Linux Audio

Check our new training course

Loading...
v6.13.7
   1=====================
   2BPF Type Format (BTF)
   3=====================
   4
   51. Introduction
   6===============
   7
   8BTF (BPF Type Format) is the metadata format which encodes the debug info
   9related to BPF program/map. The name BTF was used initially to describe data
  10types. The BTF was later extended to include function info for defined
  11subroutines, and line info for source/line information.
  12
  13The debug info is used for map pretty print, function signature, etc. The
  14function signature enables better bpf program/function kernel symbol. The line
  15info helps generate source annotated translated byte code, jited code and
  16verifier log.
  17
  18The BTF specification contains two parts,
  19  * BTF kernel API
  20  * BTF ELF file format
  21
  22The kernel API is the contract between user space and kernel. The kernel
  23verifies the BTF info before using it. The ELF file format is a user space
  24contract between ELF file and libbpf loader.
  25
  26The type and string sections are part of the BTF kernel API, describing the
  27debug info (mostly types related) referenced by the bpf program. These two
  28sections are discussed in details in :ref:`BTF_Type_String`.
  29
  30.. _BTF_Type_String:
  31
  322. BTF Type and String Encoding
  33===============================
  34
  35The file ``include/uapi/linux/btf.h`` provides high-level definition of how
  36types/strings are encoded.
  37
  38The beginning of data blob must be::
  39
  40    struct btf_header {
  41        __u16   magic;
  42        __u8    version;
  43        __u8    flags;
  44        __u32   hdr_len;
  45
  46        /* All offsets are in bytes relative to the end of this header */
  47        __u32   type_off;       /* offset of type section       */
  48        __u32   type_len;       /* length of type section       */
  49        __u32   str_off;        /* offset of string section     */
  50        __u32   str_len;        /* length of string section     */
  51    };
  52
  53The magic is ``0xeB9F``, which has different encoding for big and little
  54endian systems, and can be used to test whether BTF is generated for big- or
  55little-endian target. The ``btf_header`` is designed to be extensible with
  56``hdr_len`` equal to ``sizeof(struct btf_header)`` when a data blob is
  57generated.
  58
  592.1 String Encoding
  60-------------------
  61
  62The first string in the string section must be a null string. The rest of
  63string table is a concatenation of other null-terminated strings.
  64
  652.2 Type Encoding
  66-----------------
  67
  68The type id ``0`` is reserved for ``void`` type. The type section is parsed
  69sequentially and type id is assigned to each recognized type starting from id
  70``1``. Currently, the following types are supported::
  71
  72    #define BTF_KIND_INT            1       /* Integer      */
  73    #define BTF_KIND_PTR            2       /* Pointer      */
  74    #define BTF_KIND_ARRAY          3       /* Array        */
  75    #define BTF_KIND_STRUCT         4       /* Struct       */
  76    #define BTF_KIND_UNION          5       /* Union        */
  77    #define BTF_KIND_ENUM           6       /* Enumeration up to 32-bit values */
  78    #define BTF_KIND_FWD            7       /* Forward      */
  79    #define BTF_KIND_TYPEDEF        8       /* Typedef      */
  80    #define BTF_KIND_VOLATILE       9       /* Volatile     */
  81    #define BTF_KIND_CONST          10      /* Const        */
  82    #define BTF_KIND_RESTRICT       11      /* Restrict     */
  83    #define BTF_KIND_FUNC           12      /* Function     */
  84    #define BTF_KIND_FUNC_PROTO     13      /* Function Proto       */
  85    #define BTF_KIND_VAR            14      /* Variable     */
  86    #define BTF_KIND_DATASEC        15      /* Section      */
  87    #define BTF_KIND_FLOAT          16      /* Floating point       */
  88    #define BTF_KIND_DECL_TAG       17      /* Decl Tag     */
  89    #define BTF_KIND_TYPE_TAG       18      /* Type Tag     */
  90    #define BTF_KIND_ENUM64         19      /* Enumeration up to 64-bit values */
  91
  92Note that the type section encodes debug info, not just pure types.
  93``BTF_KIND_FUNC`` is not a type, and it represents a defined subprogram.
  94
  95Each type contains the following common data::
  96
  97    struct btf_type {
  98        __u32 name_off;
  99        /* "info" bits arrangement
 100         * bits  0-15: vlen (e.g. # of struct's members)
 101         * bits 16-23: unused
 102         * bits 24-28: kind (e.g. int, ptr, array...etc)
 103         * bits 29-30: unused
 104         * bit     31: kind_flag, currently used by
 105         *             struct, union, fwd, enum and enum64.
 106         */
 107        __u32 info;
 108        /* "size" is used by INT, ENUM, STRUCT, UNION and ENUM64.
 109         * "size" tells the size of the type it is describing.
 110         *
 111         * "type" is used by PTR, TYPEDEF, VOLATILE, CONST, RESTRICT,
 112         * FUNC, FUNC_PROTO, DECL_TAG and TYPE_TAG.
 113         * "type" is a type_id referring to another type.
 114         */
 115        union {
 116                __u32 size;
 117                __u32 type;
 118        };
 119    };
 120
 121For certain kinds, the common data are followed by kind-specific data. The
 122``name_off`` in ``struct btf_type`` specifies the offset in the string table.
 123The following sections detail encoding of each kind.
 124
 1252.2.1 BTF_KIND_INT
 126~~~~~~~~~~~~~~~~~~
 127
 128``struct btf_type`` encoding requirement:
 129 * ``name_off``: any valid offset
 130 * ``info.kind_flag``: 0
 131 * ``info.kind``: BTF_KIND_INT
 132 * ``info.vlen``: 0
 133 * ``size``: the size of the int type in bytes.
 134
 135``btf_type`` is followed by a ``u32`` with the following bits arrangement::
 136
 137  #define BTF_INT_ENCODING(VAL)   (((VAL) & 0x0f000000) >> 24)
 138  #define BTF_INT_OFFSET(VAL)     (((VAL) & 0x00ff0000) >> 16)
 139  #define BTF_INT_BITS(VAL)       ((VAL)  & 0x000000ff)
 140
 141The ``BTF_INT_ENCODING`` has the following attributes::
 142
 143  #define BTF_INT_SIGNED  (1 << 0)
 144  #define BTF_INT_CHAR    (1 << 1)
 145  #define BTF_INT_BOOL    (1 << 2)
 146
 147The ``BTF_INT_ENCODING()`` provides extra information: signedness, char, or
 148bool, for the int type. The char and bool encoding are mostly useful for
 149pretty print. At most one encoding can be specified for the int type.
 150
 151The ``BTF_INT_BITS()`` specifies the number of actual bits held by this int
 152type. For example, a 4-bit bitfield encodes ``BTF_INT_BITS()`` equals to 4.
 153The ``btf_type.size * 8`` must be equal to or greater than ``BTF_INT_BITS()``
 154for the type. The maximum value of ``BTF_INT_BITS()`` is 128.
 155
 156The ``BTF_INT_OFFSET()`` specifies the starting bit offset to calculate values
 157for this int. For example, a bitfield struct member has:
 158
 159 * btf member bit offset 100 from the start of the structure,
 160 * btf member pointing to an int type,
 161 * the int type has ``BTF_INT_OFFSET() = 2`` and ``BTF_INT_BITS() = 4``
 162
 163Then in the struct memory layout, this member will occupy ``4`` bits starting
 164from bits ``100 + 2 = 102``.
 165
 166Alternatively, the bitfield struct member can be the following to access the
 167same bits as the above:
 168
 169 * btf member bit offset 102,
 170 * btf member pointing to an int type,
 171 * the int type has ``BTF_INT_OFFSET() = 0`` and ``BTF_INT_BITS() = 4``
 172
 173The original intention of ``BTF_INT_OFFSET()`` is to provide flexibility of
 174bitfield encoding. Currently, both llvm and pahole generate
 175``BTF_INT_OFFSET() = 0`` for all int types.
 176
 1772.2.2 BTF_KIND_PTR
 178~~~~~~~~~~~~~~~~~~
 179
 180``struct btf_type`` encoding requirement:
 181  * ``name_off``: 0
 182  * ``info.kind_flag``: 0
 183  * ``info.kind``: BTF_KIND_PTR
 184  * ``info.vlen``: 0
 185  * ``type``: the pointee type of the pointer
 186
 187No additional type data follow ``btf_type``.
 188
 1892.2.3 BTF_KIND_ARRAY
 190~~~~~~~~~~~~~~~~~~~~
 191
 192``struct btf_type`` encoding requirement:
 193  * ``name_off``: 0
 194  * ``info.kind_flag``: 0
 195  * ``info.kind``: BTF_KIND_ARRAY
 196  * ``info.vlen``: 0
 197  * ``size/type``: 0, not used
 198
 199``btf_type`` is followed by one ``struct btf_array``::
 200
 201    struct btf_array {
 202        __u32   type;
 203        __u32   index_type;
 204        __u32   nelems;
 205    };
 206
 207The ``struct btf_array`` encoding:
 208  * ``type``: the element type
 209  * ``index_type``: the index type
 210  * ``nelems``: the number of elements for this array (``0`` is also allowed).
 211
 212The ``index_type`` can be any regular int type (``u8``, ``u16``, ``u32``,
 213``u64``, ``unsigned __int128``). The original design of including
 214``index_type`` follows DWARF, which has an ``index_type`` for its array type.
 215Currently in BTF, beyond type verification, the ``index_type`` is not used.
 216
 217The ``struct btf_array`` allows chaining through element type to represent
 218multidimensional arrays. For example, for ``int a[5][6]``, the following type
 219information illustrates the chaining:
 220
 221  * [1]: int
 222  * [2]: array, ``btf_array.type = [1]``, ``btf_array.nelems = 6``
 223  * [3]: array, ``btf_array.type = [2]``, ``btf_array.nelems = 5``
 224
 225Currently, both pahole and llvm collapse multidimensional array into
 226one-dimensional array, e.g., for ``a[5][6]``, the ``btf_array.nelems`` is
 227equal to ``30``. This is because the original use case is map pretty print
 228where the whole array is dumped out so one-dimensional array is enough. As
 229more BTF usage is explored, pahole and llvm can be changed to generate proper
 230chained representation for multidimensional arrays.
 231
 2322.2.4 BTF_KIND_STRUCT
 233~~~~~~~~~~~~~~~~~~~~~
 2342.2.5 BTF_KIND_UNION
 235~~~~~~~~~~~~~~~~~~~~
 236
 237``struct btf_type`` encoding requirement:
 238  * ``name_off``: 0 or offset to a valid C identifier
 239  * ``info.kind_flag``: 0 or 1
 240  * ``info.kind``: BTF_KIND_STRUCT or BTF_KIND_UNION
 241  * ``info.vlen``: the number of struct/union members
 242  * ``info.size``: the size of the struct/union in bytes
 243
 244``btf_type`` is followed by ``info.vlen`` number of ``struct btf_member``.::
 245
 246    struct btf_member {
 247        __u32   name_off;
 248        __u32   type;
 249        __u32   offset;
 250    };
 251
 252``struct btf_member`` encoding:
 253  * ``name_off``: offset to a valid C identifier
 254  * ``type``: the member type
 255  * ``offset``: <see below>
 256
 257If the type info ``kind_flag`` is not set, the offset contains only bit offset
 258of the member. Note that the base type of the bitfield can only be int or enum
 259type. If the bitfield size is 32, the base type can be either int or enum
 260type. If the bitfield size is not 32, the base type must be int, and int type
 261``BTF_INT_BITS()`` encodes the bitfield size.
 262
 263If the ``kind_flag`` is set, the ``btf_member.offset`` contains both member
 264bitfield size and bit offset. The bitfield size and bit offset are calculated
 265as below.::
 266
 267  #define BTF_MEMBER_BITFIELD_SIZE(val)   ((val) >> 24)
 268  #define BTF_MEMBER_BIT_OFFSET(val)      ((val) & 0xffffff)
 269
 270In this case, if the base type is an int type, it must be a regular int type:
 271
 272  * ``BTF_INT_OFFSET()`` must be 0.
 273  * ``BTF_INT_BITS()`` must be equal to ``{1,2,4,8,16} * 8``.
 274
 275Commit 9d5f9f701b18 introduced ``kind_flag`` and explains why both modes
 276exist.
 277
 2782.2.6 BTF_KIND_ENUM
 279~~~~~~~~~~~~~~~~~~~
 280
 281``struct btf_type`` encoding requirement:
 282  * ``name_off``: 0 or offset to a valid C identifier
 283  * ``info.kind_flag``: 0 for unsigned, 1 for signed
 284  * ``info.kind``: BTF_KIND_ENUM
 285  * ``info.vlen``: number of enum values
 286  * ``size``: 1/2/4/8
 287
 288``btf_type`` is followed by ``info.vlen`` number of ``struct btf_enum``.::
 289
 290    struct btf_enum {
 291        __u32   name_off;
 292        __s32   val;
 293    };
 294
 295The ``btf_enum`` encoding:
 296  * ``name_off``: offset to a valid C identifier
 297  * ``val``: any value
 298
 299If the original enum value is signed and the size is less than 4,
 300that value will be sign extended into 4 bytes. If the size is 8,
 301the value will be truncated into 4 bytes.
 302
 3032.2.7 BTF_KIND_FWD
 304~~~~~~~~~~~~~~~~~~
 305
 306``struct btf_type`` encoding requirement:
 307  * ``name_off``: offset to a valid C identifier
 308  * ``info.kind_flag``: 0 for struct, 1 for union
 309  * ``info.kind``: BTF_KIND_FWD
 310  * ``info.vlen``: 0
 311  * ``type``: 0
 312
 313No additional type data follow ``btf_type``.
 314
 3152.2.8 BTF_KIND_TYPEDEF
 316~~~~~~~~~~~~~~~~~~~~~~
 317
 318``struct btf_type`` encoding requirement:
 319  * ``name_off``: offset to a valid C identifier
 320  * ``info.kind_flag``: 0
 321  * ``info.kind``: BTF_KIND_TYPEDEF
 322  * ``info.vlen``: 0
 323  * ``type``: the type which can be referred by name at ``name_off``
 324
 325No additional type data follow ``btf_type``.
 326
 3272.2.9 BTF_KIND_VOLATILE
 328~~~~~~~~~~~~~~~~~~~~~~~
 329
 330``struct btf_type`` encoding requirement:
 331  * ``name_off``: 0
 332  * ``info.kind_flag``: 0
 333  * ``info.kind``: BTF_KIND_VOLATILE
 334  * ``info.vlen``: 0
 335  * ``type``: the type with ``volatile`` qualifier
 336
 337No additional type data follow ``btf_type``.
 338
 3392.2.10 BTF_KIND_CONST
 340~~~~~~~~~~~~~~~~~~~~~
 341
 342``struct btf_type`` encoding requirement:
 343  * ``name_off``: 0
 344  * ``info.kind_flag``: 0
 345  * ``info.kind``: BTF_KIND_CONST
 346  * ``info.vlen``: 0
 347  * ``type``: the type with ``const`` qualifier
 348
 349No additional type data follow ``btf_type``.
 350
 3512.2.11 BTF_KIND_RESTRICT
 352~~~~~~~~~~~~~~~~~~~~~~~~
 353
 354``struct btf_type`` encoding requirement:
 355  * ``name_off``: 0
 356  * ``info.kind_flag``: 0
 357  * ``info.kind``: BTF_KIND_RESTRICT
 358  * ``info.vlen``: 0
 359  * ``type``: the type with ``restrict`` qualifier
 360
 361No additional type data follow ``btf_type``.
 362
 3632.2.12 BTF_KIND_FUNC
 364~~~~~~~~~~~~~~~~~~~~
 365
 366``struct btf_type`` encoding requirement:
 367  * ``name_off``: offset to a valid C identifier
 368  * ``info.kind_flag``: 0
 369  * ``info.kind``: BTF_KIND_FUNC
 370  * ``info.vlen``: linkage information (BTF_FUNC_STATIC, BTF_FUNC_GLOBAL
 371                   or BTF_FUNC_EXTERN - see :ref:`BTF_Function_Linkage_Constants`)
 372  * ``type``: a BTF_KIND_FUNC_PROTO type
 373
 374No additional type data follow ``btf_type``.
 375
 376A BTF_KIND_FUNC defines not a type, but a subprogram (function) whose
 377signature is defined by ``type``. The subprogram is thus an instance of that
 378type. The BTF_KIND_FUNC may in turn be referenced by a func_info in the
 379:ref:`BTF_Ext_Section` (ELF) or in the arguments to :ref:`BPF_Prog_Load`
 380(ABI).
 381
 382Currently, only linkage values of BTF_FUNC_STATIC and BTF_FUNC_GLOBAL are
 383supported in the kernel.
 384
 3852.2.13 BTF_KIND_FUNC_PROTO
 386~~~~~~~~~~~~~~~~~~~~~~~~~~
 387
 388``struct btf_type`` encoding requirement:
 389  * ``name_off``: 0
 390  * ``info.kind_flag``: 0
 391  * ``info.kind``: BTF_KIND_FUNC_PROTO
 392  * ``info.vlen``: # of parameters
 393  * ``type``: the return type
 394
 395``btf_type`` is followed by ``info.vlen`` number of ``struct btf_param``.::
 396
 397    struct btf_param {
 398        __u32   name_off;
 399        __u32   type;
 400    };
 401
 402If a BTF_KIND_FUNC_PROTO type is referred by a BTF_KIND_FUNC type, then
 403``btf_param.name_off`` must point to a valid C identifier except for the
 404possible last argument representing the variable argument. The btf_param.type
 405refers to parameter type.
 406
 407If the function has variable arguments, the last parameter is encoded with
 408``name_off = 0`` and ``type = 0``.
 409
 4102.2.14 BTF_KIND_VAR
 411~~~~~~~~~~~~~~~~~~~
 412
 413``struct btf_type`` encoding requirement:
 414  * ``name_off``: offset to a valid C identifier
 415  * ``info.kind_flag``: 0
 416  * ``info.kind``: BTF_KIND_VAR
 417  * ``info.vlen``: 0
 418  * ``type``: the type of the variable
 419
 420``btf_type`` is followed by a single ``struct btf_variable`` with the
 421following data::
 422
 423    struct btf_var {
 424        __u32   linkage;
 425    };
 426
 427``btf_var.linkage`` may take the values: BTF_VAR_STATIC, BTF_VAR_GLOBAL_ALLOCATED or BTF_VAR_GLOBAL_EXTERN -
 428see :ref:`BTF_Var_Linkage_Constants`.
 
 429
 430Not all type of global variables are supported by LLVM at this point.
 431The following is currently available:
 432
 433  * static variables with or without section attributes
 434  * global variables with section attributes
 435
 436The latter is for future extraction of map key/value type id's from a
 437map definition.
 438
 4392.2.15 BTF_KIND_DATASEC
 440~~~~~~~~~~~~~~~~~~~~~~~
 441
 442``struct btf_type`` encoding requirement:
 443  * ``name_off``: offset to a valid name associated with a variable or
 444                  one of .data/.bss/.rodata
 445  * ``info.kind_flag``: 0
 446  * ``info.kind``: BTF_KIND_DATASEC
 447  * ``info.vlen``: # of variables
 448  * ``size``: total section size in bytes (0 at compilation time, patched
 449              to actual size by BPF loaders such as libbpf)
 450
 451``btf_type`` is followed by ``info.vlen`` number of ``struct btf_var_secinfo``.::
 452
 453    struct btf_var_secinfo {
 454        __u32   type;
 455        __u32   offset;
 456        __u32   size;
 457    };
 458
 459``struct btf_var_secinfo`` encoding:
 460  * ``type``: the type of the BTF_KIND_VAR variable
 461  * ``offset``: the in-section offset of the variable
 462  * ``size``: the size of the variable in bytes
 463
 4642.2.16 BTF_KIND_FLOAT
 465~~~~~~~~~~~~~~~~~~~~~
 466
 467``struct btf_type`` encoding requirement:
 468 * ``name_off``: any valid offset
 469 * ``info.kind_flag``: 0
 470 * ``info.kind``: BTF_KIND_FLOAT
 471 * ``info.vlen``: 0
 472 * ``size``: the size of the float type in bytes: 2, 4, 8, 12 or 16.
 473
 474No additional type data follow ``btf_type``.
 475
 4762.2.17 BTF_KIND_DECL_TAG
 477~~~~~~~~~~~~~~~~~~~~~~~~
 478
 479``struct btf_type`` encoding requirement:
 480 * ``name_off``: offset to a non-empty string
 481 * ``info.kind_flag``: 0
 482 * ``info.kind``: BTF_KIND_DECL_TAG
 483 * ``info.vlen``: 0
 484 * ``type``: ``struct``, ``union``, ``func``, ``var`` or ``typedef``
 485
 486``btf_type`` is followed by ``struct btf_decl_tag``.::
 487
 488    struct btf_decl_tag {
 489        __u32   component_idx;
 490    };
 491
 492The ``name_off`` encodes btf_decl_tag attribute string.
 493The ``type`` should be ``struct``, ``union``, ``func``, ``var`` or ``typedef``.
 494For ``var`` or ``typedef`` type, ``btf_decl_tag.component_idx`` must be ``-1``.
 495For the other three types, if the btf_decl_tag attribute is
 496applied to the ``struct``, ``union`` or ``func`` itself,
 497``btf_decl_tag.component_idx`` must be ``-1``. Otherwise,
 498the attribute is applied to a ``struct``/``union`` member or
 499a ``func`` argument, and ``btf_decl_tag.component_idx`` should be a
 500valid index (starting from 0) pointing to a member or an argument.
 501
 5022.2.18 BTF_KIND_TYPE_TAG
 503~~~~~~~~~~~~~~~~~~~~~~~~
 504
 505``struct btf_type`` encoding requirement:
 506 * ``name_off``: offset to a non-empty string
 507 * ``info.kind_flag``: 0
 508 * ``info.kind``: BTF_KIND_TYPE_TAG
 509 * ``info.vlen``: 0
 510 * ``type``: the type with ``btf_type_tag`` attribute
 511
 512Currently, ``BTF_KIND_TYPE_TAG`` is only emitted for pointer types.
 513It has the following btf type chain:
 514::
 515
 516  ptr -> [type_tag]*
 517      -> [const | volatile | restrict | typedef]*
 518      -> base_type
 519
 520Basically, a pointer type points to zero or more
 521type_tag, then zero or more const/volatile/restrict/typedef
 522and finally the base type. The base type is one of
 523int, ptr, array, struct, union, enum, func_proto and float types.
 524
 5252.2.19 BTF_KIND_ENUM64
 526~~~~~~~~~~~~~~~~~~~~~~
 527
 528``struct btf_type`` encoding requirement:
 529  * ``name_off``: 0 or offset to a valid C identifier
 530  * ``info.kind_flag``: 0 for unsigned, 1 for signed
 531  * ``info.kind``: BTF_KIND_ENUM64
 532  * ``info.vlen``: number of enum values
 533  * ``size``: 1/2/4/8
 534
 535``btf_type`` is followed by ``info.vlen`` number of ``struct btf_enum64``.::
 536
 537    struct btf_enum64 {
 538        __u32   name_off;
 539        __u32   val_lo32;
 540        __u32   val_hi32;
 541    };
 542
 543The ``btf_enum64`` encoding:
 544  * ``name_off``: offset to a valid C identifier
 545  * ``val_lo32``: lower 32-bit value for a 64-bit value
 546  * ``val_hi32``: high 32-bit value for a 64-bit value
 547
 548If the original enum value is signed and the size is less than 8,
 549that value will be sign extended into 8 bytes.
 550
 5512.3 Constant Values
 552-------------------
 553
 554.. _BTF_Function_Linkage_Constants:
 555
 5562.3.1 Function Linkage Constant Values
 557~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
 558.. table:: Function Linkage Values and Meanings
 559
 560  ===================  =====  ===========
 561  kind                 value  description
 562  ===================  =====  ===========
 563  ``BTF_FUNC_STATIC``  0x0    definition of subprogram not visible outside containing compilation unit
 564  ``BTF_FUNC_GLOBAL``  0x1    definition of subprogram visible outside containing compilation unit
 565  ``BTF_FUNC_EXTERN``  0x2    declaration of a subprogram whose definition is outside the containing compilation unit
 566  ===================  =====  ===========
 567
 568
 569.. _BTF_Var_Linkage_Constants:
 570
 5712.3.2 Variable Linkage Constant Values
 572~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
 573.. table:: Variable Linkage Values and Meanings
 574
 575  ============================  =====  ===========
 576  kind                          value  description
 577  ============================  =====  ===========
 578  ``BTF_VAR_STATIC``            0x0    definition of global variable not visible outside containing compilation unit
 579  ``BTF_VAR_GLOBAL_ALLOCATED``  0x1    definition of global variable visible outside containing compilation unit
 580  ``BTF_VAR_GLOBAL_EXTERN``     0x2    declaration of global variable whose definition is outside the containing compilation unit
 581  ============================  =====  ===========
 582
 5833. BTF Kernel API
 584=================
 585
 586The following bpf syscall command involves BTF:
 587   * BPF_BTF_LOAD: load a blob of BTF data into kernel
 588   * BPF_MAP_CREATE: map creation with btf key and value type info.
 589   * BPF_PROG_LOAD: prog load with btf function and line info.
 590   * BPF_BTF_GET_FD_BY_ID: get a btf fd
 591   * BPF_OBJ_GET_INFO_BY_FD: btf, func_info, line_info
 592     and other btf related info are returned.
 593
 594The workflow typically looks like:
 595::
 596
 597  Application:
 598      BPF_BTF_LOAD
 599          |
 600          v
 601      BPF_MAP_CREATE and BPF_PROG_LOAD
 602          |
 603          V
 604      ......
 605
 606  Introspection tool:
 607      ......
 608      BPF_{PROG,MAP}_GET_NEXT_ID (get prog/map id's)
 609          |
 610          V
 611      BPF_{PROG,MAP}_GET_FD_BY_ID (get a prog/map fd)
 612          |
 613          V
 614      BPF_OBJ_GET_INFO_BY_FD (get bpf_prog_info/bpf_map_info with btf_id)
 615          |                                     |
 616          V                                     |
 617      BPF_BTF_GET_FD_BY_ID (get btf_fd)         |
 618          |                                     |
 619          V                                     |
 620      BPF_OBJ_GET_INFO_BY_FD (get btf)          |
 621          |                                     |
 622          V                                     V
 623      pretty print types, dump func signatures and line info, etc.
 624
 625
 6263.1 BPF_BTF_LOAD
 627----------------
 628
 629Load a blob of BTF data into kernel. A blob of data, described in
 630:ref:`BTF_Type_String`, can be directly loaded into the kernel. A ``btf_fd``
 631is returned to a userspace.
 632
 6333.2 BPF_MAP_CREATE
 634------------------
 635
 636A map can be created with ``btf_fd`` and specified key/value type id.::
 637
 638    __u32   btf_fd;         /* fd pointing to a BTF type data */
 639    __u32   btf_key_type_id;        /* BTF type_id of the key */
 640    __u32   btf_value_type_id;      /* BTF type_id of the value */
 641
 642In libbpf, the map can be defined with extra annotation like below:
 643::
 644
 645    struct {
 646        __uint(type, BPF_MAP_TYPE_ARRAY);
 647        __type(key, int);
 648        __type(value, struct ipv_counts);
 649        __uint(max_entries, 4);
 650    } btf_map SEC(".maps");
 651
 652During ELF parsing, libbpf is able to extract key/value type_id's and assign
 653them to BPF_MAP_CREATE attributes automatically.
 654
 655.. _BPF_Prog_Load:
 656
 6573.3 BPF_PROG_LOAD
 658-----------------
 659
 660During prog_load, func_info and line_info can be passed to kernel with proper
 661values for the following attributes:
 662::
 663
 664    __u32           insn_cnt;
 665    __aligned_u64   insns;
 666    ......
 667    __u32           prog_btf_fd;    /* fd pointing to BTF type data */
 668    __u32           func_info_rec_size;     /* userspace bpf_func_info size */
 669    __aligned_u64   func_info;      /* func info */
 670    __u32           func_info_cnt;  /* number of bpf_func_info records */
 671    __u32           line_info_rec_size;     /* userspace bpf_line_info size */
 672    __aligned_u64   line_info;      /* line info */
 673    __u32           line_info_cnt;  /* number of bpf_line_info records */
 674
 675The func_info and line_info are an array of below, respectively.::
 676
 677    struct bpf_func_info {
 678        __u32   insn_off; /* [0, insn_cnt - 1] */
 679        __u32   type_id;  /* pointing to a BTF_KIND_FUNC type */
 680    };
 681    struct bpf_line_info {
 682        __u32   insn_off; /* [0, insn_cnt - 1] */
 683        __u32   file_name_off; /* offset to string table for the filename */
 684        __u32   line_off; /* offset to string table for the source line */
 685        __u32   line_col; /* line number and column number */
 686    };
 687
 688func_info_rec_size is the size of each func_info record, and
 689line_info_rec_size is the size of each line_info record. Passing the record
 690size to kernel make it possible to extend the record itself in the future.
 691
 692Below are requirements for func_info:
 693  * func_info[0].insn_off must be 0.
 694  * the func_info insn_off is in strictly increasing order and matches
 695    bpf func boundaries.
 696
 697Below are requirements for line_info:
 698  * the first insn in each func must have a line_info record pointing to it.
 699  * the line_info insn_off is in strictly increasing order.
 700
 701For line_info, the line number and column number are defined as below:
 702::
 703
 704    #define BPF_LINE_INFO_LINE_NUM(line_col)        ((line_col) >> 10)
 705    #define BPF_LINE_INFO_LINE_COL(line_col)        ((line_col) & 0x3ff)
 706
 7073.4 BPF_{PROG,MAP}_GET_NEXT_ID
 708------------------------------
 709
 710In kernel, every loaded program, map or btf has a unique id. The id won't
 711change during the lifetime of a program, map, or btf.
 712
 713The bpf syscall command BPF_{PROG,MAP}_GET_NEXT_ID returns all id's, one for
 714each command, to user space, for bpf program or maps, respectively, so an
 715inspection tool can inspect all programs and maps.
 716
 7173.5 BPF_{PROG,MAP}_GET_FD_BY_ID
 718-------------------------------
 719
 720An introspection tool cannot use id to get details about program or maps.
 721A file descriptor needs to be obtained first for reference-counting purpose.
 722
 7233.6 BPF_OBJ_GET_INFO_BY_FD
 724--------------------------
 725
 726Once a program/map fd is acquired, an introspection tool can get the detailed
 727information from kernel about this fd, some of which are BTF-related. For
 728example, ``bpf_map_info`` returns ``btf_id`` and key/value type ids.
 729``bpf_prog_info`` returns ``btf_id``, func_info, and line info for translated
 730bpf byte codes, and jited_line_info.
 731
 7323.7 BPF_BTF_GET_FD_BY_ID
 733------------------------
 734
 735With ``btf_id`` obtained in ``bpf_map_info`` and ``bpf_prog_info``, bpf
 736syscall command BPF_BTF_GET_FD_BY_ID can retrieve a btf fd. Then, with
 737command BPF_OBJ_GET_INFO_BY_FD, the btf blob, originally loaded into the
 738kernel with BPF_BTF_LOAD, can be retrieved.
 739
 740With the btf blob, ``bpf_map_info``, and ``bpf_prog_info``, an introspection
 741tool has full btf knowledge and is able to pretty print map key/values, dump
 742func signatures and line info, along with byte/jit codes.
 743
 7444. ELF File Format Interface
 745============================
 746
 7474.1 .BTF section
 748----------------
 749
 750The .BTF section contains type and string data. The format of this section is
 751same as the one describe in :ref:`BTF_Type_String`.
 752
 753.. _BTF_Ext_Section:
 754
 7554.2 .BTF.ext section
 756--------------------
 757
 758The .BTF.ext section encodes func_info, line_info and CO-RE relocations
 759which needs loader manipulation before loading into the kernel.
 760
 761The specification for .BTF.ext section is defined at ``tools/lib/bpf/btf.h``
 762and ``tools/lib/bpf/btf.c``.
 763
 764The current header of .BTF.ext section::
 765
 766    struct btf_ext_header {
 767        __u16   magic;
 768        __u8    version;
 769        __u8    flags;
 770        __u32   hdr_len;
 771
 772        /* All offsets are in bytes relative to the end of this header */
 773        __u32   func_info_off;
 774        __u32   func_info_len;
 775        __u32   line_info_off;
 776        __u32   line_info_len;
 777
 778        /* optional part of .BTF.ext header */
 779        __u32   core_relo_off;
 780        __u32   core_relo_len;
 781    };
 782
 783It is very similar to .BTF section. Instead of type/string section, it
 784contains func_info, line_info and core_relo sub-sections.
 785See :ref:`BPF_Prog_Load` for details about func_info and line_info
 786record format.
 787
 788The func_info is organized as below.::
 789
 790     func_info_rec_size              /* __u32 value */
 791     btf_ext_info_sec for section #1 /* func_info for section #1 */
 792     btf_ext_info_sec for section #2 /* func_info for section #2 */
 793     ...
 794
 795``func_info_rec_size`` specifies the size of ``bpf_func_info`` structure when
 796.BTF.ext is generated. ``btf_ext_info_sec``, defined below, is a collection of
 797func_info for each specific ELF section.::
 798
 799     struct btf_ext_info_sec {
 800        __u32   sec_name_off; /* offset to section name */
 801        __u32   num_info;
 802        /* Followed by num_info * record_size number of bytes */
 803        __u8    data[0];
 804     };
 805
 806Here, num_info must be greater than 0.
 807
 808The line_info is organized as below.::
 809
 810     line_info_rec_size              /* __u32 value */
 811     btf_ext_info_sec for section #1 /* line_info for section #1 */
 812     btf_ext_info_sec for section #2 /* line_info for section #2 */
 813     ...
 814
 815``line_info_rec_size`` specifies the size of ``bpf_line_info`` structure when
 816.BTF.ext is generated.
 817
 818The interpretation of ``bpf_func_info->insn_off`` and
 819``bpf_line_info->insn_off`` is different between kernel API and ELF API. For
 820kernel API, the ``insn_off`` is the instruction offset in the unit of ``struct
 821bpf_insn``. For ELF API, the ``insn_off`` is the byte offset from the
 822beginning of section (``btf_ext_info_sec->sec_name_off``).
 823
 824The core_relo is organized as below.::
 825
 826     core_relo_rec_size              /* __u32 value */
 827     btf_ext_info_sec for section #1 /* core_relo for section #1 */
 828     btf_ext_info_sec for section #2 /* core_relo for section #2 */
 829
 830``core_relo_rec_size`` specifies the size of ``bpf_core_relo``
 831structure when .BTF.ext is generated. All ``bpf_core_relo`` structures
 832within a single ``btf_ext_info_sec`` describe relocations applied to
 833section named by ``btf_ext_info_sec->sec_name_off``.
 834
 835See :ref:`Documentation/bpf/llvm_reloc.rst <btf-co-re-relocations>`
 836for more information on CO-RE relocations.
 837
 8384.3 .BTF_ids section
 839--------------------
 840
 841The .BTF_ids section encodes BTF ID values that are used within the kernel.
 842
 843This section is created during the kernel compilation with the help of
 844macros defined in ``include/linux/btf_ids.h`` header file. Kernel code can
 845use them to create lists and sets (sorted lists) of BTF ID values.
 846
 847The ``BTF_ID_LIST`` and ``BTF_ID`` macros define unsorted list of BTF ID values,
 848with following syntax::
 849
 850  BTF_ID_LIST(list)
 851  BTF_ID(type1, name1)
 852  BTF_ID(type2, name2)
 853
 854resulting in following layout in .BTF_ids section::
 855
 856  __BTF_ID__type1__name1__1:
 857  .zero 4
 858  __BTF_ID__type2__name2__2:
 859  .zero 4
 860
 861The ``u32 list[];`` variable is defined to access the list.
 862
 863The ``BTF_ID_UNUSED`` macro defines 4 zero bytes. It's used when we
 864want to define unused entry in BTF_ID_LIST, like::
 865
 866      BTF_ID_LIST(bpf_skb_output_btf_ids)
 867      BTF_ID(struct, sk_buff)
 868      BTF_ID_UNUSED
 869      BTF_ID(struct, task_struct)
 870
 871The ``BTF_SET_START/END`` macros pair defines sorted list of BTF ID values
 872and their count, with following syntax::
 873
 874  BTF_SET_START(set)
 875  BTF_ID(type1, name1)
 876  BTF_ID(type2, name2)
 877  BTF_SET_END(set)
 878
 879resulting in following layout in .BTF_ids section::
 880
 881  __BTF_ID__set__set:
 882  .zero 4
 883  __BTF_ID__type1__name1__3:
 884  .zero 4
 885  __BTF_ID__type2__name2__4:
 886  .zero 4
 887
 888The ``struct btf_id_set set;`` variable is defined to access the list.
 889
 890The ``typeX`` name can be one of following::
 891
 892   struct, union, typedef, func
 893
 894and is used as a filter when resolving the BTF ID value.
 895
 896All the BTF ID lists and sets are compiled in the .BTF_ids section and
 897resolved during the linking phase of kernel build by ``resolve_btfids`` tool.
 898
 8994.4 .BTF.base section
 900---------------------
 901Split BTF - where the .BTF section only contains types not in the associated
 902base .BTF section - is an extremely efficient way to encode type information
 903for kernel modules, since they generally consist of a few module-specific
 904types along with a large set of shared kernel types. The former are encoded
 905in split BTF, while the latter are encoded in base BTF, resulting in more
 906compact representations. A type in split BTF that refers to a type in
 907base BTF refers to it using its base BTF ID, and split BTF IDs start
 908at last_base_BTF_ID + 1.
 909
 910The downside of this approach however is that this makes the split BTF
 911somewhat brittle - when the base BTF changes, base BTF ID references are
 912no longer valid and the split BTF itself becomes useless. The role of the
 913.BTF.base section is to make split BTF more resilient for cases where
 914the base BTF may change, as is the case for kernel modules not built every
 915time the kernel is for example. .BTF.base contains named base types; INTs,
 916FLOATs, STRUCTs, UNIONs, ENUM[64]s and FWDs. INTs and FLOATs are fully
 917described in .BTF.base sections, while composite types like structs
 918and unions are not fully defined - the .BTF.base type simply serves as
 919a description of the type the split BTF referred to, so structs/unions
 920have 0 members in the .BTF.base section. ENUM[64]s are similarly recorded
 921with 0 members. Any other types are added to the split BTF. This
 922distillation process then leaves us with a .BTF.base section with
 923such minimal descriptions of base types and .BTF split section which refers
 924to those base types. Later, we can relocate the split BTF using both the
 925information stored in the .BTF.base section and the new .BTF base; the type
 926information in the .BTF.base section allows us to update the split BTF
 927references to point at the corresponding new base BTF IDs.
 928
 929BTF relocation happens on kernel module load when a kernel module has a
 930.BTF.base section, and libbpf also provides a btf__relocate() API to
 931accomplish this.
 932
 933As an example consider the following base BTF::
 934
 935      [1] INT 'int' size=4 bits_offset=0 nr_bits=32 encoding=SIGNED
 936      [2] STRUCT 'foo' size=8 vlen=2
 937              'f1' type_id=1 bits_offset=0
 938              'f2' type_id=1 bits_offset=32
 939
 940...and associated split BTF::
 941
 942      [3] PTR '(anon)' type_id=2
 943
 944i.e. split BTF describes a pointer to struct foo { int f1; int f2 };
 945
 946.BTF.base will consist of::
 947
 948      [1] INT 'int' size=4 bits_offset=0 nr_bits=32 encoding=SIGNED
 949      [2] STRUCT 'foo' size=8 vlen=0
 950
 951If we relocate the split BTF later using the following new base BTF::
 952
 953      [1] INT 'long unsigned int' size=8 bits_offset=0 nr_bits=64 encoding=(none)
 954      [2] INT 'int' size=4 bits_offset=0 nr_bits=32 encoding=SIGNED
 955      [3] STRUCT 'foo' size=8 vlen=2
 956              'f1' type_id=2 bits_offset=0
 957              'f2' type_id=2 bits_offset=32
 958
 959...we can use our .BTF.base description to know that the split BTF reference
 960is to struct foo, and relocation results in new split BTF::
 961
 962      [4] PTR '(anon)' type_id=3
 963
 964Note that we had to update BTF ID and start BTF ID for the split BTF.
 965
 966So we see how .BTF.base plays the role of facilitating later relocation,
 967leading to more resilient split BTF.
 968
 969.BTF.base sections will be generated automatically for out-of-tree kernel module
 970builds - i.e. where KBUILD_EXTMOD is set (as it would be for "make M=path/2/mod"
 971cases). .BTF.base generation requires pahole support for the "distilled_base"
 972BTF feature; this is available in pahole v1.28 and later.
 973
 9745. Using BTF
 975============
 976
 9775.1 bpftool map pretty print
 978----------------------------
 979
 980With BTF, the map key/value can be printed based on fields rather than simply
 981raw bytes. This is especially valuable for large structure or if your data
 982structure has bitfields. For example, for the following map,::
 983
 984      enum A { A1, A2, A3, A4, A5 };
 985      typedef enum A ___A;
 986      struct tmp_t {
 987           char a1:4;
 988           int  a2:4;
 989           int  :4;
 990           __u32 a3:4;
 991           int b;
 992           ___A b1:4;
 993           enum A b2:4;
 994      };
 995      struct {
 996           __uint(type, BPF_MAP_TYPE_ARRAY);
 997           __type(key, int);
 998           __type(value, struct tmp_t);
 999           __uint(max_entries, 1);
1000      } tmpmap SEC(".maps");
1001
1002bpftool is able to pretty print like below:
1003::
1004
1005      [{
1006            "key": 0,
1007            "value": {
1008                "a1": 0x2,
1009                "a2": 0x4,
1010                "a3": 0x6,
1011                "b": 7,
1012                "b1": 0x8,
1013                "b2": 0xa
1014            }
1015        }
1016      ]
1017
10185.2 bpftool prog dump
1019---------------------
1020
1021The following is an example showing how func_info and line_info can help prog
1022dump with better kernel symbol names, function prototypes and line
1023information.::
1024
1025    $ bpftool prog dump jited pinned /sys/fs/bpf/test_btf_haskv
1026    [...]
1027    int test_long_fname_2(struct dummy_tracepoint_args * arg):
1028    bpf_prog_44a040bf25481309_test_long_fname_2:
1029    ; static int test_long_fname_2(struct dummy_tracepoint_args *arg)
1030       0:   push   %rbp
1031       1:   mov    %rsp,%rbp
1032       4:   sub    $0x30,%rsp
1033       b:   sub    $0x28,%rbp
1034       f:   mov    %rbx,0x0(%rbp)
1035      13:   mov    %r13,0x8(%rbp)
1036      17:   mov    %r14,0x10(%rbp)
1037      1b:   mov    %r15,0x18(%rbp)
1038      1f:   xor    %eax,%eax
1039      21:   mov    %rax,0x20(%rbp)
1040      25:   xor    %esi,%esi
1041    ; int key = 0;
1042      27:   mov    %esi,-0x4(%rbp)
1043    ; if (!arg->sock)
1044      2a:   mov    0x8(%rdi),%rdi
1045    ; if (!arg->sock)
1046      2e:   cmp    $0x0,%rdi
1047      32:   je     0x0000000000000070
1048      34:   mov    %rbp,%rsi
1049    ; counts = bpf_map_lookup_elem(&btf_map, &key);
1050    [...]
1051
10525.3 Verifier Log
1053----------------
1054
1055The following is an example of how line_info can help debugging verification
1056failure.::
1057
1058       /* The code at tools/testing/selftests/bpf/test_xdp_noinline.c
1059        * is modified as below.
1060        */
1061       data = (void *)(long)xdp->data;
1062       data_end = (void *)(long)xdp->data_end;
1063       /*
1064       if (data + 4 > data_end)
1065               return XDP_DROP;
1066       */
1067       *(u32 *)data = dst->dst;
1068
1069    $ bpftool prog load ./test_xdp_noinline.o /sys/fs/bpf/test_xdp_noinline type xdp
1070        ; data = (void *)(long)xdp->data;
1071        224: (79) r2 = *(u64 *)(r10 -112)
1072        225: (61) r2 = *(u32 *)(r2 +0)
1073        ; *(u32 *)data = dst->dst;
1074        226: (63) *(u32 *)(r2 +0) = r1
1075        invalid access to packet, off=0 size=4, R2(id=0,off=0,r=0)
1076        R2 offset is outside of the packet
1077
10786. BTF Generation
1079=================
1080
1081You need latest pahole
1082
1083  https://git.kernel.org/pub/scm/devel/pahole/pahole.git/
1084
1085or llvm (8.0 or later). The pahole acts as a dwarf2btf converter. It doesn't
1086support .BTF.ext and btf BTF_KIND_FUNC type yet. For example,::
1087
1088      -bash-4.4$ cat t.c
1089      struct t {
1090        int a:2;
1091        int b:3;
1092        int c:2;
1093      } g;
1094      -bash-4.4$ gcc -c -O2 -g t.c
1095      -bash-4.4$ pahole -JV t.o
1096      File t.o:
1097      [1] STRUCT t kind_flag=1 size=4 vlen=3
1098              a type_id=2 bitfield_size=2 bits_offset=0
1099              b type_id=2 bitfield_size=3 bits_offset=2
1100              c type_id=2 bitfield_size=2 bits_offset=5
1101      [2] INT int size=4 bit_offset=0 nr_bits=32 encoding=SIGNED
1102
1103The llvm is able to generate .BTF and .BTF.ext directly with -g for bpf target
1104only. The assembly code (-S) is able to show the BTF encoding in assembly
1105format.::
1106
1107    -bash-4.4$ cat t2.c
1108    typedef int __int32;
1109    struct t2 {
1110      int a2;
1111      int (*f2)(char q1, __int32 q2, ...);
1112      int (*f3)();
1113    } g2;
1114    int main() { return 0; }
1115    int test() { return 0; }
1116    -bash-4.4$ clang -c -g -O2 --target=bpf t2.c
1117    -bash-4.4$ readelf -S t2.o
1118      ......
1119      [ 8] .BTF              PROGBITS         0000000000000000  00000247
1120           000000000000016e  0000000000000000           0     0     1
1121      [ 9] .BTF.ext          PROGBITS         0000000000000000  000003b5
1122           0000000000000060  0000000000000000           0     0     1
1123      [10] .rel.BTF.ext      REL              0000000000000000  000007e0
1124           0000000000000040  0000000000000010          16     9     8
1125      ......
1126    -bash-4.4$ clang -S -g -O2 --target=bpf t2.c
1127    -bash-4.4$ cat t2.s
1128      ......
1129            .section        .BTF,"",@progbits
1130            .short  60319                   # 0xeb9f
1131            .byte   1
1132            .byte   0
1133            .long   24
1134            .long   0
1135            .long   220
1136            .long   220
1137            .long   122
1138            .long   0                       # BTF_KIND_FUNC_PROTO(id = 1)
1139            .long   218103808               # 0xd000000
1140            .long   2
1141            .long   83                      # BTF_KIND_INT(id = 2)
1142            .long   16777216                # 0x1000000
1143            .long   4
1144            .long   16777248                # 0x1000020
1145      ......
1146            .byte   0                       # string offset=0
1147            .ascii  ".text"                 # string offset=1
1148            .byte   0
1149            .ascii  "/home/yhs/tmp-pahole/t2.c" # string offset=7
1150            .byte   0
1151            .ascii  "int main() { return 0; }" # string offset=33
1152            .byte   0
1153            .ascii  "int test() { return 0; }" # string offset=58
1154            .byte   0
1155            .ascii  "int"                   # string offset=83
1156      ......
1157            .section        .BTF.ext,"",@progbits
1158            .short  60319                   # 0xeb9f
1159            .byte   1
1160            .byte   0
1161            .long   24
1162            .long   0
1163            .long   28
1164            .long   28
1165            .long   44
1166            .long   8                       # FuncInfo
1167            .long   1                       # FuncInfo section string offset=1
1168            .long   2
1169            .long   .Lfunc_begin0
1170            .long   3
1171            .long   .Lfunc_begin1
1172            .long   5
1173            .long   16                      # LineInfo
1174            .long   1                       # LineInfo section string offset=1
1175            .long   2
1176            .long   .Ltmp0
1177            .long   7
1178            .long   33
1179            .long   7182                    # Line 7 Col 14
1180            .long   .Ltmp3
1181            .long   7
1182            .long   58
1183            .long   8206                    # Line 8 Col 14
1184
11857. Testing
1186==========
1187
1188The kernel BPF selftest `tools/testing/selftests/bpf/prog_tests/btf.c`_
1189provides an extensive set of BTF-related tests.
1190
1191.. Links
1192.. _tools/testing/selftests/bpf/prog_tests/btf.c:
1193   https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/tree/tools/testing/selftests/bpf/prog_tests/btf.c
v6.9.4
   1=====================
   2BPF Type Format (BTF)
   3=====================
   4
   51. Introduction
   6===============
   7
   8BTF (BPF Type Format) is the metadata format which encodes the debug info
   9related to BPF program/map. The name BTF was used initially to describe data
  10types. The BTF was later extended to include function info for defined
  11subroutines, and line info for source/line information.
  12
  13The debug info is used for map pretty print, function signature, etc. The
  14function signature enables better bpf program/function kernel symbol. The line
  15info helps generate source annotated translated byte code, jited code and
  16verifier log.
  17
  18The BTF specification contains two parts,
  19  * BTF kernel API
  20  * BTF ELF file format
  21
  22The kernel API is the contract between user space and kernel. The kernel
  23verifies the BTF info before using it. The ELF file format is a user space
  24contract between ELF file and libbpf loader.
  25
  26The type and string sections are part of the BTF kernel API, describing the
  27debug info (mostly types related) referenced by the bpf program. These two
  28sections are discussed in details in :ref:`BTF_Type_String`.
  29
  30.. _BTF_Type_String:
  31
  322. BTF Type and String Encoding
  33===============================
  34
  35The file ``include/uapi/linux/btf.h`` provides high-level definition of how
  36types/strings are encoded.
  37
  38The beginning of data blob must be::
  39
  40    struct btf_header {
  41        __u16   magic;
  42        __u8    version;
  43        __u8    flags;
  44        __u32   hdr_len;
  45
  46        /* All offsets are in bytes relative to the end of this header */
  47        __u32   type_off;       /* offset of type section       */
  48        __u32   type_len;       /* length of type section       */
  49        __u32   str_off;        /* offset of string section     */
  50        __u32   str_len;        /* length of string section     */
  51    };
  52
  53The magic is ``0xeB9F``, which has different encoding for big and little
  54endian systems, and can be used to test whether BTF is generated for big- or
  55little-endian target. The ``btf_header`` is designed to be extensible with
  56``hdr_len`` equal to ``sizeof(struct btf_header)`` when a data blob is
  57generated.
  58
  592.1 String Encoding
  60-------------------
  61
  62The first string in the string section must be a null string. The rest of
  63string table is a concatenation of other null-terminated strings.
  64
  652.2 Type Encoding
  66-----------------
  67
  68The type id ``0`` is reserved for ``void`` type. The type section is parsed
  69sequentially and type id is assigned to each recognized type starting from id
  70``1``. Currently, the following types are supported::
  71
  72    #define BTF_KIND_INT            1       /* Integer      */
  73    #define BTF_KIND_PTR            2       /* Pointer      */
  74    #define BTF_KIND_ARRAY          3       /* Array        */
  75    #define BTF_KIND_STRUCT         4       /* Struct       */
  76    #define BTF_KIND_UNION          5       /* Union        */
  77    #define BTF_KIND_ENUM           6       /* Enumeration up to 32-bit values */
  78    #define BTF_KIND_FWD            7       /* Forward      */
  79    #define BTF_KIND_TYPEDEF        8       /* Typedef      */
  80    #define BTF_KIND_VOLATILE       9       /* Volatile     */
  81    #define BTF_KIND_CONST          10      /* Const        */
  82    #define BTF_KIND_RESTRICT       11      /* Restrict     */
  83    #define BTF_KIND_FUNC           12      /* Function     */
  84    #define BTF_KIND_FUNC_PROTO     13      /* Function Proto       */
  85    #define BTF_KIND_VAR            14      /* Variable     */
  86    #define BTF_KIND_DATASEC        15      /* Section      */
  87    #define BTF_KIND_FLOAT          16      /* Floating point       */
  88    #define BTF_KIND_DECL_TAG       17      /* Decl Tag     */
  89    #define BTF_KIND_TYPE_TAG       18      /* Type Tag     */
  90    #define BTF_KIND_ENUM64         19      /* Enumeration up to 64-bit values */
  91
  92Note that the type section encodes debug info, not just pure types.
  93``BTF_KIND_FUNC`` is not a type, and it represents a defined subprogram.
  94
  95Each type contains the following common data::
  96
  97    struct btf_type {
  98        __u32 name_off;
  99        /* "info" bits arrangement
 100         * bits  0-15: vlen (e.g. # of struct's members)
 101         * bits 16-23: unused
 102         * bits 24-28: kind (e.g. int, ptr, array...etc)
 103         * bits 29-30: unused
 104         * bit     31: kind_flag, currently used by
 105         *             struct, union, fwd, enum and enum64.
 106         */
 107        __u32 info;
 108        /* "size" is used by INT, ENUM, STRUCT, UNION and ENUM64.
 109         * "size" tells the size of the type it is describing.
 110         *
 111         * "type" is used by PTR, TYPEDEF, VOLATILE, CONST, RESTRICT,
 112         * FUNC, FUNC_PROTO, DECL_TAG and TYPE_TAG.
 113         * "type" is a type_id referring to another type.
 114         */
 115        union {
 116                __u32 size;
 117                __u32 type;
 118        };
 119    };
 120
 121For certain kinds, the common data are followed by kind-specific data. The
 122``name_off`` in ``struct btf_type`` specifies the offset in the string table.
 123The following sections detail encoding of each kind.
 124
 1252.2.1 BTF_KIND_INT
 126~~~~~~~~~~~~~~~~~~
 127
 128``struct btf_type`` encoding requirement:
 129 * ``name_off``: any valid offset
 130 * ``info.kind_flag``: 0
 131 * ``info.kind``: BTF_KIND_INT
 132 * ``info.vlen``: 0
 133 * ``size``: the size of the int type in bytes.
 134
 135``btf_type`` is followed by a ``u32`` with the following bits arrangement::
 136
 137  #define BTF_INT_ENCODING(VAL)   (((VAL) & 0x0f000000) >> 24)
 138  #define BTF_INT_OFFSET(VAL)     (((VAL) & 0x00ff0000) >> 16)
 139  #define BTF_INT_BITS(VAL)       ((VAL)  & 0x000000ff)
 140
 141The ``BTF_INT_ENCODING`` has the following attributes::
 142
 143  #define BTF_INT_SIGNED  (1 << 0)
 144  #define BTF_INT_CHAR    (1 << 1)
 145  #define BTF_INT_BOOL    (1 << 2)
 146
 147The ``BTF_INT_ENCODING()`` provides extra information: signedness, char, or
 148bool, for the int type. The char and bool encoding are mostly useful for
 149pretty print. At most one encoding can be specified for the int type.
 150
 151The ``BTF_INT_BITS()`` specifies the number of actual bits held by this int
 152type. For example, a 4-bit bitfield encodes ``BTF_INT_BITS()`` equals to 4.
 153The ``btf_type.size * 8`` must be equal to or greater than ``BTF_INT_BITS()``
 154for the type. The maximum value of ``BTF_INT_BITS()`` is 128.
 155
 156The ``BTF_INT_OFFSET()`` specifies the starting bit offset to calculate values
 157for this int. For example, a bitfield struct member has:
 158
 159 * btf member bit offset 100 from the start of the structure,
 160 * btf member pointing to an int type,
 161 * the int type has ``BTF_INT_OFFSET() = 2`` and ``BTF_INT_BITS() = 4``
 162
 163Then in the struct memory layout, this member will occupy ``4`` bits starting
 164from bits ``100 + 2 = 102``.
 165
 166Alternatively, the bitfield struct member can be the following to access the
 167same bits as the above:
 168
 169 * btf member bit offset 102,
 170 * btf member pointing to an int type,
 171 * the int type has ``BTF_INT_OFFSET() = 0`` and ``BTF_INT_BITS() = 4``
 172
 173The original intention of ``BTF_INT_OFFSET()`` is to provide flexibility of
 174bitfield encoding. Currently, both llvm and pahole generate
 175``BTF_INT_OFFSET() = 0`` for all int types.
 176
 1772.2.2 BTF_KIND_PTR
 178~~~~~~~~~~~~~~~~~~
 179
 180``struct btf_type`` encoding requirement:
 181  * ``name_off``: 0
 182  * ``info.kind_flag``: 0
 183  * ``info.kind``: BTF_KIND_PTR
 184  * ``info.vlen``: 0
 185  * ``type``: the pointee type of the pointer
 186
 187No additional type data follow ``btf_type``.
 188
 1892.2.3 BTF_KIND_ARRAY
 190~~~~~~~~~~~~~~~~~~~~
 191
 192``struct btf_type`` encoding requirement:
 193  * ``name_off``: 0
 194  * ``info.kind_flag``: 0
 195  * ``info.kind``: BTF_KIND_ARRAY
 196  * ``info.vlen``: 0
 197  * ``size/type``: 0, not used
 198
 199``btf_type`` is followed by one ``struct btf_array``::
 200
 201    struct btf_array {
 202        __u32   type;
 203        __u32   index_type;
 204        __u32   nelems;
 205    };
 206
 207The ``struct btf_array`` encoding:
 208  * ``type``: the element type
 209  * ``index_type``: the index type
 210  * ``nelems``: the number of elements for this array (``0`` is also allowed).
 211
 212The ``index_type`` can be any regular int type (``u8``, ``u16``, ``u32``,
 213``u64``, ``unsigned __int128``). The original design of including
 214``index_type`` follows DWARF, which has an ``index_type`` for its array type.
 215Currently in BTF, beyond type verification, the ``index_type`` is not used.
 216
 217The ``struct btf_array`` allows chaining through element type to represent
 218multidimensional arrays. For example, for ``int a[5][6]``, the following type
 219information illustrates the chaining:
 220
 221  * [1]: int
 222  * [2]: array, ``btf_array.type = [1]``, ``btf_array.nelems = 6``
 223  * [3]: array, ``btf_array.type = [2]``, ``btf_array.nelems = 5``
 224
 225Currently, both pahole and llvm collapse multidimensional array into
 226one-dimensional array, e.g., for ``a[5][6]``, the ``btf_array.nelems`` is
 227equal to ``30``. This is because the original use case is map pretty print
 228where the whole array is dumped out so one-dimensional array is enough. As
 229more BTF usage is explored, pahole and llvm can be changed to generate proper
 230chained representation for multidimensional arrays.
 231
 2322.2.4 BTF_KIND_STRUCT
 233~~~~~~~~~~~~~~~~~~~~~
 2342.2.5 BTF_KIND_UNION
 235~~~~~~~~~~~~~~~~~~~~
 236
 237``struct btf_type`` encoding requirement:
 238  * ``name_off``: 0 or offset to a valid C identifier
 239  * ``info.kind_flag``: 0 or 1
 240  * ``info.kind``: BTF_KIND_STRUCT or BTF_KIND_UNION
 241  * ``info.vlen``: the number of struct/union members
 242  * ``info.size``: the size of the struct/union in bytes
 243
 244``btf_type`` is followed by ``info.vlen`` number of ``struct btf_member``.::
 245
 246    struct btf_member {
 247        __u32   name_off;
 248        __u32   type;
 249        __u32   offset;
 250    };
 251
 252``struct btf_member`` encoding:
 253  * ``name_off``: offset to a valid C identifier
 254  * ``type``: the member type
 255  * ``offset``: <see below>
 256
 257If the type info ``kind_flag`` is not set, the offset contains only bit offset
 258of the member. Note that the base type of the bitfield can only be int or enum
 259type. If the bitfield size is 32, the base type can be either int or enum
 260type. If the bitfield size is not 32, the base type must be int, and int type
 261``BTF_INT_BITS()`` encodes the bitfield size.
 262
 263If the ``kind_flag`` is set, the ``btf_member.offset`` contains both member
 264bitfield size and bit offset. The bitfield size and bit offset are calculated
 265as below.::
 266
 267  #define BTF_MEMBER_BITFIELD_SIZE(val)   ((val) >> 24)
 268  #define BTF_MEMBER_BIT_OFFSET(val)      ((val) & 0xffffff)
 269
 270In this case, if the base type is an int type, it must be a regular int type:
 271
 272  * ``BTF_INT_OFFSET()`` must be 0.
 273  * ``BTF_INT_BITS()`` must be equal to ``{1,2,4,8,16} * 8``.
 274
 275Commit 9d5f9f701b18 introduced ``kind_flag`` and explains why both modes
 276exist.
 277
 2782.2.6 BTF_KIND_ENUM
 279~~~~~~~~~~~~~~~~~~~
 280
 281``struct btf_type`` encoding requirement:
 282  * ``name_off``: 0 or offset to a valid C identifier
 283  * ``info.kind_flag``: 0 for unsigned, 1 for signed
 284  * ``info.kind``: BTF_KIND_ENUM
 285  * ``info.vlen``: number of enum values
 286  * ``size``: 1/2/4/8
 287
 288``btf_type`` is followed by ``info.vlen`` number of ``struct btf_enum``.::
 289
 290    struct btf_enum {
 291        __u32   name_off;
 292        __s32   val;
 293    };
 294
 295The ``btf_enum`` encoding:
 296  * ``name_off``: offset to a valid C identifier
 297  * ``val``: any value
 298
 299If the original enum value is signed and the size is less than 4,
 300that value will be sign extended into 4 bytes. If the size is 8,
 301the value will be truncated into 4 bytes.
 302
 3032.2.7 BTF_KIND_FWD
 304~~~~~~~~~~~~~~~~~~
 305
 306``struct btf_type`` encoding requirement:
 307  * ``name_off``: offset to a valid C identifier
 308  * ``info.kind_flag``: 0 for struct, 1 for union
 309  * ``info.kind``: BTF_KIND_FWD
 310  * ``info.vlen``: 0
 311  * ``type``: 0
 312
 313No additional type data follow ``btf_type``.
 314
 3152.2.8 BTF_KIND_TYPEDEF
 316~~~~~~~~~~~~~~~~~~~~~~
 317
 318``struct btf_type`` encoding requirement:
 319  * ``name_off``: offset to a valid C identifier
 320  * ``info.kind_flag``: 0
 321  * ``info.kind``: BTF_KIND_TYPEDEF
 322  * ``info.vlen``: 0
 323  * ``type``: the type which can be referred by name at ``name_off``
 324
 325No additional type data follow ``btf_type``.
 326
 3272.2.9 BTF_KIND_VOLATILE
 328~~~~~~~~~~~~~~~~~~~~~~~
 329
 330``struct btf_type`` encoding requirement:
 331  * ``name_off``: 0
 332  * ``info.kind_flag``: 0
 333  * ``info.kind``: BTF_KIND_VOLATILE
 334  * ``info.vlen``: 0
 335  * ``type``: the type with ``volatile`` qualifier
 336
 337No additional type data follow ``btf_type``.
 338
 3392.2.10 BTF_KIND_CONST
 340~~~~~~~~~~~~~~~~~~~~~
 341
 342``struct btf_type`` encoding requirement:
 343  * ``name_off``: 0
 344  * ``info.kind_flag``: 0
 345  * ``info.kind``: BTF_KIND_CONST
 346  * ``info.vlen``: 0
 347  * ``type``: the type with ``const`` qualifier
 348
 349No additional type data follow ``btf_type``.
 350
 3512.2.11 BTF_KIND_RESTRICT
 352~~~~~~~~~~~~~~~~~~~~~~~~
 353
 354``struct btf_type`` encoding requirement:
 355  * ``name_off``: 0
 356  * ``info.kind_flag``: 0
 357  * ``info.kind``: BTF_KIND_RESTRICT
 358  * ``info.vlen``: 0
 359  * ``type``: the type with ``restrict`` qualifier
 360
 361No additional type data follow ``btf_type``.
 362
 3632.2.12 BTF_KIND_FUNC
 364~~~~~~~~~~~~~~~~~~~~
 365
 366``struct btf_type`` encoding requirement:
 367  * ``name_off``: offset to a valid C identifier
 368  * ``info.kind_flag``: 0
 369  * ``info.kind``: BTF_KIND_FUNC
 370  * ``info.vlen``: linkage information (BTF_FUNC_STATIC, BTF_FUNC_GLOBAL
 371                   or BTF_FUNC_EXTERN)
 372  * ``type``: a BTF_KIND_FUNC_PROTO type
 373
 374No additional type data follow ``btf_type``.
 375
 376A BTF_KIND_FUNC defines not a type, but a subprogram (function) whose
 377signature is defined by ``type``. The subprogram is thus an instance of that
 378type. The BTF_KIND_FUNC may in turn be referenced by a func_info in the
 379:ref:`BTF_Ext_Section` (ELF) or in the arguments to :ref:`BPF_Prog_Load`
 380(ABI).
 381
 382Currently, only linkage values of BTF_FUNC_STATIC and BTF_FUNC_GLOBAL are
 383supported in the kernel.
 384
 3852.2.13 BTF_KIND_FUNC_PROTO
 386~~~~~~~~~~~~~~~~~~~~~~~~~~
 387
 388``struct btf_type`` encoding requirement:
 389  * ``name_off``: 0
 390  * ``info.kind_flag``: 0
 391  * ``info.kind``: BTF_KIND_FUNC_PROTO
 392  * ``info.vlen``: # of parameters
 393  * ``type``: the return type
 394
 395``btf_type`` is followed by ``info.vlen`` number of ``struct btf_param``.::
 396
 397    struct btf_param {
 398        __u32   name_off;
 399        __u32   type;
 400    };
 401
 402If a BTF_KIND_FUNC_PROTO type is referred by a BTF_KIND_FUNC type, then
 403``btf_param.name_off`` must point to a valid C identifier except for the
 404possible last argument representing the variable argument. The btf_param.type
 405refers to parameter type.
 406
 407If the function has variable arguments, the last parameter is encoded with
 408``name_off = 0`` and ``type = 0``.
 409
 4102.2.14 BTF_KIND_VAR
 411~~~~~~~~~~~~~~~~~~~
 412
 413``struct btf_type`` encoding requirement:
 414  * ``name_off``: offset to a valid C identifier
 415  * ``info.kind_flag``: 0
 416  * ``info.kind``: BTF_KIND_VAR
 417  * ``info.vlen``: 0
 418  * ``type``: the type of the variable
 419
 420``btf_type`` is followed by a single ``struct btf_variable`` with the
 421following data::
 422
 423    struct btf_var {
 424        __u32   linkage;
 425    };
 426
 427``struct btf_var`` encoding:
 428  * ``linkage``: currently only static variable 0, or globally allocated
 429                 variable in ELF sections 1
 430
 431Not all type of global variables are supported by LLVM at this point.
 432The following is currently available:
 433
 434  * static variables with or without section attributes
 435  * global variables with section attributes
 436
 437The latter is for future extraction of map key/value type id's from a
 438map definition.
 439
 4402.2.15 BTF_KIND_DATASEC
 441~~~~~~~~~~~~~~~~~~~~~~~
 442
 443``struct btf_type`` encoding requirement:
 444  * ``name_off``: offset to a valid name associated with a variable or
 445                  one of .data/.bss/.rodata
 446  * ``info.kind_flag``: 0
 447  * ``info.kind``: BTF_KIND_DATASEC
 448  * ``info.vlen``: # of variables
 449  * ``size``: total section size in bytes (0 at compilation time, patched
 450              to actual size by BPF loaders such as libbpf)
 451
 452``btf_type`` is followed by ``info.vlen`` number of ``struct btf_var_secinfo``.::
 453
 454    struct btf_var_secinfo {
 455        __u32   type;
 456        __u32   offset;
 457        __u32   size;
 458    };
 459
 460``struct btf_var_secinfo`` encoding:
 461  * ``type``: the type of the BTF_KIND_VAR variable
 462  * ``offset``: the in-section offset of the variable
 463  * ``size``: the size of the variable in bytes
 464
 4652.2.16 BTF_KIND_FLOAT
 466~~~~~~~~~~~~~~~~~~~~~
 467
 468``struct btf_type`` encoding requirement:
 469 * ``name_off``: any valid offset
 470 * ``info.kind_flag``: 0
 471 * ``info.kind``: BTF_KIND_FLOAT
 472 * ``info.vlen``: 0
 473 * ``size``: the size of the float type in bytes: 2, 4, 8, 12 or 16.
 474
 475No additional type data follow ``btf_type``.
 476
 4772.2.17 BTF_KIND_DECL_TAG
 478~~~~~~~~~~~~~~~~~~~~~~~~
 479
 480``struct btf_type`` encoding requirement:
 481 * ``name_off``: offset to a non-empty string
 482 * ``info.kind_flag``: 0
 483 * ``info.kind``: BTF_KIND_DECL_TAG
 484 * ``info.vlen``: 0
 485 * ``type``: ``struct``, ``union``, ``func``, ``var`` or ``typedef``
 486
 487``btf_type`` is followed by ``struct btf_decl_tag``.::
 488
 489    struct btf_decl_tag {
 490        __u32   component_idx;
 491    };
 492
 493The ``name_off`` encodes btf_decl_tag attribute string.
 494The ``type`` should be ``struct``, ``union``, ``func``, ``var`` or ``typedef``.
 495For ``var`` or ``typedef`` type, ``btf_decl_tag.component_idx`` must be ``-1``.
 496For the other three types, if the btf_decl_tag attribute is
 497applied to the ``struct``, ``union`` or ``func`` itself,
 498``btf_decl_tag.component_idx`` must be ``-1``. Otherwise,
 499the attribute is applied to a ``struct``/``union`` member or
 500a ``func`` argument, and ``btf_decl_tag.component_idx`` should be a
 501valid index (starting from 0) pointing to a member or an argument.
 502
 5032.2.18 BTF_KIND_TYPE_TAG
 504~~~~~~~~~~~~~~~~~~~~~~~~
 505
 506``struct btf_type`` encoding requirement:
 507 * ``name_off``: offset to a non-empty string
 508 * ``info.kind_flag``: 0
 509 * ``info.kind``: BTF_KIND_TYPE_TAG
 510 * ``info.vlen``: 0
 511 * ``type``: the type with ``btf_type_tag`` attribute
 512
 513Currently, ``BTF_KIND_TYPE_TAG`` is only emitted for pointer types.
 514It has the following btf type chain:
 515::
 516
 517  ptr -> [type_tag]*
 518      -> [const | volatile | restrict | typedef]*
 519      -> base_type
 520
 521Basically, a pointer type points to zero or more
 522type_tag, then zero or more const/volatile/restrict/typedef
 523and finally the base type. The base type is one of
 524int, ptr, array, struct, union, enum, func_proto and float types.
 525
 5262.2.19 BTF_KIND_ENUM64
 527~~~~~~~~~~~~~~~~~~~~~~
 528
 529``struct btf_type`` encoding requirement:
 530  * ``name_off``: 0 or offset to a valid C identifier
 531  * ``info.kind_flag``: 0 for unsigned, 1 for signed
 532  * ``info.kind``: BTF_KIND_ENUM64
 533  * ``info.vlen``: number of enum values
 534  * ``size``: 1/2/4/8
 535
 536``btf_type`` is followed by ``info.vlen`` number of ``struct btf_enum64``.::
 537
 538    struct btf_enum64 {
 539        __u32   name_off;
 540        __u32   val_lo32;
 541        __u32   val_hi32;
 542    };
 543
 544The ``btf_enum64`` encoding:
 545  * ``name_off``: offset to a valid C identifier
 546  * ``val_lo32``: lower 32-bit value for a 64-bit value
 547  * ``val_hi32``: high 32-bit value for a 64-bit value
 548
 549If the original enum value is signed and the size is less than 8,
 550that value will be sign extended into 8 bytes.
 551
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 5523. BTF Kernel API
 553=================
 554
 555The following bpf syscall command involves BTF:
 556   * BPF_BTF_LOAD: load a blob of BTF data into kernel
 557   * BPF_MAP_CREATE: map creation with btf key and value type info.
 558   * BPF_PROG_LOAD: prog load with btf function and line info.
 559   * BPF_BTF_GET_FD_BY_ID: get a btf fd
 560   * BPF_OBJ_GET_INFO_BY_FD: btf, func_info, line_info
 561     and other btf related info are returned.
 562
 563The workflow typically looks like:
 564::
 565
 566  Application:
 567      BPF_BTF_LOAD
 568          |
 569          v
 570      BPF_MAP_CREATE and BPF_PROG_LOAD
 571          |
 572          V
 573      ......
 574
 575  Introspection tool:
 576      ......
 577      BPF_{PROG,MAP}_GET_NEXT_ID (get prog/map id's)
 578          |
 579          V
 580      BPF_{PROG,MAP}_GET_FD_BY_ID (get a prog/map fd)
 581          |
 582          V
 583      BPF_OBJ_GET_INFO_BY_FD (get bpf_prog_info/bpf_map_info with btf_id)
 584          |                                     |
 585          V                                     |
 586      BPF_BTF_GET_FD_BY_ID (get btf_fd)         |
 587          |                                     |
 588          V                                     |
 589      BPF_OBJ_GET_INFO_BY_FD (get btf)          |
 590          |                                     |
 591          V                                     V
 592      pretty print types, dump func signatures and line info, etc.
 593
 594
 5953.1 BPF_BTF_LOAD
 596----------------
 597
 598Load a blob of BTF data into kernel. A blob of data, described in
 599:ref:`BTF_Type_String`, can be directly loaded into the kernel. A ``btf_fd``
 600is returned to a userspace.
 601
 6023.2 BPF_MAP_CREATE
 603------------------
 604
 605A map can be created with ``btf_fd`` and specified key/value type id.::
 606
 607    __u32   btf_fd;         /* fd pointing to a BTF type data */
 608    __u32   btf_key_type_id;        /* BTF type_id of the key */
 609    __u32   btf_value_type_id;      /* BTF type_id of the value */
 610
 611In libbpf, the map can be defined with extra annotation like below:
 612::
 613
 614    struct {
 615        __uint(type, BPF_MAP_TYPE_ARRAY);
 616        __type(key, int);
 617        __type(value, struct ipv_counts);
 618        __uint(max_entries, 4);
 619    } btf_map SEC(".maps");
 620
 621During ELF parsing, libbpf is able to extract key/value type_id's and assign
 622them to BPF_MAP_CREATE attributes automatically.
 623
 624.. _BPF_Prog_Load:
 625
 6263.3 BPF_PROG_LOAD
 627-----------------
 628
 629During prog_load, func_info and line_info can be passed to kernel with proper
 630values for the following attributes:
 631::
 632
 633    __u32           insn_cnt;
 634    __aligned_u64   insns;
 635    ......
 636    __u32           prog_btf_fd;    /* fd pointing to BTF type data */
 637    __u32           func_info_rec_size;     /* userspace bpf_func_info size */
 638    __aligned_u64   func_info;      /* func info */
 639    __u32           func_info_cnt;  /* number of bpf_func_info records */
 640    __u32           line_info_rec_size;     /* userspace bpf_line_info size */
 641    __aligned_u64   line_info;      /* line info */
 642    __u32           line_info_cnt;  /* number of bpf_line_info records */
 643
 644The func_info and line_info are an array of below, respectively.::
 645
 646    struct bpf_func_info {
 647        __u32   insn_off; /* [0, insn_cnt - 1] */
 648        __u32   type_id;  /* pointing to a BTF_KIND_FUNC type */
 649    };
 650    struct bpf_line_info {
 651        __u32   insn_off; /* [0, insn_cnt - 1] */
 652        __u32   file_name_off; /* offset to string table for the filename */
 653        __u32   line_off; /* offset to string table for the source line */
 654        __u32   line_col; /* line number and column number */
 655    };
 656
 657func_info_rec_size is the size of each func_info record, and
 658line_info_rec_size is the size of each line_info record. Passing the record
 659size to kernel make it possible to extend the record itself in the future.
 660
 661Below are requirements for func_info:
 662  * func_info[0].insn_off must be 0.
 663  * the func_info insn_off is in strictly increasing order and matches
 664    bpf func boundaries.
 665
 666Below are requirements for line_info:
 667  * the first insn in each func must have a line_info record pointing to it.
 668  * the line_info insn_off is in strictly increasing order.
 669
 670For line_info, the line number and column number are defined as below:
 671::
 672
 673    #define BPF_LINE_INFO_LINE_NUM(line_col)        ((line_col) >> 10)
 674    #define BPF_LINE_INFO_LINE_COL(line_col)        ((line_col) & 0x3ff)
 675
 6763.4 BPF_{PROG,MAP}_GET_NEXT_ID
 677------------------------------
 678
 679In kernel, every loaded program, map or btf has a unique id. The id won't
 680change during the lifetime of a program, map, or btf.
 681
 682The bpf syscall command BPF_{PROG,MAP}_GET_NEXT_ID returns all id's, one for
 683each command, to user space, for bpf program or maps, respectively, so an
 684inspection tool can inspect all programs and maps.
 685
 6863.5 BPF_{PROG,MAP}_GET_FD_BY_ID
 687-------------------------------
 688
 689An introspection tool cannot use id to get details about program or maps.
 690A file descriptor needs to be obtained first for reference-counting purpose.
 691
 6923.6 BPF_OBJ_GET_INFO_BY_FD
 693--------------------------
 694
 695Once a program/map fd is acquired, an introspection tool can get the detailed
 696information from kernel about this fd, some of which are BTF-related. For
 697example, ``bpf_map_info`` returns ``btf_id`` and key/value type ids.
 698``bpf_prog_info`` returns ``btf_id``, func_info, and line info for translated
 699bpf byte codes, and jited_line_info.
 700
 7013.7 BPF_BTF_GET_FD_BY_ID
 702------------------------
 703
 704With ``btf_id`` obtained in ``bpf_map_info`` and ``bpf_prog_info``, bpf
 705syscall command BPF_BTF_GET_FD_BY_ID can retrieve a btf fd. Then, with
 706command BPF_OBJ_GET_INFO_BY_FD, the btf blob, originally loaded into the
 707kernel with BPF_BTF_LOAD, can be retrieved.
 708
 709With the btf blob, ``bpf_map_info``, and ``bpf_prog_info``, an introspection
 710tool has full btf knowledge and is able to pretty print map key/values, dump
 711func signatures and line info, along with byte/jit codes.
 712
 7134. ELF File Format Interface
 714============================
 715
 7164.1 .BTF section
 717----------------
 718
 719The .BTF section contains type and string data. The format of this section is
 720same as the one describe in :ref:`BTF_Type_String`.
 721
 722.. _BTF_Ext_Section:
 723
 7244.2 .BTF.ext section
 725--------------------
 726
 727The .BTF.ext section encodes func_info, line_info and CO-RE relocations
 728which needs loader manipulation before loading into the kernel.
 729
 730The specification for .BTF.ext section is defined at ``tools/lib/bpf/btf.h``
 731and ``tools/lib/bpf/btf.c``.
 732
 733The current header of .BTF.ext section::
 734
 735    struct btf_ext_header {
 736        __u16   magic;
 737        __u8    version;
 738        __u8    flags;
 739        __u32   hdr_len;
 740
 741        /* All offsets are in bytes relative to the end of this header */
 742        __u32   func_info_off;
 743        __u32   func_info_len;
 744        __u32   line_info_off;
 745        __u32   line_info_len;
 746
 747        /* optional part of .BTF.ext header */
 748        __u32   core_relo_off;
 749        __u32   core_relo_len;
 750    };
 751
 752It is very similar to .BTF section. Instead of type/string section, it
 753contains func_info, line_info and core_relo sub-sections.
 754See :ref:`BPF_Prog_Load` for details about func_info and line_info
 755record format.
 756
 757The func_info is organized as below.::
 758
 759     func_info_rec_size              /* __u32 value */
 760     btf_ext_info_sec for section #1 /* func_info for section #1 */
 761     btf_ext_info_sec for section #2 /* func_info for section #2 */
 762     ...
 763
 764``func_info_rec_size`` specifies the size of ``bpf_func_info`` structure when
 765.BTF.ext is generated. ``btf_ext_info_sec``, defined below, is a collection of
 766func_info for each specific ELF section.::
 767
 768     struct btf_ext_info_sec {
 769        __u32   sec_name_off; /* offset to section name */
 770        __u32   num_info;
 771        /* Followed by num_info * record_size number of bytes */
 772        __u8    data[0];
 773     };
 774
 775Here, num_info must be greater than 0.
 776
 777The line_info is organized as below.::
 778
 779     line_info_rec_size              /* __u32 value */
 780     btf_ext_info_sec for section #1 /* line_info for section #1 */
 781     btf_ext_info_sec for section #2 /* line_info for section #2 */
 782     ...
 783
 784``line_info_rec_size`` specifies the size of ``bpf_line_info`` structure when
 785.BTF.ext is generated.
 786
 787The interpretation of ``bpf_func_info->insn_off`` and
 788``bpf_line_info->insn_off`` is different between kernel API and ELF API. For
 789kernel API, the ``insn_off`` is the instruction offset in the unit of ``struct
 790bpf_insn``. For ELF API, the ``insn_off`` is the byte offset from the
 791beginning of section (``btf_ext_info_sec->sec_name_off``).
 792
 793The core_relo is organized as below.::
 794
 795     core_relo_rec_size              /* __u32 value */
 796     btf_ext_info_sec for section #1 /* core_relo for section #1 */
 797     btf_ext_info_sec for section #2 /* core_relo for section #2 */
 798
 799``core_relo_rec_size`` specifies the size of ``bpf_core_relo``
 800structure when .BTF.ext is generated. All ``bpf_core_relo`` structures
 801within a single ``btf_ext_info_sec`` describe relocations applied to
 802section named by ``btf_ext_info_sec->sec_name_off``.
 803
 804See :ref:`Documentation/bpf/llvm_reloc.rst <btf-co-re-relocations>`
 805for more information on CO-RE relocations.
 806
 8074.2 .BTF_ids section
 808--------------------
 809
 810The .BTF_ids section encodes BTF ID values that are used within the kernel.
 811
 812This section is created during the kernel compilation with the help of
 813macros defined in ``include/linux/btf_ids.h`` header file. Kernel code can
 814use them to create lists and sets (sorted lists) of BTF ID values.
 815
 816The ``BTF_ID_LIST`` and ``BTF_ID`` macros define unsorted list of BTF ID values,
 817with following syntax::
 818
 819  BTF_ID_LIST(list)
 820  BTF_ID(type1, name1)
 821  BTF_ID(type2, name2)
 822
 823resulting in following layout in .BTF_ids section::
 824
 825  __BTF_ID__type1__name1__1:
 826  .zero 4
 827  __BTF_ID__type2__name2__2:
 828  .zero 4
 829
 830The ``u32 list[];`` variable is defined to access the list.
 831
 832The ``BTF_ID_UNUSED`` macro defines 4 zero bytes. It's used when we
 833want to define unused entry in BTF_ID_LIST, like::
 834
 835      BTF_ID_LIST(bpf_skb_output_btf_ids)
 836      BTF_ID(struct, sk_buff)
 837      BTF_ID_UNUSED
 838      BTF_ID(struct, task_struct)
 839
 840The ``BTF_SET_START/END`` macros pair defines sorted list of BTF ID values
 841and their count, with following syntax::
 842
 843  BTF_SET_START(set)
 844  BTF_ID(type1, name1)
 845  BTF_ID(type2, name2)
 846  BTF_SET_END(set)
 847
 848resulting in following layout in .BTF_ids section::
 849
 850  __BTF_ID__set__set:
 851  .zero 4
 852  __BTF_ID__type1__name1__3:
 853  .zero 4
 854  __BTF_ID__type2__name2__4:
 855  .zero 4
 856
 857The ``struct btf_id_set set;`` variable is defined to access the list.
 858
 859The ``typeX`` name can be one of following::
 860
 861   struct, union, typedef, func
 862
 863and is used as a filter when resolving the BTF ID value.
 864
 865All the BTF ID lists and sets are compiled in the .BTF_ids section and
 866resolved during the linking phase of kernel build by ``resolve_btfids`` tool.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 867
 8685. Using BTF
 869============
 870
 8715.1 bpftool map pretty print
 872----------------------------
 873
 874With BTF, the map key/value can be printed based on fields rather than simply
 875raw bytes. This is especially valuable for large structure or if your data
 876structure has bitfields. For example, for the following map,::
 877
 878      enum A { A1, A2, A3, A4, A5 };
 879      typedef enum A ___A;
 880      struct tmp_t {
 881           char a1:4;
 882           int  a2:4;
 883           int  :4;
 884           __u32 a3:4;
 885           int b;
 886           ___A b1:4;
 887           enum A b2:4;
 888      };
 889      struct {
 890           __uint(type, BPF_MAP_TYPE_ARRAY);
 891           __type(key, int);
 892           __type(value, struct tmp_t);
 893           __uint(max_entries, 1);
 894      } tmpmap SEC(".maps");
 895
 896bpftool is able to pretty print like below:
 897::
 898
 899      [{
 900            "key": 0,
 901            "value": {
 902                "a1": 0x2,
 903                "a2": 0x4,
 904                "a3": 0x6,
 905                "b": 7,
 906                "b1": 0x8,
 907                "b2": 0xa
 908            }
 909        }
 910      ]
 911
 9125.2 bpftool prog dump
 913---------------------
 914
 915The following is an example showing how func_info and line_info can help prog
 916dump with better kernel symbol names, function prototypes and line
 917information.::
 918
 919    $ bpftool prog dump jited pinned /sys/fs/bpf/test_btf_haskv
 920    [...]
 921    int test_long_fname_2(struct dummy_tracepoint_args * arg):
 922    bpf_prog_44a040bf25481309_test_long_fname_2:
 923    ; static int test_long_fname_2(struct dummy_tracepoint_args *arg)
 924       0:   push   %rbp
 925       1:   mov    %rsp,%rbp
 926       4:   sub    $0x30,%rsp
 927       b:   sub    $0x28,%rbp
 928       f:   mov    %rbx,0x0(%rbp)
 929      13:   mov    %r13,0x8(%rbp)
 930      17:   mov    %r14,0x10(%rbp)
 931      1b:   mov    %r15,0x18(%rbp)
 932      1f:   xor    %eax,%eax
 933      21:   mov    %rax,0x20(%rbp)
 934      25:   xor    %esi,%esi
 935    ; int key = 0;
 936      27:   mov    %esi,-0x4(%rbp)
 937    ; if (!arg->sock)
 938      2a:   mov    0x8(%rdi),%rdi
 939    ; if (!arg->sock)
 940      2e:   cmp    $0x0,%rdi
 941      32:   je     0x0000000000000070
 942      34:   mov    %rbp,%rsi
 943    ; counts = bpf_map_lookup_elem(&btf_map, &key);
 944    [...]
 945
 9465.3 Verifier Log
 947----------------
 948
 949The following is an example of how line_info can help debugging verification
 950failure.::
 951
 952       /* The code at tools/testing/selftests/bpf/test_xdp_noinline.c
 953        * is modified as below.
 954        */
 955       data = (void *)(long)xdp->data;
 956       data_end = (void *)(long)xdp->data_end;
 957       /*
 958       if (data + 4 > data_end)
 959               return XDP_DROP;
 960       */
 961       *(u32 *)data = dst->dst;
 962
 963    $ bpftool prog load ./test_xdp_noinline.o /sys/fs/bpf/test_xdp_noinline type xdp
 964        ; data = (void *)(long)xdp->data;
 965        224: (79) r2 = *(u64 *)(r10 -112)
 966        225: (61) r2 = *(u32 *)(r2 +0)
 967        ; *(u32 *)data = dst->dst;
 968        226: (63) *(u32 *)(r2 +0) = r1
 969        invalid access to packet, off=0 size=4, R2(id=0,off=0,r=0)
 970        R2 offset is outside of the packet
 971
 9726. BTF Generation
 973=================
 974
 975You need latest pahole
 976
 977  https://git.kernel.org/pub/scm/devel/pahole/pahole.git/
 978
 979or llvm (8.0 or later). The pahole acts as a dwarf2btf converter. It doesn't
 980support .BTF.ext and btf BTF_KIND_FUNC type yet. For example,::
 981
 982      -bash-4.4$ cat t.c
 983      struct t {
 984        int a:2;
 985        int b:3;
 986        int c:2;
 987      } g;
 988      -bash-4.4$ gcc -c -O2 -g t.c
 989      -bash-4.4$ pahole -JV t.o
 990      File t.o:
 991      [1] STRUCT t kind_flag=1 size=4 vlen=3
 992              a type_id=2 bitfield_size=2 bits_offset=0
 993              b type_id=2 bitfield_size=3 bits_offset=2
 994              c type_id=2 bitfield_size=2 bits_offset=5
 995      [2] INT int size=4 bit_offset=0 nr_bits=32 encoding=SIGNED
 996
 997The llvm is able to generate .BTF and .BTF.ext directly with -g for bpf target
 998only. The assembly code (-S) is able to show the BTF encoding in assembly
 999format.::
1000
1001    -bash-4.4$ cat t2.c
1002    typedef int __int32;
1003    struct t2 {
1004      int a2;
1005      int (*f2)(char q1, __int32 q2, ...);
1006      int (*f3)();
1007    } g2;
1008    int main() { return 0; }
1009    int test() { return 0; }
1010    -bash-4.4$ clang -c -g -O2 --target=bpf t2.c
1011    -bash-4.4$ readelf -S t2.o
1012      ......
1013      [ 8] .BTF              PROGBITS         0000000000000000  00000247
1014           000000000000016e  0000000000000000           0     0     1
1015      [ 9] .BTF.ext          PROGBITS         0000000000000000  000003b5
1016           0000000000000060  0000000000000000           0     0     1
1017      [10] .rel.BTF.ext      REL              0000000000000000  000007e0
1018           0000000000000040  0000000000000010          16     9     8
1019      ......
1020    -bash-4.4$ clang -S -g -O2 --target=bpf t2.c
1021    -bash-4.4$ cat t2.s
1022      ......
1023            .section        .BTF,"",@progbits
1024            .short  60319                   # 0xeb9f
1025            .byte   1
1026            .byte   0
1027            .long   24
1028            .long   0
1029            .long   220
1030            .long   220
1031            .long   122
1032            .long   0                       # BTF_KIND_FUNC_PROTO(id = 1)
1033            .long   218103808               # 0xd000000
1034            .long   2
1035            .long   83                      # BTF_KIND_INT(id = 2)
1036            .long   16777216                # 0x1000000
1037            .long   4
1038            .long   16777248                # 0x1000020
1039      ......
1040            .byte   0                       # string offset=0
1041            .ascii  ".text"                 # string offset=1
1042            .byte   0
1043            .ascii  "/home/yhs/tmp-pahole/t2.c" # string offset=7
1044            .byte   0
1045            .ascii  "int main() { return 0; }" # string offset=33
1046            .byte   0
1047            .ascii  "int test() { return 0; }" # string offset=58
1048            .byte   0
1049            .ascii  "int"                   # string offset=83
1050      ......
1051            .section        .BTF.ext,"",@progbits
1052            .short  60319                   # 0xeb9f
1053            .byte   1
1054            .byte   0
1055            .long   24
1056            .long   0
1057            .long   28
1058            .long   28
1059            .long   44
1060            .long   8                       # FuncInfo
1061            .long   1                       # FuncInfo section string offset=1
1062            .long   2
1063            .long   .Lfunc_begin0
1064            .long   3
1065            .long   .Lfunc_begin1
1066            .long   5
1067            .long   16                      # LineInfo
1068            .long   1                       # LineInfo section string offset=1
1069            .long   2
1070            .long   .Ltmp0
1071            .long   7
1072            .long   33
1073            .long   7182                    # Line 7 Col 14
1074            .long   .Ltmp3
1075            .long   7
1076            .long   58
1077            .long   8206                    # Line 8 Col 14
1078
10797. Testing
1080==========
1081
1082The kernel BPF selftest `tools/testing/selftests/bpf/prog_tests/btf.c`_
1083provides an extensive set of BTF-related tests.
1084
1085.. Links
1086.. _tools/testing/selftests/bpf/prog_tests/btf.c:
1087   https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/tree/tools/testing/selftests/bpf/prog_tests/btf.c