Loading...
1// SPDX-License-Identifier: GPL-2.0
2
3#include <linux/blkdev.h>
4#include <linux/iversion.h>
5#include "ctree.h"
6#include "fs.h"
7#include "messages.h"
8#include "compression.h"
9#include "delalloc-space.h"
10#include "disk-io.h"
11#include "reflink.h"
12#include "transaction.h"
13#include "subpage.h"
14#include "accessors.h"
15#include "file-item.h"
16#include "file.h"
17#include "super.h"
18
19#define BTRFS_MAX_DEDUPE_LEN SZ_16M
20
21static int clone_finish_inode_update(struct btrfs_trans_handle *trans,
22 struct inode *inode,
23 u64 endoff,
24 const u64 destoff,
25 const u64 olen,
26 int no_time_update)
27{
28 int ret;
29
30 inode_inc_iversion(inode);
31 if (!no_time_update) {
32 inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode));
33 }
34 /*
35 * We round up to the block size at eof when determining which
36 * extents to clone above, but shouldn't round up the file size.
37 */
38 if (endoff > destoff + olen)
39 endoff = destoff + olen;
40 if (endoff > inode->i_size) {
41 i_size_write(inode, endoff);
42 btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0);
43 }
44
45 ret = btrfs_update_inode(trans, BTRFS_I(inode));
46 if (ret) {
47 btrfs_abort_transaction(trans, ret);
48 btrfs_end_transaction(trans);
49 goto out;
50 }
51 ret = btrfs_end_transaction(trans);
52out:
53 return ret;
54}
55
56static int copy_inline_to_page(struct btrfs_inode *inode,
57 const u64 file_offset,
58 char *inline_data,
59 const u64 size,
60 const u64 datal,
61 const u8 comp_type)
62{
63 struct btrfs_fs_info *fs_info = inode->root->fs_info;
64 const u32 block_size = fs_info->sectorsize;
65 const u64 range_end = file_offset + block_size - 1;
66 const size_t inline_size = size - btrfs_file_extent_calc_inline_size(0);
67 char *data_start = inline_data + btrfs_file_extent_calc_inline_size(0);
68 struct extent_changeset *data_reserved = NULL;
69 struct folio *folio = NULL;
70 struct address_space *mapping = inode->vfs_inode.i_mapping;
71 int ret;
72
73 ASSERT(IS_ALIGNED(file_offset, block_size));
74
75 /*
76 * We have flushed and locked the ranges of the source and destination
77 * inodes, we also have locked the inodes, so we are safe to do a
78 * reservation here. Also we must not do the reservation while holding
79 * a transaction open, otherwise we would deadlock.
80 */
81 ret = btrfs_delalloc_reserve_space(inode, &data_reserved, file_offset,
82 block_size);
83 if (ret)
84 goto out;
85
86 folio = __filemap_get_folio(mapping, file_offset >> PAGE_SHIFT,
87 FGP_LOCK | FGP_ACCESSED | FGP_CREAT,
88 btrfs_alloc_write_mask(mapping));
89 if (IS_ERR(folio)) {
90 ret = -ENOMEM;
91 goto out_unlock;
92 }
93
94 ret = set_folio_extent_mapped(folio);
95 if (ret < 0)
96 goto out_unlock;
97
98 clear_extent_bit(&inode->io_tree, file_offset, range_end,
99 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
100 NULL);
101 ret = btrfs_set_extent_delalloc(inode, file_offset, range_end, 0, NULL);
102 if (ret)
103 goto out_unlock;
104
105 /*
106 * After dirtying the page our caller will need to start a transaction,
107 * and if we are low on metadata free space, that can cause flushing of
108 * delalloc for all inodes in order to get metadata space released.
109 * However we are holding the range locked for the whole duration of
110 * the clone/dedupe operation, so we may deadlock if that happens and no
111 * other task releases enough space. So mark this inode as not being
112 * possible to flush to avoid such deadlock. We will clear that flag
113 * when we finish cloning all extents, since a transaction is started
114 * after finding each extent to clone.
115 */
116 set_bit(BTRFS_INODE_NO_DELALLOC_FLUSH, &inode->runtime_flags);
117
118 if (comp_type == BTRFS_COMPRESS_NONE) {
119 memcpy_to_folio(folio, offset_in_folio(folio, file_offset), data_start,
120 datal);
121 } else {
122 ret = btrfs_decompress(comp_type, data_start, folio,
123 offset_in_folio(folio, file_offset),
124 inline_size, datal);
125 if (ret)
126 goto out_unlock;
127 flush_dcache_folio(folio);
128 }
129
130 /*
131 * If our inline data is smaller then the block/page size, then the
132 * remaining of the block/page is equivalent to zeroes. We had something
133 * like the following done:
134 *
135 * $ xfs_io -f -c "pwrite -S 0xab 0 500" file
136 * $ sync # (or fsync)
137 * $ xfs_io -c "falloc 0 4K" file
138 * $ xfs_io -c "pwrite -S 0xcd 4K 4K"
139 *
140 * So what's in the range [500, 4095] corresponds to zeroes.
141 */
142 if (datal < block_size)
143 folio_zero_range(folio, datal, block_size - datal);
144
145 btrfs_folio_set_uptodate(fs_info, folio, file_offset, block_size);
146 btrfs_folio_clear_checked(fs_info, folio, file_offset, block_size);
147 btrfs_folio_set_dirty(fs_info, folio, file_offset, block_size);
148out_unlock:
149 if (!IS_ERR(folio)) {
150 folio_unlock(folio);
151 folio_put(folio);
152 }
153 if (ret)
154 btrfs_delalloc_release_space(inode, data_reserved, file_offset,
155 block_size, true);
156 btrfs_delalloc_release_extents(inode, block_size);
157out:
158 extent_changeset_free(data_reserved);
159
160 return ret;
161}
162
163/*
164 * Deal with cloning of inline extents. We try to copy the inline extent from
165 * the source inode to destination inode when possible. When not possible we
166 * copy the inline extent's data into the respective page of the inode.
167 */
168static int clone_copy_inline_extent(struct inode *dst,
169 struct btrfs_path *path,
170 struct btrfs_key *new_key,
171 const u64 drop_start,
172 const u64 datal,
173 const u64 size,
174 const u8 comp_type,
175 char *inline_data,
176 struct btrfs_trans_handle **trans_out)
177{
178 struct btrfs_fs_info *fs_info = inode_to_fs_info(dst);
179 struct btrfs_root *root = BTRFS_I(dst)->root;
180 const u64 aligned_end = ALIGN(new_key->offset + datal,
181 fs_info->sectorsize);
182 struct btrfs_trans_handle *trans = NULL;
183 struct btrfs_drop_extents_args drop_args = { 0 };
184 int ret;
185 struct btrfs_key key;
186
187 if (new_key->offset > 0) {
188 ret = copy_inline_to_page(BTRFS_I(dst), new_key->offset,
189 inline_data, size, datal, comp_type);
190 goto out;
191 }
192
193 key.objectid = btrfs_ino(BTRFS_I(dst));
194 key.type = BTRFS_EXTENT_DATA_KEY;
195 key.offset = 0;
196 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
197 if (ret < 0) {
198 return ret;
199 } else if (ret > 0) {
200 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
201 ret = btrfs_next_leaf(root, path);
202 if (ret < 0)
203 return ret;
204 else if (ret > 0)
205 goto copy_inline_extent;
206 }
207 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
208 if (key.objectid == btrfs_ino(BTRFS_I(dst)) &&
209 key.type == BTRFS_EXTENT_DATA_KEY) {
210 /*
211 * There's an implicit hole at file offset 0, copy the
212 * inline extent's data to the page.
213 */
214 ASSERT(key.offset > 0);
215 goto copy_to_page;
216 }
217 } else if (i_size_read(dst) <= datal) {
218 struct btrfs_file_extent_item *ei;
219
220 ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
221 struct btrfs_file_extent_item);
222 /*
223 * If it's an inline extent replace it with the source inline
224 * extent, otherwise copy the source inline extent data into
225 * the respective page at the destination inode.
226 */
227 if (btrfs_file_extent_type(path->nodes[0], ei) ==
228 BTRFS_FILE_EXTENT_INLINE)
229 goto copy_inline_extent;
230
231 goto copy_to_page;
232 }
233
234copy_inline_extent:
235 /*
236 * We have no extent items, or we have an extent at offset 0 which may
237 * or may not be inlined. All these cases are dealt the same way.
238 */
239 if (i_size_read(dst) > datal) {
240 /*
241 * At the destination offset 0 we have either a hole, a regular
242 * extent or an inline extent larger then the one we want to
243 * clone. Deal with all these cases by copying the inline extent
244 * data into the respective page at the destination inode.
245 */
246 goto copy_to_page;
247 }
248
249 /*
250 * Release path before starting a new transaction so we don't hold locks
251 * that would confuse lockdep.
252 */
253 btrfs_release_path(path);
254 /*
255 * If we end up here it means were copy the inline extent into a leaf
256 * of the destination inode. We know we will drop or adjust at most one
257 * extent item in the destination root.
258 *
259 * 1 unit - adjusting old extent (we may have to split it)
260 * 1 unit - add new extent
261 * 1 unit - inode update
262 */
263 trans = btrfs_start_transaction(root, 3);
264 if (IS_ERR(trans)) {
265 ret = PTR_ERR(trans);
266 trans = NULL;
267 goto out;
268 }
269 drop_args.path = path;
270 drop_args.start = drop_start;
271 drop_args.end = aligned_end;
272 drop_args.drop_cache = true;
273 ret = btrfs_drop_extents(trans, root, BTRFS_I(dst), &drop_args);
274 if (ret)
275 goto out;
276 ret = btrfs_insert_empty_item(trans, root, path, new_key, size);
277 if (ret)
278 goto out;
279
280 write_extent_buffer(path->nodes[0], inline_data,
281 btrfs_item_ptr_offset(path->nodes[0],
282 path->slots[0]),
283 size);
284 btrfs_update_inode_bytes(BTRFS_I(dst), datal, drop_args.bytes_found);
285 btrfs_set_inode_full_sync(BTRFS_I(dst));
286 ret = btrfs_inode_set_file_extent_range(BTRFS_I(dst), 0, aligned_end);
287out:
288 if (!ret && !trans) {
289 /*
290 * No transaction here means we copied the inline extent into a
291 * page of the destination inode.
292 *
293 * 1 unit to update inode item
294 */
295 trans = btrfs_start_transaction(root, 1);
296 if (IS_ERR(trans)) {
297 ret = PTR_ERR(trans);
298 trans = NULL;
299 }
300 }
301 if (ret && trans) {
302 btrfs_abort_transaction(trans, ret);
303 btrfs_end_transaction(trans);
304 }
305 if (!ret)
306 *trans_out = trans;
307
308 return ret;
309
310copy_to_page:
311 /*
312 * Release our path because we don't need it anymore and also because
313 * copy_inline_to_page() needs to reserve data and metadata, which may
314 * need to flush delalloc when we are low on available space and
315 * therefore cause a deadlock if writeback of an inline extent needs to
316 * write to the same leaf or an ordered extent completion needs to write
317 * to the same leaf.
318 */
319 btrfs_release_path(path);
320
321 ret = copy_inline_to_page(BTRFS_I(dst), new_key->offset,
322 inline_data, size, datal, comp_type);
323 goto out;
324}
325
326/*
327 * Clone a range from inode file to another.
328 *
329 * @src: Inode to clone from
330 * @inode: Inode to clone to
331 * @off: Offset within source to start clone from
332 * @olen: Original length, passed by user, of range to clone
333 * @olen_aligned: Block-aligned value of olen
334 * @destoff: Offset within @inode to start clone
335 * @no_time_update: Whether to update mtime/ctime on the target inode
336 */
337static int btrfs_clone(struct inode *src, struct inode *inode,
338 const u64 off, const u64 olen, const u64 olen_aligned,
339 const u64 destoff, int no_time_update)
340{
341 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
342 struct btrfs_path *path = NULL;
343 struct extent_buffer *leaf;
344 struct btrfs_trans_handle *trans;
345 char *buf = NULL;
346 struct btrfs_key key;
347 u32 nritems;
348 int slot;
349 int ret;
350 const u64 len = olen_aligned;
351 u64 last_dest_end = destoff;
352 u64 prev_extent_end = off;
353
354 ret = -ENOMEM;
355 buf = kvmalloc(fs_info->nodesize, GFP_KERNEL);
356 if (!buf)
357 return ret;
358
359 path = btrfs_alloc_path();
360 if (!path) {
361 kvfree(buf);
362 return ret;
363 }
364
365 path->reada = READA_FORWARD;
366 /* Clone data */
367 key.objectid = btrfs_ino(BTRFS_I(src));
368 key.type = BTRFS_EXTENT_DATA_KEY;
369 key.offset = off;
370
371 while (1) {
372 struct btrfs_file_extent_item *extent;
373 u64 extent_gen;
374 int type;
375 u32 size;
376 struct btrfs_key new_key;
377 u64 disko = 0, diskl = 0;
378 u64 datao = 0, datal = 0;
379 u8 comp;
380 u64 drop_start;
381
382 /* Note the key will change type as we walk through the tree */
383 ret = btrfs_search_slot(NULL, BTRFS_I(src)->root, &key, path,
384 0, 0);
385 if (ret < 0)
386 goto out;
387 /*
388 * First search, if no extent item that starts at offset off was
389 * found but the previous item is an extent item, it's possible
390 * it might overlap our target range, therefore process it.
391 */
392 if (key.offset == off && ret > 0 && path->slots[0] > 0) {
393 btrfs_item_key_to_cpu(path->nodes[0], &key,
394 path->slots[0] - 1);
395 if (key.type == BTRFS_EXTENT_DATA_KEY)
396 path->slots[0]--;
397 }
398
399 nritems = btrfs_header_nritems(path->nodes[0]);
400process_slot:
401 if (path->slots[0] >= nritems) {
402 ret = btrfs_next_leaf(BTRFS_I(src)->root, path);
403 if (ret < 0)
404 goto out;
405 if (ret > 0)
406 break;
407 nritems = btrfs_header_nritems(path->nodes[0]);
408 }
409 leaf = path->nodes[0];
410 slot = path->slots[0];
411
412 btrfs_item_key_to_cpu(leaf, &key, slot);
413 if (key.type > BTRFS_EXTENT_DATA_KEY ||
414 key.objectid != btrfs_ino(BTRFS_I(src)))
415 break;
416
417 ASSERT(key.type == BTRFS_EXTENT_DATA_KEY);
418
419 extent = btrfs_item_ptr(leaf, slot,
420 struct btrfs_file_extent_item);
421 extent_gen = btrfs_file_extent_generation(leaf, extent);
422 comp = btrfs_file_extent_compression(leaf, extent);
423 type = btrfs_file_extent_type(leaf, extent);
424 if (type == BTRFS_FILE_EXTENT_REG ||
425 type == BTRFS_FILE_EXTENT_PREALLOC) {
426 disko = btrfs_file_extent_disk_bytenr(leaf, extent);
427 diskl = btrfs_file_extent_disk_num_bytes(leaf, extent);
428 datao = btrfs_file_extent_offset(leaf, extent);
429 datal = btrfs_file_extent_num_bytes(leaf, extent);
430 } else if (type == BTRFS_FILE_EXTENT_INLINE) {
431 /* Take upper bound, may be compressed */
432 datal = btrfs_file_extent_ram_bytes(leaf, extent);
433 }
434
435 /*
436 * The first search might have left us at an extent item that
437 * ends before our target range's start, can happen if we have
438 * holes and NO_HOLES feature enabled.
439 *
440 * Subsequent searches may leave us on a file range we have
441 * processed before - this happens due to a race with ordered
442 * extent completion for a file range that is outside our source
443 * range, but that range was part of a file extent item that
444 * also covered a leading part of our source range.
445 */
446 if (key.offset + datal <= prev_extent_end) {
447 path->slots[0]++;
448 goto process_slot;
449 } else if (key.offset >= off + len) {
450 break;
451 }
452
453 prev_extent_end = key.offset + datal;
454 size = btrfs_item_size(leaf, slot);
455 read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf, slot),
456 size);
457
458 btrfs_release_path(path);
459
460 memcpy(&new_key, &key, sizeof(new_key));
461 new_key.objectid = btrfs_ino(BTRFS_I(inode));
462 if (off <= key.offset)
463 new_key.offset = key.offset + destoff - off;
464 else
465 new_key.offset = destoff;
466
467 /*
468 * Deal with a hole that doesn't have an extent item that
469 * represents it (NO_HOLES feature enabled).
470 * This hole is either in the middle of the cloning range or at
471 * the beginning (fully overlaps it or partially overlaps it).
472 */
473 if (new_key.offset != last_dest_end)
474 drop_start = last_dest_end;
475 else
476 drop_start = new_key.offset;
477
478 if (type == BTRFS_FILE_EXTENT_REG ||
479 type == BTRFS_FILE_EXTENT_PREALLOC) {
480 struct btrfs_replace_extent_info clone_info;
481
482 /*
483 * a | --- range to clone ---| b
484 * | ------------- extent ------------- |
485 */
486
487 /* Subtract range b */
488 if (key.offset + datal > off + len)
489 datal = off + len - key.offset;
490
491 /* Subtract range a */
492 if (off > key.offset) {
493 datao += off - key.offset;
494 datal -= off - key.offset;
495 }
496
497 clone_info.disk_offset = disko;
498 clone_info.disk_len = diskl;
499 clone_info.data_offset = datao;
500 clone_info.data_len = datal;
501 clone_info.file_offset = new_key.offset;
502 clone_info.extent_buf = buf;
503 clone_info.is_new_extent = false;
504 clone_info.update_times = !no_time_update;
505 ret = btrfs_replace_file_extents(BTRFS_I(inode), path,
506 drop_start, new_key.offset + datal - 1,
507 &clone_info, &trans);
508 if (ret)
509 goto out;
510 } else {
511 ASSERT(type == BTRFS_FILE_EXTENT_INLINE);
512 /*
513 * Inline extents always have to start at file offset 0
514 * and can never be bigger then the sector size. We can
515 * never clone only parts of an inline extent, since all
516 * reflink operations must start at a sector size aligned
517 * offset, and the length must be aligned too or end at
518 * the i_size (which implies the whole inlined data).
519 */
520 ASSERT(key.offset == 0);
521 ASSERT(datal <= fs_info->sectorsize);
522 if (WARN_ON(type != BTRFS_FILE_EXTENT_INLINE) ||
523 WARN_ON(key.offset != 0) ||
524 WARN_ON(datal > fs_info->sectorsize)) {
525 ret = -EUCLEAN;
526 goto out;
527 }
528
529 ret = clone_copy_inline_extent(inode, path, &new_key,
530 drop_start, datal, size,
531 comp, buf, &trans);
532 if (ret)
533 goto out;
534 }
535
536 btrfs_release_path(path);
537
538 /*
539 * Whenever we share an extent we update the last_reflink_trans
540 * of each inode to the current transaction. This is needed to
541 * make sure fsync does not log multiple checksum items with
542 * overlapping ranges (because some extent items might refer
543 * only to sections of the original extent). For the destination
544 * inode we do this regardless of the generation of the extents
545 * or even if they are inline extents or explicit holes, to make
546 * sure a full fsync does not skip them. For the source inode,
547 * we only need to update last_reflink_trans in case it's a new
548 * extent that is not a hole or an inline extent, to deal with
549 * the checksums problem on fsync.
550 */
551 if (extent_gen == trans->transid && disko > 0)
552 BTRFS_I(src)->last_reflink_trans = trans->transid;
553
554 BTRFS_I(inode)->last_reflink_trans = trans->transid;
555
556 last_dest_end = ALIGN(new_key.offset + datal,
557 fs_info->sectorsize);
558 ret = clone_finish_inode_update(trans, inode, last_dest_end,
559 destoff, olen, no_time_update);
560 if (ret)
561 goto out;
562 if (new_key.offset + datal >= destoff + len)
563 break;
564
565 btrfs_release_path(path);
566 key.offset = prev_extent_end;
567
568 if (fatal_signal_pending(current)) {
569 ret = -EINTR;
570 goto out;
571 }
572
573 cond_resched();
574 }
575 ret = 0;
576
577 if (last_dest_end < destoff + len) {
578 /*
579 * We have an implicit hole that fully or partially overlaps our
580 * cloning range at its end. This means that we either have the
581 * NO_HOLES feature enabled or the implicit hole happened due to
582 * mixing buffered and direct IO writes against this file.
583 */
584 btrfs_release_path(path);
585
586 /*
587 * When using NO_HOLES and we are cloning a range that covers
588 * only a hole (no extents) into a range beyond the current
589 * i_size, punching a hole in the target range will not create
590 * an extent map defining a hole, because the range starts at or
591 * beyond current i_size. If the file previously had an i_size
592 * greater than the new i_size set by this clone operation, we
593 * need to make sure the next fsync is a full fsync, so that it
594 * detects and logs a hole covering a range from the current
595 * i_size to the new i_size. If the clone range covers extents,
596 * besides a hole, then we know the full sync flag was already
597 * set by previous calls to btrfs_replace_file_extents() that
598 * replaced file extent items.
599 */
600 if (last_dest_end >= i_size_read(inode))
601 btrfs_set_inode_full_sync(BTRFS_I(inode));
602
603 ret = btrfs_replace_file_extents(BTRFS_I(inode), path,
604 last_dest_end, destoff + len - 1, NULL, &trans);
605 if (ret)
606 goto out;
607
608 ret = clone_finish_inode_update(trans, inode, destoff + len,
609 destoff, olen, no_time_update);
610 }
611
612out:
613 btrfs_free_path(path);
614 kvfree(buf);
615 clear_bit(BTRFS_INODE_NO_DELALLOC_FLUSH, &BTRFS_I(inode)->runtime_flags);
616
617 return ret;
618}
619
620static void btrfs_double_mmap_lock(struct inode *inode1, struct inode *inode2)
621{
622 if (inode1 < inode2)
623 swap(inode1, inode2);
624 down_write(&BTRFS_I(inode1)->i_mmap_lock);
625 down_write_nested(&BTRFS_I(inode2)->i_mmap_lock, SINGLE_DEPTH_NESTING);
626}
627
628static void btrfs_double_mmap_unlock(struct inode *inode1, struct inode *inode2)
629{
630 up_write(&BTRFS_I(inode1)->i_mmap_lock);
631 up_write(&BTRFS_I(inode2)->i_mmap_lock);
632}
633
634static int btrfs_extent_same_range(struct inode *src, u64 loff, u64 len,
635 struct inode *dst, u64 dst_loff)
636{
637 const u64 end = dst_loff + len - 1;
638 struct extent_state *cached_state = NULL;
639 struct btrfs_fs_info *fs_info = BTRFS_I(src)->root->fs_info;
640 const u64 bs = fs_info->sectorsize;
641 int ret;
642
643 /*
644 * Lock destination range to serialize with concurrent readahead(), and
645 * we are safe from concurrency with relocation of source extents
646 * because we have already locked the inode's i_mmap_lock in exclusive
647 * mode.
648 */
649 lock_extent(&BTRFS_I(dst)->io_tree, dst_loff, end, &cached_state);
650 ret = btrfs_clone(src, dst, loff, len, ALIGN(len, bs), dst_loff, 1);
651 unlock_extent(&BTRFS_I(dst)->io_tree, dst_loff, end, &cached_state);
652
653 btrfs_btree_balance_dirty(fs_info);
654
655 return ret;
656}
657
658static int btrfs_extent_same(struct inode *src, u64 loff, u64 olen,
659 struct inode *dst, u64 dst_loff)
660{
661 int ret = 0;
662 u64 i, tail_len, chunk_count;
663 struct btrfs_root *root_dst = BTRFS_I(dst)->root;
664
665 spin_lock(&root_dst->root_item_lock);
666 if (root_dst->send_in_progress) {
667 btrfs_warn_rl(root_dst->fs_info,
668"cannot deduplicate to root %llu while send operations are using it (%d in progress)",
669 btrfs_root_id(root_dst),
670 root_dst->send_in_progress);
671 spin_unlock(&root_dst->root_item_lock);
672 return -EAGAIN;
673 }
674 root_dst->dedupe_in_progress++;
675 spin_unlock(&root_dst->root_item_lock);
676
677 tail_len = olen % BTRFS_MAX_DEDUPE_LEN;
678 chunk_count = div_u64(olen, BTRFS_MAX_DEDUPE_LEN);
679
680 for (i = 0; i < chunk_count; i++) {
681 ret = btrfs_extent_same_range(src, loff, BTRFS_MAX_DEDUPE_LEN,
682 dst, dst_loff);
683 if (ret)
684 goto out;
685
686 loff += BTRFS_MAX_DEDUPE_LEN;
687 dst_loff += BTRFS_MAX_DEDUPE_LEN;
688 }
689
690 if (tail_len > 0)
691 ret = btrfs_extent_same_range(src, loff, tail_len, dst, dst_loff);
692out:
693 spin_lock(&root_dst->root_item_lock);
694 root_dst->dedupe_in_progress--;
695 spin_unlock(&root_dst->root_item_lock);
696
697 return ret;
698}
699
700static noinline int btrfs_clone_files(struct file *file, struct file *file_src,
701 u64 off, u64 olen, u64 destoff)
702{
703 struct extent_state *cached_state = NULL;
704 struct inode *inode = file_inode(file);
705 struct inode *src = file_inode(file_src);
706 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
707 int ret;
708 int wb_ret;
709 u64 len = olen;
710 u64 bs = fs_info->sectorsize;
711 u64 end;
712
713 /*
714 * VFS's generic_remap_file_range_prep() protects us from cloning the
715 * eof block into the middle of a file, which would result in corruption
716 * if the file size is not blocksize aligned. So we don't need to check
717 * for that case here.
718 */
719 if (off + len == src->i_size)
720 len = ALIGN(src->i_size, bs) - off;
721
722 if (destoff > inode->i_size) {
723 const u64 wb_start = ALIGN_DOWN(inode->i_size, bs);
724
725 ret = btrfs_cont_expand(BTRFS_I(inode), inode->i_size, destoff);
726 if (ret)
727 return ret;
728 /*
729 * We may have truncated the last block if the inode's size is
730 * not sector size aligned, so we need to wait for writeback to
731 * complete before proceeding further, otherwise we can race
732 * with cloning and attempt to increment a reference to an
733 * extent that no longer exists (writeback completed right after
734 * we found the previous extent covering eof and before we
735 * attempted to increment its reference count).
736 */
737 ret = btrfs_wait_ordered_range(BTRFS_I(inode), wb_start,
738 destoff - wb_start);
739 if (ret)
740 return ret;
741 }
742
743 /*
744 * Lock destination range to serialize with concurrent readahead(), and
745 * we are safe from concurrency with relocation of source extents
746 * because we have already locked the inode's i_mmap_lock in exclusive
747 * mode.
748 */
749 end = destoff + len - 1;
750 lock_extent(&BTRFS_I(inode)->io_tree, destoff, end, &cached_state);
751 ret = btrfs_clone(src, inode, off, olen, len, destoff, 0);
752 unlock_extent(&BTRFS_I(inode)->io_tree, destoff, end, &cached_state);
753
754 /*
755 * We may have copied an inline extent into a page of the destination
756 * range, so wait for writeback to complete before truncating pages
757 * from the page cache. This is a rare case.
758 */
759 wb_ret = btrfs_wait_ordered_range(BTRFS_I(inode), destoff, len);
760 ret = ret ? ret : wb_ret;
761 /*
762 * Truncate page cache pages so that future reads will see the cloned
763 * data immediately and not the previous data.
764 */
765 truncate_inode_pages_range(&inode->i_data,
766 round_down(destoff, PAGE_SIZE),
767 round_up(destoff + len, PAGE_SIZE) - 1);
768
769 btrfs_btree_balance_dirty(fs_info);
770
771 return ret;
772}
773
774static int btrfs_remap_file_range_prep(struct file *file_in, loff_t pos_in,
775 struct file *file_out, loff_t pos_out,
776 loff_t *len, unsigned int remap_flags)
777{
778 struct inode *inode_in = file_inode(file_in);
779 struct inode *inode_out = file_inode(file_out);
780 u64 bs = BTRFS_I(inode_out)->root->fs_info->sectorsize;
781 u64 wb_len;
782 int ret;
783
784 if (!(remap_flags & REMAP_FILE_DEDUP)) {
785 struct btrfs_root *root_out = BTRFS_I(inode_out)->root;
786
787 if (btrfs_root_readonly(root_out))
788 return -EROFS;
789
790 ASSERT(inode_in->i_sb == inode_out->i_sb);
791 }
792
793 /* Don't make the dst file partly checksummed */
794 if ((BTRFS_I(inode_in)->flags & BTRFS_INODE_NODATASUM) !=
795 (BTRFS_I(inode_out)->flags & BTRFS_INODE_NODATASUM)) {
796 return -EINVAL;
797 }
798
799 /*
800 * Now that the inodes are locked, we need to start writeback ourselves
801 * and can not rely on the writeback from the VFS's generic helper
802 * generic_remap_file_range_prep() because:
803 *
804 * 1) For compression we must call filemap_fdatawrite_range() range
805 * twice (btrfs_fdatawrite_range() does it for us), and the generic
806 * helper only calls it once;
807 *
808 * 2) filemap_fdatawrite_range(), called by the generic helper only
809 * waits for the writeback to complete, i.e. for IO to be done, and
810 * not for the ordered extents to complete. We need to wait for them
811 * to complete so that new file extent items are in the fs tree.
812 */
813 if (*len == 0 && !(remap_flags & REMAP_FILE_DEDUP))
814 wb_len = ALIGN(inode_in->i_size, bs) - ALIGN_DOWN(pos_in, bs);
815 else
816 wb_len = ALIGN(*len, bs);
817
818 /*
819 * Workaround to make sure NOCOW buffered write reach disk as NOCOW.
820 *
821 * Btrfs' back references do not have a block level granularity, they
822 * work at the whole extent level.
823 * NOCOW buffered write without data space reserved may not be able
824 * to fall back to CoW due to lack of data space, thus could cause
825 * data loss.
826 *
827 * Here we take a shortcut by flushing the whole inode, so that all
828 * nocow write should reach disk as nocow before we increase the
829 * reference of the extent. We could do better by only flushing NOCOW
830 * data, but that needs extra accounting.
831 *
832 * Also we don't need to check ASYNC_EXTENT, as async extent will be
833 * CoWed anyway, not affecting nocow part.
834 */
835 ret = filemap_flush(inode_in->i_mapping);
836 if (ret < 0)
837 return ret;
838
839 ret = btrfs_wait_ordered_range(BTRFS_I(inode_in), ALIGN_DOWN(pos_in, bs),
840 wb_len);
841 if (ret < 0)
842 return ret;
843 ret = btrfs_wait_ordered_range(BTRFS_I(inode_out), ALIGN_DOWN(pos_out, bs),
844 wb_len);
845 if (ret < 0)
846 return ret;
847
848 return generic_remap_file_range_prep(file_in, pos_in, file_out, pos_out,
849 len, remap_flags);
850}
851
852static bool file_sync_write(const struct file *file)
853{
854 if (file->f_flags & (__O_SYNC | O_DSYNC))
855 return true;
856 if (IS_SYNC(file_inode(file)))
857 return true;
858
859 return false;
860}
861
862loff_t btrfs_remap_file_range(struct file *src_file, loff_t off,
863 struct file *dst_file, loff_t destoff, loff_t len,
864 unsigned int remap_flags)
865{
866 struct inode *src_inode = file_inode(src_file);
867 struct inode *dst_inode = file_inode(dst_file);
868 bool same_inode = dst_inode == src_inode;
869 int ret;
870
871 if (remap_flags & ~(REMAP_FILE_DEDUP | REMAP_FILE_ADVISORY))
872 return -EINVAL;
873
874 if (same_inode) {
875 btrfs_inode_lock(BTRFS_I(src_inode), BTRFS_ILOCK_MMAP);
876 } else {
877 lock_two_nondirectories(src_inode, dst_inode);
878 btrfs_double_mmap_lock(src_inode, dst_inode);
879 }
880
881 ret = btrfs_remap_file_range_prep(src_file, off, dst_file, destoff,
882 &len, remap_flags);
883 if (ret < 0 || len == 0)
884 goto out_unlock;
885
886 if (remap_flags & REMAP_FILE_DEDUP)
887 ret = btrfs_extent_same(src_inode, off, len, dst_inode, destoff);
888 else
889 ret = btrfs_clone_files(dst_file, src_file, off, len, destoff);
890
891out_unlock:
892 if (same_inode) {
893 btrfs_inode_unlock(BTRFS_I(src_inode), BTRFS_ILOCK_MMAP);
894 } else {
895 btrfs_double_mmap_unlock(src_inode, dst_inode);
896 unlock_two_nondirectories(src_inode, dst_inode);
897 }
898
899 /*
900 * If either the source or the destination file was opened with O_SYNC,
901 * O_DSYNC or has the S_SYNC attribute, fsync both the destination and
902 * source files/ranges, so that after a successful return (0) followed
903 * by a power failure results in the reflinked data to be readable from
904 * both files/ranges.
905 */
906 if (ret == 0 && len > 0 &&
907 (file_sync_write(src_file) || file_sync_write(dst_file))) {
908 ret = btrfs_sync_file(src_file, off, off + len - 1, 0);
909 if (ret == 0)
910 ret = btrfs_sync_file(dst_file, destoff,
911 destoff + len - 1, 0);
912 }
913
914 return ret < 0 ? ret : len;
915}
1// SPDX-License-Identifier: GPL-2.0
2
3#include <linux/blkdev.h>
4#include <linux/iversion.h>
5#include "compression.h"
6#include "ctree.h"
7#include "delalloc-space.h"
8#include "reflink.h"
9#include "transaction.h"
10
11#define BTRFS_MAX_DEDUPE_LEN SZ_16M
12
13static int clone_finish_inode_update(struct btrfs_trans_handle *trans,
14 struct inode *inode,
15 u64 endoff,
16 const u64 destoff,
17 const u64 olen,
18 int no_time_update)
19{
20 struct btrfs_root *root = BTRFS_I(inode)->root;
21 int ret;
22
23 inode_inc_iversion(inode);
24 if (!no_time_update)
25 inode->i_mtime = inode->i_ctime = current_time(inode);
26 /*
27 * We round up to the block size at eof when determining which
28 * extents to clone above, but shouldn't round up the file size.
29 */
30 if (endoff > destoff + olen)
31 endoff = destoff + olen;
32 if (endoff > inode->i_size) {
33 i_size_write(inode, endoff);
34 btrfs_inode_safe_disk_i_size_write(inode, 0);
35 }
36
37 ret = btrfs_update_inode(trans, root, inode);
38 if (ret) {
39 btrfs_abort_transaction(trans, ret);
40 btrfs_end_transaction(trans);
41 goto out;
42 }
43 ret = btrfs_end_transaction(trans);
44out:
45 return ret;
46}
47
48static int copy_inline_to_page(struct inode *inode,
49 const u64 file_offset,
50 char *inline_data,
51 const u64 size,
52 const u64 datal,
53 const u8 comp_type)
54{
55 const u64 block_size = btrfs_inode_sectorsize(inode);
56 const u64 range_end = file_offset + block_size - 1;
57 const size_t inline_size = size - btrfs_file_extent_calc_inline_size(0);
58 char *data_start = inline_data + btrfs_file_extent_calc_inline_size(0);
59 struct extent_changeset *data_reserved = NULL;
60 struct page *page = NULL;
61 int ret;
62
63 ASSERT(IS_ALIGNED(file_offset, block_size));
64
65 /*
66 * We have flushed and locked the ranges of the source and destination
67 * inodes, we also have locked the inodes, so we are safe to do a
68 * reservation here. Also we must not do the reservation while holding
69 * a transaction open, otherwise we would deadlock.
70 */
71 ret = btrfs_delalloc_reserve_space(BTRFS_I(inode), &data_reserved,
72 file_offset, block_size);
73 if (ret)
74 goto out;
75
76 page = find_or_create_page(inode->i_mapping, file_offset >> PAGE_SHIFT,
77 btrfs_alloc_write_mask(inode->i_mapping));
78 if (!page) {
79 ret = -ENOMEM;
80 goto out_unlock;
81 }
82
83 set_page_extent_mapped(page);
84 clear_extent_bit(&BTRFS_I(inode)->io_tree, file_offset, range_end,
85 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
86 0, 0, NULL);
87 ret = btrfs_set_extent_delalloc(BTRFS_I(inode), file_offset, range_end,
88 0, NULL);
89 if (ret)
90 goto out_unlock;
91
92 if (comp_type == BTRFS_COMPRESS_NONE) {
93 char *map;
94
95 map = kmap(page);
96 memcpy(map, data_start, datal);
97 flush_dcache_page(page);
98 kunmap(page);
99 } else {
100 ret = btrfs_decompress(comp_type, data_start, page, 0,
101 inline_size, datal);
102 if (ret)
103 goto out_unlock;
104 flush_dcache_page(page);
105 }
106
107 /*
108 * If our inline data is smaller then the block/page size, then the
109 * remaining of the block/page is equivalent to zeroes. We had something
110 * like the following done:
111 *
112 * $ xfs_io -f -c "pwrite -S 0xab 0 500" file
113 * $ sync # (or fsync)
114 * $ xfs_io -c "falloc 0 4K" file
115 * $ xfs_io -c "pwrite -S 0xcd 4K 4K"
116 *
117 * So what's in the range [500, 4095] corresponds to zeroes.
118 */
119 if (datal < block_size) {
120 char *map;
121
122 map = kmap(page);
123 memset(map + datal, 0, block_size - datal);
124 flush_dcache_page(page);
125 kunmap(page);
126 }
127
128 SetPageUptodate(page);
129 ClearPageChecked(page);
130 set_page_dirty(page);
131out_unlock:
132 if (page) {
133 unlock_page(page);
134 put_page(page);
135 }
136 if (ret)
137 btrfs_delalloc_release_space(BTRFS_I(inode), data_reserved,
138 file_offset, block_size, true);
139 btrfs_delalloc_release_extents(BTRFS_I(inode), block_size);
140out:
141 extent_changeset_free(data_reserved);
142
143 return ret;
144}
145
146/*
147 * Deal with cloning of inline extents. We try to copy the inline extent from
148 * the source inode to destination inode when possible. When not possible we
149 * copy the inline extent's data into the respective page of the inode.
150 */
151static int clone_copy_inline_extent(struct inode *dst,
152 struct btrfs_path *path,
153 struct btrfs_key *new_key,
154 const u64 drop_start,
155 const u64 datal,
156 const u64 size,
157 const u8 comp_type,
158 char *inline_data,
159 struct btrfs_trans_handle **trans_out)
160{
161 struct btrfs_fs_info *fs_info = btrfs_sb(dst->i_sb);
162 struct btrfs_root *root = BTRFS_I(dst)->root;
163 const u64 aligned_end = ALIGN(new_key->offset + datal,
164 fs_info->sectorsize);
165 struct btrfs_trans_handle *trans = NULL;
166 int ret;
167 struct btrfs_key key;
168
169 if (new_key->offset > 0) {
170 ret = copy_inline_to_page(dst, new_key->offset, inline_data,
171 size, datal, comp_type);
172 goto out;
173 }
174
175 key.objectid = btrfs_ino(BTRFS_I(dst));
176 key.type = BTRFS_EXTENT_DATA_KEY;
177 key.offset = 0;
178 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
179 if (ret < 0) {
180 return ret;
181 } else if (ret > 0) {
182 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
183 ret = btrfs_next_leaf(root, path);
184 if (ret < 0)
185 return ret;
186 else if (ret > 0)
187 goto copy_inline_extent;
188 }
189 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
190 if (key.objectid == btrfs_ino(BTRFS_I(dst)) &&
191 key.type == BTRFS_EXTENT_DATA_KEY) {
192 /*
193 * There's an implicit hole at file offset 0, copy the
194 * inline extent's data to the page.
195 */
196 ASSERT(key.offset > 0);
197 ret = copy_inline_to_page(dst, new_key->offset,
198 inline_data, size, datal,
199 comp_type);
200 goto out;
201 }
202 } else if (i_size_read(dst) <= datal) {
203 struct btrfs_file_extent_item *ei;
204
205 ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
206 struct btrfs_file_extent_item);
207 /*
208 * If it's an inline extent replace it with the source inline
209 * extent, otherwise copy the source inline extent data into
210 * the respective page at the destination inode.
211 */
212 if (btrfs_file_extent_type(path->nodes[0], ei) ==
213 BTRFS_FILE_EXTENT_INLINE)
214 goto copy_inline_extent;
215
216 ret = copy_inline_to_page(dst, new_key->offset, inline_data,
217 size, datal, comp_type);
218 goto out;
219 }
220
221copy_inline_extent:
222 ret = 0;
223 /*
224 * We have no extent items, or we have an extent at offset 0 which may
225 * or may not be inlined. All these cases are dealt the same way.
226 */
227 if (i_size_read(dst) > datal) {
228 /*
229 * At the destination offset 0 we have either a hole, a regular
230 * extent or an inline extent larger then the one we want to
231 * clone. Deal with all these cases by copying the inline extent
232 * data into the respective page at the destination inode.
233 */
234 ret = copy_inline_to_page(dst, new_key->offset, inline_data,
235 size, datal, comp_type);
236 goto out;
237 }
238
239 btrfs_release_path(path);
240 /*
241 * If we end up here it means were copy the inline extent into a leaf
242 * of the destination inode. We know we will drop or adjust at most one
243 * extent item in the destination root.
244 *
245 * 1 unit - adjusting old extent (we may have to split it)
246 * 1 unit - add new extent
247 * 1 unit - inode update
248 */
249 trans = btrfs_start_transaction(root, 3);
250 if (IS_ERR(trans)) {
251 ret = PTR_ERR(trans);
252 trans = NULL;
253 goto out;
254 }
255 ret = btrfs_drop_extents(trans, root, dst, drop_start, aligned_end, 1);
256 if (ret)
257 goto out;
258 ret = btrfs_insert_empty_item(trans, root, path, new_key, size);
259 if (ret)
260 goto out;
261
262 write_extent_buffer(path->nodes[0], inline_data,
263 btrfs_item_ptr_offset(path->nodes[0],
264 path->slots[0]),
265 size);
266 inode_add_bytes(dst, datal);
267 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(dst)->runtime_flags);
268 ret = btrfs_inode_set_file_extent_range(BTRFS_I(dst), 0, aligned_end);
269out:
270 if (!ret && !trans) {
271 /*
272 * No transaction here means we copied the inline extent into a
273 * page of the destination inode.
274 *
275 * 1 unit to update inode item
276 */
277 trans = btrfs_start_transaction(root, 1);
278 if (IS_ERR(trans)) {
279 ret = PTR_ERR(trans);
280 trans = NULL;
281 }
282 }
283 if (ret && trans) {
284 btrfs_abort_transaction(trans, ret);
285 btrfs_end_transaction(trans);
286 }
287 if (!ret)
288 *trans_out = trans;
289
290 return ret;
291}
292
293/**
294 * btrfs_clone() - clone a range from inode file to another
295 *
296 * @src: Inode to clone from
297 * @inode: Inode to clone to
298 * @off: Offset within source to start clone from
299 * @olen: Original length, passed by user, of range to clone
300 * @olen_aligned: Block-aligned value of olen
301 * @destoff: Offset within @inode to start clone
302 * @no_time_update: Whether to update mtime/ctime on the target inode
303 */
304static int btrfs_clone(struct inode *src, struct inode *inode,
305 const u64 off, const u64 olen, const u64 olen_aligned,
306 const u64 destoff, int no_time_update)
307{
308 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
309 struct btrfs_path *path = NULL;
310 struct extent_buffer *leaf;
311 struct btrfs_trans_handle *trans;
312 char *buf = NULL;
313 struct btrfs_key key;
314 u32 nritems;
315 int slot;
316 int ret;
317 const u64 len = olen_aligned;
318 u64 last_dest_end = destoff;
319
320 ret = -ENOMEM;
321 buf = kvmalloc(fs_info->nodesize, GFP_KERNEL);
322 if (!buf)
323 return ret;
324
325 path = btrfs_alloc_path();
326 if (!path) {
327 kvfree(buf);
328 return ret;
329 }
330
331 path->reada = READA_FORWARD;
332 /* Clone data */
333 key.objectid = btrfs_ino(BTRFS_I(src));
334 key.type = BTRFS_EXTENT_DATA_KEY;
335 key.offset = off;
336
337 while (1) {
338 u64 next_key_min_offset = key.offset + 1;
339 struct btrfs_file_extent_item *extent;
340 u64 extent_gen;
341 int type;
342 u32 size;
343 struct btrfs_key new_key;
344 u64 disko = 0, diskl = 0;
345 u64 datao = 0, datal = 0;
346 u8 comp;
347 u64 drop_start;
348
349 /* Note the key will change type as we walk through the tree */
350 path->leave_spinning = 1;
351 ret = btrfs_search_slot(NULL, BTRFS_I(src)->root, &key, path,
352 0, 0);
353 if (ret < 0)
354 goto out;
355 /*
356 * First search, if no extent item that starts at offset off was
357 * found but the previous item is an extent item, it's possible
358 * it might overlap our target range, therefore process it.
359 */
360 if (key.offset == off && ret > 0 && path->slots[0] > 0) {
361 btrfs_item_key_to_cpu(path->nodes[0], &key,
362 path->slots[0] - 1);
363 if (key.type == BTRFS_EXTENT_DATA_KEY)
364 path->slots[0]--;
365 }
366
367 nritems = btrfs_header_nritems(path->nodes[0]);
368process_slot:
369 if (path->slots[0] >= nritems) {
370 ret = btrfs_next_leaf(BTRFS_I(src)->root, path);
371 if (ret < 0)
372 goto out;
373 if (ret > 0)
374 break;
375 nritems = btrfs_header_nritems(path->nodes[0]);
376 }
377 leaf = path->nodes[0];
378 slot = path->slots[0];
379
380 btrfs_item_key_to_cpu(leaf, &key, slot);
381 if (key.type > BTRFS_EXTENT_DATA_KEY ||
382 key.objectid != btrfs_ino(BTRFS_I(src)))
383 break;
384
385 ASSERT(key.type == BTRFS_EXTENT_DATA_KEY);
386
387 extent = btrfs_item_ptr(leaf, slot,
388 struct btrfs_file_extent_item);
389 extent_gen = btrfs_file_extent_generation(leaf, extent);
390 comp = btrfs_file_extent_compression(leaf, extent);
391 type = btrfs_file_extent_type(leaf, extent);
392 if (type == BTRFS_FILE_EXTENT_REG ||
393 type == BTRFS_FILE_EXTENT_PREALLOC) {
394 disko = btrfs_file_extent_disk_bytenr(leaf, extent);
395 diskl = btrfs_file_extent_disk_num_bytes(leaf, extent);
396 datao = btrfs_file_extent_offset(leaf, extent);
397 datal = btrfs_file_extent_num_bytes(leaf, extent);
398 } else if (type == BTRFS_FILE_EXTENT_INLINE) {
399 /* Take upper bound, may be compressed */
400 datal = btrfs_file_extent_ram_bytes(leaf, extent);
401 }
402
403 /*
404 * The first search might have left us at an extent item that
405 * ends before our target range's start, can happen if we have
406 * holes and NO_HOLES feature enabled.
407 */
408 if (key.offset + datal <= off) {
409 path->slots[0]++;
410 goto process_slot;
411 } else if (key.offset >= off + len) {
412 break;
413 }
414 next_key_min_offset = key.offset + datal;
415 size = btrfs_item_size_nr(leaf, slot);
416 read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf, slot),
417 size);
418
419 btrfs_release_path(path);
420 path->leave_spinning = 0;
421
422 memcpy(&new_key, &key, sizeof(new_key));
423 new_key.objectid = btrfs_ino(BTRFS_I(inode));
424 if (off <= key.offset)
425 new_key.offset = key.offset + destoff - off;
426 else
427 new_key.offset = destoff;
428
429 /*
430 * Deal with a hole that doesn't have an extent item that
431 * represents it (NO_HOLES feature enabled).
432 * This hole is either in the middle of the cloning range or at
433 * the beginning (fully overlaps it or partially overlaps it).
434 */
435 if (new_key.offset != last_dest_end)
436 drop_start = last_dest_end;
437 else
438 drop_start = new_key.offset;
439
440 if (type == BTRFS_FILE_EXTENT_REG ||
441 type == BTRFS_FILE_EXTENT_PREALLOC) {
442 struct btrfs_clone_extent_info clone_info;
443
444 /*
445 * a | --- range to clone ---| b
446 * | ------------- extent ------------- |
447 */
448
449 /* Subtract range b */
450 if (key.offset + datal > off + len)
451 datal = off + len - key.offset;
452
453 /* Subtract range a */
454 if (off > key.offset) {
455 datao += off - key.offset;
456 datal -= off - key.offset;
457 }
458
459 clone_info.disk_offset = disko;
460 clone_info.disk_len = diskl;
461 clone_info.data_offset = datao;
462 clone_info.data_len = datal;
463 clone_info.file_offset = new_key.offset;
464 clone_info.extent_buf = buf;
465 clone_info.item_size = size;
466 ret = btrfs_punch_hole_range(inode, path, drop_start,
467 new_key.offset + datal - 1, &clone_info,
468 &trans);
469 if (ret)
470 goto out;
471 } else if (type == BTRFS_FILE_EXTENT_INLINE) {
472 /*
473 * Inline extents always have to start at file offset 0
474 * and can never be bigger then the sector size. We can
475 * never clone only parts of an inline extent, since all
476 * reflink operations must start at a sector size aligned
477 * offset, and the length must be aligned too or end at
478 * the i_size (which implies the whole inlined data).
479 */
480 ASSERT(key.offset == 0);
481 ASSERT(datal <= fs_info->sectorsize);
482 if (key.offset != 0 || datal > fs_info->sectorsize)
483 return -EUCLEAN;
484
485 ret = clone_copy_inline_extent(inode, path, &new_key,
486 drop_start, datal, size,
487 comp, buf, &trans);
488 if (ret)
489 goto out;
490 }
491
492 btrfs_release_path(path);
493
494 /*
495 * If this is a new extent update the last_reflink_trans of both
496 * inodes. This is used by fsync to make sure it does not log
497 * multiple checksum items with overlapping ranges. For older
498 * extents we don't need to do it since inode logging skips the
499 * checksums for older extents. Also ignore holes and inline
500 * extents because they don't have checksums in the csum tree.
501 */
502 if (extent_gen == trans->transid && disko > 0) {
503 BTRFS_I(src)->last_reflink_trans = trans->transid;
504 BTRFS_I(inode)->last_reflink_trans = trans->transid;
505 }
506
507 last_dest_end = ALIGN(new_key.offset + datal,
508 fs_info->sectorsize);
509 ret = clone_finish_inode_update(trans, inode, last_dest_end,
510 destoff, olen, no_time_update);
511 if (ret)
512 goto out;
513 if (new_key.offset + datal >= destoff + len)
514 break;
515
516 btrfs_release_path(path);
517 key.offset = next_key_min_offset;
518
519 if (fatal_signal_pending(current)) {
520 ret = -EINTR;
521 goto out;
522 }
523 }
524 ret = 0;
525
526 if (last_dest_end < destoff + len) {
527 /*
528 * We have an implicit hole that fully or partially overlaps our
529 * cloning range at its end. This means that we either have the
530 * NO_HOLES feature enabled or the implicit hole happened due to
531 * mixing buffered and direct IO writes against this file.
532 */
533 btrfs_release_path(path);
534 path->leave_spinning = 0;
535
536 ret = btrfs_punch_hole_range(inode, path, last_dest_end,
537 destoff + len - 1, NULL, &trans);
538 if (ret)
539 goto out;
540
541 ret = clone_finish_inode_update(trans, inode, destoff + len,
542 destoff, olen, no_time_update);
543 }
544
545out:
546 btrfs_free_path(path);
547 kvfree(buf);
548 return ret;
549}
550
551static void btrfs_double_extent_unlock(struct inode *inode1, u64 loff1,
552 struct inode *inode2, u64 loff2, u64 len)
553{
554 unlock_extent(&BTRFS_I(inode1)->io_tree, loff1, loff1 + len - 1);
555 unlock_extent(&BTRFS_I(inode2)->io_tree, loff2, loff2 + len - 1);
556}
557
558static void btrfs_double_extent_lock(struct inode *inode1, u64 loff1,
559 struct inode *inode2, u64 loff2, u64 len)
560{
561 if (inode1 < inode2) {
562 swap(inode1, inode2);
563 swap(loff1, loff2);
564 } else if (inode1 == inode2 && loff2 < loff1) {
565 swap(loff1, loff2);
566 }
567 lock_extent(&BTRFS_I(inode1)->io_tree, loff1, loff1 + len - 1);
568 lock_extent(&BTRFS_I(inode2)->io_tree, loff2, loff2 + len - 1);
569}
570
571static int btrfs_extent_same_range(struct inode *src, u64 loff, u64 len,
572 struct inode *dst, u64 dst_loff)
573{
574 const u64 bs = BTRFS_I(src)->root->fs_info->sb->s_blocksize;
575 int ret;
576
577 /*
578 * Lock destination range to serialize with concurrent readpages() and
579 * source range to serialize with relocation.
580 */
581 btrfs_double_extent_lock(src, loff, dst, dst_loff, len);
582 ret = btrfs_clone(src, dst, loff, len, ALIGN(len, bs), dst_loff, 1);
583 btrfs_double_extent_unlock(src, loff, dst, dst_loff, len);
584
585 return ret;
586}
587
588static int btrfs_extent_same(struct inode *src, u64 loff, u64 olen,
589 struct inode *dst, u64 dst_loff)
590{
591 int ret;
592 u64 i, tail_len, chunk_count;
593 struct btrfs_root *root_dst = BTRFS_I(dst)->root;
594
595 spin_lock(&root_dst->root_item_lock);
596 if (root_dst->send_in_progress) {
597 btrfs_warn_rl(root_dst->fs_info,
598"cannot deduplicate to root %llu while send operations are using it (%d in progress)",
599 root_dst->root_key.objectid,
600 root_dst->send_in_progress);
601 spin_unlock(&root_dst->root_item_lock);
602 return -EAGAIN;
603 }
604 root_dst->dedupe_in_progress++;
605 spin_unlock(&root_dst->root_item_lock);
606
607 tail_len = olen % BTRFS_MAX_DEDUPE_LEN;
608 chunk_count = div_u64(olen, BTRFS_MAX_DEDUPE_LEN);
609
610 for (i = 0; i < chunk_count; i++) {
611 ret = btrfs_extent_same_range(src, loff, BTRFS_MAX_DEDUPE_LEN,
612 dst, dst_loff);
613 if (ret)
614 goto out;
615
616 loff += BTRFS_MAX_DEDUPE_LEN;
617 dst_loff += BTRFS_MAX_DEDUPE_LEN;
618 }
619
620 if (tail_len > 0)
621 ret = btrfs_extent_same_range(src, loff, tail_len, dst, dst_loff);
622out:
623 spin_lock(&root_dst->root_item_lock);
624 root_dst->dedupe_in_progress--;
625 spin_unlock(&root_dst->root_item_lock);
626
627 return ret;
628}
629
630static noinline int btrfs_clone_files(struct file *file, struct file *file_src,
631 u64 off, u64 olen, u64 destoff)
632{
633 struct inode *inode = file_inode(file);
634 struct inode *src = file_inode(file_src);
635 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
636 int ret;
637 int wb_ret;
638 u64 len = olen;
639 u64 bs = fs_info->sb->s_blocksize;
640
641 /*
642 * VFS's generic_remap_file_range_prep() protects us from cloning the
643 * eof block into the middle of a file, which would result in corruption
644 * if the file size is not blocksize aligned. So we don't need to check
645 * for that case here.
646 */
647 if (off + len == src->i_size)
648 len = ALIGN(src->i_size, bs) - off;
649
650 if (destoff > inode->i_size) {
651 const u64 wb_start = ALIGN_DOWN(inode->i_size, bs);
652
653 ret = btrfs_cont_expand(inode, inode->i_size, destoff);
654 if (ret)
655 return ret;
656 /*
657 * We may have truncated the last block if the inode's size is
658 * not sector size aligned, so we need to wait for writeback to
659 * complete before proceeding further, otherwise we can race
660 * with cloning and attempt to increment a reference to an
661 * extent that no longer exists (writeback completed right after
662 * we found the previous extent covering eof and before we
663 * attempted to increment its reference count).
664 */
665 ret = btrfs_wait_ordered_range(inode, wb_start,
666 destoff - wb_start);
667 if (ret)
668 return ret;
669 }
670
671 /*
672 * Lock destination range to serialize with concurrent readpages() and
673 * source range to serialize with relocation.
674 */
675 btrfs_double_extent_lock(src, off, inode, destoff, len);
676 ret = btrfs_clone(src, inode, off, olen, len, destoff, 0);
677 btrfs_double_extent_unlock(src, off, inode, destoff, len);
678
679 /*
680 * We may have copied an inline extent into a page of the destination
681 * range, so wait for writeback to complete before truncating pages
682 * from the page cache. This is a rare case.
683 */
684 wb_ret = btrfs_wait_ordered_range(inode, destoff, len);
685 ret = ret ? ret : wb_ret;
686 /*
687 * Truncate page cache pages so that future reads will see the cloned
688 * data immediately and not the previous data.
689 */
690 truncate_inode_pages_range(&inode->i_data,
691 round_down(destoff, PAGE_SIZE),
692 round_up(destoff + len, PAGE_SIZE) - 1);
693
694 return ret;
695}
696
697static int btrfs_remap_file_range_prep(struct file *file_in, loff_t pos_in,
698 struct file *file_out, loff_t pos_out,
699 loff_t *len, unsigned int remap_flags)
700{
701 struct inode *inode_in = file_inode(file_in);
702 struct inode *inode_out = file_inode(file_out);
703 u64 bs = BTRFS_I(inode_out)->root->fs_info->sb->s_blocksize;
704 bool same_inode = inode_out == inode_in;
705 u64 wb_len;
706 int ret;
707
708 if (!(remap_flags & REMAP_FILE_DEDUP)) {
709 struct btrfs_root *root_out = BTRFS_I(inode_out)->root;
710
711 if (btrfs_root_readonly(root_out))
712 return -EROFS;
713
714 if (file_in->f_path.mnt != file_out->f_path.mnt ||
715 inode_in->i_sb != inode_out->i_sb)
716 return -EXDEV;
717 }
718
719 /* Don't make the dst file partly checksummed */
720 if ((BTRFS_I(inode_in)->flags & BTRFS_INODE_NODATASUM) !=
721 (BTRFS_I(inode_out)->flags & BTRFS_INODE_NODATASUM)) {
722 return -EINVAL;
723 }
724
725 /*
726 * Now that the inodes are locked, we need to start writeback ourselves
727 * and can not rely on the writeback from the VFS's generic helper
728 * generic_remap_file_range_prep() because:
729 *
730 * 1) For compression we must call filemap_fdatawrite_range() range
731 * twice (btrfs_fdatawrite_range() does it for us), and the generic
732 * helper only calls it once;
733 *
734 * 2) filemap_fdatawrite_range(), called by the generic helper only
735 * waits for the writeback to complete, i.e. for IO to be done, and
736 * not for the ordered extents to complete. We need to wait for them
737 * to complete so that new file extent items are in the fs tree.
738 */
739 if (*len == 0 && !(remap_flags & REMAP_FILE_DEDUP))
740 wb_len = ALIGN(inode_in->i_size, bs) - ALIGN_DOWN(pos_in, bs);
741 else
742 wb_len = ALIGN(*len, bs);
743
744 /*
745 * Since we don't lock ranges, wait for ongoing lockless dio writes (as
746 * any in progress could create its ordered extents after we wait for
747 * existing ordered extents below).
748 */
749 inode_dio_wait(inode_in);
750 if (!same_inode)
751 inode_dio_wait(inode_out);
752
753 /*
754 * Workaround to make sure NOCOW buffered write reach disk as NOCOW.
755 *
756 * Btrfs' back references do not have a block level granularity, they
757 * work at the whole extent level.
758 * NOCOW buffered write without data space reserved may not be able
759 * to fall back to CoW due to lack of data space, thus could cause
760 * data loss.
761 *
762 * Here we take a shortcut by flushing the whole inode, so that all
763 * nocow write should reach disk as nocow before we increase the
764 * reference of the extent. We could do better by only flushing NOCOW
765 * data, but that needs extra accounting.
766 *
767 * Also we don't need to check ASYNC_EXTENT, as async extent will be
768 * CoWed anyway, not affecting nocow part.
769 */
770 ret = filemap_flush(inode_in->i_mapping);
771 if (ret < 0)
772 return ret;
773
774 ret = btrfs_wait_ordered_range(inode_in, ALIGN_DOWN(pos_in, bs),
775 wb_len);
776 if (ret < 0)
777 return ret;
778 ret = btrfs_wait_ordered_range(inode_out, ALIGN_DOWN(pos_out, bs),
779 wb_len);
780 if (ret < 0)
781 return ret;
782
783 return generic_remap_file_range_prep(file_in, pos_in, file_out, pos_out,
784 len, remap_flags);
785}
786
787loff_t btrfs_remap_file_range(struct file *src_file, loff_t off,
788 struct file *dst_file, loff_t destoff, loff_t len,
789 unsigned int remap_flags)
790{
791 struct inode *src_inode = file_inode(src_file);
792 struct inode *dst_inode = file_inode(dst_file);
793 bool same_inode = dst_inode == src_inode;
794 int ret;
795
796 if (remap_flags & ~(REMAP_FILE_DEDUP | REMAP_FILE_ADVISORY))
797 return -EINVAL;
798
799 if (same_inode)
800 inode_lock(src_inode);
801 else
802 lock_two_nondirectories(src_inode, dst_inode);
803
804 ret = btrfs_remap_file_range_prep(src_file, off, dst_file, destoff,
805 &len, remap_flags);
806 if (ret < 0 || len == 0)
807 goto out_unlock;
808
809 if (remap_flags & REMAP_FILE_DEDUP)
810 ret = btrfs_extent_same(src_inode, off, len, dst_inode, destoff);
811 else
812 ret = btrfs_clone_files(dst_file, src_file, off, len, destoff);
813
814out_unlock:
815 if (same_inode)
816 inode_unlock(src_inode);
817 else
818 unlock_two_nondirectories(src_inode, dst_inode);
819
820 return ret < 0 ? ret : len;
821}