Loading...
1// SPDX-License-Identifier: GPL-2.0
2/* Copyright(c) 1999 - 2006 Intel Corporation. */
3
4#include "e1000.h"
5#include <net/ip6_checksum.h>
6#include <linux/io.h>
7#include <linux/prefetch.h>
8#include <linux/bitops.h>
9#include <linux/if_vlan.h>
10
11char e1000_driver_name[] = "e1000";
12static char e1000_driver_string[] = "Intel(R) PRO/1000 Network Driver";
13static const char e1000_copyright[] = "Copyright (c) 1999-2006 Intel Corporation.";
14
15/* e1000_pci_tbl - PCI Device ID Table
16 *
17 * Last entry must be all 0s
18 *
19 * Macro expands to...
20 * {PCI_DEVICE(PCI_VENDOR_ID_INTEL, device_id)}
21 */
22static const struct pci_device_id e1000_pci_tbl[] = {
23 INTEL_E1000_ETHERNET_DEVICE(0x1000),
24 INTEL_E1000_ETHERNET_DEVICE(0x1001),
25 INTEL_E1000_ETHERNET_DEVICE(0x1004),
26 INTEL_E1000_ETHERNET_DEVICE(0x1008),
27 INTEL_E1000_ETHERNET_DEVICE(0x1009),
28 INTEL_E1000_ETHERNET_DEVICE(0x100C),
29 INTEL_E1000_ETHERNET_DEVICE(0x100D),
30 INTEL_E1000_ETHERNET_DEVICE(0x100E),
31 INTEL_E1000_ETHERNET_DEVICE(0x100F),
32 INTEL_E1000_ETHERNET_DEVICE(0x1010),
33 INTEL_E1000_ETHERNET_DEVICE(0x1011),
34 INTEL_E1000_ETHERNET_DEVICE(0x1012),
35 INTEL_E1000_ETHERNET_DEVICE(0x1013),
36 INTEL_E1000_ETHERNET_DEVICE(0x1014),
37 INTEL_E1000_ETHERNET_DEVICE(0x1015),
38 INTEL_E1000_ETHERNET_DEVICE(0x1016),
39 INTEL_E1000_ETHERNET_DEVICE(0x1017),
40 INTEL_E1000_ETHERNET_DEVICE(0x1018),
41 INTEL_E1000_ETHERNET_DEVICE(0x1019),
42 INTEL_E1000_ETHERNET_DEVICE(0x101A),
43 INTEL_E1000_ETHERNET_DEVICE(0x101D),
44 INTEL_E1000_ETHERNET_DEVICE(0x101E),
45 INTEL_E1000_ETHERNET_DEVICE(0x1026),
46 INTEL_E1000_ETHERNET_DEVICE(0x1027),
47 INTEL_E1000_ETHERNET_DEVICE(0x1028),
48 INTEL_E1000_ETHERNET_DEVICE(0x1075),
49 INTEL_E1000_ETHERNET_DEVICE(0x1076),
50 INTEL_E1000_ETHERNET_DEVICE(0x1077),
51 INTEL_E1000_ETHERNET_DEVICE(0x1078),
52 INTEL_E1000_ETHERNET_DEVICE(0x1079),
53 INTEL_E1000_ETHERNET_DEVICE(0x107A),
54 INTEL_E1000_ETHERNET_DEVICE(0x107B),
55 INTEL_E1000_ETHERNET_DEVICE(0x107C),
56 INTEL_E1000_ETHERNET_DEVICE(0x108A),
57 INTEL_E1000_ETHERNET_DEVICE(0x1099),
58 INTEL_E1000_ETHERNET_DEVICE(0x10B5),
59 INTEL_E1000_ETHERNET_DEVICE(0x2E6E),
60 /* required last entry */
61 {0,}
62};
63
64MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
65
66int e1000_up(struct e1000_adapter *adapter);
67void e1000_down(struct e1000_adapter *adapter);
68void e1000_reinit_locked(struct e1000_adapter *adapter);
69void e1000_reset(struct e1000_adapter *adapter);
70int e1000_setup_all_tx_resources(struct e1000_adapter *adapter);
71int e1000_setup_all_rx_resources(struct e1000_adapter *adapter);
72void e1000_free_all_tx_resources(struct e1000_adapter *adapter);
73void e1000_free_all_rx_resources(struct e1000_adapter *adapter);
74static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
75 struct e1000_tx_ring *txdr);
76static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
77 struct e1000_rx_ring *rxdr);
78static void e1000_free_tx_resources(struct e1000_adapter *adapter,
79 struct e1000_tx_ring *tx_ring);
80static void e1000_free_rx_resources(struct e1000_adapter *adapter,
81 struct e1000_rx_ring *rx_ring);
82void e1000_update_stats(struct e1000_adapter *adapter);
83
84static int e1000_init_module(void);
85static void e1000_exit_module(void);
86static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent);
87static void e1000_remove(struct pci_dev *pdev);
88static int e1000_alloc_queues(struct e1000_adapter *adapter);
89static int e1000_sw_init(struct e1000_adapter *adapter);
90int e1000_open(struct net_device *netdev);
91int e1000_close(struct net_device *netdev);
92static void e1000_configure_tx(struct e1000_adapter *adapter);
93static void e1000_configure_rx(struct e1000_adapter *adapter);
94static void e1000_setup_rctl(struct e1000_adapter *adapter);
95static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter);
96static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter);
97static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
98 struct e1000_tx_ring *tx_ring);
99static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
100 struct e1000_rx_ring *rx_ring);
101static void e1000_set_rx_mode(struct net_device *netdev);
102static void e1000_update_phy_info_task(struct work_struct *work);
103static void e1000_watchdog(struct work_struct *work);
104static void e1000_82547_tx_fifo_stall_task(struct work_struct *work);
105static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
106 struct net_device *netdev);
107static int e1000_change_mtu(struct net_device *netdev, int new_mtu);
108static int e1000_set_mac(struct net_device *netdev, void *p);
109static irqreturn_t e1000_intr(int irq, void *data);
110static bool e1000_clean_tx_irq(struct e1000_adapter *adapter,
111 struct e1000_tx_ring *tx_ring);
112static int e1000_clean(struct napi_struct *napi, int budget);
113static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
114 struct e1000_rx_ring *rx_ring,
115 int *work_done, int work_to_do);
116static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter,
117 struct e1000_rx_ring *rx_ring,
118 int *work_done, int work_to_do);
119static void e1000_alloc_dummy_rx_buffers(struct e1000_adapter *adapter,
120 struct e1000_rx_ring *rx_ring,
121 int cleaned_count)
122{
123}
124static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
125 struct e1000_rx_ring *rx_ring,
126 int cleaned_count);
127static void e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter,
128 struct e1000_rx_ring *rx_ring,
129 int cleaned_count);
130static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd);
131static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
132 int cmd);
133static void e1000_enter_82542_rst(struct e1000_adapter *adapter);
134static void e1000_leave_82542_rst(struct e1000_adapter *adapter);
135static void e1000_tx_timeout(struct net_device *dev, unsigned int txqueue);
136static void e1000_reset_task(struct work_struct *work);
137static void e1000_smartspeed(struct e1000_adapter *adapter);
138static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
139 struct sk_buff *skb);
140
141static bool e1000_vlan_used(struct e1000_adapter *adapter);
142static void e1000_vlan_mode(struct net_device *netdev,
143 netdev_features_t features);
144static void e1000_vlan_filter_on_off(struct e1000_adapter *adapter,
145 bool filter_on);
146static int e1000_vlan_rx_add_vid(struct net_device *netdev,
147 __be16 proto, u16 vid);
148static int e1000_vlan_rx_kill_vid(struct net_device *netdev,
149 __be16 proto, u16 vid);
150static void e1000_restore_vlan(struct e1000_adapter *adapter);
151
152static int e1000_suspend(struct device *dev);
153static int e1000_resume(struct device *dev);
154static void e1000_shutdown(struct pci_dev *pdev);
155
156#ifdef CONFIG_NET_POLL_CONTROLLER
157/* for netdump / net console */
158static void e1000_netpoll (struct net_device *netdev);
159#endif
160
161#define COPYBREAK_DEFAULT 256
162static unsigned int copybreak __read_mostly = COPYBREAK_DEFAULT;
163module_param(copybreak, uint, 0644);
164MODULE_PARM_DESC(copybreak,
165 "Maximum size of packet that is copied to a new buffer on receive");
166
167static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
168 pci_channel_state_t state);
169static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev);
170static void e1000_io_resume(struct pci_dev *pdev);
171
172static const struct pci_error_handlers e1000_err_handler = {
173 .error_detected = e1000_io_error_detected,
174 .slot_reset = e1000_io_slot_reset,
175 .resume = e1000_io_resume,
176};
177
178static DEFINE_SIMPLE_DEV_PM_OPS(e1000_pm_ops, e1000_suspend, e1000_resume);
179
180static struct pci_driver e1000_driver = {
181 .name = e1000_driver_name,
182 .id_table = e1000_pci_tbl,
183 .probe = e1000_probe,
184 .remove = e1000_remove,
185 .driver.pm = pm_sleep_ptr(&e1000_pm_ops),
186 .shutdown = e1000_shutdown,
187 .err_handler = &e1000_err_handler
188};
189
190MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
191MODULE_LICENSE("GPL v2");
192
193#define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
194static int debug = -1;
195module_param(debug, int, 0);
196MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
197
198/**
199 * e1000_get_hw_dev - helper function for getting netdev
200 * @hw: pointer to HW struct
201 *
202 * return device used by hardware layer to print debugging information
203 *
204 **/
205struct net_device *e1000_get_hw_dev(struct e1000_hw *hw)
206{
207 struct e1000_adapter *adapter = hw->back;
208 return adapter->netdev;
209}
210
211/**
212 * e1000_init_module - Driver Registration Routine
213 *
214 * e1000_init_module is the first routine called when the driver is
215 * loaded. All it does is register with the PCI subsystem.
216 **/
217static int __init e1000_init_module(void)
218{
219 int ret;
220 pr_info("%s\n", e1000_driver_string);
221
222 pr_info("%s\n", e1000_copyright);
223
224 ret = pci_register_driver(&e1000_driver);
225 if (copybreak != COPYBREAK_DEFAULT) {
226 if (copybreak == 0)
227 pr_info("copybreak disabled\n");
228 else
229 pr_info("copybreak enabled for "
230 "packets <= %u bytes\n", copybreak);
231 }
232 return ret;
233}
234
235module_init(e1000_init_module);
236
237/**
238 * e1000_exit_module - Driver Exit Cleanup Routine
239 *
240 * e1000_exit_module is called just before the driver is removed
241 * from memory.
242 **/
243static void __exit e1000_exit_module(void)
244{
245 pci_unregister_driver(&e1000_driver);
246}
247
248module_exit(e1000_exit_module);
249
250static int e1000_request_irq(struct e1000_adapter *adapter)
251{
252 struct net_device *netdev = adapter->netdev;
253 irq_handler_t handler = e1000_intr;
254 int irq_flags = IRQF_SHARED;
255 int err;
256
257 err = request_irq(adapter->pdev->irq, handler, irq_flags, netdev->name,
258 netdev);
259 if (err) {
260 e_err(probe, "Unable to allocate interrupt Error: %d\n", err);
261 }
262
263 return err;
264}
265
266static void e1000_free_irq(struct e1000_adapter *adapter)
267{
268 struct net_device *netdev = adapter->netdev;
269
270 free_irq(adapter->pdev->irq, netdev);
271}
272
273/**
274 * e1000_irq_disable - Mask off interrupt generation on the NIC
275 * @adapter: board private structure
276 **/
277static void e1000_irq_disable(struct e1000_adapter *adapter)
278{
279 struct e1000_hw *hw = &adapter->hw;
280
281 ew32(IMC, ~0);
282 E1000_WRITE_FLUSH();
283 synchronize_irq(adapter->pdev->irq);
284}
285
286/**
287 * e1000_irq_enable - Enable default interrupt generation settings
288 * @adapter: board private structure
289 **/
290static void e1000_irq_enable(struct e1000_adapter *adapter)
291{
292 struct e1000_hw *hw = &adapter->hw;
293
294 ew32(IMS, IMS_ENABLE_MASK);
295 E1000_WRITE_FLUSH();
296}
297
298static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
299{
300 struct e1000_hw *hw = &adapter->hw;
301 struct net_device *netdev = adapter->netdev;
302 u16 vid = hw->mng_cookie.vlan_id;
303 u16 old_vid = adapter->mng_vlan_id;
304
305 if (!e1000_vlan_used(adapter))
306 return;
307
308 if (!test_bit(vid, adapter->active_vlans)) {
309 if (hw->mng_cookie.status &
310 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) {
311 e1000_vlan_rx_add_vid(netdev, htons(ETH_P_8021Q), vid);
312 adapter->mng_vlan_id = vid;
313 } else {
314 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
315 }
316 if ((old_vid != (u16)E1000_MNG_VLAN_NONE) &&
317 (vid != old_vid) &&
318 !test_bit(old_vid, adapter->active_vlans))
319 e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q),
320 old_vid);
321 } else {
322 adapter->mng_vlan_id = vid;
323 }
324}
325
326static void e1000_init_manageability(struct e1000_adapter *adapter)
327{
328 struct e1000_hw *hw = &adapter->hw;
329
330 if (adapter->en_mng_pt) {
331 u32 manc = er32(MANC);
332
333 /* disable hardware interception of ARP */
334 manc &= ~(E1000_MANC_ARP_EN);
335
336 ew32(MANC, manc);
337 }
338}
339
340static void e1000_release_manageability(struct e1000_adapter *adapter)
341{
342 struct e1000_hw *hw = &adapter->hw;
343
344 if (adapter->en_mng_pt) {
345 u32 manc = er32(MANC);
346
347 /* re-enable hardware interception of ARP */
348 manc |= E1000_MANC_ARP_EN;
349
350 ew32(MANC, manc);
351 }
352}
353
354/**
355 * e1000_configure - configure the hardware for RX and TX
356 * @adapter: private board structure
357 **/
358static void e1000_configure(struct e1000_adapter *adapter)
359{
360 struct net_device *netdev = adapter->netdev;
361 int i;
362
363 e1000_set_rx_mode(netdev);
364
365 e1000_restore_vlan(adapter);
366 e1000_init_manageability(adapter);
367
368 e1000_configure_tx(adapter);
369 e1000_setup_rctl(adapter);
370 e1000_configure_rx(adapter);
371 /* call E1000_DESC_UNUSED which always leaves
372 * at least 1 descriptor unused to make sure
373 * next_to_use != next_to_clean
374 */
375 for (i = 0; i < adapter->num_rx_queues; i++) {
376 struct e1000_rx_ring *ring = &adapter->rx_ring[i];
377 adapter->alloc_rx_buf(adapter, ring,
378 E1000_DESC_UNUSED(ring));
379 }
380}
381
382int e1000_up(struct e1000_adapter *adapter)
383{
384 struct e1000_hw *hw = &adapter->hw;
385
386 /* hardware has been reset, we need to reload some things */
387 e1000_configure(adapter);
388
389 clear_bit(__E1000_DOWN, &adapter->flags);
390
391 napi_enable(&adapter->napi);
392
393 e1000_irq_enable(adapter);
394
395 netif_wake_queue(adapter->netdev);
396
397 /* fire a link change interrupt to start the watchdog */
398 ew32(ICS, E1000_ICS_LSC);
399 return 0;
400}
401
402/**
403 * e1000_power_up_phy - restore link in case the phy was powered down
404 * @adapter: address of board private structure
405 *
406 * The phy may be powered down to save power and turn off link when the
407 * driver is unloaded and wake on lan is not enabled (among others)
408 * *** this routine MUST be followed by a call to e1000_reset ***
409 **/
410void e1000_power_up_phy(struct e1000_adapter *adapter)
411{
412 struct e1000_hw *hw = &adapter->hw;
413 u16 mii_reg = 0;
414
415 /* Just clear the power down bit to wake the phy back up */
416 if (hw->media_type == e1000_media_type_copper) {
417 /* according to the manual, the phy will retain its
418 * settings across a power-down/up cycle
419 */
420 e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg);
421 mii_reg &= ~MII_CR_POWER_DOWN;
422 e1000_write_phy_reg(hw, PHY_CTRL, mii_reg);
423 }
424}
425
426static void e1000_power_down_phy(struct e1000_adapter *adapter)
427{
428 struct e1000_hw *hw = &adapter->hw;
429
430 /* Power down the PHY so no link is implied when interface is down *
431 * The PHY cannot be powered down if any of the following is true *
432 * (a) WoL is enabled
433 * (b) AMT is active
434 * (c) SoL/IDER session is active
435 */
436 if (!adapter->wol && hw->mac_type >= e1000_82540 &&
437 hw->media_type == e1000_media_type_copper) {
438 u16 mii_reg = 0;
439
440 switch (hw->mac_type) {
441 case e1000_82540:
442 case e1000_82545:
443 case e1000_82545_rev_3:
444 case e1000_82546:
445 case e1000_ce4100:
446 case e1000_82546_rev_3:
447 case e1000_82541:
448 case e1000_82541_rev_2:
449 case e1000_82547:
450 case e1000_82547_rev_2:
451 if (er32(MANC) & E1000_MANC_SMBUS_EN)
452 goto out;
453 break;
454 default:
455 goto out;
456 }
457 e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg);
458 mii_reg |= MII_CR_POWER_DOWN;
459 e1000_write_phy_reg(hw, PHY_CTRL, mii_reg);
460 msleep(1);
461 }
462out:
463 return;
464}
465
466static void e1000_down_and_stop(struct e1000_adapter *adapter)
467{
468 set_bit(__E1000_DOWN, &adapter->flags);
469
470 cancel_delayed_work_sync(&adapter->watchdog_task);
471
472 /*
473 * Since the watchdog task can reschedule other tasks, we should cancel
474 * it first, otherwise we can run into the situation when a work is
475 * still running after the adapter has been turned down.
476 */
477
478 cancel_delayed_work_sync(&adapter->phy_info_task);
479 cancel_delayed_work_sync(&adapter->fifo_stall_task);
480
481 /* Only kill reset task if adapter is not resetting */
482 if (!test_bit(__E1000_RESETTING, &adapter->flags))
483 cancel_work_sync(&adapter->reset_task);
484}
485
486void e1000_down(struct e1000_adapter *adapter)
487{
488 struct e1000_hw *hw = &adapter->hw;
489 struct net_device *netdev = adapter->netdev;
490 u32 rctl, tctl;
491
492 /* disable receives in the hardware */
493 rctl = er32(RCTL);
494 ew32(RCTL, rctl & ~E1000_RCTL_EN);
495 /* flush and sleep below */
496
497 netif_tx_disable(netdev);
498
499 /* disable transmits in the hardware */
500 tctl = er32(TCTL);
501 tctl &= ~E1000_TCTL_EN;
502 ew32(TCTL, tctl);
503 /* flush both disables and wait for them to finish */
504 E1000_WRITE_FLUSH();
505 msleep(10);
506
507 /* Set the carrier off after transmits have been disabled in the
508 * hardware, to avoid race conditions with e1000_watchdog() (which
509 * may be running concurrently to us, checking for the carrier
510 * bit to decide whether it should enable transmits again). Such
511 * a race condition would result into transmission being disabled
512 * in the hardware until the next IFF_DOWN+IFF_UP cycle.
513 */
514 netif_carrier_off(netdev);
515
516 netif_queue_set_napi(netdev, 0, NETDEV_QUEUE_TYPE_RX, NULL);
517 netif_queue_set_napi(netdev, 0, NETDEV_QUEUE_TYPE_TX, NULL);
518 napi_disable(&adapter->napi);
519
520 e1000_irq_disable(adapter);
521
522 /* Setting DOWN must be after irq_disable to prevent
523 * a screaming interrupt. Setting DOWN also prevents
524 * tasks from rescheduling.
525 */
526 e1000_down_and_stop(adapter);
527
528 adapter->link_speed = 0;
529 adapter->link_duplex = 0;
530
531 e1000_reset(adapter);
532 e1000_clean_all_tx_rings(adapter);
533 e1000_clean_all_rx_rings(adapter);
534}
535
536void e1000_reinit_locked(struct e1000_adapter *adapter)
537{
538 while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
539 msleep(1);
540
541 /* only run the task if not already down */
542 if (!test_bit(__E1000_DOWN, &adapter->flags)) {
543 e1000_down(adapter);
544 e1000_up(adapter);
545 }
546
547 clear_bit(__E1000_RESETTING, &adapter->flags);
548}
549
550void e1000_reset(struct e1000_adapter *adapter)
551{
552 struct e1000_hw *hw = &adapter->hw;
553 u32 pba = 0, tx_space, min_tx_space, min_rx_space;
554 bool legacy_pba_adjust = false;
555 u16 hwm;
556
557 /* Repartition Pba for greater than 9k mtu
558 * To take effect CTRL.RST is required.
559 */
560
561 switch (hw->mac_type) {
562 case e1000_82542_rev2_0:
563 case e1000_82542_rev2_1:
564 case e1000_82543:
565 case e1000_82544:
566 case e1000_82540:
567 case e1000_82541:
568 case e1000_82541_rev_2:
569 legacy_pba_adjust = true;
570 pba = E1000_PBA_48K;
571 break;
572 case e1000_82545:
573 case e1000_82545_rev_3:
574 case e1000_82546:
575 case e1000_ce4100:
576 case e1000_82546_rev_3:
577 pba = E1000_PBA_48K;
578 break;
579 case e1000_82547:
580 case e1000_82547_rev_2:
581 legacy_pba_adjust = true;
582 pba = E1000_PBA_30K;
583 break;
584 case e1000_undefined:
585 case e1000_num_macs:
586 break;
587 }
588
589 if (legacy_pba_adjust) {
590 if (hw->max_frame_size > E1000_RXBUFFER_8192)
591 pba -= 8; /* allocate more FIFO for Tx */
592
593 if (hw->mac_type == e1000_82547) {
594 adapter->tx_fifo_head = 0;
595 adapter->tx_head_addr = pba << E1000_TX_HEAD_ADDR_SHIFT;
596 adapter->tx_fifo_size =
597 (E1000_PBA_40K - pba) << E1000_PBA_BYTES_SHIFT;
598 atomic_set(&adapter->tx_fifo_stall, 0);
599 }
600 } else if (hw->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) {
601 /* adjust PBA for jumbo frames */
602 ew32(PBA, pba);
603
604 /* To maintain wire speed transmits, the Tx FIFO should be
605 * large enough to accommodate two full transmit packets,
606 * rounded up to the next 1KB and expressed in KB. Likewise,
607 * the Rx FIFO should be large enough to accommodate at least
608 * one full receive packet and is similarly rounded up and
609 * expressed in KB.
610 */
611 pba = er32(PBA);
612 /* upper 16 bits has Tx packet buffer allocation size in KB */
613 tx_space = pba >> 16;
614 /* lower 16 bits has Rx packet buffer allocation size in KB */
615 pba &= 0xffff;
616 /* the Tx fifo also stores 16 bytes of information about the Tx
617 * but don't include ethernet FCS because hardware appends it
618 */
619 min_tx_space = (hw->max_frame_size +
620 sizeof(struct e1000_tx_desc) -
621 ETH_FCS_LEN) * 2;
622 min_tx_space = ALIGN(min_tx_space, 1024);
623 min_tx_space >>= 10;
624 /* software strips receive CRC, so leave room for it */
625 min_rx_space = hw->max_frame_size;
626 min_rx_space = ALIGN(min_rx_space, 1024);
627 min_rx_space >>= 10;
628
629 /* If current Tx allocation is less than the min Tx FIFO size,
630 * and the min Tx FIFO size is less than the current Rx FIFO
631 * allocation, take space away from current Rx allocation
632 */
633 if (tx_space < min_tx_space &&
634 ((min_tx_space - tx_space) < pba)) {
635 pba = pba - (min_tx_space - tx_space);
636
637 /* PCI/PCIx hardware has PBA alignment constraints */
638 switch (hw->mac_type) {
639 case e1000_82545 ... e1000_82546_rev_3:
640 pba &= ~(E1000_PBA_8K - 1);
641 break;
642 default:
643 break;
644 }
645
646 /* if short on Rx space, Rx wins and must trump Tx
647 * adjustment or use Early Receive if available
648 */
649 if (pba < min_rx_space)
650 pba = min_rx_space;
651 }
652 }
653
654 ew32(PBA, pba);
655
656 /* flow control settings:
657 * The high water mark must be low enough to fit one full frame
658 * (or the size used for early receive) above it in the Rx FIFO.
659 * Set it to the lower of:
660 * - 90% of the Rx FIFO size, and
661 * - the full Rx FIFO size minus the early receive size (for parts
662 * with ERT support assuming ERT set to E1000_ERT_2048), or
663 * - the full Rx FIFO size minus one full frame
664 */
665 hwm = min(((pba << 10) * 9 / 10),
666 ((pba << 10) - hw->max_frame_size));
667
668 hw->fc_high_water = hwm & 0xFFF8; /* 8-byte granularity */
669 hw->fc_low_water = hw->fc_high_water - 8;
670 hw->fc_pause_time = E1000_FC_PAUSE_TIME;
671 hw->fc_send_xon = 1;
672 hw->fc = hw->original_fc;
673
674 /* Allow time for pending master requests to run */
675 e1000_reset_hw(hw);
676 if (hw->mac_type >= e1000_82544)
677 ew32(WUC, 0);
678
679 if (e1000_init_hw(hw))
680 e_dev_err("Hardware Error\n");
681 e1000_update_mng_vlan(adapter);
682
683 /* if (adapter->hwflags & HWFLAGS_PHY_PWR_BIT) { */
684 if (hw->mac_type >= e1000_82544 &&
685 hw->autoneg == 1 &&
686 hw->autoneg_advertised == ADVERTISE_1000_FULL) {
687 u32 ctrl = er32(CTRL);
688 /* clear phy power management bit if we are in gig only mode,
689 * which if enabled will attempt negotiation to 100Mb, which
690 * can cause a loss of link at power off or driver unload
691 */
692 ctrl &= ~E1000_CTRL_SWDPIN3;
693 ew32(CTRL, ctrl);
694 }
695
696 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
697 ew32(VET, ETHERNET_IEEE_VLAN_TYPE);
698
699 e1000_reset_adaptive(hw);
700 e1000_phy_get_info(hw, &adapter->phy_info);
701
702 e1000_release_manageability(adapter);
703}
704
705/* Dump the eeprom for users having checksum issues */
706static void e1000_dump_eeprom(struct e1000_adapter *adapter)
707{
708 struct net_device *netdev = adapter->netdev;
709 struct ethtool_eeprom eeprom;
710 const struct ethtool_ops *ops = netdev->ethtool_ops;
711 u8 *data;
712 int i;
713 u16 csum_old, csum_new = 0;
714
715 eeprom.len = ops->get_eeprom_len(netdev);
716 eeprom.offset = 0;
717
718 data = kmalloc(eeprom.len, GFP_KERNEL);
719 if (!data)
720 return;
721
722 ops->get_eeprom(netdev, &eeprom, data);
723
724 csum_old = (data[EEPROM_CHECKSUM_REG * 2]) +
725 (data[EEPROM_CHECKSUM_REG * 2 + 1] << 8);
726 for (i = 0; i < EEPROM_CHECKSUM_REG * 2; i += 2)
727 csum_new += data[i] + (data[i + 1] << 8);
728 csum_new = EEPROM_SUM - csum_new;
729
730 pr_err("/*********************/\n");
731 pr_err("Current EEPROM Checksum : 0x%04x\n", csum_old);
732 pr_err("Calculated : 0x%04x\n", csum_new);
733
734 pr_err("Offset Values\n");
735 pr_err("======== ======\n");
736 print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 16, 1, data, 128, 0);
737
738 pr_err("Include this output when contacting your support provider.\n");
739 pr_err("This is not a software error! Something bad happened to\n");
740 pr_err("your hardware or EEPROM image. Ignoring this problem could\n");
741 pr_err("result in further problems, possibly loss of data,\n");
742 pr_err("corruption or system hangs!\n");
743 pr_err("The MAC Address will be reset to 00:00:00:00:00:00,\n");
744 pr_err("which is invalid and requires you to set the proper MAC\n");
745 pr_err("address manually before continuing to enable this network\n");
746 pr_err("device. Please inspect the EEPROM dump and report the\n");
747 pr_err("issue to your hardware vendor or Intel Customer Support.\n");
748 pr_err("/*********************/\n");
749
750 kfree(data);
751}
752
753/**
754 * e1000_is_need_ioport - determine if an adapter needs ioport resources or not
755 * @pdev: PCI device information struct
756 *
757 * Return true if an adapter needs ioport resources
758 **/
759static int e1000_is_need_ioport(struct pci_dev *pdev)
760{
761 switch (pdev->device) {
762 case E1000_DEV_ID_82540EM:
763 case E1000_DEV_ID_82540EM_LOM:
764 case E1000_DEV_ID_82540EP:
765 case E1000_DEV_ID_82540EP_LOM:
766 case E1000_DEV_ID_82540EP_LP:
767 case E1000_DEV_ID_82541EI:
768 case E1000_DEV_ID_82541EI_MOBILE:
769 case E1000_DEV_ID_82541ER:
770 case E1000_DEV_ID_82541ER_LOM:
771 case E1000_DEV_ID_82541GI:
772 case E1000_DEV_ID_82541GI_LF:
773 case E1000_DEV_ID_82541GI_MOBILE:
774 case E1000_DEV_ID_82544EI_COPPER:
775 case E1000_DEV_ID_82544EI_FIBER:
776 case E1000_DEV_ID_82544GC_COPPER:
777 case E1000_DEV_ID_82544GC_LOM:
778 case E1000_DEV_ID_82545EM_COPPER:
779 case E1000_DEV_ID_82545EM_FIBER:
780 case E1000_DEV_ID_82546EB_COPPER:
781 case E1000_DEV_ID_82546EB_FIBER:
782 case E1000_DEV_ID_82546EB_QUAD_COPPER:
783 return true;
784 default:
785 return false;
786 }
787}
788
789static netdev_features_t e1000_fix_features(struct net_device *netdev,
790 netdev_features_t features)
791{
792 /* Since there is no support for separate Rx/Tx vlan accel
793 * enable/disable make sure Tx flag is always in same state as Rx.
794 */
795 if (features & NETIF_F_HW_VLAN_CTAG_RX)
796 features |= NETIF_F_HW_VLAN_CTAG_TX;
797 else
798 features &= ~NETIF_F_HW_VLAN_CTAG_TX;
799
800 return features;
801}
802
803static int e1000_set_features(struct net_device *netdev,
804 netdev_features_t features)
805{
806 struct e1000_adapter *adapter = netdev_priv(netdev);
807 netdev_features_t changed = features ^ netdev->features;
808
809 if (changed & NETIF_F_HW_VLAN_CTAG_RX)
810 e1000_vlan_mode(netdev, features);
811
812 if (!(changed & (NETIF_F_RXCSUM | NETIF_F_RXALL)))
813 return 0;
814
815 netdev->features = features;
816 adapter->rx_csum = !!(features & NETIF_F_RXCSUM);
817
818 if (netif_running(netdev))
819 e1000_reinit_locked(adapter);
820 else
821 e1000_reset(adapter);
822
823 return 1;
824}
825
826static const struct net_device_ops e1000_netdev_ops = {
827 .ndo_open = e1000_open,
828 .ndo_stop = e1000_close,
829 .ndo_start_xmit = e1000_xmit_frame,
830 .ndo_set_rx_mode = e1000_set_rx_mode,
831 .ndo_set_mac_address = e1000_set_mac,
832 .ndo_tx_timeout = e1000_tx_timeout,
833 .ndo_change_mtu = e1000_change_mtu,
834 .ndo_eth_ioctl = e1000_ioctl,
835 .ndo_validate_addr = eth_validate_addr,
836 .ndo_vlan_rx_add_vid = e1000_vlan_rx_add_vid,
837 .ndo_vlan_rx_kill_vid = e1000_vlan_rx_kill_vid,
838#ifdef CONFIG_NET_POLL_CONTROLLER
839 .ndo_poll_controller = e1000_netpoll,
840#endif
841 .ndo_fix_features = e1000_fix_features,
842 .ndo_set_features = e1000_set_features,
843};
844
845/**
846 * e1000_init_hw_struct - initialize members of hw struct
847 * @adapter: board private struct
848 * @hw: structure used by e1000_hw.c
849 *
850 * Factors out initialization of the e1000_hw struct to its own function
851 * that can be called very early at init (just after struct allocation).
852 * Fields are initialized based on PCI device information and
853 * OS network device settings (MTU size).
854 * Returns negative error codes if MAC type setup fails.
855 */
856static int e1000_init_hw_struct(struct e1000_adapter *adapter,
857 struct e1000_hw *hw)
858{
859 struct pci_dev *pdev = adapter->pdev;
860
861 /* PCI config space info */
862 hw->vendor_id = pdev->vendor;
863 hw->device_id = pdev->device;
864 hw->subsystem_vendor_id = pdev->subsystem_vendor;
865 hw->subsystem_id = pdev->subsystem_device;
866 hw->revision_id = pdev->revision;
867
868 pci_read_config_word(pdev, PCI_COMMAND, &hw->pci_cmd_word);
869
870 hw->max_frame_size = adapter->netdev->mtu +
871 ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
872 hw->min_frame_size = MINIMUM_ETHERNET_FRAME_SIZE;
873
874 /* identify the MAC */
875 if (e1000_set_mac_type(hw)) {
876 e_err(probe, "Unknown MAC Type\n");
877 return -EIO;
878 }
879
880 switch (hw->mac_type) {
881 default:
882 break;
883 case e1000_82541:
884 case e1000_82547:
885 case e1000_82541_rev_2:
886 case e1000_82547_rev_2:
887 hw->phy_init_script = 1;
888 break;
889 }
890
891 e1000_set_media_type(hw);
892 e1000_get_bus_info(hw);
893
894 hw->wait_autoneg_complete = false;
895 hw->tbi_compatibility_en = true;
896 hw->adaptive_ifs = true;
897
898 /* Copper options */
899
900 if (hw->media_type == e1000_media_type_copper) {
901 hw->mdix = AUTO_ALL_MODES;
902 hw->disable_polarity_correction = false;
903 hw->master_slave = E1000_MASTER_SLAVE;
904 }
905
906 return 0;
907}
908
909/**
910 * e1000_probe - Device Initialization Routine
911 * @pdev: PCI device information struct
912 * @ent: entry in e1000_pci_tbl
913 *
914 * Returns 0 on success, negative on failure
915 *
916 * e1000_probe initializes an adapter identified by a pci_dev structure.
917 * The OS initialization, configuring of the adapter private structure,
918 * and a hardware reset occur.
919 **/
920static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
921{
922 struct net_device *netdev;
923 struct e1000_adapter *adapter = NULL;
924 struct e1000_hw *hw;
925
926 static int cards_found;
927 static int global_quad_port_a; /* global ksp3 port a indication */
928 int i, err, pci_using_dac;
929 u16 eeprom_data = 0;
930 u16 tmp = 0;
931 u16 eeprom_apme_mask = E1000_EEPROM_APME;
932 int bars, need_ioport;
933 bool disable_dev = false;
934
935 /* do not allocate ioport bars when not needed */
936 need_ioport = e1000_is_need_ioport(pdev);
937 if (need_ioport) {
938 bars = pci_select_bars(pdev, IORESOURCE_MEM | IORESOURCE_IO);
939 err = pci_enable_device(pdev);
940 } else {
941 bars = pci_select_bars(pdev, IORESOURCE_MEM);
942 err = pci_enable_device_mem(pdev);
943 }
944 if (err)
945 return err;
946
947 err = pci_request_selected_regions(pdev, bars, e1000_driver_name);
948 if (err)
949 goto err_pci_reg;
950
951 pci_set_master(pdev);
952 err = pci_save_state(pdev);
953 if (err)
954 goto err_alloc_etherdev;
955
956 err = -ENOMEM;
957 netdev = alloc_etherdev(sizeof(struct e1000_adapter));
958 if (!netdev)
959 goto err_alloc_etherdev;
960
961 SET_NETDEV_DEV(netdev, &pdev->dev);
962
963 pci_set_drvdata(pdev, netdev);
964 adapter = netdev_priv(netdev);
965 adapter->netdev = netdev;
966 adapter->pdev = pdev;
967 adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
968 adapter->bars = bars;
969 adapter->need_ioport = need_ioport;
970
971 hw = &adapter->hw;
972 hw->back = adapter;
973
974 err = -EIO;
975 hw->hw_addr = pci_ioremap_bar(pdev, BAR_0);
976 if (!hw->hw_addr)
977 goto err_ioremap;
978
979 if (adapter->need_ioport) {
980 for (i = BAR_1; i < PCI_STD_NUM_BARS; i++) {
981 if (pci_resource_len(pdev, i) == 0)
982 continue;
983 if (pci_resource_flags(pdev, i) & IORESOURCE_IO) {
984 hw->io_base = pci_resource_start(pdev, i);
985 break;
986 }
987 }
988 }
989
990 /* make ready for any if (hw->...) below */
991 err = e1000_init_hw_struct(adapter, hw);
992 if (err)
993 goto err_sw_init;
994
995 /* there is a workaround being applied below that limits
996 * 64-bit DMA addresses to 64-bit hardware. There are some
997 * 32-bit adapters that Tx hang when given 64-bit DMA addresses
998 */
999 pci_using_dac = 0;
1000 if ((hw->bus_type == e1000_bus_type_pcix) &&
1001 !dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64))) {
1002 pci_using_dac = 1;
1003 } else {
1004 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
1005 if (err) {
1006 pr_err("No usable DMA config, aborting\n");
1007 goto err_dma;
1008 }
1009 }
1010
1011 netdev->netdev_ops = &e1000_netdev_ops;
1012 e1000_set_ethtool_ops(netdev);
1013 netdev->watchdog_timeo = 5 * HZ;
1014 netif_napi_add(netdev, &adapter->napi, e1000_clean);
1015
1016 strscpy(netdev->name, pci_name(pdev), sizeof(netdev->name));
1017
1018 adapter->bd_number = cards_found;
1019
1020 /* setup the private structure */
1021
1022 err = e1000_sw_init(adapter);
1023 if (err)
1024 goto err_sw_init;
1025
1026 err = -EIO;
1027 if (hw->mac_type == e1000_ce4100) {
1028 hw->ce4100_gbe_mdio_base_virt =
1029 ioremap(pci_resource_start(pdev, BAR_1),
1030 pci_resource_len(pdev, BAR_1));
1031
1032 if (!hw->ce4100_gbe_mdio_base_virt)
1033 goto err_mdio_ioremap;
1034 }
1035
1036 if (hw->mac_type >= e1000_82543) {
1037 netdev->hw_features = NETIF_F_SG |
1038 NETIF_F_HW_CSUM |
1039 NETIF_F_HW_VLAN_CTAG_RX;
1040 netdev->features = NETIF_F_HW_VLAN_CTAG_TX |
1041 NETIF_F_HW_VLAN_CTAG_FILTER;
1042 }
1043
1044 if ((hw->mac_type >= e1000_82544) &&
1045 (hw->mac_type != e1000_82547))
1046 netdev->hw_features |= NETIF_F_TSO;
1047
1048 netdev->priv_flags |= IFF_SUPP_NOFCS;
1049
1050 netdev->features |= netdev->hw_features;
1051 netdev->hw_features |= (NETIF_F_RXCSUM |
1052 NETIF_F_RXALL |
1053 NETIF_F_RXFCS);
1054
1055 if (pci_using_dac) {
1056 netdev->features |= NETIF_F_HIGHDMA;
1057 netdev->vlan_features |= NETIF_F_HIGHDMA;
1058 }
1059
1060 netdev->vlan_features |= (NETIF_F_TSO |
1061 NETIF_F_HW_CSUM |
1062 NETIF_F_SG);
1063
1064 /* Do not set IFF_UNICAST_FLT for VMWare's 82545EM */
1065 if (hw->device_id != E1000_DEV_ID_82545EM_COPPER ||
1066 hw->subsystem_vendor_id != PCI_VENDOR_ID_VMWARE)
1067 netdev->priv_flags |= IFF_UNICAST_FLT;
1068
1069 /* MTU range: 46 - 16110 */
1070 netdev->min_mtu = ETH_ZLEN - ETH_HLEN;
1071 netdev->max_mtu = MAX_JUMBO_FRAME_SIZE - (ETH_HLEN + ETH_FCS_LEN);
1072
1073 adapter->en_mng_pt = e1000_enable_mng_pass_thru(hw);
1074
1075 /* initialize eeprom parameters */
1076 if (e1000_init_eeprom_params(hw)) {
1077 e_err(probe, "EEPROM initialization failed\n");
1078 goto err_eeprom;
1079 }
1080
1081 /* before reading the EEPROM, reset the controller to
1082 * put the device in a known good starting state
1083 */
1084
1085 e1000_reset_hw(hw);
1086
1087 /* make sure the EEPROM is good */
1088 if (e1000_validate_eeprom_checksum(hw) < 0) {
1089 e_err(probe, "The EEPROM Checksum Is Not Valid\n");
1090 e1000_dump_eeprom(adapter);
1091 /* set MAC address to all zeroes to invalidate and temporary
1092 * disable this device for the user. This blocks regular
1093 * traffic while still permitting ethtool ioctls from reaching
1094 * the hardware as well as allowing the user to run the
1095 * interface after manually setting a hw addr using
1096 * `ip set address`
1097 */
1098 memset(hw->mac_addr, 0, netdev->addr_len);
1099 } else {
1100 /* copy the MAC address out of the EEPROM */
1101 if (e1000_read_mac_addr(hw))
1102 e_err(probe, "EEPROM Read Error\n");
1103 }
1104 /* don't block initialization here due to bad MAC address */
1105 eth_hw_addr_set(netdev, hw->mac_addr);
1106
1107 if (!is_valid_ether_addr(netdev->dev_addr))
1108 e_err(probe, "Invalid MAC Address\n");
1109
1110
1111 INIT_DELAYED_WORK(&adapter->watchdog_task, e1000_watchdog);
1112 INIT_DELAYED_WORK(&adapter->fifo_stall_task,
1113 e1000_82547_tx_fifo_stall_task);
1114 INIT_DELAYED_WORK(&adapter->phy_info_task, e1000_update_phy_info_task);
1115 INIT_WORK(&adapter->reset_task, e1000_reset_task);
1116
1117 e1000_check_options(adapter);
1118
1119 /* Initial Wake on LAN setting
1120 * If APM wake is enabled in the EEPROM,
1121 * enable the ACPI Magic Packet filter
1122 */
1123
1124 switch (hw->mac_type) {
1125 case e1000_82542_rev2_0:
1126 case e1000_82542_rev2_1:
1127 case e1000_82543:
1128 break;
1129 case e1000_82544:
1130 e1000_read_eeprom(hw,
1131 EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data);
1132 eeprom_apme_mask = E1000_EEPROM_82544_APM;
1133 break;
1134 case e1000_82546:
1135 case e1000_82546_rev_3:
1136 if (er32(STATUS) & E1000_STATUS_FUNC_1) {
1137 e1000_read_eeprom(hw,
1138 EEPROM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
1139 break;
1140 }
1141 fallthrough;
1142 default:
1143 e1000_read_eeprom(hw,
1144 EEPROM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
1145 break;
1146 }
1147 if (eeprom_data & eeprom_apme_mask)
1148 adapter->eeprom_wol |= E1000_WUFC_MAG;
1149
1150 /* now that we have the eeprom settings, apply the special cases
1151 * where the eeprom may be wrong or the board simply won't support
1152 * wake on lan on a particular port
1153 */
1154 switch (pdev->device) {
1155 case E1000_DEV_ID_82546GB_PCIE:
1156 adapter->eeprom_wol = 0;
1157 break;
1158 case E1000_DEV_ID_82546EB_FIBER:
1159 case E1000_DEV_ID_82546GB_FIBER:
1160 /* Wake events only supported on port A for dual fiber
1161 * regardless of eeprom setting
1162 */
1163 if (er32(STATUS) & E1000_STATUS_FUNC_1)
1164 adapter->eeprom_wol = 0;
1165 break;
1166 case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1167 /* if quad port adapter, disable WoL on all but port A */
1168 if (global_quad_port_a != 0)
1169 adapter->eeprom_wol = 0;
1170 else
1171 adapter->quad_port_a = true;
1172 /* Reset for multiple quad port adapters */
1173 if (++global_quad_port_a == 4)
1174 global_quad_port_a = 0;
1175 break;
1176 }
1177
1178 /* initialize the wol settings based on the eeprom settings */
1179 adapter->wol = adapter->eeprom_wol;
1180 device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1181
1182 /* Auto detect PHY address */
1183 if (hw->mac_type == e1000_ce4100) {
1184 for (i = 0; i < 32; i++) {
1185 hw->phy_addr = i;
1186 e1000_read_phy_reg(hw, PHY_ID2, &tmp);
1187
1188 if (tmp != 0 && tmp != 0xFF)
1189 break;
1190 }
1191
1192 if (i >= 32)
1193 goto err_eeprom;
1194 }
1195
1196 /* reset the hardware with the new settings */
1197 e1000_reset(adapter);
1198
1199 strcpy(netdev->name, "eth%d");
1200 err = register_netdev(netdev);
1201 if (err)
1202 goto err_register;
1203
1204 e1000_vlan_filter_on_off(adapter, false);
1205
1206 /* print bus type/speed/width info */
1207 e_info(probe, "(PCI%s:%dMHz:%d-bit) %pM\n",
1208 ((hw->bus_type == e1000_bus_type_pcix) ? "-X" : ""),
1209 ((hw->bus_speed == e1000_bus_speed_133) ? 133 :
1210 (hw->bus_speed == e1000_bus_speed_120) ? 120 :
1211 (hw->bus_speed == e1000_bus_speed_100) ? 100 :
1212 (hw->bus_speed == e1000_bus_speed_66) ? 66 : 33),
1213 ((hw->bus_width == e1000_bus_width_64) ? 64 : 32),
1214 netdev->dev_addr);
1215
1216 /* carrier off reporting is important to ethtool even BEFORE open */
1217 netif_carrier_off(netdev);
1218
1219 e_info(probe, "Intel(R) PRO/1000 Network Connection\n");
1220
1221 cards_found++;
1222 return 0;
1223
1224err_register:
1225err_eeprom:
1226 e1000_phy_hw_reset(hw);
1227
1228 if (hw->flash_address)
1229 iounmap(hw->flash_address);
1230 kfree(adapter->tx_ring);
1231 kfree(adapter->rx_ring);
1232err_dma:
1233err_sw_init:
1234err_mdio_ioremap:
1235 iounmap(hw->ce4100_gbe_mdio_base_virt);
1236 iounmap(hw->hw_addr);
1237err_ioremap:
1238 disable_dev = !test_and_set_bit(__E1000_DISABLED, &adapter->flags);
1239 free_netdev(netdev);
1240err_alloc_etherdev:
1241 pci_release_selected_regions(pdev, bars);
1242err_pci_reg:
1243 if (!adapter || disable_dev)
1244 pci_disable_device(pdev);
1245 return err;
1246}
1247
1248/**
1249 * e1000_remove - Device Removal Routine
1250 * @pdev: PCI device information struct
1251 *
1252 * e1000_remove is called by the PCI subsystem to alert the driver
1253 * that it should release a PCI device. That could be caused by a
1254 * Hot-Plug event, or because the driver is going to be removed from
1255 * memory.
1256 **/
1257static void e1000_remove(struct pci_dev *pdev)
1258{
1259 struct net_device *netdev = pci_get_drvdata(pdev);
1260 struct e1000_adapter *adapter = netdev_priv(netdev);
1261 struct e1000_hw *hw = &adapter->hw;
1262 bool disable_dev;
1263
1264 e1000_down_and_stop(adapter);
1265 e1000_release_manageability(adapter);
1266
1267 unregister_netdev(netdev);
1268
1269 e1000_phy_hw_reset(hw);
1270
1271 kfree(adapter->tx_ring);
1272 kfree(adapter->rx_ring);
1273
1274 if (hw->mac_type == e1000_ce4100)
1275 iounmap(hw->ce4100_gbe_mdio_base_virt);
1276 iounmap(hw->hw_addr);
1277 if (hw->flash_address)
1278 iounmap(hw->flash_address);
1279 pci_release_selected_regions(pdev, adapter->bars);
1280
1281 disable_dev = !test_and_set_bit(__E1000_DISABLED, &adapter->flags);
1282 free_netdev(netdev);
1283
1284 if (disable_dev)
1285 pci_disable_device(pdev);
1286}
1287
1288/**
1289 * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
1290 * @adapter: board private structure to initialize
1291 *
1292 * e1000_sw_init initializes the Adapter private data structure.
1293 * e1000_init_hw_struct MUST be called before this function
1294 **/
1295static int e1000_sw_init(struct e1000_adapter *adapter)
1296{
1297 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
1298
1299 adapter->num_tx_queues = 1;
1300 adapter->num_rx_queues = 1;
1301
1302 if (e1000_alloc_queues(adapter)) {
1303 e_err(probe, "Unable to allocate memory for queues\n");
1304 return -ENOMEM;
1305 }
1306
1307 /* Explicitly disable IRQ since the NIC can be in any state. */
1308 e1000_irq_disable(adapter);
1309
1310 spin_lock_init(&adapter->stats_lock);
1311
1312 set_bit(__E1000_DOWN, &adapter->flags);
1313
1314 return 0;
1315}
1316
1317/**
1318 * e1000_alloc_queues - Allocate memory for all rings
1319 * @adapter: board private structure to initialize
1320 *
1321 * We allocate one ring per queue at run-time since we don't know the
1322 * number of queues at compile-time.
1323 **/
1324static int e1000_alloc_queues(struct e1000_adapter *adapter)
1325{
1326 adapter->tx_ring = kcalloc(adapter->num_tx_queues,
1327 sizeof(struct e1000_tx_ring), GFP_KERNEL);
1328 if (!adapter->tx_ring)
1329 return -ENOMEM;
1330
1331 adapter->rx_ring = kcalloc(adapter->num_rx_queues,
1332 sizeof(struct e1000_rx_ring), GFP_KERNEL);
1333 if (!adapter->rx_ring) {
1334 kfree(adapter->tx_ring);
1335 return -ENOMEM;
1336 }
1337
1338 return E1000_SUCCESS;
1339}
1340
1341/**
1342 * e1000_open - Called when a network interface is made active
1343 * @netdev: network interface device structure
1344 *
1345 * Returns 0 on success, negative value on failure
1346 *
1347 * The open entry point is called when a network interface is made
1348 * active by the system (IFF_UP). At this point all resources needed
1349 * for transmit and receive operations are allocated, the interrupt
1350 * handler is registered with the OS, the watchdog task is started,
1351 * and the stack is notified that the interface is ready.
1352 **/
1353int e1000_open(struct net_device *netdev)
1354{
1355 struct e1000_adapter *adapter = netdev_priv(netdev);
1356 struct e1000_hw *hw = &adapter->hw;
1357 int err;
1358
1359 /* disallow open during test */
1360 if (test_bit(__E1000_TESTING, &adapter->flags))
1361 return -EBUSY;
1362
1363 netif_carrier_off(netdev);
1364
1365 /* allocate transmit descriptors */
1366 err = e1000_setup_all_tx_resources(adapter);
1367 if (err)
1368 goto err_setup_tx;
1369
1370 /* allocate receive descriptors */
1371 err = e1000_setup_all_rx_resources(adapter);
1372 if (err)
1373 goto err_setup_rx;
1374
1375 e1000_power_up_phy(adapter);
1376
1377 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
1378 if ((hw->mng_cookie.status &
1379 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) {
1380 e1000_update_mng_vlan(adapter);
1381 }
1382
1383 /* before we allocate an interrupt, we must be ready to handle it.
1384 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1385 * as soon as we call pci_request_irq, so we have to setup our
1386 * clean_rx handler before we do so.
1387 */
1388 e1000_configure(adapter);
1389
1390 err = e1000_request_irq(adapter);
1391 if (err)
1392 goto err_req_irq;
1393
1394 /* From here on the code is the same as e1000_up() */
1395 clear_bit(__E1000_DOWN, &adapter->flags);
1396
1397 netif_napi_set_irq(&adapter->napi, adapter->pdev->irq);
1398 napi_enable(&adapter->napi);
1399 netif_queue_set_napi(netdev, 0, NETDEV_QUEUE_TYPE_RX, &adapter->napi);
1400 netif_queue_set_napi(netdev, 0, NETDEV_QUEUE_TYPE_TX, &adapter->napi);
1401
1402 e1000_irq_enable(adapter);
1403
1404 netif_start_queue(netdev);
1405
1406 /* fire a link status change interrupt to start the watchdog */
1407 ew32(ICS, E1000_ICS_LSC);
1408
1409 return E1000_SUCCESS;
1410
1411err_req_irq:
1412 e1000_power_down_phy(adapter);
1413 e1000_free_all_rx_resources(adapter);
1414err_setup_rx:
1415 e1000_free_all_tx_resources(adapter);
1416err_setup_tx:
1417 e1000_reset(adapter);
1418
1419 return err;
1420}
1421
1422/**
1423 * e1000_close - Disables a network interface
1424 * @netdev: network interface device structure
1425 *
1426 * Returns 0, this is not allowed to fail
1427 *
1428 * The close entry point is called when an interface is de-activated
1429 * by the OS. The hardware is still under the drivers control, but
1430 * needs to be disabled. A global MAC reset is issued to stop the
1431 * hardware, and all transmit and receive resources are freed.
1432 **/
1433int e1000_close(struct net_device *netdev)
1434{
1435 struct e1000_adapter *adapter = netdev_priv(netdev);
1436 struct e1000_hw *hw = &adapter->hw;
1437 int count = E1000_CHECK_RESET_COUNT;
1438
1439 while (test_and_set_bit(__E1000_RESETTING, &adapter->flags) && count--)
1440 usleep_range(10000, 20000);
1441
1442 WARN_ON(count < 0);
1443
1444 /* signal that we're down so that the reset task will no longer run */
1445 set_bit(__E1000_DOWN, &adapter->flags);
1446 clear_bit(__E1000_RESETTING, &adapter->flags);
1447
1448 e1000_down(adapter);
1449 e1000_power_down_phy(adapter);
1450 e1000_free_irq(adapter);
1451
1452 e1000_free_all_tx_resources(adapter);
1453 e1000_free_all_rx_resources(adapter);
1454
1455 /* kill manageability vlan ID if supported, but not if a vlan with
1456 * the same ID is registered on the host OS (let 8021q kill it)
1457 */
1458 if ((hw->mng_cookie.status &
1459 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
1460 !test_bit(adapter->mng_vlan_id, adapter->active_vlans)) {
1461 e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q),
1462 adapter->mng_vlan_id);
1463 }
1464
1465 return 0;
1466}
1467
1468/**
1469 * e1000_check_64k_bound - check that memory doesn't cross 64kB boundary
1470 * @adapter: address of board private structure
1471 * @start: address of beginning of memory
1472 * @len: length of memory
1473 **/
1474static bool e1000_check_64k_bound(struct e1000_adapter *adapter, void *start,
1475 unsigned long len)
1476{
1477 struct e1000_hw *hw = &adapter->hw;
1478 unsigned long begin = (unsigned long)start;
1479 unsigned long end = begin + len;
1480
1481 /* First rev 82545 and 82546 need to not allow any memory
1482 * write location to cross 64k boundary due to errata 23
1483 */
1484 if (hw->mac_type == e1000_82545 ||
1485 hw->mac_type == e1000_ce4100 ||
1486 hw->mac_type == e1000_82546) {
1487 return ((begin ^ (end - 1)) >> 16) == 0;
1488 }
1489
1490 return true;
1491}
1492
1493/**
1494 * e1000_setup_tx_resources - allocate Tx resources (Descriptors)
1495 * @adapter: board private structure
1496 * @txdr: tx descriptor ring (for a specific queue) to setup
1497 *
1498 * Return 0 on success, negative on failure
1499 **/
1500static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
1501 struct e1000_tx_ring *txdr)
1502{
1503 struct pci_dev *pdev = adapter->pdev;
1504 int size;
1505
1506 size = sizeof(struct e1000_tx_buffer) * txdr->count;
1507 txdr->buffer_info = vzalloc(size);
1508 if (!txdr->buffer_info)
1509 return -ENOMEM;
1510
1511 /* round up to nearest 4K */
1512
1513 txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
1514 txdr->size = ALIGN(txdr->size, 4096);
1515
1516 txdr->desc = dma_alloc_coherent(&pdev->dev, txdr->size, &txdr->dma,
1517 GFP_KERNEL);
1518 if (!txdr->desc) {
1519setup_tx_desc_die:
1520 vfree(txdr->buffer_info);
1521 return -ENOMEM;
1522 }
1523
1524 /* Fix for errata 23, can't cross 64kB boundary */
1525 if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1526 void *olddesc = txdr->desc;
1527 dma_addr_t olddma = txdr->dma;
1528 e_err(tx_err, "txdr align check failed: %u bytes at %p\n",
1529 txdr->size, txdr->desc);
1530 /* Try again, without freeing the previous */
1531 txdr->desc = dma_alloc_coherent(&pdev->dev, txdr->size,
1532 &txdr->dma, GFP_KERNEL);
1533 /* Failed allocation, critical failure */
1534 if (!txdr->desc) {
1535 dma_free_coherent(&pdev->dev, txdr->size, olddesc,
1536 olddma);
1537 goto setup_tx_desc_die;
1538 }
1539
1540 if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1541 /* give up */
1542 dma_free_coherent(&pdev->dev, txdr->size, txdr->desc,
1543 txdr->dma);
1544 dma_free_coherent(&pdev->dev, txdr->size, olddesc,
1545 olddma);
1546 e_err(probe, "Unable to allocate aligned memory "
1547 "for the transmit descriptor ring\n");
1548 vfree(txdr->buffer_info);
1549 return -ENOMEM;
1550 } else {
1551 /* Free old allocation, new allocation was successful */
1552 dma_free_coherent(&pdev->dev, txdr->size, olddesc,
1553 olddma);
1554 }
1555 }
1556 memset(txdr->desc, 0, txdr->size);
1557
1558 txdr->next_to_use = 0;
1559 txdr->next_to_clean = 0;
1560
1561 return 0;
1562}
1563
1564/**
1565 * e1000_setup_all_tx_resources - wrapper to allocate Tx resources
1566 * (Descriptors) for all queues
1567 * @adapter: board private structure
1568 *
1569 * Return 0 on success, negative on failure
1570 **/
1571int e1000_setup_all_tx_resources(struct e1000_adapter *adapter)
1572{
1573 int i, err = 0;
1574
1575 for (i = 0; i < adapter->num_tx_queues; i++) {
1576 err = e1000_setup_tx_resources(adapter, &adapter->tx_ring[i]);
1577 if (err) {
1578 e_err(probe, "Allocation for Tx Queue %u failed\n", i);
1579 for (i-- ; i >= 0; i--)
1580 e1000_free_tx_resources(adapter,
1581 &adapter->tx_ring[i]);
1582 break;
1583 }
1584 }
1585
1586 return err;
1587}
1588
1589/**
1590 * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
1591 * @adapter: board private structure
1592 *
1593 * Configure the Tx unit of the MAC after a reset.
1594 **/
1595static void e1000_configure_tx(struct e1000_adapter *adapter)
1596{
1597 u64 tdba;
1598 struct e1000_hw *hw = &adapter->hw;
1599 u32 tdlen, tctl, tipg;
1600 u32 ipgr1, ipgr2;
1601
1602 /* Setup the HW Tx Head and Tail descriptor pointers */
1603
1604 switch (adapter->num_tx_queues) {
1605 case 1:
1606 default:
1607 tdba = adapter->tx_ring[0].dma;
1608 tdlen = adapter->tx_ring[0].count *
1609 sizeof(struct e1000_tx_desc);
1610 ew32(TDLEN, tdlen);
1611 ew32(TDBAH, (tdba >> 32));
1612 ew32(TDBAL, (tdba & 0x00000000ffffffffULL));
1613 ew32(TDT, 0);
1614 ew32(TDH, 0);
1615 adapter->tx_ring[0].tdh = ((hw->mac_type >= e1000_82543) ?
1616 E1000_TDH : E1000_82542_TDH);
1617 adapter->tx_ring[0].tdt = ((hw->mac_type >= e1000_82543) ?
1618 E1000_TDT : E1000_82542_TDT);
1619 break;
1620 }
1621
1622 /* Set the default values for the Tx Inter Packet Gap timer */
1623 if ((hw->media_type == e1000_media_type_fiber ||
1624 hw->media_type == e1000_media_type_internal_serdes))
1625 tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
1626 else
1627 tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
1628
1629 switch (hw->mac_type) {
1630 case e1000_82542_rev2_0:
1631 case e1000_82542_rev2_1:
1632 tipg = DEFAULT_82542_TIPG_IPGT;
1633 ipgr1 = DEFAULT_82542_TIPG_IPGR1;
1634 ipgr2 = DEFAULT_82542_TIPG_IPGR2;
1635 break;
1636 default:
1637 ipgr1 = DEFAULT_82543_TIPG_IPGR1;
1638 ipgr2 = DEFAULT_82543_TIPG_IPGR2;
1639 break;
1640 }
1641 tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
1642 tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
1643 ew32(TIPG, tipg);
1644
1645 /* Set the Tx Interrupt Delay register */
1646
1647 ew32(TIDV, adapter->tx_int_delay);
1648 if (hw->mac_type >= e1000_82540)
1649 ew32(TADV, adapter->tx_abs_int_delay);
1650
1651 /* Program the Transmit Control Register */
1652
1653 tctl = er32(TCTL);
1654 tctl &= ~E1000_TCTL_CT;
1655 tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
1656 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
1657
1658 e1000_config_collision_dist(hw);
1659
1660 /* Setup Transmit Descriptor Settings for eop descriptor */
1661 adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
1662
1663 /* only set IDE if we are delaying interrupts using the timers */
1664 if (adapter->tx_int_delay)
1665 adapter->txd_cmd |= E1000_TXD_CMD_IDE;
1666
1667 if (hw->mac_type < e1000_82543)
1668 adapter->txd_cmd |= E1000_TXD_CMD_RPS;
1669 else
1670 adapter->txd_cmd |= E1000_TXD_CMD_RS;
1671
1672 /* Cache if we're 82544 running in PCI-X because we'll
1673 * need this to apply a workaround later in the send path.
1674 */
1675 if (hw->mac_type == e1000_82544 &&
1676 hw->bus_type == e1000_bus_type_pcix)
1677 adapter->pcix_82544 = true;
1678
1679 ew32(TCTL, tctl);
1680
1681}
1682
1683/**
1684 * e1000_setup_rx_resources - allocate Rx resources (Descriptors)
1685 * @adapter: board private structure
1686 * @rxdr: rx descriptor ring (for a specific queue) to setup
1687 *
1688 * Returns 0 on success, negative on failure
1689 **/
1690static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
1691 struct e1000_rx_ring *rxdr)
1692{
1693 struct pci_dev *pdev = adapter->pdev;
1694 int size, desc_len;
1695
1696 size = sizeof(struct e1000_rx_buffer) * rxdr->count;
1697 rxdr->buffer_info = vzalloc(size);
1698 if (!rxdr->buffer_info)
1699 return -ENOMEM;
1700
1701 desc_len = sizeof(struct e1000_rx_desc);
1702
1703 /* Round up to nearest 4K */
1704
1705 rxdr->size = rxdr->count * desc_len;
1706 rxdr->size = ALIGN(rxdr->size, 4096);
1707
1708 rxdr->desc = dma_alloc_coherent(&pdev->dev, rxdr->size, &rxdr->dma,
1709 GFP_KERNEL);
1710 if (!rxdr->desc) {
1711setup_rx_desc_die:
1712 vfree(rxdr->buffer_info);
1713 return -ENOMEM;
1714 }
1715
1716 /* Fix for errata 23, can't cross 64kB boundary */
1717 if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1718 void *olddesc = rxdr->desc;
1719 dma_addr_t olddma = rxdr->dma;
1720 e_err(rx_err, "rxdr align check failed: %u bytes at %p\n",
1721 rxdr->size, rxdr->desc);
1722 /* Try again, without freeing the previous */
1723 rxdr->desc = dma_alloc_coherent(&pdev->dev, rxdr->size,
1724 &rxdr->dma, GFP_KERNEL);
1725 /* Failed allocation, critical failure */
1726 if (!rxdr->desc) {
1727 dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
1728 olddma);
1729 goto setup_rx_desc_die;
1730 }
1731
1732 if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1733 /* give up */
1734 dma_free_coherent(&pdev->dev, rxdr->size, rxdr->desc,
1735 rxdr->dma);
1736 dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
1737 olddma);
1738 e_err(probe, "Unable to allocate aligned memory for "
1739 "the Rx descriptor ring\n");
1740 goto setup_rx_desc_die;
1741 } else {
1742 /* Free old allocation, new allocation was successful */
1743 dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
1744 olddma);
1745 }
1746 }
1747 memset(rxdr->desc, 0, rxdr->size);
1748
1749 rxdr->next_to_clean = 0;
1750 rxdr->next_to_use = 0;
1751 rxdr->rx_skb_top = NULL;
1752
1753 return 0;
1754}
1755
1756/**
1757 * e1000_setup_all_rx_resources - wrapper to allocate Rx resources
1758 * (Descriptors) for all queues
1759 * @adapter: board private structure
1760 *
1761 * Return 0 on success, negative on failure
1762 **/
1763int e1000_setup_all_rx_resources(struct e1000_adapter *adapter)
1764{
1765 int i, err = 0;
1766
1767 for (i = 0; i < adapter->num_rx_queues; i++) {
1768 err = e1000_setup_rx_resources(adapter, &adapter->rx_ring[i]);
1769 if (err) {
1770 e_err(probe, "Allocation for Rx Queue %u failed\n", i);
1771 for (i-- ; i >= 0; i--)
1772 e1000_free_rx_resources(adapter,
1773 &adapter->rx_ring[i]);
1774 break;
1775 }
1776 }
1777
1778 return err;
1779}
1780
1781/**
1782 * e1000_setup_rctl - configure the receive control registers
1783 * @adapter: Board private structure
1784 **/
1785static void e1000_setup_rctl(struct e1000_adapter *adapter)
1786{
1787 struct e1000_hw *hw = &adapter->hw;
1788 u32 rctl;
1789
1790 rctl = er32(RCTL);
1791
1792 rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
1793
1794 rctl |= E1000_RCTL_BAM | E1000_RCTL_LBM_NO |
1795 E1000_RCTL_RDMTS_HALF |
1796 (hw->mc_filter_type << E1000_RCTL_MO_SHIFT);
1797
1798 if (hw->tbi_compatibility_on == 1)
1799 rctl |= E1000_RCTL_SBP;
1800 else
1801 rctl &= ~E1000_RCTL_SBP;
1802
1803 if (adapter->netdev->mtu <= ETH_DATA_LEN)
1804 rctl &= ~E1000_RCTL_LPE;
1805 else
1806 rctl |= E1000_RCTL_LPE;
1807
1808 /* Setup buffer sizes */
1809 rctl &= ~E1000_RCTL_SZ_4096;
1810 rctl |= E1000_RCTL_BSEX;
1811 switch (adapter->rx_buffer_len) {
1812 case E1000_RXBUFFER_2048:
1813 default:
1814 rctl |= E1000_RCTL_SZ_2048;
1815 rctl &= ~E1000_RCTL_BSEX;
1816 break;
1817 case E1000_RXBUFFER_4096:
1818 rctl |= E1000_RCTL_SZ_4096;
1819 break;
1820 case E1000_RXBUFFER_8192:
1821 rctl |= E1000_RCTL_SZ_8192;
1822 break;
1823 case E1000_RXBUFFER_16384:
1824 rctl |= E1000_RCTL_SZ_16384;
1825 break;
1826 }
1827
1828 /* This is useful for sniffing bad packets. */
1829 if (adapter->netdev->features & NETIF_F_RXALL) {
1830 /* UPE and MPE will be handled by normal PROMISC logic
1831 * in e1000e_set_rx_mode
1832 */
1833 rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
1834 E1000_RCTL_BAM | /* RX All Bcast Pkts */
1835 E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
1836
1837 rctl &= ~(E1000_RCTL_VFE | /* Disable VLAN filter */
1838 E1000_RCTL_DPF | /* Allow filtered pause */
1839 E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
1840 /* Do not mess with E1000_CTRL_VME, it affects transmit as well,
1841 * and that breaks VLANs.
1842 */
1843 }
1844
1845 ew32(RCTL, rctl);
1846}
1847
1848/**
1849 * e1000_configure_rx - Configure 8254x Receive Unit after Reset
1850 * @adapter: board private structure
1851 *
1852 * Configure the Rx unit of the MAC after a reset.
1853 **/
1854static void e1000_configure_rx(struct e1000_adapter *adapter)
1855{
1856 u64 rdba;
1857 struct e1000_hw *hw = &adapter->hw;
1858 u32 rdlen, rctl, rxcsum;
1859
1860 if (adapter->netdev->mtu > ETH_DATA_LEN) {
1861 rdlen = adapter->rx_ring[0].count *
1862 sizeof(struct e1000_rx_desc);
1863 adapter->clean_rx = e1000_clean_jumbo_rx_irq;
1864 adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers;
1865 } else {
1866 rdlen = adapter->rx_ring[0].count *
1867 sizeof(struct e1000_rx_desc);
1868 adapter->clean_rx = e1000_clean_rx_irq;
1869 adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
1870 }
1871
1872 /* disable receives while setting up the descriptors */
1873 rctl = er32(RCTL);
1874 ew32(RCTL, rctl & ~E1000_RCTL_EN);
1875
1876 /* set the Receive Delay Timer Register */
1877 ew32(RDTR, adapter->rx_int_delay);
1878
1879 if (hw->mac_type >= e1000_82540) {
1880 ew32(RADV, adapter->rx_abs_int_delay);
1881 if (adapter->itr_setting != 0)
1882 ew32(ITR, 1000000000 / (adapter->itr * 256));
1883 }
1884
1885 /* Setup the HW Rx Head and Tail Descriptor Pointers and
1886 * the Base and Length of the Rx Descriptor Ring
1887 */
1888 switch (adapter->num_rx_queues) {
1889 case 1:
1890 default:
1891 rdba = adapter->rx_ring[0].dma;
1892 ew32(RDLEN, rdlen);
1893 ew32(RDBAH, (rdba >> 32));
1894 ew32(RDBAL, (rdba & 0x00000000ffffffffULL));
1895 ew32(RDT, 0);
1896 ew32(RDH, 0);
1897 adapter->rx_ring[0].rdh = ((hw->mac_type >= e1000_82543) ?
1898 E1000_RDH : E1000_82542_RDH);
1899 adapter->rx_ring[0].rdt = ((hw->mac_type >= e1000_82543) ?
1900 E1000_RDT : E1000_82542_RDT);
1901 break;
1902 }
1903
1904 /* Enable 82543 Receive Checksum Offload for TCP and UDP */
1905 if (hw->mac_type >= e1000_82543) {
1906 rxcsum = er32(RXCSUM);
1907 if (adapter->rx_csum)
1908 rxcsum |= E1000_RXCSUM_TUOFL;
1909 else
1910 /* don't need to clear IPPCSE as it defaults to 0 */
1911 rxcsum &= ~E1000_RXCSUM_TUOFL;
1912 ew32(RXCSUM, rxcsum);
1913 }
1914
1915 /* Enable Receives */
1916 ew32(RCTL, rctl | E1000_RCTL_EN);
1917}
1918
1919/**
1920 * e1000_free_tx_resources - Free Tx Resources per Queue
1921 * @adapter: board private structure
1922 * @tx_ring: Tx descriptor ring for a specific queue
1923 *
1924 * Free all transmit software resources
1925 **/
1926static void e1000_free_tx_resources(struct e1000_adapter *adapter,
1927 struct e1000_tx_ring *tx_ring)
1928{
1929 struct pci_dev *pdev = adapter->pdev;
1930
1931 e1000_clean_tx_ring(adapter, tx_ring);
1932
1933 vfree(tx_ring->buffer_info);
1934 tx_ring->buffer_info = NULL;
1935
1936 dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
1937 tx_ring->dma);
1938
1939 tx_ring->desc = NULL;
1940}
1941
1942/**
1943 * e1000_free_all_tx_resources - Free Tx Resources for All Queues
1944 * @adapter: board private structure
1945 *
1946 * Free all transmit software resources
1947 **/
1948void e1000_free_all_tx_resources(struct e1000_adapter *adapter)
1949{
1950 int i;
1951
1952 for (i = 0; i < adapter->num_tx_queues; i++)
1953 e1000_free_tx_resources(adapter, &adapter->tx_ring[i]);
1954}
1955
1956static void
1957e1000_unmap_and_free_tx_resource(struct e1000_adapter *adapter,
1958 struct e1000_tx_buffer *buffer_info,
1959 int budget)
1960{
1961 if (buffer_info->dma) {
1962 if (buffer_info->mapped_as_page)
1963 dma_unmap_page(&adapter->pdev->dev, buffer_info->dma,
1964 buffer_info->length, DMA_TO_DEVICE);
1965 else
1966 dma_unmap_single(&adapter->pdev->dev, buffer_info->dma,
1967 buffer_info->length,
1968 DMA_TO_DEVICE);
1969 buffer_info->dma = 0;
1970 }
1971 if (buffer_info->skb) {
1972 napi_consume_skb(buffer_info->skb, budget);
1973 buffer_info->skb = NULL;
1974 }
1975 buffer_info->time_stamp = 0;
1976 /* buffer_info must be completely set up in the transmit path */
1977}
1978
1979/**
1980 * e1000_clean_tx_ring - Free Tx Buffers
1981 * @adapter: board private structure
1982 * @tx_ring: ring to be cleaned
1983 **/
1984static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
1985 struct e1000_tx_ring *tx_ring)
1986{
1987 struct e1000_hw *hw = &adapter->hw;
1988 struct e1000_tx_buffer *buffer_info;
1989 unsigned long size;
1990 unsigned int i;
1991
1992 /* Free all the Tx ring sk_buffs */
1993
1994 for (i = 0; i < tx_ring->count; i++) {
1995 buffer_info = &tx_ring->buffer_info[i];
1996 e1000_unmap_and_free_tx_resource(adapter, buffer_info, 0);
1997 }
1998
1999 netdev_reset_queue(adapter->netdev);
2000 size = sizeof(struct e1000_tx_buffer) * tx_ring->count;
2001 memset(tx_ring->buffer_info, 0, size);
2002
2003 /* Zero out the descriptor ring */
2004
2005 memset(tx_ring->desc, 0, tx_ring->size);
2006
2007 tx_ring->next_to_use = 0;
2008 tx_ring->next_to_clean = 0;
2009 tx_ring->last_tx_tso = false;
2010
2011 writel(0, hw->hw_addr + tx_ring->tdh);
2012 writel(0, hw->hw_addr + tx_ring->tdt);
2013}
2014
2015/**
2016 * e1000_clean_all_tx_rings - Free Tx Buffers for all queues
2017 * @adapter: board private structure
2018 **/
2019static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter)
2020{
2021 int i;
2022
2023 for (i = 0; i < adapter->num_tx_queues; i++)
2024 e1000_clean_tx_ring(adapter, &adapter->tx_ring[i]);
2025}
2026
2027/**
2028 * e1000_free_rx_resources - Free Rx Resources
2029 * @adapter: board private structure
2030 * @rx_ring: ring to clean the resources from
2031 *
2032 * Free all receive software resources
2033 **/
2034static void e1000_free_rx_resources(struct e1000_adapter *adapter,
2035 struct e1000_rx_ring *rx_ring)
2036{
2037 struct pci_dev *pdev = adapter->pdev;
2038
2039 e1000_clean_rx_ring(adapter, rx_ring);
2040
2041 vfree(rx_ring->buffer_info);
2042 rx_ring->buffer_info = NULL;
2043
2044 dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
2045 rx_ring->dma);
2046
2047 rx_ring->desc = NULL;
2048}
2049
2050/**
2051 * e1000_free_all_rx_resources - Free Rx Resources for All Queues
2052 * @adapter: board private structure
2053 *
2054 * Free all receive software resources
2055 **/
2056void e1000_free_all_rx_resources(struct e1000_adapter *adapter)
2057{
2058 int i;
2059
2060 for (i = 0; i < adapter->num_rx_queues; i++)
2061 e1000_free_rx_resources(adapter, &adapter->rx_ring[i]);
2062}
2063
2064#define E1000_HEADROOM (NET_SKB_PAD + NET_IP_ALIGN)
2065static unsigned int e1000_frag_len(const struct e1000_adapter *a)
2066{
2067 return SKB_DATA_ALIGN(a->rx_buffer_len + E1000_HEADROOM) +
2068 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
2069}
2070
2071static void *e1000_alloc_frag(const struct e1000_adapter *a)
2072{
2073 unsigned int len = e1000_frag_len(a);
2074 u8 *data = netdev_alloc_frag(len);
2075
2076 if (likely(data))
2077 data += E1000_HEADROOM;
2078 return data;
2079}
2080
2081/**
2082 * e1000_clean_rx_ring - Free Rx Buffers per Queue
2083 * @adapter: board private structure
2084 * @rx_ring: ring to free buffers from
2085 **/
2086static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
2087 struct e1000_rx_ring *rx_ring)
2088{
2089 struct e1000_hw *hw = &adapter->hw;
2090 struct e1000_rx_buffer *buffer_info;
2091 struct pci_dev *pdev = adapter->pdev;
2092 unsigned long size;
2093 unsigned int i;
2094
2095 /* Free all the Rx netfrags */
2096 for (i = 0; i < rx_ring->count; i++) {
2097 buffer_info = &rx_ring->buffer_info[i];
2098 if (adapter->clean_rx == e1000_clean_rx_irq) {
2099 if (buffer_info->dma)
2100 dma_unmap_single(&pdev->dev, buffer_info->dma,
2101 adapter->rx_buffer_len,
2102 DMA_FROM_DEVICE);
2103 if (buffer_info->rxbuf.data) {
2104 skb_free_frag(buffer_info->rxbuf.data);
2105 buffer_info->rxbuf.data = NULL;
2106 }
2107 } else if (adapter->clean_rx == e1000_clean_jumbo_rx_irq) {
2108 if (buffer_info->dma)
2109 dma_unmap_page(&pdev->dev, buffer_info->dma,
2110 adapter->rx_buffer_len,
2111 DMA_FROM_DEVICE);
2112 if (buffer_info->rxbuf.page) {
2113 put_page(buffer_info->rxbuf.page);
2114 buffer_info->rxbuf.page = NULL;
2115 }
2116 }
2117
2118 buffer_info->dma = 0;
2119 }
2120
2121 /* there also may be some cached data from a chained receive */
2122 napi_free_frags(&adapter->napi);
2123 rx_ring->rx_skb_top = NULL;
2124
2125 size = sizeof(struct e1000_rx_buffer) * rx_ring->count;
2126 memset(rx_ring->buffer_info, 0, size);
2127
2128 /* Zero out the descriptor ring */
2129 memset(rx_ring->desc, 0, rx_ring->size);
2130
2131 rx_ring->next_to_clean = 0;
2132 rx_ring->next_to_use = 0;
2133
2134 writel(0, hw->hw_addr + rx_ring->rdh);
2135 writel(0, hw->hw_addr + rx_ring->rdt);
2136}
2137
2138/**
2139 * e1000_clean_all_rx_rings - Free Rx Buffers for all queues
2140 * @adapter: board private structure
2141 **/
2142static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter)
2143{
2144 int i;
2145
2146 for (i = 0; i < adapter->num_rx_queues; i++)
2147 e1000_clean_rx_ring(adapter, &adapter->rx_ring[i]);
2148}
2149
2150/* The 82542 2.0 (revision 2) needs to have the receive unit in reset
2151 * and memory write and invalidate disabled for certain operations
2152 */
2153static void e1000_enter_82542_rst(struct e1000_adapter *adapter)
2154{
2155 struct e1000_hw *hw = &adapter->hw;
2156 struct net_device *netdev = adapter->netdev;
2157 u32 rctl;
2158
2159 e1000_pci_clear_mwi(hw);
2160
2161 rctl = er32(RCTL);
2162 rctl |= E1000_RCTL_RST;
2163 ew32(RCTL, rctl);
2164 E1000_WRITE_FLUSH();
2165 mdelay(5);
2166
2167 if (netif_running(netdev))
2168 e1000_clean_all_rx_rings(adapter);
2169}
2170
2171static void e1000_leave_82542_rst(struct e1000_adapter *adapter)
2172{
2173 struct e1000_hw *hw = &adapter->hw;
2174 struct net_device *netdev = adapter->netdev;
2175 u32 rctl;
2176
2177 rctl = er32(RCTL);
2178 rctl &= ~E1000_RCTL_RST;
2179 ew32(RCTL, rctl);
2180 E1000_WRITE_FLUSH();
2181 mdelay(5);
2182
2183 if (hw->pci_cmd_word & PCI_COMMAND_INVALIDATE)
2184 e1000_pci_set_mwi(hw);
2185
2186 if (netif_running(netdev)) {
2187 /* No need to loop, because 82542 supports only 1 queue */
2188 struct e1000_rx_ring *ring = &adapter->rx_ring[0];
2189 e1000_configure_rx(adapter);
2190 adapter->alloc_rx_buf(adapter, ring, E1000_DESC_UNUSED(ring));
2191 }
2192}
2193
2194/**
2195 * e1000_set_mac - Change the Ethernet Address of the NIC
2196 * @netdev: network interface device structure
2197 * @p: pointer to an address structure
2198 *
2199 * Returns 0 on success, negative on failure
2200 **/
2201static int e1000_set_mac(struct net_device *netdev, void *p)
2202{
2203 struct e1000_adapter *adapter = netdev_priv(netdev);
2204 struct e1000_hw *hw = &adapter->hw;
2205 struct sockaddr *addr = p;
2206
2207 if (!is_valid_ether_addr(addr->sa_data))
2208 return -EADDRNOTAVAIL;
2209
2210 /* 82542 2.0 needs to be in reset to write receive address registers */
2211
2212 if (hw->mac_type == e1000_82542_rev2_0)
2213 e1000_enter_82542_rst(adapter);
2214
2215 eth_hw_addr_set(netdev, addr->sa_data);
2216 memcpy(hw->mac_addr, addr->sa_data, netdev->addr_len);
2217
2218 e1000_rar_set(hw, hw->mac_addr, 0);
2219
2220 if (hw->mac_type == e1000_82542_rev2_0)
2221 e1000_leave_82542_rst(adapter);
2222
2223 return 0;
2224}
2225
2226/**
2227 * e1000_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
2228 * @netdev: network interface device structure
2229 *
2230 * The set_rx_mode entry point is called whenever the unicast or multicast
2231 * address lists or the network interface flags are updated. This routine is
2232 * responsible for configuring the hardware for proper unicast, multicast,
2233 * promiscuous mode, and all-multi behavior.
2234 **/
2235static void e1000_set_rx_mode(struct net_device *netdev)
2236{
2237 struct e1000_adapter *adapter = netdev_priv(netdev);
2238 struct e1000_hw *hw = &adapter->hw;
2239 struct netdev_hw_addr *ha;
2240 bool use_uc = false;
2241 u32 rctl;
2242 u32 hash_value;
2243 int i, rar_entries = E1000_RAR_ENTRIES;
2244 int mta_reg_count = E1000_NUM_MTA_REGISTERS;
2245 u32 *mcarray = kcalloc(mta_reg_count, sizeof(u32), GFP_ATOMIC);
2246
2247 if (!mcarray)
2248 return;
2249
2250 /* Check for Promiscuous and All Multicast modes */
2251
2252 rctl = er32(RCTL);
2253
2254 if (netdev->flags & IFF_PROMISC) {
2255 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2256 rctl &= ~E1000_RCTL_VFE;
2257 } else {
2258 if (netdev->flags & IFF_ALLMULTI)
2259 rctl |= E1000_RCTL_MPE;
2260 else
2261 rctl &= ~E1000_RCTL_MPE;
2262 /* Enable VLAN filter if there is a VLAN */
2263 if (e1000_vlan_used(adapter))
2264 rctl |= E1000_RCTL_VFE;
2265 }
2266
2267 if (netdev_uc_count(netdev) > rar_entries - 1) {
2268 rctl |= E1000_RCTL_UPE;
2269 } else if (!(netdev->flags & IFF_PROMISC)) {
2270 rctl &= ~E1000_RCTL_UPE;
2271 use_uc = true;
2272 }
2273
2274 ew32(RCTL, rctl);
2275
2276 /* 82542 2.0 needs to be in reset to write receive address registers */
2277
2278 if (hw->mac_type == e1000_82542_rev2_0)
2279 e1000_enter_82542_rst(adapter);
2280
2281 /* load the first 14 addresses into the exact filters 1-14. Unicast
2282 * addresses take precedence to avoid disabling unicast filtering
2283 * when possible.
2284 *
2285 * RAR 0 is used for the station MAC address
2286 * if there are not 14 addresses, go ahead and clear the filters
2287 */
2288 i = 1;
2289 if (use_uc)
2290 netdev_for_each_uc_addr(ha, netdev) {
2291 if (i == rar_entries)
2292 break;
2293 e1000_rar_set(hw, ha->addr, i++);
2294 }
2295
2296 netdev_for_each_mc_addr(ha, netdev) {
2297 if (i == rar_entries) {
2298 /* load any remaining addresses into the hash table */
2299 u32 hash_reg, hash_bit, mta;
2300 hash_value = e1000_hash_mc_addr(hw, ha->addr);
2301 hash_reg = (hash_value >> 5) & 0x7F;
2302 hash_bit = hash_value & 0x1F;
2303 mta = (1 << hash_bit);
2304 mcarray[hash_reg] |= mta;
2305 } else {
2306 e1000_rar_set(hw, ha->addr, i++);
2307 }
2308 }
2309
2310 for (; i < rar_entries; i++) {
2311 E1000_WRITE_REG_ARRAY(hw, RA, i << 1, 0);
2312 E1000_WRITE_FLUSH();
2313 E1000_WRITE_REG_ARRAY(hw, RA, (i << 1) + 1, 0);
2314 E1000_WRITE_FLUSH();
2315 }
2316
2317 /* write the hash table completely, write from bottom to avoid
2318 * both stupid write combining chipsets, and flushing each write
2319 */
2320 for (i = mta_reg_count - 1; i >= 0 ; i--) {
2321 /* If we are on an 82544 has an errata where writing odd
2322 * offsets overwrites the previous even offset, but writing
2323 * backwards over the range solves the issue by always
2324 * writing the odd offset first
2325 */
2326 E1000_WRITE_REG_ARRAY(hw, MTA, i, mcarray[i]);
2327 }
2328 E1000_WRITE_FLUSH();
2329
2330 if (hw->mac_type == e1000_82542_rev2_0)
2331 e1000_leave_82542_rst(adapter);
2332
2333 kfree(mcarray);
2334}
2335
2336/**
2337 * e1000_update_phy_info_task - get phy info
2338 * @work: work struct contained inside adapter struct
2339 *
2340 * Need to wait a few seconds after link up to get diagnostic information from
2341 * the phy
2342 */
2343static void e1000_update_phy_info_task(struct work_struct *work)
2344{
2345 struct e1000_adapter *adapter = container_of(work,
2346 struct e1000_adapter,
2347 phy_info_task.work);
2348
2349 e1000_phy_get_info(&adapter->hw, &adapter->phy_info);
2350}
2351
2352/**
2353 * e1000_82547_tx_fifo_stall_task - task to complete work
2354 * @work: work struct contained inside adapter struct
2355 **/
2356static void e1000_82547_tx_fifo_stall_task(struct work_struct *work)
2357{
2358 struct e1000_adapter *adapter = container_of(work,
2359 struct e1000_adapter,
2360 fifo_stall_task.work);
2361 struct e1000_hw *hw = &adapter->hw;
2362 struct net_device *netdev = adapter->netdev;
2363 u32 tctl;
2364
2365 if (atomic_read(&adapter->tx_fifo_stall)) {
2366 if ((er32(TDT) == er32(TDH)) &&
2367 (er32(TDFT) == er32(TDFH)) &&
2368 (er32(TDFTS) == er32(TDFHS))) {
2369 tctl = er32(TCTL);
2370 ew32(TCTL, tctl & ~E1000_TCTL_EN);
2371 ew32(TDFT, adapter->tx_head_addr);
2372 ew32(TDFH, adapter->tx_head_addr);
2373 ew32(TDFTS, adapter->tx_head_addr);
2374 ew32(TDFHS, adapter->tx_head_addr);
2375 ew32(TCTL, tctl);
2376 E1000_WRITE_FLUSH();
2377
2378 adapter->tx_fifo_head = 0;
2379 atomic_set(&adapter->tx_fifo_stall, 0);
2380 netif_wake_queue(netdev);
2381 } else if (!test_bit(__E1000_DOWN, &adapter->flags)) {
2382 schedule_delayed_work(&adapter->fifo_stall_task, 1);
2383 }
2384 }
2385}
2386
2387bool e1000_has_link(struct e1000_adapter *adapter)
2388{
2389 struct e1000_hw *hw = &adapter->hw;
2390 bool link_active = false;
2391
2392 /* get_link_status is set on LSC (link status) interrupt or rx
2393 * sequence error interrupt (except on intel ce4100).
2394 * get_link_status will stay false until the
2395 * e1000_check_for_link establishes link for copper adapters
2396 * ONLY
2397 */
2398 switch (hw->media_type) {
2399 case e1000_media_type_copper:
2400 if (hw->mac_type == e1000_ce4100)
2401 hw->get_link_status = 1;
2402 if (hw->get_link_status) {
2403 e1000_check_for_link(hw);
2404 link_active = !hw->get_link_status;
2405 } else {
2406 link_active = true;
2407 }
2408 break;
2409 case e1000_media_type_fiber:
2410 e1000_check_for_link(hw);
2411 link_active = !!(er32(STATUS) & E1000_STATUS_LU);
2412 break;
2413 case e1000_media_type_internal_serdes:
2414 e1000_check_for_link(hw);
2415 link_active = hw->serdes_has_link;
2416 break;
2417 default:
2418 break;
2419 }
2420
2421 return link_active;
2422}
2423
2424/**
2425 * e1000_watchdog - work function
2426 * @work: work struct contained inside adapter struct
2427 **/
2428static void e1000_watchdog(struct work_struct *work)
2429{
2430 struct e1000_adapter *adapter = container_of(work,
2431 struct e1000_adapter,
2432 watchdog_task.work);
2433 struct e1000_hw *hw = &adapter->hw;
2434 struct net_device *netdev = adapter->netdev;
2435 struct e1000_tx_ring *txdr = adapter->tx_ring;
2436 u32 link, tctl;
2437
2438 link = e1000_has_link(adapter);
2439 if ((netif_carrier_ok(netdev)) && link)
2440 goto link_up;
2441
2442 if (link) {
2443 if (!netif_carrier_ok(netdev)) {
2444 u32 ctrl;
2445 /* update snapshot of PHY registers on LSC */
2446 e1000_get_speed_and_duplex(hw,
2447 &adapter->link_speed,
2448 &adapter->link_duplex);
2449
2450 ctrl = er32(CTRL);
2451 pr_info("%s NIC Link is Up %d Mbps %s, "
2452 "Flow Control: %s\n",
2453 netdev->name,
2454 adapter->link_speed,
2455 adapter->link_duplex == FULL_DUPLEX ?
2456 "Full Duplex" : "Half Duplex",
2457 ((ctrl & E1000_CTRL_TFCE) && (ctrl &
2458 E1000_CTRL_RFCE)) ? "RX/TX" : ((ctrl &
2459 E1000_CTRL_RFCE) ? "RX" : ((ctrl &
2460 E1000_CTRL_TFCE) ? "TX" : "None")));
2461
2462 /* adjust timeout factor according to speed/duplex */
2463 adapter->tx_timeout_factor = 1;
2464 switch (adapter->link_speed) {
2465 case SPEED_10:
2466 adapter->tx_timeout_factor = 16;
2467 break;
2468 case SPEED_100:
2469 /* maybe add some timeout factor ? */
2470 break;
2471 }
2472
2473 /* enable transmits in the hardware */
2474 tctl = er32(TCTL);
2475 tctl |= E1000_TCTL_EN;
2476 ew32(TCTL, tctl);
2477
2478 netif_carrier_on(netdev);
2479 if (!test_bit(__E1000_DOWN, &adapter->flags))
2480 schedule_delayed_work(&adapter->phy_info_task,
2481 2 * HZ);
2482 adapter->smartspeed = 0;
2483 }
2484 } else {
2485 if (netif_carrier_ok(netdev)) {
2486 adapter->link_speed = 0;
2487 adapter->link_duplex = 0;
2488 pr_info("%s NIC Link is Down\n",
2489 netdev->name);
2490 netif_carrier_off(netdev);
2491
2492 if (!test_bit(__E1000_DOWN, &adapter->flags))
2493 schedule_delayed_work(&adapter->phy_info_task,
2494 2 * HZ);
2495 }
2496
2497 e1000_smartspeed(adapter);
2498 }
2499
2500link_up:
2501 e1000_update_stats(adapter);
2502
2503 hw->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
2504 adapter->tpt_old = adapter->stats.tpt;
2505 hw->collision_delta = adapter->stats.colc - adapter->colc_old;
2506 adapter->colc_old = adapter->stats.colc;
2507
2508 adapter->gorcl = adapter->stats.gorcl - adapter->gorcl_old;
2509 adapter->gorcl_old = adapter->stats.gorcl;
2510 adapter->gotcl = adapter->stats.gotcl - adapter->gotcl_old;
2511 adapter->gotcl_old = adapter->stats.gotcl;
2512
2513 e1000_update_adaptive(hw);
2514
2515 if (!netif_carrier_ok(netdev)) {
2516 if (E1000_DESC_UNUSED(txdr) + 1 < txdr->count) {
2517 /* We've lost link, so the controller stops DMA,
2518 * but we've got queued Tx work that's never going
2519 * to get done, so reset controller to flush Tx.
2520 * (Do the reset outside of interrupt context).
2521 */
2522 adapter->tx_timeout_count++;
2523 schedule_work(&adapter->reset_task);
2524 /* exit immediately since reset is imminent */
2525 return;
2526 }
2527 }
2528
2529 /* Simple mode for Interrupt Throttle Rate (ITR) */
2530 if (hw->mac_type >= e1000_82540 && adapter->itr_setting == 4) {
2531 /* Symmetric Tx/Rx gets a reduced ITR=2000;
2532 * Total asymmetrical Tx or Rx gets ITR=8000;
2533 * everyone else is between 2000-8000.
2534 */
2535 u32 goc = (adapter->gotcl + adapter->gorcl) / 10000;
2536 u32 dif = (adapter->gotcl > adapter->gorcl ?
2537 adapter->gotcl - adapter->gorcl :
2538 adapter->gorcl - adapter->gotcl) / 10000;
2539 u32 itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000;
2540
2541 ew32(ITR, 1000000000 / (itr * 256));
2542 }
2543
2544 /* Cause software interrupt to ensure rx ring is cleaned */
2545 ew32(ICS, E1000_ICS_RXDMT0);
2546
2547 /* Force detection of hung controller every watchdog period */
2548 adapter->detect_tx_hung = true;
2549
2550 /* Reschedule the task */
2551 if (!test_bit(__E1000_DOWN, &adapter->flags))
2552 schedule_delayed_work(&adapter->watchdog_task, 2 * HZ);
2553}
2554
2555enum latency_range {
2556 lowest_latency = 0,
2557 low_latency = 1,
2558 bulk_latency = 2,
2559 latency_invalid = 255
2560};
2561
2562/**
2563 * e1000_update_itr - update the dynamic ITR value based on statistics
2564 * @adapter: pointer to adapter
2565 * @itr_setting: current adapter->itr
2566 * @packets: the number of packets during this measurement interval
2567 * @bytes: the number of bytes during this measurement interval
2568 *
2569 * Stores a new ITR value based on packets and byte
2570 * counts during the last interrupt. The advantage of per interrupt
2571 * computation is faster updates and more accurate ITR for the current
2572 * traffic pattern. Constants in this function were computed
2573 * based on theoretical maximum wire speed and thresholds were set based
2574 * on testing data as well as attempting to minimize response time
2575 * while increasing bulk throughput.
2576 * this functionality is controlled by the InterruptThrottleRate module
2577 * parameter (see e1000_param.c)
2578 **/
2579static unsigned int e1000_update_itr(struct e1000_adapter *adapter,
2580 u16 itr_setting, int packets, int bytes)
2581{
2582 unsigned int retval = itr_setting;
2583 struct e1000_hw *hw = &adapter->hw;
2584
2585 if (unlikely(hw->mac_type < e1000_82540))
2586 goto update_itr_done;
2587
2588 if (packets == 0)
2589 goto update_itr_done;
2590
2591 switch (itr_setting) {
2592 case lowest_latency:
2593 /* jumbo frames get bulk treatment*/
2594 if (bytes/packets > 8000)
2595 retval = bulk_latency;
2596 else if ((packets < 5) && (bytes > 512))
2597 retval = low_latency;
2598 break;
2599 case low_latency: /* 50 usec aka 20000 ints/s */
2600 if (bytes > 10000) {
2601 /* jumbo frames need bulk latency setting */
2602 if (bytes/packets > 8000)
2603 retval = bulk_latency;
2604 else if ((packets < 10) || ((bytes/packets) > 1200))
2605 retval = bulk_latency;
2606 else if ((packets > 35))
2607 retval = lowest_latency;
2608 } else if (bytes/packets > 2000)
2609 retval = bulk_latency;
2610 else if (packets <= 2 && bytes < 512)
2611 retval = lowest_latency;
2612 break;
2613 case bulk_latency: /* 250 usec aka 4000 ints/s */
2614 if (bytes > 25000) {
2615 if (packets > 35)
2616 retval = low_latency;
2617 } else if (bytes < 6000) {
2618 retval = low_latency;
2619 }
2620 break;
2621 }
2622
2623update_itr_done:
2624 return retval;
2625}
2626
2627static void e1000_set_itr(struct e1000_adapter *adapter)
2628{
2629 struct e1000_hw *hw = &adapter->hw;
2630 u16 current_itr;
2631 u32 new_itr = adapter->itr;
2632
2633 if (unlikely(hw->mac_type < e1000_82540))
2634 return;
2635
2636 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2637 if (unlikely(adapter->link_speed != SPEED_1000)) {
2638 new_itr = 4000;
2639 goto set_itr_now;
2640 }
2641
2642 adapter->tx_itr = e1000_update_itr(adapter, adapter->tx_itr,
2643 adapter->total_tx_packets,
2644 adapter->total_tx_bytes);
2645 /* conservative mode (itr 3) eliminates the lowest_latency setting */
2646 if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
2647 adapter->tx_itr = low_latency;
2648
2649 adapter->rx_itr = e1000_update_itr(adapter, adapter->rx_itr,
2650 adapter->total_rx_packets,
2651 adapter->total_rx_bytes);
2652 /* conservative mode (itr 3) eliminates the lowest_latency setting */
2653 if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
2654 adapter->rx_itr = low_latency;
2655
2656 current_itr = max(adapter->rx_itr, adapter->tx_itr);
2657
2658 switch (current_itr) {
2659 /* counts and packets in update_itr are dependent on these numbers */
2660 case lowest_latency:
2661 new_itr = 70000;
2662 break;
2663 case low_latency:
2664 new_itr = 20000; /* aka hwitr = ~200 */
2665 break;
2666 case bulk_latency:
2667 new_itr = 4000;
2668 break;
2669 default:
2670 break;
2671 }
2672
2673set_itr_now:
2674 if (new_itr != adapter->itr) {
2675 /* this attempts to bias the interrupt rate towards Bulk
2676 * by adding intermediate steps when interrupt rate is
2677 * increasing
2678 */
2679 new_itr = new_itr > adapter->itr ?
2680 min(adapter->itr + (new_itr >> 2), new_itr) :
2681 new_itr;
2682 adapter->itr = new_itr;
2683 ew32(ITR, 1000000000 / (new_itr * 256));
2684 }
2685}
2686
2687#define E1000_TX_FLAGS_CSUM 0x00000001
2688#define E1000_TX_FLAGS_VLAN 0x00000002
2689#define E1000_TX_FLAGS_TSO 0x00000004
2690#define E1000_TX_FLAGS_IPV4 0x00000008
2691#define E1000_TX_FLAGS_NO_FCS 0x00000010
2692#define E1000_TX_FLAGS_VLAN_MASK 0xffff0000
2693#define E1000_TX_FLAGS_VLAN_SHIFT 16
2694
2695static int e1000_tso(struct e1000_adapter *adapter,
2696 struct e1000_tx_ring *tx_ring, struct sk_buff *skb,
2697 __be16 protocol)
2698{
2699 struct e1000_context_desc *context_desc;
2700 struct e1000_tx_buffer *buffer_info;
2701 unsigned int i;
2702 u32 cmd_length = 0;
2703 u16 ipcse = 0, tucse, mss;
2704 u8 ipcss, ipcso, tucss, tucso, hdr_len;
2705
2706 if (skb_is_gso(skb)) {
2707 int err;
2708
2709 err = skb_cow_head(skb, 0);
2710 if (err < 0)
2711 return err;
2712
2713 hdr_len = skb_tcp_all_headers(skb);
2714 mss = skb_shinfo(skb)->gso_size;
2715 if (protocol == htons(ETH_P_IP)) {
2716 struct iphdr *iph = ip_hdr(skb);
2717 iph->tot_len = 0;
2718 iph->check = 0;
2719 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
2720 iph->daddr, 0,
2721 IPPROTO_TCP,
2722 0);
2723 cmd_length = E1000_TXD_CMD_IP;
2724 ipcse = skb_transport_offset(skb) - 1;
2725 } else if (skb_is_gso_v6(skb)) {
2726 tcp_v6_gso_csum_prep(skb);
2727 ipcse = 0;
2728 }
2729 ipcss = skb_network_offset(skb);
2730 ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
2731 tucss = skb_transport_offset(skb);
2732 tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
2733 tucse = 0;
2734
2735 cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
2736 E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
2737
2738 i = tx_ring->next_to_use;
2739 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2740 buffer_info = &tx_ring->buffer_info[i];
2741
2742 context_desc->lower_setup.ip_fields.ipcss = ipcss;
2743 context_desc->lower_setup.ip_fields.ipcso = ipcso;
2744 context_desc->lower_setup.ip_fields.ipcse = cpu_to_le16(ipcse);
2745 context_desc->upper_setup.tcp_fields.tucss = tucss;
2746 context_desc->upper_setup.tcp_fields.tucso = tucso;
2747 context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
2748 context_desc->tcp_seg_setup.fields.mss = cpu_to_le16(mss);
2749 context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
2750 context_desc->cmd_and_length = cpu_to_le32(cmd_length);
2751
2752 buffer_info->time_stamp = jiffies;
2753 buffer_info->next_to_watch = i;
2754
2755 if (++i == tx_ring->count)
2756 i = 0;
2757
2758 tx_ring->next_to_use = i;
2759
2760 return true;
2761 }
2762 return false;
2763}
2764
2765static bool e1000_tx_csum(struct e1000_adapter *adapter,
2766 struct e1000_tx_ring *tx_ring, struct sk_buff *skb,
2767 __be16 protocol)
2768{
2769 struct e1000_context_desc *context_desc;
2770 struct e1000_tx_buffer *buffer_info;
2771 unsigned int i;
2772 u8 css;
2773 u32 cmd_len = E1000_TXD_CMD_DEXT;
2774
2775 if (skb->ip_summed != CHECKSUM_PARTIAL)
2776 return false;
2777
2778 switch (protocol) {
2779 case cpu_to_be16(ETH_P_IP):
2780 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
2781 cmd_len |= E1000_TXD_CMD_TCP;
2782 break;
2783 case cpu_to_be16(ETH_P_IPV6):
2784 /* XXX not handling all IPV6 headers */
2785 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
2786 cmd_len |= E1000_TXD_CMD_TCP;
2787 break;
2788 default:
2789 if (unlikely(net_ratelimit()))
2790 e_warn(drv, "checksum_partial proto=%x!\n",
2791 skb->protocol);
2792 break;
2793 }
2794
2795 css = skb_checksum_start_offset(skb);
2796
2797 i = tx_ring->next_to_use;
2798 buffer_info = &tx_ring->buffer_info[i];
2799 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2800
2801 context_desc->lower_setup.ip_config = 0;
2802 context_desc->upper_setup.tcp_fields.tucss = css;
2803 context_desc->upper_setup.tcp_fields.tucso =
2804 css + skb->csum_offset;
2805 context_desc->upper_setup.tcp_fields.tucse = 0;
2806 context_desc->tcp_seg_setup.data = 0;
2807 context_desc->cmd_and_length = cpu_to_le32(cmd_len);
2808
2809 buffer_info->time_stamp = jiffies;
2810 buffer_info->next_to_watch = i;
2811
2812 if (unlikely(++i == tx_ring->count))
2813 i = 0;
2814
2815 tx_ring->next_to_use = i;
2816
2817 return true;
2818}
2819
2820#define E1000_MAX_TXD_PWR 12
2821#define E1000_MAX_DATA_PER_TXD (1<<E1000_MAX_TXD_PWR)
2822
2823static int e1000_tx_map(struct e1000_adapter *adapter,
2824 struct e1000_tx_ring *tx_ring,
2825 struct sk_buff *skb, unsigned int first,
2826 unsigned int max_per_txd, unsigned int nr_frags,
2827 unsigned int mss)
2828{
2829 struct e1000_hw *hw = &adapter->hw;
2830 struct pci_dev *pdev = adapter->pdev;
2831 struct e1000_tx_buffer *buffer_info;
2832 unsigned int len = skb_headlen(skb);
2833 unsigned int offset = 0, size, count = 0, i;
2834 unsigned int f, bytecount, segs;
2835
2836 i = tx_ring->next_to_use;
2837
2838 while (len) {
2839 buffer_info = &tx_ring->buffer_info[i];
2840 size = min(len, max_per_txd);
2841 /* Workaround for Controller erratum --
2842 * descriptor for non-tso packet in a linear SKB that follows a
2843 * tso gets written back prematurely before the data is fully
2844 * DMA'd to the controller
2845 */
2846 if (!skb->data_len && tx_ring->last_tx_tso &&
2847 !skb_is_gso(skb)) {
2848 tx_ring->last_tx_tso = false;
2849 size -= 4;
2850 }
2851
2852 /* Workaround for premature desc write-backs
2853 * in TSO mode. Append 4-byte sentinel desc
2854 */
2855 if (unlikely(mss && !nr_frags && size == len && size > 8))
2856 size -= 4;
2857 /* work-around for errata 10 and it applies
2858 * to all controllers in PCI-X mode
2859 * The fix is to make sure that the first descriptor of a
2860 * packet is smaller than 2048 - 16 - 16 (or 2016) bytes
2861 */
2862 if (unlikely((hw->bus_type == e1000_bus_type_pcix) &&
2863 (size > 2015) && count == 0))
2864 size = 2015;
2865
2866 /* Workaround for potential 82544 hang in PCI-X. Avoid
2867 * terminating buffers within evenly-aligned dwords.
2868 */
2869 if (unlikely(adapter->pcix_82544 &&
2870 !((unsigned long)(skb->data + offset + size - 1) & 4) &&
2871 size > 4))
2872 size -= 4;
2873
2874 buffer_info->length = size;
2875 /* set time_stamp *before* dma to help avoid a possible race */
2876 buffer_info->time_stamp = jiffies;
2877 buffer_info->mapped_as_page = false;
2878 buffer_info->dma = dma_map_single(&pdev->dev,
2879 skb->data + offset,
2880 size, DMA_TO_DEVICE);
2881 if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2882 goto dma_error;
2883 buffer_info->next_to_watch = i;
2884
2885 len -= size;
2886 offset += size;
2887 count++;
2888 if (len) {
2889 i++;
2890 if (unlikely(i == tx_ring->count))
2891 i = 0;
2892 }
2893 }
2894
2895 for (f = 0; f < nr_frags; f++) {
2896 const skb_frag_t *frag = &skb_shinfo(skb)->frags[f];
2897
2898 len = skb_frag_size(frag);
2899 offset = 0;
2900
2901 while (len) {
2902 unsigned long bufend;
2903 i++;
2904 if (unlikely(i == tx_ring->count))
2905 i = 0;
2906
2907 buffer_info = &tx_ring->buffer_info[i];
2908 size = min(len, max_per_txd);
2909 /* Workaround for premature desc write-backs
2910 * in TSO mode. Append 4-byte sentinel desc
2911 */
2912 if (unlikely(mss && f == (nr_frags-1) &&
2913 size == len && size > 8))
2914 size -= 4;
2915 /* Workaround for potential 82544 hang in PCI-X.
2916 * Avoid terminating buffers within evenly-aligned
2917 * dwords.
2918 */
2919 bufend = (unsigned long)
2920 page_to_phys(skb_frag_page(frag));
2921 bufend += offset + size - 1;
2922 if (unlikely(adapter->pcix_82544 &&
2923 !(bufend & 4) &&
2924 size > 4))
2925 size -= 4;
2926
2927 buffer_info->length = size;
2928 buffer_info->time_stamp = jiffies;
2929 buffer_info->mapped_as_page = true;
2930 buffer_info->dma = skb_frag_dma_map(&pdev->dev, frag,
2931 offset, size, DMA_TO_DEVICE);
2932 if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2933 goto dma_error;
2934 buffer_info->next_to_watch = i;
2935
2936 len -= size;
2937 offset += size;
2938 count++;
2939 }
2940 }
2941
2942 segs = skb_shinfo(skb)->gso_segs ?: 1;
2943 /* multiply data chunks by size of headers */
2944 bytecount = ((segs - 1) * skb_headlen(skb)) + skb->len;
2945
2946 tx_ring->buffer_info[i].skb = skb;
2947 tx_ring->buffer_info[i].segs = segs;
2948 tx_ring->buffer_info[i].bytecount = bytecount;
2949 tx_ring->buffer_info[first].next_to_watch = i;
2950
2951 return count;
2952
2953dma_error:
2954 dev_err(&pdev->dev, "TX DMA map failed\n");
2955 buffer_info->dma = 0;
2956 if (count)
2957 count--;
2958
2959 while (count--) {
2960 if (i == 0)
2961 i += tx_ring->count;
2962 i--;
2963 buffer_info = &tx_ring->buffer_info[i];
2964 e1000_unmap_and_free_tx_resource(adapter, buffer_info, 0);
2965 }
2966
2967 return 0;
2968}
2969
2970static void e1000_tx_queue(struct e1000_adapter *adapter,
2971 struct e1000_tx_ring *tx_ring, int tx_flags,
2972 int count)
2973{
2974 struct e1000_tx_desc *tx_desc = NULL;
2975 struct e1000_tx_buffer *buffer_info;
2976 u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
2977 unsigned int i;
2978
2979 if (likely(tx_flags & E1000_TX_FLAGS_TSO)) {
2980 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
2981 E1000_TXD_CMD_TSE;
2982 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2983
2984 if (likely(tx_flags & E1000_TX_FLAGS_IPV4))
2985 txd_upper |= E1000_TXD_POPTS_IXSM << 8;
2986 }
2987
2988 if (likely(tx_flags & E1000_TX_FLAGS_CSUM)) {
2989 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
2990 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2991 }
2992
2993 if (unlikely(tx_flags & E1000_TX_FLAGS_VLAN)) {
2994 txd_lower |= E1000_TXD_CMD_VLE;
2995 txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
2996 }
2997
2998 if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
2999 txd_lower &= ~(E1000_TXD_CMD_IFCS);
3000
3001 i = tx_ring->next_to_use;
3002
3003 while (count--) {
3004 buffer_info = &tx_ring->buffer_info[i];
3005 tx_desc = E1000_TX_DESC(*tx_ring, i);
3006 tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
3007 tx_desc->lower.data =
3008 cpu_to_le32(txd_lower | buffer_info->length);
3009 tx_desc->upper.data = cpu_to_le32(txd_upper);
3010 if (unlikely(++i == tx_ring->count))
3011 i = 0;
3012 }
3013
3014 tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
3015
3016 /* txd_cmd re-enables FCS, so we'll re-disable it here as desired. */
3017 if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
3018 tx_desc->lower.data &= ~(cpu_to_le32(E1000_TXD_CMD_IFCS));
3019
3020 /* Force memory writes to complete before letting h/w
3021 * know there are new descriptors to fetch. (Only
3022 * applicable for weak-ordered memory model archs,
3023 * such as IA-64).
3024 */
3025 dma_wmb();
3026
3027 tx_ring->next_to_use = i;
3028}
3029
3030/* 82547 workaround to avoid controller hang in half-duplex environment.
3031 * The workaround is to avoid queuing a large packet that would span
3032 * the internal Tx FIFO ring boundary by notifying the stack to resend
3033 * the packet at a later time. This gives the Tx FIFO an opportunity to
3034 * flush all packets. When that occurs, we reset the Tx FIFO pointers
3035 * to the beginning of the Tx FIFO.
3036 */
3037
3038#define E1000_FIFO_HDR 0x10
3039#define E1000_82547_PAD_LEN 0x3E0
3040
3041static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
3042 struct sk_buff *skb)
3043{
3044 u32 fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head;
3045 u32 skb_fifo_len = skb->len + E1000_FIFO_HDR;
3046
3047 skb_fifo_len = ALIGN(skb_fifo_len, E1000_FIFO_HDR);
3048
3049 if (adapter->link_duplex != HALF_DUPLEX)
3050 goto no_fifo_stall_required;
3051
3052 if (atomic_read(&adapter->tx_fifo_stall))
3053 return 1;
3054
3055 if (skb_fifo_len >= (E1000_82547_PAD_LEN + fifo_space)) {
3056 atomic_set(&adapter->tx_fifo_stall, 1);
3057 return 1;
3058 }
3059
3060no_fifo_stall_required:
3061 adapter->tx_fifo_head += skb_fifo_len;
3062 if (adapter->tx_fifo_head >= adapter->tx_fifo_size)
3063 adapter->tx_fifo_head -= adapter->tx_fifo_size;
3064 return 0;
3065}
3066
3067static int __e1000_maybe_stop_tx(struct net_device *netdev, int size)
3068{
3069 struct e1000_adapter *adapter = netdev_priv(netdev);
3070 struct e1000_tx_ring *tx_ring = adapter->tx_ring;
3071
3072 netif_stop_queue(netdev);
3073 /* Herbert's original patch had:
3074 * smp_mb__after_netif_stop_queue();
3075 * but since that doesn't exist yet, just open code it.
3076 */
3077 smp_mb();
3078
3079 /* We need to check again in a case another CPU has just
3080 * made room available.
3081 */
3082 if (likely(E1000_DESC_UNUSED(tx_ring) < size))
3083 return -EBUSY;
3084
3085 /* A reprieve! */
3086 netif_start_queue(netdev);
3087 ++adapter->restart_queue;
3088 return 0;
3089}
3090
3091static int e1000_maybe_stop_tx(struct net_device *netdev,
3092 struct e1000_tx_ring *tx_ring, int size)
3093{
3094 if (likely(E1000_DESC_UNUSED(tx_ring) >= size))
3095 return 0;
3096 return __e1000_maybe_stop_tx(netdev, size);
3097}
3098
3099#define TXD_USE_COUNT(S, X) (((S) + ((1 << (X)) - 1)) >> (X))
3100static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
3101 struct net_device *netdev)
3102{
3103 struct e1000_adapter *adapter = netdev_priv(netdev);
3104 struct e1000_hw *hw = &adapter->hw;
3105 struct e1000_tx_ring *tx_ring;
3106 unsigned int first, max_per_txd = E1000_MAX_DATA_PER_TXD;
3107 unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
3108 unsigned int tx_flags = 0;
3109 unsigned int len = skb_headlen(skb);
3110 unsigned int nr_frags;
3111 unsigned int mss;
3112 int count = 0;
3113 int tso;
3114 unsigned int f;
3115 __be16 protocol = vlan_get_protocol(skb);
3116
3117 /* This goes back to the question of how to logically map a Tx queue
3118 * to a flow. Right now, performance is impacted slightly negatively
3119 * if using multiple Tx queues. If the stack breaks away from a
3120 * single qdisc implementation, we can look at this again.
3121 */
3122 tx_ring = adapter->tx_ring;
3123
3124 /* On PCI/PCI-X HW, if packet size is less than ETH_ZLEN,
3125 * packets may get corrupted during padding by HW.
3126 * To WA this issue, pad all small packets manually.
3127 */
3128 if (eth_skb_pad(skb))
3129 return NETDEV_TX_OK;
3130
3131 mss = skb_shinfo(skb)->gso_size;
3132 /* The controller does a simple calculation to
3133 * make sure there is enough room in the FIFO before
3134 * initiating the DMA for each buffer. The calc is:
3135 * 4 = ceil(buffer len/mss). To make sure we don't
3136 * overrun the FIFO, adjust the max buffer len if mss
3137 * drops.
3138 */
3139 if (mss) {
3140 u8 hdr_len;
3141 max_per_txd = min(mss << 2, max_per_txd);
3142 max_txd_pwr = fls(max_per_txd) - 1;
3143
3144 hdr_len = skb_tcp_all_headers(skb);
3145 if (skb->data_len && hdr_len == len) {
3146 switch (hw->mac_type) {
3147 case e1000_82544: {
3148 unsigned int pull_size;
3149
3150 /* Make sure we have room to chop off 4 bytes,
3151 * and that the end alignment will work out to
3152 * this hardware's requirements
3153 * NOTE: this is a TSO only workaround
3154 * if end byte alignment not correct move us
3155 * into the next dword
3156 */
3157 if ((unsigned long)(skb_tail_pointer(skb) - 1)
3158 & 4)
3159 break;
3160 pull_size = min((unsigned int)4, skb->data_len);
3161 if (!__pskb_pull_tail(skb, pull_size)) {
3162 e_err(drv, "__pskb_pull_tail "
3163 "failed.\n");
3164 dev_kfree_skb_any(skb);
3165 return NETDEV_TX_OK;
3166 }
3167 len = skb_headlen(skb);
3168 break;
3169 }
3170 default:
3171 /* do nothing */
3172 break;
3173 }
3174 }
3175 }
3176
3177 /* reserve a descriptor for the offload context */
3178 if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
3179 count++;
3180 count++;
3181
3182 /* Controller Erratum workaround */
3183 if (!skb->data_len && tx_ring->last_tx_tso && !skb_is_gso(skb))
3184 count++;
3185
3186 count += TXD_USE_COUNT(len, max_txd_pwr);
3187
3188 if (adapter->pcix_82544)
3189 count++;
3190
3191 /* work-around for errata 10 and it applies to all controllers
3192 * in PCI-X mode, so add one more descriptor to the count
3193 */
3194 if (unlikely((hw->bus_type == e1000_bus_type_pcix) &&
3195 (len > 2015)))
3196 count++;
3197
3198 nr_frags = skb_shinfo(skb)->nr_frags;
3199 for (f = 0; f < nr_frags; f++)
3200 count += TXD_USE_COUNT(skb_frag_size(&skb_shinfo(skb)->frags[f]),
3201 max_txd_pwr);
3202 if (adapter->pcix_82544)
3203 count += nr_frags;
3204
3205 /* need: count + 2 desc gap to keep tail from touching
3206 * head, otherwise try next time
3207 */
3208 if (unlikely(e1000_maybe_stop_tx(netdev, tx_ring, count + 2)))
3209 return NETDEV_TX_BUSY;
3210
3211 if (unlikely((hw->mac_type == e1000_82547) &&
3212 (e1000_82547_fifo_workaround(adapter, skb)))) {
3213 netif_stop_queue(netdev);
3214 if (!test_bit(__E1000_DOWN, &adapter->flags))
3215 schedule_delayed_work(&adapter->fifo_stall_task, 1);
3216 return NETDEV_TX_BUSY;
3217 }
3218
3219 if (skb_vlan_tag_present(skb)) {
3220 tx_flags |= E1000_TX_FLAGS_VLAN;
3221 tx_flags |= (skb_vlan_tag_get(skb) <<
3222 E1000_TX_FLAGS_VLAN_SHIFT);
3223 }
3224
3225 first = tx_ring->next_to_use;
3226
3227 tso = e1000_tso(adapter, tx_ring, skb, protocol);
3228 if (tso < 0) {
3229 dev_kfree_skb_any(skb);
3230 return NETDEV_TX_OK;
3231 }
3232
3233 if (likely(tso)) {
3234 if (likely(hw->mac_type != e1000_82544))
3235 tx_ring->last_tx_tso = true;
3236 tx_flags |= E1000_TX_FLAGS_TSO;
3237 } else if (likely(e1000_tx_csum(adapter, tx_ring, skb, protocol)))
3238 tx_flags |= E1000_TX_FLAGS_CSUM;
3239
3240 if (protocol == htons(ETH_P_IP))
3241 tx_flags |= E1000_TX_FLAGS_IPV4;
3242
3243 if (unlikely(skb->no_fcs))
3244 tx_flags |= E1000_TX_FLAGS_NO_FCS;
3245
3246 count = e1000_tx_map(adapter, tx_ring, skb, first, max_per_txd,
3247 nr_frags, mss);
3248
3249 if (count) {
3250 /* The descriptors needed is higher than other Intel drivers
3251 * due to a number of workarounds. The breakdown is below:
3252 * Data descriptors: MAX_SKB_FRAGS + 1
3253 * Context Descriptor: 1
3254 * Keep head from touching tail: 2
3255 * Workarounds: 3
3256 */
3257 int desc_needed = MAX_SKB_FRAGS + 7;
3258
3259 netdev_sent_queue(netdev, skb->len);
3260 skb_tx_timestamp(skb);
3261
3262 e1000_tx_queue(adapter, tx_ring, tx_flags, count);
3263
3264 /* 82544 potentially requires twice as many data descriptors
3265 * in order to guarantee buffers don't end on evenly-aligned
3266 * dwords
3267 */
3268 if (adapter->pcix_82544)
3269 desc_needed += MAX_SKB_FRAGS + 1;
3270
3271 /* Make sure there is space in the ring for the next send. */
3272 e1000_maybe_stop_tx(netdev, tx_ring, desc_needed);
3273
3274 if (!netdev_xmit_more() ||
3275 netif_xmit_stopped(netdev_get_tx_queue(netdev, 0))) {
3276 writel(tx_ring->next_to_use, hw->hw_addr + tx_ring->tdt);
3277 }
3278 } else {
3279 dev_kfree_skb_any(skb);
3280 tx_ring->buffer_info[first].time_stamp = 0;
3281 tx_ring->next_to_use = first;
3282 }
3283
3284 return NETDEV_TX_OK;
3285}
3286
3287#define NUM_REGS 38 /* 1 based count */
3288static void e1000_regdump(struct e1000_adapter *adapter)
3289{
3290 struct e1000_hw *hw = &adapter->hw;
3291 u32 regs[NUM_REGS];
3292 u32 *regs_buff = regs;
3293 int i = 0;
3294
3295 static const char * const reg_name[] = {
3296 "CTRL", "STATUS",
3297 "RCTL", "RDLEN", "RDH", "RDT", "RDTR",
3298 "TCTL", "TDBAL", "TDBAH", "TDLEN", "TDH", "TDT",
3299 "TIDV", "TXDCTL", "TADV", "TARC0",
3300 "TDBAL1", "TDBAH1", "TDLEN1", "TDH1", "TDT1",
3301 "TXDCTL1", "TARC1",
3302 "CTRL_EXT", "ERT", "RDBAL", "RDBAH",
3303 "TDFH", "TDFT", "TDFHS", "TDFTS", "TDFPC",
3304 "RDFH", "RDFT", "RDFHS", "RDFTS", "RDFPC"
3305 };
3306
3307 regs_buff[0] = er32(CTRL);
3308 regs_buff[1] = er32(STATUS);
3309
3310 regs_buff[2] = er32(RCTL);
3311 regs_buff[3] = er32(RDLEN);
3312 regs_buff[4] = er32(RDH);
3313 regs_buff[5] = er32(RDT);
3314 regs_buff[6] = er32(RDTR);
3315
3316 regs_buff[7] = er32(TCTL);
3317 regs_buff[8] = er32(TDBAL);
3318 regs_buff[9] = er32(TDBAH);
3319 regs_buff[10] = er32(TDLEN);
3320 regs_buff[11] = er32(TDH);
3321 regs_buff[12] = er32(TDT);
3322 regs_buff[13] = er32(TIDV);
3323 regs_buff[14] = er32(TXDCTL);
3324 regs_buff[15] = er32(TADV);
3325 regs_buff[16] = er32(TARC0);
3326
3327 regs_buff[17] = er32(TDBAL1);
3328 regs_buff[18] = er32(TDBAH1);
3329 regs_buff[19] = er32(TDLEN1);
3330 regs_buff[20] = er32(TDH1);
3331 regs_buff[21] = er32(TDT1);
3332 regs_buff[22] = er32(TXDCTL1);
3333 regs_buff[23] = er32(TARC1);
3334 regs_buff[24] = er32(CTRL_EXT);
3335 regs_buff[25] = er32(ERT);
3336 regs_buff[26] = er32(RDBAL0);
3337 regs_buff[27] = er32(RDBAH0);
3338 regs_buff[28] = er32(TDFH);
3339 regs_buff[29] = er32(TDFT);
3340 regs_buff[30] = er32(TDFHS);
3341 regs_buff[31] = er32(TDFTS);
3342 regs_buff[32] = er32(TDFPC);
3343 regs_buff[33] = er32(RDFH);
3344 regs_buff[34] = er32(RDFT);
3345 regs_buff[35] = er32(RDFHS);
3346 regs_buff[36] = er32(RDFTS);
3347 regs_buff[37] = er32(RDFPC);
3348
3349 pr_info("Register dump\n");
3350 for (i = 0; i < NUM_REGS; i++)
3351 pr_info("%-15s %08x\n", reg_name[i], regs_buff[i]);
3352}
3353
3354/*
3355 * e1000_dump: Print registers, tx ring and rx ring
3356 */
3357static void e1000_dump(struct e1000_adapter *adapter)
3358{
3359 /* this code doesn't handle multiple rings */
3360 struct e1000_tx_ring *tx_ring = adapter->tx_ring;
3361 struct e1000_rx_ring *rx_ring = adapter->rx_ring;
3362 int i;
3363
3364 if (!netif_msg_hw(adapter))
3365 return;
3366
3367 /* Print Registers */
3368 e1000_regdump(adapter);
3369
3370 /* transmit dump */
3371 pr_info("TX Desc ring0 dump\n");
3372
3373 /* Transmit Descriptor Formats - DEXT[29] is 0 (Legacy) or 1 (Extended)
3374 *
3375 * Legacy Transmit Descriptor
3376 * +--------------------------------------------------------------+
3377 * 0 | Buffer Address [63:0] (Reserved on Write Back) |
3378 * +--------------------------------------------------------------+
3379 * 8 | Special | CSS | Status | CMD | CSO | Length |
3380 * +--------------------------------------------------------------+
3381 * 63 48 47 36 35 32 31 24 23 16 15 0
3382 *
3383 * Extended Context Descriptor (DTYP=0x0) for TSO or checksum offload
3384 * 63 48 47 40 39 32 31 16 15 8 7 0
3385 * +----------------------------------------------------------------+
3386 * 0 | TUCSE | TUCS0 | TUCSS | IPCSE | IPCS0 | IPCSS |
3387 * +----------------------------------------------------------------+
3388 * 8 | MSS | HDRLEN | RSV | STA | TUCMD | DTYP | PAYLEN |
3389 * +----------------------------------------------------------------+
3390 * 63 48 47 40 39 36 35 32 31 24 23 20 19 0
3391 *
3392 * Extended Data Descriptor (DTYP=0x1)
3393 * +----------------------------------------------------------------+
3394 * 0 | Buffer Address [63:0] |
3395 * +----------------------------------------------------------------+
3396 * 8 | VLAN tag | POPTS | Rsvd | Status | Command | DTYP | DTALEN |
3397 * +----------------------------------------------------------------+
3398 * 63 48 47 40 39 36 35 32 31 24 23 20 19 0
3399 */
3400 pr_info("Tc[desc] [Ce CoCsIpceCoS] [MssHlRSCm0Plen] [bi->dma ] leng ntw timestmp bi->skb\n");
3401 pr_info("Td[desc] [address 63:0 ] [VlaPoRSCm1Dlen] [bi->dma ] leng ntw timestmp bi->skb\n");
3402
3403 if (!netif_msg_tx_done(adapter))
3404 goto rx_ring_summary;
3405
3406 for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
3407 struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*tx_ring, i);
3408 struct e1000_tx_buffer *buffer_info = &tx_ring->buffer_info[i];
3409 struct my_u { __le64 a; __le64 b; };
3410 struct my_u *u = (struct my_u *)tx_desc;
3411 const char *type;
3412
3413 if (i == tx_ring->next_to_use && i == tx_ring->next_to_clean)
3414 type = "NTC/U";
3415 else if (i == tx_ring->next_to_use)
3416 type = "NTU";
3417 else if (i == tx_ring->next_to_clean)
3418 type = "NTC";
3419 else
3420 type = "";
3421
3422 pr_info("T%c[0x%03X] %016llX %016llX %016llX %04X %3X %016llX %p %s\n",
3423 ((le64_to_cpu(u->b) & (1<<20)) ? 'd' : 'c'), i,
3424 le64_to_cpu(u->a), le64_to_cpu(u->b),
3425 (u64)buffer_info->dma, buffer_info->length,
3426 buffer_info->next_to_watch,
3427 (u64)buffer_info->time_stamp, buffer_info->skb, type);
3428 }
3429
3430rx_ring_summary:
3431 /* receive dump */
3432 pr_info("\nRX Desc ring dump\n");
3433
3434 /* Legacy Receive Descriptor Format
3435 *
3436 * +-----------------------------------------------------+
3437 * | Buffer Address [63:0] |
3438 * +-----------------------------------------------------+
3439 * | VLAN Tag | Errors | Status 0 | Packet csum | Length |
3440 * +-----------------------------------------------------+
3441 * 63 48 47 40 39 32 31 16 15 0
3442 */
3443 pr_info("R[desc] [address 63:0 ] [vl er S cks ln] [bi->dma ] [bi->skb]\n");
3444
3445 if (!netif_msg_rx_status(adapter))
3446 goto exit;
3447
3448 for (i = 0; rx_ring->desc && (i < rx_ring->count); i++) {
3449 struct e1000_rx_desc *rx_desc = E1000_RX_DESC(*rx_ring, i);
3450 struct e1000_rx_buffer *buffer_info = &rx_ring->buffer_info[i];
3451 struct my_u { __le64 a; __le64 b; };
3452 struct my_u *u = (struct my_u *)rx_desc;
3453 const char *type;
3454
3455 if (i == rx_ring->next_to_use)
3456 type = "NTU";
3457 else if (i == rx_ring->next_to_clean)
3458 type = "NTC";
3459 else
3460 type = "";
3461
3462 pr_info("R[0x%03X] %016llX %016llX %016llX %p %s\n",
3463 i, le64_to_cpu(u->a), le64_to_cpu(u->b),
3464 (u64)buffer_info->dma, buffer_info->rxbuf.data, type);
3465 } /* for */
3466
3467 /* dump the descriptor caches */
3468 /* rx */
3469 pr_info("Rx descriptor cache in 64bit format\n");
3470 for (i = 0x6000; i <= 0x63FF ; i += 0x10) {
3471 pr_info("R%04X: %08X|%08X %08X|%08X\n",
3472 i,
3473 readl(adapter->hw.hw_addr + i+4),
3474 readl(adapter->hw.hw_addr + i),
3475 readl(adapter->hw.hw_addr + i+12),
3476 readl(adapter->hw.hw_addr + i+8));
3477 }
3478 /* tx */
3479 pr_info("Tx descriptor cache in 64bit format\n");
3480 for (i = 0x7000; i <= 0x73FF ; i += 0x10) {
3481 pr_info("T%04X: %08X|%08X %08X|%08X\n",
3482 i,
3483 readl(adapter->hw.hw_addr + i+4),
3484 readl(adapter->hw.hw_addr + i),
3485 readl(adapter->hw.hw_addr + i+12),
3486 readl(adapter->hw.hw_addr + i+8));
3487 }
3488exit:
3489 return;
3490}
3491
3492/**
3493 * e1000_tx_timeout - Respond to a Tx Hang
3494 * @netdev: network interface device structure
3495 * @txqueue: number of the Tx queue that hung (unused)
3496 **/
3497static void e1000_tx_timeout(struct net_device *netdev, unsigned int __always_unused txqueue)
3498{
3499 struct e1000_adapter *adapter = netdev_priv(netdev);
3500
3501 /* Do the reset outside of interrupt context */
3502 adapter->tx_timeout_count++;
3503 schedule_work(&adapter->reset_task);
3504}
3505
3506static void e1000_reset_task(struct work_struct *work)
3507{
3508 struct e1000_adapter *adapter =
3509 container_of(work, struct e1000_adapter, reset_task);
3510
3511 e_err(drv, "Reset adapter\n");
3512 rtnl_lock();
3513 e1000_reinit_locked(adapter);
3514 rtnl_unlock();
3515}
3516
3517/**
3518 * e1000_change_mtu - Change the Maximum Transfer Unit
3519 * @netdev: network interface device structure
3520 * @new_mtu: new value for maximum frame size
3521 *
3522 * Returns 0 on success, negative on failure
3523 **/
3524static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
3525{
3526 struct e1000_adapter *adapter = netdev_priv(netdev);
3527 struct e1000_hw *hw = &adapter->hw;
3528 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
3529
3530 /* Adapter-specific max frame size limits. */
3531 switch (hw->mac_type) {
3532 case e1000_undefined ... e1000_82542_rev2_1:
3533 if (max_frame > (ETH_FRAME_LEN + ETH_FCS_LEN)) {
3534 e_err(probe, "Jumbo Frames not supported.\n");
3535 return -EINVAL;
3536 }
3537 break;
3538 default:
3539 /* Capable of supporting up to MAX_JUMBO_FRAME_SIZE limit. */
3540 break;
3541 }
3542
3543 while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
3544 msleep(1);
3545 /* e1000_down has a dependency on max_frame_size */
3546 hw->max_frame_size = max_frame;
3547 if (netif_running(netdev)) {
3548 /* prevent buffers from being reallocated */
3549 adapter->alloc_rx_buf = e1000_alloc_dummy_rx_buffers;
3550 e1000_down(adapter);
3551 }
3552
3553 /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
3554 * means we reserve 2 more, this pushes us to allocate from the next
3555 * larger slab size.
3556 * i.e. RXBUFFER_2048 --> size-4096 slab
3557 * however with the new *_jumbo_rx* routines, jumbo receives will use
3558 * fragmented skbs
3559 */
3560
3561 if (max_frame <= E1000_RXBUFFER_2048)
3562 adapter->rx_buffer_len = E1000_RXBUFFER_2048;
3563 else
3564#if (PAGE_SIZE >= E1000_RXBUFFER_16384)
3565 adapter->rx_buffer_len = E1000_RXBUFFER_16384;
3566#elif (PAGE_SIZE >= E1000_RXBUFFER_4096)
3567 adapter->rx_buffer_len = PAGE_SIZE;
3568#endif
3569
3570 /* adjust allocation if LPE protects us, and we aren't using SBP */
3571 if (!hw->tbi_compatibility_on &&
3572 ((max_frame == (ETH_FRAME_LEN + ETH_FCS_LEN)) ||
3573 (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE)))
3574 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
3575
3576 netdev_dbg(netdev, "changing MTU from %d to %d\n",
3577 netdev->mtu, new_mtu);
3578 WRITE_ONCE(netdev->mtu, new_mtu);
3579
3580 if (netif_running(netdev))
3581 e1000_up(adapter);
3582 else
3583 e1000_reset(adapter);
3584
3585 clear_bit(__E1000_RESETTING, &adapter->flags);
3586
3587 return 0;
3588}
3589
3590/**
3591 * e1000_update_stats - Update the board statistics counters
3592 * @adapter: board private structure
3593 **/
3594void e1000_update_stats(struct e1000_adapter *adapter)
3595{
3596 struct net_device *netdev = adapter->netdev;
3597 struct e1000_hw *hw = &adapter->hw;
3598 struct pci_dev *pdev = adapter->pdev;
3599 unsigned long flags;
3600 u16 phy_tmp;
3601
3602#define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
3603
3604 /* Prevent stats update while adapter is being reset, or if the pci
3605 * connection is down.
3606 */
3607 if (adapter->link_speed == 0)
3608 return;
3609 if (pci_channel_offline(pdev))
3610 return;
3611
3612 spin_lock_irqsave(&adapter->stats_lock, flags);
3613
3614 /* these counters are modified from e1000_tbi_adjust_stats,
3615 * called from the interrupt context, so they must only
3616 * be written while holding adapter->stats_lock
3617 */
3618
3619 adapter->stats.crcerrs += er32(CRCERRS);
3620 adapter->stats.gprc += er32(GPRC);
3621 adapter->stats.gorcl += er32(GORCL);
3622 adapter->stats.gorch += er32(GORCH);
3623 adapter->stats.bprc += er32(BPRC);
3624 adapter->stats.mprc += er32(MPRC);
3625 adapter->stats.roc += er32(ROC);
3626
3627 adapter->stats.prc64 += er32(PRC64);
3628 adapter->stats.prc127 += er32(PRC127);
3629 adapter->stats.prc255 += er32(PRC255);
3630 adapter->stats.prc511 += er32(PRC511);
3631 adapter->stats.prc1023 += er32(PRC1023);
3632 adapter->stats.prc1522 += er32(PRC1522);
3633
3634 adapter->stats.symerrs += er32(SYMERRS);
3635 adapter->stats.mpc += er32(MPC);
3636 adapter->stats.scc += er32(SCC);
3637 adapter->stats.ecol += er32(ECOL);
3638 adapter->stats.mcc += er32(MCC);
3639 adapter->stats.latecol += er32(LATECOL);
3640 adapter->stats.dc += er32(DC);
3641 adapter->stats.sec += er32(SEC);
3642 adapter->stats.rlec += er32(RLEC);
3643 adapter->stats.xonrxc += er32(XONRXC);
3644 adapter->stats.xontxc += er32(XONTXC);
3645 adapter->stats.xoffrxc += er32(XOFFRXC);
3646 adapter->stats.xofftxc += er32(XOFFTXC);
3647 adapter->stats.fcruc += er32(FCRUC);
3648 adapter->stats.gptc += er32(GPTC);
3649 adapter->stats.gotcl += er32(GOTCL);
3650 adapter->stats.gotch += er32(GOTCH);
3651 adapter->stats.rnbc += er32(RNBC);
3652 adapter->stats.ruc += er32(RUC);
3653 adapter->stats.rfc += er32(RFC);
3654 adapter->stats.rjc += er32(RJC);
3655 adapter->stats.torl += er32(TORL);
3656 adapter->stats.torh += er32(TORH);
3657 adapter->stats.totl += er32(TOTL);
3658 adapter->stats.toth += er32(TOTH);
3659 adapter->stats.tpr += er32(TPR);
3660
3661 adapter->stats.ptc64 += er32(PTC64);
3662 adapter->stats.ptc127 += er32(PTC127);
3663 adapter->stats.ptc255 += er32(PTC255);
3664 adapter->stats.ptc511 += er32(PTC511);
3665 adapter->stats.ptc1023 += er32(PTC1023);
3666 adapter->stats.ptc1522 += er32(PTC1522);
3667
3668 adapter->stats.mptc += er32(MPTC);
3669 adapter->stats.bptc += er32(BPTC);
3670
3671 /* used for adaptive IFS */
3672
3673 hw->tx_packet_delta = er32(TPT);
3674 adapter->stats.tpt += hw->tx_packet_delta;
3675 hw->collision_delta = er32(COLC);
3676 adapter->stats.colc += hw->collision_delta;
3677
3678 if (hw->mac_type >= e1000_82543) {
3679 adapter->stats.algnerrc += er32(ALGNERRC);
3680 adapter->stats.rxerrc += er32(RXERRC);
3681 adapter->stats.tncrs += er32(TNCRS);
3682 adapter->stats.cexterr += er32(CEXTERR);
3683 adapter->stats.tsctc += er32(TSCTC);
3684 adapter->stats.tsctfc += er32(TSCTFC);
3685 }
3686
3687 /* Fill out the OS statistics structure */
3688 netdev->stats.multicast = adapter->stats.mprc;
3689 netdev->stats.collisions = adapter->stats.colc;
3690
3691 /* Rx Errors */
3692
3693 /* RLEC on some newer hardware can be incorrect so build
3694 * our own version based on RUC and ROC
3695 */
3696 netdev->stats.rx_errors = adapter->stats.rxerrc +
3697 adapter->stats.crcerrs + adapter->stats.algnerrc +
3698 adapter->stats.ruc + adapter->stats.roc +
3699 adapter->stats.cexterr;
3700 adapter->stats.rlerrc = adapter->stats.ruc + adapter->stats.roc;
3701 netdev->stats.rx_length_errors = adapter->stats.rlerrc;
3702 netdev->stats.rx_crc_errors = adapter->stats.crcerrs;
3703 netdev->stats.rx_frame_errors = adapter->stats.algnerrc;
3704 netdev->stats.rx_missed_errors = adapter->stats.mpc;
3705
3706 /* Tx Errors */
3707 adapter->stats.txerrc = adapter->stats.ecol + adapter->stats.latecol;
3708 netdev->stats.tx_errors = adapter->stats.txerrc;
3709 netdev->stats.tx_aborted_errors = adapter->stats.ecol;
3710 netdev->stats.tx_window_errors = adapter->stats.latecol;
3711 netdev->stats.tx_carrier_errors = adapter->stats.tncrs;
3712 if (hw->bad_tx_carr_stats_fd &&
3713 adapter->link_duplex == FULL_DUPLEX) {
3714 netdev->stats.tx_carrier_errors = 0;
3715 adapter->stats.tncrs = 0;
3716 }
3717
3718 /* Tx Dropped needs to be maintained elsewhere */
3719
3720 /* Phy Stats */
3721 if (hw->media_type == e1000_media_type_copper) {
3722 if ((adapter->link_speed == SPEED_1000) &&
3723 (!e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
3724 phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
3725 adapter->phy_stats.idle_errors += phy_tmp;
3726 }
3727
3728 if ((hw->mac_type <= e1000_82546) &&
3729 (hw->phy_type == e1000_phy_m88) &&
3730 !e1000_read_phy_reg(hw, M88E1000_RX_ERR_CNTR, &phy_tmp))
3731 adapter->phy_stats.receive_errors += phy_tmp;
3732 }
3733
3734 /* Management Stats */
3735 if (hw->has_smbus) {
3736 adapter->stats.mgptc += er32(MGTPTC);
3737 adapter->stats.mgprc += er32(MGTPRC);
3738 adapter->stats.mgpdc += er32(MGTPDC);
3739 }
3740
3741 spin_unlock_irqrestore(&adapter->stats_lock, flags);
3742}
3743
3744/**
3745 * e1000_intr - Interrupt Handler
3746 * @irq: interrupt number
3747 * @data: pointer to a network interface device structure
3748 **/
3749static irqreturn_t e1000_intr(int irq, void *data)
3750{
3751 struct net_device *netdev = data;
3752 struct e1000_adapter *adapter = netdev_priv(netdev);
3753 struct e1000_hw *hw = &adapter->hw;
3754 u32 icr = er32(ICR);
3755
3756 if (unlikely((!icr)))
3757 return IRQ_NONE; /* Not our interrupt */
3758
3759 /* we might have caused the interrupt, but the above
3760 * read cleared it, and just in case the driver is
3761 * down there is nothing to do so return handled
3762 */
3763 if (unlikely(test_bit(__E1000_DOWN, &adapter->flags)))
3764 return IRQ_HANDLED;
3765
3766 if (unlikely(icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))) {
3767 hw->get_link_status = 1;
3768 /* guard against interrupt when we're going down */
3769 if (!test_bit(__E1000_DOWN, &adapter->flags))
3770 schedule_delayed_work(&adapter->watchdog_task, 1);
3771 }
3772
3773 /* disable interrupts, without the synchronize_irq bit */
3774 ew32(IMC, ~0);
3775 E1000_WRITE_FLUSH();
3776
3777 if (likely(napi_schedule_prep(&adapter->napi))) {
3778 adapter->total_tx_bytes = 0;
3779 adapter->total_tx_packets = 0;
3780 adapter->total_rx_bytes = 0;
3781 adapter->total_rx_packets = 0;
3782 __napi_schedule(&adapter->napi);
3783 } else {
3784 /* this really should not happen! if it does it is basically a
3785 * bug, but not a hard error, so enable ints and continue
3786 */
3787 if (!test_bit(__E1000_DOWN, &adapter->flags))
3788 e1000_irq_enable(adapter);
3789 }
3790
3791 return IRQ_HANDLED;
3792}
3793
3794/**
3795 * e1000_clean - NAPI Rx polling callback
3796 * @napi: napi struct containing references to driver info
3797 * @budget: budget given to driver for receive packets
3798 **/
3799static int e1000_clean(struct napi_struct *napi, int budget)
3800{
3801 struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter,
3802 napi);
3803 int tx_clean_complete = 0, work_done = 0;
3804
3805 tx_clean_complete = e1000_clean_tx_irq(adapter, &adapter->tx_ring[0]);
3806
3807 adapter->clean_rx(adapter, &adapter->rx_ring[0], &work_done, budget);
3808
3809 if (!tx_clean_complete || work_done == budget)
3810 return budget;
3811
3812 /* Exit the polling mode, but don't re-enable interrupts if stack might
3813 * poll us due to busy-polling
3814 */
3815 if (likely(napi_complete_done(napi, work_done))) {
3816 if (likely(adapter->itr_setting & 3))
3817 e1000_set_itr(adapter);
3818 if (!test_bit(__E1000_DOWN, &adapter->flags))
3819 e1000_irq_enable(adapter);
3820 }
3821
3822 return work_done;
3823}
3824
3825/**
3826 * e1000_clean_tx_irq - Reclaim resources after transmit completes
3827 * @adapter: board private structure
3828 * @tx_ring: ring to clean
3829 **/
3830static bool e1000_clean_tx_irq(struct e1000_adapter *adapter,
3831 struct e1000_tx_ring *tx_ring)
3832{
3833 struct e1000_hw *hw = &adapter->hw;
3834 struct net_device *netdev = adapter->netdev;
3835 struct e1000_tx_desc *tx_desc, *eop_desc;
3836 struct e1000_tx_buffer *buffer_info;
3837 unsigned int i, eop;
3838 unsigned int count = 0;
3839 unsigned int total_tx_bytes = 0, total_tx_packets = 0;
3840 unsigned int bytes_compl = 0, pkts_compl = 0;
3841
3842 i = tx_ring->next_to_clean;
3843 eop = tx_ring->buffer_info[i].next_to_watch;
3844 eop_desc = E1000_TX_DESC(*tx_ring, eop);
3845
3846 while ((eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) &&
3847 (count < tx_ring->count)) {
3848 bool cleaned = false;
3849 dma_rmb(); /* read buffer_info after eop_desc */
3850 for ( ; !cleaned; count++) {
3851 tx_desc = E1000_TX_DESC(*tx_ring, i);
3852 buffer_info = &tx_ring->buffer_info[i];
3853 cleaned = (i == eop);
3854
3855 if (cleaned) {
3856 total_tx_packets += buffer_info->segs;
3857 total_tx_bytes += buffer_info->bytecount;
3858 if (buffer_info->skb) {
3859 bytes_compl += buffer_info->skb->len;
3860 pkts_compl++;
3861 }
3862
3863 }
3864 e1000_unmap_and_free_tx_resource(adapter, buffer_info,
3865 64);
3866 tx_desc->upper.data = 0;
3867
3868 if (unlikely(++i == tx_ring->count))
3869 i = 0;
3870 }
3871
3872 eop = tx_ring->buffer_info[i].next_to_watch;
3873 eop_desc = E1000_TX_DESC(*tx_ring, eop);
3874 }
3875
3876 /* Synchronize with E1000_DESC_UNUSED called from e1000_xmit_frame,
3877 * which will reuse the cleaned buffers.
3878 */
3879 smp_store_release(&tx_ring->next_to_clean, i);
3880
3881 netdev_completed_queue(netdev, pkts_compl, bytes_compl);
3882
3883#define TX_WAKE_THRESHOLD 32
3884 if (unlikely(count && netif_carrier_ok(netdev) &&
3885 E1000_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD)) {
3886 /* Make sure that anybody stopping the queue after this
3887 * sees the new next_to_clean.
3888 */
3889 smp_mb();
3890
3891 if (netif_queue_stopped(netdev) &&
3892 !(test_bit(__E1000_DOWN, &adapter->flags))) {
3893 netif_wake_queue(netdev);
3894 ++adapter->restart_queue;
3895 }
3896 }
3897
3898 if (adapter->detect_tx_hung) {
3899 /* Detect a transmit hang in hardware, this serializes the
3900 * check with the clearing of time_stamp and movement of i
3901 */
3902 adapter->detect_tx_hung = false;
3903 if (tx_ring->buffer_info[eop].time_stamp &&
3904 time_after(jiffies, tx_ring->buffer_info[eop].time_stamp +
3905 (adapter->tx_timeout_factor * HZ)) &&
3906 !(er32(STATUS) & E1000_STATUS_TXOFF)) {
3907
3908 /* detected Tx unit hang */
3909 e_err(drv, "Detected Tx Unit Hang\n"
3910 " Tx Queue <%lu>\n"
3911 " TDH <%x>\n"
3912 " TDT <%x>\n"
3913 " next_to_use <%x>\n"
3914 " next_to_clean <%x>\n"
3915 "buffer_info[next_to_clean]\n"
3916 " time_stamp <%lx>\n"
3917 " next_to_watch <%x>\n"
3918 " jiffies <%lx>\n"
3919 " next_to_watch.status <%x>\n",
3920 (unsigned long)(tx_ring - adapter->tx_ring),
3921 readl(hw->hw_addr + tx_ring->tdh),
3922 readl(hw->hw_addr + tx_ring->tdt),
3923 tx_ring->next_to_use,
3924 tx_ring->next_to_clean,
3925 tx_ring->buffer_info[eop].time_stamp,
3926 eop,
3927 jiffies,
3928 eop_desc->upper.fields.status);
3929 e1000_dump(adapter);
3930 netif_stop_queue(netdev);
3931 }
3932 }
3933 adapter->total_tx_bytes += total_tx_bytes;
3934 adapter->total_tx_packets += total_tx_packets;
3935 netdev->stats.tx_bytes += total_tx_bytes;
3936 netdev->stats.tx_packets += total_tx_packets;
3937 return count < tx_ring->count;
3938}
3939
3940/**
3941 * e1000_rx_checksum - Receive Checksum Offload for 82543
3942 * @adapter: board private structure
3943 * @status_err: receive descriptor status and error fields
3944 * @csum: receive descriptor csum field
3945 * @skb: socket buffer with received data
3946 **/
3947static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
3948 u32 csum, struct sk_buff *skb)
3949{
3950 struct e1000_hw *hw = &adapter->hw;
3951 u16 status = (u16)status_err;
3952 u8 errors = (u8)(status_err >> 24);
3953
3954 skb_checksum_none_assert(skb);
3955
3956 /* 82543 or newer only */
3957 if (unlikely(hw->mac_type < e1000_82543))
3958 return;
3959 /* Ignore Checksum bit is set */
3960 if (unlikely(status & E1000_RXD_STAT_IXSM))
3961 return;
3962 /* TCP/UDP checksum error bit is set */
3963 if (unlikely(errors & E1000_RXD_ERR_TCPE)) {
3964 /* let the stack verify checksum errors */
3965 adapter->hw_csum_err++;
3966 return;
3967 }
3968 /* TCP/UDP Checksum has not been calculated */
3969 if (!(status & E1000_RXD_STAT_TCPCS))
3970 return;
3971
3972 /* It must be a TCP or UDP packet with a valid checksum */
3973 if (likely(status & E1000_RXD_STAT_TCPCS)) {
3974 /* TCP checksum is good */
3975 skb->ip_summed = CHECKSUM_UNNECESSARY;
3976 }
3977 adapter->hw_csum_good++;
3978}
3979
3980/**
3981 * e1000_consume_page - helper function for jumbo Rx path
3982 * @bi: software descriptor shadow data
3983 * @skb: skb being modified
3984 * @length: length of data being added
3985 **/
3986static void e1000_consume_page(struct e1000_rx_buffer *bi, struct sk_buff *skb,
3987 u16 length)
3988{
3989 bi->rxbuf.page = NULL;
3990 skb->len += length;
3991 skb->data_len += length;
3992 skb->truesize += PAGE_SIZE;
3993}
3994
3995/**
3996 * e1000_receive_skb - helper function to handle rx indications
3997 * @adapter: board private structure
3998 * @status: descriptor status field as written by hardware
3999 * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
4000 * @skb: pointer to sk_buff to be indicated to stack
4001 */
4002static void e1000_receive_skb(struct e1000_adapter *adapter, u8 status,
4003 __le16 vlan, struct sk_buff *skb)
4004{
4005 skb->protocol = eth_type_trans(skb, adapter->netdev);
4006
4007 if (status & E1000_RXD_STAT_VP) {
4008 u16 vid = le16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK;
4009
4010 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
4011 }
4012 napi_gro_receive(&adapter->napi, skb);
4013}
4014
4015/**
4016 * e1000_tbi_adjust_stats
4017 * @hw: Struct containing variables accessed by shared code
4018 * @stats: point to stats struct
4019 * @frame_len: The length of the frame in question
4020 * @mac_addr: The Ethernet destination address of the frame in question
4021 *
4022 * Adjusts the statistic counters when a frame is accepted by TBI_ACCEPT
4023 */
4024static void e1000_tbi_adjust_stats(struct e1000_hw *hw,
4025 struct e1000_hw_stats *stats,
4026 u32 frame_len, const u8 *mac_addr)
4027{
4028 u64 carry_bit;
4029
4030 /* First adjust the frame length. */
4031 frame_len--;
4032 /* We need to adjust the statistics counters, since the hardware
4033 * counters overcount this packet as a CRC error and undercount
4034 * the packet as a good packet
4035 */
4036 /* This packet should not be counted as a CRC error. */
4037 stats->crcerrs--;
4038 /* This packet does count as a Good Packet Received. */
4039 stats->gprc++;
4040
4041 /* Adjust the Good Octets received counters */
4042 carry_bit = 0x80000000 & stats->gorcl;
4043 stats->gorcl += frame_len;
4044 /* If the high bit of Gorcl (the low 32 bits of the Good Octets
4045 * Received Count) was one before the addition,
4046 * AND it is zero after, then we lost the carry out,
4047 * need to add one to Gorch (Good Octets Received Count High).
4048 * This could be simplified if all environments supported
4049 * 64-bit integers.
4050 */
4051 if (carry_bit && ((stats->gorcl & 0x80000000) == 0))
4052 stats->gorch++;
4053 /* Is this a broadcast or multicast? Check broadcast first,
4054 * since the test for a multicast frame will test positive on
4055 * a broadcast frame.
4056 */
4057 if (is_broadcast_ether_addr(mac_addr))
4058 stats->bprc++;
4059 else if (is_multicast_ether_addr(mac_addr))
4060 stats->mprc++;
4061
4062 if (frame_len == hw->max_frame_size) {
4063 /* In this case, the hardware has overcounted the number of
4064 * oversize frames.
4065 */
4066 if (stats->roc > 0)
4067 stats->roc--;
4068 }
4069
4070 /* Adjust the bin counters when the extra byte put the frame in the
4071 * wrong bin. Remember that the frame_len was adjusted above.
4072 */
4073 if (frame_len == 64) {
4074 stats->prc64++;
4075 stats->prc127--;
4076 } else if (frame_len == 127) {
4077 stats->prc127++;
4078 stats->prc255--;
4079 } else if (frame_len == 255) {
4080 stats->prc255++;
4081 stats->prc511--;
4082 } else if (frame_len == 511) {
4083 stats->prc511++;
4084 stats->prc1023--;
4085 } else if (frame_len == 1023) {
4086 stats->prc1023++;
4087 stats->prc1522--;
4088 } else if (frame_len == 1522) {
4089 stats->prc1522++;
4090 }
4091}
4092
4093static bool e1000_tbi_should_accept(struct e1000_adapter *adapter,
4094 u8 status, u8 errors,
4095 u32 length, const u8 *data)
4096{
4097 struct e1000_hw *hw = &adapter->hw;
4098 u8 last_byte = *(data + length - 1);
4099
4100 if (TBI_ACCEPT(hw, status, errors, length, last_byte)) {
4101 unsigned long irq_flags;
4102
4103 spin_lock_irqsave(&adapter->stats_lock, irq_flags);
4104 e1000_tbi_adjust_stats(hw, &adapter->stats, length, data);
4105 spin_unlock_irqrestore(&adapter->stats_lock, irq_flags);
4106
4107 return true;
4108 }
4109
4110 return false;
4111}
4112
4113static struct sk_buff *e1000_alloc_rx_skb(struct e1000_adapter *adapter,
4114 unsigned int bufsz)
4115{
4116 struct sk_buff *skb = napi_alloc_skb(&adapter->napi, bufsz);
4117
4118 if (unlikely(!skb))
4119 adapter->alloc_rx_buff_failed++;
4120 return skb;
4121}
4122
4123/**
4124 * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
4125 * @adapter: board private structure
4126 * @rx_ring: ring to clean
4127 * @work_done: amount of napi work completed this call
4128 * @work_to_do: max amount of work allowed for this call to do
4129 *
4130 * the return value indicates whether actual cleaning was done, there
4131 * is no guarantee that everything was cleaned
4132 */
4133static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter,
4134 struct e1000_rx_ring *rx_ring,
4135 int *work_done, int work_to_do)
4136{
4137 struct net_device *netdev = adapter->netdev;
4138 struct pci_dev *pdev = adapter->pdev;
4139 struct e1000_rx_desc *rx_desc, *next_rxd;
4140 struct e1000_rx_buffer *buffer_info, *next_buffer;
4141 u32 length;
4142 unsigned int i;
4143 int cleaned_count = 0;
4144 bool cleaned = false;
4145 unsigned int total_rx_bytes = 0, total_rx_packets = 0;
4146
4147 i = rx_ring->next_to_clean;
4148 rx_desc = E1000_RX_DESC(*rx_ring, i);
4149 buffer_info = &rx_ring->buffer_info[i];
4150
4151 while (rx_desc->status & E1000_RXD_STAT_DD) {
4152 struct sk_buff *skb;
4153 u8 status;
4154
4155 if (*work_done >= work_to_do)
4156 break;
4157 (*work_done)++;
4158 dma_rmb(); /* read descriptor and rx_buffer_info after status DD */
4159
4160 status = rx_desc->status;
4161
4162 if (++i == rx_ring->count)
4163 i = 0;
4164
4165 next_rxd = E1000_RX_DESC(*rx_ring, i);
4166 prefetch(next_rxd);
4167
4168 next_buffer = &rx_ring->buffer_info[i];
4169
4170 cleaned = true;
4171 cleaned_count++;
4172 dma_unmap_page(&pdev->dev, buffer_info->dma,
4173 adapter->rx_buffer_len, DMA_FROM_DEVICE);
4174 buffer_info->dma = 0;
4175
4176 length = le16_to_cpu(rx_desc->length);
4177
4178 /* errors is only valid for DD + EOP descriptors */
4179 if (unlikely((status & E1000_RXD_STAT_EOP) &&
4180 (rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK))) {
4181 u8 *mapped = page_address(buffer_info->rxbuf.page);
4182
4183 if (e1000_tbi_should_accept(adapter, status,
4184 rx_desc->errors,
4185 length, mapped)) {
4186 length--;
4187 } else if (netdev->features & NETIF_F_RXALL) {
4188 goto process_skb;
4189 } else {
4190 /* an error means any chain goes out the window
4191 * too
4192 */
4193 dev_kfree_skb(rx_ring->rx_skb_top);
4194 rx_ring->rx_skb_top = NULL;
4195 goto next_desc;
4196 }
4197 }
4198
4199#define rxtop rx_ring->rx_skb_top
4200process_skb:
4201 if (!(status & E1000_RXD_STAT_EOP)) {
4202 /* this descriptor is only the beginning (or middle) */
4203 if (!rxtop) {
4204 /* this is the beginning of a chain */
4205 rxtop = napi_get_frags(&adapter->napi);
4206 if (!rxtop)
4207 break;
4208
4209 skb_fill_page_desc(rxtop, 0,
4210 buffer_info->rxbuf.page,
4211 0, length);
4212 } else {
4213 /* this is the middle of a chain */
4214 skb_fill_page_desc(rxtop,
4215 skb_shinfo(rxtop)->nr_frags,
4216 buffer_info->rxbuf.page, 0, length);
4217 }
4218 e1000_consume_page(buffer_info, rxtop, length);
4219 goto next_desc;
4220 } else {
4221 if (rxtop) {
4222 /* end of the chain */
4223 skb_fill_page_desc(rxtop,
4224 skb_shinfo(rxtop)->nr_frags,
4225 buffer_info->rxbuf.page, 0, length);
4226 skb = rxtop;
4227 rxtop = NULL;
4228 e1000_consume_page(buffer_info, skb, length);
4229 } else {
4230 struct page *p;
4231 /* no chain, got EOP, this buf is the packet
4232 * copybreak to save the put_page/alloc_page
4233 */
4234 p = buffer_info->rxbuf.page;
4235 if (length <= copybreak) {
4236 if (likely(!(netdev->features & NETIF_F_RXFCS)))
4237 length -= 4;
4238 skb = e1000_alloc_rx_skb(adapter,
4239 length);
4240 if (!skb)
4241 break;
4242
4243 memcpy(skb_tail_pointer(skb),
4244 page_address(p), length);
4245
4246 /* re-use the page, so don't erase
4247 * buffer_info->rxbuf.page
4248 */
4249 skb_put(skb, length);
4250 e1000_rx_checksum(adapter,
4251 status | rx_desc->errors << 24,
4252 le16_to_cpu(rx_desc->csum), skb);
4253
4254 total_rx_bytes += skb->len;
4255 total_rx_packets++;
4256
4257 e1000_receive_skb(adapter, status,
4258 rx_desc->special, skb);
4259 goto next_desc;
4260 } else {
4261 skb = napi_get_frags(&adapter->napi);
4262 if (!skb) {
4263 adapter->alloc_rx_buff_failed++;
4264 break;
4265 }
4266 skb_fill_page_desc(skb, 0, p, 0,
4267 length);
4268 e1000_consume_page(buffer_info, skb,
4269 length);
4270 }
4271 }
4272 }
4273
4274 /* Receive Checksum Offload XXX recompute due to CRC strip? */
4275 e1000_rx_checksum(adapter,
4276 (u32)(status) |
4277 ((u32)(rx_desc->errors) << 24),
4278 le16_to_cpu(rx_desc->csum), skb);
4279
4280 total_rx_bytes += (skb->len - 4); /* don't count FCS */
4281 if (likely(!(netdev->features & NETIF_F_RXFCS)))
4282 pskb_trim(skb, skb->len - 4);
4283 total_rx_packets++;
4284
4285 if (status & E1000_RXD_STAT_VP) {
4286 __le16 vlan = rx_desc->special;
4287 u16 vid = le16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK;
4288
4289 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
4290 }
4291
4292 napi_gro_frags(&adapter->napi);
4293
4294next_desc:
4295 rx_desc->status = 0;
4296
4297 /* return some buffers to hardware, one at a time is too slow */
4298 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
4299 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4300 cleaned_count = 0;
4301 }
4302
4303 /* use prefetched values */
4304 rx_desc = next_rxd;
4305 buffer_info = next_buffer;
4306 }
4307 rx_ring->next_to_clean = i;
4308
4309 cleaned_count = E1000_DESC_UNUSED(rx_ring);
4310 if (cleaned_count)
4311 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4312
4313 adapter->total_rx_packets += total_rx_packets;
4314 adapter->total_rx_bytes += total_rx_bytes;
4315 netdev->stats.rx_bytes += total_rx_bytes;
4316 netdev->stats.rx_packets += total_rx_packets;
4317 return cleaned;
4318}
4319
4320/* this should improve performance for small packets with large amounts
4321 * of reassembly being done in the stack
4322 */
4323static struct sk_buff *e1000_copybreak(struct e1000_adapter *adapter,
4324 struct e1000_rx_buffer *buffer_info,
4325 u32 length, const void *data)
4326{
4327 struct sk_buff *skb;
4328
4329 if (length > copybreak)
4330 return NULL;
4331
4332 skb = e1000_alloc_rx_skb(adapter, length);
4333 if (!skb)
4334 return NULL;
4335
4336 dma_sync_single_for_cpu(&adapter->pdev->dev, buffer_info->dma,
4337 length, DMA_FROM_DEVICE);
4338
4339 skb_put_data(skb, data, length);
4340
4341 return skb;
4342}
4343
4344/**
4345 * e1000_clean_rx_irq - Send received data up the network stack; legacy
4346 * @adapter: board private structure
4347 * @rx_ring: ring to clean
4348 * @work_done: amount of napi work completed this call
4349 * @work_to_do: max amount of work allowed for this call to do
4350 */
4351static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
4352 struct e1000_rx_ring *rx_ring,
4353 int *work_done, int work_to_do)
4354{
4355 struct net_device *netdev = adapter->netdev;
4356 struct pci_dev *pdev = adapter->pdev;
4357 struct e1000_rx_desc *rx_desc, *next_rxd;
4358 struct e1000_rx_buffer *buffer_info, *next_buffer;
4359 u32 length;
4360 unsigned int i;
4361 int cleaned_count = 0;
4362 bool cleaned = false;
4363 unsigned int total_rx_bytes = 0, total_rx_packets = 0;
4364
4365 i = rx_ring->next_to_clean;
4366 rx_desc = E1000_RX_DESC(*rx_ring, i);
4367 buffer_info = &rx_ring->buffer_info[i];
4368
4369 while (rx_desc->status & E1000_RXD_STAT_DD) {
4370 struct sk_buff *skb;
4371 u8 *data;
4372 u8 status;
4373
4374 if (*work_done >= work_to_do)
4375 break;
4376 (*work_done)++;
4377 dma_rmb(); /* read descriptor and rx_buffer_info after status DD */
4378
4379 status = rx_desc->status;
4380 length = le16_to_cpu(rx_desc->length);
4381
4382 data = buffer_info->rxbuf.data;
4383 prefetch(data);
4384 skb = e1000_copybreak(adapter, buffer_info, length, data);
4385 if (!skb) {
4386 unsigned int frag_len = e1000_frag_len(adapter);
4387
4388 skb = napi_build_skb(data - E1000_HEADROOM, frag_len);
4389 if (!skb) {
4390 adapter->alloc_rx_buff_failed++;
4391 break;
4392 }
4393
4394 skb_reserve(skb, E1000_HEADROOM);
4395 dma_unmap_single(&pdev->dev, buffer_info->dma,
4396 adapter->rx_buffer_len,
4397 DMA_FROM_DEVICE);
4398 buffer_info->dma = 0;
4399 buffer_info->rxbuf.data = NULL;
4400 }
4401
4402 if (++i == rx_ring->count)
4403 i = 0;
4404
4405 next_rxd = E1000_RX_DESC(*rx_ring, i);
4406 prefetch(next_rxd);
4407
4408 next_buffer = &rx_ring->buffer_info[i];
4409
4410 cleaned = true;
4411 cleaned_count++;
4412
4413 /* !EOP means multiple descriptors were used to store a single
4414 * packet, if thats the case we need to toss it. In fact, we
4415 * to toss every packet with the EOP bit clear and the next
4416 * frame that _does_ have the EOP bit set, as it is by
4417 * definition only a frame fragment
4418 */
4419 if (unlikely(!(status & E1000_RXD_STAT_EOP)))
4420 adapter->discarding = true;
4421
4422 if (adapter->discarding) {
4423 /* All receives must fit into a single buffer */
4424 netdev_dbg(netdev, "Receive packet consumed multiple buffers\n");
4425 dev_kfree_skb(skb);
4426 if (status & E1000_RXD_STAT_EOP)
4427 adapter->discarding = false;
4428 goto next_desc;
4429 }
4430
4431 if (unlikely(rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK)) {
4432 if (e1000_tbi_should_accept(adapter, status,
4433 rx_desc->errors,
4434 length, data)) {
4435 length--;
4436 } else if (netdev->features & NETIF_F_RXALL) {
4437 goto process_skb;
4438 } else {
4439 dev_kfree_skb(skb);
4440 goto next_desc;
4441 }
4442 }
4443
4444process_skb:
4445 total_rx_bytes += (length - 4); /* don't count FCS */
4446 total_rx_packets++;
4447
4448 if (likely(!(netdev->features & NETIF_F_RXFCS)))
4449 /* adjust length to remove Ethernet CRC, this must be
4450 * done after the TBI_ACCEPT workaround above
4451 */
4452 length -= 4;
4453
4454 if (buffer_info->rxbuf.data == NULL)
4455 skb_put(skb, length);
4456 else /* copybreak skb */
4457 skb_trim(skb, length);
4458
4459 /* Receive Checksum Offload */
4460 e1000_rx_checksum(adapter,
4461 (u32)(status) |
4462 ((u32)(rx_desc->errors) << 24),
4463 le16_to_cpu(rx_desc->csum), skb);
4464
4465 e1000_receive_skb(adapter, status, rx_desc->special, skb);
4466
4467next_desc:
4468 rx_desc->status = 0;
4469
4470 /* return some buffers to hardware, one at a time is too slow */
4471 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
4472 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4473 cleaned_count = 0;
4474 }
4475
4476 /* use prefetched values */
4477 rx_desc = next_rxd;
4478 buffer_info = next_buffer;
4479 }
4480 rx_ring->next_to_clean = i;
4481
4482 cleaned_count = E1000_DESC_UNUSED(rx_ring);
4483 if (cleaned_count)
4484 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4485
4486 adapter->total_rx_packets += total_rx_packets;
4487 adapter->total_rx_bytes += total_rx_bytes;
4488 netdev->stats.rx_bytes += total_rx_bytes;
4489 netdev->stats.rx_packets += total_rx_packets;
4490 return cleaned;
4491}
4492
4493/**
4494 * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
4495 * @adapter: address of board private structure
4496 * @rx_ring: pointer to receive ring structure
4497 * @cleaned_count: number of buffers to allocate this pass
4498 **/
4499static void
4500e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter,
4501 struct e1000_rx_ring *rx_ring, int cleaned_count)
4502{
4503 struct pci_dev *pdev = adapter->pdev;
4504 struct e1000_rx_desc *rx_desc;
4505 struct e1000_rx_buffer *buffer_info;
4506 unsigned int i;
4507
4508 i = rx_ring->next_to_use;
4509 buffer_info = &rx_ring->buffer_info[i];
4510
4511 while (cleaned_count--) {
4512 /* allocate a new page if necessary */
4513 if (!buffer_info->rxbuf.page) {
4514 buffer_info->rxbuf.page = alloc_page(GFP_ATOMIC);
4515 if (unlikely(!buffer_info->rxbuf.page)) {
4516 adapter->alloc_rx_buff_failed++;
4517 break;
4518 }
4519 }
4520
4521 if (!buffer_info->dma) {
4522 buffer_info->dma = dma_map_page(&pdev->dev,
4523 buffer_info->rxbuf.page, 0,
4524 adapter->rx_buffer_len,
4525 DMA_FROM_DEVICE);
4526 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
4527 put_page(buffer_info->rxbuf.page);
4528 buffer_info->rxbuf.page = NULL;
4529 buffer_info->dma = 0;
4530 adapter->alloc_rx_buff_failed++;
4531 break;
4532 }
4533 }
4534
4535 rx_desc = E1000_RX_DESC(*rx_ring, i);
4536 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4537
4538 if (unlikely(++i == rx_ring->count))
4539 i = 0;
4540 buffer_info = &rx_ring->buffer_info[i];
4541 }
4542
4543 if (likely(rx_ring->next_to_use != i)) {
4544 rx_ring->next_to_use = i;
4545 if (unlikely(i-- == 0))
4546 i = (rx_ring->count - 1);
4547
4548 /* Force memory writes to complete before letting h/w
4549 * know there are new descriptors to fetch. (Only
4550 * applicable for weak-ordered memory model archs,
4551 * such as IA-64).
4552 */
4553 dma_wmb();
4554 writel(i, adapter->hw.hw_addr + rx_ring->rdt);
4555 }
4556}
4557
4558/**
4559 * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
4560 * @adapter: address of board private structure
4561 * @rx_ring: pointer to ring struct
4562 * @cleaned_count: number of new Rx buffers to try to allocate
4563 **/
4564static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
4565 struct e1000_rx_ring *rx_ring,
4566 int cleaned_count)
4567{
4568 struct e1000_hw *hw = &adapter->hw;
4569 struct pci_dev *pdev = adapter->pdev;
4570 struct e1000_rx_desc *rx_desc;
4571 struct e1000_rx_buffer *buffer_info;
4572 unsigned int i;
4573 unsigned int bufsz = adapter->rx_buffer_len;
4574
4575 i = rx_ring->next_to_use;
4576 buffer_info = &rx_ring->buffer_info[i];
4577
4578 while (cleaned_count--) {
4579 void *data;
4580
4581 if (buffer_info->rxbuf.data)
4582 goto skip;
4583
4584 data = e1000_alloc_frag(adapter);
4585 if (!data) {
4586 /* Better luck next round */
4587 adapter->alloc_rx_buff_failed++;
4588 break;
4589 }
4590
4591 /* Fix for errata 23, can't cross 64kB boundary */
4592 if (!e1000_check_64k_bound(adapter, data, bufsz)) {
4593 void *olddata = data;
4594 e_err(rx_err, "skb align check failed: %u bytes at "
4595 "%p\n", bufsz, data);
4596 /* Try again, without freeing the previous */
4597 data = e1000_alloc_frag(adapter);
4598 /* Failed allocation, critical failure */
4599 if (!data) {
4600 skb_free_frag(olddata);
4601 adapter->alloc_rx_buff_failed++;
4602 break;
4603 }
4604
4605 if (!e1000_check_64k_bound(adapter, data, bufsz)) {
4606 /* give up */
4607 skb_free_frag(data);
4608 skb_free_frag(olddata);
4609 adapter->alloc_rx_buff_failed++;
4610 break;
4611 }
4612
4613 /* Use new allocation */
4614 skb_free_frag(olddata);
4615 }
4616 buffer_info->dma = dma_map_single(&pdev->dev,
4617 data,
4618 adapter->rx_buffer_len,
4619 DMA_FROM_DEVICE);
4620 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
4621 skb_free_frag(data);
4622 buffer_info->dma = 0;
4623 adapter->alloc_rx_buff_failed++;
4624 break;
4625 }
4626
4627 /* XXX if it was allocated cleanly it will never map to a
4628 * boundary crossing
4629 */
4630
4631 /* Fix for errata 23, can't cross 64kB boundary */
4632 if (!e1000_check_64k_bound(adapter,
4633 (void *)(unsigned long)buffer_info->dma,
4634 adapter->rx_buffer_len)) {
4635 e_err(rx_err, "dma align check failed: %u bytes at "
4636 "%p\n", adapter->rx_buffer_len,
4637 (void *)(unsigned long)buffer_info->dma);
4638
4639 dma_unmap_single(&pdev->dev, buffer_info->dma,
4640 adapter->rx_buffer_len,
4641 DMA_FROM_DEVICE);
4642
4643 skb_free_frag(data);
4644 buffer_info->rxbuf.data = NULL;
4645 buffer_info->dma = 0;
4646
4647 adapter->alloc_rx_buff_failed++;
4648 break;
4649 }
4650 buffer_info->rxbuf.data = data;
4651 skip:
4652 rx_desc = E1000_RX_DESC(*rx_ring, i);
4653 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4654
4655 if (unlikely(++i == rx_ring->count))
4656 i = 0;
4657 buffer_info = &rx_ring->buffer_info[i];
4658 }
4659
4660 if (likely(rx_ring->next_to_use != i)) {
4661 rx_ring->next_to_use = i;
4662 if (unlikely(i-- == 0))
4663 i = (rx_ring->count - 1);
4664
4665 /* Force memory writes to complete before letting h/w
4666 * know there are new descriptors to fetch. (Only
4667 * applicable for weak-ordered memory model archs,
4668 * such as IA-64).
4669 */
4670 dma_wmb();
4671 writel(i, hw->hw_addr + rx_ring->rdt);
4672 }
4673}
4674
4675/**
4676 * e1000_smartspeed - Workaround for SmartSpeed on 82541 and 82547 controllers.
4677 * @adapter: address of board private structure
4678 **/
4679static void e1000_smartspeed(struct e1000_adapter *adapter)
4680{
4681 struct e1000_hw *hw = &adapter->hw;
4682 u16 phy_status;
4683 u16 phy_ctrl;
4684
4685 if ((hw->phy_type != e1000_phy_igp) || !hw->autoneg ||
4686 !(hw->autoneg_advertised & ADVERTISE_1000_FULL))
4687 return;
4688
4689 if (adapter->smartspeed == 0) {
4690 /* If Master/Slave config fault is asserted twice,
4691 * we assume back-to-back
4692 */
4693 e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
4694 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT))
4695 return;
4696 e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
4697 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT))
4698 return;
4699 e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
4700 if (phy_ctrl & CR_1000T_MS_ENABLE) {
4701 phy_ctrl &= ~CR_1000T_MS_ENABLE;
4702 e1000_write_phy_reg(hw, PHY_1000T_CTRL,
4703 phy_ctrl);
4704 adapter->smartspeed++;
4705 if (!e1000_phy_setup_autoneg(hw) &&
4706 !e1000_read_phy_reg(hw, PHY_CTRL,
4707 &phy_ctrl)) {
4708 phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4709 MII_CR_RESTART_AUTO_NEG);
4710 e1000_write_phy_reg(hw, PHY_CTRL,
4711 phy_ctrl);
4712 }
4713 }
4714 return;
4715 } else if (adapter->smartspeed == E1000_SMARTSPEED_DOWNSHIFT) {
4716 /* If still no link, perhaps using 2/3 pair cable */
4717 e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
4718 phy_ctrl |= CR_1000T_MS_ENABLE;
4719 e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_ctrl);
4720 if (!e1000_phy_setup_autoneg(hw) &&
4721 !e1000_read_phy_reg(hw, PHY_CTRL, &phy_ctrl)) {
4722 phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4723 MII_CR_RESTART_AUTO_NEG);
4724 e1000_write_phy_reg(hw, PHY_CTRL, phy_ctrl);
4725 }
4726 }
4727 /* Restart process after E1000_SMARTSPEED_MAX iterations */
4728 if (adapter->smartspeed++ == E1000_SMARTSPEED_MAX)
4729 adapter->smartspeed = 0;
4730}
4731
4732/**
4733 * e1000_ioctl - handle ioctl calls
4734 * @netdev: pointer to our netdev
4735 * @ifr: pointer to interface request structure
4736 * @cmd: ioctl data
4737 **/
4738static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4739{
4740 switch (cmd) {
4741 case SIOCGMIIPHY:
4742 case SIOCGMIIREG:
4743 case SIOCSMIIREG:
4744 return e1000_mii_ioctl(netdev, ifr, cmd);
4745 default:
4746 return -EOPNOTSUPP;
4747 }
4748}
4749
4750/**
4751 * e1000_mii_ioctl -
4752 * @netdev: pointer to our netdev
4753 * @ifr: pointer to interface request structure
4754 * @cmd: ioctl data
4755 **/
4756static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
4757 int cmd)
4758{
4759 struct e1000_adapter *adapter = netdev_priv(netdev);
4760 struct e1000_hw *hw = &adapter->hw;
4761 struct mii_ioctl_data *data = if_mii(ifr);
4762 int retval;
4763 u16 mii_reg;
4764 unsigned long flags;
4765
4766 if (hw->media_type != e1000_media_type_copper)
4767 return -EOPNOTSUPP;
4768
4769 switch (cmd) {
4770 case SIOCGMIIPHY:
4771 data->phy_id = hw->phy_addr;
4772 break;
4773 case SIOCGMIIREG:
4774 spin_lock_irqsave(&adapter->stats_lock, flags);
4775 if (e1000_read_phy_reg(hw, data->reg_num & 0x1F,
4776 &data->val_out)) {
4777 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4778 return -EIO;
4779 }
4780 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4781 break;
4782 case SIOCSMIIREG:
4783 if (data->reg_num & ~(0x1F))
4784 return -EFAULT;
4785 mii_reg = data->val_in;
4786 spin_lock_irqsave(&adapter->stats_lock, flags);
4787 if (e1000_write_phy_reg(hw, data->reg_num,
4788 mii_reg)) {
4789 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4790 return -EIO;
4791 }
4792 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4793 if (hw->media_type == e1000_media_type_copper) {
4794 switch (data->reg_num) {
4795 case PHY_CTRL:
4796 if (mii_reg & MII_CR_POWER_DOWN)
4797 break;
4798 if (mii_reg & MII_CR_AUTO_NEG_EN) {
4799 hw->autoneg = 1;
4800 hw->autoneg_advertised = 0x2F;
4801 } else {
4802 u32 speed;
4803 if (mii_reg & 0x40)
4804 speed = SPEED_1000;
4805 else if (mii_reg & 0x2000)
4806 speed = SPEED_100;
4807 else
4808 speed = SPEED_10;
4809 retval = e1000_set_spd_dplx(
4810 adapter, speed,
4811 ((mii_reg & 0x100)
4812 ? DUPLEX_FULL :
4813 DUPLEX_HALF));
4814 if (retval)
4815 return retval;
4816 }
4817 if (netif_running(adapter->netdev))
4818 e1000_reinit_locked(adapter);
4819 else
4820 e1000_reset(adapter);
4821 break;
4822 case M88E1000_PHY_SPEC_CTRL:
4823 case M88E1000_EXT_PHY_SPEC_CTRL:
4824 if (e1000_phy_reset(hw))
4825 return -EIO;
4826 break;
4827 }
4828 } else {
4829 switch (data->reg_num) {
4830 case PHY_CTRL:
4831 if (mii_reg & MII_CR_POWER_DOWN)
4832 break;
4833 if (netif_running(adapter->netdev))
4834 e1000_reinit_locked(adapter);
4835 else
4836 e1000_reset(adapter);
4837 break;
4838 }
4839 }
4840 break;
4841 default:
4842 return -EOPNOTSUPP;
4843 }
4844 return E1000_SUCCESS;
4845}
4846
4847void e1000_pci_set_mwi(struct e1000_hw *hw)
4848{
4849 struct e1000_adapter *adapter = hw->back;
4850 int ret_val = pci_set_mwi(adapter->pdev);
4851
4852 if (ret_val)
4853 e_err(probe, "Error in setting MWI\n");
4854}
4855
4856void e1000_pci_clear_mwi(struct e1000_hw *hw)
4857{
4858 struct e1000_adapter *adapter = hw->back;
4859
4860 pci_clear_mwi(adapter->pdev);
4861}
4862
4863int e1000_pcix_get_mmrbc(struct e1000_hw *hw)
4864{
4865 struct e1000_adapter *adapter = hw->back;
4866 return pcix_get_mmrbc(adapter->pdev);
4867}
4868
4869void e1000_pcix_set_mmrbc(struct e1000_hw *hw, int mmrbc)
4870{
4871 struct e1000_adapter *adapter = hw->back;
4872 pcix_set_mmrbc(adapter->pdev, mmrbc);
4873}
4874
4875void e1000_io_write(struct e1000_hw *hw, unsigned long port, u32 value)
4876{
4877 outl(value, port);
4878}
4879
4880static bool e1000_vlan_used(struct e1000_adapter *adapter)
4881{
4882 u16 vid;
4883
4884 for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
4885 return true;
4886 return false;
4887}
4888
4889static void __e1000_vlan_mode(struct e1000_adapter *adapter,
4890 netdev_features_t features)
4891{
4892 struct e1000_hw *hw = &adapter->hw;
4893 u32 ctrl;
4894
4895 ctrl = er32(CTRL);
4896 if (features & NETIF_F_HW_VLAN_CTAG_RX) {
4897 /* enable VLAN tag insert/strip */
4898 ctrl |= E1000_CTRL_VME;
4899 } else {
4900 /* disable VLAN tag insert/strip */
4901 ctrl &= ~E1000_CTRL_VME;
4902 }
4903 ew32(CTRL, ctrl);
4904}
4905static void e1000_vlan_filter_on_off(struct e1000_adapter *adapter,
4906 bool filter_on)
4907{
4908 struct e1000_hw *hw = &adapter->hw;
4909 u32 rctl;
4910
4911 if (!test_bit(__E1000_DOWN, &adapter->flags))
4912 e1000_irq_disable(adapter);
4913
4914 __e1000_vlan_mode(adapter, adapter->netdev->features);
4915 if (filter_on) {
4916 /* enable VLAN receive filtering */
4917 rctl = er32(RCTL);
4918 rctl &= ~E1000_RCTL_CFIEN;
4919 if (!(adapter->netdev->flags & IFF_PROMISC))
4920 rctl |= E1000_RCTL_VFE;
4921 ew32(RCTL, rctl);
4922 e1000_update_mng_vlan(adapter);
4923 } else {
4924 /* disable VLAN receive filtering */
4925 rctl = er32(RCTL);
4926 rctl &= ~E1000_RCTL_VFE;
4927 ew32(RCTL, rctl);
4928 }
4929
4930 if (!test_bit(__E1000_DOWN, &adapter->flags))
4931 e1000_irq_enable(adapter);
4932}
4933
4934static void e1000_vlan_mode(struct net_device *netdev,
4935 netdev_features_t features)
4936{
4937 struct e1000_adapter *adapter = netdev_priv(netdev);
4938
4939 if (!test_bit(__E1000_DOWN, &adapter->flags))
4940 e1000_irq_disable(adapter);
4941
4942 __e1000_vlan_mode(adapter, features);
4943
4944 if (!test_bit(__E1000_DOWN, &adapter->flags))
4945 e1000_irq_enable(adapter);
4946}
4947
4948static int e1000_vlan_rx_add_vid(struct net_device *netdev,
4949 __be16 proto, u16 vid)
4950{
4951 struct e1000_adapter *adapter = netdev_priv(netdev);
4952 struct e1000_hw *hw = &adapter->hw;
4953 u32 vfta, index;
4954
4955 if ((hw->mng_cookie.status &
4956 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
4957 (vid == adapter->mng_vlan_id))
4958 return 0;
4959
4960 if (!e1000_vlan_used(adapter))
4961 e1000_vlan_filter_on_off(adapter, true);
4962
4963 /* add VID to filter table */
4964 index = (vid >> 5) & 0x7F;
4965 vfta = E1000_READ_REG_ARRAY(hw, VFTA, index);
4966 vfta |= (1 << (vid & 0x1F));
4967 e1000_write_vfta(hw, index, vfta);
4968
4969 set_bit(vid, adapter->active_vlans);
4970
4971 return 0;
4972}
4973
4974static int e1000_vlan_rx_kill_vid(struct net_device *netdev,
4975 __be16 proto, u16 vid)
4976{
4977 struct e1000_adapter *adapter = netdev_priv(netdev);
4978 struct e1000_hw *hw = &adapter->hw;
4979 u32 vfta, index;
4980
4981 if (!test_bit(__E1000_DOWN, &adapter->flags))
4982 e1000_irq_disable(adapter);
4983 if (!test_bit(__E1000_DOWN, &adapter->flags))
4984 e1000_irq_enable(adapter);
4985
4986 /* remove VID from filter table */
4987 index = (vid >> 5) & 0x7F;
4988 vfta = E1000_READ_REG_ARRAY(hw, VFTA, index);
4989 vfta &= ~(1 << (vid & 0x1F));
4990 e1000_write_vfta(hw, index, vfta);
4991
4992 clear_bit(vid, adapter->active_vlans);
4993
4994 if (!e1000_vlan_used(adapter))
4995 e1000_vlan_filter_on_off(adapter, false);
4996
4997 return 0;
4998}
4999
5000static void e1000_restore_vlan(struct e1000_adapter *adapter)
5001{
5002 u16 vid;
5003
5004 if (!e1000_vlan_used(adapter))
5005 return;
5006
5007 e1000_vlan_filter_on_off(adapter, true);
5008 for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
5009 e1000_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
5010}
5011
5012int e1000_set_spd_dplx(struct e1000_adapter *adapter, u32 spd, u8 dplx)
5013{
5014 struct e1000_hw *hw = &adapter->hw;
5015
5016 hw->autoneg = 0;
5017
5018 /* Make sure dplx is at most 1 bit and lsb of speed is not set
5019 * for the switch() below to work
5020 */
5021 if ((spd & 1) || (dplx & ~1))
5022 goto err_inval;
5023
5024 /* Fiber NICs only allow 1000 gbps Full duplex */
5025 if ((hw->media_type == e1000_media_type_fiber) &&
5026 spd != SPEED_1000 &&
5027 dplx != DUPLEX_FULL)
5028 goto err_inval;
5029
5030 switch (spd + dplx) {
5031 case SPEED_10 + DUPLEX_HALF:
5032 hw->forced_speed_duplex = e1000_10_half;
5033 break;
5034 case SPEED_10 + DUPLEX_FULL:
5035 hw->forced_speed_duplex = e1000_10_full;
5036 break;
5037 case SPEED_100 + DUPLEX_HALF:
5038 hw->forced_speed_duplex = e1000_100_half;
5039 break;
5040 case SPEED_100 + DUPLEX_FULL:
5041 hw->forced_speed_duplex = e1000_100_full;
5042 break;
5043 case SPEED_1000 + DUPLEX_FULL:
5044 hw->autoneg = 1;
5045 hw->autoneg_advertised = ADVERTISE_1000_FULL;
5046 break;
5047 case SPEED_1000 + DUPLEX_HALF: /* not supported */
5048 default:
5049 goto err_inval;
5050 }
5051
5052 /* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
5053 hw->mdix = AUTO_ALL_MODES;
5054
5055 return 0;
5056
5057err_inval:
5058 e_err(probe, "Unsupported Speed/Duplex configuration\n");
5059 return -EINVAL;
5060}
5061
5062static int __e1000_shutdown(struct pci_dev *pdev, bool *enable_wake)
5063{
5064 struct net_device *netdev = pci_get_drvdata(pdev);
5065 struct e1000_adapter *adapter = netdev_priv(netdev);
5066 struct e1000_hw *hw = &adapter->hw;
5067 u32 ctrl, ctrl_ext, rctl, status;
5068 u32 wufc = adapter->wol;
5069
5070 netif_device_detach(netdev);
5071
5072 if (netif_running(netdev)) {
5073 int count = E1000_CHECK_RESET_COUNT;
5074
5075 while (test_bit(__E1000_RESETTING, &adapter->flags) && count--)
5076 usleep_range(10000, 20000);
5077
5078 WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
5079 rtnl_lock();
5080 e1000_down(adapter);
5081 rtnl_unlock();
5082 }
5083
5084 status = er32(STATUS);
5085 if (status & E1000_STATUS_LU)
5086 wufc &= ~E1000_WUFC_LNKC;
5087
5088 if (wufc) {
5089 e1000_setup_rctl(adapter);
5090 e1000_set_rx_mode(netdev);
5091
5092 rctl = er32(RCTL);
5093
5094 /* turn on all-multi mode if wake on multicast is enabled */
5095 if (wufc & E1000_WUFC_MC)
5096 rctl |= E1000_RCTL_MPE;
5097
5098 /* enable receives in the hardware */
5099 ew32(RCTL, rctl | E1000_RCTL_EN);
5100
5101 if (hw->mac_type >= e1000_82540) {
5102 ctrl = er32(CTRL);
5103 /* advertise wake from D3Cold */
5104 #define E1000_CTRL_ADVD3WUC 0x00100000
5105 /* phy power management enable */
5106 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
5107 ctrl |= E1000_CTRL_ADVD3WUC |
5108 E1000_CTRL_EN_PHY_PWR_MGMT;
5109 ew32(CTRL, ctrl);
5110 }
5111
5112 if (hw->media_type == e1000_media_type_fiber ||
5113 hw->media_type == e1000_media_type_internal_serdes) {
5114 /* keep the laser running in D3 */
5115 ctrl_ext = er32(CTRL_EXT);
5116 ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA;
5117 ew32(CTRL_EXT, ctrl_ext);
5118 }
5119
5120 ew32(WUC, E1000_WUC_PME_EN);
5121 ew32(WUFC, wufc);
5122 } else {
5123 ew32(WUC, 0);
5124 ew32(WUFC, 0);
5125 }
5126
5127 e1000_release_manageability(adapter);
5128
5129 *enable_wake = !!wufc;
5130
5131 /* make sure adapter isn't asleep if manageability is enabled */
5132 if (adapter->en_mng_pt)
5133 *enable_wake = true;
5134
5135 if (netif_running(netdev))
5136 e1000_free_irq(adapter);
5137
5138 if (!test_and_set_bit(__E1000_DISABLED, &adapter->flags))
5139 pci_disable_device(pdev);
5140
5141 return 0;
5142}
5143
5144static int e1000_suspend(struct device *dev)
5145{
5146 int retval;
5147 struct pci_dev *pdev = to_pci_dev(dev);
5148 bool wake;
5149
5150 retval = __e1000_shutdown(pdev, &wake);
5151 device_set_wakeup_enable(dev, wake);
5152
5153 return retval;
5154}
5155
5156static int e1000_resume(struct device *dev)
5157{
5158 struct pci_dev *pdev = to_pci_dev(dev);
5159 struct net_device *netdev = pci_get_drvdata(pdev);
5160 struct e1000_adapter *adapter = netdev_priv(netdev);
5161 struct e1000_hw *hw = &adapter->hw;
5162 u32 err;
5163
5164 if (adapter->need_ioport)
5165 err = pci_enable_device(pdev);
5166 else
5167 err = pci_enable_device_mem(pdev);
5168 if (err) {
5169 pr_err("Cannot enable PCI device from suspend\n");
5170 return err;
5171 }
5172
5173 /* flush memory to make sure state is correct */
5174 smp_mb__before_atomic();
5175 clear_bit(__E1000_DISABLED, &adapter->flags);
5176 pci_set_master(pdev);
5177
5178 pci_enable_wake(pdev, PCI_D3hot, 0);
5179 pci_enable_wake(pdev, PCI_D3cold, 0);
5180
5181 if (netif_running(netdev)) {
5182 err = e1000_request_irq(adapter);
5183 if (err)
5184 return err;
5185 }
5186
5187 e1000_power_up_phy(adapter);
5188 e1000_reset(adapter);
5189 ew32(WUS, ~0);
5190
5191 e1000_init_manageability(adapter);
5192
5193 if (netif_running(netdev))
5194 e1000_up(adapter);
5195
5196 netif_device_attach(netdev);
5197
5198 return 0;
5199}
5200
5201static void e1000_shutdown(struct pci_dev *pdev)
5202{
5203 bool wake;
5204
5205 __e1000_shutdown(pdev, &wake);
5206
5207 if (system_state == SYSTEM_POWER_OFF) {
5208 pci_wake_from_d3(pdev, wake);
5209 pci_set_power_state(pdev, PCI_D3hot);
5210 }
5211}
5212
5213#ifdef CONFIG_NET_POLL_CONTROLLER
5214/* Polling 'interrupt' - used by things like netconsole to send skbs
5215 * without having to re-enable interrupts. It's not called while
5216 * the interrupt routine is executing.
5217 */
5218static void e1000_netpoll(struct net_device *netdev)
5219{
5220 struct e1000_adapter *adapter = netdev_priv(netdev);
5221
5222 if (disable_hardirq(adapter->pdev->irq))
5223 e1000_intr(adapter->pdev->irq, netdev);
5224 enable_irq(adapter->pdev->irq);
5225}
5226#endif
5227
5228/**
5229 * e1000_io_error_detected - called when PCI error is detected
5230 * @pdev: Pointer to PCI device
5231 * @state: The current pci connection state
5232 *
5233 * This function is called after a PCI bus error affecting
5234 * this device has been detected.
5235 */
5236static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
5237 pci_channel_state_t state)
5238{
5239 struct net_device *netdev = pci_get_drvdata(pdev);
5240 struct e1000_adapter *adapter = netdev_priv(netdev);
5241
5242 rtnl_lock();
5243 netif_device_detach(netdev);
5244
5245 if (state == pci_channel_io_perm_failure) {
5246 rtnl_unlock();
5247 return PCI_ERS_RESULT_DISCONNECT;
5248 }
5249
5250 if (netif_running(netdev))
5251 e1000_down(adapter);
5252
5253 if (!test_and_set_bit(__E1000_DISABLED, &adapter->flags))
5254 pci_disable_device(pdev);
5255 rtnl_unlock();
5256
5257 /* Request a slot reset. */
5258 return PCI_ERS_RESULT_NEED_RESET;
5259}
5260
5261/**
5262 * e1000_io_slot_reset - called after the pci bus has been reset.
5263 * @pdev: Pointer to PCI device
5264 *
5265 * Restart the card from scratch, as if from a cold-boot. Implementation
5266 * resembles the first-half of the e1000_resume routine.
5267 */
5268static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
5269{
5270 struct net_device *netdev = pci_get_drvdata(pdev);
5271 struct e1000_adapter *adapter = netdev_priv(netdev);
5272 struct e1000_hw *hw = &adapter->hw;
5273 int err;
5274
5275 if (adapter->need_ioport)
5276 err = pci_enable_device(pdev);
5277 else
5278 err = pci_enable_device_mem(pdev);
5279 if (err) {
5280 pr_err("Cannot re-enable PCI device after reset.\n");
5281 return PCI_ERS_RESULT_DISCONNECT;
5282 }
5283
5284 /* flush memory to make sure state is correct */
5285 smp_mb__before_atomic();
5286 clear_bit(__E1000_DISABLED, &adapter->flags);
5287 pci_set_master(pdev);
5288
5289 pci_enable_wake(pdev, PCI_D3hot, 0);
5290 pci_enable_wake(pdev, PCI_D3cold, 0);
5291
5292 e1000_reset(adapter);
5293 ew32(WUS, ~0);
5294
5295 return PCI_ERS_RESULT_RECOVERED;
5296}
5297
5298/**
5299 * e1000_io_resume - called when traffic can start flowing again.
5300 * @pdev: Pointer to PCI device
5301 *
5302 * This callback is called when the error recovery driver tells us that
5303 * its OK to resume normal operation. Implementation resembles the
5304 * second-half of the e1000_resume routine.
5305 */
5306static void e1000_io_resume(struct pci_dev *pdev)
5307{
5308 struct net_device *netdev = pci_get_drvdata(pdev);
5309 struct e1000_adapter *adapter = netdev_priv(netdev);
5310
5311 e1000_init_manageability(adapter);
5312
5313 if (netif_running(netdev)) {
5314 if (e1000_up(adapter)) {
5315 pr_info("can't bring device back up after reset\n");
5316 return;
5317 }
5318 }
5319
5320 netif_device_attach(netdev);
5321}
5322
5323/* e1000_main.c */
1// SPDX-License-Identifier: GPL-2.0
2/* Copyright(c) 1999 - 2006 Intel Corporation. */
3
4#include "e1000.h"
5#include <net/ip6_checksum.h>
6#include <linux/io.h>
7#include <linux/prefetch.h>
8#include <linux/bitops.h>
9#include <linux/if_vlan.h>
10
11char e1000_driver_name[] = "e1000";
12static char e1000_driver_string[] = "Intel(R) PRO/1000 Network Driver";
13static const char e1000_copyright[] = "Copyright (c) 1999-2006 Intel Corporation.";
14
15/* e1000_pci_tbl - PCI Device ID Table
16 *
17 * Last entry must be all 0s
18 *
19 * Macro expands to...
20 * {PCI_DEVICE(PCI_VENDOR_ID_INTEL, device_id)}
21 */
22static const struct pci_device_id e1000_pci_tbl[] = {
23 INTEL_E1000_ETHERNET_DEVICE(0x1000),
24 INTEL_E1000_ETHERNET_DEVICE(0x1001),
25 INTEL_E1000_ETHERNET_DEVICE(0x1004),
26 INTEL_E1000_ETHERNET_DEVICE(0x1008),
27 INTEL_E1000_ETHERNET_DEVICE(0x1009),
28 INTEL_E1000_ETHERNET_DEVICE(0x100C),
29 INTEL_E1000_ETHERNET_DEVICE(0x100D),
30 INTEL_E1000_ETHERNET_DEVICE(0x100E),
31 INTEL_E1000_ETHERNET_DEVICE(0x100F),
32 INTEL_E1000_ETHERNET_DEVICE(0x1010),
33 INTEL_E1000_ETHERNET_DEVICE(0x1011),
34 INTEL_E1000_ETHERNET_DEVICE(0x1012),
35 INTEL_E1000_ETHERNET_DEVICE(0x1013),
36 INTEL_E1000_ETHERNET_DEVICE(0x1014),
37 INTEL_E1000_ETHERNET_DEVICE(0x1015),
38 INTEL_E1000_ETHERNET_DEVICE(0x1016),
39 INTEL_E1000_ETHERNET_DEVICE(0x1017),
40 INTEL_E1000_ETHERNET_DEVICE(0x1018),
41 INTEL_E1000_ETHERNET_DEVICE(0x1019),
42 INTEL_E1000_ETHERNET_DEVICE(0x101A),
43 INTEL_E1000_ETHERNET_DEVICE(0x101D),
44 INTEL_E1000_ETHERNET_DEVICE(0x101E),
45 INTEL_E1000_ETHERNET_DEVICE(0x1026),
46 INTEL_E1000_ETHERNET_DEVICE(0x1027),
47 INTEL_E1000_ETHERNET_DEVICE(0x1028),
48 INTEL_E1000_ETHERNET_DEVICE(0x1075),
49 INTEL_E1000_ETHERNET_DEVICE(0x1076),
50 INTEL_E1000_ETHERNET_DEVICE(0x1077),
51 INTEL_E1000_ETHERNET_DEVICE(0x1078),
52 INTEL_E1000_ETHERNET_DEVICE(0x1079),
53 INTEL_E1000_ETHERNET_DEVICE(0x107A),
54 INTEL_E1000_ETHERNET_DEVICE(0x107B),
55 INTEL_E1000_ETHERNET_DEVICE(0x107C),
56 INTEL_E1000_ETHERNET_DEVICE(0x108A),
57 INTEL_E1000_ETHERNET_DEVICE(0x1099),
58 INTEL_E1000_ETHERNET_DEVICE(0x10B5),
59 INTEL_E1000_ETHERNET_DEVICE(0x2E6E),
60 /* required last entry */
61 {0,}
62};
63
64MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
65
66int e1000_up(struct e1000_adapter *adapter);
67void e1000_down(struct e1000_adapter *adapter);
68void e1000_reinit_locked(struct e1000_adapter *adapter);
69void e1000_reset(struct e1000_adapter *adapter);
70int e1000_setup_all_tx_resources(struct e1000_adapter *adapter);
71int e1000_setup_all_rx_resources(struct e1000_adapter *adapter);
72void e1000_free_all_tx_resources(struct e1000_adapter *adapter);
73void e1000_free_all_rx_resources(struct e1000_adapter *adapter);
74static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
75 struct e1000_tx_ring *txdr);
76static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
77 struct e1000_rx_ring *rxdr);
78static void e1000_free_tx_resources(struct e1000_adapter *adapter,
79 struct e1000_tx_ring *tx_ring);
80static void e1000_free_rx_resources(struct e1000_adapter *adapter,
81 struct e1000_rx_ring *rx_ring);
82void e1000_update_stats(struct e1000_adapter *adapter);
83
84static int e1000_init_module(void);
85static void e1000_exit_module(void);
86static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent);
87static void e1000_remove(struct pci_dev *pdev);
88static int e1000_alloc_queues(struct e1000_adapter *adapter);
89static int e1000_sw_init(struct e1000_adapter *adapter);
90int e1000_open(struct net_device *netdev);
91int e1000_close(struct net_device *netdev);
92static void e1000_configure_tx(struct e1000_adapter *adapter);
93static void e1000_configure_rx(struct e1000_adapter *adapter);
94static void e1000_setup_rctl(struct e1000_adapter *adapter);
95static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter);
96static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter);
97static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
98 struct e1000_tx_ring *tx_ring);
99static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
100 struct e1000_rx_ring *rx_ring);
101static void e1000_set_rx_mode(struct net_device *netdev);
102static void e1000_update_phy_info_task(struct work_struct *work);
103static void e1000_watchdog(struct work_struct *work);
104static void e1000_82547_tx_fifo_stall_task(struct work_struct *work);
105static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
106 struct net_device *netdev);
107static int e1000_change_mtu(struct net_device *netdev, int new_mtu);
108static int e1000_set_mac(struct net_device *netdev, void *p);
109static irqreturn_t e1000_intr(int irq, void *data);
110static bool e1000_clean_tx_irq(struct e1000_adapter *adapter,
111 struct e1000_tx_ring *tx_ring);
112static int e1000_clean(struct napi_struct *napi, int budget);
113static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
114 struct e1000_rx_ring *rx_ring,
115 int *work_done, int work_to_do);
116static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter,
117 struct e1000_rx_ring *rx_ring,
118 int *work_done, int work_to_do);
119static void e1000_alloc_dummy_rx_buffers(struct e1000_adapter *adapter,
120 struct e1000_rx_ring *rx_ring,
121 int cleaned_count)
122{
123}
124static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
125 struct e1000_rx_ring *rx_ring,
126 int cleaned_count);
127static void e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter,
128 struct e1000_rx_ring *rx_ring,
129 int cleaned_count);
130static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd);
131static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
132 int cmd);
133static void e1000_enter_82542_rst(struct e1000_adapter *adapter);
134static void e1000_leave_82542_rst(struct e1000_adapter *adapter);
135static void e1000_tx_timeout(struct net_device *dev, unsigned int txqueue);
136static void e1000_reset_task(struct work_struct *work);
137static void e1000_smartspeed(struct e1000_adapter *adapter);
138static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
139 struct sk_buff *skb);
140
141static bool e1000_vlan_used(struct e1000_adapter *adapter);
142static void e1000_vlan_mode(struct net_device *netdev,
143 netdev_features_t features);
144static void e1000_vlan_filter_on_off(struct e1000_adapter *adapter,
145 bool filter_on);
146static int e1000_vlan_rx_add_vid(struct net_device *netdev,
147 __be16 proto, u16 vid);
148static int e1000_vlan_rx_kill_vid(struct net_device *netdev,
149 __be16 proto, u16 vid);
150static void e1000_restore_vlan(struct e1000_adapter *adapter);
151
152static int __maybe_unused e1000_suspend(struct device *dev);
153static int __maybe_unused e1000_resume(struct device *dev);
154static void e1000_shutdown(struct pci_dev *pdev);
155
156#ifdef CONFIG_NET_POLL_CONTROLLER
157/* for netdump / net console */
158static void e1000_netpoll (struct net_device *netdev);
159#endif
160
161#define COPYBREAK_DEFAULT 256
162static unsigned int copybreak __read_mostly = COPYBREAK_DEFAULT;
163module_param(copybreak, uint, 0644);
164MODULE_PARM_DESC(copybreak,
165 "Maximum size of packet that is copied to a new buffer on receive");
166
167static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
168 pci_channel_state_t state);
169static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev);
170static void e1000_io_resume(struct pci_dev *pdev);
171
172static const struct pci_error_handlers e1000_err_handler = {
173 .error_detected = e1000_io_error_detected,
174 .slot_reset = e1000_io_slot_reset,
175 .resume = e1000_io_resume,
176};
177
178static SIMPLE_DEV_PM_OPS(e1000_pm_ops, e1000_suspend, e1000_resume);
179
180static struct pci_driver e1000_driver = {
181 .name = e1000_driver_name,
182 .id_table = e1000_pci_tbl,
183 .probe = e1000_probe,
184 .remove = e1000_remove,
185 .driver = {
186 .pm = &e1000_pm_ops,
187 },
188 .shutdown = e1000_shutdown,
189 .err_handler = &e1000_err_handler
190};
191
192MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
193MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
194MODULE_LICENSE("GPL v2");
195
196#define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
197static int debug = -1;
198module_param(debug, int, 0);
199MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
200
201/**
202 * e1000_get_hw_dev - return device
203 * used by hardware layer to print debugging information
204 *
205 **/
206struct net_device *e1000_get_hw_dev(struct e1000_hw *hw)
207{
208 struct e1000_adapter *adapter = hw->back;
209 return adapter->netdev;
210}
211
212/**
213 * e1000_init_module - Driver Registration Routine
214 *
215 * e1000_init_module is the first routine called when the driver is
216 * loaded. All it does is register with the PCI subsystem.
217 **/
218static int __init e1000_init_module(void)
219{
220 int ret;
221 pr_info("%s\n", e1000_driver_string);
222
223 pr_info("%s\n", e1000_copyright);
224
225 ret = pci_register_driver(&e1000_driver);
226 if (copybreak != COPYBREAK_DEFAULT) {
227 if (copybreak == 0)
228 pr_info("copybreak disabled\n");
229 else
230 pr_info("copybreak enabled for "
231 "packets <= %u bytes\n", copybreak);
232 }
233 return ret;
234}
235
236module_init(e1000_init_module);
237
238/**
239 * e1000_exit_module - Driver Exit Cleanup Routine
240 *
241 * e1000_exit_module is called just before the driver is removed
242 * from memory.
243 **/
244static void __exit e1000_exit_module(void)
245{
246 pci_unregister_driver(&e1000_driver);
247}
248
249module_exit(e1000_exit_module);
250
251static int e1000_request_irq(struct e1000_adapter *adapter)
252{
253 struct net_device *netdev = adapter->netdev;
254 irq_handler_t handler = e1000_intr;
255 int irq_flags = IRQF_SHARED;
256 int err;
257
258 err = request_irq(adapter->pdev->irq, handler, irq_flags, netdev->name,
259 netdev);
260 if (err) {
261 e_err(probe, "Unable to allocate interrupt Error: %d\n", err);
262 }
263
264 return err;
265}
266
267static void e1000_free_irq(struct e1000_adapter *adapter)
268{
269 struct net_device *netdev = adapter->netdev;
270
271 free_irq(adapter->pdev->irq, netdev);
272}
273
274/**
275 * e1000_irq_disable - Mask off interrupt generation on the NIC
276 * @adapter: board private structure
277 **/
278static void e1000_irq_disable(struct e1000_adapter *adapter)
279{
280 struct e1000_hw *hw = &adapter->hw;
281
282 ew32(IMC, ~0);
283 E1000_WRITE_FLUSH();
284 synchronize_irq(adapter->pdev->irq);
285}
286
287/**
288 * e1000_irq_enable - Enable default interrupt generation settings
289 * @adapter: board private structure
290 **/
291static void e1000_irq_enable(struct e1000_adapter *adapter)
292{
293 struct e1000_hw *hw = &adapter->hw;
294
295 ew32(IMS, IMS_ENABLE_MASK);
296 E1000_WRITE_FLUSH();
297}
298
299static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
300{
301 struct e1000_hw *hw = &adapter->hw;
302 struct net_device *netdev = adapter->netdev;
303 u16 vid = hw->mng_cookie.vlan_id;
304 u16 old_vid = adapter->mng_vlan_id;
305
306 if (!e1000_vlan_used(adapter))
307 return;
308
309 if (!test_bit(vid, adapter->active_vlans)) {
310 if (hw->mng_cookie.status &
311 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) {
312 e1000_vlan_rx_add_vid(netdev, htons(ETH_P_8021Q), vid);
313 adapter->mng_vlan_id = vid;
314 } else {
315 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
316 }
317 if ((old_vid != (u16)E1000_MNG_VLAN_NONE) &&
318 (vid != old_vid) &&
319 !test_bit(old_vid, adapter->active_vlans))
320 e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q),
321 old_vid);
322 } else {
323 adapter->mng_vlan_id = vid;
324 }
325}
326
327static void e1000_init_manageability(struct e1000_adapter *adapter)
328{
329 struct e1000_hw *hw = &adapter->hw;
330
331 if (adapter->en_mng_pt) {
332 u32 manc = er32(MANC);
333
334 /* disable hardware interception of ARP */
335 manc &= ~(E1000_MANC_ARP_EN);
336
337 ew32(MANC, manc);
338 }
339}
340
341static void e1000_release_manageability(struct e1000_adapter *adapter)
342{
343 struct e1000_hw *hw = &adapter->hw;
344
345 if (adapter->en_mng_pt) {
346 u32 manc = er32(MANC);
347
348 /* re-enable hardware interception of ARP */
349 manc |= E1000_MANC_ARP_EN;
350
351 ew32(MANC, manc);
352 }
353}
354
355/**
356 * e1000_configure - configure the hardware for RX and TX
357 * @adapter = private board structure
358 **/
359static void e1000_configure(struct e1000_adapter *adapter)
360{
361 struct net_device *netdev = adapter->netdev;
362 int i;
363
364 e1000_set_rx_mode(netdev);
365
366 e1000_restore_vlan(adapter);
367 e1000_init_manageability(adapter);
368
369 e1000_configure_tx(adapter);
370 e1000_setup_rctl(adapter);
371 e1000_configure_rx(adapter);
372 /* call E1000_DESC_UNUSED which always leaves
373 * at least 1 descriptor unused to make sure
374 * next_to_use != next_to_clean
375 */
376 for (i = 0; i < adapter->num_rx_queues; i++) {
377 struct e1000_rx_ring *ring = &adapter->rx_ring[i];
378 adapter->alloc_rx_buf(adapter, ring,
379 E1000_DESC_UNUSED(ring));
380 }
381}
382
383int e1000_up(struct e1000_adapter *adapter)
384{
385 struct e1000_hw *hw = &adapter->hw;
386
387 /* hardware has been reset, we need to reload some things */
388 e1000_configure(adapter);
389
390 clear_bit(__E1000_DOWN, &adapter->flags);
391
392 napi_enable(&adapter->napi);
393
394 e1000_irq_enable(adapter);
395
396 netif_wake_queue(adapter->netdev);
397
398 /* fire a link change interrupt to start the watchdog */
399 ew32(ICS, E1000_ICS_LSC);
400 return 0;
401}
402
403/**
404 * e1000_power_up_phy - restore link in case the phy was powered down
405 * @adapter: address of board private structure
406 *
407 * The phy may be powered down to save power and turn off link when the
408 * driver is unloaded and wake on lan is not enabled (among others)
409 * *** this routine MUST be followed by a call to e1000_reset ***
410 **/
411void e1000_power_up_phy(struct e1000_adapter *adapter)
412{
413 struct e1000_hw *hw = &adapter->hw;
414 u16 mii_reg = 0;
415
416 /* Just clear the power down bit to wake the phy back up */
417 if (hw->media_type == e1000_media_type_copper) {
418 /* according to the manual, the phy will retain its
419 * settings across a power-down/up cycle
420 */
421 e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg);
422 mii_reg &= ~MII_CR_POWER_DOWN;
423 e1000_write_phy_reg(hw, PHY_CTRL, mii_reg);
424 }
425}
426
427static void e1000_power_down_phy(struct e1000_adapter *adapter)
428{
429 struct e1000_hw *hw = &adapter->hw;
430
431 /* Power down the PHY so no link is implied when interface is down *
432 * The PHY cannot be powered down if any of the following is true *
433 * (a) WoL is enabled
434 * (b) AMT is active
435 * (c) SoL/IDER session is active
436 */
437 if (!adapter->wol && hw->mac_type >= e1000_82540 &&
438 hw->media_type == e1000_media_type_copper) {
439 u16 mii_reg = 0;
440
441 switch (hw->mac_type) {
442 case e1000_82540:
443 case e1000_82545:
444 case e1000_82545_rev_3:
445 case e1000_82546:
446 case e1000_ce4100:
447 case e1000_82546_rev_3:
448 case e1000_82541:
449 case e1000_82541_rev_2:
450 case e1000_82547:
451 case e1000_82547_rev_2:
452 if (er32(MANC) & E1000_MANC_SMBUS_EN)
453 goto out;
454 break;
455 default:
456 goto out;
457 }
458 e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg);
459 mii_reg |= MII_CR_POWER_DOWN;
460 e1000_write_phy_reg(hw, PHY_CTRL, mii_reg);
461 msleep(1);
462 }
463out:
464 return;
465}
466
467static void e1000_down_and_stop(struct e1000_adapter *adapter)
468{
469 set_bit(__E1000_DOWN, &adapter->flags);
470
471 cancel_delayed_work_sync(&adapter->watchdog_task);
472
473 /*
474 * Since the watchdog task can reschedule other tasks, we should cancel
475 * it first, otherwise we can run into the situation when a work is
476 * still running after the adapter has been turned down.
477 */
478
479 cancel_delayed_work_sync(&adapter->phy_info_task);
480 cancel_delayed_work_sync(&adapter->fifo_stall_task);
481
482 /* Only kill reset task if adapter is not resetting */
483 if (!test_bit(__E1000_RESETTING, &adapter->flags))
484 cancel_work_sync(&adapter->reset_task);
485}
486
487void e1000_down(struct e1000_adapter *adapter)
488{
489 struct e1000_hw *hw = &adapter->hw;
490 struct net_device *netdev = adapter->netdev;
491 u32 rctl, tctl;
492
493 /* disable receives in the hardware */
494 rctl = er32(RCTL);
495 ew32(RCTL, rctl & ~E1000_RCTL_EN);
496 /* flush and sleep below */
497
498 netif_tx_disable(netdev);
499
500 /* disable transmits in the hardware */
501 tctl = er32(TCTL);
502 tctl &= ~E1000_TCTL_EN;
503 ew32(TCTL, tctl);
504 /* flush both disables and wait for them to finish */
505 E1000_WRITE_FLUSH();
506 msleep(10);
507
508 /* Set the carrier off after transmits have been disabled in the
509 * hardware, to avoid race conditions with e1000_watchdog() (which
510 * may be running concurrently to us, checking for the carrier
511 * bit to decide whether it should enable transmits again). Such
512 * a race condition would result into transmission being disabled
513 * in the hardware until the next IFF_DOWN+IFF_UP cycle.
514 */
515 netif_carrier_off(netdev);
516
517 napi_disable(&adapter->napi);
518
519 e1000_irq_disable(adapter);
520
521 /* Setting DOWN must be after irq_disable to prevent
522 * a screaming interrupt. Setting DOWN also prevents
523 * tasks from rescheduling.
524 */
525 e1000_down_and_stop(adapter);
526
527 adapter->link_speed = 0;
528 adapter->link_duplex = 0;
529
530 e1000_reset(adapter);
531 e1000_clean_all_tx_rings(adapter);
532 e1000_clean_all_rx_rings(adapter);
533}
534
535void e1000_reinit_locked(struct e1000_adapter *adapter)
536{
537 WARN_ON(in_interrupt());
538 while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
539 msleep(1);
540
541 /* only run the task if not already down */
542 if (!test_bit(__E1000_DOWN, &adapter->flags)) {
543 e1000_down(adapter);
544 e1000_up(adapter);
545 }
546
547 clear_bit(__E1000_RESETTING, &adapter->flags);
548}
549
550void e1000_reset(struct e1000_adapter *adapter)
551{
552 struct e1000_hw *hw = &adapter->hw;
553 u32 pba = 0, tx_space, min_tx_space, min_rx_space;
554 bool legacy_pba_adjust = false;
555 u16 hwm;
556
557 /* Repartition Pba for greater than 9k mtu
558 * To take effect CTRL.RST is required.
559 */
560
561 switch (hw->mac_type) {
562 case e1000_82542_rev2_0:
563 case e1000_82542_rev2_1:
564 case e1000_82543:
565 case e1000_82544:
566 case e1000_82540:
567 case e1000_82541:
568 case e1000_82541_rev_2:
569 legacy_pba_adjust = true;
570 pba = E1000_PBA_48K;
571 break;
572 case e1000_82545:
573 case e1000_82545_rev_3:
574 case e1000_82546:
575 case e1000_ce4100:
576 case e1000_82546_rev_3:
577 pba = E1000_PBA_48K;
578 break;
579 case e1000_82547:
580 case e1000_82547_rev_2:
581 legacy_pba_adjust = true;
582 pba = E1000_PBA_30K;
583 break;
584 case e1000_undefined:
585 case e1000_num_macs:
586 break;
587 }
588
589 if (legacy_pba_adjust) {
590 if (hw->max_frame_size > E1000_RXBUFFER_8192)
591 pba -= 8; /* allocate more FIFO for Tx */
592
593 if (hw->mac_type == e1000_82547) {
594 adapter->tx_fifo_head = 0;
595 adapter->tx_head_addr = pba << E1000_TX_HEAD_ADDR_SHIFT;
596 adapter->tx_fifo_size =
597 (E1000_PBA_40K - pba) << E1000_PBA_BYTES_SHIFT;
598 atomic_set(&adapter->tx_fifo_stall, 0);
599 }
600 } else if (hw->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) {
601 /* adjust PBA for jumbo frames */
602 ew32(PBA, pba);
603
604 /* To maintain wire speed transmits, the Tx FIFO should be
605 * large enough to accommodate two full transmit packets,
606 * rounded up to the next 1KB and expressed in KB. Likewise,
607 * the Rx FIFO should be large enough to accommodate at least
608 * one full receive packet and is similarly rounded up and
609 * expressed in KB.
610 */
611 pba = er32(PBA);
612 /* upper 16 bits has Tx packet buffer allocation size in KB */
613 tx_space = pba >> 16;
614 /* lower 16 bits has Rx packet buffer allocation size in KB */
615 pba &= 0xffff;
616 /* the Tx fifo also stores 16 bytes of information about the Tx
617 * but don't include ethernet FCS because hardware appends it
618 */
619 min_tx_space = (hw->max_frame_size +
620 sizeof(struct e1000_tx_desc) -
621 ETH_FCS_LEN) * 2;
622 min_tx_space = ALIGN(min_tx_space, 1024);
623 min_tx_space >>= 10;
624 /* software strips receive CRC, so leave room for it */
625 min_rx_space = hw->max_frame_size;
626 min_rx_space = ALIGN(min_rx_space, 1024);
627 min_rx_space >>= 10;
628
629 /* If current Tx allocation is less than the min Tx FIFO size,
630 * and the min Tx FIFO size is less than the current Rx FIFO
631 * allocation, take space away from current Rx allocation
632 */
633 if (tx_space < min_tx_space &&
634 ((min_tx_space - tx_space) < pba)) {
635 pba = pba - (min_tx_space - tx_space);
636
637 /* PCI/PCIx hardware has PBA alignment constraints */
638 switch (hw->mac_type) {
639 case e1000_82545 ... e1000_82546_rev_3:
640 pba &= ~(E1000_PBA_8K - 1);
641 break;
642 default:
643 break;
644 }
645
646 /* if short on Rx space, Rx wins and must trump Tx
647 * adjustment or use Early Receive if available
648 */
649 if (pba < min_rx_space)
650 pba = min_rx_space;
651 }
652 }
653
654 ew32(PBA, pba);
655
656 /* flow control settings:
657 * The high water mark must be low enough to fit one full frame
658 * (or the size used for early receive) above it in the Rx FIFO.
659 * Set it to the lower of:
660 * - 90% of the Rx FIFO size, and
661 * - the full Rx FIFO size minus the early receive size (for parts
662 * with ERT support assuming ERT set to E1000_ERT_2048), or
663 * - the full Rx FIFO size minus one full frame
664 */
665 hwm = min(((pba << 10) * 9 / 10),
666 ((pba << 10) - hw->max_frame_size));
667
668 hw->fc_high_water = hwm & 0xFFF8; /* 8-byte granularity */
669 hw->fc_low_water = hw->fc_high_water - 8;
670 hw->fc_pause_time = E1000_FC_PAUSE_TIME;
671 hw->fc_send_xon = 1;
672 hw->fc = hw->original_fc;
673
674 /* Allow time for pending master requests to run */
675 e1000_reset_hw(hw);
676 if (hw->mac_type >= e1000_82544)
677 ew32(WUC, 0);
678
679 if (e1000_init_hw(hw))
680 e_dev_err("Hardware Error\n");
681 e1000_update_mng_vlan(adapter);
682
683 /* if (adapter->hwflags & HWFLAGS_PHY_PWR_BIT) { */
684 if (hw->mac_type >= e1000_82544 &&
685 hw->autoneg == 1 &&
686 hw->autoneg_advertised == ADVERTISE_1000_FULL) {
687 u32 ctrl = er32(CTRL);
688 /* clear phy power management bit if we are in gig only mode,
689 * which if enabled will attempt negotiation to 100Mb, which
690 * can cause a loss of link at power off or driver unload
691 */
692 ctrl &= ~E1000_CTRL_SWDPIN3;
693 ew32(CTRL, ctrl);
694 }
695
696 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
697 ew32(VET, ETHERNET_IEEE_VLAN_TYPE);
698
699 e1000_reset_adaptive(hw);
700 e1000_phy_get_info(hw, &adapter->phy_info);
701
702 e1000_release_manageability(adapter);
703}
704
705/* Dump the eeprom for users having checksum issues */
706static void e1000_dump_eeprom(struct e1000_adapter *adapter)
707{
708 struct net_device *netdev = adapter->netdev;
709 struct ethtool_eeprom eeprom;
710 const struct ethtool_ops *ops = netdev->ethtool_ops;
711 u8 *data;
712 int i;
713 u16 csum_old, csum_new = 0;
714
715 eeprom.len = ops->get_eeprom_len(netdev);
716 eeprom.offset = 0;
717
718 data = kmalloc(eeprom.len, GFP_KERNEL);
719 if (!data)
720 return;
721
722 ops->get_eeprom(netdev, &eeprom, data);
723
724 csum_old = (data[EEPROM_CHECKSUM_REG * 2]) +
725 (data[EEPROM_CHECKSUM_REG * 2 + 1] << 8);
726 for (i = 0; i < EEPROM_CHECKSUM_REG * 2; i += 2)
727 csum_new += data[i] + (data[i + 1] << 8);
728 csum_new = EEPROM_SUM - csum_new;
729
730 pr_err("/*********************/\n");
731 pr_err("Current EEPROM Checksum : 0x%04x\n", csum_old);
732 pr_err("Calculated : 0x%04x\n", csum_new);
733
734 pr_err("Offset Values\n");
735 pr_err("======== ======\n");
736 print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 16, 1, data, 128, 0);
737
738 pr_err("Include this output when contacting your support provider.\n");
739 pr_err("This is not a software error! Something bad happened to\n");
740 pr_err("your hardware or EEPROM image. Ignoring this problem could\n");
741 pr_err("result in further problems, possibly loss of data,\n");
742 pr_err("corruption or system hangs!\n");
743 pr_err("The MAC Address will be reset to 00:00:00:00:00:00,\n");
744 pr_err("which is invalid and requires you to set the proper MAC\n");
745 pr_err("address manually before continuing to enable this network\n");
746 pr_err("device. Please inspect the EEPROM dump and report the\n");
747 pr_err("issue to your hardware vendor or Intel Customer Support.\n");
748 pr_err("/*********************/\n");
749
750 kfree(data);
751}
752
753/**
754 * e1000_is_need_ioport - determine if an adapter needs ioport resources or not
755 * @pdev: PCI device information struct
756 *
757 * Return true if an adapter needs ioport resources
758 **/
759static int e1000_is_need_ioport(struct pci_dev *pdev)
760{
761 switch (pdev->device) {
762 case E1000_DEV_ID_82540EM:
763 case E1000_DEV_ID_82540EM_LOM:
764 case E1000_DEV_ID_82540EP:
765 case E1000_DEV_ID_82540EP_LOM:
766 case E1000_DEV_ID_82540EP_LP:
767 case E1000_DEV_ID_82541EI:
768 case E1000_DEV_ID_82541EI_MOBILE:
769 case E1000_DEV_ID_82541ER:
770 case E1000_DEV_ID_82541ER_LOM:
771 case E1000_DEV_ID_82541GI:
772 case E1000_DEV_ID_82541GI_LF:
773 case E1000_DEV_ID_82541GI_MOBILE:
774 case E1000_DEV_ID_82544EI_COPPER:
775 case E1000_DEV_ID_82544EI_FIBER:
776 case E1000_DEV_ID_82544GC_COPPER:
777 case E1000_DEV_ID_82544GC_LOM:
778 case E1000_DEV_ID_82545EM_COPPER:
779 case E1000_DEV_ID_82545EM_FIBER:
780 case E1000_DEV_ID_82546EB_COPPER:
781 case E1000_DEV_ID_82546EB_FIBER:
782 case E1000_DEV_ID_82546EB_QUAD_COPPER:
783 return true;
784 default:
785 return false;
786 }
787}
788
789static netdev_features_t e1000_fix_features(struct net_device *netdev,
790 netdev_features_t features)
791{
792 /* Since there is no support for separate Rx/Tx vlan accel
793 * enable/disable make sure Tx flag is always in same state as Rx.
794 */
795 if (features & NETIF_F_HW_VLAN_CTAG_RX)
796 features |= NETIF_F_HW_VLAN_CTAG_TX;
797 else
798 features &= ~NETIF_F_HW_VLAN_CTAG_TX;
799
800 return features;
801}
802
803static int e1000_set_features(struct net_device *netdev,
804 netdev_features_t features)
805{
806 struct e1000_adapter *adapter = netdev_priv(netdev);
807 netdev_features_t changed = features ^ netdev->features;
808
809 if (changed & NETIF_F_HW_VLAN_CTAG_RX)
810 e1000_vlan_mode(netdev, features);
811
812 if (!(changed & (NETIF_F_RXCSUM | NETIF_F_RXALL)))
813 return 0;
814
815 netdev->features = features;
816 adapter->rx_csum = !!(features & NETIF_F_RXCSUM);
817
818 if (netif_running(netdev))
819 e1000_reinit_locked(adapter);
820 else
821 e1000_reset(adapter);
822
823 return 1;
824}
825
826static const struct net_device_ops e1000_netdev_ops = {
827 .ndo_open = e1000_open,
828 .ndo_stop = e1000_close,
829 .ndo_start_xmit = e1000_xmit_frame,
830 .ndo_set_rx_mode = e1000_set_rx_mode,
831 .ndo_set_mac_address = e1000_set_mac,
832 .ndo_tx_timeout = e1000_tx_timeout,
833 .ndo_change_mtu = e1000_change_mtu,
834 .ndo_do_ioctl = e1000_ioctl,
835 .ndo_validate_addr = eth_validate_addr,
836 .ndo_vlan_rx_add_vid = e1000_vlan_rx_add_vid,
837 .ndo_vlan_rx_kill_vid = e1000_vlan_rx_kill_vid,
838#ifdef CONFIG_NET_POLL_CONTROLLER
839 .ndo_poll_controller = e1000_netpoll,
840#endif
841 .ndo_fix_features = e1000_fix_features,
842 .ndo_set_features = e1000_set_features,
843};
844
845/**
846 * e1000_init_hw_struct - initialize members of hw struct
847 * @adapter: board private struct
848 * @hw: structure used by e1000_hw.c
849 *
850 * Factors out initialization of the e1000_hw struct to its own function
851 * that can be called very early at init (just after struct allocation).
852 * Fields are initialized based on PCI device information and
853 * OS network device settings (MTU size).
854 * Returns negative error codes if MAC type setup fails.
855 */
856static int e1000_init_hw_struct(struct e1000_adapter *adapter,
857 struct e1000_hw *hw)
858{
859 struct pci_dev *pdev = adapter->pdev;
860
861 /* PCI config space info */
862 hw->vendor_id = pdev->vendor;
863 hw->device_id = pdev->device;
864 hw->subsystem_vendor_id = pdev->subsystem_vendor;
865 hw->subsystem_id = pdev->subsystem_device;
866 hw->revision_id = pdev->revision;
867
868 pci_read_config_word(pdev, PCI_COMMAND, &hw->pci_cmd_word);
869
870 hw->max_frame_size = adapter->netdev->mtu +
871 ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
872 hw->min_frame_size = MINIMUM_ETHERNET_FRAME_SIZE;
873
874 /* identify the MAC */
875 if (e1000_set_mac_type(hw)) {
876 e_err(probe, "Unknown MAC Type\n");
877 return -EIO;
878 }
879
880 switch (hw->mac_type) {
881 default:
882 break;
883 case e1000_82541:
884 case e1000_82547:
885 case e1000_82541_rev_2:
886 case e1000_82547_rev_2:
887 hw->phy_init_script = 1;
888 break;
889 }
890
891 e1000_set_media_type(hw);
892 e1000_get_bus_info(hw);
893
894 hw->wait_autoneg_complete = false;
895 hw->tbi_compatibility_en = true;
896 hw->adaptive_ifs = true;
897
898 /* Copper options */
899
900 if (hw->media_type == e1000_media_type_copper) {
901 hw->mdix = AUTO_ALL_MODES;
902 hw->disable_polarity_correction = false;
903 hw->master_slave = E1000_MASTER_SLAVE;
904 }
905
906 return 0;
907}
908
909/**
910 * e1000_probe - Device Initialization Routine
911 * @pdev: PCI device information struct
912 * @ent: entry in e1000_pci_tbl
913 *
914 * Returns 0 on success, negative on failure
915 *
916 * e1000_probe initializes an adapter identified by a pci_dev structure.
917 * The OS initialization, configuring of the adapter private structure,
918 * and a hardware reset occur.
919 **/
920static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
921{
922 struct net_device *netdev;
923 struct e1000_adapter *adapter = NULL;
924 struct e1000_hw *hw;
925
926 static int cards_found;
927 static int global_quad_port_a; /* global ksp3 port a indication */
928 int i, err, pci_using_dac;
929 u16 eeprom_data = 0;
930 u16 tmp = 0;
931 u16 eeprom_apme_mask = E1000_EEPROM_APME;
932 int bars, need_ioport;
933 bool disable_dev = false;
934
935 /* do not allocate ioport bars when not needed */
936 need_ioport = e1000_is_need_ioport(pdev);
937 if (need_ioport) {
938 bars = pci_select_bars(pdev, IORESOURCE_MEM | IORESOURCE_IO);
939 err = pci_enable_device(pdev);
940 } else {
941 bars = pci_select_bars(pdev, IORESOURCE_MEM);
942 err = pci_enable_device_mem(pdev);
943 }
944 if (err)
945 return err;
946
947 err = pci_request_selected_regions(pdev, bars, e1000_driver_name);
948 if (err)
949 goto err_pci_reg;
950
951 pci_set_master(pdev);
952 err = pci_save_state(pdev);
953 if (err)
954 goto err_alloc_etherdev;
955
956 err = -ENOMEM;
957 netdev = alloc_etherdev(sizeof(struct e1000_adapter));
958 if (!netdev)
959 goto err_alloc_etherdev;
960
961 SET_NETDEV_DEV(netdev, &pdev->dev);
962
963 pci_set_drvdata(pdev, netdev);
964 adapter = netdev_priv(netdev);
965 adapter->netdev = netdev;
966 adapter->pdev = pdev;
967 adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
968 adapter->bars = bars;
969 adapter->need_ioport = need_ioport;
970
971 hw = &adapter->hw;
972 hw->back = adapter;
973
974 err = -EIO;
975 hw->hw_addr = pci_ioremap_bar(pdev, BAR_0);
976 if (!hw->hw_addr)
977 goto err_ioremap;
978
979 if (adapter->need_ioport) {
980 for (i = BAR_1; i < PCI_STD_NUM_BARS; i++) {
981 if (pci_resource_len(pdev, i) == 0)
982 continue;
983 if (pci_resource_flags(pdev, i) & IORESOURCE_IO) {
984 hw->io_base = pci_resource_start(pdev, i);
985 break;
986 }
987 }
988 }
989
990 /* make ready for any if (hw->...) below */
991 err = e1000_init_hw_struct(adapter, hw);
992 if (err)
993 goto err_sw_init;
994
995 /* there is a workaround being applied below that limits
996 * 64-bit DMA addresses to 64-bit hardware. There are some
997 * 32-bit adapters that Tx hang when given 64-bit DMA addresses
998 */
999 pci_using_dac = 0;
1000 if ((hw->bus_type == e1000_bus_type_pcix) &&
1001 !dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64))) {
1002 pci_using_dac = 1;
1003 } else {
1004 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
1005 if (err) {
1006 pr_err("No usable DMA config, aborting\n");
1007 goto err_dma;
1008 }
1009 }
1010
1011 netdev->netdev_ops = &e1000_netdev_ops;
1012 e1000_set_ethtool_ops(netdev);
1013 netdev->watchdog_timeo = 5 * HZ;
1014 netif_napi_add(netdev, &adapter->napi, e1000_clean, 64);
1015
1016 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
1017
1018 adapter->bd_number = cards_found;
1019
1020 /* setup the private structure */
1021
1022 err = e1000_sw_init(adapter);
1023 if (err)
1024 goto err_sw_init;
1025
1026 err = -EIO;
1027 if (hw->mac_type == e1000_ce4100) {
1028 hw->ce4100_gbe_mdio_base_virt =
1029 ioremap(pci_resource_start(pdev, BAR_1),
1030 pci_resource_len(pdev, BAR_1));
1031
1032 if (!hw->ce4100_gbe_mdio_base_virt)
1033 goto err_mdio_ioremap;
1034 }
1035
1036 if (hw->mac_type >= e1000_82543) {
1037 netdev->hw_features = NETIF_F_SG |
1038 NETIF_F_HW_CSUM |
1039 NETIF_F_HW_VLAN_CTAG_RX;
1040 netdev->features = NETIF_F_HW_VLAN_CTAG_TX |
1041 NETIF_F_HW_VLAN_CTAG_FILTER;
1042 }
1043
1044 if ((hw->mac_type >= e1000_82544) &&
1045 (hw->mac_type != e1000_82547))
1046 netdev->hw_features |= NETIF_F_TSO;
1047
1048 netdev->priv_flags |= IFF_SUPP_NOFCS;
1049
1050 netdev->features |= netdev->hw_features;
1051 netdev->hw_features |= (NETIF_F_RXCSUM |
1052 NETIF_F_RXALL |
1053 NETIF_F_RXFCS);
1054
1055 if (pci_using_dac) {
1056 netdev->features |= NETIF_F_HIGHDMA;
1057 netdev->vlan_features |= NETIF_F_HIGHDMA;
1058 }
1059
1060 netdev->vlan_features |= (NETIF_F_TSO |
1061 NETIF_F_HW_CSUM |
1062 NETIF_F_SG);
1063
1064 /* Do not set IFF_UNICAST_FLT for VMWare's 82545EM */
1065 if (hw->device_id != E1000_DEV_ID_82545EM_COPPER ||
1066 hw->subsystem_vendor_id != PCI_VENDOR_ID_VMWARE)
1067 netdev->priv_flags |= IFF_UNICAST_FLT;
1068
1069 /* MTU range: 46 - 16110 */
1070 netdev->min_mtu = ETH_ZLEN - ETH_HLEN;
1071 netdev->max_mtu = MAX_JUMBO_FRAME_SIZE - (ETH_HLEN + ETH_FCS_LEN);
1072
1073 adapter->en_mng_pt = e1000_enable_mng_pass_thru(hw);
1074
1075 /* initialize eeprom parameters */
1076 if (e1000_init_eeprom_params(hw)) {
1077 e_err(probe, "EEPROM initialization failed\n");
1078 goto err_eeprom;
1079 }
1080
1081 /* before reading the EEPROM, reset the controller to
1082 * put the device in a known good starting state
1083 */
1084
1085 e1000_reset_hw(hw);
1086
1087 /* make sure the EEPROM is good */
1088 if (e1000_validate_eeprom_checksum(hw) < 0) {
1089 e_err(probe, "The EEPROM Checksum Is Not Valid\n");
1090 e1000_dump_eeprom(adapter);
1091 /* set MAC address to all zeroes to invalidate and temporary
1092 * disable this device for the user. This blocks regular
1093 * traffic while still permitting ethtool ioctls from reaching
1094 * the hardware as well as allowing the user to run the
1095 * interface after manually setting a hw addr using
1096 * `ip set address`
1097 */
1098 memset(hw->mac_addr, 0, netdev->addr_len);
1099 } else {
1100 /* copy the MAC address out of the EEPROM */
1101 if (e1000_read_mac_addr(hw))
1102 e_err(probe, "EEPROM Read Error\n");
1103 }
1104 /* don't block initialization here due to bad MAC address */
1105 memcpy(netdev->dev_addr, hw->mac_addr, netdev->addr_len);
1106
1107 if (!is_valid_ether_addr(netdev->dev_addr))
1108 e_err(probe, "Invalid MAC Address\n");
1109
1110
1111 INIT_DELAYED_WORK(&adapter->watchdog_task, e1000_watchdog);
1112 INIT_DELAYED_WORK(&adapter->fifo_stall_task,
1113 e1000_82547_tx_fifo_stall_task);
1114 INIT_DELAYED_WORK(&adapter->phy_info_task, e1000_update_phy_info_task);
1115 INIT_WORK(&adapter->reset_task, e1000_reset_task);
1116
1117 e1000_check_options(adapter);
1118
1119 /* Initial Wake on LAN setting
1120 * If APM wake is enabled in the EEPROM,
1121 * enable the ACPI Magic Packet filter
1122 */
1123
1124 switch (hw->mac_type) {
1125 case e1000_82542_rev2_0:
1126 case e1000_82542_rev2_1:
1127 case e1000_82543:
1128 break;
1129 case e1000_82544:
1130 e1000_read_eeprom(hw,
1131 EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data);
1132 eeprom_apme_mask = E1000_EEPROM_82544_APM;
1133 break;
1134 case e1000_82546:
1135 case e1000_82546_rev_3:
1136 if (er32(STATUS) & E1000_STATUS_FUNC_1) {
1137 e1000_read_eeprom(hw,
1138 EEPROM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
1139 break;
1140 }
1141 fallthrough;
1142 default:
1143 e1000_read_eeprom(hw,
1144 EEPROM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
1145 break;
1146 }
1147 if (eeprom_data & eeprom_apme_mask)
1148 adapter->eeprom_wol |= E1000_WUFC_MAG;
1149
1150 /* now that we have the eeprom settings, apply the special cases
1151 * where the eeprom may be wrong or the board simply won't support
1152 * wake on lan on a particular port
1153 */
1154 switch (pdev->device) {
1155 case E1000_DEV_ID_82546GB_PCIE:
1156 adapter->eeprom_wol = 0;
1157 break;
1158 case E1000_DEV_ID_82546EB_FIBER:
1159 case E1000_DEV_ID_82546GB_FIBER:
1160 /* Wake events only supported on port A for dual fiber
1161 * regardless of eeprom setting
1162 */
1163 if (er32(STATUS) & E1000_STATUS_FUNC_1)
1164 adapter->eeprom_wol = 0;
1165 break;
1166 case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1167 /* if quad port adapter, disable WoL on all but port A */
1168 if (global_quad_port_a != 0)
1169 adapter->eeprom_wol = 0;
1170 else
1171 adapter->quad_port_a = true;
1172 /* Reset for multiple quad port adapters */
1173 if (++global_quad_port_a == 4)
1174 global_quad_port_a = 0;
1175 break;
1176 }
1177
1178 /* initialize the wol settings based on the eeprom settings */
1179 adapter->wol = adapter->eeprom_wol;
1180 device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1181
1182 /* Auto detect PHY address */
1183 if (hw->mac_type == e1000_ce4100) {
1184 for (i = 0; i < 32; i++) {
1185 hw->phy_addr = i;
1186 e1000_read_phy_reg(hw, PHY_ID2, &tmp);
1187
1188 if (tmp != 0 && tmp != 0xFF)
1189 break;
1190 }
1191
1192 if (i >= 32)
1193 goto err_eeprom;
1194 }
1195
1196 /* reset the hardware with the new settings */
1197 e1000_reset(adapter);
1198
1199 strcpy(netdev->name, "eth%d");
1200 err = register_netdev(netdev);
1201 if (err)
1202 goto err_register;
1203
1204 e1000_vlan_filter_on_off(adapter, false);
1205
1206 /* print bus type/speed/width info */
1207 e_info(probe, "(PCI%s:%dMHz:%d-bit) %pM\n",
1208 ((hw->bus_type == e1000_bus_type_pcix) ? "-X" : ""),
1209 ((hw->bus_speed == e1000_bus_speed_133) ? 133 :
1210 (hw->bus_speed == e1000_bus_speed_120) ? 120 :
1211 (hw->bus_speed == e1000_bus_speed_100) ? 100 :
1212 (hw->bus_speed == e1000_bus_speed_66) ? 66 : 33),
1213 ((hw->bus_width == e1000_bus_width_64) ? 64 : 32),
1214 netdev->dev_addr);
1215
1216 /* carrier off reporting is important to ethtool even BEFORE open */
1217 netif_carrier_off(netdev);
1218
1219 e_info(probe, "Intel(R) PRO/1000 Network Connection\n");
1220
1221 cards_found++;
1222 return 0;
1223
1224err_register:
1225err_eeprom:
1226 e1000_phy_hw_reset(hw);
1227
1228 if (hw->flash_address)
1229 iounmap(hw->flash_address);
1230 kfree(adapter->tx_ring);
1231 kfree(adapter->rx_ring);
1232err_dma:
1233err_sw_init:
1234err_mdio_ioremap:
1235 iounmap(hw->ce4100_gbe_mdio_base_virt);
1236 iounmap(hw->hw_addr);
1237err_ioremap:
1238 disable_dev = !test_and_set_bit(__E1000_DISABLED, &adapter->flags);
1239 free_netdev(netdev);
1240err_alloc_etherdev:
1241 pci_release_selected_regions(pdev, bars);
1242err_pci_reg:
1243 if (!adapter || disable_dev)
1244 pci_disable_device(pdev);
1245 return err;
1246}
1247
1248/**
1249 * e1000_remove - Device Removal Routine
1250 * @pdev: PCI device information struct
1251 *
1252 * e1000_remove is called by the PCI subsystem to alert the driver
1253 * that it should release a PCI device. That could be caused by a
1254 * Hot-Plug event, or because the driver is going to be removed from
1255 * memory.
1256 **/
1257static void e1000_remove(struct pci_dev *pdev)
1258{
1259 struct net_device *netdev = pci_get_drvdata(pdev);
1260 struct e1000_adapter *adapter = netdev_priv(netdev);
1261 struct e1000_hw *hw = &adapter->hw;
1262 bool disable_dev;
1263
1264 e1000_down_and_stop(adapter);
1265 e1000_release_manageability(adapter);
1266
1267 unregister_netdev(netdev);
1268
1269 e1000_phy_hw_reset(hw);
1270
1271 kfree(adapter->tx_ring);
1272 kfree(adapter->rx_ring);
1273
1274 if (hw->mac_type == e1000_ce4100)
1275 iounmap(hw->ce4100_gbe_mdio_base_virt);
1276 iounmap(hw->hw_addr);
1277 if (hw->flash_address)
1278 iounmap(hw->flash_address);
1279 pci_release_selected_regions(pdev, adapter->bars);
1280
1281 disable_dev = !test_and_set_bit(__E1000_DISABLED, &adapter->flags);
1282 free_netdev(netdev);
1283
1284 if (disable_dev)
1285 pci_disable_device(pdev);
1286}
1287
1288/**
1289 * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
1290 * @adapter: board private structure to initialize
1291 *
1292 * e1000_sw_init initializes the Adapter private data structure.
1293 * e1000_init_hw_struct MUST be called before this function
1294 **/
1295static int e1000_sw_init(struct e1000_adapter *adapter)
1296{
1297 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
1298
1299 adapter->num_tx_queues = 1;
1300 adapter->num_rx_queues = 1;
1301
1302 if (e1000_alloc_queues(adapter)) {
1303 e_err(probe, "Unable to allocate memory for queues\n");
1304 return -ENOMEM;
1305 }
1306
1307 /* Explicitly disable IRQ since the NIC can be in any state. */
1308 e1000_irq_disable(adapter);
1309
1310 spin_lock_init(&adapter->stats_lock);
1311
1312 set_bit(__E1000_DOWN, &adapter->flags);
1313
1314 return 0;
1315}
1316
1317/**
1318 * e1000_alloc_queues - Allocate memory for all rings
1319 * @adapter: board private structure to initialize
1320 *
1321 * We allocate one ring per queue at run-time since we don't know the
1322 * number of queues at compile-time.
1323 **/
1324static int e1000_alloc_queues(struct e1000_adapter *adapter)
1325{
1326 adapter->tx_ring = kcalloc(adapter->num_tx_queues,
1327 sizeof(struct e1000_tx_ring), GFP_KERNEL);
1328 if (!adapter->tx_ring)
1329 return -ENOMEM;
1330
1331 adapter->rx_ring = kcalloc(adapter->num_rx_queues,
1332 sizeof(struct e1000_rx_ring), GFP_KERNEL);
1333 if (!adapter->rx_ring) {
1334 kfree(adapter->tx_ring);
1335 return -ENOMEM;
1336 }
1337
1338 return E1000_SUCCESS;
1339}
1340
1341/**
1342 * e1000_open - Called when a network interface is made active
1343 * @netdev: network interface device structure
1344 *
1345 * Returns 0 on success, negative value on failure
1346 *
1347 * The open entry point is called when a network interface is made
1348 * active by the system (IFF_UP). At this point all resources needed
1349 * for transmit and receive operations are allocated, the interrupt
1350 * handler is registered with the OS, the watchdog task is started,
1351 * and the stack is notified that the interface is ready.
1352 **/
1353int e1000_open(struct net_device *netdev)
1354{
1355 struct e1000_adapter *adapter = netdev_priv(netdev);
1356 struct e1000_hw *hw = &adapter->hw;
1357 int err;
1358
1359 /* disallow open during test */
1360 if (test_bit(__E1000_TESTING, &adapter->flags))
1361 return -EBUSY;
1362
1363 netif_carrier_off(netdev);
1364
1365 /* allocate transmit descriptors */
1366 err = e1000_setup_all_tx_resources(adapter);
1367 if (err)
1368 goto err_setup_tx;
1369
1370 /* allocate receive descriptors */
1371 err = e1000_setup_all_rx_resources(adapter);
1372 if (err)
1373 goto err_setup_rx;
1374
1375 e1000_power_up_phy(adapter);
1376
1377 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
1378 if ((hw->mng_cookie.status &
1379 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) {
1380 e1000_update_mng_vlan(adapter);
1381 }
1382
1383 /* before we allocate an interrupt, we must be ready to handle it.
1384 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1385 * as soon as we call pci_request_irq, so we have to setup our
1386 * clean_rx handler before we do so.
1387 */
1388 e1000_configure(adapter);
1389
1390 err = e1000_request_irq(adapter);
1391 if (err)
1392 goto err_req_irq;
1393
1394 /* From here on the code is the same as e1000_up() */
1395 clear_bit(__E1000_DOWN, &adapter->flags);
1396
1397 napi_enable(&adapter->napi);
1398
1399 e1000_irq_enable(adapter);
1400
1401 netif_start_queue(netdev);
1402
1403 /* fire a link status change interrupt to start the watchdog */
1404 ew32(ICS, E1000_ICS_LSC);
1405
1406 return E1000_SUCCESS;
1407
1408err_req_irq:
1409 e1000_power_down_phy(adapter);
1410 e1000_free_all_rx_resources(adapter);
1411err_setup_rx:
1412 e1000_free_all_tx_resources(adapter);
1413err_setup_tx:
1414 e1000_reset(adapter);
1415
1416 return err;
1417}
1418
1419/**
1420 * e1000_close - Disables a network interface
1421 * @netdev: network interface device structure
1422 *
1423 * Returns 0, this is not allowed to fail
1424 *
1425 * The close entry point is called when an interface is de-activated
1426 * by the OS. The hardware is still under the drivers control, but
1427 * needs to be disabled. A global MAC reset is issued to stop the
1428 * hardware, and all transmit and receive resources are freed.
1429 **/
1430int e1000_close(struct net_device *netdev)
1431{
1432 struct e1000_adapter *adapter = netdev_priv(netdev);
1433 struct e1000_hw *hw = &adapter->hw;
1434 int count = E1000_CHECK_RESET_COUNT;
1435
1436 while (test_and_set_bit(__E1000_RESETTING, &adapter->flags) && count--)
1437 usleep_range(10000, 20000);
1438
1439 WARN_ON(count < 0);
1440
1441 /* signal that we're down so that the reset task will no longer run */
1442 set_bit(__E1000_DOWN, &adapter->flags);
1443 clear_bit(__E1000_RESETTING, &adapter->flags);
1444
1445 e1000_down(adapter);
1446 e1000_power_down_phy(adapter);
1447 e1000_free_irq(adapter);
1448
1449 e1000_free_all_tx_resources(adapter);
1450 e1000_free_all_rx_resources(adapter);
1451
1452 /* kill manageability vlan ID if supported, but not if a vlan with
1453 * the same ID is registered on the host OS (let 8021q kill it)
1454 */
1455 if ((hw->mng_cookie.status &
1456 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
1457 !test_bit(adapter->mng_vlan_id, adapter->active_vlans)) {
1458 e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q),
1459 adapter->mng_vlan_id);
1460 }
1461
1462 return 0;
1463}
1464
1465/**
1466 * e1000_check_64k_bound - check that memory doesn't cross 64kB boundary
1467 * @adapter: address of board private structure
1468 * @start: address of beginning of memory
1469 * @len: length of memory
1470 **/
1471static bool e1000_check_64k_bound(struct e1000_adapter *adapter, void *start,
1472 unsigned long len)
1473{
1474 struct e1000_hw *hw = &adapter->hw;
1475 unsigned long begin = (unsigned long)start;
1476 unsigned long end = begin + len;
1477
1478 /* First rev 82545 and 82546 need to not allow any memory
1479 * write location to cross 64k boundary due to errata 23
1480 */
1481 if (hw->mac_type == e1000_82545 ||
1482 hw->mac_type == e1000_ce4100 ||
1483 hw->mac_type == e1000_82546) {
1484 return ((begin ^ (end - 1)) >> 16) == 0;
1485 }
1486
1487 return true;
1488}
1489
1490/**
1491 * e1000_setup_tx_resources - allocate Tx resources (Descriptors)
1492 * @adapter: board private structure
1493 * @txdr: tx descriptor ring (for a specific queue) to setup
1494 *
1495 * Return 0 on success, negative on failure
1496 **/
1497static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
1498 struct e1000_tx_ring *txdr)
1499{
1500 struct pci_dev *pdev = adapter->pdev;
1501 int size;
1502
1503 size = sizeof(struct e1000_tx_buffer) * txdr->count;
1504 txdr->buffer_info = vzalloc(size);
1505 if (!txdr->buffer_info)
1506 return -ENOMEM;
1507
1508 /* round up to nearest 4K */
1509
1510 txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
1511 txdr->size = ALIGN(txdr->size, 4096);
1512
1513 txdr->desc = dma_alloc_coherent(&pdev->dev, txdr->size, &txdr->dma,
1514 GFP_KERNEL);
1515 if (!txdr->desc) {
1516setup_tx_desc_die:
1517 vfree(txdr->buffer_info);
1518 return -ENOMEM;
1519 }
1520
1521 /* Fix for errata 23, can't cross 64kB boundary */
1522 if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1523 void *olddesc = txdr->desc;
1524 dma_addr_t olddma = txdr->dma;
1525 e_err(tx_err, "txdr align check failed: %u bytes at %p\n",
1526 txdr->size, txdr->desc);
1527 /* Try again, without freeing the previous */
1528 txdr->desc = dma_alloc_coherent(&pdev->dev, txdr->size,
1529 &txdr->dma, GFP_KERNEL);
1530 /* Failed allocation, critical failure */
1531 if (!txdr->desc) {
1532 dma_free_coherent(&pdev->dev, txdr->size, olddesc,
1533 olddma);
1534 goto setup_tx_desc_die;
1535 }
1536
1537 if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1538 /* give up */
1539 dma_free_coherent(&pdev->dev, txdr->size, txdr->desc,
1540 txdr->dma);
1541 dma_free_coherent(&pdev->dev, txdr->size, olddesc,
1542 olddma);
1543 e_err(probe, "Unable to allocate aligned memory "
1544 "for the transmit descriptor ring\n");
1545 vfree(txdr->buffer_info);
1546 return -ENOMEM;
1547 } else {
1548 /* Free old allocation, new allocation was successful */
1549 dma_free_coherent(&pdev->dev, txdr->size, olddesc,
1550 olddma);
1551 }
1552 }
1553 memset(txdr->desc, 0, txdr->size);
1554
1555 txdr->next_to_use = 0;
1556 txdr->next_to_clean = 0;
1557
1558 return 0;
1559}
1560
1561/**
1562 * e1000_setup_all_tx_resources - wrapper to allocate Tx resources
1563 * (Descriptors) for all queues
1564 * @adapter: board private structure
1565 *
1566 * Return 0 on success, negative on failure
1567 **/
1568int e1000_setup_all_tx_resources(struct e1000_adapter *adapter)
1569{
1570 int i, err = 0;
1571
1572 for (i = 0; i < adapter->num_tx_queues; i++) {
1573 err = e1000_setup_tx_resources(adapter, &adapter->tx_ring[i]);
1574 if (err) {
1575 e_err(probe, "Allocation for Tx Queue %u failed\n", i);
1576 for (i-- ; i >= 0; i--)
1577 e1000_free_tx_resources(adapter,
1578 &adapter->tx_ring[i]);
1579 break;
1580 }
1581 }
1582
1583 return err;
1584}
1585
1586/**
1587 * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
1588 * @adapter: board private structure
1589 *
1590 * Configure the Tx unit of the MAC after a reset.
1591 **/
1592static void e1000_configure_tx(struct e1000_adapter *adapter)
1593{
1594 u64 tdba;
1595 struct e1000_hw *hw = &adapter->hw;
1596 u32 tdlen, tctl, tipg;
1597 u32 ipgr1, ipgr2;
1598
1599 /* Setup the HW Tx Head and Tail descriptor pointers */
1600
1601 switch (adapter->num_tx_queues) {
1602 case 1:
1603 default:
1604 tdba = adapter->tx_ring[0].dma;
1605 tdlen = adapter->tx_ring[0].count *
1606 sizeof(struct e1000_tx_desc);
1607 ew32(TDLEN, tdlen);
1608 ew32(TDBAH, (tdba >> 32));
1609 ew32(TDBAL, (tdba & 0x00000000ffffffffULL));
1610 ew32(TDT, 0);
1611 ew32(TDH, 0);
1612 adapter->tx_ring[0].tdh = ((hw->mac_type >= e1000_82543) ?
1613 E1000_TDH : E1000_82542_TDH);
1614 adapter->tx_ring[0].tdt = ((hw->mac_type >= e1000_82543) ?
1615 E1000_TDT : E1000_82542_TDT);
1616 break;
1617 }
1618
1619 /* Set the default values for the Tx Inter Packet Gap timer */
1620 if ((hw->media_type == e1000_media_type_fiber ||
1621 hw->media_type == e1000_media_type_internal_serdes))
1622 tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
1623 else
1624 tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
1625
1626 switch (hw->mac_type) {
1627 case e1000_82542_rev2_0:
1628 case e1000_82542_rev2_1:
1629 tipg = DEFAULT_82542_TIPG_IPGT;
1630 ipgr1 = DEFAULT_82542_TIPG_IPGR1;
1631 ipgr2 = DEFAULT_82542_TIPG_IPGR2;
1632 break;
1633 default:
1634 ipgr1 = DEFAULT_82543_TIPG_IPGR1;
1635 ipgr2 = DEFAULT_82543_TIPG_IPGR2;
1636 break;
1637 }
1638 tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
1639 tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
1640 ew32(TIPG, tipg);
1641
1642 /* Set the Tx Interrupt Delay register */
1643
1644 ew32(TIDV, adapter->tx_int_delay);
1645 if (hw->mac_type >= e1000_82540)
1646 ew32(TADV, adapter->tx_abs_int_delay);
1647
1648 /* Program the Transmit Control Register */
1649
1650 tctl = er32(TCTL);
1651 tctl &= ~E1000_TCTL_CT;
1652 tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
1653 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
1654
1655 e1000_config_collision_dist(hw);
1656
1657 /* Setup Transmit Descriptor Settings for eop descriptor */
1658 adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
1659
1660 /* only set IDE if we are delaying interrupts using the timers */
1661 if (adapter->tx_int_delay)
1662 adapter->txd_cmd |= E1000_TXD_CMD_IDE;
1663
1664 if (hw->mac_type < e1000_82543)
1665 adapter->txd_cmd |= E1000_TXD_CMD_RPS;
1666 else
1667 adapter->txd_cmd |= E1000_TXD_CMD_RS;
1668
1669 /* Cache if we're 82544 running in PCI-X because we'll
1670 * need this to apply a workaround later in the send path.
1671 */
1672 if (hw->mac_type == e1000_82544 &&
1673 hw->bus_type == e1000_bus_type_pcix)
1674 adapter->pcix_82544 = true;
1675
1676 ew32(TCTL, tctl);
1677
1678}
1679
1680/**
1681 * e1000_setup_rx_resources - allocate Rx resources (Descriptors)
1682 * @adapter: board private structure
1683 * @rxdr: rx descriptor ring (for a specific queue) to setup
1684 *
1685 * Returns 0 on success, negative on failure
1686 **/
1687static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
1688 struct e1000_rx_ring *rxdr)
1689{
1690 struct pci_dev *pdev = adapter->pdev;
1691 int size, desc_len;
1692
1693 size = sizeof(struct e1000_rx_buffer) * rxdr->count;
1694 rxdr->buffer_info = vzalloc(size);
1695 if (!rxdr->buffer_info)
1696 return -ENOMEM;
1697
1698 desc_len = sizeof(struct e1000_rx_desc);
1699
1700 /* Round up to nearest 4K */
1701
1702 rxdr->size = rxdr->count * desc_len;
1703 rxdr->size = ALIGN(rxdr->size, 4096);
1704
1705 rxdr->desc = dma_alloc_coherent(&pdev->dev, rxdr->size, &rxdr->dma,
1706 GFP_KERNEL);
1707 if (!rxdr->desc) {
1708setup_rx_desc_die:
1709 vfree(rxdr->buffer_info);
1710 return -ENOMEM;
1711 }
1712
1713 /* Fix for errata 23, can't cross 64kB boundary */
1714 if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1715 void *olddesc = rxdr->desc;
1716 dma_addr_t olddma = rxdr->dma;
1717 e_err(rx_err, "rxdr align check failed: %u bytes at %p\n",
1718 rxdr->size, rxdr->desc);
1719 /* Try again, without freeing the previous */
1720 rxdr->desc = dma_alloc_coherent(&pdev->dev, rxdr->size,
1721 &rxdr->dma, GFP_KERNEL);
1722 /* Failed allocation, critical failure */
1723 if (!rxdr->desc) {
1724 dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
1725 olddma);
1726 goto setup_rx_desc_die;
1727 }
1728
1729 if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1730 /* give up */
1731 dma_free_coherent(&pdev->dev, rxdr->size, rxdr->desc,
1732 rxdr->dma);
1733 dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
1734 olddma);
1735 e_err(probe, "Unable to allocate aligned memory for "
1736 "the Rx descriptor ring\n");
1737 goto setup_rx_desc_die;
1738 } else {
1739 /* Free old allocation, new allocation was successful */
1740 dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
1741 olddma);
1742 }
1743 }
1744 memset(rxdr->desc, 0, rxdr->size);
1745
1746 rxdr->next_to_clean = 0;
1747 rxdr->next_to_use = 0;
1748 rxdr->rx_skb_top = NULL;
1749
1750 return 0;
1751}
1752
1753/**
1754 * e1000_setup_all_rx_resources - wrapper to allocate Rx resources
1755 * (Descriptors) for all queues
1756 * @adapter: board private structure
1757 *
1758 * Return 0 on success, negative on failure
1759 **/
1760int e1000_setup_all_rx_resources(struct e1000_adapter *adapter)
1761{
1762 int i, err = 0;
1763
1764 for (i = 0; i < adapter->num_rx_queues; i++) {
1765 err = e1000_setup_rx_resources(adapter, &adapter->rx_ring[i]);
1766 if (err) {
1767 e_err(probe, "Allocation for Rx Queue %u failed\n", i);
1768 for (i-- ; i >= 0; i--)
1769 e1000_free_rx_resources(adapter,
1770 &adapter->rx_ring[i]);
1771 break;
1772 }
1773 }
1774
1775 return err;
1776}
1777
1778/**
1779 * e1000_setup_rctl - configure the receive control registers
1780 * @adapter: Board private structure
1781 **/
1782static void e1000_setup_rctl(struct e1000_adapter *adapter)
1783{
1784 struct e1000_hw *hw = &adapter->hw;
1785 u32 rctl;
1786
1787 rctl = er32(RCTL);
1788
1789 rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
1790
1791 rctl |= E1000_RCTL_BAM | E1000_RCTL_LBM_NO |
1792 E1000_RCTL_RDMTS_HALF |
1793 (hw->mc_filter_type << E1000_RCTL_MO_SHIFT);
1794
1795 if (hw->tbi_compatibility_on == 1)
1796 rctl |= E1000_RCTL_SBP;
1797 else
1798 rctl &= ~E1000_RCTL_SBP;
1799
1800 if (adapter->netdev->mtu <= ETH_DATA_LEN)
1801 rctl &= ~E1000_RCTL_LPE;
1802 else
1803 rctl |= E1000_RCTL_LPE;
1804
1805 /* Setup buffer sizes */
1806 rctl &= ~E1000_RCTL_SZ_4096;
1807 rctl |= E1000_RCTL_BSEX;
1808 switch (adapter->rx_buffer_len) {
1809 case E1000_RXBUFFER_2048:
1810 default:
1811 rctl |= E1000_RCTL_SZ_2048;
1812 rctl &= ~E1000_RCTL_BSEX;
1813 break;
1814 case E1000_RXBUFFER_4096:
1815 rctl |= E1000_RCTL_SZ_4096;
1816 break;
1817 case E1000_RXBUFFER_8192:
1818 rctl |= E1000_RCTL_SZ_8192;
1819 break;
1820 case E1000_RXBUFFER_16384:
1821 rctl |= E1000_RCTL_SZ_16384;
1822 break;
1823 }
1824
1825 /* This is useful for sniffing bad packets. */
1826 if (adapter->netdev->features & NETIF_F_RXALL) {
1827 /* UPE and MPE will be handled by normal PROMISC logic
1828 * in e1000e_set_rx_mode
1829 */
1830 rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
1831 E1000_RCTL_BAM | /* RX All Bcast Pkts */
1832 E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
1833
1834 rctl &= ~(E1000_RCTL_VFE | /* Disable VLAN filter */
1835 E1000_RCTL_DPF | /* Allow filtered pause */
1836 E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
1837 /* Do not mess with E1000_CTRL_VME, it affects transmit as well,
1838 * and that breaks VLANs.
1839 */
1840 }
1841
1842 ew32(RCTL, rctl);
1843}
1844
1845/**
1846 * e1000_configure_rx - Configure 8254x Receive Unit after Reset
1847 * @adapter: board private structure
1848 *
1849 * Configure the Rx unit of the MAC after a reset.
1850 **/
1851static void e1000_configure_rx(struct e1000_adapter *adapter)
1852{
1853 u64 rdba;
1854 struct e1000_hw *hw = &adapter->hw;
1855 u32 rdlen, rctl, rxcsum;
1856
1857 if (adapter->netdev->mtu > ETH_DATA_LEN) {
1858 rdlen = adapter->rx_ring[0].count *
1859 sizeof(struct e1000_rx_desc);
1860 adapter->clean_rx = e1000_clean_jumbo_rx_irq;
1861 adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers;
1862 } else {
1863 rdlen = adapter->rx_ring[0].count *
1864 sizeof(struct e1000_rx_desc);
1865 adapter->clean_rx = e1000_clean_rx_irq;
1866 adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
1867 }
1868
1869 /* disable receives while setting up the descriptors */
1870 rctl = er32(RCTL);
1871 ew32(RCTL, rctl & ~E1000_RCTL_EN);
1872
1873 /* set the Receive Delay Timer Register */
1874 ew32(RDTR, adapter->rx_int_delay);
1875
1876 if (hw->mac_type >= e1000_82540) {
1877 ew32(RADV, adapter->rx_abs_int_delay);
1878 if (adapter->itr_setting != 0)
1879 ew32(ITR, 1000000000 / (adapter->itr * 256));
1880 }
1881
1882 /* Setup the HW Rx Head and Tail Descriptor Pointers and
1883 * the Base and Length of the Rx Descriptor Ring
1884 */
1885 switch (adapter->num_rx_queues) {
1886 case 1:
1887 default:
1888 rdba = adapter->rx_ring[0].dma;
1889 ew32(RDLEN, rdlen);
1890 ew32(RDBAH, (rdba >> 32));
1891 ew32(RDBAL, (rdba & 0x00000000ffffffffULL));
1892 ew32(RDT, 0);
1893 ew32(RDH, 0);
1894 adapter->rx_ring[0].rdh = ((hw->mac_type >= e1000_82543) ?
1895 E1000_RDH : E1000_82542_RDH);
1896 adapter->rx_ring[0].rdt = ((hw->mac_type >= e1000_82543) ?
1897 E1000_RDT : E1000_82542_RDT);
1898 break;
1899 }
1900
1901 /* Enable 82543 Receive Checksum Offload for TCP and UDP */
1902 if (hw->mac_type >= e1000_82543) {
1903 rxcsum = er32(RXCSUM);
1904 if (adapter->rx_csum)
1905 rxcsum |= E1000_RXCSUM_TUOFL;
1906 else
1907 /* don't need to clear IPPCSE as it defaults to 0 */
1908 rxcsum &= ~E1000_RXCSUM_TUOFL;
1909 ew32(RXCSUM, rxcsum);
1910 }
1911
1912 /* Enable Receives */
1913 ew32(RCTL, rctl | E1000_RCTL_EN);
1914}
1915
1916/**
1917 * e1000_free_tx_resources - Free Tx Resources per Queue
1918 * @adapter: board private structure
1919 * @tx_ring: Tx descriptor ring for a specific queue
1920 *
1921 * Free all transmit software resources
1922 **/
1923static void e1000_free_tx_resources(struct e1000_adapter *adapter,
1924 struct e1000_tx_ring *tx_ring)
1925{
1926 struct pci_dev *pdev = adapter->pdev;
1927
1928 e1000_clean_tx_ring(adapter, tx_ring);
1929
1930 vfree(tx_ring->buffer_info);
1931 tx_ring->buffer_info = NULL;
1932
1933 dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
1934 tx_ring->dma);
1935
1936 tx_ring->desc = NULL;
1937}
1938
1939/**
1940 * e1000_free_all_tx_resources - Free Tx Resources for All Queues
1941 * @adapter: board private structure
1942 *
1943 * Free all transmit software resources
1944 **/
1945void e1000_free_all_tx_resources(struct e1000_adapter *adapter)
1946{
1947 int i;
1948
1949 for (i = 0; i < adapter->num_tx_queues; i++)
1950 e1000_free_tx_resources(adapter, &adapter->tx_ring[i]);
1951}
1952
1953static void
1954e1000_unmap_and_free_tx_resource(struct e1000_adapter *adapter,
1955 struct e1000_tx_buffer *buffer_info)
1956{
1957 if (buffer_info->dma) {
1958 if (buffer_info->mapped_as_page)
1959 dma_unmap_page(&adapter->pdev->dev, buffer_info->dma,
1960 buffer_info->length, DMA_TO_DEVICE);
1961 else
1962 dma_unmap_single(&adapter->pdev->dev, buffer_info->dma,
1963 buffer_info->length,
1964 DMA_TO_DEVICE);
1965 buffer_info->dma = 0;
1966 }
1967 if (buffer_info->skb) {
1968 dev_kfree_skb_any(buffer_info->skb);
1969 buffer_info->skb = NULL;
1970 }
1971 buffer_info->time_stamp = 0;
1972 /* buffer_info must be completely set up in the transmit path */
1973}
1974
1975/**
1976 * e1000_clean_tx_ring - Free Tx Buffers
1977 * @adapter: board private structure
1978 * @tx_ring: ring to be cleaned
1979 **/
1980static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
1981 struct e1000_tx_ring *tx_ring)
1982{
1983 struct e1000_hw *hw = &adapter->hw;
1984 struct e1000_tx_buffer *buffer_info;
1985 unsigned long size;
1986 unsigned int i;
1987
1988 /* Free all the Tx ring sk_buffs */
1989
1990 for (i = 0; i < tx_ring->count; i++) {
1991 buffer_info = &tx_ring->buffer_info[i];
1992 e1000_unmap_and_free_tx_resource(adapter, buffer_info);
1993 }
1994
1995 netdev_reset_queue(adapter->netdev);
1996 size = sizeof(struct e1000_tx_buffer) * tx_ring->count;
1997 memset(tx_ring->buffer_info, 0, size);
1998
1999 /* Zero out the descriptor ring */
2000
2001 memset(tx_ring->desc, 0, tx_ring->size);
2002
2003 tx_ring->next_to_use = 0;
2004 tx_ring->next_to_clean = 0;
2005 tx_ring->last_tx_tso = false;
2006
2007 writel(0, hw->hw_addr + tx_ring->tdh);
2008 writel(0, hw->hw_addr + tx_ring->tdt);
2009}
2010
2011/**
2012 * e1000_clean_all_tx_rings - Free Tx Buffers for all queues
2013 * @adapter: board private structure
2014 **/
2015static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter)
2016{
2017 int i;
2018
2019 for (i = 0; i < adapter->num_tx_queues; i++)
2020 e1000_clean_tx_ring(adapter, &adapter->tx_ring[i]);
2021}
2022
2023/**
2024 * e1000_free_rx_resources - Free Rx Resources
2025 * @adapter: board private structure
2026 * @rx_ring: ring to clean the resources from
2027 *
2028 * Free all receive software resources
2029 **/
2030static void e1000_free_rx_resources(struct e1000_adapter *adapter,
2031 struct e1000_rx_ring *rx_ring)
2032{
2033 struct pci_dev *pdev = adapter->pdev;
2034
2035 e1000_clean_rx_ring(adapter, rx_ring);
2036
2037 vfree(rx_ring->buffer_info);
2038 rx_ring->buffer_info = NULL;
2039
2040 dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
2041 rx_ring->dma);
2042
2043 rx_ring->desc = NULL;
2044}
2045
2046/**
2047 * e1000_free_all_rx_resources - Free Rx Resources for All Queues
2048 * @adapter: board private structure
2049 *
2050 * Free all receive software resources
2051 **/
2052void e1000_free_all_rx_resources(struct e1000_adapter *adapter)
2053{
2054 int i;
2055
2056 for (i = 0; i < adapter->num_rx_queues; i++)
2057 e1000_free_rx_resources(adapter, &adapter->rx_ring[i]);
2058}
2059
2060#define E1000_HEADROOM (NET_SKB_PAD + NET_IP_ALIGN)
2061static unsigned int e1000_frag_len(const struct e1000_adapter *a)
2062{
2063 return SKB_DATA_ALIGN(a->rx_buffer_len + E1000_HEADROOM) +
2064 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
2065}
2066
2067static void *e1000_alloc_frag(const struct e1000_adapter *a)
2068{
2069 unsigned int len = e1000_frag_len(a);
2070 u8 *data = netdev_alloc_frag(len);
2071
2072 if (likely(data))
2073 data += E1000_HEADROOM;
2074 return data;
2075}
2076
2077/**
2078 * e1000_clean_rx_ring - Free Rx Buffers per Queue
2079 * @adapter: board private structure
2080 * @rx_ring: ring to free buffers from
2081 **/
2082static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
2083 struct e1000_rx_ring *rx_ring)
2084{
2085 struct e1000_hw *hw = &adapter->hw;
2086 struct e1000_rx_buffer *buffer_info;
2087 struct pci_dev *pdev = adapter->pdev;
2088 unsigned long size;
2089 unsigned int i;
2090
2091 /* Free all the Rx netfrags */
2092 for (i = 0; i < rx_ring->count; i++) {
2093 buffer_info = &rx_ring->buffer_info[i];
2094 if (adapter->clean_rx == e1000_clean_rx_irq) {
2095 if (buffer_info->dma)
2096 dma_unmap_single(&pdev->dev, buffer_info->dma,
2097 adapter->rx_buffer_len,
2098 DMA_FROM_DEVICE);
2099 if (buffer_info->rxbuf.data) {
2100 skb_free_frag(buffer_info->rxbuf.data);
2101 buffer_info->rxbuf.data = NULL;
2102 }
2103 } else if (adapter->clean_rx == e1000_clean_jumbo_rx_irq) {
2104 if (buffer_info->dma)
2105 dma_unmap_page(&pdev->dev, buffer_info->dma,
2106 adapter->rx_buffer_len,
2107 DMA_FROM_DEVICE);
2108 if (buffer_info->rxbuf.page) {
2109 put_page(buffer_info->rxbuf.page);
2110 buffer_info->rxbuf.page = NULL;
2111 }
2112 }
2113
2114 buffer_info->dma = 0;
2115 }
2116
2117 /* there also may be some cached data from a chained receive */
2118 napi_free_frags(&adapter->napi);
2119 rx_ring->rx_skb_top = NULL;
2120
2121 size = sizeof(struct e1000_rx_buffer) * rx_ring->count;
2122 memset(rx_ring->buffer_info, 0, size);
2123
2124 /* Zero out the descriptor ring */
2125 memset(rx_ring->desc, 0, rx_ring->size);
2126
2127 rx_ring->next_to_clean = 0;
2128 rx_ring->next_to_use = 0;
2129
2130 writel(0, hw->hw_addr + rx_ring->rdh);
2131 writel(0, hw->hw_addr + rx_ring->rdt);
2132}
2133
2134/**
2135 * e1000_clean_all_rx_rings - Free Rx Buffers for all queues
2136 * @adapter: board private structure
2137 **/
2138static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter)
2139{
2140 int i;
2141
2142 for (i = 0; i < adapter->num_rx_queues; i++)
2143 e1000_clean_rx_ring(adapter, &adapter->rx_ring[i]);
2144}
2145
2146/* The 82542 2.0 (revision 2) needs to have the receive unit in reset
2147 * and memory write and invalidate disabled for certain operations
2148 */
2149static void e1000_enter_82542_rst(struct e1000_adapter *adapter)
2150{
2151 struct e1000_hw *hw = &adapter->hw;
2152 struct net_device *netdev = adapter->netdev;
2153 u32 rctl;
2154
2155 e1000_pci_clear_mwi(hw);
2156
2157 rctl = er32(RCTL);
2158 rctl |= E1000_RCTL_RST;
2159 ew32(RCTL, rctl);
2160 E1000_WRITE_FLUSH();
2161 mdelay(5);
2162
2163 if (netif_running(netdev))
2164 e1000_clean_all_rx_rings(adapter);
2165}
2166
2167static void e1000_leave_82542_rst(struct e1000_adapter *adapter)
2168{
2169 struct e1000_hw *hw = &adapter->hw;
2170 struct net_device *netdev = adapter->netdev;
2171 u32 rctl;
2172
2173 rctl = er32(RCTL);
2174 rctl &= ~E1000_RCTL_RST;
2175 ew32(RCTL, rctl);
2176 E1000_WRITE_FLUSH();
2177 mdelay(5);
2178
2179 if (hw->pci_cmd_word & PCI_COMMAND_INVALIDATE)
2180 e1000_pci_set_mwi(hw);
2181
2182 if (netif_running(netdev)) {
2183 /* No need to loop, because 82542 supports only 1 queue */
2184 struct e1000_rx_ring *ring = &adapter->rx_ring[0];
2185 e1000_configure_rx(adapter);
2186 adapter->alloc_rx_buf(adapter, ring, E1000_DESC_UNUSED(ring));
2187 }
2188}
2189
2190/**
2191 * e1000_set_mac - Change the Ethernet Address of the NIC
2192 * @netdev: network interface device structure
2193 * @p: pointer to an address structure
2194 *
2195 * Returns 0 on success, negative on failure
2196 **/
2197static int e1000_set_mac(struct net_device *netdev, void *p)
2198{
2199 struct e1000_adapter *adapter = netdev_priv(netdev);
2200 struct e1000_hw *hw = &adapter->hw;
2201 struct sockaddr *addr = p;
2202
2203 if (!is_valid_ether_addr(addr->sa_data))
2204 return -EADDRNOTAVAIL;
2205
2206 /* 82542 2.0 needs to be in reset to write receive address registers */
2207
2208 if (hw->mac_type == e1000_82542_rev2_0)
2209 e1000_enter_82542_rst(adapter);
2210
2211 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
2212 memcpy(hw->mac_addr, addr->sa_data, netdev->addr_len);
2213
2214 e1000_rar_set(hw, hw->mac_addr, 0);
2215
2216 if (hw->mac_type == e1000_82542_rev2_0)
2217 e1000_leave_82542_rst(adapter);
2218
2219 return 0;
2220}
2221
2222/**
2223 * e1000_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
2224 * @netdev: network interface device structure
2225 *
2226 * The set_rx_mode entry point is called whenever the unicast or multicast
2227 * address lists or the network interface flags are updated. This routine is
2228 * responsible for configuring the hardware for proper unicast, multicast,
2229 * promiscuous mode, and all-multi behavior.
2230 **/
2231static void e1000_set_rx_mode(struct net_device *netdev)
2232{
2233 struct e1000_adapter *adapter = netdev_priv(netdev);
2234 struct e1000_hw *hw = &adapter->hw;
2235 struct netdev_hw_addr *ha;
2236 bool use_uc = false;
2237 u32 rctl;
2238 u32 hash_value;
2239 int i, rar_entries = E1000_RAR_ENTRIES;
2240 int mta_reg_count = E1000_NUM_MTA_REGISTERS;
2241 u32 *mcarray = kcalloc(mta_reg_count, sizeof(u32), GFP_ATOMIC);
2242
2243 if (!mcarray)
2244 return;
2245
2246 /* Check for Promiscuous and All Multicast modes */
2247
2248 rctl = er32(RCTL);
2249
2250 if (netdev->flags & IFF_PROMISC) {
2251 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2252 rctl &= ~E1000_RCTL_VFE;
2253 } else {
2254 if (netdev->flags & IFF_ALLMULTI)
2255 rctl |= E1000_RCTL_MPE;
2256 else
2257 rctl &= ~E1000_RCTL_MPE;
2258 /* Enable VLAN filter if there is a VLAN */
2259 if (e1000_vlan_used(adapter))
2260 rctl |= E1000_RCTL_VFE;
2261 }
2262
2263 if (netdev_uc_count(netdev) > rar_entries - 1) {
2264 rctl |= E1000_RCTL_UPE;
2265 } else if (!(netdev->flags & IFF_PROMISC)) {
2266 rctl &= ~E1000_RCTL_UPE;
2267 use_uc = true;
2268 }
2269
2270 ew32(RCTL, rctl);
2271
2272 /* 82542 2.0 needs to be in reset to write receive address registers */
2273
2274 if (hw->mac_type == e1000_82542_rev2_0)
2275 e1000_enter_82542_rst(adapter);
2276
2277 /* load the first 14 addresses into the exact filters 1-14. Unicast
2278 * addresses take precedence to avoid disabling unicast filtering
2279 * when possible.
2280 *
2281 * RAR 0 is used for the station MAC address
2282 * if there are not 14 addresses, go ahead and clear the filters
2283 */
2284 i = 1;
2285 if (use_uc)
2286 netdev_for_each_uc_addr(ha, netdev) {
2287 if (i == rar_entries)
2288 break;
2289 e1000_rar_set(hw, ha->addr, i++);
2290 }
2291
2292 netdev_for_each_mc_addr(ha, netdev) {
2293 if (i == rar_entries) {
2294 /* load any remaining addresses into the hash table */
2295 u32 hash_reg, hash_bit, mta;
2296 hash_value = e1000_hash_mc_addr(hw, ha->addr);
2297 hash_reg = (hash_value >> 5) & 0x7F;
2298 hash_bit = hash_value & 0x1F;
2299 mta = (1 << hash_bit);
2300 mcarray[hash_reg] |= mta;
2301 } else {
2302 e1000_rar_set(hw, ha->addr, i++);
2303 }
2304 }
2305
2306 for (; i < rar_entries; i++) {
2307 E1000_WRITE_REG_ARRAY(hw, RA, i << 1, 0);
2308 E1000_WRITE_FLUSH();
2309 E1000_WRITE_REG_ARRAY(hw, RA, (i << 1) + 1, 0);
2310 E1000_WRITE_FLUSH();
2311 }
2312
2313 /* write the hash table completely, write from bottom to avoid
2314 * both stupid write combining chipsets, and flushing each write
2315 */
2316 for (i = mta_reg_count - 1; i >= 0 ; i--) {
2317 /* If we are on an 82544 has an errata where writing odd
2318 * offsets overwrites the previous even offset, but writing
2319 * backwards over the range solves the issue by always
2320 * writing the odd offset first
2321 */
2322 E1000_WRITE_REG_ARRAY(hw, MTA, i, mcarray[i]);
2323 }
2324 E1000_WRITE_FLUSH();
2325
2326 if (hw->mac_type == e1000_82542_rev2_0)
2327 e1000_leave_82542_rst(adapter);
2328
2329 kfree(mcarray);
2330}
2331
2332/**
2333 * e1000_update_phy_info_task - get phy info
2334 * @work: work struct contained inside adapter struct
2335 *
2336 * Need to wait a few seconds after link up to get diagnostic information from
2337 * the phy
2338 */
2339static void e1000_update_phy_info_task(struct work_struct *work)
2340{
2341 struct e1000_adapter *adapter = container_of(work,
2342 struct e1000_adapter,
2343 phy_info_task.work);
2344
2345 e1000_phy_get_info(&adapter->hw, &adapter->phy_info);
2346}
2347
2348/**
2349 * e1000_82547_tx_fifo_stall_task - task to complete work
2350 * @work: work struct contained inside adapter struct
2351 **/
2352static void e1000_82547_tx_fifo_stall_task(struct work_struct *work)
2353{
2354 struct e1000_adapter *adapter = container_of(work,
2355 struct e1000_adapter,
2356 fifo_stall_task.work);
2357 struct e1000_hw *hw = &adapter->hw;
2358 struct net_device *netdev = adapter->netdev;
2359 u32 tctl;
2360
2361 if (atomic_read(&adapter->tx_fifo_stall)) {
2362 if ((er32(TDT) == er32(TDH)) &&
2363 (er32(TDFT) == er32(TDFH)) &&
2364 (er32(TDFTS) == er32(TDFHS))) {
2365 tctl = er32(TCTL);
2366 ew32(TCTL, tctl & ~E1000_TCTL_EN);
2367 ew32(TDFT, adapter->tx_head_addr);
2368 ew32(TDFH, adapter->tx_head_addr);
2369 ew32(TDFTS, adapter->tx_head_addr);
2370 ew32(TDFHS, adapter->tx_head_addr);
2371 ew32(TCTL, tctl);
2372 E1000_WRITE_FLUSH();
2373
2374 adapter->tx_fifo_head = 0;
2375 atomic_set(&adapter->tx_fifo_stall, 0);
2376 netif_wake_queue(netdev);
2377 } else if (!test_bit(__E1000_DOWN, &adapter->flags)) {
2378 schedule_delayed_work(&adapter->fifo_stall_task, 1);
2379 }
2380 }
2381}
2382
2383bool e1000_has_link(struct e1000_adapter *adapter)
2384{
2385 struct e1000_hw *hw = &adapter->hw;
2386 bool link_active = false;
2387
2388 /* get_link_status is set on LSC (link status) interrupt or rx
2389 * sequence error interrupt (except on intel ce4100).
2390 * get_link_status will stay false until the
2391 * e1000_check_for_link establishes link for copper adapters
2392 * ONLY
2393 */
2394 switch (hw->media_type) {
2395 case e1000_media_type_copper:
2396 if (hw->mac_type == e1000_ce4100)
2397 hw->get_link_status = 1;
2398 if (hw->get_link_status) {
2399 e1000_check_for_link(hw);
2400 link_active = !hw->get_link_status;
2401 } else {
2402 link_active = true;
2403 }
2404 break;
2405 case e1000_media_type_fiber:
2406 e1000_check_for_link(hw);
2407 link_active = !!(er32(STATUS) & E1000_STATUS_LU);
2408 break;
2409 case e1000_media_type_internal_serdes:
2410 e1000_check_for_link(hw);
2411 link_active = hw->serdes_has_link;
2412 break;
2413 default:
2414 break;
2415 }
2416
2417 return link_active;
2418}
2419
2420/**
2421 * e1000_watchdog - work function
2422 * @work: work struct contained inside adapter struct
2423 **/
2424static void e1000_watchdog(struct work_struct *work)
2425{
2426 struct e1000_adapter *adapter = container_of(work,
2427 struct e1000_adapter,
2428 watchdog_task.work);
2429 struct e1000_hw *hw = &adapter->hw;
2430 struct net_device *netdev = adapter->netdev;
2431 struct e1000_tx_ring *txdr = adapter->tx_ring;
2432 u32 link, tctl;
2433
2434 link = e1000_has_link(adapter);
2435 if ((netif_carrier_ok(netdev)) && link)
2436 goto link_up;
2437
2438 if (link) {
2439 if (!netif_carrier_ok(netdev)) {
2440 u32 ctrl;
2441 /* update snapshot of PHY registers on LSC */
2442 e1000_get_speed_and_duplex(hw,
2443 &adapter->link_speed,
2444 &adapter->link_duplex);
2445
2446 ctrl = er32(CTRL);
2447 pr_info("%s NIC Link is Up %d Mbps %s, "
2448 "Flow Control: %s\n",
2449 netdev->name,
2450 adapter->link_speed,
2451 adapter->link_duplex == FULL_DUPLEX ?
2452 "Full Duplex" : "Half Duplex",
2453 ((ctrl & E1000_CTRL_TFCE) && (ctrl &
2454 E1000_CTRL_RFCE)) ? "RX/TX" : ((ctrl &
2455 E1000_CTRL_RFCE) ? "RX" : ((ctrl &
2456 E1000_CTRL_TFCE) ? "TX" : "None")));
2457
2458 /* adjust timeout factor according to speed/duplex */
2459 adapter->tx_timeout_factor = 1;
2460 switch (adapter->link_speed) {
2461 case SPEED_10:
2462 adapter->tx_timeout_factor = 16;
2463 break;
2464 case SPEED_100:
2465 /* maybe add some timeout factor ? */
2466 break;
2467 }
2468
2469 /* enable transmits in the hardware */
2470 tctl = er32(TCTL);
2471 tctl |= E1000_TCTL_EN;
2472 ew32(TCTL, tctl);
2473
2474 netif_carrier_on(netdev);
2475 if (!test_bit(__E1000_DOWN, &adapter->flags))
2476 schedule_delayed_work(&adapter->phy_info_task,
2477 2 * HZ);
2478 adapter->smartspeed = 0;
2479 }
2480 } else {
2481 if (netif_carrier_ok(netdev)) {
2482 adapter->link_speed = 0;
2483 adapter->link_duplex = 0;
2484 pr_info("%s NIC Link is Down\n",
2485 netdev->name);
2486 netif_carrier_off(netdev);
2487
2488 if (!test_bit(__E1000_DOWN, &adapter->flags))
2489 schedule_delayed_work(&adapter->phy_info_task,
2490 2 * HZ);
2491 }
2492
2493 e1000_smartspeed(adapter);
2494 }
2495
2496link_up:
2497 e1000_update_stats(adapter);
2498
2499 hw->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
2500 adapter->tpt_old = adapter->stats.tpt;
2501 hw->collision_delta = adapter->stats.colc - adapter->colc_old;
2502 adapter->colc_old = adapter->stats.colc;
2503
2504 adapter->gorcl = adapter->stats.gorcl - adapter->gorcl_old;
2505 adapter->gorcl_old = adapter->stats.gorcl;
2506 adapter->gotcl = adapter->stats.gotcl - adapter->gotcl_old;
2507 adapter->gotcl_old = adapter->stats.gotcl;
2508
2509 e1000_update_adaptive(hw);
2510
2511 if (!netif_carrier_ok(netdev)) {
2512 if (E1000_DESC_UNUSED(txdr) + 1 < txdr->count) {
2513 /* We've lost link, so the controller stops DMA,
2514 * but we've got queued Tx work that's never going
2515 * to get done, so reset controller to flush Tx.
2516 * (Do the reset outside of interrupt context).
2517 */
2518 adapter->tx_timeout_count++;
2519 schedule_work(&adapter->reset_task);
2520 /* exit immediately since reset is imminent */
2521 return;
2522 }
2523 }
2524
2525 /* Simple mode for Interrupt Throttle Rate (ITR) */
2526 if (hw->mac_type >= e1000_82540 && adapter->itr_setting == 4) {
2527 /* Symmetric Tx/Rx gets a reduced ITR=2000;
2528 * Total asymmetrical Tx or Rx gets ITR=8000;
2529 * everyone else is between 2000-8000.
2530 */
2531 u32 goc = (adapter->gotcl + adapter->gorcl) / 10000;
2532 u32 dif = (adapter->gotcl > adapter->gorcl ?
2533 adapter->gotcl - adapter->gorcl :
2534 adapter->gorcl - adapter->gotcl) / 10000;
2535 u32 itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000;
2536
2537 ew32(ITR, 1000000000 / (itr * 256));
2538 }
2539
2540 /* Cause software interrupt to ensure rx ring is cleaned */
2541 ew32(ICS, E1000_ICS_RXDMT0);
2542
2543 /* Force detection of hung controller every watchdog period */
2544 adapter->detect_tx_hung = true;
2545
2546 /* Reschedule the task */
2547 if (!test_bit(__E1000_DOWN, &adapter->flags))
2548 schedule_delayed_work(&adapter->watchdog_task, 2 * HZ);
2549}
2550
2551enum latency_range {
2552 lowest_latency = 0,
2553 low_latency = 1,
2554 bulk_latency = 2,
2555 latency_invalid = 255
2556};
2557
2558/**
2559 * e1000_update_itr - update the dynamic ITR value based on statistics
2560 * @adapter: pointer to adapter
2561 * @itr_setting: current adapter->itr
2562 * @packets: the number of packets during this measurement interval
2563 * @bytes: the number of bytes during this measurement interval
2564 *
2565 * Stores a new ITR value based on packets and byte
2566 * counts during the last interrupt. The advantage of per interrupt
2567 * computation is faster updates and more accurate ITR for the current
2568 * traffic pattern. Constants in this function were computed
2569 * based on theoretical maximum wire speed and thresholds were set based
2570 * on testing data as well as attempting to minimize response time
2571 * while increasing bulk throughput.
2572 * this functionality is controlled by the InterruptThrottleRate module
2573 * parameter (see e1000_param.c)
2574 **/
2575static unsigned int e1000_update_itr(struct e1000_adapter *adapter,
2576 u16 itr_setting, int packets, int bytes)
2577{
2578 unsigned int retval = itr_setting;
2579 struct e1000_hw *hw = &adapter->hw;
2580
2581 if (unlikely(hw->mac_type < e1000_82540))
2582 goto update_itr_done;
2583
2584 if (packets == 0)
2585 goto update_itr_done;
2586
2587 switch (itr_setting) {
2588 case lowest_latency:
2589 /* jumbo frames get bulk treatment*/
2590 if (bytes/packets > 8000)
2591 retval = bulk_latency;
2592 else if ((packets < 5) && (bytes > 512))
2593 retval = low_latency;
2594 break;
2595 case low_latency: /* 50 usec aka 20000 ints/s */
2596 if (bytes > 10000) {
2597 /* jumbo frames need bulk latency setting */
2598 if (bytes/packets > 8000)
2599 retval = bulk_latency;
2600 else if ((packets < 10) || ((bytes/packets) > 1200))
2601 retval = bulk_latency;
2602 else if ((packets > 35))
2603 retval = lowest_latency;
2604 } else if (bytes/packets > 2000)
2605 retval = bulk_latency;
2606 else if (packets <= 2 && bytes < 512)
2607 retval = lowest_latency;
2608 break;
2609 case bulk_latency: /* 250 usec aka 4000 ints/s */
2610 if (bytes > 25000) {
2611 if (packets > 35)
2612 retval = low_latency;
2613 } else if (bytes < 6000) {
2614 retval = low_latency;
2615 }
2616 break;
2617 }
2618
2619update_itr_done:
2620 return retval;
2621}
2622
2623static void e1000_set_itr(struct e1000_adapter *adapter)
2624{
2625 struct e1000_hw *hw = &adapter->hw;
2626 u16 current_itr;
2627 u32 new_itr = adapter->itr;
2628
2629 if (unlikely(hw->mac_type < e1000_82540))
2630 return;
2631
2632 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2633 if (unlikely(adapter->link_speed != SPEED_1000)) {
2634 current_itr = 0;
2635 new_itr = 4000;
2636 goto set_itr_now;
2637 }
2638
2639 adapter->tx_itr = e1000_update_itr(adapter, adapter->tx_itr,
2640 adapter->total_tx_packets,
2641 adapter->total_tx_bytes);
2642 /* conservative mode (itr 3) eliminates the lowest_latency setting */
2643 if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
2644 adapter->tx_itr = low_latency;
2645
2646 adapter->rx_itr = e1000_update_itr(adapter, adapter->rx_itr,
2647 adapter->total_rx_packets,
2648 adapter->total_rx_bytes);
2649 /* conservative mode (itr 3) eliminates the lowest_latency setting */
2650 if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
2651 adapter->rx_itr = low_latency;
2652
2653 current_itr = max(adapter->rx_itr, adapter->tx_itr);
2654
2655 switch (current_itr) {
2656 /* counts and packets in update_itr are dependent on these numbers */
2657 case lowest_latency:
2658 new_itr = 70000;
2659 break;
2660 case low_latency:
2661 new_itr = 20000; /* aka hwitr = ~200 */
2662 break;
2663 case bulk_latency:
2664 new_itr = 4000;
2665 break;
2666 default:
2667 break;
2668 }
2669
2670set_itr_now:
2671 if (new_itr != adapter->itr) {
2672 /* this attempts to bias the interrupt rate towards Bulk
2673 * by adding intermediate steps when interrupt rate is
2674 * increasing
2675 */
2676 new_itr = new_itr > adapter->itr ?
2677 min(adapter->itr + (new_itr >> 2), new_itr) :
2678 new_itr;
2679 adapter->itr = new_itr;
2680 ew32(ITR, 1000000000 / (new_itr * 256));
2681 }
2682}
2683
2684#define E1000_TX_FLAGS_CSUM 0x00000001
2685#define E1000_TX_FLAGS_VLAN 0x00000002
2686#define E1000_TX_FLAGS_TSO 0x00000004
2687#define E1000_TX_FLAGS_IPV4 0x00000008
2688#define E1000_TX_FLAGS_NO_FCS 0x00000010
2689#define E1000_TX_FLAGS_VLAN_MASK 0xffff0000
2690#define E1000_TX_FLAGS_VLAN_SHIFT 16
2691
2692static int e1000_tso(struct e1000_adapter *adapter,
2693 struct e1000_tx_ring *tx_ring, struct sk_buff *skb,
2694 __be16 protocol)
2695{
2696 struct e1000_context_desc *context_desc;
2697 struct e1000_tx_buffer *buffer_info;
2698 unsigned int i;
2699 u32 cmd_length = 0;
2700 u16 ipcse = 0, tucse, mss;
2701 u8 ipcss, ipcso, tucss, tucso, hdr_len;
2702
2703 if (skb_is_gso(skb)) {
2704 int err;
2705
2706 err = skb_cow_head(skb, 0);
2707 if (err < 0)
2708 return err;
2709
2710 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
2711 mss = skb_shinfo(skb)->gso_size;
2712 if (protocol == htons(ETH_P_IP)) {
2713 struct iphdr *iph = ip_hdr(skb);
2714 iph->tot_len = 0;
2715 iph->check = 0;
2716 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
2717 iph->daddr, 0,
2718 IPPROTO_TCP,
2719 0);
2720 cmd_length = E1000_TXD_CMD_IP;
2721 ipcse = skb_transport_offset(skb) - 1;
2722 } else if (skb_is_gso_v6(skb)) {
2723 tcp_v6_gso_csum_prep(skb);
2724 ipcse = 0;
2725 }
2726 ipcss = skb_network_offset(skb);
2727 ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
2728 tucss = skb_transport_offset(skb);
2729 tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
2730 tucse = 0;
2731
2732 cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
2733 E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
2734
2735 i = tx_ring->next_to_use;
2736 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2737 buffer_info = &tx_ring->buffer_info[i];
2738
2739 context_desc->lower_setup.ip_fields.ipcss = ipcss;
2740 context_desc->lower_setup.ip_fields.ipcso = ipcso;
2741 context_desc->lower_setup.ip_fields.ipcse = cpu_to_le16(ipcse);
2742 context_desc->upper_setup.tcp_fields.tucss = tucss;
2743 context_desc->upper_setup.tcp_fields.tucso = tucso;
2744 context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
2745 context_desc->tcp_seg_setup.fields.mss = cpu_to_le16(mss);
2746 context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
2747 context_desc->cmd_and_length = cpu_to_le32(cmd_length);
2748
2749 buffer_info->time_stamp = jiffies;
2750 buffer_info->next_to_watch = i;
2751
2752 if (++i == tx_ring->count)
2753 i = 0;
2754
2755 tx_ring->next_to_use = i;
2756
2757 return true;
2758 }
2759 return false;
2760}
2761
2762static bool e1000_tx_csum(struct e1000_adapter *adapter,
2763 struct e1000_tx_ring *tx_ring, struct sk_buff *skb,
2764 __be16 protocol)
2765{
2766 struct e1000_context_desc *context_desc;
2767 struct e1000_tx_buffer *buffer_info;
2768 unsigned int i;
2769 u8 css;
2770 u32 cmd_len = E1000_TXD_CMD_DEXT;
2771
2772 if (skb->ip_summed != CHECKSUM_PARTIAL)
2773 return false;
2774
2775 switch (protocol) {
2776 case cpu_to_be16(ETH_P_IP):
2777 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
2778 cmd_len |= E1000_TXD_CMD_TCP;
2779 break;
2780 case cpu_to_be16(ETH_P_IPV6):
2781 /* XXX not handling all IPV6 headers */
2782 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
2783 cmd_len |= E1000_TXD_CMD_TCP;
2784 break;
2785 default:
2786 if (unlikely(net_ratelimit()))
2787 e_warn(drv, "checksum_partial proto=%x!\n",
2788 skb->protocol);
2789 break;
2790 }
2791
2792 css = skb_checksum_start_offset(skb);
2793
2794 i = tx_ring->next_to_use;
2795 buffer_info = &tx_ring->buffer_info[i];
2796 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2797
2798 context_desc->lower_setup.ip_config = 0;
2799 context_desc->upper_setup.tcp_fields.tucss = css;
2800 context_desc->upper_setup.tcp_fields.tucso =
2801 css + skb->csum_offset;
2802 context_desc->upper_setup.tcp_fields.tucse = 0;
2803 context_desc->tcp_seg_setup.data = 0;
2804 context_desc->cmd_and_length = cpu_to_le32(cmd_len);
2805
2806 buffer_info->time_stamp = jiffies;
2807 buffer_info->next_to_watch = i;
2808
2809 if (unlikely(++i == tx_ring->count))
2810 i = 0;
2811
2812 tx_ring->next_to_use = i;
2813
2814 return true;
2815}
2816
2817#define E1000_MAX_TXD_PWR 12
2818#define E1000_MAX_DATA_PER_TXD (1<<E1000_MAX_TXD_PWR)
2819
2820static int e1000_tx_map(struct e1000_adapter *adapter,
2821 struct e1000_tx_ring *tx_ring,
2822 struct sk_buff *skb, unsigned int first,
2823 unsigned int max_per_txd, unsigned int nr_frags,
2824 unsigned int mss)
2825{
2826 struct e1000_hw *hw = &adapter->hw;
2827 struct pci_dev *pdev = adapter->pdev;
2828 struct e1000_tx_buffer *buffer_info;
2829 unsigned int len = skb_headlen(skb);
2830 unsigned int offset = 0, size, count = 0, i;
2831 unsigned int f, bytecount, segs;
2832
2833 i = tx_ring->next_to_use;
2834
2835 while (len) {
2836 buffer_info = &tx_ring->buffer_info[i];
2837 size = min(len, max_per_txd);
2838 /* Workaround for Controller erratum --
2839 * descriptor for non-tso packet in a linear SKB that follows a
2840 * tso gets written back prematurely before the data is fully
2841 * DMA'd to the controller
2842 */
2843 if (!skb->data_len && tx_ring->last_tx_tso &&
2844 !skb_is_gso(skb)) {
2845 tx_ring->last_tx_tso = false;
2846 size -= 4;
2847 }
2848
2849 /* Workaround for premature desc write-backs
2850 * in TSO mode. Append 4-byte sentinel desc
2851 */
2852 if (unlikely(mss && !nr_frags && size == len && size > 8))
2853 size -= 4;
2854 /* work-around for errata 10 and it applies
2855 * to all controllers in PCI-X mode
2856 * The fix is to make sure that the first descriptor of a
2857 * packet is smaller than 2048 - 16 - 16 (or 2016) bytes
2858 */
2859 if (unlikely((hw->bus_type == e1000_bus_type_pcix) &&
2860 (size > 2015) && count == 0))
2861 size = 2015;
2862
2863 /* Workaround for potential 82544 hang in PCI-X. Avoid
2864 * terminating buffers within evenly-aligned dwords.
2865 */
2866 if (unlikely(adapter->pcix_82544 &&
2867 !((unsigned long)(skb->data + offset + size - 1) & 4) &&
2868 size > 4))
2869 size -= 4;
2870
2871 buffer_info->length = size;
2872 /* set time_stamp *before* dma to help avoid a possible race */
2873 buffer_info->time_stamp = jiffies;
2874 buffer_info->mapped_as_page = false;
2875 buffer_info->dma = dma_map_single(&pdev->dev,
2876 skb->data + offset,
2877 size, DMA_TO_DEVICE);
2878 if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2879 goto dma_error;
2880 buffer_info->next_to_watch = i;
2881
2882 len -= size;
2883 offset += size;
2884 count++;
2885 if (len) {
2886 i++;
2887 if (unlikely(i == tx_ring->count))
2888 i = 0;
2889 }
2890 }
2891
2892 for (f = 0; f < nr_frags; f++) {
2893 const skb_frag_t *frag = &skb_shinfo(skb)->frags[f];
2894
2895 len = skb_frag_size(frag);
2896 offset = 0;
2897
2898 while (len) {
2899 unsigned long bufend;
2900 i++;
2901 if (unlikely(i == tx_ring->count))
2902 i = 0;
2903
2904 buffer_info = &tx_ring->buffer_info[i];
2905 size = min(len, max_per_txd);
2906 /* Workaround for premature desc write-backs
2907 * in TSO mode. Append 4-byte sentinel desc
2908 */
2909 if (unlikely(mss && f == (nr_frags-1) &&
2910 size == len && size > 8))
2911 size -= 4;
2912 /* Workaround for potential 82544 hang in PCI-X.
2913 * Avoid terminating buffers within evenly-aligned
2914 * dwords.
2915 */
2916 bufend = (unsigned long)
2917 page_to_phys(skb_frag_page(frag));
2918 bufend += offset + size - 1;
2919 if (unlikely(adapter->pcix_82544 &&
2920 !(bufend & 4) &&
2921 size > 4))
2922 size -= 4;
2923
2924 buffer_info->length = size;
2925 buffer_info->time_stamp = jiffies;
2926 buffer_info->mapped_as_page = true;
2927 buffer_info->dma = skb_frag_dma_map(&pdev->dev, frag,
2928 offset, size, DMA_TO_DEVICE);
2929 if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2930 goto dma_error;
2931 buffer_info->next_to_watch = i;
2932
2933 len -= size;
2934 offset += size;
2935 count++;
2936 }
2937 }
2938
2939 segs = skb_shinfo(skb)->gso_segs ?: 1;
2940 /* multiply data chunks by size of headers */
2941 bytecount = ((segs - 1) * skb_headlen(skb)) + skb->len;
2942
2943 tx_ring->buffer_info[i].skb = skb;
2944 tx_ring->buffer_info[i].segs = segs;
2945 tx_ring->buffer_info[i].bytecount = bytecount;
2946 tx_ring->buffer_info[first].next_to_watch = i;
2947
2948 return count;
2949
2950dma_error:
2951 dev_err(&pdev->dev, "TX DMA map failed\n");
2952 buffer_info->dma = 0;
2953 if (count)
2954 count--;
2955
2956 while (count--) {
2957 if (i == 0)
2958 i += tx_ring->count;
2959 i--;
2960 buffer_info = &tx_ring->buffer_info[i];
2961 e1000_unmap_and_free_tx_resource(adapter, buffer_info);
2962 }
2963
2964 return 0;
2965}
2966
2967static void e1000_tx_queue(struct e1000_adapter *adapter,
2968 struct e1000_tx_ring *tx_ring, int tx_flags,
2969 int count)
2970{
2971 struct e1000_tx_desc *tx_desc = NULL;
2972 struct e1000_tx_buffer *buffer_info;
2973 u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
2974 unsigned int i;
2975
2976 if (likely(tx_flags & E1000_TX_FLAGS_TSO)) {
2977 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
2978 E1000_TXD_CMD_TSE;
2979 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2980
2981 if (likely(tx_flags & E1000_TX_FLAGS_IPV4))
2982 txd_upper |= E1000_TXD_POPTS_IXSM << 8;
2983 }
2984
2985 if (likely(tx_flags & E1000_TX_FLAGS_CSUM)) {
2986 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
2987 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2988 }
2989
2990 if (unlikely(tx_flags & E1000_TX_FLAGS_VLAN)) {
2991 txd_lower |= E1000_TXD_CMD_VLE;
2992 txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
2993 }
2994
2995 if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
2996 txd_lower &= ~(E1000_TXD_CMD_IFCS);
2997
2998 i = tx_ring->next_to_use;
2999
3000 while (count--) {
3001 buffer_info = &tx_ring->buffer_info[i];
3002 tx_desc = E1000_TX_DESC(*tx_ring, i);
3003 tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
3004 tx_desc->lower.data =
3005 cpu_to_le32(txd_lower | buffer_info->length);
3006 tx_desc->upper.data = cpu_to_le32(txd_upper);
3007 if (unlikely(++i == tx_ring->count))
3008 i = 0;
3009 }
3010
3011 tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
3012
3013 /* txd_cmd re-enables FCS, so we'll re-disable it here as desired. */
3014 if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
3015 tx_desc->lower.data &= ~(cpu_to_le32(E1000_TXD_CMD_IFCS));
3016
3017 /* Force memory writes to complete before letting h/w
3018 * know there are new descriptors to fetch. (Only
3019 * applicable for weak-ordered memory model archs,
3020 * such as IA-64).
3021 */
3022 dma_wmb();
3023
3024 tx_ring->next_to_use = i;
3025}
3026
3027/* 82547 workaround to avoid controller hang in half-duplex environment.
3028 * The workaround is to avoid queuing a large packet that would span
3029 * the internal Tx FIFO ring boundary by notifying the stack to resend
3030 * the packet at a later time. This gives the Tx FIFO an opportunity to
3031 * flush all packets. When that occurs, we reset the Tx FIFO pointers
3032 * to the beginning of the Tx FIFO.
3033 */
3034
3035#define E1000_FIFO_HDR 0x10
3036#define E1000_82547_PAD_LEN 0x3E0
3037
3038static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
3039 struct sk_buff *skb)
3040{
3041 u32 fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head;
3042 u32 skb_fifo_len = skb->len + E1000_FIFO_HDR;
3043
3044 skb_fifo_len = ALIGN(skb_fifo_len, E1000_FIFO_HDR);
3045
3046 if (adapter->link_duplex != HALF_DUPLEX)
3047 goto no_fifo_stall_required;
3048
3049 if (atomic_read(&adapter->tx_fifo_stall))
3050 return 1;
3051
3052 if (skb_fifo_len >= (E1000_82547_PAD_LEN + fifo_space)) {
3053 atomic_set(&adapter->tx_fifo_stall, 1);
3054 return 1;
3055 }
3056
3057no_fifo_stall_required:
3058 adapter->tx_fifo_head += skb_fifo_len;
3059 if (adapter->tx_fifo_head >= adapter->tx_fifo_size)
3060 adapter->tx_fifo_head -= adapter->tx_fifo_size;
3061 return 0;
3062}
3063
3064static int __e1000_maybe_stop_tx(struct net_device *netdev, int size)
3065{
3066 struct e1000_adapter *adapter = netdev_priv(netdev);
3067 struct e1000_tx_ring *tx_ring = adapter->tx_ring;
3068
3069 netif_stop_queue(netdev);
3070 /* Herbert's original patch had:
3071 * smp_mb__after_netif_stop_queue();
3072 * but since that doesn't exist yet, just open code it.
3073 */
3074 smp_mb();
3075
3076 /* We need to check again in a case another CPU has just
3077 * made room available.
3078 */
3079 if (likely(E1000_DESC_UNUSED(tx_ring) < size))
3080 return -EBUSY;
3081
3082 /* A reprieve! */
3083 netif_start_queue(netdev);
3084 ++adapter->restart_queue;
3085 return 0;
3086}
3087
3088static int e1000_maybe_stop_tx(struct net_device *netdev,
3089 struct e1000_tx_ring *tx_ring, int size)
3090{
3091 if (likely(E1000_DESC_UNUSED(tx_ring) >= size))
3092 return 0;
3093 return __e1000_maybe_stop_tx(netdev, size);
3094}
3095
3096#define TXD_USE_COUNT(S, X) (((S) + ((1 << (X)) - 1)) >> (X))
3097static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
3098 struct net_device *netdev)
3099{
3100 struct e1000_adapter *adapter = netdev_priv(netdev);
3101 struct e1000_hw *hw = &adapter->hw;
3102 struct e1000_tx_ring *tx_ring;
3103 unsigned int first, max_per_txd = E1000_MAX_DATA_PER_TXD;
3104 unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
3105 unsigned int tx_flags = 0;
3106 unsigned int len = skb_headlen(skb);
3107 unsigned int nr_frags;
3108 unsigned int mss;
3109 int count = 0;
3110 int tso;
3111 unsigned int f;
3112 __be16 protocol = vlan_get_protocol(skb);
3113
3114 /* This goes back to the question of how to logically map a Tx queue
3115 * to a flow. Right now, performance is impacted slightly negatively
3116 * if using multiple Tx queues. If the stack breaks away from a
3117 * single qdisc implementation, we can look at this again.
3118 */
3119 tx_ring = adapter->tx_ring;
3120
3121 /* On PCI/PCI-X HW, if packet size is less than ETH_ZLEN,
3122 * packets may get corrupted during padding by HW.
3123 * To WA this issue, pad all small packets manually.
3124 */
3125 if (eth_skb_pad(skb))
3126 return NETDEV_TX_OK;
3127
3128 mss = skb_shinfo(skb)->gso_size;
3129 /* The controller does a simple calculation to
3130 * make sure there is enough room in the FIFO before
3131 * initiating the DMA for each buffer. The calc is:
3132 * 4 = ceil(buffer len/mss). To make sure we don't
3133 * overrun the FIFO, adjust the max buffer len if mss
3134 * drops.
3135 */
3136 if (mss) {
3137 u8 hdr_len;
3138 max_per_txd = min(mss << 2, max_per_txd);
3139 max_txd_pwr = fls(max_per_txd) - 1;
3140
3141 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
3142 if (skb->data_len && hdr_len == len) {
3143 switch (hw->mac_type) {
3144 case e1000_82544: {
3145 unsigned int pull_size;
3146
3147 /* Make sure we have room to chop off 4 bytes,
3148 * and that the end alignment will work out to
3149 * this hardware's requirements
3150 * NOTE: this is a TSO only workaround
3151 * if end byte alignment not correct move us
3152 * into the next dword
3153 */
3154 if ((unsigned long)(skb_tail_pointer(skb) - 1)
3155 & 4)
3156 break;
3157 pull_size = min((unsigned int)4, skb->data_len);
3158 if (!__pskb_pull_tail(skb, pull_size)) {
3159 e_err(drv, "__pskb_pull_tail "
3160 "failed.\n");
3161 dev_kfree_skb_any(skb);
3162 return NETDEV_TX_OK;
3163 }
3164 len = skb_headlen(skb);
3165 break;
3166 }
3167 default:
3168 /* do nothing */
3169 break;
3170 }
3171 }
3172 }
3173
3174 /* reserve a descriptor for the offload context */
3175 if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
3176 count++;
3177 count++;
3178
3179 /* Controller Erratum workaround */
3180 if (!skb->data_len && tx_ring->last_tx_tso && !skb_is_gso(skb))
3181 count++;
3182
3183 count += TXD_USE_COUNT(len, max_txd_pwr);
3184
3185 if (adapter->pcix_82544)
3186 count++;
3187
3188 /* work-around for errata 10 and it applies to all controllers
3189 * in PCI-X mode, so add one more descriptor to the count
3190 */
3191 if (unlikely((hw->bus_type == e1000_bus_type_pcix) &&
3192 (len > 2015)))
3193 count++;
3194
3195 nr_frags = skb_shinfo(skb)->nr_frags;
3196 for (f = 0; f < nr_frags; f++)
3197 count += TXD_USE_COUNT(skb_frag_size(&skb_shinfo(skb)->frags[f]),
3198 max_txd_pwr);
3199 if (adapter->pcix_82544)
3200 count += nr_frags;
3201
3202 /* need: count + 2 desc gap to keep tail from touching
3203 * head, otherwise try next time
3204 */
3205 if (unlikely(e1000_maybe_stop_tx(netdev, tx_ring, count + 2)))
3206 return NETDEV_TX_BUSY;
3207
3208 if (unlikely((hw->mac_type == e1000_82547) &&
3209 (e1000_82547_fifo_workaround(adapter, skb)))) {
3210 netif_stop_queue(netdev);
3211 if (!test_bit(__E1000_DOWN, &adapter->flags))
3212 schedule_delayed_work(&adapter->fifo_stall_task, 1);
3213 return NETDEV_TX_BUSY;
3214 }
3215
3216 if (skb_vlan_tag_present(skb)) {
3217 tx_flags |= E1000_TX_FLAGS_VLAN;
3218 tx_flags |= (skb_vlan_tag_get(skb) <<
3219 E1000_TX_FLAGS_VLAN_SHIFT);
3220 }
3221
3222 first = tx_ring->next_to_use;
3223
3224 tso = e1000_tso(adapter, tx_ring, skb, protocol);
3225 if (tso < 0) {
3226 dev_kfree_skb_any(skb);
3227 return NETDEV_TX_OK;
3228 }
3229
3230 if (likely(tso)) {
3231 if (likely(hw->mac_type != e1000_82544))
3232 tx_ring->last_tx_tso = true;
3233 tx_flags |= E1000_TX_FLAGS_TSO;
3234 } else if (likely(e1000_tx_csum(adapter, tx_ring, skb, protocol)))
3235 tx_flags |= E1000_TX_FLAGS_CSUM;
3236
3237 if (protocol == htons(ETH_P_IP))
3238 tx_flags |= E1000_TX_FLAGS_IPV4;
3239
3240 if (unlikely(skb->no_fcs))
3241 tx_flags |= E1000_TX_FLAGS_NO_FCS;
3242
3243 count = e1000_tx_map(adapter, tx_ring, skb, first, max_per_txd,
3244 nr_frags, mss);
3245
3246 if (count) {
3247 /* The descriptors needed is higher than other Intel drivers
3248 * due to a number of workarounds. The breakdown is below:
3249 * Data descriptors: MAX_SKB_FRAGS + 1
3250 * Context Descriptor: 1
3251 * Keep head from touching tail: 2
3252 * Workarounds: 3
3253 */
3254 int desc_needed = MAX_SKB_FRAGS + 7;
3255
3256 netdev_sent_queue(netdev, skb->len);
3257 skb_tx_timestamp(skb);
3258
3259 e1000_tx_queue(adapter, tx_ring, tx_flags, count);
3260
3261 /* 82544 potentially requires twice as many data descriptors
3262 * in order to guarantee buffers don't end on evenly-aligned
3263 * dwords
3264 */
3265 if (adapter->pcix_82544)
3266 desc_needed += MAX_SKB_FRAGS + 1;
3267
3268 /* Make sure there is space in the ring for the next send. */
3269 e1000_maybe_stop_tx(netdev, tx_ring, desc_needed);
3270
3271 if (!netdev_xmit_more() ||
3272 netif_xmit_stopped(netdev_get_tx_queue(netdev, 0))) {
3273 writel(tx_ring->next_to_use, hw->hw_addr + tx_ring->tdt);
3274 }
3275 } else {
3276 dev_kfree_skb_any(skb);
3277 tx_ring->buffer_info[first].time_stamp = 0;
3278 tx_ring->next_to_use = first;
3279 }
3280
3281 return NETDEV_TX_OK;
3282}
3283
3284#define NUM_REGS 38 /* 1 based count */
3285static void e1000_regdump(struct e1000_adapter *adapter)
3286{
3287 struct e1000_hw *hw = &adapter->hw;
3288 u32 regs[NUM_REGS];
3289 u32 *regs_buff = regs;
3290 int i = 0;
3291
3292 static const char * const reg_name[] = {
3293 "CTRL", "STATUS",
3294 "RCTL", "RDLEN", "RDH", "RDT", "RDTR",
3295 "TCTL", "TDBAL", "TDBAH", "TDLEN", "TDH", "TDT",
3296 "TIDV", "TXDCTL", "TADV", "TARC0",
3297 "TDBAL1", "TDBAH1", "TDLEN1", "TDH1", "TDT1",
3298 "TXDCTL1", "TARC1",
3299 "CTRL_EXT", "ERT", "RDBAL", "RDBAH",
3300 "TDFH", "TDFT", "TDFHS", "TDFTS", "TDFPC",
3301 "RDFH", "RDFT", "RDFHS", "RDFTS", "RDFPC"
3302 };
3303
3304 regs_buff[0] = er32(CTRL);
3305 regs_buff[1] = er32(STATUS);
3306
3307 regs_buff[2] = er32(RCTL);
3308 regs_buff[3] = er32(RDLEN);
3309 regs_buff[4] = er32(RDH);
3310 regs_buff[5] = er32(RDT);
3311 regs_buff[6] = er32(RDTR);
3312
3313 regs_buff[7] = er32(TCTL);
3314 regs_buff[8] = er32(TDBAL);
3315 regs_buff[9] = er32(TDBAH);
3316 regs_buff[10] = er32(TDLEN);
3317 regs_buff[11] = er32(TDH);
3318 regs_buff[12] = er32(TDT);
3319 regs_buff[13] = er32(TIDV);
3320 regs_buff[14] = er32(TXDCTL);
3321 regs_buff[15] = er32(TADV);
3322 regs_buff[16] = er32(TARC0);
3323
3324 regs_buff[17] = er32(TDBAL1);
3325 regs_buff[18] = er32(TDBAH1);
3326 regs_buff[19] = er32(TDLEN1);
3327 regs_buff[20] = er32(TDH1);
3328 regs_buff[21] = er32(TDT1);
3329 regs_buff[22] = er32(TXDCTL1);
3330 regs_buff[23] = er32(TARC1);
3331 regs_buff[24] = er32(CTRL_EXT);
3332 regs_buff[25] = er32(ERT);
3333 regs_buff[26] = er32(RDBAL0);
3334 regs_buff[27] = er32(RDBAH0);
3335 regs_buff[28] = er32(TDFH);
3336 regs_buff[29] = er32(TDFT);
3337 regs_buff[30] = er32(TDFHS);
3338 regs_buff[31] = er32(TDFTS);
3339 regs_buff[32] = er32(TDFPC);
3340 regs_buff[33] = er32(RDFH);
3341 regs_buff[34] = er32(RDFT);
3342 regs_buff[35] = er32(RDFHS);
3343 regs_buff[36] = er32(RDFTS);
3344 regs_buff[37] = er32(RDFPC);
3345
3346 pr_info("Register dump\n");
3347 for (i = 0; i < NUM_REGS; i++)
3348 pr_info("%-15s %08x\n", reg_name[i], regs_buff[i]);
3349}
3350
3351/*
3352 * e1000_dump: Print registers, tx ring and rx ring
3353 */
3354static void e1000_dump(struct e1000_adapter *adapter)
3355{
3356 /* this code doesn't handle multiple rings */
3357 struct e1000_tx_ring *tx_ring = adapter->tx_ring;
3358 struct e1000_rx_ring *rx_ring = adapter->rx_ring;
3359 int i;
3360
3361 if (!netif_msg_hw(adapter))
3362 return;
3363
3364 /* Print Registers */
3365 e1000_regdump(adapter);
3366
3367 /* transmit dump */
3368 pr_info("TX Desc ring0 dump\n");
3369
3370 /* Transmit Descriptor Formats - DEXT[29] is 0 (Legacy) or 1 (Extended)
3371 *
3372 * Legacy Transmit Descriptor
3373 * +--------------------------------------------------------------+
3374 * 0 | Buffer Address [63:0] (Reserved on Write Back) |
3375 * +--------------------------------------------------------------+
3376 * 8 | Special | CSS | Status | CMD | CSO | Length |
3377 * +--------------------------------------------------------------+
3378 * 63 48 47 36 35 32 31 24 23 16 15 0
3379 *
3380 * Extended Context Descriptor (DTYP=0x0) for TSO or checksum offload
3381 * 63 48 47 40 39 32 31 16 15 8 7 0
3382 * +----------------------------------------------------------------+
3383 * 0 | TUCSE | TUCS0 | TUCSS | IPCSE | IPCS0 | IPCSS |
3384 * +----------------------------------------------------------------+
3385 * 8 | MSS | HDRLEN | RSV | STA | TUCMD | DTYP | PAYLEN |
3386 * +----------------------------------------------------------------+
3387 * 63 48 47 40 39 36 35 32 31 24 23 20 19 0
3388 *
3389 * Extended Data Descriptor (DTYP=0x1)
3390 * +----------------------------------------------------------------+
3391 * 0 | Buffer Address [63:0] |
3392 * +----------------------------------------------------------------+
3393 * 8 | VLAN tag | POPTS | Rsvd | Status | Command | DTYP | DTALEN |
3394 * +----------------------------------------------------------------+
3395 * 63 48 47 40 39 36 35 32 31 24 23 20 19 0
3396 */
3397 pr_info("Tc[desc] [Ce CoCsIpceCoS] [MssHlRSCm0Plen] [bi->dma ] leng ntw timestmp bi->skb\n");
3398 pr_info("Td[desc] [address 63:0 ] [VlaPoRSCm1Dlen] [bi->dma ] leng ntw timestmp bi->skb\n");
3399
3400 if (!netif_msg_tx_done(adapter))
3401 goto rx_ring_summary;
3402
3403 for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
3404 struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*tx_ring, i);
3405 struct e1000_tx_buffer *buffer_info = &tx_ring->buffer_info[i];
3406 struct my_u { __le64 a; __le64 b; };
3407 struct my_u *u = (struct my_u *)tx_desc;
3408 const char *type;
3409
3410 if (i == tx_ring->next_to_use && i == tx_ring->next_to_clean)
3411 type = "NTC/U";
3412 else if (i == tx_ring->next_to_use)
3413 type = "NTU";
3414 else if (i == tx_ring->next_to_clean)
3415 type = "NTC";
3416 else
3417 type = "";
3418
3419 pr_info("T%c[0x%03X] %016llX %016llX %016llX %04X %3X %016llX %p %s\n",
3420 ((le64_to_cpu(u->b) & (1<<20)) ? 'd' : 'c'), i,
3421 le64_to_cpu(u->a), le64_to_cpu(u->b),
3422 (u64)buffer_info->dma, buffer_info->length,
3423 buffer_info->next_to_watch,
3424 (u64)buffer_info->time_stamp, buffer_info->skb, type);
3425 }
3426
3427rx_ring_summary:
3428 /* receive dump */
3429 pr_info("\nRX Desc ring dump\n");
3430
3431 /* Legacy Receive Descriptor Format
3432 *
3433 * +-----------------------------------------------------+
3434 * | Buffer Address [63:0] |
3435 * +-----------------------------------------------------+
3436 * | VLAN Tag | Errors | Status 0 | Packet csum | Length |
3437 * +-----------------------------------------------------+
3438 * 63 48 47 40 39 32 31 16 15 0
3439 */
3440 pr_info("R[desc] [address 63:0 ] [vl er S cks ln] [bi->dma ] [bi->skb]\n");
3441
3442 if (!netif_msg_rx_status(adapter))
3443 goto exit;
3444
3445 for (i = 0; rx_ring->desc && (i < rx_ring->count); i++) {
3446 struct e1000_rx_desc *rx_desc = E1000_RX_DESC(*rx_ring, i);
3447 struct e1000_rx_buffer *buffer_info = &rx_ring->buffer_info[i];
3448 struct my_u { __le64 a; __le64 b; };
3449 struct my_u *u = (struct my_u *)rx_desc;
3450 const char *type;
3451
3452 if (i == rx_ring->next_to_use)
3453 type = "NTU";
3454 else if (i == rx_ring->next_to_clean)
3455 type = "NTC";
3456 else
3457 type = "";
3458
3459 pr_info("R[0x%03X] %016llX %016llX %016llX %p %s\n",
3460 i, le64_to_cpu(u->a), le64_to_cpu(u->b),
3461 (u64)buffer_info->dma, buffer_info->rxbuf.data, type);
3462 } /* for */
3463
3464 /* dump the descriptor caches */
3465 /* rx */
3466 pr_info("Rx descriptor cache in 64bit format\n");
3467 for (i = 0x6000; i <= 0x63FF ; i += 0x10) {
3468 pr_info("R%04X: %08X|%08X %08X|%08X\n",
3469 i,
3470 readl(adapter->hw.hw_addr + i+4),
3471 readl(adapter->hw.hw_addr + i),
3472 readl(adapter->hw.hw_addr + i+12),
3473 readl(adapter->hw.hw_addr + i+8));
3474 }
3475 /* tx */
3476 pr_info("Tx descriptor cache in 64bit format\n");
3477 for (i = 0x7000; i <= 0x73FF ; i += 0x10) {
3478 pr_info("T%04X: %08X|%08X %08X|%08X\n",
3479 i,
3480 readl(adapter->hw.hw_addr + i+4),
3481 readl(adapter->hw.hw_addr + i),
3482 readl(adapter->hw.hw_addr + i+12),
3483 readl(adapter->hw.hw_addr + i+8));
3484 }
3485exit:
3486 return;
3487}
3488
3489/**
3490 * e1000_tx_timeout - Respond to a Tx Hang
3491 * @netdev: network interface device structure
3492 **/
3493static void e1000_tx_timeout(struct net_device *netdev, unsigned int txqueue)
3494{
3495 struct e1000_adapter *adapter = netdev_priv(netdev);
3496
3497 /* Do the reset outside of interrupt context */
3498 adapter->tx_timeout_count++;
3499 schedule_work(&adapter->reset_task);
3500}
3501
3502static void e1000_reset_task(struct work_struct *work)
3503{
3504 struct e1000_adapter *adapter =
3505 container_of(work, struct e1000_adapter, reset_task);
3506
3507 e_err(drv, "Reset adapter\n");
3508 e1000_reinit_locked(adapter);
3509}
3510
3511/**
3512 * e1000_change_mtu - Change the Maximum Transfer Unit
3513 * @netdev: network interface device structure
3514 * @new_mtu: new value for maximum frame size
3515 *
3516 * Returns 0 on success, negative on failure
3517 **/
3518static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
3519{
3520 struct e1000_adapter *adapter = netdev_priv(netdev);
3521 struct e1000_hw *hw = &adapter->hw;
3522 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
3523
3524 /* Adapter-specific max frame size limits. */
3525 switch (hw->mac_type) {
3526 case e1000_undefined ... e1000_82542_rev2_1:
3527 if (max_frame > (ETH_FRAME_LEN + ETH_FCS_LEN)) {
3528 e_err(probe, "Jumbo Frames not supported.\n");
3529 return -EINVAL;
3530 }
3531 break;
3532 default:
3533 /* Capable of supporting up to MAX_JUMBO_FRAME_SIZE limit. */
3534 break;
3535 }
3536
3537 while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
3538 msleep(1);
3539 /* e1000_down has a dependency on max_frame_size */
3540 hw->max_frame_size = max_frame;
3541 if (netif_running(netdev)) {
3542 /* prevent buffers from being reallocated */
3543 adapter->alloc_rx_buf = e1000_alloc_dummy_rx_buffers;
3544 e1000_down(adapter);
3545 }
3546
3547 /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
3548 * means we reserve 2 more, this pushes us to allocate from the next
3549 * larger slab size.
3550 * i.e. RXBUFFER_2048 --> size-4096 slab
3551 * however with the new *_jumbo_rx* routines, jumbo receives will use
3552 * fragmented skbs
3553 */
3554
3555 if (max_frame <= E1000_RXBUFFER_2048)
3556 adapter->rx_buffer_len = E1000_RXBUFFER_2048;
3557 else
3558#if (PAGE_SIZE >= E1000_RXBUFFER_16384)
3559 adapter->rx_buffer_len = E1000_RXBUFFER_16384;
3560#elif (PAGE_SIZE >= E1000_RXBUFFER_4096)
3561 adapter->rx_buffer_len = PAGE_SIZE;
3562#endif
3563
3564 /* adjust allocation if LPE protects us, and we aren't using SBP */
3565 if (!hw->tbi_compatibility_on &&
3566 ((max_frame == (ETH_FRAME_LEN + ETH_FCS_LEN)) ||
3567 (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE)))
3568 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
3569
3570 netdev_dbg(netdev, "changing MTU from %d to %d\n",
3571 netdev->mtu, new_mtu);
3572 netdev->mtu = new_mtu;
3573
3574 if (netif_running(netdev))
3575 e1000_up(adapter);
3576 else
3577 e1000_reset(adapter);
3578
3579 clear_bit(__E1000_RESETTING, &adapter->flags);
3580
3581 return 0;
3582}
3583
3584/**
3585 * e1000_update_stats - Update the board statistics counters
3586 * @adapter: board private structure
3587 **/
3588void e1000_update_stats(struct e1000_adapter *adapter)
3589{
3590 struct net_device *netdev = adapter->netdev;
3591 struct e1000_hw *hw = &adapter->hw;
3592 struct pci_dev *pdev = adapter->pdev;
3593 unsigned long flags;
3594 u16 phy_tmp;
3595
3596#define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
3597
3598 /* Prevent stats update while adapter is being reset, or if the pci
3599 * connection is down.
3600 */
3601 if (adapter->link_speed == 0)
3602 return;
3603 if (pci_channel_offline(pdev))
3604 return;
3605
3606 spin_lock_irqsave(&adapter->stats_lock, flags);
3607
3608 /* these counters are modified from e1000_tbi_adjust_stats,
3609 * called from the interrupt context, so they must only
3610 * be written while holding adapter->stats_lock
3611 */
3612
3613 adapter->stats.crcerrs += er32(CRCERRS);
3614 adapter->stats.gprc += er32(GPRC);
3615 adapter->stats.gorcl += er32(GORCL);
3616 adapter->stats.gorch += er32(GORCH);
3617 adapter->stats.bprc += er32(BPRC);
3618 adapter->stats.mprc += er32(MPRC);
3619 adapter->stats.roc += er32(ROC);
3620
3621 adapter->stats.prc64 += er32(PRC64);
3622 adapter->stats.prc127 += er32(PRC127);
3623 adapter->stats.prc255 += er32(PRC255);
3624 adapter->stats.prc511 += er32(PRC511);
3625 adapter->stats.prc1023 += er32(PRC1023);
3626 adapter->stats.prc1522 += er32(PRC1522);
3627
3628 adapter->stats.symerrs += er32(SYMERRS);
3629 adapter->stats.mpc += er32(MPC);
3630 adapter->stats.scc += er32(SCC);
3631 adapter->stats.ecol += er32(ECOL);
3632 adapter->stats.mcc += er32(MCC);
3633 adapter->stats.latecol += er32(LATECOL);
3634 adapter->stats.dc += er32(DC);
3635 adapter->stats.sec += er32(SEC);
3636 adapter->stats.rlec += er32(RLEC);
3637 adapter->stats.xonrxc += er32(XONRXC);
3638 adapter->stats.xontxc += er32(XONTXC);
3639 adapter->stats.xoffrxc += er32(XOFFRXC);
3640 adapter->stats.xofftxc += er32(XOFFTXC);
3641 adapter->stats.fcruc += er32(FCRUC);
3642 adapter->stats.gptc += er32(GPTC);
3643 adapter->stats.gotcl += er32(GOTCL);
3644 adapter->stats.gotch += er32(GOTCH);
3645 adapter->stats.rnbc += er32(RNBC);
3646 adapter->stats.ruc += er32(RUC);
3647 adapter->stats.rfc += er32(RFC);
3648 adapter->stats.rjc += er32(RJC);
3649 adapter->stats.torl += er32(TORL);
3650 adapter->stats.torh += er32(TORH);
3651 adapter->stats.totl += er32(TOTL);
3652 adapter->stats.toth += er32(TOTH);
3653 adapter->stats.tpr += er32(TPR);
3654
3655 adapter->stats.ptc64 += er32(PTC64);
3656 adapter->stats.ptc127 += er32(PTC127);
3657 adapter->stats.ptc255 += er32(PTC255);
3658 adapter->stats.ptc511 += er32(PTC511);
3659 adapter->stats.ptc1023 += er32(PTC1023);
3660 adapter->stats.ptc1522 += er32(PTC1522);
3661
3662 adapter->stats.mptc += er32(MPTC);
3663 adapter->stats.bptc += er32(BPTC);
3664
3665 /* used for adaptive IFS */
3666
3667 hw->tx_packet_delta = er32(TPT);
3668 adapter->stats.tpt += hw->tx_packet_delta;
3669 hw->collision_delta = er32(COLC);
3670 adapter->stats.colc += hw->collision_delta;
3671
3672 if (hw->mac_type >= e1000_82543) {
3673 adapter->stats.algnerrc += er32(ALGNERRC);
3674 adapter->stats.rxerrc += er32(RXERRC);
3675 adapter->stats.tncrs += er32(TNCRS);
3676 adapter->stats.cexterr += er32(CEXTERR);
3677 adapter->stats.tsctc += er32(TSCTC);
3678 adapter->stats.tsctfc += er32(TSCTFC);
3679 }
3680
3681 /* Fill out the OS statistics structure */
3682 netdev->stats.multicast = adapter->stats.mprc;
3683 netdev->stats.collisions = adapter->stats.colc;
3684
3685 /* Rx Errors */
3686
3687 /* RLEC on some newer hardware can be incorrect so build
3688 * our own version based on RUC and ROC
3689 */
3690 netdev->stats.rx_errors = adapter->stats.rxerrc +
3691 adapter->stats.crcerrs + adapter->stats.algnerrc +
3692 adapter->stats.ruc + adapter->stats.roc +
3693 adapter->stats.cexterr;
3694 adapter->stats.rlerrc = adapter->stats.ruc + adapter->stats.roc;
3695 netdev->stats.rx_length_errors = adapter->stats.rlerrc;
3696 netdev->stats.rx_crc_errors = adapter->stats.crcerrs;
3697 netdev->stats.rx_frame_errors = adapter->stats.algnerrc;
3698 netdev->stats.rx_missed_errors = adapter->stats.mpc;
3699
3700 /* Tx Errors */
3701 adapter->stats.txerrc = adapter->stats.ecol + adapter->stats.latecol;
3702 netdev->stats.tx_errors = adapter->stats.txerrc;
3703 netdev->stats.tx_aborted_errors = adapter->stats.ecol;
3704 netdev->stats.tx_window_errors = adapter->stats.latecol;
3705 netdev->stats.tx_carrier_errors = adapter->stats.tncrs;
3706 if (hw->bad_tx_carr_stats_fd &&
3707 adapter->link_duplex == FULL_DUPLEX) {
3708 netdev->stats.tx_carrier_errors = 0;
3709 adapter->stats.tncrs = 0;
3710 }
3711
3712 /* Tx Dropped needs to be maintained elsewhere */
3713
3714 /* Phy Stats */
3715 if (hw->media_type == e1000_media_type_copper) {
3716 if ((adapter->link_speed == SPEED_1000) &&
3717 (!e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
3718 phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
3719 adapter->phy_stats.idle_errors += phy_tmp;
3720 }
3721
3722 if ((hw->mac_type <= e1000_82546) &&
3723 (hw->phy_type == e1000_phy_m88) &&
3724 !e1000_read_phy_reg(hw, M88E1000_RX_ERR_CNTR, &phy_tmp))
3725 adapter->phy_stats.receive_errors += phy_tmp;
3726 }
3727
3728 /* Management Stats */
3729 if (hw->has_smbus) {
3730 adapter->stats.mgptc += er32(MGTPTC);
3731 adapter->stats.mgprc += er32(MGTPRC);
3732 adapter->stats.mgpdc += er32(MGTPDC);
3733 }
3734
3735 spin_unlock_irqrestore(&adapter->stats_lock, flags);
3736}
3737
3738/**
3739 * e1000_intr - Interrupt Handler
3740 * @irq: interrupt number
3741 * @data: pointer to a network interface device structure
3742 **/
3743static irqreturn_t e1000_intr(int irq, void *data)
3744{
3745 struct net_device *netdev = data;
3746 struct e1000_adapter *adapter = netdev_priv(netdev);
3747 struct e1000_hw *hw = &adapter->hw;
3748 u32 icr = er32(ICR);
3749
3750 if (unlikely((!icr)))
3751 return IRQ_NONE; /* Not our interrupt */
3752
3753 /* we might have caused the interrupt, but the above
3754 * read cleared it, and just in case the driver is
3755 * down there is nothing to do so return handled
3756 */
3757 if (unlikely(test_bit(__E1000_DOWN, &adapter->flags)))
3758 return IRQ_HANDLED;
3759
3760 if (unlikely(icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))) {
3761 hw->get_link_status = 1;
3762 /* guard against interrupt when we're going down */
3763 if (!test_bit(__E1000_DOWN, &adapter->flags))
3764 schedule_delayed_work(&adapter->watchdog_task, 1);
3765 }
3766
3767 /* disable interrupts, without the synchronize_irq bit */
3768 ew32(IMC, ~0);
3769 E1000_WRITE_FLUSH();
3770
3771 if (likely(napi_schedule_prep(&adapter->napi))) {
3772 adapter->total_tx_bytes = 0;
3773 adapter->total_tx_packets = 0;
3774 adapter->total_rx_bytes = 0;
3775 adapter->total_rx_packets = 0;
3776 __napi_schedule(&adapter->napi);
3777 } else {
3778 /* this really should not happen! if it does it is basically a
3779 * bug, but not a hard error, so enable ints and continue
3780 */
3781 if (!test_bit(__E1000_DOWN, &adapter->flags))
3782 e1000_irq_enable(adapter);
3783 }
3784
3785 return IRQ_HANDLED;
3786}
3787
3788/**
3789 * e1000_clean - NAPI Rx polling callback
3790 * @adapter: board private structure
3791 **/
3792static int e1000_clean(struct napi_struct *napi, int budget)
3793{
3794 struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter,
3795 napi);
3796 int tx_clean_complete = 0, work_done = 0;
3797
3798 tx_clean_complete = e1000_clean_tx_irq(adapter, &adapter->tx_ring[0]);
3799
3800 adapter->clean_rx(adapter, &adapter->rx_ring[0], &work_done, budget);
3801
3802 if (!tx_clean_complete || work_done == budget)
3803 return budget;
3804
3805 /* Exit the polling mode, but don't re-enable interrupts if stack might
3806 * poll us due to busy-polling
3807 */
3808 if (likely(napi_complete_done(napi, work_done))) {
3809 if (likely(adapter->itr_setting & 3))
3810 e1000_set_itr(adapter);
3811 if (!test_bit(__E1000_DOWN, &adapter->flags))
3812 e1000_irq_enable(adapter);
3813 }
3814
3815 return work_done;
3816}
3817
3818/**
3819 * e1000_clean_tx_irq - Reclaim resources after transmit completes
3820 * @adapter: board private structure
3821 **/
3822static bool e1000_clean_tx_irq(struct e1000_adapter *adapter,
3823 struct e1000_tx_ring *tx_ring)
3824{
3825 struct e1000_hw *hw = &adapter->hw;
3826 struct net_device *netdev = adapter->netdev;
3827 struct e1000_tx_desc *tx_desc, *eop_desc;
3828 struct e1000_tx_buffer *buffer_info;
3829 unsigned int i, eop;
3830 unsigned int count = 0;
3831 unsigned int total_tx_bytes = 0, total_tx_packets = 0;
3832 unsigned int bytes_compl = 0, pkts_compl = 0;
3833
3834 i = tx_ring->next_to_clean;
3835 eop = tx_ring->buffer_info[i].next_to_watch;
3836 eop_desc = E1000_TX_DESC(*tx_ring, eop);
3837
3838 while ((eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) &&
3839 (count < tx_ring->count)) {
3840 bool cleaned = false;
3841 dma_rmb(); /* read buffer_info after eop_desc */
3842 for ( ; !cleaned; count++) {
3843 tx_desc = E1000_TX_DESC(*tx_ring, i);
3844 buffer_info = &tx_ring->buffer_info[i];
3845 cleaned = (i == eop);
3846
3847 if (cleaned) {
3848 total_tx_packets += buffer_info->segs;
3849 total_tx_bytes += buffer_info->bytecount;
3850 if (buffer_info->skb) {
3851 bytes_compl += buffer_info->skb->len;
3852 pkts_compl++;
3853 }
3854
3855 }
3856 e1000_unmap_and_free_tx_resource(adapter, buffer_info);
3857 tx_desc->upper.data = 0;
3858
3859 if (unlikely(++i == tx_ring->count))
3860 i = 0;
3861 }
3862
3863 eop = tx_ring->buffer_info[i].next_to_watch;
3864 eop_desc = E1000_TX_DESC(*tx_ring, eop);
3865 }
3866
3867 /* Synchronize with E1000_DESC_UNUSED called from e1000_xmit_frame,
3868 * which will reuse the cleaned buffers.
3869 */
3870 smp_store_release(&tx_ring->next_to_clean, i);
3871
3872 netdev_completed_queue(netdev, pkts_compl, bytes_compl);
3873
3874#define TX_WAKE_THRESHOLD 32
3875 if (unlikely(count && netif_carrier_ok(netdev) &&
3876 E1000_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD)) {
3877 /* Make sure that anybody stopping the queue after this
3878 * sees the new next_to_clean.
3879 */
3880 smp_mb();
3881
3882 if (netif_queue_stopped(netdev) &&
3883 !(test_bit(__E1000_DOWN, &adapter->flags))) {
3884 netif_wake_queue(netdev);
3885 ++adapter->restart_queue;
3886 }
3887 }
3888
3889 if (adapter->detect_tx_hung) {
3890 /* Detect a transmit hang in hardware, this serializes the
3891 * check with the clearing of time_stamp and movement of i
3892 */
3893 adapter->detect_tx_hung = false;
3894 if (tx_ring->buffer_info[eop].time_stamp &&
3895 time_after(jiffies, tx_ring->buffer_info[eop].time_stamp +
3896 (adapter->tx_timeout_factor * HZ)) &&
3897 !(er32(STATUS) & E1000_STATUS_TXOFF)) {
3898
3899 /* detected Tx unit hang */
3900 e_err(drv, "Detected Tx Unit Hang\n"
3901 " Tx Queue <%lu>\n"
3902 " TDH <%x>\n"
3903 " TDT <%x>\n"
3904 " next_to_use <%x>\n"
3905 " next_to_clean <%x>\n"
3906 "buffer_info[next_to_clean]\n"
3907 " time_stamp <%lx>\n"
3908 " next_to_watch <%x>\n"
3909 " jiffies <%lx>\n"
3910 " next_to_watch.status <%x>\n",
3911 (unsigned long)(tx_ring - adapter->tx_ring),
3912 readl(hw->hw_addr + tx_ring->tdh),
3913 readl(hw->hw_addr + tx_ring->tdt),
3914 tx_ring->next_to_use,
3915 tx_ring->next_to_clean,
3916 tx_ring->buffer_info[eop].time_stamp,
3917 eop,
3918 jiffies,
3919 eop_desc->upper.fields.status);
3920 e1000_dump(adapter);
3921 netif_stop_queue(netdev);
3922 }
3923 }
3924 adapter->total_tx_bytes += total_tx_bytes;
3925 adapter->total_tx_packets += total_tx_packets;
3926 netdev->stats.tx_bytes += total_tx_bytes;
3927 netdev->stats.tx_packets += total_tx_packets;
3928 return count < tx_ring->count;
3929}
3930
3931/**
3932 * e1000_rx_checksum - Receive Checksum Offload for 82543
3933 * @adapter: board private structure
3934 * @status_err: receive descriptor status and error fields
3935 * @csum: receive descriptor csum field
3936 * @sk_buff: socket buffer with received data
3937 **/
3938static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
3939 u32 csum, struct sk_buff *skb)
3940{
3941 struct e1000_hw *hw = &adapter->hw;
3942 u16 status = (u16)status_err;
3943 u8 errors = (u8)(status_err >> 24);
3944
3945 skb_checksum_none_assert(skb);
3946
3947 /* 82543 or newer only */
3948 if (unlikely(hw->mac_type < e1000_82543))
3949 return;
3950 /* Ignore Checksum bit is set */
3951 if (unlikely(status & E1000_RXD_STAT_IXSM))
3952 return;
3953 /* TCP/UDP checksum error bit is set */
3954 if (unlikely(errors & E1000_RXD_ERR_TCPE)) {
3955 /* let the stack verify checksum errors */
3956 adapter->hw_csum_err++;
3957 return;
3958 }
3959 /* TCP/UDP Checksum has not been calculated */
3960 if (!(status & E1000_RXD_STAT_TCPCS))
3961 return;
3962
3963 /* It must be a TCP or UDP packet with a valid checksum */
3964 if (likely(status & E1000_RXD_STAT_TCPCS)) {
3965 /* TCP checksum is good */
3966 skb->ip_summed = CHECKSUM_UNNECESSARY;
3967 }
3968 adapter->hw_csum_good++;
3969}
3970
3971/**
3972 * e1000_consume_page - helper function for jumbo Rx path
3973 **/
3974static void e1000_consume_page(struct e1000_rx_buffer *bi, struct sk_buff *skb,
3975 u16 length)
3976{
3977 bi->rxbuf.page = NULL;
3978 skb->len += length;
3979 skb->data_len += length;
3980 skb->truesize += PAGE_SIZE;
3981}
3982
3983/**
3984 * e1000_receive_skb - helper function to handle rx indications
3985 * @adapter: board private structure
3986 * @status: descriptor status field as written by hardware
3987 * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
3988 * @skb: pointer to sk_buff to be indicated to stack
3989 */
3990static void e1000_receive_skb(struct e1000_adapter *adapter, u8 status,
3991 __le16 vlan, struct sk_buff *skb)
3992{
3993 skb->protocol = eth_type_trans(skb, adapter->netdev);
3994
3995 if (status & E1000_RXD_STAT_VP) {
3996 u16 vid = le16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK;
3997
3998 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
3999 }
4000 napi_gro_receive(&adapter->napi, skb);
4001}
4002
4003/**
4004 * e1000_tbi_adjust_stats
4005 * @hw: Struct containing variables accessed by shared code
4006 * @frame_len: The length of the frame in question
4007 * @mac_addr: The Ethernet destination address of the frame in question
4008 *
4009 * Adjusts the statistic counters when a frame is accepted by TBI_ACCEPT
4010 */
4011static void e1000_tbi_adjust_stats(struct e1000_hw *hw,
4012 struct e1000_hw_stats *stats,
4013 u32 frame_len, const u8 *mac_addr)
4014{
4015 u64 carry_bit;
4016
4017 /* First adjust the frame length. */
4018 frame_len--;
4019 /* We need to adjust the statistics counters, since the hardware
4020 * counters overcount this packet as a CRC error and undercount
4021 * the packet as a good packet
4022 */
4023 /* This packet should not be counted as a CRC error. */
4024 stats->crcerrs--;
4025 /* This packet does count as a Good Packet Received. */
4026 stats->gprc++;
4027
4028 /* Adjust the Good Octets received counters */
4029 carry_bit = 0x80000000 & stats->gorcl;
4030 stats->gorcl += frame_len;
4031 /* If the high bit of Gorcl (the low 32 bits of the Good Octets
4032 * Received Count) was one before the addition,
4033 * AND it is zero after, then we lost the carry out,
4034 * need to add one to Gorch (Good Octets Received Count High).
4035 * This could be simplified if all environments supported
4036 * 64-bit integers.
4037 */
4038 if (carry_bit && ((stats->gorcl & 0x80000000) == 0))
4039 stats->gorch++;
4040 /* Is this a broadcast or multicast? Check broadcast first,
4041 * since the test for a multicast frame will test positive on
4042 * a broadcast frame.
4043 */
4044 if (is_broadcast_ether_addr(mac_addr))
4045 stats->bprc++;
4046 else if (is_multicast_ether_addr(mac_addr))
4047 stats->mprc++;
4048
4049 if (frame_len == hw->max_frame_size) {
4050 /* In this case, the hardware has overcounted the number of
4051 * oversize frames.
4052 */
4053 if (stats->roc > 0)
4054 stats->roc--;
4055 }
4056
4057 /* Adjust the bin counters when the extra byte put the frame in the
4058 * wrong bin. Remember that the frame_len was adjusted above.
4059 */
4060 if (frame_len == 64) {
4061 stats->prc64++;
4062 stats->prc127--;
4063 } else if (frame_len == 127) {
4064 stats->prc127++;
4065 stats->prc255--;
4066 } else if (frame_len == 255) {
4067 stats->prc255++;
4068 stats->prc511--;
4069 } else if (frame_len == 511) {
4070 stats->prc511++;
4071 stats->prc1023--;
4072 } else if (frame_len == 1023) {
4073 stats->prc1023++;
4074 stats->prc1522--;
4075 } else if (frame_len == 1522) {
4076 stats->prc1522++;
4077 }
4078}
4079
4080static bool e1000_tbi_should_accept(struct e1000_adapter *adapter,
4081 u8 status, u8 errors,
4082 u32 length, const u8 *data)
4083{
4084 struct e1000_hw *hw = &adapter->hw;
4085 u8 last_byte = *(data + length - 1);
4086
4087 if (TBI_ACCEPT(hw, status, errors, length, last_byte)) {
4088 unsigned long irq_flags;
4089
4090 spin_lock_irqsave(&adapter->stats_lock, irq_flags);
4091 e1000_tbi_adjust_stats(hw, &adapter->stats, length, data);
4092 spin_unlock_irqrestore(&adapter->stats_lock, irq_flags);
4093
4094 return true;
4095 }
4096
4097 return false;
4098}
4099
4100static struct sk_buff *e1000_alloc_rx_skb(struct e1000_adapter *adapter,
4101 unsigned int bufsz)
4102{
4103 struct sk_buff *skb = napi_alloc_skb(&adapter->napi, bufsz);
4104
4105 if (unlikely(!skb))
4106 adapter->alloc_rx_buff_failed++;
4107 return skb;
4108}
4109
4110/**
4111 * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
4112 * @adapter: board private structure
4113 * @rx_ring: ring to clean
4114 * @work_done: amount of napi work completed this call
4115 * @work_to_do: max amount of work allowed for this call to do
4116 *
4117 * the return value indicates whether actual cleaning was done, there
4118 * is no guarantee that everything was cleaned
4119 */
4120static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter,
4121 struct e1000_rx_ring *rx_ring,
4122 int *work_done, int work_to_do)
4123{
4124 struct net_device *netdev = adapter->netdev;
4125 struct pci_dev *pdev = adapter->pdev;
4126 struct e1000_rx_desc *rx_desc, *next_rxd;
4127 struct e1000_rx_buffer *buffer_info, *next_buffer;
4128 u32 length;
4129 unsigned int i;
4130 int cleaned_count = 0;
4131 bool cleaned = false;
4132 unsigned int total_rx_bytes = 0, total_rx_packets = 0;
4133
4134 i = rx_ring->next_to_clean;
4135 rx_desc = E1000_RX_DESC(*rx_ring, i);
4136 buffer_info = &rx_ring->buffer_info[i];
4137
4138 while (rx_desc->status & E1000_RXD_STAT_DD) {
4139 struct sk_buff *skb;
4140 u8 status;
4141
4142 if (*work_done >= work_to_do)
4143 break;
4144 (*work_done)++;
4145 dma_rmb(); /* read descriptor and rx_buffer_info after status DD */
4146
4147 status = rx_desc->status;
4148
4149 if (++i == rx_ring->count)
4150 i = 0;
4151
4152 next_rxd = E1000_RX_DESC(*rx_ring, i);
4153 prefetch(next_rxd);
4154
4155 next_buffer = &rx_ring->buffer_info[i];
4156
4157 cleaned = true;
4158 cleaned_count++;
4159 dma_unmap_page(&pdev->dev, buffer_info->dma,
4160 adapter->rx_buffer_len, DMA_FROM_DEVICE);
4161 buffer_info->dma = 0;
4162
4163 length = le16_to_cpu(rx_desc->length);
4164
4165 /* errors is only valid for DD + EOP descriptors */
4166 if (unlikely((status & E1000_RXD_STAT_EOP) &&
4167 (rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK))) {
4168 u8 *mapped = page_address(buffer_info->rxbuf.page);
4169
4170 if (e1000_tbi_should_accept(adapter, status,
4171 rx_desc->errors,
4172 length, mapped)) {
4173 length--;
4174 } else if (netdev->features & NETIF_F_RXALL) {
4175 goto process_skb;
4176 } else {
4177 /* an error means any chain goes out the window
4178 * too
4179 */
4180 dev_kfree_skb(rx_ring->rx_skb_top);
4181 rx_ring->rx_skb_top = NULL;
4182 goto next_desc;
4183 }
4184 }
4185
4186#define rxtop rx_ring->rx_skb_top
4187process_skb:
4188 if (!(status & E1000_RXD_STAT_EOP)) {
4189 /* this descriptor is only the beginning (or middle) */
4190 if (!rxtop) {
4191 /* this is the beginning of a chain */
4192 rxtop = napi_get_frags(&adapter->napi);
4193 if (!rxtop)
4194 break;
4195
4196 skb_fill_page_desc(rxtop, 0,
4197 buffer_info->rxbuf.page,
4198 0, length);
4199 } else {
4200 /* this is the middle of a chain */
4201 skb_fill_page_desc(rxtop,
4202 skb_shinfo(rxtop)->nr_frags,
4203 buffer_info->rxbuf.page, 0, length);
4204 }
4205 e1000_consume_page(buffer_info, rxtop, length);
4206 goto next_desc;
4207 } else {
4208 if (rxtop) {
4209 /* end of the chain */
4210 skb_fill_page_desc(rxtop,
4211 skb_shinfo(rxtop)->nr_frags,
4212 buffer_info->rxbuf.page, 0, length);
4213 skb = rxtop;
4214 rxtop = NULL;
4215 e1000_consume_page(buffer_info, skb, length);
4216 } else {
4217 struct page *p;
4218 /* no chain, got EOP, this buf is the packet
4219 * copybreak to save the put_page/alloc_page
4220 */
4221 p = buffer_info->rxbuf.page;
4222 if (length <= copybreak) {
4223 u8 *vaddr;
4224
4225 if (likely(!(netdev->features & NETIF_F_RXFCS)))
4226 length -= 4;
4227 skb = e1000_alloc_rx_skb(adapter,
4228 length);
4229 if (!skb)
4230 break;
4231
4232 vaddr = kmap_atomic(p);
4233 memcpy(skb_tail_pointer(skb), vaddr,
4234 length);
4235 kunmap_atomic(vaddr);
4236 /* re-use the page, so don't erase
4237 * buffer_info->rxbuf.page
4238 */
4239 skb_put(skb, length);
4240 e1000_rx_checksum(adapter,
4241 status | rx_desc->errors << 24,
4242 le16_to_cpu(rx_desc->csum), skb);
4243
4244 total_rx_bytes += skb->len;
4245 total_rx_packets++;
4246
4247 e1000_receive_skb(adapter, status,
4248 rx_desc->special, skb);
4249 goto next_desc;
4250 } else {
4251 skb = napi_get_frags(&adapter->napi);
4252 if (!skb) {
4253 adapter->alloc_rx_buff_failed++;
4254 break;
4255 }
4256 skb_fill_page_desc(skb, 0, p, 0,
4257 length);
4258 e1000_consume_page(buffer_info, skb,
4259 length);
4260 }
4261 }
4262 }
4263
4264 /* Receive Checksum Offload XXX recompute due to CRC strip? */
4265 e1000_rx_checksum(adapter,
4266 (u32)(status) |
4267 ((u32)(rx_desc->errors) << 24),
4268 le16_to_cpu(rx_desc->csum), skb);
4269
4270 total_rx_bytes += (skb->len - 4); /* don't count FCS */
4271 if (likely(!(netdev->features & NETIF_F_RXFCS)))
4272 pskb_trim(skb, skb->len - 4);
4273 total_rx_packets++;
4274
4275 if (status & E1000_RXD_STAT_VP) {
4276 __le16 vlan = rx_desc->special;
4277 u16 vid = le16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK;
4278
4279 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
4280 }
4281
4282 napi_gro_frags(&adapter->napi);
4283
4284next_desc:
4285 rx_desc->status = 0;
4286
4287 /* return some buffers to hardware, one at a time is too slow */
4288 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
4289 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4290 cleaned_count = 0;
4291 }
4292
4293 /* use prefetched values */
4294 rx_desc = next_rxd;
4295 buffer_info = next_buffer;
4296 }
4297 rx_ring->next_to_clean = i;
4298
4299 cleaned_count = E1000_DESC_UNUSED(rx_ring);
4300 if (cleaned_count)
4301 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4302
4303 adapter->total_rx_packets += total_rx_packets;
4304 adapter->total_rx_bytes += total_rx_bytes;
4305 netdev->stats.rx_bytes += total_rx_bytes;
4306 netdev->stats.rx_packets += total_rx_packets;
4307 return cleaned;
4308}
4309
4310/* this should improve performance for small packets with large amounts
4311 * of reassembly being done in the stack
4312 */
4313static struct sk_buff *e1000_copybreak(struct e1000_adapter *adapter,
4314 struct e1000_rx_buffer *buffer_info,
4315 u32 length, const void *data)
4316{
4317 struct sk_buff *skb;
4318
4319 if (length > copybreak)
4320 return NULL;
4321
4322 skb = e1000_alloc_rx_skb(adapter, length);
4323 if (!skb)
4324 return NULL;
4325
4326 dma_sync_single_for_cpu(&adapter->pdev->dev, buffer_info->dma,
4327 length, DMA_FROM_DEVICE);
4328
4329 skb_put_data(skb, data, length);
4330
4331 return skb;
4332}
4333
4334/**
4335 * e1000_clean_rx_irq - Send received data up the network stack; legacy
4336 * @adapter: board private structure
4337 * @rx_ring: ring to clean
4338 * @work_done: amount of napi work completed this call
4339 * @work_to_do: max amount of work allowed for this call to do
4340 */
4341static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
4342 struct e1000_rx_ring *rx_ring,
4343 int *work_done, int work_to_do)
4344{
4345 struct net_device *netdev = adapter->netdev;
4346 struct pci_dev *pdev = adapter->pdev;
4347 struct e1000_rx_desc *rx_desc, *next_rxd;
4348 struct e1000_rx_buffer *buffer_info, *next_buffer;
4349 u32 length;
4350 unsigned int i;
4351 int cleaned_count = 0;
4352 bool cleaned = false;
4353 unsigned int total_rx_bytes = 0, total_rx_packets = 0;
4354
4355 i = rx_ring->next_to_clean;
4356 rx_desc = E1000_RX_DESC(*rx_ring, i);
4357 buffer_info = &rx_ring->buffer_info[i];
4358
4359 while (rx_desc->status & E1000_RXD_STAT_DD) {
4360 struct sk_buff *skb;
4361 u8 *data;
4362 u8 status;
4363
4364 if (*work_done >= work_to_do)
4365 break;
4366 (*work_done)++;
4367 dma_rmb(); /* read descriptor and rx_buffer_info after status DD */
4368
4369 status = rx_desc->status;
4370 length = le16_to_cpu(rx_desc->length);
4371
4372 data = buffer_info->rxbuf.data;
4373 prefetch(data);
4374 skb = e1000_copybreak(adapter, buffer_info, length, data);
4375 if (!skb) {
4376 unsigned int frag_len = e1000_frag_len(adapter);
4377
4378 skb = build_skb(data - E1000_HEADROOM, frag_len);
4379 if (!skb) {
4380 adapter->alloc_rx_buff_failed++;
4381 break;
4382 }
4383
4384 skb_reserve(skb, E1000_HEADROOM);
4385 dma_unmap_single(&pdev->dev, buffer_info->dma,
4386 adapter->rx_buffer_len,
4387 DMA_FROM_DEVICE);
4388 buffer_info->dma = 0;
4389 buffer_info->rxbuf.data = NULL;
4390 }
4391
4392 if (++i == rx_ring->count)
4393 i = 0;
4394
4395 next_rxd = E1000_RX_DESC(*rx_ring, i);
4396 prefetch(next_rxd);
4397
4398 next_buffer = &rx_ring->buffer_info[i];
4399
4400 cleaned = true;
4401 cleaned_count++;
4402
4403 /* !EOP means multiple descriptors were used to store a single
4404 * packet, if thats the case we need to toss it. In fact, we
4405 * to toss every packet with the EOP bit clear and the next
4406 * frame that _does_ have the EOP bit set, as it is by
4407 * definition only a frame fragment
4408 */
4409 if (unlikely(!(status & E1000_RXD_STAT_EOP)))
4410 adapter->discarding = true;
4411
4412 if (adapter->discarding) {
4413 /* All receives must fit into a single buffer */
4414 netdev_dbg(netdev, "Receive packet consumed multiple buffers\n");
4415 dev_kfree_skb(skb);
4416 if (status & E1000_RXD_STAT_EOP)
4417 adapter->discarding = false;
4418 goto next_desc;
4419 }
4420
4421 if (unlikely(rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK)) {
4422 if (e1000_tbi_should_accept(adapter, status,
4423 rx_desc->errors,
4424 length, data)) {
4425 length--;
4426 } else if (netdev->features & NETIF_F_RXALL) {
4427 goto process_skb;
4428 } else {
4429 dev_kfree_skb(skb);
4430 goto next_desc;
4431 }
4432 }
4433
4434process_skb:
4435 total_rx_bytes += (length - 4); /* don't count FCS */
4436 total_rx_packets++;
4437
4438 if (likely(!(netdev->features & NETIF_F_RXFCS)))
4439 /* adjust length to remove Ethernet CRC, this must be
4440 * done after the TBI_ACCEPT workaround above
4441 */
4442 length -= 4;
4443
4444 if (buffer_info->rxbuf.data == NULL)
4445 skb_put(skb, length);
4446 else /* copybreak skb */
4447 skb_trim(skb, length);
4448
4449 /* Receive Checksum Offload */
4450 e1000_rx_checksum(adapter,
4451 (u32)(status) |
4452 ((u32)(rx_desc->errors) << 24),
4453 le16_to_cpu(rx_desc->csum), skb);
4454
4455 e1000_receive_skb(adapter, status, rx_desc->special, skb);
4456
4457next_desc:
4458 rx_desc->status = 0;
4459
4460 /* return some buffers to hardware, one at a time is too slow */
4461 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
4462 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4463 cleaned_count = 0;
4464 }
4465
4466 /* use prefetched values */
4467 rx_desc = next_rxd;
4468 buffer_info = next_buffer;
4469 }
4470 rx_ring->next_to_clean = i;
4471
4472 cleaned_count = E1000_DESC_UNUSED(rx_ring);
4473 if (cleaned_count)
4474 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4475
4476 adapter->total_rx_packets += total_rx_packets;
4477 adapter->total_rx_bytes += total_rx_bytes;
4478 netdev->stats.rx_bytes += total_rx_bytes;
4479 netdev->stats.rx_packets += total_rx_packets;
4480 return cleaned;
4481}
4482
4483/**
4484 * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
4485 * @adapter: address of board private structure
4486 * @rx_ring: pointer to receive ring structure
4487 * @cleaned_count: number of buffers to allocate this pass
4488 **/
4489static void
4490e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter,
4491 struct e1000_rx_ring *rx_ring, int cleaned_count)
4492{
4493 struct pci_dev *pdev = adapter->pdev;
4494 struct e1000_rx_desc *rx_desc;
4495 struct e1000_rx_buffer *buffer_info;
4496 unsigned int i;
4497
4498 i = rx_ring->next_to_use;
4499 buffer_info = &rx_ring->buffer_info[i];
4500
4501 while (cleaned_count--) {
4502 /* allocate a new page if necessary */
4503 if (!buffer_info->rxbuf.page) {
4504 buffer_info->rxbuf.page = alloc_page(GFP_ATOMIC);
4505 if (unlikely(!buffer_info->rxbuf.page)) {
4506 adapter->alloc_rx_buff_failed++;
4507 break;
4508 }
4509 }
4510
4511 if (!buffer_info->dma) {
4512 buffer_info->dma = dma_map_page(&pdev->dev,
4513 buffer_info->rxbuf.page, 0,
4514 adapter->rx_buffer_len,
4515 DMA_FROM_DEVICE);
4516 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
4517 put_page(buffer_info->rxbuf.page);
4518 buffer_info->rxbuf.page = NULL;
4519 buffer_info->dma = 0;
4520 adapter->alloc_rx_buff_failed++;
4521 break;
4522 }
4523 }
4524
4525 rx_desc = E1000_RX_DESC(*rx_ring, i);
4526 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4527
4528 if (unlikely(++i == rx_ring->count))
4529 i = 0;
4530 buffer_info = &rx_ring->buffer_info[i];
4531 }
4532
4533 if (likely(rx_ring->next_to_use != i)) {
4534 rx_ring->next_to_use = i;
4535 if (unlikely(i-- == 0))
4536 i = (rx_ring->count - 1);
4537
4538 /* Force memory writes to complete before letting h/w
4539 * know there are new descriptors to fetch. (Only
4540 * applicable for weak-ordered memory model archs,
4541 * such as IA-64).
4542 */
4543 dma_wmb();
4544 writel(i, adapter->hw.hw_addr + rx_ring->rdt);
4545 }
4546}
4547
4548/**
4549 * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
4550 * @adapter: address of board private structure
4551 **/
4552static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
4553 struct e1000_rx_ring *rx_ring,
4554 int cleaned_count)
4555{
4556 struct e1000_hw *hw = &adapter->hw;
4557 struct pci_dev *pdev = adapter->pdev;
4558 struct e1000_rx_desc *rx_desc;
4559 struct e1000_rx_buffer *buffer_info;
4560 unsigned int i;
4561 unsigned int bufsz = adapter->rx_buffer_len;
4562
4563 i = rx_ring->next_to_use;
4564 buffer_info = &rx_ring->buffer_info[i];
4565
4566 while (cleaned_count--) {
4567 void *data;
4568
4569 if (buffer_info->rxbuf.data)
4570 goto skip;
4571
4572 data = e1000_alloc_frag(adapter);
4573 if (!data) {
4574 /* Better luck next round */
4575 adapter->alloc_rx_buff_failed++;
4576 break;
4577 }
4578
4579 /* Fix for errata 23, can't cross 64kB boundary */
4580 if (!e1000_check_64k_bound(adapter, data, bufsz)) {
4581 void *olddata = data;
4582 e_err(rx_err, "skb align check failed: %u bytes at "
4583 "%p\n", bufsz, data);
4584 /* Try again, without freeing the previous */
4585 data = e1000_alloc_frag(adapter);
4586 /* Failed allocation, critical failure */
4587 if (!data) {
4588 skb_free_frag(olddata);
4589 adapter->alloc_rx_buff_failed++;
4590 break;
4591 }
4592
4593 if (!e1000_check_64k_bound(adapter, data, bufsz)) {
4594 /* give up */
4595 skb_free_frag(data);
4596 skb_free_frag(olddata);
4597 adapter->alloc_rx_buff_failed++;
4598 break;
4599 }
4600
4601 /* Use new allocation */
4602 skb_free_frag(olddata);
4603 }
4604 buffer_info->dma = dma_map_single(&pdev->dev,
4605 data,
4606 adapter->rx_buffer_len,
4607 DMA_FROM_DEVICE);
4608 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
4609 skb_free_frag(data);
4610 buffer_info->dma = 0;
4611 adapter->alloc_rx_buff_failed++;
4612 break;
4613 }
4614
4615 /* XXX if it was allocated cleanly it will never map to a
4616 * boundary crossing
4617 */
4618
4619 /* Fix for errata 23, can't cross 64kB boundary */
4620 if (!e1000_check_64k_bound(adapter,
4621 (void *)(unsigned long)buffer_info->dma,
4622 adapter->rx_buffer_len)) {
4623 e_err(rx_err, "dma align check failed: %u bytes at "
4624 "%p\n", adapter->rx_buffer_len,
4625 (void *)(unsigned long)buffer_info->dma);
4626
4627 dma_unmap_single(&pdev->dev, buffer_info->dma,
4628 adapter->rx_buffer_len,
4629 DMA_FROM_DEVICE);
4630
4631 skb_free_frag(data);
4632 buffer_info->rxbuf.data = NULL;
4633 buffer_info->dma = 0;
4634
4635 adapter->alloc_rx_buff_failed++;
4636 break;
4637 }
4638 buffer_info->rxbuf.data = data;
4639 skip:
4640 rx_desc = E1000_RX_DESC(*rx_ring, i);
4641 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4642
4643 if (unlikely(++i == rx_ring->count))
4644 i = 0;
4645 buffer_info = &rx_ring->buffer_info[i];
4646 }
4647
4648 if (likely(rx_ring->next_to_use != i)) {
4649 rx_ring->next_to_use = i;
4650 if (unlikely(i-- == 0))
4651 i = (rx_ring->count - 1);
4652
4653 /* Force memory writes to complete before letting h/w
4654 * know there are new descriptors to fetch. (Only
4655 * applicable for weak-ordered memory model archs,
4656 * such as IA-64).
4657 */
4658 dma_wmb();
4659 writel(i, hw->hw_addr + rx_ring->rdt);
4660 }
4661}
4662
4663/**
4664 * e1000_smartspeed - Workaround for SmartSpeed on 82541 and 82547 controllers.
4665 * @adapter:
4666 **/
4667static void e1000_smartspeed(struct e1000_adapter *adapter)
4668{
4669 struct e1000_hw *hw = &adapter->hw;
4670 u16 phy_status;
4671 u16 phy_ctrl;
4672
4673 if ((hw->phy_type != e1000_phy_igp) || !hw->autoneg ||
4674 !(hw->autoneg_advertised & ADVERTISE_1000_FULL))
4675 return;
4676
4677 if (adapter->smartspeed == 0) {
4678 /* If Master/Slave config fault is asserted twice,
4679 * we assume back-to-back
4680 */
4681 e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
4682 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT))
4683 return;
4684 e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
4685 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT))
4686 return;
4687 e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
4688 if (phy_ctrl & CR_1000T_MS_ENABLE) {
4689 phy_ctrl &= ~CR_1000T_MS_ENABLE;
4690 e1000_write_phy_reg(hw, PHY_1000T_CTRL,
4691 phy_ctrl);
4692 adapter->smartspeed++;
4693 if (!e1000_phy_setup_autoneg(hw) &&
4694 !e1000_read_phy_reg(hw, PHY_CTRL,
4695 &phy_ctrl)) {
4696 phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4697 MII_CR_RESTART_AUTO_NEG);
4698 e1000_write_phy_reg(hw, PHY_CTRL,
4699 phy_ctrl);
4700 }
4701 }
4702 return;
4703 } else if (adapter->smartspeed == E1000_SMARTSPEED_DOWNSHIFT) {
4704 /* If still no link, perhaps using 2/3 pair cable */
4705 e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
4706 phy_ctrl |= CR_1000T_MS_ENABLE;
4707 e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_ctrl);
4708 if (!e1000_phy_setup_autoneg(hw) &&
4709 !e1000_read_phy_reg(hw, PHY_CTRL, &phy_ctrl)) {
4710 phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4711 MII_CR_RESTART_AUTO_NEG);
4712 e1000_write_phy_reg(hw, PHY_CTRL, phy_ctrl);
4713 }
4714 }
4715 /* Restart process after E1000_SMARTSPEED_MAX iterations */
4716 if (adapter->smartspeed++ == E1000_SMARTSPEED_MAX)
4717 adapter->smartspeed = 0;
4718}
4719
4720/**
4721 * e1000_ioctl -
4722 * @netdev:
4723 * @ifreq:
4724 * @cmd:
4725 **/
4726static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4727{
4728 switch (cmd) {
4729 case SIOCGMIIPHY:
4730 case SIOCGMIIREG:
4731 case SIOCSMIIREG:
4732 return e1000_mii_ioctl(netdev, ifr, cmd);
4733 default:
4734 return -EOPNOTSUPP;
4735 }
4736}
4737
4738/**
4739 * e1000_mii_ioctl -
4740 * @netdev:
4741 * @ifreq:
4742 * @cmd:
4743 **/
4744static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
4745 int cmd)
4746{
4747 struct e1000_adapter *adapter = netdev_priv(netdev);
4748 struct e1000_hw *hw = &adapter->hw;
4749 struct mii_ioctl_data *data = if_mii(ifr);
4750 int retval;
4751 u16 mii_reg;
4752 unsigned long flags;
4753
4754 if (hw->media_type != e1000_media_type_copper)
4755 return -EOPNOTSUPP;
4756
4757 switch (cmd) {
4758 case SIOCGMIIPHY:
4759 data->phy_id = hw->phy_addr;
4760 break;
4761 case SIOCGMIIREG:
4762 spin_lock_irqsave(&adapter->stats_lock, flags);
4763 if (e1000_read_phy_reg(hw, data->reg_num & 0x1F,
4764 &data->val_out)) {
4765 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4766 return -EIO;
4767 }
4768 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4769 break;
4770 case SIOCSMIIREG:
4771 if (data->reg_num & ~(0x1F))
4772 return -EFAULT;
4773 mii_reg = data->val_in;
4774 spin_lock_irqsave(&adapter->stats_lock, flags);
4775 if (e1000_write_phy_reg(hw, data->reg_num,
4776 mii_reg)) {
4777 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4778 return -EIO;
4779 }
4780 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4781 if (hw->media_type == e1000_media_type_copper) {
4782 switch (data->reg_num) {
4783 case PHY_CTRL:
4784 if (mii_reg & MII_CR_POWER_DOWN)
4785 break;
4786 if (mii_reg & MII_CR_AUTO_NEG_EN) {
4787 hw->autoneg = 1;
4788 hw->autoneg_advertised = 0x2F;
4789 } else {
4790 u32 speed;
4791 if (mii_reg & 0x40)
4792 speed = SPEED_1000;
4793 else if (mii_reg & 0x2000)
4794 speed = SPEED_100;
4795 else
4796 speed = SPEED_10;
4797 retval = e1000_set_spd_dplx(
4798 adapter, speed,
4799 ((mii_reg & 0x100)
4800 ? DUPLEX_FULL :
4801 DUPLEX_HALF));
4802 if (retval)
4803 return retval;
4804 }
4805 if (netif_running(adapter->netdev))
4806 e1000_reinit_locked(adapter);
4807 else
4808 e1000_reset(adapter);
4809 break;
4810 case M88E1000_PHY_SPEC_CTRL:
4811 case M88E1000_EXT_PHY_SPEC_CTRL:
4812 if (e1000_phy_reset(hw))
4813 return -EIO;
4814 break;
4815 }
4816 } else {
4817 switch (data->reg_num) {
4818 case PHY_CTRL:
4819 if (mii_reg & MII_CR_POWER_DOWN)
4820 break;
4821 if (netif_running(adapter->netdev))
4822 e1000_reinit_locked(adapter);
4823 else
4824 e1000_reset(adapter);
4825 break;
4826 }
4827 }
4828 break;
4829 default:
4830 return -EOPNOTSUPP;
4831 }
4832 return E1000_SUCCESS;
4833}
4834
4835void e1000_pci_set_mwi(struct e1000_hw *hw)
4836{
4837 struct e1000_adapter *adapter = hw->back;
4838 int ret_val = pci_set_mwi(adapter->pdev);
4839
4840 if (ret_val)
4841 e_err(probe, "Error in setting MWI\n");
4842}
4843
4844void e1000_pci_clear_mwi(struct e1000_hw *hw)
4845{
4846 struct e1000_adapter *adapter = hw->back;
4847
4848 pci_clear_mwi(adapter->pdev);
4849}
4850
4851int e1000_pcix_get_mmrbc(struct e1000_hw *hw)
4852{
4853 struct e1000_adapter *adapter = hw->back;
4854 return pcix_get_mmrbc(adapter->pdev);
4855}
4856
4857void e1000_pcix_set_mmrbc(struct e1000_hw *hw, int mmrbc)
4858{
4859 struct e1000_adapter *adapter = hw->back;
4860 pcix_set_mmrbc(adapter->pdev, mmrbc);
4861}
4862
4863void e1000_io_write(struct e1000_hw *hw, unsigned long port, u32 value)
4864{
4865 outl(value, port);
4866}
4867
4868static bool e1000_vlan_used(struct e1000_adapter *adapter)
4869{
4870 u16 vid;
4871
4872 for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
4873 return true;
4874 return false;
4875}
4876
4877static void __e1000_vlan_mode(struct e1000_adapter *adapter,
4878 netdev_features_t features)
4879{
4880 struct e1000_hw *hw = &adapter->hw;
4881 u32 ctrl;
4882
4883 ctrl = er32(CTRL);
4884 if (features & NETIF_F_HW_VLAN_CTAG_RX) {
4885 /* enable VLAN tag insert/strip */
4886 ctrl |= E1000_CTRL_VME;
4887 } else {
4888 /* disable VLAN tag insert/strip */
4889 ctrl &= ~E1000_CTRL_VME;
4890 }
4891 ew32(CTRL, ctrl);
4892}
4893static void e1000_vlan_filter_on_off(struct e1000_adapter *adapter,
4894 bool filter_on)
4895{
4896 struct e1000_hw *hw = &adapter->hw;
4897 u32 rctl;
4898
4899 if (!test_bit(__E1000_DOWN, &adapter->flags))
4900 e1000_irq_disable(adapter);
4901
4902 __e1000_vlan_mode(adapter, adapter->netdev->features);
4903 if (filter_on) {
4904 /* enable VLAN receive filtering */
4905 rctl = er32(RCTL);
4906 rctl &= ~E1000_RCTL_CFIEN;
4907 if (!(adapter->netdev->flags & IFF_PROMISC))
4908 rctl |= E1000_RCTL_VFE;
4909 ew32(RCTL, rctl);
4910 e1000_update_mng_vlan(adapter);
4911 } else {
4912 /* disable VLAN receive filtering */
4913 rctl = er32(RCTL);
4914 rctl &= ~E1000_RCTL_VFE;
4915 ew32(RCTL, rctl);
4916 }
4917
4918 if (!test_bit(__E1000_DOWN, &adapter->flags))
4919 e1000_irq_enable(adapter);
4920}
4921
4922static void e1000_vlan_mode(struct net_device *netdev,
4923 netdev_features_t features)
4924{
4925 struct e1000_adapter *adapter = netdev_priv(netdev);
4926
4927 if (!test_bit(__E1000_DOWN, &adapter->flags))
4928 e1000_irq_disable(adapter);
4929
4930 __e1000_vlan_mode(adapter, features);
4931
4932 if (!test_bit(__E1000_DOWN, &adapter->flags))
4933 e1000_irq_enable(adapter);
4934}
4935
4936static int e1000_vlan_rx_add_vid(struct net_device *netdev,
4937 __be16 proto, u16 vid)
4938{
4939 struct e1000_adapter *adapter = netdev_priv(netdev);
4940 struct e1000_hw *hw = &adapter->hw;
4941 u32 vfta, index;
4942
4943 if ((hw->mng_cookie.status &
4944 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
4945 (vid == adapter->mng_vlan_id))
4946 return 0;
4947
4948 if (!e1000_vlan_used(adapter))
4949 e1000_vlan_filter_on_off(adapter, true);
4950
4951 /* add VID to filter table */
4952 index = (vid >> 5) & 0x7F;
4953 vfta = E1000_READ_REG_ARRAY(hw, VFTA, index);
4954 vfta |= (1 << (vid & 0x1F));
4955 e1000_write_vfta(hw, index, vfta);
4956
4957 set_bit(vid, adapter->active_vlans);
4958
4959 return 0;
4960}
4961
4962static int e1000_vlan_rx_kill_vid(struct net_device *netdev,
4963 __be16 proto, u16 vid)
4964{
4965 struct e1000_adapter *adapter = netdev_priv(netdev);
4966 struct e1000_hw *hw = &adapter->hw;
4967 u32 vfta, index;
4968
4969 if (!test_bit(__E1000_DOWN, &adapter->flags))
4970 e1000_irq_disable(adapter);
4971 if (!test_bit(__E1000_DOWN, &adapter->flags))
4972 e1000_irq_enable(adapter);
4973
4974 /* remove VID from filter table */
4975 index = (vid >> 5) & 0x7F;
4976 vfta = E1000_READ_REG_ARRAY(hw, VFTA, index);
4977 vfta &= ~(1 << (vid & 0x1F));
4978 e1000_write_vfta(hw, index, vfta);
4979
4980 clear_bit(vid, adapter->active_vlans);
4981
4982 if (!e1000_vlan_used(adapter))
4983 e1000_vlan_filter_on_off(adapter, false);
4984
4985 return 0;
4986}
4987
4988static void e1000_restore_vlan(struct e1000_adapter *adapter)
4989{
4990 u16 vid;
4991
4992 if (!e1000_vlan_used(adapter))
4993 return;
4994
4995 e1000_vlan_filter_on_off(adapter, true);
4996 for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
4997 e1000_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
4998}
4999
5000int e1000_set_spd_dplx(struct e1000_adapter *adapter, u32 spd, u8 dplx)
5001{
5002 struct e1000_hw *hw = &adapter->hw;
5003
5004 hw->autoneg = 0;
5005
5006 /* Make sure dplx is at most 1 bit and lsb of speed is not set
5007 * for the switch() below to work
5008 */
5009 if ((spd & 1) || (dplx & ~1))
5010 goto err_inval;
5011
5012 /* Fiber NICs only allow 1000 gbps Full duplex */
5013 if ((hw->media_type == e1000_media_type_fiber) &&
5014 spd != SPEED_1000 &&
5015 dplx != DUPLEX_FULL)
5016 goto err_inval;
5017
5018 switch (spd + dplx) {
5019 case SPEED_10 + DUPLEX_HALF:
5020 hw->forced_speed_duplex = e1000_10_half;
5021 break;
5022 case SPEED_10 + DUPLEX_FULL:
5023 hw->forced_speed_duplex = e1000_10_full;
5024 break;
5025 case SPEED_100 + DUPLEX_HALF:
5026 hw->forced_speed_duplex = e1000_100_half;
5027 break;
5028 case SPEED_100 + DUPLEX_FULL:
5029 hw->forced_speed_duplex = e1000_100_full;
5030 break;
5031 case SPEED_1000 + DUPLEX_FULL:
5032 hw->autoneg = 1;
5033 hw->autoneg_advertised = ADVERTISE_1000_FULL;
5034 break;
5035 case SPEED_1000 + DUPLEX_HALF: /* not supported */
5036 default:
5037 goto err_inval;
5038 }
5039
5040 /* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
5041 hw->mdix = AUTO_ALL_MODES;
5042
5043 return 0;
5044
5045err_inval:
5046 e_err(probe, "Unsupported Speed/Duplex configuration\n");
5047 return -EINVAL;
5048}
5049
5050static int __e1000_shutdown(struct pci_dev *pdev, bool *enable_wake)
5051{
5052 struct net_device *netdev = pci_get_drvdata(pdev);
5053 struct e1000_adapter *adapter = netdev_priv(netdev);
5054 struct e1000_hw *hw = &adapter->hw;
5055 u32 ctrl, ctrl_ext, rctl, status;
5056 u32 wufc = adapter->wol;
5057
5058 netif_device_detach(netdev);
5059
5060 if (netif_running(netdev)) {
5061 int count = E1000_CHECK_RESET_COUNT;
5062
5063 while (test_bit(__E1000_RESETTING, &adapter->flags) && count--)
5064 usleep_range(10000, 20000);
5065
5066 WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
5067 e1000_down(adapter);
5068 }
5069
5070 status = er32(STATUS);
5071 if (status & E1000_STATUS_LU)
5072 wufc &= ~E1000_WUFC_LNKC;
5073
5074 if (wufc) {
5075 e1000_setup_rctl(adapter);
5076 e1000_set_rx_mode(netdev);
5077
5078 rctl = er32(RCTL);
5079
5080 /* turn on all-multi mode if wake on multicast is enabled */
5081 if (wufc & E1000_WUFC_MC)
5082 rctl |= E1000_RCTL_MPE;
5083
5084 /* enable receives in the hardware */
5085 ew32(RCTL, rctl | E1000_RCTL_EN);
5086
5087 if (hw->mac_type >= e1000_82540) {
5088 ctrl = er32(CTRL);
5089 /* advertise wake from D3Cold */
5090 #define E1000_CTRL_ADVD3WUC 0x00100000
5091 /* phy power management enable */
5092 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
5093 ctrl |= E1000_CTRL_ADVD3WUC |
5094 E1000_CTRL_EN_PHY_PWR_MGMT;
5095 ew32(CTRL, ctrl);
5096 }
5097
5098 if (hw->media_type == e1000_media_type_fiber ||
5099 hw->media_type == e1000_media_type_internal_serdes) {
5100 /* keep the laser running in D3 */
5101 ctrl_ext = er32(CTRL_EXT);
5102 ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA;
5103 ew32(CTRL_EXT, ctrl_ext);
5104 }
5105
5106 ew32(WUC, E1000_WUC_PME_EN);
5107 ew32(WUFC, wufc);
5108 } else {
5109 ew32(WUC, 0);
5110 ew32(WUFC, 0);
5111 }
5112
5113 e1000_release_manageability(adapter);
5114
5115 *enable_wake = !!wufc;
5116
5117 /* make sure adapter isn't asleep if manageability is enabled */
5118 if (adapter->en_mng_pt)
5119 *enable_wake = true;
5120
5121 if (netif_running(netdev))
5122 e1000_free_irq(adapter);
5123
5124 if (!test_and_set_bit(__E1000_DISABLED, &adapter->flags))
5125 pci_disable_device(pdev);
5126
5127 return 0;
5128}
5129
5130static int __maybe_unused e1000_suspend(struct device *dev)
5131{
5132 int retval;
5133 struct pci_dev *pdev = to_pci_dev(dev);
5134 bool wake;
5135
5136 retval = __e1000_shutdown(pdev, &wake);
5137 device_set_wakeup_enable(dev, wake);
5138
5139 return retval;
5140}
5141
5142static int __maybe_unused e1000_resume(struct device *dev)
5143{
5144 struct pci_dev *pdev = to_pci_dev(dev);
5145 struct net_device *netdev = pci_get_drvdata(pdev);
5146 struct e1000_adapter *adapter = netdev_priv(netdev);
5147 struct e1000_hw *hw = &adapter->hw;
5148 u32 err;
5149
5150 if (adapter->need_ioport)
5151 err = pci_enable_device(pdev);
5152 else
5153 err = pci_enable_device_mem(pdev);
5154 if (err) {
5155 pr_err("Cannot enable PCI device from suspend\n");
5156 return err;
5157 }
5158
5159 /* flush memory to make sure state is correct */
5160 smp_mb__before_atomic();
5161 clear_bit(__E1000_DISABLED, &adapter->flags);
5162 pci_set_master(pdev);
5163
5164 pci_enable_wake(pdev, PCI_D3hot, 0);
5165 pci_enable_wake(pdev, PCI_D3cold, 0);
5166
5167 if (netif_running(netdev)) {
5168 err = e1000_request_irq(adapter);
5169 if (err)
5170 return err;
5171 }
5172
5173 e1000_power_up_phy(adapter);
5174 e1000_reset(adapter);
5175 ew32(WUS, ~0);
5176
5177 e1000_init_manageability(adapter);
5178
5179 if (netif_running(netdev))
5180 e1000_up(adapter);
5181
5182 netif_device_attach(netdev);
5183
5184 return 0;
5185}
5186
5187static void e1000_shutdown(struct pci_dev *pdev)
5188{
5189 bool wake;
5190
5191 __e1000_shutdown(pdev, &wake);
5192
5193 if (system_state == SYSTEM_POWER_OFF) {
5194 pci_wake_from_d3(pdev, wake);
5195 pci_set_power_state(pdev, PCI_D3hot);
5196 }
5197}
5198
5199#ifdef CONFIG_NET_POLL_CONTROLLER
5200/* Polling 'interrupt' - used by things like netconsole to send skbs
5201 * without having to re-enable interrupts. It's not called while
5202 * the interrupt routine is executing.
5203 */
5204static void e1000_netpoll(struct net_device *netdev)
5205{
5206 struct e1000_adapter *adapter = netdev_priv(netdev);
5207
5208 if (disable_hardirq(adapter->pdev->irq))
5209 e1000_intr(adapter->pdev->irq, netdev);
5210 enable_irq(adapter->pdev->irq);
5211}
5212#endif
5213
5214/**
5215 * e1000_io_error_detected - called when PCI error is detected
5216 * @pdev: Pointer to PCI device
5217 * @state: The current pci connection state
5218 *
5219 * This function is called after a PCI bus error affecting
5220 * this device has been detected.
5221 */
5222static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
5223 pci_channel_state_t state)
5224{
5225 struct net_device *netdev = pci_get_drvdata(pdev);
5226 struct e1000_adapter *adapter = netdev_priv(netdev);
5227
5228 netif_device_detach(netdev);
5229
5230 if (state == pci_channel_io_perm_failure)
5231 return PCI_ERS_RESULT_DISCONNECT;
5232
5233 if (netif_running(netdev))
5234 e1000_down(adapter);
5235
5236 if (!test_and_set_bit(__E1000_DISABLED, &adapter->flags))
5237 pci_disable_device(pdev);
5238
5239 /* Request a slot slot reset. */
5240 return PCI_ERS_RESULT_NEED_RESET;
5241}
5242
5243/**
5244 * e1000_io_slot_reset - called after the pci bus has been reset.
5245 * @pdev: Pointer to PCI device
5246 *
5247 * Restart the card from scratch, as if from a cold-boot. Implementation
5248 * resembles the first-half of the e1000_resume routine.
5249 */
5250static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
5251{
5252 struct net_device *netdev = pci_get_drvdata(pdev);
5253 struct e1000_adapter *adapter = netdev_priv(netdev);
5254 struct e1000_hw *hw = &adapter->hw;
5255 int err;
5256
5257 if (adapter->need_ioport)
5258 err = pci_enable_device(pdev);
5259 else
5260 err = pci_enable_device_mem(pdev);
5261 if (err) {
5262 pr_err("Cannot re-enable PCI device after reset.\n");
5263 return PCI_ERS_RESULT_DISCONNECT;
5264 }
5265
5266 /* flush memory to make sure state is correct */
5267 smp_mb__before_atomic();
5268 clear_bit(__E1000_DISABLED, &adapter->flags);
5269 pci_set_master(pdev);
5270
5271 pci_enable_wake(pdev, PCI_D3hot, 0);
5272 pci_enable_wake(pdev, PCI_D3cold, 0);
5273
5274 e1000_reset(adapter);
5275 ew32(WUS, ~0);
5276
5277 return PCI_ERS_RESULT_RECOVERED;
5278}
5279
5280/**
5281 * e1000_io_resume - called when traffic can start flowing again.
5282 * @pdev: Pointer to PCI device
5283 *
5284 * This callback is called when the error recovery driver tells us that
5285 * its OK to resume normal operation. Implementation resembles the
5286 * second-half of the e1000_resume routine.
5287 */
5288static void e1000_io_resume(struct pci_dev *pdev)
5289{
5290 struct net_device *netdev = pci_get_drvdata(pdev);
5291 struct e1000_adapter *adapter = netdev_priv(netdev);
5292
5293 e1000_init_manageability(adapter);
5294
5295 if (netif_running(netdev)) {
5296 if (e1000_up(adapter)) {
5297 pr_info("can't bring device back up after reset\n");
5298 return;
5299 }
5300 }
5301
5302 netif_device_attach(netdev);
5303}
5304
5305/* e1000_main.c */