Linux Audio

Check our new training course

Loading...
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Microchip KSZ9477 switch driver main logic
   4 *
   5 * Copyright (C) 2017-2024 Microchip Technology Inc.
   6 */
   7
   8#include <linux/kernel.h>
   9#include <linux/module.h>
  10#include <linux/iopoll.h>
  11#include <linux/platform_data/microchip-ksz.h>
  12#include <linux/phy.h>
  13#include <linux/if_bridge.h>
  14#include <linux/if_vlan.h>
  15#include <net/dsa.h>
  16#include <net/switchdev.h>
  17
  18#include "ksz9477_reg.h"
  19#include "ksz_common.h"
  20#include "ksz9477.h"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  21
  22static void ksz_cfg(struct ksz_device *dev, u32 addr, u8 bits, bool set)
  23{
  24	regmap_update_bits(ksz_regmap_8(dev), addr, bits, set ? bits : 0);
  25}
  26
  27static void ksz_port_cfg(struct ksz_device *dev, int port, int offset, u8 bits,
  28			 bool set)
  29{
  30	regmap_update_bits(ksz_regmap_8(dev), PORT_CTRL_ADDR(port, offset),
  31			   bits, set ? bits : 0);
  32}
  33
  34static void ksz9477_cfg32(struct ksz_device *dev, u32 addr, u32 bits, bool set)
  35{
  36	regmap_update_bits(ksz_regmap_32(dev), addr, bits, set ? bits : 0);
  37}
  38
  39static void ksz9477_port_cfg32(struct ksz_device *dev, int port, int offset,
  40			       u32 bits, bool set)
  41{
  42	regmap_update_bits(ksz_regmap_32(dev), PORT_CTRL_ADDR(port, offset),
  43			   bits, set ? bits : 0);
  44}
  45
  46int ksz9477_change_mtu(struct ksz_device *dev, int port, int mtu)
  47{
  48	u16 frame_size;
  49
  50	if (!dsa_is_cpu_port(dev->ds, port))
  51		return 0;
  52
  53	frame_size = mtu + VLAN_ETH_HLEN + ETH_FCS_LEN;
  54
  55	return regmap_update_bits(ksz_regmap_16(dev), REG_SW_MTU__2,
  56				  REG_SW_MTU_MASK, frame_size);
  57}
  58
  59static int ksz9477_wait_vlan_ctrl_ready(struct ksz_device *dev)
  60{
  61	unsigned int val;
  62
  63	return regmap_read_poll_timeout(ksz_regmap_8(dev), REG_SW_VLAN_CTRL,
  64					val, !(val & VLAN_START), 10, 1000);
  65}
  66
  67static int ksz9477_get_vlan_table(struct ksz_device *dev, u16 vid,
  68				  u32 *vlan_table)
  69{
  70	int ret;
  71
  72	mutex_lock(&dev->vlan_mutex);
  73
  74	ksz_write16(dev, REG_SW_VLAN_ENTRY_INDEX__2, vid & VLAN_INDEX_M);
  75	ksz_write8(dev, REG_SW_VLAN_CTRL, VLAN_READ | VLAN_START);
  76
  77	/* wait to be cleared */
  78	ret = ksz9477_wait_vlan_ctrl_ready(dev);
  79	if (ret) {
  80		dev_dbg(dev->dev, "Failed to read vlan table\n");
  81		goto exit;
  82	}
  83
  84	ksz_read32(dev, REG_SW_VLAN_ENTRY__4, &vlan_table[0]);
  85	ksz_read32(dev, REG_SW_VLAN_ENTRY_UNTAG__4, &vlan_table[1]);
  86	ksz_read32(dev, REG_SW_VLAN_ENTRY_PORTS__4, &vlan_table[2]);
  87
  88	ksz_write8(dev, REG_SW_VLAN_CTRL, 0);
  89
  90exit:
  91	mutex_unlock(&dev->vlan_mutex);
  92
  93	return ret;
  94}
  95
  96static int ksz9477_set_vlan_table(struct ksz_device *dev, u16 vid,
  97				  u32 *vlan_table)
  98{
  99	int ret;
 100
 101	mutex_lock(&dev->vlan_mutex);
 102
 103	ksz_write32(dev, REG_SW_VLAN_ENTRY__4, vlan_table[0]);
 104	ksz_write32(dev, REG_SW_VLAN_ENTRY_UNTAG__4, vlan_table[1]);
 105	ksz_write32(dev, REG_SW_VLAN_ENTRY_PORTS__4, vlan_table[2]);
 106
 107	ksz_write16(dev, REG_SW_VLAN_ENTRY_INDEX__2, vid & VLAN_INDEX_M);
 108	ksz_write8(dev, REG_SW_VLAN_CTRL, VLAN_START | VLAN_WRITE);
 109
 110	/* wait to be cleared */
 111	ret = ksz9477_wait_vlan_ctrl_ready(dev);
 112	if (ret) {
 113		dev_dbg(dev->dev, "Failed to write vlan table\n");
 114		goto exit;
 115	}
 116
 117	ksz_write8(dev, REG_SW_VLAN_CTRL, 0);
 118
 119	/* update vlan cache table */
 120	dev->vlan_cache[vid].table[0] = vlan_table[0];
 121	dev->vlan_cache[vid].table[1] = vlan_table[1];
 122	dev->vlan_cache[vid].table[2] = vlan_table[2];
 123
 124exit:
 125	mutex_unlock(&dev->vlan_mutex);
 126
 127	return ret;
 128}
 129
 130static void ksz9477_read_table(struct ksz_device *dev, u32 *table)
 131{
 132	ksz_read32(dev, REG_SW_ALU_VAL_A, &table[0]);
 133	ksz_read32(dev, REG_SW_ALU_VAL_B, &table[1]);
 134	ksz_read32(dev, REG_SW_ALU_VAL_C, &table[2]);
 135	ksz_read32(dev, REG_SW_ALU_VAL_D, &table[3]);
 136}
 137
 138static void ksz9477_write_table(struct ksz_device *dev, u32 *table)
 139{
 140	ksz_write32(dev, REG_SW_ALU_VAL_A, table[0]);
 141	ksz_write32(dev, REG_SW_ALU_VAL_B, table[1]);
 142	ksz_write32(dev, REG_SW_ALU_VAL_C, table[2]);
 143	ksz_write32(dev, REG_SW_ALU_VAL_D, table[3]);
 144}
 145
 146static int ksz9477_wait_alu_ready(struct ksz_device *dev)
 147{
 148	unsigned int val;
 149
 150	return regmap_read_poll_timeout(ksz_regmap_32(dev), REG_SW_ALU_CTRL__4,
 151					val, !(val & ALU_START), 10, 1000);
 152}
 153
 154static int ksz9477_wait_alu_sta_ready(struct ksz_device *dev)
 155{
 156	unsigned int val;
 157
 158	return regmap_read_poll_timeout(ksz_regmap_32(dev),
 159					REG_SW_ALU_STAT_CTRL__4,
 160					val, !(val & ALU_STAT_START),
 161					10, 1000);
 162}
 163
 164int ksz9477_reset_switch(struct ksz_device *dev)
 165{
 166	u8 data8;
 167	u32 data32;
 168
 169	/* reset switch */
 170	ksz_cfg(dev, REG_SW_OPERATION, SW_RESET, true);
 171
 172	/* turn off SPI DO Edge select */
 173	regmap_update_bits(ksz_regmap_8(dev), REG_SW_GLOBAL_SERIAL_CTRL_0,
 174			   SPI_AUTO_EDGE_DETECTION, 0);
 175
 176	/* default configuration */
 177	ksz_write8(dev, REG_SW_LUE_CTRL_1,
 178		   SW_AGING_ENABLE | SW_LINK_AUTO_AGING | SW_SRC_ADDR_FILTER);
 
 
 179
 180	/* disable interrupts */
 181	ksz_write32(dev, REG_SW_INT_MASK__4, SWITCH_INT_MASK);
 182	ksz_write32(dev, REG_SW_PORT_INT_MASK__4, 0x7F);
 183	ksz_read32(dev, REG_SW_PORT_INT_STATUS__4, &data32);
 184
 185	/* KSZ9893 compatible chips do not support refclk configuration */
 186	if (dev->chip_id == KSZ9893_CHIP_ID ||
 187	    dev->chip_id == KSZ8563_CHIP_ID ||
 188	    dev->chip_id == KSZ9563_CHIP_ID)
 189		return 0;
 190
 191	data8 = SW_ENABLE_REFCLKO;
 192	if (dev->synclko_disable)
 193		data8 = 0;
 194	else if (dev->synclko_125)
 195		data8 = SW_ENABLE_REFCLKO | SW_REFCLKO_IS_125MHZ;
 196	ksz_write8(dev, REG_SW_GLOBAL_OUTPUT_CTRL__1, data8);
 197
 198	return 0;
 199}
 200
 201void ksz9477_r_mib_cnt(struct ksz_device *dev, int port, u16 addr, u64 *cnt)
 
 202{
 203	struct ksz_port *p = &dev->ports[port];
 204	unsigned int val;
 205	u32 data;
 206	int ret;
 207
 208	/* retain the flush/freeze bit */
 209	data = p->freeze ? MIB_COUNTER_FLUSH_FREEZE : 0;
 210	data |= MIB_COUNTER_READ;
 211	data |= (addr << MIB_COUNTER_INDEX_S);
 212	ksz_pwrite32(dev, port, REG_PORT_MIB_CTRL_STAT__4, data);
 213
 214	ret = regmap_read_poll_timeout(ksz_regmap_32(dev),
 215			PORT_CTRL_ADDR(port, REG_PORT_MIB_CTRL_STAT__4),
 216			val, !(val & MIB_COUNTER_READ), 10, 1000);
 217	/* failed to read MIB. get out of loop */
 218	if (ret) {
 219		dev_dbg(dev->dev, "Failed to get MIB\n");
 220		return;
 221	}
 222
 223	/* count resets upon read */
 224	ksz_pread32(dev, port, REG_PORT_MIB_DATA, &data);
 225	*cnt += data;
 226}
 227
 228void ksz9477_r_mib_pkt(struct ksz_device *dev, int port, u16 addr,
 229		       u64 *dropped, u64 *cnt)
 230{
 231	addr = dev->info->mib_names[addr].index;
 232	ksz9477_r_mib_cnt(dev, port, addr, cnt);
 233}
 234
 235void ksz9477_freeze_mib(struct ksz_device *dev, int port, bool freeze)
 236{
 237	u32 val = freeze ? MIB_COUNTER_FLUSH_FREEZE : 0;
 238	struct ksz_port *p = &dev->ports[port];
 239
 240	/* enable/disable the port for flush/freeze function */
 241	mutex_lock(&p->mib.cnt_mutex);
 242	ksz_pwrite32(dev, port, REG_PORT_MIB_CTRL_STAT__4, val);
 243
 244	/* used by MIB counter reading code to know freeze is enabled */
 245	p->freeze = freeze;
 246	mutex_unlock(&p->mib.cnt_mutex);
 247}
 248
 249static int ksz9477_half_duplex_monitor(struct ksz_device *dev, int port,
 250				       u64 tx_late_col)
 251{
 252	u8 lue_ctrl;
 253	u32 pmavbc;
 254	u16 pqm;
 255	int ret;
 256
 257	/* Errata DS80000754 recommends monitoring potential faults in
 258	 * half-duplex mode. The switch might not be able to communicate anymore
 259	 * in these states. If you see this message, please read the
 260	 * errata-sheet for more information:
 261	 * https://ww1.microchip.com/downloads/aemDocuments/documents/UNG/ProductDocuments/Errata/KSZ9477S-Errata-DS80000754.pdf
 262	 * To workaround this issue, half-duplex mode should be avoided.
 263	 * A software reset could be implemented to recover from this state.
 264	 */
 265	dev_warn_once(dev->dev,
 266		      "Half-duplex detected on port %d, transmission halt may occur\n",
 267		      port);
 268	if (tx_late_col != 0) {
 269		/* Transmission halt with late collisions */
 270		dev_crit_once(dev->dev,
 271			      "TX late collisions detected, transmission may be halted on port %d\n",
 272			      port);
 273	}
 274	ret = ksz_read8(dev, REG_SW_LUE_CTRL_0, &lue_ctrl);
 275	if (ret)
 276		return ret;
 277	if (lue_ctrl & SW_VLAN_ENABLE) {
 278		ret = ksz_pread16(dev, port, REG_PORT_QM_TX_CNT_0__4, &pqm);
 279		if (ret)
 280			return ret;
 281
 282		ret = ksz_read32(dev, REG_PMAVBC, &pmavbc);
 283		if (ret)
 284			return ret;
 285
 286		if ((FIELD_GET(PMAVBC_MASK, pmavbc) <= PMAVBC_MIN) ||
 287		    (FIELD_GET(PORT_QM_TX_CNT_M, pqm) >= PORT_QM_TX_CNT_MAX)) {
 288			/* Transmission halt with Half-Duplex and VLAN */
 289			dev_crit_once(dev->dev,
 290				      "resources out of limits, transmission may be halted\n");
 291		}
 292	}
 293
 294	return ret;
 295}
 296
 297int ksz9477_errata_monitor(struct ksz_device *dev, int port,
 298			   u64 tx_late_col)
 299{
 300	u8 status;
 301	int ret;
 302
 303	ret = ksz_pread8(dev, port, REG_PORT_STATUS_0, &status);
 304	if (ret)
 305		return ret;
 306
 307	if (!(FIELD_GET(PORT_INTF_SPEED_MASK, status)
 308	      == PORT_INTF_SPEED_NONE) &&
 309	    !(status & PORT_INTF_FULL_DUPLEX)) {
 310		ret = ksz9477_half_duplex_monitor(dev, port, tx_late_col);
 311	}
 312
 313	return ret;
 314}
 315
 316void ksz9477_port_init_cnt(struct ksz_device *dev, int port)
 317{
 318	struct ksz_port_mib *mib = &dev->ports[port].mib;
 319
 320	/* flush all enabled port MIB counters */
 321	mutex_lock(&mib->cnt_mutex);
 322	ksz_pwrite32(dev, port, REG_PORT_MIB_CTRL_STAT__4,
 323		     MIB_COUNTER_FLUSH_FREEZE);
 324	ksz_write8(dev, REG_SW_MAC_CTRL_6, SW_MIB_COUNTER_FLUSH);
 325	ksz_pwrite32(dev, port, REG_PORT_MIB_CTRL_STAT__4, 0);
 326	mutex_unlock(&mib->cnt_mutex);
 
 
 
 327}
 328
 329static void ksz9477_r_phy_quirks(struct ksz_device *dev, u16 addr, u16 reg,
 330				 u16 *data)
 331{
 332	/* KSZ8563R do not have extended registers but BMSR_ESTATEN and
 333	 * BMSR_ERCAP bits are set.
 334	 */
 335	if (dev->chip_id == KSZ8563_CHIP_ID && reg == MII_BMSR)
 336		*data &= ~(BMSR_ESTATEN | BMSR_ERCAP);
 
 337}
 338
 339int ksz9477_r_phy(struct ksz_device *dev, u16 addr, u16 reg, u16 *data)
 340{
 
 341	u16 val = 0xffff;
 342	int ret;
 343
 344	/* No real PHY after this. Simulate the PHY.
 345	 * A fixed PHY can be setup in the device tree, but this function is
 346	 * still called for that port during initialization.
 347	 * For RGMII PHY there is no way to access it so the fixed PHY should
 348	 * be used.  For SGMII PHY the supporting code will be added later.
 349	 */
 350	if (!dev->info->internal_phy[addr]) {
 351		struct ksz_port *p = &dev->ports[addr];
 352
 353		switch (reg) {
 354		case MII_BMCR:
 355			val = 0x1140;
 356			break;
 357		case MII_BMSR:
 358			val = 0x796d;
 359			break;
 360		case MII_PHYSID1:
 361			val = 0x0022;
 362			break;
 363		case MII_PHYSID2:
 364			val = 0x1631;
 365			break;
 366		case MII_ADVERTISE:
 367			val = 0x05e1;
 368			break;
 369		case MII_LPA:
 370			val = 0xc5e1;
 371			break;
 372		case MII_CTRL1000:
 373			val = 0x0700;
 374			break;
 375		case MII_STAT1000:
 376			if (p->phydev.speed == SPEED_1000)
 377				val = 0x3800;
 378			else
 379				val = 0;
 380			break;
 381		}
 382	} else {
 383		ret = ksz_pread16(dev, addr, 0x100 + (reg << 1), &val);
 384		if (ret)
 385			return ret;
 386
 387		ksz9477_r_phy_quirks(dev, addr, reg, &val);
 388	}
 389
 390	*data = val;
 391
 392	return 0;
 393}
 394
 395int ksz9477_w_phy(struct ksz_device *dev, u16 addr, u16 reg, u16 val)
 
 396{
 397	u32 mask, val32;
 398
 399	/* No real PHY after this. */
 400	if (!dev->info->internal_phy[addr])
 401		return 0;
 402
 403	if (reg < 0x10)
 404		return ksz_pwrite16(dev, addr, 0x100 + (reg << 1), val);
 
 
 405
 406	/* Errata: When using SPI, I2C, or in-band register access,
 407	 * writes to certain PHY registers should be performed as
 408	 * 32-bit writes instead of 16-bit writes.
 409	 */
 410	val32 = val;
 411	mask = 0xffff;
 412	if ((reg & 1) == 0) {
 413		val32 <<= 16;
 414		mask <<= 16;
 
 
 
 
 
 415	}
 416	reg &= ~1;
 417	return ksz_prmw32(dev, addr, 0x100 + (reg << 1), mask, val32);
 418}
 419
 420void ksz9477_cfg_port_member(struct ksz_device *dev, int port, u8 member)
 
 421{
 422	ksz_pwrite32(dev, port, REG_PORT_VLAN_MEMBERSHIP__4, member);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 423}
 424
 425void ksz9477_flush_dyn_mac_table(struct ksz_device *dev, int port)
 426{
 427	const u16 *regs = dev->info->regs;
 428	u8 data;
 429
 430	regmap_update_bits(ksz_regmap_8(dev), REG_SW_LUE_CTRL_2,
 431			   SW_FLUSH_OPTION_M << SW_FLUSH_OPTION_S,
 432			   SW_FLUSH_OPTION_DYN_MAC << SW_FLUSH_OPTION_S);
 433
 434	if (port < dev->info->port_cnt) {
 435		/* flush individual port */
 436		ksz_pread8(dev, port, regs[P_STP_CTRL], &data);
 437		if (!(data & PORT_LEARN_DISABLE))
 438			ksz_pwrite8(dev, port, regs[P_STP_CTRL],
 439				    data | PORT_LEARN_DISABLE);
 440		ksz_cfg(dev, S_FLUSH_TABLE_CTRL, SW_FLUSH_DYN_MAC_TABLE, true);
 441		ksz_pwrite8(dev, port, regs[P_STP_CTRL], data);
 442	} else {
 443		/* flush all */
 444		ksz_cfg(dev, S_FLUSH_TABLE_CTRL, SW_FLUSH_STP_TABLE, true);
 445	}
 446}
 447
 448int ksz9477_port_vlan_filtering(struct ksz_device *dev, int port,
 449				bool flag, struct netlink_ext_ack *extack)
 450{
 
 
 451	if (flag) {
 452		ksz_port_cfg(dev, port, REG_PORT_LUE_CTRL,
 453			     PORT_VLAN_LOOKUP_VID_0, true);
 454		ksz_cfg(dev, REG_SW_LUE_CTRL_0, SW_VLAN_ENABLE, true);
 455	} else {
 456		ksz_cfg(dev, REG_SW_LUE_CTRL_0, SW_VLAN_ENABLE, false);
 457		ksz_port_cfg(dev, port, REG_PORT_LUE_CTRL,
 458			     PORT_VLAN_LOOKUP_VID_0, false);
 459	}
 460
 461	return 0;
 462}
 463
 464int ksz9477_port_vlan_add(struct ksz_device *dev, int port,
 465			  const struct switchdev_obj_port_vlan *vlan,
 466			  struct netlink_ext_ack *extack)
 467{
 
 468	u32 vlan_table[3];
 
 469	bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED;
 470	int err;
 471
 472	err = ksz9477_get_vlan_table(dev, vlan->vid, vlan_table);
 473	if (err) {
 474		NL_SET_ERR_MSG_MOD(extack, "Failed to get vlan table");
 475		return err;
 476	}
 477
 478	vlan_table[0] = VLAN_VALID | (vlan->vid & VLAN_FID_M);
 479	if (untagged)
 480		vlan_table[1] |= BIT(port);
 481	else
 482		vlan_table[1] &= ~BIT(port);
 483	vlan_table[1] &= ~(BIT(dev->cpu_port));
 484
 485	vlan_table[2] |= BIT(port) | BIT(dev->cpu_port);
 
 
 
 
 
 
 
 
 
 
 
 
 486
 487	err = ksz9477_set_vlan_table(dev, vlan->vid, vlan_table);
 488	if (err) {
 489		NL_SET_ERR_MSG_MOD(extack, "Failed to set vlan table");
 490		return err;
 491	}
 492
 493	/* change PVID */
 494	if (vlan->flags & BRIDGE_VLAN_INFO_PVID)
 495		ksz_pwrite16(dev, port, REG_PORT_DEFAULT_VID, vlan->vid);
 496
 497	return 0;
 498}
 499
 500int ksz9477_port_vlan_del(struct ksz_device *dev, int port,
 501			  const struct switchdev_obj_port_vlan *vlan)
 502{
 
 503	bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED;
 504	u32 vlan_table[3];
 
 505	u16 pvid;
 506
 507	ksz_pread16(dev, port, REG_PORT_DEFAULT_VID, &pvid);
 508	pvid = pvid & 0xFFF;
 509
 510	if (ksz9477_get_vlan_table(dev, vlan->vid, vlan_table)) {
 511		dev_dbg(dev->dev, "Failed to get vlan table\n");
 512		return -ETIMEDOUT;
 513	}
 
 514
 515	vlan_table[2] &= ~BIT(port);
 516
 517	if (pvid == vlan->vid)
 518		pvid = 1;
 519
 520	if (untagged)
 521		vlan_table[1] &= ~BIT(port);
 522
 523	if (ksz9477_set_vlan_table(dev, vlan->vid, vlan_table)) {
 524		dev_dbg(dev->dev, "Failed to set vlan table\n");
 525		return -ETIMEDOUT;
 
 526	}
 527
 528	ksz_pwrite16(dev, port, REG_PORT_DEFAULT_VID, pvid);
 529
 530	return 0;
 531}
 532
 533int ksz9477_fdb_add(struct ksz_device *dev, int port,
 534		    const unsigned char *addr, u16 vid, struct dsa_db db)
 535{
 
 536	u32 alu_table[4];
 537	u32 data;
 538	int ret = 0;
 539
 540	mutex_lock(&dev->alu_mutex);
 541
 542	/* find any entry with mac & vid */
 543	data = vid << ALU_FID_INDEX_S;
 544	data |= ((addr[0] << 8) | addr[1]);
 545	ksz_write32(dev, REG_SW_ALU_INDEX_0, data);
 546
 547	data = ((addr[2] << 24) | (addr[3] << 16));
 548	data |= ((addr[4] << 8) | addr[5]);
 549	ksz_write32(dev, REG_SW_ALU_INDEX_1, data);
 550
 551	/* start read operation */
 552	ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_READ | ALU_START);
 553
 554	/* wait to be finished */
 555	ret = ksz9477_wait_alu_ready(dev);
 556	if (ret) {
 557		dev_dbg(dev->dev, "Failed to read ALU\n");
 558		goto exit;
 559	}
 560
 561	/* read ALU entry */
 562	ksz9477_read_table(dev, alu_table);
 563
 564	/* update ALU entry */
 565	alu_table[0] = ALU_V_STATIC_VALID;
 566	alu_table[1] |= BIT(port);
 567	if (vid)
 568		alu_table[1] |= ALU_V_USE_FID;
 569	alu_table[2] = (vid << ALU_V_FID_S);
 570	alu_table[2] |= ((addr[0] << 8) | addr[1]);
 571	alu_table[3] = ((addr[2] << 24) | (addr[3] << 16));
 572	alu_table[3] |= ((addr[4] << 8) | addr[5]);
 573
 574	ksz9477_write_table(dev, alu_table);
 575
 576	ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_WRITE | ALU_START);
 577
 578	/* wait to be finished */
 579	ret = ksz9477_wait_alu_ready(dev);
 580	if (ret)
 581		dev_dbg(dev->dev, "Failed to write ALU\n");
 582
 583exit:
 584	mutex_unlock(&dev->alu_mutex);
 585
 586	return ret;
 587}
 588
 589int ksz9477_fdb_del(struct ksz_device *dev, int port,
 590		    const unsigned char *addr, u16 vid, struct dsa_db db)
 591{
 
 592	u32 alu_table[4];
 593	u32 data;
 594	int ret = 0;
 595
 596	mutex_lock(&dev->alu_mutex);
 597
 598	/* read any entry with mac & vid */
 599	data = vid << ALU_FID_INDEX_S;
 600	data |= ((addr[0] << 8) | addr[1]);
 601	ksz_write32(dev, REG_SW_ALU_INDEX_0, data);
 602
 603	data = ((addr[2] << 24) | (addr[3] << 16));
 604	data |= ((addr[4] << 8) | addr[5]);
 605	ksz_write32(dev, REG_SW_ALU_INDEX_1, data);
 606
 607	/* start read operation */
 608	ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_READ | ALU_START);
 609
 610	/* wait to be finished */
 611	ret = ksz9477_wait_alu_ready(dev);
 612	if (ret) {
 613		dev_dbg(dev->dev, "Failed to read ALU\n");
 614		goto exit;
 615	}
 616
 617	ksz_read32(dev, REG_SW_ALU_VAL_A, &alu_table[0]);
 618	if (alu_table[0] & ALU_V_STATIC_VALID) {
 619		ksz_read32(dev, REG_SW_ALU_VAL_B, &alu_table[1]);
 620		ksz_read32(dev, REG_SW_ALU_VAL_C, &alu_table[2]);
 621		ksz_read32(dev, REG_SW_ALU_VAL_D, &alu_table[3]);
 622
 623		/* clear forwarding port */
 624		alu_table[1] &= ~BIT(port);
 625
 626		/* if there is no port to forward, clear table */
 627		if ((alu_table[1] & ALU_V_PORT_MAP) == 0) {
 628			alu_table[0] = 0;
 629			alu_table[1] = 0;
 630			alu_table[2] = 0;
 631			alu_table[3] = 0;
 632		}
 633	} else {
 634		alu_table[0] = 0;
 635		alu_table[1] = 0;
 636		alu_table[2] = 0;
 637		alu_table[3] = 0;
 638	}
 639
 640	ksz9477_write_table(dev, alu_table);
 641
 642	ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_WRITE | ALU_START);
 643
 644	/* wait to be finished */
 645	ret = ksz9477_wait_alu_ready(dev);
 646	if (ret)
 647		dev_dbg(dev->dev, "Failed to write ALU\n");
 648
 649exit:
 650	mutex_unlock(&dev->alu_mutex);
 651
 652	return ret;
 653}
 654
 655static void ksz9477_convert_alu(struct alu_struct *alu, u32 *alu_table)
 656{
 657	alu->is_static = !!(alu_table[0] & ALU_V_STATIC_VALID);
 658	alu->is_src_filter = !!(alu_table[0] & ALU_V_SRC_FILTER);
 659	alu->is_dst_filter = !!(alu_table[0] & ALU_V_DST_FILTER);
 660	alu->prio_age = (alu_table[0] >> ALU_V_PRIO_AGE_CNT_S) &
 661			ALU_V_PRIO_AGE_CNT_M;
 662	alu->mstp = alu_table[0] & ALU_V_MSTP_M;
 663
 664	alu->is_override = !!(alu_table[1] & ALU_V_OVERRIDE);
 665	alu->is_use_fid = !!(alu_table[1] & ALU_V_USE_FID);
 666	alu->port_forward = alu_table[1] & ALU_V_PORT_MAP;
 667
 668	alu->fid = (alu_table[2] >> ALU_V_FID_S) & ALU_V_FID_M;
 669
 670	alu->mac[0] = (alu_table[2] >> 8) & 0xFF;
 671	alu->mac[1] = alu_table[2] & 0xFF;
 672	alu->mac[2] = (alu_table[3] >> 24) & 0xFF;
 673	alu->mac[3] = (alu_table[3] >> 16) & 0xFF;
 674	alu->mac[4] = (alu_table[3] >> 8) & 0xFF;
 675	alu->mac[5] = alu_table[3] & 0xFF;
 676}
 677
 678int ksz9477_fdb_dump(struct ksz_device *dev, int port,
 679		     dsa_fdb_dump_cb_t *cb, void *data)
 680{
 
 681	int ret = 0;
 682	u32 ksz_data;
 683	u32 alu_table[4];
 684	struct alu_struct alu;
 685	int timeout;
 686
 687	mutex_lock(&dev->alu_mutex);
 688
 689	/* start ALU search */
 690	ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_START | ALU_SEARCH);
 691
 692	do {
 693		timeout = 1000;
 694		do {
 695			ksz_read32(dev, REG_SW_ALU_CTRL__4, &ksz_data);
 696			if ((ksz_data & ALU_VALID) || !(ksz_data & ALU_START))
 697				break;
 698			usleep_range(1, 10);
 699		} while (timeout-- > 0);
 700
 701		if (!timeout) {
 702			dev_dbg(dev->dev, "Failed to search ALU\n");
 703			ret = -ETIMEDOUT;
 704			goto exit;
 705		}
 706
 707		if (!(ksz_data & ALU_VALID))
 708			continue;
 709
 710		/* read ALU table */
 711		ksz9477_read_table(dev, alu_table);
 712
 713		ksz9477_convert_alu(&alu, alu_table);
 714
 715		if (alu.port_forward & BIT(port)) {
 716			ret = cb(alu.mac, alu.fid, alu.is_static, data);
 717			if (ret)
 718				goto exit;
 719		}
 720	} while (ksz_data & ALU_START);
 721
 722exit:
 723
 724	/* stop ALU search */
 725	ksz_write32(dev, REG_SW_ALU_CTRL__4, 0);
 726
 727	mutex_unlock(&dev->alu_mutex);
 728
 729	return ret;
 730}
 731
 732int ksz9477_mdb_add(struct ksz_device *dev, int port,
 733		    const struct switchdev_obj_port_mdb *mdb, struct dsa_db db)
 734{
 
 735	u32 static_table[4];
 736	const u8 *shifts;
 737	const u32 *masks;
 738	u32 data;
 739	int index;
 740	u32 mac_hi, mac_lo;
 741	int err = 0;
 742
 743	shifts = dev->info->shifts;
 744	masks = dev->info->masks;
 745
 746	mac_hi = ((mdb->addr[0] << 8) | mdb->addr[1]);
 747	mac_lo = ((mdb->addr[2] << 24) | (mdb->addr[3] << 16));
 748	mac_lo |= ((mdb->addr[4] << 8) | mdb->addr[5]);
 749
 750	mutex_lock(&dev->alu_mutex);
 751
 752	for (index = 0; index < dev->info->num_statics; index++) {
 753		/* find empty slot first */
 754		data = (index << shifts[ALU_STAT_INDEX]) |
 755			masks[ALU_STAT_READ] | ALU_STAT_START;
 756		ksz_write32(dev, REG_SW_ALU_STAT_CTRL__4, data);
 757
 758		/* wait to be finished */
 759		err = ksz9477_wait_alu_sta_ready(dev);
 760		if (err) {
 761			dev_dbg(dev->dev, "Failed to read ALU STATIC\n");
 762			goto exit;
 763		}
 764
 765		/* read ALU static table */
 766		ksz9477_read_table(dev, static_table);
 767
 768		if (static_table[0] & ALU_V_STATIC_VALID) {
 769			/* check this has same vid & mac address */
 770			if (((static_table[2] >> ALU_V_FID_S) == mdb->vid) &&
 771			    ((static_table[2] & ALU_V_MAC_ADDR_HI) == mac_hi) &&
 772			    static_table[3] == mac_lo) {
 773				/* found matching one */
 774				break;
 775			}
 776		} else {
 777			/* found empty one */
 778			break;
 779		}
 780	}
 781
 782	/* no available entry */
 783	if (index == dev->info->num_statics) {
 784		err = -ENOSPC;
 785		goto exit;
 786	}
 787
 788	/* add entry */
 789	static_table[0] = ALU_V_STATIC_VALID;
 790	static_table[1] |= BIT(port);
 791	if (mdb->vid)
 792		static_table[1] |= ALU_V_USE_FID;
 793	static_table[2] = (mdb->vid << ALU_V_FID_S);
 794	static_table[2] |= mac_hi;
 795	static_table[3] = mac_lo;
 796
 797	ksz9477_write_table(dev, static_table);
 798
 799	data = (index << shifts[ALU_STAT_INDEX]) | ALU_STAT_START;
 800	ksz_write32(dev, REG_SW_ALU_STAT_CTRL__4, data);
 801
 802	/* wait to be finished */
 803	if (ksz9477_wait_alu_sta_ready(dev))
 804		dev_dbg(dev->dev, "Failed to read ALU STATIC\n");
 805
 806exit:
 807	mutex_unlock(&dev->alu_mutex);
 808	return err;
 809}
 810
 811int ksz9477_mdb_del(struct ksz_device *dev, int port,
 812		    const struct switchdev_obj_port_mdb *mdb, struct dsa_db db)
 813{
 
 814	u32 static_table[4];
 815	const u8 *shifts;
 816	const u32 *masks;
 817	u32 data;
 818	int index;
 819	int ret = 0;
 820	u32 mac_hi, mac_lo;
 821
 822	shifts = dev->info->shifts;
 823	masks = dev->info->masks;
 824
 825	mac_hi = ((mdb->addr[0] << 8) | mdb->addr[1]);
 826	mac_lo = ((mdb->addr[2] << 24) | (mdb->addr[3] << 16));
 827	mac_lo |= ((mdb->addr[4] << 8) | mdb->addr[5]);
 828
 829	mutex_lock(&dev->alu_mutex);
 830
 831	for (index = 0; index < dev->info->num_statics; index++) {
 832		/* find empty slot first */
 833		data = (index << shifts[ALU_STAT_INDEX]) |
 834			masks[ALU_STAT_READ] | ALU_STAT_START;
 835		ksz_write32(dev, REG_SW_ALU_STAT_CTRL__4, data);
 836
 837		/* wait to be finished */
 838		ret = ksz9477_wait_alu_sta_ready(dev);
 839		if (ret) {
 840			dev_dbg(dev->dev, "Failed to read ALU STATIC\n");
 841			goto exit;
 842		}
 843
 844		/* read ALU static table */
 845		ksz9477_read_table(dev, static_table);
 846
 847		if (static_table[0] & ALU_V_STATIC_VALID) {
 848			/* check this has same vid & mac address */
 849
 850			if (((static_table[2] >> ALU_V_FID_S) == mdb->vid) &&
 851			    ((static_table[2] & ALU_V_MAC_ADDR_HI) == mac_hi) &&
 852			    static_table[3] == mac_lo) {
 853				/* found matching one */
 854				break;
 855			}
 856		}
 857	}
 858
 859	/* no available entry */
 860	if (index == dev->info->num_statics)
 861		goto exit;
 862
 863	/* clear port */
 864	static_table[1] &= ~BIT(port);
 865
 866	if ((static_table[1] & ALU_V_PORT_MAP) == 0) {
 867		/* delete entry */
 868		static_table[0] = 0;
 869		static_table[1] = 0;
 870		static_table[2] = 0;
 871		static_table[3] = 0;
 872	}
 873
 874	ksz9477_write_table(dev, static_table);
 875
 876	data = (index << shifts[ALU_STAT_INDEX]) | ALU_STAT_START;
 877	ksz_write32(dev, REG_SW_ALU_STAT_CTRL__4, data);
 878
 879	/* wait to be finished */
 880	ret = ksz9477_wait_alu_sta_ready(dev);
 881	if (ret)
 882		dev_dbg(dev->dev, "Failed to read ALU STATIC\n");
 883
 884exit:
 885	mutex_unlock(&dev->alu_mutex);
 886
 887	return ret;
 888}
 889
 890int ksz9477_port_mirror_add(struct ksz_device *dev, int port,
 891			    struct dsa_mall_mirror_tc_entry *mirror,
 892			    bool ingress, struct netlink_ext_ack *extack)
 893{
 894	u8 data;
 895	int p;
 896
 897	/* Limit to one sniffer port
 898	 * Check if any of the port is already set for sniffing
 899	 * If yes, instruct the user to remove the previous entry & exit
 900	 */
 901	for (p = 0; p < dev->info->port_cnt; p++) {
 902		/* Skip the current sniffing port */
 903		if (p == mirror->to_local_port)
 904			continue;
 905
 906		ksz_pread8(dev, p, P_MIRROR_CTRL, &data);
 907
 908		if (data & PORT_MIRROR_SNIFFER) {
 909			NL_SET_ERR_MSG_MOD(extack,
 910					   "Sniffer port is already configured, delete existing rules & retry");
 911			return -EBUSY;
 912		}
 913	}
 914
 915	if (ingress)
 916		ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_RX, true);
 917	else
 918		ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_TX, true);
 919
 
 
 920	/* configure mirror port */
 921	ksz_port_cfg(dev, mirror->to_local_port, P_MIRROR_CTRL,
 922		     PORT_MIRROR_SNIFFER, true);
 923
 924	ksz_cfg(dev, S_MIRROR_CTRL, SW_MIRROR_RX_TX, false);
 925
 926	return 0;
 927}
 928
 929void ksz9477_port_mirror_del(struct ksz_device *dev, int port,
 930			     struct dsa_mall_mirror_tc_entry *mirror)
 931{
 932	bool in_use = false;
 933	u8 data;
 934	int p;
 935
 936	if (mirror->ingress)
 937		ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_RX, false);
 938	else
 939		ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_TX, false);
 940
 
 941
 942	/* Check if any of the port is still referring to sniffer port */
 943	for (p = 0; p < dev->info->port_cnt; p++) {
 944		ksz_pread8(dev, p, P_MIRROR_CTRL, &data);
 945
 946		if ((data & (PORT_MIRROR_RX | PORT_MIRROR_TX))) {
 947			in_use = true;
 948			break;
 949		}
 950	}
 951
 952	/* delete sniffing if there are no other mirroring rules */
 953	if (!in_use)
 954		ksz_port_cfg(dev, mirror->to_local_port, P_MIRROR_CTRL,
 955			     PORT_MIRROR_SNIFFER, false);
 956}
 957
 958static phy_interface_t ksz9477_get_interface(struct ksz_device *dev, int port)
 
 959{
 960	phy_interface_t interface;
 961	bool gbit;
 962
 963	if (dev->info->internal_phy[port])
 964		return PHY_INTERFACE_MODE_NA;
 965
 966	gbit = ksz_get_gbit(dev, port);
 967
 968	interface = ksz_get_xmii(dev, port, gbit);
 
 
 969
 970	return interface;
 
 
 
 971}
 972
 973void ksz9477_get_caps(struct ksz_device *dev, int port,
 974		      struct phylink_config *config)
 975{
 976	config->mac_capabilities = MAC_10 | MAC_100 | MAC_ASYM_PAUSE |
 977				   MAC_SYM_PAUSE;
 978
 979	if (dev->info->gbit_capable[port])
 980		config->mac_capabilities |= MAC_1000FD;
 
 
 
 981}
 982
 983int ksz9477_set_ageing_time(struct ksz_device *dev, unsigned int msecs)
 984{
 985	u32 secs = msecs / 1000;
 986	u8 data, mult, value;
 987	u32 max_val;
 988	int ret;
 989
 990#define MAX_TIMER_VAL	((1 << 8) - 1)
 
 
 
 
 
 
 991
 992	/* The aging timer comprises a 3-bit multiplier and an 8-bit second
 993	 * value.  Either of them cannot be zero.  The maximum timer is then
 994	 * 7 * 255 = 1785 seconds.
 995	 */
 996	if (!secs)
 997		secs = 1;
 998
 999	/* Return error if too large. */
1000	else if (secs > 7 * MAX_TIMER_VAL)
1001		return -EINVAL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1002
1003	ret = ksz_read8(dev, REG_SW_LUE_CTRL_0, &value);
1004	if (ret < 0)
1005		return ret;
1006
1007	/* Check whether there is need to update the multiplier. */
1008	mult = FIELD_GET(SW_AGE_CNT_M, value);
1009	max_val = MAX_TIMER_VAL;
1010	if (mult > 0) {
1011		/* Try to use the same multiplier already in the register as
1012		 * the hardware default uses multiplier 4 and 75 seconds for
1013		 * 300 seconds.
1014		 */
1015		max_val = DIV_ROUND_UP(secs, mult);
1016		if (max_val > MAX_TIMER_VAL || max_val * mult != secs)
1017			max_val = MAX_TIMER_VAL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1018	}
 
 
 
1019
1020	data = DIV_ROUND_UP(secs, max_val);
1021	if (mult != data) {
1022		value &= ~SW_AGE_CNT_M;
1023		value |= FIELD_PREP(SW_AGE_CNT_M, data);
1024		ret = ksz_write8(dev, REG_SW_LUE_CTRL_0, value);
1025		if (ret < 0)
1026			return ret;
1027	}
1028
1029	value = DIV_ROUND_UP(secs, data);
1030	return ksz_write8(dev, REG_SW_LUE_CTRL_3, value);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1031}
1032
1033void ksz9477_port_queue_split(struct ksz_device *dev, int port)
 
1034{
1035	u8 data;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1036
1037	if (dev->info->num_tx_queues == 8)
1038		data = PORT_EIGHT_QUEUE;
1039	else if (dev->info->num_tx_queues == 4)
1040		data = PORT_FOUR_QUEUE;
1041	else if (dev->info->num_tx_queues == 2)
1042		data = PORT_TWO_QUEUE;
1043	else
1044		data = PORT_SINGLE_QUEUE;
 
 
1045
1046	ksz_prmw8(dev, port, REG_PORT_CTRL_0, PORT_QUEUE_SPLIT_MASK, data);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1047}
1048
1049void ksz9477_port_setup(struct ksz_device *dev, int port, bool cpu_port)
1050{
1051	const u16 *regs = dev->info->regs;
1052	struct dsa_switch *ds = dev->ds;
1053	u16 data16;
1054	u8 member;
 
 
1055
1056	/* enable tag tail for host port */
1057	if (cpu_port)
1058		ksz_port_cfg(dev, port, REG_PORT_CTRL_0, PORT_TAIL_TAG_ENABLE,
1059			     true);
1060
1061	ksz9477_port_queue_split(dev, port);
1062
1063	ksz_port_cfg(dev, port, REG_PORT_CTRL_0, PORT_MAC_LOOPBACK, false);
1064
1065	/* set back pressure */
1066	ksz_port_cfg(dev, port, REG_PORT_MAC_CTRL_1, PORT_BACK_PRESSURE, true);
1067
1068	/* enable broadcast storm limit */
1069	ksz_port_cfg(dev, port, P_BCAST_STORM_CTRL, PORT_BROADCAST_STORM, true);
1070
 
 
 
1071	/* replace priority */
1072	ksz_port_cfg(dev, port, REG_PORT_MRI_MAC_CTRL, PORT_USER_PRIO_CEILING,
1073		     false);
1074	ksz9477_port_cfg32(dev, port, REG_PORT_MTI_QUEUE_CTRL_0__4,
1075			   MTI_PVID_REPLACE, false);
1076
1077	/* force flow control for non-PHY ports only */
1078	ksz_port_cfg(dev, port, REG_PORT_CTRL_0,
1079		     PORT_FORCE_TX_FLOW_CTRL | PORT_FORCE_RX_FLOW_CTRL,
1080		     !dev->info->internal_phy[port]);
1081
1082	if (cpu_port)
1083		member = dsa_user_ports(ds);
1084	else
1085		member = BIT(dsa_upstream_port(ds, port));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1086
 
 
 
 
 
1087	ksz9477_cfg_port_member(dev, port, member);
1088
1089	/* clear pending interrupts */
1090	if (dev->info->internal_phy[port])
1091		ksz_pread16(dev, port, REG_PORT_PHY_INT_ENABLE, &data16);
1092
1093	ksz9477_port_acl_init(dev, port);
1094
1095	/* clear pending wake flags */
1096	ksz_handle_wake_reason(dev, port);
1097
1098	/* Disable all WoL options by default. Otherwise
1099	 * ksz_switch_macaddr_get/put logic will not work properly.
1100	 */
1101	ksz_pwrite8(dev, port, regs[REG_PORT_PME_CTRL], 0);
1102}
1103
1104void ksz9477_config_cpu_port(struct dsa_switch *ds)
1105{
1106	struct ksz_device *dev = ds->priv;
1107	struct ksz_port *p;
1108	int i;
1109
1110	for (i = 0; i < dev->info->port_cnt; i++) {
1111		if (dsa_is_cpu_port(ds, i) &&
1112		    (dev->info->cpu_ports & (1 << i))) {
 
1113			phy_interface_t interface;
1114			const char *prev_msg;
1115			const char *prev_mode;
1116
1117			dev->cpu_port = i;
1118			p = &dev->ports[i];
 
1119
1120			/* Read from XMII register to determine host port
1121			 * interface.  If set specifically in device tree
1122			 * note the difference to help debugging.
1123			 */
1124			interface = ksz9477_get_interface(dev, i);
1125			if (!p->interface) {
1126				if (dev->compat_interface) {
1127					dev_warn(dev->dev,
1128						 "Using legacy switch \"phy-mode\" property, because it is missing on port %d node. "
1129						 "Please update your device tree.\n",
1130						 i);
1131					p->interface = dev->compat_interface;
1132				} else {
1133					p->interface = interface;
1134				}
1135			}
1136			if (interface && interface != p->interface) {
1137				prev_msg = " instead of ";
1138				prev_mode = phy_modes(interface);
1139			} else {
1140				prev_msg = "";
1141				prev_mode = "";
1142			}
1143			dev_info(dev->dev,
1144				 "Port%d: using phy mode %s%s%s\n",
1145				 i,
1146				 phy_modes(p->interface),
1147				 prev_msg,
1148				 prev_mode);
1149
1150			/* enable cpu port */
1151			ksz9477_port_setup(dev, i, true);
 
 
 
1152		}
1153	}
1154
1155	for (i = 0; i < dev->info->port_cnt; i++) {
 
 
1156		if (i == dev->cpu_port)
1157			continue;
1158		ksz_port_stp_state_set(ds, i, BR_STATE_DISABLED);
1159
1160		/* Power down the internal PHY if port is unused. */
1161		if (dsa_is_unused_port(ds, i) && dev->info->internal_phy[i])
1162			ksz_pwrite16(dev, i, 0x100, BMCR_PDOWN);
1163	}
1164}
1165
1166int ksz9477_enable_stp_addr(struct ksz_device *dev)
1167{
1168	const u32 *masks;
1169	u32 data;
1170	int ret;
1171
1172	masks = dev->info->masks;
1173
1174	/* Enable Reserved multicast table */
1175	ksz_cfg(dev, REG_SW_LUE_CTRL_0, SW_RESV_MCAST_ENABLE, true);
1176
1177	/* Set the Override bit for forwarding BPDU packet to CPU */
1178	ret = ksz_write32(dev, REG_SW_ALU_VAL_B,
1179			  ALU_V_OVERRIDE | BIT(dev->cpu_port));
1180	if (ret < 0)
1181		return ret;
1182
1183	data = ALU_STAT_START | ALU_RESV_MCAST_ADDR | masks[ALU_STAT_WRITE];
1184
1185	ret = ksz_write32(dev, REG_SW_ALU_STAT_CTRL__4, data);
1186	if (ret < 0)
1187		return ret;
1188
1189	/* wait to be finished */
1190	ret = ksz9477_wait_alu_sta_ready(dev);
1191	if (ret < 0) {
1192		dev_err(dev->dev, "Failed to update Reserved Multicast table\n");
1193		return ret;
1194	}
1195
1196	return 0;
1197}
1198
1199int ksz9477_setup(struct dsa_switch *ds)
1200{
1201	struct ksz_device *dev = ds->priv;
1202	const u16 *regs = dev->info->regs;
1203	int ret = 0;
1204
1205	ds->mtu_enforcement_ingress = true;
 
 
 
 
 
 
 
 
 
1206
1207	/* Required for port partitioning. */
1208	ksz9477_cfg32(dev, REG_SW_QM_CTRL__4, UNICAST_VLAN_BOUNDARY,
1209		      true);
1210
1211	/* Do not work correctly with tail tagging. */
1212	ksz_cfg(dev, REG_SW_MAC_CTRL_0, SW_CHECK_LENGTH, false);
1213
1214	/* Enable REG_SW_MTU__2 reg by setting SW_JUMBO_PACKET */
1215	ksz_cfg(dev, REG_SW_MAC_CTRL_1, SW_JUMBO_PACKET, true);
1216
1217	/* Use collision based back pressure mode. */
1218	ksz_cfg(dev, REG_SW_MAC_CTRL_1, SW_BACK_PRESSURE,
1219		SW_BACK_PRESSURE_COLLISION);
1220
1221	/* Now we can configure default MTU value */
1222	ret = regmap_update_bits(ksz_regmap_16(dev), REG_SW_MTU__2, REG_SW_MTU_MASK,
1223				 VLAN_ETH_FRAME_LEN + ETH_FCS_LEN);
1224	if (ret)
1225		return ret;
1226
1227	/* queue based egress rate limit */
1228	ksz_cfg(dev, REG_SW_MAC_CTRL_5, SW_OUT_RATE_LIMIT_QUEUE_BASED, true);
1229
1230	/* enable global MIB counter freeze function */
1231	ksz_cfg(dev, REG_SW_MAC_CTRL_6, SW_MIB_COUNTER_FREEZE, true);
1232
1233	/* Make sure PME (WoL) is not enabled. If requested, it will
1234	 * be enabled by ksz_wol_pre_shutdown(). Otherwise, some PMICs
1235	 * do not like PME events changes before shutdown.
1236	 */
1237	return ksz_write8(dev, regs[REG_SW_PME_CTRL], 0);
1238}
1239
1240u32 ksz9477_get_port_addr(int port, int offset)
1241{
1242	return PORT_CTRL_ADDR(port, offset);
1243}
1244
1245int ksz9477_tc_cbs_set_cinc(struct ksz_device *dev, int port, u32 val)
1246{
1247	val = val >> 8;
1248
1249	return ksz_pwrite16(dev, port, REG_PORT_MTI_CREDIT_INCREMENT, val);
1250}
1251
1252/* The KSZ9477 provides following HW features to accelerate
1253 * HSR frames handling:
1254 *
1255 * 1. TX PACKET DUPLICATION FROM HOST TO SWITCH
1256 * 2. RX PACKET DUPLICATION DISCARDING
1257 * 3. PREVENTING PACKET LOOP IN THE RING BY SELF-ADDRESS FILTERING
1258 *
1259 * Only one from point 1. has the NETIF_F* flag available.
1260 *
1261 * Ones from point 2 and 3 are "best effort" - i.e. those will
1262 * work correctly most of the time, but it may happen that some
1263 * frames will not be caught - to be more specific; there is a race
1264 * condition in hardware such that, when duplicate packets are received
1265 * on member ports very close in time to each other, the hardware fails
1266 * to detect that they are duplicates.
1267 *
1268 * Hence, the SW needs to handle those special cases. However, the speed
1269 * up gain is considerable when above features are used.
1270 *
1271 * Moreover, the NETIF_F_HW_HSR_FWD feature is also enabled, as HSR frames
1272 * can be forwarded in the switch fabric between HSR ports.
1273 */
1274#define KSZ9477_SUPPORTED_HSR_FEATURES (NETIF_F_HW_HSR_DUP | NETIF_F_HW_HSR_FWD)
 
 
 
 
 
1275
1276void ksz9477_hsr_join(struct dsa_switch *ds, int port, struct net_device *hsr)
1277{
1278	struct ksz_device *dev = ds->priv;
1279	struct net_device *user;
1280	struct dsa_port *hsr_dp;
1281	u8 data, hsr_ports = 0;
1282
1283	/* Program which port(s) shall support HSR */
1284	ksz_rmw32(dev, REG_HSR_PORT_MAP__4, BIT(port), BIT(port));
1285
1286	/* Forward frames between HSR ports (i.e. bridge together HSR ports) */
1287	if (dev->hsr_ports) {
1288		dsa_hsr_foreach_port(hsr_dp, ds, hsr)
1289			hsr_ports |= BIT(hsr_dp->index);
1290
1291		hsr_ports |= BIT(dsa_upstream_port(ds, port));
1292		dsa_hsr_foreach_port(hsr_dp, ds, hsr)
1293			ksz9477_cfg_port_member(dev, hsr_dp->index, hsr_ports);
1294	}
1295
1296	if (!dev->hsr_ports) {
1297		/* Enable discarding of received HSR frames */
1298		ksz_read8(dev, REG_HSR_ALU_CTRL_0__1, &data);
1299		data |= HSR_DUPLICATE_DISCARD;
1300		data &= ~HSR_NODE_UNICAST;
1301		ksz_write8(dev, REG_HSR_ALU_CTRL_0__1, data);
1302	}
1303
1304	/* Enable per port self-address filtering.
1305	 * The global self-address filtering has already been enabled in the
1306	 * ksz9477_reset_switch() function.
1307	 */
1308	ksz_port_cfg(dev, port, REG_PORT_LUE_CTRL, PORT_SRC_ADDR_FILTER, true);
1309
1310	/* Setup HW supported features for lan HSR ports */
1311	user = dsa_to_port(ds, port)->user;
1312	user->features |= KSZ9477_SUPPORTED_HSR_FEATURES;
1313}
1314
1315void ksz9477_hsr_leave(struct dsa_switch *ds, int port, struct net_device *hsr)
1316{
1317	struct ksz_device *dev = ds->priv;
1318
1319	/* Clear port HSR support */
1320	ksz_rmw32(dev, REG_HSR_PORT_MAP__4, BIT(port), 0);
1321
1322	/* Disable forwarding frames between HSR ports */
1323	ksz9477_cfg_port_member(dev, port, BIT(dsa_upstream_port(ds, port)));
1324
1325	/* Disable per port self-address filtering */
1326	ksz_port_cfg(dev, port, REG_PORT_LUE_CTRL, PORT_SRC_ADDR_FILTER, false);
1327}
1328
1329int ksz9477_switch_init(struct ksz_device *dev)
1330{
1331	u8 data8;
 
 
 
1332	int ret;
1333
1334	dev->port_mask = (1 << dev->info->port_cnt) - 1;
1335
1336	/* turn off SPI DO Edge select */
1337	ret = ksz_read8(dev, REG_SW_GLOBAL_SERIAL_CTRL_0, &data8);
1338	if (ret)
1339		return ret;
1340
1341	data8 &= ~SPI_AUTO_EDGE_DETECTION;
1342	ret = ksz_write8(dev, REG_SW_GLOBAL_SERIAL_CTRL_0, data8);
1343	if (ret)
1344		return ret;
1345
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1346	return 0;
1347}
1348
1349void ksz9477_switch_exit(struct ksz_device *dev)
1350{
1351	ksz9477_reset_switch(dev);
1352}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1353
1354MODULE_AUTHOR("Woojung Huh <Woojung.Huh@microchip.com>");
1355MODULE_DESCRIPTION("Microchip KSZ9477 Series Switch DSA Driver");
1356MODULE_LICENSE("GPL");
v5.4
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Microchip KSZ9477 switch driver main logic
   4 *
   5 * Copyright (C) 2017-2019 Microchip Technology Inc.
   6 */
   7
   8#include <linux/kernel.h>
   9#include <linux/module.h>
  10#include <linux/iopoll.h>
  11#include <linux/platform_data/microchip-ksz.h>
  12#include <linux/phy.h>
  13#include <linux/if_bridge.h>
 
  14#include <net/dsa.h>
  15#include <net/switchdev.h>
  16
  17#include "ksz9477_reg.h"
  18#include "ksz_common.h"
  19
  20/* Used with variable features to indicate capabilities. */
  21#define GBIT_SUPPORT			BIT(0)
  22#define NEW_XMII			BIT(1)
  23#define IS_9893				BIT(2)
  24
  25static const struct {
  26	int index;
  27	char string[ETH_GSTRING_LEN];
  28} ksz9477_mib_names[TOTAL_SWITCH_COUNTER_NUM] = {
  29	{ 0x00, "rx_hi" },
  30	{ 0x01, "rx_undersize" },
  31	{ 0x02, "rx_fragments" },
  32	{ 0x03, "rx_oversize" },
  33	{ 0x04, "rx_jabbers" },
  34	{ 0x05, "rx_symbol_err" },
  35	{ 0x06, "rx_crc_err" },
  36	{ 0x07, "rx_align_err" },
  37	{ 0x08, "rx_mac_ctrl" },
  38	{ 0x09, "rx_pause" },
  39	{ 0x0A, "rx_bcast" },
  40	{ 0x0B, "rx_mcast" },
  41	{ 0x0C, "rx_ucast" },
  42	{ 0x0D, "rx_64_or_less" },
  43	{ 0x0E, "rx_65_127" },
  44	{ 0x0F, "rx_128_255" },
  45	{ 0x10, "rx_256_511" },
  46	{ 0x11, "rx_512_1023" },
  47	{ 0x12, "rx_1024_1522" },
  48	{ 0x13, "rx_1523_2000" },
  49	{ 0x14, "rx_2001" },
  50	{ 0x15, "tx_hi" },
  51	{ 0x16, "tx_late_col" },
  52	{ 0x17, "tx_pause" },
  53	{ 0x18, "tx_bcast" },
  54	{ 0x19, "tx_mcast" },
  55	{ 0x1A, "tx_ucast" },
  56	{ 0x1B, "tx_deferred" },
  57	{ 0x1C, "tx_total_col" },
  58	{ 0x1D, "tx_exc_col" },
  59	{ 0x1E, "tx_single_col" },
  60	{ 0x1F, "tx_mult_col" },
  61	{ 0x80, "rx_total" },
  62	{ 0x81, "tx_total" },
  63	{ 0x82, "rx_discards" },
  64	{ 0x83, "tx_discards" },
  65};
  66
  67static void ksz_cfg(struct ksz_device *dev, u32 addr, u8 bits, bool set)
  68{
  69	regmap_update_bits(dev->regmap[0], addr, bits, set ? bits : 0);
  70}
  71
  72static void ksz_port_cfg(struct ksz_device *dev, int port, int offset, u8 bits,
  73			 bool set)
  74{
  75	regmap_update_bits(dev->regmap[0], PORT_CTRL_ADDR(port, offset),
  76			   bits, set ? bits : 0);
  77}
  78
  79static void ksz9477_cfg32(struct ksz_device *dev, u32 addr, u32 bits, bool set)
  80{
  81	regmap_update_bits(dev->regmap[2], addr, bits, set ? bits : 0);
  82}
  83
  84static void ksz9477_port_cfg32(struct ksz_device *dev, int port, int offset,
  85			       u32 bits, bool set)
  86{
  87	regmap_update_bits(dev->regmap[2], PORT_CTRL_ADDR(port, offset),
  88			   bits, set ? bits : 0);
  89}
  90
 
 
 
 
 
 
 
 
 
 
 
 
 
  91static int ksz9477_wait_vlan_ctrl_ready(struct ksz_device *dev)
  92{
  93	unsigned int val;
  94
  95	return regmap_read_poll_timeout(dev->regmap[0], REG_SW_VLAN_CTRL,
  96					val, !(val & VLAN_START), 10, 1000);
  97}
  98
  99static int ksz9477_get_vlan_table(struct ksz_device *dev, u16 vid,
 100				  u32 *vlan_table)
 101{
 102	int ret;
 103
 104	mutex_lock(&dev->vlan_mutex);
 105
 106	ksz_write16(dev, REG_SW_VLAN_ENTRY_INDEX__2, vid & VLAN_INDEX_M);
 107	ksz_write8(dev, REG_SW_VLAN_CTRL, VLAN_READ | VLAN_START);
 108
 109	/* wait to be cleared */
 110	ret = ksz9477_wait_vlan_ctrl_ready(dev);
 111	if (ret) {
 112		dev_dbg(dev->dev, "Failed to read vlan table\n");
 113		goto exit;
 114	}
 115
 116	ksz_read32(dev, REG_SW_VLAN_ENTRY__4, &vlan_table[0]);
 117	ksz_read32(dev, REG_SW_VLAN_ENTRY_UNTAG__4, &vlan_table[1]);
 118	ksz_read32(dev, REG_SW_VLAN_ENTRY_PORTS__4, &vlan_table[2]);
 119
 120	ksz_write8(dev, REG_SW_VLAN_CTRL, 0);
 121
 122exit:
 123	mutex_unlock(&dev->vlan_mutex);
 124
 125	return ret;
 126}
 127
 128static int ksz9477_set_vlan_table(struct ksz_device *dev, u16 vid,
 129				  u32 *vlan_table)
 130{
 131	int ret;
 132
 133	mutex_lock(&dev->vlan_mutex);
 134
 135	ksz_write32(dev, REG_SW_VLAN_ENTRY__4, vlan_table[0]);
 136	ksz_write32(dev, REG_SW_VLAN_ENTRY_UNTAG__4, vlan_table[1]);
 137	ksz_write32(dev, REG_SW_VLAN_ENTRY_PORTS__4, vlan_table[2]);
 138
 139	ksz_write16(dev, REG_SW_VLAN_ENTRY_INDEX__2, vid & VLAN_INDEX_M);
 140	ksz_write8(dev, REG_SW_VLAN_CTRL, VLAN_START | VLAN_WRITE);
 141
 142	/* wait to be cleared */
 143	ret = ksz9477_wait_vlan_ctrl_ready(dev);
 144	if (ret) {
 145		dev_dbg(dev->dev, "Failed to write vlan table\n");
 146		goto exit;
 147	}
 148
 149	ksz_write8(dev, REG_SW_VLAN_CTRL, 0);
 150
 151	/* update vlan cache table */
 152	dev->vlan_cache[vid].table[0] = vlan_table[0];
 153	dev->vlan_cache[vid].table[1] = vlan_table[1];
 154	dev->vlan_cache[vid].table[2] = vlan_table[2];
 155
 156exit:
 157	mutex_unlock(&dev->vlan_mutex);
 158
 159	return ret;
 160}
 161
 162static void ksz9477_read_table(struct ksz_device *dev, u32 *table)
 163{
 164	ksz_read32(dev, REG_SW_ALU_VAL_A, &table[0]);
 165	ksz_read32(dev, REG_SW_ALU_VAL_B, &table[1]);
 166	ksz_read32(dev, REG_SW_ALU_VAL_C, &table[2]);
 167	ksz_read32(dev, REG_SW_ALU_VAL_D, &table[3]);
 168}
 169
 170static void ksz9477_write_table(struct ksz_device *dev, u32 *table)
 171{
 172	ksz_write32(dev, REG_SW_ALU_VAL_A, table[0]);
 173	ksz_write32(dev, REG_SW_ALU_VAL_B, table[1]);
 174	ksz_write32(dev, REG_SW_ALU_VAL_C, table[2]);
 175	ksz_write32(dev, REG_SW_ALU_VAL_D, table[3]);
 176}
 177
 178static int ksz9477_wait_alu_ready(struct ksz_device *dev)
 179{
 180	unsigned int val;
 181
 182	return regmap_read_poll_timeout(dev->regmap[2], REG_SW_ALU_CTRL__4,
 183					val, !(val & ALU_START), 10, 1000);
 184}
 185
 186static int ksz9477_wait_alu_sta_ready(struct ksz_device *dev)
 187{
 188	unsigned int val;
 189
 190	return regmap_read_poll_timeout(dev->regmap[2],
 191					REG_SW_ALU_STAT_CTRL__4,
 192					val, !(val & ALU_STAT_START),
 193					10, 1000);
 194}
 195
 196static int ksz9477_reset_switch(struct ksz_device *dev)
 197{
 198	u8 data8;
 199	u32 data32;
 200
 201	/* reset switch */
 202	ksz_cfg(dev, REG_SW_OPERATION, SW_RESET, true);
 203
 204	/* turn off SPI DO Edge select */
 205	regmap_update_bits(dev->regmap[0], REG_SW_GLOBAL_SERIAL_CTRL_0,
 206			   SPI_AUTO_EDGE_DETECTION, 0);
 207
 208	/* default configuration */
 209	ksz_read8(dev, REG_SW_LUE_CTRL_1, &data8);
 210	data8 = SW_AGING_ENABLE | SW_LINK_AUTO_AGING |
 211	      SW_SRC_ADDR_FILTER | SW_FLUSH_STP_TABLE | SW_FLUSH_MSTP_TABLE;
 212	ksz_write8(dev, REG_SW_LUE_CTRL_1, data8);
 213
 214	/* disable interrupts */
 215	ksz_write32(dev, REG_SW_INT_MASK__4, SWITCH_INT_MASK);
 216	ksz_write32(dev, REG_SW_PORT_INT_MASK__4, 0x7F);
 217	ksz_read32(dev, REG_SW_PORT_INT_STATUS__4, &data32);
 218
 219	/* set broadcast storm protection 10% rate */
 220	regmap_update_bits(dev->regmap[1], REG_SW_MAC_CTRL_2,
 221			   BROADCAST_STORM_RATE,
 222			   (BROADCAST_STORM_VALUE *
 223			   BROADCAST_STORM_PROT_RATE) / 100);
 224
 225	if (dev->synclko_125)
 226		ksz_write8(dev, REG_SW_GLOBAL_OUTPUT_CTRL__1,
 227			   SW_ENABLE_REFCLKO | SW_REFCLKO_IS_125MHZ);
 
 
 
 228
 229	return 0;
 230}
 231
 232static void ksz9477_r_mib_cnt(struct ksz_device *dev, int port, u16 addr,
 233			      u64 *cnt)
 234{
 235	struct ksz_port *p = &dev->ports[port];
 236	unsigned int val;
 237	u32 data;
 238	int ret;
 239
 240	/* retain the flush/freeze bit */
 241	data = p->freeze ? MIB_COUNTER_FLUSH_FREEZE : 0;
 242	data |= MIB_COUNTER_READ;
 243	data |= (addr << MIB_COUNTER_INDEX_S);
 244	ksz_pwrite32(dev, port, REG_PORT_MIB_CTRL_STAT__4, data);
 245
 246	ret = regmap_read_poll_timeout(dev->regmap[2],
 247			PORT_CTRL_ADDR(port, REG_PORT_MIB_CTRL_STAT__4),
 248			val, !(val & MIB_COUNTER_READ), 10, 1000);
 249	/* failed to read MIB. get out of loop */
 250	if (ret) {
 251		dev_dbg(dev->dev, "Failed to get MIB\n");
 252		return;
 253	}
 254
 255	/* count resets upon read */
 256	ksz_pread32(dev, port, REG_PORT_MIB_DATA, &data);
 257	*cnt += data;
 258}
 259
 260static void ksz9477_r_mib_pkt(struct ksz_device *dev, int port, u16 addr,
 261			      u64 *dropped, u64 *cnt)
 262{
 263	addr = ksz9477_mib_names[addr].index;
 264	ksz9477_r_mib_cnt(dev, port, addr, cnt);
 265}
 266
 267static void ksz9477_freeze_mib(struct ksz_device *dev, int port, bool freeze)
 268{
 269	u32 val = freeze ? MIB_COUNTER_FLUSH_FREEZE : 0;
 270	struct ksz_port *p = &dev->ports[port];
 271
 272	/* enable/disable the port for flush/freeze function */
 273	mutex_lock(&p->mib.cnt_mutex);
 274	ksz_pwrite32(dev, port, REG_PORT_MIB_CTRL_STAT__4, val);
 275
 276	/* used by MIB counter reading code to know freeze is enabled */
 277	p->freeze = freeze;
 278	mutex_unlock(&p->mib.cnt_mutex);
 279}
 280
 281static void ksz9477_port_init_cnt(struct ksz_device *dev, int port)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 282{
 283	struct ksz_port_mib *mib = &dev->ports[port].mib;
 284
 285	/* flush all enabled port MIB counters */
 286	mutex_lock(&mib->cnt_mutex);
 287	ksz_pwrite32(dev, port, REG_PORT_MIB_CTRL_STAT__4,
 288		     MIB_COUNTER_FLUSH_FREEZE);
 289	ksz_write8(dev, REG_SW_MAC_CTRL_6, SW_MIB_COUNTER_FLUSH);
 290	ksz_pwrite32(dev, port, REG_PORT_MIB_CTRL_STAT__4, 0);
 291	mutex_unlock(&mib->cnt_mutex);
 292
 293	mib->cnt_ptr = 0;
 294	memset(mib->counters, 0, dev->mib_cnt * sizeof(u64));
 295}
 296
 297static enum dsa_tag_protocol ksz9477_get_tag_protocol(struct dsa_switch *ds,
 298						      int port)
 299{
 300	enum dsa_tag_protocol proto = DSA_TAG_PROTO_KSZ9477;
 301	struct ksz_device *dev = ds->priv;
 302
 303	if (dev->features & IS_9893)
 304		proto = DSA_TAG_PROTO_KSZ9893;
 305	return proto;
 306}
 307
 308static int ksz9477_phy_read16(struct dsa_switch *ds, int addr, int reg)
 309{
 310	struct ksz_device *dev = ds->priv;
 311	u16 val = 0xffff;
 
 312
 313	/* No real PHY after this. Simulate the PHY.
 314	 * A fixed PHY can be setup in the device tree, but this function is
 315	 * still called for that port during initialization.
 316	 * For RGMII PHY there is no way to access it so the fixed PHY should
 317	 * be used.  For SGMII PHY the supporting code will be added later.
 318	 */
 319	if (addr >= dev->phy_port_cnt) {
 320		struct ksz_port *p = &dev->ports[addr];
 321
 322		switch (reg) {
 323		case MII_BMCR:
 324			val = 0x1140;
 325			break;
 326		case MII_BMSR:
 327			val = 0x796d;
 328			break;
 329		case MII_PHYSID1:
 330			val = 0x0022;
 331			break;
 332		case MII_PHYSID2:
 333			val = 0x1631;
 334			break;
 335		case MII_ADVERTISE:
 336			val = 0x05e1;
 337			break;
 338		case MII_LPA:
 339			val = 0xc5e1;
 340			break;
 341		case MII_CTRL1000:
 342			val = 0x0700;
 343			break;
 344		case MII_STAT1000:
 345			if (p->phydev.speed == SPEED_1000)
 346				val = 0x3800;
 347			else
 348				val = 0;
 349			break;
 350		}
 351	} else {
 352		ksz_pread16(dev, addr, 0x100 + (reg << 1), &val);
 
 
 
 
 353	}
 354
 355	return val;
 
 
 356}
 357
 358static int ksz9477_phy_write16(struct dsa_switch *ds, int addr, int reg,
 359			       u16 val)
 360{
 361	struct ksz_device *dev = ds->priv;
 362
 363	/* No real PHY after this. */
 364	if (addr >= dev->phy_port_cnt)
 365		return 0;
 366
 367	/* No gigabit support.  Do not write to this register. */
 368	if (!(dev->features & GBIT_SUPPORT) && reg == MII_CTRL1000)
 369		return 0;
 370	ksz_pwrite16(dev, addr, 0x100 + (reg << 1), val);
 371
 372	return 0;
 373}
 374
 375static void ksz9477_get_strings(struct dsa_switch *ds, int port,
 376				u32 stringset, uint8_t *buf)
 377{
 378	int i;
 379
 380	if (stringset != ETH_SS_STATS)
 381		return;
 382
 383	for (i = 0; i < TOTAL_SWITCH_COUNTER_NUM; i++) {
 384		memcpy(buf + i * ETH_GSTRING_LEN, ksz9477_mib_names[i].string,
 385		       ETH_GSTRING_LEN);
 386	}
 
 
 387}
 388
 389static void ksz9477_cfg_port_member(struct ksz_device *dev, int port,
 390				    u8 member)
 391{
 392	ksz_pwrite32(dev, port, REG_PORT_VLAN_MEMBERSHIP__4, member);
 393	dev->ports[port].member = member;
 394}
 395
 396static void ksz9477_port_stp_state_set(struct dsa_switch *ds, int port,
 397				       u8 state)
 398{
 399	struct ksz_device *dev = ds->priv;
 400	struct ksz_port *p = &dev->ports[port];
 401	u8 data;
 402	int member = -1;
 403	int forward = dev->member;
 404
 405	ksz_pread8(dev, port, P_STP_CTRL, &data);
 406	data &= ~(PORT_TX_ENABLE | PORT_RX_ENABLE | PORT_LEARN_DISABLE);
 407
 408	switch (state) {
 409	case BR_STATE_DISABLED:
 410		data |= PORT_LEARN_DISABLE;
 411		if (port != dev->cpu_port)
 412			member = 0;
 413		break;
 414	case BR_STATE_LISTENING:
 415		data |= (PORT_RX_ENABLE | PORT_LEARN_DISABLE);
 416		if (port != dev->cpu_port &&
 417		    p->stp_state == BR_STATE_DISABLED)
 418			member = dev->host_mask | p->vid_member;
 419		break;
 420	case BR_STATE_LEARNING:
 421		data |= PORT_RX_ENABLE;
 422		break;
 423	case BR_STATE_FORWARDING:
 424		data |= (PORT_TX_ENABLE | PORT_RX_ENABLE);
 425
 426		/* This function is also used internally. */
 427		if (port == dev->cpu_port)
 428			break;
 429
 430		member = dev->host_mask | p->vid_member;
 431		mutex_lock(&dev->dev_mutex);
 432
 433		/* Port is a member of a bridge. */
 434		if (dev->br_member & (1 << port)) {
 435			dev->member |= (1 << port);
 436			member = dev->member;
 437		}
 438		mutex_unlock(&dev->dev_mutex);
 439		break;
 440	case BR_STATE_BLOCKING:
 441		data |= PORT_LEARN_DISABLE;
 442		if (port != dev->cpu_port &&
 443		    p->stp_state == BR_STATE_DISABLED)
 444			member = dev->host_mask | p->vid_member;
 445		break;
 446	default:
 447		dev_err(ds->dev, "invalid STP state: %d\n", state);
 448		return;
 449	}
 450
 451	ksz_pwrite8(dev, port, P_STP_CTRL, data);
 452	p->stp_state = state;
 453	mutex_lock(&dev->dev_mutex);
 454	if (data & PORT_RX_ENABLE)
 455		dev->rx_ports |= (1 << port);
 456	else
 457		dev->rx_ports &= ~(1 << port);
 458	if (data & PORT_TX_ENABLE)
 459		dev->tx_ports |= (1 << port);
 460	else
 461		dev->tx_ports &= ~(1 << port);
 462
 463	/* Port membership may share register with STP state. */
 464	if (member >= 0 && member != p->member)
 465		ksz9477_cfg_port_member(dev, port, (u8)member);
 466
 467	/* Check if forwarding needs to be updated. */
 468	if (state != BR_STATE_FORWARDING) {
 469		if (dev->br_member & (1 << port))
 470			dev->member &= ~(1 << port);
 471	}
 472
 473	/* When topology has changed the function ksz_update_port_member
 474	 * should be called to modify port forwarding behavior.
 475	 */
 476	if (forward != dev->member)
 477		ksz_update_port_member(dev, port);
 478	mutex_unlock(&dev->dev_mutex);
 479}
 480
 481static void ksz9477_flush_dyn_mac_table(struct ksz_device *dev, int port)
 482{
 
 483	u8 data;
 484
 485	regmap_update_bits(dev->regmap[0], REG_SW_LUE_CTRL_2,
 486			   SW_FLUSH_OPTION_M << SW_FLUSH_OPTION_S,
 487			   SW_FLUSH_OPTION_DYN_MAC << SW_FLUSH_OPTION_S);
 488
 489	if (port < dev->mib_port_cnt) {
 490		/* flush individual port */
 491		ksz_pread8(dev, port, P_STP_CTRL, &data);
 492		if (!(data & PORT_LEARN_DISABLE))
 493			ksz_pwrite8(dev, port, P_STP_CTRL,
 494				    data | PORT_LEARN_DISABLE);
 495		ksz_cfg(dev, S_FLUSH_TABLE_CTRL, SW_FLUSH_DYN_MAC_TABLE, true);
 496		ksz_pwrite8(dev, port, P_STP_CTRL, data);
 497	} else {
 498		/* flush all */
 499		ksz_cfg(dev, S_FLUSH_TABLE_CTRL, SW_FLUSH_STP_TABLE, true);
 500	}
 501}
 502
 503static int ksz9477_port_vlan_filtering(struct dsa_switch *ds, int port,
 504				       bool flag)
 505{
 506	struct ksz_device *dev = ds->priv;
 507
 508	if (flag) {
 509		ksz_port_cfg(dev, port, REG_PORT_LUE_CTRL,
 510			     PORT_VLAN_LOOKUP_VID_0, true);
 511		ksz_cfg(dev, REG_SW_LUE_CTRL_0, SW_VLAN_ENABLE, true);
 512	} else {
 513		ksz_cfg(dev, REG_SW_LUE_CTRL_0, SW_VLAN_ENABLE, false);
 514		ksz_port_cfg(dev, port, REG_PORT_LUE_CTRL,
 515			     PORT_VLAN_LOOKUP_VID_0, false);
 516	}
 517
 518	return 0;
 519}
 520
 521static void ksz9477_port_vlan_add(struct dsa_switch *ds, int port,
 522				  const struct switchdev_obj_port_vlan *vlan)
 
 523{
 524	struct ksz_device *dev = ds->priv;
 525	u32 vlan_table[3];
 526	u16 vid;
 527	bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED;
 
 
 
 
 
 
 
 528
 529	for (vid = vlan->vid_begin; vid <= vlan->vid_end; vid++) {
 530		if (ksz9477_get_vlan_table(dev, vid, vlan_table)) {
 531			dev_dbg(dev->dev, "Failed to get vlan table\n");
 532			return;
 533		}
 
 534
 535		vlan_table[0] = VLAN_VALID | (vid & VLAN_FID_M);
 536		if (untagged)
 537			vlan_table[1] |= BIT(port);
 538		else
 539			vlan_table[1] &= ~BIT(port);
 540		vlan_table[1] &= ~(BIT(dev->cpu_port));
 541
 542		vlan_table[2] |= BIT(port) | BIT(dev->cpu_port);
 543
 544		if (ksz9477_set_vlan_table(dev, vid, vlan_table)) {
 545			dev_dbg(dev->dev, "Failed to set vlan table\n");
 546			return;
 547		}
 548
 549		/* change PVID */
 550		if (vlan->flags & BRIDGE_VLAN_INFO_PVID)
 551			ksz_pwrite16(dev, port, REG_PORT_DEFAULT_VID, vid);
 
 552	}
 
 
 
 
 
 
 553}
 554
 555static int ksz9477_port_vlan_del(struct dsa_switch *ds, int port,
 556				 const struct switchdev_obj_port_vlan *vlan)
 557{
 558	struct ksz_device *dev = ds->priv;
 559	bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED;
 560	u32 vlan_table[3];
 561	u16 vid;
 562	u16 pvid;
 563
 564	ksz_pread16(dev, port, REG_PORT_DEFAULT_VID, &pvid);
 565	pvid = pvid & 0xFFF;
 566
 567	for (vid = vlan->vid_begin; vid <= vlan->vid_end; vid++) {
 568		if (ksz9477_get_vlan_table(dev, vid, vlan_table)) {
 569			dev_dbg(dev->dev, "Failed to get vlan table\n");
 570			return -ETIMEDOUT;
 571		}
 572
 573		vlan_table[2] &= ~BIT(port);
 574
 575		if (pvid == vid)
 576			pvid = 1;
 577
 578		if (untagged)
 579			vlan_table[1] &= ~BIT(port);
 580
 581		if (ksz9477_set_vlan_table(dev, vid, vlan_table)) {
 582			dev_dbg(dev->dev, "Failed to set vlan table\n");
 583			return -ETIMEDOUT;
 584		}
 585	}
 586
 587	ksz_pwrite16(dev, port, REG_PORT_DEFAULT_VID, pvid);
 588
 589	return 0;
 590}
 591
 592static int ksz9477_port_fdb_add(struct dsa_switch *ds, int port,
 593				const unsigned char *addr, u16 vid)
 594{
 595	struct ksz_device *dev = ds->priv;
 596	u32 alu_table[4];
 597	u32 data;
 598	int ret = 0;
 599
 600	mutex_lock(&dev->alu_mutex);
 601
 602	/* find any entry with mac & vid */
 603	data = vid << ALU_FID_INDEX_S;
 604	data |= ((addr[0] << 8) | addr[1]);
 605	ksz_write32(dev, REG_SW_ALU_INDEX_0, data);
 606
 607	data = ((addr[2] << 24) | (addr[3] << 16));
 608	data |= ((addr[4] << 8) | addr[5]);
 609	ksz_write32(dev, REG_SW_ALU_INDEX_1, data);
 610
 611	/* start read operation */
 612	ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_READ | ALU_START);
 613
 614	/* wait to be finished */
 615	ret = ksz9477_wait_alu_ready(dev);
 616	if (ret) {
 617		dev_dbg(dev->dev, "Failed to read ALU\n");
 618		goto exit;
 619	}
 620
 621	/* read ALU entry */
 622	ksz9477_read_table(dev, alu_table);
 623
 624	/* update ALU entry */
 625	alu_table[0] = ALU_V_STATIC_VALID;
 626	alu_table[1] |= BIT(port);
 627	if (vid)
 628		alu_table[1] |= ALU_V_USE_FID;
 629	alu_table[2] = (vid << ALU_V_FID_S);
 630	alu_table[2] |= ((addr[0] << 8) | addr[1]);
 631	alu_table[3] = ((addr[2] << 24) | (addr[3] << 16));
 632	alu_table[3] |= ((addr[4] << 8) | addr[5]);
 633
 634	ksz9477_write_table(dev, alu_table);
 635
 636	ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_WRITE | ALU_START);
 637
 638	/* wait to be finished */
 639	ret = ksz9477_wait_alu_ready(dev);
 640	if (ret)
 641		dev_dbg(dev->dev, "Failed to write ALU\n");
 642
 643exit:
 644	mutex_unlock(&dev->alu_mutex);
 645
 646	return ret;
 647}
 648
 649static int ksz9477_port_fdb_del(struct dsa_switch *ds, int port,
 650				const unsigned char *addr, u16 vid)
 651{
 652	struct ksz_device *dev = ds->priv;
 653	u32 alu_table[4];
 654	u32 data;
 655	int ret = 0;
 656
 657	mutex_lock(&dev->alu_mutex);
 658
 659	/* read any entry with mac & vid */
 660	data = vid << ALU_FID_INDEX_S;
 661	data |= ((addr[0] << 8) | addr[1]);
 662	ksz_write32(dev, REG_SW_ALU_INDEX_0, data);
 663
 664	data = ((addr[2] << 24) | (addr[3] << 16));
 665	data |= ((addr[4] << 8) | addr[5]);
 666	ksz_write32(dev, REG_SW_ALU_INDEX_1, data);
 667
 668	/* start read operation */
 669	ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_READ | ALU_START);
 670
 671	/* wait to be finished */
 672	ret = ksz9477_wait_alu_ready(dev);
 673	if (ret) {
 674		dev_dbg(dev->dev, "Failed to read ALU\n");
 675		goto exit;
 676	}
 677
 678	ksz_read32(dev, REG_SW_ALU_VAL_A, &alu_table[0]);
 679	if (alu_table[0] & ALU_V_STATIC_VALID) {
 680		ksz_read32(dev, REG_SW_ALU_VAL_B, &alu_table[1]);
 681		ksz_read32(dev, REG_SW_ALU_VAL_C, &alu_table[2]);
 682		ksz_read32(dev, REG_SW_ALU_VAL_D, &alu_table[3]);
 683
 684		/* clear forwarding port */
 685		alu_table[2] &= ~BIT(port);
 686
 687		/* if there is no port to forward, clear table */
 688		if ((alu_table[2] & ALU_V_PORT_MAP) == 0) {
 689			alu_table[0] = 0;
 690			alu_table[1] = 0;
 691			alu_table[2] = 0;
 692			alu_table[3] = 0;
 693		}
 694	} else {
 695		alu_table[0] = 0;
 696		alu_table[1] = 0;
 697		alu_table[2] = 0;
 698		alu_table[3] = 0;
 699	}
 700
 701	ksz9477_write_table(dev, alu_table);
 702
 703	ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_WRITE | ALU_START);
 704
 705	/* wait to be finished */
 706	ret = ksz9477_wait_alu_ready(dev);
 707	if (ret)
 708		dev_dbg(dev->dev, "Failed to write ALU\n");
 709
 710exit:
 711	mutex_unlock(&dev->alu_mutex);
 712
 713	return ret;
 714}
 715
 716static void ksz9477_convert_alu(struct alu_struct *alu, u32 *alu_table)
 717{
 718	alu->is_static = !!(alu_table[0] & ALU_V_STATIC_VALID);
 719	alu->is_src_filter = !!(alu_table[0] & ALU_V_SRC_FILTER);
 720	alu->is_dst_filter = !!(alu_table[0] & ALU_V_DST_FILTER);
 721	alu->prio_age = (alu_table[0] >> ALU_V_PRIO_AGE_CNT_S) &
 722			ALU_V_PRIO_AGE_CNT_M;
 723	alu->mstp = alu_table[0] & ALU_V_MSTP_M;
 724
 725	alu->is_override = !!(alu_table[1] & ALU_V_OVERRIDE);
 726	alu->is_use_fid = !!(alu_table[1] & ALU_V_USE_FID);
 727	alu->port_forward = alu_table[1] & ALU_V_PORT_MAP;
 728
 729	alu->fid = (alu_table[2] >> ALU_V_FID_S) & ALU_V_FID_M;
 730
 731	alu->mac[0] = (alu_table[2] >> 8) & 0xFF;
 732	alu->mac[1] = alu_table[2] & 0xFF;
 733	alu->mac[2] = (alu_table[3] >> 24) & 0xFF;
 734	alu->mac[3] = (alu_table[3] >> 16) & 0xFF;
 735	alu->mac[4] = (alu_table[3] >> 8) & 0xFF;
 736	alu->mac[5] = alu_table[3] & 0xFF;
 737}
 738
 739static int ksz9477_port_fdb_dump(struct dsa_switch *ds, int port,
 740				 dsa_fdb_dump_cb_t *cb, void *data)
 741{
 742	struct ksz_device *dev = ds->priv;
 743	int ret = 0;
 744	u32 ksz_data;
 745	u32 alu_table[4];
 746	struct alu_struct alu;
 747	int timeout;
 748
 749	mutex_lock(&dev->alu_mutex);
 750
 751	/* start ALU search */
 752	ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_START | ALU_SEARCH);
 753
 754	do {
 755		timeout = 1000;
 756		do {
 757			ksz_read32(dev, REG_SW_ALU_CTRL__4, &ksz_data);
 758			if ((ksz_data & ALU_VALID) || !(ksz_data & ALU_START))
 759				break;
 760			usleep_range(1, 10);
 761		} while (timeout-- > 0);
 762
 763		if (!timeout) {
 764			dev_dbg(dev->dev, "Failed to search ALU\n");
 765			ret = -ETIMEDOUT;
 766			goto exit;
 767		}
 768
 
 
 
 769		/* read ALU table */
 770		ksz9477_read_table(dev, alu_table);
 771
 772		ksz9477_convert_alu(&alu, alu_table);
 773
 774		if (alu.port_forward & BIT(port)) {
 775			ret = cb(alu.mac, alu.fid, alu.is_static, data);
 776			if (ret)
 777				goto exit;
 778		}
 779	} while (ksz_data & ALU_START);
 780
 781exit:
 782
 783	/* stop ALU search */
 784	ksz_write32(dev, REG_SW_ALU_CTRL__4, 0);
 785
 786	mutex_unlock(&dev->alu_mutex);
 787
 788	return ret;
 789}
 790
 791static void ksz9477_port_mdb_add(struct dsa_switch *ds, int port,
 792				 const struct switchdev_obj_port_mdb *mdb)
 793{
 794	struct ksz_device *dev = ds->priv;
 795	u32 static_table[4];
 
 
 796	u32 data;
 797	int index;
 798	u32 mac_hi, mac_lo;
 
 
 
 
 799
 800	mac_hi = ((mdb->addr[0] << 8) | mdb->addr[1]);
 801	mac_lo = ((mdb->addr[2] << 24) | (mdb->addr[3] << 16));
 802	mac_lo |= ((mdb->addr[4] << 8) | mdb->addr[5]);
 803
 804	mutex_lock(&dev->alu_mutex);
 805
 806	for (index = 0; index < dev->num_statics; index++) {
 807		/* find empty slot first */
 808		data = (index << ALU_STAT_INDEX_S) |
 809			ALU_STAT_READ | ALU_STAT_START;
 810		ksz_write32(dev, REG_SW_ALU_STAT_CTRL__4, data);
 811
 812		/* wait to be finished */
 813		if (ksz9477_wait_alu_sta_ready(dev)) {
 
 814			dev_dbg(dev->dev, "Failed to read ALU STATIC\n");
 815			goto exit;
 816		}
 817
 818		/* read ALU static table */
 819		ksz9477_read_table(dev, static_table);
 820
 821		if (static_table[0] & ALU_V_STATIC_VALID) {
 822			/* check this has same vid & mac address */
 823			if (((static_table[2] >> ALU_V_FID_S) == mdb->vid) &&
 824			    ((static_table[2] & ALU_V_MAC_ADDR_HI) == mac_hi) &&
 825			    static_table[3] == mac_lo) {
 826				/* found matching one */
 827				break;
 828			}
 829		} else {
 830			/* found empty one */
 831			break;
 832		}
 833	}
 834
 835	/* no available entry */
 836	if (index == dev->num_statics)
 
 837		goto exit;
 
 838
 839	/* add entry */
 840	static_table[0] = ALU_V_STATIC_VALID;
 841	static_table[1] |= BIT(port);
 842	if (mdb->vid)
 843		static_table[1] |= ALU_V_USE_FID;
 844	static_table[2] = (mdb->vid << ALU_V_FID_S);
 845	static_table[2] |= mac_hi;
 846	static_table[3] = mac_lo;
 847
 848	ksz9477_write_table(dev, static_table);
 849
 850	data = (index << ALU_STAT_INDEX_S) | ALU_STAT_START;
 851	ksz_write32(dev, REG_SW_ALU_STAT_CTRL__4, data);
 852
 853	/* wait to be finished */
 854	if (ksz9477_wait_alu_sta_ready(dev))
 855		dev_dbg(dev->dev, "Failed to read ALU STATIC\n");
 856
 857exit:
 858	mutex_unlock(&dev->alu_mutex);
 
 859}
 860
 861static int ksz9477_port_mdb_del(struct dsa_switch *ds, int port,
 862				const struct switchdev_obj_port_mdb *mdb)
 863{
 864	struct ksz_device *dev = ds->priv;
 865	u32 static_table[4];
 
 
 866	u32 data;
 867	int index;
 868	int ret = 0;
 869	u32 mac_hi, mac_lo;
 870
 
 
 
 871	mac_hi = ((mdb->addr[0] << 8) | mdb->addr[1]);
 872	mac_lo = ((mdb->addr[2] << 24) | (mdb->addr[3] << 16));
 873	mac_lo |= ((mdb->addr[4] << 8) | mdb->addr[5]);
 874
 875	mutex_lock(&dev->alu_mutex);
 876
 877	for (index = 0; index < dev->num_statics; index++) {
 878		/* find empty slot first */
 879		data = (index << ALU_STAT_INDEX_S) |
 880			ALU_STAT_READ | ALU_STAT_START;
 881		ksz_write32(dev, REG_SW_ALU_STAT_CTRL__4, data);
 882
 883		/* wait to be finished */
 884		ret = ksz9477_wait_alu_sta_ready(dev);
 885		if (ret) {
 886			dev_dbg(dev->dev, "Failed to read ALU STATIC\n");
 887			goto exit;
 888		}
 889
 890		/* read ALU static table */
 891		ksz9477_read_table(dev, static_table);
 892
 893		if (static_table[0] & ALU_V_STATIC_VALID) {
 894			/* check this has same vid & mac address */
 895
 896			if (((static_table[2] >> ALU_V_FID_S) == mdb->vid) &&
 897			    ((static_table[2] & ALU_V_MAC_ADDR_HI) == mac_hi) &&
 898			    static_table[3] == mac_lo) {
 899				/* found matching one */
 900				break;
 901			}
 902		}
 903	}
 904
 905	/* no available entry */
 906	if (index == dev->num_statics)
 907		goto exit;
 908
 909	/* clear port */
 910	static_table[1] &= ~BIT(port);
 911
 912	if ((static_table[1] & ALU_V_PORT_MAP) == 0) {
 913		/* delete entry */
 914		static_table[0] = 0;
 915		static_table[1] = 0;
 916		static_table[2] = 0;
 917		static_table[3] = 0;
 918	}
 919
 920	ksz9477_write_table(dev, static_table);
 921
 922	data = (index << ALU_STAT_INDEX_S) | ALU_STAT_START;
 923	ksz_write32(dev, REG_SW_ALU_STAT_CTRL__4, data);
 924
 925	/* wait to be finished */
 926	ret = ksz9477_wait_alu_sta_ready(dev);
 927	if (ret)
 928		dev_dbg(dev->dev, "Failed to read ALU STATIC\n");
 929
 930exit:
 931	mutex_unlock(&dev->alu_mutex);
 932
 933	return ret;
 934}
 935
 936static int ksz9477_port_mirror_add(struct dsa_switch *ds, int port,
 937				   struct dsa_mall_mirror_tc_entry *mirror,
 938				   bool ingress)
 939{
 940	struct ksz_device *dev = ds->priv;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 941
 942	if (ingress)
 943		ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_RX, true);
 944	else
 945		ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_TX, true);
 946
 947	ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_SNIFFER, false);
 948
 949	/* configure mirror port */
 950	ksz_port_cfg(dev, mirror->to_local_port, P_MIRROR_CTRL,
 951		     PORT_MIRROR_SNIFFER, true);
 952
 953	ksz_cfg(dev, S_MIRROR_CTRL, SW_MIRROR_RX_TX, false);
 954
 955	return 0;
 956}
 957
 958static void ksz9477_port_mirror_del(struct dsa_switch *ds, int port,
 959				    struct dsa_mall_mirror_tc_entry *mirror)
 960{
 961	struct ksz_device *dev = ds->priv;
 962	u8 data;
 
 963
 964	if (mirror->ingress)
 965		ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_RX, false);
 966	else
 967		ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_TX, false);
 968
 969	ksz_pread8(dev, port, P_MIRROR_CTRL, &data);
 970
 971	if (!(data & (PORT_MIRROR_RX | PORT_MIRROR_TX)))
 
 
 
 
 
 
 
 
 
 
 
 972		ksz_port_cfg(dev, mirror->to_local_port, P_MIRROR_CTRL,
 973			     PORT_MIRROR_SNIFFER, false);
 974}
 975
 976static void ksz9477_phy_setup(struct ksz_device *dev, int port,
 977			      struct phy_device *phy)
 978{
 979	/* Only apply to port with PHY. */
 980	if (port >= dev->phy_port_cnt)
 981		return;
 
 
 
 
 982
 983	/* The MAC actually cannot run in 1000 half-duplex mode. */
 984	phy_remove_link_mode(phy,
 985			     ETHTOOL_LINK_MODE_1000baseT_Half_BIT);
 986
 987	/* PHY does not support gigabit. */
 988	if (!(dev->features & GBIT_SUPPORT))
 989		phy_remove_link_mode(phy,
 990				     ETHTOOL_LINK_MODE_1000baseT_Full_BIT);
 991}
 992
 993static bool ksz9477_get_gbit(struct ksz_device *dev, u8 data)
 
 994{
 995	bool gbit;
 
 996
 997	if (dev->features & NEW_XMII)
 998		gbit = !(data & PORT_MII_NOT_1GBIT);
 999	else
1000		gbit = !!(data & PORT_MII_1000MBIT_S1);
1001	return gbit;
1002}
1003
1004static void ksz9477_set_gbit(struct ksz_device *dev, bool gbit, u8 *data)
1005{
1006	if (dev->features & NEW_XMII) {
1007		if (gbit)
1008			*data &= ~PORT_MII_NOT_1GBIT;
1009		else
1010			*data |= PORT_MII_NOT_1GBIT;
1011	} else {
1012		if (gbit)
1013			*data |= PORT_MII_1000MBIT_S1;
1014		else
1015			*data &= ~PORT_MII_1000MBIT_S1;
1016	}
1017}
1018
1019static int ksz9477_get_xmii(struct ksz_device *dev, u8 data)
1020{
1021	int mode;
 
 
 
1022
1023	if (dev->features & NEW_XMII) {
1024		switch (data & PORT_MII_SEL_M) {
1025		case PORT_MII_SEL:
1026			mode = 0;
1027			break;
1028		case PORT_RMII_SEL:
1029			mode = 1;
1030			break;
1031		case PORT_GMII_SEL:
1032			mode = 2;
1033			break;
1034		default:
1035			mode = 3;
1036		}
1037	} else {
1038		switch (data & PORT_MII_SEL_M) {
1039		case PORT_MII_SEL_S1:
1040			mode = 0;
1041			break;
1042		case PORT_RMII_SEL_S1:
1043			mode = 1;
1044			break;
1045		case PORT_GMII_SEL_S1:
1046			mode = 2;
1047			break;
1048		default:
1049			mode = 3;
1050		}
1051	}
1052	return mode;
1053}
1054
1055static void ksz9477_set_xmii(struct ksz_device *dev, int mode, u8 *data)
1056{
1057	u8 xmii;
1058
1059	if (dev->features & NEW_XMII) {
1060		switch (mode) {
1061		case 0:
1062			xmii = PORT_MII_SEL;
1063			break;
1064		case 1:
1065			xmii = PORT_RMII_SEL;
1066			break;
1067		case 2:
1068			xmii = PORT_GMII_SEL;
1069			break;
1070		default:
1071			xmii = PORT_RGMII_SEL;
1072			break;
1073		}
1074	} else {
1075		switch (mode) {
1076		case 0:
1077			xmii = PORT_MII_SEL_S1;
1078			break;
1079		case 1:
1080			xmii = PORT_RMII_SEL_S1;
1081			break;
1082		case 2:
1083			xmii = PORT_GMII_SEL_S1;
1084			break;
1085		default:
1086			xmii = PORT_RGMII_SEL_S1;
1087			break;
1088		}
1089	}
1090	*data &= ~PORT_MII_SEL_M;
1091	*data |= xmii;
1092}
1093
1094static phy_interface_t ksz9477_get_interface(struct ksz_device *dev, int port)
1095{
1096	phy_interface_t interface;
1097	bool gbit;
1098	int mode;
1099	u8 data8;
 
 
1100
1101	if (port < dev->phy_port_cnt)
1102		return PHY_INTERFACE_MODE_NA;
1103	ksz_pread8(dev, port, REG_PORT_XMII_CTRL_1, &data8);
1104	gbit = ksz9477_get_gbit(dev, data8);
1105	mode = ksz9477_get_xmii(dev, data8);
1106	switch (mode) {
1107	case 2:
1108		interface = PHY_INTERFACE_MODE_GMII;
1109		if (gbit)
1110			break;
1111		/* fall through */
1112	case 0:
1113		interface = PHY_INTERFACE_MODE_MII;
1114		break;
1115	case 1:
1116		interface = PHY_INTERFACE_MODE_RMII;
1117		break;
1118	default:
1119		interface = PHY_INTERFACE_MODE_RGMII;
1120		if (data8 & PORT_RGMII_ID_EG_ENABLE)
1121			interface = PHY_INTERFACE_MODE_RGMII_TXID;
1122		if (data8 & PORT_RGMII_ID_IG_ENABLE) {
1123			interface = PHY_INTERFACE_MODE_RGMII_RXID;
1124			if (data8 & PORT_RGMII_ID_EG_ENABLE)
1125				interface = PHY_INTERFACE_MODE_RGMII_ID;
1126		}
1127		break;
1128	}
1129	return interface;
1130}
1131
1132static void ksz9477_port_mmd_write(struct ksz_device *dev, int port,
1133				   u8 dev_addr, u16 reg_addr, u16 val)
1134{
1135	ksz_pwrite16(dev, port, REG_PORT_PHY_MMD_SETUP,
1136		     MMD_SETUP(PORT_MMD_OP_INDEX, dev_addr));
1137	ksz_pwrite16(dev, port, REG_PORT_PHY_MMD_INDEX_DATA, reg_addr);
1138	ksz_pwrite16(dev, port, REG_PORT_PHY_MMD_SETUP,
1139		     MMD_SETUP(PORT_MMD_OP_DATA_NO_INCR, dev_addr));
1140	ksz_pwrite16(dev, port, REG_PORT_PHY_MMD_INDEX_DATA, val);
1141}
1142
1143static void ksz9477_phy_errata_setup(struct ksz_device *dev, int port)
1144{
1145	/* Apply PHY settings to address errata listed in
1146	 * KSZ9477, KSZ9897, KSZ9896, KSZ9567, KSZ8565
1147	 * Silicon Errata and Data Sheet Clarification documents:
1148	 *
1149	 * Register settings are needed to improve PHY receive performance
1150	 */
1151	ksz9477_port_mmd_write(dev, port, 0x01, 0x6f, 0xdd0b);
1152	ksz9477_port_mmd_write(dev, port, 0x01, 0x8f, 0x6032);
1153	ksz9477_port_mmd_write(dev, port, 0x01, 0x9d, 0x248c);
1154	ksz9477_port_mmd_write(dev, port, 0x01, 0x75, 0x0060);
1155	ksz9477_port_mmd_write(dev, port, 0x01, 0xd3, 0x7777);
1156	ksz9477_port_mmd_write(dev, port, 0x1c, 0x06, 0x3008);
1157	ksz9477_port_mmd_write(dev, port, 0x1c, 0x08, 0x2001);
1158
1159	/* Transmit waveform amplitude can be improved
1160	 * (1000BASE-T, 100BASE-TX, 10BASE-Te)
1161	 */
1162	ksz9477_port_mmd_write(dev, port, 0x1c, 0x04, 0x00d0);
1163
1164	/* Energy Efficient Ethernet (EEE) feature select must
1165	 * be manually disabled (except on KSZ8565 which is 100Mbit)
1166	 */
1167	if (dev->features & GBIT_SUPPORT)
1168		ksz9477_port_mmd_write(dev, port, 0x07, 0x3c, 0x0000);
1169
1170	/* Register settings are required to meet data sheet
1171	 * supply current specifications
1172	 */
1173	ksz9477_port_mmd_write(dev, port, 0x1c, 0x13, 0x6eff);
1174	ksz9477_port_mmd_write(dev, port, 0x1c, 0x14, 0xe6ff);
1175	ksz9477_port_mmd_write(dev, port, 0x1c, 0x15, 0x6eff);
1176	ksz9477_port_mmd_write(dev, port, 0x1c, 0x16, 0xe6ff);
1177	ksz9477_port_mmd_write(dev, port, 0x1c, 0x17, 0x00ff);
1178	ksz9477_port_mmd_write(dev, port, 0x1c, 0x18, 0x43ff);
1179	ksz9477_port_mmd_write(dev, port, 0x1c, 0x19, 0xc3ff);
1180	ksz9477_port_mmd_write(dev, port, 0x1c, 0x1a, 0x6fff);
1181	ksz9477_port_mmd_write(dev, port, 0x1c, 0x1b, 0x07ff);
1182	ksz9477_port_mmd_write(dev, port, 0x1c, 0x1c, 0x0fff);
1183	ksz9477_port_mmd_write(dev, port, 0x1c, 0x1d, 0xe7ff);
1184	ksz9477_port_mmd_write(dev, port, 0x1c, 0x1e, 0xefff);
1185	ksz9477_port_mmd_write(dev, port, 0x1c, 0x20, 0xeeee);
1186}
1187
1188static void ksz9477_port_setup(struct ksz_device *dev, int port, bool cpu_port)
1189{
1190	u8 data8;
 
 
1191	u8 member;
1192	u16 data16;
1193	struct ksz_port *p = &dev->ports[port];
1194
1195	/* enable tag tail for host port */
1196	if (cpu_port)
1197		ksz_port_cfg(dev, port, REG_PORT_CTRL_0, PORT_TAIL_TAG_ENABLE,
1198			     true);
1199
 
 
1200	ksz_port_cfg(dev, port, REG_PORT_CTRL_0, PORT_MAC_LOOPBACK, false);
1201
1202	/* set back pressure */
1203	ksz_port_cfg(dev, port, REG_PORT_MAC_CTRL_1, PORT_BACK_PRESSURE, true);
1204
1205	/* enable broadcast storm limit */
1206	ksz_port_cfg(dev, port, P_BCAST_STORM_CTRL, PORT_BROADCAST_STORM, true);
1207
1208	/* disable DiffServ priority */
1209	ksz_port_cfg(dev, port, P_PRIO_CTRL, PORT_DIFFSERV_PRIO_ENABLE, false);
1210
1211	/* replace priority */
1212	ksz_port_cfg(dev, port, REG_PORT_MRI_MAC_CTRL, PORT_USER_PRIO_CEILING,
1213		     false);
1214	ksz9477_port_cfg32(dev, port, REG_PORT_MTI_QUEUE_CTRL_0__4,
1215			   MTI_PVID_REPLACE, false);
1216
1217	/* enable 802.1p priority */
1218	ksz_port_cfg(dev, port, P_PRIO_CTRL, PORT_802_1P_PRIO_ENABLE, true);
 
 
1219
1220	if (port < dev->phy_port_cnt) {
1221		/* do not force flow control */
1222		ksz_port_cfg(dev, port, REG_PORT_CTRL_0,
1223			     PORT_FORCE_TX_FLOW_CTRL | PORT_FORCE_RX_FLOW_CTRL,
1224			     false);
1225
1226		if (dev->phy_errata_9477)
1227			ksz9477_phy_errata_setup(dev, port);
1228	} else {
1229		/* force flow control */
1230		ksz_port_cfg(dev, port, REG_PORT_CTRL_0,
1231			     PORT_FORCE_TX_FLOW_CTRL | PORT_FORCE_RX_FLOW_CTRL,
1232			     true);
1233
1234		/* configure MAC to 1G & RGMII mode */
1235		ksz_pread8(dev, port, REG_PORT_XMII_CTRL_1, &data8);
1236		switch (dev->interface) {
1237		case PHY_INTERFACE_MODE_MII:
1238			ksz9477_set_xmii(dev, 0, &data8);
1239			ksz9477_set_gbit(dev, false, &data8);
1240			p->phydev.speed = SPEED_100;
1241			break;
1242		case PHY_INTERFACE_MODE_RMII:
1243			ksz9477_set_xmii(dev, 1, &data8);
1244			ksz9477_set_gbit(dev, false, &data8);
1245			p->phydev.speed = SPEED_100;
1246			break;
1247		case PHY_INTERFACE_MODE_GMII:
1248			ksz9477_set_xmii(dev, 2, &data8);
1249			ksz9477_set_gbit(dev, true, &data8);
1250			p->phydev.speed = SPEED_1000;
1251			break;
1252		default:
1253			ksz9477_set_xmii(dev, 3, &data8);
1254			ksz9477_set_gbit(dev, true, &data8);
1255			data8 &= ~PORT_RGMII_ID_IG_ENABLE;
1256			data8 &= ~PORT_RGMII_ID_EG_ENABLE;
1257			if (dev->interface == PHY_INTERFACE_MODE_RGMII_ID ||
1258			    dev->interface == PHY_INTERFACE_MODE_RGMII_RXID)
1259				data8 |= PORT_RGMII_ID_IG_ENABLE;
1260			if (dev->interface == PHY_INTERFACE_MODE_RGMII_ID ||
1261			    dev->interface == PHY_INTERFACE_MODE_RGMII_TXID)
1262				data8 |= PORT_RGMII_ID_EG_ENABLE;
1263			p->phydev.speed = SPEED_1000;
1264			break;
1265		}
1266		ksz_pwrite8(dev, port, REG_PORT_XMII_CTRL_1, data8);
1267		p->phydev.duplex = 1;
1268	}
1269	mutex_lock(&dev->dev_mutex);
1270	if (cpu_port) {
1271		member = dev->port_mask;
1272		dev->on_ports = dev->host_mask;
1273		dev->live_ports = dev->host_mask;
1274	} else {
1275		member = dev->host_mask | p->vid_member;
1276		dev->on_ports |= (1 << port);
1277
1278		/* Link was detected before port is enabled. */
1279		if (p->phydev.link)
1280			dev->live_ports |= (1 << port);
1281	}
1282	mutex_unlock(&dev->dev_mutex);
1283	ksz9477_cfg_port_member(dev, port, member);
1284
1285	/* clear pending interrupts */
1286	if (port < dev->phy_port_cnt)
1287		ksz_pread16(dev, port, REG_PORT_PHY_INT_ENABLE, &data16);
 
 
 
 
 
 
 
 
 
 
1288}
1289
1290static void ksz9477_config_cpu_port(struct dsa_switch *ds)
1291{
1292	struct ksz_device *dev = ds->priv;
1293	struct ksz_port *p;
1294	int i;
1295
1296	ds->num_ports = dev->port_cnt;
1297
1298	for (i = 0; i < dev->port_cnt; i++) {
1299		if (dsa_is_cpu_port(ds, i) && (dev->cpu_ports & (1 << i))) {
1300			phy_interface_t interface;
 
 
1301
1302			dev->cpu_port = i;
1303			dev->host_mask = (1 << dev->cpu_port);
1304			dev->port_mask |= dev->host_mask;
1305
1306			/* Read from XMII register to determine host port
1307			 * interface.  If set specifically in device tree
1308			 * note the difference to help debugging.
1309			 */
1310			interface = ksz9477_get_interface(dev, i);
1311			if (!dev->interface)
1312				dev->interface = interface;
1313			if (interface && interface != dev->interface)
1314				dev_info(dev->dev,
1315					 "use %s instead of %s\n",
1316					  phy_modes(dev->interface),
1317					  phy_modes(interface));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1318
1319			/* enable cpu port */
1320			ksz9477_port_setup(dev, i, true);
1321			p = &dev->ports[dev->cpu_port];
1322			p->vid_member = dev->port_mask;
1323			p->on = 1;
1324		}
1325	}
1326
1327	dev->member = dev->host_mask;
1328
1329	for (i = 0; i < dev->mib_port_cnt; i++) {
1330		if (i == dev->cpu_port)
1331			continue;
1332		p = &dev->ports[i];
 
 
 
 
 
 
 
 
 
 
 
 
1333
1334		/* Initialize to non-zero so that ksz_cfg_port_member() will
1335		 * be called.
1336		 */
1337		p->vid_member = (1 << i);
1338		p->member = dev->port_mask;
1339		ksz9477_port_stp_state_set(ds, i, BR_STATE_DISABLED);
1340		p->on = 1;
1341		if (i < dev->phy_port_cnt)
1342			p->phy = 1;
1343		if (dev->chip_id == 0x00947700 && i == 6) {
1344			p->sgmii = 1;
 
 
 
 
 
1345
1346			/* SGMII PHY detection code is not implemented yet. */
1347			p->phy = 0;
1348		}
 
 
1349	}
 
 
1350}
1351
1352static int ksz9477_setup(struct dsa_switch *ds)
1353{
1354	struct ksz_device *dev = ds->priv;
 
1355	int ret = 0;
1356
1357	dev->vlan_cache = devm_kcalloc(dev->dev, sizeof(struct vlan_table),
1358				       dev->num_vlans, GFP_KERNEL);
1359	if (!dev->vlan_cache)
1360		return -ENOMEM;
1361
1362	ret = ksz9477_reset_switch(dev);
1363	if (ret) {
1364		dev_err(ds->dev, "failed to reset switch\n");
1365		return ret;
1366	}
1367
1368	/* Required for port partitioning. */
1369	ksz9477_cfg32(dev, REG_SW_QM_CTRL__4, UNICAST_VLAN_BOUNDARY,
1370		      true);
1371
1372	/* Do not work correctly with tail tagging. */
1373	ksz_cfg(dev, REG_SW_MAC_CTRL_0, SW_CHECK_LENGTH, false);
1374
1375	/* accept packet up to 2000bytes */
1376	ksz_cfg(dev, REG_SW_MAC_CTRL_1, SW_LEGAL_PACKET_DISABLE, true);
1377
1378	ksz9477_config_cpu_port(ds);
1379
1380	ksz_cfg(dev, REG_SW_MAC_CTRL_1, MULTICAST_STORM_DISABLE, true);
 
 
 
 
 
 
1381
1382	/* queue based egress rate limit */
1383	ksz_cfg(dev, REG_SW_MAC_CTRL_5, SW_OUT_RATE_LIMIT_QUEUE_BASED, true);
1384
1385	/* enable global MIB counter freeze function */
1386	ksz_cfg(dev, REG_SW_MAC_CTRL_6, SW_MIB_COUNTER_FREEZE, true);
1387
1388	/* start switch */
1389	ksz_cfg(dev, REG_SW_OPERATION, SW_START, true);
 
 
 
 
1390
1391	ksz_init_mib_timer(dev);
 
 
 
 
 
 
 
1392
1393	return 0;
1394}
1395
1396static const struct dsa_switch_ops ksz9477_switch_ops = {
1397	.get_tag_protocol	= ksz9477_get_tag_protocol,
1398	.setup			= ksz9477_setup,
1399	.phy_read		= ksz9477_phy_read16,
1400	.phy_write		= ksz9477_phy_write16,
1401	.adjust_link		= ksz_adjust_link,
1402	.port_enable		= ksz_enable_port,
1403	.port_disable		= ksz_disable_port,
1404	.get_strings		= ksz9477_get_strings,
1405	.get_ethtool_stats	= ksz_get_ethtool_stats,
1406	.get_sset_count		= ksz_sset_count,
1407	.port_bridge_join	= ksz_port_bridge_join,
1408	.port_bridge_leave	= ksz_port_bridge_leave,
1409	.port_stp_state_set	= ksz9477_port_stp_state_set,
1410	.port_fast_age		= ksz_port_fast_age,
1411	.port_vlan_filtering	= ksz9477_port_vlan_filtering,
1412	.port_vlan_prepare	= ksz_port_vlan_prepare,
1413	.port_vlan_add		= ksz9477_port_vlan_add,
1414	.port_vlan_del		= ksz9477_port_vlan_del,
1415	.port_fdb_dump		= ksz9477_port_fdb_dump,
1416	.port_fdb_add		= ksz9477_port_fdb_add,
1417	.port_fdb_del		= ksz9477_port_fdb_del,
1418	.port_mdb_prepare       = ksz_port_mdb_prepare,
1419	.port_mdb_add           = ksz9477_port_mdb_add,
1420	.port_mdb_del           = ksz9477_port_mdb_del,
1421	.port_mirror_add	= ksz9477_port_mirror_add,
1422	.port_mirror_del	= ksz9477_port_mirror_del,
1423};
1424
1425static u32 ksz9477_get_port_addr(int port, int offset)
1426{
1427	return PORT_CTRL_ADDR(port, offset);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1428}
1429
1430static int ksz9477_switch_detect(struct ksz_device *dev)
1431{
1432	u8 data8;
1433	u8 id_hi;
1434	u8 id_lo;
1435	u32 id32;
1436	int ret;
1437
 
 
1438	/* turn off SPI DO Edge select */
1439	ret = ksz_read8(dev, REG_SW_GLOBAL_SERIAL_CTRL_0, &data8);
1440	if (ret)
1441		return ret;
1442
1443	data8 &= ~SPI_AUTO_EDGE_DETECTION;
1444	ret = ksz_write8(dev, REG_SW_GLOBAL_SERIAL_CTRL_0, data8);
1445	if (ret)
1446		return ret;
1447
1448	/* read chip id */
1449	ret = ksz_read32(dev, REG_CHIP_ID0__1, &id32);
1450	if (ret)
1451		return ret;
1452	ret = ksz_read8(dev, REG_GLOBAL_OPTIONS, &data8);
1453	if (ret)
1454		return ret;
1455
1456	/* Number of ports can be reduced depending on chip. */
1457	dev->mib_port_cnt = TOTAL_PORT_NUM;
1458	dev->phy_port_cnt = 5;
1459
1460	/* Default capability is gigabit capable. */
1461	dev->features = GBIT_SUPPORT;
1462
1463	id_hi = (u8)(id32 >> 16);
1464	id_lo = (u8)(id32 >> 8);
1465	if ((id_lo & 0xf) == 3) {
1466		/* Chip is from KSZ9893 design. */
1467		dev->features |= IS_9893;
1468
1469		/* Chip does not support gigabit. */
1470		if (data8 & SW_QW_ABLE)
1471			dev->features &= ~GBIT_SUPPORT;
1472		dev->mib_port_cnt = 3;
1473		dev->phy_port_cnt = 2;
1474	} else {
1475		/* Chip uses new XMII register definitions. */
1476		dev->features |= NEW_XMII;
1477
1478		/* Chip does not support gigabit. */
1479		if (!(data8 & SW_GIGABIT_ABLE))
1480			dev->features &= ~GBIT_SUPPORT;
1481	}
1482
1483	/* Change chip id to known ones so it can be matched against them. */
1484	id32 = (id_hi << 16) | (id_lo << 8);
1485
1486	dev->chip_id = id32;
1487
1488	return 0;
1489}
1490
1491struct ksz_chip_data {
1492	u32 chip_id;
1493	const char *dev_name;
1494	int num_vlans;
1495	int num_alus;
1496	int num_statics;
1497	int cpu_ports;
1498	int port_cnt;
1499	bool phy_errata_9477;
1500};
1501
1502static const struct ksz_chip_data ksz9477_switch_chips[] = {
1503	{
1504		.chip_id = 0x00947700,
1505		.dev_name = "KSZ9477",
1506		.num_vlans = 4096,
1507		.num_alus = 4096,
1508		.num_statics = 16,
1509		.cpu_ports = 0x7F,	/* can be configured as cpu port */
1510		.port_cnt = 7,		/* total physical port count */
1511		.phy_errata_9477 = true,
1512	},
1513	{
1514		.chip_id = 0x00989700,
1515		.dev_name = "KSZ9897",
1516		.num_vlans = 4096,
1517		.num_alus = 4096,
1518		.num_statics = 16,
1519		.cpu_ports = 0x7F,	/* can be configured as cpu port */
1520		.port_cnt = 7,		/* total physical port count */
1521		.phy_errata_9477 = true,
1522	},
1523	{
1524		.chip_id = 0x00989300,
1525		.dev_name = "KSZ9893",
1526		.num_vlans = 4096,
1527		.num_alus = 4096,
1528		.num_statics = 16,
1529		.cpu_ports = 0x07,	/* can be configured as cpu port */
1530		.port_cnt = 3,		/* total port count */
1531	},
1532	{
1533		.chip_id = 0x00956700,
1534		.dev_name = "KSZ9567",
1535		.num_vlans = 4096,
1536		.num_alus = 4096,
1537		.num_statics = 16,
1538		.cpu_ports = 0x7F,	/* can be configured as cpu port */
1539		.port_cnt = 7,		/* total physical port count */
1540	},
1541};
1542
1543static int ksz9477_switch_init(struct ksz_device *dev)
1544{
1545	int i;
1546
1547	dev->ds->ops = &ksz9477_switch_ops;
1548
1549	for (i = 0; i < ARRAY_SIZE(ksz9477_switch_chips); i++) {
1550		const struct ksz_chip_data *chip = &ksz9477_switch_chips[i];
1551
1552		if (dev->chip_id == chip->chip_id) {
1553			dev->name = chip->dev_name;
1554			dev->num_vlans = chip->num_vlans;
1555			dev->num_alus = chip->num_alus;
1556			dev->num_statics = chip->num_statics;
1557			dev->port_cnt = chip->port_cnt;
1558			dev->cpu_ports = chip->cpu_ports;
1559			dev->phy_errata_9477 = chip->phy_errata_9477;
1560
1561			break;
1562		}
1563	}
1564
1565	/* no switch found */
1566	if (!dev->port_cnt)
1567		return -ENODEV;
1568
1569	dev->port_mask = (1 << dev->port_cnt) - 1;
1570
1571	dev->reg_mib_cnt = SWITCH_COUNTER_NUM;
1572	dev->mib_cnt = TOTAL_SWITCH_COUNTER_NUM;
1573
1574	i = dev->mib_port_cnt;
1575	dev->ports = devm_kzalloc(dev->dev, sizeof(struct ksz_port) * i,
1576				  GFP_KERNEL);
1577	if (!dev->ports)
1578		return -ENOMEM;
1579	for (i = 0; i < dev->mib_port_cnt; i++) {
1580		mutex_init(&dev->ports[i].mib.cnt_mutex);
1581		dev->ports[i].mib.counters =
1582			devm_kzalloc(dev->dev,
1583				     sizeof(u64) *
1584				     (TOTAL_SWITCH_COUNTER_NUM + 1),
1585				     GFP_KERNEL);
1586		if (!dev->ports[i].mib.counters)
1587			return -ENOMEM;
1588	}
1589
1590	return 0;
1591}
1592
1593static void ksz9477_switch_exit(struct ksz_device *dev)
1594{
1595	ksz9477_reset_switch(dev);
1596}
1597
1598static const struct ksz_dev_ops ksz9477_dev_ops = {
1599	.get_port_addr = ksz9477_get_port_addr,
1600	.cfg_port_member = ksz9477_cfg_port_member,
1601	.flush_dyn_mac_table = ksz9477_flush_dyn_mac_table,
1602	.phy_setup = ksz9477_phy_setup,
1603	.port_setup = ksz9477_port_setup,
1604	.r_mib_cnt = ksz9477_r_mib_cnt,
1605	.r_mib_pkt = ksz9477_r_mib_pkt,
1606	.freeze_mib = ksz9477_freeze_mib,
1607	.port_init_cnt = ksz9477_port_init_cnt,
1608	.shutdown = ksz9477_reset_switch,
1609	.detect = ksz9477_switch_detect,
1610	.init = ksz9477_switch_init,
1611	.exit = ksz9477_switch_exit,
1612};
1613
1614int ksz9477_switch_register(struct ksz_device *dev)
1615{
1616	return ksz_switch_register(dev, &ksz9477_dev_ops);
1617}
1618EXPORT_SYMBOL(ksz9477_switch_register);
1619
1620MODULE_AUTHOR("Woojung Huh <Woojung.Huh@microchip.com>");
1621MODULE_DESCRIPTION("Microchip KSZ9477 Series Switch DSA Driver");
1622MODULE_LICENSE("GPL");