Linux Audio

Check our new training course

Loading...
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0
   2/* Copyright(c) 1999 - 2006 Intel Corporation. */
   3
   4#include "e1000.h"
   5#include <net/ip6_checksum.h>
   6#include <linux/io.h>
   7#include <linux/prefetch.h>
   8#include <linux/bitops.h>
   9#include <linux/if_vlan.h>
  10
  11char e1000_driver_name[] = "e1000";
  12static char e1000_driver_string[] = "Intel(R) PRO/1000 Network Driver";
  13static const char e1000_copyright[] = "Copyright (c) 1999-2006 Intel Corporation.";
  14
  15/* e1000_pci_tbl - PCI Device ID Table
  16 *
  17 * Last entry must be all 0s
  18 *
  19 * Macro expands to...
  20 *   {PCI_DEVICE(PCI_VENDOR_ID_INTEL, device_id)}
  21 */
  22static const struct pci_device_id e1000_pci_tbl[] = {
  23	INTEL_E1000_ETHERNET_DEVICE(0x1000),
  24	INTEL_E1000_ETHERNET_DEVICE(0x1001),
  25	INTEL_E1000_ETHERNET_DEVICE(0x1004),
  26	INTEL_E1000_ETHERNET_DEVICE(0x1008),
  27	INTEL_E1000_ETHERNET_DEVICE(0x1009),
  28	INTEL_E1000_ETHERNET_DEVICE(0x100C),
  29	INTEL_E1000_ETHERNET_DEVICE(0x100D),
  30	INTEL_E1000_ETHERNET_DEVICE(0x100E),
  31	INTEL_E1000_ETHERNET_DEVICE(0x100F),
  32	INTEL_E1000_ETHERNET_DEVICE(0x1010),
  33	INTEL_E1000_ETHERNET_DEVICE(0x1011),
  34	INTEL_E1000_ETHERNET_DEVICE(0x1012),
  35	INTEL_E1000_ETHERNET_DEVICE(0x1013),
  36	INTEL_E1000_ETHERNET_DEVICE(0x1014),
  37	INTEL_E1000_ETHERNET_DEVICE(0x1015),
  38	INTEL_E1000_ETHERNET_DEVICE(0x1016),
  39	INTEL_E1000_ETHERNET_DEVICE(0x1017),
  40	INTEL_E1000_ETHERNET_DEVICE(0x1018),
  41	INTEL_E1000_ETHERNET_DEVICE(0x1019),
  42	INTEL_E1000_ETHERNET_DEVICE(0x101A),
  43	INTEL_E1000_ETHERNET_DEVICE(0x101D),
  44	INTEL_E1000_ETHERNET_DEVICE(0x101E),
  45	INTEL_E1000_ETHERNET_DEVICE(0x1026),
  46	INTEL_E1000_ETHERNET_DEVICE(0x1027),
  47	INTEL_E1000_ETHERNET_DEVICE(0x1028),
  48	INTEL_E1000_ETHERNET_DEVICE(0x1075),
  49	INTEL_E1000_ETHERNET_DEVICE(0x1076),
  50	INTEL_E1000_ETHERNET_DEVICE(0x1077),
  51	INTEL_E1000_ETHERNET_DEVICE(0x1078),
  52	INTEL_E1000_ETHERNET_DEVICE(0x1079),
  53	INTEL_E1000_ETHERNET_DEVICE(0x107A),
  54	INTEL_E1000_ETHERNET_DEVICE(0x107B),
  55	INTEL_E1000_ETHERNET_DEVICE(0x107C),
  56	INTEL_E1000_ETHERNET_DEVICE(0x108A),
  57	INTEL_E1000_ETHERNET_DEVICE(0x1099),
  58	INTEL_E1000_ETHERNET_DEVICE(0x10B5),
  59	INTEL_E1000_ETHERNET_DEVICE(0x2E6E),
  60	/* required last entry */
  61	{0,}
  62};
  63
  64MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
  65
  66int e1000_up(struct e1000_adapter *adapter);
  67void e1000_down(struct e1000_adapter *adapter);
  68void e1000_reinit_locked(struct e1000_adapter *adapter);
  69void e1000_reset(struct e1000_adapter *adapter);
  70int e1000_setup_all_tx_resources(struct e1000_adapter *adapter);
  71int e1000_setup_all_rx_resources(struct e1000_adapter *adapter);
  72void e1000_free_all_tx_resources(struct e1000_adapter *adapter);
  73void e1000_free_all_rx_resources(struct e1000_adapter *adapter);
  74static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
  75				    struct e1000_tx_ring *txdr);
  76static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
  77				    struct e1000_rx_ring *rxdr);
  78static void e1000_free_tx_resources(struct e1000_adapter *adapter,
  79				    struct e1000_tx_ring *tx_ring);
  80static void e1000_free_rx_resources(struct e1000_adapter *adapter,
  81				    struct e1000_rx_ring *rx_ring);
  82void e1000_update_stats(struct e1000_adapter *adapter);
  83
  84static int e1000_init_module(void);
  85static void e1000_exit_module(void);
  86static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent);
  87static void e1000_remove(struct pci_dev *pdev);
  88static int e1000_alloc_queues(struct e1000_adapter *adapter);
  89static int e1000_sw_init(struct e1000_adapter *adapter);
  90int e1000_open(struct net_device *netdev);
  91int e1000_close(struct net_device *netdev);
  92static void e1000_configure_tx(struct e1000_adapter *adapter);
  93static void e1000_configure_rx(struct e1000_adapter *adapter);
  94static void e1000_setup_rctl(struct e1000_adapter *adapter);
  95static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter);
  96static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter);
  97static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
  98				struct e1000_tx_ring *tx_ring);
  99static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
 100				struct e1000_rx_ring *rx_ring);
 101static void e1000_set_rx_mode(struct net_device *netdev);
 102static void e1000_update_phy_info_task(struct work_struct *work);
 103static void e1000_watchdog(struct work_struct *work);
 104static void e1000_82547_tx_fifo_stall_task(struct work_struct *work);
 105static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
 106				    struct net_device *netdev);
 107static int e1000_change_mtu(struct net_device *netdev, int new_mtu);
 108static int e1000_set_mac(struct net_device *netdev, void *p);
 109static irqreturn_t e1000_intr(int irq, void *data);
 110static bool e1000_clean_tx_irq(struct e1000_adapter *adapter,
 111			       struct e1000_tx_ring *tx_ring);
 112static int e1000_clean(struct napi_struct *napi, int budget);
 113static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
 114			       struct e1000_rx_ring *rx_ring,
 115			       int *work_done, int work_to_do);
 116static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter,
 117				     struct e1000_rx_ring *rx_ring,
 118				     int *work_done, int work_to_do);
 119static void e1000_alloc_dummy_rx_buffers(struct e1000_adapter *adapter,
 120					 struct e1000_rx_ring *rx_ring,
 121					 int cleaned_count)
 122{
 123}
 124static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
 125				   struct e1000_rx_ring *rx_ring,
 126				   int cleaned_count);
 127static void e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter,
 128					 struct e1000_rx_ring *rx_ring,
 129					 int cleaned_count);
 130static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd);
 131static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
 132			   int cmd);
 133static void e1000_enter_82542_rst(struct e1000_adapter *adapter);
 134static void e1000_leave_82542_rst(struct e1000_adapter *adapter);
 135static void e1000_tx_timeout(struct net_device *dev, unsigned int txqueue);
 136static void e1000_reset_task(struct work_struct *work);
 137static void e1000_smartspeed(struct e1000_adapter *adapter);
 138static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
 139				       struct sk_buff *skb);
 140
 141static bool e1000_vlan_used(struct e1000_adapter *adapter);
 142static void e1000_vlan_mode(struct net_device *netdev,
 143			    netdev_features_t features);
 144static void e1000_vlan_filter_on_off(struct e1000_adapter *adapter,
 145				     bool filter_on);
 146static int e1000_vlan_rx_add_vid(struct net_device *netdev,
 147				 __be16 proto, u16 vid);
 148static int e1000_vlan_rx_kill_vid(struct net_device *netdev,
 149				  __be16 proto, u16 vid);
 150static void e1000_restore_vlan(struct e1000_adapter *adapter);
 151
 152static int e1000_suspend(struct device *dev);
 153static int e1000_resume(struct device *dev);
 154static void e1000_shutdown(struct pci_dev *pdev);
 155
 156#ifdef CONFIG_NET_POLL_CONTROLLER
 157/* for netdump / net console */
 158static void e1000_netpoll (struct net_device *netdev);
 159#endif
 160
 161#define COPYBREAK_DEFAULT 256
 162static unsigned int copybreak __read_mostly = COPYBREAK_DEFAULT;
 163module_param(copybreak, uint, 0644);
 164MODULE_PARM_DESC(copybreak,
 165	"Maximum size of packet that is copied to a new buffer on receive");
 166
 167static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
 168						pci_channel_state_t state);
 169static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev);
 170static void e1000_io_resume(struct pci_dev *pdev);
 171
 172static const struct pci_error_handlers e1000_err_handler = {
 173	.error_detected = e1000_io_error_detected,
 174	.slot_reset = e1000_io_slot_reset,
 175	.resume = e1000_io_resume,
 176};
 177
 178static DEFINE_SIMPLE_DEV_PM_OPS(e1000_pm_ops, e1000_suspend, e1000_resume);
 179
 180static struct pci_driver e1000_driver = {
 181	.name     = e1000_driver_name,
 182	.id_table = e1000_pci_tbl,
 183	.probe    = e1000_probe,
 184	.remove   = e1000_remove,
 185	.driver.pm = pm_sleep_ptr(&e1000_pm_ops),
 
 
 186	.shutdown = e1000_shutdown,
 187	.err_handler = &e1000_err_handler
 188};
 189
 
 190MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
 191MODULE_LICENSE("GPL v2");
 192
 193#define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
 194static int debug = -1;
 195module_param(debug, int, 0);
 196MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
 197
 198/**
 199 * e1000_get_hw_dev - helper function for getting netdev
 200 * @hw: pointer to HW struct
 201 *
 202 * return device used by hardware layer to print debugging information
 203 *
 204 **/
 205struct net_device *e1000_get_hw_dev(struct e1000_hw *hw)
 206{
 207	struct e1000_adapter *adapter = hw->back;
 208	return adapter->netdev;
 209}
 210
 211/**
 212 * e1000_init_module - Driver Registration Routine
 213 *
 214 * e1000_init_module is the first routine called when the driver is
 215 * loaded. All it does is register with the PCI subsystem.
 216 **/
 217static int __init e1000_init_module(void)
 218{
 219	int ret;
 220	pr_info("%s\n", e1000_driver_string);
 221
 222	pr_info("%s\n", e1000_copyright);
 223
 224	ret = pci_register_driver(&e1000_driver);
 225	if (copybreak != COPYBREAK_DEFAULT) {
 226		if (copybreak == 0)
 227			pr_info("copybreak disabled\n");
 228		else
 229			pr_info("copybreak enabled for "
 230				   "packets <= %u bytes\n", copybreak);
 231	}
 232	return ret;
 233}
 234
 235module_init(e1000_init_module);
 236
 237/**
 238 * e1000_exit_module - Driver Exit Cleanup Routine
 239 *
 240 * e1000_exit_module is called just before the driver is removed
 241 * from memory.
 242 **/
 243static void __exit e1000_exit_module(void)
 244{
 245	pci_unregister_driver(&e1000_driver);
 246}
 247
 248module_exit(e1000_exit_module);
 249
 250static int e1000_request_irq(struct e1000_adapter *adapter)
 251{
 252	struct net_device *netdev = adapter->netdev;
 253	irq_handler_t handler = e1000_intr;
 254	int irq_flags = IRQF_SHARED;
 255	int err;
 256
 257	err = request_irq(adapter->pdev->irq, handler, irq_flags, netdev->name,
 258			  netdev);
 259	if (err) {
 260		e_err(probe, "Unable to allocate interrupt Error: %d\n", err);
 261	}
 262
 263	return err;
 264}
 265
 266static void e1000_free_irq(struct e1000_adapter *adapter)
 267{
 268	struct net_device *netdev = adapter->netdev;
 269
 270	free_irq(adapter->pdev->irq, netdev);
 271}
 272
 273/**
 274 * e1000_irq_disable - Mask off interrupt generation on the NIC
 275 * @adapter: board private structure
 276 **/
 277static void e1000_irq_disable(struct e1000_adapter *adapter)
 278{
 279	struct e1000_hw *hw = &adapter->hw;
 280
 281	ew32(IMC, ~0);
 282	E1000_WRITE_FLUSH();
 283	synchronize_irq(adapter->pdev->irq);
 284}
 285
 286/**
 287 * e1000_irq_enable - Enable default interrupt generation settings
 288 * @adapter: board private structure
 289 **/
 290static void e1000_irq_enable(struct e1000_adapter *adapter)
 291{
 292	struct e1000_hw *hw = &adapter->hw;
 293
 294	ew32(IMS, IMS_ENABLE_MASK);
 295	E1000_WRITE_FLUSH();
 296}
 297
 298static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
 299{
 300	struct e1000_hw *hw = &adapter->hw;
 301	struct net_device *netdev = adapter->netdev;
 302	u16 vid = hw->mng_cookie.vlan_id;
 303	u16 old_vid = adapter->mng_vlan_id;
 304
 305	if (!e1000_vlan_used(adapter))
 306		return;
 307
 308	if (!test_bit(vid, adapter->active_vlans)) {
 309		if (hw->mng_cookie.status &
 310		    E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) {
 311			e1000_vlan_rx_add_vid(netdev, htons(ETH_P_8021Q), vid);
 312			adapter->mng_vlan_id = vid;
 313		} else {
 314			adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
 315		}
 316		if ((old_vid != (u16)E1000_MNG_VLAN_NONE) &&
 317		    (vid != old_vid) &&
 318		    !test_bit(old_vid, adapter->active_vlans))
 319			e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q),
 320					       old_vid);
 321	} else {
 322		adapter->mng_vlan_id = vid;
 323	}
 324}
 325
 326static void e1000_init_manageability(struct e1000_adapter *adapter)
 327{
 328	struct e1000_hw *hw = &adapter->hw;
 329
 330	if (adapter->en_mng_pt) {
 331		u32 manc = er32(MANC);
 332
 333		/* disable hardware interception of ARP */
 334		manc &= ~(E1000_MANC_ARP_EN);
 335
 336		ew32(MANC, manc);
 337	}
 338}
 339
 340static void e1000_release_manageability(struct e1000_adapter *adapter)
 341{
 342	struct e1000_hw *hw = &adapter->hw;
 343
 344	if (adapter->en_mng_pt) {
 345		u32 manc = er32(MANC);
 346
 347		/* re-enable hardware interception of ARP */
 348		manc |= E1000_MANC_ARP_EN;
 349
 350		ew32(MANC, manc);
 351	}
 352}
 353
 354/**
 355 * e1000_configure - configure the hardware for RX and TX
 356 * @adapter: private board structure
 357 **/
 358static void e1000_configure(struct e1000_adapter *adapter)
 359{
 360	struct net_device *netdev = adapter->netdev;
 361	int i;
 362
 363	e1000_set_rx_mode(netdev);
 364
 365	e1000_restore_vlan(adapter);
 366	e1000_init_manageability(adapter);
 367
 368	e1000_configure_tx(adapter);
 369	e1000_setup_rctl(adapter);
 370	e1000_configure_rx(adapter);
 371	/* call E1000_DESC_UNUSED which always leaves
 372	 * at least 1 descriptor unused to make sure
 373	 * next_to_use != next_to_clean
 374	 */
 375	for (i = 0; i < adapter->num_rx_queues; i++) {
 376		struct e1000_rx_ring *ring = &adapter->rx_ring[i];
 377		adapter->alloc_rx_buf(adapter, ring,
 378				      E1000_DESC_UNUSED(ring));
 379	}
 380}
 381
 382int e1000_up(struct e1000_adapter *adapter)
 383{
 384	struct e1000_hw *hw = &adapter->hw;
 385
 386	/* hardware has been reset, we need to reload some things */
 387	e1000_configure(adapter);
 388
 389	clear_bit(__E1000_DOWN, &adapter->flags);
 390
 391	napi_enable(&adapter->napi);
 392
 393	e1000_irq_enable(adapter);
 394
 395	netif_wake_queue(adapter->netdev);
 396
 397	/* fire a link change interrupt to start the watchdog */
 398	ew32(ICS, E1000_ICS_LSC);
 399	return 0;
 400}
 401
 402/**
 403 * e1000_power_up_phy - restore link in case the phy was powered down
 404 * @adapter: address of board private structure
 405 *
 406 * The phy may be powered down to save power and turn off link when the
 407 * driver is unloaded and wake on lan is not enabled (among others)
 408 * *** this routine MUST be followed by a call to e1000_reset ***
 409 **/
 410void e1000_power_up_phy(struct e1000_adapter *adapter)
 411{
 412	struct e1000_hw *hw = &adapter->hw;
 413	u16 mii_reg = 0;
 414
 415	/* Just clear the power down bit to wake the phy back up */
 416	if (hw->media_type == e1000_media_type_copper) {
 417		/* according to the manual, the phy will retain its
 418		 * settings across a power-down/up cycle
 419		 */
 420		e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg);
 421		mii_reg &= ~MII_CR_POWER_DOWN;
 422		e1000_write_phy_reg(hw, PHY_CTRL, mii_reg);
 423	}
 424}
 425
 426static void e1000_power_down_phy(struct e1000_adapter *adapter)
 427{
 428	struct e1000_hw *hw = &adapter->hw;
 429
 430	/* Power down the PHY so no link is implied when interface is down *
 431	 * The PHY cannot be powered down if any of the following is true *
 432	 * (a) WoL is enabled
 433	 * (b) AMT is active
 434	 * (c) SoL/IDER session is active
 435	 */
 436	if (!adapter->wol && hw->mac_type >= e1000_82540 &&
 437	   hw->media_type == e1000_media_type_copper) {
 438		u16 mii_reg = 0;
 439
 440		switch (hw->mac_type) {
 441		case e1000_82540:
 442		case e1000_82545:
 443		case e1000_82545_rev_3:
 444		case e1000_82546:
 445		case e1000_ce4100:
 446		case e1000_82546_rev_3:
 447		case e1000_82541:
 448		case e1000_82541_rev_2:
 449		case e1000_82547:
 450		case e1000_82547_rev_2:
 451			if (er32(MANC) & E1000_MANC_SMBUS_EN)
 452				goto out;
 453			break;
 454		default:
 455			goto out;
 456		}
 457		e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg);
 458		mii_reg |= MII_CR_POWER_DOWN;
 459		e1000_write_phy_reg(hw, PHY_CTRL, mii_reg);
 460		msleep(1);
 461	}
 462out:
 463	return;
 464}
 465
 466static void e1000_down_and_stop(struct e1000_adapter *adapter)
 467{
 468	set_bit(__E1000_DOWN, &adapter->flags);
 469
 470	cancel_delayed_work_sync(&adapter->watchdog_task);
 471
 472	/*
 473	 * Since the watchdog task can reschedule other tasks, we should cancel
 474	 * it first, otherwise we can run into the situation when a work is
 475	 * still running after the adapter has been turned down.
 476	 */
 477
 478	cancel_delayed_work_sync(&adapter->phy_info_task);
 479	cancel_delayed_work_sync(&adapter->fifo_stall_task);
 480
 481	/* Only kill reset task if adapter is not resetting */
 482	if (!test_bit(__E1000_RESETTING, &adapter->flags))
 483		cancel_work_sync(&adapter->reset_task);
 484}
 485
 486void e1000_down(struct e1000_adapter *adapter)
 487{
 488	struct e1000_hw *hw = &adapter->hw;
 489	struct net_device *netdev = adapter->netdev;
 490	u32 rctl, tctl;
 491
 492	/* disable receives in the hardware */
 493	rctl = er32(RCTL);
 494	ew32(RCTL, rctl & ~E1000_RCTL_EN);
 495	/* flush and sleep below */
 496
 497	netif_tx_disable(netdev);
 498
 499	/* disable transmits in the hardware */
 500	tctl = er32(TCTL);
 501	tctl &= ~E1000_TCTL_EN;
 502	ew32(TCTL, tctl);
 503	/* flush both disables and wait for them to finish */
 504	E1000_WRITE_FLUSH();
 505	msleep(10);
 506
 507	/* Set the carrier off after transmits have been disabled in the
 508	 * hardware, to avoid race conditions with e1000_watchdog() (which
 509	 * may be running concurrently to us, checking for the carrier
 510	 * bit to decide whether it should enable transmits again). Such
 511	 * a race condition would result into transmission being disabled
 512	 * in the hardware until the next IFF_DOWN+IFF_UP cycle.
 513	 */
 514	netif_carrier_off(netdev);
 515
 516	netif_queue_set_napi(netdev, 0, NETDEV_QUEUE_TYPE_RX, NULL);
 517	netif_queue_set_napi(netdev, 0, NETDEV_QUEUE_TYPE_TX, NULL);
 518	napi_disable(&adapter->napi);
 519
 520	e1000_irq_disable(adapter);
 521
 522	/* Setting DOWN must be after irq_disable to prevent
 523	 * a screaming interrupt.  Setting DOWN also prevents
 524	 * tasks from rescheduling.
 525	 */
 526	e1000_down_and_stop(adapter);
 527
 528	adapter->link_speed = 0;
 529	adapter->link_duplex = 0;
 530
 531	e1000_reset(adapter);
 532	e1000_clean_all_tx_rings(adapter);
 533	e1000_clean_all_rx_rings(adapter);
 534}
 535
 536void e1000_reinit_locked(struct e1000_adapter *adapter)
 537{
 
 538	while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
 539		msleep(1);
 540
 541	/* only run the task if not already down */
 542	if (!test_bit(__E1000_DOWN, &adapter->flags)) {
 543		e1000_down(adapter);
 544		e1000_up(adapter);
 545	}
 546
 547	clear_bit(__E1000_RESETTING, &adapter->flags);
 548}
 549
 550void e1000_reset(struct e1000_adapter *adapter)
 551{
 552	struct e1000_hw *hw = &adapter->hw;
 553	u32 pba = 0, tx_space, min_tx_space, min_rx_space;
 554	bool legacy_pba_adjust = false;
 555	u16 hwm;
 556
 557	/* Repartition Pba for greater than 9k mtu
 558	 * To take effect CTRL.RST is required.
 559	 */
 560
 561	switch (hw->mac_type) {
 562	case e1000_82542_rev2_0:
 563	case e1000_82542_rev2_1:
 564	case e1000_82543:
 565	case e1000_82544:
 566	case e1000_82540:
 567	case e1000_82541:
 568	case e1000_82541_rev_2:
 569		legacy_pba_adjust = true;
 570		pba = E1000_PBA_48K;
 571		break;
 572	case e1000_82545:
 573	case e1000_82545_rev_3:
 574	case e1000_82546:
 575	case e1000_ce4100:
 576	case e1000_82546_rev_3:
 577		pba = E1000_PBA_48K;
 578		break;
 579	case e1000_82547:
 580	case e1000_82547_rev_2:
 581		legacy_pba_adjust = true;
 582		pba = E1000_PBA_30K;
 583		break;
 584	case e1000_undefined:
 585	case e1000_num_macs:
 586		break;
 587	}
 588
 589	if (legacy_pba_adjust) {
 590		if (hw->max_frame_size > E1000_RXBUFFER_8192)
 591			pba -= 8; /* allocate more FIFO for Tx */
 592
 593		if (hw->mac_type == e1000_82547) {
 594			adapter->tx_fifo_head = 0;
 595			adapter->tx_head_addr = pba << E1000_TX_HEAD_ADDR_SHIFT;
 596			adapter->tx_fifo_size =
 597				(E1000_PBA_40K - pba) << E1000_PBA_BYTES_SHIFT;
 598			atomic_set(&adapter->tx_fifo_stall, 0);
 599		}
 600	} else if (hw->max_frame_size >  ETH_FRAME_LEN + ETH_FCS_LEN) {
 601		/* adjust PBA for jumbo frames */
 602		ew32(PBA, pba);
 603
 604		/* To maintain wire speed transmits, the Tx FIFO should be
 605		 * large enough to accommodate two full transmit packets,
 606		 * rounded up to the next 1KB and expressed in KB.  Likewise,
 607		 * the Rx FIFO should be large enough to accommodate at least
 608		 * one full receive packet and is similarly rounded up and
 609		 * expressed in KB.
 610		 */
 611		pba = er32(PBA);
 612		/* upper 16 bits has Tx packet buffer allocation size in KB */
 613		tx_space = pba >> 16;
 614		/* lower 16 bits has Rx packet buffer allocation size in KB */
 615		pba &= 0xffff;
 616		/* the Tx fifo also stores 16 bytes of information about the Tx
 617		 * but don't include ethernet FCS because hardware appends it
 618		 */
 619		min_tx_space = (hw->max_frame_size +
 620				sizeof(struct e1000_tx_desc) -
 621				ETH_FCS_LEN) * 2;
 622		min_tx_space = ALIGN(min_tx_space, 1024);
 623		min_tx_space >>= 10;
 624		/* software strips receive CRC, so leave room for it */
 625		min_rx_space = hw->max_frame_size;
 626		min_rx_space = ALIGN(min_rx_space, 1024);
 627		min_rx_space >>= 10;
 628
 629		/* If current Tx allocation is less than the min Tx FIFO size,
 630		 * and the min Tx FIFO size is less than the current Rx FIFO
 631		 * allocation, take space away from current Rx allocation
 632		 */
 633		if (tx_space < min_tx_space &&
 634		    ((min_tx_space - tx_space) < pba)) {
 635			pba = pba - (min_tx_space - tx_space);
 636
 637			/* PCI/PCIx hardware has PBA alignment constraints */
 638			switch (hw->mac_type) {
 639			case e1000_82545 ... e1000_82546_rev_3:
 640				pba &= ~(E1000_PBA_8K - 1);
 641				break;
 642			default:
 643				break;
 644			}
 645
 646			/* if short on Rx space, Rx wins and must trump Tx
 647			 * adjustment or use Early Receive if available
 648			 */
 649			if (pba < min_rx_space)
 650				pba = min_rx_space;
 651		}
 652	}
 653
 654	ew32(PBA, pba);
 655
 656	/* flow control settings:
 657	 * The high water mark must be low enough to fit one full frame
 658	 * (or the size used for early receive) above it in the Rx FIFO.
 659	 * Set it to the lower of:
 660	 * - 90% of the Rx FIFO size, and
 661	 * - the full Rx FIFO size minus the early receive size (for parts
 662	 *   with ERT support assuming ERT set to E1000_ERT_2048), or
 663	 * - the full Rx FIFO size minus one full frame
 664	 */
 665	hwm = min(((pba << 10) * 9 / 10),
 666		  ((pba << 10) - hw->max_frame_size));
 667
 668	hw->fc_high_water = hwm & 0xFFF8;	/* 8-byte granularity */
 669	hw->fc_low_water = hw->fc_high_water - 8;
 670	hw->fc_pause_time = E1000_FC_PAUSE_TIME;
 671	hw->fc_send_xon = 1;
 672	hw->fc = hw->original_fc;
 673
 674	/* Allow time for pending master requests to run */
 675	e1000_reset_hw(hw);
 676	if (hw->mac_type >= e1000_82544)
 677		ew32(WUC, 0);
 678
 679	if (e1000_init_hw(hw))
 680		e_dev_err("Hardware Error\n");
 681	e1000_update_mng_vlan(adapter);
 682
 683	/* if (adapter->hwflags & HWFLAGS_PHY_PWR_BIT) { */
 684	if (hw->mac_type >= e1000_82544 &&
 685	    hw->autoneg == 1 &&
 686	    hw->autoneg_advertised == ADVERTISE_1000_FULL) {
 687		u32 ctrl = er32(CTRL);
 688		/* clear phy power management bit if we are in gig only mode,
 689		 * which if enabled will attempt negotiation to 100Mb, which
 690		 * can cause a loss of link at power off or driver unload
 691		 */
 692		ctrl &= ~E1000_CTRL_SWDPIN3;
 693		ew32(CTRL, ctrl);
 694	}
 695
 696	/* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
 697	ew32(VET, ETHERNET_IEEE_VLAN_TYPE);
 698
 699	e1000_reset_adaptive(hw);
 700	e1000_phy_get_info(hw, &adapter->phy_info);
 701
 702	e1000_release_manageability(adapter);
 703}
 704
 705/* Dump the eeprom for users having checksum issues */
 706static void e1000_dump_eeprom(struct e1000_adapter *adapter)
 707{
 708	struct net_device *netdev = adapter->netdev;
 709	struct ethtool_eeprom eeprom;
 710	const struct ethtool_ops *ops = netdev->ethtool_ops;
 711	u8 *data;
 712	int i;
 713	u16 csum_old, csum_new = 0;
 714
 715	eeprom.len = ops->get_eeprom_len(netdev);
 716	eeprom.offset = 0;
 717
 718	data = kmalloc(eeprom.len, GFP_KERNEL);
 719	if (!data)
 720		return;
 721
 722	ops->get_eeprom(netdev, &eeprom, data);
 723
 724	csum_old = (data[EEPROM_CHECKSUM_REG * 2]) +
 725		   (data[EEPROM_CHECKSUM_REG * 2 + 1] << 8);
 726	for (i = 0; i < EEPROM_CHECKSUM_REG * 2; i += 2)
 727		csum_new += data[i] + (data[i + 1] << 8);
 728	csum_new = EEPROM_SUM - csum_new;
 729
 730	pr_err("/*********************/\n");
 731	pr_err("Current EEPROM Checksum : 0x%04x\n", csum_old);
 732	pr_err("Calculated              : 0x%04x\n", csum_new);
 733
 734	pr_err("Offset    Values\n");
 735	pr_err("========  ======\n");
 736	print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 16, 1, data, 128, 0);
 737
 738	pr_err("Include this output when contacting your support provider.\n");
 739	pr_err("This is not a software error! Something bad happened to\n");
 740	pr_err("your hardware or EEPROM image. Ignoring this problem could\n");
 741	pr_err("result in further problems, possibly loss of data,\n");
 742	pr_err("corruption or system hangs!\n");
 743	pr_err("The MAC Address will be reset to 00:00:00:00:00:00,\n");
 744	pr_err("which is invalid and requires you to set the proper MAC\n");
 745	pr_err("address manually before continuing to enable this network\n");
 746	pr_err("device. Please inspect the EEPROM dump and report the\n");
 747	pr_err("issue to your hardware vendor or Intel Customer Support.\n");
 748	pr_err("/*********************/\n");
 749
 750	kfree(data);
 751}
 752
 753/**
 754 * e1000_is_need_ioport - determine if an adapter needs ioport resources or not
 755 * @pdev: PCI device information struct
 756 *
 757 * Return true if an adapter needs ioport resources
 758 **/
 759static int e1000_is_need_ioport(struct pci_dev *pdev)
 760{
 761	switch (pdev->device) {
 762	case E1000_DEV_ID_82540EM:
 763	case E1000_DEV_ID_82540EM_LOM:
 764	case E1000_DEV_ID_82540EP:
 765	case E1000_DEV_ID_82540EP_LOM:
 766	case E1000_DEV_ID_82540EP_LP:
 767	case E1000_DEV_ID_82541EI:
 768	case E1000_DEV_ID_82541EI_MOBILE:
 769	case E1000_DEV_ID_82541ER:
 770	case E1000_DEV_ID_82541ER_LOM:
 771	case E1000_DEV_ID_82541GI:
 772	case E1000_DEV_ID_82541GI_LF:
 773	case E1000_DEV_ID_82541GI_MOBILE:
 774	case E1000_DEV_ID_82544EI_COPPER:
 775	case E1000_DEV_ID_82544EI_FIBER:
 776	case E1000_DEV_ID_82544GC_COPPER:
 777	case E1000_DEV_ID_82544GC_LOM:
 778	case E1000_DEV_ID_82545EM_COPPER:
 779	case E1000_DEV_ID_82545EM_FIBER:
 780	case E1000_DEV_ID_82546EB_COPPER:
 781	case E1000_DEV_ID_82546EB_FIBER:
 782	case E1000_DEV_ID_82546EB_QUAD_COPPER:
 783		return true;
 784	default:
 785		return false;
 786	}
 787}
 788
 789static netdev_features_t e1000_fix_features(struct net_device *netdev,
 790	netdev_features_t features)
 791{
 792	/* Since there is no support for separate Rx/Tx vlan accel
 793	 * enable/disable make sure Tx flag is always in same state as Rx.
 794	 */
 795	if (features & NETIF_F_HW_VLAN_CTAG_RX)
 796		features |= NETIF_F_HW_VLAN_CTAG_TX;
 797	else
 798		features &= ~NETIF_F_HW_VLAN_CTAG_TX;
 799
 800	return features;
 801}
 802
 803static int e1000_set_features(struct net_device *netdev,
 804	netdev_features_t features)
 805{
 806	struct e1000_adapter *adapter = netdev_priv(netdev);
 807	netdev_features_t changed = features ^ netdev->features;
 808
 809	if (changed & NETIF_F_HW_VLAN_CTAG_RX)
 810		e1000_vlan_mode(netdev, features);
 811
 812	if (!(changed & (NETIF_F_RXCSUM | NETIF_F_RXALL)))
 813		return 0;
 814
 815	netdev->features = features;
 816	adapter->rx_csum = !!(features & NETIF_F_RXCSUM);
 817
 818	if (netif_running(netdev))
 819		e1000_reinit_locked(adapter);
 820	else
 821		e1000_reset(adapter);
 822
 823	return 1;
 824}
 825
 826static const struct net_device_ops e1000_netdev_ops = {
 827	.ndo_open		= e1000_open,
 828	.ndo_stop		= e1000_close,
 829	.ndo_start_xmit		= e1000_xmit_frame,
 830	.ndo_set_rx_mode	= e1000_set_rx_mode,
 831	.ndo_set_mac_address	= e1000_set_mac,
 832	.ndo_tx_timeout		= e1000_tx_timeout,
 833	.ndo_change_mtu		= e1000_change_mtu,
 834	.ndo_eth_ioctl		= e1000_ioctl,
 835	.ndo_validate_addr	= eth_validate_addr,
 836	.ndo_vlan_rx_add_vid	= e1000_vlan_rx_add_vid,
 837	.ndo_vlan_rx_kill_vid	= e1000_vlan_rx_kill_vid,
 838#ifdef CONFIG_NET_POLL_CONTROLLER
 839	.ndo_poll_controller	= e1000_netpoll,
 840#endif
 841	.ndo_fix_features	= e1000_fix_features,
 842	.ndo_set_features	= e1000_set_features,
 843};
 844
 845/**
 846 * e1000_init_hw_struct - initialize members of hw struct
 847 * @adapter: board private struct
 848 * @hw: structure used by e1000_hw.c
 849 *
 850 * Factors out initialization of the e1000_hw struct to its own function
 851 * that can be called very early at init (just after struct allocation).
 852 * Fields are initialized based on PCI device information and
 853 * OS network device settings (MTU size).
 854 * Returns negative error codes if MAC type setup fails.
 855 */
 856static int e1000_init_hw_struct(struct e1000_adapter *adapter,
 857				struct e1000_hw *hw)
 858{
 859	struct pci_dev *pdev = adapter->pdev;
 860
 861	/* PCI config space info */
 862	hw->vendor_id = pdev->vendor;
 863	hw->device_id = pdev->device;
 864	hw->subsystem_vendor_id = pdev->subsystem_vendor;
 865	hw->subsystem_id = pdev->subsystem_device;
 866	hw->revision_id = pdev->revision;
 867
 868	pci_read_config_word(pdev, PCI_COMMAND, &hw->pci_cmd_word);
 869
 870	hw->max_frame_size = adapter->netdev->mtu +
 871			     ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
 872	hw->min_frame_size = MINIMUM_ETHERNET_FRAME_SIZE;
 873
 874	/* identify the MAC */
 875	if (e1000_set_mac_type(hw)) {
 876		e_err(probe, "Unknown MAC Type\n");
 877		return -EIO;
 878	}
 879
 880	switch (hw->mac_type) {
 881	default:
 882		break;
 883	case e1000_82541:
 884	case e1000_82547:
 885	case e1000_82541_rev_2:
 886	case e1000_82547_rev_2:
 887		hw->phy_init_script = 1;
 888		break;
 889	}
 890
 891	e1000_set_media_type(hw);
 892	e1000_get_bus_info(hw);
 893
 894	hw->wait_autoneg_complete = false;
 895	hw->tbi_compatibility_en = true;
 896	hw->adaptive_ifs = true;
 897
 898	/* Copper options */
 899
 900	if (hw->media_type == e1000_media_type_copper) {
 901		hw->mdix = AUTO_ALL_MODES;
 902		hw->disable_polarity_correction = false;
 903		hw->master_slave = E1000_MASTER_SLAVE;
 904	}
 905
 906	return 0;
 907}
 908
 909/**
 910 * e1000_probe - Device Initialization Routine
 911 * @pdev: PCI device information struct
 912 * @ent: entry in e1000_pci_tbl
 913 *
 914 * Returns 0 on success, negative on failure
 915 *
 916 * e1000_probe initializes an adapter identified by a pci_dev structure.
 917 * The OS initialization, configuring of the adapter private structure,
 918 * and a hardware reset occur.
 919 **/
 920static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
 921{
 922	struct net_device *netdev;
 923	struct e1000_adapter *adapter = NULL;
 924	struct e1000_hw *hw;
 925
 926	static int cards_found;
 927	static int global_quad_port_a; /* global ksp3 port a indication */
 928	int i, err, pci_using_dac;
 929	u16 eeprom_data = 0;
 930	u16 tmp = 0;
 931	u16 eeprom_apme_mask = E1000_EEPROM_APME;
 932	int bars, need_ioport;
 933	bool disable_dev = false;
 934
 935	/* do not allocate ioport bars when not needed */
 936	need_ioport = e1000_is_need_ioport(pdev);
 937	if (need_ioport) {
 938		bars = pci_select_bars(pdev, IORESOURCE_MEM | IORESOURCE_IO);
 939		err = pci_enable_device(pdev);
 940	} else {
 941		bars = pci_select_bars(pdev, IORESOURCE_MEM);
 942		err = pci_enable_device_mem(pdev);
 943	}
 944	if (err)
 945		return err;
 946
 947	err = pci_request_selected_regions(pdev, bars, e1000_driver_name);
 948	if (err)
 949		goto err_pci_reg;
 950
 951	pci_set_master(pdev);
 952	err = pci_save_state(pdev);
 953	if (err)
 954		goto err_alloc_etherdev;
 955
 956	err = -ENOMEM;
 957	netdev = alloc_etherdev(sizeof(struct e1000_adapter));
 958	if (!netdev)
 959		goto err_alloc_etherdev;
 960
 961	SET_NETDEV_DEV(netdev, &pdev->dev);
 962
 963	pci_set_drvdata(pdev, netdev);
 964	adapter = netdev_priv(netdev);
 965	adapter->netdev = netdev;
 966	adapter->pdev = pdev;
 967	adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
 968	adapter->bars = bars;
 969	adapter->need_ioport = need_ioport;
 970
 971	hw = &adapter->hw;
 972	hw->back = adapter;
 973
 974	err = -EIO;
 975	hw->hw_addr = pci_ioremap_bar(pdev, BAR_0);
 976	if (!hw->hw_addr)
 977		goto err_ioremap;
 978
 979	if (adapter->need_ioport) {
 980		for (i = BAR_1; i < PCI_STD_NUM_BARS; i++) {
 981			if (pci_resource_len(pdev, i) == 0)
 982				continue;
 983			if (pci_resource_flags(pdev, i) & IORESOURCE_IO) {
 984				hw->io_base = pci_resource_start(pdev, i);
 985				break;
 986			}
 987		}
 988	}
 989
 990	/* make ready for any if (hw->...) below */
 991	err = e1000_init_hw_struct(adapter, hw);
 992	if (err)
 993		goto err_sw_init;
 994
 995	/* there is a workaround being applied below that limits
 996	 * 64-bit DMA addresses to 64-bit hardware.  There are some
 997	 * 32-bit adapters that Tx hang when given 64-bit DMA addresses
 998	 */
 999	pci_using_dac = 0;
1000	if ((hw->bus_type == e1000_bus_type_pcix) &&
1001	    !dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64))) {
1002		pci_using_dac = 1;
1003	} else {
1004		err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
1005		if (err) {
1006			pr_err("No usable DMA config, aborting\n");
1007			goto err_dma;
1008		}
1009	}
1010
1011	netdev->netdev_ops = &e1000_netdev_ops;
1012	e1000_set_ethtool_ops(netdev);
1013	netdev->watchdog_timeo = 5 * HZ;
1014	netif_napi_add(netdev, &adapter->napi, e1000_clean);
1015
1016	strscpy(netdev->name, pci_name(pdev), sizeof(netdev->name));
1017
1018	adapter->bd_number = cards_found;
1019
1020	/* setup the private structure */
1021
1022	err = e1000_sw_init(adapter);
1023	if (err)
1024		goto err_sw_init;
1025
1026	err = -EIO;
1027	if (hw->mac_type == e1000_ce4100) {
1028		hw->ce4100_gbe_mdio_base_virt =
1029					ioremap(pci_resource_start(pdev, BAR_1),
1030						pci_resource_len(pdev, BAR_1));
1031
1032		if (!hw->ce4100_gbe_mdio_base_virt)
1033			goto err_mdio_ioremap;
1034	}
1035
1036	if (hw->mac_type >= e1000_82543) {
1037		netdev->hw_features = NETIF_F_SG |
1038				   NETIF_F_HW_CSUM |
1039				   NETIF_F_HW_VLAN_CTAG_RX;
1040		netdev->features = NETIF_F_HW_VLAN_CTAG_TX |
1041				   NETIF_F_HW_VLAN_CTAG_FILTER;
1042	}
1043
1044	if ((hw->mac_type >= e1000_82544) &&
1045	   (hw->mac_type != e1000_82547))
1046		netdev->hw_features |= NETIF_F_TSO;
1047
1048	netdev->priv_flags |= IFF_SUPP_NOFCS;
1049
1050	netdev->features |= netdev->hw_features;
1051	netdev->hw_features |= (NETIF_F_RXCSUM |
1052				NETIF_F_RXALL |
1053				NETIF_F_RXFCS);
1054
1055	if (pci_using_dac) {
1056		netdev->features |= NETIF_F_HIGHDMA;
1057		netdev->vlan_features |= NETIF_F_HIGHDMA;
1058	}
1059
1060	netdev->vlan_features |= (NETIF_F_TSO |
1061				  NETIF_F_HW_CSUM |
1062				  NETIF_F_SG);
1063
1064	/* Do not set IFF_UNICAST_FLT for VMWare's 82545EM */
1065	if (hw->device_id != E1000_DEV_ID_82545EM_COPPER ||
1066	    hw->subsystem_vendor_id != PCI_VENDOR_ID_VMWARE)
1067		netdev->priv_flags |= IFF_UNICAST_FLT;
1068
1069	/* MTU range: 46 - 16110 */
1070	netdev->min_mtu = ETH_ZLEN - ETH_HLEN;
1071	netdev->max_mtu = MAX_JUMBO_FRAME_SIZE - (ETH_HLEN + ETH_FCS_LEN);
1072
1073	adapter->en_mng_pt = e1000_enable_mng_pass_thru(hw);
1074
1075	/* initialize eeprom parameters */
1076	if (e1000_init_eeprom_params(hw)) {
1077		e_err(probe, "EEPROM initialization failed\n");
1078		goto err_eeprom;
1079	}
1080
1081	/* before reading the EEPROM, reset the controller to
1082	 * put the device in a known good starting state
1083	 */
1084
1085	e1000_reset_hw(hw);
1086
1087	/* make sure the EEPROM is good */
1088	if (e1000_validate_eeprom_checksum(hw) < 0) {
1089		e_err(probe, "The EEPROM Checksum Is Not Valid\n");
1090		e1000_dump_eeprom(adapter);
1091		/* set MAC address to all zeroes to invalidate and temporary
1092		 * disable this device for the user. This blocks regular
1093		 * traffic while still permitting ethtool ioctls from reaching
1094		 * the hardware as well as allowing the user to run the
1095		 * interface after manually setting a hw addr using
1096		 * `ip set address`
1097		 */
1098		memset(hw->mac_addr, 0, netdev->addr_len);
1099	} else {
1100		/* copy the MAC address out of the EEPROM */
1101		if (e1000_read_mac_addr(hw))
1102			e_err(probe, "EEPROM Read Error\n");
1103	}
1104	/* don't block initialization here due to bad MAC address */
1105	eth_hw_addr_set(netdev, hw->mac_addr);
1106
1107	if (!is_valid_ether_addr(netdev->dev_addr))
1108		e_err(probe, "Invalid MAC Address\n");
1109
1110
1111	INIT_DELAYED_WORK(&adapter->watchdog_task, e1000_watchdog);
1112	INIT_DELAYED_WORK(&adapter->fifo_stall_task,
1113			  e1000_82547_tx_fifo_stall_task);
1114	INIT_DELAYED_WORK(&adapter->phy_info_task, e1000_update_phy_info_task);
1115	INIT_WORK(&adapter->reset_task, e1000_reset_task);
1116
1117	e1000_check_options(adapter);
1118
1119	/* Initial Wake on LAN setting
1120	 * If APM wake is enabled in the EEPROM,
1121	 * enable the ACPI Magic Packet filter
1122	 */
1123
1124	switch (hw->mac_type) {
1125	case e1000_82542_rev2_0:
1126	case e1000_82542_rev2_1:
1127	case e1000_82543:
1128		break;
1129	case e1000_82544:
1130		e1000_read_eeprom(hw,
1131			EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data);
1132		eeprom_apme_mask = E1000_EEPROM_82544_APM;
1133		break;
1134	case e1000_82546:
1135	case e1000_82546_rev_3:
1136		if (er32(STATUS) & E1000_STATUS_FUNC_1) {
1137			e1000_read_eeprom(hw,
1138				EEPROM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
1139			break;
1140		}
1141		fallthrough;
1142	default:
1143		e1000_read_eeprom(hw,
1144			EEPROM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
1145		break;
1146	}
1147	if (eeprom_data & eeprom_apme_mask)
1148		adapter->eeprom_wol |= E1000_WUFC_MAG;
1149
1150	/* now that we have the eeprom settings, apply the special cases
1151	 * where the eeprom may be wrong or the board simply won't support
1152	 * wake on lan on a particular port
1153	 */
1154	switch (pdev->device) {
1155	case E1000_DEV_ID_82546GB_PCIE:
1156		adapter->eeprom_wol = 0;
1157		break;
1158	case E1000_DEV_ID_82546EB_FIBER:
1159	case E1000_DEV_ID_82546GB_FIBER:
1160		/* Wake events only supported on port A for dual fiber
1161		 * regardless of eeprom setting
1162		 */
1163		if (er32(STATUS) & E1000_STATUS_FUNC_1)
1164			adapter->eeprom_wol = 0;
1165		break;
1166	case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1167		/* if quad port adapter, disable WoL on all but port A */
1168		if (global_quad_port_a != 0)
1169			adapter->eeprom_wol = 0;
1170		else
1171			adapter->quad_port_a = true;
1172		/* Reset for multiple quad port adapters */
1173		if (++global_quad_port_a == 4)
1174			global_quad_port_a = 0;
1175		break;
1176	}
1177
1178	/* initialize the wol settings based on the eeprom settings */
1179	adapter->wol = adapter->eeprom_wol;
1180	device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1181
1182	/* Auto detect PHY address */
1183	if (hw->mac_type == e1000_ce4100) {
1184		for (i = 0; i < 32; i++) {
1185			hw->phy_addr = i;
1186			e1000_read_phy_reg(hw, PHY_ID2, &tmp);
1187
1188			if (tmp != 0 && tmp != 0xFF)
1189				break;
1190		}
1191
1192		if (i >= 32)
1193			goto err_eeprom;
1194	}
1195
1196	/* reset the hardware with the new settings */
1197	e1000_reset(adapter);
1198
1199	strcpy(netdev->name, "eth%d");
1200	err = register_netdev(netdev);
1201	if (err)
1202		goto err_register;
1203
1204	e1000_vlan_filter_on_off(adapter, false);
1205
1206	/* print bus type/speed/width info */
1207	e_info(probe, "(PCI%s:%dMHz:%d-bit) %pM\n",
1208	       ((hw->bus_type == e1000_bus_type_pcix) ? "-X" : ""),
1209	       ((hw->bus_speed == e1000_bus_speed_133) ? 133 :
1210		(hw->bus_speed == e1000_bus_speed_120) ? 120 :
1211		(hw->bus_speed == e1000_bus_speed_100) ? 100 :
1212		(hw->bus_speed == e1000_bus_speed_66) ? 66 : 33),
1213	       ((hw->bus_width == e1000_bus_width_64) ? 64 : 32),
1214	       netdev->dev_addr);
1215
1216	/* carrier off reporting is important to ethtool even BEFORE open */
1217	netif_carrier_off(netdev);
1218
1219	e_info(probe, "Intel(R) PRO/1000 Network Connection\n");
1220
1221	cards_found++;
1222	return 0;
1223
1224err_register:
1225err_eeprom:
1226	e1000_phy_hw_reset(hw);
1227
1228	if (hw->flash_address)
1229		iounmap(hw->flash_address);
1230	kfree(adapter->tx_ring);
1231	kfree(adapter->rx_ring);
1232err_dma:
1233err_sw_init:
1234err_mdio_ioremap:
1235	iounmap(hw->ce4100_gbe_mdio_base_virt);
1236	iounmap(hw->hw_addr);
1237err_ioremap:
1238	disable_dev = !test_and_set_bit(__E1000_DISABLED, &adapter->flags);
1239	free_netdev(netdev);
1240err_alloc_etherdev:
1241	pci_release_selected_regions(pdev, bars);
1242err_pci_reg:
1243	if (!adapter || disable_dev)
1244		pci_disable_device(pdev);
1245	return err;
1246}
1247
1248/**
1249 * e1000_remove - Device Removal Routine
1250 * @pdev: PCI device information struct
1251 *
1252 * e1000_remove is called by the PCI subsystem to alert the driver
1253 * that it should release a PCI device. That could be caused by a
1254 * Hot-Plug event, or because the driver is going to be removed from
1255 * memory.
1256 **/
1257static void e1000_remove(struct pci_dev *pdev)
1258{
1259	struct net_device *netdev = pci_get_drvdata(pdev);
1260	struct e1000_adapter *adapter = netdev_priv(netdev);
1261	struct e1000_hw *hw = &adapter->hw;
1262	bool disable_dev;
1263
1264	e1000_down_and_stop(adapter);
1265	e1000_release_manageability(adapter);
1266
1267	unregister_netdev(netdev);
1268
1269	e1000_phy_hw_reset(hw);
1270
1271	kfree(adapter->tx_ring);
1272	kfree(adapter->rx_ring);
1273
1274	if (hw->mac_type == e1000_ce4100)
1275		iounmap(hw->ce4100_gbe_mdio_base_virt);
1276	iounmap(hw->hw_addr);
1277	if (hw->flash_address)
1278		iounmap(hw->flash_address);
1279	pci_release_selected_regions(pdev, adapter->bars);
1280
1281	disable_dev = !test_and_set_bit(__E1000_DISABLED, &adapter->flags);
1282	free_netdev(netdev);
1283
1284	if (disable_dev)
1285		pci_disable_device(pdev);
1286}
1287
1288/**
1289 * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
1290 * @adapter: board private structure to initialize
1291 *
1292 * e1000_sw_init initializes the Adapter private data structure.
1293 * e1000_init_hw_struct MUST be called before this function
1294 **/
1295static int e1000_sw_init(struct e1000_adapter *adapter)
1296{
1297	adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
1298
1299	adapter->num_tx_queues = 1;
1300	adapter->num_rx_queues = 1;
1301
1302	if (e1000_alloc_queues(adapter)) {
1303		e_err(probe, "Unable to allocate memory for queues\n");
1304		return -ENOMEM;
1305	}
1306
1307	/* Explicitly disable IRQ since the NIC can be in any state. */
1308	e1000_irq_disable(adapter);
1309
1310	spin_lock_init(&adapter->stats_lock);
1311
1312	set_bit(__E1000_DOWN, &adapter->flags);
1313
1314	return 0;
1315}
1316
1317/**
1318 * e1000_alloc_queues - Allocate memory for all rings
1319 * @adapter: board private structure to initialize
1320 *
1321 * We allocate one ring per queue at run-time since we don't know the
1322 * number of queues at compile-time.
1323 **/
1324static int e1000_alloc_queues(struct e1000_adapter *adapter)
1325{
1326	adapter->tx_ring = kcalloc(adapter->num_tx_queues,
1327				   sizeof(struct e1000_tx_ring), GFP_KERNEL);
1328	if (!adapter->tx_ring)
1329		return -ENOMEM;
1330
1331	adapter->rx_ring = kcalloc(adapter->num_rx_queues,
1332				   sizeof(struct e1000_rx_ring), GFP_KERNEL);
1333	if (!adapter->rx_ring) {
1334		kfree(adapter->tx_ring);
1335		return -ENOMEM;
1336	}
1337
1338	return E1000_SUCCESS;
1339}
1340
1341/**
1342 * e1000_open - Called when a network interface is made active
1343 * @netdev: network interface device structure
1344 *
1345 * Returns 0 on success, negative value on failure
1346 *
1347 * The open entry point is called when a network interface is made
1348 * active by the system (IFF_UP).  At this point all resources needed
1349 * for transmit and receive operations are allocated, the interrupt
1350 * handler is registered with the OS, the watchdog task is started,
1351 * and the stack is notified that the interface is ready.
1352 **/
1353int e1000_open(struct net_device *netdev)
1354{
1355	struct e1000_adapter *adapter = netdev_priv(netdev);
1356	struct e1000_hw *hw = &adapter->hw;
1357	int err;
1358
1359	/* disallow open during test */
1360	if (test_bit(__E1000_TESTING, &adapter->flags))
1361		return -EBUSY;
1362
1363	netif_carrier_off(netdev);
1364
1365	/* allocate transmit descriptors */
1366	err = e1000_setup_all_tx_resources(adapter);
1367	if (err)
1368		goto err_setup_tx;
1369
1370	/* allocate receive descriptors */
1371	err = e1000_setup_all_rx_resources(adapter);
1372	if (err)
1373		goto err_setup_rx;
1374
1375	e1000_power_up_phy(adapter);
1376
1377	adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
1378	if ((hw->mng_cookie.status &
1379			  E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) {
1380		e1000_update_mng_vlan(adapter);
1381	}
1382
1383	/* before we allocate an interrupt, we must be ready to handle it.
1384	 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1385	 * as soon as we call pci_request_irq, so we have to setup our
1386	 * clean_rx handler before we do so.
1387	 */
1388	e1000_configure(adapter);
1389
1390	err = e1000_request_irq(adapter);
1391	if (err)
1392		goto err_req_irq;
1393
1394	/* From here on the code is the same as e1000_up() */
1395	clear_bit(__E1000_DOWN, &adapter->flags);
1396
1397	netif_napi_set_irq(&adapter->napi, adapter->pdev->irq);
1398	napi_enable(&adapter->napi);
1399	netif_queue_set_napi(netdev, 0, NETDEV_QUEUE_TYPE_RX, &adapter->napi);
1400	netif_queue_set_napi(netdev, 0, NETDEV_QUEUE_TYPE_TX, &adapter->napi);
1401
1402	e1000_irq_enable(adapter);
1403
1404	netif_start_queue(netdev);
1405
1406	/* fire a link status change interrupt to start the watchdog */
1407	ew32(ICS, E1000_ICS_LSC);
1408
1409	return E1000_SUCCESS;
1410
1411err_req_irq:
1412	e1000_power_down_phy(adapter);
1413	e1000_free_all_rx_resources(adapter);
1414err_setup_rx:
1415	e1000_free_all_tx_resources(adapter);
1416err_setup_tx:
1417	e1000_reset(adapter);
1418
1419	return err;
1420}
1421
1422/**
1423 * e1000_close - Disables a network interface
1424 * @netdev: network interface device structure
1425 *
1426 * Returns 0, this is not allowed to fail
1427 *
1428 * The close entry point is called when an interface is de-activated
1429 * by the OS.  The hardware is still under the drivers control, but
1430 * needs to be disabled.  A global MAC reset is issued to stop the
1431 * hardware, and all transmit and receive resources are freed.
1432 **/
1433int e1000_close(struct net_device *netdev)
1434{
1435	struct e1000_adapter *adapter = netdev_priv(netdev);
1436	struct e1000_hw *hw = &adapter->hw;
1437	int count = E1000_CHECK_RESET_COUNT;
1438
1439	while (test_and_set_bit(__E1000_RESETTING, &adapter->flags) && count--)
1440		usleep_range(10000, 20000);
1441
1442	WARN_ON(count < 0);
1443
1444	/* signal that we're down so that the reset task will no longer run */
1445	set_bit(__E1000_DOWN, &adapter->flags);
1446	clear_bit(__E1000_RESETTING, &adapter->flags);
1447
1448	e1000_down(adapter);
1449	e1000_power_down_phy(adapter);
1450	e1000_free_irq(adapter);
1451
1452	e1000_free_all_tx_resources(adapter);
1453	e1000_free_all_rx_resources(adapter);
1454
1455	/* kill manageability vlan ID if supported, but not if a vlan with
1456	 * the same ID is registered on the host OS (let 8021q kill it)
1457	 */
1458	if ((hw->mng_cookie.status &
1459	     E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
1460	    !test_bit(adapter->mng_vlan_id, adapter->active_vlans)) {
1461		e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q),
1462				       adapter->mng_vlan_id);
1463	}
1464
1465	return 0;
1466}
1467
1468/**
1469 * e1000_check_64k_bound - check that memory doesn't cross 64kB boundary
1470 * @adapter: address of board private structure
1471 * @start: address of beginning of memory
1472 * @len: length of memory
1473 **/
1474static bool e1000_check_64k_bound(struct e1000_adapter *adapter, void *start,
1475				  unsigned long len)
1476{
1477	struct e1000_hw *hw = &adapter->hw;
1478	unsigned long begin = (unsigned long)start;
1479	unsigned long end = begin + len;
1480
1481	/* First rev 82545 and 82546 need to not allow any memory
1482	 * write location to cross 64k boundary due to errata 23
1483	 */
1484	if (hw->mac_type == e1000_82545 ||
1485	    hw->mac_type == e1000_ce4100 ||
1486	    hw->mac_type == e1000_82546) {
1487		return ((begin ^ (end - 1)) >> 16) == 0;
1488	}
1489
1490	return true;
1491}
1492
1493/**
1494 * e1000_setup_tx_resources - allocate Tx resources (Descriptors)
1495 * @adapter: board private structure
1496 * @txdr:    tx descriptor ring (for a specific queue) to setup
1497 *
1498 * Return 0 on success, negative on failure
1499 **/
1500static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
1501				    struct e1000_tx_ring *txdr)
1502{
1503	struct pci_dev *pdev = adapter->pdev;
1504	int size;
1505
1506	size = sizeof(struct e1000_tx_buffer) * txdr->count;
1507	txdr->buffer_info = vzalloc(size);
1508	if (!txdr->buffer_info)
1509		return -ENOMEM;
1510
1511	/* round up to nearest 4K */
1512
1513	txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
1514	txdr->size = ALIGN(txdr->size, 4096);
1515
1516	txdr->desc = dma_alloc_coherent(&pdev->dev, txdr->size, &txdr->dma,
1517					GFP_KERNEL);
1518	if (!txdr->desc) {
1519setup_tx_desc_die:
1520		vfree(txdr->buffer_info);
1521		return -ENOMEM;
1522	}
1523
1524	/* Fix for errata 23, can't cross 64kB boundary */
1525	if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1526		void *olddesc = txdr->desc;
1527		dma_addr_t olddma = txdr->dma;
1528		e_err(tx_err, "txdr align check failed: %u bytes at %p\n",
1529		      txdr->size, txdr->desc);
1530		/* Try again, without freeing the previous */
1531		txdr->desc = dma_alloc_coherent(&pdev->dev, txdr->size,
1532						&txdr->dma, GFP_KERNEL);
1533		/* Failed allocation, critical failure */
1534		if (!txdr->desc) {
1535			dma_free_coherent(&pdev->dev, txdr->size, olddesc,
1536					  olddma);
1537			goto setup_tx_desc_die;
1538		}
1539
1540		if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1541			/* give up */
1542			dma_free_coherent(&pdev->dev, txdr->size, txdr->desc,
1543					  txdr->dma);
1544			dma_free_coherent(&pdev->dev, txdr->size, olddesc,
1545					  olddma);
1546			e_err(probe, "Unable to allocate aligned memory "
1547			      "for the transmit descriptor ring\n");
1548			vfree(txdr->buffer_info);
1549			return -ENOMEM;
1550		} else {
1551			/* Free old allocation, new allocation was successful */
1552			dma_free_coherent(&pdev->dev, txdr->size, olddesc,
1553					  olddma);
1554		}
1555	}
1556	memset(txdr->desc, 0, txdr->size);
1557
1558	txdr->next_to_use = 0;
1559	txdr->next_to_clean = 0;
1560
1561	return 0;
1562}
1563
1564/**
1565 * e1000_setup_all_tx_resources - wrapper to allocate Tx resources
1566 * 				  (Descriptors) for all queues
1567 * @adapter: board private structure
1568 *
1569 * Return 0 on success, negative on failure
1570 **/
1571int e1000_setup_all_tx_resources(struct e1000_adapter *adapter)
1572{
1573	int i, err = 0;
1574
1575	for (i = 0; i < adapter->num_tx_queues; i++) {
1576		err = e1000_setup_tx_resources(adapter, &adapter->tx_ring[i]);
1577		if (err) {
1578			e_err(probe, "Allocation for Tx Queue %u failed\n", i);
1579			for (i-- ; i >= 0; i--)
1580				e1000_free_tx_resources(adapter,
1581							&adapter->tx_ring[i]);
1582			break;
1583		}
1584	}
1585
1586	return err;
1587}
1588
1589/**
1590 * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
1591 * @adapter: board private structure
1592 *
1593 * Configure the Tx unit of the MAC after a reset.
1594 **/
1595static void e1000_configure_tx(struct e1000_adapter *adapter)
1596{
1597	u64 tdba;
1598	struct e1000_hw *hw = &adapter->hw;
1599	u32 tdlen, tctl, tipg;
1600	u32 ipgr1, ipgr2;
1601
1602	/* Setup the HW Tx Head and Tail descriptor pointers */
1603
1604	switch (adapter->num_tx_queues) {
1605	case 1:
1606	default:
1607		tdba = adapter->tx_ring[0].dma;
1608		tdlen = adapter->tx_ring[0].count *
1609			sizeof(struct e1000_tx_desc);
1610		ew32(TDLEN, tdlen);
1611		ew32(TDBAH, (tdba >> 32));
1612		ew32(TDBAL, (tdba & 0x00000000ffffffffULL));
1613		ew32(TDT, 0);
1614		ew32(TDH, 0);
1615		adapter->tx_ring[0].tdh = ((hw->mac_type >= e1000_82543) ?
1616					   E1000_TDH : E1000_82542_TDH);
1617		adapter->tx_ring[0].tdt = ((hw->mac_type >= e1000_82543) ?
1618					   E1000_TDT : E1000_82542_TDT);
1619		break;
1620	}
1621
1622	/* Set the default values for the Tx Inter Packet Gap timer */
1623	if ((hw->media_type == e1000_media_type_fiber ||
1624	     hw->media_type == e1000_media_type_internal_serdes))
1625		tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
1626	else
1627		tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
1628
1629	switch (hw->mac_type) {
1630	case e1000_82542_rev2_0:
1631	case e1000_82542_rev2_1:
1632		tipg = DEFAULT_82542_TIPG_IPGT;
1633		ipgr1 = DEFAULT_82542_TIPG_IPGR1;
1634		ipgr2 = DEFAULT_82542_TIPG_IPGR2;
1635		break;
1636	default:
1637		ipgr1 = DEFAULT_82543_TIPG_IPGR1;
1638		ipgr2 = DEFAULT_82543_TIPG_IPGR2;
1639		break;
1640	}
1641	tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
1642	tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
1643	ew32(TIPG, tipg);
1644
1645	/* Set the Tx Interrupt Delay register */
1646
1647	ew32(TIDV, adapter->tx_int_delay);
1648	if (hw->mac_type >= e1000_82540)
1649		ew32(TADV, adapter->tx_abs_int_delay);
1650
1651	/* Program the Transmit Control Register */
1652
1653	tctl = er32(TCTL);
1654	tctl &= ~E1000_TCTL_CT;
1655	tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
1656		(E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
1657
1658	e1000_config_collision_dist(hw);
1659
1660	/* Setup Transmit Descriptor Settings for eop descriptor */
1661	adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
1662
1663	/* only set IDE if we are delaying interrupts using the timers */
1664	if (adapter->tx_int_delay)
1665		adapter->txd_cmd |= E1000_TXD_CMD_IDE;
1666
1667	if (hw->mac_type < e1000_82543)
1668		adapter->txd_cmd |= E1000_TXD_CMD_RPS;
1669	else
1670		adapter->txd_cmd |= E1000_TXD_CMD_RS;
1671
1672	/* Cache if we're 82544 running in PCI-X because we'll
1673	 * need this to apply a workaround later in the send path.
1674	 */
1675	if (hw->mac_type == e1000_82544 &&
1676	    hw->bus_type == e1000_bus_type_pcix)
1677		adapter->pcix_82544 = true;
1678
1679	ew32(TCTL, tctl);
1680
1681}
1682
1683/**
1684 * e1000_setup_rx_resources - allocate Rx resources (Descriptors)
1685 * @adapter: board private structure
1686 * @rxdr:    rx descriptor ring (for a specific queue) to setup
1687 *
1688 * Returns 0 on success, negative on failure
1689 **/
1690static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
1691				    struct e1000_rx_ring *rxdr)
1692{
1693	struct pci_dev *pdev = adapter->pdev;
1694	int size, desc_len;
1695
1696	size = sizeof(struct e1000_rx_buffer) * rxdr->count;
1697	rxdr->buffer_info = vzalloc(size);
1698	if (!rxdr->buffer_info)
1699		return -ENOMEM;
1700
1701	desc_len = sizeof(struct e1000_rx_desc);
1702
1703	/* Round up to nearest 4K */
1704
1705	rxdr->size = rxdr->count * desc_len;
1706	rxdr->size = ALIGN(rxdr->size, 4096);
1707
1708	rxdr->desc = dma_alloc_coherent(&pdev->dev, rxdr->size, &rxdr->dma,
1709					GFP_KERNEL);
1710	if (!rxdr->desc) {
1711setup_rx_desc_die:
1712		vfree(rxdr->buffer_info);
1713		return -ENOMEM;
1714	}
1715
1716	/* Fix for errata 23, can't cross 64kB boundary */
1717	if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1718		void *olddesc = rxdr->desc;
1719		dma_addr_t olddma = rxdr->dma;
1720		e_err(rx_err, "rxdr align check failed: %u bytes at %p\n",
1721		      rxdr->size, rxdr->desc);
1722		/* Try again, without freeing the previous */
1723		rxdr->desc = dma_alloc_coherent(&pdev->dev, rxdr->size,
1724						&rxdr->dma, GFP_KERNEL);
1725		/* Failed allocation, critical failure */
1726		if (!rxdr->desc) {
1727			dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
1728					  olddma);
1729			goto setup_rx_desc_die;
1730		}
1731
1732		if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1733			/* give up */
1734			dma_free_coherent(&pdev->dev, rxdr->size, rxdr->desc,
1735					  rxdr->dma);
1736			dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
1737					  olddma);
1738			e_err(probe, "Unable to allocate aligned memory for "
1739			      "the Rx descriptor ring\n");
1740			goto setup_rx_desc_die;
1741		} else {
1742			/* Free old allocation, new allocation was successful */
1743			dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
1744					  olddma);
1745		}
1746	}
1747	memset(rxdr->desc, 0, rxdr->size);
1748
1749	rxdr->next_to_clean = 0;
1750	rxdr->next_to_use = 0;
1751	rxdr->rx_skb_top = NULL;
1752
1753	return 0;
1754}
1755
1756/**
1757 * e1000_setup_all_rx_resources - wrapper to allocate Rx resources
1758 * 				  (Descriptors) for all queues
1759 * @adapter: board private structure
1760 *
1761 * Return 0 on success, negative on failure
1762 **/
1763int e1000_setup_all_rx_resources(struct e1000_adapter *adapter)
1764{
1765	int i, err = 0;
1766
1767	for (i = 0; i < adapter->num_rx_queues; i++) {
1768		err = e1000_setup_rx_resources(adapter, &adapter->rx_ring[i]);
1769		if (err) {
1770			e_err(probe, "Allocation for Rx Queue %u failed\n", i);
1771			for (i-- ; i >= 0; i--)
1772				e1000_free_rx_resources(adapter,
1773							&adapter->rx_ring[i]);
1774			break;
1775		}
1776	}
1777
1778	return err;
1779}
1780
1781/**
1782 * e1000_setup_rctl - configure the receive control registers
1783 * @adapter: Board private structure
1784 **/
1785static void e1000_setup_rctl(struct e1000_adapter *adapter)
1786{
1787	struct e1000_hw *hw = &adapter->hw;
1788	u32 rctl;
1789
1790	rctl = er32(RCTL);
1791
1792	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
1793
1794	rctl |= E1000_RCTL_BAM | E1000_RCTL_LBM_NO |
1795		E1000_RCTL_RDMTS_HALF |
1796		(hw->mc_filter_type << E1000_RCTL_MO_SHIFT);
1797
1798	if (hw->tbi_compatibility_on == 1)
1799		rctl |= E1000_RCTL_SBP;
1800	else
1801		rctl &= ~E1000_RCTL_SBP;
1802
1803	if (adapter->netdev->mtu <= ETH_DATA_LEN)
1804		rctl &= ~E1000_RCTL_LPE;
1805	else
1806		rctl |= E1000_RCTL_LPE;
1807
1808	/* Setup buffer sizes */
1809	rctl &= ~E1000_RCTL_SZ_4096;
1810	rctl |= E1000_RCTL_BSEX;
1811	switch (adapter->rx_buffer_len) {
1812	case E1000_RXBUFFER_2048:
1813	default:
1814		rctl |= E1000_RCTL_SZ_2048;
1815		rctl &= ~E1000_RCTL_BSEX;
1816		break;
1817	case E1000_RXBUFFER_4096:
1818		rctl |= E1000_RCTL_SZ_4096;
1819		break;
1820	case E1000_RXBUFFER_8192:
1821		rctl |= E1000_RCTL_SZ_8192;
1822		break;
1823	case E1000_RXBUFFER_16384:
1824		rctl |= E1000_RCTL_SZ_16384;
1825		break;
1826	}
1827
1828	/* This is useful for sniffing bad packets. */
1829	if (adapter->netdev->features & NETIF_F_RXALL) {
1830		/* UPE and MPE will be handled by normal PROMISC logic
1831		 * in e1000e_set_rx_mode
1832		 */
1833		rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
1834			 E1000_RCTL_BAM | /* RX All Bcast Pkts */
1835			 E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
1836
1837		rctl &= ~(E1000_RCTL_VFE | /* Disable VLAN filter */
1838			  E1000_RCTL_DPF | /* Allow filtered pause */
1839			  E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
1840		/* Do not mess with E1000_CTRL_VME, it affects transmit as well,
1841		 * and that breaks VLANs.
1842		 */
1843	}
1844
1845	ew32(RCTL, rctl);
1846}
1847
1848/**
1849 * e1000_configure_rx - Configure 8254x Receive Unit after Reset
1850 * @adapter: board private structure
1851 *
1852 * Configure the Rx unit of the MAC after a reset.
1853 **/
1854static void e1000_configure_rx(struct e1000_adapter *adapter)
1855{
1856	u64 rdba;
1857	struct e1000_hw *hw = &adapter->hw;
1858	u32 rdlen, rctl, rxcsum;
1859
1860	if (adapter->netdev->mtu > ETH_DATA_LEN) {
1861		rdlen = adapter->rx_ring[0].count *
1862			sizeof(struct e1000_rx_desc);
1863		adapter->clean_rx = e1000_clean_jumbo_rx_irq;
1864		adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers;
1865	} else {
1866		rdlen = adapter->rx_ring[0].count *
1867			sizeof(struct e1000_rx_desc);
1868		adapter->clean_rx = e1000_clean_rx_irq;
1869		adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
1870	}
1871
1872	/* disable receives while setting up the descriptors */
1873	rctl = er32(RCTL);
1874	ew32(RCTL, rctl & ~E1000_RCTL_EN);
1875
1876	/* set the Receive Delay Timer Register */
1877	ew32(RDTR, adapter->rx_int_delay);
1878
1879	if (hw->mac_type >= e1000_82540) {
1880		ew32(RADV, adapter->rx_abs_int_delay);
1881		if (adapter->itr_setting != 0)
1882			ew32(ITR, 1000000000 / (adapter->itr * 256));
1883	}
1884
1885	/* Setup the HW Rx Head and Tail Descriptor Pointers and
1886	 * the Base and Length of the Rx Descriptor Ring
1887	 */
1888	switch (adapter->num_rx_queues) {
1889	case 1:
1890	default:
1891		rdba = adapter->rx_ring[0].dma;
1892		ew32(RDLEN, rdlen);
1893		ew32(RDBAH, (rdba >> 32));
1894		ew32(RDBAL, (rdba & 0x00000000ffffffffULL));
1895		ew32(RDT, 0);
1896		ew32(RDH, 0);
1897		adapter->rx_ring[0].rdh = ((hw->mac_type >= e1000_82543) ?
1898					   E1000_RDH : E1000_82542_RDH);
1899		adapter->rx_ring[0].rdt = ((hw->mac_type >= e1000_82543) ?
1900					   E1000_RDT : E1000_82542_RDT);
1901		break;
1902	}
1903
1904	/* Enable 82543 Receive Checksum Offload for TCP and UDP */
1905	if (hw->mac_type >= e1000_82543) {
1906		rxcsum = er32(RXCSUM);
1907		if (adapter->rx_csum)
1908			rxcsum |= E1000_RXCSUM_TUOFL;
1909		else
1910			/* don't need to clear IPPCSE as it defaults to 0 */
1911			rxcsum &= ~E1000_RXCSUM_TUOFL;
1912		ew32(RXCSUM, rxcsum);
1913	}
1914
1915	/* Enable Receives */
1916	ew32(RCTL, rctl | E1000_RCTL_EN);
1917}
1918
1919/**
1920 * e1000_free_tx_resources - Free Tx Resources per Queue
1921 * @adapter: board private structure
1922 * @tx_ring: Tx descriptor ring for a specific queue
1923 *
1924 * Free all transmit software resources
1925 **/
1926static void e1000_free_tx_resources(struct e1000_adapter *adapter,
1927				    struct e1000_tx_ring *tx_ring)
1928{
1929	struct pci_dev *pdev = adapter->pdev;
1930
1931	e1000_clean_tx_ring(adapter, tx_ring);
1932
1933	vfree(tx_ring->buffer_info);
1934	tx_ring->buffer_info = NULL;
1935
1936	dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
1937			  tx_ring->dma);
1938
1939	tx_ring->desc = NULL;
1940}
1941
1942/**
1943 * e1000_free_all_tx_resources - Free Tx Resources for All Queues
1944 * @adapter: board private structure
1945 *
1946 * Free all transmit software resources
1947 **/
1948void e1000_free_all_tx_resources(struct e1000_adapter *adapter)
1949{
1950	int i;
1951
1952	for (i = 0; i < adapter->num_tx_queues; i++)
1953		e1000_free_tx_resources(adapter, &adapter->tx_ring[i]);
1954}
1955
1956static void
1957e1000_unmap_and_free_tx_resource(struct e1000_adapter *adapter,
1958				 struct e1000_tx_buffer *buffer_info,
1959				 int budget)
1960{
1961	if (buffer_info->dma) {
1962		if (buffer_info->mapped_as_page)
1963			dma_unmap_page(&adapter->pdev->dev, buffer_info->dma,
1964				       buffer_info->length, DMA_TO_DEVICE);
1965		else
1966			dma_unmap_single(&adapter->pdev->dev, buffer_info->dma,
1967					 buffer_info->length,
1968					 DMA_TO_DEVICE);
1969		buffer_info->dma = 0;
1970	}
1971	if (buffer_info->skb) {
1972		napi_consume_skb(buffer_info->skb, budget);
1973		buffer_info->skb = NULL;
1974	}
1975	buffer_info->time_stamp = 0;
1976	/* buffer_info must be completely set up in the transmit path */
1977}
1978
1979/**
1980 * e1000_clean_tx_ring - Free Tx Buffers
1981 * @adapter: board private structure
1982 * @tx_ring: ring to be cleaned
1983 **/
1984static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
1985				struct e1000_tx_ring *tx_ring)
1986{
1987	struct e1000_hw *hw = &adapter->hw;
1988	struct e1000_tx_buffer *buffer_info;
1989	unsigned long size;
1990	unsigned int i;
1991
1992	/* Free all the Tx ring sk_buffs */
1993
1994	for (i = 0; i < tx_ring->count; i++) {
1995		buffer_info = &tx_ring->buffer_info[i];
1996		e1000_unmap_and_free_tx_resource(adapter, buffer_info, 0);
1997	}
1998
1999	netdev_reset_queue(adapter->netdev);
2000	size = sizeof(struct e1000_tx_buffer) * tx_ring->count;
2001	memset(tx_ring->buffer_info, 0, size);
2002
2003	/* Zero out the descriptor ring */
2004
2005	memset(tx_ring->desc, 0, tx_ring->size);
2006
2007	tx_ring->next_to_use = 0;
2008	tx_ring->next_to_clean = 0;
2009	tx_ring->last_tx_tso = false;
2010
2011	writel(0, hw->hw_addr + tx_ring->tdh);
2012	writel(0, hw->hw_addr + tx_ring->tdt);
2013}
2014
2015/**
2016 * e1000_clean_all_tx_rings - Free Tx Buffers for all queues
2017 * @adapter: board private structure
2018 **/
2019static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter)
2020{
2021	int i;
2022
2023	for (i = 0; i < adapter->num_tx_queues; i++)
2024		e1000_clean_tx_ring(adapter, &adapter->tx_ring[i]);
2025}
2026
2027/**
2028 * e1000_free_rx_resources - Free Rx Resources
2029 * @adapter: board private structure
2030 * @rx_ring: ring to clean the resources from
2031 *
2032 * Free all receive software resources
2033 **/
2034static void e1000_free_rx_resources(struct e1000_adapter *adapter,
2035				    struct e1000_rx_ring *rx_ring)
2036{
2037	struct pci_dev *pdev = adapter->pdev;
2038
2039	e1000_clean_rx_ring(adapter, rx_ring);
2040
2041	vfree(rx_ring->buffer_info);
2042	rx_ring->buffer_info = NULL;
2043
2044	dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
2045			  rx_ring->dma);
2046
2047	rx_ring->desc = NULL;
2048}
2049
2050/**
2051 * e1000_free_all_rx_resources - Free Rx Resources for All Queues
2052 * @adapter: board private structure
2053 *
2054 * Free all receive software resources
2055 **/
2056void e1000_free_all_rx_resources(struct e1000_adapter *adapter)
2057{
2058	int i;
2059
2060	for (i = 0; i < adapter->num_rx_queues; i++)
2061		e1000_free_rx_resources(adapter, &adapter->rx_ring[i]);
2062}
2063
2064#define E1000_HEADROOM (NET_SKB_PAD + NET_IP_ALIGN)
2065static unsigned int e1000_frag_len(const struct e1000_adapter *a)
2066{
2067	return SKB_DATA_ALIGN(a->rx_buffer_len + E1000_HEADROOM) +
2068		SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
2069}
2070
2071static void *e1000_alloc_frag(const struct e1000_adapter *a)
2072{
2073	unsigned int len = e1000_frag_len(a);
2074	u8 *data = netdev_alloc_frag(len);
2075
2076	if (likely(data))
2077		data += E1000_HEADROOM;
2078	return data;
2079}
2080
2081/**
2082 * e1000_clean_rx_ring - Free Rx Buffers per Queue
2083 * @adapter: board private structure
2084 * @rx_ring: ring to free buffers from
2085 **/
2086static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
2087				struct e1000_rx_ring *rx_ring)
2088{
2089	struct e1000_hw *hw = &adapter->hw;
2090	struct e1000_rx_buffer *buffer_info;
2091	struct pci_dev *pdev = adapter->pdev;
2092	unsigned long size;
2093	unsigned int i;
2094
2095	/* Free all the Rx netfrags */
2096	for (i = 0; i < rx_ring->count; i++) {
2097		buffer_info = &rx_ring->buffer_info[i];
2098		if (adapter->clean_rx == e1000_clean_rx_irq) {
2099			if (buffer_info->dma)
2100				dma_unmap_single(&pdev->dev, buffer_info->dma,
2101						 adapter->rx_buffer_len,
2102						 DMA_FROM_DEVICE);
2103			if (buffer_info->rxbuf.data) {
2104				skb_free_frag(buffer_info->rxbuf.data);
2105				buffer_info->rxbuf.data = NULL;
2106			}
2107		} else if (adapter->clean_rx == e1000_clean_jumbo_rx_irq) {
2108			if (buffer_info->dma)
2109				dma_unmap_page(&pdev->dev, buffer_info->dma,
2110					       adapter->rx_buffer_len,
2111					       DMA_FROM_DEVICE);
2112			if (buffer_info->rxbuf.page) {
2113				put_page(buffer_info->rxbuf.page);
2114				buffer_info->rxbuf.page = NULL;
2115			}
2116		}
2117
2118		buffer_info->dma = 0;
2119	}
2120
2121	/* there also may be some cached data from a chained receive */
2122	napi_free_frags(&adapter->napi);
2123	rx_ring->rx_skb_top = NULL;
2124
2125	size = sizeof(struct e1000_rx_buffer) * rx_ring->count;
2126	memset(rx_ring->buffer_info, 0, size);
2127
2128	/* Zero out the descriptor ring */
2129	memset(rx_ring->desc, 0, rx_ring->size);
2130
2131	rx_ring->next_to_clean = 0;
2132	rx_ring->next_to_use = 0;
2133
2134	writel(0, hw->hw_addr + rx_ring->rdh);
2135	writel(0, hw->hw_addr + rx_ring->rdt);
2136}
2137
2138/**
2139 * e1000_clean_all_rx_rings - Free Rx Buffers for all queues
2140 * @adapter: board private structure
2141 **/
2142static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter)
2143{
2144	int i;
2145
2146	for (i = 0; i < adapter->num_rx_queues; i++)
2147		e1000_clean_rx_ring(adapter, &adapter->rx_ring[i]);
2148}
2149
2150/* The 82542 2.0 (revision 2) needs to have the receive unit in reset
2151 * and memory write and invalidate disabled for certain operations
2152 */
2153static void e1000_enter_82542_rst(struct e1000_adapter *adapter)
2154{
2155	struct e1000_hw *hw = &adapter->hw;
2156	struct net_device *netdev = adapter->netdev;
2157	u32 rctl;
2158
2159	e1000_pci_clear_mwi(hw);
2160
2161	rctl = er32(RCTL);
2162	rctl |= E1000_RCTL_RST;
2163	ew32(RCTL, rctl);
2164	E1000_WRITE_FLUSH();
2165	mdelay(5);
2166
2167	if (netif_running(netdev))
2168		e1000_clean_all_rx_rings(adapter);
2169}
2170
2171static void e1000_leave_82542_rst(struct e1000_adapter *adapter)
2172{
2173	struct e1000_hw *hw = &adapter->hw;
2174	struct net_device *netdev = adapter->netdev;
2175	u32 rctl;
2176
2177	rctl = er32(RCTL);
2178	rctl &= ~E1000_RCTL_RST;
2179	ew32(RCTL, rctl);
2180	E1000_WRITE_FLUSH();
2181	mdelay(5);
2182
2183	if (hw->pci_cmd_word & PCI_COMMAND_INVALIDATE)
2184		e1000_pci_set_mwi(hw);
2185
2186	if (netif_running(netdev)) {
2187		/* No need to loop, because 82542 supports only 1 queue */
2188		struct e1000_rx_ring *ring = &adapter->rx_ring[0];
2189		e1000_configure_rx(adapter);
2190		adapter->alloc_rx_buf(adapter, ring, E1000_DESC_UNUSED(ring));
2191	}
2192}
2193
2194/**
2195 * e1000_set_mac - Change the Ethernet Address of the NIC
2196 * @netdev: network interface device structure
2197 * @p: pointer to an address structure
2198 *
2199 * Returns 0 on success, negative on failure
2200 **/
2201static int e1000_set_mac(struct net_device *netdev, void *p)
2202{
2203	struct e1000_adapter *adapter = netdev_priv(netdev);
2204	struct e1000_hw *hw = &adapter->hw;
2205	struct sockaddr *addr = p;
2206
2207	if (!is_valid_ether_addr(addr->sa_data))
2208		return -EADDRNOTAVAIL;
2209
2210	/* 82542 2.0 needs to be in reset to write receive address registers */
2211
2212	if (hw->mac_type == e1000_82542_rev2_0)
2213		e1000_enter_82542_rst(adapter);
2214
2215	eth_hw_addr_set(netdev, addr->sa_data);
2216	memcpy(hw->mac_addr, addr->sa_data, netdev->addr_len);
2217
2218	e1000_rar_set(hw, hw->mac_addr, 0);
2219
2220	if (hw->mac_type == e1000_82542_rev2_0)
2221		e1000_leave_82542_rst(adapter);
2222
2223	return 0;
2224}
2225
2226/**
2227 * e1000_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
2228 * @netdev: network interface device structure
2229 *
2230 * The set_rx_mode entry point is called whenever the unicast or multicast
2231 * address lists or the network interface flags are updated. This routine is
2232 * responsible for configuring the hardware for proper unicast, multicast,
2233 * promiscuous mode, and all-multi behavior.
2234 **/
2235static void e1000_set_rx_mode(struct net_device *netdev)
2236{
2237	struct e1000_adapter *adapter = netdev_priv(netdev);
2238	struct e1000_hw *hw = &adapter->hw;
2239	struct netdev_hw_addr *ha;
2240	bool use_uc = false;
2241	u32 rctl;
2242	u32 hash_value;
2243	int i, rar_entries = E1000_RAR_ENTRIES;
2244	int mta_reg_count = E1000_NUM_MTA_REGISTERS;
2245	u32 *mcarray = kcalloc(mta_reg_count, sizeof(u32), GFP_ATOMIC);
2246
2247	if (!mcarray)
2248		return;
2249
2250	/* Check for Promiscuous and All Multicast modes */
2251
2252	rctl = er32(RCTL);
2253
2254	if (netdev->flags & IFF_PROMISC) {
2255		rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2256		rctl &= ~E1000_RCTL_VFE;
2257	} else {
2258		if (netdev->flags & IFF_ALLMULTI)
2259			rctl |= E1000_RCTL_MPE;
2260		else
2261			rctl &= ~E1000_RCTL_MPE;
2262		/* Enable VLAN filter if there is a VLAN */
2263		if (e1000_vlan_used(adapter))
2264			rctl |= E1000_RCTL_VFE;
2265	}
2266
2267	if (netdev_uc_count(netdev) > rar_entries - 1) {
2268		rctl |= E1000_RCTL_UPE;
2269	} else if (!(netdev->flags & IFF_PROMISC)) {
2270		rctl &= ~E1000_RCTL_UPE;
2271		use_uc = true;
2272	}
2273
2274	ew32(RCTL, rctl);
2275
2276	/* 82542 2.0 needs to be in reset to write receive address registers */
2277
2278	if (hw->mac_type == e1000_82542_rev2_0)
2279		e1000_enter_82542_rst(adapter);
2280
2281	/* load the first 14 addresses into the exact filters 1-14. Unicast
2282	 * addresses take precedence to avoid disabling unicast filtering
2283	 * when possible.
2284	 *
2285	 * RAR 0 is used for the station MAC address
2286	 * if there are not 14 addresses, go ahead and clear the filters
2287	 */
2288	i = 1;
2289	if (use_uc)
2290		netdev_for_each_uc_addr(ha, netdev) {
2291			if (i == rar_entries)
2292				break;
2293			e1000_rar_set(hw, ha->addr, i++);
2294		}
2295
2296	netdev_for_each_mc_addr(ha, netdev) {
2297		if (i == rar_entries) {
2298			/* load any remaining addresses into the hash table */
2299			u32 hash_reg, hash_bit, mta;
2300			hash_value = e1000_hash_mc_addr(hw, ha->addr);
2301			hash_reg = (hash_value >> 5) & 0x7F;
2302			hash_bit = hash_value & 0x1F;
2303			mta = (1 << hash_bit);
2304			mcarray[hash_reg] |= mta;
2305		} else {
2306			e1000_rar_set(hw, ha->addr, i++);
2307		}
2308	}
2309
2310	for (; i < rar_entries; i++) {
2311		E1000_WRITE_REG_ARRAY(hw, RA, i << 1, 0);
2312		E1000_WRITE_FLUSH();
2313		E1000_WRITE_REG_ARRAY(hw, RA, (i << 1) + 1, 0);
2314		E1000_WRITE_FLUSH();
2315	}
2316
2317	/* write the hash table completely, write from bottom to avoid
2318	 * both stupid write combining chipsets, and flushing each write
2319	 */
2320	for (i = mta_reg_count - 1; i >= 0 ; i--) {
2321		/* If we are on an 82544 has an errata where writing odd
2322		 * offsets overwrites the previous even offset, but writing
2323		 * backwards over the range solves the issue by always
2324		 * writing the odd offset first
2325		 */
2326		E1000_WRITE_REG_ARRAY(hw, MTA, i, mcarray[i]);
2327	}
2328	E1000_WRITE_FLUSH();
2329
2330	if (hw->mac_type == e1000_82542_rev2_0)
2331		e1000_leave_82542_rst(adapter);
2332
2333	kfree(mcarray);
2334}
2335
2336/**
2337 * e1000_update_phy_info_task - get phy info
2338 * @work: work struct contained inside adapter struct
2339 *
2340 * Need to wait a few seconds after link up to get diagnostic information from
2341 * the phy
2342 */
2343static void e1000_update_phy_info_task(struct work_struct *work)
2344{
2345	struct e1000_adapter *adapter = container_of(work,
2346						     struct e1000_adapter,
2347						     phy_info_task.work);
2348
2349	e1000_phy_get_info(&adapter->hw, &adapter->phy_info);
2350}
2351
2352/**
2353 * e1000_82547_tx_fifo_stall_task - task to complete work
2354 * @work: work struct contained inside adapter struct
2355 **/
2356static void e1000_82547_tx_fifo_stall_task(struct work_struct *work)
2357{
2358	struct e1000_adapter *adapter = container_of(work,
2359						     struct e1000_adapter,
2360						     fifo_stall_task.work);
2361	struct e1000_hw *hw = &adapter->hw;
2362	struct net_device *netdev = adapter->netdev;
2363	u32 tctl;
2364
2365	if (atomic_read(&adapter->tx_fifo_stall)) {
2366		if ((er32(TDT) == er32(TDH)) &&
2367		   (er32(TDFT) == er32(TDFH)) &&
2368		   (er32(TDFTS) == er32(TDFHS))) {
2369			tctl = er32(TCTL);
2370			ew32(TCTL, tctl & ~E1000_TCTL_EN);
2371			ew32(TDFT, adapter->tx_head_addr);
2372			ew32(TDFH, adapter->tx_head_addr);
2373			ew32(TDFTS, adapter->tx_head_addr);
2374			ew32(TDFHS, adapter->tx_head_addr);
2375			ew32(TCTL, tctl);
2376			E1000_WRITE_FLUSH();
2377
2378			adapter->tx_fifo_head = 0;
2379			atomic_set(&adapter->tx_fifo_stall, 0);
2380			netif_wake_queue(netdev);
2381		} else if (!test_bit(__E1000_DOWN, &adapter->flags)) {
2382			schedule_delayed_work(&adapter->fifo_stall_task, 1);
2383		}
2384	}
2385}
2386
2387bool e1000_has_link(struct e1000_adapter *adapter)
2388{
2389	struct e1000_hw *hw = &adapter->hw;
2390	bool link_active = false;
2391
2392	/* get_link_status is set on LSC (link status) interrupt or rx
2393	 * sequence error interrupt (except on intel ce4100).
2394	 * get_link_status will stay false until the
2395	 * e1000_check_for_link establishes link for copper adapters
2396	 * ONLY
2397	 */
2398	switch (hw->media_type) {
2399	case e1000_media_type_copper:
2400		if (hw->mac_type == e1000_ce4100)
2401			hw->get_link_status = 1;
2402		if (hw->get_link_status) {
2403			e1000_check_for_link(hw);
2404			link_active = !hw->get_link_status;
2405		} else {
2406			link_active = true;
2407		}
2408		break;
2409	case e1000_media_type_fiber:
2410		e1000_check_for_link(hw);
2411		link_active = !!(er32(STATUS) & E1000_STATUS_LU);
2412		break;
2413	case e1000_media_type_internal_serdes:
2414		e1000_check_for_link(hw);
2415		link_active = hw->serdes_has_link;
2416		break;
2417	default:
2418		break;
2419	}
2420
2421	return link_active;
2422}
2423
2424/**
2425 * e1000_watchdog - work function
2426 * @work: work struct contained inside adapter struct
2427 **/
2428static void e1000_watchdog(struct work_struct *work)
2429{
2430	struct e1000_adapter *adapter = container_of(work,
2431						     struct e1000_adapter,
2432						     watchdog_task.work);
2433	struct e1000_hw *hw = &adapter->hw;
2434	struct net_device *netdev = adapter->netdev;
2435	struct e1000_tx_ring *txdr = adapter->tx_ring;
2436	u32 link, tctl;
2437
2438	link = e1000_has_link(adapter);
2439	if ((netif_carrier_ok(netdev)) && link)
2440		goto link_up;
2441
2442	if (link) {
2443		if (!netif_carrier_ok(netdev)) {
2444			u32 ctrl;
2445			/* update snapshot of PHY registers on LSC */
2446			e1000_get_speed_and_duplex(hw,
2447						   &adapter->link_speed,
2448						   &adapter->link_duplex);
2449
2450			ctrl = er32(CTRL);
2451			pr_info("%s NIC Link is Up %d Mbps %s, "
2452				"Flow Control: %s\n",
2453				netdev->name,
2454				adapter->link_speed,
2455				adapter->link_duplex == FULL_DUPLEX ?
2456				"Full Duplex" : "Half Duplex",
2457				((ctrl & E1000_CTRL_TFCE) && (ctrl &
2458				E1000_CTRL_RFCE)) ? "RX/TX" : ((ctrl &
2459				E1000_CTRL_RFCE) ? "RX" : ((ctrl &
2460				E1000_CTRL_TFCE) ? "TX" : "None")));
2461
2462			/* adjust timeout factor according to speed/duplex */
2463			adapter->tx_timeout_factor = 1;
2464			switch (adapter->link_speed) {
2465			case SPEED_10:
2466				adapter->tx_timeout_factor = 16;
2467				break;
2468			case SPEED_100:
2469				/* maybe add some timeout factor ? */
2470				break;
2471			}
2472
2473			/* enable transmits in the hardware */
2474			tctl = er32(TCTL);
2475			tctl |= E1000_TCTL_EN;
2476			ew32(TCTL, tctl);
2477
2478			netif_carrier_on(netdev);
2479			if (!test_bit(__E1000_DOWN, &adapter->flags))
2480				schedule_delayed_work(&adapter->phy_info_task,
2481						      2 * HZ);
2482			adapter->smartspeed = 0;
2483		}
2484	} else {
2485		if (netif_carrier_ok(netdev)) {
2486			adapter->link_speed = 0;
2487			adapter->link_duplex = 0;
2488			pr_info("%s NIC Link is Down\n",
2489				netdev->name);
2490			netif_carrier_off(netdev);
2491
2492			if (!test_bit(__E1000_DOWN, &adapter->flags))
2493				schedule_delayed_work(&adapter->phy_info_task,
2494						      2 * HZ);
2495		}
2496
2497		e1000_smartspeed(adapter);
2498	}
2499
2500link_up:
2501	e1000_update_stats(adapter);
2502
2503	hw->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
2504	adapter->tpt_old = adapter->stats.tpt;
2505	hw->collision_delta = adapter->stats.colc - adapter->colc_old;
2506	adapter->colc_old = adapter->stats.colc;
2507
2508	adapter->gorcl = adapter->stats.gorcl - adapter->gorcl_old;
2509	adapter->gorcl_old = adapter->stats.gorcl;
2510	adapter->gotcl = adapter->stats.gotcl - adapter->gotcl_old;
2511	adapter->gotcl_old = adapter->stats.gotcl;
2512
2513	e1000_update_adaptive(hw);
2514
2515	if (!netif_carrier_ok(netdev)) {
2516		if (E1000_DESC_UNUSED(txdr) + 1 < txdr->count) {
2517			/* We've lost link, so the controller stops DMA,
2518			 * but we've got queued Tx work that's never going
2519			 * to get done, so reset controller to flush Tx.
2520			 * (Do the reset outside of interrupt context).
2521			 */
2522			adapter->tx_timeout_count++;
2523			schedule_work(&adapter->reset_task);
2524			/* exit immediately since reset is imminent */
2525			return;
2526		}
2527	}
2528
2529	/* Simple mode for Interrupt Throttle Rate (ITR) */
2530	if (hw->mac_type >= e1000_82540 && adapter->itr_setting == 4) {
2531		/* Symmetric Tx/Rx gets a reduced ITR=2000;
2532		 * Total asymmetrical Tx or Rx gets ITR=8000;
2533		 * everyone else is between 2000-8000.
2534		 */
2535		u32 goc = (adapter->gotcl + adapter->gorcl) / 10000;
2536		u32 dif = (adapter->gotcl > adapter->gorcl ?
2537			    adapter->gotcl - adapter->gorcl :
2538			    adapter->gorcl - adapter->gotcl) / 10000;
2539		u32 itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000;
2540
2541		ew32(ITR, 1000000000 / (itr * 256));
2542	}
2543
2544	/* Cause software interrupt to ensure rx ring is cleaned */
2545	ew32(ICS, E1000_ICS_RXDMT0);
2546
2547	/* Force detection of hung controller every watchdog period */
2548	adapter->detect_tx_hung = true;
2549
2550	/* Reschedule the task */
2551	if (!test_bit(__E1000_DOWN, &adapter->flags))
2552		schedule_delayed_work(&adapter->watchdog_task, 2 * HZ);
2553}
2554
2555enum latency_range {
2556	lowest_latency = 0,
2557	low_latency = 1,
2558	bulk_latency = 2,
2559	latency_invalid = 255
2560};
2561
2562/**
2563 * e1000_update_itr - update the dynamic ITR value based on statistics
2564 * @adapter: pointer to adapter
2565 * @itr_setting: current adapter->itr
2566 * @packets: the number of packets during this measurement interval
2567 * @bytes: the number of bytes during this measurement interval
2568 *
2569 *      Stores a new ITR value based on packets and byte
2570 *      counts during the last interrupt.  The advantage of per interrupt
2571 *      computation is faster updates and more accurate ITR for the current
2572 *      traffic pattern.  Constants in this function were computed
2573 *      based on theoretical maximum wire speed and thresholds were set based
2574 *      on testing data as well as attempting to minimize response time
2575 *      while increasing bulk throughput.
2576 *      this functionality is controlled by the InterruptThrottleRate module
2577 *      parameter (see e1000_param.c)
2578 **/
2579static unsigned int e1000_update_itr(struct e1000_adapter *adapter,
2580				     u16 itr_setting, int packets, int bytes)
2581{
2582	unsigned int retval = itr_setting;
2583	struct e1000_hw *hw = &adapter->hw;
2584
2585	if (unlikely(hw->mac_type < e1000_82540))
2586		goto update_itr_done;
2587
2588	if (packets == 0)
2589		goto update_itr_done;
2590
2591	switch (itr_setting) {
2592	case lowest_latency:
2593		/* jumbo frames get bulk treatment*/
2594		if (bytes/packets > 8000)
2595			retval = bulk_latency;
2596		else if ((packets < 5) && (bytes > 512))
2597			retval = low_latency;
2598		break;
2599	case low_latency:  /* 50 usec aka 20000 ints/s */
2600		if (bytes > 10000) {
2601			/* jumbo frames need bulk latency setting */
2602			if (bytes/packets > 8000)
2603				retval = bulk_latency;
2604			else if ((packets < 10) || ((bytes/packets) > 1200))
2605				retval = bulk_latency;
2606			else if ((packets > 35))
2607				retval = lowest_latency;
2608		} else if (bytes/packets > 2000)
2609			retval = bulk_latency;
2610		else if (packets <= 2 && bytes < 512)
2611			retval = lowest_latency;
2612		break;
2613	case bulk_latency: /* 250 usec aka 4000 ints/s */
2614		if (bytes > 25000) {
2615			if (packets > 35)
2616				retval = low_latency;
2617		} else if (bytes < 6000) {
2618			retval = low_latency;
2619		}
2620		break;
2621	}
2622
2623update_itr_done:
2624	return retval;
2625}
2626
2627static void e1000_set_itr(struct e1000_adapter *adapter)
2628{
2629	struct e1000_hw *hw = &adapter->hw;
2630	u16 current_itr;
2631	u32 new_itr = adapter->itr;
2632
2633	if (unlikely(hw->mac_type < e1000_82540))
2634		return;
2635
2636	/* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2637	if (unlikely(adapter->link_speed != SPEED_1000)) {
 
2638		new_itr = 4000;
2639		goto set_itr_now;
2640	}
2641
2642	adapter->tx_itr = e1000_update_itr(adapter, adapter->tx_itr,
2643					   adapter->total_tx_packets,
2644					   adapter->total_tx_bytes);
2645	/* conservative mode (itr 3) eliminates the lowest_latency setting */
2646	if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
2647		adapter->tx_itr = low_latency;
2648
2649	adapter->rx_itr = e1000_update_itr(adapter, adapter->rx_itr,
2650					   adapter->total_rx_packets,
2651					   adapter->total_rx_bytes);
2652	/* conservative mode (itr 3) eliminates the lowest_latency setting */
2653	if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
2654		adapter->rx_itr = low_latency;
2655
2656	current_itr = max(adapter->rx_itr, adapter->tx_itr);
2657
2658	switch (current_itr) {
2659	/* counts and packets in update_itr are dependent on these numbers */
2660	case lowest_latency:
2661		new_itr = 70000;
2662		break;
2663	case low_latency:
2664		new_itr = 20000; /* aka hwitr = ~200 */
2665		break;
2666	case bulk_latency:
2667		new_itr = 4000;
2668		break;
2669	default:
2670		break;
2671	}
2672
2673set_itr_now:
2674	if (new_itr != adapter->itr) {
2675		/* this attempts to bias the interrupt rate towards Bulk
2676		 * by adding intermediate steps when interrupt rate is
2677		 * increasing
2678		 */
2679		new_itr = new_itr > adapter->itr ?
2680			  min(adapter->itr + (new_itr >> 2), new_itr) :
2681			  new_itr;
2682		adapter->itr = new_itr;
2683		ew32(ITR, 1000000000 / (new_itr * 256));
2684	}
2685}
2686
2687#define E1000_TX_FLAGS_CSUM		0x00000001
2688#define E1000_TX_FLAGS_VLAN		0x00000002
2689#define E1000_TX_FLAGS_TSO		0x00000004
2690#define E1000_TX_FLAGS_IPV4		0x00000008
2691#define E1000_TX_FLAGS_NO_FCS		0x00000010
2692#define E1000_TX_FLAGS_VLAN_MASK	0xffff0000
2693#define E1000_TX_FLAGS_VLAN_SHIFT	16
2694
2695static int e1000_tso(struct e1000_adapter *adapter,
2696		     struct e1000_tx_ring *tx_ring, struct sk_buff *skb,
2697		     __be16 protocol)
2698{
2699	struct e1000_context_desc *context_desc;
2700	struct e1000_tx_buffer *buffer_info;
2701	unsigned int i;
2702	u32 cmd_length = 0;
2703	u16 ipcse = 0, tucse, mss;
2704	u8 ipcss, ipcso, tucss, tucso, hdr_len;
2705
2706	if (skb_is_gso(skb)) {
2707		int err;
2708
2709		err = skb_cow_head(skb, 0);
2710		if (err < 0)
2711			return err;
2712
2713		hdr_len = skb_tcp_all_headers(skb);
2714		mss = skb_shinfo(skb)->gso_size;
2715		if (protocol == htons(ETH_P_IP)) {
2716			struct iphdr *iph = ip_hdr(skb);
2717			iph->tot_len = 0;
2718			iph->check = 0;
2719			tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
2720								 iph->daddr, 0,
2721								 IPPROTO_TCP,
2722								 0);
2723			cmd_length = E1000_TXD_CMD_IP;
2724			ipcse = skb_transport_offset(skb) - 1;
2725		} else if (skb_is_gso_v6(skb)) {
2726			tcp_v6_gso_csum_prep(skb);
2727			ipcse = 0;
2728		}
2729		ipcss = skb_network_offset(skb);
2730		ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
2731		tucss = skb_transport_offset(skb);
2732		tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
2733		tucse = 0;
2734
2735		cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
2736			       E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
2737
2738		i = tx_ring->next_to_use;
2739		context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2740		buffer_info = &tx_ring->buffer_info[i];
2741
2742		context_desc->lower_setup.ip_fields.ipcss  = ipcss;
2743		context_desc->lower_setup.ip_fields.ipcso  = ipcso;
2744		context_desc->lower_setup.ip_fields.ipcse  = cpu_to_le16(ipcse);
2745		context_desc->upper_setup.tcp_fields.tucss = tucss;
2746		context_desc->upper_setup.tcp_fields.tucso = tucso;
2747		context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
2748		context_desc->tcp_seg_setup.fields.mss     = cpu_to_le16(mss);
2749		context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
2750		context_desc->cmd_and_length = cpu_to_le32(cmd_length);
2751
2752		buffer_info->time_stamp = jiffies;
2753		buffer_info->next_to_watch = i;
2754
2755		if (++i == tx_ring->count)
2756			i = 0;
2757
2758		tx_ring->next_to_use = i;
2759
2760		return true;
2761	}
2762	return false;
2763}
2764
2765static bool e1000_tx_csum(struct e1000_adapter *adapter,
2766			  struct e1000_tx_ring *tx_ring, struct sk_buff *skb,
2767			  __be16 protocol)
2768{
2769	struct e1000_context_desc *context_desc;
2770	struct e1000_tx_buffer *buffer_info;
2771	unsigned int i;
2772	u8 css;
2773	u32 cmd_len = E1000_TXD_CMD_DEXT;
2774
2775	if (skb->ip_summed != CHECKSUM_PARTIAL)
2776		return false;
2777
2778	switch (protocol) {
2779	case cpu_to_be16(ETH_P_IP):
2780		if (ip_hdr(skb)->protocol == IPPROTO_TCP)
2781			cmd_len |= E1000_TXD_CMD_TCP;
2782		break;
2783	case cpu_to_be16(ETH_P_IPV6):
2784		/* XXX not handling all IPV6 headers */
2785		if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
2786			cmd_len |= E1000_TXD_CMD_TCP;
2787		break;
2788	default:
2789		if (unlikely(net_ratelimit()))
2790			e_warn(drv, "checksum_partial proto=%x!\n",
2791			       skb->protocol);
2792		break;
2793	}
2794
2795	css = skb_checksum_start_offset(skb);
2796
2797	i = tx_ring->next_to_use;
2798	buffer_info = &tx_ring->buffer_info[i];
2799	context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2800
2801	context_desc->lower_setup.ip_config = 0;
2802	context_desc->upper_setup.tcp_fields.tucss = css;
2803	context_desc->upper_setup.tcp_fields.tucso =
2804		css + skb->csum_offset;
2805	context_desc->upper_setup.tcp_fields.tucse = 0;
2806	context_desc->tcp_seg_setup.data = 0;
2807	context_desc->cmd_and_length = cpu_to_le32(cmd_len);
2808
2809	buffer_info->time_stamp = jiffies;
2810	buffer_info->next_to_watch = i;
2811
2812	if (unlikely(++i == tx_ring->count))
2813		i = 0;
2814
2815	tx_ring->next_to_use = i;
2816
2817	return true;
2818}
2819
2820#define E1000_MAX_TXD_PWR	12
2821#define E1000_MAX_DATA_PER_TXD	(1<<E1000_MAX_TXD_PWR)
2822
2823static int e1000_tx_map(struct e1000_adapter *adapter,
2824			struct e1000_tx_ring *tx_ring,
2825			struct sk_buff *skb, unsigned int first,
2826			unsigned int max_per_txd, unsigned int nr_frags,
2827			unsigned int mss)
2828{
2829	struct e1000_hw *hw = &adapter->hw;
2830	struct pci_dev *pdev = adapter->pdev;
2831	struct e1000_tx_buffer *buffer_info;
2832	unsigned int len = skb_headlen(skb);
2833	unsigned int offset = 0, size, count = 0, i;
2834	unsigned int f, bytecount, segs;
2835
2836	i = tx_ring->next_to_use;
2837
2838	while (len) {
2839		buffer_info = &tx_ring->buffer_info[i];
2840		size = min(len, max_per_txd);
2841		/* Workaround for Controller erratum --
2842		 * descriptor for non-tso packet in a linear SKB that follows a
2843		 * tso gets written back prematurely before the data is fully
2844		 * DMA'd to the controller
2845		 */
2846		if (!skb->data_len && tx_ring->last_tx_tso &&
2847		    !skb_is_gso(skb)) {
2848			tx_ring->last_tx_tso = false;
2849			size -= 4;
2850		}
2851
2852		/* Workaround for premature desc write-backs
2853		 * in TSO mode.  Append 4-byte sentinel desc
2854		 */
2855		if (unlikely(mss && !nr_frags && size == len && size > 8))
2856			size -= 4;
2857		/* work-around for errata 10 and it applies
2858		 * to all controllers in PCI-X mode
2859		 * The fix is to make sure that the first descriptor of a
2860		 * packet is smaller than 2048 - 16 - 16 (or 2016) bytes
2861		 */
2862		if (unlikely((hw->bus_type == e1000_bus_type_pcix) &&
2863			     (size > 2015) && count == 0))
2864			size = 2015;
2865
2866		/* Workaround for potential 82544 hang in PCI-X.  Avoid
2867		 * terminating buffers within evenly-aligned dwords.
2868		 */
2869		if (unlikely(adapter->pcix_82544 &&
2870		   !((unsigned long)(skb->data + offset + size - 1) & 4) &&
2871		   size > 4))
2872			size -= 4;
2873
2874		buffer_info->length = size;
2875		/* set time_stamp *before* dma to help avoid a possible race */
2876		buffer_info->time_stamp = jiffies;
2877		buffer_info->mapped_as_page = false;
2878		buffer_info->dma = dma_map_single(&pdev->dev,
2879						  skb->data + offset,
2880						  size, DMA_TO_DEVICE);
2881		if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2882			goto dma_error;
2883		buffer_info->next_to_watch = i;
2884
2885		len -= size;
2886		offset += size;
2887		count++;
2888		if (len) {
2889			i++;
2890			if (unlikely(i == tx_ring->count))
2891				i = 0;
2892		}
2893	}
2894
2895	for (f = 0; f < nr_frags; f++) {
2896		const skb_frag_t *frag = &skb_shinfo(skb)->frags[f];
2897
2898		len = skb_frag_size(frag);
2899		offset = 0;
2900
2901		while (len) {
2902			unsigned long bufend;
2903			i++;
2904			if (unlikely(i == tx_ring->count))
2905				i = 0;
2906
2907			buffer_info = &tx_ring->buffer_info[i];
2908			size = min(len, max_per_txd);
2909			/* Workaround for premature desc write-backs
2910			 * in TSO mode.  Append 4-byte sentinel desc
2911			 */
2912			if (unlikely(mss && f == (nr_frags-1) &&
2913			    size == len && size > 8))
2914				size -= 4;
2915			/* Workaround for potential 82544 hang in PCI-X.
2916			 * Avoid terminating buffers within evenly-aligned
2917			 * dwords.
2918			 */
2919			bufend = (unsigned long)
2920				page_to_phys(skb_frag_page(frag));
2921			bufend += offset + size - 1;
2922			if (unlikely(adapter->pcix_82544 &&
2923				     !(bufend & 4) &&
2924				     size > 4))
2925				size -= 4;
2926
2927			buffer_info->length = size;
2928			buffer_info->time_stamp = jiffies;
2929			buffer_info->mapped_as_page = true;
2930			buffer_info->dma = skb_frag_dma_map(&pdev->dev, frag,
2931						offset, size, DMA_TO_DEVICE);
2932			if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2933				goto dma_error;
2934			buffer_info->next_to_watch = i;
2935
2936			len -= size;
2937			offset += size;
2938			count++;
2939		}
2940	}
2941
2942	segs = skb_shinfo(skb)->gso_segs ?: 1;
2943	/* multiply data chunks by size of headers */
2944	bytecount = ((segs - 1) * skb_headlen(skb)) + skb->len;
2945
2946	tx_ring->buffer_info[i].skb = skb;
2947	tx_ring->buffer_info[i].segs = segs;
2948	tx_ring->buffer_info[i].bytecount = bytecount;
2949	tx_ring->buffer_info[first].next_to_watch = i;
2950
2951	return count;
2952
2953dma_error:
2954	dev_err(&pdev->dev, "TX DMA map failed\n");
2955	buffer_info->dma = 0;
2956	if (count)
2957		count--;
2958
2959	while (count--) {
2960		if (i == 0)
2961			i += tx_ring->count;
2962		i--;
2963		buffer_info = &tx_ring->buffer_info[i];
2964		e1000_unmap_and_free_tx_resource(adapter, buffer_info, 0);
2965	}
2966
2967	return 0;
2968}
2969
2970static void e1000_tx_queue(struct e1000_adapter *adapter,
2971			   struct e1000_tx_ring *tx_ring, int tx_flags,
2972			   int count)
2973{
2974	struct e1000_tx_desc *tx_desc = NULL;
2975	struct e1000_tx_buffer *buffer_info;
2976	u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
2977	unsigned int i;
2978
2979	if (likely(tx_flags & E1000_TX_FLAGS_TSO)) {
2980		txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
2981			     E1000_TXD_CMD_TSE;
2982		txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2983
2984		if (likely(tx_flags & E1000_TX_FLAGS_IPV4))
2985			txd_upper |= E1000_TXD_POPTS_IXSM << 8;
2986	}
2987
2988	if (likely(tx_flags & E1000_TX_FLAGS_CSUM)) {
2989		txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
2990		txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2991	}
2992
2993	if (unlikely(tx_flags & E1000_TX_FLAGS_VLAN)) {
2994		txd_lower |= E1000_TXD_CMD_VLE;
2995		txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
2996	}
2997
2998	if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
2999		txd_lower &= ~(E1000_TXD_CMD_IFCS);
3000
3001	i = tx_ring->next_to_use;
3002
3003	while (count--) {
3004		buffer_info = &tx_ring->buffer_info[i];
3005		tx_desc = E1000_TX_DESC(*tx_ring, i);
3006		tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
3007		tx_desc->lower.data =
3008			cpu_to_le32(txd_lower | buffer_info->length);
3009		tx_desc->upper.data = cpu_to_le32(txd_upper);
3010		if (unlikely(++i == tx_ring->count))
3011			i = 0;
3012	}
3013
3014	tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
3015
3016	/* txd_cmd re-enables FCS, so we'll re-disable it here as desired. */
3017	if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
3018		tx_desc->lower.data &= ~(cpu_to_le32(E1000_TXD_CMD_IFCS));
3019
3020	/* Force memory writes to complete before letting h/w
3021	 * know there are new descriptors to fetch.  (Only
3022	 * applicable for weak-ordered memory model archs,
3023	 * such as IA-64).
3024	 */
3025	dma_wmb();
3026
3027	tx_ring->next_to_use = i;
3028}
3029
3030/* 82547 workaround to avoid controller hang in half-duplex environment.
3031 * The workaround is to avoid queuing a large packet that would span
3032 * the internal Tx FIFO ring boundary by notifying the stack to resend
3033 * the packet at a later time.  This gives the Tx FIFO an opportunity to
3034 * flush all packets.  When that occurs, we reset the Tx FIFO pointers
3035 * to the beginning of the Tx FIFO.
3036 */
3037
3038#define E1000_FIFO_HDR			0x10
3039#define E1000_82547_PAD_LEN		0x3E0
3040
3041static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
3042				       struct sk_buff *skb)
3043{
3044	u32 fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head;
3045	u32 skb_fifo_len = skb->len + E1000_FIFO_HDR;
3046
3047	skb_fifo_len = ALIGN(skb_fifo_len, E1000_FIFO_HDR);
3048
3049	if (adapter->link_duplex != HALF_DUPLEX)
3050		goto no_fifo_stall_required;
3051
3052	if (atomic_read(&adapter->tx_fifo_stall))
3053		return 1;
3054
3055	if (skb_fifo_len >= (E1000_82547_PAD_LEN + fifo_space)) {
3056		atomic_set(&adapter->tx_fifo_stall, 1);
3057		return 1;
3058	}
3059
3060no_fifo_stall_required:
3061	adapter->tx_fifo_head += skb_fifo_len;
3062	if (adapter->tx_fifo_head >= adapter->tx_fifo_size)
3063		adapter->tx_fifo_head -= adapter->tx_fifo_size;
3064	return 0;
3065}
3066
3067static int __e1000_maybe_stop_tx(struct net_device *netdev, int size)
3068{
3069	struct e1000_adapter *adapter = netdev_priv(netdev);
3070	struct e1000_tx_ring *tx_ring = adapter->tx_ring;
3071
3072	netif_stop_queue(netdev);
3073	/* Herbert's original patch had:
3074	 *  smp_mb__after_netif_stop_queue();
3075	 * but since that doesn't exist yet, just open code it.
3076	 */
3077	smp_mb();
3078
3079	/* We need to check again in a case another CPU has just
3080	 * made room available.
3081	 */
3082	if (likely(E1000_DESC_UNUSED(tx_ring) < size))
3083		return -EBUSY;
3084
3085	/* A reprieve! */
3086	netif_start_queue(netdev);
3087	++adapter->restart_queue;
3088	return 0;
3089}
3090
3091static int e1000_maybe_stop_tx(struct net_device *netdev,
3092			       struct e1000_tx_ring *tx_ring, int size)
3093{
3094	if (likely(E1000_DESC_UNUSED(tx_ring) >= size))
3095		return 0;
3096	return __e1000_maybe_stop_tx(netdev, size);
3097}
3098
3099#define TXD_USE_COUNT(S, X) (((S) + ((1 << (X)) - 1)) >> (X))
3100static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
3101				    struct net_device *netdev)
3102{
3103	struct e1000_adapter *adapter = netdev_priv(netdev);
3104	struct e1000_hw *hw = &adapter->hw;
3105	struct e1000_tx_ring *tx_ring;
3106	unsigned int first, max_per_txd = E1000_MAX_DATA_PER_TXD;
3107	unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
3108	unsigned int tx_flags = 0;
3109	unsigned int len = skb_headlen(skb);
3110	unsigned int nr_frags;
3111	unsigned int mss;
3112	int count = 0;
3113	int tso;
3114	unsigned int f;
3115	__be16 protocol = vlan_get_protocol(skb);
3116
3117	/* This goes back to the question of how to logically map a Tx queue
3118	 * to a flow.  Right now, performance is impacted slightly negatively
3119	 * if using multiple Tx queues.  If the stack breaks away from a
3120	 * single qdisc implementation, we can look at this again.
3121	 */
3122	tx_ring = adapter->tx_ring;
3123
3124	/* On PCI/PCI-X HW, if packet size is less than ETH_ZLEN,
3125	 * packets may get corrupted during padding by HW.
3126	 * To WA this issue, pad all small packets manually.
3127	 */
3128	if (eth_skb_pad(skb))
3129		return NETDEV_TX_OK;
3130
3131	mss = skb_shinfo(skb)->gso_size;
3132	/* The controller does a simple calculation to
3133	 * make sure there is enough room in the FIFO before
3134	 * initiating the DMA for each buffer.  The calc is:
3135	 * 4 = ceil(buffer len/mss).  To make sure we don't
3136	 * overrun the FIFO, adjust the max buffer len if mss
3137	 * drops.
3138	 */
3139	if (mss) {
3140		u8 hdr_len;
3141		max_per_txd = min(mss << 2, max_per_txd);
3142		max_txd_pwr = fls(max_per_txd) - 1;
3143
3144		hdr_len = skb_tcp_all_headers(skb);
3145		if (skb->data_len && hdr_len == len) {
3146			switch (hw->mac_type) {
3147			case e1000_82544: {
3148				unsigned int pull_size;
3149
3150				/* Make sure we have room to chop off 4 bytes,
3151				 * and that the end alignment will work out to
3152				 * this hardware's requirements
3153				 * NOTE: this is a TSO only workaround
3154				 * if end byte alignment not correct move us
3155				 * into the next dword
3156				 */
3157				if ((unsigned long)(skb_tail_pointer(skb) - 1)
3158				    & 4)
3159					break;
3160				pull_size = min((unsigned int)4, skb->data_len);
3161				if (!__pskb_pull_tail(skb, pull_size)) {
3162					e_err(drv, "__pskb_pull_tail "
3163					      "failed.\n");
3164					dev_kfree_skb_any(skb);
3165					return NETDEV_TX_OK;
3166				}
3167				len = skb_headlen(skb);
3168				break;
3169			}
3170			default:
3171				/* do nothing */
3172				break;
3173			}
3174		}
3175	}
3176
3177	/* reserve a descriptor for the offload context */
3178	if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
3179		count++;
3180	count++;
3181
3182	/* Controller Erratum workaround */
3183	if (!skb->data_len && tx_ring->last_tx_tso && !skb_is_gso(skb))
3184		count++;
3185
3186	count += TXD_USE_COUNT(len, max_txd_pwr);
3187
3188	if (adapter->pcix_82544)
3189		count++;
3190
3191	/* work-around for errata 10 and it applies to all controllers
3192	 * in PCI-X mode, so add one more descriptor to the count
3193	 */
3194	if (unlikely((hw->bus_type == e1000_bus_type_pcix) &&
3195			(len > 2015)))
3196		count++;
3197
3198	nr_frags = skb_shinfo(skb)->nr_frags;
3199	for (f = 0; f < nr_frags; f++)
3200		count += TXD_USE_COUNT(skb_frag_size(&skb_shinfo(skb)->frags[f]),
3201				       max_txd_pwr);
3202	if (adapter->pcix_82544)
3203		count += nr_frags;
3204
3205	/* need: count + 2 desc gap to keep tail from touching
3206	 * head, otherwise try next time
3207	 */
3208	if (unlikely(e1000_maybe_stop_tx(netdev, tx_ring, count + 2)))
3209		return NETDEV_TX_BUSY;
3210
3211	if (unlikely((hw->mac_type == e1000_82547) &&
3212		     (e1000_82547_fifo_workaround(adapter, skb)))) {
3213		netif_stop_queue(netdev);
3214		if (!test_bit(__E1000_DOWN, &adapter->flags))
3215			schedule_delayed_work(&adapter->fifo_stall_task, 1);
3216		return NETDEV_TX_BUSY;
3217	}
3218
3219	if (skb_vlan_tag_present(skb)) {
3220		tx_flags |= E1000_TX_FLAGS_VLAN;
3221		tx_flags |= (skb_vlan_tag_get(skb) <<
3222			     E1000_TX_FLAGS_VLAN_SHIFT);
3223	}
3224
3225	first = tx_ring->next_to_use;
3226
3227	tso = e1000_tso(adapter, tx_ring, skb, protocol);
3228	if (tso < 0) {
3229		dev_kfree_skb_any(skb);
3230		return NETDEV_TX_OK;
3231	}
3232
3233	if (likely(tso)) {
3234		if (likely(hw->mac_type != e1000_82544))
3235			tx_ring->last_tx_tso = true;
3236		tx_flags |= E1000_TX_FLAGS_TSO;
3237	} else if (likely(e1000_tx_csum(adapter, tx_ring, skb, protocol)))
3238		tx_flags |= E1000_TX_FLAGS_CSUM;
3239
3240	if (protocol == htons(ETH_P_IP))
3241		tx_flags |= E1000_TX_FLAGS_IPV4;
3242
3243	if (unlikely(skb->no_fcs))
3244		tx_flags |= E1000_TX_FLAGS_NO_FCS;
3245
3246	count = e1000_tx_map(adapter, tx_ring, skb, first, max_per_txd,
3247			     nr_frags, mss);
3248
3249	if (count) {
3250		/* The descriptors needed is higher than other Intel drivers
3251		 * due to a number of workarounds.  The breakdown is below:
3252		 * Data descriptors: MAX_SKB_FRAGS + 1
3253		 * Context Descriptor: 1
3254		 * Keep head from touching tail: 2
3255		 * Workarounds: 3
3256		 */
3257		int desc_needed = MAX_SKB_FRAGS + 7;
3258
3259		netdev_sent_queue(netdev, skb->len);
3260		skb_tx_timestamp(skb);
3261
3262		e1000_tx_queue(adapter, tx_ring, tx_flags, count);
3263
3264		/* 82544 potentially requires twice as many data descriptors
3265		 * in order to guarantee buffers don't end on evenly-aligned
3266		 * dwords
3267		 */
3268		if (adapter->pcix_82544)
3269			desc_needed += MAX_SKB_FRAGS + 1;
3270
3271		/* Make sure there is space in the ring for the next send. */
3272		e1000_maybe_stop_tx(netdev, tx_ring, desc_needed);
3273
3274		if (!netdev_xmit_more() ||
3275		    netif_xmit_stopped(netdev_get_tx_queue(netdev, 0))) {
3276			writel(tx_ring->next_to_use, hw->hw_addr + tx_ring->tdt);
3277		}
3278	} else {
3279		dev_kfree_skb_any(skb);
3280		tx_ring->buffer_info[first].time_stamp = 0;
3281		tx_ring->next_to_use = first;
3282	}
3283
3284	return NETDEV_TX_OK;
3285}
3286
3287#define NUM_REGS 38 /* 1 based count */
3288static void e1000_regdump(struct e1000_adapter *adapter)
3289{
3290	struct e1000_hw *hw = &adapter->hw;
3291	u32 regs[NUM_REGS];
3292	u32 *regs_buff = regs;
3293	int i = 0;
3294
3295	static const char * const reg_name[] = {
3296		"CTRL",  "STATUS",
3297		"RCTL", "RDLEN", "RDH", "RDT", "RDTR",
3298		"TCTL", "TDBAL", "TDBAH", "TDLEN", "TDH", "TDT",
3299		"TIDV", "TXDCTL", "TADV", "TARC0",
3300		"TDBAL1", "TDBAH1", "TDLEN1", "TDH1", "TDT1",
3301		"TXDCTL1", "TARC1",
3302		"CTRL_EXT", "ERT", "RDBAL", "RDBAH",
3303		"TDFH", "TDFT", "TDFHS", "TDFTS", "TDFPC",
3304		"RDFH", "RDFT", "RDFHS", "RDFTS", "RDFPC"
3305	};
3306
3307	regs_buff[0]  = er32(CTRL);
3308	regs_buff[1]  = er32(STATUS);
3309
3310	regs_buff[2]  = er32(RCTL);
3311	regs_buff[3]  = er32(RDLEN);
3312	regs_buff[4]  = er32(RDH);
3313	regs_buff[5]  = er32(RDT);
3314	regs_buff[6]  = er32(RDTR);
3315
3316	regs_buff[7]  = er32(TCTL);
3317	regs_buff[8]  = er32(TDBAL);
3318	regs_buff[9]  = er32(TDBAH);
3319	regs_buff[10] = er32(TDLEN);
3320	regs_buff[11] = er32(TDH);
3321	regs_buff[12] = er32(TDT);
3322	regs_buff[13] = er32(TIDV);
3323	regs_buff[14] = er32(TXDCTL);
3324	regs_buff[15] = er32(TADV);
3325	regs_buff[16] = er32(TARC0);
3326
3327	regs_buff[17] = er32(TDBAL1);
3328	regs_buff[18] = er32(TDBAH1);
3329	regs_buff[19] = er32(TDLEN1);
3330	regs_buff[20] = er32(TDH1);
3331	regs_buff[21] = er32(TDT1);
3332	regs_buff[22] = er32(TXDCTL1);
3333	regs_buff[23] = er32(TARC1);
3334	regs_buff[24] = er32(CTRL_EXT);
3335	regs_buff[25] = er32(ERT);
3336	regs_buff[26] = er32(RDBAL0);
3337	regs_buff[27] = er32(RDBAH0);
3338	regs_buff[28] = er32(TDFH);
3339	regs_buff[29] = er32(TDFT);
3340	regs_buff[30] = er32(TDFHS);
3341	regs_buff[31] = er32(TDFTS);
3342	regs_buff[32] = er32(TDFPC);
3343	regs_buff[33] = er32(RDFH);
3344	regs_buff[34] = er32(RDFT);
3345	regs_buff[35] = er32(RDFHS);
3346	regs_buff[36] = er32(RDFTS);
3347	regs_buff[37] = er32(RDFPC);
3348
3349	pr_info("Register dump\n");
3350	for (i = 0; i < NUM_REGS; i++)
3351		pr_info("%-15s  %08x\n", reg_name[i], regs_buff[i]);
3352}
3353
3354/*
3355 * e1000_dump: Print registers, tx ring and rx ring
3356 */
3357static void e1000_dump(struct e1000_adapter *adapter)
3358{
3359	/* this code doesn't handle multiple rings */
3360	struct e1000_tx_ring *tx_ring = adapter->tx_ring;
3361	struct e1000_rx_ring *rx_ring = adapter->rx_ring;
3362	int i;
3363
3364	if (!netif_msg_hw(adapter))
3365		return;
3366
3367	/* Print Registers */
3368	e1000_regdump(adapter);
3369
3370	/* transmit dump */
3371	pr_info("TX Desc ring0 dump\n");
3372
3373	/* Transmit Descriptor Formats - DEXT[29] is 0 (Legacy) or 1 (Extended)
3374	 *
3375	 * Legacy Transmit Descriptor
3376	 *   +--------------------------------------------------------------+
3377	 * 0 |         Buffer Address [63:0] (Reserved on Write Back)       |
3378	 *   +--------------------------------------------------------------+
3379	 * 8 | Special  |    CSS     | Status |  CMD    |  CSO   |  Length  |
3380	 *   +--------------------------------------------------------------+
3381	 *   63       48 47        36 35    32 31     24 23    16 15        0
3382	 *
3383	 * Extended Context Descriptor (DTYP=0x0) for TSO or checksum offload
3384	 *   63      48 47    40 39       32 31             16 15    8 7      0
3385	 *   +----------------------------------------------------------------+
3386	 * 0 |  TUCSE  | TUCS0  |   TUCSS   |     IPCSE       | IPCS0 | IPCSS |
3387	 *   +----------------------------------------------------------------+
3388	 * 8 |   MSS   | HDRLEN | RSV | STA | TUCMD | DTYP |      PAYLEN      |
3389	 *   +----------------------------------------------------------------+
3390	 *   63      48 47    40 39 36 35 32 31   24 23  20 19                0
3391	 *
3392	 * Extended Data Descriptor (DTYP=0x1)
3393	 *   +----------------------------------------------------------------+
3394	 * 0 |                     Buffer Address [63:0]                      |
3395	 *   +----------------------------------------------------------------+
3396	 * 8 | VLAN tag |  POPTS  | Rsvd | Status | Command | DTYP |  DTALEN  |
3397	 *   +----------------------------------------------------------------+
3398	 *   63       48 47     40 39  36 35    32 31     24 23  20 19        0
3399	 */
3400	pr_info("Tc[desc]     [Ce CoCsIpceCoS] [MssHlRSCm0Plen] [bi->dma       ] leng  ntw timestmp         bi->skb\n");
3401	pr_info("Td[desc]     [address 63:0  ] [VlaPoRSCm1Dlen] [bi->dma       ] leng  ntw timestmp         bi->skb\n");
3402
3403	if (!netif_msg_tx_done(adapter))
3404		goto rx_ring_summary;
3405
3406	for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
3407		struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*tx_ring, i);
3408		struct e1000_tx_buffer *buffer_info = &tx_ring->buffer_info[i];
3409		struct my_u { __le64 a; __le64 b; };
3410		struct my_u *u = (struct my_u *)tx_desc;
3411		const char *type;
3412
3413		if (i == tx_ring->next_to_use && i == tx_ring->next_to_clean)
3414			type = "NTC/U";
3415		else if (i == tx_ring->next_to_use)
3416			type = "NTU";
3417		else if (i == tx_ring->next_to_clean)
3418			type = "NTC";
3419		else
3420			type = "";
3421
3422		pr_info("T%c[0x%03X]    %016llX %016llX %016llX %04X  %3X %016llX %p %s\n",
3423			((le64_to_cpu(u->b) & (1<<20)) ? 'd' : 'c'), i,
3424			le64_to_cpu(u->a), le64_to_cpu(u->b),
3425			(u64)buffer_info->dma, buffer_info->length,
3426			buffer_info->next_to_watch,
3427			(u64)buffer_info->time_stamp, buffer_info->skb, type);
3428	}
3429
3430rx_ring_summary:
3431	/* receive dump */
3432	pr_info("\nRX Desc ring dump\n");
3433
3434	/* Legacy Receive Descriptor Format
3435	 *
3436	 * +-----------------------------------------------------+
3437	 * |                Buffer Address [63:0]                |
3438	 * +-----------------------------------------------------+
3439	 * | VLAN Tag | Errors | Status 0 | Packet csum | Length |
3440	 * +-----------------------------------------------------+
3441	 * 63       48 47    40 39      32 31         16 15      0
3442	 */
3443	pr_info("R[desc]      [address 63:0  ] [vl er S cks ln] [bi->dma       ] [bi->skb]\n");
3444
3445	if (!netif_msg_rx_status(adapter))
3446		goto exit;
3447
3448	for (i = 0; rx_ring->desc && (i < rx_ring->count); i++) {
3449		struct e1000_rx_desc *rx_desc = E1000_RX_DESC(*rx_ring, i);
3450		struct e1000_rx_buffer *buffer_info = &rx_ring->buffer_info[i];
3451		struct my_u { __le64 a; __le64 b; };
3452		struct my_u *u = (struct my_u *)rx_desc;
3453		const char *type;
3454
3455		if (i == rx_ring->next_to_use)
3456			type = "NTU";
3457		else if (i == rx_ring->next_to_clean)
3458			type = "NTC";
3459		else
3460			type = "";
3461
3462		pr_info("R[0x%03X]     %016llX %016llX %016llX %p %s\n",
3463			i, le64_to_cpu(u->a), le64_to_cpu(u->b),
3464			(u64)buffer_info->dma, buffer_info->rxbuf.data, type);
3465	} /* for */
3466
3467	/* dump the descriptor caches */
3468	/* rx */
3469	pr_info("Rx descriptor cache in 64bit format\n");
3470	for (i = 0x6000; i <= 0x63FF ; i += 0x10) {
3471		pr_info("R%04X: %08X|%08X %08X|%08X\n",
3472			i,
3473			readl(adapter->hw.hw_addr + i+4),
3474			readl(adapter->hw.hw_addr + i),
3475			readl(adapter->hw.hw_addr + i+12),
3476			readl(adapter->hw.hw_addr + i+8));
3477	}
3478	/* tx */
3479	pr_info("Tx descriptor cache in 64bit format\n");
3480	for (i = 0x7000; i <= 0x73FF ; i += 0x10) {
3481		pr_info("T%04X: %08X|%08X %08X|%08X\n",
3482			i,
3483			readl(adapter->hw.hw_addr + i+4),
3484			readl(adapter->hw.hw_addr + i),
3485			readl(adapter->hw.hw_addr + i+12),
3486			readl(adapter->hw.hw_addr + i+8));
3487	}
3488exit:
3489	return;
3490}
3491
3492/**
3493 * e1000_tx_timeout - Respond to a Tx Hang
3494 * @netdev: network interface device structure
3495 * @txqueue: number of the Tx queue that hung (unused)
3496 **/
3497static void e1000_tx_timeout(struct net_device *netdev, unsigned int __always_unused txqueue)
3498{
3499	struct e1000_adapter *adapter = netdev_priv(netdev);
3500
3501	/* Do the reset outside of interrupt context */
3502	adapter->tx_timeout_count++;
3503	schedule_work(&adapter->reset_task);
3504}
3505
3506static void e1000_reset_task(struct work_struct *work)
3507{
3508	struct e1000_adapter *adapter =
3509		container_of(work, struct e1000_adapter, reset_task);
3510
3511	e_err(drv, "Reset adapter\n");
3512	rtnl_lock();
3513	e1000_reinit_locked(adapter);
3514	rtnl_unlock();
3515}
3516
3517/**
3518 * e1000_change_mtu - Change the Maximum Transfer Unit
3519 * @netdev: network interface device structure
3520 * @new_mtu: new value for maximum frame size
3521 *
3522 * Returns 0 on success, negative on failure
3523 **/
3524static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
3525{
3526	struct e1000_adapter *adapter = netdev_priv(netdev);
3527	struct e1000_hw *hw = &adapter->hw;
3528	int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
3529
3530	/* Adapter-specific max frame size limits. */
3531	switch (hw->mac_type) {
3532	case e1000_undefined ... e1000_82542_rev2_1:
3533		if (max_frame > (ETH_FRAME_LEN + ETH_FCS_LEN)) {
3534			e_err(probe, "Jumbo Frames not supported.\n");
3535			return -EINVAL;
3536		}
3537		break;
3538	default:
3539		/* Capable of supporting up to MAX_JUMBO_FRAME_SIZE limit. */
3540		break;
3541	}
3542
3543	while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
3544		msleep(1);
3545	/* e1000_down has a dependency on max_frame_size */
3546	hw->max_frame_size = max_frame;
3547	if (netif_running(netdev)) {
3548		/* prevent buffers from being reallocated */
3549		adapter->alloc_rx_buf = e1000_alloc_dummy_rx_buffers;
3550		e1000_down(adapter);
3551	}
3552
3553	/* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
3554	 * means we reserve 2 more, this pushes us to allocate from the next
3555	 * larger slab size.
3556	 * i.e. RXBUFFER_2048 --> size-4096 slab
3557	 * however with the new *_jumbo_rx* routines, jumbo receives will use
3558	 * fragmented skbs
3559	 */
3560
3561	if (max_frame <= E1000_RXBUFFER_2048)
3562		adapter->rx_buffer_len = E1000_RXBUFFER_2048;
3563	else
3564#if (PAGE_SIZE >= E1000_RXBUFFER_16384)
3565		adapter->rx_buffer_len = E1000_RXBUFFER_16384;
3566#elif (PAGE_SIZE >= E1000_RXBUFFER_4096)
3567		adapter->rx_buffer_len = PAGE_SIZE;
3568#endif
3569
3570	/* adjust allocation if LPE protects us, and we aren't using SBP */
3571	if (!hw->tbi_compatibility_on &&
3572	    ((max_frame == (ETH_FRAME_LEN + ETH_FCS_LEN)) ||
3573	     (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE)))
3574		adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
3575
3576	netdev_dbg(netdev, "changing MTU from %d to %d\n",
3577		   netdev->mtu, new_mtu);
3578	WRITE_ONCE(netdev->mtu, new_mtu);
3579
3580	if (netif_running(netdev))
3581		e1000_up(adapter);
3582	else
3583		e1000_reset(adapter);
3584
3585	clear_bit(__E1000_RESETTING, &adapter->flags);
3586
3587	return 0;
3588}
3589
3590/**
3591 * e1000_update_stats - Update the board statistics counters
3592 * @adapter: board private structure
3593 **/
3594void e1000_update_stats(struct e1000_adapter *adapter)
3595{
3596	struct net_device *netdev = adapter->netdev;
3597	struct e1000_hw *hw = &adapter->hw;
3598	struct pci_dev *pdev = adapter->pdev;
3599	unsigned long flags;
3600	u16 phy_tmp;
3601
3602#define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
3603
3604	/* Prevent stats update while adapter is being reset, or if the pci
3605	 * connection is down.
3606	 */
3607	if (adapter->link_speed == 0)
3608		return;
3609	if (pci_channel_offline(pdev))
3610		return;
3611
3612	spin_lock_irqsave(&adapter->stats_lock, flags);
3613
3614	/* these counters are modified from e1000_tbi_adjust_stats,
3615	 * called from the interrupt context, so they must only
3616	 * be written while holding adapter->stats_lock
3617	 */
3618
3619	adapter->stats.crcerrs += er32(CRCERRS);
3620	adapter->stats.gprc += er32(GPRC);
3621	adapter->stats.gorcl += er32(GORCL);
3622	adapter->stats.gorch += er32(GORCH);
3623	adapter->stats.bprc += er32(BPRC);
3624	adapter->stats.mprc += er32(MPRC);
3625	adapter->stats.roc += er32(ROC);
3626
3627	adapter->stats.prc64 += er32(PRC64);
3628	adapter->stats.prc127 += er32(PRC127);
3629	adapter->stats.prc255 += er32(PRC255);
3630	adapter->stats.prc511 += er32(PRC511);
3631	adapter->stats.prc1023 += er32(PRC1023);
3632	adapter->stats.prc1522 += er32(PRC1522);
3633
3634	adapter->stats.symerrs += er32(SYMERRS);
3635	adapter->stats.mpc += er32(MPC);
3636	adapter->stats.scc += er32(SCC);
3637	adapter->stats.ecol += er32(ECOL);
3638	adapter->stats.mcc += er32(MCC);
3639	adapter->stats.latecol += er32(LATECOL);
3640	adapter->stats.dc += er32(DC);
3641	adapter->stats.sec += er32(SEC);
3642	adapter->stats.rlec += er32(RLEC);
3643	adapter->stats.xonrxc += er32(XONRXC);
3644	adapter->stats.xontxc += er32(XONTXC);
3645	adapter->stats.xoffrxc += er32(XOFFRXC);
3646	adapter->stats.xofftxc += er32(XOFFTXC);
3647	adapter->stats.fcruc += er32(FCRUC);
3648	adapter->stats.gptc += er32(GPTC);
3649	adapter->stats.gotcl += er32(GOTCL);
3650	adapter->stats.gotch += er32(GOTCH);
3651	adapter->stats.rnbc += er32(RNBC);
3652	adapter->stats.ruc += er32(RUC);
3653	adapter->stats.rfc += er32(RFC);
3654	adapter->stats.rjc += er32(RJC);
3655	adapter->stats.torl += er32(TORL);
3656	adapter->stats.torh += er32(TORH);
3657	adapter->stats.totl += er32(TOTL);
3658	adapter->stats.toth += er32(TOTH);
3659	adapter->stats.tpr += er32(TPR);
3660
3661	adapter->stats.ptc64 += er32(PTC64);
3662	adapter->stats.ptc127 += er32(PTC127);
3663	adapter->stats.ptc255 += er32(PTC255);
3664	adapter->stats.ptc511 += er32(PTC511);
3665	adapter->stats.ptc1023 += er32(PTC1023);
3666	adapter->stats.ptc1522 += er32(PTC1522);
3667
3668	adapter->stats.mptc += er32(MPTC);
3669	adapter->stats.bptc += er32(BPTC);
3670
3671	/* used for adaptive IFS */
3672
3673	hw->tx_packet_delta = er32(TPT);
3674	adapter->stats.tpt += hw->tx_packet_delta;
3675	hw->collision_delta = er32(COLC);
3676	adapter->stats.colc += hw->collision_delta;
3677
3678	if (hw->mac_type >= e1000_82543) {
3679		adapter->stats.algnerrc += er32(ALGNERRC);
3680		adapter->stats.rxerrc += er32(RXERRC);
3681		adapter->stats.tncrs += er32(TNCRS);
3682		adapter->stats.cexterr += er32(CEXTERR);
3683		adapter->stats.tsctc += er32(TSCTC);
3684		adapter->stats.tsctfc += er32(TSCTFC);
3685	}
3686
3687	/* Fill out the OS statistics structure */
3688	netdev->stats.multicast = adapter->stats.mprc;
3689	netdev->stats.collisions = adapter->stats.colc;
3690
3691	/* Rx Errors */
3692
3693	/* RLEC on some newer hardware can be incorrect so build
3694	 * our own version based on RUC and ROC
3695	 */
3696	netdev->stats.rx_errors = adapter->stats.rxerrc +
3697		adapter->stats.crcerrs + adapter->stats.algnerrc +
3698		adapter->stats.ruc + adapter->stats.roc +
3699		adapter->stats.cexterr;
3700	adapter->stats.rlerrc = adapter->stats.ruc + adapter->stats.roc;
3701	netdev->stats.rx_length_errors = adapter->stats.rlerrc;
3702	netdev->stats.rx_crc_errors = adapter->stats.crcerrs;
3703	netdev->stats.rx_frame_errors = adapter->stats.algnerrc;
3704	netdev->stats.rx_missed_errors = adapter->stats.mpc;
3705
3706	/* Tx Errors */
3707	adapter->stats.txerrc = adapter->stats.ecol + adapter->stats.latecol;
3708	netdev->stats.tx_errors = adapter->stats.txerrc;
3709	netdev->stats.tx_aborted_errors = adapter->stats.ecol;
3710	netdev->stats.tx_window_errors = adapter->stats.latecol;
3711	netdev->stats.tx_carrier_errors = adapter->stats.tncrs;
3712	if (hw->bad_tx_carr_stats_fd &&
3713	    adapter->link_duplex == FULL_DUPLEX) {
3714		netdev->stats.tx_carrier_errors = 0;
3715		adapter->stats.tncrs = 0;
3716	}
3717
3718	/* Tx Dropped needs to be maintained elsewhere */
3719
3720	/* Phy Stats */
3721	if (hw->media_type == e1000_media_type_copper) {
3722		if ((adapter->link_speed == SPEED_1000) &&
3723		   (!e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
3724			phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
3725			adapter->phy_stats.idle_errors += phy_tmp;
3726		}
3727
3728		if ((hw->mac_type <= e1000_82546) &&
3729		   (hw->phy_type == e1000_phy_m88) &&
3730		   !e1000_read_phy_reg(hw, M88E1000_RX_ERR_CNTR, &phy_tmp))
3731			adapter->phy_stats.receive_errors += phy_tmp;
3732	}
3733
3734	/* Management Stats */
3735	if (hw->has_smbus) {
3736		adapter->stats.mgptc += er32(MGTPTC);
3737		adapter->stats.mgprc += er32(MGTPRC);
3738		adapter->stats.mgpdc += er32(MGTPDC);
3739	}
3740
3741	spin_unlock_irqrestore(&adapter->stats_lock, flags);
3742}
3743
3744/**
3745 * e1000_intr - Interrupt Handler
3746 * @irq: interrupt number
3747 * @data: pointer to a network interface device structure
3748 **/
3749static irqreturn_t e1000_intr(int irq, void *data)
3750{
3751	struct net_device *netdev = data;
3752	struct e1000_adapter *adapter = netdev_priv(netdev);
3753	struct e1000_hw *hw = &adapter->hw;
3754	u32 icr = er32(ICR);
3755
3756	if (unlikely((!icr)))
3757		return IRQ_NONE;  /* Not our interrupt */
3758
3759	/* we might have caused the interrupt, but the above
3760	 * read cleared it, and just in case the driver is
3761	 * down there is nothing to do so return handled
3762	 */
3763	if (unlikely(test_bit(__E1000_DOWN, &adapter->flags)))
3764		return IRQ_HANDLED;
3765
3766	if (unlikely(icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))) {
3767		hw->get_link_status = 1;
3768		/* guard against interrupt when we're going down */
3769		if (!test_bit(__E1000_DOWN, &adapter->flags))
3770			schedule_delayed_work(&adapter->watchdog_task, 1);
3771	}
3772
3773	/* disable interrupts, without the synchronize_irq bit */
3774	ew32(IMC, ~0);
3775	E1000_WRITE_FLUSH();
3776
3777	if (likely(napi_schedule_prep(&adapter->napi))) {
3778		adapter->total_tx_bytes = 0;
3779		adapter->total_tx_packets = 0;
3780		adapter->total_rx_bytes = 0;
3781		adapter->total_rx_packets = 0;
3782		__napi_schedule(&adapter->napi);
3783	} else {
3784		/* this really should not happen! if it does it is basically a
3785		 * bug, but not a hard error, so enable ints and continue
3786		 */
3787		if (!test_bit(__E1000_DOWN, &adapter->flags))
3788			e1000_irq_enable(adapter);
3789	}
3790
3791	return IRQ_HANDLED;
3792}
3793
3794/**
3795 * e1000_clean - NAPI Rx polling callback
3796 * @napi: napi struct containing references to driver info
3797 * @budget: budget given to driver for receive packets
3798 **/
3799static int e1000_clean(struct napi_struct *napi, int budget)
3800{
3801	struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter,
3802						     napi);
3803	int tx_clean_complete = 0, work_done = 0;
3804
3805	tx_clean_complete = e1000_clean_tx_irq(adapter, &adapter->tx_ring[0]);
3806
3807	adapter->clean_rx(adapter, &adapter->rx_ring[0], &work_done, budget);
3808
3809	if (!tx_clean_complete || work_done == budget)
3810		return budget;
3811
3812	/* Exit the polling mode, but don't re-enable interrupts if stack might
3813	 * poll us due to busy-polling
3814	 */
3815	if (likely(napi_complete_done(napi, work_done))) {
3816		if (likely(adapter->itr_setting & 3))
3817			e1000_set_itr(adapter);
3818		if (!test_bit(__E1000_DOWN, &adapter->flags))
3819			e1000_irq_enable(adapter);
3820	}
3821
3822	return work_done;
3823}
3824
3825/**
3826 * e1000_clean_tx_irq - Reclaim resources after transmit completes
3827 * @adapter: board private structure
3828 * @tx_ring: ring to clean
3829 **/
3830static bool e1000_clean_tx_irq(struct e1000_adapter *adapter,
3831			       struct e1000_tx_ring *tx_ring)
3832{
3833	struct e1000_hw *hw = &adapter->hw;
3834	struct net_device *netdev = adapter->netdev;
3835	struct e1000_tx_desc *tx_desc, *eop_desc;
3836	struct e1000_tx_buffer *buffer_info;
3837	unsigned int i, eop;
3838	unsigned int count = 0;
3839	unsigned int total_tx_bytes = 0, total_tx_packets = 0;
3840	unsigned int bytes_compl = 0, pkts_compl = 0;
3841
3842	i = tx_ring->next_to_clean;
3843	eop = tx_ring->buffer_info[i].next_to_watch;
3844	eop_desc = E1000_TX_DESC(*tx_ring, eop);
3845
3846	while ((eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) &&
3847	       (count < tx_ring->count)) {
3848		bool cleaned = false;
3849		dma_rmb();	/* read buffer_info after eop_desc */
3850		for ( ; !cleaned; count++) {
3851			tx_desc = E1000_TX_DESC(*tx_ring, i);
3852			buffer_info = &tx_ring->buffer_info[i];
3853			cleaned = (i == eop);
3854
3855			if (cleaned) {
3856				total_tx_packets += buffer_info->segs;
3857				total_tx_bytes += buffer_info->bytecount;
3858				if (buffer_info->skb) {
3859					bytes_compl += buffer_info->skb->len;
3860					pkts_compl++;
3861				}
3862
3863			}
3864			e1000_unmap_and_free_tx_resource(adapter, buffer_info,
3865							 64);
3866			tx_desc->upper.data = 0;
3867
3868			if (unlikely(++i == tx_ring->count))
3869				i = 0;
3870		}
3871
3872		eop = tx_ring->buffer_info[i].next_to_watch;
3873		eop_desc = E1000_TX_DESC(*tx_ring, eop);
3874	}
3875
3876	/* Synchronize with E1000_DESC_UNUSED called from e1000_xmit_frame,
3877	 * which will reuse the cleaned buffers.
3878	 */
3879	smp_store_release(&tx_ring->next_to_clean, i);
3880
3881	netdev_completed_queue(netdev, pkts_compl, bytes_compl);
3882
3883#define TX_WAKE_THRESHOLD 32
3884	if (unlikely(count && netif_carrier_ok(netdev) &&
3885		     E1000_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD)) {
3886		/* Make sure that anybody stopping the queue after this
3887		 * sees the new next_to_clean.
3888		 */
3889		smp_mb();
3890
3891		if (netif_queue_stopped(netdev) &&
3892		    !(test_bit(__E1000_DOWN, &adapter->flags))) {
3893			netif_wake_queue(netdev);
3894			++adapter->restart_queue;
3895		}
3896	}
3897
3898	if (adapter->detect_tx_hung) {
3899		/* Detect a transmit hang in hardware, this serializes the
3900		 * check with the clearing of time_stamp and movement of i
3901		 */
3902		adapter->detect_tx_hung = false;
3903		if (tx_ring->buffer_info[eop].time_stamp &&
3904		    time_after(jiffies, tx_ring->buffer_info[eop].time_stamp +
3905			       (adapter->tx_timeout_factor * HZ)) &&
3906		    !(er32(STATUS) & E1000_STATUS_TXOFF)) {
3907
3908			/* detected Tx unit hang */
3909			e_err(drv, "Detected Tx Unit Hang\n"
3910			      "  Tx Queue             <%lu>\n"
3911			      "  TDH                  <%x>\n"
3912			      "  TDT                  <%x>\n"
3913			      "  next_to_use          <%x>\n"
3914			      "  next_to_clean        <%x>\n"
3915			      "buffer_info[next_to_clean]\n"
3916			      "  time_stamp           <%lx>\n"
3917			      "  next_to_watch        <%x>\n"
3918			      "  jiffies              <%lx>\n"
3919			      "  next_to_watch.status <%x>\n",
3920				(unsigned long)(tx_ring - adapter->tx_ring),
3921				readl(hw->hw_addr + tx_ring->tdh),
3922				readl(hw->hw_addr + tx_ring->tdt),
3923				tx_ring->next_to_use,
3924				tx_ring->next_to_clean,
3925				tx_ring->buffer_info[eop].time_stamp,
3926				eop,
3927				jiffies,
3928				eop_desc->upper.fields.status);
3929			e1000_dump(adapter);
3930			netif_stop_queue(netdev);
3931		}
3932	}
3933	adapter->total_tx_bytes += total_tx_bytes;
3934	adapter->total_tx_packets += total_tx_packets;
3935	netdev->stats.tx_bytes += total_tx_bytes;
3936	netdev->stats.tx_packets += total_tx_packets;
3937	return count < tx_ring->count;
3938}
3939
3940/**
3941 * e1000_rx_checksum - Receive Checksum Offload for 82543
3942 * @adapter:     board private structure
3943 * @status_err:  receive descriptor status and error fields
3944 * @csum:        receive descriptor csum field
3945 * @skb:         socket buffer with received data
3946 **/
3947static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
3948			      u32 csum, struct sk_buff *skb)
3949{
3950	struct e1000_hw *hw = &adapter->hw;
3951	u16 status = (u16)status_err;
3952	u8 errors = (u8)(status_err >> 24);
3953
3954	skb_checksum_none_assert(skb);
3955
3956	/* 82543 or newer only */
3957	if (unlikely(hw->mac_type < e1000_82543))
3958		return;
3959	/* Ignore Checksum bit is set */
3960	if (unlikely(status & E1000_RXD_STAT_IXSM))
3961		return;
3962	/* TCP/UDP checksum error bit is set */
3963	if (unlikely(errors & E1000_RXD_ERR_TCPE)) {
3964		/* let the stack verify checksum errors */
3965		adapter->hw_csum_err++;
3966		return;
3967	}
3968	/* TCP/UDP Checksum has not been calculated */
3969	if (!(status & E1000_RXD_STAT_TCPCS))
3970		return;
3971
3972	/* It must be a TCP or UDP packet with a valid checksum */
3973	if (likely(status & E1000_RXD_STAT_TCPCS)) {
3974		/* TCP checksum is good */
3975		skb->ip_summed = CHECKSUM_UNNECESSARY;
3976	}
3977	adapter->hw_csum_good++;
3978}
3979
3980/**
3981 * e1000_consume_page - helper function for jumbo Rx path
3982 * @bi: software descriptor shadow data
3983 * @skb: skb being modified
3984 * @length: length of data being added
3985 **/
3986static void e1000_consume_page(struct e1000_rx_buffer *bi, struct sk_buff *skb,
3987			       u16 length)
3988{
3989	bi->rxbuf.page = NULL;
3990	skb->len += length;
3991	skb->data_len += length;
3992	skb->truesize += PAGE_SIZE;
3993}
3994
3995/**
3996 * e1000_receive_skb - helper function to handle rx indications
3997 * @adapter: board private structure
3998 * @status: descriptor status field as written by hardware
3999 * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
4000 * @skb: pointer to sk_buff to be indicated to stack
4001 */
4002static void e1000_receive_skb(struct e1000_adapter *adapter, u8 status,
4003			      __le16 vlan, struct sk_buff *skb)
4004{
4005	skb->protocol = eth_type_trans(skb, adapter->netdev);
4006
4007	if (status & E1000_RXD_STAT_VP) {
4008		u16 vid = le16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK;
4009
4010		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
4011	}
4012	napi_gro_receive(&adapter->napi, skb);
4013}
4014
4015/**
4016 * e1000_tbi_adjust_stats
4017 * @hw: Struct containing variables accessed by shared code
4018 * @stats: point to stats struct
4019 * @frame_len: The length of the frame in question
4020 * @mac_addr: The Ethernet destination address of the frame in question
4021 *
4022 * Adjusts the statistic counters when a frame is accepted by TBI_ACCEPT
4023 */
4024static void e1000_tbi_adjust_stats(struct e1000_hw *hw,
4025				   struct e1000_hw_stats *stats,
4026				   u32 frame_len, const u8 *mac_addr)
4027{
4028	u64 carry_bit;
4029
4030	/* First adjust the frame length. */
4031	frame_len--;
4032	/* We need to adjust the statistics counters, since the hardware
4033	 * counters overcount this packet as a CRC error and undercount
4034	 * the packet as a good packet
4035	 */
4036	/* This packet should not be counted as a CRC error. */
4037	stats->crcerrs--;
4038	/* This packet does count as a Good Packet Received. */
4039	stats->gprc++;
4040
4041	/* Adjust the Good Octets received counters */
4042	carry_bit = 0x80000000 & stats->gorcl;
4043	stats->gorcl += frame_len;
4044	/* If the high bit of Gorcl (the low 32 bits of the Good Octets
4045	 * Received Count) was one before the addition,
4046	 * AND it is zero after, then we lost the carry out,
4047	 * need to add one to Gorch (Good Octets Received Count High).
4048	 * This could be simplified if all environments supported
4049	 * 64-bit integers.
4050	 */
4051	if (carry_bit && ((stats->gorcl & 0x80000000) == 0))
4052		stats->gorch++;
4053	/* Is this a broadcast or multicast?  Check broadcast first,
4054	 * since the test for a multicast frame will test positive on
4055	 * a broadcast frame.
4056	 */
4057	if (is_broadcast_ether_addr(mac_addr))
4058		stats->bprc++;
4059	else if (is_multicast_ether_addr(mac_addr))
4060		stats->mprc++;
4061
4062	if (frame_len == hw->max_frame_size) {
4063		/* In this case, the hardware has overcounted the number of
4064		 * oversize frames.
4065		 */
4066		if (stats->roc > 0)
4067			stats->roc--;
4068	}
4069
4070	/* Adjust the bin counters when the extra byte put the frame in the
4071	 * wrong bin. Remember that the frame_len was adjusted above.
4072	 */
4073	if (frame_len == 64) {
4074		stats->prc64++;
4075		stats->prc127--;
4076	} else if (frame_len == 127) {
4077		stats->prc127++;
4078		stats->prc255--;
4079	} else if (frame_len == 255) {
4080		stats->prc255++;
4081		stats->prc511--;
4082	} else if (frame_len == 511) {
4083		stats->prc511++;
4084		stats->prc1023--;
4085	} else if (frame_len == 1023) {
4086		stats->prc1023++;
4087		stats->prc1522--;
4088	} else if (frame_len == 1522) {
4089		stats->prc1522++;
4090	}
4091}
4092
4093static bool e1000_tbi_should_accept(struct e1000_adapter *adapter,
4094				    u8 status, u8 errors,
4095				    u32 length, const u8 *data)
4096{
4097	struct e1000_hw *hw = &adapter->hw;
4098	u8 last_byte = *(data + length - 1);
4099
4100	if (TBI_ACCEPT(hw, status, errors, length, last_byte)) {
4101		unsigned long irq_flags;
4102
4103		spin_lock_irqsave(&adapter->stats_lock, irq_flags);
4104		e1000_tbi_adjust_stats(hw, &adapter->stats, length, data);
4105		spin_unlock_irqrestore(&adapter->stats_lock, irq_flags);
4106
4107		return true;
4108	}
4109
4110	return false;
4111}
4112
4113static struct sk_buff *e1000_alloc_rx_skb(struct e1000_adapter *adapter,
4114					  unsigned int bufsz)
4115{
4116	struct sk_buff *skb = napi_alloc_skb(&adapter->napi, bufsz);
4117
4118	if (unlikely(!skb))
4119		adapter->alloc_rx_buff_failed++;
4120	return skb;
4121}
4122
4123/**
4124 * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
4125 * @adapter: board private structure
4126 * @rx_ring: ring to clean
4127 * @work_done: amount of napi work completed this call
4128 * @work_to_do: max amount of work allowed for this call to do
4129 *
4130 * the return value indicates whether actual cleaning was done, there
4131 * is no guarantee that everything was cleaned
4132 */
4133static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter,
4134				     struct e1000_rx_ring *rx_ring,
4135				     int *work_done, int work_to_do)
4136{
4137	struct net_device *netdev = adapter->netdev;
4138	struct pci_dev *pdev = adapter->pdev;
4139	struct e1000_rx_desc *rx_desc, *next_rxd;
4140	struct e1000_rx_buffer *buffer_info, *next_buffer;
4141	u32 length;
4142	unsigned int i;
4143	int cleaned_count = 0;
4144	bool cleaned = false;
4145	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
4146
4147	i = rx_ring->next_to_clean;
4148	rx_desc = E1000_RX_DESC(*rx_ring, i);
4149	buffer_info = &rx_ring->buffer_info[i];
4150
4151	while (rx_desc->status & E1000_RXD_STAT_DD) {
4152		struct sk_buff *skb;
4153		u8 status;
4154
4155		if (*work_done >= work_to_do)
4156			break;
4157		(*work_done)++;
4158		dma_rmb(); /* read descriptor and rx_buffer_info after status DD */
4159
4160		status = rx_desc->status;
4161
4162		if (++i == rx_ring->count)
4163			i = 0;
4164
4165		next_rxd = E1000_RX_DESC(*rx_ring, i);
4166		prefetch(next_rxd);
4167
4168		next_buffer = &rx_ring->buffer_info[i];
4169
4170		cleaned = true;
4171		cleaned_count++;
4172		dma_unmap_page(&pdev->dev, buffer_info->dma,
4173			       adapter->rx_buffer_len, DMA_FROM_DEVICE);
4174		buffer_info->dma = 0;
4175
4176		length = le16_to_cpu(rx_desc->length);
4177
4178		/* errors is only valid for DD + EOP descriptors */
4179		if (unlikely((status & E1000_RXD_STAT_EOP) &&
4180		    (rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK))) {
4181			u8 *mapped = page_address(buffer_info->rxbuf.page);
4182
4183			if (e1000_tbi_should_accept(adapter, status,
4184						    rx_desc->errors,
4185						    length, mapped)) {
4186				length--;
4187			} else if (netdev->features & NETIF_F_RXALL) {
4188				goto process_skb;
4189			} else {
4190				/* an error means any chain goes out the window
4191				 * too
4192				 */
4193				dev_kfree_skb(rx_ring->rx_skb_top);
4194				rx_ring->rx_skb_top = NULL;
4195				goto next_desc;
4196			}
4197		}
4198
4199#define rxtop rx_ring->rx_skb_top
4200process_skb:
4201		if (!(status & E1000_RXD_STAT_EOP)) {
4202			/* this descriptor is only the beginning (or middle) */
4203			if (!rxtop) {
4204				/* this is the beginning of a chain */
4205				rxtop = napi_get_frags(&adapter->napi);
4206				if (!rxtop)
4207					break;
4208
4209				skb_fill_page_desc(rxtop, 0,
4210						   buffer_info->rxbuf.page,
4211						   0, length);
4212			} else {
4213				/* this is the middle of a chain */
4214				skb_fill_page_desc(rxtop,
4215				    skb_shinfo(rxtop)->nr_frags,
4216				    buffer_info->rxbuf.page, 0, length);
4217			}
4218			e1000_consume_page(buffer_info, rxtop, length);
4219			goto next_desc;
4220		} else {
4221			if (rxtop) {
4222				/* end of the chain */
4223				skb_fill_page_desc(rxtop,
4224				    skb_shinfo(rxtop)->nr_frags,
4225				    buffer_info->rxbuf.page, 0, length);
4226				skb = rxtop;
4227				rxtop = NULL;
4228				e1000_consume_page(buffer_info, skb, length);
4229			} else {
4230				struct page *p;
4231				/* no chain, got EOP, this buf is the packet
4232				 * copybreak to save the put_page/alloc_page
4233				 */
4234				p = buffer_info->rxbuf.page;
4235				if (length <= copybreak) {
 
 
4236					if (likely(!(netdev->features & NETIF_F_RXFCS)))
4237						length -= 4;
4238					skb = e1000_alloc_rx_skb(adapter,
4239								 length);
4240					if (!skb)
4241						break;
4242
4243					memcpy(skb_tail_pointer(skb),
4244					       page_address(p), length);
4245
 
4246					/* re-use the page, so don't erase
4247					 * buffer_info->rxbuf.page
4248					 */
4249					skb_put(skb, length);
4250					e1000_rx_checksum(adapter,
4251							  status | rx_desc->errors << 24,
4252							  le16_to_cpu(rx_desc->csum), skb);
4253
4254					total_rx_bytes += skb->len;
4255					total_rx_packets++;
4256
4257					e1000_receive_skb(adapter, status,
4258							  rx_desc->special, skb);
4259					goto next_desc;
4260				} else {
4261					skb = napi_get_frags(&adapter->napi);
4262					if (!skb) {
4263						adapter->alloc_rx_buff_failed++;
4264						break;
4265					}
4266					skb_fill_page_desc(skb, 0, p, 0,
4267							   length);
4268					e1000_consume_page(buffer_info, skb,
4269							   length);
4270				}
4271			}
4272		}
4273
4274		/* Receive Checksum Offload XXX recompute due to CRC strip? */
4275		e1000_rx_checksum(adapter,
4276				  (u32)(status) |
4277				  ((u32)(rx_desc->errors) << 24),
4278				  le16_to_cpu(rx_desc->csum), skb);
4279
4280		total_rx_bytes += (skb->len - 4); /* don't count FCS */
4281		if (likely(!(netdev->features & NETIF_F_RXFCS)))
4282			pskb_trim(skb, skb->len - 4);
4283		total_rx_packets++;
4284
4285		if (status & E1000_RXD_STAT_VP) {
4286			__le16 vlan = rx_desc->special;
4287			u16 vid = le16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK;
4288
4289			__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
4290		}
4291
4292		napi_gro_frags(&adapter->napi);
4293
4294next_desc:
4295		rx_desc->status = 0;
4296
4297		/* return some buffers to hardware, one at a time is too slow */
4298		if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
4299			adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4300			cleaned_count = 0;
4301		}
4302
4303		/* use prefetched values */
4304		rx_desc = next_rxd;
4305		buffer_info = next_buffer;
4306	}
4307	rx_ring->next_to_clean = i;
4308
4309	cleaned_count = E1000_DESC_UNUSED(rx_ring);
4310	if (cleaned_count)
4311		adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4312
4313	adapter->total_rx_packets += total_rx_packets;
4314	adapter->total_rx_bytes += total_rx_bytes;
4315	netdev->stats.rx_bytes += total_rx_bytes;
4316	netdev->stats.rx_packets += total_rx_packets;
4317	return cleaned;
4318}
4319
4320/* this should improve performance for small packets with large amounts
4321 * of reassembly being done in the stack
4322 */
4323static struct sk_buff *e1000_copybreak(struct e1000_adapter *adapter,
4324				       struct e1000_rx_buffer *buffer_info,
4325				       u32 length, const void *data)
4326{
4327	struct sk_buff *skb;
4328
4329	if (length > copybreak)
4330		return NULL;
4331
4332	skb = e1000_alloc_rx_skb(adapter, length);
4333	if (!skb)
4334		return NULL;
4335
4336	dma_sync_single_for_cpu(&adapter->pdev->dev, buffer_info->dma,
4337				length, DMA_FROM_DEVICE);
4338
4339	skb_put_data(skb, data, length);
4340
4341	return skb;
4342}
4343
4344/**
4345 * e1000_clean_rx_irq - Send received data up the network stack; legacy
4346 * @adapter: board private structure
4347 * @rx_ring: ring to clean
4348 * @work_done: amount of napi work completed this call
4349 * @work_to_do: max amount of work allowed for this call to do
4350 */
4351static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
4352			       struct e1000_rx_ring *rx_ring,
4353			       int *work_done, int work_to_do)
4354{
4355	struct net_device *netdev = adapter->netdev;
4356	struct pci_dev *pdev = adapter->pdev;
4357	struct e1000_rx_desc *rx_desc, *next_rxd;
4358	struct e1000_rx_buffer *buffer_info, *next_buffer;
4359	u32 length;
4360	unsigned int i;
4361	int cleaned_count = 0;
4362	bool cleaned = false;
4363	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
4364
4365	i = rx_ring->next_to_clean;
4366	rx_desc = E1000_RX_DESC(*rx_ring, i);
4367	buffer_info = &rx_ring->buffer_info[i];
4368
4369	while (rx_desc->status & E1000_RXD_STAT_DD) {
4370		struct sk_buff *skb;
4371		u8 *data;
4372		u8 status;
4373
4374		if (*work_done >= work_to_do)
4375			break;
4376		(*work_done)++;
4377		dma_rmb(); /* read descriptor and rx_buffer_info after status DD */
4378
4379		status = rx_desc->status;
4380		length = le16_to_cpu(rx_desc->length);
4381
4382		data = buffer_info->rxbuf.data;
4383		prefetch(data);
4384		skb = e1000_copybreak(adapter, buffer_info, length, data);
4385		if (!skb) {
4386			unsigned int frag_len = e1000_frag_len(adapter);
4387
4388			skb = napi_build_skb(data - E1000_HEADROOM, frag_len);
4389			if (!skb) {
4390				adapter->alloc_rx_buff_failed++;
4391				break;
4392			}
4393
4394			skb_reserve(skb, E1000_HEADROOM);
4395			dma_unmap_single(&pdev->dev, buffer_info->dma,
4396					 adapter->rx_buffer_len,
4397					 DMA_FROM_DEVICE);
4398			buffer_info->dma = 0;
4399			buffer_info->rxbuf.data = NULL;
4400		}
4401
4402		if (++i == rx_ring->count)
4403			i = 0;
4404
4405		next_rxd = E1000_RX_DESC(*rx_ring, i);
4406		prefetch(next_rxd);
4407
4408		next_buffer = &rx_ring->buffer_info[i];
4409
4410		cleaned = true;
4411		cleaned_count++;
4412
4413		/* !EOP means multiple descriptors were used to store a single
4414		 * packet, if thats the case we need to toss it.  In fact, we
4415		 * to toss every packet with the EOP bit clear and the next
4416		 * frame that _does_ have the EOP bit set, as it is by
4417		 * definition only a frame fragment
4418		 */
4419		if (unlikely(!(status & E1000_RXD_STAT_EOP)))
4420			adapter->discarding = true;
4421
4422		if (adapter->discarding) {
4423			/* All receives must fit into a single buffer */
4424			netdev_dbg(netdev, "Receive packet consumed multiple buffers\n");
4425			dev_kfree_skb(skb);
4426			if (status & E1000_RXD_STAT_EOP)
4427				adapter->discarding = false;
4428			goto next_desc;
4429		}
4430
4431		if (unlikely(rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK)) {
4432			if (e1000_tbi_should_accept(adapter, status,
4433						    rx_desc->errors,
4434						    length, data)) {
4435				length--;
4436			} else if (netdev->features & NETIF_F_RXALL) {
4437				goto process_skb;
4438			} else {
4439				dev_kfree_skb(skb);
4440				goto next_desc;
4441			}
4442		}
4443
4444process_skb:
4445		total_rx_bytes += (length - 4); /* don't count FCS */
4446		total_rx_packets++;
4447
4448		if (likely(!(netdev->features & NETIF_F_RXFCS)))
4449			/* adjust length to remove Ethernet CRC, this must be
4450			 * done after the TBI_ACCEPT workaround above
4451			 */
4452			length -= 4;
4453
4454		if (buffer_info->rxbuf.data == NULL)
4455			skb_put(skb, length);
4456		else /* copybreak skb */
4457			skb_trim(skb, length);
4458
4459		/* Receive Checksum Offload */
4460		e1000_rx_checksum(adapter,
4461				  (u32)(status) |
4462				  ((u32)(rx_desc->errors) << 24),
4463				  le16_to_cpu(rx_desc->csum), skb);
4464
4465		e1000_receive_skb(adapter, status, rx_desc->special, skb);
4466
4467next_desc:
4468		rx_desc->status = 0;
4469
4470		/* return some buffers to hardware, one at a time is too slow */
4471		if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
4472			adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4473			cleaned_count = 0;
4474		}
4475
4476		/* use prefetched values */
4477		rx_desc = next_rxd;
4478		buffer_info = next_buffer;
4479	}
4480	rx_ring->next_to_clean = i;
4481
4482	cleaned_count = E1000_DESC_UNUSED(rx_ring);
4483	if (cleaned_count)
4484		adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4485
4486	adapter->total_rx_packets += total_rx_packets;
4487	adapter->total_rx_bytes += total_rx_bytes;
4488	netdev->stats.rx_bytes += total_rx_bytes;
4489	netdev->stats.rx_packets += total_rx_packets;
4490	return cleaned;
4491}
4492
4493/**
4494 * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
4495 * @adapter: address of board private structure
4496 * @rx_ring: pointer to receive ring structure
4497 * @cleaned_count: number of buffers to allocate this pass
4498 **/
4499static void
4500e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter,
4501			     struct e1000_rx_ring *rx_ring, int cleaned_count)
4502{
4503	struct pci_dev *pdev = adapter->pdev;
4504	struct e1000_rx_desc *rx_desc;
4505	struct e1000_rx_buffer *buffer_info;
4506	unsigned int i;
4507
4508	i = rx_ring->next_to_use;
4509	buffer_info = &rx_ring->buffer_info[i];
4510
4511	while (cleaned_count--) {
4512		/* allocate a new page if necessary */
4513		if (!buffer_info->rxbuf.page) {
4514			buffer_info->rxbuf.page = alloc_page(GFP_ATOMIC);
4515			if (unlikely(!buffer_info->rxbuf.page)) {
4516				adapter->alloc_rx_buff_failed++;
4517				break;
4518			}
4519		}
4520
4521		if (!buffer_info->dma) {
4522			buffer_info->dma = dma_map_page(&pdev->dev,
4523							buffer_info->rxbuf.page, 0,
4524							adapter->rx_buffer_len,
4525							DMA_FROM_DEVICE);
4526			if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
4527				put_page(buffer_info->rxbuf.page);
4528				buffer_info->rxbuf.page = NULL;
4529				buffer_info->dma = 0;
4530				adapter->alloc_rx_buff_failed++;
4531				break;
4532			}
4533		}
4534
4535		rx_desc = E1000_RX_DESC(*rx_ring, i);
4536		rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4537
4538		if (unlikely(++i == rx_ring->count))
4539			i = 0;
4540		buffer_info = &rx_ring->buffer_info[i];
4541	}
4542
4543	if (likely(rx_ring->next_to_use != i)) {
4544		rx_ring->next_to_use = i;
4545		if (unlikely(i-- == 0))
4546			i = (rx_ring->count - 1);
4547
4548		/* Force memory writes to complete before letting h/w
4549		 * know there are new descriptors to fetch.  (Only
4550		 * applicable for weak-ordered memory model archs,
4551		 * such as IA-64).
4552		 */
4553		dma_wmb();
4554		writel(i, adapter->hw.hw_addr + rx_ring->rdt);
4555	}
4556}
4557
4558/**
4559 * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
4560 * @adapter: address of board private structure
4561 * @rx_ring: pointer to ring struct
4562 * @cleaned_count: number of new Rx buffers to try to allocate
4563 **/
4564static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
4565				   struct e1000_rx_ring *rx_ring,
4566				   int cleaned_count)
4567{
4568	struct e1000_hw *hw = &adapter->hw;
4569	struct pci_dev *pdev = adapter->pdev;
4570	struct e1000_rx_desc *rx_desc;
4571	struct e1000_rx_buffer *buffer_info;
4572	unsigned int i;
4573	unsigned int bufsz = adapter->rx_buffer_len;
4574
4575	i = rx_ring->next_to_use;
4576	buffer_info = &rx_ring->buffer_info[i];
4577
4578	while (cleaned_count--) {
4579		void *data;
4580
4581		if (buffer_info->rxbuf.data)
4582			goto skip;
4583
4584		data = e1000_alloc_frag(adapter);
4585		if (!data) {
4586			/* Better luck next round */
4587			adapter->alloc_rx_buff_failed++;
4588			break;
4589		}
4590
4591		/* Fix for errata 23, can't cross 64kB boundary */
4592		if (!e1000_check_64k_bound(adapter, data, bufsz)) {
4593			void *olddata = data;
4594			e_err(rx_err, "skb align check failed: %u bytes at "
4595			      "%p\n", bufsz, data);
4596			/* Try again, without freeing the previous */
4597			data = e1000_alloc_frag(adapter);
4598			/* Failed allocation, critical failure */
4599			if (!data) {
4600				skb_free_frag(olddata);
4601				adapter->alloc_rx_buff_failed++;
4602				break;
4603			}
4604
4605			if (!e1000_check_64k_bound(adapter, data, bufsz)) {
4606				/* give up */
4607				skb_free_frag(data);
4608				skb_free_frag(olddata);
4609				adapter->alloc_rx_buff_failed++;
4610				break;
4611			}
4612
4613			/* Use new allocation */
4614			skb_free_frag(olddata);
4615		}
4616		buffer_info->dma = dma_map_single(&pdev->dev,
4617						  data,
4618						  adapter->rx_buffer_len,
4619						  DMA_FROM_DEVICE);
4620		if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
4621			skb_free_frag(data);
4622			buffer_info->dma = 0;
4623			adapter->alloc_rx_buff_failed++;
4624			break;
4625		}
4626
4627		/* XXX if it was allocated cleanly it will never map to a
4628		 * boundary crossing
4629		 */
4630
4631		/* Fix for errata 23, can't cross 64kB boundary */
4632		if (!e1000_check_64k_bound(adapter,
4633					(void *)(unsigned long)buffer_info->dma,
4634					adapter->rx_buffer_len)) {
4635			e_err(rx_err, "dma align check failed: %u bytes at "
4636			      "%p\n", adapter->rx_buffer_len,
4637			      (void *)(unsigned long)buffer_info->dma);
4638
4639			dma_unmap_single(&pdev->dev, buffer_info->dma,
4640					 adapter->rx_buffer_len,
4641					 DMA_FROM_DEVICE);
4642
4643			skb_free_frag(data);
4644			buffer_info->rxbuf.data = NULL;
4645			buffer_info->dma = 0;
4646
4647			adapter->alloc_rx_buff_failed++;
4648			break;
4649		}
4650		buffer_info->rxbuf.data = data;
4651 skip:
4652		rx_desc = E1000_RX_DESC(*rx_ring, i);
4653		rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4654
4655		if (unlikely(++i == rx_ring->count))
4656			i = 0;
4657		buffer_info = &rx_ring->buffer_info[i];
4658	}
4659
4660	if (likely(rx_ring->next_to_use != i)) {
4661		rx_ring->next_to_use = i;
4662		if (unlikely(i-- == 0))
4663			i = (rx_ring->count - 1);
4664
4665		/* Force memory writes to complete before letting h/w
4666		 * know there are new descriptors to fetch.  (Only
4667		 * applicable for weak-ordered memory model archs,
4668		 * such as IA-64).
4669		 */
4670		dma_wmb();
4671		writel(i, hw->hw_addr + rx_ring->rdt);
4672	}
4673}
4674
4675/**
4676 * e1000_smartspeed - Workaround for SmartSpeed on 82541 and 82547 controllers.
4677 * @adapter: address of board private structure
4678 **/
4679static void e1000_smartspeed(struct e1000_adapter *adapter)
4680{
4681	struct e1000_hw *hw = &adapter->hw;
4682	u16 phy_status;
4683	u16 phy_ctrl;
4684
4685	if ((hw->phy_type != e1000_phy_igp) || !hw->autoneg ||
4686	   !(hw->autoneg_advertised & ADVERTISE_1000_FULL))
4687		return;
4688
4689	if (adapter->smartspeed == 0) {
4690		/* If Master/Slave config fault is asserted twice,
4691		 * we assume back-to-back
4692		 */
4693		e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
4694		if (!(phy_status & SR_1000T_MS_CONFIG_FAULT))
4695			return;
4696		e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
4697		if (!(phy_status & SR_1000T_MS_CONFIG_FAULT))
4698			return;
4699		e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
4700		if (phy_ctrl & CR_1000T_MS_ENABLE) {
4701			phy_ctrl &= ~CR_1000T_MS_ENABLE;
4702			e1000_write_phy_reg(hw, PHY_1000T_CTRL,
4703					    phy_ctrl);
4704			adapter->smartspeed++;
4705			if (!e1000_phy_setup_autoneg(hw) &&
4706			   !e1000_read_phy_reg(hw, PHY_CTRL,
4707					       &phy_ctrl)) {
4708				phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4709					     MII_CR_RESTART_AUTO_NEG);
4710				e1000_write_phy_reg(hw, PHY_CTRL,
4711						    phy_ctrl);
4712			}
4713		}
4714		return;
4715	} else if (adapter->smartspeed == E1000_SMARTSPEED_DOWNSHIFT) {
4716		/* If still no link, perhaps using 2/3 pair cable */
4717		e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
4718		phy_ctrl |= CR_1000T_MS_ENABLE;
4719		e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_ctrl);
4720		if (!e1000_phy_setup_autoneg(hw) &&
4721		   !e1000_read_phy_reg(hw, PHY_CTRL, &phy_ctrl)) {
4722			phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4723				     MII_CR_RESTART_AUTO_NEG);
4724			e1000_write_phy_reg(hw, PHY_CTRL, phy_ctrl);
4725		}
4726	}
4727	/* Restart process after E1000_SMARTSPEED_MAX iterations */
4728	if (adapter->smartspeed++ == E1000_SMARTSPEED_MAX)
4729		adapter->smartspeed = 0;
4730}
4731
4732/**
4733 * e1000_ioctl - handle ioctl calls
4734 * @netdev: pointer to our netdev
4735 * @ifr: pointer to interface request structure
4736 * @cmd: ioctl data
4737 **/
4738static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4739{
4740	switch (cmd) {
4741	case SIOCGMIIPHY:
4742	case SIOCGMIIREG:
4743	case SIOCSMIIREG:
4744		return e1000_mii_ioctl(netdev, ifr, cmd);
4745	default:
4746		return -EOPNOTSUPP;
4747	}
4748}
4749
4750/**
4751 * e1000_mii_ioctl -
4752 * @netdev: pointer to our netdev
4753 * @ifr: pointer to interface request structure
4754 * @cmd: ioctl data
4755 **/
4756static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
4757			   int cmd)
4758{
4759	struct e1000_adapter *adapter = netdev_priv(netdev);
4760	struct e1000_hw *hw = &adapter->hw;
4761	struct mii_ioctl_data *data = if_mii(ifr);
4762	int retval;
4763	u16 mii_reg;
4764	unsigned long flags;
4765
4766	if (hw->media_type != e1000_media_type_copper)
4767		return -EOPNOTSUPP;
4768
4769	switch (cmd) {
4770	case SIOCGMIIPHY:
4771		data->phy_id = hw->phy_addr;
4772		break;
4773	case SIOCGMIIREG:
4774		spin_lock_irqsave(&adapter->stats_lock, flags);
4775		if (e1000_read_phy_reg(hw, data->reg_num & 0x1F,
4776				   &data->val_out)) {
4777			spin_unlock_irqrestore(&adapter->stats_lock, flags);
4778			return -EIO;
4779		}
4780		spin_unlock_irqrestore(&adapter->stats_lock, flags);
4781		break;
4782	case SIOCSMIIREG:
4783		if (data->reg_num & ~(0x1F))
4784			return -EFAULT;
4785		mii_reg = data->val_in;
4786		spin_lock_irqsave(&adapter->stats_lock, flags);
4787		if (e1000_write_phy_reg(hw, data->reg_num,
4788					mii_reg)) {
4789			spin_unlock_irqrestore(&adapter->stats_lock, flags);
4790			return -EIO;
4791		}
4792		spin_unlock_irqrestore(&adapter->stats_lock, flags);
4793		if (hw->media_type == e1000_media_type_copper) {
4794			switch (data->reg_num) {
4795			case PHY_CTRL:
4796				if (mii_reg & MII_CR_POWER_DOWN)
4797					break;
4798				if (mii_reg & MII_CR_AUTO_NEG_EN) {
4799					hw->autoneg = 1;
4800					hw->autoneg_advertised = 0x2F;
4801				} else {
4802					u32 speed;
4803					if (mii_reg & 0x40)
4804						speed = SPEED_1000;
4805					else if (mii_reg & 0x2000)
4806						speed = SPEED_100;
4807					else
4808						speed = SPEED_10;
4809					retval = e1000_set_spd_dplx(
4810						adapter, speed,
4811						((mii_reg & 0x100)
4812						 ? DUPLEX_FULL :
4813						 DUPLEX_HALF));
4814					if (retval)
4815						return retval;
4816				}
4817				if (netif_running(adapter->netdev))
4818					e1000_reinit_locked(adapter);
4819				else
4820					e1000_reset(adapter);
4821				break;
4822			case M88E1000_PHY_SPEC_CTRL:
4823			case M88E1000_EXT_PHY_SPEC_CTRL:
4824				if (e1000_phy_reset(hw))
4825					return -EIO;
4826				break;
4827			}
4828		} else {
4829			switch (data->reg_num) {
4830			case PHY_CTRL:
4831				if (mii_reg & MII_CR_POWER_DOWN)
4832					break;
4833				if (netif_running(adapter->netdev))
4834					e1000_reinit_locked(adapter);
4835				else
4836					e1000_reset(adapter);
4837				break;
4838			}
4839		}
4840		break;
4841	default:
4842		return -EOPNOTSUPP;
4843	}
4844	return E1000_SUCCESS;
4845}
4846
4847void e1000_pci_set_mwi(struct e1000_hw *hw)
4848{
4849	struct e1000_adapter *adapter = hw->back;
4850	int ret_val = pci_set_mwi(adapter->pdev);
4851
4852	if (ret_val)
4853		e_err(probe, "Error in setting MWI\n");
4854}
4855
4856void e1000_pci_clear_mwi(struct e1000_hw *hw)
4857{
4858	struct e1000_adapter *adapter = hw->back;
4859
4860	pci_clear_mwi(adapter->pdev);
4861}
4862
4863int e1000_pcix_get_mmrbc(struct e1000_hw *hw)
4864{
4865	struct e1000_adapter *adapter = hw->back;
4866	return pcix_get_mmrbc(adapter->pdev);
4867}
4868
4869void e1000_pcix_set_mmrbc(struct e1000_hw *hw, int mmrbc)
4870{
4871	struct e1000_adapter *adapter = hw->back;
4872	pcix_set_mmrbc(adapter->pdev, mmrbc);
4873}
4874
4875void e1000_io_write(struct e1000_hw *hw, unsigned long port, u32 value)
4876{
4877	outl(value, port);
4878}
4879
4880static bool e1000_vlan_used(struct e1000_adapter *adapter)
4881{
4882	u16 vid;
4883
4884	for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
4885		return true;
4886	return false;
4887}
4888
4889static void __e1000_vlan_mode(struct e1000_adapter *adapter,
4890			      netdev_features_t features)
4891{
4892	struct e1000_hw *hw = &adapter->hw;
4893	u32 ctrl;
4894
4895	ctrl = er32(CTRL);
4896	if (features & NETIF_F_HW_VLAN_CTAG_RX) {
4897		/* enable VLAN tag insert/strip */
4898		ctrl |= E1000_CTRL_VME;
4899	} else {
4900		/* disable VLAN tag insert/strip */
4901		ctrl &= ~E1000_CTRL_VME;
4902	}
4903	ew32(CTRL, ctrl);
4904}
4905static void e1000_vlan_filter_on_off(struct e1000_adapter *adapter,
4906				     bool filter_on)
4907{
4908	struct e1000_hw *hw = &adapter->hw;
4909	u32 rctl;
4910
4911	if (!test_bit(__E1000_DOWN, &adapter->flags))
4912		e1000_irq_disable(adapter);
4913
4914	__e1000_vlan_mode(adapter, adapter->netdev->features);
4915	if (filter_on) {
4916		/* enable VLAN receive filtering */
4917		rctl = er32(RCTL);
4918		rctl &= ~E1000_RCTL_CFIEN;
4919		if (!(adapter->netdev->flags & IFF_PROMISC))
4920			rctl |= E1000_RCTL_VFE;
4921		ew32(RCTL, rctl);
4922		e1000_update_mng_vlan(adapter);
4923	} else {
4924		/* disable VLAN receive filtering */
4925		rctl = er32(RCTL);
4926		rctl &= ~E1000_RCTL_VFE;
4927		ew32(RCTL, rctl);
4928	}
4929
4930	if (!test_bit(__E1000_DOWN, &adapter->flags))
4931		e1000_irq_enable(adapter);
4932}
4933
4934static void e1000_vlan_mode(struct net_device *netdev,
4935			    netdev_features_t features)
4936{
4937	struct e1000_adapter *adapter = netdev_priv(netdev);
4938
4939	if (!test_bit(__E1000_DOWN, &adapter->flags))
4940		e1000_irq_disable(adapter);
4941
4942	__e1000_vlan_mode(adapter, features);
4943
4944	if (!test_bit(__E1000_DOWN, &adapter->flags))
4945		e1000_irq_enable(adapter);
4946}
4947
4948static int e1000_vlan_rx_add_vid(struct net_device *netdev,
4949				 __be16 proto, u16 vid)
4950{
4951	struct e1000_adapter *adapter = netdev_priv(netdev);
4952	struct e1000_hw *hw = &adapter->hw;
4953	u32 vfta, index;
4954
4955	if ((hw->mng_cookie.status &
4956	     E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
4957	    (vid == adapter->mng_vlan_id))
4958		return 0;
4959
4960	if (!e1000_vlan_used(adapter))
4961		e1000_vlan_filter_on_off(adapter, true);
4962
4963	/* add VID to filter table */
4964	index = (vid >> 5) & 0x7F;
4965	vfta = E1000_READ_REG_ARRAY(hw, VFTA, index);
4966	vfta |= (1 << (vid & 0x1F));
4967	e1000_write_vfta(hw, index, vfta);
4968
4969	set_bit(vid, adapter->active_vlans);
4970
4971	return 0;
4972}
4973
4974static int e1000_vlan_rx_kill_vid(struct net_device *netdev,
4975				  __be16 proto, u16 vid)
4976{
4977	struct e1000_adapter *adapter = netdev_priv(netdev);
4978	struct e1000_hw *hw = &adapter->hw;
4979	u32 vfta, index;
4980
4981	if (!test_bit(__E1000_DOWN, &adapter->flags))
4982		e1000_irq_disable(adapter);
4983	if (!test_bit(__E1000_DOWN, &adapter->flags))
4984		e1000_irq_enable(adapter);
4985
4986	/* remove VID from filter table */
4987	index = (vid >> 5) & 0x7F;
4988	vfta = E1000_READ_REG_ARRAY(hw, VFTA, index);
4989	vfta &= ~(1 << (vid & 0x1F));
4990	e1000_write_vfta(hw, index, vfta);
4991
4992	clear_bit(vid, adapter->active_vlans);
4993
4994	if (!e1000_vlan_used(adapter))
4995		e1000_vlan_filter_on_off(adapter, false);
4996
4997	return 0;
4998}
4999
5000static void e1000_restore_vlan(struct e1000_adapter *adapter)
5001{
5002	u16 vid;
5003
5004	if (!e1000_vlan_used(adapter))
5005		return;
5006
5007	e1000_vlan_filter_on_off(adapter, true);
5008	for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
5009		e1000_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
5010}
5011
5012int e1000_set_spd_dplx(struct e1000_adapter *adapter, u32 spd, u8 dplx)
5013{
5014	struct e1000_hw *hw = &adapter->hw;
5015
5016	hw->autoneg = 0;
5017
5018	/* Make sure dplx is at most 1 bit and lsb of speed is not set
5019	 * for the switch() below to work
5020	 */
5021	if ((spd & 1) || (dplx & ~1))
5022		goto err_inval;
5023
5024	/* Fiber NICs only allow 1000 gbps Full duplex */
5025	if ((hw->media_type == e1000_media_type_fiber) &&
5026	    spd != SPEED_1000 &&
5027	    dplx != DUPLEX_FULL)
5028		goto err_inval;
5029
5030	switch (spd + dplx) {
5031	case SPEED_10 + DUPLEX_HALF:
5032		hw->forced_speed_duplex = e1000_10_half;
5033		break;
5034	case SPEED_10 + DUPLEX_FULL:
5035		hw->forced_speed_duplex = e1000_10_full;
5036		break;
5037	case SPEED_100 + DUPLEX_HALF:
5038		hw->forced_speed_duplex = e1000_100_half;
5039		break;
5040	case SPEED_100 + DUPLEX_FULL:
5041		hw->forced_speed_duplex = e1000_100_full;
5042		break;
5043	case SPEED_1000 + DUPLEX_FULL:
5044		hw->autoneg = 1;
5045		hw->autoneg_advertised = ADVERTISE_1000_FULL;
5046		break;
5047	case SPEED_1000 + DUPLEX_HALF: /* not supported */
5048	default:
5049		goto err_inval;
5050	}
5051
5052	/* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
5053	hw->mdix = AUTO_ALL_MODES;
5054
5055	return 0;
5056
5057err_inval:
5058	e_err(probe, "Unsupported Speed/Duplex configuration\n");
5059	return -EINVAL;
5060}
5061
5062static int __e1000_shutdown(struct pci_dev *pdev, bool *enable_wake)
5063{
5064	struct net_device *netdev = pci_get_drvdata(pdev);
5065	struct e1000_adapter *adapter = netdev_priv(netdev);
5066	struct e1000_hw *hw = &adapter->hw;
5067	u32 ctrl, ctrl_ext, rctl, status;
5068	u32 wufc = adapter->wol;
5069
5070	netif_device_detach(netdev);
5071
5072	if (netif_running(netdev)) {
5073		int count = E1000_CHECK_RESET_COUNT;
5074
5075		while (test_bit(__E1000_RESETTING, &adapter->flags) && count--)
5076			usleep_range(10000, 20000);
5077
5078		WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
5079		rtnl_lock();
5080		e1000_down(adapter);
5081		rtnl_unlock();
5082	}
5083
5084	status = er32(STATUS);
5085	if (status & E1000_STATUS_LU)
5086		wufc &= ~E1000_WUFC_LNKC;
5087
5088	if (wufc) {
5089		e1000_setup_rctl(adapter);
5090		e1000_set_rx_mode(netdev);
5091
5092		rctl = er32(RCTL);
5093
5094		/* turn on all-multi mode if wake on multicast is enabled */
5095		if (wufc & E1000_WUFC_MC)
5096			rctl |= E1000_RCTL_MPE;
5097
5098		/* enable receives in the hardware */
5099		ew32(RCTL, rctl | E1000_RCTL_EN);
5100
5101		if (hw->mac_type >= e1000_82540) {
5102			ctrl = er32(CTRL);
5103			/* advertise wake from D3Cold */
5104			#define E1000_CTRL_ADVD3WUC 0x00100000
5105			/* phy power management enable */
5106			#define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
5107			ctrl |= E1000_CTRL_ADVD3WUC |
5108				E1000_CTRL_EN_PHY_PWR_MGMT;
5109			ew32(CTRL, ctrl);
5110		}
5111
5112		if (hw->media_type == e1000_media_type_fiber ||
5113		    hw->media_type == e1000_media_type_internal_serdes) {
5114			/* keep the laser running in D3 */
5115			ctrl_ext = er32(CTRL_EXT);
5116			ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA;
5117			ew32(CTRL_EXT, ctrl_ext);
5118		}
5119
5120		ew32(WUC, E1000_WUC_PME_EN);
5121		ew32(WUFC, wufc);
5122	} else {
5123		ew32(WUC, 0);
5124		ew32(WUFC, 0);
5125	}
5126
5127	e1000_release_manageability(adapter);
5128
5129	*enable_wake = !!wufc;
5130
5131	/* make sure adapter isn't asleep if manageability is enabled */
5132	if (adapter->en_mng_pt)
5133		*enable_wake = true;
5134
5135	if (netif_running(netdev))
5136		e1000_free_irq(adapter);
5137
5138	if (!test_and_set_bit(__E1000_DISABLED, &adapter->flags))
5139		pci_disable_device(pdev);
5140
5141	return 0;
5142}
5143
5144static int e1000_suspend(struct device *dev)
5145{
5146	int retval;
5147	struct pci_dev *pdev = to_pci_dev(dev);
5148	bool wake;
5149
5150	retval = __e1000_shutdown(pdev, &wake);
5151	device_set_wakeup_enable(dev, wake);
5152
5153	return retval;
5154}
5155
5156static int e1000_resume(struct device *dev)
5157{
5158	struct pci_dev *pdev = to_pci_dev(dev);
5159	struct net_device *netdev = pci_get_drvdata(pdev);
5160	struct e1000_adapter *adapter = netdev_priv(netdev);
5161	struct e1000_hw *hw = &adapter->hw;
5162	u32 err;
5163
5164	if (adapter->need_ioport)
5165		err = pci_enable_device(pdev);
5166	else
5167		err = pci_enable_device_mem(pdev);
5168	if (err) {
5169		pr_err("Cannot enable PCI device from suspend\n");
5170		return err;
5171	}
5172
5173	/* flush memory to make sure state is correct */
5174	smp_mb__before_atomic();
5175	clear_bit(__E1000_DISABLED, &adapter->flags);
5176	pci_set_master(pdev);
5177
5178	pci_enable_wake(pdev, PCI_D3hot, 0);
5179	pci_enable_wake(pdev, PCI_D3cold, 0);
5180
5181	if (netif_running(netdev)) {
5182		err = e1000_request_irq(adapter);
5183		if (err)
5184			return err;
5185	}
5186
5187	e1000_power_up_phy(adapter);
5188	e1000_reset(adapter);
5189	ew32(WUS, ~0);
5190
5191	e1000_init_manageability(adapter);
5192
5193	if (netif_running(netdev))
5194		e1000_up(adapter);
5195
5196	netif_device_attach(netdev);
5197
5198	return 0;
5199}
5200
5201static void e1000_shutdown(struct pci_dev *pdev)
5202{
5203	bool wake;
5204
5205	__e1000_shutdown(pdev, &wake);
5206
5207	if (system_state == SYSTEM_POWER_OFF) {
5208		pci_wake_from_d3(pdev, wake);
5209		pci_set_power_state(pdev, PCI_D3hot);
5210	}
5211}
5212
5213#ifdef CONFIG_NET_POLL_CONTROLLER
5214/* Polling 'interrupt' - used by things like netconsole to send skbs
5215 * without having to re-enable interrupts. It's not called while
5216 * the interrupt routine is executing.
5217 */
5218static void e1000_netpoll(struct net_device *netdev)
5219{
5220	struct e1000_adapter *adapter = netdev_priv(netdev);
5221
5222	if (disable_hardirq(adapter->pdev->irq))
5223		e1000_intr(adapter->pdev->irq, netdev);
5224	enable_irq(adapter->pdev->irq);
5225}
5226#endif
5227
5228/**
5229 * e1000_io_error_detected - called when PCI error is detected
5230 * @pdev: Pointer to PCI device
5231 * @state: The current pci connection state
5232 *
5233 * This function is called after a PCI bus error affecting
5234 * this device has been detected.
5235 */
5236static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
5237						pci_channel_state_t state)
5238{
5239	struct net_device *netdev = pci_get_drvdata(pdev);
5240	struct e1000_adapter *adapter = netdev_priv(netdev);
5241
5242	rtnl_lock();
5243	netif_device_detach(netdev);
5244
5245	if (state == pci_channel_io_perm_failure) {
5246		rtnl_unlock();
5247		return PCI_ERS_RESULT_DISCONNECT;
5248	}
5249
5250	if (netif_running(netdev))
5251		e1000_down(adapter);
5252
5253	if (!test_and_set_bit(__E1000_DISABLED, &adapter->flags))
5254		pci_disable_device(pdev);
5255	rtnl_unlock();
5256
5257	/* Request a slot reset. */
5258	return PCI_ERS_RESULT_NEED_RESET;
5259}
5260
5261/**
5262 * e1000_io_slot_reset - called after the pci bus has been reset.
5263 * @pdev: Pointer to PCI device
5264 *
5265 * Restart the card from scratch, as if from a cold-boot. Implementation
5266 * resembles the first-half of the e1000_resume routine.
5267 */
5268static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
5269{
5270	struct net_device *netdev = pci_get_drvdata(pdev);
5271	struct e1000_adapter *adapter = netdev_priv(netdev);
5272	struct e1000_hw *hw = &adapter->hw;
5273	int err;
5274
5275	if (adapter->need_ioport)
5276		err = pci_enable_device(pdev);
5277	else
5278		err = pci_enable_device_mem(pdev);
5279	if (err) {
5280		pr_err("Cannot re-enable PCI device after reset.\n");
5281		return PCI_ERS_RESULT_DISCONNECT;
5282	}
5283
5284	/* flush memory to make sure state is correct */
5285	smp_mb__before_atomic();
5286	clear_bit(__E1000_DISABLED, &adapter->flags);
5287	pci_set_master(pdev);
5288
5289	pci_enable_wake(pdev, PCI_D3hot, 0);
5290	pci_enable_wake(pdev, PCI_D3cold, 0);
5291
5292	e1000_reset(adapter);
5293	ew32(WUS, ~0);
5294
5295	return PCI_ERS_RESULT_RECOVERED;
5296}
5297
5298/**
5299 * e1000_io_resume - called when traffic can start flowing again.
5300 * @pdev: Pointer to PCI device
5301 *
5302 * This callback is called when the error recovery driver tells us that
5303 * its OK to resume normal operation. Implementation resembles the
5304 * second-half of the e1000_resume routine.
5305 */
5306static void e1000_io_resume(struct pci_dev *pdev)
5307{
5308	struct net_device *netdev = pci_get_drvdata(pdev);
5309	struct e1000_adapter *adapter = netdev_priv(netdev);
5310
5311	e1000_init_manageability(adapter);
5312
5313	if (netif_running(netdev)) {
5314		if (e1000_up(adapter)) {
5315			pr_info("can't bring device back up after reset\n");
5316			return;
5317		}
5318	}
5319
5320	netif_device_attach(netdev);
5321}
5322
5323/* e1000_main.c */
v5.9
   1// SPDX-License-Identifier: GPL-2.0
   2/* Copyright(c) 1999 - 2006 Intel Corporation. */
   3
   4#include "e1000.h"
   5#include <net/ip6_checksum.h>
   6#include <linux/io.h>
   7#include <linux/prefetch.h>
   8#include <linux/bitops.h>
   9#include <linux/if_vlan.h>
  10
  11char e1000_driver_name[] = "e1000";
  12static char e1000_driver_string[] = "Intel(R) PRO/1000 Network Driver";
  13static const char e1000_copyright[] = "Copyright (c) 1999-2006 Intel Corporation.";
  14
  15/* e1000_pci_tbl - PCI Device ID Table
  16 *
  17 * Last entry must be all 0s
  18 *
  19 * Macro expands to...
  20 *   {PCI_DEVICE(PCI_VENDOR_ID_INTEL, device_id)}
  21 */
  22static const struct pci_device_id e1000_pci_tbl[] = {
  23	INTEL_E1000_ETHERNET_DEVICE(0x1000),
  24	INTEL_E1000_ETHERNET_DEVICE(0x1001),
  25	INTEL_E1000_ETHERNET_DEVICE(0x1004),
  26	INTEL_E1000_ETHERNET_DEVICE(0x1008),
  27	INTEL_E1000_ETHERNET_DEVICE(0x1009),
  28	INTEL_E1000_ETHERNET_DEVICE(0x100C),
  29	INTEL_E1000_ETHERNET_DEVICE(0x100D),
  30	INTEL_E1000_ETHERNET_DEVICE(0x100E),
  31	INTEL_E1000_ETHERNET_DEVICE(0x100F),
  32	INTEL_E1000_ETHERNET_DEVICE(0x1010),
  33	INTEL_E1000_ETHERNET_DEVICE(0x1011),
  34	INTEL_E1000_ETHERNET_DEVICE(0x1012),
  35	INTEL_E1000_ETHERNET_DEVICE(0x1013),
  36	INTEL_E1000_ETHERNET_DEVICE(0x1014),
  37	INTEL_E1000_ETHERNET_DEVICE(0x1015),
  38	INTEL_E1000_ETHERNET_DEVICE(0x1016),
  39	INTEL_E1000_ETHERNET_DEVICE(0x1017),
  40	INTEL_E1000_ETHERNET_DEVICE(0x1018),
  41	INTEL_E1000_ETHERNET_DEVICE(0x1019),
  42	INTEL_E1000_ETHERNET_DEVICE(0x101A),
  43	INTEL_E1000_ETHERNET_DEVICE(0x101D),
  44	INTEL_E1000_ETHERNET_DEVICE(0x101E),
  45	INTEL_E1000_ETHERNET_DEVICE(0x1026),
  46	INTEL_E1000_ETHERNET_DEVICE(0x1027),
  47	INTEL_E1000_ETHERNET_DEVICE(0x1028),
  48	INTEL_E1000_ETHERNET_DEVICE(0x1075),
  49	INTEL_E1000_ETHERNET_DEVICE(0x1076),
  50	INTEL_E1000_ETHERNET_DEVICE(0x1077),
  51	INTEL_E1000_ETHERNET_DEVICE(0x1078),
  52	INTEL_E1000_ETHERNET_DEVICE(0x1079),
  53	INTEL_E1000_ETHERNET_DEVICE(0x107A),
  54	INTEL_E1000_ETHERNET_DEVICE(0x107B),
  55	INTEL_E1000_ETHERNET_DEVICE(0x107C),
  56	INTEL_E1000_ETHERNET_DEVICE(0x108A),
  57	INTEL_E1000_ETHERNET_DEVICE(0x1099),
  58	INTEL_E1000_ETHERNET_DEVICE(0x10B5),
  59	INTEL_E1000_ETHERNET_DEVICE(0x2E6E),
  60	/* required last entry */
  61	{0,}
  62};
  63
  64MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
  65
  66int e1000_up(struct e1000_adapter *adapter);
  67void e1000_down(struct e1000_adapter *adapter);
  68void e1000_reinit_locked(struct e1000_adapter *adapter);
  69void e1000_reset(struct e1000_adapter *adapter);
  70int e1000_setup_all_tx_resources(struct e1000_adapter *adapter);
  71int e1000_setup_all_rx_resources(struct e1000_adapter *adapter);
  72void e1000_free_all_tx_resources(struct e1000_adapter *adapter);
  73void e1000_free_all_rx_resources(struct e1000_adapter *adapter);
  74static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
  75				    struct e1000_tx_ring *txdr);
  76static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
  77				    struct e1000_rx_ring *rxdr);
  78static void e1000_free_tx_resources(struct e1000_adapter *adapter,
  79				    struct e1000_tx_ring *tx_ring);
  80static void e1000_free_rx_resources(struct e1000_adapter *adapter,
  81				    struct e1000_rx_ring *rx_ring);
  82void e1000_update_stats(struct e1000_adapter *adapter);
  83
  84static int e1000_init_module(void);
  85static void e1000_exit_module(void);
  86static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent);
  87static void e1000_remove(struct pci_dev *pdev);
  88static int e1000_alloc_queues(struct e1000_adapter *adapter);
  89static int e1000_sw_init(struct e1000_adapter *adapter);
  90int e1000_open(struct net_device *netdev);
  91int e1000_close(struct net_device *netdev);
  92static void e1000_configure_tx(struct e1000_adapter *adapter);
  93static void e1000_configure_rx(struct e1000_adapter *adapter);
  94static void e1000_setup_rctl(struct e1000_adapter *adapter);
  95static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter);
  96static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter);
  97static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
  98				struct e1000_tx_ring *tx_ring);
  99static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
 100				struct e1000_rx_ring *rx_ring);
 101static void e1000_set_rx_mode(struct net_device *netdev);
 102static void e1000_update_phy_info_task(struct work_struct *work);
 103static void e1000_watchdog(struct work_struct *work);
 104static void e1000_82547_tx_fifo_stall_task(struct work_struct *work);
 105static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
 106				    struct net_device *netdev);
 107static int e1000_change_mtu(struct net_device *netdev, int new_mtu);
 108static int e1000_set_mac(struct net_device *netdev, void *p);
 109static irqreturn_t e1000_intr(int irq, void *data);
 110static bool e1000_clean_tx_irq(struct e1000_adapter *adapter,
 111			       struct e1000_tx_ring *tx_ring);
 112static int e1000_clean(struct napi_struct *napi, int budget);
 113static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
 114			       struct e1000_rx_ring *rx_ring,
 115			       int *work_done, int work_to_do);
 116static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter,
 117				     struct e1000_rx_ring *rx_ring,
 118				     int *work_done, int work_to_do);
 119static void e1000_alloc_dummy_rx_buffers(struct e1000_adapter *adapter,
 120					 struct e1000_rx_ring *rx_ring,
 121					 int cleaned_count)
 122{
 123}
 124static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
 125				   struct e1000_rx_ring *rx_ring,
 126				   int cleaned_count);
 127static void e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter,
 128					 struct e1000_rx_ring *rx_ring,
 129					 int cleaned_count);
 130static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd);
 131static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
 132			   int cmd);
 133static void e1000_enter_82542_rst(struct e1000_adapter *adapter);
 134static void e1000_leave_82542_rst(struct e1000_adapter *adapter);
 135static void e1000_tx_timeout(struct net_device *dev, unsigned int txqueue);
 136static void e1000_reset_task(struct work_struct *work);
 137static void e1000_smartspeed(struct e1000_adapter *adapter);
 138static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
 139				       struct sk_buff *skb);
 140
 141static bool e1000_vlan_used(struct e1000_adapter *adapter);
 142static void e1000_vlan_mode(struct net_device *netdev,
 143			    netdev_features_t features);
 144static void e1000_vlan_filter_on_off(struct e1000_adapter *adapter,
 145				     bool filter_on);
 146static int e1000_vlan_rx_add_vid(struct net_device *netdev,
 147				 __be16 proto, u16 vid);
 148static int e1000_vlan_rx_kill_vid(struct net_device *netdev,
 149				  __be16 proto, u16 vid);
 150static void e1000_restore_vlan(struct e1000_adapter *adapter);
 151
 152static int __maybe_unused e1000_suspend(struct device *dev);
 153static int __maybe_unused e1000_resume(struct device *dev);
 154static void e1000_shutdown(struct pci_dev *pdev);
 155
 156#ifdef CONFIG_NET_POLL_CONTROLLER
 157/* for netdump / net console */
 158static void e1000_netpoll (struct net_device *netdev);
 159#endif
 160
 161#define COPYBREAK_DEFAULT 256
 162static unsigned int copybreak __read_mostly = COPYBREAK_DEFAULT;
 163module_param(copybreak, uint, 0644);
 164MODULE_PARM_DESC(copybreak,
 165	"Maximum size of packet that is copied to a new buffer on receive");
 166
 167static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
 168						pci_channel_state_t state);
 169static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev);
 170static void e1000_io_resume(struct pci_dev *pdev);
 171
 172static const struct pci_error_handlers e1000_err_handler = {
 173	.error_detected = e1000_io_error_detected,
 174	.slot_reset = e1000_io_slot_reset,
 175	.resume = e1000_io_resume,
 176};
 177
 178static SIMPLE_DEV_PM_OPS(e1000_pm_ops, e1000_suspend, e1000_resume);
 179
 180static struct pci_driver e1000_driver = {
 181	.name     = e1000_driver_name,
 182	.id_table = e1000_pci_tbl,
 183	.probe    = e1000_probe,
 184	.remove   = e1000_remove,
 185	.driver = {
 186		.pm = &e1000_pm_ops,
 187	},
 188	.shutdown = e1000_shutdown,
 189	.err_handler = &e1000_err_handler
 190};
 191
 192MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
 193MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
 194MODULE_LICENSE("GPL v2");
 195
 196#define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
 197static int debug = -1;
 198module_param(debug, int, 0);
 199MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
 200
 201/**
 202 * e1000_get_hw_dev - return device
 203 * used by hardware layer to print debugging information
 
 
 204 *
 205 **/
 206struct net_device *e1000_get_hw_dev(struct e1000_hw *hw)
 207{
 208	struct e1000_adapter *adapter = hw->back;
 209	return adapter->netdev;
 210}
 211
 212/**
 213 * e1000_init_module - Driver Registration Routine
 214 *
 215 * e1000_init_module is the first routine called when the driver is
 216 * loaded. All it does is register with the PCI subsystem.
 217 **/
 218static int __init e1000_init_module(void)
 219{
 220	int ret;
 221	pr_info("%s\n", e1000_driver_string);
 222
 223	pr_info("%s\n", e1000_copyright);
 224
 225	ret = pci_register_driver(&e1000_driver);
 226	if (copybreak != COPYBREAK_DEFAULT) {
 227		if (copybreak == 0)
 228			pr_info("copybreak disabled\n");
 229		else
 230			pr_info("copybreak enabled for "
 231				   "packets <= %u bytes\n", copybreak);
 232	}
 233	return ret;
 234}
 235
 236module_init(e1000_init_module);
 237
 238/**
 239 * e1000_exit_module - Driver Exit Cleanup Routine
 240 *
 241 * e1000_exit_module is called just before the driver is removed
 242 * from memory.
 243 **/
 244static void __exit e1000_exit_module(void)
 245{
 246	pci_unregister_driver(&e1000_driver);
 247}
 248
 249module_exit(e1000_exit_module);
 250
 251static int e1000_request_irq(struct e1000_adapter *adapter)
 252{
 253	struct net_device *netdev = adapter->netdev;
 254	irq_handler_t handler = e1000_intr;
 255	int irq_flags = IRQF_SHARED;
 256	int err;
 257
 258	err = request_irq(adapter->pdev->irq, handler, irq_flags, netdev->name,
 259			  netdev);
 260	if (err) {
 261		e_err(probe, "Unable to allocate interrupt Error: %d\n", err);
 262	}
 263
 264	return err;
 265}
 266
 267static void e1000_free_irq(struct e1000_adapter *adapter)
 268{
 269	struct net_device *netdev = adapter->netdev;
 270
 271	free_irq(adapter->pdev->irq, netdev);
 272}
 273
 274/**
 275 * e1000_irq_disable - Mask off interrupt generation on the NIC
 276 * @adapter: board private structure
 277 **/
 278static void e1000_irq_disable(struct e1000_adapter *adapter)
 279{
 280	struct e1000_hw *hw = &adapter->hw;
 281
 282	ew32(IMC, ~0);
 283	E1000_WRITE_FLUSH();
 284	synchronize_irq(adapter->pdev->irq);
 285}
 286
 287/**
 288 * e1000_irq_enable - Enable default interrupt generation settings
 289 * @adapter: board private structure
 290 **/
 291static void e1000_irq_enable(struct e1000_adapter *adapter)
 292{
 293	struct e1000_hw *hw = &adapter->hw;
 294
 295	ew32(IMS, IMS_ENABLE_MASK);
 296	E1000_WRITE_FLUSH();
 297}
 298
 299static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
 300{
 301	struct e1000_hw *hw = &adapter->hw;
 302	struct net_device *netdev = adapter->netdev;
 303	u16 vid = hw->mng_cookie.vlan_id;
 304	u16 old_vid = adapter->mng_vlan_id;
 305
 306	if (!e1000_vlan_used(adapter))
 307		return;
 308
 309	if (!test_bit(vid, adapter->active_vlans)) {
 310		if (hw->mng_cookie.status &
 311		    E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) {
 312			e1000_vlan_rx_add_vid(netdev, htons(ETH_P_8021Q), vid);
 313			adapter->mng_vlan_id = vid;
 314		} else {
 315			adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
 316		}
 317		if ((old_vid != (u16)E1000_MNG_VLAN_NONE) &&
 318		    (vid != old_vid) &&
 319		    !test_bit(old_vid, adapter->active_vlans))
 320			e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q),
 321					       old_vid);
 322	} else {
 323		adapter->mng_vlan_id = vid;
 324	}
 325}
 326
 327static void e1000_init_manageability(struct e1000_adapter *adapter)
 328{
 329	struct e1000_hw *hw = &adapter->hw;
 330
 331	if (adapter->en_mng_pt) {
 332		u32 manc = er32(MANC);
 333
 334		/* disable hardware interception of ARP */
 335		manc &= ~(E1000_MANC_ARP_EN);
 336
 337		ew32(MANC, manc);
 338	}
 339}
 340
 341static void e1000_release_manageability(struct e1000_adapter *adapter)
 342{
 343	struct e1000_hw *hw = &adapter->hw;
 344
 345	if (adapter->en_mng_pt) {
 346		u32 manc = er32(MANC);
 347
 348		/* re-enable hardware interception of ARP */
 349		manc |= E1000_MANC_ARP_EN;
 350
 351		ew32(MANC, manc);
 352	}
 353}
 354
 355/**
 356 * e1000_configure - configure the hardware for RX and TX
 357 * @adapter = private board structure
 358 **/
 359static void e1000_configure(struct e1000_adapter *adapter)
 360{
 361	struct net_device *netdev = adapter->netdev;
 362	int i;
 363
 364	e1000_set_rx_mode(netdev);
 365
 366	e1000_restore_vlan(adapter);
 367	e1000_init_manageability(adapter);
 368
 369	e1000_configure_tx(adapter);
 370	e1000_setup_rctl(adapter);
 371	e1000_configure_rx(adapter);
 372	/* call E1000_DESC_UNUSED which always leaves
 373	 * at least 1 descriptor unused to make sure
 374	 * next_to_use != next_to_clean
 375	 */
 376	for (i = 0; i < adapter->num_rx_queues; i++) {
 377		struct e1000_rx_ring *ring = &adapter->rx_ring[i];
 378		adapter->alloc_rx_buf(adapter, ring,
 379				      E1000_DESC_UNUSED(ring));
 380	}
 381}
 382
 383int e1000_up(struct e1000_adapter *adapter)
 384{
 385	struct e1000_hw *hw = &adapter->hw;
 386
 387	/* hardware has been reset, we need to reload some things */
 388	e1000_configure(adapter);
 389
 390	clear_bit(__E1000_DOWN, &adapter->flags);
 391
 392	napi_enable(&adapter->napi);
 393
 394	e1000_irq_enable(adapter);
 395
 396	netif_wake_queue(adapter->netdev);
 397
 398	/* fire a link change interrupt to start the watchdog */
 399	ew32(ICS, E1000_ICS_LSC);
 400	return 0;
 401}
 402
 403/**
 404 * e1000_power_up_phy - restore link in case the phy was powered down
 405 * @adapter: address of board private structure
 406 *
 407 * The phy may be powered down to save power and turn off link when the
 408 * driver is unloaded and wake on lan is not enabled (among others)
 409 * *** this routine MUST be followed by a call to e1000_reset ***
 410 **/
 411void e1000_power_up_phy(struct e1000_adapter *adapter)
 412{
 413	struct e1000_hw *hw = &adapter->hw;
 414	u16 mii_reg = 0;
 415
 416	/* Just clear the power down bit to wake the phy back up */
 417	if (hw->media_type == e1000_media_type_copper) {
 418		/* according to the manual, the phy will retain its
 419		 * settings across a power-down/up cycle
 420		 */
 421		e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg);
 422		mii_reg &= ~MII_CR_POWER_DOWN;
 423		e1000_write_phy_reg(hw, PHY_CTRL, mii_reg);
 424	}
 425}
 426
 427static void e1000_power_down_phy(struct e1000_adapter *adapter)
 428{
 429	struct e1000_hw *hw = &adapter->hw;
 430
 431	/* Power down the PHY so no link is implied when interface is down *
 432	 * The PHY cannot be powered down if any of the following is true *
 433	 * (a) WoL is enabled
 434	 * (b) AMT is active
 435	 * (c) SoL/IDER session is active
 436	 */
 437	if (!adapter->wol && hw->mac_type >= e1000_82540 &&
 438	   hw->media_type == e1000_media_type_copper) {
 439		u16 mii_reg = 0;
 440
 441		switch (hw->mac_type) {
 442		case e1000_82540:
 443		case e1000_82545:
 444		case e1000_82545_rev_3:
 445		case e1000_82546:
 446		case e1000_ce4100:
 447		case e1000_82546_rev_3:
 448		case e1000_82541:
 449		case e1000_82541_rev_2:
 450		case e1000_82547:
 451		case e1000_82547_rev_2:
 452			if (er32(MANC) & E1000_MANC_SMBUS_EN)
 453				goto out;
 454			break;
 455		default:
 456			goto out;
 457		}
 458		e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg);
 459		mii_reg |= MII_CR_POWER_DOWN;
 460		e1000_write_phy_reg(hw, PHY_CTRL, mii_reg);
 461		msleep(1);
 462	}
 463out:
 464	return;
 465}
 466
 467static void e1000_down_and_stop(struct e1000_adapter *adapter)
 468{
 469	set_bit(__E1000_DOWN, &adapter->flags);
 470
 471	cancel_delayed_work_sync(&adapter->watchdog_task);
 472
 473	/*
 474	 * Since the watchdog task can reschedule other tasks, we should cancel
 475	 * it first, otherwise we can run into the situation when a work is
 476	 * still running after the adapter has been turned down.
 477	 */
 478
 479	cancel_delayed_work_sync(&adapter->phy_info_task);
 480	cancel_delayed_work_sync(&adapter->fifo_stall_task);
 481
 482	/* Only kill reset task if adapter is not resetting */
 483	if (!test_bit(__E1000_RESETTING, &adapter->flags))
 484		cancel_work_sync(&adapter->reset_task);
 485}
 486
 487void e1000_down(struct e1000_adapter *adapter)
 488{
 489	struct e1000_hw *hw = &adapter->hw;
 490	struct net_device *netdev = adapter->netdev;
 491	u32 rctl, tctl;
 492
 493	/* disable receives in the hardware */
 494	rctl = er32(RCTL);
 495	ew32(RCTL, rctl & ~E1000_RCTL_EN);
 496	/* flush and sleep below */
 497
 498	netif_tx_disable(netdev);
 499
 500	/* disable transmits in the hardware */
 501	tctl = er32(TCTL);
 502	tctl &= ~E1000_TCTL_EN;
 503	ew32(TCTL, tctl);
 504	/* flush both disables and wait for them to finish */
 505	E1000_WRITE_FLUSH();
 506	msleep(10);
 507
 508	/* Set the carrier off after transmits have been disabled in the
 509	 * hardware, to avoid race conditions with e1000_watchdog() (which
 510	 * may be running concurrently to us, checking for the carrier
 511	 * bit to decide whether it should enable transmits again). Such
 512	 * a race condition would result into transmission being disabled
 513	 * in the hardware until the next IFF_DOWN+IFF_UP cycle.
 514	 */
 515	netif_carrier_off(netdev);
 516
 
 
 517	napi_disable(&adapter->napi);
 518
 519	e1000_irq_disable(adapter);
 520
 521	/* Setting DOWN must be after irq_disable to prevent
 522	 * a screaming interrupt.  Setting DOWN also prevents
 523	 * tasks from rescheduling.
 524	 */
 525	e1000_down_and_stop(adapter);
 526
 527	adapter->link_speed = 0;
 528	adapter->link_duplex = 0;
 529
 530	e1000_reset(adapter);
 531	e1000_clean_all_tx_rings(adapter);
 532	e1000_clean_all_rx_rings(adapter);
 533}
 534
 535void e1000_reinit_locked(struct e1000_adapter *adapter)
 536{
 537	WARN_ON(in_interrupt());
 538	while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
 539		msleep(1);
 540
 541	/* only run the task if not already down */
 542	if (!test_bit(__E1000_DOWN, &adapter->flags)) {
 543		e1000_down(adapter);
 544		e1000_up(adapter);
 545	}
 546
 547	clear_bit(__E1000_RESETTING, &adapter->flags);
 548}
 549
 550void e1000_reset(struct e1000_adapter *adapter)
 551{
 552	struct e1000_hw *hw = &adapter->hw;
 553	u32 pba = 0, tx_space, min_tx_space, min_rx_space;
 554	bool legacy_pba_adjust = false;
 555	u16 hwm;
 556
 557	/* Repartition Pba for greater than 9k mtu
 558	 * To take effect CTRL.RST is required.
 559	 */
 560
 561	switch (hw->mac_type) {
 562	case e1000_82542_rev2_0:
 563	case e1000_82542_rev2_1:
 564	case e1000_82543:
 565	case e1000_82544:
 566	case e1000_82540:
 567	case e1000_82541:
 568	case e1000_82541_rev_2:
 569		legacy_pba_adjust = true;
 570		pba = E1000_PBA_48K;
 571		break;
 572	case e1000_82545:
 573	case e1000_82545_rev_3:
 574	case e1000_82546:
 575	case e1000_ce4100:
 576	case e1000_82546_rev_3:
 577		pba = E1000_PBA_48K;
 578		break;
 579	case e1000_82547:
 580	case e1000_82547_rev_2:
 581		legacy_pba_adjust = true;
 582		pba = E1000_PBA_30K;
 583		break;
 584	case e1000_undefined:
 585	case e1000_num_macs:
 586		break;
 587	}
 588
 589	if (legacy_pba_adjust) {
 590		if (hw->max_frame_size > E1000_RXBUFFER_8192)
 591			pba -= 8; /* allocate more FIFO for Tx */
 592
 593		if (hw->mac_type == e1000_82547) {
 594			adapter->tx_fifo_head = 0;
 595			adapter->tx_head_addr = pba << E1000_TX_HEAD_ADDR_SHIFT;
 596			adapter->tx_fifo_size =
 597				(E1000_PBA_40K - pba) << E1000_PBA_BYTES_SHIFT;
 598			atomic_set(&adapter->tx_fifo_stall, 0);
 599		}
 600	} else if (hw->max_frame_size >  ETH_FRAME_LEN + ETH_FCS_LEN) {
 601		/* adjust PBA for jumbo frames */
 602		ew32(PBA, pba);
 603
 604		/* To maintain wire speed transmits, the Tx FIFO should be
 605		 * large enough to accommodate two full transmit packets,
 606		 * rounded up to the next 1KB and expressed in KB.  Likewise,
 607		 * the Rx FIFO should be large enough to accommodate at least
 608		 * one full receive packet and is similarly rounded up and
 609		 * expressed in KB.
 610		 */
 611		pba = er32(PBA);
 612		/* upper 16 bits has Tx packet buffer allocation size in KB */
 613		tx_space = pba >> 16;
 614		/* lower 16 bits has Rx packet buffer allocation size in KB */
 615		pba &= 0xffff;
 616		/* the Tx fifo also stores 16 bytes of information about the Tx
 617		 * but don't include ethernet FCS because hardware appends it
 618		 */
 619		min_tx_space = (hw->max_frame_size +
 620				sizeof(struct e1000_tx_desc) -
 621				ETH_FCS_LEN) * 2;
 622		min_tx_space = ALIGN(min_tx_space, 1024);
 623		min_tx_space >>= 10;
 624		/* software strips receive CRC, so leave room for it */
 625		min_rx_space = hw->max_frame_size;
 626		min_rx_space = ALIGN(min_rx_space, 1024);
 627		min_rx_space >>= 10;
 628
 629		/* If current Tx allocation is less than the min Tx FIFO size,
 630		 * and the min Tx FIFO size is less than the current Rx FIFO
 631		 * allocation, take space away from current Rx allocation
 632		 */
 633		if (tx_space < min_tx_space &&
 634		    ((min_tx_space - tx_space) < pba)) {
 635			pba = pba - (min_tx_space - tx_space);
 636
 637			/* PCI/PCIx hardware has PBA alignment constraints */
 638			switch (hw->mac_type) {
 639			case e1000_82545 ... e1000_82546_rev_3:
 640				pba &= ~(E1000_PBA_8K - 1);
 641				break;
 642			default:
 643				break;
 644			}
 645
 646			/* if short on Rx space, Rx wins and must trump Tx
 647			 * adjustment or use Early Receive if available
 648			 */
 649			if (pba < min_rx_space)
 650				pba = min_rx_space;
 651		}
 652	}
 653
 654	ew32(PBA, pba);
 655
 656	/* flow control settings:
 657	 * The high water mark must be low enough to fit one full frame
 658	 * (or the size used for early receive) above it in the Rx FIFO.
 659	 * Set it to the lower of:
 660	 * - 90% of the Rx FIFO size, and
 661	 * - the full Rx FIFO size minus the early receive size (for parts
 662	 *   with ERT support assuming ERT set to E1000_ERT_2048), or
 663	 * - the full Rx FIFO size minus one full frame
 664	 */
 665	hwm = min(((pba << 10) * 9 / 10),
 666		  ((pba << 10) - hw->max_frame_size));
 667
 668	hw->fc_high_water = hwm & 0xFFF8;	/* 8-byte granularity */
 669	hw->fc_low_water = hw->fc_high_water - 8;
 670	hw->fc_pause_time = E1000_FC_PAUSE_TIME;
 671	hw->fc_send_xon = 1;
 672	hw->fc = hw->original_fc;
 673
 674	/* Allow time for pending master requests to run */
 675	e1000_reset_hw(hw);
 676	if (hw->mac_type >= e1000_82544)
 677		ew32(WUC, 0);
 678
 679	if (e1000_init_hw(hw))
 680		e_dev_err("Hardware Error\n");
 681	e1000_update_mng_vlan(adapter);
 682
 683	/* if (adapter->hwflags & HWFLAGS_PHY_PWR_BIT) { */
 684	if (hw->mac_type >= e1000_82544 &&
 685	    hw->autoneg == 1 &&
 686	    hw->autoneg_advertised == ADVERTISE_1000_FULL) {
 687		u32 ctrl = er32(CTRL);
 688		/* clear phy power management bit if we are in gig only mode,
 689		 * which if enabled will attempt negotiation to 100Mb, which
 690		 * can cause a loss of link at power off or driver unload
 691		 */
 692		ctrl &= ~E1000_CTRL_SWDPIN3;
 693		ew32(CTRL, ctrl);
 694	}
 695
 696	/* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
 697	ew32(VET, ETHERNET_IEEE_VLAN_TYPE);
 698
 699	e1000_reset_adaptive(hw);
 700	e1000_phy_get_info(hw, &adapter->phy_info);
 701
 702	e1000_release_manageability(adapter);
 703}
 704
 705/* Dump the eeprom for users having checksum issues */
 706static void e1000_dump_eeprom(struct e1000_adapter *adapter)
 707{
 708	struct net_device *netdev = adapter->netdev;
 709	struct ethtool_eeprom eeprom;
 710	const struct ethtool_ops *ops = netdev->ethtool_ops;
 711	u8 *data;
 712	int i;
 713	u16 csum_old, csum_new = 0;
 714
 715	eeprom.len = ops->get_eeprom_len(netdev);
 716	eeprom.offset = 0;
 717
 718	data = kmalloc(eeprom.len, GFP_KERNEL);
 719	if (!data)
 720		return;
 721
 722	ops->get_eeprom(netdev, &eeprom, data);
 723
 724	csum_old = (data[EEPROM_CHECKSUM_REG * 2]) +
 725		   (data[EEPROM_CHECKSUM_REG * 2 + 1] << 8);
 726	for (i = 0; i < EEPROM_CHECKSUM_REG * 2; i += 2)
 727		csum_new += data[i] + (data[i + 1] << 8);
 728	csum_new = EEPROM_SUM - csum_new;
 729
 730	pr_err("/*********************/\n");
 731	pr_err("Current EEPROM Checksum : 0x%04x\n", csum_old);
 732	pr_err("Calculated              : 0x%04x\n", csum_new);
 733
 734	pr_err("Offset    Values\n");
 735	pr_err("========  ======\n");
 736	print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 16, 1, data, 128, 0);
 737
 738	pr_err("Include this output when contacting your support provider.\n");
 739	pr_err("This is not a software error! Something bad happened to\n");
 740	pr_err("your hardware or EEPROM image. Ignoring this problem could\n");
 741	pr_err("result in further problems, possibly loss of data,\n");
 742	pr_err("corruption or system hangs!\n");
 743	pr_err("The MAC Address will be reset to 00:00:00:00:00:00,\n");
 744	pr_err("which is invalid and requires you to set the proper MAC\n");
 745	pr_err("address manually before continuing to enable this network\n");
 746	pr_err("device. Please inspect the EEPROM dump and report the\n");
 747	pr_err("issue to your hardware vendor or Intel Customer Support.\n");
 748	pr_err("/*********************/\n");
 749
 750	kfree(data);
 751}
 752
 753/**
 754 * e1000_is_need_ioport - determine if an adapter needs ioport resources or not
 755 * @pdev: PCI device information struct
 756 *
 757 * Return true if an adapter needs ioport resources
 758 **/
 759static int e1000_is_need_ioport(struct pci_dev *pdev)
 760{
 761	switch (pdev->device) {
 762	case E1000_DEV_ID_82540EM:
 763	case E1000_DEV_ID_82540EM_LOM:
 764	case E1000_DEV_ID_82540EP:
 765	case E1000_DEV_ID_82540EP_LOM:
 766	case E1000_DEV_ID_82540EP_LP:
 767	case E1000_DEV_ID_82541EI:
 768	case E1000_DEV_ID_82541EI_MOBILE:
 769	case E1000_DEV_ID_82541ER:
 770	case E1000_DEV_ID_82541ER_LOM:
 771	case E1000_DEV_ID_82541GI:
 772	case E1000_DEV_ID_82541GI_LF:
 773	case E1000_DEV_ID_82541GI_MOBILE:
 774	case E1000_DEV_ID_82544EI_COPPER:
 775	case E1000_DEV_ID_82544EI_FIBER:
 776	case E1000_DEV_ID_82544GC_COPPER:
 777	case E1000_DEV_ID_82544GC_LOM:
 778	case E1000_DEV_ID_82545EM_COPPER:
 779	case E1000_DEV_ID_82545EM_FIBER:
 780	case E1000_DEV_ID_82546EB_COPPER:
 781	case E1000_DEV_ID_82546EB_FIBER:
 782	case E1000_DEV_ID_82546EB_QUAD_COPPER:
 783		return true;
 784	default:
 785		return false;
 786	}
 787}
 788
 789static netdev_features_t e1000_fix_features(struct net_device *netdev,
 790	netdev_features_t features)
 791{
 792	/* Since there is no support for separate Rx/Tx vlan accel
 793	 * enable/disable make sure Tx flag is always in same state as Rx.
 794	 */
 795	if (features & NETIF_F_HW_VLAN_CTAG_RX)
 796		features |= NETIF_F_HW_VLAN_CTAG_TX;
 797	else
 798		features &= ~NETIF_F_HW_VLAN_CTAG_TX;
 799
 800	return features;
 801}
 802
 803static int e1000_set_features(struct net_device *netdev,
 804	netdev_features_t features)
 805{
 806	struct e1000_adapter *adapter = netdev_priv(netdev);
 807	netdev_features_t changed = features ^ netdev->features;
 808
 809	if (changed & NETIF_F_HW_VLAN_CTAG_RX)
 810		e1000_vlan_mode(netdev, features);
 811
 812	if (!(changed & (NETIF_F_RXCSUM | NETIF_F_RXALL)))
 813		return 0;
 814
 815	netdev->features = features;
 816	adapter->rx_csum = !!(features & NETIF_F_RXCSUM);
 817
 818	if (netif_running(netdev))
 819		e1000_reinit_locked(adapter);
 820	else
 821		e1000_reset(adapter);
 822
 823	return 1;
 824}
 825
 826static const struct net_device_ops e1000_netdev_ops = {
 827	.ndo_open		= e1000_open,
 828	.ndo_stop		= e1000_close,
 829	.ndo_start_xmit		= e1000_xmit_frame,
 830	.ndo_set_rx_mode	= e1000_set_rx_mode,
 831	.ndo_set_mac_address	= e1000_set_mac,
 832	.ndo_tx_timeout		= e1000_tx_timeout,
 833	.ndo_change_mtu		= e1000_change_mtu,
 834	.ndo_do_ioctl		= e1000_ioctl,
 835	.ndo_validate_addr	= eth_validate_addr,
 836	.ndo_vlan_rx_add_vid	= e1000_vlan_rx_add_vid,
 837	.ndo_vlan_rx_kill_vid	= e1000_vlan_rx_kill_vid,
 838#ifdef CONFIG_NET_POLL_CONTROLLER
 839	.ndo_poll_controller	= e1000_netpoll,
 840#endif
 841	.ndo_fix_features	= e1000_fix_features,
 842	.ndo_set_features	= e1000_set_features,
 843};
 844
 845/**
 846 * e1000_init_hw_struct - initialize members of hw struct
 847 * @adapter: board private struct
 848 * @hw: structure used by e1000_hw.c
 849 *
 850 * Factors out initialization of the e1000_hw struct to its own function
 851 * that can be called very early at init (just after struct allocation).
 852 * Fields are initialized based on PCI device information and
 853 * OS network device settings (MTU size).
 854 * Returns negative error codes if MAC type setup fails.
 855 */
 856static int e1000_init_hw_struct(struct e1000_adapter *adapter,
 857				struct e1000_hw *hw)
 858{
 859	struct pci_dev *pdev = adapter->pdev;
 860
 861	/* PCI config space info */
 862	hw->vendor_id = pdev->vendor;
 863	hw->device_id = pdev->device;
 864	hw->subsystem_vendor_id = pdev->subsystem_vendor;
 865	hw->subsystem_id = pdev->subsystem_device;
 866	hw->revision_id = pdev->revision;
 867
 868	pci_read_config_word(pdev, PCI_COMMAND, &hw->pci_cmd_word);
 869
 870	hw->max_frame_size = adapter->netdev->mtu +
 871			     ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
 872	hw->min_frame_size = MINIMUM_ETHERNET_FRAME_SIZE;
 873
 874	/* identify the MAC */
 875	if (e1000_set_mac_type(hw)) {
 876		e_err(probe, "Unknown MAC Type\n");
 877		return -EIO;
 878	}
 879
 880	switch (hw->mac_type) {
 881	default:
 882		break;
 883	case e1000_82541:
 884	case e1000_82547:
 885	case e1000_82541_rev_2:
 886	case e1000_82547_rev_2:
 887		hw->phy_init_script = 1;
 888		break;
 889	}
 890
 891	e1000_set_media_type(hw);
 892	e1000_get_bus_info(hw);
 893
 894	hw->wait_autoneg_complete = false;
 895	hw->tbi_compatibility_en = true;
 896	hw->adaptive_ifs = true;
 897
 898	/* Copper options */
 899
 900	if (hw->media_type == e1000_media_type_copper) {
 901		hw->mdix = AUTO_ALL_MODES;
 902		hw->disable_polarity_correction = false;
 903		hw->master_slave = E1000_MASTER_SLAVE;
 904	}
 905
 906	return 0;
 907}
 908
 909/**
 910 * e1000_probe - Device Initialization Routine
 911 * @pdev: PCI device information struct
 912 * @ent: entry in e1000_pci_tbl
 913 *
 914 * Returns 0 on success, negative on failure
 915 *
 916 * e1000_probe initializes an adapter identified by a pci_dev structure.
 917 * The OS initialization, configuring of the adapter private structure,
 918 * and a hardware reset occur.
 919 **/
 920static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
 921{
 922	struct net_device *netdev;
 923	struct e1000_adapter *adapter = NULL;
 924	struct e1000_hw *hw;
 925
 926	static int cards_found;
 927	static int global_quad_port_a; /* global ksp3 port a indication */
 928	int i, err, pci_using_dac;
 929	u16 eeprom_data = 0;
 930	u16 tmp = 0;
 931	u16 eeprom_apme_mask = E1000_EEPROM_APME;
 932	int bars, need_ioport;
 933	bool disable_dev = false;
 934
 935	/* do not allocate ioport bars when not needed */
 936	need_ioport = e1000_is_need_ioport(pdev);
 937	if (need_ioport) {
 938		bars = pci_select_bars(pdev, IORESOURCE_MEM | IORESOURCE_IO);
 939		err = pci_enable_device(pdev);
 940	} else {
 941		bars = pci_select_bars(pdev, IORESOURCE_MEM);
 942		err = pci_enable_device_mem(pdev);
 943	}
 944	if (err)
 945		return err;
 946
 947	err = pci_request_selected_regions(pdev, bars, e1000_driver_name);
 948	if (err)
 949		goto err_pci_reg;
 950
 951	pci_set_master(pdev);
 952	err = pci_save_state(pdev);
 953	if (err)
 954		goto err_alloc_etherdev;
 955
 956	err = -ENOMEM;
 957	netdev = alloc_etherdev(sizeof(struct e1000_adapter));
 958	if (!netdev)
 959		goto err_alloc_etherdev;
 960
 961	SET_NETDEV_DEV(netdev, &pdev->dev);
 962
 963	pci_set_drvdata(pdev, netdev);
 964	adapter = netdev_priv(netdev);
 965	adapter->netdev = netdev;
 966	adapter->pdev = pdev;
 967	adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
 968	adapter->bars = bars;
 969	adapter->need_ioport = need_ioport;
 970
 971	hw = &adapter->hw;
 972	hw->back = adapter;
 973
 974	err = -EIO;
 975	hw->hw_addr = pci_ioremap_bar(pdev, BAR_0);
 976	if (!hw->hw_addr)
 977		goto err_ioremap;
 978
 979	if (adapter->need_ioport) {
 980		for (i = BAR_1; i < PCI_STD_NUM_BARS; i++) {
 981			if (pci_resource_len(pdev, i) == 0)
 982				continue;
 983			if (pci_resource_flags(pdev, i) & IORESOURCE_IO) {
 984				hw->io_base = pci_resource_start(pdev, i);
 985				break;
 986			}
 987		}
 988	}
 989
 990	/* make ready for any if (hw->...) below */
 991	err = e1000_init_hw_struct(adapter, hw);
 992	if (err)
 993		goto err_sw_init;
 994
 995	/* there is a workaround being applied below that limits
 996	 * 64-bit DMA addresses to 64-bit hardware.  There are some
 997	 * 32-bit adapters that Tx hang when given 64-bit DMA addresses
 998	 */
 999	pci_using_dac = 0;
1000	if ((hw->bus_type == e1000_bus_type_pcix) &&
1001	    !dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64))) {
1002		pci_using_dac = 1;
1003	} else {
1004		err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
1005		if (err) {
1006			pr_err("No usable DMA config, aborting\n");
1007			goto err_dma;
1008		}
1009	}
1010
1011	netdev->netdev_ops = &e1000_netdev_ops;
1012	e1000_set_ethtool_ops(netdev);
1013	netdev->watchdog_timeo = 5 * HZ;
1014	netif_napi_add(netdev, &adapter->napi, e1000_clean, 64);
1015
1016	strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
1017
1018	adapter->bd_number = cards_found;
1019
1020	/* setup the private structure */
1021
1022	err = e1000_sw_init(adapter);
1023	if (err)
1024		goto err_sw_init;
1025
1026	err = -EIO;
1027	if (hw->mac_type == e1000_ce4100) {
1028		hw->ce4100_gbe_mdio_base_virt =
1029					ioremap(pci_resource_start(pdev, BAR_1),
1030						pci_resource_len(pdev, BAR_1));
1031
1032		if (!hw->ce4100_gbe_mdio_base_virt)
1033			goto err_mdio_ioremap;
1034	}
1035
1036	if (hw->mac_type >= e1000_82543) {
1037		netdev->hw_features = NETIF_F_SG |
1038				   NETIF_F_HW_CSUM |
1039				   NETIF_F_HW_VLAN_CTAG_RX;
1040		netdev->features = NETIF_F_HW_VLAN_CTAG_TX |
1041				   NETIF_F_HW_VLAN_CTAG_FILTER;
1042	}
1043
1044	if ((hw->mac_type >= e1000_82544) &&
1045	   (hw->mac_type != e1000_82547))
1046		netdev->hw_features |= NETIF_F_TSO;
1047
1048	netdev->priv_flags |= IFF_SUPP_NOFCS;
1049
1050	netdev->features |= netdev->hw_features;
1051	netdev->hw_features |= (NETIF_F_RXCSUM |
1052				NETIF_F_RXALL |
1053				NETIF_F_RXFCS);
1054
1055	if (pci_using_dac) {
1056		netdev->features |= NETIF_F_HIGHDMA;
1057		netdev->vlan_features |= NETIF_F_HIGHDMA;
1058	}
1059
1060	netdev->vlan_features |= (NETIF_F_TSO |
1061				  NETIF_F_HW_CSUM |
1062				  NETIF_F_SG);
1063
1064	/* Do not set IFF_UNICAST_FLT for VMWare's 82545EM */
1065	if (hw->device_id != E1000_DEV_ID_82545EM_COPPER ||
1066	    hw->subsystem_vendor_id != PCI_VENDOR_ID_VMWARE)
1067		netdev->priv_flags |= IFF_UNICAST_FLT;
1068
1069	/* MTU range: 46 - 16110 */
1070	netdev->min_mtu = ETH_ZLEN - ETH_HLEN;
1071	netdev->max_mtu = MAX_JUMBO_FRAME_SIZE - (ETH_HLEN + ETH_FCS_LEN);
1072
1073	adapter->en_mng_pt = e1000_enable_mng_pass_thru(hw);
1074
1075	/* initialize eeprom parameters */
1076	if (e1000_init_eeprom_params(hw)) {
1077		e_err(probe, "EEPROM initialization failed\n");
1078		goto err_eeprom;
1079	}
1080
1081	/* before reading the EEPROM, reset the controller to
1082	 * put the device in a known good starting state
1083	 */
1084
1085	e1000_reset_hw(hw);
1086
1087	/* make sure the EEPROM is good */
1088	if (e1000_validate_eeprom_checksum(hw) < 0) {
1089		e_err(probe, "The EEPROM Checksum Is Not Valid\n");
1090		e1000_dump_eeprom(adapter);
1091		/* set MAC address to all zeroes to invalidate and temporary
1092		 * disable this device for the user. This blocks regular
1093		 * traffic while still permitting ethtool ioctls from reaching
1094		 * the hardware as well as allowing the user to run the
1095		 * interface after manually setting a hw addr using
1096		 * `ip set address`
1097		 */
1098		memset(hw->mac_addr, 0, netdev->addr_len);
1099	} else {
1100		/* copy the MAC address out of the EEPROM */
1101		if (e1000_read_mac_addr(hw))
1102			e_err(probe, "EEPROM Read Error\n");
1103	}
1104	/* don't block initialization here due to bad MAC address */
1105	memcpy(netdev->dev_addr, hw->mac_addr, netdev->addr_len);
1106
1107	if (!is_valid_ether_addr(netdev->dev_addr))
1108		e_err(probe, "Invalid MAC Address\n");
1109
1110
1111	INIT_DELAYED_WORK(&adapter->watchdog_task, e1000_watchdog);
1112	INIT_DELAYED_WORK(&adapter->fifo_stall_task,
1113			  e1000_82547_tx_fifo_stall_task);
1114	INIT_DELAYED_WORK(&adapter->phy_info_task, e1000_update_phy_info_task);
1115	INIT_WORK(&adapter->reset_task, e1000_reset_task);
1116
1117	e1000_check_options(adapter);
1118
1119	/* Initial Wake on LAN setting
1120	 * If APM wake is enabled in the EEPROM,
1121	 * enable the ACPI Magic Packet filter
1122	 */
1123
1124	switch (hw->mac_type) {
1125	case e1000_82542_rev2_0:
1126	case e1000_82542_rev2_1:
1127	case e1000_82543:
1128		break;
1129	case e1000_82544:
1130		e1000_read_eeprom(hw,
1131			EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data);
1132		eeprom_apme_mask = E1000_EEPROM_82544_APM;
1133		break;
1134	case e1000_82546:
1135	case e1000_82546_rev_3:
1136		if (er32(STATUS) & E1000_STATUS_FUNC_1) {
1137			e1000_read_eeprom(hw,
1138				EEPROM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
1139			break;
1140		}
1141		fallthrough;
1142	default:
1143		e1000_read_eeprom(hw,
1144			EEPROM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
1145		break;
1146	}
1147	if (eeprom_data & eeprom_apme_mask)
1148		adapter->eeprom_wol |= E1000_WUFC_MAG;
1149
1150	/* now that we have the eeprom settings, apply the special cases
1151	 * where the eeprom may be wrong or the board simply won't support
1152	 * wake on lan on a particular port
1153	 */
1154	switch (pdev->device) {
1155	case E1000_DEV_ID_82546GB_PCIE:
1156		adapter->eeprom_wol = 0;
1157		break;
1158	case E1000_DEV_ID_82546EB_FIBER:
1159	case E1000_DEV_ID_82546GB_FIBER:
1160		/* Wake events only supported on port A for dual fiber
1161		 * regardless of eeprom setting
1162		 */
1163		if (er32(STATUS) & E1000_STATUS_FUNC_1)
1164			adapter->eeprom_wol = 0;
1165		break;
1166	case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1167		/* if quad port adapter, disable WoL on all but port A */
1168		if (global_quad_port_a != 0)
1169			adapter->eeprom_wol = 0;
1170		else
1171			adapter->quad_port_a = true;
1172		/* Reset for multiple quad port adapters */
1173		if (++global_quad_port_a == 4)
1174			global_quad_port_a = 0;
1175		break;
1176	}
1177
1178	/* initialize the wol settings based on the eeprom settings */
1179	adapter->wol = adapter->eeprom_wol;
1180	device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1181
1182	/* Auto detect PHY address */
1183	if (hw->mac_type == e1000_ce4100) {
1184		for (i = 0; i < 32; i++) {
1185			hw->phy_addr = i;
1186			e1000_read_phy_reg(hw, PHY_ID2, &tmp);
1187
1188			if (tmp != 0 && tmp != 0xFF)
1189				break;
1190		}
1191
1192		if (i >= 32)
1193			goto err_eeprom;
1194	}
1195
1196	/* reset the hardware with the new settings */
1197	e1000_reset(adapter);
1198
1199	strcpy(netdev->name, "eth%d");
1200	err = register_netdev(netdev);
1201	if (err)
1202		goto err_register;
1203
1204	e1000_vlan_filter_on_off(adapter, false);
1205
1206	/* print bus type/speed/width info */
1207	e_info(probe, "(PCI%s:%dMHz:%d-bit) %pM\n",
1208	       ((hw->bus_type == e1000_bus_type_pcix) ? "-X" : ""),
1209	       ((hw->bus_speed == e1000_bus_speed_133) ? 133 :
1210		(hw->bus_speed == e1000_bus_speed_120) ? 120 :
1211		(hw->bus_speed == e1000_bus_speed_100) ? 100 :
1212		(hw->bus_speed == e1000_bus_speed_66) ? 66 : 33),
1213	       ((hw->bus_width == e1000_bus_width_64) ? 64 : 32),
1214	       netdev->dev_addr);
1215
1216	/* carrier off reporting is important to ethtool even BEFORE open */
1217	netif_carrier_off(netdev);
1218
1219	e_info(probe, "Intel(R) PRO/1000 Network Connection\n");
1220
1221	cards_found++;
1222	return 0;
1223
1224err_register:
1225err_eeprom:
1226	e1000_phy_hw_reset(hw);
1227
1228	if (hw->flash_address)
1229		iounmap(hw->flash_address);
1230	kfree(adapter->tx_ring);
1231	kfree(adapter->rx_ring);
1232err_dma:
1233err_sw_init:
1234err_mdio_ioremap:
1235	iounmap(hw->ce4100_gbe_mdio_base_virt);
1236	iounmap(hw->hw_addr);
1237err_ioremap:
1238	disable_dev = !test_and_set_bit(__E1000_DISABLED, &adapter->flags);
1239	free_netdev(netdev);
1240err_alloc_etherdev:
1241	pci_release_selected_regions(pdev, bars);
1242err_pci_reg:
1243	if (!adapter || disable_dev)
1244		pci_disable_device(pdev);
1245	return err;
1246}
1247
1248/**
1249 * e1000_remove - Device Removal Routine
1250 * @pdev: PCI device information struct
1251 *
1252 * e1000_remove is called by the PCI subsystem to alert the driver
1253 * that it should release a PCI device. That could be caused by a
1254 * Hot-Plug event, or because the driver is going to be removed from
1255 * memory.
1256 **/
1257static void e1000_remove(struct pci_dev *pdev)
1258{
1259	struct net_device *netdev = pci_get_drvdata(pdev);
1260	struct e1000_adapter *adapter = netdev_priv(netdev);
1261	struct e1000_hw *hw = &adapter->hw;
1262	bool disable_dev;
1263
1264	e1000_down_and_stop(adapter);
1265	e1000_release_manageability(adapter);
1266
1267	unregister_netdev(netdev);
1268
1269	e1000_phy_hw_reset(hw);
1270
1271	kfree(adapter->tx_ring);
1272	kfree(adapter->rx_ring);
1273
1274	if (hw->mac_type == e1000_ce4100)
1275		iounmap(hw->ce4100_gbe_mdio_base_virt);
1276	iounmap(hw->hw_addr);
1277	if (hw->flash_address)
1278		iounmap(hw->flash_address);
1279	pci_release_selected_regions(pdev, adapter->bars);
1280
1281	disable_dev = !test_and_set_bit(__E1000_DISABLED, &adapter->flags);
1282	free_netdev(netdev);
1283
1284	if (disable_dev)
1285		pci_disable_device(pdev);
1286}
1287
1288/**
1289 * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
1290 * @adapter: board private structure to initialize
1291 *
1292 * e1000_sw_init initializes the Adapter private data structure.
1293 * e1000_init_hw_struct MUST be called before this function
1294 **/
1295static int e1000_sw_init(struct e1000_adapter *adapter)
1296{
1297	adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
1298
1299	adapter->num_tx_queues = 1;
1300	adapter->num_rx_queues = 1;
1301
1302	if (e1000_alloc_queues(adapter)) {
1303		e_err(probe, "Unable to allocate memory for queues\n");
1304		return -ENOMEM;
1305	}
1306
1307	/* Explicitly disable IRQ since the NIC can be in any state. */
1308	e1000_irq_disable(adapter);
1309
1310	spin_lock_init(&adapter->stats_lock);
1311
1312	set_bit(__E1000_DOWN, &adapter->flags);
1313
1314	return 0;
1315}
1316
1317/**
1318 * e1000_alloc_queues - Allocate memory for all rings
1319 * @adapter: board private structure to initialize
1320 *
1321 * We allocate one ring per queue at run-time since we don't know the
1322 * number of queues at compile-time.
1323 **/
1324static int e1000_alloc_queues(struct e1000_adapter *adapter)
1325{
1326	adapter->tx_ring = kcalloc(adapter->num_tx_queues,
1327				   sizeof(struct e1000_tx_ring), GFP_KERNEL);
1328	if (!adapter->tx_ring)
1329		return -ENOMEM;
1330
1331	adapter->rx_ring = kcalloc(adapter->num_rx_queues,
1332				   sizeof(struct e1000_rx_ring), GFP_KERNEL);
1333	if (!adapter->rx_ring) {
1334		kfree(adapter->tx_ring);
1335		return -ENOMEM;
1336	}
1337
1338	return E1000_SUCCESS;
1339}
1340
1341/**
1342 * e1000_open - Called when a network interface is made active
1343 * @netdev: network interface device structure
1344 *
1345 * Returns 0 on success, negative value on failure
1346 *
1347 * The open entry point is called when a network interface is made
1348 * active by the system (IFF_UP).  At this point all resources needed
1349 * for transmit and receive operations are allocated, the interrupt
1350 * handler is registered with the OS, the watchdog task is started,
1351 * and the stack is notified that the interface is ready.
1352 **/
1353int e1000_open(struct net_device *netdev)
1354{
1355	struct e1000_adapter *adapter = netdev_priv(netdev);
1356	struct e1000_hw *hw = &adapter->hw;
1357	int err;
1358
1359	/* disallow open during test */
1360	if (test_bit(__E1000_TESTING, &adapter->flags))
1361		return -EBUSY;
1362
1363	netif_carrier_off(netdev);
1364
1365	/* allocate transmit descriptors */
1366	err = e1000_setup_all_tx_resources(adapter);
1367	if (err)
1368		goto err_setup_tx;
1369
1370	/* allocate receive descriptors */
1371	err = e1000_setup_all_rx_resources(adapter);
1372	if (err)
1373		goto err_setup_rx;
1374
1375	e1000_power_up_phy(adapter);
1376
1377	adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
1378	if ((hw->mng_cookie.status &
1379			  E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) {
1380		e1000_update_mng_vlan(adapter);
1381	}
1382
1383	/* before we allocate an interrupt, we must be ready to handle it.
1384	 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1385	 * as soon as we call pci_request_irq, so we have to setup our
1386	 * clean_rx handler before we do so.
1387	 */
1388	e1000_configure(adapter);
1389
1390	err = e1000_request_irq(adapter);
1391	if (err)
1392		goto err_req_irq;
1393
1394	/* From here on the code is the same as e1000_up() */
1395	clear_bit(__E1000_DOWN, &adapter->flags);
1396
 
1397	napi_enable(&adapter->napi);
 
 
1398
1399	e1000_irq_enable(adapter);
1400
1401	netif_start_queue(netdev);
1402
1403	/* fire a link status change interrupt to start the watchdog */
1404	ew32(ICS, E1000_ICS_LSC);
1405
1406	return E1000_SUCCESS;
1407
1408err_req_irq:
1409	e1000_power_down_phy(adapter);
1410	e1000_free_all_rx_resources(adapter);
1411err_setup_rx:
1412	e1000_free_all_tx_resources(adapter);
1413err_setup_tx:
1414	e1000_reset(adapter);
1415
1416	return err;
1417}
1418
1419/**
1420 * e1000_close - Disables a network interface
1421 * @netdev: network interface device structure
1422 *
1423 * Returns 0, this is not allowed to fail
1424 *
1425 * The close entry point is called when an interface is de-activated
1426 * by the OS.  The hardware is still under the drivers control, but
1427 * needs to be disabled.  A global MAC reset is issued to stop the
1428 * hardware, and all transmit and receive resources are freed.
1429 **/
1430int e1000_close(struct net_device *netdev)
1431{
1432	struct e1000_adapter *adapter = netdev_priv(netdev);
1433	struct e1000_hw *hw = &adapter->hw;
1434	int count = E1000_CHECK_RESET_COUNT;
1435
1436	while (test_and_set_bit(__E1000_RESETTING, &adapter->flags) && count--)
1437		usleep_range(10000, 20000);
1438
1439	WARN_ON(count < 0);
1440
1441	/* signal that we're down so that the reset task will no longer run */
1442	set_bit(__E1000_DOWN, &adapter->flags);
1443	clear_bit(__E1000_RESETTING, &adapter->flags);
1444
1445	e1000_down(adapter);
1446	e1000_power_down_phy(adapter);
1447	e1000_free_irq(adapter);
1448
1449	e1000_free_all_tx_resources(adapter);
1450	e1000_free_all_rx_resources(adapter);
1451
1452	/* kill manageability vlan ID if supported, but not if a vlan with
1453	 * the same ID is registered on the host OS (let 8021q kill it)
1454	 */
1455	if ((hw->mng_cookie.status &
1456	     E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
1457	    !test_bit(adapter->mng_vlan_id, adapter->active_vlans)) {
1458		e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q),
1459				       adapter->mng_vlan_id);
1460	}
1461
1462	return 0;
1463}
1464
1465/**
1466 * e1000_check_64k_bound - check that memory doesn't cross 64kB boundary
1467 * @adapter: address of board private structure
1468 * @start: address of beginning of memory
1469 * @len: length of memory
1470 **/
1471static bool e1000_check_64k_bound(struct e1000_adapter *adapter, void *start,
1472				  unsigned long len)
1473{
1474	struct e1000_hw *hw = &adapter->hw;
1475	unsigned long begin = (unsigned long)start;
1476	unsigned long end = begin + len;
1477
1478	/* First rev 82545 and 82546 need to not allow any memory
1479	 * write location to cross 64k boundary due to errata 23
1480	 */
1481	if (hw->mac_type == e1000_82545 ||
1482	    hw->mac_type == e1000_ce4100 ||
1483	    hw->mac_type == e1000_82546) {
1484		return ((begin ^ (end - 1)) >> 16) == 0;
1485	}
1486
1487	return true;
1488}
1489
1490/**
1491 * e1000_setup_tx_resources - allocate Tx resources (Descriptors)
1492 * @adapter: board private structure
1493 * @txdr:    tx descriptor ring (for a specific queue) to setup
1494 *
1495 * Return 0 on success, negative on failure
1496 **/
1497static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
1498				    struct e1000_tx_ring *txdr)
1499{
1500	struct pci_dev *pdev = adapter->pdev;
1501	int size;
1502
1503	size = sizeof(struct e1000_tx_buffer) * txdr->count;
1504	txdr->buffer_info = vzalloc(size);
1505	if (!txdr->buffer_info)
1506		return -ENOMEM;
1507
1508	/* round up to nearest 4K */
1509
1510	txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
1511	txdr->size = ALIGN(txdr->size, 4096);
1512
1513	txdr->desc = dma_alloc_coherent(&pdev->dev, txdr->size, &txdr->dma,
1514					GFP_KERNEL);
1515	if (!txdr->desc) {
1516setup_tx_desc_die:
1517		vfree(txdr->buffer_info);
1518		return -ENOMEM;
1519	}
1520
1521	/* Fix for errata 23, can't cross 64kB boundary */
1522	if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1523		void *olddesc = txdr->desc;
1524		dma_addr_t olddma = txdr->dma;
1525		e_err(tx_err, "txdr align check failed: %u bytes at %p\n",
1526		      txdr->size, txdr->desc);
1527		/* Try again, without freeing the previous */
1528		txdr->desc = dma_alloc_coherent(&pdev->dev, txdr->size,
1529						&txdr->dma, GFP_KERNEL);
1530		/* Failed allocation, critical failure */
1531		if (!txdr->desc) {
1532			dma_free_coherent(&pdev->dev, txdr->size, olddesc,
1533					  olddma);
1534			goto setup_tx_desc_die;
1535		}
1536
1537		if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1538			/* give up */
1539			dma_free_coherent(&pdev->dev, txdr->size, txdr->desc,
1540					  txdr->dma);
1541			dma_free_coherent(&pdev->dev, txdr->size, olddesc,
1542					  olddma);
1543			e_err(probe, "Unable to allocate aligned memory "
1544			      "for the transmit descriptor ring\n");
1545			vfree(txdr->buffer_info);
1546			return -ENOMEM;
1547		} else {
1548			/* Free old allocation, new allocation was successful */
1549			dma_free_coherent(&pdev->dev, txdr->size, olddesc,
1550					  olddma);
1551		}
1552	}
1553	memset(txdr->desc, 0, txdr->size);
1554
1555	txdr->next_to_use = 0;
1556	txdr->next_to_clean = 0;
1557
1558	return 0;
1559}
1560
1561/**
1562 * e1000_setup_all_tx_resources - wrapper to allocate Tx resources
1563 * 				  (Descriptors) for all queues
1564 * @adapter: board private structure
1565 *
1566 * Return 0 on success, negative on failure
1567 **/
1568int e1000_setup_all_tx_resources(struct e1000_adapter *adapter)
1569{
1570	int i, err = 0;
1571
1572	for (i = 0; i < adapter->num_tx_queues; i++) {
1573		err = e1000_setup_tx_resources(adapter, &adapter->tx_ring[i]);
1574		if (err) {
1575			e_err(probe, "Allocation for Tx Queue %u failed\n", i);
1576			for (i-- ; i >= 0; i--)
1577				e1000_free_tx_resources(adapter,
1578							&adapter->tx_ring[i]);
1579			break;
1580		}
1581	}
1582
1583	return err;
1584}
1585
1586/**
1587 * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
1588 * @adapter: board private structure
1589 *
1590 * Configure the Tx unit of the MAC after a reset.
1591 **/
1592static void e1000_configure_tx(struct e1000_adapter *adapter)
1593{
1594	u64 tdba;
1595	struct e1000_hw *hw = &adapter->hw;
1596	u32 tdlen, tctl, tipg;
1597	u32 ipgr1, ipgr2;
1598
1599	/* Setup the HW Tx Head and Tail descriptor pointers */
1600
1601	switch (adapter->num_tx_queues) {
1602	case 1:
1603	default:
1604		tdba = adapter->tx_ring[0].dma;
1605		tdlen = adapter->tx_ring[0].count *
1606			sizeof(struct e1000_tx_desc);
1607		ew32(TDLEN, tdlen);
1608		ew32(TDBAH, (tdba >> 32));
1609		ew32(TDBAL, (tdba & 0x00000000ffffffffULL));
1610		ew32(TDT, 0);
1611		ew32(TDH, 0);
1612		adapter->tx_ring[0].tdh = ((hw->mac_type >= e1000_82543) ?
1613					   E1000_TDH : E1000_82542_TDH);
1614		adapter->tx_ring[0].tdt = ((hw->mac_type >= e1000_82543) ?
1615					   E1000_TDT : E1000_82542_TDT);
1616		break;
1617	}
1618
1619	/* Set the default values for the Tx Inter Packet Gap timer */
1620	if ((hw->media_type == e1000_media_type_fiber ||
1621	     hw->media_type == e1000_media_type_internal_serdes))
1622		tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
1623	else
1624		tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
1625
1626	switch (hw->mac_type) {
1627	case e1000_82542_rev2_0:
1628	case e1000_82542_rev2_1:
1629		tipg = DEFAULT_82542_TIPG_IPGT;
1630		ipgr1 = DEFAULT_82542_TIPG_IPGR1;
1631		ipgr2 = DEFAULT_82542_TIPG_IPGR2;
1632		break;
1633	default:
1634		ipgr1 = DEFAULT_82543_TIPG_IPGR1;
1635		ipgr2 = DEFAULT_82543_TIPG_IPGR2;
1636		break;
1637	}
1638	tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
1639	tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
1640	ew32(TIPG, tipg);
1641
1642	/* Set the Tx Interrupt Delay register */
1643
1644	ew32(TIDV, adapter->tx_int_delay);
1645	if (hw->mac_type >= e1000_82540)
1646		ew32(TADV, adapter->tx_abs_int_delay);
1647
1648	/* Program the Transmit Control Register */
1649
1650	tctl = er32(TCTL);
1651	tctl &= ~E1000_TCTL_CT;
1652	tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
1653		(E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
1654
1655	e1000_config_collision_dist(hw);
1656
1657	/* Setup Transmit Descriptor Settings for eop descriptor */
1658	adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
1659
1660	/* only set IDE if we are delaying interrupts using the timers */
1661	if (adapter->tx_int_delay)
1662		adapter->txd_cmd |= E1000_TXD_CMD_IDE;
1663
1664	if (hw->mac_type < e1000_82543)
1665		adapter->txd_cmd |= E1000_TXD_CMD_RPS;
1666	else
1667		adapter->txd_cmd |= E1000_TXD_CMD_RS;
1668
1669	/* Cache if we're 82544 running in PCI-X because we'll
1670	 * need this to apply a workaround later in the send path.
1671	 */
1672	if (hw->mac_type == e1000_82544 &&
1673	    hw->bus_type == e1000_bus_type_pcix)
1674		adapter->pcix_82544 = true;
1675
1676	ew32(TCTL, tctl);
1677
1678}
1679
1680/**
1681 * e1000_setup_rx_resources - allocate Rx resources (Descriptors)
1682 * @adapter: board private structure
1683 * @rxdr:    rx descriptor ring (for a specific queue) to setup
1684 *
1685 * Returns 0 on success, negative on failure
1686 **/
1687static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
1688				    struct e1000_rx_ring *rxdr)
1689{
1690	struct pci_dev *pdev = adapter->pdev;
1691	int size, desc_len;
1692
1693	size = sizeof(struct e1000_rx_buffer) * rxdr->count;
1694	rxdr->buffer_info = vzalloc(size);
1695	if (!rxdr->buffer_info)
1696		return -ENOMEM;
1697
1698	desc_len = sizeof(struct e1000_rx_desc);
1699
1700	/* Round up to nearest 4K */
1701
1702	rxdr->size = rxdr->count * desc_len;
1703	rxdr->size = ALIGN(rxdr->size, 4096);
1704
1705	rxdr->desc = dma_alloc_coherent(&pdev->dev, rxdr->size, &rxdr->dma,
1706					GFP_KERNEL);
1707	if (!rxdr->desc) {
1708setup_rx_desc_die:
1709		vfree(rxdr->buffer_info);
1710		return -ENOMEM;
1711	}
1712
1713	/* Fix for errata 23, can't cross 64kB boundary */
1714	if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1715		void *olddesc = rxdr->desc;
1716		dma_addr_t olddma = rxdr->dma;
1717		e_err(rx_err, "rxdr align check failed: %u bytes at %p\n",
1718		      rxdr->size, rxdr->desc);
1719		/* Try again, without freeing the previous */
1720		rxdr->desc = dma_alloc_coherent(&pdev->dev, rxdr->size,
1721						&rxdr->dma, GFP_KERNEL);
1722		/* Failed allocation, critical failure */
1723		if (!rxdr->desc) {
1724			dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
1725					  olddma);
1726			goto setup_rx_desc_die;
1727		}
1728
1729		if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1730			/* give up */
1731			dma_free_coherent(&pdev->dev, rxdr->size, rxdr->desc,
1732					  rxdr->dma);
1733			dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
1734					  olddma);
1735			e_err(probe, "Unable to allocate aligned memory for "
1736			      "the Rx descriptor ring\n");
1737			goto setup_rx_desc_die;
1738		} else {
1739			/* Free old allocation, new allocation was successful */
1740			dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
1741					  olddma);
1742		}
1743	}
1744	memset(rxdr->desc, 0, rxdr->size);
1745
1746	rxdr->next_to_clean = 0;
1747	rxdr->next_to_use = 0;
1748	rxdr->rx_skb_top = NULL;
1749
1750	return 0;
1751}
1752
1753/**
1754 * e1000_setup_all_rx_resources - wrapper to allocate Rx resources
1755 * 				  (Descriptors) for all queues
1756 * @adapter: board private structure
1757 *
1758 * Return 0 on success, negative on failure
1759 **/
1760int e1000_setup_all_rx_resources(struct e1000_adapter *adapter)
1761{
1762	int i, err = 0;
1763
1764	for (i = 0; i < adapter->num_rx_queues; i++) {
1765		err = e1000_setup_rx_resources(adapter, &adapter->rx_ring[i]);
1766		if (err) {
1767			e_err(probe, "Allocation for Rx Queue %u failed\n", i);
1768			for (i-- ; i >= 0; i--)
1769				e1000_free_rx_resources(adapter,
1770							&adapter->rx_ring[i]);
1771			break;
1772		}
1773	}
1774
1775	return err;
1776}
1777
1778/**
1779 * e1000_setup_rctl - configure the receive control registers
1780 * @adapter: Board private structure
1781 **/
1782static void e1000_setup_rctl(struct e1000_adapter *adapter)
1783{
1784	struct e1000_hw *hw = &adapter->hw;
1785	u32 rctl;
1786
1787	rctl = er32(RCTL);
1788
1789	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
1790
1791	rctl |= E1000_RCTL_BAM | E1000_RCTL_LBM_NO |
1792		E1000_RCTL_RDMTS_HALF |
1793		(hw->mc_filter_type << E1000_RCTL_MO_SHIFT);
1794
1795	if (hw->tbi_compatibility_on == 1)
1796		rctl |= E1000_RCTL_SBP;
1797	else
1798		rctl &= ~E1000_RCTL_SBP;
1799
1800	if (adapter->netdev->mtu <= ETH_DATA_LEN)
1801		rctl &= ~E1000_RCTL_LPE;
1802	else
1803		rctl |= E1000_RCTL_LPE;
1804
1805	/* Setup buffer sizes */
1806	rctl &= ~E1000_RCTL_SZ_4096;
1807	rctl |= E1000_RCTL_BSEX;
1808	switch (adapter->rx_buffer_len) {
1809	case E1000_RXBUFFER_2048:
1810	default:
1811		rctl |= E1000_RCTL_SZ_2048;
1812		rctl &= ~E1000_RCTL_BSEX;
1813		break;
1814	case E1000_RXBUFFER_4096:
1815		rctl |= E1000_RCTL_SZ_4096;
1816		break;
1817	case E1000_RXBUFFER_8192:
1818		rctl |= E1000_RCTL_SZ_8192;
1819		break;
1820	case E1000_RXBUFFER_16384:
1821		rctl |= E1000_RCTL_SZ_16384;
1822		break;
1823	}
1824
1825	/* This is useful for sniffing bad packets. */
1826	if (adapter->netdev->features & NETIF_F_RXALL) {
1827		/* UPE and MPE will be handled by normal PROMISC logic
1828		 * in e1000e_set_rx_mode
1829		 */
1830		rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
1831			 E1000_RCTL_BAM | /* RX All Bcast Pkts */
1832			 E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
1833
1834		rctl &= ~(E1000_RCTL_VFE | /* Disable VLAN filter */
1835			  E1000_RCTL_DPF | /* Allow filtered pause */
1836			  E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
1837		/* Do not mess with E1000_CTRL_VME, it affects transmit as well,
1838		 * and that breaks VLANs.
1839		 */
1840	}
1841
1842	ew32(RCTL, rctl);
1843}
1844
1845/**
1846 * e1000_configure_rx - Configure 8254x Receive Unit after Reset
1847 * @adapter: board private structure
1848 *
1849 * Configure the Rx unit of the MAC after a reset.
1850 **/
1851static void e1000_configure_rx(struct e1000_adapter *adapter)
1852{
1853	u64 rdba;
1854	struct e1000_hw *hw = &adapter->hw;
1855	u32 rdlen, rctl, rxcsum;
1856
1857	if (adapter->netdev->mtu > ETH_DATA_LEN) {
1858		rdlen = adapter->rx_ring[0].count *
1859			sizeof(struct e1000_rx_desc);
1860		adapter->clean_rx = e1000_clean_jumbo_rx_irq;
1861		adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers;
1862	} else {
1863		rdlen = adapter->rx_ring[0].count *
1864			sizeof(struct e1000_rx_desc);
1865		adapter->clean_rx = e1000_clean_rx_irq;
1866		adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
1867	}
1868
1869	/* disable receives while setting up the descriptors */
1870	rctl = er32(RCTL);
1871	ew32(RCTL, rctl & ~E1000_RCTL_EN);
1872
1873	/* set the Receive Delay Timer Register */
1874	ew32(RDTR, adapter->rx_int_delay);
1875
1876	if (hw->mac_type >= e1000_82540) {
1877		ew32(RADV, adapter->rx_abs_int_delay);
1878		if (adapter->itr_setting != 0)
1879			ew32(ITR, 1000000000 / (adapter->itr * 256));
1880	}
1881
1882	/* Setup the HW Rx Head and Tail Descriptor Pointers and
1883	 * the Base and Length of the Rx Descriptor Ring
1884	 */
1885	switch (adapter->num_rx_queues) {
1886	case 1:
1887	default:
1888		rdba = adapter->rx_ring[0].dma;
1889		ew32(RDLEN, rdlen);
1890		ew32(RDBAH, (rdba >> 32));
1891		ew32(RDBAL, (rdba & 0x00000000ffffffffULL));
1892		ew32(RDT, 0);
1893		ew32(RDH, 0);
1894		adapter->rx_ring[0].rdh = ((hw->mac_type >= e1000_82543) ?
1895					   E1000_RDH : E1000_82542_RDH);
1896		adapter->rx_ring[0].rdt = ((hw->mac_type >= e1000_82543) ?
1897					   E1000_RDT : E1000_82542_RDT);
1898		break;
1899	}
1900
1901	/* Enable 82543 Receive Checksum Offload for TCP and UDP */
1902	if (hw->mac_type >= e1000_82543) {
1903		rxcsum = er32(RXCSUM);
1904		if (adapter->rx_csum)
1905			rxcsum |= E1000_RXCSUM_TUOFL;
1906		else
1907			/* don't need to clear IPPCSE as it defaults to 0 */
1908			rxcsum &= ~E1000_RXCSUM_TUOFL;
1909		ew32(RXCSUM, rxcsum);
1910	}
1911
1912	/* Enable Receives */
1913	ew32(RCTL, rctl | E1000_RCTL_EN);
1914}
1915
1916/**
1917 * e1000_free_tx_resources - Free Tx Resources per Queue
1918 * @adapter: board private structure
1919 * @tx_ring: Tx descriptor ring for a specific queue
1920 *
1921 * Free all transmit software resources
1922 **/
1923static void e1000_free_tx_resources(struct e1000_adapter *adapter,
1924				    struct e1000_tx_ring *tx_ring)
1925{
1926	struct pci_dev *pdev = adapter->pdev;
1927
1928	e1000_clean_tx_ring(adapter, tx_ring);
1929
1930	vfree(tx_ring->buffer_info);
1931	tx_ring->buffer_info = NULL;
1932
1933	dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
1934			  tx_ring->dma);
1935
1936	tx_ring->desc = NULL;
1937}
1938
1939/**
1940 * e1000_free_all_tx_resources - Free Tx Resources for All Queues
1941 * @adapter: board private structure
1942 *
1943 * Free all transmit software resources
1944 **/
1945void e1000_free_all_tx_resources(struct e1000_adapter *adapter)
1946{
1947	int i;
1948
1949	for (i = 0; i < adapter->num_tx_queues; i++)
1950		e1000_free_tx_resources(adapter, &adapter->tx_ring[i]);
1951}
1952
1953static void
1954e1000_unmap_and_free_tx_resource(struct e1000_adapter *adapter,
1955				 struct e1000_tx_buffer *buffer_info)
 
1956{
1957	if (buffer_info->dma) {
1958		if (buffer_info->mapped_as_page)
1959			dma_unmap_page(&adapter->pdev->dev, buffer_info->dma,
1960				       buffer_info->length, DMA_TO_DEVICE);
1961		else
1962			dma_unmap_single(&adapter->pdev->dev, buffer_info->dma,
1963					 buffer_info->length,
1964					 DMA_TO_DEVICE);
1965		buffer_info->dma = 0;
1966	}
1967	if (buffer_info->skb) {
1968		dev_kfree_skb_any(buffer_info->skb);
1969		buffer_info->skb = NULL;
1970	}
1971	buffer_info->time_stamp = 0;
1972	/* buffer_info must be completely set up in the transmit path */
1973}
1974
1975/**
1976 * e1000_clean_tx_ring - Free Tx Buffers
1977 * @adapter: board private structure
1978 * @tx_ring: ring to be cleaned
1979 **/
1980static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
1981				struct e1000_tx_ring *tx_ring)
1982{
1983	struct e1000_hw *hw = &adapter->hw;
1984	struct e1000_tx_buffer *buffer_info;
1985	unsigned long size;
1986	unsigned int i;
1987
1988	/* Free all the Tx ring sk_buffs */
1989
1990	for (i = 0; i < tx_ring->count; i++) {
1991		buffer_info = &tx_ring->buffer_info[i];
1992		e1000_unmap_and_free_tx_resource(adapter, buffer_info);
1993	}
1994
1995	netdev_reset_queue(adapter->netdev);
1996	size = sizeof(struct e1000_tx_buffer) * tx_ring->count;
1997	memset(tx_ring->buffer_info, 0, size);
1998
1999	/* Zero out the descriptor ring */
2000
2001	memset(tx_ring->desc, 0, tx_ring->size);
2002
2003	tx_ring->next_to_use = 0;
2004	tx_ring->next_to_clean = 0;
2005	tx_ring->last_tx_tso = false;
2006
2007	writel(0, hw->hw_addr + tx_ring->tdh);
2008	writel(0, hw->hw_addr + tx_ring->tdt);
2009}
2010
2011/**
2012 * e1000_clean_all_tx_rings - Free Tx Buffers for all queues
2013 * @adapter: board private structure
2014 **/
2015static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter)
2016{
2017	int i;
2018
2019	for (i = 0; i < adapter->num_tx_queues; i++)
2020		e1000_clean_tx_ring(adapter, &adapter->tx_ring[i]);
2021}
2022
2023/**
2024 * e1000_free_rx_resources - Free Rx Resources
2025 * @adapter: board private structure
2026 * @rx_ring: ring to clean the resources from
2027 *
2028 * Free all receive software resources
2029 **/
2030static void e1000_free_rx_resources(struct e1000_adapter *adapter,
2031				    struct e1000_rx_ring *rx_ring)
2032{
2033	struct pci_dev *pdev = adapter->pdev;
2034
2035	e1000_clean_rx_ring(adapter, rx_ring);
2036
2037	vfree(rx_ring->buffer_info);
2038	rx_ring->buffer_info = NULL;
2039
2040	dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
2041			  rx_ring->dma);
2042
2043	rx_ring->desc = NULL;
2044}
2045
2046/**
2047 * e1000_free_all_rx_resources - Free Rx Resources for All Queues
2048 * @adapter: board private structure
2049 *
2050 * Free all receive software resources
2051 **/
2052void e1000_free_all_rx_resources(struct e1000_adapter *adapter)
2053{
2054	int i;
2055
2056	for (i = 0; i < adapter->num_rx_queues; i++)
2057		e1000_free_rx_resources(adapter, &adapter->rx_ring[i]);
2058}
2059
2060#define E1000_HEADROOM (NET_SKB_PAD + NET_IP_ALIGN)
2061static unsigned int e1000_frag_len(const struct e1000_adapter *a)
2062{
2063	return SKB_DATA_ALIGN(a->rx_buffer_len + E1000_HEADROOM) +
2064		SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
2065}
2066
2067static void *e1000_alloc_frag(const struct e1000_adapter *a)
2068{
2069	unsigned int len = e1000_frag_len(a);
2070	u8 *data = netdev_alloc_frag(len);
2071
2072	if (likely(data))
2073		data += E1000_HEADROOM;
2074	return data;
2075}
2076
2077/**
2078 * e1000_clean_rx_ring - Free Rx Buffers per Queue
2079 * @adapter: board private structure
2080 * @rx_ring: ring to free buffers from
2081 **/
2082static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
2083				struct e1000_rx_ring *rx_ring)
2084{
2085	struct e1000_hw *hw = &adapter->hw;
2086	struct e1000_rx_buffer *buffer_info;
2087	struct pci_dev *pdev = adapter->pdev;
2088	unsigned long size;
2089	unsigned int i;
2090
2091	/* Free all the Rx netfrags */
2092	for (i = 0; i < rx_ring->count; i++) {
2093		buffer_info = &rx_ring->buffer_info[i];
2094		if (adapter->clean_rx == e1000_clean_rx_irq) {
2095			if (buffer_info->dma)
2096				dma_unmap_single(&pdev->dev, buffer_info->dma,
2097						 adapter->rx_buffer_len,
2098						 DMA_FROM_DEVICE);
2099			if (buffer_info->rxbuf.data) {
2100				skb_free_frag(buffer_info->rxbuf.data);
2101				buffer_info->rxbuf.data = NULL;
2102			}
2103		} else if (adapter->clean_rx == e1000_clean_jumbo_rx_irq) {
2104			if (buffer_info->dma)
2105				dma_unmap_page(&pdev->dev, buffer_info->dma,
2106					       adapter->rx_buffer_len,
2107					       DMA_FROM_DEVICE);
2108			if (buffer_info->rxbuf.page) {
2109				put_page(buffer_info->rxbuf.page);
2110				buffer_info->rxbuf.page = NULL;
2111			}
2112		}
2113
2114		buffer_info->dma = 0;
2115	}
2116
2117	/* there also may be some cached data from a chained receive */
2118	napi_free_frags(&adapter->napi);
2119	rx_ring->rx_skb_top = NULL;
2120
2121	size = sizeof(struct e1000_rx_buffer) * rx_ring->count;
2122	memset(rx_ring->buffer_info, 0, size);
2123
2124	/* Zero out the descriptor ring */
2125	memset(rx_ring->desc, 0, rx_ring->size);
2126
2127	rx_ring->next_to_clean = 0;
2128	rx_ring->next_to_use = 0;
2129
2130	writel(0, hw->hw_addr + rx_ring->rdh);
2131	writel(0, hw->hw_addr + rx_ring->rdt);
2132}
2133
2134/**
2135 * e1000_clean_all_rx_rings - Free Rx Buffers for all queues
2136 * @adapter: board private structure
2137 **/
2138static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter)
2139{
2140	int i;
2141
2142	for (i = 0; i < adapter->num_rx_queues; i++)
2143		e1000_clean_rx_ring(adapter, &adapter->rx_ring[i]);
2144}
2145
2146/* The 82542 2.0 (revision 2) needs to have the receive unit in reset
2147 * and memory write and invalidate disabled for certain operations
2148 */
2149static void e1000_enter_82542_rst(struct e1000_adapter *adapter)
2150{
2151	struct e1000_hw *hw = &adapter->hw;
2152	struct net_device *netdev = adapter->netdev;
2153	u32 rctl;
2154
2155	e1000_pci_clear_mwi(hw);
2156
2157	rctl = er32(RCTL);
2158	rctl |= E1000_RCTL_RST;
2159	ew32(RCTL, rctl);
2160	E1000_WRITE_FLUSH();
2161	mdelay(5);
2162
2163	if (netif_running(netdev))
2164		e1000_clean_all_rx_rings(adapter);
2165}
2166
2167static void e1000_leave_82542_rst(struct e1000_adapter *adapter)
2168{
2169	struct e1000_hw *hw = &adapter->hw;
2170	struct net_device *netdev = adapter->netdev;
2171	u32 rctl;
2172
2173	rctl = er32(RCTL);
2174	rctl &= ~E1000_RCTL_RST;
2175	ew32(RCTL, rctl);
2176	E1000_WRITE_FLUSH();
2177	mdelay(5);
2178
2179	if (hw->pci_cmd_word & PCI_COMMAND_INVALIDATE)
2180		e1000_pci_set_mwi(hw);
2181
2182	if (netif_running(netdev)) {
2183		/* No need to loop, because 82542 supports only 1 queue */
2184		struct e1000_rx_ring *ring = &adapter->rx_ring[0];
2185		e1000_configure_rx(adapter);
2186		adapter->alloc_rx_buf(adapter, ring, E1000_DESC_UNUSED(ring));
2187	}
2188}
2189
2190/**
2191 * e1000_set_mac - Change the Ethernet Address of the NIC
2192 * @netdev: network interface device structure
2193 * @p: pointer to an address structure
2194 *
2195 * Returns 0 on success, negative on failure
2196 **/
2197static int e1000_set_mac(struct net_device *netdev, void *p)
2198{
2199	struct e1000_adapter *adapter = netdev_priv(netdev);
2200	struct e1000_hw *hw = &adapter->hw;
2201	struct sockaddr *addr = p;
2202
2203	if (!is_valid_ether_addr(addr->sa_data))
2204		return -EADDRNOTAVAIL;
2205
2206	/* 82542 2.0 needs to be in reset to write receive address registers */
2207
2208	if (hw->mac_type == e1000_82542_rev2_0)
2209		e1000_enter_82542_rst(adapter);
2210
2211	memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
2212	memcpy(hw->mac_addr, addr->sa_data, netdev->addr_len);
2213
2214	e1000_rar_set(hw, hw->mac_addr, 0);
2215
2216	if (hw->mac_type == e1000_82542_rev2_0)
2217		e1000_leave_82542_rst(adapter);
2218
2219	return 0;
2220}
2221
2222/**
2223 * e1000_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
2224 * @netdev: network interface device structure
2225 *
2226 * The set_rx_mode entry point is called whenever the unicast or multicast
2227 * address lists or the network interface flags are updated. This routine is
2228 * responsible for configuring the hardware for proper unicast, multicast,
2229 * promiscuous mode, and all-multi behavior.
2230 **/
2231static void e1000_set_rx_mode(struct net_device *netdev)
2232{
2233	struct e1000_adapter *adapter = netdev_priv(netdev);
2234	struct e1000_hw *hw = &adapter->hw;
2235	struct netdev_hw_addr *ha;
2236	bool use_uc = false;
2237	u32 rctl;
2238	u32 hash_value;
2239	int i, rar_entries = E1000_RAR_ENTRIES;
2240	int mta_reg_count = E1000_NUM_MTA_REGISTERS;
2241	u32 *mcarray = kcalloc(mta_reg_count, sizeof(u32), GFP_ATOMIC);
2242
2243	if (!mcarray)
2244		return;
2245
2246	/* Check for Promiscuous and All Multicast modes */
2247
2248	rctl = er32(RCTL);
2249
2250	if (netdev->flags & IFF_PROMISC) {
2251		rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2252		rctl &= ~E1000_RCTL_VFE;
2253	} else {
2254		if (netdev->flags & IFF_ALLMULTI)
2255			rctl |= E1000_RCTL_MPE;
2256		else
2257			rctl &= ~E1000_RCTL_MPE;
2258		/* Enable VLAN filter if there is a VLAN */
2259		if (e1000_vlan_used(adapter))
2260			rctl |= E1000_RCTL_VFE;
2261	}
2262
2263	if (netdev_uc_count(netdev) > rar_entries - 1) {
2264		rctl |= E1000_RCTL_UPE;
2265	} else if (!(netdev->flags & IFF_PROMISC)) {
2266		rctl &= ~E1000_RCTL_UPE;
2267		use_uc = true;
2268	}
2269
2270	ew32(RCTL, rctl);
2271
2272	/* 82542 2.0 needs to be in reset to write receive address registers */
2273
2274	if (hw->mac_type == e1000_82542_rev2_0)
2275		e1000_enter_82542_rst(adapter);
2276
2277	/* load the first 14 addresses into the exact filters 1-14. Unicast
2278	 * addresses take precedence to avoid disabling unicast filtering
2279	 * when possible.
2280	 *
2281	 * RAR 0 is used for the station MAC address
2282	 * if there are not 14 addresses, go ahead and clear the filters
2283	 */
2284	i = 1;
2285	if (use_uc)
2286		netdev_for_each_uc_addr(ha, netdev) {
2287			if (i == rar_entries)
2288				break;
2289			e1000_rar_set(hw, ha->addr, i++);
2290		}
2291
2292	netdev_for_each_mc_addr(ha, netdev) {
2293		if (i == rar_entries) {
2294			/* load any remaining addresses into the hash table */
2295			u32 hash_reg, hash_bit, mta;
2296			hash_value = e1000_hash_mc_addr(hw, ha->addr);
2297			hash_reg = (hash_value >> 5) & 0x7F;
2298			hash_bit = hash_value & 0x1F;
2299			mta = (1 << hash_bit);
2300			mcarray[hash_reg] |= mta;
2301		} else {
2302			e1000_rar_set(hw, ha->addr, i++);
2303		}
2304	}
2305
2306	for (; i < rar_entries; i++) {
2307		E1000_WRITE_REG_ARRAY(hw, RA, i << 1, 0);
2308		E1000_WRITE_FLUSH();
2309		E1000_WRITE_REG_ARRAY(hw, RA, (i << 1) + 1, 0);
2310		E1000_WRITE_FLUSH();
2311	}
2312
2313	/* write the hash table completely, write from bottom to avoid
2314	 * both stupid write combining chipsets, and flushing each write
2315	 */
2316	for (i = mta_reg_count - 1; i >= 0 ; i--) {
2317		/* If we are on an 82544 has an errata where writing odd
2318		 * offsets overwrites the previous even offset, but writing
2319		 * backwards over the range solves the issue by always
2320		 * writing the odd offset first
2321		 */
2322		E1000_WRITE_REG_ARRAY(hw, MTA, i, mcarray[i]);
2323	}
2324	E1000_WRITE_FLUSH();
2325
2326	if (hw->mac_type == e1000_82542_rev2_0)
2327		e1000_leave_82542_rst(adapter);
2328
2329	kfree(mcarray);
2330}
2331
2332/**
2333 * e1000_update_phy_info_task - get phy info
2334 * @work: work struct contained inside adapter struct
2335 *
2336 * Need to wait a few seconds after link up to get diagnostic information from
2337 * the phy
2338 */
2339static void e1000_update_phy_info_task(struct work_struct *work)
2340{
2341	struct e1000_adapter *adapter = container_of(work,
2342						     struct e1000_adapter,
2343						     phy_info_task.work);
2344
2345	e1000_phy_get_info(&adapter->hw, &adapter->phy_info);
2346}
2347
2348/**
2349 * e1000_82547_tx_fifo_stall_task - task to complete work
2350 * @work: work struct contained inside adapter struct
2351 **/
2352static void e1000_82547_tx_fifo_stall_task(struct work_struct *work)
2353{
2354	struct e1000_adapter *adapter = container_of(work,
2355						     struct e1000_adapter,
2356						     fifo_stall_task.work);
2357	struct e1000_hw *hw = &adapter->hw;
2358	struct net_device *netdev = adapter->netdev;
2359	u32 tctl;
2360
2361	if (atomic_read(&adapter->tx_fifo_stall)) {
2362		if ((er32(TDT) == er32(TDH)) &&
2363		   (er32(TDFT) == er32(TDFH)) &&
2364		   (er32(TDFTS) == er32(TDFHS))) {
2365			tctl = er32(TCTL);
2366			ew32(TCTL, tctl & ~E1000_TCTL_EN);
2367			ew32(TDFT, adapter->tx_head_addr);
2368			ew32(TDFH, adapter->tx_head_addr);
2369			ew32(TDFTS, adapter->tx_head_addr);
2370			ew32(TDFHS, adapter->tx_head_addr);
2371			ew32(TCTL, tctl);
2372			E1000_WRITE_FLUSH();
2373
2374			adapter->tx_fifo_head = 0;
2375			atomic_set(&adapter->tx_fifo_stall, 0);
2376			netif_wake_queue(netdev);
2377		} else if (!test_bit(__E1000_DOWN, &adapter->flags)) {
2378			schedule_delayed_work(&adapter->fifo_stall_task, 1);
2379		}
2380	}
2381}
2382
2383bool e1000_has_link(struct e1000_adapter *adapter)
2384{
2385	struct e1000_hw *hw = &adapter->hw;
2386	bool link_active = false;
2387
2388	/* get_link_status is set on LSC (link status) interrupt or rx
2389	 * sequence error interrupt (except on intel ce4100).
2390	 * get_link_status will stay false until the
2391	 * e1000_check_for_link establishes link for copper adapters
2392	 * ONLY
2393	 */
2394	switch (hw->media_type) {
2395	case e1000_media_type_copper:
2396		if (hw->mac_type == e1000_ce4100)
2397			hw->get_link_status = 1;
2398		if (hw->get_link_status) {
2399			e1000_check_for_link(hw);
2400			link_active = !hw->get_link_status;
2401		} else {
2402			link_active = true;
2403		}
2404		break;
2405	case e1000_media_type_fiber:
2406		e1000_check_for_link(hw);
2407		link_active = !!(er32(STATUS) & E1000_STATUS_LU);
2408		break;
2409	case e1000_media_type_internal_serdes:
2410		e1000_check_for_link(hw);
2411		link_active = hw->serdes_has_link;
2412		break;
2413	default:
2414		break;
2415	}
2416
2417	return link_active;
2418}
2419
2420/**
2421 * e1000_watchdog - work function
2422 * @work: work struct contained inside adapter struct
2423 **/
2424static void e1000_watchdog(struct work_struct *work)
2425{
2426	struct e1000_adapter *adapter = container_of(work,
2427						     struct e1000_adapter,
2428						     watchdog_task.work);
2429	struct e1000_hw *hw = &adapter->hw;
2430	struct net_device *netdev = adapter->netdev;
2431	struct e1000_tx_ring *txdr = adapter->tx_ring;
2432	u32 link, tctl;
2433
2434	link = e1000_has_link(adapter);
2435	if ((netif_carrier_ok(netdev)) && link)
2436		goto link_up;
2437
2438	if (link) {
2439		if (!netif_carrier_ok(netdev)) {
2440			u32 ctrl;
2441			/* update snapshot of PHY registers on LSC */
2442			e1000_get_speed_and_duplex(hw,
2443						   &adapter->link_speed,
2444						   &adapter->link_duplex);
2445
2446			ctrl = er32(CTRL);
2447			pr_info("%s NIC Link is Up %d Mbps %s, "
2448				"Flow Control: %s\n",
2449				netdev->name,
2450				adapter->link_speed,
2451				adapter->link_duplex == FULL_DUPLEX ?
2452				"Full Duplex" : "Half Duplex",
2453				((ctrl & E1000_CTRL_TFCE) && (ctrl &
2454				E1000_CTRL_RFCE)) ? "RX/TX" : ((ctrl &
2455				E1000_CTRL_RFCE) ? "RX" : ((ctrl &
2456				E1000_CTRL_TFCE) ? "TX" : "None")));
2457
2458			/* adjust timeout factor according to speed/duplex */
2459			adapter->tx_timeout_factor = 1;
2460			switch (adapter->link_speed) {
2461			case SPEED_10:
2462				adapter->tx_timeout_factor = 16;
2463				break;
2464			case SPEED_100:
2465				/* maybe add some timeout factor ? */
2466				break;
2467			}
2468
2469			/* enable transmits in the hardware */
2470			tctl = er32(TCTL);
2471			tctl |= E1000_TCTL_EN;
2472			ew32(TCTL, tctl);
2473
2474			netif_carrier_on(netdev);
2475			if (!test_bit(__E1000_DOWN, &adapter->flags))
2476				schedule_delayed_work(&adapter->phy_info_task,
2477						      2 * HZ);
2478			adapter->smartspeed = 0;
2479		}
2480	} else {
2481		if (netif_carrier_ok(netdev)) {
2482			adapter->link_speed = 0;
2483			adapter->link_duplex = 0;
2484			pr_info("%s NIC Link is Down\n",
2485				netdev->name);
2486			netif_carrier_off(netdev);
2487
2488			if (!test_bit(__E1000_DOWN, &adapter->flags))
2489				schedule_delayed_work(&adapter->phy_info_task,
2490						      2 * HZ);
2491		}
2492
2493		e1000_smartspeed(adapter);
2494	}
2495
2496link_up:
2497	e1000_update_stats(adapter);
2498
2499	hw->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
2500	adapter->tpt_old = adapter->stats.tpt;
2501	hw->collision_delta = adapter->stats.colc - adapter->colc_old;
2502	adapter->colc_old = adapter->stats.colc;
2503
2504	adapter->gorcl = adapter->stats.gorcl - adapter->gorcl_old;
2505	adapter->gorcl_old = adapter->stats.gorcl;
2506	adapter->gotcl = adapter->stats.gotcl - adapter->gotcl_old;
2507	adapter->gotcl_old = adapter->stats.gotcl;
2508
2509	e1000_update_adaptive(hw);
2510
2511	if (!netif_carrier_ok(netdev)) {
2512		if (E1000_DESC_UNUSED(txdr) + 1 < txdr->count) {
2513			/* We've lost link, so the controller stops DMA,
2514			 * but we've got queued Tx work that's never going
2515			 * to get done, so reset controller to flush Tx.
2516			 * (Do the reset outside of interrupt context).
2517			 */
2518			adapter->tx_timeout_count++;
2519			schedule_work(&adapter->reset_task);
2520			/* exit immediately since reset is imminent */
2521			return;
2522		}
2523	}
2524
2525	/* Simple mode for Interrupt Throttle Rate (ITR) */
2526	if (hw->mac_type >= e1000_82540 && adapter->itr_setting == 4) {
2527		/* Symmetric Tx/Rx gets a reduced ITR=2000;
2528		 * Total asymmetrical Tx or Rx gets ITR=8000;
2529		 * everyone else is between 2000-8000.
2530		 */
2531		u32 goc = (adapter->gotcl + adapter->gorcl) / 10000;
2532		u32 dif = (adapter->gotcl > adapter->gorcl ?
2533			    adapter->gotcl - adapter->gorcl :
2534			    adapter->gorcl - adapter->gotcl) / 10000;
2535		u32 itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000;
2536
2537		ew32(ITR, 1000000000 / (itr * 256));
2538	}
2539
2540	/* Cause software interrupt to ensure rx ring is cleaned */
2541	ew32(ICS, E1000_ICS_RXDMT0);
2542
2543	/* Force detection of hung controller every watchdog period */
2544	adapter->detect_tx_hung = true;
2545
2546	/* Reschedule the task */
2547	if (!test_bit(__E1000_DOWN, &adapter->flags))
2548		schedule_delayed_work(&adapter->watchdog_task, 2 * HZ);
2549}
2550
2551enum latency_range {
2552	lowest_latency = 0,
2553	low_latency = 1,
2554	bulk_latency = 2,
2555	latency_invalid = 255
2556};
2557
2558/**
2559 * e1000_update_itr - update the dynamic ITR value based on statistics
2560 * @adapter: pointer to adapter
2561 * @itr_setting: current adapter->itr
2562 * @packets: the number of packets during this measurement interval
2563 * @bytes: the number of bytes during this measurement interval
2564 *
2565 *      Stores a new ITR value based on packets and byte
2566 *      counts during the last interrupt.  The advantage of per interrupt
2567 *      computation is faster updates and more accurate ITR for the current
2568 *      traffic pattern.  Constants in this function were computed
2569 *      based on theoretical maximum wire speed and thresholds were set based
2570 *      on testing data as well as attempting to minimize response time
2571 *      while increasing bulk throughput.
2572 *      this functionality is controlled by the InterruptThrottleRate module
2573 *      parameter (see e1000_param.c)
2574 **/
2575static unsigned int e1000_update_itr(struct e1000_adapter *adapter,
2576				     u16 itr_setting, int packets, int bytes)
2577{
2578	unsigned int retval = itr_setting;
2579	struct e1000_hw *hw = &adapter->hw;
2580
2581	if (unlikely(hw->mac_type < e1000_82540))
2582		goto update_itr_done;
2583
2584	if (packets == 0)
2585		goto update_itr_done;
2586
2587	switch (itr_setting) {
2588	case lowest_latency:
2589		/* jumbo frames get bulk treatment*/
2590		if (bytes/packets > 8000)
2591			retval = bulk_latency;
2592		else if ((packets < 5) && (bytes > 512))
2593			retval = low_latency;
2594		break;
2595	case low_latency:  /* 50 usec aka 20000 ints/s */
2596		if (bytes > 10000) {
2597			/* jumbo frames need bulk latency setting */
2598			if (bytes/packets > 8000)
2599				retval = bulk_latency;
2600			else if ((packets < 10) || ((bytes/packets) > 1200))
2601				retval = bulk_latency;
2602			else if ((packets > 35))
2603				retval = lowest_latency;
2604		} else if (bytes/packets > 2000)
2605			retval = bulk_latency;
2606		else if (packets <= 2 && bytes < 512)
2607			retval = lowest_latency;
2608		break;
2609	case bulk_latency: /* 250 usec aka 4000 ints/s */
2610		if (bytes > 25000) {
2611			if (packets > 35)
2612				retval = low_latency;
2613		} else if (bytes < 6000) {
2614			retval = low_latency;
2615		}
2616		break;
2617	}
2618
2619update_itr_done:
2620	return retval;
2621}
2622
2623static void e1000_set_itr(struct e1000_adapter *adapter)
2624{
2625	struct e1000_hw *hw = &adapter->hw;
2626	u16 current_itr;
2627	u32 new_itr = adapter->itr;
2628
2629	if (unlikely(hw->mac_type < e1000_82540))
2630		return;
2631
2632	/* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2633	if (unlikely(adapter->link_speed != SPEED_1000)) {
2634		current_itr = 0;
2635		new_itr = 4000;
2636		goto set_itr_now;
2637	}
2638
2639	adapter->tx_itr = e1000_update_itr(adapter, adapter->tx_itr,
2640					   adapter->total_tx_packets,
2641					   adapter->total_tx_bytes);
2642	/* conservative mode (itr 3) eliminates the lowest_latency setting */
2643	if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
2644		adapter->tx_itr = low_latency;
2645
2646	adapter->rx_itr = e1000_update_itr(adapter, adapter->rx_itr,
2647					   adapter->total_rx_packets,
2648					   adapter->total_rx_bytes);
2649	/* conservative mode (itr 3) eliminates the lowest_latency setting */
2650	if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
2651		adapter->rx_itr = low_latency;
2652
2653	current_itr = max(adapter->rx_itr, adapter->tx_itr);
2654
2655	switch (current_itr) {
2656	/* counts and packets in update_itr are dependent on these numbers */
2657	case lowest_latency:
2658		new_itr = 70000;
2659		break;
2660	case low_latency:
2661		new_itr = 20000; /* aka hwitr = ~200 */
2662		break;
2663	case bulk_latency:
2664		new_itr = 4000;
2665		break;
2666	default:
2667		break;
2668	}
2669
2670set_itr_now:
2671	if (new_itr != adapter->itr) {
2672		/* this attempts to bias the interrupt rate towards Bulk
2673		 * by adding intermediate steps when interrupt rate is
2674		 * increasing
2675		 */
2676		new_itr = new_itr > adapter->itr ?
2677			  min(adapter->itr + (new_itr >> 2), new_itr) :
2678			  new_itr;
2679		adapter->itr = new_itr;
2680		ew32(ITR, 1000000000 / (new_itr * 256));
2681	}
2682}
2683
2684#define E1000_TX_FLAGS_CSUM		0x00000001
2685#define E1000_TX_FLAGS_VLAN		0x00000002
2686#define E1000_TX_FLAGS_TSO		0x00000004
2687#define E1000_TX_FLAGS_IPV4		0x00000008
2688#define E1000_TX_FLAGS_NO_FCS		0x00000010
2689#define E1000_TX_FLAGS_VLAN_MASK	0xffff0000
2690#define E1000_TX_FLAGS_VLAN_SHIFT	16
2691
2692static int e1000_tso(struct e1000_adapter *adapter,
2693		     struct e1000_tx_ring *tx_ring, struct sk_buff *skb,
2694		     __be16 protocol)
2695{
2696	struct e1000_context_desc *context_desc;
2697	struct e1000_tx_buffer *buffer_info;
2698	unsigned int i;
2699	u32 cmd_length = 0;
2700	u16 ipcse = 0, tucse, mss;
2701	u8 ipcss, ipcso, tucss, tucso, hdr_len;
2702
2703	if (skb_is_gso(skb)) {
2704		int err;
2705
2706		err = skb_cow_head(skb, 0);
2707		if (err < 0)
2708			return err;
2709
2710		hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
2711		mss = skb_shinfo(skb)->gso_size;
2712		if (protocol == htons(ETH_P_IP)) {
2713			struct iphdr *iph = ip_hdr(skb);
2714			iph->tot_len = 0;
2715			iph->check = 0;
2716			tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
2717								 iph->daddr, 0,
2718								 IPPROTO_TCP,
2719								 0);
2720			cmd_length = E1000_TXD_CMD_IP;
2721			ipcse = skb_transport_offset(skb) - 1;
2722		} else if (skb_is_gso_v6(skb)) {
2723			tcp_v6_gso_csum_prep(skb);
2724			ipcse = 0;
2725		}
2726		ipcss = skb_network_offset(skb);
2727		ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
2728		tucss = skb_transport_offset(skb);
2729		tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
2730		tucse = 0;
2731
2732		cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
2733			       E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
2734
2735		i = tx_ring->next_to_use;
2736		context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2737		buffer_info = &tx_ring->buffer_info[i];
2738
2739		context_desc->lower_setup.ip_fields.ipcss  = ipcss;
2740		context_desc->lower_setup.ip_fields.ipcso  = ipcso;
2741		context_desc->lower_setup.ip_fields.ipcse  = cpu_to_le16(ipcse);
2742		context_desc->upper_setup.tcp_fields.tucss = tucss;
2743		context_desc->upper_setup.tcp_fields.tucso = tucso;
2744		context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
2745		context_desc->tcp_seg_setup.fields.mss     = cpu_to_le16(mss);
2746		context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
2747		context_desc->cmd_and_length = cpu_to_le32(cmd_length);
2748
2749		buffer_info->time_stamp = jiffies;
2750		buffer_info->next_to_watch = i;
2751
2752		if (++i == tx_ring->count)
2753			i = 0;
2754
2755		tx_ring->next_to_use = i;
2756
2757		return true;
2758	}
2759	return false;
2760}
2761
2762static bool e1000_tx_csum(struct e1000_adapter *adapter,
2763			  struct e1000_tx_ring *tx_ring, struct sk_buff *skb,
2764			  __be16 protocol)
2765{
2766	struct e1000_context_desc *context_desc;
2767	struct e1000_tx_buffer *buffer_info;
2768	unsigned int i;
2769	u8 css;
2770	u32 cmd_len = E1000_TXD_CMD_DEXT;
2771
2772	if (skb->ip_summed != CHECKSUM_PARTIAL)
2773		return false;
2774
2775	switch (protocol) {
2776	case cpu_to_be16(ETH_P_IP):
2777		if (ip_hdr(skb)->protocol == IPPROTO_TCP)
2778			cmd_len |= E1000_TXD_CMD_TCP;
2779		break;
2780	case cpu_to_be16(ETH_P_IPV6):
2781		/* XXX not handling all IPV6 headers */
2782		if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
2783			cmd_len |= E1000_TXD_CMD_TCP;
2784		break;
2785	default:
2786		if (unlikely(net_ratelimit()))
2787			e_warn(drv, "checksum_partial proto=%x!\n",
2788			       skb->protocol);
2789		break;
2790	}
2791
2792	css = skb_checksum_start_offset(skb);
2793
2794	i = tx_ring->next_to_use;
2795	buffer_info = &tx_ring->buffer_info[i];
2796	context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2797
2798	context_desc->lower_setup.ip_config = 0;
2799	context_desc->upper_setup.tcp_fields.tucss = css;
2800	context_desc->upper_setup.tcp_fields.tucso =
2801		css + skb->csum_offset;
2802	context_desc->upper_setup.tcp_fields.tucse = 0;
2803	context_desc->tcp_seg_setup.data = 0;
2804	context_desc->cmd_and_length = cpu_to_le32(cmd_len);
2805
2806	buffer_info->time_stamp = jiffies;
2807	buffer_info->next_to_watch = i;
2808
2809	if (unlikely(++i == tx_ring->count))
2810		i = 0;
2811
2812	tx_ring->next_to_use = i;
2813
2814	return true;
2815}
2816
2817#define E1000_MAX_TXD_PWR	12
2818#define E1000_MAX_DATA_PER_TXD	(1<<E1000_MAX_TXD_PWR)
2819
2820static int e1000_tx_map(struct e1000_adapter *adapter,
2821			struct e1000_tx_ring *tx_ring,
2822			struct sk_buff *skb, unsigned int first,
2823			unsigned int max_per_txd, unsigned int nr_frags,
2824			unsigned int mss)
2825{
2826	struct e1000_hw *hw = &adapter->hw;
2827	struct pci_dev *pdev = adapter->pdev;
2828	struct e1000_tx_buffer *buffer_info;
2829	unsigned int len = skb_headlen(skb);
2830	unsigned int offset = 0, size, count = 0, i;
2831	unsigned int f, bytecount, segs;
2832
2833	i = tx_ring->next_to_use;
2834
2835	while (len) {
2836		buffer_info = &tx_ring->buffer_info[i];
2837		size = min(len, max_per_txd);
2838		/* Workaround for Controller erratum --
2839		 * descriptor for non-tso packet in a linear SKB that follows a
2840		 * tso gets written back prematurely before the data is fully
2841		 * DMA'd to the controller
2842		 */
2843		if (!skb->data_len && tx_ring->last_tx_tso &&
2844		    !skb_is_gso(skb)) {
2845			tx_ring->last_tx_tso = false;
2846			size -= 4;
2847		}
2848
2849		/* Workaround for premature desc write-backs
2850		 * in TSO mode.  Append 4-byte sentinel desc
2851		 */
2852		if (unlikely(mss && !nr_frags && size == len && size > 8))
2853			size -= 4;
2854		/* work-around for errata 10 and it applies
2855		 * to all controllers in PCI-X mode
2856		 * The fix is to make sure that the first descriptor of a
2857		 * packet is smaller than 2048 - 16 - 16 (or 2016) bytes
2858		 */
2859		if (unlikely((hw->bus_type == e1000_bus_type_pcix) &&
2860			     (size > 2015) && count == 0))
2861			size = 2015;
2862
2863		/* Workaround for potential 82544 hang in PCI-X.  Avoid
2864		 * terminating buffers within evenly-aligned dwords.
2865		 */
2866		if (unlikely(adapter->pcix_82544 &&
2867		   !((unsigned long)(skb->data + offset + size - 1) & 4) &&
2868		   size > 4))
2869			size -= 4;
2870
2871		buffer_info->length = size;
2872		/* set time_stamp *before* dma to help avoid a possible race */
2873		buffer_info->time_stamp = jiffies;
2874		buffer_info->mapped_as_page = false;
2875		buffer_info->dma = dma_map_single(&pdev->dev,
2876						  skb->data + offset,
2877						  size, DMA_TO_DEVICE);
2878		if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2879			goto dma_error;
2880		buffer_info->next_to_watch = i;
2881
2882		len -= size;
2883		offset += size;
2884		count++;
2885		if (len) {
2886			i++;
2887			if (unlikely(i == tx_ring->count))
2888				i = 0;
2889		}
2890	}
2891
2892	for (f = 0; f < nr_frags; f++) {
2893		const skb_frag_t *frag = &skb_shinfo(skb)->frags[f];
2894
2895		len = skb_frag_size(frag);
2896		offset = 0;
2897
2898		while (len) {
2899			unsigned long bufend;
2900			i++;
2901			if (unlikely(i == tx_ring->count))
2902				i = 0;
2903
2904			buffer_info = &tx_ring->buffer_info[i];
2905			size = min(len, max_per_txd);
2906			/* Workaround for premature desc write-backs
2907			 * in TSO mode.  Append 4-byte sentinel desc
2908			 */
2909			if (unlikely(mss && f == (nr_frags-1) &&
2910			    size == len && size > 8))
2911				size -= 4;
2912			/* Workaround for potential 82544 hang in PCI-X.
2913			 * Avoid terminating buffers within evenly-aligned
2914			 * dwords.
2915			 */
2916			bufend = (unsigned long)
2917				page_to_phys(skb_frag_page(frag));
2918			bufend += offset + size - 1;
2919			if (unlikely(adapter->pcix_82544 &&
2920				     !(bufend & 4) &&
2921				     size > 4))
2922				size -= 4;
2923
2924			buffer_info->length = size;
2925			buffer_info->time_stamp = jiffies;
2926			buffer_info->mapped_as_page = true;
2927			buffer_info->dma = skb_frag_dma_map(&pdev->dev, frag,
2928						offset, size, DMA_TO_DEVICE);
2929			if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2930				goto dma_error;
2931			buffer_info->next_to_watch = i;
2932
2933			len -= size;
2934			offset += size;
2935			count++;
2936		}
2937	}
2938
2939	segs = skb_shinfo(skb)->gso_segs ?: 1;
2940	/* multiply data chunks by size of headers */
2941	bytecount = ((segs - 1) * skb_headlen(skb)) + skb->len;
2942
2943	tx_ring->buffer_info[i].skb = skb;
2944	tx_ring->buffer_info[i].segs = segs;
2945	tx_ring->buffer_info[i].bytecount = bytecount;
2946	tx_ring->buffer_info[first].next_to_watch = i;
2947
2948	return count;
2949
2950dma_error:
2951	dev_err(&pdev->dev, "TX DMA map failed\n");
2952	buffer_info->dma = 0;
2953	if (count)
2954		count--;
2955
2956	while (count--) {
2957		if (i == 0)
2958			i += tx_ring->count;
2959		i--;
2960		buffer_info = &tx_ring->buffer_info[i];
2961		e1000_unmap_and_free_tx_resource(adapter, buffer_info);
2962	}
2963
2964	return 0;
2965}
2966
2967static void e1000_tx_queue(struct e1000_adapter *adapter,
2968			   struct e1000_tx_ring *tx_ring, int tx_flags,
2969			   int count)
2970{
2971	struct e1000_tx_desc *tx_desc = NULL;
2972	struct e1000_tx_buffer *buffer_info;
2973	u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
2974	unsigned int i;
2975
2976	if (likely(tx_flags & E1000_TX_FLAGS_TSO)) {
2977		txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
2978			     E1000_TXD_CMD_TSE;
2979		txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2980
2981		if (likely(tx_flags & E1000_TX_FLAGS_IPV4))
2982			txd_upper |= E1000_TXD_POPTS_IXSM << 8;
2983	}
2984
2985	if (likely(tx_flags & E1000_TX_FLAGS_CSUM)) {
2986		txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
2987		txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2988	}
2989
2990	if (unlikely(tx_flags & E1000_TX_FLAGS_VLAN)) {
2991		txd_lower |= E1000_TXD_CMD_VLE;
2992		txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
2993	}
2994
2995	if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
2996		txd_lower &= ~(E1000_TXD_CMD_IFCS);
2997
2998	i = tx_ring->next_to_use;
2999
3000	while (count--) {
3001		buffer_info = &tx_ring->buffer_info[i];
3002		tx_desc = E1000_TX_DESC(*tx_ring, i);
3003		tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
3004		tx_desc->lower.data =
3005			cpu_to_le32(txd_lower | buffer_info->length);
3006		tx_desc->upper.data = cpu_to_le32(txd_upper);
3007		if (unlikely(++i == tx_ring->count))
3008			i = 0;
3009	}
3010
3011	tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
3012
3013	/* txd_cmd re-enables FCS, so we'll re-disable it here as desired. */
3014	if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
3015		tx_desc->lower.data &= ~(cpu_to_le32(E1000_TXD_CMD_IFCS));
3016
3017	/* Force memory writes to complete before letting h/w
3018	 * know there are new descriptors to fetch.  (Only
3019	 * applicable for weak-ordered memory model archs,
3020	 * such as IA-64).
3021	 */
3022	dma_wmb();
3023
3024	tx_ring->next_to_use = i;
3025}
3026
3027/* 82547 workaround to avoid controller hang in half-duplex environment.
3028 * The workaround is to avoid queuing a large packet that would span
3029 * the internal Tx FIFO ring boundary by notifying the stack to resend
3030 * the packet at a later time.  This gives the Tx FIFO an opportunity to
3031 * flush all packets.  When that occurs, we reset the Tx FIFO pointers
3032 * to the beginning of the Tx FIFO.
3033 */
3034
3035#define E1000_FIFO_HDR			0x10
3036#define E1000_82547_PAD_LEN		0x3E0
3037
3038static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
3039				       struct sk_buff *skb)
3040{
3041	u32 fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head;
3042	u32 skb_fifo_len = skb->len + E1000_FIFO_HDR;
3043
3044	skb_fifo_len = ALIGN(skb_fifo_len, E1000_FIFO_HDR);
3045
3046	if (adapter->link_duplex != HALF_DUPLEX)
3047		goto no_fifo_stall_required;
3048
3049	if (atomic_read(&adapter->tx_fifo_stall))
3050		return 1;
3051
3052	if (skb_fifo_len >= (E1000_82547_PAD_LEN + fifo_space)) {
3053		atomic_set(&adapter->tx_fifo_stall, 1);
3054		return 1;
3055	}
3056
3057no_fifo_stall_required:
3058	adapter->tx_fifo_head += skb_fifo_len;
3059	if (adapter->tx_fifo_head >= adapter->tx_fifo_size)
3060		adapter->tx_fifo_head -= adapter->tx_fifo_size;
3061	return 0;
3062}
3063
3064static int __e1000_maybe_stop_tx(struct net_device *netdev, int size)
3065{
3066	struct e1000_adapter *adapter = netdev_priv(netdev);
3067	struct e1000_tx_ring *tx_ring = adapter->tx_ring;
3068
3069	netif_stop_queue(netdev);
3070	/* Herbert's original patch had:
3071	 *  smp_mb__after_netif_stop_queue();
3072	 * but since that doesn't exist yet, just open code it.
3073	 */
3074	smp_mb();
3075
3076	/* We need to check again in a case another CPU has just
3077	 * made room available.
3078	 */
3079	if (likely(E1000_DESC_UNUSED(tx_ring) < size))
3080		return -EBUSY;
3081
3082	/* A reprieve! */
3083	netif_start_queue(netdev);
3084	++adapter->restart_queue;
3085	return 0;
3086}
3087
3088static int e1000_maybe_stop_tx(struct net_device *netdev,
3089			       struct e1000_tx_ring *tx_ring, int size)
3090{
3091	if (likely(E1000_DESC_UNUSED(tx_ring) >= size))
3092		return 0;
3093	return __e1000_maybe_stop_tx(netdev, size);
3094}
3095
3096#define TXD_USE_COUNT(S, X) (((S) + ((1 << (X)) - 1)) >> (X))
3097static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
3098				    struct net_device *netdev)
3099{
3100	struct e1000_adapter *adapter = netdev_priv(netdev);
3101	struct e1000_hw *hw = &adapter->hw;
3102	struct e1000_tx_ring *tx_ring;
3103	unsigned int first, max_per_txd = E1000_MAX_DATA_PER_TXD;
3104	unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
3105	unsigned int tx_flags = 0;
3106	unsigned int len = skb_headlen(skb);
3107	unsigned int nr_frags;
3108	unsigned int mss;
3109	int count = 0;
3110	int tso;
3111	unsigned int f;
3112	__be16 protocol = vlan_get_protocol(skb);
3113
3114	/* This goes back to the question of how to logically map a Tx queue
3115	 * to a flow.  Right now, performance is impacted slightly negatively
3116	 * if using multiple Tx queues.  If the stack breaks away from a
3117	 * single qdisc implementation, we can look at this again.
3118	 */
3119	tx_ring = adapter->tx_ring;
3120
3121	/* On PCI/PCI-X HW, if packet size is less than ETH_ZLEN,
3122	 * packets may get corrupted during padding by HW.
3123	 * To WA this issue, pad all small packets manually.
3124	 */
3125	if (eth_skb_pad(skb))
3126		return NETDEV_TX_OK;
3127
3128	mss = skb_shinfo(skb)->gso_size;
3129	/* The controller does a simple calculation to
3130	 * make sure there is enough room in the FIFO before
3131	 * initiating the DMA for each buffer.  The calc is:
3132	 * 4 = ceil(buffer len/mss).  To make sure we don't
3133	 * overrun the FIFO, adjust the max buffer len if mss
3134	 * drops.
3135	 */
3136	if (mss) {
3137		u8 hdr_len;
3138		max_per_txd = min(mss << 2, max_per_txd);
3139		max_txd_pwr = fls(max_per_txd) - 1;
3140
3141		hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
3142		if (skb->data_len && hdr_len == len) {
3143			switch (hw->mac_type) {
3144			case e1000_82544: {
3145				unsigned int pull_size;
3146
3147				/* Make sure we have room to chop off 4 bytes,
3148				 * and that the end alignment will work out to
3149				 * this hardware's requirements
3150				 * NOTE: this is a TSO only workaround
3151				 * if end byte alignment not correct move us
3152				 * into the next dword
3153				 */
3154				if ((unsigned long)(skb_tail_pointer(skb) - 1)
3155				    & 4)
3156					break;
3157				pull_size = min((unsigned int)4, skb->data_len);
3158				if (!__pskb_pull_tail(skb, pull_size)) {
3159					e_err(drv, "__pskb_pull_tail "
3160					      "failed.\n");
3161					dev_kfree_skb_any(skb);
3162					return NETDEV_TX_OK;
3163				}
3164				len = skb_headlen(skb);
3165				break;
3166			}
3167			default:
3168				/* do nothing */
3169				break;
3170			}
3171		}
3172	}
3173
3174	/* reserve a descriptor for the offload context */
3175	if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
3176		count++;
3177	count++;
3178
3179	/* Controller Erratum workaround */
3180	if (!skb->data_len && tx_ring->last_tx_tso && !skb_is_gso(skb))
3181		count++;
3182
3183	count += TXD_USE_COUNT(len, max_txd_pwr);
3184
3185	if (adapter->pcix_82544)
3186		count++;
3187
3188	/* work-around for errata 10 and it applies to all controllers
3189	 * in PCI-X mode, so add one more descriptor to the count
3190	 */
3191	if (unlikely((hw->bus_type == e1000_bus_type_pcix) &&
3192			(len > 2015)))
3193		count++;
3194
3195	nr_frags = skb_shinfo(skb)->nr_frags;
3196	for (f = 0; f < nr_frags; f++)
3197		count += TXD_USE_COUNT(skb_frag_size(&skb_shinfo(skb)->frags[f]),
3198				       max_txd_pwr);
3199	if (adapter->pcix_82544)
3200		count += nr_frags;
3201
3202	/* need: count + 2 desc gap to keep tail from touching
3203	 * head, otherwise try next time
3204	 */
3205	if (unlikely(e1000_maybe_stop_tx(netdev, tx_ring, count + 2)))
3206		return NETDEV_TX_BUSY;
3207
3208	if (unlikely((hw->mac_type == e1000_82547) &&
3209		     (e1000_82547_fifo_workaround(adapter, skb)))) {
3210		netif_stop_queue(netdev);
3211		if (!test_bit(__E1000_DOWN, &adapter->flags))
3212			schedule_delayed_work(&adapter->fifo_stall_task, 1);
3213		return NETDEV_TX_BUSY;
3214	}
3215
3216	if (skb_vlan_tag_present(skb)) {
3217		tx_flags |= E1000_TX_FLAGS_VLAN;
3218		tx_flags |= (skb_vlan_tag_get(skb) <<
3219			     E1000_TX_FLAGS_VLAN_SHIFT);
3220	}
3221
3222	first = tx_ring->next_to_use;
3223
3224	tso = e1000_tso(adapter, tx_ring, skb, protocol);
3225	if (tso < 0) {
3226		dev_kfree_skb_any(skb);
3227		return NETDEV_TX_OK;
3228	}
3229
3230	if (likely(tso)) {
3231		if (likely(hw->mac_type != e1000_82544))
3232			tx_ring->last_tx_tso = true;
3233		tx_flags |= E1000_TX_FLAGS_TSO;
3234	} else if (likely(e1000_tx_csum(adapter, tx_ring, skb, protocol)))
3235		tx_flags |= E1000_TX_FLAGS_CSUM;
3236
3237	if (protocol == htons(ETH_P_IP))
3238		tx_flags |= E1000_TX_FLAGS_IPV4;
3239
3240	if (unlikely(skb->no_fcs))
3241		tx_flags |= E1000_TX_FLAGS_NO_FCS;
3242
3243	count = e1000_tx_map(adapter, tx_ring, skb, first, max_per_txd,
3244			     nr_frags, mss);
3245
3246	if (count) {
3247		/* The descriptors needed is higher than other Intel drivers
3248		 * due to a number of workarounds.  The breakdown is below:
3249		 * Data descriptors: MAX_SKB_FRAGS + 1
3250		 * Context Descriptor: 1
3251		 * Keep head from touching tail: 2
3252		 * Workarounds: 3
3253		 */
3254		int desc_needed = MAX_SKB_FRAGS + 7;
3255
3256		netdev_sent_queue(netdev, skb->len);
3257		skb_tx_timestamp(skb);
3258
3259		e1000_tx_queue(adapter, tx_ring, tx_flags, count);
3260
3261		/* 82544 potentially requires twice as many data descriptors
3262		 * in order to guarantee buffers don't end on evenly-aligned
3263		 * dwords
3264		 */
3265		if (adapter->pcix_82544)
3266			desc_needed += MAX_SKB_FRAGS + 1;
3267
3268		/* Make sure there is space in the ring for the next send. */
3269		e1000_maybe_stop_tx(netdev, tx_ring, desc_needed);
3270
3271		if (!netdev_xmit_more() ||
3272		    netif_xmit_stopped(netdev_get_tx_queue(netdev, 0))) {
3273			writel(tx_ring->next_to_use, hw->hw_addr + tx_ring->tdt);
3274		}
3275	} else {
3276		dev_kfree_skb_any(skb);
3277		tx_ring->buffer_info[first].time_stamp = 0;
3278		tx_ring->next_to_use = first;
3279	}
3280
3281	return NETDEV_TX_OK;
3282}
3283
3284#define NUM_REGS 38 /* 1 based count */
3285static void e1000_regdump(struct e1000_adapter *adapter)
3286{
3287	struct e1000_hw *hw = &adapter->hw;
3288	u32 regs[NUM_REGS];
3289	u32 *regs_buff = regs;
3290	int i = 0;
3291
3292	static const char * const reg_name[] = {
3293		"CTRL",  "STATUS",
3294		"RCTL", "RDLEN", "RDH", "RDT", "RDTR",
3295		"TCTL", "TDBAL", "TDBAH", "TDLEN", "TDH", "TDT",
3296		"TIDV", "TXDCTL", "TADV", "TARC0",
3297		"TDBAL1", "TDBAH1", "TDLEN1", "TDH1", "TDT1",
3298		"TXDCTL1", "TARC1",
3299		"CTRL_EXT", "ERT", "RDBAL", "RDBAH",
3300		"TDFH", "TDFT", "TDFHS", "TDFTS", "TDFPC",
3301		"RDFH", "RDFT", "RDFHS", "RDFTS", "RDFPC"
3302	};
3303
3304	regs_buff[0]  = er32(CTRL);
3305	regs_buff[1]  = er32(STATUS);
3306
3307	regs_buff[2]  = er32(RCTL);
3308	regs_buff[3]  = er32(RDLEN);
3309	regs_buff[4]  = er32(RDH);
3310	regs_buff[5]  = er32(RDT);
3311	regs_buff[6]  = er32(RDTR);
3312
3313	regs_buff[7]  = er32(TCTL);
3314	regs_buff[8]  = er32(TDBAL);
3315	regs_buff[9]  = er32(TDBAH);
3316	regs_buff[10] = er32(TDLEN);
3317	regs_buff[11] = er32(TDH);
3318	regs_buff[12] = er32(TDT);
3319	regs_buff[13] = er32(TIDV);
3320	regs_buff[14] = er32(TXDCTL);
3321	regs_buff[15] = er32(TADV);
3322	regs_buff[16] = er32(TARC0);
3323
3324	regs_buff[17] = er32(TDBAL1);
3325	regs_buff[18] = er32(TDBAH1);
3326	regs_buff[19] = er32(TDLEN1);
3327	regs_buff[20] = er32(TDH1);
3328	regs_buff[21] = er32(TDT1);
3329	regs_buff[22] = er32(TXDCTL1);
3330	regs_buff[23] = er32(TARC1);
3331	regs_buff[24] = er32(CTRL_EXT);
3332	regs_buff[25] = er32(ERT);
3333	regs_buff[26] = er32(RDBAL0);
3334	regs_buff[27] = er32(RDBAH0);
3335	regs_buff[28] = er32(TDFH);
3336	regs_buff[29] = er32(TDFT);
3337	regs_buff[30] = er32(TDFHS);
3338	regs_buff[31] = er32(TDFTS);
3339	regs_buff[32] = er32(TDFPC);
3340	regs_buff[33] = er32(RDFH);
3341	regs_buff[34] = er32(RDFT);
3342	regs_buff[35] = er32(RDFHS);
3343	regs_buff[36] = er32(RDFTS);
3344	regs_buff[37] = er32(RDFPC);
3345
3346	pr_info("Register dump\n");
3347	for (i = 0; i < NUM_REGS; i++)
3348		pr_info("%-15s  %08x\n", reg_name[i], regs_buff[i]);
3349}
3350
3351/*
3352 * e1000_dump: Print registers, tx ring and rx ring
3353 */
3354static void e1000_dump(struct e1000_adapter *adapter)
3355{
3356	/* this code doesn't handle multiple rings */
3357	struct e1000_tx_ring *tx_ring = adapter->tx_ring;
3358	struct e1000_rx_ring *rx_ring = adapter->rx_ring;
3359	int i;
3360
3361	if (!netif_msg_hw(adapter))
3362		return;
3363
3364	/* Print Registers */
3365	e1000_regdump(adapter);
3366
3367	/* transmit dump */
3368	pr_info("TX Desc ring0 dump\n");
3369
3370	/* Transmit Descriptor Formats - DEXT[29] is 0 (Legacy) or 1 (Extended)
3371	 *
3372	 * Legacy Transmit Descriptor
3373	 *   +--------------------------------------------------------------+
3374	 * 0 |         Buffer Address [63:0] (Reserved on Write Back)       |
3375	 *   +--------------------------------------------------------------+
3376	 * 8 | Special  |    CSS     | Status |  CMD    |  CSO   |  Length  |
3377	 *   +--------------------------------------------------------------+
3378	 *   63       48 47        36 35    32 31     24 23    16 15        0
3379	 *
3380	 * Extended Context Descriptor (DTYP=0x0) for TSO or checksum offload
3381	 *   63      48 47    40 39       32 31             16 15    8 7      0
3382	 *   +----------------------------------------------------------------+
3383	 * 0 |  TUCSE  | TUCS0  |   TUCSS   |     IPCSE       | IPCS0 | IPCSS |
3384	 *   +----------------------------------------------------------------+
3385	 * 8 |   MSS   | HDRLEN | RSV | STA | TUCMD | DTYP |      PAYLEN      |
3386	 *   +----------------------------------------------------------------+
3387	 *   63      48 47    40 39 36 35 32 31   24 23  20 19                0
3388	 *
3389	 * Extended Data Descriptor (DTYP=0x1)
3390	 *   +----------------------------------------------------------------+
3391	 * 0 |                     Buffer Address [63:0]                      |
3392	 *   +----------------------------------------------------------------+
3393	 * 8 | VLAN tag |  POPTS  | Rsvd | Status | Command | DTYP |  DTALEN  |
3394	 *   +----------------------------------------------------------------+
3395	 *   63       48 47     40 39  36 35    32 31     24 23  20 19        0
3396	 */
3397	pr_info("Tc[desc]     [Ce CoCsIpceCoS] [MssHlRSCm0Plen] [bi->dma       ] leng  ntw timestmp         bi->skb\n");
3398	pr_info("Td[desc]     [address 63:0  ] [VlaPoRSCm1Dlen] [bi->dma       ] leng  ntw timestmp         bi->skb\n");
3399
3400	if (!netif_msg_tx_done(adapter))
3401		goto rx_ring_summary;
3402
3403	for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
3404		struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*tx_ring, i);
3405		struct e1000_tx_buffer *buffer_info = &tx_ring->buffer_info[i];
3406		struct my_u { __le64 a; __le64 b; };
3407		struct my_u *u = (struct my_u *)tx_desc;
3408		const char *type;
3409
3410		if (i == tx_ring->next_to_use && i == tx_ring->next_to_clean)
3411			type = "NTC/U";
3412		else if (i == tx_ring->next_to_use)
3413			type = "NTU";
3414		else if (i == tx_ring->next_to_clean)
3415			type = "NTC";
3416		else
3417			type = "";
3418
3419		pr_info("T%c[0x%03X]    %016llX %016llX %016llX %04X  %3X %016llX %p %s\n",
3420			((le64_to_cpu(u->b) & (1<<20)) ? 'd' : 'c'), i,
3421			le64_to_cpu(u->a), le64_to_cpu(u->b),
3422			(u64)buffer_info->dma, buffer_info->length,
3423			buffer_info->next_to_watch,
3424			(u64)buffer_info->time_stamp, buffer_info->skb, type);
3425	}
3426
3427rx_ring_summary:
3428	/* receive dump */
3429	pr_info("\nRX Desc ring dump\n");
3430
3431	/* Legacy Receive Descriptor Format
3432	 *
3433	 * +-----------------------------------------------------+
3434	 * |                Buffer Address [63:0]                |
3435	 * +-----------------------------------------------------+
3436	 * | VLAN Tag | Errors | Status 0 | Packet csum | Length |
3437	 * +-----------------------------------------------------+
3438	 * 63       48 47    40 39      32 31         16 15      0
3439	 */
3440	pr_info("R[desc]      [address 63:0  ] [vl er S cks ln] [bi->dma       ] [bi->skb]\n");
3441
3442	if (!netif_msg_rx_status(adapter))
3443		goto exit;
3444
3445	for (i = 0; rx_ring->desc && (i < rx_ring->count); i++) {
3446		struct e1000_rx_desc *rx_desc = E1000_RX_DESC(*rx_ring, i);
3447		struct e1000_rx_buffer *buffer_info = &rx_ring->buffer_info[i];
3448		struct my_u { __le64 a; __le64 b; };
3449		struct my_u *u = (struct my_u *)rx_desc;
3450		const char *type;
3451
3452		if (i == rx_ring->next_to_use)
3453			type = "NTU";
3454		else if (i == rx_ring->next_to_clean)
3455			type = "NTC";
3456		else
3457			type = "";
3458
3459		pr_info("R[0x%03X]     %016llX %016llX %016llX %p %s\n",
3460			i, le64_to_cpu(u->a), le64_to_cpu(u->b),
3461			(u64)buffer_info->dma, buffer_info->rxbuf.data, type);
3462	} /* for */
3463
3464	/* dump the descriptor caches */
3465	/* rx */
3466	pr_info("Rx descriptor cache in 64bit format\n");
3467	for (i = 0x6000; i <= 0x63FF ; i += 0x10) {
3468		pr_info("R%04X: %08X|%08X %08X|%08X\n",
3469			i,
3470			readl(adapter->hw.hw_addr + i+4),
3471			readl(adapter->hw.hw_addr + i),
3472			readl(adapter->hw.hw_addr + i+12),
3473			readl(adapter->hw.hw_addr + i+8));
3474	}
3475	/* tx */
3476	pr_info("Tx descriptor cache in 64bit format\n");
3477	for (i = 0x7000; i <= 0x73FF ; i += 0x10) {
3478		pr_info("T%04X: %08X|%08X %08X|%08X\n",
3479			i,
3480			readl(adapter->hw.hw_addr + i+4),
3481			readl(adapter->hw.hw_addr + i),
3482			readl(adapter->hw.hw_addr + i+12),
3483			readl(adapter->hw.hw_addr + i+8));
3484	}
3485exit:
3486	return;
3487}
3488
3489/**
3490 * e1000_tx_timeout - Respond to a Tx Hang
3491 * @netdev: network interface device structure
 
3492 **/
3493static void e1000_tx_timeout(struct net_device *netdev, unsigned int txqueue)
3494{
3495	struct e1000_adapter *adapter = netdev_priv(netdev);
3496
3497	/* Do the reset outside of interrupt context */
3498	adapter->tx_timeout_count++;
3499	schedule_work(&adapter->reset_task);
3500}
3501
3502static void e1000_reset_task(struct work_struct *work)
3503{
3504	struct e1000_adapter *adapter =
3505		container_of(work, struct e1000_adapter, reset_task);
3506
3507	e_err(drv, "Reset adapter\n");
 
3508	e1000_reinit_locked(adapter);
 
3509}
3510
3511/**
3512 * e1000_change_mtu - Change the Maximum Transfer Unit
3513 * @netdev: network interface device structure
3514 * @new_mtu: new value for maximum frame size
3515 *
3516 * Returns 0 on success, negative on failure
3517 **/
3518static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
3519{
3520	struct e1000_adapter *adapter = netdev_priv(netdev);
3521	struct e1000_hw *hw = &adapter->hw;
3522	int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
3523
3524	/* Adapter-specific max frame size limits. */
3525	switch (hw->mac_type) {
3526	case e1000_undefined ... e1000_82542_rev2_1:
3527		if (max_frame > (ETH_FRAME_LEN + ETH_FCS_LEN)) {
3528			e_err(probe, "Jumbo Frames not supported.\n");
3529			return -EINVAL;
3530		}
3531		break;
3532	default:
3533		/* Capable of supporting up to MAX_JUMBO_FRAME_SIZE limit. */
3534		break;
3535	}
3536
3537	while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
3538		msleep(1);
3539	/* e1000_down has a dependency on max_frame_size */
3540	hw->max_frame_size = max_frame;
3541	if (netif_running(netdev)) {
3542		/* prevent buffers from being reallocated */
3543		adapter->alloc_rx_buf = e1000_alloc_dummy_rx_buffers;
3544		e1000_down(adapter);
3545	}
3546
3547	/* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
3548	 * means we reserve 2 more, this pushes us to allocate from the next
3549	 * larger slab size.
3550	 * i.e. RXBUFFER_2048 --> size-4096 slab
3551	 * however with the new *_jumbo_rx* routines, jumbo receives will use
3552	 * fragmented skbs
3553	 */
3554
3555	if (max_frame <= E1000_RXBUFFER_2048)
3556		adapter->rx_buffer_len = E1000_RXBUFFER_2048;
3557	else
3558#if (PAGE_SIZE >= E1000_RXBUFFER_16384)
3559		adapter->rx_buffer_len = E1000_RXBUFFER_16384;
3560#elif (PAGE_SIZE >= E1000_RXBUFFER_4096)
3561		adapter->rx_buffer_len = PAGE_SIZE;
3562#endif
3563
3564	/* adjust allocation if LPE protects us, and we aren't using SBP */
3565	if (!hw->tbi_compatibility_on &&
3566	    ((max_frame == (ETH_FRAME_LEN + ETH_FCS_LEN)) ||
3567	     (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE)))
3568		adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
3569
3570	netdev_dbg(netdev, "changing MTU from %d to %d\n",
3571		   netdev->mtu, new_mtu);
3572	netdev->mtu = new_mtu;
3573
3574	if (netif_running(netdev))
3575		e1000_up(adapter);
3576	else
3577		e1000_reset(adapter);
3578
3579	clear_bit(__E1000_RESETTING, &adapter->flags);
3580
3581	return 0;
3582}
3583
3584/**
3585 * e1000_update_stats - Update the board statistics counters
3586 * @adapter: board private structure
3587 **/
3588void e1000_update_stats(struct e1000_adapter *adapter)
3589{
3590	struct net_device *netdev = adapter->netdev;
3591	struct e1000_hw *hw = &adapter->hw;
3592	struct pci_dev *pdev = adapter->pdev;
3593	unsigned long flags;
3594	u16 phy_tmp;
3595
3596#define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
3597
3598	/* Prevent stats update while adapter is being reset, or if the pci
3599	 * connection is down.
3600	 */
3601	if (adapter->link_speed == 0)
3602		return;
3603	if (pci_channel_offline(pdev))
3604		return;
3605
3606	spin_lock_irqsave(&adapter->stats_lock, flags);
3607
3608	/* these counters are modified from e1000_tbi_adjust_stats,
3609	 * called from the interrupt context, so they must only
3610	 * be written while holding adapter->stats_lock
3611	 */
3612
3613	adapter->stats.crcerrs += er32(CRCERRS);
3614	adapter->stats.gprc += er32(GPRC);
3615	adapter->stats.gorcl += er32(GORCL);
3616	adapter->stats.gorch += er32(GORCH);
3617	adapter->stats.bprc += er32(BPRC);
3618	adapter->stats.mprc += er32(MPRC);
3619	adapter->stats.roc += er32(ROC);
3620
3621	adapter->stats.prc64 += er32(PRC64);
3622	adapter->stats.prc127 += er32(PRC127);
3623	adapter->stats.prc255 += er32(PRC255);
3624	adapter->stats.prc511 += er32(PRC511);
3625	adapter->stats.prc1023 += er32(PRC1023);
3626	adapter->stats.prc1522 += er32(PRC1522);
3627
3628	adapter->stats.symerrs += er32(SYMERRS);
3629	adapter->stats.mpc += er32(MPC);
3630	adapter->stats.scc += er32(SCC);
3631	adapter->stats.ecol += er32(ECOL);
3632	adapter->stats.mcc += er32(MCC);
3633	adapter->stats.latecol += er32(LATECOL);
3634	adapter->stats.dc += er32(DC);
3635	adapter->stats.sec += er32(SEC);
3636	adapter->stats.rlec += er32(RLEC);
3637	adapter->stats.xonrxc += er32(XONRXC);
3638	adapter->stats.xontxc += er32(XONTXC);
3639	adapter->stats.xoffrxc += er32(XOFFRXC);
3640	adapter->stats.xofftxc += er32(XOFFTXC);
3641	adapter->stats.fcruc += er32(FCRUC);
3642	adapter->stats.gptc += er32(GPTC);
3643	adapter->stats.gotcl += er32(GOTCL);
3644	adapter->stats.gotch += er32(GOTCH);
3645	adapter->stats.rnbc += er32(RNBC);
3646	adapter->stats.ruc += er32(RUC);
3647	adapter->stats.rfc += er32(RFC);
3648	adapter->stats.rjc += er32(RJC);
3649	adapter->stats.torl += er32(TORL);
3650	adapter->stats.torh += er32(TORH);
3651	adapter->stats.totl += er32(TOTL);
3652	adapter->stats.toth += er32(TOTH);
3653	adapter->stats.tpr += er32(TPR);
3654
3655	adapter->stats.ptc64 += er32(PTC64);
3656	adapter->stats.ptc127 += er32(PTC127);
3657	adapter->stats.ptc255 += er32(PTC255);
3658	adapter->stats.ptc511 += er32(PTC511);
3659	adapter->stats.ptc1023 += er32(PTC1023);
3660	adapter->stats.ptc1522 += er32(PTC1522);
3661
3662	adapter->stats.mptc += er32(MPTC);
3663	adapter->stats.bptc += er32(BPTC);
3664
3665	/* used for adaptive IFS */
3666
3667	hw->tx_packet_delta = er32(TPT);
3668	adapter->stats.tpt += hw->tx_packet_delta;
3669	hw->collision_delta = er32(COLC);
3670	adapter->stats.colc += hw->collision_delta;
3671
3672	if (hw->mac_type >= e1000_82543) {
3673		adapter->stats.algnerrc += er32(ALGNERRC);
3674		adapter->stats.rxerrc += er32(RXERRC);
3675		adapter->stats.tncrs += er32(TNCRS);
3676		adapter->stats.cexterr += er32(CEXTERR);
3677		adapter->stats.tsctc += er32(TSCTC);
3678		adapter->stats.tsctfc += er32(TSCTFC);
3679	}
3680
3681	/* Fill out the OS statistics structure */
3682	netdev->stats.multicast = adapter->stats.mprc;
3683	netdev->stats.collisions = adapter->stats.colc;
3684
3685	/* Rx Errors */
3686
3687	/* RLEC on some newer hardware can be incorrect so build
3688	 * our own version based on RUC and ROC
3689	 */
3690	netdev->stats.rx_errors = adapter->stats.rxerrc +
3691		adapter->stats.crcerrs + adapter->stats.algnerrc +
3692		adapter->stats.ruc + adapter->stats.roc +
3693		adapter->stats.cexterr;
3694	adapter->stats.rlerrc = adapter->stats.ruc + adapter->stats.roc;
3695	netdev->stats.rx_length_errors = adapter->stats.rlerrc;
3696	netdev->stats.rx_crc_errors = adapter->stats.crcerrs;
3697	netdev->stats.rx_frame_errors = adapter->stats.algnerrc;
3698	netdev->stats.rx_missed_errors = adapter->stats.mpc;
3699
3700	/* Tx Errors */
3701	adapter->stats.txerrc = adapter->stats.ecol + adapter->stats.latecol;
3702	netdev->stats.tx_errors = adapter->stats.txerrc;
3703	netdev->stats.tx_aborted_errors = adapter->stats.ecol;
3704	netdev->stats.tx_window_errors = adapter->stats.latecol;
3705	netdev->stats.tx_carrier_errors = adapter->stats.tncrs;
3706	if (hw->bad_tx_carr_stats_fd &&
3707	    adapter->link_duplex == FULL_DUPLEX) {
3708		netdev->stats.tx_carrier_errors = 0;
3709		adapter->stats.tncrs = 0;
3710	}
3711
3712	/* Tx Dropped needs to be maintained elsewhere */
3713
3714	/* Phy Stats */
3715	if (hw->media_type == e1000_media_type_copper) {
3716		if ((adapter->link_speed == SPEED_1000) &&
3717		   (!e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
3718			phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
3719			adapter->phy_stats.idle_errors += phy_tmp;
3720		}
3721
3722		if ((hw->mac_type <= e1000_82546) &&
3723		   (hw->phy_type == e1000_phy_m88) &&
3724		   !e1000_read_phy_reg(hw, M88E1000_RX_ERR_CNTR, &phy_tmp))
3725			adapter->phy_stats.receive_errors += phy_tmp;
3726	}
3727
3728	/* Management Stats */
3729	if (hw->has_smbus) {
3730		adapter->stats.mgptc += er32(MGTPTC);
3731		adapter->stats.mgprc += er32(MGTPRC);
3732		adapter->stats.mgpdc += er32(MGTPDC);
3733	}
3734
3735	spin_unlock_irqrestore(&adapter->stats_lock, flags);
3736}
3737
3738/**
3739 * e1000_intr - Interrupt Handler
3740 * @irq: interrupt number
3741 * @data: pointer to a network interface device structure
3742 **/
3743static irqreturn_t e1000_intr(int irq, void *data)
3744{
3745	struct net_device *netdev = data;
3746	struct e1000_adapter *adapter = netdev_priv(netdev);
3747	struct e1000_hw *hw = &adapter->hw;
3748	u32 icr = er32(ICR);
3749
3750	if (unlikely((!icr)))
3751		return IRQ_NONE;  /* Not our interrupt */
3752
3753	/* we might have caused the interrupt, but the above
3754	 * read cleared it, and just in case the driver is
3755	 * down there is nothing to do so return handled
3756	 */
3757	if (unlikely(test_bit(__E1000_DOWN, &adapter->flags)))
3758		return IRQ_HANDLED;
3759
3760	if (unlikely(icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))) {
3761		hw->get_link_status = 1;
3762		/* guard against interrupt when we're going down */
3763		if (!test_bit(__E1000_DOWN, &adapter->flags))
3764			schedule_delayed_work(&adapter->watchdog_task, 1);
3765	}
3766
3767	/* disable interrupts, without the synchronize_irq bit */
3768	ew32(IMC, ~0);
3769	E1000_WRITE_FLUSH();
3770
3771	if (likely(napi_schedule_prep(&adapter->napi))) {
3772		adapter->total_tx_bytes = 0;
3773		adapter->total_tx_packets = 0;
3774		adapter->total_rx_bytes = 0;
3775		adapter->total_rx_packets = 0;
3776		__napi_schedule(&adapter->napi);
3777	} else {
3778		/* this really should not happen! if it does it is basically a
3779		 * bug, but not a hard error, so enable ints and continue
3780		 */
3781		if (!test_bit(__E1000_DOWN, &adapter->flags))
3782			e1000_irq_enable(adapter);
3783	}
3784
3785	return IRQ_HANDLED;
3786}
3787
3788/**
3789 * e1000_clean - NAPI Rx polling callback
3790 * @adapter: board private structure
 
3791 **/
3792static int e1000_clean(struct napi_struct *napi, int budget)
3793{
3794	struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter,
3795						     napi);
3796	int tx_clean_complete = 0, work_done = 0;
3797
3798	tx_clean_complete = e1000_clean_tx_irq(adapter, &adapter->tx_ring[0]);
3799
3800	adapter->clean_rx(adapter, &adapter->rx_ring[0], &work_done, budget);
3801
3802	if (!tx_clean_complete || work_done == budget)
3803		return budget;
3804
3805	/* Exit the polling mode, but don't re-enable interrupts if stack might
3806	 * poll us due to busy-polling
3807	 */
3808	if (likely(napi_complete_done(napi, work_done))) {
3809		if (likely(adapter->itr_setting & 3))
3810			e1000_set_itr(adapter);
3811		if (!test_bit(__E1000_DOWN, &adapter->flags))
3812			e1000_irq_enable(adapter);
3813	}
3814
3815	return work_done;
3816}
3817
3818/**
3819 * e1000_clean_tx_irq - Reclaim resources after transmit completes
3820 * @adapter: board private structure
 
3821 **/
3822static bool e1000_clean_tx_irq(struct e1000_adapter *adapter,
3823			       struct e1000_tx_ring *tx_ring)
3824{
3825	struct e1000_hw *hw = &adapter->hw;
3826	struct net_device *netdev = adapter->netdev;
3827	struct e1000_tx_desc *tx_desc, *eop_desc;
3828	struct e1000_tx_buffer *buffer_info;
3829	unsigned int i, eop;
3830	unsigned int count = 0;
3831	unsigned int total_tx_bytes = 0, total_tx_packets = 0;
3832	unsigned int bytes_compl = 0, pkts_compl = 0;
3833
3834	i = tx_ring->next_to_clean;
3835	eop = tx_ring->buffer_info[i].next_to_watch;
3836	eop_desc = E1000_TX_DESC(*tx_ring, eop);
3837
3838	while ((eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) &&
3839	       (count < tx_ring->count)) {
3840		bool cleaned = false;
3841		dma_rmb();	/* read buffer_info after eop_desc */
3842		for ( ; !cleaned; count++) {
3843			tx_desc = E1000_TX_DESC(*tx_ring, i);
3844			buffer_info = &tx_ring->buffer_info[i];
3845			cleaned = (i == eop);
3846
3847			if (cleaned) {
3848				total_tx_packets += buffer_info->segs;
3849				total_tx_bytes += buffer_info->bytecount;
3850				if (buffer_info->skb) {
3851					bytes_compl += buffer_info->skb->len;
3852					pkts_compl++;
3853				}
3854
3855			}
3856			e1000_unmap_and_free_tx_resource(adapter, buffer_info);
 
3857			tx_desc->upper.data = 0;
3858
3859			if (unlikely(++i == tx_ring->count))
3860				i = 0;
3861		}
3862
3863		eop = tx_ring->buffer_info[i].next_to_watch;
3864		eop_desc = E1000_TX_DESC(*tx_ring, eop);
3865	}
3866
3867	/* Synchronize with E1000_DESC_UNUSED called from e1000_xmit_frame,
3868	 * which will reuse the cleaned buffers.
3869	 */
3870	smp_store_release(&tx_ring->next_to_clean, i);
3871
3872	netdev_completed_queue(netdev, pkts_compl, bytes_compl);
3873
3874#define TX_WAKE_THRESHOLD 32
3875	if (unlikely(count && netif_carrier_ok(netdev) &&
3876		     E1000_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD)) {
3877		/* Make sure that anybody stopping the queue after this
3878		 * sees the new next_to_clean.
3879		 */
3880		smp_mb();
3881
3882		if (netif_queue_stopped(netdev) &&
3883		    !(test_bit(__E1000_DOWN, &adapter->flags))) {
3884			netif_wake_queue(netdev);
3885			++adapter->restart_queue;
3886		}
3887	}
3888
3889	if (adapter->detect_tx_hung) {
3890		/* Detect a transmit hang in hardware, this serializes the
3891		 * check with the clearing of time_stamp and movement of i
3892		 */
3893		adapter->detect_tx_hung = false;
3894		if (tx_ring->buffer_info[eop].time_stamp &&
3895		    time_after(jiffies, tx_ring->buffer_info[eop].time_stamp +
3896			       (adapter->tx_timeout_factor * HZ)) &&
3897		    !(er32(STATUS) & E1000_STATUS_TXOFF)) {
3898
3899			/* detected Tx unit hang */
3900			e_err(drv, "Detected Tx Unit Hang\n"
3901			      "  Tx Queue             <%lu>\n"
3902			      "  TDH                  <%x>\n"
3903			      "  TDT                  <%x>\n"
3904			      "  next_to_use          <%x>\n"
3905			      "  next_to_clean        <%x>\n"
3906			      "buffer_info[next_to_clean]\n"
3907			      "  time_stamp           <%lx>\n"
3908			      "  next_to_watch        <%x>\n"
3909			      "  jiffies              <%lx>\n"
3910			      "  next_to_watch.status <%x>\n",
3911				(unsigned long)(tx_ring - adapter->tx_ring),
3912				readl(hw->hw_addr + tx_ring->tdh),
3913				readl(hw->hw_addr + tx_ring->tdt),
3914				tx_ring->next_to_use,
3915				tx_ring->next_to_clean,
3916				tx_ring->buffer_info[eop].time_stamp,
3917				eop,
3918				jiffies,
3919				eop_desc->upper.fields.status);
3920			e1000_dump(adapter);
3921			netif_stop_queue(netdev);
3922		}
3923	}
3924	adapter->total_tx_bytes += total_tx_bytes;
3925	adapter->total_tx_packets += total_tx_packets;
3926	netdev->stats.tx_bytes += total_tx_bytes;
3927	netdev->stats.tx_packets += total_tx_packets;
3928	return count < tx_ring->count;
3929}
3930
3931/**
3932 * e1000_rx_checksum - Receive Checksum Offload for 82543
3933 * @adapter:     board private structure
3934 * @status_err:  receive descriptor status and error fields
3935 * @csum:        receive descriptor csum field
3936 * @sk_buff:     socket buffer with received data
3937 **/
3938static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
3939			      u32 csum, struct sk_buff *skb)
3940{
3941	struct e1000_hw *hw = &adapter->hw;
3942	u16 status = (u16)status_err;
3943	u8 errors = (u8)(status_err >> 24);
3944
3945	skb_checksum_none_assert(skb);
3946
3947	/* 82543 or newer only */
3948	if (unlikely(hw->mac_type < e1000_82543))
3949		return;
3950	/* Ignore Checksum bit is set */
3951	if (unlikely(status & E1000_RXD_STAT_IXSM))
3952		return;
3953	/* TCP/UDP checksum error bit is set */
3954	if (unlikely(errors & E1000_RXD_ERR_TCPE)) {
3955		/* let the stack verify checksum errors */
3956		adapter->hw_csum_err++;
3957		return;
3958	}
3959	/* TCP/UDP Checksum has not been calculated */
3960	if (!(status & E1000_RXD_STAT_TCPCS))
3961		return;
3962
3963	/* It must be a TCP or UDP packet with a valid checksum */
3964	if (likely(status & E1000_RXD_STAT_TCPCS)) {
3965		/* TCP checksum is good */
3966		skb->ip_summed = CHECKSUM_UNNECESSARY;
3967	}
3968	adapter->hw_csum_good++;
3969}
3970
3971/**
3972 * e1000_consume_page - helper function for jumbo Rx path
 
 
 
3973 **/
3974static void e1000_consume_page(struct e1000_rx_buffer *bi, struct sk_buff *skb,
3975			       u16 length)
3976{
3977	bi->rxbuf.page = NULL;
3978	skb->len += length;
3979	skb->data_len += length;
3980	skb->truesize += PAGE_SIZE;
3981}
3982
3983/**
3984 * e1000_receive_skb - helper function to handle rx indications
3985 * @adapter: board private structure
3986 * @status: descriptor status field as written by hardware
3987 * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
3988 * @skb: pointer to sk_buff to be indicated to stack
3989 */
3990static void e1000_receive_skb(struct e1000_adapter *adapter, u8 status,
3991			      __le16 vlan, struct sk_buff *skb)
3992{
3993	skb->protocol = eth_type_trans(skb, adapter->netdev);
3994
3995	if (status & E1000_RXD_STAT_VP) {
3996		u16 vid = le16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK;
3997
3998		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
3999	}
4000	napi_gro_receive(&adapter->napi, skb);
4001}
4002
4003/**
4004 * e1000_tbi_adjust_stats
4005 * @hw: Struct containing variables accessed by shared code
 
4006 * @frame_len: The length of the frame in question
4007 * @mac_addr: The Ethernet destination address of the frame in question
4008 *
4009 * Adjusts the statistic counters when a frame is accepted by TBI_ACCEPT
4010 */
4011static void e1000_tbi_adjust_stats(struct e1000_hw *hw,
4012				   struct e1000_hw_stats *stats,
4013				   u32 frame_len, const u8 *mac_addr)
4014{
4015	u64 carry_bit;
4016
4017	/* First adjust the frame length. */
4018	frame_len--;
4019	/* We need to adjust the statistics counters, since the hardware
4020	 * counters overcount this packet as a CRC error and undercount
4021	 * the packet as a good packet
4022	 */
4023	/* This packet should not be counted as a CRC error. */
4024	stats->crcerrs--;
4025	/* This packet does count as a Good Packet Received. */
4026	stats->gprc++;
4027
4028	/* Adjust the Good Octets received counters */
4029	carry_bit = 0x80000000 & stats->gorcl;
4030	stats->gorcl += frame_len;
4031	/* If the high bit of Gorcl (the low 32 bits of the Good Octets
4032	 * Received Count) was one before the addition,
4033	 * AND it is zero after, then we lost the carry out,
4034	 * need to add one to Gorch (Good Octets Received Count High).
4035	 * This could be simplified if all environments supported
4036	 * 64-bit integers.
4037	 */
4038	if (carry_bit && ((stats->gorcl & 0x80000000) == 0))
4039		stats->gorch++;
4040	/* Is this a broadcast or multicast?  Check broadcast first,
4041	 * since the test for a multicast frame will test positive on
4042	 * a broadcast frame.
4043	 */
4044	if (is_broadcast_ether_addr(mac_addr))
4045		stats->bprc++;
4046	else if (is_multicast_ether_addr(mac_addr))
4047		stats->mprc++;
4048
4049	if (frame_len == hw->max_frame_size) {
4050		/* In this case, the hardware has overcounted the number of
4051		 * oversize frames.
4052		 */
4053		if (stats->roc > 0)
4054			stats->roc--;
4055	}
4056
4057	/* Adjust the bin counters when the extra byte put the frame in the
4058	 * wrong bin. Remember that the frame_len was adjusted above.
4059	 */
4060	if (frame_len == 64) {
4061		stats->prc64++;
4062		stats->prc127--;
4063	} else if (frame_len == 127) {
4064		stats->prc127++;
4065		stats->prc255--;
4066	} else if (frame_len == 255) {
4067		stats->prc255++;
4068		stats->prc511--;
4069	} else if (frame_len == 511) {
4070		stats->prc511++;
4071		stats->prc1023--;
4072	} else if (frame_len == 1023) {
4073		stats->prc1023++;
4074		stats->prc1522--;
4075	} else if (frame_len == 1522) {
4076		stats->prc1522++;
4077	}
4078}
4079
4080static bool e1000_tbi_should_accept(struct e1000_adapter *adapter,
4081				    u8 status, u8 errors,
4082				    u32 length, const u8 *data)
4083{
4084	struct e1000_hw *hw = &adapter->hw;
4085	u8 last_byte = *(data + length - 1);
4086
4087	if (TBI_ACCEPT(hw, status, errors, length, last_byte)) {
4088		unsigned long irq_flags;
4089
4090		spin_lock_irqsave(&adapter->stats_lock, irq_flags);
4091		e1000_tbi_adjust_stats(hw, &adapter->stats, length, data);
4092		spin_unlock_irqrestore(&adapter->stats_lock, irq_flags);
4093
4094		return true;
4095	}
4096
4097	return false;
4098}
4099
4100static struct sk_buff *e1000_alloc_rx_skb(struct e1000_adapter *adapter,
4101					  unsigned int bufsz)
4102{
4103	struct sk_buff *skb = napi_alloc_skb(&adapter->napi, bufsz);
4104
4105	if (unlikely(!skb))
4106		adapter->alloc_rx_buff_failed++;
4107	return skb;
4108}
4109
4110/**
4111 * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
4112 * @adapter: board private structure
4113 * @rx_ring: ring to clean
4114 * @work_done: amount of napi work completed this call
4115 * @work_to_do: max amount of work allowed for this call to do
4116 *
4117 * the return value indicates whether actual cleaning was done, there
4118 * is no guarantee that everything was cleaned
4119 */
4120static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter,
4121				     struct e1000_rx_ring *rx_ring,
4122				     int *work_done, int work_to_do)
4123{
4124	struct net_device *netdev = adapter->netdev;
4125	struct pci_dev *pdev = adapter->pdev;
4126	struct e1000_rx_desc *rx_desc, *next_rxd;
4127	struct e1000_rx_buffer *buffer_info, *next_buffer;
4128	u32 length;
4129	unsigned int i;
4130	int cleaned_count = 0;
4131	bool cleaned = false;
4132	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
4133
4134	i = rx_ring->next_to_clean;
4135	rx_desc = E1000_RX_DESC(*rx_ring, i);
4136	buffer_info = &rx_ring->buffer_info[i];
4137
4138	while (rx_desc->status & E1000_RXD_STAT_DD) {
4139		struct sk_buff *skb;
4140		u8 status;
4141
4142		if (*work_done >= work_to_do)
4143			break;
4144		(*work_done)++;
4145		dma_rmb(); /* read descriptor and rx_buffer_info after status DD */
4146
4147		status = rx_desc->status;
4148
4149		if (++i == rx_ring->count)
4150			i = 0;
4151
4152		next_rxd = E1000_RX_DESC(*rx_ring, i);
4153		prefetch(next_rxd);
4154
4155		next_buffer = &rx_ring->buffer_info[i];
4156
4157		cleaned = true;
4158		cleaned_count++;
4159		dma_unmap_page(&pdev->dev, buffer_info->dma,
4160			       adapter->rx_buffer_len, DMA_FROM_DEVICE);
4161		buffer_info->dma = 0;
4162
4163		length = le16_to_cpu(rx_desc->length);
4164
4165		/* errors is only valid for DD + EOP descriptors */
4166		if (unlikely((status & E1000_RXD_STAT_EOP) &&
4167		    (rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK))) {
4168			u8 *mapped = page_address(buffer_info->rxbuf.page);
4169
4170			if (e1000_tbi_should_accept(adapter, status,
4171						    rx_desc->errors,
4172						    length, mapped)) {
4173				length--;
4174			} else if (netdev->features & NETIF_F_RXALL) {
4175				goto process_skb;
4176			} else {
4177				/* an error means any chain goes out the window
4178				 * too
4179				 */
4180				dev_kfree_skb(rx_ring->rx_skb_top);
4181				rx_ring->rx_skb_top = NULL;
4182				goto next_desc;
4183			}
4184		}
4185
4186#define rxtop rx_ring->rx_skb_top
4187process_skb:
4188		if (!(status & E1000_RXD_STAT_EOP)) {
4189			/* this descriptor is only the beginning (or middle) */
4190			if (!rxtop) {
4191				/* this is the beginning of a chain */
4192				rxtop = napi_get_frags(&adapter->napi);
4193				if (!rxtop)
4194					break;
4195
4196				skb_fill_page_desc(rxtop, 0,
4197						   buffer_info->rxbuf.page,
4198						   0, length);
4199			} else {
4200				/* this is the middle of a chain */
4201				skb_fill_page_desc(rxtop,
4202				    skb_shinfo(rxtop)->nr_frags,
4203				    buffer_info->rxbuf.page, 0, length);
4204			}
4205			e1000_consume_page(buffer_info, rxtop, length);
4206			goto next_desc;
4207		} else {
4208			if (rxtop) {
4209				/* end of the chain */
4210				skb_fill_page_desc(rxtop,
4211				    skb_shinfo(rxtop)->nr_frags,
4212				    buffer_info->rxbuf.page, 0, length);
4213				skb = rxtop;
4214				rxtop = NULL;
4215				e1000_consume_page(buffer_info, skb, length);
4216			} else {
4217				struct page *p;
4218				/* no chain, got EOP, this buf is the packet
4219				 * copybreak to save the put_page/alloc_page
4220				 */
4221				p = buffer_info->rxbuf.page;
4222				if (length <= copybreak) {
4223					u8 *vaddr;
4224
4225					if (likely(!(netdev->features & NETIF_F_RXFCS)))
4226						length -= 4;
4227					skb = e1000_alloc_rx_skb(adapter,
4228								 length);
4229					if (!skb)
4230						break;
4231
4232					vaddr = kmap_atomic(p);
4233					memcpy(skb_tail_pointer(skb), vaddr,
4234					       length);
4235					kunmap_atomic(vaddr);
4236					/* re-use the page, so don't erase
4237					 * buffer_info->rxbuf.page
4238					 */
4239					skb_put(skb, length);
4240					e1000_rx_checksum(adapter,
4241							  status | rx_desc->errors << 24,
4242							  le16_to_cpu(rx_desc->csum), skb);
4243
4244					total_rx_bytes += skb->len;
4245					total_rx_packets++;
4246
4247					e1000_receive_skb(adapter, status,
4248							  rx_desc->special, skb);
4249					goto next_desc;
4250				} else {
4251					skb = napi_get_frags(&adapter->napi);
4252					if (!skb) {
4253						adapter->alloc_rx_buff_failed++;
4254						break;
4255					}
4256					skb_fill_page_desc(skb, 0, p, 0,
4257							   length);
4258					e1000_consume_page(buffer_info, skb,
4259							   length);
4260				}
4261			}
4262		}
4263
4264		/* Receive Checksum Offload XXX recompute due to CRC strip? */
4265		e1000_rx_checksum(adapter,
4266				  (u32)(status) |
4267				  ((u32)(rx_desc->errors) << 24),
4268				  le16_to_cpu(rx_desc->csum), skb);
4269
4270		total_rx_bytes += (skb->len - 4); /* don't count FCS */
4271		if (likely(!(netdev->features & NETIF_F_RXFCS)))
4272			pskb_trim(skb, skb->len - 4);
4273		total_rx_packets++;
4274
4275		if (status & E1000_RXD_STAT_VP) {
4276			__le16 vlan = rx_desc->special;
4277			u16 vid = le16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK;
4278
4279			__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
4280		}
4281
4282		napi_gro_frags(&adapter->napi);
4283
4284next_desc:
4285		rx_desc->status = 0;
4286
4287		/* return some buffers to hardware, one at a time is too slow */
4288		if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
4289			adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4290			cleaned_count = 0;
4291		}
4292
4293		/* use prefetched values */
4294		rx_desc = next_rxd;
4295		buffer_info = next_buffer;
4296	}
4297	rx_ring->next_to_clean = i;
4298
4299	cleaned_count = E1000_DESC_UNUSED(rx_ring);
4300	if (cleaned_count)
4301		adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4302
4303	adapter->total_rx_packets += total_rx_packets;
4304	adapter->total_rx_bytes += total_rx_bytes;
4305	netdev->stats.rx_bytes += total_rx_bytes;
4306	netdev->stats.rx_packets += total_rx_packets;
4307	return cleaned;
4308}
4309
4310/* this should improve performance for small packets with large amounts
4311 * of reassembly being done in the stack
4312 */
4313static struct sk_buff *e1000_copybreak(struct e1000_adapter *adapter,
4314				       struct e1000_rx_buffer *buffer_info,
4315				       u32 length, const void *data)
4316{
4317	struct sk_buff *skb;
4318
4319	if (length > copybreak)
4320		return NULL;
4321
4322	skb = e1000_alloc_rx_skb(adapter, length);
4323	if (!skb)
4324		return NULL;
4325
4326	dma_sync_single_for_cpu(&adapter->pdev->dev, buffer_info->dma,
4327				length, DMA_FROM_DEVICE);
4328
4329	skb_put_data(skb, data, length);
4330
4331	return skb;
4332}
4333
4334/**
4335 * e1000_clean_rx_irq - Send received data up the network stack; legacy
4336 * @adapter: board private structure
4337 * @rx_ring: ring to clean
4338 * @work_done: amount of napi work completed this call
4339 * @work_to_do: max amount of work allowed for this call to do
4340 */
4341static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
4342			       struct e1000_rx_ring *rx_ring,
4343			       int *work_done, int work_to_do)
4344{
4345	struct net_device *netdev = adapter->netdev;
4346	struct pci_dev *pdev = adapter->pdev;
4347	struct e1000_rx_desc *rx_desc, *next_rxd;
4348	struct e1000_rx_buffer *buffer_info, *next_buffer;
4349	u32 length;
4350	unsigned int i;
4351	int cleaned_count = 0;
4352	bool cleaned = false;
4353	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
4354
4355	i = rx_ring->next_to_clean;
4356	rx_desc = E1000_RX_DESC(*rx_ring, i);
4357	buffer_info = &rx_ring->buffer_info[i];
4358
4359	while (rx_desc->status & E1000_RXD_STAT_DD) {
4360		struct sk_buff *skb;
4361		u8 *data;
4362		u8 status;
4363
4364		if (*work_done >= work_to_do)
4365			break;
4366		(*work_done)++;
4367		dma_rmb(); /* read descriptor and rx_buffer_info after status DD */
4368
4369		status = rx_desc->status;
4370		length = le16_to_cpu(rx_desc->length);
4371
4372		data = buffer_info->rxbuf.data;
4373		prefetch(data);
4374		skb = e1000_copybreak(adapter, buffer_info, length, data);
4375		if (!skb) {
4376			unsigned int frag_len = e1000_frag_len(adapter);
4377
4378			skb = build_skb(data - E1000_HEADROOM, frag_len);
4379			if (!skb) {
4380				adapter->alloc_rx_buff_failed++;
4381				break;
4382			}
4383
4384			skb_reserve(skb, E1000_HEADROOM);
4385			dma_unmap_single(&pdev->dev, buffer_info->dma,
4386					 adapter->rx_buffer_len,
4387					 DMA_FROM_DEVICE);
4388			buffer_info->dma = 0;
4389			buffer_info->rxbuf.data = NULL;
4390		}
4391
4392		if (++i == rx_ring->count)
4393			i = 0;
4394
4395		next_rxd = E1000_RX_DESC(*rx_ring, i);
4396		prefetch(next_rxd);
4397
4398		next_buffer = &rx_ring->buffer_info[i];
4399
4400		cleaned = true;
4401		cleaned_count++;
4402
4403		/* !EOP means multiple descriptors were used to store a single
4404		 * packet, if thats the case we need to toss it.  In fact, we
4405		 * to toss every packet with the EOP bit clear and the next
4406		 * frame that _does_ have the EOP bit set, as it is by
4407		 * definition only a frame fragment
4408		 */
4409		if (unlikely(!(status & E1000_RXD_STAT_EOP)))
4410			adapter->discarding = true;
4411
4412		if (adapter->discarding) {
4413			/* All receives must fit into a single buffer */
4414			netdev_dbg(netdev, "Receive packet consumed multiple buffers\n");
4415			dev_kfree_skb(skb);
4416			if (status & E1000_RXD_STAT_EOP)
4417				adapter->discarding = false;
4418			goto next_desc;
4419		}
4420
4421		if (unlikely(rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK)) {
4422			if (e1000_tbi_should_accept(adapter, status,
4423						    rx_desc->errors,
4424						    length, data)) {
4425				length--;
4426			} else if (netdev->features & NETIF_F_RXALL) {
4427				goto process_skb;
4428			} else {
4429				dev_kfree_skb(skb);
4430				goto next_desc;
4431			}
4432		}
4433
4434process_skb:
4435		total_rx_bytes += (length - 4); /* don't count FCS */
4436		total_rx_packets++;
4437
4438		if (likely(!(netdev->features & NETIF_F_RXFCS)))
4439			/* adjust length to remove Ethernet CRC, this must be
4440			 * done after the TBI_ACCEPT workaround above
4441			 */
4442			length -= 4;
4443
4444		if (buffer_info->rxbuf.data == NULL)
4445			skb_put(skb, length);
4446		else /* copybreak skb */
4447			skb_trim(skb, length);
4448
4449		/* Receive Checksum Offload */
4450		e1000_rx_checksum(adapter,
4451				  (u32)(status) |
4452				  ((u32)(rx_desc->errors) << 24),
4453				  le16_to_cpu(rx_desc->csum), skb);
4454
4455		e1000_receive_skb(adapter, status, rx_desc->special, skb);
4456
4457next_desc:
4458		rx_desc->status = 0;
4459
4460		/* return some buffers to hardware, one at a time is too slow */
4461		if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
4462			adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4463			cleaned_count = 0;
4464		}
4465
4466		/* use prefetched values */
4467		rx_desc = next_rxd;
4468		buffer_info = next_buffer;
4469	}
4470	rx_ring->next_to_clean = i;
4471
4472	cleaned_count = E1000_DESC_UNUSED(rx_ring);
4473	if (cleaned_count)
4474		adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4475
4476	adapter->total_rx_packets += total_rx_packets;
4477	adapter->total_rx_bytes += total_rx_bytes;
4478	netdev->stats.rx_bytes += total_rx_bytes;
4479	netdev->stats.rx_packets += total_rx_packets;
4480	return cleaned;
4481}
4482
4483/**
4484 * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
4485 * @adapter: address of board private structure
4486 * @rx_ring: pointer to receive ring structure
4487 * @cleaned_count: number of buffers to allocate this pass
4488 **/
4489static void
4490e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter,
4491			     struct e1000_rx_ring *rx_ring, int cleaned_count)
4492{
4493	struct pci_dev *pdev = adapter->pdev;
4494	struct e1000_rx_desc *rx_desc;
4495	struct e1000_rx_buffer *buffer_info;
4496	unsigned int i;
4497
4498	i = rx_ring->next_to_use;
4499	buffer_info = &rx_ring->buffer_info[i];
4500
4501	while (cleaned_count--) {
4502		/* allocate a new page if necessary */
4503		if (!buffer_info->rxbuf.page) {
4504			buffer_info->rxbuf.page = alloc_page(GFP_ATOMIC);
4505			if (unlikely(!buffer_info->rxbuf.page)) {
4506				adapter->alloc_rx_buff_failed++;
4507				break;
4508			}
4509		}
4510
4511		if (!buffer_info->dma) {
4512			buffer_info->dma = dma_map_page(&pdev->dev,
4513							buffer_info->rxbuf.page, 0,
4514							adapter->rx_buffer_len,
4515							DMA_FROM_DEVICE);
4516			if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
4517				put_page(buffer_info->rxbuf.page);
4518				buffer_info->rxbuf.page = NULL;
4519				buffer_info->dma = 0;
4520				adapter->alloc_rx_buff_failed++;
4521				break;
4522			}
4523		}
4524
4525		rx_desc = E1000_RX_DESC(*rx_ring, i);
4526		rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4527
4528		if (unlikely(++i == rx_ring->count))
4529			i = 0;
4530		buffer_info = &rx_ring->buffer_info[i];
4531	}
4532
4533	if (likely(rx_ring->next_to_use != i)) {
4534		rx_ring->next_to_use = i;
4535		if (unlikely(i-- == 0))
4536			i = (rx_ring->count - 1);
4537
4538		/* Force memory writes to complete before letting h/w
4539		 * know there are new descriptors to fetch.  (Only
4540		 * applicable for weak-ordered memory model archs,
4541		 * such as IA-64).
4542		 */
4543		dma_wmb();
4544		writel(i, adapter->hw.hw_addr + rx_ring->rdt);
4545	}
4546}
4547
4548/**
4549 * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
4550 * @adapter: address of board private structure
 
 
4551 **/
4552static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
4553				   struct e1000_rx_ring *rx_ring,
4554				   int cleaned_count)
4555{
4556	struct e1000_hw *hw = &adapter->hw;
4557	struct pci_dev *pdev = adapter->pdev;
4558	struct e1000_rx_desc *rx_desc;
4559	struct e1000_rx_buffer *buffer_info;
4560	unsigned int i;
4561	unsigned int bufsz = adapter->rx_buffer_len;
4562
4563	i = rx_ring->next_to_use;
4564	buffer_info = &rx_ring->buffer_info[i];
4565
4566	while (cleaned_count--) {
4567		void *data;
4568
4569		if (buffer_info->rxbuf.data)
4570			goto skip;
4571
4572		data = e1000_alloc_frag(adapter);
4573		if (!data) {
4574			/* Better luck next round */
4575			adapter->alloc_rx_buff_failed++;
4576			break;
4577		}
4578
4579		/* Fix for errata 23, can't cross 64kB boundary */
4580		if (!e1000_check_64k_bound(adapter, data, bufsz)) {
4581			void *olddata = data;
4582			e_err(rx_err, "skb align check failed: %u bytes at "
4583			      "%p\n", bufsz, data);
4584			/* Try again, without freeing the previous */
4585			data = e1000_alloc_frag(adapter);
4586			/* Failed allocation, critical failure */
4587			if (!data) {
4588				skb_free_frag(olddata);
4589				adapter->alloc_rx_buff_failed++;
4590				break;
4591			}
4592
4593			if (!e1000_check_64k_bound(adapter, data, bufsz)) {
4594				/* give up */
4595				skb_free_frag(data);
4596				skb_free_frag(olddata);
4597				adapter->alloc_rx_buff_failed++;
4598				break;
4599			}
4600
4601			/* Use new allocation */
4602			skb_free_frag(olddata);
4603		}
4604		buffer_info->dma = dma_map_single(&pdev->dev,
4605						  data,
4606						  adapter->rx_buffer_len,
4607						  DMA_FROM_DEVICE);
4608		if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
4609			skb_free_frag(data);
4610			buffer_info->dma = 0;
4611			adapter->alloc_rx_buff_failed++;
4612			break;
4613		}
4614
4615		/* XXX if it was allocated cleanly it will never map to a
4616		 * boundary crossing
4617		 */
4618
4619		/* Fix for errata 23, can't cross 64kB boundary */
4620		if (!e1000_check_64k_bound(adapter,
4621					(void *)(unsigned long)buffer_info->dma,
4622					adapter->rx_buffer_len)) {
4623			e_err(rx_err, "dma align check failed: %u bytes at "
4624			      "%p\n", adapter->rx_buffer_len,
4625			      (void *)(unsigned long)buffer_info->dma);
4626
4627			dma_unmap_single(&pdev->dev, buffer_info->dma,
4628					 adapter->rx_buffer_len,
4629					 DMA_FROM_DEVICE);
4630
4631			skb_free_frag(data);
4632			buffer_info->rxbuf.data = NULL;
4633			buffer_info->dma = 0;
4634
4635			adapter->alloc_rx_buff_failed++;
4636			break;
4637		}
4638		buffer_info->rxbuf.data = data;
4639 skip:
4640		rx_desc = E1000_RX_DESC(*rx_ring, i);
4641		rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4642
4643		if (unlikely(++i == rx_ring->count))
4644			i = 0;
4645		buffer_info = &rx_ring->buffer_info[i];
4646	}
4647
4648	if (likely(rx_ring->next_to_use != i)) {
4649		rx_ring->next_to_use = i;
4650		if (unlikely(i-- == 0))
4651			i = (rx_ring->count - 1);
4652
4653		/* Force memory writes to complete before letting h/w
4654		 * know there are new descriptors to fetch.  (Only
4655		 * applicable for weak-ordered memory model archs,
4656		 * such as IA-64).
4657		 */
4658		dma_wmb();
4659		writel(i, hw->hw_addr + rx_ring->rdt);
4660	}
4661}
4662
4663/**
4664 * e1000_smartspeed - Workaround for SmartSpeed on 82541 and 82547 controllers.
4665 * @adapter:
4666 **/
4667static void e1000_smartspeed(struct e1000_adapter *adapter)
4668{
4669	struct e1000_hw *hw = &adapter->hw;
4670	u16 phy_status;
4671	u16 phy_ctrl;
4672
4673	if ((hw->phy_type != e1000_phy_igp) || !hw->autoneg ||
4674	   !(hw->autoneg_advertised & ADVERTISE_1000_FULL))
4675		return;
4676
4677	if (adapter->smartspeed == 0) {
4678		/* If Master/Slave config fault is asserted twice,
4679		 * we assume back-to-back
4680		 */
4681		e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
4682		if (!(phy_status & SR_1000T_MS_CONFIG_FAULT))
4683			return;
4684		e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
4685		if (!(phy_status & SR_1000T_MS_CONFIG_FAULT))
4686			return;
4687		e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
4688		if (phy_ctrl & CR_1000T_MS_ENABLE) {
4689			phy_ctrl &= ~CR_1000T_MS_ENABLE;
4690			e1000_write_phy_reg(hw, PHY_1000T_CTRL,
4691					    phy_ctrl);
4692			adapter->smartspeed++;
4693			if (!e1000_phy_setup_autoneg(hw) &&
4694			   !e1000_read_phy_reg(hw, PHY_CTRL,
4695					       &phy_ctrl)) {
4696				phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4697					     MII_CR_RESTART_AUTO_NEG);
4698				e1000_write_phy_reg(hw, PHY_CTRL,
4699						    phy_ctrl);
4700			}
4701		}
4702		return;
4703	} else if (adapter->smartspeed == E1000_SMARTSPEED_DOWNSHIFT) {
4704		/* If still no link, perhaps using 2/3 pair cable */
4705		e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
4706		phy_ctrl |= CR_1000T_MS_ENABLE;
4707		e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_ctrl);
4708		if (!e1000_phy_setup_autoneg(hw) &&
4709		   !e1000_read_phy_reg(hw, PHY_CTRL, &phy_ctrl)) {
4710			phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4711				     MII_CR_RESTART_AUTO_NEG);
4712			e1000_write_phy_reg(hw, PHY_CTRL, phy_ctrl);
4713		}
4714	}
4715	/* Restart process after E1000_SMARTSPEED_MAX iterations */
4716	if (adapter->smartspeed++ == E1000_SMARTSPEED_MAX)
4717		adapter->smartspeed = 0;
4718}
4719
4720/**
4721 * e1000_ioctl -
4722 * @netdev:
4723 * @ifreq:
4724 * @cmd:
4725 **/
4726static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4727{
4728	switch (cmd) {
4729	case SIOCGMIIPHY:
4730	case SIOCGMIIREG:
4731	case SIOCSMIIREG:
4732		return e1000_mii_ioctl(netdev, ifr, cmd);
4733	default:
4734		return -EOPNOTSUPP;
4735	}
4736}
4737
4738/**
4739 * e1000_mii_ioctl -
4740 * @netdev:
4741 * @ifreq:
4742 * @cmd:
4743 **/
4744static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
4745			   int cmd)
4746{
4747	struct e1000_adapter *adapter = netdev_priv(netdev);
4748	struct e1000_hw *hw = &adapter->hw;
4749	struct mii_ioctl_data *data = if_mii(ifr);
4750	int retval;
4751	u16 mii_reg;
4752	unsigned long flags;
4753
4754	if (hw->media_type != e1000_media_type_copper)
4755		return -EOPNOTSUPP;
4756
4757	switch (cmd) {
4758	case SIOCGMIIPHY:
4759		data->phy_id = hw->phy_addr;
4760		break;
4761	case SIOCGMIIREG:
4762		spin_lock_irqsave(&adapter->stats_lock, flags);
4763		if (e1000_read_phy_reg(hw, data->reg_num & 0x1F,
4764				   &data->val_out)) {
4765			spin_unlock_irqrestore(&adapter->stats_lock, flags);
4766			return -EIO;
4767		}
4768		spin_unlock_irqrestore(&adapter->stats_lock, flags);
4769		break;
4770	case SIOCSMIIREG:
4771		if (data->reg_num & ~(0x1F))
4772			return -EFAULT;
4773		mii_reg = data->val_in;
4774		spin_lock_irqsave(&adapter->stats_lock, flags);
4775		if (e1000_write_phy_reg(hw, data->reg_num,
4776					mii_reg)) {
4777			spin_unlock_irqrestore(&adapter->stats_lock, flags);
4778			return -EIO;
4779		}
4780		spin_unlock_irqrestore(&adapter->stats_lock, flags);
4781		if (hw->media_type == e1000_media_type_copper) {
4782			switch (data->reg_num) {
4783			case PHY_CTRL:
4784				if (mii_reg & MII_CR_POWER_DOWN)
4785					break;
4786				if (mii_reg & MII_CR_AUTO_NEG_EN) {
4787					hw->autoneg = 1;
4788					hw->autoneg_advertised = 0x2F;
4789				} else {
4790					u32 speed;
4791					if (mii_reg & 0x40)
4792						speed = SPEED_1000;
4793					else if (mii_reg & 0x2000)
4794						speed = SPEED_100;
4795					else
4796						speed = SPEED_10;
4797					retval = e1000_set_spd_dplx(
4798						adapter, speed,
4799						((mii_reg & 0x100)
4800						 ? DUPLEX_FULL :
4801						 DUPLEX_HALF));
4802					if (retval)
4803						return retval;
4804				}
4805				if (netif_running(adapter->netdev))
4806					e1000_reinit_locked(adapter);
4807				else
4808					e1000_reset(adapter);
4809				break;
4810			case M88E1000_PHY_SPEC_CTRL:
4811			case M88E1000_EXT_PHY_SPEC_CTRL:
4812				if (e1000_phy_reset(hw))
4813					return -EIO;
4814				break;
4815			}
4816		} else {
4817			switch (data->reg_num) {
4818			case PHY_CTRL:
4819				if (mii_reg & MII_CR_POWER_DOWN)
4820					break;
4821				if (netif_running(adapter->netdev))
4822					e1000_reinit_locked(adapter);
4823				else
4824					e1000_reset(adapter);
4825				break;
4826			}
4827		}
4828		break;
4829	default:
4830		return -EOPNOTSUPP;
4831	}
4832	return E1000_SUCCESS;
4833}
4834
4835void e1000_pci_set_mwi(struct e1000_hw *hw)
4836{
4837	struct e1000_adapter *adapter = hw->back;
4838	int ret_val = pci_set_mwi(adapter->pdev);
4839
4840	if (ret_val)
4841		e_err(probe, "Error in setting MWI\n");
4842}
4843
4844void e1000_pci_clear_mwi(struct e1000_hw *hw)
4845{
4846	struct e1000_adapter *adapter = hw->back;
4847
4848	pci_clear_mwi(adapter->pdev);
4849}
4850
4851int e1000_pcix_get_mmrbc(struct e1000_hw *hw)
4852{
4853	struct e1000_adapter *adapter = hw->back;
4854	return pcix_get_mmrbc(adapter->pdev);
4855}
4856
4857void e1000_pcix_set_mmrbc(struct e1000_hw *hw, int mmrbc)
4858{
4859	struct e1000_adapter *adapter = hw->back;
4860	pcix_set_mmrbc(adapter->pdev, mmrbc);
4861}
4862
4863void e1000_io_write(struct e1000_hw *hw, unsigned long port, u32 value)
4864{
4865	outl(value, port);
4866}
4867
4868static bool e1000_vlan_used(struct e1000_adapter *adapter)
4869{
4870	u16 vid;
4871
4872	for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
4873		return true;
4874	return false;
4875}
4876
4877static void __e1000_vlan_mode(struct e1000_adapter *adapter,
4878			      netdev_features_t features)
4879{
4880	struct e1000_hw *hw = &adapter->hw;
4881	u32 ctrl;
4882
4883	ctrl = er32(CTRL);
4884	if (features & NETIF_F_HW_VLAN_CTAG_RX) {
4885		/* enable VLAN tag insert/strip */
4886		ctrl |= E1000_CTRL_VME;
4887	} else {
4888		/* disable VLAN tag insert/strip */
4889		ctrl &= ~E1000_CTRL_VME;
4890	}
4891	ew32(CTRL, ctrl);
4892}
4893static void e1000_vlan_filter_on_off(struct e1000_adapter *adapter,
4894				     bool filter_on)
4895{
4896	struct e1000_hw *hw = &adapter->hw;
4897	u32 rctl;
4898
4899	if (!test_bit(__E1000_DOWN, &adapter->flags))
4900		e1000_irq_disable(adapter);
4901
4902	__e1000_vlan_mode(adapter, adapter->netdev->features);
4903	if (filter_on) {
4904		/* enable VLAN receive filtering */
4905		rctl = er32(RCTL);
4906		rctl &= ~E1000_RCTL_CFIEN;
4907		if (!(adapter->netdev->flags & IFF_PROMISC))
4908			rctl |= E1000_RCTL_VFE;
4909		ew32(RCTL, rctl);
4910		e1000_update_mng_vlan(adapter);
4911	} else {
4912		/* disable VLAN receive filtering */
4913		rctl = er32(RCTL);
4914		rctl &= ~E1000_RCTL_VFE;
4915		ew32(RCTL, rctl);
4916	}
4917
4918	if (!test_bit(__E1000_DOWN, &adapter->flags))
4919		e1000_irq_enable(adapter);
4920}
4921
4922static void e1000_vlan_mode(struct net_device *netdev,
4923			    netdev_features_t features)
4924{
4925	struct e1000_adapter *adapter = netdev_priv(netdev);
4926
4927	if (!test_bit(__E1000_DOWN, &adapter->flags))
4928		e1000_irq_disable(adapter);
4929
4930	__e1000_vlan_mode(adapter, features);
4931
4932	if (!test_bit(__E1000_DOWN, &adapter->flags))
4933		e1000_irq_enable(adapter);
4934}
4935
4936static int e1000_vlan_rx_add_vid(struct net_device *netdev,
4937				 __be16 proto, u16 vid)
4938{
4939	struct e1000_adapter *adapter = netdev_priv(netdev);
4940	struct e1000_hw *hw = &adapter->hw;
4941	u32 vfta, index;
4942
4943	if ((hw->mng_cookie.status &
4944	     E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
4945	    (vid == adapter->mng_vlan_id))
4946		return 0;
4947
4948	if (!e1000_vlan_used(adapter))
4949		e1000_vlan_filter_on_off(adapter, true);
4950
4951	/* add VID to filter table */
4952	index = (vid >> 5) & 0x7F;
4953	vfta = E1000_READ_REG_ARRAY(hw, VFTA, index);
4954	vfta |= (1 << (vid & 0x1F));
4955	e1000_write_vfta(hw, index, vfta);
4956
4957	set_bit(vid, adapter->active_vlans);
4958
4959	return 0;
4960}
4961
4962static int e1000_vlan_rx_kill_vid(struct net_device *netdev,
4963				  __be16 proto, u16 vid)
4964{
4965	struct e1000_adapter *adapter = netdev_priv(netdev);
4966	struct e1000_hw *hw = &adapter->hw;
4967	u32 vfta, index;
4968
4969	if (!test_bit(__E1000_DOWN, &adapter->flags))
4970		e1000_irq_disable(adapter);
4971	if (!test_bit(__E1000_DOWN, &adapter->flags))
4972		e1000_irq_enable(adapter);
4973
4974	/* remove VID from filter table */
4975	index = (vid >> 5) & 0x7F;
4976	vfta = E1000_READ_REG_ARRAY(hw, VFTA, index);
4977	vfta &= ~(1 << (vid & 0x1F));
4978	e1000_write_vfta(hw, index, vfta);
4979
4980	clear_bit(vid, adapter->active_vlans);
4981
4982	if (!e1000_vlan_used(adapter))
4983		e1000_vlan_filter_on_off(adapter, false);
4984
4985	return 0;
4986}
4987
4988static void e1000_restore_vlan(struct e1000_adapter *adapter)
4989{
4990	u16 vid;
4991
4992	if (!e1000_vlan_used(adapter))
4993		return;
4994
4995	e1000_vlan_filter_on_off(adapter, true);
4996	for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
4997		e1000_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
4998}
4999
5000int e1000_set_spd_dplx(struct e1000_adapter *adapter, u32 spd, u8 dplx)
5001{
5002	struct e1000_hw *hw = &adapter->hw;
5003
5004	hw->autoneg = 0;
5005
5006	/* Make sure dplx is at most 1 bit and lsb of speed is not set
5007	 * for the switch() below to work
5008	 */
5009	if ((spd & 1) || (dplx & ~1))
5010		goto err_inval;
5011
5012	/* Fiber NICs only allow 1000 gbps Full duplex */
5013	if ((hw->media_type == e1000_media_type_fiber) &&
5014	    spd != SPEED_1000 &&
5015	    dplx != DUPLEX_FULL)
5016		goto err_inval;
5017
5018	switch (spd + dplx) {
5019	case SPEED_10 + DUPLEX_HALF:
5020		hw->forced_speed_duplex = e1000_10_half;
5021		break;
5022	case SPEED_10 + DUPLEX_FULL:
5023		hw->forced_speed_duplex = e1000_10_full;
5024		break;
5025	case SPEED_100 + DUPLEX_HALF:
5026		hw->forced_speed_duplex = e1000_100_half;
5027		break;
5028	case SPEED_100 + DUPLEX_FULL:
5029		hw->forced_speed_duplex = e1000_100_full;
5030		break;
5031	case SPEED_1000 + DUPLEX_FULL:
5032		hw->autoneg = 1;
5033		hw->autoneg_advertised = ADVERTISE_1000_FULL;
5034		break;
5035	case SPEED_1000 + DUPLEX_HALF: /* not supported */
5036	default:
5037		goto err_inval;
5038	}
5039
5040	/* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
5041	hw->mdix = AUTO_ALL_MODES;
5042
5043	return 0;
5044
5045err_inval:
5046	e_err(probe, "Unsupported Speed/Duplex configuration\n");
5047	return -EINVAL;
5048}
5049
5050static int __e1000_shutdown(struct pci_dev *pdev, bool *enable_wake)
5051{
5052	struct net_device *netdev = pci_get_drvdata(pdev);
5053	struct e1000_adapter *adapter = netdev_priv(netdev);
5054	struct e1000_hw *hw = &adapter->hw;
5055	u32 ctrl, ctrl_ext, rctl, status;
5056	u32 wufc = adapter->wol;
5057
5058	netif_device_detach(netdev);
5059
5060	if (netif_running(netdev)) {
5061		int count = E1000_CHECK_RESET_COUNT;
5062
5063		while (test_bit(__E1000_RESETTING, &adapter->flags) && count--)
5064			usleep_range(10000, 20000);
5065
5066		WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
 
5067		e1000_down(adapter);
 
5068	}
5069
5070	status = er32(STATUS);
5071	if (status & E1000_STATUS_LU)
5072		wufc &= ~E1000_WUFC_LNKC;
5073
5074	if (wufc) {
5075		e1000_setup_rctl(adapter);
5076		e1000_set_rx_mode(netdev);
5077
5078		rctl = er32(RCTL);
5079
5080		/* turn on all-multi mode if wake on multicast is enabled */
5081		if (wufc & E1000_WUFC_MC)
5082			rctl |= E1000_RCTL_MPE;
5083
5084		/* enable receives in the hardware */
5085		ew32(RCTL, rctl | E1000_RCTL_EN);
5086
5087		if (hw->mac_type >= e1000_82540) {
5088			ctrl = er32(CTRL);
5089			/* advertise wake from D3Cold */
5090			#define E1000_CTRL_ADVD3WUC 0x00100000
5091			/* phy power management enable */
5092			#define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
5093			ctrl |= E1000_CTRL_ADVD3WUC |
5094				E1000_CTRL_EN_PHY_PWR_MGMT;
5095			ew32(CTRL, ctrl);
5096		}
5097
5098		if (hw->media_type == e1000_media_type_fiber ||
5099		    hw->media_type == e1000_media_type_internal_serdes) {
5100			/* keep the laser running in D3 */
5101			ctrl_ext = er32(CTRL_EXT);
5102			ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA;
5103			ew32(CTRL_EXT, ctrl_ext);
5104		}
5105
5106		ew32(WUC, E1000_WUC_PME_EN);
5107		ew32(WUFC, wufc);
5108	} else {
5109		ew32(WUC, 0);
5110		ew32(WUFC, 0);
5111	}
5112
5113	e1000_release_manageability(adapter);
5114
5115	*enable_wake = !!wufc;
5116
5117	/* make sure adapter isn't asleep if manageability is enabled */
5118	if (adapter->en_mng_pt)
5119		*enable_wake = true;
5120
5121	if (netif_running(netdev))
5122		e1000_free_irq(adapter);
5123
5124	if (!test_and_set_bit(__E1000_DISABLED, &adapter->flags))
5125		pci_disable_device(pdev);
5126
5127	return 0;
5128}
5129
5130static int __maybe_unused e1000_suspend(struct device *dev)
5131{
5132	int retval;
5133	struct pci_dev *pdev = to_pci_dev(dev);
5134	bool wake;
5135
5136	retval = __e1000_shutdown(pdev, &wake);
5137	device_set_wakeup_enable(dev, wake);
5138
5139	return retval;
5140}
5141
5142static int __maybe_unused e1000_resume(struct device *dev)
5143{
5144	struct pci_dev *pdev = to_pci_dev(dev);
5145	struct net_device *netdev = pci_get_drvdata(pdev);
5146	struct e1000_adapter *adapter = netdev_priv(netdev);
5147	struct e1000_hw *hw = &adapter->hw;
5148	u32 err;
5149
5150	if (adapter->need_ioport)
5151		err = pci_enable_device(pdev);
5152	else
5153		err = pci_enable_device_mem(pdev);
5154	if (err) {
5155		pr_err("Cannot enable PCI device from suspend\n");
5156		return err;
5157	}
5158
5159	/* flush memory to make sure state is correct */
5160	smp_mb__before_atomic();
5161	clear_bit(__E1000_DISABLED, &adapter->flags);
5162	pci_set_master(pdev);
5163
5164	pci_enable_wake(pdev, PCI_D3hot, 0);
5165	pci_enable_wake(pdev, PCI_D3cold, 0);
5166
5167	if (netif_running(netdev)) {
5168		err = e1000_request_irq(adapter);
5169		if (err)
5170			return err;
5171	}
5172
5173	e1000_power_up_phy(adapter);
5174	e1000_reset(adapter);
5175	ew32(WUS, ~0);
5176
5177	e1000_init_manageability(adapter);
5178
5179	if (netif_running(netdev))
5180		e1000_up(adapter);
5181
5182	netif_device_attach(netdev);
5183
5184	return 0;
5185}
5186
5187static void e1000_shutdown(struct pci_dev *pdev)
5188{
5189	bool wake;
5190
5191	__e1000_shutdown(pdev, &wake);
5192
5193	if (system_state == SYSTEM_POWER_OFF) {
5194		pci_wake_from_d3(pdev, wake);
5195		pci_set_power_state(pdev, PCI_D3hot);
5196	}
5197}
5198
5199#ifdef CONFIG_NET_POLL_CONTROLLER
5200/* Polling 'interrupt' - used by things like netconsole to send skbs
5201 * without having to re-enable interrupts. It's not called while
5202 * the interrupt routine is executing.
5203 */
5204static void e1000_netpoll(struct net_device *netdev)
5205{
5206	struct e1000_adapter *adapter = netdev_priv(netdev);
5207
5208	if (disable_hardirq(adapter->pdev->irq))
5209		e1000_intr(adapter->pdev->irq, netdev);
5210	enable_irq(adapter->pdev->irq);
5211}
5212#endif
5213
5214/**
5215 * e1000_io_error_detected - called when PCI error is detected
5216 * @pdev: Pointer to PCI device
5217 * @state: The current pci connection state
5218 *
5219 * This function is called after a PCI bus error affecting
5220 * this device has been detected.
5221 */
5222static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
5223						pci_channel_state_t state)
5224{
5225	struct net_device *netdev = pci_get_drvdata(pdev);
5226	struct e1000_adapter *adapter = netdev_priv(netdev);
5227
 
5228	netif_device_detach(netdev);
5229
5230	if (state == pci_channel_io_perm_failure)
 
5231		return PCI_ERS_RESULT_DISCONNECT;
 
5232
5233	if (netif_running(netdev))
5234		e1000_down(adapter);
5235
5236	if (!test_and_set_bit(__E1000_DISABLED, &adapter->flags))
5237		pci_disable_device(pdev);
 
5238
5239	/* Request a slot slot reset. */
5240	return PCI_ERS_RESULT_NEED_RESET;
5241}
5242
5243/**
5244 * e1000_io_slot_reset - called after the pci bus has been reset.
5245 * @pdev: Pointer to PCI device
5246 *
5247 * Restart the card from scratch, as if from a cold-boot. Implementation
5248 * resembles the first-half of the e1000_resume routine.
5249 */
5250static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
5251{
5252	struct net_device *netdev = pci_get_drvdata(pdev);
5253	struct e1000_adapter *adapter = netdev_priv(netdev);
5254	struct e1000_hw *hw = &adapter->hw;
5255	int err;
5256
5257	if (adapter->need_ioport)
5258		err = pci_enable_device(pdev);
5259	else
5260		err = pci_enable_device_mem(pdev);
5261	if (err) {
5262		pr_err("Cannot re-enable PCI device after reset.\n");
5263		return PCI_ERS_RESULT_DISCONNECT;
5264	}
5265
5266	/* flush memory to make sure state is correct */
5267	smp_mb__before_atomic();
5268	clear_bit(__E1000_DISABLED, &adapter->flags);
5269	pci_set_master(pdev);
5270
5271	pci_enable_wake(pdev, PCI_D3hot, 0);
5272	pci_enable_wake(pdev, PCI_D3cold, 0);
5273
5274	e1000_reset(adapter);
5275	ew32(WUS, ~0);
5276
5277	return PCI_ERS_RESULT_RECOVERED;
5278}
5279
5280/**
5281 * e1000_io_resume - called when traffic can start flowing again.
5282 * @pdev: Pointer to PCI device
5283 *
5284 * This callback is called when the error recovery driver tells us that
5285 * its OK to resume normal operation. Implementation resembles the
5286 * second-half of the e1000_resume routine.
5287 */
5288static void e1000_io_resume(struct pci_dev *pdev)
5289{
5290	struct net_device *netdev = pci_get_drvdata(pdev);
5291	struct e1000_adapter *adapter = netdev_priv(netdev);
5292
5293	e1000_init_manageability(adapter);
5294
5295	if (netif_running(netdev)) {
5296		if (e1000_up(adapter)) {
5297			pr_info("can't bring device back up after reset\n");
5298			return;
5299		}
5300	}
5301
5302	netif_device_attach(netdev);
5303}
5304
5305/* e1000_main.c */