Linux Audio

Check our new training course

Linux debugging, profiling, tracing and performance analysis training

Apr 14-17, 2025
Register
Loading...
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0
   2/* Copyright(c) 1999 - 2006 Intel Corporation. */
   3
   4#include "e1000.h"
   5#include <net/ip6_checksum.h>
   6#include <linux/io.h>
   7#include <linux/prefetch.h>
   8#include <linux/bitops.h>
   9#include <linux/if_vlan.h>
  10
  11char e1000_driver_name[] = "e1000";
  12static char e1000_driver_string[] = "Intel(R) PRO/1000 Network Driver";
 
 
  13static const char e1000_copyright[] = "Copyright (c) 1999-2006 Intel Corporation.";
  14
  15/* e1000_pci_tbl - PCI Device ID Table
  16 *
  17 * Last entry must be all 0s
  18 *
  19 * Macro expands to...
  20 *   {PCI_DEVICE(PCI_VENDOR_ID_INTEL, device_id)}
  21 */
  22static const struct pci_device_id e1000_pci_tbl[] = {
  23	INTEL_E1000_ETHERNET_DEVICE(0x1000),
  24	INTEL_E1000_ETHERNET_DEVICE(0x1001),
  25	INTEL_E1000_ETHERNET_DEVICE(0x1004),
  26	INTEL_E1000_ETHERNET_DEVICE(0x1008),
  27	INTEL_E1000_ETHERNET_DEVICE(0x1009),
  28	INTEL_E1000_ETHERNET_DEVICE(0x100C),
  29	INTEL_E1000_ETHERNET_DEVICE(0x100D),
  30	INTEL_E1000_ETHERNET_DEVICE(0x100E),
  31	INTEL_E1000_ETHERNET_DEVICE(0x100F),
  32	INTEL_E1000_ETHERNET_DEVICE(0x1010),
  33	INTEL_E1000_ETHERNET_DEVICE(0x1011),
  34	INTEL_E1000_ETHERNET_DEVICE(0x1012),
  35	INTEL_E1000_ETHERNET_DEVICE(0x1013),
  36	INTEL_E1000_ETHERNET_DEVICE(0x1014),
  37	INTEL_E1000_ETHERNET_DEVICE(0x1015),
  38	INTEL_E1000_ETHERNET_DEVICE(0x1016),
  39	INTEL_E1000_ETHERNET_DEVICE(0x1017),
  40	INTEL_E1000_ETHERNET_DEVICE(0x1018),
  41	INTEL_E1000_ETHERNET_DEVICE(0x1019),
  42	INTEL_E1000_ETHERNET_DEVICE(0x101A),
  43	INTEL_E1000_ETHERNET_DEVICE(0x101D),
  44	INTEL_E1000_ETHERNET_DEVICE(0x101E),
  45	INTEL_E1000_ETHERNET_DEVICE(0x1026),
  46	INTEL_E1000_ETHERNET_DEVICE(0x1027),
  47	INTEL_E1000_ETHERNET_DEVICE(0x1028),
  48	INTEL_E1000_ETHERNET_DEVICE(0x1075),
  49	INTEL_E1000_ETHERNET_DEVICE(0x1076),
  50	INTEL_E1000_ETHERNET_DEVICE(0x1077),
  51	INTEL_E1000_ETHERNET_DEVICE(0x1078),
  52	INTEL_E1000_ETHERNET_DEVICE(0x1079),
  53	INTEL_E1000_ETHERNET_DEVICE(0x107A),
  54	INTEL_E1000_ETHERNET_DEVICE(0x107B),
  55	INTEL_E1000_ETHERNET_DEVICE(0x107C),
  56	INTEL_E1000_ETHERNET_DEVICE(0x108A),
  57	INTEL_E1000_ETHERNET_DEVICE(0x1099),
  58	INTEL_E1000_ETHERNET_DEVICE(0x10B5),
  59	INTEL_E1000_ETHERNET_DEVICE(0x2E6E),
  60	/* required last entry */
  61	{0,}
  62};
  63
  64MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
  65
  66int e1000_up(struct e1000_adapter *adapter);
  67void e1000_down(struct e1000_adapter *adapter);
  68void e1000_reinit_locked(struct e1000_adapter *adapter);
  69void e1000_reset(struct e1000_adapter *adapter);
  70int e1000_setup_all_tx_resources(struct e1000_adapter *adapter);
  71int e1000_setup_all_rx_resources(struct e1000_adapter *adapter);
  72void e1000_free_all_tx_resources(struct e1000_adapter *adapter);
  73void e1000_free_all_rx_resources(struct e1000_adapter *adapter);
  74static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
  75				    struct e1000_tx_ring *txdr);
  76static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
  77				    struct e1000_rx_ring *rxdr);
  78static void e1000_free_tx_resources(struct e1000_adapter *adapter,
  79				    struct e1000_tx_ring *tx_ring);
  80static void e1000_free_rx_resources(struct e1000_adapter *adapter,
  81				    struct e1000_rx_ring *rx_ring);
  82void e1000_update_stats(struct e1000_adapter *adapter);
  83
  84static int e1000_init_module(void);
  85static void e1000_exit_module(void);
  86static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent);
  87static void e1000_remove(struct pci_dev *pdev);
  88static int e1000_alloc_queues(struct e1000_adapter *adapter);
  89static int e1000_sw_init(struct e1000_adapter *adapter);
  90int e1000_open(struct net_device *netdev);
  91int e1000_close(struct net_device *netdev);
  92static void e1000_configure_tx(struct e1000_adapter *adapter);
  93static void e1000_configure_rx(struct e1000_adapter *adapter);
  94static void e1000_setup_rctl(struct e1000_adapter *adapter);
  95static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter);
  96static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter);
  97static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
  98				struct e1000_tx_ring *tx_ring);
  99static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
 100				struct e1000_rx_ring *rx_ring);
 101static void e1000_set_rx_mode(struct net_device *netdev);
 102static void e1000_update_phy_info_task(struct work_struct *work);
 103static void e1000_watchdog(struct work_struct *work);
 104static void e1000_82547_tx_fifo_stall_task(struct work_struct *work);
 105static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
 106				    struct net_device *netdev);
 107static int e1000_change_mtu(struct net_device *netdev, int new_mtu);
 108static int e1000_set_mac(struct net_device *netdev, void *p);
 109static irqreturn_t e1000_intr(int irq, void *data);
 110static bool e1000_clean_tx_irq(struct e1000_adapter *adapter,
 111			       struct e1000_tx_ring *tx_ring);
 112static int e1000_clean(struct napi_struct *napi, int budget);
 113static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
 114			       struct e1000_rx_ring *rx_ring,
 115			       int *work_done, int work_to_do);
 116static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter,
 117				     struct e1000_rx_ring *rx_ring,
 118				     int *work_done, int work_to_do);
 119static void e1000_alloc_dummy_rx_buffers(struct e1000_adapter *adapter,
 120					 struct e1000_rx_ring *rx_ring,
 121					 int cleaned_count)
 122{
 123}
 124static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
 125				   struct e1000_rx_ring *rx_ring,
 126				   int cleaned_count);
 127static void e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter,
 128					 struct e1000_rx_ring *rx_ring,
 129					 int cleaned_count);
 130static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd);
 131static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
 132			   int cmd);
 133static void e1000_enter_82542_rst(struct e1000_adapter *adapter);
 134static void e1000_leave_82542_rst(struct e1000_adapter *adapter);
 135static void e1000_tx_timeout(struct net_device *dev, unsigned int txqueue);
 136static void e1000_reset_task(struct work_struct *work);
 137static void e1000_smartspeed(struct e1000_adapter *adapter);
 138static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
 139				       struct sk_buff *skb);
 140
 141static bool e1000_vlan_used(struct e1000_adapter *adapter);
 142static void e1000_vlan_mode(struct net_device *netdev,
 143			    netdev_features_t features);
 144static void e1000_vlan_filter_on_off(struct e1000_adapter *adapter,
 145				     bool filter_on);
 146static int e1000_vlan_rx_add_vid(struct net_device *netdev,
 147				 __be16 proto, u16 vid);
 148static int e1000_vlan_rx_kill_vid(struct net_device *netdev,
 149				  __be16 proto, u16 vid);
 150static void e1000_restore_vlan(struct e1000_adapter *adapter);
 151
 152static int e1000_suspend(struct device *dev);
 153static int e1000_resume(struct device *dev);
 
 
 154static void e1000_shutdown(struct pci_dev *pdev);
 155
 156#ifdef CONFIG_NET_POLL_CONTROLLER
 157/* for netdump / net console */
 158static void e1000_netpoll (struct net_device *netdev);
 159#endif
 160
 161#define COPYBREAK_DEFAULT 256
 162static unsigned int copybreak __read_mostly = COPYBREAK_DEFAULT;
 163module_param(copybreak, uint, 0644);
 164MODULE_PARM_DESC(copybreak,
 165	"Maximum size of packet that is copied to a new buffer on receive");
 166
 167static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
 168						pci_channel_state_t state);
 169static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev);
 170static void e1000_io_resume(struct pci_dev *pdev);
 171
 172static const struct pci_error_handlers e1000_err_handler = {
 173	.error_detected = e1000_io_error_detected,
 174	.slot_reset = e1000_io_slot_reset,
 175	.resume = e1000_io_resume,
 176};
 177
 178static DEFINE_SIMPLE_DEV_PM_OPS(e1000_pm_ops, e1000_suspend, e1000_resume);
 179
 180static struct pci_driver e1000_driver = {
 181	.name     = e1000_driver_name,
 182	.id_table = e1000_pci_tbl,
 183	.probe    = e1000_probe,
 184	.remove   = e1000_remove,
 185	.driver.pm = pm_sleep_ptr(&e1000_pm_ops),
 
 
 
 
 186	.shutdown = e1000_shutdown,
 187	.err_handler = &e1000_err_handler
 188};
 189
 
 190MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
 191MODULE_LICENSE("GPL v2");
 
 192
 193#define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
 194static int debug = -1;
 195module_param(debug, int, 0);
 196MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
 197
 198/**
 199 * e1000_get_hw_dev - helper function for getting netdev
 200 * @hw: pointer to HW struct
 201 *
 202 * return device used by hardware layer to print debugging information
 203 *
 204 **/
 205struct net_device *e1000_get_hw_dev(struct e1000_hw *hw)
 206{
 207	struct e1000_adapter *adapter = hw->back;
 208	return adapter->netdev;
 209}
 210
 211/**
 212 * e1000_init_module - Driver Registration Routine
 213 *
 214 * e1000_init_module is the first routine called when the driver is
 215 * loaded. All it does is register with the PCI subsystem.
 216 **/
 217static int __init e1000_init_module(void)
 218{
 219	int ret;
 220	pr_info("%s\n", e1000_driver_string);
 221
 222	pr_info("%s\n", e1000_copyright);
 223
 224	ret = pci_register_driver(&e1000_driver);
 225	if (copybreak != COPYBREAK_DEFAULT) {
 226		if (copybreak == 0)
 227			pr_info("copybreak disabled\n");
 228		else
 229			pr_info("copybreak enabled for "
 230				   "packets <= %u bytes\n", copybreak);
 231	}
 232	return ret;
 233}
 234
 235module_init(e1000_init_module);
 236
 237/**
 238 * e1000_exit_module - Driver Exit Cleanup Routine
 239 *
 240 * e1000_exit_module is called just before the driver is removed
 241 * from memory.
 242 **/
 243static void __exit e1000_exit_module(void)
 244{
 245	pci_unregister_driver(&e1000_driver);
 246}
 247
 248module_exit(e1000_exit_module);
 249
 250static int e1000_request_irq(struct e1000_adapter *adapter)
 251{
 252	struct net_device *netdev = adapter->netdev;
 253	irq_handler_t handler = e1000_intr;
 254	int irq_flags = IRQF_SHARED;
 255	int err;
 256
 257	err = request_irq(adapter->pdev->irq, handler, irq_flags, netdev->name,
 258			  netdev);
 259	if (err) {
 260		e_err(probe, "Unable to allocate interrupt Error: %d\n", err);
 261	}
 262
 263	return err;
 264}
 265
 266static void e1000_free_irq(struct e1000_adapter *adapter)
 267{
 268	struct net_device *netdev = adapter->netdev;
 269
 270	free_irq(adapter->pdev->irq, netdev);
 271}
 272
 273/**
 274 * e1000_irq_disable - Mask off interrupt generation on the NIC
 275 * @adapter: board private structure
 276 **/
 277static void e1000_irq_disable(struct e1000_adapter *adapter)
 278{
 279	struct e1000_hw *hw = &adapter->hw;
 280
 281	ew32(IMC, ~0);
 282	E1000_WRITE_FLUSH();
 283	synchronize_irq(adapter->pdev->irq);
 284}
 285
 286/**
 287 * e1000_irq_enable - Enable default interrupt generation settings
 288 * @adapter: board private structure
 289 **/
 290static void e1000_irq_enable(struct e1000_adapter *adapter)
 291{
 292	struct e1000_hw *hw = &adapter->hw;
 293
 294	ew32(IMS, IMS_ENABLE_MASK);
 295	E1000_WRITE_FLUSH();
 296}
 297
 298static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
 299{
 300	struct e1000_hw *hw = &adapter->hw;
 301	struct net_device *netdev = adapter->netdev;
 302	u16 vid = hw->mng_cookie.vlan_id;
 303	u16 old_vid = adapter->mng_vlan_id;
 304
 305	if (!e1000_vlan_used(adapter))
 306		return;
 307
 308	if (!test_bit(vid, adapter->active_vlans)) {
 309		if (hw->mng_cookie.status &
 310		    E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) {
 311			e1000_vlan_rx_add_vid(netdev, htons(ETH_P_8021Q), vid);
 312			adapter->mng_vlan_id = vid;
 313		} else {
 314			adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
 315		}
 316		if ((old_vid != (u16)E1000_MNG_VLAN_NONE) &&
 317		    (vid != old_vid) &&
 318		    !test_bit(old_vid, adapter->active_vlans))
 319			e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q),
 320					       old_vid);
 321	} else {
 322		adapter->mng_vlan_id = vid;
 323	}
 324}
 325
 326static void e1000_init_manageability(struct e1000_adapter *adapter)
 327{
 328	struct e1000_hw *hw = &adapter->hw;
 329
 330	if (adapter->en_mng_pt) {
 331		u32 manc = er32(MANC);
 332
 333		/* disable hardware interception of ARP */
 334		manc &= ~(E1000_MANC_ARP_EN);
 335
 336		ew32(MANC, manc);
 337	}
 338}
 339
 340static void e1000_release_manageability(struct e1000_adapter *adapter)
 341{
 342	struct e1000_hw *hw = &adapter->hw;
 343
 344	if (adapter->en_mng_pt) {
 345		u32 manc = er32(MANC);
 346
 347		/* re-enable hardware interception of ARP */
 348		manc |= E1000_MANC_ARP_EN;
 349
 350		ew32(MANC, manc);
 351	}
 352}
 353
 354/**
 355 * e1000_configure - configure the hardware for RX and TX
 356 * @adapter: private board structure
 357 **/
 358static void e1000_configure(struct e1000_adapter *adapter)
 359{
 360	struct net_device *netdev = adapter->netdev;
 361	int i;
 362
 363	e1000_set_rx_mode(netdev);
 364
 365	e1000_restore_vlan(adapter);
 366	e1000_init_manageability(adapter);
 367
 368	e1000_configure_tx(adapter);
 369	e1000_setup_rctl(adapter);
 370	e1000_configure_rx(adapter);
 371	/* call E1000_DESC_UNUSED which always leaves
 372	 * at least 1 descriptor unused to make sure
 373	 * next_to_use != next_to_clean
 374	 */
 375	for (i = 0; i < adapter->num_rx_queues; i++) {
 376		struct e1000_rx_ring *ring = &adapter->rx_ring[i];
 377		adapter->alloc_rx_buf(adapter, ring,
 378				      E1000_DESC_UNUSED(ring));
 379	}
 380}
 381
 382int e1000_up(struct e1000_adapter *adapter)
 383{
 384	struct e1000_hw *hw = &adapter->hw;
 385
 386	/* hardware has been reset, we need to reload some things */
 387	e1000_configure(adapter);
 388
 389	clear_bit(__E1000_DOWN, &adapter->flags);
 390
 391	napi_enable(&adapter->napi);
 392
 393	e1000_irq_enable(adapter);
 394
 395	netif_wake_queue(adapter->netdev);
 396
 397	/* fire a link change interrupt to start the watchdog */
 398	ew32(ICS, E1000_ICS_LSC);
 399	return 0;
 400}
 401
 402/**
 403 * e1000_power_up_phy - restore link in case the phy was powered down
 404 * @adapter: address of board private structure
 405 *
 406 * The phy may be powered down to save power and turn off link when the
 407 * driver is unloaded and wake on lan is not enabled (among others)
 408 * *** this routine MUST be followed by a call to e1000_reset ***
 409 **/
 410void e1000_power_up_phy(struct e1000_adapter *adapter)
 411{
 412	struct e1000_hw *hw = &adapter->hw;
 413	u16 mii_reg = 0;
 414
 415	/* Just clear the power down bit to wake the phy back up */
 416	if (hw->media_type == e1000_media_type_copper) {
 417		/* according to the manual, the phy will retain its
 418		 * settings across a power-down/up cycle
 419		 */
 420		e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg);
 421		mii_reg &= ~MII_CR_POWER_DOWN;
 422		e1000_write_phy_reg(hw, PHY_CTRL, mii_reg);
 423	}
 424}
 425
 426static void e1000_power_down_phy(struct e1000_adapter *adapter)
 427{
 428	struct e1000_hw *hw = &adapter->hw;
 429
 430	/* Power down the PHY so no link is implied when interface is down *
 431	 * The PHY cannot be powered down if any of the following is true *
 432	 * (a) WoL is enabled
 433	 * (b) AMT is active
 434	 * (c) SoL/IDER session is active
 435	 */
 436	if (!adapter->wol && hw->mac_type >= e1000_82540 &&
 437	   hw->media_type == e1000_media_type_copper) {
 438		u16 mii_reg = 0;
 439
 440		switch (hw->mac_type) {
 441		case e1000_82540:
 442		case e1000_82545:
 443		case e1000_82545_rev_3:
 444		case e1000_82546:
 445		case e1000_ce4100:
 446		case e1000_82546_rev_3:
 447		case e1000_82541:
 448		case e1000_82541_rev_2:
 449		case e1000_82547:
 450		case e1000_82547_rev_2:
 451			if (er32(MANC) & E1000_MANC_SMBUS_EN)
 452				goto out;
 453			break;
 454		default:
 455			goto out;
 456		}
 457		e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg);
 458		mii_reg |= MII_CR_POWER_DOWN;
 459		e1000_write_phy_reg(hw, PHY_CTRL, mii_reg);
 460		msleep(1);
 461	}
 462out:
 463	return;
 464}
 465
 466static void e1000_down_and_stop(struct e1000_adapter *adapter)
 467{
 468	set_bit(__E1000_DOWN, &adapter->flags);
 469
 470	cancel_delayed_work_sync(&adapter->watchdog_task);
 471
 472	/*
 473	 * Since the watchdog task can reschedule other tasks, we should cancel
 474	 * it first, otherwise we can run into the situation when a work is
 475	 * still running after the adapter has been turned down.
 476	 */
 477
 478	cancel_delayed_work_sync(&adapter->phy_info_task);
 479	cancel_delayed_work_sync(&adapter->fifo_stall_task);
 480
 481	/* Only kill reset task if adapter is not resetting */
 482	if (!test_bit(__E1000_RESETTING, &adapter->flags))
 483		cancel_work_sync(&adapter->reset_task);
 484}
 485
 486void e1000_down(struct e1000_adapter *adapter)
 487{
 488	struct e1000_hw *hw = &adapter->hw;
 489	struct net_device *netdev = adapter->netdev;
 490	u32 rctl, tctl;
 491
 492	/* disable receives in the hardware */
 493	rctl = er32(RCTL);
 494	ew32(RCTL, rctl & ~E1000_RCTL_EN);
 495	/* flush and sleep below */
 496
 497	netif_tx_disable(netdev);
 498
 499	/* disable transmits in the hardware */
 500	tctl = er32(TCTL);
 501	tctl &= ~E1000_TCTL_EN;
 502	ew32(TCTL, tctl);
 503	/* flush both disables and wait for them to finish */
 504	E1000_WRITE_FLUSH();
 505	msleep(10);
 506
 507	/* Set the carrier off after transmits have been disabled in the
 508	 * hardware, to avoid race conditions with e1000_watchdog() (which
 509	 * may be running concurrently to us, checking for the carrier
 510	 * bit to decide whether it should enable transmits again). Such
 511	 * a race condition would result into transmission being disabled
 512	 * in the hardware until the next IFF_DOWN+IFF_UP cycle.
 513	 */
 514	netif_carrier_off(netdev);
 515
 516	netif_queue_set_napi(netdev, 0, NETDEV_QUEUE_TYPE_RX, NULL);
 517	netif_queue_set_napi(netdev, 0, NETDEV_QUEUE_TYPE_TX, NULL);
 518	napi_disable(&adapter->napi);
 519
 520	e1000_irq_disable(adapter);
 521
 522	/* Setting DOWN must be after irq_disable to prevent
 523	 * a screaming interrupt.  Setting DOWN also prevents
 524	 * tasks from rescheduling.
 525	 */
 526	e1000_down_and_stop(adapter);
 527
 528	adapter->link_speed = 0;
 529	adapter->link_duplex = 0;
 530
 531	e1000_reset(adapter);
 532	e1000_clean_all_tx_rings(adapter);
 533	e1000_clean_all_rx_rings(adapter);
 534}
 535
 536void e1000_reinit_locked(struct e1000_adapter *adapter)
 537{
 
 538	while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
 539		msleep(1);
 540
 541	/* only run the task if not already down */
 542	if (!test_bit(__E1000_DOWN, &adapter->flags)) {
 543		e1000_down(adapter);
 544		e1000_up(adapter);
 545	}
 546
 547	clear_bit(__E1000_RESETTING, &adapter->flags);
 548}
 549
 550void e1000_reset(struct e1000_adapter *adapter)
 551{
 552	struct e1000_hw *hw = &adapter->hw;
 553	u32 pba = 0, tx_space, min_tx_space, min_rx_space;
 554	bool legacy_pba_adjust = false;
 555	u16 hwm;
 556
 557	/* Repartition Pba for greater than 9k mtu
 558	 * To take effect CTRL.RST is required.
 559	 */
 560
 561	switch (hw->mac_type) {
 562	case e1000_82542_rev2_0:
 563	case e1000_82542_rev2_1:
 564	case e1000_82543:
 565	case e1000_82544:
 566	case e1000_82540:
 567	case e1000_82541:
 568	case e1000_82541_rev_2:
 569		legacy_pba_adjust = true;
 570		pba = E1000_PBA_48K;
 571		break;
 572	case e1000_82545:
 573	case e1000_82545_rev_3:
 574	case e1000_82546:
 575	case e1000_ce4100:
 576	case e1000_82546_rev_3:
 577		pba = E1000_PBA_48K;
 578		break;
 579	case e1000_82547:
 580	case e1000_82547_rev_2:
 581		legacy_pba_adjust = true;
 582		pba = E1000_PBA_30K;
 583		break;
 584	case e1000_undefined:
 585	case e1000_num_macs:
 586		break;
 587	}
 588
 589	if (legacy_pba_adjust) {
 590		if (hw->max_frame_size > E1000_RXBUFFER_8192)
 591			pba -= 8; /* allocate more FIFO for Tx */
 592
 593		if (hw->mac_type == e1000_82547) {
 594			adapter->tx_fifo_head = 0;
 595			adapter->tx_head_addr = pba << E1000_TX_HEAD_ADDR_SHIFT;
 596			adapter->tx_fifo_size =
 597				(E1000_PBA_40K - pba) << E1000_PBA_BYTES_SHIFT;
 598			atomic_set(&adapter->tx_fifo_stall, 0);
 599		}
 600	} else if (hw->max_frame_size >  ETH_FRAME_LEN + ETH_FCS_LEN) {
 601		/* adjust PBA for jumbo frames */
 602		ew32(PBA, pba);
 603
 604		/* To maintain wire speed transmits, the Tx FIFO should be
 605		 * large enough to accommodate two full transmit packets,
 606		 * rounded up to the next 1KB and expressed in KB.  Likewise,
 607		 * the Rx FIFO should be large enough to accommodate at least
 608		 * one full receive packet and is similarly rounded up and
 609		 * expressed in KB.
 610		 */
 611		pba = er32(PBA);
 612		/* upper 16 bits has Tx packet buffer allocation size in KB */
 613		tx_space = pba >> 16;
 614		/* lower 16 bits has Rx packet buffer allocation size in KB */
 615		pba &= 0xffff;
 616		/* the Tx fifo also stores 16 bytes of information about the Tx
 617		 * but don't include ethernet FCS because hardware appends it
 618		 */
 619		min_tx_space = (hw->max_frame_size +
 620				sizeof(struct e1000_tx_desc) -
 621				ETH_FCS_LEN) * 2;
 622		min_tx_space = ALIGN(min_tx_space, 1024);
 623		min_tx_space >>= 10;
 624		/* software strips receive CRC, so leave room for it */
 625		min_rx_space = hw->max_frame_size;
 626		min_rx_space = ALIGN(min_rx_space, 1024);
 627		min_rx_space >>= 10;
 628
 629		/* If current Tx allocation is less than the min Tx FIFO size,
 630		 * and the min Tx FIFO size is less than the current Rx FIFO
 631		 * allocation, take space away from current Rx allocation
 632		 */
 633		if (tx_space < min_tx_space &&
 634		    ((min_tx_space - tx_space) < pba)) {
 635			pba = pba - (min_tx_space - tx_space);
 636
 637			/* PCI/PCIx hardware has PBA alignment constraints */
 638			switch (hw->mac_type) {
 639			case e1000_82545 ... e1000_82546_rev_3:
 640				pba &= ~(E1000_PBA_8K - 1);
 641				break;
 642			default:
 643				break;
 644			}
 645
 646			/* if short on Rx space, Rx wins and must trump Tx
 647			 * adjustment or use Early Receive if available
 648			 */
 649			if (pba < min_rx_space)
 650				pba = min_rx_space;
 651		}
 652	}
 653
 654	ew32(PBA, pba);
 655
 656	/* flow control settings:
 657	 * The high water mark must be low enough to fit one full frame
 658	 * (or the size used for early receive) above it in the Rx FIFO.
 659	 * Set it to the lower of:
 660	 * - 90% of the Rx FIFO size, and
 661	 * - the full Rx FIFO size minus the early receive size (for parts
 662	 *   with ERT support assuming ERT set to E1000_ERT_2048), or
 663	 * - the full Rx FIFO size minus one full frame
 664	 */
 665	hwm = min(((pba << 10) * 9 / 10),
 666		  ((pba << 10) - hw->max_frame_size));
 667
 668	hw->fc_high_water = hwm & 0xFFF8;	/* 8-byte granularity */
 669	hw->fc_low_water = hw->fc_high_water - 8;
 670	hw->fc_pause_time = E1000_FC_PAUSE_TIME;
 671	hw->fc_send_xon = 1;
 672	hw->fc = hw->original_fc;
 673
 674	/* Allow time for pending master requests to run */
 675	e1000_reset_hw(hw);
 676	if (hw->mac_type >= e1000_82544)
 677		ew32(WUC, 0);
 678
 679	if (e1000_init_hw(hw))
 680		e_dev_err("Hardware Error\n");
 681	e1000_update_mng_vlan(adapter);
 682
 683	/* if (adapter->hwflags & HWFLAGS_PHY_PWR_BIT) { */
 684	if (hw->mac_type >= e1000_82544 &&
 685	    hw->autoneg == 1 &&
 686	    hw->autoneg_advertised == ADVERTISE_1000_FULL) {
 687		u32 ctrl = er32(CTRL);
 688		/* clear phy power management bit if we are in gig only mode,
 689		 * which if enabled will attempt negotiation to 100Mb, which
 690		 * can cause a loss of link at power off or driver unload
 691		 */
 692		ctrl &= ~E1000_CTRL_SWDPIN3;
 693		ew32(CTRL, ctrl);
 694	}
 695
 696	/* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
 697	ew32(VET, ETHERNET_IEEE_VLAN_TYPE);
 698
 699	e1000_reset_adaptive(hw);
 700	e1000_phy_get_info(hw, &adapter->phy_info);
 701
 702	e1000_release_manageability(adapter);
 703}
 704
 705/* Dump the eeprom for users having checksum issues */
 706static void e1000_dump_eeprom(struct e1000_adapter *adapter)
 707{
 708	struct net_device *netdev = adapter->netdev;
 709	struct ethtool_eeprom eeprom;
 710	const struct ethtool_ops *ops = netdev->ethtool_ops;
 711	u8 *data;
 712	int i;
 713	u16 csum_old, csum_new = 0;
 714
 715	eeprom.len = ops->get_eeprom_len(netdev);
 716	eeprom.offset = 0;
 717
 718	data = kmalloc(eeprom.len, GFP_KERNEL);
 719	if (!data)
 720		return;
 721
 722	ops->get_eeprom(netdev, &eeprom, data);
 723
 724	csum_old = (data[EEPROM_CHECKSUM_REG * 2]) +
 725		   (data[EEPROM_CHECKSUM_REG * 2 + 1] << 8);
 726	for (i = 0; i < EEPROM_CHECKSUM_REG * 2; i += 2)
 727		csum_new += data[i] + (data[i + 1] << 8);
 728	csum_new = EEPROM_SUM - csum_new;
 729
 730	pr_err("/*********************/\n");
 731	pr_err("Current EEPROM Checksum : 0x%04x\n", csum_old);
 732	pr_err("Calculated              : 0x%04x\n", csum_new);
 733
 734	pr_err("Offset    Values\n");
 735	pr_err("========  ======\n");
 736	print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 16, 1, data, 128, 0);
 737
 738	pr_err("Include this output when contacting your support provider.\n");
 739	pr_err("This is not a software error! Something bad happened to\n");
 740	pr_err("your hardware or EEPROM image. Ignoring this problem could\n");
 741	pr_err("result in further problems, possibly loss of data,\n");
 742	pr_err("corruption or system hangs!\n");
 743	pr_err("The MAC Address will be reset to 00:00:00:00:00:00,\n");
 744	pr_err("which is invalid and requires you to set the proper MAC\n");
 745	pr_err("address manually before continuing to enable this network\n");
 746	pr_err("device. Please inspect the EEPROM dump and report the\n");
 747	pr_err("issue to your hardware vendor or Intel Customer Support.\n");
 748	pr_err("/*********************/\n");
 749
 750	kfree(data);
 751}
 752
 753/**
 754 * e1000_is_need_ioport - determine if an adapter needs ioport resources or not
 755 * @pdev: PCI device information struct
 756 *
 757 * Return true if an adapter needs ioport resources
 758 **/
 759static int e1000_is_need_ioport(struct pci_dev *pdev)
 760{
 761	switch (pdev->device) {
 762	case E1000_DEV_ID_82540EM:
 763	case E1000_DEV_ID_82540EM_LOM:
 764	case E1000_DEV_ID_82540EP:
 765	case E1000_DEV_ID_82540EP_LOM:
 766	case E1000_DEV_ID_82540EP_LP:
 767	case E1000_DEV_ID_82541EI:
 768	case E1000_DEV_ID_82541EI_MOBILE:
 769	case E1000_DEV_ID_82541ER:
 770	case E1000_DEV_ID_82541ER_LOM:
 771	case E1000_DEV_ID_82541GI:
 772	case E1000_DEV_ID_82541GI_LF:
 773	case E1000_DEV_ID_82541GI_MOBILE:
 774	case E1000_DEV_ID_82544EI_COPPER:
 775	case E1000_DEV_ID_82544EI_FIBER:
 776	case E1000_DEV_ID_82544GC_COPPER:
 777	case E1000_DEV_ID_82544GC_LOM:
 778	case E1000_DEV_ID_82545EM_COPPER:
 779	case E1000_DEV_ID_82545EM_FIBER:
 780	case E1000_DEV_ID_82546EB_COPPER:
 781	case E1000_DEV_ID_82546EB_FIBER:
 782	case E1000_DEV_ID_82546EB_QUAD_COPPER:
 783		return true;
 784	default:
 785		return false;
 786	}
 787}
 788
 789static netdev_features_t e1000_fix_features(struct net_device *netdev,
 790	netdev_features_t features)
 791{
 792	/* Since there is no support for separate Rx/Tx vlan accel
 793	 * enable/disable make sure Tx flag is always in same state as Rx.
 794	 */
 795	if (features & NETIF_F_HW_VLAN_CTAG_RX)
 796		features |= NETIF_F_HW_VLAN_CTAG_TX;
 797	else
 798		features &= ~NETIF_F_HW_VLAN_CTAG_TX;
 799
 800	return features;
 801}
 802
 803static int e1000_set_features(struct net_device *netdev,
 804	netdev_features_t features)
 805{
 806	struct e1000_adapter *adapter = netdev_priv(netdev);
 807	netdev_features_t changed = features ^ netdev->features;
 808
 809	if (changed & NETIF_F_HW_VLAN_CTAG_RX)
 810		e1000_vlan_mode(netdev, features);
 811
 812	if (!(changed & (NETIF_F_RXCSUM | NETIF_F_RXALL)))
 813		return 0;
 814
 815	netdev->features = features;
 816	adapter->rx_csum = !!(features & NETIF_F_RXCSUM);
 817
 818	if (netif_running(netdev))
 819		e1000_reinit_locked(adapter);
 820	else
 821		e1000_reset(adapter);
 822
 823	return 1;
 824}
 825
 826static const struct net_device_ops e1000_netdev_ops = {
 827	.ndo_open		= e1000_open,
 828	.ndo_stop		= e1000_close,
 829	.ndo_start_xmit		= e1000_xmit_frame,
 830	.ndo_set_rx_mode	= e1000_set_rx_mode,
 831	.ndo_set_mac_address	= e1000_set_mac,
 832	.ndo_tx_timeout		= e1000_tx_timeout,
 833	.ndo_change_mtu		= e1000_change_mtu,
 834	.ndo_eth_ioctl		= e1000_ioctl,
 835	.ndo_validate_addr	= eth_validate_addr,
 836	.ndo_vlan_rx_add_vid	= e1000_vlan_rx_add_vid,
 837	.ndo_vlan_rx_kill_vid	= e1000_vlan_rx_kill_vid,
 838#ifdef CONFIG_NET_POLL_CONTROLLER
 839	.ndo_poll_controller	= e1000_netpoll,
 840#endif
 841	.ndo_fix_features	= e1000_fix_features,
 842	.ndo_set_features	= e1000_set_features,
 843};
 844
 845/**
 846 * e1000_init_hw_struct - initialize members of hw struct
 847 * @adapter: board private struct
 848 * @hw: structure used by e1000_hw.c
 849 *
 850 * Factors out initialization of the e1000_hw struct to its own function
 851 * that can be called very early at init (just after struct allocation).
 852 * Fields are initialized based on PCI device information and
 853 * OS network device settings (MTU size).
 854 * Returns negative error codes if MAC type setup fails.
 855 */
 856static int e1000_init_hw_struct(struct e1000_adapter *adapter,
 857				struct e1000_hw *hw)
 858{
 859	struct pci_dev *pdev = adapter->pdev;
 860
 861	/* PCI config space info */
 862	hw->vendor_id = pdev->vendor;
 863	hw->device_id = pdev->device;
 864	hw->subsystem_vendor_id = pdev->subsystem_vendor;
 865	hw->subsystem_id = pdev->subsystem_device;
 866	hw->revision_id = pdev->revision;
 867
 868	pci_read_config_word(pdev, PCI_COMMAND, &hw->pci_cmd_word);
 869
 870	hw->max_frame_size = adapter->netdev->mtu +
 871			     ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
 872	hw->min_frame_size = MINIMUM_ETHERNET_FRAME_SIZE;
 873
 874	/* identify the MAC */
 875	if (e1000_set_mac_type(hw)) {
 876		e_err(probe, "Unknown MAC Type\n");
 877		return -EIO;
 878	}
 879
 880	switch (hw->mac_type) {
 881	default:
 882		break;
 883	case e1000_82541:
 884	case e1000_82547:
 885	case e1000_82541_rev_2:
 886	case e1000_82547_rev_2:
 887		hw->phy_init_script = 1;
 888		break;
 889	}
 890
 891	e1000_set_media_type(hw);
 892	e1000_get_bus_info(hw);
 893
 894	hw->wait_autoneg_complete = false;
 895	hw->tbi_compatibility_en = true;
 896	hw->adaptive_ifs = true;
 897
 898	/* Copper options */
 899
 900	if (hw->media_type == e1000_media_type_copper) {
 901		hw->mdix = AUTO_ALL_MODES;
 902		hw->disable_polarity_correction = false;
 903		hw->master_slave = E1000_MASTER_SLAVE;
 904	}
 905
 906	return 0;
 907}
 908
 909/**
 910 * e1000_probe - Device Initialization Routine
 911 * @pdev: PCI device information struct
 912 * @ent: entry in e1000_pci_tbl
 913 *
 914 * Returns 0 on success, negative on failure
 915 *
 916 * e1000_probe initializes an adapter identified by a pci_dev structure.
 917 * The OS initialization, configuring of the adapter private structure,
 918 * and a hardware reset occur.
 919 **/
 920static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
 921{
 922	struct net_device *netdev;
 923	struct e1000_adapter *adapter = NULL;
 924	struct e1000_hw *hw;
 925
 926	static int cards_found;
 927	static int global_quad_port_a; /* global ksp3 port a indication */
 928	int i, err, pci_using_dac;
 929	u16 eeprom_data = 0;
 930	u16 tmp = 0;
 931	u16 eeprom_apme_mask = E1000_EEPROM_APME;
 932	int bars, need_ioport;
 933	bool disable_dev = false;
 934
 935	/* do not allocate ioport bars when not needed */
 936	need_ioport = e1000_is_need_ioport(pdev);
 937	if (need_ioport) {
 938		bars = pci_select_bars(pdev, IORESOURCE_MEM | IORESOURCE_IO);
 939		err = pci_enable_device(pdev);
 940	} else {
 941		bars = pci_select_bars(pdev, IORESOURCE_MEM);
 942		err = pci_enable_device_mem(pdev);
 943	}
 944	if (err)
 945		return err;
 946
 947	err = pci_request_selected_regions(pdev, bars, e1000_driver_name);
 948	if (err)
 949		goto err_pci_reg;
 950
 951	pci_set_master(pdev);
 952	err = pci_save_state(pdev);
 953	if (err)
 954		goto err_alloc_etherdev;
 955
 956	err = -ENOMEM;
 957	netdev = alloc_etherdev(sizeof(struct e1000_adapter));
 958	if (!netdev)
 959		goto err_alloc_etherdev;
 960
 961	SET_NETDEV_DEV(netdev, &pdev->dev);
 962
 963	pci_set_drvdata(pdev, netdev);
 964	adapter = netdev_priv(netdev);
 965	adapter->netdev = netdev;
 966	adapter->pdev = pdev;
 967	adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
 968	adapter->bars = bars;
 969	adapter->need_ioport = need_ioport;
 970
 971	hw = &adapter->hw;
 972	hw->back = adapter;
 973
 974	err = -EIO;
 975	hw->hw_addr = pci_ioremap_bar(pdev, BAR_0);
 976	if (!hw->hw_addr)
 977		goto err_ioremap;
 978
 979	if (adapter->need_ioport) {
 980		for (i = BAR_1; i < PCI_STD_NUM_BARS; i++) {
 981			if (pci_resource_len(pdev, i) == 0)
 982				continue;
 983			if (pci_resource_flags(pdev, i) & IORESOURCE_IO) {
 984				hw->io_base = pci_resource_start(pdev, i);
 985				break;
 986			}
 987		}
 988	}
 989
 990	/* make ready for any if (hw->...) below */
 991	err = e1000_init_hw_struct(adapter, hw);
 992	if (err)
 993		goto err_sw_init;
 994
 995	/* there is a workaround being applied below that limits
 996	 * 64-bit DMA addresses to 64-bit hardware.  There are some
 997	 * 32-bit adapters that Tx hang when given 64-bit DMA addresses
 998	 */
 999	pci_using_dac = 0;
1000	if ((hw->bus_type == e1000_bus_type_pcix) &&
1001	    !dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64))) {
1002		pci_using_dac = 1;
1003	} else {
1004		err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
1005		if (err) {
1006			pr_err("No usable DMA config, aborting\n");
1007			goto err_dma;
1008		}
1009	}
1010
1011	netdev->netdev_ops = &e1000_netdev_ops;
1012	e1000_set_ethtool_ops(netdev);
1013	netdev->watchdog_timeo = 5 * HZ;
1014	netif_napi_add(netdev, &adapter->napi, e1000_clean);
1015
1016	strscpy(netdev->name, pci_name(pdev), sizeof(netdev->name));
1017
1018	adapter->bd_number = cards_found;
1019
1020	/* setup the private structure */
1021
1022	err = e1000_sw_init(adapter);
1023	if (err)
1024		goto err_sw_init;
1025
1026	err = -EIO;
1027	if (hw->mac_type == e1000_ce4100) {
1028		hw->ce4100_gbe_mdio_base_virt =
1029					ioremap(pci_resource_start(pdev, BAR_1),
1030						pci_resource_len(pdev, BAR_1));
1031
1032		if (!hw->ce4100_gbe_mdio_base_virt)
1033			goto err_mdio_ioremap;
1034	}
1035
1036	if (hw->mac_type >= e1000_82543) {
1037		netdev->hw_features = NETIF_F_SG |
1038				   NETIF_F_HW_CSUM |
1039				   NETIF_F_HW_VLAN_CTAG_RX;
1040		netdev->features = NETIF_F_HW_VLAN_CTAG_TX |
1041				   NETIF_F_HW_VLAN_CTAG_FILTER;
1042	}
1043
1044	if ((hw->mac_type >= e1000_82544) &&
1045	   (hw->mac_type != e1000_82547))
1046		netdev->hw_features |= NETIF_F_TSO;
1047
1048	netdev->priv_flags |= IFF_SUPP_NOFCS;
1049
1050	netdev->features |= netdev->hw_features;
1051	netdev->hw_features |= (NETIF_F_RXCSUM |
1052				NETIF_F_RXALL |
1053				NETIF_F_RXFCS);
1054
1055	if (pci_using_dac) {
1056		netdev->features |= NETIF_F_HIGHDMA;
1057		netdev->vlan_features |= NETIF_F_HIGHDMA;
1058	}
1059
1060	netdev->vlan_features |= (NETIF_F_TSO |
1061				  NETIF_F_HW_CSUM |
1062				  NETIF_F_SG);
1063
1064	/* Do not set IFF_UNICAST_FLT for VMWare's 82545EM */
1065	if (hw->device_id != E1000_DEV_ID_82545EM_COPPER ||
1066	    hw->subsystem_vendor_id != PCI_VENDOR_ID_VMWARE)
1067		netdev->priv_flags |= IFF_UNICAST_FLT;
1068
1069	/* MTU range: 46 - 16110 */
1070	netdev->min_mtu = ETH_ZLEN - ETH_HLEN;
1071	netdev->max_mtu = MAX_JUMBO_FRAME_SIZE - (ETH_HLEN + ETH_FCS_LEN);
1072
1073	adapter->en_mng_pt = e1000_enable_mng_pass_thru(hw);
1074
1075	/* initialize eeprom parameters */
1076	if (e1000_init_eeprom_params(hw)) {
1077		e_err(probe, "EEPROM initialization failed\n");
1078		goto err_eeprom;
1079	}
1080
1081	/* before reading the EEPROM, reset the controller to
1082	 * put the device in a known good starting state
1083	 */
1084
1085	e1000_reset_hw(hw);
1086
1087	/* make sure the EEPROM is good */
1088	if (e1000_validate_eeprom_checksum(hw) < 0) {
1089		e_err(probe, "The EEPROM Checksum Is Not Valid\n");
1090		e1000_dump_eeprom(adapter);
1091		/* set MAC address to all zeroes to invalidate and temporary
1092		 * disable this device for the user. This blocks regular
1093		 * traffic while still permitting ethtool ioctls from reaching
1094		 * the hardware as well as allowing the user to run the
1095		 * interface after manually setting a hw addr using
1096		 * `ip set address`
1097		 */
1098		memset(hw->mac_addr, 0, netdev->addr_len);
1099	} else {
1100		/* copy the MAC address out of the EEPROM */
1101		if (e1000_read_mac_addr(hw))
1102			e_err(probe, "EEPROM Read Error\n");
1103	}
1104	/* don't block initialization here due to bad MAC address */
1105	eth_hw_addr_set(netdev, hw->mac_addr);
1106
1107	if (!is_valid_ether_addr(netdev->dev_addr))
1108		e_err(probe, "Invalid MAC Address\n");
1109
1110
1111	INIT_DELAYED_WORK(&adapter->watchdog_task, e1000_watchdog);
1112	INIT_DELAYED_WORK(&adapter->fifo_stall_task,
1113			  e1000_82547_tx_fifo_stall_task);
1114	INIT_DELAYED_WORK(&adapter->phy_info_task, e1000_update_phy_info_task);
1115	INIT_WORK(&adapter->reset_task, e1000_reset_task);
1116
1117	e1000_check_options(adapter);
1118
1119	/* Initial Wake on LAN setting
1120	 * If APM wake is enabled in the EEPROM,
1121	 * enable the ACPI Magic Packet filter
1122	 */
1123
1124	switch (hw->mac_type) {
1125	case e1000_82542_rev2_0:
1126	case e1000_82542_rev2_1:
1127	case e1000_82543:
1128		break;
1129	case e1000_82544:
1130		e1000_read_eeprom(hw,
1131			EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data);
1132		eeprom_apme_mask = E1000_EEPROM_82544_APM;
1133		break;
1134	case e1000_82546:
1135	case e1000_82546_rev_3:
1136		if (er32(STATUS) & E1000_STATUS_FUNC_1) {
1137			e1000_read_eeprom(hw,
1138				EEPROM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
1139			break;
1140		}
1141		fallthrough;
1142	default:
1143		e1000_read_eeprom(hw,
1144			EEPROM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
1145		break;
1146	}
1147	if (eeprom_data & eeprom_apme_mask)
1148		adapter->eeprom_wol |= E1000_WUFC_MAG;
1149
1150	/* now that we have the eeprom settings, apply the special cases
1151	 * where the eeprom may be wrong or the board simply won't support
1152	 * wake on lan on a particular port
1153	 */
1154	switch (pdev->device) {
1155	case E1000_DEV_ID_82546GB_PCIE:
1156		adapter->eeprom_wol = 0;
1157		break;
1158	case E1000_DEV_ID_82546EB_FIBER:
1159	case E1000_DEV_ID_82546GB_FIBER:
1160		/* Wake events only supported on port A for dual fiber
1161		 * regardless of eeprom setting
1162		 */
1163		if (er32(STATUS) & E1000_STATUS_FUNC_1)
1164			adapter->eeprom_wol = 0;
1165		break;
1166	case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1167		/* if quad port adapter, disable WoL on all but port A */
1168		if (global_quad_port_a != 0)
1169			adapter->eeprom_wol = 0;
1170		else
1171			adapter->quad_port_a = true;
1172		/* Reset for multiple quad port adapters */
1173		if (++global_quad_port_a == 4)
1174			global_quad_port_a = 0;
1175		break;
1176	}
1177
1178	/* initialize the wol settings based on the eeprom settings */
1179	adapter->wol = adapter->eeprom_wol;
1180	device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1181
1182	/* Auto detect PHY address */
1183	if (hw->mac_type == e1000_ce4100) {
1184		for (i = 0; i < 32; i++) {
1185			hw->phy_addr = i;
1186			e1000_read_phy_reg(hw, PHY_ID2, &tmp);
1187
1188			if (tmp != 0 && tmp != 0xFF)
1189				break;
1190		}
1191
1192		if (i >= 32)
1193			goto err_eeprom;
1194	}
1195
1196	/* reset the hardware with the new settings */
1197	e1000_reset(adapter);
1198
1199	strcpy(netdev->name, "eth%d");
1200	err = register_netdev(netdev);
1201	if (err)
1202		goto err_register;
1203
1204	e1000_vlan_filter_on_off(adapter, false);
1205
1206	/* print bus type/speed/width info */
1207	e_info(probe, "(PCI%s:%dMHz:%d-bit) %pM\n",
1208	       ((hw->bus_type == e1000_bus_type_pcix) ? "-X" : ""),
1209	       ((hw->bus_speed == e1000_bus_speed_133) ? 133 :
1210		(hw->bus_speed == e1000_bus_speed_120) ? 120 :
1211		(hw->bus_speed == e1000_bus_speed_100) ? 100 :
1212		(hw->bus_speed == e1000_bus_speed_66) ? 66 : 33),
1213	       ((hw->bus_width == e1000_bus_width_64) ? 64 : 32),
1214	       netdev->dev_addr);
1215
1216	/* carrier off reporting is important to ethtool even BEFORE open */
1217	netif_carrier_off(netdev);
1218
1219	e_info(probe, "Intel(R) PRO/1000 Network Connection\n");
1220
1221	cards_found++;
1222	return 0;
1223
1224err_register:
1225err_eeprom:
1226	e1000_phy_hw_reset(hw);
1227
1228	if (hw->flash_address)
1229		iounmap(hw->flash_address);
1230	kfree(adapter->tx_ring);
1231	kfree(adapter->rx_ring);
1232err_dma:
1233err_sw_init:
1234err_mdio_ioremap:
1235	iounmap(hw->ce4100_gbe_mdio_base_virt);
1236	iounmap(hw->hw_addr);
1237err_ioremap:
1238	disable_dev = !test_and_set_bit(__E1000_DISABLED, &adapter->flags);
1239	free_netdev(netdev);
1240err_alloc_etherdev:
1241	pci_release_selected_regions(pdev, bars);
1242err_pci_reg:
1243	if (!adapter || disable_dev)
1244		pci_disable_device(pdev);
1245	return err;
1246}
1247
1248/**
1249 * e1000_remove - Device Removal Routine
1250 * @pdev: PCI device information struct
1251 *
1252 * e1000_remove is called by the PCI subsystem to alert the driver
1253 * that it should release a PCI device. That could be caused by a
1254 * Hot-Plug event, or because the driver is going to be removed from
1255 * memory.
1256 **/
1257static void e1000_remove(struct pci_dev *pdev)
1258{
1259	struct net_device *netdev = pci_get_drvdata(pdev);
1260	struct e1000_adapter *adapter = netdev_priv(netdev);
1261	struct e1000_hw *hw = &adapter->hw;
1262	bool disable_dev;
1263
1264	e1000_down_and_stop(adapter);
1265	e1000_release_manageability(adapter);
1266
1267	unregister_netdev(netdev);
1268
1269	e1000_phy_hw_reset(hw);
1270
1271	kfree(adapter->tx_ring);
1272	kfree(adapter->rx_ring);
1273
1274	if (hw->mac_type == e1000_ce4100)
1275		iounmap(hw->ce4100_gbe_mdio_base_virt);
1276	iounmap(hw->hw_addr);
1277	if (hw->flash_address)
1278		iounmap(hw->flash_address);
1279	pci_release_selected_regions(pdev, adapter->bars);
1280
1281	disable_dev = !test_and_set_bit(__E1000_DISABLED, &adapter->flags);
1282	free_netdev(netdev);
1283
1284	if (disable_dev)
1285		pci_disable_device(pdev);
1286}
1287
1288/**
1289 * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
1290 * @adapter: board private structure to initialize
1291 *
1292 * e1000_sw_init initializes the Adapter private data structure.
1293 * e1000_init_hw_struct MUST be called before this function
1294 **/
1295static int e1000_sw_init(struct e1000_adapter *adapter)
1296{
1297	adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
1298
1299	adapter->num_tx_queues = 1;
1300	adapter->num_rx_queues = 1;
1301
1302	if (e1000_alloc_queues(adapter)) {
1303		e_err(probe, "Unable to allocate memory for queues\n");
1304		return -ENOMEM;
1305	}
1306
1307	/* Explicitly disable IRQ since the NIC can be in any state. */
1308	e1000_irq_disable(adapter);
1309
1310	spin_lock_init(&adapter->stats_lock);
1311
1312	set_bit(__E1000_DOWN, &adapter->flags);
1313
1314	return 0;
1315}
1316
1317/**
1318 * e1000_alloc_queues - Allocate memory for all rings
1319 * @adapter: board private structure to initialize
1320 *
1321 * We allocate one ring per queue at run-time since we don't know the
1322 * number of queues at compile-time.
1323 **/
1324static int e1000_alloc_queues(struct e1000_adapter *adapter)
1325{
1326	adapter->tx_ring = kcalloc(adapter->num_tx_queues,
1327				   sizeof(struct e1000_tx_ring), GFP_KERNEL);
1328	if (!adapter->tx_ring)
1329		return -ENOMEM;
1330
1331	adapter->rx_ring = kcalloc(adapter->num_rx_queues,
1332				   sizeof(struct e1000_rx_ring), GFP_KERNEL);
1333	if (!adapter->rx_ring) {
1334		kfree(adapter->tx_ring);
1335		return -ENOMEM;
1336	}
1337
1338	return E1000_SUCCESS;
1339}
1340
1341/**
1342 * e1000_open - Called when a network interface is made active
1343 * @netdev: network interface device structure
1344 *
1345 * Returns 0 on success, negative value on failure
1346 *
1347 * The open entry point is called when a network interface is made
1348 * active by the system (IFF_UP).  At this point all resources needed
1349 * for transmit and receive operations are allocated, the interrupt
1350 * handler is registered with the OS, the watchdog task is started,
1351 * and the stack is notified that the interface is ready.
1352 **/
1353int e1000_open(struct net_device *netdev)
1354{
1355	struct e1000_adapter *adapter = netdev_priv(netdev);
1356	struct e1000_hw *hw = &adapter->hw;
1357	int err;
1358
1359	/* disallow open during test */
1360	if (test_bit(__E1000_TESTING, &adapter->flags))
1361		return -EBUSY;
1362
1363	netif_carrier_off(netdev);
1364
1365	/* allocate transmit descriptors */
1366	err = e1000_setup_all_tx_resources(adapter);
1367	if (err)
1368		goto err_setup_tx;
1369
1370	/* allocate receive descriptors */
1371	err = e1000_setup_all_rx_resources(adapter);
1372	if (err)
1373		goto err_setup_rx;
1374
1375	e1000_power_up_phy(adapter);
1376
1377	adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
1378	if ((hw->mng_cookie.status &
1379			  E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) {
1380		e1000_update_mng_vlan(adapter);
1381	}
1382
1383	/* before we allocate an interrupt, we must be ready to handle it.
1384	 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1385	 * as soon as we call pci_request_irq, so we have to setup our
1386	 * clean_rx handler before we do so.
1387	 */
1388	e1000_configure(adapter);
1389
1390	err = e1000_request_irq(adapter);
1391	if (err)
1392		goto err_req_irq;
1393
1394	/* From here on the code is the same as e1000_up() */
1395	clear_bit(__E1000_DOWN, &adapter->flags);
1396
1397	netif_napi_set_irq(&adapter->napi, adapter->pdev->irq);
1398	napi_enable(&adapter->napi);
1399	netif_queue_set_napi(netdev, 0, NETDEV_QUEUE_TYPE_RX, &adapter->napi);
1400	netif_queue_set_napi(netdev, 0, NETDEV_QUEUE_TYPE_TX, &adapter->napi);
1401
1402	e1000_irq_enable(adapter);
1403
1404	netif_start_queue(netdev);
1405
1406	/* fire a link status change interrupt to start the watchdog */
1407	ew32(ICS, E1000_ICS_LSC);
1408
1409	return E1000_SUCCESS;
1410
1411err_req_irq:
1412	e1000_power_down_phy(adapter);
1413	e1000_free_all_rx_resources(adapter);
1414err_setup_rx:
1415	e1000_free_all_tx_resources(adapter);
1416err_setup_tx:
1417	e1000_reset(adapter);
1418
1419	return err;
1420}
1421
1422/**
1423 * e1000_close - Disables a network interface
1424 * @netdev: network interface device structure
1425 *
1426 * Returns 0, this is not allowed to fail
1427 *
1428 * The close entry point is called when an interface is de-activated
1429 * by the OS.  The hardware is still under the drivers control, but
1430 * needs to be disabled.  A global MAC reset is issued to stop the
1431 * hardware, and all transmit and receive resources are freed.
1432 **/
1433int e1000_close(struct net_device *netdev)
1434{
1435	struct e1000_adapter *adapter = netdev_priv(netdev);
1436	struct e1000_hw *hw = &adapter->hw;
1437	int count = E1000_CHECK_RESET_COUNT;
1438
1439	while (test_and_set_bit(__E1000_RESETTING, &adapter->flags) && count--)
1440		usleep_range(10000, 20000);
1441
1442	WARN_ON(count < 0);
1443
1444	/* signal that we're down so that the reset task will no longer run */
1445	set_bit(__E1000_DOWN, &adapter->flags);
1446	clear_bit(__E1000_RESETTING, &adapter->flags);
1447
1448	e1000_down(adapter);
1449	e1000_power_down_phy(adapter);
1450	e1000_free_irq(adapter);
1451
1452	e1000_free_all_tx_resources(adapter);
1453	e1000_free_all_rx_resources(adapter);
1454
1455	/* kill manageability vlan ID if supported, but not if a vlan with
1456	 * the same ID is registered on the host OS (let 8021q kill it)
1457	 */
1458	if ((hw->mng_cookie.status &
1459	     E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
1460	    !test_bit(adapter->mng_vlan_id, adapter->active_vlans)) {
1461		e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q),
1462				       adapter->mng_vlan_id);
1463	}
1464
1465	return 0;
1466}
1467
1468/**
1469 * e1000_check_64k_bound - check that memory doesn't cross 64kB boundary
1470 * @adapter: address of board private structure
1471 * @start: address of beginning of memory
1472 * @len: length of memory
1473 **/
1474static bool e1000_check_64k_bound(struct e1000_adapter *adapter, void *start,
1475				  unsigned long len)
1476{
1477	struct e1000_hw *hw = &adapter->hw;
1478	unsigned long begin = (unsigned long)start;
1479	unsigned long end = begin + len;
1480
1481	/* First rev 82545 and 82546 need to not allow any memory
1482	 * write location to cross 64k boundary due to errata 23
1483	 */
1484	if (hw->mac_type == e1000_82545 ||
1485	    hw->mac_type == e1000_ce4100 ||
1486	    hw->mac_type == e1000_82546) {
1487		return ((begin ^ (end - 1)) >> 16) == 0;
1488	}
1489
1490	return true;
1491}
1492
1493/**
1494 * e1000_setup_tx_resources - allocate Tx resources (Descriptors)
1495 * @adapter: board private structure
1496 * @txdr:    tx descriptor ring (for a specific queue) to setup
1497 *
1498 * Return 0 on success, negative on failure
1499 **/
1500static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
1501				    struct e1000_tx_ring *txdr)
1502{
1503	struct pci_dev *pdev = adapter->pdev;
1504	int size;
1505
1506	size = sizeof(struct e1000_tx_buffer) * txdr->count;
1507	txdr->buffer_info = vzalloc(size);
1508	if (!txdr->buffer_info)
1509		return -ENOMEM;
1510
1511	/* round up to nearest 4K */
1512
1513	txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
1514	txdr->size = ALIGN(txdr->size, 4096);
1515
1516	txdr->desc = dma_alloc_coherent(&pdev->dev, txdr->size, &txdr->dma,
1517					GFP_KERNEL);
1518	if (!txdr->desc) {
1519setup_tx_desc_die:
1520		vfree(txdr->buffer_info);
1521		return -ENOMEM;
1522	}
1523
1524	/* Fix for errata 23, can't cross 64kB boundary */
1525	if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1526		void *olddesc = txdr->desc;
1527		dma_addr_t olddma = txdr->dma;
1528		e_err(tx_err, "txdr align check failed: %u bytes at %p\n",
1529		      txdr->size, txdr->desc);
1530		/* Try again, without freeing the previous */
1531		txdr->desc = dma_alloc_coherent(&pdev->dev, txdr->size,
1532						&txdr->dma, GFP_KERNEL);
1533		/* Failed allocation, critical failure */
1534		if (!txdr->desc) {
1535			dma_free_coherent(&pdev->dev, txdr->size, olddesc,
1536					  olddma);
1537			goto setup_tx_desc_die;
1538		}
1539
1540		if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1541			/* give up */
1542			dma_free_coherent(&pdev->dev, txdr->size, txdr->desc,
1543					  txdr->dma);
1544			dma_free_coherent(&pdev->dev, txdr->size, olddesc,
1545					  olddma);
1546			e_err(probe, "Unable to allocate aligned memory "
1547			      "for the transmit descriptor ring\n");
1548			vfree(txdr->buffer_info);
1549			return -ENOMEM;
1550		} else {
1551			/* Free old allocation, new allocation was successful */
1552			dma_free_coherent(&pdev->dev, txdr->size, olddesc,
1553					  olddma);
1554		}
1555	}
1556	memset(txdr->desc, 0, txdr->size);
1557
1558	txdr->next_to_use = 0;
1559	txdr->next_to_clean = 0;
1560
1561	return 0;
1562}
1563
1564/**
1565 * e1000_setup_all_tx_resources - wrapper to allocate Tx resources
1566 * 				  (Descriptors) for all queues
1567 * @adapter: board private structure
1568 *
1569 * Return 0 on success, negative on failure
1570 **/
1571int e1000_setup_all_tx_resources(struct e1000_adapter *adapter)
1572{
1573	int i, err = 0;
1574
1575	for (i = 0; i < adapter->num_tx_queues; i++) {
1576		err = e1000_setup_tx_resources(adapter, &adapter->tx_ring[i]);
1577		if (err) {
1578			e_err(probe, "Allocation for Tx Queue %u failed\n", i);
1579			for (i-- ; i >= 0; i--)
1580				e1000_free_tx_resources(adapter,
1581							&adapter->tx_ring[i]);
1582			break;
1583		}
1584	}
1585
1586	return err;
1587}
1588
1589/**
1590 * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
1591 * @adapter: board private structure
1592 *
1593 * Configure the Tx unit of the MAC after a reset.
1594 **/
1595static void e1000_configure_tx(struct e1000_adapter *adapter)
1596{
1597	u64 tdba;
1598	struct e1000_hw *hw = &adapter->hw;
1599	u32 tdlen, tctl, tipg;
1600	u32 ipgr1, ipgr2;
1601
1602	/* Setup the HW Tx Head and Tail descriptor pointers */
1603
1604	switch (adapter->num_tx_queues) {
1605	case 1:
1606	default:
1607		tdba = adapter->tx_ring[0].dma;
1608		tdlen = adapter->tx_ring[0].count *
1609			sizeof(struct e1000_tx_desc);
1610		ew32(TDLEN, tdlen);
1611		ew32(TDBAH, (tdba >> 32));
1612		ew32(TDBAL, (tdba & 0x00000000ffffffffULL));
1613		ew32(TDT, 0);
1614		ew32(TDH, 0);
1615		adapter->tx_ring[0].tdh = ((hw->mac_type >= e1000_82543) ?
1616					   E1000_TDH : E1000_82542_TDH);
1617		adapter->tx_ring[0].tdt = ((hw->mac_type >= e1000_82543) ?
1618					   E1000_TDT : E1000_82542_TDT);
1619		break;
1620	}
1621
1622	/* Set the default values for the Tx Inter Packet Gap timer */
1623	if ((hw->media_type == e1000_media_type_fiber ||
1624	     hw->media_type == e1000_media_type_internal_serdes))
1625		tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
1626	else
1627		tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
1628
1629	switch (hw->mac_type) {
1630	case e1000_82542_rev2_0:
1631	case e1000_82542_rev2_1:
1632		tipg = DEFAULT_82542_TIPG_IPGT;
1633		ipgr1 = DEFAULT_82542_TIPG_IPGR1;
1634		ipgr2 = DEFAULT_82542_TIPG_IPGR2;
1635		break;
1636	default:
1637		ipgr1 = DEFAULT_82543_TIPG_IPGR1;
1638		ipgr2 = DEFAULT_82543_TIPG_IPGR2;
1639		break;
1640	}
1641	tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
1642	tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
1643	ew32(TIPG, tipg);
1644
1645	/* Set the Tx Interrupt Delay register */
1646
1647	ew32(TIDV, adapter->tx_int_delay);
1648	if (hw->mac_type >= e1000_82540)
1649		ew32(TADV, adapter->tx_abs_int_delay);
1650
1651	/* Program the Transmit Control Register */
1652
1653	tctl = er32(TCTL);
1654	tctl &= ~E1000_TCTL_CT;
1655	tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
1656		(E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
1657
1658	e1000_config_collision_dist(hw);
1659
1660	/* Setup Transmit Descriptor Settings for eop descriptor */
1661	adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
1662
1663	/* only set IDE if we are delaying interrupts using the timers */
1664	if (adapter->tx_int_delay)
1665		adapter->txd_cmd |= E1000_TXD_CMD_IDE;
1666
1667	if (hw->mac_type < e1000_82543)
1668		adapter->txd_cmd |= E1000_TXD_CMD_RPS;
1669	else
1670		adapter->txd_cmd |= E1000_TXD_CMD_RS;
1671
1672	/* Cache if we're 82544 running in PCI-X because we'll
1673	 * need this to apply a workaround later in the send path.
1674	 */
1675	if (hw->mac_type == e1000_82544 &&
1676	    hw->bus_type == e1000_bus_type_pcix)
1677		adapter->pcix_82544 = true;
1678
1679	ew32(TCTL, tctl);
1680
1681}
1682
1683/**
1684 * e1000_setup_rx_resources - allocate Rx resources (Descriptors)
1685 * @adapter: board private structure
1686 * @rxdr:    rx descriptor ring (for a specific queue) to setup
1687 *
1688 * Returns 0 on success, negative on failure
1689 **/
1690static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
1691				    struct e1000_rx_ring *rxdr)
1692{
1693	struct pci_dev *pdev = adapter->pdev;
1694	int size, desc_len;
1695
1696	size = sizeof(struct e1000_rx_buffer) * rxdr->count;
1697	rxdr->buffer_info = vzalloc(size);
1698	if (!rxdr->buffer_info)
1699		return -ENOMEM;
1700
1701	desc_len = sizeof(struct e1000_rx_desc);
1702
1703	/* Round up to nearest 4K */
1704
1705	rxdr->size = rxdr->count * desc_len;
1706	rxdr->size = ALIGN(rxdr->size, 4096);
1707
1708	rxdr->desc = dma_alloc_coherent(&pdev->dev, rxdr->size, &rxdr->dma,
1709					GFP_KERNEL);
1710	if (!rxdr->desc) {
1711setup_rx_desc_die:
1712		vfree(rxdr->buffer_info);
1713		return -ENOMEM;
1714	}
1715
1716	/* Fix for errata 23, can't cross 64kB boundary */
1717	if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1718		void *olddesc = rxdr->desc;
1719		dma_addr_t olddma = rxdr->dma;
1720		e_err(rx_err, "rxdr align check failed: %u bytes at %p\n",
1721		      rxdr->size, rxdr->desc);
1722		/* Try again, without freeing the previous */
1723		rxdr->desc = dma_alloc_coherent(&pdev->dev, rxdr->size,
1724						&rxdr->dma, GFP_KERNEL);
1725		/* Failed allocation, critical failure */
1726		if (!rxdr->desc) {
1727			dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
1728					  olddma);
1729			goto setup_rx_desc_die;
1730		}
1731
1732		if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1733			/* give up */
1734			dma_free_coherent(&pdev->dev, rxdr->size, rxdr->desc,
1735					  rxdr->dma);
1736			dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
1737					  olddma);
1738			e_err(probe, "Unable to allocate aligned memory for "
1739			      "the Rx descriptor ring\n");
1740			goto setup_rx_desc_die;
1741		} else {
1742			/* Free old allocation, new allocation was successful */
1743			dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
1744					  olddma);
1745		}
1746	}
1747	memset(rxdr->desc, 0, rxdr->size);
1748
1749	rxdr->next_to_clean = 0;
1750	rxdr->next_to_use = 0;
1751	rxdr->rx_skb_top = NULL;
1752
1753	return 0;
1754}
1755
1756/**
1757 * e1000_setup_all_rx_resources - wrapper to allocate Rx resources
1758 * 				  (Descriptors) for all queues
1759 * @adapter: board private structure
1760 *
1761 * Return 0 on success, negative on failure
1762 **/
1763int e1000_setup_all_rx_resources(struct e1000_adapter *adapter)
1764{
1765	int i, err = 0;
1766
1767	for (i = 0; i < adapter->num_rx_queues; i++) {
1768		err = e1000_setup_rx_resources(adapter, &adapter->rx_ring[i]);
1769		if (err) {
1770			e_err(probe, "Allocation for Rx Queue %u failed\n", i);
1771			for (i-- ; i >= 0; i--)
1772				e1000_free_rx_resources(adapter,
1773							&adapter->rx_ring[i]);
1774			break;
1775		}
1776	}
1777
1778	return err;
1779}
1780
1781/**
1782 * e1000_setup_rctl - configure the receive control registers
1783 * @adapter: Board private structure
1784 **/
1785static void e1000_setup_rctl(struct e1000_adapter *adapter)
1786{
1787	struct e1000_hw *hw = &adapter->hw;
1788	u32 rctl;
1789
1790	rctl = er32(RCTL);
1791
1792	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
1793
1794	rctl |= E1000_RCTL_BAM | E1000_RCTL_LBM_NO |
1795		E1000_RCTL_RDMTS_HALF |
1796		(hw->mc_filter_type << E1000_RCTL_MO_SHIFT);
1797
1798	if (hw->tbi_compatibility_on == 1)
1799		rctl |= E1000_RCTL_SBP;
1800	else
1801		rctl &= ~E1000_RCTL_SBP;
1802
1803	if (adapter->netdev->mtu <= ETH_DATA_LEN)
1804		rctl &= ~E1000_RCTL_LPE;
1805	else
1806		rctl |= E1000_RCTL_LPE;
1807
1808	/* Setup buffer sizes */
1809	rctl &= ~E1000_RCTL_SZ_4096;
1810	rctl |= E1000_RCTL_BSEX;
1811	switch (adapter->rx_buffer_len) {
1812	case E1000_RXBUFFER_2048:
1813	default:
1814		rctl |= E1000_RCTL_SZ_2048;
1815		rctl &= ~E1000_RCTL_BSEX;
1816		break;
1817	case E1000_RXBUFFER_4096:
1818		rctl |= E1000_RCTL_SZ_4096;
1819		break;
1820	case E1000_RXBUFFER_8192:
1821		rctl |= E1000_RCTL_SZ_8192;
1822		break;
1823	case E1000_RXBUFFER_16384:
1824		rctl |= E1000_RCTL_SZ_16384;
1825		break;
1826	}
1827
1828	/* This is useful for sniffing bad packets. */
1829	if (adapter->netdev->features & NETIF_F_RXALL) {
1830		/* UPE and MPE will be handled by normal PROMISC logic
1831		 * in e1000e_set_rx_mode
1832		 */
1833		rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
1834			 E1000_RCTL_BAM | /* RX All Bcast Pkts */
1835			 E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
1836
1837		rctl &= ~(E1000_RCTL_VFE | /* Disable VLAN filter */
1838			  E1000_RCTL_DPF | /* Allow filtered pause */
1839			  E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
1840		/* Do not mess with E1000_CTRL_VME, it affects transmit as well,
1841		 * and that breaks VLANs.
1842		 */
1843	}
1844
1845	ew32(RCTL, rctl);
1846}
1847
1848/**
1849 * e1000_configure_rx - Configure 8254x Receive Unit after Reset
1850 * @adapter: board private structure
1851 *
1852 * Configure the Rx unit of the MAC after a reset.
1853 **/
1854static void e1000_configure_rx(struct e1000_adapter *adapter)
1855{
1856	u64 rdba;
1857	struct e1000_hw *hw = &adapter->hw;
1858	u32 rdlen, rctl, rxcsum;
1859
1860	if (adapter->netdev->mtu > ETH_DATA_LEN) {
1861		rdlen = adapter->rx_ring[0].count *
1862			sizeof(struct e1000_rx_desc);
1863		adapter->clean_rx = e1000_clean_jumbo_rx_irq;
1864		adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers;
1865	} else {
1866		rdlen = adapter->rx_ring[0].count *
1867			sizeof(struct e1000_rx_desc);
1868		adapter->clean_rx = e1000_clean_rx_irq;
1869		adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
1870	}
1871
1872	/* disable receives while setting up the descriptors */
1873	rctl = er32(RCTL);
1874	ew32(RCTL, rctl & ~E1000_RCTL_EN);
1875
1876	/* set the Receive Delay Timer Register */
1877	ew32(RDTR, adapter->rx_int_delay);
1878
1879	if (hw->mac_type >= e1000_82540) {
1880		ew32(RADV, adapter->rx_abs_int_delay);
1881		if (adapter->itr_setting != 0)
1882			ew32(ITR, 1000000000 / (adapter->itr * 256));
1883	}
1884
1885	/* Setup the HW Rx Head and Tail Descriptor Pointers and
1886	 * the Base and Length of the Rx Descriptor Ring
1887	 */
1888	switch (adapter->num_rx_queues) {
1889	case 1:
1890	default:
1891		rdba = adapter->rx_ring[0].dma;
1892		ew32(RDLEN, rdlen);
1893		ew32(RDBAH, (rdba >> 32));
1894		ew32(RDBAL, (rdba & 0x00000000ffffffffULL));
1895		ew32(RDT, 0);
1896		ew32(RDH, 0);
1897		adapter->rx_ring[0].rdh = ((hw->mac_type >= e1000_82543) ?
1898					   E1000_RDH : E1000_82542_RDH);
1899		adapter->rx_ring[0].rdt = ((hw->mac_type >= e1000_82543) ?
1900					   E1000_RDT : E1000_82542_RDT);
1901		break;
1902	}
1903
1904	/* Enable 82543 Receive Checksum Offload for TCP and UDP */
1905	if (hw->mac_type >= e1000_82543) {
1906		rxcsum = er32(RXCSUM);
1907		if (adapter->rx_csum)
1908			rxcsum |= E1000_RXCSUM_TUOFL;
1909		else
1910			/* don't need to clear IPPCSE as it defaults to 0 */
1911			rxcsum &= ~E1000_RXCSUM_TUOFL;
1912		ew32(RXCSUM, rxcsum);
1913	}
1914
1915	/* Enable Receives */
1916	ew32(RCTL, rctl | E1000_RCTL_EN);
1917}
1918
1919/**
1920 * e1000_free_tx_resources - Free Tx Resources per Queue
1921 * @adapter: board private structure
1922 * @tx_ring: Tx descriptor ring for a specific queue
1923 *
1924 * Free all transmit software resources
1925 **/
1926static void e1000_free_tx_resources(struct e1000_adapter *adapter,
1927				    struct e1000_tx_ring *tx_ring)
1928{
1929	struct pci_dev *pdev = adapter->pdev;
1930
1931	e1000_clean_tx_ring(adapter, tx_ring);
1932
1933	vfree(tx_ring->buffer_info);
1934	tx_ring->buffer_info = NULL;
1935
1936	dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
1937			  tx_ring->dma);
1938
1939	tx_ring->desc = NULL;
1940}
1941
1942/**
1943 * e1000_free_all_tx_resources - Free Tx Resources for All Queues
1944 * @adapter: board private structure
1945 *
1946 * Free all transmit software resources
1947 **/
1948void e1000_free_all_tx_resources(struct e1000_adapter *adapter)
1949{
1950	int i;
1951
1952	for (i = 0; i < adapter->num_tx_queues; i++)
1953		e1000_free_tx_resources(adapter, &adapter->tx_ring[i]);
1954}
1955
1956static void
1957e1000_unmap_and_free_tx_resource(struct e1000_adapter *adapter,
1958				 struct e1000_tx_buffer *buffer_info,
1959				 int budget)
1960{
1961	if (buffer_info->dma) {
1962		if (buffer_info->mapped_as_page)
1963			dma_unmap_page(&adapter->pdev->dev, buffer_info->dma,
1964				       buffer_info->length, DMA_TO_DEVICE);
1965		else
1966			dma_unmap_single(&adapter->pdev->dev, buffer_info->dma,
1967					 buffer_info->length,
1968					 DMA_TO_DEVICE);
1969		buffer_info->dma = 0;
1970	}
1971	if (buffer_info->skb) {
1972		napi_consume_skb(buffer_info->skb, budget);
1973		buffer_info->skb = NULL;
1974	}
1975	buffer_info->time_stamp = 0;
1976	/* buffer_info must be completely set up in the transmit path */
1977}
1978
1979/**
1980 * e1000_clean_tx_ring - Free Tx Buffers
1981 * @adapter: board private structure
1982 * @tx_ring: ring to be cleaned
1983 **/
1984static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
1985				struct e1000_tx_ring *tx_ring)
1986{
1987	struct e1000_hw *hw = &adapter->hw;
1988	struct e1000_tx_buffer *buffer_info;
1989	unsigned long size;
1990	unsigned int i;
1991
1992	/* Free all the Tx ring sk_buffs */
1993
1994	for (i = 0; i < tx_ring->count; i++) {
1995		buffer_info = &tx_ring->buffer_info[i];
1996		e1000_unmap_and_free_tx_resource(adapter, buffer_info, 0);
1997	}
1998
1999	netdev_reset_queue(adapter->netdev);
2000	size = sizeof(struct e1000_tx_buffer) * tx_ring->count;
2001	memset(tx_ring->buffer_info, 0, size);
2002
2003	/* Zero out the descriptor ring */
2004
2005	memset(tx_ring->desc, 0, tx_ring->size);
2006
2007	tx_ring->next_to_use = 0;
2008	tx_ring->next_to_clean = 0;
2009	tx_ring->last_tx_tso = false;
2010
2011	writel(0, hw->hw_addr + tx_ring->tdh);
2012	writel(0, hw->hw_addr + tx_ring->tdt);
2013}
2014
2015/**
2016 * e1000_clean_all_tx_rings - Free Tx Buffers for all queues
2017 * @adapter: board private structure
2018 **/
2019static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter)
2020{
2021	int i;
2022
2023	for (i = 0; i < adapter->num_tx_queues; i++)
2024		e1000_clean_tx_ring(adapter, &adapter->tx_ring[i]);
2025}
2026
2027/**
2028 * e1000_free_rx_resources - Free Rx Resources
2029 * @adapter: board private structure
2030 * @rx_ring: ring to clean the resources from
2031 *
2032 * Free all receive software resources
2033 **/
2034static void e1000_free_rx_resources(struct e1000_adapter *adapter,
2035				    struct e1000_rx_ring *rx_ring)
2036{
2037	struct pci_dev *pdev = adapter->pdev;
2038
2039	e1000_clean_rx_ring(adapter, rx_ring);
2040
2041	vfree(rx_ring->buffer_info);
2042	rx_ring->buffer_info = NULL;
2043
2044	dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
2045			  rx_ring->dma);
2046
2047	rx_ring->desc = NULL;
2048}
2049
2050/**
2051 * e1000_free_all_rx_resources - Free Rx Resources for All Queues
2052 * @adapter: board private structure
2053 *
2054 * Free all receive software resources
2055 **/
2056void e1000_free_all_rx_resources(struct e1000_adapter *adapter)
2057{
2058	int i;
2059
2060	for (i = 0; i < adapter->num_rx_queues; i++)
2061		e1000_free_rx_resources(adapter, &adapter->rx_ring[i]);
2062}
2063
2064#define E1000_HEADROOM (NET_SKB_PAD + NET_IP_ALIGN)
2065static unsigned int e1000_frag_len(const struct e1000_adapter *a)
2066{
2067	return SKB_DATA_ALIGN(a->rx_buffer_len + E1000_HEADROOM) +
2068		SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
2069}
2070
2071static void *e1000_alloc_frag(const struct e1000_adapter *a)
2072{
2073	unsigned int len = e1000_frag_len(a);
2074	u8 *data = netdev_alloc_frag(len);
2075
2076	if (likely(data))
2077		data += E1000_HEADROOM;
2078	return data;
2079}
2080
2081/**
2082 * e1000_clean_rx_ring - Free Rx Buffers per Queue
2083 * @adapter: board private structure
2084 * @rx_ring: ring to free buffers from
2085 **/
2086static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
2087				struct e1000_rx_ring *rx_ring)
2088{
2089	struct e1000_hw *hw = &adapter->hw;
2090	struct e1000_rx_buffer *buffer_info;
2091	struct pci_dev *pdev = adapter->pdev;
2092	unsigned long size;
2093	unsigned int i;
2094
2095	/* Free all the Rx netfrags */
2096	for (i = 0; i < rx_ring->count; i++) {
2097		buffer_info = &rx_ring->buffer_info[i];
2098		if (adapter->clean_rx == e1000_clean_rx_irq) {
2099			if (buffer_info->dma)
2100				dma_unmap_single(&pdev->dev, buffer_info->dma,
2101						 adapter->rx_buffer_len,
2102						 DMA_FROM_DEVICE);
2103			if (buffer_info->rxbuf.data) {
2104				skb_free_frag(buffer_info->rxbuf.data);
2105				buffer_info->rxbuf.data = NULL;
2106			}
2107		} else if (adapter->clean_rx == e1000_clean_jumbo_rx_irq) {
2108			if (buffer_info->dma)
2109				dma_unmap_page(&pdev->dev, buffer_info->dma,
2110					       adapter->rx_buffer_len,
2111					       DMA_FROM_DEVICE);
2112			if (buffer_info->rxbuf.page) {
2113				put_page(buffer_info->rxbuf.page);
2114				buffer_info->rxbuf.page = NULL;
2115			}
2116		}
2117
2118		buffer_info->dma = 0;
2119	}
2120
2121	/* there also may be some cached data from a chained receive */
2122	napi_free_frags(&adapter->napi);
2123	rx_ring->rx_skb_top = NULL;
2124
2125	size = sizeof(struct e1000_rx_buffer) * rx_ring->count;
2126	memset(rx_ring->buffer_info, 0, size);
2127
2128	/* Zero out the descriptor ring */
2129	memset(rx_ring->desc, 0, rx_ring->size);
2130
2131	rx_ring->next_to_clean = 0;
2132	rx_ring->next_to_use = 0;
2133
2134	writel(0, hw->hw_addr + rx_ring->rdh);
2135	writel(0, hw->hw_addr + rx_ring->rdt);
2136}
2137
2138/**
2139 * e1000_clean_all_rx_rings - Free Rx Buffers for all queues
2140 * @adapter: board private structure
2141 **/
2142static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter)
2143{
2144	int i;
2145
2146	for (i = 0; i < adapter->num_rx_queues; i++)
2147		e1000_clean_rx_ring(adapter, &adapter->rx_ring[i]);
2148}
2149
2150/* The 82542 2.0 (revision 2) needs to have the receive unit in reset
2151 * and memory write and invalidate disabled for certain operations
2152 */
2153static void e1000_enter_82542_rst(struct e1000_adapter *adapter)
2154{
2155	struct e1000_hw *hw = &adapter->hw;
2156	struct net_device *netdev = adapter->netdev;
2157	u32 rctl;
2158
2159	e1000_pci_clear_mwi(hw);
2160
2161	rctl = er32(RCTL);
2162	rctl |= E1000_RCTL_RST;
2163	ew32(RCTL, rctl);
2164	E1000_WRITE_FLUSH();
2165	mdelay(5);
2166
2167	if (netif_running(netdev))
2168		e1000_clean_all_rx_rings(adapter);
2169}
2170
2171static void e1000_leave_82542_rst(struct e1000_adapter *adapter)
2172{
2173	struct e1000_hw *hw = &adapter->hw;
2174	struct net_device *netdev = adapter->netdev;
2175	u32 rctl;
2176
2177	rctl = er32(RCTL);
2178	rctl &= ~E1000_RCTL_RST;
2179	ew32(RCTL, rctl);
2180	E1000_WRITE_FLUSH();
2181	mdelay(5);
2182
2183	if (hw->pci_cmd_word & PCI_COMMAND_INVALIDATE)
2184		e1000_pci_set_mwi(hw);
2185
2186	if (netif_running(netdev)) {
2187		/* No need to loop, because 82542 supports only 1 queue */
2188		struct e1000_rx_ring *ring = &adapter->rx_ring[0];
2189		e1000_configure_rx(adapter);
2190		adapter->alloc_rx_buf(adapter, ring, E1000_DESC_UNUSED(ring));
2191	}
2192}
2193
2194/**
2195 * e1000_set_mac - Change the Ethernet Address of the NIC
2196 * @netdev: network interface device structure
2197 * @p: pointer to an address structure
2198 *
2199 * Returns 0 on success, negative on failure
2200 **/
2201static int e1000_set_mac(struct net_device *netdev, void *p)
2202{
2203	struct e1000_adapter *adapter = netdev_priv(netdev);
2204	struct e1000_hw *hw = &adapter->hw;
2205	struct sockaddr *addr = p;
2206
2207	if (!is_valid_ether_addr(addr->sa_data))
2208		return -EADDRNOTAVAIL;
2209
2210	/* 82542 2.0 needs to be in reset to write receive address registers */
2211
2212	if (hw->mac_type == e1000_82542_rev2_0)
2213		e1000_enter_82542_rst(adapter);
2214
2215	eth_hw_addr_set(netdev, addr->sa_data);
2216	memcpy(hw->mac_addr, addr->sa_data, netdev->addr_len);
2217
2218	e1000_rar_set(hw, hw->mac_addr, 0);
2219
2220	if (hw->mac_type == e1000_82542_rev2_0)
2221		e1000_leave_82542_rst(adapter);
2222
2223	return 0;
2224}
2225
2226/**
2227 * e1000_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
2228 * @netdev: network interface device structure
2229 *
2230 * The set_rx_mode entry point is called whenever the unicast or multicast
2231 * address lists or the network interface flags are updated. This routine is
2232 * responsible for configuring the hardware for proper unicast, multicast,
2233 * promiscuous mode, and all-multi behavior.
2234 **/
2235static void e1000_set_rx_mode(struct net_device *netdev)
2236{
2237	struct e1000_adapter *adapter = netdev_priv(netdev);
2238	struct e1000_hw *hw = &adapter->hw;
2239	struct netdev_hw_addr *ha;
2240	bool use_uc = false;
2241	u32 rctl;
2242	u32 hash_value;
2243	int i, rar_entries = E1000_RAR_ENTRIES;
2244	int mta_reg_count = E1000_NUM_MTA_REGISTERS;
2245	u32 *mcarray = kcalloc(mta_reg_count, sizeof(u32), GFP_ATOMIC);
2246
2247	if (!mcarray)
2248		return;
2249
2250	/* Check for Promiscuous and All Multicast modes */
2251
2252	rctl = er32(RCTL);
2253
2254	if (netdev->flags & IFF_PROMISC) {
2255		rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2256		rctl &= ~E1000_RCTL_VFE;
2257	} else {
2258		if (netdev->flags & IFF_ALLMULTI)
2259			rctl |= E1000_RCTL_MPE;
2260		else
2261			rctl &= ~E1000_RCTL_MPE;
2262		/* Enable VLAN filter if there is a VLAN */
2263		if (e1000_vlan_used(adapter))
2264			rctl |= E1000_RCTL_VFE;
2265	}
2266
2267	if (netdev_uc_count(netdev) > rar_entries - 1) {
2268		rctl |= E1000_RCTL_UPE;
2269	} else if (!(netdev->flags & IFF_PROMISC)) {
2270		rctl &= ~E1000_RCTL_UPE;
2271		use_uc = true;
2272	}
2273
2274	ew32(RCTL, rctl);
2275
2276	/* 82542 2.0 needs to be in reset to write receive address registers */
2277
2278	if (hw->mac_type == e1000_82542_rev2_0)
2279		e1000_enter_82542_rst(adapter);
2280
2281	/* load the first 14 addresses into the exact filters 1-14. Unicast
2282	 * addresses take precedence to avoid disabling unicast filtering
2283	 * when possible.
2284	 *
2285	 * RAR 0 is used for the station MAC address
2286	 * if there are not 14 addresses, go ahead and clear the filters
2287	 */
2288	i = 1;
2289	if (use_uc)
2290		netdev_for_each_uc_addr(ha, netdev) {
2291			if (i == rar_entries)
2292				break;
2293			e1000_rar_set(hw, ha->addr, i++);
2294		}
2295
2296	netdev_for_each_mc_addr(ha, netdev) {
2297		if (i == rar_entries) {
2298			/* load any remaining addresses into the hash table */
2299			u32 hash_reg, hash_bit, mta;
2300			hash_value = e1000_hash_mc_addr(hw, ha->addr);
2301			hash_reg = (hash_value >> 5) & 0x7F;
2302			hash_bit = hash_value & 0x1F;
2303			mta = (1 << hash_bit);
2304			mcarray[hash_reg] |= mta;
2305		} else {
2306			e1000_rar_set(hw, ha->addr, i++);
2307		}
2308	}
2309
2310	for (; i < rar_entries; i++) {
2311		E1000_WRITE_REG_ARRAY(hw, RA, i << 1, 0);
2312		E1000_WRITE_FLUSH();
2313		E1000_WRITE_REG_ARRAY(hw, RA, (i << 1) + 1, 0);
2314		E1000_WRITE_FLUSH();
2315	}
2316
2317	/* write the hash table completely, write from bottom to avoid
2318	 * both stupid write combining chipsets, and flushing each write
2319	 */
2320	for (i = mta_reg_count - 1; i >= 0 ; i--) {
2321		/* If we are on an 82544 has an errata where writing odd
2322		 * offsets overwrites the previous even offset, but writing
2323		 * backwards over the range solves the issue by always
2324		 * writing the odd offset first
2325		 */
2326		E1000_WRITE_REG_ARRAY(hw, MTA, i, mcarray[i]);
2327	}
2328	E1000_WRITE_FLUSH();
2329
2330	if (hw->mac_type == e1000_82542_rev2_0)
2331		e1000_leave_82542_rst(adapter);
2332
2333	kfree(mcarray);
2334}
2335
2336/**
2337 * e1000_update_phy_info_task - get phy info
2338 * @work: work struct contained inside adapter struct
2339 *
2340 * Need to wait a few seconds after link up to get diagnostic information from
2341 * the phy
2342 */
2343static void e1000_update_phy_info_task(struct work_struct *work)
2344{
2345	struct e1000_adapter *adapter = container_of(work,
2346						     struct e1000_adapter,
2347						     phy_info_task.work);
2348
2349	e1000_phy_get_info(&adapter->hw, &adapter->phy_info);
2350}
2351
2352/**
2353 * e1000_82547_tx_fifo_stall_task - task to complete work
2354 * @work: work struct contained inside adapter struct
2355 **/
2356static void e1000_82547_tx_fifo_stall_task(struct work_struct *work)
2357{
2358	struct e1000_adapter *adapter = container_of(work,
2359						     struct e1000_adapter,
2360						     fifo_stall_task.work);
2361	struct e1000_hw *hw = &adapter->hw;
2362	struct net_device *netdev = adapter->netdev;
2363	u32 tctl;
2364
2365	if (atomic_read(&adapter->tx_fifo_stall)) {
2366		if ((er32(TDT) == er32(TDH)) &&
2367		   (er32(TDFT) == er32(TDFH)) &&
2368		   (er32(TDFTS) == er32(TDFHS))) {
2369			tctl = er32(TCTL);
2370			ew32(TCTL, tctl & ~E1000_TCTL_EN);
2371			ew32(TDFT, adapter->tx_head_addr);
2372			ew32(TDFH, adapter->tx_head_addr);
2373			ew32(TDFTS, adapter->tx_head_addr);
2374			ew32(TDFHS, adapter->tx_head_addr);
2375			ew32(TCTL, tctl);
2376			E1000_WRITE_FLUSH();
2377
2378			adapter->tx_fifo_head = 0;
2379			atomic_set(&adapter->tx_fifo_stall, 0);
2380			netif_wake_queue(netdev);
2381		} else if (!test_bit(__E1000_DOWN, &adapter->flags)) {
2382			schedule_delayed_work(&adapter->fifo_stall_task, 1);
2383		}
2384	}
2385}
2386
2387bool e1000_has_link(struct e1000_adapter *adapter)
2388{
2389	struct e1000_hw *hw = &adapter->hw;
2390	bool link_active = false;
2391
2392	/* get_link_status is set on LSC (link status) interrupt or rx
2393	 * sequence error interrupt (except on intel ce4100).
2394	 * get_link_status will stay false until the
2395	 * e1000_check_for_link establishes link for copper adapters
2396	 * ONLY
2397	 */
2398	switch (hw->media_type) {
2399	case e1000_media_type_copper:
2400		if (hw->mac_type == e1000_ce4100)
2401			hw->get_link_status = 1;
2402		if (hw->get_link_status) {
2403			e1000_check_for_link(hw);
2404			link_active = !hw->get_link_status;
2405		} else {
2406			link_active = true;
2407		}
2408		break;
2409	case e1000_media_type_fiber:
2410		e1000_check_for_link(hw);
2411		link_active = !!(er32(STATUS) & E1000_STATUS_LU);
2412		break;
2413	case e1000_media_type_internal_serdes:
2414		e1000_check_for_link(hw);
2415		link_active = hw->serdes_has_link;
2416		break;
2417	default:
2418		break;
2419	}
2420
2421	return link_active;
2422}
2423
2424/**
2425 * e1000_watchdog - work function
2426 * @work: work struct contained inside adapter struct
2427 **/
2428static void e1000_watchdog(struct work_struct *work)
2429{
2430	struct e1000_adapter *adapter = container_of(work,
2431						     struct e1000_adapter,
2432						     watchdog_task.work);
2433	struct e1000_hw *hw = &adapter->hw;
2434	struct net_device *netdev = adapter->netdev;
2435	struct e1000_tx_ring *txdr = adapter->tx_ring;
2436	u32 link, tctl;
2437
2438	link = e1000_has_link(adapter);
2439	if ((netif_carrier_ok(netdev)) && link)
2440		goto link_up;
2441
2442	if (link) {
2443		if (!netif_carrier_ok(netdev)) {
2444			u32 ctrl;
2445			/* update snapshot of PHY registers on LSC */
2446			e1000_get_speed_and_duplex(hw,
2447						   &adapter->link_speed,
2448						   &adapter->link_duplex);
2449
2450			ctrl = er32(CTRL);
2451			pr_info("%s NIC Link is Up %d Mbps %s, "
2452				"Flow Control: %s\n",
2453				netdev->name,
2454				adapter->link_speed,
2455				adapter->link_duplex == FULL_DUPLEX ?
2456				"Full Duplex" : "Half Duplex",
2457				((ctrl & E1000_CTRL_TFCE) && (ctrl &
2458				E1000_CTRL_RFCE)) ? "RX/TX" : ((ctrl &
2459				E1000_CTRL_RFCE) ? "RX" : ((ctrl &
2460				E1000_CTRL_TFCE) ? "TX" : "None")));
2461
2462			/* adjust timeout factor according to speed/duplex */
2463			adapter->tx_timeout_factor = 1;
2464			switch (adapter->link_speed) {
2465			case SPEED_10:
2466				adapter->tx_timeout_factor = 16;
2467				break;
2468			case SPEED_100:
2469				/* maybe add some timeout factor ? */
2470				break;
2471			}
2472
2473			/* enable transmits in the hardware */
2474			tctl = er32(TCTL);
2475			tctl |= E1000_TCTL_EN;
2476			ew32(TCTL, tctl);
2477
2478			netif_carrier_on(netdev);
2479			if (!test_bit(__E1000_DOWN, &adapter->flags))
2480				schedule_delayed_work(&adapter->phy_info_task,
2481						      2 * HZ);
2482			adapter->smartspeed = 0;
2483		}
2484	} else {
2485		if (netif_carrier_ok(netdev)) {
2486			adapter->link_speed = 0;
2487			adapter->link_duplex = 0;
2488			pr_info("%s NIC Link is Down\n",
2489				netdev->name);
2490			netif_carrier_off(netdev);
2491
2492			if (!test_bit(__E1000_DOWN, &adapter->flags))
2493				schedule_delayed_work(&adapter->phy_info_task,
2494						      2 * HZ);
2495		}
2496
2497		e1000_smartspeed(adapter);
2498	}
2499
2500link_up:
2501	e1000_update_stats(adapter);
2502
2503	hw->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
2504	adapter->tpt_old = adapter->stats.tpt;
2505	hw->collision_delta = adapter->stats.colc - adapter->colc_old;
2506	adapter->colc_old = adapter->stats.colc;
2507
2508	adapter->gorcl = adapter->stats.gorcl - adapter->gorcl_old;
2509	adapter->gorcl_old = adapter->stats.gorcl;
2510	adapter->gotcl = adapter->stats.gotcl - adapter->gotcl_old;
2511	adapter->gotcl_old = adapter->stats.gotcl;
2512
2513	e1000_update_adaptive(hw);
2514
2515	if (!netif_carrier_ok(netdev)) {
2516		if (E1000_DESC_UNUSED(txdr) + 1 < txdr->count) {
2517			/* We've lost link, so the controller stops DMA,
2518			 * but we've got queued Tx work that's never going
2519			 * to get done, so reset controller to flush Tx.
2520			 * (Do the reset outside of interrupt context).
2521			 */
2522			adapter->tx_timeout_count++;
2523			schedule_work(&adapter->reset_task);
2524			/* exit immediately since reset is imminent */
2525			return;
2526		}
2527	}
2528
2529	/* Simple mode for Interrupt Throttle Rate (ITR) */
2530	if (hw->mac_type >= e1000_82540 && adapter->itr_setting == 4) {
2531		/* Symmetric Tx/Rx gets a reduced ITR=2000;
2532		 * Total asymmetrical Tx or Rx gets ITR=8000;
2533		 * everyone else is between 2000-8000.
2534		 */
2535		u32 goc = (adapter->gotcl + adapter->gorcl) / 10000;
2536		u32 dif = (adapter->gotcl > adapter->gorcl ?
2537			    adapter->gotcl - adapter->gorcl :
2538			    adapter->gorcl - adapter->gotcl) / 10000;
2539		u32 itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000;
2540
2541		ew32(ITR, 1000000000 / (itr * 256));
2542	}
2543
2544	/* Cause software interrupt to ensure rx ring is cleaned */
2545	ew32(ICS, E1000_ICS_RXDMT0);
2546
2547	/* Force detection of hung controller every watchdog period */
2548	adapter->detect_tx_hung = true;
2549
2550	/* Reschedule the task */
2551	if (!test_bit(__E1000_DOWN, &adapter->flags))
2552		schedule_delayed_work(&adapter->watchdog_task, 2 * HZ);
2553}
2554
2555enum latency_range {
2556	lowest_latency = 0,
2557	low_latency = 1,
2558	bulk_latency = 2,
2559	latency_invalid = 255
2560};
2561
2562/**
2563 * e1000_update_itr - update the dynamic ITR value based on statistics
2564 * @adapter: pointer to adapter
2565 * @itr_setting: current adapter->itr
2566 * @packets: the number of packets during this measurement interval
2567 * @bytes: the number of bytes during this measurement interval
2568 *
2569 *      Stores a new ITR value based on packets and byte
2570 *      counts during the last interrupt.  The advantage of per interrupt
2571 *      computation is faster updates and more accurate ITR for the current
2572 *      traffic pattern.  Constants in this function were computed
2573 *      based on theoretical maximum wire speed and thresholds were set based
2574 *      on testing data as well as attempting to minimize response time
2575 *      while increasing bulk throughput.
2576 *      this functionality is controlled by the InterruptThrottleRate module
2577 *      parameter (see e1000_param.c)
2578 **/
2579static unsigned int e1000_update_itr(struct e1000_adapter *adapter,
2580				     u16 itr_setting, int packets, int bytes)
2581{
2582	unsigned int retval = itr_setting;
2583	struct e1000_hw *hw = &adapter->hw;
2584
2585	if (unlikely(hw->mac_type < e1000_82540))
2586		goto update_itr_done;
2587
2588	if (packets == 0)
2589		goto update_itr_done;
2590
2591	switch (itr_setting) {
2592	case lowest_latency:
2593		/* jumbo frames get bulk treatment*/
2594		if (bytes/packets > 8000)
2595			retval = bulk_latency;
2596		else if ((packets < 5) && (bytes > 512))
2597			retval = low_latency;
2598		break;
2599	case low_latency:  /* 50 usec aka 20000 ints/s */
2600		if (bytes > 10000) {
2601			/* jumbo frames need bulk latency setting */
2602			if (bytes/packets > 8000)
2603				retval = bulk_latency;
2604			else if ((packets < 10) || ((bytes/packets) > 1200))
2605				retval = bulk_latency;
2606			else if ((packets > 35))
2607				retval = lowest_latency;
2608		} else if (bytes/packets > 2000)
2609			retval = bulk_latency;
2610		else if (packets <= 2 && bytes < 512)
2611			retval = lowest_latency;
2612		break;
2613	case bulk_latency: /* 250 usec aka 4000 ints/s */
2614		if (bytes > 25000) {
2615			if (packets > 35)
2616				retval = low_latency;
2617		} else if (bytes < 6000) {
2618			retval = low_latency;
2619		}
2620		break;
2621	}
2622
2623update_itr_done:
2624	return retval;
2625}
2626
2627static void e1000_set_itr(struct e1000_adapter *adapter)
2628{
2629	struct e1000_hw *hw = &adapter->hw;
2630	u16 current_itr;
2631	u32 new_itr = adapter->itr;
2632
2633	if (unlikely(hw->mac_type < e1000_82540))
2634		return;
2635
2636	/* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2637	if (unlikely(adapter->link_speed != SPEED_1000)) {
 
2638		new_itr = 4000;
2639		goto set_itr_now;
2640	}
2641
2642	adapter->tx_itr = e1000_update_itr(adapter, adapter->tx_itr,
2643					   adapter->total_tx_packets,
2644					   adapter->total_tx_bytes);
2645	/* conservative mode (itr 3) eliminates the lowest_latency setting */
2646	if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
2647		adapter->tx_itr = low_latency;
2648
2649	adapter->rx_itr = e1000_update_itr(adapter, adapter->rx_itr,
2650					   adapter->total_rx_packets,
2651					   adapter->total_rx_bytes);
2652	/* conservative mode (itr 3) eliminates the lowest_latency setting */
2653	if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
2654		adapter->rx_itr = low_latency;
2655
2656	current_itr = max(adapter->rx_itr, adapter->tx_itr);
2657
2658	switch (current_itr) {
2659	/* counts and packets in update_itr are dependent on these numbers */
2660	case lowest_latency:
2661		new_itr = 70000;
2662		break;
2663	case low_latency:
2664		new_itr = 20000; /* aka hwitr = ~200 */
2665		break;
2666	case bulk_latency:
2667		new_itr = 4000;
2668		break;
2669	default:
2670		break;
2671	}
2672
2673set_itr_now:
2674	if (new_itr != adapter->itr) {
2675		/* this attempts to bias the interrupt rate towards Bulk
2676		 * by adding intermediate steps when interrupt rate is
2677		 * increasing
2678		 */
2679		new_itr = new_itr > adapter->itr ?
2680			  min(adapter->itr + (new_itr >> 2), new_itr) :
2681			  new_itr;
2682		adapter->itr = new_itr;
2683		ew32(ITR, 1000000000 / (new_itr * 256));
2684	}
2685}
2686
2687#define E1000_TX_FLAGS_CSUM		0x00000001
2688#define E1000_TX_FLAGS_VLAN		0x00000002
2689#define E1000_TX_FLAGS_TSO		0x00000004
2690#define E1000_TX_FLAGS_IPV4		0x00000008
2691#define E1000_TX_FLAGS_NO_FCS		0x00000010
2692#define E1000_TX_FLAGS_VLAN_MASK	0xffff0000
2693#define E1000_TX_FLAGS_VLAN_SHIFT	16
2694
2695static int e1000_tso(struct e1000_adapter *adapter,
2696		     struct e1000_tx_ring *tx_ring, struct sk_buff *skb,
2697		     __be16 protocol)
2698{
2699	struct e1000_context_desc *context_desc;
2700	struct e1000_tx_buffer *buffer_info;
2701	unsigned int i;
2702	u32 cmd_length = 0;
2703	u16 ipcse = 0, tucse, mss;
2704	u8 ipcss, ipcso, tucss, tucso, hdr_len;
2705
2706	if (skb_is_gso(skb)) {
2707		int err;
2708
2709		err = skb_cow_head(skb, 0);
2710		if (err < 0)
2711			return err;
2712
2713		hdr_len = skb_tcp_all_headers(skb);
2714		mss = skb_shinfo(skb)->gso_size;
2715		if (protocol == htons(ETH_P_IP)) {
2716			struct iphdr *iph = ip_hdr(skb);
2717			iph->tot_len = 0;
2718			iph->check = 0;
2719			tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
2720								 iph->daddr, 0,
2721								 IPPROTO_TCP,
2722								 0);
2723			cmd_length = E1000_TXD_CMD_IP;
2724			ipcse = skb_transport_offset(skb) - 1;
2725		} else if (skb_is_gso_v6(skb)) {
2726			tcp_v6_gso_csum_prep(skb);
 
 
 
 
2727			ipcse = 0;
2728		}
2729		ipcss = skb_network_offset(skb);
2730		ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
2731		tucss = skb_transport_offset(skb);
2732		tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
2733		tucse = 0;
2734
2735		cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
2736			       E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
2737
2738		i = tx_ring->next_to_use;
2739		context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2740		buffer_info = &tx_ring->buffer_info[i];
2741
2742		context_desc->lower_setup.ip_fields.ipcss  = ipcss;
2743		context_desc->lower_setup.ip_fields.ipcso  = ipcso;
2744		context_desc->lower_setup.ip_fields.ipcse  = cpu_to_le16(ipcse);
2745		context_desc->upper_setup.tcp_fields.tucss = tucss;
2746		context_desc->upper_setup.tcp_fields.tucso = tucso;
2747		context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
2748		context_desc->tcp_seg_setup.fields.mss     = cpu_to_le16(mss);
2749		context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
2750		context_desc->cmd_and_length = cpu_to_le32(cmd_length);
2751
2752		buffer_info->time_stamp = jiffies;
2753		buffer_info->next_to_watch = i;
2754
2755		if (++i == tx_ring->count)
2756			i = 0;
2757
2758		tx_ring->next_to_use = i;
2759
2760		return true;
2761	}
2762	return false;
2763}
2764
2765static bool e1000_tx_csum(struct e1000_adapter *adapter,
2766			  struct e1000_tx_ring *tx_ring, struct sk_buff *skb,
2767			  __be16 protocol)
2768{
2769	struct e1000_context_desc *context_desc;
2770	struct e1000_tx_buffer *buffer_info;
2771	unsigned int i;
2772	u8 css;
2773	u32 cmd_len = E1000_TXD_CMD_DEXT;
2774
2775	if (skb->ip_summed != CHECKSUM_PARTIAL)
2776		return false;
2777
2778	switch (protocol) {
2779	case cpu_to_be16(ETH_P_IP):
2780		if (ip_hdr(skb)->protocol == IPPROTO_TCP)
2781			cmd_len |= E1000_TXD_CMD_TCP;
2782		break;
2783	case cpu_to_be16(ETH_P_IPV6):
2784		/* XXX not handling all IPV6 headers */
2785		if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
2786			cmd_len |= E1000_TXD_CMD_TCP;
2787		break;
2788	default:
2789		if (unlikely(net_ratelimit()))
2790			e_warn(drv, "checksum_partial proto=%x!\n",
2791			       skb->protocol);
2792		break;
2793	}
2794
2795	css = skb_checksum_start_offset(skb);
2796
2797	i = tx_ring->next_to_use;
2798	buffer_info = &tx_ring->buffer_info[i];
2799	context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2800
2801	context_desc->lower_setup.ip_config = 0;
2802	context_desc->upper_setup.tcp_fields.tucss = css;
2803	context_desc->upper_setup.tcp_fields.tucso =
2804		css + skb->csum_offset;
2805	context_desc->upper_setup.tcp_fields.tucse = 0;
2806	context_desc->tcp_seg_setup.data = 0;
2807	context_desc->cmd_and_length = cpu_to_le32(cmd_len);
2808
2809	buffer_info->time_stamp = jiffies;
2810	buffer_info->next_to_watch = i;
2811
2812	if (unlikely(++i == tx_ring->count))
2813		i = 0;
2814
2815	tx_ring->next_to_use = i;
2816
2817	return true;
2818}
2819
2820#define E1000_MAX_TXD_PWR	12
2821#define E1000_MAX_DATA_PER_TXD	(1<<E1000_MAX_TXD_PWR)
2822
2823static int e1000_tx_map(struct e1000_adapter *adapter,
2824			struct e1000_tx_ring *tx_ring,
2825			struct sk_buff *skb, unsigned int first,
2826			unsigned int max_per_txd, unsigned int nr_frags,
2827			unsigned int mss)
2828{
2829	struct e1000_hw *hw = &adapter->hw;
2830	struct pci_dev *pdev = adapter->pdev;
2831	struct e1000_tx_buffer *buffer_info;
2832	unsigned int len = skb_headlen(skb);
2833	unsigned int offset = 0, size, count = 0, i;
2834	unsigned int f, bytecount, segs;
2835
2836	i = tx_ring->next_to_use;
2837
2838	while (len) {
2839		buffer_info = &tx_ring->buffer_info[i];
2840		size = min(len, max_per_txd);
2841		/* Workaround for Controller erratum --
2842		 * descriptor for non-tso packet in a linear SKB that follows a
2843		 * tso gets written back prematurely before the data is fully
2844		 * DMA'd to the controller
2845		 */
2846		if (!skb->data_len && tx_ring->last_tx_tso &&
2847		    !skb_is_gso(skb)) {
2848			tx_ring->last_tx_tso = false;
2849			size -= 4;
2850		}
2851
2852		/* Workaround for premature desc write-backs
2853		 * in TSO mode.  Append 4-byte sentinel desc
2854		 */
2855		if (unlikely(mss && !nr_frags && size == len && size > 8))
2856			size -= 4;
2857		/* work-around for errata 10 and it applies
2858		 * to all controllers in PCI-X mode
2859		 * The fix is to make sure that the first descriptor of a
2860		 * packet is smaller than 2048 - 16 - 16 (or 2016) bytes
2861		 */
2862		if (unlikely((hw->bus_type == e1000_bus_type_pcix) &&
2863			     (size > 2015) && count == 0))
2864			size = 2015;
2865
2866		/* Workaround for potential 82544 hang in PCI-X.  Avoid
2867		 * terminating buffers within evenly-aligned dwords.
2868		 */
2869		if (unlikely(adapter->pcix_82544 &&
2870		   !((unsigned long)(skb->data + offset + size - 1) & 4) &&
2871		   size > 4))
2872			size -= 4;
2873
2874		buffer_info->length = size;
2875		/* set time_stamp *before* dma to help avoid a possible race */
2876		buffer_info->time_stamp = jiffies;
2877		buffer_info->mapped_as_page = false;
2878		buffer_info->dma = dma_map_single(&pdev->dev,
2879						  skb->data + offset,
2880						  size, DMA_TO_DEVICE);
2881		if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2882			goto dma_error;
2883		buffer_info->next_to_watch = i;
2884
2885		len -= size;
2886		offset += size;
2887		count++;
2888		if (len) {
2889			i++;
2890			if (unlikely(i == tx_ring->count))
2891				i = 0;
2892		}
2893	}
2894
2895	for (f = 0; f < nr_frags; f++) {
2896		const skb_frag_t *frag = &skb_shinfo(skb)->frags[f];
2897
2898		len = skb_frag_size(frag);
2899		offset = 0;
2900
2901		while (len) {
2902			unsigned long bufend;
2903			i++;
2904			if (unlikely(i == tx_ring->count))
2905				i = 0;
2906
2907			buffer_info = &tx_ring->buffer_info[i];
2908			size = min(len, max_per_txd);
2909			/* Workaround for premature desc write-backs
2910			 * in TSO mode.  Append 4-byte sentinel desc
2911			 */
2912			if (unlikely(mss && f == (nr_frags-1) &&
2913			    size == len && size > 8))
2914				size -= 4;
2915			/* Workaround for potential 82544 hang in PCI-X.
2916			 * Avoid terminating buffers within evenly-aligned
2917			 * dwords.
2918			 */
2919			bufend = (unsigned long)
2920				page_to_phys(skb_frag_page(frag));
2921			bufend += offset + size - 1;
2922			if (unlikely(adapter->pcix_82544 &&
2923				     !(bufend & 4) &&
2924				     size > 4))
2925				size -= 4;
2926
2927			buffer_info->length = size;
2928			buffer_info->time_stamp = jiffies;
2929			buffer_info->mapped_as_page = true;
2930			buffer_info->dma = skb_frag_dma_map(&pdev->dev, frag,
2931						offset, size, DMA_TO_DEVICE);
2932			if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2933				goto dma_error;
2934			buffer_info->next_to_watch = i;
2935
2936			len -= size;
2937			offset += size;
2938			count++;
2939		}
2940	}
2941
2942	segs = skb_shinfo(skb)->gso_segs ?: 1;
2943	/* multiply data chunks by size of headers */
2944	bytecount = ((segs - 1) * skb_headlen(skb)) + skb->len;
2945
2946	tx_ring->buffer_info[i].skb = skb;
2947	tx_ring->buffer_info[i].segs = segs;
2948	tx_ring->buffer_info[i].bytecount = bytecount;
2949	tx_ring->buffer_info[first].next_to_watch = i;
2950
2951	return count;
2952
2953dma_error:
2954	dev_err(&pdev->dev, "TX DMA map failed\n");
2955	buffer_info->dma = 0;
2956	if (count)
2957		count--;
2958
2959	while (count--) {
2960		if (i == 0)
2961			i += tx_ring->count;
2962		i--;
2963		buffer_info = &tx_ring->buffer_info[i];
2964		e1000_unmap_and_free_tx_resource(adapter, buffer_info, 0);
2965	}
2966
2967	return 0;
2968}
2969
2970static void e1000_tx_queue(struct e1000_adapter *adapter,
2971			   struct e1000_tx_ring *tx_ring, int tx_flags,
2972			   int count)
2973{
2974	struct e1000_tx_desc *tx_desc = NULL;
2975	struct e1000_tx_buffer *buffer_info;
2976	u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
2977	unsigned int i;
2978
2979	if (likely(tx_flags & E1000_TX_FLAGS_TSO)) {
2980		txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
2981			     E1000_TXD_CMD_TSE;
2982		txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2983
2984		if (likely(tx_flags & E1000_TX_FLAGS_IPV4))
2985			txd_upper |= E1000_TXD_POPTS_IXSM << 8;
2986	}
2987
2988	if (likely(tx_flags & E1000_TX_FLAGS_CSUM)) {
2989		txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
2990		txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2991	}
2992
2993	if (unlikely(tx_flags & E1000_TX_FLAGS_VLAN)) {
2994		txd_lower |= E1000_TXD_CMD_VLE;
2995		txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
2996	}
2997
2998	if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
2999		txd_lower &= ~(E1000_TXD_CMD_IFCS);
3000
3001	i = tx_ring->next_to_use;
3002
3003	while (count--) {
3004		buffer_info = &tx_ring->buffer_info[i];
3005		tx_desc = E1000_TX_DESC(*tx_ring, i);
3006		tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
3007		tx_desc->lower.data =
3008			cpu_to_le32(txd_lower | buffer_info->length);
3009		tx_desc->upper.data = cpu_to_le32(txd_upper);
3010		if (unlikely(++i == tx_ring->count))
3011			i = 0;
3012	}
3013
3014	tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
3015
3016	/* txd_cmd re-enables FCS, so we'll re-disable it here as desired. */
3017	if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
3018		tx_desc->lower.data &= ~(cpu_to_le32(E1000_TXD_CMD_IFCS));
3019
3020	/* Force memory writes to complete before letting h/w
3021	 * know there are new descriptors to fetch.  (Only
3022	 * applicable for weak-ordered memory model archs,
3023	 * such as IA-64).
3024	 */
3025	dma_wmb();
3026
3027	tx_ring->next_to_use = i;
3028}
3029
3030/* 82547 workaround to avoid controller hang in half-duplex environment.
3031 * The workaround is to avoid queuing a large packet that would span
3032 * the internal Tx FIFO ring boundary by notifying the stack to resend
3033 * the packet at a later time.  This gives the Tx FIFO an opportunity to
3034 * flush all packets.  When that occurs, we reset the Tx FIFO pointers
3035 * to the beginning of the Tx FIFO.
3036 */
3037
3038#define E1000_FIFO_HDR			0x10
3039#define E1000_82547_PAD_LEN		0x3E0
3040
3041static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
3042				       struct sk_buff *skb)
3043{
3044	u32 fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head;
3045	u32 skb_fifo_len = skb->len + E1000_FIFO_HDR;
3046
3047	skb_fifo_len = ALIGN(skb_fifo_len, E1000_FIFO_HDR);
3048
3049	if (adapter->link_duplex != HALF_DUPLEX)
3050		goto no_fifo_stall_required;
3051
3052	if (atomic_read(&adapter->tx_fifo_stall))
3053		return 1;
3054
3055	if (skb_fifo_len >= (E1000_82547_PAD_LEN + fifo_space)) {
3056		atomic_set(&adapter->tx_fifo_stall, 1);
3057		return 1;
3058	}
3059
3060no_fifo_stall_required:
3061	adapter->tx_fifo_head += skb_fifo_len;
3062	if (adapter->tx_fifo_head >= adapter->tx_fifo_size)
3063		adapter->tx_fifo_head -= adapter->tx_fifo_size;
3064	return 0;
3065}
3066
3067static int __e1000_maybe_stop_tx(struct net_device *netdev, int size)
3068{
3069	struct e1000_adapter *adapter = netdev_priv(netdev);
3070	struct e1000_tx_ring *tx_ring = adapter->tx_ring;
3071
3072	netif_stop_queue(netdev);
3073	/* Herbert's original patch had:
3074	 *  smp_mb__after_netif_stop_queue();
3075	 * but since that doesn't exist yet, just open code it.
3076	 */
3077	smp_mb();
3078
3079	/* We need to check again in a case another CPU has just
3080	 * made room available.
3081	 */
3082	if (likely(E1000_DESC_UNUSED(tx_ring) < size))
3083		return -EBUSY;
3084
3085	/* A reprieve! */
3086	netif_start_queue(netdev);
3087	++adapter->restart_queue;
3088	return 0;
3089}
3090
3091static int e1000_maybe_stop_tx(struct net_device *netdev,
3092			       struct e1000_tx_ring *tx_ring, int size)
3093{
3094	if (likely(E1000_DESC_UNUSED(tx_ring) >= size))
3095		return 0;
3096	return __e1000_maybe_stop_tx(netdev, size);
3097}
3098
3099#define TXD_USE_COUNT(S, X) (((S) + ((1 << (X)) - 1)) >> (X))
3100static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
3101				    struct net_device *netdev)
3102{
3103	struct e1000_adapter *adapter = netdev_priv(netdev);
3104	struct e1000_hw *hw = &adapter->hw;
3105	struct e1000_tx_ring *tx_ring;
3106	unsigned int first, max_per_txd = E1000_MAX_DATA_PER_TXD;
3107	unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
3108	unsigned int tx_flags = 0;
3109	unsigned int len = skb_headlen(skb);
3110	unsigned int nr_frags;
3111	unsigned int mss;
3112	int count = 0;
3113	int tso;
3114	unsigned int f;
3115	__be16 protocol = vlan_get_protocol(skb);
3116
3117	/* This goes back to the question of how to logically map a Tx queue
3118	 * to a flow.  Right now, performance is impacted slightly negatively
3119	 * if using multiple Tx queues.  If the stack breaks away from a
3120	 * single qdisc implementation, we can look at this again.
3121	 */
3122	tx_ring = adapter->tx_ring;
3123
3124	/* On PCI/PCI-X HW, if packet size is less than ETH_ZLEN,
3125	 * packets may get corrupted during padding by HW.
3126	 * To WA this issue, pad all small packets manually.
3127	 */
3128	if (eth_skb_pad(skb))
3129		return NETDEV_TX_OK;
3130
3131	mss = skb_shinfo(skb)->gso_size;
3132	/* The controller does a simple calculation to
3133	 * make sure there is enough room in the FIFO before
3134	 * initiating the DMA for each buffer.  The calc is:
3135	 * 4 = ceil(buffer len/mss).  To make sure we don't
3136	 * overrun the FIFO, adjust the max buffer len if mss
3137	 * drops.
3138	 */
3139	if (mss) {
3140		u8 hdr_len;
3141		max_per_txd = min(mss << 2, max_per_txd);
3142		max_txd_pwr = fls(max_per_txd) - 1;
3143
3144		hdr_len = skb_tcp_all_headers(skb);
3145		if (skb->data_len && hdr_len == len) {
3146			switch (hw->mac_type) {
3147			case e1000_82544: {
3148				unsigned int pull_size;
3149
3150				/* Make sure we have room to chop off 4 bytes,
3151				 * and that the end alignment will work out to
3152				 * this hardware's requirements
3153				 * NOTE: this is a TSO only workaround
3154				 * if end byte alignment not correct move us
3155				 * into the next dword
3156				 */
3157				if ((unsigned long)(skb_tail_pointer(skb) - 1)
3158				    & 4)
3159					break;
 
3160				pull_size = min((unsigned int)4, skb->data_len);
3161				if (!__pskb_pull_tail(skb, pull_size)) {
3162					e_err(drv, "__pskb_pull_tail "
3163					      "failed.\n");
3164					dev_kfree_skb_any(skb);
3165					return NETDEV_TX_OK;
3166				}
3167				len = skb_headlen(skb);
3168				break;
3169			}
3170			default:
3171				/* do nothing */
3172				break;
3173			}
3174		}
3175	}
3176
3177	/* reserve a descriptor for the offload context */
3178	if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
3179		count++;
3180	count++;
3181
3182	/* Controller Erratum workaround */
3183	if (!skb->data_len && tx_ring->last_tx_tso && !skb_is_gso(skb))
3184		count++;
3185
3186	count += TXD_USE_COUNT(len, max_txd_pwr);
3187
3188	if (adapter->pcix_82544)
3189		count++;
3190
3191	/* work-around for errata 10 and it applies to all controllers
3192	 * in PCI-X mode, so add one more descriptor to the count
3193	 */
3194	if (unlikely((hw->bus_type == e1000_bus_type_pcix) &&
3195			(len > 2015)))
3196		count++;
3197
3198	nr_frags = skb_shinfo(skb)->nr_frags;
3199	for (f = 0; f < nr_frags; f++)
3200		count += TXD_USE_COUNT(skb_frag_size(&skb_shinfo(skb)->frags[f]),
3201				       max_txd_pwr);
3202	if (adapter->pcix_82544)
3203		count += nr_frags;
3204
3205	/* need: count + 2 desc gap to keep tail from touching
3206	 * head, otherwise try next time
3207	 */
3208	if (unlikely(e1000_maybe_stop_tx(netdev, tx_ring, count + 2)))
3209		return NETDEV_TX_BUSY;
3210
3211	if (unlikely((hw->mac_type == e1000_82547) &&
3212		     (e1000_82547_fifo_workaround(adapter, skb)))) {
3213		netif_stop_queue(netdev);
3214		if (!test_bit(__E1000_DOWN, &adapter->flags))
3215			schedule_delayed_work(&adapter->fifo_stall_task, 1);
3216		return NETDEV_TX_BUSY;
3217	}
3218
3219	if (skb_vlan_tag_present(skb)) {
3220		tx_flags |= E1000_TX_FLAGS_VLAN;
3221		tx_flags |= (skb_vlan_tag_get(skb) <<
3222			     E1000_TX_FLAGS_VLAN_SHIFT);
3223	}
3224
3225	first = tx_ring->next_to_use;
3226
3227	tso = e1000_tso(adapter, tx_ring, skb, protocol);
3228	if (tso < 0) {
3229		dev_kfree_skb_any(skb);
3230		return NETDEV_TX_OK;
3231	}
3232
3233	if (likely(tso)) {
3234		if (likely(hw->mac_type != e1000_82544))
3235			tx_ring->last_tx_tso = true;
3236		tx_flags |= E1000_TX_FLAGS_TSO;
3237	} else if (likely(e1000_tx_csum(adapter, tx_ring, skb, protocol)))
3238		tx_flags |= E1000_TX_FLAGS_CSUM;
3239
3240	if (protocol == htons(ETH_P_IP))
3241		tx_flags |= E1000_TX_FLAGS_IPV4;
3242
3243	if (unlikely(skb->no_fcs))
3244		tx_flags |= E1000_TX_FLAGS_NO_FCS;
3245
3246	count = e1000_tx_map(adapter, tx_ring, skb, first, max_per_txd,
3247			     nr_frags, mss);
3248
3249	if (count) {
3250		/* The descriptors needed is higher than other Intel drivers
3251		 * due to a number of workarounds.  The breakdown is below:
3252		 * Data descriptors: MAX_SKB_FRAGS + 1
3253		 * Context Descriptor: 1
3254		 * Keep head from touching tail: 2
3255		 * Workarounds: 3
3256		 */
3257		int desc_needed = MAX_SKB_FRAGS + 7;
3258
3259		netdev_sent_queue(netdev, skb->len);
3260		skb_tx_timestamp(skb);
3261
3262		e1000_tx_queue(adapter, tx_ring, tx_flags, count);
3263
3264		/* 82544 potentially requires twice as many data descriptors
3265		 * in order to guarantee buffers don't end on evenly-aligned
3266		 * dwords
3267		 */
3268		if (adapter->pcix_82544)
3269			desc_needed += MAX_SKB_FRAGS + 1;
3270
3271		/* Make sure there is space in the ring for the next send. */
3272		e1000_maybe_stop_tx(netdev, tx_ring, desc_needed);
3273
3274		if (!netdev_xmit_more() ||
3275		    netif_xmit_stopped(netdev_get_tx_queue(netdev, 0))) {
3276			writel(tx_ring->next_to_use, hw->hw_addr + tx_ring->tdt);
3277		}
3278	} else {
3279		dev_kfree_skb_any(skb);
3280		tx_ring->buffer_info[first].time_stamp = 0;
3281		tx_ring->next_to_use = first;
3282	}
3283
3284	return NETDEV_TX_OK;
3285}
3286
3287#define NUM_REGS 38 /* 1 based count */
3288static void e1000_regdump(struct e1000_adapter *adapter)
3289{
3290	struct e1000_hw *hw = &adapter->hw;
3291	u32 regs[NUM_REGS];
3292	u32 *regs_buff = regs;
3293	int i = 0;
3294
3295	static const char * const reg_name[] = {
3296		"CTRL",  "STATUS",
3297		"RCTL", "RDLEN", "RDH", "RDT", "RDTR",
3298		"TCTL", "TDBAL", "TDBAH", "TDLEN", "TDH", "TDT",
3299		"TIDV", "TXDCTL", "TADV", "TARC0",
3300		"TDBAL1", "TDBAH1", "TDLEN1", "TDH1", "TDT1",
3301		"TXDCTL1", "TARC1",
3302		"CTRL_EXT", "ERT", "RDBAL", "RDBAH",
3303		"TDFH", "TDFT", "TDFHS", "TDFTS", "TDFPC",
3304		"RDFH", "RDFT", "RDFHS", "RDFTS", "RDFPC"
3305	};
3306
3307	regs_buff[0]  = er32(CTRL);
3308	regs_buff[1]  = er32(STATUS);
3309
3310	regs_buff[2]  = er32(RCTL);
3311	regs_buff[3]  = er32(RDLEN);
3312	regs_buff[4]  = er32(RDH);
3313	regs_buff[5]  = er32(RDT);
3314	regs_buff[6]  = er32(RDTR);
3315
3316	regs_buff[7]  = er32(TCTL);
3317	regs_buff[8]  = er32(TDBAL);
3318	regs_buff[9]  = er32(TDBAH);
3319	regs_buff[10] = er32(TDLEN);
3320	regs_buff[11] = er32(TDH);
3321	regs_buff[12] = er32(TDT);
3322	regs_buff[13] = er32(TIDV);
3323	regs_buff[14] = er32(TXDCTL);
3324	regs_buff[15] = er32(TADV);
3325	regs_buff[16] = er32(TARC0);
3326
3327	regs_buff[17] = er32(TDBAL1);
3328	regs_buff[18] = er32(TDBAH1);
3329	regs_buff[19] = er32(TDLEN1);
3330	regs_buff[20] = er32(TDH1);
3331	regs_buff[21] = er32(TDT1);
3332	regs_buff[22] = er32(TXDCTL1);
3333	regs_buff[23] = er32(TARC1);
3334	regs_buff[24] = er32(CTRL_EXT);
3335	regs_buff[25] = er32(ERT);
3336	regs_buff[26] = er32(RDBAL0);
3337	regs_buff[27] = er32(RDBAH0);
3338	regs_buff[28] = er32(TDFH);
3339	regs_buff[29] = er32(TDFT);
3340	regs_buff[30] = er32(TDFHS);
3341	regs_buff[31] = er32(TDFTS);
3342	regs_buff[32] = er32(TDFPC);
3343	regs_buff[33] = er32(RDFH);
3344	regs_buff[34] = er32(RDFT);
3345	regs_buff[35] = er32(RDFHS);
3346	regs_buff[36] = er32(RDFTS);
3347	regs_buff[37] = er32(RDFPC);
3348
3349	pr_info("Register dump\n");
3350	for (i = 0; i < NUM_REGS; i++)
3351		pr_info("%-15s  %08x\n", reg_name[i], regs_buff[i]);
3352}
3353
3354/*
3355 * e1000_dump: Print registers, tx ring and rx ring
3356 */
3357static void e1000_dump(struct e1000_adapter *adapter)
3358{
3359	/* this code doesn't handle multiple rings */
3360	struct e1000_tx_ring *tx_ring = adapter->tx_ring;
3361	struct e1000_rx_ring *rx_ring = adapter->rx_ring;
3362	int i;
3363
3364	if (!netif_msg_hw(adapter))
3365		return;
3366
3367	/* Print Registers */
3368	e1000_regdump(adapter);
3369
3370	/* transmit dump */
3371	pr_info("TX Desc ring0 dump\n");
3372
3373	/* Transmit Descriptor Formats - DEXT[29] is 0 (Legacy) or 1 (Extended)
3374	 *
3375	 * Legacy Transmit Descriptor
3376	 *   +--------------------------------------------------------------+
3377	 * 0 |         Buffer Address [63:0] (Reserved on Write Back)       |
3378	 *   +--------------------------------------------------------------+
3379	 * 8 | Special  |    CSS     | Status |  CMD    |  CSO   |  Length  |
3380	 *   +--------------------------------------------------------------+
3381	 *   63       48 47        36 35    32 31     24 23    16 15        0
3382	 *
3383	 * Extended Context Descriptor (DTYP=0x0) for TSO or checksum offload
3384	 *   63      48 47    40 39       32 31             16 15    8 7      0
3385	 *   +----------------------------------------------------------------+
3386	 * 0 |  TUCSE  | TUCS0  |   TUCSS   |     IPCSE       | IPCS0 | IPCSS |
3387	 *   +----------------------------------------------------------------+
3388	 * 8 |   MSS   | HDRLEN | RSV | STA | TUCMD | DTYP |      PAYLEN      |
3389	 *   +----------------------------------------------------------------+
3390	 *   63      48 47    40 39 36 35 32 31   24 23  20 19                0
3391	 *
3392	 * Extended Data Descriptor (DTYP=0x1)
3393	 *   +----------------------------------------------------------------+
3394	 * 0 |                     Buffer Address [63:0]                      |
3395	 *   +----------------------------------------------------------------+
3396	 * 8 | VLAN tag |  POPTS  | Rsvd | Status | Command | DTYP |  DTALEN  |
3397	 *   +----------------------------------------------------------------+
3398	 *   63       48 47     40 39  36 35    32 31     24 23  20 19        0
3399	 */
3400	pr_info("Tc[desc]     [Ce CoCsIpceCoS] [MssHlRSCm0Plen] [bi->dma       ] leng  ntw timestmp         bi->skb\n");
3401	pr_info("Td[desc]     [address 63:0  ] [VlaPoRSCm1Dlen] [bi->dma       ] leng  ntw timestmp         bi->skb\n");
3402
3403	if (!netif_msg_tx_done(adapter))
3404		goto rx_ring_summary;
3405
3406	for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
3407		struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*tx_ring, i);
3408		struct e1000_tx_buffer *buffer_info = &tx_ring->buffer_info[i];
3409		struct my_u { __le64 a; __le64 b; };
3410		struct my_u *u = (struct my_u *)tx_desc;
3411		const char *type;
3412
3413		if (i == tx_ring->next_to_use && i == tx_ring->next_to_clean)
3414			type = "NTC/U";
3415		else if (i == tx_ring->next_to_use)
3416			type = "NTU";
3417		else if (i == tx_ring->next_to_clean)
3418			type = "NTC";
3419		else
3420			type = "";
3421
3422		pr_info("T%c[0x%03X]    %016llX %016llX %016llX %04X  %3X %016llX %p %s\n",
3423			((le64_to_cpu(u->b) & (1<<20)) ? 'd' : 'c'), i,
3424			le64_to_cpu(u->a), le64_to_cpu(u->b),
3425			(u64)buffer_info->dma, buffer_info->length,
3426			buffer_info->next_to_watch,
3427			(u64)buffer_info->time_stamp, buffer_info->skb, type);
3428	}
3429
3430rx_ring_summary:
3431	/* receive dump */
3432	pr_info("\nRX Desc ring dump\n");
3433
3434	/* Legacy Receive Descriptor Format
3435	 *
3436	 * +-----------------------------------------------------+
3437	 * |                Buffer Address [63:0]                |
3438	 * +-----------------------------------------------------+
3439	 * | VLAN Tag | Errors | Status 0 | Packet csum | Length |
3440	 * +-----------------------------------------------------+
3441	 * 63       48 47    40 39      32 31         16 15      0
3442	 */
3443	pr_info("R[desc]      [address 63:0  ] [vl er S cks ln] [bi->dma       ] [bi->skb]\n");
3444
3445	if (!netif_msg_rx_status(adapter))
3446		goto exit;
3447
3448	for (i = 0; rx_ring->desc && (i < rx_ring->count); i++) {
3449		struct e1000_rx_desc *rx_desc = E1000_RX_DESC(*rx_ring, i);
3450		struct e1000_rx_buffer *buffer_info = &rx_ring->buffer_info[i];
3451		struct my_u { __le64 a; __le64 b; };
3452		struct my_u *u = (struct my_u *)rx_desc;
3453		const char *type;
3454
3455		if (i == rx_ring->next_to_use)
3456			type = "NTU";
3457		else if (i == rx_ring->next_to_clean)
3458			type = "NTC";
3459		else
3460			type = "";
3461
3462		pr_info("R[0x%03X]     %016llX %016llX %016llX %p %s\n",
3463			i, le64_to_cpu(u->a), le64_to_cpu(u->b),
3464			(u64)buffer_info->dma, buffer_info->rxbuf.data, type);
3465	} /* for */
3466
3467	/* dump the descriptor caches */
3468	/* rx */
3469	pr_info("Rx descriptor cache in 64bit format\n");
3470	for (i = 0x6000; i <= 0x63FF ; i += 0x10) {
3471		pr_info("R%04X: %08X|%08X %08X|%08X\n",
3472			i,
3473			readl(adapter->hw.hw_addr + i+4),
3474			readl(adapter->hw.hw_addr + i),
3475			readl(adapter->hw.hw_addr + i+12),
3476			readl(adapter->hw.hw_addr + i+8));
3477	}
3478	/* tx */
3479	pr_info("Tx descriptor cache in 64bit format\n");
3480	for (i = 0x7000; i <= 0x73FF ; i += 0x10) {
3481		pr_info("T%04X: %08X|%08X %08X|%08X\n",
3482			i,
3483			readl(adapter->hw.hw_addr + i+4),
3484			readl(adapter->hw.hw_addr + i),
3485			readl(adapter->hw.hw_addr + i+12),
3486			readl(adapter->hw.hw_addr + i+8));
3487	}
3488exit:
3489	return;
3490}
3491
3492/**
3493 * e1000_tx_timeout - Respond to a Tx Hang
3494 * @netdev: network interface device structure
3495 * @txqueue: number of the Tx queue that hung (unused)
3496 **/
3497static void e1000_tx_timeout(struct net_device *netdev, unsigned int __always_unused txqueue)
3498{
3499	struct e1000_adapter *adapter = netdev_priv(netdev);
3500
3501	/* Do the reset outside of interrupt context */
3502	adapter->tx_timeout_count++;
3503	schedule_work(&adapter->reset_task);
3504}
3505
3506static void e1000_reset_task(struct work_struct *work)
3507{
3508	struct e1000_adapter *adapter =
3509		container_of(work, struct e1000_adapter, reset_task);
3510
3511	e_err(drv, "Reset adapter\n");
3512	rtnl_lock();
3513	e1000_reinit_locked(adapter);
3514	rtnl_unlock();
3515}
3516
3517/**
3518 * e1000_change_mtu - Change the Maximum Transfer Unit
3519 * @netdev: network interface device structure
3520 * @new_mtu: new value for maximum frame size
3521 *
3522 * Returns 0 on success, negative on failure
3523 **/
3524static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
3525{
3526	struct e1000_adapter *adapter = netdev_priv(netdev);
3527	struct e1000_hw *hw = &adapter->hw;
3528	int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
3529
3530	/* Adapter-specific max frame size limits. */
3531	switch (hw->mac_type) {
3532	case e1000_undefined ... e1000_82542_rev2_1:
3533		if (max_frame > (ETH_FRAME_LEN + ETH_FCS_LEN)) {
3534			e_err(probe, "Jumbo Frames not supported.\n");
3535			return -EINVAL;
3536		}
3537		break;
3538	default:
3539		/* Capable of supporting up to MAX_JUMBO_FRAME_SIZE limit. */
3540		break;
3541	}
3542
3543	while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
3544		msleep(1);
3545	/* e1000_down has a dependency on max_frame_size */
3546	hw->max_frame_size = max_frame;
3547	if (netif_running(netdev)) {
3548		/* prevent buffers from being reallocated */
3549		adapter->alloc_rx_buf = e1000_alloc_dummy_rx_buffers;
3550		e1000_down(adapter);
3551	}
3552
3553	/* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
3554	 * means we reserve 2 more, this pushes us to allocate from the next
3555	 * larger slab size.
3556	 * i.e. RXBUFFER_2048 --> size-4096 slab
3557	 * however with the new *_jumbo_rx* routines, jumbo receives will use
3558	 * fragmented skbs
3559	 */
3560
3561	if (max_frame <= E1000_RXBUFFER_2048)
3562		adapter->rx_buffer_len = E1000_RXBUFFER_2048;
3563	else
3564#if (PAGE_SIZE >= E1000_RXBUFFER_16384)
3565		adapter->rx_buffer_len = E1000_RXBUFFER_16384;
3566#elif (PAGE_SIZE >= E1000_RXBUFFER_4096)
3567		adapter->rx_buffer_len = PAGE_SIZE;
3568#endif
3569
3570	/* adjust allocation if LPE protects us, and we aren't using SBP */
3571	if (!hw->tbi_compatibility_on &&
3572	    ((max_frame == (ETH_FRAME_LEN + ETH_FCS_LEN)) ||
3573	     (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE)))
3574		adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
3575
3576	netdev_dbg(netdev, "changing MTU from %d to %d\n",
3577		   netdev->mtu, new_mtu);
3578	WRITE_ONCE(netdev->mtu, new_mtu);
3579
3580	if (netif_running(netdev))
3581		e1000_up(adapter);
3582	else
3583		e1000_reset(adapter);
3584
3585	clear_bit(__E1000_RESETTING, &adapter->flags);
3586
3587	return 0;
3588}
3589
3590/**
3591 * e1000_update_stats - Update the board statistics counters
3592 * @adapter: board private structure
3593 **/
3594void e1000_update_stats(struct e1000_adapter *adapter)
3595{
3596	struct net_device *netdev = adapter->netdev;
3597	struct e1000_hw *hw = &adapter->hw;
3598	struct pci_dev *pdev = adapter->pdev;
3599	unsigned long flags;
3600	u16 phy_tmp;
3601
3602#define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
3603
3604	/* Prevent stats update while adapter is being reset, or if the pci
3605	 * connection is down.
3606	 */
3607	if (adapter->link_speed == 0)
3608		return;
3609	if (pci_channel_offline(pdev))
3610		return;
3611
3612	spin_lock_irqsave(&adapter->stats_lock, flags);
3613
3614	/* these counters are modified from e1000_tbi_adjust_stats,
3615	 * called from the interrupt context, so they must only
3616	 * be written while holding adapter->stats_lock
3617	 */
3618
3619	adapter->stats.crcerrs += er32(CRCERRS);
3620	adapter->stats.gprc += er32(GPRC);
3621	adapter->stats.gorcl += er32(GORCL);
3622	adapter->stats.gorch += er32(GORCH);
3623	adapter->stats.bprc += er32(BPRC);
3624	adapter->stats.mprc += er32(MPRC);
3625	adapter->stats.roc += er32(ROC);
3626
3627	adapter->stats.prc64 += er32(PRC64);
3628	adapter->stats.prc127 += er32(PRC127);
3629	adapter->stats.prc255 += er32(PRC255);
3630	adapter->stats.prc511 += er32(PRC511);
3631	adapter->stats.prc1023 += er32(PRC1023);
3632	adapter->stats.prc1522 += er32(PRC1522);
3633
3634	adapter->stats.symerrs += er32(SYMERRS);
3635	adapter->stats.mpc += er32(MPC);
3636	adapter->stats.scc += er32(SCC);
3637	adapter->stats.ecol += er32(ECOL);
3638	adapter->stats.mcc += er32(MCC);
3639	adapter->stats.latecol += er32(LATECOL);
3640	adapter->stats.dc += er32(DC);
3641	adapter->stats.sec += er32(SEC);
3642	adapter->stats.rlec += er32(RLEC);
3643	adapter->stats.xonrxc += er32(XONRXC);
3644	adapter->stats.xontxc += er32(XONTXC);
3645	adapter->stats.xoffrxc += er32(XOFFRXC);
3646	adapter->stats.xofftxc += er32(XOFFTXC);
3647	adapter->stats.fcruc += er32(FCRUC);
3648	adapter->stats.gptc += er32(GPTC);
3649	adapter->stats.gotcl += er32(GOTCL);
3650	adapter->stats.gotch += er32(GOTCH);
3651	adapter->stats.rnbc += er32(RNBC);
3652	adapter->stats.ruc += er32(RUC);
3653	adapter->stats.rfc += er32(RFC);
3654	adapter->stats.rjc += er32(RJC);
3655	adapter->stats.torl += er32(TORL);
3656	adapter->stats.torh += er32(TORH);
3657	adapter->stats.totl += er32(TOTL);
3658	adapter->stats.toth += er32(TOTH);
3659	adapter->stats.tpr += er32(TPR);
3660
3661	adapter->stats.ptc64 += er32(PTC64);
3662	adapter->stats.ptc127 += er32(PTC127);
3663	adapter->stats.ptc255 += er32(PTC255);
3664	adapter->stats.ptc511 += er32(PTC511);
3665	adapter->stats.ptc1023 += er32(PTC1023);
3666	adapter->stats.ptc1522 += er32(PTC1522);
3667
3668	adapter->stats.mptc += er32(MPTC);
3669	adapter->stats.bptc += er32(BPTC);
3670
3671	/* used for adaptive IFS */
3672
3673	hw->tx_packet_delta = er32(TPT);
3674	adapter->stats.tpt += hw->tx_packet_delta;
3675	hw->collision_delta = er32(COLC);
3676	adapter->stats.colc += hw->collision_delta;
3677
3678	if (hw->mac_type >= e1000_82543) {
3679		adapter->stats.algnerrc += er32(ALGNERRC);
3680		adapter->stats.rxerrc += er32(RXERRC);
3681		adapter->stats.tncrs += er32(TNCRS);
3682		adapter->stats.cexterr += er32(CEXTERR);
3683		adapter->stats.tsctc += er32(TSCTC);
3684		adapter->stats.tsctfc += er32(TSCTFC);
3685	}
3686
3687	/* Fill out the OS statistics structure */
3688	netdev->stats.multicast = adapter->stats.mprc;
3689	netdev->stats.collisions = adapter->stats.colc;
3690
3691	/* Rx Errors */
3692
3693	/* RLEC on some newer hardware can be incorrect so build
3694	 * our own version based on RUC and ROC
3695	 */
3696	netdev->stats.rx_errors = adapter->stats.rxerrc +
3697		adapter->stats.crcerrs + adapter->stats.algnerrc +
3698		adapter->stats.ruc + adapter->stats.roc +
3699		adapter->stats.cexterr;
3700	adapter->stats.rlerrc = adapter->stats.ruc + adapter->stats.roc;
3701	netdev->stats.rx_length_errors = adapter->stats.rlerrc;
3702	netdev->stats.rx_crc_errors = adapter->stats.crcerrs;
3703	netdev->stats.rx_frame_errors = adapter->stats.algnerrc;
3704	netdev->stats.rx_missed_errors = adapter->stats.mpc;
3705
3706	/* Tx Errors */
3707	adapter->stats.txerrc = adapter->stats.ecol + adapter->stats.latecol;
3708	netdev->stats.tx_errors = adapter->stats.txerrc;
3709	netdev->stats.tx_aborted_errors = adapter->stats.ecol;
3710	netdev->stats.tx_window_errors = adapter->stats.latecol;
3711	netdev->stats.tx_carrier_errors = adapter->stats.tncrs;
3712	if (hw->bad_tx_carr_stats_fd &&
3713	    adapter->link_duplex == FULL_DUPLEX) {
3714		netdev->stats.tx_carrier_errors = 0;
3715		adapter->stats.tncrs = 0;
3716	}
3717
3718	/* Tx Dropped needs to be maintained elsewhere */
3719
3720	/* Phy Stats */
3721	if (hw->media_type == e1000_media_type_copper) {
3722		if ((adapter->link_speed == SPEED_1000) &&
3723		   (!e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
3724			phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
3725			adapter->phy_stats.idle_errors += phy_tmp;
3726		}
3727
3728		if ((hw->mac_type <= e1000_82546) &&
3729		   (hw->phy_type == e1000_phy_m88) &&
3730		   !e1000_read_phy_reg(hw, M88E1000_RX_ERR_CNTR, &phy_tmp))
3731			adapter->phy_stats.receive_errors += phy_tmp;
3732	}
3733
3734	/* Management Stats */
3735	if (hw->has_smbus) {
3736		adapter->stats.mgptc += er32(MGTPTC);
3737		adapter->stats.mgprc += er32(MGTPRC);
3738		adapter->stats.mgpdc += er32(MGTPDC);
3739	}
3740
3741	spin_unlock_irqrestore(&adapter->stats_lock, flags);
3742}
3743
3744/**
3745 * e1000_intr - Interrupt Handler
3746 * @irq: interrupt number
3747 * @data: pointer to a network interface device structure
3748 **/
3749static irqreturn_t e1000_intr(int irq, void *data)
3750{
3751	struct net_device *netdev = data;
3752	struct e1000_adapter *adapter = netdev_priv(netdev);
3753	struct e1000_hw *hw = &adapter->hw;
3754	u32 icr = er32(ICR);
3755
3756	if (unlikely((!icr)))
3757		return IRQ_NONE;  /* Not our interrupt */
3758
3759	/* we might have caused the interrupt, but the above
3760	 * read cleared it, and just in case the driver is
3761	 * down there is nothing to do so return handled
3762	 */
3763	if (unlikely(test_bit(__E1000_DOWN, &adapter->flags)))
3764		return IRQ_HANDLED;
3765
3766	if (unlikely(icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))) {
3767		hw->get_link_status = 1;
3768		/* guard against interrupt when we're going down */
3769		if (!test_bit(__E1000_DOWN, &adapter->flags))
3770			schedule_delayed_work(&adapter->watchdog_task, 1);
3771	}
3772
3773	/* disable interrupts, without the synchronize_irq bit */
3774	ew32(IMC, ~0);
3775	E1000_WRITE_FLUSH();
3776
3777	if (likely(napi_schedule_prep(&adapter->napi))) {
3778		adapter->total_tx_bytes = 0;
3779		adapter->total_tx_packets = 0;
3780		adapter->total_rx_bytes = 0;
3781		adapter->total_rx_packets = 0;
3782		__napi_schedule(&adapter->napi);
3783	} else {
3784		/* this really should not happen! if it does it is basically a
3785		 * bug, but not a hard error, so enable ints and continue
3786		 */
3787		if (!test_bit(__E1000_DOWN, &adapter->flags))
3788			e1000_irq_enable(adapter);
3789	}
3790
3791	return IRQ_HANDLED;
3792}
3793
3794/**
3795 * e1000_clean - NAPI Rx polling callback
3796 * @napi: napi struct containing references to driver info
3797 * @budget: budget given to driver for receive packets
3798 **/
3799static int e1000_clean(struct napi_struct *napi, int budget)
3800{
3801	struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter,
3802						     napi);
3803	int tx_clean_complete = 0, work_done = 0;
3804
3805	tx_clean_complete = e1000_clean_tx_irq(adapter, &adapter->tx_ring[0]);
3806
3807	adapter->clean_rx(adapter, &adapter->rx_ring[0], &work_done, budget);
3808
3809	if (!tx_clean_complete || work_done == budget)
3810		return budget;
3811
3812	/* Exit the polling mode, but don't re-enable interrupts if stack might
3813	 * poll us due to busy-polling
3814	 */
3815	if (likely(napi_complete_done(napi, work_done))) {
3816		if (likely(adapter->itr_setting & 3))
3817			e1000_set_itr(adapter);
3818		if (!test_bit(__E1000_DOWN, &adapter->flags))
3819			e1000_irq_enable(adapter);
3820	}
3821
3822	return work_done;
3823}
3824
3825/**
3826 * e1000_clean_tx_irq - Reclaim resources after transmit completes
3827 * @adapter: board private structure
3828 * @tx_ring: ring to clean
3829 **/
3830static bool e1000_clean_tx_irq(struct e1000_adapter *adapter,
3831			       struct e1000_tx_ring *tx_ring)
3832{
3833	struct e1000_hw *hw = &adapter->hw;
3834	struct net_device *netdev = adapter->netdev;
3835	struct e1000_tx_desc *tx_desc, *eop_desc;
3836	struct e1000_tx_buffer *buffer_info;
3837	unsigned int i, eop;
3838	unsigned int count = 0;
3839	unsigned int total_tx_bytes = 0, total_tx_packets = 0;
3840	unsigned int bytes_compl = 0, pkts_compl = 0;
3841
3842	i = tx_ring->next_to_clean;
3843	eop = tx_ring->buffer_info[i].next_to_watch;
3844	eop_desc = E1000_TX_DESC(*tx_ring, eop);
3845
3846	while ((eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) &&
3847	       (count < tx_ring->count)) {
3848		bool cleaned = false;
3849		dma_rmb();	/* read buffer_info after eop_desc */
3850		for ( ; !cleaned; count++) {
3851			tx_desc = E1000_TX_DESC(*tx_ring, i);
3852			buffer_info = &tx_ring->buffer_info[i];
3853			cleaned = (i == eop);
3854
3855			if (cleaned) {
3856				total_tx_packets += buffer_info->segs;
3857				total_tx_bytes += buffer_info->bytecount;
3858				if (buffer_info->skb) {
3859					bytes_compl += buffer_info->skb->len;
3860					pkts_compl++;
3861				}
3862
3863			}
3864			e1000_unmap_and_free_tx_resource(adapter, buffer_info,
3865							 64);
3866			tx_desc->upper.data = 0;
3867
3868			if (unlikely(++i == tx_ring->count))
3869				i = 0;
3870		}
3871
3872		eop = tx_ring->buffer_info[i].next_to_watch;
3873		eop_desc = E1000_TX_DESC(*tx_ring, eop);
3874	}
3875
3876	/* Synchronize with E1000_DESC_UNUSED called from e1000_xmit_frame,
3877	 * which will reuse the cleaned buffers.
3878	 */
3879	smp_store_release(&tx_ring->next_to_clean, i);
3880
3881	netdev_completed_queue(netdev, pkts_compl, bytes_compl);
3882
3883#define TX_WAKE_THRESHOLD 32
3884	if (unlikely(count && netif_carrier_ok(netdev) &&
3885		     E1000_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD)) {
3886		/* Make sure that anybody stopping the queue after this
3887		 * sees the new next_to_clean.
3888		 */
3889		smp_mb();
3890
3891		if (netif_queue_stopped(netdev) &&
3892		    !(test_bit(__E1000_DOWN, &adapter->flags))) {
3893			netif_wake_queue(netdev);
3894			++adapter->restart_queue;
3895		}
3896	}
3897
3898	if (adapter->detect_tx_hung) {
3899		/* Detect a transmit hang in hardware, this serializes the
3900		 * check with the clearing of time_stamp and movement of i
3901		 */
3902		adapter->detect_tx_hung = false;
3903		if (tx_ring->buffer_info[eop].time_stamp &&
3904		    time_after(jiffies, tx_ring->buffer_info[eop].time_stamp +
3905			       (adapter->tx_timeout_factor * HZ)) &&
3906		    !(er32(STATUS) & E1000_STATUS_TXOFF)) {
3907
3908			/* detected Tx unit hang */
3909			e_err(drv, "Detected Tx Unit Hang\n"
3910			      "  Tx Queue             <%lu>\n"
3911			      "  TDH                  <%x>\n"
3912			      "  TDT                  <%x>\n"
3913			      "  next_to_use          <%x>\n"
3914			      "  next_to_clean        <%x>\n"
3915			      "buffer_info[next_to_clean]\n"
3916			      "  time_stamp           <%lx>\n"
3917			      "  next_to_watch        <%x>\n"
3918			      "  jiffies              <%lx>\n"
3919			      "  next_to_watch.status <%x>\n",
3920				(unsigned long)(tx_ring - adapter->tx_ring),
3921				readl(hw->hw_addr + tx_ring->tdh),
3922				readl(hw->hw_addr + tx_ring->tdt),
3923				tx_ring->next_to_use,
3924				tx_ring->next_to_clean,
3925				tx_ring->buffer_info[eop].time_stamp,
3926				eop,
3927				jiffies,
3928				eop_desc->upper.fields.status);
3929			e1000_dump(adapter);
3930			netif_stop_queue(netdev);
3931		}
3932	}
3933	adapter->total_tx_bytes += total_tx_bytes;
3934	adapter->total_tx_packets += total_tx_packets;
3935	netdev->stats.tx_bytes += total_tx_bytes;
3936	netdev->stats.tx_packets += total_tx_packets;
3937	return count < tx_ring->count;
3938}
3939
3940/**
3941 * e1000_rx_checksum - Receive Checksum Offload for 82543
3942 * @adapter:     board private structure
3943 * @status_err:  receive descriptor status and error fields
3944 * @csum:        receive descriptor csum field
3945 * @skb:         socket buffer with received data
3946 **/
3947static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
3948			      u32 csum, struct sk_buff *skb)
3949{
3950	struct e1000_hw *hw = &adapter->hw;
3951	u16 status = (u16)status_err;
3952	u8 errors = (u8)(status_err >> 24);
3953
3954	skb_checksum_none_assert(skb);
3955
3956	/* 82543 or newer only */
3957	if (unlikely(hw->mac_type < e1000_82543))
3958		return;
3959	/* Ignore Checksum bit is set */
3960	if (unlikely(status & E1000_RXD_STAT_IXSM))
3961		return;
3962	/* TCP/UDP checksum error bit is set */
3963	if (unlikely(errors & E1000_RXD_ERR_TCPE)) {
3964		/* let the stack verify checksum errors */
3965		adapter->hw_csum_err++;
3966		return;
3967	}
3968	/* TCP/UDP Checksum has not been calculated */
3969	if (!(status & E1000_RXD_STAT_TCPCS))
3970		return;
3971
3972	/* It must be a TCP or UDP packet with a valid checksum */
3973	if (likely(status & E1000_RXD_STAT_TCPCS)) {
3974		/* TCP checksum is good */
3975		skb->ip_summed = CHECKSUM_UNNECESSARY;
3976	}
3977	adapter->hw_csum_good++;
3978}
3979
3980/**
3981 * e1000_consume_page - helper function for jumbo Rx path
3982 * @bi: software descriptor shadow data
3983 * @skb: skb being modified
3984 * @length: length of data being added
3985 **/
3986static void e1000_consume_page(struct e1000_rx_buffer *bi, struct sk_buff *skb,
3987			       u16 length)
3988{
3989	bi->rxbuf.page = NULL;
3990	skb->len += length;
3991	skb->data_len += length;
3992	skb->truesize += PAGE_SIZE;
3993}
3994
3995/**
3996 * e1000_receive_skb - helper function to handle rx indications
3997 * @adapter: board private structure
3998 * @status: descriptor status field as written by hardware
3999 * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
4000 * @skb: pointer to sk_buff to be indicated to stack
4001 */
4002static void e1000_receive_skb(struct e1000_adapter *adapter, u8 status,
4003			      __le16 vlan, struct sk_buff *skb)
4004{
4005	skb->protocol = eth_type_trans(skb, adapter->netdev);
4006
4007	if (status & E1000_RXD_STAT_VP) {
4008		u16 vid = le16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK;
4009
4010		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
4011	}
4012	napi_gro_receive(&adapter->napi, skb);
4013}
4014
4015/**
4016 * e1000_tbi_adjust_stats
4017 * @hw: Struct containing variables accessed by shared code
4018 * @stats: point to stats struct
4019 * @frame_len: The length of the frame in question
4020 * @mac_addr: The Ethernet destination address of the frame in question
4021 *
4022 * Adjusts the statistic counters when a frame is accepted by TBI_ACCEPT
4023 */
4024static void e1000_tbi_adjust_stats(struct e1000_hw *hw,
4025				   struct e1000_hw_stats *stats,
4026				   u32 frame_len, const u8 *mac_addr)
4027{
4028	u64 carry_bit;
4029
4030	/* First adjust the frame length. */
4031	frame_len--;
4032	/* We need to adjust the statistics counters, since the hardware
4033	 * counters overcount this packet as a CRC error and undercount
4034	 * the packet as a good packet
4035	 */
4036	/* This packet should not be counted as a CRC error. */
4037	stats->crcerrs--;
4038	/* This packet does count as a Good Packet Received. */
4039	stats->gprc++;
4040
4041	/* Adjust the Good Octets received counters */
4042	carry_bit = 0x80000000 & stats->gorcl;
4043	stats->gorcl += frame_len;
4044	/* If the high bit of Gorcl (the low 32 bits of the Good Octets
4045	 * Received Count) was one before the addition,
4046	 * AND it is zero after, then we lost the carry out,
4047	 * need to add one to Gorch (Good Octets Received Count High).
4048	 * This could be simplified if all environments supported
4049	 * 64-bit integers.
4050	 */
4051	if (carry_bit && ((stats->gorcl & 0x80000000) == 0))
4052		stats->gorch++;
4053	/* Is this a broadcast or multicast?  Check broadcast first,
4054	 * since the test for a multicast frame will test positive on
4055	 * a broadcast frame.
4056	 */
4057	if (is_broadcast_ether_addr(mac_addr))
4058		stats->bprc++;
4059	else if (is_multicast_ether_addr(mac_addr))
4060		stats->mprc++;
4061
4062	if (frame_len == hw->max_frame_size) {
4063		/* In this case, the hardware has overcounted the number of
4064		 * oversize frames.
4065		 */
4066		if (stats->roc > 0)
4067			stats->roc--;
4068	}
4069
4070	/* Adjust the bin counters when the extra byte put the frame in the
4071	 * wrong bin. Remember that the frame_len was adjusted above.
4072	 */
4073	if (frame_len == 64) {
4074		stats->prc64++;
4075		stats->prc127--;
4076	} else if (frame_len == 127) {
4077		stats->prc127++;
4078		stats->prc255--;
4079	} else if (frame_len == 255) {
4080		stats->prc255++;
4081		stats->prc511--;
4082	} else if (frame_len == 511) {
4083		stats->prc511++;
4084		stats->prc1023--;
4085	} else if (frame_len == 1023) {
4086		stats->prc1023++;
4087		stats->prc1522--;
4088	} else if (frame_len == 1522) {
4089		stats->prc1522++;
4090	}
4091}
4092
4093static bool e1000_tbi_should_accept(struct e1000_adapter *adapter,
4094				    u8 status, u8 errors,
4095				    u32 length, const u8 *data)
4096{
4097	struct e1000_hw *hw = &adapter->hw;
4098	u8 last_byte = *(data + length - 1);
4099
4100	if (TBI_ACCEPT(hw, status, errors, length, last_byte)) {
4101		unsigned long irq_flags;
4102
4103		spin_lock_irqsave(&adapter->stats_lock, irq_flags);
4104		e1000_tbi_adjust_stats(hw, &adapter->stats, length, data);
4105		spin_unlock_irqrestore(&adapter->stats_lock, irq_flags);
4106
4107		return true;
4108	}
4109
4110	return false;
4111}
4112
4113static struct sk_buff *e1000_alloc_rx_skb(struct e1000_adapter *adapter,
4114					  unsigned int bufsz)
4115{
4116	struct sk_buff *skb = napi_alloc_skb(&adapter->napi, bufsz);
4117
4118	if (unlikely(!skb))
4119		adapter->alloc_rx_buff_failed++;
4120	return skb;
4121}
4122
4123/**
4124 * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
4125 * @adapter: board private structure
4126 * @rx_ring: ring to clean
4127 * @work_done: amount of napi work completed this call
4128 * @work_to_do: max amount of work allowed for this call to do
4129 *
4130 * the return value indicates whether actual cleaning was done, there
4131 * is no guarantee that everything was cleaned
4132 */
4133static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter,
4134				     struct e1000_rx_ring *rx_ring,
4135				     int *work_done, int work_to_do)
4136{
4137	struct net_device *netdev = adapter->netdev;
4138	struct pci_dev *pdev = adapter->pdev;
4139	struct e1000_rx_desc *rx_desc, *next_rxd;
4140	struct e1000_rx_buffer *buffer_info, *next_buffer;
4141	u32 length;
4142	unsigned int i;
4143	int cleaned_count = 0;
4144	bool cleaned = false;
4145	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
4146
4147	i = rx_ring->next_to_clean;
4148	rx_desc = E1000_RX_DESC(*rx_ring, i);
4149	buffer_info = &rx_ring->buffer_info[i];
4150
4151	while (rx_desc->status & E1000_RXD_STAT_DD) {
4152		struct sk_buff *skb;
4153		u8 status;
4154
4155		if (*work_done >= work_to_do)
4156			break;
4157		(*work_done)++;
4158		dma_rmb(); /* read descriptor and rx_buffer_info after status DD */
4159
4160		status = rx_desc->status;
4161
4162		if (++i == rx_ring->count)
4163			i = 0;
4164
4165		next_rxd = E1000_RX_DESC(*rx_ring, i);
4166		prefetch(next_rxd);
4167
4168		next_buffer = &rx_ring->buffer_info[i];
4169
4170		cleaned = true;
4171		cleaned_count++;
4172		dma_unmap_page(&pdev->dev, buffer_info->dma,
4173			       adapter->rx_buffer_len, DMA_FROM_DEVICE);
4174		buffer_info->dma = 0;
4175
4176		length = le16_to_cpu(rx_desc->length);
4177
4178		/* errors is only valid for DD + EOP descriptors */
4179		if (unlikely((status & E1000_RXD_STAT_EOP) &&
4180		    (rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK))) {
4181			u8 *mapped = page_address(buffer_info->rxbuf.page);
4182
4183			if (e1000_tbi_should_accept(adapter, status,
4184						    rx_desc->errors,
4185						    length, mapped)) {
4186				length--;
4187			} else if (netdev->features & NETIF_F_RXALL) {
4188				goto process_skb;
4189			} else {
4190				/* an error means any chain goes out the window
4191				 * too
4192				 */
4193				dev_kfree_skb(rx_ring->rx_skb_top);
4194				rx_ring->rx_skb_top = NULL;
4195				goto next_desc;
4196			}
4197		}
4198
4199#define rxtop rx_ring->rx_skb_top
4200process_skb:
4201		if (!(status & E1000_RXD_STAT_EOP)) {
4202			/* this descriptor is only the beginning (or middle) */
4203			if (!rxtop) {
4204				/* this is the beginning of a chain */
4205				rxtop = napi_get_frags(&adapter->napi);
4206				if (!rxtop)
4207					break;
4208
4209				skb_fill_page_desc(rxtop, 0,
4210						   buffer_info->rxbuf.page,
4211						   0, length);
4212			} else {
4213				/* this is the middle of a chain */
4214				skb_fill_page_desc(rxtop,
4215				    skb_shinfo(rxtop)->nr_frags,
4216				    buffer_info->rxbuf.page, 0, length);
4217			}
4218			e1000_consume_page(buffer_info, rxtop, length);
4219			goto next_desc;
4220		} else {
4221			if (rxtop) {
4222				/* end of the chain */
4223				skb_fill_page_desc(rxtop,
4224				    skb_shinfo(rxtop)->nr_frags,
4225				    buffer_info->rxbuf.page, 0, length);
4226				skb = rxtop;
4227				rxtop = NULL;
4228				e1000_consume_page(buffer_info, skb, length);
4229			} else {
4230				struct page *p;
4231				/* no chain, got EOP, this buf is the packet
4232				 * copybreak to save the put_page/alloc_page
4233				 */
4234				p = buffer_info->rxbuf.page;
4235				if (length <= copybreak) {
 
 
4236					if (likely(!(netdev->features & NETIF_F_RXFCS)))
4237						length -= 4;
4238					skb = e1000_alloc_rx_skb(adapter,
4239								 length);
4240					if (!skb)
4241						break;
4242
4243					memcpy(skb_tail_pointer(skb),
4244					       page_address(p), length);
4245
 
4246					/* re-use the page, so don't erase
4247					 * buffer_info->rxbuf.page
4248					 */
4249					skb_put(skb, length);
4250					e1000_rx_checksum(adapter,
4251							  status | rx_desc->errors << 24,
4252							  le16_to_cpu(rx_desc->csum), skb);
4253
4254					total_rx_bytes += skb->len;
4255					total_rx_packets++;
4256
4257					e1000_receive_skb(adapter, status,
4258							  rx_desc->special, skb);
4259					goto next_desc;
4260				} else {
4261					skb = napi_get_frags(&adapter->napi);
4262					if (!skb) {
4263						adapter->alloc_rx_buff_failed++;
4264						break;
4265					}
4266					skb_fill_page_desc(skb, 0, p, 0,
4267							   length);
4268					e1000_consume_page(buffer_info, skb,
4269							   length);
4270				}
4271			}
4272		}
4273
4274		/* Receive Checksum Offload XXX recompute due to CRC strip? */
4275		e1000_rx_checksum(adapter,
4276				  (u32)(status) |
4277				  ((u32)(rx_desc->errors) << 24),
4278				  le16_to_cpu(rx_desc->csum), skb);
4279
4280		total_rx_bytes += (skb->len - 4); /* don't count FCS */
4281		if (likely(!(netdev->features & NETIF_F_RXFCS)))
4282			pskb_trim(skb, skb->len - 4);
4283		total_rx_packets++;
4284
4285		if (status & E1000_RXD_STAT_VP) {
4286			__le16 vlan = rx_desc->special;
4287			u16 vid = le16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK;
4288
4289			__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
4290		}
4291
4292		napi_gro_frags(&adapter->napi);
4293
4294next_desc:
4295		rx_desc->status = 0;
4296
4297		/* return some buffers to hardware, one at a time is too slow */
4298		if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
4299			adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4300			cleaned_count = 0;
4301		}
4302
4303		/* use prefetched values */
4304		rx_desc = next_rxd;
4305		buffer_info = next_buffer;
4306	}
4307	rx_ring->next_to_clean = i;
4308
4309	cleaned_count = E1000_DESC_UNUSED(rx_ring);
4310	if (cleaned_count)
4311		adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4312
4313	adapter->total_rx_packets += total_rx_packets;
4314	adapter->total_rx_bytes += total_rx_bytes;
4315	netdev->stats.rx_bytes += total_rx_bytes;
4316	netdev->stats.rx_packets += total_rx_packets;
4317	return cleaned;
4318}
4319
4320/* this should improve performance for small packets with large amounts
4321 * of reassembly being done in the stack
4322 */
4323static struct sk_buff *e1000_copybreak(struct e1000_adapter *adapter,
4324				       struct e1000_rx_buffer *buffer_info,
4325				       u32 length, const void *data)
4326{
4327	struct sk_buff *skb;
4328
4329	if (length > copybreak)
4330		return NULL;
4331
4332	skb = e1000_alloc_rx_skb(adapter, length);
4333	if (!skb)
4334		return NULL;
4335
4336	dma_sync_single_for_cpu(&adapter->pdev->dev, buffer_info->dma,
4337				length, DMA_FROM_DEVICE);
4338
4339	skb_put_data(skb, data, length);
4340
4341	return skb;
4342}
4343
4344/**
4345 * e1000_clean_rx_irq - Send received data up the network stack; legacy
4346 * @adapter: board private structure
4347 * @rx_ring: ring to clean
4348 * @work_done: amount of napi work completed this call
4349 * @work_to_do: max amount of work allowed for this call to do
4350 */
4351static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
4352			       struct e1000_rx_ring *rx_ring,
4353			       int *work_done, int work_to_do)
4354{
4355	struct net_device *netdev = adapter->netdev;
4356	struct pci_dev *pdev = adapter->pdev;
4357	struct e1000_rx_desc *rx_desc, *next_rxd;
4358	struct e1000_rx_buffer *buffer_info, *next_buffer;
4359	u32 length;
4360	unsigned int i;
4361	int cleaned_count = 0;
4362	bool cleaned = false;
4363	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
4364
4365	i = rx_ring->next_to_clean;
4366	rx_desc = E1000_RX_DESC(*rx_ring, i);
4367	buffer_info = &rx_ring->buffer_info[i];
4368
4369	while (rx_desc->status & E1000_RXD_STAT_DD) {
4370		struct sk_buff *skb;
4371		u8 *data;
4372		u8 status;
4373
4374		if (*work_done >= work_to_do)
4375			break;
4376		(*work_done)++;
4377		dma_rmb(); /* read descriptor and rx_buffer_info after status DD */
4378
4379		status = rx_desc->status;
4380		length = le16_to_cpu(rx_desc->length);
4381
4382		data = buffer_info->rxbuf.data;
4383		prefetch(data);
4384		skb = e1000_copybreak(adapter, buffer_info, length, data);
4385		if (!skb) {
4386			unsigned int frag_len = e1000_frag_len(adapter);
4387
4388			skb = napi_build_skb(data - E1000_HEADROOM, frag_len);
4389			if (!skb) {
4390				adapter->alloc_rx_buff_failed++;
4391				break;
4392			}
4393
4394			skb_reserve(skb, E1000_HEADROOM);
4395			dma_unmap_single(&pdev->dev, buffer_info->dma,
4396					 adapter->rx_buffer_len,
4397					 DMA_FROM_DEVICE);
4398			buffer_info->dma = 0;
4399			buffer_info->rxbuf.data = NULL;
4400		}
4401
4402		if (++i == rx_ring->count)
4403			i = 0;
4404
4405		next_rxd = E1000_RX_DESC(*rx_ring, i);
4406		prefetch(next_rxd);
4407
4408		next_buffer = &rx_ring->buffer_info[i];
4409
4410		cleaned = true;
4411		cleaned_count++;
4412
4413		/* !EOP means multiple descriptors were used to store a single
4414		 * packet, if thats the case we need to toss it.  In fact, we
4415		 * to toss every packet with the EOP bit clear and the next
4416		 * frame that _does_ have the EOP bit set, as it is by
4417		 * definition only a frame fragment
4418		 */
4419		if (unlikely(!(status & E1000_RXD_STAT_EOP)))
4420			adapter->discarding = true;
4421
4422		if (adapter->discarding) {
4423			/* All receives must fit into a single buffer */
4424			netdev_dbg(netdev, "Receive packet consumed multiple buffers\n");
4425			dev_kfree_skb(skb);
4426			if (status & E1000_RXD_STAT_EOP)
4427				adapter->discarding = false;
4428			goto next_desc;
4429		}
4430
4431		if (unlikely(rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK)) {
4432			if (e1000_tbi_should_accept(adapter, status,
4433						    rx_desc->errors,
4434						    length, data)) {
4435				length--;
4436			} else if (netdev->features & NETIF_F_RXALL) {
4437				goto process_skb;
4438			} else {
4439				dev_kfree_skb(skb);
4440				goto next_desc;
4441			}
4442		}
4443
4444process_skb:
4445		total_rx_bytes += (length - 4); /* don't count FCS */
4446		total_rx_packets++;
4447
4448		if (likely(!(netdev->features & NETIF_F_RXFCS)))
4449			/* adjust length to remove Ethernet CRC, this must be
4450			 * done after the TBI_ACCEPT workaround above
4451			 */
4452			length -= 4;
4453
4454		if (buffer_info->rxbuf.data == NULL)
4455			skb_put(skb, length);
4456		else /* copybreak skb */
4457			skb_trim(skb, length);
4458
4459		/* Receive Checksum Offload */
4460		e1000_rx_checksum(adapter,
4461				  (u32)(status) |
4462				  ((u32)(rx_desc->errors) << 24),
4463				  le16_to_cpu(rx_desc->csum), skb);
4464
4465		e1000_receive_skb(adapter, status, rx_desc->special, skb);
4466
4467next_desc:
4468		rx_desc->status = 0;
4469
4470		/* return some buffers to hardware, one at a time is too slow */
4471		if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
4472			adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4473			cleaned_count = 0;
4474		}
4475
4476		/* use prefetched values */
4477		rx_desc = next_rxd;
4478		buffer_info = next_buffer;
4479	}
4480	rx_ring->next_to_clean = i;
4481
4482	cleaned_count = E1000_DESC_UNUSED(rx_ring);
4483	if (cleaned_count)
4484		adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4485
4486	adapter->total_rx_packets += total_rx_packets;
4487	adapter->total_rx_bytes += total_rx_bytes;
4488	netdev->stats.rx_bytes += total_rx_bytes;
4489	netdev->stats.rx_packets += total_rx_packets;
4490	return cleaned;
4491}
4492
4493/**
4494 * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
4495 * @adapter: address of board private structure
4496 * @rx_ring: pointer to receive ring structure
4497 * @cleaned_count: number of buffers to allocate this pass
4498 **/
4499static void
4500e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter,
4501			     struct e1000_rx_ring *rx_ring, int cleaned_count)
4502{
4503	struct pci_dev *pdev = adapter->pdev;
4504	struct e1000_rx_desc *rx_desc;
4505	struct e1000_rx_buffer *buffer_info;
4506	unsigned int i;
4507
4508	i = rx_ring->next_to_use;
4509	buffer_info = &rx_ring->buffer_info[i];
4510
4511	while (cleaned_count--) {
4512		/* allocate a new page if necessary */
4513		if (!buffer_info->rxbuf.page) {
4514			buffer_info->rxbuf.page = alloc_page(GFP_ATOMIC);
4515			if (unlikely(!buffer_info->rxbuf.page)) {
4516				adapter->alloc_rx_buff_failed++;
4517				break;
4518			}
4519		}
4520
4521		if (!buffer_info->dma) {
4522			buffer_info->dma = dma_map_page(&pdev->dev,
4523							buffer_info->rxbuf.page, 0,
4524							adapter->rx_buffer_len,
4525							DMA_FROM_DEVICE);
4526			if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
4527				put_page(buffer_info->rxbuf.page);
4528				buffer_info->rxbuf.page = NULL;
4529				buffer_info->dma = 0;
4530				adapter->alloc_rx_buff_failed++;
4531				break;
4532			}
4533		}
4534
4535		rx_desc = E1000_RX_DESC(*rx_ring, i);
4536		rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4537
4538		if (unlikely(++i == rx_ring->count))
4539			i = 0;
4540		buffer_info = &rx_ring->buffer_info[i];
4541	}
4542
4543	if (likely(rx_ring->next_to_use != i)) {
4544		rx_ring->next_to_use = i;
4545		if (unlikely(i-- == 0))
4546			i = (rx_ring->count - 1);
4547
4548		/* Force memory writes to complete before letting h/w
4549		 * know there are new descriptors to fetch.  (Only
4550		 * applicable for weak-ordered memory model archs,
4551		 * such as IA-64).
4552		 */
4553		dma_wmb();
4554		writel(i, adapter->hw.hw_addr + rx_ring->rdt);
4555	}
4556}
4557
4558/**
4559 * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
4560 * @adapter: address of board private structure
4561 * @rx_ring: pointer to ring struct
4562 * @cleaned_count: number of new Rx buffers to try to allocate
4563 **/
4564static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
4565				   struct e1000_rx_ring *rx_ring,
4566				   int cleaned_count)
4567{
4568	struct e1000_hw *hw = &adapter->hw;
4569	struct pci_dev *pdev = adapter->pdev;
4570	struct e1000_rx_desc *rx_desc;
4571	struct e1000_rx_buffer *buffer_info;
4572	unsigned int i;
4573	unsigned int bufsz = adapter->rx_buffer_len;
4574
4575	i = rx_ring->next_to_use;
4576	buffer_info = &rx_ring->buffer_info[i];
4577
4578	while (cleaned_count--) {
4579		void *data;
4580
4581		if (buffer_info->rxbuf.data)
4582			goto skip;
4583
4584		data = e1000_alloc_frag(adapter);
4585		if (!data) {
4586			/* Better luck next round */
4587			adapter->alloc_rx_buff_failed++;
4588			break;
4589		}
4590
4591		/* Fix for errata 23, can't cross 64kB boundary */
4592		if (!e1000_check_64k_bound(adapter, data, bufsz)) {
4593			void *olddata = data;
4594			e_err(rx_err, "skb align check failed: %u bytes at "
4595			      "%p\n", bufsz, data);
4596			/* Try again, without freeing the previous */
4597			data = e1000_alloc_frag(adapter);
4598			/* Failed allocation, critical failure */
4599			if (!data) {
4600				skb_free_frag(olddata);
4601				adapter->alloc_rx_buff_failed++;
4602				break;
4603			}
4604
4605			if (!e1000_check_64k_bound(adapter, data, bufsz)) {
4606				/* give up */
4607				skb_free_frag(data);
4608				skb_free_frag(olddata);
4609				adapter->alloc_rx_buff_failed++;
4610				break;
4611			}
4612
4613			/* Use new allocation */
4614			skb_free_frag(olddata);
4615		}
4616		buffer_info->dma = dma_map_single(&pdev->dev,
4617						  data,
4618						  adapter->rx_buffer_len,
4619						  DMA_FROM_DEVICE);
4620		if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
4621			skb_free_frag(data);
4622			buffer_info->dma = 0;
4623			adapter->alloc_rx_buff_failed++;
4624			break;
4625		}
4626
4627		/* XXX if it was allocated cleanly it will never map to a
4628		 * boundary crossing
4629		 */
4630
4631		/* Fix for errata 23, can't cross 64kB boundary */
4632		if (!e1000_check_64k_bound(adapter,
4633					(void *)(unsigned long)buffer_info->dma,
4634					adapter->rx_buffer_len)) {
4635			e_err(rx_err, "dma align check failed: %u bytes at "
4636			      "%p\n", adapter->rx_buffer_len,
4637			      (void *)(unsigned long)buffer_info->dma);
4638
4639			dma_unmap_single(&pdev->dev, buffer_info->dma,
4640					 adapter->rx_buffer_len,
4641					 DMA_FROM_DEVICE);
4642
4643			skb_free_frag(data);
4644			buffer_info->rxbuf.data = NULL;
4645			buffer_info->dma = 0;
4646
4647			adapter->alloc_rx_buff_failed++;
4648			break;
4649		}
4650		buffer_info->rxbuf.data = data;
4651 skip:
4652		rx_desc = E1000_RX_DESC(*rx_ring, i);
4653		rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4654
4655		if (unlikely(++i == rx_ring->count))
4656			i = 0;
4657		buffer_info = &rx_ring->buffer_info[i];
4658	}
4659
4660	if (likely(rx_ring->next_to_use != i)) {
4661		rx_ring->next_to_use = i;
4662		if (unlikely(i-- == 0))
4663			i = (rx_ring->count - 1);
4664
4665		/* Force memory writes to complete before letting h/w
4666		 * know there are new descriptors to fetch.  (Only
4667		 * applicable for weak-ordered memory model archs,
4668		 * such as IA-64).
4669		 */
4670		dma_wmb();
4671		writel(i, hw->hw_addr + rx_ring->rdt);
4672	}
4673}
4674
4675/**
4676 * e1000_smartspeed - Workaround for SmartSpeed on 82541 and 82547 controllers.
4677 * @adapter: address of board private structure
4678 **/
4679static void e1000_smartspeed(struct e1000_adapter *adapter)
4680{
4681	struct e1000_hw *hw = &adapter->hw;
4682	u16 phy_status;
4683	u16 phy_ctrl;
4684
4685	if ((hw->phy_type != e1000_phy_igp) || !hw->autoneg ||
4686	   !(hw->autoneg_advertised & ADVERTISE_1000_FULL))
4687		return;
4688
4689	if (adapter->smartspeed == 0) {
4690		/* If Master/Slave config fault is asserted twice,
4691		 * we assume back-to-back
4692		 */
4693		e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
4694		if (!(phy_status & SR_1000T_MS_CONFIG_FAULT))
4695			return;
4696		e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
4697		if (!(phy_status & SR_1000T_MS_CONFIG_FAULT))
4698			return;
4699		e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
4700		if (phy_ctrl & CR_1000T_MS_ENABLE) {
4701			phy_ctrl &= ~CR_1000T_MS_ENABLE;
4702			e1000_write_phy_reg(hw, PHY_1000T_CTRL,
4703					    phy_ctrl);
4704			adapter->smartspeed++;
4705			if (!e1000_phy_setup_autoneg(hw) &&
4706			   !e1000_read_phy_reg(hw, PHY_CTRL,
4707					       &phy_ctrl)) {
4708				phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4709					     MII_CR_RESTART_AUTO_NEG);
4710				e1000_write_phy_reg(hw, PHY_CTRL,
4711						    phy_ctrl);
4712			}
4713		}
4714		return;
4715	} else if (adapter->smartspeed == E1000_SMARTSPEED_DOWNSHIFT) {
4716		/* If still no link, perhaps using 2/3 pair cable */
4717		e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
4718		phy_ctrl |= CR_1000T_MS_ENABLE;
4719		e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_ctrl);
4720		if (!e1000_phy_setup_autoneg(hw) &&
4721		   !e1000_read_phy_reg(hw, PHY_CTRL, &phy_ctrl)) {
4722			phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4723				     MII_CR_RESTART_AUTO_NEG);
4724			e1000_write_phy_reg(hw, PHY_CTRL, phy_ctrl);
4725		}
4726	}
4727	/* Restart process after E1000_SMARTSPEED_MAX iterations */
4728	if (adapter->smartspeed++ == E1000_SMARTSPEED_MAX)
4729		adapter->smartspeed = 0;
4730}
4731
4732/**
4733 * e1000_ioctl - handle ioctl calls
4734 * @netdev: pointer to our netdev
4735 * @ifr: pointer to interface request structure
4736 * @cmd: ioctl data
4737 **/
4738static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4739{
4740	switch (cmd) {
4741	case SIOCGMIIPHY:
4742	case SIOCGMIIREG:
4743	case SIOCSMIIREG:
4744		return e1000_mii_ioctl(netdev, ifr, cmd);
4745	default:
4746		return -EOPNOTSUPP;
4747	}
4748}
4749
4750/**
4751 * e1000_mii_ioctl -
4752 * @netdev: pointer to our netdev
4753 * @ifr: pointer to interface request structure
4754 * @cmd: ioctl data
4755 **/
4756static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
4757			   int cmd)
4758{
4759	struct e1000_adapter *adapter = netdev_priv(netdev);
4760	struct e1000_hw *hw = &adapter->hw;
4761	struct mii_ioctl_data *data = if_mii(ifr);
4762	int retval;
4763	u16 mii_reg;
4764	unsigned long flags;
4765
4766	if (hw->media_type != e1000_media_type_copper)
4767		return -EOPNOTSUPP;
4768
4769	switch (cmd) {
4770	case SIOCGMIIPHY:
4771		data->phy_id = hw->phy_addr;
4772		break;
4773	case SIOCGMIIREG:
4774		spin_lock_irqsave(&adapter->stats_lock, flags);
4775		if (e1000_read_phy_reg(hw, data->reg_num & 0x1F,
4776				   &data->val_out)) {
4777			spin_unlock_irqrestore(&adapter->stats_lock, flags);
4778			return -EIO;
4779		}
4780		spin_unlock_irqrestore(&adapter->stats_lock, flags);
4781		break;
4782	case SIOCSMIIREG:
4783		if (data->reg_num & ~(0x1F))
4784			return -EFAULT;
4785		mii_reg = data->val_in;
4786		spin_lock_irqsave(&adapter->stats_lock, flags);
4787		if (e1000_write_phy_reg(hw, data->reg_num,
4788					mii_reg)) {
4789			spin_unlock_irqrestore(&adapter->stats_lock, flags);
4790			return -EIO;
4791		}
4792		spin_unlock_irqrestore(&adapter->stats_lock, flags);
4793		if (hw->media_type == e1000_media_type_copper) {
4794			switch (data->reg_num) {
4795			case PHY_CTRL:
4796				if (mii_reg & MII_CR_POWER_DOWN)
4797					break;
4798				if (mii_reg & MII_CR_AUTO_NEG_EN) {
4799					hw->autoneg = 1;
4800					hw->autoneg_advertised = 0x2F;
4801				} else {
4802					u32 speed;
4803					if (mii_reg & 0x40)
4804						speed = SPEED_1000;
4805					else if (mii_reg & 0x2000)
4806						speed = SPEED_100;
4807					else
4808						speed = SPEED_10;
4809					retval = e1000_set_spd_dplx(
4810						adapter, speed,
4811						((mii_reg & 0x100)
4812						 ? DUPLEX_FULL :
4813						 DUPLEX_HALF));
4814					if (retval)
4815						return retval;
4816				}
4817				if (netif_running(adapter->netdev))
4818					e1000_reinit_locked(adapter);
4819				else
4820					e1000_reset(adapter);
4821				break;
4822			case M88E1000_PHY_SPEC_CTRL:
4823			case M88E1000_EXT_PHY_SPEC_CTRL:
4824				if (e1000_phy_reset(hw))
4825					return -EIO;
4826				break;
4827			}
4828		} else {
4829			switch (data->reg_num) {
4830			case PHY_CTRL:
4831				if (mii_reg & MII_CR_POWER_DOWN)
4832					break;
4833				if (netif_running(adapter->netdev))
4834					e1000_reinit_locked(adapter);
4835				else
4836					e1000_reset(adapter);
4837				break;
4838			}
4839		}
4840		break;
4841	default:
4842		return -EOPNOTSUPP;
4843	}
4844	return E1000_SUCCESS;
4845}
4846
4847void e1000_pci_set_mwi(struct e1000_hw *hw)
4848{
4849	struct e1000_adapter *adapter = hw->back;
4850	int ret_val = pci_set_mwi(adapter->pdev);
4851
4852	if (ret_val)
4853		e_err(probe, "Error in setting MWI\n");
4854}
4855
4856void e1000_pci_clear_mwi(struct e1000_hw *hw)
4857{
4858	struct e1000_adapter *adapter = hw->back;
4859
4860	pci_clear_mwi(adapter->pdev);
4861}
4862
4863int e1000_pcix_get_mmrbc(struct e1000_hw *hw)
4864{
4865	struct e1000_adapter *adapter = hw->back;
4866	return pcix_get_mmrbc(adapter->pdev);
4867}
4868
4869void e1000_pcix_set_mmrbc(struct e1000_hw *hw, int mmrbc)
4870{
4871	struct e1000_adapter *adapter = hw->back;
4872	pcix_set_mmrbc(adapter->pdev, mmrbc);
4873}
4874
4875void e1000_io_write(struct e1000_hw *hw, unsigned long port, u32 value)
4876{
4877	outl(value, port);
4878}
4879
4880static bool e1000_vlan_used(struct e1000_adapter *adapter)
4881{
4882	u16 vid;
4883
4884	for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
4885		return true;
4886	return false;
4887}
4888
4889static void __e1000_vlan_mode(struct e1000_adapter *adapter,
4890			      netdev_features_t features)
4891{
4892	struct e1000_hw *hw = &adapter->hw;
4893	u32 ctrl;
4894
4895	ctrl = er32(CTRL);
4896	if (features & NETIF_F_HW_VLAN_CTAG_RX) {
4897		/* enable VLAN tag insert/strip */
4898		ctrl |= E1000_CTRL_VME;
4899	} else {
4900		/* disable VLAN tag insert/strip */
4901		ctrl &= ~E1000_CTRL_VME;
4902	}
4903	ew32(CTRL, ctrl);
4904}
4905static void e1000_vlan_filter_on_off(struct e1000_adapter *adapter,
4906				     bool filter_on)
4907{
4908	struct e1000_hw *hw = &adapter->hw;
4909	u32 rctl;
4910
4911	if (!test_bit(__E1000_DOWN, &adapter->flags))
4912		e1000_irq_disable(adapter);
4913
4914	__e1000_vlan_mode(adapter, adapter->netdev->features);
4915	if (filter_on) {
4916		/* enable VLAN receive filtering */
4917		rctl = er32(RCTL);
4918		rctl &= ~E1000_RCTL_CFIEN;
4919		if (!(adapter->netdev->flags & IFF_PROMISC))
4920			rctl |= E1000_RCTL_VFE;
4921		ew32(RCTL, rctl);
4922		e1000_update_mng_vlan(adapter);
4923	} else {
4924		/* disable VLAN receive filtering */
4925		rctl = er32(RCTL);
4926		rctl &= ~E1000_RCTL_VFE;
4927		ew32(RCTL, rctl);
4928	}
4929
4930	if (!test_bit(__E1000_DOWN, &adapter->flags))
4931		e1000_irq_enable(adapter);
4932}
4933
4934static void e1000_vlan_mode(struct net_device *netdev,
4935			    netdev_features_t features)
4936{
4937	struct e1000_adapter *adapter = netdev_priv(netdev);
4938
4939	if (!test_bit(__E1000_DOWN, &adapter->flags))
4940		e1000_irq_disable(adapter);
4941
4942	__e1000_vlan_mode(adapter, features);
4943
4944	if (!test_bit(__E1000_DOWN, &adapter->flags))
4945		e1000_irq_enable(adapter);
4946}
4947
4948static int e1000_vlan_rx_add_vid(struct net_device *netdev,
4949				 __be16 proto, u16 vid)
4950{
4951	struct e1000_adapter *adapter = netdev_priv(netdev);
4952	struct e1000_hw *hw = &adapter->hw;
4953	u32 vfta, index;
4954
4955	if ((hw->mng_cookie.status &
4956	     E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
4957	    (vid == adapter->mng_vlan_id))
4958		return 0;
4959
4960	if (!e1000_vlan_used(adapter))
4961		e1000_vlan_filter_on_off(adapter, true);
4962
4963	/* add VID to filter table */
4964	index = (vid >> 5) & 0x7F;
4965	vfta = E1000_READ_REG_ARRAY(hw, VFTA, index);
4966	vfta |= (1 << (vid & 0x1F));
4967	e1000_write_vfta(hw, index, vfta);
4968
4969	set_bit(vid, adapter->active_vlans);
4970
4971	return 0;
4972}
4973
4974static int e1000_vlan_rx_kill_vid(struct net_device *netdev,
4975				  __be16 proto, u16 vid)
4976{
4977	struct e1000_adapter *adapter = netdev_priv(netdev);
4978	struct e1000_hw *hw = &adapter->hw;
4979	u32 vfta, index;
4980
4981	if (!test_bit(__E1000_DOWN, &adapter->flags))
4982		e1000_irq_disable(adapter);
4983	if (!test_bit(__E1000_DOWN, &adapter->flags))
4984		e1000_irq_enable(adapter);
4985
4986	/* remove VID from filter table */
4987	index = (vid >> 5) & 0x7F;
4988	vfta = E1000_READ_REG_ARRAY(hw, VFTA, index);
4989	vfta &= ~(1 << (vid & 0x1F));
4990	e1000_write_vfta(hw, index, vfta);
4991
4992	clear_bit(vid, adapter->active_vlans);
4993
4994	if (!e1000_vlan_used(adapter))
4995		e1000_vlan_filter_on_off(adapter, false);
4996
4997	return 0;
4998}
4999
5000static void e1000_restore_vlan(struct e1000_adapter *adapter)
5001{
5002	u16 vid;
5003
5004	if (!e1000_vlan_used(adapter))
5005		return;
5006
5007	e1000_vlan_filter_on_off(adapter, true);
5008	for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
5009		e1000_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
5010}
5011
5012int e1000_set_spd_dplx(struct e1000_adapter *adapter, u32 spd, u8 dplx)
5013{
5014	struct e1000_hw *hw = &adapter->hw;
5015
5016	hw->autoneg = 0;
5017
5018	/* Make sure dplx is at most 1 bit and lsb of speed is not set
5019	 * for the switch() below to work
5020	 */
5021	if ((spd & 1) || (dplx & ~1))
5022		goto err_inval;
5023
5024	/* Fiber NICs only allow 1000 gbps Full duplex */
5025	if ((hw->media_type == e1000_media_type_fiber) &&
5026	    spd != SPEED_1000 &&
5027	    dplx != DUPLEX_FULL)
5028		goto err_inval;
5029
5030	switch (spd + dplx) {
5031	case SPEED_10 + DUPLEX_HALF:
5032		hw->forced_speed_duplex = e1000_10_half;
5033		break;
5034	case SPEED_10 + DUPLEX_FULL:
5035		hw->forced_speed_duplex = e1000_10_full;
5036		break;
5037	case SPEED_100 + DUPLEX_HALF:
5038		hw->forced_speed_duplex = e1000_100_half;
5039		break;
5040	case SPEED_100 + DUPLEX_FULL:
5041		hw->forced_speed_duplex = e1000_100_full;
5042		break;
5043	case SPEED_1000 + DUPLEX_FULL:
5044		hw->autoneg = 1;
5045		hw->autoneg_advertised = ADVERTISE_1000_FULL;
5046		break;
5047	case SPEED_1000 + DUPLEX_HALF: /* not supported */
5048	default:
5049		goto err_inval;
5050	}
5051
5052	/* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
5053	hw->mdix = AUTO_ALL_MODES;
5054
5055	return 0;
5056
5057err_inval:
5058	e_err(probe, "Unsupported Speed/Duplex configuration\n");
5059	return -EINVAL;
5060}
5061
5062static int __e1000_shutdown(struct pci_dev *pdev, bool *enable_wake)
5063{
5064	struct net_device *netdev = pci_get_drvdata(pdev);
5065	struct e1000_adapter *adapter = netdev_priv(netdev);
5066	struct e1000_hw *hw = &adapter->hw;
5067	u32 ctrl, ctrl_ext, rctl, status;
5068	u32 wufc = adapter->wol;
 
 
 
5069
5070	netif_device_detach(netdev);
5071
5072	if (netif_running(netdev)) {
5073		int count = E1000_CHECK_RESET_COUNT;
5074
5075		while (test_bit(__E1000_RESETTING, &adapter->flags) && count--)
5076			usleep_range(10000, 20000);
5077
5078		WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
5079		rtnl_lock();
5080		e1000_down(adapter);
5081		rtnl_unlock();
5082	}
5083
 
 
 
 
 
 
5084	status = er32(STATUS);
5085	if (status & E1000_STATUS_LU)
5086		wufc &= ~E1000_WUFC_LNKC;
5087
5088	if (wufc) {
5089		e1000_setup_rctl(adapter);
5090		e1000_set_rx_mode(netdev);
5091
5092		rctl = er32(RCTL);
5093
5094		/* turn on all-multi mode if wake on multicast is enabled */
5095		if (wufc & E1000_WUFC_MC)
5096			rctl |= E1000_RCTL_MPE;
5097
5098		/* enable receives in the hardware */
5099		ew32(RCTL, rctl | E1000_RCTL_EN);
5100
5101		if (hw->mac_type >= e1000_82540) {
5102			ctrl = er32(CTRL);
5103			/* advertise wake from D3Cold */
5104			#define E1000_CTRL_ADVD3WUC 0x00100000
5105			/* phy power management enable */
5106			#define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
5107			ctrl |= E1000_CTRL_ADVD3WUC |
5108				E1000_CTRL_EN_PHY_PWR_MGMT;
5109			ew32(CTRL, ctrl);
5110		}
5111
5112		if (hw->media_type == e1000_media_type_fiber ||
5113		    hw->media_type == e1000_media_type_internal_serdes) {
5114			/* keep the laser running in D3 */
5115			ctrl_ext = er32(CTRL_EXT);
5116			ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA;
5117			ew32(CTRL_EXT, ctrl_ext);
5118		}
5119
5120		ew32(WUC, E1000_WUC_PME_EN);
5121		ew32(WUFC, wufc);
5122	} else {
5123		ew32(WUC, 0);
5124		ew32(WUFC, 0);
5125	}
5126
5127	e1000_release_manageability(adapter);
5128
5129	*enable_wake = !!wufc;
5130
5131	/* make sure adapter isn't asleep if manageability is enabled */
5132	if (adapter->en_mng_pt)
5133		*enable_wake = true;
5134
5135	if (netif_running(netdev))
5136		e1000_free_irq(adapter);
5137
5138	if (!test_and_set_bit(__E1000_DISABLED, &adapter->flags))
5139		pci_disable_device(pdev);
5140
5141	return 0;
5142}
5143
5144static int e1000_suspend(struct device *dev)
 
5145{
5146	int retval;
5147	struct pci_dev *pdev = to_pci_dev(dev);
5148	bool wake;
5149
5150	retval = __e1000_shutdown(pdev, &wake);
5151	device_set_wakeup_enable(dev, wake);
 
5152
5153	return retval;
 
 
 
 
 
 
 
5154}
5155
5156static int e1000_resume(struct device *dev)
5157{
5158	struct pci_dev *pdev = to_pci_dev(dev);
5159	struct net_device *netdev = pci_get_drvdata(pdev);
5160	struct e1000_adapter *adapter = netdev_priv(netdev);
5161	struct e1000_hw *hw = &adapter->hw;
5162	u32 err;
5163
 
 
 
 
5164	if (adapter->need_ioport)
5165		err = pci_enable_device(pdev);
5166	else
5167		err = pci_enable_device_mem(pdev);
5168	if (err) {
5169		pr_err("Cannot enable PCI device from suspend\n");
5170		return err;
5171	}
5172
5173	/* flush memory to make sure state is correct */
5174	smp_mb__before_atomic();
5175	clear_bit(__E1000_DISABLED, &adapter->flags);
5176	pci_set_master(pdev);
5177
5178	pci_enable_wake(pdev, PCI_D3hot, 0);
5179	pci_enable_wake(pdev, PCI_D3cold, 0);
5180
5181	if (netif_running(netdev)) {
5182		err = e1000_request_irq(adapter);
5183		if (err)
5184			return err;
5185	}
5186
5187	e1000_power_up_phy(adapter);
5188	e1000_reset(adapter);
5189	ew32(WUS, ~0);
5190
5191	e1000_init_manageability(adapter);
5192
5193	if (netif_running(netdev))
5194		e1000_up(adapter);
5195
5196	netif_device_attach(netdev);
5197
5198	return 0;
5199}
 
5200
5201static void e1000_shutdown(struct pci_dev *pdev)
5202{
5203	bool wake;
5204
5205	__e1000_shutdown(pdev, &wake);
5206
5207	if (system_state == SYSTEM_POWER_OFF) {
5208		pci_wake_from_d3(pdev, wake);
5209		pci_set_power_state(pdev, PCI_D3hot);
5210	}
5211}
5212
5213#ifdef CONFIG_NET_POLL_CONTROLLER
5214/* Polling 'interrupt' - used by things like netconsole to send skbs
5215 * without having to re-enable interrupts. It's not called while
5216 * the interrupt routine is executing.
5217 */
5218static void e1000_netpoll(struct net_device *netdev)
5219{
5220	struct e1000_adapter *adapter = netdev_priv(netdev);
5221
5222	if (disable_hardirq(adapter->pdev->irq))
5223		e1000_intr(adapter->pdev->irq, netdev);
5224	enable_irq(adapter->pdev->irq);
5225}
5226#endif
5227
5228/**
5229 * e1000_io_error_detected - called when PCI error is detected
5230 * @pdev: Pointer to PCI device
5231 * @state: The current pci connection state
5232 *
5233 * This function is called after a PCI bus error affecting
5234 * this device has been detected.
5235 */
5236static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
5237						pci_channel_state_t state)
5238{
5239	struct net_device *netdev = pci_get_drvdata(pdev);
5240	struct e1000_adapter *adapter = netdev_priv(netdev);
5241
5242	rtnl_lock();
5243	netif_device_detach(netdev);
5244
5245	if (state == pci_channel_io_perm_failure) {
5246		rtnl_unlock();
5247		return PCI_ERS_RESULT_DISCONNECT;
5248	}
5249
5250	if (netif_running(netdev))
5251		e1000_down(adapter);
5252
5253	if (!test_and_set_bit(__E1000_DISABLED, &adapter->flags))
5254		pci_disable_device(pdev);
5255	rtnl_unlock();
5256
5257	/* Request a slot reset. */
5258	return PCI_ERS_RESULT_NEED_RESET;
5259}
5260
5261/**
5262 * e1000_io_slot_reset - called after the pci bus has been reset.
5263 * @pdev: Pointer to PCI device
5264 *
5265 * Restart the card from scratch, as if from a cold-boot. Implementation
5266 * resembles the first-half of the e1000_resume routine.
5267 */
5268static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
5269{
5270	struct net_device *netdev = pci_get_drvdata(pdev);
5271	struct e1000_adapter *adapter = netdev_priv(netdev);
5272	struct e1000_hw *hw = &adapter->hw;
5273	int err;
5274
5275	if (adapter->need_ioport)
5276		err = pci_enable_device(pdev);
5277	else
5278		err = pci_enable_device_mem(pdev);
5279	if (err) {
5280		pr_err("Cannot re-enable PCI device after reset.\n");
5281		return PCI_ERS_RESULT_DISCONNECT;
5282	}
5283
5284	/* flush memory to make sure state is correct */
5285	smp_mb__before_atomic();
5286	clear_bit(__E1000_DISABLED, &adapter->flags);
5287	pci_set_master(pdev);
5288
5289	pci_enable_wake(pdev, PCI_D3hot, 0);
5290	pci_enable_wake(pdev, PCI_D3cold, 0);
5291
5292	e1000_reset(adapter);
5293	ew32(WUS, ~0);
5294
5295	return PCI_ERS_RESULT_RECOVERED;
5296}
5297
5298/**
5299 * e1000_io_resume - called when traffic can start flowing again.
5300 * @pdev: Pointer to PCI device
5301 *
5302 * This callback is called when the error recovery driver tells us that
5303 * its OK to resume normal operation. Implementation resembles the
5304 * second-half of the e1000_resume routine.
5305 */
5306static void e1000_io_resume(struct pci_dev *pdev)
5307{
5308	struct net_device *netdev = pci_get_drvdata(pdev);
5309	struct e1000_adapter *adapter = netdev_priv(netdev);
5310
5311	e1000_init_manageability(adapter);
5312
5313	if (netif_running(netdev)) {
5314		if (e1000_up(adapter)) {
5315			pr_info("can't bring device back up after reset\n");
5316			return;
5317		}
5318	}
5319
5320	netif_device_attach(netdev);
5321}
5322
5323/* e1000_main.c */
v5.4
   1// SPDX-License-Identifier: GPL-2.0
   2/* Copyright(c) 1999 - 2006 Intel Corporation. */
   3
   4#include "e1000.h"
   5#include <net/ip6_checksum.h>
   6#include <linux/io.h>
   7#include <linux/prefetch.h>
   8#include <linux/bitops.h>
   9#include <linux/if_vlan.h>
  10
  11char e1000_driver_name[] = "e1000";
  12static char e1000_driver_string[] = "Intel(R) PRO/1000 Network Driver";
  13#define DRV_VERSION "7.3.21-k8-NAPI"
  14const char e1000_driver_version[] = DRV_VERSION;
  15static const char e1000_copyright[] = "Copyright (c) 1999-2006 Intel Corporation.";
  16
  17/* e1000_pci_tbl - PCI Device ID Table
  18 *
  19 * Last entry must be all 0s
  20 *
  21 * Macro expands to...
  22 *   {PCI_DEVICE(PCI_VENDOR_ID_INTEL, device_id)}
  23 */
  24static const struct pci_device_id e1000_pci_tbl[] = {
  25	INTEL_E1000_ETHERNET_DEVICE(0x1000),
  26	INTEL_E1000_ETHERNET_DEVICE(0x1001),
  27	INTEL_E1000_ETHERNET_DEVICE(0x1004),
  28	INTEL_E1000_ETHERNET_DEVICE(0x1008),
  29	INTEL_E1000_ETHERNET_DEVICE(0x1009),
  30	INTEL_E1000_ETHERNET_DEVICE(0x100C),
  31	INTEL_E1000_ETHERNET_DEVICE(0x100D),
  32	INTEL_E1000_ETHERNET_DEVICE(0x100E),
  33	INTEL_E1000_ETHERNET_DEVICE(0x100F),
  34	INTEL_E1000_ETHERNET_DEVICE(0x1010),
  35	INTEL_E1000_ETHERNET_DEVICE(0x1011),
  36	INTEL_E1000_ETHERNET_DEVICE(0x1012),
  37	INTEL_E1000_ETHERNET_DEVICE(0x1013),
  38	INTEL_E1000_ETHERNET_DEVICE(0x1014),
  39	INTEL_E1000_ETHERNET_DEVICE(0x1015),
  40	INTEL_E1000_ETHERNET_DEVICE(0x1016),
  41	INTEL_E1000_ETHERNET_DEVICE(0x1017),
  42	INTEL_E1000_ETHERNET_DEVICE(0x1018),
  43	INTEL_E1000_ETHERNET_DEVICE(0x1019),
  44	INTEL_E1000_ETHERNET_DEVICE(0x101A),
  45	INTEL_E1000_ETHERNET_DEVICE(0x101D),
  46	INTEL_E1000_ETHERNET_DEVICE(0x101E),
  47	INTEL_E1000_ETHERNET_DEVICE(0x1026),
  48	INTEL_E1000_ETHERNET_DEVICE(0x1027),
  49	INTEL_E1000_ETHERNET_DEVICE(0x1028),
  50	INTEL_E1000_ETHERNET_DEVICE(0x1075),
  51	INTEL_E1000_ETHERNET_DEVICE(0x1076),
  52	INTEL_E1000_ETHERNET_DEVICE(0x1077),
  53	INTEL_E1000_ETHERNET_DEVICE(0x1078),
  54	INTEL_E1000_ETHERNET_DEVICE(0x1079),
  55	INTEL_E1000_ETHERNET_DEVICE(0x107A),
  56	INTEL_E1000_ETHERNET_DEVICE(0x107B),
  57	INTEL_E1000_ETHERNET_DEVICE(0x107C),
  58	INTEL_E1000_ETHERNET_DEVICE(0x108A),
  59	INTEL_E1000_ETHERNET_DEVICE(0x1099),
  60	INTEL_E1000_ETHERNET_DEVICE(0x10B5),
  61	INTEL_E1000_ETHERNET_DEVICE(0x2E6E),
  62	/* required last entry */
  63	{0,}
  64};
  65
  66MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
  67
  68int e1000_up(struct e1000_adapter *adapter);
  69void e1000_down(struct e1000_adapter *adapter);
  70void e1000_reinit_locked(struct e1000_adapter *adapter);
  71void e1000_reset(struct e1000_adapter *adapter);
  72int e1000_setup_all_tx_resources(struct e1000_adapter *adapter);
  73int e1000_setup_all_rx_resources(struct e1000_adapter *adapter);
  74void e1000_free_all_tx_resources(struct e1000_adapter *adapter);
  75void e1000_free_all_rx_resources(struct e1000_adapter *adapter);
  76static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
  77				    struct e1000_tx_ring *txdr);
  78static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
  79				    struct e1000_rx_ring *rxdr);
  80static void e1000_free_tx_resources(struct e1000_adapter *adapter,
  81				    struct e1000_tx_ring *tx_ring);
  82static void e1000_free_rx_resources(struct e1000_adapter *adapter,
  83				    struct e1000_rx_ring *rx_ring);
  84void e1000_update_stats(struct e1000_adapter *adapter);
  85
  86static int e1000_init_module(void);
  87static void e1000_exit_module(void);
  88static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent);
  89static void e1000_remove(struct pci_dev *pdev);
  90static int e1000_alloc_queues(struct e1000_adapter *adapter);
  91static int e1000_sw_init(struct e1000_adapter *adapter);
  92int e1000_open(struct net_device *netdev);
  93int e1000_close(struct net_device *netdev);
  94static void e1000_configure_tx(struct e1000_adapter *adapter);
  95static void e1000_configure_rx(struct e1000_adapter *adapter);
  96static void e1000_setup_rctl(struct e1000_adapter *adapter);
  97static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter);
  98static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter);
  99static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
 100				struct e1000_tx_ring *tx_ring);
 101static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
 102				struct e1000_rx_ring *rx_ring);
 103static void e1000_set_rx_mode(struct net_device *netdev);
 104static void e1000_update_phy_info_task(struct work_struct *work);
 105static void e1000_watchdog(struct work_struct *work);
 106static void e1000_82547_tx_fifo_stall_task(struct work_struct *work);
 107static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
 108				    struct net_device *netdev);
 109static int e1000_change_mtu(struct net_device *netdev, int new_mtu);
 110static int e1000_set_mac(struct net_device *netdev, void *p);
 111static irqreturn_t e1000_intr(int irq, void *data);
 112static bool e1000_clean_tx_irq(struct e1000_adapter *adapter,
 113			       struct e1000_tx_ring *tx_ring);
 114static int e1000_clean(struct napi_struct *napi, int budget);
 115static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
 116			       struct e1000_rx_ring *rx_ring,
 117			       int *work_done, int work_to_do);
 118static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter,
 119				     struct e1000_rx_ring *rx_ring,
 120				     int *work_done, int work_to_do);
 121static void e1000_alloc_dummy_rx_buffers(struct e1000_adapter *adapter,
 122					 struct e1000_rx_ring *rx_ring,
 123					 int cleaned_count)
 124{
 125}
 126static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
 127				   struct e1000_rx_ring *rx_ring,
 128				   int cleaned_count);
 129static void e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter,
 130					 struct e1000_rx_ring *rx_ring,
 131					 int cleaned_count);
 132static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd);
 133static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
 134			   int cmd);
 135static void e1000_enter_82542_rst(struct e1000_adapter *adapter);
 136static void e1000_leave_82542_rst(struct e1000_adapter *adapter);
 137static void e1000_tx_timeout(struct net_device *dev);
 138static void e1000_reset_task(struct work_struct *work);
 139static void e1000_smartspeed(struct e1000_adapter *adapter);
 140static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
 141				       struct sk_buff *skb);
 142
 143static bool e1000_vlan_used(struct e1000_adapter *adapter);
 144static void e1000_vlan_mode(struct net_device *netdev,
 145			    netdev_features_t features);
 146static void e1000_vlan_filter_on_off(struct e1000_adapter *adapter,
 147				     bool filter_on);
 148static int e1000_vlan_rx_add_vid(struct net_device *netdev,
 149				 __be16 proto, u16 vid);
 150static int e1000_vlan_rx_kill_vid(struct net_device *netdev,
 151				  __be16 proto, u16 vid);
 152static void e1000_restore_vlan(struct e1000_adapter *adapter);
 153
 154#ifdef CONFIG_PM
 155static int e1000_suspend(struct pci_dev *pdev, pm_message_t state);
 156static int e1000_resume(struct pci_dev *pdev);
 157#endif
 158static void e1000_shutdown(struct pci_dev *pdev);
 159
 160#ifdef CONFIG_NET_POLL_CONTROLLER
 161/* for netdump / net console */
 162static void e1000_netpoll (struct net_device *netdev);
 163#endif
 164
 165#define COPYBREAK_DEFAULT 256
 166static unsigned int copybreak __read_mostly = COPYBREAK_DEFAULT;
 167module_param(copybreak, uint, 0644);
 168MODULE_PARM_DESC(copybreak,
 169	"Maximum size of packet that is copied to a new buffer on receive");
 170
 171static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
 172						pci_channel_state_t state);
 173static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev);
 174static void e1000_io_resume(struct pci_dev *pdev);
 175
 176static const struct pci_error_handlers e1000_err_handler = {
 177	.error_detected = e1000_io_error_detected,
 178	.slot_reset = e1000_io_slot_reset,
 179	.resume = e1000_io_resume,
 180};
 181
 
 
 182static struct pci_driver e1000_driver = {
 183	.name     = e1000_driver_name,
 184	.id_table = e1000_pci_tbl,
 185	.probe    = e1000_probe,
 186	.remove   = e1000_remove,
 187#ifdef CONFIG_PM
 188	/* Power Management Hooks */
 189	.suspend  = e1000_suspend,
 190	.resume   = e1000_resume,
 191#endif
 192	.shutdown = e1000_shutdown,
 193	.err_handler = &e1000_err_handler
 194};
 195
 196MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
 197MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
 198MODULE_LICENSE("GPL v2");
 199MODULE_VERSION(DRV_VERSION);
 200
 201#define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
 202static int debug = -1;
 203module_param(debug, int, 0);
 204MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
 205
 206/**
 207 * e1000_get_hw_dev - return device
 208 * used by hardware layer to print debugging information
 
 
 209 *
 210 **/
 211struct net_device *e1000_get_hw_dev(struct e1000_hw *hw)
 212{
 213	struct e1000_adapter *adapter = hw->back;
 214	return adapter->netdev;
 215}
 216
 217/**
 218 * e1000_init_module - Driver Registration Routine
 219 *
 220 * e1000_init_module is the first routine called when the driver is
 221 * loaded. All it does is register with the PCI subsystem.
 222 **/
 223static int __init e1000_init_module(void)
 224{
 225	int ret;
 226	pr_info("%s - version %s\n", e1000_driver_string, e1000_driver_version);
 227
 228	pr_info("%s\n", e1000_copyright);
 229
 230	ret = pci_register_driver(&e1000_driver);
 231	if (copybreak != COPYBREAK_DEFAULT) {
 232		if (copybreak == 0)
 233			pr_info("copybreak disabled\n");
 234		else
 235			pr_info("copybreak enabled for "
 236				   "packets <= %u bytes\n", copybreak);
 237	}
 238	return ret;
 239}
 240
 241module_init(e1000_init_module);
 242
 243/**
 244 * e1000_exit_module - Driver Exit Cleanup Routine
 245 *
 246 * e1000_exit_module is called just before the driver is removed
 247 * from memory.
 248 **/
 249static void __exit e1000_exit_module(void)
 250{
 251	pci_unregister_driver(&e1000_driver);
 252}
 253
 254module_exit(e1000_exit_module);
 255
 256static int e1000_request_irq(struct e1000_adapter *adapter)
 257{
 258	struct net_device *netdev = adapter->netdev;
 259	irq_handler_t handler = e1000_intr;
 260	int irq_flags = IRQF_SHARED;
 261	int err;
 262
 263	err = request_irq(adapter->pdev->irq, handler, irq_flags, netdev->name,
 264			  netdev);
 265	if (err) {
 266		e_err(probe, "Unable to allocate interrupt Error: %d\n", err);
 267	}
 268
 269	return err;
 270}
 271
 272static void e1000_free_irq(struct e1000_adapter *adapter)
 273{
 274	struct net_device *netdev = adapter->netdev;
 275
 276	free_irq(adapter->pdev->irq, netdev);
 277}
 278
 279/**
 280 * e1000_irq_disable - Mask off interrupt generation on the NIC
 281 * @adapter: board private structure
 282 **/
 283static void e1000_irq_disable(struct e1000_adapter *adapter)
 284{
 285	struct e1000_hw *hw = &adapter->hw;
 286
 287	ew32(IMC, ~0);
 288	E1000_WRITE_FLUSH();
 289	synchronize_irq(adapter->pdev->irq);
 290}
 291
 292/**
 293 * e1000_irq_enable - Enable default interrupt generation settings
 294 * @adapter: board private structure
 295 **/
 296static void e1000_irq_enable(struct e1000_adapter *adapter)
 297{
 298	struct e1000_hw *hw = &adapter->hw;
 299
 300	ew32(IMS, IMS_ENABLE_MASK);
 301	E1000_WRITE_FLUSH();
 302}
 303
 304static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
 305{
 306	struct e1000_hw *hw = &adapter->hw;
 307	struct net_device *netdev = adapter->netdev;
 308	u16 vid = hw->mng_cookie.vlan_id;
 309	u16 old_vid = adapter->mng_vlan_id;
 310
 311	if (!e1000_vlan_used(adapter))
 312		return;
 313
 314	if (!test_bit(vid, adapter->active_vlans)) {
 315		if (hw->mng_cookie.status &
 316		    E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) {
 317			e1000_vlan_rx_add_vid(netdev, htons(ETH_P_8021Q), vid);
 318			adapter->mng_vlan_id = vid;
 319		} else {
 320			adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
 321		}
 322		if ((old_vid != (u16)E1000_MNG_VLAN_NONE) &&
 323		    (vid != old_vid) &&
 324		    !test_bit(old_vid, adapter->active_vlans))
 325			e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q),
 326					       old_vid);
 327	} else {
 328		adapter->mng_vlan_id = vid;
 329	}
 330}
 331
 332static void e1000_init_manageability(struct e1000_adapter *adapter)
 333{
 334	struct e1000_hw *hw = &adapter->hw;
 335
 336	if (adapter->en_mng_pt) {
 337		u32 manc = er32(MANC);
 338
 339		/* disable hardware interception of ARP */
 340		manc &= ~(E1000_MANC_ARP_EN);
 341
 342		ew32(MANC, manc);
 343	}
 344}
 345
 346static void e1000_release_manageability(struct e1000_adapter *adapter)
 347{
 348	struct e1000_hw *hw = &adapter->hw;
 349
 350	if (adapter->en_mng_pt) {
 351		u32 manc = er32(MANC);
 352
 353		/* re-enable hardware interception of ARP */
 354		manc |= E1000_MANC_ARP_EN;
 355
 356		ew32(MANC, manc);
 357	}
 358}
 359
 360/**
 361 * e1000_configure - configure the hardware for RX and TX
 362 * @adapter = private board structure
 363 **/
 364static void e1000_configure(struct e1000_adapter *adapter)
 365{
 366	struct net_device *netdev = adapter->netdev;
 367	int i;
 368
 369	e1000_set_rx_mode(netdev);
 370
 371	e1000_restore_vlan(adapter);
 372	e1000_init_manageability(adapter);
 373
 374	e1000_configure_tx(adapter);
 375	e1000_setup_rctl(adapter);
 376	e1000_configure_rx(adapter);
 377	/* call E1000_DESC_UNUSED which always leaves
 378	 * at least 1 descriptor unused to make sure
 379	 * next_to_use != next_to_clean
 380	 */
 381	for (i = 0; i < adapter->num_rx_queues; i++) {
 382		struct e1000_rx_ring *ring = &adapter->rx_ring[i];
 383		adapter->alloc_rx_buf(adapter, ring,
 384				      E1000_DESC_UNUSED(ring));
 385	}
 386}
 387
 388int e1000_up(struct e1000_adapter *adapter)
 389{
 390	struct e1000_hw *hw = &adapter->hw;
 391
 392	/* hardware has been reset, we need to reload some things */
 393	e1000_configure(adapter);
 394
 395	clear_bit(__E1000_DOWN, &adapter->flags);
 396
 397	napi_enable(&adapter->napi);
 398
 399	e1000_irq_enable(adapter);
 400
 401	netif_wake_queue(adapter->netdev);
 402
 403	/* fire a link change interrupt to start the watchdog */
 404	ew32(ICS, E1000_ICS_LSC);
 405	return 0;
 406}
 407
 408/**
 409 * e1000_power_up_phy - restore link in case the phy was powered down
 410 * @adapter: address of board private structure
 411 *
 412 * The phy may be powered down to save power and turn off link when the
 413 * driver is unloaded and wake on lan is not enabled (among others)
 414 * *** this routine MUST be followed by a call to e1000_reset ***
 415 **/
 416void e1000_power_up_phy(struct e1000_adapter *adapter)
 417{
 418	struct e1000_hw *hw = &adapter->hw;
 419	u16 mii_reg = 0;
 420
 421	/* Just clear the power down bit to wake the phy back up */
 422	if (hw->media_type == e1000_media_type_copper) {
 423		/* according to the manual, the phy will retain its
 424		 * settings across a power-down/up cycle
 425		 */
 426		e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg);
 427		mii_reg &= ~MII_CR_POWER_DOWN;
 428		e1000_write_phy_reg(hw, PHY_CTRL, mii_reg);
 429	}
 430}
 431
 432static void e1000_power_down_phy(struct e1000_adapter *adapter)
 433{
 434	struct e1000_hw *hw = &adapter->hw;
 435
 436	/* Power down the PHY so no link is implied when interface is down *
 437	 * The PHY cannot be powered down if any of the following is true *
 438	 * (a) WoL is enabled
 439	 * (b) AMT is active
 440	 * (c) SoL/IDER session is active
 441	 */
 442	if (!adapter->wol && hw->mac_type >= e1000_82540 &&
 443	   hw->media_type == e1000_media_type_copper) {
 444		u16 mii_reg = 0;
 445
 446		switch (hw->mac_type) {
 447		case e1000_82540:
 448		case e1000_82545:
 449		case e1000_82545_rev_3:
 450		case e1000_82546:
 451		case e1000_ce4100:
 452		case e1000_82546_rev_3:
 453		case e1000_82541:
 454		case e1000_82541_rev_2:
 455		case e1000_82547:
 456		case e1000_82547_rev_2:
 457			if (er32(MANC) & E1000_MANC_SMBUS_EN)
 458				goto out;
 459			break;
 460		default:
 461			goto out;
 462		}
 463		e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg);
 464		mii_reg |= MII_CR_POWER_DOWN;
 465		e1000_write_phy_reg(hw, PHY_CTRL, mii_reg);
 466		msleep(1);
 467	}
 468out:
 469	return;
 470}
 471
 472static void e1000_down_and_stop(struct e1000_adapter *adapter)
 473{
 474	set_bit(__E1000_DOWN, &adapter->flags);
 475
 476	cancel_delayed_work_sync(&adapter->watchdog_task);
 477
 478	/*
 479	 * Since the watchdog task can reschedule other tasks, we should cancel
 480	 * it first, otherwise we can run into the situation when a work is
 481	 * still running after the adapter has been turned down.
 482	 */
 483
 484	cancel_delayed_work_sync(&adapter->phy_info_task);
 485	cancel_delayed_work_sync(&adapter->fifo_stall_task);
 486
 487	/* Only kill reset task if adapter is not resetting */
 488	if (!test_bit(__E1000_RESETTING, &adapter->flags))
 489		cancel_work_sync(&adapter->reset_task);
 490}
 491
 492void e1000_down(struct e1000_adapter *adapter)
 493{
 494	struct e1000_hw *hw = &adapter->hw;
 495	struct net_device *netdev = adapter->netdev;
 496	u32 rctl, tctl;
 497
 498	/* disable receives in the hardware */
 499	rctl = er32(RCTL);
 500	ew32(RCTL, rctl & ~E1000_RCTL_EN);
 501	/* flush and sleep below */
 502
 503	netif_tx_disable(netdev);
 504
 505	/* disable transmits in the hardware */
 506	tctl = er32(TCTL);
 507	tctl &= ~E1000_TCTL_EN;
 508	ew32(TCTL, tctl);
 509	/* flush both disables and wait for them to finish */
 510	E1000_WRITE_FLUSH();
 511	msleep(10);
 512
 513	/* Set the carrier off after transmits have been disabled in the
 514	 * hardware, to avoid race conditions with e1000_watchdog() (which
 515	 * may be running concurrently to us, checking for the carrier
 516	 * bit to decide whether it should enable transmits again). Such
 517	 * a race condition would result into transmission being disabled
 518	 * in the hardware until the next IFF_DOWN+IFF_UP cycle.
 519	 */
 520	netif_carrier_off(netdev);
 521
 
 
 522	napi_disable(&adapter->napi);
 523
 524	e1000_irq_disable(adapter);
 525
 526	/* Setting DOWN must be after irq_disable to prevent
 527	 * a screaming interrupt.  Setting DOWN also prevents
 528	 * tasks from rescheduling.
 529	 */
 530	e1000_down_and_stop(adapter);
 531
 532	adapter->link_speed = 0;
 533	adapter->link_duplex = 0;
 534
 535	e1000_reset(adapter);
 536	e1000_clean_all_tx_rings(adapter);
 537	e1000_clean_all_rx_rings(adapter);
 538}
 539
 540void e1000_reinit_locked(struct e1000_adapter *adapter)
 541{
 542	WARN_ON(in_interrupt());
 543	while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
 544		msleep(1);
 545	e1000_down(adapter);
 546	e1000_up(adapter);
 
 
 
 
 
 547	clear_bit(__E1000_RESETTING, &adapter->flags);
 548}
 549
 550void e1000_reset(struct e1000_adapter *adapter)
 551{
 552	struct e1000_hw *hw = &adapter->hw;
 553	u32 pba = 0, tx_space, min_tx_space, min_rx_space;
 554	bool legacy_pba_adjust = false;
 555	u16 hwm;
 556
 557	/* Repartition Pba for greater than 9k mtu
 558	 * To take effect CTRL.RST is required.
 559	 */
 560
 561	switch (hw->mac_type) {
 562	case e1000_82542_rev2_0:
 563	case e1000_82542_rev2_1:
 564	case e1000_82543:
 565	case e1000_82544:
 566	case e1000_82540:
 567	case e1000_82541:
 568	case e1000_82541_rev_2:
 569		legacy_pba_adjust = true;
 570		pba = E1000_PBA_48K;
 571		break;
 572	case e1000_82545:
 573	case e1000_82545_rev_3:
 574	case e1000_82546:
 575	case e1000_ce4100:
 576	case e1000_82546_rev_3:
 577		pba = E1000_PBA_48K;
 578		break;
 579	case e1000_82547:
 580	case e1000_82547_rev_2:
 581		legacy_pba_adjust = true;
 582		pba = E1000_PBA_30K;
 583		break;
 584	case e1000_undefined:
 585	case e1000_num_macs:
 586		break;
 587	}
 588
 589	if (legacy_pba_adjust) {
 590		if (hw->max_frame_size > E1000_RXBUFFER_8192)
 591			pba -= 8; /* allocate more FIFO for Tx */
 592
 593		if (hw->mac_type == e1000_82547) {
 594			adapter->tx_fifo_head = 0;
 595			adapter->tx_head_addr = pba << E1000_TX_HEAD_ADDR_SHIFT;
 596			adapter->tx_fifo_size =
 597				(E1000_PBA_40K - pba) << E1000_PBA_BYTES_SHIFT;
 598			atomic_set(&adapter->tx_fifo_stall, 0);
 599		}
 600	} else if (hw->max_frame_size >  ETH_FRAME_LEN + ETH_FCS_LEN) {
 601		/* adjust PBA for jumbo frames */
 602		ew32(PBA, pba);
 603
 604		/* To maintain wire speed transmits, the Tx FIFO should be
 605		 * large enough to accommodate two full transmit packets,
 606		 * rounded up to the next 1KB and expressed in KB.  Likewise,
 607		 * the Rx FIFO should be large enough to accommodate at least
 608		 * one full receive packet and is similarly rounded up and
 609		 * expressed in KB.
 610		 */
 611		pba = er32(PBA);
 612		/* upper 16 bits has Tx packet buffer allocation size in KB */
 613		tx_space = pba >> 16;
 614		/* lower 16 bits has Rx packet buffer allocation size in KB */
 615		pba &= 0xffff;
 616		/* the Tx fifo also stores 16 bytes of information about the Tx
 617		 * but don't include ethernet FCS because hardware appends it
 618		 */
 619		min_tx_space = (hw->max_frame_size +
 620				sizeof(struct e1000_tx_desc) -
 621				ETH_FCS_LEN) * 2;
 622		min_tx_space = ALIGN(min_tx_space, 1024);
 623		min_tx_space >>= 10;
 624		/* software strips receive CRC, so leave room for it */
 625		min_rx_space = hw->max_frame_size;
 626		min_rx_space = ALIGN(min_rx_space, 1024);
 627		min_rx_space >>= 10;
 628
 629		/* If current Tx allocation is less than the min Tx FIFO size,
 630		 * and the min Tx FIFO size is less than the current Rx FIFO
 631		 * allocation, take space away from current Rx allocation
 632		 */
 633		if (tx_space < min_tx_space &&
 634		    ((min_tx_space - tx_space) < pba)) {
 635			pba = pba - (min_tx_space - tx_space);
 636
 637			/* PCI/PCIx hardware has PBA alignment constraints */
 638			switch (hw->mac_type) {
 639			case e1000_82545 ... e1000_82546_rev_3:
 640				pba &= ~(E1000_PBA_8K - 1);
 641				break;
 642			default:
 643				break;
 644			}
 645
 646			/* if short on Rx space, Rx wins and must trump Tx
 647			 * adjustment or use Early Receive if available
 648			 */
 649			if (pba < min_rx_space)
 650				pba = min_rx_space;
 651		}
 652	}
 653
 654	ew32(PBA, pba);
 655
 656	/* flow control settings:
 657	 * The high water mark must be low enough to fit one full frame
 658	 * (or the size used for early receive) above it in the Rx FIFO.
 659	 * Set it to the lower of:
 660	 * - 90% of the Rx FIFO size, and
 661	 * - the full Rx FIFO size minus the early receive size (for parts
 662	 *   with ERT support assuming ERT set to E1000_ERT_2048), or
 663	 * - the full Rx FIFO size minus one full frame
 664	 */
 665	hwm = min(((pba << 10) * 9 / 10),
 666		  ((pba << 10) - hw->max_frame_size));
 667
 668	hw->fc_high_water = hwm & 0xFFF8;	/* 8-byte granularity */
 669	hw->fc_low_water = hw->fc_high_water - 8;
 670	hw->fc_pause_time = E1000_FC_PAUSE_TIME;
 671	hw->fc_send_xon = 1;
 672	hw->fc = hw->original_fc;
 673
 674	/* Allow time for pending master requests to run */
 675	e1000_reset_hw(hw);
 676	if (hw->mac_type >= e1000_82544)
 677		ew32(WUC, 0);
 678
 679	if (e1000_init_hw(hw))
 680		e_dev_err("Hardware Error\n");
 681	e1000_update_mng_vlan(adapter);
 682
 683	/* if (adapter->hwflags & HWFLAGS_PHY_PWR_BIT) { */
 684	if (hw->mac_type >= e1000_82544 &&
 685	    hw->autoneg == 1 &&
 686	    hw->autoneg_advertised == ADVERTISE_1000_FULL) {
 687		u32 ctrl = er32(CTRL);
 688		/* clear phy power management bit if we are in gig only mode,
 689		 * which if enabled will attempt negotiation to 100Mb, which
 690		 * can cause a loss of link at power off or driver unload
 691		 */
 692		ctrl &= ~E1000_CTRL_SWDPIN3;
 693		ew32(CTRL, ctrl);
 694	}
 695
 696	/* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
 697	ew32(VET, ETHERNET_IEEE_VLAN_TYPE);
 698
 699	e1000_reset_adaptive(hw);
 700	e1000_phy_get_info(hw, &adapter->phy_info);
 701
 702	e1000_release_manageability(adapter);
 703}
 704
 705/* Dump the eeprom for users having checksum issues */
 706static void e1000_dump_eeprom(struct e1000_adapter *adapter)
 707{
 708	struct net_device *netdev = adapter->netdev;
 709	struct ethtool_eeprom eeprom;
 710	const struct ethtool_ops *ops = netdev->ethtool_ops;
 711	u8 *data;
 712	int i;
 713	u16 csum_old, csum_new = 0;
 714
 715	eeprom.len = ops->get_eeprom_len(netdev);
 716	eeprom.offset = 0;
 717
 718	data = kmalloc(eeprom.len, GFP_KERNEL);
 719	if (!data)
 720		return;
 721
 722	ops->get_eeprom(netdev, &eeprom, data);
 723
 724	csum_old = (data[EEPROM_CHECKSUM_REG * 2]) +
 725		   (data[EEPROM_CHECKSUM_REG * 2 + 1] << 8);
 726	for (i = 0; i < EEPROM_CHECKSUM_REG * 2; i += 2)
 727		csum_new += data[i] + (data[i + 1] << 8);
 728	csum_new = EEPROM_SUM - csum_new;
 729
 730	pr_err("/*********************/\n");
 731	pr_err("Current EEPROM Checksum : 0x%04x\n", csum_old);
 732	pr_err("Calculated              : 0x%04x\n", csum_new);
 733
 734	pr_err("Offset    Values\n");
 735	pr_err("========  ======\n");
 736	print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 16, 1, data, 128, 0);
 737
 738	pr_err("Include this output when contacting your support provider.\n");
 739	pr_err("This is not a software error! Something bad happened to\n");
 740	pr_err("your hardware or EEPROM image. Ignoring this problem could\n");
 741	pr_err("result in further problems, possibly loss of data,\n");
 742	pr_err("corruption or system hangs!\n");
 743	pr_err("The MAC Address will be reset to 00:00:00:00:00:00,\n");
 744	pr_err("which is invalid and requires you to set the proper MAC\n");
 745	pr_err("address manually before continuing to enable this network\n");
 746	pr_err("device. Please inspect the EEPROM dump and report the\n");
 747	pr_err("issue to your hardware vendor or Intel Customer Support.\n");
 748	pr_err("/*********************/\n");
 749
 750	kfree(data);
 751}
 752
 753/**
 754 * e1000_is_need_ioport - determine if an adapter needs ioport resources or not
 755 * @pdev: PCI device information struct
 756 *
 757 * Return true if an adapter needs ioport resources
 758 **/
 759static int e1000_is_need_ioport(struct pci_dev *pdev)
 760{
 761	switch (pdev->device) {
 762	case E1000_DEV_ID_82540EM:
 763	case E1000_DEV_ID_82540EM_LOM:
 764	case E1000_DEV_ID_82540EP:
 765	case E1000_DEV_ID_82540EP_LOM:
 766	case E1000_DEV_ID_82540EP_LP:
 767	case E1000_DEV_ID_82541EI:
 768	case E1000_DEV_ID_82541EI_MOBILE:
 769	case E1000_DEV_ID_82541ER:
 770	case E1000_DEV_ID_82541ER_LOM:
 771	case E1000_DEV_ID_82541GI:
 772	case E1000_DEV_ID_82541GI_LF:
 773	case E1000_DEV_ID_82541GI_MOBILE:
 774	case E1000_DEV_ID_82544EI_COPPER:
 775	case E1000_DEV_ID_82544EI_FIBER:
 776	case E1000_DEV_ID_82544GC_COPPER:
 777	case E1000_DEV_ID_82544GC_LOM:
 778	case E1000_DEV_ID_82545EM_COPPER:
 779	case E1000_DEV_ID_82545EM_FIBER:
 780	case E1000_DEV_ID_82546EB_COPPER:
 781	case E1000_DEV_ID_82546EB_FIBER:
 782	case E1000_DEV_ID_82546EB_QUAD_COPPER:
 783		return true;
 784	default:
 785		return false;
 786	}
 787}
 788
 789static netdev_features_t e1000_fix_features(struct net_device *netdev,
 790	netdev_features_t features)
 791{
 792	/* Since there is no support for separate Rx/Tx vlan accel
 793	 * enable/disable make sure Tx flag is always in same state as Rx.
 794	 */
 795	if (features & NETIF_F_HW_VLAN_CTAG_RX)
 796		features |= NETIF_F_HW_VLAN_CTAG_TX;
 797	else
 798		features &= ~NETIF_F_HW_VLAN_CTAG_TX;
 799
 800	return features;
 801}
 802
 803static int e1000_set_features(struct net_device *netdev,
 804	netdev_features_t features)
 805{
 806	struct e1000_adapter *adapter = netdev_priv(netdev);
 807	netdev_features_t changed = features ^ netdev->features;
 808
 809	if (changed & NETIF_F_HW_VLAN_CTAG_RX)
 810		e1000_vlan_mode(netdev, features);
 811
 812	if (!(changed & (NETIF_F_RXCSUM | NETIF_F_RXALL)))
 813		return 0;
 814
 815	netdev->features = features;
 816	adapter->rx_csum = !!(features & NETIF_F_RXCSUM);
 817
 818	if (netif_running(netdev))
 819		e1000_reinit_locked(adapter);
 820	else
 821		e1000_reset(adapter);
 822
 823	return 1;
 824}
 825
 826static const struct net_device_ops e1000_netdev_ops = {
 827	.ndo_open		= e1000_open,
 828	.ndo_stop		= e1000_close,
 829	.ndo_start_xmit		= e1000_xmit_frame,
 830	.ndo_set_rx_mode	= e1000_set_rx_mode,
 831	.ndo_set_mac_address	= e1000_set_mac,
 832	.ndo_tx_timeout		= e1000_tx_timeout,
 833	.ndo_change_mtu		= e1000_change_mtu,
 834	.ndo_do_ioctl		= e1000_ioctl,
 835	.ndo_validate_addr	= eth_validate_addr,
 836	.ndo_vlan_rx_add_vid	= e1000_vlan_rx_add_vid,
 837	.ndo_vlan_rx_kill_vid	= e1000_vlan_rx_kill_vid,
 838#ifdef CONFIG_NET_POLL_CONTROLLER
 839	.ndo_poll_controller	= e1000_netpoll,
 840#endif
 841	.ndo_fix_features	= e1000_fix_features,
 842	.ndo_set_features	= e1000_set_features,
 843};
 844
 845/**
 846 * e1000_init_hw_struct - initialize members of hw struct
 847 * @adapter: board private struct
 848 * @hw: structure used by e1000_hw.c
 849 *
 850 * Factors out initialization of the e1000_hw struct to its own function
 851 * that can be called very early at init (just after struct allocation).
 852 * Fields are initialized based on PCI device information and
 853 * OS network device settings (MTU size).
 854 * Returns negative error codes if MAC type setup fails.
 855 */
 856static int e1000_init_hw_struct(struct e1000_adapter *adapter,
 857				struct e1000_hw *hw)
 858{
 859	struct pci_dev *pdev = adapter->pdev;
 860
 861	/* PCI config space info */
 862	hw->vendor_id = pdev->vendor;
 863	hw->device_id = pdev->device;
 864	hw->subsystem_vendor_id = pdev->subsystem_vendor;
 865	hw->subsystem_id = pdev->subsystem_device;
 866	hw->revision_id = pdev->revision;
 867
 868	pci_read_config_word(pdev, PCI_COMMAND, &hw->pci_cmd_word);
 869
 870	hw->max_frame_size = adapter->netdev->mtu +
 871			     ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
 872	hw->min_frame_size = MINIMUM_ETHERNET_FRAME_SIZE;
 873
 874	/* identify the MAC */
 875	if (e1000_set_mac_type(hw)) {
 876		e_err(probe, "Unknown MAC Type\n");
 877		return -EIO;
 878	}
 879
 880	switch (hw->mac_type) {
 881	default:
 882		break;
 883	case e1000_82541:
 884	case e1000_82547:
 885	case e1000_82541_rev_2:
 886	case e1000_82547_rev_2:
 887		hw->phy_init_script = 1;
 888		break;
 889	}
 890
 891	e1000_set_media_type(hw);
 892	e1000_get_bus_info(hw);
 893
 894	hw->wait_autoneg_complete = false;
 895	hw->tbi_compatibility_en = true;
 896	hw->adaptive_ifs = true;
 897
 898	/* Copper options */
 899
 900	if (hw->media_type == e1000_media_type_copper) {
 901		hw->mdix = AUTO_ALL_MODES;
 902		hw->disable_polarity_correction = false;
 903		hw->master_slave = E1000_MASTER_SLAVE;
 904	}
 905
 906	return 0;
 907}
 908
 909/**
 910 * e1000_probe - Device Initialization Routine
 911 * @pdev: PCI device information struct
 912 * @ent: entry in e1000_pci_tbl
 913 *
 914 * Returns 0 on success, negative on failure
 915 *
 916 * e1000_probe initializes an adapter identified by a pci_dev structure.
 917 * The OS initialization, configuring of the adapter private structure,
 918 * and a hardware reset occur.
 919 **/
 920static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
 921{
 922	struct net_device *netdev;
 923	struct e1000_adapter *adapter = NULL;
 924	struct e1000_hw *hw;
 925
 926	static int cards_found;
 927	static int global_quad_port_a; /* global ksp3 port a indication */
 928	int i, err, pci_using_dac;
 929	u16 eeprom_data = 0;
 930	u16 tmp = 0;
 931	u16 eeprom_apme_mask = E1000_EEPROM_APME;
 932	int bars, need_ioport;
 933	bool disable_dev = false;
 934
 935	/* do not allocate ioport bars when not needed */
 936	need_ioport = e1000_is_need_ioport(pdev);
 937	if (need_ioport) {
 938		bars = pci_select_bars(pdev, IORESOURCE_MEM | IORESOURCE_IO);
 939		err = pci_enable_device(pdev);
 940	} else {
 941		bars = pci_select_bars(pdev, IORESOURCE_MEM);
 942		err = pci_enable_device_mem(pdev);
 943	}
 944	if (err)
 945		return err;
 946
 947	err = pci_request_selected_regions(pdev, bars, e1000_driver_name);
 948	if (err)
 949		goto err_pci_reg;
 950
 951	pci_set_master(pdev);
 952	err = pci_save_state(pdev);
 953	if (err)
 954		goto err_alloc_etherdev;
 955
 956	err = -ENOMEM;
 957	netdev = alloc_etherdev(sizeof(struct e1000_adapter));
 958	if (!netdev)
 959		goto err_alloc_etherdev;
 960
 961	SET_NETDEV_DEV(netdev, &pdev->dev);
 962
 963	pci_set_drvdata(pdev, netdev);
 964	adapter = netdev_priv(netdev);
 965	adapter->netdev = netdev;
 966	adapter->pdev = pdev;
 967	adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
 968	adapter->bars = bars;
 969	adapter->need_ioport = need_ioport;
 970
 971	hw = &adapter->hw;
 972	hw->back = adapter;
 973
 974	err = -EIO;
 975	hw->hw_addr = pci_ioremap_bar(pdev, BAR_0);
 976	if (!hw->hw_addr)
 977		goto err_ioremap;
 978
 979	if (adapter->need_ioport) {
 980		for (i = BAR_1; i <= BAR_5; i++) {
 981			if (pci_resource_len(pdev, i) == 0)
 982				continue;
 983			if (pci_resource_flags(pdev, i) & IORESOURCE_IO) {
 984				hw->io_base = pci_resource_start(pdev, i);
 985				break;
 986			}
 987		}
 988	}
 989
 990	/* make ready for any if (hw->...) below */
 991	err = e1000_init_hw_struct(adapter, hw);
 992	if (err)
 993		goto err_sw_init;
 994
 995	/* there is a workaround being applied below that limits
 996	 * 64-bit DMA addresses to 64-bit hardware.  There are some
 997	 * 32-bit adapters that Tx hang when given 64-bit DMA addresses
 998	 */
 999	pci_using_dac = 0;
1000	if ((hw->bus_type == e1000_bus_type_pcix) &&
1001	    !dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64))) {
1002		pci_using_dac = 1;
1003	} else {
1004		err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
1005		if (err) {
1006			pr_err("No usable DMA config, aborting\n");
1007			goto err_dma;
1008		}
1009	}
1010
1011	netdev->netdev_ops = &e1000_netdev_ops;
1012	e1000_set_ethtool_ops(netdev);
1013	netdev->watchdog_timeo = 5 * HZ;
1014	netif_napi_add(netdev, &adapter->napi, e1000_clean, 64);
1015
1016	strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
1017
1018	adapter->bd_number = cards_found;
1019
1020	/* setup the private structure */
1021
1022	err = e1000_sw_init(adapter);
1023	if (err)
1024		goto err_sw_init;
1025
1026	err = -EIO;
1027	if (hw->mac_type == e1000_ce4100) {
1028		hw->ce4100_gbe_mdio_base_virt =
1029					ioremap(pci_resource_start(pdev, BAR_1),
1030						pci_resource_len(pdev, BAR_1));
1031
1032		if (!hw->ce4100_gbe_mdio_base_virt)
1033			goto err_mdio_ioremap;
1034	}
1035
1036	if (hw->mac_type >= e1000_82543) {
1037		netdev->hw_features = NETIF_F_SG |
1038				   NETIF_F_HW_CSUM |
1039				   NETIF_F_HW_VLAN_CTAG_RX;
1040		netdev->features = NETIF_F_HW_VLAN_CTAG_TX |
1041				   NETIF_F_HW_VLAN_CTAG_FILTER;
1042	}
1043
1044	if ((hw->mac_type >= e1000_82544) &&
1045	   (hw->mac_type != e1000_82547))
1046		netdev->hw_features |= NETIF_F_TSO;
1047
1048	netdev->priv_flags |= IFF_SUPP_NOFCS;
1049
1050	netdev->features |= netdev->hw_features;
1051	netdev->hw_features |= (NETIF_F_RXCSUM |
1052				NETIF_F_RXALL |
1053				NETIF_F_RXFCS);
1054
1055	if (pci_using_dac) {
1056		netdev->features |= NETIF_F_HIGHDMA;
1057		netdev->vlan_features |= NETIF_F_HIGHDMA;
1058	}
1059
1060	netdev->vlan_features |= (NETIF_F_TSO |
1061				  NETIF_F_HW_CSUM |
1062				  NETIF_F_SG);
1063
1064	/* Do not set IFF_UNICAST_FLT for VMWare's 82545EM */
1065	if (hw->device_id != E1000_DEV_ID_82545EM_COPPER ||
1066	    hw->subsystem_vendor_id != PCI_VENDOR_ID_VMWARE)
1067		netdev->priv_flags |= IFF_UNICAST_FLT;
1068
1069	/* MTU range: 46 - 16110 */
1070	netdev->min_mtu = ETH_ZLEN - ETH_HLEN;
1071	netdev->max_mtu = MAX_JUMBO_FRAME_SIZE - (ETH_HLEN + ETH_FCS_LEN);
1072
1073	adapter->en_mng_pt = e1000_enable_mng_pass_thru(hw);
1074
1075	/* initialize eeprom parameters */
1076	if (e1000_init_eeprom_params(hw)) {
1077		e_err(probe, "EEPROM initialization failed\n");
1078		goto err_eeprom;
1079	}
1080
1081	/* before reading the EEPROM, reset the controller to
1082	 * put the device in a known good starting state
1083	 */
1084
1085	e1000_reset_hw(hw);
1086
1087	/* make sure the EEPROM is good */
1088	if (e1000_validate_eeprom_checksum(hw) < 0) {
1089		e_err(probe, "The EEPROM Checksum Is Not Valid\n");
1090		e1000_dump_eeprom(adapter);
1091		/* set MAC address to all zeroes to invalidate and temporary
1092		 * disable this device for the user. This blocks regular
1093		 * traffic while still permitting ethtool ioctls from reaching
1094		 * the hardware as well as allowing the user to run the
1095		 * interface after manually setting a hw addr using
1096		 * `ip set address`
1097		 */
1098		memset(hw->mac_addr, 0, netdev->addr_len);
1099	} else {
1100		/* copy the MAC address out of the EEPROM */
1101		if (e1000_read_mac_addr(hw))
1102			e_err(probe, "EEPROM Read Error\n");
1103	}
1104	/* don't block initialization here due to bad MAC address */
1105	memcpy(netdev->dev_addr, hw->mac_addr, netdev->addr_len);
1106
1107	if (!is_valid_ether_addr(netdev->dev_addr))
1108		e_err(probe, "Invalid MAC Address\n");
1109
1110
1111	INIT_DELAYED_WORK(&adapter->watchdog_task, e1000_watchdog);
1112	INIT_DELAYED_WORK(&adapter->fifo_stall_task,
1113			  e1000_82547_tx_fifo_stall_task);
1114	INIT_DELAYED_WORK(&adapter->phy_info_task, e1000_update_phy_info_task);
1115	INIT_WORK(&adapter->reset_task, e1000_reset_task);
1116
1117	e1000_check_options(adapter);
1118
1119	/* Initial Wake on LAN setting
1120	 * If APM wake is enabled in the EEPROM,
1121	 * enable the ACPI Magic Packet filter
1122	 */
1123
1124	switch (hw->mac_type) {
1125	case e1000_82542_rev2_0:
1126	case e1000_82542_rev2_1:
1127	case e1000_82543:
1128		break;
1129	case e1000_82544:
1130		e1000_read_eeprom(hw,
1131			EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data);
1132		eeprom_apme_mask = E1000_EEPROM_82544_APM;
1133		break;
1134	case e1000_82546:
1135	case e1000_82546_rev_3:
1136		if (er32(STATUS) & E1000_STATUS_FUNC_1) {
1137			e1000_read_eeprom(hw,
1138				EEPROM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
1139			break;
1140		}
1141		/* Fall Through */
1142	default:
1143		e1000_read_eeprom(hw,
1144			EEPROM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
1145		break;
1146	}
1147	if (eeprom_data & eeprom_apme_mask)
1148		adapter->eeprom_wol |= E1000_WUFC_MAG;
1149
1150	/* now that we have the eeprom settings, apply the special cases
1151	 * where the eeprom may be wrong or the board simply won't support
1152	 * wake on lan on a particular port
1153	 */
1154	switch (pdev->device) {
1155	case E1000_DEV_ID_82546GB_PCIE:
1156		adapter->eeprom_wol = 0;
1157		break;
1158	case E1000_DEV_ID_82546EB_FIBER:
1159	case E1000_DEV_ID_82546GB_FIBER:
1160		/* Wake events only supported on port A for dual fiber
1161		 * regardless of eeprom setting
1162		 */
1163		if (er32(STATUS) & E1000_STATUS_FUNC_1)
1164			adapter->eeprom_wol = 0;
1165		break;
1166	case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1167		/* if quad port adapter, disable WoL on all but port A */
1168		if (global_quad_port_a != 0)
1169			adapter->eeprom_wol = 0;
1170		else
1171			adapter->quad_port_a = true;
1172		/* Reset for multiple quad port adapters */
1173		if (++global_quad_port_a == 4)
1174			global_quad_port_a = 0;
1175		break;
1176	}
1177
1178	/* initialize the wol settings based on the eeprom settings */
1179	adapter->wol = adapter->eeprom_wol;
1180	device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1181
1182	/* Auto detect PHY address */
1183	if (hw->mac_type == e1000_ce4100) {
1184		for (i = 0; i < 32; i++) {
1185			hw->phy_addr = i;
1186			e1000_read_phy_reg(hw, PHY_ID2, &tmp);
1187
1188			if (tmp != 0 && tmp != 0xFF)
1189				break;
1190		}
1191
1192		if (i >= 32)
1193			goto err_eeprom;
1194	}
1195
1196	/* reset the hardware with the new settings */
1197	e1000_reset(adapter);
1198
1199	strcpy(netdev->name, "eth%d");
1200	err = register_netdev(netdev);
1201	if (err)
1202		goto err_register;
1203
1204	e1000_vlan_filter_on_off(adapter, false);
1205
1206	/* print bus type/speed/width info */
1207	e_info(probe, "(PCI%s:%dMHz:%d-bit) %pM\n",
1208	       ((hw->bus_type == e1000_bus_type_pcix) ? "-X" : ""),
1209	       ((hw->bus_speed == e1000_bus_speed_133) ? 133 :
1210		(hw->bus_speed == e1000_bus_speed_120) ? 120 :
1211		(hw->bus_speed == e1000_bus_speed_100) ? 100 :
1212		(hw->bus_speed == e1000_bus_speed_66) ? 66 : 33),
1213	       ((hw->bus_width == e1000_bus_width_64) ? 64 : 32),
1214	       netdev->dev_addr);
1215
1216	/* carrier off reporting is important to ethtool even BEFORE open */
1217	netif_carrier_off(netdev);
1218
1219	e_info(probe, "Intel(R) PRO/1000 Network Connection\n");
1220
1221	cards_found++;
1222	return 0;
1223
1224err_register:
1225err_eeprom:
1226	e1000_phy_hw_reset(hw);
1227
1228	if (hw->flash_address)
1229		iounmap(hw->flash_address);
1230	kfree(adapter->tx_ring);
1231	kfree(adapter->rx_ring);
1232err_dma:
1233err_sw_init:
1234err_mdio_ioremap:
1235	iounmap(hw->ce4100_gbe_mdio_base_virt);
1236	iounmap(hw->hw_addr);
1237err_ioremap:
1238	disable_dev = !test_and_set_bit(__E1000_DISABLED, &adapter->flags);
1239	free_netdev(netdev);
1240err_alloc_etherdev:
1241	pci_release_selected_regions(pdev, bars);
1242err_pci_reg:
1243	if (!adapter || disable_dev)
1244		pci_disable_device(pdev);
1245	return err;
1246}
1247
1248/**
1249 * e1000_remove - Device Removal Routine
1250 * @pdev: PCI device information struct
1251 *
1252 * e1000_remove is called by the PCI subsystem to alert the driver
1253 * that it should release a PCI device. That could be caused by a
1254 * Hot-Plug event, or because the driver is going to be removed from
1255 * memory.
1256 **/
1257static void e1000_remove(struct pci_dev *pdev)
1258{
1259	struct net_device *netdev = pci_get_drvdata(pdev);
1260	struct e1000_adapter *adapter = netdev_priv(netdev);
1261	struct e1000_hw *hw = &adapter->hw;
1262	bool disable_dev;
1263
1264	e1000_down_and_stop(adapter);
1265	e1000_release_manageability(adapter);
1266
1267	unregister_netdev(netdev);
1268
1269	e1000_phy_hw_reset(hw);
1270
1271	kfree(adapter->tx_ring);
1272	kfree(adapter->rx_ring);
1273
1274	if (hw->mac_type == e1000_ce4100)
1275		iounmap(hw->ce4100_gbe_mdio_base_virt);
1276	iounmap(hw->hw_addr);
1277	if (hw->flash_address)
1278		iounmap(hw->flash_address);
1279	pci_release_selected_regions(pdev, adapter->bars);
1280
1281	disable_dev = !test_and_set_bit(__E1000_DISABLED, &adapter->flags);
1282	free_netdev(netdev);
1283
1284	if (disable_dev)
1285		pci_disable_device(pdev);
1286}
1287
1288/**
1289 * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
1290 * @adapter: board private structure to initialize
1291 *
1292 * e1000_sw_init initializes the Adapter private data structure.
1293 * e1000_init_hw_struct MUST be called before this function
1294 **/
1295static int e1000_sw_init(struct e1000_adapter *adapter)
1296{
1297	adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
1298
1299	adapter->num_tx_queues = 1;
1300	adapter->num_rx_queues = 1;
1301
1302	if (e1000_alloc_queues(adapter)) {
1303		e_err(probe, "Unable to allocate memory for queues\n");
1304		return -ENOMEM;
1305	}
1306
1307	/* Explicitly disable IRQ since the NIC can be in any state. */
1308	e1000_irq_disable(adapter);
1309
1310	spin_lock_init(&adapter->stats_lock);
1311
1312	set_bit(__E1000_DOWN, &adapter->flags);
1313
1314	return 0;
1315}
1316
1317/**
1318 * e1000_alloc_queues - Allocate memory for all rings
1319 * @adapter: board private structure to initialize
1320 *
1321 * We allocate one ring per queue at run-time since we don't know the
1322 * number of queues at compile-time.
1323 **/
1324static int e1000_alloc_queues(struct e1000_adapter *adapter)
1325{
1326	adapter->tx_ring = kcalloc(adapter->num_tx_queues,
1327				   sizeof(struct e1000_tx_ring), GFP_KERNEL);
1328	if (!adapter->tx_ring)
1329		return -ENOMEM;
1330
1331	adapter->rx_ring = kcalloc(adapter->num_rx_queues,
1332				   sizeof(struct e1000_rx_ring), GFP_KERNEL);
1333	if (!adapter->rx_ring) {
1334		kfree(adapter->tx_ring);
1335		return -ENOMEM;
1336	}
1337
1338	return E1000_SUCCESS;
1339}
1340
1341/**
1342 * e1000_open - Called when a network interface is made active
1343 * @netdev: network interface device structure
1344 *
1345 * Returns 0 on success, negative value on failure
1346 *
1347 * The open entry point is called when a network interface is made
1348 * active by the system (IFF_UP).  At this point all resources needed
1349 * for transmit and receive operations are allocated, the interrupt
1350 * handler is registered with the OS, the watchdog task is started,
1351 * and the stack is notified that the interface is ready.
1352 **/
1353int e1000_open(struct net_device *netdev)
1354{
1355	struct e1000_adapter *adapter = netdev_priv(netdev);
1356	struct e1000_hw *hw = &adapter->hw;
1357	int err;
1358
1359	/* disallow open during test */
1360	if (test_bit(__E1000_TESTING, &adapter->flags))
1361		return -EBUSY;
1362
1363	netif_carrier_off(netdev);
1364
1365	/* allocate transmit descriptors */
1366	err = e1000_setup_all_tx_resources(adapter);
1367	if (err)
1368		goto err_setup_tx;
1369
1370	/* allocate receive descriptors */
1371	err = e1000_setup_all_rx_resources(adapter);
1372	if (err)
1373		goto err_setup_rx;
1374
1375	e1000_power_up_phy(adapter);
1376
1377	adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
1378	if ((hw->mng_cookie.status &
1379			  E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) {
1380		e1000_update_mng_vlan(adapter);
1381	}
1382
1383	/* before we allocate an interrupt, we must be ready to handle it.
1384	 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1385	 * as soon as we call pci_request_irq, so we have to setup our
1386	 * clean_rx handler before we do so.
1387	 */
1388	e1000_configure(adapter);
1389
1390	err = e1000_request_irq(adapter);
1391	if (err)
1392		goto err_req_irq;
1393
1394	/* From here on the code is the same as e1000_up() */
1395	clear_bit(__E1000_DOWN, &adapter->flags);
1396
 
1397	napi_enable(&adapter->napi);
 
 
1398
1399	e1000_irq_enable(adapter);
1400
1401	netif_start_queue(netdev);
1402
1403	/* fire a link status change interrupt to start the watchdog */
1404	ew32(ICS, E1000_ICS_LSC);
1405
1406	return E1000_SUCCESS;
1407
1408err_req_irq:
1409	e1000_power_down_phy(adapter);
1410	e1000_free_all_rx_resources(adapter);
1411err_setup_rx:
1412	e1000_free_all_tx_resources(adapter);
1413err_setup_tx:
1414	e1000_reset(adapter);
1415
1416	return err;
1417}
1418
1419/**
1420 * e1000_close - Disables a network interface
1421 * @netdev: network interface device structure
1422 *
1423 * Returns 0, this is not allowed to fail
1424 *
1425 * The close entry point is called when an interface is de-activated
1426 * by the OS.  The hardware is still under the drivers control, but
1427 * needs to be disabled.  A global MAC reset is issued to stop the
1428 * hardware, and all transmit and receive resources are freed.
1429 **/
1430int e1000_close(struct net_device *netdev)
1431{
1432	struct e1000_adapter *adapter = netdev_priv(netdev);
1433	struct e1000_hw *hw = &adapter->hw;
1434	int count = E1000_CHECK_RESET_COUNT;
1435
1436	while (test_bit(__E1000_RESETTING, &adapter->flags) && count--)
1437		usleep_range(10000, 20000);
1438
1439	WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
 
 
 
 
 
1440	e1000_down(adapter);
1441	e1000_power_down_phy(adapter);
1442	e1000_free_irq(adapter);
1443
1444	e1000_free_all_tx_resources(adapter);
1445	e1000_free_all_rx_resources(adapter);
1446
1447	/* kill manageability vlan ID if supported, but not if a vlan with
1448	 * the same ID is registered on the host OS (let 8021q kill it)
1449	 */
1450	if ((hw->mng_cookie.status &
1451	     E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
1452	    !test_bit(adapter->mng_vlan_id, adapter->active_vlans)) {
1453		e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q),
1454				       adapter->mng_vlan_id);
1455	}
1456
1457	return 0;
1458}
1459
1460/**
1461 * e1000_check_64k_bound - check that memory doesn't cross 64kB boundary
1462 * @adapter: address of board private structure
1463 * @start: address of beginning of memory
1464 * @len: length of memory
1465 **/
1466static bool e1000_check_64k_bound(struct e1000_adapter *adapter, void *start,
1467				  unsigned long len)
1468{
1469	struct e1000_hw *hw = &adapter->hw;
1470	unsigned long begin = (unsigned long)start;
1471	unsigned long end = begin + len;
1472
1473	/* First rev 82545 and 82546 need to not allow any memory
1474	 * write location to cross 64k boundary due to errata 23
1475	 */
1476	if (hw->mac_type == e1000_82545 ||
1477	    hw->mac_type == e1000_ce4100 ||
1478	    hw->mac_type == e1000_82546) {
1479		return ((begin ^ (end - 1)) >> 16) != 0 ? false : true;
1480	}
1481
1482	return true;
1483}
1484
1485/**
1486 * e1000_setup_tx_resources - allocate Tx resources (Descriptors)
1487 * @adapter: board private structure
1488 * @txdr:    tx descriptor ring (for a specific queue) to setup
1489 *
1490 * Return 0 on success, negative on failure
1491 **/
1492static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
1493				    struct e1000_tx_ring *txdr)
1494{
1495	struct pci_dev *pdev = adapter->pdev;
1496	int size;
1497
1498	size = sizeof(struct e1000_tx_buffer) * txdr->count;
1499	txdr->buffer_info = vzalloc(size);
1500	if (!txdr->buffer_info)
1501		return -ENOMEM;
1502
1503	/* round up to nearest 4K */
1504
1505	txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
1506	txdr->size = ALIGN(txdr->size, 4096);
1507
1508	txdr->desc = dma_alloc_coherent(&pdev->dev, txdr->size, &txdr->dma,
1509					GFP_KERNEL);
1510	if (!txdr->desc) {
1511setup_tx_desc_die:
1512		vfree(txdr->buffer_info);
1513		return -ENOMEM;
1514	}
1515
1516	/* Fix for errata 23, can't cross 64kB boundary */
1517	if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1518		void *olddesc = txdr->desc;
1519		dma_addr_t olddma = txdr->dma;
1520		e_err(tx_err, "txdr align check failed: %u bytes at %p\n",
1521		      txdr->size, txdr->desc);
1522		/* Try again, without freeing the previous */
1523		txdr->desc = dma_alloc_coherent(&pdev->dev, txdr->size,
1524						&txdr->dma, GFP_KERNEL);
1525		/* Failed allocation, critical failure */
1526		if (!txdr->desc) {
1527			dma_free_coherent(&pdev->dev, txdr->size, olddesc,
1528					  olddma);
1529			goto setup_tx_desc_die;
1530		}
1531
1532		if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1533			/* give up */
1534			dma_free_coherent(&pdev->dev, txdr->size, txdr->desc,
1535					  txdr->dma);
1536			dma_free_coherent(&pdev->dev, txdr->size, olddesc,
1537					  olddma);
1538			e_err(probe, "Unable to allocate aligned memory "
1539			      "for the transmit descriptor ring\n");
1540			vfree(txdr->buffer_info);
1541			return -ENOMEM;
1542		} else {
1543			/* Free old allocation, new allocation was successful */
1544			dma_free_coherent(&pdev->dev, txdr->size, olddesc,
1545					  olddma);
1546		}
1547	}
1548	memset(txdr->desc, 0, txdr->size);
1549
1550	txdr->next_to_use = 0;
1551	txdr->next_to_clean = 0;
1552
1553	return 0;
1554}
1555
1556/**
1557 * e1000_setup_all_tx_resources - wrapper to allocate Tx resources
1558 * 				  (Descriptors) for all queues
1559 * @adapter: board private structure
1560 *
1561 * Return 0 on success, negative on failure
1562 **/
1563int e1000_setup_all_tx_resources(struct e1000_adapter *adapter)
1564{
1565	int i, err = 0;
1566
1567	for (i = 0; i < adapter->num_tx_queues; i++) {
1568		err = e1000_setup_tx_resources(adapter, &adapter->tx_ring[i]);
1569		if (err) {
1570			e_err(probe, "Allocation for Tx Queue %u failed\n", i);
1571			for (i-- ; i >= 0; i--)
1572				e1000_free_tx_resources(adapter,
1573							&adapter->tx_ring[i]);
1574			break;
1575		}
1576	}
1577
1578	return err;
1579}
1580
1581/**
1582 * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
1583 * @adapter: board private structure
1584 *
1585 * Configure the Tx unit of the MAC after a reset.
1586 **/
1587static void e1000_configure_tx(struct e1000_adapter *adapter)
1588{
1589	u64 tdba;
1590	struct e1000_hw *hw = &adapter->hw;
1591	u32 tdlen, tctl, tipg;
1592	u32 ipgr1, ipgr2;
1593
1594	/* Setup the HW Tx Head and Tail descriptor pointers */
1595
1596	switch (adapter->num_tx_queues) {
1597	case 1:
1598	default:
1599		tdba = adapter->tx_ring[0].dma;
1600		tdlen = adapter->tx_ring[0].count *
1601			sizeof(struct e1000_tx_desc);
1602		ew32(TDLEN, tdlen);
1603		ew32(TDBAH, (tdba >> 32));
1604		ew32(TDBAL, (tdba & 0x00000000ffffffffULL));
1605		ew32(TDT, 0);
1606		ew32(TDH, 0);
1607		adapter->tx_ring[0].tdh = ((hw->mac_type >= e1000_82543) ?
1608					   E1000_TDH : E1000_82542_TDH);
1609		adapter->tx_ring[0].tdt = ((hw->mac_type >= e1000_82543) ?
1610					   E1000_TDT : E1000_82542_TDT);
1611		break;
1612	}
1613
1614	/* Set the default values for the Tx Inter Packet Gap timer */
1615	if ((hw->media_type == e1000_media_type_fiber ||
1616	     hw->media_type == e1000_media_type_internal_serdes))
1617		tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
1618	else
1619		tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
1620
1621	switch (hw->mac_type) {
1622	case e1000_82542_rev2_0:
1623	case e1000_82542_rev2_1:
1624		tipg = DEFAULT_82542_TIPG_IPGT;
1625		ipgr1 = DEFAULT_82542_TIPG_IPGR1;
1626		ipgr2 = DEFAULT_82542_TIPG_IPGR2;
1627		break;
1628	default:
1629		ipgr1 = DEFAULT_82543_TIPG_IPGR1;
1630		ipgr2 = DEFAULT_82543_TIPG_IPGR2;
1631		break;
1632	}
1633	tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
1634	tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
1635	ew32(TIPG, tipg);
1636
1637	/* Set the Tx Interrupt Delay register */
1638
1639	ew32(TIDV, adapter->tx_int_delay);
1640	if (hw->mac_type >= e1000_82540)
1641		ew32(TADV, adapter->tx_abs_int_delay);
1642
1643	/* Program the Transmit Control Register */
1644
1645	tctl = er32(TCTL);
1646	tctl &= ~E1000_TCTL_CT;
1647	tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
1648		(E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
1649
1650	e1000_config_collision_dist(hw);
1651
1652	/* Setup Transmit Descriptor Settings for eop descriptor */
1653	adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
1654
1655	/* only set IDE if we are delaying interrupts using the timers */
1656	if (adapter->tx_int_delay)
1657		adapter->txd_cmd |= E1000_TXD_CMD_IDE;
1658
1659	if (hw->mac_type < e1000_82543)
1660		adapter->txd_cmd |= E1000_TXD_CMD_RPS;
1661	else
1662		adapter->txd_cmd |= E1000_TXD_CMD_RS;
1663
1664	/* Cache if we're 82544 running in PCI-X because we'll
1665	 * need this to apply a workaround later in the send path.
1666	 */
1667	if (hw->mac_type == e1000_82544 &&
1668	    hw->bus_type == e1000_bus_type_pcix)
1669		adapter->pcix_82544 = true;
1670
1671	ew32(TCTL, tctl);
1672
1673}
1674
1675/**
1676 * e1000_setup_rx_resources - allocate Rx resources (Descriptors)
1677 * @adapter: board private structure
1678 * @rxdr:    rx descriptor ring (for a specific queue) to setup
1679 *
1680 * Returns 0 on success, negative on failure
1681 **/
1682static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
1683				    struct e1000_rx_ring *rxdr)
1684{
1685	struct pci_dev *pdev = adapter->pdev;
1686	int size, desc_len;
1687
1688	size = sizeof(struct e1000_rx_buffer) * rxdr->count;
1689	rxdr->buffer_info = vzalloc(size);
1690	if (!rxdr->buffer_info)
1691		return -ENOMEM;
1692
1693	desc_len = sizeof(struct e1000_rx_desc);
1694
1695	/* Round up to nearest 4K */
1696
1697	rxdr->size = rxdr->count * desc_len;
1698	rxdr->size = ALIGN(rxdr->size, 4096);
1699
1700	rxdr->desc = dma_alloc_coherent(&pdev->dev, rxdr->size, &rxdr->dma,
1701					GFP_KERNEL);
1702	if (!rxdr->desc) {
1703setup_rx_desc_die:
1704		vfree(rxdr->buffer_info);
1705		return -ENOMEM;
1706	}
1707
1708	/* Fix for errata 23, can't cross 64kB boundary */
1709	if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1710		void *olddesc = rxdr->desc;
1711		dma_addr_t olddma = rxdr->dma;
1712		e_err(rx_err, "rxdr align check failed: %u bytes at %p\n",
1713		      rxdr->size, rxdr->desc);
1714		/* Try again, without freeing the previous */
1715		rxdr->desc = dma_alloc_coherent(&pdev->dev, rxdr->size,
1716						&rxdr->dma, GFP_KERNEL);
1717		/* Failed allocation, critical failure */
1718		if (!rxdr->desc) {
1719			dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
1720					  olddma);
1721			goto setup_rx_desc_die;
1722		}
1723
1724		if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1725			/* give up */
1726			dma_free_coherent(&pdev->dev, rxdr->size, rxdr->desc,
1727					  rxdr->dma);
1728			dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
1729					  olddma);
1730			e_err(probe, "Unable to allocate aligned memory for "
1731			      "the Rx descriptor ring\n");
1732			goto setup_rx_desc_die;
1733		} else {
1734			/* Free old allocation, new allocation was successful */
1735			dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
1736					  olddma);
1737		}
1738	}
1739	memset(rxdr->desc, 0, rxdr->size);
1740
1741	rxdr->next_to_clean = 0;
1742	rxdr->next_to_use = 0;
1743	rxdr->rx_skb_top = NULL;
1744
1745	return 0;
1746}
1747
1748/**
1749 * e1000_setup_all_rx_resources - wrapper to allocate Rx resources
1750 * 				  (Descriptors) for all queues
1751 * @adapter: board private structure
1752 *
1753 * Return 0 on success, negative on failure
1754 **/
1755int e1000_setup_all_rx_resources(struct e1000_adapter *adapter)
1756{
1757	int i, err = 0;
1758
1759	for (i = 0; i < adapter->num_rx_queues; i++) {
1760		err = e1000_setup_rx_resources(adapter, &adapter->rx_ring[i]);
1761		if (err) {
1762			e_err(probe, "Allocation for Rx Queue %u failed\n", i);
1763			for (i-- ; i >= 0; i--)
1764				e1000_free_rx_resources(adapter,
1765							&adapter->rx_ring[i]);
1766			break;
1767		}
1768	}
1769
1770	return err;
1771}
1772
1773/**
1774 * e1000_setup_rctl - configure the receive control registers
1775 * @adapter: Board private structure
1776 **/
1777static void e1000_setup_rctl(struct e1000_adapter *adapter)
1778{
1779	struct e1000_hw *hw = &adapter->hw;
1780	u32 rctl;
1781
1782	rctl = er32(RCTL);
1783
1784	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
1785
1786	rctl |= E1000_RCTL_BAM | E1000_RCTL_LBM_NO |
1787		E1000_RCTL_RDMTS_HALF |
1788		(hw->mc_filter_type << E1000_RCTL_MO_SHIFT);
1789
1790	if (hw->tbi_compatibility_on == 1)
1791		rctl |= E1000_RCTL_SBP;
1792	else
1793		rctl &= ~E1000_RCTL_SBP;
1794
1795	if (adapter->netdev->mtu <= ETH_DATA_LEN)
1796		rctl &= ~E1000_RCTL_LPE;
1797	else
1798		rctl |= E1000_RCTL_LPE;
1799
1800	/* Setup buffer sizes */
1801	rctl &= ~E1000_RCTL_SZ_4096;
1802	rctl |= E1000_RCTL_BSEX;
1803	switch (adapter->rx_buffer_len) {
1804	case E1000_RXBUFFER_2048:
1805	default:
1806		rctl |= E1000_RCTL_SZ_2048;
1807		rctl &= ~E1000_RCTL_BSEX;
1808		break;
1809	case E1000_RXBUFFER_4096:
1810		rctl |= E1000_RCTL_SZ_4096;
1811		break;
1812	case E1000_RXBUFFER_8192:
1813		rctl |= E1000_RCTL_SZ_8192;
1814		break;
1815	case E1000_RXBUFFER_16384:
1816		rctl |= E1000_RCTL_SZ_16384;
1817		break;
1818	}
1819
1820	/* This is useful for sniffing bad packets. */
1821	if (adapter->netdev->features & NETIF_F_RXALL) {
1822		/* UPE and MPE will be handled by normal PROMISC logic
1823		 * in e1000e_set_rx_mode
1824		 */
1825		rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
1826			 E1000_RCTL_BAM | /* RX All Bcast Pkts */
1827			 E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
1828
1829		rctl &= ~(E1000_RCTL_VFE | /* Disable VLAN filter */
1830			  E1000_RCTL_DPF | /* Allow filtered pause */
1831			  E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
1832		/* Do not mess with E1000_CTRL_VME, it affects transmit as well,
1833		 * and that breaks VLANs.
1834		 */
1835	}
1836
1837	ew32(RCTL, rctl);
1838}
1839
1840/**
1841 * e1000_configure_rx - Configure 8254x Receive Unit after Reset
1842 * @adapter: board private structure
1843 *
1844 * Configure the Rx unit of the MAC after a reset.
1845 **/
1846static void e1000_configure_rx(struct e1000_adapter *adapter)
1847{
1848	u64 rdba;
1849	struct e1000_hw *hw = &adapter->hw;
1850	u32 rdlen, rctl, rxcsum;
1851
1852	if (adapter->netdev->mtu > ETH_DATA_LEN) {
1853		rdlen = adapter->rx_ring[0].count *
1854			sizeof(struct e1000_rx_desc);
1855		adapter->clean_rx = e1000_clean_jumbo_rx_irq;
1856		adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers;
1857	} else {
1858		rdlen = adapter->rx_ring[0].count *
1859			sizeof(struct e1000_rx_desc);
1860		adapter->clean_rx = e1000_clean_rx_irq;
1861		adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
1862	}
1863
1864	/* disable receives while setting up the descriptors */
1865	rctl = er32(RCTL);
1866	ew32(RCTL, rctl & ~E1000_RCTL_EN);
1867
1868	/* set the Receive Delay Timer Register */
1869	ew32(RDTR, adapter->rx_int_delay);
1870
1871	if (hw->mac_type >= e1000_82540) {
1872		ew32(RADV, adapter->rx_abs_int_delay);
1873		if (adapter->itr_setting != 0)
1874			ew32(ITR, 1000000000 / (adapter->itr * 256));
1875	}
1876
1877	/* Setup the HW Rx Head and Tail Descriptor Pointers and
1878	 * the Base and Length of the Rx Descriptor Ring
1879	 */
1880	switch (adapter->num_rx_queues) {
1881	case 1:
1882	default:
1883		rdba = adapter->rx_ring[0].dma;
1884		ew32(RDLEN, rdlen);
1885		ew32(RDBAH, (rdba >> 32));
1886		ew32(RDBAL, (rdba & 0x00000000ffffffffULL));
1887		ew32(RDT, 0);
1888		ew32(RDH, 0);
1889		adapter->rx_ring[0].rdh = ((hw->mac_type >= e1000_82543) ?
1890					   E1000_RDH : E1000_82542_RDH);
1891		adapter->rx_ring[0].rdt = ((hw->mac_type >= e1000_82543) ?
1892					   E1000_RDT : E1000_82542_RDT);
1893		break;
1894	}
1895
1896	/* Enable 82543 Receive Checksum Offload for TCP and UDP */
1897	if (hw->mac_type >= e1000_82543) {
1898		rxcsum = er32(RXCSUM);
1899		if (adapter->rx_csum)
1900			rxcsum |= E1000_RXCSUM_TUOFL;
1901		else
1902			/* don't need to clear IPPCSE as it defaults to 0 */
1903			rxcsum &= ~E1000_RXCSUM_TUOFL;
1904		ew32(RXCSUM, rxcsum);
1905	}
1906
1907	/* Enable Receives */
1908	ew32(RCTL, rctl | E1000_RCTL_EN);
1909}
1910
1911/**
1912 * e1000_free_tx_resources - Free Tx Resources per Queue
1913 * @adapter: board private structure
1914 * @tx_ring: Tx descriptor ring for a specific queue
1915 *
1916 * Free all transmit software resources
1917 **/
1918static void e1000_free_tx_resources(struct e1000_adapter *adapter,
1919				    struct e1000_tx_ring *tx_ring)
1920{
1921	struct pci_dev *pdev = adapter->pdev;
1922
1923	e1000_clean_tx_ring(adapter, tx_ring);
1924
1925	vfree(tx_ring->buffer_info);
1926	tx_ring->buffer_info = NULL;
1927
1928	dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
1929			  tx_ring->dma);
1930
1931	tx_ring->desc = NULL;
1932}
1933
1934/**
1935 * e1000_free_all_tx_resources - Free Tx Resources for All Queues
1936 * @adapter: board private structure
1937 *
1938 * Free all transmit software resources
1939 **/
1940void e1000_free_all_tx_resources(struct e1000_adapter *adapter)
1941{
1942	int i;
1943
1944	for (i = 0; i < adapter->num_tx_queues; i++)
1945		e1000_free_tx_resources(adapter, &adapter->tx_ring[i]);
1946}
1947
1948static void
1949e1000_unmap_and_free_tx_resource(struct e1000_adapter *adapter,
1950				 struct e1000_tx_buffer *buffer_info)
 
1951{
1952	if (buffer_info->dma) {
1953		if (buffer_info->mapped_as_page)
1954			dma_unmap_page(&adapter->pdev->dev, buffer_info->dma,
1955				       buffer_info->length, DMA_TO_DEVICE);
1956		else
1957			dma_unmap_single(&adapter->pdev->dev, buffer_info->dma,
1958					 buffer_info->length,
1959					 DMA_TO_DEVICE);
1960		buffer_info->dma = 0;
1961	}
1962	if (buffer_info->skb) {
1963		dev_kfree_skb_any(buffer_info->skb);
1964		buffer_info->skb = NULL;
1965	}
1966	buffer_info->time_stamp = 0;
1967	/* buffer_info must be completely set up in the transmit path */
1968}
1969
1970/**
1971 * e1000_clean_tx_ring - Free Tx Buffers
1972 * @adapter: board private structure
1973 * @tx_ring: ring to be cleaned
1974 **/
1975static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
1976				struct e1000_tx_ring *tx_ring)
1977{
1978	struct e1000_hw *hw = &adapter->hw;
1979	struct e1000_tx_buffer *buffer_info;
1980	unsigned long size;
1981	unsigned int i;
1982
1983	/* Free all the Tx ring sk_buffs */
1984
1985	for (i = 0; i < tx_ring->count; i++) {
1986		buffer_info = &tx_ring->buffer_info[i];
1987		e1000_unmap_and_free_tx_resource(adapter, buffer_info);
1988	}
1989
1990	netdev_reset_queue(adapter->netdev);
1991	size = sizeof(struct e1000_tx_buffer) * tx_ring->count;
1992	memset(tx_ring->buffer_info, 0, size);
1993
1994	/* Zero out the descriptor ring */
1995
1996	memset(tx_ring->desc, 0, tx_ring->size);
1997
1998	tx_ring->next_to_use = 0;
1999	tx_ring->next_to_clean = 0;
2000	tx_ring->last_tx_tso = false;
2001
2002	writel(0, hw->hw_addr + tx_ring->tdh);
2003	writel(0, hw->hw_addr + tx_ring->tdt);
2004}
2005
2006/**
2007 * e1000_clean_all_tx_rings - Free Tx Buffers for all queues
2008 * @adapter: board private structure
2009 **/
2010static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter)
2011{
2012	int i;
2013
2014	for (i = 0; i < adapter->num_tx_queues; i++)
2015		e1000_clean_tx_ring(adapter, &adapter->tx_ring[i]);
2016}
2017
2018/**
2019 * e1000_free_rx_resources - Free Rx Resources
2020 * @adapter: board private structure
2021 * @rx_ring: ring to clean the resources from
2022 *
2023 * Free all receive software resources
2024 **/
2025static void e1000_free_rx_resources(struct e1000_adapter *adapter,
2026				    struct e1000_rx_ring *rx_ring)
2027{
2028	struct pci_dev *pdev = adapter->pdev;
2029
2030	e1000_clean_rx_ring(adapter, rx_ring);
2031
2032	vfree(rx_ring->buffer_info);
2033	rx_ring->buffer_info = NULL;
2034
2035	dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
2036			  rx_ring->dma);
2037
2038	rx_ring->desc = NULL;
2039}
2040
2041/**
2042 * e1000_free_all_rx_resources - Free Rx Resources for All Queues
2043 * @adapter: board private structure
2044 *
2045 * Free all receive software resources
2046 **/
2047void e1000_free_all_rx_resources(struct e1000_adapter *adapter)
2048{
2049	int i;
2050
2051	for (i = 0; i < adapter->num_rx_queues; i++)
2052		e1000_free_rx_resources(adapter, &adapter->rx_ring[i]);
2053}
2054
2055#define E1000_HEADROOM (NET_SKB_PAD + NET_IP_ALIGN)
2056static unsigned int e1000_frag_len(const struct e1000_adapter *a)
2057{
2058	return SKB_DATA_ALIGN(a->rx_buffer_len + E1000_HEADROOM) +
2059		SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
2060}
2061
2062static void *e1000_alloc_frag(const struct e1000_adapter *a)
2063{
2064	unsigned int len = e1000_frag_len(a);
2065	u8 *data = netdev_alloc_frag(len);
2066
2067	if (likely(data))
2068		data += E1000_HEADROOM;
2069	return data;
2070}
2071
2072/**
2073 * e1000_clean_rx_ring - Free Rx Buffers per Queue
2074 * @adapter: board private structure
2075 * @rx_ring: ring to free buffers from
2076 **/
2077static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
2078				struct e1000_rx_ring *rx_ring)
2079{
2080	struct e1000_hw *hw = &adapter->hw;
2081	struct e1000_rx_buffer *buffer_info;
2082	struct pci_dev *pdev = adapter->pdev;
2083	unsigned long size;
2084	unsigned int i;
2085
2086	/* Free all the Rx netfrags */
2087	for (i = 0; i < rx_ring->count; i++) {
2088		buffer_info = &rx_ring->buffer_info[i];
2089		if (adapter->clean_rx == e1000_clean_rx_irq) {
2090			if (buffer_info->dma)
2091				dma_unmap_single(&pdev->dev, buffer_info->dma,
2092						 adapter->rx_buffer_len,
2093						 DMA_FROM_DEVICE);
2094			if (buffer_info->rxbuf.data) {
2095				skb_free_frag(buffer_info->rxbuf.data);
2096				buffer_info->rxbuf.data = NULL;
2097			}
2098		} else if (adapter->clean_rx == e1000_clean_jumbo_rx_irq) {
2099			if (buffer_info->dma)
2100				dma_unmap_page(&pdev->dev, buffer_info->dma,
2101					       adapter->rx_buffer_len,
2102					       DMA_FROM_DEVICE);
2103			if (buffer_info->rxbuf.page) {
2104				put_page(buffer_info->rxbuf.page);
2105				buffer_info->rxbuf.page = NULL;
2106			}
2107		}
2108
2109		buffer_info->dma = 0;
2110	}
2111
2112	/* there also may be some cached data from a chained receive */
2113	napi_free_frags(&adapter->napi);
2114	rx_ring->rx_skb_top = NULL;
2115
2116	size = sizeof(struct e1000_rx_buffer) * rx_ring->count;
2117	memset(rx_ring->buffer_info, 0, size);
2118
2119	/* Zero out the descriptor ring */
2120	memset(rx_ring->desc, 0, rx_ring->size);
2121
2122	rx_ring->next_to_clean = 0;
2123	rx_ring->next_to_use = 0;
2124
2125	writel(0, hw->hw_addr + rx_ring->rdh);
2126	writel(0, hw->hw_addr + rx_ring->rdt);
2127}
2128
2129/**
2130 * e1000_clean_all_rx_rings - Free Rx Buffers for all queues
2131 * @adapter: board private structure
2132 **/
2133static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter)
2134{
2135	int i;
2136
2137	for (i = 0; i < adapter->num_rx_queues; i++)
2138		e1000_clean_rx_ring(adapter, &adapter->rx_ring[i]);
2139}
2140
2141/* The 82542 2.0 (revision 2) needs to have the receive unit in reset
2142 * and memory write and invalidate disabled for certain operations
2143 */
2144static void e1000_enter_82542_rst(struct e1000_adapter *adapter)
2145{
2146	struct e1000_hw *hw = &adapter->hw;
2147	struct net_device *netdev = adapter->netdev;
2148	u32 rctl;
2149
2150	e1000_pci_clear_mwi(hw);
2151
2152	rctl = er32(RCTL);
2153	rctl |= E1000_RCTL_RST;
2154	ew32(RCTL, rctl);
2155	E1000_WRITE_FLUSH();
2156	mdelay(5);
2157
2158	if (netif_running(netdev))
2159		e1000_clean_all_rx_rings(adapter);
2160}
2161
2162static void e1000_leave_82542_rst(struct e1000_adapter *adapter)
2163{
2164	struct e1000_hw *hw = &adapter->hw;
2165	struct net_device *netdev = adapter->netdev;
2166	u32 rctl;
2167
2168	rctl = er32(RCTL);
2169	rctl &= ~E1000_RCTL_RST;
2170	ew32(RCTL, rctl);
2171	E1000_WRITE_FLUSH();
2172	mdelay(5);
2173
2174	if (hw->pci_cmd_word & PCI_COMMAND_INVALIDATE)
2175		e1000_pci_set_mwi(hw);
2176
2177	if (netif_running(netdev)) {
2178		/* No need to loop, because 82542 supports only 1 queue */
2179		struct e1000_rx_ring *ring = &adapter->rx_ring[0];
2180		e1000_configure_rx(adapter);
2181		adapter->alloc_rx_buf(adapter, ring, E1000_DESC_UNUSED(ring));
2182	}
2183}
2184
2185/**
2186 * e1000_set_mac - Change the Ethernet Address of the NIC
2187 * @netdev: network interface device structure
2188 * @p: pointer to an address structure
2189 *
2190 * Returns 0 on success, negative on failure
2191 **/
2192static int e1000_set_mac(struct net_device *netdev, void *p)
2193{
2194	struct e1000_adapter *adapter = netdev_priv(netdev);
2195	struct e1000_hw *hw = &adapter->hw;
2196	struct sockaddr *addr = p;
2197
2198	if (!is_valid_ether_addr(addr->sa_data))
2199		return -EADDRNOTAVAIL;
2200
2201	/* 82542 2.0 needs to be in reset to write receive address registers */
2202
2203	if (hw->mac_type == e1000_82542_rev2_0)
2204		e1000_enter_82542_rst(adapter);
2205
2206	memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
2207	memcpy(hw->mac_addr, addr->sa_data, netdev->addr_len);
2208
2209	e1000_rar_set(hw, hw->mac_addr, 0);
2210
2211	if (hw->mac_type == e1000_82542_rev2_0)
2212		e1000_leave_82542_rst(adapter);
2213
2214	return 0;
2215}
2216
2217/**
2218 * e1000_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
2219 * @netdev: network interface device structure
2220 *
2221 * The set_rx_mode entry point is called whenever the unicast or multicast
2222 * address lists or the network interface flags are updated. This routine is
2223 * responsible for configuring the hardware for proper unicast, multicast,
2224 * promiscuous mode, and all-multi behavior.
2225 **/
2226static void e1000_set_rx_mode(struct net_device *netdev)
2227{
2228	struct e1000_adapter *adapter = netdev_priv(netdev);
2229	struct e1000_hw *hw = &adapter->hw;
2230	struct netdev_hw_addr *ha;
2231	bool use_uc = false;
2232	u32 rctl;
2233	u32 hash_value;
2234	int i, rar_entries = E1000_RAR_ENTRIES;
2235	int mta_reg_count = E1000_NUM_MTA_REGISTERS;
2236	u32 *mcarray = kcalloc(mta_reg_count, sizeof(u32), GFP_ATOMIC);
2237
2238	if (!mcarray)
2239		return;
2240
2241	/* Check for Promiscuous and All Multicast modes */
2242
2243	rctl = er32(RCTL);
2244
2245	if (netdev->flags & IFF_PROMISC) {
2246		rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2247		rctl &= ~E1000_RCTL_VFE;
2248	} else {
2249		if (netdev->flags & IFF_ALLMULTI)
2250			rctl |= E1000_RCTL_MPE;
2251		else
2252			rctl &= ~E1000_RCTL_MPE;
2253		/* Enable VLAN filter if there is a VLAN */
2254		if (e1000_vlan_used(adapter))
2255			rctl |= E1000_RCTL_VFE;
2256	}
2257
2258	if (netdev_uc_count(netdev) > rar_entries - 1) {
2259		rctl |= E1000_RCTL_UPE;
2260	} else if (!(netdev->flags & IFF_PROMISC)) {
2261		rctl &= ~E1000_RCTL_UPE;
2262		use_uc = true;
2263	}
2264
2265	ew32(RCTL, rctl);
2266
2267	/* 82542 2.0 needs to be in reset to write receive address registers */
2268
2269	if (hw->mac_type == e1000_82542_rev2_0)
2270		e1000_enter_82542_rst(adapter);
2271
2272	/* load the first 14 addresses into the exact filters 1-14. Unicast
2273	 * addresses take precedence to avoid disabling unicast filtering
2274	 * when possible.
2275	 *
2276	 * RAR 0 is used for the station MAC address
2277	 * if there are not 14 addresses, go ahead and clear the filters
2278	 */
2279	i = 1;
2280	if (use_uc)
2281		netdev_for_each_uc_addr(ha, netdev) {
2282			if (i == rar_entries)
2283				break;
2284			e1000_rar_set(hw, ha->addr, i++);
2285		}
2286
2287	netdev_for_each_mc_addr(ha, netdev) {
2288		if (i == rar_entries) {
2289			/* load any remaining addresses into the hash table */
2290			u32 hash_reg, hash_bit, mta;
2291			hash_value = e1000_hash_mc_addr(hw, ha->addr);
2292			hash_reg = (hash_value >> 5) & 0x7F;
2293			hash_bit = hash_value & 0x1F;
2294			mta = (1 << hash_bit);
2295			mcarray[hash_reg] |= mta;
2296		} else {
2297			e1000_rar_set(hw, ha->addr, i++);
2298		}
2299	}
2300
2301	for (; i < rar_entries; i++) {
2302		E1000_WRITE_REG_ARRAY(hw, RA, i << 1, 0);
2303		E1000_WRITE_FLUSH();
2304		E1000_WRITE_REG_ARRAY(hw, RA, (i << 1) + 1, 0);
2305		E1000_WRITE_FLUSH();
2306	}
2307
2308	/* write the hash table completely, write from bottom to avoid
2309	 * both stupid write combining chipsets, and flushing each write
2310	 */
2311	for (i = mta_reg_count - 1; i >= 0 ; i--) {
2312		/* If we are on an 82544 has an errata where writing odd
2313		 * offsets overwrites the previous even offset, but writing
2314		 * backwards over the range solves the issue by always
2315		 * writing the odd offset first
2316		 */
2317		E1000_WRITE_REG_ARRAY(hw, MTA, i, mcarray[i]);
2318	}
2319	E1000_WRITE_FLUSH();
2320
2321	if (hw->mac_type == e1000_82542_rev2_0)
2322		e1000_leave_82542_rst(adapter);
2323
2324	kfree(mcarray);
2325}
2326
2327/**
2328 * e1000_update_phy_info_task - get phy info
2329 * @work: work struct contained inside adapter struct
2330 *
2331 * Need to wait a few seconds after link up to get diagnostic information from
2332 * the phy
2333 */
2334static void e1000_update_phy_info_task(struct work_struct *work)
2335{
2336	struct e1000_adapter *adapter = container_of(work,
2337						     struct e1000_adapter,
2338						     phy_info_task.work);
2339
2340	e1000_phy_get_info(&adapter->hw, &adapter->phy_info);
2341}
2342
2343/**
2344 * e1000_82547_tx_fifo_stall_task - task to complete work
2345 * @work: work struct contained inside adapter struct
2346 **/
2347static void e1000_82547_tx_fifo_stall_task(struct work_struct *work)
2348{
2349	struct e1000_adapter *adapter = container_of(work,
2350						     struct e1000_adapter,
2351						     fifo_stall_task.work);
2352	struct e1000_hw *hw = &adapter->hw;
2353	struct net_device *netdev = adapter->netdev;
2354	u32 tctl;
2355
2356	if (atomic_read(&adapter->tx_fifo_stall)) {
2357		if ((er32(TDT) == er32(TDH)) &&
2358		   (er32(TDFT) == er32(TDFH)) &&
2359		   (er32(TDFTS) == er32(TDFHS))) {
2360			tctl = er32(TCTL);
2361			ew32(TCTL, tctl & ~E1000_TCTL_EN);
2362			ew32(TDFT, adapter->tx_head_addr);
2363			ew32(TDFH, adapter->tx_head_addr);
2364			ew32(TDFTS, adapter->tx_head_addr);
2365			ew32(TDFHS, adapter->tx_head_addr);
2366			ew32(TCTL, tctl);
2367			E1000_WRITE_FLUSH();
2368
2369			adapter->tx_fifo_head = 0;
2370			atomic_set(&adapter->tx_fifo_stall, 0);
2371			netif_wake_queue(netdev);
2372		} else if (!test_bit(__E1000_DOWN, &adapter->flags)) {
2373			schedule_delayed_work(&adapter->fifo_stall_task, 1);
2374		}
2375	}
2376}
2377
2378bool e1000_has_link(struct e1000_adapter *adapter)
2379{
2380	struct e1000_hw *hw = &adapter->hw;
2381	bool link_active = false;
2382
2383	/* get_link_status is set on LSC (link status) interrupt or rx
2384	 * sequence error interrupt (except on intel ce4100).
2385	 * get_link_status will stay false until the
2386	 * e1000_check_for_link establishes link for copper adapters
2387	 * ONLY
2388	 */
2389	switch (hw->media_type) {
2390	case e1000_media_type_copper:
2391		if (hw->mac_type == e1000_ce4100)
2392			hw->get_link_status = 1;
2393		if (hw->get_link_status) {
2394			e1000_check_for_link(hw);
2395			link_active = !hw->get_link_status;
2396		} else {
2397			link_active = true;
2398		}
2399		break;
2400	case e1000_media_type_fiber:
2401		e1000_check_for_link(hw);
2402		link_active = !!(er32(STATUS) & E1000_STATUS_LU);
2403		break;
2404	case e1000_media_type_internal_serdes:
2405		e1000_check_for_link(hw);
2406		link_active = hw->serdes_has_link;
2407		break;
2408	default:
2409		break;
2410	}
2411
2412	return link_active;
2413}
2414
2415/**
2416 * e1000_watchdog - work function
2417 * @work: work struct contained inside adapter struct
2418 **/
2419static void e1000_watchdog(struct work_struct *work)
2420{
2421	struct e1000_adapter *adapter = container_of(work,
2422						     struct e1000_adapter,
2423						     watchdog_task.work);
2424	struct e1000_hw *hw = &adapter->hw;
2425	struct net_device *netdev = adapter->netdev;
2426	struct e1000_tx_ring *txdr = adapter->tx_ring;
2427	u32 link, tctl;
2428
2429	link = e1000_has_link(adapter);
2430	if ((netif_carrier_ok(netdev)) && link)
2431		goto link_up;
2432
2433	if (link) {
2434		if (!netif_carrier_ok(netdev)) {
2435			u32 ctrl;
2436			/* update snapshot of PHY registers on LSC */
2437			e1000_get_speed_and_duplex(hw,
2438						   &adapter->link_speed,
2439						   &adapter->link_duplex);
2440
2441			ctrl = er32(CTRL);
2442			pr_info("%s NIC Link is Up %d Mbps %s, "
2443				"Flow Control: %s\n",
2444				netdev->name,
2445				adapter->link_speed,
2446				adapter->link_duplex == FULL_DUPLEX ?
2447				"Full Duplex" : "Half Duplex",
2448				((ctrl & E1000_CTRL_TFCE) && (ctrl &
2449				E1000_CTRL_RFCE)) ? "RX/TX" : ((ctrl &
2450				E1000_CTRL_RFCE) ? "RX" : ((ctrl &
2451				E1000_CTRL_TFCE) ? "TX" : "None")));
2452
2453			/* adjust timeout factor according to speed/duplex */
2454			adapter->tx_timeout_factor = 1;
2455			switch (adapter->link_speed) {
2456			case SPEED_10:
2457				adapter->tx_timeout_factor = 16;
2458				break;
2459			case SPEED_100:
2460				/* maybe add some timeout factor ? */
2461				break;
2462			}
2463
2464			/* enable transmits in the hardware */
2465			tctl = er32(TCTL);
2466			tctl |= E1000_TCTL_EN;
2467			ew32(TCTL, tctl);
2468
2469			netif_carrier_on(netdev);
2470			if (!test_bit(__E1000_DOWN, &adapter->flags))
2471				schedule_delayed_work(&adapter->phy_info_task,
2472						      2 * HZ);
2473			adapter->smartspeed = 0;
2474		}
2475	} else {
2476		if (netif_carrier_ok(netdev)) {
2477			adapter->link_speed = 0;
2478			adapter->link_duplex = 0;
2479			pr_info("%s NIC Link is Down\n",
2480				netdev->name);
2481			netif_carrier_off(netdev);
2482
2483			if (!test_bit(__E1000_DOWN, &adapter->flags))
2484				schedule_delayed_work(&adapter->phy_info_task,
2485						      2 * HZ);
2486		}
2487
2488		e1000_smartspeed(adapter);
2489	}
2490
2491link_up:
2492	e1000_update_stats(adapter);
2493
2494	hw->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
2495	adapter->tpt_old = adapter->stats.tpt;
2496	hw->collision_delta = adapter->stats.colc - adapter->colc_old;
2497	adapter->colc_old = adapter->stats.colc;
2498
2499	adapter->gorcl = adapter->stats.gorcl - adapter->gorcl_old;
2500	adapter->gorcl_old = adapter->stats.gorcl;
2501	adapter->gotcl = adapter->stats.gotcl - adapter->gotcl_old;
2502	adapter->gotcl_old = adapter->stats.gotcl;
2503
2504	e1000_update_adaptive(hw);
2505
2506	if (!netif_carrier_ok(netdev)) {
2507		if (E1000_DESC_UNUSED(txdr) + 1 < txdr->count) {
2508			/* We've lost link, so the controller stops DMA,
2509			 * but we've got queued Tx work that's never going
2510			 * to get done, so reset controller to flush Tx.
2511			 * (Do the reset outside of interrupt context).
2512			 */
2513			adapter->tx_timeout_count++;
2514			schedule_work(&adapter->reset_task);
2515			/* exit immediately since reset is imminent */
2516			return;
2517		}
2518	}
2519
2520	/* Simple mode for Interrupt Throttle Rate (ITR) */
2521	if (hw->mac_type >= e1000_82540 && adapter->itr_setting == 4) {
2522		/* Symmetric Tx/Rx gets a reduced ITR=2000;
2523		 * Total asymmetrical Tx or Rx gets ITR=8000;
2524		 * everyone else is between 2000-8000.
2525		 */
2526		u32 goc = (adapter->gotcl + adapter->gorcl) / 10000;
2527		u32 dif = (adapter->gotcl > adapter->gorcl ?
2528			    adapter->gotcl - adapter->gorcl :
2529			    adapter->gorcl - adapter->gotcl) / 10000;
2530		u32 itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000;
2531
2532		ew32(ITR, 1000000000 / (itr * 256));
2533	}
2534
2535	/* Cause software interrupt to ensure rx ring is cleaned */
2536	ew32(ICS, E1000_ICS_RXDMT0);
2537
2538	/* Force detection of hung controller every watchdog period */
2539	adapter->detect_tx_hung = true;
2540
2541	/* Reschedule the task */
2542	if (!test_bit(__E1000_DOWN, &adapter->flags))
2543		schedule_delayed_work(&adapter->watchdog_task, 2 * HZ);
2544}
2545
2546enum latency_range {
2547	lowest_latency = 0,
2548	low_latency = 1,
2549	bulk_latency = 2,
2550	latency_invalid = 255
2551};
2552
2553/**
2554 * e1000_update_itr - update the dynamic ITR value based on statistics
2555 * @adapter: pointer to adapter
2556 * @itr_setting: current adapter->itr
2557 * @packets: the number of packets during this measurement interval
2558 * @bytes: the number of bytes during this measurement interval
2559 *
2560 *      Stores a new ITR value based on packets and byte
2561 *      counts during the last interrupt.  The advantage of per interrupt
2562 *      computation is faster updates and more accurate ITR for the current
2563 *      traffic pattern.  Constants in this function were computed
2564 *      based on theoretical maximum wire speed and thresholds were set based
2565 *      on testing data as well as attempting to minimize response time
2566 *      while increasing bulk throughput.
2567 *      this functionality is controlled by the InterruptThrottleRate module
2568 *      parameter (see e1000_param.c)
2569 **/
2570static unsigned int e1000_update_itr(struct e1000_adapter *adapter,
2571				     u16 itr_setting, int packets, int bytes)
2572{
2573	unsigned int retval = itr_setting;
2574	struct e1000_hw *hw = &adapter->hw;
2575
2576	if (unlikely(hw->mac_type < e1000_82540))
2577		goto update_itr_done;
2578
2579	if (packets == 0)
2580		goto update_itr_done;
2581
2582	switch (itr_setting) {
2583	case lowest_latency:
2584		/* jumbo frames get bulk treatment*/
2585		if (bytes/packets > 8000)
2586			retval = bulk_latency;
2587		else if ((packets < 5) && (bytes > 512))
2588			retval = low_latency;
2589		break;
2590	case low_latency:  /* 50 usec aka 20000 ints/s */
2591		if (bytes > 10000) {
2592			/* jumbo frames need bulk latency setting */
2593			if (bytes/packets > 8000)
2594				retval = bulk_latency;
2595			else if ((packets < 10) || ((bytes/packets) > 1200))
2596				retval = bulk_latency;
2597			else if ((packets > 35))
2598				retval = lowest_latency;
2599		} else if (bytes/packets > 2000)
2600			retval = bulk_latency;
2601		else if (packets <= 2 && bytes < 512)
2602			retval = lowest_latency;
2603		break;
2604	case bulk_latency: /* 250 usec aka 4000 ints/s */
2605		if (bytes > 25000) {
2606			if (packets > 35)
2607				retval = low_latency;
2608		} else if (bytes < 6000) {
2609			retval = low_latency;
2610		}
2611		break;
2612	}
2613
2614update_itr_done:
2615	return retval;
2616}
2617
2618static void e1000_set_itr(struct e1000_adapter *adapter)
2619{
2620	struct e1000_hw *hw = &adapter->hw;
2621	u16 current_itr;
2622	u32 new_itr = adapter->itr;
2623
2624	if (unlikely(hw->mac_type < e1000_82540))
2625		return;
2626
2627	/* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2628	if (unlikely(adapter->link_speed != SPEED_1000)) {
2629		current_itr = 0;
2630		new_itr = 4000;
2631		goto set_itr_now;
2632	}
2633
2634	adapter->tx_itr = e1000_update_itr(adapter, adapter->tx_itr,
2635					   adapter->total_tx_packets,
2636					   adapter->total_tx_bytes);
2637	/* conservative mode (itr 3) eliminates the lowest_latency setting */
2638	if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
2639		adapter->tx_itr = low_latency;
2640
2641	adapter->rx_itr = e1000_update_itr(adapter, adapter->rx_itr,
2642					   adapter->total_rx_packets,
2643					   adapter->total_rx_bytes);
2644	/* conservative mode (itr 3) eliminates the lowest_latency setting */
2645	if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
2646		adapter->rx_itr = low_latency;
2647
2648	current_itr = max(adapter->rx_itr, adapter->tx_itr);
2649
2650	switch (current_itr) {
2651	/* counts and packets in update_itr are dependent on these numbers */
2652	case lowest_latency:
2653		new_itr = 70000;
2654		break;
2655	case low_latency:
2656		new_itr = 20000; /* aka hwitr = ~200 */
2657		break;
2658	case bulk_latency:
2659		new_itr = 4000;
2660		break;
2661	default:
2662		break;
2663	}
2664
2665set_itr_now:
2666	if (new_itr != adapter->itr) {
2667		/* this attempts to bias the interrupt rate towards Bulk
2668		 * by adding intermediate steps when interrupt rate is
2669		 * increasing
2670		 */
2671		new_itr = new_itr > adapter->itr ?
2672			  min(adapter->itr + (new_itr >> 2), new_itr) :
2673			  new_itr;
2674		adapter->itr = new_itr;
2675		ew32(ITR, 1000000000 / (new_itr * 256));
2676	}
2677}
2678
2679#define E1000_TX_FLAGS_CSUM		0x00000001
2680#define E1000_TX_FLAGS_VLAN		0x00000002
2681#define E1000_TX_FLAGS_TSO		0x00000004
2682#define E1000_TX_FLAGS_IPV4		0x00000008
2683#define E1000_TX_FLAGS_NO_FCS		0x00000010
2684#define E1000_TX_FLAGS_VLAN_MASK	0xffff0000
2685#define E1000_TX_FLAGS_VLAN_SHIFT	16
2686
2687static int e1000_tso(struct e1000_adapter *adapter,
2688		     struct e1000_tx_ring *tx_ring, struct sk_buff *skb,
2689		     __be16 protocol)
2690{
2691	struct e1000_context_desc *context_desc;
2692	struct e1000_tx_buffer *buffer_info;
2693	unsigned int i;
2694	u32 cmd_length = 0;
2695	u16 ipcse = 0, tucse, mss;
2696	u8 ipcss, ipcso, tucss, tucso, hdr_len;
2697
2698	if (skb_is_gso(skb)) {
2699		int err;
2700
2701		err = skb_cow_head(skb, 0);
2702		if (err < 0)
2703			return err;
2704
2705		hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
2706		mss = skb_shinfo(skb)->gso_size;
2707		if (protocol == htons(ETH_P_IP)) {
2708			struct iphdr *iph = ip_hdr(skb);
2709			iph->tot_len = 0;
2710			iph->check = 0;
2711			tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
2712								 iph->daddr, 0,
2713								 IPPROTO_TCP,
2714								 0);
2715			cmd_length = E1000_TXD_CMD_IP;
2716			ipcse = skb_transport_offset(skb) - 1;
2717		} else if (skb_is_gso_v6(skb)) {
2718			ipv6_hdr(skb)->payload_len = 0;
2719			tcp_hdr(skb)->check =
2720				~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
2721						 &ipv6_hdr(skb)->daddr,
2722						 0, IPPROTO_TCP, 0);
2723			ipcse = 0;
2724		}
2725		ipcss = skb_network_offset(skb);
2726		ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
2727		tucss = skb_transport_offset(skb);
2728		tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
2729		tucse = 0;
2730
2731		cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
2732			       E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
2733
2734		i = tx_ring->next_to_use;
2735		context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2736		buffer_info = &tx_ring->buffer_info[i];
2737
2738		context_desc->lower_setup.ip_fields.ipcss  = ipcss;
2739		context_desc->lower_setup.ip_fields.ipcso  = ipcso;
2740		context_desc->lower_setup.ip_fields.ipcse  = cpu_to_le16(ipcse);
2741		context_desc->upper_setup.tcp_fields.tucss = tucss;
2742		context_desc->upper_setup.tcp_fields.tucso = tucso;
2743		context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
2744		context_desc->tcp_seg_setup.fields.mss     = cpu_to_le16(mss);
2745		context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
2746		context_desc->cmd_and_length = cpu_to_le32(cmd_length);
2747
2748		buffer_info->time_stamp = jiffies;
2749		buffer_info->next_to_watch = i;
2750
2751		if (++i == tx_ring->count)
2752			i = 0;
2753
2754		tx_ring->next_to_use = i;
2755
2756		return true;
2757	}
2758	return false;
2759}
2760
2761static bool e1000_tx_csum(struct e1000_adapter *adapter,
2762			  struct e1000_tx_ring *tx_ring, struct sk_buff *skb,
2763			  __be16 protocol)
2764{
2765	struct e1000_context_desc *context_desc;
2766	struct e1000_tx_buffer *buffer_info;
2767	unsigned int i;
2768	u8 css;
2769	u32 cmd_len = E1000_TXD_CMD_DEXT;
2770
2771	if (skb->ip_summed != CHECKSUM_PARTIAL)
2772		return false;
2773
2774	switch (protocol) {
2775	case cpu_to_be16(ETH_P_IP):
2776		if (ip_hdr(skb)->protocol == IPPROTO_TCP)
2777			cmd_len |= E1000_TXD_CMD_TCP;
2778		break;
2779	case cpu_to_be16(ETH_P_IPV6):
2780		/* XXX not handling all IPV6 headers */
2781		if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
2782			cmd_len |= E1000_TXD_CMD_TCP;
2783		break;
2784	default:
2785		if (unlikely(net_ratelimit()))
2786			e_warn(drv, "checksum_partial proto=%x!\n",
2787			       skb->protocol);
2788		break;
2789	}
2790
2791	css = skb_checksum_start_offset(skb);
2792
2793	i = tx_ring->next_to_use;
2794	buffer_info = &tx_ring->buffer_info[i];
2795	context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2796
2797	context_desc->lower_setup.ip_config = 0;
2798	context_desc->upper_setup.tcp_fields.tucss = css;
2799	context_desc->upper_setup.tcp_fields.tucso =
2800		css + skb->csum_offset;
2801	context_desc->upper_setup.tcp_fields.tucse = 0;
2802	context_desc->tcp_seg_setup.data = 0;
2803	context_desc->cmd_and_length = cpu_to_le32(cmd_len);
2804
2805	buffer_info->time_stamp = jiffies;
2806	buffer_info->next_to_watch = i;
2807
2808	if (unlikely(++i == tx_ring->count))
2809		i = 0;
2810
2811	tx_ring->next_to_use = i;
2812
2813	return true;
2814}
2815
2816#define E1000_MAX_TXD_PWR	12
2817#define E1000_MAX_DATA_PER_TXD	(1<<E1000_MAX_TXD_PWR)
2818
2819static int e1000_tx_map(struct e1000_adapter *adapter,
2820			struct e1000_tx_ring *tx_ring,
2821			struct sk_buff *skb, unsigned int first,
2822			unsigned int max_per_txd, unsigned int nr_frags,
2823			unsigned int mss)
2824{
2825	struct e1000_hw *hw = &adapter->hw;
2826	struct pci_dev *pdev = adapter->pdev;
2827	struct e1000_tx_buffer *buffer_info;
2828	unsigned int len = skb_headlen(skb);
2829	unsigned int offset = 0, size, count = 0, i;
2830	unsigned int f, bytecount, segs;
2831
2832	i = tx_ring->next_to_use;
2833
2834	while (len) {
2835		buffer_info = &tx_ring->buffer_info[i];
2836		size = min(len, max_per_txd);
2837		/* Workaround for Controller erratum --
2838		 * descriptor for non-tso packet in a linear SKB that follows a
2839		 * tso gets written back prematurely before the data is fully
2840		 * DMA'd to the controller
2841		 */
2842		if (!skb->data_len && tx_ring->last_tx_tso &&
2843		    !skb_is_gso(skb)) {
2844			tx_ring->last_tx_tso = false;
2845			size -= 4;
2846		}
2847
2848		/* Workaround for premature desc write-backs
2849		 * in TSO mode.  Append 4-byte sentinel desc
2850		 */
2851		if (unlikely(mss && !nr_frags && size == len && size > 8))
2852			size -= 4;
2853		/* work-around for errata 10 and it applies
2854		 * to all controllers in PCI-X mode
2855		 * The fix is to make sure that the first descriptor of a
2856		 * packet is smaller than 2048 - 16 - 16 (or 2016) bytes
2857		 */
2858		if (unlikely((hw->bus_type == e1000_bus_type_pcix) &&
2859			     (size > 2015) && count == 0))
2860			size = 2015;
2861
2862		/* Workaround for potential 82544 hang in PCI-X.  Avoid
2863		 * terminating buffers within evenly-aligned dwords.
2864		 */
2865		if (unlikely(adapter->pcix_82544 &&
2866		   !((unsigned long)(skb->data + offset + size - 1) & 4) &&
2867		   size > 4))
2868			size -= 4;
2869
2870		buffer_info->length = size;
2871		/* set time_stamp *before* dma to help avoid a possible race */
2872		buffer_info->time_stamp = jiffies;
2873		buffer_info->mapped_as_page = false;
2874		buffer_info->dma = dma_map_single(&pdev->dev,
2875						  skb->data + offset,
2876						  size, DMA_TO_DEVICE);
2877		if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2878			goto dma_error;
2879		buffer_info->next_to_watch = i;
2880
2881		len -= size;
2882		offset += size;
2883		count++;
2884		if (len) {
2885			i++;
2886			if (unlikely(i == tx_ring->count))
2887				i = 0;
2888		}
2889	}
2890
2891	for (f = 0; f < nr_frags; f++) {
2892		const skb_frag_t *frag = &skb_shinfo(skb)->frags[f];
2893
2894		len = skb_frag_size(frag);
2895		offset = 0;
2896
2897		while (len) {
2898			unsigned long bufend;
2899			i++;
2900			if (unlikely(i == tx_ring->count))
2901				i = 0;
2902
2903			buffer_info = &tx_ring->buffer_info[i];
2904			size = min(len, max_per_txd);
2905			/* Workaround for premature desc write-backs
2906			 * in TSO mode.  Append 4-byte sentinel desc
2907			 */
2908			if (unlikely(mss && f == (nr_frags-1) &&
2909			    size == len && size > 8))
2910				size -= 4;
2911			/* Workaround for potential 82544 hang in PCI-X.
2912			 * Avoid terminating buffers within evenly-aligned
2913			 * dwords.
2914			 */
2915			bufend = (unsigned long)
2916				page_to_phys(skb_frag_page(frag));
2917			bufend += offset + size - 1;
2918			if (unlikely(adapter->pcix_82544 &&
2919				     !(bufend & 4) &&
2920				     size > 4))
2921				size -= 4;
2922
2923			buffer_info->length = size;
2924			buffer_info->time_stamp = jiffies;
2925			buffer_info->mapped_as_page = true;
2926			buffer_info->dma = skb_frag_dma_map(&pdev->dev, frag,
2927						offset, size, DMA_TO_DEVICE);
2928			if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2929				goto dma_error;
2930			buffer_info->next_to_watch = i;
2931
2932			len -= size;
2933			offset += size;
2934			count++;
2935		}
2936	}
2937
2938	segs = skb_shinfo(skb)->gso_segs ?: 1;
2939	/* multiply data chunks by size of headers */
2940	bytecount = ((segs - 1) * skb_headlen(skb)) + skb->len;
2941
2942	tx_ring->buffer_info[i].skb = skb;
2943	tx_ring->buffer_info[i].segs = segs;
2944	tx_ring->buffer_info[i].bytecount = bytecount;
2945	tx_ring->buffer_info[first].next_to_watch = i;
2946
2947	return count;
2948
2949dma_error:
2950	dev_err(&pdev->dev, "TX DMA map failed\n");
2951	buffer_info->dma = 0;
2952	if (count)
2953		count--;
2954
2955	while (count--) {
2956		if (i == 0)
2957			i += tx_ring->count;
2958		i--;
2959		buffer_info = &tx_ring->buffer_info[i];
2960		e1000_unmap_and_free_tx_resource(adapter, buffer_info);
2961	}
2962
2963	return 0;
2964}
2965
2966static void e1000_tx_queue(struct e1000_adapter *adapter,
2967			   struct e1000_tx_ring *tx_ring, int tx_flags,
2968			   int count)
2969{
2970	struct e1000_tx_desc *tx_desc = NULL;
2971	struct e1000_tx_buffer *buffer_info;
2972	u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
2973	unsigned int i;
2974
2975	if (likely(tx_flags & E1000_TX_FLAGS_TSO)) {
2976		txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
2977			     E1000_TXD_CMD_TSE;
2978		txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2979
2980		if (likely(tx_flags & E1000_TX_FLAGS_IPV4))
2981			txd_upper |= E1000_TXD_POPTS_IXSM << 8;
2982	}
2983
2984	if (likely(tx_flags & E1000_TX_FLAGS_CSUM)) {
2985		txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
2986		txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2987	}
2988
2989	if (unlikely(tx_flags & E1000_TX_FLAGS_VLAN)) {
2990		txd_lower |= E1000_TXD_CMD_VLE;
2991		txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
2992	}
2993
2994	if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
2995		txd_lower &= ~(E1000_TXD_CMD_IFCS);
2996
2997	i = tx_ring->next_to_use;
2998
2999	while (count--) {
3000		buffer_info = &tx_ring->buffer_info[i];
3001		tx_desc = E1000_TX_DESC(*tx_ring, i);
3002		tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
3003		tx_desc->lower.data =
3004			cpu_to_le32(txd_lower | buffer_info->length);
3005		tx_desc->upper.data = cpu_to_le32(txd_upper);
3006		if (unlikely(++i == tx_ring->count))
3007			i = 0;
3008	}
3009
3010	tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
3011
3012	/* txd_cmd re-enables FCS, so we'll re-disable it here as desired. */
3013	if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
3014		tx_desc->lower.data &= ~(cpu_to_le32(E1000_TXD_CMD_IFCS));
3015
3016	/* Force memory writes to complete before letting h/w
3017	 * know there are new descriptors to fetch.  (Only
3018	 * applicable for weak-ordered memory model archs,
3019	 * such as IA-64).
3020	 */
3021	dma_wmb();
3022
3023	tx_ring->next_to_use = i;
3024}
3025
3026/* 82547 workaround to avoid controller hang in half-duplex environment.
3027 * The workaround is to avoid queuing a large packet that would span
3028 * the internal Tx FIFO ring boundary by notifying the stack to resend
3029 * the packet at a later time.  This gives the Tx FIFO an opportunity to
3030 * flush all packets.  When that occurs, we reset the Tx FIFO pointers
3031 * to the beginning of the Tx FIFO.
3032 */
3033
3034#define E1000_FIFO_HDR			0x10
3035#define E1000_82547_PAD_LEN		0x3E0
3036
3037static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
3038				       struct sk_buff *skb)
3039{
3040	u32 fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head;
3041	u32 skb_fifo_len = skb->len + E1000_FIFO_HDR;
3042
3043	skb_fifo_len = ALIGN(skb_fifo_len, E1000_FIFO_HDR);
3044
3045	if (adapter->link_duplex != HALF_DUPLEX)
3046		goto no_fifo_stall_required;
3047
3048	if (atomic_read(&adapter->tx_fifo_stall))
3049		return 1;
3050
3051	if (skb_fifo_len >= (E1000_82547_PAD_LEN + fifo_space)) {
3052		atomic_set(&adapter->tx_fifo_stall, 1);
3053		return 1;
3054	}
3055
3056no_fifo_stall_required:
3057	adapter->tx_fifo_head += skb_fifo_len;
3058	if (adapter->tx_fifo_head >= adapter->tx_fifo_size)
3059		adapter->tx_fifo_head -= adapter->tx_fifo_size;
3060	return 0;
3061}
3062
3063static int __e1000_maybe_stop_tx(struct net_device *netdev, int size)
3064{
3065	struct e1000_adapter *adapter = netdev_priv(netdev);
3066	struct e1000_tx_ring *tx_ring = adapter->tx_ring;
3067
3068	netif_stop_queue(netdev);
3069	/* Herbert's original patch had:
3070	 *  smp_mb__after_netif_stop_queue();
3071	 * but since that doesn't exist yet, just open code it.
3072	 */
3073	smp_mb();
3074
3075	/* We need to check again in a case another CPU has just
3076	 * made room available.
3077	 */
3078	if (likely(E1000_DESC_UNUSED(tx_ring) < size))
3079		return -EBUSY;
3080
3081	/* A reprieve! */
3082	netif_start_queue(netdev);
3083	++adapter->restart_queue;
3084	return 0;
3085}
3086
3087static int e1000_maybe_stop_tx(struct net_device *netdev,
3088			       struct e1000_tx_ring *tx_ring, int size)
3089{
3090	if (likely(E1000_DESC_UNUSED(tx_ring) >= size))
3091		return 0;
3092	return __e1000_maybe_stop_tx(netdev, size);
3093}
3094
3095#define TXD_USE_COUNT(S, X) (((S) + ((1 << (X)) - 1)) >> (X))
3096static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
3097				    struct net_device *netdev)
3098{
3099	struct e1000_adapter *adapter = netdev_priv(netdev);
3100	struct e1000_hw *hw = &adapter->hw;
3101	struct e1000_tx_ring *tx_ring;
3102	unsigned int first, max_per_txd = E1000_MAX_DATA_PER_TXD;
3103	unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
3104	unsigned int tx_flags = 0;
3105	unsigned int len = skb_headlen(skb);
3106	unsigned int nr_frags;
3107	unsigned int mss;
3108	int count = 0;
3109	int tso;
3110	unsigned int f;
3111	__be16 protocol = vlan_get_protocol(skb);
3112
3113	/* This goes back to the question of how to logically map a Tx queue
3114	 * to a flow.  Right now, performance is impacted slightly negatively
3115	 * if using multiple Tx queues.  If the stack breaks away from a
3116	 * single qdisc implementation, we can look at this again.
3117	 */
3118	tx_ring = adapter->tx_ring;
3119
3120	/* On PCI/PCI-X HW, if packet size is less than ETH_ZLEN,
3121	 * packets may get corrupted during padding by HW.
3122	 * To WA this issue, pad all small packets manually.
3123	 */
3124	if (eth_skb_pad(skb))
3125		return NETDEV_TX_OK;
3126
3127	mss = skb_shinfo(skb)->gso_size;
3128	/* The controller does a simple calculation to
3129	 * make sure there is enough room in the FIFO before
3130	 * initiating the DMA for each buffer.  The calc is:
3131	 * 4 = ceil(buffer len/mss).  To make sure we don't
3132	 * overrun the FIFO, adjust the max buffer len if mss
3133	 * drops.
3134	 */
3135	if (mss) {
3136		u8 hdr_len;
3137		max_per_txd = min(mss << 2, max_per_txd);
3138		max_txd_pwr = fls(max_per_txd) - 1;
3139
3140		hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
3141		if (skb->data_len && hdr_len == len) {
3142			switch (hw->mac_type) {
 
3143				unsigned int pull_size;
3144			case e1000_82544:
3145				/* Make sure we have room to chop off 4 bytes,
3146				 * and that the end alignment will work out to
3147				 * this hardware's requirements
3148				 * NOTE: this is a TSO only workaround
3149				 * if end byte alignment not correct move us
3150				 * into the next dword
3151				 */
3152				if ((unsigned long)(skb_tail_pointer(skb) - 1)
3153				    & 4)
3154					break;
3155				/* fall through */
3156				pull_size = min((unsigned int)4, skb->data_len);
3157				if (!__pskb_pull_tail(skb, pull_size)) {
3158					e_err(drv, "__pskb_pull_tail "
3159					      "failed.\n");
3160					dev_kfree_skb_any(skb);
3161					return NETDEV_TX_OK;
3162				}
3163				len = skb_headlen(skb);
3164				break;
 
3165			default:
3166				/* do nothing */
3167				break;
3168			}
3169		}
3170	}
3171
3172	/* reserve a descriptor for the offload context */
3173	if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
3174		count++;
3175	count++;
3176
3177	/* Controller Erratum workaround */
3178	if (!skb->data_len && tx_ring->last_tx_tso && !skb_is_gso(skb))
3179		count++;
3180
3181	count += TXD_USE_COUNT(len, max_txd_pwr);
3182
3183	if (adapter->pcix_82544)
3184		count++;
3185
3186	/* work-around for errata 10 and it applies to all controllers
3187	 * in PCI-X mode, so add one more descriptor to the count
3188	 */
3189	if (unlikely((hw->bus_type == e1000_bus_type_pcix) &&
3190			(len > 2015)))
3191		count++;
3192
3193	nr_frags = skb_shinfo(skb)->nr_frags;
3194	for (f = 0; f < nr_frags; f++)
3195		count += TXD_USE_COUNT(skb_frag_size(&skb_shinfo(skb)->frags[f]),
3196				       max_txd_pwr);
3197	if (adapter->pcix_82544)
3198		count += nr_frags;
3199
3200	/* need: count + 2 desc gap to keep tail from touching
3201	 * head, otherwise try next time
3202	 */
3203	if (unlikely(e1000_maybe_stop_tx(netdev, tx_ring, count + 2)))
3204		return NETDEV_TX_BUSY;
3205
3206	if (unlikely((hw->mac_type == e1000_82547) &&
3207		     (e1000_82547_fifo_workaround(adapter, skb)))) {
3208		netif_stop_queue(netdev);
3209		if (!test_bit(__E1000_DOWN, &adapter->flags))
3210			schedule_delayed_work(&adapter->fifo_stall_task, 1);
3211		return NETDEV_TX_BUSY;
3212	}
3213
3214	if (skb_vlan_tag_present(skb)) {
3215		tx_flags |= E1000_TX_FLAGS_VLAN;
3216		tx_flags |= (skb_vlan_tag_get(skb) <<
3217			     E1000_TX_FLAGS_VLAN_SHIFT);
3218	}
3219
3220	first = tx_ring->next_to_use;
3221
3222	tso = e1000_tso(adapter, tx_ring, skb, protocol);
3223	if (tso < 0) {
3224		dev_kfree_skb_any(skb);
3225		return NETDEV_TX_OK;
3226	}
3227
3228	if (likely(tso)) {
3229		if (likely(hw->mac_type != e1000_82544))
3230			tx_ring->last_tx_tso = true;
3231		tx_flags |= E1000_TX_FLAGS_TSO;
3232	} else if (likely(e1000_tx_csum(adapter, tx_ring, skb, protocol)))
3233		tx_flags |= E1000_TX_FLAGS_CSUM;
3234
3235	if (protocol == htons(ETH_P_IP))
3236		tx_flags |= E1000_TX_FLAGS_IPV4;
3237
3238	if (unlikely(skb->no_fcs))
3239		tx_flags |= E1000_TX_FLAGS_NO_FCS;
3240
3241	count = e1000_tx_map(adapter, tx_ring, skb, first, max_per_txd,
3242			     nr_frags, mss);
3243
3244	if (count) {
3245		/* The descriptors needed is higher than other Intel drivers
3246		 * due to a number of workarounds.  The breakdown is below:
3247		 * Data descriptors: MAX_SKB_FRAGS + 1
3248		 * Context Descriptor: 1
3249		 * Keep head from touching tail: 2
3250		 * Workarounds: 3
3251		 */
3252		int desc_needed = MAX_SKB_FRAGS + 7;
3253
3254		netdev_sent_queue(netdev, skb->len);
3255		skb_tx_timestamp(skb);
3256
3257		e1000_tx_queue(adapter, tx_ring, tx_flags, count);
3258
3259		/* 82544 potentially requires twice as many data descriptors
3260		 * in order to guarantee buffers don't end on evenly-aligned
3261		 * dwords
3262		 */
3263		if (adapter->pcix_82544)
3264			desc_needed += MAX_SKB_FRAGS + 1;
3265
3266		/* Make sure there is space in the ring for the next send. */
3267		e1000_maybe_stop_tx(netdev, tx_ring, desc_needed);
3268
3269		if (!netdev_xmit_more() ||
3270		    netif_xmit_stopped(netdev_get_tx_queue(netdev, 0))) {
3271			writel(tx_ring->next_to_use, hw->hw_addr + tx_ring->tdt);
3272		}
3273	} else {
3274		dev_kfree_skb_any(skb);
3275		tx_ring->buffer_info[first].time_stamp = 0;
3276		tx_ring->next_to_use = first;
3277	}
3278
3279	return NETDEV_TX_OK;
3280}
3281
3282#define NUM_REGS 38 /* 1 based count */
3283static void e1000_regdump(struct e1000_adapter *adapter)
3284{
3285	struct e1000_hw *hw = &adapter->hw;
3286	u32 regs[NUM_REGS];
3287	u32 *regs_buff = regs;
3288	int i = 0;
3289
3290	static const char * const reg_name[] = {
3291		"CTRL",  "STATUS",
3292		"RCTL", "RDLEN", "RDH", "RDT", "RDTR",
3293		"TCTL", "TDBAL", "TDBAH", "TDLEN", "TDH", "TDT",
3294		"TIDV", "TXDCTL", "TADV", "TARC0",
3295		"TDBAL1", "TDBAH1", "TDLEN1", "TDH1", "TDT1",
3296		"TXDCTL1", "TARC1",
3297		"CTRL_EXT", "ERT", "RDBAL", "RDBAH",
3298		"TDFH", "TDFT", "TDFHS", "TDFTS", "TDFPC",
3299		"RDFH", "RDFT", "RDFHS", "RDFTS", "RDFPC"
3300	};
3301
3302	regs_buff[0]  = er32(CTRL);
3303	regs_buff[1]  = er32(STATUS);
3304
3305	regs_buff[2]  = er32(RCTL);
3306	regs_buff[3]  = er32(RDLEN);
3307	regs_buff[4]  = er32(RDH);
3308	regs_buff[5]  = er32(RDT);
3309	regs_buff[6]  = er32(RDTR);
3310
3311	regs_buff[7]  = er32(TCTL);
3312	regs_buff[8]  = er32(TDBAL);
3313	regs_buff[9]  = er32(TDBAH);
3314	regs_buff[10] = er32(TDLEN);
3315	regs_buff[11] = er32(TDH);
3316	regs_buff[12] = er32(TDT);
3317	regs_buff[13] = er32(TIDV);
3318	regs_buff[14] = er32(TXDCTL);
3319	regs_buff[15] = er32(TADV);
3320	regs_buff[16] = er32(TARC0);
3321
3322	regs_buff[17] = er32(TDBAL1);
3323	regs_buff[18] = er32(TDBAH1);
3324	regs_buff[19] = er32(TDLEN1);
3325	regs_buff[20] = er32(TDH1);
3326	regs_buff[21] = er32(TDT1);
3327	regs_buff[22] = er32(TXDCTL1);
3328	regs_buff[23] = er32(TARC1);
3329	regs_buff[24] = er32(CTRL_EXT);
3330	regs_buff[25] = er32(ERT);
3331	regs_buff[26] = er32(RDBAL0);
3332	regs_buff[27] = er32(RDBAH0);
3333	regs_buff[28] = er32(TDFH);
3334	regs_buff[29] = er32(TDFT);
3335	regs_buff[30] = er32(TDFHS);
3336	regs_buff[31] = er32(TDFTS);
3337	regs_buff[32] = er32(TDFPC);
3338	regs_buff[33] = er32(RDFH);
3339	regs_buff[34] = er32(RDFT);
3340	regs_buff[35] = er32(RDFHS);
3341	regs_buff[36] = er32(RDFTS);
3342	regs_buff[37] = er32(RDFPC);
3343
3344	pr_info("Register dump\n");
3345	for (i = 0; i < NUM_REGS; i++)
3346		pr_info("%-15s  %08x\n", reg_name[i], regs_buff[i]);
3347}
3348
3349/*
3350 * e1000_dump: Print registers, tx ring and rx ring
3351 */
3352static void e1000_dump(struct e1000_adapter *adapter)
3353{
3354	/* this code doesn't handle multiple rings */
3355	struct e1000_tx_ring *tx_ring = adapter->tx_ring;
3356	struct e1000_rx_ring *rx_ring = adapter->rx_ring;
3357	int i;
3358
3359	if (!netif_msg_hw(adapter))
3360		return;
3361
3362	/* Print Registers */
3363	e1000_regdump(adapter);
3364
3365	/* transmit dump */
3366	pr_info("TX Desc ring0 dump\n");
3367
3368	/* Transmit Descriptor Formats - DEXT[29] is 0 (Legacy) or 1 (Extended)
3369	 *
3370	 * Legacy Transmit Descriptor
3371	 *   +--------------------------------------------------------------+
3372	 * 0 |         Buffer Address [63:0] (Reserved on Write Back)       |
3373	 *   +--------------------------------------------------------------+
3374	 * 8 | Special  |    CSS     | Status |  CMD    |  CSO   |  Length  |
3375	 *   +--------------------------------------------------------------+
3376	 *   63       48 47        36 35    32 31     24 23    16 15        0
3377	 *
3378	 * Extended Context Descriptor (DTYP=0x0) for TSO or checksum offload
3379	 *   63      48 47    40 39       32 31             16 15    8 7      0
3380	 *   +----------------------------------------------------------------+
3381	 * 0 |  TUCSE  | TUCS0  |   TUCSS   |     IPCSE       | IPCS0 | IPCSS |
3382	 *   +----------------------------------------------------------------+
3383	 * 8 |   MSS   | HDRLEN | RSV | STA | TUCMD | DTYP |      PAYLEN      |
3384	 *   +----------------------------------------------------------------+
3385	 *   63      48 47    40 39 36 35 32 31   24 23  20 19                0
3386	 *
3387	 * Extended Data Descriptor (DTYP=0x1)
3388	 *   +----------------------------------------------------------------+
3389	 * 0 |                     Buffer Address [63:0]                      |
3390	 *   +----------------------------------------------------------------+
3391	 * 8 | VLAN tag |  POPTS  | Rsvd | Status | Command | DTYP |  DTALEN  |
3392	 *   +----------------------------------------------------------------+
3393	 *   63       48 47     40 39  36 35    32 31     24 23  20 19        0
3394	 */
3395	pr_info("Tc[desc]     [Ce CoCsIpceCoS] [MssHlRSCm0Plen] [bi->dma       ] leng  ntw timestmp         bi->skb\n");
3396	pr_info("Td[desc]     [address 63:0  ] [VlaPoRSCm1Dlen] [bi->dma       ] leng  ntw timestmp         bi->skb\n");
3397
3398	if (!netif_msg_tx_done(adapter))
3399		goto rx_ring_summary;
3400
3401	for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
3402		struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*tx_ring, i);
3403		struct e1000_tx_buffer *buffer_info = &tx_ring->buffer_info[i];
3404		struct my_u { __le64 a; __le64 b; };
3405		struct my_u *u = (struct my_u *)tx_desc;
3406		const char *type;
3407
3408		if (i == tx_ring->next_to_use && i == tx_ring->next_to_clean)
3409			type = "NTC/U";
3410		else if (i == tx_ring->next_to_use)
3411			type = "NTU";
3412		else if (i == tx_ring->next_to_clean)
3413			type = "NTC";
3414		else
3415			type = "";
3416
3417		pr_info("T%c[0x%03X]    %016llX %016llX %016llX %04X  %3X %016llX %p %s\n",
3418			((le64_to_cpu(u->b) & (1<<20)) ? 'd' : 'c'), i,
3419			le64_to_cpu(u->a), le64_to_cpu(u->b),
3420			(u64)buffer_info->dma, buffer_info->length,
3421			buffer_info->next_to_watch,
3422			(u64)buffer_info->time_stamp, buffer_info->skb, type);
3423	}
3424
3425rx_ring_summary:
3426	/* receive dump */
3427	pr_info("\nRX Desc ring dump\n");
3428
3429	/* Legacy Receive Descriptor Format
3430	 *
3431	 * +-----------------------------------------------------+
3432	 * |                Buffer Address [63:0]                |
3433	 * +-----------------------------------------------------+
3434	 * | VLAN Tag | Errors | Status 0 | Packet csum | Length |
3435	 * +-----------------------------------------------------+
3436	 * 63       48 47    40 39      32 31         16 15      0
3437	 */
3438	pr_info("R[desc]      [address 63:0  ] [vl er S cks ln] [bi->dma       ] [bi->skb]\n");
3439
3440	if (!netif_msg_rx_status(adapter))
3441		goto exit;
3442
3443	for (i = 0; rx_ring->desc && (i < rx_ring->count); i++) {
3444		struct e1000_rx_desc *rx_desc = E1000_RX_DESC(*rx_ring, i);
3445		struct e1000_rx_buffer *buffer_info = &rx_ring->buffer_info[i];
3446		struct my_u { __le64 a; __le64 b; };
3447		struct my_u *u = (struct my_u *)rx_desc;
3448		const char *type;
3449
3450		if (i == rx_ring->next_to_use)
3451			type = "NTU";
3452		else if (i == rx_ring->next_to_clean)
3453			type = "NTC";
3454		else
3455			type = "";
3456
3457		pr_info("R[0x%03X]     %016llX %016llX %016llX %p %s\n",
3458			i, le64_to_cpu(u->a), le64_to_cpu(u->b),
3459			(u64)buffer_info->dma, buffer_info->rxbuf.data, type);
3460	} /* for */
3461
3462	/* dump the descriptor caches */
3463	/* rx */
3464	pr_info("Rx descriptor cache in 64bit format\n");
3465	for (i = 0x6000; i <= 0x63FF ; i += 0x10) {
3466		pr_info("R%04X: %08X|%08X %08X|%08X\n",
3467			i,
3468			readl(adapter->hw.hw_addr + i+4),
3469			readl(adapter->hw.hw_addr + i),
3470			readl(adapter->hw.hw_addr + i+12),
3471			readl(adapter->hw.hw_addr + i+8));
3472	}
3473	/* tx */
3474	pr_info("Tx descriptor cache in 64bit format\n");
3475	for (i = 0x7000; i <= 0x73FF ; i += 0x10) {
3476		pr_info("T%04X: %08X|%08X %08X|%08X\n",
3477			i,
3478			readl(adapter->hw.hw_addr + i+4),
3479			readl(adapter->hw.hw_addr + i),
3480			readl(adapter->hw.hw_addr + i+12),
3481			readl(adapter->hw.hw_addr + i+8));
3482	}
3483exit:
3484	return;
3485}
3486
3487/**
3488 * e1000_tx_timeout - Respond to a Tx Hang
3489 * @netdev: network interface device structure
 
3490 **/
3491static void e1000_tx_timeout(struct net_device *netdev)
3492{
3493	struct e1000_adapter *adapter = netdev_priv(netdev);
3494
3495	/* Do the reset outside of interrupt context */
3496	adapter->tx_timeout_count++;
3497	schedule_work(&adapter->reset_task);
3498}
3499
3500static void e1000_reset_task(struct work_struct *work)
3501{
3502	struct e1000_adapter *adapter =
3503		container_of(work, struct e1000_adapter, reset_task);
3504
3505	e_err(drv, "Reset adapter\n");
 
3506	e1000_reinit_locked(adapter);
 
3507}
3508
3509/**
3510 * e1000_change_mtu - Change the Maximum Transfer Unit
3511 * @netdev: network interface device structure
3512 * @new_mtu: new value for maximum frame size
3513 *
3514 * Returns 0 on success, negative on failure
3515 **/
3516static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
3517{
3518	struct e1000_adapter *adapter = netdev_priv(netdev);
3519	struct e1000_hw *hw = &adapter->hw;
3520	int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
3521
3522	/* Adapter-specific max frame size limits. */
3523	switch (hw->mac_type) {
3524	case e1000_undefined ... e1000_82542_rev2_1:
3525		if (max_frame > (ETH_FRAME_LEN + ETH_FCS_LEN)) {
3526			e_err(probe, "Jumbo Frames not supported.\n");
3527			return -EINVAL;
3528		}
3529		break;
3530	default:
3531		/* Capable of supporting up to MAX_JUMBO_FRAME_SIZE limit. */
3532		break;
3533	}
3534
3535	while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
3536		msleep(1);
3537	/* e1000_down has a dependency on max_frame_size */
3538	hw->max_frame_size = max_frame;
3539	if (netif_running(netdev)) {
3540		/* prevent buffers from being reallocated */
3541		adapter->alloc_rx_buf = e1000_alloc_dummy_rx_buffers;
3542		e1000_down(adapter);
3543	}
3544
3545	/* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
3546	 * means we reserve 2 more, this pushes us to allocate from the next
3547	 * larger slab size.
3548	 * i.e. RXBUFFER_2048 --> size-4096 slab
3549	 * however with the new *_jumbo_rx* routines, jumbo receives will use
3550	 * fragmented skbs
3551	 */
3552
3553	if (max_frame <= E1000_RXBUFFER_2048)
3554		adapter->rx_buffer_len = E1000_RXBUFFER_2048;
3555	else
3556#if (PAGE_SIZE >= E1000_RXBUFFER_16384)
3557		adapter->rx_buffer_len = E1000_RXBUFFER_16384;
3558#elif (PAGE_SIZE >= E1000_RXBUFFER_4096)
3559		adapter->rx_buffer_len = PAGE_SIZE;
3560#endif
3561
3562	/* adjust allocation if LPE protects us, and we aren't using SBP */
3563	if (!hw->tbi_compatibility_on &&
3564	    ((max_frame == (ETH_FRAME_LEN + ETH_FCS_LEN)) ||
3565	     (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE)))
3566		adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
3567
3568	pr_info("%s changing MTU from %d to %d\n",
3569		netdev->name, netdev->mtu, new_mtu);
3570	netdev->mtu = new_mtu;
3571
3572	if (netif_running(netdev))
3573		e1000_up(adapter);
3574	else
3575		e1000_reset(adapter);
3576
3577	clear_bit(__E1000_RESETTING, &adapter->flags);
3578
3579	return 0;
3580}
3581
3582/**
3583 * e1000_update_stats - Update the board statistics counters
3584 * @adapter: board private structure
3585 **/
3586void e1000_update_stats(struct e1000_adapter *adapter)
3587{
3588	struct net_device *netdev = adapter->netdev;
3589	struct e1000_hw *hw = &adapter->hw;
3590	struct pci_dev *pdev = adapter->pdev;
3591	unsigned long flags;
3592	u16 phy_tmp;
3593
3594#define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
3595
3596	/* Prevent stats update while adapter is being reset, or if the pci
3597	 * connection is down.
3598	 */
3599	if (adapter->link_speed == 0)
3600		return;
3601	if (pci_channel_offline(pdev))
3602		return;
3603
3604	spin_lock_irqsave(&adapter->stats_lock, flags);
3605
3606	/* these counters are modified from e1000_tbi_adjust_stats,
3607	 * called from the interrupt context, so they must only
3608	 * be written while holding adapter->stats_lock
3609	 */
3610
3611	adapter->stats.crcerrs += er32(CRCERRS);
3612	adapter->stats.gprc += er32(GPRC);
3613	adapter->stats.gorcl += er32(GORCL);
3614	adapter->stats.gorch += er32(GORCH);
3615	adapter->stats.bprc += er32(BPRC);
3616	adapter->stats.mprc += er32(MPRC);
3617	adapter->stats.roc += er32(ROC);
3618
3619	adapter->stats.prc64 += er32(PRC64);
3620	adapter->stats.prc127 += er32(PRC127);
3621	adapter->stats.prc255 += er32(PRC255);
3622	adapter->stats.prc511 += er32(PRC511);
3623	adapter->stats.prc1023 += er32(PRC1023);
3624	adapter->stats.prc1522 += er32(PRC1522);
3625
3626	adapter->stats.symerrs += er32(SYMERRS);
3627	adapter->stats.mpc += er32(MPC);
3628	adapter->stats.scc += er32(SCC);
3629	adapter->stats.ecol += er32(ECOL);
3630	adapter->stats.mcc += er32(MCC);
3631	adapter->stats.latecol += er32(LATECOL);
3632	adapter->stats.dc += er32(DC);
3633	adapter->stats.sec += er32(SEC);
3634	adapter->stats.rlec += er32(RLEC);
3635	adapter->stats.xonrxc += er32(XONRXC);
3636	adapter->stats.xontxc += er32(XONTXC);
3637	adapter->stats.xoffrxc += er32(XOFFRXC);
3638	adapter->stats.xofftxc += er32(XOFFTXC);
3639	adapter->stats.fcruc += er32(FCRUC);
3640	adapter->stats.gptc += er32(GPTC);
3641	adapter->stats.gotcl += er32(GOTCL);
3642	adapter->stats.gotch += er32(GOTCH);
3643	adapter->stats.rnbc += er32(RNBC);
3644	adapter->stats.ruc += er32(RUC);
3645	adapter->stats.rfc += er32(RFC);
3646	adapter->stats.rjc += er32(RJC);
3647	adapter->stats.torl += er32(TORL);
3648	adapter->stats.torh += er32(TORH);
3649	adapter->stats.totl += er32(TOTL);
3650	adapter->stats.toth += er32(TOTH);
3651	adapter->stats.tpr += er32(TPR);
3652
3653	adapter->stats.ptc64 += er32(PTC64);
3654	adapter->stats.ptc127 += er32(PTC127);
3655	adapter->stats.ptc255 += er32(PTC255);
3656	adapter->stats.ptc511 += er32(PTC511);
3657	adapter->stats.ptc1023 += er32(PTC1023);
3658	adapter->stats.ptc1522 += er32(PTC1522);
3659
3660	adapter->stats.mptc += er32(MPTC);
3661	adapter->stats.bptc += er32(BPTC);
3662
3663	/* used for adaptive IFS */
3664
3665	hw->tx_packet_delta = er32(TPT);
3666	adapter->stats.tpt += hw->tx_packet_delta;
3667	hw->collision_delta = er32(COLC);
3668	adapter->stats.colc += hw->collision_delta;
3669
3670	if (hw->mac_type >= e1000_82543) {
3671		adapter->stats.algnerrc += er32(ALGNERRC);
3672		adapter->stats.rxerrc += er32(RXERRC);
3673		adapter->stats.tncrs += er32(TNCRS);
3674		adapter->stats.cexterr += er32(CEXTERR);
3675		adapter->stats.tsctc += er32(TSCTC);
3676		adapter->stats.tsctfc += er32(TSCTFC);
3677	}
3678
3679	/* Fill out the OS statistics structure */
3680	netdev->stats.multicast = adapter->stats.mprc;
3681	netdev->stats.collisions = adapter->stats.colc;
3682
3683	/* Rx Errors */
3684
3685	/* RLEC on some newer hardware can be incorrect so build
3686	 * our own version based on RUC and ROC
3687	 */
3688	netdev->stats.rx_errors = adapter->stats.rxerrc +
3689		adapter->stats.crcerrs + adapter->stats.algnerrc +
3690		adapter->stats.ruc + adapter->stats.roc +
3691		adapter->stats.cexterr;
3692	adapter->stats.rlerrc = adapter->stats.ruc + adapter->stats.roc;
3693	netdev->stats.rx_length_errors = adapter->stats.rlerrc;
3694	netdev->stats.rx_crc_errors = adapter->stats.crcerrs;
3695	netdev->stats.rx_frame_errors = adapter->stats.algnerrc;
3696	netdev->stats.rx_missed_errors = adapter->stats.mpc;
3697
3698	/* Tx Errors */
3699	adapter->stats.txerrc = adapter->stats.ecol + adapter->stats.latecol;
3700	netdev->stats.tx_errors = adapter->stats.txerrc;
3701	netdev->stats.tx_aborted_errors = adapter->stats.ecol;
3702	netdev->stats.tx_window_errors = adapter->stats.latecol;
3703	netdev->stats.tx_carrier_errors = adapter->stats.tncrs;
3704	if (hw->bad_tx_carr_stats_fd &&
3705	    adapter->link_duplex == FULL_DUPLEX) {
3706		netdev->stats.tx_carrier_errors = 0;
3707		adapter->stats.tncrs = 0;
3708	}
3709
3710	/* Tx Dropped needs to be maintained elsewhere */
3711
3712	/* Phy Stats */
3713	if (hw->media_type == e1000_media_type_copper) {
3714		if ((adapter->link_speed == SPEED_1000) &&
3715		   (!e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
3716			phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
3717			adapter->phy_stats.idle_errors += phy_tmp;
3718		}
3719
3720		if ((hw->mac_type <= e1000_82546) &&
3721		   (hw->phy_type == e1000_phy_m88) &&
3722		   !e1000_read_phy_reg(hw, M88E1000_RX_ERR_CNTR, &phy_tmp))
3723			adapter->phy_stats.receive_errors += phy_tmp;
3724	}
3725
3726	/* Management Stats */
3727	if (hw->has_smbus) {
3728		adapter->stats.mgptc += er32(MGTPTC);
3729		adapter->stats.mgprc += er32(MGTPRC);
3730		adapter->stats.mgpdc += er32(MGTPDC);
3731	}
3732
3733	spin_unlock_irqrestore(&adapter->stats_lock, flags);
3734}
3735
3736/**
3737 * e1000_intr - Interrupt Handler
3738 * @irq: interrupt number
3739 * @data: pointer to a network interface device structure
3740 **/
3741static irqreturn_t e1000_intr(int irq, void *data)
3742{
3743	struct net_device *netdev = data;
3744	struct e1000_adapter *adapter = netdev_priv(netdev);
3745	struct e1000_hw *hw = &adapter->hw;
3746	u32 icr = er32(ICR);
3747
3748	if (unlikely((!icr)))
3749		return IRQ_NONE;  /* Not our interrupt */
3750
3751	/* we might have caused the interrupt, but the above
3752	 * read cleared it, and just in case the driver is
3753	 * down there is nothing to do so return handled
3754	 */
3755	if (unlikely(test_bit(__E1000_DOWN, &adapter->flags)))
3756		return IRQ_HANDLED;
3757
3758	if (unlikely(icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))) {
3759		hw->get_link_status = 1;
3760		/* guard against interrupt when we're going down */
3761		if (!test_bit(__E1000_DOWN, &adapter->flags))
3762			schedule_delayed_work(&adapter->watchdog_task, 1);
3763	}
3764
3765	/* disable interrupts, without the synchronize_irq bit */
3766	ew32(IMC, ~0);
3767	E1000_WRITE_FLUSH();
3768
3769	if (likely(napi_schedule_prep(&adapter->napi))) {
3770		adapter->total_tx_bytes = 0;
3771		adapter->total_tx_packets = 0;
3772		adapter->total_rx_bytes = 0;
3773		adapter->total_rx_packets = 0;
3774		__napi_schedule(&adapter->napi);
3775	} else {
3776		/* this really should not happen! if it does it is basically a
3777		 * bug, but not a hard error, so enable ints and continue
3778		 */
3779		if (!test_bit(__E1000_DOWN, &adapter->flags))
3780			e1000_irq_enable(adapter);
3781	}
3782
3783	return IRQ_HANDLED;
3784}
3785
3786/**
3787 * e1000_clean - NAPI Rx polling callback
3788 * @adapter: board private structure
 
3789 **/
3790static int e1000_clean(struct napi_struct *napi, int budget)
3791{
3792	struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter,
3793						     napi);
3794	int tx_clean_complete = 0, work_done = 0;
3795
3796	tx_clean_complete = e1000_clean_tx_irq(adapter, &adapter->tx_ring[0]);
3797
3798	adapter->clean_rx(adapter, &adapter->rx_ring[0], &work_done, budget);
3799
3800	if (!tx_clean_complete || work_done == budget)
3801		return budget;
3802
3803	/* Exit the polling mode, but don't re-enable interrupts if stack might
3804	 * poll us due to busy-polling
3805	 */
3806	if (likely(napi_complete_done(napi, work_done))) {
3807		if (likely(adapter->itr_setting & 3))
3808			e1000_set_itr(adapter);
3809		if (!test_bit(__E1000_DOWN, &adapter->flags))
3810			e1000_irq_enable(adapter);
3811	}
3812
3813	return work_done;
3814}
3815
3816/**
3817 * e1000_clean_tx_irq - Reclaim resources after transmit completes
3818 * @adapter: board private structure
 
3819 **/
3820static bool e1000_clean_tx_irq(struct e1000_adapter *adapter,
3821			       struct e1000_tx_ring *tx_ring)
3822{
3823	struct e1000_hw *hw = &adapter->hw;
3824	struct net_device *netdev = adapter->netdev;
3825	struct e1000_tx_desc *tx_desc, *eop_desc;
3826	struct e1000_tx_buffer *buffer_info;
3827	unsigned int i, eop;
3828	unsigned int count = 0;
3829	unsigned int total_tx_bytes = 0, total_tx_packets = 0;
3830	unsigned int bytes_compl = 0, pkts_compl = 0;
3831
3832	i = tx_ring->next_to_clean;
3833	eop = tx_ring->buffer_info[i].next_to_watch;
3834	eop_desc = E1000_TX_DESC(*tx_ring, eop);
3835
3836	while ((eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) &&
3837	       (count < tx_ring->count)) {
3838		bool cleaned = false;
3839		dma_rmb();	/* read buffer_info after eop_desc */
3840		for ( ; !cleaned; count++) {
3841			tx_desc = E1000_TX_DESC(*tx_ring, i);
3842			buffer_info = &tx_ring->buffer_info[i];
3843			cleaned = (i == eop);
3844
3845			if (cleaned) {
3846				total_tx_packets += buffer_info->segs;
3847				total_tx_bytes += buffer_info->bytecount;
3848				if (buffer_info->skb) {
3849					bytes_compl += buffer_info->skb->len;
3850					pkts_compl++;
3851				}
3852
3853			}
3854			e1000_unmap_and_free_tx_resource(adapter, buffer_info);
 
3855			tx_desc->upper.data = 0;
3856
3857			if (unlikely(++i == tx_ring->count))
3858				i = 0;
3859		}
3860
3861		eop = tx_ring->buffer_info[i].next_to_watch;
3862		eop_desc = E1000_TX_DESC(*tx_ring, eop);
3863	}
3864
3865	/* Synchronize with E1000_DESC_UNUSED called from e1000_xmit_frame,
3866	 * which will reuse the cleaned buffers.
3867	 */
3868	smp_store_release(&tx_ring->next_to_clean, i);
3869
3870	netdev_completed_queue(netdev, pkts_compl, bytes_compl);
3871
3872#define TX_WAKE_THRESHOLD 32
3873	if (unlikely(count && netif_carrier_ok(netdev) &&
3874		     E1000_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD)) {
3875		/* Make sure that anybody stopping the queue after this
3876		 * sees the new next_to_clean.
3877		 */
3878		smp_mb();
3879
3880		if (netif_queue_stopped(netdev) &&
3881		    !(test_bit(__E1000_DOWN, &adapter->flags))) {
3882			netif_wake_queue(netdev);
3883			++adapter->restart_queue;
3884		}
3885	}
3886
3887	if (adapter->detect_tx_hung) {
3888		/* Detect a transmit hang in hardware, this serializes the
3889		 * check with the clearing of time_stamp and movement of i
3890		 */
3891		adapter->detect_tx_hung = false;
3892		if (tx_ring->buffer_info[eop].time_stamp &&
3893		    time_after(jiffies, tx_ring->buffer_info[eop].time_stamp +
3894			       (adapter->tx_timeout_factor * HZ)) &&
3895		    !(er32(STATUS) & E1000_STATUS_TXOFF)) {
3896
3897			/* detected Tx unit hang */
3898			e_err(drv, "Detected Tx Unit Hang\n"
3899			      "  Tx Queue             <%lu>\n"
3900			      "  TDH                  <%x>\n"
3901			      "  TDT                  <%x>\n"
3902			      "  next_to_use          <%x>\n"
3903			      "  next_to_clean        <%x>\n"
3904			      "buffer_info[next_to_clean]\n"
3905			      "  time_stamp           <%lx>\n"
3906			      "  next_to_watch        <%x>\n"
3907			      "  jiffies              <%lx>\n"
3908			      "  next_to_watch.status <%x>\n",
3909				(unsigned long)(tx_ring - adapter->tx_ring),
3910				readl(hw->hw_addr + tx_ring->tdh),
3911				readl(hw->hw_addr + tx_ring->tdt),
3912				tx_ring->next_to_use,
3913				tx_ring->next_to_clean,
3914				tx_ring->buffer_info[eop].time_stamp,
3915				eop,
3916				jiffies,
3917				eop_desc->upper.fields.status);
3918			e1000_dump(adapter);
3919			netif_stop_queue(netdev);
3920		}
3921	}
3922	adapter->total_tx_bytes += total_tx_bytes;
3923	adapter->total_tx_packets += total_tx_packets;
3924	netdev->stats.tx_bytes += total_tx_bytes;
3925	netdev->stats.tx_packets += total_tx_packets;
3926	return count < tx_ring->count;
3927}
3928
3929/**
3930 * e1000_rx_checksum - Receive Checksum Offload for 82543
3931 * @adapter:     board private structure
3932 * @status_err:  receive descriptor status and error fields
3933 * @csum:        receive descriptor csum field
3934 * @sk_buff:     socket buffer with received data
3935 **/
3936static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
3937			      u32 csum, struct sk_buff *skb)
3938{
3939	struct e1000_hw *hw = &adapter->hw;
3940	u16 status = (u16)status_err;
3941	u8 errors = (u8)(status_err >> 24);
3942
3943	skb_checksum_none_assert(skb);
3944
3945	/* 82543 or newer only */
3946	if (unlikely(hw->mac_type < e1000_82543))
3947		return;
3948	/* Ignore Checksum bit is set */
3949	if (unlikely(status & E1000_RXD_STAT_IXSM))
3950		return;
3951	/* TCP/UDP checksum error bit is set */
3952	if (unlikely(errors & E1000_RXD_ERR_TCPE)) {
3953		/* let the stack verify checksum errors */
3954		adapter->hw_csum_err++;
3955		return;
3956	}
3957	/* TCP/UDP Checksum has not been calculated */
3958	if (!(status & E1000_RXD_STAT_TCPCS))
3959		return;
3960
3961	/* It must be a TCP or UDP packet with a valid checksum */
3962	if (likely(status & E1000_RXD_STAT_TCPCS)) {
3963		/* TCP checksum is good */
3964		skb->ip_summed = CHECKSUM_UNNECESSARY;
3965	}
3966	adapter->hw_csum_good++;
3967}
3968
3969/**
3970 * e1000_consume_page - helper function for jumbo Rx path
 
 
 
3971 **/
3972static void e1000_consume_page(struct e1000_rx_buffer *bi, struct sk_buff *skb,
3973			       u16 length)
3974{
3975	bi->rxbuf.page = NULL;
3976	skb->len += length;
3977	skb->data_len += length;
3978	skb->truesize += PAGE_SIZE;
3979}
3980
3981/**
3982 * e1000_receive_skb - helper function to handle rx indications
3983 * @adapter: board private structure
3984 * @status: descriptor status field as written by hardware
3985 * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
3986 * @skb: pointer to sk_buff to be indicated to stack
3987 */
3988static void e1000_receive_skb(struct e1000_adapter *adapter, u8 status,
3989			      __le16 vlan, struct sk_buff *skb)
3990{
3991	skb->protocol = eth_type_trans(skb, adapter->netdev);
3992
3993	if (status & E1000_RXD_STAT_VP) {
3994		u16 vid = le16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK;
3995
3996		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
3997	}
3998	napi_gro_receive(&adapter->napi, skb);
3999}
4000
4001/**
4002 * e1000_tbi_adjust_stats
4003 * @hw: Struct containing variables accessed by shared code
 
4004 * @frame_len: The length of the frame in question
4005 * @mac_addr: The Ethernet destination address of the frame in question
4006 *
4007 * Adjusts the statistic counters when a frame is accepted by TBI_ACCEPT
4008 */
4009static void e1000_tbi_adjust_stats(struct e1000_hw *hw,
4010				   struct e1000_hw_stats *stats,
4011				   u32 frame_len, const u8 *mac_addr)
4012{
4013	u64 carry_bit;
4014
4015	/* First adjust the frame length. */
4016	frame_len--;
4017	/* We need to adjust the statistics counters, since the hardware
4018	 * counters overcount this packet as a CRC error and undercount
4019	 * the packet as a good packet
4020	 */
4021	/* This packet should not be counted as a CRC error. */
4022	stats->crcerrs--;
4023	/* This packet does count as a Good Packet Received. */
4024	stats->gprc++;
4025
4026	/* Adjust the Good Octets received counters */
4027	carry_bit = 0x80000000 & stats->gorcl;
4028	stats->gorcl += frame_len;
4029	/* If the high bit of Gorcl (the low 32 bits of the Good Octets
4030	 * Received Count) was one before the addition,
4031	 * AND it is zero after, then we lost the carry out,
4032	 * need to add one to Gorch (Good Octets Received Count High).
4033	 * This could be simplified if all environments supported
4034	 * 64-bit integers.
4035	 */
4036	if (carry_bit && ((stats->gorcl & 0x80000000) == 0))
4037		stats->gorch++;
4038	/* Is this a broadcast or multicast?  Check broadcast first,
4039	 * since the test for a multicast frame will test positive on
4040	 * a broadcast frame.
4041	 */
4042	if (is_broadcast_ether_addr(mac_addr))
4043		stats->bprc++;
4044	else if (is_multicast_ether_addr(mac_addr))
4045		stats->mprc++;
4046
4047	if (frame_len == hw->max_frame_size) {
4048		/* In this case, the hardware has overcounted the number of
4049		 * oversize frames.
4050		 */
4051		if (stats->roc > 0)
4052			stats->roc--;
4053	}
4054
4055	/* Adjust the bin counters when the extra byte put the frame in the
4056	 * wrong bin. Remember that the frame_len was adjusted above.
4057	 */
4058	if (frame_len == 64) {
4059		stats->prc64++;
4060		stats->prc127--;
4061	} else if (frame_len == 127) {
4062		stats->prc127++;
4063		stats->prc255--;
4064	} else if (frame_len == 255) {
4065		stats->prc255++;
4066		stats->prc511--;
4067	} else if (frame_len == 511) {
4068		stats->prc511++;
4069		stats->prc1023--;
4070	} else if (frame_len == 1023) {
4071		stats->prc1023++;
4072		stats->prc1522--;
4073	} else if (frame_len == 1522) {
4074		stats->prc1522++;
4075	}
4076}
4077
4078static bool e1000_tbi_should_accept(struct e1000_adapter *adapter,
4079				    u8 status, u8 errors,
4080				    u32 length, const u8 *data)
4081{
4082	struct e1000_hw *hw = &adapter->hw;
4083	u8 last_byte = *(data + length - 1);
4084
4085	if (TBI_ACCEPT(hw, status, errors, length, last_byte)) {
4086		unsigned long irq_flags;
4087
4088		spin_lock_irqsave(&adapter->stats_lock, irq_flags);
4089		e1000_tbi_adjust_stats(hw, &adapter->stats, length, data);
4090		spin_unlock_irqrestore(&adapter->stats_lock, irq_flags);
4091
4092		return true;
4093	}
4094
4095	return false;
4096}
4097
4098static struct sk_buff *e1000_alloc_rx_skb(struct e1000_adapter *adapter,
4099					  unsigned int bufsz)
4100{
4101	struct sk_buff *skb = napi_alloc_skb(&adapter->napi, bufsz);
4102
4103	if (unlikely(!skb))
4104		adapter->alloc_rx_buff_failed++;
4105	return skb;
4106}
4107
4108/**
4109 * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
4110 * @adapter: board private structure
4111 * @rx_ring: ring to clean
4112 * @work_done: amount of napi work completed this call
4113 * @work_to_do: max amount of work allowed for this call to do
4114 *
4115 * the return value indicates whether actual cleaning was done, there
4116 * is no guarantee that everything was cleaned
4117 */
4118static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter,
4119				     struct e1000_rx_ring *rx_ring,
4120				     int *work_done, int work_to_do)
4121{
4122	struct net_device *netdev = adapter->netdev;
4123	struct pci_dev *pdev = adapter->pdev;
4124	struct e1000_rx_desc *rx_desc, *next_rxd;
4125	struct e1000_rx_buffer *buffer_info, *next_buffer;
4126	u32 length;
4127	unsigned int i;
4128	int cleaned_count = 0;
4129	bool cleaned = false;
4130	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
4131
4132	i = rx_ring->next_to_clean;
4133	rx_desc = E1000_RX_DESC(*rx_ring, i);
4134	buffer_info = &rx_ring->buffer_info[i];
4135
4136	while (rx_desc->status & E1000_RXD_STAT_DD) {
4137		struct sk_buff *skb;
4138		u8 status;
4139
4140		if (*work_done >= work_to_do)
4141			break;
4142		(*work_done)++;
4143		dma_rmb(); /* read descriptor and rx_buffer_info after status DD */
4144
4145		status = rx_desc->status;
4146
4147		if (++i == rx_ring->count)
4148			i = 0;
4149
4150		next_rxd = E1000_RX_DESC(*rx_ring, i);
4151		prefetch(next_rxd);
4152
4153		next_buffer = &rx_ring->buffer_info[i];
4154
4155		cleaned = true;
4156		cleaned_count++;
4157		dma_unmap_page(&pdev->dev, buffer_info->dma,
4158			       adapter->rx_buffer_len, DMA_FROM_DEVICE);
4159		buffer_info->dma = 0;
4160
4161		length = le16_to_cpu(rx_desc->length);
4162
4163		/* errors is only valid for DD + EOP descriptors */
4164		if (unlikely((status & E1000_RXD_STAT_EOP) &&
4165		    (rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK))) {
4166			u8 *mapped = page_address(buffer_info->rxbuf.page);
4167
4168			if (e1000_tbi_should_accept(adapter, status,
4169						    rx_desc->errors,
4170						    length, mapped)) {
4171				length--;
4172			} else if (netdev->features & NETIF_F_RXALL) {
4173				goto process_skb;
4174			} else {
4175				/* an error means any chain goes out the window
4176				 * too
4177				 */
4178				dev_kfree_skb(rx_ring->rx_skb_top);
4179				rx_ring->rx_skb_top = NULL;
4180				goto next_desc;
4181			}
4182		}
4183
4184#define rxtop rx_ring->rx_skb_top
4185process_skb:
4186		if (!(status & E1000_RXD_STAT_EOP)) {
4187			/* this descriptor is only the beginning (or middle) */
4188			if (!rxtop) {
4189				/* this is the beginning of a chain */
4190				rxtop = napi_get_frags(&adapter->napi);
4191				if (!rxtop)
4192					break;
4193
4194				skb_fill_page_desc(rxtop, 0,
4195						   buffer_info->rxbuf.page,
4196						   0, length);
4197			} else {
4198				/* this is the middle of a chain */
4199				skb_fill_page_desc(rxtop,
4200				    skb_shinfo(rxtop)->nr_frags,
4201				    buffer_info->rxbuf.page, 0, length);
4202			}
4203			e1000_consume_page(buffer_info, rxtop, length);
4204			goto next_desc;
4205		} else {
4206			if (rxtop) {
4207				/* end of the chain */
4208				skb_fill_page_desc(rxtop,
4209				    skb_shinfo(rxtop)->nr_frags,
4210				    buffer_info->rxbuf.page, 0, length);
4211				skb = rxtop;
4212				rxtop = NULL;
4213				e1000_consume_page(buffer_info, skb, length);
4214			} else {
4215				struct page *p;
4216				/* no chain, got EOP, this buf is the packet
4217				 * copybreak to save the put_page/alloc_page
4218				 */
4219				p = buffer_info->rxbuf.page;
4220				if (length <= copybreak) {
4221					u8 *vaddr;
4222
4223					if (likely(!(netdev->features & NETIF_F_RXFCS)))
4224						length -= 4;
4225					skb = e1000_alloc_rx_skb(adapter,
4226								 length);
4227					if (!skb)
4228						break;
4229
4230					vaddr = kmap_atomic(p);
4231					memcpy(skb_tail_pointer(skb), vaddr,
4232					       length);
4233					kunmap_atomic(vaddr);
4234					/* re-use the page, so don't erase
4235					 * buffer_info->rxbuf.page
4236					 */
4237					skb_put(skb, length);
4238					e1000_rx_checksum(adapter,
4239							  status | rx_desc->errors << 24,
4240							  le16_to_cpu(rx_desc->csum), skb);
4241
4242					total_rx_bytes += skb->len;
4243					total_rx_packets++;
4244
4245					e1000_receive_skb(adapter, status,
4246							  rx_desc->special, skb);
4247					goto next_desc;
4248				} else {
4249					skb = napi_get_frags(&adapter->napi);
4250					if (!skb) {
4251						adapter->alloc_rx_buff_failed++;
4252						break;
4253					}
4254					skb_fill_page_desc(skb, 0, p, 0,
4255							   length);
4256					e1000_consume_page(buffer_info, skb,
4257							   length);
4258				}
4259			}
4260		}
4261
4262		/* Receive Checksum Offload XXX recompute due to CRC strip? */
4263		e1000_rx_checksum(adapter,
4264				  (u32)(status) |
4265				  ((u32)(rx_desc->errors) << 24),
4266				  le16_to_cpu(rx_desc->csum), skb);
4267
4268		total_rx_bytes += (skb->len - 4); /* don't count FCS */
4269		if (likely(!(netdev->features & NETIF_F_RXFCS)))
4270			pskb_trim(skb, skb->len - 4);
4271		total_rx_packets++;
4272
4273		if (status & E1000_RXD_STAT_VP) {
4274			__le16 vlan = rx_desc->special;
4275			u16 vid = le16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK;
4276
4277			__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
4278		}
4279
4280		napi_gro_frags(&adapter->napi);
4281
4282next_desc:
4283		rx_desc->status = 0;
4284
4285		/* return some buffers to hardware, one at a time is too slow */
4286		if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
4287			adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4288			cleaned_count = 0;
4289		}
4290
4291		/* use prefetched values */
4292		rx_desc = next_rxd;
4293		buffer_info = next_buffer;
4294	}
4295	rx_ring->next_to_clean = i;
4296
4297	cleaned_count = E1000_DESC_UNUSED(rx_ring);
4298	if (cleaned_count)
4299		adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4300
4301	adapter->total_rx_packets += total_rx_packets;
4302	adapter->total_rx_bytes += total_rx_bytes;
4303	netdev->stats.rx_bytes += total_rx_bytes;
4304	netdev->stats.rx_packets += total_rx_packets;
4305	return cleaned;
4306}
4307
4308/* this should improve performance for small packets with large amounts
4309 * of reassembly being done in the stack
4310 */
4311static struct sk_buff *e1000_copybreak(struct e1000_adapter *adapter,
4312				       struct e1000_rx_buffer *buffer_info,
4313				       u32 length, const void *data)
4314{
4315	struct sk_buff *skb;
4316
4317	if (length > copybreak)
4318		return NULL;
4319
4320	skb = e1000_alloc_rx_skb(adapter, length);
4321	if (!skb)
4322		return NULL;
4323
4324	dma_sync_single_for_cpu(&adapter->pdev->dev, buffer_info->dma,
4325				length, DMA_FROM_DEVICE);
4326
4327	skb_put_data(skb, data, length);
4328
4329	return skb;
4330}
4331
4332/**
4333 * e1000_clean_rx_irq - Send received data up the network stack; legacy
4334 * @adapter: board private structure
4335 * @rx_ring: ring to clean
4336 * @work_done: amount of napi work completed this call
4337 * @work_to_do: max amount of work allowed for this call to do
4338 */
4339static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
4340			       struct e1000_rx_ring *rx_ring,
4341			       int *work_done, int work_to_do)
4342{
4343	struct net_device *netdev = adapter->netdev;
4344	struct pci_dev *pdev = adapter->pdev;
4345	struct e1000_rx_desc *rx_desc, *next_rxd;
4346	struct e1000_rx_buffer *buffer_info, *next_buffer;
4347	u32 length;
4348	unsigned int i;
4349	int cleaned_count = 0;
4350	bool cleaned = false;
4351	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
4352
4353	i = rx_ring->next_to_clean;
4354	rx_desc = E1000_RX_DESC(*rx_ring, i);
4355	buffer_info = &rx_ring->buffer_info[i];
4356
4357	while (rx_desc->status & E1000_RXD_STAT_DD) {
4358		struct sk_buff *skb;
4359		u8 *data;
4360		u8 status;
4361
4362		if (*work_done >= work_to_do)
4363			break;
4364		(*work_done)++;
4365		dma_rmb(); /* read descriptor and rx_buffer_info after status DD */
4366
4367		status = rx_desc->status;
4368		length = le16_to_cpu(rx_desc->length);
4369
4370		data = buffer_info->rxbuf.data;
4371		prefetch(data);
4372		skb = e1000_copybreak(adapter, buffer_info, length, data);
4373		if (!skb) {
4374			unsigned int frag_len = e1000_frag_len(adapter);
4375
4376			skb = build_skb(data - E1000_HEADROOM, frag_len);
4377			if (!skb) {
4378				adapter->alloc_rx_buff_failed++;
4379				break;
4380			}
4381
4382			skb_reserve(skb, E1000_HEADROOM);
4383			dma_unmap_single(&pdev->dev, buffer_info->dma,
4384					 adapter->rx_buffer_len,
4385					 DMA_FROM_DEVICE);
4386			buffer_info->dma = 0;
4387			buffer_info->rxbuf.data = NULL;
4388		}
4389
4390		if (++i == rx_ring->count)
4391			i = 0;
4392
4393		next_rxd = E1000_RX_DESC(*rx_ring, i);
4394		prefetch(next_rxd);
4395
4396		next_buffer = &rx_ring->buffer_info[i];
4397
4398		cleaned = true;
4399		cleaned_count++;
4400
4401		/* !EOP means multiple descriptors were used to store a single
4402		 * packet, if thats the case we need to toss it.  In fact, we
4403		 * to toss every packet with the EOP bit clear and the next
4404		 * frame that _does_ have the EOP bit set, as it is by
4405		 * definition only a frame fragment
4406		 */
4407		if (unlikely(!(status & E1000_RXD_STAT_EOP)))
4408			adapter->discarding = true;
4409
4410		if (adapter->discarding) {
4411			/* All receives must fit into a single buffer */
4412			netdev_dbg(netdev, "Receive packet consumed multiple buffers\n");
4413			dev_kfree_skb(skb);
4414			if (status & E1000_RXD_STAT_EOP)
4415				adapter->discarding = false;
4416			goto next_desc;
4417		}
4418
4419		if (unlikely(rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK)) {
4420			if (e1000_tbi_should_accept(adapter, status,
4421						    rx_desc->errors,
4422						    length, data)) {
4423				length--;
4424			} else if (netdev->features & NETIF_F_RXALL) {
4425				goto process_skb;
4426			} else {
4427				dev_kfree_skb(skb);
4428				goto next_desc;
4429			}
4430		}
4431
4432process_skb:
4433		total_rx_bytes += (length - 4); /* don't count FCS */
4434		total_rx_packets++;
4435
4436		if (likely(!(netdev->features & NETIF_F_RXFCS)))
4437			/* adjust length to remove Ethernet CRC, this must be
4438			 * done after the TBI_ACCEPT workaround above
4439			 */
4440			length -= 4;
4441
4442		if (buffer_info->rxbuf.data == NULL)
4443			skb_put(skb, length);
4444		else /* copybreak skb */
4445			skb_trim(skb, length);
4446
4447		/* Receive Checksum Offload */
4448		e1000_rx_checksum(adapter,
4449				  (u32)(status) |
4450				  ((u32)(rx_desc->errors) << 24),
4451				  le16_to_cpu(rx_desc->csum), skb);
4452
4453		e1000_receive_skb(adapter, status, rx_desc->special, skb);
4454
4455next_desc:
4456		rx_desc->status = 0;
4457
4458		/* return some buffers to hardware, one at a time is too slow */
4459		if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
4460			adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4461			cleaned_count = 0;
4462		}
4463
4464		/* use prefetched values */
4465		rx_desc = next_rxd;
4466		buffer_info = next_buffer;
4467	}
4468	rx_ring->next_to_clean = i;
4469
4470	cleaned_count = E1000_DESC_UNUSED(rx_ring);
4471	if (cleaned_count)
4472		adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4473
4474	adapter->total_rx_packets += total_rx_packets;
4475	adapter->total_rx_bytes += total_rx_bytes;
4476	netdev->stats.rx_bytes += total_rx_bytes;
4477	netdev->stats.rx_packets += total_rx_packets;
4478	return cleaned;
4479}
4480
4481/**
4482 * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
4483 * @adapter: address of board private structure
4484 * @rx_ring: pointer to receive ring structure
4485 * @cleaned_count: number of buffers to allocate this pass
4486 **/
4487static void
4488e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter,
4489			     struct e1000_rx_ring *rx_ring, int cleaned_count)
4490{
4491	struct pci_dev *pdev = adapter->pdev;
4492	struct e1000_rx_desc *rx_desc;
4493	struct e1000_rx_buffer *buffer_info;
4494	unsigned int i;
4495
4496	i = rx_ring->next_to_use;
4497	buffer_info = &rx_ring->buffer_info[i];
4498
4499	while (cleaned_count--) {
4500		/* allocate a new page if necessary */
4501		if (!buffer_info->rxbuf.page) {
4502			buffer_info->rxbuf.page = alloc_page(GFP_ATOMIC);
4503			if (unlikely(!buffer_info->rxbuf.page)) {
4504				adapter->alloc_rx_buff_failed++;
4505				break;
4506			}
4507		}
4508
4509		if (!buffer_info->dma) {
4510			buffer_info->dma = dma_map_page(&pdev->dev,
4511							buffer_info->rxbuf.page, 0,
4512							adapter->rx_buffer_len,
4513							DMA_FROM_DEVICE);
4514			if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
4515				put_page(buffer_info->rxbuf.page);
4516				buffer_info->rxbuf.page = NULL;
4517				buffer_info->dma = 0;
4518				adapter->alloc_rx_buff_failed++;
4519				break;
4520			}
4521		}
4522
4523		rx_desc = E1000_RX_DESC(*rx_ring, i);
4524		rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4525
4526		if (unlikely(++i == rx_ring->count))
4527			i = 0;
4528		buffer_info = &rx_ring->buffer_info[i];
4529	}
4530
4531	if (likely(rx_ring->next_to_use != i)) {
4532		rx_ring->next_to_use = i;
4533		if (unlikely(i-- == 0))
4534			i = (rx_ring->count - 1);
4535
4536		/* Force memory writes to complete before letting h/w
4537		 * know there are new descriptors to fetch.  (Only
4538		 * applicable for weak-ordered memory model archs,
4539		 * such as IA-64).
4540		 */
4541		dma_wmb();
4542		writel(i, adapter->hw.hw_addr + rx_ring->rdt);
4543	}
4544}
4545
4546/**
4547 * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
4548 * @adapter: address of board private structure
 
 
4549 **/
4550static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
4551				   struct e1000_rx_ring *rx_ring,
4552				   int cleaned_count)
4553{
4554	struct e1000_hw *hw = &adapter->hw;
4555	struct pci_dev *pdev = adapter->pdev;
4556	struct e1000_rx_desc *rx_desc;
4557	struct e1000_rx_buffer *buffer_info;
4558	unsigned int i;
4559	unsigned int bufsz = adapter->rx_buffer_len;
4560
4561	i = rx_ring->next_to_use;
4562	buffer_info = &rx_ring->buffer_info[i];
4563
4564	while (cleaned_count--) {
4565		void *data;
4566
4567		if (buffer_info->rxbuf.data)
4568			goto skip;
4569
4570		data = e1000_alloc_frag(adapter);
4571		if (!data) {
4572			/* Better luck next round */
4573			adapter->alloc_rx_buff_failed++;
4574			break;
4575		}
4576
4577		/* Fix for errata 23, can't cross 64kB boundary */
4578		if (!e1000_check_64k_bound(adapter, data, bufsz)) {
4579			void *olddata = data;
4580			e_err(rx_err, "skb align check failed: %u bytes at "
4581			      "%p\n", bufsz, data);
4582			/* Try again, without freeing the previous */
4583			data = e1000_alloc_frag(adapter);
4584			/* Failed allocation, critical failure */
4585			if (!data) {
4586				skb_free_frag(olddata);
4587				adapter->alloc_rx_buff_failed++;
4588				break;
4589			}
4590
4591			if (!e1000_check_64k_bound(adapter, data, bufsz)) {
4592				/* give up */
4593				skb_free_frag(data);
4594				skb_free_frag(olddata);
4595				adapter->alloc_rx_buff_failed++;
4596				break;
4597			}
4598
4599			/* Use new allocation */
4600			skb_free_frag(olddata);
4601		}
4602		buffer_info->dma = dma_map_single(&pdev->dev,
4603						  data,
4604						  adapter->rx_buffer_len,
4605						  DMA_FROM_DEVICE);
4606		if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
4607			skb_free_frag(data);
4608			buffer_info->dma = 0;
4609			adapter->alloc_rx_buff_failed++;
4610			break;
4611		}
4612
4613		/* XXX if it was allocated cleanly it will never map to a
4614		 * boundary crossing
4615		 */
4616
4617		/* Fix for errata 23, can't cross 64kB boundary */
4618		if (!e1000_check_64k_bound(adapter,
4619					(void *)(unsigned long)buffer_info->dma,
4620					adapter->rx_buffer_len)) {
4621			e_err(rx_err, "dma align check failed: %u bytes at "
4622			      "%p\n", adapter->rx_buffer_len,
4623			      (void *)(unsigned long)buffer_info->dma);
4624
4625			dma_unmap_single(&pdev->dev, buffer_info->dma,
4626					 adapter->rx_buffer_len,
4627					 DMA_FROM_DEVICE);
4628
4629			skb_free_frag(data);
4630			buffer_info->rxbuf.data = NULL;
4631			buffer_info->dma = 0;
4632
4633			adapter->alloc_rx_buff_failed++;
4634			break;
4635		}
4636		buffer_info->rxbuf.data = data;
4637 skip:
4638		rx_desc = E1000_RX_DESC(*rx_ring, i);
4639		rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4640
4641		if (unlikely(++i == rx_ring->count))
4642			i = 0;
4643		buffer_info = &rx_ring->buffer_info[i];
4644	}
4645
4646	if (likely(rx_ring->next_to_use != i)) {
4647		rx_ring->next_to_use = i;
4648		if (unlikely(i-- == 0))
4649			i = (rx_ring->count - 1);
4650
4651		/* Force memory writes to complete before letting h/w
4652		 * know there are new descriptors to fetch.  (Only
4653		 * applicable for weak-ordered memory model archs,
4654		 * such as IA-64).
4655		 */
4656		dma_wmb();
4657		writel(i, hw->hw_addr + rx_ring->rdt);
4658	}
4659}
4660
4661/**
4662 * e1000_smartspeed - Workaround for SmartSpeed on 82541 and 82547 controllers.
4663 * @adapter:
4664 **/
4665static void e1000_smartspeed(struct e1000_adapter *adapter)
4666{
4667	struct e1000_hw *hw = &adapter->hw;
4668	u16 phy_status;
4669	u16 phy_ctrl;
4670
4671	if ((hw->phy_type != e1000_phy_igp) || !hw->autoneg ||
4672	   !(hw->autoneg_advertised & ADVERTISE_1000_FULL))
4673		return;
4674
4675	if (adapter->smartspeed == 0) {
4676		/* If Master/Slave config fault is asserted twice,
4677		 * we assume back-to-back
4678		 */
4679		e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
4680		if (!(phy_status & SR_1000T_MS_CONFIG_FAULT))
4681			return;
4682		e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
4683		if (!(phy_status & SR_1000T_MS_CONFIG_FAULT))
4684			return;
4685		e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
4686		if (phy_ctrl & CR_1000T_MS_ENABLE) {
4687			phy_ctrl &= ~CR_1000T_MS_ENABLE;
4688			e1000_write_phy_reg(hw, PHY_1000T_CTRL,
4689					    phy_ctrl);
4690			adapter->smartspeed++;
4691			if (!e1000_phy_setup_autoneg(hw) &&
4692			   !e1000_read_phy_reg(hw, PHY_CTRL,
4693					       &phy_ctrl)) {
4694				phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4695					     MII_CR_RESTART_AUTO_NEG);
4696				e1000_write_phy_reg(hw, PHY_CTRL,
4697						    phy_ctrl);
4698			}
4699		}
4700		return;
4701	} else if (adapter->smartspeed == E1000_SMARTSPEED_DOWNSHIFT) {
4702		/* If still no link, perhaps using 2/3 pair cable */
4703		e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
4704		phy_ctrl |= CR_1000T_MS_ENABLE;
4705		e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_ctrl);
4706		if (!e1000_phy_setup_autoneg(hw) &&
4707		   !e1000_read_phy_reg(hw, PHY_CTRL, &phy_ctrl)) {
4708			phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4709				     MII_CR_RESTART_AUTO_NEG);
4710			e1000_write_phy_reg(hw, PHY_CTRL, phy_ctrl);
4711		}
4712	}
4713	/* Restart process after E1000_SMARTSPEED_MAX iterations */
4714	if (adapter->smartspeed++ == E1000_SMARTSPEED_MAX)
4715		adapter->smartspeed = 0;
4716}
4717
4718/**
4719 * e1000_ioctl -
4720 * @netdev:
4721 * @ifreq:
4722 * @cmd:
4723 **/
4724static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4725{
4726	switch (cmd) {
4727	case SIOCGMIIPHY:
4728	case SIOCGMIIREG:
4729	case SIOCSMIIREG:
4730		return e1000_mii_ioctl(netdev, ifr, cmd);
4731	default:
4732		return -EOPNOTSUPP;
4733	}
4734}
4735
4736/**
4737 * e1000_mii_ioctl -
4738 * @netdev:
4739 * @ifreq:
4740 * @cmd:
4741 **/
4742static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
4743			   int cmd)
4744{
4745	struct e1000_adapter *adapter = netdev_priv(netdev);
4746	struct e1000_hw *hw = &adapter->hw;
4747	struct mii_ioctl_data *data = if_mii(ifr);
4748	int retval;
4749	u16 mii_reg;
4750	unsigned long flags;
4751
4752	if (hw->media_type != e1000_media_type_copper)
4753		return -EOPNOTSUPP;
4754
4755	switch (cmd) {
4756	case SIOCGMIIPHY:
4757		data->phy_id = hw->phy_addr;
4758		break;
4759	case SIOCGMIIREG:
4760		spin_lock_irqsave(&adapter->stats_lock, flags);
4761		if (e1000_read_phy_reg(hw, data->reg_num & 0x1F,
4762				   &data->val_out)) {
4763			spin_unlock_irqrestore(&adapter->stats_lock, flags);
4764			return -EIO;
4765		}
4766		spin_unlock_irqrestore(&adapter->stats_lock, flags);
4767		break;
4768	case SIOCSMIIREG:
4769		if (data->reg_num & ~(0x1F))
4770			return -EFAULT;
4771		mii_reg = data->val_in;
4772		spin_lock_irqsave(&adapter->stats_lock, flags);
4773		if (e1000_write_phy_reg(hw, data->reg_num,
4774					mii_reg)) {
4775			spin_unlock_irqrestore(&adapter->stats_lock, flags);
4776			return -EIO;
4777		}
4778		spin_unlock_irqrestore(&adapter->stats_lock, flags);
4779		if (hw->media_type == e1000_media_type_copper) {
4780			switch (data->reg_num) {
4781			case PHY_CTRL:
4782				if (mii_reg & MII_CR_POWER_DOWN)
4783					break;
4784				if (mii_reg & MII_CR_AUTO_NEG_EN) {
4785					hw->autoneg = 1;
4786					hw->autoneg_advertised = 0x2F;
4787				} else {
4788					u32 speed;
4789					if (mii_reg & 0x40)
4790						speed = SPEED_1000;
4791					else if (mii_reg & 0x2000)
4792						speed = SPEED_100;
4793					else
4794						speed = SPEED_10;
4795					retval = e1000_set_spd_dplx(
4796						adapter, speed,
4797						((mii_reg & 0x100)
4798						 ? DUPLEX_FULL :
4799						 DUPLEX_HALF));
4800					if (retval)
4801						return retval;
4802				}
4803				if (netif_running(adapter->netdev))
4804					e1000_reinit_locked(adapter);
4805				else
4806					e1000_reset(adapter);
4807				break;
4808			case M88E1000_PHY_SPEC_CTRL:
4809			case M88E1000_EXT_PHY_SPEC_CTRL:
4810				if (e1000_phy_reset(hw))
4811					return -EIO;
4812				break;
4813			}
4814		} else {
4815			switch (data->reg_num) {
4816			case PHY_CTRL:
4817				if (mii_reg & MII_CR_POWER_DOWN)
4818					break;
4819				if (netif_running(adapter->netdev))
4820					e1000_reinit_locked(adapter);
4821				else
4822					e1000_reset(adapter);
4823				break;
4824			}
4825		}
4826		break;
4827	default:
4828		return -EOPNOTSUPP;
4829	}
4830	return E1000_SUCCESS;
4831}
4832
4833void e1000_pci_set_mwi(struct e1000_hw *hw)
4834{
4835	struct e1000_adapter *adapter = hw->back;
4836	int ret_val = pci_set_mwi(adapter->pdev);
4837
4838	if (ret_val)
4839		e_err(probe, "Error in setting MWI\n");
4840}
4841
4842void e1000_pci_clear_mwi(struct e1000_hw *hw)
4843{
4844	struct e1000_adapter *adapter = hw->back;
4845
4846	pci_clear_mwi(adapter->pdev);
4847}
4848
4849int e1000_pcix_get_mmrbc(struct e1000_hw *hw)
4850{
4851	struct e1000_adapter *adapter = hw->back;
4852	return pcix_get_mmrbc(adapter->pdev);
4853}
4854
4855void e1000_pcix_set_mmrbc(struct e1000_hw *hw, int mmrbc)
4856{
4857	struct e1000_adapter *adapter = hw->back;
4858	pcix_set_mmrbc(adapter->pdev, mmrbc);
4859}
4860
4861void e1000_io_write(struct e1000_hw *hw, unsigned long port, u32 value)
4862{
4863	outl(value, port);
4864}
4865
4866static bool e1000_vlan_used(struct e1000_adapter *adapter)
4867{
4868	u16 vid;
4869
4870	for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
4871		return true;
4872	return false;
4873}
4874
4875static void __e1000_vlan_mode(struct e1000_adapter *adapter,
4876			      netdev_features_t features)
4877{
4878	struct e1000_hw *hw = &adapter->hw;
4879	u32 ctrl;
4880
4881	ctrl = er32(CTRL);
4882	if (features & NETIF_F_HW_VLAN_CTAG_RX) {
4883		/* enable VLAN tag insert/strip */
4884		ctrl |= E1000_CTRL_VME;
4885	} else {
4886		/* disable VLAN tag insert/strip */
4887		ctrl &= ~E1000_CTRL_VME;
4888	}
4889	ew32(CTRL, ctrl);
4890}
4891static void e1000_vlan_filter_on_off(struct e1000_adapter *adapter,
4892				     bool filter_on)
4893{
4894	struct e1000_hw *hw = &adapter->hw;
4895	u32 rctl;
4896
4897	if (!test_bit(__E1000_DOWN, &adapter->flags))
4898		e1000_irq_disable(adapter);
4899
4900	__e1000_vlan_mode(adapter, adapter->netdev->features);
4901	if (filter_on) {
4902		/* enable VLAN receive filtering */
4903		rctl = er32(RCTL);
4904		rctl &= ~E1000_RCTL_CFIEN;
4905		if (!(adapter->netdev->flags & IFF_PROMISC))
4906			rctl |= E1000_RCTL_VFE;
4907		ew32(RCTL, rctl);
4908		e1000_update_mng_vlan(adapter);
4909	} else {
4910		/* disable VLAN receive filtering */
4911		rctl = er32(RCTL);
4912		rctl &= ~E1000_RCTL_VFE;
4913		ew32(RCTL, rctl);
4914	}
4915
4916	if (!test_bit(__E1000_DOWN, &adapter->flags))
4917		e1000_irq_enable(adapter);
4918}
4919
4920static void e1000_vlan_mode(struct net_device *netdev,
4921			    netdev_features_t features)
4922{
4923	struct e1000_adapter *adapter = netdev_priv(netdev);
4924
4925	if (!test_bit(__E1000_DOWN, &adapter->flags))
4926		e1000_irq_disable(adapter);
4927
4928	__e1000_vlan_mode(adapter, features);
4929
4930	if (!test_bit(__E1000_DOWN, &adapter->flags))
4931		e1000_irq_enable(adapter);
4932}
4933
4934static int e1000_vlan_rx_add_vid(struct net_device *netdev,
4935				 __be16 proto, u16 vid)
4936{
4937	struct e1000_adapter *adapter = netdev_priv(netdev);
4938	struct e1000_hw *hw = &adapter->hw;
4939	u32 vfta, index;
4940
4941	if ((hw->mng_cookie.status &
4942	     E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
4943	    (vid == adapter->mng_vlan_id))
4944		return 0;
4945
4946	if (!e1000_vlan_used(adapter))
4947		e1000_vlan_filter_on_off(adapter, true);
4948
4949	/* add VID to filter table */
4950	index = (vid >> 5) & 0x7F;
4951	vfta = E1000_READ_REG_ARRAY(hw, VFTA, index);
4952	vfta |= (1 << (vid & 0x1F));
4953	e1000_write_vfta(hw, index, vfta);
4954
4955	set_bit(vid, adapter->active_vlans);
4956
4957	return 0;
4958}
4959
4960static int e1000_vlan_rx_kill_vid(struct net_device *netdev,
4961				  __be16 proto, u16 vid)
4962{
4963	struct e1000_adapter *adapter = netdev_priv(netdev);
4964	struct e1000_hw *hw = &adapter->hw;
4965	u32 vfta, index;
4966
4967	if (!test_bit(__E1000_DOWN, &adapter->flags))
4968		e1000_irq_disable(adapter);
4969	if (!test_bit(__E1000_DOWN, &adapter->flags))
4970		e1000_irq_enable(adapter);
4971
4972	/* remove VID from filter table */
4973	index = (vid >> 5) & 0x7F;
4974	vfta = E1000_READ_REG_ARRAY(hw, VFTA, index);
4975	vfta &= ~(1 << (vid & 0x1F));
4976	e1000_write_vfta(hw, index, vfta);
4977
4978	clear_bit(vid, adapter->active_vlans);
4979
4980	if (!e1000_vlan_used(adapter))
4981		e1000_vlan_filter_on_off(adapter, false);
4982
4983	return 0;
4984}
4985
4986static void e1000_restore_vlan(struct e1000_adapter *adapter)
4987{
4988	u16 vid;
4989
4990	if (!e1000_vlan_used(adapter))
4991		return;
4992
4993	e1000_vlan_filter_on_off(adapter, true);
4994	for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
4995		e1000_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
4996}
4997
4998int e1000_set_spd_dplx(struct e1000_adapter *adapter, u32 spd, u8 dplx)
4999{
5000	struct e1000_hw *hw = &adapter->hw;
5001
5002	hw->autoneg = 0;
5003
5004	/* Make sure dplx is at most 1 bit and lsb of speed is not set
5005	 * for the switch() below to work
5006	 */
5007	if ((spd & 1) || (dplx & ~1))
5008		goto err_inval;
5009
5010	/* Fiber NICs only allow 1000 gbps Full duplex */
5011	if ((hw->media_type == e1000_media_type_fiber) &&
5012	    spd != SPEED_1000 &&
5013	    dplx != DUPLEX_FULL)
5014		goto err_inval;
5015
5016	switch (spd + dplx) {
5017	case SPEED_10 + DUPLEX_HALF:
5018		hw->forced_speed_duplex = e1000_10_half;
5019		break;
5020	case SPEED_10 + DUPLEX_FULL:
5021		hw->forced_speed_duplex = e1000_10_full;
5022		break;
5023	case SPEED_100 + DUPLEX_HALF:
5024		hw->forced_speed_duplex = e1000_100_half;
5025		break;
5026	case SPEED_100 + DUPLEX_FULL:
5027		hw->forced_speed_duplex = e1000_100_full;
5028		break;
5029	case SPEED_1000 + DUPLEX_FULL:
5030		hw->autoneg = 1;
5031		hw->autoneg_advertised = ADVERTISE_1000_FULL;
5032		break;
5033	case SPEED_1000 + DUPLEX_HALF: /* not supported */
5034	default:
5035		goto err_inval;
5036	}
5037
5038	/* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
5039	hw->mdix = AUTO_ALL_MODES;
5040
5041	return 0;
5042
5043err_inval:
5044	e_err(probe, "Unsupported Speed/Duplex configuration\n");
5045	return -EINVAL;
5046}
5047
5048static int __e1000_shutdown(struct pci_dev *pdev, bool *enable_wake)
5049{
5050	struct net_device *netdev = pci_get_drvdata(pdev);
5051	struct e1000_adapter *adapter = netdev_priv(netdev);
5052	struct e1000_hw *hw = &adapter->hw;
5053	u32 ctrl, ctrl_ext, rctl, status;
5054	u32 wufc = adapter->wol;
5055#ifdef CONFIG_PM
5056	int retval = 0;
5057#endif
5058
5059	netif_device_detach(netdev);
5060
5061	if (netif_running(netdev)) {
5062		int count = E1000_CHECK_RESET_COUNT;
5063
5064		while (test_bit(__E1000_RESETTING, &adapter->flags) && count--)
5065			usleep_range(10000, 20000);
5066
5067		WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
 
5068		e1000_down(adapter);
 
5069	}
5070
5071#ifdef CONFIG_PM
5072	retval = pci_save_state(pdev);
5073	if (retval)
5074		return retval;
5075#endif
5076
5077	status = er32(STATUS);
5078	if (status & E1000_STATUS_LU)
5079		wufc &= ~E1000_WUFC_LNKC;
5080
5081	if (wufc) {
5082		e1000_setup_rctl(adapter);
5083		e1000_set_rx_mode(netdev);
5084
5085		rctl = er32(RCTL);
5086
5087		/* turn on all-multi mode if wake on multicast is enabled */
5088		if (wufc & E1000_WUFC_MC)
5089			rctl |= E1000_RCTL_MPE;
5090
5091		/* enable receives in the hardware */
5092		ew32(RCTL, rctl | E1000_RCTL_EN);
5093
5094		if (hw->mac_type >= e1000_82540) {
5095			ctrl = er32(CTRL);
5096			/* advertise wake from D3Cold */
5097			#define E1000_CTRL_ADVD3WUC 0x00100000
5098			/* phy power management enable */
5099			#define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
5100			ctrl |= E1000_CTRL_ADVD3WUC |
5101				E1000_CTRL_EN_PHY_PWR_MGMT;
5102			ew32(CTRL, ctrl);
5103		}
5104
5105		if (hw->media_type == e1000_media_type_fiber ||
5106		    hw->media_type == e1000_media_type_internal_serdes) {
5107			/* keep the laser running in D3 */
5108			ctrl_ext = er32(CTRL_EXT);
5109			ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA;
5110			ew32(CTRL_EXT, ctrl_ext);
5111		}
5112
5113		ew32(WUC, E1000_WUC_PME_EN);
5114		ew32(WUFC, wufc);
5115	} else {
5116		ew32(WUC, 0);
5117		ew32(WUFC, 0);
5118	}
5119
5120	e1000_release_manageability(adapter);
5121
5122	*enable_wake = !!wufc;
5123
5124	/* make sure adapter isn't asleep if manageability is enabled */
5125	if (adapter->en_mng_pt)
5126		*enable_wake = true;
5127
5128	if (netif_running(netdev))
5129		e1000_free_irq(adapter);
5130
5131	if (!test_and_set_bit(__E1000_DISABLED, &adapter->flags))
5132		pci_disable_device(pdev);
5133
5134	return 0;
5135}
5136
5137#ifdef CONFIG_PM
5138static int e1000_suspend(struct pci_dev *pdev, pm_message_t state)
5139{
5140	int retval;
 
5141	bool wake;
5142
5143	retval = __e1000_shutdown(pdev, &wake);
5144	if (retval)
5145		return retval;
5146
5147	if (wake) {
5148		pci_prepare_to_sleep(pdev);
5149	} else {
5150		pci_wake_from_d3(pdev, false);
5151		pci_set_power_state(pdev, PCI_D3hot);
5152	}
5153
5154	return 0;
5155}
5156
5157static int e1000_resume(struct pci_dev *pdev)
5158{
 
5159	struct net_device *netdev = pci_get_drvdata(pdev);
5160	struct e1000_adapter *adapter = netdev_priv(netdev);
5161	struct e1000_hw *hw = &adapter->hw;
5162	u32 err;
5163
5164	pci_set_power_state(pdev, PCI_D0);
5165	pci_restore_state(pdev);
5166	pci_save_state(pdev);
5167
5168	if (adapter->need_ioport)
5169		err = pci_enable_device(pdev);
5170	else
5171		err = pci_enable_device_mem(pdev);
5172	if (err) {
5173		pr_err("Cannot enable PCI device from suspend\n");
5174		return err;
5175	}
5176
5177	/* flush memory to make sure state is correct */
5178	smp_mb__before_atomic();
5179	clear_bit(__E1000_DISABLED, &adapter->flags);
5180	pci_set_master(pdev);
5181
5182	pci_enable_wake(pdev, PCI_D3hot, 0);
5183	pci_enable_wake(pdev, PCI_D3cold, 0);
5184
5185	if (netif_running(netdev)) {
5186		err = e1000_request_irq(adapter);
5187		if (err)
5188			return err;
5189	}
5190
5191	e1000_power_up_phy(adapter);
5192	e1000_reset(adapter);
5193	ew32(WUS, ~0);
5194
5195	e1000_init_manageability(adapter);
5196
5197	if (netif_running(netdev))
5198		e1000_up(adapter);
5199
5200	netif_device_attach(netdev);
5201
5202	return 0;
5203}
5204#endif
5205
5206static void e1000_shutdown(struct pci_dev *pdev)
5207{
5208	bool wake;
5209
5210	__e1000_shutdown(pdev, &wake);
5211
5212	if (system_state == SYSTEM_POWER_OFF) {
5213		pci_wake_from_d3(pdev, wake);
5214		pci_set_power_state(pdev, PCI_D3hot);
5215	}
5216}
5217
5218#ifdef CONFIG_NET_POLL_CONTROLLER
5219/* Polling 'interrupt' - used by things like netconsole to send skbs
5220 * without having to re-enable interrupts. It's not called while
5221 * the interrupt routine is executing.
5222 */
5223static void e1000_netpoll(struct net_device *netdev)
5224{
5225	struct e1000_adapter *adapter = netdev_priv(netdev);
5226
5227	if (disable_hardirq(adapter->pdev->irq))
5228		e1000_intr(adapter->pdev->irq, netdev);
5229	enable_irq(adapter->pdev->irq);
5230}
5231#endif
5232
5233/**
5234 * e1000_io_error_detected - called when PCI error is detected
5235 * @pdev: Pointer to PCI device
5236 * @state: The current pci connection state
5237 *
5238 * This function is called after a PCI bus error affecting
5239 * this device has been detected.
5240 */
5241static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
5242						pci_channel_state_t state)
5243{
5244	struct net_device *netdev = pci_get_drvdata(pdev);
5245	struct e1000_adapter *adapter = netdev_priv(netdev);
5246
 
5247	netif_device_detach(netdev);
5248
5249	if (state == pci_channel_io_perm_failure)
 
5250		return PCI_ERS_RESULT_DISCONNECT;
 
5251
5252	if (netif_running(netdev))
5253		e1000_down(adapter);
5254
5255	if (!test_and_set_bit(__E1000_DISABLED, &adapter->flags))
5256		pci_disable_device(pdev);
 
5257
5258	/* Request a slot slot reset. */
5259	return PCI_ERS_RESULT_NEED_RESET;
5260}
5261
5262/**
5263 * e1000_io_slot_reset - called after the pci bus has been reset.
5264 * @pdev: Pointer to PCI device
5265 *
5266 * Restart the card from scratch, as if from a cold-boot. Implementation
5267 * resembles the first-half of the e1000_resume routine.
5268 */
5269static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
5270{
5271	struct net_device *netdev = pci_get_drvdata(pdev);
5272	struct e1000_adapter *adapter = netdev_priv(netdev);
5273	struct e1000_hw *hw = &adapter->hw;
5274	int err;
5275
5276	if (adapter->need_ioport)
5277		err = pci_enable_device(pdev);
5278	else
5279		err = pci_enable_device_mem(pdev);
5280	if (err) {
5281		pr_err("Cannot re-enable PCI device after reset.\n");
5282		return PCI_ERS_RESULT_DISCONNECT;
5283	}
5284
5285	/* flush memory to make sure state is correct */
5286	smp_mb__before_atomic();
5287	clear_bit(__E1000_DISABLED, &adapter->flags);
5288	pci_set_master(pdev);
5289
5290	pci_enable_wake(pdev, PCI_D3hot, 0);
5291	pci_enable_wake(pdev, PCI_D3cold, 0);
5292
5293	e1000_reset(adapter);
5294	ew32(WUS, ~0);
5295
5296	return PCI_ERS_RESULT_RECOVERED;
5297}
5298
5299/**
5300 * e1000_io_resume - called when traffic can start flowing again.
5301 * @pdev: Pointer to PCI device
5302 *
5303 * This callback is called when the error recovery driver tells us that
5304 * its OK to resume normal operation. Implementation resembles the
5305 * second-half of the e1000_resume routine.
5306 */
5307static void e1000_io_resume(struct pci_dev *pdev)
5308{
5309	struct net_device *netdev = pci_get_drvdata(pdev);
5310	struct e1000_adapter *adapter = netdev_priv(netdev);
5311
5312	e1000_init_manageability(adapter);
5313
5314	if (netif_running(netdev)) {
5315		if (e1000_up(adapter)) {
5316			pr_info("can't bring device back up after reset\n");
5317			return;
5318		}
5319	}
5320
5321	netif_device_attach(netdev);
5322}
5323
5324/* e1000_main.c */