Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * drivers/acpi/device_pm.c - ACPI device power management routines.
4 *
5 * Copyright (C) 2012, Intel Corp.
6 * Author: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
7 *
8 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
9 *
10 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
11 */
12
13#define pr_fmt(fmt) "PM: " fmt
14
15#include <linux/acpi.h>
16#include <linux/export.h>
17#include <linux/mutex.h>
18#include <linux/pm_qos.h>
19#include <linux/pm_domain.h>
20#include <linux/pm_runtime.h>
21#include <linux/suspend.h>
22
23#include "fan.h"
24#include "internal.h"
25
26/**
27 * acpi_power_state_string - String representation of ACPI device power state.
28 * @state: ACPI device power state to return the string representation of.
29 */
30const char *acpi_power_state_string(int state)
31{
32 switch (state) {
33 case ACPI_STATE_D0:
34 return "D0";
35 case ACPI_STATE_D1:
36 return "D1";
37 case ACPI_STATE_D2:
38 return "D2";
39 case ACPI_STATE_D3_HOT:
40 return "D3hot";
41 case ACPI_STATE_D3_COLD:
42 return "D3cold";
43 default:
44 return "(unknown)";
45 }
46}
47
48static int acpi_dev_pm_explicit_get(struct acpi_device *device, int *state)
49{
50 unsigned long long psc;
51 acpi_status status;
52
53 status = acpi_evaluate_integer(device->handle, "_PSC", NULL, &psc);
54 if (ACPI_FAILURE(status))
55 return -ENODEV;
56
57 *state = psc;
58 return 0;
59}
60
61/**
62 * acpi_device_get_power - Get power state of an ACPI device.
63 * @device: Device to get the power state of.
64 * @state: Place to store the power state of the device.
65 *
66 * This function does not update the device's power.state field, but it may
67 * update its parent's power.state field (when the parent's power state is
68 * unknown and the device's power state turns out to be D0).
69 *
70 * Also, it does not update power resource reference counters to ensure that
71 * the power state returned by it will be persistent and it may return a power
72 * state shallower than previously set by acpi_device_set_power() for @device
73 * (if that power state depends on any power resources).
74 */
75int acpi_device_get_power(struct acpi_device *device, int *state)
76{
77 int result = ACPI_STATE_UNKNOWN;
78 struct acpi_device *parent;
79 int error;
80
81 if (!device || !state)
82 return -EINVAL;
83
84 parent = acpi_dev_parent(device);
85
86 if (!device->flags.power_manageable) {
87 /* TBD: Non-recursive algorithm for walking up hierarchy. */
88 *state = parent ? parent->power.state : ACPI_STATE_D0;
89 goto out;
90 }
91
92 /*
93 * Get the device's power state from power resources settings and _PSC,
94 * if available.
95 */
96 if (device->power.flags.power_resources) {
97 error = acpi_power_get_inferred_state(device, &result);
98 if (error)
99 return error;
100 }
101 if (device->power.flags.explicit_get) {
102 int psc;
103
104 error = acpi_dev_pm_explicit_get(device, &psc);
105 if (error)
106 return error;
107
108 /*
109 * The power resources settings may indicate a power state
110 * shallower than the actual power state of the device, because
111 * the same power resources may be referenced by other devices.
112 *
113 * For systems predating ACPI 4.0 we assume that D3hot is the
114 * deepest state that can be supported.
115 */
116 if (psc > result && psc < ACPI_STATE_D3_COLD)
117 result = psc;
118 else if (result == ACPI_STATE_UNKNOWN)
119 result = psc > ACPI_STATE_D2 ? ACPI_STATE_D3_HOT : psc;
120 }
121
122 /*
123 * If we were unsure about the device parent's power state up to this
124 * point, the fact that the device is in D0 implies that the parent has
125 * to be in D0 too, except if ignore_parent is set.
126 */
127 if (!device->power.flags.ignore_parent && parent &&
128 parent->power.state == ACPI_STATE_UNKNOWN &&
129 result == ACPI_STATE_D0)
130 parent->power.state = ACPI_STATE_D0;
131
132 *state = result;
133
134 out:
135 acpi_handle_debug(device->handle, "Power state: %s\n",
136 acpi_power_state_string(*state));
137
138 return 0;
139}
140
141static int acpi_dev_pm_explicit_set(struct acpi_device *adev, int state)
142{
143 if (adev->power.states[state].flags.explicit_set) {
144 char method[5] = { '_', 'P', 'S', '0' + state, '\0' };
145 acpi_status status;
146
147 status = acpi_evaluate_object(adev->handle, method, NULL, NULL);
148 if (ACPI_FAILURE(status))
149 return -ENODEV;
150 }
151 return 0;
152}
153
154/**
155 * acpi_device_set_power - Set power state of an ACPI device.
156 * @device: Device to set the power state of.
157 * @state: New power state to set.
158 *
159 * Callers must ensure that the device is power manageable before using this
160 * function.
161 */
162int acpi_device_set_power(struct acpi_device *device, int state)
163{
164 int target_state = state;
165 int result = 0;
166
167 if (!device || !device->flags.power_manageable
168 || (state < ACPI_STATE_D0) || (state > ACPI_STATE_D3_COLD))
169 return -EINVAL;
170
171 acpi_handle_debug(device->handle, "Power state change: %s -> %s\n",
172 acpi_power_state_string(device->power.state),
173 acpi_power_state_string(state));
174
175 /* Make sure this is a valid target state */
176
177 /* There is a special case for D0 addressed below. */
178 if (state > ACPI_STATE_D0 && state == device->power.state)
179 goto no_change;
180
181 if (state == ACPI_STATE_D3_COLD) {
182 /*
183 * For transitions to D3cold we need to execute _PS3 and then
184 * possibly drop references to the power resources in use.
185 */
186 state = ACPI_STATE_D3_HOT;
187 /* If D3cold is not supported, use D3hot as the target state. */
188 if (!device->power.states[ACPI_STATE_D3_COLD].flags.valid)
189 target_state = state;
190 } else if (!device->power.states[state].flags.valid) {
191 acpi_handle_debug(device->handle, "Power state %s not supported\n",
192 acpi_power_state_string(state));
193 return -ENODEV;
194 }
195
196 if (!device->power.flags.ignore_parent) {
197 struct acpi_device *parent;
198
199 parent = acpi_dev_parent(device);
200 if (parent && state < parent->power.state) {
201 acpi_handle_debug(device->handle,
202 "Cannot transition to %s for parent in %s\n",
203 acpi_power_state_string(state),
204 acpi_power_state_string(parent->power.state));
205 return -ENODEV;
206 }
207 }
208
209 /*
210 * Transition Power
211 * ----------------
212 * In accordance with ACPI 6, _PSx is executed before manipulating power
213 * resources, unless the target state is D0, in which case _PS0 is
214 * supposed to be executed after turning the power resources on.
215 */
216 if (state > ACPI_STATE_D0) {
217 /*
218 * According to ACPI 6, devices cannot go from lower-power
219 * (deeper) states to higher-power (shallower) states.
220 */
221 if (state < device->power.state) {
222 acpi_handle_debug(device->handle,
223 "Cannot transition from %s to %s\n",
224 acpi_power_state_string(device->power.state),
225 acpi_power_state_string(state));
226 return -ENODEV;
227 }
228
229 /*
230 * If the device goes from D3hot to D3cold, _PS3 has been
231 * evaluated for it already, so skip it in that case.
232 */
233 if (device->power.state < ACPI_STATE_D3_HOT) {
234 result = acpi_dev_pm_explicit_set(device, state);
235 if (result)
236 goto end;
237 }
238
239 if (device->power.flags.power_resources)
240 result = acpi_power_transition(device, target_state);
241 } else {
242 int cur_state = device->power.state;
243
244 if (device->power.flags.power_resources) {
245 result = acpi_power_transition(device, ACPI_STATE_D0);
246 if (result)
247 goto end;
248 }
249
250 if (cur_state == ACPI_STATE_D0) {
251 int psc;
252
253 /* Nothing to do here if _PSC is not present. */
254 if (!device->power.flags.explicit_get)
255 goto no_change;
256
257 /*
258 * The power state of the device was set to D0 last
259 * time, but that might have happened before a
260 * system-wide transition involving the platform
261 * firmware, so it may be necessary to evaluate _PS0
262 * for the device here. However, use extra care here
263 * and evaluate _PSC to check the device's current power
264 * state, and only invoke _PS0 if the evaluation of _PSC
265 * is successful and it returns a power state different
266 * from D0.
267 */
268 result = acpi_dev_pm_explicit_get(device, &psc);
269 if (result || psc == ACPI_STATE_D0)
270 goto no_change;
271 }
272
273 result = acpi_dev_pm_explicit_set(device, ACPI_STATE_D0);
274 }
275
276end:
277 if (result) {
278 acpi_handle_debug(device->handle,
279 "Failed to change power state to %s\n",
280 acpi_power_state_string(target_state));
281 } else {
282 device->power.state = target_state;
283 acpi_handle_debug(device->handle, "Power state changed to %s\n",
284 acpi_power_state_string(target_state));
285 }
286
287 return result;
288
289no_change:
290 acpi_handle_debug(device->handle, "Already in %s\n",
291 acpi_power_state_string(state));
292 return 0;
293}
294EXPORT_SYMBOL(acpi_device_set_power);
295
296int acpi_bus_set_power(acpi_handle handle, int state)
297{
298 struct acpi_device *device = acpi_fetch_acpi_dev(handle);
299
300 if (device)
301 return acpi_device_set_power(device, state);
302
303 return -ENODEV;
304}
305EXPORT_SYMBOL(acpi_bus_set_power);
306
307int acpi_bus_init_power(struct acpi_device *device)
308{
309 int state;
310 int result;
311
312 if (!device)
313 return -EINVAL;
314
315 device->power.state = ACPI_STATE_UNKNOWN;
316 if (!acpi_device_is_present(device)) {
317 device->flags.initialized = false;
318 return -ENXIO;
319 }
320
321 result = acpi_device_get_power(device, &state);
322 if (result)
323 return result;
324
325 if (state < ACPI_STATE_D3_COLD && device->power.flags.power_resources) {
326 /* Reference count the power resources. */
327 result = acpi_power_on_resources(device, state);
328 if (result)
329 return result;
330
331 if (state == ACPI_STATE_D0) {
332 /*
333 * If _PSC is not present and the state inferred from
334 * power resources appears to be D0, it still may be
335 * necessary to execute _PS0 at this point, because
336 * another device using the same power resources may
337 * have been put into D0 previously and that's why we
338 * see D0 here.
339 */
340 result = acpi_dev_pm_explicit_set(device, state);
341 if (result)
342 return result;
343 }
344 } else if (state == ACPI_STATE_UNKNOWN) {
345 /*
346 * No power resources and missing _PSC? Cross fingers and make
347 * it D0 in hope that this is what the BIOS put the device into.
348 * [We tried to force D0 here by executing _PS0, but that broke
349 * Toshiba P870-303 in a nasty way.]
350 */
351 state = ACPI_STATE_D0;
352 }
353 device->power.state = state;
354 return 0;
355}
356
357/**
358 * acpi_device_fix_up_power - Force device with missing _PSC into D0.
359 * @device: Device object whose power state is to be fixed up.
360 *
361 * Devices without power resources and _PSC, but having _PS0 and _PS3 defined,
362 * are assumed to be put into D0 by the BIOS. However, in some cases that may
363 * not be the case and this function should be used then.
364 */
365int acpi_device_fix_up_power(struct acpi_device *device)
366{
367 int ret = 0;
368
369 if (!device->power.flags.power_resources
370 && !device->power.flags.explicit_get
371 && device->power.state == ACPI_STATE_D0)
372 ret = acpi_dev_pm_explicit_set(device, ACPI_STATE_D0);
373
374 return ret;
375}
376EXPORT_SYMBOL_GPL(acpi_device_fix_up_power);
377
378static int fix_up_power_if_applicable(struct acpi_device *adev, void *not_used)
379{
380 if (adev->status.present && adev->status.enabled)
381 acpi_device_fix_up_power(adev);
382
383 return 0;
384}
385
386/**
387 * acpi_device_fix_up_power_extended - Force device and its children into D0.
388 * @adev: Parent device object whose power state is to be fixed up.
389 *
390 * Call acpi_device_fix_up_power() for @adev and its children so long as they
391 * are reported as present and enabled.
392 */
393void acpi_device_fix_up_power_extended(struct acpi_device *adev)
394{
395 acpi_device_fix_up_power(adev);
396 acpi_dev_for_each_child(adev, fix_up_power_if_applicable, NULL);
397}
398EXPORT_SYMBOL_GPL(acpi_device_fix_up_power_extended);
399
400/**
401 * acpi_device_fix_up_power_children - Force a device's children into D0.
402 * @adev: Parent device object whose children's power state is to be fixed up.
403 *
404 * Call acpi_device_fix_up_power() for @adev's children so long as they
405 * are reported as present and enabled.
406 */
407void acpi_device_fix_up_power_children(struct acpi_device *adev)
408{
409 acpi_dev_for_each_child(adev, fix_up_power_if_applicable, NULL);
410}
411EXPORT_SYMBOL_GPL(acpi_device_fix_up_power_children);
412
413int acpi_device_update_power(struct acpi_device *device, int *state_p)
414{
415 int state;
416 int result;
417
418 if (device->power.state == ACPI_STATE_UNKNOWN) {
419 result = acpi_bus_init_power(device);
420 if (!result && state_p)
421 *state_p = device->power.state;
422
423 return result;
424 }
425
426 result = acpi_device_get_power(device, &state);
427 if (result)
428 return result;
429
430 if (state == ACPI_STATE_UNKNOWN) {
431 state = ACPI_STATE_D0;
432 result = acpi_device_set_power(device, state);
433 if (result)
434 return result;
435 } else {
436 if (device->power.flags.power_resources) {
437 /*
438 * We don't need to really switch the state, bu we need
439 * to update the power resources' reference counters.
440 */
441 result = acpi_power_transition(device, state);
442 if (result)
443 return result;
444 }
445 device->power.state = state;
446 }
447 if (state_p)
448 *state_p = state;
449
450 return 0;
451}
452EXPORT_SYMBOL_GPL(acpi_device_update_power);
453
454int acpi_bus_update_power(acpi_handle handle, int *state_p)
455{
456 struct acpi_device *device = acpi_fetch_acpi_dev(handle);
457
458 if (device)
459 return acpi_device_update_power(device, state_p);
460
461 return -ENODEV;
462}
463EXPORT_SYMBOL_GPL(acpi_bus_update_power);
464
465bool acpi_bus_power_manageable(acpi_handle handle)
466{
467 struct acpi_device *device = acpi_fetch_acpi_dev(handle);
468
469 return device && device->flags.power_manageable;
470}
471EXPORT_SYMBOL(acpi_bus_power_manageable);
472
473static int acpi_power_up_if_adr_present(struct acpi_device *adev, void *not_used)
474{
475 if (!(adev->flags.power_manageable && adev->pnp.type.bus_address))
476 return 0;
477
478 acpi_handle_debug(adev->handle, "Power state: %s\n",
479 acpi_power_state_string(adev->power.state));
480
481 if (adev->power.state == ACPI_STATE_D3_COLD)
482 return acpi_device_set_power(adev, ACPI_STATE_D0);
483
484 return 0;
485}
486
487/**
488 * acpi_dev_power_up_children_with_adr - Power up childres with valid _ADR
489 * @adev: Parent ACPI device object.
490 *
491 * Change the power states of the direct children of @adev that are in D3cold
492 * and hold valid _ADR objects to D0 in order to allow bus (e.g. PCI)
493 * enumeration code to access them.
494 */
495void acpi_dev_power_up_children_with_adr(struct acpi_device *adev)
496{
497 acpi_dev_for_each_child(adev, acpi_power_up_if_adr_present, NULL);
498}
499
500/**
501 * acpi_dev_power_state_for_wake - Deepest power state for wakeup signaling
502 * @adev: ACPI companion of the target device.
503 *
504 * Evaluate _S0W for @adev and return the value produced by it or return
505 * ACPI_STATE_UNKNOWN on errors (including _S0W not present).
506 */
507u8 acpi_dev_power_state_for_wake(struct acpi_device *adev)
508{
509 unsigned long long state;
510 acpi_status status;
511
512 status = acpi_evaluate_integer(adev->handle, "_S0W", NULL, &state);
513 if (ACPI_FAILURE(status))
514 return ACPI_STATE_UNKNOWN;
515
516 return state;
517}
518
519#ifdef CONFIG_PM
520static DEFINE_MUTEX(acpi_pm_notifier_lock);
521static DEFINE_MUTEX(acpi_pm_notifier_install_lock);
522
523void acpi_pm_wakeup_event(struct device *dev)
524{
525 pm_wakeup_dev_event(dev, 0, acpi_s2idle_wakeup());
526}
527EXPORT_SYMBOL_GPL(acpi_pm_wakeup_event);
528
529static void acpi_pm_notify_handler(acpi_handle handle, u32 val, void *not_used)
530{
531 struct acpi_device *adev;
532
533 if (val != ACPI_NOTIFY_DEVICE_WAKE)
534 return;
535
536 acpi_handle_debug(handle, "Wake notify\n");
537
538 adev = acpi_get_acpi_dev(handle);
539 if (!adev)
540 return;
541
542 mutex_lock(&acpi_pm_notifier_lock);
543
544 if (adev->wakeup.flags.notifier_present) {
545 pm_wakeup_ws_event(adev->wakeup.ws, 0, acpi_s2idle_wakeup());
546 if (adev->wakeup.context.func) {
547 acpi_handle_debug(handle, "Running %pS for %s\n",
548 adev->wakeup.context.func,
549 dev_name(adev->wakeup.context.dev));
550 adev->wakeup.context.func(&adev->wakeup.context);
551 }
552 }
553
554 mutex_unlock(&acpi_pm_notifier_lock);
555
556 acpi_put_acpi_dev(adev);
557}
558
559/**
560 * acpi_add_pm_notifier - Register PM notify handler for given ACPI device.
561 * @adev: ACPI device to add the notify handler for.
562 * @dev: Device to generate a wakeup event for while handling the notification.
563 * @func: Work function to execute when handling the notification.
564 *
565 * NOTE: @adev need not be a run-wake or wakeup device to be a valid source of
566 * PM wakeup events. For example, wakeup events may be generated for bridges
567 * if one of the devices below the bridge is signaling wakeup, even if the
568 * bridge itself doesn't have a wakeup GPE associated with it.
569 */
570acpi_status acpi_add_pm_notifier(struct acpi_device *adev, struct device *dev,
571 void (*func)(struct acpi_device_wakeup_context *context))
572{
573 acpi_status status = AE_ALREADY_EXISTS;
574
575 if (!dev && !func)
576 return AE_BAD_PARAMETER;
577
578 mutex_lock(&acpi_pm_notifier_install_lock);
579
580 if (adev->wakeup.flags.notifier_present)
581 goto out;
582
583 status = acpi_install_notify_handler(adev->handle, ACPI_SYSTEM_NOTIFY,
584 acpi_pm_notify_handler, NULL);
585 if (ACPI_FAILURE(status))
586 goto out;
587
588 mutex_lock(&acpi_pm_notifier_lock);
589 adev->wakeup.ws = wakeup_source_register(&adev->dev,
590 dev_name(&adev->dev));
591 adev->wakeup.context.dev = dev;
592 adev->wakeup.context.func = func;
593 adev->wakeup.flags.notifier_present = true;
594 mutex_unlock(&acpi_pm_notifier_lock);
595
596 out:
597 mutex_unlock(&acpi_pm_notifier_install_lock);
598 return status;
599}
600
601/**
602 * acpi_remove_pm_notifier - Unregister PM notifier from given ACPI device.
603 * @adev: ACPI device to remove the notifier from.
604 */
605acpi_status acpi_remove_pm_notifier(struct acpi_device *adev)
606{
607 acpi_status status = AE_BAD_PARAMETER;
608
609 mutex_lock(&acpi_pm_notifier_install_lock);
610
611 if (!adev->wakeup.flags.notifier_present)
612 goto out;
613
614 status = acpi_remove_notify_handler(adev->handle,
615 ACPI_SYSTEM_NOTIFY,
616 acpi_pm_notify_handler);
617 if (ACPI_FAILURE(status))
618 goto out;
619
620 mutex_lock(&acpi_pm_notifier_lock);
621 adev->wakeup.context.func = NULL;
622 adev->wakeup.context.dev = NULL;
623 wakeup_source_unregister(adev->wakeup.ws);
624 adev->wakeup.flags.notifier_present = false;
625 mutex_unlock(&acpi_pm_notifier_lock);
626
627 out:
628 mutex_unlock(&acpi_pm_notifier_install_lock);
629 return status;
630}
631
632bool acpi_bus_can_wakeup(acpi_handle handle)
633{
634 struct acpi_device *device = acpi_fetch_acpi_dev(handle);
635
636 return device && device->wakeup.flags.valid;
637}
638EXPORT_SYMBOL(acpi_bus_can_wakeup);
639
640bool acpi_pm_device_can_wakeup(struct device *dev)
641{
642 struct acpi_device *adev = ACPI_COMPANION(dev);
643
644 return adev ? acpi_device_can_wakeup(adev) : false;
645}
646
647/**
648 * acpi_dev_pm_get_state - Get preferred power state of ACPI device.
649 * @dev: Device whose preferred target power state to return.
650 * @adev: ACPI device node corresponding to @dev.
651 * @target_state: System state to match the resultant device state.
652 * @d_min_p: Location to store the highest power state available to the device.
653 * @d_max_p: Location to store the lowest power state available to the device.
654 *
655 * Find the lowest power (highest number) and highest power (lowest number) ACPI
656 * device power states that the device can be in while the system is in the
657 * state represented by @target_state. Store the integer numbers representing
658 * those stats in the memory locations pointed to by @d_max_p and @d_min_p,
659 * respectively.
660 *
661 * Callers must ensure that @dev and @adev are valid pointers and that @adev
662 * actually corresponds to @dev before using this function.
663 *
664 * Returns 0 on success or -ENODATA when one of the ACPI methods fails or
665 * returns a value that doesn't make sense. The memory locations pointed to by
666 * @d_max_p and @d_min_p are only modified on success.
667 */
668static int acpi_dev_pm_get_state(struct device *dev, struct acpi_device *adev,
669 u32 target_state, int *d_min_p, int *d_max_p)
670{
671 char method[] = { '_', 'S', '0' + target_state, 'D', '\0' };
672 acpi_handle handle = adev->handle;
673 unsigned long long ret;
674 int d_min, d_max;
675 bool wakeup = false;
676 bool has_sxd = false;
677 acpi_status status;
678
679 /*
680 * If the system state is S0, the lowest power state the device can be
681 * in is D3cold, unless the device has _S0W and is supposed to signal
682 * wakeup, in which case the return value of _S0W has to be used as the
683 * lowest power state available to the device.
684 */
685 d_min = ACPI_STATE_D0;
686 d_max = ACPI_STATE_D3_COLD;
687
688 /*
689 * If present, _SxD methods return the minimum D-state (highest power
690 * state) we can use for the corresponding S-states. Otherwise, the
691 * minimum D-state is D0 (ACPI 3.x).
692 */
693 if (target_state > ACPI_STATE_S0) {
694 /*
695 * We rely on acpi_evaluate_integer() not clobbering the integer
696 * provided if AE_NOT_FOUND is returned.
697 */
698 ret = d_min;
699 status = acpi_evaluate_integer(handle, method, NULL, &ret);
700 if ((ACPI_FAILURE(status) && status != AE_NOT_FOUND)
701 || ret > ACPI_STATE_D3_COLD)
702 return -ENODATA;
703
704 /*
705 * We need to handle legacy systems where D3hot and D3cold are
706 * the same and 3 is returned in both cases, so fall back to
707 * D3cold if D3hot is not a valid state.
708 */
709 if (!adev->power.states[ret].flags.valid) {
710 if (ret == ACPI_STATE_D3_HOT)
711 ret = ACPI_STATE_D3_COLD;
712 else
713 return -ENODATA;
714 }
715
716 if (status == AE_OK)
717 has_sxd = true;
718
719 d_min = ret;
720 wakeup = device_may_wakeup(dev) && adev->wakeup.flags.valid
721 && adev->wakeup.sleep_state >= target_state;
722 } else if (device_may_wakeup(dev) && dev->power.wakeirq) {
723 /*
724 * The ACPI subsystem doesn't manage the wake bit for IRQs
725 * defined with ExclusiveAndWake and SharedAndWake. Instead we
726 * expect them to be managed via the PM subsystem. Drivers
727 * should call dev_pm_set_wake_irq to register an IRQ as a wake
728 * source.
729 *
730 * If a device has a wake IRQ attached we need to check the
731 * _S0W method to get the correct wake D-state. Otherwise we
732 * end up putting the device into D3Cold which will more than
733 * likely disable wake functionality.
734 */
735 wakeup = true;
736 } else {
737 /* ACPI GPE is specified in _PRW. */
738 wakeup = adev->wakeup.flags.valid;
739 }
740
741 /*
742 * If _PRW says we can wake up the system from the target sleep state,
743 * the D-state returned by _SxD is sufficient for that (we assume a
744 * wakeup-aware driver if wake is set). Still, if _SxW exists
745 * (ACPI 3.x), it should return the maximum (lowest power) D-state that
746 * can wake the system. _S0W may be valid, too.
747 */
748 if (wakeup) {
749 method[3] = 'W';
750 status = acpi_evaluate_integer(handle, method, NULL, &ret);
751 if (status == AE_NOT_FOUND) {
752 /* No _SxW. In this case, the ACPI spec says that we
753 * must not go into any power state deeper than the
754 * value returned from _SxD.
755 */
756 if (has_sxd && target_state > ACPI_STATE_S0)
757 d_max = d_min;
758 } else if (ACPI_SUCCESS(status) && ret <= ACPI_STATE_D3_COLD) {
759 /* Fall back to D3cold if ret is not a valid state. */
760 if (!adev->power.states[ret].flags.valid)
761 ret = ACPI_STATE_D3_COLD;
762
763 d_max = ret > d_min ? ret : d_min;
764 } else {
765 return -ENODATA;
766 }
767 }
768
769 if (d_min_p)
770 *d_min_p = d_min;
771
772 if (d_max_p)
773 *d_max_p = d_max;
774
775 return 0;
776}
777
778/**
779 * acpi_pm_device_sleep_state - Get preferred power state of ACPI device.
780 * @dev: Device whose preferred target power state to return.
781 * @d_min_p: Location to store the upper limit of the allowed states range.
782 * @d_max_in: Deepest low-power state to take into consideration.
783 * Return value: Preferred power state of the device on success, -ENODEV
784 * if there's no 'struct acpi_device' for @dev, -EINVAL if @d_max_in is
785 * incorrect, or -ENODATA on ACPI method failure.
786 *
787 * The caller must ensure that @dev is valid before using this function.
788 */
789int acpi_pm_device_sleep_state(struct device *dev, int *d_min_p, int d_max_in)
790{
791 struct acpi_device *adev;
792 int ret, d_min, d_max;
793
794 if (d_max_in < ACPI_STATE_D0 || d_max_in > ACPI_STATE_D3_COLD)
795 return -EINVAL;
796
797 if (d_max_in > ACPI_STATE_D2) {
798 enum pm_qos_flags_status stat;
799
800 stat = dev_pm_qos_flags(dev, PM_QOS_FLAG_NO_POWER_OFF);
801 if (stat == PM_QOS_FLAGS_ALL)
802 d_max_in = ACPI_STATE_D2;
803 }
804
805 adev = ACPI_COMPANION(dev);
806 if (!adev) {
807 dev_dbg(dev, "ACPI companion missing in %s!\n", __func__);
808 return -ENODEV;
809 }
810
811 ret = acpi_dev_pm_get_state(dev, adev, acpi_target_system_state(),
812 &d_min, &d_max);
813 if (ret)
814 return ret;
815
816 if (d_max_in < d_min)
817 return -EINVAL;
818
819 if (d_max > d_max_in) {
820 for (d_max = d_max_in; d_max > d_min; d_max--) {
821 if (adev->power.states[d_max].flags.valid)
822 break;
823 }
824 }
825
826 if (d_min_p)
827 *d_min_p = d_min;
828
829 return d_max;
830}
831EXPORT_SYMBOL(acpi_pm_device_sleep_state);
832
833/**
834 * acpi_pm_notify_work_func - ACPI devices wakeup notification work function.
835 * @context: Device wakeup context.
836 */
837static void acpi_pm_notify_work_func(struct acpi_device_wakeup_context *context)
838{
839 struct device *dev = context->dev;
840
841 if (dev) {
842 pm_wakeup_event(dev, 0);
843 pm_request_resume(dev);
844 }
845}
846
847static DEFINE_MUTEX(acpi_wakeup_lock);
848
849static int __acpi_device_wakeup_enable(struct acpi_device *adev,
850 u32 target_state)
851{
852 struct acpi_device_wakeup *wakeup = &adev->wakeup;
853 acpi_status status;
854 int error = 0;
855
856 mutex_lock(&acpi_wakeup_lock);
857
858 /*
859 * If the device wakeup power is already enabled, disable it and enable
860 * it again in case it depends on the configuration of subordinate
861 * devices and the conditions have changed since it was enabled last
862 * time.
863 */
864 if (wakeup->enable_count > 0)
865 acpi_disable_wakeup_device_power(adev);
866
867 error = acpi_enable_wakeup_device_power(adev, target_state);
868 if (error) {
869 if (wakeup->enable_count > 0) {
870 acpi_disable_gpe(wakeup->gpe_device, wakeup->gpe_number);
871 wakeup->enable_count = 0;
872 }
873 goto out;
874 }
875
876 if (wakeup->enable_count > 0)
877 goto inc;
878
879 status = acpi_enable_gpe(wakeup->gpe_device, wakeup->gpe_number);
880 if (ACPI_FAILURE(status)) {
881 acpi_disable_wakeup_device_power(adev);
882 error = -EIO;
883 goto out;
884 }
885
886 acpi_handle_debug(adev->handle, "GPE%2X enabled for wakeup\n",
887 (unsigned int)wakeup->gpe_number);
888
889inc:
890 if (wakeup->enable_count < INT_MAX)
891 wakeup->enable_count++;
892 else
893 acpi_handle_info(adev->handle, "Wakeup enable count out of bounds!\n");
894
895out:
896 mutex_unlock(&acpi_wakeup_lock);
897 return error;
898}
899
900/**
901 * acpi_device_wakeup_enable - Enable wakeup functionality for device.
902 * @adev: ACPI device to enable wakeup functionality for.
903 * @target_state: State the system is transitioning into.
904 *
905 * Enable the GPE associated with @adev so that it can generate wakeup signals
906 * for the device in response to external (remote) events and enable wakeup
907 * power for it.
908 *
909 * Callers must ensure that @adev is a valid ACPI device node before executing
910 * this function.
911 */
912static int acpi_device_wakeup_enable(struct acpi_device *adev, u32 target_state)
913{
914 return __acpi_device_wakeup_enable(adev, target_state);
915}
916
917/**
918 * acpi_device_wakeup_disable - Disable wakeup functionality for device.
919 * @adev: ACPI device to disable wakeup functionality for.
920 *
921 * Disable the GPE associated with @adev and disable wakeup power for it.
922 *
923 * Callers must ensure that @adev is a valid ACPI device node before executing
924 * this function.
925 */
926static void acpi_device_wakeup_disable(struct acpi_device *adev)
927{
928 struct acpi_device_wakeup *wakeup = &adev->wakeup;
929
930 mutex_lock(&acpi_wakeup_lock);
931
932 if (!wakeup->enable_count)
933 goto out;
934
935 acpi_disable_gpe(wakeup->gpe_device, wakeup->gpe_number);
936 acpi_disable_wakeup_device_power(adev);
937
938 wakeup->enable_count--;
939
940out:
941 mutex_unlock(&acpi_wakeup_lock);
942}
943
944/**
945 * acpi_pm_set_device_wakeup - Enable/disable remote wakeup for given device.
946 * @dev: Device to enable/disable to generate wakeup events.
947 * @enable: Whether to enable or disable the wakeup functionality.
948 */
949int acpi_pm_set_device_wakeup(struct device *dev, bool enable)
950{
951 struct acpi_device *adev;
952 int error;
953
954 adev = ACPI_COMPANION(dev);
955 if (!adev) {
956 dev_dbg(dev, "ACPI companion missing in %s!\n", __func__);
957 return -ENODEV;
958 }
959
960 if (!acpi_device_can_wakeup(adev))
961 return -EINVAL;
962
963 if (!enable) {
964 acpi_device_wakeup_disable(adev);
965 dev_dbg(dev, "Wakeup disabled by ACPI\n");
966 return 0;
967 }
968
969 error = __acpi_device_wakeup_enable(adev, acpi_target_system_state());
970 if (!error)
971 dev_dbg(dev, "Wakeup enabled by ACPI\n");
972
973 return error;
974}
975EXPORT_SYMBOL_GPL(acpi_pm_set_device_wakeup);
976
977/**
978 * acpi_dev_pm_low_power - Put ACPI device into a low-power state.
979 * @dev: Device to put into a low-power state.
980 * @adev: ACPI device node corresponding to @dev.
981 * @system_state: System state to choose the device state for.
982 */
983static int acpi_dev_pm_low_power(struct device *dev, struct acpi_device *adev,
984 u32 system_state)
985{
986 int ret, state;
987
988 if (!acpi_device_power_manageable(adev))
989 return 0;
990
991 ret = acpi_dev_pm_get_state(dev, adev, system_state, NULL, &state);
992 return ret ? ret : acpi_device_set_power(adev, state);
993}
994
995/**
996 * acpi_dev_pm_full_power - Put ACPI device into the full-power state.
997 * @adev: ACPI device node to put into the full-power state.
998 */
999static int acpi_dev_pm_full_power(struct acpi_device *adev)
1000{
1001 return acpi_device_power_manageable(adev) ?
1002 acpi_device_set_power(adev, ACPI_STATE_D0) : 0;
1003}
1004
1005/**
1006 * acpi_dev_suspend - Put device into a low-power state using ACPI.
1007 * @dev: Device to put into a low-power state.
1008 * @wakeup: Whether or not to enable wakeup for the device.
1009 *
1010 * Put the given device into a low-power state using the standard ACPI
1011 * mechanism. Set up remote wakeup if desired, choose the state to put the
1012 * device into (this checks if remote wakeup is expected to work too), and set
1013 * the power state of the device.
1014 */
1015int acpi_dev_suspend(struct device *dev, bool wakeup)
1016{
1017 struct acpi_device *adev = ACPI_COMPANION(dev);
1018 u32 target_state = acpi_target_system_state();
1019 int error;
1020
1021 if (!adev)
1022 return 0;
1023
1024 if (wakeup && acpi_device_can_wakeup(adev)) {
1025 error = acpi_device_wakeup_enable(adev, target_state);
1026 if (error)
1027 return -EAGAIN;
1028 } else {
1029 wakeup = false;
1030 }
1031
1032 error = acpi_dev_pm_low_power(dev, adev, target_state);
1033 if (error && wakeup)
1034 acpi_device_wakeup_disable(adev);
1035
1036 return error;
1037}
1038EXPORT_SYMBOL_GPL(acpi_dev_suspend);
1039
1040/**
1041 * acpi_dev_resume - Put device into the full-power state using ACPI.
1042 * @dev: Device to put into the full-power state.
1043 *
1044 * Put the given device into the full-power state using the standard ACPI
1045 * mechanism. Set the power state of the device to ACPI D0 and disable wakeup.
1046 */
1047int acpi_dev_resume(struct device *dev)
1048{
1049 struct acpi_device *adev = ACPI_COMPANION(dev);
1050 int error;
1051
1052 if (!adev)
1053 return 0;
1054
1055 error = acpi_dev_pm_full_power(adev);
1056 acpi_device_wakeup_disable(adev);
1057 return error;
1058}
1059EXPORT_SYMBOL_GPL(acpi_dev_resume);
1060
1061/**
1062 * acpi_subsys_runtime_suspend - Suspend device using ACPI.
1063 * @dev: Device to suspend.
1064 *
1065 * Carry out the generic runtime suspend procedure for @dev and use ACPI to put
1066 * it into a runtime low-power state.
1067 */
1068int acpi_subsys_runtime_suspend(struct device *dev)
1069{
1070 int ret = pm_generic_runtime_suspend(dev);
1071
1072 return ret ? ret : acpi_dev_suspend(dev, true);
1073}
1074EXPORT_SYMBOL_GPL(acpi_subsys_runtime_suspend);
1075
1076/**
1077 * acpi_subsys_runtime_resume - Resume device using ACPI.
1078 * @dev: Device to Resume.
1079 *
1080 * Use ACPI to put the given device into the full-power state and carry out the
1081 * generic runtime resume procedure for it.
1082 */
1083int acpi_subsys_runtime_resume(struct device *dev)
1084{
1085 int ret = acpi_dev_resume(dev);
1086
1087 return ret ? ret : pm_generic_runtime_resume(dev);
1088}
1089EXPORT_SYMBOL_GPL(acpi_subsys_runtime_resume);
1090
1091#ifdef CONFIG_PM_SLEEP
1092static bool acpi_dev_needs_resume(struct device *dev, struct acpi_device *adev)
1093{
1094 u32 sys_target = acpi_target_system_state();
1095 int ret, state;
1096
1097 if (!pm_runtime_suspended(dev) || !adev || (adev->wakeup.flags.valid &&
1098 device_may_wakeup(dev) != !!adev->wakeup.prepare_count))
1099 return true;
1100
1101 if (sys_target == ACPI_STATE_S0)
1102 return false;
1103
1104 if (adev->power.flags.dsw_present)
1105 return true;
1106
1107 ret = acpi_dev_pm_get_state(dev, adev, sys_target, NULL, &state);
1108 if (ret)
1109 return true;
1110
1111 return state != adev->power.state;
1112}
1113
1114/**
1115 * acpi_subsys_prepare - Prepare device for system transition to a sleep state.
1116 * @dev: Device to prepare.
1117 */
1118int acpi_subsys_prepare(struct device *dev)
1119{
1120 struct acpi_device *adev = ACPI_COMPANION(dev);
1121
1122 if (dev->driver && dev->driver->pm && dev->driver->pm->prepare) {
1123 int ret = dev->driver->pm->prepare(dev);
1124
1125 if (ret < 0)
1126 return ret;
1127
1128 if (!ret && dev_pm_test_driver_flags(dev, DPM_FLAG_SMART_PREPARE))
1129 return 0;
1130 }
1131
1132 return !acpi_dev_needs_resume(dev, adev);
1133}
1134EXPORT_SYMBOL_GPL(acpi_subsys_prepare);
1135
1136/**
1137 * acpi_subsys_complete - Finalize device's resume during system resume.
1138 * @dev: Device to handle.
1139 */
1140void acpi_subsys_complete(struct device *dev)
1141{
1142 pm_generic_complete(dev);
1143 /*
1144 * If the device had been runtime-suspended before the system went into
1145 * the sleep state it is going out of and it has never been resumed till
1146 * now, resume it in case the firmware powered it up.
1147 */
1148 if (pm_runtime_suspended(dev) && pm_resume_via_firmware())
1149 pm_request_resume(dev);
1150}
1151EXPORT_SYMBOL_GPL(acpi_subsys_complete);
1152
1153/**
1154 * acpi_subsys_suspend - Run the device driver's suspend callback.
1155 * @dev: Device to handle.
1156 *
1157 * Follow PCI and resume devices from runtime suspend before running their
1158 * system suspend callbacks, unless the driver can cope with runtime-suspended
1159 * devices during system suspend and there are no ACPI-specific reasons for
1160 * resuming them.
1161 */
1162int acpi_subsys_suspend(struct device *dev)
1163{
1164 if (!dev_pm_test_driver_flags(dev, DPM_FLAG_SMART_SUSPEND) ||
1165 acpi_dev_needs_resume(dev, ACPI_COMPANION(dev)))
1166 pm_runtime_resume(dev);
1167
1168 return pm_generic_suspend(dev);
1169}
1170EXPORT_SYMBOL_GPL(acpi_subsys_suspend);
1171
1172/**
1173 * acpi_subsys_suspend_late - Suspend device using ACPI.
1174 * @dev: Device to suspend.
1175 *
1176 * Carry out the generic late suspend procedure for @dev and use ACPI to put
1177 * it into a low-power state during system transition into a sleep state.
1178 */
1179int acpi_subsys_suspend_late(struct device *dev)
1180{
1181 int ret;
1182
1183 if (dev_pm_skip_suspend(dev))
1184 return 0;
1185
1186 ret = pm_generic_suspend_late(dev);
1187 return ret ? ret : acpi_dev_suspend(dev, device_may_wakeup(dev));
1188}
1189EXPORT_SYMBOL_GPL(acpi_subsys_suspend_late);
1190
1191/**
1192 * acpi_subsys_suspend_noirq - Run the device driver's "noirq" suspend callback.
1193 * @dev: Device to suspend.
1194 */
1195int acpi_subsys_suspend_noirq(struct device *dev)
1196{
1197 int ret;
1198
1199 if (dev_pm_skip_suspend(dev))
1200 return 0;
1201
1202 ret = pm_generic_suspend_noirq(dev);
1203 if (ret)
1204 return ret;
1205
1206 /*
1207 * If the target system sleep state is suspend-to-idle, it is sufficient
1208 * to check whether or not the device's wakeup settings are good for
1209 * runtime PM. Otherwise, the pm_resume_via_firmware() check will cause
1210 * acpi_subsys_complete() to take care of fixing up the device's state
1211 * anyway, if need be.
1212 */
1213 if (device_can_wakeup(dev) && !device_may_wakeup(dev))
1214 dev->power.may_skip_resume = false;
1215
1216 return 0;
1217}
1218EXPORT_SYMBOL_GPL(acpi_subsys_suspend_noirq);
1219
1220/**
1221 * acpi_subsys_resume_noirq - Run the device driver's "noirq" resume callback.
1222 * @dev: Device to handle.
1223 */
1224static int acpi_subsys_resume_noirq(struct device *dev)
1225{
1226 if (dev_pm_skip_resume(dev))
1227 return 0;
1228
1229 return pm_generic_resume_noirq(dev);
1230}
1231
1232/**
1233 * acpi_subsys_resume_early - Resume device using ACPI.
1234 * @dev: Device to Resume.
1235 *
1236 * Use ACPI to put the given device into the full-power state and carry out the
1237 * generic early resume procedure for it during system transition into the
1238 * working state, but only do that if device either defines early resume
1239 * handler, or does not define power operations at all. Otherwise powering up
1240 * of the device is postponed to the normal resume phase.
1241 */
1242static int acpi_subsys_resume_early(struct device *dev)
1243{
1244 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
1245 int ret;
1246
1247 if (dev_pm_skip_resume(dev))
1248 return 0;
1249
1250 if (pm && !pm->resume_early) {
1251 dev_dbg(dev, "postponing D0 transition to normal resume stage\n");
1252 return 0;
1253 }
1254
1255 ret = acpi_dev_resume(dev);
1256 return ret ? ret : pm_generic_resume_early(dev);
1257}
1258
1259/**
1260 * acpi_subsys_resume - Resume device using ACPI.
1261 * @dev: Device to Resume.
1262 *
1263 * Use ACPI to put the given device into the full-power state if it has not been
1264 * powered up during early resume phase, and carry out the generic resume
1265 * procedure for it during system transition into the working state.
1266 */
1267static int acpi_subsys_resume(struct device *dev)
1268{
1269 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
1270 int ret = 0;
1271
1272 if (!dev_pm_skip_resume(dev) && pm && !pm->resume_early) {
1273 dev_dbg(dev, "executing postponed D0 transition\n");
1274 ret = acpi_dev_resume(dev);
1275 }
1276
1277 return ret ? ret : pm_generic_resume(dev);
1278}
1279
1280/**
1281 * acpi_subsys_freeze - Run the device driver's freeze callback.
1282 * @dev: Device to handle.
1283 */
1284int acpi_subsys_freeze(struct device *dev)
1285{
1286 /*
1287 * Resume all runtime-suspended devices before creating a snapshot
1288 * image of system memory, because the restore kernel generally cannot
1289 * be expected to always handle them consistently and they need to be
1290 * put into the runtime-active metastate during system resume anyway,
1291 * so it is better to ensure that the state saved in the image will be
1292 * always consistent with that.
1293 */
1294 pm_runtime_resume(dev);
1295
1296 return pm_generic_freeze(dev);
1297}
1298EXPORT_SYMBOL_GPL(acpi_subsys_freeze);
1299
1300/**
1301 * acpi_subsys_restore_early - Restore device using ACPI.
1302 * @dev: Device to restore.
1303 */
1304int acpi_subsys_restore_early(struct device *dev)
1305{
1306 int ret = acpi_dev_resume(dev);
1307
1308 return ret ? ret : pm_generic_restore_early(dev);
1309}
1310EXPORT_SYMBOL_GPL(acpi_subsys_restore_early);
1311
1312/**
1313 * acpi_subsys_poweroff - Run the device driver's poweroff callback.
1314 * @dev: Device to handle.
1315 *
1316 * Follow PCI and resume devices from runtime suspend before running their
1317 * system poweroff callbacks, unless the driver can cope with runtime-suspended
1318 * devices during system suspend and there are no ACPI-specific reasons for
1319 * resuming them.
1320 */
1321int acpi_subsys_poweroff(struct device *dev)
1322{
1323 if (!dev_pm_test_driver_flags(dev, DPM_FLAG_SMART_SUSPEND) ||
1324 acpi_dev_needs_resume(dev, ACPI_COMPANION(dev)))
1325 pm_runtime_resume(dev);
1326
1327 return pm_generic_poweroff(dev);
1328}
1329EXPORT_SYMBOL_GPL(acpi_subsys_poweroff);
1330
1331/**
1332 * acpi_subsys_poweroff_late - Run the device driver's poweroff callback.
1333 * @dev: Device to handle.
1334 *
1335 * Carry out the generic late poweroff procedure for @dev and use ACPI to put
1336 * it into a low-power state during system transition into a sleep state.
1337 */
1338static int acpi_subsys_poweroff_late(struct device *dev)
1339{
1340 int ret;
1341
1342 if (dev_pm_skip_suspend(dev))
1343 return 0;
1344
1345 ret = pm_generic_poweroff_late(dev);
1346 if (ret)
1347 return ret;
1348
1349 return acpi_dev_suspend(dev, device_may_wakeup(dev));
1350}
1351
1352/**
1353 * acpi_subsys_poweroff_noirq - Run the driver's "noirq" poweroff callback.
1354 * @dev: Device to suspend.
1355 */
1356static int acpi_subsys_poweroff_noirq(struct device *dev)
1357{
1358 if (dev_pm_skip_suspend(dev))
1359 return 0;
1360
1361 return pm_generic_poweroff_noirq(dev);
1362}
1363#endif /* CONFIG_PM_SLEEP */
1364
1365static struct dev_pm_domain acpi_general_pm_domain = {
1366 .ops = {
1367 .runtime_suspend = acpi_subsys_runtime_suspend,
1368 .runtime_resume = acpi_subsys_runtime_resume,
1369#ifdef CONFIG_PM_SLEEP
1370 .prepare = acpi_subsys_prepare,
1371 .complete = acpi_subsys_complete,
1372 .suspend = acpi_subsys_suspend,
1373 .resume = acpi_subsys_resume,
1374 .suspend_late = acpi_subsys_suspend_late,
1375 .suspend_noirq = acpi_subsys_suspend_noirq,
1376 .resume_noirq = acpi_subsys_resume_noirq,
1377 .resume_early = acpi_subsys_resume_early,
1378 .freeze = acpi_subsys_freeze,
1379 .poweroff = acpi_subsys_poweroff,
1380 .poweroff_late = acpi_subsys_poweroff_late,
1381 .poweroff_noirq = acpi_subsys_poweroff_noirq,
1382 .restore_early = acpi_subsys_restore_early,
1383#endif
1384 },
1385};
1386
1387/**
1388 * acpi_dev_pm_detach - Remove ACPI power management from the device.
1389 * @dev: Device to take care of.
1390 * @power_off: Whether or not to try to remove power from the device.
1391 *
1392 * Remove the device from the general ACPI PM domain and remove its wakeup
1393 * notifier. If @power_off is set, additionally remove power from the device if
1394 * possible.
1395 *
1396 * Callers must ensure proper synchronization of this function with power
1397 * management callbacks.
1398 */
1399static void acpi_dev_pm_detach(struct device *dev, bool power_off)
1400{
1401 struct acpi_device *adev = ACPI_COMPANION(dev);
1402
1403 if (adev && dev->pm_domain == &acpi_general_pm_domain) {
1404 dev_pm_domain_set(dev, NULL);
1405 acpi_remove_pm_notifier(adev);
1406 if (power_off) {
1407 /*
1408 * If the device's PM QoS resume latency limit or flags
1409 * have been exposed to user space, they have to be
1410 * hidden at this point, so that they don't affect the
1411 * choice of the low-power state to put the device into.
1412 */
1413 dev_pm_qos_hide_latency_limit(dev);
1414 dev_pm_qos_hide_flags(dev);
1415 acpi_device_wakeup_disable(adev);
1416 acpi_dev_pm_low_power(dev, adev, ACPI_STATE_S0);
1417 }
1418 }
1419}
1420
1421/**
1422 * acpi_dev_pm_attach - Prepare device for ACPI power management.
1423 * @dev: Device to prepare.
1424 * @power_on: Whether or not to power on the device.
1425 *
1426 * If @dev has a valid ACPI handle that has a valid struct acpi_device object
1427 * attached to it, install a wakeup notification handler for the device and
1428 * add it to the general ACPI PM domain. If @power_on is set, the device will
1429 * be put into the ACPI D0 state before the function returns.
1430 *
1431 * This assumes that the @dev's bus type uses generic power management callbacks
1432 * (or doesn't use any power management callbacks at all).
1433 *
1434 * Callers must ensure proper synchronization of this function with power
1435 * management callbacks.
1436 */
1437int acpi_dev_pm_attach(struct device *dev, bool power_on)
1438{
1439 /*
1440 * Skip devices whose ACPI companions match the device IDs below,
1441 * because they require special power management handling incompatible
1442 * with the generic ACPI PM domain.
1443 */
1444 static const struct acpi_device_id special_pm_ids[] = {
1445 ACPI_FAN_DEVICE_IDS,
1446 {}
1447 };
1448 struct acpi_device *adev = ACPI_COMPANION(dev);
1449
1450 if (!adev || !acpi_match_device_ids(adev, special_pm_ids))
1451 return 0;
1452
1453 /*
1454 * Only attach the power domain to the first device if the
1455 * companion is shared by multiple. This is to prevent doing power
1456 * management twice.
1457 */
1458 if (!acpi_device_is_first_physical_node(adev, dev))
1459 return 0;
1460
1461 acpi_add_pm_notifier(adev, dev, acpi_pm_notify_work_func);
1462 dev_pm_domain_set(dev, &acpi_general_pm_domain);
1463 if (power_on) {
1464 acpi_dev_pm_full_power(adev);
1465 acpi_device_wakeup_disable(adev);
1466 }
1467
1468 dev->pm_domain->detach = acpi_dev_pm_detach;
1469 return 1;
1470}
1471EXPORT_SYMBOL_GPL(acpi_dev_pm_attach);
1472
1473/**
1474 * acpi_storage_d3 - Check if D3 should be used in the suspend path
1475 * @dev: Device to check
1476 *
1477 * Return %true if the platform firmware wants @dev to be programmed
1478 * into D3hot or D3cold (if supported) in the suspend path, or %false
1479 * when there is no specific preference. On some platforms, if this
1480 * hint is ignored, @dev may remain unresponsive after suspending the
1481 * platform as a whole.
1482 *
1483 * Although the property has storage in the name it actually is
1484 * applied to the PCIe slot and plugging in a non-storage device the
1485 * same platform restrictions will likely apply.
1486 */
1487bool acpi_storage_d3(struct device *dev)
1488{
1489 struct acpi_device *adev = ACPI_COMPANION(dev);
1490 u8 val;
1491
1492 if (force_storage_d3())
1493 return true;
1494
1495 if (!adev)
1496 return false;
1497 if (fwnode_property_read_u8(acpi_fwnode_handle(adev), "StorageD3Enable",
1498 &val))
1499 return false;
1500 return val == 1;
1501}
1502EXPORT_SYMBOL_GPL(acpi_storage_d3);
1503
1504/**
1505 * acpi_dev_state_d0 - Tell if the device is in D0 power state
1506 * @dev: Physical device the ACPI power state of which to check
1507 *
1508 * On a system without ACPI, return true. On a system with ACPI, return true if
1509 * the current ACPI power state of the device is D0, or false otherwise.
1510 *
1511 * Note that the power state of a device is not well-defined after it has been
1512 * passed to acpi_device_set_power() and before that function returns, so it is
1513 * not valid to ask for the ACPI power state of the device in that time frame.
1514 *
1515 * This function is intended to be used in a driver's probe or remove
1516 * function. See Documentation/firmware-guide/acpi/non-d0-probe.rst for
1517 * more information.
1518 */
1519bool acpi_dev_state_d0(struct device *dev)
1520{
1521 struct acpi_device *adev = ACPI_COMPANION(dev);
1522
1523 if (!adev)
1524 return true;
1525
1526 return adev->power.state == ACPI_STATE_D0;
1527}
1528EXPORT_SYMBOL_GPL(acpi_dev_state_d0);
1529
1530#endif /* CONFIG_PM */
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * drivers/acpi/device_pm.c - ACPI device power management routines.
4 *
5 * Copyright (C) 2012, Intel Corp.
6 * Author: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
7 *
8 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
9 *
10 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
11 */
12
13#include <linux/acpi.h>
14#include <linux/export.h>
15#include <linux/mutex.h>
16#include <linux/pm_qos.h>
17#include <linux/pm_domain.h>
18#include <linux/pm_runtime.h>
19#include <linux/suspend.h>
20
21#include "internal.h"
22
23#define _COMPONENT ACPI_POWER_COMPONENT
24ACPI_MODULE_NAME("device_pm");
25
26/**
27 * acpi_power_state_string - String representation of ACPI device power state.
28 * @state: ACPI device power state to return the string representation of.
29 */
30const char *acpi_power_state_string(int state)
31{
32 switch (state) {
33 case ACPI_STATE_D0:
34 return "D0";
35 case ACPI_STATE_D1:
36 return "D1";
37 case ACPI_STATE_D2:
38 return "D2";
39 case ACPI_STATE_D3_HOT:
40 return "D3hot";
41 case ACPI_STATE_D3_COLD:
42 return "D3cold";
43 default:
44 return "(unknown)";
45 }
46}
47
48static int acpi_dev_pm_explicit_get(struct acpi_device *device, int *state)
49{
50 unsigned long long psc;
51 acpi_status status;
52
53 status = acpi_evaluate_integer(device->handle, "_PSC", NULL, &psc);
54 if (ACPI_FAILURE(status))
55 return -ENODEV;
56
57 *state = psc;
58 return 0;
59}
60
61/**
62 * acpi_device_get_power - Get power state of an ACPI device.
63 * @device: Device to get the power state of.
64 * @state: Place to store the power state of the device.
65 *
66 * This function does not update the device's power.state field, but it may
67 * update its parent's power.state field (when the parent's power state is
68 * unknown and the device's power state turns out to be D0).
69 *
70 * Also, it does not update power resource reference counters to ensure that
71 * the power state returned by it will be persistent and it may return a power
72 * state shallower than previously set by acpi_device_set_power() for @device
73 * (if that power state depends on any power resources).
74 */
75int acpi_device_get_power(struct acpi_device *device, int *state)
76{
77 int result = ACPI_STATE_UNKNOWN;
78 int error;
79
80 if (!device || !state)
81 return -EINVAL;
82
83 if (!device->flags.power_manageable) {
84 /* TBD: Non-recursive algorithm for walking up hierarchy. */
85 *state = device->parent ?
86 device->parent->power.state : ACPI_STATE_D0;
87 goto out;
88 }
89
90 /*
91 * Get the device's power state from power resources settings and _PSC,
92 * if available.
93 */
94 if (device->power.flags.power_resources) {
95 error = acpi_power_get_inferred_state(device, &result);
96 if (error)
97 return error;
98 }
99 if (device->power.flags.explicit_get) {
100 int psc;
101
102 error = acpi_dev_pm_explicit_get(device, &psc);
103 if (error)
104 return error;
105
106 /*
107 * The power resources settings may indicate a power state
108 * shallower than the actual power state of the device, because
109 * the same power resources may be referenced by other devices.
110 *
111 * For systems predating ACPI 4.0 we assume that D3hot is the
112 * deepest state that can be supported.
113 */
114 if (psc > result && psc < ACPI_STATE_D3_COLD)
115 result = psc;
116 else if (result == ACPI_STATE_UNKNOWN)
117 result = psc > ACPI_STATE_D2 ? ACPI_STATE_D3_HOT : psc;
118 }
119
120 /*
121 * If we were unsure about the device parent's power state up to this
122 * point, the fact that the device is in D0 implies that the parent has
123 * to be in D0 too, except if ignore_parent is set.
124 */
125 if (!device->power.flags.ignore_parent && device->parent
126 && device->parent->power.state == ACPI_STATE_UNKNOWN
127 && result == ACPI_STATE_D0)
128 device->parent->power.state = ACPI_STATE_D0;
129
130 *state = result;
131
132 out:
133 ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Device [%s] power state is %s\n",
134 device->pnp.bus_id, acpi_power_state_string(*state)));
135
136 return 0;
137}
138
139static int acpi_dev_pm_explicit_set(struct acpi_device *adev, int state)
140{
141 if (adev->power.states[state].flags.explicit_set) {
142 char method[5] = { '_', 'P', 'S', '0' + state, '\0' };
143 acpi_status status;
144
145 status = acpi_evaluate_object(adev->handle, method, NULL, NULL);
146 if (ACPI_FAILURE(status))
147 return -ENODEV;
148 }
149 return 0;
150}
151
152/**
153 * acpi_device_set_power - Set power state of an ACPI device.
154 * @device: Device to set the power state of.
155 * @state: New power state to set.
156 *
157 * Callers must ensure that the device is power manageable before using this
158 * function.
159 */
160int acpi_device_set_power(struct acpi_device *device, int state)
161{
162 int target_state = state;
163 int result = 0;
164
165 if (!device || !device->flags.power_manageable
166 || (state < ACPI_STATE_D0) || (state > ACPI_STATE_D3_COLD))
167 return -EINVAL;
168
169 acpi_handle_debug(device->handle, "Power state change: %s -> %s\n",
170 acpi_power_state_string(device->power.state),
171 acpi_power_state_string(state));
172
173 /* Make sure this is a valid target state */
174
175 /* There is a special case for D0 addressed below. */
176 if (state > ACPI_STATE_D0 && state == device->power.state) {
177 ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Device [%s] already in %s\n",
178 device->pnp.bus_id,
179 acpi_power_state_string(state)));
180 return 0;
181 }
182
183 if (state == ACPI_STATE_D3_COLD) {
184 /*
185 * For transitions to D3cold we need to execute _PS3 and then
186 * possibly drop references to the power resources in use.
187 */
188 state = ACPI_STATE_D3_HOT;
189 /* If D3cold is not supported, use D3hot as the target state. */
190 if (!device->power.states[ACPI_STATE_D3_COLD].flags.valid)
191 target_state = state;
192 } else if (!device->power.states[state].flags.valid) {
193 dev_warn(&device->dev, "Power state %s not supported\n",
194 acpi_power_state_string(state));
195 return -ENODEV;
196 }
197
198 if (!device->power.flags.ignore_parent &&
199 device->parent && (state < device->parent->power.state)) {
200 dev_warn(&device->dev,
201 "Cannot transition to power state %s for parent in %s\n",
202 acpi_power_state_string(state),
203 acpi_power_state_string(device->parent->power.state));
204 return -ENODEV;
205 }
206
207 /*
208 * Transition Power
209 * ----------------
210 * In accordance with ACPI 6, _PSx is executed before manipulating power
211 * resources, unless the target state is D0, in which case _PS0 is
212 * supposed to be executed after turning the power resources on.
213 */
214 if (state > ACPI_STATE_D0) {
215 /*
216 * According to ACPI 6, devices cannot go from lower-power
217 * (deeper) states to higher-power (shallower) states.
218 */
219 if (state < device->power.state) {
220 dev_warn(&device->dev, "Cannot transition from %s to %s\n",
221 acpi_power_state_string(device->power.state),
222 acpi_power_state_string(state));
223 return -ENODEV;
224 }
225
226 /*
227 * If the device goes from D3hot to D3cold, _PS3 has been
228 * evaluated for it already, so skip it in that case.
229 */
230 if (device->power.state < ACPI_STATE_D3_HOT) {
231 result = acpi_dev_pm_explicit_set(device, state);
232 if (result)
233 goto end;
234 }
235
236 if (device->power.flags.power_resources)
237 result = acpi_power_transition(device, target_state);
238 } else {
239 int cur_state = device->power.state;
240
241 if (device->power.flags.power_resources) {
242 result = acpi_power_transition(device, ACPI_STATE_D0);
243 if (result)
244 goto end;
245 }
246
247 if (cur_state == ACPI_STATE_D0) {
248 int psc;
249
250 /* Nothing to do here if _PSC is not present. */
251 if (!device->power.flags.explicit_get)
252 return 0;
253
254 /*
255 * The power state of the device was set to D0 last
256 * time, but that might have happened before a
257 * system-wide transition involving the platform
258 * firmware, so it may be necessary to evaluate _PS0
259 * for the device here. However, use extra care here
260 * and evaluate _PSC to check the device's current power
261 * state, and only invoke _PS0 if the evaluation of _PSC
262 * is successful and it returns a power state different
263 * from D0.
264 */
265 result = acpi_dev_pm_explicit_get(device, &psc);
266 if (result || psc == ACPI_STATE_D0)
267 return 0;
268 }
269
270 result = acpi_dev_pm_explicit_set(device, ACPI_STATE_D0);
271 }
272
273 end:
274 if (result) {
275 dev_warn(&device->dev, "Failed to change power state to %s\n",
276 acpi_power_state_string(target_state));
277 } else {
278 device->power.state = target_state;
279 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
280 "Device [%s] transitioned to %s\n",
281 device->pnp.bus_id,
282 acpi_power_state_string(target_state)));
283 }
284
285 return result;
286}
287EXPORT_SYMBOL(acpi_device_set_power);
288
289int acpi_bus_set_power(acpi_handle handle, int state)
290{
291 struct acpi_device *device;
292 int result;
293
294 result = acpi_bus_get_device(handle, &device);
295 if (result)
296 return result;
297
298 return acpi_device_set_power(device, state);
299}
300EXPORT_SYMBOL(acpi_bus_set_power);
301
302int acpi_bus_init_power(struct acpi_device *device)
303{
304 int state;
305 int result;
306
307 if (!device)
308 return -EINVAL;
309
310 device->power.state = ACPI_STATE_UNKNOWN;
311 if (!acpi_device_is_present(device)) {
312 device->flags.initialized = false;
313 return -ENXIO;
314 }
315
316 result = acpi_device_get_power(device, &state);
317 if (result)
318 return result;
319
320 if (state < ACPI_STATE_D3_COLD && device->power.flags.power_resources) {
321 /* Reference count the power resources. */
322 result = acpi_power_on_resources(device, state);
323 if (result)
324 return result;
325
326 if (state == ACPI_STATE_D0) {
327 /*
328 * If _PSC is not present and the state inferred from
329 * power resources appears to be D0, it still may be
330 * necessary to execute _PS0 at this point, because
331 * another device using the same power resources may
332 * have been put into D0 previously and that's why we
333 * see D0 here.
334 */
335 result = acpi_dev_pm_explicit_set(device, state);
336 if (result)
337 return result;
338 }
339 } else if (state == ACPI_STATE_UNKNOWN) {
340 /*
341 * No power resources and missing _PSC? Cross fingers and make
342 * it D0 in hope that this is what the BIOS put the device into.
343 * [We tried to force D0 here by executing _PS0, but that broke
344 * Toshiba P870-303 in a nasty way.]
345 */
346 state = ACPI_STATE_D0;
347 }
348 device->power.state = state;
349 return 0;
350}
351
352/**
353 * acpi_device_fix_up_power - Force device with missing _PSC into D0.
354 * @device: Device object whose power state is to be fixed up.
355 *
356 * Devices without power resources and _PSC, but having _PS0 and _PS3 defined,
357 * are assumed to be put into D0 by the BIOS. However, in some cases that may
358 * not be the case and this function should be used then.
359 */
360int acpi_device_fix_up_power(struct acpi_device *device)
361{
362 int ret = 0;
363
364 if (!device->power.flags.power_resources
365 && !device->power.flags.explicit_get
366 && device->power.state == ACPI_STATE_D0)
367 ret = acpi_dev_pm_explicit_set(device, ACPI_STATE_D0);
368
369 return ret;
370}
371EXPORT_SYMBOL_GPL(acpi_device_fix_up_power);
372
373int acpi_device_update_power(struct acpi_device *device, int *state_p)
374{
375 int state;
376 int result;
377
378 if (device->power.state == ACPI_STATE_UNKNOWN) {
379 result = acpi_bus_init_power(device);
380 if (!result && state_p)
381 *state_p = device->power.state;
382
383 return result;
384 }
385
386 result = acpi_device_get_power(device, &state);
387 if (result)
388 return result;
389
390 if (state == ACPI_STATE_UNKNOWN) {
391 state = ACPI_STATE_D0;
392 result = acpi_device_set_power(device, state);
393 if (result)
394 return result;
395 } else {
396 if (device->power.flags.power_resources) {
397 /*
398 * We don't need to really switch the state, bu we need
399 * to update the power resources' reference counters.
400 */
401 result = acpi_power_transition(device, state);
402 if (result)
403 return result;
404 }
405 device->power.state = state;
406 }
407 if (state_p)
408 *state_p = state;
409
410 return 0;
411}
412EXPORT_SYMBOL_GPL(acpi_device_update_power);
413
414int acpi_bus_update_power(acpi_handle handle, int *state_p)
415{
416 struct acpi_device *device;
417 int result;
418
419 result = acpi_bus_get_device(handle, &device);
420 return result ? result : acpi_device_update_power(device, state_p);
421}
422EXPORT_SYMBOL_GPL(acpi_bus_update_power);
423
424bool acpi_bus_power_manageable(acpi_handle handle)
425{
426 struct acpi_device *device;
427 int result;
428
429 result = acpi_bus_get_device(handle, &device);
430 return result ? false : device->flags.power_manageable;
431}
432EXPORT_SYMBOL(acpi_bus_power_manageable);
433
434#ifdef CONFIG_PM
435static DEFINE_MUTEX(acpi_pm_notifier_lock);
436static DEFINE_MUTEX(acpi_pm_notifier_install_lock);
437
438void acpi_pm_wakeup_event(struct device *dev)
439{
440 pm_wakeup_dev_event(dev, 0, acpi_s2idle_wakeup());
441}
442EXPORT_SYMBOL_GPL(acpi_pm_wakeup_event);
443
444static void acpi_pm_notify_handler(acpi_handle handle, u32 val, void *not_used)
445{
446 struct acpi_device *adev;
447
448 if (val != ACPI_NOTIFY_DEVICE_WAKE)
449 return;
450
451 acpi_handle_debug(handle, "Wake notify\n");
452
453 adev = acpi_bus_get_acpi_device(handle);
454 if (!adev)
455 return;
456
457 mutex_lock(&acpi_pm_notifier_lock);
458
459 if (adev->wakeup.flags.notifier_present) {
460 pm_wakeup_ws_event(adev->wakeup.ws, 0, acpi_s2idle_wakeup());
461 if (adev->wakeup.context.func) {
462 acpi_handle_debug(handle, "Running %pS for %s\n",
463 adev->wakeup.context.func,
464 dev_name(adev->wakeup.context.dev));
465 adev->wakeup.context.func(&adev->wakeup.context);
466 }
467 }
468
469 mutex_unlock(&acpi_pm_notifier_lock);
470
471 acpi_bus_put_acpi_device(adev);
472}
473
474/**
475 * acpi_add_pm_notifier - Register PM notify handler for given ACPI device.
476 * @adev: ACPI device to add the notify handler for.
477 * @dev: Device to generate a wakeup event for while handling the notification.
478 * @func: Work function to execute when handling the notification.
479 *
480 * NOTE: @adev need not be a run-wake or wakeup device to be a valid source of
481 * PM wakeup events. For example, wakeup events may be generated for bridges
482 * if one of the devices below the bridge is signaling wakeup, even if the
483 * bridge itself doesn't have a wakeup GPE associated with it.
484 */
485acpi_status acpi_add_pm_notifier(struct acpi_device *adev, struct device *dev,
486 void (*func)(struct acpi_device_wakeup_context *context))
487{
488 acpi_status status = AE_ALREADY_EXISTS;
489
490 if (!dev && !func)
491 return AE_BAD_PARAMETER;
492
493 mutex_lock(&acpi_pm_notifier_install_lock);
494
495 if (adev->wakeup.flags.notifier_present)
496 goto out;
497
498 status = acpi_install_notify_handler(adev->handle, ACPI_SYSTEM_NOTIFY,
499 acpi_pm_notify_handler, NULL);
500 if (ACPI_FAILURE(status))
501 goto out;
502
503 mutex_lock(&acpi_pm_notifier_lock);
504 adev->wakeup.ws = wakeup_source_register(&adev->dev,
505 dev_name(&adev->dev));
506 adev->wakeup.context.dev = dev;
507 adev->wakeup.context.func = func;
508 adev->wakeup.flags.notifier_present = true;
509 mutex_unlock(&acpi_pm_notifier_lock);
510
511 out:
512 mutex_unlock(&acpi_pm_notifier_install_lock);
513 return status;
514}
515
516/**
517 * acpi_remove_pm_notifier - Unregister PM notifier from given ACPI device.
518 * @adev: ACPI device to remove the notifier from.
519 */
520acpi_status acpi_remove_pm_notifier(struct acpi_device *adev)
521{
522 acpi_status status = AE_BAD_PARAMETER;
523
524 mutex_lock(&acpi_pm_notifier_install_lock);
525
526 if (!adev->wakeup.flags.notifier_present)
527 goto out;
528
529 status = acpi_remove_notify_handler(adev->handle,
530 ACPI_SYSTEM_NOTIFY,
531 acpi_pm_notify_handler);
532 if (ACPI_FAILURE(status))
533 goto out;
534
535 mutex_lock(&acpi_pm_notifier_lock);
536 adev->wakeup.context.func = NULL;
537 adev->wakeup.context.dev = NULL;
538 wakeup_source_unregister(adev->wakeup.ws);
539 adev->wakeup.flags.notifier_present = false;
540 mutex_unlock(&acpi_pm_notifier_lock);
541
542 out:
543 mutex_unlock(&acpi_pm_notifier_install_lock);
544 return status;
545}
546
547bool acpi_bus_can_wakeup(acpi_handle handle)
548{
549 struct acpi_device *device;
550 int result;
551
552 result = acpi_bus_get_device(handle, &device);
553 return result ? false : device->wakeup.flags.valid;
554}
555EXPORT_SYMBOL(acpi_bus_can_wakeup);
556
557bool acpi_pm_device_can_wakeup(struct device *dev)
558{
559 struct acpi_device *adev = ACPI_COMPANION(dev);
560
561 return adev ? acpi_device_can_wakeup(adev) : false;
562}
563
564/**
565 * acpi_dev_pm_get_state - Get preferred power state of ACPI device.
566 * @dev: Device whose preferred target power state to return.
567 * @adev: ACPI device node corresponding to @dev.
568 * @target_state: System state to match the resultant device state.
569 * @d_min_p: Location to store the highest power state available to the device.
570 * @d_max_p: Location to store the lowest power state available to the device.
571 *
572 * Find the lowest power (highest number) and highest power (lowest number) ACPI
573 * device power states that the device can be in while the system is in the
574 * state represented by @target_state. Store the integer numbers representing
575 * those stats in the memory locations pointed to by @d_max_p and @d_min_p,
576 * respectively.
577 *
578 * Callers must ensure that @dev and @adev are valid pointers and that @adev
579 * actually corresponds to @dev before using this function.
580 *
581 * Returns 0 on success or -ENODATA when one of the ACPI methods fails or
582 * returns a value that doesn't make sense. The memory locations pointed to by
583 * @d_max_p and @d_min_p are only modified on success.
584 */
585static int acpi_dev_pm_get_state(struct device *dev, struct acpi_device *adev,
586 u32 target_state, int *d_min_p, int *d_max_p)
587{
588 char method[] = { '_', 'S', '0' + target_state, 'D', '\0' };
589 acpi_handle handle = adev->handle;
590 unsigned long long ret;
591 int d_min, d_max;
592 bool wakeup = false;
593 bool has_sxd = false;
594 acpi_status status;
595
596 /*
597 * If the system state is S0, the lowest power state the device can be
598 * in is D3cold, unless the device has _S0W and is supposed to signal
599 * wakeup, in which case the return value of _S0W has to be used as the
600 * lowest power state available to the device.
601 */
602 d_min = ACPI_STATE_D0;
603 d_max = ACPI_STATE_D3_COLD;
604
605 /*
606 * If present, _SxD methods return the minimum D-state (highest power
607 * state) we can use for the corresponding S-states. Otherwise, the
608 * minimum D-state is D0 (ACPI 3.x).
609 */
610 if (target_state > ACPI_STATE_S0) {
611 /*
612 * We rely on acpi_evaluate_integer() not clobbering the integer
613 * provided if AE_NOT_FOUND is returned.
614 */
615 ret = d_min;
616 status = acpi_evaluate_integer(handle, method, NULL, &ret);
617 if ((ACPI_FAILURE(status) && status != AE_NOT_FOUND)
618 || ret > ACPI_STATE_D3_COLD)
619 return -ENODATA;
620
621 /*
622 * We need to handle legacy systems where D3hot and D3cold are
623 * the same and 3 is returned in both cases, so fall back to
624 * D3cold if D3hot is not a valid state.
625 */
626 if (!adev->power.states[ret].flags.valid) {
627 if (ret == ACPI_STATE_D3_HOT)
628 ret = ACPI_STATE_D3_COLD;
629 else
630 return -ENODATA;
631 }
632
633 if (status == AE_OK)
634 has_sxd = true;
635
636 d_min = ret;
637 wakeup = device_may_wakeup(dev) && adev->wakeup.flags.valid
638 && adev->wakeup.sleep_state >= target_state;
639 } else {
640 wakeup = adev->wakeup.flags.valid;
641 }
642
643 /*
644 * If _PRW says we can wake up the system from the target sleep state,
645 * the D-state returned by _SxD is sufficient for that (we assume a
646 * wakeup-aware driver if wake is set). Still, if _SxW exists
647 * (ACPI 3.x), it should return the maximum (lowest power) D-state that
648 * can wake the system. _S0W may be valid, too.
649 */
650 if (wakeup) {
651 method[3] = 'W';
652 status = acpi_evaluate_integer(handle, method, NULL, &ret);
653 if (status == AE_NOT_FOUND) {
654 /* No _SxW. In this case, the ACPI spec says that we
655 * must not go into any power state deeper than the
656 * value returned from _SxD.
657 */
658 if (has_sxd && target_state > ACPI_STATE_S0)
659 d_max = d_min;
660 } else if (ACPI_SUCCESS(status) && ret <= ACPI_STATE_D3_COLD) {
661 /* Fall back to D3cold if ret is not a valid state. */
662 if (!adev->power.states[ret].flags.valid)
663 ret = ACPI_STATE_D3_COLD;
664
665 d_max = ret > d_min ? ret : d_min;
666 } else {
667 return -ENODATA;
668 }
669 }
670
671 if (d_min_p)
672 *d_min_p = d_min;
673
674 if (d_max_p)
675 *d_max_p = d_max;
676
677 return 0;
678}
679
680/**
681 * acpi_pm_device_sleep_state - Get preferred power state of ACPI device.
682 * @dev: Device whose preferred target power state to return.
683 * @d_min_p: Location to store the upper limit of the allowed states range.
684 * @d_max_in: Deepest low-power state to take into consideration.
685 * Return value: Preferred power state of the device on success, -ENODEV
686 * if there's no 'struct acpi_device' for @dev, -EINVAL if @d_max_in is
687 * incorrect, or -ENODATA on ACPI method failure.
688 *
689 * The caller must ensure that @dev is valid before using this function.
690 */
691int acpi_pm_device_sleep_state(struct device *dev, int *d_min_p, int d_max_in)
692{
693 struct acpi_device *adev;
694 int ret, d_min, d_max;
695
696 if (d_max_in < ACPI_STATE_D0 || d_max_in > ACPI_STATE_D3_COLD)
697 return -EINVAL;
698
699 if (d_max_in > ACPI_STATE_D2) {
700 enum pm_qos_flags_status stat;
701
702 stat = dev_pm_qos_flags(dev, PM_QOS_FLAG_NO_POWER_OFF);
703 if (stat == PM_QOS_FLAGS_ALL)
704 d_max_in = ACPI_STATE_D2;
705 }
706
707 adev = ACPI_COMPANION(dev);
708 if (!adev) {
709 dev_dbg(dev, "ACPI companion missing in %s!\n", __func__);
710 return -ENODEV;
711 }
712
713 ret = acpi_dev_pm_get_state(dev, adev, acpi_target_system_state(),
714 &d_min, &d_max);
715 if (ret)
716 return ret;
717
718 if (d_max_in < d_min)
719 return -EINVAL;
720
721 if (d_max > d_max_in) {
722 for (d_max = d_max_in; d_max > d_min; d_max--) {
723 if (adev->power.states[d_max].flags.valid)
724 break;
725 }
726 }
727
728 if (d_min_p)
729 *d_min_p = d_min;
730
731 return d_max;
732}
733EXPORT_SYMBOL(acpi_pm_device_sleep_state);
734
735/**
736 * acpi_pm_notify_work_func - ACPI devices wakeup notification work function.
737 * @context: Device wakeup context.
738 */
739static void acpi_pm_notify_work_func(struct acpi_device_wakeup_context *context)
740{
741 struct device *dev = context->dev;
742
743 if (dev) {
744 pm_wakeup_event(dev, 0);
745 pm_request_resume(dev);
746 }
747}
748
749static DEFINE_MUTEX(acpi_wakeup_lock);
750
751static int __acpi_device_wakeup_enable(struct acpi_device *adev,
752 u32 target_state, int max_count)
753{
754 struct acpi_device_wakeup *wakeup = &adev->wakeup;
755 acpi_status status;
756 int error = 0;
757
758 mutex_lock(&acpi_wakeup_lock);
759
760 if (wakeup->enable_count >= max_count)
761 goto out;
762
763 if (wakeup->enable_count > 0)
764 goto inc;
765
766 error = acpi_enable_wakeup_device_power(adev, target_state);
767 if (error)
768 goto out;
769
770 status = acpi_enable_gpe(wakeup->gpe_device, wakeup->gpe_number);
771 if (ACPI_FAILURE(status)) {
772 acpi_disable_wakeup_device_power(adev);
773 error = -EIO;
774 goto out;
775 }
776
777 acpi_handle_debug(adev->handle, "GPE%2X enabled for wakeup\n",
778 (unsigned int)wakeup->gpe_number);
779
780inc:
781 wakeup->enable_count++;
782
783out:
784 mutex_unlock(&acpi_wakeup_lock);
785 return error;
786}
787
788/**
789 * acpi_device_wakeup_enable - Enable wakeup functionality for device.
790 * @adev: ACPI device to enable wakeup functionality for.
791 * @target_state: State the system is transitioning into.
792 *
793 * Enable the GPE associated with @adev so that it can generate wakeup signals
794 * for the device in response to external (remote) events and enable wakeup
795 * power for it.
796 *
797 * Callers must ensure that @adev is a valid ACPI device node before executing
798 * this function.
799 */
800static int acpi_device_wakeup_enable(struct acpi_device *adev, u32 target_state)
801{
802 return __acpi_device_wakeup_enable(adev, target_state, 1);
803}
804
805/**
806 * acpi_device_wakeup_disable - Disable wakeup functionality for device.
807 * @adev: ACPI device to disable wakeup functionality for.
808 *
809 * Disable the GPE associated with @adev and disable wakeup power for it.
810 *
811 * Callers must ensure that @adev is a valid ACPI device node before executing
812 * this function.
813 */
814static void acpi_device_wakeup_disable(struct acpi_device *adev)
815{
816 struct acpi_device_wakeup *wakeup = &adev->wakeup;
817
818 mutex_lock(&acpi_wakeup_lock);
819
820 if (!wakeup->enable_count)
821 goto out;
822
823 acpi_disable_gpe(wakeup->gpe_device, wakeup->gpe_number);
824 acpi_disable_wakeup_device_power(adev);
825
826 wakeup->enable_count--;
827
828out:
829 mutex_unlock(&acpi_wakeup_lock);
830}
831
832static int __acpi_pm_set_device_wakeup(struct device *dev, bool enable,
833 int max_count)
834{
835 struct acpi_device *adev;
836 int error;
837
838 adev = ACPI_COMPANION(dev);
839 if (!adev) {
840 dev_dbg(dev, "ACPI companion missing in %s!\n", __func__);
841 return -ENODEV;
842 }
843
844 if (!acpi_device_can_wakeup(adev))
845 return -EINVAL;
846
847 if (!enable) {
848 acpi_device_wakeup_disable(adev);
849 dev_dbg(dev, "Wakeup disabled by ACPI\n");
850 return 0;
851 }
852
853 error = __acpi_device_wakeup_enable(adev, acpi_target_system_state(),
854 max_count);
855 if (!error)
856 dev_dbg(dev, "Wakeup enabled by ACPI\n");
857
858 return error;
859}
860
861/**
862 * acpi_pm_set_device_wakeup - Enable/disable remote wakeup for given device.
863 * @dev: Device to enable/disable to generate wakeup events.
864 * @enable: Whether to enable or disable the wakeup functionality.
865 */
866int acpi_pm_set_device_wakeup(struct device *dev, bool enable)
867{
868 return __acpi_pm_set_device_wakeup(dev, enable, 1);
869}
870EXPORT_SYMBOL_GPL(acpi_pm_set_device_wakeup);
871
872/**
873 * acpi_pm_set_bridge_wakeup - Enable/disable remote wakeup for given bridge.
874 * @dev: Bridge device to enable/disable to generate wakeup events.
875 * @enable: Whether to enable or disable the wakeup functionality.
876 */
877int acpi_pm_set_bridge_wakeup(struct device *dev, bool enable)
878{
879 return __acpi_pm_set_device_wakeup(dev, enable, INT_MAX);
880}
881EXPORT_SYMBOL_GPL(acpi_pm_set_bridge_wakeup);
882
883/**
884 * acpi_dev_pm_low_power - Put ACPI device into a low-power state.
885 * @dev: Device to put into a low-power state.
886 * @adev: ACPI device node corresponding to @dev.
887 * @system_state: System state to choose the device state for.
888 */
889static int acpi_dev_pm_low_power(struct device *dev, struct acpi_device *adev,
890 u32 system_state)
891{
892 int ret, state;
893
894 if (!acpi_device_power_manageable(adev))
895 return 0;
896
897 ret = acpi_dev_pm_get_state(dev, adev, system_state, NULL, &state);
898 return ret ? ret : acpi_device_set_power(adev, state);
899}
900
901/**
902 * acpi_dev_pm_full_power - Put ACPI device into the full-power state.
903 * @adev: ACPI device node to put into the full-power state.
904 */
905static int acpi_dev_pm_full_power(struct acpi_device *adev)
906{
907 return acpi_device_power_manageable(adev) ?
908 acpi_device_set_power(adev, ACPI_STATE_D0) : 0;
909}
910
911/**
912 * acpi_dev_suspend - Put device into a low-power state using ACPI.
913 * @dev: Device to put into a low-power state.
914 * @wakeup: Whether or not to enable wakeup for the device.
915 *
916 * Put the given device into a low-power state using the standard ACPI
917 * mechanism. Set up remote wakeup if desired, choose the state to put the
918 * device into (this checks if remote wakeup is expected to work too), and set
919 * the power state of the device.
920 */
921int acpi_dev_suspend(struct device *dev, bool wakeup)
922{
923 struct acpi_device *adev = ACPI_COMPANION(dev);
924 u32 target_state = acpi_target_system_state();
925 int error;
926
927 if (!adev)
928 return 0;
929
930 if (wakeup && acpi_device_can_wakeup(adev)) {
931 error = acpi_device_wakeup_enable(adev, target_state);
932 if (error)
933 return -EAGAIN;
934 } else {
935 wakeup = false;
936 }
937
938 error = acpi_dev_pm_low_power(dev, adev, target_state);
939 if (error && wakeup)
940 acpi_device_wakeup_disable(adev);
941
942 return error;
943}
944EXPORT_SYMBOL_GPL(acpi_dev_suspend);
945
946/**
947 * acpi_dev_resume - Put device into the full-power state using ACPI.
948 * @dev: Device to put into the full-power state.
949 *
950 * Put the given device into the full-power state using the standard ACPI
951 * mechanism. Set the power state of the device to ACPI D0 and disable wakeup.
952 */
953int acpi_dev_resume(struct device *dev)
954{
955 struct acpi_device *adev = ACPI_COMPANION(dev);
956 int error;
957
958 if (!adev)
959 return 0;
960
961 error = acpi_dev_pm_full_power(adev);
962 acpi_device_wakeup_disable(adev);
963 return error;
964}
965EXPORT_SYMBOL_GPL(acpi_dev_resume);
966
967/**
968 * acpi_subsys_runtime_suspend - Suspend device using ACPI.
969 * @dev: Device to suspend.
970 *
971 * Carry out the generic runtime suspend procedure for @dev and use ACPI to put
972 * it into a runtime low-power state.
973 */
974int acpi_subsys_runtime_suspend(struct device *dev)
975{
976 int ret = pm_generic_runtime_suspend(dev);
977 return ret ? ret : acpi_dev_suspend(dev, true);
978}
979EXPORT_SYMBOL_GPL(acpi_subsys_runtime_suspend);
980
981/**
982 * acpi_subsys_runtime_resume - Resume device using ACPI.
983 * @dev: Device to Resume.
984 *
985 * Use ACPI to put the given device into the full-power state and carry out the
986 * generic runtime resume procedure for it.
987 */
988int acpi_subsys_runtime_resume(struct device *dev)
989{
990 int ret = acpi_dev_resume(dev);
991 return ret ? ret : pm_generic_runtime_resume(dev);
992}
993EXPORT_SYMBOL_GPL(acpi_subsys_runtime_resume);
994
995#ifdef CONFIG_PM_SLEEP
996static bool acpi_dev_needs_resume(struct device *dev, struct acpi_device *adev)
997{
998 u32 sys_target = acpi_target_system_state();
999 int ret, state;
1000
1001 if (!pm_runtime_suspended(dev) || !adev || (adev->wakeup.flags.valid &&
1002 device_may_wakeup(dev) != !!adev->wakeup.prepare_count))
1003 return true;
1004
1005 if (sys_target == ACPI_STATE_S0)
1006 return false;
1007
1008 if (adev->power.flags.dsw_present)
1009 return true;
1010
1011 ret = acpi_dev_pm_get_state(dev, adev, sys_target, NULL, &state);
1012 if (ret)
1013 return true;
1014
1015 return state != adev->power.state;
1016}
1017
1018/**
1019 * acpi_subsys_prepare - Prepare device for system transition to a sleep state.
1020 * @dev: Device to prepare.
1021 */
1022int acpi_subsys_prepare(struct device *dev)
1023{
1024 struct acpi_device *adev = ACPI_COMPANION(dev);
1025
1026 if (dev->driver && dev->driver->pm && dev->driver->pm->prepare) {
1027 int ret = dev->driver->pm->prepare(dev);
1028
1029 if (ret < 0)
1030 return ret;
1031
1032 if (!ret && dev_pm_test_driver_flags(dev, DPM_FLAG_SMART_PREPARE))
1033 return 0;
1034 }
1035
1036 return !acpi_dev_needs_resume(dev, adev);
1037}
1038EXPORT_SYMBOL_GPL(acpi_subsys_prepare);
1039
1040/**
1041 * acpi_subsys_complete - Finalize device's resume during system resume.
1042 * @dev: Device to handle.
1043 */
1044void acpi_subsys_complete(struct device *dev)
1045{
1046 pm_generic_complete(dev);
1047 /*
1048 * If the device had been runtime-suspended before the system went into
1049 * the sleep state it is going out of and it has never been resumed till
1050 * now, resume it in case the firmware powered it up.
1051 */
1052 if (pm_runtime_suspended(dev) && pm_resume_via_firmware())
1053 pm_request_resume(dev);
1054}
1055EXPORT_SYMBOL_GPL(acpi_subsys_complete);
1056
1057/**
1058 * acpi_subsys_suspend - Run the device driver's suspend callback.
1059 * @dev: Device to handle.
1060 *
1061 * Follow PCI and resume devices from runtime suspend before running their
1062 * system suspend callbacks, unless the driver can cope with runtime-suspended
1063 * devices during system suspend and there are no ACPI-specific reasons for
1064 * resuming them.
1065 */
1066int acpi_subsys_suspend(struct device *dev)
1067{
1068 if (!dev_pm_test_driver_flags(dev, DPM_FLAG_SMART_SUSPEND) ||
1069 acpi_dev_needs_resume(dev, ACPI_COMPANION(dev)))
1070 pm_runtime_resume(dev);
1071
1072 return pm_generic_suspend(dev);
1073}
1074EXPORT_SYMBOL_GPL(acpi_subsys_suspend);
1075
1076/**
1077 * acpi_subsys_suspend_late - Suspend device using ACPI.
1078 * @dev: Device to suspend.
1079 *
1080 * Carry out the generic late suspend procedure for @dev and use ACPI to put
1081 * it into a low-power state during system transition into a sleep state.
1082 */
1083int acpi_subsys_suspend_late(struct device *dev)
1084{
1085 int ret;
1086
1087 if (dev_pm_skip_suspend(dev))
1088 return 0;
1089
1090 ret = pm_generic_suspend_late(dev);
1091 return ret ? ret : acpi_dev_suspend(dev, device_may_wakeup(dev));
1092}
1093EXPORT_SYMBOL_GPL(acpi_subsys_suspend_late);
1094
1095/**
1096 * acpi_subsys_suspend_noirq - Run the device driver's "noirq" suspend callback.
1097 * @dev: Device to suspend.
1098 */
1099int acpi_subsys_suspend_noirq(struct device *dev)
1100{
1101 int ret;
1102
1103 if (dev_pm_skip_suspend(dev))
1104 return 0;
1105
1106 ret = pm_generic_suspend_noirq(dev);
1107 if (ret)
1108 return ret;
1109
1110 /*
1111 * If the target system sleep state is suspend-to-idle, it is sufficient
1112 * to check whether or not the device's wakeup settings are good for
1113 * runtime PM. Otherwise, the pm_resume_via_firmware() check will cause
1114 * acpi_subsys_complete() to take care of fixing up the device's state
1115 * anyway, if need be.
1116 */
1117 if (device_can_wakeup(dev) && !device_may_wakeup(dev))
1118 dev->power.may_skip_resume = false;
1119
1120 return 0;
1121}
1122EXPORT_SYMBOL_GPL(acpi_subsys_suspend_noirq);
1123
1124/**
1125 * acpi_subsys_resume_noirq - Run the device driver's "noirq" resume callback.
1126 * @dev: Device to handle.
1127 */
1128static int acpi_subsys_resume_noirq(struct device *dev)
1129{
1130 if (dev_pm_skip_resume(dev))
1131 return 0;
1132
1133 return pm_generic_resume_noirq(dev);
1134}
1135
1136/**
1137 * acpi_subsys_resume_early - Resume device using ACPI.
1138 * @dev: Device to Resume.
1139 *
1140 * Use ACPI to put the given device into the full-power state and carry out the
1141 * generic early resume procedure for it during system transition into the
1142 * working state.
1143 */
1144static int acpi_subsys_resume_early(struct device *dev)
1145{
1146 int ret;
1147
1148 if (dev_pm_skip_resume(dev))
1149 return 0;
1150
1151 ret = acpi_dev_resume(dev);
1152 return ret ? ret : pm_generic_resume_early(dev);
1153}
1154
1155/**
1156 * acpi_subsys_freeze - Run the device driver's freeze callback.
1157 * @dev: Device to handle.
1158 */
1159int acpi_subsys_freeze(struct device *dev)
1160{
1161 /*
1162 * Resume all runtime-suspended devices before creating a snapshot
1163 * image of system memory, because the restore kernel generally cannot
1164 * be expected to always handle them consistently and they need to be
1165 * put into the runtime-active metastate during system resume anyway,
1166 * so it is better to ensure that the state saved in the image will be
1167 * always consistent with that.
1168 */
1169 pm_runtime_resume(dev);
1170
1171 return pm_generic_freeze(dev);
1172}
1173EXPORT_SYMBOL_GPL(acpi_subsys_freeze);
1174
1175/**
1176 * acpi_subsys_restore_early - Restore device using ACPI.
1177 * @dev: Device to restore.
1178 */
1179int acpi_subsys_restore_early(struct device *dev)
1180{
1181 int ret = acpi_dev_resume(dev);
1182 return ret ? ret : pm_generic_restore_early(dev);
1183}
1184EXPORT_SYMBOL_GPL(acpi_subsys_restore_early);
1185
1186/**
1187 * acpi_subsys_poweroff - Run the device driver's poweroff callback.
1188 * @dev: Device to handle.
1189 *
1190 * Follow PCI and resume devices from runtime suspend before running their
1191 * system poweroff callbacks, unless the driver can cope with runtime-suspended
1192 * devices during system suspend and there are no ACPI-specific reasons for
1193 * resuming them.
1194 */
1195int acpi_subsys_poweroff(struct device *dev)
1196{
1197 if (!dev_pm_test_driver_flags(dev, DPM_FLAG_SMART_SUSPEND) ||
1198 acpi_dev_needs_resume(dev, ACPI_COMPANION(dev)))
1199 pm_runtime_resume(dev);
1200
1201 return pm_generic_poweroff(dev);
1202}
1203EXPORT_SYMBOL_GPL(acpi_subsys_poweroff);
1204
1205/**
1206 * acpi_subsys_poweroff_late - Run the device driver's poweroff callback.
1207 * @dev: Device to handle.
1208 *
1209 * Carry out the generic late poweroff procedure for @dev and use ACPI to put
1210 * it into a low-power state during system transition into a sleep state.
1211 */
1212static int acpi_subsys_poweroff_late(struct device *dev)
1213{
1214 int ret;
1215
1216 if (dev_pm_skip_suspend(dev))
1217 return 0;
1218
1219 ret = pm_generic_poweroff_late(dev);
1220 if (ret)
1221 return ret;
1222
1223 return acpi_dev_suspend(dev, device_may_wakeup(dev));
1224}
1225
1226/**
1227 * acpi_subsys_poweroff_noirq - Run the driver's "noirq" poweroff callback.
1228 * @dev: Device to suspend.
1229 */
1230static int acpi_subsys_poweroff_noirq(struct device *dev)
1231{
1232 if (dev_pm_skip_suspend(dev))
1233 return 0;
1234
1235 return pm_generic_poweroff_noirq(dev);
1236}
1237#endif /* CONFIG_PM_SLEEP */
1238
1239static struct dev_pm_domain acpi_general_pm_domain = {
1240 .ops = {
1241 .runtime_suspend = acpi_subsys_runtime_suspend,
1242 .runtime_resume = acpi_subsys_runtime_resume,
1243#ifdef CONFIG_PM_SLEEP
1244 .prepare = acpi_subsys_prepare,
1245 .complete = acpi_subsys_complete,
1246 .suspend = acpi_subsys_suspend,
1247 .suspend_late = acpi_subsys_suspend_late,
1248 .suspend_noirq = acpi_subsys_suspend_noirq,
1249 .resume_noirq = acpi_subsys_resume_noirq,
1250 .resume_early = acpi_subsys_resume_early,
1251 .freeze = acpi_subsys_freeze,
1252 .poweroff = acpi_subsys_poweroff,
1253 .poweroff_late = acpi_subsys_poweroff_late,
1254 .poweroff_noirq = acpi_subsys_poweroff_noirq,
1255 .restore_early = acpi_subsys_restore_early,
1256#endif
1257 },
1258};
1259
1260/**
1261 * acpi_dev_pm_detach - Remove ACPI power management from the device.
1262 * @dev: Device to take care of.
1263 * @power_off: Whether or not to try to remove power from the device.
1264 *
1265 * Remove the device from the general ACPI PM domain and remove its wakeup
1266 * notifier. If @power_off is set, additionally remove power from the device if
1267 * possible.
1268 *
1269 * Callers must ensure proper synchronization of this function with power
1270 * management callbacks.
1271 */
1272static void acpi_dev_pm_detach(struct device *dev, bool power_off)
1273{
1274 struct acpi_device *adev = ACPI_COMPANION(dev);
1275
1276 if (adev && dev->pm_domain == &acpi_general_pm_domain) {
1277 dev_pm_domain_set(dev, NULL);
1278 acpi_remove_pm_notifier(adev);
1279 if (power_off) {
1280 /*
1281 * If the device's PM QoS resume latency limit or flags
1282 * have been exposed to user space, they have to be
1283 * hidden at this point, so that they don't affect the
1284 * choice of the low-power state to put the device into.
1285 */
1286 dev_pm_qos_hide_latency_limit(dev);
1287 dev_pm_qos_hide_flags(dev);
1288 acpi_device_wakeup_disable(adev);
1289 acpi_dev_pm_low_power(dev, adev, ACPI_STATE_S0);
1290 }
1291 }
1292}
1293
1294/**
1295 * acpi_dev_pm_attach - Prepare device for ACPI power management.
1296 * @dev: Device to prepare.
1297 * @power_on: Whether or not to power on the device.
1298 *
1299 * If @dev has a valid ACPI handle that has a valid struct acpi_device object
1300 * attached to it, install a wakeup notification handler for the device and
1301 * add it to the general ACPI PM domain. If @power_on is set, the device will
1302 * be put into the ACPI D0 state before the function returns.
1303 *
1304 * This assumes that the @dev's bus type uses generic power management callbacks
1305 * (or doesn't use any power management callbacks at all).
1306 *
1307 * Callers must ensure proper synchronization of this function with power
1308 * management callbacks.
1309 */
1310int acpi_dev_pm_attach(struct device *dev, bool power_on)
1311{
1312 /*
1313 * Skip devices whose ACPI companions match the device IDs below,
1314 * because they require special power management handling incompatible
1315 * with the generic ACPI PM domain.
1316 */
1317 static const struct acpi_device_id special_pm_ids[] = {
1318 {"PNP0C0B", }, /* Generic ACPI fan */
1319 {"INT3404", }, /* Fan */
1320 {"INTC1044", }, /* Fan for Tiger Lake generation */
1321 {}
1322 };
1323 struct acpi_device *adev = ACPI_COMPANION(dev);
1324
1325 if (!adev || !acpi_match_device_ids(adev, special_pm_ids))
1326 return 0;
1327
1328 /*
1329 * Only attach the power domain to the first device if the
1330 * companion is shared by multiple. This is to prevent doing power
1331 * management twice.
1332 */
1333 if (!acpi_device_is_first_physical_node(adev, dev))
1334 return 0;
1335
1336 acpi_add_pm_notifier(adev, dev, acpi_pm_notify_work_func);
1337 dev_pm_domain_set(dev, &acpi_general_pm_domain);
1338 if (power_on) {
1339 acpi_dev_pm_full_power(adev);
1340 acpi_device_wakeup_disable(adev);
1341 }
1342
1343 dev->pm_domain->detach = acpi_dev_pm_detach;
1344 return 1;
1345}
1346EXPORT_SYMBOL_GPL(acpi_dev_pm_attach);
1347#endif /* CONFIG_PM */