Loading...
1// SPDX-License-Identifier: GPL-2.0
2/* Copyright(c) 1999 - 2018 Intel Corporation. */
3
4/* 82571EB Gigabit Ethernet Controller
5 * 82571EB Gigabit Ethernet Controller (Copper)
6 * 82571EB Gigabit Ethernet Controller (Fiber)
7 * 82571EB Dual Port Gigabit Mezzanine Adapter
8 * 82571EB Quad Port Gigabit Mezzanine Adapter
9 * 82571PT Gigabit PT Quad Port Server ExpressModule
10 * 82572EI Gigabit Ethernet Controller (Copper)
11 * 82572EI Gigabit Ethernet Controller (Fiber)
12 * 82572EI Gigabit Ethernet Controller
13 * 82573V Gigabit Ethernet Controller (Copper)
14 * 82573E Gigabit Ethernet Controller (Copper)
15 * 82573L Gigabit Ethernet Controller
16 * 82574L Gigabit Network Connection
17 * 82583V Gigabit Network Connection
18 */
19
20#include "e1000.h"
21
22static s32 e1000_get_phy_id_82571(struct e1000_hw *hw);
23static s32 e1000_setup_copper_link_82571(struct e1000_hw *hw);
24static s32 e1000_setup_fiber_serdes_link_82571(struct e1000_hw *hw);
25static s32 e1000_check_for_serdes_link_82571(struct e1000_hw *hw);
26static s32 e1000_write_nvm_eewr_82571(struct e1000_hw *hw, u16 offset,
27 u16 words, u16 *data);
28static s32 e1000_fix_nvm_checksum_82571(struct e1000_hw *hw);
29static void e1000_initialize_hw_bits_82571(struct e1000_hw *hw);
30static void e1000_clear_hw_cntrs_82571(struct e1000_hw *hw);
31static bool e1000_check_mng_mode_82574(struct e1000_hw *hw);
32static s32 e1000_led_on_82574(struct e1000_hw *hw);
33static void e1000_put_hw_semaphore_82571(struct e1000_hw *hw);
34static void e1000_power_down_phy_copper_82571(struct e1000_hw *hw);
35static void e1000_put_hw_semaphore_82573(struct e1000_hw *hw);
36static s32 e1000_get_hw_semaphore_82574(struct e1000_hw *hw);
37static void e1000_put_hw_semaphore_82574(struct e1000_hw *hw);
38static s32 e1000_set_d0_lplu_state_82574(struct e1000_hw *hw, bool active);
39static s32 e1000_set_d3_lplu_state_82574(struct e1000_hw *hw, bool active);
40
41/**
42 * e1000_init_phy_params_82571 - Init PHY func ptrs.
43 * @hw: pointer to the HW structure
44 **/
45static s32 e1000_init_phy_params_82571(struct e1000_hw *hw)
46{
47 struct e1000_phy_info *phy = &hw->phy;
48 s32 ret_val;
49
50 if (hw->phy.media_type != e1000_media_type_copper) {
51 phy->type = e1000_phy_none;
52 return 0;
53 }
54
55 phy->addr = 1;
56 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
57 phy->reset_delay_us = 100;
58
59 phy->ops.power_up = e1000_power_up_phy_copper;
60 phy->ops.power_down = e1000_power_down_phy_copper_82571;
61
62 switch (hw->mac.type) {
63 case e1000_82571:
64 case e1000_82572:
65 phy->type = e1000_phy_igp_2;
66 break;
67 case e1000_82573:
68 phy->type = e1000_phy_m88;
69 break;
70 case e1000_82574:
71 case e1000_82583:
72 phy->type = e1000_phy_bm;
73 phy->ops.acquire = e1000_get_hw_semaphore_82574;
74 phy->ops.release = e1000_put_hw_semaphore_82574;
75 phy->ops.set_d0_lplu_state = e1000_set_d0_lplu_state_82574;
76 phy->ops.set_d3_lplu_state = e1000_set_d3_lplu_state_82574;
77 break;
78 default:
79 return -E1000_ERR_PHY;
80 }
81
82 /* This can only be done after all function pointers are setup. */
83 ret_val = e1000_get_phy_id_82571(hw);
84 if (ret_val) {
85 e_dbg("Error getting PHY ID\n");
86 return ret_val;
87 }
88
89 /* Verify phy id */
90 switch (hw->mac.type) {
91 case e1000_82571:
92 case e1000_82572:
93 if (phy->id != IGP01E1000_I_PHY_ID)
94 ret_val = -E1000_ERR_PHY;
95 break;
96 case e1000_82573:
97 if (phy->id != M88E1111_I_PHY_ID)
98 ret_val = -E1000_ERR_PHY;
99 break;
100 case e1000_82574:
101 case e1000_82583:
102 if (phy->id != BME1000_E_PHY_ID_R2)
103 ret_val = -E1000_ERR_PHY;
104 break;
105 default:
106 ret_val = -E1000_ERR_PHY;
107 break;
108 }
109
110 if (ret_val)
111 e_dbg("PHY ID unknown: type = 0x%08x\n", phy->id);
112
113 return ret_val;
114}
115
116/**
117 * e1000_init_nvm_params_82571 - Init NVM func ptrs.
118 * @hw: pointer to the HW structure
119 **/
120static s32 e1000_init_nvm_params_82571(struct e1000_hw *hw)
121{
122 struct e1000_nvm_info *nvm = &hw->nvm;
123 u32 eecd = er32(EECD);
124 u16 size;
125
126 nvm->opcode_bits = 8;
127 nvm->delay_usec = 1;
128 switch (nvm->override) {
129 case e1000_nvm_override_spi_large:
130 nvm->page_size = 32;
131 nvm->address_bits = 16;
132 break;
133 case e1000_nvm_override_spi_small:
134 nvm->page_size = 8;
135 nvm->address_bits = 8;
136 break;
137 default:
138 nvm->page_size = eecd & E1000_EECD_ADDR_BITS ? 32 : 8;
139 nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ? 16 : 8;
140 break;
141 }
142
143 switch (hw->mac.type) {
144 case e1000_82573:
145 case e1000_82574:
146 case e1000_82583:
147 if (((eecd >> 15) & 0x3) == 0x3) {
148 nvm->type = e1000_nvm_flash_hw;
149 nvm->word_size = 2048;
150 /* Autonomous Flash update bit must be cleared due
151 * to Flash update issue.
152 */
153 eecd &= ~E1000_EECD_AUPDEN;
154 ew32(EECD, eecd);
155 break;
156 }
157 fallthrough;
158 default:
159 nvm->type = e1000_nvm_eeprom_spi;
160 size = (u16)FIELD_GET(E1000_EECD_SIZE_EX_MASK, eecd);
161 /* Added to a constant, "size" becomes the left-shift value
162 * for setting word_size.
163 */
164 size += NVM_WORD_SIZE_BASE_SHIFT;
165
166 /* EEPROM access above 16k is unsupported */
167 if (size > 14)
168 size = 14;
169 nvm->word_size = BIT(size);
170 break;
171 }
172
173 /* Function Pointers */
174 switch (hw->mac.type) {
175 case e1000_82574:
176 case e1000_82583:
177 nvm->ops.acquire = e1000_get_hw_semaphore_82574;
178 nvm->ops.release = e1000_put_hw_semaphore_82574;
179 break;
180 default:
181 break;
182 }
183
184 return 0;
185}
186
187/**
188 * e1000_init_mac_params_82571 - Init MAC func ptrs.
189 * @hw: pointer to the HW structure
190 **/
191static s32 e1000_init_mac_params_82571(struct e1000_hw *hw)
192{
193 struct e1000_mac_info *mac = &hw->mac;
194 u32 swsm = 0;
195 u32 swsm2 = 0;
196 bool force_clear_smbi = false;
197
198 /* Set media type and media-dependent function pointers */
199 switch (hw->adapter->pdev->device) {
200 case E1000_DEV_ID_82571EB_FIBER:
201 case E1000_DEV_ID_82572EI_FIBER:
202 case E1000_DEV_ID_82571EB_QUAD_FIBER:
203 hw->phy.media_type = e1000_media_type_fiber;
204 mac->ops.setup_physical_interface =
205 e1000_setup_fiber_serdes_link_82571;
206 mac->ops.check_for_link = e1000e_check_for_fiber_link;
207 mac->ops.get_link_up_info =
208 e1000e_get_speed_and_duplex_fiber_serdes;
209 break;
210 case E1000_DEV_ID_82571EB_SERDES:
211 case E1000_DEV_ID_82571EB_SERDES_DUAL:
212 case E1000_DEV_ID_82571EB_SERDES_QUAD:
213 case E1000_DEV_ID_82572EI_SERDES:
214 hw->phy.media_type = e1000_media_type_internal_serdes;
215 mac->ops.setup_physical_interface =
216 e1000_setup_fiber_serdes_link_82571;
217 mac->ops.check_for_link = e1000_check_for_serdes_link_82571;
218 mac->ops.get_link_up_info =
219 e1000e_get_speed_and_duplex_fiber_serdes;
220 break;
221 default:
222 hw->phy.media_type = e1000_media_type_copper;
223 mac->ops.setup_physical_interface =
224 e1000_setup_copper_link_82571;
225 mac->ops.check_for_link = e1000e_check_for_copper_link;
226 mac->ops.get_link_up_info = e1000e_get_speed_and_duplex_copper;
227 break;
228 }
229
230 /* Set mta register count */
231 mac->mta_reg_count = 128;
232 /* Set rar entry count */
233 mac->rar_entry_count = E1000_RAR_ENTRIES;
234 /* Adaptive IFS supported */
235 mac->adaptive_ifs = true;
236
237 /* MAC-specific function pointers */
238 switch (hw->mac.type) {
239 case e1000_82573:
240 mac->ops.set_lan_id = e1000_set_lan_id_single_port;
241 mac->ops.check_mng_mode = e1000e_check_mng_mode_generic;
242 mac->ops.led_on = e1000e_led_on_generic;
243 mac->ops.blink_led = e1000e_blink_led_generic;
244
245 /* FWSM register */
246 mac->has_fwsm = true;
247 /* ARC supported; valid only if manageability features are
248 * enabled.
249 */
250 mac->arc_subsystem_valid = !!(er32(FWSM) &
251 E1000_FWSM_MODE_MASK);
252 break;
253 case e1000_82574:
254 case e1000_82583:
255 mac->ops.set_lan_id = e1000_set_lan_id_single_port;
256 mac->ops.check_mng_mode = e1000_check_mng_mode_82574;
257 mac->ops.led_on = e1000_led_on_82574;
258 break;
259 default:
260 mac->ops.check_mng_mode = e1000e_check_mng_mode_generic;
261 mac->ops.led_on = e1000e_led_on_generic;
262 mac->ops.blink_led = e1000e_blink_led_generic;
263
264 /* FWSM register */
265 mac->has_fwsm = true;
266 break;
267 }
268
269 /* Ensure that the inter-port SWSM.SMBI lock bit is clear before
270 * first NVM or PHY access. This should be done for single-port
271 * devices, and for one port only on dual-port devices so that
272 * for those devices we can still use the SMBI lock to synchronize
273 * inter-port accesses to the PHY & NVM.
274 */
275 switch (hw->mac.type) {
276 case e1000_82571:
277 case e1000_82572:
278 swsm2 = er32(SWSM2);
279
280 if (!(swsm2 & E1000_SWSM2_LOCK)) {
281 /* Only do this for the first interface on this card */
282 ew32(SWSM2, swsm2 | E1000_SWSM2_LOCK);
283 force_clear_smbi = true;
284 } else {
285 force_clear_smbi = false;
286 }
287 break;
288 default:
289 force_clear_smbi = true;
290 break;
291 }
292
293 if (force_clear_smbi) {
294 /* Make sure SWSM.SMBI is clear */
295 swsm = er32(SWSM);
296 if (swsm & E1000_SWSM_SMBI) {
297 /* This bit should not be set on a first interface, and
298 * indicates that the bootagent or EFI code has
299 * improperly left this bit enabled
300 */
301 e_dbg("Please update your 82571 Bootagent\n");
302 }
303 ew32(SWSM, swsm & ~E1000_SWSM_SMBI);
304 }
305
306 /* Initialize device specific counter of SMBI acquisition timeouts. */
307 hw->dev_spec.e82571.smb_counter = 0;
308
309 return 0;
310}
311
312static s32 e1000_get_variants_82571(struct e1000_adapter *adapter)
313{
314 struct e1000_hw *hw = &adapter->hw;
315 static int global_quad_port_a; /* global port a indication */
316 struct pci_dev *pdev = adapter->pdev;
317 int is_port_b = er32(STATUS) & E1000_STATUS_FUNC_1;
318 s32 rc;
319
320 rc = e1000_init_mac_params_82571(hw);
321 if (rc)
322 return rc;
323
324 rc = e1000_init_nvm_params_82571(hw);
325 if (rc)
326 return rc;
327
328 rc = e1000_init_phy_params_82571(hw);
329 if (rc)
330 return rc;
331
332 /* tag quad port adapters first, it's used below */
333 switch (pdev->device) {
334 case E1000_DEV_ID_82571EB_QUAD_COPPER:
335 case E1000_DEV_ID_82571EB_QUAD_FIBER:
336 case E1000_DEV_ID_82571EB_QUAD_COPPER_LP:
337 case E1000_DEV_ID_82571PT_QUAD_COPPER:
338 adapter->flags |= FLAG_IS_QUAD_PORT;
339 /* mark the first port */
340 if (global_quad_port_a == 0)
341 adapter->flags |= FLAG_IS_QUAD_PORT_A;
342 /* Reset for multiple quad port adapters */
343 global_quad_port_a++;
344 if (global_quad_port_a == 4)
345 global_quad_port_a = 0;
346 break;
347 default:
348 break;
349 }
350
351 switch (adapter->hw.mac.type) {
352 case e1000_82571:
353 /* these dual ports don't have WoL on port B at all */
354 if (((pdev->device == E1000_DEV_ID_82571EB_FIBER) ||
355 (pdev->device == E1000_DEV_ID_82571EB_SERDES) ||
356 (pdev->device == E1000_DEV_ID_82571EB_COPPER)) &&
357 (is_port_b))
358 adapter->flags &= ~FLAG_HAS_WOL;
359 /* quad ports only support WoL on port A */
360 if (adapter->flags & FLAG_IS_QUAD_PORT &&
361 (!(adapter->flags & FLAG_IS_QUAD_PORT_A)))
362 adapter->flags &= ~FLAG_HAS_WOL;
363 /* Does not support WoL on any port */
364 if (pdev->device == E1000_DEV_ID_82571EB_SERDES_QUAD)
365 adapter->flags &= ~FLAG_HAS_WOL;
366 break;
367 case e1000_82573:
368 if (pdev->device == E1000_DEV_ID_82573L) {
369 adapter->flags |= FLAG_HAS_JUMBO_FRAMES;
370 adapter->max_hw_frame_size = DEFAULT_JUMBO;
371 }
372 break;
373 default:
374 break;
375 }
376
377 return 0;
378}
379
380/**
381 * e1000_get_phy_id_82571 - Retrieve the PHY ID and revision
382 * @hw: pointer to the HW structure
383 *
384 * Reads the PHY registers and stores the PHY ID and possibly the PHY
385 * revision in the hardware structure.
386 **/
387static s32 e1000_get_phy_id_82571(struct e1000_hw *hw)
388{
389 struct e1000_phy_info *phy = &hw->phy;
390 s32 ret_val;
391 u16 phy_id = 0;
392
393 switch (hw->mac.type) {
394 case e1000_82571:
395 case e1000_82572:
396 /* The 82571 firmware may still be configuring the PHY.
397 * In this case, we cannot access the PHY until the
398 * configuration is done. So we explicitly set the
399 * PHY ID.
400 */
401 phy->id = IGP01E1000_I_PHY_ID;
402 break;
403 case e1000_82573:
404 return e1000e_get_phy_id(hw);
405 case e1000_82574:
406 case e1000_82583:
407 ret_val = e1e_rphy(hw, MII_PHYSID1, &phy_id);
408 if (ret_val)
409 return ret_val;
410
411 phy->id = (u32)(phy_id << 16);
412 usleep_range(20, 40);
413 ret_val = e1e_rphy(hw, MII_PHYSID2, &phy_id);
414 if (ret_val)
415 return ret_val;
416
417 phy->id |= (u32)(phy_id);
418 phy->revision = (u32)(phy_id & ~PHY_REVISION_MASK);
419 break;
420 default:
421 return -E1000_ERR_PHY;
422 }
423
424 return 0;
425}
426
427/**
428 * e1000_get_hw_semaphore_82571 - Acquire hardware semaphore
429 * @hw: pointer to the HW structure
430 *
431 * Acquire the HW semaphore to access the PHY or NVM
432 **/
433static s32 e1000_get_hw_semaphore_82571(struct e1000_hw *hw)
434{
435 u32 swsm;
436 s32 sw_timeout = hw->nvm.word_size + 1;
437 s32 fw_timeout = hw->nvm.word_size + 1;
438 s32 i = 0;
439
440 /* If we have timedout 3 times on trying to acquire
441 * the inter-port SMBI semaphore, there is old code
442 * operating on the other port, and it is not
443 * releasing SMBI. Modify the number of times that
444 * we try for the semaphore to interwork with this
445 * older code.
446 */
447 if (hw->dev_spec.e82571.smb_counter > 2)
448 sw_timeout = 1;
449
450 /* Get the SW semaphore */
451 while (i < sw_timeout) {
452 swsm = er32(SWSM);
453 if (!(swsm & E1000_SWSM_SMBI))
454 break;
455
456 usleep_range(50, 100);
457 i++;
458 }
459
460 if (i == sw_timeout) {
461 e_dbg("Driver can't access device - SMBI bit is set.\n");
462 hw->dev_spec.e82571.smb_counter++;
463 }
464 /* Get the FW semaphore. */
465 for (i = 0; i < fw_timeout; i++) {
466 swsm = er32(SWSM);
467 ew32(SWSM, swsm | E1000_SWSM_SWESMBI);
468
469 /* Semaphore acquired if bit latched */
470 if (er32(SWSM) & E1000_SWSM_SWESMBI)
471 break;
472
473 usleep_range(50, 100);
474 }
475
476 if (i == fw_timeout) {
477 /* Release semaphores */
478 e1000_put_hw_semaphore_82571(hw);
479 e_dbg("Driver can't access the NVM\n");
480 return -E1000_ERR_NVM;
481 }
482
483 return 0;
484}
485
486/**
487 * e1000_put_hw_semaphore_82571 - Release hardware semaphore
488 * @hw: pointer to the HW structure
489 *
490 * Release hardware semaphore used to access the PHY or NVM
491 **/
492static void e1000_put_hw_semaphore_82571(struct e1000_hw *hw)
493{
494 u32 swsm;
495
496 swsm = er32(SWSM);
497 swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI);
498 ew32(SWSM, swsm);
499}
500
501/**
502 * e1000_get_hw_semaphore_82573 - Acquire hardware semaphore
503 * @hw: pointer to the HW structure
504 *
505 * Acquire the HW semaphore during reset.
506 *
507 **/
508static s32 e1000_get_hw_semaphore_82573(struct e1000_hw *hw)
509{
510 u32 extcnf_ctrl;
511 s32 i = 0;
512
513 extcnf_ctrl = er32(EXTCNF_CTRL);
514 do {
515 extcnf_ctrl |= E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP;
516 ew32(EXTCNF_CTRL, extcnf_ctrl);
517 extcnf_ctrl = er32(EXTCNF_CTRL);
518
519 if (extcnf_ctrl & E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP)
520 break;
521
522 usleep_range(2000, 4000);
523 i++;
524 } while (i < MDIO_OWNERSHIP_TIMEOUT);
525
526 if (i == MDIO_OWNERSHIP_TIMEOUT) {
527 /* Release semaphores */
528 e1000_put_hw_semaphore_82573(hw);
529 e_dbg("Driver can't access the PHY\n");
530 return -E1000_ERR_PHY;
531 }
532
533 return 0;
534}
535
536/**
537 * e1000_put_hw_semaphore_82573 - Release hardware semaphore
538 * @hw: pointer to the HW structure
539 *
540 * Release hardware semaphore used during reset.
541 *
542 **/
543static void e1000_put_hw_semaphore_82573(struct e1000_hw *hw)
544{
545 u32 extcnf_ctrl;
546
547 extcnf_ctrl = er32(EXTCNF_CTRL);
548 extcnf_ctrl &= ~E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP;
549 ew32(EXTCNF_CTRL, extcnf_ctrl);
550}
551
552static DEFINE_MUTEX(swflag_mutex);
553
554/**
555 * e1000_get_hw_semaphore_82574 - Acquire hardware semaphore
556 * @hw: pointer to the HW structure
557 *
558 * Acquire the HW semaphore to access the PHY or NVM.
559 *
560 **/
561static s32 e1000_get_hw_semaphore_82574(struct e1000_hw *hw)
562{
563 s32 ret_val;
564
565 mutex_lock(&swflag_mutex);
566 ret_val = e1000_get_hw_semaphore_82573(hw);
567 if (ret_val)
568 mutex_unlock(&swflag_mutex);
569 return ret_val;
570}
571
572/**
573 * e1000_put_hw_semaphore_82574 - Release hardware semaphore
574 * @hw: pointer to the HW structure
575 *
576 * Release hardware semaphore used to access the PHY or NVM
577 *
578 **/
579static void e1000_put_hw_semaphore_82574(struct e1000_hw *hw)
580{
581 e1000_put_hw_semaphore_82573(hw);
582 mutex_unlock(&swflag_mutex);
583}
584
585/**
586 * e1000_set_d0_lplu_state_82574 - Set Low Power Linkup D0 state
587 * @hw: pointer to the HW structure
588 * @active: true to enable LPLU, false to disable
589 *
590 * Sets the LPLU D0 state according to the active flag.
591 * LPLU will not be activated unless the
592 * device autonegotiation advertisement meets standards of
593 * either 10 or 10/100 or 10/100/1000 at all duplexes.
594 * This is a function pointer entry point only called by
595 * PHY setup routines.
596 **/
597static s32 e1000_set_d0_lplu_state_82574(struct e1000_hw *hw, bool active)
598{
599 u32 data = er32(POEMB);
600
601 if (active)
602 data |= E1000_PHY_CTRL_D0A_LPLU;
603 else
604 data &= ~E1000_PHY_CTRL_D0A_LPLU;
605
606 ew32(POEMB, data);
607 return 0;
608}
609
610/**
611 * e1000_set_d3_lplu_state_82574 - Sets low power link up state for D3
612 * @hw: pointer to the HW structure
613 * @active: boolean used to enable/disable lplu
614 *
615 * The low power link up (lplu) state is set to the power management level D3
616 * when active is true, else clear lplu for D3. LPLU
617 * is used during Dx states where the power conservation is most important.
618 * During driver activity, SmartSpeed should be enabled so performance is
619 * maintained.
620 **/
621static s32 e1000_set_d3_lplu_state_82574(struct e1000_hw *hw, bool active)
622{
623 u32 data = er32(POEMB);
624
625 if (!active) {
626 data &= ~E1000_PHY_CTRL_NOND0A_LPLU;
627 } else if ((hw->phy.autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
628 (hw->phy.autoneg_advertised == E1000_ALL_NOT_GIG) ||
629 (hw->phy.autoneg_advertised == E1000_ALL_10_SPEED)) {
630 data |= E1000_PHY_CTRL_NOND0A_LPLU;
631 }
632
633 ew32(POEMB, data);
634 return 0;
635}
636
637/**
638 * e1000_acquire_nvm_82571 - Request for access to the EEPROM
639 * @hw: pointer to the HW structure
640 *
641 * To gain access to the EEPROM, first we must obtain a hardware semaphore.
642 * Then for non-82573 hardware, set the EEPROM access request bit and wait
643 * for EEPROM access grant bit. If the access grant bit is not set, release
644 * hardware semaphore.
645 **/
646static s32 e1000_acquire_nvm_82571(struct e1000_hw *hw)
647{
648 s32 ret_val;
649
650 ret_val = e1000_get_hw_semaphore_82571(hw);
651 if (ret_val)
652 return ret_val;
653
654 switch (hw->mac.type) {
655 case e1000_82573:
656 break;
657 default:
658 ret_val = e1000e_acquire_nvm(hw);
659 break;
660 }
661
662 if (ret_val)
663 e1000_put_hw_semaphore_82571(hw);
664
665 return ret_val;
666}
667
668/**
669 * e1000_release_nvm_82571 - Release exclusive access to EEPROM
670 * @hw: pointer to the HW structure
671 *
672 * Stop any current commands to the EEPROM and clear the EEPROM request bit.
673 **/
674static void e1000_release_nvm_82571(struct e1000_hw *hw)
675{
676 e1000e_release_nvm(hw);
677 e1000_put_hw_semaphore_82571(hw);
678}
679
680/**
681 * e1000_write_nvm_82571 - Write to EEPROM using appropriate interface
682 * @hw: pointer to the HW structure
683 * @offset: offset within the EEPROM to be written to
684 * @words: number of words to write
685 * @data: 16 bit word(s) to be written to the EEPROM
686 *
687 * For non-82573 silicon, write data to EEPROM at offset using SPI interface.
688 *
689 * If e1000e_update_nvm_checksum is not called after this function, the
690 * EEPROM will most likely contain an invalid checksum.
691 **/
692static s32 e1000_write_nvm_82571(struct e1000_hw *hw, u16 offset, u16 words,
693 u16 *data)
694{
695 s32 ret_val;
696
697 switch (hw->mac.type) {
698 case e1000_82573:
699 case e1000_82574:
700 case e1000_82583:
701 ret_val = e1000_write_nvm_eewr_82571(hw, offset, words, data);
702 break;
703 case e1000_82571:
704 case e1000_82572:
705 ret_val = e1000e_write_nvm_spi(hw, offset, words, data);
706 break;
707 default:
708 ret_val = -E1000_ERR_NVM;
709 break;
710 }
711
712 return ret_val;
713}
714
715/**
716 * e1000_update_nvm_checksum_82571 - Update EEPROM checksum
717 * @hw: pointer to the HW structure
718 *
719 * Updates the EEPROM checksum by reading/adding each word of the EEPROM
720 * up to the checksum. Then calculates the EEPROM checksum and writes the
721 * value to the EEPROM.
722 **/
723static s32 e1000_update_nvm_checksum_82571(struct e1000_hw *hw)
724{
725 u32 eecd;
726 s32 ret_val;
727 u16 i;
728
729 ret_val = e1000e_update_nvm_checksum_generic(hw);
730 if (ret_val)
731 return ret_val;
732
733 /* If our nvm is an EEPROM, then we're done
734 * otherwise, commit the checksum to the flash NVM.
735 */
736 if (hw->nvm.type != e1000_nvm_flash_hw)
737 return 0;
738
739 /* Check for pending operations. */
740 for (i = 0; i < E1000_FLASH_UPDATES; i++) {
741 usleep_range(1000, 2000);
742 if (!(er32(EECD) & E1000_EECD_FLUPD))
743 break;
744 }
745
746 if (i == E1000_FLASH_UPDATES)
747 return -E1000_ERR_NVM;
748
749 /* Reset the firmware if using STM opcode. */
750 if ((er32(FLOP) & 0xFF00) == E1000_STM_OPCODE) {
751 /* The enabling of and the actual reset must be done
752 * in two write cycles.
753 */
754 ew32(HICR, E1000_HICR_FW_RESET_ENABLE);
755 e1e_flush();
756 ew32(HICR, E1000_HICR_FW_RESET);
757 }
758
759 /* Commit the write to flash */
760 eecd = er32(EECD) | E1000_EECD_FLUPD;
761 ew32(EECD, eecd);
762
763 for (i = 0; i < E1000_FLASH_UPDATES; i++) {
764 usleep_range(1000, 2000);
765 if (!(er32(EECD) & E1000_EECD_FLUPD))
766 break;
767 }
768
769 if (i == E1000_FLASH_UPDATES)
770 return -E1000_ERR_NVM;
771
772 return 0;
773}
774
775/**
776 * e1000_validate_nvm_checksum_82571 - Validate EEPROM checksum
777 * @hw: pointer to the HW structure
778 *
779 * Calculates the EEPROM checksum by reading/adding each word of the EEPROM
780 * and then verifies that the sum of the EEPROM is equal to 0xBABA.
781 **/
782static s32 e1000_validate_nvm_checksum_82571(struct e1000_hw *hw)
783{
784 if (hw->nvm.type == e1000_nvm_flash_hw)
785 e1000_fix_nvm_checksum_82571(hw);
786
787 return e1000e_validate_nvm_checksum_generic(hw);
788}
789
790/**
791 * e1000_write_nvm_eewr_82571 - Write to EEPROM for 82573 silicon
792 * @hw: pointer to the HW structure
793 * @offset: offset within the EEPROM to be written to
794 * @words: number of words to write
795 * @data: 16 bit word(s) to be written to the EEPROM
796 *
797 * After checking for invalid values, poll the EEPROM to ensure the previous
798 * command has completed before trying to write the next word. After write
799 * poll for completion.
800 *
801 * If e1000e_update_nvm_checksum is not called after this function, the
802 * EEPROM will most likely contain an invalid checksum.
803 **/
804static s32 e1000_write_nvm_eewr_82571(struct e1000_hw *hw, u16 offset,
805 u16 words, u16 *data)
806{
807 struct e1000_nvm_info *nvm = &hw->nvm;
808 u32 i, eewr = 0;
809 s32 ret_val = 0;
810
811 /* A check for invalid values: offset too large, too many words,
812 * and not enough words.
813 */
814 if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
815 (words == 0)) {
816 e_dbg("nvm parameter(s) out of bounds\n");
817 return -E1000_ERR_NVM;
818 }
819
820 for (i = 0; i < words; i++) {
821 eewr = ((data[i] << E1000_NVM_RW_REG_DATA) |
822 ((offset + i) << E1000_NVM_RW_ADDR_SHIFT) |
823 E1000_NVM_RW_REG_START);
824
825 ret_val = e1000e_poll_eerd_eewr_done(hw, E1000_NVM_POLL_WRITE);
826 if (ret_val)
827 break;
828
829 ew32(EEWR, eewr);
830
831 ret_val = e1000e_poll_eerd_eewr_done(hw, E1000_NVM_POLL_WRITE);
832 if (ret_val)
833 break;
834 }
835
836 return ret_val;
837}
838
839/**
840 * e1000_get_cfg_done_82571 - Poll for configuration done
841 * @hw: pointer to the HW structure
842 *
843 * Reads the management control register for the config done bit to be set.
844 **/
845static s32 e1000_get_cfg_done_82571(struct e1000_hw *hw)
846{
847 s32 timeout = PHY_CFG_TIMEOUT;
848
849 while (timeout) {
850 if (er32(EEMNGCTL) & E1000_NVM_CFG_DONE_PORT_0)
851 break;
852 usleep_range(1000, 2000);
853 timeout--;
854 }
855 if (!timeout) {
856 e_dbg("MNG configuration cycle has not completed.\n");
857 return -E1000_ERR_RESET;
858 }
859
860 return 0;
861}
862
863/**
864 * e1000_set_d0_lplu_state_82571 - Set Low Power Linkup D0 state
865 * @hw: pointer to the HW structure
866 * @active: true to enable LPLU, false to disable
867 *
868 * Sets the LPLU D0 state according to the active flag. When activating LPLU
869 * this function also disables smart speed and vice versa. LPLU will not be
870 * activated unless the device autonegotiation advertisement meets standards
871 * of either 10 or 10/100 or 10/100/1000 at all duplexes. This is a function
872 * pointer entry point only called by PHY setup routines.
873 **/
874static s32 e1000_set_d0_lplu_state_82571(struct e1000_hw *hw, bool active)
875{
876 struct e1000_phy_info *phy = &hw->phy;
877 s32 ret_val;
878 u16 data;
879
880 ret_val = e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &data);
881 if (ret_val)
882 return ret_val;
883
884 if (active) {
885 data |= IGP02E1000_PM_D0_LPLU;
886 ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data);
887 if (ret_val)
888 return ret_val;
889
890 /* When LPLU is enabled, we should disable SmartSpeed */
891 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
892 if (ret_val)
893 return ret_val;
894 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
895 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
896 if (ret_val)
897 return ret_val;
898 } else {
899 data &= ~IGP02E1000_PM_D0_LPLU;
900 ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data);
901 if (ret_val)
902 return ret_val;
903 /* LPLU and SmartSpeed are mutually exclusive. LPLU is used
904 * during Dx states where the power conservation is most
905 * important. During driver activity we should enable
906 * SmartSpeed, so performance is maintained.
907 */
908 if (phy->smart_speed == e1000_smart_speed_on) {
909 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
910 &data);
911 if (ret_val)
912 return ret_val;
913
914 data |= IGP01E1000_PSCFR_SMART_SPEED;
915 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
916 data);
917 if (ret_val)
918 return ret_val;
919 } else if (phy->smart_speed == e1000_smart_speed_off) {
920 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
921 &data);
922 if (ret_val)
923 return ret_val;
924
925 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
926 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
927 data);
928 if (ret_val)
929 return ret_val;
930 }
931 }
932
933 return 0;
934}
935
936/**
937 * e1000_reset_hw_82571 - Reset hardware
938 * @hw: pointer to the HW structure
939 *
940 * This resets the hardware into a known state.
941 **/
942static s32 e1000_reset_hw_82571(struct e1000_hw *hw)
943{
944 u32 ctrl, ctrl_ext, eecd, tctl;
945 s32 ret_val;
946
947 /* Prevent the PCI-E bus from sticking if there is no TLP connection
948 * on the last TLP read/write transaction when MAC is reset.
949 */
950 ret_val = e1000e_disable_pcie_master(hw);
951 if (ret_val)
952 e_dbg("PCI-E Master disable polling has failed.\n");
953
954 e_dbg("Masking off all interrupts\n");
955 ew32(IMC, 0xffffffff);
956
957 ew32(RCTL, 0);
958 tctl = er32(TCTL);
959 tctl &= ~E1000_TCTL_EN;
960 ew32(TCTL, tctl);
961 e1e_flush();
962
963 usleep_range(10000, 11000);
964
965 /* Must acquire the MDIO ownership before MAC reset.
966 * Ownership defaults to firmware after a reset.
967 */
968 switch (hw->mac.type) {
969 case e1000_82573:
970 ret_val = e1000_get_hw_semaphore_82573(hw);
971 break;
972 case e1000_82574:
973 case e1000_82583:
974 ret_val = e1000_get_hw_semaphore_82574(hw);
975 break;
976 default:
977 break;
978 }
979
980 ctrl = er32(CTRL);
981
982 e_dbg("Issuing a global reset to MAC\n");
983 ew32(CTRL, ctrl | E1000_CTRL_RST);
984
985 /* Must release MDIO ownership and mutex after MAC reset. */
986 switch (hw->mac.type) {
987 case e1000_82573:
988 /* Release mutex only if the hw semaphore is acquired */
989 if (!ret_val)
990 e1000_put_hw_semaphore_82573(hw);
991 break;
992 case e1000_82574:
993 case e1000_82583:
994 /* Release mutex only if the hw semaphore is acquired */
995 if (!ret_val)
996 e1000_put_hw_semaphore_82574(hw);
997 break;
998 default:
999 break;
1000 }
1001
1002 if (hw->nvm.type == e1000_nvm_flash_hw) {
1003 usleep_range(10, 20);
1004 ctrl_ext = er32(CTRL_EXT);
1005 ctrl_ext |= E1000_CTRL_EXT_EE_RST;
1006 ew32(CTRL_EXT, ctrl_ext);
1007 e1e_flush();
1008 }
1009
1010 ret_val = e1000e_get_auto_rd_done(hw);
1011 if (ret_val)
1012 /* We don't want to continue accessing MAC registers. */
1013 return ret_val;
1014
1015 /* Phy configuration from NVM just starts after EECD_AUTO_RD is set.
1016 * Need to wait for Phy configuration completion before accessing
1017 * NVM and Phy.
1018 */
1019
1020 switch (hw->mac.type) {
1021 case e1000_82571:
1022 case e1000_82572:
1023 /* REQ and GNT bits need to be cleared when using AUTO_RD
1024 * to access the EEPROM.
1025 */
1026 eecd = er32(EECD);
1027 eecd &= ~(E1000_EECD_REQ | E1000_EECD_GNT);
1028 ew32(EECD, eecd);
1029 break;
1030 case e1000_82573:
1031 case e1000_82574:
1032 case e1000_82583:
1033 msleep(25);
1034 break;
1035 default:
1036 break;
1037 }
1038
1039 /* Clear any pending interrupt events. */
1040 ew32(IMC, 0xffffffff);
1041 er32(ICR);
1042
1043 if (hw->mac.type == e1000_82571) {
1044 /* Install any alternate MAC address into RAR0 */
1045 ret_val = e1000_check_alt_mac_addr_generic(hw);
1046 if (ret_val)
1047 return ret_val;
1048
1049 e1000e_set_laa_state_82571(hw, true);
1050 }
1051
1052 /* Reinitialize the 82571 serdes link state machine */
1053 if (hw->phy.media_type == e1000_media_type_internal_serdes)
1054 hw->mac.serdes_link_state = e1000_serdes_link_down;
1055
1056 return 0;
1057}
1058
1059/**
1060 * e1000_init_hw_82571 - Initialize hardware
1061 * @hw: pointer to the HW structure
1062 *
1063 * This inits the hardware readying it for operation.
1064 **/
1065static s32 e1000_init_hw_82571(struct e1000_hw *hw)
1066{
1067 struct e1000_mac_info *mac = &hw->mac;
1068 u32 reg_data;
1069 s32 ret_val;
1070 u16 i, rar_count = mac->rar_entry_count;
1071
1072 e1000_initialize_hw_bits_82571(hw);
1073
1074 /* Initialize identification LED */
1075 ret_val = mac->ops.id_led_init(hw);
1076 /* An error is not fatal and we should not stop init due to this */
1077 if (ret_val)
1078 e_dbg("Error initializing identification LED\n");
1079
1080 /* Disabling VLAN filtering */
1081 e_dbg("Initializing the IEEE VLAN\n");
1082 mac->ops.clear_vfta(hw);
1083
1084 /* Setup the receive address.
1085 * If, however, a locally administered address was assigned to the
1086 * 82571, we must reserve a RAR for it to work around an issue where
1087 * resetting one port will reload the MAC on the other port.
1088 */
1089 if (e1000e_get_laa_state_82571(hw))
1090 rar_count--;
1091 e1000e_init_rx_addrs(hw, rar_count);
1092
1093 /* Zero out the Multicast HASH table */
1094 e_dbg("Zeroing the MTA\n");
1095 for (i = 0; i < mac->mta_reg_count; i++)
1096 E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
1097
1098 /* Setup link and flow control */
1099 ret_val = mac->ops.setup_link(hw);
1100
1101 /* Set the transmit descriptor write-back policy */
1102 reg_data = er32(TXDCTL(0));
1103 reg_data = ((reg_data & ~E1000_TXDCTL_WTHRESH) |
1104 E1000_TXDCTL_FULL_TX_DESC_WB | E1000_TXDCTL_COUNT_DESC);
1105 ew32(TXDCTL(0), reg_data);
1106
1107 /* ...for both queues. */
1108 switch (mac->type) {
1109 case e1000_82573:
1110 e1000e_enable_tx_pkt_filtering(hw);
1111 fallthrough;
1112 case e1000_82574:
1113 case e1000_82583:
1114 reg_data = er32(GCR);
1115 reg_data |= E1000_GCR_L1_ACT_WITHOUT_L0S_RX;
1116 ew32(GCR, reg_data);
1117 break;
1118 default:
1119 reg_data = er32(TXDCTL(1));
1120 reg_data = ((reg_data & ~E1000_TXDCTL_WTHRESH) |
1121 E1000_TXDCTL_FULL_TX_DESC_WB |
1122 E1000_TXDCTL_COUNT_DESC);
1123 ew32(TXDCTL(1), reg_data);
1124 break;
1125 }
1126
1127 /* Clear all of the statistics registers (clear on read). It is
1128 * important that we do this after we have tried to establish link
1129 * because the symbol error count will increment wildly if there
1130 * is no link.
1131 */
1132 e1000_clear_hw_cntrs_82571(hw);
1133
1134 return ret_val;
1135}
1136
1137/**
1138 * e1000_initialize_hw_bits_82571 - Initialize hardware-dependent bits
1139 * @hw: pointer to the HW structure
1140 *
1141 * Initializes required hardware-dependent bits needed for normal operation.
1142 **/
1143static void e1000_initialize_hw_bits_82571(struct e1000_hw *hw)
1144{
1145 u32 reg;
1146
1147 /* Transmit Descriptor Control 0 */
1148 reg = er32(TXDCTL(0));
1149 reg |= BIT(22);
1150 ew32(TXDCTL(0), reg);
1151
1152 /* Transmit Descriptor Control 1 */
1153 reg = er32(TXDCTL(1));
1154 reg |= BIT(22);
1155 ew32(TXDCTL(1), reg);
1156
1157 /* Transmit Arbitration Control 0 */
1158 reg = er32(TARC(0));
1159 reg &= ~(0xF << 27); /* 30:27 */
1160 switch (hw->mac.type) {
1161 case e1000_82571:
1162 case e1000_82572:
1163 reg |= BIT(23) | BIT(24) | BIT(25) | BIT(26);
1164 break;
1165 case e1000_82574:
1166 case e1000_82583:
1167 reg |= BIT(26);
1168 break;
1169 default:
1170 break;
1171 }
1172 ew32(TARC(0), reg);
1173
1174 /* Transmit Arbitration Control 1 */
1175 reg = er32(TARC(1));
1176 switch (hw->mac.type) {
1177 case e1000_82571:
1178 case e1000_82572:
1179 reg &= ~(BIT(29) | BIT(30));
1180 reg |= BIT(22) | BIT(24) | BIT(25) | BIT(26);
1181 if (er32(TCTL) & E1000_TCTL_MULR)
1182 reg &= ~BIT(28);
1183 else
1184 reg |= BIT(28);
1185 ew32(TARC(1), reg);
1186 break;
1187 default:
1188 break;
1189 }
1190
1191 /* Device Control */
1192 switch (hw->mac.type) {
1193 case e1000_82573:
1194 case e1000_82574:
1195 case e1000_82583:
1196 reg = er32(CTRL);
1197 reg &= ~BIT(29);
1198 ew32(CTRL, reg);
1199 break;
1200 default:
1201 break;
1202 }
1203
1204 /* Extended Device Control */
1205 switch (hw->mac.type) {
1206 case e1000_82573:
1207 case e1000_82574:
1208 case e1000_82583:
1209 reg = er32(CTRL_EXT);
1210 reg &= ~BIT(23);
1211 reg |= BIT(22);
1212 ew32(CTRL_EXT, reg);
1213 break;
1214 default:
1215 break;
1216 }
1217
1218 if (hw->mac.type == e1000_82571) {
1219 reg = er32(PBA_ECC);
1220 reg |= E1000_PBA_ECC_CORR_EN;
1221 ew32(PBA_ECC, reg);
1222 }
1223
1224 /* Workaround for hardware errata.
1225 * Ensure that DMA Dynamic Clock gating is disabled on 82571 and 82572
1226 */
1227 if ((hw->mac.type == e1000_82571) || (hw->mac.type == e1000_82572)) {
1228 reg = er32(CTRL_EXT);
1229 reg &= ~E1000_CTRL_EXT_DMA_DYN_CLK_EN;
1230 ew32(CTRL_EXT, reg);
1231 }
1232
1233 /* Disable IPv6 extension header parsing because some malformed
1234 * IPv6 headers can hang the Rx.
1235 */
1236 if (hw->mac.type <= e1000_82573) {
1237 reg = er32(RFCTL);
1238 reg |= (E1000_RFCTL_IPV6_EX_DIS | E1000_RFCTL_NEW_IPV6_EXT_DIS);
1239 ew32(RFCTL, reg);
1240 }
1241
1242 /* PCI-Ex Control Registers */
1243 switch (hw->mac.type) {
1244 case e1000_82574:
1245 case e1000_82583:
1246 reg = er32(GCR);
1247 reg |= BIT(22);
1248 ew32(GCR, reg);
1249
1250 /* Workaround for hardware errata.
1251 * apply workaround for hardware errata documented in errata
1252 * docs Fixes issue where some error prone or unreliable PCIe
1253 * completions are occurring, particularly with ASPM enabled.
1254 * Without fix, issue can cause Tx timeouts.
1255 */
1256 reg = er32(GCR2);
1257 reg |= 1;
1258 ew32(GCR2, reg);
1259 break;
1260 default:
1261 break;
1262 }
1263}
1264
1265/**
1266 * e1000_clear_vfta_82571 - Clear VLAN filter table
1267 * @hw: pointer to the HW structure
1268 *
1269 * Clears the register array which contains the VLAN filter table by
1270 * setting all the values to 0.
1271 **/
1272static void e1000_clear_vfta_82571(struct e1000_hw *hw)
1273{
1274 u32 offset;
1275 u32 vfta_value = 0;
1276 u32 vfta_offset = 0;
1277 u32 vfta_bit_in_reg = 0;
1278
1279 switch (hw->mac.type) {
1280 case e1000_82573:
1281 case e1000_82574:
1282 case e1000_82583:
1283 if (hw->mng_cookie.vlan_id != 0) {
1284 /* The VFTA is a 4096b bit-field, each identifying
1285 * a single VLAN ID. The following operations
1286 * determine which 32b entry (i.e. offset) into the
1287 * array we want to set the VLAN ID (i.e. bit) of
1288 * the manageability unit.
1289 */
1290 vfta_offset = (hw->mng_cookie.vlan_id >>
1291 E1000_VFTA_ENTRY_SHIFT) &
1292 E1000_VFTA_ENTRY_MASK;
1293 vfta_bit_in_reg =
1294 BIT(hw->mng_cookie.vlan_id &
1295 E1000_VFTA_ENTRY_BIT_SHIFT_MASK);
1296 }
1297 break;
1298 default:
1299 break;
1300 }
1301 for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) {
1302 /* If the offset we want to clear is the same offset of the
1303 * manageability VLAN ID, then clear all bits except that of
1304 * the manageability unit.
1305 */
1306 vfta_value = (offset == vfta_offset) ? vfta_bit_in_reg : 0;
1307 E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, vfta_value);
1308 e1e_flush();
1309 }
1310}
1311
1312/**
1313 * e1000_check_mng_mode_82574 - Check manageability is enabled
1314 * @hw: pointer to the HW structure
1315 *
1316 * Reads the NVM Initialization Control Word 2 and returns true
1317 * (>0) if any manageability is enabled, else false (0).
1318 **/
1319static bool e1000_check_mng_mode_82574(struct e1000_hw *hw)
1320{
1321 u16 data;
1322
1323 e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &data);
1324 return (data & E1000_NVM_INIT_CTRL2_MNGM) != 0;
1325}
1326
1327/**
1328 * e1000_led_on_82574 - Turn LED on
1329 * @hw: pointer to the HW structure
1330 *
1331 * Turn LED on.
1332 **/
1333static s32 e1000_led_on_82574(struct e1000_hw *hw)
1334{
1335 u32 ctrl;
1336 u32 i;
1337
1338 ctrl = hw->mac.ledctl_mode2;
1339 if (!(E1000_STATUS_LU & er32(STATUS))) {
1340 /* If no link, then turn LED on by setting the invert bit
1341 * for each LED that's "on" (0x0E) in ledctl_mode2.
1342 */
1343 for (i = 0; i < 4; i++)
1344 if (((hw->mac.ledctl_mode2 >> (i * 8)) & 0xFF) ==
1345 E1000_LEDCTL_MODE_LED_ON)
1346 ctrl |= (E1000_LEDCTL_LED0_IVRT << (i * 8));
1347 }
1348 ew32(LEDCTL, ctrl);
1349
1350 return 0;
1351}
1352
1353/**
1354 * e1000_check_phy_82574 - check 82574 phy hung state
1355 * @hw: pointer to the HW structure
1356 *
1357 * Returns whether phy is hung or not
1358 **/
1359bool e1000_check_phy_82574(struct e1000_hw *hw)
1360{
1361 u16 status_1kbt = 0;
1362 u16 receive_errors = 0;
1363 s32 ret_val;
1364
1365 /* Read PHY Receive Error counter first, if its is max - all F's then
1366 * read the Base1000T status register If both are max then PHY is hung.
1367 */
1368 ret_val = e1e_rphy(hw, E1000_RECEIVE_ERROR_COUNTER, &receive_errors);
1369 if (ret_val)
1370 return false;
1371 if (receive_errors == E1000_RECEIVE_ERROR_MAX) {
1372 ret_val = e1e_rphy(hw, E1000_BASE1000T_STATUS, &status_1kbt);
1373 if (ret_val)
1374 return false;
1375 if ((status_1kbt & E1000_IDLE_ERROR_COUNT_MASK) ==
1376 E1000_IDLE_ERROR_COUNT_MASK)
1377 return true;
1378 }
1379
1380 return false;
1381}
1382
1383/**
1384 * e1000_setup_link_82571 - Setup flow control and link settings
1385 * @hw: pointer to the HW structure
1386 *
1387 * Determines which flow control settings to use, then configures flow
1388 * control. Calls the appropriate media-specific link configuration
1389 * function. Assuming the adapter has a valid link partner, a valid link
1390 * should be established. Assumes the hardware has previously been reset
1391 * and the transmitter and receiver are not enabled.
1392 **/
1393static s32 e1000_setup_link_82571(struct e1000_hw *hw)
1394{
1395 /* 82573 does not have a word in the NVM to determine
1396 * the default flow control setting, so we explicitly
1397 * set it to full.
1398 */
1399 switch (hw->mac.type) {
1400 case e1000_82573:
1401 case e1000_82574:
1402 case e1000_82583:
1403 if (hw->fc.requested_mode == e1000_fc_default)
1404 hw->fc.requested_mode = e1000_fc_full;
1405 break;
1406 default:
1407 break;
1408 }
1409
1410 return e1000e_setup_link_generic(hw);
1411}
1412
1413/**
1414 * e1000_setup_copper_link_82571 - Configure copper link settings
1415 * @hw: pointer to the HW structure
1416 *
1417 * Configures the link for auto-neg or forced speed and duplex. Then we check
1418 * for link, once link is established calls to configure collision distance
1419 * and flow control are called.
1420 **/
1421static s32 e1000_setup_copper_link_82571(struct e1000_hw *hw)
1422{
1423 u32 ctrl;
1424 s32 ret_val;
1425
1426 ctrl = er32(CTRL);
1427 ctrl |= E1000_CTRL_SLU;
1428 ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1429 ew32(CTRL, ctrl);
1430
1431 switch (hw->phy.type) {
1432 case e1000_phy_m88:
1433 case e1000_phy_bm:
1434 ret_val = e1000e_copper_link_setup_m88(hw);
1435 break;
1436 case e1000_phy_igp_2:
1437 ret_val = e1000e_copper_link_setup_igp(hw);
1438 break;
1439 default:
1440 return -E1000_ERR_PHY;
1441 }
1442
1443 if (ret_val)
1444 return ret_val;
1445
1446 return e1000e_setup_copper_link(hw);
1447}
1448
1449/**
1450 * e1000_setup_fiber_serdes_link_82571 - Setup link for fiber/serdes
1451 * @hw: pointer to the HW structure
1452 *
1453 * Configures collision distance and flow control for fiber and serdes links.
1454 * Upon successful setup, poll for link.
1455 **/
1456static s32 e1000_setup_fiber_serdes_link_82571(struct e1000_hw *hw)
1457{
1458 switch (hw->mac.type) {
1459 case e1000_82571:
1460 case e1000_82572:
1461 /* If SerDes loopback mode is entered, there is no form
1462 * of reset to take the adapter out of that mode. So we
1463 * have to explicitly take the adapter out of loopback
1464 * mode. This prevents drivers from twiddling their thumbs
1465 * if another tool failed to take it out of loopback mode.
1466 */
1467 ew32(SCTL, E1000_SCTL_DISABLE_SERDES_LOOPBACK);
1468 break;
1469 default:
1470 break;
1471 }
1472
1473 return e1000e_setup_fiber_serdes_link(hw);
1474}
1475
1476/**
1477 * e1000_check_for_serdes_link_82571 - Check for link (Serdes)
1478 * @hw: pointer to the HW structure
1479 *
1480 * Reports the link state as up or down.
1481 *
1482 * If autonegotiation is supported by the link partner, the link state is
1483 * determined by the result of autonegotiation. This is the most likely case.
1484 * If autonegotiation is not supported by the link partner, and the link
1485 * has a valid signal, force the link up.
1486 *
1487 * The link state is represented internally here by 4 states:
1488 *
1489 * 1) down
1490 * 2) autoneg_progress
1491 * 3) autoneg_complete (the link successfully autonegotiated)
1492 * 4) forced_up (the link has been forced up, it did not autonegotiate)
1493 *
1494 **/
1495static s32 e1000_check_for_serdes_link_82571(struct e1000_hw *hw)
1496{
1497 struct e1000_mac_info *mac = &hw->mac;
1498 u32 rxcw;
1499 u32 ctrl;
1500 u32 status;
1501 u32 txcw;
1502 u32 i;
1503 s32 ret_val = 0;
1504
1505 ctrl = er32(CTRL);
1506 status = er32(STATUS);
1507 er32(RXCW);
1508 /* SYNCH bit and IV bit are sticky */
1509 usleep_range(10, 20);
1510 rxcw = er32(RXCW);
1511
1512 if ((rxcw & E1000_RXCW_SYNCH) && !(rxcw & E1000_RXCW_IV)) {
1513 /* Receiver is synchronized with no invalid bits. */
1514 switch (mac->serdes_link_state) {
1515 case e1000_serdes_link_autoneg_complete:
1516 if (!(status & E1000_STATUS_LU)) {
1517 /* We have lost link, retry autoneg before
1518 * reporting link failure
1519 */
1520 mac->serdes_link_state =
1521 e1000_serdes_link_autoneg_progress;
1522 mac->serdes_has_link = false;
1523 e_dbg("AN_UP -> AN_PROG\n");
1524 } else {
1525 mac->serdes_has_link = true;
1526 }
1527 break;
1528
1529 case e1000_serdes_link_forced_up:
1530 /* If we are receiving /C/ ordered sets, re-enable
1531 * auto-negotiation in the TXCW register and disable
1532 * forced link in the Device Control register in an
1533 * attempt to auto-negotiate with our link partner.
1534 */
1535 if (rxcw & E1000_RXCW_C) {
1536 /* Enable autoneg, and unforce link up */
1537 ew32(TXCW, mac->txcw);
1538 ew32(CTRL, (ctrl & ~E1000_CTRL_SLU));
1539 mac->serdes_link_state =
1540 e1000_serdes_link_autoneg_progress;
1541 mac->serdes_has_link = false;
1542 e_dbg("FORCED_UP -> AN_PROG\n");
1543 } else {
1544 mac->serdes_has_link = true;
1545 }
1546 break;
1547
1548 case e1000_serdes_link_autoneg_progress:
1549 if (rxcw & E1000_RXCW_C) {
1550 /* We received /C/ ordered sets, meaning the
1551 * link partner has autonegotiated, and we can
1552 * trust the Link Up (LU) status bit.
1553 */
1554 if (status & E1000_STATUS_LU) {
1555 mac->serdes_link_state =
1556 e1000_serdes_link_autoneg_complete;
1557 e_dbg("AN_PROG -> AN_UP\n");
1558 mac->serdes_has_link = true;
1559 } else {
1560 /* Autoneg completed, but failed. */
1561 mac->serdes_link_state =
1562 e1000_serdes_link_down;
1563 e_dbg("AN_PROG -> DOWN\n");
1564 }
1565 } else {
1566 /* The link partner did not autoneg.
1567 * Force link up and full duplex, and change
1568 * state to forced.
1569 */
1570 ew32(TXCW, (mac->txcw & ~E1000_TXCW_ANE));
1571 ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
1572 ew32(CTRL, ctrl);
1573
1574 /* Configure Flow Control after link up. */
1575 ret_val = e1000e_config_fc_after_link_up(hw);
1576 if (ret_val) {
1577 e_dbg("Error config flow control\n");
1578 break;
1579 }
1580 mac->serdes_link_state =
1581 e1000_serdes_link_forced_up;
1582 mac->serdes_has_link = true;
1583 e_dbg("AN_PROG -> FORCED_UP\n");
1584 }
1585 break;
1586
1587 case e1000_serdes_link_down:
1588 default:
1589 /* The link was down but the receiver has now gained
1590 * valid sync, so lets see if we can bring the link
1591 * up.
1592 */
1593 ew32(TXCW, mac->txcw);
1594 ew32(CTRL, (ctrl & ~E1000_CTRL_SLU));
1595 mac->serdes_link_state =
1596 e1000_serdes_link_autoneg_progress;
1597 mac->serdes_has_link = false;
1598 e_dbg("DOWN -> AN_PROG\n");
1599 break;
1600 }
1601 } else {
1602 if (!(rxcw & E1000_RXCW_SYNCH)) {
1603 mac->serdes_has_link = false;
1604 mac->serdes_link_state = e1000_serdes_link_down;
1605 e_dbg("ANYSTATE -> DOWN\n");
1606 } else {
1607 /* Check several times, if SYNCH bit and CONFIG
1608 * bit both are consistently 1 then simply ignore
1609 * the IV bit and restart Autoneg
1610 */
1611 for (i = 0; i < AN_RETRY_COUNT; i++) {
1612 usleep_range(10, 20);
1613 rxcw = er32(RXCW);
1614 if ((rxcw & E1000_RXCW_SYNCH) &&
1615 (rxcw & E1000_RXCW_C))
1616 continue;
1617
1618 if (rxcw & E1000_RXCW_IV) {
1619 mac->serdes_has_link = false;
1620 mac->serdes_link_state =
1621 e1000_serdes_link_down;
1622 e_dbg("ANYSTATE -> DOWN\n");
1623 break;
1624 }
1625 }
1626
1627 if (i == AN_RETRY_COUNT) {
1628 txcw = er32(TXCW);
1629 txcw |= E1000_TXCW_ANE;
1630 ew32(TXCW, txcw);
1631 mac->serdes_link_state =
1632 e1000_serdes_link_autoneg_progress;
1633 mac->serdes_has_link = false;
1634 e_dbg("ANYSTATE -> AN_PROG\n");
1635 }
1636 }
1637 }
1638
1639 return ret_val;
1640}
1641
1642/**
1643 * e1000_valid_led_default_82571 - Verify a valid default LED config
1644 * @hw: pointer to the HW structure
1645 * @data: pointer to the NVM (EEPROM)
1646 *
1647 * Read the EEPROM for the current default LED configuration. If the
1648 * LED configuration is not valid, set to a valid LED configuration.
1649 **/
1650static s32 e1000_valid_led_default_82571(struct e1000_hw *hw, u16 *data)
1651{
1652 s32 ret_val;
1653
1654 ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
1655 if (ret_val) {
1656 e_dbg("NVM Read Error\n");
1657 return ret_val;
1658 }
1659
1660 switch (hw->mac.type) {
1661 case e1000_82573:
1662 case e1000_82574:
1663 case e1000_82583:
1664 if (*data == ID_LED_RESERVED_F746)
1665 *data = ID_LED_DEFAULT_82573;
1666 break;
1667 default:
1668 if (*data == ID_LED_RESERVED_0000 ||
1669 *data == ID_LED_RESERVED_FFFF)
1670 *data = ID_LED_DEFAULT;
1671 break;
1672 }
1673
1674 return 0;
1675}
1676
1677/**
1678 * e1000e_get_laa_state_82571 - Get locally administered address state
1679 * @hw: pointer to the HW structure
1680 *
1681 * Retrieve and return the current locally administered address state.
1682 **/
1683bool e1000e_get_laa_state_82571(struct e1000_hw *hw)
1684{
1685 if (hw->mac.type != e1000_82571)
1686 return false;
1687
1688 return hw->dev_spec.e82571.laa_is_present;
1689}
1690
1691/**
1692 * e1000e_set_laa_state_82571 - Set locally administered address state
1693 * @hw: pointer to the HW structure
1694 * @state: enable/disable locally administered address
1695 *
1696 * Enable/Disable the current locally administered address state.
1697 **/
1698void e1000e_set_laa_state_82571(struct e1000_hw *hw, bool state)
1699{
1700 if (hw->mac.type != e1000_82571)
1701 return;
1702
1703 hw->dev_spec.e82571.laa_is_present = state;
1704
1705 /* If workaround is activated... */
1706 if (state)
1707 /* Hold a copy of the LAA in RAR[14] This is done so that
1708 * between the time RAR[0] gets clobbered and the time it
1709 * gets fixed, the actual LAA is in one of the RARs and no
1710 * incoming packets directed to this port are dropped.
1711 * Eventually the LAA will be in RAR[0] and RAR[14].
1712 */
1713 hw->mac.ops.rar_set(hw, hw->mac.addr,
1714 hw->mac.rar_entry_count - 1);
1715}
1716
1717/**
1718 * e1000_fix_nvm_checksum_82571 - Fix EEPROM checksum
1719 * @hw: pointer to the HW structure
1720 *
1721 * Verifies that the EEPROM has completed the update. After updating the
1722 * EEPROM, we need to check bit 15 in work 0x23 for the checksum fix. If
1723 * the checksum fix is not implemented, we need to set the bit and update
1724 * the checksum. Otherwise, if bit 15 is set and the checksum is incorrect,
1725 * we need to return bad checksum.
1726 **/
1727static s32 e1000_fix_nvm_checksum_82571(struct e1000_hw *hw)
1728{
1729 struct e1000_nvm_info *nvm = &hw->nvm;
1730 s32 ret_val;
1731 u16 data;
1732
1733 if (nvm->type != e1000_nvm_flash_hw)
1734 return 0;
1735
1736 /* Check bit 4 of word 10h. If it is 0, firmware is done updating
1737 * 10h-12h. Checksum may need to be fixed.
1738 */
1739 ret_val = e1000_read_nvm(hw, 0x10, 1, &data);
1740 if (ret_val)
1741 return ret_val;
1742
1743 if (!(data & 0x10)) {
1744 /* Read 0x23 and check bit 15. This bit is a 1
1745 * when the checksum has already been fixed. If
1746 * the checksum is still wrong and this bit is a
1747 * 1, we need to return bad checksum. Otherwise,
1748 * we need to set this bit to a 1 and update the
1749 * checksum.
1750 */
1751 ret_val = e1000_read_nvm(hw, 0x23, 1, &data);
1752 if (ret_val)
1753 return ret_val;
1754
1755 if (!(data & 0x8000)) {
1756 data |= 0x8000;
1757 ret_val = e1000_write_nvm(hw, 0x23, 1, &data);
1758 if (ret_val)
1759 return ret_val;
1760 ret_val = e1000e_update_nvm_checksum(hw);
1761 if (ret_val)
1762 return ret_val;
1763 }
1764 }
1765
1766 return 0;
1767}
1768
1769/**
1770 * e1000_read_mac_addr_82571 - Read device MAC address
1771 * @hw: pointer to the HW structure
1772 **/
1773static s32 e1000_read_mac_addr_82571(struct e1000_hw *hw)
1774{
1775 if (hw->mac.type == e1000_82571) {
1776 s32 ret_val;
1777
1778 /* If there's an alternate MAC address place it in RAR0
1779 * so that it will override the Si installed default perm
1780 * address.
1781 */
1782 ret_val = e1000_check_alt_mac_addr_generic(hw);
1783 if (ret_val)
1784 return ret_val;
1785 }
1786
1787 return e1000_read_mac_addr_generic(hw);
1788}
1789
1790/**
1791 * e1000_power_down_phy_copper_82571 - Remove link during PHY power down
1792 * @hw: pointer to the HW structure
1793 *
1794 * In the case of a PHY power down to save power, or to turn off link during a
1795 * driver unload, or wake on lan is not enabled, remove the link.
1796 **/
1797static void e1000_power_down_phy_copper_82571(struct e1000_hw *hw)
1798{
1799 struct e1000_phy_info *phy = &hw->phy;
1800 struct e1000_mac_info *mac = &hw->mac;
1801
1802 if (!phy->ops.check_reset_block)
1803 return;
1804
1805 /* If the management interface is not enabled, then power down */
1806 if (!(mac->ops.check_mng_mode(hw) || phy->ops.check_reset_block(hw)))
1807 e1000_power_down_phy_copper(hw);
1808}
1809
1810/**
1811 * e1000_clear_hw_cntrs_82571 - Clear device specific hardware counters
1812 * @hw: pointer to the HW structure
1813 *
1814 * Clears the hardware counters by reading the counter registers.
1815 **/
1816static void e1000_clear_hw_cntrs_82571(struct e1000_hw *hw)
1817{
1818 e1000e_clear_hw_cntrs_base(hw);
1819
1820 er32(PRC64);
1821 er32(PRC127);
1822 er32(PRC255);
1823 er32(PRC511);
1824 er32(PRC1023);
1825 er32(PRC1522);
1826 er32(PTC64);
1827 er32(PTC127);
1828 er32(PTC255);
1829 er32(PTC511);
1830 er32(PTC1023);
1831 er32(PTC1522);
1832
1833 er32(ALGNERRC);
1834 er32(RXERRC);
1835 er32(TNCRS);
1836 er32(CEXTERR);
1837 er32(TSCTC);
1838 er32(TSCTFC);
1839
1840 er32(MGTPRC);
1841 er32(MGTPDC);
1842 er32(MGTPTC);
1843
1844 er32(IAC);
1845 er32(ICRXOC);
1846
1847 er32(ICRXPTC);
1848 er32(ICRXATC);
1849 er32(ICTXPTC);
1850 er32(ICTXATC);
1851 er32(ICTXQEC);
1852 er32(ICTXQMTC);
1853 er32(ICRXDMTC);
1854}
1855
1856static const struct e1000_mac_operations e82571_mac_ops = {
1857 /* .check_mng_mode: mac type dependent */
1858 /* .check_for_link: media type dependent */
1859 .id_led_init = e1000e_id_led_init_generic,
1860 .cleanup_led = e1000e_cleanup_led_generic,
1861 .clear_hw_cntrs = e1000_clear_hw_cntrs_82571,
1862 .get_bus_info = e1000e_get_bus_info_pcie,
1863 .set_lan_id = e1000_set_lan_id_multi_port_pcie,
1864 /* .get_link_up_info: media type dependent */
1865 /* .led_on: mac type dependent */
1866 .led_off = e1000e_led_off_generic,
1867 .update_mc_addr_list = e1000e_update_mc_addr_list_generic,
1868 .write_vfta = e1000_write_vfta_generic,
1869 .clear_vfta = e1000_clear_vfta_82571,
1870 .reset_hw = e1000_reset_hw_82571,
1871 .init_hw = e1000_init_hw_82571,
1872 .setup_link = e1000_setup_link_82571,
1873 /* .setup_physical_interface: media type dependent */
1874 .setup_led = e1000e_setup_led_generic,
1875 .config_collision_dist = e1000e_config_collision_dist_generic,
1876 .read_mac_addr = e1000_read_mac_addr_82571,
1877 .rar_set = e1000e_rar_set_generic,
1878 .rar_get_count = e1000e_rar_get_count_generic,
1879};
1880
1881static const struct e1000_phy_operations e82_phy_ops_igp = {
1882 .acquire = e1000_get_hw_semaphore_82571,
1883 .check_polarity = e1000_check_polarity_igp,
1884 .check_reset_block = e1000e_check_reset_block_generic,
1885 .commit = NULL,
1886 .force_speed_duplex = e1000e_phy_force_speed_duplex_igp,
1887 .get_cfg_done = e1000_get_cfg_done_82571,
1888 .get_cable_length = e1000e_get_cable_length_igp_2,
1889 .get_info = e1000e_get_phy_info_igp,
1890 .read_reg = e1000e_read_phy_reg_igp,
1891 .release = e1000_put_hw_semaphore_82571,
1892 .reset = e1000e_phy_hw_reset_generic,
1893 .set_d0_lplu_state = e1000_set_d0_lplu_state_82571,
1894 .set_d3_lplu_state = e1000e_set_d3_lplu_state,
1895 .write_reg = e1000e_write_phy_reg_igp,
1896 .cfg_on_link_up = NULL,
1897};
1898
1899static const struct e1000_phy_operations e82_phy_ops_m88 = {
1900 .acquire = e1000_get_hw_semaphore_82571,
1901 .check_polarity = e1000_check_polarity_m88,
1902 .check_reset_block = e1000e_check_reset_block_generic,
1903 .commit = e1000e_phy_sw_reset,
1904 .force_speed_duplex = e1000e_phy_force_speed_duplex_m88,
1905 .get_cfg_done = e1000e_get_cfg_done_generic,
1906 .get_cable_length = e1000e_get_cable_length_m88,
1907 .get_info = e1000e_get_phy_info_m88,
1908 .read_reg = e1000e_read_phy_reg_m88,
1909 .release = e1000_put_hw_semaphore_82571,
1910 .reset = e1000e_phy_hw_reset_generic,
1911 .set_d0_lplu_state = e1000_set_d0_lplu_state_82571,
1912 .set_d3_lplu_state = e1000e_set_d3_lplu_state,
1913 .write_reg = e1000e_write_phy_reg_m88,
1914 .cfg_on_link_up = NULL,
1915};
1916
1917static const struct e1000_phy_operations e82_phy_ops_bm = {
1918 .acquire = e1000_get_hw_semaphore_82571,
1919 .check_polarity = e1000_check_polarity_m88,
1920 .check_reset_block = e1000e_check_reset_block_generic,
1921 .commit = e1000e_phy_sw_reset,
1922 .force_speed_duplex = e1000e_phy_force_speed_duplex_m88,
1923 .get_cfg_done = e1000e_get_cfg_done_generic,
1924 .get_cable_length = e1000e_get_cable_length_m88,
1925 .get_info = e1000e_get_phy_info_m88,
1926 .read_reg = e1000e_read_phy_reg_bm2,
1927 .release = e1000_put_hw_semaphore_82571,
1928 .reset = e1000e_phy_hw_reset_generic,
1929 .set_d0_lplu_state = e1000_set_d0_lplu_state_82571,
1930 .set_d3_lplu_state = e1000e_set_d3_lplu_state,
1931 .write_reg = e1000e_write_phy_reg_bm2,
1932 .cfg_on_link_up = NULL,
1933};
1934
1935static const struct e1000_nvm_operations e82571_nvm_ops = {
1936 .acquire = e1000_acquire_nvm_82571,
1937 .read = e1000e_read_nvm_eerd,
1938 .release = e1000_release_nvm_82571,
1939 .reload = e1000e_reload_nvm_generic,
1940 .update = e1000_update_nvm_checksum_82571,
1941 .valid_led_default = e1000_valid_led_default_82571,
1942 .validate = e1000_validate_nvm_checksum_82571,
1943 .write = e1000_write_nvm_82571,
1944};
1945
1946const struct e1000_info e1000_82571_info = {
1947 .mac = e1000_82571,
1948 .flags = FLAG_HAS_HW_VLAN_FILTER
1949 | FLAG_HAS_JUMBO_FRAMES
1950 | FLAG_HAS_WOL
1951 | FLAG_APME_IN_CTRL3
1952 | FLAG_HAS_CTRLEXT_ON_LOAD
1953 | FLAG_HAS_SMART_POWER_DOWN
1954 | FLAG_RESET_OVERWRITES_LAA /* errata */
1955 | FLAG_TARC_SPEED_MODE_BIT /* errata */
1956 | FLAG_APME_CHECK_PORT_B,
1957 .flags2 = FLAG2_DISABLE_ASPM_L1 /* errata 13 */
1958 | FLAG2_DMA_BURST,
1959 .pba = 38,
1960 .max_hw_frame_size = DEFAULT_JUMBO,
1961 .get_variants = e1000_get_variants_82571,
1962 .mac_ops = &e82571_mac_ops,
1963 .phy_ops = &e82_phy_ops_igp,
1964 .nvm_ops = &e82571_nvm_ops,
1965};
1966
1967const struct e1000_info e1000_82572_info = {
1968 .mac = e1000_82572,
1969 .flags = FLAG_HAS_HW_VLAN_FILTER
1970 | FLAG_HAS_JUMBO_FRAMES
1971 | FLAG_HAS_WOL
1972 | FLAG_APME_IN_CTRL3
1973 | FLAG_HAS_CTRLEXT_ON_LOAD
1974 | FLAG_TARC_SPEED_MODE_BIT, /* errata */
1975 .flags2 = FLAG2_DISABLE_ASPM_L1 /* errata 13 */
1976 | FLAG2_DMA_BURST,
1977 .pba = 38,
1978 .max_hw_frame_size = DEFAULT_JUMBO,
1979 .get_variants = e1000_get_variants_82571,
1980 .mac_ops = &e82571_mac_ops,
1981 .phy_ops = &e82_phy_ops_igp,
1982 .nvm_ops = &e82571_nvm_ops,
1983};
1984
1985const struct e1000_info e1000_82573_info = {
1986 .mac = e1000_82573,
1987 .flags = FLAG_HAS_HW_VLAN_FILTER
1988 | FLAG_HAS_WOL
1989 | FLAG_APME_IN_CTRL3
1990 | FLAG_HAS_SMART_POWER_DOWN
1991 | FLAG_HAS_AMT
1992 | FLAG_HAS_SWSM_ON_LOAD,
1993 .flags2 = FLAG2_DISABLE_ASPM_L1
1994 | FLAG2_DISABLE_ASPM_L0S,
1995 .pba = 20,
1996 .max_hw_frame_size = VLAN_ETH_FRAME_LEN + ETH_FCS_LEN,
1997 .get_variants = e1000_get_variants_82571,
1998 .mac_ops = &e82571_mac_ops,
1999 .phy_ops = &e82_phy_ops_m88,
2000 .nvm_ops = &e82571_nvm_ops,
2001};
2002
2003const struct e1000_info e1000_82574_info = {
2004 .mac = e1000_82574,
2005 .flags = FLAG_HAS_HW_VLAN_FILTER
2006 | FLAG_HAS_MSIX
2007 | FLAG_HAS_JUMBO_FRAMES
2008 | FLAG_HAS_WOL
2009 | FLAG_HAS_HW_TIMESTAMP
2010 | FLAG_APME_IN_CTRL3
2011 | FLAG_HAS_SMART_POWER_DOWN
2012 | FLAG_HAS_AMT
2013 | FLAG_HAS_CTRLEXT_ON_LOAD,
2014 .flags2 = FLAG2_CHECK_PHY_HANG
2015 | FLAG2_DISABLE_ASPM_L0S
2016 | FLAG2_DISABLE_ASPM_L1
2017 | FLAG2_NO_DISABLE_RX
2018 | FLAG2_DMA_BURST
2019 | FLAG2_CHECK_SYSTIM_OVERFLOW,
2020 .pba = 32,
2021 .max_hw_frame_size = DEFAULT_JUMBO,
2022 .get_variants = e1000_get_variants_82571,
2023 .mac_ops = &e82571_mac_ops,
2024 .phy_ops = &e82_phy_ops_bm,
2025 .nvm_ops = &e82571_nvm_ops,
2026};
2027
2028const struct e1000_info e1000_82583_info = {
2029 .mac = e1000_82583,
2030 .flags = FLAG_HAS_HW_VLAN_FILTER
2031 | FLAG_HAS_WOL
2032 | FLAG_HAS_HW_TIMESTAMP
2033 | FLAG_APME_IN_CTRL3
2034 | FLAG_HAS_SMART_POWER_DOWN
2035 | FLAG_HAS_AMT
2036 | FLAG_HAS_JUMBO_FRAMES
2037 | FLAG_HAS_CTRLEXT_ON_LOAD,
2038 .flags2 = FLAG2_DISABLE_ASPM_L0S
2039 | FLAG2_DISABLE_ASPM_L1
2040 | FLAG2_NO_DISABLE_RX
2041 | FLAG2_CHECK_SYSTIM_OVERFLOW,
2042 .pba = 32,
2043 .max_hw_frame_size = DEFAULT_JUMBO,
2044 .get_variants = e1000_get_variants_82571,
2045 .mac_ops = &e82571_mac_ops,
2046 .phy_ops = &e82_phy_ops_bm,
2047 .nvm_ops = &e82571_nvm_ops,
2048};
1// SPDX-License-Identifier: GPL-2.0
2/* Copyright(c) 1999 - 2018 Intel Corporation. */
3
4/* 82571EB Gigabit Ethernet Controller
5 * 82571EB Gigabit Ethernet Controller (Copper)
6 * 82571EB Gigabit Ethernet Controller (Fiber)
7 * 82571EB Dual Port Gigabit Mezzanine Adapter
8 * 82571EB Quad Port Gigabit Mezzanine Adapter
9 * 82571PT Gigabit PT Quad Port Server ExpressModule
10 * 82572EI Gigabit Ethernet Controller (Copper)
11 * 82572EI Gigabit Ethernet Controller (Fiber)
12 * 82572EI Gigabit Ethernet Controller
13 * 82573V Gigabit Ethernet Controller (Copper)
14 * 82573E Gigabit Ethernet Controller (Copper)
15 * 82573L Gigabit Ethernet Controller
16 * 82574L Gigabit Network Connection
17 * 82583V Gigabit Network Connection
18 */
19
20#include "e1000.h"
21
22static s32 e1000_get_phy_id_82571(struct e1000_hw *hw);
23static s32 e1000_setup_copper_link_82571(struct e1000_hw *hw);
24static s32 e1000_setup_fiber_serdes_link_82571(struct e1000_hw *hw);
25static s32 e1000_check_for_serdes_link_82571(struct e1000_hw *hw);
26static s32 e1000_write_nvm_eewr_82571(struct e1000_hw *hw, u16 offset,
27 u16 words, u16 *data);
28static s32 e1000_fix_nvm_checksum_82571(struct e1000_hw *hw);
29static void e1000_initialize_hw_bits_82571(struct e1000_hw *hw);
30static void e1000_clear_hw_cntrs_82571(struct e1000_hw *hw);
31static bool e1000_check_mng_mode_82574(struct e1000_hw *hw);
32static s32 e1000_led_on_82574(struct e1000_hw *hw);
33static void e1000_put_hw_semaphore_82571(struct e1000_hw *hw);
34static void e1000_power_down_phy_copper_82571(struct e1000_hw *hw);
35static void e1000_put_hw_semaphore_82573(struct e1000_hw *hw);
36static s32 e1000_get_hw_semaphore_82574(struct e1000_hw *hw);
37static void e1000_put_hw_semaphore_82574(struct e1000_hw *hw);
38static s32 e1000_set_d0_lplu_state_82574(struct e1000_hw *hw, bool active);
39static s32 e1000_set_d3_lplu_state_82574(struct e1000_hw *hw, bool active);
40
41/**
42 * e1000_init_phy_params_82571 - Init PHY func ptrs.
43 * @hw: pointer to the HW structure
44 **/
45static s32 e1000_init_phy_params_82571(struct e1000_hw *hw)
46{
47 struct e1000_phy_info *phy = &hw->phy;
48 s32 ret_val;
49
50 if (hw->phy.media_type != e1000_media_type_copper) {
51 phy->type = e1000_phy_none;
52 return 0;
53 }
54
55 phy->addr = 1;
56 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
57 phy->reset_delay_us = 100;
58
59 phy->ops.power_up = e1000_power_up_phy_copper;
60 phy->ops.power_down = e1000_power_down_phy_copper_82571;
61
62 switch (hw->mac.type) {
63 case e1000_82571:
64 case e1000_82572:
65 phy->type = e1000_phy_igp_2;
66 break;
67 case e1000_82573:
68 phy->type = e1000_phy_m88;
69 break;
70 case e1000_82574:
71 case e1000_82583:
72 phy->type = e1000_phy_bm;
73 phy->ops.acquire = e1000_get_hw_semaphore_82574;
74 phy->ops.release = e1000_put_hw_semaphore_82574;
75 phy->ops.set_d0_lplu_state = e1000_set_d0_lplu_state_82574;
76 phy->ops.set_d3_lplu_state = e1000_set_d3_lplu_state_82574;
77 break;
78 default:
79 return -E1000_ERR_PHY;
80 }
81
82 /* This can only be done after all function pointers are setup. */
83 ret_val = e1000_get_phy_id_82571(hw);
84 if (ret_val) {
85 e_dbg("Error getting PHY ID\n");
86 return ret_val;
87 }
88
89 /* Verify phy id */
90 switch (hw->mac.type) {
91 case e1000_82571:
92 case e1000_82572:
93 if (phy->id != IGP01E1000_I_PHY_ID)
94 ret_val = -E1000_ERR_PHY;
95 break;
96 case e1000_82573:
97 if (phy->id != M88E1111_I_PHY_ID)
98 ret_val = -E1000_ERR_PHY;
99 break;
100 case e1000_82574:
101 case e1000_82583:
102 if (phy->id != BME1000_E_PHY_ID_R2)
103 ret_val = -E1000_ERR_PHY;
104 break;
105 default:
106 ret_val = -E1000_ERR_PHY;
107 break;
108 }
109
110 if (ret_val)
111 e_dbg("PHY ID unknown: type = 0x%08x\n", phy->id);
112
113 return ret_val;
114}
115
116/**
117 * e1000_init_nvm_params_82571 - Init NVM func ptrs.
118 * @hw: pointer to the HW structure
119 **/
120static s32 e1000_init_nvm_params_82571(struct e1000_hw *hw)
121{
122 struct e1000_nvm_info *nvm = &hw->nvm;
123 u32 eecd = er32(EECD);
124 u16 size;
125
126 nvm->opcode_bits = 8;
127 nvm->delay_usec = 1;
128 switch (nvm->override) {
129 case e1000_nvm_override_spi_large:
130 nvm->page_size = 32;
131 nvm->address_bits = 16;
132 break;
133 case e1000_nvm_override_spi_small:
134 nvm->page_size = 8;
135 nvm->address_bits = 8;
136 break;
137 default:
138 nvm->page_size = eecd & E1000_EECD_ADDR_BITS ? 32 : 8;
139 nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ? 16 : 8;
140 break;
141 }
142
143 switch (hw->mac.type) {
144 case e1000_82573:
145 case e1000_82574:
146 case e1000_82583:
147 if (((eecd >> 15) & 0x3) == 0x3) {
148 nvm->type = e1000_nvm_flash_hw;
149 nvm->word_size = 2048;
150 /* Autonomous Flash update bit must be cleared due
151 * to Flash update issue.
152 */
153 eecd &= ~E1000_EECD_AUPDEN;
154 ew32(EECD, eecd);
155 break;
156 }
157 fallthrough;
158 default:
159 nvm->type = e1000_nvm_eeprom_spi;
160 size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >>
161 E1000_EECD_SIZE_EX_SHIFT);
162 /* Added to a constant, "size" becomes the left-shift value
163 * for setting word_size.
164 */
165 size += NVM_WORD_SIZE_BASE_SHIFT;
166
167 /* EEPROM access above 16k is unsupported */
168 if (size > 14)
169 size = 14;
170 nvm->word_size = BIT(size);
171 break;
172 }
173
174 /* Function Pointers */
175 switch (hw->mac.type) {
176 case e1000_82574:
177 case e1000_82583:
178 nvm->ops.acquire = e1000_get_hw_semaphore_82574;
179 nvm->ops.release = e1000_put_hw_semaphore_82574;
180 break;
181 default:
182 break;
183 }
184
185 return 0;
186}
187
188/**
189 * e1000_init_mac_params_82571 - Init MAC func ptrs.
190 * @hw: pointer to the HW structure
191 **/
192static s32 e1000_init_mac_params_82571(struct e1000_hw *hw)
193{
194 struct e1000_mac_info *mac = &hw->mac;
195 u32 swsm = 0;
196 u32 swsm2 = 0;
197 bool force_clear_smbi = false;
198
199 /* Set media type and media-dependent function pointers */
200 switch (hw->adapter->pdev->device) {
201 case E1000_DEV_ID_82571EB_FIBER:
202 case E1000_DEV_ID_82572EI_FIBER:
203 case E1000_DEV_ID_82571EB_QUAD_FIBER:
204 hw->phy.media_type = e1000_media_type_fiber;
205 mac->ops.setup_physical_interface =
206 e1000_setup_fiber_serdes_link_82571;
207 mac->ops.check_for_link = e1000e_check_for_fiber_link;
208 mac->ops.get_link_up_info =
209 e1000e_get_speed_and_duplex_fiber_serdes;
210 break;
211 case E1000_DEV_ID_82571EB_SERDES:
212 case E1000_DEV_ID_82571EB_SERDES_DUAL:
213 case E1000_DEV_ID_82571EB_SERDES_QUAD:
214 case E1000_DEV_ID_82572EI_SERDES:
215 hw->phy.media_type = e1000_media_type_internal_serdes;
216 mac->ops.setup_physical_interface =
217 e1000_setup_fiber_serdes_link_82571;
218 mac->ops.check_for_link = e1000_check_for_serdes_link_82571;
219 mac->ops.get_link_up_info =
220 e1000e_get_speed_and_duplex_fiber_serdes;
221 break;
222 default:
223 hw->phy.media_type = e1000_media_type_copper;
224 mac->ops.setup_physical_interface =
225 e1000_setup_copper_link_82571;
226 mac->ops.check_for_link = e1000e_check_for_copper_link;
227 mac->ops.get_link_up_info = e1000e_get_speed_and_duplex_copper;
228 break;
229 }
230
231 /* Set mta register count */
232 mac->mta_reg_count = 128;
233 /* Set rar entry count */
234 mac->rar_entry_count = E1000_RAR_ENTRIES;
235 /* Adaptive IFS supported */
236 mac->adaptive_ifs = true;
237
238 /* MAC-specific function pointers */
239 switch (hw->mac.type) {
240 case e1000_82573:
241 mac->ops.set_lan_id = e1000_set_lan_id_single_port;
242 mac->ops.check_mng_mode = e1000e_check_mng_mode_generic;
243 mac->ops.led_on = e1000e_led_on_generic;
244 mac->ops.blink_led = e1000e_blink_led_generic;
245
246 /* FWSM register */
247 mac->has_fwsm = true;
248 /* ARC supported; valid only if manageability features are
249 * enabled.
250 */
251 mac->arc_subsystem_valid = !!(er32(FWSM) &
252 E1000_FWSM_MODE_MASK);
253 break;
254 case e1000_82574:
255 case e1000_82583:
256 mac->ops.set_lan_id = e1000_set_lan_id_single_port;
257 mac->ops.check_mng_mode = e1000_check_mng_mode_82574;
258 mac->ops.led_on = e1000_led_on_82574;
259 break;
260 default:
261 mac->ops.check_mng_mode = e1000e_check_mng_mode_generic;
262 mac->ops.led_on = e1000e_led_on_generic;
263 mac->ops.blink_led = e1000e_blink_led_generic;
264
265 /* FWSM register */
266 mac->has_fwsm = true;
267 break;
268 }
269
270 /* Ensure that the inter-port SWSM.SMBI lock bit is clear before
271 * first NVM or PHY access. This should be done for single-port
272 * devices, and for one port only on dual-port devices so that
273 * for those devices we can still use the SMBI lock to synchronize
274 * inter-port accesses to the PHY & NVM.
275 */
276 switch (hw->mac.type) {
277 case e1000_82571:
278 case e1000_82572:
279 swsm2 = er32(SWSM2);
280
281 if (!(swsm2 & E1000_SWSM2_LOCK)) {
282 /* Only do this for the first interface on this card */
283 ew32(SWSM2, swsm2 | E1000_SWSM2_LOCK);
284 force_clear_smbi = true;
285 } else {
286 force_clear_smbi = false;
287 }
288 break;
289 default:
290 force_clear_smbi = true;
291 break;
292 }
293
294 if (force_clear_smbi) {
295 /* Make sure SWSM.SMBI is clear */
296 swsm = er32(SWSM);
297 if (swsm & E1000_SWSM_SMBI) {
298 /* This bit should not be set on a first interface, and
299 * indicates that the bootagent or EFI code has
300 * improperly left this bit enabled
301 */
302 e_dbg("Please update your 82571 Bootagent\n");
303 }
304 ew32(SWSM, swsm & ~E1000_SWSM_SMBI);
305 }
306
307 /* Initialize device specific counter of SMBI acquisition timeouts. */
308 hw->dev_spec.e82571.smb_counter = 0;
309
310 return 0;
311}
312
313static s32 e1000_get_variants_82571(struct e1000_adapter *adapter)
314{
315 struct e1000_hw *hw = &adapter->hw;
316 static int global_quad_port_a; /* global port a indication */
317 struct pci_dev *pdev = adapter->pdev;
318 int is_port_b = er32(STATUS) & E1000_STATUS_FUNC_1;
319 s32 rc;
320
321 rc = e1000_init_mac_params_82571(hw);
322 if (rc)
323 return rc;
324
325 rc = e1000_init_nvm_params_82571(hw);
326 if (rc)
327 return rc;
328
329 rc = e1000_init_phy_params_82571(hw);
330 if (rc)
331 return rc;
332
333 /* tag quad port adapters first, it's used below */
334 switch (pdev->device) {
335 case E1000_DEV_ID_82571EB_QUAD_COPPER:
336 case E1000_DEV_ID_82571EB_QUAD_FIBER:
337 case E1000_DEV_ID_82571EB_QUAD_COPPER_LP:
338 case E1000_DEV_ID_82571PT_QUAD_COPPER:
339 adapter->flags |= FLAG_IS_QUAD_PORT;
340 /* mark the first port */
341 if (global_quad_port_a == 0)
342 adapter->flags |= FLAG_IS_QUAD_PORT_A;
343 /* Reset for multiple quad port adapters */
344 global_quad_port_a++;
345 if (global_quad_port_a == 4)
346 global_quad_port_a = 0;
347 break;
348 default:
349 break;
350 }
351
352 switch (adapter->hw.mac.type) {
353 case e1000_82571:
354 /* these dual ports don't have WoL on port B at all */
355 if (((pdev->device == E1000_DEV_ID_82571EB_FIBER) ||
356 (pdev->device == E1000_DEV_ID_82571EB_SERDES) ||
357 (pdev->device == E1000_DEV_ID_82571EB_COPPER)) &&
358 (is_port_b))
359 adapter->flags &= ~FLAG_HAS_WOL;
360 /* quad ports only support WoL on port A */
361 if (adapter->flags & FLAG_IS_QUAD_PORT &&
362 (!(adapter->flags & FLAG_IS_QUAD_PORT_A)))
363 adapter->flags &= ~FLAG_HAS_WOL;
364 /* Does not support WoL on any port */
365 if (pdev->device == E1000_DEV_ID_82571EB_SERDES_QUAD)
366 adapter->flags &= ~FLAG_HAS_WOL;
367 break;
368 case e1000_82573:
369 if (pdev->device == E1000_DEV_ID_82573L) {
370 adapter->flags |= FLAG_HAS_JUMBO_FRAMES;
371 adapter->max_hw_frame_size = DEFAULT_JUMBO;
372 }
373 break;
374 default:
375 break;
376 }
377
378 return 0;
379}
380
381/**
382 * e1000_get_phy_id_82571 - Retrieve the PHY ID and revision
383 * @hw: pointer to the HW structure
384 *
385 * Reads the PHY registers and stores the PHY ID and possibly the PHY
386 * revision in the hardware structure.
387 **/
388static s32 e1000_get_phy_id_82571(struct e1000_hw *hw)
389{
390 struct e1000_phy_info *phy = &hw->phy;
391 s32 ret_val;
392 u16 phy_id = 0;
393
394 switch (hw->mac.type) {
395 case e1000_82571:
396 case e1000_82572:
397 /* The 82571 firmware may still be configuring the PHY.
398 * In this case, we cannot access the PHY until the
399 * configuration is done. So we explicitly set the
400 * PHY ID.
401 */
402 phy->id = IGP01E1000_I_PHY_ID;
403 break;
404 case e1000_82573:
405 return e1000e_get_phy_id(hw);
406 case e1000_82574:
407 case e1000_82583:
408 ret_val = e1e_rphy(hw, MII_PHYSID1, &phy_id);
409 if (ret_val)
410 return ret_val;
411
412 phy->id = (u32)(phy_id << 16);
413 usleep_range(20, 40);
414 ret_val = e1e_rphy(hw, MII_PHYSID2, &phy_id);
415 if (ret_val)
416 return ret_val;
417
418 phy->id |= (u32)(phy_id);
419 phy->revision = (u32)(phy_id & ~PHY_REVISION_MASK);
420 break;
421 default:
422 return -E1000_ERR_PHY;
423 }
424
425 return 0;
426}
427
428/**
429 * e1000_get_hw_semaphore_82571 - Acquire hardware semaphore
430 * @hw: pointer to the HW structure
431 *
432 * Acquire the HW semaphore to access the PHY or NVM
433 **/
434static s32 e1000_get_hw_semaphore_82571(struct e1000_hw *hw)
435{
436 u32 swsm;
437 s32 sw_timeout = hw->nvm.word_size + 1;
438 s32 fw_timeout = hw->nvm.word_size + 1;
439 s32 i = 0;
440
441 /* If we have timedout 3 times on trying to acquire
442 * the inter-port SMBI semaphore, there is old code
443 * operating on the other port, and it is not
444 * releasing SMBI. Modify the number of times that
445 * we try for the semaphore to interwork with this
446 * older code.
447 */
448 if (hw->dev_spec.e82571.smb_counter > 2)
449 sw_timeout = 1;
450
451 /* Get the SW semaphore */
452 while (i < sw_timeout) {
453 swsm = er32(SWSM);
454 if (!(swsm & E1000_SWSM_SMBI))
455 break;
456
457 usleep_range(50, 100);
458 i++;
459 }
460
461 if (i == sw_timeout) {
462 e_dbg("Driver can't access device - SMBI bit is set.\n");
463 hw->dev_spec.e82571.smb_counter++;
464 }
465 /* Get the FW semaphore. */
466 for (i = 0; i < fw_timeout; i++) {
467 swsm = er32(SWSM);
468 ew32(SWSM, swsm | E1000_SWSM_SWESMBI);
469
470 /* Semaphore acquired if bit latched */
471 if (er32(SWSM) & E1000_SWSM_SWESMBI)
472 break;
473
474 usleep_range(50, 100);
475 }
476
477 if (i == fw_timeout) {
478 /* Release semaphores */
479 e1000_put_hw_semaphore_82571(hw);
480 e_dbg("Driver can't access the NVM\n");
481 return -E1000_ERR_NVM;
482 }
483
484 return 0;
485}
486
487/**
488 * e1000_put_hw_semaphore_82571 - Release hardware semaphore
489 * @hw: pointer to the HW structure
490 *
491 * Release hardware semaphore used to access the PHY or NVM
492 **/
493static void e1000_put_hw_semaphore_82571(struct e1000_hw *hw)
494{
495 u32 swsm;
496
497 swsm = er32(SWSM);
498 swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI);
499 ew32(SWSM, swsm);
500}
501
502/**
503 * e1000_get_hw_semaphore_82573 - Acquire hardware semaphore
504 * @hw: pointer to the HW structure
505 *
506 * Acquire the HW semaphore during reset.
507 *
508 **/
509static s32 e1000_get_hw_semaphore_82573(struct e1000_hw *hw)
510{
511 u32 extcnf_ctrl;
512 s32 i = 0;
513
514 extcnf_ctrl = er32(EXTCNF_CTRL);
515 do {
516 extcnf_ctrl |= E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP;
517 ew32(EXTCNF_CTRL, extcnf_ctrl);
518 extcnf_ctrl = er32(EXTCNF_CTRL);
519
520 if (extcnf_ctrl & E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP)
521 break;
522
523 usleep_range(2000, 4000);
524 i++;
525 } while (i < MDIO_OWNERSHIP_TIMEOUT);
526
527 if (i == MDIO_OWNERSHIP_TIMEOUT) {
528 /* Release semaphores */
529 e1000_put_hw_semaphore_82573(hw);
530 e_dbg("Driver can't access the PHY\n");
531 return -E1000_ERR_PHY;
532 }
533
534 return 0;
535}
536
537/**
538 * e1000_put_hw_semaphore_82573 - Release hardware semaphore
539 * @hw: pointer to the HW structure
540 *
541 * Release hardware semaphore used during reset.
542 *
543 **/
544static void e1000_put_hw_semaphore_82573(struct e1000_hw *hw)
545{
546 u32 extcnf_ctrl;
547
548 extcnf_ctrl = er32(EXTCNF_CTRL);
549 extcnf_ctrl &= ~E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP;
550 ew32(EXTCNF_CTRL, extcnf_ctrl);
551}
552
553static DEFINE_MUTEX(swflag_mutex);
554
555/**
556 * e1000_get_hw_semaphore_82574 - Acquire hardware semaphore
557 * @hw: pointer to the HW structure
558 *
559 * Acquire the HW semaphore to access the PHY or NVM.
560 *
561 **/
562static s32 e1000_get_hw_semaphore_82574(struct e1000_hw *hw)
563{
564 s32 ret_val;
565
566 mutex_lock(&swflag_mutex);
567 ret_val = e1000_get_hw_semaphore_82573(hw);
568 if (ret_val)
569 mutex_unlock(&swflag_mutex);
570 return ret_val;
571}
572
573/**
574 * e1000_put_hw_semaphore_82574 - Release hardware semaphore
575 * @hw: pointer to the HW structure
576 *
577 * Release hardware semaphore used to access the PHY or NVM
578 *
579 **/
580static void e1000_put_hw_semaphore_82574(struct e1000_hw *hw)
581{
582 e1000_put_hw_semaphore_82573(hw);
583 mutex_unlock(&swflag_mutex);
584}
585
586/**
587 * e1000_set_d0_lplu_state_82574 - Set Low Power Linkup D0 state
588 * @hw: pointer to the HW structure
589 * @active: true to enable LPLU, false to disable
590 *
591 * Sets the LPLU D0 state according to the active flag.
592 * LPLU will not be activated unless the
593 * device autonegotiation advertisement meets standards of
594 * either 10 or 10/100 or 10/100/1000 at all duplexes.
595 * This is a function pointer entry point only called by
596 * PHY setup routines.
597 **/
598static s32 e1000_set_d0_lplu_state_82574(struct e1000_hw *hw, bool active)
599{
600 u32 data = er32(POEMB);
601
602 if (active)
603 data |= E1000_PHY_CTRL_D0A_LPLU;
604 else
605 data &= ~E1000_PHY_CTRL_D0A_LPLU;
606
607 ew32(POEMB, data);
608 return 0;
609}
610
611/**
612 * e1000_set_d3_lplu_state_82574 - Sets low power link up state for D3
613 * @hw: pointer to the HW structure
614 * @active: boolean used to enable/disable lplu
615 *
616 * The low power link up (lplu) state is set to the power management level D3
617 * when active is true, else clear lplu for D3. LPLU
618 * is used during Dx states where the power conservation is most important.
619 * During driver activity, SmartSpeed should be enabled so performance is
620 * maintained.
621 **/
622static s32 e1000_set_d3_lplu_state_82574(struct e1000_hw *hw, bool active)
623{
624 u32 data = er32(POEMB);
625
626 if (!active) {
627 data &= ~E1000_PHY_CTRL_NOND0A_LPLU;
628 } else if ((hw->phy.autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
629 (hw->phy.autoneg_advertised == E1000_ALL_NOT_GIG) ||
630 (hw->phy.autoneg_advertised == E1000_ALL_10_SPEED)) {
631 data |= E1000_PHY_CTRL_NOND0A_LPLU;
632 }
633
634 ew32(POEMB, data);
635 return 0;
636}
637
638/**
639 * e1000_acquire_nvm_82571 - Request for access to the EEPROM
640 * @hw: pointer to the HW structure
641 *
642 * To gain access to the EEPROM, first we must obtain a hardware semaphore.
643 * Then for non-82573 hardware, set the EEPROM access request bit and wait
644 * for EEPROM access grant bit. If the access grant bit is not set, release
645 * hardware semaphore.
646 **/
647static s32 e1000_acquire_nvm_82571(struct e1000_hw *hw)
648{
649 s32 ret_val;
650
651 ret_val = e1000_get_hw_semaphore_82571(hw);
652 if (ret_val)
653 return ret_val;
654
655 switch (hw->mac.type) {
656 case e1000_82573:
657 break;
658 default:
659 ret_val = e1000e_acquire_nvm(hw);
660 break;
661 }
662
663 if (ret_val)
664 e1000_put_hw_semaphore_82571(hw);
665
666 return ret_val;
667}
668
669/**
670 * e1000_release_nvm_82571 - Release exclusive access to EEPROM
671 * @hw: pointer to the HW structure
672 *
673 * Stop any current commands to the EEPROM and clear the EEPROM request bit.
674 **/
675static void e1000_release_nvm_82571(struct e1000_hw *hw)
676{
677 e1000e_release_nvm(hw);
678 e1000_put_hw_semaphore_82571(hw);
679}
680
681/**
682 * e1000_write_nvm_82571 - Write to EEPROM using appropriate interface
683 * @hw: pointer to the HW structure
684 * @offset: offset within the EEPROM to be written to
685 * @words: number of words to write
686 * @data: 16 bit word(s) to be written to the EEPROM
687 *
688 * For non-82573 silicon, write data to EEPROM at offset using SPI interface.
689 *
690 * If e1000e_update_nvm_checksum is not called after this function, the
691 * EEPROM will most likely contain an invalid checksum.
692 **/
693static s32 e1000_write_nvm_82571(struct e1000_hw *hw, u16 offset, u16 words,
694 u16 *data)
695{
696 s32 ret_val;
697
698 switch (hw->mac.type) {
699 case e1000_82573:
700 case e1000_82574:
701 case e1000_82583:
702 ret_val = e1000_write_nvm_eewr_82571(hw, offset, words, data);
703 break;
704 case e1000_82571:
705 case e1000_82572:
706 ret_val = e1000e_write_nvm_spi(hw, offset, words, data);
707 break;
708 default:
709 ret_val = -E1000_ERR_NVM;
710 break;
711 }
712
713 return ret_val;
714}
715
716/**
717 * e1000_update_nvm_checksum_82571 - Update EEPROM checksum
718 * @hw: pointer to the HW structure
719 *
720 * Updates the EEPROM checksum by reading/adding each word of the EEPROM
721 * up to the checksum. Then calculates the EEPROM checksum and writes the
722 * value to the EEPROM.
723 **/
724static s32 e1000_update_nvm_checksum_82571(struct e1000_hw *hw)
725{
726 u32 eecd;
727 s32 ret_val;
728 u16 i;
729
730 ret_val = e1000e_update_nvm_checksum_generic(hw);
731 if (ret_val)
732 return ret_val;
733
734 /* If our nvm is an EEPROM, then we're done
735 * otherwise, commit the checksum to the flash NVM.
736 */
737 if (hw->nvm.type != e1000_nvm_flash_hw)
738 return 0;
739
740 /* Check for pending operations. */
741 for (i = 0; i < E1000_FLASH_UPDATES; i++) {
742 usleep_range(1000, 2000);
743 if (!(er32(EECD) & E1000_EECD_FLUPD))
744 break;
745 }
746
747 if (i == E1000_FLASH_UPDATES)
748 return -E1000_ERR_NVM;
749
750 /* Reset the firmware if using STM opcode. */
751 if ((er32(FLOP) & 0xFF00) == E1000_STM_OPCODE) {
752 /* The enabling of and the actual reset must be done
753 * in two write cycles.
754 */
755 ew32(HICR, E1000_HICR_FW_RESET_ENABLE);
756 e1e_flush();
757 ew32(HICR, E1000_HICR_FW_RESET);
758 }
759
760 /* Commit the write to flash */
761 eecd = er32(EECD) | E1000_EECD_FLUPD;
762 ew32(EECD, eecd);
763
764 for (i = 0; i < E1000_FLASH_UPDATES; i++) {
765 usleep_range(1000, 2000);
766 if (!(er32(EECD) & E1000_EECD_FLUPD))
767 break;
768 }
769
770 if (i == E1000_FLASH_UPDATES)
771 return -E1000_ERR_NVM;
772
773 return 0;
774}
775
776/**
777 * e1000_validate_nvm_checksum_82571 - Validate EEPROM checksum
778 * @hw: pointer to the HW structure
779 *
780 * Calculates the EEPROM checksum by reading/adding each word of the EEPROM
781 * and then verifies that the sum of the EEPROM is equal to 0xBABA.
782 **/
783static s32 e1000_validate_nvm_checksum_82571(struct e1000_hw *hw)
784{
785 if (hw->nvm.type == e1000_nvm_flash_hw)
786 e1000_fix_nvm_checksum_82571(hw);
787
788 return e1000e_validate_nvm_checksum_generic(hw);
789}
790
791/**
792 * e1000_write_nvm_eewr_82571 - Write to EEPROM for 82573 silicon
793 * @hw: pointer to the HW structure
794 * @offset: offset within the EEPROM to be written to
795 * @words: number of words to write
796 * @data: 16 bit word(s) to be written to the EEPROM
797 *
798 * After checking for invalid values, poll the EEPROM to ensure the previous
799 * command has completed before trying to write the next word. After write
800 * poll for completion.
801 *
802 * If e1000e_update_nvm_checksum is not called after this function, the
803 * EEPROM will most likely contain an invalid checksum.
804 **/
805static s32 e1000_write_nvm_eewr_82571(struct e1000_hw *hw, u16 offset,
806 u16 words, u16 *data)
807{
808 struct e1000_nvm_info *nvm = &hw->nvm;
809 u32 i, eewr = 0;
810 s32 ret_val = 0;
811
812 /* A check for invalid values: offset too large, too many words,
813 * and not enough words.
814 */
815 if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
816 (words == 0)) {
817 e_dbg("nvm parameter(s) out of bounds\n");
818 return -E1000_ERR_NVM;
819 }
820
821 for (i = 0; i < words; i++) {
822 eewr = ((data[i] << E1000_NVM_RW_REG_DATA) |
823 ((offset + i) << E1000_NVM_RW_ADDR_SHIFT) |
824 E1000_NVM_RW_REG_START);
825
826 ret_val = e1000e_poll_eerd_eewr_done(hw, E1000_NVM_POLL_WRITE);
827 if (ret_val)
828 break;
829
830 ew32(EEWR, eewr);
831
832 ret_val = e1000e_poll_eerd_eewr_done(hw, E1000_NVM_POLL_WRITE);
833 if (ret_val)
834 break;
835 }
836
837 return ret_val;
838}
839
840/**
841 * e1000_get_cfg_done_82571 - Poll for configuration done
842 * @hw: pointer to the HW structure
843 *
844 * Reads the management control register for the config done bit to be set.
845 **/
846static s32 e1000_get_cfg_done_82571(struct e1000_hw *hw)
847{
848 s32 timeout = PHY_CFG_TIMEOUT;
849
850 while (timeout) {
851 if (er32(EEMNGCTL) & E1000_NVM_CFG_DONE_PORT_0)
852 break;
853 usleep_range(1000, 2000);
854 timeout--;
855 }
856 if (!timeout) {
857 e_dbg("MNG configuration cycle has not completed.\n");
858 return -E1000_ERR_RESET;
859 }
860
861 return 0;
862}
863
864/**
865 * e1000_set_d0_lplu_state_82571 - Set Low Power Linkup D0 state
866 * @hw: pointer to the HW structure
867 * @active: true to enable LPLU, false to disable
868 *
869 * Sets the LPLU D0 state according to the active flag. When activating LPLU
870 * this function also disables smart speed and vice versa. LPLU will not be
871 * activated unless the device autonegotiation advertisement meets standards
872 * of either 10 or 10/100 or 10/100/1000 at all duplexes. This is a function
873 * pointer entry point only called by PHY setup routines.
874 **/
875static s32 e1000_set_d0_lplu_state_82571(struct e1000_hw *hw, bool active)
876{
877 struct e1000_phy_info *phy = &hw->phy;
878 s32 ret_val;
879 u16 data;
880
881 ret_val = e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &data);
882 if (ret_val)
883 return ret_val;
884
885 if (active) {
886 data |= IGP02E1000_PM_D0_LPLU;
887 ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data);
888 if (ret_val)
889 return ret_val;
890
891 /* When LPLU is enabled, we should disable SmartSpeed */
892 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
893 if (ret_val)
894 return ret_val;
895 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
896 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
897 if (ret_val)
898 return ret_val;
899 } else {
900 data &= ~IGP02E1000_PM_D0_LPLU;
901 ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data);
902 /* LPLU and SmartSpeed are mutually exclusive. LPLU is used
903 * during Dx states where the power conservation is most
904 * important. During driver activity we should enable
905 * SmartSpeed, so performance is maintained.
906 */
907 if (phy->smart_speed == e1000_smart_speed_on) {
908 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
909 &data);
910 if (ret_val)
911 return ret_val;
912
913 data |= IGP01E1000_PSCFR_SMART_SPEED;
914 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
915 data);
916 if (ret_val)
917 return ret_val;
918 } else if (phy->smart_speed == e1000_smart_speed_off) {
919 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
920 &data);
921 if (ret_val)
922 return ret_val;
923
924 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
925 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
926 data);
927 if (ret_val)
928 return ret_val;
929 }
930 }
931
932 return 0;
933}
934
935/**
936 * e1000_reset_hw_82571 - Reset hardware
937 * @hw: pointer to the HW structure
938 *
939 * This resets the hardware into a known state.
940 **/
941static s32 e1000_reset_hw_82571(struct e1000_hw *hw)
942{
943 u32 ctrl, ctrl_ext, eecd, tctl;
944 s32 ret_val;
945
946 /* Prevent the PCI-E bus from sticking if there is no TLP connection
947 * on the last TLP read/write transaction when MAC is reset.
948 */
949 ret_val = e1000e_disable_pcie_master(hw);
950 if (ret_val)
951 e_dbg("PCI-E Master disable polling has failed.\n");
952
953 e_dbg("Masking off all interrupts\n");
954 ew32(IMC, 0xffffffff);
955
956 ew32(RCTL, 0);
957 tctl = er32(TCTL);
958 tctl &= ~E1000_TCTL_EN;
959 ew32(TCTL, tctl);
960 e1e_flush();
961
962 usleep_range(10000, 11000);
963
964 /* Must acquire the MDIO ownership before MAC reset.
965 * Ownership defaults to firmware after a reset.
966 */
967 switch (hw->mac.type) {
968 case e1000_82573:
969 ret_val = e1000_get_hw_semaphore_82573(hw);
970 break;
971 case e1000_82574:
972 case e1000_82583:
973 ret_val = e1000_get_hw_semaphore_82574(hw);
974 break;
975 default:
976 break;
977 }
978
979 ctrl = er32(CTRL);
980
981 e_dbg("Issuing a global reset to MAC\n");
982 ew32(CTRL, ctrl | E1000_CTRL_RST);
983
984 /* Must release MDIO ownership and mutex after MAC reset. */
985 switch (hw->mac.type) {
986 case e1000_82573:
987 /* Release mutex only if the hw semaphore is acquired */
988 if (!ret_val)
989 e1000_put_hw_semaphore_82573(hw);
990 break;
991 case e1000_82574:
992 case e1000_82583:
993 /* Release mutex only if the hw semaphore is acquired */
994 if (!ret_val)
995 e1000_put_hw_semaphore_82574(hw);
996 break;
997 default:
998 break;
999 }
1000
1001 if (hw->nvm.type == e1000_nvm_flash_hw) {
1002 usleep_range(10, 20);
1003 ctrl_ext = er32(CTRL_EXT);
1004 ctrl_ext |= E1000_CTRL_EXT_EE_RST;
1005 ew32(CTRL_EXT, ctrl_ext);
1006 e1e_flush();
1007 }
1008
1009 ret_val = e1000e_get_auto_rd_done(hw);
1010 if (ret_val)
1011 /* We don't want to continue accessing MAC registers. */
1012 return ret_val;
1013
1014 /* Phy configuration from NVM just starts after EECD_AUTO_RD is set.
1015 * Need to wait for Phy configuration completion before accessing
1016 * NVM and Phy.
1017 */
1018
1019 switch (hw->mac.type) {
1020 case e1000_82571:
1021 case e1000_82572:
1022 /* REQ and GNT bits need to be cleared when using AUTO_RD
1023 * to access the EEPROM.
1024 */
1025 eecd = er32(EECD);
1026 eecd &= ~(E1000_EECD_REQ | E1000_EECD_GNT);
1027 ew32(EECD, eecd);
1028 break;
1029 case e1000_82573:
1030 case e1000_82574:
1031 case e1000_82583:
1032 msleep(25);
1033 break;
1034 default:
1035 break;
1036 }
1037
1038 /* Clear any pending interrupt events. */
1039 ew32(IMC, 0xffffffff);
1040 er32(ICR);
1041
1042 if (hw->mac.type == e1000_82571) {
1043 /* Install any alternate MAC address into RAR0 */
1044 ret_val = e1000_check_alt_mac_addr_generic(hw);
1045 if (ret_val)
1046 return ret_val;
1047
1048 e1000e_set_laa_state_82571(hw, true);
1049 }
1050
1051 /* Reinitialize the 82571 serdes link state machine */
1052 if (hw->phy.media_type == e1000_media_type_internal_serdes)
1053 hw->mac.serdes_link_state = e1000_serdes_link_down;
1054
1055 return 0;
1056}
1057
1058/**
1059 * e1000_init_hw_82571 - Initialize hardware
1060 * @hw: pointer to the HW structure
1061 *
1062 * This inits the hardware readying it for operation.
1063 **/
1064static s32 e1000_init_hw_82571(struct e1000_hw *hw)
1065{
1066 struct e1000_mac_info *mac = &hw->mac;
1067 u32 reg_data;
1068 s32 ret_val;
1069 u16 i, rar_count = mac->rar_entry_count;
1070
1071 e1000_initialize_hw_bits_82571(hw);
1072
1073 /* Initialize identification LED */
1074 ret_val = mac->ops.id_led_init(hw);
1075 /* An error is not fatal and we should not stop init due to this */
1076 if (ret_val)
1077 e_dbg("Error initializing identification LED\n");
1078
1079 /* Disabling VLAN filtering */
1080 e_dbg("Initializing the IEEE VLAN\n");
1081 mac->ops.clear_vfta(hw);
1082
1083 /* Setup the receive address.
1084 * If, however, a locally administered address was assigned to the
1085 * 82571, we must reserve a RAR for it to work around an issue where
1086 * resetting one port will reload the MAC on the other port.
1087 */
1088 if (e1000e_get_laa_state_82571(hw))
1089 rar_count--;
1090 e1000e_init_rx_addrs(hw, rar_count);
1091
1092 /* Zero out the Multicast HASH table */
1093 e_dbg("Zeroing the MTA\n");
1094 for (i = 0; i < mac->mta_reg_count; i++)
1095 E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
1096
1097 /* Setup link and flow control */
1098 ret_val = mac->ops.setup_link(hw);
1099
1100 /* Set the transmit descriptor write-back policy */
1101 reg_data = er32(TXDCTL(0));
1102 reg_data = ((reg_data & ~E1000_TXDCTL_WTHRESH) |
1103 E1000_TXDCTL_FULL_TX_DESC_WB | E1000_TXDCTL_COUNT_DESC);
1104 ew32(TXDCTL(0), reg_data);
1105
1106 /* ...for both queues. */
1107 switch (mac->type) {
1108 case e1000_82573:
1109 e1000e_enable_tx_pkt_filtering(hw);
1110 fallthrough;
1111 case e1000_82574:
1112 case e1000_82583:
1113 reg_data = er32(GCR);
1114 reg_data |= E1000_GCR_L1_ACT_WITHOUT_L0S_RX;
1115 ew32(GCR, reg_data);
1116 break;
1117 default:
1118 reg_data = er32(TXDCTL(1));
1119 reg_data = ((reg_data & ~E1000_TXDCTL_WTHRESH) |
1120 E1000_TXDCTL_FULL_TX_DESC_WB |
1121 E1000_TXDCTL_COUNT_DESC);
1122 ew32(TXDCTL(1), reg_data);
1123 break;
1124 }
1125
1126 /* Clear all of the statistics registers (clear on read). It is
1127 * important that we do this after we have tried to establish link
1128 * because the symbol error count will increment wildly if there
1129 * is no link.
1130 */
1131 e1000_clear_hw_cntrs_82571(hw);
1132
1133 return ret_val;
1134}
1135
1136/**
1137 * e1000_initialize_hw_bits_82571 - Initialize hardware-dependent bits
1138 * @hw: pointer to the HW structure
1139 *
1140 * Initializes required hardware-dependent bits needed for normal operation.
1141 **/
1142static void e1000_initialize_hw_bits_82571(struct e1000_hw *hw)
1143{
1144 u32 reg;
1145
1146 /* Transmit Descriptor Control 0 */
1147 reg = er32(TXDCTL(0));
1148 reg |= BIT(22);
1149 ew32(TXDCTL(0), reg);
1150
1151 /* Transmit Descriptor Control 1 */
1152 reg = er32(TXDCTL(1));
1153 reg |= BIT(22);
1154 ew32(TXDCTL(1), reg);
1155
1156 /* Transmit Arbitration Control 0 */
1157 reg = er32(TARC(0));
1158 reg &= ~(0xF << 27); /* 30:27 */
1159 switch (hw->mac.type) {
1160 case e1000_82571:
1161 case e1000_82572:
1162 reg |= BIT(23) | BIT(24) | BIT(25) | BIT(26);
1163 break;
1164 case e1000_82574:
1165 case e1000_82583:
1166 reg |= BIT(26);
1167 break;
1168 default:
1169 break;
1170 }
1171 ew32(TARC(0), reg);
1172
1173 /* Transmit Arbitration Control 1 */
1174 reg = er32(TARC(1));
1175 switch (hw->mac.type) {
1176 case e1000_82571:
1177 case e1000_82572:
1178 reg &= ~(BIT(29) | BIT(30));
1179 reg |= BIT(22) | BIT(24) | BIT(25) | BIT(26);
1180 if (er32(TCTL) & E1000_TCTL_MULR)
1181 reg &= ~BIT(28);
1182 else
1183 reg |= BIT(28);
1184 ew32(TARC(1), reg);
1185 break;
1186 default:
1187 break;
1188 }
1189
1190 /* Device Control */
1191 switch (hw->mac.type) {
1192 case e1000_82573:
1193 case e1000_82574:
1194 case e1000_82583:
1195 reg = er32(CTRL);
1196 reg &= ~BIT(29);
1197 ew32(CTRL, reg);
1198 break;
1199 default:
1200 break;
1201 }
1202
1203 /* Extended Device Control */
1204 switch (hw->mac.type) {
1205 case e1000_82573:
1206 case e1000_82574:
1207 case e1000_82583:
1208 reg = er32(CTRL_EXT);
1209 reg &= ~BIT(23);
1210 reg |= BIT(22);
1211 ew32(CTRL_EXT, reg);
1212 break;
1213 default:
1214 break;
1215 }
1216
1217 if (hw->mac.type == e1000_82571) {
1218 reg = er32(PBA_ECC);
1219 reg |= E1000_PBA_ECC_CORR_EN;
1220 ew32(PBA_ECC, reg);
1221 }
1222
1223 /* Workaround for hardware errata.
1224 * Ensure that DMA Dynamic Clock gating is disabled on 82571 and 82572
1225 */
1226 if ((hw->mac.type == e1000_82571) || (hw->mac.type == e1000_82572)) {
1227 reg = er32(CTRL_EXT);
1228 reg &= ~E1000_CTRL_EXT_DMA_DYN_CLK_EN;
1229 ew32(CTRL_EXT, reg);
1230 }
1231
1232 /* Disable IPv6 extension header parsing because some malformed
1233 * IPv6 headers can hang the Rx.
1234 */
1235 if (hw->mac.type <= e1000_82573) {
1236 reg = er32(RFCTL);
1237 reg |= (E1000_RFCTL_IPV6_EX_DIS | E1000_RFCTL_NEW_IPV6_EXT_DIS);
1238 ew32(RFCTL, reg);
1239 }
1240
1241 /* PCI-Ex Control Registers */
1242 switch (hw->mac.type) {
1243 case e1000_82574:
1244 case e1000_82583:
1245 reg = er32(GCR);
1246 reg |= BIT(22);
1247 ew32(GCR, reg);
1248
1249 /* Workaround for hardware errata.
1250 * apply workaround for hardware errata documented in errata
1251 * docs Fixes issue where some error prone or unreliable PCIe
1252 * completions are occurring, particularly with ASPM enabled.
1253 * Without fix, issue can cause Tx timeouts.
1254 */
1255 reg = er32(GCR2);
1256 reg |= 1;
1257 ew32(GCR2, reg);
1258 break;
1259 default:
1260 break;
1261 }
1262}
1263
1264/**
1265 * e1000_clear_vfta_82571 - Clear VLAN filter table
1266 * @hw: pointer to the HW structure
1267 *
1268 * Clears the register array which contains the VLAN filter table by
1269 * setting all the values to 0.
1270 **/
1271static void e1000_clear_vfta_82571(struct e1000_hw *hw)
1272{
1273 u32 offset;
1274 u32 vfta_value = 0;
1275 u32 vfta_offset = 0;
1276 u32 vfta_bit_in_reg = 0;
1277
1278 switch (hw->mac.type) {
1279 case e1000_82573:
1280 case e1000_82574:
1281 case e1000_82583:
1282 if (hw->mng_cookie.vlan_id != 0) {
1283 /* The VFTA is a 4096b bit-field, each identifying
1284 * a single VLAN ID. The following operations
1285 * determine which 32b entry (i.e. offset) into the
1286 * array we want to set the VLAN ID (i.e. bit) of
1287 * the manageability unit.
1288 */
1289 vfta_offset = (hw->mng_cookie.vlan_id >>
1290 E1000_VFTA_ENTRY_SHIFT) &
1291 E1000_VFTA_ENTRY_MASK;
1292 vfta_bit_in_reg =
1293 BIT(hw->mng_cookie.vlan_id &
1294 E1000_VFTA_ENTRY_BIT_SHIFT_MASK);
1295 }
1296 break;
1297 default:
1298 break;
1299 }
1300 for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) {
1301 /* If the offset we want to clear is the same offset of the
1302 * manageability VLAN ID, then clear all bits except that of
1303 * the manageability unit.
1304 */
1305 vfta_value = (offset == vfta_offset) ? vfta_bit_in_reg : 0;
1306 E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, vfta_value);
1307 e1e_flush();
1308 }
1309}
1310
1311/**
1312 * e1000_check_mng_mode_82574 - Check manageability is enabled
1313 * @hw: pointer to the HW structure
1314 *
1315 * Reads the NVM Initialization Control Word 2 and returns true
1316 * (>0) if any manageability is enabled, else false (0).
1317 **/
1318static bool e1000_check_mng_mode_82574(struct e1000_hw *hw)
1319{
1320 u16 data;
1321
1322 e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &data);
1323 return (data & E1000_NVM_INIT_CTRL2_MNGM) != 0;
1324}
1325
1326/**
1327 * e1000_led_on_82574 - Turn LED on
1328 * @hw: pointer to the HW structure
1329 *
1330 * Turn LED on.
1331 **/
1332static s32 e1000_led_on_82574(struct e1000_hw *hw)
1333{
1334 u32 ctrl;
1335 u32 i;
1336
1337 ctrl = hw->mac.ledctl_mode2;
1338 if (!(E1000_STATUS_LU & er32(STATUS))) {
1339 /* If no link, then turn LED on by setting the invert bit
1340 * for each LED that's "on" (0x0E) in ledctl_mode2.
1341 */
1342 for (i = 0; i < 4; i++)
1343 if (((hw->mac.ledctl_mode2 >> (i * 8)) & 0xFF) ==
1344 E1000_LEDCTL_MODE_LED_ON)
1345 ctrl |= (E1000_LEDCTL_LED0_IVRT << (i * 8));
1346 }
1347 ew32(LEDCTL, ctrl);
1348
1349 return 0;
1350}
1351
1352/**
1353 * e1000_check_phy_82574 - check 82574 phy hung state
1354 * @hw: pointer to the HW structure
1355 *
1356 * Returns whether phy is hung or not
1357 **/
1358bool e1000_check_phy_82574(struct e1000_hw *hw)
1359{
1360 u16 status_1kbt = 0;
1361 u16 receive_errors = 0;
1362 s32 ret_val;
1363
1364 /* Read PHY Receive Error counter first, if its is max - all F's then
1365 * read the Base1000T status register If both are max then PHY is hung.
1366 */
1367 ret_val = e1e_rphy(hw, E1000_RECEIVE_ERROR_COUNTER, &receive_errors);
1368 if (ret_val)
1369 return false;
1370 if (receive_errors == E1000_RECEIVE_ERROR_MAX) {
1371 ret_val = e1e_rphy(hw, E1000_BASE1000T_STATUS, &status_1kbt);
1372 if (ret_val)
1373 return false;
1374 if ((status_1kbt & E1000_IDLE_ERROR_COUNT_MASK) ==
1375 E1000_IDLE_ERROR_COUNT_MASK)
1376 return true;
1377 }
1378
1379 return false;
1380}
1381
1382/**
1383 * e1000_setup_link_82571 - Setup flow control and link settings
1384 * @hw: pointer to the HW structure
1385 *
1386 * Determines which flow control settings to use, then configures flow
1387 * control. Calls the appropriate media-specific link configuration
1388 * function. Assuming the adapter has a valid link partner, a valid link
1389 * should be established. Assumes the hardware has previously been reset
1390 * and the transmitter and receiver are not enabled.
1391 **/
1392static s32 e1000_setup_link_82571(struct e1000_hw *hw)
1393{
1394 /* 82573 does not have a word in the NVM to determine
1395 * the default flow control setting, so we explicitly
1396 * set it to full.
1397 */
1398 switch (hw->mac.type) {
1399 case e1000_82573:
1400 case e1000_82574:
1401 case e1000_82583:
1402 if (hw->fc.requested_mode == e1000_fc_default)
1403 hw->fc.requested_mode = e1000_fc_full;
1404 break;
1405 default:
1406 break;
1407 }
1408
1409 return e1000e_setup_link_generic(hw);
1410}
1411
1412/**
1413 * e1000_setup_copper_link_82571 - Configure copper link settings
1414 * @hw: pointer to the HW structure
1415 *
1416 * Configures the link for auto-neg or forced speed and duplex. Then we check
1417 * for link, once link is established calls to configure collision distance
1418 * and flow control are called.
1419 **/
1420static s32 e1000_setup_copper_link_82571(struct e1000_hw *hw)
1421{
1422 u32 ctrl;
1423 s32 ret_val;
1424
1425 ctrl = er32(CTRL);
1426 ctrl |= E1000_CTRL_SLU;
1427 ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1428 ew32(CTRL, ctrl);
1429
1430 switch (hw->phy.type) {
1431 case e1000_phy_m88:
1432 case e1000_phy_bm:
1433 ret_val = e1000e_copper_link_setup_m88(hw);
1434 break;
1435 case e1000_phy_igp_2:
1436 ret_val = e1000e_copper_link_setup_igp(hw);
1437 break;
1438 default:
1439 return -E1000_ERR_PHY;
1440 }
1441
1442 if (ret_val)
1443 return ret_val;
1444
1445 return e1000e_setup_copper_link(hw);
1446}
1447
1448/**
1449 * e1000_setup_fiber_serdes_link_82571 - Setup link for fiber/serdes
1450 * @hw: pointer to the HW structure
1451 *
1452 * Configures collision distance and flow control for fiber and serdes links.
1453 * Upon successful setup, poll for link.
1454 **/
1455static s32 e1000_setup_fiber_serdes_link_82571(struct e1000_hw *hw)
1456{
1457 switch (hw->mac.type) {
1458 case e1000_82571:
1459 case e1000_82572:
1460 /* If SerDes loopback mode is entered, there is no form
1461 * of reset to take the adapter out of that mode. So we
1462 * have to explicitly take the adapter out of loopback
1463 * mode. This prevents drivers from twiddling their thumbs
1464 * if another tool failed to take it out of loopback mode.
1465 */
1466 ew32(SCTL, E1000_SCTL_DISABLE_SERDES_LOOPBACK);
1467 break;
1468 default:
1469 break;
1470 }
1471
1472 return e1000e_setup_fiber_serdes_link(hw);
1473}
1474
1475/**
1476 * e1000_check_for_serdes_link_82571 - Check for link (Serdes)
1477 * @hw: pointer to the HW structure
1478 *
1479 * Reports the link state as up or down.
1480 *
1481 * If autonegotiation is supported by the link partner, the link state is
1482 * determined by the result of autonegotiation. This is the most likely case.
1483 * If autonegotiation is not supported by the link partner, and the link
1484 * has a valid signal, force the link up.
1485 *
1486 * The link state is represented internally here by 4 states:
1487 *
1488 * 1) down
1489 * 2) autoneg_progress
1490 * 3) autoneg_complete (the link successfully autonegotiated)
1491 * 4) forced_up (the link has been forced up, it did not autonegotiate)
1492 *
1493 **/
1494static s32 e1000_check_for_serdes_link_82571(struct e1000_hw *hw)
1495{
1496 struct e1000_mac_info *mac = &hw->mac;
1497 u32 rxcw;
1498 u32 ctrl;
1499 u32 status;
1500 u32 txcw;
1501 u32 i;
1502 s32 ret_val = 0;
1503
1504 ctrl = er32(CTRL);
1505 status = er32(STATUS);
1506 er32(RXCW);
1507 /* SYNCH bit and IV bit are sticky */
1508 usleep_range(10, 20);
1509 rxcw = er32(RXCW);
1510
1511 if ((rxcw & E1000_RXCW_SYNCH) && !(rxcw & E1000_RXCW_IV)) {
1512 /* Receiver is synchronized with no invalid bits. */
1513 switch (mac->serdes_link_state) {
1514 case e1000_serdes_link_autoneg_complete:
1515 if (!(status & E1000_STATUS_LU)) {
1516 /* We have lost link, retry autoneg before
1517 * reporting link failure
1518 */
1519 mac->serdes_link_state =
1520 e1000_serdes_link_autoneg_progress;
1521 mac->serdes_has_link = false;
1522 e_dbg("AN_UP -> AN_PROG\n");
1523 } else {
1524 mac->serdes_has_link = true;
1525 }
1526 break;
1527
1528 case e1000_serdes_link_forced_up:
1529 /* If we are receiving /C/ ordered sets, re-enable
1530 * auto-negotiation in the TXCW register and disable
1531 * forced link in the Device Control register in an
1532 * attempt to auto-negotiate with our link partner.
1533 */
1534 if (rxcw & E1000_RXCW_C) {
1535 /* Enable autoneg, and unforce link up */
1536 ew32(TXCW, mac->txcw);
1537 ew32(CTRL, (ctrl & ~E1000_CTRL_SLU));
1538 mac->serdes_link_state =
1539 e1000_serdes_link_autoneg_progress;
1540 mac->serdes_has_link = false;
1541 e_dbg("FORCED_UP -> AN_PROG\n");
1542 } else {
1543 mac->serdes_has_link = true;
1544 }
1545 break;
1546
1547 case e1000_serdes_link_autoneg_progress:
1548 if (rxcw & E1000_RXCW_C) {
1549 /* We received /C/ ordered sets, meaning the
1550 * link partner has autonegotiated, and we can
1551 * trust the Link Up (LU) status bit.
1552 */
1553 if (status & E1000_STATUS_LU) {
1554 mac->serdes_link_state =
1555 e1000_serdes_link_autoneg_complete;
1556 e_dbg("AN_PROG -> AN_UP\n");
1557 mac->serdes_has_link = true;
1558 } else {
1559 /* Autoneg completed, but failed. */
1560 mac->serdes_link_state =
1561 e1000_serdes_link_down;
1562 e_dbg("AN_PROG -> DOWN\n");
1563 }
1564 } else {
1565 /* The link partner did not autoneg.
1566 * Force link up and full duplex, and change
1567 * state to forced.
1568 */
1569 ew32(TXCW, (mac->txcw & ~E1000_TXCW_ANE));
1570 ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
1571 ew32(CTRL, ctrl);
1572
1573 /* Configure Flow Control after link up. */
1574 ret_val = e1000e_config_fc_after_link_up(hw);
1575 if (ret_val) {
1576 e_dbg("Error config flow control\n");
1577 break;
1578 }
1579 mac->serdes_link_state =
1580 e1000_serdes_link_forced_up;
1581 mac->serdes_has_link = true;
1582 e_dbg("AN_PROG -> FORCED_UP\n");
1583 }
1584 break;
1585
1586 case e1000_serdes_link_down:
1587 default:
1588 /* The link was down but the receiver has now gained
1589 * valid sync, so lets see if we can bring the link
1590 * up.
1591 */
1592 ew32(TXCW, mac->txcw);
1593 ew32(CTRL, (ctrl & ~E1000_CTRL_SLU));
1594 mac->serdes_link_state =
1595 e1000_serdes_link_autoneg_progress;
1596 mac->serdes_has_link = false;
1597 e_dbg("DOWN -> AN_PROG\n");
1598 break;
1599 }
1600 } else {
1601 if (!(rxcw & E1000_RXCW_SYNCH)) {
1602 mac->serdes_has_link = false;
1603 mac->serdes_link_state = e1000_serdes_link_down;
1604 e_dbg("ANYSTATE -> DOWN\n");
1605 } else {
1606 /* Check several times, if SYNCH bit and CONFIG
1607 * bit both are consistently 1 then simply ignore
1608 * the IV bit and restart Autoneg
1609 */
1610 for (i = 0; i < AN_RETRY_COUNT; i++) {
1611 usleep_range(10, 20);
1612 rxcw = er32(RXCW);
1613 if ((rxcw & E1000_RXCW_SYNCH) &&
1614 (rxcw & E1000_RXCW_C))
1615 continue;
1616
1617 if (rxcw & E1000_RXCW_IV) {
1618 mac->serdes_has_link = false;
1619 mac->serdes_link_state =
1620 e1000_serdes_link_down;
1621 e_dbg("ANYSTATE -> DOWN\n");
1622 break;
1623 }
1624 }
1625
1626 if (i == AN_RETRY_COUNT) {
1627 txcw = er32(TXCW);
1628 txcw |= E1000_TXCW_ANE;
1629 ew32(TXCW, txcw);
1630 mac->serdes_link_state =
1631 e1000_serdes_link_autoneg_progress;
1632 mac->serdes_has_link = false;
1633 e_dbg("ANYSTATE -> AN_PROG\n");
1634 }
1635 }
1636 }
1637
1638 return ret_val;
1639}
1640
1641/**
1642 * e1000_valid_led_default_82571 - Verify a valid default LED config
1643 * @hw: pointer to the HW structure
1644 * @data: pointer to the NVM (EEPROM)
1645 *
1646 * Read the EEPROM for the current default LED configuration. If the
1647 * LED configuration is not valid, set to a valid LED configuration.
1648 **/
1649static s32 e1000_valid_led_default_82571(struct e1000_hw *hw, u16 *data)
1650{
1651 s32 ret_val;
1652
1653 ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
1654 if (ret_val) {
1655 e_dbg("NVM Read Error\n");
1656 return ret_val;
1657 }
1658
1659 switch (hw->mac.type) {
1660 case e1000_82573:
1661 case e1000_82574:
1662 case e1000_82583:
1663 if (*data == ID_LED_RESERVED_F746)
1664 *data = ID_LED_DEFAULT_82573;
1665 break;
1666 default:
1667 if (*data == ID_LED_RESERVED_0000 ||
1668 *data == ID_LED_RESERVED_FFFF)
1669 *data = ID_LED_DEFAULT;
1670 break;
1671 }
1672
1673 return 0;
1674}
1675
1676/**
1677 * e1000e_get_laa_state_82571 - Get locally administered address state
1678 * @hw: pointer to the HW structure
1679 *
1680 * Retrieve and return the current locally administered address state.
1681 **/
1682bool e1000e_get_laa_state_82571(struct e1000_hw *hw)
1683{
1684 if (hw->mac.type != e1000_82571)
1685 return false;
1686
1687 return hw->dev_spec.e82571.laa_is_present;
1688}
1689
1690/**
1691 * e1000e_set_laa_state_82571 - Set locally administered address state
1692 * @hw: pointer to the HW structure
1693 * @state: enable/disable locally administered address
1694 *
1695 * Enable/Disable the current locally administered address state.
1696 **/
1697void e1000e_set_laa_state_82571(struct e1000_hw *hw, bool state)
1698{
1699 if (hw->mac.type != e1000_82571)
1700 return;
1701
1702 hw->dev_spec.e82571.laa_is_present = state;
1703
1704 /* If workaround is activated... */
1705 if (state)
1706 /* Hold a copy of the LAA in RAR[14] This is done so that
1707 * between the time RAR[0] gets clobbered and the time it
1708 * gets fixed, the actual LAA is in one of the RARs and no
1709 * incoming packets directed to this port are dropped.
1710 * Eventually the LAA will be in RAR[0] and RAR[14].
1711 */
1712 hw->mac.ops.rar_set(hw, hw->mac.addr,
1713 hw->mac.rar_entry_count - 1);
1714}
1715
1716/**
1717 * e1000_fix_nvm_checksum_82571 - Fix EEPROM checksum
1718 * @hw: pointer to the HW structure
1719 *
1720 * Verifies that the EEPROM has completed the update. After updating the
1721 * EEPROM, we need to check bit 15 in work 0x23 for the checksum fix. If
1722 * the checksum fix is not implemented, we need to set the bit and update
1723 * the checksum. Otherwise, if bit 15 is set and the checksum is incorrect,
1724 * we need to return bad checksum.
1725 **/
1726static s32 e1000_fix_nvm_checksum_82571(struct e1000_hw *hw)
1727{
1728 struct e1000_nvm_info *nvm = &hw->nvm;
1729 s32 ret_val;
1730 u16 data;
1731
1732 if (nvm->type != e1000_nvm_flash_hw)
1733 return 0;
1734
1735 /* Check bit 4 of word 10h. If it is 0, firmware is done updating
1736 * 10h-12h. Checksum may need to be fixed.
1737 */
1738 ret_val = e1000_read_nvm(hw, 0x10, 1, &data);
1739 if (ret_val)
1740 return ret_val;
1741
1742 if (!(data & 0x10)) {
1743 /* Read 0x23 and check bit 15. This bit is a 1
1744 * when the checksum has already been fixed. If
1745 * the checksum is still wrong and this bit is a
1746 * 1, we need to return bad checksum. Otherwise,
1747 * we need to set this bit to a 1 and update the
1748 * checksum.
1749 */
1750 ret_val = e1000_read_nvm(hw, 0x23, 1, &data);
1751 if (ret_val)
1752 return ret_val;
1753
1754 if (!(data & 0x8000)) {
1755 data |= 0x8000;
1756 ret_val = e1000_write_nvm(hw, 0x23, 1, &data);
1757 if (ret_val)
1758 return ret_val;
1759 ret_val = e1000e_update_nvm_checksum(hw);
1760 if (ret_val)
1761 return ret_val;
1762 }
1763 }
1764
1765 return 0;
1766}
1767
1768/**
1769 * e1000_read_mac_addr_82571 - Read device MAC address
1770 * @hw: pointer to the HW structure
1771 **/
1772static s32 e1000_read_mac_addr_82571(struct e1000_hw *hw)
1773{
1774 if (hw->mac.type == e1000_82571) {
1775 s32 ret_val;
1776
1777 /* If there's an alternate MAC address place it in RAR0
1778 * so that it will override the Si installed default perm
1779 * address.
1780 */
1781 ret_val = e1000_check_alt_mac_addr_generic(hw);
1782 if (ret_val)
1783 return ret_val;
1784 }
1785
1786 return e1000_read_mac_addr_generic(hw);
1787}
1788
1789/**
1790 * e1000_power_down_phy_copper_82571 - Remove link during PHY power down
1791 * @hw: pointer to the HW structure
1792 *
1793 * In the case of a PHY power down to save power, or to turn off link during a
1794 * driver unload, or wake on lan is not enabled, remove the link.
1795 **/
1796static void e1000_power_down_phy_copper_82571(struct e1000_hw *hw)
1797{
1798 struct e1000_phy_info *phy = &hw->phy;
1799 struct e1000_mac_info *mac = &hw->mac;
1800
1801 if (!phy->ops.check_reset_block)
1802 return;
1803
1804 /* If the management interface is not enabled, then power down */
1805 if (!(mac->ops.check_mng_mode(hw) || phy->ops.check_reset_block(hw)))
1806 e1000_power_down_phy_copper(hw);
1807}
1808
1809/**
1810 * e1000_clear_hw_cntrs_82571 - Clear device specific hardware counters
1811 * @hw: pointer to the HW structure
1812 *
1813 * Clears the hardware counters by reading the counter registers.
1814 **/
1815static void e1000_clear_hw_cntrs_82571(struct e1000_hw *hw)
1816{
1817 e1000e_clear_hw_cntrs_base(hw);
1818
1819 er32(PRC64);
1820 er32(PRC127);
1821 er32(PRC255);
1822 er32(PRC511);
1823 er32(PRC1023);
1824 er32(PRC1522);
1825 er32(PTC64);
1826 er32(PTC127);
1827 er32(PTC255);
1828 er32(PTC511);
1829 er32(PTC1023);
1830 er32(PTC1522);
1831
1832 er32(ALGNERRC);
1833 er32(RXERRC);
1834 er32(TNCRS);
1835 er32(CEXTERR);
1836 er32(TSCTC);
1837 er32(TSCTFC);
1838
1839 er32(MGTPRC);
1840 er32(MGTPDC);
1841 er32(MGTPTC);
1842
1843 er32(IAC);
1844 er32(ICRXOC);
1845
1846 er32(ICRXPTC);
1847 er32(ICRXATC);
1848 er32(ICTXPTC);
1849 er32(ICTXATC);
1850 er32(ICTXQEC);
1851 er32(ICTXQMTC);
1852 er32(ICRXDMTC);
1853}
1854
1855static const struct e1000_mac_operations e82571_mac_ops = {
1856 /* .check_mng_mode: mac type dependent */
1857 /* .check_for_link: media type dependent */
1858 .id_led_init = e1000e_id_led_init_generic,
1859 .cleanup_led = e1000e_cleanup_led_generic,
1860 .clear_hw_cntrs = e1000_clear_hw_cntrs_82571,
1861 .get_bus_info = e1000e_get_bus_info_pcie,
1862 .set_lan_id = e1000_set_lan_id_multi_port_pcie,
1863 /* .get_link_up_info: media type dependent */
1864 /* .led_on: mac type dependent */
1865 .led_off = e1000e_led_off_generic,
1866 .update_mc_addr_list = e1000e_update_mc_addr_list_generic,
1867 .write_vfta = e1000_write_vfta_generic,
1868 .clear_vfta = e1000_clear_vfta_82571,
1869 .reset_hw = e1000_reset_hw_82571,
1870 .init_hw = e1000_init_hw_82571,
1871 .setup_link = e1000_setup_link_82571,
1872 /* .setup_physical_interface: media type dependent */
1873 .setup_led = e1000e_setup_led_generic,
1874 .config_collision_dist = e1000e_config_collision_dist_generic,
1875 .read_mac_addr = e1000_read_mac_addr_82571,
1876 .rar_set = e1000e_rar_set_generic,
1877 .rar_get_count = e1000e_rar_get_count_generic,
1878};
1879
1880static const struct e1000_phy_operations e82_phy_ops_igp = {
1881 .acquire = e1000_get_hw_semaphore_82571,
1882 .check_polarity = e1000_check_polarity_igp,
1883 .check_reset_block = e1000e_check_reset_block_generic,
1884 .commit = NULL,
1885 .force_speed_duplex = e1000e_phy_force_speed_duplex_igp,
1886 .get_cfg_done = e1000_get_cfg_done_82571,
1887 .get_cable_length = e1000e_get_cable_length_igp_2,
1888 .get_info = e1000e_get_phy_info_igp,
1889 .read_reg = e1000e_read_phy_reg_igp,
1890 .release = e1000_put_hw_semaphore_82571,
1891 .reset = e1000e_phy_hw_reset_generic,
1892 .set_d0_lplu_state = e1000_set_d0_lplu_state_82571,
1893 .set_d3_lplu_state = e1000e_set_d3_lplu_state,
1894 .write_reg = e1000e_write_phy_reg_igp,
1895 .cfg_on_link_up = NULL,
1896};
1897
1898static const struct e1000_phy_operations e82_phy_ops_m88 = {
1899 .acquire = e1000_get_hw_semaphore_82571,
1900 .check_polarity = e1000_check_polarity_m88,
1901 .check_reset_block = e1000e_check_reset_block_generic,
1902 .commit = e1000e_phy_sw_reset,
1903 .force_speed_duplex = e1000e_phy_force_speed_duplex_m88,
1904 .get_cfg_done = e1000e_get_cfg_done_generic,
1905 .get_cable_length = e1000e_get_cable_length_m88,
1906 .get_info = e1000e_get_phy_info_m88,
1907 .read_reg = e1000e_read_phy_reg_m88,
1908 .release = e1000_put_hw_semaphore_82571,
1909 .reset = e1000e_phy_hw_reset_generic,
1910 .set_d0_lplu_state = e1000_set_d0_lplu_state_82571,
1911 .set_d3_lplu_state = e1000e_set_d3_lplu_state,
1912 .write_reg = e1000e_write_phy_reg_m88,
1913 .cfg_on_link_up = NULL,
1914};
1915
1916static const struct e1000_phy_operations e82_phy_ops_bm = {
1917 .acquire = e1000_get_hw_semaphore_82571,
1918 .check_polarity = e1000_check_polarity_m88,
1919 .check_reset_block = e1000e_check_reset_block_generic,
1920 .commit = e1000e_phy_sw_reset,
1921 .force_speed_duplex = e1000e_phy_force_speed_duplex_m88,
1922 .get_cfg_done = e1000e_get_cfg_done_generic,
1923 .get_cable_length = e1000e_get_cable_length_m88,
1924 .get_info = e1000e_get_phy_info_m88,
1925 .read_reg = e1000e_read_phy_reg_bm2,
1926 .release = e1000_put_hw_semaphore_82571,
1927 .reset = e1000e_phy_hw_reset_generic,
1928 .set_d0_lplu_state = e1000_set_d0_lplu_state_82571,
1929 .set_d3_lplu_state = e1000e_set_d3_lplu_state,
1930 .write_reg = e1000e_write_phy_reg_bm2,
1931 .cfg_on_link_up = NULL,
1932};
1933
1934static const struct e1000_nvm_operations e82571_nvm_ops = {
1935 .acquire = e1000_acquire_nvm_82571,
1936 .read = e1000e_read_nvm_eerd,
1937 .release = e1000_release_nvm_82571,
1938 .reload = e1000e_reload_nvm_generic,
1939 .update = e1000_update_nvm_checksum_82571,
1940 .valid_led_default = e1000_valid_led_default_82571,
1941 .validate = e1000_validate_nvm_checksum_82571,
1942 .write = e1000_write_nvm_82571,
1943};
1944
1945const struct e1000_info e1000_82571_info = {
1946 .mac = e1000_82571,
1947 .flags = FLAG_HAS_HW_VLAN_FILTER
1948 | FLAG_HAS_JUMBO_FRAMES
1949 | FLAG_HAS_WOL
1950 | FLAG_APME_IN_CTRL3
1951 | FLAG_HAS_CTRLEXT_ON_LOAD
1952 | FLAG_HAS_SMART_POWER_DOWN
1953 | FLAG_RESET_OVERWRITES_LAA /* errata */
1954 | FLAG_TARC_SPEED_MODE_BIT /* errata */
1955 | FLAG_APME_CHECK_PORT_B,
1956 .flags2 = FLAG2_DISABLE_ASPM_L1 /* errata 13 */
1957 | FLAG2_DMA_BURST,
1958 .pba = 38,
1959 .max_hw_frame_size = DEFAULT_JUMBO,
1960 .get_variants = e1000_get_variants_82571,
1961 .mac_ops = &e82571_mac_ops,
1962 .phy_ops = &e82_phy_ops_igp,
1963 .nvm_ops = &e82571_nvm_ops,
1964};
1965
1966const struct e1000_info e1000_82572_info = {
1967 .mac = e1000_82572,
1968 .flags = FLAG_HAS_HW_VLAN_FILTER
1969 | FLAG_HAS_JUMBO_FRAMES
1970 | FLAG_HAS_WOL
1971 | FLAG_APME_IN_CTRL3
1972 | FLAG_HAS_CTRLEXT_ON_LOAD
1973 | FLAG_TARC_SPEED_MODE_BIT, /* errata */
1974 .flags2 = FLAG2_DISABLE_ASPM_L1 /* errata 13 */
1975 | FLAG2_DMA_BURST,
1976 .pba = 38,
1977 .max_hw_frame_size = DEFAULT_JUMBO,
1978 .get_variants = e1000_get_variants_82571,
1979 .mac_ops = &e82571_mac_ops,
1980 .phy_ops = &e82_phy_ops_igp,
1981 .nvm_ops = &e82571_nvm_ops,
1982};
1983
1984const struct e1000_info e1000_82573_info = {
1985 .mac = e1000_82573,
1986 .flags = FLAG_HAS_HW_VLAN_FILTER
1987 | FLAG_HAS_WOL
1988 | FLAG_APME_IN_CTRL3
1989 | FLAG_HAS_SMART_POWER_DOWN
1990 | FLAG_HAS_AMT
1991 | FLAG_HAS_SWSM_ON_LOAD,
1992 .flags2 = FLAG2_DISABLE_ASPM_L1
1993 | FLAG2_DISABLE_ASPM_L0S,
1994 .pba = 20,
1995 .max_hw_frame_size = VLAN_ETH_FRAME_LEN + ETH_FCS_LEN,
1996 .get_variants = e1000_get_variants_82571,
1997 .mac_ops = &e82571_mac_ops,
1998 .phy_ops = &e82_phy_ops_m88,
1999 .nvm_ops = &e82571_nvm_ops,
2000};
2001
2002const struct e1000_info e1000_82574_info = {
2003 .mac = e1000_82574,
2004 .flags = FLAG_HAS_HW_VLAN_FILTER
2005 | FLAG_HAS_MSIX
2006 | FLAG_HAS_JUMBO_FRAMES
2007 | FLAG_HAS_WOL
2008 | FLAG_HAS_HW_TIMESTAMP
2009 | FLAG_APME_IN_CTRL3
2010 | FLAG_HAS_SMART_POWER_DOWN
2011 | FLAG_HAS_AMT
2012 | FLAG_HAS_CTRLEXT_ON_LOAD,
2013 .flags2 = FLAG2_CHECK_PHY_HANG
2014 | FLAG2_DISABLE_ASPM_L0S
2015 | FLAG2_DISABLE_ASPM_L1
2016 | FLAG2_NO_DISABLE_RX
2017 | FLAG2_DMA_BURST
2018 | FLAG2_CHECK_SYSTIM_OVERFLOW,
2019 .pba = 32,
2020 .max_hw_frame_size = DEFAULT_JUMBO,
2021 .get_variants = e1000_get_variants_82571,
2022 .mac_ops = &e82571_mac_ops,
2023 .phy_ops = &e82_phy_ops_bm,
2024 .nvm_ops = &e82571_nvm_ops,
2025};
2026
2027const struct e1000_info e1000_82583_info = {
2028 .mac = e1000_82583,
2029 .flags = FLAG_HAS_HW_VLAN_FILTER
2030 | FLAG_HAS_WOL
2031 | FLAG_HAS_HW_TIMESTAMP
2032 | FLAG_APME_IN_CTRL3
2033 | FLAG_HAS_SMART_POWER_DOWN
2034 | FLAG_HAS_AMT
2035 | FLAG_HAS_JUMBO_FRAMES
2036 | FLAG_HAS_CTRLEXT_ON_LOAD,
2037 .flags2 = FLAG2_DISABLE_ASPM_L0S
2038 | FLAG2_DISABLE_ASPM_L1
2039 | FLAG2_NO_DISABLE_RX
2040 | FLAG2_CHECK_SYSTIM_OVERFLOW,
2041 .pba = 32,
2042 .max_hw_frame_size = DEFAULT_JUMBO,
2043 .get_variants = e1000_get_variants_82571,
2044 .mac_ops = &e82571_mac_ops,
2045 .phy_ops = &e82_phy_ops_bm,
2046 .nvm_ops = &e82571_nvm_ops,
2047};