Loading...
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * Derived from "arch/i386/kernel/process.c"
4 * Copyright (C) 1995 Linus Torvalds
5 *
6 * Updated and modified by Cort Dougan (cort@cs.nmt.edu) and
7 * Paul Mackerras (paulus@cs.anu.edu.au)
8 *
9 * PowerPC version
10 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
11 */
12
13#include <linux/errno.h>
14#include <linux/sched.h>
15#include <linux/sched/debug.h>
16#include <linux/sched/task.h>
17#include <linux/sched/task_stack.h>
18#include <linux/kernel.h>
19#include <linux/mm.h>
20#include <linux/smp.h>
21#include <linux/stddef.h>
22#include <linux/unistd.h>
23#include <linux/ptrace.h>
24#include <linux/slab.h>
25#include <linux/user.h>
26#include <linux/elf.h>
27#include <linux/prctl.h>
28#include <linux/init_task.h>
29#include <linux/export.h>
30#include <linux/kallsyms.h>
31#include <linux/mqueue.h>
32#include <linux/hardirq.h>
33#include <linux/utsname.h>
34#include <linux/ftrace.h>
35#include <linux/kernel_stat.h>
36#include <linux/personality.h>
37#include <linux/hw_breakpoint.h>
38#include <linux/uaccess.h>
39#include <linux/pkeys.h>
40#include <linux/seq_buf.h>
41
42#include <asm/interrupt.h>
43#include <asm/io.h>
44#include <asm/processor.h>
45#include <asm/mmu.h>
46#include <asm/machdep.h>
47#include <asm/time.h>
48#include <asm/runlatch.h>
49#include <asm/syscalls.h>
50#include <asm/switch_to.h>
51#include <asm/tm.h>
52#include <asm/debug.h>
53#ifdef CONFIG_PPC64
54#include <asm/firmware.h>
55#include <asm/hw_irq.h>
56#endif
57#include <asm/text-patching.h>
58#include <asm/exec.h>
59#include <asm/livepatch.h>
60#include <asm/cpu_has_feature.h>
61#include <asm/asm-prototypes.h>
62#include <asm/stacktrace.h>
63#include <asm/hw_breakpoint.h>
64
65#include <linux/kprobes.h>
66#include <linux/kdebug.h>
67
68/* Transactional Memory debug */
69#ifdef TM_DEBUG_SW
70#define TM_DEBUG(x...) printk(KERN_INFO x)
71#else
72#define TM_DEBUG(x...) do { } while(0)
73#endif
74
75#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
76/*
77 * Are we running in "Suspend disabled" mode? If so we have to block any
78 * sigreturn that would get us into suspended state, and we also warn in some
79 * other paths that we should never reach with suspend disabled.
80 */
81bool tm_suspend_disabled __ro_after_init = false;
82
83static void check_if_tm_restore_required(struct task_struct *tsk)
84{
85 /*
86 * If we are saving the current thread's registers, and the
87 * thread is in a transactional state, set the TIF_RESTORE_TM
88 * bit so that we know to restore the registers before
89 * returning to userspace.
90 */
91 if (tsk == current && tsk->thread.regs &&
92 MSR_TM_ACTIVE(tsk->thread.regs->msr) &&
93 !test_thread_flag(TIF_RESTORE_TM)) {
94 regs_set_return_msr(&tsk->thread.ckpt_regs,
95 tsk->thread.regs->msr);
96 set_thread_flag(TIF_RESTORE_TM);
97 }
98}
99
100#else
101static inline void check_if_tm_restore_required(struct task_struct *tsk) { }
102#endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
103
104bool strict_msr_control;
105EXPORT_SYMBOL(strict_msr_control);
106
107static int __init enable_strict_msr_control(char *str)
108{
109 strict_msr_control = true;
110 pr_info("Enabling strict facility control\n");
111
112 return 0;
113}
114early_param("ppc_strict_facility_enable", enable_strict_msr_control);
115
116/* notrace because it's called by restore_math */
117unsigned long notrace msr_check_and_set(unsigned long bits)
118{
119 unsigned long oldmsr = mfmsr();
120 unsigned long newmsr;
121
122 newmsr = oldmsr | bits;
123
124 if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP))
125 newmsr |= MSR_VSX;
126
127 if (oldmsr != newmsr)
128 newmsr = mtmsr_isync_irqsafe(newmsr);
129
130 return newmsr;
131}
132EXPORT_SYMBOL_GPL(msr_check_and_set);
133
134/* notrace because it's called by restore_math */
135void notrace __msr_check_and_clear(unsigned long bits)
136{
137 unsigned long oldmsr = mfmsr();
138 unsigned long newmsr;
139
140 newmsr = oldmsr & ~bits;
141
142 if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP))
143 newmsr &= ~MSR_VSX;
144
145 if (oldmsr != newmsr)
146 mtmsr_isync_irqsafe(newmsr);
147}
148EXPORT_SYMBOL(__msr_check_and_clear);
149
150#ifdef CONFIG_PPC_FPU
151static void __giveup_fpu(struct task_struct *tsk)
152{
153 unsigned long msr;
154
155 save_fpu(tsk);
156 msr = tsk->thread.regs->msr;
157 msr &= ~(MSR_FP|MSR_FE0|MSR_FE1);
158 if (cpu_has_feature(CPU_FTR_VSX))
159 msr &= ~MSR_VSX;
160 regs_set_return_msr(tsk->thread.regs, msr);
161}
162
163void giveup_fpu(struct task_struct *tsk)
164{
165 check_if_tm_restore_required(tsk);
166
167 msr_check_and_set(MSR_FP);
168 __giveup_fpu(tsk);
169 msr_check_and_clear(MSR_FP);
170}
171EXPORT_SYMBOL(giveup_fpu);
172
173/*
174 * Make sure the floating-point register state in the
175 * the thread_struct is up to date for task tsk.
176 */
177void flush_fp_to_thread(struct task_struct *tsk)
178{
179 if (tsk->thread.regs) {
180 /*
181 * We need to disable preemption here because if we didn't,
182 * another process could get scheduled after the regs->msr
183 * test but before we have finished saving the FP registers
184 * to the thread_struct. That process could take over the
185 * FPU, and then when we get scheduled again we would store
186 * bogus values for the remaining FP registers.
187 */
188 preempt_disable();
189 if (tsk->thread.regs->msr & MSR_FP) {
190 /*
191 * This should only ever be called for current or
192 * for a stopped child process. Since we save away
193 * the FP register state on context switch,
194 * there is something wrong if a stopped child appears
195 * to still have its FP state in the CPU registers.
196 */
197 BUG_ON(tsk != current);
198 giveup_fpu(tsk);
199 }
200 preempt_enable();
201 }
202}
203EXPORT_SYMBOL_GPL(flush_fp_to_thread);
204
205void enable_kernel_fp(void)
206{
207 unsigned long cpumsr;
208
209 WARN_ON(preemptible());
210
211 cpumsr = msr_check_and_set(MSR_FP);
212
213 if (current->thread.regs && (current->thread.regs->msr & MSR_FP)) {
214 check_if_tm_restore_required(current);
215 /*
216 * If a thread has already been reclaimed then the
217 * checkpointed registers are on the CPU but have definitely
218 * been saved by the reclaim code. Don't need to and *cannot*
219 * giveup as this would save to the 'live' structure not the
220 * checkpointed structure.
221 */
222 if (!MSR_TM_ACTIVE(cpumsr) &&
223 MSR_TM_ACTIVE(current->thread.regs->msr))
224 return;
225 __giveup_fpu(current);
226 }
227}
228EXPORT_SYMBOL(enable_kernel_fp);
229#else
230static inline void __giveup_fpu(struct task_struct *tsk) { }
231#endif /* CONFIG_PPC_FPU */
232
233#ifdef CONFIG_ALTIVEC
234static void __giveup_altivec(struct task_struct *tsk)
235{
236 unsigned long msr;
237
238 save_altivec(tsk);
239 msr = tsk->thread.regs->msr;
240 msr &= ~MSR_VEC;
241 if (cpu_has_feature(CPU_FTR_VSX))
242 msr &= ~MSR_VSX;
243 regs_set_return_msr(tsk->thread.regs, msr);
244}
245
246void giveup_altivec(struct task_struct *tsk)
247{
248 check_if_tm_restore_required(tsk);
249
250 msr_check_and_set(MSR_VEC);
251 __giveup_altivec(tsk);
252 msr_check_and_clear(MSR_VEC);
253}
254EXPORT_SYMBOL(giveup_altivec);
255
256void enable_kernel_altivec(void)
257{
258 unsigned long cpumsr;
259
260 WARN_ON(preemptible());
261
262 cpumsr = msr_check_and_set(MSR_VEC);
263
264 if (current->thread.regs && (current->thread.regs->msr & MSR_VEC)) {
265 check_if_tm_restore_required(current);
266 /*
267 * If a thread has already been reclaimed then the
268 * checkpointed registers are on the CPU but have definitely
269 * been saved by the reclaim code. Don't need to and *cannot*
270 * giveup as this would save to the 'live' structure not the
271 * checkpointed structure.
272 */
273 if (!MSR_TM_ACTIVE(cpumsr) &&
274 MSR_TM_ACTIVE(current->thread.regs->msr))
275 return;
276 __giveup_altivec(current);
277 }
278}
279EXPORT_SYMBOL(enable_kernel_altivec);
280
281/*
282 * Make sure the VMX/Altivec register state in the
283 * the thread_struct is up to date for task tsk.
284 */
285void flush_altivec_to_thread(struct task_struct *tsk)
286{
287 if (tsk->thread.regs) {
288 preempt_disable();
289 if (tsk->thread.regs->msr & MSR_VEC) {
290 BUG_ON(tsk != current);
291 giveup_altivec(tsk);
292 }
293 preempt_enable();
294 }
295}
296EXPORT_SYMBOL_GPL(flush_altivec_to_thread);
297#endif /* CONFIG_ALTIVEC */
298
299#ifdef CONFIG_VSX
300static void __giveup_vsx(struct task_struct *tsk)
301{
302 unsigned long msr = tsk->thread.regs->msr;
303
304 /*
305 * We should never be setting MSR_VSX without also setting
306 * MSR_FP and MSR_VEC
307 */
308 WARN_ON((msr & MSR_VSX) && !((msr & MSR_FP) && (msr & MSR_VEC)));
309
310 /* __giveup_fpu will clear MSR_VSX */
311 if (msr & MSR_FP)
312 __giveup_fpu(tsk);
313 if (msr & MSR_VEC)
314 __giveup_altivec(tsk);
315}
316
317static void giveup_vsx(struct task_struct *tsk)
318{
319 check_if_tm_restore_required(tsk);
320
321 msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX);
322 __giveup_vsx(tsk);
323 msr_check_and_clear(MSR_FP|MSR_VEC|MSR_VSX);
324}
325
326void enable_kernel_vsx(void)
327{
328 unsigned long cpumsr;
329
330 WARN_ON(preemptible());
331
332 cpumsr = msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX);
333
334 if (current->thread.regs &&
335 (current->thread.regs->msr & (MSR_VSX|MSR_VEC|MSR_FP))) {
336 check_if_tm_restore_required(current);
337 /*
338 * If a thread has already been reclaimed then the
339 * checkpointed registers are on the CPU but have definitely
340 * been saved by the reclaim code. Don't need to and *cannot*
341 * giveup as this would save to the 'live' structure not the
342 * checkpointed structure.
343 */
344 if (!MSR_TM_ACTIVE(cpumsr) &&
345 MSR_TM_ACTIVE(current->thread.regs->msr))
346 return;
347 __giveup_vsx(current);
348 }
349}
350EXPORT_SYMBOL(enable_kernel_vsx);
351
352void flush_vsx_to_thread(struct task_struct *tsk)
353{
354 if (tsk->thread.regs) {
355 preempt_disable();
356 if (tsk->thread.regs->msr & (MSR_VSX|MSR_VEC|MSR_FP)) {
357 BUG_ON(tsk != current);
358 giveup_vsx(tsk);
359 }
360 preempt_enable();
361 }
362}
363EXPORT_SYMBOL_GPL(flush_vsx_to_thread);
364#endif /* CONFIG_VSX */
365
366#ifdef CONFIG_SPE
367void giveup_spe(struct task_struct *tsk)
368{
369 check_if_tm_restore_required(tsk);
370
371 msr_check_and_set(MSR_SPE);
372 __giveup_spe(tsk);
373 msr_check_and_clear(MSR_SPE);
374}
375EXPORT_SYMBOL(giveup_spe);
376
377void enable_kernel_spe(void)
378{
379 WARN_ON(preemptible());
380
381 msr_check_and_set(MSR_SPE);
382
383 if (current->thread.regs && (current->thread.regs->msr & MSR_SPE)) {
384 check_if_tm_restore_required(current);
385 __giveup_spe(current);
386 }
387}
388EXPORT_SYMBOL(enable_kernel_spe);
389
390void flush_spe_to_thread(struct task_struct *tsk)
391{
392 if (tsk->thread.regs) {
393 preempt_disable();
394 if (tsk->thread.regs->msr & MSR_SPE) {
395 BUG_ON(tsk != current);
396 tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
397 giveup_spe(tsk);
398 }
399 preempt_enable();
400 }
401}
402#endif /* CONFIG_SPE */
403
404static unsigned long msr_all_available;
405
406static int __init init_msr_all_available(void)
407{
408 if (IS_ENABLED(CONFIG_PPC_FPU))
409 msr_all_available |= MSR_FP;
410 if (cpu_has_feature(CPU_FTR_ALTIVEC))
411 msr_all_available |= MSR_VEC;
412 if (cpu_has_feature(CPU_FTR_VSX))
413 msr_all_available |= MSR_VSX;
414 if (cpu_has_feature(CPU_FTR_SPE))
415 msr_all_available |= MSR_SPE;
416
417 return 0;
418}
419early_initcall(init_msr_all_available);
420
421void giveup_all(struct task_struct *tsk)
422{
423 unsigned long usermsr;
424
425 if (!tsk->thread.regs)
426 return;
427
428 check_if_tm_restore_required(tsk);
429
430 usermsr = tsk->thread.regs->msr;
431
432 if ((usermsr & msr_all_available) == 0)
433 return;
434
435 msr_check_and_set(msr_all_available);
436
437 WARN_ON((usermsr & MSR_VSX) && !((usermsr & MSR_FP) && (usermsr & MSR_VEC)));
438
439 if (usermsr & MSR_FP)
440 __giveup_fpu(tsk);
441 if (usermsr & MSR_VEC)
442 __giveup_altivec(tsk);
443 if (usermsr & MSR_SPE)
444 __giveup_spe(tsk);
445
446 msr_check_and_clear(msr_all_available);
447}
448EXPORT_SYMBOL(giveup_all);
449
450#ifdef CONFIG_PPC_BOOK3S_64
451#ifdef CONFIG_PPC_FPU
452static bool should_restore_fp(void)
453{
454 if (current->thread.load_fp) {
455 current->thread.load_fp++;
456 return true;
457 }
458 return false;
459}
460
461static void do_restore_fp(void)
462{
463 load_fp_state(¤t->thread.fp_state);
464}
465#else
466static bool should_restore_fp(void) { return false; }
467static void do_restore_fp(void) { }
468#endif /* CONFIG_PPC_FPU */
469
470#ifdef CONFIG_ALTIVEC
471static bool should_restore_altivec(void)
472{
473 if (cpu_has_feature(CPU_FTR_ALTIVEC) && (current->thread.load_vec)) {
474 current->thread.load_vec++;
475 return true;
476 }
477 return false;
478}
479
480static void do_restore_altivec(void)
481{
482 load_vr_state(¤t->thread.vr_state);
483 current->thread.used_vr = 1;
484}
485#else
486static bool should_restore_altivec(void) { return false; }
487static void do_restore_altivec(void) { }
488#endif /* CONFIG_ALTIVEC */
489
490static bool should_restore_vsx(void)
491{
492 if (cpu_has_feature(CPU_FTR_VSX))
493 return true;
494 return false;
495}
496#ifdef CONFIG_VSX
497static void do_restore_vsx(void)
498{
499 current->thread.used_vsr = 1;
500}
501#else
502static void do_restore_vsx(void) { }
503#endif /* CONFIG_VSX */
504
505/*
506 * The exception exit path calls restore_math() with interrupts hard disabled
507 * but the soft irq state not "reconciled". ftrace code that calls
508 * local_irq_save/restore causes warnings.
509 *
510 * Rather than complicate the exit path, just don't trace restore_math. This
511 * could be done by having ftrace entry code check for this un-reconciled
512 * condition where MSR[EE]=0 and PACA_IRQ_HARD_DIS is not set, and
513 * temporarily fix it up for the duration of the ftrace call.
514 */
515void notrace restore_math(struct pt_regs *regs)
516{
517 unsigned long msr;
518 unsigned long new_msr = 0;
519
520 msr = regs->msr;
521
522 /*
523 * new_msr tracks the facilities that are to be restored. Only reload
524 * if the bit is not set in the user MSR (if it is set, the registers
525 * are live for the user thread).
526 */
527 if ((!(msr & MSR_FP)) && should_restore_fp())
528 new_msr |= MSR_FP;
529
530 if ((!(msr & MSR_VEC)) && should_restore_altivec())
531 new_msr |= MSR_VEC;
532
533 if ((!(msr & MSR_VSX)) && should_restore_vsx()) {
534 if (((msr | new_msr) & (MSR_FP | MSR_VEC)) == (MSR_FP | MSR_VEC))
535 new_msr |= MSR_VSX;
536 }
537
538 if (new_msr) {
539 unsigned long fpexc_mode = 0;
540
541 msr_check_and_set(new_msr);
542
543 if (new_msr & MSR_FP) {
544 do_restore_fp();
545
546 // This also covers VSX, because VSX implies FP
547 fpexc_mode = current->thread.fpexc_mode;
548 }
549
550 if (new_msr & MSR_VEC)
551 do_restore_altivec();
552
553 if (new_msr & MSR_VSX)
554 do_restore_vsx();
555
556 msr_check_and_clear(new_msr);
557
558 regs_set_return_msr(regs, regs->msr | new_msr | fpexc_mode);
559 }
560}
561#endif /* CONFIG_PPC_BOOK3S_64 */
562
563static void save_all(struct task_struct *tsk)
564{
565 unsigned long usermsr;
566
567 if (!tsk->thread.regs)
568 return;
569
570 usermsr = tsk->thread.regs->msr;
571
572 if ((usermsr & msr_all_available) == 0)
573 return;
574
575 msr_check_and_set(msr_all_available);
576
577 WARN_ON((usermsr & MSR_VSX) && !((usermsr & MSR_FP) && (usermsr & MSR_VEC)));
578
579 if (usermsr & MSR_FP)
580 save_fpu(tsk);
581
582 if (usermsr & MSR_VEC)
583 save_altivec(tsk);
584
585 if (usermsr & MSR_SPE)
586 __giveup_spe(tsk);
587
588 msr_check_and_clear(msr_all_available);
589}
590
591void flush_all_to_thread(struct task_struct *tsk)
592{
593 if (tsk->thread.regs) {
594 preempt_disable();
595 BUG_ON(tsk != current);
596#ifdef CONFIG_SPE
597 if (tsk->thread.regs->msr & MSR_SPE)
598 tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
599#endif
600 save_all(tsk);
601
602 preempt_enable();
603 }
604}
605EXPORT_SYMBOL(flush_all_to_thread);
606
607#ifdef CONFIG_PPC_ADV_DEBUG_REGS
608void do_send_trap(struct pt_regs *regs, unsigned long address,
609 unsigned long error_code, int breakpt)
610{
611 current->thread.trap_nr = TRAP_HWBKPT;
612 if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
613 11, SIGSEGV) == NOTIFY_STOP)
614 return;
615
616 /* Deliver the signal to userspace */
617 force_sig_ptrace_errno_trap(breakpt, /* breakpoint or watchpoint id */
618 (void __user *)address);
619}
620#else /* !CONFIG_PPC_ADV_DEBUG_REGS */
621
622static void do_break_handler(struct pt_regs *regs)
623{
624 struct arch_hw_breakpoint null_brk = {0};
625 struct arch_hw_breakpoint *info;
626 ppc_inst_t instr = ppc_inst(0);
627 int type = 0;
628 int size = 0;
629 unsigned long ea;
630 int i;
631
632 /*
633 * If underneath hw supports only one watchpoint, we know it
634 * caused exception. 8xx also falls into this category.
635 */
636 if (nr_wp_slots() == 1) {
637 __set_breakpoint(0, &null_brk);
638 current->thread.hw_brk[0] = null_brk;
639 current->thread.hw_brk[0].flags |= HW_BRK_FLAG_DISABLED;
640 return;
641 }
642
643 /* Otherwise find out which DAWR caused exception and disable it. */
644 wp_get_instr_detail(regs, &instr, &type, &size, &ea);
645
646 for (i = 0; i < nr_wp_slots(); i++) {
647 info = ¤t->thread.hw_brk[i];
648 if (!info->address)
649 continue;
650
651 if (wp_check_constraints(regs, instr, ea, type, size, info)) {
652 __set_breakpoint(i, &null_brk);
653 current->thread.hw_brk[i] = null_brk;
654 current->thread.hw_brk[i].flags |= HW_BRK_FLAG_DISABLED;
655 }
656 }
657}
658
659DEFINE_INTERRUPT_HANDLER(do_break)
660{
661 current->thread.trap_nr = TRAP_HWBKPT;
662 if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, regs->dsisr,
663 11, SIGSEGV) == NOTIFY_STOP)
664 return;
665
666 if (debugger_break_match(regs))
667 return;
668
669 /*
670 * We reach here only when watchpoint exception is generated by ptrace
671 * event (or hw is buggy!). Now if CONFIG_HAVE_HW_BREAKPOINT is set,
672 * watchpoint is already handled by hw_breakpoint_handler() so we don't
673 * have to do anything. But when CONFIG_HAVE_HW_BREAKPOINT is not set,
674 * we need to manually handle the watchpoint here.
675 */
676 if (!IS_ENABLED(CONFIG_HAVE_HW_BREAKPOINT))
677 do_break_handler(regs);
678
679 /* Deliver the signal to userspace */
680 force_sig_fault(SIGTRAP, TRAP_HWBKPT, (void __user *)regs->dar);
681}
682#endif /* CONFIG_PPC_ADV_DEBUG_REGS */
683
684static DEFINE_PER_CPU(struct arch_hw_breakpoint, current_brk[HBP_NUM_MAX]);
685
686#ifdef CONFIG_PPC_ADV_DEBUG_REGS
687/*
688 * Set the debug registers back to their default "safe" values.
689 */
690static void set_debug_reg_defaults(struct thread_struct *thread)
691{
692 thread->debug.iac1 = thread->debug.iac2 = 0;
693#if CONFIG_PPC_ADV_DEBUG_IACS > 2
694 thread->debug.iac3 = thread->debug.iac4 = 0;
695#endif
696 thread->debug.dac1 = thread->debug.dac2 = 0;
697#if CONFIG_PPC_ADV_DEBUG_DVCS > 0
698 thread->debug.dvc1 = thread->debug.dvc2 = 0;
699#endif
700 thread->debug.dbcr0 = 0;
701#ifdef CONFIG_BOOKE
702 /*
703 * Force User/Supervisor bits to b11 (user-only MSR[PR]=1)
704 */
705 thread->debug.dbcr1 = DBCR1_IAC1US | DBCR1_IAC2US |
706 DBCR1_IAC3US | DBCR1_IAC4US;
707 /*
708 * Force Data Address Compare User/Supervisor bits to be User-only
709 * (0b11 MSR[PR]=1) and set all other bits in DBCR2 register to be 0.
710 */
711 thread->debug.dbcr2 = DBCR2_DAC1US | DBCR2_DAC2US;
712#else
713 thread->debug.dbcr1 = 0;
714#endif
715}
716
717static void prime_debug_regs(struct debug_reg *debug)
718{
719 /*
720 * We could have inherited MSR_DE from userspace, since
721 * it doesn't get cleared on exception entry. Make sure
722 * MSR_DE is clear before we enable any debug events.
723 */
724 mtmsr(mfmsr() & ~MSR_DE);
725
726 mtspr(SPRN_IAC1, debug->iac1);
727 mtspr(SPRN_IAC2, debug->iac2);
728#if CONFIG_PPC_ADV_DEBUG_IACS > 2
729 mtspr(SPRN_IAC3, debug->iac3);
730 mtspr(SPRN_IAC4, debug->iac4);
731#endif
732 mtspr(SPRN_DAC1, debug->dac1);
733 mtspr(SPRN_DAC2, debug->dac2);
734#if CONFIG_PPC_ADV_DEBUG_DVCS > 0
735 mtspr(SPRN_DVC1, debug->dvc1);
736 mtspr(SPRN_DVC2, debug->dvc2);
737#endif
738 mtspr(SPRN_DBCR0, debug->dbcr0);
739 mtspr(SPRN_DBCR1, debug->dbcr1);
740#ifdef CONFIG_BOOKE
741 mtspr(SPRN_DBCR2, debug->dbcr2);
742#endif
743}
744/*
745 * Unless neither the old or new thread are making use of the
746 * debug registers, set the debug registers from the values
747 * stored in the new thread.
748 */
749void switch_booke_debug_regs(struct debug_reg *new_debug)
750{
751 if ((current->thread.debug.dbcr0 & DBCR0_IDM)
752 || (new_debug->dbcr0 & DBCR0_IDM))
753 prime_debug_regs(new_debug);
754}
755EXPORT_SYMBOL_GPL(switch_booke_debug_regs);
756#else /* !CONFIG_PPC_ADV_DEBUG_REGS */
757#ifndef CONFIG_HAVE_HW_BREAKPOINT
758static void set_breakpoint(int i, struct arch_hw_breakpoint *brk)
759{
760 preempt_disable();
761 __set_breakpoint(i, brk);
762 preempt_enable();
763}
764
765static void set_debug_reg_defaults(struct thread_struct *thread)
766{
767 int i;
768 struct arch_hw_breakpoint null_brk = {0};
769
770 for (i = 0; i < nr_wp_slots(); i++) {
771 thread->hw_brk[i] = null_brk;
772 if (ppc_breakpoint_available())
773 set_breakpoint(i, &thread->hw_brk[i]);
774 }
775}
776
777static inline bool hw_brk_match(struct arch_hw_breakpoint *a,
778 struct arch_hw_breakpoint *b)
779{
780 if (a->address != b->address)
781 return false;
782 if (a->type != b->type)
783 return false;
784 if (a->len != b->len)
785 return false;
786 /* no need to check hw_len. it's calculated from address and len */
787 return true;
788}
789
790static void switch_hw_breakpoint(struct task_struct *new)
791{
792 int i;
793
794 for (i = 0; i < nr_wp_slots(); i++) {
795 if (likely(hw_brk_match(this_cpu_ptr(¤t_brk[i]),
796 &new->thread.hw_brk[i])))
797 continue;
798
799 __set_breakpoint(i, &new->thread.hw_brk[i]);
800 }
801}
802#endif /* !CONFIG_HAVE_HW_BREAKPOINT */
803#endif /* CONFIG_PPC_ADV_DEBUG_REGS */
804
805static inline int set_dabr(struct arch_hw_breakpoint *brk)
806{
807 unsigned long dabr, dabrx;
808
809 dabr = brk->address | (brk->type & HW_BRK_TYPE_DABR);
810 dabrx = ((brk->type >> 3) & 0x7);
811
812 if (ppc_md.set_dabr)
813 return ppc_md.set_dabr(dabr, dabrx);
814
815 if (IS_ENABLED(CONFIG_PPC_ADV_DEBUG_REGS)) {
816 mtspr(SPRN_DAC1, dabr);
817 if (IS_ENABLED(CONFIG_PPC_47x))
818 isync();
819 return 0;
820 } else if (IS_ENABLED(CONFIG_PPC_BOOK3S)) {
821 mtspr(SPRN_DABR, dabr);
822 if (cpu_has_feature(CPU_FTR_DABRX))
823 mtspr(SPRN_DABRX, dabrx);
824 return 0;
825 } else {
826 return -EINVAL;
827 }
828}
829
830static inline int set_breakpoint_8xx(struct arch_hw_breakpoint *brk)
831{
832 unsigned long lctrl1 = LCTRL1_CTE_GT | LCTRL1_CTF_LT | LCTRL1_CRWE_RW |
833 LCTRL1_CRWF_RW;
834 unsigned long lctrl2 = LCTRL2_LW0EN | LCTRL2_LW0LADC | LCTRL2_SLW0EN;
835 unsigned long start_addr = ALIGN_DOWN(brk->address, HW_BREAKPOINT_SIZE);
836 unsigned long end_addr = ALIGN(brk->address + brk->len, HW_BREAKPOINT_SIZE);
837
838 if (start_addr == 0)
839 lctrl2 |= LCTRL2_LW0LA_F;
840 else if (end_addr == 0)
841 lctrl2 |= LCTRL2_LW0LA_E;
842 else
843 lctrl2 |= LCTRL2_LW0LA_EandF;
844
845 mtspr(SPRN_LCTRL2, 0);
846
847 if ((brk->type & HW_BRK_TYPE_RDWR) == 0)
848 return 0;
849
850 if ((brk->type & HW_BRK_TYPE_RDWR) == HW_BRK_TYPE_READ)
851 lctrl1 |= LCTRL1_CRWE_RO | LCTRL1_CRWF_RO;
852 if ((brk->type & HW_BRK_TYPE_RDWR) == HW_BRK_TYPE_WRITE)
853 lctrl1 |= LCTRL1_CRWE_WO | LCTRL1_CRWF_WO;
854
855 mtspr(SPRN_CMPE, start_addr - 1);
856 mtspr(SPRN_CMPF, end_addr);
857 mtspr(SPRN_LCTRL1, lctrl1);
858 mtspr(SPRN_LCTRL2, lctrl2);
859
860 return 0;
861}
862
863static void set_hw_breakpoint(int nr, struct arch_hw_breakpoint *brk)
864{
865 if (dawr_enabled())
866 // Power8 or later
867 set_dawr(nr, brk);
868 else if (IS_ENABLED(CONFIG_PPC_8xx))
869 set_breakpoint_8xx(brk);
870 else if (!cpu_has_feature(CPU_FTR_ARCH_207S))
871 // Power7 or earlier
872 set_dabr(brk);
873 else
874 // Shouldn't happen due to higher level checks
875 WARN_ON_ONCE(1);
876}
877
878void __set_breakpoint(int nr, struct arch_hw_breakpoint *brk)
879{
880 memcpy(this_cpu_ptr(¤t_brk[nr]), brk, sizeof(*brk));
881 set_hw_breakpoint(nr, brk);
882}
883
884/* Check if we have DAWR or DABR hardware */
885bool ppc_breakpoint_available(void)
886{
887 if (dawr_enabled())
888 return true; /* POWER8 DAWR or POWER9 forced DAWR */
889 if (cpu_has_feature(CPU_FTR_ARCH_207S))
890 return false; /* POWER9 with DAWR disabled */
891 /* DABR: Everything but POWER8 and POWER9 */
892 return true;
893}
894EXPORT_SYMBOL_GPL(ppc_breakpoint_available);
895
896/* Disable the breakpoint in hardware without touching current_brk[] */
897void suspend_breakpoints(void)
898{
899 struct arch_hw_breakpoint brk = {0};
900 int i;
901
902 if (!ppc_breakpoint_available())
903 return;
904
905 for (i = 0; i < nr_wp_slots(); i++)
906 set_hw_breakpoint(i, &brk);
907}
908
909/*
910 * Re-enable breakpoints suspended by suspend_breakpoints() in hardware
911 * from current_brk[]
912 */
913void restore_breakpoints(void)
914{
915 int i;
916
917 if (!ppc_breakpoint_available())
918 return;
919
920 for (i = 0; i < nr_wp_slots(); i++)
921 set_hw_breakpoint(i, this_cpu_ptr(¤t_brk[i]));
922}
923
924#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
925
926static inline bool tm_enabled(struct task_struct *tsk)
927{
928 return tsk && tsk->thread.regs && (tsk->thread.regs->msr & MSR_TM);
929}
930
931static void tm_reclaim_thread(struct thread_struct *thr, uint8_t cause)
932{
933 /*
934 * Use the current MSR TM suspended bit to track if we have
935 * checkpointed state outstanding.
936 * On signal delivery, we'd normally reclaim the checkpointed
937 * state to obtain stack pointer (see:get_tm_stackpointer()).
938 * This will then directly return to userspace without going
939 * through __switch_to(). However, if the stack frame is bad,
940 * we need to exit this thread which calls __switch_to() which
941 * will again attempt to reclaim the already saved tm state.
942 * Hence we need to check that we've not already reclaimed
943 * this state.
944 * We do this using the current MSR, rather tracking it in
945 * some specific thread_struct bit, as it has the additional
946 * benefit of checking for a potential TM bad thing exception.
947 */
948 if (!MSR_TM_SUSPENDED(mfmsr()))
949 return;
950
951 giveup_all(container_of(thr, struct task_struct, thread));
952
953 tm_reclaim(thr, cause);
954
955 /*
956 * If we are in a transaction and FP is off then we can't have
957 * used FP inside that transaction. Hence the checkpointed
958 * state is the same as the live state. We need to copy the
959 * live state to the checkpointed state so that when the
960 * transaction is restored, the checkpointed state is correct
961 * and the aborted transaction sees the correct state. We use
962 * ckpt_regs.msr here as that's what tm_reclaim will use to
963 * determine if it's going to write the checkpointed state or
964 * not. So either this will write the checkpointed registers,
965 * or reclaim will. Similarly for VMX.
966 */
967 if ((thr->ckpt_regs.msr & MSR_FP) == 0)
968 memcpy(&thr->ckfp_state, &thr->fp_state,
969 sizeof(struct thread_fp_state));
970 if ((thr->ckpt_regs.msr & MSR_VEC) == 0)
971 memcpy(&thr->ckvr_state, &thr->vr_state,
972 sizeof(struct thread_vr_state));
973}
974
975void tm_reclaim_current(uint8_t cause)
976{
977 tm_enable();
978 tm_reclaim_thread(¤t->thread, cause);
979}
980
981static inline void tm_reclaim_task(struct task_struct *tsk)
982{
983 /* We have to work out if we're switching from/to a task that's in the
984 * middle of a transaction.
985 *
986 * In switching we need to maintain a 2nd register state as
987 * oldtask->thread.ckpt_regs. We tm_reclaim(oldproc); this saves the
988 * checkpointed (tbegin) state in ckpt_regs, ckfp_state and
989 * ckvr_state
990 *
991 * We also context switch (save) TFHAR/TEXASR/TFIAR in here.
992 */
993 struct thread_struct *thr = &tsk->thread;
994
995 if (!thr->regs)
996 return;
997
998 if (!MSR_TM_ACTIVE(thr->regs->msr))
999 goto out_and_saveregs;
1000
1001 WARN_ON(tm_suspend_disabled);
1002
1003 TM_DEBUG("--- tm_reclaim on pid %d (NIP=%lx, "
1004 "ccr=%lx, msr=%lx, trap=%lx)\n",
1005 tsk->pid, thr->regs->nip,
1006 thr->regs->ccr, thr->regs->msr,
1007 thr->regs->trap);
1008
1009 tm_reclaim_thread(thr, TM_CAUSE_RESCHED);
1010
1011 TM_DEBUG("--- tm_reclaim on pid %d complete\n",
1012 tsk->pid);
1013
1014out_and_saveregs:
1015 /* Always save the regs here, even if a transaction's not active.
1016 * This context-switches a thread's TM info SPRs. We do it here to
1017 * be consistent with the restore path (in recheckpoint) which
1018 * cannot happen later in _switch().
1019 */
1020 tm_save_sprs(thr);
1021}
1022
1023extern void __tm_recheckpoint(struct thread_struct *thread);
1024
1025void tm_recheckpoint(struct thread_struct *thread)
1026{
1027 unsigned long flags;
1028
1029 if (!(thread->regs->msr & MSR_TM))
1030 return;
1031
1032 /* We really can't be interrupted here as the TEXASR registers can't
1033 * change and later in the trecheckpoint code, we have a userspace R1.
1034 * So let's hard disable over this region.
1035 */
1036 local_irq_save(flags);
1037 hard_irq_disable();
1038
1039 /* The TM SPRs are restored here, so that TEXASR.FS can be set
1040 * before the trecheckpoint and no explosion occurs.
1041 */
1042 tm_restore_sprs(thread);
1043
1044 __tm_recheckpoint(thread);
1045
1046 local_irq_restore(flags);
1047}
1048
1049static inline void tm_recheckpoint_new_task(struct task_struct *new)
1050{
1051 if (!cpu_has_feature(CPU_FTR_TM))
1052 return;
1053
1054 /* Recheckpoint the registers of the thread we're about to switch to.
1055 *
1056 * If the task was using FP, we non-lazily reload both the original and
1057 * the speculative FP register states. This is because the kernel
1058 * doesn't see if/when a TM rollback occurs, so if we take an FP
1059 * unavailable later, we are unable to determine which set of FP regs
1060 * need to be restored.
1061 */
1062 if (!tm_enabled(new))
1063 return;
1064
1065 if (!MSR_TM_ACTIVE(new->thread.regs->msr)){
1066 tm_restore_sprs(&new->thread);
1067 return;
1068 }
1069 /* Recheckpoint to restore original checkpointed register state. */
1070 TM_DEBUG("*** tm_recheckpoint of pid %d (new->msr 0x%lx)\n",
1071 new->pid, new->thread.regs->msr);
1072
1073 tm_recheckpoint(&new->thread);
1074
1075 /*
1076 * The checkpointed state has been restored but the live state has
1077 * not, ensure all the math functionality is turned off to trigger
1078 * restore_math() to reload.
1079 */
1080 new->thread.regs->msr &= ~(MSR_FP | MSR_VEC | MSR_VSX);
1081
1082 TM_DEBUG("*** tm_recheckpoint of pid %d complete "
1083 "(kernel msr 0x%lx)\n",
1084 new->pid, mfmsr());
1085}
1086
1087static inline void __switch_to_tm(struct task_struct *prev,
1088 struct task_struct *new)
1089{
1090 if (cpu_has_feature(CPU_FTR_TM)) {
1091 if (tm_enabled(prev) || tm_enabled(new))
1092 tm_enable();
1093
1094 if (tm_enabled(prev)) {
1095 prev->thread.load_tm++;
1096 tm_reclaim_task(prev);
1097 if (!MSR_TM_ACTIVE(prev->thread.regs->msr) && prev->thread.load_tm == 0)
1098 prev->thread.regs->msr &= ~MSR_TM;
1099 }
1100
1101 tm_recheckpoint_new_task(new);
1102 }
1103}
1104
1105/*
1106 * This is called if we are on the way out to userspace and the
1107 * TIF_RESTORE_TM flag is set. It checks if we need to reload
1108 * FP and/or vector state and does so if necessary.
1109 * If userspace is inside a transaction (whether active or
1110 * suspended) and FP/VMX/VSX instructions have ever been enabled
1111 * inside that transaction, then we have to keep them enabled
1112 * and keep the FP/VMX/VSX state loaded while ever the transaction
1113 * continues. The reason is that if we didn't, and subsequently
1114 * got a FP/VMX/VSX unavailable interrupt inside a transaction,
1115 * we don't know whether it's the same transaction, and thus we
1116 * don't know which of the checkpointed state and the transactional
1117 * state to use.
1118 */
1119void restore_tm_state(struct pt_regs *regs)
1120{
1121 unsigned long msr_diff;
1122
1123 /*
1124 * This is the only moment we should clear TIF_RESTORE_TM as
1125 * it is here that ckpt_regs.msr and pt_regs.msr become the same
1126 * again, anything else could lead to an incorrect ckpt_msr being
1127 * saved and therefore incorrect signal contexts.
1128 */
1129 clear_thread_flag(TIF_RESTORE_TM);
1130 if (!MSR_TM_ACTIVE(regs->msr))
1131 return;
1132
1133 msr_diff = current->thread.ckpt_regs.msr & ~regs->msr;
1134 msr_diff &= MSR_FP | MSR_VEC | MSR_VSX;
1135
1136 /* Ensure that restore_math() will restore */
1137 if (msr_diff & MSR_FP)
1138 current->thread.load_fp = 1;
1139#ifdef CONFIG_ALTIVEC
1140 if (cpu_has_feature(CPU_FTR_ALTIVEC) && msr_diff & MSR_VEC)
1141 current->thread.load_vec = 1;
1142#endif
1143 restore_math(regs);
1144
1145 regs_set_return_msr(regs, regs->msr | msr_diff);
1146}
1147
1148#else /* !CONFIG_PPC_TRANSACTIONAL_MEM */
1149#define tm_recheckpoint_new_task(new)
1150#define __switch_to_tm(prev, new)
1151void tm_reclaim_current(uint8_t cause) {}
1152#endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1153
1154static inline void save_sprs(struct thread_struct *t)
1155{
1156#ifdef CONFIG_ALTIVEC
1157 if (cpu_has_feature(CPU_FTR_ALTIVEC))
1158 t->vrsave = mfspr(SPRN_VRSAVE);
1159#endif
1160#ifdef CONFIG_SPE
1161 if (cpu_has_feature(CPU_FTR_SPE))
1162 t->spefscr = mfspr(SPRN_SPEFSCR);
1163#endif
1164#ifdef CONFIG_PPC_BOOK3S_64
1165 if (cpu_has_feature(CPU_FTR_DSCR))
1166 t->dscr = mfspr(SPRN_DSCR);
1167
1168 if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
1169 t->bescr = mfspr(SPRN_BESCR);
1170 t->ebbhr = mfspr(SPRN_EBBHR);
1171 t->ebbrr = mfspr(SPRN_EBBRR);
1172
1173 t->fscr = mfspr(SPRN_FSCR);
1174
1175 /*
1176 * Note that the TAR is not available for use in the kernel.
1177 * (To provide this, the TAR should be backed up/restored on
1178 * exception entry/exit instead, and be in pt_regs. FIXME,
1179 * this should be in pt_regs anyway (for debug).)
1180 */
1181 t->tar = mfspr(SPRN_TAR);
1182 }
1183
1184 if (cpu_has_feature(CPU_FTR_DEXCR_NPHIE))
1185 t->hashkeyr = mfspr(SPRN_HASHKEYR);
1186
1187 if (cpu_has_feature(CPU_FTR_ARCH_31))
1188 t->dexcr = mfspr(SPRN_DEXCR);
1189#endif
1190}
1191
1192#ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
1193void kvmppc_save_user_regs(void)
1194{
1195 unsigned long usermsr;
1196
1197 if (!current->thread.regs)
1198 return;
1199
1200 usermsr = current->thread.regs->msr;
1201
1202 /* Caller has enabled FP/VEC/VSX/TM in MSR */
1203 if (usermsr & MSR_FP)
1204 __giveup_fpu(current);
1205 if (usermsr & MSR_VEC)
1206 __giveup_altivec(current);
1207
1208#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1209 if (usermsr & MSR_TM) {
1210 current->thread.tm_tfhar = mfspr(SPRN_TFHAR);
1211 current->thread.tm_tfiar = mfspr(SPRN_TFIAR);
1212 current->thread.tm_texasr = mfspr(SPRN_TEXASR);
1213 current->thread.regs->msr &= ~MSR_TM;
1214 }
1215#endif
1216}
1217EXPORT_SYMBOL_GPL(kvmppc_save_user_regs);
1218
1219void kvmppc_save_current_sprs(void)
1220{
1221 save_sprs(¤t->thread);
1222}
1223EXPORT_SYMBOL_GPL(kvmppc_save_current_sprs);
1224#endif /* CONFIG_KVM_BOOK3S_HV_POSSIBLE */
1225
1226static inline void restore_sprs(struct thread_struct *old_thread,
1227 struct thread_struct *new_thread)
1228{
1229#ifdef CONFIG_ALTIVEC
1230 if (cpu_has_feature(CPU_FTR_ALTIVEC) &&
1231 old_thread->vrsave != new_thread->vrsave)
1232 mtspr(SPRN_VRSAVE, new_thread->vrsave);
1233#endif
1234#ifdef CONFIG_SPE
1235 if (cpu_has_feature(CPU_FTR_SPE) &&
1236 old_thread->spefscr != new_thread->spefscr)
1237 mtspr(SPRN_SPEFSCR, new_thread->spefscr);
1238#endif
1239#ifdef CONFIG_PPC_BOOK3S_64
1240 if (cpu_has_feature(CPU_FTR_DSCR)) {
1241 u64 dscr = get_paca()->dscr_default;
1242 if (new_thread->dscr_inherit)
1243 dscr = new_thread->dscr;
1244
1245 if (old_thread->dscr != dscr)
1246 mtspr(SPRN_DSCR, dscr);
1247 }
1248
1249 if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
1250 if (old_thread->bescr != new_thread->bescr)
1251 mtspr(SPRN_BESCR, new_thread->bescr);
1252 if (old_thread->ebbhr != new_thread->ebbhr)
1253 mtspr(SPRN_EBBHR, new_thread->ebbhr);
1254 if (old_thread->ebbrr != new_thread->ebbrr)
1255 mtspr(SPRN_EBBRR, new_thread->ebbrr);
1256
1257 if (old_thread->fscr != new_thread->fscr)
1258 mtspr(SPRN_FSCR, new_thread->fscr);
1259
1260 if (old_thread->tar != new_thread->tar)
1261 mtspr(SPRN_TAR, new_thread->tar);
1262 }
1263
1264 if (cpu_has_feature(CPU_FTR_P9_TIDR) &&
1265 old_thread->tidr != new_thread->tidr)
1266 mtspr(SPRN_TIDR, new_thread->tidr);
1267
1268 if (cpu_has_feature(CPU_FTR_DEXCR_NPHIE) &&
1269 old_thread->hashkeyr != new_thread->hashkeyr)
1270 mtspr(SPRN_HASHKEYR, new_thread->hashkeyr);
1271
1272 if (cpu_has_feature(CPU_FTR_ARCH_31) &&
1273 old_thread->dexcr != new_thread->dexcr)
1274 mtspr(SPRN_DEXCR, new_thread->dexcr);
1275#endif
1276
1277}
1278
1279struct task_struct *__switch_to(struct task_struct *prev,
1280 struct task_struct *new)
1281{
1282 struct thread_struct *new_thread, *old_thread;
1283 struct task_struct *last;
1284#ifdef CONFIG_PPC_64S_HASH_MMU
1285 struct ppc64_tlb_batch *batch;
1286#endif
1287
1288 new_thread = &new->thread;
1289 old_thread = ¤t->thread;
1290
1291 WARN_ON(!irqs_disabled());
1292
1293#ifdef CONFIG_PPC_64S_HASH_MMU
1294 batch = this_cpu_ptr(&ppc64_tlb_batch);
1295 if (batch->active) {
1296 current_thread_info()->local_flags |= _TLF_LAZY_MMU;
1297 if (batch->index)
1298 __flush_tlb_pending(batch);
1299 batch->active = 0;
1300 }
1301
1302 /*
1303 * On POWER9 the copy-paste buffer can only paste into
1304 * foreign real addresses, so unprivileged processes can not
1305 * see the data or use it in any way unless they have
1306 * foreign real mappings. If the new process has the foreign
1307 * real address mappings, we must issue a cp_abort to clear
1308 * any state and prevent snooping, corruption or a covert
1309 * channel. ISA v3.1 supports paste into local memory.
1310 */
1311 if (new->mm && (cpu_has_feature(CPU_FTR_ARCH_31) ||
1312 atomic_read(&new->mm->context.vas_windows)))
1313 asm volatile(PPC_CP_ABORT);
1314#endif /* CONFIG_PPC_BOOK3S_64 */
1315
1316#ifdef CONFIG_PPC_ADV_DEBUG_REGS
1317 switch_booke_debug_regs(&new->thread.debug);
1318#else
1319/*
1320 * For PPC_BOOK3S_64, we use the hw-breakpoint interfaces that would
1321 * schedule DABR
1322 */
1323#ifndef CONFIG_HAVE_HW_BREAKPOINT
1324 switch_hw_breakpoint(new);
1325#endif /* CONFIG_HAVE_HW_BREAKPOINT */
1326#endif
1327
1328 /*
1329 * We need to save SPRs before treclaim/trecheckpoint as these will
1330 * change a number of them.
1331 */
1332 save_sprs(&prev->thread);
1333
1334 /* Save FPU, Altivec, VSX and SPE state */
1335 giveup_all(prev);
1336
1337 __switch_to_tm(prev, new);
1338
1339 if (!radix_enabled()) {
1340 /*
1341 * We can't take a PMU exception inside _switch() since there
1342 * is a window where the kernel stack SLB and the kernel stack
1343 * are out of sync. Hard disable here.
1344 */
1345 hard_irq_disable();
1346 }
1347
1348 /*
1349 * Call restore_sprs() and set_return_regs_changed() before calling
1350 * _switch(). If we move it after _switch() then we miss out on calling
1351 * it for new tasks. The reason for this is we manually create a stack
1352 * frame for new tasks that directly returns through ret_from_fork() or
1353 * ret_from_kernel_thread(). See copy_thread() for details.
1354 */
1355 restore_sprs(old_thread, new_thread);
1356
1357 set_return_regs_changed(); /* _switch changes stack (and regs) */
1358
1359 if (!IS_ENABLED(CONFIG_PPC_BOOK3S_64))
1360 kuap_assert_locked();
1361
1362 last = _switch(old_thread, new_thread);
1363
1364 /*
1365 * Nothing after _switch will be run for newly created tasks,
1366 * because they switch directly to ret_from_fork/ret_from_kernel_thread
1367 * etc. Code added here should have a comment explaining why that is
1368 * okay.
1369 */
1370
1371#ifdef CONFIG_PPC_BOOK3S_64
1372#ifdef CONFIG_PPC_64S_HASH_MMU
1373 /*
1374 * This applies to a process that was context switched while inside
1375 * arch_enter_lazy_mmu_mode(), to re-activate the batch that was
1376 * deactivated above, before _switch(). This will never be the case
1377 * for new tasks.
1378 */
1379 if (current_thread_info()->local_flags & _TLF_LAZY_MMU) {
1380 current_thread_info()->local_flags &= ~_TLF_LAZY_MMU;
1381 batch = this_cpu_ptr(&ppc64_tlb_batch);
1382 batch->active = 1;
1383 }
1384#endif
1385
1386 /*
1387 * Math facilities are masked out of the child MSR in copy_thread.
1388 * A new task does not need to restore_math because it will
1389 * demand fault them.
1390 */
1391 if (current->thread.regs)
1392 restore_math(current->thread.regs);
1393#endif /* CONFIG_PPC_BOOK3S_64 */
1394
1395 return last;
1396}
1397
1398#define NR_INSN_TO_PRINT 16
1399
1400static void show_instructions(struct pt_regs *regs)
1401{
1402 int i;
1403 unsigned long nip = regs->nip;
1404 unsigned long pc = regs->nip - (NR_INSN_TO_PRINT * 3 / 4 * sizeof(int));
1405
1406 printk("Code: ");
1407
1408 /*
1409 * If we were executing with the MMU off for instructions, adjust pc
1410 * rather than printing XXXXXXXX.
1411 */
1412 if (!IS_ENABLED(CONFIG_BOOKE) && !(regs->msr & MSR_IR)) {
1413 pc = (unsigned long)phys_to_virt(pc);
1414 nip = (unsigned long)phys_to_virt(regs->nip);
1415 }
1416
1417 for (i = 0; i < NR_INSN_TO_PRINT; i++) {
1418 int instr;
1419
1420 if (get_kernel_nofault(instr, (const void *)pc)) {
1421 pr_cont("XXXXXXXX ");
1422 } else {
1423 if (nip == pc)
1424 pr_cont("<%08x> ", instr);
1425 else
1426 pr_cont("%08x ", instr);
1427 }
1428
1429 pc += sizeof(int);
1430 }
1431
1432 pr_cont("\n");
1433}
1434
1435void show_user_instructions(struct pt_regs *regs)
1436{
1437 unsigned long pc;
1438 int n = NR_INSN_TO_PRINT;
1439 struct seq_buf s;
1440 char buf[96]; /* enough for 8 times 9 + 2 chars */
1441
1442 pc = regs->nip - (NR_INSN_TO_PRINT * 3 / 4 * sizeof(int));
1443
1444 seq_buf_init(&s, buf, sizeof(buf));
1445
1446 while (n) {
1447 int i;
1448
1449 seq_buf_clear(&s);
1450
1451 for (i = 0; i < 8 && n; i++, n--, pc += sizeof(int)) {
1452 int instr;
1453
1454 if (copy_from_user_nofault(&instr, (void __user *)pc,
1455 sizeof(instr))) {
1456 seq_buf_printf(&s, "XXXXXXXX ");
1457 continue;
1458 }
1459 seq_buf_printf(&s, regs->nip == pc ? "<%08x> " : "%08x ", instr);
1460 }
1461
1462 if (!seq_buf_has_overflowed(&s))
1463 pr_info("%s[%d]: code: %s\n", current->comm,
1464 current->pid, s.buffer);
1465 }
1466}
1467
1468struct regbit {
1469 unsigned long bit;
1470 const char *name;
1471};
1472
1473static struct regbit msr_bits[] = {
1474#if defined(CONFIG_PPC64) && !defined(CONFIG_BOOKE)
1475 {MSR_SF, "SF"},
1476 {MSR_HV, "HV"},
1477#endif
1478 {MSR_VEC, "VEC"},
1479 {MSR_VSX, "VSX"},
1480#ifdef CONFIG_BOOKE
1481 {MSR_CE, "CE"},
1482#endif
1483 {MSR_EE, "EE"},
1484 {MSR_PR, "PR"},
1485 {MSR_FP, "FP"},
1486 {MSR_ME, "ME"},
1487#ifdef CONFIG_BOOKE
1488 {MSR_DE, "DE"},
1489#else
1490 {MSR_SE, "SE"},
1491 {MSR_BE, "BE"},
1492#endif
1493 {MSR_IR, "IR"},
1494 {MSR_DR, "DR"},
1495 {MSR_PMM, "PMM"},
1496#ifndef CONFIG_BOOKE
1497 {MSR_RI, "RI"},
1498 {MSR_LE, "LE"},
1499#endif
1500 {0, NULL}
1501};
1502
1503static void print_bits(unsigned long val, struct regbit *bits, const char *sep)
1504{
1505 const char *s = "";
1506
1507 for (; bits->bit; ++bits)
1508 if (val & bits->bit) {
1509 pr_cont("%s%s", s, bits->name);
1510 s = sep;
1511 }
1512}
1513
1514#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1515static struct regbit msr_tm_bits[] = {
1516 {MSR_TS_T, "T"},
1517 {MSR_TS_S, "S"},
1518 {MSR_TM, "E"},
1519 {0, NULL}
1520};
1521
1522static void print_tm_bits(unsigned long val)
1523{
1524/*
1525 * This only prints something if at least one of the TM bit is set.
1526 * Inside the TM[], the output means:
1527 * E: Enabled (bit 32)
1528 * S: Suspended (bit 33)
1529 * T: Transactional (bit 34)
1530 */
1531 if (val & (MSR_TM | MSR_TS_S | MSR_TS_T)) {
1532 pr_cont(",TM[");
1533 print_bits(val, msr_tm_bits, "");
1534 pr_cont("]");
1535 }
1536}
1537#else
1538static void print_tm_bits(unsigned long val) {}
1539#endif
1540
1541static void print_msr_bits(unsigned long val)
1542{
1543 pr_cont("<");
1544 print_bits(val, msr_bits, ",");
1545 print_tm_bits(val);
1546 pr_cont(">");
1547}
1548
1549#ifdef CONFIG_PPC64
1550#define REG "%016lx"
1551#define REGS_PER_LINE 4
1552#else
1553#define REG "%08lx"
1554#define REGS_PER_LINE 8
1555#endif
1556
1557static void __show_regs(struct pt_regs *regs)
1558{
1559 int i, trap;
1560
1561 printk("NIP: "REG" LR: "REG" CTR: "REG"\n",
1562 regs->nip, regs->link, regs->ctr);
1563 printk("REGS: %px TRAP: %04lx %s (%s)\n",
1564 regs, regs->trap, print_tainted(), init_utsname()->release);
1565 printk("MSR: "REG" ", regs->msr);
1566 print_msr_bits(regs->msr);
1567 pr_cont(" CR: %08lx XER: %08lx\n", regs->ccr, regs->xer);
1568 trap = TRAP(regs);
1569 if (!trap_is_syscall(regs) && cpu_has_feature(CPU_FTR_CFAR))
1570 pr_cont("CFAR: "REG" ", regs->orig_gpr3);
1571 if (trap == INTERRUPT_MACHINE_CHECK ||
1572 trap == INTERRUPT_DATA_STORAGE ||
1573 trap == INTERRUPT_ALIGNMENT) {
1574 if (IS_ENABLED(CONFIG_BOOKE))
1575 pr_cont("DEAR: "REG" ESR: "REG" ", regs->dear, regs->esr);
1576 else
1577 pr_cont("DAR: "REG" DSISR: %08lx ", regs->dar, regs->dsisr);
1578 }
1579
1580#ifdef CONFIG_PPC64
1581 pr_cont("IRQMASK: %lx ", regs->softe);
1582#endif
1583#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1584 if (MSR_TM_ACTIVE(regs->msr))
1585 pr_cont("\nPACATMSCRATCH: %016llx ", get_paca()->tm_scratch);
1586#endif
1587
1588 for (i = 0; i < 32; i++) {
1589 if ((i % REGS_PER_LINE) == 0)
1590 pr_cont("\nGPR%02d: ", i);
1591 pr_cont(REG " ", regs->gpr[i]);
1592 }
1593 pr_cont("\n");
1594 /*
1595 * Lookup NIP late so we have the best change of getting the
1596 * above info out without failing
1597 */
1598 if (IS_ENABLED(CONFIG_KALLSYMS)) {
1599 printk("NIP ["REG"] %pS\n", regs->nip, (void *)regs->nip);
1600 printk("LR ["REG"] %pS\n", regs->link, (void *)regs->link);
1601 }
1602}
1603
1604void show_regs(struct pt_regs *regs)
1605{
1606 show_regs_print_info(KERN_DEFAULT);
1607 __show_regs(regs);
1608 show_stack(current, (unsigned long *) regs->gpr[1], KERN_DEFAULT);
1609 if (!user_mode(regs))
1610 show_instructions(regs);
1611}
1612
1613void flush_thread(void)
1614{
1615#ifdef CONFIG_HAVE_HW_BREAKPOINT
1616 flush_ptrace_hw_breakpoint(current);
1617#else /* CONFIG_HAVE_HW_BREAKPOINT */
1618 set_debug_reg_defaults(¤t->thread);
1619#endif /* CONFIG_HAVE_HW_BREAKPOINT */
1620}
1621
1622void arch_setup_new_exec(void)
1623{
1624
1625#ifdef CONFIG_PPC_BOOK3S_64
1626 if (!radix_enabled())
1627 hash__setup_new_exec();
1628#endif
1629 /*
1630 * If we exec out of a kernel thread then thread.regs will not be
1631 * set. Do it now.
1632 */
1633 if (!current->thread.regs) {
1634 struct pt_regs *regs = task_stack_page(current) + THREAD_SIZE;
1635 current->thread.regs = regs - 1;
1636 }
1637
1638#ifdef CONFIG_PPC_MEM_KEYS
1639 current->thread.regs->amr = default_amr;
1640 current->thread.regs->iamr = default_iamr;
1641#endif
1642
1643#ifdef CONFIG_PPC_BOOK3S_64
1644 if (cpu_has_feature(CPU_FTR_ARCH_31)) {
1645 current->thread.dexcr = current->thread.dexcr_onexec;
1646 mtspr(SPRN_DEXCR, current->thread.dexcr);
1647 }
1648#endif /* CONFIG_PPC_BOOK3S_64 */
1649}
1650
1651#ifdef CONFIG_PPC64
1652/*
1653 * Assign a TIDR (thread ID) for task @t and set it in the thread
1654 * structure. For now, we only support setting TIDR for 'current' task.
1655 *
1656 * Since the TID value is a truncated form of it PID, it is possible
1657 * (but unlikely) for 2 threads to have the same TID. In the unlikely event
1658 * that 2 threads share the same TID and are waiting, one of the following
1659 * cases will happen:
1660 *
1661 * 1. The correct thread is running, the wrong thread is not
1662 * In this situation, the correct thread is woken and proceeds to pass its
1663 * condition check.
1664 *
1665 * 2. Neither threads are running
1666 * In this situation, neither thread will be woken. When scheduled, the waiting
1667 * threads will execute either a wait, which will return immediately, followed
1668 * by a condition check, which will pass for the correct thread and fail
1669 * for the wrong thread, or they will execute the condition check immediately.
1670 *
1671 * 3. The wrong thread is running, the correct thread is not
1672 * The wrong thread will be woken, but will fail its condition check and
1673 * re-execute wait. The correct thread, when scheduled, will execute either
1674 * its condition check (which will pass), or wait, which returns immediately
1675 * when called the first time after the thread is scheduled, followed by its
1676 * condition check (which will pass).
1677 *
1678 * 4. Both threads are running
1679 * Both threads will be woken. The wrong thread will fail its condition check
1680 * and execute another wait, while the correct thread will pass its condition
1681 * check.
1682 *
1683 * @t: the task to set the thread ID for
1684 */
1685int set_thread_tidr(struct task_struct *t)
1686{
1687 if (!cpu_has_feature(CPU_FTR_P9_TIDR))
1688 return -EINVAL;
1689
1690 if (t != current)
1691 return -EINVAL;
1692
1693 if (t->thread.tidr)
1694 return 0;
1695
1696 t->thread.tidr = (u16)task_pid_nr(t);
1697 mtspr(SPRN_TIDR, t->thread.tidr);
1698
1699 return 0;
1700}
1701EXPORT_SYMBOL_GPL(set_thread_tidr);
1702
1703#endif /* CONFIG_PPC64 */
1704
1705/*
1706 * this gets called so that we can store coprocessor state into memory and
1707 * copy the current task into the new thread.
1708 */
1709int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
1710{
1711 flush_all_to_thread(src);
1712 /*
1713 * Flush TM state out so we can copy it. __switch_to_tm() does this
1714 * flush but it removes the checkpointed state from the current CPU and
1715 * transitions the CPU out of TM mode. Hence we need to call
1716 * tm_recheckpoint_new_task() (on the same task) to restore the
1717 * checkpointed state back and the TM mode.
1718 *
1719 * Can't pass dst because it isn't ready. Doesn't matter, passing
1720 * dst is only important for __switch_to()
1721 */
1722 __switch_to_tm(src, src);
1723
1724 *dst = *src;
1725
1726 clear_task_ebb(dst);
1727
1728 return 0;
1729}
1730
1731static void setup_ksp_vsid(struct task_struct *p, unsigned long sp)
1732{
1733#ifdef CONFIG_PPC_64S_HASH_MMU
1734 unsigned long sp_vsid;
1735 unsigned long llp = mmu_psize_defs[mmu_linear_psize].sllp;
1736
1737 if (radix_enabled())
1738 return;
1739
1740 if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
1741 sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_1T)
1742 << SLB_VSID_SHIFT_1T;
1743 else
1744 sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_256M)
1745 << SLB_VSID_SHIFT;
1746 sp_vsid |= SLB_VSID_KERNEL | llp;
1747 p->thread.ksp_vsid = sp_vsid;
1748#endif
1749}
1750
1751/*
1752 * Copy a thread..
1753 */
1754
1755/*
1756 * Copy architecture-specific thread state
1757 */
1758int copy_thread(struct task_struct *p, const struct kernel_clone_args *args)
1759{
1760 struct pt_regs *kregs; /* Switch frame regs */
1761 extern void ret_from_fork(void);
1762 extern void ret_from_fork_scv(void);
1763 extern void ret_from_kernel_user_thread(void);
1764 extern void start_kernel_thread(void);
1765 void (*f)(void);
1766 unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE;
1767#ifdef CONFIG_HAVE_HW_BREAKPOINT
1768 int i;
1769#endif
1770
1771 klp_init_thread_info(p);
1772
1773 if (unlikely(p->flags & PF_KTHREAD)) {
1774 /* kernel thread */
1775
1776 /* Create initial minimum stack frame. */
1777 sp -= STACK_FRAME_MIN_SIZE;
1778 ((unsigned long *)sp)[0] = 0;
1779
1780 f = start_kernel_thread;
1781 p->thread.regs = NULL; /* no user register state */
1782 clear_tsk_compat_task(p);
1783 } else {
1784 /* user thread */
1785 struct pt_regs *childregs;
1786
1787 /* Create initial user return stack frame. */
1788 sp -= STACK_USER_INT_FRAME_SIZE;
1789 *(unsigned long *)(sp + STACK_INT_FRAME_MARKER) = STACK_FRAME_REGS_MARKER;
1790
1791 childregs = (struct pt_regs *)(sp + STACK_INT_FRAME_REGS);
1792
1793 if (unlikely(args->fn)) {
1794 /*
1795 * A user space thread, but it first runs a kernel
1796 * thread, and then returns as though it had called
1797 * execve rather than fork, so user regs will be
1798 * filled in (e.g., by kernel_execve()).
1799 */
1800 ((unsigned long *)sp)[0] = 0;
1801 memset(childregs, 0, sizeof(struct pt_regs));
1802#ifdef CONFIG_PPC64
1803 childregs->softe = IRQS_ENABLED;
1804#endif
1805 f = ret_from_kernel_user_thread;
1806 } else {
1807 struct pt_regs *regs = current_pt_regs();
1808 unsigned long clone_flags = args->flags;
1809 unsigned long usp = args->stack;
1810
1811 /* Copy registers */
1812 *childregs = *regs;
1813 if (usp)
1814 childregs->gpr[1] = usp;
1815 ((unsigned long *)sp)[0] = childregs->gpr[1];
1816#ifdef CONFIG_PPC_IRQ_SOFT_MASK_DEBUG
1817 WARN_ON_ONCE(childregs->softe != IRQS_ENABLED);
1818#endif
1819 if (clone_flags & CLONE_SETTLS) {
1820 unsigned long tls = args->tls;
1821
1822 if (!is_32bit_task())
1823 childregs->gpr[13] = tls;
1824 else
1825 childregs->gpr[2] = tls;
1826 }
1827
1828 if (trap_is_scv(regs))
1829 f = ret_from_fork_scv;
1830 else
1831 f = ret_from_fork;
1832 }
1833
1834 childregs->msr &= ~(MSR_FP|MSR_VEC|MSR_VSX);
1835 p->thread.regs = childregs;
1836 }
1837
1838 /*
1839 * The way this works is that at some point in the future
1840 * some task will call _switch to switch to the new task.
1841 * That will pop off the stack frame created below and start
1842 * the new task running at ret_from_fork. The new task will
1843 * do some house keeping and then return from the fork or clone
1844 * system call, using the stack frame created above.
1845 */
1846 ((unsigned long *)sp)[STACK_FRAME_LR_SAVE] = (unsigned long)f;
1847 sp -= STACK_SWITCH_FRAME_SIZE;
1848 ((unsigned long *)sp)[0] = sp + STACK_SWITCH_FRAME_SIZE;
1849 kregs = (struct pt_regs *)(sp + STACK_SWITCH_FRAME_REGS);
1850 kregs->nip = ppc_function_entry(f);
1851 if (unlikely(args->fn)) {
1852 /*
1853 * Put kthread fn, arg parameters in non-volatile GPRs in the
1854 * switch frame so they are loaded by _switch before it returns
1855 * to ret_from_kernel_thread.
1856 */
1857 kregs->gpr[14] = ppc_function_entry((void *)args->fn);
1858 kregs->gpr[15] = (unsigned long)args->fn_arg;
1859 }
1860 p->thread.ksp = sp;
1861
1862#ifdef CONFIG_HAVE_HW_BREAKPOINT
1863 for (i = 0; i < nr_wp_slots(); i++)
1864 p->thread.ptrace_bps[i] = NULL;
1865#endif
1866
1867#ifdef CONFIG_PPC_FPU_REGS
1868 p->thread.fp_save_area = NULL;
1869#endif
1870#ifdef CONFIG_ALTIVEC
1871 p->thread.vr_save_area = NULL;
1872#endif
1873#if defined(CONFIG_PPC_BOOK3S_32) && defined(CONFIG_PPC_KUAP)
1874 p->thread.kuap = KUAP_NONE;
1875#endif
1876#if defined(CONFIG_BOOKE) && defined(CONFIG_PPC_KUAP)
1877 p->thread.pid = MMU_NO_CONTEXT;
1878#endif
1879
1880 setup_ksp_vsid(p, sp);
1881
1882#ifdef CONFIG_PPC64
1883 if (cpu_has_feature(CPU_FTR_DSCR)) {
1884 p->thread.dscr_inherit = current->thread.dscr_inherit;
1885 p->thread.dscr = mfspr(SPRN_DSCR);
1886 }
1887
1888 p->thread.tidr = 0;
1889#endif
1890#ifdef CONFIG_PPC_BOOK3S_64
1891 if (cpu_has_feature(CPU_FTR_DEXCR_NPHIE))
1892 p->thread.hashkeyr = current->thread.hashkeyr;
1893
1894 if (cpu_has_feature(CPU_FTR_ARCH_31))
1895 p->thread.dexcr = mfspr(SPRN_DEXCR);
1896#endif
1897 return 0;
1898}
1899
1900void preload_new_slb_context(unsigned long start, unsigned long sp);
1901
1902/*
1903 * Set up a thread for executing a new program
1904 */
1905void start_thread(struct pt_regs *regs, unsigned long start, unsigned long sp)
1906{
1907#ifdef CONFIG_PPC64
1908 unsigned long load_addr = regs->gpr[2]; /* saved by ELF_PLAT_INIT */
1909
1910 if (IS_ENABLED(CONFIG_PPC_BOOK3S_64) && !radix_enabled())
1911 preload_new_slb_context(start, sp);
1912#endif
1913
1914#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1915 /*
1916 * Clear any transactional state, we're exec()ing. The cause is
1917 * not important as there will never be a recheckpoint so it's not
1918 * user visible.
1919 */
1920 if (MSR_TM_SUSPENDED(mfmsr()))
1921 tm_reclaim_current(0);
1922#endif
1923
1924 memset(®s->gpr[1], 0, sizeof(regs->gpr) - sizeof(regs->gpr[0]));
1925 regs->ctr = 0;
1926 regs->link = 0;
1927 regs->xer = 0;
1928 regs->ccr = 0;
1929 regs->gpr[1] = sp;
1930
1931#ifdef CONFIG_PPC32
1932 regs->mq = 0;
1933 regs->nip = start;
1934 regs->msr = MSR_USER;
1935#else
1936 if (!is_32bit_task()) {
1937 unsigned long entry;
1938
1939 if (is_elf2_task()) {
1940 /* Look ma, no function descriptors! */
1941 entry = start;
1942
1943 /*
1944 * Ulrich says:
1945 * The latest iteration of the ABI requires that when
1946 * calling a function (at its global entry point),
1947 * the caller must ensure r12 holds the entry point
1948 * address (so that the function can quickly
1949 * establish addressability).
1950 */
1951 regs->gpr[12] = start;
1952 /* Make sure that's restored on entry to userspace. */
1953 set_thread_flag(TIF_RESTOREALL);
1954 } else {
1955 unsigned long toc;
1956
1957 /* start is a relocated pointer to the function
1958 * descriptor for the elf _start routine. The first
1959 * entry in the function descriptor is the entry
1960 * address of _start and the second entry is the TOC
1961 * value we need to use.
1962 */
1963 __get_user(entry, (unsigned long __user *)start);
1964 __get_user(toc, (unsigned long __user *)start+1);
1965
1966 /* Check whether the e_entry function descriptor entries
1967 * need to be relocated before we can use them.
1968 */
1969 if (load_addr != 0) {
1970 entry += load_addr;
1971 toc += load_addr;
1972 }
1973 regs->gpr[2] = toc;
1974 }
1975 regs_set_return_ip(regs, entry);
1976 regs_set_return_msr(regs, MSR_USER64);
1977 } else {
1978 regs->gpr[2] = 0;
1979 regs_set_return_ip(regs, start);
1980 regs_set_return_msr(regs, MSR_USER32);
1981 }
1982
1983#endif
1984#ifdef CONFIG_VSX
1985 current->thread.used_vsr = 0;
1986#endif
1987 current->thread.load_slb = 0;
1988 current->thread.load_fp = 0;
1989#ifdef CONFIG_PPC_FPU_REGS
1990 memset(¤t->thread.fp_state, 0, sizeof(current->thread.fp_state));
1991 current->thread.fp_save_area = NULL;
1992#endif
1993#ifdef CONFIG_ALTIVEC
1994 memset(¤t->thread.vr_state, 0, sizeof(current->thread.vr_state));
1995 current->thread.vr_state.vscr.u[3] = 0x00010000; /* Java mode disabled */
1996 current->thread.vr_save_area = NULL;
1997 current->thread.vrsave = 0;
1998 current->thread.used_vr = 0;
1999 current->thread.load_vec = 0;
2000#endif /* CONFIG_ALTIVEC */
2001#ifdef CONFIG_SPE
2002 memset(current->thread.evr, 0, sizeof(current->thread.evr));
2003 current->thread.acc = 0;
2004 current->thread.spefscr = 0;
2005 current->thread.used_spe = 0;
2006#endif /* CONFIG_SPE */
2007#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
2008 current->thread.tm_tfhar = 0;
2009 current->thread.tm_texasr = 0;
2010 current->thread.tm_tfiar = 0;
2011 current->thread.load_tm = 0;
2012#endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
2013#ifdef CONFIG_PPC_BOOK3S_64
2014 if (cpu_has_feature(CPU_FTR_DEXCR_NPHIE)) {
2015 current->thread.hashkeyr = get_random_long();
2016 mtspr(SPRN_HASHKEYR, current->thread.hashkeyr);
2017 }
2018#endif /* CONFIG_PPC_BOOK3S_64 */
2019}
2020EXPORT_SYMBOL(start_thread);
2021
2022#define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \
2023 | PR_FP_EXC_RES | PR_FP_EXC_INV)
2024
2025int set_fpexc_mode(struct task_struct *tsk, unsigned int val)
2026{
2027 struct pt_regs *regs = tsk->thread.regs;
2028
2029 /* This is a bit hairy. If we are an SPE enabled processor
2030 * (have embedded fp) we store the IEEE exception enable flags in
2031 * fpexc_mode. fpexc_mode is also used for setting FP exception
2032 * mode (asyn, precise, disabled) for 'Classic' FP. */
2033 if (val & PR_FP_EXC_SW_ENABLE) {
2034 if (cpu_has_feature(CPU_FTR_SPE)) {
2035 /*
2036 * When the sticky exception bits are set
2037 * directly by userspace, it must call prctl
2038 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
2039 * in the existing prctl settings) or
2040 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
2041 * the bits being set). <fenv.h> functions
2042 * saving and restoring the whole
2043 * floating-point environment need to do so
2044 * anyway to restore the prctl settings from
2045 * the saved environment.
2046 */
2047#ifdef CONFIG_SPE
2048 tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
2049 tsk->thread.fpexc_mode = val &
2050 (PR_FP_EXC_SW_ENABLE | PR_FP_ALL_EXCEPT);
2051#endif
2052 return 0;
2053 } else {
2054 return -EINVAL;
2055 }
2056 }
2057
2058 /* on a CONFIG_SPE this does not hurt us. The bits that
2059 * __pack_fe01 use do not overlap with bits used for
2060 * PR_FP_EXC_SW_ENABLE. Additionally, the MSR[FE0,FE1] bits
2061 * on CONFIG_SPE implementations are reserved so writing to
2062 * them does not change anything */
2063 if (val > PR_FP_EXC_PRECISE)
2064 return -EINVAL;
2065 tsk->thread.fpexc_mode = __pack_fe01(val);
2066 if (regs != NULL && (regs->msr & MSR_FP) != 0) {
2067 regs_set_return_msr(regs, (regs->msr & ~(MSR_FE0|MSR_FE1))
2068 | tsk->thread.fpexc_mode);
2069 }
2070 return 0;
2071}
2072
2073int get_fpexc_mode(struct task_struct *tsk, unsigned long adr)
2074{
2075 unsigned int val = 0;
2076
2077 if (tsk->thread.fpexc_mode & PR_FP_EXC_SW_ENABLE) {
2078 if (cpu_has_feature(CPU_FTR_SPE)) {
2079 /*
2080 * When the sticky exception bits are set
2081 * directly by userspace, it must call prctl
2082 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
2083 * in the existing prctl settings) or
2084 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
2085 * the bits being set). <fenv.h> functions
2086 * saving and restoring the whole
2087 * floating-point environment need to do so
2088 * anyway to restore the prctl settings from
2089 * the saved environment.
2090 */
2091#ifdef CONFIG_SPE
2092 tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
2093 val = tsk->thread.fpexc_mode;
2094#endif
2095 } else
2096 return -EINVAL;
2097 } else {
2098 val = __unpack_fe01(tsk->thread.fpexc_mode);
2099 }
2100 return put_user(val, (unsigned int __user *) adr);
2101}
2102
2103int set_endian(struct task_struct *tsk, unsigned int val)
2104{
2105 struct pt_regs *regs = tsk->thread.regs;
2106
2107 if ((val == PR_ENDIAN_LITTLE && !cpu_has_feature(CPU_FTR_REAL_LE)) ||
2108 (val == PR_ENDIAN_PPC_LITTLE && !cpu_has_feature(CPU_FTR_PPC_LE)))
2109 return -EINVAL;
2110
2111 if (regs == NULL)
2112 return -EINVAL;
2113
2114 if (val == PR_ENDIAN_BIG)
2115 regs_set_return_msr(regs, regs->msr & ~MSR_LE);
2116 else if (val == PR_ENDIAN_LITTLE || val == PR_ENDIAN_PPC_LITTLE)
2117 regs_set_return_msr(regs, regs->msr | MSR_LE);
2118 else
2119 return -EINVAL;
2120
2121 return 0;
2122}
2123
2124int get_endian(struct task_struct *tsk, unsigned long adr)
2125{
2126 struct pt_regs *regs = tsk->thread.regs;
2127 unsigned int val;
2128
2129 if (!cpu_has_feature(CPU_FTR_PPC_LE) &&
2130 !cpu_has_feature(CPU_FTR_REAL_LE))
2131 return -EINVAL;
2132
2133 if (regs == NULL)
2134 return -EINVAL;
2135
2136 if (regs->msr & MSR_LE) {
2137 if (cpu_has_feature(CPU_FTR_REAL_LE))
2138 val = PR_ENDIAN_LITTLE;
2139 else
2140 val = PR_ENDIAN_PPC_LITTLE;
2141 } else
2142 val = PR_ENDIAN_BIG;
2143
2144 return put_user(val, (unsigned int __user *)adr);
2145}
2146
2147int set_unalign_ctl(struct task_struct *tsk, unsigned int val)
2148{
2149 tsk->thread.align_ctl = val;
2150 return 0;
2151}
2152
2153int get_unalign_ctl(struct task_struct *tsk, unsigned long adr)
2154{
2155 return put_user(tsk->thread.align_ctl, (unsigned int __user *)adr);
2156}
2157
2158static inline int valid_irq_stack(unsigned long sp, struct task_struct *p,
2159 unsigned long nbytes)
2160{
2161 unsigned long stack_page;
2162 unsigned long cpu = task_cpu(p);
2163
2164 if (!hardirq_ctx[cpu] || !softirq_ctx[cpu])
2165 return 0;
2166
2167 stack_page = (unsigned long)hardirq_ctx[cpu];
2168 if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes)
2169 return 1;
2170
2171 stack_page = (unsigned long)softirq_ctx[cpu];
2172 if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes)
2173 return 1;
2174
2175 return 0;
2176}
2177
2178#ifdef CONFIG_PPC64
2179static inline int valid_emergency_stack(unsigned long sp, struct task_struct *p,
2180 unsigned long nbytes)
2181{
2182 unsigned long stack_page;
2183 unsigned long cpu = task_cpu(p);
2184
2185 if (!paca_ptrs)
2186 return 0;
2187
2188 if (!paca_ptrs[cpu]->emergency_sp)
2189 return 0;
2190
2191# ifdef CONFIG_PPC_BOOK3S_64
2192 if (!paca_ptrs[cpu]->nmi_emergency_sp || !paca_ptrs[cpu]->mc_emergency_sp)
2193 return 0;
2194#endif
2195
2196 stack_page = (unsigned long)paca_ptrs[cpu]->emergency_sp - THREAD_SIZE;
2197 if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes)
2198 return 1;
2199
2200# ifdef CONFIG_PPC_BOOK3S_64
2201 stack_page = (unsigned long)paca_ptrs[cpu]->nmi_emergency_sp - THREAD_SIZE;
2202 if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes)
2203 return 1;
2204
2205 stack_page = (unsigned long)paca_ptrs[cpu]->mc_emergency_sp - THREAD_SIZE;
2206 if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes)
2207 return 1;
2208# endif
2209
2210 return 0;
2211}
2212#else
2213static inline int valid_emergency_stack(unsigned long sp, struct task_struct *p,
2214 unsigned long nbytes)
2215{
2216 unsigned long stack_page;
2217 unsigned long cpu = task_cpu(p);
2218
2219 if (!IS_ENABLED(CONFIG_VMAP_STACK))
2220 return 0;
2221
2222 stack_page = (unsigned long)emergency_ctx[cpu] - THREAD_SIZE;
2223 if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes)
2224 return 1;
2225
2226 return 0;
2227}
2228#endif
2229
2230/*
2231 * validate the stack frame of a particular minimum size, used for when we are
2232 * looking at a certain object in the stack beyond the minimum.
2233 */
2234int validate_sp_size(unsigned long sp, struct task_struct *p,
2235 unsigned long nbytes)
2236{
2237 unsigned long stack_page = (unsigned long)task_stack_page(p);
2238
2239 if (sp < THREAD_SIZE)
2240 return 0;
2241
2242 if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes)
2243 return 1;
2244
2245 if (valid_irq_stack(sp, p, nbytes))
2246 return 1;
2247
2248 return valid_emergency_stack(sp, p, nbytes);
2249}
2250
2251int validate_sp(unsigned long sp, struct task_struct *p)
2252{
2253 return validate_sp_size(sp, p, STACK_FRAME_MIN_SIZE);
2254}
2255
2256static unsigned long ___get_wchan(struct task_struct *p)
2257{
2258 unsigned long ip, sp;
2259 int count = 0;
2260
2261 sp = p->thread.ksp;
2262 if (!validate_sp(sp, p))
2263 return 0;
2264
2265 do {
2266 sp = READ_ONCE_NOCHECK(*(unsigned long *)sp);
2267 if (!validate_sp(sp, p) || task_is_running(p))
2268 return 0;
2269 if (count > 0) {
2270 ip = READ_ONCE_NOCHECK(((unsigned long *)sp)[STACK_FRAME_LR_SAVE]);
2271 if (!in_sched_functions(ip))
2272 return ip;
2273 }
2274 } while (count++ < 16);
2275 return 0;
2276}
2277
2278unsigned long __get_wchan(struct task_struct *p)
2279{
2280 unsigned long ret;
2281
2282 if (!try_get_task_stack(p))
2283 return 0;
2284
2285 ret = ___get_wchan(p);
2286
2287 put_task_stack(p);
2288
2289 return ret;
2290}
2291
2292static bool empty_user_regs(struct pt_regs *regs, struct task_struct *tsk)
2293{
2294 unsigned long stack_page;
2295
2296 // A non-empty pt_regs should never have a zero MSR or TRAP value.
2297 if (regs->msr || regs->trap)
2298 return false;
2299
2300 // Check it sits at the very base of the stack
2301 stack_page = (unsigned long)task_stack_page(tsk);
2302 if ((unsigned long)(regs + 1) != stack_page + THREAD_SIZE)
2303 return false;
2304
2305 return true;
2306}
2307
2308static int kstack_depth_to_print = CONFIG_PRINT_STACK_DEPTH;
2309
2310void __no_sanitize_address show_stack(struct task_struct *tsk,
2311 unsigned long *stack,
2312 const char *loglvl)
2313{
2314 unsigned long sp, ip, lr, newsp;
2315 int count = 0;
2316 int firstframe = 1;
2317 unsigned long ret_addr;
2318 int ftrace_idx = 0;
2319
2320 if (tsk == NULL)
2321 tsk = current;
2322
2323 if (!try_get_task_stack(tsk))
2324 return;
2325
2326 sp = (unsigned long) stack;
2327 if (sp == 0) {
2328 if (tsk == current)
2329 sp = current_stack_frame();
2330 else
2331 sp = tsk->thread.ksp;
2332 }
2333
2334 lr = 0;
2335 printk("%sCall Trace:\n", loglvl);
2336 do {
2337 if (!validate_sp(sp, tsk))
2338 break;
2339
2340 stack = (unsigned long *) sp;
2341 newsp = stack[0];
2342 ip = stack[STACK_FRAME_LR_SAVE];
2343 if (!firstframe || ip != lr) {
2344 printk("%s["REG"] ["REG"] %pS",
2345 loglvl, sp, ip, (void *)ip);
2346 ret_addr = ftrace_graph_ret_addr(current,
2347 &ftrace_idx, ip, stack);
2348 if (ret_addr != ip)
2349 pr_cont(" (%pS)", (void *)ret_addr);
2350 if (firstframe)
2351 pr_cont(" (unreliable)");
2352 pr_cont("\n");
2353 }
2354 firstframe = 0;
2355
2356 /*
2357 * See if this is an exception frame.
2358 * We look for the "regs" marker in the current frame.
2359 *
2360 * STACK_SWITCH_FRAME_SIZE being the smallest frame that
2361 * could hold a pt_regs, if that does not fit then it can't
2362 * have regs.
2363 */
2364 if (validate_sp_size(sp, tsk, STACK_SWITCH_FRAME_SIZE)
2365 && stack[STACK_INT_FRAME_MARKER_LONGS] == STACK_FRAME_REGS_MARKER) {
2366 struct pt_regs *regs = (struct pt_regs *)
2367 (sp + STACK_INT_FRAME_REGS);
2368
2369 lr = regs->link;
2370 printk("%s--- interrupt: %lx at %pS\n",
2371 loglvl, regs->trap, (void *)regs->nip);
2372
2373 // Detect the case of an empty pt_regs at the very base
2374 // of the stack and suppress showing it in full.
2375 if (!empty_user_regs(regs, tsk)) {
2376 __show_regs(regs);
2377 printk("%s--- interrupt: %lx\n", loglvl, regs->trap);
2378 }
2379
2380 firstframe = 1;
2381 }
2382
2383 sp = newsp;
2384 } while (count++ < kstack_depth_to_print);
2385
2386 put_task_stack(tsk);
2387}
2388
2389#ifdef CONFIG_PPC64
2390/* Called with hard IRQs off */
2391void notrace __ppc64_runlatch_on(void)
2392{
2393 struct thread_info *ti = current_thread_info();
2394
2395 if (cpu_has_feature(CPU_FTR_ARCH_206)) {
2396 /*
2397 * Least significant bit (RUN) is the only writable bit of
2398 * the CTRL register, so we can avoid mfspr. 2.06 is not the
2399 * earliest ISA where this is the case, but it's convenient.
2400 */
2401 mtspr(SPRN_CTRLT, CTRL_RUNLATCH);
2402 } else {
2403 unsigned long ctrl;
2404
2405 /*
2406 * Some architectures (e.g., Cell) have writable fields other
2407 * than RUN, so do the read-modify-write.
2408 */
2409 ctrl = mfspr(SPRN_CTRLF);
2410 ctrl |= CTRL_RUNLATCH;
2411 mtspr(SPRN_CTRLT, ctrl);
2412 }
2413
2414 ti->local_flags |= _TLF_RUNLATCH;
2415}
2416
2417/* Called with hard IRQs off */
2418void notrace __ppc64_runlatch_off(void)
2419{
2420 struct thread_info *ti = current_thread_info();
2421
2422 ti->local_flags &= ~_TLF_RUNLATCH;
2423
2424 if (cpu_has_feature(CPU_FTR_ARCH_206)) {
2425 mtspr(SPRN_CTRLT, 0);
2426 } else {
2427 unsigned long ctrl;
2428
2429 ctrl = mfspr(SPRN_CTRLF);
2430 ctrl &= ~CTRL_RUNLATCH;
2431 mtspr(SPRN_CTRLT, ctrl);
2432 }
2433}
2434#endif /* CONFIG_PPC64 */
2435
2436unsigned long arch_align_stack(unsigned long sp)
2437{
2438 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
2439 sp -= get_random_u32_below(PAGE_SIZE);
2440 return sp & ~0xf;
2441}
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * Derived from "arch/i386/kernel/process.c"
4 * Copyright (C) 1995 Linus Torvalds
5 *
6 * Updated and modified by Cort Dougan (cort@cs.nmt.edu) and
7 * Paul Mackerras (paulus@cs.anu.edu.au)
8 *
9 * PowerPC version
10 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
11 */
12
13#include <linux/errno.h>
14#include <linux/sched.h>
15#include <linux/sched/debug.h>
16#include <linux/sched/task.h>
17#include <linux/sched/task_stack.h>
18#include <linux/kernel.h>
19#include <linux/mm.h>
20#include <linux/smp.h>
21#include <linux/stddef.h>
22#include <linux/unistd.h>
23#include <linux/ptrace.h>
24#include <linux/slab.h>
25#include <linux/user.h>
26#include <linux/elf.h>
27#include <linux/prctl.h>
28#include <linux/init_task.h>
29#include <linux/export.h>
30#include <linux/kallsyms.h>
31#include <linux/mqueue.h>
32#include <linux/hardirq.h>
33#include <linux/utsname.h>
34#include <linux/ftrace.h>
35#include <linux/kernel_stat.h>
36#include <linux/personality.h>
37#include <linux/random.h>
38#include <linux/hw_breakpoint.h>
39#include <linux/uaccess.h>
40#include <linux/elf-randomize.h>
41#include <linux/pkeys.h>
42#include <linux/seq_buf.h>
43
44#include <asm/io.h>
45#include <asm/processor.h>
46#include <asm/mmu.h>
47#include <asm/prom.h>
48#include <asm/machdep.h>
49#include <asm/time.h>
50#include <asm/runlatch.h>
51#include <asm/syscalls.h>
52#include <asm/switch_to.h>
53#include <asm/tm.h>
54#include <asm/debug.h>
55#ifdef CONFIG_PPC64
56#include <asm/firmware.h>
57#include <asm/hw_irq.h>
58#endif
59#include <asm/code-patching.h>
60#include <asm/exec.h>
61#include <asm/livepatch.h>
62#include <asm/cpu_has_feature.h>
63#include <asm/asm-prototypes.h>
64#include <asm/stacktrace.h>
65#include <asm/hw_breakpoint.h>
66
67#include <linux/kprobes.h>
68#include <linux/kdebug.h>
69
70/* Transactional Memory debug */
71#ifdef TM_DEBUG_SW
72#define TM_DEBUG(x...) printk(KERN_INFO x)
73#else
74#define TM_DEBUG(x...) do { } while(0)
75#endif
76
77extern unsigned long _get_SP(void);
78
79#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
80/*
81 * Are we running in "Suspend disabled" mode? If so we have to block any
82 * sigreturn that would get us into suspended state, and we also warn in some
83 * other paths that we should never reach with suspend disabled.
84 */
85bool tm_suspend_disabled __ro_after_init = false;
86
87static void check_if_tm_restore_required(struct task_struct *tsk)
88{
89 /*
90 * If we are saving the current thread's registers, and the
91 * thread is in a transactional state, set the TIF_RESTORE_TM
92 * bit so that we know to restore the registers before
93 * returning to userspace.
94 */
95 if (tsk == current && tsk->thread.regs &&
96 MSR_TM_ACTIVE(tsk->thread.regs->msr) &&
97 !test_thread_flag(TIF_RESTORE_TM)) {
98 tsk->thread.ckpt_regs.msr = tsk->thread.regs->msr;
99 set_thread_flag(TIF_RESTORE_TM);
100 }
101}
102
103#else
104static inline void check_if_tm_restore_required(struct task_struct *tsk) { }
105#endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
106
107bool strict_msr_control;
108EXPORT_SYMBOL(strict_msr_control);
109
110static int __init enable_strict_msr_control(char *str)
111{
112 strict_msr_control = true;
113 pr_info("Enabling strict facility control\n");
114
115 return 0;
116}
117early_param("ppc_strict_facility_enable", enable_strict_msr_control);
118
119/* notrace because it's called by restore_math */
120unsigned long notrace msr_check_and_set(unsigned long bits)
121{
122 unsigned long oldmsr = mfmsr();
123 unsigned long newmsr;
124
125 newmsr = oldmsr | bits;
126
127#ifdef CONFIG_VSX
128 if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP))
129 newmsr |= MSR_VSX;
130#endif
131
132 if (oldmsr != newmsr)
133 mtmsr_isync(newmsr);
134
135 return newmsr;
136}
137EXPORT_SYMBOL_GPL(msr_check_and_set);
138
139/* notrace because it's called by restore_math */
140void notrace __msr_check_and_clear(unsigned long bits)
141{
142 unsigned long oldmsr = mfmsr();
143 unsigned long newmsr;
144
145 newmsr = oldmsr & ~bits;
146
147#ifdef CONFIG_VSX
148 if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP))
149 newmsr &= ~MSR_VSX;
150#endif
151
152 if (oldmsr != newmsr)
153 mtmsr_isync(newmsr);
154}
155EXPORT_SYMBOL(__msr_check_and_clear);
156
157#ifdef CONFIG_PPC_FPU
158static void __giveup_fpu(struct task_struct *tsk)
159{
160 unsigned long msr;
161
162 save_fpu(tsk);
163 msr = tsk->thread.regs->msr;
164 msr &= ~(MSR_FP|MSR_FE0|MSR_FE1);
165#ifdef CONFIG_VSX
166 if (cpu_has_feature(CPU_FTR_VSX))
167 msr &= ~MSR_VSX;
168#endif
169 tsk->thread.regs->msr = msr;
170}
171
172void giveup_fpu(struct task_struct *tsk)
173{
174 check_if_tm_restore_required(tsk);
175
176 msr_check_and_set(MSR_FP);
177 __giveup_fpu(tsk);
178 msr_check_and_clear(MSR_FP);
179}
180EXPORT_SYMBOL(giveup_fpu);
181
182/*
183 * Make sure the floating-point register state in the
184 * the thread_struct is up to date for task tsk.
185 */
186void flush_fp_to_thread(struct task_struct *tsk)
187{
188 if (tsk->thread.regs) {
189 /*
190 * We need to disable preemption here because if we didn't,
191 * another process could get scheduled after the regs->msr
192 * test but before we have finished saving the FP registers
193 * to the thread_struct. That process could take over the
194 * FPU, and then when we get scheduled again we would store
195 * bogus values for the remaining FP registers.
196 */
197 preempt_disable();
198 if (tsk->thread.regs->msr & MSR_FP) {
199 /*
200 * This should only ever be called for current or
201 * for a stopped child process. Since we save away
202 * the FP register state on context switch,
203 * there is something wrong if a stopped child appears
204 * to still have its FP state in the CPU registers.
205 */
206 BUG_ON(tsk != current);
207 giveup_fpu(tsk);
208 }
209 preempt_enable();
210 }
211}
212EXPORT_SYMBOL_GPL(flush_fp_to_thread);
213
214void enable_kernel_fp(void)
215{
216 unsigned long cpumsr;
217
218 WARN_ON(preemptible());
219
220 cpumsr = msr_check_and_set(MSR_FP);
221
222 if (current->thread.regs && (current->thread.regs->msr & MSR_FP)) {
223 check_if_tm_restore_required(current);
224 /*
225 * If a thread has already been reclaimed then the
226 * checkpointed registers are on the CPU but have definitely
227 * been saved by the reclaim code. Don't need to and *cannot*
228 * giveup as this would save to the 'live' structure not the
229 * checkpointed structure.
230 */
231 if (!MSR_TM_ACTIVE(cpumsr) &&
232 MSR_TM_ACTIVE(current->thread.regs->msr))
233 return;
234 __giveup_fpu(current);
235 }
236}
237EXPORT_SYMBOL(enable_kernel_fp);
238#endif /* CONFIG_PPC_FPU */
239
240#ifdef CONFIG_ALTIVEC
241static void __giveup_altivec(struct task_struct *tsk)
242{
243 unsigned long msr;
244
245 save_altivec(tsk);
246 msr = tsk->thread.regs->msr;
247 msr &= ~MSR_VEC;
248#ifdef CONFIG_VSX
249 if (cpu_has_feature(CPU_FTR_VSX))
250 msr &= ~MSR_VSX;
251#endif
252 tsk->thread.regs->msr = msr;
253}
254
255void giveup_altivec(struct task_struct *tsk)
256{
257 check_if_tm_restore_required(tsk);
258
259 msr_check_and_set(MSR_VEC);
260 __giveup_altivec(tsk);
261 msr_check_and_clear(MSR_VEC);
262}
263EXPORT_SYMBOL(giveup_altivec);
264
265void enable_kernel_altivec(void)
266{
267 unsigned long cpumsr;
268
269 WARN_ON(preemptible());
270
271 cpumsr = msr_check_and_set(MSR_VEC);
272
273 if (current->thread.regs && (current->thread.regs->msr & MSR_VEC)) {
274 check_if_tm_restore_required(current);
275 /*
276 * If a thread has already been reclaimed then the
277 * checkpointed registers are on the CPU but have definitely
278 * been saved by the reclaim code. Don't need to and *cannot*
279 * giveup as this would save to the 'live' structure not the
280 * checkpointed structure.
281 */
282 if (!MSR_TM_ACTIVE(cpumsr) &&
283 MSR_TM_ACTIVE(current->thread.regs->msr))
284 return;
285 __giveup_altivec(current);
286 }
287}
288EXPORT_SYMBOL(enable_kernel_altivec);
289
290/*
291 * Make sure the VMX/Altivec register state in the
292 * the thread_struct is up to date for task tsk.
293 */
294void flush_altivec_to_thread(struct task_struct *tsk)
295{
296 if (tsk->thread.regs) {
297 preempt_disable();
298 if (tsk->thread.regs->msr & MSR_VEC) {
299 BUG_ON(tsk != current);
300 giveup_altivec(tsk);
301 }
302 preempt_enable();
303 }
304}
305EXPORT_SYMBOL_GPL(flush_altivec_to_thread);
306#endif /* CONFIG_ALTIVEC */
307
308#ifdef CONFIG_VSX
309static void __giveup_vsx(struct task_struct *tsk)
310{
311 unsigned long msr = tsk->thread.regs->msr;
312
313 /*
314 * We should never be ssetting MSR_VSX without also setting
315 * MSR_FP and MSR_VEC
316 */
317 WARN_ON((msr & MSR_VSX) && !((msr & MSR_FP) && (msr & MSR_VEC)));
318
319 /* __giveup_fpu will clear MSR_VSX */
320 if (msr & MSR_FP)
321 __giveup_fpu(tsk);
322 if (msr & MSR_VEC)
323 __giveup_altivec(tsk);
324}
325
326static void giveup_vsx(struct task_struct *tsk)
327{
328 check_if_tm_restore_required(tsk);
329
330 msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX);
331 __giveup_vsx(tsk);
332 msr_check_and_clear(MSR_FP|MSR_VEC|MSR_VSX);
333}
334
335void enable_kernel_vsx(void)
336{
337 unsigned long cpumsr;
338
339 WARN_ON(preemptible());
340
341 cpumsr = msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX);
342
343 if (current->thread.regs &&
344 (current->thread.regs->msr & (MSR_VSX|MSR_VEC|MSR_FP))) {
345 check_if_tm_restore_required(current);
346 /*
347 * If a thread has already been reclaimed then the
348 * checkpointed registers are on the CPU but have definitely
349 * been saved by the reclaim code. Don't need to and *cannot*
350 * giveup as this would save to the 'live' structure not the
351 * checkpointed structure.
352 */
353 if (!MSR_TM_ACTIVE(cpumsr) &&
354 MSR_TM_ACTIVE(current->thread.regs->msr))
355 return;
356 __giveup_vsx(current);
357 }
358}
359EXPORT_SYMBOL(enable_kernel_vsx);
360
361void flush_vsx_to_thread(struct task_struct *tsk)
362{
363 if (tsk->thread.regs) {
364 preempt_disable();
365 if (tsk->thread.regs->msr & (MSR_VSX|MSR_VEC|MSR_FP)) {
366 BUG_ON(tsk != current);
367 giveup_vsx(tsk);
368 }
369 preempt_enable();
370 }
371}
372EXPORT_SYMBOL_GPL(flush_vsx_to_thread);
373#endif /* CONFIG_VSX */
374
375#ifdef CONFIG_SPE
376void giveup_spe(struct task_struct *tsk)
377{
378 check_if_tm_restore_required(tsk);
379
380 msr_check_and_set(MSR_SPE);
381 __giveup_spe(tsk);
382 msr_check_and_clear(MSR_SPE);
383}
384EXPORT_SYMBOL(giveup_spe);
385
386void enable_kernel_spe(void)
387{
388 WARN_ON(preemptible());
389
390 msr_check_and_set(MSR_SPE);
391
392 if (current->thread.regs && (current->thread.regs->msr & MSR_SPE)) {
393 check_if_tm_restore_required(current);
394 __giveup_spe(current);
395 }
396}
397EXPORT_SYMBOL(enable_kernel_spe);
398
399void flush_spe_to_thread(struct task_struct *tsk)
400{
401 if (tsk->thread.regs) {
402 preempt_disable();
403 if (tsk->thread.regs->msr & MSR_SPE) {
404 BUG_ON(tsk != current);
405 tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
406 giveup_spe(tsk);
407 }
408 preempt_enable();
409 }
410}
411#endif /* CONFIG_SPE */
412
413static unsigned long msr_all_available;
414
415static int __init init_msr_all_available(void)
416{
417#ifdef CONFIG_PPC_FPU
418 msr_all_available |= MSR_FP;
419#endif
420#ifdef CONFIG_ALTIVEC
421 if (cpu_has_feature(CPU_FTR_ALTIVEC))
422 msr_all_available |= MSR_VEC;
423#endif
424#ifdef CONFIG_VSX
425 if (cpu_has_feature(CPU_FTR_VSX))
426 msr_all_available |= MSR_VSX;
427#endif
428#ifdef CONFIG_SPE
429 if (cpu_has_feature(CPU_FTR_SPE))
430 msr_all_available |= MSR_SPE;
431#endif
432
433 return 0;
434}
435early_initcall(init_msr_all_available);
436
437void giveup_all(struct task_struct *tsk)
438{
439 unsigned long usermsr;
440
441 if (!tsk->thread.regs)
442 return;
443
444 check_if_tm_restore_required(tsk);
445
446 usermsr = tsk->thread.regs->msr;
447
448 if ((usermsr & msr_all_available) == 0)
449 return;
450
451 msr_check_and_set(msr_all_available);
452
453 WARN_ON((usermsr & MSR_VSX) && !((usermsr & MSR_FP) && (usermsr & MSR_VEC)));
454
455#ifdef CONFIG_PPC_FPU
456 if (usermsr & MSR_FP)
457 __giveup_fpu(tsk);
458#endif
459#ifdef CONFIG_ALTIVEC
460 if (usermsr & MSR_VEC)
461 __giveup_altivec(tsk);
462#endif
463#ifdef CONFIG_SPE
464 if (usermsr & MSR_SPE)
465 __giveup_spe(tsk);
466#endif
467
468 msr_check_and_clear(msr_all_available);
469}
470EXPORT_SYMBOL(giveup_all);
471
472#ifdef CONFIG_PPC_BOOK3S_64
473#ifdef CONFIG_PPC_FPU
474static bool should_restore_fp(void)
475{
476 if (current->thread.load_fp) {
477 current->thread.load_fp++;
478 return true;
479 }
480 return false;
481}
482
483static void do_restore_fp(void)
484{
485 load_fp_state(¤t->thread.fp_state);
486}
487#else
488static bool should_restore_fp(void) { return false; }
489static void do_restore_fp(void) { }
490#endif /* CONFIG_PPC_FPU */
491
492#ifdef CONFIG_ALTIVEC
493static bool should_restore_altivec(void)
494{
495 if (cpu_has_feature(CPU_FTR_ALTIVEC) && (current->thread.load_vec)) {
496 current->thread.load_vec++;
497 return true;
498 }
499 return false;
500}
501
502static void do_restore_altivec(void)
503{
504 load_vr_state(¤t->thread.vr_state);
505 current->thread.used_vr = 1;
506}
507#else
508static bool should_restore_altivec(void) { return false; }
509static void do_restore_altivec(void) { }
510#endif /* CONFIG_ALTIVEC */
511
512#ifdef CONFIG_VSX
513static bool should_restore_vsx(void)
514{
515 if (cpu_has_feature(CPU_FTR_VSX))
516 return true;
517 return false;
518}
519static void do_restore_vsx(void)
520{
521 current->thread.used_vsr = 1;
522}
523#else
524static bool should_restore_vsx(void) { return false; }
525static void do_restore_vsx(void) { }
526#endif /* CONFIG_VSX */
527
528/*
529 * The exception exit path calls restore_math() with interrupts hard disabled
530 * but the soft irq state not "reconciled". ftrace code that calls
531 * local_irq_save/restore causes warnings.
532 *
533 * Rather than complicate the exit path, just don't trace restore_math. This
534 * could be done by having ftrace entry code check for this un-reconciled
535 * condition where MSR[EE]=0 and PACA_IRQ_HARD_DIS is not set, and
536 * temporarily fix it up for the duration of the ftrace call.
537 */
538void notrace restore_math(struct pt_regs *regs)
539{
540 unsigned long msr;
541 unsigned long new_msr = 0;
542
543 msr = regs->msr;
544
545 /*
546 * new_msr tracks the facilities that are to be restored. Only reload
547 * if the bit is not set in the user MSR (if it is set, the registers
548 * are live for the user thread).
549 */
550 if ((!(msr & MSR_FP)) && should_restore_fp())
551 new_msr |= MSR_FP;
552
553 if ((!(msr & MSR_VEC)) && should_restore_altivec())
554 new_msr |= MSR_VEC;
555
556 if ((!(msr & MSR_VSX)) && should_restore_vsx()) {
557 if (((msr | new_msr) & (MSR_FP | MSR_VEC)) == (MSR_FP | MSR_VEC))
558 new_msr |= MSR_VSX;
559 }
560
561 if (new_msr) {
562 unsigned long fpexc_mode = 0;
563
564 msr_check_and_set(new_msr);
565
566 if (new_msr & MSR_FP) {
567 do_restore_fp();
568
569 // This also covers VSX, because VSX implies FP
570 fpexc_mode = current->thread.fpexc_mode;
571 }
572
573 if (new_msr & MSR_VEC)
574 do_restore_altivec();
575
576 if (new_msr & MSR_VSX)
577 do_restore_vsx();
578
579 msr_check_and_clear(new_msr);
580
581 regs->msr |= new_msr | fpexc_mode;
582 }
583}
584#endif
585
586static void save_all(struct task_struct *tsk)
587{
588 unsigned long usermsr;
589
590 if (!tsk->thread.regs)
591 return;
592
593 usermsr = tsk->thread.regs->msr;
594
595 if ((usermsr & msr_all_available) == 0)
596 return;
597
598 msr_check_and_set(msr_all_available);
599
600 WARN_ON((usermsr & MSR_VSX) && !((usermsr & MSR_FP) && (usermsr & MSR_VEC)));
601
602 if (usermsr & MSR_FP)
603 save_fpu(tsk);
604
605 if (usermsr & MSR_VEC)
606 save_altivec(tsk);
607
608 if (usermsr & MSR_SPE)
609 __giveup_spe(tsk);
610
611 msr_check_and_clear(msr_all_available);
612 thread_pkey_regs_save(&tsk->thread);
613}
614
615void flush_all_to_thread(struct task_struct *tsk)
616{
617 if (tsk->thread.regs) {
618 preempt_disable();
619 BUG_ON(tsk != current);
620#ifdef CONFIG_SPE
621 if (tsk->thread.regs->msr & MSR_SPE)
622 tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
623#endif
624 save_all(tsk);
625
626 preempt_enable();
627 }
628}
629EXPORT_SYMBOL(flush_all_to_thread);
630
631#ifdef CONFIG_PPC_ADV_DEBUG_REGS
632void do_send_trap(struct pt_regs *regs, unsigned long address,
633 unsigned long error_code, int breakpt)
634{
635 current->thread.trap_nr = TRAP_HWBKPT;
636 if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
637 11, SIGSEGV) == NOTIFY_STOP)
638 return;
639
640 /* Deliver the signal to userspace */
641 force_sig_ptrace_errno_trap(breakpt, /* breakpoint or watchpoint id */
642 (void __user *)address);
643}
644#else /* !CONFIG_PPC_ADV_DEBUG_REGS */
645void do_break (struct pt_regs *regs, unsigned long address,
646 unsigned long error_code)
647{
648 current->thread.trap_nr = TRAP_HWBKPT;
649 if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
650 11, SIGSEGV) == NOTIFY_STOP)
651 return;
652
653 if (debugger_break_match(regs))
654 return;
655
656 /* Deliver the signal to userspace */
657 force_sig_fault(SIGTRAP, TRAP_HWBKPT, (void __user *)address);
658}
659#endif /* CONFIG_PPC_ADV_DEBUG_REGS */
660
661static DEFINE_PER_CPU(struct arch_hw_breakpoint, current_brk[HBP_NUM_MAX]);
662
663#ifdef CONFIG_PPC_ADV_DEBUG_REGS
664/*
665 * Set the debug registers back to their default "safe" values.
666 */
667static void set_debug_reg_defaults(struct thread_struct *thread)
668{
669 thread->debug.iac1 = thread->debug.iac2 = 0;
670#if CONFIG_PPC_ADV_DEBUG_IACS > 2
671 thread->debug.iac3 = thread->debug.iac4 = 0;
672#endif
673 thread->debug.dac1 = thread->debug.dac2 = 0;
674#if CONFIG_PPC_ADV_DEBUG_DVCS > 0
675 thread->debug.dvc1 = thread->debug.dvc2 = 0;
676#endif
677 thread->debug.dbcr0 = 0;
678#ifdef CONFIG_BOOKE
679 /*
680 * Force User/Supervisor bits to b11 (user-only MSR[PR]=1)
681 */
682 thread->debug.dbcr1 = DBCR1_IAC1US | DBCR1_IAC2US |
683 DBCR1_IAC3US | DBCR1_IAC4US;
684 /*
685 * Force Data Address Compare User/Supervisor bits to be User-only
686 * (0b11 MSR[PR]=1) and set all other bits in DBCR2 register to be 0.
687 */
688 thread->debug.dbcr2 = DBCR2_DAC1US | DBCR2_DAC2US;
689#else
690 thread->debug.dbcr1 = 0;
691#endif
692}
693
694static void prime_debug_regs(struct debug_reg *debug)
695{
696 /*
697 * We could have inherited MSR_DE from userspace, since
698 * it doesn't get cleared on exception entry. Make sure
699 * MSR_DE is clear before we enable any debug events.
700 */
701 mtmsr(mfmsr() & ~MSR_DE);
702
703 mtspr(SPRN_IAC1, debug->iac1);
704 mtspr(SPRN_IAC2, debug->iac2);
705#if CONFIG_PPC_ADV_DEBUG_IACS > 2
706 mtspr(SPRN_IAC3, debug->iac3);
707 mtspr(SPRN_IAC4, debug->iac4);
708#endif
709 mtspr(SPRN_DAC1, debug->dac1);
710 mtspr(SPRN_DAC2, debug->dac2);
711#if CONFIG_PPC_ADV_DEBUG_DVCS > 0
712 mtspr(SPRN_DVC1, debug->dvc1);
713 mtspr(SPRN_DVC2, debug->dvc2);
714#endif
715 mtspr(SPRN_DBCR0, debug->dbcr0);
716 mtspr(SPRN_DBCR1, debug->dbcr1);
717#ifdef CONFIG_BOOKE
718 mtspr(SPRN_DBCR2, debug->dbcr2);
719#endif
720}
721/*
722 * Unless neither the old or new thread are making use of the
723 * debug registers, set the debug registers from the values
724 * stored in the new thread.
725 */
726void switch_booke_debug_regs(struct debug_reg *new_debug)
727{
728 if ((current->thread.debug.dbcr0 & DBCR0_IDM)
729 || (new_debug->dbcr0 & DBCR0_IDM))
730 prime_debug_regs(new_debug);
731}
732EXPORT_SYMBOL_GPL(switch_booke_debug_regs);
733#else /* !CONFIG_PPC_ADV_DEBUG_REGS */
734#ifndef CONFIG_HAVE_HW_BREAKPOINT
735static void set_breakpoint(int i, struct arch_hw_breakpoint *brk)
736{
737 preempt_disable();
738 __set_breakpoint(i, brk);
739 preempt_enable();
740}
741
742static void set_debug_reg_defaults(struct thread_struct *thread)
743{
744 int i;
745 struct arch_hw_breakpoint null_brk = {0};
746
747 for (i = 0; i < nr_wp_slots(); i++) {
748 thread->hw_brk[i] = null_brk;
749 if (ppc_breakpoint_available())
750 set_breakpoint(i, &thread->hw_brk[i]);
751 }
752}
753
754static inline bool hw_brk_match(struct arch_hw_breakpoint *a,
755 struct arch_hw_breakpoint *b)
756{
757 if (a->address != b->address)
758 return false;
759 if (a->type != b->type)
760 return false;
761 if (a->len != b->len)
762 return false;
763 /* no need to check hw_len. it's calculated from address and len */
764 return true;
765}
766
767static void switch_hw_breakpoint(struct task_struct *new)
768{
769 int i;
770
771 for (i = 0; i < nr_wp_slots(); i++) {
772 if (likely(hw_brk_match(this_cpu_ptr(¤t_brk[i]),
773 &new->thread.hw_brk[i])))
774 continue;
775
776 __set_breakpoint(i, &new->thread.hw_brk[i]);
777 }
778}
779#endif /* !CONFIG_HAVE_HW_BREAKPOINT */
780#endif /* CONFIG_PPC_ADV_DEBUG_REGS */
781
782#ifdef CONFIG_PPC_ADV_DEBUG_REGS
783static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
784{
785 mtspr(SPRN_DAC1, dabr);
786#ifdef CONFIG_PPC_47x
787 isync();
788#endif
789 return 0;
790}
791#elif defined(CONFIG_PPC_BOOK3S)
792static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
793{
794 mtspr(SPRN_DABR, dabr);
795 if (cpu_has_feature(CPU_FTR_DABRX))
796 mtspr(SPRN_DABRX, dabrx);
797 return 0;
798}
799#else
800static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
801{
802 return -EINVAL;
803}
804#endif
805
806static inline int set_dabr(struct arch_hw_breakpoint *brk)
807{
808 unsigned long dabr, dabrx;
809
810 dabr = brk->address | (brk->type & HW_BRK_TYPE_DABR);
811 dabrx = ((brk->type >> 3) & 0x7);
812
813 if (ppc_md.set_dabr)
814 return ppc_md.set_dabr(dabr, dabrx);
815
816 return __set_dabr(dabr, dabrx);
817}
818
819static inline int set_breakpoint_8xx(struct arch_hw_breakpoint *brk)
820{
821 unsigned long lctrl1 = LCTRL1_CTE_GT | LCTRL1_CTF_LT | LCTRL1_CRWE_RW |
822 LCTRL1_CRWF_RW;
823 unsigned long lctrl2 = LCTRL2_LW0EN | LCTRL2_LW0LADC | LCTRL2_SLW0EN;
824 unsigned long start_addr = ALIGN_DOWN(brk->address, HW_BREAKPOINT_SIZE);
825 unsigned long end_addr = ALIGN(brk->address + brk->len, HW_BREAKPOINT_SIZE);
826
827 if (start_addr == 0)
828 lctrl2 |= LCTRL2_LW0LA_F;
829 else if (end_addr == 0)
830 lctrl2 |= LCTRL2_LW0LA_E;
831 else
832 lctrl2 |= LCTRL2_LW0LA_EandF;
833
834 mtspr(SPRN_LCTRL2, 0);
835
836 if ((brk->type & HW_BRK_TYPE_RDWR) == 0)
837 return 0;
838
839 if ((brk->type & HW_BRK_TYPE_RDWR) == HW_BRK_TYPE_READ)
840 lctrl1 |= LCTRL1_CRWE_RO | LCTRL1_CRWF_RO;
841 if ((brk->type & HW_BRK_TYPE_RDWR) == HW_BRK_TYPE_WRITE)
842 lctrl1 |= LCTRL1_CRWE_WO | LCTRL1_CRWF_WO;
843
844 mtspr(SPRN_CMPE, start_addr - 1);
845 mtspr(SPRN_CMPF, end_addr);
846 mtspr(SPRN_LCTRL1, lctrl1);
847 mtspr(SPRN_LCTRL2, lctrl2);
848
849 return 0;
850}
851
852void __set_breakpoint(int nr, struct arch_hw_breakpoint *brk)
853{
854 memcpy(this_cpu_ptr(¤t_brk[nr]), brk, sizeof(*brk));
855
856 if (dawr_enabled())
857 // Power8 or later
858 set_dawr(nr, brk);
859 else if (IS_ENABLED(CONFIG_PPC_8xx))
860 set_breakpoint_8xx(brk);
861 else if (!cpu_has_feature(CPU_FTR_ARCH_207S))
862 // Power7 or earlier
863 set_dabr(brk);
864 else
865 // Shouldn't happen due to higher level checks
866 WARN_ON_ONCE(1);
867}
868
869/* Check if we have DAWR or DABR hardware */
870bool ppc_breakpoint_available(void)
871{
872 if (dawr_enabled())
873 return true; /* POWER8 DAWR or POWER9 forced DAWR */
874 if (cpu_has_feature(CPU_FTR_ARCH_207S))
875 return false; /* POWER9 with DAWR disabled */
876 /* DABR: Everything but POWER8 and POWER9 */
877 return true;
878}
879EXPORT_SYMBOL_GPL(ppc_breakpoint_available);
880
881#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
882
883static inline bool tm_enabled(struct task_struct *tsk)
884{
885 return tsk && tsk->thread.regs && (tsk->thread.regs->msr & MSR_TM);
886}
887
888static void tm_reclaim_thread(struct thread_struct *thr, uint8_t cause)
889{
890 /*
891 * Use the current MSR TM suspended bit to track if we have
892 * checkpointed state outstanding.
893 * On signal delivery, we'd normally reclaim the checkpointed
894 * state to obtain stack pointer (see:get_tm_stackpointer()).
895 * This will then directly return to userspace without going
896 * through __switch_to(). However, if the stack frame is bad,
897 * we need to exit this thread which calls __switch_to() which
898 * will again attempt to reclaim the already saved tm state.
899 * Hence we need to check that we've not already reclaimed
900 * this state.
901 * We do this using the current MSR, rather tracking it in
902 * some specific thread_struct bit, as it has the additional
903 * benefit of checking for a potential TM bad thing exception.
904 */
905 if (!MSR_TM_SUSPENDED(mfmsr()))
906 return;
907
908 giveup_all(container_of(thr, struct task_struct, thread));
909
910 tm_reclaim(thr, cause);
911
912 /*
913 * If we are in a transaction and FP is off then we can't have
914 * used FP inside that transaction. Hence the checkpointed
915 * state is the same as the live state. We need to copy the
916 * live state to the checkpointed state so that when the
917 * transaction is restored, the checkpointed state is correct
918 * and the aborted transaction sees the correct state. We use
919 * ckpt_regs.msr here as that's what tm_reclaim will use to
920 * determine if it's going to write the checkpointed state or
921 * not. So either this will write the checkpointed registers,
922 * or reclaim will. Similarly for VMX.
923 */
924 if ((thr->ckpt_regs.msr & MSR_FP) == 0)
925 memcpy(&thr->ckfp_state, &thr->fp_state,
926 sizeof(struct thread_fp_state));
927 if ((thr->ckpt_regs.msr & MSR_VEC) == 0)
928 memcpy(&thr->ckvr_state, &thr->vr_state,
929 sizeof(struct thread_vr_state));
930}
931
932void tm_reclaim_current(uint8_t cause)
933{
934 tm_enable();
935 tm_reclaim_thread(¤t->thread, cause);
936}
937
938static inline void tm_reclaim_task(struct task_struct *tsk)
939{
940 /* We have to work out if we're switching from/to a task that's in the
941 * middle of a transaction.
942 *
943 * In switching we need to maintain a 2nd register state as
944 * oldtask->thread.ckpt_regs. We tm_reclaim(oldproc); this saves the
945 * checkpointed (tbegin) state in ckpt_regs, ckfp_state and
946 * ckvr_state
947 *
948 * We also context switch (save) TFHAR/TEXASR/TFIAR in here.
949 */
950 struct thread_struct *thr = &tsk->thread;
951
952 if (!thr->regs)
953 return;
954
955 if (!MSR_TM_ACTIVE(thr->regs->msr))
956 goto out_and_saveregs;
957
958 WARN_ON(tm_suspend_disabled);
959
960 TM_DEBUG("--- tm_reclaim on pid %d (NIP=%lx, "
961 "ccr=%lx, msr=%lx, trap=%lx)\n",
962 tsk->pid, thr->regs->nip,
963 thr->regs->ccr, thr->regs->msr,
964 thr->regs->trap);
965
966 tm_reclaim_thread(thr, TM_CAUSE_RESCHED);
967
968 TM_DEBUG("--- tm_reclaim on pid %d complete\n",
969 tsk->pid);
970
971out_and_saveregs:
972 /* Always save the regs here, even if a transaction's not active.
973 * This context-switches a thread's TM info SPRs. We do it here to
974 * be consistent with the restore path (in recheckpoint) which
975 * cannot happen later in _switch().
976 */
977 tm_save_sprs(thr);
978}
979
980extern void __tm_recheckpoint(struct thread_struct *thread);
981
982void tm_recheckpoint(struct thread_struct *thread)
983{
984 unsigned long flags;
985
986 if (!(thread->regs->msr & MSR_TM))
987 return;
988
989 /* We really can't be interrupted here as the TEXASR registers can't
990 * change and later in the trecheckpoint code, we have a userspace R1.
991 * So let's hard disable over this region.
992 */
993 local_irq_save(flags);
994 hard_irq_disable();
995
996 /* The TM SPRs are restored here, so that TEXASR.FS can be set
997 * before the trecheckpoint and no explosion occurs.
998 */
999 tm_restore_sprs(thread);
1000
1001 __tm_recheckpoint(thread);
1002
1003 local_irq_restore(flags);
1004}
1005
1006static inline void tm_recheckpoint_new_task(struct task_struct *new)
1007{
1008 if (!cpu_has_feature(CPU_FTR_TM))
1009 return;
1010
1011 /* Recheckpoint the registers of the thread we're about to switch to.
1012 *
1013 * If the task was using FP, we non-lazily reload both the original and
1014 * the speculative FP register states. This is because the kernel
1015 * doesn't see if/when a TM rollback occurs, so if we take an FP
1016 * unavailable later, we are unable to determine which set of FP regs
1017 * need to be restored.
1018 */
1019 if (!tm_enabled(new))
1020 return;
1021
1022 if (!MSR_TM_ACTIVE(new->thread.regs->msr)){
1023 tm_restore_sprs(&new->thread);
1024 return;
1025 }
1026 /* Recheckpoint to restore original checkpointed register state. */
1027 TM_DEBUG("*** tm_recheckpoint of pid %d (new->msr 0x%lx)\n",
1028 new->pid, new->thread.regs->msr);
1029
1030 tm_recheckpoint(&new->thread);
1031
1032 /*
1033 * The checkpointed state has been restored but the live state has
1034 * not, ensure all the math functionality is turned off to trigger
1035 * restore_math() to reload.
1036 */
1037 new->thread.regs->msr &= ~(MSR_FP | MSR_VEC | MSR_VSX);
1038
1039 TM_DEBUG("*** tm_recheckpoint of pid %d complete "
1040 "(kernel msr 0x%lx)\n",
1041 new->pid, mfmsr());
1042}
1043
1044static inline void __switch_to_tm(struct task_struct *prev,
1045 struct task_struct *new)
1046{
1047 if (cpu_has_feature(CPU_FTR_TM)) {
1048 if (tm_enabled(prev) || tm_enabled(new))
1049 tm_enable();
1050
1051 if (tm_enabled(prev)) {
1052 prev->thread.load_tm++;
1053 tm_reclaim_task(prev);
1054 if (!MSR_TM_ACTIVE(prev->thread.regs->msr) && prev->thread.load_tm == 0)
1055 prev->thread.regs->msr &= ~MSR_TM;
1056 }
1057
1058 tm_recheckpoint_new_task(new);
1059 }
1060}
1061
1062/*
1063 * This is called if we are on the way out to userspace and the
1064 * TIF_RESTORE_TM flag is set. It checks if we need to reload
1065 * FP and/or vector state and does so if necessary.
1066 * If userspace is inside a transaction (whether active or
1067 * suspended) and FP/VMX/VSX instructions have ever been enabled
1068 * inside that transaction, then we have to keep them enabled
1069 * and keep the FP/VMX/VSX state loaded while ever the transaction
1070 * continues. The reason is that if we didn't, and subsequently
1071 * got a FP/VMX/VSX unavailable interrupt inside a transaction,
1072 * we don't know whether it's the same transaction, and thus we
1073 * don't know which of the checkpointed state and the transactional
1074 * state to use.
1075 */
1076void restore_tm_state(struct pt_regs *regs)
1077{
1078 unsigned long msr_diff;
1079
1080 /*
1081 * This is the only moment we should clear TIF_RESTORE_TM as
1082 * it is here that ckpt_regs.msr and pt_regs.msr become the same
1083 * again, anything else could lead to an incorrect ckpt_msr being
1084 * saved and therefore incorrect signal contexts.
1085 */
1086 clear_thread_flag(TIF_RESTORE_TM);
1087 if (!MSR_TM_ACTIVE(regs->msr))
1088 return;
1089
1090 msr_diff = current->thread.ckpt_regs.msr & ~regs->msr;
1091 msr_diff &= MSR_FP | MSR_VEC | MSR_VSX;
1092
1093 /* Ensure that restore_math() will restore */
1094 if (msr_diff & MSR_FP)
1095 current->thread.load_fp = 1;
1096#ifdef CONFIG_ALTIVEC
1097 if (cpu_has_feature(CPU_FTR_ALTIVEC) && msr_diff & MSR_VEC)
1098 current->thread.load_vec = 1;
1099#endif
1100 restore_math(regs);
1101
1102 regs->msr |= msr_diff;
1103}
1104
1105#else
1106#define tm_recheckpoint_new_task(new)
1107#define __switch_to_tm(prev, new)
1108#endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1109
1110static inline void save_sprs(struct thread_struct *t)
1111{
1112#ifdef CONFIG_ALTIVEC
1113 if (cpu_has_feature(CPU_FTR_ALTIVEC))
1114 t->vrsave = mfspr(SPRN_VRSAVE);
1115#endif
1116#ifdef CONFIG_PPC_BOOK3S_64
1117 if (cpu_has_feature(CPU_FTR_DSCR))
1118 t->dscr = mfspr(SPRN_DSCR);
1119
1120 if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
1121 t->bescr = mfspr(SPRN_BESCR);
1122 t->ebbhr = mfspr(SPRN_EBBHR);
1123 t->ebbrr = mfspr(SPRN_EBBRR);
1124
1125 t->fscr = mfspr(SPRN_FSCR);
1126
1127 /*
1128 * Note that the TAR is not available for use in the kernel.
1129 * (To provide this, the TAR should be backed up/restored on
1130 * exception entry/exit instead, and be in pt_regs. FIXME,
1131 * this should be in pt_regs anyway (for debug).)
1132 */
1133 t->tar = mfspr(SPRN_TAR);
1134 }
1135#endif
1136
1137 thread_pkey_regs_save(t);
1138}
1139
1140static inline void restore_sprs(struct thread_struct *old_thread,
1141 struct thread_struct *new_thread)
1142{
1143#ifdef CONFIG_ALTIVEC
1144 if (cpu_has_feature(CPU_FTR_ALTIVEC) &&
1145 old_thread->vrsave != new_thread->vrsave)
1146 mtspr(SPRN_VRSAVE, new_thread->vrsave);
1147#endif
1148#ifdef CONFIG_PPC_BOOK3S_64
1149 if (cpu_has_feature(CPU_FTR_DSCR)) {
1150 u64 dscr = get_paca()->dscr_default;
1151 if (new_thread->dscr_inherit)
1152 dscr = new_thread->dscr;
1153
1154 if (old_thread->dscr != dscr)
1155 mtspr(SPRN_DSCR, dscr);
1156 }
1157
1158 if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
1159 if (old_thread->bescr != new_thread->bescr)
1160 mtspr(SPRN_BESCR, new_thread->bescr);
1161 if (old_thread->ebbhr != new_thread->ebbhr)
1162 mtspr(SPRN_EBBHR, new_thread->ebbhr);
1163 if (old_thread->ebbrr != new_thread->ebbrr)
1164 mtspr(SPRN_EBBRR, new_thread->ebbrr);
1165
1166 if (old_thread->fscr != new_thread->fscr)
1167 mtspr(SPRN_FSCR, new_thread->fscr);
1168
1169 if (old_thread->tar != new_thread->tar)
1170 mtspr(SPRN_TAR, new_thread->tar);
1171 }
1172
1173 if (cpu_has_feature(CPU_FTR_P9_TIDR) &&
1174 old_thread->tidr != new_thread->tidr)
1175 mtspr(SPRN_TIDR, new_thread->tidr);
1176#endif
1177
1178 thread_pkey_regs_restore(new_thread, old_thread);
1179}
1180
1181struct task_struct *__switch_to(struct task_struct *prev,
1182 struct task_struct *new)
1183{
1184 struct thread_struct *new_thread, *old_thread;
1185 struct task_struct *last;
1186#ifdef CONFIG_PPC_BOOK3S_64
1187 struct ppc64_tlb_batch *batch;
1188#endif
1189
1190 new_thread = &new->thread;
1191 old_thread = ¤t->thread;
1192
1193 WARN_ON(!irqs_disabled());
1194
1195#ifdef CONFIG_PPC_BOOK3S_64
1196 batch = this_cpu_ptr(&ppc64_tlb_batch);
1197 if (batch->active) {
1198 current_thread_info()->local_flags |= _TLF_LAZY_MMU;
1199 if (batch->index)
1200 __flush_tlb_pending(batch);
1201 batch->active = 0;
1202 }
1203#endif /* CONFIG_PPC_BOOK3S_64 */
1204
1205#ifdef CONFIG_PPC_ADV_DEBUG_REGS
1206 switch_booke_debug_regs(&new->thread.debug);
1207#else
1208/*
1209 * For PPC_BOOK3S_64, we use the hw-breakpoint interfaces that would
1210 * schedule DABR
1211 */
1212#ifndef CONFIG_HAVE_HW_BREAKPOINT
1213 switch_hw_breakpoint(new);
1214#endif /* CONFIG_HAVE_HW_BREAKPOINT */
1215#endif
1216
1217 /*
1218 * We need to save SPRs before treclaim/trecheckpoint as these will
1219 * change a number of them.
1220 */
1221 save_sprs(&prev->thread);
1222
1223 /* Save FPU, Altivec, VSX and SPE state */
1224 giveup_all(prev);
1225
1226 __switch_to_tm(prev, new);
1227
1228 if (!radix_enabled()) {
1229 /*
1230 * We can't take a PMU exception inside _switch() since there
1231 * is a window where the kernel stack SLB and the kernel stack
1232 * are out of sync. Hard disable here.
1233 */
1234 hard_irq_disable();
1235 }
1236
1237 /*
1238 * Call restore_sprs() before calling _switch(). If we move it after
1239 * _switch() then we miss out on calling it for new tasks. The reason
1240 * for this is we manually create a stack frame for new tasks that
1241 * directly returns through ret_from_fork() or
1242 * ret_from_kernel_thread(). See copy_thread() for details.
1243 */
1244 restore_sprs(old_thread, new_thread);
1245
1246 last = _switch(old_thread, new_thread);
1247
1248#ifdef CONFIG_PPC_BOOK3S_64
1249 if (current_thread_info()->local_flags & _TLF_LAZY_MMU) {
1250 current_thread_info()->local_flags &= ~_TLF_LAZY_MMU;
1251 batch = this_cpu_ptr(&ppc64_tlb_batch);
1252 batch->active = 1;
1253 }
1254
1255 if (current->thread.regs) {
1256 restore_math(current->thread.regs);
1257
1258 /*
1259 * The copy-paste buffer can only store into foreign real
1260 * addresses, so unprivileged processes can not see the
1261 * data or use it in any way unless they have foreign real
1262 * mappings. If the new process has the foreign real address
1263 * mappings, we must issue a cp_abort to clear any state and
1264 * prevent snooping, corruption or a covert channel.
1265 */
1266 if (current->mm &&
1267 atomic_read(¤t->mm->context.vas_windows))
1268 asm volatile(PPC_CP_ABORT);
1269 }
1270#endif /* CONFIG_PPC_BOOK3S_64 */
1271
1272 return last;
1273}
1274
1275#define NR_INSN_TO_PRINT 16
1276
1277static void show_instructions(struct pt_regs *regs)
1278{
1279 int i;
1280 unsigned long nip = regs->nip;
1281 unsigned long pc = regs->nip - (NR_INSN_TO_PRINT * 3 / 4 * sizeof(int));
1282
1283 printk("Instruction dump:");
1284
1285 /*
1286 * If we were executing with the MMU off for instructions, adjust pc
1287 * rather than printing XXXXXXXX.
1288 */
1289 if (!IS_ENABLED(CONFIG_BOOKE) && !(regs->msr & MSR_IR)) {
1290 pc = (unsigned long)phys_to_virt(pc);
1291 nip = (unsigned long)phys_to_virt(regs->nip);
1292 }
1293
1294 for (i = 0; i < NR_INSN_TO_PRINT; i++) {
1295 int instr;
1296
1297 if (!(i % 8))
1298 pr_cont("\n");
1299
1300 if (!__kernel_text_address(pc) ||
1301 get_kernel_nofault(instr, (const void *)pc)) {
1302 pr_cont("XXXXXXXX ");
1303 } else {
1304 if (nip == pc)
1305 pr_cont("<%08x> ", instr);
1306 else
1307 pr_cont("%08x ", instr);
1308 }
1309
1310 pc += sizeof(int);
1311 }
1312
1313 pr_cont("\n");
1314}
1315
1316void show_user_instructions(struct pt_regs *regs)
1317{
1318 unsigned long pc;
1319 int n = NR_INSN_TO_PRINT;
1320 struct seq_buf s;
1321 char buf[96]; /* enough for 8 times 9 + 2 chars */
1322
1323 pc = regs->nip - (NR_INSN_TO_PRINT * 3 / 4 * sizeof(int));
1324
1325 seq_buf_init(&s, buf, sizeof(buf));
1326
1327 while (n) {
1328 int i;
1329
1330 seq_buf_clear(&s);
1331
1332 for (i = 0; i < 8 && n; i++, n--, pc += sizeof(int)) {
1333 int instr;
1334
1335 if (copy_from_user_nofault(&instr, (void __user *)pc,
1336 sizeof(instr))) {
1337 seq_buf_printf(&s, "XXXXXXXX ");
1338 continue;
1339 }
1340 seq_buf_printf(&s, regs->nip == pc ? "<%08x> " : "%08x ", instr);
1341 }
1342
1343 if (!seq_buf_has_overflowed(&s))
1344 pr_info("%s[%d]: code: %s\n", current->comm,
1345 current->pid, s.buffer);
1346 }
1347}
1348
1349struct regbit {
1350 unsigned long bit;
1351 const char *name;
1352};
1353
1354static struct regbit msr_bits[] = {
1355#if defined(CONFIG_PPC64) && !defined(CONFIG_BOOKE)
1356 {MSR_SF, "SF"},
1357 {MSR_HV, "HV"},
1358#endif
1359 {MSR_VEC, "VEC"},
1360 {MSR_VSX, "VSX"},
1361#ifdef CONFIG_BOOKE
1362 {MSR_CE, "CE"},
1363#endif
1364 {MSR_EE, "EE"},
1365 {MSR_PR, "PR"},
1366 {MSR_FP, "FP"},
1367 {MSR_ME, "ME"},
1368#ifdef CONFIG_BOOKE
1369 {MSR_DE, "DE"},
1370#else
1371 {MSR_SE, "SE"},
1372 {MSR_BE, "BE"},
1373#endif
1374 {MSR_IR, "IR"},
1375 {MSR_DR, "DR"},
1376 {MSR_PMM, "PMM"},
1377#ifndef CONFIG_BOOKE
1378 {MSR_RI, "RI"},
1379 {MSR_LE, "LE"},
1380#endif
1381 {0, NULL}
1382};
1383
1384static void print_bits(unsigned long val, struct regbit *bits, const char *sep)
1385{
1386 const char *s = "";
1387
1388 for (; bits->bit; ++bits)
1389 if (val & bits->bit) {
1390 pr_cont("%s%s", s, bits->name);
1391 s = sep;
1392 }
1393}
1394
1395#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1396static struct regbit msr_tm_bits[] = {
1397 {MSR_TS_T, "T"},
1398 {MSR_TS_S, "S"},
1399 {MSR_TM, "E"},
1400 {0, NULL}
1401};
1402
1403static void print_tm_bits(unsigned long val)
1404{
1405/*
1406 * This only prints something if at least one of the TM bit is set.
1407 * Inside the TM[], the output means:
1408 * E: Enabled (bit 32)
1409 * S: Suspended (bit 33)
1410 * T: Transactional (bit 34)
1411 */
1412 if (val & (MSR_TM | MSR_TS_S | MSR_TS_T)) {
1413 pr_cont(",TM[");
1414 print_bits(val, msr_tm_bits, "");
1415 pr_cont("]");
1416 }
1417}
1418#else
1419static void print_tm_bits(unsigned long val) {}
1420#endif
1421
1422static void print_msr_bits(unsigned long val)
1423{
1424 pr_cont("<");
1425 print_bits(val, msr_bits, ",");
1426 print_tm_bits(val);
1427 pr_cont(">");
1428}
1429
1430#ifdef CONFIG_PPC64
1431#define REG "%016lx"
1432#define REGS_PER_LINE 4
1433#define LAST_VOLATILE 13
1434#else
1435#define REG "%08lx"
1436#define REGS_PER_LINE 8
1437#define LAST_VOLATILE 12
1438#endif
1439
1440void show_regs(struct pt_regs * regs)
1441{
1442 int i, trap;
1443
1444 show_regs_print_info(KERN_DEFAULT);
1445
1446 printk("NIP: "REG" LR: "REG" CTR: "REG"\n",
1447 regs->nip, regs->link, regs->ctr);
1448 printk("REGS: %px TRAP: %04lx %s (%s)\n",
1449 regs, regs->trap, print_tainted(), init_utsname()->release);
1450 printk("MSR: "REG" ", regs->msr);
1451 print_msr_bits(regs->msr);
1452 pr_cont(" CR: %08lx XER: %08lx\n", regs->ccr, regs->xer);
1453 trap = TRAP(regs);
1454 if (!trap_is_syscall(regs) && cpu_has_feature(CPU_FTR_CFAR))
1455 pr_cont("CFAR: "REG" ", regs->orig_gpr3);
1456 if (trap == 0x200 || trap == 0x300 || trap == 0x600)
1457#if defined(CONFIG_4xx) || defined(CONFIG_BOOKE)
1458 pr_cont("DEAR: "REG" ESR: "REG" ", regs->dar, regs->dsisr);
1459#else
1460 pr_cont("DAR: "REG" DSISR: %08lx ", regs->dar, regs->dsisr);
1461#endif
1462#ifdef CONFIG_PPC64
1463 pr_cont("IRQMASK: %lx ", regs->softe);
1464#endif
1465#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1466 if (MSR_TM_ACTIVE(regs->msr))
1467 pr_cont("\nPACATMSCRATCH: %016llx ", get_paca()->tm_scratch);
1468#endif
1469
1470 for (i = 0; i < 32; i++) {
1471 if ((i % REGS_PER_LINE) == 0)
1472 pr_cont("\nGPR%02d: ", i);
1473 pr_cont(REG " ", regs->gpr[i]);
1474 if (i == LAST_VOLATILE && !FULL_REGS(regs))
1475 break;
1476 }
1477 pr_cont("\n");
1478#ifdef CONFIG_KALLSYMS
1479 /*
1480 * Lookup NIP late so we have the best change of getting the
1481 * above info out without failing
1482 */
1483 printk("NIP ["REG"] %pS\n", regs->nip, (void *)regs->nip);
1484 printk("LR ["REG"] %pS\n", regs->link, (void *)regs->link);
1485#endif
1486 show_stack(current, (unsigned long *) regs->gpr[1], KERN_DEFAULT);
1487 if (!user_mode(regs))
1488 show_instructions(regs);
1489}
1490
1491void flush_thread(void)
1492{
1493#ifdef CONFIG_HAVE_HW_BREAKPOINT
1494 flush_ptrace_hw_breakpoint(current);
1495#else /* CONFIG_HAVE_HW_BREAKPOINT */
1496 set_debug_reg_defaults(¤t->thread);
1497#endif /* CONFIG_HAVE_HW_BREAKPOINT */
1498}
1499
1500#ifdef CONFIG_PPC_BOOK3S_64
1501void arch_setup_new_exec(void)
1502{
1503 if (radix_enabled())
1504 return;
1505 hash__setup_new_exec();
1506}
1507#endif
1508
1509#ifdef CONFIG_PPC64
1510/**
1511 * Assign a TIDR (thread ID) for task @t and set it in the thread
1512 * structure. For now, we only support setting TIDR for 'current' task.
1513 *
1514 * Since the TID value is a truncated form of it PID, it is possible
1515 * (but unlikely) for 2 threads to have the same TID. In the unlikely event
1516 * that 2 threads share the same TID and are waiting, one of the following
1517 * cases will happen:
1518 *
1519 * 1. The correct thread is running, the wrong thread is not
1520 * In this situation, the correct thread is woken and proceeds to pass it's
1521 * condition check.
1522 *
1523 * 2. Neither threads are running
1524 * In this situation, neither thread will be woken. When scheduled, the waiting
1525 * threads will execute either a wait, which will return immediately, followed
1526 * by a condition check, which will pass for the correct thread and fail
1527 * for the wrong thread, or they will execute the condition check immediately.
1528 *
1529 * 3. The wrong thread is running, the correct thread is not
1530 * The wrong thread will be woken, but will fail it's condition check and
1531 * re-execute wait. The correct thread, when scheduled, will execute either
1532 * it's condition check (which will pass), or wait, which returns immediately
1533 * when called the first time after the thread is scheduled, followed by it's
1534 * condition check (which will pass).
1535 *
1536 * 4. Both threads are running
1537 * Both threads will be woken. The wrong thread will fail it's condition check
1538 * and execute another wait, while the correct thread will pass it's condition
1539 * check.
1540 *
1541 * @t: the task to set the thread ID for
1542 */
1543int set_thread_tidr(struct task_struct *t)
1544{
1545 if (!cpu_has_feature(CPU_FTR_P9_TIDR))
1546 return -EINVAL;
1547
1548 if (t != current)
1549 return -EINVAL;
1550
1551 if (t->thread.tidr)
1552 return 0;
1553
1554 t->thread.tidr = (u16)task_pid_nr(t);
1555 mtspr(SPRN_TIDR, t->thread.tidr);
1556
1557 return 0;
1558}
1559EXPORT_SYMBOL_GPL(set_thread_tidr);
1560
1561#endif /* CONFIG_PPC64 */
1562
1563void
1564release_thread(struct task_struct *t)
1565{
1566}
1567
1568/*
1569 * this gets called so that we can store coprocessor state into memory and
1570 * copy the current task into the new thread.
1571 */
1572int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
1573{
1574 flush_all_to_thread(src);
1575 /*
1576 * Flush TM state out so we can copy it. __switch_to_tm() does this
1577 * flush but it removes the checkpointed state from the current CPU and
1578 * transitions the CPU out of TM mode. Hence we need to call
1579 * tm_recheckpoint_new_task() (on the same task) to restore the
1580 * checkpointed state back and the TM mode.
1581 *
1582 * Can't pass dst because it isn't ready. Doesn't matter, passing
1583 * dst is only important for __switch_to()
1584 */
1585 __switch_to_tm(src, src);
1586
1587 *dst = *src;
1588
1589 clear_task_ebb(dst);
1590
1591 return 0;
1592}
1593
1594static void setup_ksp_vsid(struct task_struct *p, unsigned long sp)
1595{
1596#ifdef CONFIG_PPC_BOOK3S_64
1597 unsigned long sp_vsid;
1598 unsigned long llp = mmu_psize_defs[mmu_linear_psize].sllp;
1599
1600 if (radix_enabled())
1601 return;
1602
1603 if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
1604 sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_1T)
1605 << SLB_VSID_SHIFT_1T;
1606 else
1607 sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_256M)
1608 << SLB_VSID_SHIFT;
1609 sp_vsid |= SLB_VSID_KERNEL | llp;
1610 p->thread.ksp_vsid = sp_vsid;
1611#endif
1612}
1613
1614/*
1615 * Copy a thread..
1616 */
1617
1618/*
1619 * Copy architecture-specific thread state
1620 */
1621int copy_thread(unsigned long clone_flags, unsigned long usp,
1622 unsigned long kthread_arg, struct task_struct *p,
1623 unsigned long tls)
1624{
1625 struct pt_regs *childregs, *kregs;
1626 extern void ret_from_fork(void);
1627 extern void ret_from_fork_scv(void);
1628 extern void ret_from_kernel_thread(void);
1629 void (*f)(void);
1630 unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE;
1631 struct thread_info *ti = task_thread_info(p);
1632#ifdef CONFIG_HAVE_HW_BREAKPOINT
1633 int i;
1634#endif
1635
1636 klp_init_thread_info(p);
1637
1638 /* Copy registers */
1639 sp -= sizeof(struct pt_regs);
1640 childregs = (struct pt_regs *) sp;
1641 if (unlikely(p->flags & PF_KTHREAD)) {
1642 /* kernel thread */
1643 memset(childregs, 0, sizeof(struct pt_regs));
1644 childregs->gpr[1] = sp + sizeof(struct pt_regs);
1645 /* function */
1646 if (usp)
1647 childregs->gpr[14] = ppc_function_entry((void *)usp);
1648#ifdef CONFIG_PPC64
1649 clear_tsk_thread_flag(p, TIF_32BIT);
1650 childregs->softe = IRQS_ENABLED;
1651#endif
1652 childregs->gpr[15] = kthread_arg;
1653 p->thread.regs = NULL; /* no user register state */
1654 ti->flags |= _TIF_RESTOREALL;
1655 f = ret_from_kernel_thread;
1656 } else {
1657 /* user thread */
1658 struct pt_regs *regs = current_pt_regs();
1659 CHECK_FULL_REGS(regs);
1660 *childregs = *regs;
1661 if (usp)
1662 childregs->gpr[1] = usp;
1663 p->thread.regs = childregs;
1664 /* 64s sets this in ret_from_fork */
1665 if (!IS_ENABLED(CONFIG_PPC_BOOK3S_64))
1666 childregs->gpr[3] = 0; /* Result from fork() */
1667 if (clone_flags & CLONE_SETTLS) {
1668 if (!is_32bit_task())
1669 childregs->gpr[13] = tls;
1670 else
1671 childregs->gpr[2] = tls;
1672 }
1673
1674 if (trap_is_scv(regs))
1675 f = ret_from_fork_scv;
1676 else
1677 f = ret_from_fork;
1678 }
1679 childregs->msr &= ~(MSR_FP|MSR_VEC|MSR_VSX);
1680 sp -= STACK_FRAME_OVERHEAD;
1681
1682 /*
1683 * The way this works is that at some point in the future
1684 * some task will call _switch to switch to the new task.
1685 * That will pop off the stack frame created below and start
1686 * the new task running at ret_from_fork. The new task will
1687 * do some house keeping and then return from the fork or clone
1688 * system call, using the stack frame created above.
1689 */
1690 ((unsigned long *)sp)[0] = 0;
1691 sp -= sizeof(struct pt_regs);
1692 kregs = (struct pt_regs *) sp;
1693 sp -= STACK_FRAME_OVERHEAD;
1694 p->thread.ksp = sp;
1695#ifdef CONFIG_PPC32
1696 p->thread.ksp_limit = (unsigned long)end_of_stack(p);
1697#endif
1698#ifdef CONFIG_HAVE_HW_BREAKPOINT
1699 for (i = 0; i < nr_wp_slots(); i++)
1700 p->thread.ptrace_bps[i] = NULL;
1701#endif
1702
1703 p->thread.fp_save_area = NULL;
1704#ifdef CONFIG_ALTIVEC
1705 p->thread.vr_save_area = NULL;
1706#endif
1707
1708 setup_ksp_vsid(p, sp);
1709
1710#ifdef CONFIG_PPC64
1711 if (cpu_has_feature(CPU_FTR_DSCR)) {
1712 p->thread.dscr_inherit = current->thread.dscr_inherit;
1713 p->thread.dscr = mfspr(SPRN_DSCR);
1714 }
1715 if (cpu_has_feature(CPU_FTR_HAS_PPR))
1716 childregs->ppr = DEFAULT_PPR;
1717
1718 p->thread.tidr = 0;
1719#endif
1720 kregs->nip = ppc_function_entry(f);
1721 return 0;
1722}
1723
1724void preload_new_slb_context(unsigned long start, unsigned long sp);
1725
1726/*
1727 * Set up a thread for executing a new program
1728 */
1729void start_thread(struct pt_regs *regs, unsigned long start, unsigned long sp)
1730{
1731#ifdef CONFIG_PPC64
1732 unsigned long load_addr = regs->gpr[2]; /* saved by ELF_PLAT_INIT */
1733
1734#ifdef CONFIG_PPC_BOOK3S_64
1735 if (!radix_enabled())
1736 preload_new_slb_context(start, sp);
1737#endif
1738#endif
1739
1740 /*
1741 * If we exec out of a kernel thread then thread.regs will not be
1742 * set. Do it now.
1743 */
1744 if (!current->thread.regs) {
1745 struct pt_regs *regs = task_stack_page(current) + THREAD_SIZE;
1746 current->thread.regs = regs - 1;
1747 }
1748
1749#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1750 /*
1751 * Clear any transactional state, we're exec()ing. The cause is
1752 * not important as there will never be a recheckpoint so it's not
1753 * user visible.
1754 */
1755 if (MSR_TM_SUSPENDED(mfmsr()))
1756 tm_reclaim_current(0);
1757#endif
1758
1759 memset(regs->gpr, 0, sizeof(regs->gpr));
1760 regs->ctr = 0;
1761 regs->link = 0;
1762 regs->xer = 0;
1763 regs->ccr = 0;
1764 regs->gpr[1] = sp;
1765
1766 /*
1767 * We have just cleared all the nonvolatile GPRs, so make
1768 * FULL_REGS(regs) return true. This is necessary to allow
1769 * ptrace to examine the thread immediately after exec.
1770 */
1771 SET_FULL_REGS(regs);
1772
1773#ifdef CONFIG_PPC32
1774 regs->mq = 0;
1775 regs->nip = start;
1776 regs->msr = MSR_USER;
1777#else
1778 if (!is_32bit_task()) {
1779 unsigned long entry;
1780
1781 if (is_elf2_task()) {
1782 /* Look ma, no function descriptors! */
1783 entry = start;
1784
1785 /*
1786 * Ulrich says:
1787 * The latest iteration of the ABI requires that when
1788 * calling a function (at its global entry point),
1789 * the caller must ensure r12 holds the entry point
1790 * address (so that the function can quickly
1791 * establish addressability).
1792 */
1793 regs->gpr[12] = start;
1794 /* Make sure that's restored on entry to userspace. */
1795 set_thread_flag(TIF_RESTOREALL);
1796 } else {
1797 unsigned long toc;
1798
1799 /* start is a relocated pointer to the function
1800 * descriptor for the elf _start routine. The first
1801 * entry in the function descriptor is the entry
1802 * address of _start and the second entry is the TOC
1803 * value we need to use.
1804 */
1805 __get_user(entry, (unsigned long __user *)start);
1806 __get_user(toc, (unsigned long __user *)start+1);
1807
1808 /* Check whether the e_entry function descriptor entries
1809 * need to be relocated before we can use them.
1810 */
1811 if (load_addr != 0) {
1812 entry += load_addr;
1813 toc += load_addr;
1814 }
1815 regs->gpr[2] = toc;
1816 }
1817 regs->nip = entry;
1818 regs->msr = MSR_USER64;
1819 } else {
1820 regs->nip = start;
1821 regs->gpr[2] = 0;
1822 regs->msr = MSR_USER32;
1823 }
1824#endif
1825#ifdef CONFIG_VSX
1826 current->thread.used_vsr = 0;
1827#endif
1828 current->thread.load_slb = 0;
1829 current->thread.load_fp = 0;
1830 memset(¤t->thread.fp_state, 0, sizeof(current->thread.fp_state));
1831 current->thread.fp_save_area = NULL;
1832#ifdef CONFIG_ALTIVEC
1833 memset(¤t->thread.vr_state, 0, sizeof(current->thread.vr_state));
1834 current->thread.vr_state.vscr.u[3] = 0x00010000; /* Java mode disabled */
1835 current->thread.vr_save_area = NULL;
1836 current->thread.vrsave = 0;
1837 current->thread.used_vr = 0;
1838 current->thread.load_vec = 0;
1839#endif /* CONFIG_ALTIVEC */
1840#ifdef CONFIG_SPE
1841 memset(current->thread.evr, 0, sizeof(current->thread.evr));
1842 current->thread.acc = 0;
1843 current->thread.spefscr = 0;
1844 current->thread.used_spe = 0;
1845#endif /* CONFIG_SPE */
1846#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1847 current->thread.tm_tfhar = 0;
1848 current->thread.tm_texasr = 0;
1849 current->thread.tm_tfiar = 0;
1850 current->thread.load_tm = 0;
1851#endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1852
1853 thread_pkey_regs_init(¤t->thread);
1854}
1855EXPORT_SYMBOL(start_thread);
1856
1857#define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \
1858 | PR_FP_EXC_RES | PR_FP_EXC_INV)
1859
1860int set_fpexc_mode(struct task_struct *tsk, unsigned int val)
1861{
1862 struct pt_regs *regs = tsk->thread.regs;
1863
1864 /* This is a bit hairy. If we are an SPE enabled processor
1865 * (have embedded fp) we store the IEEE exception enable flags in
1866 * fpexc_mode. fpexc_mode is also used for setting FP exception
1867 * mode (asyn, precise, disabled) for 'Classic' FP. */
1868 if (val & PR_FP_EXC_SW_ENABLE) {
1869#ifdef CONFIG_SPE
1870 if (cpu_has_feature(CPU_FTR_SPE)) {
1871 /*
1872 * When the sticky exception bits are set
1873 * directly by userspace, it must call prctl
1874 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
1875 * in the existing prctl settings) or
1876 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
1877 * the bits being set). <fenv.h> functions
1878 * saving and restoring the whole
1879 * floating-point environment need to do so
1880 * anyway to restore the prctl settings from
1881 * the saved environment.
1882 */
1883 tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
1884 tsk->thread.fpexc_mode = val &
1885 (PR_FP_EXC_SW_ENABLE | PR_FP_ALL_EXCEPT);
1886 return 0;
1887 } else {
1888 return -EINVAL;
1889 }
1890#else
1891 return -EINVAL;
1892#endif
1893 }
1894
1895 /* on a CONFIG_SPE this does not hurt us. The bits that
1896 * __pack_fe01 use do not overlap with bits used for
1897 * PR_FP_EXC_SW_ENABLE. Additionally, the MSR[FE0,FE1] bits
1898 * on CONFIG_SPE implementations are reserved so writing to
1899 * them does not change anything */
1900 if (val > PR_FP_EXC_PRECISE)
1901 return -EINVAL;
1902 tsk->thread.fpexc_mode = __pack_fe01(val);
1903 if (regs != NULL && (regs->msr & MSR_FP) != 0)
1904 regs->msr = (regs->msr & ~(MSR_FE0|MSR_FE1))
1905 | tsk->thread.fpexc_mode;
1906 return 0;
1907}
1908
1909int get_fpexc_mode(struct task_struct *tsk, unsigned long adr)
1910{
1911 unsigned int val;
1912
1913 if (tsk->thread.fpexc_mode & PR_FP_EXC_SW_ENABLE)
1914#ifdef CONFIG_SPE
1915 if (cpu_has_feature(CPU_FTR_SPE)) {
1916 /*
1917 * When the sticky exception bits are set
1918 * directly by userspace, it must call prctl
1919 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
1920 * in the existing prctl settings) or
1921 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
1922 * the bits being set). <fenv.h> functions
1923 * saving and restoring the whole
1924 * floating-point environment need to do so
1925 * anyway to restore the prctl settings from
1926 * the saved environment.
1927 */
1928 tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
1929 val = tsk->thread.fpexc_mode;
1930 } else
1931 return -EINVAL;
1932#else
1933 return -EINVAL;
1934#endif
1935 else
1936 val = __unpack_fe01(tsk->thread.fpexc_mode);
1937 return put_user(val, (unsigned int __user *) adr);
1938}
1939
1940int set_endian(struct task_struct *tsk, unsigned int val)
1941{
1942 struct pt_regs *regs = tsk->thread.regs;
1943
1944 if ((val == PR_ENDIAN_LITTLE && !cpu_has_feature(CPU_FTR_REAL_LE)) ||
1945 (val == PR_ENDIAN_PPC_LITTLE && !cpu_has_feature(CPU_FTR_PPC_LE)))
1946 return -EINVAL;
1947
1948 if (regs == NULL)
1949 return -EINVAL;
1950
1951 if (val == PR_ENDIAN_BIG)
1952 regs->msr &= ~MSR_LE;
1953 else if (val == PR_ENDIAN_LITTLE || val == PR_ENDIAN_PPC_LITTLE)
1954 regs->msr |= MSR_LE;
1955 else
1956 return -EINVAL;
1957
1958 return 0;
1959}
1960
1961int get_endian(struct task_struct *tsk, unsigned long adr)
1962{
1963 struct pt_regs *regs = tsk->thread.regs;
1964 unsigned int val;
1965
1966 if (!cpu_has_feature(CPU_FTR_PPC_LE) &&
1967 !cpu_has_feature(CPU_FTR_REAL_LE))
1968 return -EINVAL;
1969
1970 if (regs == NULL)
1971 return -EINVAL;
1972
1973 if (regs->msr & MSR_LE) {
1974 if (cpu_has_feature(CPU_FTR_REAL_LE))
1975 val = PR_ENDIAN_LITTLE;
1976 else
1977 val = PR_ENDIAN_PPC_LITTLE;
1978 } else
1979 val = PR_ENDIAN_BIG;
1980
1981 return put_user(val, (unsigned int __user *)adr);
1982}
1983
1984int set_unalign_ctl(struct task_struct *tsk, unsigned int val)
1985{
1986 tsk->thread.align_ctl = val;
1987 return 0;
1988}
1989
1990int get_unalign_ctl(struct task_struct *tsk, unsigned long adr)
1991{
1992 return put_user(tsk->thread.align_ctl, (unsigned int __user *)adr);
1993}
1994
1995static inline int valid_irq_stack(unsigned long sp, struct task_struct *p,
1996 unsigned long nbytes)
1997{
1998 unsigned long stack_page;
1999 unsigned long cpu = task_cpu(p);
2000
2001 stack_page = (unsigned long)hardirq_ctx[cpu];
2002 if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes)
2003 return 1;
2004
2005 stack_page = (unsigned long)softirq_ctx[cpu];
2006 if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes)
2007 return 1;
2008
2009 return 0;
2010}
2011
2012static inline int valid_emergency_stack(unsigned long sp, struct task_struct *p,
2013 unsigned long nbytes)
2014{
2015#ifdef CONFIG_PPC64
2016 unsigned long stack_page;
2017 unsigned long cpu = task_cpu(p);
2018
2019 stack_page = (unsigned long)paca_ptrs[cpu]->emergency_sp - THREAD_SIZE;
2020 if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes)
2021 return 1;
2022
2023# ifdef CONFIG_PPC_BOOK3S_64
2024 stack_page = (unsigned long)paca_ptrs[cpu]->nmi_emergency_sp - THREAD_SIZE;
2025 if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes)
2026 return 1;
2027
2028 stack_page = (unsigned long)paca_ptrs[cpu]->mc_emergency_sp - THREAD_SIZE;
2029 if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes)
2030 return 1;
2031# endif
2032#endif
2033
2034 return 0;
2035}
2036
2037
2038int validate_sp(unsigned long sp, struct task_struct *p,
2039 unsigned long nbytes)
2040{
2041 unsigned long stack_page = (unsigned long)task_stack_page(p);
2042
2043 if (sp < THREAD_SIZE)
2044 return 0;
2045
2046 if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes)
2047 return 1;
2048
2049 if (valid_irq_stack(sp, p, nbytes))
2050 return 1;
2051
2052 return valid_emergency_stack(sp, p, nbytes);
2053}
2054
2055EXPORT_SYMBOL(validate_sp);
2056
2057static unsigned long __get_wchan(struct task_struct *p)
2058{
2059 unsigned long ip, sp;
2060 int count = 0;
2061
2062 if (!p || p == current || p->state == TASK_RUNNING)
2063 return 0;
2064
2065 sp = p->thread.ksp;
2066 if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
2067 return 0;
2068
2069 do {
2070 sp = *(unsigned long *)sp;
2071 if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD) ||
2072 p->state == TASK_RUNNING)
2073 return 0;
2074 if (count > 0) {
2075 ip = ((unsigned long *)sp)[STACK_FRAME_LR_SAVE];
2076 if (!in_sched_functions(ip))
2077 return ip;
2078 }
2079 } while (count++ < 16);
2080 return 0;
2081}
2082
2083unsigned long get_wchan(struct task_struct *p)
2084{
2085 unsigned long ret;
2086
2087 if (!try_get_task_stack(p))
2088 return 0;
2089
2090 ret = __get_wchan(p);
2091
2092 put_task_stack(p);
2093
2094 return ret;
2095}
2096
2097static int kstack_depth_to_print = CONFIG_PRINT_STACK_DEPTH;
2098
2099void show_stack(struct task_struct *tsk, unsigned long *stack,
2100 const char *loglvl)
2101{
2102 unsigned long sp, ip, lr, newsp;
2103 int count = 0;
2104 int firstframe = 1;
2105#ifdef CONFIG_FUNCTION_GRAPH_TRACER
2106 unsigned long ret_addr;
2107 int ftrace_idx = 0;
2108#endif
2109
2110 if (tsk == NULL)
2111 tsk = current;
2112
2113 if (!try_get_task_stack(tsk))
2114 return;
2115
2116 sp = (unsigned long) stack;
2117 if (sp == 0) {
2118 if (tsk == current)
2119 sp = current_stack_frame();
2120 else
2121 sp = tsk->thread.ksp;
2122 }
2123
2124 lr = 0;
2125 printk("%sCall Trace:\n", loglvl);
2126 do {
2127 if (!validate_sp(sp, tsk, STACK_FRAME_OVERHEAD))
2128 break;
2129
2130 stack = (unsigned long *) sp;
2131 newsp = stack[0];
2132 ip = stack[STACK_FRAME_LR_SAVE];
2133 if (!firstframe || ip != lr) {
2134 printk("%s["REG"] ["REG"] %pS",
2135 loglvl, sp, ip, (void *)ip);
2136#ifdef CONFIG_FUNCTION_GRAPH_TRACER
2137 ret_addr = ftrace_graph_ret_addr(current,
2138 &ftrace_idx, ip, stack);
2139 if (ret_addr != ip)
2140 pr_cont(" (%pS)", (void *)ret_addr);
2141#endif
2142 if (firstframe)
2143 pr_cont(" (unreliable)");
2144 pr_cont("\n");
2145 }
2146 firstframe = 0;
2147
2148 /*
2149 * See if this is an exception frame.
2150 * We look for the "regshere" marker in the current frame.
2151 */
2152 if (validate_sp(sp, tsk, STACK_INT_FRAME_SIZE)
2153 && stack[STACK_FRAME_MARKER] == STACK_FRAME_REGS_MARKER) {
2154 struct pt_regs *regs = (struct pt_regs *)
2155 (sp + STACK_FRAME_OVERHEAD);
2156 lr = regs->link;
2157 printk("%s--- interrupt: %lx at %pS\n LR = %pS\n",
2158 loglvl, regs->trap,
2159 (void *)regs->nip, (void *)lr);
2160 firstframe = 1;
2161 }
2162
2163 sp = newsp;
2164 } while (count++ < kstack_depth_to_print);
2165
2166 put_task_stack(tsk);
2167}
2168
2169#ifdef CONFIG_PPC64
2170/* Called with hard IRQs off */
2171void notrace __ppc64_runlatch_on(void)
2172{
2173 struct thread_info *ti = current_thread_info();
2174
2175 if (cpu_has_feature(CPU_FTR_ARCH_206)) {
2176 /*
2177 * Least significant bit (RUN) is the only writable bit of
2178 * the CTRL register, so we can avoid mfspr. 2.06 is not the
2179 * earliest ISA where this is the case, but it's convenient.
2180 */
2181 mtspr(SPRN_CTRLT, CTRL_RUNLATCH);
2182 } else {
2183 unsigned long ctrl;
2184
2185 /*
2186 * Some architectures (e.g., Cell) have writable fields other
2187 * than RUN, so do the read-modify-write.
2188 */
2189 ctrl = mfspr(SPRN_CTRLF);
2190 ctrl |= CTRL_RUNLATCH;
2191 mtspr(SPRN_CTRLT, ctrl);
2192 }
2193
2194 ti->local_flags |= _TLF_RUNLATCH;
2195}
2196
2197/* Called with hard IRQs off */
2198void notrace __ppc64_runlatch_off(void)
2199{
2200 struct thread_info *ti = current_thread_info();
2201
2202 ti->local_flags &= ~_TLF_RUNLATCH;
2203
2204 if (cpu_has_feature(CPU_FTR_ARCH_206)) {
2205 mtspr(SPRN_CTRLT, 0);
2206 } else {
2207 unsigned long ctrl;
2208
2209 ctrl = mfspr(SPRN_CTRLF);
2210 ctrl &= ~CTRL_RUNLATCH;
2211 mtspr(SPRN_CTRLT, ctrl);
2212 }
2213}
2214#endif /* CONFIG_PPC64 */
2215
2216unsigned long arch_align_stack(unsigned long sp)
2217{
2218 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
2219 sp -= get_random_int() & ~PAGE_MASK;
2220 return sp & ~0xf;
2221}
2222
2223static inline unsigned long brk_rnd(void)
2224{
2225 unsigned long rnd = 0;
2226
2227 /* 8MB for 32bit, 1GB for 64bit */
2228 if (is_32bit_task())
2229 rnd = (get_random_long() % (1UL<<(23-PAGE_SHIFT)));
2230 else
2231 rnd = (get_random_long() % (1UL<<(30-PAGE_SHIFT)));
2232
2233 return rnd << PAGE_SHIFT;
2234}
2235
2236unsigned long arch_randomize_brk(struct mm_struct *mm)
2237{
2238 unsigned long base = mm->brk;
2239 unsigned long ret;
2240
2241#ifdef CONFIG_PPC_BOOK3S_64
2242 /*
2243 * If we are using 1TB segments and we are allowed to randomise
2244 * the heap, we can put it above 1TB so it is backed by a 1TB
2245 * segment. Otherwise the heap will be in the bottom 1TB
2246 * which always uses 256MB segments and this may result in a
2247 * performance penalty. We don't need to worry about radix. For
2248 * radix, mmu_highuser_ssize remains unchanged from 256MB.
2249 */
2250 if (!is_32bit_task() && (mmu_highuser_ssize == MMU_SEGSIZE_1T))
2251 base = max_t(unsigned long, mm->brk, 1UL << SID_SHIFT_1T);
2252#endif
2253
2254 ret = PAGE_ALIGN(base + brk_rnd());
2255
2256 if (ret < mm->brk)
2257 return mm->brk;
2258
2259 return ret;
2260}
2261