Linux Audio

Check our new training course

Loading...
v6.13.7
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * Copyright (C) 2012 Avionic Design GmbH
  4 * Copyright (C) 2012 NVIDIA CORPORATION.  All rights reserved.
  5 */
  6
  7#include <linux/clk.h>
  8#include <linux/of.h>
  9
 10#include <drm/drm_atomic_helper.h>
 11#include <drm/drm_bridge_connector.h>
 12#include <drm/drm_simple_kms_helper.h>
 13
 14#include "drm.h"
 15#include "dc.h"
 16
 17struct tegra_rgb {
 18	struct tegra_output output;
 19	struct tegra_dc *dc;
 20
 21	struct clk *pll_d_out0;
 22	struct clk *pll_d2_out0;
 23	struct clk *clk_parent;
 24	struct clk *clk;
 25};
 26
 27static inline struct tegra_rgb *to_rgb(struct tegra_output *output)
 28{
 29	return container_of(output, struct tegra_rgb, output);
 30}
 31
 32struct reg_entry {
 33	unsigned long offset;
 34	unsigned long value;
 35};
 36
 37static const struct reg_entry rgb_enable[] = {
 38	{ DC_COM_PIN_OUTPUT_ENABLE(0),   0x00000000 },
 39	{ DC_COM_PIN_OUTPUT_ENABLE(1),   0x00000000 },
 40	{ DC_COM_PIN_OUTPUT_ENABLE(2),   0x00000000 },
 41	{ DC_COM_PIN_OUTPUT_ENABLE(3),   0x00000000 },
 42	{ DC_COM_PIN_OUTPUT_POLARITY(0), 0x00000000 },
 43	{ DC_COM_PIN_OUTPUT_POLARITY(1), 0x01000000 },
 44	{ DC_COM_PIN_OUTPUT_POLARITY(2), 0x00000000 },
 45	{ DC_COM_PIN_OUTPUT_POLARITY(3), 0x00000000 },
 46	{ DC_COM_PIN_OUTPUT_DATA(0),     0x00000000 },
 47	{ DC_COM_PIN_OUTPUT_DATA(1),     0x00000000 },
 48	{ DC_COM_PIN_OUTPUT_DATA(2),     0x00000000 },
 49	{ DC_COM_PIN_OUTPUT_DATA(3),     0x00000000 },
 50	{ DC_COM_PIN_OUTPUT_SELECT(0),   0x00000000 },
 51	{ DC_COM_PIN_OUTPUT_SELECT(1),   0x00000000 },
 52	{ DC_COM_PIN_OUTPUT_SELECT(2),   0x00000000 },
 53	{ DC_COM_PIN_OUTPUT_SELECT(3),   0x00000000 },
 54	{ DC_COM_PIN_OUTPUT_SELECT(4),   0x00210222 },
 55	{ DC_COM_PIN_OUTPUT_SELECT(5),   0x00002200 },
 56	{ DC_COM_PIN_OUTPUT_SELECT(6),   0x00020000 },
 57};
 58
 59static const struct reg_entry rgb_disable[] = {
 60	{ DC_COM_PIN_OUTPUT_SELECT(6),   0x00000000 },
 61	{ DC_COM_PIN_OUTPUT_SELECT(5),   0x00000000 },
 62	{ DC_COM_PIN_OUTPUT_SELECT(4),   0x00000000 },
 63	{ DC_COM_PIN_OUTPUT_SELECT(3),   0x00000000 },
 64	{ DC_COM_PIN_OUTPUT_SELECT(2),   0x00000000 },
 65	{ DC_COM_PIN_OUTPUT_SELECT(1),   0x00000000 },
 66	{ DC_COM_PIN_OUTPUT_SELECT(0),   0x00000000 },
 67	{ DC_COM_PIN_OUTPUT_DATA(3),     0xaaaaaaaa },
 68	{ DC_COM_PIN_OUTPUT_DATA(2),     0xaaaaaaaa },
 69	{ DC_COM_PIN_OUTPUT_DATA(1),     0xaaaaaaaa },
 70	{ DC_COM_PIN_OUTPUT_DATA(0),     0xaaaaaaaa },
 71	{ DC_COM_PIN_OUTPUT_POLARITY(3), 0x00000000 },
 72	{ DC_COM_PIN_OUTPUT_POLARITY(2), 0x00000000 },
 73	{ DC_COM_PIN_OUTPUT_POLARITY(1), 0x00000000 },
 74	{ DC_COM_PIN_OUTPUT_POLARITY(0), 0x00000000 },
 75	{ DC_COM_PIN_OUTPUT_ENABLE(3),   0x55555555 },
 76	{ DC_COM_PIN_OUTPUT_ENABLE(2),   0x55555555 },
 77	{ DC_COM_PIN_OUTPUT_ENABLE(1),   0x55150005 },
 78	{ DC_COM_PIN_OUTPUT_ENABLE(0),   0x55555555 },
 79};
 80
 81static void tegra_dc_write_regs(struct tegra_dc *dc,
 82				const struct reg_entry *table,
 83				unsigned int num)
 84{
 85	unsigned int i;
 86
 87	for (i = 0; i < num; i++)
 88		tegra_dc_writel(dc, table[i].value, table[i].offset);
 89}
 90
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 91static void tegra_rgb_encoder_disable(struct drm_encoder *encoder)
 92{
 93	struct tegra_output *output = encoder_to_output(encoder);
 94	struct tegra_rgb *rgb = to_rgb(output);
 95
 
 
 
 96	tegra_dc_write_regs(rgb->dc, rgb_disable, ARRAY_SIZE(rgb_disable));
 97	tegra_dc_commit(rgb->dc);
 
 
 
 98}
 99
100static void tegra_rgb_encoder_enable(struct drm_encoder *encoder)
101{
102	struct drm_display_mode *mode = &encoder->crtc->state->adjusted_mode;
103	struct tegra_output *output = encoder_to_output(encoder);
104	struct tegra_rgb *rgb = to_rgb(output);
105	u32 value;
106
 
 
 
107	tegra_dc_write_regs(rgb->dc, rgb_enable, ARRAY_SIZE(rgb_enable));
108
109	value = DE_SELECT_ACTIVE | DE_CONTROL_NORMAL;
110	tegra_dc_writel(rgb->dc, value, DC_DISP_DATA_ENABLE_OPTIONS);
111
112	/* configure H- and V-sync signal polarities */
113	value = tegra_dc_readl(rgb->dc, DC_COM_PIN_OUTPUT_POLARITY(1));
114
115	if (mode->flags & DRM_MODE_FLAG_NHSYNC)
116		value |= LHS_OUTPUT_POLARITY_LOW;
117	else
118		value &= ~LHS_OUTPUT_POLARITY_LOW;
119
120	if (mode->flags & DRM_MODE_FLAG_NVSYNC)
121		value |= LVS_OUTPUT_POLARITY_LOW;
122	else
123		value &= ~LVS_OUTPUT_POLARITY_LOW;
124
125	tegra_dc_writel(rgb->dc, value, DC_COM_PIN_OUTPUT_POLARITY(1));
126
127	/* XXX: parameterize? */
128	value = DISP_DATA_FORMAT_DF1P1C | DISP_ALIGNMENT_MSB |
129		DISP_ORDER_RED_BLUE;
130	tegra_dc_writel(rgb->dc, value, DC_DISP_DISP_INTERFACE_CONTROL);
131
132	tegra_dc_commit(rgb->dc);
133}
134
135static bool tegra_rgb_pll_rate_change_allowed(struct tegra_rgb *rgb)
136{
137	if (!rgb->pll_d2_out0)
138		return false;
139
140	if (!clk_is_match(rgb->clk_parent, rgb->pll_d_out0) &&
141	    !clk_is_match(rgb->clk_parent, rgb->pll_d2_out0))
142		return false;
143
144	return true;
 
145}
146
147static int
148tegra_rgb_encoder_atomic_check(struct drm_encoder *encoder,
149			       struct drm_crtc_state *crtc_state,
150			       struct drm_connector_state *conn_state)
151{
152	struct tegra_output *output = encoder_to_output(encoder);
153	struct tegra_dc *dc = to_tegra_dc(conn_state->crtc);
154	unsigned long pclk = crtc_state->mode.clock * 1000;
155	struct tegra_rgb *rgb = to_rgb(output);
156	unsigned int div;
157	int err;
158
159	/*
160	 * We may not want to change the frequency of the parent clock, since
161	 * it may be a parent for other peripherals. This is due to the fact
162	 * that on Tegra20 there's only a single clock dedicated to display
163	 * (pll_d_out0), whereas later generations have a second one that can
164	 * be used to independently drive a second output (pll_d2_out0).
165	 *
166	 * As a way to support multiple outputs on Tegra20 as well, pll_p is
167	 * typically used as the parent clock for the display controllers.
168	 * But this comes at a cost: pll_p is the parent of several other
169	 * peripherals, so its frequency shouldn't change out of the blue.
170	 *
171	 * The best we can do at this point is to use the shift clock divider
172	 * and hope that the desired frequency can be matched (or at least
173	 * matched sufficiently close that the panel will still work).
174	 */
175	if (tegra_rgb_pll_rate_change_allowed(rgb)) {
176		/*
177		 * Set display controller clock to x2 of PCLK in order to
178		 * produce higher resolution pulse positions.
179		 */
180		div = 2;
181		pclk *= 2;
182	} else {
183		div = ((clk_get_rate(rgb->clk) * 2) / pclk) - 2;
184		pclk = 0;
185	}
186
187	err = tegra_dc_state_setup_clock(dc, crtc_state, rgb->clk_parent,
188					 pclk, div);
189	if (err < 0) {
190		dev_err(output->dev, "failed to setup CRTC state: %d\n", err);
191		return err;
192	}
193
194	return err;
195}
196
197static const struct drm_encoder_helper_funcs tegra_rgb_encoder_helper_funcs = {
198	.disable = tegra_rgb_encoder_disable,
199	.enable = tegra_rgb_encoder_enable,
200	.atomic_check = tegra_rgb_encoder_atomic_check,
201};
202
203int tegra_dc_rgb_probe(struct tegra_dc *dc)
204{
205	struct device_node *np;
206	struct tegra_rgb *rgb;
207	int err;
208
209	np = of_get_child_by_name(dc->dev->of_node, "rgb");
210	if (!np || !of_device_is_available(np))
211		return -ENODEV;
212
213	rgb = devm_kzalloc(dc->dev, sizeof(*rgb), GFP_KERNEL);
214	if (!rgb)
215		return -ENOMEM;
216
217	rgb->output.dev = dc->dev;
218	rgb->output.of_node = np;
219	rgb->dc = dc;
220
221	err = tegra_output_probe(&rgb->output);
222	if (err < 0)
223		return err;
224
225	rgb->clk = devm_clk_get(dc->dev, NULL);
226	if (IS_ERR(rgb->clk)) {
227		dev_err(dc->dev, "failed to get clock\n");
228		err = PTR_ERR(rgb->clk);
229		goto remove;
230	}
231
232	rgb->clk_parent = devm_clk_get(dc->dev, "parent");
233	if (IS_ERR(rgb->clk_parent)) {
234		dev_err(dc->dev, "failed to get parent clock\n");
235		err = PTR_ERR(rgb->clk_parent);
236		goto remove;
237	}
238
239	err = clk_set_parent(rgb->clk, rgb->clk_parent);
240	if (err < 0) {
241		dev_err(dc->dev, "failed to set parent clock: %d\n", err);
242		goto remove;
243	}
244
245	rgb->pll_d_out0 = clk_get_sys(NULL, "pll_d_out0");
246	if (IS_ERR(rgb->pll_d_out0)) {
247		err = PTR_ERR(rgb->pll_d_out0);
248		dev_err(dc->dev, "failed to get pll_d_out0: %d\n", err);
249		goto remove;
250	}
251
252	if (dc->soc->has_pll_d2_out0) {
253		rgb->pll_d2_out0 = clk_get_sys(NULL, "pll_d2_out0");
254		if (IS_ERR(rgb->pll_d2_out0)) {
255			err = PTR_ERR(rgb->pll_d2_out0);
256			dev_err(dc->dev, "failed to get pll_d2_out0: %d\n", err);
257			goto put_pll;
258		}
259	}
260
261	dc->rgb = &rgb->output;
262
263	return 0;
264
265put_pll:
266	clk_put(rgb->pll_d_out0);
267remove:
268	tegra_output_remove(&rgb->output);
269	return err;
270}
271
272void tegra_dc_rgb_remove(struct tegra_dc *dc)
273{
274	struct tegra_rgb *rgb;
275
276	if (!dc->rgb)
277		return;
278
279	rgb = to_rgb(dc->rgb);
280	clk_put(rgb->pll_d2_out0);
281	clk_put(rgb->pll_d_out0);
282
283	tegra_output_remove(dc->rgb);
284	dc->rgb = NULL;
 
 
285}
286
287int tegra_dc_rgb_init(struct drm_device *drm, struct tegra_dc *dc)
288{
289	struct tegra_output *output = dc->rgb;
290	struct drm_connector *connector;
291	int err;
292
293	if (!dc->rgb)
294		return -ENODEV;
295
 
 
 
 
 
 
296	drm_simple_encoder_init(drm, &output->encoder, DRM_MODE_ENCODER_LVDS);
297	drm_encoder_helper_add(&output->encoder,
298			       &tegra_rgb_encoder_helper_funcs);
299
300	/*
301	 * Wrap directly-connected panel into DRM bridge in order to let
302	 * DRM core to handle panel for us.
303	 */
304	if (output->panel) {
305		output->bridge = devm_drm_panel_bridge_add(output->dev,
306							   output->panel);
307		if (IS_ERR(output->bridge)) {
308			dev_err(output->dev,
309				"failed to wrap panel into bridge: %pe\n",
310				output->bridge);
311			return PTR_ERR(output->bridge);
312		}
313
314		output->panel = NULL;
315	}
316
317	/*
318	 * Tegra devices that have LVDS panel utilize LVDS encoder bridge
319	 * for converting up to 28 LCD LVTTL lanes into 5/4 LVDS lanes that
320	 * go to display panel's receiver.
321	 *
322	 * Encoder usually have a power-down control which needs to be enabled
323	 * in order to transmit data to the panel.  Historically devices that
324	 * use an older device-tree version didn't model the bridge, assuming
325	 * that encoder is turned ON by default, while today's DRM allows us
326	 * to model LVDS encoder properly.
327	 *
328	 * Newer device-trees utilize LVDS encoder bridge, which provides
329	 * us with a connector and handles the display panel.
330	 *
331	 * For older device-trees we wrapped panel into the panel-bridge.
332	 */
333	if (output->bridge) {
334		err = drm_bridge_attach(&output->encoder, output->bridge,
335					NULL, DRM_BRIDGE_ATTACH_NO_CONNECTOR);
336		if (err)
337			return err;
338
339		connector = drm_bridge_connector_init(drm, &output->encoder);
340		if (IS_ERR(connector)) {
341			dev_err(output->dev,
342				"failed to initialize bridge connector: %pe\n",
343				connector);
344			return PTR_ERR(connector);
345		}
346
347		drm_connector_attach_encoder(connector, &output->encoder);
348	}
349
350	err = tegra_output_init(drm, output);
351	if (err < 0) {
352		dev_err(output->dev, "failed to initialize output: %d\n", err);
353		return err;
354	}
355
356	/*
357	 * Other outputs can be attached to either display controller. The RGB
358	 * outputs are an exception and work only with their parent display
359	 * controller.
360	 */
361	output->encoder.possible_crtcs = drm_crtc_mask(&dc->base);
362
363	return 0;
364}
365
366int tegra_dc_rgb_exit(struct tegra_dc *dc)
367{
368	if (dc->rgb)
369		tegra_output_exit(dc->rgb);
370
371	return 0;
372}
v5.9
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * Copyright (C) 2012 Avionic Design GmbH
  4 * Copyright (C) 2012 NVIDIA CORPORATION.  All rights reserved.
  5 */
  6
  7#include <linux/clk.h>
 
  8
  9#include <drm/drm_atomic_helper.h>
 10#include <drm/drm_panel.h>
 11#include <drm/drm_simple_kms_helper.h>
 12
 13#include "drm.h"
 14#include "dc.h"
 15
 16struct tegra_rgb {
 17	struct tegra_output output;
 18	struct tegra_dc *dc;
 19
 
 
 20	struct clk *clk_parent;
 21	struct clk *clk;
 22};
 23
 24static inline struct tegra_rgb *to_rgb(struct tegra_output *output)
 25{
 26	return container_of(output, struct tegra_rgb, output);
 27}
 28
 29struct reg_entry {
 30	unsigned long offset;
 31	unsigned long value;
 32};
 33
 34static const struct reg_entry rgb_enable[] = {
 35	{ DC_COM_PIN_OUTPUT_ENABLE(0),   0x00000000 },
 36	{ DC_COM_PIN_OUTPUT_ENABLE(1),   0x00000000 },
 37	{ DC_COM_PIN_OUTPUT_ENABLE(2),   0x00000000 },
 38	{ DC_COM_PIN_OUTPUT_ENABLE(3),   0x00000000 },
 39	{ DC_COM_PIN_OUTPUT_POLARITY(0), 0x00000000 },
 40	{ DC_COM_PIN_OUTPUT_POLARITY(1), 0x01000000 },
 41	{ DC_COM_PIN_OUTPUT_POLARITY(2), 0x00000000 },
 42	{ DC_COM_PIN_OUTPUT_POLARITY(3), 0x00000000 },
 43	{ DC_COM_PIN_OUTPUT_DATA(0),     0x00000000 },
 44	{ DC_COM_PIN_OUTPUT_DATA(1),     0x00000000 },
 45	{ DC_COM_PIN_OUTPUT_DATA(2),     0x00000000 },
 46	{ DC_COM_PIN_OUTPUT_DATA(3),     0x00000000 },
 47	{ DC_COM_PIN_OUTPUT_SELECT(0),   0x00000000 },
 48	{ DC_COM_PIN_OUTPUT_SELECT(1),   0x00000000 },
 49	{ DC_COM_PIN_OUTPUT_SELECT(2),   0x00000000 },
 50	{ DC_COM_PIN_OUTPUT_SELECT(3),   0x00000000 },
 51	{ DC_COM_PIN_OUTPUT_SELECT(4),   0x00210222 },
 52	{ DC_COM_PIN_OUTPUT_SELECT(5),   0x00002200 },
 53	{ DC_COM_PIN_OUTPUT_SELECT(6),   0x00020000 },
 54};
 55
 56static const struct reg_entry rgb_disable[] = {
 57	{ DC_COM_PIN_OUTPUT_SELECT(6),   0x00000000 },
 58	{ DC_COM_PIN_OUTPUT_SELECT(5),   0x00000000 },
 59	{ DC_COM_PIN_OUTPUT_SELECT(4),   0x00000000 },
 60	{ DC_COM_PIN_OUTPUT_SELECT(3),   0x00000000 },
 61	{ DC_COM_PIN_OUTPUT_SELECT(2),   0x00000000 },
 62	{ DC_COM_PIN_OUTPUT_SELECT(1),   0x00000000 },
 63	{ DC_COM_PIN_OUTPUT_SELECT(0),   0x00000000 },
 64	{ DC_COM_PIN_OUTPUT_DATA(3),     0xaaaaaaaa },
 65	{ DC_COM_PIN_OUTPUT_DATA(2),     0xaaaaaaaa },
 66	{ DC_COM_PIN_OUTPUT_DATA(1),     0xaaaaaaaa },
 67	{ DC_COM_PIN_OUTPUT_DATA(0),     0xaaaaaaaa },
 68	{ DC_COM_PIN_OUTPUT_POLARITY(3), 0x00000000 },
 69	{ DC_COM_PIN_OUTPUT_POLARITY(2), 0x00000000 },
 70	{ DC_COM_PIN_OUTPUT_POLARITY(1), 0x00000000 },
 71	{ DC_COM_PIN_OUTPUT_POLARITY(0), 0x00000000 },
 72	{ DC_COM_PIN_OUTPUT_ENABLE(3),   0x55555555 },
 73	{ DC_COM_PIN_OUTPUT_ENABLE(2),   0x55555555 },
 74	{ DC_COM_PIN_OUTPUT_ENABLE(1),   0x55150005 },
 75	{ DC_COM_PIN_OUTPUT_ENABLE(0),   0x55555555 },
 76};
 77
 78static void tegra_dc_write_regs(struct tegra_dc *dc,
 79				const struct reg_entry *table,
 80				unsigned int num)
 81{
 82	unsigned int i;
 83
 84	for (i = 0; i < num; i++)
 85		tegra_dc_writel(dc, table[i].value, table[i].offset);
 86}
 87
 88static const struct drm_connector_funcs tegra_rgb_connector_funcs = {
 89	.reset = drm_atomic_helper_connector_reset,
 90	.detect = tegra_output_connector_detect,
 91	.fill_modes = drm_helper_probe_single_connector_modes,
 92	.destroy = tegra_output_connector_destroy,
 93	.atomic_duplicate_state = drm_atomic_helper_connector_duplicate_state,
 94	.atomic_destroy_state = drm_atomic_helper_connector_destroy_state,
 95};
 96
 97static enum drm_mode_status
 98tegra_rgb_connector_mode_valid(struct drm_connector *connector,
 99			       struct drm_display_mode *mode)
100{
101	/*
102	 * FIXME: For now, always assume that the mode is okay. There are
103	 * unresolved issues with clk_round_rate(), which doesn't always
104	 * reliably report whether a frequency can be set or not.
105	 */
106	return MODE_OK;
107}
108
109static const struct drm_connector_helper_funcs tegra_rgb_connector_helper_funcs = {
110	.get_modes = tegra_output_connector_get_modes,
111	.mode_valid = tegra_rgb_connector_mode_valid,
112};
113
114static void tegra_rgb_encoder_disable(struct drm_encoder *encoder)
115{
116	struct tegra_output *output = encoder_to_output(encoder);
117	struct tegra_rgb *rgb = to_rgb(output);
118
119	if (output->panel)
120		drm_panel_disable(output->panel);
121
122	tegra_dc_write_regs(rgb->dc, rgb_disable, ARRAY_SIZE(rgb_disable));
123	tegra_dc_commit(rgb->dc);
124
125	if (output->panel)
126		drm_panel_unprepare(output->panel);
127}
128
129static void tegra_rgb_encoder_enable(struct drm_encoder *encoder)
130{
 
131	struct tegra_output *output = encoder_to_output(encoder);
132	struct tegra_rgb *rgb = to_rgb(output);
133	u32 value;
134
135	if (output->panel)
136		drm_panel_prepare(output->panel);
137
138	tegra_dc_write_regs(rgb->dc, rgb_enable, ARRAY_SIZE(rgb_enable));
139
140	value = DE_SELECT_ACTIVE | DE_CONTROL_NORMAL;
141	tegra_dc_writel(rgb->dc, value, DC_DISP_DATA_ENABLE_OPTIONS);
142
143	/* XXX: parameterize? */
144	value = tegra_dc_readl(rgb->dc, DC_COM_PIN_OUTPUT_POLARITY(1));
145	value &= ~LVS_OUTPUT_POLARITY_LOW;
146	value &= ~LHS_OUTPUT_POLARITY_LOW;
 
 
 
 
 
 
 
 
 
147	tegra_dc_writel(rgb->dc, value, DC_COM_PIN_OUTPUT_POLARITY(1));
148
149	/* XXX: parameterize? */
150	value = DISP_DATA_FORMAT_DF1P1C | DISP_ALIGNMENT_MSB |
151		DISP_ORDER_RED_BLUE;
152	tegra_dc_writel(rgb->dc, value, DC_DISP_DISP_INTERFACE_CONTROL);
153
154	/* XXX: parameterize? */
155	value = SC0_H_QUALIFIER_NONE | SC1_H_QUALIFIER_NONE;
156	tegra_dc_writel(rgb->dc, value, DC_DISP_SHIFT_CLOCK_OPTIONS);
 
 
 
 
157
158	tegra_dc_commit(rgb->dc);
 
 
159
160	if (output->panel)
161		drm_panel_enable(output->panel);
162}
163
164static int
165tegra_rgb_encoder_atomic_check(struct drm_encoder *encoder,
166			       struct drm_crtc_state *crtc_state,
167			       struct drm_connector_state *conn_state)
168{
169	struct tegra_output *output = encoder_to_output(encoder);
170	struct tegra_dc *dc = to_tegra_dc(conn_state->crtc);
171	unsigned long pclk = crtc_state->mode.clock * 1000;
172	struct tegra_rgb *rgb = to_rgb(output);
173	unsigned int div;
174	int err;
175
176	/*
177	 * We may not want to change the frequency of the parent clock, since
178	 * it may be a parent for other peripherals. This is due to the fact
179	 * that on Tegra20 there's only a single clock dedicated to display
180	 * (pll_d_out0), whereas later generations have a second one that can
181	 * be used to independently drive a second output (pll_d2_out0).
182	 *
183	 * As a way to support multiple outputs on Tegra20 as well, pll_p is
184	 * typically used as the parent clock for the display controllers.
185	 * But this comes at a cost: pll_p is the parent of several other
186	 * peripherals, so its frequency shouldn't change out of the blue.
187	 *
188	 * The best we can do at this point is to use the shift clock divider
189	 * and hope that the desired frequency can be matched (or at least
190	 * matched sufficiently close that the panel will still work).
191	 */
192	div = ((clk_get_rate(rgb->clk) * 2) / pclk) - 2;
193	pclk = 0;
 
 
 
 
 
 
 
 
 
194
195	err = tegra_dc_state_setup_clock(dc, crtc_state, rgb->clk_parent,
196					 pclk, div);
197	if (err < 0) {
198		dev_err(output->dev, "failed to setup CRTC state: %d\n", err);
199		return err;
200	}
201
202	return err;
203}
204
205static const struct drm_encoder_helper_funcs tegra_rgb_encoder_helper_funcs = {
206	.disable = tegra_rgb_encoder_disable,
207	.enable = tegra_rgb_encoder_enable,
208	.atomic_check = tegra_rgb_encoder_atomic_check,
209};
210
211int tegra_dc_rgb_probe(struct tegra_dc *dc)
212{
213	struct device_node *np;
214	struct tegra_rgb *rgb;
215	int err;
216
217	np = of_get_child_by_name(dc->dev->of_node, "rgb");
218	if (!np || !of_device_is_available(np))
219		return -ENODEV;
220
221	rgb = devm_kzalloc(dc->dev, sizeof(*rgb), GFP_KERNEL);
222	if (!rgb)
223		return -ENOMEM;
224
225	rgb->output.dev = dc->dev;
226	rgb->output.of_node = np;
227	rgb->dc = dc;
228
229	err = tegra_output_probe(&rgb->output);
230	if (err < 0)
231		return err;
232
233	rgb->clk = devm_clk_get(dc->dev, NULL);
234	if (IS_ERR(rgb->clk)) {
235		dev_err(dc->dev, "failed to get clock\n");
236		return PTR_ERR(rgb->clk);
 
237	}
238
239	rgb->clk_parent = devm_clk_get(dc->dev, "parent");
240	if (IS_ERR(rgb->clk_parent)) {
241		dev_err(dc->dev, "failed to get parent clock\n");
242		return PTR_ERR(rgb->clk_parent);
 
243	}
244
245	err = clk_set_parent(rgb->clk, rgb->clk_parent);
246	if (err < 0) {
247		dev_err(dc->dev, "failed to set parent clock: %d\n", err);
248		return err;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
249	}
250
251	dc->rgb = &rgb->output;
252
253	return 0;
 
 
 
 
 
 
254}
255
256int tegra_dc_rgb_remove(struct tegra_dc *dc)
257{
 
 
258	if (!dc->rgb)
259		return 0;
 
 
 
 
260
261	tegra_output_remove(dc->rgb);
262	dc->rgb = NULL;
263
264	return 0;
265}
266
267int tegra_dc_rgb_init(struct drm_device *drm, struct tegra_dc *dc)
268{
269	struct tegra_output *output = dc->rgb;
 
270	int err;
271
272	if (!dc->rgb)
273		return -ENODEV;
274
275	drm_connector_init(drm, &output->connector, &tegra_rgb_connector_funcs,
276			   DRM_MODE_CONNECTOR_LVDS);
277	drm_connector_helper_add(&output->connector,
278				 &tegra_rgb_connector_helper_funcs);
279	output->connector.dpms = DRM_MODE_DPMS_OFF;
280
281	drm_simple_encoder_init(drm, &output->encoder, DRM_MODE_ENCODER_LVDS);
282	drm_encoder_helper_add(&output->encoder,
283			       &tegra_rgb_encoder_helper_funcs);
284
285	drm_connector_attach_encoder(&output->connector,
286					  &output->encoder);
287	drm_connector_register(&output->connector);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
288
289	err = tegra_output_init(drm, output);
290	if (err < 0) {
291		dev_err(output->dev, "failed to initialize output: %d\n", err);
292		return err;
293	}
294
295	/*
296	 * Other outputs can be attached to either display controller. The RGB
297	 * outputs are an exception and work only with their parent display
298	 * controller.
299	 */
300	output->encoder.possible_crtcs = drm_crtc_mask(&dc->base);
301
302	return 0;
303}
304
305int tegra_dc_rgb_exit(struct tegra_dc *dc)
306{
307	if (dc->rgb)
308		tegra_output_exit(dc->rgb);
309
310	return 0;
311}