Linux Audio

Check our new training course

Real-Time Linux with PREEMPT_RT training

Feb 18-20, 2025
Register
Loading...
v6.13.7
  1// SPDX-License-Identifier: GPL-2.0
  2
  3#include <linux/blkdev.h>
  4#include <linux/iversion.h>
  5#include "ctree.h"
  6#include "fs.h"
  7#include "messages.h"
  8#include "compression.h"
 
  9#include "delalloc-space.h"
 10#include "disk-io.h"
 11#include "reflink.h"
 12#include "transaction.h"
 13#include "subpage.h"
 14#include "accessors.h"
 15#include "file-item.h"
 16#include "file.h"
 17#include "super.h"
 18
 19#define BTRFS_MAX_DEDUPE_LEN	SZ_16M
 20
 21static int clone_finish_inode_update(struct btrfs_trans_handle *trans,
 22				     struct inode *inode,
 23				     u64 endoff,
 24				     const u64 destoff,
 25				     const u64 olen,
 26				     int no_time_update)
 27{
 
 28	int ret;
 29
 30	inode_inc_iversion(inode);
 31	if (!no_time_update) {
 32		inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode));
 33	}
 34	/*
 35	 * We round up to the block size at eof when determining which
 36	 * extents to clone above, but shouldn't round up the file size.
 37	 */
 38	if (endoff > destoff + olen)
 39		endoff = destoff + olen;
 40	if (endoff > inode->i_size) {
 41		i_size_write(inode, endoff);
 42		btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0);
 43	}
 44
 45	ret = btrfs_update_inode(trans, BTRFS_I(inode));
 46	if (ret) {
 47		btrfs_abort_transaction(trans, ret);
 48		btrfs_end_transaction(trans);
 49		goto out;
 50	}
 51	ret = btrfs_end_transaction(trans);
 52out:
 53	return ret;
 54}
 55
 56static int copy_inline_to_page(struct btrfs_inode *inode,
 57			       const u64 file_offset,
 58			       char *inline_data,
 59			       const u64 size,
 60			       const u64 datal,
 61			       const u8 comp_type)
 62{
 63	struct btrfs_fs_info *fs_info = inode->root->fs_info;
 64	const u32 block_size = fs_info->sectorsize;
 65	const u64 range_end = file_offset + block_size - 1;
 66	const size_t inline_size = size - btrfs_file_extent_calc_inline_size(0);
 67	char *data_start = inline_data + btrfs_file_extent_calc_inline_size(0);
 68	struct extent_changeset *data_reserved = NULL;
 69	struct folio *folio = NULL;
 70	struct address_space *mapping = inode->vfs_inode.i_mapping;
 71	int ret;
 72
 73	ASSERT(IS_ALIGNED(file_offset, block_size));
 74
 75	/*
 76	 * We have flushed and locked the ranges of the source and destination
 77	 * inodes, we also have locked the inodes, so we are safe to do a
 78	 * reservation here. Also we must not do the reservation while holding
 79	 * a transaction open, otherwise we would deadlock.
 80	 */
 81	ret = btrfs_delalloc_reserve_space(inode, &data_reserved, file_offset,
 82					   block_size);
 83	if (ret)
 84		goto out;
 85
 86	folio = __filemap_get_folio(mapping, file_offset >> PAGE_SHIFT,
 87					FGP_LOCK | FGP_ACCESSED | FGP_CREAT,
 88					btrfs_alloc_write_mask(mapping));
 89	if (IS_ERR(folio)) {
 90		ret = -ENOMEM;
 91		goto out_unlock;
 92	}
 93
 94	ret = set_folio_extent_mapped(folio);
 95	if (ret < 0)
 96		goto out_unlock;
 97
 98	clear_extent_bit(&inode->io_tree, file_offset, range_end,
 99			 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
100			 NULL);
101	ret = btrfs_set_extent_delalloc(inode, file_offset, range_end, 0, NULL);
102	if (ret)
103		goto out_unlock;
104
105	/*
106	 * After dirtying the page our caller will need to start a transaction,
107	 * and if we are low on metadata free space, that can cause flushing of
108	 * delalloc for all inodes in order to get metadata space released.
109	 * However we are holding the range locked for the whole duration of
110	 * the clone/dedupe operation, so we may deadlock if that happens and no
111	 * other task releases enough space. So mark this inode as not being
112	 * possible to flush to avoid such deadlock. We will clear that flag
113	 * when we finish cloning all extents, since a transaction is started
114	 * after finding each extent to clone.
115	 */
116	set_bit(BTRFS_INODE_NO_DELALLOC_FLUSH, &inode->runtime_flags);
117
118	if (comp_type == BTRFS_COMPRESS_NONE) {
119		memcpy_to_folio(folio, offset_in_folio(folio, file_offset), data_start,
120					datal);
 
121	} else {
122		ret = btrfs_decompress(comp_type, data_start, folio,
123				       offset_in_folio(folio, file_offset),
124				       inline_size, datal);
125		if (ret)
126			goto out_unlock;
127		flush_dcache_folio(folio);
128	}
129
130	/*
131	 * If our inline data is smaller then the block/page size, then the
132	 * remaining of the block/page is equivalent to zeroes. We had something
133	 * like the following done:
134	 *
135	 * $ xfs_io -f -c "pwrite -S 0xab 0 500" file
136	 * $ sync  # (or fsync)
137	 * $ xfs_io -c "falloc 0 4K" file
138	 * $ xfs_io -c "pwrite -S 0xcd 4K 4K"
139	 *
140	 * So what's in the range [500, 4095] corresponds to zeroes.
141	 */
142	if (datal < block_size)
143		folio_zero_range(folio, datal, block_size - datal);
 
 
144
145	btrfs_folio_set_uptodate(fs_info, folio, file_offset, block_size);
146	btrfs_folio_clear_checked(fs_info, folio, file_offset, block_size);
147	btrfs_folio_set_dirty(fs_info, folio, file_offset, block_size);
148out_unlock:
149	if (!IS_ERR(folio)) {
150		folio_unlock(folio);
151		folio_put(folio);
152	}
153	if (ret)
154		btrfs_delalloc_release_space(inode, data_reserved, file_offset,
155					     block_size, true);
156	btrfs_delalloc_release_extents(inode, block_size);
157out:
158	extent_changeset_free(data_reserved);
159
160	return ret;
161}
162
163/*
164 * Deal with cloning of inline extents. We try to copy the inline extent from
165 * the source inode to destination inode when possible. When not possible we
166 * copy the inline extent's data into the respective page of the inode.
167 */
168static int clone_copy_inline_extent(struct inode *dst,
169				    struct btrfs_path *path,
170				    struct btrfs_key *new_key,
171				    const u64 drop_start,
172				    const u64 datal,
173				    const u64 size,
174				    const u8 comp_type,
175				    char *inline_data,
176				    struct btrfs_trans_handle **trans_out)
177{
178	struct btrfs_fs_info *fs_info = inode_to_fs_info(dst);
179	struct btrfs_root *root = BTRFS_I(dst)->root;
180	const u64 aligned_end = ALIGN(new_key->offset + datal,
181				      fs_info->sectorsize);
182	struct btrfs_trans_handle *trans = NULL;
183	struct btrfs_drop_extents_args drop_args = { 0 };
184	int ret;
185	struct btrfs_key key;
186
187	if (new_key->offset > 0) {
188		ret = copy_inline_to_page(BTRFS_I(dst), new_key->offset,
189					  inline_data, size, datal, comp_type);
190		goto out;
191	}
192
193	key.objectid = btrfs_ino(BTRFS_I(dst));
194	key.type = BTRFS_EXTENT_DATA_KEY;
195	key.offset = 0;
196	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
197	if (ret < 0) {
198		return ret;
199	} else if (ret > 0) {
200		if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
201			ret = btrfs_next_leaf(root, path);
202			if (ret < 0)
203				return ret;
204			else if (ret > 0)
205				goto copy_inline_extent;
206		}
207		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
208		if (key.objectid == btrfs_ino(BTRFS_I(dst)) &&
209		    key.type == BTRFS_EXTENT_DATA_KEY) {
210			/*
211			 * There's an implicit hole at file offset 0, copy the
212			 * inline extent's data to the page.
213			 */
214			ASSERT(key.offset > 0);
215			goto copy_to_page;
216		}
217	} else if (i_size_read(dst) <= datal) {
218		struct btrfs_file_extent_item *ei;
219
220		ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
221				    struct btrfs_file_extent_item);
222		/*
223		 * If it's an inline extent replace it with the source inline
224		 * extent, otherwise copy the source inline extent data into
225		 * the respective page at the destination inode.
226		 */
227		if (btrfs_file_extent_type(path->nodes[0], ei) ==
228		    BTRFS_FILE_EXTENT_INLINE)
229			goto copy_inline_extent;
230
231		goto copy_to_page;
232	}
233
234copy_inline_extent:
235	/*
236	 * We have no extent items, or we have an extent at offset 0 which may
237	 * or may not be inlined. All these cases are dealt the same way.
238	 */
239	if (i_size_read(dst) > datal) {
240		/*
241		 * At the destination offset 0 we have either a hole, a regular
242		 * extent or an inline extent larger then the one we want to
243		 * clone. Deal with all these cases by copying the inline extent
244		 * data into the respective page at the destination inode.
245		 */
246		goto copy_to_page;
247	}
248
249	/*
250	 * Release path before starting a new transaction so we don't hold locks
251	 * that would confuse lockdep.
252	 */
253	btrfs_release_path(path);
254	/*
255	 * If we end up here it means were copy the inline extent into a leaf
256	 * of the destination inode. We know we will drop or adjust at most one
257	 * extent item in the destination root.
258	 *
259	 * 1 unit - adjusting old extent (we may have to split it)
260	 * 1 unit - add new extent
261	 * 1 unit - inode update
262	 */
263	trans = btrfs_start_transaction(root, 3);
264	if (IS_ERR(trans)) {
265		ret = PTR_ERR(trans);
266		trans = NULL;
267		goto out;
268	}
269	drop_args.path = path;
270	drop_args.start = drop_start;
271	drop_args.end = aligned_end;
272	drop_args.drop_cache = true;
273	ret = btrfs_drop_extents(trans, root, BTRFS_I(dst), &drop_args);
274	if (ret)
275		goto out;
276	ret = btrfs_insert_empty_item(trans, root, path, new_key, size);
277	if (ret)
278		goto out;
279
280	write_extent_buffer(path->nodes[0], inline_data,
281			    btrfs_item_ptr_offset(path->nodes[0],
282						  path->slots[0]),
283			    size);
284	btrfs_update_inode_bytes(BTRFS_I(dst), datal, drop_args.bytes_found);
285	btrfs_set_inode_full_sync(BTRFS_I(dst));
286	ret = btrfs_inode_set_file_extent_range(BTRFS_I(dst), 0, aligned_end);
287out:
288	if (!ret && !trans) {
289		/*
290		 * No transaction here means we copied the inline extent into a
291		 * page of the destination inode.
292		 *
293		 * 1 unit to update inode item
294		 */
295		trans = btrfs_start_transaction(root, 1);
296		if (IS_ERR(trans)) {
297			ret = PTR_ERR(trans);
298			trans = NULL;
299		}
300	}
301	if (ret && trans) {
302		btrfs_abort_transaction(trans, ret);
303		btrfs_end_transaction(trans);
304	}
305	if (!ret)
306		*trans_out = trans;
307
308	return ret;
309
310copy_to_page:
311	/*
312	 * Release our path because we don't need it anymore and also because
313	 * copy_inline_to_page() needs to reserve data and metadata, which may
314	 * need to flush delalloc when we are low on available space and
315	 * therefore cause a deadlock if writeback of an inline extent needs to
316	 * write to the same leaf or an ordered extent completion needs to write
317	 * to the same leaf.
318	 */
319	btrfs_release_path(path);
320
321	ret = copy_inline_to_page(BTRFS_I(dst), new_key->offset,
322				  inline_data, size, datal, comp_type);
323	goto out;
324}
325
326/*
327 * Clone a range from inode file to another.
328 *
329 * @src:             Inode to clone from
330 * @inode:           Inode to clone to
331 * @off:             Offset within source to start clone from
332 * @olen:            Original length, passed by user, of range to clone
333 * @olen_aligned:    Block-aligned value of olen
334 * @destoff:         Offset within @inode to start clone
335 * @no_time_update:  Whether to update mtime/ctime on the target inode
336 */
337static int btrfs_clone(struct inode *src, struct inode *inode,
338		       const u64 off, const u64 olen, const u64 olen_aligned,
339		       const u64 destoff, int no_time_update)
340{
341	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
342	struct btrfs_path *path = NULL;
343	struct extent_buffer *leaf;
344	struct btrfs_trans_handle *trans;
345	char *buf = NULL;
346	struct btrfs_key key;
347	u32 nritems;
348	int slot;
349	int ret;
350	const u64 len = olen_aligned;
351	u64 last_dest_end = destoff;
352	u64 prev_extent_end = off;
353
354	ret = -ENOMEM;
355	buf = kvmalloc(fs_info->nodesize, GFP_KERNEL);
356	if (!buf)
357		return ret;
358
359	path = btrfs_alloc_path();
360	if (!path) {
361		kvfree(buf);
362		return ret;
363	}
364
365	path->reada = READA_FORWARD;
366	/* Clone data */
367	key.objectid = btrfs_ino(BTRFS_I(src));
368	key.type = BTRFS_EXTENT_DATA_KEY;
369	key.offset = off;
370
371	while (1) {
 
372		struct btrfs_file_extent_item *extent;
373		u64 extent_gen;
374		int type;
375		u32 size;
376		struct btrfs_key new_key;
377		u64 disko = 0, diskl = 0;
378		u64 datao = 0, datal = 0;
379		u8 comp;
380		u64 drop_start;
381
382		/* Note the key will change type as we walk through the tree */
383		ret = btrfs_search_slot(NULL, BTRFS_I(src)->root, &key, path,
384				0, 0);
385		if (ret < 0)
386			goto out;
387		/*
388		 * First search, if no extent item that starts at offset off was
389		 * found but the previous item is an extent item, it's possible
390		 * it might overlap our target range, therefore process it.
391		 */
392		if (key.offset == off && ret > 0 && path->slots[0] > 0) {
393			btrfs_item_key_to_cpu(path->nodes[0], &key,
394					      path->slots[0] - 1);
395			if (key.type == BTRFS_EXTENT_DATA_KEY)
396				path->slots[0]--;
397		}
398
399		nritems = btrfs_header_nritems(path->nodes[0]);
400process_slot:
401		if (path->slots[0] >= nritems) {
402			ret = btrfs_next_leaf(BTRFS_I(src)->root, path);
403			if (ret < 0)
404				goto out;
405			if (ret > 0)
406				break;
407			nritems = btrfs_header_nritems(path->nodes[0]);
408		}
409		leaf = path->nodes[0];
410		slot = path->slots[0];
411
412		btrfs_item_key_to_cpu(leaf, &key, slot);
413		if (key.type > BTRFS_EXTENT_DATA_KEY ||
414		    key.objectid != btrfs_ino(BTRFS_I(src)))
415			break;
416
417		ASSERT(key.type == BTRFS_EXTENT_DATA_KEY);
418
419		extent = btrfs_item_ptr(leaf, slot,
420					struct btrfs_file_extent_item);
421		extent_gen = btrfs_file_extent_generation(leaf, extent);
422		comp = btrfs_file_extent_compression(leaf, extent);
423		type = btrfs_file_extent_type(leaf, extent);
424		if (type == BTRFS_FILE_EXTENT_REG ||
425		    type == BTRFS_FILE_EXTENT_PREALLOC) {
426			disko = btrfs_file_extent_disk_bytenr(leaf, extent);
427			diskl = btrfs_file_extent_disk_num_bytes(leaf, extent);
428			datao = btrfs_file_extent_offset(leaf, extent);
429			datal = btrfs_file_extent_num_bytes(leaf, extent);
430		} else if (type == BTRFS_FILE_EXTENT_INLINE) {
431			/* Take upper bound, may be compressed */
432			datal = btrfs_file_extent_ram_bytes(leaf, extent);
433		}
434
435		/*
436		 * The first search might have left us at an extent item that
437		 * ends before our target range's start, can happen if we have
438		 * holes and NO_HOLES feature enabled.
439		 *
440		 * Subsequent searches may leave us on a file range we have
441		 * processed before - this happens due to a race with ordered
442		 * extent completion for a file range that is outside our source
443		 * range, but that range was part of a file extent item that
444		 * also covered a leading part of our source range.
445		 */
446		if (key.offset + datal <= prev_extent_end) {
447			path->slots[0]++;
448			goto process_slot;
449		} else if (key.offset >= off + len) {
450			break;
451		}
452
453		prev_extent_end = key.offset + datal;
454		size = btrfs_item_size(leaf, slot);
455		read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf, slot),
456				   size);
457
458		btrfs_release_path(path);
459
460		memcpy(&new_key, &key, sizeof(new_key));
461		new_key.objectid = btrfs_ino(BTRFS_I(inode));
462		if (off <= key.offset)
463			new_key.offset = key.offset + destoff - off;
464		else
465			new_key.offset = destoff;
466
467		/*
468		 * Deal with a hole that doesn't have an extent item that
469		 * represents it (NO_HOLES feature enabled).
470		 * This hole is either in the middle of the cloning range or at
471		 * the beginning (fully overlaps it or partially overlaps it).
472		 */
473		if (new_key.offset != last_dest_end)
474			drop_start = last_dest_end;
475		else
476			drop_start = new_key.offset;
477
478		if (type == BTRFS_FILE_EXTENT_REG ||
479		    type == BTRFS_FILE_EXTENT_PREALLOC) {
480			struct btrfs_replace_extent_info clone_info;
481
482			/*
483			 *    a  | --- range to clone ---|  b
484			 * | ------------- extent ------------- |
485			 */
486
487			/* Subtract range b */
488			if (key.offset + datal > off + len)
489				datal = off + len - key.offset;
490
491			/* Subtract range a */
492			if (off > key.offset) {
493				datao += off - key.offset;
494				datal -= off - key.offset;
495			}
496
497			clone_info.disk_offset = disko;
498			clone_info.disk_len = diskl;
499			clone_info.data_offset = datao;
500			clone_info.data_len = datal;
501			clone_info.file_offset = new_key.offset;
502			clone_info.extent_buf = buf;
503			clone_info.is_new_extent = false;
504			clone_info.update_times = !no_time_update;
505			ret = btrfs_replace_file_extents(BTRFS_I(inode), path,
506					drop_start, new_key.offset + datal - 1,
507					&clone_info, &trans);
508			if (ret)
509				goto out;
510		} else {
511			ASSERT(type == BTRFS_FILE_EXTENT_INLINE);
512			/*
513			 * Inline extents always have to start at file offset 0
514			 * and can never be bigger then the sector size. We can
515			 * never clone only parts of an inline extent, since all
516			 * reflink operations must start at a sector size aligned
517			 * offset, and the length must be aligned too or end at
518			 * the i_size (which implies the whole inlined data).
519			 */
520			ASSERT(key.offset == 0);
521			ASSERT(datal <= fs_info->sectorsize);
522			if (WARN_ON(type != BTRFS_FILE_EXTENT_INLINE) ||
523			    WARN_ON(key.offset != 0) ||
524			    WARN_ON(datal > fs_info->sectorsize)) {
525				ret = -EUCLEAN;
526				goto out;
527			}
528
529			ret = clone_copy_inline_extent(inode, path, &new_key,
530						       drop_start, datal, size,
531						       comp, buf, &trans);
532			if (ret)
533				goto out;
534		}
535
536		btrfs_release_path(path);
537
538		/*
539		 * Whenever we share an extent we update the last_reflink_trans
540		 * of each inode to the current transaction. This is needed to
541		 * make sure fsync does not log multiple checksum items with
542		 * overlapping ranges (because some extent items might refer
543		 * only to sections of the original extent). For the destination
544		 * inode we do this regardless of the generation of the extents
545		 * or even if they are inline extents or explicit holes, to make
546		 * sure a full fsync does not skip them. For the source inode,
547		 * we only need to update last_reflink_trans in case it's a new
548		 * extent that is not a hole or an inline extent, to deal with
549		 * the checksums problem on fsync.
550		 */
551		if (extent_gen == trans->transid && disko > 0)
552			BTRFS_I(src)->last_reflink_trans = trans->transid;
553
554		BTRFS_I(inode)->last_reflink_trans = trans->transid;
555
556		last_dest_end = ALIGN(new_key.offset + datal,
557				      fs_info->sectorsize);
558		ret = clone_finish_inode_update(trans, inode, last_dest_end,
559						destoff, olen, no_time_update);
560		if (ret)
561			goto out;
562		if (new_key.offset + datal >= destoff + len)
563			break;
564
565		btrfs_release_path(path);
566		key.offset = prev_extent_end;
567
568		if (fatal_signal_pending(current)) {
569			ret = -EINTR;
570			goto out;
571		}
572
573		cond_resched();
574	}
575	ret = 0;
576
577	if (last_dest_end < destoff + len) {
578		/*
579		 * We have an implicit hole that fully or partially overlaps our
580		 * cloning range at its end. This means that we either have the
581		 * NO_HOLES feature enabled or the implicit hole happened due to
582		 * mixing buffered and direct IO writes against this file.
583		 */
584		btrfs_release_path(path);
585
586		/*
587		 * When using NO_HOLES and we are cloning a range that covers
588		 * only a hole (no extents) into a range beyond the current
589		 * i_size, punching a hole in the target range will not create
590		 * an extent map defining a hole, because the range starts at or
591		 * beyond current i_size. If the file previously had an i_size
592		 * greater than the new i_size set by this clone operation, we
593		 * need to make sure the next fsync is a full fsync, so that it
594		 * detects and logs a hole covering a range from the current
595		 * i_size to the new i_size. If the clone range covers extents,
596		 * besides a hole, then we know the full sync flag was already
597		 * set by previous calls to btrfs_replace_file_extents() that
598		 * replaced file extent items.
599		 */
600		if (last_dest_end >= i_size_read(inode))
601			btrfs_set_inode_full_sync(BTRFS_I(inode));
 
602
603		ret = btrfs_replace_file_extents(BTRFS_I(inode), path,
604				last_dest_end, destoff + len - 1, NULL, &trans);
605		if (ret)
606			goto out;
607
608		ret = clone_finish_inode_update(trans, inode, destoff + len,
609						destoff, olen, no_time_update);
610	}
611
612out:
613	btrfs_free_path(path);
614	kvfree(buf);
615	clear_bit(BTRFS_INODE_NO_DELALLOC_FLUSH, &BTRFS_I(inode)->runtime_flags);
616
617	return ret;
618}
619
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
620static void btrfs_double_mmap_lock(struct inode *inode1, struct inode *inode2)
621{
622	if (inode1 < inode2)
623		swap(inode1, inode2);
624	down_write(&BTRFS_I(inode1)->i_mmap_lock);
625	down_write_nested(&BTRFS_I(inode2)->i_mmap_lock, SINGLE_DEPTH_NESTING);
626}
627
628static void btrfs_double_mmap_unlock(struct inode *inode1, struct inode *inode2)
629{
630	up_write(&BTRFS_I(inode1)->i_mmap_lock);
631	up_write(&BTRFS_I(inode2)->i_mmap_lock);
632}
633
634static int btrfs_extent_same_range(struct inode *src, u64 loff, u64 len,
635				   struct inode *dst, u64 dst_loff)
636{
637	const u64 end = dst_loff + len - 1;
638	struct extent_state *cached_state = NULL;
639	struct btrfs_fs_info *fs_info = BTRFS_I(src)->root->fs_info;
640	const u64 bs = fs_info->sectorsize;
641	int ret;
642
643	/*
644	 * Lock destination range to serialize with concurrent readahead(), and
645	 * we are safe from concurrency with relocation of source extents
646	 * because we have already locked the inode's i_mmap_lock in exclusive
647	 * mode.
648	 */
649	lock_extent(&BTRFS_I(dst)->io_tree, dst_loff, end, &cached_state);
650	ret = btrfs_clone(src, dst, loff, len, ALIGN(len, bs), dst_loff, 1);
651	unlock_extent(&BTRFS_I(dst)->io_tree, dst_loff, end, &cached_state);
652
653	btrfs_btree_balance_dirty(fs_info);
654
655	return ret;
656}
657
658static int btrfs_extent_same(struct inode *src, u64 loff, u64 olen,
659			     struct inode *dst, u64 dst_loff)
660{
661	int ret = 0;
662	u64 i, tail_len, chunk_count;
663	struct btrfs_root *root_dst = BTRFS_I(dst)->root;
664
665	spin_lock(&root_dst->root_item_lock);
666	if (root_dst->send_in_progress) {
667		btrfs_warn_rl(root_dst->fs_info,
668"cannot deduplicate to root %llu while send operations are using it (%d in progress)",
669			      btrfs_root_id(root_dst),
670			      root_dst->send_in_progress);
671		spin_unlock(&root_dst->root_item_lock);
672		return -EAGAIN;
673	}
674	root_dst->dedupe_in_progress++;
675	spin_unlock(&root_dst->root_item_lock);
676
677	tail_len = olen % BTRFS_MAX_DEDUPE_LEN;
678	chunk_count = div_u64(olen, BTRFS_MAX_DEDUPE_LEN);
679
680	for (i = 0; i < chunk_count; i++) {
681		ret = btrfs_extent_same_range(src, loff, BTRFS_MAX_DEDUPE_LEN,
682					      dst, dst_loff);
683		if (ret)
684			goto out;
685
686		loff += BTRFS_MAX_DEDUPE_LEN;
687		dst_loff += BTRFS_MAX_DEDUPE_LEN;
688	}
689
690	if (tail_len > 0)
691		ret = btrfs_extent_same_range(src, loff, tail_len, dst, dst_loff);
692out:
693	spin_lock(&root_dst->root_item_lock);
694	root_dst->dedupe_in_progress--;
695	spin_unlock(&root_dst->root_item_lock);
696
697	return ret;
698}
699
700static noinline int btrfs_clone_files(struct file *file, struct file *file_src,
701					u64 off, u64 olen, u64 destoff)
702{
703	struct extent_state *cached_state = NULL;
704	struct inode *inode = file_inode(file);
705	struct inode *src = file_inode(file_src);
706	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
707	int ret;
708	int wb_ret;
709	u64 len = olen;
710	u64 bs = fs_info->sectorsize;
711	u64 end;
712
713	/*
714	 * VFS's generic_remap_file_range_prep() protects us from cloning the
715	 * eof block into the middle of a file, which would result in corruption
716	 * if the file size is not blocksize aligned. So we don't need to check
717	 * for that case here.
718	 */
719	if (off + len == src->i_size)
720		len = ALIGN(src->i_size, bs) - off;
721
722	if (destoff > inode->i_size) {
723		const u64 wb_start = ALIGN_DOWN(inode->i_size, bs);
724
725		ret = btrfs_cont_expand(BTRFS_I(inode), inode->i_size, destoff);
726		if (ret)
727			return ret;
728		/*
729		 * We may have truncated the last block if the inode's size is
730		 * not sector size aligned, so we need to wait for writeback to
731		 * complete before proceeding further, otherwise we can race
732		 * with cloning and attempt to increment a reference to an
733		 * extent that no longer exists (writeback completed right after
734		 * we found the previous extent covering eof and before we
735		 * attempted to increment its reference count).
736		 */
737		ret = btrfs_wait_ordered_range(BTRFS_I(inode), wb_start,
738					       destoff - wb_start);
739		if (ret)
740			return ret;
741	}
742
743	/*
744	 * Lock destination range to serialize with concurrent readahead(), and
745	 * we are safe from concurrency with relocation of source extents
746	 * because we have already locked the inode's i_mmap_lock in exclusive
747	 * mode.
748	 */
749	end = destoff + len - 1;
750	lock_extent(&BTRFS_I(inode)->io_tree, destoff, end, &cached_state);
751	ret = btrfs_clone(src, inode, off, olen, len, destoff, 0);
752	unlock_extent(&BTRFS_I(inode)->io_tree, destoff, end, &cached_state);
753
754	/*
755	 * We may have copied an inline extent into a page of the destination
756	 * range, so wait for writeback to complete before truncating pages
757	 * from the page cache. This is a rare case.
758	 */
759	wb_ret = btrfs_wait_ordered_range(BTRFS_I(inode), destoff, len);
760	ret = ret ? ret : wb_ret;
761	/*
762	 * Truncate page cache pages so that future reads will see the cloned
763	 * data immediately and not the previous data.
764	 */
765	truncate_inode_pages_range(&inode->i_data,
766				round_down(destoff, PAGE_SIZE),
767				round_up(destoff + len, PAGE_SIZE) - 1);
768
769	btrfs_btree_balance_dirty(fs_info);
770
771	return ret;
772}
773
774static int btrfs_remap_file_range_prep(struct file *file_in, loff_t pos_in,
775				       struct file *file_out, loff_t pos_out,
776				       loff_t *len, unsigned int remap_flags)
777{
778	struct inode *inode_in = file_inode(file_in);
779	struct inode *inode_out = file_inode(file_out);
780	u64 bs = BTRFS_I(inode_out)->root->fs_info->sectorsize;
 
781	u64 wb_len;
782	int ret;
783
784	if (!(remap_flags & REMAP_FILE_DEDUP)) {
785		struct btrfs_root *root_out = BTRFS_I(inode_out)->root;
786
787		if (btrfs_root_readonly(root_out))
788			return -EROFS;
789
790		ASSERT(inode_in->i_sb == inode_out->i_sb);
 
 
791	}
792
793	/* Don't make the dst file partly checksummed */
794	if ((BTRFS_I(inode_in)->flags & BTRFS_INODE_NODATASUM) !=
795	    (BTRFS_I(inode_out)->flags & BTRFS_INODE_NODATASUM)) {
796		return -EINVAL;
797	}
798
799	/*
800	 * Now that the inodes are locked, we need to start writeback ourselves
801	 * and can not rely on the writeback from the VFS's generic helper
802	 * generic_remap_file_range_prep() because:
803	 *
804	 * 1) For compression we must call filemap_fdatawrite_range() range
805	 *    twice (btrfs_fdatawrite_range() does it for us), and the generic
806	 *    helper only calls it once;
807	 *
808	 * 2) filemap_fdatawrite_range(), called by the generic helper only
809	 *    waits for the writeback to complete, i.e. for IO to be done, and
810	 *    not for the ordered extents to complete. We need to wait for them
811	 *    to complete so that new file extent items are in the fs tree.
812	 */
813	if (*len == 0 && !(remap_flags & REMAP_FILE_DEDUP))
814		wb_len = ALIGN(inode_in->i_size, bs) - ALIGN_DOWN(pos_in, bs);
815	else
816		wb_len = ALIGN(*len, bs);
817
818	/*
 
 
 
 
 
 
 
 
 
819	 * Workaround to make sure NOCOW buffered write reach disk as NOCOW.
820	 *
821	 * Btrfs' back references do not have a block level granularity, they
822	 * work at the whole extent level.
823	 * NOCOW buffered write without data space reserved may not be able
824	 * to fall back to CoW due to lack of data space, thus could cause
825	 * data loss.
826	 *
827	 * Here we take a shortcut by flushing the whole inode, so that all
828	 * nocow write should reach disk as nocow before we increase the
829	 * reference of the extent. We could do better by only flushing NOCOW
830	 * data, but that needs extra accounting.
831	 *
832	 * Also we don't need to check ASYNC_EXTENT, as async extent will be
833	 * CoWed anyway, not affecting nocow part.
834	 */
835	ret = filemap_flush(inode_in->i_mapping);
836	if (ret < 0)
837		return ret;
838
839	ret = btrfs_wait_ordered_range(BTRFS_I(inode_in), ALIGN_DOWN(pos_in, bs),
840				       wb_len);
841	if (ret < 0)
842		return ret;
843	ret = btrfs_wait_ordered_range(BTRFS_I(inode_out), ALIGN_DOWN(pos_out, bs),
844				       wb_len);
845	if (ret < 0)
846		return ret;
847
848	return generic_remap_file_range_prep(file_in, pos_in, file_out, pos_out,
849					    len, remap_flags);
850}
851
852static bool file_sync_write(const struct file *file)
853{
854	if (file->f_flags & (__O_SYNC | O_DSYNC))
855		return true;
856	if (IS_SYNC(file_inode(file)))
857		return true;
858
859	return false;
860}
861
862loff_t btrfs_remap_file_range(struct file *src_file, loff_t off,
863		struct file *dst_file, loff_t destoff, loff_t len,
864		unsigned int remap_flags)
865{
866	struct inode *src_inode = file_inode(src_file);
867	struct inode *dst_inode = file_inode(dst_file);
868	bool same_inode = dst_inode == src_inode;
869	int ret;
870
871	if (remap_flags & ~(REMAP_FILE_DEDUP | REMAP_FILE_ADVISORY))
872		return -EINVAL;
873
874	if (same_inode) {
875		btrfs_inode_lock(BTRFS_I(src_inode), BTRFS_ILOCK_MMAP);
876	} else {
877		lock_two_nondirectories(src_inode, dst_inode);
878		btrfs_double_mmap_lock(src_inode, dst_inode);
879	}
880
881	ret = btrfs_remap_file_range_prep(src_file, off, dst_file, destoff,
882					  &len, remap_flags);
883	if (ret < 0 || len == 0)
884		goto out_unlock;
885
886	if (remap_flags & REMAP_FILE_DEDUP)
887		ret = btrfs_extent_same(src_inode, off, len, dst_inode, destoff);
888	else
889		ret = btrfs_clone_files(dst_file, src_file, off, len, destoff);
890
891out_unlock:
892	if (same_inode) {
893		btrfs_inode_unlock(BTRFS_I(src_inode), BTRFS_ILOCK_MMAP);
894	} else {
895		btrfs_double_mmap_unlock(src_inode, dst_inode);
896		unlock_two_nondirectories(src_inode, dst_inode);
897	}
898
899	/*
900	 * If either the source or the destination file was opened with O_SYNC,
901	 * O_DSYNC or has the S_SYNC attribute, fsync both the destination and
902	 * source files/ranges, so that after a successful return (0) followed
903	 * by a power failure results in the reflinked data to be readable from
904	 * both files/ranges.
905	 */
906	if (ret == 0 && len > 0 &&
907	    (file_sync_write(src_file) || file_sync_write(dst_file))) {
908		ret = btrfs_sync_file(src_file, off, off + len - 1, 0);
909		if (ret == 0)
910			ret = btrfs_sync_file(dst_file, destoff,
911					      destoff + len - 1, 0);
912	}
913
914	return ret < 0 ? ret : len;
915}
v5.14.15
  1// SPDX-License-Identifier: GPL-2.0
  2
  3#include <linux/blkdev.h>
  4#include <linux/iversion.h>
 
 
 
  5#include "compression.h"
  6#include "ctree.h"
  7#include "delalloc-space.h"
 
  8#include "reflink.h"
  9#include "transaction.h"
 10#include "subpage.h"
 
 
 
 
 11
 12#define BTRFS_MAX_DEDUPE_LEN	SZ_16M
 13
 14static int clone_finish_inode_update(struct btrfs_trans_handle *trans,
 15				     struct inode *inode,
 16				     u64 endoff,
 17				     const u64 destoff,
 18				     const u64 olen,
 19				     int no_time_update)
 20{
 21	struct btrfs_root *root = BTRFS_I(inode)->root;
 22	int ret;
 23
 24	inode_inc_iversion(inode);
 25	if (!no_time_update)
 26		inode->i_mtime = inode->i_ctime = current_time(inode);
 
 27	/*
 28	 * We round up to the block size at eof when determining which
 29	 * extents to clone above, but shouldn't round up the file size.
 30	 */
 31	if (endoff > destoff + olen)
 32		endoff = destoff + olen;
 33	if (endoff > inode->i_size) {
 34		i_size_write(inode, endoff);
 35		btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0);
 36	}
 37
 38	ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
 39	if (ret) {
 40		btrfs_abort_transaction(trans, ret);
 41		btrfs_end_transaction(trans);
 42		goto out;
 43	}
 44	ret = btrfs_end_transaction(trans);
 45out:
 46	return ret;
 47}
 48
 49static int copy_inline_to_page(struct btrfs_inode *inode,
 50			       const u64 file_offset,
 51			       char *inline_data,
 52			       const u64 size,
 53			       const u64 datal,
 54			       const u8 comp_type)
 55{
 56	struct btrfs_fs_info *fs_info = inode->root->fs_info;
 57	const u32 block_size = fs_info->sectorsize;
 58	const u64 range_end = file_offset + block_size - 1;
 59	const size_t inline_size = size - btrfs_file_extent_calc_inline_size(0);
 60	char *data_start = inline_data + btrfs_file_extent_calc_inline_size(0);
 61	struct extent_changeset *data_reserved = NULL;
 62	struct page *page = NULL;
 63	struct address_space *mapping = inode->vfs_inode.i_mapping;
 64	int ret;
 65
 66	ASSERT(IS_ALIGNED(file_offset, block_size));
 67
 68	/*
 69	 * We have flushed and locked the ranges of the source and destination
 70	 * inodes, we also have locked the inodes, so we are safe to do a
 71	 * reservation here. Also we must not do the reservation while holding
 72	 * a transaction open, otherwise we would deadlock.
 73	 */
 74	ret = btrfs_delalloc_reserve_space(inode, &data_reserved, file_offset,
 75					   block_size);
 76	if (ret)
 77		goto out;
 78
 79	page = find_or_create_page(mapping, file_offset >> PAGE_SHIFT,
 80				   btrfs_alloc_write_mask(mapping));
 81	if (!page) {
 
 82		ret = -ENOMEM;
 83		goto out_unlock;
 84	}
 85
 86	ret = set_page_extent_mapped(page);
 87	if (ret < 0)
 88		goto out_unlock;
 89
 90	clear_extent_bit(&inode->io_tree, file_offset, range_end,
 91			 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
 92			 0, 0, NULL);
 93	ret = btrfs_set_extent_delalloc(inode, file_offset, range_end, 0, NULL);
 94	if (ret)
 95		goto out_unlock;
 96
 97	/*
 98	 * After dirtying the page our caller will need to start a transaction,
 99	 * and if we are low on metadata free space, that can cause flushing of
100	 * delalloc for all inodes in order to get metadata space released.
101	 * However we are holding the range locked for the whole duration of
102	 * the clone/dedupe operation, so we may deadlock if that happens and no
103	 * other task releases enough space. So mark this inode as not being
104	 * possible to flush to avoid such deadlock. We will clear that flag
105	 * when we finish cloning all extents, since a transaction is started
106	 * after finding each extent to clone.
107	 */
108	set_bit(BTRFS_INODE_NO_DELALLOC_FLUSH, &inode->runtime_flags);
109
110	if (comp_type == BTRFS_COMPRESS_NONE) {
111		memcpy_to_page(page, offset_in_page(file_offset), data_start,
112			       datal);
113		flush_dcache_page(page);
114	} else {
115		ret = btrfs_decompress(comp_type, data_start, page,
116				       offset_in_page(file_offset),
117				       inline_size, datal);
118		if (ret)
119			goto out_unlock;
120		flush_dcache_page(page);
121	}
122
123	/*
124	 * If our inline data is smaller then the block/page size, then the
125	 * remaining of the block/page is equivalent to zeroes. We had something
126	 * like the following done:
127	 *
128	 * $ xfs_io -f -c "pwrite -S 0xab 0 500" file
129	 * $ sync  # (or fsync)
130	 * $ xfs_io -c "falloc 0 4K" file
131	 * $ xfs_io -c "pwrite -S 0xcd 4K 4K"
132	 *
133	 * So what's in the range [500, 4095] corresponds to zeroes.
134	 */
135	if (datal < block_size) {
136		memzero_page(page, datal, block_size - datal);
137		flush_dcache_page(page);
138	}
139
140	btrfs_page_set_uptodate(fs_info, page, file_offset, block_size);
141	ClearPageChecked(page);
142	btrfs_page_set_dirty(fs_info, page, file_offset, block_size);
143out_unlock:
144	if (page) {
145		unlock_page(page);
146		put_page(page);
147	}
148	if (ret)
149		btrfs_delalloc_release_space(inode, data_reserved, file_offset,
150					     block_size, true);
151	btrfs_delalloc_release_extents(inode, block_size);
152out:
153	extent_changeset_free(data_reserved);
154
155	return ret;
156}
157
158/*
159 * Deal with cloning of inline extents. We try to copy the inline extent from
160 * the source inode to destination inode when possible. When not possible we
161 * copy the inline extent's data into the respective page of the inode.
162 */
163static int clone_copy_inline_extent(struct inode *dst,
164				    struct btrfs_path *path,
165				    struct btrfs_key *new_key,
166				    const u64 drop_start,
167				    const u64 datal,
168				    const u64 size,
169				    const u8 comp_type,
170				    char *inline_data,
171				    struct btrfs_trans_handle **trans_out)
172{
173	struct btrfs_fs_info *fs_info = btrfs_sb(dst->i_sb);
174	struct btrfs_root *root = BTRFS_I(dst)->root;
175	const u64 aligned_end = ALIGN(new_key->offset + datal,
176				      fs_info->sectorsize);
177	struct btrfs_trans_handle *trans = NULL;
178	struct btrfs_drop_extents_args drop_args = { 0 };
179	int ret;
180	struct btrfs_key key;
181
182	if (new_key->offset > 0) {
183		ret = copy_inline_to_page(BTRFS_I(dst), new_key->offset,
184					  inline_data, size, datal, comp_type);
185		goto out;
186	}
187
188	key.objectid = btrfs_ino(BTRFS_I(dst));
189	key.type = BTRFS_EXTENT_DATA_KEY;
190	key.offset = 0;
191	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
192	if (ret < 0) {
193		return ret;
194	} else if (ret > 0) {
195		if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
196			ret = btrfs_next_leaf(root, path);
197			if (ret < 0)
198				return ret;
199			else if (ret > 0)
200				goto copy_inline_extent;
201		}
202		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
203		if (key.objectid == btrfs_ino(BTRFS_I(dst)) &&
204		    key.type == BTRFS_EXTENT_DATA_KEY) {
205			/*
206			 * There's an implicit hole at file offset 0, copy the
207			 * inline extent's data to the page.
208			 */
209			ASSERT(key.offset > 0);
210			goto copy_to_page;
211		}
212	} else if (i_size_read(dst) <= datal) {
213		struct btrfs_file_extent_item *ei;
214
215		ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
216				    struct btrfs_file_extent_item);
217		/*
218		 * If it's an inline extent replace it with the source inline
219		 * extent, otherwise copy the source inline extent data into
220		 * the respective page at the destination inode.
221		 */
222		if (btrfs_file_extent_type(path->nodes[0], ei) ==
223		    BTRFS_FILE_EXTENT_INLINE)
224			goto copy_inline_extent;
225
226		goto copy_to_page;
227	}
228
229copy_inline_extent:
230	/*
231	 * We have no extent items, or we have an extent at offset 0 which may
232	 * or may not be inlined. All these cases are dealt the same way.
233	 */
234	if (i_size_read(dst) > datal) {
235		/*
236		 * At the destination offset 0 we have either a hole, a regular
237		 * extent or an inline extent larger then the one we want to
238		 * clone. Deal with all these cases by copying the inline extent
239		 * data into the respective page at the destination inode.
240		 */
241		goto copy_to_page;
242	}
243
244	/*
245	 * Release path before starting a new transaction so we don't hold locks
246	 * that would confuse lockdep.
247	 */
248	btrfs_release_path(path);
249	/*
250	 * If we end up here it means were copy the inline extent into a leaf
251	 * of the destination inode. We know we will drop or adjust at most one
252	 * extent item in the destination root.
253	 *
254	 * 1 unit - adjusting old extent (we may have to split it)
255	 * 1 unit - add new extent
256	 * 1 unit - inode update
257	 */
258	trans = btrfs_start_transaction(root, 3);
259	if (IS_ERR(trans)) {
260		ret = PTR_ERR(trans);
261		trans = NULL;
262		goto out;
263	}
264	drop_args.path = path;
265	drop_args.start = drop_start;
266	drop_args.end = aligned_end;
267	drop_args.drop_cache = true;
268	ret = btrfs_drop_extents(trans, root, BTRFS_I(dst), &drop_args);
269	if (ret)
270		goto out;
271	ret = btrfs_insert_empty_item(trans, root, path, new_key, size);
272	if (ret)
273		goto out;
274
275	write_extent_buffer(path->nodes[0], inline_data,
276			    btrfs_item_ptr_offset(path->nodes[0],
277						  path->slots[0]),
278			    size);
279	btrfs_update_inode_bytes(BTRFS_I(dst), datal, drop_args.bytes_found);
280	set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(dst)->runtime_flags);
281	ret = btrfs_inode_set_file_extent_range(BTRFS_I(dst), 0, aligned_end);
282out:
283	if (!ret && !trans) {
284		/*
285		 * No transaction here means we copied the inline extent into a
286		 * page of the destination inode.
287		 *
288		 * 1 unit to update inode item
289		 */
290		trans = btrfs_start_transaction(root, 1);
291		if (IS_ERR(trans)) {
292			ret = PTR_ERR(trans);
293			trans = NULL;
294		}
295	}
296	if (ret && trans) {
297		btrfs_abort_transaction(trans, ret);
298		btrfs_end_transaction(trans);
299	}
300	if (!ret)
301		*trans_out = trans;
302
303	return ret;
304
305copy_to_page:
306	/*
307	 * Release our path because we don't need it anymore and also because
308	 * copy_inline_to_page() needs to reserve data and metadata, which may
309	 * need to flush delalloc when we are low on available space and
310	 * therefore cause a deadlock if writeback of an inline extent needs to
311	 * write to the same leaf or an ordered extent completion needs to write
312	 * to the same leaf.
313	 */
314	btrfs_release_path(path);
315
316	ret = copy_inline_to_page(BTRFS_I(dst), new_key->offset,
317				  inline_data, size, datal, comp_type);
318	goto out;
319}
320
321/**
322 * btrfs_clone() - clone a range from inode file to another
323 *
324 * @src: Inode to clone from
325 * @inode: Inode to clone to
326 * @off: Offset within source to start clone from
327 * @olen: Original length, passed by user, of range to clone
328 * @olen_aligned: Block-aligned value of olen
329 * @destoff: Offset within @inode to start clone
330 * @no_time_update: Whether to update mtime/ctime on the target inode
331 */
332static int btrfs_clone(struct inode *src, struct inode *inode,
333		       const u64 off, const u64 olen, const u64 olen_aligned,
334		       const u64 destoff, int no_time_update)
335{
336	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
337	struct btrfs_path *path = NULL;
338	struct extent_buffer *leaf;
339	struct btrfs_trans_handle *trans;
340	char *buf = NULL;
341	struct btrfs_key key;
342	u32 nritems;
343	int slot;
344	int ret;
345	const u64 len = olen_aligned;
346	u64 last_dest_end = destoff;
 
347
348	ret = -ENOMEM;
349	buf = kvmalloc(fs_info->nodesize, GFP_KERNEL);
350	if (!buf)
351		return ret;
352
353	path = btrfs_alloc_path();
354	if (!path) {
355		kvfree(buf);
356		return ret;
357	}
358
359	path->reada = READA_FORWARD;
360	/* Clone data */
361	key.objectid = btrfs_ino(BTRFS_I(src));
362	key.type = BTRFS_EXTENT_DATA_KEY;
363	key.offset = off;
364
365	while (1) {
366		u64 next_key_min_offset = key.offset + 1;
367		struct btrfs_file_extent_item *extent;
368		u64 extent_gen;
369		int type;
370		u32 size;
371		struct btrfs_key new_key;
372		u64 disko = 0, diskl = 0;
373		u64 datao = 0, datal = 0;
374		u8 comp;
375		u64 drop_start;
376
377		/* Note the key will change type as we walk through the tree */
378		ret = btrfs_search_slot(NULL, BTRFS_I(src)->root, &key, path,
379				0, 0);
380		if (ret < 0)
381			goto out;
382		/*
383		 * First search, if no extent item that starts at offset off was
384		 * found but the previous item is an extent item, it's possible
385		 * it might overlap our target range, therefore process it.
386		 */
387		if (key.offset == off && ret > 0 && path->slots[0] > 0) {
388			btrfs_item_key_to_cpu(path->nodes[0], &key,
389					      path->slots[0] - 1);
390			if (key.type == BTRFS_EXTENT_DATA_KEY)
391				path->slots[0]--;
392		}
393
394		nritems = btrfs_header_nritems(path->nodes[0]);
395process_slot:
396		if (path->slots[0] >= nritems) {
397			ret = btrfs_next_leaf(BTRFS_I(src)->root, path);
398			if (ret < 0)
399				goto out;
400			if (ret > 0)
401				break;
402			nritems = btrfs_header_nritems(path->nodes[0]);
403		}
404		leaf = path->nodes[0];
405		slot = path->slots[0];
406
407		btrfs_item_key_to_cpu(leaf, &key, slot);
408		if (key.type > BTRFS_EXTENT_DATA_KEY ||
409		    key.objectid != btrfs_ino(BTRFS_I(src)))
410			break;
411
412		ASSERT(key.type == BTRFS_EXTENT_DATA_KEY);
413
414		extent = btrfs_item_ptr(leaf, slot,
415					struct btrfs_file_extent_item);
416		extent_gen = btrfs_file_extent_generation(leaf, extent);
417		comp = btrfs_file_extent_compression(leaf, extent);
418		type = btrfs_file_extent_type(leaf, extent);
419		if (type == BTRFS_FILE_EXTENT_REG ||
420		    type == BTRFS_FILE_EXTENT_PREALLOC) {
421			disko = btrfs_file_extent_disk_bytenr(leaf, extent);
422			diskl = btrfs_file_extent_disk_num_bytes(leaf, extent);
423			datao = btrfs_file_extent_offset(leaf, extent);
424			datal = btrfs_file_extent_num_bytes(leaf, extent);
425		} else if (type == BTRFS_FILE_EXTENT_INLINE) {
426			/* Take upper bound, may be compressed */
427			datal = btrfs_file_extent_ram_bytes(leaf, extent);
428		}
429
430		/*
431		 * The first search might have left us at an extent item that
432		 * ends before our target range's start, can happen if we have
433		 * holes and NO_HOLES feature enabled.
 
 
 
 
 
 
434		 */
435		if (key.offset + datal <= off) {
436			path->slots[0]++;
437			goto process_slot;
438		} else if (key.offset >= off + len) {
439			break;
440		}
441		next_key_min_offset = key.offset + datal;
442		size = btrfs_item_size_nr(leaf, slot);
 
443		read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf, slot),
444				   size);
445
446		btrfs_release_path(path);
447
448		memcpy(&new_key, &key, sizeof(new_key));
449		new_key.objectid = btrfs_ino(BTRFS_I(inode));
450		if (off <= key.offset)
451			new_key.offset = key.offset + destoff - off;
452		else
453			new_key.offset = destoff;
454
455		/*
456		 * Deal with a hole that doesn't have an extent item that
457		 * represents it (NO_HOLES feature enabled).
458		 * This hole is either in the middle of the cloning range or at
459		 * the beginning (fully overlaps it or partially overlaps it).
460		 */
461		if (new_key.offset != last_dest_end)
462			drop_start = last_dest_end;
463		else
464			drop_start = new_key.offset;
465
466		if (type == BTRFS_FILE_EXTENT_REG ||
467		    type == BTRFS_FILE_EXTENT_PREALLOC) {
468			struct btrfs_replace_extent_info clone_info;
469
470			/*
471			 *    a  | --- range to clone ---|  b
472			 * | ------------- extent ------------- |
473			 */
474
475			/* Subtract range b */
476			if (key.offset + datal > off + len)
477				datal = off + len - key.offset;
478
479			/* Subtract range a */
480			if (off > key.offset) {
481				datao += off - key.offset;
482				datal -= off - key.offset;
483			}
484
485			clone_info.disk_offset = disko;
486			clone_info.disk_len = diskl;
487			clone_info.data_offset = datao;
488			clone_info.data_len = datal;
489			clone_info.file_offset = new_key.offset;
490			clone_info.extent_buf = buf;
491			clone_info.is_new_extent = false;
 
492			ret = btrfs_replace_file_extents(BTRFS_I(inode), path,
493					drop_start, new_key.offset + datal - 1,
494					&clone_info, &trans);
495			if (ret)
496				goto out;
497		} else if (type == BTRFS_FILE_EXTENT_INLINE) {
 
498			/*
499			 * Inline extents always have to start at file offset 0
500			 * and can never be bigger then the sector size. We can
501			 * never clone only parts of an inline extent, since all
502			 * reflink operations must start at a sector size aligned
503			 * offset, and the length must be aligned too or end at
504			 * the i_size (which implies the whole inlined data).
505			 */
506			ASSERT(key.offset == 0);
507			ASSERT(datal <= fs_info->sectorsize);
508			if (key.offset != 0 || datal > fs_info->sectorsize)
509				return -EUCLEAN;
 
 
 
 
510
511			ret = clone_copy_inline_extent(inode, path, &new_key,
512						       drop_start, datal, size,
513						       comp, buf, &trans);
514			if (ret)
515				goto out;
516		}
517
518		btrfs_release_path(path);
519
520		/*
521		 * If this is a new extent update the last_reflink_trans of both
522		 * inodes. This is used by fsync to make sure it does not log
523		 * multiple checksum items with overlapping ranges. For older
524		 * extents we don't need to do it since inode logging skips the
525		 * checksums for older extents. Also ignore holes and inline
526		 * extents because they don't have checksums in the csum tree.
 
 
 
 
 
527		 */
528		if (extent_gen == trans->transid && disko > 0) {
529			BTRFS_I(src)->last_reflink_trans = trans->transid;
530			BTRFS_I(inode)->last_reflink_trans = trans->transid;
531		}
532
533		last_dest_end = ALIGN(new_key.offset + datal,
534				      fs_info->sectorsize);
535		ret = clone_finish_inode_update(trans, inode, last_dest_end,
536						destoff, olen, no_time_update);
537		if (ret)
538			goto out;
539		if (new_key.offset + datal >= destoff + len)
540			break;
541
542		btrfs_release_path(path);
543		key.offset = next_key_min_offset;
544
545		if (fatal_signal_pending(current)) {
546			ret = -EINTR;
547			goto out;
548		}
549
550		cond_resched();
551	}
552	ret = 0;
553
554	if (last_dest_end < destoff + len) {
555		/*
556		 * We have an implicit hole that fully or partially overlaps our
557		 * cloning range at its end. This means that we either have the
558		 * NO_HOLES feature enabled or the implicit hole happened due to
559		 * mixing buffered and direct IO writes against this file.
560		 */
561		btrfs_release_path(path);
562
563		/*
564		 * When using NO_HOLES and we are cloning a range that covers
565		 * only a hole (no extents) into a range beyond the current
566		 * i_size, punching a hole in the target range will not create
567		 * an extent map defining a hole, because the range starts at or
568		 * beyond current i_size. If the file previously had an i_size
569		 * greater than the new i_size set by this clone operation, we
570		 * need to make sure the next fsync is a full fsync, so that it
571		 * detects and logs a hole covering a range from the current
572		 * i_size to the new i_size. If the clone range covers extents,
573		 * besides a hole, then we know the full sync flag was already
574		 * set by previous calls to btrfs_replace_file_extents() that
575		 * replaced file extent items.
576		 */
577		if (last_dest_end >= i_size_read(inode))
578			set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
579				&BTRFS_I(inode)->runtime_flags);
580
581		ret = btrfs_replace_file_extents(BTRFS_I(inode), path,
582				last_dest_end, destoff + len - 1, NULL, &trans);
583		if (ret)
584			goto out;
585
586		ret = clone_finish_inode_update(trans, inode, destoff + len,
587						destoff, olen, no_time_update);
588	}
589
590out:
591	btrfs_free_path(path);
592	kvfree(buf);
593	clear_bit(BTRFS_INODE_NO_DELALLOC_FLUSH, &BTRFS_I(inode)->runtime_flags);
594
595	return ret;
596}
597
598static void btrfs_double_extent_unlock(struct inode *inode1, u64 loff1,
599				       struct inode *inode2, u64 loff2, u64 len)
600{
601	unlock_extent(&BTRFS_I(inode1)->io_tree, loff1, loff1 + len - 1);
602	unlock_extent(&BTRFS_I(inode2)->io_tree, loff2, loff2 + len - 1);
603}
604
605static void btrfs_double_extent_lock(struct inode *inode1, u64 loff1,
606				     struct inode *inode2, u64 loff2, u64 len)
607{
608	if (inode1 < inode2) {
609		swap(inode1, inode2);
610		swap(loff1, loff2);
611	} else if (inode1 == inode2 && loff2 < loff1) {
612		swap(loff1, loff2);
613	}
614	lock_extent(&BTRFS_I(inode1)->io_tree, loff1, loff1 + len - 1);
615	lock_extent(&BTRFS_I(inode2)->io_tree, loff2, loff2 + len - 1);
616}
617
618static void btrfs_double_mmap_lock(struct inode *inode1, struct inode *inode2)
619{
620	if (inode1 < inode2)
621		swap(inode1, inode2);
622	down_write(&BTRFS_I(inode1)->i_mmap_lock);
623	down_write_nested(&BTRFS_I(inode2)->i_mmap_lock, SINGLE_DEPTH_NESTING);
624}
625
626static void btrfs_double_mmap_unlock(struct inode *inode1, struct inode *inode2)
627{
628	up_write(&BTRFS_I(inode1)->i_mmap_lock);
629	up_write(&BTRFS_I(inode2)->i_mmap_lock);
630}
631
632static int btrfs_extent_same_range(struct inode *src, u64 loff, u64 len,
633				   struct inode *dst, u64 dst_loff)
634{
635	const u64 bs = BTRFS_I(src)->root->fs_info->sb->s_blocksize;
 
 
 
636	int ret;
637
638	/*
639	 * Lock destination range to serialize with concurrent readpages() and
640	 * source range to serialize with relocation.
 
 
641	 */
642	btrfs_double_extent_lock(src, loff, dst, dst_loff, len);
643	ret = btrfs_clone(src, dst, loff, len, ALIGN(len, bs), dst_loff, 1);
644	btrfs_double_extent_unlock(src, loff, dst, dst_loff, len);
 
 
645
646	return ret;
647}
648
649static int btrfs_extent_same(struct inode *src, u64 loff, u64 olen,
650			     struct inode *dst, u64 dst_loff)
651{
652	int ret;
653	u64 i, tail_len, chunk_count;
654	struct btrfs_root *root_dst = BTRFS_I(dst)->root;
655
656	spin_lock(&root_dst->root_item_lock);
657	if (root_dst->send_in_progress) {
658		btrfs_warn_rl(root_dst->fs_info,
659"cannot deduplicate to root %llu while send operations are using it (%d in progress)",
660			      root_dst->root_key.objectid,
661			      root_dst->send_in_progress);
662		spin_unlock(&root_dst->root_item_lock);
663		return -EAGAIN;
664	}
665	root_dst->dedupe_in_progress++;
666	spin_unlock(&root_dst->root_item_lock);
667
668	tail_len = olen % BTRFS_MAX_DEDUPE_LEN;
669	chunk_count = div_u64(olen, BTRFS_MAX_DEDUPE_LEN);
670
671	for (i = 0; i < chunk_count; i++) {
672		ret = btrfs_extent_same_range(src, loff, BTRFS_MAX_DEDUPE_LEN,
673					      dst, dst_loff);
674		if (ret)
675			goto out;
676
677		loff += BTRFS_MAX_DEDUPE_LEN;
678		dst_loff += BTRFS_MAX_DEDUPE_LEN;
679	}
680
681	if (tail_len > 0)
682		ret = btrfs_extent_same_range(src, loff, tail_len, dst, dst_loff);
683out:
684	spin_lock(&root_dst->root_item_lock);
685	root_dst->dedupe_in_progress--;
686	spin_unlock(&root_dst->root_item_lock);
687
688	return ret;
689}
690
691static noinline int btrfs_clone_files(struct file *file, struct file *file_src,
692					u64 off, u64 olen, u64 destoff)
693{
 
694	struct inode *inode = file_inode(file);
695	struct inode *src = file_inode(file_src);
696	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
697	int ret;
698	int wb_ret;
699	u64 len = olen;
700	u64 bs = fs_info->sb->s_blocksize;
 
701
702	/*
703	 * VFS's generic_remap_file_range_prep() protects us from cloning the
704	 * eof block into the middle of a file, which would result in corruption
705	 * if the file size is not blocksize aligned. So we don't need to check
706	 * for that case here.
707	 */
708	if (off + len == src->i_size)
709		len = ALIGN(src->i_size, bs) - off;
710
711	if (destoff > inode->i_size) {
712		const u64 wb_start = ALIGN_DOWN(inode->i_size, bs);
713
714		ret = btrfs_cont_expand(BTRFS_I(inode), inode->i_size, destoff);
715		if (ret)
716			return ret;
717		/*
718		 * We may have truncated the last block if the inode's size is
719		 * not sector size aligned, so we need to wait for writeback to
720		 * complete before proceeding further, otherwise we can race
721		 * with cloning and attempt to increment a reference to an
722		 * extent that no longer exists (writeback completed right after
723		 * we found the previous extent covering eof and before we
724		 * attempted to increment its reference count).
725		 */
726		ret = btrfs_wait_ordered_range(inode, wb_start,
727					       destoff - wb_start);
728		if (ret)
729			return ret;
730	}
731
732	/*
733	 * Lock destination range to serialize with concurrent readpages() and
734	 * source range to serialize with relocation.
 
 
735	 */
736	btrfs_double_extent_lock(src, off, inode, destoff, len);
 
737	ret = btrfs_clone(src, inode, off, olen, len, destoff, 0);
738	btrfs_double_extent_unlock(src, off, inode, destoff, len);
739
740	/*
741	 * We may have copied an inline extent into a page of the destination
742	 * range, so wait for writeback to complete before truncating pages
743	 * from the page cache. This is a rare case.
744	 */
745	wb_ret = btrfs_wait_ordered_range(inode, destoff, len);
746	ret = ret ? ret : wb_ret;
747	/*
748	 * Truncate page cache pages so that future reads will see the cloned
749	 * data immediately and not the previous data.
750	 */
751	truncate_inode_pages_range(&inode->i_data,
752				round_down(destoff, PAGE_SIZE),
753				round_up(destoff + len, PAGE_SIZE) - 1);
754
 
 
755	return ret;
756}
757
758static int btrfs_remap_file_range_prep(struct file *file_in, loff_t pos_in,
759				       struct file *file_out, loff_t pos_out,
760				       loff_t *len, unsigned int remap_flags)
761{
762	struct inode *inode_in = file_inode(file_in);
763	struct inode *inode_out = file_inode(file_out);
764	u64 bs = BTRFS_I(inode_out)->root->fs_info->sb->s_blocksize;
765	bool same_inode = inode_out == inode_in;
766	u64 wb_len;
767	int ret;
768
769	if (!(remap_flags & REMAP_FILE_DEDUP)) {
770		struct btrfs_root *root_out = BTRFS_I(inode_out)->root;
771
772		if (btrfs_root_readonly(root_out))
773			return -EROFS;
774
775		if (file_in->f_path.mnt != file_out->f_path.mnt ||
776		    inode_in->i_sb != inode_out->i_sb)
777			return -EXDEV;
778	}
779
780	/* Don't make the dst file partly checksummed */
781	if ((BTRFS_I(inode_in)->flags & BTRFS_INODE_NODATASUM) !=
782	    (BTRFS_I(inode_out)->flags & BTRFS_INODE_NODATASUM)) {
783		return -EINVAL;
784	}
785
786	/*
787	 * Now that the inodes are locked, we need to start writeback ourselves
788	 * and can not rely on the writeback from the VFS's generic helper
789	 * generic_remap_file_range_prep() because:
790	 *
791	 * 1) For compression we must call filemap_fdatawrite_range() range
792	 *    twice (btrfs_fdatawrite_range() does it for us), and the generic
793	 *    helper only calls it once;
794	 *
795	 * 2) filemap_fdatawrite_range(), called by the generic helper only
796	 *    waits for the writeback to complete, i.e. for IO to be done, and
797	 *    not for the ordered extents to complete. We need to wait for them
798	 *    to complete so that new file extent items are in the fs tree.
799	 */
800	if (*len == 0 && !(remap_flags & REMAP_FILE_DEDUP))
801		wb_len = ALIGN(inode_in->i_size, bs) - ALIGN_DOWN(pos_in, bs);
802	else
803		wb_len = ALIGN(*len, bs);
804
805	/*
806	 * Since we don't lock ranges, wait for ongoing lockless dio writes (as
807	 * any in progress could create its ordered extents after we wait for
808	 * existing ordered extents below).
809	 */
810	inode_dio_wait(inode_in);
811	if (!same_inode)
812		inode_dio_wait(inode_out);
813
814	/*
815	 * Workaround to make sure NOCOW buffered write reach disk as NOCOW.
816	 *
817	 * Btrfs' back references do not have a block level granularity, they
818	 * work at the whole extent level.
819	 * NOCOW buffered write without data space reserved may not be able
820	 * to fall back to CoW due to lack of data space, thus could cause
821	 * data loss.
822	 *
823	 * Here we take a shortcut by flushing the whole inode, so that all
824	 * nocow write should reach disk as nocow before we increase the
825	 * reference of the extent. We could do better by only flushing NOCOW
826	 * data, but that needs extra accounting.
827	 *
828	 * Also we don't need to check ASYNC_EXTENT, as async extent will be
829	 * CoWed anyway, not affecting nocow part.
830	 */
831	ret = filemap_flush(inode_in->i_mapping);
832	if (ret < 0)
833		return ret;
834
835	ret = btrfs_wait_ordered_range(inode_in, ALIGN_DOWN(pos_in, bs),
836				       wb_len);
837	if (ret < 0)
838		return ret;
839	ret = btrfs_wait_ordered_range(inode_out, ALIGN_DOWN(pos_out, bs),
840				       wb_len);
841	if (ret < 0)
842		return ret;
843
844	return generic_remap_file_range_prep(file_in, pos_in, file_out, pos_out,
845					    len, remap_flags);
846}
847
848static bool file_sync_write(const struct file *file)
849{
850	if (file->f_flags & (__O_SYNC | O_DSYNC))
851		return true;
852	if (IS_SYNC(file_inode(file)))
853		return true;
854
855	return false;
856}
857
858loff_t btrfs_remap_file_range(struct file *src_file, loff_t off,
859		struct file *dst_file, loff_t destoff, loff_t len,
860		unsigned int remap_flags)
861{
862	struct inode *src_inode = file_inode(src_file);
863	struct inode *dst_inode = file_inode(dst_file);
864	bool same_inode = dst_inode == src_inode;
865	int ret;
866
867	if (remap_flags & ~(REMAP_FILE_DEDUP | REMAP_FILE_ADVISORY))
868		return -EINVAL;
869
870	if (same_inode) {
871		btrfs_inode_lock(src_inode, BTRFS_ILOCK_MMAP);
872	} else {
873		lock_two_nondirectories(src_inode, dst_inode);
874		btrfs_double_mmap_lock(src_inode, dst_inode);
875	}
876
877	ret = btrfs_remap_file_range_prep(src_file, off, dst_file, destoff,
878					  &len, remap_flags);
879	if (ret < 0 || len == 0)
880		goto out_unlock;
881
882	if (remap_flags & REMAP_FILE_DEDUP)
883		ret = btrfs_extent_same(src_inode, off, len, dst_inode, destoff);
884	else
885		ret = btrfs_clone_files(dst_file, src_file, off, len, destoff);
886
887out_unlock:
888	if (same_inode) {
889		btrfs_inode_unlock(src_inode, BTRFS_ILOCK_MMAP);
890	} else {
891		btrfs_double_mmap_unlock(src_inode, dst_inode);
892		unlock_two_nondirectories(src_inode, dst_inode);
893	}
894
895	/*
896	 * If either the source or the destination file was opened with O_SYNC,
897	 * O_DSYNC or has the S_SYNC attribute, fsync both the destination and
898	 * source files/ranges, so that after a successful return (0) followed
899	 * by a power failure results in the reflinked data to be readable from
900	 * both files/ranges.
901	 */
902	if (ret == 0 && len > 0 &&
903	    (file_sync_write(src_file) || file_sync_write(dst_file))) {
904		ret = btrfs_sync_file(src_file, off, off + len - 1, 0);
905		if (ret == 0)
906			ret = btrfs_sync_file(dst_file, destoff,
907					      destoff + len - 1, 0);
908	}
909
910	return ret < 0 ? ret : len;
911}