Linux Audio

Check our new training course

Loading...
v6.13.7
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * vMTRR implementation
  4 *
  5 * Copyright (C) 2006 Qumranet, Inc.
  6 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
  7 * Copyright(C) 2015 Intel Corporation.
  8 *
  9 * Authors:
 10 *   Yaniv Kamay  <yaniv@qumranet.com>
 11 *   Avi Kivity   <avi@qumranet.com>
 12 *   Marcelo Tosatti <mtosatti@redhat.com>
 13 *   Paolo Bonzini <pbonzini@redhat.com>
 14 *   Xiao Guangrong <guangrong.xiao@linux.intel.com>
 15 */
 16#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
 17
 18#include <linux/kvm_host.h>
 19#include <asm/mtrr.h>
 20
 21#include "cpuid.h"
 22#include "x86.h"
 23
 24static u64 *find_mtrr(struct kvm_vcpu *vcpu, unsigned int msr)
 25{
 26	int index;
 27
 
 
 28	switch (msr) {
 29	case MTRRphysBase_MSR(0) ... MTRRphysMask_MSR(KVM_NR_VAR_MTRR - 1):
 30		index = msr - MTRRphysBase_MSR(0);
 31		return &vcpu->arch.mtrr_state.var[index];
 32	case MSR_MTRRfix64K_00000:
 33		return &vcpu->arch.mtrr_state.fixed_64k;
 34	case MSR_MTRRfix16K_80000:
 35	case MSR_MTRRfix16K_A0000:
 36		index = msr - MSR_MTRRfix16K_80000;
 37		return &vcpu->arch.mtrr_state.fixed_16k[index];
 38	case MSR_MTRRfix4K_C0000:
 39	case MSR_MTRRfix4K_C8000:
 40	case MSR_MTRRfix4K_D0000:
 41	case MSR_MTRRfix4K_D8000:
 42	case MSR_MTRRfix4K_E0000:
 43	case MSR_MTRRfix4K_E8000:
 44	case MSR_MTRRfix4K_F0000:
 45	case MSR_MTRRfix4K_F8000:
 46		index = msr - MSR_MTRRfix4K_C0000;
 47		return &vcpu->arch.mtrr_state.fixed_4k[index];
 48	case MSR_MTRRdefType:
 49		return &vcpu->arch.mtrr_state.deftype;
 50	default:
 51		break;
 52	}
 53	return NULL;
 54}
 55
 56static bool valid_mtrr_type(unsigned t)
 57{
 58	return t < 8 && (1 << t) & 0x73; /* 0, 1, 4, 5, 6 */
 59}
 60
 61static bool kvm_mtrr_valid(struct kvm_vcpu *vcpu, u32 msr, u64 data)
 62{
 63	int i;
 64	u64 mask;
 65
 66	if (msr == MSR_MTRRdefType) {
 
 
 
 
 
 67		if (data & ~0xcff)
 68			return false;
 69		return valid_mtrr_type(data & 0xff);
 70	} else if (msr >= MSR_MTRRfix64K_00000 && msr <= MSR_MTRRfix4K_F8000) {
 71		for (i = 0; i < 8 ; i++)
 72			if (!valid_mtrr_type((data >> (i * 8)) & 0xff))
 73				return false;
 74		return true;
 75	}
 76
 77	/* variable MTRRs */
 78	if (WARN_ON_ONCE(!(msr >= MTRRphysBase_MSR(0) &&
 79			   msr <= MTRRphysMask_MSR(KVM_NR_VAR_MTRR - 1))))
 80		return false;
 81
 82	mask = kvm_vcpu_reserved_gpa_bits_raw(vcpu);
 83	if ((msr & 1) == 0) {
 84		/* MTRR base */
 85		if (!valid_mtrr_type(data & 0xff))
 86			return false;
 87		mask |= 0xf00;
 88	} else {
 89		/* MTRR mask */
 90		mask |= 0x7ff;
 
 
 
 91	}
 92
 93	return (data & mask) == 0;
 94}
 
 95
 96int kvm_mtrr_set_msr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
 97{
 98	u64 *mtrr;
 
 99
100	mtrr = find_mtrr(vcpu, msr);
101	if (!mtrr)
102		return 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
103
104	if (!kvm_mtrr_valid(vcpu, msr, data))
105		return 1;
106
107	*mtrr = data;
 
 
 
 
 
 
 
 
 
 
108	return 0;
109}
110
111int kvm_mtrr_get_msr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
112{
113	u64 *mtrr;
114
115	/* MSR_MTRRcap is a readonly MSR. */
116	if (msr == MSR_MTRRcap) {
117		/*
118		 * SMRR = 0
119		 * WC = 1
120		 * FIX = 1
121		 * VCNT = KVM_NR_VAR_MTRR
122		 */
123		*pdata = 0x500 | KVM_NR_VAR_MTRR;
124		return 0;
125	}
126
127	mtrr = find_mtrr(vcpu, msr);
128	if (!mtrr)
129		return 1;
130
131	*pdata = *mtrr;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
132	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
133}
v5.9
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * vMTRR implementation
  4 *
  5 * Copyright (C) 2006 Qumranet, Inc.
  6 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
  7 * Copyright(C) 2015 Intel Corporation.
  8 *
  9 * Authors:
 10 *   Yaniv Kamay  <yaniv@qumranet.com>
 11 *   Avi Kivity   <avi@qumranet.com>
 12 *   Marcelo Tosatti <mtosatti@redhat.com>
 13 *   Paolo Bonzini <pbonzini@redhat.com>
 14 *   Xiao Guangrong <guangrong.xiao@linux.intel.com>
 15 */
 
 16
 17#include <linux/kvm_host.h>
 18#include <asm/mtrr.h>
 19
 20#include "cpuid.h"
 21#include "mmu.h"
 22
 23#define IA32_MTRR_DEF_TYPE_E		(1ULL << 11)
 24#define IA32_MTRR_DEF_TYPE_FE		(1ULL << 10)
 25#define IA32_MTRR_DEF_TYPE_TYPE_MASK	(0xff)
 26
 27static bool msr_mtrr_valid(unsigned msr)
 28{
 29	switch (msr) {
 30	case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1:
 
 
 31	case MSR_MTRRfix64K_00000:
 
 32	case MSR_MTRRfix16K_80000:
 33	case MSR_MTRRfix16K_A0000:
 
 
 34	case MSR_MTRRfix4K_C0000:
 35	case MSR_MTRRfix4K_C8000:
 36	case MSR_MTRRfix4K_D0000:
 37	case MSR_MTRRfix4K_D8000:
 38	case MSR_MTRRfix4K_E0000:
 39	case MSR_MTRRfix4K_E8000:
 40	case MSR_MTRRfix4K_F0000:
 41	case MSR_MTRRfix4K_F8000:
 
 
 42	case MSR_MTRRdefType:
 43	case MSR_IA32_CR_PAT:
 44		return true;
 
 45	}
 46	return false;
 47}
 48
 49static bool valid_mtrr_type(unsigned t)
 50{
 51	return t < 8 && (1 << t) & 0x73; /* 0, 1, 4, 5, 6 */
 52}
 53
 54bool kvm_mtrr_valid(struct kvm_vcpu *vcpu, u32 msr, u64 data)
 55{
 56	int i;
 57	u64 mask;
 58
 59	if (!msr_mtrr_valid(msr))
 60		return false;
 61
 62	if (msr == MSR_IA32_CR_PAT) {
 63		return kvm_pat_valid(data);
 64	} else if (msr == MSR_MTRRdefType) {
 65		if (data & ~0xcff)
 66			return false;
 67		return valid_mtrr_type(data & 0xff);
 68	} else if (msr >= MSR_MTRRfix64K_00000 && msr <= MSR_MTRRfix4K_F8000) {
 69		for (i = 0; i < 8 ; i++)
 70			if (!valid_mtrr_type((data >> (i * 8)) & 0xff))
 71				return false;
 72		return true;
 73	}
 74
 75	/* variable MTRRs */
 76	WARN_ON(!(msr >= 0x200 && msr < 0x200 + 2 * KVM_NR_VAR_MTRR));
 
 
 77
 78	mask = (~0ULL) << cpuid_maxphyaddr(vcpu);
 79	if ((msr & 1) == 0) {
 80		/* MTRR base */
 81		if (!valid_mtrr_type(data & 0xff))
 82			return false;
 83		mask |= 0xf00;
 84	} else
 85		/* MTRR mask */
 86		mask |= 0x7ff;
 87	if (data & mask) {
 88		kvm_inject_gp(vcpu, 0);
 89		return false;
 90	}
 91
 92	return true;
 93}
 94EXPORT_SYMBOL_GPL(kvm_mtrr_valid);
 95
 96static bool mtrr_is_enabled(struct kvm_mtrr *mtrr_state)
 97{
 98	return !!(mtrr_state->deftype & IA32_MTRR_DEF_TYPE_E);
 99}
100
101static bool fixed_mtrr_is_enabled(struct kvm_mtrr *mtrr_state)
102{
103	return !!(mtrr_state->deftype & IA32_MTRR_DEF_TYPE_FE);
104}
105
106static u8 mtrr_default_type(struct kvm_mtrr *mtrr_state)
107{
108	return mtrr_state->deftype & IA32_MTRR_DEF_TYPE_TYPE_MASK;
109}
110
111static u8 mtrr_disabled_type(struct kvm_vcpu *vcpu)
112{
113	/*
114	 * Intel SDM 11.11.2.2: all MTRRs are disabled when
115	 * IA32_MTRR_DEF_TYPE.E bit is cleared, and the UC
116	 * memory type is applied to all of physical memory.
117	 *
118	 * However, virtual machines can be run with CPUID such that
119	 * there are no MTRRs.  In that case, the firmware will never
120	 * enable MTRRs and it is obviously undesirable to run the
121	 * guest entirely with UC memory and we use WB.
122	 */
123	if (guest_cpuid_has(vcpu, X86_FEATURE_MTRR))
124		return MTRR_TYPE_UNCACHABLE;
125	else
126		return MTRR_TYPE_WRBACK;
127}
128
129/*
130* Three terms are used in the following code:
131* - segment, it indicates the address segments covered by fixed MTRRs.
132* - unit, it corresponds to the MSR entry in the segment.
133* - range, a range is covered in one memory cache type.
134*/
135struct fixed_mtrr_segment {
136	u64 start;
137	u64 end;
138
139	int range_shift;
140
141	/* the start position in kvm_mtrr.fixed_ranges[]. */
142	int range_start;
143};
144
145static struct fixed_mtrr_segment fixed_seg_table[] = {
146	/* MSR_MTRRfix64K_00000, 1 unit. 64K fixed mtrr. */
147	{
148		.start = 0x0,
149		.end = 0x80000,
150		.range_shift = 16, /* 64K */
151		.range_start = 0,
152	},
153
154	/*
155	 * MSR_MTRRfix16K_80000 ... MSR_MTRRfix16K_A0000, 2 units,
156	 * 16K fixed mtrr.
157	 */
158	{
159		.start = 0x80000,
160		.end = 0xc0000,
161		.range_shift = 14, /* 16K */
162		.range_start = 8,
163	},
164
165	/*
166	 * MSR_MTRRfix4K_C0000 ... MSR_MTRRfix4K_F8000, 8 units,
167	 * 4K fixed mtrr.
168	 */
169	{
170		.start = 0xc0000,
171		.end = 0x100000,
172		.range_shift = 12, /* 12K */
173		.range_start = 24,
174	}
175};
176
177/*
178 * The size of unit is covered in one MSR, one MSR entry contains
179 * 8 ranges so that unit size is always 8 * 2^range_shift.
180 */
181static u64 fixed_mtrr_seg_unit_size(int seg)
182{
183	return 8 << fixed_seg_table[seg].range_shift;
184}
185
186static bool fixed_msr_to_seg_unit(u32 msr, int *seg, int *unit)
187{
188	switch (msr) {
189	case MSR_MTRRfix64K_00000:
190		*seg = 0;
191		*unit = 0;
192		break;
193	case MSR_MTRRfix16K_80000 ... MSR_MTRRfix16K_A0000:
194		*seg = 1;
195		*unit = array_index_nospec(
196			msr - MSR_MTRRfix16K_80000,
197			MSR_MTRRfix16K_A0000 - MSR_MTRRfix16K_80000 + 1);
198		break;
199	case MSR_MTRRfix4K_C0000 ... MSR_MTRRfix4K_F8000:
200		*seg = 2;
201		*unit = array_index_nospec(
202			msr - MSR_MTRRfix4K_C0000,
203			MSR_MTRRfix4K_F8000 - MSR_MTRRfix4K_C0000 + 1);
204		break;
205	default:
206		return false;
207	}
208
209	return true;
210}
211
212static void fixed_mtrr_seg_unit_range(int seg, int unit, u64 *start, u64 *end)
213{
214	struct fixed_mtrr_segment *mtrr_seg = &fixed_seg_table[seg];
215	u64 unit_size = fixed_mtrr_seg_unit_size(seg);
216
217	*start = mtrr_seg->start + unit * unit_size;
218	*end = *start + unit_size;
219	WARN_ON(*end > mtrr_seg->end);
220}
221
222static int fixed_mtrr_seg_unit_range_index(int seg, int unit)
223{
224	struct fixed_mtrr_segment *mtrr_seg = &fixed_seg_table[seg];
225
226	WARN_ON(mtrr_seg->start + unit * fixed_mtrr_seg_unit_size(seg)
227		> mtrr_seg->end);
228
229	/* each unit has 8 ranges. */
230	return mtrr_seg->range_start + 8 * unit;
231}
232
233static int fixed_mtrr_seg_end_range_index(int seg)
234{
235	struct fixed_mtrr_segment *mtrr_seg = &fixed_seg_table[seg];
236	int n;
237
238	n = (mtrr_seg->end - mtrr_seg->start) >> mtrr_seg->range_shift;
239	return mtrr_seg->range_start + n - 1;
240}
241
242static bool fixed_msr_to_range(u32 msr, u64 *start, u64 *end)
243{
244	int seg, unit;
245
246	if (!fixed_msr_to_seg_unit(msr, &seg, &unit))
247		return false;
248
249	fixed_mtrr_seg_unit_range(seg, unit, start, end);
250	return true;
251}
252
253static int fixed_msr_to_range_index(u32 msr)
254{
255	int seg, unit;
256
257	if (!fixed_msr_to_seg_unit(msr, &seg, &unit))
258		return -1;
259
260	return fixed_mtrr_seg_unit_range_index(seg, unit);
261}
262
263static int fixed_mtrr_addr_to_seg(u64 addr)
264{
265	struct fixed_mtrr_segment *mtrr_seg;
266	int seg, seg_num = ARRAY_SIZE(fixed_seg_table);
267
268	for (seg = 0; seg < seg_num; seg++) {
269		mtrr_seg = &fixed_seg_table[seg];
270		if (mtrr_seg->start <= addr && addr < mtrr_seg->end)
271			return seg;
272	}
273
274	return -1;
275}
276
277static int fixed_mtrr_addr_seg_to_range_index(u64 addr, int seg)
278{
279	struct fixed_mtrr_segment *mtrr_seg;
280	int index;
281
282	mtrr_seg = &fixed_seg_table[seg];
283	index = mtrr_seg->range_start;
284	index += (addr - mtrr_seg->start) >> mtrr_seg->range_shift;
285	return index;
286}
287
288static u64 fixed_mtrr_range_end_addr(int seg, int index)
289{
290	struct fixed_mtrr_segment *mtrr_seg = &fixed_seg_table[seg];
291	int pos = index - mtrr_seg->range_start;
292
293	return mtrr_seg->start + ((pos + 1) << mtrr_seg->range_shift);
294}
295
296static void var_mtrr_range(struct kvm_mtrr_range *range, u64 *start, u64 *end)
297{
298	u64 mask;
299
300	*start = range->base & PAGE_MASK;
301
302	mask = range->mask & PAGE_MASK;
303
304	/* This cannot overflow because writing to the reserved bits of
305	 * variable MTRRs causes a #GP.
306	 */
307	*end = (*start | ~mask) + 1;
308}
309
310static void update_mtrr(struct kvm_vcpu *vcpu, u32 msr)
311{
312	struct kvm_mtrr *mtrr_state = &vcpu->arch.mtrr_state;
313	gfn_t start, end;
314	int index;
315
316	if (msr == MSR_IA32_CR_PAT || !tdp_enabled ||
317	      !kvm_arch_has_noncoherent_dma(vcpu->kvm))
318		return;
319
320	if (!mtrr_is_enabled(mtrr_state) && msr != MSR_MTRRdefType)
321		return;
322
323	/* fixed MTRRs. */
324	if (fixed_msr_to_range(msr, &start, &end)) {
325		if (!fixed_mtrr_is_enabled(mtrr_state))
326			return;
327	} else if (msr == MSR_MTRRdefType) {
328		start = 0x0;
329		end = ~0ULL;
330	} else {
331		/* variable range MTRRs. */
332		index = (msr - 0x200) / 2;
333		var_mtrr_range(&mtrr_state->var_ranges[index], &start, &end);
334	}
335
336	kvm_zap_gfn_range(vcpu->kvm, gpa_to_gfn(start), gpa_to_gfn(end));
337}
338
339static bool var_mtrr_range_is_valid(struct kvm_mtrr_range *range)
340{
341	return (range->mask & (1 << 11)) != 0;
342}
343
344static void set_var_mtrr_msr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
345{
346	struct kvm_mtrr *mtrr_state = &vcpu->arch.mtrr_state;
347	struct kvm_mtrr_range *tmp, *cur;
348	int index, is_mtrr_mask;
349
350	index = (msr - 0x200) / 2;
351	is_mtrr_mask = msr - 0x200 - 2 * index;
352	cur = &mtrr_state->var_ranges[index];
353
354	/* remove the entry if it's in the list. */
355	if (var_mtrr_range_is_valid(cur))
356		list_del(&mtrr_state->var_ranges[index].node);
357
358	/* Extend the mask with all 1 bits to the left, since those
359	 * bits must implicitly be 0.  The bits are then cleared
360	 * when reading them.
361	 */
362	if (!is_mtrr_mask)
363		cur->base = data;
364	else
365		cur->mask = data | (-1LL << cpuid_maxphyaddr(vcpu));
366
367	/* add it to the list if it's enabled. */
368	if (var_mtrr_range_is_valid(cur)) {
369		list_for_each_entry(tmp, &mtrr_state->head, node)
370			if (cur->base >= tmp->base)
371				break;
372		list_add_tail(&cur->node, &tmp->node);
373	}
374}
375
376int kvm_mtrr_set_msr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
377{
378	int index;
379
380	if (!kvm_mtrr_valid(vcpu, msr, data))
381		return 1;
382
383	index = fixed_msr_to_range_index(msr);
384	if (index >= 0)
385		*(u64 *)&vcpu->arch.mtrr_state.fixed_ranges[index] = data;
386	else if (msr == MSR_MTRRdefType)
387		vcpu->arch.mtrr_state.deftype = data;
388	else if (msr == MSR_IA32_CR_PAT)
389		vcpu->arch.pat = data;
390	else
391		set_var_mtrr_msr(vcpu, msr, data);
392
393	update_mtrr(vcpu, msr);
394	return 0;
395}
396
397int kvm_mtrr_get_msr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
398{
399	int index;
400
401	/* MSR_MTRRcap is a readonly MSR. */
402	if (msr == MSR_MTRRcap) {
403		/*
404		 * SMRR = 0
405		 * WC = 1
406		 * FIX = 1
407		 * VCNT = KVM_NR_VAR_MTRR
408		 */
409		*pdata = 0x500 | KVM_NR_VAR_MTRR;
410		return 0;
411	}
412
413	if (!msr_mtrr_valid(msr))
 
414		return 1;
415
416	index = fixed_msr_to_range_index(msr);
417	if (index >= 0)
418		*pdata = *(u64 *)&vcpu->arch.mtrr_state.fixed_ranges[index];
419	else if (msr == MSR_MTRRdefType)
420		*pdata = vcpu->arch.mtrr_state.deftype;
421	else if (msr == MSR_IA32_CR_PAT)
422		*pdata = vcpu->arch.pat;
423	else {	/* Variable MTRRs */
424		int is_mtrr_mask;
425
426		index = (msr - 0x200) / 2;
427		is_mtrr_mask = msr - 0x200 - 2 * index;
428		if (!is_mtrr_mask)
429			*pdata = vcpu->arch.mtrr_state.var_ranges[index].base;
430		else
431			*pdata = vcpu->arch.mtrr_state.var_ranges[index].mask;
432
433		*pdata &= (1ULL << cpuid_maxphyaddr(vcpu)) - 1;
434	}
435
436	return 0;
437}
438
439void kvm_vcpu_mtrr_init(struct kvm_vcpu *vcpu)
440{
441	INIT_LIST_HEAD(&vcpu->arch.mtrr_state.head);
442}
443
444struct mtrr_iter {
445	/* input fields. */
446	struct kvm_mtrr *mtrr_state;
447	u64 start;
448	u64 end;
449
450	/* output fields. */
451	int mem_type;
452	/* mtrr is completely disabled? */
453	bool mtrr_disabled;
454	/* [start, end) is not fully covered in MTRRs? */
455	bool partial_map;
456
457	/* private fields. */
458	union {
459		/* used for fixed MTRRs. */
460		struct {
461			int index;
462			int seg;
463		};
464
465		/* used for var MTRRs. */
466		struct {
467			struct kvm_mtrr_range *range;
468			/* max address has been covered in var MTRRs. */
469			u64 start_max;
470		};
471	};
472
473	bool fixed;
474};
475
476static bool mtrr_lookup_fixed_start(struct mtrr_iter *iter)
477{
478	int seg, index;
479
480	if (!fixed_mtrr_is_enabled(iter->mtrr_state))
481		return false;
482
483	seg = fixed_mtrr_addr_to_seg(iter->start);
484	if (seg < 0)
485		return false;
486
487	iter->fixed = true;
488	index = fixed_mtrr_addr_seg_to_range_index(iter->start, seg);
489	iter->index = index;
490	iter->seg = seg;
491	return true;
492}
493
494static bool match_var_range(struct mtrr_iter *iter,
495			    struct kvm_mtrr_range *range)
496{
497	u64 start, end;
498
499	var_mtrr_range(range, &start, &end);
500	if (!(start >= iter->end || end <= iter->start)) {
501		iter->range = range;
502
503		/*
504		 * the function is called when we do kvm_mtrr.head walking.
505		 * Range has the minimum base address which interleaves
506		 * [looker->start_max, looker->end).
507		 */
508		iter->partial_map |= iter->start_max < start;
509
510		/* update the max address has been covered. */
511		iter->start_max = max(iter->start_max, end);
512		return true;
513	}
514
515	return false;
516}
517
518static void __mtrr_lookup_var_next(struct mtrr_iter *iter)
519{
520	struct kvm_mtrr *mtrr_state = iter->mtrr_state;
521
522	list_for_each_entry_continue(iter->range, &mtrr_state->head, node)
523		if (match_var_range(iter, iter->range))
524			return;
525
526	iter->range = NULL;
527	iter->partial_map |= iter->start_max < iter->end;
528}
529
530static void mtrr_lookup_var_start(struct mtrr_iter *iter)
531{
532	struct kvm_mtrr *mtrr_state = iter->mtrr_state;
533
534	iter->fixed = false;
535	iter->start_max = iter->start;
536	iter->range = NULL;
537	iter->range = list_prepare_entry(iter->range, &mtrr_state->head, node);
538
539	__mtrr_lookup_var_next(iter);
540}
541
542static void mtrr_lookup_fixed_next(struct mtrr_iter *iter)
543{
544	/* terminate the lookup. */
545	if (fixed_mtrr_range_end_addr(iter->seg, iter->index) >= iter->end) {
546		iter->fixed = false;
547		iter->range = NULL;
548		return;
549	}
550
551	iter->index++;
552
553	/* have looked up for all fixed MTRRs. */
554	if (iter->index >= ARRAY_SIZE(iter->mtrr_state->fixed_ranges))
555		return mtrr_lookup_var_start(iter);
556
557	/* switch to next segment. */
558	if (iter->index > fixed_mtrr_seg_end_range_index(iter->seg))
559		iter->seg++;
560}
561
562static void mtrr_lookup_var_next(struct mtrr_iter *iter)
563{
564	__mtrr_lookup_var_next(iter);
565}
566
567static void mtrr_lookup_start(struct mtrr_iter *iter)
568{
569	if (!mtrr_is_enabled(iter->mtrr_state)) {
570		iter->mtrr_disabled = true;
571		return;
572	}
573
574	if (!mtrr_lookup_fixed_start(iter))
575		mtrr_lookup_var_start(iter);
576}
577
578static void mtrr_lookup_init(struct mtrr_iter *iter,
579			     struct kvm_mtrr *mtrr_state, u64 start, u64 end)
580{
581	iter->mtrr_state = mtrr_state;
582	iter->start = start;
583	iter->end = end;
584	iter->mtrr_disabled = false;
585	iter->partial_map = false;
586	iter->fixed = false;
587	iter->range = NULL;
588
589	mtrr_lookup_start(iter);
590}
591
592static bool mtrr_lookup_okay(struct mtrr_iter *iter)
593{
594	if (iter->fixed) {
595		iter->mem_type = iter->mtrr_state->fixed_ranges[iter->index];
596		return true;
597	}
598
599	if (iter->range) {
600		iter->mem_type = iter->range->base & 0xff;
601		return true;
602	}
603
604	return false;
605}
606
607static void mtrr_lookup_next(struct mtrr_iter *iter)
608{
609	if (iter->fixed)
610		mtrr_lookup_fixed_next(iter);
611	else
612		mtrr_lookup_var_next(iter);
613}
614
615#define mtrr_for_each_mem_type(_iter_, _mtrr_, _gpa_start_, _gpa_end_) \
616	for (mtrr_lookup_init(_iter_, _mtrr_, _gpa_start_, _gpa_end_); \
617	     mtrr_lookup_okay(_iter_); mtrr_lookup_next(_iter_))
618
619u8 kvm_mtrr_get_guest_memory_type(struct kvm_vcpu *vcpu, gfn_t gfn)
620{
621	struct kvm_mtrr *mtrr_state = &vcpu->arch.mtrr_state;
622	struct mtrr_iter iter;
623	u64 start, end;
624	int type = -1;
625	const int wt_wb_mask = (1 << MTRR_TYPE_WRBACK)
626			       | (1 << MTRR_TYPE_WRTHROUGH);
627
628	start = gfn_to_gpa(gfn);
629	end = start + PAGE_SIZE;
630
631	mtrr_for_each_mem_type(&iter, mtrr_state, start, end) {
632		int curr_type = iter.mem_type;
633
634		/*
635		 * Please refer to Intel SDM Volume 3: 11.11.4.1 MTRR
636		 * Precedences.
637		 */
638
639		if (type == -1) {
640			type = curr_type;
641			continue;
642		}
643
644		/*
645		 * If two or more variable memory ranges match and the
646		 * memory types are identical, then that memory type is
647		 * used.
648		 */
649		if (type == curr_type)
650			continue;
651
652		/*
653		 * If two or more variable memory ranges match and one of
654		 * the memory types is UC, the UC memory type used.
655		 */
656		if (curr_type == MTRR_TYPE_UNCACHABLE)
657			return MTRR_TYPE_UNCACHABLE;
658
659		/*
660		 * If two or more variable memory ranges match and the
661		 * memory types are WT and WB, the WT memory type is used.
662		 */
663		if (((1 << type) & wt_wb_mask) &&
664		      ((1 << curr_type) & wt_wb_mask)) {
665			type = MTRR_TYPE_WRTHROUGH;
666			continue;
667		}
668
669		/*
670		 * For overlaps not defined by the above rules, processor
671		 * behavior is undefined.
672		 */
673
674		/* We use WB for this undefined behavior. :( */
675		return MTRR_TYPE_WRBACK;
676	}
677
678	if (iter.mtrr_disabled)
679		return mtrr_disabled_type(vcpu);
680
681	/* not contained in any MTRRs. */
682	if (type == -1)
683		return mtrr_default_type(mtrr_state);
684
685	/*
686	 * We just check one page, partially covered by MTRRs is
687	 * impossible.
688	 */
689	WARN_ON(iter.partial_map);
690
691	return type;
692}
693EXPORT_SYMBOL_GPL(kvm_mtrr_get_guest_memory_type);
694
695bool kvm_mtrr_check_gfn_range_consistency(struct kvm_vcpu *vcpu, gfn_t gfn,
696					  int page_num)
697{
698	struct kvm_mtrr *mtrr_state = &vcpu->arch.mtrr_state;
699	struct mtrr_iter iter;
700	u64 start, end;
701	int type = -1;
702
703	start = gfn_to_gpa(gfn);
704	end = gfn_to_gpa(gfn + page_num);
705	mtrr_for_each_mem_type(&iter, mtrr_state, start, end) {
706		if (type == -1) {
707			type = iter.mem_type;
708			continue;
709		}
710
711		if (type != iter.mem_type)
712			return false;
713	}
714
715	if (iter.mtrr_disabled)
716		return true;
717
718	if (!iter.partial_map)
719		return true;
720
721	if (type == -1)
722		return true;
723
724	return type == mtrr_default_type(mtrr_state);
725}