ret_val)
2777		return ret_val;
2778
2779	if ((status_reg & (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE))
2780	    == (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE)) {
2781		if (status_reg &
2782		    (HV_M_STATUS_SPEED_1000 | HV_M_STATUS_SPEED_100)) {
2783			u16 pm_phy_reg;
2784
2785			/* LV 1G/100 Packet drop issue wa  */
2786			ret_val = e1e_rphy(hw, HV_PM_CTRL, &pm_phy_reg);
2787			if (ret_val)
2788				return ret_val;
2789			pm_phy_reg &= ~HV_PM_CTRL_K1_ENABLE;
2790			ret_val = e1e_wphy(hw, HV_PM_CTRL, pm_phy_reg);
2791			if (ret_val)
2792				return ret_val;
2793		} else {
2794			u32 mac_reg;
2795
2796			mac_reg = er32(FEXTNVM4);
2797			mac_reg &= ~E1000_FEXTNVM4_BEACON_DURATION_MASK;
2798			mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_16USEC;
2799			ew32(FEXTNVM4, mac_reg);
2800		}
2801	}
2802
2803	return ret_val;
2804}
2805
2806/**
2807 *  e1000_gate_hw_phy_config_ich8lan - disable PHY config via hardware
2808 *  @hw:   pointer to the HW structure
2809 *  @gate: boolean set to true to gate, false to ungate
2810 *
2811 *  Gate/ungate the automatic PHY configuration via hardware; perform
2812 *  the configuration via software instead.
2813 **/
2814static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate)
2815{
2816	u32 extcnf_ctrl;
2817
2818	if (hw->mac.type < e1000_pch2lan)
2819		return;
2820
2821	extcnf_ctrl = er32(EXTCNF_CTRL);
2822
2823	if (gate)
2824		extcnf_ctrl |= E1000_EXTCNF_CTRL_GATE_PHY_CFG;
2825	else
2826		extcnf_ctrl &= ~E1000_EXTCNF_CTRL_GATE_PHY_CFG;
2827
2828	ew32(EXTCNF_CTRL, extcnf_ctrl);
2829}
2830
2831/**
2832 *  e1000_lan_init_done_ich8lan - Check for PHY config completion
2833 *  @hw: pointer to the HW structure
2834 *
2835 *  Check the appropriate indication the MAC has finished configuring the
2836 *  PHY after a software reset.
2837 **/
2838static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw)
2839{
2840	u32 data, loop = E1000_ICH8_LAN_INIT_TIMEOUT;
2841
2842	/* Wait for basic configuration completes before proceeding */
2843	do {
2844		data = er32(STATUS);
2845		data &= E1000_STATUS_LAN_INIT_DONE;
2846		usleep_range(100, 200);
2847	} while ((!data) && --loop);
2848
2849	/* If basic configuration is incomplete before the above loop
2850	 * count reaches 0, loading the configuration from NVM will
2851	 * leave the PHY in a bad state possibly resulting in no link.
2852	 */
2853	if (loop == 0)
2854		e_dbg("LAN_INIT_DONE not set, increase timeout\n");
2855
2856	/* Clear the Init Done bit for the next init event */
2857	data = er32(STATUS);
2858	data &= ~E1000_STATUS_LAN_INIT_DONE;
2859	ew32(STATUS, data);
2860}
2861
2862/**
2863 *  e1000_post_phy_reset_ich8lan - Perform steps required after a PHY reset
2864 *  @hw: pointer to the HW structure
2865 **/
2866static s32 e1000_post_phy_reset_ich8lan(struct e1000_hw *hw)
2867{
2868	s32 ret_val = 0;
2869	u16 reg;
2870
2871	if (hw->phy.ops.check_reset_block(hw))
2872		return 0;
2873
2874	/* Allow time for h/w to get to quiescent state after reset */
2875	usleep_range(10000, 11000);
2876
2877	/* Perform any necessary post-reset workarounds */
2878	switch (hw->mac.type) {
2879	case e1000_pchlan:
2880		ret_val = e1000_hv_phy_workarounds_ich8lan(hw);
2881		if (ret_val)
2882			return ret_val;
2883		break;
2884	case e1000_pch2lan:
2885		ret_val = e1000_lv_phy_workarounds_ich8lan(hw);
2886		if (ret_val)
2887			return ret_val;
2888		break;
2889	default:
2890		break;
2891	}
2892
2893	/* Clear the host wakeup bit after lcd reset */
2894	if (hw->mac.type >= e1000_pchlan) {
2895		e1e_rphy(hw, BM_PORT_GEN_CFG, &reg);
2896		reg &= ~BM_WUC_HOST_WU_BIT;
2897		e1e_wphy(hw, BM_PORT_GEN_CFG, reg);
2898	}
2899
2900	/* Configure the LCD with the extended configuration region in NVM */
2901	ret_val = e1000_sw_lcd_config_ich8lan(hw);
2902	if (ret_val)
2903		return ret_val;
2904
2905	/* Configure the LCD with the OEM bits in NVM */
2906	ret_val = e1000_oem_bits_config_ich8lan(hw, true);
2907
2908	if (hw->mac.type == e1000_pch2lan) {
2909		/* Ungate automatic PHY configuration on non-managed 82579 */
2910		if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
2911			usleep_range(10000, 11000);
2912			e1000_gate_hw_phy_config_ich8lan(hw, false);
2913		}
2914
2915		/* Set EEE LPI Update Timer to 200usec */
2916		ret_val = hw->phy.ops.acquire(hw);
2917		if (ret_val)
2918			return ret_val;
2919		ret_val = e1000_write_emi_reg_locked(hw,
2920						     I82579_LPI_UPDATE_TIMER,
2921						     0x1387);
2922		hw->phy.ops.release(hw);
2923	}
2924
2925	return ret_val;
2926}
2927
2928/**
2929 *  e1000_phy_hw_reset_ich8lan - Performs a PHY reset
2930 *  @hw: pointer to the HW structure
2931 *
2932 *  Resets the PHY
2933 *  This is a function pointer entry point called by drivers
2934 *  or other shared routines.
2935 **/
2936static s32 e1000_phy_hw_reset_ich8lan(struct e1000_hw *hw)
2937{
2938	s32 ret_val = 0;
2939
2940	/* Gate automatic PHY configuration by hardware on non-managed 82579 */
2941	if ((hw->mac.type == e1000_pch2lan) &&
2942	    !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
2943		e1000_gate_hw_phy_config_ich8lan(hw, true);
2944
2945	ret_val = e1000e_phy_hw_reset_generic(hw);
2946	if (ret_val)
2947		return ret_val;
2948
2949	return e1000_post_phy_reset_ich8lan(hw);
2950}
2951
2952/**
2953 *  e1000_set_lplu_state_pchlan - Set Low Power Link Up state
2954 *  @hw: pointer to the HW structure
2955 *  @active: true to enable LPLU, false to disable
2956 *
2957 *  Sets the LPLU state according to the active flag.  For PCH, if OEM write
2958 *  bit are disabled in the NVM, writing the LPLU bits in the MAC will not set
2959 *  the phy speed. This function will manually set the LPLU bit and restart
2960 *  auto-neg as hw would do. D3 and D0 LPLU will call the same function
2961 *  since it configures the same bit.
2962 **/
2963static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active)
2964{
2965	s32 ret_val;
2966	u16 oem_reg;
2967
2968	ret_val = e1e_rphy(hw, HV_OEM_BITS, &oem_reg);
2969	if (ret_val)
2970		return ret_val;
2971
2972	if (active)
2973		oem_reg |= HV_OEM_BITS_LPLU;
2974	else
2975		oem_reg &= ~HV_OEM_BITS_LPLU;
2976
2977	if (!hw->phy.ops.check_reset_block(hw))
2978		oem_reg |= HV_OEM_BITS_RESTART_AN;
2979
2980	return e1e_wphy(hw, HV_OEM_BITS, oem_reg);
2981}
2982
2983/**
2984 *  e1000_set_d0_lplu_state_ich8lan - Set Low Power Linkup D0 state
2985 *  @hw: pointer to the HW structure
2986 *  @active: true to enable LPLU, false to disable
2987 *
2988 *  Sets the LPLU D0 state according to the active flag.  When
2989 *  activating LPLU this function also disables smart speed
2990 *  and vice versa.  LPLU will not be activated unless the
2991 *  device autonegotiation advertisement meets standards of
2992 *  either 10 or 10/100 or 10/100/1000 at all duplexes.
2993 *  This is a function pointer entry point only called by
2994 *  PHY setup routines.
2995 **/
2996static s32 e1000_set_d0_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
2997{
2998	struct e1000_phy_info *phy = &hw->phy;
2999	u32 phy_ctrl;
3000	s32 ret_val = 0;
3001	u16 data;
3002
3003	if (phy->type == e1000_phy_ife)
3004		return 0;
3005
3006	phy_ctrl = er32(PHY_CTRL);
3007
3008	if (active) {
3009		phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
3010		ew32(PHY_CTRL, phy_ctrl);
3011
3012		if (phy->type != e1000_phy_igp_3)
3013			return 0;
3014
3015		/* Call gig speed drop workaround on LPLU before accessing
3016		 * any PHY registers
3017		 */
3018		if (hw->mac.type == e1000_ich8lan)
3019			e1000e_gig_downshift_workaround_ich8lan(hw);
3020
3021		/* When LPLU is enabled, we should disable SmartSpeed */
3022		ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
3023		if (ret_val)
3024			return ret_val;
3025		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3026		ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
3027		if (ret_val)
3028			return ret_val;
3029	} else {
3030		phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
3031		ew32(PHY_CTRL, phy_ctrl);
3032
3033		if (phy->type != e1000_phy_igp_3)
3034			return 0;
3035
3036		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
3037		 * during Dx states where the power conservation is most
3038		 * important.  During driver activity we should enable
3039		 * SmartSpeed, so performance is maintained.
3040		 */
3041		if (phy->smart_speed == e1000_smart_speed_on) {
3042			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3043					   &data);
3044			if (ret_val)
3045				return ret_val;
3046
3047			data |= IGP01E1000_PSCFR_SMART_SPEED;
3048			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3049					   data);
3050			if (ret_val)
3051				return ret_val;
3052		} else if (phy->smart_speed == e1000_smart_speed_off) {
3053			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3054					   &data);
3055			if (ret_val)
3056				return ret_val;
3057
3058			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3059			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3060					   data);
3061			if (ret_val)
3062				return ret_val;
3063		}
3064	}
3065
3066	return 0;
3067}
3068
3069/**
3070 *  e1000_set_d3_lplu_state_ich8lan - Set Low Power Linkup D3 state
3071 *  @hw: pointer to the HW structure
3072 *  @active: true to enable LPLU, false to disable
3073 *
3074 *  Sets the LPLU D3 state according to the active flag.  When
3075 *  activating LPLU this function also disables smart speed
3076 *  and vice versa.  LPLU will not be activated unless the
3077 *  device autonegotiation advertisement meets standards of
3078 *  either 10 or 10/100 or 10/100/1000 at all duplexes.
3079 *  This is a function pointer entry point only called by
3080 *  PHY setup routines.
3081 **/
3082static s32 e1000_set_d3_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
3083{
3084	struct e1000_phy_info *phy = &hw->phy;
3085	u32 phy_ctrl;
3086	s32 ret_val = 0;
3087	u16 data;
3088
3089	phy_ctrl = er32(PHY_CTRL);
3090
3091	if (!active) {
3092		phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU;
3093		ew32(PHY_CTRL, phy_ctrl);
3094
3095		if (phy->type != e1000_phy_igp_3)
3096			return 0;
3097
3098		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
3099		 * during Dx states where the power conservation is most
3100		 * important.  During driver activity we should enable
3101		 * SmartSpeed, so performance is maintained.
3102		 */
3103		if (phy->smart_speed == e1000_smart_speed_on) {
3104			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3105					   &data);
3106			if (ret_val)
3107				return ret_val;
3108
3109			data |= IGP01E1000_PSCFR_SMART_SPEED;
3110			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3111					   data);
3112			if (ret_val)
3113				return ret_val;
3114		} else if (phy->smart_speed == e1000_smart_speed_off) {
3115			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3116					   &data);
3117			if (ret_val)
3118				return ret_val;
3119
3120			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3121			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3122					   data);
3123			if (ret_val)
3124				return ret_val;
3125		}
3126	} else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
3127		   (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
3128		   (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
3129		phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU;
3130		ew32(PHY_CTRL, phy_ctrl);
3131
3132		if (phy->type != e1000_phy_igp_3)
3133			return 0;
3134
3135		/* Call gig speed drop workaround on LPLU before accessing
3136		 * any PHY registers
3137		 */
3138		if (hw->mac.type == e1000_ich8lan)
3139			e1000e_gig_downshift_workaround_ich8lan(hw);
3140
3141		/* When LPLU is enabled, we should disable SmartSpeed */
3142		ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
3143		if (ret_val)
3144			return ret_val;
3145
3146		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3147		ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
3148	}
3149
3150	return ret_val;
3151}
3152
3153/**
3154 *  e1000_valid_nvm_bank_detect_ich8lan - finds out the valid bank 0 or 1
3155 *  @hw: pointer to the HW structure
3156 *  @bank:  pointer to the variable that returns the active bank
3157 *
3158 *  Reads signature byte from the NVM using the flash access registers.
3159 *  Word 0x13 bits 15:14 = 10b indicate a valid signature for that bank.
3160 **/
3161static s32 e1000_valid_nvm_bank_detect_ich8lan(struct e1000_hw *hw, u32 *bank)
3162{
3163	u32 eecd;
3164	struct e1000_nvm_info *nvm = &hw->nvm;
3165	u32 bank1_offset = nvm->flash_bank_size * sizeof(u16);
3166	u32 act_offset = E1000_ICH_NVM_SIG_WORD * 2 + 1;
3167	u32 nvm_dword = 0;
3168	u8 sig_byte = 0;
3169	s32 ret_val;
3170
3171	switch (hw->mac.type) {
3172	case e1000_pch_spt:
3173	case e1000_pch_cnp:
3174	case e1000_pch_tgp:
3175	case e1000_pch_adp:
3176	case e1000_pch_mtp:
 
 
 
3177		bank1_offset = nvm->flash_bank_size;
3178		act_offset = E1000_ICH_NVM_SIG_WORD;
3179
3180		/* set bank to 0 in case flash read fails */
3181		*bank = 0;
3182
3183		/* Check bank 0 */
3184		ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset,
3185							 &nvm_dword);
3186		if (ret_val)
3187			return ret_val;
3188		sig_byte = (u8)((nvm_dword & 0xFF00) >> 8);
3189		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3190		    E1000_ICH_NVM_SIG_VALUE) {
3191			*bank = 0;
3192			return 0;
3193		}
3194
3195		/* Check bank 1 */
3196		ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset +
3197							 bank1_offset,
3198							 &nvm_dword);
3199		if (ret_val)
3200			return ret_val;
3201		sig_byte = (u8)((nvm_dword & 0xFF00) >> 8);
3202		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3203		    E1000_ICH_NVM_SIG_VALUE) {
3204			*bank = 1;
3205			return 0;
3206		}
3207
3208		e_dbg("ERROR: No valid NVM bank present\n");
3209		return -E1000_ERR_NVM;
3210	case e1000_ich8lan:
3211	case e1000_ich9lan:
3212		eecd = er32(EECD);
3213		if ((eecd & E1000_EECD_SEC1VAL_VALID_MASK) ==
3214		    E1000_EECD_SEC1VAL_VALID_MASK) {
3215			if (eecd & E1000_EECD_SEC1VAL)
3216				*bank = 1;
3217			else
3218				*bank = 0;
3219
3220			return 0;
3221		}
3222		e_dbg("Unable to determine valid NVM bank via EEC - reading flash signature\n");
3223		fallthrough;
3224	default:
3225		/* set bank to 0 in case flash read fails */
3226		*bank = 0;
3227
3228		/* Check bank 0 */
3229		ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset,
3230							&sig_byte);
3231		if (ret_val)
3232			return ret_val;
3233		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3234		    E1000_ICH_NVM_SIG_VALUE) {
3235			*bank = 0;
3236			return 0;
3237		}
3238
3239		/* Check bank 1 */
3240		ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset +
3241							bank1_offset,
3242							&sig_byte);
3243		if (ret_val)
3244			return ret_val;
3245		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3246		    E1000_ICH_NVM_SIG_VALUE) {
3247			*bank = 1;
3248			return 0;
3249		}
3250
3251		e_dbg("ERROR: No valid NVM bank present\n");
3252		return -E1000_ERR_NVM;
3253	}
3254}
3255
3256/**
3257 *  e1000_read_nvm_spt - NVM access for SPT
3258 *  @hw: pointer to the HW structure
3259 *  @offset: The offset (in bytes) of the word(s) to read.
3260 *  @words: Size of data to read in words.
3261 *  @data: pointer to the word(s) to read at offset.
3262 *
3263 *  Reads a word(s) from the NVM
3264 **/
3265static s32 e1000_read_nvm_spt(struct e1000_hw *hw, u16 offset, u16 words,
3266			      u16 *data)
3267{
3268	struct e1000_nvm_info *nvm = &hw->nvm;
3269	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3270	u32 act_offset;
3271	s32 ret_val = 0;
3272	u32 bank = 0;
3273	u32 dword = 0;
3274	u16 offset_to_read;
3275	u16 i;
3276
3277	if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
3278	    (words == 0)) {
3279		e_dbg("nvm parameter(s) out of bounds\n");
3280		ret_val = -E1000_ERR_NVM;
3281		goto out;
3282	}
3283
3284	nvm->ops.acquire(hw);
3285
3286	ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3287	if (ret_val) {
3288		e_dbg("Could not detect valid bank, assuming bank 0\n");
3289		bank = 0;
3290	}
3291
3292	act_offset = (bank) ? nvm->flash_bank_size : 0;
3293	act_offset += offset;
3294
3295	ret_val = 0;
3296
3297	for (i = 0; i < words; i += 2) {
3298		if (words - i == 1) {
3299			if (dev_spec->shadow_ram[offset + i].modified) {
3300				data[i] =
3301				    dev_spec->shadow_ram[offset + i].value;
3302			} else {
3303				offset_to_read = act_offset + i -
3304				    ((act_offset + i) % 2);
3305				ret_val =
3306				  e1000_read_flash_dword_ich8lan(hw,
3307								 offset_to_read,
3308								 &dword);
3309				if (ret_val)
3310					break;
3311				if ((act_offset + i) % 2 == 0)
3312					data[i] = (u16)(dword & 0xFFFF);
3313				else
3314					data[i] = (u16)((dword >> 16) & 0xFFFF);
3315			}
3316		} else {
3317			offset_to_read = act_offset + i;
3318			if (!(dev_spec->shadow_ram[offset + i].modified) ||
3319			    !(dev_spec->shadow_ram[offset + i + 1].modified)) {
3320				ret_val =
3321				  e1000_read_flash_dword_ich8lan(hw,
3322								 offset_to_read,
3323								 &dword);
3324				if (ret_val)
3325					break;
3326			}
3327			if (dev_spec->shadow_ram[offset + i].modified)
3328				data[i] =
3329				    dev_spec->shadow_ram[offset + i].value;
3330			else
3331				data[i] = (u16)(dword & 0xFFFF);
3332			if (dev_spec->shadow_ram[offset + i].modified)
3333				data[i + 1] =
3334				    dev_spec->shadow_ram[offset + i + 1].value;
3335			else
3336				data[i + 1] = (u16)(dword >> 16 & 0xFFFF);
3337		}
3338	}
3339
3340	nvm->ops.release(hw);
3341
3342out:
3343	if (ret_val)
3344		e_dbg("NVM read error: %d\n", ret_val);
3345
3346	return ret_val;
3347}
3348
3349/**
3350 *  e1000_read_nvm_ich8lan - Read word(s) from the NVM
3351 *  @hw: pointer to the HW structure
3352 *  @offset: The offset (in bytes) of the word(s) to read.
3353 *  @words: Size of data to read in words
3354 *  @data: Pointer to the word(s) to read at offset.
3355 *
3356 *  Reads a word(s) from the NVM using the flash access registers.
3357 **/
3358static s32 e1000_read_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
3359				  u16 *data)
3360{
3361	struct e1000_nvm_info *nvm = &hw->nvm;
3362	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3363	u32 act_offset;
3364	s32 ret_val = 0;
3365	u32 bank = 0;
3366	u16 i, word;
3367
3368	if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
3369	    (words == 0)) {
3370		e_dbg("nvm parameter(s) out of bounds\n");
3371		ret_val = -E1000_ERR_NVM;
3372		goto out;
3373	}
3374
3375	nvm->ops.acquire(hw);
3376
3377	ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3378	if (ret_val) {
3379		e_dbg("Could not detect valid bank, assuming bank 0\n");
3380		bank = 0;
3381	}
3382
3383	act_offset = (bank) ? nvm->flash_bank_size : 0;
3384	act_offset += offset;
3385
3386	ret_val = 0;
3387	for (i = 0; i < words; i++) {
3388		if (dev_spec->shadow_ram[offset + i].modified) {
3389			data[i] = dev_spec->shadow_ram[offset + i].value;
3390		} else {
3391			ret_val = e1000_read_flash_word_ich8lan(hw,
3392								act_offset + i,
3393								&word);
3394			if (ret_val)
3395				break;
3396			data[i] = word;
3397		}
3398	}
3399
3400	nvm->ops.release(hw);
3401
3402out:
3403	if (ret_val)
3404		e_dbg("NVM read error: %d\n", ret_val);
3405
3406	return ret_val;
3407}
3408
3409/**
3410 *  e1000_flash_cycle_init_ich8lan - Initialize flash
3411 *  @hw: pointer to the HW structure
3412 *
3413 *  This function does initial flash setup so that a new read/write/erase cycle
3414 *  can be started.
3415 **/
3416static s32 e1000_flash_cycle_init_ich8lan(struct e1000_hw *hw)
3417{
3418	union ich8_hws_flash_status hsfsts;
3419	s32 ret_val = -E1000_ERR_NVM;
3420
3421	hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3422
3423	/* Check if the flash descriptor is valid */
3424	if (!hsfsts.hsf_status.fldesvalid) {
3425		e_dbg("Flash descriptor invalid.  SW Sequencing must be used.\n");
3426		return -E1000_ERR_NVM;
3427	}
3428
3429	/* Clear FCERR and DAEL in hw status by writing 1 */
3430	hsfsts.hsf_status.flcerr = 1;
3431	hsfsts.hsf_status.dael = 1;
3432	if (hw->mac.type >= e1000_pch_spt)
3433		ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval & 0xFFFF);
3434	else
3435		ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
3436
3437	/* Either we should have a hardware SPI cycle in progress
3438	 * bit to check against, in order to start a new cycle or
3439	 * FDONE bit should be changed in the hardware so that it
3440	 * is 1 after hardware reset, which can then be used as an
3441	 * indication whether a cycle is in progress or has been
3442	 * completed.
3443	 */
3444
3445	if (!hsfsts.hsf_status.flcinprog) {
3446		/* There is no cycle running at present,
3447		 * so we can start a cycle.
3448		 * Begin by setting Flash Cycle Done.
3449		 */
3450		hsfsts.hsf_status.flcdone = 1;
3451		if (hw->mac.type >= e1000_pch_spt)
3452			ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval & 0xFFFF);
3453		else
3454			ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
3455		ret_val = 0;
3456	} else {
3457		s32 i;
3458
3459		/* Otherwise poll for sometime so the current
3460		 * cycle has a chance to end before giving up.
3461		 */
3462		for (i = 0; i < ICH_FLASH_READ_COMMAND_TIMEOUT; i++) {
3463			hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3464			if (!hsfsts.hsf_status.flcinprog) {
3465				ret_val = 0;
3466				break;
3467			}
3468			udelay(1);
3469		}
3470		if (!ret_val) {
3471			/* Successful in waiting for previous cycle to timeout,
3472			 * now set the Flash Cycle Done.
3473			 */
3474			hsfsts.hsf_status.flcdone = 1;
3475			if (hw->mac.type >= e1000_pch_spt)
3476				ew32flash(ICH_FLASH_HSFSTS,
3477					  hsfsts.regval & 0xFFFF);
3478			else
3479				ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
3480		} else {
3481			e_dbg("Flash controller busy, cannot get access\n");
3482		}
3483	}
3484
3485	return ret_val;
3486}
3487
3488/**
3489 *  e1000_flash_cycle_ich8lan - Starts flash cycle (read/write/erase)
3490 *  @hw: pointer to the HW structure
3491 *  @timeout: maximum time to wait for completion
3492 *
3493 *  This function starts a flash cycle and waits for its completion.
3494 **/
3495static s32 e1000_flash_cycle_ich8lan(struct e1000_hw *hw, u32 timeout)
3496{
3497	union ich8_hws_flash_ctrl hsflctl;
3498	union ich8_hws_flash_status hsfsts;
3499	u32 i = 0;
3500
3501	/* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */
3502	if (hw->mac.type >= e1000_pch_spt)
3503		hsflctl.regval = er32flash(ICH_FLASH_HSFSTS) >> 16;
3504	else
3505		hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
3506	hsflctl.hsf_ctrl.flcgo = 1;
3507
3508	if (hw->mac.type >= e1000_pch_spt)
3509		ew32flash(ICH_FLASH_HSFSTS, hsflctl.regval << 16);
3510	else
3511		ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
3512
3513	/* wait till FDONE bit is set to 1 */
3514	do {
3515		hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3516		if (hsfsts.hsf_status.flcdone)
3517			break;
3518		udelay(1);
3519	} while (i++ < timeout);
3520
3521	if (hsfsts.hsf_status.flcdone && !hsfsts.hsf_status.flcerr)
3522		return 0;
3523
3524	return -E1000_ERR_NVM;
3525}
3526
3527/**
3528 *  e1000_read_flash_dword_ich8lan - Read dword from flash
3529 *  @hw: pointer to the HW structure
3530 *  @offset: offset to data location
3531 *  @data: pointer to the location for storing the data
3532 *
3533 *  Reads the flash dword at offset into data.  Offset is converted
3534 *  to bytes before read.
3535 **/
3536static s32 e1000_read_flash_dword_ich8lan(struct e1000_hw *hw, u32 offset,
3537					  u32 *data)
3538{
3539	/* Must convert word offset into bytes. */
3540	offset <<= 1;
3541	return e1000_read_flash_data32_ich8lan(hw, offset, data);
3542}
3543
3544/**
3545 *  e1000_read_flash_word_ich8lan - Read word from flash
3546 *  @hw: pointer to the HW structure
3547 *  @offset: offset to data location
3548 *  @data: pointer to the location for storing the data
3549 *
3550 *  Reads the flash word at offset into data.  Offset is converted
3551 *  to bytes before read.
3552 **/
3553static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
3554					 u16 *data)
3555{
3556	/* Must convert offset into bytes. */
3557	offset <<= 1;
3558
3559	return e1000_read_flash_data_ich8lan(hw, offset, 2, data);
3560}
3561
3562/**
3563 *  e1000_read_flash_byte_ich8lan - Read byte from flash
3564 *  @hw: pointer to the HW structure
3565 *  @offset: The offset of the byte to read.
3566 *  @data: Pointer to a byte to store the value read.
3567 *
3568 *  Reads a single byte from the NVM using the flash access registers.
3569 **/
3570static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
3571					 u8 *data)
3572{
3573	s32 ret_val;
3574	u16 word = 0;
3575
3576	/* In SPT, only 32 bits access is supported,
3577	 * so this function should not be called.
3578	 */
3579	if (hw->mac.type >= e1000_pch_spt)
3580		return -E1000_ERR_NVM;
3581	else
3582		ret_val = e1000_read_flash_data_ich8lan(hw, offset, 1, &word);
3583
3584	if (ret_val)
3585		return ret_val;
3586
3587	*data = (u8)word;
3588
3589	return 0;
3590}
3591
3592/**
3593 *  e1000_read_flash_data_ich8lan - Read byte or word from NVM
3594 *  @hw: pointer to the HW structure
3595 *  @offset: The offset (in bytes) of the byte or word to read.
3596 *  @size: Size of data to read, 1=byte 2=word
3597 *  @data: Pointer to the word to store the value read.
3598 *
3599 *  Reads a byte or word from the NVM using the flash access registers.
3600 **/
3601static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
3602					 u8 size, u16 *data)
3603{
3604	union ich8_hws_flash_status hsfsts;
3605	union ich8_hws_flash_ctrl hsflctl;
3606	u32 flash_linear_addr;
3607	u32 flash_data = 0;
3608	s32 ret_val = -E1000_ERR_NVM;
3609	u8 count = 0;
3610
3611	if (size < 1 || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
3612		return -E1000_ERR_NVM;
3613
3614	flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
3615			     hw->nvm.flash_base_addr);
3616
3617	do {
3618		udelay(1);
3619		/* Steps */
3620		ret_val = e1000_flash_cycle_init_ich8lan(hw);
3621		if (ret_val)
3622			break;
3623
3624		hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
3625		/* 0b/1b corresponds to 1 or 2 byte size, respectively. */
3626		hsflctl.hsf_ctrl.fldbcount = size - 1;
3627		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
3628		ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
3629
3630		ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
3631
3632		ret_val =
3633		    e1000_flash_cycle_ich8lan(hw,
3634					      ICH_FLASH_READ_COMMAND_TIMEOUT);
3635
3636		/* Check if FCERR is set to 1, if set to 1, clear it
3637		 * and try the whole sequence a few more times, else
3638		 * read in (shift in) the Flash Data0, the order is
3639		 * least significant byte first msb to lsb
3640		 */
3641		if (!ret_val) {
3642			flash_data = er32flash(ICH_FLASH_FDATA0);
3643			if (size == 1)
3644				*data = (u8)(flash_data & 0x000000FF);
3645			else if (size == 2)
3646				*data = (u16)(flash_data & 0x0000FFFF);
3647			break;
3648		} else {
3649			/* If we've gotten here, then things are probably
3650			 * completely hosed, but if the error condition is
3651			 * detected, it won't hurt to give it another try...
3652			 * ICH_FLASH_CYCLE_REPEAT_COUNT times.
3653			 */
3654			hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3655			if (hsfsts.hsf_status.flcerr) {
3656				/* Repeat for some time before giving up. */
3657				continue;
3658			} else if (!hsfsts.hsf_status.flcdone) {
3659				e_dbg("Timeout error - flash cycle did not complete.\n");
3660				break;
3661			}
3662		}
3663	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
3664
3665	return ret_val;
3666}
3667
3668/**
3669 *  e1000_read_flash_data32_ich8lan - Read dword from NVM
3670 *  @hw: pointer to the HW structure
3671 *  @offset: The offset (in bytes) of the dword to read.
3672 *  @data: Pointer to the dword to store the value read.
3673 *
3674 *  Reads a byte or word from the NVM using the flash access registers.
3675 **/
3676
3677static s32 e1000_read_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset,
3678					   u32 *data)
3679{
3680	union ich8_hws_flash_status hsfsts;
3681	union ich8_hws_flash_ctrl hsflctl;
3682	u32 flash_linear_addr;
3683	s32 ret_val = -E1000_ERR_NVM;
3684	u8 count = 0;
3685
3686	if (offset > ICH_FLASH_LINEAR_ADDR_MASK || hw->mac.type < e1000_pch_spt)
3687		return -E1000_ERR_NVM;
3688	flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
3689			     hw->nvm.flash_base_addr);
3690
3691	do {
3692		udelay(1);
3693		/* Steps */
3694		ret_val = e1000_flash_cycle_init_ich8lan(hw);
3695		if (ret_val)
3696			break;
3697		/* In SPT, This register is in Lan memory space, not flash.
3698		 * Therefore, only 32 bit access is supported
3699		 */
3700		hsflctl.regval = er32flash(ICH_FLASH_HSFSTS) >> 16;
3701
3702		/* 0b/1b corresponds to 1 or 2 byte size, respectively. */
3703		hsflctl.hsf_ctrl.fldbcount = sizeof(u32) - 1;
3704		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
3705		/* In SPT, This register is in Lan memory space, not flash.
3706		 * Therefore, only 32 bit access is supported
3707		 */
3708		ew32flash(ICH_FLASH_HSFSTS, (u32)hsflctl.regval << 16);
3709		ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
3710
3711		ret_val =
3712		   e1000_flash_cycle_ich8lan(hw,
3713					     ICH_FLASH_READ_COMMAND_TIMEOUT);
3714
3715		/* Check if FCERR is set to 1, if set to 1, clear it
3716		 * and try the whole sequence a few more times, else
3717		 * read in (shift in) the Flash Data0, the order is
3718		 * least significant byte first msb to lsb
3719		 */
3720		if (!ret_val) {
3721			*data = er32flash(ICH_FLASH_FDATA0);
3722			break;
3723		} else {
3724			/* If we've gotten here, then things are probably
3725			 * completely hosed, but if the error condition is
3726			 * detected, it won't hurt to give it another try...
3727			 * ICH_FLASH_CYCLE_REPEAT_COUNT times.
3728			 */
3729			hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3730			if (hsfsts.hsf_status.flcerr) {
3731				/* Repeat for some time before giving up. */
3732				continue;
3733			} else if (!hsfsts.hsf_status.flcdone) {
3734				e_dbg("Timeout error - flash cycle did not complete.\n");
3735				break;
3736			}
3737		}
3738	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
3739
3740	return ret_val;
3741}
3742
3743/**
3744 *  e1000_write_nvm_ich8lan - Write word(s) to the NVM
3745 *  @hw: pointer to the HW structure
3746 *  @offset: The offset (in bytes) of the word(s) to write.
3747 *  @words: Size of data to write in words
3748 *  @data: Pointer to the word(s) to write at offset.
3749 *
3750 *  Writes a byte or word to the NVM using the flash access registers.
3751 **/
3752static s32 e1000_write_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
3753				   u16 *data)
3754{
3755	struct e1000_nvm_info *nvm = &hw->nvm;
3756	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3757	u16 i;
3758
3759	if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
3760	    (words == 0)) {
3761		e_dbg("nvm parameter(s) out of bounds\n");
3762		return -E1000_ERR_NVM;
3763	}
3764
3765	nvm->ops.acquire(hw);
3766
3767	for (i = 0; i < words; i++) {
3768		dev_spec->shadow_ram[offset + i].modified = true;
3769		dev_spec->shadow_ram[offset + i].value = data[i];
3770	}
3771
3772	nvm->ops.release(hw);
3773
3774	return 0;
3775}
3776
3777/**
3778 *  e1000_update_nvm_checksum_spt - Update the checksum for NVM
3779 *  @hw: pointer to the HW structure
3780 *
3781 *  The NVM checksum is updated by calling the generic update_nvm_checksum,
3782 *  which writes the checksum to the shadow ram.  The changes in the shadow
3783 *  ram are then committed to the EEPROM by processing each bank at a time
3784 *  checking for the modified bit and writing only the pending changes.
3785 *  After a successful commit, the shadow ram is cleared and is ready for
3786 *  future writes.
3787 **/
3788static s32 e1000_update_nvm_checksum_spt(struct e1000_hw *hw)
3789{
3790	struct e1000_nvm_info *nvm = &hw->nvm;
3791	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3792	u32 i, act_offset, new_bank_offset, old_bank_offset, bank;
3793	s32 ret_val;
3794	u32 dword = 0;
3795
3796	ret_val = e1000e_update_nvm_checksum_generic(hw);
3797	if (ret_val)
3798		goto out;
3799
3800	if (nvm->type != e1000_nvm_flash_sw)
3801		goto out;
3802
3803	nvm->ops.acquire(hw);
3804
3805	/* We're writing to the opposite bank so if we're on bank 1,
3806	 * write to bank 0 etc.  We also need to erase the segment that
3807	 * is going to be written
3808	 */
3809	ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3810	if (ret_val) {
3811		e_dbg("Could not detect valid bank, assuming bank 0\n");
3812		bank = 0;
3813	}
3814
3815	if (bank == 0) {
3816		new_bank_offset = nvm->flash_bank_size;
3817		old_bank_offset = 0;
3818		ret_val = e1000_erase_flash_bank_ich8lan(hw, 1);
3819		if (ret_val)
3820			goto release;
3821	} else {
3822		old_bank_offset = nvm->flash_bank_size;
3823		new_bank_offset = 0;
3824		ret_val = e1000_erase_flash_bank_ich8lan(hw, 0);
3825		if (ret_val)
3826			goto release;
3827	}
3828	for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i += 2) {
3829		/* Determine whether to write the value stored
3830		 * in the other NVM bank or a modified value stored
3831		 * in the shadow RAM
3832		 */
3833		ret_val = e1000_read_flash_dword_ich8lan(hw,
3834							 i + old_bank_offset,
3835							 &dword);
3836
3837		if (dev_spec->shadow_ram[i].modified) {
3838			dword &= 0xffff0000;
3839			dword |= (dev_spec->shadow_ram[i].value & 0xffff);
3840		}
3841		if (dev_spec->shadow_ram[i + 1].modified) {
3842			dword &= 0x0000ffff;
3843			dword |= ((dev_spec->shadow_ram[i + 1].value & 0xffff)
3844				  << 16);
3845		}
3846		if (ret_val)
3847			break;
3848
3849		/* If the word is 0x13, then make sure the signature bits
3850		 * (15:14) are 11b until the commit has completed.
3851		 * This will allow us to write 10b which indicates the
3852		 * signature is valid.  We want to do this after the write
3853		 * has completed so that we don't mark the segment valid
3854		 * while the write is still in progress
3855		 */
3856		if (i == E1000_ICH_NVM_SIG_WORD - 1)
3857			dword |= E1000_ICH_NVM_SIG_MASK << 16;
3858
3859		/* Convert offset to bytes. */
3860		act_offset = (i + new_bank_offset) << 1;
3861
3862		usleep_range(100, 200);
3863
3864		/* Write the data to the new bank. Offset in words */
3865		act_offset = i + new_bank_offset;
3866		ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset,
3867								dword);
3868		if (ret_val)
3869			break;
3870	}
3871
3872	/* Don't bother writing the segment valid bits if sector
3873	 * programming failed.
3874	 */
3875	if (ret_val) {
3876		/* Possibly read-only, see e1000e_write_protect_nvm_ich8lan() */
3877		e_dbg("Flash commit failed.\n");
3878		goto release;
3879	}
3880
3881	/* Finally validate the new segment by setting bit 15:14
3882	 * to 10b in word 0x13 , this can be done without an
3883	 * erase as well since these bits are 11 to start with
3884	 * and we need to change bit 14 to 0b
3885	 */
3886	act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD;
3887
3888	/*offset in words but we read dword */
3889	--act_offset;
3890	ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset, &dword);
3891
3892	if (ret_val)
3893		goto release;
3894
3895	dword &= 0xBFFFFFFF;
3896	ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset, dword);
3897
3898	if (ret_val)
3899		goto release;
3900
3901	/* offset in words but we read dword */
3902	act_offset = old_bank_offset + E1000_ICH_NVM_SIG_WORD - 1;
3903	ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset, &dword);
3904
3905	if (ret_val)
3906		goto release;
3907
3908	dword &= 0x00FFFFFF;
3909	ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset, dword);
3910
3911	if (ret_val)
3912		goto release;
3913
3914	/* Great!  Everything worked, we can now clear the cached entries. */
3915	for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
3916		dev_spec->shadow_ram[i].modified = false;
3917		dev_spec->shadow_ram[i].value = 0xFFFF;
3918	}
3919
3920release:
3921	nvm->ops.release(hw);
3922
3923	/* Reload the EEPROM, or else modifications will not appear
3924	 * until after the next adapter reset.
3925	 */
3926	if (!ret_val) {
3927		nvm->ops.reload(hw);
3928		usleep_range(10000, 11000);
3929	}
3930
3931out:
3932	if (ret_val)
3933		e_dbg("NVM update error: %d\n", ret_val);
3934
3935	return ret_val;
3936}
3937
3938/**
3939 *  e1000_update_nvm_checksum_ich8lan - Update the checksum for NVM
3940 *  @hw: pointer to the HW structure
3941 *
3942 *  The NVM checksum is updated by calling the generic update_nvm_checksum,
3943 *  which writes the checksum to the shadow ram.  The changes in the shadow
3944 *  ram are then committed to the EEPROM by processing each bank at a time
3945 *  checking for the modified bit and writing only the pending changes.
3946 *  After a successful commit, the shadow ram is cleared and is ready for
3947 *  future writes.
3948 **/
3949static s32 e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw)
3950{
3951	struct e1000_nvm_info *nvm = &hw->nvm;
3952	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3953	u32 i, act_offset, new_bank_offset, old_bank_offset, bank;
3954	s32 ret_val;
3955	u16 data = 0;
3956
3957	ret_val = e1000e_update_nvm_checksum_generic(hw);
3958	if (ret_val)
3959		goto out;
3960
3961	if (nvm->type != e1000_nvm_flash_sw)
3962		goto out;
3963
3964	nvm->ops.acquire(hw);
3965
3966	/* We're writing to the opposite bank so if we're on bank 1,
3967	 * write to bank 0 etc.  We also need to erase the segment that
3968	 * is going to be written
3969	 */
3970	ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3971	if (ret_val) {
3972		e_dbg("Could not detect valid bank, assuming bank 0\n");
3973		bank = 0;
3974	}
3975
3976	if (bank == 0) {
3977		new_bank_offset = nvm->flash_bank_size;
3978		old_bank_offset = 0;
3979		ret_val = e1000_erase_flash_bank_ich8lan(hw, 1);
3980		if (ret_val)
3981			goto release;
3982	} else {
3983		old_bank_offset = nvm->flash_bank_size;
3984		new_bank_offset = 0;
3985		ret_val = e1000_erase_flash_bank_ich8lan(hw, 0);
3986		if (ret_val)
3987			goto release;
3988	}
3989	for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
3990		if (dev_spec->shadow_ram[i].modified) {
3991			data = dev_spec->shadow_ram[i].value;
3992		} else {
3993			ret_val = e1000_read_flash_word_ich8lan(hw, i +
3994								old_bank_offset,
3995								&data);
3996			if (ret_val)
3997				break;
3998		}
3999
4000		/* If the word is 0x13, then make sure the signature bits
4001		 * (15:14) are 11b until the commit has completed.
4002		 * This will allow us to write 10b which indicates the
4003		 * signature is valid.  We want to do this after the write
4004		 * has completed so that we don't mark the segment valid
4005		 * while the write is still in progress
4006		 */
4007		if (i == E1000_ICH_NVM_SIG_WORD)
4008			data |= E1000_ICH_NVM_SIG_MASK;
4009
4010		/* Convert offset to bytes. */
4011		act_offset = (i + new_bank_offset) << 1;
4012
4013		usleep_range(100, 200);
4014		/* Write the bytes to the new bank. */
4015		ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
4016							       act_offset,
4017							       (u8)data);
4018		if (ret_val)
4019			break;
4020
4021		usleep_range(100, 200);
4022		ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
4023							       act_offset + 1,
4024							       (u8)(data >> 8));
4025		if (ret_val)
4026			break;
4027	}
4028
4029	/* Don't bother writing the segment valid bits if sector
4030	 * programming failed.
4031	 */
4032	if (ret_val) {
4033		/* Possibly read-only, see e1000e_write_protect_nvm_ich8lan() */
4034		e_dbg("Flash commit failed.\n");
4035		goto release;
4036	}
4037
4038	/* Finally validate the new segment by setting bit 15:14
4039	 * to 10b in word 0x13 , this can be done without an
4040	 * erase as well since these bits are 11 to start with
4041	 * and we need to change bit 14 to 0b
4042	 */
4043	act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD;
4044	ret_val = e1000_read_flash_word_ich8lan(hw, act_offset, &data);
4045	if (ret_val)
4046		goto release;
4047
4048	data &= 0xBFFF;
4049	ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
4050						       act_offset * 2 + 1,
4051						       (u8)(data >> 8));
4052	if (ret_val)
4053		goto release;
4054
4055	/* And invalidate the previously valid segment by setting
4056	 * its signature word (0x13) high_byte to 0b. This can be
4057	 * done without an erase because flash erase sets all bits
4058	 * to 1's. We can write 1's to 0's without an erase
4059	 */
4060	act_offset = (old_bank_offset + E1000_ICH_NVM_SIG_WORD) * 2 + 1;
4061	ret_val = e1000_retry_write_flash_byte_ich8lan(hw, act_offset, 0);
4062	if (ret_val)
4063		goto release;
4064
4065	/* Great!  Everything worked, we can now clear the cached entries. */
4066	for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
4067		dev_spec->shadow_ram[i].modified = false;
4068		dev_spec->shadow_ram[i].value = 0xFFFF;
4069	}
4070
4071release:
4072	nvm->ops.release(hw);
4073
4074	/* Reload the EEPROM, or else modifications will not appear
4075	 * until after the next adapter reset.
4076	 */
4077	if (!ret_val) {
4078		nvm->ops.reload(hw);
4079		usleep_range(10000, 11000);
4080	}
4081
4082out:
4083	if (ret_val)
4084		e_dbg("NVM update error: %d\n", ret_val);
4085
4086	return ret_val;
4087}
4088
4089/**
4090 *  e1000_validate_nvm_checksum_ich8lan - Validate EEPROM checksum
4091 *  @hw: pointer to the HW structure
4092 *
4093 *  Check to see if checksum needs to be fixed by reading bit 6 in word 0x19.
4094 *  If the bit is 0, that the EEPROM had been modified, but the checksum was not
4095 *  calculated, in which case we need to calculate the checksum and set bit 6.
4096 **/
4097static s32 e1000_validate_nvm_checksum_ich8lan(struct e1000_hw *hw)
4098{
4099	s32 ret_val;
4100	u16 data;
4101	u16 word;
4102	u16 valid_csum_mask;
4103
4104	/* Read NVM and check Invalid Image CSUM bit.  If this bit is 0,
4105	 * the checksum needs to be fixed.  This bit is an indication that
4106	 * the NVM was prepared by OEM software and did not calculate
4107	 * the checksum...a likely scenario.
4108	 */
4109	switch (hw->mac.type) {
4110	case e1000_pch_lpt:
4111	case e1000_pch_spt:
4112	case e1000_pch_cnp:
4113	case e1000_pch_tgp:
4114	case e1000_pch_adp:
4115	case e1000_pch_mtp:
 
 
 
4116		word = NVM_COMPAT;
4117		valid_csum_mask = NVM_COMPAT_VALID_CSUM;
4118		break;
4119	default:
4120		word = NVM_FUTURE_INIT_WORD1;
4121		valid_csum_mask = NVM_FUTURE_INIT_WORD1_VALID_CSUM;
4122		break;
4123	}
4124
4125	ret_val = e1000_read_nvm(hw, word, 1, &data);
4126	if (ret_val)
4127		return ret_val;
4128
4129	if (!(data & valid_csum_mask)) {
4130		e_dbg("NVM Checksum Invalid\n");
4131
4132		if (hw->mac.type < e1000_pch_cnp) {
4133			data |= valid_csum_mask;
4134			ret_val = e1000_write_nvm(hw, word, 1, &data);
4135			if (ret_val)
4136				return ret_val;
4137			ret_val = e1000e_update_nvm_checksum(hw);
4138			if (ret_val)
4139				return ret_val;
4140		}
4141	}
4142
4143	return e1000e_validate_nvm_checksum_generic(hw);
4144}
4145
4146/**
4147 *  e1000e_write_protect_nvm_ich8lan - Make the NVM read-only
4148 *  @hw: pointer to the HW structure
4149 *
4150 *  To prevent malicious write/erase of the NVM, set it to be read-only
4151 *  so that the hardware ignores all write/erase cycles of the NVM via
4152 *  the flash control registers.  The shadow-ram copy of the NVM will
4153 *  still be updated, however any updates to this copy will not stick
4154 *  across driver reloads.
4155 **/
4156void e1000e_write_protect_nvm_ich8lan(struct e1000_hw *hw)
4157{
4158	struct e1000_nvm_info *nvm = &hw->nvm;
4159	union ich8_flash_protected_range pr0;
4160	union ich8_hws_flash_status hsfsts;
4161	u32 gfpreg;
4162
4163	nvm->ops.acquire(hw);
4164
4165	gfpreg = er32flash(ICH_FLASH_GFPREG);
4166
4167	/* Write-protect GbE Sector of NVM */
4168	pr0.regval = er32flash(ICH_FLASH_PR0);
4169	pr0.range.base = gfpreg & FLASH_GFPREG_BASE_MASK;
4170	pr0.range.limit = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK);
4171	pr0.range.wpe = true;
4172	ew32flash(ICH_FLASH_PR0, pr0.regval);
4173
4174	/* Lock down a subset of GbE Flash Control Registers, e.g.
4175	 * PR0 to prevent the write-protection from being lifted.
4176	 * Once FLOCKDN is set, the registers protected by it cannot
4177	 * be written until FLOCKDN is cleared by a hardware reset.
4178	 */
4179	hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4180	hsfsts.hsf_status.flockdn = true;
4181	ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval);
4182
4183	nvm->ops.release(hw);
4184}
4185
4186/**
4187 *  e1000_write_flash_data_ich8lan - Writes bytes to the NVM
4188 *  @hw: pointer to the HW structure
4189 *  @offset: The offset (in bytes) of the byte/word to read.
4190 *  @size: Size of data to read, 1=byte 2=word
4191 *  @data: The byte(s) to write to the NVM.
4192 *
4193 *  Writes one/two bytes to the NVM using the flash access registers.
4194 **/
4195static s32 e1000_write_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
4196					  u8 size, u16 data)
4197{
4198	union ich8_hws_flash_status hsfsts;
4199	union ich8_hws_flash_ctrl hsflctl;
4200	u32 flash_linear_addr;
4201	u32 flash_data = 0;
4202	s32 ret_val;
4203	u8 count = 0;
4204
4205	if (hw->mac.type >= e1000_pch_spt) {
4206		if (size != 4 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
4207			return -E1000_ERR_NVM;
4208	} else {
4209		if (size < 1 || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
4210			return -E1000_ERR_NVM;
4211	}
4212
4213	flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
4214			     hw->nvm.flash_base_addr);
4215
4216	do {
4217		udelay(1);
4218		/* Steps */
4219		ret_val = e1000_flash_cycle_init_ich8lan(hw);
4220		if (ret_val)
4221			break;
4222		/* In SPT, This register is in Lan memory space, not
4223		 * flash.  Therefore, only 32 bit access is supported
4224		 */
4225		if (hw->mac.type >= e1000_pch_spt)
4226			hsflctl.regval = er32flash(ICH_FLASH_HSFSTS) >> 16;
4227		else
4228			hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
4229
4230		/* 0b/1b corresponds to 1 or 2 byte size, respectively. */
4231		hsflctl.hsf_ctrl.fldbcount = size - 1;
4232		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
4233		/* In SPT, This register is in Lan memory space,
4234		 * not flash.  Therefore, only 32 bit access is
4235		 * supported
4236		 */
4237		if (hw->mac.type >= e1000_pch_spt)
4238			ew32flash(ICH_FLASH_HSFSTS, hsflctl.regval << 16);
4239		else
4240			ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
4241
4242		ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
4243
4244		if (size == 1)
4245			flash_data = (u32)data & 0x00FF;
4246		else
4247			flash_data = (u32)data;
4248
4249		ew32flash(ICH_FLASH_FDATA0, flash_data);
4250
4251		/* check if FCERR is set to 1 , if set to 1, clear it
4252		 * and try the whole sequence a few more times else done
4253		 */
4254		ret_val =
4255		    e1000_flash_cycle_ich8lan(hw,
4256					      ICH_FLASH_WRITE_COMMAND_TIMEOUT);
4257		if (!ret_val)
4258			break;
4259
4260		/* If we're here, then things are most likely
4261		 * completely hosed, but if the error condition
4262		 * is detected, it won't hurt to give it another
4263		 * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
4264		 */
4265		hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4266		if (hsfsts.hsf_status.flcerr)
4267			/* Repeat for some time before giving up. */
4268			continue;
4269		if (!hsfsts.hsf_status.flcdone) {
4270			e_dbg("Timeout error - flash cycle did not complete.\n");
4271			break;
4272		}
4273	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
4274
4275	return ret_val;
4276}
4277
4278/**
4279*  e1000_write_flash_data32_ich8lan - Writes 4 bytes to the NVM
4280*  @hw: pointer to the HW structure
4281*  @offset: The offset (in bytes) of the dwords to read.
4282*  @data: The 4 bytes to write to the NVM.
4283*
4284*  Writes one/two/four bytes to the NVM using the flash access registers.
4285**/
4286static s32 e1000_write_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset,
4287					    u32 data)
4288{
4289	union ich8_hws_flash_status hsfsts;
4290	union ich8_hws_flash_ctrl hsflctl;
4291	u32 flash_linear_addr;
4292	s32 ret_val;
4293	u8 count = 0;
4294
4295	if (hw->mac.type >= e1000_pch_spt) {
4296		if (offset > ICH_FLASH_LINEAR_ADDR_MASK)
4297			return -E1000_ERR_NVM;
4298	}
4299	flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
4300			     hw->nvm.flash_base_addr);
4301	do {
4302		udelay(1);
4303		/* Steps */
4304		ret_val = e1000_flash_cycle_init_ich8lan(hw);
4305		if (ret_val)
4306			break;
4307
4308		/* In SPT, This register is in Lan memory space, not
4309		 * flash.  Therefore, only 32 bit access is supported
4310		 */
4311		if (hw->mac.type >= e1000_pch_spt)
4312			hsflctl.regval = er32flash(ICH_FLASH_HSFSTS)
4313			    >> 16;
4314		else
4315			hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
4316
4317		hsflctl.hsf_ctrl.fldbcount = sizeof(u32) - 1;
4318		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
4319
4320		/* In SPT, This register is in Lan memory space,
4321		 * not flash.  Therefore, only 32 bit access is
4322		 * supported
4323		 */
4324		if (hw->mac.type >= e1000_pch_spt)
4325			ew32flash(ICH_FLASH_HSFSTS, hsflctl.regval << 16);
4326		else
4327			ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
4328
4329		ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
4330
4331		ew32flash(ICH_FLASH_FDATA0, data);
4332
4333		/* check if FCERR is set to 1 , if set to 1, clear it
4334		 * and try the whole sequence a few more times else done
4335		 */
4336		ret_val =
4337		   e1000_flash_cycle_ich8lan(hw,
4338					     ICH_FLASH_WRITE_COMMAND_TIMEOUT);
4339
4340		if (!ret_val)
4341			break;
4342
4343		/* If we're here, then things are most likely
4344		 * completely hosed, but if the error condition
4345		 * is detected, it won't hurt to give it another
4346		 * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
4347		 */
4348		hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4349
4350		if (hsfsts.hsf_status.flcerr)
4351			/* Repeat for some time before giving up. */
4352			continue;
4353		if (!hsfsts.hsf_status.flcdone) {
4354			e_dbg("Timeout error - flash cycle did not complete.\n");
4355			break;
4356		}
4357	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
4358
4359	return ret_val;
4360}
4361
4362/**
4363 *  e1000_write_flash_byte_ich8lan - Write a single byte to NVM
4364 *  @hw: pointer to the HW structure
4365 *  @offset: The index of the byte to read.
4366 *  @data: The byte to write to the NVM.
4367 *
4368 *  Writes a single byte to the NVM using the flash access registers.
4369 **/
4370static s32 e1000_write_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
4371					  u8 data)
4372{
4373	u16 word = (u16)data;
4374
4375	return e1000_write_flash_data_ich8lan(hw, offset, 1, word);
4376}
4377
4378/**
4379*  e1000_retry_write_flash_dword_ich8lan - Writes a dword to NVM
4380*  @hw: pointer to the HW structure
4381*  @offset: The offset of the word to write.
4382*  @dword: The dword to write to the NVM.
4383*
4384*  Writes a single dword to the NVM using the flash access registers.
4385*  Goes through a retry algorithm before giving up.
4386**/
4387static s32 e1000_retry_write_flash_dword_ich8lan(struct e1000_hw *hw,
4388						 u32 offset, u32 dword)
4389{
4390	s32 ret_val;
4391	u16 program_retries;
4392
4393	/* Must convert word offset into bytes. */
4394	offset <<= 1;
4395	ret_val = e1000_write_flash_data32_ich8lan(hw, offset, dword);
4396
4397	if (!ret_val)
4398		return ret_val;
4399	for (program_retries = 0; program_retries < 100; program_retries++) {
4400		e_dbg("Retrying Byte %8.8X at offset %u\n", dword, offset);
4401		usleep_range(100, 200);
4402		ret_val = e1000_write_flash_data32_ich8lan(hw, offset, dword);
4403		if (!ret_val)
4404			break;
4405	}
4406	if (program_retries == 100)
4407		return -E1000_ERR_NVM;
4408
4409	return 0;
4410}
4411
4412/**
4413 *  e1000_retry_write_flash_byte_ich8lan - Writes a single byte to NVM
4414 *  @hw: pointer to the HW structure
4415 *  @offset: The offset of the byte to write.
4416 *  @byte: The byte to write to the NVM.
4417 *
4418 *  Writes a single byte to the NVM using the flash access registers.
4419 *  Goes through a retry algorithm before giving up.
4420 **/
4421static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
4422						u32 offset, u8 byte)
4423{
4424	s32 ret_val;
4425	u16 program_retries;
4426
4427	ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
4428	if (!ret_val)
4429		return ret_val;
4430
4431	for (program_retries = 0; program_retries < 100; program_retries++) {
4432		e_dbg("Retrying Byte %2.2X at offset %u\n", byte, offset);
4433		usleep_range(100, 200);
4434		ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
4435		if (!ret_val)
4436			break;
4437	}
4438	if (program_retries == 100)
4439		return -E1000_ERR_NVM;
4440
4441	return 0;
4442}
4443
4444/**
4445 *  e1000_erase_flash_bank_ich8lan - Erase a bank (4k) from NVM
4446 *  @hw: pointer to the HW structure
4447 *  @bank: 0 for first bank, 1 for second bank, etc.
4448 *
4449 *  Erases the bank specified. Each bank is a 4k block. Banks are 0 based.
4450 *  bank N is 4096 * N + flash_reg_addr.
4451 **/
4452static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank)
4453{
4454	struct e1000_nvm_info *nvm = &hw->nvm;
4455	union ich8_hws_flash_status hsfsts;
4456	union ich8_hws_flash_ctrl hsflctl;
4457	u32 flash_linear_addr;
4458	/* bank size is in 16bit words - adjust to bytes */
4459	u32 flash_bank_size = nvm->flash_bank_size * 2;
4460	s32 ret_val;
4461	s32 count = 0;
4462	s32 j, iteration, sector_size;
4463
4464	hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4465
4466	/* Determine HW Sector size: Read BERASE bits of hw flash status
4467	 * register
4468	 * 00: The Hw sector is 256 bytes, hence we need to erase 16
4469	 *     consecutive sectors.  The start index for the nth Hw sector
4470	 *     can be calculated as = bank * 4096 + n * 256
4471	 * 01: The Hw sector is 4K bytes, hence we need to erase 1 sector.
4472	 *     The start index for the nth Hw sector can be calculated
4473	 *     as = bank * 4096
4474	 * 10: The Hw sector is 8K bytes, nth sector = bank * 8192
4475	 *     (ich9 only, otherwise error condition)
4476	 * 11: The Hw sector is 64K bytes, nth sector = bank * 65536
4477	 */
4478	switch (hsfsts.hsf_status.berasesz) {
4479	case 0:
4480		/* Hw sector size 256 */
4481		sector_size = ICH_FLASH_SEG_SIZE_256;
4482		iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_256;
4483		break;
4484	case 1:
4485		sector_size = ICH_FLASH_SEG_SIZE_4K;
4486		iteration = 1;
4487		break;
4488	case 2:
4489		sector_size = ICH_FLASH_SEG_SIZE_8K;
4490		iteration = 1;
4491		break;
4492	case 3:
4493		sector_size = ICH_FLASH_SEG_SIZE_64K;
4494		iteration = 1;
4495		break;
4496	default:
4497		return -E1000_ERR_NVM;
4498	}
4499
4500	/* Start with the base address, then add the sector offset. */
4501	flash_linear_addr = hw->nvm.flash_base_addr;
4502	flash_linear_addr += (bank) ? flash_bank_size : 0;
4503
4504	for (j = 0; j < iteration; j++) {
4505		do {
4506			u32 timeout = ICH_FLASH_ERASE_COMMAND_TIMEOUT;
4507
4508			/* Steps */
4509			ret_val = e1000_flash_cycle_init_ich8lan(hw);
4510			if (ret_val)
4511				return ret_val;
4512
4513			/* Write a value 11 (block Erase) in Flash
4514			 * Cycle field in hw flash control
4515			 */
4516			if (hw->mac.type >= e1000_pch_spt)
4517				hsflctl.regval =
4518				    er32flash(ICH_FLASH_HSFSTS) >> 16;
4519			else
4520				hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
4521
4522			hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_ERASE;
4523			if (hw->mac.type >= e1000_pch_spt)
4524				ew32flash(ICH_FLASH_HSFSTS,
4525					  hsflctl.regval << 16);
4526			else
4527				ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
4528
4529			/* Write the last 24 bits of an index within the
4530			 * block into Flash Linear address field in Flash
4531			 * Address.
4532			 */
4533			flash_linear_addr += (j * sector_size);
4534			ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
4535
4536			ret_val = e1000_flash_cycle_ich8lan(hw, timeout);
4537			if (!ret_val)
4538				break;
4539
4540			/* Check if FCERR is set to 1.  If 1,
4541			 * clear it and try the whole sequence
4542			 * a few more times else Done
4543			 */
4544			hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4545			if (hsfsts.hsf_status.flcerr)
4546				/* repeat for some time before giving up */
4547				continue;
4548			else if (!hsfsts.hsf_status.flcdone)
4549				return ret_val;
4550		} while (++count < ICH_FLASH_CYCLE_REPEAT_COUNT);
4551	}
4552
4553	return 0;
4554}
4555
4556/**
4557 *  e1000_valid_led_default_ich8lan - Set the default LED settings
4558 *  @hw: pointer to the HW structure
4559 *  @data: Pointer to the LED settings
4560 *
4561 *  Reads the LED default settings from the NVM to data.  If the NVM LED
4562 *  settings is all 0's or F's, set the LED default to a valid LED default
4563 *  setting.
4564 **/
4565static s32 e1000_valid_led_default_ich8lan(struct e1000_hw *hw, u16 *data)
4566{
4567	s32 ret_val;
4568
4569	ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
4570	if (ret_val) {
4571		e_dbg("NVM Read Error\n");
4572		return ret_val;
4573	}
4574
4575	if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF)
4576		*data = ID_LED_DEFAULT_ICH8LAN;
4577
4578	return 0;
4579}
4580
4581/**
4582 *  e1000_id_led_init_pchlan - store LED configurations
4583 *  @hw: pointer to the HW structure
4584 *
4585 *  PCH does not control LEDs via the LEDCTL register, rather it uses
4586 *  the PHY LED configuration register.
4587 *
4588 *  PCH also does not have an "always on" or "always off" mode which
4589 *  complicates the ID feature.  Instead of using the "on" mode to indicate
4590 *  in ledctl_mode2 the LEDs to use for ID (see e1000e_id_led_init_generic()),
4591 *  use "link_up" mode.  The LEDs will still ID on request if there is no
4592 *  link based on logic in e1000_led_[on|off]_pchlan().
4593 **/
4594static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw)
4595{
4596	struct e1000_mac_info *mac = &hw->mac;
4597	s32 ret_val;
4598	const u32 ledctl_on = E1000_LEDCTL_MODE_LINK_UP;
4599	const u32 ledctl_off = E1000_LEDCTL_MODE_LINK_UP | E1000_PHY_LED0_IVRT;
4600	u16 data, i, temp, shift;
4601
4602	/* Get default ID LED modes */
4603	ret_val = hw->nvm.ops.valid_led_default(hw, &data);
4604	if (ret_val)
4605		return ret_val;
4606
4607	mac->ledctl_default = er32(LEDCTL);
4608	mac->ledctl_mode1 = mac->ledctl_default;
4609	mac->ledctl_mode2 = mac->ledctl_default;
4610
4611	for (i = 0; i < 4; i++) {
4612		temp = (data >> (i << 2)) & E1000_LEDCTL_LED0_MODE_MASK;
4613		shift = (i * 5);
4614		switch (temp) {
4615		case ID_LED_ON1_DEF2:
4616		case ID_LED_ON1_ON2:
4617		case ID_LED_ON1_OFF2:
4618			mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
4619			mac->ledctl_mode1 |= (ledctl_on << shift);
4620			break;
4621		case ID_LED_OFF1_DEF2:
4622		case ID_LED_OFF1_ON2:
4623		case ID_LED_OFF1_OFF2:
4624			mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
4625			mac->ledctl_mode1 |= (ledctl_off << shift);
4626			break;
4627		default:
4628			/* Do nothing */
4629			break;
4630		}
4631		switch (temp) {
4632		case ID_LED_DEF1_ON2:
4633		case ID_LED_ON1_ON2:
4634		case ID_LED_OFF1_ON2:
4635			mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
4636			mac->ledctl_mode2 |= (ledctl_on << shift);
4637			break;
4638		case ID_LED_DEF1_OFF2:
4639		case ID_LED_ON1_OFF2:
4640		case ID_LED_OFF1_OFF2:
4641			mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
4642			mac->ledctl_mode2 |= (ledctl_off << shift);
4643			break;
4644		default:
4645			/* Do nothing */
4646			break;
4647		}
4648	}
4649
4650	return 0;
4651}
4652
4653/**
4654 *  e1000_get_bus_info_ich8lan - Get/Set the bus type and width
4655 *  @hw: pointer to the HW structure
4656 *
4657 *  ICH8 use the PCI Express bus, but does not contain a PCI Express Capability
4658 *  register, so the bus width is hard coded.
4659 **/
4660static s32 e1000_get_bus_info_ich8lan(struct e1000_hw *hw)
4661{
4662	struct e1000_bus_info *bus = &hw->bus;
4663	s32 ret_val;
4664
4665	ret_val = e1000e_get_bus_info_pcie(hw);
4666
4667	/* ICH devices are "PCI Express"-ish.  They have
4668	 * a configuration space, but do not contain
4669	 * PCI Express Capability registers, so bus width
4670	 * must be hardcoded.
4671	 */
4672	if (bus->width == e1000_bus_width_unknown)
4673		bus->width = e1000_bus_width_pcie_x1;
4674
4675	return ret_val;
4676}
4677
4678/**
4679 *  e1000_reset_hw_ich8lan - Reset the hardware
4680 *  @hw: pointer to the HW structure
4681 *
4682 *  Does a full reset of the hardware which includes a reset of the PHY and
4683 *  MAC.
4684 **/
4685static s32 e1000_reset_hw_ich8lan(struct e1000_hw *hw)
4686{
4687	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
4688	u16 kum_cfg;
4689	u32 ctrl, reg;
4690	s32 ret_val;
4691
4692	/* Prevent the PCI-E bus from sticking if there is no TLP connection
4693	 * on the last TLP read/write transaction when MAC is reset.
4694	 */
4695	ret_val = e1000e_disable_pcie_master(hw);
4696	if (ret_val)
4697		e_dbg("PCI-E Master disable polling has failed.\n");
4698
4699	e_dbg("Masking off all interrupts\n");
4700	ew32(IMC, 0xffffffff);
4701
4702	/* Disable the Transmit and Receive units.  Then delay to allow
4703	 * any pending transactions to complete before we hit the MAC
4704	 * with the global reset.
4705	 */
4706	ew32(RCTL, 0);
4707	ew32(TCTL, E1000_TCTL_PSP);
4708	e1e_flush();
4709
4710	usleep_range(10000, 11000);
4711
4712	/* Workaround for ICH8 bit corruption issue in FIFO memory */
4713	if (hw->mac.type == e1000_ich8lan) {
4714		/* Set Tx and Rx buffer allocation to 8k apiece. */
4715		ew32(PBA, E1000_PBA_8K);
4716		/* Set Packet Buffer Size to 16k. */
4717		ew32(PBS, E1000_PBS_16K);
4718	}
4719
4720	if (hw->mac.type == e1000_pchlan) {
4721		/* Save the NVM K1 bit setting */
4722		ret_val = e1000_read_nvm(hw, E1000_NVM_K1_CONFIG, 1, &kum_cfg);
4723		if (ret_val)
4724			return ret_val;
4725
4726		if (kum_cfg & E1000_NVM_K1_ENABLE)
4727			dev_spec->nvm_k1_enabled = true;
4728		else
4729			dev_spec->nvm_k1_enabled = false;
4730	}
4731
4732	ctrl = er32(CTRL);
4733
4734	if (!hw->phy.ops.check_reset_block(hw)) {
4735		/* Full-chip reset requires MAC and PHY reset at the same
4736		 * time to make sure the interface between MAC and the
4737		 * external PHY is reset.
4738		 */
4739		ctrl |= E1000_CTRL_PHY_RST;
4740
4741		/* Gate automatic PHY configuration by hardware on
4742		 * non-managed 82579
4743		 */
4744		if ((hw->mac.type == e1000_pch2lan) &&
4745		    !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
4746			e1000_gate_hw_phy_config_ich8lan(hw, true);
4747	}
4748	ret_val = e1000_acquire_swflag_ich8lan(hw);
4749	e_dbg("Issuing a global reset to ich8lan\n");
4750	ew32(CTRL, (ctrl | E1000_CTRL_RST));
4751	/* cannot issue a flush here because it hangs the hardware */
4752	msleep(20);
4753
4754	/* Set Phy Config Counter to 50msec */
4755	if (hw->mac.type == e1000_pch2lan) {
4756		reg = er32(FEXTNVM3);
4757		reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK;
4758		reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC;
4759		ew32(FEXTNVM3, reg);
4760	}
4761
4762	if (!ret_val)
4763		clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
4764
4765	if (ctrl & E1000_CTRL_PHY_RST) {
4766		ret_val = hw->phy.ops.get_cfg_done(hw);
4767		if (ret_val)
4768			return ret_val;
4769
4770		ret_val = e1000_post_phy_reset_ich8lan(hw);
4771		if (ret_val)
4772			return ret_val;
4773	}
4774
4775	/* For PCH, this write will make sure that any noise
4776	 * will be detected as a CRC error and be dropped rather than show up
4777	 * as a bad packet to the DMA engine.
4778	 */
4779	if (hw->mac.type == e1000_pchlan)
4780		ew32(CRC_OFFSET, 0x65656565);
4781
4782	ew32(IMC, 0xffffffff);
4783	er32(ICR);
4784
4785	reg = er32(KABGTXD);
4786	reg |= E1000_KABGTXD_BGSQLBIAS;
4787	ew32(KABGTXD, reg);
4788
4789	return 0;
4790}
4791
4792/**
4793 *  e1000_init_hw_ich8lan - Initialize the hardware
4794 *  @hw: pointer to the HW structure
4795 *
4796 *  Prepares the hardware for transmit and receive by doing the following:
4797 *   - initialize hardware bits
4798 *   - initialize LED identification
4799 *   - setup receive address registers
4800 *   - setup flow control
4801 *   - setup transmit descriptors
4802 *   - clear statistics
4803 **/
4804static s32 e1000_init_hw_ich8lan(struct e1000_hw *hw)
4805{
4806	struct e1000_mac_info *mac = &hw->mac;
4807	u32 ctrl_ext, txdctl, snoop, fflt_dbg;
4808	s32 ret_val;
4809	u16 i;
4810
4811	e1000_initialize_hw_bits_ich8lan(hw);
4812
4813	/* Initialize identification LED */
4814	ret_val = mac->ops.id_led_init(hw);
4815	/* An error is not fatal and we should not stop init due to this */
4816	if (ret_val)
4817		e_dbg("Error initializing identification LED\n");
4818
4819	/* Setup the receive address. */
4820	e1000e_init_rx_addrs(hw, mac->rar_entry_count);
4821
4822	/* Zero out the Multicast HASH table */
4823	e_dbg("Zeroing the MTA\n");
4824	for (i = 0; i < mac->mta_reg_count; i++)
4825		E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
4826
4827	/* The 82578 Rx buffer will stall if wakeup is enabled in host and
4828	 * the ME.  Disable wakeup by clearing the host wakeup bit.
4829	 * Reset the phy after disabling host wakeup to reset the Rx buffer.
4830	 */
4831	if (hw->phy.type == e1000_phy_82578) {
4832		e1e_rphy(hw, BM_PORT_GEN_CFG, &i);
4833		i &= ~BM_WUC_HOST_WU_BIT;
4834		e1e_wphy(hw, BM_PORT_GEN_CFG, i);
4835		ret_val = e1000_phy_hw_reset_ich8lan(hw);
4836		if (ret_val)
4837			return ret_val;
4838	}
4839
4840	/* Setup link and flow control */
4841	ret_val = mac->ops.setup_link(hw);
4842
4843	/* Set the transmit descriptor write-back policy for both queues */
4844	txdctl = er32(TXDCTL(0));
4845	txdctl = ((txdctl & ~E1000_TXDCTL_WTHRESH) |
4846		  E1000_TXDCTL_FULL_TX_DESC_WB);
4847	txdctl = ((txdctl & ~E1000_TXDCTL_PTHRESH) |
4848		  E1000_TXDCTL_MAX_TX_DESC_PREFETCH);
4849	ew32(TXDCTL(0), txdctl);
4850	txdctl = er32(TXDCTL(1));
4851	txdctl = ((txdctl & ~E1000_TXDCTL_WTHRESH) |
4852		  E1000_TXDCTL_FULL_TX_DESC_WB);
4853	txdctl = ((txdctl & ~E1000_TXDCTL_PTHRESH) |
4854		  E1000_TXDCTL_MAX_TX_DESC_PREFETCH);
4855	ew32(TXDCTL(1), txdctl);
4856
4857	/* ICH8 has opposite polarity of no_snoop bits.
4858	 * By default, we should use snoop behavior.
4859	 */
4860	if (mac->type == e1000_ich8lan)
4861		snoop = PCIE_ICH8_SNOOP_ALL;
4862	else
4863		snoop = (u32)~(PCIE_NO_SNOOP_ALL);
4864	e1000e_set_pcie_no_snoop(hw, snoop);
4865
4866	/* Enable workaround for packet loss issue on TGP PCH
4867	 * Do not gate DMA clock from the modPHY block
4868	 */
4869	if (mac->type >= e1000_pch_tgp) {
4870		fflt_dbg = er32(FFLT_DBG);
4871		fflt_dbg |= E1000_FFLT_DBG_DONT_GATE_WAKE_DMA_CLK;
4872		ew32(FFLT_DBG, fflt_dbg);
4873	}
4874
4875	ctrl_ext = er32(CTRL_EXT);
4876	ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
4877	ew32(CTRL_EXT, ctrl_ext);
4878
4879	/* Clear all of the statistics registers (clear on read).  It is
4880	 * important that we do this after we have tried to establish link
4881	 * because the symbol error count will increment wildly if there
4882	 * is no link.
4883	 */
4884	e1000_clear_hw_cntrs_ich8lan(hw);
4885
4886	return ret_val;
4887}
4888
4889/**
4890 *  e1000_initialize_hw_bits_ich8lan - Initialize required hardware bits
4891 *  @hw: pointer to the HW structure
4892 *
4893 *  Sets/Clears required hardware bits necessary for correctly setting up the
4894 *  hardware for transmit and receive.
4895 **/
4896static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw)
4897{
4898	u32 reg;
4899
4900	/* Extended Device Control */
4901	reg = er32(CTRL_EXT);
4902	reg |= BIT(22);
4903	/* Enable PHY low-power state when MAC is at D3 w/o WoL */
4904	if (hw->mac.type >= e1000_pchlan)
4905		reg |= E1000_CTRL_EXT_PHYPDEN;
4906	ew32(CTRL_EXT, reg);
4907
4908	/* Transmit Descriptor Control 0 */
4909	reg = er32(TXDCTL(0));
4910	reg |= BIT(22);
4911	ew32(TXDCTL(0), reg);
4912
4913	/* Transmit Descriptor Control 1 */
4914	reg = er32(TXDCTL(1));
4915	reg |= BIT(22);
4916	ew32(TXDCTL(1), reg);
4917
4918	/* Transmit Arbitration Control 0 */
4919	reg = er32(TARC(0));
4920	if (hw->mac.type == e1000_ich8lan)
4921		reg |= BIT(28) | BIT(29);
4922	reg |= BIT(23) | BIT(24) | BIT(26) | BIT(27);
4923	ew32(TARC(0), reg);
4924
4925	/* Transmit Arbitration Control 1 */
4926	reg = er32(TARC(1));
4927	if (er32(TCTL) & E1000_TCTL_MULR)
4928		reg &= ~BIT(28);
4929	else
4930		reg |= BIT(28);
4931	reg |= BIT(24) | BIT(26) | BIT(30);
4932	ew32(TARC(1), reg);
4933
4934	/* Device Status */
4935	if (hw->mac.type == e1000_ich8lan) {
4936		reg = er32(STATUS);
4937		reg &= ~BIT(31);
4938		ew32(STATUS, reg);
4939	}
4940
4941	/* work-around descriptor data corruption issue during nfs v2 udp
4942	 * traffic, just disable the nfs filtering capability
4943	 */
4944	reg = er32(RFCTL);
4945	reg |= (E1000_RFCTL_NFSW_DIS | E1000_RFCTL_NFSR_DIS);
4946
4947	/* Disable IPv6 extension header parsing because some malformed
4948	 * IPv6 headers can hang the Rx.
4949	 */
4950	if (hw->mac.type == e1000_ich8lan)
4951		reg |= (E1000_RFCTL_IPV6_EX_DIS | E1000_RFCTL_NEW_IPV6_EXT_DIS);
4952	ew32(RFCTL, reg);
4953
4954	/* Enable ECC on Lynxpoint */
4955	if (hw->mac.type >= e1000_pch_lpt) {
4956		reg = er32(PBECCSTS);
4957		reg |= E1000_PBECCSTS_ECC_ENABLE;
4958		ew32(PBECCSTS, reg);
4959
4960		reg = er32(CTRL);
4961		reg |= E1000_CTRL_MEHE;
4962		ew32(CTRL, reg);
4963	}
4964}
4965
4966/**
4967 *  e1000_setup_link_ich8lan - Setup flow control and link settings
4968 *  @hw: pointer to the HW structure
4969 *
4970 *  Determines which flow control settings to use, then configures flow
4971 *  control.  Calls the appropriate media-specific link configuration
4972 *  function.  Assuming the adapter has a valid link partner, a valid link
4973 *  should be established.  Assumes the hardware has previously been reset
4974 *  and the transmitter and receiver are not enabled.
4975 **/
4976static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw)
4977{
4978	s32 ret_val;
4979
4980	if (hw->phy.ops.check_reset_block(hw))
4981		return 0;
4982
4983	/* ICH parts do not have a word in the NVM to determine
4984	 * the default flow control setting, so we explicitly
4985	 * set it to full.
4986	 */
4987	if (hw->fc.requested_mode == e1000_fc_default) {
4988		/* Workaround h/w hang when Tx flow control enabled */
4989		if (hw->mac.type == e1000_pchlan)
4990			hw->fc.requested_mode = e1000_fc_rx_pause;
4991		else
4992			hw->fc.requested_mode = e1000_fc_full;
4993	}
4994
4995	/* Save off the requested flow control mode for use later.  Depending
4996	 * on the link partner's capabilities, we may or may not use this mode.
4997	 */
4998	hw->fc.current_mode = hw->fc.requested_mode;
4999
5000	e_dbg("After fix-ups FlowControl is now = %x\n", hw->fc.current_mode);
5001
5002	/* Continue to configure the copper link. */
5003	ret_val = hw->mac.ops.setup_physical_interface(hw);
5004	if (ret_val)
5005		return ret_val;
5006
5007	ew32(FCTTV, hw->fc.pause_time);
5008	if ((hw->phy.type == e1000_phy_82578) ||
5009	    (hw->phy.type == e1000_phy_82579) ||
5010	    (hw->phy.type == e1000_phy_i217) ||
5011	    (hw->phy.type == e1000_phy_82577)) {
5012		ew32(FCRTV_PCH, hw->fc.refresh_time);
5013
5014		ret_val = e1e_wphy(hw, PHY_REG(BM_PORT_CTRL_PAGE, 27),
5015				   hw->fc.pause_time);
5016		if (ret_val)
5017			return ret_val;
5018	}
5019
5020	return e1000e_set_fc_watermarks(hw);
5021}
5022
5023/**
5024 *  e1000_setup_copper_link_ich8lan - Configure MAC/PHY interface
5025 *  @hw: pointer to the HW structure
5026 *
5027 *  Configures the kumeran interface to the PHY to wait the appropriate time
5028 *  when polling the PHY, then call the generic setup_copper_link to finish
5029 *  configuring the copper link.
5030 **/
5031static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw)
5032{
5033	u32 ctrl;
5034	s32 ret_val;
5035	u16 reg_data;
5036
5037	ctrl = er32(CTRL);
5038	ctrl |= E1000_CTRL_SLU;
5039	ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
5040	ew32(CTRL, ctrl);
5041
5042	/* Set the mac to wait the maximum time between each iteration
5043	 * and increase the max iterations when polling the phy;
5044	 * this fixes erroneous timeouts at 10Mbps.
5045	 */
5046	ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_TIMEOUTS, 0xFFFF);
5047	if (ret_val)
5048		return ret_val;
5049	ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
5050				       &reg_data);
5051	if (ret_val)
5052		return ret_val;
5053	reg_data |= 0x3F;
5054	ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
5055					reg_data);
5056	if (ret_val)
5057		return ret_val;
5058
5059	switch (hw->phy.type) {
5060	case e1000_phy_igp_3:
5061		ret_val = e1000e_copper_link_setup_igp(hw);
5062		if (ret_val)
5063			return ret_val;
5064		break;
5065	case e1000_phy_bm:
5066	case e1000_phy_82578:
5067		ret_val = e1000e_copper_link_setup_m88(hw);
5068		if (ret_val)
5069			return ret_val;
5070		break;
5071	case e1000_phy_82577:
5072	case e1000_phy_82579:
5073		ret_val = e1000_copper_link_setup_82577(hw);
5074		if (ret_val)
5075			return ret_val;
5076		break;
5077	case e1000_phy_ife:
5078		ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &reg_data);
5079		if (ret_val)
5080			return ret_val;
5081
5082		reg_data &= ~IFE_PMC_AUTO_MDIX;
5083
5084		switch (hw->phy.mdix) {
5085		case 1:
5086			reg_data &= ~IFE_PMC_FORCE_MDIX;
5087			break;
5088		case 2:
5089			reg_data |= IFE_PMC_FORCE_MDIX;
5090			break;
5091		case 0:
5092		default:
5093			reg_data |= IFE_PMC_AUTO_MDIX;
5094			break;
5095		}
5096		ret_val = e1e_wphy(hw, IFE_PHY_MDIX_CONTROL, reg_data);
5097		if (ret_val)
5098			return ret_val;
5099		break;
5100	default:
5101		break;
5102	}
5103
5104	return e1000e_setup_copper_link(hw);
5105}
5106
5107/**
5108 *  e1000_setup_copper_link_pch_lpt - Configure MAC/PHY interface
5109 *  @hw: pointer to the HW structure
5110 *
5111 *  Calls the PHY specific link setup function and then calls the
5112 *  generic setup_copper_link to finish configuring the link for
5113 *  Lynxpoint PCH devices
5114 **/
5115static s32 e1000_setup_copper_link_pch_lpt(struct e1000_hw *hw)
5116{
5117	u32 ctrl;
5118	s32 ret_val;
5119
5120	ctrl = er32(CTRL);
5121	ctrl |= E1000_CTRL_SLU;
5122	ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
5123	ew32(CTRL, ctrl);
5124
5125	ret_val = e1000_copper_link_setup_82577(hw);
5126	if (ret_val)
5127		return ret_val;
5128
5129	return e1000e_setup_copper_link(hw);
5130}
5131
5132/**
5133 *  e1000_get_link_up_info_ich8lan - Get current link speed and duplex
5134 *  @hw: pointer to the HW structure
5135 *  @speed: pointer to store current link speed
5136 *  @duplex: pointer to store the current link duplex
5137 *
5138 *  Calls the generic get_speed_and_duplex to retrieve the current link
5139 *  information and then calls the Kumeran lock loss workaround for links at
5140 *  gigabit speeds.
5141 **/
5142static s32 e1000_get_link_up_info_ich8lan(struct e1000_hw *hw, u16 *speed,
5143					  u16 *duplex)
5144{
5145	s32 ret_val;
5146
5147	ret_val = e1000e_get_speed_and_duplex_copper(hw, speed, duplex);
5148	if (ret_val)
5149		return ret_val;
5150
5151	if ((hw->mac.type == e1000_ich8lan) &&
5152	    (hw->phy.type == e1000_phy_igp_3) && (*speed == SPEED_1000)) {
5153		ret_val = e1000_kmrn_lock_loss_workaround_ich8lan(hw);
5154	}
5155
5156	return ret_val;
5157}
5158
5159/**
5160 *  e1000_kmrn_lock_loss_workaround_ich8lan - Kumeran workaround
5161 *  @hw: pointer to the HW structure
5162 *
5163 *  Work-around for 82566 Kumeran PCS lock loss:
5164 *  On link status change (i.e. PCI reset, speed change) and link is up and
5165 *  speed is gigabit-
5166 *    0) if workaround is optionally disabled do nothing
5167 *    1) wait 1ms for Kumeran link to come up
5168 *    2) check Kumeran Diagnostic register PCS lock loss bit
5169 *    3) if not set the link is locked (all is good), otherwise...
5170 *    4) reset the PHY
5171 *    5) repeat up to 10 times
5172 *  Note: this is only called for IGP3 copper when speed is 1gb.
5173 **/
5174static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw)
5175{
5176	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
5177	u32 phy_ctrl;
5178	s32 ret_val;
5179	u16 i, data;
5180	bool link;
5181
5182	if (!dev_spec->kmrn_lock_loss_workaround_enabled)
5183		return 0;
5184
5185	/* Make sure link is up before proceeding.  If not just return.
5186	 * Attempting this while link is negotiating fouled up link
5187	 * stability
5188	 */
5189	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
5190	if (!link)
5191		return 0;
5192
5193	for (i = 0; i < 10; i++) {
5194		/* read once to clear */
5195		ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
5196		if (ret_val)
5197			return ret_val;
5198		/* and again to get new status */
5199		ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
5200		if (ret_val)
5201			return ret_val;
5202
5203		/* check for PCS lock */
5204		if (!(data & IGP3_KMRN_DIAG_PCS_LOCK_LOSS))
5205			return 0;
5206
5207		/* Issue PHY reset */
5208		e1000_phy_hw_reset(hw);
5209		mdelay(5);
5210	}
5211	/* Disable GigE link negotiation */
5212	phy_ctrl = er32(PHY_CTRL);
5213	phy_ctrl |= (E1000_PHY_CTRL_GBE_DISABLE |
5214		     E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
5215	ew32(PHY_CTRL, phy_ctrl);
5216
5217	/* Call gig speed drop workaround on Gig disable before accessing
5218	 * any PHY registers
5219	 */
5220	e1000e_gig_downshift_workaround_ich8lan(hw);
5221
5222	/* unable to acquire PCS lock */
5223	return -E1000_ERR_PHY;
5224}
5225
5226/**
5227 *  e1000e_set_kmrn_lock_loss_workaround_ich8lan - Set Kumeran workaround state
5228 *  @hw: pointer to the HW structure
5229 *  @state: boolean value used to set the current Kumeran workaround state
5230 *
5231 *  If ICH8, set the current Kumeran workaround state (enabled - true
5232 *  /disabled - false).
5233 **/
5234void e1000e_set_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw,
5235						  bool state)
5236{
5237	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
5238
5239	if (hw->mac.type != e1000_ich8lan) {
5240		e_dbg("Workaround applies to ICH8 only.\n");
5241		return;
5242	}
5243
5244	dev_spec->kmrn_lock_loss_workaround_enabled = state;
5245}
5246
5247/**
5248 *  e1000e_igp3_phy_powerdown_workaround_ich8lan - Power down workaround on D3
5249 *  @hw: pointer to the HW structure
5250 *
5251 *  Workaround for 82566 power-down on D3 entry:
5252 *    1) disable gigabit link
5253 *    2) write VR power-down enable
5254 *    3) read it back
5255 *  Continue if successful, else issue LCD reset and repeat
5256 **/
5257void e1000e_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw *hw)
5258{
5259	u32 reg;
5260	u16 data;
5261	u8 retry = 0;
5262
5263	if (hw->phy.type != e1000_phy_igp_3)
5264		return;
5265
5266	/* Try the workaround twice (if needed) */
5267	do {
5268		/* Disable link */
5269		reg = er32(PHY_CTRL);
5270		reg |= (E1000_PHY_CTRL_GBE_DISABLE |
5271			E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
5272		ew32(PHY_CTRL, reg);
5273
5274		/* Call gig speed drop workaround on Gig disable before
5275		 * accessing any PHY registers
5276		 */
5277		if (hw->mac.type == e1000_ich8lan)
5278			e1000e_gig_downshift_workaround_ich8lan(hw);
5279
5280		/* Write VR power-down enable */
5281		e1e_rphy(hw, IGP3_VR_CTRL, &data);
5282		data &= ~IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
5283		e1e_wphy(hw, IGP3_VR_CTRL, data | IGP3_VR_CTRL_MODE_SHUTDOWN);
5284
5285		/* Read it back and test */
5286		e1e_rphy(hw, IGP3_VR_CTRL, &data);
5287		data &= IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
5288		if ((data == IGP3_VR_CTRL_MODE_SHUTDOWN) || retry)
5289			break;
5290
5291		/* Issue PHY reset and repeat at most one more time */
5292		reg = er32(CTRL);
5293		ew32(CTRL, reg | E1000_CTRL_PHY_RST);
5294		retry++;
5295	} while (retry);
5296}
5297
5298/**
5299 *  e1000e_gig_downshift_workaround_ich8lan - WoL from S5 stops working
5300 *  @hw: pointer to the HW structure
5301 *
5302 *  Steps to take when dropping from 1Gb/s (eg. link cable removal (LSC),
5303 *  LPLU, Gig disable, MDIC PHY reset):
5304 *    1) Set Kumeran Near-end loopback
5305 *    2) Clear Kumeran Near-end loopback
5306 *  Should only be called for ICH8[m] devices with any 1G Phy.
5307 **/
5308void e1000e_gig_downshift_workaround_ich8lan(struct e1000_hw *hw)
5309{
5310	s32 ret_val;
5311	u16 reg_data;
5312
5313	if ((hw->mac.type != e1000_ich8lan) || (hw->phy.type == e1000_phy_ife))
5314		return;
5315
5316	ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
5317				       &reg_data);
5318	if (ret_val)
5319		return;
5320	reg_data |= E1000_KMRNCTRLSTA_DIAG_NELPBK;
5321	ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
5322					reg_data);
5323	if (ret_val)
5324		return;
5325	reg_data &= ~E1000_KMRNCTRLSTA_DIAG_NELPBK;
5326	e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET, reg_data);
5327}
5328
5329/**
5330 *  e1000_suspend_workarounds_ich8lan - workarounds needed during S0->Sx
5331 *  @hw: pointer to the HW structure
5332 *
5333 *  During S0 to Sx transition, it is possible the link remains at gig
5334 *  instead of negotiating to a lower speed.  Before going to Sx, set
5335 *  'Gig Disable' to force link speed negotiation to a lower speed based on
5336 *  the LPLU setting in the NVM or custom setting.  For PCH and newer parts,
5337 *  the OEM bits PHY register (LED, GbE disable and LPLU configurations) also
5338 *  needs to be written.
5339 *  Parts that support (and are linked to a partner which support) EEE in
5340 *  100Mbps should disable LPLU since 100Mbps w/ EEE requires less power
5341 *  than 10Mbps w/o EEE.
5342 **/
5343void e1000_suspend_workarounds_ich8lan(struct e1000_hw *hw)
5344{
5345	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
5346	u32 phy_ctrl;
5347	s32 ret_val;
5348
5349	phy_ctrl = er32(PHY_CTRL);
5350	phy_ctrl |= E1000_PHY_CTRL_GBE_DISABLE;
5351
5352	if (hw->phy.type == e1000_phy_i217) {
5353		u16 phy_reg, device_id = hw->adapter->pdev->device;
5354
5355		if ((device_id == E1000_DEV_ID_PCH_LPTLP_I218_LM) ||
5356		    (device_id == E1000_DEV_ID_PCH_LPTLP_I218_V) ||
5357		    (device_id == E1000_DEV_ID_PCH_I218_LM3) ||
5358		    (device_id == E1000_DEV_ID_PCH_I218_V3) ||
5359		    (hw->mac.type >= e1000_pch_spt)) {
5360			u32 fextnvm6 = er32(FEXTNVM6);
5361
5362			ew32(FEXTNVM6, fextnvm6 & ~E1000_FEXTNVM6_REQ_PLL_CLK);
5363		}
5364
5365		ret_val = hw->phy.ops.acquire(hw);
5366		if (ret_val)
5367			goto out;
5368
5369		if (!dev_spec->eee_disable) {
5370			u16 eee_advert;
5371
5372			ret_val =
5373			    e1000_read_emi_reg_locked(hw,
5374						      I217_EEE_ADVERTISEMENT,
5375						      &eee_advert);
5376			if (ret_val)
5377				goto release;
5378
5379			/* Disable LPLU if both link partners support 100BaseT
5380			 * EEE and 100Full is advertised on both ends of the
5381			 * link, and enable Auto Enable LPI since there will
5382			 * be no driver to enable LPI while in Sx.
5383			 */
5384			if ((eee_advert & I82579_EEE_100_SUPPORTED) &&
5385			    (dev_spec->eee_lp_ability &
5386			     I82579_EEE_100_SUPPORTED) &&
5387			    (hw->phy.autoneg_advertised & ADVERTISE_100_FULL)) {
5388				phy_ctrl &= ~(E1000_PHY_CTRL_D0A_LPLU |
5389					      E1000_PHY_CTRL_NOND0A_LPLU);
5390
5391				/* Set Auto Enable LPI after link up */
5392				e1e_rphy_locked(hw,
5393						I217_LPI_GPIO_CTRL, &phy_reg);
5394				phy_reg |= I217_LPI_GPIO_CTRL_AUTO_EN_LPI;
5395				e1e_wphy_locked(hw,
5396						I217_LPI_GPIO_CTRL, phy_reg);
5397			}
5398		}
5399
5400		/* For i217 Intel Rapid Start Technology support,
5401		 * when the system is going into Sx and no manageability engine
5402		 * is present, the driver must configure proxy to reset only on
5403		 * power good.  LPI (Low Power Idle) state must also reset only
5404		 * on power good, as well as the MTA (Multicast table array).
5405		 * The SMBus release must also be disabled on LCD reset.
5406		 */
5407		if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
5408			/* Enable proxy to reset only on power good. */
5409			e1e_rphy_locked(hw, I217_PROXY_CTRL, &phy_reg);
5410			phy_reg |= I217_PROXY_CTRL_AUTO_DISABLE;
5411			e1e_wphy_locked(hw, I217_PROXY_CTRL, phy_reg);
5412
5413			/* Set bit enable LPI (EEE) to reset only on
5414			 * power good.
5415			 */
5416			e1e_rphy_locked(hw, I217_SxCTRL, &phy_reg);
5417			phy_reg |= I217_SxCTRL_ENABLE_LPI_RESET;
5418			e1e_wphy_locked(hw, I217_SxCTRL, phy_reg);
5419
5420			/* Disable the SMB release on LCD reset. */
5421			e1e_rphy_locked(hw, I217_MEMPWR, &phy_reg);
5422			phy_reg &= ~I217_MEMPWR_DISABLE_SMB_RELEASE;
5423			e1e_wphy_locked(hw, I217_MEMPWR, phy_reg);
5424		}
5425
5426		/* Enable MTA to reset for Intel Rapid Start Technology
5427		 * Support
5428		 */
5429		e1e_rphy_locked(hw, I217_CGFREG, &phy_reg);
5430		phy_reg |= I217_CGFREG_ENABLE_MTA_RESET;
5431		e1e_wphy_locked(hw, I217_CGFREG, phy_reg);
5432
5433release:
5434		hw->phy.ops.release(hw);
5435	}
5436out:
5437	ew32(PHY_CTRL, phy_ctrl);
5438
5439	if (hw->mac.type == e1000_ich8lan)
5440		e1000e_gig_downshift_workaround_ich8lan(hw);
5441
5442	if (hw->mac.type >= e1000_pchlan) {
5443		e1000_oem_bits_config_ich8lan(hw, false);
5444
5445		/* Reset PHY to activate OEM bits on 82577/8 */
5446		if (hw->mac.type == e1000_pchlan)
5447			e1000e_phy_hw_reset_generic(hw);
5448
5449		ret_val = hw->phy.ops.acquire(hw);
5450		if (ret_val)
5451			return;
5452		e1000_write_smbus_addr(hw);
5453		hw->phy.ops.release(hw);
5454	}
5455}
5456
5457/**
5458 *  e1000_resume_workarounds_pchlan - workarounds needed during Sx->S0
5459 *  @hw: pointer to the HW structure
5460 *
5461 *  During Sx to S0 transitions on non-managed devices or managed devices
5462 *  on which PHY resets are not blocked, if the PHY registers cannot be
5463 *  accessed properly by the s/w toggle the LANPHYPC value to power cycle
5464 *  the PHY.
5465 *  On i217, setup Intel Rapid Start Technology.
5466 **/
5467void e1000_resume_workarounds_pchlan(struct e1000_hw *hw)
5468{
5469	s32 ret_val;
5470
5471	if (hw->mac.type < e1000_pch2lan)
5472		return;
5473
5474	ret_val = e1000_init_phy_workarounds_pchlan(hw);
5475	if (ret_val) {
5476		e_dbg("Failed to init PHY flow ret_val=%d\n", ret_val);
5477		return;
5478	}
5479
5480	/* For i217 Intel Rapid Start Technology support when the system
5481	 * is transitioning from Sx and no manageability engine is present
5482	 * configure SMBus to restore on reset, disable proxy, and enable
5483	 * the reset on MTA (Multicast table array).
5484	 */
5485	if (hw->phy.type == e1000_phy_i217) {
5486		u16 phy_reg;
5487
5488		ret_val = hw->phy.ops.acquire(hw);
5489		if (ret_val) {
5490			e_dbg("Failed to setup iRST\n");
5491			return;
5492		}
5493
5494		/* Clear Auto Enable LPI after link up */
5495		e1e_rphy_locked(hw, I217_LPI_GPIO_CTRL, &phy_reg);
5496		phy_reg &= ~I217_LPI_GPIO_CTRL_AUTO_EN_LPI;
5497		e1e_wphy_locked(hw, I217_LPI_GPIO_CTRL, phy_reg);
5498
5499		if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
5500			/* Restore clear on SMB if no manageability engine
5501			 * is present
5502			 */
5503			ret_val = e1e_rphy_locked(hw, I217_MEMPWR, &phy_reg);
5504			if (ret_val)
5505				goto release;
5506			phy_reg |= I217_MEMPWR_DISABLE_SMB_RELEASE;
5507			e1e_wphy_locked(hw, I217_MEMPWR, phy_reg);
5508
5509			/* Disable Proxy */
5510			e1e_wphy_locked(hw, I217_PROXY_CTRL, 0);
5511		}
5512		/* Enable reset on MTA */
5513		ret_val = e1e_rphy_locked(hw, I217_CGFREG, &phy_reg);
5514		if (ret_val)
5515			goto release;
5516		phy_reg &= ~I217_CGFREG_ENABLE_MTA_RESET;
5517		e1e_wphy_locked(hw, I217_CGFREG, phy_reg);
5518release:
5519		if (ret_val)
5520			e_dbg("Error %d in resume workarounds\n", ret_val);
5521		hw->phy.ops.release(hw);
5522	}
5523}
5524
5525/**
5526 *  e1000_cleanup_led_ich8lan - Restore the default LED operation
5527 *  @hw: pointer to the HW structure
5528 *
5529 *  Return the LED back to the default configuration.
5530 **/
5531static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw)
5532{
5533	if (hw->phy.type == e1000_phy_ife)
5534		return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0);
5535
5536	ew32(LEDCTL, hw->mac.ledctl_default);
5537	return 0;
5538}
5539
5540/**
5541 *  e1000_led_on_ich8lan - Turn LEDs on
5542 *  @hw: pointer to the HW structure
5543 *
5544 *  Turn on the LEDs.
5545 **/
5546static s32 e1000_led_on_ich8lan(struct e1000_hw *hw)
5547{
5548	if (hw->phy.type == e1000_phy_ife)
5549		return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
5550				(IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_ON));
5551
5552	ew32(LEDCTL, hw->mac.ledctl_mode2);
5553	return 0;
5554}
5555
5556/**
5557 *  e1000_led_off_ich8lan - Turn LEDs off
5558 *  @hw: pointer to the HW structure
5559 *
5560 *  Turn off the LEDs.
5561 **/
5562static s32 e1000_led_off_ich8lan(struct e1000_hw *hw)
5563{
5564	if (hw->phy.type == e1000_phy_ife)
5565		return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
5566				(IFE_PSCL_PROBE_MODE |
5567				 IFE_PSCL_PROBE_LEDS_OFF));
5568
5569	ew32(LEDCTL, hw->mac.ledctl_mode1);
5570	return 0;
5571}
5572
5573/**
5574 *  e1000_setup_led_pchlan - Configures SW controllable LED
5575 *  @hw: pointer to the HW structure
5576 *
5577 *  This prepares the SW controllable LED for use.
5578 **/
5579static s32 e1000_setup_led_pchlan(struct e1000_hw *hw)
5580{
5581	return e1e_wphy(hw, HV_LED_CONFIG, (u16)hw->mac.ledctl_mode1);
5582}
5583
5584/**
5585 *  e1000_cleanup_led_pchlan - Restore the default LED operation
5586 *  @hw: pointer to the HW structure
5587 *
5588 *  Return the LED back to the default configuration.
5589 **/
5590static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw)
5591{
5592	return e1e_wphy(hw, HV_LED_CONFIG, (u16)hw->mac.ledctl_default);
5593}
5594
5595/**
5596 *  e1000_led_on_pchlan - Turn LEDs on
5597 *  @hw: pointer to the HW structure
5598 *
5599 *  Turn on the LEDs.
5600 **/
5601static s32 e1000_led_on_pchlan(struct e1000_hw *hw)
5602{
5603	u16 data = (u16)hw->mac.ledctl_mode2;
5604	u32 i, led;
5605
5606	/* If no link, then turn LED on by setting the invert bit
5607	 * for each LED that's mode is "link_up" in ledctl_mode2.
5608	 */
5609	if (!(er32(STATUS) & E1000_STATUS_LU)) {
5610		for (i = 0; i < 3; i++) {
5611			led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
5612			if ((led & E1000_PHY_LED0_MODE_MASK) !=
5613			    E1000_LEDCTL_MODE_LINK_UP)
5614				continue;
5615			if (led & E1000_PHY_LED0_IVRT)
5616				data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
5617			else
5618				data |= (E1000_PHY_LED0_IVRT << (i * 5));
5619		}
5620	}
5621
5622	return e1e_wphy(hw, HV_LED_CONFIG, data);
5623}
5624
5625/**
5626 *  e1000_led_off_pchlan - Turn LEDs off
5627 *  @hw: pointer to the HW structure
5628 *
5629 *  Turn off the LEDs.
5630 **/
5631static s32 e1000_led_off_pchlan(struct e1000_hw *hw)
5632{
5633	u16 data = (u16)hw->mac.ledctl_mode1;
5634	u32 i, led;
5635
5636	/* If no link, then turn LED off by clearing the invert bit
5637	 * for each LED that's mode is "link_up" in ledctl_mode1.
5638	 */
5639	if (!(er32(STATUS) & E1000_STATUS_LU)) {
5640		for (i = 0; i < 3; i++) {
5641			led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
5642			if ((led & E1000_PHY_LED0_MODE_MASK) !=
5643			    E1000_LEDCTL_MODE_LINK_UP)
5644				continue;
5645			if (led & E1000_PHY_LED0_IVRT)
5646				data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
5647			else
5648				data |= (E1000_PHY_LED0_IVRT << (i * 5));
5649		}
5650	}
5651
5652	return e1e_wphy(hw, HV_LED_CONFIG, data);
5653}
5654
5655/**
5656 *  e1000_get_cfg_done_ich8lan - Read config done bit after Full or PHY reset
5657 *  @hw: pointer to the HW structure
5658 *
5659 *  Read appropriate register for the config done bit for completion status
5660 *  and configure the PHY through s/w for EEPROM-less parts.
5661 *
5662 *  NOTE: some silicon which is EEPROM-less will fail trying to read the
5663 *  config done bit, so only an error is logged and continues.  If we were
5664 *  to return with error, EEPROM-less silicon would not be able to be reset
5665 *  or change link.
5666 **/
5667static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw)
5668{
5669	s32 ret_val = 0;
5670	u32 bank = 0;
5671	u32 status;
5672
5673	e1000e_get_cfg_done_generic(hw);
5674
5675	/* Wait for indication from h/w that it has completed basic config */
5676	if (hw->mac.type >= e1000_ich10lan) {
5677		e1000_lan_init_done_ich8lan(hw);
5678	} else {
5679		ret_val = e1000e_get_auto_rd_done(hw);
5680		if (ret_val) {
5681			/* When auto config read does not complete, do not
5682			 * return with an error. This can happen in situations
5683			 * where there is no eeprom and prevents getting link.
5684			 */
5685			e_dbg("Auto Read Done did not complete\n");
5686			ret_val = 0;
5687		}
5688	}
5689
5690	/* Clear PHY Reset Asserted bit */
5691	status = er32(STATUS);
5692	if (status & E1000_STATUS_PHYRA)
5693		ew32(STATUS, status & ~E1000_STATUS_PHYRA);
5694	else
5695		e_dbg("PHY Reset Asserted not set - needs delay\n");
5696
5697	/* If EEPROM is not marked present, init the IGP 3 PHY manually */
5698	if (hw->mac.type <= e1000_ich9lan) {
5699		if (!(er32(EECD) & E1000_EECD_PRES) &&
5700		    (hw->phy.type == e1000_phy_igp_3)) {
5701			e1000e_phy_init_script_igp3(hw);
5702		}
5703	} else {
5704		if (e1000_valid_nvm_bank_detect_ich8lan(hw, &bank)) {
5705			/* Maybe we should do a basic PHY config */
5706			e_dbg("EEPROM not present\n");
5707			ret_val = -E1000_ERR_CONFIG;
5708		}
5709	}
5710
5711	return ret_val;
5712}
5713
5714/**
5715 * e1000_power_down_phy_copper_ich8lan - Remove link during PHY power down
5716 * @hw: pointer to the HW structure
5717 *
5718 * In the case of a PHY power down to save power, or to turn off link during a
5719 * driver unload, or wake on lan is not enabled, remove the link.
5720 **/
5721static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw)
5722{
5723	/* If the management interface is not enabled, then power down */
5724	if (!(hw->mac.ops.check_mng_mode(hw) ||
5725	      hw->phy.ops.check_reset_block(hw)))
5726		e1000_power_down_phy_copper(hw);
5727}
5728
5729/**
5730 *  e1000_clear_hw_cntrs_ich8lan - Clear statistical counters
5731 *  @hw: pointer to the HW structure
5732 *
5733 *  Clears hardware counters specific to the silicon family and calls
5734 *  clear_hw_cntrs_generic to clear all general purpose counters.
5735 **/
5736static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw)
5737{
5738	u16 phy_data;
5739	s32 ret_val;
5740
5741	e1000e_clear_hw_cntrs_base(hw);
5742
5743	er32(ALGNERRC);
5744	er32(RXERRC);
5745	er32(TNCRS);
5746	er32(CEXTERR);
5747	er32(TSCTC);
5748	er32(TSCTFC);
5749
5750	er32(MGTPRC);
5751	er32(MGTPDC);
5752	er32(MGTPTC);
5753
5754	er32(IAC);
5755	er32(ICRXOC);
5756
5757	/* Clear PHY statistics registers */
5758	if ((hw->phy.type == e1000_phy_82578) ||
5759	    (hw->phy.type == e1000_phy_82579) ||
5760	    (hw->phy.type == e1000_phy_i217) ||
5761	    (hw->phy.type == e1000_phy_82577)) {
5762		ret_val = hw->phy.ops.acquire(hw);
5763		if (ret_val)
5764			return;
5765		ret_val = hw->phy.ops.set_page(hw,
5766					       HV_STATS_PAGE << IGP_PAGE_SHIFT);
5767		if (ret_val)
5768			goto release;
5769		hw->phy.ops.read_reg_page(hw, HV_SCC_UPPER, &phy_data);
5770		hw->phy.ops.read_reg_page(hw, HV_SCC_LOWER, &phy_data);
5771		hw->phy.ops.read_reg_page(hw, HV_ECOL_UPPER, &phy_data);
5772		hw->phy.ops.read_reg_page(hw, HV_ECOL_LOWER, &phy_data);
5773		hw->phy.ops.read_reg_page(hw, HV_MCC_UPPER, &phy_data);
5774		hw->phy.ops.read_reg_page(hw, HV_MCC_LOWER, &phy_data);
5775		hw->phy.ops.read_reg_page(hw, HV_LATECOL_UPPER, &phy_data);
5776		hw->phy.ops.read_reg_page(hw, HV_LATECOL_LOWER, &phy_data);
5777		hw->phy.ops.read_reg_page(hw, HV_COLC_UPPER, &phy_data);
5778		hw->phy.ops.read_reg_page(hw, HV_COLC_LOWER, &phy_data);
5779		hw->phy.ops.read_reg_page(hw, HV_DC_UPPER, &phy_data);
5780		hw->phy.ops.read_reg_page(hw, HV_DC_LOWER, &phy_data);
5781		hw->phy.ops.read_reg_page(hw, HV_TNCRS_UPPER, &phy_data);
5782		hw->phy.ops.read_reg_page(hw, HV_TNCRS_LOWER, &phy_data);
5783release:
5784		hw->phy.ops.release(hw);
5785	}
5786}
5787
5788static const struct e1000_mac_operations ich8_mac_ops = {
5789	/* check_mng_mode dependent on mac type */
5790	.check_for_link		= e1000_check_for_copper_link_ich8lan,
5791	/* cleanup_led dependent on mac type */
5792	.clear_hw_cntrs		= e1000_clear_hw_cntrs_ich8lan,
5793	.get_bus_info		= e1000_get_bus_info_ich8lan,
5794	.set_lan_id		= e1000_set_lan_id_single_port,
5795	.get_link_up_info	= e1000_get_link_up_info_ich8lan,
5796	/* led_on dependent on mac type */
5797	/* led_off dependent on mac type */
5798	.update_mc_addr_list	= e1000e_update_mc_addr_list_generic,
5799	.reset_hw		= e1000_reset_hw_ich8lan,
5800	.init_hw		= e1000_init_hw_ich8lan,
5801	.setup_link		= e1000_setup_link_ich8lan,
5802	.setup_physical_interface = e1000_setup_copper_link_ich8lan,
5803	/* id_led_init dependent on mac type */
5804	.config_collision_dist	= e1000e_config_collision_dist_generic,
5805	.rar_set		= e1000e_rar_set_generic,
5806	.rar_get_count		= e1000e_rar_get_count_generic,
5807};
5808
5809static const struct e1000_phy_operations ich8_phy_ops = {
5810	.acquire		= e1000_acquire_swflag_ich8lan,
5811	.check_reset_block	= e1000_check_reset_block_ich8lan,
5812	.commit			= NULL,
5813	.get_cfg_done		= e1000_get_cfg_done_ich8lan,
5814	.get_cable_length	= e1000e_get_cable_length_igp_2,
5815	.read_reg		= e1000e_read_phy_reg_igp,
5816	.release		= e1000_release_swflag_ich8lan,
5817	.reset			= e1000_phy_hw_reset_ich8lan,
5818	.set_d0_lplu_state	= e1000_set_d0_lplu_state_ich8lan,
5819	.set_d3_lplu_state	= e1000_set_d3_lplu_state_ich8lan,
5820	.write_reg		= e1000e_write_phy_reg_igp,
5821};
5822
5823static const struct e1000_nvm_operations ich8_nvm_ops = {
5824	.acquire		= e1000_acquire_nvm_ich8lan,
5825	.read			= e1000_read_nvm_ich8lan,
5826	.release		= e1000_release_nvm_ich8lan,
5827	.reload			= e1000e_reload_nvm_generic,
5828	.update			= e1000_update_nvm_checksum_ich8lan,
5829	.valid_led_default	= e1000_valid_led_default_ich8lan,
5830	.validate		= e1000_validate_nvm_checksum_ich8lan,
5831	.write			= e1000_write_nvm_ich8lan,
5832};
5833
5834static const struct e1000_nvm_operations spt_nvm_ops = {
5835	.acquire		= e1000_acquire_nvm_ich8lan,
5836	.release		= e1000_release_nvm_ich8lan,
5837	.read			= e1000_read_nvm_spt,
5838	.update			= e1000_update_nvm_checksum_spt,
5839	.reload			= e1000e_reload_nvm_generic,
5840	.valid_led_default	= e1000_valid_led_default_ich8lan,
5841	.validate		= e1000_validate_nvm_checksum_ich8lan,
5842	.write			= e1000_write_nvm_ich8lan,
5843};
5844
5845const struct e1000_info e1000_ich8_info = {
5846	.mac			= e1000_ich8lan,
5847	.flags			= FLAG_HAS_WOL
5848				  | FLAG_IS_ICH
5849				  | FLAG_HAS_CTRLEXT_ON_LOAD
5850				  | FLAG_HAS_AMT
5851				  | FLAG_HAS_FLASH
5852				  | FLAG_APME_IN_WUC,
5853	.pba			= 8,
5854	.max_hw_frame_size	= VLAN_ETH_FRAME_LEN + ETH_FCS_LEN,
5855	.get_variants		= e1000_get_variants_ich8lan,
5856	.mac_ops		= &ich8_mac_ops,
5857	.phy_ops		= &ich8_phy_ops,
5858	.nvm_ops		= &ich8_nvm_ops,
5859};
5860
5861const struct e1000_info e1000_ich9_info = {
5862	.mac			= e1000_ich9lan,
5863	.flags			= FLAG_HAS_JUMBO_FRAMES
5864				  | FLAG_IS_ICH
5865				  | FLAG_HAS_WOL
5866				  | FLAG_HAS_CTRLEXT_ON_LOAD
5867				  | FLAG_HAS_AMT
5868				  | FLAG_HAS_FLASH
5869				  | FLAG_APME_IN_WUC,
5870	.pba			= 18,
5871	.max_hw_frame_size	= DEFAULT_JUMBO,
5872	.get_variants		= e1000_get_variants_ich8lan,
5873	.mac_ops		= &ich8_mac_ops,
5874	.phy_ops		= &ich8_phy_ops,
5875	.nvm_ops		= &ich8_nvm_ops,
5876};
5877
5878const struct e1000_info e1000_ich10_info = {
5879	.mac			= e1000_ich10lan,
5880	.flags			= FLAG_HAS_JUMBO_FRAMES
5881				  | FLAG_IS_ICH
5882				  | FLAG_HAS_WOL
5883				  | FLAG_HAS_CTRLEXT_ON_LOAD
5884				  | FLAG_HAS_AMT
5885				  | FLAG_HAS_FLASH
5886				  | FLAG_APME_IN_WUC,
5887	.pba			= 18,
5888	.max_hw_frame_size	= DEFAULT_JUMBO,
5889	.get_variants		= e1000_get_variants_ich8lan,
5890	.mac_ops		= &ich8_mac_ops,
5891	.phy_ops		= &ich8_phy_ops,
5892	.nvm_ops		= &ich8_nvm_ops,
5893};
5894
5895const struct e1000_info e1000_pch_info = {
5896	.mac			= e1000_pchlan,
5897	.flags			= FLAG_IS_ICH
5898				  | FLAG_HAS_WOL
5899				  | FLAG_HAS_CTRLEXT_ON_LOAD
5900				  | FLAG_HAS_AMT
5901				  | FLAG_HAS_FLASH
5902				  | FLAG_HAS_JUMBO_FRAMES
5903				  | FLAG_DISABLE_FC_PAUSE_TIME /* errata */
5904				  | FLAG_APME_IN_WUC,
5905	.flags2			= FLAG2_HAS_PHY_STATS,
5906	.pba			= 26,
5907	.max_hw_frame_size	= 4096,
5908	.get_variants		= e1000_get_variants_ich8lan,
5909	.mac_ops		= &ich8_mac_ops,
5910	.phy_ops		= &ich8_phy_ops,
5911	.nvm_ops		= &ich8_nvm_ops,
5912};
5913
5914const struct e1000_info e1000_pch2_info = {
5915	.mac			= e1000_pch2lan,
5916	.flags			= FLAG_IS_ICH
5917				  | FLAG_HAS_WOL
5918				  | FLAG_HAS_HW_TIMESTAMP
5919				  | FLAG_HAS_CTRLEXT_ON_LOAD
5920				  | FLAG_HAS_AMT
5921				  | FLAG_HAS_FLASH
5922				  | FLAG_HAS_JUMBO_FRAMES
5923				  | FLAG_APME_IN_WUC,
5924	.flags2			= FLAG2_HAS_PHY_STATS
5925				  | FLAG2_HAS_EEE
5926				  | FLAG2_CHECK_SYSTIM_OVERFLOW,
5927	.pba			= 26,
5928	.max_hw_frame_size	= 9022,
5929	.get_variants		= e1000_get_variants_ich8lan,
5930	.mac_ops		= &ich8_mac_ops,
5931	.phy_ops		= &ich8_phy_ops,
5932	.nvm_ops		= &ich8_nvm_ops,
5933};
5934
5935const struct e1000_info e1000_pch_lpt_info = {
5936	.mac			= e1000_pch_lpt,
5937	.flags			= FLAG_IS_ICH
5938				  | FLAG_HAS_WOL
5939				  | FLAG_HAS_HW_TIMESTAMP
5940				  | FLAG_HAS_CTRLEXT_ON_LOAD
5941				  | FLAG_HAS_AMT
5942				  | FLAG_HAS_FLASH
5943				  | FLAG_HAS_JUMBO_FRAMES
5944				  | FLAG_APME_IN_WUC,
5945	.flags2			= FLAG2_HAS_PHY_STATS
5946				  | FLAG2_HAS_EEE
5947				  | FLAG2_CHECK_SYSTIM_OVERFLOW,
5948	.pba			= 26,
5949	.max_hw_frame_size	= 9022,
5950	.get_variants		= e1000_get_variants_ich8lan,
5951	.mac_ops		= &ich8_mac_ops,
5952	.phy_ops		= &ich8_phy_ops,
5953	.nvm_ops		= &ich8_nvm_ops,
5954};
5955
5956const struct e1000_info e1000_pch_spt_info = {
5957	.mac			= e1000_pch_spt,
5958	.flags			= FLAG_IS_ICH
5959				  | FLAG_HAS_WOL
5960				  | FLAG_HAS_HW_TIMESTAMP
5961				  | FLAG_HAS_CTRLEXT_ON_LOAD
5962				  | FLAG_HAS_AMT
5963				  | FLAG_HAS_FLASH
5964				  | FLAG_HAS_JUMBO_FRAMES
5965				  | FLAG_APME_IN_WUC,
5966	.flags2			= FLAG2_HAS_PHY_STATS
5967				  | FLAG2_HAS_EEE,
5968	.pba			= 26,
5969	.max_hw_frame_size	= 9022,
5970	.get_variants		= e1000_get_variants_ich8lan,
5971	.mac_ops		= &ich8_mac_ops,
5972	.phy_ops		= &ich8_phy_ops,
5973	.nvm_ops		= &spt_nvm_ops,
5974};
5975
5976const struct e1000_info e1000_pch_cnp_info = {
5977	.mac			= e1000_pch_cnp,
5978	.flags			= FLAG_IS_ICH
5979				  | FLAG_HAS_WOL
5980				  | FLAG_HAS_HW_TIMESTAMP
5981				  | FLAG_HAS_CTRLEXT_ON_LOAD
5982				  | FLAG_HAS_AMT
5983				  | FLAG_HAS_FLASH
5984				  | FLAG_HAS_JUMBO_FRAMES
5985				  | FLAG_APME_IN_WUC,
5986	.flags2			= FLAG2_HAS_PHY_STATS
5987				  | FLAG2_HAS_EEE,
5988	.pba			= 26,
5989	.max_hw_frame_size	= 9022,
5990	.get_variants		= e1000_get_variants_ich8lan,
5991	.mac_ops		= &ich8_mac_ops,
5992	.phy_ops		= &ich8_phy_ops,
5993	.nvm_ops		= &spt_nvm_ops,
5994};
5995
5996const struct e1000_info e1000_pch_tgp_info = {
5997	.mac			= e1000_pch_tgp,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5998	.flags			= FLAG_IS_ICH
5999				  | FLAG_HAS_WOL
6000				  | FLAG_HAS_HW_TIMESTAMP
6001				  | FLAG_HAS_CTRLEXT_ON_LOAD
6002				  | FLAG_HAS_AMT
6003				  | FLAG_HAS_FLASH
6004				  | FLAG_HAS_JUMBO_FRAMES
6005				  | FLAG_APME_IN_WUC,
6006	.flags2			= FLAG2_HAS_PHY_STATS
6007				  | FLAG2_HAS_EEE,
6008	.pba			= 26,
6009	.max_hw_frame_size	= 9022,
6010	.get_variants		= e1000_get_variants_ich8lan,
6011	.mac_ops		= &ich8_mac_ops,
6012	.phy_ops		= &ich8_phy_ops,
6013	.nvm_ops		= &spt_nvm_ops,
6014};