Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * drivers/acpi/device_pm.c - ACPI device power management routines.
4 *
5 * Copyright (C) 2012, Intel Corp.
6 * Author: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
7 *
8 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
9 *
10 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
11 */
12
13#define pr_fmt(fmt) "PM: " fmt
14
15#include <linux/acpi.h>
16#include <linux/export.h>
17#include <linux/mutex.h>
18#include <linux/pm_qos.h>
19#include <linux/pm_domain.h>
20#include <linux/pm_runtime.h>
21#include <linux/suspend.h>
22
23#include "fan.h"
24#include "internal.h"
25
26/**
27 * acpi_power_state_string - String representation of ACPI device power state.
28 * @state: ACPI device power state to return the string representation of.
29 */
30const char *acpi_power_state_string(int state)
31{
32 switch (state) {
33 case ACPI_STATE_D0:
34 return "D0";
35 case ACPI_STATE_D1:
36 return "D1";
37 case ACPI_STATE_D2:
38 return "D2";
39 case ACPI_STATE_D3_HOT:
40 return "D3hot";
41 case ACPI_STATE_D3_COLD:
42 return "D3cold";
43 default:
44 return "(unknown)";
45 }
46}
47
48static int acpi_dev_pm_explicit_get(struct acpi_device *device, int *state)
49{
50 unsigned long long psc;
51 acpi_status status;
52
53 status = acpi_evaluate_integer(device->handle, "_PSC", NULL, &psc);
54 if (ACPI_FAILURE(status))
55 return -ENODEV;
56
57 *state = psc;
58 return 0;
59}
60
61/**
62 * acpi_device_get_power - Get power state of an ACPI device.
63 * @device: Device to get the power state of.
64 * @state: Place to store the power state of the device.
65 *
66 * This function does not update the device's power.state field, but it may
67 * update its parent's power.state field (when the parent's power state is
68 * unknown and the device's power state turns out to be D0).
69 *
70 * Also, it does not update power resource reference counters to ensure that
71 * the power state returned by it will be persistent and it may return a power
72 * state shallower than previously set by acpi_device_set_power() for @device
73 * (if that power state depends on any power resources).
74 */
75int acpi_device_get_power(struct acpi_device *device, int *state)
76{
77 int result = ACPI_STATE_UNKNOWN;
78 struct acpi_device *parent;
79 int error;
80
81 if (!device || !state)
82 return -EINVAL;
83
84 parent = acpi_dev_parent(device);
85
86 if (!device->flags.power_manageable) {
87 /* TBD: Non-recursive algorithm for walking up hierarchy. */
88 *state = parent ? parent->power.state : ACPI_STATE_D0;
89 goto out;
90 }
91
92 /*
93 * Get the device's power state from power resources settings and _PSC,
94 * if available.
95 */
96 if (device->power.flags.power_resources) {
97 error = acpi_power_get_inferred_state(device, &result);
98 if (error)
99 return error;
100 }
101 if (device->power.flags.explicit_get) {
102 int psc;
103
104 error = acpi_dev_pm_explicit_get(device, &psc);
105 if (error)
106 return error;
107
108 /*
109 * The power resources settings may indicate a power state
110 * shallower than the actual power state of the device, because
111 * the same power resources may be referenced by other devices.
112 *
113 * For systems predating ACPI 4.0 we assume that D3hot is the
114 * deepest state that can be supported.
115 */
116 if (psc > result && psc < ACPI_STATE_D3_COLD)
117 result = psc;
118 else if (result == ACPI_STATE_UNKNOWN)
119 result = psc > ACPI_STATE_D2 ? ACPI_STATE_D3_HOT : psc;
120 }
121
122 /*
123 * If we were unsure about the device parent's power state up to this
124 * point, the fact that the device is in D0 implies that the parent has
125 * to be in D0 too, except if ignore_parent is set.
126 */
127 if (!device->power.flags.ignore_parent && parent &&
128 parent->power.state == ACPI_STATE_UNKNOWN &&
129 result == ACPI_STATE_D0)
130 parent->power.state = ACPI_STATE_D0;
131
132 *state = result;
133
134 out:
135 acpi_handle_debug(device->handle, "Power state: %s\n",
136 acpi_power_state_string(*state));
137
138 return 0;
139}
140
141static int acpi_dev_pm_explicit_set(struct acpi_device *adev, int state)
142{
143 if (adev->power.states[state].flags.explicit_set) {
144 char method[5] = { '_', 'P', 'S', '0' + state, '\0' };
145 acpi_status status;
146
147 status = acpi_evaluate_object(adev->handle, method, NULL, NULL);
148 if (ACPI_FAILURE(status))
149 return -ENODEV;
150 }
151 return 0;
152}
153
154/**
155 * acpi_device_set_power - Set power state of an ACPI device.
156 * @device: Device to set the power state of.
157 * @state: New power state to set.
158 *
159 * Callers must ensure that the device is power manageable before using this
160 * function.
161 */
162int acpi_device_set_power(struct acpi_device *device, int state)
163{
164 int target_state = state;
165 int result = 0;
166
167 if (!device || !device->flags.power_manageable
168 || (state < ACPI_STATE_D0) || (state > ACPI_STATE_D3_COLD))
169 return -EINVAL;
170
171 acpi_handle_debug(device->handle, "Power state change: %s -> %s\n",
172 acpi_power_state_string(device->power.state),
173 acpi_power_state_string(state));
174
175 /* Make sure this is a valid target state */
176
177 /* There is a special case for D0 addressed below. */
178 if (state > ACPI_STATE_D0 && state == device->power.state)
179 goto no_change;
180
181 if (state == ACPI_STATE_D3_COLD) {
182 /*
183 * For transitions to D3cold we need to execute _PS3 and then
184 * possibly drop references to the power resources in use.
185 */
186 state = ACPI_STATE_D3_HOT;
187 /* If D3cold is not supported, use D3hot as the target state. */
188 if (!device->power.states[ACPI_STATE_D3_COLD].flags.valid)
189 target_state = state;
190 } else if (!device->power.states[state].flags.valid) {
191 acpi_handle_debug(device->handle, "Power state %s not supported\n",
192 acpi_power_state_string(state));
193 return -ENODEV;
194 }
195
196 if (!device->power.flags.ignore_parent) {
197 struct acpi_device *parent;
198
199 parent = acpi_dev_parent(device);
200 if (parent && state < parent->power.state) {
201 acpi_handle_debug(device->handle,
202 "Cannot transition to %s for parent in %s\n",
203 acpi_power_state_string(state),
204 acpi_power_state_string(parent->power.state));
205 return -ENODEV;
206 }
207 }
208
209 /*
210 * Transition Power
211 * ----------------
212 * In accordance with ACPI 6, _PSx is executed before manipulating power
213 * resources, unless the target state is D0, in which case _PS0 is
214 * supposed to be executed after turning the power resources on.
215 */
216 if (state > ACPI_STATE_D0) {
217 /*
218 * According to ACPI 6, devices cannot go from lower-power
219 * (deeper) states to higher-power (shallower) states.
220 */
221 if (state < device->power.state) {
222 acpi_handle_debug(device->handle,
223 "Cannot transition from %s to %s\n",
224 acpi_power_state_string(device->power.state),
225 acpi_power_state_string(state));
226 return -ENODEV;
227 }
228
229 /*
230 * If the device goes from D3hot to D3cold, _PS3 has been
231 * evaluated for it already, so skip it in that case.
232 */
233 if (device->power.state < ACPI_STATE_D3_HOT) {
234 result = acpi_dev_pm_explicit_set(device, state);
235 if (result)
236 goto end;
237 }
238
239 if (device->power.flags.power_resources)
240 result = acpi_power_transition(device, target_state);
241 } else {
242 int cur_state = device->power.state;
243
244 if (device->power.flags.power_resources) {
245 result = acpi_power_transition(device, ACPI_STATE_D0);
246 if (result)
247 goto end;
248 }
249
250 if (cur_state == ACPI_STATE_D0) {
251 int psc;
252
253 /* Nothing to do here if _PSC is not present. */
254 if (!device->power.flags.explicit_get)
255 goto no_change;
256
257 /*
258 * The power state of the device was set to D0 last
259 * time, but that might have happened before a
260 * system-wide transition involving the platform
261 * firmware, so it may be necessary to evaluate _PS0
262 * for the device here. However, use extra care here
263 * and evaluate _PSC to check the device's current power
264 * state, and only invoke _PS0 if the evaluation of _PSC
265 * is successful and it returns a power state different
266 * from D0.
267 */
268 result = acpi_dev_pm_explicit_get(device, &psc);
269 if (result || psc == ACPI_STATE_D0)
270 goto no_change;
271 }
272
273 result = acpi_dev_pm_explicit_set(device, ACPI_STATE_D0);
274 }
275
276end:
277 if (result) {
278 acpi_handle_debug(device->handle,
279 "Failed to change power state to %s\n",
280 acpi_power_state_string(target_state));
281 } else {
282 device->power.state = target_state;
283 acpi_handle_debug(device->handle, "Power state changed to %s\n",
284 acpi_power_state_string(target_state));
285 }
286
287 return result;
288
289no_change:
290 acpi_handle_debug(device->handle, "Already in %s\n",
291 acpi_power_state_string(state));
292 return 0;
293}
294EXPORT_SYMBOL(acpi_device_set_power);
295
296int acpi_bus_set_power(acpi_handle handle, int state)
297{
298 struct acpi_device *device = acpi_fetch_acpi_dev(handle);
299
300 if (device)
301 return acpi_device_set_power(device, state);
302
303 return -ENODEV;
304}
305EXPORT_SYMBOL(acpi_bus_set_power);
306
307int acpi_bus_init_power(struct acpi_device *device)
308{
309 int state;
310 int result;
311
312 if (!device)
313 return -EINVAL;
314
315 device->power.state = ACPI_STATE_UNKNOWN;
316 if (!acpi_device_is_present(device)) {
317 device->flags.initialized = false;
318 return -ENXIO;
319 }
320
321 result = acpi_device_get_power(device, &state);
322 if (result)
323 return result;
324
325 if (state < ACPI_STATE_D3_COLD && device->power.flags.power_resources) {
326 /* Reference count the power resources. */
327 result = acpi_power_on_resources(device, state);
328 if (result)
329 return result;
330
331 if (state == ACPI_STATE_D0) {
332 /*
333 * If _PSC is not present and the state inferred from
334 * power resources appears to be D0, it still may be
335 * necessary to execute _PS0 at this point, because
336 * another device using the same power resources may
337 * have been put into D0 previously and that's why we
338 * see D0 here.
339 */
340 result = acpi_dev_pm_explicit_set(device, state);
341 if (result)
342 return result;
343 }
344 } else if (state == ACPI_STATE_UNKNOWN) {
345 /*
346 * No power resources and missing _PSC? Cross fingers and make
347 * it D0 in hope that this is what the BIOS put the device into.
348 * [We tried to force D0 here by executing _PS0, but that broke
349 * Toshiba P870-303 in a nasty way.]
350 */
351 state = ACPI_STATE_D0;
352 }
353 device->power.state = state;
354 return 0;
355}
356
357/**
358 * acpi_device_fix_up_power - Force device with missing _PSC into D0.
359 * @device: Device object whose power state is to be fixed up.
360 *
361 * Devices without power resources and _PSC, but having _PS0 and _PS3 defined,
362 * are assumed to be put into D0 by the BIOS. However, in some cases that may
363 * not be the case and this function should be used then.
364 */
365int acpi_device_fix_up_power(struct acpi_device *device)
366{
367 int ret = 0;
368
369 if (!device->power.flags.power_resources
370 && !device->power.flags.explicit_get
371 && device->power.state == ACPI_STATE_D0)
372 ret = acpi_dev_pm_explicit_set(device, ACPI_STATE_D0);
373
374 return ret;
375}
376EXPORT_SYMBOL_GPL(acpi_device_fix_up_power);
377
378static int fix_up_power_if_applicable(struct acpi_device *adev, void *not_used)
379{
380 if (adev->status.present && adev->status.enabled)
381 acpi_device_fix_up_power(adev);
382
383 return 0;
384}
385
386/**
387 * acpi_device_fix_up_power_extended - Force device and its children into D0.
388 * @adev: Parent device object whose power state is to be fixed up.
389 *
390 * Call acpi_device_fix_up_power() for @adev and its children so long as they
391 * are reported as present and enabled.
392 */
393void acpi_device_fix_up_power_extended(struct acpi_device *adev)
394{
395 acpi_device_fix_up_power(adev);
396 acpi_dev_for_each_child(adev, fix_up_power_if_applicable, NULL);
397}
398EXPORT_SYMBOL_GPL(acpi_device_fix_up_power_extended);
399
400/**
401 * acpi_device_fix_up_power_children - Force a device's children into D0.
402 * @adev: Parent device object whose children's power state is to be fixed up.
403 *
404 * Call acpi_device_fix_up_power() for @adev's children so long as they
405 * are reported as present and enabled.
406 */
407void acpi_device_fix_up_power_children(struct acpi_device *adev)
408{
409 acpi_dev_for_each_child(adev, fix_up_power_if_applicable, NULL);
410}
411EXPORT_SYMBOL_GPL(acpi_device_fix_up_power_children);
412
413int acpi_device_update_power(struct acpi_device *device, int *state_p)
414{
415 int state;
416 int result;
417
418 if (device->power.state == ACPI_STATE_UNKNOWN) {
419 result = acpi_bus_init_power(device);
420 if (!result && state_p)
421 *state_p = device->power.state;
422
423 return result;
424 }
425
426 result = acpi_device_get_power(device, &state);
427 if (result)
428 return result;
429
430 if (state == ACPI_STATE_UNKNOWN) {
431 state = ACPI_STATE_D0;
432 result = acpi_device_set_power(device, state);
433 if (result)
434 return result;
435 } else {
436 if (device->power.flags.power_resources) {
437 /*
438 * We don't need to really switch the state, bu we need
439 * to update the power resources' reference counters.
440 */
441 result = acpi_power_transition(device, state);
442 if (result)
443 return result;
444 }
445 device->power.state = state;
446 }
447 if (state_p)
448 *state_p = state;
449
450 return 0;
451}
452EXPORT_SYMBOL_GPL(acpi_device_update_power);
453
454int acpi_bus_update_power(acpi_handle handle, int *state_p)
455{
456 struct acpi_device *device = acpi_fetch_acpi_dev(handle);
457
458 if (device)
459 return acpi_device_update_power(device, state_p);
460
461 return -ENODEV;
462}
463EXPORT_SYMBOL_GPL(acpi_bus_update_power);
464
465bool acpi_bus_power_manageable(acpi_handle handle)
466{
467 struct acpi_device *device = acpi_fetch_acpi_dev(handle);
468
469 return device && device->flags.power_manageable;
470}
471EXPORT_SYMBOL(acpi_bus_power_manageable);
472
473static int acpi_power_up_if_adr_present(struct acpi_device *adev, void *not_used)
474{
475 if (!(adev->flags.power_manageable && adev->pnp.type.bus_address))
476 return 0;
477
478 acpi_handle_debug(adev->handle, "Power state: %s\n",
479 acpi_power_state_string(adev->power.state));
480
481 if (adev->power.state == ACPI_STATE_D3_COLD)
482 return acpi_device_set_power(adev, ACPI_STATE_D0);
483
484 return 0;
485}
486
487/**
488 * acpi_dev_power_up_children_with_adr - Power up childres with valid _ADR
489 * @adev: Parent ACPI device object.
490 *
491 * Change the power states of the direct children of @adev that are in D3cold
492 * and hold valid _ADR objects to D0 in order to allow bus (e.g. PCI)
493 * enumeration code to access them.
494 */
495void acpi_dev_power_up_children_with_adr(struct acpi_device *adev)
496{
497 acpi_dev_for_each_child(adev, acpi_power_up_if_adr_present, NULL);
498}
499
500/**
501 * acpi_dev_power_state_for_wake - Deepest power state for wakeup signaling
502 * @adev: ACPI companion of the target device.
503 *
504 * Evaluate _S0W for @adev and return the value produced by it or return
505 * ACPI_STATE_UNKNOWN on errors (including _S0W not present).
506 */
507u8 acpi_dev_power_state_for_wake(struct acpi_device *adev)
508{
509 unsigned long long state;
510 acpi_status status;
511
512 status = acpi_evaluate_integer(adev->handle, "_S0W", NULL, &state);
513 if (ACPI_FAILURE(status))
514 return ACPI_STATE_UNKNOWN;
515
516 return state;
517}
518
519#ifdef CONFIG_PM
520static DEFINE_MUTEX(acpi_pm_notifier_lock);
521static DEFINE_MUTEX(acpi_pm_notifier_install_lock);
522
523void acpi_pm_wakeup_event(struct device *dev)
524{
525 pm_wakeup_dev_event(dev, 0, acpi_s2idle_wakeup());
526}
527EXPORT_SYMBOL_GPL(acpi_pm_wakeup_event);
528
529static void acpi_pm_notify_handler(acpi_handle handle, u32 val, void *not_used)
530{
531 struct acpi_device *adev;
532
533 if (val != ACPI_NOTIFY_DEVICE_WAKE)
534 return;
535
536 acpi_handle_debug(handle, "Wake notify\n");
537
538 adev = acpi_get_acpi_dev(handle);
539 if (!adev)
540 return;
541
542 mutex_lock(&acpi_pm_notifier_lock);
543
544 if (adev->wakeup.flags.notifier_present) {
545 pm_wakeup_ws_event(adev->wakeup.ws, 0, acpi_s2idle_wakeup());
546 if (adev->wakeup.context.func) {
547 acpi_handle_debug(handle, "Running %pS for %s\n",
548 adev->wakeup.context.func,
549 dev_name(adev->wakeup.context.dev));
550 adev->wakeup.context.func(&adev->wakeup.context);
551 }
552 }
553
554 mutex_unlock(&acpi_pm_notifier_lock);
555
556 acpi_put_acpi_dev(adev);
557}
558
559/**
560 * acpi_add_pm_notifier - Register PM notify handler for given ACPI device.
561 * @adev: ACPI device to add the notify handler for.
562 * @dev: Device to generate a wakeup event for while handling the notification.
563 * @func: Work function to execute when handling the notification.
564 *
565 * NOTE: @adev need not be a run-wake or wakeup device to be a valid source of
566 * PM wakeup events. For example, wakeup events may be generated for bridges
567 * if one of the devices below the bridge is signaling wakeup, even if the
568 * bridge itself doesn't have a wakeup GPE associated with it.
569 */
570acpi_status acpi_add_pm_notifier(struct acpi_device *adev, struct device *dev,
571 void (*func)(struct acpi_device_wakeup_context *context))
572{
573 acpi_status status = AE_ALREADY_EXISTS;
574
575 if (!dev && !func)
576 return AE_BAD_PARAMETER;
577
578 mutex_lock(&acpi_pm_notifier_install_lock);
579
580 if (adev->wakeup.flags.notifier_present)
581 goto out;
582
583 status = acpi_install_notify_handler(adev->handle, ACPI_SYSTEM_NOTIFY,
584 acpi_pm_notify_handler, NULL);
585 if (ACPI_FAILURE(status))
586 goto out;
587
588 mutex_lock(&acpi_pm_notifier_lock);
589 adev->wakeup.ws = wakeup_source_register(&adev->dev,
590 dev_name(&adev->dev));
591 adev->wakeup.context.dev = dev;
592 adev->wakeup.context.func = func;
593 adev->wakeup.flags.notifier_present = true;
594 mutex_unlock(&acpi_pm_notifier_lock);
595
596 out:
597 mutex_unlock(&acpi_pm_notifier_install_lock);
598 return status;
599}
600
601/**
602 * acpi_remove_pm_notifier - Unregister PM notifier from given ACPI device.
603 * @adev: ACPI device to remove the notifier from.
604 */
605acpi_status acpi_remove_pm_notifier(struct acpi_device *adev)
606{
607 acpi_status status = AE_BAD_PARAMETER;
608
609 mutex_lock(&acpi_pm_notifier_install_lock);
610
611 if (!adev->wakeup.flags.notifier_present)
612 goto out;
613
614 status = acpi_remove_notify_handler(adev->handle,
615 ACPI_SYSTEM_NOTIFY,
616 acpi_pm_notify_handler);
617 if (ACPI_FAILURE(status))
618 goto out;
619
620 mutex_lock(&acpi_pm_notifier_lock);
621 adev->wakeup.context.func = NULL;
622 adev->wakeup.context.dev = NULL;
623 wakeup_source_unregister(adev->wakeup.ws);
624 adev->wakeup.flags.notifier_present = false;
625 mutex_unlock(&acpi_pm_notifier_lock);
626
627 out:
628 mutex_unlock(&acpi_pm_notifier_install_lock);
629 return status;
630}
631
632bool acpi_bus_can_wakeup(acpi_handle handle)
633{
634 struct acpi_device *device = acpi_fetch_acpi_dev(handle);
635
636 return device && device->wakeup.flags.valid;
637}
638EXPORT_SYMBOL(acpi_bus_can_wakeup);
639
640bool acpi_pm_device_can_wakeup(struct device *dev)
641{
642 struct acpi_device *adev = ACPI_COMPANION(dev);
643
644 return adev ? acpi_device_can_wakeup(adev) : false;
645}
646
647/**
648 * acpi_dev_pm_get_state - Get preferred power state of ACPI device.
649 * @dev: Device whose preferred target power state to return.
650 * @adev: ACPI device node corresponding to @dev.
651 * @target_state: System state to match the resultant device state.
652 * @d_min_p: Location to store the highest power state available to the device.
653 * @d_max_p: Location to store the lowest power state available to the device.
654 *
655 * Find the lowest power (highest number) and highest power (lowest number) ACPI
656 * device power states that the device can be in while the system is in the
657 * state represented by @target_state. Store the integer numbers representing
658 * those stats in the memory locations pointed to by @d_max_p and @d_min_p,
659 * respectively.
660 *
661 * Callers must ensure that @dev and @adev are valid pointers and that @adev
662 * actually corresponds to @dev before using this function.
663 *
664 * Returns 0 on success or -ENODATA when one of the ACPI methods fails or
665 * returns a value that doesn't make sense. The memory locations pointed to by
666 * @d_max_p and @d_min_p are only modified on success.
667 */
668static int acpi_dev_pm_get_state(struct device *dev, struct acpi_device *adev,
669 u32 target_state, int *d_min_p, int *d_max_p)
670{
671 char method[] = { '_', 'S', '0' + target_state, 'D', '\0' };
672 acpi_handle handle = adev->handle;
673 unsigned long long ret;
674 int d_min, d_max;
675 bool wakeup = false;
676 bool has_sxd = false;
677 acpi_status status;
678
679 /*
680 * If the system state is S0, the lowest power state the device can be
681 * in is D3cold, unless the device has _S0W and is supposed to signal
682 * wakeup, in which case the return value of _S0W has to be used as the
683 * lowest power state available to the device.
684 */
685 d_min = ACPI_STATE_D0;
686 d_max = ACPI_STATE_D3_COLD;
687
688 /*
689 * If present, _SxD methods return the minimum D-state (highest power
690 * state) we can use for the corresponding S-states. Otherwise, the
691 * minimum D-state is D0 (ACPI 3.x).
692 */
693 if (target_state > ACPI_STATE_S0) {
694 /*
695 * We rely on acpi_evaluate_integer() not clobbering the integer
696 * provided if AE_NOT_FOUND is returned.
697 */
698 ret = d_min;
699 status = acpi_evaluate_integer(handle, method, NULL, &ret);
700 if ((ACPI_FAILURE(status) && status != AE_NOT_FOUND)
701 || ret > ACPI_STATE_D3_COLD)
702 return -ENODATA;
703
704 /*
705 * We need to handle legacy systems where D3hot and D3cold are
706 * the same and 3 is returned in both cases, so fall back to
707 * D3cold if D3hot is not a valid state.
708 */
709 if (!adev->power.states[ret].flags.valid) {
710 if (ret == ACPI_STATE_D3_HOT)
711 ret = ACPI_STATE_D3_COLD;
712 else
713 return -ENODATA;
714 }
715
716 if (status == AE_OK)
717 has_sxd = true;
718
719 d_min = ret;
720 wakeup = device_may_wakeup(dev) && adev->wakeup.flags.valid
721 && adev->wakeup.sleep_state >= target_state;
722 } else if (device_may_wakeup(dev) && dev->power.wakeirq) {
723 /*
724 * The ACPI subsystem doesn't manage the wake bit for IRQs
725 * defined with ExclusiveAndWake and SharedAndWake. Instead we
726 * expect them to be managed via the PM subsystem. Drivers
727 * should call dev_pm_set_wake_irq to register an IRQ as a wake
728 * source.
729 *
730 * If a device has a wake IRQ attached we need to check the
731 * _S0W method to get the correct wake D-state. Otherwise we
732 * end up putting the device into D3Cold which will more than
733 * likely disable wake functionality.
734 */
735 wakeup = true;
736 } else {
737 /* ACPI GPE is specified in _PRW. */
738 wakeup = adev->wakeup.flags.valid;
739 }
740
741 /*
742 * If _PRW says we can wake up the system from the target sleep state,
743 * the D-state returned by _SxD is sufficient for that (we assume a
744 * wakeup-aware driver if wake is set). Still, if _SxW exists
745 * (ACPI 3.x), it should return the maximum (lowest power) D-state that
746 * can wake the system. _S0W may be valid, too.
747 */
748 if (wakeup) {
749 method[3] = 'W';
750 status = acpi_evaluate_integer(handle, method, NULL, &ret);
751 if (status == AE_NOT_FOUND) {
752 /* No _SxW. In this case, the ACPI spec says that we
753 * must not go into any power state deeper than the
754 * value returned from _SxD.
755 */
756 if (has_sxd && target_state > ACPI_STATE_S0)
757 d_max = d_min;
758 } else if (ACPI_SUCCESS(status) && ret <= ACPI_STATE_D3_COLD) {
759 /* Fall back to D3cold if ret is not a valid state. */
760 if (!adev->power.states[ret].flags.valid)
761 ret = ACPI_STATE_D3_COLD;
762
763 d_max = ret > d_min ? ret : d_min;
764 } else {
765 return -ENODATA;
766 }
767 }
768
769 if (d_min_p)
770 *d_min_p = d_min;
771
772 if (d_max_p)
773 *d_max_p = d_max;
774
775 return 0;
776}
777
778/**
779 * acpi_pm_device_sleep_state - Get preferred power state of ACPI device.
780 * @dev: Device whose preferred target power state to return.
781 * @d_min_p: Location to store the upper limit of the allowed states range.
782 * @d_max_in: Deepest low-power state to take into consideration.
783 * Return value: Preferred power state of the device on success, -ENODEV
784 * if there's no 'struct acpi_device' for @dev, -EINVAL if @d_max_in is
785 * incorrect, or -ENODATA on ACPI method failure.
786 *
787 * The caller must ensure that @dev is valid before using this function.
788 */
789int acpi_pm_device_sleep_state(struct device *dev, int *d_min_p, int d_max_in)
790{
791 struct acpi_device *adev;
792 int ret, d_min, d_max;
793
794 if (d_max_in < ACPI_STATE_D0 || d_max_in > ACPI_STATE_D3_COLD)
795 return -EINVAL;
796
797 if (d_max_in > ACPI_STATE_D2) {
798 enum pm_qos_flags_status stat;
799
800 stat = dev_pm_qos_flags(dev, PM_QOS_FLAG_NO_POWER_OFF);
801 if (stat == PM_QOS_FLAGS_ALL)
802 d_max_in = ACPI_STATE_D2;
803 }
804
805 adev = ACPI_COMPANION(dev);
806 if (!adev) {
807 dev_dbg(dev, "ACPI companion missing in %s!\n", __func__);
808 return -ENODEV;
809 }
810
811 ret = acpi_dev_pm_get_state(dev, adev, acpi_target_system_state(),
812 &d_min, &d_max);
813 if (ret)
814 return ret;
815
816 if (d_max_in < d_min)
817 return -EINVAL;
818
819 if (d_max > d_max_in) {
820 for (d_max = d_max_in; d_max > d_min; d_max--) {
821 if (adev->power.states[d_max].flags.valid)
822 break;
823 }
824 }
825
826 if (d_min_p)
827 *d_min_p = d_min;
828
829 return d_max;
830}
831EXPORT_SYMBOL(acpi_pm_device_sleep_state);
832
833/**
834 * acpi_pm_notify_work_func - ACPI devices wakeup notification work function.
835 * @context: Device wakeup context.
836 */
837static void acpi_pm_notify_work_func(struct acpi_device_wakeup_context *context)
838{
839 struct device *dev = context->dev;
840
841 if (dev) {
842 pm_wakeup_event(dev, 0);
843 pm_request_resume(dev);
844 }
845}
846
847static DEFINE_MUTEX(acpi_wakeup_lock);
848
849static int __acpi_device_wakeup_enable(struct acpi_device *adev,
850 u32 target_state)
851{
852 struct acpi_device_wakeup *wakeup = &adev->wakeup;
853 acpi_status status;
854 int error = 0;
855
856 mutex_lock(&acpi_wakeup_lock);
857
858 /*
859 * If the device wakeup power is already enabled, disable it and enable
860 * it again in case it depends on the configuration of subordinate
861 * devices and the conditions have changed since it was enabled last
862 * time.
863 */
864 if (wakeup->enable_count > 0)
865 acpi_disable_wakeup_device_power(adev);
866
867 error = acpi_enable_wakeup_device_power(adev, target_state);
868 if (error) {
869 if (wakeup->enable_count > 0) {
870 acpi_disable_gpe(wakeup->gpe_device, wakeup->gpe_number);
871 wakeup->enable_count = 0;
872 }
873 goto out;
874 }
875
876 if (wakeup->enable_count > 0)
877 goto inc;
878
879 status = acpi_enable_gpe(wakeup->gpe_device, wakeup->gpe_number);
880 if (ACPI_FAILURE(status)) {
881 acpi_disable_wakeup_device_power(adev);
882 error = -EIO;
883 goto out;
884 }
885
886 acpi_handle_debug(adev->handle, "GPE%2X enabled for wakeup\n",
887 (unsigned int)wakeup->gpe_number);
888
889inc:
890 if (wakeup->enable_count < INT_MAX)
891 wakeup->enable_count++;
892 else
893 acpi_handle_info(adev->handle, "Wakeup enable count out of bounds!\n");
894
895out:
896 mutex_unlock(&acpi_wakeup_lock);
897 return error;
898}
899
900/**
901 * acpi_device_wakeup_enable - Enable wakeup functionality for device.
902 * @adev: ACPI device to enable wakeup functionality for.
903 * @target_state: State the system is transitioning into.
904 *
905 * Enable the GPE associated with @adev so that it can generate wakeup signals
906 * for the device in response to external (remote) events and enable wakeup
907 * power for it.
908 *
909 * Callers must ensure that @adev is a valid ACPI device node before executing
910 * this function.
911 */
912static int acpi_device_wakeup_enable(struct acpi_device *adev, u32 target_state)
913{
914 return __acpi_device_wakeup_enable(adev, target_state);
915}
916
917/**
918 * acpi_device_wakeup_disable - Disable wakeup functionality for device.
919 * @adev: ACPI device to disable wakeup functionality for.
920 *
921 * Disable the GPE associated with @adev and disable wakeup power for it.
922 *
923 * Callers must ensure that @adev is a valid ACPI device node before executing
924 * this function.
925 */
926static void acpi_device_wakeup_disable(struct acpi_device *adev)
927{
928 struct acpi_device_wakeup *wakeup = &adev->wakeup;
929
930 mutex_lock(&acpi_wakeup_lock);
931
932 if (!wakeup->enable_count)
933 goto out;
934
935 acpi_disable_gpe(wakeup->gpe_device, wakeup->gpe_number);
936 acpi_disable_wakeup_device_power(adev);
937
938 wakeup->enable_count--;
939
940out:
941 mutex_unlock(&acpi_wakeup_lock);
942}
943
944/**
945 * acpi_pm_set_device_wakeup - Enable/disable remote wakeup for given device.
946 * @dev: Device to enable/disable to generate wakeup events.
947 * @enable: Whether to enable or disable the wakeup functionality.
948 */
949int acpi_pm_set_device_wakeup(struct device *dev, bool enable)
950{
951 struct acpi_device *adev;
952 int error;
953
954 adev = ACPI_COMPANION(dev);
955 if (!adev) {
956 dev_dbg(dev, "ACPI companion missing in %s!\n", __func__);
957 return -ENODEV;
958 }
959
960 if (!acpi_device_can_wakeup(adev))
961 return -EINVAL;
962
963 if (!enable) {
964 acpi_device_wakeup_disable(adev);
965 dev_dbg(dev, "Wakeup disabled by ACPI\n");
966 return 0;
967 }
968
969 error = __acpi_device_wakeup_enable(adev, acpi_target_system_state());
970 if (!error)
971 dev_dbg(dev, "Wakeup enabled by ACPI\n");
972
973 return error;
974}
975EXPORT_SYMBOL_GPL(acpi_pm_set_device_wakeup);
976
977/**
978 * acpi_dev_pm_low_power - Put ACPI device into a low-power state.
979 * @dev: Device to put into a low-power state.
980 * @adev: ACPI device node corresponding to @dev.
981 * @system_state: System state to choose the device state for.
982 */
983static int acpi_dev_pm_low_power(struct device *dev, struct acpi_device *adev,
984 u32 system_state)
985{
986 int ret, state;
987
988 if (!acpi_device_power_manageable(adev))
989 return 0;
990
991 ret = acpi_dev_pm_get_state(dev, adev, system_state, NULL, &state);
992 return ret ? ret : acpi_device_set_power(adev, state);
993}
994
995/**
996 * acpi_dev_pm_full_power - Put ACPI device into the full-power state.
997 * @adev: ACPI device node to put into the full-power state.
998 */
999static int acpi_dev_pm_full_power(struct acpi_device *adev)
1000{
1001 return acpi_device_power_manageable(adev) ?
1002 acpi_device_set_power(adev, ACPI_STATE_D0) : 0;
1003}
1004
1005/**
1006 * acpi_dev_suspend - Put device into a low-power state using ACPI.
1007 * @dev: Device to put into a low-power state.
1008 * @wakeup: Whether or not to enable wakeup for the device.
1009 *
1010 * Put the given device into a low-power state using the standard ACPI
1011 * mechanism. Set up remote wakeup if desired, choose the state to put the
1012 * device into (this checks if remote wakeup is expected to work too), and set
1013 * the power state of the device.
1014 */
1015int acpi_dev_suspend(struct device *dev, bool wakeup)
1016{
1017 struct acpi_device *adev = ACPI_COMPANION(dev);
1018 u32 target_state = acpi_target_system_state();
1019 int error;
1020
1021 if (!adev)
1022 return 0;
1023
1024 if (wakeup && acpi_device_can_wakeup(adev)) {
1025 error = acpi_device_wakeup_enable(adev, target_state);
1026 if (error)
1027 return -EAGAIN;
1028 } else {
1029 wakeup = false;
1030 }
1031
1032 error = acpi_dev_pm_low_power(dev, adev, target_state);
1033 if (error && wakeup)
1034 acpi_device_wakeup_disable(adev);
1035
1036 return error;
1037}
1038EXPORT_SYMBOL_GPL(acpi_dev_suspend);
1039
1040/**
1041 * acpi_dev_resume - Put device into the full-power state using ACPI.
1042 * @dev: Device to put into the full-power state.
1043 *
1044 * Put the given device into the full-power state using the standard ACPI
1045 * mechanism. Set the power state of the device to ACPI D0 and disable wakeup.
1046 */
1047int acpi_dev_resume(struct device *dev)
1048{
1049 struct acpi_device *adev = ACPI_COMPANION(dev);
1050 int error;
1051
1052 if (!adev)
1053 return 0;
1054
1055 error = acpi_dev_pm_full_power(adev);
1056 acpi_device_wakeup_disable(adev);
1057 return error;
1058}
1059EXPORT_SYMBOL_GPL(acpi_dev_resume);
1060
1061/**
1062 * acpi_subsys_runtime_suspend - Suspend device using ACPI.
1063 * @dev: Device to suspend.
1064 *
1065 * Carry out the generic runtime suspend procedure for @dev and use ACPI to put
1066 * it into a runtime low-power state.
1067 */
1068int acpi_subsys_runtime_suspend(struct device *dev)
1069{
1070 int ret = pm_generic_runtime_suspend(dev);
1071
1072 return ret ? ret : acpi_dev_suspend(dev, true);
1073}
1074EXPORT_SYMBOL_GPL(acpi_subsys_runtime_suspend);
1075
1076/**
1077 * acpi_subsys_runtime_resume - Resume device using ACPI.
1078 * @dev: Device to Resume.
1079 *
1080 * Use ACPI to put the given device into the full-power state and carry out the
1081 * generic runtime resume procedure for it.
1082 */
1083int acpi_subsys_runtime_resume(struct device *dev)
1084{
1085 int ret = acpi_dev_resume(dev);
1086
1087 return ret ? ret : pm_generic_runtime_resume(dev);
1088}
1089EXPORT_SYMBOL_GPL(acpi_subsys_runtime_resume);
1090
1091#ifdef CONFIG_PM_SLEEP
1092static bool acpi_dev_needs_resume(struct device *dev, struct acpi_device *adev)
1093{
1094 u32 sys_target = acpi_target_system_state();
1095 int ret, state;
1096
1097 if (!pm_runtime_suspended(dev) || !adev || (adev->wakeup.flags.valid &&
1098 device_may_wakeup(dev) != !!adev->wakeup.prepare_count))
1099 return true;
1100
1101 if (sys_target == ACPI_STATE_S0)
1102 return false;
1103
1104 if (adev->power.flags.dsw_present)
1105 return true;
1106
1107 ret = acpi_dev_pm_get_state(dev, adev, sys_target, NULL, &state);
1108 if (ret)
1109 return true;
1110
1111 return state != adev->power.state;
1112}
1113
1114/**
1115 * acpi_subsys_prepare - Prepare device for system transition to a sleep state.
1116 * @dev: Device to prepare.
1117 */
1118int acpi_subsys_prepare(struct device *dev)
1119{
1120 struct acpi_device *adev = ACPI_COMPANION(dev);
1121
1122 if (dev->driver && dev->driver->pm && dev->driver->pm->prepare) {
1123 int ret = dev->driver->pm->prepare(dev);
1124
1125 if (ret < 0)
1126 return ret;
1127
1128 if (!ret && dev_pm_test_driver_flags(dev, DPM_FLAG_SMART_PREPARE))
1129 return 0;
1130 }
1131
1132 return !acpi_dev_needs_resume(dev, adev);
1133}
1134EXPORT_SYMBOL_GPL(acpi_subsys_prepare);
1135
1136/**
1137 * acpi_subsys_complete - Finalize device's resume during system resume.
1138 * @dev: Device to handle.
1139 */
1140void acpi_subsys_complete(struct device *dev)
1141{
1142 pm_generic_complete(dev);
1143 /*
1144 * If the device had been runtime-suspended before the system went into
1145 * the sleep state it is going out of and it has never been resumed till
1146 * now, resume it in case the firmware powered it up.
1147 */
1148 if (pm_runtime_suspended(dev) && pm_resume_via_firmware())
1149 pm_request_resume(dev);
1150}
1151EXPORT_SYMBOL_GPL(acpi_subsys_complete);
1152
1153/**
1154 * acpi_subsys_suspend - Run the device driver's suspend callback.
1155 * @dev: Device to handle.
1156 *
1157 * Follow PCI and resume devices from runtime suspend before running their
1158 * system suspend callbacks, unless the driver can cope with runtime-suspended
1159 * devices during system suspend and there are no ACPI-specific reasons for
1160 * resuming them.
1161 */
1162int acpi_subsys_suspend(struct device *dev)
1163{
1164 if (!dev_pm_test_driver_flags(dev, DPM_FLAG_SMART_SUSPEND) ||
1165 acpi_dev_needs_resume(dev, ACPI_COMPANION(dev)))
1166 pm_runtime_resume(dev);
1167
1168 return pm_generic_suspend(dev);
1169}
1170EXPORT_SYMBOL_GPL(acpi_subsys_suspend);
1171
1172/**
1173 * acpi_subsys_suspend_late - Suspend device using ACPI.
1174 * @dev: Device to suspend.
1175 *
1176 * Carry out the generic late suspend procedure for @dev and use ACPI to put
1177 * it into a low-power state during system transition into a sleep state.
1178 */
1179int acpi_subsys_suspend_late(struct device *dev)
1180{
1181 int ret;
1182
1183 if (dev_pm_skip_suspend(dev))
1184 return 0;
1185
1186 ret = pm_generic_suspend_late(dev);
1187 return ret ? ret : acpi_dev_suspend(dev, device_may_wakeup(dev));
1188}
1189EXPORT_SYMBOL_GPL(acpi_subsys_suspend_late);
1190
1191/**
1192 * acpi_subsys_suspend_noirq - Run the device driver's "noirq" suspend callback.
1193 * @dev: Device to suspend.
1194 */
1195int acpi_subsys_suspend_noirq(struct device *dev)
1196{
1197 int ret;
1198
1199 if (dev_pm_skip_suspend(dev))
1200 return 0;
1201
1202 ret = pm_generic_suspend_noirq(dev);
1203 if (ret)
1204 return ret;
1205
1206 /*
1207 * If the target system sleep state is suspend-to-idle, it is sufficient
1208 * to check whether or not the device's wakeup settings are good for
1209 * runtime PM. Otherwise, the pm_resume_via_firmware() check will cause
1210 * acpi_subsys_complete() to take care of fixing up the device's state
1211 * anyway, if need be.
1212 */
1213 if (device_can_wakeup(dev) && !device_may_wakeup(dev))
1214 dev->power.may_skip_resume = false;
1215
1216 return 0;
1217}
1218EXPORT_SYMBOL_GPL(acpi_subsys_suspend_noirq);
1219
1220/**
1221 * acpi_subsys_resume_noirq - Run the device driver's "noirq" resume callback.
1222 * @dev: Device to handle.
1223 */
1224static int acpi_subsys_resume_noirq(struct device *dev)
1225{
1226 if (dev_pm_skip_resume(dev))
1227 return 0;
1228
1229 return pm_generic_resume_noirq(dev);
1230}
1231
1232/**
1233 * acpi_subsys_resume_early - Resume device using ACPI.
1234 * @dev: Device to Resume.
1235 *
1236 * Use ACPI to put the given device into the full-power state and carry out the
1237 * generic early resume procedure for it during system transition into the
1238 * working state, but only do that if device either defines early resume
1239 * handler, or does not define power operations at all. Otherwise powering up
1240 * of the device is postponed to the normal resume phase.
1241 */
1242static int acpi_subsys_resume_early(struct device *dev)
1243{
1244 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
1245 int ret;
1246
1247 if (dev_pm_skip_resume(dev))
1248 return 0;
1249
1250 if (pm && !pm->resume_early) {
1251 dev_dbg(dev, "postponing D0 transition to normal resume stage\n");
1252 return 0;
1253 }
1254
1255 ret = acpi_dev_resume(dev);
1256 return ret ? ret : pm_generic_resume_early(dev);
1257}
1258
1259/**
1260 * acpi_subsys_resume - Resume device using ACPI.
1261 * @dev: Device to Resume.
1262 *
1263 * Use ACPI to put the given device into the full-power state if it has not been
1264 * powered up during early resume phase, and carry out the generic resume
1265 * procedure for it during system transition into the working state.
1266 */
1267static int acpi_subsys_resume(struct device *dev)
1268{
1269 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
1270 int ret = 0;
1271
1272 if (!dev_pm_skip_resume(dev) && pm && !pm->resume_early) {
1273 dev_dbg(dev, "executing postponed D0 transition\n");
1274 ret = acpi_dev_resume(dev);
1275 }
1276
1277 return ret ? ret : pm_generic_resume(dev);
1278}
1279
1280/**
1281 * acpi_subsys_freeze - Run the device driver's freeze callback.
1282 * @dev: Device to handle.
1283 */
1284int acpi_subsys_freeze(struct device *dev)
1285{
1286 /*
1287 * Resume all runtime-suspended devices before creating a snapshot
1288 * image of system memory, because the restore kernel generally cannot
1289 * be expected to always handle them consistently and they need to be
1290 * put into the runtime-active metastate during system resume anyway,
1291 * so it is better to ensure that the state saved in the image will be
1292 * always consistent with that.
1293 */
1294 pm_runtime_resume(dev);
1295
1296 return pm_generic_freeze(dev);
1297}
1298EXPORT_SYMBOL_GPL(acpi_subsys_freeze);
1299
1300/**
1301 * acpi_subsys_restore_early - Restore device using ACPI.
1302 * @dev: Device to restore.
1303 */
1304int acpi_subsys_restore_early(struct device *dev)
1305{
1306 int ret = acpi_dev_resume(dev);
1307
1308 return ret ? ret : pm_generic_restore_early(dev);
1309}
1310EXPORT_SYMBOL_GPL(acpi_subsys_restore_early);
1311
1312/**
1313 * acpi_subsys_poweroff - Run the device driver's poweroff callback.
1314 * @dev: Device to handle.
1315 *
1316 * Follow PCI and resume devices from runtime suspend before running their
1317 * system poweroff callbacks, unless the driver can cope with runtime-suspended
1318 * devices during system suspend and there are no ACPI-specific reasons for
1319 * resuming them.
1320 */
1321int acpi_subsys_poweroff(struct device *dev)
1322{
1323 if (!dev_pm_test_driver_flags(dev, DPM_FLAG_SMART_SUSPEND) ||
1324 acpi_dev_needs_resume(dev, ACPI_COMPANION(dev)))
1325 pm_runtime_resume(dev);
1326
1327 return pm_generic_poweroff(dev);
1328}
1329EXPORT_SYMBOL_GPL(acpi_subsys_poweroff);
1330
1331/**
1332 * acpi_subsys_poweroff_late - Run the device driver's poweroff callback.
1333 * @dev: Device to handle.
1334 *
1335 * Carry out the generic late poweroff procedure for @dev and use ACPI to put
1336 * it into a low-power state during system transition into a sleep state.
1337 */
1338static int acpi_subsys_poweroff_late(struct device *dev)
1339{
1340 int ret;
1341
1342 if (dev_pm_skip_suspend(dev))
1343 return 0;
1344
1345 ret = pm_generic_poweroff_late(dev);
1346 if (ret)
1347 return ret;
1348
1349 return acpi_dev_suspend(dev, device_may_wakeup(dev));
1350}
1351
1352/**
1353 * acpi_subsys_poweroff_noirq - Run the driver's "noirq" poweroff callback.
1354 * @dev: Device to suspend.
1355 */
1356static int acpi_subsys_poweroff_noirq(struct device *dev)
1357{
1358 if (dev_pm_skip_suspend(dev))
1359 return 0;
1360
1361 return pm_generic_poweroff_noirq(dev);
1362}
1363#endif /* CONFIG_PM_SLEEP */
1364
1365static struct dev_pm_domain acpi_general_pm_domain = {
1366 .ops = {
1367 .runtime_suspend = acpi_subsys_runtime_suspend,
1368 .runtime_resume = acpi_subsys_runtime_resume,
1369#ifdef CONFIG_PM_SLEEP
1370 .prepare = acpi_subsys_prepare,
1371 .complete = acpi_subsys_complete,
1372 .suspend = acpi_subsys_suspend,
1373 .resume = acpi_subsys_resume,
1374 .suspend_late = acpi_subsys_suspend_late,
1375 .suspend_noirq = acpi_subsys_suspend_noirq,
1376 .resume_noirq = acpi_subsys_resume_noirq,
1377 .resume_early = acpi_subsys_resume_early,
1378 .freeze = acpi_subsys_freeze,
1379 .poweroff = acpi_subsys_poweroff,
1380 .poweroff_late = acpi_subsys_poweroff_late,
1381 .poweroff_noirq = acpi_subsys_poweroff_noirq,
1382 .restore_early = acpi_subsys_restore_early,
1383#endif
1384 },
1385};
1386
1387/**
1388 * acpi_dev_pm_detach - Remove ACPI power management from the device.
1389 * @dev: Device to take care of.
1390 * @power_off: Whether or not to try to remove power from the device.
1391 *
1392 * Remove the device from the general ACPI PM domain and remove its wakeup
1393 * notifier. If @power_off is set, additionally remove power from the device if
1394 * possible.
1395 *
1396 * Callers must ensure proper synchronization of this function with power
1397 * management callbacks.
1398 */
1399static void acpi_dev_pm_detach(struct device *dev, bool power_off)
1400{
1401 struct acpi_device *adev = ACPI_COMPANION(dev);
1402
1403 if (adev && dev->pm_domain == &acpi_general_pm_domain) {
1404 dev_pm_domain_set(dev, NULL);
1405 acpi_remove_pm_notifier(adev);
1406 if (power_off) {
1407 /*
1408 * If the device's PM QoS resume latency limit or flags
1409 * have been exposed to user space, they have to be
1410 * hidden at this point, so that they don't affect the
1411 * choice of the low-power state to put the device into.
1412 */
1413 dev_pm_qos_hide_latency_limit(dev);
1414 dev_pm_qos_hide_flags(dev);
1415 acpi_device_wakeup_disable(adev);
1416 acpi_dev_pm_low_power(dev, adev, ACPI_STATE_S0);
1417 }
1418 }
1419}
1420
1421/**
1422 * acpi_dev_pm_attach - Prepare device for ACPI power management.
1423 * @dev: Device to prepare.
1424 * @power_on: Whether or not to power on the device.
1425 *
1426 * If @dev has a valid ACPI handle that has a valid struct acpi_device object
1427 * attached to it, install a wakeup notification handler for the device and
1428 * add it to the general ACPI PM domain. If @power_on is set, the device will
1429 * be put into the ACPI D0 state before the function returns.
1430 *
1431 * This assumes that the @dev's bus type uses generic power management callbacks
1432 * (or doesn't use any power management callbacks at all).
1433 *
1434 * Callers must ensure proper synchronization of this function with power
1435 * management callbacks.
1436 */
1437int acpi_dev_pm_attach(struct device *dev, bool power_on)
1438{
1439 /*
1440 * Skip devices whose ACPI companions match the device IDs below,
1441 * because they require special power management handling incompatible
1442 * with the generic ACPI PM domain.
1443 */
1444 static const struct acpi_device_id special_pm_ids[] = {
1445 ACPI_FAN_DEVICE_IDS,
1446 {}
1447 };
1448 struct acpi_device *adev = ACPI_COMPANION(dev);
1449
1450 if (!adev || !acpi_match_device_ids(adev, special_pm_ids))
1451 return 0;
1452
1453 /*
1454 * Only attach the power domain to the first device if the
1455 * companion is shared by multiple. This is to prevent doing power
1456 * management twice.
1457 */
1458 if (!acpi_device_is_first_physical_node(adev, dev))
1459 return 0;
1460
1461 acpi_add_pm_notifier(adev, dev, acpi_pm_notify_work_func);
1462 dev_pm_domain_set(dev, &acpi_general_pm_domain);
1463 if (power_on) {
1464 acpi_dev_pm_full_power(adev);
1465 acpi_device_wakeup_disable(adev);
1466 }
1467
1468 dev->pm_domain->detach = acpi_dev_pm_detach;
1469 return 1;
1470}
1471EXPORT_SYMBOL_GPL(acpi_dev_pm_attach);
1472
1473/**
1474 * acpi_storage_d3 - Check if D3 should be used in the suspend path
1475 * @dev: Device to check
1476 *
1477 * Return %true if the platform firmware wants @dev to be programmed
1478 * into D3hot or D3cold (if supported) in the suspend path, or %false
1479 * when there is no specific preference. On some platforms, if this
1480 * hint is ignored, @dev may remain unresponsive after suspending the
1481 * platform as a whole.
1482 *
1483 * Although the property has storage in the name it actually is
1484 * applied to the PCIe slot and plugging in a non-storage device the
1485 * same platform restrictions will likely apply.
1486 */
1487bool acpi_storage_d3(struct device *dev)
1488{
1489 struct acpi_device *adev = ACPI_COMPANION(dev);
1490 u8 val;
1491
1492 if (force_storage_d3())
1493 return true;
1494
1495 if (!adev)
1496 return false;
1497 if (fwnode_property_read_u8(acpi_fwnode_handle(adev), "StorageD3Enable",
1498 &val))
1499 return false;
1500 return val == 1;
1501}
1502EXPORT_SYMBOL_GPL(acpi_storage_d3);
1503
1504/**
1505 * acpi_dev_state_d0 - Tell if the device is in D0 power state
1506 * @dev: Physical device the ACPI power state of which to check
1507 *
1508 * On a system without ACPI, return true. On a system with ACPI, return true if
1509 * the current ACPI power state of the device is D0, or false otherwise.
1510 *
1511 * Note that the power state of a device is not well-defined after it has been
1512 * passed to acpi_device_set_power() and before that function returns, so it is
1513 * not valid to ask for the ACPI power state of the device in that time frame.
1514 *
1515 * This function is intended to be used in a driver's probe or remove
1516 * function. See Documentation/firmware-guide/acpi/non-d0-probe.rst for
1517 * more information.
1518 */
1519bool acpi_dev_state_d0(struct device *dev)
1520{
1521 struct acpi_device *adev = ACPI_COMPANION(dev);
1522
1523 if (!adev)
1524 return true;
1525
1526 return adev->power.state == ACPI_STATE_D0;
1527}
1528EXPORT_SYMBOL_GPL(acpi_dev_state_d0);
1529
1530#endif /* CONFIG_PM */
1/*
2 * drivers/acpi/device_pm.c - ACPI device power management routines.
3 *
4 * Copyright (C) 2012, Intel Corp.
5 * Author: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
6 *
7 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as published
11 * by the Free Software Foundation.
12 *
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * General Public License for more details.
17 *
18 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
19 */
20
21#include <linux/acpi.h>
22#include <linux/export.h>
23#include <linux/mutex.h>
24#include <linux/pm_qos.h>
25#include <linux/pm_domain.h>
26#include <linux/pm_runtime.h>
27
28#include "internal.h"
29
30#define _COMPONENT ACPI_POWER_COMPONENT
31ACPI_MODULE_NAME("device_pm");
32
33/**
34 * acpi_power_state_string - String representation of ACPI device power state.
35 * @state: ACPI device power state to return the string representation of.
36 */
37const char *acpi_power_state_string(int state)
38{
39 switch (state) {
40 case ACPI_STATE_D0:
41 return "D0";
42 case ACPI_STATE_D1:
43 return "D1";
44 case ACPI_STATE_D2:
45 return "D2";
46 case ACPI_STATE_D3_HOT:
47 return "D3hot";
48 case ACPI_STATE_D3_COLD:
49 return "D3cold";
50 default:
51 return "(unknown)";
52 }
53}
54
55/**
56 * acpi_device_get_power - Get power state of an ACPI device.
57 * @device: Device to get the power state of.
58 * @state: Place to store the power state of the device.
59 *
60 * This function does not update the device's power.state field, but it may
61 * update its parent's power.state field (when the parent's power state is
62 * unknown and the device's power state turns out to be D0).
63 */
64int acpi_device_get_power(struct acpi_device *device, int *state)
65{
66 int result = ACPI_STATE_UNKNOWN;
67
68 if (!device || !state)
69 return -EINVAL;
70
71 if (!device->flags.power_manageable) {
72 /* TBD: Non-recursive algorithm for walking up hierarchy. */
73 *state = device->parent ?
74 device->parent->power.state : ACPI_STATE_D0;
75 goto out;
76 }
77
78 /*
79 * Get the device's power state from power resources settings and _PSC,
80 * if available.
81 */
82 if (device->power.flags.power_resources) {
83 int error = acpi_power_get_inferred_state(device, &result);
84 if (error)
85 return error;
86 }
87 if (device->power.flags.explicit_get) {
88 acpi_handle handle = device->handle;
89 unsigned long long psc;
90 acpi_status status;
91
92 status = acpi_evaluate_integer(handle, "_PSC", NULL, &psc);
93 if (ACPI_FAILURE(status))
94 return -ENODEV;
95
96 /*
97 * The power resources settings may indicate a power state
98 * shallower than the actual power state of the device, because
99 * the same power resources may be referenced by other devices.
100 *
101 * For systems predating ACPI 4.0 we assume that D3hot is the
102 * deepest state that can be supported.
103 */
104 if (psc > result && psc < ACPI_STATE_D3_COLD)
105 result = psc;
106 else if (result == ACPI_STATE_UNKNOWN)
107 result = psc > ACPI_STATE_D2 ? ACPI_STATE_D3_HOT : psc;
108 }
109
110 /*
111 * If we were unsure about the device parent's power state up to this
112 * point, the fact that the device is in D0 implies that the parent has
113 * to be in D0 too, except if ignore_parent is set.
114 */
115 if (!device->power.flags.ignore_parent && device->parent
116 && device->parent->power.state == ACPI_STATE_UNKNOWN
117 && result == ACPI_STATE_D0)
118 device->parent->power.state = ACPI_STATE_D0;
119
120 *state = result;
121
122 out:
123 ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Device [%s] power state is %s\n",
124 device->pnp.bus_id, acpi_power_state_string(*state)));
125
126 return 0;
127}
128
129static int acpi_dev_pm_explicit_set(struct acpi_device *adev, int state)
130{
131 if (adev->power.states[state].flags.explicit_set) {
132 char method[5] = { '_', 'P', 'S', '0' + state, '\0' };
133 acpi_status status;
134
135 status = acpi_evaluate_object(adev->handle, method, NULL, NULL);
136 if (ACPI_FAILURE(status))
137 return -ENODEV;
138 }
139 return 0;
140}
141
142/**
143 * acpi_device_set_power - Set power state of an ACPI device.
144 * @device: Device to set the power state of.
145 * @state: New power state to set.
146 *
147 * Callers must ensure that the device is power manageable before using this
148 * function.
149 */
150int acpi_device_set_power(struct acpi_device *device, int state)
151{
152 int target_state = state;
153 int result = 0;
154
155 if (!device || !device->flags.power_manageable
156 || (state < ACPI_STATE_D0) || (state > ACPI_STATE_D3_COLD))
157 return -EINVAL;
158
159 /* Make sure this is a valid target state */
160
161 if (state == device->power.state) {
162 ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Device [%s] already in %s\n",
163 device->pnp.bus_id,
164 acpi_power_state_string(state)));
165 return 0;
166 }
167
168 if (state == ACPI_STATE_D3_COLD) {
169 /*
170 * For transitions to D3cold we need to execute _PS3 and then
171 * possibly drop references to the power resources in use.
172 */
173 state = ACPI_STATE_D3_HOT;
174 /* If _PR3 is not available, use D3hot as the target state. */
175 if (!device->power.states[ACPI_STATE_D3_COLD].flags.valid)
176 target_state = state;
177 } else if (!device->power.states[state].flags.valid) {
178 dev_warn(&device->dev, "Power state %s not supported\n",
179 acpi_power_state_string(state));
180 return -ENODEV;
181 }
182
183 if (!device->power.flags.ignore_parent &&
184 device->parent && (state < device->parent->power.state)) {
185 dev_warn(&device->dev,
186 "Cannot transition to power state %s for parent in %s\n",
187 acpi_power_state_string(state),
188 acpi_power_state_string(device->parent->power.state));
189 return -ENODEV;
190 }
191
192 /*
193 * Transition Power
194 * ----------------
195 * In accordance with ACPI 6, _PSx is executed before manipulating power
196 * resources, unless the target state is D0, in which case _PS0 is
197 * supposed to be executed after turning the power resources on.
198 */
199 if (state > ACPI_STATE_D0) {
200 /*
201 * According to ACPI 6, devices cannot go from lower-power
202 * (deeper) states to higher-power (shallower) states.
203 */
204 if (state < device->power.state) {
205 dev_warn(&device->dev, "Cannot transition from %s to %s\n",
206 acpi_power_state_string(device->power.state),
207 acpi_power_state_string(state));
208 return -ENODEV;
209 }
210
211 result = acpi_dev_pm_explicit_set(device, state);
212 if (result)
213 goto end;
214
215 if (device->power.flags.power_resources)
216 result = acpi_power_transition(device, target_state);
217 } else {
218 if (device->power.flags.power_resources) {
219 result = acpi_power_transition(device, ACPI_STATE_D0);
220 if (result)
221 goto end;
222 }
223 result = acpi_dev_pm_explicit_set(device, ACPI_STATE_D0);
224 }
225
226 end:
227 if (result) {
228 dev_warn(&device->dev, "Failed to change power state to %s\n",
229 acpi_power_state_string(state));
230 } else {
231 device->power.state = target_state;
232 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
233 "Device [%s] transitioned to %s\n",
234 device->pnp.bus_id,
235 acpi_power_state_string(state)));
236 }
237
238 return result;
239}
240EXPORT_SYMBOL(acpi_device_set_power);
241
242int acpi_bus_set_power(acpi_handle handle, int state)
243{
244 struct acpi_device *device;
245 int result;
246
247 result = acpi_bus_get_device(handle, &device);
248 if (result)
249 return result;
250
251 return acpi_device_set_power(device, state);
252}
253EXPORT_SYMBOL(acpi_bus_set_power);
254
255int acpi_bus_init_power(struct acpi_device *device)
256{
257 int state;
258 int result;
259
260 if (!device)
261 return -EINVAL;
262
263 device->power.state = ACPI_STATE_UNKNOWN;
264 if (!acpi_device_is_present(device))
265 return -ENXIO;
266
267 result = acpi_device_get_power(device, &state);
268 if (result)
269 return result;
270
271 if (state < ACPI_STATE_D3_COLD && device->power.flags.power_resources) {
272 /* Reference count the power resources. */
273 result = acpi_power_on_resources(device, state);
274 if (result)
275 return result;
276
277 if (state == ACPI_STATE_D0) {
278 /*
279 * If _PSC is not present and the state inferred from
280 * power resources appears to be D0, it still may be
281 * necessary to execute _PS0 at this point, because
282 * another device using the same power resources may
283 * have been put into D0 previously and that's why we
284 * see D0 here.
285 */
286 result = acpi_dev_pm_explicit_set(device, state);
287 if (result)
288 return result;
289 }
290 } else if (state == ACPI_STATE_UNKNOWN) {
291 /*
292 * No power resources and missing _PSC? Cross fingers and make
293 * it D0 in hope that this is what the BIOS put the device into.
294 * [We tried to force D0 here by executing _PS0, but that broke
295 * Toshiba P870-303 in a nasty way.]
296 */
297 state = ACPI_STATE_D0;
298 }
299 device->power.state = state;
300 return 0;
301}
302
303/**
304 * acpi_device_fix_up_power - Force device with missing _PSC into D0.
305 * @device: Device object whose power state is to be fixed up.
306 *
307 * Devices without power resources and _PSC, but having _PS0 and _PS3 defined,
308 * are assumed to be put into D0 by the BIOS. However, in some cases that may
309 * not be the case and this function should be used then.
310 */
311int acpi_device_fix_up_power(struct acpi_device *device)
312{
313 int ret = 0;
314
315 if (!device->power.flags.power_resources
316 && !device->power.flags.explicit_get
317 && device->power.state == ACPI_STATE_D0)
318 ret = acpi_dev_pm_explicit_set(device, ACPI_STATE_D0);
319
320 return ret;
321}
322EXPORT_SYMBOL_GPL(acpi_device_fix_up_power);
323
324int acpi_device_update_power(struct acpi_device *device, int *state_p)
325{
326 int state;
327 int result;
328
329 if (device->power.state == ACPI_STATE_UNKNOWN) {
330 result = acpi_bus_init_power(device);
331 if (!result && state_p)
332 *state_p = device->power.state;
333
334 return result;
335 }
336
337 result = acpi_device_get_power(device, &state);
338 if (result)
339 return result;
340
341 if (state == ACPI_STATE_UNKNOWN) {
342 state = ACPI_STATE_D0;
343 result = acpi_device_set_power(device, state);
344 if (result)
345 return result;
346 } else {
347 if (device->power.flags.power_resources) {
348 /*
349 * We don't need to really switch the state, bu we need
350 * to update the power resources' reference counters.
351 */
352 result = acpi_power_transition(device, state);
353 if (result)
354 return result;
355 }
356 device->power.state = state;
357 }
358 if (state_p)
359 *state_p = state;
360
361 return 0;
362}
363EXPORT_SYMBOL_GPL(acpi_device_update_power);
364
365int acpi_bus_update_power(acpi_handle handle, int *state_p)
366{
367 struct acpi_device *device;
368 int result;
369
370 result = acpi_bus_get_device(handle, &device);
371 return result ? result : acpi_device_update_power(device, state_p);
372}
373EXPORT_SYMBOL_GPL(acpi_bus_update_power);
374
375bool acpi_bus_power_manageable(acpi_handle handle)
376{
377 struct acpi_device *device;
378 int result;
379
380 result = acpi_bus_get_device(handle, &device);
381 return result ? false : device->flags.power_manageable;
382}
383EXPORT_SYMBOL(acpi_bus_power_manageable);
384
385#ifdef CONFIG_PM
386static DEFINE_MUTEX(acpi_pm_notifier_lock);
387
388static void acpi_pm_notify_handler(acpi_handle handle, u32 val, void *not_used)
389{
390 struct acpi_device *adev;
391
392 if (val != ACPI_NOTIFY_DEVICE_WAKE)
393 return;
394
395 adev = acpi_bus_get_acpi_device(handle);
396 if (!adev)
397 return;
398
399 mutex_lock(&acpi_pm_notifier_lock);
400
401 if (adev->wakeup.flags.notifier_present) {
402 __pm_wakeup_event(adev->wakeup.ws, 0);
403 if (adev->wakeup.context.work.func)
404 queue_pm_work(&adev->wakeup.context.work);
405 }
406
407 mutex_unlock(&acpi_pm_notifier_lock);
408
409 acpi_bus_put_acpi_device(adev);
410}
411
412/**
413 * acpi_add_pm_notifier - Register PM notify handler for given ACPI device.
414 * @adev: ACPI device to add the notify handler for.
415 * @dev: Device to generate a wakeup event for while handling the notification.
416 * @work_func: Work function to execute when handling the notification.
417 *
418 * NOTE: @adev need not be a run-wake or wakeup device to be a valid source of
419 * PM wakeup events. For example, wakeup events may be generated for bridges
420 * if one of the devices below the bridge is signaling wakeup, even if the
421 * bridge itself doesn't have a wakeup GPE associated with it.
422 */
423acpi_status acpi_add_pm_notifier(struct acpi_device *adev, struct device *dev,
424 void (*work_func)(struct work_struct *work))
425{
426 acpi_status status = AE_ALREADY_EXISTS;
427
428 if (!dev && !work_func)
429 return AE_BAD_PARAMETER;
430
431 mutex_lock(&acpi_pm_notifier_lock);
432
433 if (adev->wakeup.flags.notifier_present)
434 goto out;
435
436 adev->wakeup.ws = wakeup_source_register(dev_name(&adev->dev));
437 adev->wakeup.context.dev = dev;
438 if (work_func)
439 INIT_WORK(&adev->wakeup.context.work, work_func);
440
441 status = acpi_install_notify_handler(adev->handle, ACPI_SYSTEM_NOTIFY,
442 acpi_pm_notify_handler, NULL);
443 if (ACPI_FAILURE(status))
444 goto out;
445
446 adev->wakeup.flags.notifier_present = true;
447
448 out:
449 mutex_unlock(&acpi_pm_notifier_lock);
450 return status;
451}
452
453/**
454 * acpi_remove_pm_notifier - Unregister PM notifier from given ACPI device.
455 * @adev: ACPI device to remove the notifier from.
456 */
457acpi_status acpi_remove_pm_notifier(struct acpi_device *adev)
458{
459 acpi_status status = AE_BAD_PARAMETER;
460
461 mutex_lock(&acpi_pm_notifier_lock);
462
463 if (!adev->wakeup.flags.notifier_present)
464 goto out;
465
466 status = acpi_remove_notify_handler(adev->handle,
467 ACPI_SYSTEM_NOTIFY,
468 acpi_pm_notify_handler);
469 if (ACPI_FAILURE(status))
470 goto out;
471
472 if (adev->wakeup.context.work.func) {
473 cancel_work_sync(&adev->wakeup.context.work);
474 adev->wakeup.context.work.func = NULL;
475 }
476 adev->wakeup.context.dev = NULL;
477 wakeup_source_unregister(adev->wakeup.ws);
478
479 adev->wakeup.flags.notifier_present = false;
480
481 out:
482 mutex_unlock(&acpi_pm_notifier_lock);
483 return status;
484}
485
486bool acpi_bus_can_wakeup(acpi_handle handle)
487{
488 struct acpi_device *device;
489 int result;
490
491 result = acpi_bus_get_device(handle, &device);
492 return result ? false : device->wakeup.flags.valid;
493}
494EXPORT_SYMBOL(acpi_bus_can_wakeup);
495
496/**
497 * acpi_dev_pm_get_state - Get preferred power state of ACPI device.
498 * @dev: Device whose preferred target power state to return.
499 * @adev: ACPI device node corresponding to @dev.
500 * @target_state: System state to match the resultant device state.
501 * @d_min_p: Location to store the highest power state available to the device.
502 * @d_max_p: Location to store the lowest power state available to the device.
503 *
504 * Find the lowest power (highest number) and highest power (lowest number) ACPI
505 * device power states that the device can be in while the system is in the
506 * state represented by @target_state. Store the integer numbers representing
507 * those stats in the memory locations pointed to by @d_max_p and @d_min_p,
508 * respectively.
509 *
510 * Callers must ensure that @dev and @adev are valid pointers and that @adev
511 * actually corresponds to @dev before using this function.
512 *
513 * Returns 0 on success or -ENODATA when one of the ACPI methods fails or
514 * returns a value that doesn't make sense. The memory locations pointed to by
515 * @d_max_p and @d_min_p are only modified on success.
516 */
517static int acpi_dev_pm_get_state(struct device *dev, struct acpi_device *adev,
518 u32 target_state, int *d_min_p, int *d_max_p)
519{
520 char method[] = { '_', 'S', '0' + target_state, 'D', '\0' };
521 acpi_handle handle = adev->handle;
522 unsigned long long ret;
523 int d_min, d_max;
524 bool wakeup = false;
525 acpi_status status;
526
527 /*
528 * If the system state is S0, the lowest power state the device can be
529 * in is D3cold, unless the device has _S0W and is supposed to signal
530 * wakeup, in which case the return value of _S0W has to be used as the
531 * lowest power state available to the device.
532 */
533 d_min = ACPI_STATE_D0;
534 d_max = ACPI_STATE_D3_COLD;
535
536 /*
537 * If present, _SxD methods return the minimum D-state (highest power
538 * state) we can use for the corresponding S-states. Otherwise, the
539 * minimum D-state is D0 (ACPI 3.x).
540 */
541 if (target_state > ACPI_STATE_S0) {
542 /*
543 * We rely on acpi_evaluate_integer() not clobbering the integer
544 * provided if AE_NOT_FOUND is returned.
545 */
546 ret = d_min;
547 status = acpi_evaluate_integer(handle, method, NULL, &ret);
548 if ((ACPI_FAILURE(status) && status != AE_NOT_FOUND)
549 || ret > ACPI_STATE_D3_COLD)
550 return -ENODATA;
551
552 /*
553 * We need to handle legacy systems where D3hot and D3cold are
554 * the same and 3 is returned in both cases, so fall back to
555 * D3cold if D3hot is not a valid state.
556 */
557 if (!adev->power.states[ret].flags.valid) {
558 if (ret == ACPI_STATE_D3_HOT)
559 ret = ACPI_STATE_D3_COLD;
560 else
561 return -ENODATA;
562 }
563 d_min = ret;
564 wakeup = device_may_wakeup(dev) && adev->wakeup.flags.valid
565 && adev->wakeup.sleep_state >= target_state;
566 } else if (dev_pm_qos_flags(dev, PM_QOS_FLAG_REMOTE_WAKEUP) !=
567 PM_QOS_FLAGS_NONE) {
568 wakeup = adev->wakeup.flags.valid;
569 }
570
571 /*
572 * If _PRW says we can wake up the system from the target sleep state,
573 * the D-state returned by _SxD is sufficient for that (we assume a
574 * wakeup-aware driver if wake is set). Still, if _SxW exists
575 * (ACPI 3.x), it should return the maximum (lowest power) D-state that
576 * can wake the system. _S0W may be valid, too.
577 */
578 if (wakeup) {
579 method[3] = 'W';
580 status = acpi_evaluate_integer(handle, method, NULL, &ret);
581 if (status == AE_NOT_FOUND) {
582 if (target_state > ACPI_STATE_S0)
583 d_max = d_min;
584 } else if (ACPI_SUCCESS(status) && ret <= ACPI_STATE_D3_COLD) {
585 /* Fall back to D3cold if ret is not a valid state. */
586 if (!adev->power.states[ret].flags.valid)
587 ret = ACPI_STATE_D3_COLD;
588
589 d_max = ret > d_min ? ret : d_min;
590 } else {
591 return -ENODATA;
592 }
593 }
594
595 if (d_min_p)
596 *d_min_p = d_min;
597
598 if (d_max_p)
599 *d_max_p = d_max;
600
601 return 0;
602}
603
604/**
605 * acpi_pm_device_sleep_state - Get preferred power state of ACPI device.
606 * @dev: Device whose preferred target power state to return.
607 * @d_min_p: Location to store the upper limit of the allowed states range.
608 * @d_max_in: Deepest low-power state to take into consideration.
609 * Return value: Preferred power state of the device on success, -ENODEV
610 * if there's no 'struct acpi_device' for @dev, -EINVAL if @d_max_in is
611 * incorrect, or -ENODATA on ACPI method failure.
612 *
613 * The caller must ensure that @dev is valid before using this function.
614 */
615int acpi_pm_device_sleep_state(struct device *dev, int *d_min_p, int d_max_in)
616{
617 struct acpi_device *adev;
618 int ret, d_min, d_max;
619
620 if (d_max_in < ACPI_STATE_D0 || d_max_in > ACPI_STATE_D3_COLD)
621 return -EINVAL;
622
623 if (d_max_in > ACPI_STATE_D2) {
624 enum pm_qos_flags_status stat;
625
626 stat = dev_pm_qos_flags(dev, PM_QOS_FLAG_NO_POWER_OFF);
627 if (stat == PM_QOS_FLAGS_ALL)
628 d_max_in = ACPI_STATE_D2;
629 }
630
631 adev = ACPI_COMPANION(dev);
632 if (!adev) {
633 dev_dbg(dev, "ACPI companion missing in %s!\n", __func__);
634 return -ENODEV;
635 }
636
637 ret = acpi_dev_pm_get_state(dev, adev, acpi_target_system_state(),
638 &d_min, &d_max);
639 if (ret)
640 return ret;
641
642 if (d_max_in < d_min)
643 return -EINVAL;
644
645 if (d_max > d_max_in) {
646 for (d_max = d_max_in; d_max > d_min; d_max--) {
647 if (adev->power.states[d_max].flags.valid)
648 break;
649 }
650 }
651
652 if (d_min_p)
653 *d_min_p = d_min;
654
655 return d_max;
656}
657EXPORT_SYMBOL(acpi_pm_device_sleep_state);
658
659/**
660 * acpi_pm_notify_work_func - ACPI devices wakeup notification work function.
661 * @work: Work item to handle.
662 */
663static void acpi_pm_notify_work_func(struct work_struct *work)
664{
665 struct device *dev;
666
667 dev = container_of(work, struct acpi_device_wakeup_context, work)->dev;
668 if (dev) {
669 pm_wakeup_event(dev, 0);
670 pm_runtime_resume(dev);
671 }
672}
673
674/**
675 * acpi_device_wakeup - Enable/disable wakeup functionality for device.
676 * @adev: ACPI device to enable/disable wakeup functionality for.
677 * @target_state: State the system is transitioning into.
678 * @enable: Whether to enable or disable the wakeup functionality.
679 *
680 * Enable/disable the GPE associated with @adev so that it can generate
681 * wakeup signals for the device in response to external (remote) events and
682 * enable/disable device wakeup power.
683 *
684 * Callers must ensure that @adev is a valid ACPI device node before executing
685 * this function.
686 */
687static int acpi_device_wakeup(struct acpi_device *adev, u32 target_state,
688 bool enable)
689{
690 struct acpi_device_wakeup *wakeup = &adev->wakeup;
691
692 if (enable) {
693 acpi_status res;
694 int error;
695
696 error = acpi_enable_wakeup_device_power(adev, target_state);
697 if (error)
698 return error;
699
700 if (adev->wakeup.flags.enabled)
701 return 0;
702
703 res = acpi_enable_gpe(wakeup->gpe_device, wakeup->gpe_number);
704 if (ACPI_SUCCESS(res)) {
705 adev->wakeup.flags.enabled = 1;
706 } else {
707 acpi_disable_wakeup_device_power(adev);
708 return -EIO;
709 }
710 } else {
711 if (adev->wakeup.flags.enabled) {
712 acpi_disable_gpe(wakeup->gpe_device, wakeup->gpe_number);
713 adev->wakeup.flags.enabled = 0;
714 }
715 acpi_disable_wakeup_device_power(adev);
716 }
717 return 0;
718}
719
720/**
721 * acpi_pm_device_run_wake - Enable/disable remote wakeup for given device.
722 * @dev: Device to enable/disable the platform to wake up.
723 * @enable: Whether to enable or disable the wakeup functionality.
724 */
725int acpi_pm_device_run_wake(struct device *phys_dev, bool enable)
726{
727 struct acpi_device *adev;
728
729 if (!device_run_wake(phys_dev))
730 return -EINVAL;
731
732 adev = ACPI_COMPANION(phys_dev);
733 if (!adev) {
734 dev_dbg(phys_dev, "ACPI companion missing in %s!\n", __func__);
735 return -ENODEV;
736 }
737
738 return acpi_device_wakeup(adev, ACPI_STATE_S0, enable);
739}
740EXPORT_SYMBOL(acpi_pm_device_run_wake);
741
742#ifdef CONFIG_PM_SLEEP
743/**
744 * acpi_pm_device_sleep_wake - Enable or disable device to wake up the system.
745 * @dev: Device to enable/desible to wake up the system from sleep states.
746 * @enable: Whether to enable or disable @dev to wake up the system.
747 */
748int acpi_pm_device_sleep_wake(struct device *dev, bool enable)
749{
750 struct acpi_device *adev;
751 int error;
752
753 if (!device_can_wakeup(dev))
754 return -EINVAL;
755
756 adev = ACPI_COMPANION(dev);
757 if (!adev) {
758 dev_dbg(dev, "ACPI companion missing in %s!\n", __func__);
759 return -ENODEV;
760 }
761
762 error = acpi_device_wakeup(adev, acpi_target_system_state(), enable);
763 if (!error)
764 dev_info(dev, "System wakeup %s by ACPI\n",
765 enable ? "enabled" : "disabled");
766
767 return error;
768}
769#endif /* CONFIG_PM_SLEEP */
770
771/**
772 * acpi_dev_pm_low_power - Put ACPI device into a low-power state.
773 * @dev: Device to put into a low-power state.
774 * @adev: ACPI device node corresponding to @dev.
775 * @system_state: System state to choose the device state for.
776 */
777static int acpi_dev_pm_low_power(struct device *dev, struct acpi_device *adev,
778 u32 system_state)
779{
780 int ret, state;
781
782 if (!acpi_device_power_manageable(adev))
783 return 0;
784
785 ret = acpi_dev_pm_get_state(dev, adev, system_state, NULL, &state);
786 return ret ? ret : acpi_device_set_power(adev, state);
787}
788
789/**
790 * acpi_dev_pm_full_power - Put ACPI device into the full-power state.
791 * @adev: ACPI device node to put into the full-power state.
792 */
793static int acpi_dev_pm_full_power(struct acpi_device *adev)
794{
795 return acpi_device_power_manageable(adev) ?
796 acpi_device_set_power(adev, ACPI_STATE_D0) : 0;
797}
798
799/**
800 * acpi_dev_runtime_suspend - Put device into a low-power state using ACPI.
801 * @dev: Device to put into a low-power state.
802 *
803 * Put the given device into a runtime low-power state using the standard ACPI
804 * mechanism. Set up remote wakeup if desired, choose the state to put the
805 * device into (this checks if remote wakeup is expected to work too), and set
806 * the power state of the device.
807 */
808int acpi_dev_runtime_suspend(struct device *dev)
809{
810 struct acpi_device *adev = ACPI_COMPANION(dev);
811 bool remote_wakeup;
812 int error;
813
814 if (!adev)
815 return 0;
816
817 remote_wakeup = dev_pm_qos_flags(dev, PM_QOS_FLAG_REMOTE_WAKEUP) >
818 PM_QOS_FLAGS_NONE;
819 error = acpi_device_wakeup(adev, ACPI_STATE_S0, remote_wakeup);
820 if (remote_wakeup && error)
821 return -EAGAIN;
822
823 error = acpi_dev_pm_low_power(dev, adev, ACPI_STATE_S0);
824 if (error)
825 acpi_device_wakeup(adev, ACPI_STATE_S0, false);
826
827 return error;
828}
829EXPORT_SYMBOL_GPL(acpi_dev_runtime_suspend);
830
831/**
832 * acpi_dev_runtime_resume - Put device into the full-power state using ACPI.
833 * @dev: Device to put into the full-power state.
834 *
835 * Put the given device into the full-power state using the standard ACPI
836 * mechanism at run time. Set the power state of the device to ACPI D0 and
837 * disable remote wakeup.
838 */
839int acpi_dev_runtime_resume(struct device *dev)
840{
841 struct acpi_device *adev = ACPI_COMPANION(dev);
842 int error;
843
844 if (!adev)
845 return 0;
846
847 error = acpi_dev_pm_full_power(adev);
848 acpi_device_wakeup(adev, ACPI_STATE_S0, false);
849 return error;
850}
851EXPORT_SYMBOL_GPL(acpi_dev_runtime_resume);
852
853/**
854 * acpi_subsys_runtime_suspend - Suspend device using ACPI.
855 * @dev: Device to suspend.
856 *
857 * Carry out the generic runtime suspend procedure for @dev and use ACPI to put
858 * it into a runtime low-power state.
859 */
860int acpi_subsys_runtime_suspend(struct device *dev)
861{
862 int ret = pm_generic_runtime_suspend(dev);
863 return ret ? ret : acpi_dev_runtime_suspend(dev);
864}
865EXPORT_SYMBOL_GPL(acpi_subsys_runtime_suspend);
866
867/**
868 * acpi_subsys_runtime_resume - Resume device using ACPI.
869 * @dev: Device to Resume.
870 *
871 * Use ACPI to put the given device into the full-power state and carry out the
872 * generic runtime resume procedure for it.
873 */
874int acpi_subsys_runtime_resume(struct device *dev)
875{
876 int ret = acpi_dev_runtime_resume(dev);
877 return ret ? ret : pm_generic_runtime_resume(dev);
878}
879EXPORT_SYMBOL_GPL(acpi_subsys_runtime_resume);
880
881#ifdef CONFIG_PM_SLEEP
882/**
883 * acpi_dev_suspend_late - Put device into a low-power state using ACPI.
884 * @dev: Device to put into a low-power state.
885 *
886 * Put the given device into a low-power state during system transition to a
887 * sleep state using the standard ACPI mechanism. Set up system wakeup if
888 * desired, choose the state to put the device into (this checks if system
889 * wakeup is expected to work too), and set the power state of the device.
890 */
891int acpi_dev_suspend_late(struct device *dev)
892{
893 struct acpi_device *adev = ACPI_COMPANION(dev);
894 u32 target_state;
895 bool wakeup;
896 int error;
897
898 if (!adev)
899 return 0;
900
901 target_state = acpi_target_system_state();
902 wakeup = device_may_wakeup(dev) && acpi_device_can_wakeup(adev);
903 error = acpi_device_wakeup(adev, target_state, wakeup);
904 if (wakeup && error)
905 return error;
906
907 error = acpi_dev_pm_low_power(dev, adev, target_state);
908 if (error)
909 acpi_device_wakeup(adev, ACPI_STATE_UNKNOWN, false);
910
911 return error;
912}
913EXPORT_SYMBOL_GPL(acpi_dev_suspend_late);
914
915/**
916 * acpi_dev_resume_early - Put device into the full-power state using ACPI.
917 * @dev: Device to put into the full-power state.
918 *
919 * Put the given device into the full-power state using the standard ACPI
920 * mechanism during system transition to the working state. Set the power
921 * state of the device to ACPI D0 and disable remote wakeup.
922 */
923int acpi_dev_resume_early(struct device *dev)
924{
925 struct acpi_device *adev = ACPI_COMPANION(dev);
926 int error;
927
928 if (!adev)
929 return 0;
930
931 error = acpi_dev_pm_full_power(adev);
932 acpi_device_wakeup(adev, ACPI_STATE_UNKNOWN, false);
933 return error;
934}
935EXPORT_SYMBOL_GPL(acpi_dev_resume_early);
936
937/**
938 * acpi_subsys_prepare - Prepare device for system transition to a sleep state.
939 * @dev: Device to prepare.
940 */
941int acpi_subsys_prepare(struct device *dev)
942{
943 struct acpi_device *adev = ACPI_COMPANION(dev);
944 u32 sys_target;
945 int ret, state;
946
947 ret = pm_generic_prepare(dev);
948 if (ret < 0)
949 return ret;
950
951 if (!adev || !pm_runtime_suspended(dev)
952 || device_may_wakeup(dev) != !!adev->wakeup.prepare_count)
953 return 0;
954
955 sys_target = acpi_target_system_state();
956 if (sys_target == ACPI_STATE_S0)
957 return 1;
958
959 if (adev->power.flags.dsw_present)
960 return 0;
961
962 ret = acpi_dev_pm_get_state(dev, adev, sys_target, NULL, &state);
963 return !ret && state == adev->power.state;
964}
965EXPORT_SYMBOL_GPL(acpi_subsys_prepare);
966
967/**
968 * acpi_subsys_suspend - Run the device driver's suspend callback.
969 * @dev: Device to handle.
970 *
971 * Follow PCI and resume devices suspended at run time before running their
972 * system suspend callbacks.
973 */
974int acpi_subsys_suspend(struct device *dev)
975{
976 pm_runtime_resume(dev);
977 return pm_generic_suspend(dev);
978}
979EXPORT_SYMBOL_GPL(acpi_subsys_suspend);
980
981/**
982 * acpi_subsys_suspend_late - Suspend device using ACPI.
983 * @dev: Device to suspend.
984 *
985 * Carry out the generic late suspend procedure for @dev and use ACPI to put
986 * it into a low-power state during system transition into a sleep state.
987 */
988int acpi_subsys_suspend_late(struct device *dev)
989{
990 int ret = pm_generic_suspend_late(dev);
991 return ret ? ret : acpi_dev_suspend_late(dev);
992}
993EXPORT_SYMBOL_GPL(acpi_subsys_suspend_late);
994
995/**
996 * acpi_subsys_resume_early - Resume device using ACPI.
997 * @dev: Device to Resume.
998 *
999 * Use ACPI to put the given device into the full-power state and carry out the
1000 * generic early resume procedure for it during system transition into the
1001 * working state.
1002 */
1003int acpi_subsys_resume_early(struct device *dev)
1004{
1005 int ret = acpi_dev_resume_early(dev);
1006 return ret ? ret : pm_generic_resume_early(dev);
1007}
1008EXPORT_SYMBOL_GPL(acpi_subsys_resume_early);
1009
1010/**
1011 * acpi_subsys_freeze - Run the device driver's freeze callback.
1012 * @dev: Device to handle.
1013 */
1014int acpi_subsys_freeze(struct device *dev)
1015{
1016 /*
1017 * This used to be done in acpi_subsys_prepare() for all devices and
1018 * some drivers may depend on it, so do it here. Ideally, however,
1019 * runtime-suspended devices should not be touched during freeze/thaw
1020 * transitions.
1021 */
1022 pm_runtime_resume(dev);
1023 return pm_generic_freeze(dev);
1024}
1025EXPORT_SYMBOL_GPL(acpi_subsys_freeze);
1026
1027#endif /* CONFIG_PM_SLEEP */
1028
1029static struct dev_pm_domain acpi_general_pm_domain = {
1030 .ops = {
1031 .runtime_suspend = acpi_subsys_runtime_suspend,
1032 .runtime_resume = acpi_subsys_runtime_resume,
1033#ifdef CONFIG_PM_SLEEP
1034 .prepare = acpi_subsys_prepare,
1035 .complete = pm_complete_with_resume_check,
1036 .suspend = acpi_subsys_suspend,
1037 .suspend_late = acpi_subsys_suspend_late,
1038 .resume_early = acpi_subsys_resume_early,
1039 .freeze = acpi_subsys_freeze,
1040 .poweroff = acpi_subsys_suspend,
1041 .poweroff_late = acpi_subsys_suspend_late,
1042 .restore_early = acpi_subsys_resume_early,
1043#endif
1044 },
1045};
1046
1047/**
1048 * acpi_dev_pm_detach - Remove ACPI power management from the device.
1049 * @dev: Device to take care of.
1050 * @power_off: Whether or not to try to remove power from the device.
1051 *
1052 * Remove the device from the general ACPI PM domain and remove its wakeup
1053 * notifier. If @power_off is set, additionally remove power from the device if
1054 * possible.
1055 *
1056 * Callers must ensure proper synchronization of this function with power
1057 * management callbacks.
1058 */
1059static void acpi_dev_pm_detach(struct device *dev, bool power_off)
1060{
1061 struct acpi_device *adev = ACPI_COMPANION(dev);
1062
1063 if (adev && dev->pm_domain == &acpi_general_pm_domain) {
1064 dev_pm_domain_set(dev, NULL);
1065 acpi_remove_pm_notifier(adev);
1066 if (power_off) {
1067 /*
1068 * If the device's PM QoS resume latency limit or flags
1069 * have been exposed to user space, they have to be
1070 * hidden at this point, so that they don't affect the
1071 * choice of the low-power state to put the device into.
1072 */
1073 dev_pm_qos_hide_latency_limit(dev);
1074 dev_pm_qos_hide_flags(dev);
1075 acpi_device_wakeup(adev, ACPI_STATE_S0, false);
1076 acpi_dev_pm_low_power(dev, adev, ACPI_STATE_S0);
1077 }
1078 }
1079}
1080
1081/**
1082 * acpi_dev_pm_attach - Prepare device for ACPI power management.
1083 * @dev: Device to prepare.
1084 * @power_on: Whether or not to power on the device.
1085 *
1086 * If @dev has a valid ACPI handle that has a valid struct acpi_device object
1087 * attached to it, install a wakeup notification handler for the device and
1088 * add it to the general ACPI PM domain. If @power_on is set, the device will
1089 * be put into the ACPI D0 state before the function returns.
1090 *
1091 * This assumes that the @dev's bus type uses generic power management callbacks
1092 * (or doesn't use any power management callbacks at all).
1093 *
1094 * Callers must ensure proper synchronization of this function with power
1095 * management callbacks.
1096 */
1097int acpi_dev_pm_attach(struct device *dev, bool power_on)
1098{
1099 struct acpi_device *adev = ACPI_COMPANION(dev);
1100
1101 if (!adev)
1102 return -ENODEV;
1103
1104 if (dev->pm_domain)
1105 return -EEXIST;
1106
1107 /*
1108 * Only attach the power domain to the first device if the
1109 * companion is shared by multiple. This is to prevent doing power
1110 * management twice.
1111 */
1112 if (!acpi_device_is_first_physical_node(adev, dev))
1113 return -EBUSY;
1114
1115 acpi_add_pm_notifier(adev, dev, acpi_pm_notify_work_func);
1116 dev_pm_domain_set(dev, &acpi_general_pm_domain);
1117 if (power_on) {
1118 acpi_dev_pm_full_power(adev);
1119 acpi_device_wakeup(adev, ACPI_STATE_S0, false);
1120 }
1121
1122 dev->pm_domain->detach = acpi_dev_pm_detach;
1123 return 0;
1124}
1125EXPORT_SYMBOL_GPL(acpi_dev_pm_attach);
1126#endif /* CONFIG_PM */