Loading...
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * Derived from "arch/i386/kernel/process.c"
4 * Copyright (C) 1995 Linus Torvalds
5 *
6 * Updated and modified by Cort Dougan (cort@cs.nmt.edu) and
7 * Paul Mackerras (paulus@cs.anu.edu.au)
8 *
9 * PowerPC version
10 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
11 */
12
13#include <linux/errno.h>
14#include <linux/sched.h>
15#include <linux/sched/debug.h>
16#include <linux/sched/task.h>
17#include <linux/sched/task_stack.h>
18#include <linux/kernel.h>
19#include <linux/mm.h>
20#include <linux/smp.h>
21#include <linux/stddef.h>
22#include <linux/unistd.h>
23#include <linux/ptrace.h>
24#include <linux/slab.h>
25#include <linux/user.h>
26#include <linux/elf.h>
27#include <linux/prctl.h>
28#include <linux/init_task.h>
29#include <linux/export.h>
30#include <linux/kallsyms.h>
31#include <linux/mqueue.h>
32#include <linux/hardirq.h>
33#include <linux/utsname.h>
34#include <linux/ftrace.h>
35#include <linux/kernel_stat.h>
36#include <linux/personality.h>
37#include <linux/hw_breakpoint.h>
38#include <linux/uaccess.h>
39#include <linux/pkeys.h>
40#include <linux/seq_buf.h>
41
42#include <asm/interrupt.h>
43#include <asm/io.h>
44#include <asm/processor.h>
45#include <asm/mmu.h>
46#include <asm/machdep.h>
47#include <asm/time.h>
48#include <asm/runlatch.h>
49#include <asm/syscalls.h>
50#include <asm/switch_to.h>
51#include <asm/tm.h>
52#include <asm/debug.h>
53#ifdef CONFIG_PPC64
54#include <asm/firmware.h>
55#include <asm/hw_irq.h>
56#endif
57#include <asm/text-patching.h>
58#include <asm/exec.h>
59#include <asm/livepatch.h>
60#include <asm/cpu_has_feature.h>
61#include <asm/asm-prototypes.h>
62#include <asm/stacktrace.h>
63#include <asm/hw_breakpoint.h>
64
65#include <linux/kprobes.h>
66#include <linux/kdebug.h>
67
68/* Transactional Memory debug */
69#ifdef TM_DEBUG_SW
70#define TM_DEBUG(x...) printk(KERN_INFO x)
71#else
72#define TM_DEBUG(x...) do { } while(0)
73#endif
74
75#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
76/*
77 * Are we running in "Suspend disabled" mode? If so we have to block any
78 * sigreturn that would get us into suspended state, and we also warn in some
79 * other paths that we should never reach with suspend disabled.
80 */
81bool tm_suspend_disabled __ro_after_init = false;
82
83static void check_if_tm_restore_required(struct task_struct *tsk)
84{
85 /*
86 * If we are saving the current thread's registers, and the
87 * thread is in a transactional state, set the TIF_RESTORE_TM
88 * bit so that we know to restore the registers before
89 * returning to userspace.
90 */
91 if (tsk == current && tsk->thread.regs &&
92 MSR_TM_ACTIVE(tsk->thread.regs->msr) &&
93 !test_thread_flag(TIF_RESTORE_TM)) {
94 regs_set_return_msr(&tsk->thread.ckpt_regs,
95 tsk->thread.regs->msr);
96 set_thread_flag(TIF_RESTORE_TM);
97 }
98}
99
100#else
101static inline void check_if_tm_restore_required(struct task_struct *tsk) { }
102#endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
103
104bool strict_msr_control;
105EXPORT_SYMBOL(strict_msr_control);
106
107static int __init enable_strict_msr_control(char *str)
108{
109 strict_msr_control = true;
110 pr_info("Enabling strict facility control\n");
111
112 return 0;
113}
114early_param("ppc_strict_facility_enable", enable_strict_msr_control);
115
116/* notrace because it's called by restore_math */
117unsigned long notrace msr_check_and_set(unsigned long bits)
118{
119 unsigned long oldmsr = mfmsr();
120 unsigned long newmsr;
121
122 newmsr = oldmsr | bits;
123
124 if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP))
125 newmsr |= MSR_VSX;
126
127 if (oldmsr != newmsr)
128 newmsr = mtmsr_isync_irqsafe(newmsr);
129
130 return newmsr;
131}
132EXPORT_SYMBOL_GPL(msr_check_and_set);
133
134/* notrace because it's called by restore_math */
135void notrace __msr_check_and_clear(unsigned long bits)
136{
137 unsigned long oldmsr = mfmsr();
138 unsigned long newmsr;
139
140 newmsr = oldmsr & ~bits;
141
142 if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP))
143 newmsr &= ~MSR_VSX;
144
145 if (oldmsr != newmsr)
146 mtmsr_isync_irqsafe(newmsr);
147}
148EXPORT_SYMBOL(__msr_check_and_clear);
149
150#ifdef CONFIG_PPC_FPU
151static void __giveup_fpu(struct task_struct *tsk)
152{
153 unsigned long msr;
154
155 save_fpu(tsk);
156 msr = tsk->thread.regs->msr;
157 msr &= ~(MSR_FP|MSR_FE0|MSR_FE1);
158 if (cpu_has_feature(CPU_FTR_VSX))
159 msr &= ~MSR_VSX;
160 regs_set_return_msr(tsk->thread.regs, msr);
161}
162
163void giveup_fpu(struct task_struct *tsk)
164{
165 check_if_tm_restore_required(tsk);
166
167 msr_check_and_set(MSR_FP);
168 __giveup_fpu(tsk);
169 msr_check_and_clear(MSR_FP);
170}
171EXPORT_SYMBOL(giveup_fpu);
172
173/*
174 * Make sure the floating-point register state in the
175 * the thread_struct is up to date for task tsk.
176 */
177void flush_fp_to_thread(struct task_struct *tsk)
178{
179 if (tsk->thread.regs) {
180 /*
181 * We need to disable preemption here because if we didn't,
182 * another process could get scheduled after the regs->msr
183 * test but before we have finished saving the FP registers
184 * to the thread_struct. That process could take over the
185 * FPU, and then when we get scheduled again we would store
186 * bogus values for the remaining FP registers.
187 */
188 preempt_disable();
189 if (tsk->thread.regs->msr & MSR_FP) {
190 /*
191 * This should only ever be called for current or
192 * for a stopped child process. Since we save away
193 * the FP register state on context switch,
194 * there is something wrong if a stopped child appears
195 * to still have its FP state in the CPU registers.
196 */
197 BUG_ON(tsk != current);
198 giveup_fpu(tsk);
199 }
200 preempt_enable();
201 }
202}
203EXPORT_SYMBOL_GPL(flush_fp_to_thread);
204
205void enable_kernel_fp(void)
206{
207 unsigned long cpumsr;
208
209 WARN_ON(preemptible());
210
211 cpumsr = msr_check_and_set(MSR_FP);
212
213 if (current->thread.regs && (current->thread.regs->msr & MSR_FP)) {
214 check_if_tm_restore_required(current);
215 /*
216 * If a thread has already been reclaimed then the
217 * checkpointed registers are on the CPU but have definitely
218 * been saved by the reclaim code. Don't need to and *cannot*
219 * giveup as this would save to the 'live' structure not the
220 * checkpointed structure.
221 */
222 if (!MSR_TM_ACTIVE(cpumsr) &&
223 MSR_TM_ACTIVE(current->thread.regs->msr))
224 return;
225 __giveup_fpu(current);
226 }
227}
228EXPORT_SYMBOL(enable_kernel_fp);
229#else
230static inline void __giveup_fpu(struct task_struct *tsk) { }
231#endif /* CONFIG_PPC_FPU */
232
233#ifdef CONFIG_ALTIVEC
234static void __giveup_altivec(struct task_struct *tsk)
235{
236 unsigned long msr;
237
238 save_altivec(tsk);
239 msr = tsk->thread.regs->msr;
240 msr &= ~MSR_VEC;
241 if (cpu_has_feature(CPU_FTR_VSX))
242 msr &= ~MSR_VSX;
243 regs_set_return_msr(tsk->thread.regs, msr);
244}
245
246void giveup_altivec(struct task_struct *tsk)
247{
248 check_if_tm_restore_required(tsk);
249
250 msr_check_and_set(MSR_VEC);
251 __giveup_altivec(tsk);
252 msr_check_and_clear(MSR_VEC);
253}
254EXPORT_SYMBOL(giveup_altivec);
255
256void enable_kernel_altivec(void)
257{
258 unsigned long cpumsr;
259
260 WARN_ON(preemptible());
261
262 cpumsr = msr_check_and_set(MSR_VEC);
263
264 if (current->thread.regs && (current->thread.regs->msr & MSR_VEC)) {
265 check_if_tm_restore_required(current);
266 /*
267 * If a thread has already been reclaimed then the
268 * checkpointed registers are on the CPU but have definitely
269 * been saved by the reclaim code. Don't need to and *cannot*
270 * giveup as this would save to the 'live' structure not the
271 * checkpointed structure.
272 */
273 if (!MSR_TM_ACTIVE(cpumsr) &&
274 MSR_TM_ACTIVE(current->thread.regs->msr))
275 return;
276 __giveup_altivec(current);
277 }
278}
279EXPORT_SYMBOL(enable_kernel_altivec);
280
281/*
282 * Make sure the VMX/Altivec register state in the
283 * the thread_struct is up to date for task tsk.
284 */
285void flush_altivec_to_thread(struct task_struct *tsk)
286{
287 if (tsk->thread.regs) {
288 preempt_disable();
289 if (tsk->thread.regs->msr & MSR_VEC) {
290 BUG_ON(tsk != current);
291 giveup_altivec(tsk);
292 }
293 preempt_enable();
294 }
295}
296EXPORT_SYMBOL_GPL(flush_altivec_to_thread);
297#endif /* CONFIG_ALTIVEC */
298
299#ifdef CONFIG_VSX
300static void __giveup_vsx(struct task_struct *tsk)
301{
302 unsigned long msr = tsk->thread.regs->msr;
303
304 /*
305 * We should never be setting MSR_VSX without also setting
306 * MSR_FP and MSR_VEC
307 */
308 WARN_ON((msr & MSR_VSX) && !((msr & MSR_FP) && (msr & MSR_VEC)));
309
310 /* __giveup_fpu will clear MSR_VSX */
311 if (msr & MSR_FP)
312 __giveup_fpu(tsk);
313 if (msr & MSR_VEC)
314 __giveup_altivec(tsk);
315}
316
317static void giveup_vsx(struct task_struct *tsk)
318{
319 check_if_tm_restore_required(tsk);
320
321 msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX);
322 __giveup_vsx(tsk);
323 msr_check_and_clear(MSR_FP|MSR_VEC|MSR_VSX);
324}
325
326void enable_kernel_vsx(void)
327{
328 unsigned long cpumsr;
329
330 WARN_ON(preemptible());
331
332 cpumsr = msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX);
333
334 if (current->thread.regs &&
335 (current->thread.regs->msr & (MSR_VSX|MSR_VEC|MSR_FP))) {
336 check_if_tm_restore_required(current);
337 /*
338 * If a thread has already been reclaimed then the
339 * checkpointed registers are on the CPU but have definitely
340 * been saved by the reclaim code. Don't need to and *cannot*
341 * giveup as this would save to the 'live' structure not the
342 * checkpointed structure.
343 */
344 if (!MSR_TM_ACTIVE(cpumsr) &&
345 MSR_TM_ACTIVE(current->thread.regs->msr))
346 return;
347 __giveup_vsx(current);
348 }
349}
350EXPORT_SYMBOL(enable_kernel_vsx);
351
352void flush_vsx_to_thread(struct task_struct *tsk)
353{
354 if (tsk->thread.regs) {
355 preempt_disable();
356 if (tsk->thread.regs->msr & (MSR_VSX|MSR_VEC|MSR_FP)) {
357 BUG_ON(tsk != current);
358 giveup_vsx(tsk);
359 }
360 preempt_enable();
361 }
362}
363EXPORT_SYMBOL_GPL(flush_vsx_to_thread);
364#endif /* CONFIG_VSX */
365
366#ifdef CONFIG_SPE
367void giveup_spe(struct task_struct *tsk)
368{
369 check_if_tm_restore_required(tsk);
370
371 msr_check_and_set(MSR_SPE);
372 __giveup_spe(tsk);
373 msr_check_and_clear(MSR_SPE);
374}
375EXPORT_SYMBOL(giveup_spe);
376
377void enable_kernel_spe(void)
378{
379 WARN_ON(preemptible());
380
381 msr_check_and_set(MSR_SPE);
382
383 if (current->thread.regs && (current->thread.regs->msr & MSR_SPE)) {
384 check_if_tm_restore_required(current);
385 __giveup_spe(current);
386 }
387}
388EXPORT_SYMBOL(enable_kernel_spe);
389
390void flush_spe_to_thread(struct task_struct *tsk)
391{
392 if (tsk->thread.regs) {
393 preempt_disable();
394 if (tsk->thread.regs->msr & MSR_SPE) {
395 BUG_ON(tsk != current);
396 tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
397 giveup_spe(tsk);
398 }
399 preempt_enable();
400 }
401}
402#endif /* CONFIG_SPE */
403
404static unsigned long msr_all_available;
405
406static int __init init_msr_all_available(void)
407{
408 if (IS_ENABLED(CONFIG_PPC_FPU))
409 msr_all_available |= MSR_FP;
410 if (cpu_has_feature(CPU_FTR_ALTIVEC))
411 msr_all_available |= MSR_VEC;
412 if (cpu_has_feature(CPU_FTR_VSX))
413 msr_all_available |= MSR_VSX;
414 if (cpu_has_feature(CPU_FTR_SPE))
415 msr_all_available |= MSR_SPE;
416
417 return 0;
418}
419early_initcall(init_msr_all_available);
420
421void giveup_all(struct task_struct *tsk)
422{
423 unsigned long usermsr;
424
425 if (!tsk->thread.regs)
426 return;
427
428 check_if_tm_restore_required(tsk);
429
430 usermsr = tsk->thread.regs->msr;
431
432 if ((usermsr & msr_all_available) == 0)
433 return;
434
435 msr_check_and_set(msr_all_available);
436
437 WARN_ON((usermsr & MSR_VSX) && !((usermsr & MSR_FP) && (usermsr & MSR_VEC)));
438
439 if (usermsr & MSR_FP)
440 __giveup_fpu(tsk);
441 if (usermsr & MSR_VEC)
442 __giveup_altivec(tsk);
443 if (usermsr & MSR_SPE)
444 __giveup_spe(tsk);
445
446 msr_check_and_clear(msr_all_available);
447}
448EXPORT_SYMBOL(giveup_all);
449
450#ifdef CONFIG_PPC_BOOK3S_64
451#ifdef CONFIG_PPC_FPU
452static bool should_restore_fp(void)
453{
454 if (current->thread.load_fp) {
455 current->thread.load_fp++;
456 return true;
457 }
458 return false;
459}
460
461static void do_restore_fp(void)
462{
463 load_fp_state(¤t->thread.fp_state);
464}
465#else
466static bool should_restore_fp(void) { return false; }
467static void do_restore_fp(void) { }
468#endif /* CONFIG_PPC_FPU */
469
470#ifdef CONFIG_ALTIVEC
471static bool should_restore_altivec(void)
472{
473 if (cpu_has_feature(CPU_FTR_ALTIVEC) && (current->thread.load_vec)) {
474 current->thread.load_vec++;
475 return true;
476 }
477 return false;
478}
479
480static void do_restore_altivec(void)
481{
482 load_vr_state(¤t->thread.vr_state);
483 current->thread.used_vr = 1;
484}
485#else
486static bool should_restore_altivec(void) { return false; }
487static void do_restore_altivec(void) { }
488#endif /* CONFIG_ALTIVEC */
489
490static bool should_restore_vsx(void)
491{
492 if (cpu_has_feature(CPU_FTR_VSX))
493 return true;
494 return false;
495}
496#ifdef CONFIG_VSX
497static void do_restore_vsx(void)
498{
499 current->thread.used_vsr = 1;
500}
501#else
502static void do_restore_vsx(void) { }
503#endif /* CONFIG_VSX */
504
505/*
506 * The exception exit path calls restore_math() with interrupts hard disabled
507 * but the soft irq state not "reconciled". ftrace code that calls
508 * local_irq_save/restore causes warnings.
509 *
510 * Rather than complicate the exit path, just don't trace restore_math. This
511 * could be done by having ftrace entry code check for this un-reconciled
512 * condition where MSR[EE]=0 and PACA_IRQ_HARD_DIS is not set, and
513 * temporarily fix it up for the duration of the ftrace call.
514 */
515void notrace restore_math(struct pt_regs *regs)
516{
517 unsigned long msr;
518 unsigned long new_msr = 0;
519
520 msr = regs->msr;
521
522 /*
523 * new_msr tracks the facilities that are to be restored. Only reload
524 * if the bit is not set in the user MSR (if it is set, the registers
525 * are live for the user thread).
526 */
527 if ((!(msr & MSR_FP)) && should_restore_fp())
528 new_msr |= MSR_FP;
529
530 if ((!(msr & MSR_VEC)) && should_restore_altivec())
531 new_msr |= MSR_VEC;
532
533 if ((!(msr & MSR_VSX)) && should_restore_vsx()) {
534 if (((msr | new_msr) & (MSR_FP | MSR_VEC)) == (MSR_FP | MSR_VEC))
535 new_msr |= MSR_VSX;
536 }
537
538 if (new_msr) {
539 unsigned long fpexc_mode = 0;
540
541 msr_check_and_set(new_msr);
542
543 if (new_msr & MSR_FP) {
544 do_restore_fp();
545
546 // This also covers VSX, because VSX implies FP
547 fpexc_mode = current->thread.fpexc_mode;
548 }
549
550 if (new_msr & MSR_VEC)
551 do_restore_altivec();
552
553 if (new_msr & MSR_VSX)
554 do_restore_vsx();
555
556 msr_check_and_clear(new_msr);
557
558 regs_set_return_msr(regs, regs->msr | new_msr | fpexc_mode);
559 }
560}
561#endif /* CONFIG_PPC_BOOK3S_64 */
562
563static void save_all(struct task_struct *tsk)
564{
565 unsigned long usermsr;
566
567 if (!tsk->thread.regs)
568 return;
569
570 usermsr = tsk->thread.regs->msr;
571
572 if ((usermsr & msr_all_available) == 0)
573 return;
574
575 msr_check_and_set(msr_all_available);
576
577 WARN_ON((usermsr & MSR_VSX) && !((usermsr & MSR_FP) && (usermsr & MSR_VEC)));
578
579 if (usermsr & MSR_FP)
580 save_fpu(tsk);
581
582 if (usermsr & MSR_VEC)
583 save_altivec(tsk);
584
585 if (usermsr & MSR_SPE)
586 __giveup_spe(tsk);
587
588 msr_check_and_clear(msr_all_available);
589}
590
591void flush_all_to_thread(struct task_struct *tsk)
592{
593 if (tsk->thread.regs) {
594 preempt_disable();
595 BUG_ON(tsk != current);
596#ifdef CONFIG_SPE
597 if (tsk->thread.regs->msr & MSR_SPE)
598 tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
599#endif
600 save_all(tsk);
601
602 preempt_enable();
603 }
604}
605EXPORT_SYMBOL(flush_all_to_thread);
606
607#ifdef CONFIG_PPC_ADV_DEBUG_REGS
608void do_send_trap(struct pt_regs *regs, unsigned long address,
609 unsigned long error_code, int breakpt)
610{
611 current->thread.trap_nr = TRAP_HWBKPT;
612 if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
613 11, SIGSEGV) == NOTIFY_STOP)
614 return;
615
616 /* Deliver the signal to userspace */
617 force_sig_ptrace_errno_trap(breakpt, /* breakpoint or watchpoint id */
618 (void __user *)address);
619}
620#else /* !CONFIG_PPC_ADV_DEBUG_REGS */
621
622static void do_break_handler(struct pt_regs *regs)
623{
624 struct arch_hw_breakpoint null_brk = {0};
625 struct arch_hw_breakpoint *info;
626 ppc_inst_t instr = ppc_inst(0);
627 int type = 0;
628 int size = 0;
629 unsigned long ea;
630 int i;
631
632 /*
633 * If underneath hw supports only one watchpoint, we know it
634 * caused exception. 8xx also falls into this category.
635 */
636 if (nr_wp_slots() == 1) {
637 __set_breakpoint(0, &null_brk);
638 current->thread.hw_brk[0] = null_brk;
639 current->thread.hw_brk[0].flags |= HW_BRK_FLAG_DISABLED;
640 return;
641 }
642
643 /* Otherwise find out which DAWR caused exception and disable it. */
644 wp_get_instr_detail(regs, &instr, &type, &size, &ea);
645
646 for (i = 0; i < nr_wp_slots(); i++) {
647 info = ¤t->thread.hw_brk[i];
648 if (!info->address)
649 continue;
650
651 if (wp_check_constraints(regs, instr, ea, type, size, info)) {
652 __set_breakpoint(i, &null_brk);
653 current->thread.hw_brk[i] = null_brk;
654 current->thread.hw_brk[i].flags |= HW_BRK_FLAG_DISABLED;
655 }
656 }
657}
658
659DEFINE_INTERRUPT_HANDLER(do_break)
660{
661 current->thread.trap_nr = TRAP_HWBKPT;
662 if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, regs->dsisr,
663 11, SIGSEGV) == NOTIFY_STOP)
664 return;
665
666 if (debugger_break_match(regs))
667 return;
668
669 /*
670 * We reach here only when watchpoint exception is generated by ptrace
671 * event (or hw is buggy!). Now if CONFIG_HAVE_HW_BREAKPOINT is set,
672 * watchpoint is already handled by hw_breakpoint_handler() so we don't
673 * have to do anything. But when CONFIG_HAVE_HW_BREAKPOINT is not set,
674 * we need to manually handle the watchpoint here.
675 */
676 if (!IS_ENABLED(CONFIG_HAVE_HW_BREAKPOINT))
677 do_break_handler(regs);
678
679 /* Deliver the signal to userspace */
680 force_sig_fault(SIGTRAP, TRAP_HWBKPT, (void __user *)regs->dar);
681}
682#endif /* CONFIG_PPC_ADV_DEBUG_REGS */
683
684static DEFINE_PER_CPU(struct arch_hw_breakpoint, current_brk[HBP_NUM_MAX]);
685
686#ifdef CONFIG_PPC_ADV_DEBUG_REGS
687/*
688 * Set the debug registers back to their default "safe" values.
689 */
690static void set_debug_reg_defaults(struct thread_struct *thread)
691{
692 thread->debug.iac1 = thread->debug.iac2 = 0;
693#if CONFIG_PPC_ADV_DEBUG_IACS > 2
694 thread->debug.iac3 = thread->debug.iac4 = 0;
695#endif
696 thread->debug.dac1 = thread->debug.dac2 = 0;
697#if CONFIG_PPC_ADV_DEBUG_DVCS > 0
698 thread->debug.dvc1 = thread->debug.dvc2 = 0;
699#endif
700 thread->debug.dbcr0 = 0;
701#ifdef CONFIG_BOOKE
702 /*
703 * Force User/Supervisor bits to b11 (user-only MSR[PR]=1)
704 */
705 thread->debug.dbcr1 = DBCR1_IAC1US | DBCR1_IAC2US |
706 DBCR1_IAC3US | DBCR1_IAC4US;
707 /*
708 * Force Data Address Compare User/Supervisor bits to be User-only
709 * (0b11 MSR[PR]=1) and set all other bits in DBCR2 register to be 0.
710 */
711 thread->debug.dbcr2 = DBCR2_DAC1US | DBCR2_DAC2US;
712#else
713 thread->debug.dbcr1 = 0;
714#endif
715}
716
717static void prime_debug_regs(struct debug_reg *debug)
718{
719 /*
720 * We could have inherited MSR_DE from userspace, since
721 * it doesn't get cleared on exception entry. Make sure
722 * MSR_DE is clear before we enable any debug events.
723 */
724 mtmsr(mfmsr() & ~MSR_DE);
725
726 mtspr(SPRN_IAC1, debug->iac1);
727 mtspr(SPRN_IAC2, debug->iac2);
728#if CONFIG_PPC_ADV_DEBUG_IACS > 2
729 mtspr(SPRN_IAC3, debug->iac3);
730 mtspr(SPRN_IAC4, debug->iac4);
731#endif
732 mtspr(SPRN_DAC1, debug->dac1);
733 mtspr(SPRN_DAC2, debug->dac2);
734#if CONFIG_PPC_ADV_DEBUG_DVCS > 0
735 mtspr(SPRN_DVC1, debug->dvc1);
736 mtspr(SPRN_DVC2, debug->dvc2);
737#endif
738 mtspr(SPRN_DBCR0, debug->dbcr0);
739 mtspr(SPRN_DBCR1, debug->dbcr1);
740#ifdef CONFIG_BOOKE
741 mtspr(SPRN_DBCR2, debug->dbcr2);
742#endif
743}
744/*
745 * Unless neither the old or new thread are making use of the
746 * debug registers, set the debug registers from the values
747 * stored in the new thread.
748 */
749void switch_booke_debug_regs(struct debug_reg *new_debug)
750{
751 if ((current->thread.debug.dbcr0 & DBCR0_IDM)
752 || (new_debug->dbcr0 & DBCR0_IDM))
753 prime_debug_regs(new_debug);
754}
755EXPORT_SYMBOL_GPL(switch_booke_debug_regs);
756#else /* !CONFIG_PPC_ADV_DEBUG_REGS */
757#ifndef CONFIG_HAVE_HW_BREAKPOINT
758static void set_breakpoint(int i, struct arch_hw_breakpoint *brk)
759{
760 preempt_disable();
761 __set_breakpoint(i, brk);
762 preempt_enable();
763}
764
765static void set_debug_reg_defaults(struct thread_struct *thread)
766{
767 int i;
768 struct arch_hw_breakpoint null_brk = {0};
769
770 for (i = 0; i < nr_wp_slots(); i++) {
771 thread->hw_brk[i] = null_brk;
772 if (ppc_breakpoint_available())
773 set_breakpoint(i, &thread->hw_brk[i]);
774 }
775}
776
777static inline bool hw_brk_match(struct arch_hw_breakpoint *a,
778 struct arch_hw_breakpoint *b)
779{
780 if (a->address != b->address)
781 return false;
782 if (a->type != b->type)
783 return false;
784 if (a->len != b->len)
785 return false;
786 /* no need to check hw_len. it's calculated from address and len */
787 return true;
788}
789
790static void switch_hw_breakpoint(struct task_struct *new)
791{
792 int i;
793
794 for (i = 0; i < nr_wp_slots(); i++) {
795 if (likely(hw_brk_match(this_cpu_ptr(¤t_brk[i]),
796 &new->thread.hw_brk[i])))
797 continue;
798
799 __set_breakpoint(i, &new->thread.hw_brk[i]);
800 }
801}
802#endif /* !CONFIG_HAVE_HW_BREAKPOINT */
803#endif /* CONFIG_PPC_ADV_DEBUG_REGS */
804
805static inline int set_dabr(struct arch_hw_breakpoint *brk)
806{
807 unsigned long dabr, dabrx;
808
809 dabr = brk->address | (brk->type & HW_BRK_TYPE_DABR);
810 dabrx = ((brk->type >> 3) & 0x7);
811
812 if (ppc_md.set_dabr)
813 return ppc_md.set_dabr(dabr, dabrx);
814
815 if (IS_ENABLED(CONFIG_PPC_ADV_DEBUG_REGS)) {
816 mtspr(SPRN_DAC1, dabr);
817 if (IS_ENABLED(CONFIG_PPC_47x))
818 isync();
819 return 0;
820 } else if (IS_ENABLED(CONFIG_PPC_BOOK3S)) {
821 mtspr(SPRN_DABR, dabr);
822 if (cpu_has_feature(CPU_FTR_DABRX))
823 mtspr(SPRN_DABRX, dabrx);
824 return 0;
825 } else {
826 return -EINVAL;
827 }
828}
829
830static inline int set_breakpoint_8xx(struct arch_hw_breakpoint *brk)
831{
832 unsigned long lctrl1 = LCTRL1_CTE_GT | LCTRL1_CTF_LT | LCTRL1_CRWE_RW |
833 LCTRL1_CRWF_RW;
834 unsigned long lctrl2 = LCTRL2_LW0EN | LCTRL2_LW0LADC | LCTRL2_SLW0EN;
835 unsigned long start_addr = ALIGN_DOWN(brk->address, HW_BREAKPOINT_SIZE);
836 unsigned long end_addr = ALIGN(brk->address + brk->len, HW_BREAKPOINT_SIZE);
837
838 if (start_addr == 0)
839 lctrl2 |= LCTRL2_LW0LA_F;
840 else if (end_addr == 0)
841 lctrl2 |= LCTRL2_LW0LA_E;
842 else
843 lctrl2 |= LCTRL2_LW0LA_EandF;
844
845 mtspr(SPRN_LCTRL2, 0);
846
847 if ((brk->type & HW_BRK_TYPE_RDWR) == 0)
848 return 0;
849
850 if ((brk->type & HW_BRK_TYPE_RDWR) == HW_BRK_TYPE_READ)
851 lctrl1 |= LCTRL1_CRWE_RO | LCTRL1_CRWF_RO;
852 if ((brk->type & HW_BRK_TYPE_RDWR) == HW_BRK_TYPE_WRITE)
853 lctrl1 |= LCTRL1_CRWE_WO | LCTRL1_CRWF_WO;
854
855 mtspr(SPRN_CMPE, start_addr - 1);
856 mtspr(SPRN_CMPF, end_addr);
857 mtspr(SPRN_LCTRL1, lctrl1);
858 mtspr(SPRN_LCTRL2, lctrl2);
859
860 return 0;
861}
862
863static void set_hw_breakpoint(int nr, struct arch_hw_breakpoint *brk)
864{
865 if (dawr_enabled())
866 // Power8 or later
867 set_dawr(nr, brk);
868 else if (IS_ENABLED(CONFIG_PPC_8xx))
869 set_breakpoint_8xx(brk);
870 else if (!cpu_has_feature(CPU_FTR_ARCH_207S))
871 // Power7 or earlier
872 set_dabr(brk);
873 else
874 // Shouldn't happen due to higher level checks
875 WARN_ON_ONCE(1);
876}
877
878void __set_breakpoint(int nr, struct arch_hw_breakpoint *brk)
879{
880 memcpy(this_cpu_ptr(¤t_brk[nr]), brk, sizeof(*brk));
881 set_hw_breakpoint(nr, brk);
882}
883
884/* Check if we have DAWR or DABR hardware */
885bool ppc_breakpoint_available(void)
886{
887 if (dawr_enabled())
888 return true; /* POWER8 DAWR or POWER9 forced DAWR */
889 if (cpu_has_feature(CPU_FTR_ARCH_207S))
890 return false; /* POWER9 with DAWR disabled */
891 /* DABR: Everything but POWER8 and POWER9 */
892 return true;
893}
894EXPORT_SYMBOL_GPL(ppc_breakpoint_available);
895
896/* Disable the breakpoint in hardware without touching current_brk[] */
897void suspend_breakpoints(void)
898{
899 struct arch_hw_breakpoint brk = {0};
900 int i;
901
902 if (!ppc_breakpoint_available())
903 return;
904
905 for (i = 0; i < nr_wp_slots(); i++)
906 set_hw_breakpoint(i, &brk);
907}
908
909/*
910 * Re-enable breakpoints suspended by suspend_breakpoints() in hardware
911 * from current_brk[]
912 */
913void restore_breakpoints(void)
914{
915 int i;
916
917 if (!ppc_breakpoint_available())
918 return;
919
920 for (i = 0; i < nr_wp_slots(); i++)
921 set_hw_breakpoint(i, this_cpu_ptr(¤t_brk[i]));
922}
923
924#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
925
926static inline bool tm_enabled(struct task_struct *tsk)
927{
928 return tsk && tsk->thread.regs && (tsk->thread.regs->msr & MSR_TM);
929}
930
931static void tm_reclaim_thread(struct thread_struct *thr, uint8_t cause)
932{
933 /*
934 * Use the current MSR TM suspended bit to track if we have
935 * checkpointed state outstanding.
936 * On signal delivery, we'd normally reclaim the checkpointed
937 * state to obtain stack pointer (see:get_tm_stackpointer()).
938 * This will then directly return to userspace without going
939 * through __switch_to(). However, if the stack frame is bad,
940 * we need to exit this thread which calls __switch_to() which
941 * will again attempt to reclaim the already saved tm state.
942 * Hence we need to check that we've not already reclaimed
943 * this state.
944 * We do this using the current MSR, rather tracking it in
945 * some specific thread_struct bit, as it has the additional
946 * benefit of checking for a potential TM bad thing exception.
947 */
948 if (!MSR_TM_SUSPENDED(mfmsr()))
949 return;
950
951 giveup_all(container_of(thr, struct task_struct, thread));
952
953 tm_reclaim(thr, cause);
954
955 /*
956 * If we are in a transaction and FP is off then we can't have
957 * used FP inside that transaction. Hence the checkpointed
958 * state is the same as the live state. We need to copy the
959 * live state to the checkpointed state so that when the
960 * transaction is restored, the checkpointed state is correct
961 * and the aborted transaction sees the correct state. We use
962 * ckpt_regs.msr here as that's what tm_reclaim will use to
963 * determine if it's going to write the checkpointed state or
964 * not. So either this will write the checkpointed registers,
965 * or reclaim will. Similarly for VMX.
966 */
967 if ((thr->ckpt_regs.msr & MSR_FP) == 0)
968 memcpy(&thr->ckfp_state, &thr->fp_state,
969 sizeof(struct thread_fp_state));
970 if ((thr->ckpt_regs.msr & MSR_VEC) == 0)
971 memcpy(&thr->ckvr_state, &thr->vr_state,
972 sizeof(struct thread_vr_state));
973}
974
975void tm_reclaim_current(uint8_t cause)
976{
977 tm_enable();
978 tm_reclaim_thread(¤t->thread, cause);
979}
980
981static inline void tm_reclaim_task(struct task_struct *tsk)
982{
983 /* We have to work out if we're switching from/to a task that's in the
984 * middle of a transaction.
985 *
986 * In switching we need to maintain a 2nd register state as
987 * oldtask->thread.ckpt_regs. We tm_reclaim(oldproc); this saves the
988 * checkpointed (tbegin) state in ckpt_regs, ckfp_state and
989 * ckvr_state
990 *
991 * We also context switch (save) TFHAR/TEXASR/TFIAR in here.
992 */
993 struct thread_struct *thr = &tsk->thread;
994
995 if (!thr->regs)
996 return;
997
998 if (!MSR_TM_ACTIVE(thr->regs->msr))
999 goto out_and_saveregs;
1000
1001 WARN_ON(tm_suspend_disabled);
1002
1003 TM_DEBUG("--- tm_reclaim on pid %d (NIP=%lx, "
1004 "ccr=%lx, msr=%lx, trap=%lx)\n",
1005 tsk->pid, thr->regs->nip,
1006 thr->regs->ccr, thr->regs->msr,
1007 thr->regs->trap);
1008
1009 tm_reclaim_thread(thr, TM_CAUSE_RESCHED);
1010
1011 TM_DEBUG("--- tm_reclaim on pid %d complete\n",
1012 tsk->pid);
1013
1014out_and_saveregs:
1015 /* Always save the regs here, even if a transaction's not active.
1016 * This context-switches a thread's TM info SPRs. We do it here to
1017 * be consistent with the restore path (in recheckpoint) which
1018 * cannot happen later in _switch().
1019 */
1020 tm_save_sprs(thr);
1021}
1022
1023extern void __tm_recheckpoint(struct thread_struct *thread);
1024
1025void tm_recheckpoint(struct thread_struct *thread)
1026{
1027 unsigned long flags;
1028
1029 if (!(thread->regs->msr & MSR_TM))
1030 return;
1031
1032 /* We really can't be interrupted here as the TEXASR registers can't
1033 * change and later in the trecheckpoint code, we have a userspace R1.
1034 * So let's hard disable over this region.
1035 */
1036 local_irq_save(flags);
1037 hard_irq_disable();
1038
1039 /* The TM SPRs are restored here, so that TEXASR.FS can be set
1040 * before the trecheckpoint and no explosion occurs.
1041 */
1042 tm_restore_sprs(thread);
1043
1044 __tm_recheckpoint(thread);
1045
1046 local_irq_restore(flags);
1047}
1048
1049static inline void tm_recheckpoint_new_task(struct task_struct *new)
1050{
1051 if (!cpu_has_feature(CPU_FTR_TM))
1052 return;
1053
1054 /* Recheckpoint the registers of the thread we're about to switch to.
1055 *
1056 * If the task was using FP, we non-lazily reload both the original and
1057 * the speculative FP register states. This is because the kernel
1058 * doesn't see if/when a TM rollback occurs, so if we take an FP
1059 * unavailable later, we are unable to determine which set of FP regs
1060 * need to be restored.
1061 */
1062 if (!tm_enabled(new))
1063 return;
1064
1065 if (!MSR_TM_ACTIVE(new->thread.regs->msr)){
1066 tm_restore_sprs(&new->thread);
1067 return;
1068 }
1069 /* Recheckpoint to restore original checkpointed register state. */
1070 TM_DEBUG("*** tm_recheckpoint of pid %d (new->msr 0x%lx)\n",
1071 new->pid, new->thread.regs->msr);
1072
1073 tm_recheckpoint(&new->thread);
1074
1075 /*
1076 * The checkpointed state has been restored but the live state has
1077 * not, ensure all the math functionality is turned off to trigger
1078 * restore_math() to reload.
1079 */
1080 new->thread.regs->msr &= ~(MSR_FP | MSR_VEC | MSR_VSX);
1081
1082 TM_DEBUG("*** tm_recheckpoint of pid %d complete "
1083 "(kernel msr 0x%lx)\n",
1084 new->pid, mfmsr());
1085}
1086
1087static inline void __switch_to_tm(struct task_struct *prev,
1088 struct task_struct *new)
1089{
1090 if (cpu_has_feature(CPU_FTR_TM)) {
1091 if (tm_enabled(prev) || tm_enabled(new))
1092 tm_enable();
1093
1094 if (tm_enabled(prev)) {
1095 prev->thread.load_tm++;
1096 tm_reclaim_task(prev);
1097 if (!MSR_TM_ACTIVE(prev->thread.regs->msr) && prev->thread.load_tm == 0)
1098 prev->thread.regs->msr &= ~MSR_TM;
1099 }
1100
1101 tm_recheckpoint_new_task(new);
1102 }
1103}
1104
1105/*
1106 * This is called if we are on the way out to userspace and the
1107 * TIF_RESTORE_TM flag is set. It checks if we need to reload
1108 * FP and/or vector state and does so if necessary.
1109 * If userspace is inside a transaction (whether active or
1110 * suspended) and FP/VMX/VSX instructions have ever been enabled
1111 * inside that transaction, then we have to keep them enabled
1112 * and keep the FP/VMX/VSX state loaded while ever the transaction
1113 * continues. The reason is that if we didn't, and subsequently
1114 * got a FP/VMX/VSX unavailable interrupt inside a transaction,
1115 * we don't know whether it's the same transaction, and thus we
1116 * don't know which of the checkpointed state and the transactional
1117 * state to use.
1118 */
1119void restore_tm_state(struct pt_regs *regs)
1120{
1121 unsigned long msr_diff;
1122
1123 /*
1124 * This is the only moment we should clear TIF_RESTORE_TM as
1125 * it is here that ckpt_regs.msr and pt_regs.msr become the same
1126 * again, anything else could lead to an incorrect ckpt_msr being
1127 * saved and therefore incorrect signal contexts.
1128 */
1129 clear_thread_flag(TIF_RESTORE_TM);
1130 if (!MSR_TM_ACTIVE(regs->msr))
1131 return;
1132
1133 msr_diff = current->thread.ckpt_regs.msr & ~regs->msr;
1134 msr_diff &= MSR_FP | MSR_VEC | MSR_VSX;
1135
1136 /* Ensure that restore_math() will restore */
1137 if (msr_diff & MSR_FP)
1138 current->thread.load_fp = 1;
1139#ifdef CONFIG_ALTIVEC
1140 if (cpu_has_feature(CPU_FTR_ALTIVEC) && msr_diff & MSR_VEC)
1141 current->thread.load_vec = 1;
1142#endif
1143 restore_math(regs);
1144
1145 regs_set_return_msr(regs, regs->msr | msr_diff);
1146}
1147
1148#else /* !CONFIG_PPC_TRANSACTIONAL_MEM */
1149#define tm_recheckpoint_new_task(new)
1150#define __switch_to_tm(prev, new)
1151void tm_reclaim_current(uint8_t cause) {}
1152#endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1153
1154static inline void save_sprs(struct thread_struct *t)
1155{
1156#ifdef CONFIG_ALTIVEC
1157 if (cpu_has_feature(CPU_FTR_ALTIVEC))
1158 t->vrsave = mfspr(SPRN_VRSAVE);
1159#endif
1160#ifdef CONFIG_SPE
1161 if (cpu_has_feature(CPU_FTR_SPE))
1162 t->spefscr = mfspr(SPRN_SPEFSCR);
1163#endif
1164#ifdef CONFIG_PPC_BOOK3S_64
1165 if (cpu_has_feature(CPU_FTR_DSCR))
1166 t->dscr = mfspr(SPRN_DSCR);
1167
1168 if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
1169 t->bescr = mfspr(SPRN_BESCR);
1170 t->ebbhr = mfspr(SPRN_EBBHR);
1171 t->ebbrr = mfspr(SPRN_EBBRR);
1172
1173 t->fscr = mfspr(SPRN_FSCR);
1174
1175 /*
1176 * Note that the TAR is not available for use in the kernel.
1177 * (To provide this, the TAR should be backed up/restored on
1178 * exception entry/exit instead, and be in pt_regs. FIXME,
1179 * this should be in pt_regs anyway (for debug).)
1180 */
1181 t->tar = mfspr(SPRN_TAR);
1182 }
1183
1184 if (cpu_has_feature(CPU_FTR_DEXCR_NPHIE))
1185 t->hashkeyr = mfspr(SPRN_HASHKEYR);
1186
1187 if (cpu_has_feature(CPU_FTR_ARCH_31))
1188 t->dexcr = mfspr(SPRN_DEXCR);
1189#endif
1190}
1191
1192#ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
1193void kvmppc_save_user_regs(void)
1194{
1195 unsigned long usermsr;
1196
1197 if (!current->thread.regs)
1198 return;
1199
1200 usermsr = current->thread.regs->msr;
1201
1202 /* Caller has enabled FP/VEC/VSX/TM in MSR */
1203 if (usermsr & MSR_FP)
1204 __giveup_fpu(current);
1205 if (usermsr & MSR_VEC)
1206 __giveup_altivec(current);
1207
1208#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1209 if (usermsr & MSR_TM) {
1210 current->thread.tm_tfhar = mfspr(SPRN_TFHAR);
1211 current->thread.tm_tfiar = mfspr(SPRN_TFIAR);
1212 current->thread.tm_texasr = mfspr(SPRN_TEXASR);
1213 current->thread.regs->msr &= ~MSR_TM;
1214 }
1215#endif
1216}
1217EXPORT_SYMBOL_GPL(kvmppc_save_user_regs);
1218
1219void kvmppc_save_current_sprs(void)
1220{
1221 save_sprs(¤t->thread);
1222}
1223EXPORT_SYMBOL_GPL(kvmppc_save_current_sprs);
1224#endif /* CONFIG_KVM_BOOK3S_HV_POSSIBLE */
1225
1226static inline void restore_sprs(struct thread_struct *old_thread,
1227 struct thread_struct *new_thread)
1228{
1229#ifdef CONFIG_ALTIVEC
1230 if (cpu_has_feature(CPU_FTR_ALTIVEC) &&
1231 old_thread->vrsave != new_thread->vrsave)
1232 mtspr(SPRN_VRSAVE, new_thread->vrsave);
1233#endif
1234#ifdef CONFIG_SPE
1235 if (cpu_has_feature(CPU_FTR_SPE) &&
1236 old_thread->spefscr != new_thread->spefscr)
1237 mtspr(SPRN_SPEFSCR, new_thread->spefscr);
1238#endif
1239#ifdef CONFIG_PPC_BOOK3S_64
1240 if (cpu_has_feature(CPU_FTR_DSCR)) {
1241 u64 dscr = get_paca()->dscr_default;
1242 if (new_thread->dscr_inherit)
1243 dscr = new_thread->dscr;
1244
1245 if (old_thread->dscr != dscr)
1246 mtspr(SPRN_DSCR, dscr);
1247 }
1248
1249 if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
1250 if (old_thread->bescr != new_thread->bescr)
1251 mtspr(SPRN_BESCR, new_thread->bescr);
1252 if (old_thread->ebbhr != new_thread->ebbhr)
1253 mtspr(SPRN_EBBHR, new_thread->ebbhr);
1254 if (old_thread->ebbrr != new_thread->ebbrr)
1255 mtspr(SPRN_EBBRR, new_thread->ebbrr);
1256
1257 if (old_thread->fscr != new_thread->fscr)
1258 mtspr(SPRN_FSCR, new_thread->fscr);
1259
1260 if (old_thread->tar != new_thread->tar)
1261 mtspr(SPRN_TAR, new_thread->tar);
1262 }
1263
1264 if (cpu_has_feature(CPU_FTR_P9_TIDR) &&
1265 old_thread->tidr != new_thread->tidr)
1266 mtspr(SPRN_TIDR, new_thread->tidr);
1267
1268 if (cpu_has_feature(CPU_FTR_DEXCR_NPHIE) &&
1269 old_thread->hashkeyr != new_thread->hashkeyr)
1270 mtspr(SPRN_HASHKEYR, new_thread->hashkeyr);
1271
1272 if (cpu_has_feature(CPU_FTR_ARCH_31) &&
1273 old_thread->dexcr != new_thread->dexcr)
1274 mtspr(SPRN_DEXCR, new_thread->dexcr);
1275#endif
1276
1277}
1278
1279struct task_struct *__switch_to(struct task_struct *prev,
1280 struct task_struct *new)
1281{
1282 struct thread_struct *new_thread, *old_thread;
1283 struct task_struct *last;
1284#ifdef CONFIG_PPC_64S_HASH_MMU
1285 struct ppc64_tlb_batch *batch;
1286#endif
1287
1288 new_thread = &new->thread;
1289 old_thread = ¤t->thread;
1290
1291 WARN_ON(!irqs_disabled());
1292
1293#ifdef CONFIG_PPC_64S_HASH_MMU
1294 batch = this_cpu_ptr(&ppc64_tlb_batch);
1295 if (batch->active) {
1296 current_thread_info()->local_flags |= _TLF_LAZY_MMU;
1297 if (batch->index)
1298 __flush_tlb_pending(batch);
1299 batch->active = 0;
1300 }
1301
1302 /*
1303 * On POWER9 the copy-paste buffer can only paste into
1304 * foreign real addresses, so unprivileged processes can not
1305 * see the data or use it in any way unless they have
1306 * foreign real mappings. If the new process has the foreign
1307 * real address mappings, we must issue a cp_abort to clear
1308 * any state and prevent snooping, corruption or a covert
1309 * channel. ISA v3.1 supports paste into local memory.
1310 */
1311 if (new->mm && (cpu_has_feature(CPU_FTR_ARCH_31) ||
1312 atomic_read(&new->mm->context.vas_windows)))
1313 asm volatile(PPC_CP_ABORT);
1314#endif /* CONFIG_PPC_BOOK3S_64 */
1315
1316#ifdef CONFIG_PPC_ADV_DEBUG_REGS
1317 switch_booke_debug_regs(&new->thread.debug);
1318#else
1319/*
1320 * For PPC_BOOK3S_64, we use the hw-breakpoint interfaces that would
1321 * schedule DABR
1322 */
1323#ifndef CONFIG_HAVE_HW_BREAKPOINT
1324 switch_hw_breakpoint(new);
1325#endif /* CONFIG_HAVE_HW_BREAKPOINT */
1326#endif
1327
1328 /*
1329 * We need to save SPRs before treclaim/trecheckpoint as these will
1330 * change a number of them.
1331 */
1332 save_sprs(&prev->thread);
1333
1334 /* Save FPU, Altivec, VSX and SPE state */
1335 giveup_all(prev);
1336
1337 __switch_to_tm(prev, new);
1338
1339 if (!radix_enabled()) {
1340 /*
1341 * We can't take a PMU exception inside _switch() since there
1342 * is a window where the kernel stack SLB and the kernel stack
1343 * are out of sync. Hard disable here.
1344 */
1345 hard_irq_disable();
1346 }
1347
1348 /*
1349 * Call restore_sprs() and set_return_regs_changed() before calling
1350 * _switch(). If we move it after _switch() then we miss out on calling
1351 * it for new tasks. The reason for this is we manually create a stack
1352 * frame for new tasks that directly returns through ret_from_fork() or
1353 * ret_from_kernel_thread(). See copy_thread() for details.
1354 */
1355 restore_sprs(old_thread, new_thread);
1356
1357 set_return_regs_changed(); /* _switch changes stack (and regs) */
1358
1359 if (!IS_ENABLED(CONFIG_PPC_BOOK3S_64))
1360 kuap_assert_locked();
1361
1362 last = _switch(old_thread, new_thread);
1363
1364 /*
1365 * Nothing after _switch will be run for newly created tasks,
1366 * because they switch directly to ret_from_fork/ret_from_kernel_thread
1367 * etc. Code added here should have a comment explaining why that is
1368 * okay.
1369 */
1370
1371#ifdef CONFIG_PPC_BOOK3S_64
1372#ifdef CONFIG_PPC_64S_HASH_MMU
1373 /*
1374 * This applies to a process that was context switched while inside
1375 * arch_enter_lazy_mmu_mode(), to re-activate the batch that was
1376 * deactivated above, before _switch(). This will never be the case
1377 * for new tasks.
1378 */
1379 if (current_thread_info()->local_flags & _TLF_LAZY_MMU) {
1380 current_thread_info()->local_flags &= ~_TLF_LAZY_MMU;
1381 batch = this_cpu_ptr(&ppc64_tlb_batch);
1382 batch->active = 1;
1383 }
1384#endif
1385
1386 /*
1387 * Math facilities are masked out of the child MSR in copy_thread.
1388 * A new task does not need to restore_math because it will
1389 * demand fault them.
1390 */
1391 if (current->thread.regs)
1392 restore_math(current->thread.regs);
1393#endif /* CONFIG_PPC_BOOK3S_64 */
1394
1395 return last;
1396}
1397
1398#define NR_INSN_TO_PRINT 16
1399
1400static void show_instructions(struct pt_regs *regs)
1401{
1402 int i;
1403 unsigned long nip = regs->nip;
1404 unsigned long pc = regs->nip - (NR_INSN_TO_PRINT * 3 / 4 * sizeof(int));
1405
1406 printk("Code: ");
1407
1408 /*
1409 * If we were executing with the MMU off for instructions, adjust pc
1410 * rather than printing XXXXXXXX.
1411 */
1412 if (!IS_ENABLED(CONFIG_BOOKE) && !(regs->msr & MSR_IR)) {
1413 pc = (unsigned long)phys_to_virt(pc);
1414 nip = (unsigned long)phys_to_virt(regs->nip);
1415 }
1416
1417 for (i = 0; i < NR_INSN_TO_PRINT; i++) {
1418 int instr;
1419
1420 if (get_kernel_nofault(instr, (const void *)pc)) {
1421 pr_cont("XXXXXXXX ");
1422 } else {
1423 if (nip == pc)
1424 pr_cont("<%08x> ", instr);
1425 else
1426 pr_cont("%08x ", instr);
1427 }
1428
1429 pc += sizeof(int);
1430 }
1431
1432 pr_cont("\n");
1433}
1434
1435void show_user_instructions(struct pt_regs *regs)
1436{
1437 unsigned long pc;
1438 int n = NR_INSN_TO_PRINT;
1439 struct seq_buf s;
1440 char buf[96]; /* enough for 8 times 9 + 2 chars */
1441
1442 pc = regs->nip - (NR_INSN_TO_PRINT * 3 / 4 * sizeof(int));
1443
1444 seq_buf_init(&s, buf, sizeof(buf));
1445
1446 while (n) {
1447 int i;
1448
1449 seq_buf_clear(&s);
1450
1451 for (i = 0; i < 8 && n; i++, n--, pc += sizeof(int)) {
1452 int instr;
1453
1454 if (copy_from_user_nofault(&instr, (void __user *)pc,
1455 sizeof(instr))) {
1456 seq_buf_printf(&s, "XXXXXXXX ");
1457 continue;
1458 }
1459 seq_buf_printf(&s, regs->nip == pc ? "<%08x> " : "%08x ", instr);
1460 }
1461
1462 if (!seq_buf_has_overflowed(&s))
1463 pr_info("%s[%d]: code: %s\n", current->comm,
1464 current->pid, s.buffer);
1465 }
1466}
1467
1468struct regbit {
1469 unsigned long bit;
1470 const char *name;
1471};
1472
1473static struct regbit msr_bits[] = {
1474#if defined(CONFIG_PPC64) && !defined(CONFIG_BOOKE)
1475 {MSR_SF, "SF"},
1476 {MSR_HV, "HV"},
1477#endif
1478 {MSR_VEC, "VEC"},
1479 {MSR_VSX, "VSX"},
1480#ifdef CONFIG_BOOKE
1481 {MSR_CE, "CE"},
1482#endif
1483 {MSR_EE, "EE"},
1484 {MSR_PR, "PR"},
1485 {MSR_FP, "FP"},
1486 {MSR_ME, "ME"},
1487#ifdef CONFIG_BOOKE
1488 {MSR_DE, "DE"},
1489#else
1490 {MSR_SE, "SE"},
1491 {MSR_BE, "BE"},
1492#endif
1493 {MSR_IR, "IR"},
1494 {MSR_DR, "DR"},
1495 {MSR_PMM, "PMM"},
1496#ifndef CONFIG_BOOKE
1497 {MSR_RI, "RI"},
1498 {MSR_LE, "LE"},
1499#endif
1500 {0, NULL}
1501};
1502
1503static void print_bits(unsigned long val, struct regbit *bits, const char *sep)
1504{
1505 const char *s = "";
1506
1507 for (; bits->bit; ++bits)
1508 if (val & bits->bit) {
1509 pr_cont("%s%s", s, bits->name);
1510 s = sep;
1511 }
1512}
1513
1514#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1515static struct regbit msr_tm_bits[] = {
1516 {MSR_TS_T, "T"},
1517 {MSR_TS_S, "S"},
1518 {MSR_TM, "E"},
1519 {0, NULL}
1520};
1521
1522static void print_tm_bits(unsigned long val)
1523{
1524/*
1525 * This only prints something if at least one of the TM bit is set.
1526 * Inside the TM[], the output means:
1527 * E: Enabled (bit 32)
1528 * S: Suspended (bit 33)
1529 * T: Transactional (bit 34)
1530 */
1531 if (val & (MSR_TM | MSR_TS_S | MSR_TS_T)) {
1532 pr_cont(",TM[");
1533 print_bits(val, msr_tm_bits, "");
1534 pr_cont("]");
1535 }
1536}
1537#else
1538static void print_tm_bits(unsigned long val) {}
1539#endif
1540
1541static void print_msr_bits(unsigned long val)
1542{
1543 pr_cont("<");
1544 print_bits(val, msr_bits, ",");
1545 print_tm_bits(val);
1546 pr_cont(">");
1547}
1548
1549#ifdef CONFIG_PPC64
1550#define REG "%016lx"
1551#define REGS_PER_LINE 4
1552#else
1553#define REG "%08lx"
1554#define REGS_PER_LINE 8
1555#endif
1556
1557static void __show_regs(struct pt_regs *regs)
1558{
1559 int i, trap;
1560
1561 printk("NIP: "REG" LR: "REG" CTR: "REG"\n",
1562 regs->nip, regs->link, regs->ctr);
1563 printk("REGS: %px TRAP: %04lx %s (%s)\n",
1564 regs, regs->trap, print_tainted(), init_utsname()->release);
1565 printk("MSR: "REG" ", regs->msr);
1566 print_msr_bits(regs->msr);
1567 pr_cont(" CR: %08lx XER: %08lx\n", regs->ccr, regs->xer);
1568 trap = TRAP(regs);
1569 if (!trap_is_syscall(regs) && cpu_has_feature(CPU_FTR_CFAR))
1570 pr_cont("CFAR: "REG" ", regs->orig_gpr3);
1571 if (trap == INTERRUPT_MACHINE_CHECK ||
1572 trap == INTERRUPT_DATA_STORAGE ||
1573 trap == INTERRUPT_ALIGNMENT) {
1574 if (IS_ENABLED(CONFIG_BOOKE))
1575 pr_cont("DEAR: "REG" ESR: "REG" ", regs->dear, regs->esr);
1576 else
1577 pr_cont("DAR: "REG" DSISR: %08lx ", regs->dar, regs->dsisr);
1578 }
1579
1580#ifdef CONFIG_PPC64
1581 pr_cont("IRQMASK: %lx ", regs->softe);
1582#endif
1583#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1584 if (MSR_TM_ACTIVE(regs->msr))
1585 pr_cont("\nPACATMSCRATCH: %016llx ", get_paca()->tm_scratch);
1586#endif
1587
1588 for (i = 0; i < 32; i++) {
1589 if ((i % REGS_PER_LINE) == 0)
1590 pr_cont("\nGPR%02d: ", i);
1591 pr_cont(REG " ", regs->gpr[i]);
1592 }
1593 pr_cont("\n");
1594 /*
1595 * Lookup NIP late so we have the best change of getting the
1596 * above info out without failing
1597 */
1598 if (IS_ENABLED(CONFIG_KALLSYMS)) {
1599 printk("NIP ["REG"] %pS\n", regs->nip, (void *)regs->nip);
1600 printk("LR ["REG"] %pS\n", regs->link, (void *)regs->link);
1601 }
1602}
1603
1604void show_regs(struct pt_regs *regs)
1605{
1606 show_regs_print_info(KERN_DEFAULT);
1607 __show_regs(regs);
1608 show_stack(current, (unsigned long *) regs->gpr[1], KERN_DEFAULT);
1609 if (!user_mode(regs))
1610 show_instructions(regs);
1611}
1612
1613void flush_thread(void)
1614{
1615#ifdef CONFIG_HAVE_HW_BREAKPOINT
1616 flush_ptrace_hw_breakpoint(current);
1617#else /* CONFIG_HAVE_HW_BREAKPOINT */
1618 set_debug_reg_defaults(¤t->thread);
1619#endif /* CONFIG_HAVE_HW_BREAKPOINT */
1620}
1621
1622void arch_setup_new_exec(void)
1623{
1624
1625#ifdef CONFIG_PPC_BOOK3S_64
1626 if (!radix_enabled())
1627 hash__setup_new_exec();
1628#endif
1629 /*
1630 * If we exec out of a kernel thread then thread.regs will not be
1631 * set. Do it now.
1632 */
1633 if (!current->thread.regs) {
1634 struct pt_regs *regs = task_stack_page(current) + THREAD_SIZE;
1635 current->thread.regs = regs - 1;
1636 }
1637
1638#ifdef CONFIG_PPC_MEM_KEYS
1639 current->thread.regs->amr = default_amr;
1640 current->thread.regs->iamr = default_iamr;
1641#endif
1642
1643#ifdef CONFIG_PPC_BOOK3S_64
1644 if (cpu_has_feature(CPU_FTR_ARCH_31)) {
1645 current->thread.dexcr = current->thread.dexcr_onexec;
1646 mtspr(SPRN_DEXCR, current->thread.dexcr);
1647 }
1648#endif /* CONFIG_PPC_BOOK3S_64 */
1649}
1650
1651#ifdef CONFIG_PPC64
1652/*
1653 * Assign a TIDR (thread ID) for task @t and set it in the thread
1654 * structure. For now, we only support setting TIDR for 'current' task.
1655 *
1656 * Since the TID value is a truncated form of it PID, it is possible
1657 * (but unlikely) for 2 threads to have the same TID. In the unlikely event
1658 * that 2 threads share the same TID and are waiting, one of the following
1659 * cases will happen:
1660 *
1661 * 1. The correct thread is running, the wrong thread is not
1662 * In this situation, the correct thread is woken and proceeds to pass its
1663 * condition check.
1664 *
1665 * 2. Neither threads are running
1666 * In this situation, neither thread will be woken. When scheduled, the waiting
1667 * threads will execute either a wait, which will return immediately, followed
1668 * by a condition check, which will pass for the correct thread and fail
1669 * for the wrong thread, or they will execute the condition check immediately.
1670 *
1671 * 3. The wrong thread is running, the correct thread is not
1672 * The wrong thread will be woken, but will fail its condition check and
1673 * re-execute wait. The correct thread, when scheduled, will execute either
1674 * its condition check (which will pass), or wait, which returns immediately
1675 * when called the first time after the thread is scheduled, followed by its
1676 * condition check (which will pass).
1677 *
1678 * 4. Both threads are running
1679 * Both threads will be woken. The wrong thread will fail its condition check
1680 * and execute another wait, while the correct thread will pass its condition
1681 * check.
1682 *
1683 * @t: the task to set the thread ID for
1684 */
1685int set_thread_tidr(struct task_struct *t)
1686{
1687 if (!cpu_has_feature(CPU_FTR_P9_TIDR))
1688 return -EINVAL;
1689
1690 if (t != current)
1691 return -EINVAL;
1692
1693 if (t->thread.tidr)
1694 return 0;
1695
1696 t->thread.tidr = (u16)task_pid_nr(t);
1697 mtspr(SPRN_TIDR, t->thread.tidr);
1698
1699 return 0;
1700}
1701EXPORT_SYMBOL_GPL(set_thread_tidr);
1702
1703#endif /* CONFIG_PPC64 */
1704
1705/*
1706 * this gets called so that we can store coprocessor state into memory and
1707 * copy the current task into the new thread.
1708 */
1709int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
1710{
1711 flush_all_to_thread(src);
1712 /*
1713 * Flush TM state out so we can copy it. __switch_to_tm() does this
1714 * flush but it removes the checkpointed state from the current CPU and
1715 * transitions the CPU out of TM mode. Hence we need to call
1716 * tm_recheckpoint_new_task() (on the same task) to restore the
1717 * checkpointed state back and the TM mode.
1718 *
1719 * Can't pass dst because it isn't ready. Doesn't matter, passing
1720 * dst is only important for __switch_to()
1721 */
1722 __switch_to_tm(src, src);
1723
1724 *dst = *src;
1725
1726 clear_task_ebb(dst);
1727
1728 return 0;
1729}
1730
1731static void setup_ksp_vsid(struct task_struct *p, unsigned long sp)
1732{
1733#ifdef CONFIG_PPC_64S_HASH_MMU
1734 unsigned long sp_vsid;
1735 unsigned long llp = mmu_psize_defs[mmu_linear_psize].sllp;
1736
1737 if (radix_enabled())
1738 return;
1739
1740 if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
1741 sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_1T)
1742 << SLB_VSID_SHIFT_1T;
1743 else
1744 sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_256M)
1745 << SLB_VSID_SHIFT;
1746 sp_vsid |= SLB_VSID_KERNEL | llp;
1747 p->thread.ksp_vsid = sp_vsid;
1748#endif
1749}
1750
1751/*
1752 * Copy a thread..
1753 */
1754
1755/*
1756 * Copy architecture-specific thread state
1757 */
1758int copy_thread(struct task_struct *p, const struct kernel_clone_args *args)
1759{
1760 struct pt_regs *kregs; /* Switch frame regs */
1761 extern void ret_from_fork(void);
1762 extern void ret_from_fork_scv(void);
1763 extern void ret_from_kernel_user_thread(void);
1764 extern void start_kernel_thread(void);
1765 void (*f)(void);
1766 unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE;
1767#ifdef CONFIG_HAVE_HW_BREAKPOINT
1768 int i;
1769#endif
1770
1771 klp_init_thread_info(p);
1772
1773 if (unlikely(p->flags & PF_KTHREAD)) {
1774 /* kernel thread */
1775
1776 /* Create initial minimum stack frame. */
1777 sp -= STACK_FRAME_MIN_SIZE;
1778 ((unsigned long *)sp)[0] = 0;
1779
1780 f = start_kernel_thread;
1781 p->thread.regs = NULL; /* no user register state */
1782 clear_tsk_compat_task(p);
1783 } else {
1784 /* user thread */
1785 struct pt_regs *childregs;
1786
1787 /* Create initial user return stack frame. */
1788 sp -= STACK_USER_INT_FRAME_SIZE;
1789 *(unsigned long *)(sp + STACK_INT_FRAME_MARKER) = STACK_FRAME_REGS_MARKER;
1790
1791 childregs = (struct pt_regs *)(sp + STACK_INT_FRAME_REGS);
1792
1793 if (unlikely(args->fn)) {
1794 /*
1795 * A user space thread, but it first runs a kernel
1796 * thread, and then returns as though it had called
1797 * execve rather than fork, so user regs will be
1798 * filled in (e.g., by kernel_execve()).
1799 */
1800 ((unsigned long *)sp)[0] = 0;
1801 memset(childregs, 0, sizeof(struct pt_regs));
1802#ifdef CONFIG_PPC64
1803 childregs->softe = IRQS_ENABLED;
1804#endif
1805 f = ret_from_kernel_user_thread;
1806 } else {
1807 struct pt_regs *regs = current_pt_regs();
1808 unsigned long clone_flags = args->flags;
1809 unsigned long usp = args->stack;
1810
1811 /* Copy registers */
1812 *childregs = *regs;
1813 if (usp)
1814 childregs->gpr[1] = usp;
1815 ((unsigned long *)sp)[0] = childregs->gpr[1];
1816#ifdef CONFIG_PPC_IRQ_SOFT_MASK_DEBUG
1817 WARN_ON_ONCE(childregs->softe != IRQS_ENABLED);
1818#endif
1819 if (clone_flags & CLONE_SETTLS) {
1820 unsigned long tls = args->tls;
1821
1822 if (!is_32bit_task())
1823 childregs->gpr[13] = tls;
1824 else
1825 childregs->gpr[2] = tls;
1826 }
1827
1828 if (trap_is_scv(regs))
1829 f = ret_from_fork_scv;
1830 else
1831 f = ret_from_fork;
1832 }
1833
1834 childregs->msr &= ~(MSR_FP|MSR_VEC|MSR_VSX);
1835 p->thread.regs = childregs;
1836 }
1837
1838 /*
1839 * The way this works is that at some point in the future
1840 * some task will call _switch to switch to the new task.
1841 * That will pop off the stack frame created below and start
1842 * the new task running at ret_from_fork. The new task will
1843 * do some house keeping and then return from the fork or clone
1844 * system call, using the stack frame created above.
1845 */
1846 ((unsigned long *)sp)[STACK_FRAME_LR_SAVE] = (unsigned long)f;
1847 sp -= STACK_SWITCH_FRAME_SIZE;
1848 ((unsigned long *)sp)[0] = sp + STACK_SWITCH_FRAME_SIZE;
1849 kregs = (struct pt_regs *)(sp + STACK_SWITCH_FRAME_REGS);
1850 kregs->nip = ppc_function_entry(f);
1851 if (unlikely(args->fn)) {
1852 /*
1853 * Put kthread fn, arg parameters in non-volatile GPRs in the
1854 * switch frame so they are loaded by _switch before it returns
1855 * to ret_from_kernel_thread.
1856 */
1857 kregs->gpr[14] = ppc_function_entry((void *)args->fn);
1858 kregs->gpr[15] = (unsigned long)args->fn_arg;
1859 }
1860 p->thread.ksp = sp;
1861
1862#ifdef CONFIG_HAVE_HW_BREAKPOINT
1863 for (i = 0; i < nr_wp_slots(); i++)
1864 p->thread.ptrace_bps[i] = NULL;
1865#endif
1866
1867#ifdef CONFIG_PPC_FPU_REGS
1868 p->thread.fp_save_area = NULL;
1869#endif
1870#ifdef CONFIG_ALTIVEC
1871 p->thread.vr_save_area = NULL;
1872#endif
1873#if defined(CONFIG_PPC_BOOK3S_32) && defined(CONFIG_PPC_KUAP)
1874 p->thread.kuap = KUAP_NONE;
1875#endif
1876#if defined(CONFIG_BOOKE) && defined(CONFIG_PPC_KUAP)
1877 p->thread.pid = MMU_NO_CONTEXT;
1878#endif
1879
1880 setup_ksp_vsid(p, sp);
1881
1882#ifdef CONFIG_PPC64
1883 if (cpu_has_feature(CPU_FTR_DSCR)) {
1884 p->thread.dscr_inherit = current->thread.dscr_inherit;
1885 p->thread.dscr = mfspr(SPRN_DSCR);
1886 }
1887
1888 p->thread.tidr = 0;
1889#endif
1890#ifdef CONFIG_PPC_BOOK3S_64
1891 if (cpu_has_feature(CPU_FTR_DEXCR_NPHIE))
1892 p->thread.hashkeyr = current->thread.hashkeyr;
1893
1894 if (cpu_has_feature(CPU_FTR_ARCH_31))
1895 p->thread.dexcr = mfspr(SPRN_DEXCR);
1896#endif
1897 return 0;
1898}
1899
1900void preload_new_slb_context(unsigned long start, unsigned long sp);
1901
1902/*
1903 * Set up a thread for executing a new program
1904 */
1905void start_thread(struct pt_regs *regs, unsigned long start, unsigned long sp)
1906{
1907#ifdef CONFIG_PPC64
1908 unsigned long load_addr = regs->gpr[2]; /* saved by ELF_PLAT_INIT */
1909
1910 if (IS_ENABLED(CONFIG_PPC_BOOK3S_64) && !radix_enabled())
1911 preload_new_slb_context(start, sp);
1912#endif
1913
1914#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1915 /*
1916 * Clear any transactional state, we're exec()ing. The cause is
1917 * not important as there will never be a recheckpoint so it's not
1918 * user visible.
1919 */
1920 if (MSR_TM_SUSPENDED(mfmsr()))
1921 tm_reclaim_current(0);
1922#endif
1923
1924 memset(®s->gpr[1], 0, sizeof(regs->gpr) - sizeof(regs->gpr[0]));
1925 regs->ctr = 0;
1926 regs->link = 0;
1927 regs->xer = 0;
1928 regs->ccr = 0;
1929 regs->gpr[1] = sp;
1930
1931#ifdef CONFIG_PPC32
1932 regs->mq = 0;
1933 regs->nip = start;
1934 regs->msr = MSR_USER;
1935#else
1936 if (!is_32bit_task()) {
1937 unsigned long entry;
1938
1939 if (is_elf2_task()) {
1940 /* Look ma, no function descriptors! */
1941 entry = start;
1942
1943 /*
1944 * Ulrich says:
1945 * The latest iteration of the ABI requires that when
1946 * calling a function (at its global entry point),
1947 * the caller must ensure r12 holds the entry point
1948 * address (so that the function can quickly
1949 * establish addressability).
1950 */
1951 regs->gpr[12] = start;
1952 /* Make sure that's restored on entry to userspace. */
1953 set_thread_flag(TIF_RESTOREALL);
1954 } else {
1955 unsigned long toc;
1956
1957 /* start is a relocated pointer to the function
1958 * descriptor for the elf _start routine. The first
1959 * entry in the function descriptor is the entry
1960 * address of _start and the second entry is the TOC
1961 * value we need to use.
1962 */
1963 __get_user(entry, (unsigned long __user *)start);
1964 __get_user(toc, (unsigned long __user *)start+1);
1965
1966 /* Check whether the e_entry function descriptor entries
1967 * need to be relocated before we can use them.
1968 */
1969 if (load_addr != 0) {
1970 entry += load_addr;
1971 toc += load_addr;
1972 }
1973 regs->gpr[2] = toc;
1974 }
1975 regs_set_return_ip(regs, entry);
1976 regs_set_return_msr(regs, MSR_USER64);
1977 } else {
1978 regs->gpr[2] = 0;
1979 regs_set_return_ip(regs, start);
1980 regs_set_return_msr(regs, MSR_USER32);
1981 }
1982
1983#endif
1984#ifdef CONFIG_VSX
1985 current->thread.used_vsr = 0;
1986#endif
1987 current->thread.load_slb = 0;
1988 current->thread.load_fp = 0;
1989#ifdef CONFIG_PPC_FPU_REGS
1990 memset(¤t->thread.fp_state, 0, sizeof(current->thread.fp_state));
1991 current->thread.fp_save_area = NULL;
1992#endif
1993#ifdef CONFIG_ALTIVEC
1994 memset(¤t->thread.vr_state, 0, sizeof(current->thread.vr_state));
1995 current->thread.vr_state.vscr.u[3] = 0x00010000; /* Java mode disabled */
1996 current->thread.vr_save_area = NULL;
1997 current->thread.vrsave = 0;
1998 current->thread.used_vr = 0;
1999 current->thread.load_vec = 0;
2000#endif /* CONFIG_ALTIVEC */
2001#ifdef CONFIG_SPE
2002 memset(current->thread.evr, 0, sizeof(current->thread.evr));
2003 current->thread.acc = 0;
2004 current->thread.spefscr = 0;
2005 current->thread.used_spe = 0;
2006#endif /* CONFIG_SPE */
2007#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
2008 current->thread.tm_tfhar = 0;
2009 current->thread.tm_texasr = 0;
2010 current->thread.tm_tfiar = 0;
2011 current->thread.load_tm = 0;
2012#endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
2013#ifdef CONFIG_PPC_BOOK3S_64
2014 if (cpu_has_feature(CPU_FTR_DEXCR_NPHIE)) {
2015 current->thread.hashkeyr = get_random_long();
2016 mtspr(SPRN_HASHKEYR, current->thread.hashkeyr);
2017 }
2018#endif /* CONFIG_PPC_BOOK3S_64 */
2019}
2020EXPORT_SYMBOL(start_thread);
2021
2022#define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \
2023 | PR_FP_EXC_RES | PR_FP_EXC_INV)
2024
2025int set_fpexc_mode(struct task_struct *tsk, unsigned int val)
2026{
2027 struct pt_regs *regs = tsk->thread.regs;
2028
2029 /* This is a bit hairy. If we are an SPE enabled processor
2030 * (have embedded fp) we store the IEEE exception enable flags in
2031 * fpexc_mode. fpexc_mode is also used for setting FP exception
2032 * mode (asyn, precise, disabled) for 'Classic' FP. */
2033 if (val & PR_FP_EXC_SW_ENABLE) {
2034 if (cpu_has_feature(CPU_FTR_SPE)) {
2035 /*
2036 * When the sticky exception bits are set
2037 * directly by userspace, it must call prctl
2038 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
2039 * in the existing prctl settings) or
2040 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
2041 * the bits being set). <fenv.h> functions
2042 * saving and restoring the whole
2043 * floating-point environment need to do so
2044 * anyway to restore the prctl settings from
2045 * the saved environment.
2046 */
2047#ifdef CONFIG_SPE
2048 tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
2049 tsk->thread.fpexc_mode = val &
2050 (PR_FP_EXC_SW_ENABLE | PR_FP_ALL_EXCEPT);
2051#endif
2052 return 0;
2053 } else {
2054 return -EINVAL;
2055 }
2056 }
2057
2058 /* on a CONFIG_SPE this does not hurt us. The bits that
2059 * __pack_fe01 use do not overlap with bits used for
2060 * PR_FP_EXC_SW_ENABLE. Additionally, the MSR[FE0,FE1] bits
2061 * on CONFIG_SPE implementations are reserved so writing to
2062 * them does not change anything */
2063 if (val > PR_FP_EXC_PRECISE)
2064 return -EINVAL;
2065 tsk->thread.fpexc_mode = __pack_fe01(val);
2066 if (regs != NULL && (regs->msr & MSR_FP) != 0) {
2067 regs_set_return_msr(regs, (regs->msr & ~(MSR_FE0|MSR_FE1))
2068 | tsk->thread.fpexc_mode);
2069 }
2070 return 0;
2071}
2072
2073int get_fpexc_mode(struct task_struct *tsk, unsigned long adr)
2074{
2075 unsigned int val = 0;
2076
2077 if (tsk->thread.fpexc_mode & PR_FP_EXC_SW_ENABLE) {
2078 if (cpu_has_feature(CPU_FTR_SPE)) {
2079 /*
2080 * When the sticky exception bits are set
2081 * directly by userspace, it must call prctl
2082 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
2083 * in the existing prctl settings) or
2084 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
2085 * the bits being set). <fenv.h> functions
2086 * saving and restoring the whole
2087 * floating-point environment need to do so
2088 * anyway to restore the prctl settings from
2089 * the saved environment.
2090 */
2091#ifdef CONFIG_SPE
2092 tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
2093 val = tsk->thread.fpexc_mode;
2094#endif
2095 } else
2096 return -EINVAL;
2097 } else {
2098 val = __unpack_fe01(tsk->thread.fpexc_mode);
2099 }
2100 return put_user(val, (unsigned int __user *) adr);
2101}
2102
2103int set_endian(struct task_struct *tsk, unsigned int val)
2104{
2105 struct pt_regs *regs = tsk->thread.regs;
2106
2107 if ((val == PR_ENDIAN_LITTLE && !cpu_has_feature(CPU_FTR_REAL_LE)) ||
2108 (val == PR_ENDIAN_PPC_LITTLE && !cpu_has_feature(CPU_FTR_PPC_LE)))
2109 return -EINVAL;
2110
2111 if (regs == NULL)
2112 return -EINVAL;
2113
2114 if (val == PR_ENDIAN_BIG)
2115 regs_set_return_msr(regs, regs->msr & ~MSR_LE);
2116 else if (val == PR_ENDIAN_LITTLE || val == PR_ENDIAN_PPC_LITTLE)
2117 regs_set_return_msr(regs, regs->msr | MSR_LE);
2118 else
2119 return -EINVAL;
2120
2121 return 0;
2122}
2123
2124int get_endian(struct task_struct *tsk, unsigned long adr)
2125{
2126 struct pt_regs *regs = tsk->thread.regs;
2127 unsigned int val;
2128
2129 if (!cpu_has_feature(CPU_FTR_PPC_LE) &&
2130 !cpu_has_feature(CPU_FTR_REAL_LE))
2131 return -EINVAL;
2132
2133 if (regs == NULL)
2134 return -EINVAL;
2135
2136 if (regs->msr & MSR_LE) {
2137 if (cpu_has_feature(CPU_FTR_REAL_LE))
2138 val = PR_ENDIAN_LITTLE;
2139 else
2140 val = PR_ENDIAN_PPC_LITTLE;
2141 } else
2142 val = PR_ENDIAN_BIG;
2143
2144 return put_user(val, (unsigned int __user *)adr);
2145}
2146
2147int set_unalign_ctl(struct task_struct *tsk, unsigned int val)
2148{
2149 tsk->thread.align_ctl = val;
2150 return 0;
2151}
2152
2153int get_unalign_ctl(struct task_struct *tsk, unsigned long adr)
2154{
2155 return put_user(tsk->thread.align_ctl, (unsigned int __user *)adr);
2156}
2157
2158static inline int valid_irq_stack(unsigned long sp, struct task_struct *p,
2159 unsigned long nbytes)
2160{
2161 unsigned long stack_page;
2162 unsigned long cpu = task_cpu(p);
2163
2164 if (!hardirq_ctx[cpu] || !softirq_ctx[cpu])
2165 return 0;
2166
2167 stack_page = (unsigned long)hardirq_ctx[cpu];
2168 if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes)
2169 return 1;
2170
2171 stack_page = (unsigned long)softirq_ctx[cpu];
2172 if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes)
2173 return 1;
2174
2175 return 0;
2176}
2177
2178#ifdef CONFIG_PPC64
2179static inline int valid_emergency_stack(unsigned long sp, struct task_struct *p,
2180 unsigned long nbytes)
2181{
2182 unsigned long stack_page;
2183 unsigned long cpu = task_cpu(p);
2184
2185 if (!paca_ptrs)
2186 return 0;
2187
2188 if (!paca_ptrs[cpu]->emergency_sp)
2189 return 0;
2190
2191# ifdef CONFIG_PPC_BOOK3S_64
2192 if (!paca_ptrs[cpu]->nmi_emergency_sp || !paca_ptrs[cpu]->mc_emergency_sp)
2193 return 0;
2194#endif
2195
2196 stack_page = (unsigned long)paca_ptrs[cpu]->emergency_sp - THREAD_SIZE;
2197 if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes)
2198 return 1;
2199
2200# ifdef CONFIG_PPC_BOOK3S_64
2201 stack_page = (unsigned long)paca_ptrs[cpu]->nmi_emergency_sp - THREAD_SIZE;
2202 if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes)
2203 return 1;
2204
2205 stack_page = (unsigned long)paca_ptrs[cpu]->mc_emergency_sp - THREAD_SIZE;
2206 if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes)
2207 return 1;
2208# endif
2209
2210 return 0;
2211}
2212#else
2213static inline int valid_emergency_stack(unsigned long sp, struct task_struct *p,
2214 unsigned long nbytes)
2215{
2216 unsigned long stack_page;
2217 unsigned long cpu = task_cpu(p);
2218
2219 if (!IS_ENABLED(CONFIG_VMAP_STACK))
2220 return 0;
2221
2222 stack_page = (unsigned long)emergency_ctx[cpu] - THREAD_SIZE;
2223 if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes)
2224 return 1;
2225
2226 return 0;
2227}
2228#endif
2229
2230/*
2231 * validate the stack frame of a particular minimum size, used for when we are
2232 * looking at a certain object in the stack beyond the minimum.
2233 */
2234int validate_sp_size(unsigned long sp, struct task_struct *p,
2235 unsigned long nbytes)
2236{
2237 unsigned long stack_page = (unsigned long)task_stack_page(p);
2238
2239 if (sp < THREAD_SIZE)
2240 return 0;
2241
2242 if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes)
2243 return 1;
2244
2245 if (valid_irq_stack(sp, p, nbytes))
2246 return 1;
2247
2248 return valid_emergency_stack(sp, p, nbytes);
2249}
2250
2251int validate_sp(unsigned long sp, struct task_struct *p)
2252{
2253 return validate_sp_size(sp, p, STACK_FRAME_MIN_SIZE);
2254}
2255
2256static unsigned long ___get_wchan(struct task_struct *p)
2257{
2258 unsigned long ip, sp;
2259 int count = 0;
2260
2261 sp = p->thread.ksp;
2262 if (!validate_sp(sp, p))
2263 return 0;
2264
2265 do {
2266 sp = READ_ONCE_NOCHECK(*(unsigned long *)sp);
2267 if (!validate_sp(sp, p) || task_is_running(p))
2268 return 0;
2269 if (count > 0) {
2270 ip = READ_ONCE_NOCHECK(((unsigned long *)sp)[STACK_FRAME_LR_SAVE]);
2271 if (!in_sched_functions(ip))
2272 return ip;
2273 }
2274 } while (count++ < 16);
2275 return 0;
2276}
2277
2278unsigned long __get_wchan(struct task_struct *p)
2279{
2280 unsigned long ret;
2281
2282 if (!try_get_task_stack(p))
2283 return 0;
2284
2285 ret = ___get_wchan(p);
2286
2287 put_task_stack(p);
2288
2289 return ret;
2290}
2291
2292static bool empty_user_regs(struct pt_regs *regs, struct task_struct *tsk)
2293{
2294 unsigned long stack_page;
2295
2296 // A non-empty pt_regs should never have a zero MSR or TRAP value.
2297 if (regs->msr || regs->trap)
2298 return false;
2299
2300 // Check it sits at the very base of the stack
2301 stack_page = (unsigned long)task_stack_page(tsk);
2302 if ((unsigned long)(regs + 1) != stack_page + THREAD_SIZE)
2303 return false;
2304
2305 return true;
2306}
2307
2308static int kstack_depth_to_print = CONFIG_PRINT_STACK_DEPTH;
2309
2310void __no_sanitize_address show_stack(struct task_struct *tsk,
2311 unsigned long *stack,
2312 const char *loglvl)
2313{
2314 unsigned long sp, ip, lr, newsp;
2315 int count = 0;
2316 int firstframe = 1;
2317 unsigned long ret_addr;
2318 int ftrace_idx = 0;
2319
2320 if (tsk == NULL)
2321 tsk = current;
2322
2323 if (!try_get_task_stack(tsk))
2324 return;
2325
2326 sp = (unsigned long) stack;
2327 if (sp == 0) {
2328 if (tsk == current)
2329 sp = current_stack_frame();
2330 else
2331 sp = tsk->thread.ksp;
2332 }
2333
2334 lr = 0;
2335 printk("%sCall Trace:\n", loglvl);
2336 do {
2337 if (!validate_sp(sp, tsk))
2338 break;
2339
2340 stack = (unsigned long *) sp;
2341 newsp = stack[0];
2342 ip = stack[STACK_FRAME_LR_SAVE];
2343 if (!firstframe || ip != lr) {
2344 printk("%s["REG"] ["REG"] %pS",
2345 loglvl, sp, ip, (void *)ip);
2346 ret_addr = ftrace_graph_ret_addr(current,
2347 &ftrace_idx, ip, stack);
2348 if (ret_addr != ip)
2349 pr_cont(" (%pS)", (void *)ret_addr);
2350 if (firstframe)
2351 pr_cont(" (unreliable)");
2352 pr_cont("\n");
2353 }
2354 firstframe = 0;
2355
2356 /*
2357 * See if this is an exception frame.
2358 * We look for the "regs" marker in the current frame.
2359 *
2360 * STACK_SWITCH_FRAME_SIZE being the smallest frame that
2361 * could hold a pt_regs, if that does not fit then it can't
2362 * have regs.
2363 */
2364 if (validate_sp_size(sp, tsk, STACK_SWITCH_FRAME_SIZE)
2365 && stack[STACK_INT_FRAME_MARKER_LONGS] == STACK_FRAME_REGS_MARKER) {
2366 struct pt_regs *regs = (struct pt_regs *)
2367 (sp + STACK_INT_FRAME_REGS);
2368
2369 lr = regs->link;
2370 printk("%s--- interrupt: %lx at %pS\n",
2371 loglvl, regs->trap, (void *)regs->nip);
2372
2373 // Detect the case of an empty pt_regs at the very base
2374 // of the stack and suppress showing it in full.
2375 if (!empty_user_regs(regs, tsk)) {
2376 __show_regs(regs);
2377 printk("%s--- interrupt: %lx\n", loglvl, regs->trap);
2378 }
2379
2380 firstframe = 1;
2381 }
2382
2383 sp = newsp;
2384 } while (count++ < kstack_depth_to_print);
2385
2386 put_task_stack(tsk);
2387}
2388
2389#ifdef CONFIG_PPC64
2390/* Called with hard IRQs off */
2391void notrace __ppc64_runlatch_on(void)
2392{
2393 struct thread_info *ti = current_thread_info();
2394
2395 if (cpu_has_feature(CPU_FTR_ARCH_206)) {
2396 /*
2397 * Least significant bit (RUN) is the only writable bit of
2398 * the CTRL register, so we can avoid mfspr. 2.06 is not the
2399 * earliest ISA where this is the case, but it's convenient.
2400 */
2401 mtspr(SPRN_CTRLT, CTRL_RUNLATCH);
2402 } else {
2403 unsigned long ctrl;
2404
2405 /*
2406 * Some architectures (e.g., Cell) have writable fields other
2407 * than RUN, so do the read-modify-write.
2408 */
2409 ctrl = mfspr(SPRN_CTRLF);
2410 ctrl |= CTRL_RUNLATCH;
2411 mtspr(SPRN_CTRLT, ctrl);
2412 }
2413
2414 ti->local_flags |= _TLF_RUNLATCH;
2415}
2416
2417/* Called with hard IRQs off */
2418void notrace __ppc64_runlatch_off(void)
2419{
2420 struct thread_info *ti = current_thread_info();
2421
2422 ti->local_flags &= ~_TLF_RUNLATCH;
2423
2424 if (cpu_has_feature(CPU_FTR_ARCH_206)) {
2425 mtspr(SPRN_CTRLT, 0);
2426 } else {
2427 unsigned long ctrl;
2428
2429 ctrl = mfspr(SPRN_CTRLF);
2430 ctrl &= ~CTRL_RUNLATCH;
2431 mtspr(SPRN_CTRLT, ctrl);
2432 }
2433}
2434#endif /* CONFIG_PPC64 */
2435
2436unsigned long arch_align_stack(unsigned long sp)
2437{
2438 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
2439 sp -= get_random_u32_below(PAGE_SIZE);
2440 return sp & ~0xf;
2441}
1/*
2 * Derived from "arch/i386/kernel/process.c"
3 * Copyright (C) 1995 Linus Torvalds
4 *
5 * Updated and modified by Cort Dougan (cort@cs.nmt.edu) and
6 * Paul Mackerras (paulus@cs.anu.edu.au)
7 *
8 * PowerPC version
9 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
10 *
11 * This program is free software; you can redistribute it and/or
12 * modify it under the terms of the GNU General Public License
13 * as published by the Free Software Foundation; either version
14 * 2 of the License, or (at your option) any later version.
15 */
16
17#include <linux/errno.h>
18#include <linux/sched.h>
19#include <linux/kernel.h>
20#include <linux/mm.h>
21#include <linux/smp.h>
22#include <linux/stddef.h>
23#include <linux/unistd.h>
24#include <linux/ptrace.h>
25#include <linux/slab.h>
26#include <linux/user.h>
27#include <linux/elf.h>
28#include <linux/prctl.h>
29#include <linux/init_task.h>
30#include <linux/export.h>
31#include <linux/kallsyms.h>
32#include <linux/mqueue.h>
33#include <linux/hardirq.h>
34#include <linux/utsname.h>
35#include <linux/ftrace.h>
36#include <linux/kernel_stat.h>
37#include <linux/personality.h>
38#include <linux/random.h>
39#include <linux/hw_breakpoint.h>
40#include <linux/uaccess.h>
41#include <linux/elf-randomize.h>
42
43#include <asm/pgtable.h>
44#include <asm/io.h>
45#include <asm/processor.h>
46#include <asm/mmu.h>
47#include <asm/prom.h>
48#include <asm/machdep.h>
49#include <asm/time.h>
50#include <asm/runlatch.h>
51#include <asm/syscalls.h>
52#include <asm/switch_to.h>
53#include <asm/tm.h>
54#include <asm/debug.h>
55#ifdef CONFIG_PPC64
56#include <asm/firmware.h>
57#endif
58#include <asm/code-patching.h>
59#include <asm/exec.h>
60#include <asm/livepatch.h>
61#include <asm/cpu_has_feature.h>
62#include <asm/asm-prototypes.h>
63
64#include <linux/kprobes.h>
65#include <linux/kdebug.h>
66
67/* Transactional Memory debug */
68#ifdef TM_DEBUG_SW
69#define TM_DEBUG(x...) printk(KERN_INFO x)
70#else
71#define TM_DEBUG(x...) do { } while(0)
72#endif
73
74extern unsigned long _get_SP(void);
75
76#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
77static void check_if_tm_restore_required(struct task_struct *tsk)
78{
79 /*
80 * If we are saving the current thread's registers, and the
81 * thread is in a transactional state, set the TIF_RESTORE_TM
82 * bit so that we know to restore the registers before
83 * returning to userspace.
84 */
85 if (tsk == current && tsk->thread.regs &&
86 MSR_TM_ACTIVE(tsk->thread.regs->msr) &&
87 !test_thread_flag(TIF_RESTORE_TM)) {
88 tsk->thread.ckpt_regs.msr = tsk->thread.regs->msr;
89 set_thread_flag(TIF_RESTORE_TM);
90 }
91}
92
93static inline bool msr_tm_active(unsigned long msr)
94{
95 return MSR_TM_ACTIVE(msr);
96}
97#else
98static inline bool msr_tm_active(unsigned long msr) { return false; }
99static inline void check_if_tm_restore_required(struct task_struct *tsk) { }
100#endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
101
102bool strict_msr_control;
103EXPORT_SYMBOL(strict_msr_control);
104
105static int __init enable_strict_msr_control(char *str)
106{
107 strict_msr_control = true;
108 pr_info("Enabling strict facility control\n");
109
110 return 0;
111}
112early_param("ppc_strict_facility_enable", enable_strict_msr_control);
113
114unsigned long msr_check_and_set(unsigned long bits)
115{
116 unsigned long oldmsr = mfmsr();
117 unsigned long newmsr;
118
119 newmsr = oldmsr | bits;
120
121#ifdef CONFIG_VSX
122 if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP))
123 newmsr |= MSR_VSX;
124#endif
125
126 if (oldmsr != newmsr)
127 mtmsr_isync(newmsr);
128
129 return newmsr;
130}
131
132void __msr_check_and_clear(unsigned long bits)
133{
134 unsigned long oldmsr = mfmsr();
135 unsigned long newmsr;
136
137 newmsr = oldmsr & ~bits;
138
139#ifdef CONFIG_VSX
140 if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP))
141 newmsr &= ~MSR_VSX;
142#endif
143
144 if (oldmsr != newmsr)
145 mtmsr_isync(newmsr);
146}
147EXPORT_SYMBOL(__msr_check_and_clear);
148
149#ifdef CONFIG_PPC_FPU
150void __giveup_fpu(struct task_struct *tsk)
151{
152 unsigned long msr;
153
154 save_fpu(tsk);
155 msr = tsk->thread.regs->msr;
156 msr &= ~MSR_FP;
157#ifdef CONFIG_VSX
158 if (cpu_has_feature(CPU_FTR_VSX))
159 msr &= ~MSR_VSX;
160#endif
161 tsk->thread.regs->msr = msr;
162}
163
164void giveup_fpu(struct task_struct *tsk)
165{
166 check_if_tm_restore_required(tsk);
167
168 msr_check_and_set(MSR_FP);
169 __giveup_fpu(tsk);
170 msr_check_and_clear(MSR_FP);
171}
172EXPORT_SYMBOL(giveup_fpu);
173
174/*
175 * Make sure the floating-point register state in the
176 * the thread_struct is up to date for task tsk.
177 */
178void flush_fp_to_thread(struct task_struct *tsk)
179{
180 if (tsk->thread.regs) {
181 /*
182 * We need to disable preemption here because if we didn't,
183 * another process could get scheduled after the regs->msr
184 * test but before we have finished saving the FP registers
185 * to the thread_struct. That process could take over the
186 * FPU, and then when we get scheduled again we would store
187 * bogus values for the remaining FP registers.
188 */
189 preempt_disable();
190 if (tsk->thread.regs->msr & MSR_FP) {
191 /*
192 * This should only ever be called for current or
193 * for a stopped child process. Since we save away
194 * the FP register state on context switch,
195 * there is something wrong if a stopped child appears
196 * to still have its FP state in the CPU registers.
197 */
198 BUG_ON(tsk != current);
199 giveup_fpu(tsk);
200 }
201 preempt_enable();
202 }
203}
204EXPORT_SYMBOL_GPL(flush_fp_to_thread);
205
206void enable_kernel_fp(void)
207{
208 unsigned long cpumsr;
209
210 WARN_ON(preemptible());
211
212 cpumsr = msr_check_and_set(MSR_FP);
213
214 if (current->thread.regs && (current->thread.regs->msr & MSR_FP)) {
215 check_if_tm_restore_required(current);
216 /*
217 * If a thread has already been reclaimed then the
218 * checkpointed registers are on the CPU but have definitely
219 * been saved by the reclaim code. Don't need to and *cannot*
220 * giveup as this would save to the 'live' structure not the
221 * checkpointed structure.
222 */
223 if(!msr_tm_active(cpumsr) && msr_tm_active(current->thread.regs->msr))
224 return;
225 __giveup_fpu(current);
226 }
227}
228EXPORT_SYMBOL(enable_kernel_fp);
229
230static int restore_fp(struct task_struct *tsk) {
231 if (tsk->thread.load_fp || msr_tm_active(tsk->thread.regs->msr)) {
232 load_fp_state(¤t->thread.fp_state);
233 current->thread.load_fp++;
234 return 1;
235 }
236 return 0;
237}
238#else
239static int restore_fp(struct task_struct *tsk) { return 0; }
240#endif /* CONFIG_PPC_FPU */
241
242#ifdef CONFIG_ALTIVEC
243#define loadvec(thr) ((thr).load_vec)
244
245static void __giveup_altivec(struct task_struct *tsk)
246{
247 unsigned long msr;
248
249 save_altivec(tsk);
250 msr = tsk->thread.regs->msr;
251 msr &= ~MSR_VEC;
252#ifdef CONFIG_VSX
253 if (cpu_has_feature(CPU_FTR_VSX))
254 msr &= ~MSR_VSX;
255#endif
256 tsk->thread.regs->msr = msr;
257}
258
259void giveup_altivec(struct task_struct *tsk)
260{
261 check_if_tm_restore_required(tsk);
262
263 msr_check_and_set(MSR_VEC);
264 __giveup_altivec(tsk);
265 msr_check_and_clear(MSR_VEC);
266}
267EXPORT_SYMBOL(giveup_altivec);
268
269void enable_kernel_altivec(void)
270{
271 unsigned long cpumsr;
272
273 WARN_ON(preemptible());
274
275 cpumsr = msr_check_and_set(MSR_VEC);
276
277 if (current->thread.regs && (current->thread.regs->msr & MSR_VEC)) {
278 check_if_tm_restore_required(current);
279 /*
280 * If a thread has already been reclaimed then the
281 * checkpointed registers are on the CPU but have definitely
282 * been saved by the reclaim code. Don't need to and *cannot*
283 * giveup as this would save to the 'live' structure not the
284 * checkpointed structure.
285 */
286 if(!msr_tm_active(cpumsr) && msr_tm_active(current->thread.regs->msr))
287 return;
288 __giveup_altivec(current);
289 }
290}
291EXPORT_SYMBOL(enable_kernel_altivec);
292
293/*
294 * Make sure the VMX/Altivec register state in the
295 * the thread_struct is up to date for task tsk.
296 */
297void flush_altivec_to_thread(struct task_struct *tsk)
298{
299 if (tsk->thread.regs) {
300 preempt_disable();
301 if (tsk->thread.regs->msr & MSR_VEC) {
302 BUG_ON(tsk != current);
303 giveup_altivec(tsk);
304 }
305 preempt_enable();
306 }
307}
308EXPORT_SYMBOL_GPL(flush_altivec_to_thread);
309
310static int restore_altivec(struct task_struct *tsk)
311{
312 if (cpu_has_feature(CPU_FTR_ALTIVEC) &&
313 (tsk->thread.load_vec || msr_tm_active(tsk->thread.regs->msr))) {
314 load_vr_state(&tsk->thread.vr_state);
315 tsk->thread.used_vr = 1;
316 tsk->thread.load_vec++;
317
318 return 1;
319 }
320 return 0;
321}
322#else
323#define loadvec(thr) 0
324static inline int restore_altivec(struct task_struct *tsk) { return 0; }
325#endif /* CONFIG_ALTIVEC */
326
327#ifdef CONFIG_VSX
328static void __giveup_vsx(struct task_struct *tsk)
329{
330 if (tsk->thread.regs->msr & MSR_FP)
331 __giveup_fpu(tsk);
332 if (tsk->thread.regs->msr & MSR_VEC)
333 __giveup_altivec(tsk);
334 tsk->thread.regs->msr &= ~MSR_VSX;
335}
336
337static void giveup_vsx(struct task_struct *tsk)
338{
339 check_if_tm_restore_required(tsk);
340
341 msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX);
342 __giveup_vsx(tsk);
343 msr_check_and_clear(MSR_FP|MSR_VEC|MSR_VSX);
344}
345
346static void save_vsx(struct task_struct *tsk)
347{
348 if (tsk->thread.regs->msr & MSR_FP)
349 save_fpu(tsk);
350 if (tsk->thread.regs->msr & MSR_VEC)
351 save_altivec(tsk);
352}
353
354void enable_kernel_vsx(void)
355{
356 unsigned long cpumsr;
357
358 WARN_ON(preemptible());
359
360 cpumsr = msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX);
361
362 if (current->thread.regs && (current->thread.regs->msr & MSR_VSX)) {
363 check_if_tm_restore_required(current);
364 /*
365 * If a thread has already been reclaimed then the
366 * checkpointed registers are on the CPU but have definitely
367 * been saved by the reclaim code. Don't need to and *cannot*
368 * giveup as this would save to the 'live' structure not the
369 * checkpointed structure.
370 */
371 if(!msr_tm_active(cpumsr) && msr_tm_active(current->thread.regs->msr))
372 return;
373 if (current->thread.regs->msr & MSR_FP)
374 __giveup_fpu(current);
375 if (current->thread.regs->msr & MSR_VEC)
376 __giveup_altivec(current);
377 __giveup_vsx(current);
378 }
379}
380EXPORT_SYMBOL(enable_kernel_vsx);
381
382void flush_vsx_to_thread(struct task_struct *tsk)
383{
384 if (tsk->thread.regs) {
385 preempt_disable();
386 if (tsk->thread.regs->msr & MSR_VSX) {
387 BUG_ON(tsk != current);
388 giveup_vsx(tsk);
389 }
390 preempt_enable();
391 }
392}
393EXPORT_SYMBOL_GPL(flush_vsx_to_thread);
394
395static int restore_vsx(struct task_struct *tsk)
396{
397 if (cpu_has_feature(CPU_FTR_VSX)) {
398 tsk->thread.used_vsr = 1;
399 return 1;
400 }
401
402 return 0;
403}
404#else
405static inline int restore_vsx(struct task_struct *tsk) { return 0; }
406static inline void save_vsx(struct task_struct *tsk) { }
407#endif /* CONFIG_VSX */
408
409#ifdef CONFIG_SPE
410void giveup_spe(struct task_struct *tsk)
411{
412 check_if_tm_restore_required(tsk);
413
414 msr_check_and_set(MSR_SPE);
415 __giveup_spe(tsk);
416 msr_check_and_clear(MSR_SPE);
417}
418EXPORT_SYMBOL(giveup_spe);
419
420void enable_kernel_spe(void)
421{
422 WARN_ON(preemptible());
423
424 msr_check_and_set(MSR_SPE);
425
426 if (current->thread.regs && (current->thread.regs->msr & MSR_SPE)) {
427 check_if_tm_restore_required(current);
428 __giveup_spe(current);
429 }
430}
431EXPORT_SYMBOL(enable_kernel_spe);
432
433void flush_spe_to_thread(struct task_struct *tsk)
434{
435 if (tsk->thread.regs) {
436 preempt_disable();
437 if (tsk->thread.regs->msr & MSR_SPE) {
438 BUG_ON(tsk != current);
439 tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
440 giveup_spe(tsk);
441 }
442 preempt_enable();
443 }
444}
445#endif /* CONFIG_SPE */
446
447static unsigned long msr_all_available;
448
449static int __init init_msr_all_available(void)
450{
451#ifdef CONFIG_PPC_FPU
452 msr_all_available |= MSR_FP;
453#endif
454#ifdef CONFIG_ALTIVEC
455 if (cpu_has_feature(CPU_FTR_ALTIVEC))
456 msr_all_available |= MSR_VEC;
457#endif
458#ifdef CONFIG_VSX
459 if (cpu_has_feature(CPU_FTR_VSX))
460 msr_all_available |= MSR_VSX;
461#endif
462#ifdef CONFIG_SPE
463 if (cpu_has_feature(CPU_FTR_SPE))
464 msr_all_available |= MSR_SPE;
465#endif
466
467 return 0;
468}
469early_initcall(init_msr_all_available);
470
471void giveup_all(struct task_struct *tsk)
472{
473 unsigned long usermsr;
474
475 if (!tsk->thread.regs)
476 return;
477
478 usermsr = tsk->thread.regs->msr;
479
480 if ((usermsr & msr_all_available) == 0)
481 return;
482
483 msr_check_and_set(msr_all_available);
484 check_if_tm_restore_required(tsk);
485
486#ifdef CONFIG_PPC_FPU
487 if (usermsr & MSR_FP)
488 __giveup_fpu(tsk);
489#endif
490#ifdef CONFIG_ALTIVEC
491 if (usermsr & MSR_VEC)
492 __giveup_altivec(tsk);
493#endif
494#ifdef CONFIG_VSX
495 if (usermsr & MSR_VSX)
496 __giveup_vsx(tsk);
497#endif
498#ifdef CONFIG_SPE
499 if (usermsr & MSR_SPE)
500 __giveup_spe(tsk);
501#endif
502
503 msr_check_and_clear(msr_all_available);
504}
505EXPORT_SYMBOL(giveup_all);
506
507void restore_math(struct pt_regs *regs)
508{
509 unsigned long msr;
510
511 if (!msr_tm_active(regs->msr) &&
512 !current->thread.load_fp && !loadvec(current->thread))
513 return;
514
515 msr = regs->msr;
516 msr_check_and_set(msr_all_available);
517
518 /*
519 * Only reload if the bit is not set in the user MSR, the bit BEING set
520 * indicates that the registers are hot
521 */
522 if ((!(msr & MSR_FP)) && restore_fp(current))
523 msr |= MSR_FP | current->thread.fpexc_mode;
524
525 if ((!(msr & MSR_VEC)) && restore_altivec(current))
526 msr |= MSR_VEC;
527
528 if ((msr & (MSR_FP | MSR_VEC)) == (MSR_FP | MSR_VEC) &&
529 restore_vsx(current)) {
530 msr |= MSR_VSX;
531 }
532
533 msr_check_and_clear(msr_all_available);
534
535 regs->msr = msr;
536}
537
538void save_all(struct task_struct *tsk)
539{
540 unsigned long usermsr;
541
542 if (!tsk->thread.regs)
543 return;
544
545 usermsr = tsk->thread.regs->msr;
546
547 if ((usermsr & msr_all_available) == 0)
548 return;
549
550 msr_check_and_set(msr_all_available);
551
552 /*
553 * Saving the way the register space is in hardware, save_vsx boils
554 * down to a save_fpu() and save_altivec()
555 */
556 if (usermsr & MSR_VSX) {
557 save_vsx(tsk);
558 } else {
559 if (usermsr & MSR_FP)
560 save_fpu(tsk);
561
562 if (usermsr & MSR_VEC)
563 save_altivec(tsk);
564 }
565
566 if (usermsr & MSR_SPE)
567 __giveup_spe(tsk);
568
569 msr_check_and_clear(msr_all_available);
570}
571
572void flush_all_to_thread(struct task_struct *tsk)
573{
574 if (tsk->thread.regs) {
575 preempt_disable();
576 BUG_ON(tsk != current);
577 save_all(tsk);
578
579#ifdef CONFIG_SPE
580 if (tsk->thread.regs->msr & MSR_SPE)
581 tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
582#endif
583
584 preempt_enable();
585 }
586}
587EXPORT_SYMBOL(flush_all_to_thread);
588
589#ifdef CONFIG_PPC_ADV_DEBUG_REGS
590void do_send_trap(struct pt_regs *regs, unsigned long address,
591 unsigned long error_code, int signal_code, int breakpt)
592{
593 siginfo_t info;
594
595 current->thread.trap_nr = signal_code;
596 if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
597 11, SIGSEGV) == NOTIFY_STOP)
598 return;
599
600 /* Deliver the signal to userspace */
601 info.si_signo = SIGTRAP;
602 info.si_errno = breakpt; /* breakpoint or watchpoint id */
603 info.si_code = signal_code;
604 info.si_addr = (void __user *)address;
605 force_sig_info(SIGTRAP, &info, current);
606}
607#else /* !CONFIG_PPC_ADV_DEBUG_REGS */
608void do_break (struct pt_regs *regs, unsigned long address,
609 unsigned long error_code)
610{
611 siginfo_t info;
612
613 current->thread.trap_nr = TRAP_HWBKPT;
614 if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
615 11, SIGSEGV) == NOTIFY_STOP)
616 return;
617
618 if (debugger_break_match(regs))
619 return;
620
621 /* Clear the breakpoint */
622 hw_breakpoint_disable();
623
624 /* Deliver the signal to userspace */
625 info.si_signo = SIGTRAP;
626 info.si_errno = 0;
627 info.si_code = TRAP_HWBKPT;
628 info.si_addr = (void __user *)address;
629 force_sig_info(SIGTRAP, &info, current);
630}
631#endif /* CONFIG_PPC_ADV_DEBUG_REGS */
632
633static DEFINE_PER_CPU(struct arch_hw_breakpoint, current_brk);
634
635#ifdef CONFIG_PPC_ADV_DEBUG_REGS
636/*
637 * Set the debug registers back to their default "safe" values.
638 */
639static void set_debug_reg_defaults(struct thread_struct *thread)
640{
641 thread->debug.iac1 = thread->debug.iac2 = 0;
642#if CONFIG_PPC_ADV_DEBUG_IACS > 2
643 thread->debug.iac3 = thread->debug.iac4 = 0;
644#endif
645 thread->debug.dac1 = thread->debug.dac2 = 0;
646#if CONFIG_PPC_ADV_DEBUG_DVCS > 0
647 thread->debug.dvc1 = thread->debug.dvc2 = 0;
648#endif
649 thread->debug.dbcr0 = 0;
650#ifdef CONFIG_BOOKE
651 /*
652 * Force User/Supervisor bits to b11 (user-only MSR[PR]=1)
653 */
654 thread->debug.dbcr1 = DBCR1_IAC1US | DBCR1_IAC2US |
655 DBCR1_IAC3US | DBCR1_IAC4US;
656 /*
657 * Force Data Address Compare User/Supervisor bits to be User-only
658 * (0b11 MSR[PR]=1) and set all other bits in DBCR2 register to be 0.
659 */
660 thread->debug.dbcr2 = DBCR2_DAC1US | DBCR2_DAC2US;
661#else
662 thread->debug.dbcr1 = 0;
663#endif
664}
665
666static void prime_debug_regs(struct debug_reg *debug)
667{
668 /*
669 * We could have inherited MSR_DE from userspace, since
670 * it doesn't get cleared on exception entry. Make sure
671 * MSR_DE is clear before we enable any debug events.
672 */
673 mtmsr(mfmsr() & ~MSR_DE);
674
675 mtspr(SPRN_IAC1, debug->iac1);
676 mtspr(SPRN_IAC2, debug->iac2);
677#if CONFIG_PPC_ADV_DEBUG_IACS > 2
678 mtspr(SPRN_IAC3, debug->iac3);
679 mtspr(SPRN_IAC4, debug->iac4);
680#endif
681 mtspr(SPRN_DAC1, debug->dac1);
682 mtspr(SPRN_DAC2, debug->dac2);
683#if CONFIG_PPC_ADV_DEBUG_DVCS > 0
684 mtspr(SPRN_DVC1, debug->dvc1);
685 mtspr(SPRN_DVC2, debug->dvc2);
686#endif
687 mtspr(SPRN_DBCR0, debug->dbcr0);
688 mtspr(SPRN_DBCR1, debug->dbcr1);
689#ifdef CONFIG_BOOKE
690 mtspr(SPRN_DBCR2, debug->dbcr2);
691#endif
692}
693/*
694 * Unless neither the old or new thread are making use of the
695 * debug registers, set the debug registers from the values
696 * stored in the new thread.
697 */
698void switch_booke_debug_regs(struct debug_reg *new_debug)
699{
700 if ((current->thread.debug.dbcr0 & DBCR0_IDM)
701 || (new_debug->dbcr0 & DBCR0_IDM))
702 prime_debug_regs(new_debug);
703}
704EXPORT_SYMBOL_GPL(switch_booke_debug_regs);
705#else /* !CONFIG_PPC_ADV_DEBUG_REGS */
706#ifndef CONFIG_HAVE_HW_BREAKPOINT
707static void set_debug_reg_defaults(struct thread_struct *thread)
708{
709 thread->hw_brk.address = 0;
710 thread->hw_brk.type = 0;
711 set_breakpoint(&thread->hw_brk);
712}
713#endif /* !CONFIG_HAVE_HW_BREAKPOINT */
714#endif /* CONFIG_PPC_ADV_DEBUG_REGS */
715
716#ifdef CONFIG_PPC_ADV_DEBUG_REGS
717static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
718{
719 mtspr(SPRN_DAC1, dabr);
720#ifdef CONFIG_PPC_47x
721 isync();
722#endif
723 return 0;
724}
725#elif defined(CONFIG_PPC_BOOK3S)
726static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
727{
728 mtspr(SPRN_DABR, dabr);
729 if (cpu_has_feature(CPU_FTR_DABRX))
730 mtspr(SPRN_DABRX, dabrx);
731 return 0;
732}
733#else
734static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
735{
736 return -EINVAL;
737}
738#endif
739
740static inline int set_dabr(struct arch_hw_breakpoint *brk)
741{
742 unsigned long dabr, dabrx;
743
744 dabr = brk->address | (brk->type & HW_BRK_TYPE_DABR);
745 dabrx = ((brk->type >> 3) & 0x7);
746
747 if (ppc_md.set_dabr)
748 return ppc_md.set_dabr(dabr, dabrx);
749
750 return __set_dabr(dabr, dabrx);
751}
752
753static inline int set_dawr(struct arch_hw_breakpoint *brk)
754{
755 unsigned long dawr, dawrx, mrd;
756
757 dawr = brk->address;
758
759 dawrx = (brk->type & (HW_BRK_TYPE_READ | HW_BRK_TYPE_WRITE)) \
760 << (63 - 58); //* read/write bits */
761 dawrx |= ((brk->type & (HW_BRK_TYPE_TRANSLATE)) >> 2) \
762 << (63 - 59); //* translate */
763 dawrx |= (brk->type & (HW_BRK_TYPE_PRIV_ALL)) \
764 >> 3; //* PRIM bits */
765 /* dawr length is stored in field MDR bits 48:53. Matches range in
766 doublewords (64 bits) baised by -1 eg. 0b000000=1DW and
767 0b111111=64DW.
768 brk->len is in bytes.
769 This aligns up to double word size, shifts and does the bias.
770 */
771 mrd = ((brk->len + 7) >> 3) - 1;
772 dawrx |= (mrd & 0x3f) << (63 - 53);
773
774 if (ppc_md.set_dawr)
775 return ppc_md.set_dawr(dawr, dawrx);
776 mtspr(SPRN_DAWR, dawr);
777 mtspr(SPRN_DAWRX, dawrx);
778 return 0;
779}
780
781void __set_breakpoint(struct arch_hw_breakpoint *brk)
782{
783 memcpy(this_cpu_ptr(¤t_brk), brk, sizeof(*brk));
784
785 if (cpu_has_feature(CPU_FTR_DAWR))
786 set_dawr(brk);
787 else
788 set_dabr(brk);
789}
790
791void set_breakpoint(struct arch_hw_breakpoint *brk)
792{
793 preempt_disable();
794 __set_breakpoint(brk);
795 preempt_enable();
796}
797
798#ifdef CONFIG_PPC64
799DEFINE_PER_CPU(struct cpu_usage, cpu_usage_array);
800#endif
801
802static inline bool hw_brk_match(struct arch_hw_breakpoint *a,
803 struct arch_hw_breakpoint *b)
804{
805 if (a->address != b->address)
806 return false;
807 if (a->type != b->type)
808 return false;
809 if (a->len != b->len)
810 return false;
811 return true;
812}
813
814#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
815
816static inline bool tm_enabled(struct task_struct *tsk)
817{
818 return tsk && tsk->thread.regs && (tsk->thread.regs->msr & MSR_TM);
819}
820
821static void tm_reclaim_thread(struct thread_struct *thr,
822 struct thread_info *ti, uint8_t cause)
823{
824 /*
825 * Use the current MSR TM suspended bit to track if we have
826 * checkpointed state outstanding.
827 * On signal delivery, we'd normally reclaim the checkpointed
828 * state to obtain stack pointer (see:get_tm_stackpointer()).
829 * This will then directly return to userspace without going
830 * through __switch_to(). However, if the stack frame is bad,
831 * we need to exit this thread which calls __switch_to() which
832 * will again attempt to reclaim the already saved tm state.
833 * Hence we need to check that we've not already reclaimed
834 * this state.
835 * We do this using the current MSR, rather tracking it in
836 * some specific thread_struct bit, as it has the additional
837 * benefit of checking for a potential TM bad thing exception.
838 */
839 if (!MSR_TM_SUSPENDED(mfmsr()))
840 return;
841
842 giveup_all(container_of(thr, struct task_struct, thread));
843
844 tm_reclaim(thr, thr->ckpt_regs.msr, cause);
845}
846
847void tm_reclaim_current(uint8_t cause)
848{
849 tm_enable();
850 tm_reclaim_thread(¤t->thread, current_thread_info(), cause);
851}
852
853static inline void tm_reclaim_task(struct task_struct *tsk)
854{
855 /* We have to work out if we're switching from/to a task that's in the
856 * middle of a transaction.
857 *
858 * In switching we need to maintain a 2nd register state as
859 * oldtask->thread.ckpt_regs. We tm_reclaim(oldproc); this saves the
860 * checkpointed (tbegin) state in ckpt_regs, ckfp_state and
861 * ckvr_state
862 *
863 * We also context switch (save) TFHAR/TEXASR/TFIAR in here.
864 */
865 struct thread_struct *thr = &tsk->thread;
866
867 if (!thr->regs)
868 return;
869
870 if (!MSR_TM_ACTIVE(thr->regs->msr))
871 goto out_and_saveregs;
872
873 TM_DEBUG("--- tm_reclaim on pid %d (NIP=%lx, "
874 "ccr=%lx, msr=%lx, trap=%lx)\n",
875 tsk->pid, thr->regs->nip,
876 thr->regs->ccr, thr->regs->msr,
877 thr->regs->trap);
878
879 tm_reclaim_thread(thr, task_thread_info(tsk), TM_CAUSE_RESCHED);
880
881 TM_DEBUG("--- tm_reclaim on pid %d complete\n",
882 tsk->pid);
883
884out_and_saveregs:
885 /* Always save the regs here, even if a transaction's not active.
886 * This context-switches a thread's TM info SPRs. We do it here to
887 * be consistent with the restore path (in recheckpoint) which
888 * cannot happen later in _switch().
889 */
890 tm_save_sprs(thr);
891}
892
893extern void __tm_recheckpoint(struct thread_struct *thread,
894 unsigned long orig_msr);
895
896void tm_recheckpoint(struct thread_struct *thread,
897 unsigned long orig_msr)
898{
899 unsigned long flags;
900
901 if (!(thread->regs->msr & MSR_TM))
902 return;
903
904 /* We really can't be interrupted here as the TEXASR registers can't
905 * change and later in the trecheckpoint code, we have a userspace R1.
906 * So let's hard disable over this region.
907 */
908 local_irq_save(flags);
909 hard_irq_disable();
910
911 /* The TM SPRs are restored here, so that TEXASR.FS can be set
912 * before the trecheckpoint and no explosion occurs.
913 */
914 tm_restore_sprs(thread);
915
916 __tm_recheckpoint(thread, orig_msr);
917
918 local_irq_restore(flags);
919}
920
921static inline void tm_recheckpoint_new_task(struct task_struct *new)
922{
923 unsigned long msr;
924
925 if (!cpu_has_feature(CPU_FTR_TM))
926 return;
927
928 /* Recheckpoint the registers of the thread we're about to switch to.
929 *
930 * If the task was using FP, we non-lazily reload both the original and
931 * the speculative FP register states. This is because the kernel
932 * doesn't see if/when a TM rollback occurs, so if we take an FP
933 * unavailable later, we are unable to determine which set of FP regs
934 * need to be restored.
935 */
936 if (!tm_enabled(new))
937 return;
938
939 if (!MSR_TM_ACTIVE(new->thread.regs->msr)){
940 tm_restore_sprs(&new->thread);
941 return;
942 }
943 msr = new->thread.ckpt_regs.msr;
944 /* Recheckpoint to restore original checkpointed register state. */
945 TM_DEBUG("*** tm_recheckpoint of pid %d "
946 "(new->msr 0x%lx, new->origmsr 0x%lx)\n",
947 new->pid, new->thread.regs->msr, msr);
948
949 tm_recheckpoint(&new->thread, msr);
950
951 /*
952 * The checkpointed state has been restored but the live state has
953 * not, ensure all the math functionality is turned off to trigger
954 * restore_math() to reload.
955 */
956 new->thread.regs->msr &= ~(MSR_FP | MSR_VEC | MSR_VSX);
957
958 TM_DEBUG("*** tm_recheckpoint of pid %d complete "
959 "(kernel msr 0x%lx)\n",
960 new->pid, mfmsr());
961}
962
963static inline void __switch_to_tm(struct task_struct *prev,
964 struct task_struct *new)
965{
966 if (cpu_has_feature(CPU_FTR_TM)) {
967 if (tm_enabled(prev) || tm_enabled(new))
968 tm_enable();
969
970 if (tm_enabled(prev)) {
971 prev->thread.load_tm++;
972 tm_reclaim_task(prev);
973 if (!MSR_TM_ACTIVE(prev->thread.regs->msr) && prev->thread.load_tm == 0)
974 prev->thread.regs->msr &= ~MSR_TM;
975 }
976
977 tm_recheckpoint_new_task(new);
978 }
979}
980
981/*
982 * This is called if we are on the way out to userspace and the
983 * TIF_RESTORE_TM flag is set. It checks if we need to reload
984 * FP and/or vector state and does so if necessary.
985 * If userspace is inside a transaction (whether active or
986 * suspended) and FP/VMX/VSX instructions have ever been enabled
987 * inside that transaction, then we have to keep them enabled
988 * and keep the FP/VMX/VSX state loaded while ever the transaction
989 * continues. The reason is that if we didn't, and subsequently
990 * got a FP/VMX/VSX unavailable interrupt inside a transaction,
991 * we don't know whether it's the same transaction, and thus we
992 * don't know which of the checkpointed state and the transactional
993 * state to use.
994 */
995void restore_tm_state(struct pt_regs *regs)
996{
997 unsigned long msr_diff;
998
999 /*
1000 * This is the only moment we should clear TIF_RESTORE_TM as
1001 * it is here that ckpt_regs.msr and pt_regs.msr become the same
1002 * again, anything else could lead to an incorrect ckpt_msr being
1003 * saved and therefore incorrect signal contexts.
1004 */
1005 clear_thread_flag(TIF_RESTORE_TM);
1006 if (!MSR_TM_ACTIVE(regs->msr))
1007 return;
1008
1009 msr_diff = current->thread.ckpt_regs.msr & ~regs->msr;
1010 msr_diff &= MSR_FP | MSR_VEC | MSR_VSX;
1011
1012 /* Ensure that restore_math() will restore */
1013 if (msr_diff & MSR_FP)
1014 current->thread.load_fp = 1;
1015#ifdef CONFIG_ALTIVEC
1016 if (cpu_has_feature(CPU_FTR_ALTIVEC) && msr_diff & MSR_VEC)
1017 current->thread.load_vec = 1;
1018#endif
1019 restore_math(regs);
1020
1021 regs->msr |= msr_diff;
1022}
1023
1024#else
1025#define tm_recheckpoint_new_task(new)
1026#define __switch_to_tm(prev, new)
1027#endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1028
1029static inline void save_sprs(struct thread_struct *t)
1030{
1031#ifdef CONFIG_ALTIVEC
1032 if (cpu_has_feature(CPU_FTR_ALTIVEC))
1033 t->vrsave = mfspr(SPRN_VRSAVE);
1034#endif
1035#ifdef CONFIG_PPC_BOOK3S_64
1036 if (cpu_has_feature(CPU_FTR_DSCR))
1037 t->dscr = mfspr(SPRN_DSCR);
1038
1039 if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
1040 t->bescr = mfspr(SPRN_BESCR);
1041 t->ebbhr = mfspr(SPRN_EBBHR);
1042 t->ebbrr = mfspr(SPRN_EBBRR);
1043
1044 t->fscr = mfspr(SPRN_FSCR);
1045
1046 /*
1047 * Note that the TAR is not available for use in the kernel.
1048 * (To provide this, the TAR should be backed up/restored on
1049 * exception entry/exit instead, and be in pt_regs. FIXME,
1050 * this should be in pt_regs anyway (for debug).)
1051 */
1052 t->tar = mfspr(SPRN_TAR);
1053 }
1054#endif
1055}
1056
1057static inline void restore_sprs(struct thread_struct *old_thread,
1058 struct thread_struct *new_thread)
1059{
1060#ifdef CONFIG_ALTIVEC
1061 if (cpu_has_feature(CPU_FTR_ALTIVEC) &&
1062 old_thread->vrsave != new_thread->vrsave)
1063 mtspr(SPRN_VRSAVE, new_thread->vrsave);
1064#endif
1065#ifdef CONFIG_PPC_BOOK3S_64
1066 if (cpu_has_feature(CPU_FTR_DSCR)) {
1067 u64 dscr = get_paca()->dscr_default;
1068 if (new_thread->dscr_inherit)
1069 dscr = new_thread->dscr;
1070
1071 if (old_thread->dscr != dscr)
1072 mtspr(SPRN_DSCR, dscr);
1073 }
1074
1075 if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
1076 if (old_thread->bescr != new_thread->bescr)
1077 mtspr(SPRN_BESCR, new_thread->bescr);
1078 if (old_thread->ebbhr != new_thread->ebbhr)
1079 mtspr(SPRN_EBBHR, new_thread->ebbhr);
1080 if (old_thread->ebbrr != new_thread->ebbrr)
1081 mtspr(SPRN_EBBRR, new_thread->ebbrr);
1082
1083 if (old_thread->fscr != new_thread->fscr)
1084 mtspr(SPRN_FSCR, new_thread->fscr);
1085
1086 if (old_thread->tar != new_thread->tar)
1087 mtspr(SPRN_TAR, new_thread->tar);
1088 }
1089#endif
1090}
1091
1092struct task_struct *__switch_to(struct task_struct *prev,
1093 struct task_struct *new)
1094{
1095 struct thread_struct *new_thread, *old_thread;
1096 struct task_struct *last;
1097#ifdef CONFIG_PPC_BOOK3S_64
1098 struct ppc64_tlb_batch *batch;
1099#endif
1100
1101 new_thread = &new->thread;
1102 old_thread = ¤t->thread;
1103
1104 WARN_ON(!irqs_disabled());
1105
1106#ifdef CONFIG_PPC64
1107 /*
1108 * Collect processor utilization data per process
1109 */
1110 if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
1111 struct cpu_usage *cu = this_cpu_ptr(&cpu_usage_array);
1112 long unsigned start_tb, current_tb;
1113 start_tb = old_thread->start_tb;
1114 cu->current_tb = current_tb = mfspr(SPRN_PURR);
1115 old_thread->accum_tb += (current_tb - start_tb);
1116 new_thread->start_tb = current_tb;
1117 }
1118#endif /* CONFIG_PPC64 */
1119
1120#ifdef CONFIG_PPC_STD_MMU_64
1121 batch = this_cpu_ptr(&ppc64_tlb_batch);
1122 if (batch->active) {
1123 current_thread_info()->local_flags |= _TLF_LAZY_MMU;
1124 if (batch->index)
1125 __flush_tlb_pending(batch);
1126 batch->active = 0;
1127 }
1128#endif /* CONFIG_PPC_STD_MMU_64 */
1129
1130#ifdef CONFIG_PPC_ADV_DEBUG_REGS
1131 switch_booke_debug_regs(&new->thread.debug);
1132#else
1133/*
1134 * For PPC_BOOK3S_64, we use the hw-breakpoint interfaces that would
1135 * schedule DABR
1136 */
1137#ifndef CONFIG_HAVE_HW_BREAKPOINT
1138 if (unlikely(!hw_brk_match(this_cpu_ptr(¤t_brk), &new->thread.hw_brk)))
1139 __set_breakpoint(&new->thread.hw_brk);
1140#endif /* CONFIG_HAVE_HW_BREAKPOINT */
1141#endif
1142
1143 /*
1144 * We need to save SPRs before treclaim/trecheckpoint as these will
1145 * change a number of them.
1146 */
1147 save_sprs(&prev->thread);
1148
1149 /* Save FPU, Altivec, VSX and SPE state */
1150 giveup_all(prev);
1151
1152 __switch_to_tm(prev, new);
1153
1154 /*
1155 * We can't take a PMU exception inside _switch() since there is a
1156 * window where the kernel stack SLB and the kernel stack are out
1157 * of sync. Hard disable here.
1158 */
1159 hard_irq_disable();
1160
1161 /*
1162 * Call restore_sprs() before calling _switch(). If we move it after
1163 * _switch() then we miss out on calling it for new tasks. The reason
1164 * for this is we manually create a stack frame for new tasks that
1165 * directly returns through ret_from_fork() or
1166 * ret_from_kernel_thread(). See copy_thread() for details.
1167 */
1168 restore_sprs(old_thread, new_thread);
1169
1170 last = _switch(old_thread, new_thread);
1171
1172#ifdef CONFIG_PPC_STD_MMU_64
1173 if (current_thread_info()->local_flags & _TLF_LAZY_MMU) {
1174 current_thread_info()->local_flags &= ~_TLF_LAZY_MMU;
1175 batch = this_cpu_ptr(&ppc64_tlb_batch);
1176 batch->active = 1;
1177 }
1178
1179 if (current_thread_info()->task->thread.regs)
1180 restore_math(current_thread_info()->task->thread.regs);
1181#endif /* CONFIG_PPC_STD_MMU_64 */
1182
1183 return last;
1184}
1185
1186static int instructions_to_print = 16;
1187
1188static void show_instructions(struct pt_regs *regs)
1189{
1190 int i;
1191 unsigned long pc = regs->nip - (instructions_to_print * 3 / 4 *
1192 sizeof(int));
1193
1194 printk("Instruction dump:");
1195
1196 for (i = 0; i < instructions_to_print; i++) {
1197 int instr;
1198
1199 if (!(i % 8))
1200 pr_cont("\n");
1201
1202#if !defined(CONFIG_BOOKE)
1203 /* If executing with the IMMU off, adjust pc rather
1204 * than print XXXXXXXX.
1205 */
1206 if (!(regs->msr & MSR_IR))
1207 pc = (unsigned long)phys_to_virt(pc);
1208#endif
1209
1210 if (!__kernel_text_address(pc) ||
1211 probe_kernel_address((unsigned int __user *)pc, instr)) {
1212 pr_cont("XXXXXXXX ");
1213 } else {
1214 if (regs->nip == pc)
1215 pr_cont("<%08x> ", instr);
1216 else
1217 pr_cont("%08x ", instr);
1218 }
1219
1220 pc += sizeof(int);
1221 }
1222
1223 pr_cont("\n");
1224}
1225
1226struct regbit {
1227 unsigned long bit;
1228 const char *name;
1229};
1230
1231static struct regbit msr_bits[] = {
1232#if defined(CONFIG_PPC64) && !defined(CONFIG_BOOKE)
1233 {MSR_SF, "SF"},
1234 {MSR_HV, "HV"},
1235#endif
1236 {MSR_VEC, "VEC"},
1237 {MSR_VSX, "VSX"},
1238#ifdef CONFIG_BOOKE
1239 {MSR_CE, "CE"},
1240#endif
1241 {MSR_EE, "EE"},
1242 {MSR_PR, "PR"},
1243 {MSR_FP, "FP"},
1244 {MSR_ME, "ME"},
1245#ifdef CONFIG_BOOKE
1246 {MSR_DE, "DE"},
1247#else
1248 {MSR_SE, "SE"},
1249 {MSR_BE, "BE"},
1250#endif
1251 {MSR_IR, "IR"},
1252 {MSR_DR, "DR"},
1253 {MSR_PMM, "PMM"},
1254#ifndef CONFIG_BOOKE
1255 {MSR_RI, "RI"},
1256 {MSR_LE, "LE"},
1257#endif
1258 {0, NULL}
1259};
1260
1261static void print_bits(unsigned long val, struct regbit *bits, const char *sep)
1262{
1263 const char *s = "";
1264
1265 for (; bits->bit; ++bits)
1266 if (val & bits->bit) {
1267 pr_cont("%s%s", s, bits->name);
1268 s = sep;
1269 }
1270}
1271
1272#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1273static struct regbit msr_tm_bits[] = {
1274 {MSR_TS_T, "T"},
1275 {MSR_TS_S, "S"},
1276 {MSR_TM, "E"},
1277 {0, NULL}
1278};
1279
1280static void print_tm_bits(unsigned long val)
1281{
1282/*
1283 * This only prints something if at least one of the TM bit is set.
1284 * Inside the TM[], the output means:
1285 * E: Enabled (bit 32)
1286 * S: Suspended (bit 33)
1287 * T: Transactional (bit 34)
1288 */
1289 if (val & (MSR_TM | MSR_TS_S | MSR_TS_T)) {
1290 pr_cont(",TM[");
1291 print_bits(val, msr_tm_bits, "");
1292 pr_cont("]");
1293 }
1294}
1295#else
1296static void print_tm_bits(unsigned long val) {}
1297#endif
1298
1299static void print_msr_bits(unsigned long val)
1300{
1301 pr_cont("<");
1302 print_bits(val, msr_bits, ",");
1303 print_tm_bits(val);
1304 pr_cont(">");
1305}
1306
1307#ifdef CONFIG_PPC64
1308#define REG "%016lx"
1309#define REGS_PER_LINE 4
1310#define LAST_VOLATILE 13
1311#else
1312#define REG "%08lx"
1313#define REGS_PER_LINE 8
1314#define LAST_VOLATILE 12
1315#endif
1316
1317void show_regs(struct pt_regs * regs)
1318{
1319 int i, trap;
1320
1321 show_regs_print_info(KERN_DEFAULT);
1322
1323 printk("NIP: "REG" LR: "REG" CTR: "REG"\n",
1324 regs->nip, regs->link, regs->ctr);
1325 printk("REGS: %p TRAP: %04lx %s (%s)\n",
1326 regs, regs->trap, print_tainted(), init_utsname()->release);
1327 printk("MSR: "REG" ", regs->msr);
1328 print_msr_bits(regs->msr);
1329 printk(" CR: %08lx XER: %08lx\n", regs->ccr, regs->xer);
1330 trap = TRAP(regs);
1331 if ((regs->trap != 0xc00) && cpu_has_feature(CPU_FTR_CFAR))
1332 pr_cont("CFAR: "REG" ", regs->orig_gpr3);
1333 if (trap == 0x200 || trap == 0x300 || trap == 0x600)
1334#if defined(CONFIG_4xx) || defined(CONFIG_BOOKE)
1335 pr_cont("DEAR: "REG" ESR: "REG" ", regs->dar, regs->dsisr);
1336#else
1337 pr_cont("DAR: "REG" DSISR: %08lx ", regs->dar, regs->dsisr);
1338#endif
1339#ifdef CONFIG_PPC64
1340 pr_cont("SOFTE: %ld ", regs->softe);
1341#endif
1342#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1343 if (MSR_TM_ACTIVE(regs->msr))
1344 pr_cont("\nPACATMSCRATCH: %016llx ", get_paca()->tm_scratch);
1345#endif
1346
1347 for (i = 0; i < 32; i++) {
1348 if ((i % REGS_PER_LINE) == 0)
1349 pr_cont("\nGPR%02d: ", i);
1350 pr_cont(REG " ", regs->gpr[i]);
1351 if (i == LAST_VOLATILE && !FULL_REGS(regs))
1352 break;
1353 }
1354 pr_cont("\n");
1355#ifdef CONFIG_KALLSYMS
1356 /*
1357 * Lookup NIP late so we have the best change of getting the
1358 * above info out without failing
1359 */
1360 printk("NIP ["REG"] %pS\n", regs->nip, (void *)regs->nip);
1361 printk("LR ["REG"] %pS\n", regs->link, (void *)regs->link);
1362#endif
1363 show_stack(current, (unsigned long *) regs->gpr[1]);
1364 if (!user_mode(regs))
1365 show_instructions(regs);
1366}
1367
1368void flush_thread(void)
1369{
1370#ifdef CONFIG_HAVE_HW_BREAKPOINT
1371 flush_ptrace_hw_breakpoint(current);
1372#else /* CONFIG_HAVE_HW_BREAKPOINT */
1373 set_debug_reg_defaults(¤t->thread);
1374#endif /* CONFIG_HAVE_HW_BREAKPOINT */
1375}
1376
1377void
1378release_thread(struct task_struct *t)
1379{
1380}
1381
1382/*
1383 * this gets called so that we can store coprocessor state into memory and
1384 * copy the current task into the new thread.
1385 */
1386int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
1387{
1388 flush_all_to_thread(src);
1389 /*
1390 * Flush TM state out so we can copy it. __switch_to_tm() does this
1391 * flush but it removes the checkpointed state from the current CPU and
1392 * transitions the CPU out of TM mode. Hence we need to call
1393 * tm_recheckpoint_new_task() (on the same task) to restore the
1394 * checkpointed state back and the TM mode.
1395 *
1396 * Can't pass dst because it isn't ready. Doesn't matter, passing
1397 * dst is only important for __switch_to()
1398 */
1399 __switch_to_tm(src, src);
1400
1401 *dst = *src;
1402
1403 clear_task_ebb(dst);
1404
1405 return 0;
1406}
1407
1408static void setup_ksp_vsid(struct task_struct *p, unsigned long sp)
1409{
1410#ifdef CONFIG_PPC_STD_MMU_64
1411 unsigned long sp_vsid;
1412 unsigned long llp = mmu_psize_defs[mmu_linear_psize].sllp;
1413
1414 if (radix_enabled())
1415 return;
1416
1417 if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
1418 sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_1T)
1419 << SLB_VSID_SHIFT_1T;
1420 else
1421 sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_256M)
1422 << SLB_VSID_SHIFT;
1423 sp_vsid |= SLB_VSID_KERNEL | llp;
1424 p->thread.ksp_vsid = sp_vsid;
1425#endif
1426}
1427
1428/*
1429 * Copy a thread..
1430 */
1431
1432/*
1433 * Copy architecture-specific thread state
1434 */
1435int copy_thread(unsigned long clone_flags, unsigned long usp,
1436 unsigned long kthread_arg, struct task_struct *p)
1437{
1438 struct pt_regs *childregs, *kregs;
1439 extern void ret_from_fork(void);
1440 extern void ret_from_kernel_thread(void);
1441 void (*f)(void);
1442 unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE;
1443 struct thread_info *ti = task_thread_info(p);
1444
1445 klp_init_thread_info(ti);
1446
1447 /* Copy registers */
1448 sp -= sizeof(struct pt_regs);
1449 childregs = (struct pt_regs *) sp;
1450 if (unlikely(p->flags & PF_KTHREAD)) {
1451 /* kernel thread */
1452 memset(childregs, 0, sizeof(struct pt_regs));
1453 childregs->gpr[1] = sp + sizeof(struct pt_regs);
1454 /* function */
1455 if (usp)
1456 childregs->gpr[14] = ppc_function_entry((void *)usp);
1457#ifdef CONFIG_PPC64
1458 clear_tsk_thread_flag(p, TIF_32BIT);
1459 childregs->softe = 1;
1460#endif
1461 childregs->gpr[15] = kthread_arg;
1462 p->thread.regs = NULL; /* no user register state */
1463 ti->flags |= _TIF_RESTOREALL;
1464 f = ret_from_kernel_thread;
1465 } else {
1466 /* user thread */
1467 struct pt_regs *regs = current_pt_regs();
1468 CHECK_FULL_REGS(regs);
1469 *childregs = *regs;
1470 if (usp)
1471 childregs->gpr[1] = usp;
1472 p->thread.regs = childregs;
1473 childregs->gpr[3] = 0; /* Result from fork() */
1474 if (clone_flags & CLONE_SETTLS) {
1475#ifdef CONFIG_PPC64
1476 if (!is_32bit_task())
1477 childregs->gpr[13] = childregs->gpr[6];
1478 else
1479#endif
1480 childregs->gpr[2] = childregs->gpr[6];
1481 }
1482
1483 f = ret_from_fork;
1484 }
1485 childregs->msr &= ~(MSR_FP|MSR_VEC|MSR_VSX);
1486 sp -= STACK_FRAME_OVERHEAD;
1487
1488 /*
1489 * The way this works is that at some point in the future
1490 * some task will call _switch to switch to the new task.
1491 * That will pop off the stack frame created below and start
1492 * the new task running at ret_from_fork. The new task will
1493 * do some house keeping and then return from the fork or clone
1494 * system call, using the stack frame created above.
1495 */
1496 ((unsigned long *)sp)[0] = 0;
1497 sp -= sizeof(struct pt_regs);
1498 kregs = (struct pt_regs *) sp;
1499 sp -= STACK_FRAME_OVERHEAD;
1500 p->thread.ksp = sp;
1501#ifdef CONFIG_PPC32
1502 p->thread.ksp_limit = (unsigned long)task_stack_page(p) +
1503 _ALIGN_UP(sizeof(struct thread_info), 16);
1504#endif
1505#ifdef CONFIG_HAVE_HW_BREAKPOINT
1506 p->thread.ptrace_bps[0] = NULL;
1507#endif
1508
1509 p->thread.fp_save_area = NULL;
1510#ifdef CONFIG_ALTIVEC
1511 p->thread.vr_save_area = NULL;
1512#endif
1513
1514 setup_ksp_vsid(p, sp);
1515
1516#ifdef CONFIG_PPC64
1517 if (cpu_has_feature(CPU_FTR_DSCR)) {
1518 p->thread.dscr_inherit = current->thread.dscr_inherit;
1519 p->thread.dscr = mfspr(SPRN_DSCR);
1520 }
1521 if (cpu_has_feature(CPU_FTR_HAS_PPR))
1522 p->thread.ppr = INIT_PPR;
1523#endif
1524 kregs->nip = ppc_function_entry(f);
1525 return 0;
1526}
1527
1528/*
1529 * Set up a thread for executing a new program
1530 */
1531void start_thread(struct pt_regs *regs, unsigned long start, unsigned long sp)
1532{
1533#ifdef CONFIG_PPC64
1534 unsigned long load_addr = regs->gpr[2]; /* saved by ELF_PLAT_INIT */
1535#endif
1536
1537 /*
1538 * If we exec out of a kernel thread then thread.regs will not be
1539 * set. Do it now.
1540 */
1541 if (!current->thread.regs) {
1542 struct pt_regs *regs = task_stack_page(current) + THREAD_SIZE;
1543 current->thread.regs = regs - 1;
1544 }
1545
1546#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1547 /*
1548 * Clear any transactional state, we're exec()ing. The cause is
1549 * not important as there will never be a recheckpoint so it's not
1550 * user visible.
1551 */
1552 if (MSR_TM_SUSPENDED(mfmsr()))
1553 tm_reclaim_current(0);
1554#endif
1555
1556 memset(regs->gpr, 0, sizeof(regs->gpr));
1557 regs->ctr = 0;
1558 regs->link = 0;
1559 regs->xer = 0;
1560 regs->ccr = 0;
1561 regs->gpr[1] = sp;
1562
1563 /*
1564 * We have just cleared all the nonvolatile GPRs, so make
1565 * FULL_REGS(regs) return true. This is necessary to allow
1566 * ptrace to examine the thread immediately after exec.
1567 */
1568 regs->trap &= ~1UL;
1569
1570#ifdef CONFIG_PPC32
1571 regs->mq = 0;
1572 regs->nip = start;
1573 regs->msr = MSR_USER;
1574#else
1575 if (!is_32bit_task()) {
1576 unsigned long entry;
1577
1578 if (is_elf2_task()) {
1579 /* Look ma, no function descriptors! */
1580 entry = start;
1581
1582 /*
1583 * Ulrich says:
1584 * The latest iteration of the ABI requires that when
1585 * calling a function (at its global entry point),
1586 * the caller must ensure r12 holds the entry point
1587 * address (so that the function can quickly
1588 * establish addressability).
1589 */
1590 regs->gpr[12] = start;
1591 /* Make sure that's restored on entry to userspace. */
1592 set_thread_flag(TIF_RESTOREALL);
1593 } else {
1594 unsigned long toc;
1595
1596 /* start is a relocated pointer to the function
1597 * descriptor for the elf _start routine. The first
1598 * entry in the function descriptor is the entry
1599 * address of _start and the second entry is the TOC
1600 * value we need to use.
1601 */
1602 __get_user(entry, (unsigned long __user *)start);
1603 __get_user(toc, (unsigned long __user *)start+1);
1604
1605 /* Check whether the e_entry function descriptor entries
1606 * need to be relocated before we can use them.
1607 */
1608 if (load_addr != 0) {
1609 entry += load_addr;
1610 toc += load_addr;
1611 }
1612 regs->gpr[2] = toc;
1613 }
1614 regs->nip = entry;
1615 regs->msr = MSR_USER64;
1616 } else {
1617 regs->nip = start;
1618 regs->gpr[2] = 0;
1619 regs->msr = MSR_USER32;
1620 }
1621#endif
1622#ifdef CONFIG_VSX
1623 current->thread.used_vsr = 0;
1624#endif
1625 memset(¤t->thread.fp_state, 0, sizeof(current->thread.fp_state));
1626 current->thread.fp_save_area = NULL;
1627#ifdef CONFIG_ALTIVEC
1628 memset(¤t->thread.vr_state, 0, sizeof(current->thread.vr_state));
1629 current->thread.vr_state.vscr.u[3] = 0x00010000; /* Java mode disabled */
1630 current->thread.vr_save_area = NULL;
1631 current->thread.vrsave = 0;
1632 current->thread.used_vr = 0;
1633#endif /* CONFIG_ALTIVEC */
1634#ifdef CONFIG_SPE
1635 memset(current->thread.evr, 0, sizeof(current->thread.evr));
1636 current->thread.acc = 0;
1637 current->thread.spefscr = 0;
1638 current->thread.used_spe = 0;
1639#endif /* CONFIG_SPE */
1640#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1641 current->thread.tm_tfhar = 0;
1642 current->thread.tm_texasr = 0;
1643 current->thread.tm_tfiar = 0;
1644#endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1645}
1646EXPORT_SYMBOL(start_thread);
1647
1648#define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \
1649 | PR_FP_EXC_RES | PR_FP_EXC_INV)
1650
1651int set_fpexc_mode(struct task_struct *tsk, unsigned int val)
1652{
1653 struct pt_regs *regs = tsk->thread.regs;
1654
1655 /* This is a bit hairy. If we are an SPE enabled processor
1656 * (have embedded fp) we store the IEEE exception enable flags in
1657 * fpexc_mode. fpexc_mode is also used for setting FP exception
1658 * mode (asyn, precise, disabled) for 'Classic' FP. */
1659 if (val & PR_FP_EXC_SW_ENABLE) {
1660#ifdef CONFIG_SPE
1661 if (cpu_has_feature(CPU_FTR_SPE)) {
1662 /*
1663 * When the sticky exception bits are set
1664 * directly by userspace, it must call prctl
1665 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
1666 * in the existing prctl settings) or
1667 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
1668 * the bits being set). <fenv.h> functions
1669 * saving and restoring the whole
1670 * floating-point environment need to do so
1671 * anyway to restore the prctl settings from
1672 * the saved environment.
1673 */
1674 tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
1675 tsk->thread.fpexc_mode = val &
1676 (PR_FP_EXC_SW_ENABLE | PR_FP_ALL_EXCEPT);
1677 return 0;
1678 } else {
1679 return -EINVAL;
1680 }
1681#else
1682 return -EINVAL;
1683#endif
1684 }
1685
1686 /* on a CONFIG_SPE this does not hurt us. The bits that
1687 * __pack_fe01 use do not overlap with bits used for
1688 * PR_FP_EXC_SW_ENABLE. Additionally, the MSR[FE0,FE1] bits
1689 * on CONFIG_SPE implementations are reserved so writing to
1690 * them does not change anything */
1691 if (val > PR_FP_EXC_PRECISE)
1692 return -EINVAL;
1693 tsk->thread.fpexc_mode = __pack_fe01(val);
1694 if (regs != NULL && (regs->msr & MSR_FP) != 0)
1695 regs->msr = (regs->msr & ~(MSR_FE0|MSR_FE1))
1696 | tsk->thread.fpexc_mode;
1697 return 0;
1698}
1699
1700int get_fpexc_mode(struct task_struct *tsk, unsigned long adr)
1701{
1702 unsigned int val;
1703
1704 if (tsk->thread.fpexc_mode & PR_FP_EXC_SW_ENABLE)
1705#ifdef CONFIG_SPE
1706 if (cpu_has_feature(CPU_FTR_SPE)) {
1707 /*
1708 * When the sticky exception bits are set
1709 * directly by userspace, it must call prctl
1710 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
1711 * in the existing prctl settings) or
1712 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
1713 * the bits being set). <fenv.h> functions
1714 * saving and restoring the whole
1715 * floating-point environment need to do so
1716 * anyway to restore the prctl settings from
1717 * the saved environment.
1718 */
1719 tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
1720 val = tsk->thread.fpexc_mode;
1721 } else
1722 return -EINVAL;
1723#else
1724 return -EINVAL;
1725#endif
1726 else
1727 val = __unpack_fe01(tsk->thread.fpexc_mode);
1728 return put_user(val, (unsigned int __user *) adr);
1729}
1730
1731int set_endian(struct task_struct *tsk, unsigned int val)
1732{
1733 struct pt_regs *regs = tsk->thread.regs;
1734
1735 if ((val == PR_ENDIAN_LITTLE && !cpu_has_feature(CPU_FTR_REAL_LE)) ||
1736 (val == PR_ENDIAN_PPC_LITTLE && !cpu_has_feature(CPU_FTR_PPC_LE)))
1737 return -EINVAL;
1738
1739 if (regs == NULL)
1740 return -EINVAL;
1741
1742 if (val == PR_ENDIAN_BIG)
1743 regs->msr &= ~MSR_LE;
1744 else if (val == PR_ENDIAN_LITTLE || val == PR_ENDIAN_PPC_LITTLE)
1745 regs->msr |= MSR_LE;
1746 else
1747 return -EINVAL;
1748
1749 return 0;
1750}
1751
1752int get_endian(struct task_struct *tsk, unsigned long adr)
1753{
1754 struct pt_regs *regs = tsk->thread.regs;
1755 unsigned int val;
1756
1757 if (!cpu_has_feature(CPU_FTR_PPC_LE) &&
1758 !cpu_has_feature(CPU_FTR_REAL_LE))
1759 return -EINVAL;
1760
1761 if (regs == NULL)
1762 return -EINVAL;
1763
1764 if (regs->msr & MSR_LE) {
1765 if (cpu_has_feature(CPU_FTR_REAL_LE))
1766 val = PR_ENDIAN_LITTLE;
1767 else
1768 val = PR_ENDIAN_PPC_LITTLE;
1769 } else
1770 val = PR_ENDIAN_BIG;
1771
1772 return put_user(val, (unsigned int __user *)adr);
1773}
1774
1775int set_unalign_ctl(struct task_struct *tsk, unsigned int val)
1776{
1777 tsk->thread.align_ctl = val;
1778 return 0;
1779}
1780
1781int get_unalign_ctl(struct task_struct *tsk, unsigned long adr)
1782{
1783 return put_user(tsk->thread.align_ctl, (unsigned int __user *)adr);
1784}
1785
1786static inline int valid_irq_stack(unsigned long sp, struct task_struct *p,
1787 unsigned long nbytes)
1788{
1789 unsigned long stack_page;
1790 unsigned long cpu = task_cpu(p);
1791
1792 /*
1793 * Avoid crashing if the stack has overflowed and corrupted
1794 * task_cpu(p), which is in the thread_info struct.
1795 */
1796 if (cpu < NR_CPUS && cpu_possible(cpu)) {
1797 stack_page = (unsigned long) hardirq_ctx[cpu];
1798 if (sp >= stack_page + sizeof(struct thread_struct)
1799 && sp <= stack_page + THREAD_SIZE - nbytes)
1800 return 1;
1801
1802 stack_page = (unsigned long) softirq_ctx[cpu];
1803 if (sp >= stack_page + sizeof(struct thread_struct)
1804 && sp <= stack_page + THREAD_SIZE - nbytes)
1805 return 1;
1806 }
1807 return 0;
1808}
1809
1810int validate_sp(unsigned long sp, struct task_struct *p,
1811 unsigned long nbytes)
1812{
1813 unsigned long stack_page = (unsigned long)task_stack_page(p);
1814
1815 if (sp >= stack_page + sizeof(struct thread_struct)
1816 && sp <= stack_page + THREAD_SIZE - nbytes)
1817 return 1;
1818
1819 return valid_irq_stack(sp, p, nbytes);
1820}
1821
1822EXPORT_SYMBOL(validate_sp);
1823
1824unsigned long get_wchan(struct task_struct *p)
1825{
1826 unsigned long ip, sp;
1827 int count = 0;
1828
1829 if (!p || p == current || p->state == TASK_RUNNING)
1830 return 0;
1831
1832 sp = p->thread.ksp;
1833 if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
1834 return 0;
1835
1836 do {
1837 sp = *(unsigned long *)sp;
1838 if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
1839 return 0;
1840 if (count > 0) {
1841 ip = ((unsigned long *)sp)[STACK_FRAME_LR_SAVE];
1842 if (!in_sched_functions(ip))
1843 return ip;
1844 }
1845 } while (count++ < 16);
1846 return 0;
1847}
1848
1849static int kstack_depth_to_print = CONFIG_PRINT_STACK_DEPTH;
1850
1851void show_stack(struct task_struct *tsk, unsigned long *stack)
1852{
1853 unsigned long sp, ip, lr, newsp;
1854 int count = 0;
1855 int firstframe = 1;
1856#ifdef CONFIG_FUNCTION_GRAPH_TRACER
1857 int curr_frame = current->curr_ret_stack;
1858 extern void return_to_handler(void);
1859 unsigned long rth = (unsigned long)return_to_handler;
1860#endif
1861
1862 sp = (unsigned long) stack;
1863 if (tsk == NULL)
1864 tsk = current;
1865 if (sp == 0) {
1866 if (tsk == current)
1867 sp = current_stack_pointer();
1868 else
1869 sp = tsk->thread.ksp;
1870 }
1871
1872 lr = 0;
1873 printk("Call Trace:\n");
1874 do {
1875 if (!validate_sp(sp, tsk, STACK_FRAME_OVERHEAD))
1876 return;
1877
1878 stack = (unsigned long *) sp;
1879 newsp = stack[0];
1880 ip = stack[STACK_FRAME_LR_SAVE];
1881 if (!firstframe || ip != lr) {
1882 printk("["REG"] ["REG"] %pS", sp, ip, (void *)ip);
1883#ifdef CONFIG_FUNCTION_GRAPH_TRACER
1884 if ((ip == rth) && curr_frame >= 0) {
1885 pr_cont(" (%pS)",
1886 (void *)current->ret_stack[curr_frame].ret);
1887 curr_frame--;
1888 }
1889#endif
1890 if (firstframe)
1891 pr_cont(" (unreliable)");
1892 pr_cont("\n");
1893 }
1894 firstframe = 0;
1895
1896 /*
1897 * See if this is an exception frame.
1898 * We look for the "regshere" marker in the current frame.
1899 */
1900 if (validate_sp(sp, tsk, STACK_INT_FRAME_SIZE)
1901 && stack[STACK_FRAME_MARKER] == STACK_FRAME_REGS_MARKER) {
1902 struct pt_regs *regs = (struct pt_regs *)
1903 (sp + STACK_FRAME_OVERHEAD);
1904 lr = regs->link;
1905 printk("--- interrupt: %lx at %pS\n LR = %pS\n",
1906 regs->trap, (void *)regs->nip, (void *)lr);
1907 firstframe = 1;
1908 }
1909
1910 sp = newsp;
1911 } while (count++ < kstack_depth_to_print);
1912}
1913
1914#ifdef CONFIG_PPC64
1915/* Called with hard IRQs off */
1916void notrace __ppc64_runlatch_on(void)
1917{
1918 struct thread_info *ti = current_thread_info();
1919 unsigned long ctrl;
1920
1921 ctrl = mfspr(SPRN_CTRLF);
1922 ctrl |= CTRL_RUNLATCH;
1923 mtspr(SPRN_CTRLT, ctrl);
1924
1925 ti->local_flags |= _TLF_RUNLATCH;
1926}
1927
1928/* Called with hard IRQs off */
1929void notrace __ppc64_runlatch_off(void)
1930{
1931 struct thread_info *ti = current_thread_info();
1932 unsigned long ctrl;
1933
1934 ti->local_flags &= ~_TLF_RUNLATCH;
1935
1936 ctrl = mfspr(SPRN_CTRLF);
1937 ctrl &= ~CTRL_RUNLATCH;
1938 mtspr(SPRN_CTRLT, ctrl);
1939}
1940#endif /* CONFIG_PPC64 */
1941
1942unsigned long arch_align_stack(unsigned long sp)
1943{
1944 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
1945 sp -= get_random_int() & ~PAGE_MASK;
1946 return sp & ~0xf;
1947}
1948
1949static inline unsigned long brk_rnd(void)
1950{
1951 unsigned long rnd = 0;
1952
1953 /* 8MB for 32bit, 1GB for 64bit */
1954 if (is_32bit_task())
1955 rnd = (get_random_long() % (1UL<<(23-PAGE_SHIFT)));
1956 else
1957 rnd = (get_random_long() % (1UL<<(30-PAGE_SHIFT)));
1958
1959 return rnd << PAGE_SHIFT;
1960}
1961
1962unsigned long arch_randomize_brk(struct mm_struct *mm)
1963{
1964 unsigned long base = mm->brk;
1965 unsigned long ret;
1966
1967#ifdef CONFIG_PPC_STD_MMU_64
1968 /*
1969 * If we are using 1TB segments and we are allowed to randomise
1970 * the heap, we can put it above 1TB so it is backed by a 1TB
1971 * segment. Otherwise the heap will be in the bottom 1TB
1972 * which always uses 256MB segments and this may result in a
1973 * performance penalty. We don't need to worry about radix. For
1974 * radix, mmu_highuser_ssize remains unchanged from 256MB.
1975 */
1976 if (!is_32bit_task() && (mmu_highuser_ssize == MMU_SEGSIZE_1T))
1977 base = max_t(unsigned long, mm->brk, 1UL << SID_SHIFT_1T);
1978#endif
1979
1980 ret = PAGE_ALIGN(base + brk_rnd());
1981
1982 if (ret < mm->brk)
1983 return mm->brk;
1984
1985 return ret;
1986}
1987