Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * rtc-ds1307.c - RTC driver for some mostly-compatible I2C chips.
4 *
5 * Copyright (C) 2005 James Chapman (ds1337 core)
6 * Copyright (C) 2006 David Brownell
7 * Copyright (C) 2009 Matthias Fuchs (rx8025 support)
8 * Copyright (C) 2012 Bertrand Achard (nvram access fixes)
9 */
10
11#include <linux/bcd.h>
12#include <linux/i2c.h>
13#include <linux/init.h>
14#include <linux/kstrtox.h>
15#include <linux/mod_devicetable.h>
16#include <linux/module.h>
17#include <linux/property.h>
18#include <linux/rtc/ds1307.h>
19#include <linux/rtc.h>
20#include <linux/slab.h>
21#include <linux/string.h>
22#include <linux/hwmon.h>
23#include <linux/hwmon-sysfs.h>
24#include <linux/clk-provider.h>
25#include <linux/regmap.h>
26#include <linux/watchdog.h>
27
28/*
29 * We can't determine type by probing, but if we expect pre-Linux code
30 * to have set the chip up as a clock (turning on the oscillator and
31 * setting the date and time), Linux can ignore the non-clock features.
32 * That's a natural job for a factory or repair bench.
33 */
34enum ds_type {
35 unknown_ds_type, /* always first and 0 */
36 ds_1307,
37 ds_1308,
38 ds_1337,
39 ds_1338,
40 ds_1339,
41 ds_1340,
42 ds_1341,
43 ds_1388,
44 ds_3231,
45 m41t0,
46 m41t00,
47 m41t11,
48 mcp794xx,
49 rx_8025,
50 rx_8130,
51 last_ds_type /* always last */
52 /* rs5c372 too? different address... */
53};
54
55/* RTC registers don't differ much, except for the century flag */
56#define DS1307_REG_SECS 0x00 /* 00-59 */
57# define DS1307_BIT_CH 0x80
58# define DS1340_BIT_nEOSC 0x80
59# define MCP794XX_BIT_ST 0x80
60#define DS1307_REG_MIN 0x01 /* 00-59 */
61# define M41T0_BIT_OF 0x80
62#define DS1307_REG_HOUR 0x02 /* 00-23, or 1-12{am,pm} */
63# define DS1307_BIT_12HR 0x40 /* in REG_HOUR */
64# define DS1307_BIT_PM 0x20 /* in REG_HOUR */
65# define DS1340_BIT_CENTURY_EN 0x80 /* in REG_HOUR */
66# define DS1340_BIT_CENTURY 0x40 /* in REG_HOUR */
67#define DS1307_REG_WDAY 0x03 /* 01-07 */
68# define MCP794XX_BIT_OSCRUN BIT(5)
69# define MCP794XX_BIT_VBATEN 0x08
70#define DS1307_REG_MDAY 0x04 /* 01-31 */
71#define DS1307_REG_MONTH 0x05 /* 01-12 */
72# define DS1337_BIT_CENTURY 0x80 /* in REG_MONTH */
73#define DS1307_REG_YEAR 0x06 /* 00-99 */
74
75/*
76 * Other registers (control, status, alarms, trickle charge, NVRAM, etc)
77 * start at 7, and they differ a LOT. Only control and status matter for
78 * basic RTC date and time functionality; be careful using them.
79 */
80#define DS1307_REG_CONTROL 0x07 /* or ds1338 */
81# define DS1307_BIT_OUT 0x80
82# define DS1338_BIT_OSF 0x20
83# define DS1307_BIT_SQWE 0x10
84# define DS1307_BIT_RS1 0x02
85# define DS1307_BIT_RS0 0x01
86#define DS1337_REG_CONTROL 0x0e
87# define DS1337_BIT_nEOSC 0x80
88# define DS1339_BIT_BBSQI 0x20
89# define DS3231_BIT_BBSQW 0x40 /* same as BBSQI */
90# define DS1337_BIT_RS2 0x10
91# define DS1337_BIT_RS1 0x08
92# define DS1337_BIT_INTCN 0x04
93# define DS1337_BIT_A2IE 0x02
94# define DS1337_BIT_A1IE 0x01
95#define DS1340_REG_CONTROL 0x07
96# define DS1340_BIT_OUT 0x80
97# define DS1340_BIT_FT 0x40
98# define DS1340_BIT_CALIB_SIGN 0x20
99# define DS1340_M_CALIBRATION 0x1f
100#define DS1340_REG_FLAG 0x09
101# define DS1340_BIT_OSF 0x80
102#define DS1337_REG_STATUS 0x0f
103# define DS1337_BIT_OSF 0x80
104# define DS3231_BIT_EN32KHZ 0x08
105# define DS1337_BIT_A2I 0x02
106# define DS1337_BIT_A1I 0x01
107#define DS1339_REG_ALARM1_SECS 0x07
108
109#define DS13XX_TRICKLE_CHARGER_MAGIC 0xa0
110
111#define RX8025_REG_CTRL1 0x0e
112# define RX8025_BIT_2412 0x20
113#define RX8025_REG_CTRL2 0x0f
114# define RX8025_BIT_PON 0x10
115# define RX8025_BIT_VDET 0x40
116# define RX8025_BIT_XST 0x20
117
118#define RX8130_REG_ALARM_MIN 0x17
119#define RX8130_REG_ALARM_HOUR 0x18
120#define RX8130_REG_ALARM_WEEK_OR_DAY 0x19
121#define RX8130_REG_EXTENSION 0x1c
122#define RX8130_REG_EXTENSION_WADA BIT(3)
123#define RX8130_REG_FLAG 0x1d
124#define RX8130_REG_FLAG_VLF BIT(1)
125#define RX8130_REG_FLAG_AF BIT(3)
126#define RX8130_REG_CONTROL0 0x1e
127#define RX8130_REG_CONTROL0_AIE BIT(3)
128#define RX8130_REG_CONTROL1 0x1f
129#define RX8130_REG_CONTROL1_INIEN BIT(4)
130#define RX8130_REG_CONTROL1_CHGEN BIT(5)
131
132#define MCP794XX_REG_CONTROL 0x07
133# define MCP794XX_BIT_ALM0_EN 0x10
134# define MCP794XX_BIT_ALM1_EN 0x20
135#define MCP794XX_REG_ALARM0_BASE 0x0a
136#define MCP794XX_REG_ALARM0_CTRL 0x0d
137#define MCP794XX_REG_ALARM1_BASE 0x11
138#define MCP794XX_REG_ALARM1_CTRL 0x14
139# define MCP794XX_BIT_ALMX_IF BIT(3)
140# define MCP794XX_BIT_ALMX_C0 BIT(4)
141# define MCP794XX_BIT_ALMX_C1 BIT(5)
142# define MCP794XX_BIT_ALMX_C2 BIT(6)
143# define MCP794XX_BIT_ALMX_POL BIT(7)
144# define MCP794XX_MSK_ALMX_MATCH (MCP794XX_BIT_ALMX_C0 | \
145 MCP794XX_BIT_ALMX_C1 | \
146 MCP794XX_BIT_ALMX_C2)
147
148#define M41TXX_REG_CONTROL 0x07
149# define M41TXX_BIT_OUT BIT(7)
150# define M41TXX_BIT_FT BIT(6)
151# define M41TXX_BIT_CALIB_SIGN BIT(5)
152# define M41TXX_M_CALIBRATION GENMASK(4, 0)
153
154#define DS1388_REG_WDOG_HUN_SECS 0x08
155#define DS1388_REG_WDOG_SECS 0x09
156#define DS1388_REG_FLAG 0x0b
157# define DS1388_BIT_WF BIT(6)
158# define DS1388_BIT_OSF BIT(7)
159#define DS1388_REG_CONTROL 0x0c
160# define DS1388_BIT_RST BIT(0)
161# define DS1388_BIT_WDE BIT(1)
162# define DS1388_BIT_nEOSC BIT(7)
163
164/* negative offset step is -2.034ppm */
165#define M41TXX_NEG_OFFSET_STEP_PPB 2034
166/* positive offset step is +4.068ppm */
167#define M41TXX_POS_OFFSET_STEP_PPB 4068
168/* Min and max values supported with 'offset' interface by M41TXX */
169#define M41TXX_MIN_OFFSET ((-31) * M41TXX_NEG_OFFSET_STEP_PPB)
170#define M41TXX_MAX_OFFSET ((31) * M41TXX_POS_OFFSET_STEP_PPB)
171
172struct ds1307 {
173 enum ds_type type;
174 struct device *dev;
175 struct regmap *regmap;
176 const char *name;
177 struct rtc_device *rtc;
178#ifdef CONFIG_COMMON_CLK
179 struct clk_hw clks[2];
180#endif
181};
182
183struct chip_desc {
184 unsigned alarm:1;
185 u16 nvram_offset;
186 u16 nvram_size;
187 u8 offset; /* register's offset */
188 u8 century_reg;
189 u8 century_enable_bit;
190 u8 century_bit;
191 u8 bbsqi_bit;
192 irq_handler_t irq_handler;
193 const struct rtc_class_ops *rtc_ops;
194 u16 trickle_charger_reg;
195 u8 (*do_trickle_setup)(struct ds1307 *, u32,
196 bool);
197 /* Does the RTC require trickle-resistor-ohms to select the value of
198 * the resistor between Vcc and Vbackup?
199 */
200 bool requires_trickle_resistor;
201 /* Some RTC's batteries and supercaps were charged by default, others
202 * allow charging but were not configured previously to do so.
203 * Remember this behavior to stay backwards compatible.
204 */
205 bool charge_default;
206};
207
208static const struct chip_desc chips[last_ds_type];
209
210static int ds1307_get_time(struct device *dev, struct rtc_time *t)
211{
212 struct ds1307 *ds1307 = dev_get_drvdata(dev);
213 int tmp, ret;
214 const struct chip_desc *chip = &chips[ds1307->type];
215 u8 regs[7];
216
217 if (ds1307->type == rx_8130) {
218 unsigned int regflag;
219 ret = regmap_read(ds1307->regmap, RX8130_REG_FLAG, ®flag);
220 if (ret) {
221 dev_err(dev, "%s error %d\n", "read", ret);
222 return ret;
223 }
224
225 if (regflag & RX8130_REG_FLAG_VLF) {
226 dev_warn_once(dev, "oscillator failed, set time!\n");
227 return -EINVAL;
228 }
229 }
230
231 /* read the RTC date and time registers all at once */
232 ret = regmap_bulk_read(ds1307->regmap, chip->offset, regs,
233 sizeof(regs));
234 if (ret) {
235 dev_err(dev, "%s error %d\n", "read", ret);
236 return ret;
237 }
238
239 dev_dbg(dev, "%s: %7ph\n", "read", regs);
240
241 /* if oscillator fail bit is set, no data can be trusted */
242 if (ds1307->type == m41t0 &&
243 regs[DS1307_REG_MIN] & M41T0_BIT_OF) {
244 dev_warn_once(dev, "oscillator failed, set time!\n");
245 return -EINVAL;
246 } else if (ds1307->type == mcp794xx &&
247 !(regs[DS1307_REG_WDAY] & MCP794XX_BIT_OSCRUN)) {
248 dev_warn_once(dev, "oscillator failed, set time!\n");
249 return -EINVAL;
250 }
251
252 tmp = regs[DS1307_REG_SECS];
253 switch (ds1307->type) {
254 case ds_1307:
255 case m41t0:
256 case m41t00:
257 case m41t11:
258 if (tmp & DS1307_BIT_CH)
259 return -EINVAL;
260 break;
261 case ds_1308:
262 case ds_1338:
263 if (tmp & DS1307_BIT_CH)
264 return -EINVAL;
265
266 ret = regmap_read(ds1307->regmap, DS1307_REG_CONTROL, &tmp);
267 if (ret)
268 return ret;
269 if (tmp & DS1338_BIT_OSF)
270 return -EINVAL;
271 break;
272 case ds_1340:
273 if (tmp & DS1340_BIT_nEOSC)
274 return -EINVAL;
275
276 ret = regmap_read(ds1307->regmap, DS1340_REG_FLAG, &tmp);
277 if (ret)
278 return ret;
279 if (tmp & DS1340_BIT_OSF)
280 return -EINVAL;
281 break;
282 case ds_1388:
283 ret = regmap_read(ds1307->regmap, DS1388_REG_FLAG, &tmp);
284 if (ret)
285 return ret;
286 if (tmp & DS1388_BIT_OSF)
287 return -EINVAL;
288 break;
289 case mcp794xx:
290 if (!(tmp & MCP794XX_BIT_ST))
291 return -EINVAL;
292
293 break;
294 default:
295 break;
296 }
297
298 t->tm_sec = bcd2bin(regs[DS1307_REG_SECS] & 0x7f);
299 t->tm_min = bcd2bin(regs[DS1307_REG_MIN] & 0x7f);
300 tmp = regs[DS1307_REG_HOUR] & 0x3f;
301 t->tm_hour = bcd2bin(tmp);
302 /* rx8130 is bit position, not BCD */
303 if (ds1307->type == rx_8130)
304 t->tm_wday = fls(regs[DS1307_REG_WDAY] & 0x7f);
305 else
306 t->tm_wday = bcd2bin(regs[DS1307_REG_WDAY] & 0x07) - 1;
307 t->tm_mday = bcd2bin(regs[DS1307_REG_MDAY] & 0x3f);
308 tmp = regs[DS1307_REG_MONTH] & 0x1f;
309 t->tm_mon = bcd2bin(tmp) - 1;
310 t->tm_year = bcd2bin(regs[DS1307_REG_YEAR]) + 100;
311
312 if (regs[chip->century_reg] & chip->century_bit &&
313 IS_ENABLED(CONFIG_RTC_DRV_DS1307_CENTURY))
314 t->tm_year += 100;
315
316 dev_dbg(dev, "%s secs=%d, mins=%d, "
317 "hours=%d, mday=%d, mon=%d, year=%d, wday=%d\n",
318 "read", t->tm_sec, t->tm_min,
319 t->tm_hour, t->tm_mday,
320 t->tm_mon, t->tm_year, t->tm_wday);
321
322 return 0;
323}
324
325static int ds1307_set_time(struct device *dev, struct rtc_time *t)
326{
327 struct ds1307 *ds1307 = dev_get_drvdata(dev);
328 const struct chip_desc *chip = &chips[ds1307->type];
329 int result;
330 int tmp;
331 u8 regs[7];
332
333 dev_dbg(dev, "%s secs=%d, mins=%d, "
334 "hours=%d, mday=%d, mon=%d, year=%d, wday=%d\n",
335 "write", t->tm_sec, t->tm_min,
336 t->tm_hour, t->tm_mday,
337 t->tm_mon, t->tm_year, t->tm_wday);
338
339 if (t->tm_year < 100)
340 return -EINVAL;
341
342#ifdef CONFIG_RTC_DRV_DS1307_CENTURY
343 if (t->tm_year > (chip->century_bit ? 299 : 199))
344 return -EINVAL;
345#else
346 if (t->tm_year > 199)
347 return -EINVAL;
348#endif
349
350 regs[DS1307_REG_SECS] = bin2bcd(t->tm_sec);
351 regs[DS1307_REG_MIN] = bin2bcd(t->tm_min);
352 regs[DS1307_REG_HOUR] = bin2bcd(t->tm_hour);
353 /* rx8130 is bit position, not BCD */
354 if (ds1307->type == rx_8130)
355 regs[DS1307_REG_WDAY] = 1 << t->tm_wday;
356 else
357 regs[DS1307_REG_WDAY] = bin2bcd(t->tm_wday + 1);
358 regs[DS1307_REG_MDAY] = bin2bcd(t->tm_mday);
359 regs[DS1307_REG_MONTH] = bin2bcd(t->tm_mon + 1);
360
361 /* assume 20YY not 19YY */
362 tmp = t->tm_year % 100;
363 regs[DS1307_REG_YEAR] = bin2bcd(tmp);
364
365 if (chip->century_enable_bit)
366 regs[chip->century_reg] |= chip->century_enable_bit;
367 if (t->tm_year > 199 && chip->century_bit)
368 regs[chip->century_reg] |= chip->century_bit;
369
370 switch (ds1307->type) {
371 case ds_1308:
372 case ds_1338:
373 regmap_update_bits(ds1307->regmap, DS1307_REG_CONTROL,
374 DS1338_BIT_OSF, 0);
375 break;
376 case ds_1340:
377 regmap_update_bits(ds1307->regmap, DS1340_REG_FLAG,
378 DS1340_BIT_OSF, 0);
379 break;
380 case ds_1388:
381 regmap_update_bits(ds1307->regmap, DS1388_REG_FLAG,
382 DS1388_BIT_OSF, 0);
383 break;
384 case mcp794xx:
385 /*
386 * these bits were cleared when preparing the date/time
387 * values and need to be set again before writing the
388 * regsfer out to the device.
389 */
390 regs[DS1307_REG_SECS] |= MCP794XX_BIT_ST;
391 regs[DS1307_REG_WDAY] |= MCP794XX_BIT_VBATEN;
392 break;
393 default:
394 break;
395 }
396
397 dev_dbg(dev, "%s: %7ph\n", "write", regs);
398
399 result = regmap_bulk_write(ds1307->regmap, chip->offset, regs,
400 sizeof(regs));
401 if (result) {
402 dev_err(dev, "%s error %d\n", "write", result);
403 return result;
404 }
405
406 if (ds1307->type == rx_8130) {
407 /* clear Voltage Loss Flag as data is available now */
408 result = regmap_write(ds1307->regmap, RX8130_REG_FLAG,
409 ~(u8)RX8130_REG_FLAG_VLF);
410 if (result) {
411 dev_err(dev, "%s error %d\n", "write", result);
412 return result;
413 }
414 }
415
416 return 0;
417}
418
419static int ds1337_read_alarm(struct device *dev, struct rtc_wkalrm *t)
420{
421 struct ds1307 *ds1307 = dev_get_drvdata(dev);
422 int ret;
423 u8 regs[9];
424
425 /* read all ALARM1, ALARM2, and status registers at once */
426 ret = regmap_bulk_read(ds1307->regmap, DS1339_REG_ALARM1_SECS,
427 regs, sizeof(regs));
428 if (ret) {
429 dev_err(dev, "%s error %d\n", "alarm read", ret);
430 return ret;
431 }
432
433 dev_dbg(dev, "%s: %4ph, %3ph, %2ph\n", "alarm read",
434 ®s[0], ®s[4], ®s[7]);
435
436 /*
437 * report alarm time (ALARM1); assume 24 hour and day-of-month modes,
438 * and that all four fields are checked matches
439 */
440 t->time.tm_sec = bcd2bin(regs[0] & 0x7f);
441 t->time.tm_min = bcd2bin(regs[1] & 0x7f);
442 t->time.tm_hour = bcd2bin(regs[2] & 0x3f);
443 t->time.tm_mday = bcd2bin(regs[3] & 0x3f);
444
445 /* ... and status */
446 t->enabled = !!(regs[7] & DS1337_BIT_A1IE);
447 t->pending = !!(regs[8] & DS1337_BIT_A1I);
448
449 dev_dbg(dev, "%s secs=%d, mins=%d, "
450 "hours=%d, mday=%d, enabled=%d, pending=%d\n",
451 "alarm read", t->time.tm_sec, t->time.tm_min,
452 t->time.tm_hour, t->time.tm_mday,
453 t->enabled, t->pending);
454
455 return 0;
456}
457
458static int ds1337_set_alarm(struct device *dev, struct rtc_wkalrm *t)
459{
460 struct ds1307 *ds1307 = dev_get_drvdata(dev);
461 unsigned char regs[9];
462 u8 control, status;
463 int ret;
464
465 dev_dbg(dev, "%s secs=%d, mins=%d, "
466 "hours=%d, mday=%d, enabled=%d, pending=%d\n",
467 "alarm set", t->time.tm_sec, t->time.tm_min,
468 t->time.tm_hour, t->time.tm_mday,
469 t->enabled, t->pending);
470
471 /* read current status of both alarms and the chip */
472 ret = regmap_bulk_read(ds1307->regmap, DS1339_REG_ALARM1_SECS, regs,
473 sizeof(regs));
474 if (ret) {
475 dev_err(dev, "%s error %d\n", "alarm write", ret);
476 return ret;
477 }
478 control = regs[7];
479 status = regs[8];
480
481 dev_dbg(dev, "%s: %4ph, %3ph, %02x %02x\n", "alarm set (old status)",
482 ®s[0], ®s[4], control, status);
483
484 /* set ALARM1, using 24 hour and day-of-month modes */
485 regs[0] = bin2bcd(t->time.tm_sec);
486 regs[1] = bin2bcd(t->time.tm_min);
487 regs[2] = bin2bcd(t->time.tm_hour);
488 regs[3] = bin2bcd(t->time.tm_mday);
489
490 /* set ALARM2 to non-garbage */
491 regs[4] = 0;
492 regs[5] = 0;
493 regs[6] = 0;
494
495 /* disable alarms */
496 regs[7] = control & ~(DS1337_BIT_A1IE | DS1337_BIT_A2IE);
497 regs[8] = status & ~(DS1337_BIT_A1I | DS1337_BIT_A2I);
498
499 ret = regmap_bulk_write(ds1307->regmap, DS1339_REG_ALARM1_SECS, regs,
500 sizeof(regs));
501 if (ret) {
502 dev_err(dev, "can't set alarm time\n");
503 return ret;
504 }
505
506 /* optionally enable ALARM1 */
507 if (t->enabled) {
508 dev_dbg(dev, "alarm IRQ armed\n");
509 regs[7] |= DS1337_BIT_A1IE; /* only ALARM1 is used */
510 regmap_write(ds1307->regmap, DS1337_REG_CONTROL, regs[7]);
511 }
512
513 return 0;
514}
515
516static int ds1307_alarm_irq_enable(struct device *dev, unsigned int enabled)
517{
518 struct ds1307 *ds1307 = dev_get_drvdata(dev);
519
520 return regmap_update_bits(ds1307->regmap, DS1337_REG_CONTROL,
521 DS1337_BIT_A1IE,
522 enabled ? DS1337_BIT_A1IE : 0);
523}
524
525static u8 do_trickle_setup_ds1339(struct ds1307 *ds1307, u32 ohms, bool diode)
526{
527 u8 setup = (diode) ? DS1307_TRICKLE_CHARGER_DIODE :
528 DS1307_TRICKLE_CHARGER_NO_DIODE;
529
530 setup |= DS13XX_TRICKLE_CHARGER_MAGIC;
531
532 switch (ohms) {
533 case 250:
534 setup |= DS1307_TRICKLE_CHARGER_250_OHM;
535 break;
536 case 2000:
537 setup |= DS1307_TRICKLE_CHARGER_2K_OHM;
538 break;
539 case 4000:
540 setup |= DS1307_TRICKLE_CHARGER_4K_OHM;
541 break;
542 default:
543 dev_warn(ds1307->dev,
544 "Unsupported ohm value %u in dt\n", ohms);
545 return 0;
546 }
547 return setup;
548}
549
550static u8 do_trickle_setup_rx8130(struct ds1307 *ds1307, u32 ohms, bool diode)
551{
552 /* make sure that the backup battery is enabled */
553 u8 setup = RX8130_REG_CONTROL1_INIEN;
554 if (diode)
555 setup |= RX8130_REG_CONTROL1_CHGEN;
556
557 return setup;
558}
559
560static irqreturn_t rx8130_irq(int irq, void *dev_id)
561{
562 struct ds1307 *ds1307 = dev_id;
563 u8 ctl[3];
564 int ret;
565
566 rtc_lock(ds1307->rtc);
567
568 /* Read control registers. */
569 ret = regmap_bulk_read(ds1307->regmap, RX8130_REG_EXTENSION, ctl,
570 sizeof(ctl));
571 if (ret < 0)
572 goto out;
573 if (!(ctl[1] & RX8130_REG_FLAG_AF))
574 goto out;
575 ctl[1] &= ~RX8130_REG_FLAG_AF;
576 ctl[2] &= ~RX8130_REG_CONTROL0_AIE;
577
578 ret = regmap_bulk_write(ds1307->regmap, RX8130_REG_EXTENSION, ctl,
579 sizeof(ctl));
580 if (ret < 0)
581 goto out;
582
583 rtc_update_irq(ds1307->rtc, 1, RTC_AF | RTC_IRQF);
584
585out:
586 rtc_unlock(ds1307->rtc);
587
588 return IRQ_HANDLED;
589}
590
591static int rx8130_read_alarm(struct device *dev, struct rtc_wkalrm *t)
592{
593 struct ds1307 *ds1307 = dev_get_drvdata(dev);
594 u8 ald[3], ctl[3];
595 int ret;
596
597 /* Read alarm registers. */
598 ret = regmap_bulk_read(ds1307->regmap, RX8130_REG_ALARM_MIN, ald,
599 sizeof(ald));
600 if (ret < 0)
601 return ret;
602
603 /* Read control registers. */
604 ret = regmap_bulk_read(ds1307->regmap, RX8130_REG_EXTENSION, ctl,
605 sizeof(ctl));
606 if (ret < 0)
607 return ret;
608
609 t->enabled = !!(ctl[2] & RX8130_REG_CONTROL0_AIE);
610 t->pending = !!(ctl[1] & RX8130_REG_FLAG_AF);
611
612 /* Report alarm 0 time assuming 24-hour and day-of-month modes. */
613 t->time.tm_sec = -1;
614 t->time.tm_min = bcd2bin(ald[0] & 0x7f);
615 t->time.tm_hour = bcd2bin(ald[1] & 0x7f);
616 t->time.tm_wday = -1;
617 t->time.tm_mday = bcd2bin(ald[2] & 0x7f);
618 t->time.tm_mon = -1;
619 t->time.tm_year = -1;
620 t->time.tm_yday = -1;
621 t->time.tm_isdst = -1;
622
623 dev_dbg(dev, "%s, sec=%d min=%d hour=%d wday=%d mday=%d mon=%d enabled=%d\n",
624 __func__, t->time.tm_sec, t->time.tm_min, t->time.tm_hour,
625 t->time.tm_wday, t->time.tm_mday, t->time.tm_mon, t->enabled);
626
627 return 0;
628}
629
630static int rx8130_set_alarm(struct device *dev, struct rtc_wkalrm *t)
631{
632 struct ds1307 *ds1307 = dev_get_drvdata(dev);
633 u8 ald[3], ctl[3];
634 int ret;
635
636 dev_dbg(dev, "%s, sec=%d min=%d hour=%d wday=%d mday=%d mon=%d "
637 "enabled=%d pending=%d\n", __func__,
638 t->time.tm_sec, t->time.tm_min, t->time.tm_hour,
639 t->time.tm_wday, t->time.tm_mday, t->time.tm_mon,
640 t->enabled, t->pending);
641
642 /* Read control registers. */
643 ret = regmap_bulk_read(ds1307->regmap, RX8130_REG_EXTENSION, ctl,
644 sizeof(ctl));
645 if (ret < 0)
646 return ret;
647
648 ctl[0] &= RX8130_REG_EXTENSION_WADA;
649 ctl[1] &= ~RX8130_REG_FLAG_AF;
650 ctl[2] &= ~RX8130_REG_CONTROL0_AIE;
651
652 ret = regmap_bulk_write(ds1307->regmap, RX8130_REG_EXTENSION, ctl,
653 sizeof(ctl));
654 if (ret < 0)
655 return ret;
656
657 /* Hardware alarm precision is 1 minute! */
658 ald[0] = bin2bcd(t->time.tm_min);
659 ald[1] = bin2bcd(t->time.tm_hour);
660 ald[2] = bin2bcd(t->time.tm_mday);
661
662 ret = regmap_bulk_write(ds1307->regmap, RX8130_REG_ALARM_MIN, ald,
663 sizeof(ald));
664 if (ret < 0)
665 return ret;
666
667 if (!t->enabled)
668 return 0;
669
670 ctl[2] |= RX8130_REG_CONTROL0_AIE;
671
672 return regmap_write(ds1307->regmap, RX8130_REG_CONTROL0, ctl[2]);
673}
674
675static int rx8130_alarm_irq_enable(struct device *dev, unsigned int enabled)
676{
677 struct ds1307 *ds1307 = dev_get_drvdata(dev);
678 int ret, reg;
679
680 ret = regmap_read(ds1307->regmap, RX8130_REG_CONTROL0, ®);
681 if (ret < 0)
682 return ret;
683
684 if (enabled)
685 reg |= RX8130_REG_CONTROL0_AIE;
686 else
687 reg &= ~RX8130_REG_CONTROL0_AIE;
688
689 return regmap_write(ds1307->regmap, RX8130_REG_CONTROL0, reg);
690}
691
692static irqreturn_t mcp794xx_irq(int irq, void *dev_id)
693{
694 struct ds1307 *ds1307 = dev_id;
695 struct mutex *lock = &ds1307->rtc->ops_lock;
696 int reg, ret;
697
698 mutex_lock(lock);
699
700 /* Check and clear alarm 0 interrupt flag. */
701 ret = regmap_read(ds1307->regmap, MCP794XX_REG_ALARM0_CTRL, ®);
702 if (ret)
703 goto out;
704 if (!(reg & MCP794XX_BIT_ALMX_IF))
705 goto out;
706 reg &= ~MCP794XX_BIT_ALMX_IF;
707 ret = regmap_write(ds1307->regmap, MCP794XX_REG_ALARM0_CTRL, reg);
708 if (ret)
709 goto out;
710
711 /* Disable alarm 0. */
712 ret = regmap_update_bits(ds1307->regmap, MCP794XX_REG_CONTROL,
713 MCP794XX_BIT_ALM0_EN, 0);
714 if (ret)
715 goto out;
716
717 rtc_update_irq(ds1307->rtc, 1, RTC_AF | RTC_IRQF);
718
719out:
720 mutex_unlock(lock);
721
722 return IRQ_HANDLED;
723}
724
725static int mcp794xx_read_alarm(struct device *dev, struct rtc_wkalrm *t)
726{
727 struct ds1307 *ds1307 = dev_get_drvdata(dev);
728 u8 regs[10];
729 int ret;
730
731 /* Read control and alarm 0 registers. */
732 ret = regmap_bulk_read(ds1307->regmap, MCP794XX_REG_CONTROL, regs,
733 sizeof(regs));
734 if (ret)
735 return ret;
736
737 t->enabled = !!(regs[0] & MCP794XX_BIT_ALM0_EN);
738
739 /* Report alarm 0 time assuming 24-hour and day-of-month modes. */
740 t->time.tm_sec = bcd2bin(regs[3] & 0x7f);
741 t->time.tm_min = bcd2bin(regs[4] & 0x7f);
742 t->time.tm_hour = bcd2bin(regs[5] & 0x3f);
743 t->time.tm_wday = bcd2bin(regs[6] & 0x7) - 1;
744 t->time.tm_mday = bcd2bin(regs[7] & 0x3f);
745 t->time.tm_mon = bcd2bin(regs[8] & 0x1f) - 1;
746 t->time.tm_year = -1;
747 t->time.tm_yday = -1;
748 t->time.tm_isdst = -1;
749
750 dev_dbg(dev, "%s, sec=%d min=%d hour=%d wday=%d mday=%d mon=%d "
751 "enabled=%d polarity=%d irq=%d match=%lu\n", __func__,
752 t->time.tm_sec, t->time.tm_min, t->time.tm_hour,
753 t->time.tm_wday, t->time.tm_mday, t->time.tm_mon, t->enabled,
754 !!(regs[6] & MCP794XX_BIT_ALMX_POL),
755 !!(regs[6] & MCP794XX_BIT_ALMX_IF),
756 (regs[6] & MCP794XX_MSK_ALMX_MATCH) >> 4);
757
758 return 0;
759}
760
761/*
762 * We may have a random RTC weekday, therefore calculate alarm weekday based
763 * on current weekday we read from the RTC timekeeping regs
764 */
765static int mcp794xx_alm_weekday(struct device *dev, struct rtc_time *tm_alarm)
766{
767 struct rtc_time tm_now;
768 int days_now, days_alarm, ret;
769
770 ret = ds1307_get_time(dev, &tm_now);
771 if (ret)
772 return ret;
773
774 days_now = div_s64(rtc_tm_to_time64(&tm_now), 24 * 60 * 60);
775 days_alarm = div_s64(rtc_tm_to_time64(tm_alarm), 24 * 60 * 60);
776
777 return (tm_now.tm_wday + days_alarm - days_now) % 7 + 1;
778}
779
780static int mcp794xx_set_alarm(struct device *dev, struct rtc_wkalrm *t)
781{
782 struct ds1307 *ds1307 = dev_get_drvdata(dev);
783 unsigned char regs[10];
784 int wday, ret;
785
786 wday = mcp794xx_alm_weekday(dev, &t->time);
787 if (wday < 0)
788 return wday;
789
790 dev_dbg(dev, "%s, sec=%d min=%d hour=%d wday=%d mday=%d mon=%d "
791 "enabled=%d pending=%d\n", __func__,
792 t->time.tm_sec, t->time.tm_min, t->time.tm_hour,
793 t->time.tm_wday, t->time.tm_mday, t->time.tm_mon,
794 t->enabled, t->pending);
795
796 /* Read control and alarm 0 registers. */
797 ret = regmap_bulk_read(ds1307->regmap, MCP794XX_REG_CONTROL, regs,
798 sizeof(regs));
799 if (ret)
800 return ret;
801
802 /* Set alarm 0, using 24-hour and day-of-month modes. */
803 regs[3] = bin2bcd(t->time.tm_sec);
804 regs[4] = bin2bcd(t->time.tm_min);
805 regs[5] = bin2bcd(t->time.tm_hour);
806 regs[6] = wday;
807 regs[7] = bin2bcd(t->time.tm_mday);
808 regs[8] = bin2bcd(t->time.tm_mon + 1);
809
810 /* Clear the alarm 0 interrupt flag. */
811 regs[6] &= ~MCP794XX_BIT_ALMX_IF;
812 /* Set alarm match: second, minute, hour, day, date, month. */
813 regs[6] |= MCP794XX_MSK_ALMX_MATCH;
814 /* Disable interrupt. We will not enable until completely programmed */
815 regs[0] &= ~MCP794XX_BIT_ALM0_EN;
816
817 ret = regmap_bulk_write(ds1307->regmap, MCP794XX_REG_CONTROL, regs,
818 sizeof(regs));
819 if (ret)
820 return ret;
821
822 if (!t->enabled)
823 return 0;
824 regs[0] |= MCP794XX_BIT_ALM0_EN;
825 return regmap_write(ds1307->regmap, MCP794XX_REG_CONTROL, regs[0]);
826}
827
828static int mcp794xx_alarm_irq_enable(struct device *dev, unsigned int enabled)
829{
830 struct ds1307 *ds1307 = dev_get_drvdata(dev);
831
832 return regmap_update_bits(ds1307->regmap, MCP794XX_REG_CONTROL,
833 MCP794XX_BIT_ALM0_EN,
834 enabled ? MCP794XX_BIT_ALM0_EN : 0);
835}
836
837static int m41txx_rtc_read_offset(struct device *dev, long *offset)
838{
839 struct ds1307 *ds1307 = dev_get_drvdata(dev);
840 unsigned int ctrl_reg;
841 u8 val;
842
843 regmap_read(ds1307->regmap, M41TXX_REG_CONTROL, &ctrl_reg);
844
845 val = ctrl_reg & M41TXX_M_CALIBRATION;
846
847 /* check if positive */
848 if (ctrl_reg & M41TXX_BIT_CALIB_SIGN)
849 *offset = (val * M41TXX_POS_OFFSET_STEP_PPB);
850 else
851 *offset = -(val * M41TXX_NEG_OFFSET_STEP_PPB);
852
853 return 0;
854}
855
856static int m41txx_rtc_set_offset(struct device *dev, long offset)
857{
858 struct ds1307 *ds1307 = dev_get_drvdata(dev);
859 unsigned int ctrl_reg;
860
861 if ((offset < M41TXX_MIN_OFFSET) || (offset > M41TXX_MAX_OFFSET))
862 return -ERANGE;
863
864 if (offset >= 0) {
865 ctrl_reg = DIV_ROUND_CLOSEST(offset,
866 M41TXX_POS_OFFSET_STEP_PPB);
867 ctrl_reg |= M41TXX_BIT_CALIB_SIGN;
868 } else {
869 ctrl_reg = DIV_ROUND_CLOSEST(abs(offset),
870 M41TXX_NEG_OFFSET_STEP_PPB);
871 }
872
873 return regmap_update_bits(ds1307->regmap, M41TXX_REG_CONTROL,
874 M41TXX_M_CALIBRATION | M41TXX_BIT_CALIB_SIGN,
875 ctrl_reg);
876}
877
878#ifdef CONFIG_WATCHDOG_CORE
879static int ds1388_wdt_start(struct watchdog_device *wdt_dev)
880{
881 struct ds1307 *ds1307 = watchdog_get_drvdata(wdt_dev);
882 u8 regs[2];
883 int ret;
884
885 ret = regmap_update_bits(ds1307->regmap, DS1388_REG_FLAG,
886 DS1388_BIT_WF, 0);
887 if (ret)
888 return ret;
889
890 ret = regmap_update_bits(ds1307->regmap, DS1388_REG_CONTROL,
891 DS1388_BIT_WDE | DS1388_BIT_RST, 0);
892 if (ret)
893 return ret;
894
895 /*
896 * watchdog timeouts are measured in seconds. So ignore hundredths of
897 * seconds field.
898 */
899 regs[0] = 0;
900 regs[1] = bin2bcd(wdt_dev->timeout);
901
902 ret = regmap_bulk_write(ds1307->regmap, DS1388_REG_WDOG_HUN_SECS, regs,
903 sizeof(regs));
904 if (ret)
905 return ret;
906
907 return regmap_update_bits(ds1307->regmap, DS1388_REG_CONTROL,
908 DS1388_BIT_WDE | DS1388_BIT_RST,
909 DS1388_BIT_WDE | DS1388_BIT_RST);
910}
911
912static int ds1388_wdt_stop(struct watchdog_device *wdt_dev)
913{
914 struct ds1307 *ds1307 = watchdog_get_drvdata(wdt_dev);
915
916 return regmap_update_bits(ds1307->regmap, DS1388_REG_CONTROL,
917 DS1388_BIT_WDE | DS1388_BIT_RST, 0);
918}
919
920static int ds1388_wdt_ping(struct watchdog_device *wdt_dev)
921{
922 struct ds1307 *ds1307 = watchdog_get_drvdata(wdt_dev);
923 u8 regs[2];
924
925 return regmap_bulk_read(ds1307->regmap, DS1388_REG_WDOG_HUN_SECS, regs,
926 sizeof(regs));
927}
928
929static int ds1388_wdt_set_timeout(struct watchdog_device *wdt_dev,
930 unsigned int val)
931{
932 struct ds1307 *ds1307 = watchdog_get_drvdata(wdt_dev);
933 u8 regs[2];
934
935 wdt_dev->timeout = val;
936 regs[0] = 0;
937 regs[1] = bin2bcd(wdt_dev->timeout);
938
939 return regmap_bulk_write(ds1307->regmap, DS1388_REG_WDOG_HUN_SECS, regs,
940 sizeof(regs));
941}
942#endif
943
944static const struct rtc_class_ops rx8130_rtc_ops = {
945 .read_time = ds1307_get_time,
946 .set_time = ds1307_set_time,
947 .read_alarm = rx8130_read_alarm,
948 .set_alarm = rx8130_set_alarm,
949 .alarm_irq_enable = rx8130_alarm_irq_enable,
950};
951
952static const struct rtc_class_ops mcp794xx_rtc_ops = {
953 .read_time = ds1307_get_time,
954 .set_time = ds1307_set_time,
955 .read_alarm = mcp794xx_read_alarm,
956 .set_alarm = mcp794xx_set_alarm,
957 .alarm_irq_enable = mcp794xx_alarm_irq_enable,
958};
959
960static const struct rtc_class_ops m41txx_rtc_ops = {
961 .read_time = ds1307_get_time,
962 .set_time = ds1307_set_time,
963 .read_alarm = ds1337_read_alarm,
964 .set_alarm = ds1337_set_alarm,
965 .alarm_irq_enable = ds1307_alarm_irq_enable,
966 .read_offset = m41txx_rtc_read_offset,
967 .set_offset = m41txx_rtc_set_offset,
968};
969
970static const struct chip_desc chips[last_ds_type] = {
971 [ds_1307] = {
972 .nvram_offset = 8,
973 .nvram_size = 56,
974 },
975 [ds_1308] = {
976 .nvram_offset = 8,
977 .nvram_size = 56,
978 },
979 [ds_1337] = {
980 .alarm = 1,
981 .century_reg = DS1307_REG_MONTH,
982 .century_bit = DS1337_BIT_CENTURY,
983 },
984 [ds_1338] = {
985 .nvram_offset = 8,
986 .nvram_size = 56,
987 },
988 [ds_1339] = {
989 .alarm = 1,
990 .century_reg = DS1307_REG_MONTH,
991 .century_bit = DS1337_BIT_CENTURY,
992 .bbsqi_bit = DS1339_BIT_BBSQI,
993 .trickle_charger_reg = 0x10,
994 .do_trickle_setup = &do_trickle_setup_ds1339,
995 .requires_trickle_resistor = true,
996 .charge_default = true,
997 },
998 [ds_1340] = {
999 .century_reg = DS1307_REG_HOUR,
1000 .century_enable_bit = DS1340_BIT_CENTURY_EN,
1001 .century_bit = DS1340_BIT_CENTURY,
1002 .do_trickle_setup = &do_trickle_setup_ds1339,
1003 .trickle_charger_reg = 0x08,
1004 .requires_trickle_resistor = true,
1005 .charge_default = true,
1006 },
1007 [ds_1341] = {
1008 .century_reg = DS1307_REG_MONTH,
1009 .century_bit = DS1337_BIT_CENTURY,
1010 },
1011 [ds_1388] = {
1012 .offset = 1,
1013 .trickle_charger_reg = 0x0a,
1014 },
1015 [ds_3231] = {
1016 .alarm = 1,
1017 .century_reg = DS1307_REG_MONTH,
1018 .century_bit = DS1337_BIT_CENTURY,
1019 .bbsqi_bit = DS3231_BIT_BBSQW,
1020 },
1021 [rx_8130] = {
1022 .alarm = 1,
1023 /* this is battery backed SRAM */
1024 .nvram_offset = 0x20,
1025 .nvram_size = 4, /* 32bit (4 word x 8 bit) */
1026 .offset = 0x10,
1027 .irq_handler = rx8130_irq,
1028 .rtc_ops = &rx8130_rtc_ops,
1029 .trickle_charger_reg = RX8130_REG_CONTROL1,
1030 .do_trickle_setup = &do_trickle_setup_rx8130,
1031 },
1032 [m41t0] = {
1033 .rtc_ops = &m41txx_rtc_ops,
1034 },
1035 [m41t00] = {
1036 .rtc_ops = &m41txx_rtc_ops,
1037 },
1038 [m41t11] = {
1039 /* this is battery backed SRAM */
1040 .nvram_offset = 8,
1041 .nvram_size = 56,
1042 .rtc_ops = &m41txx_rtc_ops,
1043 },
1044 [mcp794xx] = {
1045 .alarm = 1,
1046 /* this is battery backed SRAM */
1047 .nvram_offset = 0x20,
1048 .nvram_size = 0x40,
1049 .irq_handler = mcp794xx_irq,
1050 .rtc_ops = &mcp794xx_rtc_ops,
1051 },
1052};
1053
1054static const struct i2c_device_id ds1307_id[] = {
1055 { "ds1307", ds_1307 },
1056 { "ds1308", ds_1308 },
1057 { "ds1337", ds_1337 },
1058 { "ds1338", ds_1338 },
1059 { "ds1339", ds_1339 },
1060 { "ds1388", ds_1388 },
1061 { "ds1340", ds_1340 },
1062 { "ds1341", ds_1341 },
1063 { "ds3231", ds_3231 },
1064 { "m41t0", m41t0 },
1065 { "m41t00", m41t00 },
1066 { "m41t11", m41t11 },
1067 { "mcp7940x", mcp794xx },
1068 { "mcp7941x", mcp794xx },
1069 { "pt7c4338", ds_1307 },
1070 { "rx8025", rx_8025 },
1071 { "isl12057", ds_1337 },
1072 { "rx8130", rx_8130 },
1073 { }
1074};
1075MODULE_DEVICE_TABLE(i2c, ds1307_id);
1076
1077static const struct of_device_id ds1307_of_match[] = {
1078 {
1079 .compatible = "dallas,ds1307",
1080 .data = (void *)ds_1307
1081 },
1082 {
1083 .compatible = "dallas,ds1308",
1084 .data = (void *)ds_1308
1085 },
1086 {
1087 .compatible = "dallas,ds1337",
1088 .data = (void *)ds_1337
1089 },
1090 {
1091 .compatible = "dallas,ds1338",
1092 .data = (void *)ds_1338
1093 },
1094 {
1095 .compatible = "dallas,ds1339",
1096 .data = (void *)ds_1339
1097 },
1098 {
1099 .compatible = "dallas,ds1388",
1100 .data = (void *)ds_1388
1101 },
1102 {
1103 .compatible = "dallas,ds1340",
1104 .data = (void *)ds_1340
1105 },
1106 {
1107 .compatible = "dallas,ds1341",
1108 .data = (void *)ds_1341
1109 },
1110 {
1111 .compatible = "maxim,ds3231",
1112 .data = (void *)ds_3231
1113 },
1114 {
1115 .compatible = "st,m41t0",
1116 .data = (void *)m41t0
1117 },
1118 {
1119 .compatible = "st,m41t00",
1120 .data = (void *)m41t00
1121 },
1122 {
1123 .compatible = "st,m41t11",
1124 .data = (void *)m41t11
1125 },
1126 {
1127 .compatible = "microchip,mcp7940x",
1128 .data = (void *)mcp794xx
1129 },
1130 {
1131 .compatible = "microchip,mcp7941x",
1132 .data = (void *)mcp794xx
1133 },
1134 {
1135 .compatible = "pericom,pt7c4338",
1136 .data = (void *)ds_1307
1137 },
1138 {
1139 .compatible = "epson,rx8025",
1140 .data = (void *)rx_8025
1141 },
1142 {
1143 .compatible = "isil,isl12057",
1144 .data = (void *)ds_1337
1145 },
1146 {
1147 .compatible = "epson,rx8130",
1148 .data = (void *)rx_8130
1149 },
1150 { }
1151};
1152MODULE_DEVICE_TABLE(of, ds1307_of_match);
1153
1154/*
1155 * The ds1337 and ds1339 both have two alarms, but we only use the first
1156 * one (with a "seconds" field). For ds1337 we expect nINTA is our alarm
1157 * signal; ds1339 chips have only one alarm signal.
1158 */
1159static irqreturn_t ds1307_irq(int irq, void *dev_id)
1160{
1161 struct ds1307 *ds1307 = dev_id;
1162 struct mutex *lock = &ds1307->rtc->ops_lock;
1163 int stat, ret;
1164
1165 mutex_lock(lock);
1166 ret = regmap_read(ds1307->regmap, DS1337_REG_STATUS, &stat);
1167 if (ret)
1168 goto out;
1169
1170 if (stat & DS1337_BIT_A1I) {
1171 stat &= ~DS1337_BIT_A1I;
1172 regmap_write(ds1307->regmap, DS1337_REG_STATUS, stat);
1173
1174 ret = regmap_update_bits(ds1307->regmap, DS1337_REG_CONTROL,
1175 DS1337_BIT_A1IE, 0);
1176 if (ret)
1177 goto out;
1178
1179 rtc_update_irq(ds1307->rtc, 1, RTC_AF | RTC_IRQF);
1180 }
1181
1182out:
1183 mutex_unlock(lock);
1184
1185 return IRQ_HANDLED;
1186}
1187
1188/*----------------------------------------------------------------------*/
1189
1190static const struct rtc_class_ops ds13xx_rtc_ops = {
1191 .read_time = ds1307_get_time,
1192 .set_time = ds1307_set_time,
1193 .read_alarm = ds1337_read_alarm,
1194 .set_alarm = ds1337_set_alarm,
1195 .alarm_irq_enable = ds1307_alarm_irq_enable,
1196};
1197
1198static ssize_t frequency_test_store(struct device *dev,
1199 struct device_attribute *attr,
1200 const char *buf, size_t count)
1201{
1202 struct ds1307 *ds1307 = dev_get_drvdata(dev->parent);
1203 bool freq_test_en;
1204 int ret;
1205
1206 ret = kstrtobool(buf, &freq_test_en);
1207 if (ret) {
1208 dev_err(dev, "Failed to store RTC Frequency Test attribute\n");
1209 return ret;
1210 }
1211
1212 regmap_update_bits(ds1307->regmap, M41TXX_REG_CONTROL, M41TXX_BIT_FT,
1213 freq_test_en ? M41TXX_BIT_FT : 0);
1214
1215 return count;
1216}
1217
1218static ssize_t frequency_test_show(struct device *dev,
1219 struct device_attribute *attr,
1220 char *buf)
1221{
1222 struct ds1307 *ds1307 = dev_get_drvdata(dev->parent);
1223 unsigned int ctrl_reg;
1224
1225 regmap_read(ds1307->regmap, M41TXX_REG_CONTROL, &ctrl_reg);
1226
1227 return sysfs_emit(buf, (ctrl_reg & M41TXX_BIT_FT) ? "on\n" : "off\n");
1228}
1229
1230static DEVICE_ATTR_RW(frequency_test);
1231
1232static struct attribute *rtc_freq_test_attrs[] = {
1233 &dev_attr_frequency_test.attr,
1234 NULL,
1235};
1236
1237static const struct attribute_group rtc_freq_test_attr_group = {
1238 .attrs = rtc_freq_test_attrs,
1239};
1240
1241static int ds1307_add_frequency_test(struct ds1307 *ds1307)
1242{
1243 int err;
1244
1245 switch (ds1307->type) {
1246 case m41t0:
1247 case m41t00:
1248 case m41t11:
1249 err = rtc_add_group(ds1307->rtc, &rtc_freq_test_attr_group);
1250 if (err)
1251 return err;
1252 break;
1253 default:
1254 break;
1255 }
1256
1257 return 0;
1258}
1259
1260/*----------------------------------------------------------------------*/
1261
1262static int ds1307_nvram_read(void *priv, unsigned int offset, void *val,
1263 size_t bytes)
1264{
1265 struct ds1307 *ds1307 = priv;
1266 const struct chip_desc *chip = &chips[ds1307->type];
1267
1268 return regmap_bulk_read(ds1307->regmap, chip->nvram_offset + offset,
1269 val, bytes);
1270}
1271
1272static int ds1307_nvram_write(void *priv, unsigned int offset, void *val,
1273 size_t bytes)
1274{
1275 struct ds1307 *ds1307 = priv;
1276 const struct chip_desc *chip = &chips[ds1307->type];
1277
1278 return regmap_bulk_write(ds1307->regmap, chip->nvram_offset + offset,
1279 val, bytes);
1280}
1281
1282/*----------------------------------------------------------------------*/
1283
1284static u8 ds1307_trickle_init(struct ds1307 *ds1307,
1285 const struct chip_desc *chip)
1286{
1287 u32 ohms, chargeable;
1288 bool diode = chip->charge_default;
1289
1290 if (!chip->do_trickle_setup)
1291 return 0;
1292
1293 if (device_property_read_u32(ds1307->dev, "trickle-resistor-ohms",
1294 &ohms) && chip->requires_trickle_resistor)
1295 return 0;
1296
1297 /* aux-voltage-chargeable takes precedence over the deprecated
1298 * trickle-diode-disable
1299 */
1300 if (!device_property_read_u32(ds1307->dev, "aux-voltage-chargeable",
1301 &chargeable)) {
1302 switch (chargeable) {
1303 case 0:
1304 diode = false;
1305 break;
1306 case 1:
1307 diode = true;
1308 break;
1309 default:
1310 dev_warn(ds1307->dev,
1311 "unsupported aux-voltage-chargeable value\n");
1312 break;
1313 }
1314 } else if (device_property_read_bool(ds1307->dev,
1315 "trickle-diode-disable")) {
1316 diode = false;
1317 }
1318
1319 return chip->do_trickle_setup(ds1307, ohms, diode);
1320}
1321
1322/*----------------------------------------------------------------------*/
1323
1324#if IS_REACHABLE(CONFIG_HWMON)
1325
1326/*
1327 * Temperature sensor support for ds3231 devices.
1328 */
1329
1330#define DS3231_REG_TEMPERATURE 0x11
1331
1332/*
1333 * A user-initiated temperature conversion is not started by this function,
1334 * so the temperature is updated once every 64 seconds.
1335 */
1336static int ds3231_hwmon_read_temp(struct device *dev, s32 *mC)
1337{
1338 struct ds1307 *ds1307 = dev_get_drvdata(dev);
1339 u8 temp_buf[2];
1340 s16 temp;
1341 int ret;
1342
1343 ret = regmap_bulk_read(ds1307->regmap, DS3231_REG_TEMPERATURE,
1344 temp_buf, sizeof(temp_buf));
1345 if (ret)
1346 return ret;
1347 /*
1348 * Temperature is represented as a 10-bit code with a resolution of
1349 * 0.25 degree celsius and encoded in two's complement format.
1350 */
1351 temp = (temp_buf[0] << 8) | temp_buf[1];
1352 temp >>= 6;
1353 *mC = temp * 250;
1354
1355 return 0;
1356}
1357
1358static ssize_t ds3231_hwmon_show_temp(struct device *dev,
1359 struct device_attribute *attr, char *buf)
1360{
1361 int ret;
1362 s32 temp;
1363
1364 ret = ds3231_hwmon_read_temp(dev, &temp);
1365 if (ret)
1366 return ret;
1367
1368 return sprintf(buf, "%d\n", temp);
1369}
1370static SENSOR_DEVICE_ATTR(temp1_input, 0444, ds3231_hwmon_show_temp,
1371 NULL, 0);
1372
1373static struct attribute *ds3231_hwmon_attrs[] = {
1374 &sensor_dev_attr_temp1_input.dev_attr.attr,
1375 NULL,
1376};
1377ATTRIBUTE_GROUPS(ds3231_hwmon);
1378
1379static void ds1307_hwmon_register(struct ds1307 *ds1307)
1380{
1381 struct device *dev;
1382
1383 if (ds1307->type != ds_3231)
1384 return;
1385
1386 dev = devm_hwmon_device_register_with_groups(ds1307->dev, ds1307->name,
1387 ds1307,
1388 ds3231_hwmon_groups);
1389 if (IS_ERR(dev)) {
1390 dev_warn(ds1307->dev, "unable to register hwmon device %ld\n",
1391 PTR_ERR(dev));
1392 }
1393}
1394
1395#else
1396
1397static void ds1307_hwmon_register(struct ds1307 *ds1307)
1398{
1399}
1400
1401#endif /* CONFIG_RTC_DRV_DS1307_HWMON */
1402
1403/*----------------------------------------------------------------------*/
1404
1405/*
1406 * Square-wave output support for DS3231
1407 * Datasheet: https://datasheets.maximintegrated.com/en/ds/DS3231.pdf
1408 */
1409#ifdef CONFIG_COMMON_CLK
1410
1411enum {
1412 DS3231_CLK_SQW = 0,
1413 DS3231_CLK_32KHZ,
1414};
1415
1416#define clk_sqw_to_ds1307(clk) \
1417 container_of(clk, struct ds1307, clks[DS3231_CLK_SQW])
1418#define clk_32khz_to_ds1307(clk) \
1419 container_of(clk, struct ds1307, clks[DS3231_CLK_32KHZ])
1420
1421static int ds3231_clk_sqw_rates[] = {
1422 1,
1423 1024,
1424 4096,
1425 8192,
1426};
1427
1428static int ds1337_write_control(struct ds1307 *ds1307, u8 mask, u8 value)
1429{
1430 struct mutex *lock = &ds1307->rtc->ops_lock;
1431 int ret;
1432
1433 mutex_lock(lock);
1434 ret = regmap_update_bits(ds1307->regmap, DS1337_REG_CONTROL,
1435 mask, value);
1436 mutex_unlock(lock);
1437
1438 return ret;
1439}
1440
1441static unsigned long ds3231_clk_sqw_recalc_rate(struct clk_hw *hw,
1442 unsigned long parent_rate)
1443{
1444 struct ds1307 *ds1307 = clk_sqw_to_ds1307(hw);
1445 int control, ret;
1446 int rate_sel = 0;
1447
1448 ret = regmap_read(ds1307->regmap, DS1337_REG_CONTROL, &control);
1449 if (ret)
1450 return ret;
1451 if (control & DS1337_BIT_RS1)
1452 rate_sel += 1;
1453 if (control & DS1337_BIT_RS2)
1454 rate_sel += 2;
1455
1456 return ds3231_clk_sqw_rates[rate_sel];
1457}
1458
1459static long ds3231_clk_sqw_round_rate(struct clk_hw *hw, unsigned long rate,
1460 unsigned long *prate)
1461{
1462 int i;
1463
1464 for (i = ARRAY_SIZE(ds3231_clk_sqw_rates) - 1; i >= 0; i--) {
1465 if (ds3231_clk_sqw_rates[i] <= rate)
1466 return ds3231_clk_sqw_rates[i];
1467 }
1468
1469 return 0;
1470}
1471
1472static int ds3231_clk_sqw_set_rate(struct clk_hw *hw, unsigned long rate,
1473 unsigned long parent_rate)
1474{
1475 struct ds1307 *ds1307 = clk_sqw_to_ds1307(hw);
1476 int control = 0;
1477 int rate_sel;
1478
1479 for (rate_sel = 0; rate_sel < ARRAY_SIZE(ds3231_clk_sqw_rates);
1480 rate_sel++) {
1481 if (ds3231_clk_sqw_rates[rate_sel] == rate)
1482 break;
1483 }
1484
1485 if (rate_sel == ARRAY_SIZE(ds3231_clk_sqw_rates))
1486 return -EINVAL;
1487
1488 if (rate_sel & 1)
1489 control |= DS1337_BIT_RS1;
1490 if (rate_sel & 2)
1491 control |= DS1337_BIT_RS2;
1492
1493 return ds1337_write_control(ds1307, DS1337_BIT_RS1 | DS1337_BIT_RS2,
1494 control);
1495}
1496
1497static int ds3231_clk_sqw_prepare(struct clk_hw *hw)
1498{
1499 struct ds1307 *ds1307 = clk_sqw_to_ds1307(hw);
1500
1501 return ds1337_write_control(ds1307, DS1337_BIT_INTCN, 0);
1502}
1503
1504static void ds3231_clk_sqw_unprepare(struct clk_hw *hw)
1505{
1506 struct ds1307 *ds1307 = clk_sqw_to_ds1307(hw);
1507
1508 ds1337_write_control(ds1307, DS1337_BIT_INTCN, DS1337_BIT_INTCN);
1509}
1510
1511static int ds3231_clk_sqw_is_prepared(struct clk_hw *hw)
1512{
1513 struct ds1307 *ds1307 = clk_sqw_to_ds1307(hw);
1514 int control, ret;
1515
1516 ret = regmap_read(ds1307->regmap, DS1337_REG_CONTROL, &control);
1517 if (ret)
1518 return ret;
1519
1520 return !(control & DS1337_BIT_INTCN);
1521}
1522
1523static const struct clk_ops ds3231_clk_sqw_ops = {
1524 .prepare = ds3231_clk_sqw_prepare,
1525 .unprepare = ds3231_clk_sqw_unprepare,
1526 .is_prepared = ds3231_clk_sqw_is_prepared,
1527 .recalc_rate = ds3231_clk_sqw_recalc_rate,
1528 .round_rate = ds3231_clk_sqw_round_rate,
1529 .set_rate = ds3231_clk_sqw_set_rate,
1530};
1531
1532static unsigned long ds3231_clk_32khz_recalc_rate(struct clk_hw *hw,
1533 unsigned long parent_rate)
1534{
1535 return 32768;
1536}
1537
1538static int ds3231_clk_32khz_control(struct ds1307 *ds1307, bool enable)
1539{
1540 struct mutex *lock = &ds1307->rtc->ops_lock;
1541 int ret;
1542
1543 mutex_lock(lock);
1544 ret = regmap_update_bits(ds1307->regmap, DS1337_REG_STATUS,
1545 DS3231_BIT_EN32KHZ,
1546 enable ? DS3231_BIT_EN32KHZ : 0);
1547 mutex_unlock(lock);
1548
1549 return ret;
1550}
1551
1552static int ds3231_clk_32khz_prepare(struct clk_hw *hw)
1553{
1554 struct ds1307 *ds1307 = clk_32khz_to_ds1307(hw);
1555
1556 return ds3231_clk_32khz_control(ds1307, true);
1557}
1558
1559static void ds3231_clk_32khz_unprepare(struct clk_hw *hw)
1560{
1561 struct ds1307 *ds1307 = clk_32khz_to_ds1307(hw);
1562
1563 ds3231_clk_32khz_control(ds1307, false);
1564}
1565
1566static int ds3231_clk_32khz_is_prepared(struct clk_hw *hw)
1567{
1568 struct ds1307 *ds1307 = clk_32khz_to_ds1307(hw);
1569 int status, ret;
1570
1571 ret = regmap_read(ds1307->regmap, DS1337_REG_STATUS, &status);
1572 if (ret)
1573 return ret;
1574
1575 return !!(status & DS3231_BIT_EN32KHZ);
1576}
1577
1578static const struct clk_ops ds3231_clk_32khz_ops = {
1579 .prepare = ds3231_clk_32khz_prepare,
1580 .unprepare = ds3231_clk_32khz_unprepare,
1581 .is_prepared = ds3231_clk_32khz_is_prepared,
1582 .recalc_rate = ds3231_clk_32khz_recalc_rate,
1583};
1584
1585static const char *ds3231_clks_names[] = {
1586 [DS3231_CLK_SQW] = "ds3231_clk_sqw",
1587 [DS3231_CLK_32KHZ] = "ds3231_clk_32khz",
1588};
1589
1590static struct clk_init_data ds3231_clks_init[] = {
1591 [DS3231_CLK_SQW] = {
1592 .ops = &ds3231_clk_sqw_ops,
1593 },
1594 [DS3231_CLK_32KHZ] = {
1595 .ops = &ds3231_clk_32khz_ops,
1596 },
1597};
1598
1599static int ds3231_clks_register(struct ds1307 *ds1307)
1600{
1601 struct device_node *node = ds1307->dev->of_node;
1602 struct clk_onecell_data *onecell;
1603 int i;
1604
1605 onecell = devm_kzalloc(ds1307->dev, sizeof(*onecell), GFP_KERNEL);
1606 if (!onecell)
1607 return -ENOMEM;
1608
1609 onecell->clk_num = ARRAY_SIZE(ds3231_clks_init);
1610 onecell->clks = devm_kcalloc(ds1307->dev, onecell->clk_num,
1611 sizeof(onecell->clks[0]), GFP_KERNEL);
1612 if (!onecell->clks)
1613 return -ENOMEM;
1614
1615 /* optional override of the clockname */
1616 device_property_read_string_array(ds1307->dev, "clock-output-names",
1617 ds3231_clks_names,
1618 ARRAY_SIZE(ds3231_clks_names));
1619
1620 for (i = 0; i < ARRAY_SIZE(ds3231_clks_init); i++) {
1621 struct clk_init_data init = ds3231_clks_init[i];
1622
1623 /*
1624 * Interrupt signal due to alarm conditions and square-wave
1625 * output share same pin, so don't initialize both.
1626 */
1627 if (i == DS3231_CLK_SQW && test_bit(RTC_FEATURE_ALARM, ds1307->rtc->features))
1628 continue;
1629
1630 init.name = ds3231_clks_names[i];
1631 ds1307->clks[i].init = &init;
1632
1633 onecell->clks[i] = devm_clk_register(ds1307->dev,
1634 &ds1307->clks[i]);
1635 if (IS_ERR(onecell->clks[i]))
1636 return PTR_ERR(onecell->clks[i]);
1637 }
1638
1639 if (node)
1640 of_clk_add_provider(node, of_clk_src_onecell_get, onecell);
1641
1642 return 0;
1643}
1644
1645static void ds1307_clks_register(struct ds1307 *ds1307)
1646{
1647 int ret;
1648
1649 if (ds1307->type != ds_3231)
1650 return;
1651
1652 ret = ds3231_clks_register(ds1307);
1653 if (ret) {
1654 dev_warn(ds1307->dev, "unable to register clock device %d\n",
1655 ret);
1656 }
1657}
1658
1659#else
1660
1661static void ds1307_clks_register(struct ds1307 *ds1307)
1662{
1663}
1664
1665#endif /* CONFIG_COMMON_CLK */
1666
1667#ifdef CONFIG_WATCHDOG_CORE
1668static const struct watchdog_info ds1388_wdt_info = {
1669 .options = WDIOF_SETTIMEOUT | WDIOF_KEEPALIVEPING | WDIOF_MAGICCLOSE,
1670 .identity = "DS1388 watchdog",
1671};
1672
1673static const struct watchdog_ops ds1388_wdt_ops = {
1674 .owner = THIS_MODULE,
1675 .start = ds1388_wdt_start,
1676 .stop = ds1388_wdt_stop,
1677 .ping = ds1388_wdt_ping,
1678 .set_timeout = ds1388_wdt_set_timeout,
1679
1680};
1681
1682static void ds1307_wdt_register(struct ds1307 *ds1307)
1683{
1684 struct watchdog_device *wdt;
1685 int err;
1686 int val;
1687
1688 if (ds1307->type != ds_1388)
1689 return;
1690
1691 wdt = devm_kzalloc(ds1307->dev, sizeof(*wdt), GFP_KERNEL);
1692 if (!wdt)
1693 return;
1694
1695 err = regmap_read(ds1307->regmap, DS1388_REG_FLAG, &val);
1696 if (!err && val & DS1388_BIT_WF)
1697 wdt->bootstatus = WDIOF_CARDRESET;
1698
1699 wdt->info = &ds1388_wdt_info;
1700 wdt->ops = &ds1388_wdt_ops;
1701 wdt->timeout = 99;
1702 wdt->max_timeout = 99;
1703 wdt->min_timeout = 1;
1704
1705 watchdog_init_timeout(wdt, 0, ds1307->dev);
1706 watchdog_set_drvdata(wdt, ds1307);
1707 devm_watchdog_register_device(ds1307->dev, wdt);
1708}
1709#else
1710static void ds1307_wdt_register(struct ds1307 *ds1307)
1711{
1712}
1713#endif /* CONFIG_WATCHDOG_CORE */
1714
1715static const struct regmap_config regmap_config = {
1716 .reg_bits = 8,
1717 .val_bits = 8,
1718};
1719
1720static int ds1307_probe(struct i2c_client *client)
1721{
1722 const struct i2c_device_id *id = i2c_client_get_device_id(client);
1723 struct ds1307 *ds1307;
1724 const void *match;
1725 int err = -ENODEV;
1726 int tmp;
1727 const struct chip_desc *chip;
1728 bool want_irq;
1729 bool ds1307_can_wakeup_device = false;
1730 unsigned char regs[8];
1731 struct ds1307_platform_data *pdata = dev_get_platdata(&client->dev);
1732 u8 trickle_charger_setup = 0;
1733
1734 ds1307 = devm_kzalloc(&client->dev, sizeof(struct ds1307), GFP_KERNEL);
1735 if (!ds1307)
1736 return -ENOMEM;
1737
1738 dev_set_drvdata(&client->dev, ds1307);
1739 ds1307->dev = &client->dev;
1740 ds1307->name = client->name;
1741
1742 ds1307->regmap = devm_regmap_init_i2c(client, ®map_config);
1743 if (IS_ERR(ds1307->regmap)) {
1744 dev_err(ds1307->dev, "regmap allocation failed\n");
1745 return PTR_ERR(ds1307->regmap);
1746 }
1747
1748 i2c_set_clientdata(client, ds1307);
1749
1750 match = device_get_match_data(&client->dev);
1751 if (match) {
1752 ds1307->type = (uintptr_t)match;
1753 chip = &chips[ds1307->type];
1754 } else if (id) {
1755 chip = &chips[id->driver_data];
1756 ds1307->type = id->driver_data;
1757 } else {
1758 return -ENODEV;
1759 }
1760
1761 want_irq = client->irq > 0 && chip->alarm;
1762
1763 if (!pdata)
1764 trickle_charger_setup = ds1307_trickle_init(ds1307, chip);
1765 else if (pdata->trickle_charger_setup)
1766 trickle_charger_setup = pdata->trickle_charger_setup;
1767
1768 if (trickle_charger_setup && chip->trickle_charger_reg) {
1769 dev_dbg(ds1307->dev,
1770 "writing trickle charger info 0x%x to 0x%x\n",
1771 trickle_charger_setup, chip->trickle_charger_reg);
1772 regmap_write(ds1307->regmap, chip->trickle_charger_reg,
1773 trickle_charger_setup);
1774 }
1775
1776/*
1777 * For devices with no IRQ directly connected to the SoC, the RTC chip
1778 * can be forced as a wakeup source by stating that explicitly in
1779 * the device's .dts file using the "wakeup-source" boolean property.
1780 * If the "wakeup-source" property is set, don't request an IRQ.
1781 * This will guarantee the 'wakealarm' sysfs entry is available on the device,
1782 * if supported by the RTC.
1783 */
1784 if (chip->alarm && device_property_read_bool(&client->dev, "wakeup-source"))
1785 ds1307_can_wakeup_device = true;
1786
1787 switch (ds1307->type) {
1788 case ds_1337:
1789 case ds_1339:
1790 case ds_1341:
1791 case ds_3231:
1792 /* get registers that the "rtc" read below won't read... */
1793 err = regmap_bulk_read(ds1307->regmap, DS1337_REG_CONTROL,
1794 regs, 2);
1795 if (err) {
1796 dev_dbg(ds1307->dev, "read error %d\n", err);
1797 goto exit;
1798 }
1799
1800 /* oscillator off? turn it on, so clock can tick. */
1801 if (regs[0] & DS1337_BIT_nEOSC)
1802 regs[0] &= ~DS1337_BIT_nEOSC;
1803
1804 /*
1805 * Using IRQ or defined as wakeup-source?
1806 * Disable the square wave and both alarms.
1807 * For some variants, be sure alarms can trigger when we're
1808 * running on Vbackup (BBSQI/BBSQW)
1809 */
1810 if (want_irq || ds1307_can_wakeup_device) {
1811 regs[0] |= DS1337_BIT_INTCN | chip->bbsqi_bit;
1812 regs[0] &= ~(DS1337_BIT_A2IE | DS1337_BIT_A1IE);
1813 }
1814
1815 regmap_write(ds1307->regmap, DS1337_REG_CONTROL,
1816 regs[0]);
1817
1818 /* oscillator fault? clear flag, and warn */
1819 if (regs[1] & DS1337_BIT_OSF) {
1820 regmap_write(ds1307->regmap, DS1337_REG_STATUS,
1821 regs[1] & ~DS1337_BIT_OSF);
1822 dev_warn(ds1307->dev, "SET TIME!\n");
1823 }
1824 break;
1825
1826 case rx_8025:
1827 err = regmap_bulk_read(ds1307->regmap,
1828 RX8025_REG_CTRL1 << 4 | 0x08, regs, 2);
1829 if (err) {
1830 dev_dbg(ds1307->dev, "read error %d\n", err);
1831 goto exit;
1832 }
1833
1834 /* oscillator off? turn it on, so clock can tick. */
1835 if (!(regs[1] & RX8025_BIT_XST)) {
1836 regs[1] |= RX8025_BIT_XST;
1837 regmap_write(ds1307->regmap,
1838 RX8025_REG_CTRL2 << 4 | 0x08,
1839 regs[1]);
1840 dev_warn(ds1307->dev,
1841 "oscillator stop detected - SET TIME!\n");
1842 }
1843
1844 if (regs[1] & RX8025_BIT_PON) {
1845 regs[1] &= ~RX8025_BIT_PON;
1846 regmap_write(ds1307->regmap,
1847 RX8025_REG_CTRL2 << 4 | 0x08,
1848 regs[1]);
1849 dev_warn(ds1307->dev, "power-on detected\n");
1850 }
1851
1852 if (regs[1] & RX8025_BIT_VDET) {
1853 regs[1] &= ~RX8025_BIT_VDET;
1854 regmap_write(ds1307->regmap,
1855 RX8025_REG_CTRL2 << 4 | 0x08,
1856 regs[1]);
1857 dev_warn(ds1307->dev, "voltage drop detected\n");
1858 }
1859
1860 /* make sure we are running in 24hour mode */
1861 if (!(regs[0] & RX8025_BIT_2412)) {
1862 u8 hour;
1863
1864 /* switch to 24 hour mode */
1865 regmap_write(ds1307->regmap,
1866 RX8025_REG_CTRL1 << 4 | 0x08,
1867 regs[0] | RX8025_BIT_2412);
1868
1869 err = regmap_bulk_read(ds1307->regmap,
1870 RX8025_REG_CTRL1 << 4 | 0x08,
1871 regs, 2);
1872 if (err) {
1873 dev_dbg(ds1307->dev, "read error %d\n", err);
1874 goto exit;
1875 }
1876
1877 /* correct hour */
1878 hour = bcd2bin(regs[DS1307_REG_HOUR]);
1879 if (hour == 12)
1880 hour = 0;
1881 if (regs[DS1307_REG_HOUR] & DS1307_BIT_PM)
1882 hour += 12;
1883
1884 regmap_write(ds1307->regmap,
1885 DS1307_REG_HOUR << 4 | 0x08, hour);
1886 }
1887 break;
1888 case ds_1388:
1889 err = regmap_read(ds1307->regmap, DS1388_REG_CONTROL, &tmp);
1890 if (err) {
1891 dev_dbg(ds1307->dev, "read error %d\n", err);
1892 goto exit;
1893 }
1894
1895 /* oscillator off? turn it on, so clock can tick. */
1896 if (tmp & DS1388_BIT_nEOSC) {
1897 tmp &= ~DS1388_BIT_nEOSC;
1898 regmap_write(ds1307->regmap, DS1388_REG_CONTROL, tmp);
1899 }
1900 break;
1901 default:
1902 break;
1903 }
1904
1905 /* read RTC registers */
1906 err = regmap_bulk_read(ds1307->regmap, chip->offset, regs,
1907 sizeof(regs));
1908 if (err) {
1909 dev_dbg(ds1307->dev, "read error %d\n", err);
1910 goto exit;
1911 }
1912
1913 if (ds1307->type == mcp794xx &&
1914 !(regs[DS1307_REG_WDAY] & MCP794XX_BIT_VBATEN)) {
1915 regmap_write(ds1307->regmap, DS1307_REG_WDAY,
1916 regs[DS1307_REG_WDAY] |
1917 MCP794XX_BIT_VBATEN);
1918 }
1919
1920 tmp = regs[DS1307_REG_HOUR];
1921 switch (ds1307->type) {
1922 case ds_1340:
1923 case m41t0:
1924 case m41t00:
1925 case m41t11:
1926 /*
1927 * NOTE: ignores century bits; fix before deploying
1928 * systems that will run through year 2100.
1929 */
1930 break;
1931 case rx_8025:
1932 break;
1933 default:
1934 if (!(tmp & DS1307_BIT_12HR))
1935 break;
1936
1937 /*
1938 * Be sure we're in 24 hour mode. Multi-master systems
1939 * take note...
1940 */
1941 tmp = bcd2bin(tmp & 0x1f);
1942 if (tmp == 12)
1943 tmp = 0;
1944 if (regs[DS1307_REG_HOUR] & DS1307_BIT_PM)
1945 tmp += 12;
1946 regmap_write(ds1307->regmap, chip->offset + DS1307_REG_HOUR,
1947 bin2bcd(tmp));
1948 }
1949
1950 ds1307->rtc = devm_rtc_allocate_device(ds1307->dev);
1951 if (IS_ERR(ds1307->rtc))
1952 return PTR_ERR(ds1307->rtc);
1953
1954 if (want_irq || ds1307_can_wakeup_device)
1955 device_set_wakeup_capable(ds1307->dev, true);
1956 else
1957 clear_bit(RTC_FEATURE_ALARM, ds1307->rtc->features);
1958
1959 if (ds1307_can_wakeup_device && !want_irq) {
1960 dev_info(ds1307->dev,
1961 "'wakeup-source' is set, request for an IRQ is disabled!\n");
1962 /* We cannot support UIE mode if we do not have an IRQ line */
1963 clear_bit(RTC_FEATURE_UPDATE_INTERRUPT, ds1307->rtc->features);
1964 }
1965
1966 if (want_irq) {
1967 err = devm_request_threaded_irq(ds1307->dev, client->irq, NULL,
1968 chip->irq_handler ?: ds1307_irq,
1969 IRQF_SHARED | IRQF_ONESHOT,
1970 ds1307->name, ds1307);
1971 if (err) {
1972 client->irq = 0;
1973 device_set_wakeup_capable(ds1307->dev, false);
1974 clear_bit(RTC_FEATURE_ALARM, ds1307->rtc->features);
1975 dev_err(ds1307->dev, "unable to request IRQ!\n");
1976 } else {
1977 dev_dbg(ds1307->dev, "got IRQ %d\n", client->irq);
1978 }
1979 }
1980
1981 ds1307->rtc->ops = chip->rtc_ops ?: &ds13xx_rtc_ops;
1982 err = ds1307_add_frequency_test(ds1307);
1983 if (err)
1984 return err;
1985
1986 err = devm_rtc_register_device(ds1307->rtc);
1987 if (err)
1988 return err;
1989
1990 if (chip->nvram_size) {
1991 struct nvmem_config nvmem_cfg = {
1992 .name = "ds1307_nvram",
1993 .word_size = 1,
1994 .stride = 1,
1995 .size = chip->nvram_size,
1996 .reg_read = ds1307_nvram_read,
1997 .reg_write = ds1307_nvram_write,
1998 .priv = ds1307,
1999 };
2000
2001 devm_rtc_nvmem_register(ds1307->rtc, &nvmem_cfg);
2002 }
2003
2004 ds1307_hwmon_register(ds1307);
2005 ds1307_clks_register(ds1307);
2006 ds1307_wdt_register(ds1307);
2007
2008 return 0;
2009
2010exit:
2011 return err;
2012}
2013
2014static struct i2c_driver ds1307_driver = {
2015 .driver = {
2016 .name = "rtc-ds1307",
2017 .of_match_table = ds1307_of_match,
2018 },
2019 .probe = ds1307_probe,
2020 .id_table = ds1307_id,
2021};
2022
2023module_i2c_driver(ds1307_driver);
2024
2025MODULE_DESCRIPTION("RTC driver for DS1307 and similar chips");
2026MODULE_LICENSE("GPL");
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * rtc-ds1307.c - RTC driver for some mostly-compatible I2C chips.
4 *
5 * Copyright (C) 2005 James Chapman (ds1337 core)
6 * Copyright (C) 2006 David Brownell
7 * Copyright (C) 2009 Matthias Fuchs (rx8025 support)
8 * Copyright (C) 2012 Bertrand Achard (nvram access fixes)
9 */
10
11#include <linux/acpi.h>
12#include <linux/bcd.h>
13#include <linux/i2c.h>
14#include <linux/init.h>
15#include <linux/module.h>
16#include <linux/of_device.h>
17#include <linux/rtc/ds1307.h>
18#include <linux/rtc.h>
19#include <linux/slab.h>
20#include <linux/string.h>
21#include <linux/hwmon.h>
22#include <linux/hwmon-sysfs.h>
23#include <linux/clk-provider.h>
24#include <linux/regmap.h>
25#include <linux/watchdog.h>
26
27/*
28 * We can't determine type by probing, but if we expect pre-Linux code
29 * to have set the chip up as a clock (turning on the oscillator and
30 * setting the date and time), Linux can ignore the non-clock features.
31 * That's a natural job for a factory or repair bench.
32 */
33enum ds_type {
34 ds_1307,
35 ds_1308,
36 ds_1337,
37 ds_1338,
38 ds_1339,
39 ds_1340,
40 ds_1341,
41 ds_1388,
42 ds_3231,
43 m41t0,
44 m41t00,
45 m41t11,
46 mcp794xx,
47 rx_8025,
48 rx_8130,
49 last_ds_type /* always last */
50 /* rs5c372 too? different address... */
51};
52
53/* RTC registers don't differ much, except for the century flag */
54#define DS1307_REG_SECS 0x00 /* 00-59 */
55# define DS1307_BIT_CH 0x80
56# define DS1340_BIT_nEOSC 0x80
57# define MCP794XX_BIT_ST 0x80
58#define DS1307_REG_MIN 0x01 /* 00-59 */
59# define M41T0_BIT_OF 0x80
60#define DS1307_REG_HOUR 0x02 /* 00-23, or 1-12{am,pm} */
61# define DS1307_BIT_12HR 0x40 /* in REG_HOUR */
62# define DS1307_BIT_PM 0x20 /* in REG_HOUR */
63# define DS1340_BIT_CENTURY_EN 0x80 /* in REG_HOUR */
64# define DS1340_BIT_CENTURY 0x40 /* in REG_HOUR */
65#define DS1307_REG_WDAY 0x03 /* 01-07 */
66# define MCP794XX_BIT_VBATEN 0x08
67#define DS1307_REG_MDAY 0x04 /* 01-31 */
68#define DS1307_REG_MONTH 0x05 /* 01-12 */
69# define DS1337_BIT_CENTURY 0x80 /* in REG_MONTH */
70#define DS1307_REG_YEAR 0x06 /* 00-99 */
71
72/*
73 * Other registers (control, status, alarms, trickle charge, NVRAM, etc)
74 * start at 7, and they differ a LOT. Only control and status matter for
75 * basic RTC date and time functionality; be careful using them.
76 */
77#define DS1307_REG_CONTROL 0x07 /* or ds1338 */
78# define DS1307_BIT_OUT 0x80
79# define DS1338_BIT_OSF 0x20
80# define DS1307_BIT_SQWE 0x10
81# define DS1307_BIT_RS1 0x02
82# define DS1307_BIT_RS0 0x01
83#define DS1337_REG_CONTROL 0x0e
84# define DS1337_BIT_nEOSC 0x80
85# define DS1339_BIT_BBSQI 0x20
86# define DS3231_BIT_BBSQW 0x40 /* same as BBSQI */
87# define DS1337_BIT_RS2 0x10
88# define DS1337_BIT_RS1 0x08
89# define DS1337_BIT_INTCN 0x04
90# define DS1337_BIT_A2IE 0x02
91# define DS1337_BIT_A1IE 0x01
92#define DS1340_REG_CONTROL 0x07
93# define DS1340_BIT_OUT 0x80
94# define DS1340_BIT_FT 0x40
95# define DS1340_BIT_CALIB_SIGN 0x20
96# define DS1340_M_CALIBRATION 0x1f
97#define DS1340_REG_FLAG 0x09
98# define DS1340_BIT_OSF 0x80
99#define DS1337_REG_STATUS 0x0f
100# define DS1337_BIT_OSF 0x80
101# define DS3231_BIT_EN32KHZ 0x08
102# define DS1337_BIT_A2I 0x02
103# define DS1337_BIT_A1I 0x01
104#define DS1339_REG_ALARM1_SECS 0x07
105
106#define DS13XX_TRICKLE_CHARGER_MAGIC 0xa0
107
108#define RX8025_REG_CTRL1 0x0e
109# define RX8025_BIT_2412 0x20
110#define RX8025_REG_CTRL2 0x0f
111# define RX8025_BIT_PON 0x10
112# define RX8025_BIT_VDET 0x40
113# define RX8025_BIT_XST 0x20
114
115#define RX8130_REG_ALARM_MIN 0x17
116#define RX8130_REG_ALARM_HOUR 0x18
117#define RX8130_REG_ALARM_WEEK_OR_DAY 0x19
118#define RX8130_REG_EXTENSION 0x1c
119#define RX8130_REG_EXTENSION_WADA BIT(3)
120#define RX8130_REG_FLAG 0x1d
121#define RX8130_REG_FLAG_VLF BIT(1)
122#define RX8130_REG_FLAG_AF BIT(3)
123#define RX8130_REG_CONTROL0 0x1e
124#define RX8130_REG_CONTROL0_AIE BIT(3)
125
126#define MCP794XX_REG_CONTROL 0x07
127# define MCP794XX_BIT_ALM0_EN 0x10
128# define MCP794XX_BIT_ALM1_EN 0x20
129#define MCP794XX_REG_ALARM0_BASE 0x0a
130#define MCP794XX_REG_ALARM0_CTRL 0x0d
131#define MCP794XX_REG_ALARM1_BASE 0x11
132#define MCP794XX_REG_ALARM1_CTRL 0x14
133# define MCP794XX_BIT_ALMX_IF BIT(3)
134# define MCP794XX_BIT_ALMX_C0 BIT(4)
135# define MCP794XX_BIT_ALMX_C1 BIT(5)
136# define MCP794XX_BIT_ALMX_C2 BIT(6)
137# define MCP794XX_BIT_ALMX_POL BIT(7)
138# define MCP794XX_MSK_ALMX_MATCH (MCP794XX_BIT_ALMX_C0 | \
139 MCP794XX_BIT_ALMX_C1 | \
140 MCP794XX_BIT_ALMX_C2)
141
142#define M41TXX_REG_CONTROL 0x07
143# define M41TXX_BIT_OUT BIT(7)
144# define M41TXX_BIT_FT BIT(6)
145# define M41TXX_BIT_CALIB_SIGN BIT(5)
146# define M41TXX_M_CALIBRATION GENMASK(4, 0)
147
148#define DS1388_REG_WDOG_HUN_SECS 0x08
149#define DS1388_REG_WDOG_SECS 0x09
150#define DS1388_REG_FLAG 0x0b
151# define DS1388_BIT_WF BIT(6)
152# define DS1388_BIT_OSF BIT(7)
153#define DS1388_REG_CONTROL 0x0c
154# define DS1388_BIT_RST BIT(0)
155# define DS1388_BIT_WDE BIT(1)
156
157/* negative offset step is -2.034ppm */
158#define M41TXX_NEG_OFFSET_STEP_PPB 2034
159/* positive offset step is +4.068ppm */
160#define M41TXX_POS_OFFSET_STEP_PPB 4068
161/* Min and max values supported with 'offset' interface by M41TXX */
162#define M41TXX_MIN_OFFSET ((-31) * M41TXX_NEG_OFFSET_STEP_PPB)
163#define M41TXX_MAX_OFFSET ((31) * M41TXX_POS_OFFSET_STEP_PPB)
164
165struct ds1307 {
166 enum ds_type type;
167 unsigned long flags;
168#define HAS_NVRAM 0 /* bit 0 == sysfs file active */
169#define HAS_ALARM 1 /* bit 1 == irq claimed */
170 struct device *dev;
171 struct regmap *regmap;
172 const char *name;
173 struct rtc_device *rtc;
174#ifdef CONFIG_COMMON_CLK
175 struct clk_hw clks[2];
176#endif
177};
178
179struct chip_desc {
180 unsigned alarm:1;
181 u16 nvram_offset;
182 u16 nvram_size;
183 u8 offset; /* register's offset */
184 u8 century_reg;
185 u8 century_enable_bit;
186 u8 century_bit;
187 u8 bbsqi_bit;
188 irq_handler_t irq_handler;
189 const struct rtc_class_ops *rtc_ops;
190 u16 trickle_charger_reg;
191 u8 (*do_trickle_setup)(struct ds1307 *, u32,
192 bool);
193};
194
195static const struct chip_desc chips[last_ds_type];
196
197static int ds1307_get_time(struct device *dev, struct rtc_time *t)
198{
199 struct ds1307 *ds1307 = dev_get_drvdata(dev);
200 int tmp, ret;
201 const struct chip_desc *chip = &chips[ds1307->type];
202 u8 regs[7];
203
204 if (ds1307->type == rx_8130) {
205 unsigned int regflag;
206 ret = regmap_read(ds1307->regmap, RX8130_REG_FLAG, ®flag);
207 if (ret) {
208 dev_err(dev, "%s error %d\n", "read", ret);
209 return ret;
210 }
211
212 if (regflag & RX8130_REG_FLAG_VLF) {
213 dev_warn_once(dev, "oscillator failed, set time!\n");
214 return -EINVAL;
215 }
216 }
217
218 /* read the RTC date and time registers all at once */
219 ret = regmap_bulk_read(ds1307->regmap, chip->offset, regs,
220 sizeof(regs));
221 if (ret) {
222 dev_err(dev, "%s error %d\n", "read", ret);
223 return ret;
224 }
225
226 dev_dbg(dev, "%s: %7ph\n", "read", regs);
227
228 /* if oscillator fail bit is set, no data can be trusted */
229 if (ds1307->type == m41t0 &&
230 regs[DS1307_REG_MIN] & M41T0_BIT_OF) {
231 dev_warn_once(dev, "oscillator failed, set time!\n");
232 return -EINVAL;
233 }
234
235 tmp = regs[DS1307_REG_SECS];
236 switch (ds1307->type) {
237 case ds_1307:
238 case m41t0:
239 case m41t00:
240 case m41t11:
241 if (tmp & DS1307_BIT_CH)
242 return -EINVAL;
243 break;
244 case ds_1308:
245 case ds_1338:
246 if (tmp & DS1307_BIT_CH)
247 return -EINVAL;
248
249 ret = regmap_read(ds1307->regmap, DS1307_REG_CONTROL, &tmp);
250 if (ret)
251 return ret;
252 if (tmp & DS1338_BIT_OSF)
253 return -EINVAL;
254 break;
255 case ds_1340:
256 if (tmp & DS1340_BIT_nEOSC)
257 return -EINVAL;
258
259 ret = regmap_read(ds1307->regmap, DS1340_REG_FLAG, &tmp);
260 if (ret)
261 return ret;
262 if (tmp & DS1340_BIT_OSF)
263 return -EINVAL;
264 break;
265 case ds_1388:
266 ret = regmap_read(ds1307->regmap, DS1388_REG_FLAG, &tmp);
267 if (ret)
268 return ret;
269 if (tmp & DS1388_BIT_OSF)
270 return -EINVAL;
271 break;
272 case mcp794xx:
273 if (!(tmp & MCP794XX_BIT_ST))
274 return -EINVAL;
275
276 break;
277 default:
278 break;
279 }
280
281 t->tm_sec = bcd2bin(regs[DS1307_REG_SECS] & 0x7f);
282 t->tm_min = bcd2bin(regs[DS1307_REG_MIN] & 0x7f);
283 tmp = regs[DS1307_REG_HOUR] & 0x3f;
284 t->tm_hour = bcd2bin(tmp);
285 t->tm_wday = bcd2bin(regs[DS1307_REG_WDAY] & 0x07) - 1;
286 t->tm_mday = bcd2bin(regs[DS1307_REG_MDAY] & 0x3f);
287 tmp = regs[DS1307_REG_MONTH] & 0x1f;
288 t->tm_mon = bcd2bin(tmp) - 1;
289 t->tm_year = bcd2bin(regs[DS1307_REG_YEAR]) + 100;
290
291 if (regs[chip->century_reg] & chip->century_bit &&
292 IS_ENABLED(CONFIG_RTC_DRV_DS1307_CENTURY))
293 t->tm_year += 100;
294
295 dev_dbg(dev, "%s secs=%d, mins=%d, "
296 "hours=%d, mday=%d, mon=%d, year=%d, wday=%d\n",
297 "read", t->tm_sec, t->tm_min,
298 t->tm_hour, t->tm_mday,
299 t->tm_mon, t->tm_year, t->tm_wday);
300
301 return 0;
302}
303
304static int ds1307_set_time(struct device *dev, struct rtc_time *t)
305{
306 struct ds1307 *ds1307 = dev_get_drvdata(dev);
307 const struct chip_desc *chip = &chips[ds1307->type];
308 int result;
309 int tmp;
310 u8 regs[7];
311
312 dev_dbg(dev, "%s secs=%d, mins=%d, "
313 "hours=%d, mday=%d, mon=%d, year=%d, wday=%d\n",
314 "write", t->tm_sec, t->tm_min,
315 t->tm_hour, t->tm_mday,
316 t->tm_mon, t->tm_year, t->tm_wday);
317
318 if (t->tm_year < 100)
319 return -EINVAL;
320
321#ifdef CONFIG_RTC_DRV_DS1307_CENTURY
322 if (t->tm_year > (chip->century_bit ? 299 : 199))
323 return -EINVAL;
324#else
325 if (t->tm_year > 199)
326 return -EINVAL;
327#endif
328
329 regs[DS1307_REG_SECS] = bin2bcd(t->tm_sec);
330 regs[DS1307_REG_MIN] = bin2bcd(t->tm_min);
331 regs[DS1307_REG_HOUR] = bin2bcd(t->tm_hour);
332 regs[DS1307_REG_WDAY] = bin2bcd(t->tm_wday + 1);
333 regs[DS1307_REG_MDAY] = bin2bcd(t->tm_mday);
334 regs[DS1307_REG_MONTH] = bin2bcd(t->tm_mon + 1);
335
336 /* assume 20YY not 19YY */
337 tmp = t->tm_year - 100;
338 regs[DS1307_REG_YEAR] = bin2bcd(tmp);
339
340 if (chip->century_enable_bit)
341 regs[chip->century_reg] |= chip->century_enable_bit;
342 if (t->tm_year > 199 && chip->century_bit)
343 regs[chip->century_reg] |= chip->century_bit;
344
345 switch (ds1307->type) {
346 case ds_1308:
347 case ds_1338:
348 regmap_update_bits(ds1307->regmap, DS1307_REG_CONTROL,
349 DS1338_BIT_OSF, 0);
350 break;
351 case ds_1340:
352 regmap_update_bits(ds1307->regmap, DS1340_REG_FLAG,
353 DS1340_BIT_OSF, 0);
354 break;
355 case mcp794xx:
356 /*
357 * these bits were cleared when preparing the date/time
358 * values and need to be set again before writing the
359 * regsfer out to the device.
360 */
361 regs[DS1307_REG_SECS] |= MCP794XX_BIT_ST;
362 regs[DS1307_REG_WDAY] |= MCP794XX_BIT_VBATEN;
363 break;
364 default:
365 break;
366 }
367
368 dev_dbg(dev, "%s: %7ph\n", "write", regs);
369
370 result = regmap_bulk_write(ds1307->regmap, chip->offset, regs,
371 sizeof(regs));
372 if (result) {
373 dev_err(dev, "%s error %d\n", "write", result);
374 return result;
375 }
376
377 if (ds1307->type == rx_8130) {
378 /* clear Voltage Loss Flag as data is available now */
379 result = regmap_write(ds1307->regmap, RX8130_REG_FLAG,
380 ~(u8)RX8130_REG_FLAG_VLF);
381 if (result) {
382 dev_err(dev, "%s error %d\n", "write", result);
383 return result;
384 }
385 }
386
387 return 0;
388}
389
390static int ds1337_read_alarm(struct device *dev, struct rtc_wkalrm *t)
391{
392 struct ds1307 *ds1307 = dev_get_drvdata(dev);
393 int ret;
394 u8 regs[9];
395
396 if (!test_bit(HAS_ALARM, &ds1307->flags))
397 return -EINVAL;
398
399 /* read all ALARM1, ALARM2, and status registers at once */
400 ret = regmap_bulk_read(ds1307->regmap, DS1339_REG_ALARM1_SECS,
401 regs, sizeof(regs));
402 if (ret) {
403 dev_err(dev, "%s error %d\n", "alarm read", ret);
404 return ret;
405 }
406
407 dev_dbg(dev, "%s: %4ph, %3ph, %2ph\n", "alarm read",
408 ®s[0], ®s[4], ®s[7]);
409
410 /*
411 * report alarm time (ALARM1); assume 24 hour and day-of-month modes,
412 * and that all four fields are checked matches
413 */
414 t->time.tm_sec = bcd2bin(regs[0] & 0x7f);
415 t->time.tm_min = bcd2bin(regs[1] & 0x7f);
416 t->time.tm_hour = bcd2bin(regs[2] & 0x3f);
417 t->time.tm_mday = bcd2bin(regs[3] & 0x3f);
418
419 /* ... and status */
420 t->enabled = !!(regs[7] & DS1337_BIT_A1IE);
421 t->pending = !!(regs[8] & DS1337_BIT_A1I);
422
423 dev_dbg(dev, "%s secs=%d, mins=%d, "
424 "hours=%d, mday=%d, enabled=%d, pending=%d\n",
425 "alarm read", t->time.tm_sec, t->time.tm_min,
426 t->time.tm_hour, t->time.tm_mday,
427 t->enabled, t->pending);
428
429 return 0;
430}
431
432static int ds1337_set_alarm(struct device *dev, struct rtc_wkalrm *t)
433{
434 struct ds1307 *ds1307 = dev_get_drvdata(dev);
435 unsigned char regs[9];
436 u8 control, status;
437 int ret;
438
439 if (!test_bit(HAS_ALARM, &ds1307->flags))
440 return -EINVAL;
441
442 dev_dbg(dev, "%s secs=%d, mins=%d, "
443 "hours=%d, mday=%d, enabled=%d, pending=%d\n",
444 "alarm set", t->time.tm_sec, t->time.tm_min,
445 t->time.tm_hour, t->time.tm_mday,
446 t->enabled, t->pending);
447
448 /* read current status of both alarms and the chip */
449 ret = regmap_bulk_read(ds1307->regmap, DS1339_REG_ALARM1_SECS, regs,
450 sizeof(regs));
451 if (ret) {
452 dev_err(dev, "%s error %d\n", "alarm write", ret);
453 return ret;
454 }
455 control = regs[7];
456 status = regs[8];
457
458 dev_dbg(dev, "%s: %4ph, %3ph, %02x %02x\n", "alarm set (old status)",
459 ®s[0], ®s[4], control, status);
460
461 /* set ALARM1, using 24 hour and day-of-month modes */
462 regs[0] = bin2bcd(t->time.tm_sec);
463 regs[1] = bin2bcd(t->time.tm_min);
464 regs[2] = bin2bcd(t->time.tm_hour);
465 regs[3] = bin2bcd(t->time.tm_mday);
466
467 /* set ALARM2 to non-garbage */
468 regs[4] = 0;
469 regs[5] = 0;
470 regs[6] = 0;
471
472 /* disable alarms */
473 regs[7] = control & ~(DS1337_BIT_A1IE | DS1337_BIT_A2IE);
474 regs[8] = status & ~(DS1337_BIT_A1I | DS1337_BIT_A2I);
475
476 ret = regmap_bulk_write(ds1307->regmap, DS1339_REG_ALARM1_SECS, regs,
477 sizeof(regs));
478 if (ret) {
479 dev_err(dev, "can't set alarm time\n");
480 return ret;
481 }
482
483 /* optionally enable ALARM1 */
484 if (t->enabled) {
485 dev_dbg(dev, "alarm IRQ armed\n");
486 regs[7] |= DS1337_BIT_A1IE; /* only ALARM1 is used */
487 regmap_write(ds1307->regmap, DS1337_REG_CONTROL, regs[7]);
488 }
489
490 return 0;
491}
492
493static int ds1307_alarm_irq_enable(struct device *dev, unsigned int enabled)
494{
495 struct ds1307 *ds1307 = dev_get_drvdata(dev);
496
497 if (!test_bit(HAS_ALARM, &ds1307->flags))
498 return -ENOTTY;
499
500 return regmap_update_bits(ds1307->regmap, DS1337_REG_CONTROL,
501 DS1337_BIT_A1IE,
502 enabled ? DS1337_BIT_A1IE : 0);
503}
504
505static u8 do_trickle_setup_ds1339(struct ds1307 *ds1307, u32 ohms, bool diode)
506{
507 u8 setup = (diode) ? DS1307_TRICKLE_CHARGER_DIODE :
508 DS1307_TRICKLE_CHARGER_NO_DIODE;
509
510 switch (ohms) {
511 case 250:
512 setup |= DS1307_TRICKLE_CHARGER_250_OHM;
513 break;
514 case 2000:
515 setup |= DS1307_TRICKLE_CHARGER_2K_OHM;
516 break;
517 case 4000:
518 setup |= DS1307_TRICKLE_CHARGER_4K_OHM;
519 break;
520 default:
521 dev_warn(ds1307->dev,
522 "Unsupported ohm value %u in dt\n", ohms);
523 return 0;
524 }
525 return setup;
526}
527
528static irqreturn_t rx8130_irq(int irq, void *dev_id)
529{
530 struct ds1307 *ds1307 = dev_id;
531 struct mutex *lock = &ds1307->rtc->ops_lock;
532 u8 ctl[3];
533 int ret;
534
535 mutex_lock(lock);
536
537 /* Read control registers. */
538 ret = regmap_bulk_read(ds1307->regmap, RX8130_REG_EXTENSION, ctl,
539 sizeof(ctl));
540 if (ret < 0)
541 goto out;
542 if (!(ctl[1] & RX8130_REG_FLAG_AF))
543 goto out;
544 ctl[1] &= ~RX8130_REG_FLAG_AF;
545 ctl[2] &= ~RX8130_REG_CONTROL0_AIE;
546
547 ret = regmap_bulk_write(ds1307->regmap, RX8130_REG_EXTENSION, ctl,
548 sizeof(ctl));
549 if (ret < 0)
550 goto out;
551
552 rtc_update_irq(ds1307->rtc, 1, RTC_AF | RTC_IRQF);
553
554out:
555 mutex_unlock(lock);
556
557 return IRQ_HANDLED;
558}
559
560static int rx8130_read_alarm(struct device *dev, struct rtc_wkalrm *t)
561{
562 struct ds1307 *ds1307 = dev_get_drvdata(dev);
563 u8 ald[3], ctl[3];
564 int ret;
565
566 if (!test_bit(HAS_ALARM, &ds1307->flags))
567 return -EINVAL;
568
569 /* Read alarm registers. */
570 ret = regmap_bulk_read(ds1307->regmap, RX8130_REG_ALARM_MIN, ald,
571 sizeof(ald));
572 if (ret < 0)
573 return ret;
574
575 /* Read control registers. */
576 ret = regmap_bulk_read(ds1307->regmap, RX8130_REG_EXTENSION, ctl,
577 sizeof(ctl));
578 if (ret < 0)
579 return ret;
580
581 t->enabled = !!(ctl[2] & RX8130_REG_CONTROL0_AIE);
582 t->pending = !!(ctl[1] & RX8130_REG_FLAG_AF);
583
584 /* Report alarm 0 time assuming 24-hour and day-of-month modes. */
585 t->time.tm_sec = -1;
586 t->time.tm_min = bcd2bin(ald[0] & 0x7f);
587 t->time.tm_hour = bcd2bin(ald[1] & 0x7f);
588 t->time.tm_wday = -1;
589 t->time.tm_mday = bcd2bin(ald[2] & 0x7f);
590 t->time.tm_mon = -1;
591 t->time.tm_year = -1;
592 t->time.tm_yday = -1;
593 t->time.tm_isdst = -1;
594
595 dev_dbg(dev, "%s, sec=%d min=%d hour=%d wday=%d mday=%d mon=%d enabled=%d\n",
596 __func__, t->time.tm_sec, t->time.tm_min, t->time.tm_hour,
597 t->time.tm_wday, t->time.tm_mday, t->time.tm_mon, t->enabled);
598
599 return 0;
600}
601
602static int rx8130_set_alarm(struct device *dev, struct rtc_wkalrm *t)
603{
604 struct ds1307 *ds1307 = dev_get_drvdata(dev);
605 u8 ald[3], ctl[3];
606 int ret;
607
608 if (!test_bit(HAS_ALARM, &ds1307->flags))
609 return -EINVAL;
610
611 dev_dbg(dev, "%s, sec=%d min=%d hour=%d wday=%d mday=%d mon=%d "
612 "enabled=%d pending=%d\n", __func__,
613 t->time.tm_sec, t->time.tm_min, t->time.tm_hour,
614 t->time.tm_wday, t->time.tm_mday, t->time.tm_mon,
615 t->enabled, t->pending);
616
617 /* Read control registers. */
618 ret = regmap_bulk_read(ds1307->regmap, RX8130_REG_EXTENSION, ctl,
619 sizeof(ctl));
620 if (ret < 0)
621 return ret;
622
623 ctl[0] &= RX8130_REG_EXTENSION_WADA;
624 ctl[1] &= ~RX8130_REG_FLAG_AF;
625 ctl[2] &= ~RX8130_REG_CONTROL0_AIE;
626
627 ret = regmap_bulk_write(ds1307->regmap, RX8130_REG_EXTENSION, ctl,
628 sizeof(ctl));
629 if (ret < 0)
630 return ret;
631
632 /* Hardware alarm precision is 1 minute! */
633 ald[0] = bin2bcd(t->time.tm_min);
634 ald[1] = bin2bcd(t->time.tm_hour);
635 ald[2] = bin2bcd(t->time.tm_mday);
636
637 ret = regmap_bulk_write(ds1307->regmap, RX8130_REG_ALARM_MIN, ald,
638 sizeof(ald));
639 if (ret < 0)
640 return ret;
641
642 if (!t->enabled)
643 return 0;
644
645 ctl[2] |= RX8130_REG_CONTROL0_AIE;
646
647 return regmap_write(ds1307->regmap, RX8130_REG_CONTROL0, ctl[2]);
648}
649
650static int rx8130_alarm_irq_enable(struct device *dev, unsigned int enabled)
651{
652 struct ds1307 *ds1307 = dev_get_drvdata(dev);
653 int ret, reg;
654
655 if (!test_bit(HAS_ALARM, &ds1307->flags))
656 return -EINVAL;
657
658 ret = regmap_read(ds1307->regmap, RX8130_REG_CONTROL0, ®);
659 if (ret < 0)
660 return ret;
661
662 if (enabled)
663 reg |= RX8130_REG_CONTROL0_AIE;
664 else
665 reg &= ~RX8130_REG_CONTROL0_AIE;
666
667 return regmap_write(ds1307->regmap, RX8130_REG_CONTROL0, reg);
668}
669
670static irqreturn_t mcp794xx_irq(int irq, void *dev_id)
671{
672 struct ds1307 *ds1307 = dev_id;
673 struct mutex *lock = &ds1307->rtc->ops_lock;
674 int reg, ret;
675
676 mutex_lock(lock);
677
678 /* Check and clear alarm 0 interrupt flag. */
679 ret = regmap_read(ds1307->regmap, MCP794XX_REG_ALARM0_CTRL, ®);
680 if (ret)
681 goto out;
682 if (!(reg & MCP794XX_BIT_ALMX_IF))
683 goto out;
684 reg &= ~MCP794XX_BIT_ALMX_IF;
685 ret = regmap_write(ds1307->regmap, MCP794XX_REG_ALARM0_CTRL, reg);
686 if (ret)
687 goto out;
688
689 /* Disable alarm 0. */
690 ret = regmap_update_bits(ds1307->regmap, MCP794XX_REG_CONTROL,
691 MCP794XX_BIT_ALM0_EN, 0);
692 if (ret)
693 goto out;
694
695 rtc_update_irq(ds1307->rtc, 1, RTC_AF | RTC_IRQF);
696
697out:
698 mutex_unlock(lock);
699
700 return IRQ_HANDLED;
701}
702
703static int mcp794xx_read_alarm(struct device *dev, struct rtc_wkalrm *t)
704{
705 struct ds1307 *ds1307 = dev_get_drvdata(dev);
706 u8 regs[10];
707 int ret;
708
709 if (!test_bit(HAS_ALARM, &ds1307->flags))
710 return -EINVAL;
711
712 /* Read control and alarm 0 registers. */
713 ret = regmap_bulk_read(ds1307->regmap, MCP794XX_REG_CONTROL, regs,
714 sizeof(regs));
715 if (ret)
716 return ret;
717
718 t->enabled = !!(regs[0] & MCP794XX_BIT_ALM0_EN);
719
720 /* Report alarm 0 time assuming 24-hour and day-of-month modes. */
721 t->time.tm_sec = bcd2bin(regs[3] & 0x7f);
722 t->time.tm_min = bcd2bin(regs[4] & 0x7f);
723 t->time.tm_hour = bcd2bin(regs[5] & 0x3f);
724 t->time.tm_wday = bcd2bin(regs[6] & 0x7) - 1;
725 t->time.tm_mday = bcd2bin(regs[7] & 0x3f);
726 t->time.tm_mon = bcd2bin(regs[8] & 0x1f) - 1;
727 t->time.tm_year = -1;
728 t->time.tm_yday = -1;
729 t->time.tm_isdst = -1;
730
731 dev_dbg(dev, "%s, sec=%d min=%d hour=%d wday=%d mday=%d mon=%d "
732 "enabled=%d polarity=%d irq=%d match=%lu\n", __func__,
733 t->time.tm_sec, t->time.tm_min, t->time.tm_hour,
734 t->time.tm_wday, t->time.tm_mday, t->time.tm_mon, t->enabled,
735 !!(regs[6] & MCP794XX_BIT_ALMX_POL),
736 !!(regs[6] & MCP794XX_BIT_ALMX_IF),
737 (regs[6] & MCP794XX_MSK_ALMX_MATCH) >> 4);
738
739 return 0;
740}
741
742/*
743 * We may have a random RTC weekday, therefore calculate alarm weekday based
744 * on current weekday we read from the RTC timekeeping regs
745 */
746static int mcp794xx_alm_weekday(struct device *dev, struct rtc_time *tm_alarm)
747{
748 struct rtc_time tm_now;
749 int days_now, days_alarm, ret;
750
751 ret = ds1307_get_time(dev, &tm_now);
752 if (ret)
753 return ret;
754
755 days_now = div_s64(rtc_tm_to_time64(&tm_now), 24 * 60 * 60);
756 days_alarm = div_s64(rtc_tm_to_time64(tm_alarm), 24 * 60 * 60);
757
758 return (tm_now.tm_wday + days_alarm - days_now) % 7 + 1;
759}
760
761static int mcp794xx_set_alarm(struct device *dev, struct rtc_wkalrm *t)
762{
763 struct ds1307 *ds1307 = dev_get_drvdata(dev);
764 unsigned char regs[10];
765 int wday, ret;
766
767 if (!test_bit(HAS_ALARM, &ds1307->flags))
768 return -EINVAL;
769
770 wday = mcp794xx_alm_weekday(dev, &t->time);
771 if (wday < 0)
772 return wday;
773
774 dev_dbg(dev, "%s, sec=%d min=%d hour=%d wday=%d mday=%d mon=%d "
775 "enabled=%d pending=%d\n", __func__,
776 t->time.tm_sec, t->time.tm_min, t->time.tm_hour,
777 t->time.tm_wday, t->time.tm_mday, t->time.tm_mon,
778 t->enabled, t->pending);
779
780 /* Read control and alarm 0 registers. */
781 ret = regmap_bulk_read(ds1307->regmap, MCP794XX_REG_CONTROL, regs,
782 sizeof(regs));
783 if (ret)
784 return ret;
785
786 /* Set alarm 0, using 24-hour and day-of-month modes. */
787 regs[3] = bin2bcd(t->time.tm_sec);
788 regs[4] = bin2bcd(t->time.tm_min);
789 regs[5] = bin2bcd(t->time.tm_hour);
790 regs[6] = wday;
791 regs[7] = bin2bcd(t->time.tm_mday);
792 regs[8] = bin2bcd(t->time.tm_mon + 1);
793
794 /* Clear the alarm 0 interrupt flag. */
795 regs[6] &= ~MCP794XX_BIT_ALMX_IF;
796 /* Set alarm match: second, minute, hour, day, date, month. */
797 regs[6] |= MCP794XX_MSK_ALMX_MATCH;
798 /* Disable interrupt. We will not enable until completely programmed */
799 regs[0] &= ~MCP794XX_BIT_ALM0_EN;
800
801 ret = regmap_bulk_write(ds1307->regmap, MCP794XX_REG_CONTROL, regs,
802 sizeof(regs));
803 if (ret)
804 return ret;
805
806 if (!t->enabled)
807 return 0;
808 regs[0] |= MCP794XX_BIT_ALM0_EN;
809 return regmap_write(ds1307->regmap, MCP794XX_REG_CONTROL, regs[0]);
810}
811
812static int mcp794xx_alarm_irq_enable(struct device *dev, unsigned int enabled)
813{
814 struct ds1307 *ds1307 = dev_get_drvdata(dev);
815
816 if (!test_bit(HAS_ALARM, &ds1307->flags))
817 return -EINVAL;
818
819 return regmap_update_bits(ds1307->regmap, MCP794XX_REG_CONTROL,
820 MCP794XX_BIT_ALM0_EN,
821 enabled ? MCP794XX_BIT_ALM0_EN : 0);
822}
823
824static int m41txx_rtc_read_offset(struct device *dev, long *offset)
825{
826 struct ds1307 *ds1307 = dev_get_drvdata(dev);
827 unsigned int ctrl_reg;
828 u8 val;
829
830 regmap_read(ds1307->regmap, M41TXX_REG_CONTROL, &ctrl_reg);
831
832 val = ctrl_reg & M41TXX_M_CALIBRATION;
833
834 /* check if positive */
835 if (ctrl_reg & M41TXX_BIT_CALIB_SIGN)
836 *offset = (val * M41TXX_POS_OFFSET_STEP_PPB);
837 else
838 *offset = -(val * M41TXX_NEG_OFFSET_STEP_PPB);
839
840 return 0;
841}
842
843static int m41txx_rtc_set_offset(struct device *dev, long offset)
844{
845 struct ds1307 *ds1307 = dev_get_drvdata(dev);
846 unsigned int ctrl_reg;
847
848 if ((offset < M41TXX_MIN_OFFSET) || (offset > M41TXX_MAX_OFFSET))
849 return -ERANGE;
850
851 if (offset >= 0) {
852 ctrl_reg = DIV_ROUND_CLOSEST(offset,
853 M41TXX_POS_OFFSET_STEP_PPB);
854 ctrl_reg |= M41TXX_BIT_CALIB_SIGN;
855 } else {
856 ctrl_reg = DIV_ROUND_CLOSEST(abs(offset),
857 M41TXX_NEG_OFFSET_STEP_PPB);
858 }
859
860 return regmap_update_bits(ds1307->regmap, M41TXX_REG_CONTROL,
861 M41TXX_M_CALIBRATION | M41TXX_BIT_CALIB_SIGN,
862 ctrl_reg);
863}
864
865#ifdef CONFIG_WATCHDOG_CORE
866static int ds1388_wdt_start(struct watchdog_device *wdt_dev)
867{
868 struct ds1307 *ds1307 = watchdog_get_drvdata(wdt_dev);
869 u8 regs[2];
870 int ret;
871
872 ret = regmap_update_bits(ds1307->regmap, DS1388_REG_FLAG,
873 DS1388_BIT_WF, 0);
874 if (ret)
875 return ret;
876
877 ret = regmap_update_bits(ds1307->regmap, DS1388_REG_CONTROL,
878 DS1388_BIT_WDE | DS1388_BIT_RST, 0);
879 if (ret)
880 return ret;
881
882 /*
883 * watchdog timeouts are measured in seconds. So ignore hundredths of
884 * seconds field.
885 */
886 regs[0] = 0;
887 regs[1] = bin2bcd(wdt_dev->timeout);
888
889 ret = regmap_bulk_write(ds1307->regmap, DS1388_REG_WDOG_HUN_SECS, regs,
890 sizeof(regs));
891 if (ret)
892 return ret;
893
894 return regmap_update_bits(ds1307->regmap, DS1388_REG_CONTROL,
895 DS1388_BIT_WDE | DS1388_BIT_RST,
896 DS1388_BIT_WDE | DS1388_BIT_RST);
897}
898
899static int ds1388_wdt_stop(struct watchdog_device *wdt_dev)
900{
901 struct ds1307 *ds1307 = watchdog_get_drvdata(wdt_dev);
902
903 return regmap_update_bits(ds1307->regmap, DS1388_REG_CONTROL,
904 DS1388_BIT_WDE | DS1388_BIT_RST, 0);
905}
906
907static int ds1388_wdt_ping(struct watchdog_device *wdt_dev)
908{
909 struct ds1307 *ds1307 = watchdog_get_drvdata(wdt_dev);
910 u8 regs[2];
911
912 return regmap_bulk_read(ds1307->regmap, DS1388_REG_WDOG_HUN_SECS, regs,
913 sizeof(regs));
914}
915
916static int ds1388_wdt_set_timeout(struct watchdog_device *wdt_dev,
917 unsigned int val)
918{
919 struct ds1307 *ds1307 = watchdog_get_drvdata(wdt_dev);
920 u8 regs[2];
921
922 wdt_dev->timeout = val;
923 regs[0] = 0;
924 regs[1] = bin2bcd(wdt_dev->timeout);
925
926 return regmap_bulk_write(ds1307->regmap, DS1388_REG_WDOG_HUN_SECS, regs,
927 sizeof(regs));
928}
929#endif
930
931static const struct rtc_class_ops rx8130_rtc_ops = {
932 .read_time = ds1307_get_time,
933 .set_time = ds1307_set_time,
934 .read_alarm = rx8130_read_alarm,
935 .set_alarm = rx8130_set_alarm,
936 .alarm_irq_enable = rx8130_alarm_irq_enable,
937};
938
939static const struct rtc_class_ops mcp794xx_rtc_ops = {
940 .read_time = ds1307_get_time,
941 .set_time = ds1307_set_time,
942 .read_alarm = mcp794xx_read_alarm,
943 .set_alarm = mcp794xx_set_alarm,
944 .alarm_irq_enable = mcp794xx_alarm_irq_enable,
945};
946
947static const struct rtc_class_ops m41txx_rtc_ops = {
948 .read_time = ds1307_get_time,
949 .set_time = ds1307_set_time,
950 .read_alarm = ds1337_read_alarm,
951 .set_alarm = ds1337_set_alarm,
952 .alarm_irq_enable = ds1307_alarm_irq_enable,
953 .read_offset = m41txx_rtc_read_offset,
954 .set_offset = m41txx_rtc_set_offset,
955};
956
957static const struct chip_desc chips[last_ds_type] = {
958 [ds_1307] = {
959 .nvram_offset = 8,
960 .nvram_size = 56,
961 },
962 [ds_1308] = {
963 .nvram_offset = 8,
964 .nvram_size = 56,
965 },
966 [ds_1337] = {
967 .alarm = 1,
968 .century_reg = DS1307_REG_MONTH,
969 .century_bit = DS1337_BIT_CENTURY,
970 },
971 [ds_1338] = {
972 .nvram_offset = 8,
973 .nvram_size = 56,
974 },
975 [ds_1339] = {
976 .alarm = 1,
977 .century_reg = DS1307_REG_MONTH,
978 .century_bit = DS1337_BIT_CENTURY,
979 .bbsqi_bit = DS1339_BIT_BBSQI,
980 .trickle_charger_reg = 0x10,
981 .do_trickle_setup = &do_trickle_setup_ds1339,
982 },
983 [ds_1340] = {
984 .century_reg = DS1307_REG_HOUR,
985 .century_enable_bit = DS1340_BIT_CENTURY_EN,
986 .century_bit = DS1340_BIT_CENTURY,
987 .do_trickle_setup = &do_trickle_setup_ds1339,
988 .trickle_charger_reg = 0x08,
989 },
990 [ds_1341] = {
991 .century_reg = DS1307_REG_MONTH,
992 .century_bit = DS1337_BIT_CENTURY,
993 },
994 [ds_1388] = {
995 .offset = 1,
996 .trickle_charger_reg = 0x0a,
997 },
998 [ds_3231] = {
999 .alarm = 1,
1000 .century_reg = DS1307_REG_MONTH,
1001 .century_bit = DS1337_BIT_CENTURY,
1002 .bbsqi_bit = DS3231_BIT_BBSQW,
1003 },
1004 [rx_8130] = {
1005 .alarm = 1,
1006 /* this is battery backed SRAM */
1007 .nvram_offset = 0x20,
1008 .nvram_size = 4, /* 32bit (4 word x 8 bit) */
1009 .offset = 0x10,
1010 .irq_handler = rx8130_irq,
1011 .rtc_ops = &rx8130_rtc_ops,
1012 },
1013 [m41t0] = {
1014 .rtc_ops = &m41txx_rtc_ops,
1015 },
1016 [m41t00] = {
1017 .rtc_ops = &m41txx_rtc_ops,
1018 },
1019 [m41t11] = {
1020 /* this is battery backed SRAM */
1021 .nvram_offset = 8,
1022 .nvram_size = 56,
1023 .rtc_ops = &m41txx_rtc_ops,
1024 },
1025 [mcp794xx] = {
1026 .alarm = 1,
1027 /* this is battery backed SRAM */
1028 .nvram_offset = 0x20,
1029 .nvram_size = 0x40,
1030 .irq_handler = mcp794xx_irq,
1031 .rtc_ops = &mcp794xx_rtc_ops,
1032 },
1033};
1034
1035static const struct i2c_device_id ds1307_id[] = {
1036 { "ds1307", ds_1307 },
1037 { "ds1308", ds_1308 },
1038 { "ds1337", ds_1337 },
1039 { "ds1338", ds_1338 },
1040 { "ds1339", ds_1339 },
1041 { "ds1388", ds_1388 },
1042 { "ds1340", ds_1340 },
1043 { "ds1341", ds_1341 },
1044 { "ds3231", ds_3231 },
1045 { "m41t0", m41t0 },
1046 { "m41t00", m41t00 },
1047 { "m41t11", m41t11 },
1048 { "mcp7940x", mcp794xx },
1049 { "mcp7941x", mcp794xx },
1050 { "pt7c4338", ds_1307 },
1051 { "rx8025", rx_8025 },
1052 { "isl12057", ds_1337 },
1053 { "rx8130", rx_8130 },
1054 { }
1055};
1056MODULE_DEVICE_TABLE(i2c, ds1307_id);
1057
1058#ifdef CONFIG_OF
1059static const struct of_device_id ds1307_of_match[] = {
1060 {
1061 .compatible = "dallas,ds1307",
1062 .data = (void *)ds_1307
1063 },
1064 {
1065 .compatible = "dallas,ds1308",
1066 .data = (void *)ds_1308
1067 },
1068 {
1069 .compatible = "dallas,ds1337",
1070 .data = (void *)ds_1337
1071 },
1072 {
1073 .compatible = "dallas,ds1338",
1074 .data = (void *)ds_1338
1075 },
1076 {
1077 .compatible = "dallas,ds1339",
1078 .data = (void *)ds_1339
1079 },
1080 {
1081 .compatible = "dallas,ds1388",
1082 .data = (void *)ds_1388
1083 },
1084 {
1085 .compatible = "dallas,ds1340",
1086 .data = (void *)ds_1340
1087 },
1088 {
1089 .compatible = "dallas,ds1341",
1090 .data = (void *)ds_1341
1091 },
1092 {
1093 .compatible = "maxim,ds3231",
1094 .data = (void *)ds_3231
1095 },
1096 {
1097 .compatible = "st,m41t0",
1098 .data = (void *)m41t0
1099 },
1100 {
1101 .compatible = "st,m41t00",
1102 .data = (void *)m41t00
1103 },
1104 {
1105 .compatible = "st,m41t11",
1106 .data = (void *)m41t11
1107 },
1108 {
1109 .compatible = "microchip,mcp7940x",
1110 .data = (void *)mcp794xx
1111 },
1112 {
1113 .compatible = "microchip,mcp7941x",
1114 .data = (void *)mcp794xx
1115 },
1116 {
1117 .compatible = "pericom,pt7c4338",
1118 .data = (void *)ds_1307
1119 },
1120 {
1121 .compatible = "epson,rx8025",
1122 .data = (void *)rx_8025
1123 },
1124 {
1125 .compatible = "isil,isl12057",
1126 .data = (void *)ds_1337
1127 },
1128 {
1129 .compatible = "epson,rx8130",
1130 .data = (void *)rx_8130
1131 },
1132 { }
1133};
1134MODULE_DEVICE_TABLE(of, ds1307_of_match);
1135#endif
1136
1137#ifdef CONFIG_ACPI
1138static const struct acpi_device_id ds1307_acpi_ids[] = {
1139 { .id = "DS1307", .driver_data = ds_1307 },
1140 { .id = "DS1308", .driver_data = ds_1308 },
1141 { .id = "DS1337", .driver_data = ds_1337 },
1142 { .id = "DS1338", .driver_data = ds_1338 },
1143 { .id = "DS1339", .driver_data = ds_1339 },
1144 { .id = "DS1388", .driver_data = ds_1388 },
1145 { .id = "DS1340", .driver_data = ds_1340 },
1146 { .id = "DS1341", .driver_data = ds_1341 },
1147 { .id = "DS3231", .driver_data = ds_3231 },
1148 { .id = "M41T0", .driver_data = m41t0 },
1149 { .id = "M41T00", .driver_data = m41t00 },
1150 { .id = "M41T11", .driver_data = m41t11 },
1151 { .id = "MCP7940X", .driver_data = mcp794xx },
1152 { .id = "MCP7941X", .driver_data = mcp794xx },
1153 { .id = "PT7C4338", .driver_data = ds_1307 },
1154 { .id = "RX8025", .driver_data = rx_8025 },
1155 { .id = "ISL12057", .driver_data = ds_1337 },
1156 { .id = "RX8130", .driver_data = rx_8130 },
1157 { }
1158};
1159MODULE_DEVICE_TABLE(acpi, ds1307_acpi_ids);
1160#endif
1161
1162/*
1163 * The ds1337 and ds1339 both have two alarms, but we only use the first
1164 * one (with a "seconds" field). For ds1337 we expect nINTA is our alarm
1165 * signal; ds1339 chips have only one alarm signal.
1166 */
1167static irqreturn_t ds1307_irq(int irq, void *dev_id)
1168{
1169 struct ds1307 *ds1307 = dev_id;
1170 struct mutex *lock = &ds1307->rtc->ops_lock;
1171 int stat, ret;
1172
1173 mutex_lock(lock);
1174 ret = regmap_read(ds1307->regmap, DS1337_REG_STATUS, &stat);
1175 if (ret)
1176 goto out;
1177
1178 if (stat & DS1337_BIT_A1I) {
1179 stat &= ~DS1337_BIT_A1I;
1180 regmap_write(ds1307->regmap, DS1337_REG_STATUS, stat);
1181
1182 ret = regmap_update_bits(ds1307->regmap, DS1337_REG_CONTROL,
1183 DS1337_BIT_A1IE, 0);
1184 if (ret)
1185 goto out;
1186
1187 rtc_update_irq(ds1307->rtc, 1, RTC_AF | RTC_IRQF);
1188 }
1189
1190out:
1191 mutex_unlock(lock);
1192
1193 return IRQ_HANDLED;
1194}
1195
1196/*----------------------------------------------------------------------*/
1197
1198static const struct rtc_class_ops ds13xx_rtc_ops = {
1199 .read_time = ds1307_get_time,
1200 .set_time = ds1307_set_time,
1201 .read_alarm = ds1337_read_alarm,
1202 .set_alarm = ds1337_set_alarm,
1203 .alarm_irq_enable = ds1307_alarm_irq_enable,
1204};
1205
1206static ssize_t frequency_test_store(struct device *dev,
1207 struct device_attribute *attr,
1208 const char *buf, size_t count)
1209{
1210 struct ds1307 *ds1307 = dev_get_drvdata(dev->parent);
1211 bool freq_test_en;
1212 int ret;
1213
1214 ret = kstrtobool(buf, &freq_test_en);
1215 if (ret) {
1216 dev_err(dev, "Failed to store RTC Frequency Test attribute\n");
1217 return ret;
1218 }
1219
1220 regmap_update_bits(ds1307->regmap, M41TXX_REG_CONTROL, M41TXX_BIT_FT,
1221 freq_test_en ? M41TXX_BIT_FT : 0);
1222
1223 return count;
1224}
1225
1226static ssize_t frequency_test_show(struct device *dev,
1227 struct device_attribute *attr,
1228 char *buf)
1229{
1230 struct ds1307 *ds1307 = dev_get_drvdata(dev->parent);
1231 unsigned int ctrl_reg;
1232
1233 regmap_read(ds1307->regmap, M41TXX_REG_CONTROL, &ctrl_reg);
1234
1235 return scnprintf(buf, PAGE_SIZE, (ctrl_reg & M41TXX_BIT_FT) ? "on\n" :
1236 "off\n");
1237}
1238
1239static DEVICE_ATTR_RW(frequency_test);
1240
1241static struct attribute *rtc_freq_test_attrs[] = {
1242 &dev_attr_frequency_test.attr,
1243 NULL,
1244};
1245
1246static const struct attribute_group rtc_freq_test_attr_group = {
1247 .attrs = rtc_freq_test_attrs,
1248};
1249
1250static int ds1307_add_frequency_test(struct ds1307 *ds1307)
1251{
1252 int err;
1253
1254 switch (ds1307->type) {
1255 case m41t0:
1256 case m41t00:
1257 case m41t11:
1258 err = rtc_add_group(ds1307->rtc, &rtc_freq_test_attr_group);
1259 if (err)
1260 return err;
1261 break;
1262 default:
1263 break;
1264 }
1265
1266 return 0;
1267}
1268
1269/*----------------------------------------------------------------------*/
1270
1271static int ds1307_nvram_read(void *priv, unsigned int offset, void *val,
1272 size_t bytes)
1273{
1274 struct ds1307 *ds1307 = priv;
1275 const struct chip_desc *chip = &chips[ds1307->type];
1276
1277 return regmap_bulk_read(ds1307->regmap, chip->nvram_offset + offset,
1278 val, bytes);
1279}
1280
1281static int ds1307_nvram_write(void *priv, unsigned int offset, void *val,
1282 size_t bytes)
1283{
1284 struct ds1307 *ds1307 = priv;
1285 const struct chip_desc *chip = &chips[ds1307->type];
1286
1287 return regmap_bulk_write(ds1307->regmap, chip->nvram_offset + offset,
1288 val, bytes);
1289}
1290
1291/*----------------------------------------------------------------------*/
1292
1293static u8 ds1307_trickle_init(struct ds1307 *ds1307,
1294 const struct chip_desc *chip)
1295{
1296 u32 ohms;
1297 bool diode = true;
1298
1299 if (!chip->do_trickle_setup)
1300 return 0;
1301
1302 if (device_property_read_u32(ds1307->dev, "trickle-resistor-ohms",
1303 &ohms))
1304 return 0;
1305
1306 if (device_property_read_bool(ds1307->dev, "trickle-diode-disable"))
1307 diode = false;
1308
1309 return chip->do_trickle_setup(ds1307, ohms, diode);
1310}
1311
1312/*----------------------------------------------------------------------*/
1313
1314#if IS_REACHABLE(CONFIG_HWMON)
1315
1316/*
1317 * Temperature sensor support for ds3231 devices.
1318 */
1319
1320#define DS3231_REG_TEMPERATURE 0x11
1321
1322/*
1323 * A user-initiated temperature conversion is not started by this function,
1324 * so the temperature is updated once every 64 seconds.
1325 */
1326static int ds3231_hwmon_read_temp(struct device *dev, s32 *mC)
1327{
1328 struct ds1307 *ds1307 = dev_get_drvdata(dev);
1329 u8 temp_buf[2];
1330 s16 temp;
1331 int ret;
1332
1333 ret = regmap_bulk_read(ds1307->regmap, DS3231_REG_TEMPERATURE,
1334 temp_buf, sizeof(temp_buf));
1335 if (ret)
1336 return ret;
1337 /*
1338 * Temperature is represented as a 10-bit code with a resolution of
1339 * 0.25 degree celsius and encoded in two's complement format.
1340 */
1341 temp = (temp_buf[0] << 8) | temp_buf[1];
1342 temp >>= 6;
1343 *mC = temp * 250;
1344
1345 return 0;
1346}
1347
1348static ssize_t ds3231_hwmon_show_temp(struct device *dev,
1349 struct device_attribute *attr, char *buf)
1350{
1351 int ret;
1352 s32 temp;
1353
1354 ret = ds3231_hwmon_read_temp(dev, &temp);
1355 if (ret)
1356 return ret;
1357
1358 return sprintf(buf, "%d\n", temp);
1359}
1360static SENSOR_DEVICE_ATTR(temp1_input, 0444, ds3231_hwmon_show_temp,
1361 NULL, 0);
1362
1363static struct attribute *ds3231_hwmon_attrs[] = {
1364 &sensor_dev_attr_temp1_input.dev_attr.attr,
1365 NULL,
1366};
1367ATTRIBUTE_GROUPS(ds3231_hwmon);
1368
1369static void ds1307_hwmon_register(struct ds1307 *ds1307)
1370{
1371 struct device *dev;
1372
1373 if (ds1307->type != ds_3231)
1374 return;
1375
1376 dev = devm_hwmon_device_register_with_groups(ds1307->dev, ds1307->name,
1377 ds1307,
1378 ds3231_hwmon_groups);
1379 if (IS_ERR(dev)) {
1380 dev_warn(ds1307->dev, "unable to register hwmon device %ld\n",
1381 PTR_ERR(dev));
1382 }
1383}
1384
1385#else
1386
1387static void ds1307_hwmon_register(struct ds1307 *ds1307)
1388{
1389}
1390
1391#endif /* CONFIG_RTC_DRV_DS1307_HWMON */
1392
1393/*----------------------------------------------------------------------*/
1394
1395/*
1396 * Square-wave output support for DS3231
1397 * Datasheet: https://datasheets.maximintegrated.com/en/ds/DS3231.pdf
1398 */
1399#ifdef CONFIG_COMMON_CLK
1400
1401enum {
1402 DS3231_CLK_SQW = 0,
1403 DS3231_CLK_32KHZ,
1404};
1405
1406#define clk_sqw_to_ds1307(clk) \
1407 container_of(clk, struct ds1307, clks[DS3231_CLK_SQW])
1408#define clk_32khz_to_ds1307(clk) \
1409 container_of(clk, struct ds1307, clks[DS3231_CLK_32KHZ])
1410
1411static int ds3231_clk_sqw_rates[] = {
1412 1,
1413 1024,
1414 4096,
1415 8192,
1416};
1417
1418static int ds1337_write_control(struct ds1307 *ds1307, u8 mask, u8 value)
1419{
1420 struct mutex *lock = &ds1307->rtc->ops_lock;
1421 int ret;
1422
1423 mutex_lock(lock);
1424 ret = regmap_update_bits(ds1307->regmap, DS1337_REG_CONTROL,
1425 mask, value);
1426 mutex_unlock(lock);
1427
1428 return ret;
1429}
1430
1431static unsigned long ds3231_clk_sqw_recalc_rate(struct clk_hw *hw,
1432 unsigned long parent_rate)
1433{
1434 struct ds1307 *ds1307 = clk_sqw_to_ds1307(hw);
1435 int control, ret;
1436 int rate_sel = 0;
1437
1438 ret = regmap_read(ds1307->regmap, DS1337_REG_CONTROL, &control);
1439 if (ret)
1440 return ret;
1441 if (control & DS1337_BIT_RS1)
1442 rate_sel += 1;
1443 if (control & DS1337_BIT_RS2)
1444 rate_sel += 2;
1445
1446 return ds3231_clk_sqw_rates[rate_sel];
1447}
1448
1449static long ds3231_clk_sqw_round_rate(struct clk_hw *hw, unsigned long rate,
1450 unsigned long *prate)
1451{
1452 int i;
1453
1454 for (i = ARRAY_SIZE(ds3231_clk_sqw_rates) - 1; i >= 0; i--) {
1455 if (ds3231_clk_sqw_rates[i] <= rate)
1456 return ds3231_clk_sqw_rates[i];
1457 }
1458
1459 return 0;
1460}
1461
1462static int ds3231_clk_sqw_set_rate(struct clk_hw *hw, unsigned long rate,
1463 unsigned long parent_rate)
1464{
1465 struct ds1307 *ds1307 = clk_sqw_to_ds1307(hw);
1466 int control = 0;
1467 int rate_sel;
1468
1469 for (rate_sel = 0; rate_sel < ARRAY_SIZE(ds3231_clk_sqw_rates);
1470 rate_sel++) {
1471 if (ds3231_clk_sqw_rates[rate_sel] == rate)
1472 break;
1473 }
1474
1475 if (rate_sel == ARRAY_SIZE(ds3231_clk_sqw_rates))
1476 return -EINVAL;
1477
1478 if (rate_sel & 1)
1479 control |= DS1337_BIT_RS1;
1480 if (rate_sel & 2)
1481 control |= DS1337_BIT_RS2;
1482
1483 return ds1337_write_control(ds1307, DS1337_BIT_RS1 | DS1337_BIT_RS2,
1484 control);
1485}
1486
1487static int ds3231_clk_sqw_prepare(struct clk_hw *hw)
1488{
1489 struct ds1307 *ds1307 = clk_sqw_to_ds1307(hw);
1490
1491 return ds1337_write_control(ds1307, DS1337_BIT_INTCN, 0);
1492}
1493
1494static void ds3231_clk_sqw_unprepare(struct clk_hw *hw)
1495{
1496 struct ds1307 *ds1307 = clk_sqw_to_ds1307(hw);
1497
1498 ds1337_write_control(ds1307, DS1337_BIT_INTCN, DS1337_BIT_INTCN);
1499}
1500
1501static int ds3231_clk_sqw_is_prepared(struct clk_hw *hw)
1502{
1503 struct ds1307 *ds1307 = clk_sqw_to_ds1307(hw);
1504 int control, ret;
1505
1506 ret = regmap_read(ds1307->regmap, DS1337_REG_CONTROL, &control);
1507 if (ret)
1508 return ret;
1509
1510 return !(control & DS1337_BIT_INTCN);
1511}
1512
1513static const struct clk_ops ds3231_clk_sqw_ops = {
1514 .prepare = ds3231_clk_sqw_prepare,
1515 .unprepare = ds3231_clk_sqw_unprepare,
1516 .is_prepared = ds3231_clk_sqw_is_prepared,
1517 .recalc_rate = ds3231_clk_sqw_recalc_rate,
1518 .round_rate = ds3231_clk_sqw_round_rate,
1519 .set_rate = ds3231_clk_sqw_set_rate,
1520};
1521
1522static unsigned long ds3231_clk_32khz_recalc_rate(struct clk_hw *hw,
1523 unsigned long parent_rate)
1524{
1525 return 32768;
1526}
1527
1528static int ds3231_clk_32khz_control(struct ds1307 *ds1307, bool enable)
1529{
1530 struct mutex *lock = &ds1307->rtc->ops_lock;
1531 int ret;
1532
1533 mutex_lock(lock);
1534 ret = regmap_update_bits(ds1307->regmap, DS1337_REG_STATUS,
1535 DS3231_BIT_EN32KHZ,
1536 enable ? DS3231_BIT_EN32KHZ : 0);
1537 mutex_unlock(lock);
1538
1539 return ret;
1540}
1541
1542static int ds3231_clk_32khz_prepare(struct clk_hw *hw)
1543{
1544 struct ds1307 *ds1307 = clk_32khz_to_ds1307(hw);
1545
1546 return ds3231_clk_32khz_control(ds1307, true);
1547}
1548
1549static void ds3231_clk_32khz_unprepare(struct clk_hw *hw)
1550{
1551 struct ds1307 *ds1307 = clk_32khz_to_ds1307(hw);
1552
1553 ds3231_clk_32khz_control(ds1307, false);
1554}
1555
1556static int ds3231_clk_32khz_is_prepared(struct clk_hw *hw)
1557{
1558 struct ds1307 *ds1307 = clk_32khz_to_ds1307(hw);
1559 int status, ret;
1560
1561 ret = regmap_read(ds1307->regmap, DS1337_REG_STATUS, &status);
1562 if (ret)
1563 return ret;
1564
1565 return !!(status & DS3231_BIT_EN32KHZ);
1566}
1567
1568static const struct clk_ops ds3231_clk_32khz_ops = {
1569 .prepare = ds3231_clk_32khz_prepare,
1570 .unprepare = ds3231_clk_32khz_unprepare,
1571 .is_prepared = ds3231_clk_32khz_is_prepared,
1572 .recalc_rate = ds3231_clk_32khz_recalc_rate,
1573};
1574
1575static struct clk_init_data ds3231_clks_init[] = {
1576 [DS3231_CLK_SQW] = {
1577 .name = "ds3231_clk_sqw",
1578 .ops = &ds3231_clk_sqw_ops,
1579 },
1580 [DS3231_CLK_32KHZ] = {
1581 .name = "ds3231_clk_32khz",
1582 .ops = &ds3231_clk_32khz_ops,
1583 },
1584};
1585
1586static int ds3231_clks_register(struct ds1307 *ds1307)
1587{
1588 struct device_node *node = ds1307->dev->of_node;
1589 struct clk_onecell_data *onecell;
1590 int i;
1591
1592 onecell = devm_kzalloc(ds1307->dev, sizeof(*onecell), GFP_KERNEL);
1593 if (!onecell)
1594 return -ENOMEM;
1595
1596 onecell->clk_num = ARRAY_SIZE(ds3231_clks_init);
1597 onecell->clks = devm_kcalloc(ds1307->dev, onecell->clk_num,
1598 sizeof(onecell->clks[0]), GFP_KERNEL);
1599 if (!onecell->clks)
1600 return -ENOMEM;
1601
1602 for (i = 0; i < ARRAY_SIZE(ds3231_clks_init); i++) {
1603 struct clk_init_data init = ds3231_clks_init[i];
1604
1605 /*
1606 * Interrupt signal due to alarm conditions and square-wave
1607 * output share same pin, so don't initialize both.
1608 */
1609 if (i == DS3231_CLK_SQW && test_bit(HAS_ALARM, &ds1307->flags))
1610 continue;
1611
1612 /* optional override of the clockname */
1613 of_property_read_string_index(node, "clock-output-names", i,
1614 &init.name);
1615 ds1307->clks[i].init = &init;
1616
1617 onecell->clks[i] = devm_clk_register(ds1307->dev,
1618 &ds1307->clks[i]);
1619 if (IS_ERR(onecell->clks[i]))
1620 return PTR_ERR(onecell->clks[i]);
1621 }
1622
1623 if (!node)
1624 return 0;
1625
1626 of_clk_add_provider(node, of_clk_src_onecell_get, onecell);
1627
1628 return 0;
1629}
1630
1631static void ds1307_clks_register(struct ds1307 *ds1307)
1632{
1633 int ret;
1634
1635 if (ds1307->type != ds_3231)
1636 return;
1637
1638 ret = ds3231_clks_register(ds1307);
1639 if (ret) {
1640 dev_warn(ds1307->dev, "unable to register clock device %d\n",
1641 ret);
1642 }
1643}
1644
1645#else
1646
1647static void ds1307_clks_register(struct ds1307 *ds1307)
1648{
1649}
1650
1651#endif /* CONFIG_COMMON_CLK */
1652
1653#ifdef CONFIG_WATCHDOG_CORE
1654static const struct watchdog_info ds1388_wdt_info = {
1655 .options = WDIOF_SETTIMEOUT | WDIOF_KEEPALIVEPING | WDIOF_MAGICCLOSE,
1656 .identity = "DS1388 watchdog",
1657};
1658
1659static const struct watchdog_ops ds1388_wdt_ops = {
1660 .owner = THIS_MODULE,
1661 .start = ds1388_wdt_start,
1662 .stop = ds1388_wdt_stop,
1663 .ping = ds1388_wdt_ping,
1664 .set_timeout = ds1388_wdt_set_timeout,
1665
1666};
1667
1668static void ds1307_wdt_register(struct ds1307 *ds1307)
1669{
1670 struct watchdog_device *wdt;
1671 int err;
1672 int val;
1673
1674 if (ds1307->type != ds_1388)
1675 return;
1676
1677 wdt = devm_kzalloc(ds1307->dev, sizeof(*wdt), GFP_KERNEL);
1678 if (!wdt)
1679 return;
1680
1681 err = regmap_read(ds1307->regmap, DS1388_REG_FLAG, &val);
1682 if (!err && val & DS1388_BIT_WF)
1683 wdt->bootstatus = WDIOF_CARDRESET;
1684
1685 wdt->info = &ds1388_wdt_info;
1686 wdt->ops = &ds1388_wdt_ops;
1687 wdt->timeout = 99;
1688 wdt->max_timeout = 99;
1689 wdt->min_timeout = 1;
1690
1691 watchdog_init_timeout(wdt, 0, ds1307->dev);
1692 watchdog_set_drvdata(wdt, ds1307);
1693 devm_watchdog_register_device(ds1307->dev, wdt);
1694}
1695#else
1696static void ds1307_wdt_register(struct ds1307 *ds1307)
1697{
1698}
1699#endif /* CONFIG_WATCHDOG_CORE */
1700
1701static const struct regmap_config regmap_config = {
1702 .reg_bits = 8,
1703 .val_bits = 8,
1704};
1705
1706static int ds1307_probe(struct i2c_client *client,
1707 const struct i2c_device_id *id)
1708{
1709 struct ds1307 *ds1307;
1710 int err = -ENODEV;
1711 int tmp;
1712 const struct chip_desc *chip;
1713 bool want_irq;
1714 bool ds1307_can_wakeup_device = false;
1715 unsigned char regs[8];
1716 struct ds1307_platform_data *pdata = dev_get_platdata(&client->dev);
1717 u8 trickle_charger_setup = 0;
1718
1719 ds1307 = devm_kzalloc(&client->dev, sizeof(struct ds1307), GFP_KERNEL);
1720 if (!ds1307)
1721 return -ENOMEM;
1722
1723 dev_set_drvdata(&client->dev, ds1307);
1724 ds1307->dev = &client->dev;
1725 ds1307->name = client->name;
1726
1727 ds1307->regmap = devm_regmap_init_i2c(client, ®map_config);
1728 if (IS_ERR(ds1307->regmap)) {
1729 dev_err(ds1307->dev, "regmap allocation failed\n");
1730 return PTR_ERR(ds1307->regmap);
1731 }
1732
1733 i2c_set_clientdata(client, ds1307);
1734
1735 if (client->dev.of_node) {
1736 ds1307->type = (enum ds_type)
1737 of_device_get_match_data(&client->dev);
1738 chip = &chips[ds1307->type];
1739 } else if (id) {
1740 chip = &chips[id->driver_data];
1741 ds1307->type = id->driver_data;
1742 } else {
1743 const struct acpi_device_id *acpi_id;
1744
1745 acpi_id = acpi_match_device(ACPI_PTR(ds1307_acpi_ids),
1746 ds1307->dev);
1747 if (!acpi_id)
1748 return -ENODEV;
1749 chip = &chips[acpi_id->driver_data];
1750 ds1307->type = acpi_id->driver_data;
1751 }
1752
1753 want_irq = client->irq > 0 && chip->alarm;
1754
1755 if (!pdata)
1756 trickle_charger_setup = ds1307_trickle_init(ds1307, chip);
1757 else if (pdata->trickle_charger_setup)
1758 trickle_charger_setup = pdata->trickle_charger_setup;
1759
1760 if (trickle_charger_setup && chip->trickle_charger_reg) {
1761 trickle_charger_setup |= DS13XX_TRICKLE_CHARGER_MAGIC;
1762 dev_dbg(ds1307->dev,
1763 "writing trickle charger info 0x%x to 0x%x\n",
1764 trickle_charger_setup, chip->trickle_charger_reg);
1765 regmap_write(ds1307->regmap, chip->trickle_charger_reg,
1766 trickle_charger_setup);
1767 }
1768
1769#ifdef CONFIG_OF
1770/*
1771 * For devices with no IRQ directly connected to the SoC, the RTC chip
1772 * can be forced as a wakeup source by stating that explicitly in
1773 * the device's .dts file using the "wakeup-source" boolean property.
1774 * If the "wakeup-source" property is set, don't request an IRQ.
1775 * This will guarantee the 'wakealarm' sysfs entry is available on the device,
1776 * if supported by the RTC.
1777 */
1778 if (chip->alarm && of_property_read_bool(client->dev.of_node,
1779 "wakeup-source"))
1780 ds1307_can_wakeup_device = true;
1781#endif
1782
1783 switch (ds1307->type) {
1784 case ds_1337:
1785 case ds_1339:
1786 case ds_1341:
1787 case ds_3231:
1788 /* get registers that the "rtc" read below won't read... */
1789 err = regmap_bulk_read(ds1307->regmap, DS1337_REG_CONTROL,
1790 regs, 2);
1791 if (err) {
1792 dev_dbg(ds1307->dev, "read error %d\n", err);
1793 goto exit;
1794 }
1795
1796 /* oscillator off? turn it on, so clock can tick. */
1797 if (regs[0] & DS1337_BIT_nEOSC)
1798 regs[0] &= ~DS1337_BIT_nEOSC;
1799
1800 /*
1801 * Using IRQ or defined as wakeup-source?
1802 * Disable the square wave and both alarms.
1803 * For some variants, be sure alarms can trigger when we're
1804 * running on Vbackup (BBSQI/BBSQW)
1805 */
1806 if (want_irq || ds1307_can_wakeup_device) {
1807 regs[0] |= DS1337_BIT_INTCN | chip->bbsqi_bit;
1808 regs[0] &= ~(DS1337_BIT_A2IE | DS1337_BIT_A1IE);
1809 }
1810
1811 regmap_write(ds1307->regmap, DS1337_REG_CONTROL,
1812 regs[0]);
1813
1814 /* oscillator fault? clear flag, and warn */
1815 if (regs[1] & DS1337_BIT_OSF) {
1816 regmap_write(ds1307->regmap, DS1337_REG_STATUS,
1817 regs[1] & ~DS1337_BIT_OSF);
1818 dev_warn(ds1307->dev, "SET TIME!\n");
1819 }
1820 break;
1821
1822 case rx_8025:
1823 err = regmap_bulk_read(ds1307->regmap,
1824 RX8025_REG_CTRL1 << 4 | 0x08, regs, 2);
1825 if (err) {
1826 dev_dbg(ds1307->dev, "read error %d\n", err);
1827 goto exit;
1828 }
1829
1830 /* oscillator off? turn it on, so clock can tick. */
1831 if (!(regs[1] & RX8025_BIT_XST)) {
1832 regs[1] |= RX8025_BIT_XST;
1833 regmap_write(ds1307->regmap,
1834 RX8025_REG_CTRL2 << 4 | 0x08,
1835 regs[1]);
1836 dev_warn(ds1307->dev,
1837 "oscillator stop detected - SET TIME!\n");
1838 }
1839
1840 if (regs[1] & RX8025_BIT_PON) {
1841 regs[1] &= ~RX8025_BIT_PON;
1842 regmap_write(ds1307->regmap,
1843 RX8025_REG_CTRL2 << 4 | 0x08,
1844 regs[1]);
1845 dev_warn(ds1307->dev, "power-on detected\n");
1846 }
1847
1848 if (regs[1] & RX8025_BIT_VDET) {
1849 regs[1] &= ~RX8025_BIT_VDET;
1850 regmap_write(ds1307->regmap,
1851 RX8025_REG_CTRL2 << 4 | 0x08,
1852 regs[1]);
1853 dev_warn(ds1307->dev, "voltage drop detected\n");
1854 }
1855
1856 /* make sure we are running in 24hour mode */
1857 if (!(regs[0] & RX8025_BIT_2412)) {
1858 u8 hour;
1859
1860 /* switch to 24 hour mode */
1861 regmap_write(ds1307->regmap,
1862 RX8025_REG_CTRL1 << 4 | 0x08,
1863 regs[0] | RX8025_BIT_2412);
1864
1865 err = regmap_bulk_read(ds1307->regmap,
1866 RX8025_REG_CTRL1 << 4 | 0x08,
1867 regs, 2);
1868 if (err) {
1869 dev_dbg(ds1307->dev, "read error %d\n", err);
1870 goto exit;
1871 }
1872
1873 /* correct hour */
1874 hour = bcd2bin(regs[DS1307_REG_HOUR]);
1875 if (hour == 12)
1876 hour = 0;
1877 if (regs[DS1307_REG_HOUR] & DS1307_BIT_PM)
1878 hour += 12;
1879
1880 regmap_write(ds1307->regmap,
1881 DS1307_REG_HOUR << 4 | 0x08, hour);
1882 }
1883 break;
1884 default:
1885 break;
1886 }
1887
1888 /* read RTC registers */
1889 err = regmap_bulk_read(ds1307->regmap, chip->offset, regs,
1890 sizeof(regs));
1891 if (err) {
1892 dev_dbg(ds1307->dev, "read error %d\n", err);
1893 goto exit;
1894 }
1895
1896 if (ds1307->type == mcp794xx &&
1897 !(regs[DS1307_REG_WDAY] & MCP794XX_BIT_VBATEN)) {
1898 regmap_write(ds1307->regmap, DS1307_REG_WDAY,
1899 regs[DS1307_REG_WDAY] |
1900 MCP794XX_BIT_VBATEN);
1901 }
1902
1903 tmp = regs[DS1307_REG_HOUR];
1904 switch (ds1307->type) {
1905 case ds_1340:
1906 case m41t0:
1907 case m41t00:
1908 case m41t11:
1909 /*
1910 * NOTE: ignores century bits; fix before deploying
1911 * systems that will run through year 2100.
1912 */
1913 break;
1914 case rx_8025:
1915 break;
1916 default:
1917 if (!(tmp & DS1307_BIT_12HR))
1918 break;
1919
1920 /*
1921 * Be sure we're in 24 hour mode. Multi-master systems
1922 * take note...
1923 */
1924 tmp = bcd2bin(tmp & 0x1f);
1925 if (tmp == 12)
1926 tmp = 0;
1927 if (regs[DS1307_REG_HOUR] & DS1307_BIT_PM)
1928 tmp += 12;
1929 regmap_write(ds1307->regmap, chip->offset + DS1307_REG_HOUR,
1930 bin2bcd(tmp));
1931 }
1932
1933 if (want_irq || ds1307_can_wakeup_device) {
1934 device_set_wakeup_capable(ds1307->dev, true);
1935 set_bit(HAS_ALARM, &ds1307->flags);
1936 }
1937
1938 ds1307->rtc = devm_rtc_allocate_device(ds1307->dev);
1939 if (IS_ERR(ds1307->rtc))
1940 return PTR_ERR(ds1307->rtc);
1941
1942 if (ds1307_can_wakeup_device && !want_irq) {
1943 dev_info(ds1307->dev,
1944 "'wakeup-source' is set, request for an IRQ is disabled!\n");
1945 /* We cannot support UIE mode if we do not have an IRQ line */
1946 ds1307->rtc->uie_unsupported = 1;
1947 }
1948
1949 if (want_irq) {
1950 err = devm_request_threaded_irq(ds1307->dev, client->irq, NULL,
1951 chip->irq_handler ?: ds1307_irq,
1952 IRQF_SHARED | IRQF_ONESHOT,
1953 ds1307->name, ds1307);
1954 if (err) {
1955 client->irq = 0;
1956 device_set_wakeup_capable(ds1307->dev, false);
1957 clear_bit(HAS_ALARM, &ds1307->flags);
1958 dev_err(ds1307->dev, "unable to request IRQ!\n");
1959 } else {
1960 dev_dbg(ds1307->dev, "got IRQ %d\n", client->irq);
1961 }
1962 }
1963
1964 ds1307->rtc->ops = chip->rtc_ops ?: &ds13xx_rtc_ops;
1965 err = ds1307_add_frequency_test(ds1307);
1966 if (err)
1967 return err;
1968
1969 err = rtc_register_device(ds1307->rtc);
1970 if (err)
1971 return err;
1972
1973 if (chip->nvram_size) {
1974 struct nvmem_config nvmem_cfg = {
1975 .name = "ds1307_nvram",
1976 .word_size = 1,
1977 .stride = 1,
1978 .size = chip->nvram_size,
1979 .reg_read = ds1307_nvram_read,
1980 .reg_write = ds1307_nvram_write,
1981 .priv = ds1307,
1982 };
1983
1984 ds1307->rtc->nvram_old_abi = true;
1985 rtc_nvmem_register(ds1307->rtc, &nvmem_cfg);
1986 }
1987
1988 ds1307_hwmon_register(ds1307);
1989 ds1307_clks_register(ds1307);
1990 ds1307_wdt_register(ds1307);
1991
1992 return 0;
1993
1994exit:
1995 return err;
1996}
1997
1998static struct i2c_driver ds1307_driver = {
1999 .driver = {
2000 .name = "rtc-ds1307",
2001 .of_match_table = of_match_ptr(ds1307_of_match),
2002 .acpi_match_table = ACPI_PTR(ds1307_acpi_ids),
2003 },
2004 .probe = ds1307_probe,
2005 .id_table = ds1307_id,
2006};
2007
2008module_i2c_driver(ds1307_driver);
2009
2010MODULE_DESCRIPTION("RTC driver for DS1307 and similar chips");
2011MODULE_LICENSE("GPL");