Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Microchip KSZ9477 switch driver main logic
4 *
5 * Copyright (C) 2017-2024 Microchip Technology Inc.
6 */
7
8#include <linux/kernel.h>
9#include <linux/module.h>
10#include <linux/iopoll.h>
11#include <linux/platform_data/microchip-ksz.h>
12#include <linux/phy.h>
13#include <linux/if_bridge.h>
14#include <linux/if_vlan.h>
15#include <net/dsa.h>
16#include <net/switchdev.h>
17
18#include "ksz9477_reg.h"
19#include "ksz_common.h"
20#include "ksz9477.h"
21
22static void ksz_cfg(struct ksz_device *dev, u32 addr, u8 bits, bool set)
23{
24 regmap_update_bits(ksz_regmap_8(dev), addr, bits, set ? bits : 0);
25}
26
27static void ksz_port_cfg(struct ksz_device *dev, int port, int offset, u8 bits,
28 bool set)
29{
30 regmap_update_bits(ksz_regmap_8(dev), PORT_CTRL_ADDR(port, offset),
31 bits, set ? bits : 0);
32}
33
34static void ksz9477_cfg32(struct ksz_device *dev, u32 addr, u32 bits, bool set)
35{
36 regmap_update_bits(ksz_regmap_32(dev), addr, bits, set ? bits : 0);
37}
38
39static void ksz9477_port_cfg32(struct ksz_device *dev, int port, int offset,
40 u32 bits, bool set)
41{
42 regmap_update_bits(ksz_regmap_32(dev), PORT_CTRL_ADDR(port, offset),
43 bits, set ? bits : 0);
44}
45
46int ksz9477_change_mtu(struct ksz_device *dev, int port, int mtu)
47{
48 u16 frame_size;
49
50 if (!dsa_is_cpu_port(dev->ds, port))
51 return 0;
52
53 frame_size = mtu + VLAN_ETH_HLEN + ETH_FCS_LEN;
54
55 return regmap_update_bits(ksz_regmap_16(dev), REG_SW_MTU__2,
56 REG_SW_MTU_MASK, frame_size);
57}
58
59static int ksz9477_wait_vlan_ctrl_ready(struct ksz_device *dev)
60{
61 unsigned int val;
62
63 return regmap_read_poll_timeout(ksz_regmap_8(dev), REG_SW_VLAN_CTRL,
64 val, !(val & VLAN_START), 10, 1000);
65}
66
67static int ksz9477_get_vlan_table(struct ksz_device *dev, u16 vid,
68 u32 *vlan_table)
69{
70 int ret;
71
72 mutex_lock(&dev->vlan_mutex);
73
74 ksz_write16(dev, REG_SW_VLAN_ENTRY_INDEX__2, vid & VLAN_INDEX_M);
75 ksz_write8(dev, REG_SW_VLAN_CTRL, VLAN_READ | VLAN_START);
76
77 /* wait to be cleared */
78 ret = ksz9477_wait_vlan_ctrl_ready(dev);
79 if (ret) {
80 dev_dbg(dev->dev, "Failed to read vlan table\n");
81 goto exit;
82 }
83
84 ksz_read32(dev, REG_SW_VLAN_ENTRY__4, &vlan_table[0]);
85 ksz_read32(dev, REG_SW_VLAN_ENTRY_UNTAG__4, &vlan_table[1]);
86 ksz_read32(dev, REG_SW_VLAN_ENTRY_PORTS__4, &vlan_table[2]);
87
88 ksz_write8(dev, REG_SW_VLAN_CTRL, 0);
89
90exit:
91 mutex_unlock(&dev->vlan_mutex);
92
93 return ret;
94}
95
96static int ksz9477_set_vlan_table(struct ksz_device *dev, u16 vid,
97 u32 *vlan_table)
98{
99 int ret;
100
101 mutex_lock(&dev->vlan_mutex);
102
103 ksz_write32(dev, REG_SW_VLAN_ENTRY__4, vlan_table[0]);
104 ksz_write32(dev, REG_SW_VLAN_ENTRY_UNTAG__4, vlan_table[1]);
105 ksz_write32(dev, REG_SW_VLAN_ENTRY_PORTS__4, vlan_table[2]);
106
107 ksz_write16(dev, REG_SW_VLAN_ENTRY_INDEX__2, vid & VLAN_INDEX_M);
108 ksz_write8(dev, REG_SW_VLAN_CTRL, VLAN_START | VLAN_WRITE);
109
110 /* wait to be cleared */
111 ret = ksz9477_wait_vlan_ctrl_ready(dev);
112 if (ret) {
113 dev_dbg(dev->dev, "Failed to write vlan table\n");
114 goto exit;
115 }
116
117 ksz_write8(dev, REG_SW_VLAN_CTRL, 0);
118
119 /* update vlan cache table */
120 dev->vlan_cache[vid].table[0] = vlan_table[0];
121 dev->vlan_cache[vid].table[1] = vlan_table[1];
122 dev->vlan_cache[vid].table[2] = vlan_table[2];
123
124exit:
125 mutex_unlock(&dev->vlan_mutex);
126
127 return ret;
128}
129
130static void ksz9477_read_table(struct ksz_device *dev, u32 *table)
131{
132 ksz_read32(dev, REG_SW_ALU_VAL_A, &table[0]);
133 ksz_read32(dev, REG_SW_ALU_VAL_B, &table[1]);
134 ksz_read32(dev, REG_SW_ALU_VAL_C, &table[2]);
135 ksz_read32(dev, REG_SW_ALU_VAL_D, &table[3]);
136}
137
138static void ksz9477_write_table(struct ksz_device *dev, u32 *table)
139{
140 ksz_write32(dev, REG_SW_ALU_VAL_A, table[0]);
141 ksz_write32(dev, REG_SW_ALU_VAL_B, table[1]);
142 ksz_write32(dev, REG_SW_ALU_VAL_C, table[2]);
143 ksz_write32(dev, REG_SW_ALU_VAL_D, table[3]);
144}
145
146static int ksz9477_wait_alu_ready(struct ksz_device *dev)
147{
148 unsigned int val;
149
150 return regmap_read_poll_timeout(ksz_regmap_32(dev), REG_SW_ALU_CTRL__4,
151 val, !(val & ALU_START), 10, 1000);
152}
153
154static int ksz9477_wait_alu_sta_ready(struct ksz_device *dev)
155{
156 unsigned int val;
157
158 return regmap_read_poll_timeout(ksz_regmap_32(dev),
159 REG_SW_ALU_STAT_CTRL__4,
160 val, !(val & ALU_STAT_START),
161 10, 1000);
162}
163
164int ksz9477_reset_switch(struct ksz_device *dev)
165{
166 u8 data8;
167 u32 data32;
168
169 /* reset switch */
170 ksz_cfg(dev, REG_SW_OPERATION, SW_RESET, true);
171
172 /* turn off SPI DO Edge select */
173 regmap_update_bits(ksz_regmap_8(dev), REG_SW_GLOBAL_SERIAL_CTRL_0,
174 SPI_AUTO_EDGE_DETECTION, 0);
175
176 /* default configuration */
177 ksz_write8(dev, REG_SW_LUE_CTRL_1,
178 SW_AGING_ENABLE | SW_LINK_AUTO_AGING | SW_SRC_ADDR_FILTER);
179
180 /* disable interrupts */
181 ksz_write32(dev, REG_SW_INT_MASK__4, SWITCH_INT_MASK);
182 ksz_write32(dev, REG_SW_PORT_INT_MASK__4, 0x7F);
183 ksz_read32(dev, REG_SW_PORT_INT_STATUS__4, &data32);
184
185 /* KSZ9893 compatible chips do not support refclk configuration */
186 if (dev->chip_id == KSZ9893_CHIP_ID ||
187 dev->chip_id == KSZ8563_CHIP_ID ||
188 dev->chip_id == KSZ9563_CHIP_ID)
189 return 0;
190
191 data8 = SW_ENABLE_REFCLKO;
192 if (dev->synclko_disable)
193 data8 = 0;
194 else if (dev->synclko_125)
195 data8 = SW_ENABLE_REFCLKO | SW_REFCLKO_IS_125MHZ;
196 ksz_write8(dev, REG_SW_GLOBAL_OUTPUT_CTRL__1, data8);
197
198 return 0;
199}
200
201void ksz9477_r_mib_cnt(struct ksz_device *dev, int port, u16 addr, u64 *cnt)
202{
203 struct ksz_port *p = &dev->ports[port];
204 unsigned int val;
205 u32 data;
206 int ret;
207
208 /* retain the flush/freeze bit */
209 data = p->freeze ? MIB_COUNTER_FLUSH_FREEZE : 0;
210 data |= MIB_COUNTER_READ;
211 data |= (addr << MIB_COUNTER_INDEX_S);
212 ksz_pwrite32(dev, port, REG_PORT_MIB_CTRL_STAT__4, data);
213
214 ret = regmap_read_poll_timeout(ksz_regmap_32(dev),
215 PORT_CTRL_ADDR(port, REG_PORT_MIB_CTRL_STAT__4),
216 val, !(val & MIB_COUNTER_READ), 10, 1000);
217 /* failed to read MIB. get out of loop */
218 if (ret) {
219 dev_dbg(dev->dev, "Failed to get MIB\n");
220 return;
221 }
222
223 /* count resets upon read */
224 ksz_pread32(dev, port, REG_PORT_MIB_DATA, &data);
225 *cnt += data;
226}
227
228void ksz9477_r_mib_pkt(struct ksz_device *dev, int port, u16 addr,
229 u64 *dropped, u64 *cnt)
230{
231 addr = dev->info->mib_names[addr].index;
232 ksz9477_r_mib_cnt(dev, port, addr, cnt);
233}
234
235void ksz9477_freeze_mib(struct ksz_device *dev, int port, bool freeze)
236{
237 u32 val = freeze ? MIB_COUNTER_FLUSH_FREEZE : 0;
238 struct ksz_port *p = &dev->ports[port];
239
240 /* enable/disable the port for flush/freeze function */
241 mutex_lock(&p->mib.cnt_mutex);
242 ksz_pwrite32(dev, port, REG_PORT_MIB_CTRL_STAT__4, val);
243
244 /* used by MIB counter reading code to know freeze is enabled */
245 p->freeze = freeze;
246 mutex_unlock(&p->mib.cnt_mutex);
247}
248
249static int ksz9477_half_duplex_monitor(struct ksz_device *dev, int port,
250 u64 tx_late_col)
251{
252 u8 lue_ctrl;
253 u32 pmavbc;
254 u16 pqm;
255 int ret;
256
257 /* Errata DS80000754 recommends monitoring potential faults in
258 * half-duplex mode. The switch might not be able to communicate anymore
259 * in these states. If you see this message, please read the
260 * errata-sheet for more information:
261 * https://ww1.microchip.com/downloads/aemDocuments/documents/UNG/ProductDocuments/Errata/KSZ9477S-Errata-DS80000754.pdf
262 * To workaround this issue, half-duplex mode should be avoided.
263 * A software reset could be implemented to recover from this state.
264 */
265 dev_warn_once(dev->dev,
266 "Half-duplex detected on port %d, transmission halt may occur\n",
267 port);
268 if (tx_late_col != 0) {
269 /* Transmission halt with late collisions */
270 dev_crit_once(dev->dev,
271 "TX late collisions detected, transmission may be halted on port %d\n",
272 port);
273 }
274 ret = ksz_read8(dev, REG_SW_LUE_CTRL_0, &lue_ctrl);
275 if (ret)
276 return ret;
277 if (lue_ctrl & SW_VLAN_ENABLE) {
278 ret = ksz_pread16(dev, port, REG_PORT_QM_TX_CNT_0__4, &pqm);
279 if (ret)
280 return ret;
281
282 ret = ksz_read32(dev, REG_PMAVBC, &pmavbc);
283 if (ret)
284 return ret;
285
286 if ((FIELD_GET(PMAVBC_MASK, pmavbc) <= PMAVBC_MIN) ||
287 (FIELD_GET(PORT_QM_TX_CNT_M, pqm) >= PORT_QM_TX_CNT_MAX)) {
288 /* Transmission halt with Half-Duplex and VLAN */
289 dev_crit_once(dev->dev,
290 "resources out of limits, transmission may be halted\n");
291 }
292 }
293
294 return ret;
295}
296
297int ksz9477_errata_monitor(struct ksz_device *dev, int port,
298 u64 tx_late_col)
299{
300 u8 status;
301 int ret;
302
303 ret = ksz_pread8(dev, port, REG_PORT_STATUS_0, &status);
304 if (ret)
305 return ret;
306
307 if (!(FIELD_GET(PORT_INTF_SPEED_MASK, status)
308 == PORT_INTF_SPEED_NONE) &&
309 !(status & PORT_INTF_FULL_DUPLEX)) {
310 ret = ksz9477_half_duplex_monitor(dev, port, tx_late_col);
311 }
312
313 return ret;
314}
315
316void ksz9477_port_init_cnt(struct ksz_device *dev, int port)
317{
318 struct ksz_port_mib *mib = &dev->ports[port].mib;
319
320 /* flush all enabled port MIB counters */
321 mutex_lock(&mib->cnt_mutex);
322 ksz_pwrite32(dev, port, REG_PORT_MIB_CTRL_STAT__4,
323 MIB_COUNTER_FLUSH_FREEZE);
324 ksz_write8(dev, REG_SW_MAC_CTRL_6, SW_MIB_COUNTER_FLUSH);
325 ksz_pwrite32(dev, port, REG_PORT_MIB_CTRL_STAT__4, 0);
326 mutex_unlock(&mib->cnt_mutex);
327}
328
329static void ksz9477_r_phy_quirks(struct ksz_device *dev, u16 addr, u16 reg,
330 u16 *data)
331{
332 /* KSZ8563R do not have extended registers but BMSR_ESTATEN and
333 * BMSR_ERCAP bits are set.
334 */
335 if (dev->chip_id == KSZ8563_CHIP_ID && reg == MII_BMSR)
336 *data &= ~(BMSR_ESTATEN | BMSR_ERCAP);
337}
338
339int ksz9477_r_phy(struct ksz_device *dev, u16 addr, u16 reg, u16 *data)
340{
341 u16 val = 0xffff;
342 int ret;
343
344 /* No real PHY after this. Simulate the PHY.
345 * A fixed PHY can be setup in the device tree, but this function is
346 * still called for that port during initialization.
347 * For RGMII PHY there is no way to access it so the fixed PHY should
348 * be used. For SGMII PHY the supporting code will be added later.
349 */
350 if (!dev->info->internal_phy[addr]) {
351 struct ksz_port *p = &dev->ports[addr];
352
353 switch (reg) {
354 case MII_BMCR:
355 val = 0x1140;
356 break;
357 case MII_BMSR:
358 val = 0x796d;
359 break;
360 case MII_PHYSID1:
361 val = 0x0022;
362 break;
363 case MII_PHYSID2:
364 val = 0x1631;
365 break;
366 case MII_ADVERTISE:
367 val = 0x05e1;
368 break;
369 case MII_LPA:
370 val = 0xc5e1;
371 break;
372 case MII_CTRL1000:
373 val = 0x0700;
374 break;
375 case MII_STAT1000:
376 if (p->phydev.speed == SPEED_1000)
377 val = 0x3800;
378 else
379 val = 0;
380 break;
381 }
382 } else {
383 ret = ksz_pread16(dev, addr, 0x100 + (reg << 1), &val);
384 if (ret)
385 return ret;
386
387 ksz9477_r_phy_quirks(dev, addr, reg, &val);
388 }
389
390 *data = val;
391
392 return 0;
393}
394
395int ksz9477_w_phy(struct ksz_device *dev, u16 addr, u16 reg, u16 val)
396{
397 u32 mask, val32;
398
399 /* No real PHY after this. */
400 if (!dev->info->internal_phy[addr])
401 return 0;
402
403 if (reg < 0x10)
404 return ksz_pwrite16(dev, addr, 0x100 + (reg << 1), val);
405
406 /* Errata: When using SPI, I2C, or in-band register access,
407 * writes to certain PHY registers should be performed as
408 * 32-bit writes instead of 16-bit writes.
409 */
410 val32 = val;
411 mask = 0xffff;
412 if ((reg & 1) == 0) {
413 val32 <<= 16;
414 mask <<= 16;
415 }
416 reg &= ~1;
417 return ksz_prmw32(dev, addr, 0x100 + (reg << 1), mask, val32);
418}
419
420void ksz9477_cfg_port_member(struct ksz_device *dev, int port, u8 member)
421{
422 ksz_pwrite32(dev, port, REG_PORT_VLAN_MEMBERSHIP__4, member);
423}
424
425void ksz9477_flush_dyn_mac_table(struct ksz_device *dev, int port)
426{
427 const u16 *regs = dev->info->regs;
428 u8 data;
429
430 regmap_update_bits(ksz_regmap_8(dev), REG_SW_LUE_CTRL_2,
431 SW_FLUSH_OPTION_M << SW_FLUSH_OPTION_S,
432 SW_FLUSH_OPTION_DYN_MAC << SW_FLUSH_OPTION_S);
433
434 if (port < dev->info->port_cnt) {
435 /* flush individual port */
436 ksz_pread8(dev, port, regs[P_STP_CTRL], &data);
437 if (!(data & PORT_LEARN_DISABLE))
438 ksz_pwrite8(dev, port, regs[P_STP_CTRL],
439 data | PORT_LEARN_DISABLE);
440 ksz_cfg(dev, S_FLUSH_TABLE_CTRL, SW_FLUSH_DYN_MAC_TABLE, true);
441 ksz_pwrite8(dev, port, regs[P_STP_CTRL], data);
442 } else {
443 /* flush all */
444 ksz_cfg(dev, S_FLUSH_TABLE_CTRL, SW_FLUSH_STP_TABLE, true);
445 }
446}
447
448int ksz9477_port_vlan_filtering(struct ksz_device *dev, int port,
449 bool flag, struct netlink_ext_ack *extack)
450{
451 if (flag) {
452 ksz_port_cfg(dev, port, REG_PORT_LUE_CTRL,
453 PORT_VLAN_LOOKUP_VID_0, true);
454 ksz_cfg(dev, REG_SW_LUE_CTRL_0, SW_VLAN_ENABLE, true);
455 } else {
456 ksz_cfg(dev, REG_SW_LUE_CTRL_0, SW_VLAN_ENABLE, false);
457 ksz_port_cfg(dev, port, REG_PORT_LUE_CTRL,
458 PORT_VLAN_LOOKUP_VID_0, false);
459 }
460
461 return 0;
462}
463
464int ksz9477_port_vlan_add(struct ksz_device *dev, int port,
465 const struct switchdev_obj_port_vlan *vlan,
466 struct netlink_ext_ack *extack)
467{
468 u32 vlan_table[3];
469 bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED;
470 int err;
471
472 err = ksz9477_get_vlan_table(dev, vlan->vid, vlan_table);
473 if (err) {
474 NL_SET_ERR_MSG_MOD(extack, "Failed to get vlan table");
475 return err;
476 }
477
478 vlan_table[0] = VLAN_VALID | (vlan->vid & VLAN_FID_M);
479 if (untagged)
480 vlan_table[1] |= BIT(port);
481 else
482 vlan_table[1] &= ~BIT(port);
483 vlan_table[1] &= ~(BIT(dev->cpu_port));
484
485 vlan_table[2] |= BIT(port) | BIT(dev->cpu_port);
486
487 err = ksz9477_set_vlan_table(dev, vlan->vid, vlan_table);
488 if (err) {
489 NL_SET_ERR_MSG_MOD(extack, "Failed to set vlan table");
490 return err;
491 }
492
493 /* change PVID */
494 if (vlan->flags & BRIDGE_VLAN_INFO_PVID)
495 ksz_pwrite16(dev, port, REG_PORT_DEFAULT_VID, vlan->vid);
496
497 return 0;
498}
499
500int ksz9477_port_vlan_del(struct ksz_device *dev, int port,
501 const struct switchdev_obj_port_vlan *vlan)
502{
503 bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED;
504 u32 vlan_table[3];
505 u16 pvid;
506
507 ksz_pread16(dev, port, REG_PORT_DEFAULT_VID, &pvid);
508 pvid = pvid & 0xFFF;
509
510 if (ksz9477_get_vlan_table(dev, vlan->vid, vlan_table)) {
511 dev_dbg(dev->dev, "Failed to get vlan table\n");
512 return -ETIMEDOUT;
513 }
514
515 vlan_table[2] &= ~BIT(port);
516
517 if (pvid == vlan->vid)
518 pvid = 1;
519
520 if (untagged)
521 vlan_table[1] &= ~BIT(port);
522
523 if (ksz9477_set_vlan_table(dev, vlan->vid, vlan_table)) {
524 dev_dbg(dev->dev, "Failed to set vlan table\n");
525 return -ETIMEDOUT;
526 }
527
528 ksz_pwrite16(dev, port, REG_PORT_DEFAULT_VID, pvid);
529
530 return 0;
531}
532
533int ksz9477_fdb_add(struct ksz_device *dev, int port,
534 const unsigned char *addr, u16 vid, struct dsa_db db)
535{
536 u32 alu_table[4];
537 u32 data;
538 int ret = 0;
539
540 mutex_lock(&dev->alu_mutex);
541
542 /* find any entry with mac & vid */
543 data = vid << ALU_FID_INDEX_S;
544 data |= ((addr[0] << 8) | addr[1]);
545 ksz_write32(dev, REG_SW_ALU_INDEX_0, data);
546
547 data = ((addr[2] << 24) | (addr[3] << 16));
548 data |= ((addr[4] << 8) | addr[5]);
549 ksz_write32(dev, REG_SW_ALU_INDEX_1, data);
550
551 /* start read operation */
552 ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_READ | ALU_START);
553
554 /* wait to be finished */
555 ret = ksz9477_wait_alu_ready(dev);
556 if (ret) {
557 dev_dbg(dev->dev, "Failed to read ALU\n");
558 goto exit;
559 }
560
561 /* read ALU entry */
562 ksz9477_read_table(dev, alu_table);
563
564 /* update ALU entry */
565 alu_table[0] = ALU_V_STATIC_VALID;
566 alu_table[1] |= BIT(port);
567 if (vid)
568 alu_table[1] |= ALU_V_USE_FID;
569 alu_table[2] = (vid << ALU_V_FID_S);
570 alu_table[2] |= ((addr[0] << 8) | addr[1]);
571 alu_table[3] = ((addr[2] << 24) | (addr[3] << 16));
572 alu_table[3] |= ((addr[4] << 8) | addr[5]);
573
574 ksz9477_write_table(dev, alu_table);
575
576 ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_WRITE | ALU_START);
577
578 /* wait to be finished */
579 ret = ksz9477_wait_alu_ready(dev);
580 if (ret)
581 dev_dbg(dev->dev, "Failed to write ALU\n");
582
583exit:
584 mutex_unlock(&dev->alu_mutex);
585
586 return ret;
587}
588
589int ksz9477_fdb_del(struct ksz_device *dev, int port,
590 const unsigned char *addr, u16 vid, struct dsa_db db)
591{
592 u32 alu_table[4];
593 u32 data;
594 int ret = 0;
595
596 mutex_lock(&dev->alu_mutex);
597
598 /* read any entry with mac & vid */
599 data = vid << ALU_FID_INDEX_S;
600 data |= ((addr[0] << 8) | addr[1]);
601 ksz_write32(dev, REG_SW_ALU_INDEX_0, data);
602
603 data = ((addr[2] << 24) | (addr[3] << 16));
604 data |= ((addr[4] << 8) | addr[5]);
605 ksz_write32(dev, REG_SW_ALU_INDEX_1, data);
606
607 /* start read operation */
608 ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_READ | ALU_START);
609
610 /* wait to be finished */
611 ret = ksz9477_wait_alu_ready(dev);
612 if (ret) {
613 dev_dbg(dev->dev, "Failed to read ALU\n");
614 goto exit;
615 }
616
617 ksz_read32(dev, REG_SW_ALU_VAL_A, &alu_table[0]);
618 if (alu_table[0] & ALU_V_STATIC_VALID) {
619 ksz_read32(dev, REG_SW_ALU_VAL_B, &alu_table[1]);
620 ksz_read32(dev, REG_SW_ALU_VAL_C, &alu_table[2]);
621 ksz_read32(dev, REG_SW_ALU_VAL_D, &alu_table[3]);
622
623 /* clear forwarding port */
624 alu_table[1] &= ~BIT(port);
625
626 /* if there is no port to forward, clear table */
627 if ((alu_table[1] & ALU_V_PORT_MAP) == 0) {
628 alu_table[0] = 0;
629 alu_table[1] = 0;
630 alu_table[2] = 0;
631 alu_table[3] = 0;
632 }
633 } else {
634 alu_table[0] = 0;
635 alu_table[1] = 0;
636 alu_table[2] = 0;
637 alu_table[3] = 0;
638 }
639
640 ksz9477_write_table(dev, alu_table);
641
642 ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_WRITE | ALU_START);
643
644 /* wait to be finished */
645 ret = ksz9477_wait_alu_ready(dev);
646 if (ret)
647 dev_dbg(dev->dev, "Failed to write ALU\n");
648
649exit:
650 mutex_unlock(&dev->alu_mutex);
651
652 return ret;
653}
654
655static void ksz9477_convert_alu(struct alu_struct *alu, u32 *alu_table)
656{
657 alu->is_static = !!(alu_table[0] & ALU_V_STATIC_VALID);
658 alu->is_src_filter = !!(alu_table[0] & ALU_V_SRC_FILTER);
659 alu->is_dst_filter = !!(alu_table[0] & ALU_V_DST_FILTER);
660 alu->prio_age = (alu_table[0] >> ALU_V_PRIO_AGE_CNT_S) &
661 ALU_V_PRIO_AGE_CNT_M;
662 alu->mstp = alu_table[0] & ALU_V_MSTP_M;
663
664 alu->is_override = !!(alu_table[1] & ALU_V_OVERRIDE);
665 alu->is_use_fid = !!(alu_table[1] & ALU_V_USE_FID);
666 alu->port_forward = alu_table[1] & ALU_V_PORT_MAP;
667
668 alu->fid = (alu_table[2] >> ALU_V_FID_S) & ALU_V_FID_M;
669
670 alu->mac[0] = (alu_table[2] >> 8) & 0xFF;
671 alu->mac[1] = alu_table[2] & 0xFF;
672 alu->mac[2] = (alu_table[3] >> 24) & 0xFF;
673 alu->mac[3] = (alu_table[3] >> 16) & 0xFF;
674 alu->mac[4] = (alu_table[3] >> 8) & 0xFF;
675 alu->mac[5] = alu_table[3] & 0xFF;
676}
677
678int ksz9477_fdb_dump(struct ksz_device *dev, int port,
679 dsa_fdb_dump_cb_t *cb, void *data)
680{
681 int ret = 0;
682 u32 ksz_data;
683 u32 alu_table[4];
684 struct alu_struct alu;
685 int timeout;
686
687 mutex_lock(&dev->alu_mutex);
688
689 /* start ALU search */
690 ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_START | ALU_SEARCH);
691
692 do {
693 timeout = 1000;
694 do {
695 ksz_read32(dev, REG_SW_ALU_CTRL__4, &ksz_data);
696 if ((ksz_data & ALU_VALID) || !(ksz_data & ALU_START))
697 break;
698 usleep_range(1, 10);
699 } while (timeout-- > 0);
700
701 if (!timeout) {
702 dev_dbg(dev->dev, "Failed to search ALU\n");
703 ret = -ETIMEDOUT;
704 goto exit;
705 }
706
707 if (!(ksz_data & ALU_VALID))
708 continue;
709
710 /* read ALU table */
711 ksz9477_read_table(dev, alu_table);
712
713 ksz9477_convert_alu(&alu, alu_table);
714
715 if (alu.port_forward & BIT(port)) {
716 ret = cb(alu.mac, alu.fid, alu.is_static, data);
717 if (ret)
718 goto exit;
719 }
720 } while (ksz_data & ALU_START);
721
722exit:
723
724 /* stop ALU search */
725 ksz_write32(dev, REG_SW_ALU_CTRL__4, 0);
726
727 mutex_unlock(&dev->alu_mutex);
728
729 return ret;
730}
731
732int ksz9477_mdb_add(struct ksz_device *dev, int port,
733 const struct switchdev_obj_port_mdb *mdb, struct dsa_db db)
734{
735 u32 static_table[4];
736 const u8 *shifts;
737 const u32 *masks;
738 u32 data;
739 int index;
740 u32 mac_hi, mac_lo;
741 int err = 0;
742
743 shifts = dev->info->shifts;
744 masks = dev->info->masks;
745
746 mac_hi = ((mdb->addr[0] << 8) | mdb->addr[1]);
747 mac_lo = ((mdb->addr[2] << 24) | (mdb->addr[3] << 16));
748 mac_lo |= ((mdb->addr[4] << 8) | mdb->addr[5]);
749
750 mutex_lock(&dev->alu_mutex);
751
752 for (index = 0; index < dev->info->num_statics; index++) {
753 /* find empty slot first */
754 data = (index << shifts[ALU_STAT_INDEX]) |
755 masks[ALU_STAT_READ] | ALU_STAT_START;
756 ksz_write32(dev, REG_SW_ALU_STAT_CTRL__4, data);
757
758 /* wait to be finished */
759 err = ksz9477_wait_alu_sta_ready(dev);
760 if (err) {
761 dev_dbg(dev->dev, "Failed to read ALU STATIC\n");
762 goto exit;
763 }
764
765 /* read ALU static table */
766 ksz9477_read_table(dev, static_table);
767
768 if (static_table[0] & ALU_V_STATIC_VALID) {
769 /* check this has same vid & mac address */
770 if (((static_table[2] >> ALU_V_FID_S) == mdb->vid) &&
771 ((static_table[2] & ALU_V_MAC_ADDR_HI) == mac_hi) &&
772 static_table[3] == mac_lo) {
773 /* found matching one */
774 break;
775 }
776 } else {
777 /* found empty one */
778 break;
779 }
780 }
781
782 /* no available entry */
783 if (index == dev->info->num_statics) {
784 err = -ENOSPC;
785 goto exit;
786 }
787
788 /* add entry */
789 static_table[0] = ALU_V_STATIC_VALID;
790 static_table[1] |= BIT(port);
791 if (mdb->vid)
792 static_table[1] |= ALU_V_USE_FID;
793 static_table[2] = (mdb->vid << ALU_V_FID_S);
794 static_table[2] |= mac_hi;
795 static_table[3] = mac_lo;
796
797 ksz9477_write_table(dev, static_table);
798
799 data = (index << shifts[ALU_STAT_INDEX]) | ALU_STAT_START;
800 ksz_write32(dev, REG_SW_ALU_STAT_CTRL__4, data);
801
802 /* wait to be finished */
803 if (ksz9477_wait_alu_sta_ready(dev))
804 dev_dbg(dev->dev, "Failed to read ALU STATIC\n");
805
806exit:
807 mutex_unlock(&dev->alu_mutex);
808 return err;
809}
810
811int ksz9477_mdb_del(struct ksz_device *dev, int port,
812 const struct switchdev_obj_port_mdb *mdb, struct dsa_db db)
813{
814 u32 static_table[4];
815 const u8 *shifts;
816 const u32 *masks;
817 u32 data;
818 int index;
819 int ret = 0;
820 u32 mac_hi, mac_lo;
821
822 shifts = dev->info->shifts;
823 masks = dev->info->masks;
824
825 mac_hi = ((mdb->addr[0] << 8) | mdb->addr[1]);
826 mac_lo = ((mdb->addr[2] << 24) | (mdb->addr[3] << 16));
827 mac_lo |= ((mdb->addr[4] << 8) | mdb->addr[5]);
828
829 mutex_lock(&dev->alu_mutex);
830
831 for (index = 0; index < dev->info->num_statics; index++) {
832 /* find empty slot first */
833 data = (index << shifts[ALU_STAT_INDEX]) |
834 masks[ALU_STAT_READ] | ALU_STAT_START;
835 ksz_write32(dev, REG_SW_ALU_STAT_CTRL__4, data);
836
837 /* wait to be finished */
838 ret = ksz9477_wait_alu_sta_ready(dev);
839 if (ret) {
840 dev_dbg(dev->dev, "Failed to read ALU STATIC\n");
841 goto exit;
842 }
843
844 /* read ALU static table */
845 ksz9477_read_table(dev, static_table);
846
847 if (static_table[0] & ALU_V_STATIC_VALID) {
848 /* check this has same vid & mac address */
849
850 if (((static_table[2] >> ALU_V_FID_S) == mdb->vid) &&
851 ((static_table[2] & ALU_V_MAC_ADDR_HI) == mac_hi) &&
852 static_table[3] == mac_lo) {
853 /* found matching one */
854 break;
855 }
856 }
857 }
858
859 /* no available entry */
860 if (index == dev->info->num_statics)
861 goto exit;
862
863 /* clear port */
864 static_table[1] &= ~BIT(port);
865
866 if ((static_table[1] & ALU_V_PORT_MAP) == 0) {
867 /* delete entry */
868 static_table[0] = 0;
869 static_table[1] = 0;
870 static_table[2] = 0;
871 static_table[3] = 0;
872 }
873
874 ksz9477_write_table(dev, static_table);
875
876 data = (index << shifts[ALU_STAT_INDEX]) | ALU_STAT_START;
877 ksz_write32(dev, REG_SW_ALU_STAT_CTRL__4, data);
878
879 /* wait to be finished */
880 ret = ksz9477_wait_alu_sta_ready(dev);
881 if (ret)
882 dev_dbg(dev->dev, "Failed to read ALU STATIC\n");
883
884exit:
885 mutex_unlock(&dev->alu_mutex);
886
887 return ret;
888}
889
890int ksz9477_port_mirror_add(struct ksz_device *dev, int port,
891 struct dsa_mall_mirror_tc_entry *mirror,
892 bool ingress, struct netlink_ext_ack *extack)
893{
894 u8 data;
895 int p;
896
897 /* Limit to one sniffer port
898 * Check if any of the port is already set for sniffing
899 * If yes, instruct the user to remove the previous entry & exit
900 */
901 for (p = 0; p < dev->info->port_cnt; p++) {
902 /* Skip the current sniffing port */
903 if (p == mirror->to_local_port)
904 continue;
905
906 ksz_pread8(dev, p, P_MIRROR_CTRL, &data);
907
908 if (data & PORT_MIRROR_SNIFFER) {
909 NL_SET_ERR_MSG_MOD(extack,
910 "Sniffer port is already configured, delete existing rules & retry");
911 return -EBUSY;
912 }
913 }
914
915 if (ingress)
916 ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_RX, true);
917 else
918 ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_TX, true);
919
920 /* configure mirror port */
921 ksz_port_cfg(dev, mirror->to_local_port, P_MIRROR_CTRL,
922 PORT_MIRROR_SNIFFER, true);
923
924 ksz_cfg(dev, S_MIRROR_CTRL, SW_MIRROR_RX_TX, false);
925
926 return 0;
927}
928
929void ksz9477_port_mirror_del(struct ksz_device *dev, int port,
930 struct dsa_mall_mirror_tc_entry *mirror)
931{
932 bool in_use = false;
933 u8 data;
934 int p;
935
936 if (mirror->ingress)
937 ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_RX, false);
938 else
939 ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_TX, false);
940
941
942 /* Check if any of the port is still referring to sniffer port */
943 for (p = 0; p < dev->info->port_cnt; p++) {
944 ksz_pread8(dev, p, P_MIRROR_CTRL, &data);
945
946 if ((data & (PORT_MIRROR_RX | PORT_MIRROR_TX))) {
947 in_use = true;
948 break;
949 }
950 }
951
952 /* delete sniffing if there are no other mirroring rules */
953 if (!in_use)
954 ksz_port_cfg(dev, mirror->to_local_port, P_MIRROR_CTRL,
955 PORT_MIRROR_SNIFFER, false);
956}
957
958static phy_interface_t ksz9477_get_interface(struct ksz_device *dev, int port)
959{
960 phy_interface_t interface;
961 bool gbit;
962
963 if (dev->info->internal_phy[port])
964 return PHY_INTERFACE_MODE_NA;
965
966 gbit = ksz_get_gbit(dev, port);
967
968 interface = ksz_get_xmii(dev, port, gbit);
969
970 return interface;
971}
972
973void ksz9477_get_caps(struct ksz_device *dev, int port,
974 struct phylink_config *config)
975{
976 config->mac_capabilities = MAC_10 | MAC_100 | MAC_ASYM_PAUSE |
977 MAC_SYM_PAUSE;
978
979 if (dev->info->gbit_capable[port])
980 config->mac_capabilities |= MAC_1000FD;
981}
982
983int ksz9477_set_ageing_time(struct ksz_device *dev, unsigned int msecs)
984{
985 u32 secs = msecs / 1000;
986 u8 data, mult, value;
987 u32 max_val;
988 int ret;
989
990#define MAX_TIMER_VAL ((1 << 8) - 1)
991
992 /* The aging timer comprises a 3-bit multiplier and an 8-bit second
993 * value. Either of them cannot be zero. The maximum timer is then
994 * 7 * 255 = 1785 seconds.
995 */
996 if (!secs)
997 secs = 1;
998
999 /* Return error if too large. */
1000 else if (secs > 7 * MAX_TIMER_VAL)
1001 return -EINVAL;
1002
1003 ret = ksz_read8(dev, REG_SW_LUE_CTRL_0, &value);
1004 if (ret < 0)
1005 return ret;
1006
1007 /* Check whether there is need to update the multiplier. */
1008 mult = FIELD_GET(SW_AGE_CNT_M, value);
1009 max_val = MAX_TIMER_VAL;
1010 if (mult > 0) {
1011 /* Try to use the same multiplier already in the register as
1012 * the hardware default uses multiplier 4 and 75 seconds for
1013 * 300 seconds.
1014 */
1015 max_val = DIV_ROUND_UP(secs, mult);
1016 if (max_val > MAX_TIMER_VAL || max_val * mult != secs)
1017 max_val = MAX_TIMER_VAL;
1018 }
1019
1020 data = DIV_ROUND_UP(secs, max_val);
1021 if (mult != data) {
1022 value &= ~SW_AGE_CNT_M;
1023 value |= FIELD_PREP(SW_AGE_CNT_M, data);
1024 ret = ksz_write8(dev, REG_SW_LUE_CTRL_0, value);
1025 if (ret < 0)
1026 return ret;
1027 }
1028
1029 value = DIV_ROUND_UP(secs, data);
1030 return ksz_write8(dev, REG_SW_LUE_CTRL_3, value);
1031}
1032
1033void ksz9477_port_queue_split(struct ksz_device *dev, int port)
1034{
1035 u8 data;
1036
1037 if (dev->info->num_tx_queues == 8)
1038 data = PORT_EIGHT_QUEUE;
1039 else if (dev->info->num_tx_queues == 4)
1040 data = PORT_FOUR_QUEUE;
1041 else if (dev->info->num_tx_queues == 2)
1042 data = PORT_TWO_QUEUE;
1043 else
1044 data = PORT_SINGLE_QUEUE;
1045
1046 ksz_prmw8(dev, port, REG_PORT_CTRL_0, PORT_QUEUE_SPLIT_MASK, data);
1047}
1048
1049void ksz9477_port_setup(struct ksz_device *dev, int port, bool cpu_port)
1050{
1051 const u16 *regs = dev->info->regs;
1052 struct dsa_switch *ds = dev->ds;
1053 u16 data16;
1054 u8 member;
1055
1056 /* enable tag tail for host port */
1057 if (cpu_port)
1058 ksz_port_cfg(dev, port, REG_PORT_CTRL_0, PORT_TAIL_TAG_ENABLE,
1059 true);
1060
1061 ksz9477_port_queue_split(dev, port);
1062
1063 ksz_port_cfg(dev, port, REG_PORT_CTRL_0, PORT_MAC_LOOPBACK, false);
1064
1065 /* set back pressure */
1066 ksz_port_cfg(dev, port, REG_PORT_MAC_CTRL_1, PORT_BACK_PRESSURE, true);
1067
1068 /* enable broadcast storm limit */
1069 ksz_port_cfg(dev, port, P_BCAST_STORM_CTRL, PORT_BROADCAST_STORM, true);
1070
1071 /* replace priority */
1072 ksz_port_cfg(dev, port, REG_PORT_MRI_MAC_CTRL, PORT_USER_PRIO_CEILING,
1073 false);
1074 ksz9477_port_cfg32(dev, port, REG_PORT_MTI_QUEUE_CTRL_0__4,
1075 MTI_PVID_REPLACE, false);
1076
1077 /* force flow control for non-PHY ports only */
1078 ksz_port_cfg(dev, port, REG_PORT_CTRL_0,
1079 PORT_FORCE_TX_FLOW_CTRL | PORT_FORCE_RX_FLOW_CTRL,
1080 !dev->info->internal_phy[port]);
1081
1082 if (cpu_port)
1083 member = dsa_user_ports(ds);
1084 else
1085 member = BIT(dsa_upstream_port(ds, port));
1086
1087 ksz9477_cfg_port_member(dev, port, member);
1088
1089 /* clear pending interrupts */
1090 if (dev->info->internal_phy[port])
1091 ksz_pread16(dev, port, REG_PORT_PHY_INT_ENABLE, &data16);
1092
1093 ksz9477_port_acl_init(dev, port);
1094
1095 /* clear pending wake flags */
1096 ksz_handle_wake_reason(dev, port);
1097
1098 /* Disable all WoL options by default. Otherwise
1099 * ksz_switch_macaddr_get/put logic will not work properly.
1100 */
1101 ksz_pwrite8(dev, port, regs[REG_PORT_PME_CTRL], 0);
1102}
1103
1104void ksz9477_config_cpu_port(struct dsa_switch *ds)
1105{
1106 struct ksz_device *dev = ds->priv;
1107 struct ksz_port *p;
1108 int i;
1109
1110 for (i = 0; i < dev->info->port_cnt; i++) {
1111 if (dsa_is_cpu_port(ds, i) &&
1112 (dev->info->cpu_ports & (1 << i))) {
1113 phy_interface_t interface;
1114 const char *prev_msg;
1115 const char *prev_mode;
1116
1117 dev->cpu_port = i;
1118 p = &dev->ports[i];
1119
1120 /* Read from XMII register to determine host port
1121 * interface. If set specifically in device tree
1122 * note the difference to help debugging.
1123 */
1124 interface = ksz9477_get_interface(dev, i);
1125 if (!p->interface) {
1126 if (dev->compat_interface) {
1127 dev_warn(dev->dev,
1128 "Using legacy switch \"phy-mode\" property, because it is missing on port %d node. "
1129 "Please update your device tree.\n",
1130 i);
1131 p->interface = dev->compat_interface;
1132 } else {
1133 p->interface = interface;
1134 }
1135 }
1136 if (interface && interface != p->interface) {
1137 prev_msg = " instead of ";
1138 prev_mode = phy_modes(interface);
1139 } else {
1140 prev_msg = "";
1141 prev_mode = "";
1142 }
1143 dev_info(dev->dev,
1144 "Port%d: using phy mode %s%s%s\n",
1145 i,
1146 phy_modes(p->interface),
1147 prev_msg,
1148 prev_mode);
1149
1150 /* enable cpu port */
1151 ksz9477_port_setup(dev, i, true);
1152 }
1153 }
1154
1155 for (i = 0; i < dev->info->port_cnt; i++) {
1156 if (i == dev->cpu_port)
1157 continue;
1158 ksz_port_stp_state_set(ds, i, BR_STATE_DISABLED);
1159
1160 /* Power down the internal PHY if port is unused. */
1161 if (dsa_is_unused_port(ds, i) && dev->info->internal_phy[i])
1162 ksz_pwrite16(dev, i, 0x100, BMCR_PDOWN);
1163 }
1164}
1165
1166int ksz9477_enable_stp_addr(struct ksz_device *dev)
1167{
1168 const u32 *masks;
1169 u32 data;
1170 int ret;
1171
1172 masks = dev->info->masks;
1173
1174 /* Enable Reserved multicast table */
1175 ksz_cfg(dev, REG_SW_LUE_CTRL_0, SW_RESV_MCAST_ENABLE, true);
1176
1177 /* Set the Override bit for forwarding BPDU packet to CPU */
1178 ret = ksz_write32(dev, REG_SW_ALU_VAL_B,
1179 ALU_V_OVERRIDE | BIT(dev->cpu_port));
1180 if (ret < 0)
1181 return ret;
1182
1183 data = ALU_STAT_START | ALU_RESV_MCAST_ADDR | masks[ALU_STAT_WRITE];
1184
1185 ret = ksz_write32(dev, REG_SW_ALU_STAT_CTRL__4, data);
1186 if (ret < 0)
1187 return ret;
1188
1189 /* wait to be finished */
1190 ret = ksz9477_wait_alu_sta_ready(dev);
1191 if (ret < 0) {
1192 dev_err(dev->dev, "Failed to update Reserved Multicast table\n");
1193 return ret;
1194 }
1195
1196 return 0;
1197}
1198
1199int ksz9477_setup(struct dsa_switch *ds)
1200{
1201 struct ksz_device *dev = ds->priv;
1202 const u16 *regs = dev->info->regs;
1203 int ret = 0;
1204
1205 ds->mtu_enforcement_ingress = true;
1206
1207 /* Required for port partitioning. */
1208 ksz9477_cfg32(dev, REG_SW_QM_CTRL__4, UNICAST_VLAN_BOUNDARY,
1209 true);
1210
1211 /* Do not work correctly with tail tagging. */
1212 ksz_cfg(dev, REG_SW_MAC_CTRL_0, SW_CHECK_LENGTH, false);
1213
1214 /* Enable REG_SW_MTU__2 reg by setting SW_JUMBO_PACKET */
1215 ksz_cfg(dev, REG_SW_MAC_CTRL_1, SW_JUMBO_PACKET, true);
1216
1217 /* Use collision based back pressure mode. */
1218 ksz_cfg(dev, REG_SW_MAC_CTRL_1, SW_BACK_PRESSURE,
1219 SW_BACK_PRESSURE_COLLISION);
1220
1221 /* Now we can configure default MTU value */
1222 ret = regmap_update_bits(ksz_regmap_16(dev), REG_SW_MTU__2, REG_SW_MTU_MASK,
1223 VLAN_ETH_FRAME_LEN + ETH_FCS_LEN);
1224 if (ret)
1225 return ret;
1226
1227 /* queue based egress rate limit */
1228 ksz_cfg(dev, REG_SW_MAC_CTRL_5, SW_OUT_RATE_LIMIT_QUEUE_BASED, true);
1229
1230 /* enable global MIB counter freeze function */
1231 ksz_cfg(dev, REG_SW_MAC_CTRL_6, SW_MIB_COUNTER_FREEZE, true);
1232
1233 /* Make sure PME (WoL) is not enabled. If requested, it will
1234 * be enabled by ksz_wol_pre_shutdown(). Otherwise, some PMICs
1235 * do not like PME events changes before shutdown.
1236 */
1237 return ksz_write8(dev, regs[REG_SW_PME_CTRL], 0);
1238}
1239
1240u32 ksz9477_get_port_addr(int port, int offset)
1241{
1242 return PORT_CTRL_ADDR(port, offset);
1243}
1244
1245int ksz9477_tc_cbs_set_cinc(struct ksz_device *dev, int port, u32 val)
1246{
1247 val = val >> 8;
1248
1249 return ksz_pwrite16(dev, port, REG_PORT_MTI_CREDIT_INCREMENT, val);
1250}
1251
1252/* The KSZ9477 provides following HW features to accelerate
1253 * HSR frames handling:
1254 *
1255 * 1. TX PACKET DUPLICATION FROM HOST TO SWITCH
1256 * 2. RX PACKET DUPLICATION DISCARDING
1257 * 3. PREVENTING PACKET LOOP IN THE RING BY SELF-ADDRESS FILTERING
1258 *
1259 * Only one from point 1. has the NETIF_F* flag available.
1260 *
1261 * Ones from point 2 and 3 are "best effort" - i.e. those will
1262 * work correctly most of the time, but it may happen that some
1263 * frames will not be caught - to be more specific; there is a race
1264 * condition in hardware such that, when duplicate packets are received
1265 * on member ports very close in time to each other, the hardware fails
1266 * to detect that they are duplicates.
1267 *
1268 * Hence, the SW needs to handle those special cases. However, the speed
1269 * up gain is considerable when above features are used.
1270 *
1271 * Moreover, the NETIF_F_HW_HSR_FWD feature is also enabled, as HSR frames
1272 * can be forwarded in the switch fabric between HSR ports.
1273 */
1274#define KSZ9477_SUPPORTED_HSR_FEATURES (NETIF_F_HW_HSR_DUP | NETIF_F_HW_HSR_FWD)
1275
1276void ksz9477_hsr_join(struct dsa_switch *ds, int port, struct net_device *hsr)
1277{
1278 struct ksz_device *dev = ds->priv;
1279 struct net_device *user;
1280 struct dsa_port *hsr_dp;
1281 u8 data, hsr_ports = 0;
1282
1283 /* Program which port(s) shall support HSR */
1284 ksz_rmw32(dev, REG_HSR_PORT_MAP__4, BIT(port), BIT(port));
1285
1286 /* Forward frames between HSR ports (i.e. bridge together HSR ports) */
1287 if (dev->hsr_ports) {
1288 dsa_hsr_foreach_port(hsr_dp, ds, hsr)
1289 hsr_ports |= BIT(hsr_dp->index);
1290
1291 hsr_ports |= BIT(dsa_upstream_port(ds, port));
1292 dsa_hsr_foreach_port(hsr_dp, ds, hsr)
1293 ksz9477_cfg_port_member(dev, hsr_dp->index, hsr_ports);
1294 }
1295
1296 if (!dev->hsr_ports) {
1297 /* Enable discarding of received HSR frames */
1298 ksz_read8(dev, REG_HSR_ALU_CTRL_0__1, &data);
1299 data |= HSR_DUPLICATE_DISCARD;
1300 data &= ~HSR_NODE_UNICAST;
1301 ksz_write8(dev, REG_HSR_ALU_CTRL_0__1, data);
1302 }
1303
1304 /* Enable per port self-address filtering.
1305 * The global self-address filtering has already been enabled in the
1306 * ksz9477_reset_switch() function.
1307 */
1308 ksz_port_cfg(dev, port, REG_PORT_LUE_CTRL, PORT_SRC_ADDR_FILTER, true);
1309
1310 /* Setup HW supported features for lan HSR ports */
1311 user = dsa_to_port(ds, port)->user;
1312 user->features |= KSZ9477_SUPPORTED_HSR_FEATURES;
1313}
1314
1315void ksz9477_hsr_leave(struct dsa_switch *ds, int port, struct net_device *hsr)
1316{
1317 struct ksz_device *dev = ds->priv;
1318
1319 /* Clear port HSR support */
1320 ksz_rmw32(dev, REG_HSR_PORT_MAP__4, BIT(port), 0);
1321
1322 /* Disable forwarding frames between HSR ports */
1323 ksz9477_cfg_port_member(dev, port, BIT(dsa_upstream_port(ds, port)));
1324
1325 /* Disable per port self-address filtering */
1326 ksz_port_cfg(dev, port, REG_PORT_LUE_CTRL, PORT_SRC_ADDR_FILTER, false);
1327}
1328
1329int ksz9477_switch_init(struct ksz_device *dev)
1330{
1331 u8 data8;
1332 int ret;
1333
1334 dev->port_mask = (1 << dev->info->port_cnt) - 1;
1335
1336 /* turn off SPI DO Edge select */
1337 ret = ksz_read8(dev, REG_SW_GLOBAL_SERIAL_CTRL_0, &data8);
1338 if (ret)
1339 return ret;
1340
1341 data8 &= ~SPI_AUTO_EDGE_DETECTION;
1342 ret = ksz_write8(dev, REG_SW_GLOBAL_SERIAL_CTRL_0, data8);
1343 if (ret)
1344 return ret;
1345
1346 return 0;
1347}
1348
1349void ksz9477_switch_exit(struct ksz_device *dev)
1350{
1351 ksz9477_reset_switch(dev);
1352}
1353
1354MODULE_AUTHOR("Woojung Huh <Woojung.Huh@microchip.com>");
1355MODULE_DESCRIPTION("Microchip KSZ9477 Series Switch DSA Driver");
1356MODULE_LICENSE("GPL");
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Microchip KSZ9477 switch driver main logic
4 *
5 * Copyright (C) 2017-2019 Microchip Technology Inc.
6 */
7
8#include <linux/kernel.h>
9#include <linux/module.h>
10#include <linux/iopoll.h>
11#include <linux/platform_data/microchip-ksz.h>
12#include <linux/phy.h>
13#include <linux/if_bridge.h>
14#include <net/dsa.h>
15#include <net/switchdev.h>
16
17#include "ksz9477_reg.h"
18#include "ksz_common.h"
19
20/* Used with variable features to indicate capabilities. */
21#define GBIT_SUPPORT BIT(0)
22#define NEW_XMII BIT(1)
23#define IS_9893 BIT(2)
24
25static const struct {
26 int index;
27 char string[ETH_GSTRING_LEN];
28} ksz9477_mib_names[TOTAL_SWITCH_COUNTER_NUM] = {
29 { 0x00, "rx_hi" },
30 { 0x01, "rx_undersize" },
31 { 0x02, "rx_fragments" },
32 { 0x03, "rx_oversize" },
33 { 0x04, "rx_jabbers" },
34 { 0x05, "rx_symbol_err" },
35 { 0x06, "rx_crc_err" },
36 { 0x07, "rx_align_err" },
37 { 0x08, "rx_mac_ctrl" },
38 { 0x09, "rx_pause" },
39 { 0x0A, "rx_bcast" },
40 { 0x0B, "rx_mcast" },
41 { 0x0C, "rx_ucast" },
42 { 0x0D, "rx_64_or_less" },
43 { 0x0E, "rx_65_127" },
44 { 0x0F, "rx_128_255" },
45 { 0x10, "rx_256_511" },
46 { 0x11, "rx_512_1023" },
47 { 0x12, "rx_1024_1522" },
48 { 0x13, "rx_1523_2000" },
49 { 0x14, "rx_2001" },
50 { 0x15, "tx_hi" },
51 { 0x16, "tx_late_col" },
52 { 0x17, "tx_pause" },
53 { 0x18, "tx_bcast" },
54 { 0x19, "tx_mcast" },
55 { 0x1A, "tx_ucast" },
56 { 0x1B, "tx_deferred" },
57 { 0x1C, "tx_total_col" },
58 { 0x1D, "tx_exc_col" },
59 { 0x1E, "tx_single_col" },
60 { 0x1F, "tx_mult_col" },
61 { 0x80, "rx_total" },
62 { 0x81, "tx_total" },
63 { 0x82, "rx_discards" },
64 { 0x83, "tx_discards" },
65};
66
67static void ksz_cfg(struct ksz_device *dev, u32 addr, u8 bits, bool set)
68{
69 regmap_update_bits(dev->regmap[0], addr, bits, set ? bits : 0);
70}
71
72static void ksz_port_cfg(struct ksz_device *dev, int port, int offset, u8 bits,
73 bool set)
74{
75 regmap_update_bits(dev->regmap[0], PORT_CTRL_ADDR(port, offset),
76 bits, set ? bits : 0);
77}
78
79static void ksz9477_cfg32(struct ksz_device *dev, u32 addr, u32 bits, bool set)
80{
81 regmap_update_bits(dev->regmap[2], addr, bits, set ? bits : 0);
82}
83
84static void ksz9477_port_cfg32(struct ksz_device *dev, int port, int offset,
85 u32 bits, bool set)
86{
87 regmap_update_bits(dev->regmap[2], PORT_CTRL_ADDR(port, offset),
88 bits, set ? bits : 0);
89}
90
91static int ksz9477_wait_vlan_ctrl_ready(struct ksz_device *dev)
92{
93 unsigned int val;
94
95 return regmap_read_poll_timeout(dev->regmap[0], REG_SW_VLAN_CTRL,
96 val, !(val & VLAN_START), 10, 1000);
97}
98
99static int ksz9477_get_vlan_table(struct ksz_device *dev, u16 vid,
100 u32 *vlan_table)
101{
102 int ret;
103
104 mutex_lock(&dev->vlan_mutex);
105
106 ksz_write16(dev, REG_SW_VLAN_ENTRY_INDEX__2, vid & VLAN_INDEX_M);
107 ksz_write8(dev, REG_SW_VLAN_CTRL, VLAN_READ | VLAN_START);
108
109 /* wait to be cleared */
110 ret = ksz9477_wait_vlan_ctrl_ready(dev);
111 if (ret) {
112 dev_dbg(dev->dev, "Failed to read vlan table\n");
113 goto exit;
114 }
115
116 ksz_read32(dev, REG_SW_VLAN_ENTRY__4, &vlan_table[0]);
117 ksz_read32(dev, REG_SW_VLAN_ENTRY_UNTAG__4, &vlan_table[1]);
118 ksz_read32(dev, REG_SW_VLAN_ENTRY_PORTS__4, &vlan_table[2]);
119
120 ksz_write8(dev, REG_SW_VLAN_CTRL, 0);
121
122exit:
123 mutex_unlock(&dev->vlan_mutex);
124
125 return ret;
126}
127
128static int ksz9477_set_vlan_table(struct ksz_device *dev, u16 vid,
129 u32 *vlan_table)
130{
131 int ret;
132
133 mutex_lock(&dev->vlan_mutex);
134
135 ksz_write32(dev, REG_SW_VLAN_ENTRY__4, vlan_table[0]);
136 ksz_write32(dev, REG_SW_VLAN_ENTRY_UNTAG__4, vlan_table[1]);
137 ksz_write32(dev, REG_SW_VLAN_ENTRY_PORTS__4, vlan_table[2]);
138
139 ksz_write16(dev, REG_SW_VLAN_ENTRY_INDEX__2, vid & VLAN_INDEX_M);
140 ksz_write8(dev, REG_SW_VLAN_CTRL, VLAN_START | VLAN_WRITE);
141
142 /* wait to be cleared */
143 ret = ksz9477_wait_vlan_ctrl_ready(dev);
144 if (ret) {
145 dev_dbg(dev->dev, "Failed to write vlan table\n");
146 goto exit;
147 }
148
149 ksz_write8(dev, REG_SW_VLAN_CTRL, 0);
150
151 /* update vlan cache table */
152 dev->vlan_cache[vid].table[0] = vlan_table[0];
153 dev->vlan_cache[vid].table[1] = vlan_table[1];
154 dev->vlan_cache[vid].table[2] = vlan_table[2];
155
156exit:
157 mutex_unlock(&dev->vlan_mutex);
158
159 return ret;
160}
161
162static void ksz9477_read_table(struct ksz_device *dev, u32 *table)
163{
164 ksz_read32(dev, REG_SW_ALU_VAL_A, &table[0]);
165 ksz_read32(dev, REG_SW_ALU_VAL_B, &table[1]);
166 ksz_read32(dev, REG_SW_ALU_VAL_C, &table[2]);
167 ksz_read32(dev, REG_SW_ALU_VAL_D, &table[3]);
168}
169
170static void ksz9477_write_table(struct ksz_device *dev, u32 *table)
171{
172 ksz_write32(dev, REG_SW_ALU_VAL_A, table[0]);
173 ksz_write32(dev, REG_SW_ALU_VAL_B, table[1]);
174 ksz_write32(dev, REG_SW_ALU_VAL_C, table[2]);
175 ksz_write32(dev, REG_SW_ALU_VAL_D, table[3]);
176}
177
178static int ksz9477_wait_alu_ready(struct ksz_device *dev)
179{
180 unsigned int val;
181
182 return regmap_read_poll_timeout(dev->regmap[2], REG_SW_ALU_CTRL__4,
183 val, !(val & ALU_START), 10, 1000);
184}
185
186static int ksz9477_wait_alu_sta_ready(struct ksz_device *dev)
187{
188 unsigned int val;
189
190 return regmap_read_poll_timeout(dev->regmap[2],
191 REG_SW_ALU_STAT_CTRL__4,
192 val, !(val & ALU_STAT_START),
193 10, 1000);
194}
195
196static int ksz9477_reset_switch(struct ksz_device *dev)
197{
198 u8 data8;
199 u32 data32;
200
201 /* reset switch */
202 ksz_cfg(dev, REG_SW_OPERATION, SW_RESET, true);
203
204 /* turn off SPI DO Edge select */
205 regmap_update_bits(dev->regmap[0], REG_SW_GLOBAL_SERIAL_CTRL_0,
206 SPI_AUTO_EDGE_DETECTION, 0);
207
208 /* default configuration */
209 ksz_read8(dev, REG_SW_LUE_CTRL_1, &data8);
210 data8 = SW_AGING_ENABLE | SW_LINK_AUTO_AGING |
211 SW_SRC_ADDR_FILTER | SW_FLUSH_STP_TABLE | SW_FLUSH_MSTP_TABLE;
212 ksz_write8(dev, REG_SW_LUE_CTRL_1, data8);
213
214 /* disable interrupts */
215 ksz_write32(dev, REG_SW_INT_MASK__4, SWITCH_INT_MASK);
216 ksz_write32(dev, REG_SW_PORT_INT_MASK__4, 0x7F);
217 ksz_read32(dev, REG_SW_PORT_INT_STATUS__4, &data32);
218
219 /* set broadcast storm protection 10% rate */
220 regmap_update_bits(dev->regmap[1], REG_SW_MAC_CTRL_2,
221 BROADCAST_STORM_RATE,
222 (BROADCAST_STORM_VALUE *
223 BROADCAST_STORM_PROT_RATE) / 100);
224
225 if (dev->synclko_125)
226 ksz_write8(dev, REG_SW_GLOBAL_OUTPUT_CTRL__1,
227 SW_ENABLE_REFCLKO | SW_REFCLKO_IS_125MHZ);
228
229 return 0;
230}
231
232static void ksz9477_r_mib_cnt(struct ksz_device *dev, int port, u16 addr,
233 u64 *cnt)
234{
235 struct ksz_port *p = &dev->ports[port];
236 unsigned int val;
237 u32 data;
238 int ret;
239
240 /* retain the flush/freeze bit */
241 data = p->freeze ? MIB_COUNTER_FLUSH_FREEZE : 0;
242 data |= MIB_COUNTER_READ;
243 data |= (addr << MIB_COUNTER_INDEX_S);
244 ksz_pwrite32(dev, port, REG_PORT_MIB_CTRL_STAT__4, data);
245
246 ret = regmap_read_poll_timeout(dev->regmap[2],
247 PORT_CTRL_ADDR(port, REG_PORT_MIB_CTRL_STAT__4),
248 val, !(val & MIB_COUNTER_READ), 10, 1000);
249 /* failed to read MIB. get out of loop */
250 if (ret) {
251 dev_dbg(dev->dev, "Failed to get MIB\n");
252 return;
253 }
254
255 /* count resets upon read */
256 ksz_pread32(dev, port, REG_PORT_MIB_DATA, &data);
257 *cnt += data;
258}
259
260static void ksz9477_r_mib_pkt(struct ksz_device *dev, int port, u16 addr,
261 u64 *dropped, u64 *cnt)
262{
263 addr = ksz9477_mib_names[addr].index;
264 ksz9477_r_mib_cnt(dev, port, addr, cnt);
265}
266
267static void ksz9477_freeze_mib(struct ksz_device *dev, int port, bool freeze)
268{
269 u32 val = freeze ? MIB_COUNTER_FLUSH_FREEZE : 0;
270 struct ksz_port *p = &dev->ports[port];
271
272 /* enable/disable the port for flush/freeze function */
273 mutex_lock(&p->mib.cnt_mutex);
274 ksz_pwrite32(dev, port, REG_PORT_MIB_CTRL_STAT__4, val);
275
276 /* used by MIB counter reading code to know freeze is enabled */
277 p->freeze = freeze;
278 mutex_unlock(&p->mib.cnt_mutex);
279}
280
281static void ksz9477_port_init_cnt(struct ksz_device *dev, int port)
282{
283 struct ksz_port_mib *mib = &dev->ports[port].mib;
284
285 /* flush all enabled port MIB counters */
286 mutex_lock(&mib->cnt_mutex);
287 ksz_pwrite32(dev, port, REG_PORT_MIB_CTRL_STAT__4,
288 MIB_COUNTER_FLUSH_FREEZE);
289 ksz_write8(dev, REG_SW_MAC_CTRL_6, SW_MIB_COUNTER_FLUSH);
290 ksz_pwrite32(dev, port, REG_PORT_MIB_CTRL_STAT__4, 0);
291 mutex_unlock(&mib->cnt_mutex);
292
293 mib->cnt_ptr = 0;
294 memset(mib->counters, 0, dev->mib_cnt * sizeof(u64));
295}
296
297static enum dsa_tag_protocol ksz9477_get_tag_protocol(struct dsa_switch *ds,
298 int port,
299 enum dsa_tag_protocol mp)
300{
301 enum dsa_tag_protocol proto = DSA_TAG_PROTO_KSZ9477;
302 struct ksz_device *dev = ds->priv;
303
304 if (dev->features & IS_9893)
305 proto = DSA_TAG_PROTO_KSZ9893;
306 return proto;
307}
308
309static int ksz9477_phy_read16(struct dsa_switch *ds, int addr, int reg)
310{
311 struct ksz_device *dev = ds->priv;
312 u16 val = 0xffff;
313
314 /* No real PHY after this. Simulate the PHY.
315 * A fixed PHY can be setup in the device tree, but this function is
316 * still called for that port during initialization.
317 * For RGMII PHY there is no way to access it so the fixed PHY should
318 * be used. For SGMII PHY the supporting code will be added later.
319 */
320 if (addr >= dev->phy_port_cnt) {
321 struct ksz_port *p = &dev->ports[addr];
322
323 switch (reg) {
324 case MII_BMCR:
325 val = 0x1140;
326 break;
327 case MII_BMSR:
328 val = 0x796d;
329 break;
330 case MII_PHYSID1:
331 val = 0x0022;
332 break;
333 case MII_PHYSID2:
334 val = 0x1631;
335 break;
336 case MII_ADVERTISE:
337 val = 0x05e1;
338 break;
339 case MII_LPA:
340 val = 0xc5e1;
341 break;
342 case MII_CTRL1000:
343 val = 0x0700;
344 break;
345 case MII_STAT1000:
346 if (p->phydev.speed == SPEED_1000)
347 val = 0x3800;
348 else
349 val = 0;
350 break;
351 }
352 } else {
353 ksz_pread16(dev, addr, 0x100 + (reg << 1), &val);
354 }
355
356 return val;
357}
358
359static int ksz9477_phy_write16(struct dsa_switch *ds, int addr, int reg,
360 u16 val)
361{
362 struct ksz_device *dev = ds->priv;
363
364 /* No real PHY after this. */
365 if (addr >= dev->phy_port_cnt)
366 return 0;
367
368 /* No gigabit support. Do not write to this register. */
369 if (!(dev->features & GBIT_SUPPORT) && reg == MII_CTRL1000)
370 return 0;
371 ksz_pwrite16(dev, addr, 0x100 + (reg << 1), val);
372
373 return 0;
374}
375
376static void ksz9477_get_strings(struct dsa_switch *ds, int port,
377 u32 stringset, uint8_t *buf)
378{
379 int i;
380
381 if (stringset != ETH_SS_STATS)
382 return;
383
384 for (i = 0; i < TOTAL_SWITCH_COUNTER_NUM; i++) {
385 memcpy(buf + i * ETH_GSTRING_LEN, ksz9477_mib_names[i].string,
386 ETH_GSTRING_LEN);
387 }
388}
389
390static void ksz9477_cfg_port_member(struct ksz_device *dev, int port,
391 u8 member)
392{
393 ksz_pwrite32(dev, port, REG_PORT_VLAN_MEMBERSHIP__4, member);
394 dev->ports[port].member = member;
395}
396
397static void ksz9477_port_stp_state_set(struct dsa_switch *ds, int port,
398 u8 state)
399{
400 struct ksz_device *dev = ds->priv;
401 struct ksz_port *p = &dev->ports[port];
402 u8 data;
403 int member = -1;
404 int forward = dev->member;
405
406 ksz_pread8(dev, port, P_STP_CTRL, &data);
407 data &= ~(PORT_TX_ENABLE | PORT_RX_ENABLE | PORT_LEARN_DISABLE);
408
409 switch (state) {
410 case BR_STATE_DISABLED:
411 data |= PORT_LEARN_DISABLE;
412 if (port != dev->cpu_port)
413 member = 0;
414 break;
415 case BR_STATE_LISTENING:
416 data |= (PORT_RX_ENABLE | PORT_LEARN_DISABLE);
417 if (port != dev->cpu_port &&
418 p->stp_state == BR_STATE_DISABLED)
419 member = dev->host_mask | p->vid_member;
420 break;
421 case BR_STATE_LEARNING:
422 data |= PORT_RX_ENABLE;
423 break;
424 case BR_STATE_FORWARDING:
425 data |= (PORT_TX_ENABLE | PORT_RX_ENABLE);
426
427 /* This function is also used internally. */
428 if (port == dev->cpu_port)
429 break;
430
431 member = dev->host_mask | p->vid_member;
432 mutex_lock(&dev->dev_mutex);
433
434 /* Port is a member of a bridge. */
435 if (dev->br_member & (1 << port)) {
436 dev->member |= (1 << port);
437 member = dev->member;
438 }
439 mutex_unlock(&dev->dev_mutex);
440 break;
441 case BR_STATE_BLOCKING:
442 data |= PORT_LEARN_DISABLE;
443 if (port != dev->cpu_port &&
444 p->stp_state == BR_STATE_DISABLED)
445 member = dev->host_mask | p->vid_member;
446 break;
447 default:
448 dev_err(ds->dev, "invalid STP state: %d\n", state);
449 return;
450 }
451
452 ksz_pwrite8(dev, port, P_STP_CTRL, data);
453 p->stp_state = state;
454 mutex_lock(&dev->dev_mutex);
455 /* Port membership may share register with STP state. */
456 if (member >= 0 && member != p->member)
457 ksz9477_cfg_port_member(dev, port, (u8)member);
458
459 /* Check if forwarding needs to be updated. */
460 if (state != BR_STATE_FORWARDING) {
461 if (dev->br_member & (1 << port))
462 dev->member &= ~(1 << port);
463 }
464
465 /* When topology has changed the function ksz_update_port_member
466 * should be called to modify port forwarding behavior.
467 */
468 if (forward != dev->member)
469 ksz_update_port_member(dev, port);
470 mutex_unlock(&dev->dev_mutex);
471}
472
473static void ksz9477_flush_dyn_mac_table(struct ksz_device *dev, int port)
474{
475 u8 data;
476
477 regmap_update_bits(dev->regmap[0], REG_SW_LUE_CTRL_2,
478 SW_FLUSH_OPTION_M << SW_FLUSH_OPTION_S,
479 SW_FLUSH_OPTION_DYN_MAC << SW_FLUSH_OPTION_S);
480
481 if (port < dev->mib_port_cnt) {
482 /* flush individual port */
483 ksz_pread8(dev, port, P_STP_CTRL, &data);
484 if (!(data & PORT_LEARN_DISABLE))
485 ksz_pwrite8(dev, port, P_STP_CTRL,
486 data | PORT_LEARN_DISABLE);
487 ksz_cfg(dev, S_FLUSH_TABLE_CTRL, SW_FLUSH_DYN_MAC_TABLE, true);
488 ksz_pwrite8(dev, port, P_STP_CTRL, data);
489 } else {
490 /* flush all */
491 ksz_cfg(dev, S_FLUSH_TABLE_CTRL, SW_FLUSH_STP_TABLE, true);
492 }
493}
494
495static int ksz9477_port_vlan_filtering(struct dsa_switch *ds, int port,
496 bool flag)
497{
498 struct ksz_device *dev = ds->priv;
499
500 if (flag) {
501 ksz_port_cfg(dev, port, REG_PORT_LUE_CTRL,
502 PORT_VLAN_LOOKUP_VID_0, true);
503 ksz_cfg(dev, REG_SW_LUE_CTRL_0, SW_VLAN_ENABLE, true);
504 } else {
505 ksz_cfg(dev, REG_SW_LUE_CTRL_0, SW_VLAN_ENABLE, false);
506 ksz_port_cfg(dev, port, REG_PORT_LUE_CTRL,
507 PORT_VLAN_LOOKUP_VID_0, false);
508 }
509
510 return 0;
511}
512
513static void ksz9477_port_vlan_add(struct dsa_switch *ds, int port,
514 const struct switchdev_obj_port_vlan *vlan)
515{
516 struct ksz_device *dev = ds->priv;
517 u32 vlan_table[3];
518 u16 vid;
519 bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED;
520
521 for (vid = vlan->vid_begin; vid <= vlan->vid_end; vid++) {
522 if (ksz9477_get_vlan_table(dev, vid, vlan_table)) {
523 dev_dbg(dev->dev, "Failed to get vlan table\n");
524 return;
525 }
526
527 vlan_table[0] = VLAN_VALID | (vid & VLAN_FID_M);
528 if (untagged)
529 vlan_table[1] |= BIT(port);
530 else
531 vlan_table[1] &= ~BIT(port);
532 vlan_table[1] &= ~(BIT(dev->cpu_port));
533
534 vlan_table[2] |= BIT(port) | BIT(dev->cpu_port);
535
536 if (ksz9477_set_vlan_table(dev, vid, vlan_table)) {
537 dev_dbg(dev->dev, "Failed to set vlan table\n");
538 return;
539 }
540
541 /* change PVID */
542 if (vlan->flags & BRIDGE_VLAN_INFO_PVID)
543 ksz_pwrite16(dev, port, REG_PORT_DEFAULT_VID, vid);
544 }
545}
546
547static int ksz9477_port_vlan_del(struct dsa_switch *ds, int port,
548 const struct switchdev_obj_port_vlan *vlan)
549{
550 struct ksz_device *dev = ds->priv;
551 bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED;
552 u32 vlan_table[3];
553 u16 vid;
554 u16 pvid;
555
556 ksz_pread16(dev, port, REG_PORT_DEFAULT_VID, &pvid);
557 pvid = pvid & 0xFFF;
558
559 for (vid = vlan->vid_begin; vid <= vlan->vid_end; vid++) {
560 if (ksz9477_get_vlan_table(dev, vid, vlan_table)) {
561 dev_dbg(dev->dev, "Failed to get vlan table\n");
562 return -ETIMEDOUT;
563 }
564
565 vlan_table[2] &= ~BIT(port);
566
567 if (pvid == vid)
568 pvid = 1;
569
570 if (untagged)
571 vlan_table[1] &= ~BIT(port);
572
573 if (ksz9477_set_vlan_table(dev, vid, vlan_table)) {
574 dev_dbg(dev->dev, "Failed to set vlan table\n");
575 return -ETIMEDOUT;
576 }
577 }
578
579 ksz_pwrite16(dev, port, REG_PORT_DEFAULT_VID, pvid);
580
581 return 0;
582}
583
584static int ksz9477_port_fdb_add(struct dsa_switch *ds, int port,
585 const unsigned char *addr, u16 vid)
586{
587 struct ksz_device *dev = ds->priv;
588 u32 alu_table[4];
589 u32 data;
590 int ret = 0;
591
592 mutex_lock(&dev->alu_mutex);
593
594 /* find any entry with mac & vid */
595 data = vid << ALU_FID_INDEX_S;
596 data |= ((addr[0] << 8) | addr[1]);
597 ksz_write32(dev, REG_SW_ALU_INDEX_0, data);
598
599 data = ((addr[2] << 24) | (addr[3] << 16));
600 data |= ((addr[4] << 8) | addr[5]);
601 ksz_write32(dev, REG_SW_ALU_INDEX_1, data);
602
603 /* start read operation */
604 ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_READ | ALU_START);
605
606 /* wait to be finished */
607 ret = ksz9477_wait_alu_ready(dev);
608 if (ret) {
609 dev_dbg(dev->dev, "Failed to read ALU\n");
610 goto exit;
611 }
612
613 /* read ALU entry */
614 ksz9477_read_table(dev, alu_table);
615
616 /* update ALU entry */
617 alu_table[0] = ALU_V_STATIC_VALID;
618 alu_table[1] |= BIT(port);
619 if (vid)
620 alu_table[1] |= ALU_V_USE_FID;
621 alu_table[2] = (vid << ALU_V_FID_S);
622 alu_table[2] |= ((addr[0] << 8) | addr[1]);
623 alu_table[3] = ((addr[2] << 24) | (addr[3] << 16));
624 alu_table[3] |= ((addr[4] << 8) | addr[5]);
625
626 ksz9477_write_table(dev, alu_table);
627
628 ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_WRITE | ALU_START);
629
630 /* wait to be finished */
631 ret = ksz9477_wait_alu_ready(dev);
632 if (ret)
633 dev_dbg(dev->dev, "Failed to write ALU\n");
634
635exit:
636 mutex_unlock(&dev->alu_mutex);
637
638 return ret;
639}
640
641static int ksz9477_port_fdb_del(struct dsa_switch *ds, int port,
642 const unsigned char *addr, u16 vid)
643{
644 struct ksz_device *dev = ds->priv;
645 u32 alu_table[4];
646 u32 data;
647 int ret = 0;
648
649 mutex_lock(&dev->alu_mutex);
650
651 /* read any entry with mac & vid */
652 data = vid << ALU_FID_INDEX_S;
653 data |= ((addr[0] << 8) | addr[1]);
654 ksz_write32(dev, REG_SW_ALU_INDEX_0, data);
655
656 data = ((addr[2] << 24) | (addr[3] << 16));
657 data |= ((addr[4] << 8) | addr[5]);
658 ksz_write32(dev, REG_SW_ALU_INDEX_1, data);
659
660 /* start read operation */
661 ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_READ | ALU_START);
662
663 /* wait to be finished */
664 ret = ksz9477_wait_alu_ready(dev);
665 if (ret) {
666 dev_dbg(dev->dev, "Failed to read ALU\n");
667 goto exit;
668 }
669
670 ksz_read32(dev, REG_SW_ALU_VAL_A, &alu_table[0]);
671 if (alu_table[0] & ALU_V_STATIC_VALID) {
672 ksz_read32(dev, REG_SW_ALU_VAL_B, &alu_table[1]);
673 ksz_read32(dev, REG_SW_ALU_VAL_C, &alu_table[2]);
674 ksz_read32(dev, REG_SW_ALU_VAL_D, &alu_table[3]);
675
676 /* clear forwarding port */
677 alu_table[2] &= ~BIT(port);
678
679 /* if there is no port to forward, clear table */
680 if ((alu_table[2] & ALU_V_PORT_MAP) == 0) {
681 alu_table[0] = 0;
682 alu_table[1] = 0;
683 alu_table[2] = 0;
684 alu_table[3] = 0;
685 }
686 } else {
687 alu_table[0] = 0;
688 alu_table[1] = 0;
689 alu_table[2] = 0;
690 alu_table[3] = 0;
691 }
692
693 ksz9477_write_table(dev, alu_table);
694
695 ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_WRITE | ALU_START);
696
697 /* wait to be finished */
698 ret = ksz9477_wait_alu_ready(dev);
699 if (ret)
700 dev_dbg(dev->dev, "Failed to write ALU\n");
701
702exit:
703 mutex_unlock(&dev->alu_mutex);
704
705 return ret;
706}
707
708static void ksz9477_convert_alu(struct alu_struct *alu, u32 *alu_table)
709{
710 alu->is_static = !!(alu_table[0] & ALU_V_STATIC_VALID);
711 alu->is_src_filter = !!(alu_table[0] & ALU_V_SRC_FILTER);
712 alu->is_dst_filter = !!(alu_table[0] & ALU_V_DST_FILTER);
713 alu->prio_age = (alu_table[0] >> ALU_V_PRIO_AGE_CNT_S) &
714 ALU_V_PRIO_AGE_CNT_M;
715 alu->mstp = alu_table[0] & ALU_V_MSTP_M;
716
717 alu->is_override = !!(alu_table[1] & ALU_V_OVERRIDE);
718 alu->is_use_fid = !!(alu_table[1] & ALU_V_USE_FID);
719 alu->port_forward = alu_table[1] & ALU_V_PORT_MAP;
720
721 alu->fid = (alu_table[2] >> ALU_V_FID_S) & ALU_V_FID_M;
722
723 alu->mac[0] = (alu_table[2] >> 8) & 0xFF;
724 alu->mac[1] = alu_table[2] & 0xFF;
725 alu->mac[2] = (alu_table[3] >> 24) & 0xFF;
726 alu->mac[3] = (alu_table[3] >> 16) & 0xFF;
727 alu->mac[4] = (alu_table[3] >> 8) & 0xFF;
728 alu->mac[5] = alu_table[3] & 0xFF;
729}
730
731static int ksz9477_port_fdb_dump(struct dsa_switch *ds, int port,
732 dsa_fdb_dump_cb_t *cb, void *data)
733{
734 struct ksz_device *dev = ds->priv;
735 int ret = 0;
736 u32 ksz_data;
737 u32 alu_table[4];
738 struct alu_struct alu;
739 int timeout;
740
741 mutex_lock(&dev->alu_mutex);
742
743 /* start ALU search */
744 ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_START | ALU_SEARCH);
745
746 do {
747 timeout = 1000;
748 do {
749 ksz_read32(dev, REG_SW_ALU_CTRL__4, &ksz_data);
750 if ((ksz_data & ALU_VALID) || !(ksz_data & ALU_START))
751 break;
752 usleep_range(1, 10);
753 } while (timeout-- > 0);
754
755 if (!timeout) {
756 dev_dbg(dev->dev, "Failed to search ALU\n");
757 ret = -ETIMEDOUT;
758 goto exit;
759 }
760
761 /* read ALU table */
762 ksz9477_read_table(dev, alu_table);
763
764 ksz9477_convert_alu(&alu, alu_table);
765
766 if (alu.port_forward & BIT(port)) {
767 ret = cb(alu.mac, alu.fid, alu.is_static, data);
768 if (ret)
769 goto exit;
770 }
771 } while (ksz_data & ALU_START);
772
773exit:
774
775 /* stop ALU search */
776 ksz_write32(dev, REG_SW_ALU_CTRL__4, 0);
777
778 mutex_unlock(&dev->alu_mutex);
779
780 return ret;
781}
782
783static void ksz9477_port_mdb_add(struct dsa_switch *ds, int port,
784 const struct switchdev_obj_port_mdb *mdb)
785{
786 struct ksz_device *dev = ds->priv;
787 u32 static_table[4];
788 u32 data;
789 int index;
790 u32 mac_hi, mac_lo;
791
792 mac_hi = ((mdb->addr[0] << 8) | mdb->addr[1]);
793 mac_lo = ((mdb->addr[2] << 24) | (mdb->addr[3] << 16));
794 mac_lo |= ((mdb->addr[4] << 8) | mdb->addr[5]);
795
796 mutex_lock(&dev->alu_mutex);
797
798 for (index = 0; index < dev->num_statics; index++) {
799 /* find empty slot first */
800 data = (index << ALU_STAT_INDEX_S) |
801 ALU_STAT_READ | ALU_STAT_START;
802 ksz_write32(dev, REG_SW_ALU_STAT_CTRL__4, data);
803
804 /* wait to be finished */
805 if (ksz9477_wait_alu_sta_ready(dev)) {
806 dev_dbg(dev->dev, "Failed to read ALU STATIC\n");
807 goto exit;
808 }
809
810 /* read ALU static table */
811 ksz9477_read_table(dev, static_table);
812
813 if (static_table[0] & ALU_V_STATIC_VALID) {
814 /* check this has same vid & mac address */
815 if (((static_table[2] >> ALU_V_FID_S) == mdb->vid) &&
816 ((static_table[2] & ALU_V_MAC_ADDR_HI) == mac_hi) &&
817 static_table[3] == mac_lo) {
818 /* found matching one */
819 break;
820 }
821 } else {
822 /* found empty one */
823 break;
824 }
825 }
826
827 /* no available entry */
828 if (index == dev->num_statics)
829 goto exit;
830
831 /* add entry */
832 static_table[0] = ALU_V_STATIC_VALID;
833 static_table[1] |= BIT(port);
834 if (mdb->vid)
835 static_table[1] |= ALU_V_USE_FID;
836 static_table[2] = (mdb->vid << ALU_V_FID_S);
837 static_table[2] |= mac_hi;
838 static_table[3] = mac_lo;
839
840 ksz9477_write_table(dev, static_table);
841
842 data = (index << ALU_STAT_INDEX_S) | ALU_STAT_START;
843 ksz_write32(dev, REG_SW_ALU_STAT_CTRL__4, data);
844
845 /* wait to be finished */
846 if (ksz9477_wait_alu_sta_ready(dev))
847 dev_dbg(dev->dev, "Failed to read ALU STATIC\n");
848
849exit:
850 mutex_unlock(&dev->alu_mutex);
851}
852
853static int ksz9477_port_mdb_del(struct dsa_switch *ds, int port,
854 const struct switchdev_obj_port_mdb *mdb)
855{
856 struct ksz_device *dev = ds->priv;
857 u32 static_table[4];
858 u32 data;
859 int index;
860 int ret = 0;
861 u32 mac_hi, mac_lo;
862
863 mac_hi = ((mdb->addr[0] << 8) | mdb->addr[1]);
864 mac_lo = ((mdb->addr[2] << 24) | (mdb->addr[3] << 16));
865 mac_lo |= ((mdb->addr[4] << 8) | mdb->addr[5]);
866
867 mutex_lock(&dev->alu_mutex);
868
869 for (index = 0; index < dev->num_statics; index++) {
870 /* find empty slot first */
871 data = (index << ALU_STAT_INDEX_S) |
872 ALU_STAT_READ | ALU_STAT_START;
873 ksz_write32(dev, REG_SW_ALU_STAT_CTRL__4, data);
874
875 /* wait to be finished */
876 ret = ksz9477_wait_alu_sta_ready(dev);
877 if (ret) {
878 dev_dbg(dev->dev, "Failed to read ALU STATIC\n");
879 goto exit;
880 }
881
882 /* read ALU static table */
883 ksz9477_read_table(dev, static_table);
884
885 if (static_table[0] & ALU_V_STATIC_VALID) {
886 /* check this has same vid & mac address */
887
888 if (((static_table[2] >> ALU_V_FID_S) == mdb->vid) &&
889 ((static_table[2] & ALU_V_MAC_ADDR_HI) == mac_hi) &&
890 static_table[3] == mac_lo) {
891 /* found matching one */
892 break;
893 }
894 }
895 }
896
897 /* no available entry */
898 if (index == dev->num_statics)
899 goto exit;
900
901 /* clear port */
902 static_table[1] &= ~BIT(port);
903
904 if ((static_table[1] & ALU_V_PORT_MAP) == 0) {
905 /* delete entry */
906 static_table[0] = 0;
907 static_table[1] = 0;
908 static_table[2] = 0;
909 static_table[3] = 0;
910 }
911
912 ksz9477_write_table(dev, static_table);
913
914 data = (index << ALU_STAT_INDEX_S) | ALU_STAT_START;
915 ksz_write32(dev, REG_SW_ALU_STAT_CTRL__4, data);
916
917 /* wait to be finished */
918 ret = ksz9477_wait_alu_sta_ready(dev);
919 if (ret)
920 dev_dbg(dev->dev, "Failed to read ALU STATIC\n");
921
922exit:
923 mutex_unlock(&dev->alu_mutex);
924
925 return ret;
926}
927
928static int ksz9477_port_mirror_add(struct dsa_switch *ds, int port,
929 struct dsa_mall_mirror_tc_entry *mirror,
930 bool ingress)
931{
932 struct ksz_device *dev = ds->priv;
933
934 if (ingress)
935 ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_RX, true);
936 else
937 ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_TX, true);
938
939 ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_SNIFFER, false);
940
941 /* configure mirror port */
942 ksz_port_cfg(dev, mirror->to_local_port, P_MIRROR_CTRL,
943 PORT_MIRROR_SNIFFER, true);
944
945 ksz_cfg(dev, S_MIRROR_CTRL, SW_MIRROR_RX_TX, false);
946
947 return 0;
948}
949
950static void ksz9477_port_mirror_del(struct dsa_switch *ds, int port,
951 struct dsa_mall_mirror_tc_entry *mirror)
952{
953 struct ksz_device *dev = ds->priv;
954 u8 data;
955
956 if (mirror->ingress)
957 ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_RX, false);
958 else
959 ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_TX, false);
960
961 ksz_pread8(dev, port, P_MIRROR_CTRL, &data);
962
963 if (!(data & (PORT_MIRROR_RX | PORT_MIRROR_TX)))
964 ksz_port_cfg(dev, mirror->to_local_port, P_MIRROR_CTRL,
965 PORT_MIRROR_SNIFFER, false);
966}
967
968static bool ksz9477_get_gbit(struct ksz_device *dev, u8 data)
969{
970 bool gbit;
971
972 if (dev->features & NEW_XMII)
973 gbit = !(data & PORT_MII_NOT_1GBIT);
974 else
975 gbit = !!(data & PORT_MII_1000MBIT_S1);
976 return gbit;
977}
978
979static void ksz9477_set_gbit(struct ksz_device *dev, bool gbit, u8 *data)
980{
981 if (dev->features & NEW_XMII) {
982 if (gbit)
983 *data &= ~PORT_MII_NOT_1GBIT;
984 else
985 *data |= PORT_MII_NOT_1GBIT;
986 } else {
987 if (gbit)
988 *data |= PORT_MII_1000MBIT_S1;
989 else
990 *data &= ~PORT_MII_1000MBIT_S1;
991 }
992}
993
994static int ksz9477_get_xmii(struct ksz_device *dev, u8 data)
995{
996 int mode;
997
998 if (dev->features & NEW_XMII) {
999 switch (data & PORT_MII_SEL_M) {
1000 case PORT_MII_SEL:
1001 mode = 0;
1002 break;
1003 case PORT_RMII_SEL:
1004 mode = 1;
1005 break;
1006 case PORT_GMII_SEL:
1007 mode = 2;
1008 break;
1009 default:
1010 mode = 3;
1011 }
1012 } else {
1013 switch (data & PORT_MII_SEL_M) {
1014 case PORT_MII_SEL_S1:
1015 mode = 0;
1016 break;
1017 case PORT_RMII_SEL_S1:
1018 mode = 1;
1019 break;
1020 case PORT_GMII_SEL_S1:
1021 mode = 2;
1022 break;
1023 default:
1024 mode = 3;
1025 }
1026 }
1027 return mode;
1028}
1029
1030static void ksz9477_set_xmii(struct ksz_device *dev, int mode, u8 *data)
1031{
1032 u8 xmii;
1033
1034 if (dev->features & NEW_XMII) {
1035 switch (mode) {
1036 case 0:
1037 xmii = PORT_MII_SEL;
1038 break;
1039 case 1:
1040 xmii = PORT_RMII_SEL;
1041 break;
1042 case 2:
1043 xmii = PORT_GMII_SEL;
1044 break;
1045 default:
1046 xmii = PORT_RGMII_SEL;
1047 break;
1048 }
1049 } else {
1050 switch (mode) {
1051 case 0:
1052 xmii = PORT_MII_SEL_S1;
1053 break;
1054 case 1:
1055 xmii = PORT_RMII_SEL_S1;
1056 break;
1057 case 2:
1058 xmii = PORT_GMII_SEL_S1;
1059 break;
1060 default:
1061 xmii = PORT_RGMII_SEL_S1;
1062 break;
1063 }
1064 }
1065 *data &= ~PORT_MII_SEL_M;
1066 *data |= xmii;
1067}
1068
1069static phy_interface_t ksz9477_get_interface(struct ksz_device *dev, int port)
1070{
1071 phy_interface_t interface;
1072 bool gbit;
1073 int mode;
1074 u8 data8;
1075
1076 if (port < dev->phy_port_cnt)
1077 return PHY_INTERFACE_MODE_NA;
1078 ksz_pread8(dev, port, REG_PORT_XMII_CTRL_1, &data8);
1079 gbit = ksz9477_get_gbit(dev, data8);
1080 mode = ksz9477_get_xmii(dev, data8);
1081 switch (mode) {
1082 case 2:
1083 interface = PHY_INTERFACE_MODE_GMII;
1084 if (gbit)
1085 break;
1086 fallthrough;
1087 case 0:
1088 interface = PHY_INTERFACE_MODE_MII;
1089 break;
1090 case 1:
1091 interface = PHY_INTERFACE_MODE_RMII;
1092 break;
1093 default:
1094 interface = PHY_INTERFACE_MODE_RGMII;
1095 if (data8 & PORT_RGMII_ID_EG_ENABLE)
1096 interface = PHY_INTERFACE_MODE_RGMII_TXID;
1097 if (data8 & PORT_RGMII_ID_IG_ENABLE) {
1098 interface = PHY_INTERFACE_MODE_RGMII_RXID;
1099 if (data8 & PORT_RGMII_ID_EG_ENABLE)
1100 interface = PHY_INTERFACE_MODE_RGMII_ID;
1101 }
1102 break;
1103 }
1104 return interface;
1105}
1106
1107static void ksz9477_port_mmd_write(struct ksz_device *dev, int port,
1108 u8 dev_addr, u16 reg_addr, u16 val)
1109{
1110 ksz_pwrite16(dev, port, REG_PORT_PHY_MMD_SETUP,
1111 MMD_SETUP(PORT_MMD_OP_INDEX, dev_addr));
1112 ksz_pwrite16(dev, port, REG_PORT_PHY_MMD_INDEX_DATA, reg_addr);
1113 ksz_pwrite16(dev, port, REG_PORT_PHY_MMD_SETUP,
1114 MMD_SETUP(PORT_MMD_OP_DATA_NO_INCR, dev_addr));
1115 ksz_pwrite16(dev, port, REG_PORT_PHY_MMD_INDEX_DATA, val);
1116}
1117
1118static void ksz9477_phy_errata_setup(struct ksz_device *dev, int port)
1119{
1120 /* Apply PHY settings to address errata listed in
1121 * KSZ9477, KSZ9897, KSZ9896, KSZ9567, KSZ8565
1122 * Silicon Errata and Data Sheet Clarification documents:
1123 *
1124 * Register settings are needed to improve PHY receive performance
1125 */
1126 ksz9477_port_mmd_write(dev, port, 0x01, 0x6f, 0xdd0b);
1127 ksz9477_port_mmd_write(dev, port, 0x01, 0x8f, 0x6032);
1128 ksz9477_port_mmd_write(dev, port, 0x01, 0x9d, 0x248c);
1129 ksz9477_port_mmd_write(dev, port, 0x01, 0x75, 0x0060);
1130 ksz9477_port_mmd_write(dev, port, 0x01, 0xd3, 0x7777);
1131 ksz9477_port_mmd_write(dev, port, 0x1c, 0x06, 0x3008);
1132 ksz9477_port_mmd_write(dev, port, 0x1c, 0x08, 0x2001);
1133
1134 /* Transmit waveform amplitude can be improved
1135 * (1000BASE-T, 100BASE-TX, 10BASE-Te)
1136 */
1137 ksz9477_port_mmd_write(dev, port, 0x1c, 0x04, 0x00d0);
1138
1139 /* Energy Efficient Ethernet (EEE) feature select must
1140 * be manually disabled (except on KSZ8565 which is 100Mbit)
1141 */
1142 if (dev->features & GBIT_SUPPORT)
1143 ksz9477_port_mmd_write(dev, port, 0x07, 0x3c, 0x0000);
1144
1145 /* Register settings are required to meet data sheet
1146 * supply current specifications
1147 */
1148 ksz9477_port_mmd_write(dev, port, 0x1c, 0x13, 0x6eff);
1149 ksz9477_port_mmd_write(dev, port, 0x1c, 0x14, 0xe6ff);
1150 ksz9477_port_mmd_write(dev, port, 0x1c, 0x15, 0x6eff);
1151 ksz9477_port_mmd_write(dev, port, 0x1c, 0x16, 0xe6ff);
1152 ksz9477_port_mmd_write(dev, port, 0x1c, 0x17, 0x00ff);
1153 ksz9477_port_mmd_write(dev, port, 0x1c, 0x18, 0x43ff);
1154 ksz9477_port_mmd_write(dev, port, 0x1c, 0x19, 0xc3ff);
1155 ksz9477_port_mmd_write(dev, port, 0x1c, 0x1a, 0x6fff);
1156 ksz9477_port_mmd_write(dev, port, 0x1c, 0x1b, 0x07ff);
1157 ksz9477_port_mmd_write(dev, port, 0x1c, 0x1c, 0x0fff);
1158 ksz9477_port_mmd_write(dev, port, 0x1c, 0x1d, 0xe7ff);
1159 ksz9477_port_mmd_write(dev, port, 0x1c, 0x1e, 0xefff);
1160 ksz9477_port_mmd_write(dev, port, 0x1c, 0x20, 0xeeee);
1161}
1162
1163static void ksz9477_port_setup(struct ksz_device *dev, int port, bool cpu_port)
1164{
1165 u8 data8;
1166 u8 member;
1167 u16 data16;
1168 struct ksz_port *p = &dev->ports[port];
1169
1170 /* enable tag tail for host port */
1171 if (cpu_port)
1172 ksz_port_cfg(dev, port, REG_PORT_CTRL_0, PORT_TAIL_TAG_ENABLE,
1173 true);
1174
1175 ksz_port_cfg(dev, port, REG_PORT_CTRL_0, PORT_MAC_LOOPBACK, false);
1176
1177 /* set back pressure */
1178 ksz_port_cfg(dev, port, REG_PORT_MAC_CTRL_1, PORT_BACK_PRESSURE, true);
1179
1180 /* enable broadcast storm limit */
1181 ksz_port_cfg(dev, port, P_BCAST_STORM_CTRL, PORT_BROADCAST_STORM, true);
1182
1183 /* disable DiffServ priority */
1184 ksz_port_cfg(dev, port, P_PRIO_CTRL, PORT_DIFFSERV_PRIO_ENABLE, false);
1185
1186 /* replace priority */
1187 ksz_port_cfg(dev, port, REG_PORT_MRI_MAC_CTRL, PORT_USER_PRIO_CEILING,
1188 false);
1189 ksz9477_port_cfg32(dev, port, REG_PORT_MTI_QUEUE_CTRL_0__4,
1190 MTI_PVID_REPLACE, false);
1191
1192 /* enable 802.1p priority */
1193 ksz_port_cfg(dev, port, P_PRIO_CTRL, PORT_802_1P_PRIO_ENABLE, true);
1194
1195 if (port < dev->phy_port_cnt) {
1196 /* do not force flow control */
1197 ksz_port_cfg(dev, port, REG_PORT_CTRL_0,
1198 PORT_FORCE_TX_FLOW_CTRL | PORT_FORCE_RX_FLOW_CTRL,
1199 false);
1200
1201 if (dev->phy_errata_9477)
1202 ksz9477_phy_errata_setup(dev, port);
1203 } else {
1204 /* force flow control */
1205 ksz_port_cfg(dev, port, REG_PORT_CTRL_0,
1206 PORT_FORCE_TX_FLOW_CTRL | PORT_FORCE_RX_FLOW_CTRL,
1207 true);
1208
1209 /* configure MAC to 1G & RGMII mode */
1210 ksz_pread8(dev, port, REG_PORT_XMII_CTRL_1, &data8);
1211 switch (p->interface) {
1212 case PHY_INTERFACE_MODE_MII:
1213 ksz9477_set_xmii(dev, 0, &data8);
1214 ksz9477_set_gbit(dev, false, &data8);
1215 p->phydev.speed = SPEED_100;
1216 break;
1217 case PHY_INTERFACE_MODE_RMII:
1218 ksz9477_set_xmii(dev, 1, &data8);
1219 ksz9477_set_gbit(dev, false, &data8);
1220 p->phydev.speed = SPEED_100;
1221 break;
1222 case PHY_INTERFACE_MODE_GMII:
1223 ksz9477_set_xmii(dev, 2, &data8);
1224 ksz9477_set_gbit(dev, true, &data8);
1225 p->phydev.speed = SPEED_1000;
1226 break;
1227 default:
1228 ksz9477_set_xmii(dev, 3, &data8);
1229 ksz9477_set_gbit(dev, true, &data8);
1230 data8 &= ~PORT_RGMII_ID_IG_ENABLE;
1231 data8 &= ~PORT_RGMII_ID_EG_ENABLE;
1232 if (p->interface == PHY_INTERFACE_MODE_RGMII_ID ||
1233 p->interface == PHY_INTERFACE_MODE_RGMII_RXID)
1234 data8 |= PORT_RGMII_ID_IG_ENABLE;
1235 if (p->interface == PHY_INTERFACE_MODE_RGMII_ID ||
1236 p->interface == PHY_INTERFACE_MODE_RGMII_TXID)
1237 data8 |= PORT_RGMII_ID_EG_ENABLE;
1238 p->phydev.speed = SPEED_1000;
1239 break;
1240 }
1241 ksz_pwrite8(dev, port, REG_PORT_XMII_CTRL_1, data8);
1242 p->phydev.duplex = 1;
1243 }
1244 mutex_lock(&dev->dev_mutex);
1245 if (cpu_port)
1246 member = dev->port_mask;
1247 else
1248 member = dev->host_mask | p->vid_member;
1249 mutex_unlock(&dev->dev_mutex);
1250 ksz9477_cfg_port_member(dev, port, member);
1251
1252 /* clear pending interrupts */
1253 if (port < dev->phy_port_cnt)
1254 ksz_pread16(dev, port, REG_PORT_PHY_INT_ENABLE, &data16);
1255}
1256
1257static void ksz9477_config_cpu_port(struct dsa_switch *ds)
1258{
1259 struct ksz_device *dev = ds->priv;
1260 struct ksz_port *p;
1261 int i;
1262
1263 ds->num_ports = dev->port_cnt;
1264
1265 for (i = 0; i < dev->port_cnt; i++) {
1266 if (dsa_is_cpu_port(ds, i) && (dev->cpu_ports & (1 << i))) {
1267 phy_interface_t interface;
1268
1269 dev->cpu_port = i;
1270 dev->host_mask = (1 << dev->cpu_port);
1271 dev->port_mask |= dev->host_mask;
1272 p = &dev->ports[i];
1273
1274 /* Read from XMII register to determine host port
1275 * interface. If set specifically in device tree
1276 * note the difference to help debugging.
1277 */
1278 interface = ksz9477_get_interface(dev, i);
1279 if (!p->interface) {
1280 if (dev->compat_interface) {
1281 dev_warn(dev->dev,
1282 "Using legacy switch \"phy-mode\" property, because it is missing on port %d node. "
1283 "Please update your device tree.\n",
1284 i);
1285 p->interface = dev->compat_interface;
1286 } else {
1287 p->interface = interface;
1288 }
1289 }
1290 if (interface && interface != p->interface)
1291 dev_info(dev->dev,
1292 "use %s instead of %s\n",
1293 phy_modes(p->interface),
1294 phy_modes(interface));
1295
1296 /* enable cpu port */
1297 ksz9477_port_setup(dev, i, true);
1298 p->vid_member = dev->port_mask;
1299 p->on = 1;
1300 }
1301 }
1302
1303 dev->member = dev->host_mask;
1304
1305 for (i = 0; i < dev->mib_port_cnt; i++) {
1306 if (i == dev->cpu_port)
1307 continue;
1308 p = &dev->ports[i];
1309
1310 /* Initialize to non-zero so that ksz_cfg_port_member() will
1311 * be called.
1312 */
1313 p->vid_member = (1 << i);
1314 p->member = dev->port_mask;
1315 ksz9477_port_stp_state_set(ds, i, BR_STATE_DISABLED);
1316 p->on = 1;
1317 if (i < dev->phy_port_cnt)
1318 p->phy = 1;
1319 if (dev->chip_id == 0x00947700 && i == 6) {
1320 p->sgmii = 1;
1321
1322 /* SGMII PHY detection code is not implemented yet. */
1323 p->phy = 0;
1324 }
1325 }
1326}
1327
1328static int ksz9477_setup(struct dsa_switch *ds)
1329{
1330 struct ksz_device *dev = ds->priv;
1331 int ret = 0;
1332
1333 dev->vlan_cache = devm_kcalloc(dev->dev, sizeof(struct vlan_table),
1334 dev->num_vlans, GFP_KERNEL);
1335 if (!dev->vlan_cache)
1336 return -ENOMEM;
1337
1338 ret = ksz9477_reset_switch(dev);
1339 if (ret) {
1340 dev_err(ds->dev, "failed to reset switch\n");
1341 return ret;
1342 }
1343
1344 /* Required for port partitioning. */
1345 ksz9477_cfg32(dev, REG_SW_QM_CTRL__4, UNICAST_VLAN_BOUNDARY,
1346 true);
1347
1348 /* Do not work correctly with tail tagging. */
1349 ksz_cfg(dev, REG_SW_MAC_CTRL_0, SW_CHECK_LENGTH, false);
1350
1351 /* accept packet up to 2000bytes */
1352 ksz_cfg(dev, REG_SW_MAC_CTRL_1, SW_LEGAL_PACKET_DISABLE, true);
1353
1354 ksz9477_config_cpu_port(ds);
1355
1356 ksz_cfg(dev, REG_SW_MAC_CTRL_1, MULTICAST_STORM_DISABLE, true);
1357
1358 /* queue based egress rate limit */
1359 ksz_cfg(dev, REG_SW_MAC_CTRL_5, SW_OUT_RATE_LIMIT_QUEUE_BASED, true);
1360
1361 /* enable global MIB counter freeze function */
1362 ksz_cfg(dev, REG_SW_MAC_CTRL_6, SW_MIB_COUNTER_FREEZE, true);
1363
1364 /* start switch */
1365 ksz_cfg(dev, REG_SW_OPERATION, SW_START, true);
1366
1367 ksz_init_mib_timer(dev);
1368
1369 return 0;
1370}
1371
1372static const struct dsa_switch_ops ksz9477_switch_ops = {
1373 .get_tag_protocol = ksz9477_get_tag_protocol,
1374 .setup = ksz9477_setup,
1375 .phy_read = ksz9477_phy_read16,
1376 .phy_write = ksz9477_phy_write16,
1377 .phylink_mac_link_down = ksz_mac_link_down,
1378 .port_enable = ksz_enable_port,
1379 .get_strings = ksz9477_get_strings,
1380 .get_ethtool_stats = ksz_get_ethtool_stats,
1381 .get_sset_count = ksz_sset_count,
1382 .port_bridge_join = ksz_port_bridge_join,
1383 .port_bridge_leave = ksz_port_bridge_leave,
1384 .port_stp_state_set = ksz9477_port_stp_state_set,
1385 .port_fast_age = ksz_port_fast_age,
1386 .port_vlan_filtering = ksz9477_port_vlan_filtering,
1387 .port_vlan_prepare = ksz_port_vlan_prepare,
1388 .port_vlan_add = ksz9477_port_vlan_add,
1389 .port_vlan_del = ksz9477_port_vlan_del,
1390 .port_fdb_dump = ksz9477_port_fdb_dump,
1391 .port_fdb_add = ksz9477_port_fdb_add,
1392 .port_fdb_del = ksz9477_port_fdb_del,
1393 .port_mdb_prepare = ksz_port_mdb_prepare,
1394 .port_mdb_add = ksz9477_port_mdb_add,
1395 .port_mdb_del = ksz9477_port_mdb_del,
1396 .port_mirror_add = ksz9477_port_mirror_add,
1397 .port_mirror_del = ksz9477_port_mirror_del,
1398};
1399
1400static u32 ksz9477_get_port_addr(int port, int offset)
1401{
1402 return PORT_CTRL_ADDR(port, offset);
1403}
1404
1405static int ksz9477_switch_detect(struct ksz_device *dev)
1406{
1407 u8 data8;
1408 u8 id_hi;
1409 u8 id_lo;
1410 u32 id32;
1411 int ret;
1412
1413 /* turn off SPI DO Edge select */
1414 ret = ksz_read8(dev, REG_SW_GLOBAL_SERIAL_CTRL_0, &data8);
1415 if (ret)
1416 return ret;
1417
1418 data8 &= ~SPI_AUTO_EDGE_DETECTION;
1419 ret = ksz_write8(dev, REG_SW_GLOBAL_SERIAL_CTRL_0, data8);
1420 if (ret)
1421 return ret;
1422
1423 /* read chip id */
1424 ret = ksz_read32(dev, REG_CHIP_ID0__1, &id32);
1425 if (ret)
1426 return ret;
1427 ret = ksz_read8(dev, REG_GLOBAL_OPTIONS, &data8);
1428 if (ret)
1429 return ret;
1430
1431 /* Number of ports can be reduced depending on chip. */
1432 dev->mib_port_cnt = TOTAL_PORT_NUM;
1433 dev->phy_port_cnt = 5;
1434
1435 /* Default capability is gigabit capable. */
1436 dev->features = GBIT_SUPPORT;
1437
1438 id_hi = (u8)(id32 >> 16);
1439 id_lo = (u8)(id32 >> 8);
1440 if ((id_lo & 0xf) == 3) {
1441 /* Chip is from KSZ9893 design. */
1442 dev->features |= IS_9893;
1443
1444 /* Chip does not support gigabit. */
1445 if (data8 & SW_QW_ABLE)
1446 dev->features &= ~GBIT_SUPPORT;
1447 dev->mib_port_cnt = 3;
1448 dev->phy_port_cnt = 2;
1449 } else {
1450 /* Chip uses new XMII register definitions. */
1451 dev->features |= NEW_XMII;
1452
1453 /* Chip does not support gigabit. */
1454 if (!(data8 & SW_GIGABIT_ABLE))
1455 dev->features &= ~GBIT_SUPPORT;
1456 }
1457
1458 /* Change chip id to known ones so it can be matched against them. */
1459 id32 = (id_hi << 16) | (id_lo << 8);
1460
1461 dev->chip_id = id32;
1462
1463 return 0;
1464}
1465
1466struct ksz_chip_data {
1467 u32 chip_id;
1468 const char *dev_name;
1469 int num_vlans;
1470 int num_alus;
1471 int num_statics;
1472 int cpu_ports;
1473 int port_cnt;
1474 bool phy_errata_9477;
1475};
1476
1477static const struct ksz_chip_data ksz9477_switch_chips[] = {
1478 {
1479 .chip_id = 0x00947700,
1480 .dev_name = "KSZ9477",
1481 .num_vlans = 4096,
1482 .num_alus = 4096,
1483 .num_statics = 16,
1484 .cpu_ports = 0x7F, /* can be configured as cpu port */
1485 .port_cnt = 7, /* total physical port count */
1486 .phy_errata_9477 = true,
1487 },
1488 {
1489 .chip_id = 0x00989700,
1490 .dev_name = "KSZ9897",
1491 .num_vlans = 4096,
1492 .num_alus = 4096,
1493 .num_statics = 16,
1494 .cpu_ports = 0x7F, /* can be configured as cpu port */
1495 .port_cnt = 7, /* total physical port count */
1496 .phy_errata_9477 = true,
1497 },
1498 {
1499 .chip_id = 0x00989300,
1500 .dev_name = "KSZ9893",
1501 .num_vlans = 4096,
1502 .num_alus = 4096,
1503 .num_statics = 16,
1504 .cpu_ports = 0x07, /* can be configured as cpu port */
1505 .port_cnt = 3, /* total port count */
1506 },
1507 {
1508 .chip_id = 0x00956700,
1509 .dev_name = "KSZ9567",
1510 .num_vlans = 4096,
1511 .num_alus = 4096,
1512 .num_statics = 16,
1513 .cpu_ports = 0x7F, /* can be configured as cpu port */
1514 .port_cnt = 7, /* total physical port count */
1515 },
1516};
1517
1518static int ksz9477_switch_init(struct ksz_device *dev)
1519{
1520 int i;
1521
1522 dev->ds->ops = &ksz9477_switch_ops;
1523
1524 for (i = 0; i < ARRAY_SIZE(ksz9477_switch_chips); i++) {
1525 const struct ksz_chip_data *chip = &ksz9477_switch_chips[i];
1526
1527 if (dev->chip_id == chip->chip_id) {
1528 dev->name = chip->dev_name;
1529 dev->num_vlans = chip->num_vlans;
1530 dev->num_alus = chip->num_alus;
1531 dev->num_statics = chip->num_statics;
1532 dev->port_cnt = chip->port_cnt;
1533 dev->cpu_ports = chip->cpu_ports;
1534 dev->phy_errata_9477 = chip->phy_errata_9477;
1535
1536 break;
1537 }
1538 }
1539
1540 /* no switch found */
1541 if (!dev->port_cnt)
1542 return -ENODEV;
1543
1544 dev->port_mask = (1 << dev->port_cnt) - 1;
1545
1546 dev->reg_mib_cnt = SWITCH_COUNTER_NUM;
1547 dev->mib_cnt = TOTAL_SWITCH_COUNTER_NUM;
1548
1549 i = dev->mib_port_cnt;
1550 dev->ports = devm_kzalloc(dev->dev, sizeof(struct ksz_port) * i,
1551 GFP_KERNEL);
1552 if (!dev->ports)
1553 return -ENOMEM;
1554 for (i = 0; i < dev->mib_port_cnt; i++) {
1555 mutex_init(&dev->ports[i].mib.cnt_mutex);
1556 dev->ports[i].mib.counters =
1557 devm_kzalloc(dev->dev,
1558 sizeof(u64) *
1559 (TOTAL_SWITCH_COUNTER_NUM + 1),
1560 GFP_KERNEL);
1561 if (!dev->ports[i].mib.counters)
1562 return -ENOMEM;
1563 }
1564
1565 /* set the real number of ports */
1566 dev->ds->num_ports = dev->port_cnt;
1567
1568 return 0;
1569}
1570
1571static void ksz9477_switch_exit(struct ksz_device *dev)
1572{
1573 ksz9477_reset_switch(dev);
1574}
1575
1576static const struct ksz_dev_ops ksz9477_dev_ops = {
1577 .get_port_addr = ksz9477_get_port_addr,
1578 .cfg_port_member = ksz9477_cfg_port_member,
1579 .flush_dyn_mac_table = ksz9477_flush_dyn_mac_table,
1580 .port_setup = ksz9477_port_setup,
1581 .r_mib_cnt = ksz9477_r_mib_cnt,
1582 .r_mib_pkt = ksz9477_r_mib_pkt,
1583 .freeze_mib = ksz9477_freeze_mib,
1584 .port_init_cnt = ksz9477_port_init_cnt,
1585 .shutdown = ksz9477_reset_switch,
1586 .detect = ksz9477_switch_detect,
1587 .init = ksz9477_switch_init,
1588 .exit = ksz9477_switch_exit,
1589};
1590
1591int ksz9477_switch_register(struct ksz_device *dev)
1592{
1593 int ret, i;
1594 struct phy_device *phydev;
1595
1596 ret = ksz_switch_register(dev, &ksz9477_dev_ops);
1597 if (ret)
1598 return ret;
1599
1600 for (i = 0; i < dev->phy_port_cnt; ++i) {
1601 if (!dsa_is_user_port(dev->ds, i))
1602 continue;
1603
1604 phydev = dsa_to_port(dev->ds, i)->slave->phydev;
1605
1606 /* The MAC actually cannot run in 1000 half-duplex mode. */
1607 phy_remove_link_mode(phydev,
1608 ETHTOOL_LINK_MODE_1000baseT_Half_BIT);
1609
1610 /* PHY does not support gigabit. */
1611 if (!(dev->features & GBIT_SUPPORT))
1612 phy_remove_link_mode(phydev,
1613 ETHTOOL_LINK_MODE_1000baseT_Full_BIT);
1614 }
1615 return ret;
1616}
1617EXPORT_SYMBOL(ksz9477_switch_register);
1618
1619MODULE_AUTHOR("Woojung Huh <Woojung.Huh@microchip.com>");
1620MODULE_DESCRIPTION("Microchip KSZ9477 Series Switch DSA Driver");
1621MODULE_LICENSE("GPL");