Loading...
1// SPDX-License-Identifier: GPL-2.0
2/* Copyright(c) 1999 - 2006 Intel Corporation. */
3
4#include "e1000.h"
5#include <net/ip6_checksum.h>
6#include <linux/io.h>
7#include <linux/prefetch.h>
8#include <linux/bitops.h>
9#include <linux/if_vlan.h>
10
11char e1000_driver_name[] = "e1000";
12static char e1000_driver_string[] = "Intel(R) PRO/1000 Network Driver";
13static const char e1000_copyright[] = "Copyright (c) 1999-2006 Intel Corporation.";
14
15/* e1000_pci_tbl - PCI Device ID Table
16 *
17 * Last entry must be all 0s
18 *
19 * Macro expands to...
20 * {PCI_DEVICE(PCI_VENDOR_ID_INTEL, device_id)}
21 */
22static const struct pci_device_id e1000_pci_tbl[] = {
23 INTEL_E1000_ETHERNET_DEVICE(0x1000),
24 INTEL_E1000_ETHERNET_DEVICE(0x1001),
25 INTEL_E1000_ETHERNET_DEVICE(0x1004),
26 INTEL_E1000_ETHERNET_DEVICE(0x1008),
27 INTEL_E1000_ETHERNET_DEVICE(0x1009),
28 INTEL_E1000_ETHERNET_DEVICE(0x100C),
29 INTEL_E1000_ETHERNET_DEVICE(0x100D),
30 INTEL_E1000_ETHERNET_DEVICE(0x100E),
31 INTEL_E1000_ETHERNET_DEVICE(0x100F),
32 INTEL_E1000_ETHERNET_DEVICE(0x1010),
33 INTEL_E1000_ETHERNET_DEVICE(0x1011),
34 INTEL_E1000_ETHERNET_DEVICE(0x1012),
35 INTEL_E1000_ETHERNET_DEVICE(0x1013),
36 INTEL_E1000_ETHERNET_DEVICE(0x1014),
37 INTEL_E1000_ETHERNET_DEVICE(0x1015),
38 INTEL_E1000_ETHERNET_DEVICE(0x1016),
39 INTEL_E1000_ETHERNET_DEVICE(0x1017),
40 INTEL_E1000_ETHERNET_DEVICE(0x1018),
41 INTEL_E1000_ETHERNET_DEVICE(0x1019),
42 INTEL_E1000_ETHERNET_DEVICE(0x101A),
43 INTEL_E1000_ETHERNET_DEVICE(0x101D),
44 INTEL_E1000_ETHERNET_DEVICE(0x101E),
45 INTEL_E1000_ETHERNET_DEVICE(0x1026),
46 INTEL_E1000_ETHERNET_DEVICE(0x1027),
47 INTEL_E1000_ETHERNET_DEVICE(0x1028),
48 INTEL_E1000_ETHERNET_DEVICE(0x1075),
49 INTEL_E1000_ETHERNET_DEVICE(0x1076),
50 INTEL_E1000_ETHERNET_DEVICE(0x1077),
51 INTEL_E1000_ETHERNET_DEVICE(0x1078),
52 INTEL_E1000_ETHERNET_DEVICE(0x1079),
53 INTEL_E1000_ETHERNET_DEVICE(0x107A),
54 INTEL_E1000_ETHERNET_DEVICE(0x107B),
55 INTEL_E1000_ETHERNET_DEVICE(0x107C),
56 INTEL_E1000_ETHERNET_DEVICE(0x108A),
57 INTEL_E1000_ETHERNET_DEVICE(0x1099),
58 INTEL_E1000_ETHERNET_DEVICE(0x10B5),
59 INTEL_E1000_ETHERNET_DEVICE(0x2E6E),
60 /* required last entry */
61 {0,}
62};
63
64MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
65
66int e1000_up(struct e1000_adapter *adapter);
67void e1000_down(struct e1000_adapter *adapter);
68void e1000_reinit_locked(struct e1000_adapter *adapter);
69void e1000_reset(struct e1000_adapter *adapter);
70int e1000_setup_all_tx_resources(struct e1000_adapter *adapter);
71int e1000_setup_all_rx_resources(struct e1000_adapter *adapter);
72void e1000_free_all_tx_resources(struct e1000_adapter *adapter);
73void e1000_free_all_rx_resources(struct e1000_adapter *adapter);
74static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
75 struct e1000_tx_ring *txdr);
76static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
77 struct e1000_rx_ring *rxdr);
78static void e1000_free_tx_resources(struct e1000_adapter *adapter,
79 struct e1000_tx_ring *tx_ring);
80static void e1000_free_rx_resources(struct e1000_adapter *adapter,
81 struct e1000_rx_ring *rx_ring);
82void e1000_update_stats(struct e1000_adapter *adapter);
83
84static int e1000_init_module(void);
85static void e1000_exit_module(void);
86static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent);
87static void e1000_remove(struct pci_dev *pdev);
88static int e1000_alloc_queues(struct e1000_adapter *adapter);
89static int e1000_sw_init(struct e1000_adapter *adapter);
90int e1000_open(struct net_device *netdev);
91int e1000_close(struct net_device *netdev);
92static void e1000_configure_tx(struct e1000_adapter *adapter);
93static void e1000_configure_rx(struct e1000_adapter *adapter);
94static void e1000_setup_rctl(struct e1000_adapter *adapter);
95static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter);
96static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter);
97static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
98 struct e1000_tx_ring *tx_ring);
99static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
100 struct e1000_rx_ring *rx_ring);
101static void e1000_set_rx_mode(struct net_device *netdev);
102static void e1000_update_phy_info_task(struct work_struct *work);
103static void e1000_watchdog(struct work_struct *work);
104static void e1000_82547_tx_fifo_stall_task(struct work_struct *work);
105static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
106 struct net_device *netdev);
107static int e1000_change_mtu(struct net_device *netdev, int new_mtu);
108static int e1000_set_mac(struct net_device *netdev, void *p);
109static irqreturn_t e1000_intr(int irq, void *data);
110static bool e1000_clean_tx_irq(struct e1000_adapter *adapter,
111 struct e1000_tx_ring *tx_ring);
112static int e1000_clean(struct napi_struct *napi, int budget);
113static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
114 struct e1000_rx_ring *rx_ring,
115 int *work_done, int work_to_do);
116static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter,
117 struct e1000_rx_ring *rx_ring,
118 int *work_done, int work_to_do);
119static void e1000_alloc_dummy_rx_buffers(struct e1000_adapter *adapter,
120 struct e1000_rx_ring *rx_ring,
121 int cleaned_count)
122{
123}
124static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
125 struct e1000_rx_ring *rx_ring,
126 int cleaned_count);
127static void e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter,
128 struct e1000_rx_ring *rx_ring,
129 int cleaned_count);
130static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd);
131static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
132 int cmd);
133static void e1000_enter_82542_rst(struct e1000_adapter *adapter);
134static void e1000_leave_82542_rst(struct e1000_adapter *adapter);
135static void e1000_tx_timeout(struct net_device *dev, unsigned int txqueue);
136static void e1000_reset_task(struct work_struct *work);
137static void e1000_smartspeed(struct e1000_adapter *adapter);
138static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
139 struct sk_buff *skb);
140
141static bool e1000_vlan_used(struct e1000_adapter *adapter);
142static void e1000_vlan_mode(struct net_device *netdev,
143 netdev_features_t features);
144static void e1000_vlan_filter_on_off(struct e1000_adapter *adapter,
145 bool filter_on);
146static int e1000_vlan_rx_add_vid(struct net_device *netdev,
147 __be16 proto, u16 vid);
148static int e1000_vlan_rx_kill_vid(struct net_device *netdev,
149 __be16 proto, u16 vid);
150static void e1000_restore_vlan(struct e1000_adapter *adapter);
151
152static int e1000_suspend(struct device *dev);
153static int e1000_resume(struct device *dev);
154static void e1000_shutdown(struct pci_dev *pdev);
155
156#ifdef CONFIG_NET_POLL_CONTROLLER
157/* for netdump / net console */
158static void e1000_netpoll (struct net_device *netdev);
159#endif
160
161#define COPYBREAK_DEFAULT 256
162static unsigned int copybreak __read_mostly = COPYBREAK_DEFAULT;
163module_param(copybreak, uint, 0644);
164MODULE_PARM_DESC(copybreak,
165 "Maximum size of packet that is copied to a new buffer on receive");
166
167static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
168 pci_channel_state_t state);
169static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev);
170static void e1000_io_resume(struct pci_dev *pdev);
171
172static const struct pci_error_handlers e1000_err_handler = {
173 .error_detected = e1000_io_error_detected,
174 .slot_reset = e1000_io_slot_reset,
175 .resume = e1000_io_resume,
176};
177
178static DEFINE_SIMPLE_DEV_PM_OPS(e1000_pm_ops, e1000_suspend, e1000_resume);
179
180static struct pci_driver e1000_driver = {
181 .name = e1000_driver_name,
182 .id_table = e1000_pci_tbl,
183 .probe = e1000_probe,
184 .remove = e1000_remove,
185 .driver.pm = pm_sleep_ptr(&e1000_pm_ops),
186 .shutdown = e1000_shutdown,
187 .err_handler = &e1000_err_handler
188};
189
190MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
191MODULE_LICENSE("GPL v2");
192
193#define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
194static int debug = -1;
195module_param(debug, int, 0);
196MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
197
198/**
199 * e1000_get_hw_dev - helper function for getting netdev
200 * @hw: pointer to HW struct
201 *
202 * return device used by hardware layer to print debugging information
203 *
204 **/
205struct net_device *e1000_get_hw_dev(struct e1000_hw *hw)
206{
207 struct e1000_adapter *adapter = hw->back;
208 return adapter->netdev;
209}
210
211/**
212 * e1000_init_module - Driver Registration Routine
213 *
214 * e1000_init_module is the first routine called when the driver is
215 * loaded. All it does is register with the PCI subsystem.
216 **/
217static int __init e1000_init_module(void)
218{
219 int ret;
220 pr_info("%s\n", e1000_driver_string);
221
222 pr_info("%s\n", e1000_copyright);
223
224 ret = pci_register_driver(&e1000_driver);
225 if (copybreak != COPYBREAK_DEFAULT) {
226 if (copybreak == 0)
227 pr_info("copybreak disabled\n");
228 else
229 pr_info("copybreak enabled for "
230 "packets <= %u bytes\n", copybreak);
231 }
232 return ret;
233}
234
235module_init(e1000_init_module);
236
237/**
238 * e1000_exit_module - Driver Exit Cleanup Routine
239 *
240 * e1000_exit_module is called just before the driver is removed
241 * from memory.
242 **/
243static void __exit e1000_exit_module(void)
244{
245 pci_unregister_driver(&e1000_driver);
246}
247
248module_exit(e1000_exit_module);
249
250static int e1000_request_irq(struct e1000_adapter *adapter)
251{
252 struct net_device *netdev = adapter->netdev;
253 irq_handler_t handler = e1000_intr;
254 int irq_flags = IRQF_SHARED;
255 int err;
256
257 err = request_irq(adapter->pdev->irq, handler, irq_flags, netdev->name,
258 netdev);
259 if (err) {
260 e_err(probe, "Unable to allocate interrupt Error: %d\n", err);
261 }
262
263 return err;
264}
265
266static void e1000_free_irq(struct e1000_adapter *adapter)
267{
268 struct net_device *netdev = adapter->netdev;
269
270 free_irq(adapter->pdev->irq, netdev);
271}
272
273/**
274 * e1000_irq_disable - Mask off interrupt generation on the NIC
275 * @adapter: board private structure
276 **/
277static void e1000_irq_disable(struct e1000_adapter *adapter)
278{
279 struct e1000_hw *hw = &adapter->hw;
280
281 ew32(IMC, ~0);
282 E1000_WRITE_FLUSH();
283 synchronize_irq(adapter->pdev->irq);
284}
285
286/**
287 * e1000_irq_enable - Enable default interrupt generation settings
288 * @adapter: board private structure
289 **/
290static void e1000_irq_enable(struct e1000_adapter *adapter)
291{
292 struct e1000_hw *hw = &adapter->hw;
293
294 ew32(IMS, IMS_ENABLE_MASK);
295 E1000_WRITE_FLUSH();
296}
297
298static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
299{
300 struct e1000_hw *hw = &adapter->hw;
301 struct net_device *netdev = adapter->netdev;
302 u16 vid = hw->mng_cookie.vlan_id;
303 u16 old_vid = adapter->mng_vlan_id;
304
305 if (!e1000_vlan_used(adapter))
306 return;
307
308 if (!test_bit(vid, adapter->active_vlans)) {
309 if (hw->mng_cookie.status &
310 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) {
311 e1000_vlan_rx_add_vid(netdev, htons(ETH_P_8021Q), vid);
312 adapter->mng_vlan_id = vid;
313 } else {
314 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
315 }
316 if ((old_vid != (u16)E1000_MNG_VLAN_NONE) &&
317 (vid != old_vid) &&
318 !test_bit(old_vid, adapter->active_vlans))
319 e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q),
320 old_vid);
321 } else {
322 adapter->mng_vlan_id = vid;
323 }
324}
325
326static void e1000_init_manageability(struct e1000_adapter *adapter)
327{
328 struct e1000_hw *hw = &adapter->hw;
329
330 if (adapter->en_mng_pt) {
331 u32 manc = er32(MANC);
332
333 /* disable hardware interception of ARP */
334 manc &= ~(E1000_MANC_ARP_EN);
335
336 ew32(MANC, manc);
337 }
338}
339
340static void e1000_release_manageability(struct e1000_adapter *adapter)
341{
342 struct e1000_hw *hw = &adapter->hw;
343
344 if (adapter->en_mng_pt) {
345 u32 manc = er32(MANC);
346
347 /* re-enable hardware interception of ARP */
348 manc |= E1000_MANC_ARP_EN;
349
350 ew32(MANC, manc);
351 }
352}
353
354/**
355 * e1000_configure - configure the hardware for RX and TX
356 * @adapter: private board structure
357 **/
358static void e1000_configure(struct e1000_adapter *adapter)
359{
360 struct net_device *netdev = adapter->netdev;
361 int i;
362
363 e1000_set_rx_mode(netdev);
364
365 e1000_restore_vlan(adapter);
366 e1000_init_manageability(adapter);
367
368 e1000_configure_tx(adapter);
369 e1000_setup_rctl(adapter);
370 e1000_configure_rx(adapter);
371 /* call E1000_DESC_UNUSED which always leaves
372 * at least 1 descriptor unused to make sure
373 * next_to_use != next_to_clean
374 */
375 for (i = 0; i < adapter->num_rx_queues; i++) {
376 struct e1000_rx_ring *ring = &adapter->rx_ring[i];
377 adapter->alloc_rx_buf(adapter, ring,
378 E1000_DESC_UNUSED(ring));
379 }
380}
381
382int e1000_up(struct e1000_adapter *adapter)
383{
384 struct e1000_hw *hw = &adapter->hw;
385
386 /* hardware has been reset, we need to reload some things */
387 e1000_configure(adapter);
388
389 clear_bit(__E1000_DOWN, &adapter->flags);
390
391 napi_enable(&adapter->napi);
392
393 e1000_irq_enable(adapter);
394
395 netif_wake_queue(adapter->netdev);
396
397 /* fire a link change interrupt to start the watchdog */
398 ew32(ICS, E1000_ICS_LSC);
399 return 0;
400}
401
402/**
403 * e1000_power_up_phy - restore link in case the phy was powered down
404 * @adapter: address of board private structure
405 *
406 * The phy may be powered down to save power and turn off link when the
407 * driver is unloaded and wake on lan is not enabled (among others)
408 * *** this routine MUST be followed by a call to e1000_reset ***
409 **/
410void e1000_power_up_phy(struct e1000_adapter *adapter)
411{
412 struct e1000_hw *hw = &adapter->hw;
413 u16 mii_reg = 0;
414
415 /* Just clear the power down bit to wake the phy back up */
416 if (hw->media_type == e1000_media_type_copper) {
417 /* according to the manual, the phy will retain its
418 * settings across a power-down/up cycle
419 */
420 e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg);
421 mii_reg &= ~MII_CR_POWER_DOWN;
422 e1000_write_phy_reg(hw, PHY_CTRL, mii_reg);
423 }
424}
425
426static void e1000_power_down_phy(struct e1000_adapter *adapter)
427{
428 struct e1000_hw *hw = &adapter->hw;
429
430 /* Power down the PHY so no link is implied when interface is down *
431 * The PHY cannot be powered down if any of the following is true *
432 * (a) WoL is enabled
433 * (b) AMT is active
434 * (c) SoL/IDER session is active
435 */
436 if (!adapter->wol && hw->mac_type >= e1000_82540 &&
437 hw->media_type == e1000_media_type_copper) {
438 u16 mii_reg = 0;
439
440 switch (hw->mac_type) {
441 case e1000_82540:
442 case e1000_82545:
443 case e1000_82545_rev_3:
444 case e1000_82546:
445 case e1000_ce4100:
446 case e1000_82546_rev_3:
447 case e1000_82541:
448 case e1000_82541_rev_2:
449 case e1000_82547:
450 case e1000_82547_rev_2:
451 if (er32(MANC) & E1000_MANC_SMBUS_EN)
452 goto out;
453 break;
454 default:
455 goto out;
456 }
457 e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg);
458 mii_reg |= MII_CR_POWER_DOWN;
459 e1000_write_phy_reg(hw, PHY_CTRL, mii_reg);
460 msleep(1);
461 }
462out:
463 return;
464}
465
466static void e1000_down_and_stop(struct e1000_adapter *adapter)
467{
468 set_bit(__E1000_DOWN, &adapter->flags);
469
470 cancel_delayed_work_sync(&adapter->watchdog_task);
471
472 /*
473 * Since the watchdog task can reschedule other tasks, we should cancel
474 * it first, otherwise we can run into the situation when a work is
475 * still running after the adapter has been turned down.
476 */
477
478 cancel_delayed_work_sync(&adapter->phy_info_task);
479 cancel_delayed_work_sync(&adapter->fifo_stall_task);
480
481 /* Only kill reset task if adapter is not resetting */
482 if (!test_bit(__E1000_RESETTING, &adapter->flags))
483 cancel_work_sync(&adapter->reset_task);
484}
485
486void e1000_down(struct e1000_adapter *adapter)
487{
488 struct e1000_hw *hw = &adapter->hw;
489 struct net_device *netdev = adapter->netdev;
490 u32 rctl, tctl;
491
492 /* disable receives in the hardware */
493 rctl = er32(RCTL);
494 ew32(RCTL, rctl & ~E1000_RCTL_EN);
495 /* flush and sleep below */
496
497 netif_tx_disable(netdev);
498
499 /* disable transmits in the hardware */
500 tctl = er32(TCTL);
501 tctl &= ~E1000_TCTL_EN;
502 ew32(TCTL, tctl);
503 /* flush both disables and wait for them to finish */
504 E1000_WRITE_FLUSH();
505 msleep(10);
506
507 /* Set the carrier off after transmits have been disabled in the
508 * hardware, to avoid race conditions with e1000_watchdog() (which
509 * may be running concurrently to us, checking for the carrier
510 * bit to decide whether it should enable transmits again). Such
511 * a race condition would result into transmission being disabled
512 * in the hardware until the next IFF_DOWN+IFF_UP cycle.
513 */
514 netif_carrier_off(netdev);
515
516 netif_queue_set_napi(netdev, 0, NETDEV_QUEUE_TYPE_RX, NULL);
517 netif_queue_set_napi(netdev, 0, NETDEV_QUEUE_TYPE_TX, NULL);
518 napi_disable(&adapter->napi);
519
520 e1000_irq_disable(adapter);
521
522 /* Setting DOWN must be after irq_disable to prevent
523 * a screaming interrupt. Setting DOWN also prevents
524 * tasks from rescheduling.
525 */
526 e1000_down_and_stop(adapter);
527
528 adapter->link_speed = 0;
529 adapter->link_duplex = 0;
530
531 e1000_reset(adapter);
532 e1000_clean_all_tx_rings(adapter);
533 e1000_clean_all_rx_rings(adapter);
534}
535
536void e1000_reinit_locked(struct e1000_adapter *adapter)
537{
538 while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
539 msleep(1);
540
541 /* only run the task if not already down */
542 if (!test_bit(__E1000_DOWN, &adapter->flags)) {
543 e1000_down(adapter);
544 e1000_up(adapter);
545 }
546
547 clear_bit(__E1000_RESETTING, &adapter->flags);
548}
549
550void e1000_reset(struct e1000_adapter *adapter)
551{
552 struct e1000_hw *hw = &adapter->hw;
553 u32 pba = 0, tx_space, min_tx_space, min_rx_space;
554 bool legacy_pba_adjust = false;
555 u16 hwm;
556
557 /* Repartition Pba for greater than 9k mtu
558 * To take effect CTRL.RST is required.
559 */
560
561 switch (hw->mac_type) {
562 case e1000_82542_rev2_0:
563 case e1000_82542_rev2_1:
564 case e1000_82543:
565 case e1000_82544:
566 case e1000_82540:
567 case e1000_82541:
568 case e1000_82541_rev_2:
569 legacy_pba_adjust = true;
570 pba = E1000_PBA_48K;
571 break;
572 case e1000_82545:
573 case e1000_82545_rev_3:
574 case e1000_82546:
575 case e1000_ce4100:
576 case e1000_82546_rev_3:
577 pba = E1000_PBA_48K;
578 break;
579 case e1000_82547:
580 case e1000_82547_rev_2:
581 legacy_pba_adjust = true;
582 pba = E1000_PBA_30K;
583 break;
584 case e1000_undefined:
585 case e1000_num_macs:
586 break;
587 }
588
589 if (legacy_pba_adjust) {
590 if (hw->max_frame_size > E1000_RXBUFFER_8192)
591 pba -= 8; /* allocate more FIFO for Tx */
592
593 if (hw->mac_type == e1000_82547) {
594 adapter->tx_fifo_head = 0;
595 adapter->tx_head_addr = pba << E1000_TX_HEAD_ADDR_SHIFT;
596 adapter->tx_fifo_size =
597 (E1000_PBA_40K - pba) << E1000_PBA_BYTES_SHIFT;
598 atomic_set(&adapter->tx_fifo_stall, 0);
599 }
600 } else if (hw->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) {
601 /* adjust PBA for jumbo frames */
602 ew32(PBA, pba);
603
604 /* To maintain wire speed transmits, the Tx FIFO should be
605 * large enough to accommodate two full transmit packets,
606 * rounded up to the next 1KB and expressed in KB. Likewise,
607 * the Rx FIFO should be large enough to accommodate at least
608 * one full receive packet and is similarly rounded up and
609 * expressed in KB.
610 */
611 pba = er32(PBA);
612 /* upper 16 bits has Tx packet buffer allocation size in KB */
613 tx_space = pba >> 16;
614 /* lower 16 bits has Rx packet buffer allocation size in KB */
615 pba &= 0xffff;
616 /* the Tx fifo also stores 16 bytes of information about the Tx
617 * but don't include ethernet FCS because hardware appends it
618 */
619 min_tx_space = (hw->max_frame_size +
620 sizeof(struct e1000_tx_desc) -
621 ETH_FCS_LEN) * 2;
622 min_tx_space = ALIGN(min_tx_space, 1024);
623 min_tx_space >>= 10;
624 /* software strips receive CRC, so leave room for it */
625 min_rx_space = hw->max_frame_size;
626 min_rx_space = ALIGN(min_rx_space, 1024);
627 min_rx_space >>= 10;
628
629 /* If current Tx allocation is less than the min Tx FIFO size,
630 * and the min Tx FIFO size is less than the current Rx FIFO
631 * allocation, take space away from current Rx allocation
632 */
633 if (tx_space < min_tx_space &&
634 ((min_tx_space - tx_space) < pba)) {
635 pba = pba - (min_tx_space - tx_space);
636
637 /* PCI/PCIx hardware has PBA alignment constraints */
638 switch (hw->mac_type) {
639 case e1000_82545 ... e1000_82546_rev_3:
640 pba &= ~(E1000_PBA_8K - 1);
641 break;
642 default:
643 break;
644 }
645
646 /* if short on Rx space, Rx wins and must trump Tx
647 * adjustment or use Early Receive if available
648 */
649 if (pba < min_rx_space)
650 pba = min_rx_space;
651 }
652 }
653
654 ew32(PBA, pba);
655
656 /* flow control settings:
657 * The high water mark must be low enough to fit one full frame
658 * (or the size used for early receive) above it in the Rx FIFO.
659 * Set it to the lower of:
660 * - 90% of the Rx FIFO size, and
661 * - the full Rx FIFO size minus the early receive size (for parts
662 * with ERT support assuming ERT set to E1000_ERT_2048), or
663 * - the full Rx FIFO size minus one full frame
664 */
665 hwm = min(((pba << 10) * 9 / 10),
666 ((pba << 10) - hw->max_frame_size));
667
668 hw->fc_high_water = hwm & 0xFFF8; /* 8-byte granularity */
669 hw->fc_low_water = hw->fc_high_water - 8;
670 hw->fc_pause_time = E1000_FC_PAUSE_TIME;
671 hw->fc_send_xon = 1;
672 hw->fc = hw->original_fc;
673
674 /* Allow time for pending master requests to run */
675 e1000_reset_hw(hw);
676 if (hw->mac_type >= e1000_82544)
677 ew32(WUC, 0);
678
679 if (e1000_init_hw(hw))
680 e_dev_err("Hardware Error\n");
681 e1000_update_mng_vlan(adapter);
682
683 /* if (adapter->hwflags & HWFLAGS_PHY_PWR_BIT) { */
684 if (hw->mac_type >= e1000_82544 &&
685 hw->autoneg == 1 &&
686 hw->autoneg_advertised == ADVERTISE_1000_FULL) {
687 u32 ctrl = er32(CTRL);
688 /* clear phy power management bit if we are in gig only mode,
689 * which if enabled will attempt negotiation to 100Mb, which
690 * can cause a loss of link at power off or driver unload
691 */
692 ctrl &= ~E1000_CTRL_SWDPIN3;
693 ew32(CTRL, ctrl);
694 }
695
696 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
697 ew32(VET, ETHERNET_IEEE_VLAN_TYPE);
698
699 e1000_reset_adaptive(hw);
700 e1000_phy_get_info(hw, &adapter->phy_info);
701
702 e1000_release_manageability(adapter);
703}
704
705/* Dump the eeprom for users having checksum issues */
706static void e1000_dump_eeprom(struct e1000_adapter *adapter)
707{
708 struct net_device *netdev = adapter->netdev;
709 struct ethtool_eeprom eeprom;
710 const struct ethtool_ops *ops = netdev->ethtool_ops;
711 u8 *data;
712 int i;
713 u16 csum_old, csum_new = 0;
714
715 eeprom.len = ops->get_eeprom_len(netdev);
716 eeprom.offset = 0;
717
718 data = kmalloc(eeprom.len, GFP_KERNEL);
719 if (!data)
720 return;
721
722 ops->get_eeprom(netdev, &eeprom, data);
723
724 csum_old = (data[EEPROM_CHECKSUM_REG * 2]) +
725 (data[EEPROM_CHECKSUM_REG * 2 + 1] << 8);
726 for (i = 0; i < EEPROM_CHECKSUM_REG * 2; i += 2)
727 csum_new += data[i] + (data[i + 1] << 8);
728 csum_new = EEPROM_SUM - csum_new;
729
730 pr_err("/*********************/\n");
731 pr_err("Current EEPROM Checksum : 0x%04x\n", csum_old);
732 pr_err("Calculated : 0x%04x\n", csum_new);
733
734 pr_err("Offset Values\n");
735 pr_err("======== ======\n");
736 print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 16, 1, data, 128, 0);
737
738 pr_err("Include this output when contacting your support provider.\n");
739 pr_err("This is not a software error! Something bad happened to\n");
740 pr_err("your hardware or EEPROM image. Ignoring this problem could\n");
741 pr_err("result in further problems, possibly loss of data,\n");
742 pr_err("corruption or system hangs!\n");
743 pr_err("The MAC Address will be reset to 00:00:00:00:00:00,\n");
744 pr_err("which is invalid and requires you to set the proper MAC\n");
745 pr_err("address manually before continuing to enable this network\n");
746 pr_err("device. Please inspect the EEPROM dump and report the\n");
747 pr_err("issue to your hardware vendor or Intel Customer Support.\n");
748 pr_err("/*********************/\n");
749
750 kfree(data);
751}
752
753/**
754 * e1000_is_need_ioport - determine if an adapter needs ioport resources or not
755 * @pdev: PCI device information struct
756 *
757 * Return true if an adapter needs ioport resources
758 **/
759static int e1000_is_need_ioport(struct pci_dev *pdev)
760{
761 switch (pdev->device) {
762 case E1000_DEV_ID_82540EM:
763 case E1000_DEV_ID_82540EM_LOM:
764 case E1000_DEV_ID_82540EP:
765 case E1000_DEV_ID_82540EP_LOM:
766 case E1000_DEV_ID_82540EP_LP:
767 case E1000_DEV_ID_82541EI:
768 case E1000_DEV_ID_82541EI_MOBILE:
769 case E1000_DEV_ID_82541ER:
770 case E1000_DEV_ID_82541ER_LOM:
771 case E1000_DEV_ID_82541GI:
772 case E1000_DEV_ID_82541GI_LF:
773 case E1000_DEV_ID_82541GI_MOBILE:
774 case E1000_DEV_ID_82544EI_COPPER:
775 case E1000_DEV_ID_82544EI_FIBER:
776 case E1000_DEV_ID_82544GC_COPPER:
777 case E1000_DEV_ID_82544GC_LOM:
778 case E1000_DEV_ID_82545EM_COPPER:
779 case E1000_DEV_ID_82545EM_FIBER:
780 case E1000_DEV_ID_82546EB_COPPER:
781 case E1000_DEV_ID_82546EB_FIBER:
782 case E1000_DEV_ID_82546EB_QUAD_COPPER:
783 return true;
784 default:
785 return false;
786 }
787}
788
789static netdev_features_t e1000_fix_features(struct net_device *netdev,
790 netdev_features_t features)
791{
792 /* Since there is no support for separate Rx/Tx vlan accel
793 * enable/disable make sure Tx flag is always in same state as Rx.
794 */
795 if (features & NETIF_F_HW_VLAN_CTAG_RX)
796 features |= NETIF_F_HW_VLAN_CTAG_TX;
797 else
798 features &= ~NETIF_F_HW_VLAN_CTAG_TX;
799
800 return features;
801}
802
803static int e1000_set_features(struct net_device *netdev,
804 netdev_features_t features)
805{
806 struct e1000_adapter *adapter = netdev_priv(netdev);
807 netdev_features_t changed = features ^ netdev->features;
808
809 if (changed & NETIF_F_HW_VLAN_CTAG_RX)
810 e1000_vlan_mode(netdev, features);
811
812 if (!(changed & (NETIF_F_RXCSUM | NETIF_F_RXALL)))
813 return 0;
814
815 netdev->features = features;
816 adapter->rx_csum = !!(features & NETIF_F_RXCSUM);
817
818 if (netif_running(netdev))
819 e1000_reinit_locked(adapter);
820 else
821 e1000_reset(adapter);
822
823 return 1;
824}
825
826static const struct net_device_ops e1000_netdev_ops = {
827 .ndo_open = e1000_open,
828 .ndo_stop = e1000_close,
829 .ndo_start_xmit = e1000_xmit_frame,
830 .ndo_set_rx_mode = e1000_set_rx_mode,
831 .ndo_set_mac_address = e1000_set_mac,
832 .ndo_tx_timeout = e1000_tx_timeout,
833 .ndo_change_mtu = e1000_change_mtu,
834 .ndo_eth_ioctl = e1000_ioctl,
835 .ndo_validate_addr = eth_validate_addr,
836 .ndo_vlan_rx_add_vid = e1000_vlan_rx_add_vid,
837 .ndo_vlan_rx_kill_vid = e1000_vlan_rx_kill_vid,
838#ifdef CONFIG_NET_POLL_CONTROLLER
839 .ndo_poll_controller = e1000_netpoll,
840#endif
841 .ndo_fix_features = e1000_fix_features,
842 .ndo_set_features = e1000_set_features,
843};
844
845/**
846 * e1000_init_hw_struct - initialize members of hw struct
847 * @adapter: board private struct
848 * @hw: structure used by e1000_hw.c
849 *
850 * Factors out initialization of the e1000_hw struct to its own function
851 * that can be called very early at init (just after struct allocation).
852 * Fields are initialized based on PCI device information and
853 * OS network device settings (MTU size).
854 * Returns negative error codes if MAC type setup fails.
855 */
856static int e1000_init_hw_struct(struct e1000_adapter *adapter,
857 struct e1000_hw *hw)
858{
859 struct pci_dev *pdev = adapter->pdev;
860
861 /* PCI config space info */
862 hw->vendor_id = pdev->vendor;
863 hw->device_id = pdev->device;
864 hw->subsystem_vendor_id = pdev->subsystem_vendor;
865 hw->subsystem_id = pdev->subsystem_device;
866 hw->revision_id = pdev->revision;
867
868 pci_read_config_word(pdev, PCI_COMMAND, &hw->pci_cmd_word);
869
870 hw->max_frame_size = adapter->netdev->mtu +
871 ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
872 hw->min_frame_size = MINIMUM_ETHERNET_FRAME_SIZE;
873
874 /* identify the MAC */
875 if (e1000_set_mac_type(hw)) {
876 e_err(probe, "Unknown MAC Type\n");
877 return -EIO;
878 }
879
880 switch (hw->mac_type) {
881 default:
882 break;
883 case e1000_82541:
884 case e1000_82547:
885 case e1000_82541_rev_2:
886 case e1000_82547_rev_2:
887 hw->phy_init_script = 1;
888 break;
889 }
890
891 e1000_set_media_type(hw);
892 e1000_get_bus_info(hw);
893
894 hw->wait_autoneg_complete = false;
895 hw->tbi_compatibility_en = true;
896 hw->adaptive_ifs = true;
897
898 /* Copper options */
899
900 if (hw->media_type == e1000_media_type_copper) {
901 hw->mdix = AUTO_ALL_MODES;
902 hw->disable_polarity_correction = false;
903 hw->master_slave = E1000_MASTER_SLAVE;
904 }
905
906 return 0;
907}
908
909/**
910 * e1000_probe - Device Initialization Routine
911 * @pdev: PCI device information struct
912 * @ent: entry in e1000_pci_tbl
913 *
914 * Returns 0 on success, negative on failure
915 *
916 * e1000_probe initializes an adapter identified by a pci_dev structure.
917 * The OS initialization, configuring of the adapter private structure,
918 * and a hardware reset occur.
919 **/
920static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
921{
922 struct net_device *netdev;
923 struct e1000_adapter *adapter = NULL;
924 struct e1000_hw *hw;
925
926 static int cards_found;
927 static int global_quad_port_a; /* global ksp3 port a indication */
928 int i, err, pci_using_dac;
929 u16 eeprom_data = 0;
930 u16 tmp = 0;
931 u16 eeprom_apme_mask = E1000_EEPROM_APME;
932 int bars, need_ioport;
933 bool disable_dev = false;
934
935 /* do not allocate ioport bars when not needed */
936 need_ioport = e1000_is_need_ioport(pdev);
937 if (need_ioport) {
938 bars = pci_select_bars(pdev, IORESOURCE_MEM | IORESOURCE_IO);
939 err = pci_enable_device(pdev);
940 } else {
941 bars = pci_select_bars(pdev, IORESOURCE_MEM);
942 err = pci_enable_device_mem(pdev);
943 }
944 if (err)
945 return err;
946
947 err = pci_request_selected_regions(pdev, bars, e1000_driver_name);
948 if (err)
949 goto err_pci_reg;
950
951 pci_set_master(pdev);
952 err = pci_save_state(pdev);
953 if (err)
954 goto err_alloc_etherdev;
955
956 err = -ENOMEM;
957 netdev = alloc_etherdev(sizeof(struct e1000_adapter));
958 if (!netdev)
959 goto err_alloc_etherdev;
960
961 SET_NETDEV_DEV(netdev, &pdev->dev);
962
963 pci_set_drvdata(pdev, netdev);
964 adapter = netdev_priv(netdev);
965 adapter->netdev = netdev;
966 adapter->pdev = pdev;
967 adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
968 adapter->bars = bars;
969 adapter->need_ioport = need_ioport;
970
971 hw = &adapter->hw;
972 hw->back = adapter;
973
974 err = -EIO;
975 hw->hw_addr = pci_ioremap_bar(pdev, BAR_0);
976 if (!hw->hw_addr)
977 goto err_ioremap;
978
979 if (adapter->need_ioport) {
980 for (i = BAR_1; i < PCI_STD_NUM_BARS; i++) {
981 if (pci_resource_len(pdev, i) == 0)
982 continue;
983 if (pci_resource_flags(pdev, i) & IORESOURCE_IO) {
984 hw->io_base = pci_resource_start(pdev, i);
985 break;
986 }
987 }
988 }
989
990 /* make ready for any if (hw->...) below */
991 err = e1000_init_hw_struct(adapter, hw);
992 if (err)
993 goto err_sw_init;
994
995 /* there is a workaround being applied below that limits
996 * 64-bit DMA addresses to 64-bit hardware. There are some
997 * 32-bit adapters that Tx hang when given 64-bit DMA addresses
998 */
999 pci_using_dac = 0;
1000 if ((hw->bus_type == e1000_bus_type_pcix) &&
1001 !dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64))) {
1002 pci_using_dac = 1;
1003 } else {
1004 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
1005 if (err) {
1006 pr_err("No usable DMA config, aborting\n");
1007 goto err_dma;
1008 }
1009 }
1010
1011 netdev->netdev_ops = &e1000_netdev_ops;
1012 e1000_set_ethtool_ops(netdev);
1013 netdev->watchdog_timeo = 5 * HZ;
1014 netif_napi_add(netdev, &adapter->napi, e1000_clean);
1015
1016 strscpy(netdev->name, pci_name(pdev), sizeof(netdev->name));
1017
1018 adapter->bd_number = cards_found;
1019
1020 /* setup the private structure */
1021
1022 err = e1000_sw_init(adapter);
1023 if (err)
1024 goto err_sw_init;
1025
1026 err = -EIO;
1027 if (hw->mac_type == e1000_ce4100) {
1028 hw->ce4100_gbe_mdio_base_virt =
1029 ioremap(pci_resource_start(pdev, BAR_1),
1030 pci_resource_len(pdev, BAR_1));
1031
1032 if (!hw->ce4100_gbe_mdio_base_virt)
1033 goto err_mdio_ioremap;
1034 }
1035
1036 if (hw->mac_type >= e1000_82543) {
1037 netdev->hw_features = NETIF_F_SG |
1038 NETIF_F_HW_CSUM |
1039 NETIF_F_HW_VLAN_CTAG_RX;
1040 netdev->features = NETIF_F_HW_VLAN_CTAG_TX |
1041 NETIF_F_HW_VLAN_CTAG_FILTER;
1042 }
1043
1044 if ((hw->mac_type >= e1000_82544) &&
1045 (hw->mac_type != e1000_82547))
1046 netdev->hw_features |= NETIF_F_TSO;
1047
1048 netdev->priv_flags |= IFF_SUPP_NOFCS;
1049
1050 netdev->features |= netdev->hw_features;
1051 netdev->hw_features |= (NETIF_F_RXCSUM |
1052 NETIF_F_RXALL |
1053 NETIF_F_RXFCS);
1054
1055 if (pci_using_dac) {
1056 netdev->features |= NETIF_F_HIGHDMA;
1057 netdev->vlan_features |= NETIF_F_HIGHDMA;
1058 }
1059
1060 netdev->vlan_features |= (NETIF_F_TSO |
1061 NETIF_F_HW_CSUM |
1062 NETIF_F_SG);
1063
1064 /* Do not set IFF_UNICAST_FLT for VMWare's 82545EM */
1065 if (hw->device_id != E1000_DEV_ID_82545EM_COPPER ||
1066 hw->subsystem_vendor_id != PCI_VENDOR_ID_VMWARE)
1067 netdev->priv_flags |= IFF_UNICAST_FLT;
1068
1069 /* MTU range: 46 - 16110 */
1070 netdev->min_mtu = ETH_ZLEN - ETH_HLEN;
1071 netdev->max_mtu = MAX_JUMBO_FRAME_SIZE - (ETH_HLEN + ETH_FCS_LEN);
1072
1073 adapter->en_mng_pt = e1000_enable_mng_pass_thru(hw);
1074
1075 /* initialize eeprom parameters */
1076 if (e1000_init_eeprom_params(hw)) {
1077 e_err(probe, "EEPROM initialization failed\n");
1078 goto err_eeprom;
1079 }
1080
1081 /* before reading the EEPROM, reset the controller to
1082 * put the device in a known good starting state
1083 */
1084
1085 e1000_reset_hw(hw);
1086
1087 /* make sure the EEPROM is good */
1088 if (e1000_validate_eeprom_checksum(hw) < 0) {
1089 e_err(probe, "The EEPROM Checksum Is Not Valid\n");
1090 e1000_dump_eeprom(adapter);
1091 /* set MAC address to all zeroes to invalidate and temporary
1092 * disable this device for the user. This blocks regular
1093 * traffic while still permitting ethtool ioctls from reaching
1094 * the hardware as well as allowing the user to run the
1095 * interface after manually setting a hw addr using
1096 * `ip set address`
1097 */
1098 memset(hw->mac_addr, 0, netdev->addr_len);
1099 } else {
1100 /* copy the MAC address out of the EEPROM */
1101 if (e1000_read_mac_addr(hw))
1102 e_err(probe, "EEPROM Read Error\n");
1103 }
1104 /* don't block initialization here due to bad MAC address */
1105 eth_hw_addr_set(netdev, hw->mac_addr);
1106
1107 if (!is_valid_ether_addr(netdev->dev_addr))
1108 e_err(probe, "Invalid MAC Address\n");
1109
1110
1111 INIT_DELAYED_WORK(&adapter->watchdog_task, e1000_watchdog);
1112 INIT_DELAYED_WORK(&adapter->fifo_stall_task,
1113 e1000_82547_tx_fifo_stall_task);
1114 INIT_DELAYED_WORK(&adapter->phy_info_task, e1000_update_phy_info_task);
1115 INIT_WORK(&adapter->reset_task, e1000_reset_task);
1116
1117 e1000_check_options(adapter);
1118
1119 /* Initial Wake on LAN setting
1120 * If APM wake is enabled in the EEPROM,
1121 * enable the ACPI Magic Packet filter
1122 */
1123
1124 switch (hw->mac_type) {
1125 case e1000_82542_rev2_0:
1126 case e1000_82542_rev2_1:
1127 case e1000_82543:
1128 break;
1129 case e1000_82544:
1130 e1000_read_eeprom(hw,
1131 EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data);
1132 eeprom_apme_mask = E1000_EEPROM_82544_APM;
1133 break;
1134 case e1000_82546:
1135 case e1000_82546_rev_3:
1136 if (er32(STATUS) & E1000_STATUS_FUNC_1) {
1137 e1000_read_eeprom(hw,
1138 EEPROM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
1139 break;
1140 }
1141 fallthrough;
1142 default:
1143 e1000_read_eeprom(hw,
1144 EEPROM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
1145 break;
1146 }
1147 if (eeprom_data & eeprom_apme_mask)
1148 adapter->eeprom_wol |= E1000_WUFC_MAG;
1149
1150 /* now that we have the eeprom settings, apply the special cases
1151 * where the eeprom may be wrong or the board simply won't support
1152 * wake on lan on a particular port
1153 */
1154 switch (pdev->device) {
1155 case E1000_DEV_ID_82546GB_PCIE:
1156 adapter->eeprom_wol = 0;
1157 break;
1158 case E1000_DEV_ID_82546EB_FIBER:
1159 case E1000_DEV_ID_82546GB_FIBER:
1160 /* Wake events only supported on port A for dual fiber
1161 * regardless of eeprom setting
1162 */
1163 if (er32(STATUS) & E1000_STATUS_FUNC_1)
1164 adapter->eeprom_wol = 0;
1165 break;
1166 case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1167 /* if quad port adapter, disable WoL on all but port A */
1168 if (global_quad_port_a != 0)
1169 adapter->eeprom_wol = 0;
1170 else
1171 adapter->quad_port_a = true;
1172 /* Reset for multiple quad port adapters */
1173 if (++global_quad_port_a == 4)
1174 global_quad_port_a = 0;
1175 break;
1176 }
1177
1178 /* initialize the wol settings based on the eeprom settings */
1179 adapter->wol = adapter->eeprom_wol;
1180 device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1181
1182 /* Auto detect PHY address */
1183 if (hw->mac_type == e1000_ce4100) {
1184 for (i = 0; i < 32; i++) {
1185 hw->phy_addr = i;
1186 e1000_read_phy_reg(hw, PHY_ID2, &tmp);
1187
1188 if (tmp != 0 && tmp != 0xFF)
1189 break;
1190 }
1191
1192 if (i >= 32)
1193 goto err_eeprom;
1194 }
1195
1196 /* reset the hardware with the new settings */
1197 e1000_reset(adapter);
1198
1199 strcpy(netdev->name, "eth%d");
1200 err = register_netdev(netdev);
1201 if (err)
1202 goto err_register;
1203
1204 e1000_vlan_filter_on_off(adapter, false);
1205
1206 /* print bus type/speed/width info */
1207 e_info(probe, "(PCI%s:%dMHz:%d-bit) %pM\n",
1208 ((hw->bus_type == e1000_bus_type_pcix) ? "-X" : ""),
1209 ((hw->bus_speed == e1000_bus_speed_133) ? 133 :
1210 (hw->bus_speed == e1000_bus_speed_120) ? 120 :
1211 (hw->bus_speed == e1000_bus_speed_100) ? 100 :
1212 (hw->bus_speed == e1000_bus_speed_66) ? 66 : 33),
1213 ((hw->bus_width == e1000_bus_width_64) ? 64 : 32),
1214 netdev->dev_addr);
1215
1216 /* carrier off reporting is important to ethtool even BEFORE open */
1217 netif_carrier_off(netdev);
1218
1219 e_info(probe, "Intel(R) PRO/1000 Network Connection\n");
1220
1221 cards_found++;
1222 return 0;
1223
1224err_register:
1225err_eeprom:
1226 e1000_phy_hw_reset(hw);
1227
1228 if (hw->flash_address)
1229 iounmap(hw->flash_address);
1230 kfree(adapter->tx_ring);
1231 kfree(adapter->rx_ring);
1232err_dma:
1233err_sw_init:
1234err_mdio_ioremap:
1235 iounmap(hw->ce4100_gbe_mdio_base_virt);
1236 iounmap(hw->hw_addr);
1237err_ioremap:
1238 disable_dev = !test_and_set_bit(__E1000_DISABLED, &adapter->flags);
1239 free_netdev(netdev);
1240err_alloc_etherdev:
1241 pci_release_selected_regions(pdev, bars);
1242err_pci_reg:
1243 if (!adapter || disable_dev)
1244 pci_disable_device(pdev);
1245 return err;
1246}
1247
1248/**
1249 * e1000_remove - Device Removal Routine
1250 * @pdev: PCI device information struct
1251 *
1252 * e1000_remove is called by the PCI subsystem to alert the driver
1253 * that it should release a PCI device. That could be caused by a
1254 * Hot-Plug event, or because the driver is going to be removed from
1255 * memory.
1256 **/
1257static void e1000_remove(struct pci_dev *pdev)
1258{
1259 struct net_device *netdev = pci_get_drvdata(pdev);
1260 struct e1000_adapter *adapter = netdev_priv(netdev);
1261 struct e1000_hw *hw = &adapter->hw;
1262 bool disable_dev;
1263
1264 e1000_down_and_stop(adapter);
1265 e1000_release_manageability(adapter);
1266
1267 unregister_netdev(netdev);
1268
1269 e1000_phy_hw_reset(hw);
1270
1271 kfree(adapter->tx_ring);
1272 kfree(adapter->rx_ring);
1273
1274 if (hw->mac_type == e1000_ce4100)
1275 iounmap(hw->ce4100_gbe_mdio_base_virt);
1276 iounmap(hw->hw_addr);
1277 if (hw->flash_address)
1278 iounmap(hw->flash_address);
1279 pci_release_selected_regions(pdev, adapter->bars);
1280
1281 disable_dev = !test_and_set_bit(__E1000_DISABLED, &adapter->flags);
1282 free_netdev(netdev);
1283
1284 if (disable_dev)
1285 pci_disable_device(pdev);
1286}
1287
1288/**
1289 * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
1290 * @adapter: board private structure to initialize
1291 *
1292 * e1000_sw_init initializes the Adapter private data structure.
1293 * e1000_init_hw_struct MUST be called before this function
1294 **/
1295static int e1000_sw_init(struct e1000_adapter *adapter)
1296{
1297 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
1298
1299 adapter->num_tx_queues = 1;
1300 adapter->num_rx_queues = 1;
1301
1302 if (e1000_alloc_queues(adapter)) {
1303 e_err(probe, "Unable to allocate memory for queues\n");
1304 return -ENOMEM;
1305 }
1306
1307 /* Explicitly disable IRQ since the NIC can be in any state. */
1308 e1000_irq_disable(adapter);
1309
1310 spin_lock_init(&adapter->stats_lock);
1311
1312 set_bit(__E1000_DOWN, &adapter->flags);
1313
1314 return 0;
1315}
1316
1317/**
1318 * e1000_alloc_queues - Allocate memory for all rings
1319 * @adapter: board private structure to initialize
1320 *
1321 * We allocate one ring per queue at run-time since we don't know the
1322 * number of queues at compile-time.
1323 **/
1324static int e1000_alloc_queues(struct e1000_adapter *adapter)
1325{
1326 adapter->tx_ring = kcalloc(adapter->num_tx_queues,
1327 sizeof(struct e1000_tx_ring), GFP_KERNEL);
1328 if (!adapter->tx_ring)
1329 return -ENOMEM;
1330
1331 adapter->rx_ring = kcalloc(adapter->num_rx_queues,
1332 sizeof(struct e1000_rx_ring), GFP_KERNEL);
1333 if (!adapter->rx_ring) {
1334 kfree(adapter->tx_ring);
1335 return -ENOMEM;
1336 }
1337
1338 return E1000_SUCCESS;
1339}
1340
1341/**
1342 * e1000_open - Called when a network interface is made active
1343 * @netdev: network interface device structure
1344 *
1345 * Returns 0 on success, negative value on failure
1346 *
1347 * The open entry point is called when a network interface is made
1348 * active by the system (IFF_UP). At this point all resources needed
1349 * for transmit and receive operations are allocated, the interrupt
1350 * handler is registered with the OS, the watchdog task is started,
1351 * and the stack is notified that the interface is ready.
1352 **/
1353int e1000_open(struct net_device *netdev)
1354{
1355 struct e1000_adapter *adapter = netdev_priv(netdev);
1356 struct e1000_hw *hw = &adapter->hw;
1357 int err;
1358
1359 /* disallow open during test */
1360 if (test_bit(__E1000_TESTING, &adapter->flags))
1361 return -EBUSY;
1362
1363 netif_carrier_off(netdev);
1364
1365 /* allocate transmit descriptors */
1366 err = e1000_setup_all_tx_resources(adapter);
1367 if (err)
1368 goto err_setup_tx;
1369
1370 /* allocate receive descriptors */
1371 err = e1000_setup_all_rx_resources(adapter);
1372 if (err)
1373 goto err_setup_rx;
1374
1375 e1000_power_up_phy(adapter);
1376
1377 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
1378 if ((hw->mng_cookie.status &
1379 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) {
1380 e1000_update_mng_vlan(adapter);
1381 }
1382
1383 /* before we allocate an interrupt, we must be ready to handle it.
1384 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1385 * as soon as we call pci_request_irq, so we have to setup our
1386 * clean_rx handler before we do so.
1387 */
1388 e1000_configure(adapter);
1389
1390 err = e1000_request_irq(adapter);
1391 if (err)
1392 goto err_req_irq;
1393
1394 /* From here on the code is the same as e1000_up() */
1395 clear_bit(__E1000_DOWN, &adapter->flags);
1396
1397 netif_napi_set_irq(&adapter->napi, adapter->pdev->irq);
1398 napi_enable(&adapter->napi);
1399 netif_queue_set_napi(netdev, 0, NETDEV_QUEUE_TYPE_RX, &adapter->napi);
1400 netif_queue_set_napi(netdev, 0, NETDEV_QUEUE_TYPE_TX, &adapter->napi);
1401
1402 e1000_irq_enable(adapter);
1403
1404 netif_start_queue(netdev);
1405
1406 /* fire a link status change interrupt to start the watchdog */
1407 ew32(ICS, E1000_ICS_LSC);
1408
1409 return E1000_SUCCESS;
1410
1411err_req_irq:
1412 e1000_power_down_phy(adapter);
1413 e1000_free_all_rx_resources(adapter);
1414err_setup_rx:
1415 e1000_free_all_tx_resources(adapter);
1416err_setup_tx:
1417 e1000_reset(adapter);
1418
1419 return err;
1420}
1421
1422/**
1423 * e1000_close - Disables a network interface
1424 * @netdev: network interface device structure
1425 *
1426 * Returns 0, this is not allowed to fail
1427 *
1428 * The close entry point is called when an interface is de-activated
1429 * by the OS. The hardware is still under the drivers control, but
1430 * needs to be disabled. A global MAC reset is issued to stop the
1431 * hardware, and all transmit and receive resources are freed.
1432 **/
1433int e1000_close(struct net_device *netdev)
1434{
1435 struct e1000_adapter *adapter = netdev_priv(netdev);
1436 struct e1000_hw *hw = &adapter->hw;
1437 int count = E1000_CHECK_RESET_COUNT;
1438
1439 while (test_and_set_bit(__E1000_RESETTING, &adapter->flags) && count--)
1440 usleep_range(10000, 20000);
1441
1442 WARN_ON(count < 0);
1443
1444 /* signal that we're down so that the reset task will no longer run */
1445 set_bit(__E1000_DOWN, &adapter->flags);
1446 clear_bit(__E1000_RESETTING, &adapter->flags);
1447
1448 e1000_down(adapter);
1449 e1000_power_down_phy(adapter);
1450 e1000_free_irq(adapter);
1451
1452 e1000_free_all_tx_resources(adapter);
1453 e1000_free_all_rx_resources(adapter);
1454
1455 /* kill manageability vlan ID if supported, but not if a vlan with
1456 * the same ID is registered on the host OS (let 8021q kill it)
1457 */
1458 if ((hw->mng_cookie.status &
1459 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
1460 !test_bit(adapter->mng_vlan_id, adapter->active_vlans)) {
1461 e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q),
1462 adapter->mng_vlan_id);
1463 }
1464
1465 return 0;
1466}
1467
1468/**
1469 * e1000_check_64k_bound - check that memory doesn't cross 64kB boundary
1470 * @adapter: address of board private structure
1471 * @start: address of beginning of memory
1472 * @len: length of memory
1473 **/
1474static bool e1000_check_64k_bound(struct e1000_adapter *adapter, void *start,
1475 unsigned long len)
1476{
1477 struct e1000_hw *hw = &adapter->hw;
1478 unsigned long begin = (unsigned long)start;
1479 unsigned long end = begin + len;
1480
1481 /* First rev 82545 and 82546 need to not allow any memory
1482 * write location to cross 64k boundary due to errata 23
1483 */
1484 if (hw->mac_type == e1000_82545 ||
1485 hw->mac_type == e1000_ce4100 ||
1486 hw->mac_type == e1000_82546) {
1487 return ((begin ^ (end - 1)) >> 16) == 0;
1488 }
1489
1490 return true;
1491}
1492
1493/**
1494 * e1000_setup_tx_resources - allocate Tx resources (Descriptors)
1495 * @adapter: board private structure
1496 * @txdr: tx descriptor ring (for a specific queue) to setup
1497 *
1498 * Return 0 on success, negative on failure
1499 **/
1500static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
1501 struct e1000_tx_ring *txdr)
1502{
1503 struct pci_dev *pdev = adapter->pdev;
1504 int size;
1505
1506 size = sizeof(struct e1000_tx_buffer) * txdr->count;
1507 txdr->buffer_info = vzalloc(size);
1508 if (!txdr->buffer_info)
1509 return -ENOMEM;
1510
1511 /* round up to nearest 4K */
1512
1513 txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
1514 txdr->size = ALIGN(txdr->size, 4096);
1515
1516 txdr->desc = dma_alloc_coherent(&pdev->dev, txdr->size, &txdr->dma,
1517 GFP_KERNEL);
1518 if (!txdr->desc) {
1519setup_tx_desc_die:
1520 vfree(txdr->buffer_info);
1521 return -ENOMEM;
1522 }
1523
1524 /* Fix for errata 23, can't cross 64kB boundary */
1525 if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1526 void *olddesc = txdr->desc;
1527 dma_addr_t olddma = txdr->dma;
1528 e_err(tx_err, "txdr align check failed: %u bytes at %p\n",
1529 txdr->size, txdr->desc);
1530 /* Try again, without freeing the previous */
1531 txdr->desc = dma_alloc_coherent(&pdev->dev, txdr->size,
1532 &txdr->dma, GFP_KERNEL);
1533 /* Failed allocation, critical failure */
1534 if (!txdr->desc) {
1535 dma_free_coherent(&pdev->dev, txdr->size, olddesc,
1536 olddma);
1537 goto setup_tx_desc_die;
1538 }
1539
1540 if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1541 /* give up */
1542 dma_free_coherent(&pdev->dev, txdr->size, txdr->desc,
1543 txdr->dma);
1544 dma_free_coherent(&pdev->dev, txdr->size, olddesc,
1545 olddma);
1546 e_err(probe, "Unable to allocate aligned memory "
1547 "for the transmit descriptor ring\n");
1548 vfree(txdr->buffer_info);
1549 return -ENOMEM;
1550 } else {
1551 /* Free old allocation, new allocation was successful */
1552 dma_free_coherent(&pdev->dev, txdr->size, olddesc,
1553 olddma);
1554 }
1555 }
1556 memset(txdr->desc, 0, txdr->size);
1557
1558 txdr->next_to_use = 0;
1559 txdr->next_to_clean = 0;
1560
1561 return 0;
1562}
1563
1564/**
1565 * e1000_setup_all_tx_resources - wrapper to allocate Tx resources
1566 * (Descriptors) for all queues
1567 * @adapter: board private structure
1568 *
1569 * Return 0 on success, negative on failure
1570 **/
1571int e1000_setup_all_tx_resources(struct e1000_adapter *adapter)
1572{
1573 int i, err = 0;
1574
1575 for (i = 0; i < adapter->num_tx_queues; i++) {
1576 err = e1000_setup_tx_resources(adapter, &adapter->tx_ring[i]);
1577 if (err) {
1578 e_err(probe, "Allocation for Tx Queue %u failed\n", i);
1579 for (i-- ; i >= 0; i--)
1580 e1000_free_tx_resources(adapter,
1581 &adapter->tx_ring[i]);
1582 break;
1583 }
1584 }
1585
1586 return err;
1587}
1588
1589/**
1590 * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
1591 * @adapter: board private structure
1592 *
1593 * Configure the Tx unit of the MAC after a reset.
1594 **/
1595static void e1000_configure_tx(struct e1000_adapter *adapter)
1596{
1597 u64 tdba;
1598 struct e1000_hw *hw = &adapter->hw;
1599 u32 tdlen, tctl, tipg;
1600 u32 ipgr1, ipgr2;
1601
1602 /* Setup the HW Tx Head and Tail descriptor pointers */
1603
1604 switch (adapter->num_tx_queues) {
1605 case 1:
1606 default:
1607 tdba = adapter->tx_ring[0].dma;
1608 tdlen = adapter->tx_ring[0].count *
1609 sizeof(struct e1000_tx_desc);
1610 ew32(TDLEN, tdlen);
1611 ew32(TDBAH, (tdba >> 32));
1612 ew32(TDBAL, (tdba & 0x00000000ffffffffULL));
1613 ew32(TDT, 0);
1614 ew32(TDH, 0);
1615 adapter->tx_ring[0].tdh = ((hw->mac_type >= e1000_82543) ?
1616 E1000_TDH : E1000_82542_TDH);
1617 adapter->tx_ring[0].tdt = ((hw->mac_type >= e1000_82543) ?
1618 E1000_TDT : E1000_82542_TDT);
1619 break;
1620 }
1621
1622 /* Set the default values for the Tx Inter Packet Gap timer */
1623 if ((hw->media_type == e1000_media_type_fiber ||
1624 hw->media_type == e1000_media_type_internal_serdes))
1625 tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
1626 else
1627 tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
1628
1629 switch (hw->mac_type) {
1630 case e1000_82542_rev2_0:
1631 case e1000_82542_rev2_1:
1632 tipg = DEFAULT_82542_TIPG_IPGT;
1633 ipgr1 = DEFAULT_82542_TIPG_IPGR1;
1634 ipgr2 = DEFAULT_82542_TIPG_IPGR2;
1635 break;
1636 default:
1637 ipgr1 = DEFAULT_82543_TIPG_IPGR1;
1638 ipgr2 = DEFAULT_82543_TIPG_IPGR2;
1639 break;
1640 }
1641 tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
1642 tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
1643 ew32(TIPG, tipg);
1644
1645 /* Set the Tx Interrupt Delay register */
1646
1647 ew32(TIDV, adapter->tx_int_delay);
1648 if (hw->mac_type >= e1000_82540)
1649 ew32(TADV, adapter->tx_abs_int_delay);
1650
1651 /* Program the Transmit Control Register */
1652
1653 tctl = er32(TCTL);
1654 tctl &= ~E1000_TCTL_CT;
1655 tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
1656 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
1657
1658 e1000_config_collision_dist(hw);
1659
1660 /* Setup Transmit Descriptor Settings for eop descriptor */
1661 adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
1662
1663 /* only set IDE if we are delaying interrupts using the timers */
1664 if (adapter->tx_int_delay)
1665 adapter->txd_cmd |= E1000_TXD_CMD_IDE;
1666
1667 if (hw->mac_type < e1000_82543)
1668 adapter->txd_cmd |= E1000_TXD_CMD_RPS;
1669 else
1670 adapter->txd_cmd |= E1000_TXD_CMD_RS;
1671
1672 /* Cache if we're 82544 running in PCI-X because we'll
1673 * need this to apply a workaround later in the send path.
1674 */
1675 if (hw->mac_type == e1000_82544 &&
1676 hw->bus_type == e1000_bus_type_pcix)
1677 adapter->pcix_82544 = true;
1678
1679 ew32(TCTL, tctl);
1680
1681}
1682
1683/**
1684 * e1000_setup_rx_resources - allocate Rx resources (Descriptors)
1685 * @adapter: board private structure
1686 * @rxdr: rx descriptor ring (for a specific queue) to setup
1687 *
1688 * Returns 0 on success, negative on failure
1689 **/
1690static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
1691 struct e1000_rx_ring *rxdr)
1692{
1693 struct pci_dev *pdev = adapter->pdev;
1694 int size, desc_len;
1695
1696 size = sizeof(struct e1000_rx_buffer) * rxdr->count;
1697 rxdr->buffer_info = vzalloc(size);
1698 if (!rxdr->buffer_info)
1699 return -ENOMEM;
1700
1701 desc_len = sizeof(struct e1000_rx_desc);
1702
1703 /* Round up to nearest 4K */
1704
1705 rxdr->size = rxdr->count * desc_len;
1706 rxdr->size = ALIGN(rxdr->size, 4096);
1707
1708 rxdr->desc = dma_alloc_coherent(&pdev->dev, rxdr->size, &rxdr->dma,
1709 GFP_KERNEL);
1710 if (!rxdr->desc) {
1711setup_rx_desc_die:
1712 vfree(rxdr->buffer_info);
1713 return -ENOMEM;
1714 }
1715
1716 /* Fix for errata 23, can't cross 64kB boundary */
1717 if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1718 void *olddesc = rxdr->desc;
1719 dma_addr_t olddma = rxdr->dma;
1720 e_err(rx_err, "rxdr align check failed: %u bytes at %p\n",
1721 rxdr->size, rxdr->desc);
1722 /* Try again, without freeing the previous */
1723 rxdr->desc = dma_alloc_coherent(&pdev->dev, rxdr->size,
1724 &rxdr->dma, GFP_KERNEL);
1725 /* Failed allocation, critical failure */
1726 if (!rxdr->desc) {
1727 dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
1728 olddma);
1729 goto setup_rx_desc_die;
1730 }
1731
1732 if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1733 /* give up */
1734 dma_free_coherent(&pdev->dev, rxdr->size, rxdr->desc,
1735 rxdr->dma);
1736 dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
1737 olddma);
1738 e_err(probe, "Unable to allocate aligned memory for "
1739 "the Rx descriptor ring\n");
1740 goto setup_rx_desc_die;
1741 } else {
1742 /* Free old allocation, new allocation was successful */
1743 dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
1744 olddma);
1745 }
1746 }
1747 memset(rxdr->desc, 0, rxdr->size);
1748
1749 rxdr->next_to_clean = 0;
1750 rxdr->next_to_use = 0;
1751 rxdr->rx_skb_top = NULL;
1752
1753 return 0;
1754}
1755
1756/**
1757 * e1000_setup_all_rx_resources - wrapper to allocate Rx resources
1758 * (Descriptors) for all queues
1759 * @adapter: board private structure
1760 *
1761 * Return 0 on success, negative on failure
1762 **/
1763int e1000_setup_all_rx_resources(struct e1000_adapter *adapter)
1764{
1765 int i, err = 0;
1766
1767 for (i = 0; i < adapter->num_rx_queues; i++) {
1768 err = e1000_setup_rx_resources(adapter, &adapter->rx_ring[i]);
1769 if (err) {
1770 e_err(probe, "Allocation for Rx Queue %u failed\n", i);
1771 for (i-- ; i >= 0; i--)
1772 e1000_free_rx_resources(adapter,
1773 &adapter->rx_ring[i]);
1774 break;
1775 }
1776 }
1777
1778 return err;
1779}
1780
1781/**
1782 * e1000_setup_rctl - configure the receive control registers
1783 * @adapter: Board private structure
1784 **/
1785static void e1000_setup_rctl(struct e1000_adapter *adapter)
1786{
1787 struct e1000_hw *hw = &adapter->hw;
1788 u32 rctl;
1789
1790 rctl = er32(RCTL);
1791
1792 rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
1793
1794 rctl |= E1000_RCTL_BAM | E1000_RCTL_LBM_NO |
1795 E1000_RCTL_RDMTS_HALF |
1796 (hw->mc_filter_type << E1000_RCTL_MO_SHIFT);
1797
1798 if (hw->tbi_compatibility_on == 1)
1799 rctl |= E1000_RCTL_SBP;
1800 else
1801 rctl &= ~E1000_RCTL_SBP;
1802
1803 if (adapter->netdev->mtu <= ETH_DATA_LEN)
1804 rctl &= ~E1000_RCTL_LPE;
1805 else
1806 rctl |= E1000_RCTL_LPE;
1807
1808 /* Setup buffer sizes */
1809 rctl &= ~E1000_RCTL_SZ_4096;
1810 rctl |= E1000_RCTL_BSEX;
1811 switch (adapter->rx_buffer_len) {
1812 case E1000_RXBUFFER_2048:
1813 default:
1814 rctl |= E1000_RCTL_SZ_2048;
1815 rctl &= ~E1000_RCTL_BSEX;
1816 break;
1817 case E1000_RXBUFFER_4096:
1818 rctl |= E1000_RCTL_SZ_4096;
1819 break;
1820 case E1000_RXBUFFER_8192:
1821 rctl |= E1000_RCTL_SZ_8192;
1822 break;
1823 case E1000_RXBUFFER_16384:
1824 rctl |= E1000_RCTL_SZ_16384;
1825 break;
1826 }
1827
1828 /* This is useful for sniffing bad packets. */
1829 if (adapter->netdev->features & NETIF_F_RXALL) {
1830 /* UPE and MPE will be handled by normal PROMISC logic
1831 * in e1000e_set_rx_mode
1832 */
1833 rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
1834 E1000_RCTL_BAM | /* RX All Bcast Pkts */
1835 E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
1836
1837 rctl &= ~(E1000_RCTL_VFE | /* Disable VLAN filter */
1838 E1000_RCTL_DPF | /* Allow filtered pause */
1839 E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
1840 /* Do not mess with E1000_CTRL_VME, it affects transmit as well,
1841 * and that breaks VLANs.
1842 */
1843 }
1844
1845 ew32(RCTL, rctl);
1846}
1847
1848/**
1849 * e1000_configure_rx - Configure 8254x Receive Unit after Reset
1850 * @adapter: board private structure
1851 *
1852 * Configure the Rx unit of the MAC after a reset.
1853 **/
1854static void e1000_configure_rx(struct e1000_adapter *adapter)
1855{
1856 u64 rdba;
1857 struct e1000_hw *hw = &adapter->hw;
1858 u32 rdlen, rctl, rxcsum;
1859
1860 if (adapter->netdev->mtu > ETH_DATA_LEN) {
1861 rdlen = adapter->rx_ring[0].count *
1862 sizeof(struct e1000_rx_desc);
1863 adapter->clean_rx = e1000_clean_jumbo_rx_irq;
1864 adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers;
1865 } else {
1866 rdlen = adapter->rx_ring[0].count *
1867 sizeof(struct e1000_rx_desc);
1868 adapter->clean_rx = e1000_clean_rx_irq;
1869 adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
1870 }
1871
1872 /* disable receives while setting up the descriptors */
1873 rctl = er32(RCTL);
1874 ew32(RCTL, rctl & ~E1000_RCTL_EN);
1875
1876 /* set the Receive Delay Timer Register */
1877 ew32(RDTR, adapter->rx_int_delay);
1878
1879 if (hw->mac_type >= e1000_82540) {
1880 ew32(RADV, adapter->rx_abs_int_delay);
1881 if (adapter->itr_setting != 0)
1882 ew32(ITR, 1000000000 / (adapter->itr * 256));
1883 }
1884
1885 /* Setup the HW Rx Head and Tail Descriptor Pointers and
1886 * the Base and Length of the Rx Descriptor Ring
1887 */
1888 switch (adapter->num_rx_queues) {
1889 case 1:
1890 default:
1891 rdba = adapter->rx_ring[0].dma;
1892 ew32(RDLEN, rdlen);
1893 ew32(RDBAH, (rdba >> 32));
1894 ew32(RDBAL, (rdba & 0x00000000ffffffffULL));
1895 ew32(RDT, 0);
1896 ew32(RDH, 0);
1897 adapter->rx_ring[0].rdh = ((hw->mac_type >= e1000_82543) ?
1898 E1000_RDH : E1000_82542_RDH);
1899 adapter->rx_ring[0].rdt = ((hw->mac_type >= e1000_82543) ?
1900 E1000_RDT : E1000_82542_RDT);
1901 break;
1902 }
1903
1904 /* Enable 82543 Receive Checksum Offload for TCP and UDP */
1905 if (hw->mac_type >= e1000_82543) {
1906 rxcsum = er32(RXCSUM);
1907 if (adapter->rx_csum)
1908 rxcsum |= E1000_RXCSUM_TUOFL;
1909 else
1910 /* don't need to clear IPPCSE as it defaults to 0 */
1911 rxcsum &= ~E1000_RXCSUM_TUOFL;
1912 ew32(RXCSUM, rxcsum);
1913 }
1914
1915 /* Enable Receives */
1916 ew32(RCTL, rctl | E1000_RCTL_EN);
1917}
1918
1919/**
1920 * e1000_free_tx_resources - Free Tx Resources per Queue
1921 * @adapter: board private structure
1922 * @tx_ring: Tx descriptor ring for a specific queue
1923 *
1924 * Free all transmit software resources
1925 **/
1926static void e1000_free_tx_resources(struct e1000_adapter *adapter,
1927 struct e1000_tx_ring *tx_ring)
1928{
1929 struct pci_dev *pdev = adapter->pdev;
1930
1931 e1000_clean_tx_ring(adapter, tx_ring);
1932
1933 vfree(tx_ring->buffer_info);
1934 tx_ring->buffer_info = NULL;
1935
1936 dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
1937 tx_ring->dma);
1938
1939 tx_ring->desc = NULL;
1940}
1941
1942/**
1943 * e1000_free_all_tx_resources - Free Tx Resources for All Queues
1944 * @adapter: board private structure
1945 *
1946 * Free all transmit software resources
1947 **/
1948void e1000_free_all_tx_resources(struct e1000_adapter *adapter)
1949{
1950 int i;
1951
1952 for (i = 0; i < adapter->num_tx_queues; i++)
1953 e1000_free_tx_resources(adapter, &adapter->tx_ring[i]);
1954}
1955
1956static void
1957e1000_unmap_and_free_tx_resource(struct e1000_adapter *adapter,
1958 struct e1000_tx_buffer *buffer_info,
1959 int budget)
1960{
1961 if (buffer_info->dma) {
1962 if (buffer_info->mapped_as_page)
1963 dma_unmap_page(&adapter->pdev->dev, buffer_info->dma,
1964 buffer_info->length, DMA_TO_DEVICE);
1965 else
1966 dma_unmap_single(&adapter->pdev->dev, buffer_info->dma,
1967 buffer_info->length,
1968 DMA_TO_DEVICE);
1969 buffer_info->dma = 0;
1970 }
1971 if (buffer_info->skb) {
1972 napi_consume_skb(buffer_info->skb, budget);
1973 buffer_info->skb = NULL;
1974 }
1975 buffer_info->time_stamp = 0;
1976 /* buffer_info must be completely set up in the transmit path */
1977}
1978
1979/**
1980 * e1000_clean_tx_ring - Free Tx Buffers
1981 * @adapter: board private structure
1982 * @tx_ring: ring to be cleaned
1983 **/
1984static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
1985 struct e1000_tx_ring *tx_ring)
1986{
1987 struct e1000_hw *hw = &adapter->hw;
1988 struct e1000_tx_buffer *buffer_info;
1989 unsigned long size;
1990 unsigned int i;
1991
1992 /* Free all the Tx ring sk_buffs */
1993
1994 for (i = 0; i < tx_ring->count; i++) {
1995 buffer_info = &tx_ring->buffer_info[i];
1996 e1000_unmap_and_free_tx_resource(adapter, buffer_info, 0);
1997 }
1998
1999 netdev_reset_queue(adapter->netdev);
2000 size = sizeof(struct e1000_tx_buffer) * tx_ring->count;
2001 memset(tx_ring->buffer_info, 0, size);
2002
2003 /* Zero out the descriptor ring */
2004
2005 memset(tx_ring->desc, 0, tx_ring->size);
2006
2007 tx_ring->next_to_use = 0;
2008 tx_ring->next_to_clean = 0;
2009 tx_ring->last_tx_tso = false;
2010
2011 writel(0, hw->hw_addr + tx_ring->tdh);
2012 writel(0, hw->hw_addr + tx_ring->tdt);
2013}
2014
2015/**
2016 * e1000_clean_all_tx_rings - Free Tx Buffers for all queues
2017 * @adapter: board private structure
2018 **/
2019static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter)
2020{
2021 int i;
2022
2023 for (i = 0; i < adapter->num_tx_queues; i++)
2024 e1000_clean_tx_ring(adapter, &adapter->tx_ring[i]);
2025}
2026
2027/**
2028 * e1000_free_rx_resources - Free Rx Resources
2029 * @adapter: board private structure
2030 * @rx_ring: ring to clean the resources from
2031 *
2032 * Free all receive software resources
2033 **/
2034static void e1000_free_rx_resources(struct e1000_adapter *adapter,
2035 struct e1000_rx_ring *rx_ring)
2036{
2037 struct pci_dev *pdev = adapter->pdev;
2038
2039 e1000_clean_rx_ring(adapter, rx_ring);
2040
2041 vfree(rx_ring->buffer_info);
2042 rx_ring->buffer_info = NULL;
2043
2044 dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
2045 rx_ring->dma);
2046
2047 rx_ring->desc = NULL;
2048}
2049
2050/**
2051 * e1000_free_all_rx_resources - Free Rx Resources for All Queues
2052 * @adapter: board private structure
2053 *
2054 * Free all receive software resources
2055 **/
2056void e1000_free_all_rx_resources(struct e1000_adapter *adapter)
2057{
2058 int i;
2059
2060 for (i = 0; i < adapter->num_rx_queues; i++)
2061 e1000_free_rx_resources(adapter, &adapter->rx_ring[i]);
2062}
2063
2064#define E1000_HEADROOM (NET_SKB_PAD + NET_IP_ALIGN)
2065static unsigned int e1000_frag_len(const struct e1000_adapter *a)
2066{
2067 return SKB_DATA_ALIGN(a->rx_buffer_len + E1000_HEADROOM) +
2068 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
2069}
2070
2071static void *e1000_alloc_frag(const struct e1000_adapter *a)
2072{
2073 unsigned int len = e1000_frag_len(a);
2074 u8 *data = netdev_alloc_frag(len);
2075
2076 if (likely(data))
2077 data += E1000_HEADROOM;
2078 return data;
2079}
2080
2081/**
2082 * e1000_clean_rx_ring - Free Rx Buffers per Queue
2083 * @adapter: board private structure
2084 * @rx_ring: ring to free buffers from
2085 **/
2086static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
2087 struct e1000_rx_ring *rx_ring)
2088{
2089 struct e1000_hw *hw = &adapter->hw;
2090 struct e1000_rx_buffer *buffer_info;
2091 struct pci_dev *pdev = adapter->pdev;
2092 unsigned long size;
2093 unsigned int i;
2094
2095 /* Free all the Rx netfrags */
2096 for (i = 0; i < rx_ring->count; i++) {
2097 buffer_info = &rx_ring->buffer_info[i];
2098 if (adapter->clean_rx == e1000_clean_rx_irq) {
2099 if (buffer_info->dma)
2100 dma_unmap_single(&pdev->dev, buffer_info->dma,
2101 adapter->rx_buffer_len,
2102 DMA_FROM_DEVICE);
2103 if (buffer_info->rxbuf.data) {
2104 skb_free_frag(buffer_info->rxbuf.data);
2105 buffer_info->rxbuf.data = NULL;
2106 }
2107 } else if (adapter->clean_rx == e1000_clean_jumbo_rx_irq) {
2108 if (buffer_info->dma)
2109 dma_unmap_page(&pdev->dev, buffer_info->dma,
2110 adapter->rx_buffer_len,
2111 DMA_FROM_DEVICE);
2112 if (buffer_info->rxbuf.page) {
2113 put_page(buffer_info->rxbuf.page);
2114 buffer_info->rxbuf.page = NULL;
2115 }
2116 }
2117
2118 buffer_info->dma = 0;
2119 }
2120
2121 /* there also may be some cached data from a chained receive */
2122 napi_free_frags(&adapter->napi);
2123 rx_ring->rx_skb_top = NULL;
2124
2125 size = sizeof(struct e1000_rx_buffer) * rx_ring->count;
2126 memset(rx_ring->buffer_info, 0, size);
2127
2128 /* Zero out the descriptor ring */
2129 memset(rx_ring->desc, 0, rx_ring->size);
2130
2131 rx_ring->next_to_clean = 0;
2132 rx_ring->next_to_use = 0;
2133
2134 writel(0, hw->hw_addr + rx_ring->rdh);
2135 writel(0, hw->hw_addr + rx_ring->rdt);
2136}
2137
2138/**
2139 * e1000_clean_all_rx_rings - Free Rx Buffers for all queues
2140 * @adapter: board private structure
2141 **/
2142static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter)
2143{
2144 int i;
2145
2146 for (i = 0; i < adapter->num_rx_queues; i++)
2147 e1000_clean_rx_ring(adapter, &adapter->rx_ring[i]);
2148}
2149
2150/* The 82542 2.0 (revision 2) needs to have the receive unit in reset
2151 * and memory write and invalidate disabled for certain operations
2152 */
2153static void e1000_enter_82542_rst(struct e1000_adapter *adapter)
2154{
2155 struct e1000_hw *hw = &adapter->hw;
2156 struct net_device *netdev = adapter->netdev;
2157 u32 rctl;
2158
2159 e1000_pci_clear_mwi(hw);
2160
2161 rctl = er32(RCTL);
2162 rctl |= E1000_RCTL_RST;
2163 ew32(RCTL, rctl);
2164 E1000_WRITE_FLUSH();
2165 mdelay(5);
2166
2167 if (netif_running(netdev))
2168 e1000_clean_all_rx_rings(adapter);
2169}
2170
2171static void e1000_leave_82542_rst(struct e1000_adapter *adapter)
2172{
2173 struct e1000_hw *hw = &adapter->hw;
2174 struct net_device *netdev = adapter->netdev;
2175 u32 rctl;
2176
2177 rctl = er32(RCTL);
2178 rctl &= ~E1000_RCTL_RST;
2179 ew32(RCTL, rctl);
2180 E1000_WRITE_FLUSH();
2181 mdelay(5);
2182
2183 if (hw->pci_cmd_word & PCI_COMMAND_INVALIDATE)
2184 e1000_pci_set_mwi(hw);
2185
2186 if (netif_running(netdev)) {
2187 /* No need to loop, because 82542 supports only 1 queue */
2188 struct e1000_rx_ring *ring = &adapter->rx_ring[0];
2189 e1000_configure_rx(adapter);
2190 adapter->alloc_rx_buf(adapter, ring, E1000_DESC_UNUSED(ring));
2191 }
2192}
2193
2194/**
2195 * e1000_set_mac - Change the Ethernet Address of the NIC
2196 * @netdev: network interface device structure
2197 * @p: pointer to an address structure
2198 *
2199 * Returns 0 on success, negative on failure
2200 **/
2201static int e1000_set_mac(struct net_device *netdev, void *p)
2202{
2203 struct e1000_adapter *adapter = netdev_priv(netdev);
2204 struct e1000_hw *hw = &adapter->hw;
2205 struct sockaddr *addr = p;
2206
2207 if (!is_valid_ether_addr(addr->sa_data))
2208 return -EADDRNOTAVAIL;
2209
2210 /* 82542 2.0 needs to be in reset to write receive address registers */
2211
2212 if (hw->mac_type == e1000_82542_rev2_0)
2213 e1000_enter_82542_rst(adapter);
2214
2215 eth_hw_addr_set(netdev, addr->sa_data);
2216 memcpy(hw->mac_addr, addr->sa_data, netdev->addr_len);
2217
2218 e1000_rar_set(hw, hw->mac_addr, 0);
2219
2220 if (hw->mac_type == e1000_82542_rev2_0)
2221 e1000_leave_82542_rst(adapter);
2222
2223 return 0;
2224}
2225
2226/**
2227 * e1000_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
2228 * @netdev: network interface device structure
2229 *
2230 * The set_rx_mode entry point is called whenever the unicast or multicast
2231 * address lists or the network interface flags are updated. This routine is
2232 * responsible for configuring the hardware for proper unicast, multicast,
2233 * promiscuous mode, and all-multi behavior.
2234 **/
2235static void e1000_set_rx_mode(struct net_device *netdev)
2236{
2237 struct e1000_adapter *adapter = netdev_priv(netdev);
2238 struct e1000_hw *hw = &adapter->hw;
2239 struct netdev_hw_addr *ha;
2240 bool use_uc = false;
2241 u32 rctl;
2242 u32 hash_value;
2243 int i, rar_entries = E1000_RAR_ENTRIES;
2244 int mta_reg_count = E1000_NUM_MTA_REGISTERS;
2245 u32 *mcarray = kcalloc(mta_reg_count, sizeof(u32), GFP_ATOMIC);
2246
2247 if (!mcarray)
2248 return;
2249
2250 /* Check for Promiscuous and All Multicast modes */
2251
2252 rctl = er32(RCTL);
2253
2254 if (netdev->flags & IFF_PROMISC) {
2255 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2256 rctl &= ~E1000_RCTL_VFE;
2257 } else {
2258 if (netdev->flags & IFF_ALLMULTI)
2259 rctl |= E1000_RCTL_MPE;
2260 else
2261 rctl &= ~E1000_RCTL_MPE;
2262 /* Enable VLAN filter if there is a VLAN */
2263 if (e1000_vlan_used(adapter))
2264 rctl |= E1000_RCTL_VFE;
2265 }
2266
2267 if (netdev_uc_count(netdev) > rar_entries - 1) {
2268 rctl |= E1000_RCTL_UPE;
2269 } else if (!(netdev->flags & IFF_PROMISC)) {
2270 rctl &= ~E1000_RCTL_UPE;
2271 use_uc = true;
2272 }
2273
2274 ew32(RCTL, rctl);
2275
2276 /* 82542 2.0 needs to be in reset to write receive address registers */
2277
2278 if (hw->mac_type == e1000_82542_rev2_0)
2279 e1000_enter_82542_rst(adapter);
2280
2281 /* load the first 14 addresses into the exact filters 1-14. Unicast
2282 * addresses take precedence to avoid disabling unicast filtering
2283 * when possible.
2284 *
2285 * RAR 0 is used for the station MAC address
2286 * if there are not 14 addresses, go ahead and clear the filters
2287 */
2288 i = 1;
2289 if (use_uc)
2290 netdev_for_each_uc_addr(ha, netdev) {
2291 if (i == rar_entries)
2292 break;
2293 e1000_rar_set(hw, ha->addr, i++);
2294 }
2295
2296 netdev_for_each_mc_addr(ha, netdev) {
2297 if (i == rar_entries) {
2298 /* load any remaining addresses into the hash table */
2299 u32 hash_reg, hash_bit, mta;
2300 hash_value = e1000_hash_mc_addr(hw, ha->addr);
2301 hash_reg = (hash_value >> 5) & 0x7F;
2302 hash_bit = hash_value & 0x1F;
2303 mta = (1 << hash_bit);
2304 mcarray[hash_reg] |= mta;
2305 } else {
2306 e1000_rar_set(hw, ha->addr, i++);
2307 }
2308 }
2309
2310 for (; i < rar_entries; i++) {
2311 E1000_WRITE_REG_ARRAY(hw, RA, i << 1, 0);
2312 E1000_WRITE_FLUSH();
2313 E1000_WRITE_REG_ARRAY(hw, RA, (i << 1) + 1, 0);
2314 E1000_WRITE_FLUSH();
2315 }
2316
2317 /* write the hash table completely, write from bottom to avoid
2318 * both stupid write combining chipsets, and flushing each write
2319 */
2320 for (i = mta_reg_count - 1; i >= 0 ; i--) {
2321 /* If we are on an 82544 has an errata where writing odd
2322 * offsets overwrites the previous even offset, but writing
2323 * backwards over the range solves the issue by always
2324 * writing the odd offset first
2325 */
2326 E1000_WRITE_REG_ARRAY(hw, MTA, i, mcarray[i]);
2327 }
2328 E1000_WRITE_FLUSH();
2329
2330 if (hw->mac_type == e1000_82542_rev2_0)
2331 e1000_leave_82542_rst(adapter);
2332
2333 kfree(mcarray);
2334}
2335
2336/**
2337 * e1000_update_phy_info_task - get phy info
2338 * @work: work struct contained inside adapter struct
2339 *
2340 * Need to wait a few seconds after link up to get diagnostic information from
2341 * the phy
2342 */
2343static void e1000_update_phy_info_task(struct work_struct *work)
2344{
2345 struct e1000_adapter *adapter = container_of(work,
2346 struct e1000_adapter,
2347 phy_info_task.work);
2348
2349 e1000_phy_get_info(&adapter->hw, &adapter->phy_info);
2350}
2351
2352/**
2353 * e1000_82547_tx_fifo_stall_task - task to complete work
2354 * @work: work struct contained inside adapter struct
2355 **/
2356static void e1000_82547_tx_fifo_stall_task(struct work_struct *work)
2357{
2358 struct e1000_adapter *adapter = container_of(work,
2359 struct e1000_adapter,
2360 fifo_stall_task.work);
2361 struct e1000_hw *hw = &adapter->hw;
2362 struct net_device *netdev = adapter->netdev;
2363 u32 tctl;
2364
2365 if (atomic_read(&adapter->tx_fifo_stall)) {
2366 if ((er32(TDT) == er32(TDH)) &&
2367 (er32(TDFT) == er32(TDFH)) &&
2368 (er32(TDFTS) == er32(TDFHS))) {
2369 tctl = er32(TCTL);
2370 ew32(TCTL, tctl & ~E1000_TCTL_EN);
2371 ew32(TDFT, adapter->tx_head_addr);
2372 ew32(TDFH, adapter->tx_head_addr);
2373 ew32(TDFTS, adapter->tx_head_addr);
2374 ew32(TDFHS, adapter->tx_head_addr);
2375 ew32(TCTL, tctl);
2376 E1000_WRITE_FLUSH();
2377
2378 adapter->tx_fifo_head = 0;
2379 atomic_set(&adapter->tx_fifo_stall, 0);
2380 netif_wake_queue(netdev);
2381 } else if (!test_bit(__E1000_DOWN, &adapter->flags)) {
2382 schedule_delayed_work(&adapter->fifo_stall_task, 1);
2383 }
2384 }
2385}
2386
2387bool e1000_has_link(struct e1000_adapter *adapter)
2388{
2389 struct e1000_hw *hw = &adapter->hw;
2390 bool link_active = false;
2391
2392 /* get_link_status is set on LSC (link status) interrupt or rx
2393 * sequence error interrupt (except on intel ce4100).
2394 * get_link_status will stay false until the
2395 * e1000_check_for_link establishes link for copper adapters
2396 * ONLY
2397 */
2398 switch (hw->media_type) {
2399 case e1000_media_type_copper:
2400 if (hw->mac_type == e1000_ce4100)
2401 hw->get_link_status = 1;
2402 if (hw->get_link_status) {
2403 e1000_check_for_link(hw);
2404 link_active = !hw->get_link_status;
2405 } else {
2406 link_active = true;
2407 }
2408 break;
2409 case e1000_media_type_fiber:
2410 e1000_check_for_link(hw);
2411 link_active = !!(er32(STATUS) & E1000_STATUS_LU);
2412 break;
2413 case e1000_media_type_internal_serdes:
2414 e1000_check_for_link(hw);
2415 link_active = hw->serdes_has_link;
2416 break;
2417 default:
2418 break;
2419 }
2420
2421 return link_active;
2422}
2423
2424/**
2425 * e1000_watchdog - work function
2426 * @work: work struct contained inside adapter struct
2427 **/
2428static void e1000_watchdog(struct work_struct *work)
2429{
2430 struct e1000_adapter *adapter = container_of(work,
2431 struct e1000_adapter,
2432 watchdog_task.work);
2433 struct e1000_hw *hw = &adapter->hw;
2434 struct net_device *netdev = adapter->netdev;
2435 struct e1000_tx_ring *txdr = adapter->tx_ring;
2436 u32 link, tctl;
2437
2438 link = e1000_has_link(adapter);
2439 if ((netif_carrier_ok(netdev)) && link)
2440 goto link_up;
2441
2442 if (link) {
2443 if (!netif_carrier_ok(netdev)) {
2444 u32 ctrl;
2445 /* update snapshot of PHY registers on LSC */
2446 e1000_get_speed_and_duplex(hw,
2447 &adapter->link_speed,
2448 &adapter->link_duplex);
2449
2450 ctrl = er32(CTRL);
2451 pr_info("%s NIC Link is Up %d Mbps %s, "
2452 "Flow Control: %s\n",
2453 netdev->name,
2454 adapter->link_speed,
2455 adapter->link_duplex == FULL_DUPLEX ?
2456 "Full Duplex" : "Half Duplex",
2457 ((ctrl & E1000_CTRL_TFCE) && (ctrl &
2458 E1000_CTRL_RFCE)) ? "RX/TX" : ((ctrl &
2459 E1000_CTRL_RFCE) ? "RX" : ((ctrl &
2460 E1000_CTRL_TFCE) ? "TX" : "None")));
2461
2462 /* adjust timeout factor according to speed/duplex */
2463 adapter->tx_timeout_factor = 1;
2464 switch (adapter->link_speed) {
2465 case SPEED_10:
2466 adapter->tx_timeout_factor = 16;
2467 break;
2468 case SPEED_100:
2469 /* maybe add some timeout factor ? */
2470 break;
2471 }
2472
2473 /* enable transmits in the hardware */
2474 tctl = er32(TCTL);
2475 tctl |= E1000_TCTL_EN;
2476 ew32(TCTL, tctl);
2477
2478 netif_carrier_on(netdev);
2479 if (!test_bit(__E1000_DOWN, &adapter->flags))
2480 schedule_delayed_work(&adapter->phy_info_task,
2481 2 * HZ);
2482 adapter->smartspeed = 0;
2483 }
2484 } else {
2485 if (netif_carrier_ok(netdev)) {
2486 adapter->link_speed = 0;
2487 adapter->link_duplex = 0;
2488 pr_info("%s NIC Link is Down\n",
2489 netdev->name);
2490 netif_carrier_off(netdev);
2491
2492 if (!test_bit(__E1000_DOWN, &adapter->flags))
2493 schedule_delayed_work(&adapter->phy_info_task,
2494 2 * HZ);
2495 }
2496
2497 e1000_smartspeed(adapter);
2498 }
2499
2500link_up:
2501 e1000_update_stats(adapter);
2502
2503 hw->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
2504 adapter->tpt_old = adapter->stats.tpt;
2505 hw->collision_delta = adapter->stats.colc - adapter->colc_old;
2506 adapter->colc_old = adapter->stats.colc;
2507
2508 adapter->gorcl = adapter->stats.gorcl - adapter->gorcl_old;
2509 adapter->gorcl_old = adapter->stats.gorcl;
2510 adapter->gotcl = adapter->stats.gotcl - adapter->gotcl_old;
2511 adapter->gotcl_old = adapter->stats.gotcl;
2512
2513 e1000_update_adaptive(hw);
2514
2515 if (!netif_carrier_ok(netdev)) {
2516 if (E1000_DESC_UNUSED(txdr) + 1 < txdr->count) {
2517 /* We've lost link, so the controller stops DMA,
2518 * but we've got queued Tx work that's never going
2519 * to get done, so reset controller to flush Tx.
2520 * (Do the reset outside of interrupt context).
2521 */
2522 adapter->tx_timeout_count++;
2523 schedule_work(&adapter->reset_task);
2524 /* exit immediately since reset is imminent */
2525 return;
2526 }
2527 }
2528
2529 /* Simple mode for Interrupt Throttle Rate (ITR) */
2530 if (hw->mac_type >= e1000_82540 && adapter->itr_setting == 4) {
2531 /* Symmetric Tx/Rx gets a reduced ITR=2000;
2532 * Total asymmetrical Tx or Rx gets ITR=8000;
2533 * everyone else is between 2000-8000.
2534 */
2535 u32 goc = (adapter->gotcl + adapter->gorcl) / 10000;
2536 u32 dif = (adapter->gotcl > adapter->gorcl ?
2537 adapter->gotcl - adapter->gorcl :
2538 adapter->gorcl - adapter->gotcl) / 10000;
2539 u32 itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000;
2540
2541 ew32(ITR, 1000000000 / (itr * 256));
2542 }
2543
2544 /* Cause software interrupt to ensure rx ring is cleaned */
2545 ew32(ICS, E1000_ICS_RXDMT0);
2546
2547 /* Force detection of hung controller every watchdog period */
2548 adapter->detect_tx_hung = true;
2549
2550 /* Reschedule the task */
2551 if (!test_bit(__E1000_DOWN, &adapter->flags))
2552 schedule_delayed_work(&adapter->watchdog_task, 2 * HZ);
2553}
2554
2555enum latency_range {
2556 lowest_latency = 0,
2557 low_latency = 1,
2558 bulk_latency = 2,
2559 latency_invalid = 255
2560};
2561
2562/**
2563 * e1000_update_itr - update the dynamic ITR value based on statistics
2564 * @adapter: pointer to adapter
2565 * @itr_setting: current adapter->itr
2566 * @packets: the number of packets during this measurement interval
2567 * @bytes: the number of bytes during this measurement interval
2568 *
2569 * Stores a new ITR value based on packets and byte
2570 * counts during the last interrupt. The advantage of per interrupt
2571 * computation is faster updates and more accurate ITR for the current
2572 * traffic pattern. Constants in this function were computed
2573 * based on theoretical maximum wire speed and thresholds were set based
2574 * on testing data as well as attempting to minimize response time
2575 * while increasing bulk throughput.
2576 * this functionality is controlled by the InterruptThrottleRate module
2577 * parameter (see e1000_param.c)
2578 **/
2579static unsigned int e1000_update_itr(struct e1000_adapter *adapter,
2580 u16 itr_setting, int packets, int bytes)
2581{
2582 unsigned int retval = itr_setting;
2583 struct e1000_hw *hw = &adapter->hw;
2584
2585 if (unlikely(hw->mac_type < e1000_82540))
2586 goto update_itr_done;
2587
2588 if (packets == 0)
2589 goto update_itr_done;
2590
2591 switch (itr_setting) {
2592 case lowest_latency:
2593 /* jumbo frames get bulk treatment*/
2594 if (bytes/packets > 8000)
2595 retval = bulk_latency;
2596 else if ((packets < 5) && (bytes > 512))
2597 retval = low_latency;
2598 break;
2599 case low_latency: /* 50 usec aka 20000 ints/s */
2600 if (bytes > 10000) {
2601 /* jumbo frames need bulk latency setting */
2602 if (bytes/packets > 8000)
2603 retval = bulk_latency;
2604 else if ((packets < 10) || ((bytes/packets) > 1200))
2605 retval = bulk_latency;
2606 else if ((packets > 35))
2607 retval = lowest_latency;
2608 } else if (bytes/packets > 2000)
2609 retval = bulk_latency;
2610 else if (packets <= 2 && bytes < 512)
2611 retval = lowest_latency;
2612 break;
2613 case bulk_latency: /* 250 usec aka 4000 ints/s */
2614 if (bytes > 25000) {
2615 if (packets > 35)
2616 retval = low_latency;
2617 } else if (bytes < 6000) {
2618 retval = low_latency;
2619 }
2620 break;
2621 }
2622
2623update_itr_done:
2624 return retval;
2625}
2626
2627static void e1000_set_itr(struct e1000_adapter *adapter)
2628{
2629 struct e1000_hw *hw = &adapter->hw;
2630 u16 current_itr;
2631 u32 new_itr = adapter->itr;
2632
2633 if (unlikely(hw->mac_type < e1000_82540))
2634 return;
2635
2636 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2637 if (unlikely(adapter->link_speed != SPEED_1000)) {
2638 new_itr = 4000;
2639 goto set_itr_now;
2640 }
2641
2642 adapter->tx_itr = e1000_update_itr(adapter, adapter->tx_itr,
2643 adapter->total_tx_packets,
2644 adapter->total_tx_bytes);
2645 /* conservative mode (itr 3) eliminates the lowest_latency setting */
2646 if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
2647 adapter->tx_itr = low_latency;
2648
2649 adapter->rx_itr = e1000_update_itr(adapter, adapter->rx_itr,
2650 adapter->total_rx_packets,
2651 adapter->total_rx_bytes);
2652 /* conservative mode (itr 3) eliminates the lowest_latency setting */
2653 if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
2654 adapter->rx_itr = low_latency;
2655
2656 current_itr = max(adapter->rx_itr, adapter->tx_itr);
2657
2658 switch (current_itr) {
2659 /* counts and packets in update_itr are dependent on these numbers */
2660 case lowest_latency:
2661 new_itr = 70000;
2662 break;
2663 case low_latency:
2664 new_itr = 20000; /* aka hwitr = ~200 */
2665 break;
2666 case bulk_latency:
2667 new_itr = 4000;
2668 break;
2669 default:
2670 break;
2671 }
2672
2673set_itr_now:
2674 if (new_itr != adapter->itr) {
2675 /* this attempts to bias the interrupt rate towards Bulk
2676 * by adding intermediate steps when interrupt rate is
2677 * increasing
2678 */
2679 new_itr = new_itr > adapter->itr ?
2680 min(adapter->itr + (new_itr >> 2), new_itr) :
2681 new_itr;
2682 adapter->itr = new_itr;
2683 ew32(ITR, 1000000000 / (new_itr * 256));
2684 }
2685}
2686
2687#define E1000_TX_FLAGS_CSUM 0x00000001
2688#define E1000_TX_FLAGS_VLAN 0x00000002
2689#define E1000_TX_FLAGS_TSO 0x00000004
2690#define E1000_TX_FLAGS_IPV4 0x00000008
2691#define E1000_TX_FLAGS_NO_FCS 0x00000010
2692#define E1000_TX_FLAGS_VLAN_MASK 0xffff0000
2693#define E1000_TX_FLAGS_VLAN_SHIFT 16
2694
2695static int e1000_tso(struct e1000_adapter *adapter,
2696 struct e1000_tx_ring *tx_ring, struct sk_buff *skb,
2697 __be16 protocol)
2698{
2699 struct e1000_context_desc *context_desc;
2700 struct e1000_tx_buffer *buffer_info;
2701 unsigned int i;
2702 u32 cmd_length = 0;
2703 u16 ipcse = 0, tucse, mss;
2704 u8 ipcss, ipcso, tucss, tucso, hdr_len;
2705
2706 if (skb_is_gso(skb)) {
2707 int err;
2708
2709 err = skb_cow_head(skb, 0);
2710 if (err < 0)
2711 return err;
2712
2713 hdr_len = skb_tcp_all_headers(skb);
2714 mss = skb_shinfo(skb)->gso_size;
2715 if (protocol == htons(ETH_P_IP)) {
2716 struct iphdr *iph = ip_hdr(skb);
2717 iph->tot_len = 0;
2718 iph->check = 0;
2719 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
2720 iph->daddr, 0,
2721 IPPROTO_TCP,
2722 0);
2723 cmd_length = E1000_TXD_CMD_IP;
2724 ipcse = skb_transport_offset(skb) - 1;
2725 } else if (skb_is_gso_v6(skb)) {
2726 tcp_v6_gso_csum_prep(skb);
2727 ipcse = 0;
2728 }
2729 ipcss = skb_network_offset(skb);
2730 ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
2731 tucss = skb_transport_offset(skb);
2732 tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
2733 tucse = 0;
2734
2735 cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
2736 E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
2737
2738 i = tx_ring->next_to_use;
2739 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2740 buffer_info = &tx_ring->buffer_info[i];
2741
2742 context_desc->lower_setup.ip_fields.ipcss = ipcss;
2743 context_desc->lower_setup.ip_fields.ipcso = ipcso;
2744 context_desc->lower_setup.ip_fields.ipcse = cpu_to_le16(ipcse);
2745 context_desc->upper_setup.tcp_fields.tucss = tucss;
2746 context_desc->upper_setup.tcp_fields.tucso = tucso;
2747 context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
2748 context_desc->tcp_seg_setup.fields.mss = cpu_to_le16(mss);
2749 context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
2750 context_desc->cmd_and_length = cpu_to_le32(cmd_length);
2751
2752 buffer_info->time_stamp = jiffies;
2753 buffer_info->next_to_watch = i;
2754
2755 if (++i == tx_ring->count)
2756 i = 0;
2757
2758 tx_ring->next_to_use = i;
2759
2760 return true;
2761 }
2762 return false;
2763}
2764
2765static bool e1000_tx_csum(struct e1000_adapter *adapter,
2766 struct e1000_tx_ring *tx_ring, struct sk_buff *skb,
2767 __be16 protocol)
2768{
2769 struct e1000_context_desc *context_desc;
2770 struct e1000_tx_buffer *buffer_info;
2771 unsigned int i;
2772 u8 css;
2773 u32 cmd_len = E1000_TXD_CMD_DEXT;
2774
2775 if (skb->ip_summed != CHECKSUM_PARTIAL)
2776 return false;
2777
2778 switch (protocol) {
2779 case cpu_to_be16(ETH_P_IP):
2780 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
2781 cmd_len |= E1000_TXD_CMD_TCP;
2782 break;
2783 case cpu_to_be16(ETH_P_IPV6):
2784 /* XXX not handling all IPV6 headers */
2785 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
2786 cmd_len |= E1000_TXD_CMD_TCP;
2787 break;
2788 default:
2789 if (unlikely(net_ratelimit()))
2790 e_warn(drv, "checksum_partial proto=%x!\n",
2791 skb->protocol);
2792 break;
2793 }
2794
2795 css = skb_checksum_start_offset(skb);
2796
2797 i = tx_ring->next_to_use;
2798 buffer_info = &tx_ring->buffer_info[i];
2799 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2800
2801 context_desc->lower_setup.ip_config = 0;
2802 context_desc->upper_setup.tcp_fields.tucss = css;
2803 context_desc->upper_setup.tcp_fields.tucso =
2804 css + skb->csum_offset;
2805 context_desc->upper_setup.tcp_fields.tucse = 0;
2806 context_desc->tcp_seg_setup.data = 0;
2807 context_desc->cmd_and_length = cpu_to_le32(cmd_len);
2808
2809 buffer_info->time_stamp = jiffies;
2810 buffer_info->next_to_watch = i;
2811
2812 if (unlikely(++i == tx_ring->count))
2813 i = 0;
2814
2815 tx_ring->next_to_use = i;
2816
2817 return true;
2818}
2819
2820#define E1000_MAX_TXD_PWR 12
2821#define E1000_MAX_DATA_PER_TXD (1<<E1000_MAX_TXD_PWR)
2822
2823static int e1000_tx_map(struct e1000_adapter *adapter,
2824 struct e1000_tx_ring *tx_ring,
2825 struct sk_buff *skb, unsigned int first,
2826 unsigned int max_per_txd, unsigned int nr_frags,
2827 unsigned int mss)
2828{
2829 struct e1000_hw *hw = &adapter->hw;
2830 struct pci_dev *pdev = adapter->pdev;
2831 struct e1000_tx_buffer *buffer_info;
2832 unsigned int len = skb_headlen(skb);
2833 unsigned int offset = 0, size, count = 0, i;
2834 unsigned int f, bytecount, segs;
2835
2836 i = tx_ring->next_to_use;
2837
2838 while (len) {
2839 buffer_info = &tx_ring->buffer_info[i];
2840 size = min(len, max_per_txd);
2841 /* Workaround for Controller erratum --
2842 * descriptor for non-tso packet in a linear SKB that follows a
2843 * tso gets written back prematurely before the data is fully
2844 * DMA'd to the controller
2845 */
2846 if (!skb->data_len && tx_ring->last_tx_tso &&
2847 !skb_is_gso(skb)) {
2848 tx_ring->last_tx_tso = false;
2849 size -= 4;
2850 }
2851
2852 /* Workaround for premature desc write-backs
2853 * in TSO mode. Append 4-byte sentinel desc
2854 */
2855 if (unlikely(mss && !nr_frags && size == len && size > 8))
2856 size -= 4;
2857 /* work-around for errata 10 and it applies
2858 * to all controllers in PCI-X mode
2859 * The fix is to make sure that the first descriptor of a
2860 * packet is smaller than 2048 - 16 - 16 (or 2016) bytes
2861 */
2862 if (unlikely((hw->bus_type == e1000_bus_type_pcix) &&
2863 (size > 2015) && count == 0))
2864 size = 2015;
2865
2866 /* Workaround for potential 82544 hang in PCI-X. Avoid
2867 * terminating buffers within evenly-aligned dwords.
2868 */
2869 if (unlikely(adapter->pcix_82544 &&
2870 !((unsigned long)(skb->data + offset + size - 1) & 4) &&
2871 size > 4))
2872 size -= 4;
2873
2874 buffer_info->length = size;
2875 /* set time_stamp *before* dma to help avoid a possible race */
2876 buffer_info->time_stamp = jiffies;
2877 buffer_info->mapped_as_page = false;
2878 buffer_info->dma = dma_map_single(&pdev->dev,
2879 skb->data + offset,
2880 size, DMA_TO_DEVICE);
2881 if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2882 goto dma_error;
2883 buffer_info->next_to_watch = i;
2884
2885 len -= size;
2886 offset += size;
2887 count++;
2888 if (len) {
2889 i++;
2890 if (unlikely(i == tx_ring->count))
2891 i = 0;
2892 }
2893 }
2894
2895 for (f = 0; f < nr_frags; f++) {
2896 const skb_frag_t *frag = &skb_shinfo(skb)->frags[f];
2897
2898 len = skb_frag_size(frag);
2899 offset = 0;
2900
2901 while (len) {
2902 unsigned long bufend;
2903 i++;
2904 if (unlikely(i == tx_ring->count))
2905 i = 0;
2906
2907 buffer_info = &tx_ring->buffer_info[i];
2908 size = min(len, max_per_txd);
2909 /* Workaround for premature desc write-backs
2910 * in TSO mode. Append 4-byte sentinel desc
2911 */
2912 if (unlikely(mss && f == (nr_frags-1) &&
2913 size == len && size > 8))
2914 size -= 4;
2915 /* Workaround for potential 82544 hang in PCI-X.
2916 * Avoid terminating buffers within evenly-aligned
2917 * dwords.
2918 */
2919 bufend = (unsigned long)
2920 page_to_phys(skb_frag_page(frag));
2921 bufend += offset + size - 1;
2922 if (unlikely(adapter->pcix_82544 &&
2923 !(bufend & 4) &&
2924 size > 4))
2925 size -= 4;
2926
2927 buffer_info->length = size;
2928 buffer_info->time_stamp = jiffies;
2929 buffer_info->mapped_as_page = true;
2930 buffer_info->dma = skb_frag_dma_map(&pdev->dev, frag,
2931 offset, size, DMA_TO_DEVICE);
2932 if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2933 goto dma_error;
2934 buffer_info->next_to_watch = i;
2935
2936 len -= size;
2937 offset += size;
2938 count++;
2939 }
2940 }
2941
2942 segs = skb_shinfo(skb)->gso_segs ?: 1;
2943 /* multiply data chunks by size of headers */
2944 bytecount = ((segs - 1) * skb_headlen(skb)) + skb->len;
2945
2946 tx_ring->buffer_info[i].skb = skb;
2947 tx_ring->buffer_info[i].segs = segs;
2948 tx_ring->buffer_info[i].bytecount = bytecount;
2949 tx_ring->buffer_info[first].next_to_watch = i;
2950
2951 return count;
2952
2953dma_error:
2954 dev_err(&pdev->dev, "TX DMA map failed\n");
2955 buffer_info->dma = 0;
2956 if (count)
2957 count--;
2958
2959 while (count--) {
2960 if (i == 0)
2961 i += tx_ring->count;
2962 i--;
2963 buffer_info = &tx_ring->buffer_info[i];
2964 e1000_unmap_and_free_tx_resource(adapter, buffer_info, 0);
2965 }
2966
2967 return 0;
2968}
2969
2970static void e1000_tx_queue(struct e1000_adapter *adapter,
2971 struct e1000_tx_ring *tx_ring, int tx_flags,
2972 int count)
2973{
2974 struct e1000_tx_desc *tx_desc = NULL;
2975 struct e1000_tx_buffer *buffer_info;
2976 u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
2977 unsigned int i;
2978
2979 if (likely(tx_flags & E1000_TX_FLAGS_TSO)) {
2980 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
2981 E1000_TXD_CMD_TSE;
2982 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2983
2984 if (likely(tx_flags & E1000_TX_FLAGS_IPV4))
2985 txd_upper |= E1000_TXD_POPTS_IXSM << 8;
2986 }
2987
2988 if (likely(tx_flags & E1000_TX_FLAGS_CSUM)) {
2989 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
2990 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2991 }
2992
2993 if (unlikely(tx_flags & E1000_TX_FLAGS_VLAN)) {
2994 txd_lower |= E1000_TXD_CMD_VLE;
2995 txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
2996 }
2997
2998 if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
2999 txd_lower &= ~(E1000_TXD_CMD_IFCS);
3000
3001 i = tx_ring->next_to_use;
3002
3003 while (count--) {
3004 buffer_info = &tx_ring->buffer_info[i];
3005 tx_desc = E1000_TX_DESC(*tx_ring, i);
3006 tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
3007 tx_desc->lower.data =
3008 cpu_to_le32(txd_lower | buffer_info->length);
3009 tx_desc->upper.data = cpu_to_le32(txd_upper);
3010 if (unlikely(++i == tx_ring->count))
3011 i = 0;
3012 }
3013
3014 tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
3015
3016 /* txd_cmd re-enables FCS, so we'll re-disable it here as desired. */
3017 if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
3018 tx_desc->lower.data &= ~(cpu_to_le32(E1000_TXD_CMD_IFCS));
3019
3020 /* Force memory writes to complete before letting h/w
3021 * know there are new descriptors to fetch. (Only
3022 * applicable for weak-ordered memory model archs,
3023 * such as IA-64).
3024 */
3025 dma_wmb();
3026
3027 tx_ring->next_to_use = i;
3028}
3029
3030/* 82547 workaround to avoid controller hang in half-duplex environment.
3031 * The workaround is to avoid queuing a large packet that would span
3032 * the internal Tx FIFO ring boundary by notifying the stack to resend
3033 * the packet at a later time. This gives the Tx FIFO an opportunity to
3034 * flush all packets. When that occurs, we reset the Tx FIFO pointers
3035 * to the beginning of the Tx FIFO.
3036 */
3037
3038#define E1000_FIFO_HDR 0x10
3039#define E1000_82547_PAD_LEN 0x3E0
3040
3041static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
3042 struct sk_buff *skb)
3043{
3044 u32 fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head;
3045 u32 skb_fifo_len = skb->len + E1000_FIFO_HDR;
3046
3047 skb_fifo_len = ALIGN(skb_fifo_len, E1000_FIFO_HDR);
3048
3049 if (adapter->link_duplex != HALF_DUPLEX)
3050 goto no_fifo_stall_required;
3051
3052 if (atomic_read(&adapter->tx_fifo_stall))
3053 return 1;
3054
3055 if (skb_fifo_len >= (E1000_82547_PAD_LEN + fifo_space)) {
3056 atomic_set(&adapter->tx_fifo_stall, 1);
3057 return 1;
3058 }
3059
3060no_fifo_stall_required:
3061 adapter->tx_fifo_head += skb_fifo_len;
3062 if (adapter->tx_fifo_head >= adapter->tx_fifo_size)
3063 adapter->tx_fifo_head -= adapter->tx_fifo_size;
3064 return 0;
3065}
3066
3067static int __e1000_maybe_stop_tx(struct net_device *netdev, int size)
3068{
3069 struct e1000_adapter *adapter = netdev_priv(netdev);
3070 struct e1000_tx_ring *tx_ring = adapter->tx_ring;
3071
3072 netif_stop_queue(netdev);
3073 /* Herbert's original patch had:
3074 * smp_mb__after_netif_stop_queue();
3075 * but since that doesn't exist yet, just open code it.
3076 */
3077 smp_mb();
3078
3079 /* We need to check again in a case another CPU has just
3080 * made room available.
3081 */
3082 if (likely(E1000_DESC_UNUSED(tx_ring) < size))
3083 return -EBUSY;
3084
3085 /* A reprieve! */
3086 netif_start_queue(netdev);
3087 ++adapter->restart_queue;
3088 return 0;
3089}
3090
3091static int e1000_maybe_stop_tx(struct net_device *netdev,
3092 struct e1000_tx_ring *tx_ring, int size)
3093{
3094 if (likely(E1000_DESC_UNUSED(tx_ring) >= size))
3095 return 0;
3096 return __e1000_maybe_stop_tx(netdev, size);
3097}
3098
3099#define TXD_USE_COUNT(S, X) (((S) + ((1 << (X)) - 1)) >> (X))
3100static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
3101 struct net_device *netdev)
3102{
3103 struct e1000_adapter *adapter = netdev_priv(netdev);
3104 struct e1000_hw *hw = &adapter->hw;
3105 struct e1000_tx_ring *tx_ring;
3106 unsigned int first, max_per_txd = E1000_MAX_DATA_PER_TXD;
3107 unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
3108 unsigned int tx_flags = 0;
3109 unsigned int len = skb_headlen(skb);
3110 unsigned int nr_frags;
3111 unsigned int mss;
3112 int count = 0;
3113 int tso;
3114 unsigned int f;
3115 __be16 protocol = vlan_get_protocol(skb);
3116
3117 /* This goes back to the question of how to logically map a Tx queue
3118 * to a flow. Right now, performance is impacted slightly negatively
3119 * if using multiple Tx queues. If the stack breaks away from a
3120 * single qdisc implementation, we can look at this again.
3121 */
3122 tx_ring = adapter->tx_ring;
3123
3124 /* On PCI/PCI-X HW, if packet size is less than ETH_ZLEN,
3125 * packets may get corrupted during padding by HW.
3126 * To WA this issue, pad all small packets manually.
3127 */
3128 if (eth_skb_pad(skb))
3129 return NETDEV_TX_OK;
3130
3131 mss = skb_shinfo(skb)->gso_size;
3132 /* The controller does a simple calculation to
3133 * make sure there is enough room in the FIFO before
3134 * initiating the DMA for each buffer. The calc is:
3135 * 4 = ceil(buffer len/mss). To make sure we don't
3136 * overrun the FIFO, adjust the max buffer len if mss
3137 * drops.
3138 */
3139 if (mss) {
3140 u8 hdr_len;
3141 max_per_txd = min(mss << 2, max_per_txd);
3142 max_txd_pwr = fls(max_per_txd) - 1;
3143
3144 hdr_len = skb_tcp_all_headers(skb);
3145 if (skb->data_len && hdr_len == len) {
3146 switch (hw->mac_type) {
3147 case e1000_82544: {
3148 unsigned int pull_size;
3149
3150 /* Make sure we have room to chop off 4 bytes,
3151 * and that the end alignment will work out to
3152 * this hardware's requirements
3153 * NOTE: this is a TSO only workaround
3154 * if end byte alignment not correct move us
3155 * into the next dword
3156 */
3157 if ((unsigned long)(skb_tail_pointer(skb) - 1)
3158 & 4)
3159 break;
3160 pull_size = min((unsigned int)4, skb->data_len);
3161 if (!__pskb_pull_tail(skb, pull_size)) {
3162 e_err(drv, "__pskb_pull_tail "
3163 "failed.\n");
3164 dev_kfree_skb_any(skb);
3165 return NETDEV_TX_OK;
3166 }
3167 len = skb_headlen(skb);
3168 break;
3169 }
3170 default:
3171 /* do nothing */
3172 break;
3173 }
3174 }
3175 }
3176
3177 /* reserve a descriptor for the offload context */
3178 if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
3179 count++;
3180 count++;
3181
3182 /* Controller Erratum workaround */
3183 if (!skb->data_len && tx_ring->last_tx_tso && !skb_is_gso(skb))
3184 count++;
3185
3186 count += TXD_USE_COUNT(len, max_txd_pwr);
3187
3188 if (adapter->pcix_82544)
3189 count++;
3190
3191 /* work-around for errata 10 and it applies to all controllers
3192 * in PCI-X mode, so add one more descriptor to the count
3193 */
3194 if (unlikely((hw->bus_type == e1000_bus_type_pcix) &&
3195 (len > 2015)))
3196 count++;
3197
3198 nr_frags = skb_shinfo(skb)->nr_frags;
3199 for (f = 0; f < nr_frags; f++)
3200 count += TXD_USE_COUNT(skb_frag_size(&skb_shinfo(skb)->frags[f]),
3201 max_txd_pwr);
3202 if (adapter->pcix_82544)
3203 count += nr_frags;
3204
3205 /* need: count + 2 desc gap to keep tail from touching
3206 * head, otherwise try next time
3207 */
3208 if (unlikely(e1000_maybe_stop_tx(netdev, tx_ring, count + 2)))
3209 return NETDEV_TX_BUSY;
3210
3211 if (unlikely((hw->mac_type == e1000_82547) &&
3212 (e1000_82547_fifo_workaround(adapter, skb)))) {
3213 netif_stop_queue(netdev);
3214 if (!test_bit(__E1000_DOWN, &adapter->flags))
3215 schedule_delayed_work(&adapter->fifo_stall_task, 1);
3216 return NETDEV_TX_BUSY;
3217 }
3218
3219 if (skb_vlan_tag_present(skb)) {
3220 tx_flags |= E1000_TX_FLAGS_VLAN;
3221 tx_flags |= (skb_vlan_tag_get(skb) <<
3222 E1000_TX_FLAGS_VLAN_SHIFT);
3223 }
3224
3225 first = tx_ring->next_to_use;
3226
3227 tso = e1000_tso(adapter, tx_ring, skb, protocol);
3228 if (tso < 0) {
3229 dev_kfree_skb_any(skb);
3230 return NETDEV_TX_OK;
3231 }
3232
3233 if (likely(tso)) {
3234 if (likely(hw->mac_type != e1000_82544))
3235 tx_ring->last_tx_tso = true;
3236 tx_flags |= E1000_TX_FLAGS_TSO;
3237 } else if (likely(e1000_tx_csum(adapter, tx_ring, skb, protocol)))
3238 tx_flags |= E1000_TX_FLAGS_CSUM;
3239
3240 if (protocol == htons(ETH_P_IP))
3241 tx_flags |= E1000_TX_FLAGS_IPV4;
3242
3243 if (unlikely(skb->no_fcs))
3244 tx_flags |= E1000_TX_FLAGS_NO_FCS;
3245
3246 count = e1000_tx_map(adapter, tx_ring, skb, first, max_per_txd,
3247 nr_frags, mss);
3248
3249 if (count) {
3250 /* The descriptors needed is higher than other Intel drivers
3251 * due to a number of workarounds. The breakdown is below:
3252 * Data descriptors: MAX_SKB_FRAGS + 1
3253 * Context Descriptor: 1
3254 * Keep head from touching tail: 2
3255 * Workarounds: 3
3256 */
3257 int desc_needed = MAX_SKB_FRAGS + 7;
3258
3259 netdev_sent_queue(netdev, skb->len);
3260 skb_tx_timestamp(skb);
3261
3262 e1000_tx_queue(adapter, tx_ring, tx_flags, count);
3263
3264 /* 82544 potentially requires twice as many data descriptors
3265 * in order to guarantee buffers don't end on evenly-aligned
3266 * dwords
3267 */
3268 if (adapter->pcix_82544)
3269 desc_needed += MAX_SKB_FRAGS + 1;
3270
3271 /* Make sure there is space in the ring for the next send. */
3272 e1000_maybe_stop_tx(netdev, tx_ring, desc_needed);
3273
3274 if (!netdev_xmit_more() ||
3275 netif_xmit_stopped(netdev_get_tx_queue(netdev, 0))) {
3276 writel(tx_ring->next_to_use, hw->hw_addr + tx_ring->tdt);
3277 }
3278 } else {
3279 dev_kfree_skb_any(skb);
3280 tx_ring->buffer_info[first].time_stamp = 0;
3281 tx_ring->next_to_use = first;
3282 }
3283
3284 return NETDEV_TX_OK;
3285}
3286
3287#define NUM_REGS 38 /* 1 based count */
3288static void e1000_regdump(struct e1000_adapter *adapter)
3289{
3290 struct e1000_hw *hw = &adapter->hw;
3291 u32 regs[NUM_REGS];
3292 u32 *regs_buff = regs;
3293 int i = 0;
3294
3295 static const char * const reg_name[] = {
3296 "CTRL", "STATUS",
3297 "RCTL", "RDLEN", "RDH", "RDT", "RDTR",
3298 "TCTL", "TDBAL", "TDBAH", "TDLEN", "TDH", "TDT",
3299 "TIDV", "TXDCTL", "TADV", "TARC0",
3300 "TDBAL1", "TDBAH1", "TDLEN1", "TDH1", "TDT1",
3301 "TXDCTL1", "TARC1",
3302 "CTRL_EXT", "ERT", "RDBAL", "RDBAH",
3303 "TDFH", "TDFT", "TDFHS", "TDFTS", "TDFPC",
3304 "RDFH", "RDFT", "RDFHS", "RDFTS", "RDFPC"
3305 };
3306
3307 regs_buff[0] = er32(CTRL);
3308 regs_buff[1] = er32(STATUS);
3309
3310 regs_buff[2] = er32(RCTL);
3311 regs_buff[3] = er32(RDLEN);
3312 regs_buff[4] = er32(RDH);
3313 regs_buff[5] = er32(RDT);
3314 regs_buff[6] = er32(RDTR);
3315
3316 regs_buff[7] = er32(TCTL);
3317 regs_buff[8] = er32(TDBAL);
3318 regs_buff[9] = er32(TDBAH);
3319 regs_buff[10] = er32(TDLEN);
3320 regs_buff[11] = er32(TDH);
3321 regs_buff[12] = er32(TDT);
3322 regs_buff[13] = er32(TIDV);
3323 regs_buff[14] = er32(TXDCTL);
3324 regs_buff[15] = er32(TADV);
3325 regs_buff[16] = er32(TARC0);
3326
3327 regs_buff[17] = er32(TDBAL1);
3328 regs_buff[18] = er32(TDBAH1);
3329 regs_buff[19] = er32(TDLEN1);
3330 regs_buff[20] = er32(TDH1);
3331 regs_buff[21] = er32(TDT1);
3332 regs_buff[22] = er32(TXDCTL1);
3333 regs_buff[23] = er32(TARC1);
3334 regs_buff[24] = er32(CTRL_EXT);
3335 regs_buff[25] = er32(ERT);
3336 regs_buff[26] = er32(RDBAL0);
3337 regs_buff[27] = er32(RDBAH0);
3338 regs_buff[28] = er32(TDFH);
3339 regs_buff[29] = er32(TDFT);
3340 regs_buff[30] = er32(TDFHS);
3341 regs_buff[31] = er32(TDFTS);
3342 regs_buff[32] = er32(TDFPC);
3343 regs_buff[33] = er32(RDFH);
3344 regs_buff[34] = er32(RDFT);
3345 regs_buff[35] = er32(RDFHS);
3346 regs_buff[36] = er32(RDFTS);
3347 regs_buff[37] = er32(RDFPC);
3348
3349 pr_info("Register dump\n");
3350 for (i = 0; i < NUM_REGS; i++)
3351 pr_info("%-15s %08x\n", reg_name[i], regs_buff[i]);
3352}
3353
3354/*
3355 * e1000_dump: Print registers, tx ring and rx ring
3356 */
3357static void e1000_dump(struct e1000_adapter *adapter)
3358{
3359 /* this code doesn't handle multiple rings */
3360 struct e1000_tx_ring *tx_ring = adapter->tx_ring;
3361 struct e1000_rx_ring *rx_ring = adapter->rx_ring;
3362 int i;
3363
3364 if (!netif_msg_hw(adapter))
3365 return;
3366
3367 /* Print Registers */
3368 e1000_regdump(adapter);
3369
3370 /* transmit dump */
3371 pr_info("TX Desc ring0 dump\n");
3372
3373 /* Transmit Descriptor Formats - DEXT[29] is 0 (Legacy) or 1 (Extended)
3374 *
3375 * Legacy Transmit Descriptor
3376 * +--------------------------------------------------------------+
3377 * 0 | Buffer Address [63:0] (Reserved on Write Back) |
3378 * +--------------------------------------------------------------+
3379 * 8 | Special | CSS | Status | CMD | CSO | Length |
3380 * +--------------------------------------------------------------+
3381 * 63 48 47 36 35 32 31 24 23 16 15 0
3382 *
3383 * Extended Context Descriptor (DTYP=0x0) for TSO or checksum offload
3384 * 63 48 47 40 39 32 31 16 15 8 7 0
3385 * +----------------------------------------------------------------+
3386 * 0 | TUCSE | TUCS0 | TUCSS | IPCSE | IPCS0 | IPCSS |
3387 * +----------------------------------------------------------------+
3388 * 8 | MSS | HDRLEN | RSV | STA | TUCMD | DTYP | PAYLEN |
3389 * +----------------------------------------------------------------+
3390 * 63 48 47 40 39 36 35 32 31 24 23 20 19 0
3391 *
3392 * Extended Data Descriptor (DTYP=0x1)
3393 * +----------------------------------------------------------------+
3394 * 0 | Buffer Address [63:0] |
3395 * +----------------------------------------------------------------+
3396 * 8 | VLAN tag | POPTS | Rsvd | Status | Command | DTYP | DTALEN |
3397 * +----------------------------------------------------------------+
3398 * 63 48 47 40 39 36 35 32 31 24 23 20 19 0
3399 */
3400 pr_info("Tc[desc] [Ce CoCsIpceCoS] [MssHlRSCm0Plen] [bi->dma ] leng ntw timestmp bi->skb\n");
3401 pr_info("Td[desc] [address 63:0 ] [VlaPoRSCm1Dlen] [bi->dma ] leng ntw timestmp bi->skb\n");
3402
3403 if (!netif_msg_tx_done(adapter))
3404 goto rx_ring_summary;
3405
3406 for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
3407 struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*tx_ring, i);
3408 struct e1000_tx_buffer *buffer_info = &tx_ring->buffer_info[i];
3409 struct my_u { __le64 a; __le64 b; };
3410 struct my_u *u = (struct my_u *)tx_desc;
3411 const char *type;
3412
3413 if (i == tx_ring->next_to_use && i == tx_ring->next_to_clean)
3414 type = "NTC/U";
3415 else if (i == tx_ring->next_to_use)
3416 type = "NTU";
3417 else if (i == tx_ring->next_to_clean)
3418 type = "NTC";
3419 else
3420 type = "";
3421
3422 pr_info("T%c[0x%03X] %016llX %016llX %016llX %04X %3X %016llX %p %s\n",
3423 ((le64_to_cpu(u->b) & (1<<20)) ? 'd' : 'c'), i,
3424 le64_to_cpu(u->a), le64_to_cpu(u->b),
3425 (u64)buffer_info->dma, buffer_info->length,
3426 buffer_info->next_to_watch,
3427 (u64)buffer_info->time_stamp, buffer_info->skb, type);
3428 }
3429
3430rx_ring_summary:
3431 /* receive dump */
3432 pr_info("\nRX Desc ring dump\n");
3433
3434 /* Legacy Receive Descriptor Format
3435 *
3436 * +-----------------------------------------------------+
3437 * | Buffer Address [63:0] |
3438 * +-----------------------------------------------------+
3439 * | VLAN Tag | Errors | Status 0 | Packet csum | Length |
3440 * +-----------------------------------------------------+
3441 * 63 48 47 40 39 32 31 16 15 0
3442 */
3443 pr_info("R[desc] [address 63:0 ] [vl er S cks ln] [bi->dma ] [bi->skb]\n");
3444
3445 if (!netif_msg_rx_status(adapter))
3446 goto exit;
3447
3448 for (i = 0; rx_ring->desc && (i < rx_ring->count); i++) {
3449 struct e1000_rx_desc *rx_desc = E1000_RX_DESC(*rx_ring, i);
3450 struct e1000_rx_buffer *buffer_info = &rx_ring->buffer_info[i];
3451 struct my_u { __le64 a; __le64 b; };
3452 struct my_u *u = (struct my_u *)rx_desc;
3453 const char *type;
3454
3455 if (i == rx_ring->next_to_use)
3456 type = "NTU";
3457 else if (i == rx_ring->next_to_clean)
3458 type = "NTC";
3459 else
3460 type = "";
3461
3462 pr_info("R[0x%03X] %016llX %016llX %016llX %p %s\n",
3463 i, le64_to_cpu(u->a), le64_to_cpu(u->b),
3464 (u64)buffer_info->dma, buffer_info->rxbuf.data, type);
3465 } /* for */
3466
3467 /* dump the descriptor caches */
3468 /* rx */
3469 pr_info("Rx descriptor cache in 64bit format\n");
3470 for (i = 0x6000; i <= 0x63FF ; i += 0x10) {
3471 pr_info("R%04X: %08X|%08X %08X|%08X\n",
3472 i,
3473 readl(adapter->hw.hw_addr + i+4),
3474 readl(adapter->hw.hw_addr + i),
3475 readl(adapter->hw.hw_addr + i+12),
3476 readl(adapter->hw.hw_addr + i+8));
3477 }
3478 /* tx */
3479 pr_info("Tx descriptor cache in 64bit format\n");
3480 for (i = 0x7000; i <= 0x73FF ; i += 0x10) {
3481 pr_info("T%04X: %08X|%08X %08X|%08X\n",
3482 i,
3483 readl(adapter->hw.hw_addr + i+4),
3484 readl(adapter->hw.hw_addr + i),
3485 readl(adapter->hw.hw_addr + i+12),
3486 readl(adapter->hw.hw_addr + i+8));
3487 }
3488exit:
3489 return;
3490}
3491
3492/**
3493 * e1000_tx_timeout - Respond to a Tx Hang
3494 * @netdev: network interface device structure
3495 * @txqueue: number of the Tx queue that hung (unused)
3496 **/
3497static void e1000_tx_timeout(struct net_device *netdev, unsigned int __always_unused txqueue)
3498{
3499 struct e1000_adapter *adapter = netdev_priv(netdev);
3500
3501 /* Do the reset outside of interrupt context */
3502 adapter->tx_timeout_count++;
3503 schedule_work(&adapter->reset_task);
3504}
3505
3506static void e1000_reset_task(struct work_struct *work)
3507{
3508 struct e1000_adapter *adapter =
3509 container_of(work, struct e1000_adapter, reset_task);
3510
3511 e_err(drv, "Reset adapter\n");
3512 rtnl_lock();
3513 e1000_reinit_locked(adapter);
3514 rtnl_unlock();
3515}
3516
3517/**
3518 * e1000_change_mtu - Change the Maximum Transfer Unit
3519 * @netdev: network interface device structure
3520 * @new_mtu: new value for maximum frame size
3521 *
3522 * Returns 0 on success, negative on failure
3523 **/
3524static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
3525{
3526 struct e1000_adapter *adapter = netdev_priv(netdev);
3527 struct e1000_hw *hw = &adapter->hw;
3528 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
3529
3530 /* Adapter-specific max frame size limits. */
3531 switch (hw->mac_type) {
3532 case e1000_undefined ... e1000_82542_rev2_1:
3533 if (max_frame > (ETH_FRAME_LEN + ETH_FCS_LEN)) {
3534 e_err(probe, "Jumbo Frames not supported.\n");
3535 return -EINVAL;
3536 }
3537 break;
3538 default:
3539 /* Capable of supporting up to MAX_JUMBO_FRAME_SIZE limit. */
3540 break;
3541 }
3542
3543 while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
3544 msleep(1);
3545 /* e1000_down has a dependency on max_frame_size */
3546 hw->max_frame_size = max_frame;
3547 if (netif_running(netdev)) {
3548 /* prevent buffers from being reallocated */
3549 adapter->alloc_rx_buf = e1000_alloc_dummy_rx_buffers;
3550 e1000_down(adapter);
3551 }
3552
3553 /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
3554 * means we reserve 2 more, this pushes us to allocate from the next
3555 * larger slab size.
3556 * i.e. RXBUFFER_2048 --> size-4096 slab
3557 * however with the new *_jumbo_rx* routines, jumbo receives will use
3558 * fragmented skbs
3559 */
3560
3561 if (max_frame <= E1000_RXBUFFER_2048)
3562 adapter->rx_buffer_len = E1000_RXBUFFER_2048;
3563 else
3564#if (PAGE_SIZE >= E1000_RXBUFFER_16384)
3565 adapter->rx_buffer_len = E1000_RXBUFFER_16384;
3566#elif (PAGE_SIZE >= E1000_RXBUFFER_4096)
3567 adapter->rx_buffer_len = PAGE_SIZE;
3568#endif
3569
3570 /* adjust allocation if LPE protects us, and we aren't using SBP */
3571 if (!hw->tbi_compatibility_on &&
3572 ((max_frame == (ETH_FRAME_LEN + ETH_FCS_LEN)) ||
3573 (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE)))
3574 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
3575
3576 netdev_dbg(netdev, "changing MTU from %d to %d\n",
3577 netdev->mtu, new_mtu);
3578 WRITE_ONCE(netdev->mtu, new_mtu);
3579
3580 if (netif_running(netdev))
3581 e1000_up(adapter);
3582 else
3583 e1000_reset(adapter);
3584
3585 clear_bit(__E1000_RESETTING, &adapter->flags);
3586
3587 return 0;
3588}
3589
3590/**
3591 * e1000_update_stats - Update the board statistics counters
3592 * @adapter: board private structure
3593 **/
3594void e1000_update_stats(struct e1000_adapter *adapter)
3595{
3596 struct net_device *netdev = adapter->netdev;
3597 struct e1000_hw *hw = &adapter->hw;
3598 struct pci_dev *pdev = adapter->pdev;
3599 unsigned long flags;
3600 u16 phy_tmp;
3601
3602#define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
3603
3604 /* Prevent stats update while adapter is being reset, or if the pci
3605 * connection is down.
3606 */
3607 if (adapter->link_speed == 0)
3608 return;
3609 if (pci_channel_offline(pdev))
3610 return;
3611
3612 spin_lock_irqsave(&adapter->stats_lock, flags);
3613
3614 /* these counters are modified from e1000_tbi_adjust_stats,
3615 * called from the interrupt context, so they must only
3616 * be written while holding adapter->stats_lock
3617 */
3618
3619 adapter->stats.crcerrs += er32(CRCERRS);
3620 adapter->stats.gprc += er32(GPRC);
3621 adapter->stats.gorcl += er32(GORCL);
3622 adapter->stats.gorch += er32(GORCH);
3623 adapter->stats.bprc += er32(BPRC);
3624 adapter->stats.mprc += er32(MPRC);
3625 adapter->stats.roc += er32(ROC);
3626
3627 adapter->stats.prc64 += er32(PRC64);
3628 adapter->stats.prc127 += er32(PRC127);
3629 adapter->stats.prc255 += er32(PRC255);
3630 adapter->stats.prc511 += er32(PRC511);
3631 adapter->stats.prc1023 += er32(PRC1023);
3632 adapter->stats.prc1522 += er32(PRC1522);
3633
3634 adapter->stats.symerrs += er32(SYMERRS);
3635 adapter->stats.mpc += er32(MPC);
3636 adapter->stats.scc += er32(SCC);
3637 adapter->stats.ecol += er32(ECOL);
3638 adapter->stats.mcc += er32(MCC);
3639 adapter->stats.latecol += er32(LATECOL);
3640 adapter->stats.dc += er32(DC);
3641 adapter->stats.sec += er32(SEC);
3642 adapter->stats.rlec += er32(RLEC);
3643 adapter->stats.xonrxc += er32(XONRXC);
3644 adapter->stats.xontxc += er32(XONTXC);
3645 adapter->stats.xoffrxc += er32(XOFFRXC);
3646 adapter->stats.xofftxc += er32(XOFFTXC);
3647 adapter->stats.fcruc += er32(FCRUC);
3648 adapter->stats.gptc += er32(GPTC);
3649 adapter->stats.gotcl += er32(GOTCL);
3650 adapter->stats.gotch += er32(GOTCH);
3651 adapter->stats.rnbc += er32(RNBC);
3652 adapter->stats.ruc += er32(RUC);
3653 adapter->stats.rfc += er32(RFC);
3654 adapter->stats.rjc += er32(RJC);
3655 adapter->stats.torl += er32(TORL);
3656 adapter->stats.torh += er32(TORH);
3657 adapter->stats.totl += er32(TOTL);
3658 adapter->stats.toth += er32(TOTH);
3659 adapter->stats.tpr += er32(TPR);
3660
3661 adapter->stats.ptc64 += er32(PTC64);
3662 adapter->stats.ptc127 += er32(PTC127);
3663 adapter->stats.ptc255 += er32(PTC255);
3664 adapter->stats.ptc511 += er32(PTC511);
3665 adapter->stats.ptc1023 += er32(PTC1023);
3666 adapter->stats.ptc1522 += er32(PTC1522);
3667
3668 adapter->stats.mptc += er32(MPTC);
3669 adapter->stats.bptc += er32(BPTC);
3670
3671 /* used for adaptive IFS */
3672
3673 hw->tx_packet_delta = er32(TPT);
3674 adapter->stats.tpt += hw->tx_packet_delta;
3675 hw->collision_delta = er32(COLC);
3676 adapter->stats.colc += hw->collision_delta;
3677
3678 if (hw->mac_type >= e1000_82543) {
3679 adapter->stats.algnerrc += er32(ALGNERRC);
3680 adapter->stats.rxerrc += er32(RXERRC);
3681 adapter->stats.tncrs += er32(TNCRS);
3682 adapter->stats.cexterr += er32(CEXTERR);
3683 adapter->stats.tsctc += er32(TSCTC);
3684 adapter->stats.tsctfc += er32(TSCTFC);
3685 }
3686
3687 /* Fill out the OS statistics structure */
3688 netdev->stats.multicast = adapter->stats.mprc;
3689 netdev->stats.collisions = adapter->stats.colc;
3690
3691 /* Rx Errors */
3692
3693 /* RLEC on some newer hardware can be incorrect so build
3694 * our own version based on RUC and ROC
3695 */
3696 netdev->stats.rx_errors = adapter->stats.rxerrc +
3697 adapter->stats.crcerrs + adapter->stats.algnerrc +
3698 adapter->stats.ruc + adapter->stats.roc +
3699 adapter->stats.cexterr;
3700 adapter->stats.rlerrc = adapter->stats.ruc + adapter->stats.roc;
3701 netdev->stats.rx_length_errors = adapter->stats.rlerrc;
3702 netdev->stats.rx_crc_errors = adapter->stats.crcerrs;
3703 netdev->stats.rx_frame_errors = adapter->stats.algnerrc;
3704 netdev->stats.rx_missed_errors = adapter->stats.mpc;
3705
3706 /* Tx Errors */
3707 adapter->stats.txerrc = adapter->stats.ecol + adapter->stats.latecol;
3708 netdev->stats.tx_errors = adapter->stats.txerrc;
3709 netdev->stats.tx_aborted_errors = adapter->stats.ecol;
3710 netdev->stats.tx_window_errors = adapter->stats.latecol;
3711 netdev->stats.tx_carrier_errors = adapter->stats.tncrs;
3712 if (hw->bad_tx_carr_stats_fd &&
3713 adapter->link_duplex == FULL_DUPLEX) {
3714 netdev->stats.tx_carrier_errors = 0;
3715 adapter->stats.tncrs = 0;
3716 }
3717
3718 /* Tx Dropped needs to be maintained elsewhere */
3719
3720 /* Phy Stats */
3721 if (hw->media_type == e1000_media_type_copper) {
3722 if ((adapter->link_speed == SPEED_1000) &&
3723 (!e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
3724 phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
3725 adapter->phy_stats.idle_errors += phy_tmp;
3726 }
3727
3728 if ((hw->mac_type <= e1000_82546) &&
3729 (hw->phy_type == e1000_phy_m88) &&
3730 !e1000_read_phy_reg(hw, M88E1000_RX_ERR_CNTR, &phy_tmp))
3731 adapter->phy_stats.receive_errors += phy_tmp;
3732 }
3733
3734 /* Management Stats */
3735 if (hw->has_smbus) {
3736 adapter->stats.mgptc += er32(MGTPTC);
3737 adapter->stats.mgprc += er32(MGTPRC);
3738 adapter->stats.mgpdc += er32(MGTPDC);
3739 }
3740
3741 spin_unlock_irqrestore(&adapter->stats_lock, flags);
3742}
3743
3744/**
3745 * e1000_intr - Interrupt Handler
3746 * @irq: interrupt number
3747 * @data: pointer to a network interface device structure
3748 **/
3749static irqreturn_t e1000_intr(int irq, void *data)
3750{
3751 struct net_device *netdev = data;
3752 struct e1000_adapter *adapter = netdev_priv(netdev);
3753 struct e1000_hw *hw = &adapter->hw;
3754 u32 icr = er32(ICR);
3755
3756 if (unlikely((!icr)))
3757 return IRQ_NONE; /* Not our interrupt */
3758
3759 /* we might have caused the interrupt, but the above
3760 * read cleared it, and just in case the driver is
3761 * down there is nothing to do so return handled
3762 */
3763 if (unlikely(test_bit(__E1000_DOWN, &adapter->flags)))
3764 return IRQ_HANDLED;
3765
3766 if (unlikely(icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))) {
3767 hw->get_link_status = 1;
3768 /* guard against interrupt when we're going down */
3769 if (!test_bit(__E1000_DOWN, &adapter->flags))
3770 schedule_delayed_work(&adapter->watchdog_task, 1);
3771 }
3772
3773 /* disable interrupts, without the synchronize_irq bit */
3774 ew32(IMC, ~0);
3775 E1000_WRITE_FLUSH();
3776
3777 if (likely(napi_schedule_prep(&adapter->napi))) {
3778 adapter->total_tx_bytes = 0;
3779 adapter->total_tx_packets = 0;
3780 adapter->total_rx_bytes = 0;
3781 adapter->total_rx_packets = 0;
3782 __napi_schedule(&adapter->napi);
3783 } else {
3784 /* this really should not happen! if it does it is basically a
3785 * bug, but not a hard error, so enable ints and continue
3786 */
3787 if (!test_bit(__E1000_DOWN, &adapter->flags))
3788 e1000_irq_enable(adapter);
3789 }
3790
3791 return IRQ_HANDLED;
3792}
3793
3794/**
3795 * e1000_clean - NAPI Rx polling callback
3796 * @napi: napi struct containing references to driver info
3797 * @budget: budget given to driver for receive packets
3798 **/
3799static int e1000_clean(struct napi_struct *napi, int budget)
3800{
3801 struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter,
3802 napi);
3803 int tx_clean_complete = 0, work_done = 0;
3804
3805 tx_clean_complete = e1000_clean_tx_irq(adapter, &adapter->tx_ring[0]);
3806
3807 adapter->clean_rx(adapter, &adapter->rx_ring[0], &work_done, budget);
3808
3809 if (!tx_clean_complete || work_done == budget)
3810 return budget;
3811
3812 /* Exit the polling mode, but don't re-enable interrupts if stack might
3813 * poll us due to busy-polling
3814 */
3815 if (likely(napi_complete_done(napi, work_done))) {
3816 if (likely(adapter->itr_setting & 3))
3817 e1000_set_itr(adapter);
3818 if (!test_bit(__E1000_DOWN, &adapter->flags))
3819 e1000_irq_enable(adapter);
3820 }
3821
3822 return work_done;
3823}
3824
3825/**
3826 * e1000_clean_tx_irq - Reclaim resources after transmit completes
3827 * @adapter: board private structure
3828 * @tx_ring: ring to clean
3829 **/
3830static bool e1000_clean_tx_irq(struct e1000_adapter *adapter,
3831 struct e1000_tx_ring *tx_ring)
3832{
3833 struct e1000_hw *hw = &adapter->hw;
3834 struct net_device *netdev = adapter->netdev;
3835 struct e1000_tx_desc *tx_desc, *eop_desc;
3836 struct e1000_tx_buffer *buffer_info;
3837 unsigned int i, eop;
3838 unsigned int count = 0;
3839 unsigned int total_tx_bytes = 0, total_tx_packets = 0;
3840 unsigned int bytes_compl = 0, pkts_compl = 0;
3841
3842 i = tx_ring->next_to_clean;
3843 eop = tx_ring->buffer_info[i].next_to_watch;
3844 eop_desc = E1000_TX_DESC(*tx_ring, eop);
3845
3846 while ((eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) &&
3847 (count < tx_ring->count)) {
3848 bool cleaned = false;
3849 dma_rmb(); /* read buffer_info after eop_desc */
3850 for ( ; !cleaned; count++) {
3851 tx_desc = E1000_TX_DESC(*tx_ring, i);
3852 buffer_info = &tx_ring->buffer_info[i];
3853 cleaned = (i == eop);
3854
3855 if (cleaned) {
3856 total_tx_packets += buffer_info->segs;
3857 total_tx_bytes += buffer_info->bytecount;
3858 if (buffer_info->skb) {
3859 bytes_compl += buffer_info->skb->len;
3860 pkts_compl++;
3861 }
3862
3863 }
3864 e1000_unmap_and_free_tx_resource(adapter, buffer_info,
3865 64);
3866 tx_desc->upper.data = 0;
3867
3868 if (unlikely(++i == tx_ring->count))
3869 i = 0;
3870 }
3871
3872 eop = tx_ring->buffer_info[i].next_to_watch;
3873 eop_desc = E1000_TX_DESC(*tx_ring, eop);
3874 }
3875
3876 /* Synchronize with E1000_DESC_UNUSED called from e1000_xmit_frame,
3877 * which will reuse the cleaned buffers.
3878 */
3879 smp_store_release(&tx_ring->next_to_clean, i);
3880
3881 netdev_completed_queue(netdev, pkts_compl, bytes_compl);
3882
3883#define TX_WAKE_THRESHOLD 32
3884 if (unlikely(count && netif_carrier_ok(netdev) &&
3885 E1000_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD)) {
3886 /* Make sure that anybody stopping the queue after this
3887 * sees the new next_to_clean.
3888 */
3889 smp_mb();
3890
3891 if (netif_queue_stopped(netdev) &&
3892 !(test_bit(__E1000_DOWN, &adapter->flags))) {
3893 netif_wake_queue(netdev);
3894 ++adapter->restart_queue;
3895 }
3896 }
3897
3898 if (adapter->detect_tx_hung) {
3899 /* Detect a transmit hang in hardware, this serializes the
3900 * check with the clearing of time_stamp and movement of i
3901 */
3902 adapter->detect_tx_hung = false;
3903 if (tx_ring->buffer_info[eop].time_stamp &&
3904 time_after(jiffies, tx_ring->buffer_info[eop].time_stamp +
3905 (adapter->tx_timeout_factor * HZ)) &&
3906 !(er32(STATUS) & E1000_STATUS_TXOFF)) {
3907
3908 /* detected Tx unit hang */
3909 e_err(drv, "Detected Tx Unit Hang\n"
3910 " Tx Queue <%lu>\n"
3911 " TDH <%x>\n"
3912 " TDT <%x>\n"
3913 " next_to_use <%x>\n"
3914 " next_to_clean <%x>\n"
3915 "buffer_info[next_to_clean]\n"
3916 " time_stamp <%lx>\n"
3917 " next_to_watch <%x>\n"
3918 " jiffies <%lx>\n"
3919 " next_to_watch.status <%x>\n",
3920 (unsigned long)(tx_ring - adapter->tx_ring),
3921 readl(hw->hw_addr + tx_ring->tdh),
3922 readl(hw->hw_addr + tx_ring->tdt),
3923 tx_ring->next_to_use,
3924 tx_ring->next_to_clean,
3925 tx_ring->buffer_info[eop].time_stamp,
3926 eop,
3927 jiffies,
3928 eop_desc->upper.fields.status);
3929 e1000_dump(adapter);
3930 netif_stop_queue(netdev);
3931 }
3932 }
3933 adapter->total_tx_bytes += total_tx_bytes;
3934 adapter->total_tx_packets += total_tx_packets;
3935 netdev->stats.tx_bytes += total_tx_bytes;
3936 netdev->stats.tx_packets += total_tx_packets;
3937 return count < tx_ring->count;
3938}
3939
3940/**
3941 * e1000_rx_checksum - Receive Checksum Offload for 82543
3942 * @adapter: board private structure
3943 * @status_err: receive descriptor status and error fields
3944 * @csum: receive descriptor csum field
3945 * @skb: socket buffer with received data
3946 **/
3947static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
3948 u32 csum, struct sk_buff *skb)
3949{
3950 struct e1000_hw *hw = &adapter->hw;
3951 u16 status = (u16)status_err;
3952 u8 errors = (u8)(status_err >> 24);
3953
3954 skb_checksum_none_assert(skb);
3955
3956 /* 82543 or newer only */
3957 if (unlikely(hw->mac_type < e1000_82543))
3958 return;
3959 /* Ignore Checksum bit is set */
3960 if (unlikely(status & E1000_RXD_STAT_IXSM))
3961 return;
3962 /* TCP/UDP checksum error bit is set */
3963 if (unlikely(errors & E1000_RXD_ERR_TCPE)) {
3964 /* let the stack verify checksum errors */
3965 adapter->hw_csum_err++;
3966 return;
3967 }
3968 /* TCP/UDP Checksum has not been calculated */
3969 if (!(status & E1000_RXD_STAT_TCPCS))
3970 return;
3971
3972 /* It must be a TCP or UDP packet with a valid checksum */
3973 if (likely(status & E1000_RXD_STAT_TCPCS)) {
3974 /* TCP checksum is good */
3975 skb->ip_summed = CHECKSUM_UNNECESSARY;
3976 }
3977 adapter->hw_csum_good++;
3978}
3979
3980/**
3981 * e1000_consume_page - helper function for jumbo Rx path
3982 * @bi: software descriptor shadow data
3983 * @skb: skb being modified
3984 * @length: length of data being added
3985 **/
3986static void e1000_consume_page(struct e1000_rx_buffer *bi, struct sk_buff *skb,
3987 u16 length)
3988{
3989 bi->rxbuf.page = NULL;
3990 skb->len += length;
3991 skb->data_len += length;
3992 skb->truesize += PAGE_SIZE;
3993}
3994
3995/**
3996 * e1000_receive_skb - helper function to handle rx indications
3997 * @adapter: board private structure
3998 * @status: descriptor status field as written by hardware
3999 * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
4000 * @skb: pointer to sk_buff to be indicated to stack
4001 */
4002static void e1000_receive_skb(struct e1000_adapter *adapter, u8 status,
4003 __le16 vlan, struct sk_buff *skb)
4004{
4005 skb->protocol = eth_type_trans(skb, adapter->netdev);
4006
4007 if (status & E1000_RXD_STAT_VP) {
4008 u16 vid = le16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK;
4009
4010 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
4011 }
4012 napi_gro_receive(&adapter->napi, skb);
4013}
4014
4015/**
4016 * e1000_tbi_adjust_stats
4017 * @hw: Struct containing variables accessed by shared code
4018 * @stats: point to stats struct
4019 * @frame_len: The length of the frame in question
4020 * @mac_addr: The Ethernet destination address of the frame in question
4021 *
4022 * Adjusts the statistic counters when a frame is accepted by TBI_ACCEPT
4023 */
4024static void e1000_tbi_adjust_stats(struct e1000_hw *hw,
4025 struct e1000_hw_stats *stats,
4026 u32 frame_len, const u8 *mac_addr)
4027{
4028 u64 carry_bit;
4029
4030 /* First adjust the frame length. */
4031 frame_len--;
4032 /* We need to adjust the statistics counters, since the hardware
4033 * counters overcount this packet as a CRC error and undercount
4034 * the packet as a good packet
4035 */
4036 /* This packet should not be counted as a CRC error. */
4037 stats->crcerrs--;
4038 /* This packet does count as a Good Packet Received. */
4039 stats->gprc++;
4040
4041 /* Adjust the Good Octets received counters */
4042 carry_bit = 0x80000000 & stats->gorcl;
4043 stats->gorcl += frame_len;
4044 /* If the high bit of Gorcl (the low 32 bits of the Good Octets
4045 * Received Count) was one before the addition,
4046 * AND it is zero after, then we lost the carry out,
4047 * need to add one to Gorch (Good Octets Received Count High).
4048 * This could be simplified if all environments supported
4049 * 64-bit integers.
4050 */
4051 if (carry_bit && ((stats->gorcl & 0x80000000) == 0))
4052 stats->gorch++;
4053 /* Is this a broadcast or multicast? Check broadcast first,
4054 * since the test for a multicast frame will test positive on
4055 * a broadcast frame.
4056 */
4057 if (is_broadcast_ether_addr(mac_addr))
4058 stats->bprc++;
4059 else if (is_multicast_ether_addr(mac_addr))
4060 stats->mprc++;
4061
4062 if (frame_len == hw->max_frame_size) {
4063 /* In this case, the hardware has overcounted the number of
4064 * oversize frames.
4065 */
4066 if (stats->roc > 0)
4067 stats->roc--;
4068 }
4069
4070 /* Adjust the bin counters when the extra byte put the frame in the
4071 * wrong bin. Remember that the frame_len was adjusted above.
4072 */
4073 if (frame_len == 64) {
4074 stats->prc64++;
4075 stats->prc127--;
4076 } else if (frame_len == 127) {
4077 stats->prc127++;
4078 stats->prc255--;
4079 } else if (frame_len == 255) {
4080 stats->prc255++;
4081 stats->prc511--;
4082 } else if (frame_len == 511) {
4083 stats->prc511++;
4084 stats->prc1023--;
4085 } else if (frame_len == 1023) {
4086 stats->prc1023++;
4087 stats->prc1522--;
4088 } else if (frame_len == 1522) {
4089 stats->prc1522++;
4090 }
4091}
4092
4093static bool e1000_tbi_should_accept(struct e1000_adapter *adapter,
4094 u8 status, u8 errors,
4095 u32 length, const u8 *data)
4096{
4097 struct e1000_hw *hw = &adapter->hw;
4098 u8 last_byte = *(data + length - 1);
4099
4100 if (TBI_ACCEPT(hw, status, errors, length, last_byte)) {
4101 unsigned long irq_flags;
4102
4103 spin_lock_irqsave(&adapter->stats_lock, irq_flags);
4104 e1000_tbi_adjust_stats(hw, &adapter->stats, length, data);
4105 spin_unlock_irqrestore(&adapter->stats_lock, irq_flags);
4106
4107 return true;
4108 }
4109
4110 return false;
4111}
4112
4113static struct sk_buff *e1000_alloc_rx_skb(struct e1000_adapter *adapter,
4114 unsigned int bufsz)
4115{
4116 struct sk_buff *skb = napi_alloc_skb(&adapter->napi, bufsz);
4117
4118 if (unlikely(!skb))
4119 adapter->alloc_rx_buff_failed++;
4120 return skb;
4121}
4122
4123/**
4124 * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
4125 * @adapter: board private structure
4126 * @rx_ring: ring to clean
4127 * @work_done: amount of napi work completed this call
4128 * @work_to_do: max amount of work allowed for this call to do
4129 *
4130 * the return value indicates whether actual cleaning was done, there
4131 * is no guarantee that everything was cleaned
4132 */
4133static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter,
4134 struct e1000_rx_ring *rx_ring,
4135 int *work_done, int work_to_do)
4136{
4137 struct net_device *netdev = adapter->netdev;
4138 struct pci_dev *pdev = adapter->pdev;
4139 struct e1000_rx_desc *rx_desc, *next_rxd;
4140 struct e1000_rx_buffer *buffer_info, *next_buffer;
4141 u32 length;
4142 unsigned int i;
4143 int cleaned_count = 0;
4144 bool cleaned = false;
4145 unsigned int total_rx_bytes = 0, total_rx_packets = 0;
4146
4147 i = rx_ring->next_to_clean;
4148 rx_desc = E1000_RX_DESC(*rx_ring, i);
4149 buffer_info = &rx_ring->buffer_info[i];
4150
4151 while (rx_desc->status & E1000_RXD_STAT_DD) {
4152 struct sk_buff *skb;
4153 u8 status;
4154
4155 if (*work_done >= work_to_do)
4156 break;
4157 (*work_done)++;
4158 dma_rmb(); /* read descriptor and rx_buffer_info after status DD */
4159
4160 status = rx_desc->status;
4161
4162 if (++i == rx_ring->count)
4163 i = 0;
4164
4165 next_rxd = E1000_RX_DESC(*rx_ring, i);
4166 prefetch(next_rxd);
4167
4168 next_buffer = &rx_ring->buffer_info[i];
4169
4170 cleaned = true;
4171 cleaned_count++;
4172 dma_unmap_page(&pdev->dev, buffer_info->dma,
4173 adapter->rx_buffer_len, DMA_FROM_DEVICE);
4174 buffer_info->dma = 0;
4175
4176 length = le16_to_cpu(rx_desc->length);
4177
4178 /* errors is only valid for DD + EOP descriptors */
4179 if (unlikely((status & E1000_RXD_STAT_EOP) &&
4180 (rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK))) {
4181 u8 *mapped = page_address(buffer_info->rxbuf.page);
4182
4183 if (e1000_tbi_should_accept(adapter, status,
4184 rx_desc->errors,
4185 length, mapped)) {
4186 length--;
4187 } else if (netdev->features & NETIF_F_RXALL) {
4188 goto process_skb;
4189 } else {
4190 /* an error means any chain goes out the window
4191 * too
4192 */
4193 dev_kfree_skb(rx_ring->rx_skb_top);
4194 rx_ring->rx_skb_top = NULL;
4195 goto next_desc;
4196 }
4197 }
4198
4199#define rxtop rx_ring->rx_skb_top
4200process_skb:
4201 if (!(status & E1000_RXD_STAT_EOP)) {
4202 /* this descriptor is only the beginning (or middle) */
4203 if (!rxtop) {
4204 /* this is the beginning of a chain */
4205 rxtop = napi_get_frags(&adapter->napi);
4206 if (!rxtop)
4207 break;
4208
4209 skb_fill_page_desc(rxtop, 0,
4210 buffer_info->rxbuf.page,
4211 0, length);
4212 } else {
4213 /* this is the middle of a chain */
4214 skb_fill_page_desc(rxtop,
4215 skb_shinfo(rxtop)->nr_frags,
4216 buffer_info->rxbuf.page, 0, length);
4217 }
4218 e1000_consume_page(buffer_info, rxtop, length);
4219 goto next_desc;
4220 } else {
4221 if (rxtop) {
4222 /* end of the chain */
4223 skb_fill_page_desc(rxtop,
4224 skb_shinfo(rxtop)->nr_frags,
4225 buffer_info->rxbuf.page, 0, length);
4226 skb = rxtop;
4227 rxtop = NULL;
4228 e1000_consume_page(buffer_info, skb, length);
4229 } else {
4230 struct page *p;
4231 /* no chain, got EOP, this buf is the packet
4232 * copybreak to save the put_page/alloc_page
4233 */
4234 p = buffer_info->rxbuf.page;
4235 if (length <= copybreak) {
4236 if (likely(!(netdev->features & NETIF_F_RXFCS)))
4237 length -= 4;
4238 skb = e1000_alloc_rx_skb(adapter,
4239 length);
4240 if (!skb)
4241 break;
4242
4243 memcpy(skb_tail_pointer(skb),
4244 page_address(p), length);
4245
4246 /* re-use the page, so don't erase
4247 * buffer_info->rxbuf.page
4248 */
4249 skb_put(skb, length);
4250 e1000_rx_checksum(adapter,
4251 status | rx_desc->errors << 24,
4252 le16_to_cpu(rx_desc->csum), skb);
4253
4254 total_rx_bytes += skb->len;
4255 total_rx_packets++;
4256
4257 e1000_receive_skb(adapter, status,
4258 rx_desc->special, skb);
4259 goto next_desc;
4260 } else {
4261 skb = napi_get_frags(&adapter->napi);
4262 if (!skb) {
4263 adapter->alloc_rx_buff_failed++;
4264 break;
4265 }
4266 skb_fill_page_desc(skb, 0, p, 0,
4267 length);
4268 e1000_consume_page(buffer_info, skb,
4269 length);
4270 }
4271 }
4272 }
4273
4274 /* Receive Checksum Offload XXX recompute due to CRC strip? */
4275 e1000_rx_checksum(adapter,
4276 (u32)(status) |
4277 ((u32)(rx_desc->errors) << 24),
4278 le16_to_cpu(rx_desc->csum), skb);
4279
4280 total_rx_bytes += (skb->len - 4); /* don't count FCS */
4281 if (likely(!(netdev->features & NETIF_F_RXFCS)))
4282 pskb_trim(skb, skb->len - 4);
4283 total_rx_packets++;
4284
4285 if (status & E1000_RXD_STAT_VP) {
4286 __le16 vlan = rx_desc->special;
4287 u16 vid = le16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK;
4288
4289 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
4290 }
4291
4292 napi_gro_frags(&adapter->napi);
4293
4294next_desc:
4295 rx_desc->status = 0;
4296
4297 /* return some buffers to hardware, one at a time is too slow */
4298 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
4299 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4300 cleaned_count = 0;
4301 }
4302
4303 /* use prefetched values */
4304 rx_desc = next_rxd;
4305 buffer_info = next_buffer;
4306 }
4307 rx_ring->next_to_clean = i;
4308
4309 cleaned_count = E1000_DESC_UNUSED(rx_ring);
4310 if (cleaned_count)
4311 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4312
4313 adapter->total_rx_packets += total_rx_packets;
4314 adapter->total_rx_bytes += total_rx_bytes;
4315 netdev->stats.rx_bytes += total_rx_bytes;
4316 netdev->stats.rx_packets += total_rx_packets;
4317 return cleaned;
4318}
4319
4320/* this should improve performance for small packets with large amounts
4321 * of reassembly being done in the stack
4322 */
4323static struct sk_buff *e1000_copybreak(struct e1000_adapter *adapter,
4324 struct e1000_rx_buffer *buffer_info,
4325 u32 length, const void *data)
4326{
4327 struct sk_buff *skb;
4328
4329 if (length > copybreak)
4330 return NULL;
4331
4332 skb = e1000_alloc_rx_skb(adapter, length);
4333 if (!skb)
4334 return NULL;
4335
4336 dma_sync_single_for_cpu(&adapter->pdev->dev, buffer_info->dma,
4337 length, DMA_FROM_DEVICE);
4338
4339 skb_put_data(skb, data, length);
4340
4341 return skb;
4342}
4343
4344/**
4345 * e1000_clean_rx_irq - Send received data up the network stack; legacy
4346 * @adapter: board private structure
4347 * @rx_ring: ring to clean
4348 * @work_done: amount of napi work completed this call
4349 * @work_to_do: max amount of work allowed for this call to do
4350 */
4351static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
4352 struct e1000_rx_ring *rx_ring,
4353 int *work_done, int work_to_do)
4354{
4355 struct net_device *netdev = adapter->netdev;
4356 struct pci_dev *pdev = adapter->pdev;
4357 struct e1000_rx_desc *rx_desc, *next_rxd;
4358 struct e1000_rx_buffer *buffer_info, *next_buffer;
4359 u32 length;
4360 unsigned int i;
4361 int cleaned_count = 0;
4362 bool cleaned = false;
4363 unsigned int total_rx_bytes = 0, total_rx_packets = 0;
4364
4365 i = rx_ring->next_to_clean;
4366 rx_desc = E1000_RX_DESC(*rx_ring, i);
4367 buffer_info = &rx_ring->buffer_info[i];
4368
4369 while (rx_desc->status & E1000_RXD_STAT_DD) {
4370 struct sk_buff *skb;
4371 u8 *data;
4372 u8 status;
4373
4374 if (*work_done >= work_to_do)
4375 break;
4376 (*work_done)++;
4377 dma_rmb(); /* read descriptor and rx_buffer_info after status DD */
4378
4379 status = rx_desc->status;
4380 length = le16_to_cpu(rx_desc->length);
4381
4382 data = buffer_info->rxbuf.data;
4383 prefetch(data);
4384 skb = e1000_copybreak(adapter, buffer_info, length, data);
4385 if (!skb) {
4386 unsigned int frag_len = e1000_frag_len(adapter);
4387
4388 skb = napi_build_skb(data - E1000_HEADROOM, frag_len);
4389 if (!skb) {
4390 adapter->alloc_rx_buff_failed++;
4391 break;
4392 }
4393
4394 skb_reserve(skb, E1000_HEADROOM);
4395 dma_unmap_single(&pdev->dev, buffer_info->dma,
4396 adapter->rx_buffer_len,
4397 DMA_FROM_DEVICE);
4398 buffer_info->dma = 0;
4399 buffer_info->rxbuf.data = NULL;
4400 }
4401
4402 if (++i == rx_ring->count)
4403 i = 0;
4404
4405 next_rxd = E1000_RX_DESC(*rx_ring, i);
4406 prefetch(next_rxd);
4407
4408 next_buffer = &rx_ring->buffer_info[i];
4409
4410 cleaned = true;
4411 cleaned_count++;
4412
4413 /* !EOP means multiple descriptors were used to store a single
4414 * packet, if thats the case we need to toss it. In fact, we
4415 * to toss every packet with the EOP bit clear and the next
4416 * frame that _does_ have the EOP bit set, as it is by
4417 * definition only a frame fragment
4418 */
4419 if (unlikely(!(status & E1000_RXD_STAT_EOP)))
4420 adapter->discarding = true;
4421
4422 if (adapter->discarding) {
4423 /* All receives must fit into a single buffer */
4424 netdev_dbg(netdev, "Receive packet consumed multiple buffers\n");
4425 dev_kfree_skb(skb);
4426 if (status & E1000_RXD_STAT_EOP)
4427 adapter->discarding = false;
4428 goto next_desc;
4429 }
4430
4431 if (unlikely(rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK)) {
4432 if (e1000_tbi_should_accept(adapter, status,
4433 rx_desc->errors,
4434 length, data)) {
4435 length--;
4436 } else if (netdev->features & NETIF_F_RXALL) {
4437 goto process_skb;
4438 } else {
4439 dev_kfree_skb(skb);
4440 goto next_desc;
4441 }
4442 }
4443
4444process_skb:
4445 total_rx_bytes += (length - 4); /* don't count FCS */
4446 total_rx_packets++;
4447
4448 if (likely(!(netdev->features & NETIF_F_RXFCS)))
4449 /* adjust length to remove Ethernet CRC, this must be
4450 * done after the TBI_ACCEPT workaround above
4451 */
4452 length -= 4;
4453
4454 if (buffer_info->rxbuf.data == NULL)
4455 skb_put(skb, length);
4456 else /* copybreak skb */
4457 skb_trim(skb, length);
4458
4459 /* Receive Checksum Offload */
4460 e1000_rx_checksum(adapter,
4461 (u32)(status) |
4462 ((u32)(rx_desc->errors) << 24),
4463 le16_to_cpu(rx_desc->csum), skb);
4464
4465 e1000_receive_skb(adapter, status, rx_desc->special, skb);
4466
4467next_desc:
4468 rx_desc->status = 0;
4469
4470 /* return some buffers to hardware, one at a time is too slow */
4471 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
4472 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4473 cleaned_count = 0;
4474 }
4475
4476 /* use prefetched values */
4477 rx_desc = next_rxd;
4478 buffer_info = next_buffer;
4479 }
4480 rx_ring->next_to_clean = i;
4481
4482 cleaned_count = E1000_DESC_UNUSED(rx_ring);
4483 if (cleaned_count)
4484 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4485
4486 adapter->total_rx_packets += total_rx_packets;
4487 adapter->total_rx_bytes += total_rx_bytes;
4488 netdev->stats.rx_bytes += total_rx_bytes;
4489 netdev->stats.rx_packets += total_rx_packets;
4490 return cleaned;
4491}
4492
4493/**
4494 * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
4495 * @adapter: address of board private structure
4496 * @rx_ring: pointer to receive ring structure
4497 * @cleaned_count: number of buffers to allocate this pass
4498 **/
4499static void
4500e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter,
4501 struct e1000_rx_ring *rx_ring, int cleaned_count)
4502{
4503 struct pci_dev *pdev = adapter->pdev;
4504 struct e1000_rx_desc *rx_desc;
4505 struct e1000_rx_buffer *buffer_info;
4506 unsigned int i;
4507
4508 i = rx_ring->next_to_use;
4509 buffer_info = &rx_ring->buffer_info[i];
4510
4511 while (cleaned_count--) {
4512 /* allocate a new page if necessary */
4513 if (!buffer_info->rxbuf.page) {
4514 buffer_info->rxbuf.page = alloc_page(GFP_ATOMIC);
4515 if (unlikely(!buffer_info->rxbuf.page)) {
4516 adapter->alloc_rx_buff_failed++;
4517 break;
4518 }
4519 }
4520
4521 if (!buffer_info->dma) {
4522 buffer_info->dma = dma_map_page(&pdev->dev,
4523 buffer_info->rxbuf.page, 0,
4524 adapter->rx_buffer_len,
4525 DMA_FROM_DEVICE);
4526 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
4527 put_page(buffer_info->rxbuf.page);
4528 buffer_info->rxbuf.page = NULL;
4529 buffer_info->dma = 0;
4530 adapter->alloc_rx_buff_failed++;
4531 break;
4532 }
4533 }
4534
4535 rx_desc = E1000_RX_DESC(*rx_ring, i);
4536 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4537
4538 if (unlikely(++i == rx_ring->count))
4539 i = 0;
4540 buffer_info = &rx_ring->buffer_info[i];
4541 }
4542
4543 if (likely(rx_ring->next_to_use != i)) {
4544 rx_ring->next_to_use = i;
4545 if (unlikely(i-- == 0))
4546 i = (rx_ring->count - 1);
4547
4548 /* Force memory writes to complete before letting h/w
4549 * know there are new descriptors to fetch. (Only
4550 * applicable for weak-ordered memory model archs,
4551 * such as IA-64).
4552 */
4553 dma_wmb();
4554 writel(i, adapter->hw.hw_addr + rx_ring->rdt);
4555 }
4556}
4557
4558/**
4559 * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
4560 * @adapter: address of board private structure
4561 * @rx_ring: pointer to ring struct
4562 * @cleaned_count: number of new Rx buffers to try to allocate
4563 **/
4564static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
4565 struct e1000_rx_ring *rx_ring,
4566 int cleaned_count)
4567{
4568 struct e1000_hw *hw = &adapter->hw;
4569 struct pci_dev *pdev = adapter->pdev;
4570 struct e1000_rx_desc *rx_desc;
4571 struct e1000_rx_buffer *buffer_info;
4572 unsigned int i;
4573 unsigned int bufsz = adapter->rx_buffer_len;
4574
4575 i = rx_ring->next_to_use;
4576 buffer_info = &rx_ring->buffer_info[i];
4577
4578 while (cleaned_count--) {
4579 void *data;
4580
4581 if (buffer_info->rxbuf.data)
4582 goto skip;
4583
4584 data = e1000_alloc_frag(adapter);
4585 if (!data) {
4586 /* Better luck next round */
4587 adapter->alloc_rx_buff_failed++;
4588 break;
4589 }
4590
4591 /* Fix for errata 23, can't cross 64kB boundary */
4592 if (!e1000_check_64k_bound(adapter, data, bufsz)) {
4593 void *olddata = data;
4594 e_err(rx_err, "skb align check failed: %u bytes at "
4595 "%p\n", bufsz, data);
4596 /* Try again, without freeing the previous */
4597 data = e1000_alloc_frag(adapter);
4598 /* Failed allocation, critical failure */
4599 if (!data) {
4600 skb_free_frag(olddata);
4601 adapter->alloc_rx_buff_failed++;
4602 break;
4603 }
4604
4605 if (!e1000_check_64k_bound(adapter, data, bufsz)) {
4606 /* give up */
4607 skb_free_frag(data);
4608 skb_free_frag(olddata);
4609 adapter->alloc_rx_buff_failed++;
4610 break;
4611 }
4612
4613 /* Use new allocation */
4614 skb_free_frag(olddata);
4615 }
4616 buffer_info->dma = dma_map_single(&pdev->dev,
4617 data,
4618 adapter->rx_buffer_len,
4619 DMA_FROM_DEVICE);
4620 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
4621 skb_free_frag(data);
4622 buffer_info->dma = 0;
4623 adapter->alloc_rx_buff_failed++;
4624 break;
4625 }
4626
4627 /* XXX if it was allocated cleanly it will never map to a
4628 * boundary crossing
4629 */
4630
4631 /* Fix for errata 23, can't cross 64kB boundary */
4632 if (!e1000_check_64k_bound(adapter,
4633 (void *)(unsigned long)buffer_info->dma,
4634 adapter->rx_buffer_len)) {
4635 e_err(rx_err, "dma align check failed: %u bytes at "
4636 "%p\n", adapter->rx_buffer_len,
4637 (void *)(unsigned long)buffer_info->dma);
4638
4639 dma_unmap_single(&pdev->dev, buffer_info->dma,
4640 adapter->rx_buffer_len,
4641 DMA_FROM_DEVICE);
4642
4643 skb_free_frag(data);
4644 buffer_info->rxbuf.data = NULL;
4645 buffer_info->dma = 0;
4646
4647 adapter->alloc_rx_buff_failed++;
4648 break;
4649 }
4650 buffer_info->rxbuf.data = data;
4651 skip:
4652 rx_desc = E1000_RX_DESC(*rx_ring, i);
4653 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4654
4655 if (unlikely(++i == rx_ring->count))
4656 i = 0;
4657 buffer_info = &rx_ring->buffer_info[i];
4658 }
4659
4660 if (likely(rx_ring->next_to_use != i)) {
4661 rx_ring->next_to_use = i;
4662 if (unlikely(i-- == 0))
4663 i = (rx_ring->count - 1);
4664
4665 /* Force memory writes to complete before letting h/w
4666 * know there are new descriptors to fetch. (Only
4667 * applicable for weak-ordered memory model archs,
4668 * such as IA-64).
4669 */
4670 dma_wmb();
4671 writel(i, hw->hw_addr + rx_ring->rdt);
4672 }
4673}
4674
4675/**
4676 * e1000_smartspeed - Workaround for SmartSpeed on 82541 and 82547 controllers.
4677 * @adapter: address of board private structure
4678 **/
4679static void e1000_smartspeed(struct e1000_adapter *adapter)
4680{
4681 struct e1000_hw *hw = &adapter->hw;
4682 u16 phy_status;
4683 u16 phy_ctrl;
4684
4685 if ((hw->phy_type != e1000_phy_igp) || !hw->autoneg ||
4686 !(hw->autoneg_advertised & ADVERTISE_1000_FULL))
4687 return;
4688
4689 if (adapter->smartspeed == 0) {
4690 /* If Master/Slave config fault is asserted twice,
4691 * we assume back-to-back
4692 */
4693 e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
4694 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT))
4695 return;
4696 e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
4697 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT))
4698 return;
4699 e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
4700 if (phy_ctrl & CR_1000T_MS_ENABLE) {
4701 phy_ctrl &= ~CR_1000T_MS_ENABLE;
4702 e1000_write_phy_reg(hw, PHY_1000T_CTRL,
4703 phy_ctrl);
4704 adapter->smartspeed++;
4705 if (!e1000_phy_setup_autoneg(hw) &&
4706 !e1000_read_phy_reg(hw, PHY_CTRL,
4707 &phy_ctrl)) {
4708 phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4709 MII_CR_RESTART_AUTO_NEG);
4710 e1000_write_phy_reg(hw, PHY_CTRL,
4711 phy_ctrl);
4712 }
4713 }
4714 return;
4715 } else if (adapter->smartspeed == E1000_SMARTSPEED_DOWNSHIFT) {
4716 /* If still no link, perhaps using 2/3 pair cable */
4717 e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
4718 phy_ctrl |= CR_1000T_MS_ENABLE;
4719 e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_ctrl);
4720 if (!e1000_phy_setup_autoneg(hw) &&
4721 !e1000_read_phy_reg(hw, PHY_CTRL, &phy_ctrl)) {
4722 phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4723 MII_CR_RESTART_AUTO_NEG);
4724 e1000_write_phy_reg(hw, PHY_CTRL, phy_ctrl);
4725 }
4726 }
4727 /* Restart process after E1000_SMARTSPEED_MAX iterations */
4728 if (adapter->smartspeed++ == E1000_SMARTSPEED_MAX)
4729 adapter->smartspeed = 0;
4730}
4731
4732/**
4733 * e1000_ioctl - handle ioctl calls
4734 * @netdev: pointer to our netdev
4735 * @ifr: pointer to interface request structure
4736 * @cmd: ioctl data
4737 **/
4738static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4739{
4740 switch (cmd) {
4741 case SIOCGMIIPHY:
4742 case SIOCGMIIREG:
4743 case SIOCSMIIREG:
4744 return e1000_mii_ioctl(netdev, ifr, cmd);
4745 default:
4746 return -EOPNOTSUPP;
4747 }
4748}
4749
4750/**
4751 * e1000_mii_ioctl -
4752 * @netdev: pointer to our netdev
4753 * @ifr: pointer to interface request structure
4754 * @cmd: ioctl data
4755 **/
4756static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
4757 int cmd)
4758{
4759 struct e1000_adapter *adapter = netdev_priv(netdev);
4760 struct e1000_hw *hw = &adapter->hw;
4761 struct mii_ioctl_data *data = if_mii(ifr);
4762 int retval;
4763 u16 mii_reg;
4764 unsigned long flags;
4765
4766 if (hw->media_type != e1000_media_type_copper)
4767 return -EOPNOTSUPP;
4768
4769 switch (cmd) {
4770 case SIOCGMIIPHY:
4771 data->phy_id = hw->phy_addr;
4772 break;
4773 case SIOCGMIIREG:
4774 spin_lock_irqsave(&adapter->stats_lock, flags);
4775 if (e1000_read_phy_reg(hw, data->reg_num & 0x1F,
4776 &data->val_out)) {
4777 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4778 return -EIO;
4779 }
4780 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4781 break;
4782 case SIOCSMIIREG:
4783 if (data->reg_num & ~(0x1F))
4784 return -EFAULT;
4785 mii_reg = data->val_in;
4786 spin_lock_irqsave(&adapter->stats_lock, flags);
4787 if (e1000_write_phy_reg(hw, data->reg_num,
4788 mii_reg)) {
4789 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4790 return -EIO;
4791 }
4792 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4793 if (hw->media_type == e1000_media_type_copper) {
4794 switch (data->reg_num) {
4795 case PHY_CTRL:
4796 if (mii_reg & MII_CR_POWER_DOWN)
4797 break;
4798 if (mii_reg & MII_CR_AUTO_NEG_EN) {
4799 hw->autoneg = 1;
4800 hw->autoneg_advertised = 0x2F;
4801 } else {
4802 u32 speed;
4803 if (mii_reg & 0x40)
4804 speed = SPEED_1000;
4805 else if (mii_reg & 0x2000)
4806 speed = SPEED_100;
4807 else
4808 speed = SPEED_10;
4809 retval = e1000_set_spd_dplx(
4810 adapter, speed,
4811 ((mii_reg & 0x100)
4812 ? DUPLEX_FULL :
4813 DUPLEX_HALF));
4814 if (retval)
4815 return retval;
4816 }
4817 if (netif_running(adapter->netdev))
4818 e1000_reinit_locked(adapter);
4819 else
4820 e1000_reset(adapter);
4821 break;
4822 case M88E1000_PHY_SPEC_CTRL:
4823 case M88E1000_EXT_PHY_SPEC_CTRL:
4824 if (e1000_phy_reset(hw))
4825 return -EIO;
4826 break;
4827 }
4828 } else {
4829 switch (data->reg_num) {
4830 case PHY_CTRL:
4831 if (mii_reg & MII_CR_POWER_DOWN)
4832 break;
4833 if (netif_running(adapter->netdev))
4834 e1000_reinit_locked(adapter);
4835 else
4836 e1000_reset(adapter);
4837 break;
4838 }
4839 }
4840 break;
4841 default:
4842 return -EOPNOTSUPP;
4843 }
4844 return E1000_SUCCESS;
4845}
4846
4847void e1000_pci_set_mwi(struct e1000_hw *hw)
4848{
4849 struct e1000_adapter *adapter = hw->back;
4850 int ret_val = pci_set_mwi(adapter->pdev);
4851
4852 if (ret_val)
4853 e_err(probe, "Error in setting MWI\n");
4854}
4855
4856void e1000_pci_clear_mwi(struct e1000_hw *hw)
4857{
4858 struct e1000_adapter *adapter = hw->back;
4859
4860 pci_clear_mwi(adapter->pdev);
4861}
4862
4863int e1000_pcix_get_mmrbc(struct e1000_hw *hw)
4864{
4865 struct e1000_adapter *adapter = hw->back;
4866 return pcix_get_mmrbc(adapter->pdev);
4867}
4868
4869void e1000_pcix_set_mmrbc(struct e1000_hw *hw, int mmrbc)
4870{
4871 struct e1000_adapter *adapter = hw->back;
4872 pcix_set_mmrbc(adapter->pdev, mmrbc);
4873}
4874
4875void e1000_io_write(struct e1000_hw *hw, unsigned long port, u32 value)
4876{
4877 outl(value, port);
4878}
4879
4880static bool e1000_vlan_used(struct e1000_adapter *adapter)
4881{
4882 u16 vid;
4883
4884 for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
4885 return true;
4886 return false;
4887}
4888
4889static void __e1000_vlan_mode(struct e1000_adapter *adapter,
4890 netdev_features_t features)
4891{
4892 struct e1000_hw *hw = &adapter->hw;
4893 u32 ctrl;
4894
4895 ctrl = er32(CTRL);
4896 if (features & NETIF_F_HW_VLAN_CTAG_RX) {
4897 /* enable VLAN tag insert/strip */
4898 ctrl |= E1000_CTRL_VME;
4899 } else {
4900 /* disable VLAN tag insert/strip */
4901 ctrl &= ~E1000_CTRL_VME;
4902 }
4903 ew32(CTRL, ctrl);
4904}
4905static void e1000_vlan_filter_on_off(struct e1000_adapter *adapter,
4906 bool filter_on)
4907{
4908 struct e1000_hw *hw = &adapter->hw;
4909 u32 rctl;
4910
4911 if (!test_bit(__E1000_DOWN, &adapter->flags))
4912 e1000_irq_disable(adapter);
4913
4914 __e1000_vlan_mode(adapter, adapter->netdev->features);
4915 if (filter_on) {
4916 /* enable VLAN receive filtering */
4917 rctl = er32(RCTL);
4918 rctl &= ~E1000_RCTL_CFIEN;
4919 if (!(adapter->netdev->flags & IFF_PROMISC))
4920 rctl |= E1000_RCTL_VFE;
4921 ew32(RCTL, rctl);
4922 e1000_update_mng_vlan(adapter);
4923 } else {
4924 /* disable VLAN receive filtering */
4925 rctl = er32(RCTL);
4926 rctl &= ~E1000_RCTL_VFE;
4927 ew32(RCTL, rctl);
4928 }
4929
4930 if (!test_bit(__E1000_DOWN, &adapter->flags))
4931 e1000_irq_enable(adapter);
4932}
4933
4934static void e1000_vlan_mode(struct net_device *netdev,
4935 netdev_features_t features)
4936{
4937 struct e1000_adapter *adapter = netdev_priv(netdev);
4938
4939 if (!test_bit(__E1000_DOWN, &adapter->flags))
4940 e1000_irq_disable(adapter);
4941
4942 __e1000_vlan_mode(adapter, features);
4943
4944 if (!test_bit(__E1000_DOWN, &adapter->flags))
4945 e1000_irq_enable(adapter);
4946}
4947
4948static int e1000_vlan_rx_add_vid(struct net_device *netdev,
4949 __be16 proto, u16 vid)
4950{
4951 struct e1000_adapter *adapter = netdev_priv(netdev);
4952 struct e1000_hw *hw = &adapter->hw;
4953 u32 vfta, index;
4954
4955 if ((hw->mng_cookie.status &
4956 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
4957 (vid == adapter->mng_vlan_id))
4958 return 0;
4959
4960 if (!e1000_vlan_used(adapter))
4961 e1000_vlan_filter_on_off(adapter, true);
4962
4963 /* add VID to filter table */
4964 index = (vid >> 5) & 0x7F;
4965 vfta = E1000_READ_REG_ARRAY(hw, VFTA, index);
4966 vfta |= (1 << (vid & 0x1F));
4967 e1000_write_vfta(hw, index, vfta);
4968
4969 set_bit(vid, adapter->active_vlans);
4970
4971 return 0;
4972}
4973
4974static int e1000_vlan_rx_kill_vid(struct net_device *netdev,
4975 __be16 proto, u16 vid)
4976{
4977 struct e1000_adapter *adapter = netdev_priv(netdev);
4978 struct e1000_hw *hw = &adapter->hw;
4979 u32 vfta, index;
4980
4981 if (!test_bit(__E1000_DOWN, &adapter->flags))
4982 e1000_irq_disable(adapter);
4983 if (!test_bit(__E1000_DOWN, &adapter->flags))
4984 e1000_irq_enable(adapter);
4985
4986 /* remove VID from filter table */
4987 index = (vid >> 5) & 0x7F;
4988 vfta = E1000_READ_REG_ARRAY(hw, VFTA, index);
4989 vfta &= ~(1 << (vid & 0x1F));
4990 e1000_write_vfta(hw, index, vfta);
4991
4992 clear_bit(vid, adapter->active_vlans);
4993
4994 if (!e1000_vlan_used(adapter))
4995 e1000_vlan_filter_on_off(adapter, false);
4996
4997 return 0;
4998}
4999
5000static void e1000_restore_vlan(struct e1000_adapter *adapter)
5001{
5002 u16 vid;
5003
5004 if (!e1000_vlan_used(adapter))
5005 return;
5006
5007 e1000_vlan_filter_on_off(adapter, true);
5008 for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
5009 e1000_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
5010}
5011
5012int e1000_set_spd_dplx(struct e1000_adapter *adapter, u32 spd, u8 dplx)
5013{
5014 struct e1000_hw *hw = &adapter->hw;
5015
5016 hw->autoneg = 0;
5017
5018 /* Make sure dplx is at most 1 bit and lsb of speed is not set
5019 * for the switch() below to work
5020 */
5021 if ((spd & 1) || (dplx & ~1))
5022 goto err_inval;
5023
5024 /* Fiber NICs only allow 1000 gbps Full duplex */
5025 if ((hw->media_type == e1000_media_type_fiber) &&
5026 spd != SPEED_1000 &&
5027 dplx != DUPLEX_FULL)
5028 goto err_inval;
5029
5030 switch (spd + dplx) {
5031 case SPEED_10 + DUPLEX_HALF:
5032 hw->forced_speed_duplex = e1000_10_half;
5033 break;
5034 case SPEED_10 + DUPLEX_FULL:
5035 hw->forced_speed_duplex = e1000_10_full;
5036 break;
5037 case SPEED_100 + DUPLEX_HALF:
5038 hw->forced_speed_duplex = e1000_100_half;
5039 break;
5040 case SPEED_100 + DUPLEX_FULL:
5041 hw->forced_speed_duplex = e1000_100_full;
5042 break;
5043 case SPEED_1000 + DUPLEX_FULL:
5044 hw->autoneg = 1;
5045 hw->autoneg_advertised = ADVERTISE_1000_FULL;
5046 break;
5047 case SPEED_1000 + DUPLEX_HALF: /* not supported */
5048 default:
5049 goto err_inval;
5050 }
5051
5052 /* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
5053 hw->mdix = AUTO_ALL_MODES;
5054
5055 return 0;
5056
5057err_inval:
5058 e_err(probe, "Unsupported Speed/Duplex configuration\n");
5059 return -EINVAL;
5060}
5061
5062static int __e1000_shutdown(struct pci_dev *pdev, bool *enable_wake)
5063{
5064 struct net_device *netdev = pci_get_drvdata(pdev);
5065 struct e1000_adapter *adapter = netdev_priv(netdev);
5066 struct e1000_hw *hw = &adapter->hw;
5067 u32 ctrl, ctrl_ext, rctl, status;
5068 u32 wufc = adapter->wol;
5069
5070 netif_device_detach(netdev);
5071
5072 if (netif_running(netdev)) {
5073 int count = E1000_CHECK_RESET_COUNT;
5074
5075 while (test_bit(__E1000_RESETTING, &adapter->flags) && count--)
5076 usleep_range(10000, 20000);
5077
5078 WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
5079 rtnl_lock();
5080 e1000_down(adapter);
5081 rtnl_unlock();
5082 }
5083
5084 status = er32(STATUS);
5085 if (status & E1000_STATUS_LU)
5086 wufc &= ~E1000_WUFC_LNKC;
5087
5088 if (wufc) {
5089 e1000_setup_rctl(adapter);
5090 e1000_set_rx_mode(netdev);
5091
5092 rctl = er32(RCTL);
5093
5094 /* turn on all-multi mode if wake on multicast is enabled */
5095 if (wufc & E1000_WUFC_MC)
5096 rctl |= E1000_RCTL_MPE;
5097
5098 /* enable receives in the hardware */
5099 ew32(RCTL, rctl | E1000_RCTL_EN);
5100
5101 if (hw->mac_type >= e1000_82540) {
5102 ctrl = er32(CTRL);
5103 /* advertise wake from D3Cold */
5104 #define E1000_CTRL_ADVD3WUC 0x00100000
5105 /* phy power management enable */
5106 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
5107 ctrl |= E1000_CTRL_ADVD3WUC |
5108 E1000_CTRL_EN_PHY_PWR_MGMT;
5109 ew32(CTRL, ctrl);
5110 }
5111
5112 if (hw->media_type == e1000_media_type_fiber ||
5113 hw->media_type == e1000_media_type_internal_serdes) {
5114 /* keep the laser running in D3 */
5115 ctrl_ext = er32(CTRL_EXT);
5116 ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA;
5117 ew32(CTRL_EXT, ctrl_ext);
5118 }
5119
5120 ew32(WUC, E1000_WUC_PME_EN);
5121 ew32(WUFC, wufc);
5122 } else {
5123 ew32(WUC, 0);
5124 ew32(WUFC, 0);
5125 }
5126
5127 e1000_release_manageability(adapter);
5128
5129 *enable_wake = !!wufc;
5130
5131 /* make sure adapter isn't asleep if manageability is enabled */
5132 if (adapter->en_mng_pt)
5133 *enable_wake = true;
5134
5135 if (netif_running(netdev))
5136 e1000_free_irq(adapter);
5137
5138 if (!test_and_set_bit(__E1000_DISABLED, &adapter->flags))
5139 pci_disable_device(pdev);
5140
5141 return 0;
5142}
5143
5144static int e1000_suspend(struct device *dev)
5145{
5146 int retval;
5147 struct pci_dev *pdev = to_pci_dev(dev);
5148 bool wake;
5149
5150 retval = __e1000_shutdown(pdev, &wake);
5151 device_set_wakeup_enable(dev, wake);
5152
5153 return retval;
5154}
5155
5156static int e1000_resume(struct device *dev)
5157{
5158 struct pci_dev *pdev = to_pci_dev(dev);
5159 struct net_device *netdev = pci_get_drvdata(pdev);
5160 struct e1000_adapter *adapter = netdev_priv(netdev);
5161 struct e1000_hw *hw = &adapter->hw;
5162 u32 err;
5163
5164 if (adapter->need_ioport)
5165 err = pci_enable_device(pdev);
5166 else
5167 err = pci_enable_device_mem(pdev);
5168 if (err) {
5169 pr_err("Cannot enable PCI device from suspend\n");
5170 return err;
5171 }
5172
5173 /* flush memory to make sure state is correct */
5174 smp_mb__before_atomic();
5175 clear_bit(__E1000_DISABLED, &adapter->flags);
5176 pci_set_master(pdev);
5177
5178 pci_enable_wake(pdev, PCI_D3hot, 0);
5179 pci_enable_wake(pdev, PCI_D3cold, 0);
5180
5181 if (netif_running(netdev)) {
5182 err = e1000_request_irq(adapter);
5183 if (err)
5184 return err;
5185 }
5186
5187 e1000_power_up_phy(adapter);
5188 e1000_reset(adapter);
5189 ew32(WUS, ~0);
5190
5191 e1000_init_manageability(adapter);
5192
5193 if (netif_running(netdev))
5194 e1000_up(adapter);
5195
5196 netif_device_attach(netdev);
5197
5198 return 0;
5199}
5200
5201static void e1000_shutdown(struct pci_dev *pdev)
5202{
5203 bool wake;
5204
5205 __e1000_shutdown(pdev, &wake);
5206
5207 if (system_state == SYSTEM_POWER_OFF) {
5208 pci_wake_from_d3(pdev, wake);
5209 pci_set_power_state(pdev, PCI_D3hot);
5210 }
5211}
5212
5213#ifdef CONFIG_NET_POLL_CONTROLLER
5214/* Polling 'interrupt' - used by things like netconsole to send skbs
5215 * without having to re-enable interrupts. It's not called while
5216 * the interrupt routine is executing.
5217 */
5218static void e1000_netpoll(struct net_device *netdev)
5219{
5220 struct e1000_adapter *adapter = netdev_priv(netdev);
5221
5222 if (disable_hardirq(adapter->pdev->irq))
5223 e1000_intr(adapter->pdev->irq, netdev);
5224 enable_irq(adapter->pdev->irq);
5225}
5226#endif
5227
5228/**
5229 * e1000_io_error_detected - called when PCI error is detected
5230 * @pdev: Pointer to PCI device
5231 * @state: The current pci connection state
5232 *
5233 * This function is called after a PCI bus error affecting
5234 * this device has been detected.
5235 */
5236static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
5237 pci_channel_state_t state)
5238{
5239 struct net_device *netdev = pci_get_drvdata(pdev);
5240 struct e1000_adapter *adapter = netdev_priv(netdev);
5241
5242 rtnl_lock();
5243 netif_device_detach(netdev);
5244
5245 if (state == pci_channel_io_perm_failure) {
5246 rtnl_unlock();
5247 return PCI_ERS_RESULT_DISCONNECT;
5248 }
5249
5250 if (netif_running(netdev))
5251 e1000_down(adapter);
5252
5253 if (!test_and_set_bit(__E1000_DISABLED, &adapter->flags))
5254 pci_disable_device(pdev);
5255 rtnl_unlock();
5256
5257 /* Request a slot reset. */
5258 return PCI_ERS_RESULT_NEED_RESET;
5259}
5260
5261/**
5262 * e1000_io_slot_reset - called after the pci bus has been reset.
5263 * @pdev: Pointer to PCI device
5264 *
5265 * Restart the card from scratch, as if from a cold-boot. Implementation
5266 * resembles the first-half of the e1000_resume routine.
5267 */
5268static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
5269{
5270 struct net_device *netdev = pci_get_drvdata(pdev);
5271 struct e1000_adapter *adapter = netdev_priv(netdev);
5272 struct e1000_hw *hw = &adapter->hw;
5273 int err;
5274
5275 if (adapter->need_ioport)
5276 err = pci_enable_device(pdev);
5277 else
5278 err = pci_enable_device_mem(pdev);
5279 if (err) {
5280 pr_err("Cannot re-enable PCI device after reset.\n");
5281 return PCI_ERS_RESULT_DISCONNECT;
5282 }
5283
5284 /* flush memory to make sure state is correct */
5285 smp_mb__before_atomic();
5286 clear_bit(__E1000_DISABLED, &adapter->flags);
5287 pci_set_master(pdev);
5288
5289 pci_enable_wake(pdev, PCI_D3hot, 0);
5290 pci_enable_wake(pdev, PCI_D3cold, 0);
5291
5292 e1000_reset(adapter);
5293 ew32(WUS, ~0);
5294
5295 return PCI_ERS_RESULT_RECOVERED;
5296}
5297
5298/**
5299 * e1000_io_resume - called when traffic can start flowing again.
5300 * @pdev: Pointer to PCI device
5301 *
5302 * This callback is called when the error recovery driver tells us that
5303 * its OK to resume normal operation. Implementation resembles the
5304 * second-half of the e1000_resume routine.
5305 */
5306static void e1000_io_resume(struct pci_dev *pdev)
5307{
5308 struct net_device *netdev = pci_get_drvdata(pdev);
5309 struct e1000_adapter *adapter = netdev_priv(netdev);
5310
5311 e1000_init_manageability(adapter);
5312
5313 if (netif_running(netdev)) {
5314 if (e1000_up(adapter)) {
5315 pr_info("can't bring device back up after reset\n");
5316 return;
5317 }
5318 }
5319
5320 netif_device_attach(netdev);
5321}
5322
5323/* e1000_main.c */
1// SPDX-License-Identifier: GPL-2.0
2/* Copyright(c) 1999 - 2006 Intel Corporation. */
3
4#include "e1000.h"
5#include <net/ip6_checksum.h>
6#include <linux/io.h>
7#include <linux/prefetch.h>
8#include <linux/bitops.h>
9#include <linux/if_vlan.h>
10
11char e1000_driver_name[] = "e1000";
12static char e1000_driver_string[] = "Intel(R) PRO/1000 Network Driver";
13#define DRV_VERSION "7.3.21-k8-NAPI"
14const char e1000_driver_version[] = DRV_VERSION;
15static const char e1000_copyright[] = "Copyright (c) 1999-2006 Intel Corporation.";
16
17/* e1000_pci_tbl - PCI Device ID Table
18 *
19 * Last entry must be all 0s
20 *
21 * Macro expands to...
22 * {PCI_DEVICE(PCI_VENDOR_ID_INTEL, device_id)}
23 */
24static const struct pci_device_id e1000_pci_tbl[] = {
25 INTEL_E1000_ETHERNET_DEVICE(0x1000),
26 INTEL_E1000_ETHERNET_DEVICE(0x1001),
27 INTEL_E1000_ETHERNET_DEVICE(0x1004),
28 INTEL_E1000_ETHERNET_DEVICE(0x1008),
29 INTEL_E1000_ETHERNET_DEVICE(0x1009),
30 INTEL_E1000_ETHERNET_DEVICE(0x100C),
31 INTEL_E1000_ETHERNET_DEVICE(0x100D),
32 INTEL_E1000_ETHERNET_DEVICE(0x100E),
33 INTEL_E1000_ETHERNET_DEVICE(0x100F),
34 INTEL_E1000_ETHERNET_DEVICE(0x1010),
35 INTEL_E1000_ETHERNET_DEVICE(0x1011),
36 INTEL_E1000_ETHERNET_DEVICE(0x1012),
37 INTEL_E1000_ETHERNET_DEVICE(0x1013),
38 INTEL_E1000_ETHERNET_DEVICE(0x1014),
39 INTEL_E1000_ETHERNET_DEVICE(0x1015),
40 INTEL_E1000_ETHERNET_DEVICE(0x1016),
41 INTEL_E1000_ETHERNET_DEVICE(0x1017),
42 INTEL_E1000_ETHERNET_DEVICE(0x1018),
43 INTEL_E1000_ETHERNET_DEVICE(0x1019),
44 INTEL_E1000_ETHERNET_DEVICE(0x101A),
45 INTEL_E1000_ETHERNET_DEVICE(0x101D),
46 INTEL_E1000_ETHERNET_DEVICE(0x101E),
47 INTEL_E1000_ETHERNET_DEVICE(0x1026),
48 INTEL_E1000_ETHERNET_DEVICE(0x1027),
49 INTEL_E1000_ETHERNET_DEVICE(0x1028),
50 INTEL_E1000_ETHERNET_DEVICE(0x1075),
51 INTEL_E1000_ETHERNET_DEVICE(0x1076),
52 INTEL_E1000_ETHERNET_DEVICE(0x1077),
53 INTEL_E1000_ETHERNET_DEVICE(0x1078),
54 INTEL_E1000_ETHERNET_DEVICE(0x1079),
55 INTEL_E1000_ETHERNET_DEVICE(0x107A),
56 INTEL_E1000_ETHERNET_DEVICE(0x107B),
57 INTEL_E1000_ETHERNET_DEVICE(0x107C),
58 INTEL_E1000_ETHERNET_DEVICE(0x108A),
59 INTEL_E1000_ETHERNET_DEVICE(0x1099),
60 INTEL_E1000_ETHERNET_DEVICE(0x10B5),
61 INTEL_E1000_ETHERNET_DEVICE(0x2E6E),
62 /* required last entry */
63 {0,}
64};
65
66MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
67
68int e1000_up(struct e1000_adapter *adapter);
69void e1000_down(struct e1000_adapter *adapter);
70void e1000_reinit_locked(struct e1000_adapter *adapter);
71void e1000_reset(struct e1000_adapter *adapter);
72int e1000_setup_all_tx_resources(struct e1000_adapter *adapter);
73int e1000_setup_all_rx_resources(struct e1000_adapter *adapter);
74void e1000_free_all_tx_resources(struct e1000_adapter *adapter);
75void e1000_free_all_rx_resources(struct e1000_adapter *adapter);
76static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
77 struct e1000_tx_ring *txdr);
78static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
79 struct e1000_rx_ring *rxdr);
80static void e1000_free_tx_resources(struct e1000_adapter *adapter,
81 struct e1000_tx_ring *tx_ring);
82static void e1000_free_rx_resources(struct e1000_adapter *adapter,
83 struct e1000_rx_ring *rx_ring);
84void e1000_update_stats(struct e1000_adapter *adapter);
85
86static int e1000_init_module(void);
87static void e1000_exit_module(void);
88static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent);
89static void e1000_remove(struct pci_dev *pdev);
90static int e1000_alloc_queues(struct e1000_adapter *adapter);
91static int e1000_sw_init(struct e1000_adapter *adapter);
92int e1000_open(struct net_device *netdev);
93int e1000_close(struct net_device *netdev);
94static void e1000_configure_tx(struct e1000_adapter *adapter);
95static void e1000_configure_rx(struct e1000_adapter *adapter);
96static void e1000_setup_rctl(struct e1000_adapter *adapter);
97static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter);
98static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter);
99static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
100 struct e1000_tx_ring *tx_ring);
101static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
102 struct e1000_rx_ring *rx_ring);
103static void e1000_set_rx_mode(struct net_device *netdev);
104static void e1000_update_phy_info_task(struct work_struct *work);
105static void e1000_watchdog(struct work_struct *work);
106static void e1000_82547_tx_fifo_stall_task(struct work_struct *work);
107static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
108 struct net_device *netdev);
109static int e1000_change_mtu(struct net_device *netdev, int new_mtu);
110static int e1000_set_mac(struct net_device *netdev, void *p);
111static irqreturn_t e1000_intr(int irq, void *data);
112static bool e1000_clean_tx_irq(struct e1000_adapter *adapter,
113 struct e1000_tx_ring *tx_ring);
114static int e1000_clean(struct napi_struct *napi, int budget);
115static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
116 struct e1000_rx_ring *rx_ring,
117 int *work_done, int work_to_do);
118static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter,
119 struct e1000_rx_ring *rx_ring,
120 int *work_done, int work_to_do);
121static void e1000_alloc_dummy_rx_buffers(struct e1000_adapter *adapter,
122 struct e1000_rx_ring *rx_ring,
123 int cleaned_count)
124{
125}
126static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
127 struct e1000_rx_ring *rx_ring,
128 int cleaned_count);
129static void e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter,
130 struct e1000_rx_ring *rx_ring,
131 int cleaned_count);
132static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd);
133static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
134 int cmd);
135static void e1000_enter_82542_rst(struct e1000_adapter *adapter);
136static void e1000_leave_82542_rst(struct e1000_adapter *adapter);
137static void e1000_tx_timeout(struct net_device *dev);
138static void e1000_reset_task(struct work_struct *work);
139static void e1000_smartspeed(struct e1000_adapter *adapter);
140static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
141 struct sk_buff *skb);
142
143static bool e1000_vlan_used(struct e1000_adapter *adapter);
144static void e1000_vlan_mode(struct net_device *netdev,
145 netdev_features_t features);
146static void e1000_vlan_filter_on_off(struct e1000_adapter *adapter,
147 bool filter_on);
148static int e1000_vlan_rx_add_vid(struct net_device *netdev,
149 __be16 proto, u16 vid);
150static int e1000_vlan_rx_kill_vid(struct net_device *netdev,
151 __be16 proto, u16 vid);
152static void e1000_restore_vlan(struct e1000_adapter *adapter);
153
154#ifdef CONFIG_PM
155static int e1000_suspend(struct pci_dev *pdev, pm_message_t state);
156static int e1000_resume(struct pci_dev *pdev);
157#endif
158static void e1000_shutdown(struct pci_dev *pdev);
159
160#ifdef CONFIG_NET_POLL_CONTROLLER
161/* for netdump / net console */
162static void e1000_netpoll (struct net_device *netdev);
163#endif
164
165#define COPYBREAK_DEFAULT 256
166static unsigned int copybreak __read_mostly = COPYBREAK_DEFAULT;
167module_param(copybreak, uint, 0644);
168MODULE_PARM_DESC(copybreak,
169 "Maximum size of packet that is copied to a new buffer on receive");
170
171static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
172 pci_channel_state_t state);
173static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev);
174static void e1000_io_resume(struct pci_dev *pdev);
175
176static const struct pci_error_handlers e1000_err_handler = {
177 .error_detected = e1000_io_error_detected,
178 .slot_reset = e1000_io_slot_reset,
179 .resume = e1000_io_resume,
180};
181
182static struct pci_driver e1000_driver = {
183 .name = e1000_driver_name,
184 .id_table = e1000_pci_tbl,
185 .probe = e1000_probe,
186 .remove = e1000_remove,
187#ifdef CONFIG_PM
188 /* Power Management Hooks */
189 .suspend = e1000_suspend,
190 .resume = e1000_resume,
191#endif
192 .shutdown = e1000_shutdown,
193 .err_handler = &e1000_err_handler
194};
195
196MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
197MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
198MODULE_LICENSE("GPL v2");
199MODULE_VERSION(DRV_VERSION);
200
201#define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
202static int debug = -1;
203module_param(debug, int, 0);
204MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
205
206/**
207 * e1000_get_hw_dev - return device
208 * used by hardware layer to print debugging information
209 *
210 **/
211struct net_device *e1000_get_hw_dev(struct e1000_hw *hw)
212{
213 struct e1000_adapter *adapter = hw->back;
214 return adapter->netdev;
215}
216
217/**
218 * e1000_init_module - Driver Registration Routine
219 *
220 * e1000_init_module is the first routine called when the driver is
221 * loaded. All it does is register with the PCI subsystem.
222 **/
223static int __init e1000_init_module(void)
224{
225 int ret;
226 pr_info("%s - version %s\n", e1000_driver_string, e1000_driver_version);
227
228 pr_info("%s\n", e1000_copyright);
229
230 ret = pci_register_driver(&e1000_driver);
231 if (copybreak != COPYBREAK_DEFAULT) {
232 if (copybreak == 0)
233 pr_info("copybreak disabled\n");
234 else
235 pr_info("copybreak enabled for "
236 "packets <= %u bytes\n", copybreak);
237 }
238 return ret;
239}
240
241module_init(e1000_init_module);
242
243/**
244 * e1000_exit_module - Driver Exit Cleanup Routine
245 *
246 * e1000_exit_module is called just before the driver is removed
247 * from memory.
248 **/
249static void __exit e1000_exit_module(void)
250{
251 pci_unregister_driver(&e1000_driver);
252}
253
254module_exit(e1000_exit_module);
255
256static int e1000_request_irq(struct e1000_adapter *adapter)
257{
258 struct net_device *netdev = adapter->netdev;
259 irq_handler_t handler = e1000_intr;
260 int irq_flags = IRQF_SHARED;
261 int err;
262
263 err = request_irq(adapter->pdev->irq, handler, irq_flags, netdev->name,
264 netdev);
265 if (err) {
266 e_err(probe, "Unable to allocate interrupt Error: %d\n", err);
267 }
268
269 return err;
270}
271
272static void e1000_free_irq(struct e1000_adapter *adapter)
273{
274 struct net_device *netdev = adapter->netdev;
275
276 free_irq(adapter->pdev->irq, netdev);
277}
278
279/**
280 * e1000_irq_disable - Mask off interrupt generation on the NIC
281 * @adapter: board private structure
282 **/
283static void e1000_irq_disable(struct e1000_adapter *adapter)
284{
285 struct e1000_hw *hw = &adapter->hw;
286
287 ew32(IMC, ~0);
288 E1000_WRITE_FLUSH();
289 synchronize_irq(adapter->pdev->irq);
290}
291
292/**
293 * e1000_irq_enable - Enable default interrupt generation settings
294 * @adapter: board private structure
295 **/
296static void e1000_irq_enable(struct e1000_adapter *adapter)
297{
298 struct e1000_hw *hw = &adapter->hw;
299
300 ew32(IMS, IMS_ENABLE_MASK);
301 E1000_WRITE_FLUSH();
302}
303
304static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
305{
306 struct e1000_hw *hw = &adapter->hw;
307 struct net_device *netdev = adapter->netdev;
308 u16 vid = hw->mng_cookie.vlan_id;
309 u16 old_vid = adapter->mng_vlan_id;
310
311 if (!e1000_vlan_used(adapter))
312 return;
313
314 if (!test_bit(vid, adapter->active_vlans)) {
315 if (hw->mng_cookie.status &
316 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) {
317 e1000_vlan_rx_add_vid(netdev, htons(ETH_P_8021Q), vid);
318 adapter->mng_vlan_id = vid;
319 } else {
320 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
321 }
322 if ((old_vid != (u16)E1000_MNG_VLAN_NONE) &&
323 (vid != old_vid) &&
324 !test_bit(old_vid, adapter->active_vlans))
325 e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q),
326 old_vid);
327 } else {
328 adapter->mng_vlan_id = vid;
329 }
330}
331
332static void e1000_init_manageability(struct e1000_adapter *adapter)
333{
334 struct e1000_hw *hw = &adapter->hw;
335
336 if (adapter->en_mng_pt) {
337 u32 manc = er32(MANC);
338
339 /* disable hardware interception of ARP */
340 manc &= ~(E1000_MANC_ARP_EN);
341
342 ew32(MANC, manc);
343 }
344}
345
346static void e1000_release_manageability(struct e1000_adapter *adapter)
347{
348 struct e1000_hw *hw = &adapter->hw;
349
350 if (adapter->en_mng_pt) {
351 u32 manc = er32(MANC);
352
353 /* re-enable hardware interception of ARP */
354 manc |= E1000_MANC_ARP_EN;
355
356 ew32(MANC, manc);
357 }
358}
359
360/**
361 * e1000_configure - configure the hardware for RX and TX
362 * @adapter = private board structure
363 **/
364static void e1000_configure(struct e1000_adapter *adapter)
365{
366 struct net_device *netdev = adapter->netdev;
367 int i;
368
369 e1000_set_rx_mode(netdev);
370
371 e1000_restore_vlan(adapter);
372 e1000_init_manageability(adapter);
373
374 e1000_configure_tx(adapter);
375 e1000_setup_rctl(adapter);
376 e1000_configure_rx(adapter);
377 /* call E1000_DESC_UNUSED which always leaves
378 * at least 1 descriptor unused to make sure
379 * next_to_use != next_to_clean
380 */
381 for (i = 0; i < adapter->num_rx_queues; i++) {
382 struct e1000_rx_ring *ring = &adapter->rx_ring[i];
383 adapter->alloc_rx_buf(adapter, ring,
384 E1000_DESC_UNUSED(ring));
385 }
386}
387
388int e1000_up(struct e1000_adapter *adapter)
389{
390 struct e1000_hw *hw = &adapter->hw;
391
392 /* hardware has been reset, we need to reload some things */
393 e1000_configure(adapter);
394
395 clear_bit(__E1000_DOWN, &adapter->flags);
396
397 napi_enable(&adapter->napi);
398
399 e1000_irq_enable(adapter);
400
401 netif_wake_queue(adapter->netdev);
402
403 /* fire a link change interrupt to start the watchdog */
404 ew32(ICS, E1000_ICS_LSC);
405 return 0;
406}
407
408/**
409 * e1000_power_up_phy - restore link in case the phy was powered down
410 * @adapter: address of board private structure
411 *
412 * The phy may be powered down to save power and turn off link when the
413 * driver is unloaded and wake on lan is not enabled (among others)
414 * *** this routine MUST be followed by a call to e1000_reset ***
415 **/
416void e1000_power_up_phy(struct e1000_adapter *adapter)
417{
418 struct e1000_hw *hw = &adapter->hw;
419 u16 mii_reg = 0;
420
421 /* Just clear the power down bit to wake the phy back up */
422 if (hw->media_type == e1000_media_type_copper) {
423 /* according to the manual, the phy will retain its
424 * settings across a power-down/up cycle
425 */
426 e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg);
427 mii_reg &= ~MII_CR_POWER_DOWN;
428 e1000_write_phy_reg(hw, PHY_CTRL, mii_reg);
429 }
430}
431
432static void e1000_power_down_phy(struct e1000_adapter *adapter)
433{
434 struct e1000_hw *hw = &adapter->hw;
435
436 /* Power down the PHY so no link is implied when interface is down *
437 * The PHY cannot be powered down if any of the following is true *
438 * (a) WoL is enabled
439 * (b) AMT is active
440 * (c) SoL/IDER session is active
441 */
442 if (!adapter->wol && hw->mac_type >= e1000_82540 &&
443 hw->media_type == e1000_media_type_copper) {
444 u16 mii_reg = 0;
445
446 switch (hw->mac_type) {
447 case e1000_82540:
448 case e1000_82545:
449 case e1000_82545_rev_3:
450 case e1000_82546:
451 case e1000_ce4100:
452 case e1000_82546_rev_3:
453 case e1000_82541:
454 case e1000_82541_rev_2:
455 case e1000_82547:
456 case e1000_82547_rev_2:
457 if (er32(MANC) & E1000_MANC_SMBUS_EN)
458 goto out;
459 break;
460 default:
461 goto out;
462 }
463 e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg);
464 mii_reg |= MII_CR_POWER_DOWN;
465 e1000_write_phy_reg(hw, PHY_CTRL, mii_reg);
466 msleep(1);
467 }
468out:
469 return;
470}
471
472static void e1000_down_and_stop(struct e1000_adapter *adapter)
473{
474 set_bit(__E1000_DOWN, &adapter->flags);
475
476 cancel_delayed_work_sync(&adapter->watchdog_task);
477
478 /*
479 * Since the watchdog task can reschedule other tasks, we should cancel
480 * it first, otherwise we can run into the situation when a work is
481 * still running after the adapter has been turned down.
482 */
483
484 cancel_delayed_work_sync(&adapter->phy_info_task);
485 cancel_delayed_work_sync(&adapter->fifo_stall_task);
486
487 /* Only kill reset task if adapter is not resetting */
488 if (!test_bit(__E1000_RESETTING, &adapter->flags))
489 cancel_work_sync(&adapter->reset_task);
490}
491
492void e1000_down(struct e1000_adapter *adapter)
493{
494 struct e1000_hw *hw = &adapter->hw;
495 struct net_device *netdev = adapter->netdev;
496 u32 rctl, tctl;
497
498 /* disable receives in the hardware */
499 rctl = er32(RCTL);
500 ew32(RCTL, rctl & ~E1000_RCTL_EN);
501 /* flush and sleep below */
502
503 netif_tx_disable(netdev);
504
505 /* disable transmits in the hardware */
506 tctl = er32(TCTL);
507 tctl &= ~E1000_TCTL_EN;
508 ew32(TCTL, tctl);
509 /* flush both disables and wait for them to finish */
510 E1000_WRITE_FLUSH();
511 msleep(10);
512
513 /* Set the carrier off after transmits have been disabled in the
514 * hardware, to avoid race conditions with e1000_watchdog() (which
515 * may be running concurrently to us, checking for the carrier
516 * bit to decide whether it should enable transmits again). Such
517 * a race condition would result into transmission being disabled
518 * in the hardware until the next IFF_DOWN+IFF_UP cycle.
519 */
520 netif_carrier_off(netdev);
521
522 napi_disable(&adapter->napi);
523
524 e1000_irq_disable(adapter);
525
526 /* Setting DOWN must be after irq_disable to prevent
527 * a screaming interrupt. Setting DOWN also prevents
528 * tasks from rescheduling.
529 */
530 e1000_down_and_stop(adapter);
531
532 adapter->link_speed = 0;
533 adapter->link_duplex = 0;
534
535 e1000_reset(adapter);
536 e1000_clean_all_tx_rings(adapter);
537 e1000_clean_all_rx_rings(adapter);
538}
539
540void e1000_reinit_locked(struct e1000_adapter *adapter)
541{
542 WARN_ON(in_interrupt());
543 while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
544 msleep(1);
545 e1000_down(adapter);
546 e1000_up(adapter);
547 clear_bit(__E1000_RESETTING, &adapter->flags);
548}
549
550void e1000_reset(struct e1000_adapter *adapter)
551{
552 struct e1000_hw *hw = &adapter->hw;
553 u32 pba = 0, tx_space, min_tx_space, min_rx_space;
554 bool legacy_pba_adjust = false;
555 u16 hwm;
556
557 /* Repartition Pba for greater than 9k mtu
558 * To take effect CTRL.RST is required.
559 */
560
561 switch (hw->mac_type) {
562 case e1000_82542_rev2_0:
563 case e1000_82542_rev2_1:
564 case e1000_82543:
565 case e1000_82544:
566 case e1000_82540:
567 case e1000_82541:
568 case e1000_82541_rev_2:
569 legacy_pba_adjust = true;
570 pba = E1000_PBA_48K;
571 break;
572 case e1000_82545:
573 case e1000_82545_rev_3:
574 case e1000_82546:
575 case e1000_ce4100:
576 case e1000_82546_rev_3:
577 pba = E1000_PBA_48K;
578 break;
579 case e1000_82547:
580 case e1000_82547_rev_2:
581 legacy_pba_adjust = true;
582 pba = E1000_PBA_30K;
583 break;
584 case e1000_undefined:
585 case e1000_num_macs:
586 break;
587 }
588
589 if (legacy_pba_adjust) {
590 if (hw->max_frame_size > E1000_RXBUFFER_8192)
591 pba -= 8; /* allocate more FIFO for Tx */
592
593 if (hw->mac_type == e1000_82547) {
594 adapter->tx_fifo_head = 0;
595 adapter->tx_head_addr = pba << E1000_TX_HEAD_ADDR_SHIFT;
596 adapter->tx_fifo_size =
597 (E1000_PBA_40K - pba) << E1000_PBA_BYTES_SHIFT;
598 atomic_set(&adapter->tx_fifo_stall, 0);
599 }
600 } else if (hw->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) {
601 /* adjust PBA for jumbo frames */
602 ew32(PBA, pba);
603
604 /* To maintain wire speed transmits, the Tx FIFO should be
605 * large enough to accommodate two full transmit packets,
606 * rounded up to the next 1KB and expressed in KB. Likewise,
607 * the Rx FIFO should be large enough to accommodate at least
608 * one full receive packet and is similarly rounded up and
609 * expressed in KB.
610 */
611 pba = er32(PBA);
612 /* upper 16 bits has Tx packet buffer allocation size in KB */
613 tx_space = pba >> 16;
614 /* lower 16 bits has Rx packet buffer allocation size in KB */
615 pba &= 0xffff;
616 /* the Tx fifo also stores 16 bytes of information about the Tx
617 * but don't include ethernet FCS because hardware appends it
618 */
619 min_tx_space = (hw->max_frame_size +
620 sizeof(struct e1000_tx_desc) -
621 ETH_FCS_LEN) * 2;
622 min_tx_space = ALIGN(min_tx_space, 1024);
623 min_tx_space >>= 10;
624 /* software strips receive CRC, so leave room for it */
625 min_rx_space = hw->max_frame_size;
626 min_rx_space = ALIGN(min_rx_space, 1024);
627 min_rx_space >>= 10;
628
629 /* If current Tx allocation is less than the min Tx FIFO size,
630 * and the min Tx FIFO size is less than the current Rx FIFO
631 * allocation, take space away from current Rx allocation
632 */
633 if (tx_space < min_tx_space &&
634 ((min_tx_space - tx_space) < pba)) {
635 pba = pba - (min_tx_space - tx_space);
636
637 /* PCI/PCIx hardware has PBA alignment constraints */
638 switch (hw->mac_type) {
639 case e1000_82545 ... e1000_82546_rev_3:
640 pba &= ~(E1000_PBA_8K - 1);
641 break;
642 default:
643 break;
644 }
645
646 /* if short on Rx space, Rx wins and must trump Tx
647 * adjustment or use Early Receive if available
648 */
649 if (pba < min_rx_space)
650 pba = min_rx_space;
651 }
652 }
653
654 ew32(PBA, pba);
655
656 /* flow control settings:
657 * The high water mark must be low enough to fit one full frame
658 * (or the size used for early receive) above it in the Rx FIFO.
659 * Set it to the lower of:
660 * - 90% of the Rx FIFO size, and
661 * - the full Rx FIFO size minus the early receive size (for parts
662 * with ERT support assuming ERT set to E1000_ERT_2048), or
663 * - the full Rx FIFO size minus one full frame
664 */
665 hwm = min(((pba << 10) * 9 / 10),
666 ((pba << 10) - hw->max_frame_size));
667
668 hw->fc_high_water = hwm & 0xFFF8; /* 8-byte granularity */
669 hw->fc_low_water = hw->fc_high_water - 8;
670 hw->fc_pause_time = E1000_FC_PAUSE_TIME;
671 hw->fc_send_xon = 1;
672 hw->fc = hw->original_fc;
673
674 /* Allow time for pending master requests to run */
675 e1000_reset_hw(hw);
676 if (hw->mac_type >= e1000_82544)
677 ew32(WUC, 0);
678
679 if (e1000_init_hw(hw))
680 e_dev_err("Hardware Error\n");
681 e1000_update_mng_vlan(adapter);
682
683 /* if (adapter->hwflags & HWFLAGS_PHY_PWR_BIT) { */
684 if (hw->mac_type >= e1000_82544 &&
685 hw->autoneg == 1 &&
686 hw->autoneg_advertised == ADVERTISE_1000_FULL) {
687 u32 ctrl = er32(CTRL);
688 /* clear phy power management bit if we are in gig only mode,
689 * which if enabled will attempt negotiation to 100Mb, which
690 * can cause a loss of link at power off or driver unload
691 */
692 ctrl &= ~E1000_CTRL_SWDPIN3;
693 ew32(CTRL, ctrl);
694 }
695
696 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
697 ew32(VET, ETHERNET_IEEE_VLAN_TYPE);
698
699 e1000_reset_adaptive(hw);
700 e1000_phy_get_info(hw, &adapter->phy_info);
701
702 e1000_release_manageability(adapter);
703}
704
705/* Dump the eeprom for users having checksum issues */
706static void e1000_dump_eeprom(struct e1000_adapter *adapter)
707{
708 struct net_device *netdev = adapter->netdev;
709 struct ethtool_eeprom eeprom;
710 const struct ethtool_ops *ops = netdev->ethtool_ops;
711 u8 *data;
712 int i;
713 u16 csum_old, csum_new = 0;
714
715 eeprom.len = ops->get_eeprom_len(netdev);
716 eeprom.offset = 0;
717
718 data = kmalloc(eeprom.len, GFP_KERNEL);
719 if (!data)
720 return;
721
722 ops->get_eeprom(netdev, &eeprom, data);
723
724 csum_old = (data[EEPROM_CHECKSUM_REG * 2]) +
725 (data[EEPROM_CHECKSUM_REG * 2 + 1] << 8);
726 for (i = 0; i < EEPROM_CHECKSUM_REG * 2; i += 2)
727 csum_new += data[i] + (data[i + 1] << 8);
728 csum_new = EEPROM_SUM - csum_new;
729
730 pr_err("/*********************/\n");
731 pr_err("Current EEPROM Checksum : 0x%04x\n", csum_old);
732 pr_err("Calculated : 0x%04x\n", csum_new);
733
734 pr_err("Offset Values\n");
735 pr_err("======== ======\n");
736 print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 16, 1, data, 128, 0);
737
738 pr_err("Include this output when contacting your support provider.\n");
739 pr_err("This is not a software error! Something bad happened to\n");
740 pr_err("your hardware or EEPROM image. Ignoring this problem could\n");
741 pr_err("result in further problems, possibly loss of data,\n");
742 pr_err("corruption or system hangs!\n");
743 pr_err("The MAC Address will be reset to 00:00:00:00:00:00,\n");
744 pr_err("which is invalid and requires you to set the proper MAC\n");
745 pr_err("address manually before continuing to enable this network\n");
746 pr_err("device. Please inspect the EEPROM dump and report the\n");
747 pr_err("issue to your hardware vendor or Intel Customer Support.\n");
748 pr_err("/*********************/\n");
749
750 kfree(data);
751}
752
753/**
754 * e1000_is_need_ioport - determine if an adapter needs ioport resources or not
755 * @pdev: PCI device information struct
756 *
757 * Return true if an adapter needs ioport resources
758 **/
759static int e1000_is_need_ioport(struct pci_dev *pdev)
760{
761 switch (pdev->device) {
762 case E1000_DEV_ID_82540EM:
763 case E1000_DEV_ID_82540EM_LOM:
764 case E1000_DEV_ID_82540EP:
765 case E1000_DEV_ID_82540EP_LOM:
766 case E1000_DEV_ID_82540EP_LP:
767 case E1000_DEV_ID_82541EI:
768 case E1000_DEV_ID_82541EI_MOBILE:
769 case E1000_DEV_ID_82541ER:
770 case E1000_DEV_ID_82541ER_LOM:
771 case E1000_DEV_ID_82541GI:
772 case E1000_DEV_ID_82541GI_LF:
773 case E1000_DEV_ID_82541GI_MOBILE:
774 case E1000_DEV_ID_82544EI_COPPER:
775 case E1000_DEV_ID_82544EI_FIBER:
776 case E1000_DEV_ID_82544GC_COPPER:
777 case E1000_DEV_ID_82544GC_LOM:
778 case E1000_DEV_ID_82545EM_COPPER:
779 case E1000_DEV_ID_82545EM_FIBER:
780 case E1000_DEV_ID_82546EB_COPPER:
781 case E1000_DEV_ID_82546EB_FIBER:
782 case E1000_DEV_ID_82546EB_QUAD_COPPER:
783 return true;
784 default:
785 return false;
786 }
787}
788
789static netdev_features_t e1000_fix_features(struct net_device *netdev,
790 netdev_features_t features)
791{
792 /* Since there is no support for separate Rx/Tx vlan accel
793 * enable/disable make sure Tx flag is always in same state as Rx.
794 */
795 if (features & NETIF_F_HW_VLAN_CTAG_RX)
796 features |= NETIF_F_HW_VLAN_CTAG_TX;
797 else
798 features &= ~NETIF_F_HW_VLAN_CTAG_TX;
799
800 return features;
801}
802
803static int e1000_set_features(struct net_device *netdev,
804 netdev_features_t features)
805{
806 struct e1000_adapter *adapter = netdev_priv(netdev);
807 netdev_features_t changed = features ^ netdev->features;
808
809 if (changed & NETIF_F_HW_VLAN_CTAG_RX)
810 e1000_vlan_mode(netdev, features);
811
812 if (!(changed & (NETIF_F_RXCSUM | NETIF_F_RXALL)))
813 return 0;
814
815 netdev->features = features;
816 adapter->rx_csum = !!(features & NETIF_F_RXCSUM);
817
818 if (netif_running(netdev))
819 e1000_reinit_locked(adapter);
820 else
821 e1000_reset(adapter);
822
823 return 1;
824}
825
826static const struct net_device_ops e1000_netdev_ops = {
827 .ndo_open = e1000_open,
828 .ndo_stop = e1000_close,
829 .ndo_start_xmit = e1000_xmit_frame,
830 .ndo_set_rx_mode = e1000_set_rx_mode,
831 .ndo_set_mac_address = e1000_set_mac,
832 .ndo_tx_timeout = e1000_tx_timeout,
833 .ndo_change_mtu = e1000_change_mtu,
834 .ndo_do_ioctl = e1000_ioctl,
835 .ndo_validate_addr = eth_validate_addr,
836 .ndo_vlan_rx_add_vid = e1000_vlan_rx_add_vid,
837 .ndo_vlan_rx_kill_vid = e1000_vlan_rx_kill_vid,
838#ifdef CONFIG_NET_POLL_CONTROLLER
839 .ndo_poll_controller = e1000_netpoll,
840#endif
841 .ndo_fix_features = e1000_fix_features,
842 .ndo_set_features = e1000_set_features,
843};
844
845/**
846 * e1000_init_hw_struct - initialize members of hw struct
847 * @adapter: board private struct
848 * @hw: structure used by e1000_hw.c
849 *
850 * Factors out initialization of the e1000_hw struct to its own function
851 * that can be called very early at init (just after struct allocation).
852 * Fields are initialized based on PCI device information and
853 * OS network device settings (MTU size).
854 * Returns negative error codes if MAC type setup fails.
855 */
856static int e1000_init_hw_struct(struct e1000_adapter *adapter,
857 struct e1000_hw *hw)
858{
859 struct pci_dev *pdev = adapter->pdev;
860
861 /* PCI config space info */
862 hw->vendor_id = pdev->vendor;
863 hw->device_id = pdev->device;
864 hw->subsystem_vendor_id = pdev->subsystem_vendor;
865 hw->subsystem_id = pdev->subsystem_device;
866 hw->revision_id = pdev->revision;
867
868 pci_read_config_word(pdev, PCI_COMMAND, &hw->pci_cmd_word);
869
870 hw->max_frame_size = adapter->netdev->mtu +
871 ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
872 hw->min_frame_size = MINIMUM_ETHERNET_FRAME_SIZE;
873
874 /* identify the MAC */
875 if (e1000_set_mac_type(hw)) {
876 e_err(probe, "Unknown MAC Type\n");
877 return -EIO;
878 }
879
880 switch (hw->mac_type) {
881 default:
882 break;
883 case e1000_82541:
884 case e1000_82547:
885 case e1000_82541_rev_2:
886 case e1000_82547_rev_2:
887 hw->phy_init_script = 1;
888 break;
889 }
890
891 e1000_set_media_type(hw);
892 e1000_get_bus_info(hw);
893
894 hw->wait_autoneg_complete = false;
895 hw->tbi_compatibility_en = true;
896 hw->adaptive_ifs = true;
897
898 /* Copper options */
899
900 if (hw->media_type == e1000_media_type_copper) {
901 hw->mdix = AUTO_ALL_MODES;
902 hw->disable_polarity_correction = false;
903 hw->master_slave = E1000_MASTER_SLAVE;
904 }
905
906 return 0;
907}
908
909/**
910 * e1000_probe - Device Initialization Routine
911 * @pdev: PCI device information struct
912 * @ent: entry in e1000_pci_tbl
913 *
914 * Returns 0 on success, negative on failure
915 *
916 * e1000_probe initializes an adapter identified by a pci_dev structure.
917 * The OS initialization, configuring of the adapter private structure,
918 * and a hardware reset occur.
919 **/
920static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
921{
922 struct net_device *netdev;
923 struct e1000_adapter *adapter = NULL;
924 struct e1000_hw *hw;
925
926 static int cards_found;
927 static int global_quad_port_a; /* global ksp3 port a indication */
928 int i, err, pci_using_dac;
929 u16 eeprom_data = 0;
930 u16 tmp = 0;
931 u16 eeprom_apme_mask = E1000_EEPROM_APME;
932 int bars, need_ioport;
933 bool disable_dev = false;
934
935 /* do not allocate ioport bars when not needed */
936 need_ioport = e1000_is_need_ioport(pdev);
937 if (need_ioport) {
938 bars = pci_select_bars(pdev, IORESOURCE_MEM | IORESOURCE_IO);
939 err = pci_enable_device(pdev);
940 } else {
941 bars = pci_select_bars(pdev, IORESOURCE_MEM);
942 err = pci_enable_device_mem(pdev);
943 }
944 if (err)
945 return err;
946
947 err = pci_request_selected_regions(pdev, bars, e1000_driver_name);
948 if (err)
949 goto err_pci_reg;
950
951 pci_set_master(pdev);
952 err = pci_save_state(pdev);
953 if (err)
954 goto err_alloc_etherdev;
955
956 err = -ENOMEM;
957 netdev = alloc_etherdev(sizeof(struct e1000_adapter));
958 if (!netdev)
959 goto err_alloc_etherdev;
960
961 SET_NETDEV_DEV(netdev, &pdev->dev);
962
963 pci_set_drvdata(pdev, netdev);
964 adapter = netdev_priv(netdev);
965 adapter->netdev = netdev;
966 adapter->pdev = pdev;
967 adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
968 adapter->bars = bars;
969 adapter->need_ioport = need_ioport;
970
971 hw = &adapter->hw;
972 hw->back = adapter;
973
974 err = -EIO;
975 hw->hw_addr = pci_ioremap_bar(pdev, BAR_0);
976 if (!hw->hw_addr)
977 goto err_ioremap;
978
979 if (adapter->need_ioport) {
980 for (i = BAR_1; i <= BAR_5; i++) {
981 if (pci_resource_len(pdev, i) == 0)
982 continue;
983 if (pci_resource_flags(pdev, i) & IORESOURCE_IO) {
984 hw->io_base = pci_resource_start(pdev, i);
985 break;
986 }
987 }
988 }
989
990 /* make ready for any if (hw->...) below */
991 err = e1000_init_hw_struct(adapter, hw);
992 if (err)
993 goto err_sw_init;
994
995 /* there is a workaround being applied below that limits
996 * 64-bit DMA addresses to 64-bit hardware. There are some
997 * 32-bit adapters that Tx hang when given 64-bit DMA addresses
998 */
999 pci_using_dac = 0;
1000 if ((hw->bus_type == e1000_bus_type_pcix) &&
1001 !dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64))) {
1002 pci_using_dac = 1;
1003 } else {
1004 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
1005 if (err) {
1006 pr_err("No usable DMA config, aborting\n");
1007 goto err_dma;
1008 }
1009 }
1010
1011 netdev->netdev_ops = &e1000_netdev_ops;
1012 e1000_set_ethtool_ops(netdev);
1013 netdev->watchdog_timeo = 5 * HZ;
1014 netif_napi_add(netdev, &adapter->napi, e1000_clean, 64);
1015
1016 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
1017
1018 adapter->bd_number = cards_found;
1019
1020 /* setup the private structure */
1021
1022 err = e1000_sw_init(adapter);
1023 if (err)
1024 goto err_sw_init;
1025
1026 err = -EIO;
1027 if (hw->mac_type == e1000_ce4100) {
1028 hw->ce4100_gbe_mdio_base_virt =
1029 ioremap(pci_resource_start(pdev, BAR_1),
1030 pci_resource_len(pdev, BAR_1));
1031
1032 if (!hw->ce4100_gbe_mdio_base_virt)
1033 goto err_mdio_ioremap;
1034 }
1035
1036 if (hw->mac_type >= e1000_82543) {
1037 netdev->hw_features = NETIF_F_SG |
1038 NETIF_F_HW_CSUM |
1039 NETIF_F_HW_VLAN_CTAG_RX;
1040 netdev->features = NETIF_F_HW_VLAN_CTAG_TX |
1041 NETIF_F_HW_VLAN_CTAG_FILTER;
1042 }
1043
1044 if ((hw->mac_type >= e1000_82544) &&
1045 (hw->mac_type != e1000_82547))
1046 netdev->hw_features |= NETIF_F_TSO;
1047
1048 netdev->priv_flags |= IFF_SUPP_NOFCS;
1049
1050 netdev->features |= netdev->hw_features;
1051 netdev->hw_features |= (NETIF_F_RXCSUM |
1052 NETIF_F_RXALL |
1053 NETIF_F_RXFCS);
1054
1055 if (pci_using_dac) {
1056 netdev->features |= NETIF_F_HIGHDMA;
1057 netdev->vlan_features |= NETIF_F_HIGHDMA;
1058 }
1059
1060 netdev->vlan_features |= (NETIF_F_TSO |
1061 NETIF_F_HW_CSUM |
1062 NETIF_F_SG);
1063
1064 /* Do not set IFF_UNICAST_FLT for VMWare's 82545EM */
1065 if (hw->device_id != E1000_DEV_ID_82545EM_COPPER ||
1066 hw->subsystem_vendor_id != PCI_VENDOR_ID_VMWARE)
1067 netdev->priv_flags |= IFF_UNICAST_FLT;
1068
1069 /* MTU range: 46 - 16110 */
1070 netdev->min_mtu = ETH_ZLEN - ETH_HLEN;
1071 netdev->max_mtu = MAX_JUMBO_FRAME_SIZE - (ETH_HLEN + ETH_FCS_LEN);
1072
1073 adapter->en_mng_pt = e1000_enable_mng_pass_thru(hw);
1074
1075 /* initialize eeprom parameters */
1076 if (e1000_init_eeprom_params(hw)) {
1077 e_err(probe, "EEPROM initialization failed\n");
1078 goto err_eeprom;
1079 }
1080
1081 /* before reading the EEPROM, reset the controller to
1082 * put the device in a known good starting state
1083 */
1084
1085 e1000_reset_hw(hw);
1086
1087 /* make sure the EEPROM is good */
1088 if (e1000_validate_eeprom_checksum(hw) < 0) {
1089 e_err(probe, "The EEPROM Checksum Is Not Valid\n");
1090 e1000_dump_eeprom(adapter);
1091 /* set MAC address to all zeroes to invalidate and temporary
1092 * disable this device for the user. This blocks regular
1093 * traffic while still permitting ethtool ioctls from reaching
1094 * the hardware as well as allowing the user to run the
1095 * interface after manually setting a hw addr using
1096 * `ip set address`
1097 */
1098 memset(hw->mac_addr, 0, netdev->addr_len);
1099 } else {
1100 /* copy the MAC address out of the EEPROM */
1101 if (e1000_read_mac_addr(hw))
1102 e_err(probe, "EEPROM Read Error\n");
1103 }
1104 /* don't block initialization here due to bad MAC address */
1105 memcpy(netdev->dev_addr, hw->mac_addr, netdev->addr_len);
1106
1107 if (!is_valid_ether_addr(netdev->dev_addr))
1108 e_err(probe, "Invalid MAC Address\n");
1109
1110
1111 INIT_DELAYED_WORK(&adapter->watchdog_task, e1000_watchdog);
1112 INIT_DELAYED_WORK(&adapter->fifo_stall_task,
1113 e1000_82547_tx_fifo_stall_task);
1114 INIT_DELAYED_WORK(&adapter->phy_info_task, e1000_update_phy_info_task);
1115 INIT_WORK(&adapter->reset_task, e1000_reset_task);
1116
1117 e1000_check_options(adapter);
1118
1119 /* Initial Wake on LAN setting
1120 * If APM wake is enabled in the EEPROM,
1121 * enable the ACPI Magic Packet filter
1122 */
1123
1124 switch (hw->mac_type) {
1125 case e1000_82542_rev2_0:
1126 case e1000_82542_rev2_1:
1127 case e1000_82543:
1128 break;
1129 case e1000_82544:
1130 e1000_read_eeprom(hw,
1131 EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data);
1132 eeprom_apme_mask = E1000_EEPROM_82544_APM;
1133 break;
1134 case e1000_82546:
1135 case e1000_82546_rev_3:
1136 if (er32(STATUS) & E1000_STATUS_FUNC_1) {
1137 e1000_read_eeprom(hw,
1138 EEPROM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
1139 break;
1140 }
1141 /* Fall Through */
1142 default:
1143 e1000_read_eeprom(hw,
1144 EEPROM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
1145 break;
1146 }
1147 if (eeprom_data & eeprom_apme_mask)
1148 adapter->eeprom_wol |= E1000_WUFC_MAG;
1149
1150 /* now that we have the eeprom settings, apply the special cases
1151 * where the eeprom may be wrong or the board simply won't support
1152 * wake on lan on a particular port
1153 */
1154 switch (pdev->device) {
1155 case E1000_DEV_ID_82546GB_PCIE:
1156 adapter->eeprom_wol = 0;
1157 break;
1158 case E1000_DEV_ID_82546EB_FIBER:
1159 case E1000_DEV_ID_82546GB_FIBER:
1160 /* Wake events only supported on port A for dual fiber
1161 * regardless of eeprom setting
1162 */
1163 if (er32(STATUS) & E1000_STATUS_FUNC_1)
1164 adapter->eeprom_wol = 0;
1165 break;
1166 case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1167 /* if quad port adapter, disable WoL on all but port A */
1168 if (global_quad_port_a != 0)
1169 adapter->eeprom_wol = 0;
1170 else
1171 adapter->quad_port_a = true;
1172 /* Reset for multiple quad port adapters */
1173 if (++global_quad_port_a == 4)
1174 global_quad_port_a = 0;
1175 break;
1176 }
1177
1178 /* initialize the wol settings based on the eeprom settings */
1179 adapter->wol = adapter->eeprom_wol;
1180 device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1181
1182 /* Auto detect PHY address */
1183 if (hw->mac_type == e1000_ce4100) {
1184 for (i = 0; i < 32; i++) {
1185 hw->phy_addr = i;
1186 e1000_read_phy_reg(hw, PHY_ID2, &tmp);
1187
1188 if (tmp != 0 && tmp != 0xFF)
1189 break;
1190 }
1191
1192 if (i >= 32)
1193 goto err_eeprom;
1194 }
1195
1196 /* reset the hardware with the new settings */
1197 e1000_reset(adapter);
1198
1199 strcpy(netdev->name, "eth%d");
1200 err = register_netdev(netdev);
1201 if (err)
1202 goto err_register;
1203
1204 e1000_vlan_filter_on_off(adapter, false);
1205
1206 /* print bus type/speed/width info */
1207 e_info(probe, "(PCI%s:%dMHz:%d-bit) %pM\n",
1208 ((hw->bus_type == e1000_bus_type_pcix) ? "-X" : ""),
1209 ((hw->bus_speed == e1000_bus_speed_133) ? 133 :
1210 (hw->bus_speed == e1000_bus_speed_120) ? 120 :
1211 (hw->bus_speed == e1000_bus_speed_100) ? 100 :
1212 (hw->bus_speed == e1000_bus_speed_66) ? 66 : 33),
1213 ((hw->bus_width == e1000_bus_width_64) ? 64 : 32),
1214 netdev->dev_addr);
1215
1216 /* carrier off reporting is important to ethtool even BEFORE open */
1217 netif_carrier_off(netdev);
1218
1219 e_info(probe, "Intel(R) PRO/1000 Network Connection\n");
1220
1221 cards_found++;
1222 return 0;
1223
1224err_register:
1225err_eeprom:
1226 e1000_phy_hw_reset(hw);
1227
1228 if (hw->flash_address)
1229 iounmap(hw->flash_address);
1230 kfree(adapter->tx_ring);
1231 kfree(adapter->rx_ring);
1232err_dma:
1233err_sw_init:
1234err_mdio_ioremap:
1235 iounmap(hw->ce4100_gbe_mdio_base_virt);
1236 iounmap(hw->hw_addr);
1237err_ioremap:
1238 disable_dev = !test_and_set_bit(__E1000_DISABLED, &adapter->flags);
1239 free_netdev(netdev);
1240err_alloc_etherdev:
1241 pci_release_selected_regions(pdev, bars);
1242err_pci_reg:
1243 if (!adapter || disable_dev)
1244 pci_disable_device(pdev);
1245 return err;
1246}
1247
1248/**
1249 * e1000_remove - Device Removal Routine
1250 * @pdev: PCI device information struct
1251 *
1252 * e1000_remove is called by the PCI subsystem to alert the driver
1253 * that it should release a PCI device. That could be caused by a
1254 * Hot-Plug event, or because the driver is going to be removed from
1255 * memory.
1256 **/
1257static void e1000_remove(struct pci_dev *pdev)
1258{
1259 struct net_device *netdev = pci_get_drvdata(pdev);
1260 struct e1000_adapter *adapter = netdev_priv(netdev);
1261 struct e1000_hw *hw = &adapter->hw;
1262 bool disable_dev;
1263
1264 e1000_down_and_stop(adapter);
1265 e1000_release_manageability(adapter);
1266
1267 unregister_netdev(netdev);
1268
1269 e1000_phy_hw_reset(hw);
1270
1271 kfree(adapter->tx_ring);
1272 kfree(adapter->rx_ring);
1273
1274 if (hw->mac_type == e1000_ce4100)
1275 iounmap(hw->ce4100_gbe_mdio_base_virt);
1276 iounmap(hw->hw_addr);
1277 if (hw->flash_address)
1278 iounmap(hw->flash_address);
1279 pci_release_selected_regions(pdev, adapter->bars);
1280
1281 disable_dev = !test_and_set_bit(__E1000_DISABLED, &adapter->flags);
1282 free_netdev(netdev);
1283
1284 if (disable_dev)
1285 pci_disable_device(pdev);
1286}
1287
1288/**
1289 * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
1290 * @adapter: board private structure to initialize
1291 *
1292 * e1000_sw_init initializes the Adapter private data structure.
1293 * e1000_init_hw_struct MUST be called before this function
1294 **/
1295static int e1000_sw_init(struct e1000_adapter *adapter)
1296{
1297 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
1298
1299 adapter->num_tx_queues = 1;
1300 adapter->num_rx_queues = 1;
1301
1302 if (e1000_alloc_queues(adapter)) {
1303 e_err(probe, "Unable to allocate memory for queues\n");
1304 return -ENOMEM;
1305 }
1306
1307 /* Explicitly disable IRQ since the NIC can be in any state. */
1308 e1000_irq_disable(adapter);
1309
1310 spin_lock_init(&adapter->stats_lock);
1311
1312 set_bit(__E1000_DOWN, &adapter->flags);
1313
1314 return 0;
1315}
1316
1317/**
1318 * e1000_alloc_queues - Allocate memory for all rings
1319 * @adapter: board private structure to initialize
1320 *
1321 * We allocate one ring per queue at run-time since we don't know the
1322 * number of queues at compile-time.
1323 **/
1324static int e1000_alloc_queues(struct e1000_adapter *adapter)
1325{
1326 adapter->tx_ring = kcalloc(adapter->num_tx_queues,
1327 sizeof(struct e1000_tx_ring), GFP_KERNEL);
1328 if (!adapter->tx_ring)
1329 return -ENOMEM;
1330
1331 adapter->rx_ring = kcalloc(adapter->num_rx_queues,
1332 sizeof(struct e1000_rx_ring), GFP_KERNEL);
1333 if (!adapter->rx_ring) {
1334 kfree(adapter->tx_ring);
1335 return -ENOMEM;
1336 }
1337
1338 return E1000_SUCCESS;
1339}
1340
1341/**
1342 * e1000_open - Called when a network interface is made active
1343 * @netdev: network interface device structure
1344 *
1345 * Returns 0 on success, negative value on failure
1346 *
1347 * The open entry point is called when a network interface is made
1348 * active by the system (IFF_UP). At this point all resources needed
1349 * for transmit and receive operations are allocated, the interrupt
1350 * handler is registered with the OS, the watchdog task is started,
1351 * and the stack is notified that the interface is ready.
1352 **/
1353int e1000_open(struct net_device *netdev)
1354{
1355 struct e1000_adapter *adapter = netdev_priv(netdev);
1356 struct e1000_hw *hw = &adapter->hw;
1357 int err;
1358
1359 /* disallow open during test */
1360 if (test_bit(__E1000_TESTING, &adapter->flags))
1361 return -EBUSY;
1362
1363 netif_carrier_off(netdev);
1364
1365 /* allocate transmit descriptors */
1366 err = e1000_setup_all_tx_resources(adapter);
1367 if (err)
1368 goto err_setup_tx;
1369
1370 /* allocate receive descriptors */
1371 err = e1000_setup_all_rx_resources(adapter);
1372 if (err)
1373 goto err_setup_rx;
1374
1375 e1000_power_up_phy(adapter);
1376
1377 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
1378 if ((hw->mng_cookie.status &
1379 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) {
1380 e1000_update_mng_vlan(adapter);
1381 }
1382
1383 /* before we allocate an interrupt, we must be ready to handle it.
1384 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1385 * as soon as we call pci_request_irq, so we have to setup our
1386 * clean_rx handler before we do so.
1387 */
1388 e1000_configure(adapter);
1389
1390 err = e1000_request_irq(adapter);
1391 if (err)
1392 goto err_req_irq;
1393
1394 /* From here on the code is the same as e1000_up() */
1395 clear_bit(__E1000_DOWN, &adapter->flags);
1396
1397 napi_enable(&adapter->napi);
1398
1399 e1000_irq_enable(adapter);
1400
1401 netif_start_queue(netdev);
1402
1403 /* fire a link status change interrupt to start the watchdog */
1404 ew32(ICS, E1000_ICS_LSC);
1405
1406 return E1000_SUCCESS;
1407
1408err_req_irq:
1409 e1000_power_down_phy(adapter);
1410 e1000_free_all_rx_resources(adapter);
1411err_setup_rx:
1412 e1000_free_all_tx_resources(adapter);
1413err_setup_tx:
1414 e1000_reset(adapter);
1415
1416 return err;
1417}
1418
1419/**
1420 * e1000_close - Disables a network interface
1421 * @netdev: network interface device structure
1422 *
1423 * Returns 0, this is not allowed to fail
1424 *
1425 * The close entry point is called when an interface is de-activated
1426 * by the OS. The hardware is still under the drivers control, but
1427 * needs to be disabled. A global MAC reset is issued to stop the
1428 * hardware, and all transmit and receive resources are freed.
1429 **/
1430int e1000_close(struct net_device *netdev)
1431{
1432 struct e1000_adapter *adapter = netdev_priv(netdev);
1433 struct e1000_hw *hw = &adapter->hw;
1434 int count = E1000_CHECK_RESET_COUNT;
1435
1436 while (test_bit(__E1000_RESETTING, &adapter->flags) && count--)
1437 usleep_range(10000, 20000);
1438
1439 WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
1440 e1000_down(adapter);
1441 e1000_power_down_phy(adapter);
1442 e1000_free_irq(adapter);
1443
1444 e1000_free_all_tx_resources(adapter);
1445 e1000_free_all_rx_resources(adapter);
1446
1447 /* kill manageability vlan ID if supported, but not if a vlan with
1448 * the same ID is registered on the host OS (let 8021q kill it)
1449 */
1450 if ((hw->mng_cookie.status &
1451 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
1452 !test_bit(adapter->mng_vlan_id, adapter->active_vlans)) {
1453 e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q),
1454 adapter->mng_vlan_id);
1455 }
1456
1457 return 0;
1458}
1459
1460/**
1461 * e1000_check_64k_bound - check that memory doesn't cross 64kB boundary
1462 * @adapter: address of board private structure
1463 * @start: address of beginning of memory
1464 * @len: length of memory
1465 **/
1466static bool e1000_check_64k_bound(struct e1000_adapter *adapter, void *start,
1467 unsigned long len)
1468{
1469 struct e1000_hw *hw = &adapter->hw;
1470 unsigned long begin = (unsigned long)start;
1471 unsigned long end = begin + len;
1472
1473 /* First rev 82545 and 82546 need to not allow any memory
1474 * write location to cross 64k boundary due to errata 23
1475 */
1476 if (hw->mac_type == e1000_82545 ||
1477 hw->mac_type == e1000_ce4100 ||
1478 hw->mac_type == e1000_82546) {
1479 return ((begin ^ (end - 1)) >> 16) != 0 ? false : true;
1480 }
1481
1482 return true;
1483}
1484
1485/**
1486 * e1000_setup_tx_resources - allocate Tx resources (Descriptors)
1487 * @adapter: board private structure
1488 * @txdr: tx descriptor ring (for a specific queue) to setup
1489 *
1490 * Return 0 on success, negative on failure
1491 **/
1492static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
1493 struct e1000_tx_ring *txdr)
1494{
1495 struct pci_dev *pdev = adapter->pdev;
1496 int size;
1497
1498 size = sizeof(struct e1000_tx_buffer) * txdr->count;
1499 txdr->buffer_info = vzalloc(size);
1500 if (!txdr->buffer_info)
1501 return -ENOMEM;
1502
1503 /* round up to nearest 4K */
1504
1505 txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
1506 txdr->size = ALIGN(txdr->size, 4096);
1507
1508 txdr->desc = dma_alloc_coherent(&pdev->dev, txdr->size, &txdr->dma,
1509 GFP_KERNEL);
1510 if (!txdr->desc) {
1511setup_tx_desc_die:
1512 vfree(txdr->buffer_info);
1513 return -ENOMEM;
1514 }
1515
1516 /* Fix for errata 23, can't cross 64kB boundary */
1517 if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1518 void *olddesc = txdr->desc;
1519 dma_addr_t olddma = txdr->dma;
1520 e_err(tx_err, "txdr align check failed: %u bytes at %p\n",
1521 txdr->size, txdr->desc);
1522 /* Try again, without freeing the previous */
1523 txdr->desc = dma_alloc_coherent(&pdev->dev, txdr->size,
1524 &txdr->dma, GFP_KERNEL);
1525 /* Failed allocation, critical failure */
1526 if (!txdr->desc) {
1527 dma_free_coherent(&pdev->dev, txdr->size, olddesc,
1528 olddma);
1529 goto setup_tx_desc_die;
1530 }
1531
1532 if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1533 /* give up */
1534 dma_free_coherent(&pdev->dev, txdr->size, txdr->desc,
1535 txdr->dma);
1536 dma_free_coherent(&pdev->dev, txdr->size, olddesc,
1537 olddma);
1538 e_err(probe, "Unable to allocate aligned memory "
1539 "for the transmit descriptor ring\n");
1540 vfree(txdr->buffer_info);
1541 return -ENOMEM;
1542 } else {
1543 /* Free old allocation, new allocation was successful */
1544 dma_free_coherent(&pdev->dev, txdr->size, olddesc,
1545 olddma);
1546 }
1547 }
1548 memset(txdr->desc, 0, txdr->size);
1549
1550 txdr->next_to_use = 0;
1551 txdr->next_to_clean = 0;
1552
1553 return 0;
1554}
1555
1556/**
1557 * e1000_setup_all_tx_resources - wrapper to allocate Tx resources
1558 * (Descriptors) for all queues
1559 * @adapter: board private structure
1560 *
1561 * Return 0 on success, negative on failure
1562 **/
1563int e1000_setup_all_tx_resources(struct e1000_adapter *adapter)
1564{
1565 int i, err = 0;
1566
1567 for (i = 0; i < adapter->num_tx_queues; i++) {
1568 err = e1000_setup_tx_resources(adapter, &adapter->tx_ring[i]);
1569 if (err) {
1570 e_err(probe, "Allocation for Tx Queue %u failed\n", i);
1571 for (i-- ; i >= 0; i--)
1572 e1000_free_tx_resources(adapter,
1573 &adapter->tx_ring[i]);
1574 break;
1575 }
1576 }
1577
1578 return err;
1579}
1580
1581/**
1582 * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
1583 * @adapter: board private structure
1584 *
1585 * Configure the Tx unit of the MAC after a reset.
1586 **/
1587static void e1000_configure_tx(struct e1000_adapter *adapter)
1588{
1589 u64 tdba;
1590 struct e1000_hw *hw = &adapter->hw;
1591 u32 tdlen, tctl, tipg;
1592 u32 ipgr1, ipgr2;
1593
1594 /* Setup the HW Tx Head and Tail descriptor pointers */
1595
1596 switch (adapter->num_tx_queues) {
1597 case 1:
1598 default:
1599 tdba = adapter->tx_ring[0].dma;
1600 tdlen = adapter->tx_ring[0].count *
1601 sizeof(struct e1000_tx_desc);
1602 ew32(TDLEN, tdlen);
1603 ew32(TDBAH, (tdba >> 32));
1604 ew32(TDBAL, (tdba & 0x00000000ffffffffULL));
1605 ew32(TDT, 0);
1606 ew32(TDH, 0);
1607 adapter->tx_ring[0].tdh = ((hw->mac_type >= e1000_82543) ?
1608 E1000_TDH : E1000_82542_TDH);
1609 adapter->tx_ring[0].tdt = ((hw->mac_type >= e1000_82543) ?
1610 E1000_TDT : E1000_82542_TDT);
1611 break;
1612 }
1613
1614 /* Set the default values for the Tx Inter Packet Gap timer */
1615 if ((hw->media_type == e1000_media_type_fiber ||
1616 hw->media_type == e1000_media_type_internal_serdes))
1617 tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
1618 else
1619 tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
1620
1621 switch (hw->mac_type) {
1622 case e1000_82542_rev2_0:
1623 case e1000_82542_rev2_1:
1624 tipg = DEFAULT_82542_TIPG_IPGT;
1625 ipgr1 = DEFAULT_82542_TIPG_IPGR1;
1626 ipgr2 = DEFAULT_82542_TIPG_IPGR2;
1627 break;
1628 default:
1629 ipgr1 = DEFAULT_82543_TIPG_IPGR1;
1630 ipgr2 = DEFAULT_82543_TIPG_IPGR2;
1631 break;
1632 }
1633 tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
1634 tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
1635 ew32(TIPG, tipg);
1636
1637 /* Set the Tx Interrupt Delay register */
1638
1639 ew32(TIDV, adapter->tx_int_delay);
1640 if (hw->mac_type >= e1000_82540)
1641 ew32(TADV, adapter->tx_abs_int_delay);
1642
1643 /* Program the Transmit Control Register */
1644
1645 tctl = er32(TCTL);
1646 tctl &= ~E1000_TCTL_CT;
1647 tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
1648 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
1649
1650 e1000_config_collision_dist(hw);
1651
1652 /* Setup Transmit Descriptor Settings for eop descriptor */
1653 adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
1654
1655 /* only set IDE if we are delaying interrupts using the timers */
1656 if (adapter->tx_int_delay)
1657 adapter->txd_cmd |= E1000_TXD_CMD_IDE;
1658
1659 if (hw->mac_type < e1000_82543)
1660 adapter->txd_cmd |= E1000_TXD_CMD_RPS;
1661 else
1662 adapter->txd_cmd |= E1000_TXD_CMD_RS;
1663
1664 /* Cache if we're 82544 running in PCI-X because we'll
1665 * need this to apply a workaround later in the send path.
1666 */
1667 if (hw->mac_type == e1000_82544 &&
1668 hw->bus_type == e1000_bus_type_pcix)
1669 adapter->pcix_82544 = true;
1670
1671 ew32(TCTL, tctl);
1672
1673}
1674
1675/**
1676 * e1000_setup_rx_resources - allocate Rx resources (Descriptors)
1677 * @adapter: board private structure
1678 * @rxdr: rx descriptor ring (for a specific queue) to setup
1679 *
1680 * Returns 0 on success, negative on failure
1681 **/
1682static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
1683 struct e1000_rx_ring *rxdr)
1684{
1685 struct pci_dev *pdev = adapter->pdev;
1686 int size, desc_len;
1687
1688 size = sizeof(struct e1000_rx_buffer) * rxdr->count;
1689 rxdr->buffer_info = vzalloc(size);
1690 if (!rxdr->buffer_info)
1691 return -ENOMEM;
1692
1693 desc_len = sizeof(struct e1000_rx_desc);
1694
1695 /* Round up to nearest 4K */
1696
1697 rxdr->size = rxdr->count * desc_len;
1698 rxdr->size = ALIGN(rxdr->size, 4096);
1699
1700 rxdr->desc = dma_alloc_coherent(&pdev->dev, rxdr->size, &rxdr->dma,
1701 GFP_KERNEL);
1702 if (!rxdr->desc) {
1703setup_rx_desc_die:
1704 vfree(rxdr->buffer_info);
1705 return -ENOMEM;
1706 }
1707
1708 /* Fix for errata 23, can't cross 64kB boundary */
1709 if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1710 void *olddesc = rxdr->desc;
1711 dma_addr_t olddma = rxdr->dma;
1712 e_err(rx_err, "rxdr align check failed: %u bytes at %p\n",
1713 rxdr->size, rxdr->desc);
1714 /* Try again, without freeing the previous */
1715 rxdr->desc = dma_alloc_coherent(&pdev->dev, rxdr->size,
1716 &rxdr->dma, GFP_KERNEL);
1717 /* Failed allocation, critical failure */
1718 if (!rxdr->desc) {
1719 dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
1720 olddma);
1721 goto setup_rx_desc_die;
1722 }
1723
1724 if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1725 /* give up */
1726 dma_free_coherent(&pdev->dev, rxdr->size, rxdr->desc,
1727 rxdr->dma);
1728 dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
1729 olddma);
1730 e_err(probe, "Unable to allocate aligned memory for "
1731 "the Rx descriptor ring\n");
1732 goto setup_rx_desc_die;
1733 } else {
1734 /* Free old allocation, new allocation was successful */
1735 dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
1736 olddma);
1737 }
1738 }
1739 memset(rxdr->desc, 0, rxdr->size);
1740
1741 rxdr->next_to_clean = 0;
1742 rxdr->next_to_use = 0;
1743 rxdr->rx_skb_top = NULL;
1744
1745 return 0;
1746}
1747
1748/**
1749 * e1000_setup_all_rx_resources - wrapper to allocate Rx resources
1750 * (Descriptors) for all queues
1751 * @adapter: board private structure
1752 *
1753 * Return 0 on success, negative on failure
1754 **/
1755int e1000_setup_all_rx_resources(struct e1000_adapter *adapter)
1756{
1757 int i, err = 0;
1758
1759 for (i = 0; i < adapter->num_rx_queues; i++) {
1760 err = e1000_setup_rx_resources(adapter, &adapter->rx_ring[i]);
1761 if (err) {
1762 e_err(probe, "Allocation for Rx Queue %u failed\n", i);
1763 for (i-- ; i >= 0; i--)
1764 e1000_free_rx_resources(adapter,
1765 &adapter->rx_ring[i]);
1766 break;
1767 }
1768 }
1769
1770 return err;
1771}
1772
1773/**
1774 * e1000_setup_rctl - configure the receive control registers
1775 * @adapter: Board private structure
1776 **/
1777static void e1000_setup_rctl(struct e1000_adapter *adapter)
1778{
1779 struct e1000_hw *hw = &adapter->hw;
1780 u32 rctl;
1781
1782 rctl = er32(RCTL);
1783
1784 rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
1785
1786 rctl |= E1000_RCTL_BAM | E1000_RCTL_LBM_NO |
1787 E1000_RCTL_RDMTS_HALF |
1788 (hw->mc_filter_type << E1000_RCTL_MO_SHIFT);
1789
1790 if (hw->tbi_compatibility_on == 1)
1791 rctl |= E1000_RCTL_SBP;
1792 else
1793 rctl &= ~E1000_RCTL_SBP;
1794
1795 if (adapter->netdev->mtu <= ETH_DATA_LEN)
1796 rctl &= ~E1000_RCTL_LPE;
1797 else
1798 rctl |= E1000_RCTL_LPE;
1799
1800 /* Setup buffer sizes */
1801 rctl &= ~E1000_RCTL_SZ_4096;
1802 rctl |= E1000_RCTL_BSEX;
1803 switch (adapter->rx_buffer_len) {
1804 case E1000_RXBUFFER_2048:
1805 default:
1806 rctl |= E1000_RCTL_SZ_2048;
1807 rctl &= ~E1000_RCTL_BSEX;
1808 break;
1809 case E1000_RXBUFFER_4096:
1810 rctl |= E1000_RCTL_SZ_4096;
1811 break;
1812 case E1000_RXBUFFER_8192:
1813 rctl |= E1000_RCTL_SZ_8192;
1814 break;
1815 case E1000_RXBUFFER_16384:
1816 rctl |= E1000_RCTL_SZ_16384;
1817 break;
1818 }
1819
1820 /* This is useful for sniffing bad packets. */
1821 if (adapter->netdev->features & NETIF_F_RXALL) {
1822 /* UPE and MPE will be handled by normal PROMISC logic
1823 * in e1000e_set_rx_mode
1824 */
1825 rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
1826 E1000_RCTL_BAM | /* RX All Bcast Pkts */
1827 E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
1828
1829 rctl &= ~(E1000_RCTL_VFE | /* Disable VLAN filter */
1830 E1000_RCTL_DPF | /* Allow filtered pause */
1831 E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
1832 /* Do not mess with E1000_CTRL_VME, it affects transmit as well,
1833 * and that breaks VLANs.
1834 */
1835 }
1836
1837 ew32(RCTL, rctl);
1838}
1839
1840/**
1841 * e1000_configure_rx - Configure 8254x Receive Unit after Reset
1842 * @adapter: board private structure
1843 *
1844 * Configure the Rx unit of the MAC after a reset.
1845 **/
1846static void e1000_configure_rx(struct e1000_adapter *adapter)
1847{
1848 u64 rdba;
1849 struct e1000_hw *hw = &adapter->hw;
1850 u32 rdlen, rctl, rxcsum;
1851
1852 if (adapter->netdev->mtu > ETH_DATA_LEN) {
1853 rdlen = adapter->rx_ring[0].count *
1854 sizeof(struct e1000_rx_desc);
1855 adapter->clean_rx = e1000_clean_jumbo_rx_irq;
1856 adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers;
1857 } else {
1858 rdlen = adapter->rx_ring[0].count *
1859 sizeof(struct e1000_rx_desc);
1860 adapter->clean_rx = e1000_clean_rx_irq;
1861 adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
1862 }
1863
1864 /* disable receives while setting up the descriptors */
1865 rctl = er32(RCTL);
1866 ew32(RCTL, rctl & ~E1000_RCTL_EN);
1867
1868 /* set the Receive Delay Timer Register */
1869 ew32(RDTR, adapter->rx_int_delay);
1870
1871 if (hw->mac_type >= e1000_82540) {
1872 ew32(RADV, adapter->rx_abs_int_delay);
1873 if (adapter->itr_setting != 0)
1874 ew32(ITR, 1000000000 / (adapter->itr * 256));
1875 }
1876
1877 /* Setup the HW Rx Head and Tail Descriptor Pointers and
1878 * the Base and Length of the Rx Descriptor Ring
1879 */
1880 switch (adapter->num_rx_queues) {
1881 case 1:
1882 default:
1883 rdba = adapter->rx_ring[0].dma;
1884 ew32(RDLEN, rdlen);
1885 ew32(RDBAH, (rdba >> 32));
1886 ew32(RDBAL, (rdba & 0x00000000ffffffffULL));
1887 ew32(RDT, 0);
1888 ew32(RDH, 0);
1889 adapter->rx_ring[0].rdh = ((hw->mac_type >= e1000_82543) ?
1890 E1000_RDH : E1000_82542_RDH);
1891 adapter->rx_ring[0].rdt = ((hw->mac_type >= e1000_82543) ?
1892 E1000_RDT : E1000_82542_RDT);
1893 break;
1894 }
1895
1896 /* Enable 82543 Receive Checksum Offload for TCP and UDP */
1897 if (hw->mac_type >= e1000_82543) {
1898 rxcsum = er32(RXCSUM);
1899 if (adapter->rx_csum)
1900 rxcsum |= E1000_RXCSUM_TUOFL;
1901 else
1902 /* don't need to clear IPPCSE as it defaults to 0 */
1903 rxcsum &= ~E1000_RXCSUM_TUOFL;
1904 ew32(RXCSUM, rxcsum);
1905 }
1906
1907 /* Enable Receives */
1908 ew32(RCTL, rctl | E1000_RCTL_EN);
1909}
1910
1911/**
1912 * e1000_free_tx_resources - Free Tx Resources per Queue
1913 * @adapter: board private structure
1914 * @tx_ring: Tx descriptor ring for a specific queue
1915 *
1916 * Free all transmit software resources
1917 **/
1918static void e1000_free_tx_resources(struct e1000_adapter *adapter,
1919 struct e1000_tx_ring *tx_ring)
1920{
1921 struct pci_dev *pdev = adapter->pdev;
1922
1923 e1000_clean_tx_ring(adapter, tx_ring);
1924
1925 vfree(tx_ring->buffer_info);
1926 tx_ring->buffer_info = NULL;
1927
1928 dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
1929 tx_ring->dma);
1930
1931 tx_ring->desc = NULL;
1932}
1933
1934/**
1935 * e1000_free_all_tx_resources - Free Tx Resources for All Queues
1936 * @adapter: board private structure
1937 *
1938 * Free all transmit software resources
1939 **/
1940void e1000_free_all_tx_resources(struct e1000_adapter *adapter)
1941{
1942 int i;
1943
1944 for (i = 0; i < adapter->num_tx_queues; i++)
1945 e1000_free_tx_resources(adapter, &adapter->tx_ring[i]);
1946}
1947
1948static void
1949e1000_unmap_and_free_tx_resource(struct e1000_adapter *adapter,
1950 struct e1000_tx_buffer *buffer_info)
1951{
1952 if (buffer_info->dma) {
1953 if (buffer_info->mapped_as_page)
1954 dma_unmap_page(&adapter->pdev->dev, buffer_info->dma,
1955 buffer_info->length, DMA_TO_DEVICE);
1956 else
1957 dma_unmap_single(&adapter->pdev->dev, buffer_info->dma,
1958 buffer_info->length,
1959 DMA_TO_DEVICE);
1960 buffer_info->dma = 0;
1961 }
1962 if (buffer_info->skb) {
1963 dev_kfree_skb_any(buffer_info->skb);
1964 buffer_info->skb = NULL;
1965 }
1966 buffer_info->time_stamp = 0;
1967 /* buffer_info must be completely set up in the transmit path */
1968}
1969
1970/**
1971 * e1000_clean_tx_ring - Free Tx Buffers
1972 * @adapter: board private structure
1973 * @tx_ring: ring to be cleaned
1974 **/
1975static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
1976 struct e1000_tx_ring *tx_ring)
1977{
1978 struct e1000_hw *hw = &adapter->hw;
1979 struct e1000_tx_buffer *buffer_info;
1980 unsigned long size;
1981 unsigned int i;
1982
1983 /* Free all the Tx ring sk_buffs */
1984
1985 for (i = 0; i < tx_ring->count; i++) {
1986 buffer_info = &tx_ring->buffer_info[i];
1987 e1000_unmap_and_free_tx_resource(adapter, buffer_info);
1988 }
1989
1990 netdev_reset_queue(adapter->netdev);
1991 size = sizeof(struct e1000_tx_buffer) * tx_ring->count;
1992 memset(tx_ring->buffer_info, 0, size);
1993
1994 /* Zero out the descriptor ring */
1995
1996 memset(tx_ring->desc, 0, tx_ring->size);
1997
1998 tx_ring->next_to_use = 0;
1999 tx_ring->next_to_clean = 0;
2000 tx_ring->last_tx_tso = false;
2001
2002 writel(0, hw->hw_addr + tx_ring->tdh);
2003 writel(0, hw->hw_addr + tx_ring->tdt);
2004}
2005
2006/**
2007 * e1000_clean_all_tx_rings - Free Tx Buffers for all queues
2008 * @adapter: board private structure
2009 **/
2010static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter)
2011{
2012 int i;
2013
2014 for (i = 0; i < adapter->num_tx_queues; i++)
2015 e1000_clean_tx_ring(adapter, &adapter->tx_ring[i]);
2016}
2017
2018/**
2019 * e1000_free_rx_resources - Free Rx Resources
2020 * @adapter: board private structure
2021 * @rx_ring: ring to clean the resources from
2022 *
2023 * Free all receive software resources
2024 **/
2025static void e1000_free_rx_resources(struct e1000_adapter *adapter,
2026 struct e1000_rx_ring *rx_ring)
2027{
2028 struct pci_dev *pdev = adapter->pdev;
2029
2030 e1000_clean_rx_ring(adapter, rx_ring);
2031
2032 vfree(rx_ring->buffer_info);
2033 rx_ring->buffer_info = NULL;
2034
2035 dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
2036 rx_ring->dma);
2037
2038 rx_ring->desc = NULL;
2039}
2040
2041/**
2042 * e1000_free_all_rx_resources - Free Rx Resources for All Queues
2043 * @adapter: board private structure
2044 *
2045 * Free all receive software resources
2046 **/
2047void e1000_free_all_rx_resources(struct e1000_adapter *adapter)
2048{
2049 int i;
2050
2051 for (i = 0; i < adapter->num_rx_queues; i++)
2052 e1000_free_rx_resources(adapter, &adapter->rx_ring[i]);
2053}
2054
2055#define E1000_HEADROOM (NET_SKB_PAD + NET_IP_ALIGN)
2056static unsigned int e1000_frag_len(const struct e1000_adapter *a)
2057{
2058 return SKB_DATA_ALIGN(a->rx_buffer_len + E1000_HEADROOM) +
2059 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
2060}
2061
2062static void *e1000_alloc_frag(const struct e1000_adapter *a)
2063{
2064 unsigned int len = e1000_frag_len(a);
2065 u8 *data = netdev_alloc_frag(len);
2066
2067 if (likely(data))
2068 data += E1000_HEADROOM;
2069 return data;
2070}
2071
2072/**
2073 * e1000_clean_rx_ring - Free Rx Buffers per Queue
2074 * @adapter: board private structure
2075 * @rx_ring: ring to free buffers from
2076 **/
2077static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
2078 struct e1000_rx_ring *rx_ring)
2079{
2080 struct e1000_hw *hw = &adapter->hw;
2081 struct e1000_rx_buffer *buffer_info;
2082 struct pci_dev *pdev = adapter->pdev;
2083 unsigned long size;
2084 unsigned int i;
2085
2086 /* Free all the Rx netfrags */
2087 for (i = 0; i < rx_ring->count; i++) {
2088 buffer_info = &rx_ring->buffer_info[i];
2089 if (adapter->clean_rx == e1000_clean_rx_irq) {
2090 if (buffer_info->dma)
2091 dma_unmap_single(&pdev->dev, buffer_info->dma,
2092 adapter->rx_buffer_len,
2093 DMA_FROM_DEVICE);
2094 if (buffer_info->rxbuf.data) {
2095 skb_free_frag(buffer_info->rxbuf.data);
2096 buffer_info->rxbuf.data = NULL;
2097 }
2098 } else if (adapter->clean_rx == e1000_clean_jumbo_rx_irq) {
2099 if (buffer_info->dma)
2100 dma_unmap_page(&pdev->dev, buffer_info->dma,
2101 adapter->rx_buffer_len,
2102 DMA_FROM_DEVICE);
2103 if (buffer_info->rxbuf.page) {
2104 put_page(buffer_info->rxbuf.page);
2105 buffer_info->rxbuf.page = NULL;
2106 }
2107 }
2108
2109 buffer_info->dma = 0;
2110 }
2111
2112 /* there also may be some cached data from a chained receive */
2113 napi_free_frags(&adapter->napi);
2114 rx_ring->rx_skb_top = NULL;
2115
2116 size = sizeof(struct e1000_rx_buffer) * rx_ring->count;
2117 memset(rx_ring->buffer_info, 0, size);
2118
2119 /* Zero out the descriptor ring */
2120 memset(rx_ring->desc, 0, rx_ring->size);
2121
2122 rx_ring->next_to_clean = 0;
2123 rx_ring->next_to_use = 0;
2124
2125 writel(0, hw->hw_addr + rx_ring->rdh);
2126 writel(0, hw->hw_addr + rx_ring->rdt);
2127}
2128
2129/**
2130 * e1000_clean_all_rx_rings - Free Rx Buffers for all queues
2131 * @adapter: board private structure
2132 **/
2133static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter)
2134{
2135 int i;
2136
2137 for (i = 0; i < adapter->num_rx_queues; i++)
2138 e1000_clean_rx_ring(adapter, &adapter->rx_ring[i]);
2139}
2140
2141/* The 82542 2.0 (revision 2) needs to have the receive unit in reset
2142 * and memory write and invalidate disabled for certain operations
2143 */
2144static void e1000_enter_82542_rst(struct e1000_adapter *adapter)
2145{
2146 struct e1000_hw *hw = &adapter->hw;
2147 struct net_device *netdev = adapter->netdev;
2148 u32 rctl;
2149
2150 e1000_pci_clear_mwi(hw);
2151
2152 rctl = er32(RCTL);
2153 rctl |= E1000_RCTL_RST;
2154 ew32(RCTL, rctl);
2155 E1000_WRITE_FLUSH();
2156 mdelay(5);
2157
2158 if (netif_running(netdev))
2159 e1000_clean_all_rx_rings(adapter);
2160}
2161
2162static void e1000_leave_82542_rst(struct e1000_adapter *adapter)
2163{
2164 struct e1000_hw *hw = &adapter->hw;
2165 struct net_device *netdev = adapter->netdev;
2166 u32 rctl;
2167
2168 rctl = er32(RCTL);
2169 rctl &= ~E1000_RCTL_RST;
2170 ew32(RCTL, rctl);
2171 E1000_WRITE_FLUSH();
2172 mdelay(5);
2173
2174 if (hw->pci_cmd_word & PCI_COMMAND_INVALIDATE)
2175 e1000_pci_set_mwi(hw);
2176
2177 if (netif_running(netdev)) {
2178 /* No need to loop, because 82542 supports only 1 queue */
2179 struct e1000_rx_ring *ring = &adapter->rx_ring[0];
2180 e1000_configure_rx(adapter);
2181 adapter->alloc_rx_buf(adapter, ring, E1000_DESC_UNUSED(ring));
2182 }
2183}
2184
2185/**
2186 * e1000_set_mac - Change the Ethernet Address of the NIC
2187 * @netdev: network interface device structure
2188 * @p: pointer to an address structure
2189 *
2190 * Returns 0 on success, negative on failure
2191 **/
2192static int e1000_set_mac(struct net_device *netdev, void *p)
2193{
2194 struct e1000_adapter *adapter = netdev_priv(netdev);
2195 struct e1000_hw *hw = &adapter->hw;
2196 struct sockaddr *addr = p;
2197
2198 if (!is_valid_ether_addr(addr->sa_data))
2199 return -EADDRNOTAVAIL;
2200
2201 /* 82542 2.0 needs to be in reset to write receive address registers */
2202
2203 if (hw->mac_type == e1000_82542_rev2_0)
2204 e1000_enter_82542_rst(adapter);
2205
2206 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
2207 memcpy(hw->mac_addr, addr->sa_data, netdev->addr_len);
2208
2209 e1000_rar_set(hw, hw->mac_addr, 0);
2210
2211 if (hw->mac_type == e1000_82542_rev2_0)
2212 e1000_leave_82542_rst(adapter);
2213
2214 return 0;
2215}
2216
2217/**
2218 * e1000_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
2219 * @netdev: network interface device structure
2220 *
2221 * The set_rx_mode entry point is called whenever the unicast or multicast
2222 * address lists or the network interface flags are updated. This routine is
2223 * responsible for configuring the hardware for proper unicast, multicast,
2224 * promiscuous mode, and all-multi behavior.
2225 **/
2226static void e1000_set_rx_mode(struct net_device *netdev)
2227{
2228 struct e1000_adapter *adapter = netdev_priv(netdev);
2229 struct e1000_hw *hw = &adapter->hw;
2230 struct netdev_hw_addr *ha;
2231 bool use_uc = false;
2232 u32 rctl;
2233 u32 hash_value;
2234 int i, rar_entries = E1000_RAR_ENTRIES;
2235 int mta_reg_count = E1000_NUM_MTA_REGISTERS;
2236 u32 *mcarray = kcalloc(mta_reg_count, sizeof(u32), GFP_ATOMIC);
2237
2238 if (!mcarray)
2239 return;
2240
2241 /* Check for Promiscuous and All Multicast modes */
2242
2243 rctl = er32(RCTL);
2244
2245 if (netdev->flags & IFF_PROMISC) {
2246 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2247 rctl &= ~E1000_RCTL_VFE;
2248 } else {
2249 if (netdev->flags & IFF_ALLMULTI)
2250 rctl |= E1000_RCTL_MPE;
2251 else
2252 rctl &= ~E1000_RCTL_MPE;
2253 /* Enable VLAN filter if there is a VLAN */
2254 if (e1000_vlan_used(adapter))
2255 rctl |= E1000_RCTL_VFE;
2256 }
2257
2258 if (netdev_uc_count(netdev) > rar_entries - 1) {
2259 rctl |= E1000_RCTL_UPE;
2260 } else if (!(netdev->flags & IFF_PROMISC)) {
2261 rctl &= ~E1000_RCTL_UPE;
2262 use_uc = true;
2263 }
2264
2265 ew32(RCTL, rctl);
2266
2267 /* 82542 2.0 needs to be in reset to write receive address registers */
2268
2269 if (hw->mac_type == e1000_82542_rev2_0)
2270 e1000_enter_82542_rst(adapter);
2271
2272 /* load the first 14 addresses into the exact filters 1-14. Unicast
2273 * addresses take precedence to avoid disabling unicast filtering
2274 * when possible.
2275 *
2276 * RAR 0 is used for the station MAC address
2277 * if there are not 14 addresses, go ahead and clear the filters
2278 */
2279 i = 1;
2280 if (use_uc)
2281 netdev_for_each_uc_addr(ha, netdev) {
2282 if (i == rar_entries)
2283 break;
2284 e1000_rar_set(hw, ha->addr, i++);
2285 }
2286
2287 netdev_for_each_mc_addr(ha, netdev) {
2288 if (i == rar_entries) {
2289 /* load any remaining addresses into the hash table */
2290 u32 hash_reg, hash_bit, mta;
2291 hash_value = e1000_hash_mc_addr(hw, ha->addr);
2292 hash_reg = (hash_value >> 5) & 0x7F;
2293 hash_bit = hash_value & 0x1F;
2294 mta = (1 << hash_bit);
2295 mcarray[hash_reg] |= mta;
2296 } else {
2297 e1000_rar_set(hw, ha->addr, i++);
2298 }
2299 }
2300
2301 for (; i < rar_entries; i++) {
2302 E1000_WRITE_REG_ARRAY(hw, RA, i << 1, 0);
2303 E1000_WRITE_FLUSH();
2304 E1000_WRITE_REG_ARRAY(hw, RA, (i << 1) + 1, 0);
2305 E1000_WRITE_FLUSH();
2306 }
2307
2308 /* write the hash table completely, write from bottom to avoid
2309 * both stupid write combining chipsets, and flushing each write
2310 */
2311 for (i = mta_reg_count - 1; i >= 0 ; i--) {
2312 /* If we are on an 82544 has an errata where writing odd
2313 * offsets overwrites the previous even offset, but writing
2314 * backwards over the range solves the issue by always
2315 * writing the odd offset first
2316 */
2317 E1000_WRITE_REG_ARRAY(hw, MTA, i, mcarray[i]);
2318 }
2319 E1000_WRITE_FLUSH();
2320
2321 if (hw->mac_type == e1000_82542_rev2_0)
2322 e1000_leave_82542_rst(adapter);
2323
2324 kfree(mcarray);
2325}
2326
2327/**
2328 * e1000_update_phy_info_task - get phy info
2329 * @work: work struct contained inside adapter struct
2330 *
2331 * Need to wait a few seconds after link up to get diagnostic information from
2332 * the phy
2333 */
2334static void e1000_update_phy_info_task(struct work_struct *work)
2335{
2336 struct e1000_adapter *adapter = container_of(work,
2337 struct e1000_adapter,
2338 phy_info_task.work);
2339
2340 e1000_phy_get_info(&adapter->hw, &adapter->phy_info);
2341}
2342
2343/**
2344 * e1000_82547_tx_fifo_stall_task - task to complete work
2345 * @work: work struct contained inside adapter struct
2346 **/
2347static void e1000_82547_tx_fifo_stall_task(struct work_struct *work)
2348{
2349 struct e1000_adapter *adapter = container_of(work,
2350 struct e1000_adapter,
2351 fifo_stall_task.work);
2352 struct e1000_hw *hw = &adapter->hw;
2353 struct net_device *netdev = adapter->netdev;
2354 u32 tctl;
2355
2356 if (atomic_read(&adapter->tx_fifo_stall)) {
2357 if ((er32(TDT) == er32(TDH)) &&
2358 (er32(TDFT) == er32(TDFH)) &&
2359 (er32(TDFTS) == er32(TDFHS))) {
2360 tctl = er32(TCTL);
2361 ew32(TCTL, tctl & ~E1000_TCTL_EN);
2362 ew32(TDFT, adapter->tx_head_addr);
2363 ew32(TDFH, adapter->tx_head_addr);
2364 ew32(TDFTS, adapter->tx_head_addr);
2365 ew32(TDFHS, adapter->tx_head_addr);
2366 ew32(TCTL, tctl);
2367 E1000_WRITE_FLUSH();
2368
2369 adapter->tx_fifo_head = 0;
2370 atomic_set(&adapter->tx_fifo_stall, 0);
2371 netif_wake_queue(netdev);
2372 } else if (!test_bit(__E1000_DOWN, &adapter->flags)) {
2373 schedule_delayed_work(&adapter->fifo_stall_task, 1);
2374 }
2375 }
2376}
2377
2378bool e1000_has_link(struct e1000_adapter *adapter)
2379{
2380 struct e1000_hw *hw = &adapter->hw;
2381 bool link_active = false;
2382
2383 /* get_link_status is set on LSC (link status) interrupt or rx
2384 * sequence error interrupt (except on intel ce4100).
2385 * get_link_status will stay false until the
2386 * e1000_check_for_link establishes link for copper adapters
2387 * ONLY
2388 */
2389 switch (hw->media_type) {
2390 case e1000_media_type_copper:
2391 if (hw->mac_type == e1000_ce4100)
2392 hw->get_link_status = 1;
2393 if (hw->get_link_status) {
2394 e1000_check_for_link(hw);
2395 link_active = !hw->get_link_status;
2396 } else {
2397 link_active = true;
2398 }
2399 break;
2400 case e1000_media_type_fiber:
2401 e1000_check_for_link(hw);
2402 link_active = !!(er32(STATUS) & E1000_STATUS_LU);
2403 break;
2404 case e1000_media_type_internal_serdes:
2405 e1000_check_for_link(hw);
2406 link_active = hw->serdes_has_link;
2407 break;
2408 default:
2409 break;
2410 }
2411
2412 return link_active;
2413}
2414
2415/**
2416 * e1000_watchdog - work function
2417 * @work: work struct contained inside adapter struct
2418 **/
2419static void e1000_watchdog(struct work_struct *work)
2420{
2421 struct e1000_adapter *adapter = container_of(work,
2422 struct e1000_adapter,
2423 watchdog_task.work);
2424 struct e1000_hw *hw = &adapter->hw;
2425 struct net_device *netdev = adapter->netdev;
2426 struct e1000_tx_ring *txdr = adapter->tx_ring;
2427 u32 link, tctl;
2428
2429 link = e1000_has_link(adapter);
2430 if ((netif_carrier_ok(netdev)) && link)
2431 goto link_up;
2432
2433 if (link) {
2434 if (!netif_carrier_ok(netdev)) {
2435 u32 ctrl;
2436 /* update snapshot of PHY registers on LSC */
2437 e1000_get_speed_and_duplex(hw,
2438 &adapter->link_speed,
2439 &adapter->link_duplex);
2440
2441 ctrl = er32(CTRL);
2442 pr_info("%s NIC Link is Up %d Mbps %s, "
2443 "Flow Control: %s\n",
2444 netdev->name,
2445 adapter->link_speed,
2446 adapter->link_duplex == FULL_DUPLEX ?
2447 "Full Duplex" : "Half Duplex",
2448 ((ctrl & E1000_CTRL_TFCE) && (ctrl &
2449 E1000_CTRL_RFCE)) ? "RX/TX" : ((ctrl &
2450 E1000_CTRL_RFCE) ? "RX" : ((ctrl &
2451 E1000_CTRL_TFCE) ? "TX" : "None")));
2452
2453 /* adjust timeout factor according to speed/duplex */
2454 adapter->tx_timeout_factor = 1;
2455 switch (adapter->link_speed) {
2456 case SPEED_10:
2457 adapter->tx_timeout_factor = 16;
2458 break;
2459 case SPEED_100:
2460 /* maybe add some timeout factor ? */
2461 break;
2462 }
2463
2464 /* enable transmits in the hardware */
2465 tctl = er32(TCTL);
2466 tctl |= E1000_TCTL_EN;
2467 ew32(TCTL, tctl);
2468
2469 netif_carrier_on(netdev);
2470 if (!test_bit(__E1000_DOWN, &adapter->flags))
2471 schedule_delayed_work(&adapter->phy_info_task,
2472 2 * HZ);
2473 adapter->smartspeed = 0;
2474 }
2475 } else {
2476 if (netif_carrier_ok(netdev)) {
2477 adapter->link_speed = 0;
2478 adapter->link_duplex = 0;
2479 pr_info("%s NIC Link is Down\n",
2480 netdev->name);
2481 netif_carrier_off(netdev);
2482
2483 if (!test_bit(__E1000_DOWN, &adapter->flags))
2484 schedule_delayed_work(&adapter->phy_info_task,
2485 2 * HZ);
2486 }
2487
2488 e1000_smartspeed(adapter);
2489 }
2490
2491link_up:
2492 e1000_update_stats(adapter);
2493
2494 hw->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
2495 adapter->tpt_old = adapter->stats.tpt;
2496 hw->collision_delta = adapter->stats.colc - adapter->colc_old;
2497 adapter->colc_old = adapter->stats.colc;
2498
2499 adapter->gorcl = adapter->stats.gorcl - adapter->gorcl_old;
2500 adapter->gorcl_old = adapter->stats.gorcl;
2501 adapter->gotcl = adapter->stats.gotcl - adapter->gotcl_old;
2502 adapter->gotcl_old = adapter->stats.gotcl;
2503
2504 e1000_update_adaptive(hw);
2505
2506 if (!netif_carrier_ok(netdev)) {
2507 if (E1000_DESC_UNUSED(txdr) + 1 < txdr->count) {
2508 /* We've lost link, so the controller stops DMA,
2509 * but we've got queued Tx work that's never going
2510 * to get done, so reset controller to flush Tx.
2511 * (Do the reset outside of interrupt context).
2512 */
2513 adapter->tx_timeout_count++;
2514 schedule_work(&adapter->reset_task);
2515 /* exit immediately since reset is imminent */
2516 return;
2517 }
2518 }
2519
2520 /* Simple mode for Interrupt Throttle Rate (ITR) */
2521 if (hw->mac_type >= e1000_82540 && adapter->itr_setting == 4) {
2522 /* Symmetric Tx/Rx gets a reduced ITR=2000;
2523 * Total asymmetrical Tx or Rx gets ITR=8000;
2524 * everyone else is between 2000-8000.
2525 */
2526 u32 goc = (adapter->gotcl + adapter->gorcl) / 10000;
2527 u32 dif = (adapter->gotcl > adapter->gorcl ?
2528 adapter->gotcl - adapter->gorcl :
2529 adapter->gorcl - adapter->gotcl) / 10000;
2530 u32 itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000;
2531
2532 ew32(ITR, 1000000000 / (itr * 256));
2533 }
2534
2535 /* Cause software interrupt to ensure rx ring is cleaned */
2536 ew32(ICS, E1000_ICS_RXDMT0);
2537
2538 /* Force detection of hung controller every watchdog period */
2539 adapter->detect_tx_hung = true;
2540
2541 /* Reschedule the task */
2542 if (!test_bit(__E1000_DOWN, &adapter->flags))
2543 schedule_delayed_work(&adapter->watchdog_task, 2 * HZ);
2544}
2545
2546enum latency_range {
2547 lowest_latency = 0,
2548 low_latency = 1,
2549 bulk_latency = 2,
2550 latency_invalid = 255
2551};
2552
2553/**
2554 * e1000_update_itr - update the dynamic ITR value based on statistics
2555 * @adapter: pointer to adapter
2556 * @itr_setting: current adapter->itr
2557 * @packets: the number of packets during this measurement interval
2558 * @bytes: the number of bytes during this measurement interval
2559 *
2560 * Stores a new ITR value based on packets and byte
2561 * counts during the last interrupt. The advantage of per interrupt
2562 * computation is faster updates and more accurate ITR for the current
2563 * traffic pattern. Constants in this function were computed
2564 * based on theoretical maximum wire speed and thresholds were set based
2565 * on testing data as well as attempting to minimize response time
2566 * while increasing bulk throughput.
2567 * this functionality is controlled by the InterruptThrottleRate module
2568 * parameter (see e1000_param.c)
2569 **/
2570static unsigned int e1000_update_itr(struct e1000_adapter *adapter,
2571 u16 itr_setting, int packets, int bytes)
2572{
2573 unsigned int retval = itr_setting;
2574 struct e1000_hw *hw = &adapter->hw;
2575
2576 if (unlikely(hw->mac_type < e1000_82540))
2577 goto update_itr_done;
2578
2579 if (packets == 0)
2580 goto update_itr_done;
2581
2582 switch (itr_setting) {
2583 case lowest_latency:
2584 /* jumbo frames get bulk treatment*/
2585 if (bytes/packets > 8000)
2586 retval = bulk_latency;
2587 else if ((packets < 5) && (bytes > 512))
2588 retval = low_latency;
2589 break;
2590 case low_latency: /* 50 usec aka 20000 ints/s */
2591 if (bytes > 10000) {
2592 /* jumbo frames need bulk latency setting */
2593 if (bytes/packets > 8000)
2594 retval = bulk_latency;
2595 else if ((packets < 10) || ((bytes/packets) > 1200))
2596 retval = bulk_latency;
2597 else if ((packets > 35))
2598 retval = lowest_latency;
2599 } else if (bytes/packets > 2000)
2600 retval = bulk_latency;
2601 else if (packets <= 2 && bytes < 512)
2602 retval = lowest_latency;
2603 break;
2604 case bulk_latency: /* 250 usec aka 4000 ints/s */
2605 if (bytes > 25000) {
2606 if (packets > 35)
2607 retval = low_latency;
2608 } else if (bytes < 6000) {
2609 retval = low_latency;
2610 }
2611 break;
2612 }
2613
2614update_itr_done:
2615 return retval;
2616}
2617
2618static void e1000_set_itr(struct e1000_adapter *adapter)
2619{
2620 struct e1000_hw *hw = &adapter->hw;
2621 u16 current_itr;
2622 u32 new_itr = adapter->itr;
2623
2624 if (unlikely(hw->mac_type < e1000_82540))
2625 return;
2626
2627 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2628 if (unlikely(adapter->link_speed != SPEED_1000)) {
2629 current_itr = 0;
2630 new_itr = 4000;
2631 goto set_itr_now;
2632 }
2633
2634 adapter->tx_itr = e1000_update_itr(adapter, adapter->tx_itr,
2635 adapter->total_tx_packets,
2636 adapter->total_tx_bytes);
2637 /* conservative mode (itr 3) eliminates the lowest_latency setting */
2638 if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
2639 adapter->tx_itr = low_latency;
2640
2641 adapter->rx_itr = e1000_update_itr(adapter, adapter->rx_itr,
2642 adapter->total_rx_packets,
2643 adapter->total_rx_bytes);
2644 /* conservative mode (itr 3) eliminates the lowest_latency setting */
2645 if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
2646 adapter->rx_itr = low_latency;
2647
2648 current_itr = max(adapter->rx_itr, adapter->tx_itr);
2649
2650 switch (current_itr) {
2651 /* counts and packets in update_itr are dependent on these numbers */
2652 case lowest_latency:
2653 new_itr = 70000;
2654 break;
2655 case low_latency:
2656 new_itr = 20000; /* aka hwitr = ~200 */
2657 break;
2658 case bulk_latency:
2659 new_itr = 4000;
2660 break;
2661 default:
2662 break;
2663 }
2664
2665set_itr_now:
2666 if (new_itr != adapter->itr) {
2667 /* this attempts to bias the interrupt rate towards Bulk
2668 * by adding intermediate steps when interrupt rate is
2669 * increasing
2670 */
2671 new_itr = new_itr > adapter->itr ?
2672 min(adapter->itr + (new_itr >> 2), new_itr) :
2673 new_itr;
2674 adapter->itr = new_itr;
2675 ew32(ITR, 1000000000 / (new_itr * 256));
2676 }
2677}
2678
2679#define E1000_TX_FLAGS_CSUM 0x00000001
2680#define E1000_TX_FLAGS_VLAN 0x00000002
2681#define E1000_TX_FLAGS_TSO 0x00000004
2682#define E1000_TX_FLAGS_IPV4 0x00000008
2683#define E1000_TX_FLAGS_NO_FCS 0x00000010
2684#define E1000_TX_FLAGS_VLAN_MASK 0xffff0000
2685#define E1000_TX_FLAGS_VLAN_SHIFT 16
2686
2687static int e1000_tso(struct e1000_adapter *adapter,
2688 struct e1000_tx_ring *tx_ring, struct sk_buff *skb,
2689 __be16 protocol)
2690{
2691 struct e1000_context_desc *context_desc;
2692 struct e1000_tx_buffer *buffer_info;
2693 unsigned int i;
2694 u32 cmd_length = 0;
2695 u16 ipcse = 0, tucse, mss;
2696 u8 ipcss, ipcso, tucss, tucso, hdr_len;
2697
2698 if (skb_is_gso(skb)) {
2699 int err;
2700
2701 err = skb_cow_head(skb, 0);
2702 if (err < 0)
2703 return err;
2704
2705 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
2706 mss = skb_shinfo(skb)->gso_size;
2707 if (protocol == htons(ETH_P_IP)) {
2708 struct iphdr *iph = ip_hdr(skb);
2709 iph->tot_len = 0;
2710 iph->check = 0;
2711 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
2712 iph->daddr, 0,
2713 IPPROTO_TCP,
2714 0);
2715 cmd_length = E1000_TXD_CMD_IP;
2716 ipcse = skb_transport_offset(skb) - 1;
2717 } else if (skb_is_gso_v6(skb)) {
2718 ipv6_hdr(skb)->payload_len = 0;
2719 tcp_hdr(skb)->check =
2720 ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
2721 &ipv6_hdr(skb)->daddr,
2722 0, IPPROTO_TCP, 0);
2723 ipcse = 0;
2724 }
2725 ipcss = skb_network_offset(skb);
2726 ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
2727 tucss = skb_transport_offset(skb);
2728 tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
2729 tucse = 0;
2730
2731 cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
2732 E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
2733
2734 i = tx_ring->next_to_use;
2735 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2736 buffer_info = &tx_ring->buffer_info[i];
2737
2738 context_desc->lower_setup.ip_fields.ipcss = ipcss;
2739 context_desc->lower_setup.ip_fields.ipcso = ipcso;
2740 context_desc->lower_setup.ip_fields.ipcse = cpu_to_le16(ipcse);
2741 context_desc->upper_setup.tcp_fields.tucss = tucss;
2742 context_desc->upper_setup.tcp_fields.tucso = tucso;
2743 context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
2744 context_desc->tcp_seg_setup.fields.mss = cpu_to_le16(mss);
2745 context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
2746 context_desc->cmd_and_length = cpu_to_le32(cmd_length);
2747
2748 buffer_info->time_stamp = jiffies;
2749 buffer_info->next_to_watch = i;
2750
2751 if (++i == tx_ring->count)
2752 i = 0;
2753
2754 tx_ring->next_to_use = i;
2755
2756 return true;
2757 }
2758 return false;
2759}
2760
2761static bool e1000_tx_csum(struct e1000_adapter *adapter,
2762 struct e1000_tx_ring *tx_ring, struct sk_buff *skb,
2763 __be16 protocol)
2764{
2765 struct e1000_context_desc *context_desc;
2766 struct e1000_tx_buffer *buffer_info;
2767 unsigned int i;
2768 u8 css;
2769 u32 cmd_len = E1000_TXD_CMD_DEXT;
2770
2771 if (skb->ip_summed != CHECKSUM_PARTIAL)
2772 return false;
2773
2774 switch (protocol) {
2775 case cpu_to_be16(ETH_P_IP):
2776 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
2777 cmd_len |= E1000_TXD_CMD_TCP;
2778 break;
2779 case cpu_to_be16(ETH_P_IPV6):
2780 /* XXX not handling all IPV6 headers */
2781 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
2782 cmd_len |= E1000_TXD_CMD_TCP;
2783 break;
2784 default:
2785 if (unlikely(net_ratelimit()))
2786 e_warn(drv, "checksum_partial proto=%x!\n",
2787 skb->protocol);
2788 break;
2789 }
2790
2791 css = skb_checksum_start_offset(skb);
2792
2793 i = tx_ring->next_to_use;
2794 buffer_info = &tx_ring->buffer_info[i];
2795 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2796
2797 context_desc->lower_setup.ip_config = 0;
2798 context_desc->upper_setup.tcp_fields.tucss = css;
2799 context_desc->upper_setup.tcp_fields.tucso =
2800 css + skb->csum_offset;
2801 context_desc->upper_setup.tcp_fields.tucse = 0;
2802 context_desc->tcp_seg_setup.data = 0;
2803 context_desc->cmd_and_length = cpu_to_le32(cmd_len);
2804
2805 buffer_info->time_stamp = jiffies;
2806 buffer_info->next_to_watch = i;
2807
2808 if (unlikely(++i == tx_ring->count))
2809 i = 0;
2810
2811 tx_ring->next_to_use = i;
2812
2813 return true;
2814}
2815
2816#define E1000_MAX_TXD_PWR 12
2817#define E1000_MAX_DATA_PER_TXD (1<<E1000_MAX_TXD_PWR)
2818
2819static int e1000_tx_map(struct e1000_adapter *adapter,
2820 struct e1000_tx_ring *tx_ring,
2821 struct sk_buff *skb, unsigned int first,
2822 unsigned int max_per_txd, unsigned int nr_frags,
2823 unsigned int mss)
2824{
2825 struct e1000_hw *hw = &adapter->hw;
2826 struct pci_dev *pdev = adapter->pdev;
2827 struct e1000_tx_buffer *buffer_info;
2828 unsigned int len = skb_headlen(skb);
2829 unsigned int offset = 0, size, count = 0, i;
2830 unsigned int f, bytecount, segs;
2831
2832 i = tx_ring->next_to_use;
2833
2834 while (len) {
2835 buffer_info = &tx_ring->buffer_info[i];
2836 size = min(len, max_per_txd);
2837 /* Workaround for Controller erratum --
2838 * descriptor for non-tso packet in a linear SKB that follows a
2839 * tso gets written back prematurely before the data is fully
2840 * DMA'd to the controller
2841 */
2842 if (!skb->data_len && tx_ring->last_tx_tso &&
2843 !skb_is_gso(skb)) {
2844 tx_ring->last_tx_tso = false;
2845 size -= 4;
2846 }
2847
2848 /* Workaround for premature desc write-backs
2849 * in TSO mode. Append 4-byte sentinel desc
2850 */
2851 if (unlikely(mss && !nr_frags && size == len && size > 8))
2852 size -= 4;
2853 /* work-around for errata 10 and it applies
2854 * to all controllers in PCI-X mode
2855 * The fix is to make sure that the first descriptor of a
2856 * packet is smaller than 2048 - 16 - 16 (or 2016) bytes
2857 */
2858 if (unlikely((hw->bus_type == e1000_bus_type_pcix) &&
2859 (size > 2015) && count == 0))
2860 size = 2015;
2861
2862 /* Workaround for potential 82544 hang in PCI-X. Avoid
2863 * terminating buffers within evenly-aligned dwords.
2864 */
2865 if (unlikely(adapter->pcix_82544 &&
2866 !((unsigned long)(skb->data + offset + size - 1) & 4) &&
2867 size > 4))
2868 size -= 4;
2869
2870 buffer_info->length = size;
2871 /* set time_stamp *before* dma to help avoid a possible race */
2872 buffer_info->time_stamp = jiffies;
2873 buffer_info->mapped_as_page = false;
2874 buffer_info->dma = dma_map_single(&pdev->dev,
2875 skb->data + offset,
2876 size, DMA_TO_DEVICE);
2877 if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2878 goto dma_error;
2879 buffer_info->next_to_watch = i;
2880
2881 len -= size;
2882 offset += size;
2883 count++;
2884 if (len) {
2885 i++;
2886 if (unlikely(i == tx_ring->count))
2887 i = 0;
2888 }
2889 }
2890
2891 for (f = 0; f < nr_frags; f++) {
2892 const skb_frag_t *frag = &skb_shinfo(skb)->frags[f];
2893
2894 len = skb_frag_size(frag);
2895 offset = 0;
2896
2897 while (len) {
2898 unsigned long bufend;
2899 i++;
2900 if (unlikely(i == tx_ring->count))
2901 i = 0;
2902
2903 buffer_info = &tx_ring->buffer_info[i];
2904 size = min(len, max_per_txd);
2905 /* Workaround for premature desc write-backs
2906 * in TSO mode. Append 4-byte sentinel desc
2907 */
2908 if (unlikely(mss && f == (nr_frags-1) &&
2909 size == len && size > 8))
2910 size -= 4;
2911 /* Workaround for potential 82544 hang in PCI-X.
2912 * Avoid terminating buffers within evenly-aligned
2913 * dwords.
2914 */
2915 bufend = (unsigned long)
2916 page_to_phys(skb_frag_page(frag));
2917 bufend += offset + size - 1;
2918 if (unlikely(adapter->pcix_82544 &&
2919 !(bufend & 4) &&
2920 size > 4))
2921 size -= 4;
2922
2923 buffer_info->length = size;
2924 buffer_info->time_stamp = jiffies;
2925 buffer_info->mapped_as_page = true;
2926 buffer_info->dma = skb_frag_dma_map(&pdev->dev, frag,
2927 offset, size, DMA_TO_DEVICE);
2928 if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2929 goto dma_error;
2930 buffer_info->next_to_watch = i;
2931
2932 len -= size;
2933 offset += size;
2934 count++;
2935 }
2936 }
2937
2938 segs = skb_shinfo(skb)->gso_segs ?: 1;
2939 /* multiply data chunks by size of headers */
2940 bytecount = ((segs - 1) * skb_headlen(skb)) + skb->len;
2941
2942 tx_ring->buffer_info[i].skb = skb;
2943 tx_ring->buffer_info[i].segs = segs;
2944 tx_ring->buffer_info[i].bytecount = bytecount;
2945 tx_ring->buffer_info[first].next_to_watch = i;
2946
2947 return count;
2948
2949dma_error:
2950 dev_err(&pdev->dev, "TX DMA map failed\n");
2951 buffer_info->dma = 0;
2952 if (count)
2953 count--;
2954
2955 while (count--) {
2956 if (i == 0)
2957 i += tx_ring->count;
2958 i--;
2959 buffer_info = &tx_ring->buffer_info[i];
2960 e1000_unmap_and_free_tx_resource(adapter, buffer_info);
2961 }
2962
2963 return 0;
2964}
2965
2966static void e1000_tx_queue(struct e1000_adapter *adapter,
2967 struct e1000_tx_ring *tx_ring, int tx_flags,
2968 int count)
2969{
2970 struct e1000_tx_desc *tx_desc = NULL;
2971 struct e1000_tx_buffer *buffer_info;
2972 u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
2973 unsigned int i;
2974
2975 if (likely(tx_flags & E1000_TX_FLAGS_TSO)) {
2976 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
2977 E1000_TXD_CMD_TSE;
2978 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2979
2980 if (likely(tx_flags & E1000_TX_FLAGS_IPV4))
2981 txd_upper |= E1000_TXD_POPTS_IXSM << 8;
2982 }
2983
2984 if (likely(tx_flags & E1000_TX_FLAGS_CSUM)) {
2985 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
2986 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2987 }
2988
2989 if (unlikely(tx_flags & E1000_TX_FLAGS_VLAN)) {
2990 txd_lower |= E1000_TXD_CMD_VLE;
2991 txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
2992 }
2993
2994 if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
2995 txd_lower &= ~(E1000_TXD_CMD_IFCS);
2996
2997 i = tx_ring->next_to_use;
2998
2999 while (count--) {
3000 buffer_info = &tx_ring->buffer_info[i];
3001 tx_desc = E1000_TX_DESC(*tx_ring, i);
3002 tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
3003 tx_desc->lower.data =
3004 cpu_to_le32(txd_lower | buffer_info->length);
3005 tx_desc->upper.data = cpu_to_le32(txd_upper);
3006 if (unlikely(++i == tx_ring->count))
3007 i = 0;
3008 }
3009
3010 tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
3011
3012 /* txd_cmd re-enables FCS, so we'll re-disable it here as desired. */
3013 if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
3014 tx_desc->lower.data &= ~(cpu_to_le32(E1000_TXD_CMD_IFCS));
3015
3016 /* Force memory writes to complete before letting h/w
3017 * know there are new descriptors to fetch. (Only
3018 * applicable for weak-ordered memory model archs,
3019 * such as IA-64).
3020 */
3021 dma_wmb();
3022
3023 tx_ring->next_to_use = i;
3024}
3025
3026/* 82547 workaround to avoid controller hang in half-duplex environment.
3027 * The workaround is to avoid queuing a large packet that would span
3028 * the internal Tx FIFO ring boundary by notifying the stack to resend
3029 * the packet at a later time. This gives the Tx FIFO an opportunity to
3030 * flush all packets. When that occurs, we reset the Tx FIFO pointers
3031 * to the beginning of the Tx FIFO.
3032 */
3033
3034#define E1000_FIFO_HDR 0x10
3035#define E1000_82547_PAD_LEN 0x3E0
3036
3037static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
3038 struct sk_buff *skb)
3039{
3040 u32 fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head;
3041 u32 skb_fifo_len = skb->len + E1000_FIFO_HDR;
3042
3043 skb_fifo_len = ALIGN(skb_fifo_len, E1000_FIFO_HDR);
3044
3045 if (adapter->link_duplex != HALF_DUPLEX)
3046 goto no_fifo_stall_required;
3047
3048 if (atomic_read(&adapter->tx_fifo_stall))
3049 return 1;
3050
3051 if (skb_fifo_len >= (E1000_82547_PAD_LEN + fifo_space)) {
3052 atomic_set(&adapter->tx_fifo_stall, 1);
3053 return 1;
3054 }
3055
3056no_fifo_stall_required:
3057 adapter->tx_fifo_head += skb_fifo_len;
3058 if (adapter->tx_fifo_head >= adapter->tx_fifo_size)
3059 adapter->tx_fifo_head -= adapter->tx_fifo_size;
3060 return 0;
3061}
3062
3063static int __e1000_maybe_stop_tx(struct net_device *netdev, int size)
3064{
3065 struct e1000_adapter *adapter = netdev_priv(netdev);
3066 struct e1000_tx_ring *tx_ring = adapter->tx_ring;
3067
3068 netif_stop_queue(netdev);
3069 /* Herbert's original patch had:
3070 * smp_mb__after_netif_stop_queue();
3071 * but since that doesn't exist yet, just open code it.
3072 */
3073 smp_mb();
3074
3075 /* We need to check again in a case another CPU has just
3076 * made room available.
3077 */
3078 if (likely(E1000_DESC_UNUSED(tx_ring) < size))
3079 return -EBUSY;
3080
3081 /* A reprieve! */
3082 netif_start_queue(netdev);
3083 ++adapter->restart_queue;
3084 return 0;
3085}
3086
3087static int e1000_maybe_stop_tx(struct net_device *netdev,
3088 struct e1000_tx_ring *tx_ring, int size)
3089{
3090 if (likely(E1000_DESC_UNUSED(tx_ring) >= size))
3091 return 0;
3092 return __e1000_maybe_stop_tx(netdev, size);
3093}
3094
3095#define TXD_USE_COUNT(S, X) (((S) + ((1 << (X)) - 1)) >> (X))
3096static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
3097 struct net_device *netdev)
3098{
3099 struct e1000_adapter *adapter = netdev_priv(netdev);
3100 struct e1000_hw *hw = &adapter->hw;
3101 struct e1000_tx_ring *tx_ring;
3102 unsigned int first, max_per_txd = E1000_MAX_DATA_PER_TXD;
3103 unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
3104 unsigned int tx_flags = 0;
3105 unsigned int len = skb_headlen(skb);
3106 unsigned int nr_frags;
3107 unsigned int mss;
3108 int count = 0;
3109 int tso;
3110 unsigned int f;
3111 __be16 protocol = vlan_get_protocol(skb);
3112
3113 /* This goes back to the question of how to logically map a Tx queue
3114 * to a flow. Right now, performance is impacted slightly negatively
3115 * if using multiple Tx queues. If the stack breaks away from a
3116 * single qdisc implementation, we can look at this again.
3117 */
3118 tx_ring = adapter->tx_ring;
3119
3120 /* On PCI/PCI-X HW, if packet size is less than ETH_ZLEN,
3121 * packets may get corrupted during padding by HW.
3122 * To WA this issue, pad all small packets manually.
3123 */
3124 if (eth_skb_pad(skb))
3125 return NETDEV_TX_OK;
3126
3127 mss = skb_shinfo(skb)->gso_size;
3128 /* The controller does a simple calculation to
3129 * make sure there is enough room in the FIFO before
3130 * initiating the DMA for each buffer. The calc is:
3131 * 4 = ceil(buffer len/mss). To make sure we don't
3132 * overrun the FIFO, adjust the max buffer len if mss
3133 * drops.
3134 */
3135 if (mss) {
3136 u8 hdr_len;
3137 max_per_txd = min(mss << 2, max_per_txd);
3138 max_txd_pwr = fls(max_per_txd) - 1;
3139
3140 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
3141 if (skb->data_len && hdr_len == len) {
3142 switch (hw->mac_type) {
3143 unsigned int pull_size;
3144 case e1000_82544:
3145 /* Make sure we have room to chop off 4 bytes,
3146 * and that the end alignment will work out to
3147 * this hardware's requirements
3148 * NOTE: this is a TSO only workaround
3149 * if end byte alignment not correct move us
3150 * into the next dword
3151 */
3152 if ((unsigned long)(skb_tail_pointer(skb) - 1)
3153 & 4)
3154 break;
3155 /* fall through */
3156 pull_size = min((unsigned int)4, skb->data_len);
3157 if (!__pskb_pull_tail(skb, pull_size)) {
3158 e_err(drv, "__pskb_pull_tail "
3159 "failed.\n");
3160 dev_kfree_skb_any(skb);
3161 return NETDEV_TX_OK;
3162 }
3163 len = skb_headlen(skb);
3164 break;
3165 default:
3166 /* do nothing */
3167 break;
3168 }
3169 }
3170 }
3171
3172 /* reserve a descriptor for the offload context */
3173 if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
3174 count++;
3175 count++;
3176
3177 /* Controller Erratum workaround */
3178 if (!skb->data_len && tx_ring->last_tx_tso && !skb_is_gso(skb))
3179 count++;
3180
3181 count += TXD_USE_COUNT(len, max_txd_pwr);
3182
3183 if (adapter->pcix_82544)
3184 count++;
3185
3186 /* work-around for errata 10 and it applies to all controllers
3187 * in PCI-X mode, so add one more descriptor to the count
3188 */
3189 if (unlikely((hw->bus_type == e1000_bus_type_pcix) &&
3190 (len > 2015)))
3191 count++;
3192
3193 nr_frags = skb_shinfo(skb)->nr_frags;
3194 for (f = 0; f < nr_frags; f++)
3195 count += TXD_USE_COUNT(skb_frag_size(&skb_shinfo(skb)->frags[f]),
3196 max_txd_pwr);
3197 if (adapter->pcix_82544)
3198 count += nr_frags;
3199
3200 /* need: count + 2 desc gap to keep tail from touching
3201 * head, otherwise try next time
3202 */
3203 if (unlikely(e1000_maybe_stop_tx(netdev, tx_ring, count + 2)))
3204 return NETDEV_TX_BUSY;
3205
3206 if (unlikely((hw->mac_type == e1000_82547) &&
3207 (e1000_82547_fifo_workaround(adapter, skb)))) {
3208 netif_stop_queue(netdev);
3209 if (!test_bit(__E1000_DOWN, &adapter->flags))
3210 schedule_delayed_work(&adapter->fifo_stall_task, 1);
3211 return NETDEV_TX_BUSY;
3212 }
3213
3214 if (skb_vlan_tag_present(skb)) {
3215 tx_flags |= E1000_TX_FLAGS_VLAN;
3216 tx_flags |= (skb_vlan_tag_get(skb) <<
3217 E1000_TX_FLAGS_VLAN_SHIFT);
3218 }
3219
3220 first = tx_ring->next_to_use;
3221
3222 tso = e1000_tso(adapter, tx_ring, skb, protocol);
3223 if (tso < 0) {
3224 dev_kfree_skb_any(skb);
3225 return NETDEV_TX_OK;
3226 }
3227
3228 if (likely(tso)) {
3229 if (likely(hw->mac_type != e1000_82544))
3230 tx_ring->last_tx_tso = true;
3231 tx_flags |= E1000_TX_FLAGS_TSO;
3232 } else if (likely(e1000_tx_csum(adapter, tx_ring, skb, protocol)))
3233 tx_flags |= E1000_TX_FLAGS_CSUM;
3234
3235 if (protocol == htons(ETH_P_IP))
3236 tx_flags |= E1000_TX_FLAGS_IPV4;
3237
3238 if (unlikely(skb->no_fcs))
3239 tx_flags |= E1000_TX_FLAGS_NO_FCS;
3240
3241 count = e1000_tx_map(adapter, tx_ring, skb, first, max_per_txd,
3242 nr_frags, mss);
3243
3244 if (count) {
3245 /* The descriptors needed is higher than other Intel drivers
3246 * due to a number of workarounds. The breakdown is below:
3247 * Data descriptors: MAX_SKB_FRAGS + 1
3248 * Context Descriptor: 1
3249 * Keep head from touching tail: 2
3250 * Workarounds: 3
3251 */
3252 int desc_needed = MAX_SKB_FRAGS + 7;
3253
3254 netdev_sent_queue(netdev, skb->len);
3255 skb_tx_timestamp(skb);
3256
3257 e1000_tx_queue(adapter, tx_ring, tx_flags, count);
3258
3259 /* 82544 potentially requires twice as many data descriptors
3260 * in order to guarantee buffers don't end on evenly-aligned
3261 * dwords
3262 */
3263 if (adapter->pcix_82544)
3264 desc_needed += MAX_SKB_FRAGS + 1;
3265
3266 /* Make sure there is space in the ring for the next send. */
3267 e1000_maybe_stop_tx(netdev, tx_ring, desc_needed);
3268
3269 if (!netdev_xmit_more() ||
3270 netif_xmit_stopped(netdev_get_tx_queue(netdev, 0))) {
3271 writel(tx_ring->next_to_use, hw->hw_addr + tx_ring->tdt);
3272 }
3273 } else {
3274 dev_kfree_skb_any(skb);
3275 tx_ring->buffer_info[first].time_stamp = 0;
3276 tx_ring->next_to_use = first;
3277 }
3278
3279 return NETDEV_TX_OK;
3280}
3281
3282#define NUM_REGS 38 /* 1 based count */
3283static void e1000_regdump(struct e1000_adapter *adapter)
3284{
3285 struct e1000_hw *hw = &adapter->hw;
3286 u32 regs[NUM_REGS];
3287 u32 *regs_buff = regs;
3288 int i = 0;
3289
3290 static const char * const reg_name[] = {
3291 "CTRL", "STATUS",
3292 "RCTL", "RDLEN", "RDH", "RDT", "RDTR",
3293 "TCTL", "TDBAL", "TDBAH", "TDLEN", "TDH", "TDT",
3294 "TIDV", "TXDCTL", "TADV", "TARC0",
3295 "TDBAL1", "TDBAH1", "TDLEN1", "TDH1", "TDT1",
3296 "TXDCTL1", "TARC1",
3297 "CTRL_EXT", "ERT", "RDBAL", "RDBAH",
3298 "TDFH", "TDFT", "TDFHS", "TDFTS", "TDFPC",
3299 "RDFH", "RDFT", "RDFHS", "RDFTS", "RDFPC"
3300 };
3301
3302 regs_buff[0] = er32(CTRL);
3303 regs_buff[1] = er32(STATUS);
3304
3305 regs_buff[2] = er32(RCTL);
3306 regs_buff[3] = er32(RDLEN);
3307 regs_buff[4] = er32(RDH);
3308 regs_buff[5] = er32(RDT);
3309 regs_buff[6] = er32(RDTR);
3310
3311 regs_buff[7] = er32(TCTL);
3312 regs_buff[8] = er32(TDBAL);
3313 regs_buff[9] = er32(TDBAH);
3314 regs_buff[10] = er32(TDLEN);
3315 regs_buff[11] = er32(TDH);
3316 regs_buff[12] = er32(TDT);
3317 regs_buff[13] = er32(TIDV);
3318 regs_buff[14] = er32(TXDCTL);
3319 regs_buff[15] = er32(TADV);
3320 regs_buff[16] = er32(TARC0);
3321
3322 regs_buff[17] = er32(TDBAL1);
3323 regs_buff[18] = er32(TDBAH1);
3324 regs_buff[19] = er32(TDLEN1);
3325 regs_buff[20] = er32(TDH1);
3326 regs_buff[21] = er32(TDT1);
3327 regs_buff[22] = er32(TXDCTL1);
3328 regs_buff[23] = er32(TARC1);
3329 regs_buff[24] = er32(CTRL_EXT);
3330 regs_buff[25] = er32(ERT);
3331 regs_buff[26] = er32(RDBAL0);
3332 regs_buff[27] = er32(RDBAH0);
3333 regs_buff[28] = er32(TDFH);
3334 regs_buff[29] = er32(TDFT);
3335 regs_buff[30] = er32(TDFHS);
3336 regs_buff[31] = er32(TDFTS);
3337 regs_buff[32] = er32(TDFPC);
3338 regs_buff[33] = er32(RDFH);
3339 regs_buff[34] = er32(RDFT);
3340 regs_buff[35] = er32(RDFHS);
3341 regs_buff[36] = er32(RDFTS);
3342 regs_buff[37] = er32(RDFPC);
3343
3344 pr_info("Register dump\n");
3345 for (i = 0; i < NUM_REGS; i++)
3346 pr_info("%-15s %08x\n", reg_name[i], regs_buff[i]);
3347}
3348
3349/*
3350 * e1000_dump: Print registers, tx ring and rx ring
3351 */
3352static void e1000_dump(struct e1000_adapter *adapter)
3353{
3354 /* this code doesn't handle multiple rings */
3355 struct e1000_tx_ring *tx_ring = adapter->tx_ring;
3356 struct e1000_rx_ring *rx_ring = adapter->rx_ring;
3357 int i;
3358
3359 if (!netif_msg_hw(adapter))
3360 return;
3361
3362 /* Print Registers */
3363 e1000_regdump(adapter);
3364
3365 /* transmit dump */
3366 pr_info("TX Desc ring0 dump\n");
3367
3368 /* Transmit Descriptor Formats - DEXT[29] is 0 (Legacy) or 1 (Extended)
3369 *
3370 * Legacy Transmit Descriptor
3371 * +--------------------------------------------------------------+
3372 * 0 | Buffer Address [63:0] (Reserved on Write Back) |
3373 * +--------------------------------------------------------------+
3374 * 8 | Special | CSS | Status | CMD | CSO | Length |
3375 * +--------------------------------------------------------------+
3376 * 63 48 47 36 35 32 31 24 23 16 15 0
3377 *
3378 * Extended Context Descriptor (DTYP=0x0) for TSO or checksum offload
3379 * 63 48 47 40 39 32 31 16 15 8 7 0
3380 * +----------------------------------------------------------------+
3381 * 0 | TUCSE | TUCS0 | TUCSS | IPCSE | IPCS0 | IPCSS |
3382 * +----------------------------------------------------------------+
3383 * 8 | MSS | HDRLEN | RSV | STA | TUCMD | DTYP | PAYLEN |
3384 * +----------------------------------------------------------------+
3385 * 63 48 47 40 39 36 35 32 31 24 23 20 19 0
3386 *
3387 * Extended Data Descriptor (DTYP=0x1)
3388 * +----------------------------------------------------------------+
3389 * 0 | Buffer Address [63:0] |
3390 * +----------------------------------------------------------------+
3391 * 8 | VLAN tag | POPTS | Rsvd | Status | Command | DTYP | DTALEN |
3392 * +----------------------------------------------------------------+
3393 * 63 48 47 40 39 36 35 32 31 24 23 20 19 0
3394 */
3395 pr_info("Tc[desc] [Ce CoCsIpceCoS] [MssHlRSCm0Plen] [bi->dma ] leng ntw timestmp bi->skb\n");
3396 pr_info("Td[desc] [address 63:0 ] [VlaPoRSCm1Dlen] [bi->dma ] leng ntw timestmp bi->skb\n");
3397
3398 if (!netif_msg_tx_done(adapter))
3399 goto rx_ring_summary;
3400
3401 for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
3402 struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*tx_ring, i);
3403 struct e1000_tx_buffer *buffer_info = &tx_ring->buffer_info[i];
3404 struct my_u { __le64 a; __le64 b; };
3405 struct my_u *u = (struct my_u *)tx_desc;
3406 const char *type;
3407
3408 if (i == tx_ring->next_to_use && i == tx_ring->next_to_clean)
3409 type = "NTC/U";
3410 else if (i == tx_ring->next_to_use)
3411 type = "NTU";
3412 else if (i == tx_ring->next_to_clean)
3413 type = "NTC";
3414 else
3415 type = "";
3416
3417 pr_info("T%c[0x%03X] %016llX %016llX %016llX %04X %3X %016llX %p %s\n",
3418 ((le64_to_cpu(u->b) & (1<<20)) ? 'd' : 'c'), i,
3419 le64_to_cpu(u->a), le64_to_cpu(u->b),
3420 (u64)buffer_info->dma, buffer_info->length,
3421 buffer_info->next_to_watch,
3422 (u64)buffer_info->time_stamp, buffer_info->skb, type);
3423 }
3424
3425rx_ring_summary:
3426 /* receive dump */
3427 pr_info("\nRX Desc ring dump\n");
3428
3429 /* Legacy Receive Descriptor Format
3430 *
3431 * +-----------------------------------------------------+
3432 * | Buffer Address [63:0] |
3433 * +-----------------------------------------------------+
3434 * | VLAN Tag | Errors | Status 0 | Packet csum | Length |
3435 * +-----------------------------------------------------+
3436 * 63 48 47 40 39 32 31 16 15 0
3437 */
3438 pr_info("R[desc] [address 63:0 ] [vl er S cks ln] [bi->dma ] [bi->skb]\n");
3439
3440 if (!netif_msg_rx_status(adapter))
3441 goto exit;
3442
3443 for (i = 0; rx_ring->desc && (i < rx_ring->count); i++) {
3444 struct e1000_rx_desc *rx_desc = E1000_RX_DESC(*rx_ring, i);
3445 struct e1000_rx_buffer *buffer_info = &rx_ring->buffer_info[i];
3446 struct my_u { __le64 a; __le64 b; };
3447 struct my_u *u = (struct my_u *)rx_desc;
3448 const char *type;
3449
3450 if (i == rx_ring->next_to_use)
3451 type = "NTU";
3452 else if (i == rx_ring->next_to_clean)
3453 type = "NTC";
3454 else
3455 type = "";
3456
3457 pr_info("R[0x%03X] %016llX %016llX %016llX %p %s\n",
3458 i, le64_to_cpu(u->a), le64_to_cpu(u->b),
3459 (u64)buffer_info->dma, buffer_info->rxbuf.data, type);
3460 } /* for */
3461
3462 /* dump the descriptor caches */
3463 /* rx */
3464 pr_info("Rx descriptor cache in 64bit format\n");
3465 for (i = 0x6000; i <= 0x63FF ; i += 0x10) {
3466 pr_info("R%04X: %08X|%08X %08X|%08X\n",
3467 i,
3468 readl(adapter->hw.hw_addr + i+4),
3469 readl(adapter->hw.hw_addr + i),
3470 readl(adapter->hw.hw_addr + i+12),
3471 readl(adapter->hw.hw_addr + i+8));
3472 }
3473 /* tx */
3474 pr_info("Tx descriptor cache in 64bit format\n");
3475 for (i = 0x7000; i <= 0x73FF ; i += 0x10) {
3476 pr_info("T%04X: %08X|%08X %08X|%08X\n",
3477 i,
3478 readl(adapter->hw.hw_addr + i+4),
3479 readl(adapter->hw.hw_addr + i),
3480 readl(adapter->hw.hw_addr + i+12),
3481 readl(adapter->hw.hw_addr + i+8));
3482 }
3483exit:
3484 return;
3485}
3486
3487/**
3488 * e1000_tx_timeout - Respond to a Tx Hang
3489 * @netdev: network interface device structure
3490 **/
3491static void e1000_tx_timeout(struct net_device *netdev)
3492{
3493 struct e1000_adapter *adapter = netdev_priv(netdev);
3494
3495 /* Do the reset outside of interrupt context */
3496 adapter->tx_timeout_count++;
3497 schedule_work(&adapter->reset_task);
3498}
3499
3500static void e1000_reset_task(struct work_struct *work)
3501{
3502 struct e1000_adapter *adapter =
3503 container_of(work, struct e1000_adapter, reset_task);
3504
3505 e_err(drv, "Reset adapter\n");
3506 e1000_reinit_locked(adapter);
3507}
3508
3509/**
3510 * e1000_change_mtu - Change the Maximum Transfer Unit
3511 * @netdev: network interface device structure
3512 * @new_mtu: new value for maximum frame size
3513 *
3514 * Returns 0 on success, negative on failure
3515 **/
3516static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
3517{
3518 struct e1000_adapter *adapter = netdev_priv(netdev);
3519 struct e1000_hw *hw = &adapter->hw;
3520 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
3521
3522 /* Adapter-specific max frame size limits. */
3523 switch (hw->mac_type) {
3524 case e1000_undefined ... e1000_82542_rev2_1:
3525 if (max_frame > (ETH_FRAME_LEN + ETH_FCS_LEN)) {
3526 e_err(probe, "Jumbo Frames not supported.\n");
3527 return -EINVAL;
3528 }
3529 break;
3530 default:
3531 /* Capable of supporting up to MAX_JUMBO_FRAME_SIZE limit. */
3532 break;
3533 }
3534
3535 while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
3536 msleep(1);
3537 /* e1000_down has a dependency on max_frame_size */
3538 hw->max_frame_size = max_frame;
3539 if (netif_running(netdev)) {
3540 /* prevent buffers from being reallocated */
3541 adapter->alloc_rx_buf = e1000_alloc_dummy_rx_buffers;
3542 e1000_down(adapter);
3543 }
3544
3545 /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
3546 * means we reserve 2 more, this pushes us to allocate from the next
3547 * larger slab size.
3548 * i.e. RXBUFFER_2048 --> size-4096 slab
3549 * however with the new *_jumbo_rx* routines, jumbo receives will use
3550 * fragmented skbs
3551 */
3552
3553 if (max_frame <= E1000_RXBUFFER_2048)
3554 adapter->rx_buffer_len = E1000_RXBUFFER_2048;
3555 else
3556#if (PAGE_SIZE >= E1000_RXBUFFER_16384)
3557 adapter->rx_buffer_len = E1000_RXBUFFER_16384;
3558#elif (PAGE_SIZE >= E1000_RXBUFFER_4096)
3559 adapter->rx_buffer_len = PAGE_SIZE;
3560#endif
3561
3562 /* adjust allocation if LPE protects us, and we aren't using SBP */
3563 if (!hw->tbi_compatibility_on &&
3564 ((max_frame == (ETH_FRAME_LEN + ETH_FCS_LEN)) ||
3565 (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE)))
3566 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
3567
3568 pr_info("%s changing MTU from %d to %d\n",
3569 netdev->name, netdev->mtu, new_mtu);
3570 netdev->mtu = new_mtu;
3571
3572 if (netif_running(netdev))
3573 e1000_up(adapter);
3574 else
3575 e1000_reset(adapter);
3576
3577 clear_bit(__E1000_RESETTING, &adapter->flags);
3578
3579 return 0;
3580}
3581
3582/**
3583 * e1000_update_stats - Update the board statistics counters
3584 * @adapter: board private structure
3585 **/
3586void e1000_update_stats(struct e1000_adapter *adapter)
3587{
3588 struct net_device *netdev = adapter->netdev;
3589 struct e1000_hw *hw = &adapter->hw;
3590 struct pci_dev *pdev = adapter->pdev;
3591 unsigned long flags;
3592 u16 phy_tmp;
3593
3594#define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
3595
3596 /* Prevent stats update while adapter is being reset, or if the pci
3597 * connection is down.
3598 */
3599 if (adapter->link_speed == 0)
3600 return;
3601 if (pci_channel_offline(pdev))
3602 return;
3603
3604 spin_lock_irqsave(&adapter->stats_lock, flags);
3605
3606 /* these counters are modified from e1000_tbi_adjust_stats,
3607 * called from the interrupt context, so they must only
3608 * be written while holding adapter->stats_lock
3609 */
3610
3611 adapter->stats.crcerrs += er32(CRCERRS);
3612 adapter->stats.gprc += er32(GPRC);
3613 adapter->stats.gorcl += er32(GORCL);
3614 adapter->stats.gorch += er32(GORCH);
3615 adapter->stats.bprc += er32(BPRC);
3616 adapter->stats.mprc += er32(MPRC);
3617 adapter->stats.roc += er32(ROC);
3618
3619 adapter->stats.prc64 += er32(PRC64);
3620 adapter->stats.prc127 += er32(PRC127);
3621 adapter->stats.prc255 += er32(PRC255);
3622 adapter->stats.prc511 += er32(PRC511);
3623 adapter->stats.prc1023 += er32(PRC1023);
3624 adapter->stats.prc1522 += er32(PRC1522);
3625
3626 adapter->stats.symerrs += er32(SYMERRS);
3627 adapter->stats.mpc += er32(MPC);
3628 adapter->stats.scc += er32(SCC);
3629 adapter->stats.ecol += er32(ECOL);
3630 adapter->stats.mcc += er32(MCC);
3631 adapter->stats.latecol += er32(LATECOL);
3632 adapter->stats.dc += er32(DC);
3633 adapter->stats.sec += er32(SEC);
3634 adapter->stats.rlec += er32(RLEC);
3635 adapter->stats.xonrxc += er32(XONRXC);
3636 adapter->stats.xontxc += er32(XONTXC);
3637 adapter->stats.xoffrxc += er32(XOFFRXC);
3638 adapter->stats.xofftxc += er32(XOFFTXC);
3639 adapter->stats.fcruc += er32(FCRUC);
3640 adapter->stats.gptc += er32(GPTC);
3641 adapter->stats.gotcl += er32(GOTCL);
3642 adapter->stats.gotch += er32(GOTCH);
3643 adapter->stats.rnbc += er32(RNBC);
3644 adapter->stats.ruc += er32(RUC);
3645 adapter->stats.rfc += er32(RFC);
3646 adapter->stats.rjc += er32(RJC);
3647 adapter->stats.torl += er32(TORL);
3648 adapter->stats.torh += er32(TORH);
3649 adapter->stats.totl += er32(TOTL);
3650 adapter->stats.toth += er32(TOTH);
3651 adapter->stats.tpr += er32(TPR);
3652
3653 adapter->stats.ptc64 += er32(PTC64);
3654 adapter->stats.ptc127 += er32(PTC127);
3655 adapter->stats.ptc255 += er32(PTC255);
3656 adapter->stats.ptc511 += er32(PTC511);
3657 adapter->stats.ptc1023 += er32(PTC1023);
3658 adapter->stats.ptc1522 += er32(PTC1522);
3659
3660 adapter->stats.mptc += er32(MPTC);
3661 adapter->stats.bptc += er32(BPTC);
3662
3663 /* used for adaptive IFS */
3664
3665 hw->tx_packet_delta = er32(TPT);
3666 adapter->stats.tpt += hw->tx_packet_delta;
3667 hw->collision_delta = er32(COLC);
3668 adapter->stats.colc += hw->collision_delta;
3669
3670 if (hw->mac_type >= e1000_82543) {
3671 adapter->stats.algnerrc += er32(ALGNERRC);
3672 adapter->stats.rxerrc += er32(RXERRC);
3673 adapter->stats.tncrs += er32(TNCRS);
3674 adapter->stats.cexterr += er32(CEXTERR);
3675 adapter->stats.tsctc += er32(TSCTC);
3676 adapter->stats.tsctfc += er32(TSCTFC);
3677 }
3678
3679 /* Fill out the OS statistics structure */
3680 netdev->stats.multicast = adapter->stats.mprc;
3681 netdev->stats.collisions = adapter->stats.colc;
3682
3683 /* Rx Errors */
3684
3685 /* RLEC on some newer hardware can be incorrect so build
3686 * our own version based on RUC and ROC
3687 */
3688 netdev->stats.rx_errors = adapter->stats.rxerrc +
3689 adapter->stats.crcerrs + adapter->stats.algnerrc +
3690 adapter->stats.ruc + adapter->stats.roc +
3691 adapter->stats.cexterr;
3692 adapter->stats.rlerrc = adapter->stats.ruc + adapter->stats.roc;
3693 netdev->stats.rx_length_errors = adapter->stats.rlerrc;
3694 netdev->stats.rx_crc_errors = adapter->stats.crcerrs;
3695 netdev->stats.rx_frame_errors = adapter->stats.algnerrc;
3696 netdev->stats.rx_missed_errors = adapter->stats.mpc;
3697
3698 /* Tx Errors */
3699 adapter->stats.txerrc = adapter->stats.ecol + adapter->stats.latecol;
3700 netdev->stats.tx_errors = adapter->stats.txerrc;
3701 netdev->stats.tx_aborted_errors = adapter->stats.ecol;
3702 netdev->stats.tx_window_errors = adapter->stats.latecol;
3703 netdev->stats.tx_carrier_errors = adapter->stats.tncrs;
3704 if (hw->bad_tx_carr_stats_fd &&
3705 adapter->link_duplex == FULL_DUPLEX) {
3706 netdev->stats.tx_carrier_errors = 0;
3707 adapter->stats.tncrs = 0;
3708 }
3709
3710 /* Tx Dropped needs to be maintained elsewhere */
3711
3712 /* Phy Stats */
3713 if (hw->media_type == e1000_media_type_copper) {
3714 if ((adapter->link_speed == SPEED_1000) &&
3715 (!e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
3716 phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
3717 adapter->phy_stats.idle_errors += phy_tmp;
3718 }
3719
3720 if ((hw->mac_type <= e1000_82546) &&
3721 (hw->phy_type == e1000_phy_m88) &&
3722 !e1000_read_phy_reg(hw, M88E1000_RX_ERR_CNTR, &phy_tmp))
3723 adapter->phy_stats.receive_errors += phy_tmp;
3724 }
3725
3726 /* Management Stats */
3727 if (hw->has_smbus) {
3728 adapter->stats.mgptc += er32(MGTPTC);
3729 adapter->stats.mgprc += er32(MGTPRC);
3730 adapter->stats.mgpdc += er32(MGTPDC);
3731 }
3732
3733 spin_unlock_irqrestore(&adapter->stats_lock, flags);
3734}
3735
3736/**
3737 * e1000_intr - Interrupt Handler
3738 * @irq: interrupt number
3739 * @data: pointer to a network interface device structure
3740 **/
3741static irqreturn_t e1000_intr(int irq, void *data)
3742{
3743 struct net_device *netdev = data;
3744 struct e1000_adapter *adapter = netdev_priv(netdev);
3745 struct e1000_hw *hw = &adapter->hw;
3746 u32 icr = er32(ICR);
3747
3748 if (unlikely((!icr)))
3749 return IRQ_NONE; /* Not our interrupt */
3750
3751 /* we might have caused the interrupt, but the above
3752 * read cleared it, and just in case the driver is
3753 * down there is nothing to do so return handled
3754 */
3755 if (unlikely(test_bit(__E1000_DOWN, &adapter->flags)))
3756 return IRQ_HANDLED;
3757
3758 if (unlikely(icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))) {
3759 hw->get_link_status = 1;
3760 /* guard against interrupt when we're going down */
3761 if (!test_bit(__E1000_DOWN, &adapter->flags))
3762 schedule_delayed_work(&adapter->watchdog_task, 1);
3763 }
3764
3765 /* disable interrupts, without the synchronize_irq bit */
3766 ew32(IMC, ~0);
3767 E1000_WRITE_FLUSH();
3768
3769 if (likely(napi_schedule_prep(&adapter->napi))) {
3770 adapter->total_tx_bytes = 0;
3771 adapter->total_tx_packets = 0;
3772 adapter->total_rx_bytes = 0;
3773 adapter->total_rx_packets = 0;
3774 __napi_schedule(&adapter->napi);
3775 } else {
3776 /* this really should not happen! if it does it is basically a
3777 * bug, but not a hard error, so enable ints and continue
3778 */
3779 if (!test_bit(__E1000_DOWN, &adapter->flags))
3780 e1000_irq_enable(adapter);
3781 }
3782
3783 return IRQ_HANDLED;
3784}
3785
3786/**
3787 * e1000_clean - NAPI Rx polling callback
3788 * @adapter: board private structure
3789 **/
3790static int e1000_clean(struct napi_struct *napi, int budget)
3791{
3792 struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter,
3793 napi);
3794 int tx_clean_complete = 0, work_done = 0;
3795
3796 tx_clean_complete = e1000_clean_tx_irq(adapter, &adapter->tx_ring[0]);
3797
3798 adapter->clean_rx(adapter, &adapter->rx_ring[0], &work_done, budget);
3799
3800 if (!tx_clean_complete || work_done == budget)
3801 return budget;
3802
3803 /* Exit the polling mode, but don't re-enable interrupts if stack might
3804 * poll us due to busy-polling
3805 */
3806 if (likely(napi_complete_done(napi, work_done))) {
3807 if (likely(adapter->itr_setting & 3))
3808 e1000_set_itr(adapter);
3809 if (!test_bit(__E1000_DOWN, &adapter->flags))
3810 e1000_irq_enable(adapter);
3811 }
3812
3813 return work_done;
3814}
3815
3816/**
3817 * e1000_clean_tx_irq - Reclaim resources after transmit completes
3818 * @adapter: board private structure
3819 **/
3820static bool e1000_clean_tx_irq(struct e1000_adapter *adapter,
3821 struct e1000_tx_ring *tx_ring)
3822{
3823 struct e1000_hw *hw = &adapter->hw;
3824 struct net_device *netdev = adapter->netdev;
3825 struct e1000_tx_desc *tx_desc, *eop_desc;
3826 struct e1000_tx_buffer *buffer_info;
3827 unsigned int i, eop;
3828 unsigned int count = 0;
3829 unsigned int total_tx_bytes = 0, total_tx_packets = 0;
3830 unsigned int bytes_compl = 0, pkts_compl = 0;
3831
3832 i = tx_ring->next_to_clean;
3833 eop = tx_ring->buffer_info[i].next_to_watch;
3834 eop_desc = E1000_TX_DESC(*tx_ring, eop);
3835
3836 while ((eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) &&
3837 (count < tx_ring->count)) {
3838 bool cleaned = false;
3839 dma_rmb(); /* read buffer_info after eop_desc */
3840 for ( ; !cleaned; count++) {
3841 tx_desc = E1000_TX_DESC(*tx_ring, i);
3842 buffer_info = &tx_ring->buffer_info[i];
3843 cleaned = (i == eop);
3844
3845 if (cleaned) {
3846 total_tx_packets += buffer_info->segs;
3847 total_tx_bytes += buffer_info->bytecount;
3848 if (buffer_info->skb) {
3849 bytes_compl += buffer_info->skb->len;
3850 pkts_compl++;
3851 }
3852
3853 }
3854 e1000_unmap_and_free_tx_resource(adapter, buffer_info);
3855 tx_desc->upper.data = 0;
3856
3857 if (unlikely(++i == tx_ring->count))
3858 i = 0;
3859 }
3860
3861 eop = tx_ring->buffer_info[i].next_to_watch;
3862 eop_desc = E1000_TX_DESC(*tx_ring, eop);
3863 }
3864
3865 /* Synchronize with E1000_DESC_UNUSED called from e1000_xmit_frame,
3866 * which will reuse the cleaned buffers.
3867 */
3868 smp_store_release(&tx_ring->next_to_clean, i);
3869
3870 netdev_completed_queue(netdev, pkts_compl, bytes_compl);
3871
3872#define TX_WAKE_THRESHOLD 32
3873 if (unlikely(count && netif_carrier_ok(netdev) &&
3874 E1000_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD)) {
3875 /* Make sure that anybody stopping the queue after this
3876 * sees the new next_to_clean.
3877 */
3878 smp_mb();
3879
3880 if (netif_queue_stopped(netdev) &&
3881 !(test_bit(__E1000_DOWN, &adapter->flags))) {
3882 netif_wake_queue(netdev);
3883 ++adapter->restart_queue;
3884 }
3885 }
3886
3887 if (adapter->detect_tx_hung) {
3888 /* Detect a transmit hang in hardware, this serializes the
3889 * check with the clearing of time_stamp and movement of i
3890 */
3891 adapter->detect_tx_hung = false;
3892 if (tx_ring->buffer_info[eop].time_stamp &&
3893 time_after(jiffies, tx_ring->buffer_info[eop].time_stamp +
3894 (adapter->tx_timeout_factor * HZ)) &&
3895 !(er32(STATUS) & E1000_STATUS_TXOFF)) {
3896
3897 /* detected Tx unit hang */
3898 e_err(drv, "Detected Tx Unit Hang\n"
3899 " Tx Queue <%lu>\n"
3900 " TDH <%x>\n"
3901 " TDT <%x>\n"
3902 " next_to_use <%x>\n"
3903 " next_to_clean <%x>\n"
3904 "buffer_info[next_to_clean]\n"
3905 " time_stamp <%lx>\n"
3906 " next_to_watch <%x>\n"
3907 " jiffies <%lx>\n"
3908 " next_to_watch.status <%x>\n",
3909 (unsigned long)(tx_ring - adapter->tx_ring),
3910 readl(hw->hw_addr + tx_ring->tdh),
3911 readl(hw->hw_addr + tx_ring->tdt),
3912 tx_ring->next_to_use,
3913 tx_ring->next_to_clean,
3914 tx_ring->buffer_info[eop].time_stamp,
3915 eop,
3916 jiffies,
3917 eop_desc->upper.fields.status);
3918 e1000_dump(adapter);
3919 netif_stop_queue(netdev);
3920 }
3921 }
3922 adapter->total_tx_bytes += total_tx_bytes;
3923 adapter->total_tx_packets += total_tx_packets;
3924 netdev->stats.tx_bytes += total_tx_bytes;
3925 netdev->stats.tx_packets += total_tx_packets;
3926 return count < tx_ring->count;
3927}
3928
3929/**
3930 * e1000_rx_checksum - Receive Checksum Offload for 82543
3931 * @adapter: board private structure
3932 * @status_err: receive descriptor status and error fields
3933 * @csum: receive descriptor csum field
3934 * @sk_buff: socket buffer with received data
3935 **/
3936static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
3937 u32 csum, struct sk_buff *skb)
3938{
3939 struct e1000_hw *hw = &adapter->hw;
3940 u16 status = (u16)status_err;
3941 u8 errors = (u8)(status_err >> 24);
3942
3943 skb_checksum_none_assert(skb);
3944
3945 /* 82543 or newer only */
3946 if (unlikely(hw->mac_type < e1000_82543))
3947 return;
3948 /* Ignore Checksum bit is set */
3949 if (unlikely(status & E1000_RXD_STAT_IXSM))
3950 return;
3951 /* TCP/UDP checksum error bit is set */
3952 if (unlikely(errors & E1000_RXD_ERR_TCPE)) {
3953 /* let the stack verify checksum errors */
3954 adapter->hw_csum_err++;
3955 return;
3956 }
3957 /* TCP/UDP Checksum has not been calculated */
3958 if (!(status & E1000_RXD_STAT_TCPCS))
3959 return;
3960
3961 /* It must be a TCP or UDP packet with a valid checksum */
3962 if (likely(status & E1000_RXD_STAT_TCPCS)) {
3963 /* TCP checksum is good */
3964 skb->ip_summed = CHECKSUM_UNNECESSARY;
3965 }
3966 adapter->hw_csum_good++;
3967}
3968
3969/**
3970 * e1000_consume_page - helper function for jumbo Rx path
3971 **/
3972static void e1000_consume_page(struct e1000_rx_buffer *bi, struct sk_buff *skb,
3973 u16 length)
3974{
3975 bi->rxbuf.page = NULL;
3976 skb->len += length;
3977 skb->data_len += length;
3978 skb->truesize += PAGE_SIZE;
3979}
3980
3981/**
3982 * e1000_receive_skb - helper function to handle rx indications
3983 * @adapter: board private structure
3984 * @status: descriptor status field as written by hardware
3985 * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
3986 * @skb: pointer to sk_buff to be indicated to stack
3987 */
3988static void e1000_receive_skb(struct e1000_adapter *adapter, u8 status,
3989 __le16 vlan, struct sk_buff *skb)
3990{
3991 skb->protocol = eth_type_trans(skb, adapter->netdev);
3992
3993 if (status & E1000_RXD_STAT_VP) {
3994 u16 vid = le16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK;
3995
3996 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
3997 }
3998 napi_gro_receive(&adapter->napi, skb);
3999}
4000
4001/**
4002 * e1000_tbi_adjust_stats
4003 * @hw: Struct containing variables accessed by shared code
4004 * @frame_len: The length of the frame in question
4005 * @mac_addr: The Ethernet destination address of the frame in question
4006 *
4007 * Adjusts the statistic counters when a frame is accepted by TBI_ACCEPT
4008 */
4009static void e1000_tbi_adjust_stats(struct e1000_hw *hw,
4010 struct e1000_hw_stats *stats,
4011 u32 frame_len, const u8 *mac_addr)
4012{
4013 u64 carry_bit;
4014
4015 /* First adjust the frame length. */
4016 frame_len--;
4017 /* We need to adjust the statistics counters, since the hardware
4018 * counters overcount this packet as a CRC error and undercount
4019 * the packet as a good packet
4020 */
4021 /* This packet should not be counted as a CRC error. */
4022 stats->crcerrs--;
4023 /* This packet does count as a Good Packet Received. */
4024 stats->gprc++;
4025
4026 /* Adjust the Good Octets received counters */
4027 carry_bit = 0x80000000 & stats->gorcl;
4028 stats->gorcl += frame_len;
4029 /* If the high bit of Gorcl (the low 32 bits of the Good Octets
4030 * Received Count) was one before the addition,
4031 * AND it is zero after, then we lost the carry out,
4032 * need to add one to Gorch (Good Octets Received Count High).
4033 * This could be simplified if all environments supported
4034 * 64-bit integers.
4035 */
4036 if (carry_bit && ((stats->gorcl & 0x80000000) == 0))
4037 stats->gorch++;
4038 /* Is this a broadcast or multicast? Check broadcast first,
4039 * since the test for a multicast frame will test positive on
4040 * a broadcast frame.
4041 */
4042 if (is_broadcast_ether_addr(mac_addr))
4043 stats->bprc++;
4044 else if (is_multicast_ether_addr(mac_addr))
4045 stats->mprc++;
4046
4047 if (frame_len == hw->max_frame_size) {
4048 /* In this case, the hardware has overcounted the number of
4049 * oversize frames.
4050 */
4051 if (stats->roc > 0)
4052 stats->roc--;
4053 }
4054
4055 /* Adjust the bin counters when the extra byte put the frame in the
4056 * wrong bin. Remember that the frame_len was adjusted above.
4057 */
4058 if (frame_len == 64) {
4059 stats->prc64++;
4060 stats->prc127--;
4061 } else if (frame_len == 127) {
4062 stats->prc127++;
4063 stats->prc255--;
4064 } else if (frame_len == 255) {
4065 stats->prc255++;
4066 stats->prc511--;
4067 } else if (frame_len == 511) {
4068 stats->prc511++;
4069 stats->prc1023--;
4070 } else if (frame_len == 1023) {
4071 stats->prc1023++;
4072 stats->prc1522--;
4073 } else if (frame_len == 1522) {
4074 stats->prc1522++;
4075 }
4076}
4077
4078static bool e1000_tbi_should_accept(struct e1000_adapter *adapter,
4079 u8 status, u8 errors,
4080 u32 length, const u8 *data)
4081{
4082 struct e1000_hw *hw = &adapter->hw;
4083 u8 last_byte = *(data + length - 1);
4084
4085 if (TBI_ACCEPT(hw, status, errors, length, last_byte)) {
4086 unsigned long irq_flags;
4087
4088 spin_lock_irqsave(&adapter->stats_lock, irq_flags);
4089 e1000_tbi_adjust_stats(hw, &adapter->stats, length, data);
4090 spin_unlock_irqrestore(&adapter->stats_lock, irq_flags);
4091
4092 return true;
4093 }
4094
4095 return false;
4096}
4097
4098static struct sk_buff *e1000_alloc_rx_skb(struct e1000_adapter *adapter,
4099 unsigned int bufsz)
4100{
4101 struct sk_buff *skb = napi_alloc_skb(&adapter->napi, bufsz);
4102
4103 if (unlikely(!skb))
4104 adapter->alloc_rx_buff_failed++;
4105 return skb;
4106}
4107
4108/**
4109 * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
4110 * @adapter: board private structure
4111 * @rx_ring: ring to clean
4112 * @work_done: amount of napi work completed this call
4113 * @work_to_do: max amount of work allowed for this call to do
4114 *
4115 * the return value indicates whether actual cleaning was done, there
4116 * is no guarantee that everything was cleaned
4117 */
4118static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter,
4119 struct e1000_rx_ring *rx_ring,
4120 int *work_done, int work_to_do)
4121{
4122 struct net_device *netdev = adapter->netdev;
4123 struct pci_dev *pdev = adapter->pdev;
4124 struct e1000_rx_desc *rx_desc, *next_rxd;
4125 struct e1000_rx_buffer *buffer_info, *next_buffer;
4126 u32 length;
4127 unsigned int i;
4128 int cleaned_count = 0;
4129 bool cleaned = false;
4130 unsigned int total_rx_bytes = 0, total_rx_packets = 0;
4131
4132 i = rx_ring->next_to_clean;
4133 rx_desc = E1000_RX_DESC(*rx_ring, i);
4134 buffer_info = &rx_ring->buffer_info[i];
4135
4136 while (rx_desc->status & E1000_RXD_STAT_DD) {
4137 struct sk_buff *skb;
4138 u8 status;
4139
4140 if (*work_done >= work_to_do)
4141 break;
4142 (*work_done)++;
4143 dma_rmb(); /* read descriptor and rx_buffer_info after status DD */
4144
4145 status = rx_desc->status;
4146
4147 if (++i == rx_ring->count)
4148 i = 0;
4149
4150 next_rxd = E1000_RX_DESC(*rx_ring, i);
4151 prefetch(next_rxd);
4152
4153 next_buffer = &rx_ring->buffer_info[i];
4154
4155 cleaned = true;
4156 cleaned_count++;
4157 dma_unmap_page(&pdev->dev, buffer_info->dma,
4158 adapter->rx_buffer_len, DMA_FROM_DEVICE);
4159 buffer_info->dma = 0;
4160
4161 length = le16_to_cpu(rx_desc->length);
4162
4163 /* errors is only valid for DD + EOP descriptors */
4164 if (unlikely((status & E1000_RXD_STAT_EOP) &&
4165 (rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK))) {
4166 u8 *mapped = page_address(buffer_info->rxbuf.page);
4167
4168 if (e1000_tbi_should_accept(adapter, status,
4169 rx_desc->errors,
4170 length, mapped)) {
4171 length--;
4172 } else if (netdev->features & NETIF_F_RXALL) {
4173 goto process_skb;
4174 } else {
4175 /* an error means any chain goes out the window
4176 * too
4177 */
4178 dev_kfree_skb(rx_ring->rx_skb_top);
4179 rx_ring->rx_skb_top = NULL;
4180 goto next_desc;
4181 }
4182 }
4183
4184#define rxtop rx_ring->rx_skb_top
4185process_skb:
4186 if (!(status & E1000_RXD_STAT_EOP)) {
4187 /* this descriptor is only the beginning (or middle) */
4188 if (!rxtop) {
4189 /* this is the beginning of a chain */
4190 rxtop = napi_get_frags(&adapter->napi);
4191 if (!rxtop)
4192 break;
4193
4194 skb_fill_page_desc(rxtop, 0,
4195 buffer_info->rxbuf.page,
4196 0, length);
4197 } else {
4198 /* this is the middle of a chain */
4199 skb_fill_page_desc(rxtop,
4200 skb_shinfo(rxtop)->nr_frags,
4201 buffer_info->rxbuf.page, 0, length);
4202 }
4203 e1000_consume_page(buffer_info, rxtop, length);
4204 goto next_desc;
4205 } else {
4206 if (rxtop) {
4207 /* end of the chain */
4208 skb_fill_page_desc(rxtop,
4209 skb_shinfo(rxtop)->nr_frags,
4210 buffer_info->rxbuf.page, 0, length);
4211 skb = rxtop;
4212 rxtop = NULL;
4213 e1000_consume_page(buffer_info, skb, length);
4214 } else {
4215 struct page *p;
4216 /* no chain, got EOP, this buf is the packet
4217 * copybreak to save the put_page/alloc_page
4218 */
4219 p = buffer_info->rxbuf.page;
4220 if (length <= copybreak) {
4221 u8 *vaddr;
4222
4223 if (likely(!(netdev->features & NETIF_F_RXFCS)))
4224 length -= 4;
4225 skb = e1000_alloc_rx_skb(adapter,
4226 length);
4227 if (!skb)
4228 break;
4229
4230 vaddr = kmap_atomic(p);
4231 memcpy(skb_tail_pointer(skb), vaddr,
4232 length);
4233 kunmap_atomic(vaddr);
4234 /* re-use the page, so don't erase
4235 * buffer_info->rxbuf.page
4236 */
4237 skb_put(skb, length);
4238 e1000_rx_checksum(adapter,
4239 status | rx_desc->errors << 24,
4240 le16_to_cpu(rx_desc->csum), skb);
4241
4242 total_rx_bytes += skb->len;
4243 total_rx_packets++;
4244
4245 e1000_receive_skb(adapter, status,
4246 rx_desc->special, skb);
4247 goto next_desc;
4248 } else {
4249 skb = napi_get_frags(&adapter->napi);
4250 if (!skb) {
4251 adapter->alloc_rx_buff_failed++;
4252 break;
4253 }
4254 skb_fill_page_desc(skb, 0, p, 0,
4255 length);
4256 e1000_consume_page(buffer_info, skb,
4257 length);
4258 }
4259 }
4260 }
4261
4262 /* Receive Checksum Offload XXX recompute due to CRC strip? */
4263 e1000_rx_checksum(adapter,
4264 (u32)(status) |
4265 ((u32)(rx_desc->errors) << 24),
4266 le16_to_cpu(rx_desc->csum), skb);
4267
4268 total_rx_bytes += (skb->len - 4); /* don't count FCS */
4269 if (likely(!(netdev->features & NETIF_F_RXFCS)))
4270 pskb_trim(skb, skb->len - 4);
4271 total_rx_packets++;
4272
4273 if (status & E1000_RXD_STAT_VP) {
4274 __le16 vlan = rx_desc->special;
4275 u16 vid = le16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK;
4276
4277 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
4278 }
4279
4280 napi_gro_frags(&adapter->napi);
4281
4282next_desc:
4283 rx_desc->status = 0;
4284
4285 /* return some buffers to hardware, one at a time is too slow */
4286 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
4287 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4288 cleaned_count = 0;
4289 }
4290
4291 /* use prefetched values */
4292 rx_desc = next_rxd;
4293 buffer_info = next_buffer;
4294 }
4295 rx_ring->next_to_clean = i;
4296
4297 cleaned_count = E1000_DESC_UNUSED(rx_ring);
4298 if (cleaned_count)
4299 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4300
4301 adapter->total_rx_packets += total_rx_packets;
4302 adapter->total_rx_bytes += total_rx_bytes;
4303 netdev->stats.rx_bytes += total_rx_bytes;
4304 netdev->stats.rx_packets += total_rx_packets;
4305 return cleaned;
4306}
4307
4308/* this should improve performance for small packets with large amounts
4309 * of reassembly being done in the stack
4310 */
4311static struct sk_buff *e1000_copybreak(struct e1000_adapter *adapter,
4312 struct e1000_rx_buffer *buffer_info,
4313 u32 length, const void *data)
4314{
4315 struct sk_buff *skb;
4316
4317 if (length > copybreak)
4318 return NULL;
4319
4320 skb = e1000_alloc_rx_skb(adapter, length);
4321 if (!skb)
4322 return NULL;
4323
4324 dma_sync_single_for_cpu(&adapter->pdev->dev, buffer_info->dma,
4325 length, DMA_FROM_DEVICE);
4326
4327 skb_put_data(skb, data, length);
4328
4329 return skb;
4330}
4331
4332/**
4333 * e1000_clean_rx_irq - Send received data up the network stack; legacy
4334 * @adapter: board private structure
4335 * @rx_ring: ring to clean
4336 * @work_done: amount of napi work completed this call
4337 * @work_to_do: max amount of work allowed for this call to do
4338 */
4339static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
4340 struct e1000_rx_ring *rx_ring,
4341 int *work_done, int work_to_do)
4342{
4343 struct net_device *netdev = adapter->netdev;
4344 struct pci_dev *pdev = adapter->pdev;
4345 struct e1000_rx_desc *rx_desc, *next_rxd;
4346 struct e1000_rx_buffer *buffer_info, *next_buffer;
4347 u32 length;
4348 unsigned int i;
4349 int cleaned_count = 0;
4350 bool cleaned = false;
4351 unsigned int total_rx_bytes = 0, total_rx_packets = 0;
4352
4353 i = rx_ring->next_to_clean;
4354 rx_desc = E1000_RX_DESC(*rx_ring, i);
4355 buffer_info = &rx_ring->buffer_info[i];
4356
4357 while (rx_desc->status & E1000_RXD_STAT_DD) {
4358 struct sk_buff *skb;
4359 u8 *data;
4360 u8 status;
4361
4362 if (*work_done >= work_to_do)
4363 break;
4364 (*work_done)++;
4365 dma_rmb(); /* read descriptor and rx_buffer_info after status DD */
4366
4367 status = rx_desc->status;
4368 length = le16_to_cpu(rx_desc->length);
4369
4370 data = buffer_info->rxbuf.data;
4371 prefetch(data);
4372 skb = e1000_copybreak(adapter, buffer_info, length, data);
4373 if (!skb) {
4374 unsigned int frag_len = e1000_frag_len(adapter);
4375
4376 skb = build_skb(data - E1000_HEADROOM, frag_len);
4377 if (!skb) {
4378 adapter->alloc_rx_buff_failed++;
4379 break;
4380 }
4381
4382 skb_reserve(skb, E1000_HEADROOM);
4383 dma_unmap_single(&pdev->dev, buffer_info->dma,
4384 adapter->rx_buffer_len,
4385 DMA_FROM_DEVICE);
4386 buffer_info->dma = 0;
4387 buffer_info->rxbuf.data = NULL;
4388 }
4389
4390 if (++i == rx_ring->count)
4391 i = 0;
4392
4393 next_rxd = E1000_RX_DESC(*rx_ring, i);
4394 prefetch(next_rxd);
4395
4396 next_buffer = &rx_ring->buffer_info[i];
4397
4398 cleaned = true;
4399 cleaned_count++;
4400
4401 /* !EOP means multiple descriptors were used to store a single
4402 * packet, if thats the case we need to toss it. In fact, we
4403 * to toss every packet with the EOP bit clear and the next
4404 * frame that _does_ have the EOP bit set, as it is by
4405 * definition only a frame fragment
4406 */
4407 if (unlikely(!(status & E1000_RXD_STAT_EOP)))
4408 adapter->discarding = true;
4409
4410 if (adapter->discarding) {
4411 /* All receives must fit into a single buffer */
4412 netdev_dbg(netdev, "Receive packet consumed multiple buffers\n");
4413 dev_kfree_skb(skb);
4414 if (status & E1000_RXD_STAT_EOP)
4415 adapter->discarding = false;
4416 goto next_desc;
4417 }
4418
4419 if (unlikely(rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK)) {
4420 if (e1000_tbi_should_accept(adapter, status,
4421 rx_desc->errors,
4422 length, data)) {
4423 length--;
4424 } else if (netdev->features & NETIF_F_RXALL) {
4425 goto process_skb;
4426 } else {
4427 dev_kfree_skb(skb);
4428 goto next_desc;
4429 }
4430 }
4431
4432process_skb:
4433 total_rx_bytes += (length - 4); /* don't count FCS */
4434 total_rx_packets++;
4435
4436 if (likely(!(netdev->features & NETIF_F_RXFCS)))
4437 /* adjust length to remove Ethernet CRC, this must be
4438 * done after the TBI_ACCEPT workaround above
4439 */
4440 length -= 4;
4441
4442 if (buffer_info->rxbuf.data == NULL)
4443 skb_put(skb, length);
4444 else /* copybreak skb */
4445 skb_trim(skb, length);
4446
4447 /* Receive Checksum Offload */
4448 e1000_rx_checksum(adapter,
4449 (u32)(status) |
4450 ((u32)(rx_desc->errors) << 24),
4451 le16_to_cpu(rx_desc->csum), skb);
4452
4453 e1000_receive_skb(adapter, status, rx_desc->special, skb);
4454
4455next_desc:
4456 rx_desc->status = 0;
4457
4458 /* return some buffers to hardware, one at a time is too slow */
4459 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
4460 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4461 cleaned_count = 0;
4462 }
4463
4464 /* use prefetched values */
4465 rx_desc = next_rxd;
4466 buffer_info = next_buffer;
4467 }
4468 rx_ring->next_to_clean = i;
4469
4470 cleaned_count = E1000_DESC_UNUSED(rx_ring);
4471 if (cleaned_count)
4472 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4473
4474 adapter->total_rx_packets += total_rx_packets;
4475 adapter->total_rx_bytes += total_rx_bytes;
4476 netdev->stats.rx_bytes += total_rx_bytes;
4477 netdev->stats.rx_packets += total_rx_packets;
4478 return cleaned;
4479}
4480
4481/**
4482 * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
4483 * @adapter: address of board private structure
4484 * @rx_ring: pointer to receive ring structure
4485 * @cleaned_count: number of buffers to allocate this pass
4486 **/
4487static void
4488e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter,
4489 struct e1000_rx_ring *rx_ring, int cleaned_count)
4490{
4491 struct pci_dev *pdev = adapter->pdev;
4492 struct e1000_rx_desc *rx_desc;
4493 struct e1000_rx_buffer *buffer_info;
4494 unsigned int i;
4495
4496 i = rx_ring->next_to_use;
4497 buffer_info = &rx_ring->buffer_info[i];
4498
4499 while (cleaned_count--) {
4500 /* allocate a new page if necessary */
4501 if (!buffer_info->rxbuf.page) {
4502 buffer_info->rxbuf.page = alloc_page(GFP_ATOMIC);
4503 if (unlikely(!buffer_info->rxbuf.page)) {
4504 adapter->alloc_rx_buff_failed++;
4505 break;
4506 }
4507 }
4508
4509 if (!buffer_info->dma) {
4510 buffer_info->dma = dma_map_page(&pdev->dev,
4511 buffer_info->rxbuf.page, 0,
4512 adapter->rx_buffer_len,
4513 DMA_FROM_DEVICE);
4514 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
4515 put_page(buffer_info->rxbuf.page);
4516 buffer_info->rxbuf.page = NULL;
4517 buffer_info->dma = 0;
4518 adapter->alloc_rx_buff_failed++;
4519 break;
4520 }
4521 }
4522
4523 rx_desc = E1000_RX_DESC(*rx_ring, i);
4524 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4525
4526 if (unlikely(++i == rx_ring->count))
4527 i = 0;
4528 buffer_info = &rx_ring->buffer_info[i];
4529 }
4530
4531 if (likely(rx_ring->next_to_use != i)) {
4532 rx_ring->next_to_use = i;
4533 if (unlikely(i-- == 0))
4534 i = (rx_ring->count - 1);
4535
4536 /* Force memory writes to complete before letting h/w
4537 * know there are new descriptors to fetch. (Only
4538 * applicable for weak-ordered memory model archs,
4539 * such as IA-64).
4540 */
4541 dma_wmb();
4542 writel(i, adapter->hw.hw_addr + rx_ring->rdt);
4543 }
4544}
4545
4546/**
4547 * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
4548 * @adapter: address of board private structure
4549 **/
4550static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
4551 struct e1000_rx_ring *rx_ring,
4552 int cleaned_count)
4553{
4554 struct e1000_hw *hw = &adapter->hw;
4555 struct pci_dev *pdev = adapter->pdev;
4556 struct e1000_rx_desc *rx_desc;
4557 struct e1000_rx_buffer *buffer_info;
4558 unsigned int i;
4559 unsigned int bufsz = adapter->rx_buffer_len;
4560
4561 i = rx_ring->next_to_use;
4562 buffer_info = &rx_ring->buffer_info[i];
4563
4564 while (cleaned_count--) {
4565 void *data;
4566
4567 if (buffer_info->rxbuf.data)
4568 goto skip;
4569
4570 data = e1000_alloc_frag(adapter);
4571 if (!data) {
4572 /* Better luck next round */
4573 adapter->alloc_rx_buff_failed++;
4574 break;
4575 }
4576
4577 /* Fix for errata 23, can't cross 64kB boundary */
4578 if (!e1000_check_64k_bound(adapter, data, bufsz)) {
4579 void *olddata = data;
4580 e_err(rx_err, "skb align check failed: %u bytes at "
4581 "%p\n", bufsz, data);
4582 /* Try again, without freeing the previous */
4583 data = e1000_alloc_frag(adapter);
4584 /* Failed allocation, critical failure */
4585 if (!data) {
4586 skb_free_frag(olddata);
4587 adapter->alloc_rx_buff_failed++;
4588 break;
4589 }
4590
4591 if (!e1000_check_64k_bound(adapter, data, bufsz)) {
4592 /* give up */
4593 skb_free_frag(data);
4594 skb_free_frag(olddata);
4595 adapter->alloc_rx_buff_failed++;
4596 break;
4597 }
4598
4599 /* Use new allocation */
4600 skb_free_frag(olddata);
4601 }
4602 buffer_info->dma = dma_map_single(&pdev->dev,
4603 data,
4604 adapter->rx_buffer_len,
4605 DMA_FROM_DEVICE);
4606 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
4607 skb_free_frag(data);
4608 buffer_info->dma = 0;
4609 adapter->alloc_rx_buff_failed++;
4610 break;
4611 }
4612
4613 /* XXX if it was allocated cleanly it will never map to a
4614 * boundary crossing
4615 */
4616
4617 /* Fix for errata 23, can't cross 64kB boundary */
4618 if (!e1000_check_64k_bound(adapter,
4619 (void *)(unsigned long)buffer_info->dma,
4620 adapter->rx_buffer_len)) {
4621 e_err(rx_err, "dma align check failed: %u bytes at "
4622 "%p\n", adapter->rx_buffer_len,
4623 (void *)(unsigned long)buffer_info->dma);
4624
4625 dma_unmap_single(&pdev->dev, buffer_info->dma,
4626 adapter->rx_buffer_len,
4627 DMA_FROM_DEVICE);
4628
4629 skb_free_frag(data);
4630 buffer_info->rxbuf.data = NULL;
4631 buffer_info->dma = 0;
4632
4633 adapter->alloc_rx_buff_failed++;
4634 break;
4635 }
4636 buffer_info->rxbuf.data = data;
4637 skip:
4638 rx_desc = E1000_RX_DESC(*rx_ring, i);
4639 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4640
4641 if (unlikely(++i == rx_ring->count))
4642 i = 0;
4643 buffer_info = &rx_ring->buffer_info[i];
4644 }
4645
4646 if (likely(rx_ring->next_to_use != i)) {
4647 rx_ring->next_to_use = i;
4648 if (unlikely(i-- == 0))
4649 i = (rx_ring->count - 1);
4650
4651 /* Force memory writes to complete before letting h/w
4652 * know there are new descriptors to fetch. (Only
4653 * applicable for weak-ordered memory model archs,
4654 * such as IA-64).
4655 */
4656 dma_wmb();
4657 writel(i, hw->hw_addr + rx_ring->rdt);
4658 }
4659}
4660
4661/**
4662 * e1000_smartspeed - Workaround for SmartSpeed on 82541 and 82547 controllers.
4663 * @adapter:
4664 **/
4665static void e1000_smartspeed(struct e1000_adapter *adapter)
4666{
4667 struct e1000_hw *hw = &adapter->hw;
4668 u16 phy_status;
4669 u16 phy_ctrl;
4670
4671 if ((hw->phy_type != e1000_phy_igp) || !hw->autoneg ||
4672 !(hw->autoneg_advertised & ADVERTISE_1000_FULL))
4673 return;
4674
4675 if (adapter->smartspeed == 0) {
4676 /* If Master/Slave config fault is asserted twice,
4677 * we assume back-to-back
4678 */
4679 e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
4680 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT))
4681 return;
4682 e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
4683 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT))
4684 return;
4685 e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
4686 if (phy_ctrl & CR_1000T_MS_ENABLE) {
4687 phy_ctrl &= ~CR_1000T_MS_ENABLE;
4688 e1000_write_phy_reg(hw, PHY_1000T_CTRL,
4689 phy_ctrl);
4690 adapter->smartspeed++;
4691 if (!e1000_phy_setup_autoneg(hw) &&
4692 !e1000_read_phy_reg(hw, PHY_CTRL,
4693 &phy_ctrl)) {
4694 phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4695 MII_CR_RESTART_AUTO_NEG);
4696 e1000_write_phy_reg(hw, PHY_CTRL,
4697 phy_ctrl);
4698 }
4699 }
4700 return;
4701 } else if (adapter->smartspeed == E1000_SMARTSPEED_DOWNSHIFT) {
4702 /* If still no link, perhaps using 2/3 pair cable */
4703 e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
4704 phy_ctrl |= CR_1000T_MS_ENABLE;
4705 e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_ctrl);
4706 if (!e1000_phy_setup_autoneg(hw) &&
4707 !e1000_read_phy_reg(hw, PHY_CTRL, &phy_ctrl)) {
4708 phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4709 MII_CR_RESTART_AUTO_NEG);
4710 e1000_write_phy_reg(hw, PHY_CTRL, phy_ctrl);
4711 }
4712 }
4713 /* Restart process after E1000_SMARTSPEED_MAX iterations */
4714 if (adapter->smartspeed++ == E1000_SMARTSPEED_MAX)
4715 adapter->smartspeed = 0;
4716}
4717
4718/**
4719 * e1000_ioctl -
4720 * @netdev:
4721 * @ifreq:
4722 * @cmd:
4723 **/
4724static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4725{
4726 switch (cmd) {
4727 case SIOCGMIIPHY:
4728 case SIOCGMIIREG:
4729 case SIOCSMIIREG:
4730 return e1000_mii_ioctl(netdev, ifr, cmd);
4731 default:
4732 return -EOPNOTSUPP;
4733 }
4734}
4735
4736/**
4737 * e1000_mii_ioctl -
4738 * @netdev:
4739 * @ifreq:
4740 * @cmd:
4741 **/
4742static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
4743 int cmd)
4744{
4745 struct e1000_adapter *adapter = netdev_priv(netdev);
4746 struct e1000_hw *hw = &adapter->hw;
4747 struct mii_ioctl_data *data = if_mii(ifr);
4748 int retval;
4749 u16 mii_reg;
4750 unsigned long flags;
4751
4752 if (hw->media_type != e1000_media_type_copper)
4753 return -EOPNOTSUPP;
4754
4755 switch (cmd) {
4756 case SIOCGMIIPHY:
4757 data->phy_id = hw->phy_addr;
4758 break;
4759 case SIOCGMIIREG:
4760 spin_lock_irqsave(&adapter->stats_lock, flags);
4761 if (e1000_read_phy_reg(hw, data->reg_num & 0x1F,
4762 &data->val_out)) {
4763 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4764 return -EIO;
4765 }
4766 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4767 break;
4768 case SIOCSMIIREG:
4769 if (data->reg_num & ~(0x1F))
4770 return -EFAULT;
4771 mii_reg = data->val_in;
4772 spin_lock_irqsave(&adapter->stats_lock, flags);
4773 if (e1000_write_phy_reg(hw, data->reg_num,
4774 mii_reg)) {
4775 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4776 return -EIO;
4777 }
4778 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4779 if (hw->media_type == e1000_media_type_copper) {
4780 switch (data->reg_num) {
4781 case PHY_CTRL:
4782 if (mii_reg & MII_CR_POWER_DOWN)
4783 break;
4784 if (mii_reg & MII_CR_AUTO_NEG_EN) {
4785 hw->autoneg = 1;
4786 hw->autoneg_advertised = 0x2F;
4787 } else {
4788 u32 speed;
4789 if (mii_reg & 0x40)
4790 speed = SPEED_1000;
4791 else if (mii_reg & 0x2000)
4792 speed = SPEED_100;
4793 else
4794 speed = SPEED_10;
4795 retval = e1000_set_spd_dplx(
4796 adapter, speed,
4797 ((mii_reg & 0x100)
4798 ? DUPLEX_FULL :
4799 DUPLEX_HALF));
4800 if (retval)
4801 return retval;
4802 }
4803 if (netif_running(adapter->netdev))
4804 e1000_reinit_locked(adapter);
4805 else
4806 e1000_reset(adapter);
4807 break;
4808 case M88E1000_PHY_SPEC_CTRL:
4809 case M88E1000_EXT_PHY_SPEC_CTRL:
4810 if (e1000_phy_reset(hw))
4811 return -EIO;
4812 break;
4813 }
4814 } else {
4815 switch (data->reg_num) {
4816 case PHY_CTRL:
4817 if (mii_reg & MII_CR_POWER_DOWN)
4818 break;
4819 if (netif_running(adapter->netdev))
4820 e1000_reinit_locked(adapter);
4821 else
4822 e1000_reset(adapter);
4823 break;
4824 }
4825 }
4826 break;
4827 default:
4828 return -EOPNOTSUPP;
4829 }
4830 return E1000_SUCCESS;
4831}
4832
4833void e1000_pci_set_mwi(struct e1000_hw *hw)
4834{
4835 struct e1000_adapter *adapter = hw->back;
4836 int ret_val = pci_set_mwi(adapter->pdev);
4837
4838 if (ret_val)
4839 e_err(probe, "Error in setting MWI\n");
4840}
4841
4842void e1000_pci_clear_mwi(struct e1000_hw *hw)
4843{
4844 struct e1000_adapter *adapter = hw->back;
4845
4846 pci_clear_mwi(adapter->pdev);
4847}
4848
4849int e1000_pcix_get_mmrbc(struct e1000_hw *hw)
4850{
4851 struct e1000_adapter *adapter = hw->back;
4852 return pcix_get_mmrbc(adapter->pdev);
4853}
4854
4855void e1000_pcix_set_mmrbc(struct e1000_hw *hw, int mmrbc)
4856{
4857 struct e1000_adapter *adapter = hw->back;
4858 pcix_set_mmrbc(adapter->pdev, mmrbc);
4859}
4860
4861void e1000_io_write(struct e1000_hw *hw, unsigned long port, u32 value)
4862{
4863 outl(value, port);
4864}
4865
4866static bool e1000_vlan_used(struct e1000_adapter *adapter)
4867{
4868 u16 vid;
4869
4870 for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
4871 return true;
4872 return false;
4873}
4874
4875static void __e1000_vlan_mode(struct e1000_adapter *adapter,
4876 netdev_features_t features)
4877{
4878 struct e1000_hw *hw = &adapter->hw;
4879 u32 ctrl;
4880
4881 ctrl = er32(CTRL);
4882 if (features & NETIF_F_HW_VLAN_CTAG_RX) {
4883 /* enable VLAN tag insert/strip */
4884 ctrl |= E1000_CTRL_VME;
4885 } else {
4886 /* disable VLAN tag insert/strip */
4887 ctrl &= ~E1000_CTRL_VME;
4888 }
4889 ew32(CTRL, ctrl);
4890}
4891static void e1000_vlan_filter_on_off(struct e1000_adapter *adapter,
4892 bool filter_on)
4893{
4894 struct e1000_hw *hw = &adapter->hw;
4895 u32 rctl;
4896
4897 if (!test_bit(__E1000_DOWN, &adapter->flags))
4898 e1000_irq_disable(adapter);
4899
4900 __e1000_vlan_mode(adapter, adapter->netdev->features);
4901 if (filter_on) {
4902 /* enable VLAN receive filtering */
4903 rctl = er32(RCTL);
4904 rctl &= ~E1000_RCTL_CFIEN;
4905 if (!(adapter->netdev->flags & IFF_PROMISC))
4906 rctl |= E1000_RCTL_VFE;
4907 ew32(RCTL, rctl);
4908 e1000_update_mng_vlan(adapter);
4909 } else {
4910 /* disable VLAN receive filtering */
4911 rctl = er32(RCTL);
4912 rctl &= ~E1000_RCTL_VFE;
4913 ew32(RCTL, rctl);
4914 }
4915
4916 if (!test_bit(__E1000_DOWN, &adapter->flags))
4917 e1000_irq_enable(adapter);
4918}
4919
4920static void e1000_vlan_mode(struct net_device *netdev,
4921 netdev_features_t features)
4922{
4923 struct e1000_adapter *adapter = netdev_priv(netdev);
4924
4925 if (!test_bit(__E1000_DOWN, &adapter->flags))
4926 e1000_irq_disable(adapter);
4927
4928 __e1000_vlan_mode(adapter, features);
4929
4930 if (!test_bit(__E1000_DOWN, &adapter->flags))
4931 e1000_irq_enable(adapter);
4932}
4933
4934static int e1000_vlan_rx_add_vid(struct net_device *netdev,
4935 __be16 proto, u16 vid)
4936{
4937 struct e1000_adapter *adapter = netdev_priv(netdev);
4938 struct e1000_hw *hw = &adapter->hw;
4939 u32 vfta, index;
4940
4941 if ((hw->mng_cookie.status &
4942 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
4943 (vid == adapter->mng_vlan_id))
4944 return 0;
4945
4946 if (!e1000_vlan_used(adapter))
4947 e1000_vlan_filter_on_off(adapter, true);
4948
4949 /* add VID to filter table */
4950 index = (vid >> 5) & 0x7F;
4951 vfta = E1000_READ_REG_ARRAY(hw, VFTA, index);
4952 vfta |= (1 << (vid & 0x1F));
4953 e1000_write_vfta(hw, index, vfta);
4954
4955 set_bit(vid, adapter->active_vlans);
4956
4957 return 0;
4958}
4959
4960static int e1000_vlan_rx_kill_vid(struct net_device *netdev,
4961 __be16 proto, u16 vid)
4962{
4963 struct e1000_adapter *adapter = netdev_priv(netdev);
4964 struct e1000_hw *hw = &adapter->hw;
4965 u32 vfta, index;
4966
4967 if (!test_bit(__E1000_DOWN, &adapter->flags))
4968 e1000_irq_disable(adapter);
4969 if (!test_bit(__E1000_DOWN, &adapter->flags))
4970 e1000_irq_enable(adapter);
4971
4972 /* remove VID from filter table */
4973 index = (vid >> 5) & 0x7F;
4974 vfta = E1000_READ_REG_ARRAY(hw, VFTA, index);
4975 vfta &= ~(1 << (vid & 0x1F));
4976 e1000_write_vfta(hw, index, vfta);
4977
4978 clear_bit(vid, adapter->active_vlans);
4979
4980 if (!e1000_vlan_used(adapter))
4981 e1000_vlan_filter_on_off(adapter, false);
4982
4983 return 0;
4984}
4985
4986static void e1000_restore_vlan(struct e1000_adapter *adapter)
4987{
4988 u16 vid;
4989
4990 if (!e1000_vlan_used(adapter))
4991 return;
4992
4993 e1000_vlan_filter_on_off(adapter, true);
4994 for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
4995 e1000_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
4996}
4997
4998int e1000_set_spd_dplx(struct e1000_adapter *adapter, u32 spd, u8 dplx)
4999{
5000 struct e1000_hw *hw = &adapter->hw;
5001
5002 hw->autoneg = 0;
5003
5004 /* Make sure dplx is at most 1 bit and lsb of speed is not set
5005 * for the switch() below to work
5006 */
5007 if ((spd & 1) || (dplx & ~1))
5008 goto err_inval;
5009
5010 /* Fiber NICs only allow 1000 gbps Full duplex */
5011 if ((hw->media_type == e1000_media_type_fiber) &&
5012 spd != SPEED_1000 &&
5013 dplx != DUPLEX_FULL)
5014 goto err_inval;
5015
5016 switch (spd + dplx) {
5017 case SPEED_10 + DUPLEX_HALF:
5018 hw->forced_speed_duplex = e1000_10_half;
5019 break;
5020 case SPEED_10 + DUPLEX_FULL:
5021 hw->forced_speed_duplex = e1000_10_full;
5022 break;
5023 case SPEED_100 + DUPLEX_HALF:
5024 hw->forced_speed_duplex = e1000_100_half;
5025 break;
5026 case SPEED_100 + DUPLEX_FULL:
5027 hw->forced_speed_duplex = e1000_100_full;
5028 break;
5029 case SPEED_1000 + DUPLEX_FULL:
5030 hw->autoneg = 1;
5031 hw->autoneg_advertised = ADVERTISE_1000_FULL;
5032 break;
5033 case SPEED_1000 + DUPLEX_HALF: /* not supported */
5034 default:
5035 goto err_inval;
5036 }
5037
5038 /* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
5039 hw->mdix = AUTO_ALL_MODES;
5040
5041 return 0;
5042
5043err_inval:
5044 e_err(probe, "Unsupported Speed/Duplex configuration\n");
5045 return -EINVAL;
5046}
5047
5048static int __e1000_shutdown(struct pci_dev *pdev, bool *enable_wake)
5049{
5050 struct net_device *netdev = pci_get_drvdata(pdev);
5051 struct e1000_adapter *adapter = netdev_priv(netdev);
5052 struct e1000_hw *hw = &adapter->hw;
5053 u32 ctrl, ctrl_ext, rctl, status;
5054 u32 wufc = adapter->wol;
5055#ifdef CONFIG_PM
5056 int retval = 0;
5057#endif
5058
5059 netif_device_detach(netdev);
5060
5061 if (netif_running(netdev)) {
5062 int count = E1000_CHECK_RESET_COUNT;
5063
5064 while (test_bit(__E1000_RESETTING, &adapter->flags) && count--)
5065 usleep_range(10000, 20000);
5066
5067 WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
5068 e1000_down(adapter);
5069 }
5070
5071#ifdef CONFIG_PM
5072 retval = pci_save_state(pdev);
5073 if (retval)
5074 return retval;
5075#endif
5076
5077 status = er32(STATUS);
5078 if (status & E1000_STATUS_LU)
5079 wufc &= ~E1000_WUFC_LNKC;
5080
5081 if (wufc) {
5082 e1000_setup_rctl(adapter);
5083 e1000_set_rx_mode(netdev);
5084
5085 rctl = er32(RCTL);
5086
5087 /* turn on all-multi mode if wake on multicast is enabled */
5088 if (wufc & E1000_WUFC_MC)
5089 rctl |= E1000_RCTL_MPE;
5090
5091 /* enable receives in the hardware */
5092 ew32(RCTL, rctl | E1000_RCTL_EN);
5093
5094 if (hw->mac_type >= e1000_82540) {
5095 ctrl = er32(CTRL);
5096 /* advertise wake from D3Cold */
5097 #define E1000_CTRL_ADVD3WUC 0x00100000
5098 /* phy power management enable */
5099 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
5100 ctrl |= E1000_CTRL_ADVD3WUC |
5101 E1000_CTRL_EN_PHY_PWR_MGMT;
5102 ew32(CTRL, ctrl);
5103 }
5104
5105 if (hw->media_type == e1000_media_type_fiber ||
5106 hw->media_type == e1000_media_type_internal_serdes) {
5107 /* keep the laser running in D3 */
5108 ctrl_ext = er32(CTRL_EXT);
5109 ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA;
5110 ew32(CTRL_EXT, ctrl_ext);
5111 }
5112
5113 ew32(WUC, E1000_WUC_PME_EN);
5114 ew32(WUFC, wufc);
5115 } else {
5116 ew32(WUC, 0);
5117 ew32(WUFC, 0);
5118 }
5119
5120 e1000_release_manageability(adapter);
5121
5122 *enable_wake = !!wufc;
5123
5124 /* make sure adapter isn't asleep if manageability is enabled */
5125 if (adapter->en_mng_pt)
5126 *enable_wake = true;
5127
5128 if (netif_running(netdev))
5129 e1000_free_irq(adapter);
5130
5131 if (!test_and_set_bit(__E1000_DISABLED, &adapter->flags))
5132 pci_disable_device(pdev);
5133
5134 return 0;
5135}
5136
5137#ifdef CONFIG_PM
5138static int e1000_suspend(struct pci_dev *pdev, pm_message_t state)
5139{
5140 int retval;
5141 bool wake;
5142
5143 retval = __e1000_shutdown(pdev, &wake);
5144 if (retval)
5145 return retval;
5146
5147 if (wake) {
5148 pci_prepare_to_sleep(pdev);
5149 } else {
5150 pci_wake_from_d3(pdev, false);
5151 pci_set_power_state(pdev, PCI_D3hot);
5152 }
5153
5154 return 0;
5155}
5156
5157static int e1000_resume(struct pci_dev *pdev)
5158{
5159 struct net_device *netdev = pci_get_drvdata(pdev);
5160 struct e1000_adapter *adapter = netdev_priv(netdev);
5161 struct e1000_hw *hw = &adapter->hw;
5162 u32 err;
5163
5164 pci_set_power_state(pdev, PCI_D0);
5165 pci_restore_state(pdev);
5166 pci_save_state(pdev);
5167
5168 if (adapter->need_ioport)
5169 err = pci_enable_device(pdev);
5170 else
5171 err = pci_enable_device_mem(pdev);
5172 if (err) {
5173 pr_err("Cannot enable PCI device from suspend\n");
5174 return err;
5175 }
5176
5177 /* flush memory to make sure state is correct */
5178 smp_mb__before_atomic();
5179 clear_bit(__E1000_DISABLED, &adapter->flags);
5180 pci_set_master(pdev);
5181
5182 pci_enable_wake(pdev, PCI_D3hot, 0);
5183 pci_enable_wake(pdev, PCI_D3cold, 0);
5184
5185 if (netif_running(netdev)) {
5186 err = e1000_request_irq(adapter);
5187 if (err)
5188 return err;
5189 }
5190
5191 e1000_power_up_phy(adapter);
5192 e1000_reset(adapter);
5193 ew32(WUS, ~0);
5194
5195 e1000_init_manageability(adapter);
5196
5197 if (netif_running(netdev))
5198 e1000_up(adapter);
5199
5200 netif_device_attach(netdev);
5201
5202 return 0;
5203}
5204#endif
5205
5206static void e1000_shutdown(struct pci_dev *pdev)
5207{
5208 bool wake;
5209
5210 __e1000_shutdown(pdev, &wake);
5211
5212 if (system_state == SYSTEM_POWER_OFF) {
5213 pci_wake_from_d3(pdev, wake);
5214 pci_set_power_state(pdev, PCI_D3hot);
5215 }
5216}
5217
5218#ifdef CONFIG_NET_POLL_CONTROLLER
5219/* Polling 'interrupt' - used by things like netconsole to send skbs
5220 * without having to re-enable interrupts. It's not called while
5221 * the interrupt routine is executing.
5222 */
5223static void e1000_netpoll(struct net_device *netdev)
5224{
5225 struct e1000_adapter *adapter = netdev_priv(netdev);
5226
5227 if (disable_hardirq(adapter->pdev->irq))
5228 e1000_intr(adapter->pdev->irq, netdev);
5229 enable_irq(adapter->pdev->irq);
5230}
5231#endif
5232
5233/**
5234 * e1000_io_error_detected - called when PCI error is detected
5235 * @pdev: Pointer to PCI device
5236 * @state: The current pci connection state
5237 *
5238 * This function is called after a PCI bus error affecting
5239 * this device has been detected.
5240 */
5241static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
5242 pci_channel_state_t state)
5243{
5244 struct net_device *netdev = pci_get_drvdata(pdev);
5245 struct e1000_adapter *adapter = netdev_priv(netdev);
5246
5247 netif_device_detach(netdev);
5248
5249 if (state == pci_channel_io_perm_failure)
5250 return PCI_ERS_RESULT_DISCONNECT;
5251
5252 if (netif_running(netdev))
5253 e1000_down(adapter);
5254
5255 if (!test_and_set_bit(__E1000_DISABLED, &adapter->flags))
5256 pci_disable_device(pdev);
5257
5258 /* Request a slot slot reset. */
5259 return PCI_ERS_RESULT_NEED_RESET;
5260}
5261
5262/**
5263 * e1000_io_slot_reset - called after the pci bus has been reset.
5264 * @pdev: Pointer to PCI device
5265 *
5266 * Restart the card from scratch, as if from a cold-boot. Implementation
5267 * resembles the first-half of the e1000_resume routine.
5268 */
5269static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
5270{
5271 struct net_device *netdev = pci_get_drvdata(pdev);
5272 struct e1000_adapter *adapter = netdev_priv(netdev);
5273 struct e1000_hw *hw = &adapter->hw;
5274 int err;
5275
5276 if (adapter->need_ioport)
5277 err = pci_enable_device(pdev);
5278 else
5279 err = pci_enable_device_mem(pdev);
5280 if (err) {
5281 pr_err("Cannot re-enable PCI device after reset.\n");
5282 return PCI_ERS_RESULT_DISCONNECT;
5283 }
5284
5285 /* flush memory to make sure state is correct */
5286 smp_mb__before_atomic();
5287 clear_bit(__E1000_DISABLED, &adapter->flags);
5288 pci_set_master(pdev);
5289
5290 pci_enable_wake(pdev, PCI_D3hot, 0);
5291 pci_enable_wake(pdev, PCI_D3cold, 0);
5292
5293 e1000_reset(adapter);
5294 ew32(WUS, ~0);
5295
5296 return PCI_ERS_RESULT_RECOVERED;
5297}
5298
5299/**
5300 * e1000_io_resume - called when traffic can start flowing again.
5301 * @pdev: Pointer to PCI device
5302 *
5303 * This callback is called when the error recovery driver tells us that
5304 * its OK to resume normal operation. Implementation resembles the
5305 * second-half of the e1000_resume routine.
5306 */
5307static void e1000_io_resume(struct pci_dev *pdev)
5308{
5309 struct net_device *netdev = pci_get_drvdata(pdev);
5310 struct e1000_adapter *adapter = netdev_priv(netdev);
5311
5312 e1000_init_manageability(adapter);
5313
5314 if (netif_running(netdev)) {
5315 if (e1000_up(adapter)) {
5316 pr_info("can't bring device back up after reset\n");
5317 return;
5318 }
5319 }
5320
5321 netif_device_attach(netdev);
5322}
5323
5324/* e1000_main.c */