Linux Audio

Check our new training course

Loading...
v6.13.7
   1=====================
   2BPF Type Format (BTF)
   3=====================
   4
   51. Introduction
   6===============
   7
   8BTF (BPF Type Format) is the metadata format which encodes the debug info
   9related to BPF program/map. The name BTF was used initially to describe data
  10types. The BTF was later extended to include function info for defined
  11subroutines, and line info for source/line information.
  12
  13The debug info is used for map pretty print, function signature, etc. The
  14function signature enables better bpf program/function kernel symbol. The line
  15info helps generate source annotated translated byte code, jited code and
  16verifier log.
  17
  18The BTF specification contains two parts,
  19  * BTF kernel API
  20  * BTF ELF file format
  21
  22The kernel API is the contract between user space and kernel. The kernel
  23verifies the BTF info before using it. The ELF file format is a user space
  24contract between ELF file and libbpf loader.
  25
  26The type and string sections are part of the BTF kernel API, describing the
  27debug info (mostly types related) referenced by the bpf program. These two
  28sections are discussed in details in :ref:`BTF_Type_String`.
  29
  30.. _BTF_Type_String:
  31
  322. BTF Type and String Encoding
  33===============================
  34
  35The file ``include/uapi/linux/btf.h`` provides high-level definition of how
  36types/strings are encoded.
  37
  38The beginning of data blob must be::
  39
  40    struct btf_header {
  41        __u16   magic;
  42        __u8    version;
  43        __u8    flags;
  44        __u32   hdr_len;
  45
  46        /* All offsets are in bytes relative to the end of this header */
  47        __u32   type_off;       /* offset of type section       */
  48        __u32   type_len;       /* length of type section       */
  49        __u32   str_off;        /* offset of string section     */
  50        __u32   str_len;        /* length of string section     */
  51    };
  52
  53The magic is ``0xeB9F``, which has different encoding for big and little
  54endian systems, and can be used to test whether BTF is generated for big- or
  55little-endian target. The ``btf_header`` is designed to be extensible with
  56``hdr_len`` equal to ``sizeof(struct btf_header)`` when a data blob is
  57generated.
  58
  592.1 String Encoding
  60-------------------
  61
  62The first string in the string section must be a null string. The rest of
  63string table is a concatenation of other null-terminated strings.
  64
  652.2 Type Encoding
  66-----------------
  67
  68The type id ``0`` is reserved for ``void`` type. The type section is parsed
  69sequentially and type id is assigned to each recognized type starting from id
  70``1``. Currently, the following types are supported::
  71
  72    #define BTF_KIND_INT            1       /* Integer      */
  73    #define BTF_KIND_PTR            2       /* Pointer      */
  74    #define BTF_KIND_ARRAY          3       /* Array        */
  75    #define BTF_KIND_STRUCT         4       /* Struct       */
  76    #define BTF_KIND_UNION          5       /* Union        */
  77    #define BTF_KIND_ENUM           6       /* Enumeration up to 32-bit values */
  78    #define BTF_KIND_FWD            7       /* Forward      */
  79    #define BTF_KIND_TYPEDEF        8       /* Typedef      */
  80    #define BTF_KIND_VOLATILE       9       /* Volatile     */
  81    #define BTF_KIND_CONST          10      /* Const        */
  82    #define BTF_KIND_RESTRICT       11      /* Restrict     */
  83    #define BTF_KIND_FUNC           12      /* Function     */
  84    #define BTF_KIND_FUNC_PROTO     13      /* Function Proto       */
  85    #define BTF_KIND_VAR            14      /* Variable     */
  86    #define BTF_KIND_DATASEC        15      /* Section      */
  87    #define BTF_KIND_FLOAT          16      /* Floating point       */
  88    #define BTF_KIND_DECL_TAG       17      /* Decl Tag     */
  89    #define BTF_KIND_TYPE_TAG       18      /* Type Tag     */
  90    #define BTF_KIND_ENUM64         19      /* Enumeration up to 64-bit values */
  91
  92Note that the type section encodes debug info, not just pure types.
  93``BTF_KIND_FUNC`` is not a type, and it represents a defined subprogram.
  94
  95Each type contains the following common data::
  96
  97    struct btf_type {
  98        __u32 name_off;
  99        /* "info" bits arrangement
 100         * bits  0-15: vlen (e.g. # of struct's members)
 101         * bits 16-23: unused
 102         * bits 24-28: kind (e.g. int, ptr, array...etc)
 103         * bits 29-30: unused
 104         * bit     31: kind_flag, currently used by
 105         *             struct, union, fwd, enum and enum64.
 106         */
 107        __u32 info;
 108        /* "size" is used by INT, ENUM, STRUCT, UNION and ENUM64.
 109         * "size" tells the size of the type it is describing.
 110         *
 111         * "type" is used by PTR, TYPEDEF, VOLATILE, CONST, RESTRICT,
 112         * FUNC, FUNC_PROTO, DECL_TAG and TYPE_TAG.
 113         * "type" is a type_id referring to another type.
 114         */
 115        union {
 116                __u32 size;
 117                __u32 type;
 118        };
 119    };
 120
 121For certain kinds, the common data are followed by kind-specific data. The
 122``name_off`` in ``struct btf_type`` specifies the offset in the string table.
 123The following sections detail encoding of each kind.
 124
 1252.2.1 BTF_KIND_INT
 126~~~~~~~~~~~~~~~~~~
 127
 128``struct btf_type`` encoding requirement:
 129 * ``name_off``: any valid offset
 130 * ``info.kind_flag``: 0
 131 * ``info.kind``: BTF_KIND_INT
 132 * ``info.vlen``: 0
 133 * ``size``: the size of the int type in bytes.
 134
 135``btf_type`` is followed by a ``u32`` with the following bits arrangement::
 136
 137  #define BTF_INT_ENCODING(VAL)   (((VAL) & 0x0f000000) >> 24)
 138  #define BTF_INT_OFFSET(VAL)     (((VAL) & 0x00ff0000) >> 16)
 139  #define BTF_INT_BITS(VAL)       ((VAL)  & 0x000000ff)
 140
 141The ``BTF_INT_ENCODING`` has the following attributes::
 142
 143  #define BTF_INT_SIGNED  (1 << 0)
 144  #define BTF_INT_CHAR    (1 << 1)
 145  #define BTF_INT_BOOL    (1 << 2)
 146
 147The ``BTF_INT_ENCODING()`` provides extra information: signedness, char, or
 148bool, for the int type. The char and bool encoding are mostly useful for
 149pretty print. At most one encoding can be specified for the int type.
 150
 151The ``BTF_INT_BITS()`` specifies the number of actual bits held by this int
 152type. For example, a 4-bit bitfield encodes ``BTF_INT_BITS()`` equals to 4.
 153The ``btf_type.size * 8`` must be equal to or greater than ``BTF_INT_BITS()``
 154for the type. The maximum value of ``BTF_INT_BITS()`` is 128.
 155
 156The ``BTF_INT_OFFSET()`` specifies the starting bit offset to calculate values
 157for this int. For example, a bitfield struct member has:
 158
 159 * btf member bit offset 100 from the start of the structure,
 160 * btf member pointing to an int type,
 161 * the int type has ``BTF_INT_OFFSET() = 2`` and ``BTF_INT_BITS() = 4``
 162
 163Then in the struct memory layout, this member will occupy ``4`` bits starting
 164from bits ``100 + 2 = 102``.
 165
 166Alternatively, the bitfield struct member can be the following to access the
 167same bits as the above:
 168
 169 * btf member bit offset 102,
 170 * btf member pointing to an int type,
 171 * the int type has ``BTF_INT_OFFSET() = 0`` and ``BTF_INT_BITS() = 4``
 172
 173The original intention of ``BTF_INT_OFFSET()`` is to provide flexibility of
 174bitfield encoding. Currently, both llvm and pahole generate
 175``BTF_INT_OFFSET() = 0`` for all int types.
 176
 1772.2.2 BTF_KIND_PTR
 178~~~~~~~~~~~~~~~~~~
 179
 180``struct btf_type`` encoding requirement:
 181  * ``name_off``: 0
 182  * ``info.kind_flag``: 0
 183  * ``info.kind``: BTF_KIND_PTR
 184  * ``info.vlen``: 0
 185  * ``type``: the pointee type of the pointer
 186
 187No additional type data follow ``btf_type``.
 188
 1892.2.3 BTF_KIND_ARRAY
 190~~~~~~~~~~~~~~~~~~~~
 191
 192``struct btf_type`` encoding requirement:
 193  * ``name_off``: 0
 194  * ``info.kind_flag``: 0
 195  * ``info.kind``: BTF_KIND_ARRAY
 196  * ``info.vlen``: 0
 197  * ``size/type``: 0, not used
 198
 199``btf_type`` is followed by one ``struct btf_array``::
 200
 201    struct btf_array {
 202        __u32   type;
 203        __u32   index_type;
 204        __u32   nelems;
 205    };
 206
 207The ``struct btf_array`` encoding:
 208  * ``type``: the element type
 209  * ``index_type``: the index type
 210  * ``nelems``: the number of elements for this array (``0`` is also allowed).
 211
 212The ``index_type`` can be any regular int type (``u8``, ``u16``, ``u32``,
 213``u64``, ``unsigned __int128``). The original design of including
 214``index_type`` follows DWARF, which has an ``index_type`` for its array type.
 215Currently in BTF, beyond type verification, the ``index_type`` is not used.
 216
 217The ``struct btf_array`` allows chaining through element type to represent
 218multidimensional arrays. For example, for ``int a[5][6]``, the following type
 219information illustrates the chaining:
 220
 221  * [1]: int
 222  * [2]: array, ``btf_array.type = [1]``, ``btf_array.nelems = 6``
 223  * [3]: array, ``btf_array.type = [2]``, ``btf_array.nelems = 5``
 224
 225Currently, both pahole and llvm collapse multidimensional array into
 226one-dimensional array, e.g., for ``a[5][6]``, the ``btf_array.nelems`` is
 227equal to ``30``. This is because the original use case is map pretty print
 228where the whole array is dumped out so one-dimensional array is enough. As
 229more BTF usage is explored, pahole and llvm can be changed to generate proper
 230chained representation for multidimensional arrays.
 231
 2322.2.4 BTF_KIND_STRUCT
 233~~~~~~~~~~~~~~~~~~~~~
 2342.2.5 BTF_KIND_UNION
 235~~~~~~~~~~~~~~~~~~~~
 236
 237``struct btf_type`` encoding requirement:
 238  * ``name_off``: 0 or offset to a valid C identifier
 239  * ``info.kind_flag``: 0 or 1
 240  * ``info.kind``: BTF_KIND_STRUCT or BTF_KIND_UNION
 241  * ``info.vlen``: the number of struct/union members
 242  * ``info.size``: the size of the struct/union in bytes
 243
 244``btf_type`` is followed by ``info.vlen`` number of ``struct btf_member``.::
 245
 246    struct btf_member {
 247        __u32   name_off;
 248        __u32   type;
 249        __u32   offset;
 250    };
 251
 252``struct btf_member`` encoding:
 253  * ``name_off``: offset to a valid C identifier
 254  * ``type``: the member type
 255  * ``offset``: <see below>
 256
 257If the type info ``kind_flag`` is not set, the offset contains only bit offset
 258of the member. Note that the base type of the bitfield can only be int or enum
 259type. If the bitfield size is 32, the base type can be either int or enum
 260type. If the bitfield size is not 32, the base type must be int, and int type
 261``BTF_INT_BITS()`` encodes the bitfield size.
 262
 263If the ``kind_flag`` is set, the ``btf_member.offset`` contains both member
 264bitfield size and bit offset. The bitfield size and bit offset are calculated
 265as below.::
 266
 267  #define BTF_MEMBER_BITFIELD_SIZE(val)   ((val) >> 24)
 268  #define BTF_MEMBER_BIT_OFFSET(val)      ((val) & 0xffffff)
 269
 270In this case, if the base type is an int type, it must be a regular int type:
 271
 272  * ``BTF_INT_OFFSET()`` must be 0.
 273  * ``BTF_INT_BITS()`` must be equal to ``{1,2,4,8,16} * 8``.
 274
 275Commit 9d5f9f701b18 introduced ``kind_flag`` and explains why both modes
 276exist.
 
 
 277
 2782.2.6 BTF_KIND_ENUM
 279~~~~~~~~~~~~~~~~~~~
 280
 281``struct btf_type`` encoding requirement:
 282  * ``name_off``: 0 or offset to a valid C identifier
 283  * ``info.kind_flag``: 0 for unsigned, 1 for signed
 284  * ``info.kind``: BTF_KIND_ENUM
 285  * ``info.vlen``: number of enum values
 286  * ``size``: 1/2/4/8
 287
 288``btf_type`` is followed by ``info.vlen`` number of ``struct btf_enum``.::
 289
 290    struct btf_enum {
 291        __u32   name_off;
 292        __s32   val;
 293    };
 294
 295The ``btf_enum`` encoding:
 296  * ``name_off``: offset to a valid C identifier
 297  * ``val``: any value
 298
 299If the original enum value is signed and the size is less than 4,
 300that value will be sign extended into 4 bytes. If the size is 8,
 301the value will be truncated into 4 bytes.
 302
 3032.2.7 BTF_KIND_FWD
 304~~~~~~~~~~~~~~~~~~
 305
 306``struct btf_type`` encoding requirement:
 307  * ``name_off``: offset to a valid C identifier
 308  * ``info.kind_flag``: 0 for struct, 1 for union
 309  * ``info.kind``: BTF_KIND_FWD
 310  * ``info.vlen``: 0
 311  * ``type``: 0
 312
 313No additional type data follow ``btf_type``.
 314
 3152.2.8 BTF_KIND_TYPEDEF
 316~~~~~~~~~~~~~~~~~~~~~~
 317
 318``struct btf_type`` encoding requirement:
 319  * ``name_off``: offset to a valid C identifier
 320  * ``info.kind_flag``: 0
 321  * ``info.kind``: BTF_KIND_TYPEDEF
 322  * ``info.vlen``: 0
 323  * ``type``: the type which can be referred by name at ``name_off``
 324
 325No additional type data follow ``btf_type``.
 326
 3272.2.9 BTF_KIND_VOLATILE
 328~~~~~~~~~~~~~~~~~~~~~~~
 329
 330``struct btf_type`` encoding requirement:
 331  * ``name_off``: 0
 332  * ``info.kind_flag``: 0
 333  * ``info.kind``: BTF_KIND_VOLATILE
 334  * ``info.vlen``: 0
 335  * ``type``: the type with ``volatile`` qualifier
 336
 337No additional type data follow ``btf_type``.
 338
 3392.2.10 BTF_KIND_CONST
 340~~~~~~~~~~~~~~~~~~~~~
 341
 342``struct btf_type`` encoding requirement:
 343  * ``name_off``: 0
 344  * ``info.kind_flag``: 0
 345  * ``info.kind``: BTF_KIND_CONST
 346  * ``info.vlen``: 0
 347  * ``type``: the type with ``const`` qualifier
 348
 349No additional type data follow ``btf_type``.
 350
 3512.2.11 BTF_KIND_RESTRICT
 352~~~~~~~~~~~~~~~~~~~~~~~~
 353
 354``struct btf_type`` encoding requirement:
 355  * ``name_off``: 0
 356  * ``info.kind_flag``: 0
 357  * ``info.kind``: BTF_KIND_RESTRICT
 358  * ``info.vlen``: 0
 359  * ``type``: the type with ``restrict`` qualifier
 360
 361No additional type data follow ``btf_type``.
 362
 3632.2.12 BTF_KIND_FUNC
 364~~~~~~~~~~~~~~~~~~~~
 365
 366``struct btf_type`` encoding requirement:
 367  * ``name_off``: offset to a valid C identifier
 368  * ``info.kind_flag``: 0
 369  * ``info.kind``: BTF_KIND_FUNC
 370  * ``info.vlen``: linkage information (BTF_FUNC_STATIC, BTF_FUNC_GLOBAL
 371                   or BTF_FUNC_EXTERN - see :ref:`BTF_Function_Linkage_Constants`)
 372  * ``type``: a BTF_KIND_FUNC_PROTO type
 373
 374No additional type data follow ``btf_type``.
 375
 376A BTF_KIND_FUNC defines not a type, but a subprogram (function) whose
 377signature is defined by ``type``. The subprogram is thus an instance of that
 378type. The BTF_KIND_FUNC may in turn be referenced by a func_info in the
 379:ref:`BTF_Ext_Section` (ELF) or in the arguments to :ref:`BPF_Prog_Load`
 380(ABI).
 381
 382Currently, only linkage values of BTF_FUNC_STATIC and BTF_FUNC_GLOBAL are
 383supported in the kernel.
 384
 3852.2.13 BTF_KIND_FUNC_PROTO
 386~~~~~~~~~~~~~~~~~~~~~~~~~~
 387
 388``struct btf_type`` encoding requirement:
 389  * ``name_off``: 0
 390  * ``info.kind_flag``: 0
 391  * ``info.kind``: BTF_KIND_FUNC_PROTO
 392  * ``info.vlen``: # of parameters
 393  * ``type``: the return type
 394
 395``btf_type`` is followed by ``info.vlen`` number of ``struct btf_param``.::
 396
 397    struct btf_param {
 398        __u32   name_off;
 399        __u32   type;
 400    };
 401
 402If a BTF_KIND_FUNC_PROTO type is referred by a BTF_KIND_FUNC type, then
 403``btf_param.name_off`` must point to a valid C identifier except for the
 404possible last argument representing the variable argument. The btf_param.type
 405refers to parameter type.
 406
 407If the function has variable arguments, the last parameter is encoded with
 408``name_off = 0`` and ``type = 0``.
 409
 4102.2.14 BTF_KIND_VAR
 411~~~~~~~~~~~~~~~~~~~
 412
 413``struct btf_type`` encoding requirement:
 414  * ``name_off``: offset to a valid C identifier
 415  * ``info.kind_flag``: 0
 416  * ``info.kind``: BTF_KIND_VAR
 417  * ``info.vlen``: 0
 418  * ``type``: the type of the variable
 419
 420``btf_type`` is followed by a single ``struct btf_variable`` with the
 421following data::
 422
 423    struct btf_var {
 424        __u32   linkage;
 425    };
 426
 427``btf_var.linkage`` may take the values: BTF_VAR_STATIC, BTF_VAR_GLOBAL_ALLOCATED or BTF_VAR_GLOBAL_EXTERN -
 428see :ref:`BTF_Var_Linkage_Constants`.
 
 429
 430Not all type of global variables are supported by LLVM at this point.
 431The following is currently available:
 432
 433  * static variables with or without section attributes
 434  * global variables with section attributes
 435
 436The latter is for future extraction of map key/value type id's from a
 437map definition.
 438
 4392.2.15 BTF_KIND_DATASEC
 440~~~~~~~~~~~~~~~~~~~~~~~
 441
 442``struct btf_type`` encoding requirement:
 443  * ``name_off``: offset to a valid name associated with a variable or
 444                  one of .data/.bss/.rodata
 445  * ``info.kind_flag``: 0
 446  * ``info.kind``: BTF_KIND_DATASEC
 447  * ``info.vlen``: # of variables
 448  * ``size``: total section size in bytes (0 at compilation time, patched
 449              to actual size by BPF loaders such as libbpf)
 450
 451``btf_type`` is followed by ``info.vlen`` number of ``struct btf_var_secinfo``.::
 452
 453    struct btf_var_secinfo {
 454        __u32   type;
 455        __u32   offset;
 456        __u32   size;
 457    };
 458
 459``struct btf_var_secinfo`` encoding:
 460  * ``type``: the type of the BTF_KIND_VAR variable
 461  * ``offset``: the in-section offset of the variable
 462  * ``size``: the size of the variable in bytes
 463
 4642.2.16 BTF_KIND_FLOAT
 465~~~~~~~~~~~~~~~~~~~~~
 466
 467``struct btf_type`` encoding requirement:
 468 * ``name_off``: any valid offset
 469 * ``info.kind_flag``: 0
 470 * ``info.kind``: BTF_KIND_FLOAT
 471 * ``info.vlen``: 0
 472 * ``size``: the size of the float type in bytes: 2, 4, 8, 12 or 16.
 473
 474No additional type data follow ``btf_type``.
 475
 4762.2.17 BTF_KIND_DECL_TAG
 477~~~~~~~~~~~~~~~~~~~~~~~~
 478
 479``struct btf_type`` encoding requirement:
 480 * ``name_off``: offset to a non-empty string
 481 * ``info.kind_flag``: 0
 482 * ``info.kind``: BTF_KIND_DECL_TAG
 483 * ``info.vlen``: 0
 484 * ``type``: ``struct``, ``union``, ``func``, ``var`` or ``typedef``
 485
 486``btf_type`` is followed by ``struct btf_decl_tag``.::
 487
 488    struct btf_decl_tag {
 489        __u32   component_idx;
 490    };
 491
 492The ``name_off`` encodes btf_decl_tag attribute string.
 493The ``type`` should be ``struct``, ``union``, ``func``, ``var`` or ``typedef``.
 494For ``var`` or ``typedef`` type, ``btf_decl_tag.component_idx`` must be ``-1``.
 495For the other three types, if the btf_decl_tag attribute is
 496applied to the ``struct``, ``union`` or ``func`` itself,
 497``btf_decl_tag.component_idx`` must be ``-1``. Otherwise,
 498the attribute is applied to a ``struct``/``union`` member or
 499a ``func`` argument, and ``btf_decl_tag.component_idx`` should be a
 500valid index (starting from 0) pointing to a member or an argument.
 501
 5022.2.18 BTF_KIND_TYPE_TAG
 503~~~~~~~~~~~~~~~~~~~~~~~~
 504
 505``struct btf_type`` encoding requirement:
 506 * ``name_off``: offset to a non-empty string
 507 * ``info.kind_flag``: 0
 508 * ``info.kind``: BTF_KIND_TYPE_TAG
 509 * ``info.vlen``: 0
 510 * ``type``: the type with ``btf_type_tag`` attribute
 511
 512Currently, ``BTF_KIND_TYPE_TAG`` is only emitted for pointer types.
 513It has the following btf type chain:
 514::
 515
 516  ptr -> [type_tag]*
 517      -> [const | volatile | restrict | typedef]*
 518      -> base_type
 519
 520Basically, a pointer type points to zero or more
 521type_tag, then zero or more const/volatile/restrict/typedef
 522and finally the base type. The base type is one of
 523int, ptr, array, struct, union, enum, func_proto and float types.
 524
 5252.2.19 BTF_KIND_ENUM64
 526~~~~~~~~~~~~~~~~~~~~~~
 527
 528``struct btf_type`` encoding requirement:
 529  * ``name_off``: 0 or offset to a valid C identifier
 530  * ``info.kind_flag``: 0 for unsigned, 1 for signed
 531  * ``info.kind``: BTF_KIND_ENUM64
 532  * ``info.vlen``: number of enum values
 533  * ``size``: 1/2/4/8
 534
 535``btf_type`` is followed by ``info.vlen`` number of ``struct btf_enum64``.::
 536
 537    struct btf_enum64 {
 538        __u32   name_off;
 539        __u32   val_lo32;
 540        __u32   val_hi32;
 541    };
 542
 543The ``btf_enum64`` encoding:
 544  * ``name_off``: offset to a valid C identifier
 545  * ``val_lo32``: lower 32-bit value for a 64-bit value
 546  * ``val_hi32``: high 32-bit value for a 64-bit value
 547
 548If the original enum value is signed and the size is less than 8,
 549that value will be sign extended into 8 bytes.
 550
 5512.3 Constant Values
 552-------------------
 553
 554.. _BTF_Function_Linkage_Constants:
 555
 5562.3.1 Function Linkage Constant Values
 557~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
 558.. table:: Function Linkage Values and Meanings
 559
 560  ===================  =====  ===========
 561  kind                 value  description
 562  ===================  =====  ===========
 563  ``BTF_FUNC_STATIC``  0x0    definition of subprogram not visible outside containing compilation unit
 564  ``BTF_FUNC_GLOBAL``  0x1    definition of subprogram visible outside containing compilation unit
 565  ``BTF_FUNC_EXTERN``  0x2    declaration of a subprogram whose definition is outside the containing compilation unit
 566  ===================  =====  ===========
 567
 568
 569.. _BTF_Var_Linkage_Constants:
 570
 5712.3.2 Variable Linkage Constant Values
 572~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
 573.. table:: Variable Linkage Values and Meanings
 574
 575  ============================  =====  ===========
 576  kind                          value  description
 577  ============================  =====  ===========
 578  ``BTF_VAR_STATIC``            0x0    definition of global variable not visible outside containing compilation unit
 579  ``BTF_VAR_GLOBAL_ALLOCATED``  0x1    definition of global variable visible outside containing compilation unit
 580  ``BTF_VAR_GLOBAL_EXTERN``     0x2    declaration of global variable whose definition is outside the containing compilation unit
 581  ============================  =====  ===========
 582
 5833. BTF Kernel API
 584=================
 585
 586The following bpf syscall command involves BTF:
 587   * BPF_BTF_LOAD: load a blob of BTF data into kernel
 588   * BPF_MAP_CREATE: map creation with btf key and value type info.
 589   * BPF_PROG_LOAD: prog load with btf function and line info.
 590   * BPF_BTF_GET_FD_BY_ID: get a btf fd
 591   * BPF_OBJ_GET_INFO_BY_FD: btf, func_info, line_info
 592     and other btf related info are returned.
 593
 594The workflow typically looks like:
 595::
 596
 597  Application:
 598      BPF_BTF_LOAD
 599          |
 600          v
 601      BPF_MAP_CREATE and BPF_PROG_LOAD
 602          |
 603          V
 604      ......
 605
 606  Introspection tool:
 607      ......
 608      BPF_{PROG,MAP}_GET_NEXT_ID (get prog/map id's)
 609          |
 610          V
 611      BPF_{PROG,MAP}_GET_FD_BY_ID (get a prog/map fd)
 612          |
 613          V
 614      BPF_OBJ_GET_INFO_BY_FD (get bpf_prog_info/bpf_map_info with btf_id)
 615          |                                     |
 616          V                                     |
 617      BPF_BTF_GET_FD_BY_ID (get btf_fd)         |
 618          |                                     |
 619          V                                     |
 620      BPF_OBJ_GET_INFO_BY_FD (get btf)          |
 621          |                                     |
 622          V                                     V
 623      pretty print types, dump func signatures and line info, etc.
 624
 625
 6263.1 BPF_BTF_LOAD
 627----------------
 628
 629Load a blob of BTF data into kernel. A blob of data, described in
 630:ref:`BTF_Type_String`, can be directly loaded into the kernel. A ``btf_fd``
 631is returned to a userspace.
 632
 6333.2 BPF_MAP_CREATE
 634------------------
 635
 636A map can be created with ``btf_fd`` and specified key/value type id.::
 637
 638    __u32   btf_fd;         /* fd pointing to a BTF type data */
 639    __u32   btf_key_type_id;        /* BTF type_id of the key */
 640    __u32   btf_value_type_id;      /* BTF type_id of the value */
 641
 642In libbpf, the map can be defined with extra annotation like below:
 643::
 644
 645    struct {
 646        __uint(type, BPF_MAP_TYPE_ARRAY);
 647        __type(key, int);
 648        __type(value, struct ipv_counts);
 649        __uint(max_entries, 4);
 650    } btf_map SEC(".maps");
 651
 652During ELF parsing, libbpf is able to extract key/value type_id's and assign
 653them to BPF_MAP_CREATE attributes automatically.
 
 
 
 654
 655.. _BPF_Prog_Load:
 656
 6573.3 BPF_PROG_LOAD
 658-----------------
 659
 660During prog_load, func_info and line_info can be passed to kernel with proper
 661values for the following attributes:
 662::
 663
 664    __u32           insn_cnt;
 665    __aligned_u64   insns;
 666    ......
 667    __u32           prog_btf_fd;    /* fd pointing to BTF type data */
 668    __u32           func_info_rec_size;     /* userspace bpf_func_info size */
 669    __aligned_u64   func_info;      /* func info */
 670    __u32           func_info_cnt;  /* number of bpf_func_info records */
 671    __u32           line_info_rec_size;     /* userspace bpf_line_info size */
 672    __aligned_u64   line_info;      /* line info */
 673    __u32           line_info_cnt;  /* number of bpf_line_info records */
 674
 675The func_info and line_info are an array of below, respectively.::
 676
 677    struct bpf_func_info {
 678        __u32   insn_off; /* [0, insn_cnt - 1] */
 679        __u32   type_id;  /* pointing to a BTF_KIND_FUNC type */
 680    };
 681    struct bpf_line_info {
 682        __u32   insn_off; /* [0, insn_cnt - 1] */
 683        __u32   file_name_off; /* offset to string table for the filename */
 684        __u32   line_off; /* offset to string table for the source line */
 685        __u32   line_col; /* line number and column number */
 686    };
 687
 688func_info_rec_size is the size of each func_info record, and
 689line_info_rec_size is the size of each line_info record. Passing the record
 690size to kernel make it possible to extend the record itself in the future.
 691
 692Below are requirements for func_info:
 693  * func_info[0].insn_off must be 0.
 694  * the func_info insn_off is in strictly increasing order and matches
 695    bpf func boundaries.
 696
 697Below are requirements for line_info:
 698  * the first insn in each func must have a line_info record pointing to it.
 699  * the line_info insn_off is in strictly increasing order.
 700
 701For line_info, the line number and column number are defined as below:
 702::
 703
 704    #define BPF_LINE_INFO_LINE_NUM(line_col)        ((line_col) >> 10)
 705    #define BPF_LINE_INFO_LINE_COL(line_col)        ((line_col) & 0x3ff)
 706
 7073.4 BPF_{PROG,MAP}_GET_NEXT_ID
 708------------------------------
 709
 710In kernel, every loaded program, map or btf has a unique id. The id won't
 711change during the lifetime of a program, map, or btf.
 712
 713The bpf syscall command BPF_{PROG,MAP}_GET_NEXT_ID returns all id's, one for
 714each command, to user space, for bpf program or maps, respectively, so an
 715inspection tool can inspect all programs and maps.
 716
 7173.5 BPF_{PROG,MAP}_GET_FD_BY_ID
 718-------------------------------
 719
 720An introspection tool cannot use id to get details about program or maps.
 721A file descriptor needs to be obtained first for reference-counting purpose.
 722
 7233.6 BPF_OBJ_GET_INFO_BY_FD
 724--------------------------
 725
 726Once a program/map fd is acquired, an introspection tool can get the detailed
 727information from kernel about this fd, some of which are BTF-related. For
 728example, ``bpf_map_info`` returns ``btf_id`` and key/value type ids.
 729``bpf_prog_info`` returns ``btf_id``, func_info, and line info for translated
 730bpf byte codes, and jited_line_info.
 731
 7323.7 BPF_BTF_GET_FD_BY_ID
 733------------------------
 734
 735With ``btf_id`` obtained in ``bpf_map_info`` and ``bpf_prog_info``, bpf
 736syscall command BPF_BTF_GET_FD_BY_ID can retrieve a btf fd. Then, with
 737command BPF_OBJ_GET_INFO_BY_FD, the btf blob, originally loaded into the
 738kernel with BPF_BTF_LOAD, can be retrieved.
 739
 740With the btf blob, ``bpf_map_info``, and ``bpf_prog_info``, an introspection
 741tool has full btf knowledge and is able to pretty print map key/values, dump
 742func signatures and line info, along with byte/jit codes.
 743
 7444. ELF File Format Interface
 745============================
 746
 7474.1 .BTF section
 748----------------
 749
 750The .BTF section contains type and string data. The format of this section is
 751same as the one describe in :ref:`BTF_Type_String`.
 752
 753.. _BTF_Ext_Section:
 754
 7554.2 .BTF.ext section
 756--------------------
 757
 758The .BTF.ext section encodes func_info, line_info and CO-RE relocations
 759which needs loader manipulation before loading into the kernel.
 760
 761The specification for .BTF.ext section is defined at ``tools/lib/bpf/btf.h``
 762and ``tools/lib/bpf/btf.c``.
 763
 764The current header of .BTF.ext section::
 765
 766    struct btf_ext_header {
 767        __u16   magic;
 768        __u8    version;
 769        __u8    flags;
 770        __u32   hdr_len;
 771
 772        /* All offsets are in bytes relative to the end of this header */
 773        __u32   func_info_off;
 774        __u32   func_info_len;
 775        __u32   line_info_off;
 776        __u32   line_info_len;
 777
 778        /* optional part of .BTF.ext header */
 779        __u32   core_relo_off;
 780        __u32   core_relo_len;
 781    };
 782
 783It is very similar to .BTF section. Instead of type/string section, it
 784contains func_info, line_info and core_relo sub-sections.
 785See :ref:`BPF_Prog_Load` for details about func_info and line_info
 786record format.
 787
 788The func_info is organized as below.::
 789
 790     func_info_rec_size              /* __u32 value */
 791     btf_ext_info_sec for section #1 /* func_info for section #1 */
 792     btf_ext_info_sec for section #2 /* func_info for section #2 */
 793     ...
 794
 795``func_info_rec_size`` specifies the size of ``bpf_func_info`` structure when
 796.BTF.ext is generated. ``btf_ext_info_sec``, defined below, is a collection of
 797func_info for each specific ELF section.::
 798
 799     struct btf_ext_info_sec {
 800        __u32   sec_name_off; /* offset to section name */
 801        __u32   num_info;
 802        /* Followed by num_info * record_size number of bytes */
 803        __u8    data[0];
 804     };
 805
 806Here, num_info must be greater than 0.
 807
 808The line_info is organized as below.::
 809
 810     line_info_rec_size              /* __u32 value */
 811     btf_ext_info_sec for section #1 /* line_info for section #1 */
 812     btf_ext_info_sec for section #2 /* line_info for section #2 */
 813     ...
 814
 815``line_info_rec_size`` specifies the size of ``bpf_line_info`` structure when
 816.BTF.ext is generated.
 817
 818The interpretation of ``bpf_func_info->insn_off`` and
 819``bpf_line_info->insn_off`` is different between kernel API and ELF API. For
 820kernel API, the ``insn_off`` is the instruction offset in the unit of ``struct
 821bpf_insn``. For ELF API, the ``insn_off`` is the byte offset from the
 822beginning of section (``btf_ext_info_sec->sec_name_off``).
 823
 824The core_relo is organized as below.::
 825
 826     core_relo_rec_size              /* __u32 value */
 827     btf_ext_info_sec for section #1 /* core_relo for section #1 */
 828     btf_ext_info_sec for section #2 /* core_relo for section #2 */
 829
 830``core_relo_rec_size`` specifies the size of ``bpf_core_relo``
 831structure when .BTF.ext is generated. All ``bpf_core_relo`` structures
 832within a single ``btf_ext_info_sec`` describe relocations applied to
 833section named by ``btf_ext_info_sec->sec_name_off``.
 834
 835See :ref:`Documentation/bpf/llvm_reloc.rst <btf-co-re-relocations>`
 836for more information on CO-RE relocations.
 837
 8384.3 .BTF_ids section
 839--------------------
 840
 841The .BTF_ids section encodes BTF ID values that are used within the kernel.
 842
 843This section is created during the kernel compilation with the help of
 844macros defined in ``include/linux/btf_ids.h`` header file. Kernel code can
 845use them to create lists and sets (sorted lists) of BTF ID values.
 846
 847The ``BTF_ID_LIST`` and ``BTF_ID`` macros define unsorted list of BTF ID values,
 848with following syntax::
 849
 850  BTF_ID_LIST(list)
 851  BTF_ID(type1, name1)
 852  BTF_ID(type2, name2)
 853
 854resulting in following layout in .BTF_ids section::
 855
 856  __BTF_ID__type1__name1__1:
 857  .zero 4
 858  __BTF_ID__type2__name2__2:
 859  .zero 4
 860
 861The ``u32 list[];`` variable is defined to access the list.
 862
 863The ``BTF_ID_UNUSED`` macro defines 4 zero bytes. It's used when we
 864want to define unused entry in BTF_ID_LIST, like::
 865
 866      BTF_ID_LIST(bpf_skb_output_btf_ids)
 867      BTF_ID(struct, sk_buff)
 868      BTF_ID_UNUSED
 869      BTF_ID(struct, task_struct)
 870
 871The ``BTF_SET_START/END`` macros pair defines sorted list of BTF ID values
 872and their count, with following syntax::
 873
 874  BTF_SET_START(set)
 875  BTF_ID(type1, name1)
 876  BTF_ID(type2, name2)
 877  BTF_SET_END(set)
 878
 879resulting in following layout in .BTF_ids section::
 880
 881  __BTF_ID__set__set:
 882  .zero 4
 883  __BTF_ID__type1__name1__3:
 884  .zero 4
 885  __BTF_ID__type2__name2__4:
 886  .zero 4
 887
 888The ``struct btf_id_set set;`` variable is defined to access the list.
 889
 890The ``typeX`` name can be one of following::
 891
 892   struct, union, typedef, func
 893
 894and is used as a filter when resolving the BTF ID value.
 895
 896All the BTF ID lists and sets are compiled in the .BTF_ids section and
 897resolved during the linking phase of kernel build by ``resolve_btfids`` tool.
 898
 8994.4 .BTF.base section
 900---------------------
 901Split BTF - where the .BTF section only contains types not in the associated
 902base .BTF section - is an extremely efficient way to encode type information
 903for kernel modules, since they generally consist of a few module-specific
 904types along with a large set of shared kernel types. The former are encoded
 905in split BTF, while the latter are encoded in base BTF, resulting in more
 906compact representations. A type in split BTF that refers to a type in
 907base BTF refers to it using its base BTF ID, and split BTF IDs start
 908at last_base_BTF_ID + 1.
 909
 910The downside of this approach however is that this makes the split BTF
 911somewhat brittle - when the base BTF changes, base BTF ID references are
 912no longer valid and the split BTF itself becomes useless. The role of the
 913.BTF.base section is to make split BTF more resilient for cases where
 914the base BTF may change, as is the case for kernel modules not built every
 915time the kernel is for example. .BTF.base contains named base types; INTs,
 916FLOATs, STRUCTs, UNIONs, ENUM[64]s and FWDs. INTs and FLOATs are fully
 917described in .BTF.base sections, while composite types like structs
 918and unions are not fully defined - the .BTF.base type simply serves as
 919a description of the type the split BTF referred to, so structs/unions
 920have 0 members in the .BTF.base section. ENUM[64]s are similarly recorded
 921with 0 members. Any other types are added to the split BTF. This
 922distillation process then leaves us with a .BTF.base section with
 923such minimal descriptions of base types and .BTF split section which refers
 924to those base types. Later, we can relocate the split BTF using both the
 925information stored in the .BTF.base section and the new .BTF base; the type
 926information in the .BTF.base section allows us to update the split BTF
 927references to point at the corresponding new base BTF IDs.
 928
 929BTF relocation happens on kernel module load when a kernel module has a
 930.BTF.base section, and libbpf also provides a btf__relocate() API to
 931accomplish this.
 932
 933As an example consider the following base BTF::
 934
 935      [1] INT 'int' size=4 bits_offset=0 nr_bits=32 encoding=SIGNED
 936      [2] STRUCT 'foo' size=8 vlen=2
 937              'f1' type_id=1 bits_offset=0
 938              'f2' type_id=1 bits_offset=32
 939
 940...and associated split BTF::
 941
 942      [3] PTR '(anon)' type_id=2
 943
 944i.e. split BTF describes a pointer to struct foo { int f1; int f2 };
 945
 946.BTF.base will consist of::
 947
 948      [1] INT 'int' size=4 bits_offset=0 nr_bits=32 encoding=SIGNED
 949      [2] STRUCT 'foo' size=8 vlen=0
 950
 951If we relocate the split BTF later using the following new base BTF::
 952
 953      [1] INT 'long unsigned int' size=8 bits_offset=0 nr_bits=64 encoding=(none)
 954      [2] INT 'int' size=4 bits_offset=0 nr_bits=32 encoding=SIGNED
 955      [3] STRUCT 'foo' size=8 vlen=2
 956              'f1' type_id=2 bits_offset=0
 957              'f2' type_id=2 bits_offset=32
 958
 959...we can use our .BTF.base description to know that the split BTF reference
 960is to struct foo, and relocation results in new split BTF::
 961
 962      [4] PTR '(anon)' type_id=3
 963
 964Note that we had to update BTF ID and start BTF ID for the split BTF.
 965
 966So we see how .BTF.base plays the role of facilitating later relocation,
 967leading to more resilient split BTF.
 968
 969.BTF.base sections will be generated automatically for out-of-tree kernel module
 970builds - i.e. where KBUILD_EXTMOD is set (as it would be for "make M=path/2/mod"
 971cases). .BTF.base generation requires pahole support for the "distilled_base"
 972BTF feature; this is available in pahole v1.28 and later.
 973
 9745. Using BTF
 975============
 976
 9775.1 bpftool map pretty print
 978----------------------------
 979
 980With BTF, the map key/value can be printed based on fields rather than simply
 981raw bytes. This is especially valuable for large structure or if your data
 982structure has bitfields. For example, for the following map,::
 983
 984      enum A { A1, A2, A3, A4, A5 };
 985      typedef enum A ___A;
 986      struct tmp_t {
 987           char a1:4;
 988           int  a2:4;
 989           int  :4;
 990           __u32 a3:4;
 991           int b;
 992           ___A b1:4;
 993           enum A b2:4;
 994      };
 995      struct {
 996           __uint(type, BPF_MAP_TYPE_ARRAY);
 997           __type(key, int);
 998           __type(value, struct tmp_t);
 999           __uint(max_entries, 1);
1000      } tmpmap SEC(".maps");
 
1001
1002bpftool is able to pretty print like below:
1003::
1004
1005      [{
1006            "key": 0,
1007            "value": {
1008                "a1": 0x2,
1009                "a2": 0x4,
1010                "a3": 0x6,
1011                "b": 7,
1012                "b1": 0x8,
1013                "b2": 0xa
1014            }
1015        }
1016      ]
1017
10185.2 bpftool prog dump
1019---------------------
1020
1021The following is an example showing how func_info and line_info can help prog
1022dump with better kernel symbol names, function prototypes and line
1023information.::
1024
1025    $ bpftool prog dump jited pinned /sys/fs/bpf/test_btf_haskv
1026    [...]
1027    int test_long_fname_2(struct dummy_tracepoint_args * arg):
1028    bpf_prog_44a040bf25481309_test_long_fname_2:
1029    ; static int test_long_fname_2(struct dummy_tracepoint_args *arg)
1030       0:   push   %rbp
1031       1:   mov    %rsp,%rbp
1032       4:   sub    $0x30,%rsp
1033       b:   sub    $0x28,%rbp
1034       f:   mov    %rbx,0x0(%rbp)
1035      13:   mov    %r13,0x8(%rbp)
1036      17:   mov    %r14,0x10(%rbp)
1037      1b:   mov    %r15,0x18(%rbp)
1038      1f:   xor    %eax,%eax
1039      21:   mov    %rax,0x20(%rbp)
1040      25:   xor    %esi,%esi
1041    ; int key = 0;
1042      27:   mov    %esi,-0x4(%rbp)
1043    ; if (!arg->sock)
1044      2a:   mov    0x8(%rdi),%rdi
1045    ; if (!arg->sock)
1046      2e:   cmp    $0x0,%rdi
1047      32:   je     0x0000000000000070
1048      34:   mov    %rbp,%rsi
1049    ; counts = bpf_map_lookup_elem(&btf_map, &key);
1050    [...]
1051
10525.3 Verifier Log
1053----------------
1054
1055The following is an example of how line_info can help debugging verification
1056failure.::
1057
1058       /* The code at tools/testing/selftests/bpf/test_xdp_noinline.c
1059        * is modified as below.
1060        */
1061       data = (void *)(long)xdp->data;
1062       data_end = (void *)(long)xdp->data_end;
1063       /*
1064       if (data + 4 > data_end)
1065               return XDP_DROP;
1066       */
1067       *(u32 *)data = dst->dst;
1068
1069    $ bpftool prog load ./test_xdp_noinline.o /sys/fs/bpf/test_xdp_noinline type xdp
1070        ; data = (void *)(long)xdp->data;
1071        224: (79) r2 = *(u64 *)(r10 -112)
1072        225: (61) r2 = *(u32 *)(r2 +0)
1073        ; *(u32 *)data = dst->dst;
1074        226: (63) *(u32 *)(r2 +0) = r1
1075        invalid access to packet, off=0 size=4, R2(id=0,off=0,r=0)
1076        R2 offset is outside of the packet
1077
10786. BTF Generation
1079=================
1080
1081You need latest pahole
1082
1083  https://git.kernel.org/pub/scm/devel/pahole/pahole.git/
1084
1085or llvm (8.0 or later). The pahole acts as a dwarf2btf converter. It doesn't
1086support .BTF.ext and btf BTF_KIND_FUNC type yet. For example,::
1087
1088      -bash-4.4$ cat t.c
1089      struct t {
1090        int a:2;
1091        int b:3;
1092        int c:2;
1093      } g;
1094      -bash-4.4$ gcc -c -O2 -g t.c
1095      -bash-4.4$ pahole -JV t.o
1096      File t.o:
1097      [1] STRUCT t kind_flag=1 size=4 vlen=3
1098              a type_id=2 bitfield_size=2 bits_offset=0
1099              b type_id=2 bitfield_size=3 bits_offset=2
1100              c type_id=2 bitfield_size=2 bits_offset=5
1101      [2] INT int size=4 bit_offset=0 nr_bits=32 encoding=SIGNED
1102
1103The llvm is able to generate .BTF and .BTF.ext directly with -g for bpf target
1104only. The assembly code (-S) is able to show the BTF encoding in assembly
1105format.::
1106
1107    -bash-4.4$ cat t2.c
1108    typedef int __int32;
1109    struct t2 {
1110      int a2;
1111      int (*f2)(char q1, __int32 q2, ...);
1112      int (*f3)();
1113    } g2;
1114    int main() { return 0; }
1115    int test() { return 0; }
1116    -bash-4.4$ clang -c -g -O2 --target=bpf t2.c
1117    -bash-4.4$ readelf -S t2.o
1118      ......
1119      [ 8] .BTF              PROGBITS         0000000000000000  00000247
1120           000000000000016e  0000000000000000           0     0     1
1121      [ 9] .BTF.ext          PROGBITS         0000000000000000  000003b5
1122           0000000000000060  0000000000000000           0     0     1
1123      [10] .rel.BTF.ext      REL              0000000000000000  000007e0
1124           0000000000000040  0000000000000010          16     9     8
1125      ......
1126    -bash-4.4$ clang -S -g -O2 --target=bpf t2.c
1127    -bash-4.4$ cat t2.s
1128      ......
1129            .section        .BTF,"",@progbits
1130            .short  60319                   # 0xeb9f
1131            .byte   1
1132            .byte   0
1133            .long   24
1134            .long   0
1135            .long   220
1136            .long   220
1137            .long   122
1138            .long   0                       # BTF_KIND_FUNC_PROTO(id = 1)
1139            .long   218103808               # 0xd000000
1140            .long   2
1141            .long   83                      # BTF_KIND_INT(id = 2)
1142            .long   16777216                # 0x1000000
1143            .long   4
1144            .long   16777248                # 0x1000020
1145      ......
1146            .byte   0                       # string offset=0
1147            .ascii  ".text"                 # string offset=1
1148            .byte   0
1149            .ascii  "/home/yhs/tmp-pahole/t2.c" # string offset=7
1150            .byte   0
1151            .ascii  "int main() { return 0; }" # string offset=33
1152            .byte   0
1153            .ascii  "int test() { return 0; }" # string offset=58
1154            .byte   0
1155            .ascii  "int"                   # string offset=83
1156      ......
1157            .section        .BTF.ext,"",@progbits
1158            .short  60319                   # 0xeb9f
1159            .byte   1
1160            .byte   0
1161            .long   24
1162            .long   0
1163            .long   28
1164            .long   28
1165            .long   44
1166            .long   8                       # FuncInfo
1167            .long   1                       # FuncInfo section string offset=1
1168            .long   2
1169            .long   .Lfunc_begin0
1170            .long   3
1171            .long   .Lfunc_begin1
1172            .long   5
1173            .long   16                      # LineInfo
1174            .long   1                       # LineInfo section string offset=1
1175            .long   2
1176            .long   .Ltmp0
1177            .long   7
1178            .long   33
1179            .long   7182                    # Line 7 Col 14
1180            .long   .Ltmp3
1181            .long   7
1182            .long   58
1183            .long   8206                    # Line 8 Col 14
1184
11857. Testing
1186==========
1187
1188The kernel BPF selftest `tools/testing/selftests/bpf/prog_tests/btf.c`_
1189provides an extensive set of BTF-related tests.
1190
1191.. Links
1192.. _tools/testing/selftests/bpf/prog_tests/btf.c:
1193   https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/tree/tools/testing/selftests/bpf/prog_tests/btf.c
v5.9
  1=====================
  2BPF Type Format (BTF)
  3=====================
  4
  51. Introduction
  6***************
  7
  8BTF (BPF Type Format) is the metadata format which encodes the debug info
  9related to BPF program/map. The name BTF was used initially to describe data
 10types. The BTF was later extended to include function info for defined
 11subroutines, and line info for source/line information.
 12
 13The debug info is used for map pretty print, function signature, etc. The
 14function signature enables better bpf program/function kernel symbol. The line
 15info helps generate source annotated translated byte code, jited code and
 16verifier log.
 17
 18The BTF specification contains two parts,
 19  * BTF kernel API
 20  * BTF ELF file format
 21
 22The kernel API is the contract between user space and kernel. The kernel
 23verifies the BTF info before using it. The ELF file format is a user space
 24contract between ELF file and libbpf loader.
 25
 26The type and string sections are part of the BTF kernel API, describing the
 27debug info (mostly types related) referenced by the bpf program. These two
 28sections are discussed in details in :ref:`BTF_Type_String`.
 29
 30.. _BTF_Type_String:
 31
 322. BTF Type and String Encoding
 33*******************************
 34
 35The file ``include/uapi/linux/btf.h`` provides high-level definition of how
 36types/strings are encoded.
 37
 38The beginning of data blob must be::
 39
 40    struct btf_header {
 41        __u16   magic;
 42        __u8    version;
 43        __u8    flags;
 44        __u32   hdr_len;
 45
 46        /* All offsets are in bytes relative to the end of this header */
 47        __u32   type_off;       /* offset of type section       */
 48        __u32   type_len;       /* length of type section       */
 49        __u32   str_off;        /* offset of string section     */
 50        __u32   str_len;        /* length of string section     */
 51    };
 52
 53The magic is ``0xeB9F``, which has different encoding for big and little
 54endian systems, and can be used to test whether BTF is generated for big- or
 55little-endian target. The ``btf_header`` is designed to be extensible with
 56``hdr_len`` equal to ``sizeof(struct btf_header)`` when a data blob is
 57generated.
 58
 592.1 String Encoding
 60===================
 61
 62The first string in the string section must be a null string. The rest of
 63string table is a concatenation of other null-terminated strings.
 64
 652.2 Type Encoding
 66=================
 67
 68The type id ``0`` is reserved for ``void`` type. The type section is parsed
 69sequentially and type id is assigned to each recognized type starting from id
 70``1``. Currently, the following types are supported::
 71
 72    #define BTF_KIND_INT            1       /* Integer      */
 73    #define BTF_KIND_PTR            2       /* Pointer      */
 74    #define BTF_KIND_ARRAY          3       /* Array        */
 75    #define BTF_KIND_STRUCT         4       /* Struct       */
 76    #define BTF_KIND_UNION          5       /* Union        */
 77    #define BTF_KIND_ENUM           6       /* Enumeration  */
 78    #define BTF_KIND_FWD            7       /* Forward      */
 79    #define BTF_KIND_TYPEDEF        8       /* Typedef      */
 80    #define BTF_KIND_VOLATILE       9       /* Volatile     */
 81    #define BTF_KIND_CONST          10      /* Const        */
 82    #define BTF_KIND_RESTRICT       11      /* Restrict     */
 83    #define BTF_KIND_FUNC           12      /* Function     */
 84    #define BTF_KIND_FUNC_PROTO     13      /* Function Proto       */
 85    #define BTF_KIND_VAR            14      /* Variable     */
 86    #define BTF_KIND_DATASEC        15      /* Section      */
 
 
 
 
 87
 88Note that the type section encodes debug info, not just pure types.
 89``BTF_KIND_FUNC`` is not a type, and it represents a defined subprogram.
 90
 91Each type contains the following common data::
 92
 93    struct btf_type {
 94        __u32 name_off;
 95        /* "info" bits arrangement
 96         * bits  0-15: vlen (e.g. # of struct's members)
 97         * bits 16-23: unused
 98         * bits 24-27: kind (e.g. int, ptr, array...etc)
 99         * bits 28-30: unused
100         * bit     31: kind_flag, currently used by
101         *             struct, union and fwd
102         */
103        __u32 info;
104        /* "size" is used by INT, ENUM, STRUCT and UNION.
105         * "size" tells the size of the type it is describing.
106         *
107         * "type" is used by PTR, TYPEDEF, VOLATILE, CONST, RESTRICT,
108         * FUNC and FUNC_PROTO.
109         * "type" is a type_id referring to another type.
110         */
111        union {
112                __u32 size;
113                __u32 type;
114        };
115    };
116
117For certain kinds, the common data are followed by kind-specific data. The
118``name_off`` in ``struct btf_type`` specifies the offset in the string table.
119The following sections detail encoding of each kind.
120
1212.2.1 BTF_KIND_INT
122~~~~~~~~~~~~~~~~~~
123
124``struct btf_type`` encoding requirement:
125 * ``name_off``: any valid offset
126 * ``info.kind_flag``: 0
127 * ``info.kind``: BTF_KIND_INT
128 * ``info.vlen``: 0
129 * ``size``: the size of the int type in bytes.
130
131``btf_type`` is followed by a ``u32`` with the following bits arrangement::
132
133  #define BTF_INT_ENCODING(VAL)   (((VAL) & 0x0f000000) >> 24)
134  #define BTF_INT_OFFSET(VAL)     (((VAL) & 0x00ff0000) >> 16)
135  #define BTF_INT_BITS(VAL)       ((VAL)  & 0x000000ff)
136
137The ``BTF_INT_ENCODING`` has the following attributes::
138
139  #define BTF_INT_SIGNED  (1 << 0)
140  #define BTF_INT_CHAR    (1 << 1)
141  #define BTF_INT_BOOL    (1 << 2)
142
143The ``BTF_INT_ENCODING()`` provides extra information: signedness, char, or
144bool, for the int type. The char and bool encoding are mostly useful for
145pretty print. At most one encoding can be specified for the int type.
146
147The ``BTF_INT_BITS()`` specifies the number of actual bits held by this int
148type. For example, a 4-bit bitfield encodes ``BTF_INT_BITS()`` equals to 4.
149The ``btf_type.size * 8`` must be equal to or greater than ``BTF_INT_BITS()``
150for the type. The maximum value of ``BTF_INT_BITS()`` is 128.
151
152The ``BTF_INT_OFFSET()`` specifies the starting bit offset to calculate values
153for this int. For example, a bitfield struct member has:
154
155 * btf member bit offset 100 from the start of the structure,
156 * btf member pointing to an int type,
157 * the int type has ``BTF_INT_OFFSET() = 2`` and ``BTF_INT_BITS() = 4``
158
159Then in the struct memory layout, this member will occupy ``4`` bits starting
160from bits ``100 + 2 = 102``.
161
162Alternatively, the bitfield struct member can be the following to access the
163same bits as the above:
164
165 * btf member bit offset 102,
166 * btf member pointing to an int type,
167 * the int type has ``BTF_INT_OFFSET() = 0`` and ``BTF_INT_BITS() = 4``
168
169The original intention of ``BTF_INT_OFFSET()`` is to provide flexibility of
170bitfield encoding. Currently, both llvm and pahole generate
171``BTF_INT_OFFSET() = 0`` for all int types.
172
1732.2.2 BTF_KIND_PTR
174~~~~~~~~~~~~~~~~~~
175
176``struct btf_type`` encoding requirement:
177  * ``name_off``: 0
178  * ``info.kind_flag``: 0
179  * ``info.kind``: BTF_KIND_PTR
180  * ``info.vlen``: 0
181  * ``type``: the pointee type of the pointer
182
183No additional type data follow ``btf_type``.
184
1852.2.3 BTF_KIND_ARRAY
186~~~~~~~~~~~~~~~~~~~~
187
188``struct btf_type`` encoding requirement:
189  * ``name_off``: 0
190  * ``info.kind_flag``: 0
191  * ``info.kind``: BTF_KIND_ARRAY
192  * ``info.vlen``: 0
193  * ``size/type``: 0, not used
194
195``btf_type`` is followed by one ``struct btf_array``::
196
197    struct btf_array {
198        __u32   type;
199        __u32   index_type;
200        __u32   nelems;
201    };
202
203The ``struct btf_array`` encoding:
204  * ``type``: the element type
205  * ``index_type``: the index type
206  * ``nelems``: the number of elements for this array (``0`` is also allowed).
207
208The ``index_type`` can be any regular int type (``u8``, ``u16``, ``u32``,
209``u64``, ``unsigned __int128``). The original design of including
210``index_type`` follows DWARF, which has an ``index_type`` for its array type.
211Currently in BTF, beyond type verification, the ``index_type`` is not used.
212
213The ``struct btf_array`` allows chaining through element type to represent
214multidimensional arrays. For example, for ``int a[5][6]``, the following type
215information illustrates the chaining:
216
217  * [1]: int
218  * [2]: array, ``btf_array.type = [1]``, ``btf_array.nelems = 6``
219  * [3]: array, ``btf_array.type = [2]``, ``btf_array.nelems = 5``
220
221Currently, both pahole and llvm collapse multidimensional array into
222one-dimensional array, e.g., for ``a[5][6]``, the ``btf_array.nelems`` is
223equal to ``30``. This is because the original use case is map pretty print
224where the whole array is dumped out so one-dimensional array is enough. As
225more BTF usage is explored, pahole and llvm can be changed to generate proper
226chained representation for multidimensional arrays.
227
2282.2.4 BTF_KIND_STRUCT
229~~~~~~~~~~~~~~~~~~~~~
2302.2.5 BTF_KIND_UNION
231~~~~~~~~~~~~~~~~~~~~
232
233``struct btf_type`` encoding requirement:
234  * ``name_off``: 0 or offset to a valid C identifier
235  * ``info.kind_flag``: 0 or 1
236  * ``info.kind``: BTF_KIND_STRUCT or BTF_KIND_UNION
237  * ``info.vlen``: the number of struct/union members
238  * ``info.size``: the size of the struct/union in bytes
239
240``btf_type`` is followed by ``info.vlen`` number of ``struct btf_member``.::
241
242    struct btf_member {
243        __u32   name_off;
244        __u32   type;
245        __u32   offset;
246    };
247
248``struct btf_member`` encoding:
249  * ``name_off``: offset to a valid C identifier
250  * ``type``: the member type
251  * ``offset``: <see below>
252
253If the type info ``kind_flag`` is not set, the offset contains only bit offset
254of the member. Note that the base type of the bitfield can only be int or enum
255type. If the bitfield size is 32, the base type can be either int or enum
256type. If the bitfield size is not 32, the base type must be int, and int type
257``BTF_INT_BITS()`` encodes the bitfield size.
258
259If the ``kind_flag`` is set, the ``btf_member.offset`` contains both member
260bitfield size and bit offset. The bitfield size and bit offset are calculated
261as below.::
262
263  #define BTF_MEMBER_BITFIELD_SIZE(val)   ((val) >> 24)
264  #define BTF_MEMBER_BIT_OFFSET(val)      ((val) & 0xffffff)
265
266In this case, if the base type is an int type, it must be a regular int type:
267
268  * ``BTF_INT_OFFSET()`` must be 0.
269  * ``BTF_INT_BITS()`` must be equal to ``{1,2,4,8,16} * 8``.
270
271The following kernel patch introduced ``kind_flag`` and explained why both
272modes exist:
273
274  https://github.com/torvalds/linux/commit/9d5f9f701b1891466fb3dbb1806ad97716f95cc3#diff-fa650a64fdd3968396883d2fe8215ff3
275
2762.2.6 BTF_KIND_ENUM
277~~~~~~~~~~~~~~~~~~~
278
279``struct btf_type`` encoding requirement:
280  * ``name_off``: 0 or offset to a valid C identifier
281  * ``info.kind_flag``: 0
282  * ``info.kind``: BTF_KIND_ENUM
283  * ``info.vlen``: number of enum values
284  * ``size``: 4
285
286``btf_type`` is followed by ``info.vlen`` number of ``struct btf_enum``.::
287
288    struct btf_enum {
289        __u32   name_off;
290        __s32   val;
291    };
292
293The ``btf_enum`` encoding:
294  * ``name_off``: offset to a valid C identifier
295  * ``val``: any value
296
 
 
 
 
2972.2.7 BTF_KIND_FWD
298~~~~~~~~~~~~~~~~~~
299
300``struct btf_type`` encoding requirement:
301  * ``name_off``: offset to a valid C identifier
302  * ``info.kind_flag``: 0 for struct, 1 for union
303  * ``info.kind``: BTF_KIND_FWD
304  * ``info.vlen``: 0
305  * ``type``: 0
306
307No additional type data follow ``btf_type``.
308
3092.2.8 BTF_KIND_TYPEDEF
310~~~~~~~~~~~~~~~~~~~~~~
311
312``struct btf_type`` encoding requirement:
313  * ``name_off``: offset to a valid C identifier
314  * ``info.kind_flag``: 0
315  * ``info.kind``: BTF_KIND_TYPEDEF
316  * ``info.vlen``: 0
317  * ``type``: the type which can be referred by name at ``name_off``
318
319No additional type data follow ``btf_type``.
320
3212.2.9 BTF_KIND_VOLATILE
322~~~~~~~~~~~~~~~~~~~~~~~
323
324``struct btf_type`` encoding requirement:
325  * ``name_off``: 0
326  * ``info.kind_flag``: 0
327  * ``info.kind``: BTF_KIND_VOLATILE
328  * ``info.vlen``: 0
329  * ``type``: the type with ``volatile`` qualifier
330
331No additional type data follow ``btf_type``.
332
3332.2.10 BTF_KIND_CONST
334~~~~~~~~~~~~~~~~~~~~~
335
336``struct btf_type`` encoding requirement:
337  * ``name_off``: 0
338  * ``info.kind_flag``: 0
339  * ``info.kind``: BTF_KIND_CONST
340  * ``info.vlen``: 0
341  * ``type``: the type with ``const`` qualifier
342
343No additional type data follow ``btf_type``.
344
3452.2.11 BTF_KIND_RESTRICT
346~~~~~~~~~~~~~~~~~~~~~~~~
347
348``struct btf_type`` encoding requirement:
349  * ``name_off``: 0
350  * ``info.kind_flag``: 0
351  * ``info.kind``: BTF_KIND_RESTRICT
352  * ``info.vlen``: 0
353  * ``type``: the type with ``restrict`` qualifier
354
355No additional type data follow ``btf_type``.
356
3572.2.12 BTF_KIND_FUNC
358~~~~~~~~~~~~~~~~~~~~
359
360``struct btf_type`` encoding requirement:
361  * ``name_off``: offset to a valid C identifier
362  * ``info.kind_flag``: 0
363  * ``info.kind``: BTF_KIND_FUNC
364  * ``info.vlen``: 0
 
365  * ``type``: a BTF_KIND_FUNC_PROTO type
366
367No additional type data follow ``btf_type``.
368
369A BTF_KIND_FUNC defines not a type, but a subprogram (function) whose
370signature is defined by ``type``. The subprogram is thus an instance of that
371type. The BTF_KIND_FUNC may in turn be referenced by a func_info in the
372:ref:`BTF_Ext_Section` (ELF) or in the arguments to :ref:`BPF_Prog_Load`
373(ABI).
374
 
 
 
3752.2.13 BTF_KIND_FUNC_PROTO
376~~~~~~~~~~~~~~~~~~~~~~~~~~
377
378``struct btf_type`` encoding requirement:
379  * ``name_off``: 0
380  * ``info.kind_flag``: 0
381  * ``info.kind``: BTF_KIND_FUNC_PROTO
382  * ``info.vlen``: # of parameters
383  * ``type``: the return type
384
385``btf_type`` is followed by ``info.vlen`` number of ``struct btf_param``.::
386
387    struct btf_param {
388        __u32   name_off;
389        __u32   type;
390    };
391
392If a BTF_KIND_FUNC_PROTO type is referred by a BTF_KIND_FUNC type, then
393``btf_param.name_off`` must point to a valid C identifier except for the
394possible last argument representing the variable argument. The btf_param.type
395refers to parameter type.
396
397If the function has variable arguments, the last parameter is encoded with
398``name_off = 0`` and ``type = 0``.
399
4002.2.14 BTF_KIND_VAR
401~~~~~~~~~~~~~~~~~~~
402
403``struct btf_type`` encoding requirement:
404  * ``name_off``: offset to a valid C identifier
405  * ``info.kind_flag``: 0
406  * ``info.kind``: BTF_KIND_VAR
407  * ``info.vlen``: 0
408  * ``type``: the type of the variable
409
410``btf_type`` is followed by a single ``struct btf_variable`` with the
411following data::
412
413    struct btf_var {
414        __u32   linkage;
415    };
416
417``struct btf_var`` encoding:
418  * ``linkage``: currently only static variable 0, or globally allocated
419                 variable in ELF sections 1
420
421Not all type of global variables are supported by LLVM at this point.
422The following is currently available:
423
424  * static variables with or without section attributes
425  * global variables with section attributes
426
427The latter is for future extraction of map key/value type id's from a
428map definition.
429
4302.2.15 BTF_KIND_DATASEC
431~~~~~~~~~~~~~~~~~~~~~~~
432
433``struct btf_type`` encoding requirement:
434  * ``name_off``: offset to a valid name associated with a variable or
435                  one of .data/.bss/.rodata
436  * ``info.kind_flag``: 0
437  * ``info.kind``: BTF_KIND_DATASEC
438  * ``info.vlen``: # of variables
439  * ``size``: total section size in bytes (0 at compilation time, patched
440              to actual size by BPF loaders such as libbpf)
441
442``btf_type`` is followed by ``info.vlen`` number of ``struct btf_var_secinfo``.::
443
444    struct btf_var_secinfo {
445        __u32   type;
446        __u32   offset;
447        __u32   size;
448    };
449
450``struct btf_var_secinfo`` encoding:
451  * ``type``: the type of the BTF_KIND_VAR variable
452  * ``offset``: the in-section offset of the variable
453  * ``size``: the size of the variable in bytes
454
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4553. BTF Kernel API
456*****************
457
458The following bpf syscall command involves BTF:
459   * BPF_BTF_LOAD: load a blob of BTF data into kernel
460   * BPF_MAP_CREATE: map creation with btf key and value type info.
461   * BPF_PROG_LOAD: prog load with btf function and line info.
462   * BPF_BTF_GET_FD_BY_ID: get a btf fd
463   * BPF_OBJ_GET_INFO_BY_FD: btf, func_info, line_info
464     and other btf related info are returned.
465
466The workflow typically looks like:
467::
468
469  Application:
470      BPF_BTF_LOAD
471          |
472          v
473      BPF_MAP_CREATE and BPF_PROG_LOAD
474          |
475          V
476      ......
477
478  Introspection tool:
479      ......
480      BPF_{PROG,MAP}_GET_NEXT_ID (get prog/map id's)
481          |
482          V
483      BPF_{PROG,MAP}_GET_FD_BY_ID (get a prog/map fd)
484          |
485          V
486      BPF_OBJ_GET_INFO_BY_FD (get bpf_prog_info/bpf_map_info with btf_id)
487          |                                     |
488          V                                     |
489      BPF_BTF_GET_FD_BY_ID (get btf_fd)         |
490          |                                     |
491          V                                     |
492      BPF_OBJ_GET_INFO_BY_FD (get btf)          |
493          |                                     |
494          V                                     V
495      pretty print types, dump func signatures and line info, etc.
496
497
4983.1 BPF_BTF_LOAD
499================
500
501Load a blob of BTF data into kernel. A blob of data, described in
502:ref:`BTF_Type_String`, can be directly loaded into the kernel. A ``btf_fd``
503is returned to a userspace.
504
5053.2 BPF_MAP_CREATE
506==================
507
508A map can be created with ``btf_fd`` and specified key/value type id.::
509
510    __u32   btf_fd;         /* fd pointing to a BTF type data */
511    __u32   btf_key_type_id;        /* BTF type_id of the key */
512    __u32   btf_value_type_id;      /* BTF type_id of the value */
513
514In libbpf, the map can be defined with extra annotation like below:
515::
516
517    struct bpf_map_def SEC("maps") btf_map = {
518        .type = BPF_MAP_TYPE_ARRAY,
519        .key_size = sizeof(int),
520        .value_size = sizeof(struct ipv_counts),
521        .max_entries = 4,
522    };
523    BPF_ANNOTATE_KV_PAIR(btf_map, int, struct ipv_counts);
524
525Here, the parameters for macro BPF_ANNOTATE_KV_PAIR are map name, key and
526value types for the map. During ELF parsing, libbpf is able to extract
527key/value type_id's and assign them to BPF_MAP_CREATE attributes
528automatically.
529
530.. _BPF_Prog_Load:
531
5323.3 BPF_PROG_LOAD
533=================
534
535During prog_load, func_info and line_info can be passed to kernel with proper
536values for the following attributes:
537::
538
539    __u32           insn_cnt;
540    __aligned_u64   insns;
541    ......
542    __u32           prog_btf_fd;    /* fd pointing to BTF type data */
543    __u32           func_info_rec_size;     /* userspace bpf_func_info size */
544    __aligned_u64   func_info;      /* func info */
545    __u32           func_info_cnt;  /* number of bpf_func_info records */
546    __u32           line_info_rec_size;     /* userspace bpf_line_info size */
547    __aligned_u64   line_info;      /* line info */
548    __u32           line_info_cnt;  /* number of bpf_line_info records */
549
550The func_info and line_info are an array of below, respectively.::
551
552    struct bpf_func_info {
553        __u32   insn_off; /* [0, insn_cnt - 1] */
554        __u32   type_id;  /* pointing to a BTF_KIND_FUNC type */
555    };
556    struct bpf_line_info {
557        __u32   insn_off; /* [0, insn_cnt - 1] */
558        __u32   file_name_off; /* offset to string table for the filename */
559        __u32   line_off; /* offset to string table for the source line */
560        __u32   line_col; /* line number and column number */
561    };
562
563func_info_rec_size is the size of each func_info record, and
564line_info_rec_size is the size of each line_info record. Passing the record
565size to kernel make it possible to extend the record itself in the future.
566
567Below are requirements for func_info:
568  * func_info[0].insn_off must be 0.
569  * the func_info insn_off is in strictly increasing order and matches
570    bpf func boundaries.
571
572Below are requirements for line_info:
573  * the first insn in each func must have a line_info record pointing to it.
574  * the line_info insn_off is in strictly increasing order.
575
576For line_info, the line number and column number are defined as below:
577::
578
579    #define BPF_LINE_INFO_LINE_NUM(line_col)        ((line_col) >> 10)
580    #define BPF_LINE_INFO_LINE_COL(line_col)        ((line_col) & 0x3ff)
581
5823.4 BPF_{PROG,MAP}_GET_NEXT_ID
583==============================
584
585In kernel, every loaded program, map or btf has a unique id. The id won't
586change during the lifetime of a program, map, or btf.
587
588The bpf syscall command BPF_{PROG,MAP}_GET_NEXT_ID returns all id's, one for
589each command, to user space, for bpf program or maps, respectively, so an
590inspection tool can inspect all programs and maps.
591
5923.5 BPF_{PROG,MAP}_GET_FD_BY_ID
593===============================
594
595An introspection tool cannot use id to get details about program or maps.
596A file descriptor needs to be obtained first for reference-counting purpose.
597
5983.6 BPF_OBJ_GET_INFO_BY_FD
599==========================
600
601Once a program/map fd is acquired, an introspection tool can get the detailed
602information from kernel about this fd, some of which are BTF-related. For
603example, ``bpf_map_info`` returns ``btf_id`` and key/value type ids.
604``bpf_prog_info`` returns ``btf_id``, func_info, and line info for translated
605bpf byte codes, and jited_line_info.
606
6073.7 BPF_BTF_GET_FD_BY_ID
608========================
609
610With ``btf_id`` obtained in ``bpf_map_info`` and ``bpf_prog_info``, bpf
611syscall command BPF_BTF_GET_FD_BY_ID can retrieve a btf fd. Then, with
612command BPF_OBJ_GET_INFO_BY_FD, the btf blob, originally loaded into the
613kernel with BPF_BTF_LOAD, can be retrieved.
614
615With the btf blob, ``bpf_map_info``, and ``bpf_prog_info``, an introspection
616tool has full btf knowledge and is able to pretty print map key/values, dump
617func signatures and line info, along with byte/jit codes.
618
6194. ELF File Format Interface
620****************************
621
6224.1 .BTF section
623================
624
625The .BTF section contains type and string data. The format of this section is
626same as the one describe in :ref:`BTF_Type_String`.
627
628.. _BTF_Ext_Section:
629
6304.2 .BTF.ext section
631====================
632
633The .BTF.ext section encodes func_info and line_info which needs loader
634manipulation before loading into the kernel.
635
636The specification for .BTF.ext section is defined at ``tools/lib/bpf/btf.h``
637and ``tools/lib/bpf/btf.c``.
638
639The current header of .BTF.ext section::
640
641    struct btf_ext_header {
642        __u16   magic;
643        __u8    version;
644        __u8    flags;
645        __u32   hdr_len;
646
647        /* All offsets are in bytes relative to the end of this header */
648        __u32   func_info_off;
649        __u32   func_info_len;
650        __u32   line_info_off;
651        __u32   line_info_len;
 
 
 
 
652    };
653
654It is very similar to .BTF section. Instead of type/string section, it
655contains func_info and line_info section. See :ref:`BPF_Prog_Load` for details
656about func_info and line_info record format.
 
657
658The func_info is organized as below.::
659
660     func_info_rec_size
661     btf_ext_info_sec for section #1 /* func_info for section #1 */
662     btf_ext_info_sec for section #2 /* func_info for section #2 */
663     ...
664
665``func_info_rec_size`` specifies the size of ``bpf_func_info`` structure when
666.BTF.ext is generated. ``btf_ext_info_sec``, defined below, is a collection of
667func_info for each specific ELF section.::
668
669     struct btf_ext_info_sec {
670        __u32   sec_name_off; /* offset to section name */
671        __u32   num_info;
672        /* Followed by num_info * record_size number of bytes */
673        __u8    data[0];
674     };
675
676Here, num_info must be greater than 0.
677
678The line_info is organized as below.::
679
680     line_info_rec_size
681     btf_ext_info_sec for section #1 /* line_info for section #1 */
682     btf_ext_info_sec for section #2 /* line_info for section #2 */
683     ...
684
685``line_info_rec_size`` specifies the size of ``bpf_line_info`` structure when
686.BTF.ext is generated.
687
688The interpretation of ``bpf_func_info->insn_off`` and
689``bpf_line_info->insn_off`` is different between kernel API and ELF API. For
690kernel API, the ``insn_off`` is the instruction offset in the unit of ``struct
691bpf_insn``. For ELF API, the ``insn_off`` is the byte offset from the
692beginning of section (``btf_ext_info_sec->sec_name_off``).
693
6944.2 .BTF_ids section
695====================
 
 
 
 
 
 
 
 
 
 
 
 
 
 
696
697The .BTF_ids section encodes BTF ID values that are used within the kernel.
698
699This section is created during the kernel compilation with the help of
700macros defined in ``include/linux/btf_ids.h`` header file. Kernel code can
701use them to create lists and sets (sorted lists) of BTF ID values.
702
703The ``BTF_ID_LIST`` and ``BTF_ID`` macros define unsorted list of BTF ID values,
704with following syntax::
705
706  BTF_ID_LIST(list)
707  BTF_ID(type1, name1)
708  BTF_ID(type2, name2)
709
710resulting in following layout in .BTF_ids section::
711
712  __BTF_ID__type1__name1__1:
713  .zero 4
714  __BTF_ID__type2__name2__2:
715  .zero 4
716
717The ``u32 list[];`` variable is defined to access the list.
718
719The ``BTF_ID_UNUSED`` macro defines 4 zero bytes. It's used when we
720want to define unused entry in BTF_ID_LIST, like::
721
722      BTF_ID_LIST(bpf_skb_output_btf_ids)
723      BTF_ID(struct, sk_buff)
724      BTF_ID_UNUSED
725      BTF_ID(struct, task_struct)
726
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
727All the BTF ID lists and sets are compiled in the .BTF_ids section and
728resolved during the linking phase of kernel build by ``resolve_btfids`` tool.
729
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7305. Using BTF
731************
732
7335.1 bpftool map pretty print
734============================
735
736With BTF, the map key/value can be printed based on fields rather than simply
737raw bytes. This is especially valuable for large structure or if your data
738structure has bitfields. For example, for the following map,::
739
740      enum A { A1, A2, A3, A4, A5 };
741      typedef enum A ___A;
742      struct tmp_t {
743           char a1:4;
744           int  a2:4;
745           int  :4;
746           __u32 a3:4;
747           int b;
748           ___A b1:4;
749           enum A b2:4;
750      };
751      struct bpf_map_def SEC("maps") tmpmap = {
752           .type = BPF_MAP_TYPE_ARRAY,
753           .key_size = sizeof(__u32),
754           .value_size = sizeof(struct tmp_t),
755           .max_entries = 1,
756      };
757      BPF_ANNOTATE_KV_PAIR(tmpmap, int, struct tmp_t);
758
759bpftool is able to pretty print like below:
760::
761
762      [{
763            "key": 0,
764            "value": {
765                "a1": 0x2,
766                "a2": 0x4,
767                "a3": 0x6,
768                "b": 7,
769                "b1": 0x8,
770                "b2": 0xa
771            }
772        }
773      ]
774
7755.2 bpftool prog dump
776=====================
777
778The following is an example showing how func_info and line_info can help prog
779dump with better kernel symbol names, function prototypes and line
780information.::
781
782    $ bpftool prog dump jited pinned /sys/fs/bpf/test_btf_haskv
783    [...]
784    int test_long_fname_2(struct dummy_tracepoint_args * arg):
785    bpf_prog_44a040bf25481309_test_long_fname_2:
786    ; static int test_long_fname_2(struct dummy_tracepoint_args *arg)
787       0:   push   %rbp
788       1:   mov    %rsp,%rbp
789       4:   sub    $0x30,%rsp
790       b:   sub    $0x28,%rbp
791       f:   mov    %rbx,0x0(%rbp)
792      13:   mov    %r13,0x8(%rbp)
793      17:   mov    %r14,0x10(%rbp)
794      1b:   mov    %r15,0x18(%rbp)
795      1f:   xor    %eax,%eax
796      21:   mov    %rax,0x20(%rbp)
797      25:   xor    %esi,%esi
798    ; int key = 0;
799      27:   mov    %esi,-0x4(%rbp)
800    ; if (!arg->sock)
801      2a:   mov    0x8(%rdi),%rdi
802    ; if (!arg->sock)
803      2e:   cmp    $0x0,%rdi
804      32:   je     0x0000000000000070
805      34:   mov    %rbp,%rsi
806    ; counts = bpf_map_lookup_elem(&btf_map, &key);
807    [...]
808
8095.3 Verifier Log
810================
811
812The following is an example of how line_info can help debugging verification
813failure.::
814
815       /* The code at tools/testing/selftests/bpf/test_xdp_noinline.c
816        * is modified as below.
817        */
818       data = (void *)(long)xdp->data;
819       data_end = (void *)(long)xdp->data_end;
820       /*
821       if (data + 4 > data_end)
822               return XDP_DROP;
823       */
824       *(u32 *)data = dst->dst;
825
826    $ bpftool prog load ./test_xdp_noinline.o /sys/fs/bpf/test_xdp_noinline type xdp
827        ; data = (void *)(long)xdp->data;
828        224: (79) r2 = *(u64 *)(r10 -112)
829        225: (61) r2 = *(u32 *)(r2 +0)
830        ; *(u32 *)data = dst->dst;
831        226: (63) *(u32 *)(r2 +0) = r1
832        invalid access to packet, off=0 size=4, R2(id=0,off=0,r=0)
833        R2 offset is outside of the packet
834
8356. BTF Generation
836*****************
837
838You need latest pahole
839
840  https://git.kernel.org/pub/scm/devel/pahole/pahole.git/
841
842or llvm (8.0 or later). The pahole acts as a dwarf2btf converter. It doesn't
843support .BTF.ext and btf BTF_KIND_FUNC type yet. For example,::
844
845      -bash-4.4$ cat t.c
846      struct t {
847        int a:2;
848        int b:3;
849        int c:2;
850      } g;
851      -bash-4.4$ gcc -c -O2 -g t.c
852      -bash-4.4$ pahole -JV t.o
853      File t.o:
854      [1] STRUCT t kind_flag=1 size=4 vlen=3
855              a type_id=2 bitfield_size=2 bits_offset=0
856              b type_id=2 bitfield_size=3 bits_offset=2
857              c type_id=2 bitfield_size=2 bits_offset=5
858      [2] INT int size=4 bit_offset=0 nr_bits=32 encoding=SIGNED
859
860The llvm is able to generate .BTF and .BTF.ext directly with -g for bpf target
861only. The assembly code (-S) is able to show the BTF encoding in assembly
862format.::
863
864    -bash-4.4$ cat t2.c
865    typedef int __int32;
866    struct t2 {
867      int a2;
868      int (*f2)(char q1, __int32 q2, ...);
869      int (*f3)();
870    } g2;
871    int main() { return 0; }
872    int test() { return 0; }
873    -bash-4.4$ clang -c -g -O2 -target bpf t2.c
874    -bash-4.4$ readelf -S t2.o
875      ......
876      [ 8] .BTF              PROGBITS         0000000000000000  00000247
877           000000000000016e  0000000000000000           0     0     1
878      [ 9] .BTF.ext          PROGBITS         0000000000000000  000003b5
879           0000000000000060  0000000000000000           0     0     1
880      [10] .rel.BTF.ext      REL              0000000000000000  000007e0
881           0000000000000040  0000000000000010          16     9     8
882      ......
883    -bash-4.4$ clang -S -g -O2 -target bpf t2.c
884    -bash-4.4$ cat t2.s
885      ......
886            .section        .BTF,"",@progbits
887            .short  60319                   # 0xeb9f
888            .byte   1
889            .byte   0
890            .long   24
891            .long   0
892            .long   220
893            .long   220
894            .long   122
895            .long   0                       # BTF_KIND_FUNC_PROTO(id = 1)
896            .long   218103808               # 0xd000000
897            .long   2
898            .long   83                      # BTF_KIND_INT(id = 2)
899            .long   16777216                # 0x1000000
900            .long   4
901            .long   16777248                # 0x1000020
902      ......
903            .byte   0                       # string offset=0
904            .ascii  ".text"                 # string offset=1
905            .byte   0
906            .ascii  "/home/yhs/tmp-pahole/t2.c" # string offset=7
907            .byte   0
908            .ascii  "int main() { return 0; }" # string offset=33
909            .byte   0
910            .ascii  "int test() { return 0; }" # string offset=58
911            .byte   0
912            .ascii  "int"                   # string offset=83
913      ......
914            .section        .BTF.ext,"",@progbits
915            .short  60319                   # 0xeb9f
916            .byte   1
917            .byte   0
918            .long   24
919            .long   0
920            .long   28
921            .long   28
922            .long   44
923            .long   8                       # FuncInfo
924            .long   1                       # FuncInfo section string offset=1
925            .long   2
926            .long   .Lfunc_begin0
927            .long   3
928            .long   .Lfunc_begin1
929            .long   5
930            .long   16                      # LineInfo
931            .long   1                       # LineInfo section string offset=1
932            .long   2
933            .long   .Ltmp0
934            .long   7
935            .long   33
936            .long   7182                    # Line 7 Col 14
937            .long   .Ltmp3
938            .long   7
939            .long   58
940            .long   8206                    # Line 8 Col 14
941
9427. Testing
943**********
 
 
 
944
945Kernel bpf selftest `test_btf.c` provides extensive set of BTF-related tests.