Loading...
1// SPDX-License-Identifier: GPL-2.0
2/* Copyright(c) 1999 - 2018 Intel Corporation. */
3
4/* 82571EB Gigabit Ethernet Controller
5 * 82571EB Gigabit Ethernet Controller (Copper)
6 * 82571EB Gigabit Ethernet Controller (Fiber)
7 * 82571EB Dual Port Gigabit Mezzanine Adapter
8 * 82571EB Quad Port Gigabit Mezzanine Adapter
9 * 82571PT Gigabit PT Quad Port Server ExpressModule
10 * 82572EI Gigabit Ethernet Controller (Copper)
11 * 82572EI Gigabit Ethernet Controller (Fiber)
12 * 82572EI Gigabit Ethernet Controller
13 * 82573V Gigabit Ethernet Controller (Copper)
14 * 82573E Gigabit Ethernet Controller (Copper)
15 * 82573L Gigabit Ethernet Controller
16 * 82574L Gigabit Network Connection
17 * 82583V Gigabit Network Connection
18 */
19
20#include "e1000.h"
21
22static s32 e1000_get_phy_id_82571(struct e1000_hw *hw);
23static s32 e1000_setup_copper_link_82571(struct e1000_hw *hw);
24static s32 e1000_setup_fiber_serdes_link_82571(struct e1000_hw *hw);
25static s32 e1000_check_for_serdes_link_82571(struct e1000_hw *hw);
26static s32 e1000_write_nvm_eewr_82571(struct e1000_hw *hw, u16 offset,
27 u16 words, u16 *data);
28static s32 e1000_fix_nvm_checksum_82571(struct e1000_hw *hw);
29static void e1000_initialize_hw_bits_82571(struct e1000_hw *hw);
30static void e1000_clear_hw_cntrs_82571(struct e1000_hw *hw);
31static bool e1000_check_mng_mode_82574(struct e1000_hw *hw);
32static s32 e1000_led_on_82574(struct e1000_hw *hw);
33static void e1000_put_hw_semaphore_82571(struct e1000_hw *hw);
34static void e1000_power_down_phy_copper_82571(struct e1000_hw *hw);
35static void e1000_put_hw_semaphore_82573(struct e1000_hw *hw);
36static s32 e1000_get_hw_semaphore_82574(struct e1000_hw *hw);
37static void e1000_put_hw_semaphore_82574(struct e1000_hw *hw);
38static s32 e1000_set_d0_lplu_state_82574(struct e1000_hw *hw, bool active);
39static s32 e1000_set_d3_lplu_state_82574(struct e1000_hw *hw, bool active);
40
41/**
42 * e1000_init_phy_params_82571 - Init PHY func ptrs.
43 * @hw: pointer to the HW structure
44 **/
45static s32 e1000_init_phy_params_82571(struct e1000_hw *hw)
46{
47 struct e1000_phy_info *phy = &hw->phy;
48 s32 ret_val;
49
50 if (hw->phy.media_type != e1000_media_type_copper) {
51 phy->type = e1000_phy_none;
52 return 0;
53 }
54
55 phy->addr = 1;
56 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
57 phy->reset_delay_us = 100;
58
59 phy->ops.power_up = e1000_power_up_phy_copper;
60 phy->ops.power_down = e1000_power_down_phy_copper_82571;
61
62 switch (hw->mac.type) {
63 case e1000_82571:
64 case e1000_82572:
65 phy->type = e1000_phy_igp_2;
66 break;
67 case e1000_82573:
68 phy->type = e1000_phy_m88;
69 break;
70 case e1000_82574:
71 case e1000_82583:
72 phy->type = e1000_phy_bm;
73 phy->ops.acquire = e1000_get_hw_semaphore_82574;
74 phy->ops.release = e1000_put_hw_semaphore_82574;
75 phy->ops.set_d0_lplu_state = e1000_set_d0_lplu_state_82574;
76 phy->ops.set_d3_lplu_state = e1000_set_d3_lplu_state_82574;
77 break;
78 default:
79 return -E1000_ERR_PHY;
80 }
81
82 /* This can only be done after all function pointers are setup. */
83 ret_val = e1000_get_phy_id_82571(hw);
84 if (ret_val) {
85 e_dbg("Error getting PHY ID\n");
86 return ret_val;
87 }
88
89 /* Verify phy id */
90 switch (hw->mac.type) {
91 case e1000_82571:
92 case e1000_82572:
93 if (phy->id != IGP01E1000_I_PHY_ID)
94 ret_val = -E1000_ERR_PHY;
95 break;
96 case e1000_82573:
97 if (phy->id != M88E1111_I_PHY_ID)
98 ret_val = -E1000_ERR_PHY;
99 break;
100 case e1000_82574:
101 case e1000_82583:
102 if (phy->id != BME1000_E_PHY_ID_R2)
103 ret_val = -E1000_ERR_PHY;
104 break;
105 default:
106 ret_val = -E1000_ERR_PHY;
107 break;
108 }
109
110 if (ret_val)
111 e_dbg("PHY ID unknown: type = 0x%08x\n", phy->id);
112
113 return ret_val;
114}
115
116/**
117 * e1000_init_nvm_params_82571 - Init NVM func ptrs.
118 * @hw: pointer to the HW structure
119 **/
120static s32 e1000_init_nvm_params_82571(struct e1000_hw *hw)
121{
122 struct e1000_nvm_info *nvm = &hw->nvm;
123 u32 eecd = er32(EECD);
124 u16 size;
125
126 nvm->opcode_bits = 8;
127 nvm->delay_usec = 1;
128 switch (nvm->override) {
129 case e1000_nvm_override_spi_large:
130 nvm->page_size = 32;
131 nvm->address_bits = 16;
132 break;
133 case e1000_nvm_override_spi_small:
134 nvm->page_size = 8;
135 nvm->address_bits = 8;
136 break;
137 default:
138 nvm->page_size = eecd & E1000_EECD_ADDR_BITS ? 32 : 8;
139 nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ? 16 : 8;
140 break;
141 }
142
143 switch (hw->mac.type) {
144 case e1000_82573:
145 case e1000_82574:
146 case e1000_82583:
147 if (((eecd >> 15) & 0x3) == 0x3) {
148 nvm->type = e1000_nvm_flash_hw;
149 nvm->word_size = 2048;
150 /* Autonomous Flash update bit must be cleared due
151 * to Flash update issue.
152 */
153 eecd &= ~E1000_EECD_AUPDEN;
154 ew32(EECD, eecd);
155 break;
156 }
157 fallthrough;
158 default:
159 nvm->type = e1000_nvm_eeprom_spi;
160 size = (u16)FIELD_GET(E1000_EECD_SIZE_EX_MASK, eecd);
161 /* Added to a constant, "size" becomes the left-shift value
162 * for setting word_size.
163 */
164 size += NVM_WORD_SIZE_BASE_SHIFT;
165
166 /* EEPROM access above 16k is unsupported */
167 if (size > 14)
168 size = 14;
169 nvm->word_size = BIT(size);
170 break;
171 }
172
173 /* Function Pointers */
174 switch (hw->mac.type) {
175 case e1000_82574:
176 case e1000_82583:
177 nvm->ops.acquire = e1000_get_hw_semaphore_82574;
178 nvm->ops.release = e1000_put_hw_semaphore_82574;
179 break;
180 default:
181 break;
182 }
183
184 return 0;
185}
186
187/**
188 * e1000_init_mac_params_82571 - Init MAC func ptrs.
189 * @hw: pointer to the HW structure
190 **/
191static s32 e1000_init_mac_params_82571(struct e1000_hw *hw)
192{
193 struct e1000_mac_info *mac = &hw->mac;
194 u32 swsm = 0;
195 u32 swsm2 = 0;
196 bool force_clear_smbi = false;
197
198 /* Set media type and media-dependent function pointers */
199 switch (hw->adapter->pdev->device) {
200 case E1000_DEV_ID_82571EB_FIBER:
201 case E1000_DEV_ID_82572EI_FIBER:
202 case E1000_DEV_ID_82571EB_QUAD_FIBER:
203 hw->phy.media_type = e1000_media_type_fiber;
204 mac->ops.setup_physical_interface =
205 e1000_setup_fiber_serdes_link_82571;
206 mac->ops.check_for_link = e1000e_check_for_fiber_link;
207 mac->ops.get_link_up_info =
208 e1000e_get_speed_and_duplex_fiber_serdes;
209 break;
210 case E1000_DEV_ID_82571EB_SERDES:
211 case E1000_DEV_ID_82571EB_SERDES_DUAL:
212 case E1000_DEV_ID_82571EB_SERDES_QUAD:
213 case E1000_DEV_ID_82572EI_SERDES:
214 hw->phy.media_type = e1000_media_type_internal_serdes;
215 mac->ops.setup_physical_interface =
216 e1000_setup_fiber_serdes_link_82571;
217 mac->ops.check_for_link = e1000_check_for_serdes_link_82571;
218 mac->ops.get_link_up_info =
219 e1000e_get_speed_and_duplex_fiber_serdes;
220 break;
221 default:
222 hw->phy.media_type = e1000_media_type_copper;
223 mac->ops.setup_physical_interface =
224 e1000_setup_copper_link_82571;
225 mac->ops.check_for_link = e1000e_check_for_copper_link;
226 mac->ops.get_link_up_info = e1000e_get_speed_and_duplex_copper;
227 break;
228 }
229
230 /* Set mta register count */
231 mac->mta_reg_count = 128;
232 /* Set rar entry count */
233 mac->rar_entry_count = E1000_RAR_ENTRIES;
234 /* Adaptive IFS supported */
235 mac->adaptive_ifs = true;
236
237 /* MAC-specific function pointers */
238 switch (hw->mac.type) {
239 case e1000_82573:
240 mac->ops.set_lan_id = e1000_set_lan_id_single_port;
241 mac->ops.check_mng_mode = e1000e_check_mng_mode_generic;
242 mac->ops.led_on = e1000e_led_on_generic;
243 mac->ops.blink_led = e1000e_blink_led_generic;
244
245 /* FWSM register */
246 mac->has_fwsm = true;
247 /* ARC supported; valid only if manageability features are
248 * enabled.
249 */
250 mac->arc_subsystem_valid = !!(er32(FWSM) &
251 E1000_FWSM_MODE_MASK);
252 break;
253 case e1000_82574:
254 case e1000_82583:
255 mac->ops.set_lan_id = e1000_set_lan_id_single_port;
256 mac->ops.check_mng_mode = e1000_check_mng_mode_82574;
257 mac->ops.led_on = e1000_led_on_82574;
258 break;
259 default:
260 mac->ops.check_mng_mode = e1000e_check_mng_mode_generic;
261 mac->ops.led_on = e1000e_led_on_generic;
262 mac->ops.blink_led = e1000e_blink_led_generic;
263
264 /* FWSM register */
265 mac->has_fwsm = true;
266 break;
267 }
268
269 /* Ensure that the inter-port SWSM.SMBI lock bit is clear before
270 * first NVM or PHY access. This should be done for single-port
271 * devices, and for one port only on dual-port devices so that
272 * for those devices we can still use the SMBI lock to synchronize
273 * inter-port accesses to the PHY & NVM.
274 */
275 switch (hw->mac.type) {
276 case e1000_82571:
277 case e1000_82572:
278 swsm2 = er32(SWSM2);
279
280 if (!(swsm2 & E1000_SWSM2_LOCK)) {
281 /* Only do this for the first interface on this card */
282 ew32(SWSM2, swsm2 | E1000_SWSM2_LOCK);
283 force_clear_smbi = true;
284 } else {
285 force_clear_smbi = false;
286 }
287 break;
288 default:
289 force_clear_smbi = true;
290 break;
291 }
292
293 if (force_clear_smbi) {
294 /* Make sure SWSM.SMBI is clear */
295 swsm = er32(SWSM);
296 if (swsm & E1000_SWSM_SMBI) {
297 /* This bit should not be set on a first interface, and
298 * indicates that the bootagent or EFI code has
299 * improperly left this bit enabled
300 */
301 e_dbg("Please update your 82571 Bootagent\n");
302 }
303 ew32(SWSM, swsm & ~E1000_SWSM_SMBI);
304 }
305
306 /* Initialize device specific counter of SMBI acquisition timeouts. */
307 hw->dev_spec.e82571.smb_counter = 0;
308
309 return 0;
310}
311
312static s32 e1000_get_variants_82571(struct e1000_adapter *adapter)
313{
314 struct e1000_hw *hw = &adapter->hw;
315 static int global_quad_port_a; /* global port a indication */
316 struct pci_dev *pdev = adapter->pdev;
317 int is_port_b = er32(STATUS) & E1000_STATUS_FUNC_1;
318 s32 rc;
319
320 rc = e1000_init_mac_params_82571(hw);
321 if (rc)
322 return rc;
323
324 rc = e1000_init_nvm_params_82571(hw);
325 if (rc)
326 return rc;
327
328 rc = e1000_init_phy_params_82571(hw);
329 if (rc)
330 return rc;
331
332 /* tag quad port adapters first, it's used below */
333 switch (pdev->device) {
334 case E1000_DEV_ID_82571EB_QUAD_COPPER:
335 case E1000_DEV_ID_82571EB_QUAD_FIBER:
336 case E1000_DEV_ID_82571EB_QUAD_COPPER_LP:
337 case E1000_DEV_ID_82571PT_QUAD_COPPER:
338 adapter->flags |= FLAG_IS_QUAD_PORT;
339 /* mark the first port */
340 if (global_quad_port_a == 0)
341 adapter->flags |= FLAG_IS_QUAD_PORT_A;
342 /* Reset for multiple quad port adapters */
343 global_quad_port_a++;
344 if (global_quad_port_a == 4)
345 global_quad_port_a = 0;
346 break;
347 default:
348 break;
349 }
350
351 switch (adapter->hw.mac.type) {
352 case e1000_82571:
353 /* these dual ports don't have WoL on port B at all */
354 if (((pdev->device == E1000_DEV_ID_82571EB_FIBER) ||
355 (pdev->device == E1000_DEV_ID_82571EB_SERDES) ||
356 (pdev->device == E1000_DEV_ID_82571EB_COPPER)) &&
357 (is_port_b))
358 adapter->flags &= ~FLAG_HAS_WOL;
359 /* quad ports only support WoL on port A */
360 if (adapter->flags & FLAG_IS_QUAD_PORT &&
361 (!(adapter->flags & FLAG_IS_QUAD_PORT_A)))
362 adapter->flags &= ~FLAG_HAS_WOL;
363 /* Does not support WoL on any port */
364 if (pdev->device == E1000_DEV_ID_82571EB_SERDES_QUAD)
365 adapter->flags &= ~FLAG_HAS_WOL;
366 break;
367 case e1000_82573:
368 if (pdev->device == E1000_DEV_ID_82573L) {
369 adapter->flags |= FLAG_HAS_JUMBO_FRAMES;
370 adapter->max_hw_frame_size = DEFAULT_JUMBO;
371 }
372 break;
373 default:
374 break;
375 }
376
377 return 0;
378}
379
380/**
381 * e1000_get_phy_id_82571 - Retrieve the PHY ID and revision
382 * @hw: pointer to the HW structure
383 *
384 * Reads the PHY registers and stores the PHY ID and possibly the PHY
385 * revision in the hardware structure.
386 **/
387static s32 e1000_get_phy_id_82571(struct e1000_hw *hw)
388{
389 struct e1000_phy_info *phy = &hw->phy;
390 s32 ret_val;
391 u16 phy_id = 0;
392
393 switch (hw->mac.type) {
394 case e1000_82571:
395 case e1000_82572:
396 /* The 82571 firmware may still be configuring the PHY.
397 * In this case, we cannot access the PHY until the
398 * configuration is done. So we explicitly set the
399 * PHY ID.
400 */
401 phy->id = IGP01E1000_I_PHY_ID;
402 break;
403 case e1000_82573:
404 return e1000e_get_phy_id(hw);
405 case e1000_82574:
406 case e1000_82583:
407 ret_val = e1e_rphy(hw, MII_PHYSID1, &phy_id);
408 if (ret_val)
409 return ret_val;
410
411 phy->id = (u32)(phy_id << 16);
412 usleep_range(20, 40);
413 ret_val = e1e_rphy(hw, MII_PHYSID2, &phy_id);
414 if (ret_val)
415 return ret_val;
416
417 phy->id |= (u32)(phy_id);
418 phy->revision = (u32)(phy_id & ~PHY_REVISION_MASK);
419 break;
420 default:
421 return -E1000_ERR_PHY;
422 }
423
424 return 0;
425}
426
427/**
428 * e1000_get_hw_semaphore_82571 - Acquire hardware semaphore
429 * @hw: pointer to the HW structure
430 *
431 * Acquire the HW semaphore to access the PHY or NVM
432 **/
433static s32 e1000_get_hw_semaphore_82571(struct e1000_hw *hw)
434{
435 u32 swsm;
436 s32 sw_timeout = hw->nvm.word_size + 1;
437 s32 fw_timeout = hw->nvm.word_size + 1;
438 s32 i = 0;
439
440 /* If we have timedout 3 times on trying to acquire
441 * the inter-port SMBI semaphore, there is old code
442 * operating on the other port, and it is not
443 * releasing SMBI. Modify the number of times that
444 * we try for the semaphore to interwork with this
445 * older code.
446 */
447 if (hw->dev_spec.e82571.smb_counter > 2)
448 sw_timeout = 1;
449
450 /* Get the SW semaphore */
451 while (i < sw_timeout) {
452 swsm = er32(SWSM);
453 if (!(swsm & E1000_SWSM_SMBI))
454 break;
455
456 usleep_range(50, 100);
457 i++;
458 }
459
460 if (i == sw_timeout) {
461 e_dbg("Driver can't access device - SMBI bit is set.\n");
462 hw->dev_spec.e82571.smb_counter++;
463 }
464 /* Get the FW semaphore. */
465 for (i = 0; i < fw_timeout; i++) {
466 swsm = er32(SWSM);
467 ew32(SWSM, swsm | E1000_SWSM_SWESMBI);
468
469 /* Semaphore acquired if bit latched */
470 if (er32(SWSM) & E1000_SWSM_SWESMBI)
471 break;
472
473 usleep_range(50, 100);
474 }
475
476 if (i == fw_timeout) {
477 /* Release semaphores */
478 e1000_put_hw_semaphore_82571(hw);
479 e_dbg("Driver can't access the NVM\n");
480 return -E1000_ERR_NVM;
481 }
482
483 return 0;
484}
485
486/**
487 * e1000_put_hw_semaphore_82571 - Release hardware semaphore
488 * @hw: pointer to the HW structure
489 *
490 * Release hardware semaphore used to access the PHY or NVM
491 **/
492static void e1000_put_hw_semaphore_82571(struct e1000_hw *hw)
493{
494 u32 swsm;
495
496 swsm = er32(SWSM);
497 swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI);
498 ew32(SWSM, swsm);
499}
500
501/**
502 * e1000_get_hw_semaphore_82573 - Acquire hardware semaphore
503 * @hw: pointer to the HW structure
504 *
505 * Acquire the HW semaphore during reset.
506 *
507 **/
508static s32 e1000_get_hw_semaphore_82573(struct e1000_hw *hw)
509{
510 u32 extcnf_ctrl;
511 s32 i = 0;
512
513 extcnf_ctrl = er32(EXTCNF_CTRL);
514 do {
515 extcnf_ctrl |= E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP;
516 ew32(EXTCNF_CTRL, extcnf_ctrl);
517 extcnf_ctrl = er32(EXTCNF_CTRL);
518
519 if (extcnf_ctrl & E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP)
520 break;
521
522 usleep_range(2000, 4000);
523 i++;
524 } while (i < MDIO_OWNERSHIP_TIMEOUT);
525
526 if (i == MDIO_OWNERSHIP_TIMEOUT) {
527 /* Release semaphores */
528 e1000_put_hw_semaphore_82573(hw);
529 e_dbg("Driver can't access the PHY\n");
530 return -E1000_ERR_PHY;
531 }
532
533 return 0;
534}
535
536/**
537 * e1000_put_hw_semaphore_82573 - Release hardware semaphore
538 * @hw: pointer to the HW structure
539 *
540 * Release hardware semaphore used during reset.
541 *
542 **/
543static void e1000_put_hw_semaphore_82573(struct e1000_hw *hw)
544{
545 u32 extcnf_ctrl;
546
547 extcnf_ctrl = er32(EXTCNF_CTRL);
548 extcnf_ctrl &= ~E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP;
549 ew32(EXTCNF_CTRL, extcnf_ctrl);
550}
551
552static DEFINE_MUTEX(swflag_mutex);
553
554/**
555 * e1000_get_hw_semaphore_82574 - Acquire hardware semaphore
556 * @hw: pointer to the HW structure
557 *
558 * Acquire the HW semaphore to access the PHY or NVM.
559 *
560 **/
561static s32 e1000_get_hw_semaphore_82574(struct e1000_hw *hw)
562{
563 s32 ret_val;
564
565 mutex_lock(&swflag_mutex);
566 ret_val = e1000_get_hw_semaphore_82573(hw);
567 if (ret_val)
568 mutex_unlock(&swflag_mutex);
569 return ret_val;
570}
571
572/**
573 * e1000_put_hw_semaphore_82574 - Release hardware semaphore
574 * @hw: pointer to the HW structure
575 *
576 * Release hardware semaphore used to access the PHY or NVM
577 *
578 **/
579static void e1000_put_hw_semaphore_82574(struct e1000_hw *hw)
580{
581 e1000_put_hw_semaphore_82573(hw);
582 mutex_unlock(&swflag_mutex);
583}
584
585/**
586 * e1000_set_d0_lplu_state_82574 - Set Low Power Linkup D0 state
587 * @hw: pointer to the HW structure
588 * @active: true to enable LPLU, false to disable
589 *
590 * Sets the LPLU D0 state according to the active flag.
591 * LPLU will not be activated unless the
592 * device autonegotiation advertisement meets standards of
593 * either 10 or 10/100 or 10/100/1000 at all duplexes.
594 * This is a function pointer entry point only called by
595 * PHY setup routines.
596 **/
597static s32 e1000_set_d0_lplu_state_82574(struct e1000_hw *hw, bool active)
598{
599 u32 data = er32(POEMB);
600
601 if (active)
602 data |= E1000_PHY_CTRL_D0A_LPLU;
603 else
604 data &= ~E1000_PHY_CTRL_D0A_LPLU;
605
606 ew32(POEMB, data);
607 return 0;
608}
609
610/**
611 * e1000_set_d3_lplu_state_82574 - Sets low power link up state for D3
612 * @hw: pointer to the HW structure
613 * @active: boolean used to enable/disable lplu
614 *
615 * The low power link up (lplu) state is set to the power management level D3
616 * when active is true, else clear lplu for D3. LPLU
617 * is used during Dx states where the power conservation is most important.
618 * During driver activity, SmartSpeed should be enabled so performance is
619 * maintained.
620 **/
621static s32 e1000_set_d3_lplu_state_82574(struct e1000_hw *hw, bool active)
622{
623 u32 data = er32(POEMB);
624
625 if (!active) {
626 data &= ~E1000_PHY_CTRL_NOND0A_LPLU;
627 } else if ((hw->phy.autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
628 (hw->phy.autoneg_advertised == E1000_ALL_NOT_GIG) ||
629 (hw->phy.autoneg_advertised == E1000_ALL_10_SPEED)) {
630 data |= E1000_PHY_CTRL_NOND0A_LPLU;
631 }
632
633 ew32(POEMB, data);
634 return 0;
635}
636
637/**
638 * e1000_acquire_nvm_82571 - Request for access to the EEPROM
639 * @hw: pointer to the HW structure
640 *
641 * To gain access to the EEPROM, first we must obtain a hardware semaphore.
642 * Then for non-82573 hardware, set the EEPROM access request bit and wait
643 * for EEPROM access grant bit. If the access grant bit is not set, release
644 * hardware semaphore.
645 **/
646static s32 e1000_acquire_nvm_82571(struct e1000_hw *hw)
647{
648 s32 ret_val;
649
650 ret_val = e1000_get_hw_semaphore_82571(hw);
651 if (ret_val)
652 return ret_val;
653
654 switch (hw->mac.type) {
655 case e1000_82573:
656 break;
657 default:
658 ret_val = e1000e_acquire_nvm(hw);
659 break;
660 }
661
662 if (ret_val)
663 e1000_put_hw_semaphore_82571(hw);
664
665 return ret_val;
666}
667
668/**
669 * e1000_release_nvm_82571 - Release exclusive access to EEPROM
670 * @hw: pointer to the HW structure
671 *
672 * Stop any current commands to the EEPROM and clear the EEPROM request bit.
673 **/
674static void e1000_release_nvm_82571(struct e1000_hw *hw)
675{
676 e1000e_release_nvm(hw);
677 e1000_put_hw_semaphore_82571(hw);
678}
679
680/**
681 * e1000_write_nvm_82571 - Write to EEPROM using appropriate interface
682 * @hw: pointer to the HW structure
683 * @offset: offset within the EEPROM to be written to
684 * @words: number of words to write
685 * @data: 16 bit word(s) to be written to the EEPROM
686 *
687 * For non-82573 silicon, write data to EEPROM at offset using SPI interface.
688 *
689 * If e1000e_update_nvm_checksum is not called after this function, the
690 * EEPROM will most likely contain an invalid checksum.
691 **/
692static s32 e1000_write_nvm_82571(struct e1000_hw *hw, u16 offset, u16 words,
693 u16 *data)
694{
695 s32 ret_val;
696
697 switch (hw->mac.type) {
698 case e1000_82573:
699 case e1000_82574:
700 case e1000_82583:
701 ret_val = e1000_write_nvm_eewr_82571(hw, offset, words, data);
702 break;
703 case e1000_82571:
704 case e1000_82572:
705 ret_val = e1000e_write_nvm_spi(hw, offset, words, data);
706 break;
707 default:
708 ret_val = -E1000_ERR_NVM;
709 break;
710 }
711
712 return ret_val;
713}
714
715/**
716 * e1000_update_nvm_checksum_82571 - Update EEPROM checksum
717 * @hw: pointer to the HW structure
718 *
719 * Updates the EEPROM checksum by reading/adding each word of the EEPROM
720 * up to the checksum. Then calculates the EEPROM checksum and writes the
721 * value to the EEPROM.
722 **/
723static s32 e1000_update_nvm_checksum_82571(struct e1000_hw *hw)
724{
725 u32 eecd;
726 s32 ret_val;
727 u16 i;
728
729 ret_val = e1000e_update_nvm_checksum_generic(hw);
730 if (ret_val)
731 return ret_val;
732
733 /* If our nvm is an EEPROM, then we're done
734 * otherwise, commit the checksum to the flash NVM.
735 */
736 if (hw->nvm.type != e1000_nvm_flash_hw)
737 return 0;
738
739 /* Check for pending operations. */
740 for (i = 0; i < E1000_FLASH_UPDATES; i++) {
741 usleep_range(1000, 2000);
742 if (!(er32(EECD) & E1000_EECD_FLUPD))
743 break;
744 }
745
746 if (i == E1000_FLASH_UPDATES)
747 return -E1000_ERR_NVM;
748
749 /* Reset the firmware if using STM opcode. */
750 if ((er32(FLOP) & 0xFF00) == E1000_STM_OPCODE) {
751 /* The enabling of and the actual reset must be done
752 * in two write cycles.
753 */
754 ew32(HICR, E1000_HICR_FW_RESET_ENABLE);
755 e1e_flush();
756 ew32(HICR, E1000_HICR_FW_RESET);
757 }
758
759 /* Commit the write to flash */
760 eecd = er32(EECD) | E1000_EECD_FLUPD;
761 ew32(EECD, eecd);
762
763 for (i = 0; i < E1000_FLASH_UPDATES; i++) {
764 usleep_range(1000, 2000);
765 if (!(er32(EECD) & E1000_EECD_FLUPD))
766 break;
767 }
768
769 if (i == E1000_FLASH_UPDATES)
770 return -E1000_ERR_NVM;
771
772 return 0;
773}
774
775/**
776 * e1000_validate_nvm_checksum_82571 - Validate EEPROM checksum
777 * @hw: pointer to the HW structure
778 *
779 * Calculates the EEPROM checksum by reading/adding each word of the EEPROM
780 * and then verifies that the sum of the EEPROM is equal to 0xBABA.
781 **/
782static s32 e1000_validate_nvm_checksum_82571(struct e1000_hw *hw)
783{
784 if (hw->nvm.type == e1000_nvm_flash_hw)
785 e1000_fix_nvm_checksum_82571(hw);
786
787 return e1000e_validate_nvm_checksum_generic(hw);
788}
789
790/**
791 * e1000_write_nvm_eewr_82571 - Write to EEPROM for 82573 silicon
792 * @hw: pointer to the HW structure
793 * @offset: offset within the EEPROM to be written to
794 * @words: number of words to write
795 * @data: 16 bit word(s) to be written to the EEPROM
796 *
797 * After checking for invalid values, poll the EEPROM to ensure the previous
798 * command has completed before trying to write the next word. After write
799 * poll for completion.
800 *
801 * If e1000e_update_nvm_checksum is not called after this function, the
802 * EEPROM will most likely contain an invalid checksum.
803 **/
804static s32 e1000_write_nvm_eewr_82571(struct e1000_hw *hw, u16 offset,
805 u16 words, u16 *data)
806{
807 struct e1000_nvm_info *nvm = &hw->nvm;
808 u32 i, eewr = 0;
809 s32 ret_val = 0;
810
811 /* A check for invalid values: offset too large, too many words,
812 * and not enough words.
813 */
814 if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
815 (words == 0)) {
816 e_dbg("nvm parameter(s) out of bounds\n");
817 return -E1000_ERR_NVM;
818 }
819
820 for (i = 0; i < words; i++) {
821 eewr = ((data[i] << E1000_NVM_RW_REG_DATA) |
822 ((offset + i) << E1000_NVM_RW_ADDR_SHIFT) |
823 E1000_NVM_RW_REG_START);
824
825 ret_val = e1000e_poll_eerd_eewr_done(hw, E1000_NVM_POLL_WRITE);
826 if (ret_val)
827 break;
828
829 ew32(EEWR, eewr);
830
831 ret_val = e1000e_poll_eerd_eewr_done(hw, E1000_NVM_POLL_WRITE);
832 if (ret_val)
833 break;
834 }
835
836 return ret_val;
837}
838
839/**
840 * e1000_get_cfg_done_82571 - Poll for configuration done
841 * @hw: pointer to the HW structure
842 *
843 * Reads the management control register for the config done bit to be set.
844 **/
845static s32 e1000_get_cfg_done_82571(struct e1000_hw *hw)
846{
847 s32 timeout = PHY_CFG_TIMEOUT;
848
849 while (timeout) {
850 if (er32(EEMNGCTL) & E1000_NVM_CFG_DONE_PORT_0)
851 break;
852 usleep_range(1000, 2000);
853 timeout--;
854 }
855 if (!timeout) {
856 e_dbg("MNG configuration cycle has not completed.\n");
857 return -E1000_ERR_RESET;
858 }
859
860 return 0;
861}
862
863/**
864 * e1000_set_d0_lplu_state_82571 - Set Low Power Linkup D0 state
865 * @hw: pointer to the HW structure
866 * @active: true to enable LPLU, false to disable
867 *
868 * Sets the LPLU D0 state according to the active flag. When activating LPLU
869 * this function also disables smart speed and vice versa. LPLU will not be
870 * activated unless the device autonegotiation advertisement meets standards
871 * of either 10 or 10/100 or 10/100/1000 at all duplexes. This is a function
872 * pointer entry point only called by PHY setup routines.
873 **/
874static s32 e1000_set_d0_lplu_state_82571(struct e1000_hw *hw, bool active)
875{
876 struct e1000_phy_info *phy = &hw->phy;
877 s32 ret_val;
878 u16 data;
879
880 ret_val = e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &data);
881 if (ret_val)
882 return ret_val;
883
884 if (active) {
885 data |= IGP02E1000_PM_D0_LPLU;
886 ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data);
887 if (ret_val)
888 return ret_val;
889
890 /* When LPLU is enabled, we should disable SmartSpeed */
891 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
892 if (ret_val)
893 return ret_val;
894 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
895 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
896 if (ret_val)
897 return ret_val;
898 } else {
899 data &= ~IGP02E1000_PM_D0_LPLU;
900 ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data);
901 if (ret_val)
902 return ret_val;
903 /* LPLU and SmartSpeed are mutually exclusive. LPLU is used
904 * during Dx states where the power conservation is most
905 * important. During driver activity we should enable
906 * SmartSpeed, so performance is maintained.
907 */
908 if (phy->smart_speed == e1000_smart_speed_on) {
909 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
910 &data);
911 if (ret_val)
912 return ret_val;
913
914 data |= IGP01E1000_PSCFR_SMART_SPEED;
915 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
916 data);
917 if (ret_val)
918 return ret_val;
919 } else if (phy->smart_speed == e1000_smart_speed_off) {
920 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
921 &data);
922 if (ret_val)
923 return ret_val;
924
925 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
926 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
927 data);
928 if (ret_val)
929 return ret_val;
930 }
931 }
932
933 return 0;
934}
935
936/**
937 * e1000_reset_hw_82571 - Reset hardware
938 * @hw: pointer to the HW structure
939 *
940 * This resets the hardware into a known state.
941 **/
942static s32 e1000_reset_hw_82571(struct e1000_hw *hw)
943{
944 u32 ctrl, ctrl_ext, eecd, tctl;
945 s32 ret_val;
946
947 /* Prevent the PCI-E bus from sticking if there is no TLP connection
948 * on the last TLP read/write transaction when MAC is reset.
949 */
950 ret_val = e1000e_disable_pcie_master(hw);
951 if (ret_val)
952 e_dbg("PCI-E Master disable polling has failed.\n");
953
954 e_dbg("Masking off all interrupts\n");
955 ew32(IMC, 0xffffffff);
956
957 ew32(RCTL, 0);
958 tctl = er32(TCTL);
959 tctl &= ~E1000_TCTL_EN;
960 ew32(TCTL, tctl);
961 e1e_flush();
962
963 usleep_range(10000, 11000);
964
965 /* Must acquire the MDIO ownership before MAC reset.
966 * Ownership defaults to firmware after a reset.
967 */
968 switch (hw->mac.type) {
969 case e1000_82573:
970 ret_val = e1000_get_hw_semaphore_82573(hw);
971 break;
972 case e1000_82574:
973 case e1000_82583:
974 ret_val = e1000_get_hw_semaphore_82574(hw);
975 break;
976 default:
977 break;
978 }
979
980 ctrl = er32(CTRL);
981
982 e_dbg("Issuing a global reset to MAC\n");
983 ew32(CTRL, ctrl | E1000_CTRL_RST);
984
985 /* Must release MDIO ownership and mutex after MAC reset. */
986 switch (hw->mac.type) {
987 case e1000_82573:
988 /* Release mutex only if the hw semaphore is acquired */
989 if (!ret_val)
990 e1000_put_hw_semaphore_82573(hw);
991 break;
992 case e1000_82574:
993 case e1000_82583:
994 /* Release mutex only if the hw semaphore is acquired */
995 if (!ret_val)
996 e1000_put_hw_semaphore_82574(hw);
997 break;
998 default:
999 break;
1000 }
1001
1002 if (hw->nvm.type == e1000_nvm_flash_hw) {
1003 usleep_range(10, 20);
1004 ctrl_ext = er32(CTRL_EXT);
1005 ctrl_ext |= E1000_CTRL_EXT_EE_RST;
1006 ew32(CTRL_EXT, ctrl_ext);
1007 e1e_flush();
1008 }
1009
1010 ret_val = e1000e_get_auto_rd_done(hw);
1011 if (ret_val)
1012 /* We don't want to continue accessing MAC registers. */
1013 return ret_val;
1014
1015 /* Phy configuration from NVM just starts after EECD_AUTO_RD is set.
1016 * Need to wait for Phy configuration completion before accessing
1017 * NVM and Phy.
1018 */
1019
1020 switch (hw->mac.type) {
1021 case e1000_82571:
1022 case e1000_82572:
1023 /* REQ and GNT bits need to be cleared when using AUTO_RD
1024 * to access the EEPROM.
1025 */
1026 eecd = er32(EECD);
1027 eecd &= ~(E1000_EECD_REQ | E1000_EECD_GNT);
1028 ew32(EECD, eecd);
1029 break;
1030 case e1000_82573:
1031 case e1000_82574:
1032 case e1000_82583:
1033 msleep(25);
1034 break;
1035 default:
1036 break;
1037 }
1038
1039 /* Clear any pending interrupt events. */
1040 ew32(IMC, 0xffffffff);
1041 er32(ICR);
1042
1043 if (hw->mac.type == e1000_82571) {
1044 /* Install any alternate MAC address into RAR0 */
1045 ret_val = e1000_check_alt_mac_addr_generic(hw);
1046 if (ret_val)
1047 return ret_val;
1048
1049 e1000e_set_laa_state_82571(hw, true);
1050 }
1051
1052 /* Reinitialize the 82571 serdes link state machine */
1053 if (hw->phy.media_type == e1000_media_type_internal_serdes)
1054 hw->mac.serdes_link_state = e1000_serdes_link_down;
1055
1056 return 0;
1057}
1058
1059/**
1060 * e1000_init_hw_82571 - Initialize hardware
1061 * @hw: pointer to the HW structure
1062 *
1063 * This inits the hardware readying it for operation.
1064 **/
1065static s32 e1000_init_hw_82571(struct e1000_hw *hw)
1066{
1067 struct e1000_mac_info *mac = &hw->mac;
1068 u32 reg_data;
1069 s32 ret_val;
1070 u16 i, rar_count = mac->rar_entry_count;
1071
1072 e1000_initialize_hw_bits_82571(hw);
1073
1074 /* Initialize identification LED */
1075 ret_val = mac->ops.id_led_init(hw);
1076 /* An error is not fatal and we should not stop init due to this */
1077 if (ret_val)
1078 e_dbg("Error initializing identification LED\n");
1079
1080 /* Disabling VLAN filtering */
1081 e_dbg("Initializing the IEEE VLAN\n");
1082 mac->ops.clear_vfta(hw);
1083
1084 /* Setup the receive address.
1085 * If, however, a locally administered address was assigned to the
1086 * 82571, we must reserve a RAR for it to work around an issue where
1087 * resetting one port will reload the MAC on the other port.
1088 */
1089 if (e1000e_get_laa_state_82571(hw))
1090 rar_count--;
1091 e1000e_init_rx_addrs(hw, rar_count);
1092
1093 /* Zero out the Multicast HASH table */
1094 e_dbg("Zeroing the MTA\n");
1095 for (i = 0; i < mac->mta_reg_count; i++)
1096 E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
1097
1098 /* Setup link and flow control */
1099 ret_val = mac->ops.setup_link(hw);
1100
1101 /* Set the transmit descriptor write-back policy */
1102 reg_data = er32(TXDCTL(0));
1103 reg_data = ((reg_data & ~E1000_TXDCTL_WTHRESH) |
1104 E1000_TXDCTL_FULL_TX_DESC_WB | E1000_TXDCTL_COUNT_DESC);
1105 ew32(TXDCTL(0), reg_data);
1106
1107 /* ...for both queues. */
1108 switch (mac->type) {
1109 case e1000_82573:
1110 e1000e_enable_tx_pkt_filtering(hw);
1111 fallthrough;
1112 case e1000_82574:
1113 case e1000_82583:
1114 reg_data = er32(GCR);
1115 reg_data |= E1000_GCR_L1_ACT_WITHOUT_L0S_RX;
1116 ew32(GCR, reg_data);
1117 break;
1118 default:
1119 reg_data = er32(TXDCTL(1));
1120 reg_data = ((reg_data & ~E1000_TXDCTL_WTHRESH) |
1121 E1000_TXDCTL_FULL_TX_DESC_WB |
1122 E1000_TXDCTL_COUNT_DESC);
1123 ew32(TXDCTL(1), reg_data);
1124 break;
1125 }
1126
1127 /* Clear all of the statistics registers (clear on read). It is
1128 * important that we do this after we have tried to establish link
1129 * because the symbol error count will increment wildly if there
1130 * is no link.
1131 */
1132 e1000_clear_hw_cntrs_82571(hw);
1133
1134 return ret_val;
1135}
1136
1137/**
1138 * e1000_initialize_hw_bits_82571 - Initialize hardware-dependent bits
1139 * @hw: pointer to the HW structure
1140 *
1141 * Initializes required hardware-dependent bits needed for normal operation.
1142 **/
1143static void e1000_initialize_hw_bits_82571(struct e1000_hw *hw)
1144{
1145 u32 reg;
1146
1147 /* Transmit Descriptor Control 0 */
1148 reg = er32(TXDCTL(0));
1149 reg |= BIT(22);
1150 ew32(TXDCTL(0), reg);
1151
1152 /* Transmit Descriptor Control 1 */
1153 reg = er32(TXDCTL(1));
1154 reg |= BIT(22);
1155 ew32(TXDCTL(1), reg);
1156
1157 /* Transmit Arbitration Control 0 */
1158 reg = er32(TARC(0));
1159 reg &= ~(0xF << 27); /* 30:27 */
1160 switch (hw->mac.type) {
1161 case e1000_82571:
1162 case e1000_82572:
1163 reg |= BIT(23) | BIT(24) | BIT(25) | BIT(26);
1164 break;
1165 case e1000_82574:
1166 case e1000_82583:
1167 reg |= BIT(26);
1168 break;
1169 default:
1170 break;
1171 }
1172 ew32(TARC(0), reg);
1173
1174 /* Transmit Arbitration Control 1 */
1175 reg = er32(TARC(1));
1176 switch (hw->mac.type) {
1177 case e1000_82571:
1178 case e1000_82572:
1179 reg &= ~(BIT(29) | BIT(30));
1180 reg |= BIT(22) | BIT(24) | BIT(25) | BIT(26);
1181 if (er32(TCTL) & E1000_TCTL_MULR)
1182 reg &= ~BIT(28);
1183 else
1184 reg |= BIT(28);
1185 ew32(TARC(1), reg);
1186 break;
1187 default:
1188 break;
1189 }
1190
1191 /* Device Control */
1192 switch (hw->mac.type) {
1193 case e1000_82573:
1194 case e1000_82574:
1195 case e1000_82583:
1196 reg = er32(CTRL);
1197 reg &= ~BIT(29);
1198 ew32(CTRL, reg);
1199 break;
1200 default:
1201 break;
1202 }
1203
1204 /* Extended Device Control */
1205 switch (hw->mac.type) {
1206 case e1000_82573:
1207 case e1000_82574:
1208 case e1000_82583:
1209 reg = er32(CTRL_EXT);
1210 reg &= ~BIT(23);
1211 reg |= BIT(22);
1212 ew32(CTRL_EXT, reg);
1213 break;
1214 default:
1215 break;
1216 }
1217
1218 if (hw->mac.type == e1000_82571) {
1219 reg = er32(PBA_ECC);
1220 reg |= E1000_PBA_ECC_CORR_EN;
1221 ew32(PBA_ECC, reg);
1222 }
1223
1224 /* Workaround for hardware errata.
1225 * Ensure that DMA Dynamic Clock gating is disabled on 82571 and 82572
1226 */
1227 if ((hw->mac.type == e1000_82571) || (hw->mac.type == e1000_82572)) {
1228 reg = er32(CTRL_EXT);
1229 reg &= ~E1000_CTRL_EXT_DMA_DYN_CLK_EN;
1230 ew32(CTRL_EXT, reg);
1231 }
1232
1233 /* Disable IPv6 extension header parsing because some malformed
1234 * IPv6 headers can hang the Rx.
1235 */
1236 if (hw->mac.type <= e1000_82573) {
1237 reg = er32(RFCTL);
1238 reg |= (E1000_RFCTL_IPV6_EX_DIS | E1000_RFCTL_NEW_IPV6_EXT_DIS);
1239 ew32(RFCTL, reg);
1240 }
1241
1242 /* PCI-Ex Control Registers */
1243 switch (hw->mac.type) {
1244 case e1000_82574:
1245 case e1000_82583:
1246 reg = er32(GCR);
1247 reg |= BIT(22);
1248 ew32(GCR, reg);
1249
1250 /* Workaround for hardware errata.
1251 * apply workaround for hardware errata documented in errata
1252 * docs Fixes issue where some error prone or unreliable PCIe
1253 * completions are occurring, particularly with ASPM enabled.
1254 * Without fix, issue can cause Tx timeouts.
1255 */
1256 reg = er32(GCR2);
1257 reg |= 1;
1258 ew32(GCR2, reg);
1259 break;
1260 default:
1261 break;
1262 }
1263}
1264
1265/**
1266 * e1000_clear_vfta_82571 - Clear VLAN filter table
1267 * @hw: pointer to the HW structure
1268 *
1269 * Clears the register array which contains the VLAN filter table by
1270 * setting all the values to 0.
1271 **/
1272static void e1000_clear_vfta_82571(struct e1000_hw *hw)
1273{
1274 u32 offset;
1275 u32 vfta_value = 0;
1276 u32 vfta_offset = 0;
1277 u32 vfta_bit_in_reg = 0;
1278
1279 switch (hw->mac.type) {
1280 case e1000_82573:
1281 case e1000_82574:
1282 case e1000_82583:
1283 if (hw->mng_cookie.vlan_id != 0) {
1284 /* The VFTA is a 4096b bit-field, each identifying
1285 * a single VLAN ID. The following operations
1286 * determine which 32b entry (i.e. offset) into the
1287 * array we want to set the VLAN ID (i.e. bit) of
1288 * the manageability unit.
1289 */
1290 vfta_offset = (hw->mng_cookie.vlan_id >>
1291 E1000_VFTA_ENTRY_SHIFT) &
1292 E1000_VFTA_ENTRY_MASK;
1293 vfta_bit_in_reg =
1294 BIT(hw->mng_cookie.vlan_id &
1295 E1000_VFTA_ENTRY_BIT_SHIFT_MASK);
1296 }
1297 break;
1298 default:
1299 break;
1300 }
1301 for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) {
1302 /* If the offset we want to clear is the same offset of the
1303 * manageability VLAN ID, then clear all bits except that of
1304 * the manageability unit.
1305 */
1306 vfta_value = (offset == vfta_offset) ? vfta_bit_in_reg : 0;
1307 E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, vfta_value);
1308 e1e_flush();
1309 }
1310}
1311
1312/**
1313 * e1000_check_mng_mode_82574 - Check manageability is enabled
1314 * @hw: pointer to the HW structure
1315 *
1316 * Reads the NVM Initialization Control Word 2 and returns true
1317 * (>0) if any manageability is enabled, else false (0).
1318 **/
1319static bool e1000_check_mng_mode_82574(struct e1000_hw *hw)
1320{
1321 u16 data;
1322
1323 e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &data);
1324 return (data & E1000_NVM_INIT_CTRL2_MNGM) != 0;
1325}
1326
1327/**
1328 * e1000_led_on_82574 - Turn LED on
1329 * @hw: pointer to the HW structure
1330 *
1331 * Turn LED on.
1332 **/
1333static s32 e1000_led_on_82574(struct e1000_hw *hw)
1334{
1335 u32 ctrl;
1336 u32 i;
1337
1338 ctrl = hw->mac.ledctl_mode2;
1339 if (!(E1000_STATUS_LU & er32(STATUS))) {
1340 /* If no link, then turn LED on by setting the invert bit
1341 * for each LED that's "on" (0x0E) in ledctl_mode2.
1342 */
1343 for (i = 0; i < 4; i++)
1344 if (((hw->mac.ledctl_mode2 >> (i * 8)) & 0xFF) ==
1345 E1000_LEDCTL_MODE_LED_ON)
1346 ctrl |= (E1000_LEDCTL_LED0_IVRT << (i * 8));
1347 }
1348 ew32(LEDCTL, ctrl);
1349
1350 return 0;
1351}
1352
1353/**
1354 * e1000_check_phy_82574 - check 82574 phy hung state
1355 * @hw: pointer to the HW structure
1356 *
1357 * Returns whether phy is hung or not
1358 **/
1359bool e1000_check_phy_82574(struct e1000_hw *hw)
1360{
1361 u16 status_1kbt = 0;
1362 u16 receive_errors = 0;
1363 s32 ret_val;
1364
1365 /* Read PHY Receive Error counter first, if its is max - all F's then
1366 * read the Base1000T status register If both are max then PHY is hung.
1367 */
1368 ret_val = e1e_rphy(hw, E1000_RECEIVE_ERROR_COUNTER, &receive_errors);
1369 if (ret_val)
1370 return false;
1371 if (receive_errors == E1000_RECEIVE_ERROR_MAX) {
1372 ret_val = e1e_rphy(hw, E1000_BASE1000T_STATUS, &status_1kbt);
1373 if (ret_val)
1374 return false;
1375 if ((status_1kbt & E1000_IDLE_ERROR_COUNT_MASK) ==
1376 E1000_IDLE_ERROR_COUNT_MASK)
1377 return true;
1378 }
1379
1380 return false;
1381}
1382
1383/**
1384 * e1000_setup_link_82571 - Setup flow control and link settings
1385 * @hw: pointer to the HW structure
1386 *
1387 * Determines which flow control settings to use, then configures flow
1388 * control. Calls the appropriate media-specific link configuration
1389 * function. Assuming the adapter has a valid link partner, a valid link
1390 * should be established. Assumes the hardware has previously been reset
1391 * and the transmitter and receiver are not enabled.
1392 **/
1393static s32 e1000_setup_link_82571(struct e1000_hw *hw)
1394{
1395 /* 82573 does not have a word in the NVM to determine
1396 * the default flow control setting, so we explicitly
1397 * set it to full.
1398 */
1399 switch (hw->mac.type) {
1400 case e1000_82573:
1401 case e1000_82574:
1402 case e1000_82583:
1403 if (hw->fc.requested_mode == e1000_fc_default)
1404 hw->fc.requested_mode = e1000_fc_full;
1405 break;
1406 default:
1407 break;
1408 }
1409
1410 return e1000e_setup_link_generic(hw);
1411}
1412
1413/**
1414 * e1000_setup_copper_link_82571 - Configure copper link settings
1415 * @hw: pointer to the HW structure
1416 *
1417 * Configures the link for auto-neg or forced speed and duplex. Then we check
1418 * for link, once link is established calls to configure collision distance
1419 * and flow control are called.
1420 **/
1421static s32 e1000_setup_copper_link_82571(struct e1000_hw *hw)
1422{
1423 u32 ctrl;
1424 s32 ret_val;
1425
1426 ctrl = er32(CTRL);
1427 ctrl |= E1000_CTRL_SLU;
1428 ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1429 ew32(CTRL, ctrl);
1430
1431 switch (hw->phy.type) {
1432 case e1000_phy_m88:
1433 case e1000_phy_bm:
1434 ret_val = e1000e_copper_link_setup_m88(hw);
1435 break;
1436 case e1000_phy_igp_2:
1437 ret_val = e1000e_copper_link_setup_igp(hw);
1438 break;
1439 default:
1440 return -E1000_ERR_PHY;
1441 }
1442
1443 if (ret_val)
1444 return ret_val;
1445
1446 return e1000e_setup_copper_link(hw);
1447}
1448
1449/**
1450 * e1000_setup_fiber_serdes_link_82571 - Setup link for fiber/serdes
1451 * @hw: pointer to the HW structure
1452 *
1453 * Configures collision distance and flow control for fiber and serdes links.
1454 * Upon successful setup, poll for link.
1455 **/
1456static s32 e1000_setup_fiber_serdes_link_82571(struct e1000_hw *hw)
1457{
1458 switch (hw->mac.type) {
1459 case e1000_82571:
1460 case e1000_82572:
1461 /* If SerDes loopback mode is entered, there is no form
1462 * of reset to take the adapter out of that mode. So we
1463 * have to explicitly take the adapter out of loopback
1464 * mode. This prevents drivers from twiddling their thumbs
1465 * if another tool failed to take it out of loopback mode.
1466 */
1467 ew32(SCTL, E1000_SCTL_DISABLE_SERDES_LOOPBACK);
1468 break;
1469 default:
1470 break;
1471 }
1472
1473 return e1000e_setup_fiber_serdes_link(hw);
1474}
1475
1476/**
1477 * e1000_check_for_serdes_link_82571 - Check for link (Serdes)
1478 * @hw: pointer to the HW structure
1479 *
1480 * Reports the link state as up or down.
1481 *
1482 * If autonegotiation is supported by the link partner, the link state is
1483 * determined by the result of autonegotiation. This is the most likely case.
1484 * If autonegotiation is not supported by the link partner, and the link
1485 * has a valid signal, force the link up.
1486 *
1487 * The link state is represented internally here by 4 states:
1488 *
1489 * 1) down
1490 * 2) autoneg_progress
1491 * 3) autoneg_complete (the link successfully autonegotiated)
1492 * 4) forced_up (the link has been forced up, it did not autonegotiate)
1493 *
1494 **/
1495static s32 e1000_check_for_serdes_link_82571(struct e1000_hw *hw)
1496{
1497 struct e1000_mac_info *mac = &hw->mac;
1498 u32 rxcw;
1499 u32 ctrl;
1500 u32 status;
1501 u32 txcw;
1502 u32 i;
1503 s32 ret_val = 0;
1504
1505 ctrl = er32(CTRL);
1506 status = er32(STATUS);
1507 er32(RXCW);
1508 /* SYNCH bit and IV bit are sticky */
1509 usleep_range(10, 20);
1510 rxcw = er32(RXCW);
1511
1512 if ((rxcw & E1000_RXCW_SYNCH) && !(rxcw & E1000_RXCW_IV)) {
1513 /* Receiver is synchronized with no invalid bits. */
1514 switch (mac->serdes_link_state) {
1515 case e1000_serdes_link_autoneg_complete:
1516 if (!(status & E1000_STATUS_LU)) {
1517 /* We have lost link, retry autoneg before
1518 * reporting link failure
1519 */
1520 mac->serdes_link_state =
1521 e1000_serdes_link_autoneg_progress;
1522 mac->serdes_has_link = false;
1523 e_dbg("AN_UP -> AN_PROG\n");
1524 } else {
1525 mac->serdes_has_link = true;
1526 }
1527 break;
1528
1529 case e1000_serdes_link_forced_up:
1530 /* If we are receiving /C/ ordered sets, re-enable
1531 * auto-negotiation in the TXCW register and disable
1532 * forced link in the Device Control register in an
1533 * attempt to auto-negotiate with our link partner.
1534 */
1535 if (rxcw & E1000_RXCW_C) {
1536 /* Enable autoneg, and unforce link up */
1537 ew32(TXCW, mac->txcw);
1538 ew32(CTRL, (ctrl & ~E1000_CTRL_SLU));
1539 mac->serdes_link_state =
1540 e1000_serdes_link_autoneg_progress;
1541 mac->serdes_has_link = false;
1542 e_dbg("FORCED_UP -> AN_PROG\n");
1543 } else {
1544 mac->serdes_has_link = true;
1545 }
1546 break;
1547
1548 case e1000_serdes_link_autoneg_progress:
1549 if (rxcw & E1000_RXCW_C) {
1550 /* We received /C/ ordered sets, meaning the
1551 * link partner has autonegotiated, and we can
1552 * trust the Link Up (LU) status bit.
1553 */
1554 if (status & E1000_STATUS_LU) {
1555 mac->serdes_link_state =
1556 e1000_serdes_link_autoneg_complete;
1557 e_dbg("AN_PROG -> AN_UP\n");
1558 mac->serdes_has_link = true;
1559 } else {
1560 /* Autoneg completed, but failed. */
1561 mac->serdes_link_state =
1562 e1000_serdes_link_down;
1563 e_dbg("AN_PROG -> DOWN\n");
1564 }
1565 } else {
1566 /* The link partner did not autoneg.
1567 * Force link up and full duplex, and change
1568 * state to forced.
1569 */
1570 ew32(TXCW, (mac->txcw & ~E1000_TXCW_ANE));
1571 ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
1572 ew32(CTRL, ctrl);
1573
1574 /* Configure Flow Control after link up. */
1575 ret_val = e1000e_config_fc_after_link_up(hw);
1576 if (ret_val) {
1577 e_dbg("Error config flow control\n");
1578 break;
1579 }
1580 mac->serdes_link_state =
1581 e1000_serdes_link_forced_up;
1582 mac->serdes_has_link = true;
1583 e_dbg("AN_PROG -> FORCED_UP\n");
1584 }
1585 break;
1586
1587 case e1000_serdes_link_down:
1588 default:
1589 /* The link was down but the receiver has now gained
1590 * valid sync, so lets see if we can bring the link
1591 * up.
1592 */
1593 ew32(TXCW, mac->txcw);
1594 ew32(CTRL, (ctrl & ~E1000_CTRL_SLU));
1595 mac->serdes_link_state =
1596 e1000_serdes_link_autoneg_progress;
1597 mac->serdes_has_link = false;
1598 e_dbg("DOWN -> AN_PROG\n");
1599 break;
1600 }
1601 } else {
1602 if (!(rxcw & E1000_RXCW_SYNCH)) {
1603 mac->serdes_has_link = false;
1604 mac->serdes_link_state = e1000_serdes_link_down;
1605 e_dbg("ANYSTATE -> DOWN\n");
1606 } else {
1607 /* Check several times, if SYNCH bit and CONFIG
1608 * bit both are consistently 1 then simply ignore
1609 * the IV bit and restart Autoneg
1610 */
1611 for (i = 0; i < AN_RETRY_COUNT; i++) {
1612 usleep_range(10, 20);
1613 rxcw = er32(RXCW);
1614 if ((rxcw & E1000_RXCW_SYNCH) &&
1615 (rxcw & E1000_RXCW_C))
1616 continue;
1617
1618 if (rxcw & E1000_RXCW_IV) {
1619 mac->serdes_has_link = false;
1620 mac->serdes_link_state =
1621 e1000_serdes_link_down;
1622 e_dbg("ANYSTATE -> DOWN\n");
1623 break;
1624 }
1625 }
1626
1627 if (i == AN_RETRY_COUNT) {
1628 txcw = er32(TXCW);
1629 txcw |= E1000_TXCW_ANE;
1630 ew32(TXCW, txcw);
1631 mac->serdes_link_state =
1632 e1000_serdes_link_autoneg_progress;
1633 mac->serdes_has_link = false;
1634 e_dbg("ANYSTATE -> AN_PROG\n");
1635 }
1636 }
1637 }
1638
1639 return ret_val;
1640}
1641
1642/**
1643 * e1000_valid_led_default_82571 - Verify a valid default LED config
1644 * @hw: pointer to the HW structure
1645 * @data: pointer to the NVM (EEPROM)
1646 *
1647 * Read the EEPROM for the current default LED configuration. If the
1648 * LED configuration is not valid, set to a valid LED configuration.
1649 **/
1650static s32 e1000_valid_led_default_82571(struct e1000_hw *hw, u16 *data)
1651{
1652 s32 ret_val;
1653
1654 ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
1655 if (ret_val) {
1656 e_dbg("NVM Read Error\n");
1657 return ret_val;
1658 }
1659
1660 switch (hw->mac.type) {
1661 case e1000_82573:
1662 case e1000_82574:
1663 case e1000_82583:
1664 if (*data == ID_LED_RESERVED_F746)
1665 *data = ID_LED_DEFAULT_82573;
1666 break;
1667 default:
1668 if (*data == ID_LED_RESERVED_0000 ||
1669 *data == ID_LED_RESERVED_FFFF)
1670 *data = ID_LED_DEFAULT;
1671 break;
1672 }
1673
1674 return 0;
1675}
1676
1677/**
1678 * e1000e_get_laa_state_82571 - Get locally administered address state
1679 * @hw: pointer to the HW structure
1680 *
1681 * Retrieve and return the current locally administered address state.
1682 **/
1683bool e1000e_get_laa_state_82571(struct e1000_hw *hw)
1684{
1685 if (hw->mac.type != e1000_82571)
1686 return false;
1687
1688 return hw->dev_spec.e82571.laa_is_present;
1689}
1690
1691/**
1692 * e1000e_set_laa_state_82571 - Set locally administered address state
1693 * @hw: pointer to the HW structure
1694 * @state: enable/disable locally administered address
1695 *
1696 * Enable/Disable the current locally administered address state.
1697 **/
1698void e1000e_set_laa_state_82571(struct e1000_hw *hw, bool state)
1699{
1700 if (hw->mac.type != e1000_82571)
1701 return;
1702
1703 hw->dev_spec.e82571.laa_is_present = state;
1704
1705 /* If workaround is activated... */
1706 if (state)
1707 /* Hold a copy of the LAA in RAR[14] This is done so that
1708 * between the time RAR[0] gets clobbered and the time it
1709 * gets fixed, the actual LAA is in one of the RARs and no
1710 * incoming packets directed to this port are dropped.
1711 * Eventually the LAA will be in RAR[0] and RAR[14].
1712 */
1713 hw->mac.ops.rar_set(hw, hw->mac.addr,
1714 hw->mac.rar_entry_count - 1);
1715}
1716
1717/**
1718 * e1000_fix_nvm_checksum_82571 - Fix EEPROM checksum
1719 * @hw: pointer to the HW structure
1720 *
1721 * Verifies that the EEPROM has completed the update. After updating the
1722 * EEPROM, we need to check bit 15 in work 0x23 for the checksum fix. If
1723 * the checksum fix is not implemented, we need to set the bit and update
1724 * the checksum. Otherwise, if bit 15 is set and the checksum is incorrect,
1725 * we need to return bad checksum.
1726 **/
1727static s32 e1000_fix_nvm_checksum_82571(struct e1000_hw *hw)
1728{
1729 struct e1000_nvm_info *nvm = &hw->nvm;
1730 s32 ret_val;
1731 u16 data;
1732
1733 if (nvm->type != e1000_nvm_flash_hw)
1734 return 0;
1735
1736 /* Check bit 4 of word 10h. If it is 0, firmware is done updating
1737 * 10h-12h. Checksum may need to be fixed.
1738 */
1739 ret_val = e1000_read_nvm(hw, 0x10, 1, &data);
1740 if (ret_val)
1741 return ret_val;
1742
1743 if (!(data & 0x10)) {
1744 /* Read 0x23 and check bit 15. This bit is a 1
1745 * when the checksum has already been fixed. If
1746 * the checksum is still wrong and this bit is a
1747 * 1, we need to return bad checksum. Otherwise,
1748 * we need to set this bit to a 1 and update the
1749 * checksum.
1750 */
1751 ret_val = e1000_read_nvm(hw, 0x23, 1, &data);
1752 if (ret_val)
1753 return ret_val;
1754
1755 if (!(data & 0x8000)) {
1756 data |= 0x8000;
1757 ret_val = e1000_write_nvm(hw, 0x23, 1, &data);
1758 if (ret_val)
1759 return ret_val;
1760 ret_val = e1000e_update_nvm_checksum(hw);
1761 if (ret_val)
1762 return ret_val;
1763 }
1764 }
1765
1766 return 0;
1767}
1768
1769/**
1770 * e1000_read_mac_addr_82571 - Read device MAC address
1771 * @hw: pointer to the HW structure
1772 **/
1773static s32 e1000_read_mac_addr_82571(struct e1000_hw *hw)
1774{
1775 if (hw->mac.type == e1000_82571) {
1776 s32 ret_val;
1777
1778 /* If there's an alternate MAC address place it in RAR0
1779 * so that it will override the Si installed default perm
1780 * address.
1781 */
1782 ret_val = e1000_check_alt_mac_addr_generic(hw);
1783 if (ret_val)
1784 return ret_val;
1785 }
1786
1787 return e1000_read_mac_addr_generic(hw);
1788}
1789
1790/**
1791 * e1000_power_down_phy_copper_82571 - Remove link during PHY power down
1792 * @hw: pointer to the HW structure
1793 *
1794 * In the case of a PHY power down to save power, or to turn off link during a
1795 * driver unload, or wake on lan is not enabled, remove the link.
1796 **/
1797static void e1000_power_down_phy_copper_82571(struct e1000_hw *hw)
1798{
1799 struct e1000_phy_info *phy = &hw->phy;
1800 struct e1000_mac_info *mac = &hw->mac;
1801
1802 if (!phy->ops.check_reset_block)
1803 return;
1804
1805 /* If the management interface is not enabled, then power down */
1806 if (!(mac->ops.check_mng_mode(hw) || phy->ops.check_reset_block(hw)))
1807 e1000_power_down_phy_copper(hw);
1808}
1809
1810/**
1811 * e1000_clear_hw_cntrs_82571 - Clear device specific hardware counters
1812 * @hw: pointer to the HW structure
1813 *
1814 * Clears the hardware counters by reading the counter registers.
1815 **/
1816static void e1000_clear_hw_cntrs_82571(struct e1000_hw *hw)
1817{
1818 e1000e_clear_hw_cntrs_base(hw);
1819
1820 er32(PRC64);
1821 er32(PRC127);
1822 er32(PRC255);
1823 er32(PRC511);
1824 er32(PRC1023);
1825 er32(PRC1522);
1826 er32(PTC64);
1827 er32(PTC127);
1828 er32(PTC255);
1829 er32(PTC511);
1830 er32(PTC1023);
1831 er32(PTC1522);
1832
1833 er32(ALGNERRC);
1834 er32(RXERRC);
1835 er32(TNCRS);
1836 er32(CEXTERR);
1837 er32(TSCTC);
1838 er32(TSCTFC);
1839
1840 er32(MGTPRC);
1841 er32(MGTPDC);
1842 er32(MGTPTC);
1843
1844 er32(IAC);
1845 er32(ICRXOC);
1846
1847 er32(ICRXPTC);
1848 er32(ICRXATC);
1849 er32(ICTXPTC);
1850 er32(ICTXATC);
1851 er32(ICTXQEC);
1852 er32(ICTXQMTC);
1853 er32(ICRXDMTC);
1854}
1855
1856static const struct e1000_mac_operations e82571_mac_ops = {
1857 /* .check_mng_mode: mac type dependent */
1858 /* .check_for_link: media type dependent */
1859 .id_led_init = e1000e_id_led_init_generic,
1860 .cleanup_led = e1000e_cleanup_led_generic,
1861 .clear_hw_cntrs = e1000_clear_hw_cntrs_82571,
1862 .get_bus_info = e1000e_get_bus_info_pcie,
1863 .set_lan_id = e1000_set_lan_id_multi_port_pcie,
1864 /* .get_link_up_info: media type dependent */
1865 /* .led_on: mac type dependent */
1866 .led_off = e1000e_led_off_generic,
1867 .update_mc_addr_list = e1000e_update_mc_addr_list_generic,
1868 .write_vfta = e1000_write_vfta_generic,
1869 .clear_vfta = e1000_clear_vfta_82571,
1870 .reset_hw = e1000_reset_hw_82571,
1871 .init_hw = e1000_init_hw_82571,
1872 .setup_link = e1000_setup_link_82571,
1873 /* .setup_physical_interface: media type dependent */
1874 .setup_led = e1000e_setup_led_generic,
1875 .config_collision_dist = e1000e_config_collision_dist_generic,
1876 .read_mac_addr = e1000_read_mac_addr_82571,
1877 .rar_set = e1000e_rar_set_generic,
1878 .rar_get_count = e1000e_rar_get_count_generic,
1879};
1880
1881static const struct e1000_phy_operations e82_phy_ops_igp = {
1882 .acquire = e1000_get_hw_semaphore_82571,
1883 .check_polarity = e1000_check_polarity_igp,
1884 .check_reset_block = e1000e_check_reset_block_generic,
1885 .commit = NULL,
1886 .force_speed_duplex = e1000e_phy_force_speed_duplex_igp,
1887 .get_cfg_done = e1000_get_cfg_done_82571,
1888 .get_cable_length = e1000e_get_cable_length_igp_2,
1889 .get_info = e1000e_get_phy_info_igp,
1890 .read_reg = e1000e_read_phy_reg_igp,
1891 .release = e1000_put_hw_semaphore_82571,
1892 .reset = e1000e_phy_hw_reset_generic,
1893 .set_d0_lplu_state = e1000_set_d0_lplu_state_82571,
1894 .set_d3_lplu_state = e1000e_set_d3_lplu_state,
1895 .write_reg = e1000e_write_phy_reg_igp,
1896 .cfg_on_link_up = NULL,
1897};
1898
1899static const struct e1000_phy_operations e82_phy_ops_m88 = {
1900 .acquire = e1000_get_hw_semaphore_82571,
1901 .check_polarity = e1000_check_polarity_m88,
1902 .check_reset_block = e1000e_check_reset_block_generic,
1903 .commit = e1000e_phy_sw_reset,
1904 .force_speed_duplex = e1000e_phy_force_speed_duplex_m88,
1905 .get_cfg_done = e1000e_get_cfg_done_generic,
1906 .get_cable_length = e1000e_get_cable_length_m88,
1907 .get_info = e1000e_get_phy_info_m88,
1908 .read_reg = e1000e_read_phy_reg_m88,
1909 .release = e1000_put_hw_semaphore_82571,
1910 .reset = e1000e_phy_hw_reset_generic,
1911 .set_d0_lplu_state = e1000_set_d0_lplu_state_82571,
1912 .set_d3_lplu_state = e1000e_set_d3_lplu_state,
1913 .write_reg = e1000e_write_phy_reg_m88,
1914 .cfg_on_link_up = NULL,
1915};
1916
1917static const struct e1000_phy_operations e82_phy_ops_bm = {
1918 .acquire = e1000_get_hw_semaphore_82571,
1919 .check_polarity = e1000_check_polarity_m88,
1920 .check_reset_block = e1000e_check_reset_block_generic,
1921 .commit = e1000e_phy_sw_reset,
1922 .force_speed_duplex = e1000e_phy_force_speed_duplex_m88,
1923 .get_cfg_done = e1000e_get_cfg_done_generic,
1924 .get_cable_length = e1000e_get_cable_length_m88,
1925 .get_info = e1000e_get_phy_info_m88,
1926 .read_reg = e1000e_read_phy_reg_bm2,
1927 .release = e1000_put_hw_semaphore_82571,
1928 .reset = e1000e_phy_hw_reset_generic,
1929 .set_d0_lplu_state = e1000_set_d0_lplu_state_82571,
1930 .set_d3_lplu_state = e1000e_set_d3_lplu_state,
1931 .write_reg = e1000e_write_phy_reg_bm2,
1932 .cfg_on_link_up = NULL,
1933};
1934
1935static const struct e1000_nvm_operations e82571_nvm_ops = {
1936 .acquire = e1000_acquire_nvm_82571,
1937 .read = e1000e_read_nvm_eerd,
1938 .release = e1000_release_nvm_82571,
1939 .reload = e1000e_reload_nvm_generic,
1940 .update = e1000_update_nvm_checksum_82571,
1941 .valid_led_default = e1000_valid_led_default_82571,
1942 .validate = e1000_validate_nvm_checksum_82571,
1943 .write = e1000_write_nvm_82571,
1944};
1945
1946const struct e1000_info e1000_82571_info = {
1947 .mac = e1000_82571,
1948 .flags = FLAG_HAS_HW_VLAN_FILTER
1949 | FLAG_HAS_JUMBO_FRAMES
1950 | FLAG_HAS_WOL
1951 | FLAG_APME_IN_CTRL3
1952 | FLAG_HAS_CTRLEXT_ON_LOAD
1953 | FLAG_HAS_SMART_POWER_DOWN
1954 | FLAG_RESET_OVERWRITES_LAA /* errata */
1955 | FLAG_TARC_SPEED_MODE_BIT /* errata */
1956 | FLAG_APME_CHECK_PORT_B,
1957 .flags2 = FLAG2_DISABLE_ASPM_L1 /* errata 13 */
1958 | FLAG2_DMA_BURST,
1959 .pba = 38,
1960 .max_hw_frame_size = DEFAULT_JUMBO,
1961 .get_variants = e1000_get_variants_82571,
1962 .mac_ops = &e82571_mac_ops,
1963 .phy_ops = &e82_phy_ops_igp,
1964 .nvm_ops = &e82571_nvm_ops,
1965};
1966
1967const struct e1000_info e1000_82572_info = {
1968 .mac = e1000_82572,
1969 .flags = FLAG_HAS_HW_VLAN_FILTER
1970 | FLAG_HAS_JUMBO_FRAMES
1971 | FLAG_HAS_WOL
1972 | FLAG_APME_IN_CTRL3
1973 | FLAG_HAS_CTRLEXT_ON_LOAD
1974 | FLAG_TARC_SPEED_MODE_BIT, /* errata */
1975 .flags2 = FLAG2_DISABLE_ASPM_L1 /* errata 13 */
1976 | FLAG2_DMA_BURST,
1977 .pba = 38,
1978 .max_hw_frame_size = DEFAULT_JUMBO,
1979 .get_variants = e1000_get_variants_82571,
1980 .mac_ops = &e82571_mac_ops,
1981 .phy_ops = &e82_phy_ops_igp,
1982 .nvm_ops = &e82571_nvm_ops,
1983};
1984
1985const struct e1000_info e1000_82573_info = {
1986 .mac = e1000_82573,
1987 .flags = FLAG_HAS_HW_VLAN_FILTER
1988 | FLAG_HAS_WOL
1989 | FLAG_APME_IN_CTRL3
1990 | FLAG_HAS_SMART_POWER_DOWN
1991 | FLAG_HAS_AMT
1992 | FLAG_HAS_SWSM_ON_LOAD,
1993 .flags2 = FLAG2_DISABLE_ASPM_L1
1994 | FLAG2_DISABLE_ASPM_L0S,
1995 .pba = 20,
1996 .max_hw_frame_size = VLAN_ETH_FRAME_LEN + ETH_FCS_LEN,
1997 .get_variants = e1000_get_variants_82571,
1998 .mac_ops = &e82571_mac_ops,
1999 .phy_ops = &e82_phy_ops_m88,
2000 .nvm_ops = &e82571_nvm_ops,
2001};
2002
2003const struct e1000_info e1000_82574_info = {
2004 .mac = e1000_82574,
2005 .flags = FLAG_HAS_HW_VLAN_FILTER
2006 | FLAG_HAS_MSIX
2007 | FLAG_HAS_JUMBO_FRAMES
2008 | FLAG_HAS_WOL
2009 | FLAG_HAS_HW_TIMESTAMP
2010 | FLAG_APME_IN_CTRL3
2011 | FLAG_HAS_SMART_POWER_DOWN
2012 | FLAG_HAS_AMT
2013 | FLAG_HAS_CTRLEXT_ON_LOAD,
2014 .flags2 = FLAG2_CHECK_PHY_HANG
2015 | FLAG2_DISABLE_ASPM_L0S
2016 | FLAG2_DISABLE_ASPM_L1
2017 | FLAG2_NO_DISABLE_RX
2018 | FLAG2_DMA_BURST
2019 | FLAG2_CHECK_SYSTIM_OVERFLOW,
2020 .pba = 32,
2021 .max_hw_frame_size = DEFAULT_JUMBO,
2022 .get_variants = e1000_get_variants_82571,
2023 .mac_ops = &e82571_mac_ops,
2024 .phy_ops = &e82_phy_ops_bm,
2025 .nvm_ops = &e82571_nvm_ops,
2026};
2027
2028const struct e1000_info e1000_82583_info = {
2029 .mac = e1000_82583,
2030 .flags = FLAG_HAS_HW_VLAN_FILTER
2031 | FLAG_HAS_WOL
2032 | FLAG_HAS_HW_TIMESTAMP
2033 | FLAG_APME_IN_CTRL3
2034 | FLAG_HAS_SMART_POWER_DOWN
2035 | FLAG_HAS_AMT
2036 | FLAG_HAS_JUMBO_FRAMES
2037 | FLAG_HAS_CTRLEXT_ON_LOAD,
2038 .flags2 = FLAG2_DISABLE_ASPM_L0S
2039 | FLAG2_DISABLE_ASPM_L1
2040 | FLAG2_NO_DISABLE_RX
2041 | FLAG2_CHECK_SYSTIM_OVERFLOW,
2042 .pba = 32,
2043 .max_hw_frame_size = DEFAULT_JUMBO,
2044 .get_variants = e1000_get_variants_82571,
2045 .mac_ops = &e82571_mac_ops,
2046 .phy_ops = &e82_phy_ops_bm,
2047 .nvm_ops = &e82571_nvm_ops,
2048};
1/* Intel PRO/1000 Linux driver
2 * Copyright(c) 1999 - 2015 Intel Corporation.
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms and conditions of the GNU General Public License,
6 * version 2, as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
11 * more details.
12 *
13 * The full GNU General Public License is included in this distribution in
14 * the file called "COPYING".
15 *
16 * Contact Information:
17 * Linux NICS <linux.nics@intel.com>
18 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
19 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
20 */
21
22/* 82571EB Gigabit Ethernet Controller
23 * 82571EB Gigabit Ethernet Controller (Copper)
24 * 82571EB Gigabit Ethernet Controller (Fiber)
25 * 82571EB Dual Port Gigabit Mezzanine Adapter
26 * 82571EB Quad Port Gigabit Mezzanine Adapter
27 * 82571PT Gigabit PT Quad Port Server ExpressModule
28 * 82572EI Gigabit Ethernet Controller (Copper)
29 * 82572EI Gigabit Ethernet Controller (Fiber)
30 * 82572EI Gigabit Ethernet Controller
31 * 82573V Gigabit Ethernet Controller (Copper)
32 * 82573E Gigabit Ethernet Controller (Copper)
33 * 82573L Gigabit Ethernet Controller
34 * 82574L Gigabit Network Connection
35 * 82583V Gigabit Network Connection
36 */
37
38#include "e1000.h"
39
40static s32 e1000_get_phy_id_82571(struct e1000_hw *hw);
41static s32 e1000_setup_copper_link_82571(struct e1000_hw *hw);
42static s32 e1000_setup_fiber_serdes_link_82571(struct e1000_hw *hw);
43static s32 e1000_check_for_serdes_link_82571(struct e1000_hw *hw);
44static s32 e1000_write_nvm_eewr_82571(struct e1000_hw *hw, u16 offset,
45 u16 words, u16 *data);
46static s32 e1000_fix_nvm_checksum_82571(struct e1000_hw *hw);
47static void e1000_initialize_hw_bits_82571(struct e1000_hw *hw);
48static void e1000_clear_hw_cntrs_82571(struct e1000_hw *hw);
49static bool e1000_check_mng_mode_82574(struct e1000_hw *hw);
50static s32 e1000_led_on_82574(struct e1000_hw *hw);
51static void e1000_put_hw_semaphore_82571(struct e1000_hw *hw);
52static void e1000_power_down_phy_copper_82571(struct e1000_hw *hw);
53static void e1000_put_hw_semaphore_82573(struct e1000_hw *hw);
54static s32 e1000_get_hw_semaphore_82574(struct e1000_hw *hw);
55static void e1000_put_hw_semaphore_82574(struct e1000_hw *hw);
56static s32 e1000_set_d0_lplu_state_82574(struct e1000_hw *hw, bool active);
57static s32 e1000_set_d3_lplu_state_82574(struct e1000_hw *hw, bool active);
58
59/**
60 * e1000_init_phy_params_82571 - Init PHY func ptrs.
61 * @hw: pointer to the HW structure
62 **/
63static s32 e1000_init_phy_params_82571(struct e1000_hw *hw)
64{
65 struct e1000_phy_info *phy = &hw->phy;
66 s32 ret_val;
67
68 if (hw->phy.media_type != e1000_media_type_copper) {
69 phy->type = e1000_phy_none;
70 return 0;
71 }
72
73 phy->addr = 1;
74 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
75 phy->reset_delay_us = 100;
76
77 phy->ops.power_up = e1000_power_up_phy_copper;
78 phy->ops.power_down = e1000_power_down_phy_copper_82571;
79
80 switch (hw->mac.type) {
81 case e1000_82571:
82 case e1000_82572:
83 phy->type = e1000_phy_igp_2;
84 break;
85 case e1000_82573:
86 phy->type = e1000_phy_m88;
87 break;
88 case e1000_82574:
89 case e1000_82583:
90 phy->type = e1000_phy_bm;
91 phy->ops.acquire = e1000_get_hw_semaphore_82574;
92 phy->ops.release = e1000_put_hw_semaphore_82574;
93 phy->ops.set_d0_lplu_state = e1000_set_d0_lplu_state_82574;
94 phy->ops.set_d3_lplu_state = e1000_set_d3_lplu_state_82574;
95 break;
96 default:
97 return -E1000_ERR_PHY;
98 }
99
100 /* This can only be done after all function pointers are setup. */
101 ret_val = e1000_get_phy_id_82571(hw);
102 if (ret_val) {
103 e_dbg("Error getting PHY ID\n");
104 return ret_val;
105 }
106
107 /* Verify phy id */
108 switch (hw->mac.type) {
109 case e1000_82571:
110 case e1000_82572:
111 if (phy->id != IGP01E1000_I_PHY_ID)
112 ret_val = -E1000_ERR_PHY;
113 break;
114 case e1000_82573:
115 if (phy->id != M88E1111_I_PHY_ID)
116 ret_val = -E1000_ERR_PHY;
117 break;
118 case e1000_82574:
119 case e1000_82583:
120 if (phy->id != BME1000_E_PHY_ID_R2)
121 ret_val = -E1000_ERR_PHY;
122 break;
123 default:
124 ret_val = -E1000_ERR_PHY;
125 break;
126 }
127
128 if (ret_val)
129 e_dbg("PHY ID unknown: type = 0x%08x\n", phy->id);
130
131 return ret_val;
132}
133
134/**
135 * e1000_init_nvm_params_82571 - Init NVM func ptrs.
136 * @hw: pointer to the HW structure
137 **/
138static s32 e1000_init_nvm_params_82571(struct e1000_hw *hw)
139{
140 struct e1000_nvm_info *nvm = &hw->nvm;
141 u32 eecd = er32(EECD);
142 u16 size;
143
144 nvm->opcode_bits = 8;
145 nvm->delay_usec = 1;
146 switch (nvm->override) {
147 case e1000_nvm_override_spi_large:
148 nvm->page_size = 32;
149 nvm->address_bits = 16;
150 break;
151 case e1000_nvm_override_spi_small:
152 nvm->page_size = 8;
153 nvm->address_bits = 8;
154 break;
155 default:
156 nvm->page_size = eecd & E1000_EECD_ADDR_BITS ? 32 : 8;
157 nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ? 16 : 8;
158 break;
159 }
160
161 switch (hw->mac.type) {
162 case e1000_82573:
163 case e1000_82574:
164 case e1000_82583:
165 if (((eecd >> 15) & 0x3) == 0x3) {
166 nvm->type = e1000_nvm_flash_hw;
167 nvm->word_size = 2048;
168 /* Autonomous Flash update bit must be cleared due
169 * to Flash update issue.
170 */
171 eecd &= ~E1000_EECD_AUPDEN;
172 ew32(EECD, eecd);
173 break;
174 }
175 /* Fall Through */
176 default:
177 nvm->type = e1000_nvm_eeprom_spi;
178 size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >>
179 E1000_EECD_SIZE_EX_SHIFT);
180 /* Added to a constant, "size" becomes the left-shift value
181 * for setting word_size.
182 */
183 size += NVM_WORD_SIZE_BASE_SHIFT;
184
185 /* EEPROM access above 16k is unsupported */
186 if (size > 14)
187 size = 14;
188 nvm->word_size = 1 << size;
189 break;
190 }
191
192 /* Function Pointers */
193 switch (hw->mac.type) {
194 case e1000_82574:
195 case e1000_82583:
196 nvm->ops.acquire = e1000_get_hw_semaphore_82574;
197 nvm->ops.release = e1000_put_hw_semaphore_82574;
198 break;
199 default:
200 break;
201 }
202
203 return 0;
204}
205
206/**
207 * e1000_init_mac_params_82571 - Init MAC func ptrs.
208 * @hw: pointer to the HW structure
209 **/
210static s32 e1000_init_mac_params_82571(struct e1000_hw *hw)
211{
212 struct e1000_mac_info *mac = &hw->mac;
213 u32 swsm = 0;
214 u32 swsm2 = 0;
215 bool force_clear_smbi = false;
216
217 /* Set media type and media-dependent function pointers */
218 switch (hw->adapter->pdev->device) {
219 case E1000_DEV_ID_82571EB_FIBER:
220 case E1000_DEV_ID_82572EI_FIBER:
221 case E1000_DEV_ID_82571EB_QUAD_FIBER:
222 hw->phy.media_type = e1000_media_type_fiber;
223 mac->ops.setup_physical_interface =
224 e1000_setup_fiber_serdes_link_82571;
225 mac->ops.check_for_link = e1000e_check_for_fiber_link;
226 mac->ops.get_link_up_info =
227 e1000e_get_speed_and_duplex_fiber_serdes;
228 break;
229 case E1000_DEV_ID_82571EB_SERDES:
230 case E1000_DEV_ID_82571EB_SERDES_DUAL:
231 case E1000_DEV_ID_82571EB_SERDES_QUAD:
232 case E1000_DEV_ID_82572EI_SERDES:
233 hw->phy.media_type = e1000_media_type_internal_serdes;
234 mac->ops.setup_physical_interface =
235 e1000_setup_fiber_serdes_link_82571;
236 mac->ops.check_for_link = e1000_check_for_serdes_link_82571;
237 mac->ops.get_link_up_info =
238 e1000e_get_speed_and_duplex_fiber_serdes;
239 break;
240 default:
241 hw->phy.media_type = e1000_media_type_copper;
242 mac->ops.setup_physical_interface =
243 e1000_setup_copper_link_82571;
244 mac->ops.check_for_link = e1000e_check_for_copper_link;
245 mac->ops.get_link_up_info = e1000e_get_speed_and_duplex_copper;
246 break;
247 }
248
249 /* Set mta register count */
250 mac->mta_reg_count = 128;
251 /* Set rar entry count */
252 mac->rar_entry_count = E1000_RAR_ENTRIES;
253 /* Adaptive IFS supported */
254 mac->adaptive_ifs = true;
255
256 /* MAC-specific function pointers */
257 switch (hw->mac.type) {
258 case e1000_82573:
259 mac->ops.set_lan_id = e1000_set_lan_id_single_port;
260 mac->ops.check_mng_mode = e1000e_check_mng_mode_generic;
261 mac->ops.led_on = e1000e_led_on_generic;
262 mac->ops.blink_led = e1000e_blink_led_generic;
263
264 /* FWSM register */
265 mac->has_fwsm = true;
266 /* ARC supported; valid only if manageability features are
267 * enabled.
268 */
269 mac->arc_subsystem_valid = !!(er32(FWSM) &
270 E1000_FWSM_MODE_MASK);
271 break;
272 case e1000_82574:
273 case e1000_82583:
274 mac->ops.set_lan_id = e1000_set_lan_id_single_port;
275 mac->ops.check_mng_mode = e1000_check_mng_mode_82574;
276 mac->ops.led_on = e1000_led_on_82574;
277 break;
278 default:
279 mac->ops.check_mng_mode = e1000e_check_mng_mode_generic;
280 mac->ops.led_on = e1000e_led_on_generic;
281 mac->ops.blink_led = e1000e_blink_led_generic;
282
283 /* FWSM register */
284 mac->has_fwsm = true;
285 break;
286 }
287
288 /* Ensure that the inter-port SWSM.SMBI lock bit is clear before
289 * first NVM or PHY access. This should be done for single-port
290 * devices, and for one port only on dual-port devices so that
291 * for those devices we can still use the SMBI lock to synchronize
292 * inter-port accesses to the PHY & NVM.
293 */
294 switch (hw->mac.type) {
295 case e1000_82571:
296 case e1000_82572:
297 swsm2 = er32(SWSM2);
298
299 if (!(swsm2 & E1000_SWSM2_LOCK)) {
300 /* Only do this for the first interface on this card */
301 ew32(SWSM2, swsm2 | E1000_SWSM2_LOCK);
302 force_clear_smbi = true;
303 } else {
304 force_clear_smbi = false;
305 }
306 break;
307 default:
308 force_clear_smbi = true;
309 break;
310 }
311
312 if (force_clear_smbi) {
313 /* Make sure SWSM.SMBI is clear */
314 swsm = er32(SWSM);
315 if (swsm & E1000_SWSM_SMBI) {
316 /* This bit should not be set on a first interface, and
317 * indicates that the bootagent or EFI code has
318 * improperly left this bit enabled
319 */
320 e_dbg("Please update your 82571 Bootagent\n");
321 }
322 ew32(SWSM, swsm & ~E1000_SWSM_SMBI);
323 }
324
325 /* Initialize device specific counter of SMBI acquisition timeouts. */
326 hw->dev_spec.e82571.smb_counter = 0;
327
328 return 0;
329}
330
331static s32 e1000_get_variants_82571(struct e1000_adapter *adapter)
332{
333 struct e1000_hw *hw = &adapter->hw;
334 static int global_quad_port_a; /* global port a indication */
335 struct pci_dev *pdev = adapter->pdev;
336 int is_port_b = er32(STATUS) & E1000_STATUS_FUNC_1;
337 s32 rc;
338
339 rc = e1000_init_mac_params_82571(hw);
340 if (rc)
341 return rc;
342
343 rc = e1000_init_nvm_params_82571(hw);
344 if (rc)
345 return rc;
346
347 rc = e1000_init_phy_params_82571(hw);
348 if (rc)
349 return rc;
350
351 /* tag quad port adapters first, it's used below */
352 switch (pdev->device) {
353 case E1000_DEV_ID_82571EB_QUAD_COPPER:
354 case E1000_DEV_ID_82571EB_QUAD_FIBER:
355 case E1000_DEV_ID_82571EB_QUAD_COPPER_LP:
356 case E1000_DEV_ID_82571PT_QUAD_COPPER:
357 adapter->flags |= FLAG_IS_QUAD_PORT;
358 /* mark the first port */
359 if (global_quad_port_a == 0)
360 adapter->flags |= FLAG_IS_QUAD_PORT_A;
361 /* Reset for multiple quad port adapters */
362 global_quad_port_a++;
363 if (global_quad_port_a == 4)
364 global_quad_port_a = 0;
365 break;
366 default:
367 break;
368 }
369
370 switch (adapter->hw.mac.type) {
371 case e1000_82571:
372 /* these dual ports don't have WoL on port B at all */
373 if (((pdev->device == E1000_DEV_ID_82571EB_FIBER) ||
374 (pdev->device == E1000_DEV_ID_82571EB_SERDES) ||
375 (pdev->device == E1000_DEV_ID_82571EB_COPPER)) &&
376 (is_port_b))
377 adapter->flags &= ~FLAG_HAS_WOL;
378 /* quad ports only support WoL on port A */
379 if (adapter->flags & FLAG_IS_QUAD_PORT &&
380 (!(adapter->flags & FLAG_IS_QUAD_PORT_A)))
381 adapter->flags &= ~FLAG_HAS_WOL;
382 /* Does not support WoL on any port */
383 if (pdev->device == E1000_DEV_ID_82571EB_SERDES_QUAD)
384 adapter->flags &= ~FLAG_HAS_WOL;
385 break;
386 case e1000_82573:
387 if (pdev->device == E1000_DEV_ID_82573L) {
388 adapter->flags |= FLAG_HAS_JUMBO_FRAMES;
389 adapter->max_hw_frame_size = DEFAULT_JUMBO;
390 }
391 break;
392 default:
393 break;
394 }
395
396 return 0;
397}
398
399/**
400 * e1000_get_phy_id_82571 - Retrieve the PHY ID and revision
401 * @hw: pointer to the HW structure
402 *
403 * Reads the PHY registers and stores the PHY ID and possibly the PHY
404 * revision in the hardware structure.
405 **/
406static s32 e1000_get_phy_id_82571(struct e1000_hw *hw)
407{
408 struct e1000_phy_info *phy = &hw->phy;
409 s32 ret_val;
410 u16 phy_id = 0;
411
412 switch (hw->mac.type) {
413 case e1000_82571:
414 case e1000_82572:
415 /* The 82571 firmware may still be configuring the PHY.
416 * In this case, we cannot access the PHY until the
417 * configuration is done. So we explicitly set the
418 * PHY ID.
419 */
420 phy->id = IGP01E1000_I_PHY_ID;
421 break;
422 case e1000_82573:
423 return e1000e_get_phy_id(hw);
424 case e1000_82574:
425 case e1000_82583:
426 ret_val = e1e_rphy(hw, MII_PHYSID1, &phy_id);
427 if (ret_val)
428 return ret_val;
429
430 phy->id = (u32)(phy_id << 16);
431 usleep_range(20, 40);
432 ret_val = e1e_rphy(hw, MII_PHYSID2, &phy_id);
433 if (ret_val)
434 return ret_val;
435
436 phy->id |= (u32)(phy_id);
437 phy->revision = (u32)(phy_id & ~PHY_REVISION_MASK);
438 break;
439 default:
440 return -E1000_ERR_PHY;
441 }
442
443 return 0;
444}
445
446/**
447 * e1000_get_hw_semaphore_82571 - Acquire hardware semaphore
448 * @hw: pointer to the HW structure
449 *
450 * Acquire the HW semaphore to access the PHY or NVM
451 **/
452static s32 e1000_get_hw_semaphore_82571(struct e1000_hw *hw)
453{
454 u32 swsm;
455 s32 sw_timeout = hw->nvm.word_size + 1;
456 s32 fw_timeout = hw->nvm.word_size + 1;
457 s32 i = 0;
458
459 /* If we have timedout 3 times on trying to acquire
460 * the inter-port SMBI semaphore, there is old code
461 * operating on the other port, and it is not
462 * releasing SMBI. Modify the number of times that
463 * we try for the semaphore to interwork with this
464 * older code.
465 */
466 if (hw->dev_spec.e82571.smb_counter > 2)
467 sw_timeout = 1;
468
469 /* Get the SW semaphore */
470 while (i < sw_timeout) {
471 swsm = er32(SWSM);
472 if (!(swsm & E1000_SWSM_SMBI))
473 break;
474
475 usleep_range(50, 100);
476 i++;
477 }
478
479 if (i == sw_timeout) {
480 e_dbg("Driver can't access device - SMBI bit is set.\n");
481 hw->dev_spec.e82571.smb_counter++;
482 }
483 /* Get the FW semaphore. */
484 for (i = 0; i < fw_timeout; i++) {
485 swsm = er32(SWSM);
486 ew32(SWSM, swsm | E1000_SWSM_SWESMBI);
487
488 /* Semaphore acquired if bit latched */
489 if (er32(SWSM) & E1000_SWSM_SWESMBI)
490 break;
491
492 usleep_range(50, 100);
493 }
494
495 if (i == fw_timeout) {
496 /* Release semaphores */
497 e1000_put_hw_semaphore_82571(hw);
498 e_dbg("Driver can't access the NVM\n");
499 return -E1000_ERR_NVM;
500 }
501
502 return 0;
503}
504
505/**
506 * e1000_put_hw_semaphore_82571 - Release hardware semaphore
507 * @hw: pointer to the HW structure
508 *
509 * Release hardware semaphore used to access the PHY or NVM
510 **/
511static void e1000_put_hw_semaphore_82571(struct e1000_hw *hw)
512{
513 u32 swsm;
514
515 swsm = er32(SWSM);
516 swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI);
517 ew32(SWSM, swsm);
518}
519
520/**
521 * e1000_get_hw_semaphore_82573 - Acquire hardware semaphore
522 * @hw: pointer to the HW structure
523 *
524 * Acquire the HW semaphore during reset.
525 *
526 **/
527static s32 e1000_get_hw_semaphore_82573(struct e1000_hw *hw)
528{
529 u32 extcnf_ctrl;
530 s32 i = 0;
531
532 extcnf_ctrl = er32(EXTCNF_CTRL);
533 do {
534 extcnf_ctrl |= E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP;
535 ew32(EXTCNF_CTRL, extcnf_ctrl);
536 extcnf_ctrl = er32(EXTCNF_CTRL);
537
538 if (extcnf_ctrl & E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP)
539 break;
540
541 usleep_range(2000, 4000);
542 i++;
543 } while (i < MDIO_OWNERSHIP_TIMEOUT);
544
545 if (i == MDIO_OWNERSHIP_TIMEOUT) {
546 /* Release semaphores */
547 e1000_put_hw_semaphore_82573(hw);
548 e_dbg("Driver can't access the PHY\n");
549 return -E1000_ERR_PHY;
550 }
551
552 return 0;
553}
554
555/**
556 * e1000_put_hw_semaphore_82573 - Release hardware semaphore
557 * @hw: pointer to the HW structure
558 *
559 * Release hardware semaphore used during reset.
560 *
561 **/
562static void e1000_put_hw_semaphore_82573(struct e1000_hw *hw)
563{
564 u32 extcnf_ctrl;
565
566 extcnf_ctrl = er32(EXTCNF_CTRL);
567 extcnf_ctrl &= ~E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP;
568 ew32(EXTCNF_CTRL, extcnf_ctrl);
569}
570
571static DEFINE_MUTEX(swflag_mutex);
572
573/**
574 * e1000_get_hw_semaphore_82574 - Acquire hardware semaphore
575 * @hw: pointer to the HW structure
576 *
577 * Acquire the HW semaphore to access the PHY or NVM.
578 *
579 **/
580static s32 e1000_get_hw_semaphore_82574(struct e1000_hw *hw)
581{
582 s32 ret_val;
583
584 mutex_lock(&swflag_mutex);
585 ret_val = e1000_get_hw_semaphore_82573(hw);
586 if (ret_val)
587 mutex_unlock(&swflag_mutex);
588 return ret_val;
589}
590
591/**
592 * e1000_put_hw_semaphore_82574 - Release hardware semaphore
593 * @hw: pointer to the HW structure
594 *
595 * Release hardware semaphore used to access the PHY or NVM
596 *
597 **/
598static void e1000_put_hw_semaphore_82574(struct e1000_hw *hw)
599{
600 e1000_put_hw_semaphore_82573(hw);
601 mutex_unlock(&swflag_mutex);
602}
603
604/**
605 * e1000_set_d0_lplu_state_82574 - Set Low Power Linkup D0 state
606 * @hw: pointer to the HW structure
607 * @active: true to enable LPLU, false to disable
608 *
609 * Sets the LPLU D0 state according to the active flag.
610 * LPLU will not be activated unless the
611 * device autonegotiation advertisement meets standards of
612 * either 10 or 10/100 or 10/100/1000 at all duplexes.
613 * This is a function pointer entry point only called by
614 * PHY setup routines.
615 **/
616static s32 e1000_set_d0_lplu_state_82574(struct e1000_hw *hw, bool active)
617{
618 u32 data = er32(POEMB);
619
620 if (active)
621 data |= E1000_PHY_CTRL_D0A_LPLU;
622 else
623 data &= ~E1000_PHY_CTRL_D0A_LPLU;
624
625 ew32(POEMB, data);
626 return 0;
627}
628
629/**
630 * e1000_set_d3_lplu_state_82574 - Sets low power link up state for D3
631 * @hw: pointer to the HW structure
632 * @active: boolean used to enable/disable lplu
633 *
634 * The low power link up (lplu) state is set to the power management level D3
635 * when active is true, else clear lplu for D3. LPLU
636 * is used during Dx states where the power conservation is most important.
637 * During driver activity, SmartSpeed should be enabled so performance is
638 * maintained.
639 **/
640static s32 e1000_set_d3_lplu_state_82574(struct e1000_hw *hw, bool active)
641{
642 u32 data = er32(POEMB);
643
644 if (!active) {
645 data &= ~E1000_PHY_CTRL_NOND0A_LPLU;
646 } else if ((hw->phy.autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
647 (hw->phy.autoneg_advertised == E1000_ALL_NOT_GIG) ||
648 (hw->phy.autoneg_advertised == E1000_ALL_10_SPEED)) {
649 data |= E1000_PHY_CTRL_NOND0A_LPLU;
650 }
651
652 ew32(POEMB, data);
653 return 0;
654}
655
656/**
657 * e1000_acquire_nvm_82571 - Request for access to the EEPROM
658 * @hw: pointer to the HW structure
659 *
660 * To gain access to the EEPROM, first we must obtain a hardware semaphore.
661 * Then for non-82573 hardware, set the EEPROM access request bit and wait
662 * for EEPROM access grant bit. If the access grant bit is not set, release
663 * hardware semaphore.
664 **/
665static s32 e1000_acquire_nvm_82571(struct e1000_hw *hw)
666{
667 s32 ret_val;
668
669 ret_val = e1000_get_hw_semaphore_82571(hw);
670 if (ret_val)
671 return ret_val;
672
673 switch (hw->mac.type) {
674 case e1000_82573:
675 break;
676 default:
677 ret_val = e1000e_acquire_nvm(hw);
678 break;
679 }
680
681 if (ret_val)
682 e1000_put_hw_semaphore_82571(hw);
683
684 return ret_val;
685}
686
687/**
688 * e1000_release_nvm_82571 - Release exclusive access to EEPROM
689 * @hw: pointer to the HW structure
690 *
691 * Stop any current commands to the EEPROM and clear the EEPROM request bit.
692 **/
693static void e1000_release_nvm_82571(struct e1000_hw *hw)
694{
695 e1000e_release_nvm(hw);
696 e1000_put_hw_semaphore_82571(hw);
697}
698
699/**
700 * e1000_write_nvm_82571 - Write to EEPROM using appropriate interface
701 * @hw: pointer to the HW structure
702 * @offset: offset within the EEPROM to be written to
703 * @words: number of words to write
704 * @data: 16 bit word(s) to be written to the EEPROM
705 *
706 * For non-82573 silicon, write data to EEPROM at offset using SPI interface.
707 *
708 * If e1000e_update_nvm_checksum is not called after this function, the
709 * EEPROM will most likely contain an invalid checksum.
710 **/
711static s32 e1000_write_nvm_82571(struct e1000_hw *hw, u16 offset, u16 words,
712 u16 *data)
713{
714 s32 ret_val;
715
716 switch (hw->mac.type) {
717 case e1000_82573:
718 case e1000_82574:
719 case e1000_82583:
720 ret_val = e1000_write_nvm_eewr_82571(hw, offset, words, data);
721 break;
722 case e1000_82571:
723 case e1000_82572:
724 ret_val = e1000e_write_nvm_spi(hw, offset, words, data);
725 break;
726 default:
727 ret_val = -E1000_ERR_NVM;
728 break;
729 }
730
731 return ret_val;
732}
733
734/**
735 * e1000_update_nvm_checksum_82571 - Update EEPROM checksum
736 * @hw: pointer to the HW structure
737 *
738 * Updates the EEPROM checksum by reading/adding each word of the EEPROM
739 * up to the checksum. Then calculates the EEPROM checksum and writes the
740 * value to the EEPROM.
741 **/
742static s32 e1000_update_nvm_checksum_82571(struct e1000_hw *hw)
743{
744 u32 eecd;
745 s32 ret_val;
746 u16 i;
747
748 ret_val = e1000e_update_nvm_checksum_generic(hw);
749 if (ret_val)
750 return ret_val;
751
752 /* If our nvm is an EEPROM, then we're done
753 * otherwise, commit the checksum to the flash NVM.
754 */
755 if (hw->nvm.type != e1000_nvm_flash_hw)
756 return 0;
757
758 /* Check for pending operations. */
759 for (i = 0; i < E1000_FLASH_UPDATES; i++) {
760 usleep_range(1000, 2000);
761 if (!(er32(EECD) & E1000_EECD_FLUPD))
762 break;
763 }
764
765 if (i == E1000_FLASH_UPDATES)
766 return -E1000_ERR_NVM;
767
768 /* Reset the firmware if using STM opcode. */
769 if ((er32(FLOP) & 0xFF00) == E1000_STM_OPCODE) {
770 /* The enabling of and the actual reset must be done
771 * in two write cycles.
772 */
773 ew32(HICR, E1000_HICR_FW_RESET_ENABLE);
774 e1e_flush();
775 ew32(HICR, E1000_HICR_FW_RESET);
776 }
777
778 /* Commit the write to flash */
779 eecd = er32(EECD) | E1000_EECD_FLUPD;
780 ew32(EECD, eecd);
781
782 for (i = 0; i < E1000_FLASH_UPDATES; i++) {
783 usleep_range(1000, 2000);
784 if (!(er32(EECD) & E1000_EECD_FLUPD))
785 break;
786 }
787
788 if (i == E1000_FLASH_UPDATES)
789 return -E1000_ERR_NVM;
790
791 return 0;
792}
793
794/**
795 * e1000_validate_nvm_checksum_82571 - Validate EEPROM checksum
796 * @hw: pointer to the HW structure
797 *
798 * Calculates the EEPROM checksum by reading/adding each word of the EEPROM
799 * and then verifies that the sum of the EEPROM is equal to 0xBABA.
800 **/
801static s32 e1000_validate_nvm_checksum_82571(struct e1000_hw *hw)
802{
803 if (hw->nvm.type == e1000_nvm_flash_hw)
804 e1000_fix_nvm_checksum_82571(hw);
805
806 return e1000e_validate_nvm_checksum_generic(hw);
807}
808
809/**
810 * e1000_write_nvm_eewr_82571 - Write to EEPROM for 82573 silicon
811 * @hw: pointer to the HW structure
812 * @offset: offset within the EEPROM to be written to
813 * @words: number of words to write
814 * @data: 16 bit word(s) to be written to the EEPROM
815 *
816 * After checking for invalid values, poll the EEPROM to ensure the previous
817 * command has completed before trying to write the next word. After write
818 * poll for completion.
819 *
820 * If e1000e_update_nvm_checksum is not called after this function, the
821 * EEPROM will most likely contain an invalid checksum.
822 **/
823static s32 e1000_write_nvm_eewr_82571(struct e1000_hw *hw, u16 offset,
824 u16 words, u16 *data)
825{
826 struct e1000_nvm_info *nvm = &hw->nvm;
827 u32 i, eewr = 0;
828 s32 ret_val = 0;
829
830 /* A check for invalid values: offset too large, too many words,
831 * and not enough words.
832 */
833 if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
834 (words == 0)) {
835 e_dbg("nvm parameter(s) out of bounds\n");
836 return -E1000_ERR_NVM;
837 }
838
839 for (i = 0; i < words; i++) {
840 eewr = ((data[i] << E1000_NVM_RW_REG_DATA) |
841 ((offset + i) << E1000_NVM_RW_ADDR_SHIFT) |
842 E1000_NVM_RW_REG_START);
843
844 ret_val = e1000e_poll_eerd_eewr_done(hw, E1000_NVM_POLL_WRITE);
845 if (ret_val)
846 break;
847
848 ew32(EEWR, eewr);
849
850 ret_val = e1000e_poll_eerd_eewr_done(hw, E1000_NVM_POLL_WRITE);
851 if (ret_val)
852 break;
853 }
854
855 return ret_val;
856}
857
858/**
859 * e1000_get_cfg_done_82571 - Poll for configuration done
860 * @hw: pointer to the HW structure
861 *
862 * Reads the management control register for the config done bit to be set.
863 **/
864static s32 e1000_get_cfg_done_82571(struct e1000_hw *hw)
865{
866 s32 timeout = PHY_CFG_TIMEOUT;
867
868 while (timeout) {
869 if (er32(EEMNGCTL) & E1000_NVM_CFG_DONE_PORT_0)
870 break;
871 usleep_range(1000, 2000);
872 timeout--;
873 }
874 if (!timeout) {
875 e_dbg("MNG configuration cycle has not completed.\n");
876 return -E1000_ERR_RESET;
877 }
878
879 return 0;
880}
881
882/**
883 * e1000_set_d0_lplu_state_82571 - Set Low Power Linkup D0 state
884 * @hw: pointer to the HW structure
885 * @active: true to enable LPLU, false to disable
886 *
887 * Sets the LPLU D0 state according to the active flag. When activating LPLU
888 * this function also disables smart speed and vice versa. LPLU will not be
889 * activated unless the device autonegotiation advertisement meets standards
890 * of either 10 or 10/100 or 10/100/1000 at all duplexes. This is a function
891 * pointer entry point only called by PHY setup routines.
892 **/
893static s32 e1000_set_d0_lplu_state_82571(struct e1000_hw *hw, bool active)
894{
895 struct e1000_phy_info *phy = &hw->phy;
896 s32 ret_val;
897 u16 data;
898
899 ret_val = e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &data);
900 if (ret_val)
901 return ret_val;
902
903 if (active) {
904 data |= IGP02E1000_PM_D0_LPLU;
905 ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data);
906 if (ret_val)
907 return ret_val;
908
909 /* When LPLU is enabled, we should disable SmartSpeed */
910 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
911 if (ret_val)
912 return ret_val;
913 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
914 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
915 if (ret_val)
916 return ret_val;
917 } else {
918 data &= ~IGP02E1000_PM_D0_LPLU;
919 ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data);
920 /* LPLU and SmartSpeed are mutually exclusive. LPLU is used
921 * during Dx states where the power conservation is most
922 * important. During driver activity we should enable
923 * SmartSpeed, so performance is maintained.
924 */
925 if (phy->smart_speed == e1000_smart_speed_on) {
926 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
927 &data);
928 if (ret_val)
929 return ret_val;
930
931 data |= IGP01E1000_PSCFR_SMART_SPEED;
932 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
933 data);
934 if (ret_val)
935 return ret_val;
936 } else if (phy->smart_speed == e1000_smart_speed_off) {
937 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
938 &data);
939 if (ret_val)
940 return ret_val;
941
942 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
943 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
944 data);
945 if (ret_val)
946 return ret_val;
947 }
948 }
949
950 return 0;
951}
952
953/**
954 * e1000_reset_hw_82571 - Reset hardware
955 * @hw: pointer to the HW structure
956 *
957 * This resets the hardware into a known state.
958 **/
959static s32 e1000_reset_hw_82571(struct e1000_hw *hw)
960{
961 u32 ctrl, ctrl_ext, eecd, tctl;
962 s32 ret_val;
963
964 /* Prevent the PCI-E bus from sticking if there is no TLP connection
965 * on the last TLP read/write transaction when MAC is reset.
966 */
967 ret_val = e1000e_disable_pcie_master(hw);
968 if (ret_val)
969 e_dbg("PCI-E Master disable polling has failed.\n");
970
971 e_dbg("Masking off all interrupts\n");
972 ew32(IMC, 0xffffffff);
973
974 ew32(RCTL, 0);
975 tctl = er32(TCTL);
976 tctl &= ~E1000_TCTL_EN;
977 ew32(TCTL, tctl);
978 e1e_flush();
979
980 usleep_range(10000, 20000);
981
982 /* Must acquire the MDIO ownership before MAC reset.
983 * Ownership defaults to firmware after a reset.
984 */
985 switch (hw->mac.type) {
986 case e1000_82573:
987 ret_val = e1000_get_hw_semaphore_82573(hw);
988 break;
989 case e1000_82574:
990 case e1000_82583:
991 ret_val = e1000_get_hw_semaphore_82574(hw);
992 break;
993 default:
994 break;
995 }
996
997 ctrl = er32(CTRL);
998
999 e_dbg("Issuing a global reset to MAC\n");
1000 ew32(CTRL, ctrl | E1000_CTRL_RST);
1001
1002 /* Must release MDIO ownership and mutex after MAC reset. */
1003 switch (hw->mac.type) {
1004 case e1000_82573:
1005 /* Release mutex only if the hw semaphore is acquired */
1006 if (!ret_val)
1007 e1000_put_hw_semaphore_82573(hw);
1008 break;
1009 case e1000_82574:
1010 case e1000_82583:
1011 /* Release mutex only if the hw semaphore is acquired */
1012 if (!ret_val)
1013 e1000_put_hw_semaphore_82574(hw);
1014 break;
1015 default:
1016 break;
1017 }
1018
1019 if (hw->nvm.type == e1000_nvm_flash_hw) {
1020 usleep_range(10, 20);
1021 ctrl_ext = er32(CTRL_EXT);
1022 ctrl_ext |= E1000_CTRL_EXT_EE_RST;
1023 ew32(CTRL_EXT, ctrl_ext);
1024 e1e_flush();
1025 }
1026
1027 ret_val = e1000e_get_auto_rd_done(hw);
1028 if (ret_val)
1029 /* We don't want to continue accessing MAC registers. */
1030 return ret_val;
1031
1032 /* Phy configuration from NVM just starts after EECD_AUTO_RD is set.
1033 * Need to wait for Phy configuration completion before accessing
1034 * NVM and Phy.
1035 */
1036
1037 switch (hw->mac.type) {
1038 case e1000_82571:
1039 case e1000_82572:
1040 /* REQ and GNT bits need to be cleared when using AUTO_RD
1041 * to access the EEPROM.
1042 */
1043 eecd = er32(EECD);
1044 eecd &= ~(E1000_EECD_REQ | E1000_EECD_GNT);
1045 ew32(EECD, eecd);
1046 break;
1047 case e1000_82573:
1048 case e1000_82574:
1049 case e1000_82583:
1050 msleep(25);
1051 break;
1052 default:
1053 break;
1054 }
1055
1056 /* Clear any pending interrupt events. */
1057 ew32(IMC, 0xffffffff);
1058 er32(ICR);
1059
1060 if (hw->mac.type == e1000_82571) {
1061 /* Install any alternate MAC address into RAR0 */
1062 ret_val = e1000_check_alt_mac_addr_generic(hw);
1063 if (ret_val)
1064 return ret_val;
1065
1066 e1000e_set_laa_state_82571(hw, true);
1067 }
1068
1069 /* Reinitialize the 82571 serdes link state machine */
1070 if (hw->phy.media_type == e1000_media_type_internal_serdes)
1071 hw->mac.serdes_link_state = e1000_serdes_link_down;
1072
1073 return 0;
1074}
1075
1076/**
1077 * e1000_init_hw_82571 - Initialize hardware
1078 * @hw: pointer to the HW structure
1079 *
1080 * This inits the hardware readying it for operation.
1081 **/
1082static s32 e1000_init_hw_82571(struct e1000_hw *hw)
1083{
1084 struct e1000_mac_info *mac = &hw->mac;
1085 u32 reg_data;
1086 s32 ret_val;
1087 u16 i, rar_count = mac->rar_entry_count;
1088
1089 e1000_initialize_hw_bits_82571(hw);
1090
1091 /* Initialize identification LED */
1092 ret_val = mac->ops.id_led_init(hw);
1093 /* An error is not fatal and we should not stop init due to this */
1094 if (ret_val)
1095 e_dbg("Error initializing identification LED\n");
1096
1097 /* Disabling VLAN filtering */
1098 e_dbg("Initializing the IEEE VLAN\n");
1099 mac->ops.clear_vfta(hw);
1100
1101 /* Setup the receive address.
1102 * If, however, a locally administered address was assigned to the
1103 * 82571, we must reserve a RAR for it to work around an issue where
1104 * resetting one port will reload the MAC on the other port.
1105 */
1106 if (e1000e_get_laa_state_82571(hw))
1107 rar_count--;
1108 e1000e_init_rx_addrs(hw, rar_count);
1109
1110 /* Zero out the Multicast HASH table */
1111 e_dbg("Zeroing the MTA\n");
1112 for (i = 0; i < mac->mta_reg_count; i++)
1113 E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
1114
1115 /* Setup link and flow control */
1116 ret_val = mac->ops.setup_link(hw);
1117
1118 /* Set the transmit descriptor write-back policy */
1119 reg_data = er32(TXDCTL(0));
1120 reg_data = ((reg_data & ~E1000_TXDCTL_WTHRESH) |
1121 E1000_TXDCTL_FULL_TX_DESC_WB | E1000_TXDCTL_COUNT_DESC);
1122 ew32(TXDCTL(0), reg_data);
1123
1124 /* ...for both queues. */
1125 switch (mac->type) {
1126 case e1000_82573:
1127 e1000e_enable_tx_pkt_filtering(hw);
1128 /* fall through */
1129 case e1000_82574:
1130 case e1000_82583:
1131 reg_data = er32(GCR);
1132 reg_data |= E1000_GCR_L1_ACT_WITHOUT_L0S_RX;
1133 ew32(GCR, reg_data);
1134 break;
1135 default:
1136 reg_data = er32(TXDCTL(1));
1137 reg_data = ((reg_data & ~E1000_TXDCTL_WTHRESH) |
1138 E1000_TXDCTL_FULL_TX_DESC_WB |
1139 E1000_TXDCTL_COUNT_DESC);
1140 ew32(TXDCTL(1), reg_data);
1141 break;
1142 }
1143
1144 /* Clear all of the statistics registers (clear on read). It is
1145 * important that we do this after we have tried to establish link
1146 * because the symbol error count will increment wildly if there
1147 * is no link.
1148 */
1149 e1000_clear_hw_cntrs_82571(hw);
1150
1151 return ret_val;
1152}
1153
1154/**
1155 * e1000_initialize_hw_bits_82571 - Initialize hardware-dependent bits
1156 * @hw: pointer to the HW structure
1157 *
1158 * Initializes required hardware-dependent bits needed for normal operation.
1159 **/
1160static void e1000_initialize_hw_bits_82571(struct e1000_hw *hw)
1161{
1162 u32 reg;
1163
1164 /* Transmit Descriptor Control 0 */
1165 reg = er32(TXDCTL(0));
1166 reg |= (1 << 22);
1167 ew32(TXDCTL(0), reg);
1168
1169 /* Transmit Descriptor Control 1 */
1170 reg = er32(TXDCTL(1));
1171 reg |= (1 << 22);
1172 ew32(TXDCTL(1), reg);
1173
1174 /* Transmit Arbitration Control 0 */
1175 reg = er32(TARC(0));
1176 reg &= ~(0xF << 27); /* 30:27 */
1177 switch (hw->mac.type) {
1178 case e1000_82571:
1179 case e1000_82572:
1180 reg |= (1 << 23) | (1 << 24) | (1 << 25) | (1 << 26);
1181 break;
1182 case e1000_82574:
1183 case e1000_82583:
1184 reg |= (1 << 26);
1185 break;
1186 default:
1187 break;
1188 }
1189 ew32(TARC(0), reg);
1190
1191 /* Transmit Arbitration Control 1 */
1192 reg = er32(TARC(1));
1193 switch (hw->mac.type) {
1194 case e1000_82571:
1195 case e1000_82572:
1196 reg &= ~((1 << 29) | (1 << 30));
1197 reg |= (1 << 22) | (1 << 24) | (1 << 25) | (1 << 26);
1198 if (er32(TCTL) & E1000_TCTL_MULR)
1199 reg &= ~(1 << 28);
1200 else
1201 reg |= (1 << 28);
1202 ew32(TARC(1), reg);
1203 break;
1204 default:
1205 break;
1206 }
1207
1208 /* Device Control */
1209 switch (hw->mac.type) {
1210 case e1000_82573:
1211 case e1000_82574:
1212 case e1000_82583:
1213 reg = er32(CTRL);
1214 reg &= ~(1 << 29);
1215 ew32(CTRL, reg);
1216 break;
1217 default:
1218 break;
1219 }
1220
1221 /* Extended Device Control */
1222 switch (hw->mac.type) {
1223 case e1000_82573:
1224 case e1000_82574:
1225 case e1000_82583:
1226 reg = er32(CTRL_EXT);
1227 reg &= ~(1 << 23);
1228 reg |= (1 << 22);
1229 ew32(CTRL_EXT, reg);
1230 break;
1231 default:
1232 break;
1233 }
1234
1235 if (hw->mac.type == e1000_82571) {
1236 reg = er32(PBA_ECC);
1237 reg |= E1000_PBA_ECC_CORR_EN;
1238 ew32(PBA_ECC, reg);
1239 }
1240
1241 /* Workaround for hardware errata.
1242 * Ensure that DMA Dynamic Clock gating is disabled on 82571 and 82572
1243 */
1244 if ((hw->mac.type == e1000_82571) || (hw->mac.type == e1000_82572)) {
1245 reg = er32(CTRL_EXT);
1246 reg &= ~E1000_CTRL_EXT_DMA_DYN_CLK_EN;
1247 ew32(CTRL_EXT, reg);
1248 }
1249
1250 /* Disable IPv6 extension header parsing because some malformed
1251 * IPv6 headers can hang the Rx.
1252 */
1253 if (hw->mac.type <= e1000_82573) {
1254 reg = er32(RFCTL);
1255 reg |= (E1000_RFCTL_IPV6_EX_DIS | E1000_RFCTL_NEW_IPV6_EXT_DIS);
1256 ew32(RFCTL, reg);
1257 }
1258
1259 /* PCI-Ex Control Registers */
1260 switch (hw->mac.type) {
1261 case e1000_82574:
1262 case e1000_82583:
1263 reg = er32(GCR);
1264 reg |= (1 << 22);
1265 ew32(GCR, reg);
1266
1267 /* Workaround for hardware errata.
1268 * apply workaround for hardware errata documented in errata
1269 * docs Fixes issue where some error prone or unreliable PCIe
1270 * completions are occurring, particularly with ASPM enabled.
1271 * Without fix, issue can cause Tx timeouts.
1272 */
1273 reg = er32(GCR2);
1274 reg |= 1;
1275 ew32(GCR2, reg);
1276 break;
1277 default:
1278 break;
1279 }
1280}
1281
1282/**
1283 * e1000_clear_vfta_82571 - Clear VLAN filter table
1284 * @hw: pointer to the HW structure
1285 *
1286 * Clears the register array which contains the VLAN filter table by
1287 * setting all the values to 0.
1288 **/
1289static void e1000_clear_vfta_82571(struct e1000_hw *hw)
1290{
1291 u32 offset;
1292 u32 vfta_value = 0;
1293 u32 vfta_offset = 0;
1294 u32 vfta_bit_in_reg = 0;
1295
1296 switch (hw->mac.type) {
1297 case e1000_82573:
1298 case e1000_82574:
1299 case e1000_82583:
1300 if (hw->mng_cookie.vlan_id != 0) {
1301 /* The VFTA is a 4096b bit-field, each identifying
1302 * a single VLAN ID. The following operations
1303 * determine which 32b entry (i.e. offset) into the
1304 * array we want to set the VLAN ID (i.e. bit) of
1305 * the manageability unit.
1306 */
1307 vfta_offset = (hw->mng_cookie.vlan_id >>
1308 E1000_VFTA_ENTRY_SHIFT) &
1309 E1000_VFTA_ENTRY_MASK;
1310 vfta_bit_in_reg =
1311 1 << (hw->mng_cookie.vlan_id &
1312 E1000_VFTA_ENTRY_BIT_SHIFT_MASK);
1313 }
1314 break;
1315 default:
1316 break;
1317 }
1318 for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) {
1319 /* If the offset we want to clear is the same offset of the
1320 * manageability VLAN ID, then clear all bits except that of
1321 * the manageability unit.
1322 */
1323 vfta_value = (offset == vfta_offset) ? vfta_bit_in_reg : 0;
1324 E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, vfta_value);
1325 e1e_flush();
1326 }
1327}
1328
1329/**
1330 * e1000_check_mng_mode_82574 - Check manageability is enabled
1331 * @hw: pointer to the HW structure
1332 *
1333 * Reads the NVM Initialization Control Word 2 and returns true
1334 * (>0) if any manageability is enabled, else false (0).
1335 **/
1336static bool e1000_check_mng_mode_82574(struct e1000_hw *hw)
1337{
1338 u16 data;
1339
1340 e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &data);
1341 return (data & E1000_NVM_INIT_CTRL2_MNGM) != 0;
1342}
1343
1344/**
1345 * e1000_led_on_82574 - Turn LED on
1346 * @hw: pointer to the HW structure
1347 *
1348 * Turn LED on.
1349 **/
1350static s32 e1000_led_on_82574(struct e1000_hw *hw)
1351{
1352 u32 ctrl;
1353 u32 i;
1354
1355 ctrl = hw->mac.ledctl_mode2;
1356 if (!(E1000_STATUS_LU & er32(STATUS))) {
1357 /* If no link, then turn LED on by setting the invert bit
1358 * for each LED that's "on" (0x0E) in ledctl_mode2.
1359 */
1360 for (i = 0; i < 4; i++)
1361 if (((hw->mac.ledctl_mode2 >> (i * 8)) & 0xFF) ==
1362 E1000_LEDCTL_MODE_LED_ON)
1363 ctrl |= (E1000_LEDCTL_LED0_IVRT << (i * 8));
1364 }
1365 ew32(LEDCTL, ctrl);
1366
1367 return 0;
1368}
1369
1370/**
1371 * e1000_check_phy_82574 - check 82574 phy hung state
1372 * @hw: pointer to the HW structure
1373 *
1374 * Returns whether phy is hung or not
1375 **/
1376bool e1000_check_phy_82574(struct e1000_hw *hw)
1377{
1378 u16 status_1kbt = 0;
1379 u16 receive_errors = 0;
1380 s32 ret_val;
1381
1382 /* Read PHY Receive Error counter first, if its is max - all F's then
1383 * read the Base1000T status register If both are max then PHY is hung.
1384 */
1385 ret_val = e1e_rphy(hw, E1000_RECEIVE_ERROR_COUNTER, &receive_errors);
1386 if (ret_val)
1387 return false;
1388 if (receive_errors == E1000_RECEIVE_ERROR_MAX) {
1389 ret_val = e1e_rphy(hw, E1000_BASE1000T_STATUS, &status_1kbt);
1390 if (ret_val)
1391 return false;
1392 if ((status_1kbt & E1000_IDLE_ERROR_COUNT_MASK) ==
1393 E1000_IDLE_ERROR_COUNT_MASK)
1394 return true;
1395 }
1396
1397 return false;
1398}
1399
1400/**
1401 * e1000_setup_link_82571 - Setup flow control and link settings
1402 * @hw: pointer to the HW structure
1403 *
1404 * Determines which flow control settings to use, then configures flow
1405 * control. Calls the appropriate media-specific link configuration
1406 * function. Assuming the adapter has a valid link partner, a valid link
1407 * should be established. Assumes the hardware has previously been reset
1408 * and the transmitter and receiver are not enabled.
1409 **/
1410static s32 e1000_setup_link_82571(struct e1000_hw *hw)
1411{
1412 /* 82573 does not have a word in the NVM to determine
1413 * the default flow control setting, so we explicitly
1414 * set it to full.
1415 */
1416 switch (hw->mac.type) {
1417 case e1000_82573:
1418 case e1000_82574:
1419 case e1000_82583:
1420 if (hw->fc.requested_mode == e1000_fc_default)
1421 hw->fc.requested_mode = e1000_fc_full;
1422 break;
1423 default:
1424 break;
1425 }
1426
1427 return e1000e_setup_link_generic(hw);
1428}
1429
1430/**
1431 * e1000_setup_copper_link_82571 - Configure copper link settings
1432 * @hw: pointer to the HW structure
1433 *
1434 * Configures the link for auto-neg or forced speed and duplex. Then we check
1435 * for link, once link is established calls to configure collision distance
1436 * and flow control are called.
1437 **/
1438static s32 e1000_setup_copper_link_82571(struct e1000_hw *hw)
1439{
1440 u32 ctrl;
1441 s32 ret_val;
1442
1443 ctrl = er32(CTRL);
1444 ctrl |= E1000_CTRL_SLU;
1445 ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1446 ew32(CTRL, ctrl);
1447
1448 switch (hw->phy.type) {
1449 case e1000_phy_m88:
1450 case e1000_phy_bm:
1451 ret_val = e1000e_copper_link_setup_m88(hw);
1452 break;
1453 case e1000_phy_igp_2:
1454 ret_val = e1000e_copper_link_setup_igp(hw);
1455 break;
1456 default:
1457 return -E1000_ERR_PHY;
1458 }
1459
1460 if (ret_val)
1461 return ret_val;
1462
1463 return e1000e_setup_copper_link(hw);
1464}
1465
1466/**
1467 * e1000_setup_fiber_serdes_link_82571 - Setup link for fiber/serdes
1468 * @hw: pointer to the HW structure
1469 *
1470 * Configures collision distance and flow control for fiber and serdes links.
1471 * Upon successful setup, poll for link.
1472 **/
1473static s32 e1000_setup_fiber_serdes_link_82571(struct e1000_hw *hw)
1474{
1475 switch (hw->mac.type) {
1476 case e1000_82571:
1477 case e1000_82572:
1478 /* If SerDes loopback mode is entered, there is no form
1479 * of reset to take the adapter out of that mode. So we
1480 * have to explicitly take the adapter out of loopback
1481 * mode. This prevents drivers from twiddling their thumbs
1482 * if another tool failed to take it out of loopback mode.
1483 */
1484 ew32(SCTL, E1000_SCTL_DISABLE_SERDES_LOOPBACK);
1485 break;
1486 default:
1487 break;
1488 }
1489
1490 return e1000e_setup_fiber_serdes_link(hw);
1491}
1492
1493/**
1494 * e1000_check_for_serdes_link_82571 - Check for link (Serdes)
1495 * @hw: pointer to the HW structure
1496 *
1497 * Reports the link state as up or down.
1498 *
1499 * If autonegotiation is supported by the link partner, the link state is
1500 * determined by the result of autonegotiation. This is the most likely case.
1501 * If autonegotiation is not supported by the link partner, and the link
1502 * has a valid signal, force the link up.
1503 *
1504 * The link state is represented internally here by 4 states:
1505 *
1506 * 1) down
1507 * 2) autoneg_progress
1508 * 3) autoneg_complete (the link successfully autonegotiated)
1509 * 4) forced_up (the link has been forced up, it did not autonegotiate)
1510 *
1511 **/
1512static s32 e1000_check_for_serdes_link_82571(struct e1000_hw *hw)
1513{
1514 struct e1000_mac_info *mac = &hw->mac;
1515 u32 rxcw;
1516 u32 ctrl;
1517 u32 status;
1518 u32 txcw;
1519 u32 i;
1520 s32 ret_val = 0;
1521
1522 ctrl = er32(CTRL);
1523 status = er32(STATUS);
1524 er32(RXCW);
1525 /* SYNCH bit and IV bit are sticky */
1526 usleep_range(10, 20);
1527 rxcw = er32(RXCW);
1528
1529 if ((rxcw & E1000_RXCW_SYNCH) && !(rxcw & E1000_RXCW_IV)) {
1530 /* Receiver is synchronized with no invalid bits. */
1531 switch (mac->serdes_link_state) {
1532 case e1000_serdes_link_autoneg_complete:
1533 if (!(status & E1000_STATUS_LU)) {
1534 /* We have lost link, retry autoneg before
1535 * reporting link failure
1536 */
1537 mac->serdes_link_state =
1538 e1000_serdes_link_autoneg_progress;
1539 mac->serdes_has_link = false;
1540 e_dbg("AN_UP -> AN_PROG\n");
1541 } else {
1542 mac->serdes_has_link = true;
1543 }
1544 break;
1545
1546 case e1000_serdes_link_forced_up:
1547 /* If we are receiving /C/ ordered sets, re-enable
1548 * auto-negotiation in the TXCW register and disable
1549 * forced link in the Device Control register in an
1550 * attempt to auto-negotiate with our link partner.
1551 */
1552 if (rxcw & E1000_RXCW_C) {
1553 /* Enable autoneg, and unforce link up */
1554 ew32(TXCW, mac->txcw);
1555 ew32(CTRL, (ctrl & ~E1000_CTRL_SLU));
1556 mac->serdes_link_state =
1557 e1000_serdes_link_autoneg_progress;
1558 mac->serdes_has_link = false;
1559 e_dbg("FORCED_UP -> AN_PROG\n");
1560 } else {
1561 mac->serdes_has_link = true;
1562 }
1563 break;
1564
1565 case e1000_serdes_link_autoneg_progress:
1566 if (rxcw & E1000_RXCW_C) {
1567 /* We received /C/ ordered sets, meaning the
1568 * link partner has autonegotiated, and we can
1569 * trust the Link Up (LU) status bit.
1570 */
1571 if (status & E1000_STATUS_LU) {
1572 mac->serdes_link_state =
1573 e1000_serdes_link_autoneg_complete;
1574 e_dbg("AN_PROG -> AN_UP\n");
1575 mac->serdes_has_link = true;
1576 } else {
1577 /* Autoneg completed, but failed. */
1578 mac->serdes_link_state =
1579 e1000_serdes_link_down;
1580 e_dbg("AN_PROG -> DOWN\n");
1581 }
1582 } else {
1583 /* The link partner did not autoneg.
1584 * Force link up and full duplex, and change
1585 * state to forced.
1586 */
1587 ew32(TXCW, (mac->txcw & ~E1000_TXCW_ANE));
1588 ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
1589 ew32(CTRL, ctrl);
1590
1591 /* Configure Flow Control after link up. */
1592 ret_val = e1000e_config_fc_after_link_up(hw);
1593 if (ret_val) {
1594 e_dbg("Error config flow control\n");
1595 break;
1596 }
1597 mac->serdes_link_state =
1598 e1000_serdes_link_forced_up;
1599 mac->serdes_has_link = true;
1600 e_dbg("AN_PROG -> FORCED_UP\n");
1601 }
1602 break;
1603
1604 case e1000_serdes_link_down:
1605 default:
1606 /* The link was down but the receiver has now gained
1607 * valid sync, so lets see if we can bring the link
1608 * up.
1609 */
1610 ew32(TXCW, mac->txcw);
1611 ew32(CTRL, (ctrl & ~E1000_CTRL_SLU));
1612 mac->serdes_link_state =
1613 e1000_serdes_link_autoneg_progress;
1614 mac->serdes_has_link = false;
1615 e_dbg("DOWN -> AN_PROG\n");
1616 break;
1617 }
1618 } else {
1619 if (!(rxcw & E1000_RXCW_SYNCH)) {
1620 mac->serdes_has_link = false;
1621 mac->serdes_link_state = e1000_serdes_link_down;
1622 e_dbg("ANYSTATE -> DOWN\n");
1623 } else {
1624 /* Check several times, if SYNCH bit and CONFIG
1625 * bit both are consistently 1 then simply ignore
1626 * the IV bit and restart Autoneg
1627 */
1628 for (i = 0; i < AN_RETRY_COUNT; i++) {
1629 usleep_range(10, 20);
1630 rxcw = er32(RXCW);
1631 if ((rxcw & E1000_RXCW_SYNCH) &&
1632 (rxcw & E1000_RXCW_C))
1633 continue;
1634
1635 if (rxcw & E1000_RXCW_IV) {
1636 mac->serdes_has_link = false;
1637 mac->serdes_link_state =
1638 e1000_serdes_link_down;
1639 e_dbg("ANYSTATE -> DOWN\n");
1640 break;
1641 }
1642 }
1643
1644 if (i == AN_RETRY_COUNT) {
1645 txcw = er32(TXCW);
1646 txcw |= E1000_TXCW_ANE;
1647 ew32(TXCW, txcw);
1648 mac->serdes_link_state =
1649 e1000_serdes_link_autoneg_progress;
1650 mac->serdes_has_link = false;
1651 e_dbg("ANYSTATE -> AN_PROG\n");
1652 }
1653 }
1654 }
1655
1656 return ret_val;
1657}
1658
1659/**
1660 * e1000_valid_led_default_82571 - Verify a valid default LED config
1661 * @hw: pointer to the HW structure
1662 * @data: pointer to the NVM (EEPROM)
1663 *
1664 * Read the EEPROM for the current default LED configuration. If the
1665 * LED configuration is not valid, set to a valid LED configuration.
1666 **/
1667static s32 e1000_valid_led_default_82571(struct e1000_hw *hw, u16 *data)
1668{
1669 s32 ret_val;
1670
1671 ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
1672 if (ret_val) {
1673 e_dbg("NVM Read Error\n");
1674 return ret_val;
1675 }
1676
1677 switch (hw->mac.type) {
1678 case e1000_82573:
1679 case e1000_82574:
1680 case e1000_82583:
1681 if (*data == ID_LED_RESERVED_F746)
1682 *data = ID_LED_DEFAULT_82573;
1683 break;
1684 default:
1685 if (*data == ID_LED_RESERVED_0000 ||
1686 *data == ID_LED_RESERVED_FFFF)
1687 *data = ID_LED_DEFAULT;
1688 break;
1689 }
1690
1691 return 0;
1692}
1693
1694/**
1695 * e1000e_get_laa_state_82571 - Get locally administered address state
1696 * @hw: pointer to the HW structure
1697 *
1698 * Retrieve and return the current locally administered address state.
1699 **/
1700bool e1000e_get_laa_state_82571(struct e1000_hw *hw)
1701{
1702 if (hw->mac.type != e1000_82571)
1703 return false;
1704
1705 return hw->dev_spec.e82571.laa_is_present;
1706}
1707
1708/**
1709 * e1000e_set_laa_state_82571 - Set locally administered address state
1710 * @hw: pointer to the HW structure
1711 * @state: enable/disable locally administered address
1712 *
1713 * Enable/Disable the current locally administered address state.
1714 **/
1715void e1000e_set_laa_state_82571(struct e1000_hw *hw, bool state)
1716{
1717 if (hw->mac.type != e1000_82571)
1718 return;
1719
1720 hw->dev_spec.e82571.laa_is_present = state;
1721
1722 /* If workaround is activated... */
1723 if (state)
1724 /* Hold a copy of the LAA in RAR[14] This is done so that
1725 * between the time RAR[0] gets clobbered and the time it
1726 * gets fixed, the actual LAA is in one of the RARs and no
1727 * incoming packets directed to this port are dropped.
1728 * Eventually the LAA will be in RAR[0] and RAR[14].
1729 */
1730 hw->mac.ops.rar_set(hw, hw->mac.addr,
1731 hw->mac.rar_entry_count - 1);
1732}
1733
1734/**
1735 * e1000_fix_nvm_checksum_82571 - Fix EEPROM checksum
1736 * @hw: pointer to the HW structure
1737 *
1738 * Verifies that the EEPROM has completed the update. After updating the
1739 * EEPROM, we need to check bit 15 in work 0x23 for the checksum fix. If
1740 * the checksum fix is not implemented, we need to set the bit and update
1741 * the checksum. Otherwise, if bit 15 is set and the checksum is incorrect,
1742 * we need to return bad checksum.
1743 **/
1744static s32 e1000_fix_nvm_checksum_82571(struct e1000_hw *hw)
1745{
1746 struct e1000_nvm_info *nvm = &hw->nvm;
1747 s32 ret_val;
1748 u16 data;
1749
1750 if (nvm->type != e1000_nvm_flash_hw)
1751 return 0;
1752
1753 /* Check bit 4 of word 10h. If it is 0, firmware is done updating
1754 * 10h-12h. Checksum may need to be fixed.
1755 */
1756 ret_val = e1000_read_nvm(hw, 0x10, 1, &data);
1757 if (ret_val)
1758 return ret_val;
1759
1760 if (!(data & 0x10)) {
1761 /* Read 0x23 and check bit 15. This bit is a 1
1762 * when the checksum has already been fixed. If
1763 * the checksum is still wrong and this bit is a
1764 * 1, we need to return bad checksum. Otherwise,
1765 * we need to set this bit to a 1 and update the
1766 * checksum.
1767 */
1768 ret_val = e1000_read_nvm(hw, 0x23, 1, &data);
1769 if (ret_val)
1770 return ret_val;
1771
1772 if (!(data & 0x8000)) {
1773 data |= 0x8000;
1774 ret_val = e1000_write_nvm(hw, 0x23, 1, &data);
1775 if (ret_val)
1776 return ret_val;
1777 ret_val = e1000e_update_nvm_checksum(hw);
1778 if (ret_val)
1779 return ret_val;
1780 }
1781 }
1782
1783 return 0;
1784}
1785
1786/**
1787 * e1000_read_mac_addr_82571 - Read device MAC address
1788 * @hw: pointer to the HW structure
1789 **/
1790static s32 e1000_read_mac_addr_82571(struct e1000_hw *hw)
1791{
1792 if (hw->mac.type == e1000_82571) {
1793 s32 ret_val;
1794
1795 /* If there's an alternate MAC address place it in RAR0
1796 * so that it will override the Si installed default perm
1797 * address.
1798 */
1799 ret_val = e1000_check_alt_mac_addr_generic(hw);
1800 if (ret_val)
1801 return ret_val;
1802 }
1803
1804 return e1000_read_mac_addr_generic(hw);
1805}
1806
1807/**
1808 * e1000_power_down_phy_copper_82571 - Remove link during PHY power down
1809 * @hw: pointer to the HW structure
1810 *
1811 * In the case of a PHY power down to save power, or to turn off link during a
1812 * driver unload, or wake on lan is not enabled, remove the link.
1813 **/
1814static void e1000_power_down_phy_copper_82571(struct e1000_hw *hw)
1815{
1816 struct e1000_phy_info *phy = &hw->phy;
1817 struct e1000_mac_info *mac = &hw->mac;
1818
1819 if (!phy->ops.check_reset_block)
1820 return;
1821
1822 /* If the management interface is not enabled, then power down */
1823 if (!(mac->ops.check_mng_mode(hw) || phy->ops.check_reset_block(hw)))
1824 e1000_power_down_phy_copper(hw);
1825}
1826
1827/**
1828 * e1000_clear_hw_cntrs_82571 - Clear device specific hardware counters
1829 * @hw: pointer to the HW structure
1830 *
1831 * Clears the hardware counters by reading the counter registers.
1832 **/
1833static void e1000_clear_hw_cntrs_82571(struct e1000_hw *hw)
1834{
1835 e1000e_clear_hw_cntrs_base(hw);
1836
1837 er32(PRC64);
1838 er32(PRC127);
1839 er32(PRC255);
1840 er32(PRC511);
1841 er32(PRC1023);
1842 er32(PRC1522);
1843 er32(PTC64);
1844 er32(PTC127);
1845 er32(PTC255);
1846 er32(PTC511);
1847 er32(PTC1023);
1848 er32(PTC1522);
1849
1850 er32(ALGNERRC);
1851 er32(RXERRC);
1852 er32(TNCRS);
1853 er32(CEXTERR);
1854 er32(TSCTC);
1855 er32(TSCTFC);
1856
1857 er32(MGTPRC);
1858 er32(MGTPDC);
1859 er32(MGTPTC);
1860
1861 er32(IAC);
1862 er32(ICRXOC);
1863
1864 er32(ICRXPTC);
1865 er32(ICRXATC);
1866 er32(ICTXPTC);
1867 er32(ICTXATC);
1868 er32(ICTXQEC);
1869 er32(ICTXQMTC);
1870 er32(ICRXDMTC);
1871}
1872
1873static const struct e1000_mac_operations e82571_mac_ops = {
1874 /* .check_mng_mode: mac type dependent */
1875 /* .check_for_link: media type dependent */
1876 .id_led_init = e1000e_id_led_init_generic,
1877 .cleanup_led = e1000e_cleanup_led_generic,
1878 .clear_hw_cntrs = e1000_clear_hw_cntrs_82571,
1879 .get_bus_info = e1000e_get_bus_info_pcie,
1880 .set_lan_id = e1000_set_lan_id_multi_port_pcie,
1881 /* .get_link_up_info: media type dependent */
1882 /* .led_on: mac type dependent */
1883 .led_off = e1000e_led_off_generic,
1884 .update_mc_addr_list = e1000e_update_mc_addr_list_generic,
1885 .write_vfta = e1000_write_vfta_generic,
1886 .clear_vfta = e1000_clear_vfta_82571,
1887 .reset_hw = e1000_reset_hw_82571,
1888 .init_hw = e1000_init_hw_82571,
1889 .setup_link = e1000_setup_link_82571,
1890 /* .setup_physical_interface: media type dependent */
1891 .setup_led = e1000e_setup_led_generic,
1892 .config_collision_dist = e1000e_config_collision_dist_generic,
1893 .read_mac_addr = e1000_read_mac_addr_82571,
1894 .rar_set = e1000e_rar_set_generic,
1895 .rar_get_count = e1000e_rar_get_count_generic,
1896};
1897
1898static const struct e1000_phy_operations e82_phy_ops_igp = {
1899 .acquire = e1000_get_hw_semaphore_82571,
1900 .check_polarity = e1000_check_polarity_igp,
1901 .check_reset_block = e1000e_check_reset_block_generic,
1902 .commit = NULL,
1903 .force_speed_duplex = e1000e_phy_force_speed_duplex_igp,
1904 .get_cfg_done = e1000_get_cfg_done_82571,
1905 .get_cable_length = e1000e_get_cable_length_igp_2,
1906 .get_info = e1000e_get_phy_info_igp,
1907 .read_reg = e1000e_read_phy_reg_igp,
1908 .release = e1000_put_hw_semaphore_82571,
1909 .reset = e1000e_phy_hw_reset_generic,
1910 .set_d0_lplu_state = e1000_set_d0_lplu_state_82571,
1911 .set_d3_lplu_state = e1000e_set_d3_lplu_state,
1912 .write_reg = e1000e_write_phy_reg_igp,
1913 .cfg_on_link_up = NULL,
1914};
1915
1916static const struct e1000_phy_operations e82_phy_ops_m88 = {
1917 .acquire = e1000_get_hw_semaphore_82571,
1918 .check_polarity = e1000_check_polarity_m88,
1919 .check_reset_block = e1000e_check_reset_block_generic,
1920 .commit = e1000e_phy_sw_reset,
1921 .force_speed_duplex = e1000e_phy_force_speed_duplex_m88,
1922 .get_cfg_done = e1000e_get_cfg_done_generic,
1923 .get_cable_length = e1000e_get_cable_length_m88,
1924 .get_info = e1000e_get_phy_info_m88,
1925 .read_reg = e1000e_read_phy_reg_m88,
1926 .release = e1000_put_hw_semaphore_82571,
1927 .reset = e1000e_phy_hw_reset_generic,
1928 .set_d0_lplu_state = e1000_set_d0_lplu_state_82571,
1929 .set_d3_lplu_state = e1000e_set_d3_lplu_state,
1930 .write_reg = e1000e_write_phy_reg_m88,
1931 .cfg_on_link_up = NULL,
1932};
1933
1934static const struct e1000_phy_operations e82_phy_ops_bm = {
1935 .acquire = e1000_get_hw_semaphore_82571,
1936 .check_polarity = e1000_check_polarity_m88,
1937 .check_reset_block = e1000e_check_reset_block_generic,
1938 .commit = e1000e_phy_sw_reset,
1939 .force_speed_duplex = e1000e_phy_force_speed_duplex_m88,
1940 .get_cfg_done = e1000e_get_cfg_done_generic,
1941 .get_cable_length = e1000e_get_cable_length_m88,
1942 .get_info = e1000e_get_phy_info_m88,
1943 .read_reg = e1000e_read_phy_reg_bm2,
1944 .release = e1000_put_hw_semaphore_82571,
1945 .reset = e1000e_phy_hw_reset_generic,
1946 .set_d0_lplu_state = e1000_set_d0_lplu_state_82571,
1947 .set_d3_lplu_state = e1000e_set_d3_lplu_state,
1948 .write_reg = e1000e_write_phy_reg_bm2,
1949 .cfg_on_link_up = NULL,
1950};
1951
1952static const struct e1000_nvm_operations e82571_nvm_ops = {
1953 .acquire = e1000_acquire_nvm_82571,
1954 .read = e1000e_read_nvm_eerd,
1955 .release = e1000_release_nvm_82571,
1956 .reload = e1000e_reload_nvm_generic,
1957 .update = e1000_update_nvm_checksum_82571,
1958 .valid_led_default = e1000_valid_led_default_82571,
1959 .validate = e1000_validate_nvm_checksum_82571,
1960 .write = e1000_write_nvm_82571,
1961};
1962
1963const struct e1000_info e1000_82571_info = {
1964 .mac = e1000_82571,
1965 .flags = FLAG_HAS_HW_VLAN_FILTER
1966 | FLAG_HAS_JUMBO_FRAMES
1967 | FLAG_HAS_WOL
1968 | FLAG_APME_IN_CTRL3
1969 | FLAG_HAS_CTRLEXT_ON_LOAD
1970 | FLAG_HAS_SMART_POWER_DOWN
1971 | FLAG_RESET_OVERWRITES_LAA /* errata */
1972 | FLAG_TARC_SPEED_MODE_BIT /* errata */
1973 | FLAG_APME_CHECK_PORT_B,
1974 .flags2 = FLAG2_DISABLE_ASPM_L1 /* errata 13 */
1975 | FLAG2_DMA_BURST,
1976 .pba = 38,
1977 .max_hw_frame_size = DEFAULT_JUMBO,
1978 .get_variants = e1000_get_variants_82571,
1979 .mac_ops = &e82571_mac_ops,
1980 .phy_ops = &e82_phy_ops_igp,
1981 .nvm_ops = &e82571_nvm_ops,
1982};
1983
1984const struct e1000_info e1000_82572_info = {
1985 .mac = e1000_82572,
1986 .flags = FLAG_HAS_HW_VLAN_FILTER
1987 | FLAG_HAS_JUMBO_FRAMES
1988 | FLAG_HAS_WOL
1989 | FLAG_APME_IN_CTRL3
1990 | FLAG_HAS_CTRLEXT_ON_LOAD
1991 | FLAG_TARC_SPEED_MODE_BIT, /* errata */
1992 .flags2 = FLAG2_DISABLE_ASPM_L1 /* errata 13 */
1993 | FLAG2_DMA_BURST,
1994 .pba = 38,
1995 .max_hw_frame_size = DEFAULT_JUMBO,
1996 .get_variants = e1000_get_variants_82571,
1997 .mac_ops = &e82571_mac_ops,
1998 .phy_ops = &e82_phy_ops_igp,
1999 .nvm_ops = &e82571_nvm_ops,
2000};
2001
2002const struct e1000_info e1000_82573_info = {
2003 .mac = e1000_82573,
2004 .flags = FLAG_HAS_HW_VLAN_FILTER
2005 | FLAG_HAS_WOL
2006 | FLAG_APME_IN_CTRL3
2007 | FLAG_HAS_SMART_POWER_DOWN
2008 | FLAG_HAS_AMT
2009 | FLAG_HAS_SWSM_ON_LOAD,
2010 .flags2 = FLAG2_DISABLE_ASPM_L1
2011 | FLAG2_DISABLE_ASPM_L0S,
2012 .pba = 20,
2013 .max_hw_frame_size = VLAN_ETH_FRAME_LEN + ETH_FCS_LEN,
2014 .get_variants = e1000_get_variants_82571,
2015 .mac_ops = &e82571_mac_ops,
2016 .phy_ops = &e82_phy_ops_m88,
2017 .nvm_ops = &e82571_nvm_ops,
2018};
2019
2020const struct e1000_info e1000_82574_info = {
2021 .mac = e1000_82574,
2022 .flags = FLAG_HAS_HW_VLAN_FILTER
2023 | FLAG_HAS_MSIX
2024 | FLAG_HAS_JUMBO_FRAMES
2025 | FLAG_HAS_WOL
2026 | FLAG_HAS_HW_TIMESTAMP
2027 | FLAG_APME_IN_CTRL3
2028 | FLAG_HAS_SMART_POWER_DOWN
2029 | FLAG_HAS_AMT
2030 | FLAG_HAS_CTRLEXT_ON_LOAD,
2031 .flags2 = FLAG2_CHECK_PHY_HANG
2032 | FLAG2_DISABLE_ASPM_L0S
2033 | FLAG2_DISABLE_ASPM_L1
2034 | FLAG2_NO_DISABLE_RX
2035 | FLAG2_DMA_BURST,
2036 .pba = 32,
2037 .max_hw_frame_size = DEFAULT_JUMBO,
2038 .get_variants = e1000_get_variants_82571,
2039 .mac_ops = &e82571_mac_ops,
2040 .phy_ops = &e82_phy_ops_bm,
2041 .nvm_ops = &e82571_nvm_ops,
2042};
2043
2044const struct e1000_info e1000_82583_info = {
2045 .mac = e1000_82583,
2046 .flags = FLAG_HAS_HW_VLAN_FILTER
2047 | FLAG_HAS_WOL
2048 | FLAG_HAS_HW_TIMESTAMP
2049 | FLAG_APME_IN_CTRL3
2050 | FLAG_HAS_SMART_POWER_DOWN
2051 | FLAG_HAS_AMT
2052 | FLAG_HAS_JUMBO_FRAMES
2053 | FLAG_HAS_CTRLEXT_ON_LOAD,
2054 .flags2 = FLAG2_DISABLE_ASPM_L0S
2055 | FLAG2_DISABLE_ASPM_L1
2056 | FLAG2_NO_DISABLE_RX,
2057 .pba = 32,
2058 .max_hw_frame_size = DEFAULT_JUMBO,
2059 .get_variants = e1000_get_variants_82571,
2060 .mac_ops = &e82571_mac_ops,
2061 .phy_ops = &e82_phy_ops_bm,
2062 .nvm_ops = &e82571_nvm_ops,
2063};