Linux Audio

Check our new training course

Loading...
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Copyright (c) 2009, Microsoft Corporation.
   4 *
   5 * Authors:
   6 *   Haiyang Zhang <haiyangz@microsoft.com>
   7 *   Hank Janssen  <hjanssen@microsoft.com>
   8 */
   9#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  10
  11#include <linux/init.h>
  12#include <linux/atomic.h>
  13#include <linux/ethtool.h>
  14#include <linux/module.h>
  15#include <linux/highmem.h>
  16#include <linux/device.h>
  17#include <linux/io.h>
  18#include <linux/delay.h>
  19#include <linux/netdevice.h>
  20#include <linux/inetdevice.h>
  21#include <linux/etherdevice.h>
  22#include <linux/pci.h>
  23#include <linux/skbuff.h>
  24#include <linux/if_vlan.h>
  25#include <linux/in.h>
  26#include <linux/slab.h>
  27#include <linux/rtnetlink.h>
  28#include <linux/netpoll.h>
  29#include <linux/bpf.h>
  30
  31#include <net/arp.h>
  32#include <net/route.h>
  33#include <net/sock.h>
  34#include <net/pkt_sched.h>
  35#include <net/checksum.h>
  36#include <net/ip6_checksum.h>
  37
  38#include "hyperv_net.h"
  39
  40#define RING_SIZE_MIN	64
 
 
 
  41
  42#define LINKCHANGE_INT (2 * HZ)
  43#define VF_TAKEOVER_INT (HZ / 10)
  44
  45/* Macros to define the context of vf registration */
  46#define VF_REG_IN_PROBE		1
  47#define VF_REG_IN_NOTIFIER	2
  48
  49static unsigned int ring_size __ro_after_init = 128;
  50module_param(ring_size, uint, 0444);
  51MODULE_PARM_DESC(ring_size, "Ring buffer size (# of 4K pages)");
  52unsigned int netvsc_ring_bytes __ro_after_init;
  53
  54static const u32 default_msg = NETIF_MSG_DRV | NETIF_MSG_PROBE |
  55				NETIF_MSG_LINK | NETIF_MSG_IFUP |
  56				NETIF_MSG_IFDOWN | NETIF_MSG_RX_ERR |
  57				NETIF_MSG_TX_ERR;
  58
  59static int debug = -1;
  60module_param(debug, int, 0444);
  61MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
  62
  63static LIST_HEAD(netvsc_dev_list);
  64
  65static void netvsc_change_rx_flags(struct net_device *net, int change)
  66{
  67	struct net_device_context *ndev_ctx = netdev_priv(net);
  68	struct net_device *vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev);
  69	int inc;
  70
  71	if (!vf_netdev)
  72		return;
  73
  74	if (change & IFF_PROMISC) {
  75		inc = (net->flags & IFF_PROMISC) ? 1 : -1;
  76		dev_set_promiscuity(vf_netdev, inc);
  77	}
  78
  79	if (change & IFF_ALLMULTI) {
  80		inc = (net->flags & IFF_ALLMULTI) ? 1 : -1;
  81		dev_set_allmulti(vf_netdev, inc);
  82	}
  83}
  84
  85static void netvsc_set_rx_mode(struct net_device *net)
  86{
  87	struct net_device_context *ndev_ctx = netdev_priv(net);
  88	struct net_device *vf_netdev;
  89	struct netvsc_device *nvdev;
  90
  91	rcu_read_lock();
  92	vf_netdev = rcu_dereference(ndev_ctx->vf_netdev);
  93	if (vf_netdev) {
  94		dev_uc_sync(vf_netdev, net);
  95		dev_mc_sync(vf_netdev, net);
  96	}
  97
  98	nvdev = rcu_dereference(ndev_ctx->nvdev);
  99	if (nvdev)
 100		rndis_filter_update(nvdev);
 101	rcu_read_unlock();
 102}
 103
 104static void netvsc_tx_enable(struct netvsc_device *nvscdev,
 105			     struct net_device *ndev)
 106{
 107	nvscdev->tx_disable = false;
 108	virt_wmb(); /* ensure queue wake up mechanism is on */
 109
 110	netif_tx_wake_all_queues(ndev);
 111}
 112
 113static int netvsc_open(struct net_device *net)
 114{
 115	struct net_device_context *ndev_ctx = netdev_priv(net);
 116	struct net_device *vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev);
 117	struct netvsc_device *nvdev = rtnl_dereference(ndev_ctx->nvdev);
 118	struct rndis_device *rdev;
 119	int ret = 0;
 120
 121	netif_carrier_off(net);
 122
 123	/* Open up the device */
 124	ret = rndis_filter_open(nvdev);
 125	if (ret != 0) {
 126		netdev_err(net, "unable to open device (ret %d).\n", ret);
 127		return ret;
 128	}
 129
 130	rdev = nvdev->extension;
 131	if (!rdev->link_state) {
 132		netif_carrier_on(net);
 133		netvsc_tx_enable(nvdev, net);
 134	}
 135
 136	if (vf_netdev) {
 137		/* Setting synthetic device up transparently sets
 138		 * slave as up. If open fails, then slave will be
 139		 * still be offline (and not used).
 140		 */
 141		ret = dev_open(vf_netdev, NULL);
 142		if (ret)
 143			netdev_warn(net,
 144				    "unable to open slave: %s: %d\n",
 145				    vf_netdev->name, ret);
 146	}
 147	return 0;
 148}
 149
 150static int netvsc_wait_until_empty(struct netvsc_device *nvdev)
 151{
 152	unsigned int retry = 0;
 153	int i;
 154
 155	/* Ensure pending bytes in ring are read */
 156	for (;;) {
 157		u32 aread = 0;
 158
 159		for (i = 0; i < nvdev->num_chn; i++) {
 160			struct vmbus_channel *chn
 161				= nvdev->chan_table[i].channel;
 162
 163			if (!chn)
 164				continue;
 165
 166			/* make sure receive not running now */
 167			napi_synchronize(&nvdev->chan_table[i].napi);
 168
 169			aread = hv_get_bytes_to_read(&chn->inbound);
 170			if (aread)
 171				break;
 172
 173			aread = hv_get_bytes_to_read(&chn->outbound);
 174			if (aread)
 175				break;
 176		}
 177
 178		if (aread == 0)
 179			return 0;
 180
 181		if (++retry > RETRY_MAX)
 182			return -ETIMEDOUT;
 183
 184		usleep_range(RETRY_US_LO, RETRY_US_HI);
 185	}
 186}
 187
 188static void netvsc_tx_disable(struct netvsc_device *nvscdev,
 189			      struct net_device *ndev)
 190{
 191	if (nvscdev) {
 192		nvscdev->tx_disable = true;
 193		virt_wmb(); /* ensure txq will not wake up after stop */
 194	}
 195
 196	netif_tx_disable(ndev);
 197}
 198
 199static int netvsc_close(struct net_device *net)
 200{
 201	struct net_device_context *net_device_ctx = netdev_priv(net);
 202	struct net_device *vf_netdev
 203		= rtnl_dereference(net_device_ctx->vf_netdev);
 204	struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev);
 205	int ret;
 206
 207	netvsc_tx_disable(nvdev, net);
 208
 209	/* No need to close rndis filter if it is removed already */
 210	if (!nvdev)
 211		return 0;
 212
 213	ret = rndis_filter_close(nvdev);
 214	if (ret != 0) {
 215		netdev_err(net, "unable to close device (ret %d).\n", ret);
 216		return ret;
 217	}
 218
 219	ret = netvsc_wait_until_empty(nvdev);
 220	if (ret)
 221		netdev_err(net, "Ring buffer not empty after closing rndis\n");
 222
 223	if (vf_netdev)
 224		dev_close(vf_netdev);
 225
 226	return ret;
 227}
 228
 229static inline void *init_ppi_data(struct rndis_message *msg,
 230				  u32 ppi_size, u32 pkt_type)
 231{
 232	struct rndis_packet *rndis_pkt = &msg->msg.pkt;
 233	struct rndis_per_packet_info *ppi;
 234
 235	rndis_pkt->data_offset += ppi_size;
 236	ppi = (void *)rndis_pkt + rndis_pkt->per_pkt_info_offset
 237		+ rndis_pkt->per_pkt_info_len;
 238
 239	ppi->size = ppi_size;
 240	ppi->type = pkt_type;
 241	ppi->internal = 0;
 242	ppi->ppi_offset = sizeof(struct rndis_per_packet_info);
 243
 244	rndis_pkt->per_pkt_info_len += ppi_size;
 245
 246	return ppi + 1;
 247}
 248
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 249static inline int netvsc_get_tx_queue(struct net_device *ndev,
 250				      struct sk_buff *skb, int old_idx)
 251{
 252	const struct net_device_context *ndc = netdev_priv(ndev);
 253	struct sock *sk = skb->sk;
 254	int q_idx;
 255
 256	q_idx = ndc->tx_table[netvsc_get_hash(skb, ndc) &
 257			      (VRSS_SEND_TAB_SIZE - 1)];
 258
 259	/* If queue index changed record the new value */
 260	if (q_idx != old_idx &&
 261	    sk && sk_fullsock(sk) && rcu_access_pointer(sk->sk_dst_cache))
 262		sk_tx_queue_set(sk, q_idx);
 263
 264	return q_idx;
 265}
 266
 267/*
 268 * Select queue for transmit.
 269 *
 270 * If a valid queue has already been assigned, then use that.
 271 * Otherwise compute tx queue based on hash and the send table.
 272 *
 273 * This is basically similar to default (netdev_pick_tx) with the added step
 274 * of using the host send_table when no other queue has been assigned.
 275 *
 276 * TODO support XPS - but get_xps_queue not exported
 277 */
 278static u16 netvsc_pick_tx(struct net_device *ndev, struct sk_buff *skb)
 279{
 280	int q_idx = sk_tx_queue_get(skb->sk);
 281
 282	if (q_idx < 0 || skb->ooo_okay || q_idx >= ndev->real_num_tx_queues) {
 283		/* If forwarding a packet, we use the recorded queue when
 284		 * available for better cache locality.
 285		 */
 286		if (skb_rx_queue_recorded(skb))
 287			q_idx = skb_get_rx_queue(skb);
 288		else
 289			q_idx = netvsc_get_tx_queue(ndev, skb, q_idx);
 290	}
 291
 292	return q_idx;
 293}
 294
 295static u16 netvsc_select_queue(struct net_device *ndev, struct sk_buff *skb,
 296			       struct net_device *sb_dev)
 297{
 298	struct net_device_context *ndc = netdev_priv(ndev);
 299	struct net_device *vf_netdev;
 300	u16 txq;
 301
 302	rcu_read_lock();
 303	vf_netdev = rcu_dereference(ndc->vf_netdev);
 304	if (vf_netdev) {
 305		const struct net_device_ops *vf_ops = vf_netdev->netdev_ops;
 306
 307		if (vf_ops->ndo_select_queue)
 308			txq = vf_ops->ndo_select_queue(vf_netdev, skb, sb_dev);
 309		else
 310			txq = netdev_pick_tx(vf_netdev, skb, NULL);
 311
 312		/* Record the queue selected by VF so that it can be
 313		 * used for common case where VF has more queues than
 314		 * the synthetic device.
 315		 */
 316		qdisc_skb_cb(skb)->slave_dev_queue_mapping = txq;
 317	} else {
 318		txq = netvsc_pick_tx(ndev, skb);
 319	}
 320	rcu_read_unlock();
 321
 322	while (txq >= ndev->real_num_tx_queues)
 323		txq -= ndev->real_num_tx_queues;
 324
 325	return txq;
 326}
 327
 328static u32 fill_pg_buf(unsigned long hvpfn, u32 offset, u32 len,
 329		       struct hv_page_buffer *pb)
 330{
 331	int j = 0;
 332
 333	hvpfn += offset >> HV_HYP_PAGE_SHIFT;
 334	offset = offset & ~HV_HYP_PAGE_MASK;
 
 
 
 335
 336	while (len > 0) {
 337		unsigned long bytes;
 338
 339		bytes = HV_HYP_PAGE_SIZE - offset;
 340		if (bytes > len)
 341			bytes = len;
 342		pb[j].pfn = hvpfn;
 343		pb[j].offset = offset;
 344		pb[j].len = bytes;
 345
 346		offset += bytes;
 347		len -= bytes;
 348
 349		if (offset == HV_HYP_PAGE_SIZE && len) {
 350			hvpfn++;
 351			offset = 0;
 352			j++;
 353		}
 354	}
 355
 356	return j + 1;
 357}
 358
 359static u32 init_page_array(void *hdr, u32 len, struct sk_buff *skb,
 360			   struct hv_netvsc_packet *packet,
 361			   struct hv_page_buffer *pb)
 362{
 363	u32 slots_used = 0;
 364	char *data = skb->data;
 365	int frags = skb_shinfo(skb)->nr_frags;
 366	int i;
 367
 368	/* The packet is laid out thus:
 369	 * 1. hdr: RNDIS header and PPI
 370	 * 2. skb linear data
 371	 * 3. skb fragment data
 372	 */
 373	slots_used += fill_pg_buf(virt_to_hvpfn(hdr),
 374				  offset_in_hvpage(hdr),
 375				  len,
 376				  &pb[slots_used]);
 377
 378	packet->rmsg_size = len;
 379	packet->rmsg_pgcnt = slots_used;
 380
 381	slots_used += fill_pg_buf(virt_to_hvpfn(data),
 382				  offset_in_hvpage(data),
 383				  skb_headlen(skb),
 384				  &pb[slots_used]);
 385
 386	for (i = 0; i < frags; i++) {
 387		skb_frag_t *frag = skb_shinfo(skb)->frags + i;
 388
 389		slots_used += fill_pg_buf(page_to_hvpfn(skb_frag_page(frag)),
 390					  skb_frag_off(frag),
 391					  skb_frag_size(frag),
 392					  &pb[slots_used]);
 393	}
 394	return slots_used;
 395}
 396
 397static int count_skb_frag_slots(struct sk_buff *skb)
 398{
 399	int i, frags = skb_shinfo(skb)->nr_frags;
 400	int pages = 0;
 401
 402	for (i = 0; i < frags; i++) {
 403		skb_frag_t *frag = skb_shinfo(skb)->frags + i;
 404		unsigned long size = skb_frag_size(frag);
 405		unsigned long offset = skb_frag_off(frag);
 406
 407		/* Skip unused frames from start of page */
 408		offset &= ~HV_HYP_PAGE_MASK;
 409		pages += HVPFN_UP(offset + size);
 410	}
 411	return pages;
 412}
 413
 414static int netvsc_get_slots(struct sk_buff *skb)
 415{
 416	char *data = skb->data;
 417	unsigned int offset = offset_in_hvpage(data);
 418	unsigned int len = skb_headlen(skb);
 419	int slots;
 420	int frag_slots;
 421
 422	slots = DIV_ROUND_UP(offset + len, HV_HYP_PAGE_SIZE);
 423	frag_slots = count_skb_frag_slots(skb);
 424	return slots + frag_slots;
 425}
 426
 427static u32 net_checksum_info(struct sk_buff *skb)
 428{
 429	if (skb->protocol == htons(ETH_P_IP)) {
 430		struct iphdr *ip = ip_hdr(skb);
 431
 432		if (ip->protocol == IPPROTO_TCP)
 433			return TRANSPORT_INFO_IPV4_TCP;
 434		else if (ip->protocol == IPPROTO_UDP)
 435			return TRANSPORT_INFO_IPV4_UDP;
 436	} else {
 437		struct ipv6hdr *ip6 = ipv6_hdr(skb);
 438
 439		if (ip6->nexthdr == IPPROTO_TCP)
 440			return TRANSPORT_INFO_IPV6_TCP;
 441		else if (ip6->nexthdr == IPPROTO_UDP)
 442			return TRANSPORT_INFO_IPV6_UDP;
 443	}
 444
 445	return TRANSPORT_INFO_NOT_IP;
 446}
 447
 448/* Send skb on the slave VF device. */
 449static int netvsc_vf_xmit(struct net_device *net, struct net_device *vf_netdev,
 450			  struct sk_buff *skb)
 451{
 452	struct net_device_context *ndev_ctx = netdev_priv(net);
 453	unsigned int len = skb->len;
 454	int rc;
 455
 456	skb->dev = vf_netdev;
 457	skb_record_rx_queue(skb, qdisc_skb_cb(skb)->slave_dev_queue_mapping);
 458
 459	rc = dev_queue_xmit(skb);
 460	if (likely(rc == NET_XMIT_SUCCESS || rc == NET_XMIT_CN)) {
 461		struct netvsc_vf_pcpu_stats *pcpu_stats
 462			= this_cpu_ptr(ndev_ctx->vf_stats);
 463
 464		u64_stats_update_begin(&pcpu_stats->syncp);
 465		pcpu_stats->tx_packets++;
 466		pcpu_stats->tx_bytes += len;
 467		u64_stats_update_end(&pcpu_stats->syncp);
 468	} else {
 469		this_cpu_inc(ndev_ctx->vf_stats->tx_dropped);
 470	}
 471
 472	return rc;
 473}
 474
 475static int netvsc_xmit(struct sk_buff *skb, struct net_device *net, bool xdp_tx)
 476{
 477	struct net_device_context *net_device_ctx = netdev_priv(net);
 478	struct hv_netvsc_packet *packet = NULL;
 479	int ret;
 480	unsigned int num_data_pgs;
 481	struct rndis_message *rndis_msg;
 482	struct net_device *vf_netdev;
 483	u32 rndis_msg_size;
 484	u32 hash;
 485	struct hv_page_buffer pb[MAX_PAGE_BUFFER_COUNT];
 486
 487	/* If VF is present and up then redirect packets to it.
 488	 * Skip the VF if it is marked down or has no carrier.
 489	 * If netpoll is in uses, then VF can not be used either.
 490	 */
 491	vf_netdev = rcu_dereference_bh(net_device_ctx->vf_netdev);
 492	if (vf_netdev && netif_running(vf_netdev) &&
 493	    netif_carrier_ok(vf_netdev) && !netpoll_tx_running(net) &&
 494	    net_device_ctx->data_path_is_vf)
 495		return netvsc_vf_xmit(net, vf_netdev, skb);
 496
 497	/* We will atmost need two pages to describe the rndis
 498	 * header. We can only transmit MAX_PAGE_BUFFER_COUNT number
 499	 * of pages in a single packet. If skb is scattered around
 500	 * more pages we try linearizing it.
 501	 */
 502
 503	num_data_pgs = netvsc_get_slots(skb) + 2;
 504
 505	if (unlikely(num_data_pgs > MAX_PAGE_BUFFER_COUNT)) {
 506		++net_device_ctx->eth_stats.tx_scattered;
 507
 508		if (skb_linearize(skb))
 509			goto no_memory;
 510
 511		num_data_pgs = netvsc_get_slots(skb) + 2;
 512		if (num_data_pgs > MAX_PAGE_BUFFER_COUNT) {
 513			++net_device_ctx->eth_stats.tx_too_big;
 514			goto drop;
 515		}
 516	}
 517
 518	/*
 519	 * Place the rndis header in the skb head room and
 520	 * the skb->cb will be used for hv_netvsc_packet
 521	 * structure.
 522	 */
 523	ret = skb_cow_head(skb, RNDIS_AND_PPI_SIZE);
 524	if (ret)
 525		goto no_memory;
 526
 527	/* Use the skb control buffer for building up the packet */
 528	BUILD_BUG_ON(sizeof(struct hv_netvsc_packet) >
 529			sizeof_field(struct sk_buff, cb));
 530	packet = (struct hv_netvsc_packet *)skb->cb;
 531
 532	packet->q_idx = skb_get_queue_mapping(skb);
 533
 534	packet->total_data_buflen = skb->len;
 535	packet->total_bytes = skb->len;
 536	packet->total_packets = 1;
 537
 538	rndis_msg = (struct rndis_message *)skb->head;
 539
 540	/* Add the rndis header */
 541	rndis_msg->ndis_msg_type = RNDIS_MSG_PACKET;
 542	rndis_msg->msg_len = packet->total_data_buflen;
 543
 544	rndis_msg->msg.pkt = (struct rndis_packet) {
 545		.data_offset = sizeof(struct rndis_packet),
 546		.data_len = packet->total_data_buflen,
 547		.per_pkt_info_offset = sizeof(struct rndis_packet),
 548	};
 549
 550	rndis_msg_size = RNDIS_MESSAGE_SIZE(struct rndis_packet);
 551
 552	hash = skb_get_hash_raw(skb);
 553	if (hash != 0 && net->real_num_tx_queues > 1) {
 554		u32 *hash_info;
 555
 556		rndis_msg_size += NDIS_HASH_PPI_SIZE;
 557		hash_info = init_ppi_data(rndis_msg, NDIS_HASH_PPI_SIZE,
 558					  NBL_HASH_VALUE);
 559		*hash_info = hash;
 560	}
 561
 562	/* When using AF_PACKET we need to drop VLAN header from
 563	 * the frame and update the SKB to allow the HOST OS
 564	 * to transmit the 802.1Q packet
 565	 */
 566	if (skb->protocol == htons(ETH_P_8021Q)) {
 567		u16 vlan_tci;
 568
 569		skb_reset_mac_header(skb);
 570		if (eth_type_vlan(eth_hdr(skb)->h_proto)) {
 571			if (unlikely(__skb_vlan_pop(skb, &vlan_tci) != 0)) {
 572				++net_device_ctx->eth_stats.vlan_error;
 573				goto drop;
 574			}
 575
 576			__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tci);
 577			/* Update the NDIS header pkt lengths */
 578			packet->total_data_buflen -= VLAN_HLEN;
 579			packet->total_bytes -= VLAN_HLEN;
 580			rndis_msg->msg_len = packet->total_data_buflen;
 581			rndis_msg->msg.pkt.data_len = packet->total_data_buflen;
 582		}
 583	}
 584
 585	if (skb_vlan_tag_present(skb)) {
 586		struct ndis_pkt_8021q_info *vlan;
 587
 588		rndis_msg_size += NDIS_VLAN_PPI_SIZE;
 589		vlan = init_ppi_data(rndis_msg, NDIS_VLAN_PPI_SIZE,
 590				     IEEE_8021Q_INFO);
 591
 592		vlan->value = 0;
 593		vlan->vlanid = skb_vlan_tag_get_id(skb);
 594		vlan->cfi = skb_vlan_tag_get_cfi(skb);
 595		vlan->pri = skb_vlan_tag_get_prio(skb);
 596	}
 597
 598	if (skb_is_gso(skb)) {
 599		struct ndis_tcp_lso_info *lso_info;
 600
 601		rndis_msg_size += NDIS_LSO_PPI_SIZE;
 602		lso_info = init_ppi_data(rndis_msg, NDIS_LSO_PPI_SIZE,
 603					 TCP_LARGESEND_PKTINFO);
 604
 605		lso_info->value = 0;
 606		lso_info->lso_v2_transmit.type = NDIS_TCP_LARGE_SEND_OFFLOAD_V2_TYPE;
 607		if (skb->protocol == htons(ETH_P_IP)) {
 608			lso_info->lso_v2_transmit.ip_version =
 609				NDIS_TCP_LARGE_SEND_OFFLOAD_IPV4;
 610			ip_hdr(skb)->tot_len = 0;
 611			ip_hdr(skb)->check = 0;
 612			tcp_hdr(skb)->check =
 613				~csum_tcpudp_magic(ip_hdr(skb)->saddr,
 614						   ip_hdr(skb)->daddr, 0, IPPROTO_TCP, 0);
 615		} else {
 616			lso_info->lso_v2_transmit.ip_version =
 617				NDIS_TCP_LARGE_SEND_OFFLOAD_IPV6;
 618			tcp_v6_gso_csum_prep(skb);
 
 
 
 619		}
 620		lso_info->lso_v2_transmit.tcp_header_offset = skb_transport_offset(skb);
 621		lso_info->lso_v2_transmit.mss = skb_shinfo(skb)->gso_size;
 622	} else if (skb->ip_summed == CHECKSUM_PARTIAL) {
 623		if (net_checksum_info(skb) & net_device_ctx->tx_checksum_mask) {
 624			struct ndis_tcp_ip_checksum_info *csum_info;
 625
 626			rndis_msg_size += NDIS_CSUM_PPI_SIZE;
 627			csum_info = init_ppi_data(rndis_msg, NDIS_CSUM_PPI_SIZE,
 628						  TCPIP_CHKSUM_PKTINFO);
 629
 630			csum_info->value = 0;
 631			csum_info->transmit.tcp_header_offset = skb_transport_offset(skb);
 632
 633			if (skb->protocol == htons(ETH_P_IP)) {
 634				csum_info->transmit.is_ipv4 = 1;
 635
 636				if (ip_hdr(skb)->protocol == IPPROTO_TCP)
 637					csum_info->transmit.tcp_checksum = 1;
 638				else
 639					csum_info->transmit.udp_checksum = 1;
 640			} else {
 641				csum_info->transmit.is_ipv6 = 1;
 642
 643				if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
 644					csum_info->transmit.tcp_checksum = 1;
 645				else
 646					csum_info->transmit.udp_checksum = 1;
 647			}
 648		} else {
 649			/* Can't do offload of this type of checksum */
 650			if (skb_checksum_help(skb))
 651				goto drop;
 652		}
 653	}
 654
 655	/* Start filling in the page buffers with the rndis hdr */
 656	rndis_msg->msg_len += rndis_msg_size;
 657	packet->total_data_buflen = rndis_msg->msg_len;
 658	packet->page_buf_cnt = init_page_array(rndis_msg, rndis_msg_size,
 659					       skb, packet, pb);
 660
 661	/* timestamp packet in software */
 662	skb_tx_timestamp(skb);
 663
 664	ret = netvsc_send(net, packet, rndis_msg, pb, skb, xdp_tx);
 665	if (likely(ret == 0))
 666		return NETDEV_TX_OK;
 667
 668	if (ret == -EAGAIN) {
 669		++net_device_ctx->eth_stats.tx_busy;
 670		return NETDEV_TX_BUSY;
 671	}
 672
 673	if (ret == -ENOSPC)
 674		++net_device_ctx->eth_stats.tx_no_space;
 675
 676drop:
 677	dev_kfree_skb_any(skb);
 678	net->stats.tx_dropped++;
 679
 680	return NETDEV_TX_OK;
 681
 682no_memory:
 683	++net_device_ctx->eth_stats.tx_no_memory;
 684	goto drop;
 685}
 686
 687static netdev_tx_t netvsc_start_xmit(struct sk_buff *skb,
 688				     struct net_device *ndev)
 689{
 690	return netvsc_xmit(skb, ndev, false);
 691}
 692
 693/*
 694 * netvsc_linkstatus_callback - Link up/down notification
 695 */
 696void netvsc_linkstatus_callback(struct net_device *net,
 697				struct rndis_message *resp,
 698				void *data, u32 data_buflen)
 699{
 700	struct rndis_indicate_status *indicate = &resp->msg.indicate_status;
 701	struct net_device_context *ndev_ctx = netdev_priv(net);
 702	struct netvsc_reconfig *event;
 703	unsigned long flags;
 704
 705	/* Ensure the packet is big enough to access its fields */
 706	if (resp->msg_len - RNDIS_HEADER_SIZE < sizeof(struct rndis_indicate_status)) {
 707		netdev_err(net, "invalid rndis_indicate_status packet, len: %u\n",
 708			   resp->msg_len);
 709		return;
 710	}
 711
 712	/* Copy the RNDIS indicate status into nvchan->recv_buf */
 713	memcpy(indicate, data + RNDIS_HEADER_SIZE, sizeof(*indicate));
 714
 715	/* Update the physical link speed when changing to another vSwitch */
 716	if (indicate->status == RNDIS_STATUS_LINK_SPEED_CHANGE) {
 717		u32 speed;
 718
 719		/* Validate status_buf_offset and status_buflen.
 720		 *
 721		 * Certain (pre-Fe) implementations of Hyper-V's vSwitch didn't account
 722		 * for the status buffer field in resp->msg_len; perform the validation
 723		 * using data_buflen (>= resp->msg_len).
 724		 */
 725		if (indicate->status_buflen < sizeof(speed) ||
 726		    indicate->status_buf_offset < sizeof(*indicate) ||
 727		    data_buflen - RNDIS_HEADER_SIZE < indicate->status_buf_offset ||
 728		    data_buflen - RNDIS_HEADER_SIZE - indicate->status_buf_offset
 729				< indicate->status_buflen) {
 730			netdev_err(net, "invalid rndis_indicate_status packet\n");
 731			return;
 732		}
 733
 734		speed = *(u32 *)(data + RNDIS_HEADER_SIZE + indicate->status_buf_offset) / 10000;
 735		ndev_ctx->speed = speed;
 736		return;
 737	}
 738
 739	/* Handle these link change statuses below */
 740	if (indicate->status != RNDIS_STATUS_NETWORK_CHANGE &&
 741	    indicate->status != RNDIS_STATUS_MEDIA_CONNECT &&
 742	    indicate->status != RNDIS_STATUS_MEDIA_DISCONNECT)
 743		return;
 744
 745	if (net->reg_state != NETREG_REGISTERED)
 746		return;
 747
 748	event = kzalloc(sizeof(*event), GFP_ATOMIC);
 749	if (!event)
 750		return;
 751	event->event = indicate->status;
 752
 753	spin_lock_irqsave(&ndev_ctx->lock, flags);
 754	list_add_tail(&event->list, &ndev_ctx->reconfig_events);
 755	spin_unlock_irqrestore(&ndev_ctx->lock, flags);
 756
 757	schedule_delayed_work(&ndev_ctx->dwork, 0);
 758}
 759
 760/* This function should only be called after skb_record_rx_queue() */
 761void netvsc_xdp_xmit(struct sk_buff *skb, struct net_device *ndev)
 762{
 763	int rc;
 764
 765	skb->queue_mapping = skb_get_rx_queue(skb);
 766	__skb_push(skb, ETH_HLEN);
 767
 768	rc = netvsc_xmit(skb, ndev, true);
 769
 770	if (dev_xmit_complete(rc))
 771		return;
 772
 773	dev_kfree_skb_any(skb);
 774	ndev->stats.tx_dropped++;
 775}
 776
 777static void netvsc_comp_ipcsum(struct sk_buff *skb)
 778{
 779	struct iphdr *iph = (struct iphdr *)skb->data;
 780
 781	iph->check = 0;
 782	iph->check = ip_fast_csum(iph, iph->ihl);
 783}
 784
 785static struct sk_buff *netvsc_alloc_recv_skb(struct net_device *net,
 786					     struct netvsc_channel *nvchan,
 787					     struct xdp_buff *xdp)
 788{
 789	struct napi_struct *napi = &nvchan->napi;
 790	const struct ndis_pkt_8021q_info *vlan = &nvchan->rsc.vlan;
 791	const struct ndis_tcp_ip_checksum_info *csum_info =
 792						&nvchan->rsc.csum_info;
 793	const u32 *hash_info = &nvchan->rsc.hash_info;
 794	u8 ppi_flags = nvchan->rsc.ppi_flags;
 795	struct sk_buff *skb;
 796	void *xbuf = xdp->data_hard_start;
 797	int i;
 798
 799	if (xbuf) {
 800		unsigned int hdroom = xdp->data - xdp->data_hard_start;
 801		unsigned int xlen = xdp->data_end - xdp->data;
 802		unsigned int frag_size = xdp->frame_sz;
 803
 804		skb = build_skb(xbuf, frag_size);
 805
 806		if (!skb) {
 807			__free_page(virt_to_page(xbuf));
 808			return NULL;
 809		}
 810
 811		skb_reserve(skb, hdroom);
 812		skb_put(skb, xlen);
 813		skb->dev = napi->dev;
 814	} else {
 815		skb = napi_alloc_skb(napi, nvchan->rsc.pktlen);
 816
 817		if (!skb)
 818			return NULL;
 819
 820		/* Copy to skb. This copy is needed here since the memory
 821		 * pointed by hv_netvsc_packet cannot be deallocated.
 822		 */
 823		for (i = 0; i < nvchan->rsc.cnt; i++)
 824			skb_put_data(skb, nvchan->rsc.data[i],
 825				     nvchan->rsc.len[i]);
 826	}
 827
 828	skb->protocol = eth_type_trans(skb, net);
 829
 830	/* skb is already created with CHECKSUM_NONE */
 831	skb_checksum_none_assert(skb);
 832
 833	/* Incoming packets may have IP header checksum verified by the host.
 834	 * They may not have IP header checksum computed after coalescing.
 835	 * We compute it here if the flags are set, because on Linux, the IP
 836	 * checksum is always checked.
 837	 */
 838	if ((ppi_flags & NVSC_RSC_CSUM_INFO) && csum_info->receive.ip_checksum_value_invalid &&
 839	    csum_info->receive.ip_checksum_succeeded &&
 840	    skb->protocol == htons(ETH_P_IP)) {
 841		/* Check that there is enough space to hold the IP header. */
 842		if (skb_headlen(skb) < sizeof(struct iphdr)) {
 843			kfree_skb(skb);
 844			return NULL;
 845		}
 846		netvsc_comp_ipcsum(skb);
 847	}
 848
 849	/* Do L4 checksum offload if enabled and present. */
 850	if ((ppi_flags & NVSC_RSC_CSUM_INFO) && (net->features & NETIF_F_RXCSUM)) {
 
 851		if (csum_info->receive.tcp_checksum_succeeded ||
 852		    csum_info->receive.udp_checksum_succeeded)
 853			skb->ip_summed = CHECKSUM_UNNECESSARY;
 854	}
 855
 856	if ((ppi_flags & NVSC_RSC_HASH_INFO) && (net->features & NETIF_F_RXHASH))
 857		skb_set_hash(skb, *hash_info, PKT_HASH_TYPE_L4);
 858
 859	if (ppi_flags & NVSC_RSC_VLAN) {
 860		u16 vlan_tci = vlan->vlanid | (vlan->pri << VLAN_PRIO_SHIFT) |
 861			(vlan->cfi ? VLAN_CFI_MASK : 0);
 862
 863		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
 864				       vlan_tci);
 865	}
 866
 867	return skb;
 868}
 869
 870/*
 871 * netvsc_recv_callback -  Callback when we receive a packet from the
 872 * "wire" on the specified device.
 873 */
 874int netvsc_recv_callback(struct net_device *net,
 875			 struct netvsc_device *net_device,
 876			 struct netvsc_channel *nvchan)
 877{
 878	struct net_device_context *net_device_ctx = netdev_priv(net);
 879	struct vmbus_channel *channel = nvchan->channel;
 880	u16 q_idx = channel->offermsg.offer.sub_channel_index;
 881	struct sk_buff *skb;
 882	struct netvsc_stats_rx *rx_stats = &nvchan->rx_stats;
 883	struct xdp_buff xdp;
 884	u32 act;
 885
 886	if (net->reg_state != NETREG_REGISTERED)
 887		return NVSP_STAT_FAIL;
 888
 889	act = netvsc_run_xdp(net, nvchan, &xdp);
 890
 891	if (act == XDP_REDIRECT)
 892		return NVSP_STAT_SUCCESS;
 893
 894	if (act != XDP_PASS && act != XDP_TX) {
 895		u64_stats_update_begin(&rx_stats->syncp);
 896		rx_stats->xdp_drop++;
 897		u64_stats_update_end(&rx_stats->syncp);
 898
 899		return NVSP_STAT_SUCCESS; /* consumed by XDP */
 900	}
 901
 902	/* Allocate a skb - TODO direct I/O to pages? */
 903	skb = netvsc_alloc_recv_skb(net, nvchan, &xdp);
 904
 905	if (unlikely(!skb)) {
 906		++net_device_ctx->eth_stats.rx_no_memory;
 907		return NVSP_STAT_FAIL;
 908	}
 909
 910	skb_record_rx_queue(skb, q_idx);
 911
 912	/*
 913	 * Even if injecting the packet, record the statistics
 914	 * on the synthetic device because modifying the VF device
 915	 * statistics will not work correctly.
 916	 */
 
 917	u64_stats_update_begin(&rx_stats->syncp);
 918	if (act == XDP_TX)
 919		rx_stats->xdp_tx++;
 920
 921	rx_stats->packets++;
 922	rx_stats->bytes += nvchan->rsc.pktlen;
 923
 924	if (skb->pkt_type == PACKET_BROADCAST)
 925		++rx_stats->broadcast;
 926	else if (skb->pkt_type == PACKET_MULTICAST)
 927		++rx_stats->multicast;
 928	u64_stats_update_end(&rx_stats->syncp);
 929
 930	if (act == XDP_TX) {
 931		netvsc_xdp_xmit(skb, net);
 932		return NVSP_STAT_SUCCESS;
 933	}
 934
 935	napi_gro_receive(&nvchan->napi, skb);
 936	return NVSP_STAT_SUCCESS;
 937}
 938
 939static void netvsc_get_drvinfo(struct net_device *net,
 940			       struct ethtool_drvinfo *info)
 941{
 942	strscpy(info->driver, KBUILD_MODNAME, sizeof(info->driver));
 943	strscpy(info->fw_version, "N/A", sizeof(info->fw_version));
 944}
 945
 946static void netvsc_get_channels(struct net_device *net,
 947				struct ethtool_channels *channel)
 948{
 949	struct net_device_context *net_device_ctx = netdev_priv(net);
 950	struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev);
 951
 952	if (nvdev) {
 953		channel->max_combined	= nvdev->max_chn;
 954		channel->combined_count = nvdev->num_chn;
 955	}
 956}
 957
 958/* Alloc struct netvsc_device_info, and initialize it from either existing
 959 * struct netvsc_device, or from default values.
 960 */
 961static
 962struct netvsc_device_info *netvsc_devinfo_get(struct netvsc_device *nvdev)
 963{
 964	struct netvsc_device_info *dev_info;
 965	struct bpf_prog *prog;
 966
 967	dev_info = kzalloc(sizeof(*dev_info), GFP_ATOMIC);
 968
 969	if (!dev_info)
 970		return NULL;
 971
 972	if (nvdev) {
 973		ASSERT_RTNL();
 974
 975		dev_info->num_chn = nvdev->num_chn;
 976		dev_info->send_sections = nvdev->send_section_cnt;
 977		dev_info->send_section_size = nvdev->send_section_size;
 978		dev_info->recv_sections = nvdev->recv_section_cnt;
 979		dev_info->recv_section_size = nvdev->recv_section_size;
 980
 981		memcpy(dev_info->rss_key, nvdev->extension->rss_key,
 982		       NETVSC_HASH_KEYLEN);
 983
 984		prog = netvsc_xdp_get(nvdev);
 985		if (prog) {
 986			bpf_prog_inc(prog);
 987			dev_info->bprog = prog;
 988		}
 989	} else {
 990		dev_info->num_chn = max(VRSS_CHANNEL_DEFAULT,
 991					netif_get_num_default_rss_queues());
 992		dev_info->send_sections = NETVSC_DEFAULT_TX;
 993		dev_info->send_section_size = NETVSC_SEND_SECTION_SIZE;
 994		dev_info->recv_sections = NETVSC_DEFAULT_RX;
 995		dev_info->recv_section_size = NETVSC_RECV_SECTION_SIZE;
 996	}
 997
 998	return dev_info;
 999}
1000
1001/* Free struct netvsc_device_info */
1002static void netvsc_devinfo_put(struct netvsc_device_info *dev_info)
1003{
1004	if (dev_info->bprog) {
1005		ASSERT_RTNL();
1006		bpf_prog_put(dev_info->bprog);
1007	}
1008
1009	kfree(dev_info);
1010}
1011
1012static int netvsc_detach(struct net_device *ndev,
1013			 struct netvsc_device *nvdev)
1014{
1015	struct net_device_context *ndev_ctx = netdev_priv(ndev);
1016	struct hv_device *hdev = ndev_ctx->device_ctx;
1017	int ret;
1018
1019	/* Don't try continuing to try and setup sub channels */
1020	if (cancel_work_sync(&nvdev->subchan_work))
1021		nvdev->num_chn = 1;
1022
1023	netvsc_xdp_set(ndev, NULL, NULL, nvdev);
1024
1025	/* If device was up (receiving) then shutdown */
1026	if (netif_running(ndev)) {
1027		netvsc_tx_disable(nvdev, ndev);
1028
1029		ret = rndis_filter_close(nvdev);
1030		if (ret) {
1031			netdev_err(ndev,
1032				   "unable to close device (ret %d).\n", ret);
1033			return ret;
1034		}
1035
1036		ret = netvsc_wait_until_empty(nvdev);
1037		if (ret) {
1038			netdev_err(ndev,
1039				   "Ring buffer not empty after closing rndis\n");
1040			return ret;
1041		}
1042	}
1043
1044	netif_device_detach(ndev);
1045
1046	rndis_filter_device_remove(hdev, nvdev);
1047
1048	return 0;
1049}
1050
1051static int netvsc_attach(struct net_device *ndev,
1052			 struct netvsc_device_info *dev_info)
1053{
1054	struct net_device_context *ndev_ctx = netdev_priv(ndev);
1055	struct hv_device *hdev = ndev_ctx->device_ctx;
1056	struct netvsc_device *nvdev;
1057	struct rndis_device *rdev;
1058	struct bpf_prog *prog;
1059	int ret = 0;
1060
1061	nvdev = rndis_filter_device_add(hdev, dev_info);
1062	if (IS_ERR(nvdev))
1063		return PTR_ERR(nvdev);
1064
1065	if (nvdev->num_chn > 1) {
1066		ret = rndis_set_subchannel(ndev, nvdev, dev_info);
1067
1068		/* if unavailable, just proceed with one queue */
1069		if (ret) {
1070			nvdev->max_chn = 1;
1071			nvdev->num_chn = 1;
1072		}
1073	}
1074
1075	prog = dev_info->bprog;
1076	if (prog) {
1077		bpf_prog_inc(prog);
1078		ret = netvsc_xdp_set(ndev, prog, NULL, nvdev);
1079		if (ret) {
1080			bpf_prog_put(prog);
1081			goto err1;
1082		}
1083	}
1084
1085	/* In any case device is now ready */
1086	nvdev->tx_disable = false;
1087	netif_device_attach(ndev);
1088
1089	/* Note: enable and attach happen when sub-channels setup */
1090	netif_carrier_off(ndev);
1091
1092	if (netif_running(ndev)) {
1093		ret = rndis_filter_open(nvdev);
1094		if (ret)
1095			goto err2;
1096
1097		rdev = nvdev->extension;
1098		if (!rdev->link_state)
1099			netif_carrier_on(ndev);
1100	}
1101
1102	return 0;
1103
1104err2:
1105	netif_device_detach(ndev);
1106
1107err1:
1108	rndis_filter_device_remove(hdev, nvdev);
1109
1110	return ret;
1111}
1112
1113static int netvsc_set_channels(struct net_device *net,
1114			       struct ethtool_channels *channels)
1115{
1116	struct net_device_context *net_device_ctx = netdev_priv(net);
1117	struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev);
1118	unsigned int orig, count = channels->combined_count;
1119	struct netvsc_device_info *device_info;
1120	int ret;
1121
1122	/* We do not support separate count for rx, tx, or other */
1123	if (count == 0 ||
1124	    channels->rx_count || channels->tx_count || channels->other_count)
1125		return -EINVAL;
1126
1127	if (!nvdev || nvdev->destroy)
1128		return -ENODEV;
1129
1130	if (nvdev->nvsp_version < NVSP_PROTOCOL_VERSION_5)
1131		return -EINVAL;
1132
1133	if (count > nvdev->max_chn)
1134		return -EINVAL;
1135
1136	orig = nvdev->num_chn;
1137
1138	device_info = netvsc_devinfo_get(nvdev);
1139
1140	if (!device_info)
1141		return -ENOMEM;
1142
1143	device_info->num_chn = count;
1144
1145	ret = netvsc_detach(net, nvdev);
1146	if (ret)
1147		goto out;
1148
1149	ret = netvsc_attach(net, device_info);
1150	if (ret) {
1151		device_info->num_chn = orig;
1152		if (netvsc_attach(net, device_info))
1153			netdev_err(net, "restoring channel setting failed\n");
1154	}
1155
1156out:
1157	netvsc_devinfo_put(device_info);
1158	return ret;
1159}
1160
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1161static void netvsc_init_settings(struct net_device *dev)
1162{
1163	struct net_device_context *ndc = netdev_priv(dev);
1164
1165	ndc->l4_hash = HV_DEFAULT_L4HASH;
1166
1167	ndc->speed = SPEED_UNKNOWN;
1168	ndc->duplex = DUPLEX_FULL;
1169
1170	dev->features = NETIF_F_LRO;
1171}
1172
1173static int netvsc_get_link_ksettings(struct net_device *dev,
1174				     struct ethtool_link_ksettings *cmd)
1175{
1176	struct net_device_context *ndc = netdev_priv(dev);
1177	struct net_device *vf_netdev;
1178
1179	vf_netdev = rtnl_dereference(ndc->vf_netdev);
1180
1181	if (vf_netdev)
1182		return __ethtool_get_link_ksettings(vf_netdev, cmd);
1183
1184	cmd->base.speed = ndc->speed;
1185	cmd->base.duplex = ndc->duplex;
1186	cmd->base.port = PORT_OTHER;
1187
1188	return 0;
1189}
1190
1191static int netvsc_set_link_ksettings(struct net_device *dev,
1192				     const struct ethtool_link_ksettings *cmd)
1193{
1194	struct net_device_context *ndc = netdev_priv(dev);
1195	struct net_device *vf_netdev = rtnl_dereference(ndc->vf_netdev);
1196
1197	if (vf_netdev) {
1198		if (!vf_netdev->ethtool_ops->set_link_ksettings)
1199			return -EOPNOTSUPP;
 
 
1200
1201		return vf_netdev->ethtool_ops->set_link_ksettings(vf_netdev,
1202								  cmd);
1203	}
1204
1205	return ethtool_virtdev_set_link_ksettings(dev, cmd,
1206						  &ndc->speed, &ndc->duplex);
1207}
1208
1209static int netvsc_change_mtu(struct net_device *ndev, int mtu)
1210{
1211	struct net_device_context *ndevctx = netdev_priv(ndev);
1212	struct net_device *vf_netdev = rtnl_dereference(ndevctx->vf_netdev);
1213	struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
1214	int orig_mtu = ndev->mtu;
1215	struct netvsc_device_info *device_info;
1216	int ret = 0;
1217
1218	if (!nvdev || nvdev->destroy)
1219		return -ENODEV;
1220
1221	device_info = netvsc_devinfo_get(nvdev);
1222
1223	if (!device_info)
1224		return -ENOMEM;
1225
1226	/* Change MTU of underlying VF netdev first. */
1227	if (vf_netdev) {
1228		ret = dev_set_mtu(vf_netdev, mtu);
1229		if (ret)
1230			goto out;
1231	}
1232
1233	ret = netvsc_detach(ndev, nvdev);
1234	if (ret)
1235		goto rollback_vf;
1236
1237	WRITE_ONCE(ndev->mtu, mtu);
1238
1239	ret = netvsc_attach(ndev, device_info);
1240	if (!ret)
1241		goto out;
1242
1243	/* Attempt rollback to original MTU */
1244	WRITE_ONCE(ndev->mtu, orig_mtu);
1245
1246	if (netvsc_attach(ndev, device_info))
1247		netdev_err(ndev, "restoring mtu failed\n");
1248rollback_vf:
1249	if (vf_netdev)
1250		dev_set_mtu(vf_netdev, orig_mtu);
1251
1252out:
1253	netvsc_devinfo_put(device_info);
1254	return ret;
1255}
1256
1257static void netvsc_get_vf_stats(struct net_device *net,
1258				struct netvsc_vf_pcpu_stats *tot)
1259{
1260	struct net_device_context *ndev_ctx = netdev_priv(net);
1261	int i;
1262
1263	memset(tot, 0, sizeof(*tot));
1264
1265	for_each_possible_cpu(i) {
1266		const struct netvsc_vf_pcpu_stats *stats
1267			= per_cpu_ptr(ndev_ctx->vf_stats, i);
1268		u64 rx_packets, rx_bytes, tx_packets, tx_bytes;
1269		unsigned int start;
1270
1271		do {
1272			start = u64_stats_fetch_begin(&stats->syncp);
1273			rx_packets = stats->rx_packets;
1274			tx_packets = stats->tx_packets;
1275			rx_bytes = stats->rx_bytes;
1276			tx_bytes = stats->tx_bytes;
1277		} while (u64_stats_fetch_retry(&stats->syncp, start));
1278
1279		tot->rx_packets += rx_packets;
1280		tot->tx_packets += tx_packets;
1281		tot->rx_bytes   += rx_bytes;
1282		tot->tx_bytes   += tx_bytes;
1283		tot->tx_dropped += stats->tx_dropped;
1284	}
1285}
1286
1287static void netvsc_get_pcpu_stats(struct net_device *net,
1288				  struct netvsc_ethtool_pcpu_stats *pcpu_tot)
1289{
1290	struct net_device_context *ndev_ctx = netdev_priv(net);
1291	struct netvsc_device *nvdev = rcu_dereference_rtnl(ndev_ctx->nvdev);
1292	int i;
1293
1294	/* fetch percpu stats of vf */
1295	for_each_possible_cpu(i) {
1296		const struct netvsc_vf_pcpu_stats *stats =
1297			per_cpu_ptr(ndev_ctx->vf_stats, i);
1298		struct netvsc_ethtool_pcpu_stats *this_tot = &pcpu_tot[i];
1299		unsigned int start;
1300
1301		do {
1302			start = u64_stats_fetch_begin(&stats->syncp);
1303			this_tot->vf_rx_packets = stats->rx_packets;
1304			this_tot->vf_tx_packets = stats->tx_packets;
1305			this_tot->vf_rx_bytes = stats->rx_bytes;
1306			this_tot->vf_tx_bytes = stats->tx_bytes;
1307		} while (u64_stats_fetch_retry(&stats->syncp, start));
1308		this_tot->rx_packets = this_tot->vf_rx_packets;
1309		this_tot->tx_packets = this_tot->vf_tx_packets;
1310		this_tot->rx_bytes   = this_tot->vf_rx_bytes;
1311		this_tot->tx_bytes   = this_tot->vf_tx_bytes;
1312	}
1313
1314	/* fetch percpu stats of netvsc */
1315	for (i = 0; i < nvdev->num_chn; i++) {
1316		const struct netvsc_channel *nvchan = &nvdev->chan_table[i];
1317		const struct netvsc_stats_tx *tx_stats;
1318		const struct netvsc_stats_rx *rx_stats;
1319		struct netvsc_ethtool_pcpu_stats *this_tot =
1320			&pcpu_tot[nvchan->channel->target_cpu];
1321		u64 packets, bytes;
1322		unsigned int start;
1323
1324		tx_stats = &nvchan->tx_stats;
1325		do {
1326			start = u64_stats_fetch_begin(&tx_stats->syncp);
1327			packets = tx_stats->packets;
1328			bytes = tx_stats->bytes;
1329		} while (u64_stats_fetch_retry(&tx_stats->syncp, start));
1330
1331		this_tot->tx_bytes	+= bytes;
1332		this_tot->tx_packets	+= packets;
1333
1334		rx_stats = &nvchan->rx_stats;
1335		do {
1336			start = u64_stats_fetch_begin(&rx_stats->syncp);
1337			packets = rx_stats->packets;
1338			bytes = rx_stats->bytes;
1339		} while (u64_stats_fetch_retry(&rx_stats->syncp, start));
1340
1341		this_tot->rx_bytes	+= bytes;
1342		this_tot->rx_packets	+= packets;
1343	}
1344}
1345
1346static void netvsc_get_stats64(struct net_device *net,
1347			       struct rtnl_link_stats64 *t)
1348{
1349	struct net_device_context *ndev_ctx = netdev_priv(net);
1350	struct netvsc_device *nvdev;
1351	struct netvsc_vf_pcpu_stats vf_tot;
1352	int i;
1353
1354	rcu_read_lock();
1355
1356	nvdev = rcu_dereference(ndev_ctx->nvdev);
1357	if (!nvdev)
1358		goto out;
1359
1360	netdev_stats_to_stats64(t, &net->stats);
1361
1362	netvsc_get_vf_stats(net, &vf_tot);
1363	t->rx_packets += vf_tot.rx_packets;
1364	t->tx_packets += vf_tot.tx_packets;
1365	t->rx_bytes   += vf_tot.rx_bytes;
1366	t->tx_bytes   += vf_tot.tx_bytes;
1367	t->tx_dropped += vf_tot.tx_dropped;
1368
1369	for (i = 0; i < nvdev->num_chn; i++) {
1370		const struct netvsc_channel *nvchan = &nvdev->chan_table[i];
1371		const struct netvsc_stats_tx *tx_stats;
1372		const struct netvsc_stats_rx *rx_stats;
1373		u64 packets, bytes, multicast;
1374		unsigned int start;
1375
1376		tx_stats = &nvchan->tx_stats;
1377		do {
1378			start = u64_stats_fetch_begin(&tx_stats->syncp);
1379			packets = tx_stats->packets;
1380			bytes = tx_stats->bytes;
1381		} while (u64_stats_fetch_retry(&tx_stats->syncp, start));
1382
1383		t->tx_bytes	+= bytes;
1384		t->tx_packets	+= packets;
1385
1386		rx_stats = &nvchan->rx_stats;
1387		do {
1388			start = u64_stats_fetch_begin(&rx_stats->syncp);
1389			packets = rx_stats->packets;
1390			bytes = rx_stats->bytes;
1391			multicast = rx_stats->multicast + rx_stats->broadcast;
1392		} while (u64_stats_fetch_retry(&rx_stats->syncp, start));
1393
1394		t->rx_bytes	+= bytes;
1395		t->rx_packets	+= packets;
1396		t->multicast	+= multicast;
1397	}
1398out:
1399	rcu_read_unlock();
1400}
1401
1402static int netvsc_set_mac_addr(struct net_device *ndev, void *p)
1403{
1404	struct net_device_context *ndc = netdev_priv(ndev);
1405	struct net_device *vf_netdev = rtnl_dereference(ndc->vf_netdev);
1406	struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1407	struct sockaddr *addr = p;
1408	int err;
1409
1410	err = eth_prepare_mac_addr_change(ndev, p);
1411	if (err)
1412		return err;
1413
1414	if (!nvdev)
1415		return -ENODEV;
1416
1417	if (vf_netdev) {
1418		err = dev_set_mac_address(vf_netdev, addr, NULL);
1419		if (err)
1420			return err;
1421	}
1422
1423	err = rndis_filter_set_device_mac(nvdev, addr->sa_data);
1424	if (!err) {
1425		eth_commit_mac_addr_change(ndev, p);
1426	} else if (vf_netdev) {
1427		/* rollback change on VF */
1428		memcpy(addr->sa_data, ndev->dev_addr, ETH_ALEN);
1429		dev_set_mac_address(vf_netdev, addr, NULL);
1430	}
1431
1432	return err;
1433}
1434
1435static const struct {
1436	char name[ETH_GSTRING_LEN];
1437	u16 offset;
1438} netvsc_stats[] = {
1439	{ "tx_scattered", offsetof(struct netvsc_ethtool_stats, tx_scattered) },
1440	{ "tx_no_memory", offsetof(struct netvsc_ethtool_stats, tx_no_memory) },
1441	{ "tx_no_space",  offsetof(struct netvsc_ethtool_stats, tx_no_space) },
1442	{ "tx_too_big",	  offsetof(struct netvsc_ethtool_stats, tx_too_big) },
1443	{ "tx_busy",	  offsetof(struct netvsc_ethtool_stats, tx_busy) },
1444	{ "tx_send_full", offsetof(struct netvsc_ethtool_stats, tx_send_full) },
1445	{ "rx_comp_busy", offsetof(struct netvsc_ethtool_stats, rx_comp_busy) },
1446	{ "rx_no_memory", offsetof(struct netvsc_ethtool_stats, rx_no_memory) },
1447	{ "stop_queue", offsetof(struct netvsc_ethtool_stats, stop_queue) },
1448	{ "wake_queue", offsetof(struct netvsc_ethtool_stats, wake_queue) },
1449	{ "vlan_error", offsetof(struct netvsc_ethtool_stats, vlan_error) },
1450}, pcpu_stats[] = {
1451	{ "cpu%u_rx_packets",
1452		offsetof(struct netvsc_ethtool_pcpu_stats, rx_packets) },
1453	{ "cpu%u_rx_bytes",
1454		offsetof(struct netvsc_ethtool_pcpu_stats, rx_bytes) },
1455	{ "cpu%u_tx_packets",
1456		offsetof(struct netvsc_ethtool_pcpu_stats, tx_packets) },
1457	{ "cpu%u_tx_bytes",
1458		offsetof(struct netvsc_ethtool_pcpu_stats, tx_bytes) },
1459	{ "cpu%u_vf_rx_packets",
1460		offsetof(struct netvsc_ethtool_pcpu_stats, vf_rx_packets) },
1461	{ "cpu%u_vf_rx_bytes",
1462		offsetof(struct netvsc_ethtool_pcpu_stats, vf_rx_bytes) },
1463	{ "cpu%u_vf_tx_packets",
1464		offsetof(struct netvsc_ethtool_pcpu_stats, vf_tx_packets) },
1465	{ "cpu%u_vf_tx_bytes",
1466		offsetof(struct netvsc_ethtool_pcpu_stats, vf_tx_bytes) },
1467}, vf_stats[] = {
1468	{ "vf_rx_packets", offsetof(struct netvsc_vf_pcpu_stats, rx_packets) },
1469	{ "vf_rx_bytes",   offsetof(struct netvsc_vf_pcpu_stats, rx_bytes) },
1470	{ "vf_tx_packets", offsetof(struct netvsc_vf_pcpu_stats, tx_packets) },
1471	{ "vf_tx_bytes",   offsetof(struct netvsc_vf_pcpu_stats, tx_bytes) },
1472	{ "vf_tx_dropped", offsetof(struct netvsc_vf_pcpu_stats, tx_dropped) },
1473};
1474
1475#define NETVSC_GLOBAL_STATS_LEN	ARRAY_SIZE(netvsc_stats)
1476#define NETVSC_VF_STATS_LEN	ARRAY_SIZE(vf_stats)
1477
1478/* statistics per queue (rx/tx packets/bytes) */
1479#define NETVSC_PCPU_STATS_LEN (num_present_cpus() * ARRAY_SIZE(pcpu_stats))
1480
1481/* 8 statistics per queue (rx/tx packets/bytes, XDP actions) */
1482#define NETVSC_QUEUE_STATS_LEN(dev) ((dev)->num_chn * 8)
1483
1484static int netvsc_get_sset_count(struct net_device *dev, int string_set)
1485{
1486	struct net_device_context *ndc = netdev_priv(dev);
1487	struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1488
1489	if (!nvdev)
1490		return -ENODEV;
1491
1492	switch (string_set) {
1493	case ETH_SS_STATS:
1494		return NETVSC_GLOBAL_STATS_LEN
1495			+ NETVSC_VF_STATS_LEN
1496			+ NETVSC_QUEUE_STATS_LEN(nvdev)
1497			+ NETVSC_PCPU_STATS_LEN;
1498	default:
1499		return -EINVAL;
1500	}
1501}
1502
1503static void netvsc_get_ethtool_stats(struct net_device *dev,
1504				     struct ethtool_stats *stats, u64 *data)
1505{
1506	struct net_device_context *ndc = netdev_priv(dev);
1507	struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1508	const void *nds = &ndc->eth_stats;
1509	const struct netvsc_stats_tx *tx_stats;
1510	const struct netvsc_stats_rx *rx_stats;
1511	struct netvsc_vf_pcpu_stats sum;
1512	struct netvsc_ethtool_pcpu_stats *pcpu_sum;
1513	unsigned int start;
1514	u64 packets, bytes;
1515	u64 xdp_drop;
1516	u64 xdp_redirect;
1517	u64 xdp_tx;
1518	u64 xdp_xmit;
1519	int i, j, cpu;
1520
1521	if (!nvdev)
1522		return;
1523
1524	for (i = 0; i < NETVSC_GLOBAL_STATS_LEN; i++)
1525		data[i] = *(unsigned long *)(nds + netvsc_stats[i].offset);
1526
1527	netvsc_get_vf_stats(dev, &sum);
1528	for (j = 0; j < NETVSC_VF_STATS_LEN; j++)
1529		data[i++] = *(u64 *)((void *)&sum + vf_stats[j].offset);
1530
1531	for (j = 0; j < nvdev->num_chn; j++) {
1532		tx_stats = &nvdev->chan_table[j].tx_stats;
1533
1534		do {
1535			start = u64_stats_fetch_begin(&tx_stats->syncp);
1536			packets = tx_stats->packets;
1537			bytes = tx_stats->bytes;
1538			xdp_xmit = tx_stats->xdp_xmit;
1539		} while (u64_stats_fetch_retry(&tx_stats->syncp, start));
1540		data[i++] = packets;
1541		data[i++] = bytes;
1542		data[i++] = xdp_xmit;
1543
1544		rx_stats = &nvdev->chan_table[j].rx_stats;
1545		do {
1546			start = u64_stats_fetch_begin(&rx_stats->syncp);
1547			packets = rx_stats->packets;
1548			bytes = rx_stats->bytes;
1549			xdp_drop = rx_stats->xdp_drop;
1550			xdp_redirect = rx_stats->xdp_redirect;
1551			xdp_tx = rx_stats->xdp_tx;
1552		} while (u64_stats_fetch_retry(&rx_stats->syncp, start));
1553		data[i++] = packets;
1554		data[i++] = bytes;
1555		data[i++] = xdp_drop;
1556		data[i++] = xdp_redirect;
1557		data[i++] = xdp_tx;
1558	}
1559
1560	pcpu_sum = kvmalloc_array(nr_cpu_ids,
1561				  sizeof(struct netvsc_ethtool_pcpu_stats),
1562				  GFP_KERNEL);
1563	if (!pcpu_sum)
1564		return;
1565
1566	netvsc_get_pcpu_stats(dev, pcpu_sum);
1567	for_each_present_cpu(cpu) {
1568		struct netvsc_ethtool_pcpu_stats *this_sum = &pcpu_sum[cpu];
1569
1570		for (j = 0; j < ARRAY_SIZE(pcpu_stats); j++)
1571			data[i++] = *(u64 *)((void *)this_sum
1572					     + pcpu_stats[j].offset);
1573	}
1574	kvfree(pcpu_sum);
1575}
1576
1577static void netvsc_get_strings(struct net_device *dev, u32 stringset, u8 *data)
1578{
1579	struct net_device_context *ndc = netdev_priv(dev);
1580	struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1581	u8 *p = data;
1582	int i, cpu;
1583
1584	if (!nvdev)
1585		return;
1586
1587	switch (stringset) {
1588	case ETH_SS_STATS:
1589		for (i = 0; i < ARRAY_SIZE(netvsc_stats); i++)
1590			ethtool_puts(&p, netvsc_stats[i].name);
 
 
1591
1592		for (i = 0; i < ARRAY_SIZE(vf_stats); i++)
1593			ethtool_puts(&p, vf_stats[i].name);
 
 
1594
1595		for (i = 0; i < nvdev->num_chn; i++) {
1596			ethtool_sprintf(&p, "tx_queue_%u_packets", i);
1597			ethtool_sprintf(&p, "tx_queue_%u_bytes", i);
1598			ethtool_sprintf(&p, "tx_queue_%u_xdp_xmit", i);
1599			ethtool_sprintf(&p, "rx_queue_%u_packets", i);
1600			ethtool_sprintf(&p, "rx_queue_%u_bytes", i);
1601			ethtool_sprintf(&p, "rx_queue_%u_xdp_drop", i);
1602			ethtool_sprintf(&p, "rx_queue_%u_xdp_redirect", i);
1603			ethtool_sprintf(&p, "rx_queue_%u_xdp_tx", i);
1604		}
1605
1606		for_each_present_cpu(cpu) {
1607			for (i = 0; i < ARRAY_SIZE(pcpu_stats); i++)
1608				ethtool_sprintf(&p, pcpu_stats[i].name, cpu);
 
 
1609		}
1610
1611		break;
1612	}
1613}
1614
1615static int
1616netvsc_get_rss_hash_opts(struct net_device_context *ndc,
1617			 struct ethtool_rxnfc *info)
1618{
1619	const u32 l4_flag = RXH_L4_B_0_1 | RXH_L4_B_2_3;
1620
1621	info->data = RXH_IP_SRC | RXH_IP_DST;
1622
1623	switch (info->flow_type) {
1624	case TCP_V4_FLOW:
1625		if (ndc->l4_hash & HV_TCP4_L4HASH)
1626			info->data |= l4_flag;
1627
1628		break;
1629
1630	case TCP_V6_FLOW:
1631		if (ndc->l4_hash & HV_TCP6_L4HASH)
1632			info->data |= l4_flag;
1633
1634		break;
1635
1636	case UDP_V4_FLOW:
1637		if (ndc->l4_hash & HV_UDP4_L4HASH)
1638			info->data |= l4_flag;
1639
1640		break;
1641
1642	case UDP_V6_FLOW:
1643		if (ndc->l4_hash & HV_UDP6_L4HASH)
1644			info->data |= l4_flag;
1645
1646		break;
1647
1648	case IPV4_FLOW:
1649	case IPV6_FLOW:
1650		break;
1651	default:
1652		info->data = 0;
1653		break;
1654	}
1655
1656	return 0;
1657}
1658
1659static int
1660netvsc_get_rxnfc(struct net_device *dev, struct ethtool_rxnfc *info,
1661		 u32 *rules)
1662{
1663	struct net_device_context *ndc = netdev_priv(dev);
1664	struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1665
1666	if (!nvdev)
1667		return -ENODEV;
1668
1669	switch (info->cmd) {
1670	case ETHTOOL_GRXRINGS:
1671		info->data = nvdev->num_chn;
1672		return 0;
1673
1674	case ETHTOOL_GRXFH:
1675		return netvsc_get_rss_hash_opts(ndc, info);
1676	}
1677	return -EOPNOTSUPP;
1678}
1679
1680static int netvsc_set_rss_hash_opts(struct net_device_context *ndc,
1681				    struct ethtool_rxnfc *info)
1682{
1683	if (info->data == (RXH_IP_SRC | RXH_IP_DST |
1684			   RXH_L4_B_0_1 | RXH_L4_B_2_3)) {
1685		switch (info->flow_type) {
1686		case TCP_V4_FLOW:
1687			ndc->l4_hash |= HV_TCP4_L4HASH;
1688			break;
1689
1690		case TCP_V6_FLOW:
1691			ndc->l4_hash |= HV_TCP6_L4HASH;
1692			break;
1693
1694		case UDP_V4_FLOW:
1695			ndc->l4_hash |= HV_UDP4_L4HASH;
1696			break;
1697
1698		case UDP_V6_FLOW:
1699			ndc->l4_hash |= HV_UDP6_L4HASH;
1700			break;
1701
1702		default:
1703			return -EOPNOTSUPP;
1704		}
1705
1706		return 0;
1707	}
1708
1709	if (info->data == (RXH_IP_SRC | RXH_IP_DST)) {
1710		switch (info->flow_type) {
1711		case TCP_V4_FLOW:
1712			ndc->l4_hash &= ~HV_TCP4_L4HASH;
1713			break;
1714
1715		case TCP_V6_FLOW:
1716			ndc->l4_hash &= ~HV_TCP6_L4HASH;
1717			break;
1718
1719		case UDP_V4_FLOW:
1720			ndc->l4_hash &= ~HV_UDP4_L4HASH;
1721			break;
1722
1723		case UDP_V6_FLOW:
1724			ndc->l4_hash &= ~HV_UDP6_L4HASH;
1725			break;
1726
1727		default:
1728			return -EOPNOTSUPP;
1729		}
1730
1731		return 0;
1732	}
1733
1734	return -EOPNOTSUPP;
1735}
1736
1737static int
1738netvsc_set_rxnfc(struct net_device *ndev, struct ethtool_rxnfc *info)
1739{
1740	struct net_device_context *ndc = netdev_priv(ndev);
1741
1742	if (info->cmd == ETHTOOL_SRXFH)
1743		return netvsc_set_rss_hash_opts(ndc, info);
1744
1745	return -EOPNOTSUPP;
1746}
1747
1748static u32 netvsc_get_rxfh_key_size(struct net_device *dev)
1749{
1750	return NETVSC_HASH_KEYLEN;
1751}
1752
1753static u32 netvsc_rss_indir_size(struct net_device *dev)
1754{
1755	struct net_device_context *ndc = netdev_priv(dev);
1756
1757	return ndc->rx_table_sz;
1758}
1759
1760static int netvsc_get_rxfh(struct net_device *dev,
1761			   struct ethtool_rxfh_param *rxfh)
1762{
1763	struct net_device_context *ndc = netdev_priv(dev);
1764	struct netvsc_device *ndev = rtnl_dereference(ndc->nvdev);
1765	struct rndis_device *rndis_dev;
1766	int i;
1767
1768	if (!ndev)
1769		return -ENODEV;
1770
1771	rxfh->hfunc = ETH_RSS_HASH_TOP;	/* Toeplitz */
 
1772
1773	rndis_dev = ndev->extension;
1774	if (rxfh->indir) {
1775		for (i = 0; i < ndc->rx_table_sz; i++)
1776			rxfh->indir[i] = ndc->rx_table[i];
1777	}
1778
1779	if (rxfh->key)
1780		memcpy(rxfh->key, rndis_dev->rss_key, NETVSC_HASH_KEYLEN);
1781
1782	return 0;
1783}
1784
1785static int netvsc_set_rxfh(struct net_device *dev,
1786			   struct ethtool_rxfh_param *rxfh,
1787			   struct netlink_ext_ack *extack)
1788{
1789	struct net_device_context *ndc = netdev_priv(dev);
1790	struct netvsc_device *ndev = rtnl_dereference(ndc->nvdev);
1791	struct rndis_device *rndis_dev;
1792	u8 *key = rxfh->key;
1793	int i;
1794
1795	if (!ndev)
1796		return -ENODEV;
1797
1798	if (rxfh->hfunc != ETH_RSS_HASH_NO_CHANGE &&
1799	    rxfh->hfunc != ETH_RSS_HASH_TOP)
1800		return -EOPNOTSUPP;
1801
1802	rndis_dev = ndev->extension;
1803	if (rxfh->indir) {
1804		for (i = 0; i < ndc->rx_table_sz; i++)
1805			if (rxfh->indir[i] >= ndev->num_chn)
1806				return -EINVAL;
1807
1808		for (i = 0; i < ndc->rx_table_sz; i++)
1809			ndc->rx_table[i] = rxfh->indir[i];
1810	}
1811
1812	if (!key) {
1813		if (!rxfh->indir)
1814			return 0;
1815
1816		key = rndis_dev->rss_key;
1817	}
1818
1819	return rndis_filter_set_rss_param(rndis_dev, key);
1820}
1821
1822/* Hyper-V RNDIS protocol does not have ring in the HW sense.
1823 * It does have pre-allocated receive area which is divided into sections.
1824 */
1825static void __netvsc_get_ringparam(struct netvsc_device *nvdev,
1826				   struct ethtool_ringparam *ring)
1827{
1828	u32 max_buf_size;
1829
1830	ring->rx_pending = nvdev->recv_section_cnt;
1831	ring->tx_pending = nvdev->send_section_cnt;
1832
1833	if (nvdev->nvsp_version <= NVSP_PROTOCOL_VERSION_2)
1834		max_buf_size = NETVSC_RECEIVE_BUFFER_SIZE_LEGACY;
1835	else
1836		max_buf_size = NETVSC_RECEIVE_BUFFER_SIZE;
1837
1838	ring->rx_max_pending = max_buf_size / nvdev->recv_section_size;
1839	ring->tx_max_pending = NETVSC_SEND_BUFFER_SIZE
1840		/ nvdev->send_section_size;
1841}
1842
1843static void netvsc_get_ringparam(struct net_device *ndev,
1844				 struct ethtool_ringparam *ring,
1845				 struct kernel_ethtool_ringparam *kernel_ring,
1846				 struct netlink_ext_ack *extack)
1847{
1848	struct net_device_context *ndevctx = netdev_priv(ndev);
1849	struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
1850
1851	if (!nvdev)
1852		return;
1853
1854	__netvsc_get_ringparam(nvdev, ring);
1855}
1856
1857static int netvsc_set_ringparam(struct net_device *ndev,
1858				struct ethtool_ringparam *ring,
1859				struct kernel_ethtool_ringparam *kernel_ring,
1860				struct netlink_ext_ack *extack)
1861{
1862	struct net_device_context *ndevctx = netdev_priv(ndev);
1863	struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
1864	struct netvsc_device_info *device_info;
1865	struct ethtool_ringparam orig;
1866	u32 new_tx, new_rx;
1867	int ret = 0;
1868
1869	if (!nvdev || nvdev->destroy)
1870		return -ENODEV;
1871
1872	memset(&orig, 0, sizeof(orig));
1873	__netvsc_get_ringparam(nvdev, &orig);
1874
1875	new_tx = clamp_t(u32, ring->tx_pending,
1876			 NETVSC_MIN_TX_SECTIONS, orig.tx_max_pending);
1877	new_rx = clamp_t(u32, ring->rx_pending,
1878			 NETVSC_MIN_RX_SECTIONS, orig.rx_max_pending);
1879
1880	if (new_tx == orig.tx_pending &&
1881	    new_rx == orig.rx_pending)
1882		return 0;	 /* no change */
1883
1884	device_info = netvsc_devinfo_get(nvdev);
1885
1886	if (!device_info)
1887		return -ENOMEM;
1888
1889	device_info->send_sections = new_tx;
1890	device_info->recv_sections = new_rx;
1891
1892	ret = netvsc_detach(ndev, nvdev);
1893	if (ret)
1894		goto out;
1895
1896	ret = netvsc_attach(ndev, device_info);
1897	if (ret) {
1898		device_info->send_sections = orig.tx_pending;
1899		device_info->recv_sections = orig.rx_pending;
1900
1901		if (netvsc_attach(ndev, device_info))
1902			netdev_err(ndev, "restoring ringparam failed");
1903	}
1904
1905out:
1906	netvsc_devinfo_put(device_info);
1907	return ret;
1908}
1909
1910static netdev_features_t netvsc_fix_features(struct net_device *ndev,
1911					     netdev_features_t features)
1912{
1913	struct net_device_context *ndevctx = netdev_priv(ndev);
1914	struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
1915
1916	if (!nvdev || nvdev->destroy)
1917		return features;
1918
1919	if ((features & NETIF_F_LRO) && netvsc_xdp_get(nvdev)) {
1920		features ^= NETIF_F_LRO;
1921		netdev_info(ndev, "Skip LRO - unsupported with XDP\n");
1922	}
1923
1924	return features;
1925}
1926
1927static int netvsc_set_features(struct net_device *ndev,
1928			       netdev_features_t features)
1929{
1930	netdev_features_t change = features ^ ndev->features;
1931	struct net_device_context *ndevctx = netdev_priv(ndev);
1932	struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
1933	struct net_device *vf_netdev = rtnl_dereference(ndevctx->vf_netdev);
1934	struct ndis_offload_params offloads;
1935	int ret = 0;
1936
1937	if (!nvdev || nvdev->destroy)
1938		return -ENODEV;
1939
1940	if (!(change & NETIF_F_LRO))
1941		goto syncvf;
1942
1943	memset(&offloads, 0, sizeof(struct ndis_offload_params));
1944
1945	if (features & NETIF_F_LRO) {
1946		offloads.rsc_ip_v4 = NDIS_OFFLOAD_PARAMETERS_RSC_ENABLED;
1947		offloads.rsc_ip_v6 = NDIS_OFFLOAD_PARAMETERS_RSC_ENABLED;
1948	} else {
1949		offloads.rsc_ip_v4 = NDIS_OFFLOAD_PARAMETERS_RSC_DISABLED;
1950		offloads.rsc_ip_v6 = NDIS_OFFLOAD_PARAMETERS_RSC_DISABLED;
1951	}
1952
1953	ret = rndis_filter_set_offload_params(ndev, nvdev, &offloads);
1954
1955	if (ret) {
1956		features ^= NETIF_F_LRO;
1957		ndev->features = features;
1958	}
1959
1960syncvf:
1961	if (!vf_netdev)
1962		return ret;
1963
1964	vf_netdev->wanted_features = features;
1965	netdev_update_features(vf_netdev);
1966
1967	return ret;
1968}
1969
1970static int netvsc_get_regs_len(struct net_device *netdev)
1971{
1972	return VRSS_SEND_TAB_SIZE * sizeof(u32);
1973}
1974
1975static void netvsc_get_regs(struct net_device *netdev,
1976			    struct ethtool_regs *regs, void *p)
1977{
1978	struct net_device_context *ndc = netdev_priv(netdev);
1979	u32 *regs_buff = p;
1980
1981	/* increase the version, if buffer format is changed. */
1982	regs->version = 1;
1983
1984	memcpy(regs_buff, ndc->tx_table, VRSS_SEND_TAB_SIZE * sizeof(u32));
1985}
1986
1987static u32 netvsc_get_msglevel(struct net_device *ndev)
1988{
1989	struct net_device_context *ndev_ctx = netdev_priv(ndev);
1990
1991	return ndev_ctx->msg_enable;
1992}
1993
1994static void netvsc_set_msglevel(struct net_device *ndev, u32 val)
1995{
1996	struct net_device_context *ndev_ctx = netdev_priv(ndev);
1997
1998	ndev_ctx->msg_enable = val;
1999}
2000
2001static const struct ethtool_ops ethtool_ops = {
2002	.get_drvinfo	= netvsc_get_drvinfo,
2003	.get_regs_len	= netvsc_get_regs_len,
2004	.get_regs	= netvsc_get_regs,
2005	.get_msglevel	= netvsc_get_msglevel,
2006	.set_msglevel	= netvsc_set_msglevel,
2007	.get_link	= ethtool_op_get_link,
2008	.get_ethtool_stats = netvsc_get_ethtool_stats,
2009	.get_sset_count = netvsc_get_sset_count,
2010	.get_strings	= netvsc_get_strings,
2011	.get_channels   = netvsc_get_channels,
2012	.set_channels   = netvsc_set_channels,
2013	.get_ts_info	= ethtool_op_get_ts_info,
2014	.get_rxnfc	= netvsc_get_rxnfc,
2015	.set_rxnfc	= netvsc_set_rxnfc,
2016	.get_rxfh_key_size = netvsc_get_rxfh_key_size,
2017	.get_rxfh_indir_size = netvsc_rss_indir_size,
2018	.get_rxfh	= netvsc_get_rxfh,
2019	.set_rxfh	= netvsc_set_rxfh,
2020	.get_link_ksettings = netvsc_get_link_ksettings,
2021	.set_link_ksettings = netvsc_set_link_ksettings,
2022	.get_ringparam	= netvsc_get_ringparam,
2023	.set_ringparam	= netvsc_set_ringparam,
2024};
2025
2026static const struct net_device_ops device_ops = {
2027	.ndo_open =			netvsc_open,
2028	.ndo_stop =			netvsc_close,
2029	.ndo_start_xmit =		netvsc_start_xmit,
2030	.ndo_change_rx_flags =		netvsc_change_rx_flags,
2031	.ndo_set_rx_mode =		netvsc_set_rx_mode,
2032	.ndo_fix_features =		netvsc_fix_features,
2033	.ndo_set_features =		netvsc_set_features,
2034	.ndo_change_mtu =		netvsc_change_mtu,
2035	.ndo_validate_addr =		eth_validate_addr,
2036	.ndo_set_mac_address =		netvsc_set_mac_addr,
2037	.ndo_select_queue =		netvsc_select_queue,
2038	.ndo_get_stats64 =		netvsc_get_stats64,
2039	.ndo_bpf =			netvsc_bpf,
2040	.ndo_xdp_xmit =			netvsc_ndoxdp_xmit,
2041};
2042
2043/*
2044 * Handle link status changes. For RNDIS_STATUS_NETWORK_CHANGE emulate link
2045 * down/up sequence. In case of RNDIS_STATUS_MEDIA_CONNECT when carrier is
2046 * present send GARP packet to network peers with netif_notify_peers().
2047 */
2048static void netvsc_link_change(struct work_struct *w)
2049{
2050	struct net_device_context *ndev_ctx =
2051		container_of(w, struct net_device_context, dwork.work);
2052	struct hv_device *device_obj = ndev_ctx->device_ctx;
2053	struct net_device *net = hv_get_drvdata(device_obj);
2054	unsigned long flags, next_reconfig, delay;
2055	struct netvsc_reconfig *event = NULL;
2056	struct netvsc_device *net_device;
2057	struct rndis_device *rdev;
2058	bool reschedule = false;
 
 
2059
2060	/* if changes are happening, comeback later */
2061	if (!rtnl_trylock()) {
2062		schedule_delayed_work(&ndev_ctx->dwork, LINKCHANGE_INT);
2063		return;
2064	}
2065
2066	net_device = rtnl_dereference(ndev_ctx->nvdev);
2067	if (!net_device)
2068		goto out_unlock;
2069
2070	rdev = net_device->extension;
2071
2072	next_reconfig = ndev_ctx->last_reconfig + LINKCHANGE_INT;
2073	if (time_is_after_jiffies(next_reconfig)) {
2074		/* link_watch only sends one notification with current state
2075		 * per second, avoid doing reconfig more frequently. Handle
2076		 * wrap around.
2077		 */
2078		delay = next_reconfig - jiffies;
2079		delay = delay < LINKCHANGE_INT ? delay : LINKCHANGE_INT;
2080		schedule_delayed_work(&ndev_ctx->dwork, delay);
2081		goto out_unlock;
2082	}
2083	ndev_ctx->last_reconfig = jiffies;
2084
2085	spin_lock_irqsave(&ndev_ctx->lock, flags);
2086	if (!list_empty(&ndev_ctx->reconfig_events)) {
2087		event = list_first_entry(&ndev_ctx->reconfig_events,
2088					 struct netvsc_reconfig, list);
2089		list_del(&event->list);
2090		reschedule = !list_empty(&ndev_ctx->reconfig_events);
2091	}
2092	spin_unlock_irqrestore(&ndev_ctx->lock, flags);
2093
2094	if (!event)
2095		goto out_unlock;
2096
2097	switch (event->event) {
2098		/* Only the following events are possible due to the check in
2099		 * netvsc_linkstatus_callback()
2100		 */
2101	case RNDIS_STATUS_MEDIA_CONNECT:
2102		if (rdev->link_state) {
2103			rdev->link_state = false;
2104			netif_carrier_on(net);
2105			netvsc_tx_enable(net_device, net);
2106		} else {
2107			__netdev_notify_peers(net);
2108		}
2109		kfree(event);
2110		break;
2111	case RNDIS_STATUS_MEDIA_DISCONNECT:
2112		if (!rdev->link_state) {
2113			rdev->link_state = true;
2114			netif_carrier_off(net);
2115			netvsc_tx_disable(net_device, net);
2116		}
2117		kfree(event);
2118		break;
2119	case RNDIS_STATUS_NETWORK_CHANGE:
2120		/* Only makes sense if carrier is present */
2121		if (!rdev->link_state) {
2122			rdev->link_state = true;
2123			netif_carrier_off(net);
2124			netvsc_tx_disable(net_device, net);
2125			event->event = RNDIS_STATUS_MEDIA_CONNECT;
2126			spin_lock_irqsave(&ndev_ctx->lock, flags);
2127			list_add(&event->list, &ndev_ctx->reconfig_events);
2128			spin_unlock_irqrestore(&ndev_ctx->lock, flags);
2129			reschedule = true;
2130		}
2131		break;
2132	}
2133
2134	rtnl_unlock();
2135
 
 
 
2136	/* link_watch only sends one notification with current state per
2137	 * second, handle next reconfig event in 2 seconds.
2138	 */
2139	if (reschedule)
2140		schedule_delayed_work(&ndev_ctx->dwork, LINKCHANGE_INT);
2141
2142	return;
2143
2144out_unlock:
2145	rtnl_unlock();
2146}
2147
2148static struct net_device *get_netvsc_byref(struct net_device *vf_netdev)
2149{
2150	struct net_device_context *net_device_ctx;
2151	struct net_device *dev;
2152
2153	dev = netdev_master_upper_dev_get(vf_netdev);
2154	if (!dev || dev->netdev_ops != &device_ops)
2155		return NULL;	/* not a netvsc device */
2156
2157	net_device_ctx = netdev_priv(dev);
2158	if (!rtnl_dereference(net_device_ctx->nvdev))
2159		return NULL;	/* device is removed */
2160
2161	return dev;
2162}
2163
2164/* Called when VF is injecting data into network stack.
2165 * Change the associated network device from VF to netvsc.
2166 * note: already called with rcu_read_lock
2167 */
2168static rx_handler_result_t netvsc_vf_handle_frame(struct sk_buff **pskb)
2169{
2170	struct sk_buff *skb = *pskb;
2171	struct net_device *ndev = rcu_dereference(skb->dev->rx_handler_data);
2172	struct net_device_context *ndev_ctx = netdev_priv(ndev);
2173	struct netvsc_vf_pcpu_stats *pcpu_stats
2174		 = this_cpu_ptr(ndev_ctx->vf_stats);
2175
2176	skb = skb_share_check(skb, GFP_ATOMIC);
2177	if (unlikely(!skb))
2178		return RX_HANDLER_CONSUMED;
2179
2180	*pskb = skb;
2181
2182	skb->dev = ndev;
2183
2184	u64_stats_update_begin(&pcpu_stats->syncp);
2185	pcpu_stats->rx_packets++;
2186	pcpu_stats->rx_bytes += skb->len;
2187	u64_stats_update_end(&pcpu_stats->syncp);
2188
2189	return RX_HANDLER_ANOTHER;
2190}
2191
2192static int netvsc_vf_join(struct net_device *vf_netdev,
2193			  struct net_device *ndev, int context)
2194{
2195	struct net_device_context *ndev_ctx = netdev_priv(ndev);
2196	int ret;
2197
2198	ret = netdev_rx_handler_register(vf_netdev,
2199					 netvsc_vf_handle_frame, ndev);
2200	if (ret != 0) {
2201		netdev_err(vf_netdev,
2202			   "can not register netvsc VF receive handler (err = %d)\n",
2203			   ret);
2204		goto rx_handler_failed;
2205	}
2206
2207	ret = netdev_master_upper_dev_link(vf_netdev, ndev,
2208					   NULL, NULL, NULL);
2209	if (ret != 0) {
2210		netdev_err(vf_netdev,
2211			   "can not set master device %s (err = %d)\n",
2212			   ndev->name, ret);
2213		goto upper_link_failed;
2214	}
2215
2216	/* If this registration is called from probe context vf_takeover
2217	 * is taken care of later in probe itself.
2218	 */
2219	if (context == VF_REG_IN_NOTIFIER)
2220		schedule_delayed_work(&ndev_ctx->vf_takeover, VF_TAKEOVER_INT);
2221
2222	call_netdevice_notifiers(NETDEV_JOIN, vf_netdev);
2223
2224	netdev_info(vf_netdev, "joined to %s\n", ndev->name);
2225	return 0;
2226
2227upper_link_failed:
2228	netdev_rx_handler_unregister(vf_netdev);
2229rx_handler_failed:
2230	return ret;
2231}
2232
2233static void __netvsc_vf_setup(struct net_device *ndev,
2234			      struct net_device *vf_netdev)
2235{
2236	int ret;
2237
2238	/* Align MTU of VF with master */
2239	ret = dev_set_mtu(vf_netdev, ndev->mtu);
2240	if (ret)
2241		netdev_warn(vf_netdev,
2242			    "unable to change mtu to %u\n", ndev->mtu);
2243
2244	/* set multicast etc flags on VF */
2245	dev_change_flags(vf_netdev, ndev->flags | IFF_SLAVE, NULL);
2246
2247	/* sync address list from ndev to VF */
2248	netif_addr_lock_bh(ndev);
2249	dev_uc_sync(vf_netdev, ndev);
2250	dev_mc_sync(vf_netdev, ndev);
2251	netif_addr_unlock_bh(ndev);
2252
2253	if (netif_running(ndev)) {
2254		ret = dev_open(vf_netdev, NULL);
2255		if (ret)
2256			netdev_warn(vf_netdev,
2257				    "unable to open: %d\n", ret);
2258	}
2259}
2260
2261/* Setup VF as slave of the synthetic device.
2262 * Runs in workqueue to avoid recursion in netlink callbacks.
2263 */
2264static void netvsc_vf_setup(struct work_struct *w)
2265{
2266	struct net_device_context *ndev_ctx
2267		= container_of(w, struct net_device_context, vf_takeover.work);
2268	struct net_device *ndev = hv_get_drvdata(ndev_ctx->device_ctx);
2269	struct net_device *vf_netdev;
2270
2271	if (!rtnl_trylock()) {
2272		schedule_delayed_work(&ndev_ctx->vf_takeover, 0);
2273		return;
2274	}
2275
2276	vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev);
2277	if (vf_netdev)
2278		__netvsc_vf_setup(ndev, vf_netdev);
2279
2280	rtnl_unlock();
2281}
2282
2283/* Find netvsc by VF serial number.
2284 * The PCI hyperv controller records the serial number as the slot kobj name.
2285 */
2286static struct net_device *get_netvsc_byslot(const struct net_device *vf_netdev)
2287{
2288	struct device *parent = vf_netdev->dev.parent;
2289	struct net_device_context *ndev_ctx;
2290	struct net_device *ndev;
2291	struct pci_dev *pdev;
2292	u32 serial;
2293
2294	if (!parent || !dev_is_pci(parent))
2295		return NULL; /* not a PCI device */
2296
2297	pdev = to_pci_dev(parent);
2298	if (!pdev->slot) {
2299		netdev_notice(vf_netdev, "no PCI slot information\n");
2300		return NULL;
2301	}
2302
2303	if (kstrtou32(pci_slot_name(pdev->slot), 10, &serial)) {
2304		netdev_notice(vf_netdev, "Invalid vf serial:%s\n",
2305			      pci_slot_name(pdev->slot));
2306		return NULL;
2307	}
2308
2309	list_for_each_entry(ndev_ctx, &netvsc_dev_list, list) {
2310		if (!ndev_ctx->vf_alloc)
2311			continue;
2312
2313		if (ndev_ctx->vf_serial != serial)
2314			continue;
2315
2316		ndev = hv_get_drvdata(ndev_ctx->device_ctx);
2317		if (ndev->addr_len != vf_netdev->addr_len ||
2318		    memcmp(ndev->perm_addr, vf_netdev->perm_addr,
2319			   ndev->addr_len) != 0)
2320			continue;
2321
2322		return ndev;
2323
2324	}
2325
2326	/* Fallback path to check synthetic vf with help of mac addr.
2327	 * Because this function can be called before vf_netdev is
2328	 * initialized (NETDEV_POST_INIT) when its perm_addr has not been copied
2329	 * from dev_addr, also try to match to its dev_addr.
2330	 * Note: On Hyper-V and Azure, it's not possible to set a MAC address
2331	 * on a VF that matches to the MAC of a unrelated NETVSC device.
2332	 */
2333	list_for_each_entry(ndev_ctx, &netvsc_dev_list, list) {
2334		ndev = hv_get_drvdata(ndev_ctx->device_ctx);
2335		if (ether_addr_equal(vf_netdev->perm_addr, ndev->perm_addr) ||
2336		    ether_addr_equal(vf_netdev->dev_addr, ndev->perm_addr))
2337			return ndev;
2338	}
2339
2340	netdev_notice(vf_netdev,
2341		      "no netdev found for vf serial:%u\n", serial);
2342	return NULL;
2343}
2344
2345static int netvsc_prepare_bonding(struct net_device *vf_netdev)
2346{
2347	struct net_device *ndev;
2348
2349	ndev = get_netvsc_byslot(vf_netdev);
2350	if (!ndev)
2351		return NOTIFY_DONE;
2352
2353	/* set slave flag before open to prevent IPv6 addrconf */
2354	vf_netdev->flags |= IFF_SLAVE;
2355	return NOTIFY_DONE;
2356}
2357
2358static int netvsc_register_vf(struct net_device *vf_netdev, int context)
2359{
2360	struct net_device_context *net_device_ctx;
2361	struct netvsc_device *netvsc_dev;
2362	struct bpf_prog *prog;
2363	struct net_device *ndev;
2364	int ret;
2365
2366	if (vf_netdev->addr_len != ETH_ALEN)
2367		return NOTIFY_DONE;
2368
2369	ndev = get_netvsc_byslot(vf_netdev);
2370	if (!ndev)
2371		return NOTIFY_DONE;
2372
2373	net_device_ctx = netdev_priv(ndev);
2374	netvsc_dev = rtnl_dereference(net_device_ctx->nvdev);
2375	if (!netvsc_dev || rtnl_dereference(net_device_ctx->vf_netdev))
2376		return NOTIFY_DONE;
2377
2378	/* if synthetic interface is a different namespace,
2379	 * then move the VF to that namespace; join will be
2380	 * done again in that context.
2381	 */
2382	if (!net_eq(dev_net(ndev), dev_net(vf_netdev))) {
2383		ret = dev_change_net_namespace(vf_netdev,
2384					       dev_net(ndev), "eth%d");
2385		if (ret)
2386			netdev_err(vf_netdev,
2387				   "could not move to same namespace as %s: %d\n",
2388				   ndev->name, ret);
2389		else
2390			netdev_info(vf_netdev,
2391				    "VF moved to namespace with: %s\n",
2392				    ndev->name);
2393		return NOTIFY_DONE;
2394	}
2395
2396	netdev_info(ndev, "VF registering: %s\n", vf_netdev->name);
2397
2398	if (netvsc_vf_join(vf_netdev, ndev, context) != 0)
2399		return NOTIFY_DONE;
2400
2401	dev_hold(vf_netdev);
2402	rcu_assign_pointer(net_device_ctx->vf_netdev, vf_netdev);
2403
2404	if (ndev->needed_headroom < vf_netdev->needed_headroom)
2405		ndev->needed_headroom = vf_netdev->needed_headroom;
2406
2407	vf_netdev->wanted_features = ndev->features;
2408	netdev_update_features(vf_netdev);
2409
2410	prog = netvsc_xdp_get(netvsc_dev);
2411	netvsc_vf_setxdp(vf_netdev, prog);
2412
2413	return NOTIFY_OK;
2414}
2415
2416/* Change the data path when VF UP/DOWN/CHANGE are detected.
2417 *
2418 * Typically a UP or DOWN event is followed by a CHANGE event, so
2419 * net_device_ctx->data_path_is_vf is used to cache the current data path
2420 * to avoid the duplicate call of netvsc_switch_datapath() and the duplicate
2421 * message.
2422 *
2423 * During hibernation, if a VF NIC driver (e.g. mlx5) preserves the network
2424 * interface, there is only the CHANGE event and no UP or DOWN event.
2425 */
2426static int netvsc_vf_changed(struct net_device *vf_netdev, unsigned long event)
2427{
2428	struct net_device_context *net_device_ctx;
2429	struct netvsc_device *netvsc_dev;
2430	struct net_device *ndev;
2431	bool vf_is_up = false;
2432	int ret;
2433
2434	if (event != NETDEV_GOING_DOWN)
2435		vf_is_up = netif_running(vf_netdev);
2436
2437	ndev = get_netvsc_byref(vf_netdev);
2438	if (!ndev)
2439		return NOTIFY_DONE;
2440
2441	net_device_ctx = netdev_priv(ndev);
2442	netvsc_dev = rtnl_dereference(net_device_ctx->nvdev);
2443	if (!netvsc_dev)
2444		return NOTIFY_DONE;
2445
2446	if (net_device_ctx->data_path_is_vf == vf_is_up)
2447		return NOTIFY_OK;
2448
2449	if (vf_is_up && !net_device_ctx->vf_alloc) {
2450		netdev_info(ndev, "Waiting for the VF association from host\n");
2451		wait_for_completion(&net_device_ctx->vf_add);
2452	}
2453
2454	ret = netvsc_switch_datapath(ndev, vf_is_up);
2455
2456	if (ret) {
2457		netdev_err(ndev,
2458			   "Data path failed to switch %s VF: %s, err: %d\n",
2459			   vf_is_up ? "to" : "from", vf_netdev->name, ret);
2460		return NOTIFY_DONE;
2461	} else {
2462		netdev_info(ndev, "Data path switched %s VF: %s\n",
2463			    vf_is_up ? "to" : "from", vf_netdev->name);
2464	}
2465
2466	return NOTIFY_OK;
2467}
2468
2469static int netvsc_unregister_vf(struct net_device *vf_netdev)
2470{
2471	struct net_device *ndev;
2472	struct net_device_context *net_device_ctx;
2473
2474	ndev = get_netvsc_byref(vf_netdev);
2475	if (!ndev)
2476		return NOTIFY_DONE;
2477
2478	net_device_ctx = netdev_priv(ndev);
2479	cancel_delayed_work_sync(&net_device_ctx->vf_takeover);
2480
2481	netdev_info(ndev, "VF unregistering: %s\n", vf_netdev->name);
2482
2483	netvsc_vf_setxdp(vf_netdev, NULL);
2484
2485	reinit_completion(&net_device_ctx->vf_add);
2486	netdev_rx_handler_unregister(vf_netdev);
2487	netdev_upper_dev_unlink(vf_netdev, ndev);
2488	RCU_INIT_POINTER(net_device_ctx->vf_netdev, NULL);
2489	dev_put(vf_netdev);
2490
2491	ndev->needed_headroom = RNDIS_AND_PPI_SIZE;
2492
2493	return NOTIFY_OK;
2494}
2495
2496static int check_dev_is_matching_vf(struct net_device *event_ndev)
2497{
2498	/* Skip NetVSC interfaces */
2499	if (event_ndev->netdev_ops == &device_ops)
2500		return -ENODEV;
2501
2502	/* Avoid non-Ethernet type devices */
2503	if (event_ndev->type != ARPHRD_ETHER)
2504		return -ENODEV;
2505
2506	/* Avoid Vlan dev with same MAC registering as VF */
2507	if (is_vlan_dev(event_ndev))
2508		return -ENODEV;
2509
2510	/* Avoid Bonding master dev with same MAC registering as VF */
2511	if (netif_is_bond_master(event_ndev))
2512		return -ENODEV;
2513
2514	return 0;
2515}
2516
2517static int netvsc_probe(struct hv_device *dev,
2518			const struct hv_vmbus_device_id *dev_id)
2519{
2520	struct net_device *net = NULL, *vf_netdev;
2521	struct net_device_context *net_device_ctx;
2522	struct netvsc_device_info *device_info = NULL;
2523	struct netvsc_device *nvdev;
2524	int ret = -ENOMEM;
2525
2526	net = alloc_etherdev_mq(sizeof(struct net_device_context),
2527				VRSS_CHANNEL_MAX);
2528	if (!net)
2529		goto no_net;
2530
2531	netif_carrier_off(net);
2532
2533	netvsc_init_settings(net);
2534
2535	net_device_ctx = netdev_priv(net);
2536	net_device_ctx->device_ctx = dev;
2537	net_device_ctx->msg_enable = netif_msg_init(debug, default_msg);
2538	if (netif_msg_probe(net_device_ctx))
2539		netdev_dbg(net, "netvsc msg_enable: %d\n",
2540			   net_device_ctx->msg_enable);
2541
2542	hv_set_drvdata(dev, net);
2543
2544	INIT_DELAYED_WORK(&net_device_ctx->dwork, netvsc_link_change);
2545
2546	init_completion(&net_device_ctx->vf_add);
2547	spin_lock_init(&net_device_ctx->lock);
2548	INIT_LIST_HEAD(&net_device_ctx->reconfig_events);
2549	INIT_DELAYED_WORK(&net_device_ctx->vf_takeover, netvsc_vf_setup);
2550
2551	net_device_ctx->vf_stats
2552		= netdev_alloc_pcpu_stats(struct netvsc_vf_pcpu_stats);
2553	if (!net_device_ctx->vf_stats)
2554		goto no_stats;
2555
2556	net->netdev_ops = &device_ops;
2557	net->ethtool_ops = &ethtool_ops;
2558	SET_NETDEV_DEV(net, &dev->device);
2559	dma_set_min_align_mask(&dev->device, HV_HYP_PAGE_SIZE - 1);
2560
2561	/* We always need headroom for rndis header */
2562	net->needed_headroom = RNDIS_AND_PPI_SIZE;
2563
2564	/* Initialize the number of queues to be 1, we may change it if more
2565	 * channels are offered later.
2566	 */
2567	netif_set_real_num_tx_queues(net, 1);
2568	netif_set_real_num_rx_queues(net, 1);
2569
2570	/* Notify the netvsc driver of the new device */
2571	device_info = netvsc_devinfo_get(NULL);
2572
2573	if (!device_info) {
2574		ret = -ENOMEM;
2575		goto devinfo_failed;
2576	}
2577
 
 
 
 
 
 
 
 
 
2578	/* We must get rtnl lock before scheduling nvdev->subchan_work,
2579	 * otherwise netvsc_subchan_work() can get rtnl lock first and wait
2580	 * all subchannels to show up, but that may not happen because
2581	 * netvsc_probe() can't get rtnl lock and as a result vmbus_onoffer()
2582	 * -> ... -> device_add() -> ... -> __device_attach() can't get
2583	 * the device lock, so all the subchannels can't be processed --
2584	 * finally netvsc_subchan_work() hangs forever.
2585	 *
2586	 * The rtnl lock also needs to be held before rndis_filter_device_add()
2587	 * which advertises nvsp_2_vsc_capability / sriov bit, and triggers
2588	 * VF NIC offering and registering. If VF NIC finished register_netdev()
2589	 * earlier it may cause name based config failure.
2590	 */
2591	rtnl_lock();
2592
2593	nvdev = rndis_filter_device_add(dev, device_info);
2594	if (IS_ERR(nvdev)) {
2595		ret = PTR_ERR(nvdev);
2596		netdev_err(net, "unable to add netvsc device (ret %d)\n", ret);
2597		goto rndis_failed;
2598	}
2599
2600	eth_hw_addr_set(net, device_info->mac_adr);
2601
2602	if (nvdev->num_chn > 1)
2603		schedule_work(&nvdev->subchan_work);
2604
2605	/* hw_features computed in rndis_netdev_set_hwcaps() */
2606	net->features = net->hw_features |
2607		NETIF_F_HIGHDMA | NETIF_F_HW_VLAN_CTAG_TX |
2608		NETIF_F_HW_VLAN_CTAG_RX;
2609	net->vlan_features = net->features;
2610
2611	netdev_lockdep_set_classes(net);
2612
2613	net->xdp_features = NETDEV_XDP_ACT_BASIC | NETDEV_XDP_ACT_REDIRECT |
2614			    NETDEV_XDP_ACT_NDO_XMIT;
2615
2616	/* MTU range: 68 - 1500 or 65521 */
2617	net->min_mtu = NETVSC_MTU_MIN;
2618	if (nvdev->nvsp_version >= NVSP_PROTOCOL_VERSION_2)
2619		net->max_mtu = NETVSC_MTU - ETH_HLEN;
2620	else
2621		net->max_mtu = ETH_DATA_LEN;
2622
2623	nvdev->tx_disable = false;
2624
2625	ret = register_netdevice(net);
2626	if (ret != 0) {
2627		pr_err("Unable to register netdev.\n");
2628		goto register_failed;
2629	}
2630
2631	list_add(&net_device_ctx->list, &netvsc_dev_list);
2632
2633	/* When the hv_netvsc driver is unloaded and reloaded, the
2634	 * NET_DEVICE_REGISTER for the vf device is replayed before probe
2635	 * is complete. This is because register_netdevice_notifier() gets
2636	 * registered before vmbus_driver_register() so that callback func
2637	 * is set before probe and we don't miss events like NETDEV_POST_INIT
2638	 * So, in this section we try to register the matching vf device that
2639	 * is present as a netdevice, knowing that its register call is not
2640	 * processed in the netvsc_netdev_notifier(as probing is progress and
2641	 * get_netvsc_byslot fails).
2642	 */
2643	for_each_netdev(dev_net(net), vf_netdev) {
2644		ret = check_dev_is_matching_vf(vf_netdev);
2645		if (ret != 0)
2646			continue;
2647
2648		if (net != get_netvsc_byslot(vf_netdev))
2649			continue;
2650
2651		netvsc_prepare_bonding(vf_netdev);
2652		netvsc_register_vf(vf_netdev, VF_REG_IN_PROBE);
2653		__netvsc_vf_setup(net, vf_netdev);
2654		break;
2655	}
2656	rtnl_unlock();
2657
2658	netvsc_devinfo_put(device_info);
2659	return 0;
2660
2661register_failed:
 
2662	rndis_filter_device_remove(dev, nvdev);
2663rndis_failed:
2664	rtnl_unlock();
2665	netvsc_devinfo_put(device_info);
2666devinfo_failed:
2667	free_percpu(net_device_ctx->vf_stats);
2668no_stats:
2669	hv_set_drvdata(dev, NULL);
2670	free_netdev(net);
2671no_net:
2672	return ret;
2673}
2674
2675static void netvsc_remove(struct hv_device *dev)
2676{
2677	struct net_device_context *ndev_ctx;
2678	struct net_device *vf_netdev, *net;
2679	struct netvsc_device *nvdev;
2680
2681	net = hv_get_drvdata(dev);
2682	if (net == NULL) {
2683		dev_err(&dev->device, "No net device to remove\n");
2684		return;
2685	}
2686
2687	ndev_ctx = netdev_priv(net);
2688
2689	cancel_delayed_work_sync(&ndev_ctx->dwork);
2690
2691	rtnl_lock();
2692	nvdev = rtnl_dereference(ndev_ctx->nvdev);
2693	if (nvdev) {
2694		cancel_work_sync(&nvdev->subchan_work);
2695		netvsc_xdp_set(net, NULL, NULL, nvdev);
2696	}
2697
2698	/*
2699	 * Call to the vsc driver to let it know that the device is being
2700	 * removed. Also blocks mtu and channel changes.
2701	 */
2702	vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev);
2703	if (vf_netdev)
2704		netvsc_unregister_vf(vf_netdev);
2705
2706	if (nvdev)
2707		rndis_filter_device_remove(dev, nvdev);
2708
2709	unregister_netdevice(net);
2710	list_del(&ndev_ctx->list);
2711
2712	rtnl_unlock();
2713
2714	hv_set_drvdata(dev, NULL);
2715
2716	free_percpu(ndev_ctx->vf_stats);
2717	free_netdev(net);
 
2718}
2719
2720static int netvsc_suspend(struct hv_device *dev)
2721{
2722	struct net_device_context *ndev_ctx;
2723	struct netvsc_device *nvdev;
2724	struct net_device *net;
2725	int ret;
2726
2727	net = hv_get_drvdata(dev);
2728
2729	ndev_ctx = netdev_priv(net);
2730	cancel_delayed_work_sync(&ndev_ctx->dwork);
2731
2732	rtnl_lock();
2733
2734	nvdev = rtnl_dereference(ndev_ctx->nvdev);
2735	if (nvdev == NULL) {
2736		ret = -ENODEV;
2737		goto out;
2738	}
2739
2740	/* Save the current config info */
2741	ndev_ctx->saved_netvsc_dev_info = netvsc_devinfo_get(nvdev);
2742	if (!ndev_ctx->saved_netvsc_dev_info) {
2743		ret = -ENOMEM;
2744		goto out;
2745	}
2746	ret = netvsc_detach(net, nvdev);
2747out:
2748	rtnl_unlock();
2749
2750	return ret;
2751}
2752
2753static int netvsc_resume(struct hv_device *dev)
2754{
2755	struct net_device *net = hv_get_drvdata(dev);
2756	struct net_device_context *net_device_ctx;
2757	struct netvsc_device_info *device_info;
2758	int ret;
2759
2760	rtnl_lock();
2761
2762	net_device_ctx = netdev_priv(net);
2763
2764	/* Reset the data path to the netvsc NIC before re-opening the vmbus
2765	 * channel. Later netvsc_netdev_event() will switch the data path to
2766	 * the VF upon the UP or CHANGE event.
2767	 */
2768	net_device_ctx->data_path_is_vf = false;
2769	device_info = net_device_ctx->saved_netvsc_dev_info;
2770
2771	ret = netvsc_attach(net, device_info);
2772
2773	netvsc_devinfo_put(device_info);
2774	net_device_ctx->saved_netvsc_dev_info = NULL;
2775
2776	rtnl_unlock();
2777
2778	return ret;
2779}
2780static const struct hv_vmbus_device_id id_table[] = {
2781	/* Network guid */
2782	{ HV_NIC_GUID, },
2783	{ },
2784};
2785
2786MODULE_DEVICE_TABLE(vmbus, id_table);
2787
2788/* The one and only one */
2789static struct  hv_driver netvsc_drv = {
2790	.name = KBUILD_MODNAME,
2791	.id_table = id_table,
2792	.probe = netvsc_probe,
2793	.remove = netvsc_remove,
2794	.suspend = netvsc_suspend,
2795	.resume = netvsc_resume,
2796	.driver = {
2797		.probe_type = PROBE_FORCE_SYNCHRONOUS,
2798	},
2799};
2800
2801/* Set VF's namespace same as the synthetic NIC */
2802static void netvsc_event_set_vf_ns(struct net_device *ndev)
2803{
2804	struct net_device_context *ndev_ctx = netdev_priv(ndev);
2805	struct net_device *vf_netdev;
2806	int ret;
2807
2808	vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev);
2809	if (!vf_netdev)
2810		return;
2811
2812	if (!net_eq(dev_net(ndev), dev_net(vf_netdev))) {
2813		ret = dev_change_net_namespace(vf_netdev, dev_net(ndev),
2814					       "eth%d");
2815		if (ret)
2816			netdev_err(vf_netdev,
2817				   "Cannot move to same namespace as %s: %d\n",
2818				   ndev->name, ret);
2819		else
2820			netdev_info(vf_netdev,
2821				    "Moved VF to namespace with: %s\n",
2822				    ndev->name);
2823	}
2824}
2825
2826/*
2827 * On Hyper-V, every VF interface is matched with a corresponding
2828 * synthetic interface. The synthetic interface is presented first
2829 * to the guest. When the corresponding VF instance is registered,
2830 * we will take care of switching the data path.
2831 */
2832static int netvsc_netdev_event(struct notifier_block *this,
2833			       unsigned long event, void *ptr)
2834{
2835	struct net_device *event_dev = netdev_notifier_info_to_dev(ptr);
2836	int ret = 0;
2837
2838	if (event_dev->netdev_ops == &device_ops && event == NETDEV_REGISTER) {
2839		netvsc_event_set_vf_ns(event_dev);
 
 
 
 
 
 
 
 
2840		return NOTIFY_DONE;
2841	}
2842
2843	ret = check_dev_is_matching_vf(event_dev);
2844	if (ret != 0)
 
2845		return NOTIFY_DONE;
2846
2847	switch (event) {
2848	case NETDEV_POST_INIT:
2849		return netvsc_prepare_bonding(event_dev);
2850	case NETDEV_REGISTER:
2851		return netvsc_register_vf(event_dev, VF_REG_IN_NOTIFIER);
2852	case NETDEV_UNREGISTER:
2853		return netvsc_unregister_vf(event_dev);
2854	case NETDEV_UP:
2855	case NETDEV_DOWN:
2856	case NETDEV_CHANGE:
2857	case NETDEV_GOING_DOWN:
2858		return netvsc_vf_changed(event_dev, event);
2859	default:
2860		return NOTIFY_DONE;
2861	}
2862}
2863
2864static struct notifier_block netvsc_netdev_notifier = {
2865	.notifier_call = netvsc_netdev_event,
2866};
2867
2868static void __exit netvsc_drv_exit(void)
2869{
2870	unregister_netdevice_notifier(&netvsc_netdev_notifier);
2871	vmbus_driver_unregister(&netvsc_drv);
2872}
2873
2874static int __init netvsc_drv_init(void)
2875{
2876	int ret;
2877
2878	if (ring_size < RING_SIZE_MIN) {
2879		ring_size = RING_SIZE_MIN;
2880		pr_info("Increased ring_size to %u (min allowed)\n",
2881			ring_size);
2882	}
2883	netvsc_ring_bytes = VMBUS_RING_SIZE(ring_size * 4096);
2884
2885	register_netdevice_notifier(&netvsc_netdev_notifier);
2886
2887	ret = vmbus_driver_register(&netvsc_drv);
2888	if (ret)
2889		goto err_vmbus_reg;
2890
 
2891	return 0;
2892
2893err_vmbus_reg:
2894	unregister_netdevice_notifier(&netvsc_netdev_notifier);
2895	return ret;
2896}
2897
2898MODULE_LICENSE("GPL");
2899MODULE_DESCRIPTION("Microsoft Hyper-V network driver");
2900
2901module_init(netvsc_drv_init);
2902module_exit(netvsc_drv_exit);
v5.4
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Copyright (c) 2009, Microsoft Corporation.
   4 *
   5 * Authors:
   6 *   Haiyang Zhang <haiyangz@microsoft.com>
   7 *   Hank Janssen  <hjanssen@microsoft.com>
   8 */
   9#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  10
  11#include <linux/init.h>
  12#include <linux/atomic.h>
 
  13#include <linux/module.h>
  14#include <linux/highmem.h>
  15#include <linux/device.h>
  16#include <linux/io.h>
  17#include <linux/delay.h>
  18#include <linux/netdevice.h>
  19#include <linux/inetdevice.h>
  20#include <linux/etherdevice.h>
  21#include <linux/pci.h>
  22#include <linux/skbuff.h>
  23#include <linux/if_vlan.h>
  24#include <linux/in.h>
  25#include <linux/slab.h>
  26#include <linux/rtnetlink.h>
  27#include <linux/netpoll.h>
 
  28
  29#include <net/arp.h>
  30#include <net/route.h>
  31#include <net/sock.h>
  32#include <net/pkt_sched.h>
  33#include <net/checksum.h>
  34#include <net/ip6_checksum.h>
  35
  36#include "hyperv_net.h"
  37
  38#define RING_SIZE_MIN	64
  39#define RETRY_US_LO	5000
  40#define RETRY_US_HI	10000
  41#define RETRY_MAX	2000	/* >10 sec */
  42
  43#define LINKCHANGE_INT (2 * HZ)
  44#define VF_TAKEOVER_INT (HZ / 10)
  45
 
 
 
 
  46static unsigned int ring_size __ro_after_init = 128;
  47module_param(ring_size, uint, 0444);
  48MODULE_PARM_DESC(ring_size, "Ring buffer size (# of pages)");
  49unsigned int netvsc_ring_bytes __ro_after_init;
  50
  51static const u32 default_msg = NETIF_MSG_DRV | NETIF_MSG_PROBE |
  52				NETIF_MSG_LINK | NETIF_MSG_IFUP |
  53				NETIF_MSG_IFDOWN | NETIF_MSG_RX_ERR |
  54				NETIF_MSG_TX_ERR;
  55
  56static int debug = -1;
  57module_param(debug, int, 0444);
  58MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
  59
  60static LIST_HEAD(netvsc_dev_list);
  61
  62static void netvsc_change_rx_flags(struct net_device *net, int change)
  63{
  64	struct net_device_context *ndev_ctx = netdev_priv(net);
  65	struct net_device *vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev);
  66	int inc;
  67
  68	if (!vf_netdev)
  69		return;
  70
  71	if (change & IFF_PROMISC) {
  72		inc = (net->flags & IFF_PROMISC) ? 1 : -1;
  73		dev_set_promiscuity(vf_netdev, inc);
  74	}
  75
  76	if (change & IFF_ALLMULTI) {
  77		inc = (net->flags & IFF_ALLMULTI) ? 1 : -1;
  78		dev_set_allmulti(vf_netdev, inc);
  79	}
  80}
  81
  82static void netvsc_set_rx_mode(struct net_device *net)
  83{
  84	struct net_device_context *ndev_ctx = netdev_priv(net);
  85	struct net_device *vf_netdev;
  86	struct netvsc_device *nvdev;
  87
  88	rcu_read_lock();
  89	vf_netdev = rcu_dereference(ndev_ctx->vf_netdev);
  90	if (vf_netdev) {
  91		dev_uc_sync(vf_netdev, net);
  92		dev_mc_sync(vf_netdev, net);
  93	}
  94
  95	nvdev = rcu_dereference(ndev_ctx->nvdev);
  96	if (nvdev)
  97		rndis_filter_update(nvdev);
  98	rcu_read_unlock();
  99}
 100
 101static void netvsc_tx_enable(struct netvsc_device *nvscdev,
 102			     struct net_device *ndev)
 103{
 104	nvscdev->tx_disable = false;
 105	virt_wmb(); /* ensure queue wake up mechanism is on */
 106
 107	netif_tx_wake_all_queues(ndev);
 108}
 109
 110static int netvsc_open(struct net_device *net)
 111{
 112	struct net_device_context *ndev_ctx = netdev_priv(net);
 113	struct net_device *vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev);
 114	struct netvsc_device *nvdev = rtnl_dereference(ndev_ctx->nvdev);
 115	struct rndis_device *rdev;
 116	int ret = 0;
 117
 118	netif_carrier_off(net);
 119
 120	/* Open up the device */
 121	ret = rndis_filter_open(nvdev);
 122	if (ret != 0) {
 123		netdev_err(net, "unable to open device (ret %d).\n", ret);
 124		return ret;
 125	}
 126
 127	rdev = nvdev->extension;
 128	if (!rdev->link_state) {
 129		netif_carrier_on(net);
 130		netvsc_tx_enable(nvdev, net);
 131	}
 132
 133	if (vf_netdev) {
 134		/* Setting synthetic device up transparently sets
 135		 * slave as up. If open fails, then slave will be
 136		 * still be offline (and not used).
 137		 */
 138		ret = dev_open(vf_netdev, NULL);
 139		if (ret)
 140			netdev_warn(net,
 141				    "unable to open slave: %s: %d\n",
 142				    vf_netdev->name, ret);
 143	}
 144	return 0;
 145}
 146
 147static int netvsc_wait_until_empty(struct netvsc_device *nvdev)
 148{
 149	unsigned int retry = 0;
 150	int i;
 151
 152	/* Ensure pending bytes in ring are read */
 153	for (;;) {
 154		u32 aread = 0;
 155
 156		for (i = 0; i < nvdev->num_chn; i++) {
 157			struct vmbus_channel *chn
 158				= nvdev->chan_table[i].channel;
 159
 160			if (!chn)
 161				continue;
 162
 163			/* make sure receive not running now */
 164			napi_synchronize(&nvdev->chan_table[i].napi);
 165
 166			aread = hv_get_bytes_to_read(&chn->inbound);
 167			if (aread)
 168				break;
 169
 170			aread = hv_get_bytes_to_read(&chn->outbound);
 171			if (aread)
 172				break;
 173		}
 174
 175		if (aread == 0)
 176			return 0;
 177
 178		if (++retry > RETRY_MAX)
 179			return -ETIMEDOUT;
 180
 181		usleep_range(RETRY_US_LO, RETRY_US_HI);
 182	}
 183}
 184
 185static void netvsc_tx_disable(struct netvsc_device *nvscdev,
 186			      struct net_device *ndev)
 187{
 188	if (nvscdev) {
 189		nvscdev->tx_disable = true;
 190		virt_wmb(); /* ensure txq will not wake up after stop */
 191	}
 192
 193	netif_tx_disable(ndev);
 194}
 195
 196static int netvsc_close(struct net_device *net)
 197{
 198	struct net_device_context *net_device_ctx = netdev_priv(net);
 199	struct net_device *vf_netdev
 200		= rtnl_dereference(net_device_ctx->vf_netdev);
 201	struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev);
 202	int ret;
 203
 204	netvsc_tx_disable(nvdev, net);
 205
 206	/* No need to close rndis filter if it is removed already */
 207	if (!nvdev)
 208		return 0;
 209
 210	ret = rndis_filter_close(nvdev);
 211	if (ret != 0) {
 212		netdev_err(net, "unable to close device (ret %d).\n", ret);
 213		return ret;
 214	}
 215
 216	ret = netvsc_wait_until_empty(nvdev);
 217	if (ret)
 218		netdev_err(net, "Ring buffer not empty after closing rndis\n");
 219
 220	if (vf_netdev)
 221		dev_close(vf_netdev);
 222
 223	return ret;
 224}
 225
 226static inline void *init_ppi_data(struct rndis_message *msg,
 227				  u32 ppi_size, u32 pkt_type)
 228{
 229	struct rndis_packet *rndis_pkt = &msg->msg.pkt;
 230	struct rndis_per_packet_info *ppi;
 231
 232	rndis_pkt->data_offset += ppi_size;
 233	ppi = (void *)rndis_pkt + rndis_pkt->per_pkt_info_offset
 234		+ rndis_pkt->per_pkt_info_len;
 235
 236	ppi->size = ppi_size;
 237	ppi->type = pkt_type;
 238	ppi->internal = 0;
 239	ppi->ppi_offset = sizeof(struct rndis_per_packet_info);
 240
 241	rndis_pkt->per_pkt_info_len += ppi_size;
 242
 243	return ppi + 1;
 244}
 245
 246/* Azure hosts don't support non-TCP port numbers in hashing for fragmented
 247 * packets. We can use ethtool to change UDP hash level when necessary.
 248 */
 249static inline u32 netvsc_get_hash(
 250	struct sk_buff *skb,
 251	const struct net_device_context *ndc)
 252{
 253	struct flow_keys flow;
 254	u32 hash, pkt_proto = 0;
 255	static u32 hashrnd __read_mostly;
 256
 257	net_get_random_once(&hashrnd, sizeof(hashrnd));
 258
 259	if (!skb_flow_dissect_flow_keys(skb, &flow, 0))
 260		return 0;
 261
 262	switch (flow.basic.ip_proto) {
 263	case IPPROTO_TCP:
 264		if (flow.basic.n_proto == htons(ETH_P_IP))
 265			pkt_proto = HV_TCP4_L4HASH;
 266		else if (flow.basic.n_proto == htons(ETH_P_IPV6))
 267			pkt_proto = HV_TCP6_L4HASH;
 268
 269		break;
 270
 271	case IPPROTO_UDP:
 272		if (flow.basic.n_proto == htons(ETH_P_IP))
 273			pkt_proto = HV_UDP4_L4HASH;
 274		else if (flow.basic.n_proto == htons(ETH_P_IPV6))
 275			pkt_proto = HV_UDP6_L4HASH;
 276
 277		break;
 278	}
 279
 280	if (pkt_proto & ndc->l4_hash) {
 281		return skb_get_hash(skb);
 282	} else {
 283		if (flow.basic.n_proto == htons(ETH_P_IP))
 284			hash = jhash2((u32 *)&flow.addrs.v4addrs, 2, hashrnd);
 285		else if (flow.basic.n_proto == htons(ETH_P_IPV6))
 286			hash = jhash2((u32 *)&flow.addrs.v6addrs, 8, hashrnd);
 287		else
 288			hash = 0;
 289
 290		skb_set_hash(skb, hash, PKT_HASH_TYPE_L3);
 291	}
 292
 293	return hash;
 294}
 295
 296static inline int netvsc_get_tx_queue(struct net_device *ndev,
 297				      struct sk_buff *skb, int old_idx)
 298{
 299	const struct net_device_context *ndc = netdev_priv(ndev);
 300	struct sock *sk = skb->sk;
 301	int q_idx;
 302
 303	q_idx = ndc->tx_table[netvsc_get_hash(skb, ndc) &
 304			      (VRSS_SEND_TAB_SIZE - 1)];
 305
 306	/* If queue index changed record the new value */
 307	if (q_idx != old_idx &&
 308	    sk && sk_fullsock(sk) && rcu_access_pointer(sk->sk_dst_cache))
 309		sk_tx_queue_set(sk, q_idx);
 310
 311	return q_idx;
 312}
 313
 314/*
 315 * Select queue for transmit.
 316 *
 317 * If a valid queue has already been assigned, then use that.
 318 * Otherwise compute tx queue based on hash and the send table.
 319 *
 320 * This is basically similar to default (netdev_pick_tx) with the added step
 321 * of using the host send_table when no other queue has been assigned.
 322 *
 323 * TODO support XPS - but get_xps_queue not exported
 324 */
 325static u16 netvsc_pick_tx(struct net_device *ndev, struct sk_buff *skb)
 326{
 327	int q_idx = sk_tx_queue_get(skb->sk);
 328
 329	if (q_idx < 0 || skb->ooo_okay || q_idx >= ndev->real_num_tx_queues) {
 330		/* If forwarding a packet, we use the recorded queue when
 331		 * available for better cache locality.
 332		 */
 333		if (skb_rx_queue_recorded(skb))
 334			q_idx = skb_get_rx_queue(skb);
 335		else
 336			q_idx = netvsc_get_tx_queue(ndev, skb, q_idx);
 337	}
 338
 339	return q_idx;
 340}
 341
 342static u16 netvsc_select_queue(struct net_device *ndev, struct sk_buff *skb,
 343			       struct net_device *sb_dev)
 344{
 345	struct net_device_context *ndc = netdev_priv(ndev);
 346	struct net_device *vf_netdev;
 347	u16 txq;
 348
 349	rcu_read_lock();
 350	vf_netdev = rcu_dereference(ndc->vf_netdev);
 351	if (vf_netdev) {
 352		const struct net_device_ops *vf_ops = vf_netdev->netdev_ops;
 353
 354		if (vf_ops->ndo_select_queue)
 355			txq = vf_ops->ndo_select_queue(vf_netdev, skb, sb_dev);
 356		else
 357			txq = netdev_pick_tx(vf_netdev, skb, NULL);
 358
 359		/* Record the queue selected by VF so that it can be
 360		 * used for common case where VF has more queues than
 361		 * the synthetic device.
 362		 */
 363		qdisc_skb_cb(skb)->slave_dev_queue_mapping = txq;
 364	} else {
 365		txq = netvsc_pick_tx(ndev, skb);
 366	}
 367	rcu_read_unlock();
 368
 369	while (unlikely(txq >= ndev->real_num_tx_queues))
 370		txq -= ndev->real_num_tx_queues;
 371
 372	return txq;
 373}
 374
 375static u32 fill_pg_buf(struct page *page, u32 offset, u32 len,
 376		       struct hv_page_buffer *pb)
 377{
 378	int j = 0;
 379
 380	/* Deal with compound pages by ignoring unused part
 381	 * of the page.
 382	 */
 383	page += (offset >> PAGE_SHIFT);
 384	offset &= ~PAGE_MASK;
 385
 386	while (len > 0) {
 387		unsigned long bytes;
 388
 389		bytes = PAGE_SIZE - offset;
 390		if (bytes > len)
 391			bytes = len;
 392		pb[j].pfn = page_to_pfn(page);
 393		pb[j].offset = offset;
 394		pb[j].len = bytes;
 395
 396		offset += bytes;
 397		len -= bytes;
 398
 399		if (offset == PAGE_SIZE && len) {
 400			page++;
 401			offset = 0;
 402			j++;
 403		}
 404	}
 405
 406	return j + 1;
 407}
 408
 409static u32 init_page_array(void *hdr, u32 len, struct sk_buff *skb,
 410			   struct hv_netvsc_packet *packet,
 411			   struct hv_page_buffer *pb)
 412{
 413	u32 slots_used = 0;
 414	char *data = skb->data;
 415	int frags = skb_shinfo(skb)->nr_frags;
 416	int i;
 417
 418	/* The packet is laid out thus:
 419	 * 1. hdr: RNDIS header and PPI
 420	 * 2. skb linear data
 421	 * 3. skb fragment data
 422	 */
 423	slots_used += fill_pg_buf(virt_to_page(hdr),
 424				  offset_in_page(hdr),
 425				  len, &pb[slots_used]);
 
 426
 427	packet->rmsg_size = len;
 428	packet->rmsg_pgcnt = slots_used;
 429
 430	slots_used += fill_pg_buf(virt_to_page(data),
 431				offset_in_page(data),
 432				skb_headlen(skb), &pb[slots_used]);
 
 433
 434	for (i = 0; i < frags; i++) {
 435		skb_frag_t *frag = skb_shinfo(skb)->frags + i;
 436
 437		slots_used += fill_pg_buf(skb_frag_page(frag),
 438					skb_frag_off(frag),
 439					skb_frag_size(frag), &pb[slots_used]);
 
 440	}
 441	return slots_used;
 442}
 443
 444static int count_skb_frag_slots(struct sk_buff *skb)
 445{
 446	int i, frags = skb_shinfo(skb)->nr_frags;
 447	int pages = 0;
 448
 449	for (i = 0; i < frags; i++) {
 450		skb_frag_t *frag = skb_shinfo(skb)->frags + i;
 451		unsigned long size = skb_frag_size(frag);
 452		unsigned long offset = skb_frag_off(frag);
 453
 454		/* Skip unused frames from start of page */
 455		offset &= ~PAGE_MASK;
 456		pages += PFN_UP(offset + size);
 457	}
 458	return pages;
 459}
 460
 461static int netvsc_get_slots(struct sk_buff *skb)
 462{
 463	char *data = skb->data;
 464	unsigned int offset = offset_in_page(data);
 465	unsigned int len = skb_headlen(skb);
 466	int slots;
 467	int frag_slots;
 468
 469	slots = DIV_ROUND_UP(offset + len, PAGE_SIZE);
 470	frag_slots = count_skb_frag_slots(skb);
 471	return slots + frag_slots;
 472}
 473
 474static u32 net_checksum_info(struct sk_buff *skb)
 475{
 476	if (skb->protocol == htons(ETH_P_IP)) {
 477		struct iphdr *ip = ip_hdr(skb);
 478
 479		if (ip->protocol == IPPROTO_TCP)
 480			return TRANSPORT_INFO_IPV4_TCP;
 481		else if (ip->protocol == IPPROTO_UDP)
 482			return TRANSPORT_INFO_IPV4_UDP;
 483	} else {
 484		struct ipv6hdr *ip6 = ipv6_hdr(skb);
 485
 486		if (ip6->nexthdr == IPPROTO_TCP)
 487			return TRANSPORT_INFO_IPV6_TCP;
 488		else if (ip6->nexthdr == IPPROTO_UDP)
 489			return TRANSPORT_INFO_IPV6_UDP;
 490	}
 491
 492	return TRANSPORT_INFO_NOT_IP;
 493}
 494
 495/* Send skb on the slave VF device. */
 496static int netvsc_vf_xmit(struct net_device *net, struct net_device *vf_netdev,
 497			  struct sk_buff *skb)
 498{
 499	struct net_device_context *ndev_ctx = netdev_priv(net);
 500	unsigned int len = skb->len;
 501	int rc;
 502
 503	skb->dev = vf_netdev;
 504	skb->queue_mapping = qdisc_skb_cb(skb)->slave_dev_queue_mapping;
 505
 506	rc = dev_queue_xmit(skb);
 507	if (likely(rc == NET_XMIT_SUCCESS || rc == NET_XMIT_CN)) {
 508		struct netvsc_vf_pcpu_stats *pcpu_stats
 509			= this_cpu_ptr(ndev_ctx->vf_stats);
 510
 511		u64_stats_update_begin(&pcpu_stats->syncp);
 512		pcpu_stats->tx_packets++;
 513		pcpu_stats->tx_bytes += len;
 514		u64_stats_update_end(&pcpu_stats->syncp);
 515	} else {
 516		this_cpu_inc(ndev_ctx->vf_stats->tx_dropped);
 517	}
 518
 519	return rc;
 520}
 521
 522static int netvsc_start_xmit(struct sk_buff *skb, struct net_device *net)
 523{
 524	struct net_device_context *net_device_ctx = netdev_priv(net);
 525	struct hv_netvsc_packet *packet = NULL;
 526	int ret;
 527	unsigned int num_data_pgs;
 528	struct rndis_message *rndis_msg;
 529	struct net_device *vf_netdev;
 530	u32 rndis_msg_size;
 531	u32 hash;
 532	struct hv_page_buffer pb[MAX_PAGE_BUFFER_COUNT];
 533
 534	/* if VF is present and up then redirect packets
 535	 * already called with rcu_read_lock_bh
 
 536	 */
 537	vf_netdev = rcu_dereference_bh(net_device_ctx->vf_netdev);
 538	if (vf_netdev && netif_running(vf_netdev) &&
 539	    !netpoll_tx_running(net))
 
 540		return netvsc_vf_xmit(net, vf_netdev, skb);
 541
 542	/* We will atmost need two pages to describe the rndis
 543	 * header. We can only transmit MAX_PAGE_BUFFER_COUNT number
 544	 * of pages in a single packet. If skb is scattered around
 545	 * more pages we try linearizing it.
 546	 */
 547
 548	num_data_pgs = netvsc_get_slots(skb) + 2;
 549
 550	if (unlikely(num_data_pgs > MAX_PAGE_BUFFER_COUNT)) {
 551		++net_device_ctx->eth_stats.tx_scattered;
 552
 553		if (skb_linearize(skb))
 554			goto no_memory;
 555
 556		num_data_pgs = netvsc_get_slots(skb) + 2;
 557		if (num_data_pgs > MAX_PAGE_BUFFER_COUNT) {
 558			++net_device_ctx->eth_stats.tx_too_big;
 559			goto drop;
 560		}
 561	}
 562
 563	/*
 564	 * Place the rndis header in the skb head room and
 565	 * the skb->cb will be used for hv_netvsc_packet
 566	 * structure.
 567	 */
 568	ret = skb_cow_head(skb, RNDIS_AND_PPI_SIZE);
 569	if (ret)
 570		goto no_memory;
 571
 572	/* Use the skb control buffer for building up the packet */
 573	BUILD_BUG_ON(sizeof(struct hv_netvsc_packet) >
 574			FIELD_SIZEOF(struct sk_buff, cb));
 575	packet = (struct hv_netvsc_packet *)skb->cb;
 576
 577	packet->q_idx = skb_get_queue_mapping(skb);
 578
 579	packet->total_data_buflen = skb->len;
 580	packet->total_bytes = skb->len;
 581	packet->total_packets = 1;
 582
 583	rndis_msg = (struct rndis_message *)skb->head;
 584
 585	/* Add the rndis header */
 586	rndis_msg->ndis_msg_type = RNDIS_MSG_PACKET;
 587	rndis_msg->msg_len = packet->total_data_buflen;
 588
 589	rndis_msg->msg.pkt = (struct rndis_packet) {
 590		.data_offset = sizeof(struct rndis_packet),
 591		.data_len = packet->total_data_buflen,
 592		.per_pkt_info_offset = sizeof(struct rndis_packet),
 593	};
 594
 595	rndis_msg_size = RNDIS_MESSAGE_SIZE(struct rndis_packet);
 596
 597	hash = skb_get_hash_raw(skb);
 598	if (hash != 0 && net->real_num_tx_queues > 1) {
 599		u32 *hash_info;
 600
 601		rndis_msg_size += NDIS_HASH_PPI_SIZE;
 602		hash_info = init_ppi_data(rndis_msg, NDIS_HASH_PPI_SIZE,
 603					  NBL_HASH_VALUE);
 604		*hash_info = hash;
 605	}
 606
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 607	if (skb_vlan_tag_present(skb)) {
 608		struct ndis_pkt_8021q_info *vlan;
 609
 610		rndis_msg_size += NDIS_VLAN_PPI_SIZE;
 611		vlan = init_ppi_data(rndis_msg, NDIS_VLAN_PPI_SIZE,
 612				     IEEE_8021Q_INFO);
 613
 614		vlan->value = 0;
 615		vlan->vlanid = skb_vlan_tag_get_id(skb);
 616		vlan->cfi = skb_vlan_tag_get_cfi(skb);
 617		vlan->pri = skb_vlan_tag_get_prio(skb);
 618	}
 619
 620	if (skb_is_gso(skb)) {
 621		struct ndis_tcp_lso_info *lso_info;
 622
 623		rndis_msg_size += NDIS_LSO_PPI_SIZE;
 624		lso_info = init_ppi_data(rndis_msg, NDIS_LSO_PPI_SIZE,
 625					 TCP_LARGESEND_PKTINFO);
 626
 627		lso_info->value = 0;
 628		lso_info->lso_v2_transmit.type = NDIS_TCP_LARGE_SEND_OFFLOAD_V2_TYPE;
 629		if (skb->protocol == htons(ETH_P_IP)) {
 630			lso_info->lso_v2_transmit.ip_version =
 631				NDIS_TCP_LARGE_SEND_OFFLOAD_IPV4;
 632			ip_hdr(skb)->tot_len = 0;
 633			ip_hdr(skb)->check = 0;
 634			tcp_hdr(skb)->check =
 635				~csum_tcpudp_magic(ip_hdr(skb)->saddr,
 636						   ip_hdr(skb)->daddr, 0, IPPROTO_TCP, 0);
 637		} else {
 638			lso_info->lso_v2_transmit.ip_version =
 639				NDIS_TCP_LARGE_SEND_OFFLOAD_IPV6;
 640			ipv6_hdr(skb)->payload_len = 0;
 641			tcp_hdr(skb)->check =
 642				~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
 643						 &ipv6_hdr(skb)->daddr, 0, IPPROTO_TCP, 0);
 644		}
 645		lso_info->lso_v2_transmit.tcp_header_offset = skb_transport_offset(skb);
 646		lso_info->lso_v2_transmit.mss = skb_shinfo(skb)->gso_size;
 647	} else if (skb->ip_summed == CHECKSUM_PARTIAL) {
 648		if (net_checksum_info(skb) & net_device_ctx->tx_checksum_mask) {
 649			struct ndis_tcp_ip_checksum_info *csum_info;
 650
 651			rndis_msg_size += NDIS_CSUM_PPI_SIZE;
 652			csum_info = init_ppi_data(rndis_msg, NDIS_CSUM_PPI_SIZE,
 653						  TCPIP_CHKSUM_PKTINFO);
 654
 655			csum_info->value = 0;
 656			csum_info->transmit.tcp_header_offset = skb_transport_offset(skb);
 657
 658			if (skb->protocol == htons(ETH_P_IP)) {
 659				csum_info->transmit.is_ipv4 = 1;
 660
 661				if (ip_hdr(skb)->protocol == IPPROTO_TCP)
 662					csum_info->transmit.tcp_checksum = 1;
 663				else
 664					csum_info->transmit.udp_checksum = 1;
 665			} else {
 666				csum_info->transmit.is_ipv6 = 1;
 667
 668				if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
 669					csum_info->transmit.tcp_checksum = 1;
 670				else
 671					csum_info->transmit.udp_checksum = 1;
 672			}
 673		} else {
 674			/* Can't do offload of this type of checksum */
 675			if (skb_checksum_help(skb))
 676				goto drop;
 677		}
 678	}
 679
 680	/* Start filling in the page buffers with the rndis hdr */
 681	rndis_msg->msg_len += rndis_msg_size;
 682	packet->total_data_buflen = rndis_msg->msg_len;
 683	packet->page_buf_cnt = init_page_array(rndis_msg, rndis_msg_size,
 684					       skb, packet, pb);
 685
 686	/* timestamp packet in software */
 687	skb_tx_timestamp(skb);
 688
 689	ret = netvsc_send(net, packet, rndis_msg, pb, skb);
 690	if (likely(ret == 0))
 691		return NETDEV_TX_OK;
 692
 693	if (ret == -EAGAIN) {
 694		++net_device_ctx->eth_stats.tx_busy;
 695		return NETDEV_TX_BUSY;
 696	}
 697
 698	if (ret == -ENOSPC)
 699		++net_device_ctx->eth_stats.tx_no_space;
 700
 701drop:
 702	dev_kfree_skb_any(skb);
 703	net->stats.tx_dropped++;
 704
 705	return NETDEV_TX_OK;
 706
 707no_memory:
 708	++net_device_ctx->eth_stats.tx_no_memory;
 709	goto drop;
 710}
 711
 
 
 
 
 
 
 712/*
 713 * netvsc_linkstatus_callback - Link up/down notification
 714 */
 715void netvsc_linkstatus_callback(struct net_device *net,
 716				struct rndis_message *resp)
 
 717{
 718	struct rndis_indicate_status *indicate = &resp->msg.indicate_status;
 719	struct net_device_context *ndev_ctx = netdev_priv(net);
 720	struct netvsc_reconfig *event;
 721	unsigned long flags;
 722
 
 
 
 
 
 
 
 
 
 
 723	/* Update the physical link speed when changing to another vSwitch */
 724	if (indicate->status == RNDIS_STATUS_LINK_SPEED_CHANGE) {
 725		u32 speed;
 726
 727		speed = *(u32 *)((void *)indicate
 728				 + indicate->status_buf_offset) / 10000;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 729		ndev_ctx->speed = speed;
 730		return;
 731	}
 732
 733	/* Handle these link change statuses below */
 734	if (indicate->status != RNDIS_STATUS_NETWORK_CHANGE &&
 735	    indicate->status != RNDIS_STATUS_MEDIA_CONNECT &&
 736	    indicate->status != RNDIS_STATUS_MEDIA_DISCONNECT)
 737		return;
 738
 739	if (net->reg_state != NETREG_REGISTERED)
 740		return;
 741
 742	event = kzalloc(sizeof(*event), GFP_ATOMIC);
 743	if (!event)
 744		return;
 745	event->event = indicate->status;
 746
 747	spin_lock_irqsave(&ndev_ctx->lock, flags);
 748	list_add_tail(&event->list, &ndev_ctx->reconfig_events);
 749	spin_unlock_irqrestore(&ndev_ctx->lock, flags);
 750
 751	schedule_delayed_work(&ndev_ctx->dwork, 0);
 752}
 753
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 754static void netvsc_comp_ipcsum(struct sk_buff *skb)
 755{
 756	struct iphdr *iph = (struct iphdr *)skb->data;
 757
 758	iph->check = 0;
 759	iph->check = ip_fast_csum(iph, iph->ihl);
 760}
 761
 762static struct sk_buff *netvsc_alloc_recv_skb(struct net_device *net,
 763					     struct netvsc_channel *nvchan)
 
 764{
 765	struct napi_struct *napi = &nvchan->napi;
 766	const struct ndis_pkt_8021q_info *vlan = nvchan->rsc.vlan;
 767	const struct ndis_tcp_ip_checksum_info *csum_info =
 768						nvchan->rsc.csum_info;
 
 
 769	struct sk_buff *skb;
 
 770	int i;
 771
 772	skb = napi_alloc_skb(napi, nvchan->rsc.pktlen);
 773	if (!skb)
 774		return skb;
 
 
 
 
 
 
 
 
 775
 776	/*
 777	 * Copy to skb. This copy is needed here since the memory pointed by
 778	 * hv_netvsc_packet cannot be deallocated
 779	 */
 780	for (i = 0; i < nvchan->rsc.cnt; i++)
 781		skb_put_data(skb, nvchan->rsc.data[i], nvchan->rsc.len[i]);
 
 
 
 
 
 
 
 
 
 
 782
 783	skb->protocol = eth_type_trans(skb, net);
 784
 785	/* skb is already created with CHECKSUM_NONE */
 786	skb_checksum_none_assert(skb);
 787
 788	/* Incoming packets may have IP header checksum verified by the host.
 789	 * They may not have IP header checksum computed after coalescing.
 790	 * We compute it here if the flags are set, because on Linux, the IP
 791	 * checksum is always checked.
 792	 */
 793	if (csum_info && csum_info->receive.ip_checksum_value_invalid &&
 794	    csum_info->receive.ip_checksum_succeeded &&
 795	    skb->protocol == htons(ETH_P_IP))
 
 
 
 
 
 796		netvsc_comp_ipcsum(skb);
 
 797
 798	/* Do L4 checksum offload if enabled and present.
 799	 */
 800	if (csum_info && (net->features & NETIF_F_RXCSUM)) {
 801		if (csum_info->receive.tcp_checksum_succeeded ||
 802		    csum_info->receive.udp_checksum_succeeded)
 803			skb->ip_summed = CHECKSUM_UNNECESSARY;
 804	}
 805
 806	if (vlan) {
 
 
 
 807		u16 vlan_tci = vlan->vlanid | (vlan->pri << VLAN_PRIO_SHIFT) |
 808			(vlan->cfi ? VLAN_CFI_MASK : 0);
 809
 810		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
 811				       vlan_tci);
 812	}
 813
 814	return skb;
 815}
 816
 817/*
 818 * netvsc_recv_callback -  Callback when we receive a packet from the
 819 * "wire" on the specified device.
 820 */
 821int netvsc_recv_callback(struct net_device *net,
 822			 struct netvsc_device *net_device,
 823			 struct netvsc_channel *nvchan)
 824{
 825	struct net_device_context *net_device_ctx = netdev_priv(net);
 826	struct vmbus_channel *channel = nvchan->channel;
 827	u16 q_idx = channel->offermsg.offer.sub_channel_index;
 828	struct sk_buff *skb;
 829	struct netvsc_stats *rx_stats;
 
 
 830
 831	if (net->reg_state != NETREG_REGISTERED)
 832		return NVSP_STAT_FAIL;
 833
 
 
 
 
 
 
 
 
 
 
 
 
 
 834	/* Allocate a skb - TODO direct I/O to pages? */
 835	skb = netvsc_alloc_recv_skb(net, nvchan);
 836
 837	if (unlikely(!skb)) {
 838		++net_device_ctx->eth_stats.rx_no_memory;
 839		return NVSP_STAT_FAIL;
 840	}
 841
 842	skb_record_rx_queue(skb, q_idx);
 843
 844	/*
 845	 * Even if injecting the packet, record the statistics
 846	 * on the synthetic device because modifying the VF device
 847	 * statistics will not work correctly.
 848	 */
 849	rx_stats = &nvchan->rx_stats;
 850	u64_stats_update_begin(&rx_stats->syncp);
 
 
 
 851	rx_stats->packets++;
 852	rx_stats->bytes += nvchan->rsc.pktlen;
 853
 854	if (skb->pkt_type == PACKET_BROADCAST)
 855		++rx_stats->broadcast;
 856	else if (skb->pkt_type == PACKET_MULTICAST)
 857		++rx_stats->multicast;
 858	u64_stats_update_end(&rx_stats->syncp);
 859
 
 
 
 
 
 860	napi_gro_receive(&nvchan->napi, skb);
 861	return NVSP_STAT_SUCCESS;
 862}
 863
 864static void netvsc_get_drvinfo(struct net_device *net,
 865			       struct ethtool_drvinfo *info)
 866{
 867	strlcpy(info->driver, KBUILD_MODNAME, sizeof(info->driver));
 868	strlcpy(info->fw_version, "N/A", sizeof(info->fw_version));
 869}
 870
 871static void netvsc_get_channels(struct net_device *net,
 872				struct ethtool_channels *channel)
 873{
 874	struct net_device_context *net_device_ctx = netdev_priv(net);
 875	struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev);
 876
 877	if (nvdev) {
 878		channel->max_combined	= nvdev->max_chn;
 879		channel->combined_count = nvdev->num_chn;
 880	}
 881}
 882
 883/* Alloc struct netvsc_device_info, and initialize it from either existing
 884 * struct netvsc_device, or from default values.
 885 */
 886static struct netvsc_device_info *netvsc_devinfo_get
 887			(struct netvsc_device *nvdev)
 888{
 889	struct netvsc_device_info *dev_info;
 
 890
 891	dev_info = kzalloc(sizeof(*dev_info), GFP_ATOMIC);
 892
 893	if (!dev_info)
 894		return NULL;
 895
 896	if (nvdev) {
 
 
 897		dev_info->num_chn = nvdev->num_chn;
 898		dev_info->send_sections = nvdev->send_section_cnt;
 899		dev_info->send_section_size = nvdev->send_section_size;
 900		dev_info->recv_sections = nvdev->recv_section_cnt;
 901		dev_info->recv_section_size = nvdev->recv_section_size;
 902
 903		memcpy(dev_info->rss_key, nvdev->extension->rss_key,
 904		       NETVSC_HASH_KEYLEN);
 
 
 
 
 
 
 905	} else {
 906		dev_info->num_chn = VRSS_CHANNEL_DEFAULT;
 
 907		dev_info->send_sections = NETVSC_DEFAULT_TX;
 908		dev_info->send_section_size = NETVSC_SEND_SECTION_SIZE;
 909		dev_info->recv_sections = NETVSC_DEFAULT_RX;
 910		dev_info->recv_section_size = NETVSC_RECV_SECTION_SIZE;
 911	}
 912
 913	return dev_info;
 914}
 915
 
 
 
 
 
 
 
 
 
 
 
 916static int netvsc_detach(struct net_device *ndev,
 917			 struct netvsc_device *nvdev)
 918{
 919	struct net_device_context *ndev_ctx = netdev_priv(ndev);
 920	struct hv_device *hdev = ndev_ctx->device_ctx;
 921	int ret;
 922
 923	/* Don't try continuing to try and setup sub channels */
 924	if (cancel_work_sync(&nvdev->subchan_work))
 925		nvdev->num_chn = 1;
 926
 
 
 927	/* If device was up (receiving) then shutdown */
 928	if (netif_running(ndev)) {
 929		netvsc_tx_disable(nvdev, ndev);
 930
 931		ret = rndis_filter_close(nvdev);
 932		if (ret) {
 933			netdev_err(ndev,
 934				   "unable to close device (ret %d).\n", ret);
 935			return ret;
 936		}
 937
 938		ret = netvsc_wait_until_empty(nvdev);
 939		if (ret) {
 940			netdev_err(ndev,
 941				   "Ring buffer not empty after closing rndis\n");
 942			return ret;
 943		}
 944	}
 945
 946	netif_device_detach(ndev);
 947
 948	rndis_filter_device_remove(hdev, nvdev);
 949
 950	return 0;
 951}
 952
 953static int netvsc_attach(struct net_device *ndev,
 954			 struct netvsc_device_info *dev_info)
 955{
 956	struct net_device_context *ndev_ctx = netdev_priv(ndev);
 957	struct hv_device *hdev = ndev_ctx->device_ctx;
 958	struct netvsc_device *nvdev;
 959	struct rndis_device *rdev;
 960	int ret;
 
 961
 962	nvdev = rndis_filter_device_add(hdev, dev_info);
 963	if (IS_ERR(nvdev))
 964		return PTR_ERR(nvdev);
 965
 966	if (nvdev->num_chn > 1) {
 967		ret = rndis_set_subchannel(ndev, nvdev, dev_info);
 968
 969		/* if unavailable, just proceed with one queue */
 970		if (ret) {
 971			nvdev->max_chn = 1;
 972			nvdev->num_chn = 1;
 973		}
 974	}
 975
 
 
 
 
 
 
 
 
 
 
 976	/* In any case device is now ready */
 
 977	netif_device_attach(ndev);
 978
 979	/* Note: enable and attach happen when sub-channels setup */
 980	netif_carrier_off(ndev);
 981
 982	if (netif_running(ndev)) {
 983		ret = rndis_filter_open(nvdev);
 984		if (ret)
 985			goto err;
 986
 987		rdev = nvdev->extension;
 988		if (!rdev->link_state)
 989			netif_carrier_on(ndev);
 990	}
 991
 992	return 0;
 993
 994err:
 995	netif_device_detach(ndev);
 996
 
 997	rndis_filter_device_remove(hdev, nvdev);
 998
 999	return ret;
1000}
1001
1002static int netvsc_set_channels(struct net_device *net,
1003			       struct ethtool_channels *channels)
1004{
1005	struct net_device_context *net_device_ctx = netdev_priv(net);
1006	struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev);
1007	unsigned int orig, count = channels->combined_count;
1008	struct netvsc_device_info *device_info;
1009	int ret;
1010
1011	/* We do not support separate count for rx, tx, or other */
1012	if (count == 0 ||
1013	    channels->rx_count || channels->tx_count || channels->other_count)
1014		return -EINVAL;
1015
1016	if (!nvdev || nvdev->destroy)
1017		return -ENODEV;
1018
1019	if (nvdev->nvsp_version < NVSP_PROTOCOL_VERSION_5)
1020		return -EINVAL;
1021
1022	if (count > nvdev->max_chn)
1023		return -EINVAL;
1024
1025	orig = nvdev->num_chn;
1026
1027	device_info = netvsc_devinfo_get(nvdev);
1028
1029	if (!device_info)
1030		return -ENOMEM;
1031
1032	device_info->num_chn = count;
1033
1034	ret = netvsc_detach(net, nvdev);
1035	if (ret)
1036		goto out;
1037
1038	ret = netvsc_attach(net, device_info);
1039	if (ret) {
1040		device_info->num_chn = orig;
1041		if (netvsc_attach(net, device_info))
1042			netdev_err(net, "restoring channel setting failed\n");
1043	}
1044
1045out:
1046	kfree(device_info);
1047	return ret;
1048}
1049
1050static bool
1051netvsc_validate_ethtool_ss_cmd(const struct ethtool_link_ksettings *cmd)
1052{
1053	struct ethtool_link_ksettings diff1 = *cmd;
1054	struct ethtool_link_ksettings diff2 = {};
1055
1056	diff1.base.speed = 0;
1057	diff1.base.duplex = 0;
1058	/* advertising and cmd are usually set */
1059	ethtool_link_ksettings_zero_link_mode(&diff1, advertising);
1060	diff1.base.cmd = 0;
1061	/* We set port to PORT_OTHER */
1062	diff2.base.port = PORT_OTHER;
1063
1064	return !memcmp(&diff1, &diff2, sizeof(diff1));
1065}
1066
1067static void netvsc_init_settings(struct net_device *dev)
1068{
1069	struct net_device_context *ndc = netdev_priv(dev);
1070
1071	ndc->l4_hash = HV_DEFAULT_L4HASH;
1072
1073	ndc->speed = SPEED_UNKNOWN;
1074	ndc->duplex = DUPLEX_FULL;
1075
1076	dev->features = NETIF_F_LRO;
1077}
1078
1079static int netvsc_get_link_ksettings(struct net_device *dev,
1080				     struct ethtool_link_ksettings *cmd)
1081{
1082	struct net_device_context *ndc = netdev_priv(dev);
 
 
 
 
 
 
1083
1084	cmd->base.speed = ndc->speed;
1085	cmd->base.duplex = ndc->duplex;
1086	cmd->base.port = PORT_OTHER;
1087
1088	return 0;
1089}
1090
1091static int netvsc_set_link_ksettings(struct net_device *dev,
1092				     const struct ethtool_link_ksettings *cmd)
1093{
1094	struct net_device_context *ndc = netdev_priv(dev);
1095	u32 speed;
1096
1097	speed = cmd->base.speed;
1098	if (!ethtool_validate_speed(speed) ||
1099	    !ethtool_validate_duplex(cmd->base.duplex) ||
1100	    !netvsc_validate_ethtool_ss_cmd(cmd))
1101		return -EINVAL;
1102
1103	ndc->speed = speed;
1104	ndc->duplex = cmd->base.duplex;
 
1105
1106	return 0;
 
1107}
1108
1109static int netvsc_change_mtu(struct net_device *ndev, int mtu)
1110{
1111	struct net_device_context *ndevctx = netdev_priv(ndev);
1112	struct net_device *vf_netdev = rtnl_dereference(ndevctx->vf_netdev);
1113	struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
1114	int orig_mtu = ndev->mtu;
1115	struct netvsc_device_info *device_info;
1116	int ret = 0;
1117
1118	if (!nvdev || nvdev->destroy)
1119		return -ENODEV;
1120
1121	device_info = netvsc_devinfo_get(nvdev);
1122
1123	if (!device_info)
1124		return -ENOMEM;
1125
1126	/* Change MTU of underlying VF netdev first. */
1127	if (vf_netdev) {
1128		ret = dev_set_mtu(vf_netdev, mtu);
1129		if (ret)
1130			goto out;
1131	}
1132
1133	ret = netvsc_detach(ndev, nvdev);
1134	if (ret)
1135		goto rollback_vf;
1136
1137	ndev->mtu = mtu;
1138
1139	ret = netvsc_attach(ndev, device_info);
1140	if (!ret)
1141		goto out;
1142
1143	/* Attempt rollback to original MTU */
1144	ndev->mtu = orig_mtu;
1145
1146	if (netvsc_attach(ndev, device_info))
1147		netdev_err(ndev, "restoring mtu failed\n");
1148rollback_vf:
1149	if (vf_netdev)
1150		dev_set_mtu(vf_netdev, orig_mtu);
1151
1152out:
1153	kfree(device_info);
1154	return ret;
1155}
1156
1157static void netvsc_get_vf_stats(struct net_device *net,
1158				struct netvsc_vf_pcpu_stats *tot)
1159{
1160	struct net_device_context *ndev_ctx = netdev_priv(net);
1161	int i;
1162
1163	memset(tot, 0, sizeof(*tot));
1164
1165	for_each_possible_cpu(i) {
1166		const struct netvsc_vf_pcpu_stats *stats
1167			= per_cpu_ptr(ndev_ctx->vf_stats, i);
1168		u64 rx_packets, rx_bytes, tx_packets, tx_bytes;
1169		unsigned int start;
1170
1171		do {
1172			start = u64_stats_fetch_begin_irq(&stats->syncp);
1173			rx_packets = stats->rx_packets;
1174			tx_packets = stats->tx_packets;
1175			rx_bytes = stats->rx_bytes;
1176			tx_bytes = stats->tx_bytes;
1177		} while (u64_stats_fetch_retry_irq(&stats->syncp, start));
1178
1179		tot->rx_packets += rx_packets;
1180		tot->tx_packets += tx_packets;
1181		tot->rx_bytes   += rx_bytes;
1182		tot->tx_bytes   += tx_bytes;
1183		tot->tx_dropped += stats->tx_dropped;
1184	}
1185}
1186
1187static void netvsc_get_pcpu_stats(struct net_device *net,
1188				  struct netvsc_ethtool_pcpu_stats *pcpu_tot)
1189{
1190	struct net_device_context *ndev_ctx = netdev_priv(net);
1191	struct netvsc_device *nvdev = rcu_dereference_rtnl(ndev_ctx->nvdev);
1192	int i;
1193
1194	/* fetch percpu stats of vf */
1195	for_each_possible_cpu(i) {
1196		const struct netvsc_vf_pcpu_stats *stats =
1197			per_cpu_ptr(ndev_ctx->vf_stats, i);
1198		struct netvsc_ethtool_pcpu_stats *this_tot = &pcpu_tot[i];
1199		unsigned int start;
1200
1201		do {
1202			start = u64_stats_fetch_begin_irq(&stats->syncp);
1203			this_tot->vf_rx_packets = stats->rx_packets;
1204			this_tot->vf_tx_packets = stats->tx_packets;
1205			this_tot->vf_rx_bytes = stats->rx_bytes;
1206			this_tot->vf_tx_bytes = stats->tx_bytes;
1207		} while (u64_stats_fetch_retry_irq(&stats->syncp, start));
1208		this_tot->rx_packets = this_tot->vf_rx_packets;
1209		this_tot->tx_packets = this_tot->vf_tx_packets;
1210		this_tot->rx_bytes   = this_tot->vf_rx_bytes;
1211		this_tot->tx_bytes   = this_tot->vf_tx_bytes;
1212	}
1213
1214	/* fetch percpu stats of netvsc */
1215	for (i = 0; i < nvdev->num_chn; i++) {
1216		const struct netvsc_channel *nvchan = &nvdev->chan_table[i];
1217		const struct netvsc_stats *stats;
 
1218		struct netvsc_ethtool_pcpu_stats *this_tot =
1219			&pcpu_tot[nvchan->channel->target_cpu];
1220		u64 packets, bytes;
1221		unsigned int start;
1222
1223		stats = &nvchan->tx_stats;
1224		do {
1225			start = u64_stats_fetch_begin_irq(&stats->syncp);
1226			packets = stats->packets;
1227			bytes = stats->bytes;
1228		} while (u64_stats_fetch_retry_irq(&stats->syncp, start));
1229
1230		this_tot->tx_bytes	+= bytes;
1231		this_tot->tx_packets	+= packets;
1232
1233		stats = &nvchan->rx_stats;
1234		do {
1235			start = u64_stats_fetch_begin_irq(&stats->syncp);
1236			packets = stats->packets;
1237			bytes = stats->bytes;
1238		} while (u64_stats_fetch_retry_irq(&stats->syncp, start));
1239
1240		this_tot->rx_bytes	+= bytes;
1241		this_tot->rx_packets	+= packets;
1242	}
1243}
1244
1245static void netvsc_get_stats64(struct net_device *net,
1246			       struct rtnl_link_stats64 *t)
1247{
1248	struct net_device_context *ndev_ctx = netdev_priv(net);
1249	struct netvsc_device *nvdev;
1250	struct netvsc_vf_pcpu_stats vf_tot;
1251	int i;
1252
1253	rcu_read_lock();
1254
1255	nvdev = rcu_dereference(ndev_ctx->nvdev);
1256	if (!nvdev)
1257		goto out;
1258
1259	netdev_stats_to_stats64(t, &net->stats);
1260
1261	netvsc_get_vf_stats(net, &vf_tot);
1262	t->rx_packets += vf_tot.rx_packets;
1263	t->tx_packets += vf_tot.tx_packets;
1264	t->rx_bytes   += vf_tot.rx_bytes;
1265	t->tx_bytes   += vf_tot.tx_bytes;
1266	t->tx_dropped += vf_tot.tx_dropped;
1267
1268	for (i = 0; i < nvdev->num_chn; i++) {
1269		const struct netvsc_channel *nvchan = &nvdev->chan_table[i];
1270		const struct netvsc_stats *stats;
 
1271		u64 packets, bytes, multicast;
1272		unsigned int start;
1273
1274		stats = &nvchan->tx_stats;
1275		do {
1276			start = u64_stats_fetch_begin_irq(&stats->syncp);
1277			packets = stats->packets;
1278			bytes = stats->bytes;
1279		} while (u64_stats_fetch_retry_irq(&stats->syncp, start));
1280
1281		t->tx_bytes	+= bytes;
1282		t->tx_packets	+= packets;
1283
1284		stats = &nvchan->rx_stats;
1285		do {
1286			start = u64_stats_fetch_begin_irq(&stats->syncp);
1287			packets = stats->packets;
1288			bytes = stats->bytes;
1289			multicast = stats->multicast + stats->broadcast;
1290		} while (u64_stats_fetch_retry_irq(&stats->syncp, start));
1291
1292		t->rx_bytes	+= bytes;
1293		t->rx_packets	+= packets;
1294		t->multicast	+= multicast;
1295	}
1296out:
1297	rcu_read_unlock();
1298}
1299
1300static int netvsc_set_mac_addr(struct net_device *ndev, void *p)
1301{
1302	struct net_device_context *ndc = netdev_priv(ndev);
1303	struct net_device *vf_netdev = rtnl_dereference(ndc->vf_netdev);
1304	struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1305	struct sockaddr *addr = p;
1306	int err;
1307
1308	err = eth_prepare_mac_addr_change(ndev, p);
1309	if (err)
1310		return err;
1311
1312	if (!nvdev)
1313		return -ENODEV;
1314
1315	if (vf_netdev) {
1316		err = dev_set_mac_address(vf_netdev, addr, NULL);
1317		if (err)
1318			return err;
1319	}
1320
1321	err = rndis_filter_set_device_mac(nvdev, addr->sa_data);
1322	if (!err) {
1323		eth_commit_mac_addr_change(ndev, p);
1324	} else if (vf_netdev) {
1325		/* rollback change on VF */
1326		memcpy(addr->sa_data, ndev->dev_addr, ETH_ALEN);
1327		dev_set_mac_address(vf_netdev, addr, NULL);
1328	}
1329
1330	return err;
1331}
1332
1333static const struct {
1334	char name[ETH_GSTRING_LEN];
1335	u16 offset;
1336} netvsc_stats[] = {
1337	{ "tx_scattered", offsetof(struct netvsc_ethtool_stats, tx_scattered) },
1338	{ "tx_no_memory", offsetof(struct netvsc_ethtool_stats, tx_no_memory) },
1339	{ "tx_no_space",  offsetof(struct netvsc_ethtool_stats, tx_no_space) },
1340	{ "tx_too_big",	  offsetof(struct netvsc_ethtool_stats, tx_too_big) },
1341	{ "tx_busy",	  offsetof(struct netvsc_ethtool_stats, tx_busy) },
1342	{ "tx_send_full", offsetof(struct netvsc_ethtool_stats, tx_send_full) },
1343	{ "rx_comp_busy", offsetof(struct netvsc_ethtool_stats, rx_comp_busy) },
1344	{ "rx_no_memory", offsetof(struct netvsc_ethtool_stats, rx_no_memory) },
1345	{ "stop_queue", offsetof(struct netvsc_ethtool_stats, stop_queue) },
1346	{ "wake_queue", offsetof(struct netvsc_ethtool_stats, wake_queue) },
 
1347}, pcpu_stats[] = {
1348	{ "cpu%u_rx_packets",
1349		offsetof(struct netvsc_ethtool_pcpu_stats, rx_packets) },
1350	{ "cpu%u_rx_bytes",
1351		offsetof(struct netvsc_ethtool_pcpu_stats, rx_bytes) },
1352	{ "cpu%u_tx_packets",
1353		offsetof(struct netvsc_ethtool_pcpu_stats, tx_packets) },
1354	{ "cpu%u_tx_bytes",
1355		offsetof(struct netvsc_ethtool_pcpu_stats, tx_bytes) },
1356	{ "cpu%u_vf_rx_packets",
1357		offsetof(struct netvsc_ethtool_pcpu_stats, vf_rx_packets) },
1358	{ "cpu%u_vf_rx_bytes",
1359		offsetof(struct netvsc_ethtool_pcpu_stats, vf_rx_bytes) },
1360	{ "cpu%u_vf_tx_packets",
1361		offsetof(struct netvsc_ethtool_pcpu_stats, vf_tx_packets) },
1362	{ "cpu%u_vf_tx_bytes",
1363		offsetof(struct netvsc_ethtool_pcpu_stats, vf_tx_bytes) },
1364}, vf_stats[] = {
1365	{ "vf_rx_packets", offsetof(struct netvsc_vf_pcpu_stats, rx_packets) },
1366	{ "vf_rx_bytes",   offsetof(struct netvsc_vf_pcpu_stats, rx_bytes) },
1367	{ "vf_tx_packets", offsetof(struct netvsc_vf_pcpu_stats, tx_packets) },
1368	{ "vf_tx_bytes",   offsetof(struct netvsc_vf_pcpu_stats, tx_bytes) },
1369	{ "vf_tx_dropped", offsetof(struct netvsc_vf_pcpu_stats, tx_dropped) },
1370};
1371
1372#define NETVSC_GLOBAL_STATS_LEN	ARRAY_SIZE(netvsc_stats)
1373#define NETVSC_VF_STATS_LEN	ARRAY_SIZE(vf_stats)
1374
1375/* statistics per queue (rx/tx packets/bytes) */
1376#define NETVSC_PCPU_STATS_LEN (num_present_cpus() * ARRAY_SIZE(pcpu_stats))
1377
1378/* 4 statistics per queue (rx/tx packets/bytes) */
1379#define NETVSC_QUEUE_STATS_LEN(dev) ((dev)->num_chn * 4)
1380
1381static int netvsc_get_sset_count(struct net_device *dev, int string_set)
1382{
1383	struct net_device_context *ndc = netdev_priv(dev);
1384	struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1385
1386	if (!nvdev)
1387		return -ENODEV;
1388
1389	switch (string_set) {
1390	case ETH_SS_STATS:
1391		return NETVSC_GLOBAL_STATS_LEN
1392			+ NETVSC_VF_STATS_LEN
1393			+ NETVSC_QUEUE_STATS_LEN(nvdev)
1394			+ NETVSC_PCPU_STATS_LEN;
1395	default:
1396		return -EINVAL;
1397	}
1398}
1399
1400static void netvsc_get_ethtool_stats(struct net_device *dev,
1401				     struct ethtool_stats *stats, u64 *data)
1402{
1403	struct net_device_context *ndc = netdev_priv(dev);
1404	struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1405	const void *nds = &ndc->eth_stats;
1406	const struct netvsc_stats *qstats;
 
1407	struct netvsc_vf_pcpu_stats sum;
1408	struct netvsc_ethtool_pcpu_stats *pcpu_sum;
1409	unsigned int start;
1410	u64 packets, bytes;
 
 
 
 
1411	int i, j, cpu;
1412
1413	if (!nvdev)
1414		return;
1415
1416	for (i = 0; i < NETVSC_GLOBAL_STATS_LEN; i++)
1417		data[i] = *(unsigned long *)(nds + netvsc_stats[i].offset);
1418
1419	netvsc_get_vf_stats(dev, &sum);
1420	for (j = 0; j < NETVSC_VF_STATS_LEN; j++)
1421		data[i++] = *(u64 *)((void *)&sum + vf_stats[j].offset);
1422
1423	for (j = 0; j < nvdev->num_chn; j++) {
1424		qstats = &nvdev->chan_table[j].tx_stats;
1425
1426		do {
1427			start = u64_stats_fetch_begin_irq(&qstats->syncp);
1428			packets = qstats->packets;
1429			bytes = qstats->bytes;
1430		} while (u64_stats_fetch_retry_irq(&qstats->syncp, start));
 
1431		data[i++] = packets;
1432		data[i++] = bytes;
 
1433
1434		qstats = &nvdev->chan_table[j].rx_stats;
1435		do {
1436			start = u64_stats_fetch_begin_irq(&qstats->syncp);
1437			packets = qstats->packets;
1438			bytes = qstats->bytes;
1439		} while (u64_stats_fetch_retry_irq(&qstats->syncp, start));
 
 
 
1440		data[i++] = packets;
1441		data[i++] = bytes;
 
 
 
1442	}
1443
1444	pcpu_sum = kvmalloc_array(num_possible_cpus(),
1445				  sizeof(struct netvsc_ethtool_pcpu_stats),
1446				  GFP_KERNEL);
 
 
 
1447	netvsc_get_pcpu_stats(dev, pcpu_sum);
1448	for_each_present_cpu(cpu) {
1449		struct netvsc_ethtool_pcpu_stats *this_sum = &pcpu_sum[cpu];
1450
1451		for (j = 0; j < ARRAY_SIZE(pcpu_stats); j++)
1452			data[i++] = *(u64 *)((void *)this_sum
1453					     + pcpu_stats[j].offset);
1454	}
1455	kvfree(pcpu_sum);
1456}
1457
1458static void netvsc_get_strings(struct net_device *dev, u32 stringset, u8 *data)
1459{
1460	struct net_device_context *ndc = netdev_priv(dev);
1461	struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1462	u8 *p = data;
1463	int i, cpu;
1464
1465	if (!nvdev)
1466		return;
1467
1468	switch (stringset) {
1469	case ETH_SS_STATS:
1470		for (i = 0; i < ARRAY_SIZE(netvsc_stats); i++) {
1471			memcpy(p, netvsc_stats[i].name, ETH_GSTRING_LEN);
1472			p += ETH_GSTRING_LEN;
1473		}
1474
1475		for (i = 0; i < ARRAY_SIZE(vf_stats); i++) {
1476			memcpy(p, vf_stats[i].name, ETH_GSTRING_LEN);
1477			p += ETH_GSTRING_LEN;
1478		}
1479
1480		for (i = 0; i < nvdev->num_chn; i++) {
1481			sprintf(p, "tx_queue_%u_packets", i);
1482			p += ETH_GSTRING_LEN;
1483			sprintf(p, "tx_queue_%u_bytes", i);
1484			p += ETH_GSTRING_LEN;
1485			sprintf(p, "rx_queue_%u_packets", i);
1486			p += ETH_GSTRING_LEN;
1487			sprintf(p, "rx_queue_%u_bytes", i);
1488			p += ETH_GSTRING_LEN;
1489		}
1490
1491		for_each_present_cpu(cpu) {
1492			for (i = 0; i < ARRAY_SIZE(pcpu_stats); i++) {
1493				sprintf(p, pcpu_stats[i].name, cpu);
1494				p += ETH_GSTRING_LEN;
1495			}
1496		}
1497
1498		break;
1499	}
1500}
1501
1502static int
1503netvsc_get_rss_hash_opts(struct net_device_context *ndc,
1504			 struct ethtool_rxnfc *info)
1505{
1506	const u32 l4_flag = RXH_L4_B_0_1 | RXH_L4_B_2_3;
1507
1508	info->data = RXH_IP_SRC | RXH_IP_DST;
1509
1510	switch (info->flow_type) {
1511	case TCP_V4_FLOW:
1512		if (ndc->l4_hash & HV_TCP4_L4HASH)
1513			info->data |= l4_flag;
1514
1515		break;
1516
1517	case TCP_V6_FLOW:
1518		if (ndc->l4_hash & HV_TCP6_L4HASH)
1519			info->data |= l4_flag;
1520
1521		break;
1522
1523	case UDP_V4_FLOW:
1524		if (ndc->l4_hash & HV_UDP4_L4HASH)
1525			info->data |= l4_flag;
1526
1527		break;
1528
1529	case UDP_V6_FLOW:
1530		if (ndc->l4_hash & HV_UDP6_L4HASH)
1531			info->data |= l4_flag;
1532
1533		break;
1534
1535	case IPV4_FLOW:
1536	case IPV6_FLOW:
1537		break;
1538	default:
1539		info->data = 0;
1540		break;
1541	}
1542
1543	return 0;
1544}
1545
1546static int
1547netvsc_get_rxnfc(struct net_device *dev, struct ethtool_rxnfc *info,
1548		 u32 *rules)
1549{
1550	struct net_device_context *ndc = netdev_priv(dev);
1551	struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1552
1553	if (!nvdev)
1554		return -ENODEV;
1555
1556	switch (info->cmd) {
1557	case ETHTOOL_GRXRINGS:
1558		info->data = nvdev->num_chn;
1559		return 0;
1560
1561	case ETHTOOL_GRXFH:
1562		return netvsc_get_rss_hash_opts(ndc, info);
1563	}
1564	return -EOPNOTSUPP;
1565}
1566
1567static int netvsc_set_rss_hash_opts(struct net_device_context *ndc,
1568				    struct ethtool_rxnfc *info)
1569{
1570	if (info->data == (RXH_IP_SRC | RXH_IP_DST |
1571			   RXH_L4_B_0_1 | RXH_L4_B_2_3)) {
1572		switch (info->flow_type) {
1573		case TCP_V4_FLOW:
1574			ndc->l4_hash |= HV_TCP4_L4HASH;
1575			break;
1576
1577		case TCP_V6_FLOW:
1578			ndc->l4_hash |= HV_TCP6_L4HASH;
1579			break;
1580
1581		case UDP_V4_FLOW:
1582			ndc->l4_hash |= HV_UDP4_L4HASH;
1583			break;
1584
1585		case UDP_V6_FLOW:
1586			ndc->l4_hash |= HV_UDP6_L4HASH;
1587			break;
1588
1589		default:
1590			return -EOPNOTSUPP;
1591		}
1592
1593		return 0;
1594	}
1595
1596	if (info->data == (RXH_IP_SRC | RXH_IP_DST)) {
1597		switch (info->flow_type) {
1598		case TCP_V4_FLOW:
1599			ndc->l4_hash &= ~HV_TCP4_L4HASH;
1600			break;
1601
1602		case TCP_V6_FLOW:
1603			ndc->l4_hash &= ~HV_TCP6_L4HASH;
1604			break;
1605
1606		case UDP_V4_FLOW:
1607			ndc->l4_hash &= ~HV_UDP4_L4HASH;
1608			break;
1609
1610		case UDP_V6_FLOW:
1611			ndc->l4_hash &= ~HV_UDP6_L4HASH;
1612			break;
1613
1614		default:
1615			return -EOPNOTSUPP;
1616		}
1617
1618		return 0;
1619	}
1620
1621	return -EOPNOTSUPP;
1622}
1623
1624static int
1625netvsc_set_rxnfc(struct net_device *ndev, struct ethtool_rxnfc *info)
1626{
1627	struct net_device_context *ndc = netdev_priv(ndev);
1628
1629	if (info->cmd == ETHTOOL_SRXFH)
1630		return netvsc_set_rss_hash_opts(ndc, info);
1631
1632	return -EOPNOTSUPP;
1633}
1634
1635static u32 netvsc_get_rxfh_key_size(struct net_device *dev)
1636{
1637	return NETVSC_HASH_KEYLEN;
1638}
1639
1640static u32 netvsc_rss_indir_size(struct net_device *dev)
1641{
1642	return ITAB_NUM;
 
 
1643}
1644
1645static int netvsc_get_rxfh(struct net_device *dev, u32 *indir, u8 *key,
1646			   u8 *hfunc)
1647{
1648	struct net_device_context *ndc = netdev_priv(dev);
1649	struct netvsc_device *ndev = rtnl_dereference(ndc->nvdev);
1650	struct rndis_device *rndis_dev;
1651	int i;
1652
1653	if (!ndev)
1654		return -ENODEV;
1655
1656	if (hfunc)
1657		*hfunc = ETH_RSS_HASH_TOP;	/* Toeplitz */
1658
1659	rndis_dev = ndev->extension;
1660	if (indir) {
1661		for (i = 0; i < ITAB_NUM; i++)
1662			indir[i] = rndis_dev->rx_table[i];
1663	}
1664
1665	if (key)
1666		memcpy(key, rndis_dev->rss_key, NETVSC_HASH_KEYLEN);
1667
1668	return 0;
1669}
1670
1671static int netvsc_set_rxfh(struct net_device *dev, const u32 *indir,
1672			   const u8 *key, const u8 hfunc)
 
1673{
1674	struct net_device_context *ndc = netdev_priv(dev);
1675	struct netvsc_device *ndev = rtnl_dereference(ndc->nvdev);
1676	struct rndis_device *rndis_dev;
 
1677	int i;
1678
1679	if (!ndev)
1680		return -ENODEV;
1681
1682	if (hfunc != ETH_RSS_HASH_NO_CHANGE && hfunc != ETH_RSS_HASH_TOP)
 
1683		return -EOPNOTSUPP;
1684
1685	rndis_dev = ndev->extension;
1686	if (indir) {
1687		for (i = 0; i < ITAB_NUM; i++)
1688			if (indir[i] >= ndev->num_chn)
1689				return -EINVAL;
1690
1691		for (i = 0; i < ITAB_NUM; i++)
1692			rndis_dev->rx_table[i] = indir[i];
1693	}
1694
1695	if (!key) {
1696		if (!indir)
1697			return 0;
1698
1699		key = rndis_dev->rss_key;
1700	}
1701
1702	return rndis_filter_set_rss_param(rndis_dev, key);
1703}
1704
1705/* Hyper-V RNDIS protocol does not have ring in the HW sense.
1706 * It does have pre-allocated receive area which is divided into sections.
1707 */
1708static void __netvsc_get_ringparam(struct netvsc_device *nvdev,
1709				   struct ethtool_ringparam *ring)
1710{
1711	u32 max_buf_size;
1712
1713	ring->rx_pending = nvdev->recv_section_cnt;
1714	ring->tx_pending = nvdev->send_section_cnt;
1715
1716	if (nvdev->nvsp_version <= NVSP_PROTOCOL_VERSION_2)
1717		max_buf_size = NETVSC_RECEIVE_BUFFER_SIZE_LEGACY;
1718	else
1719		max_buf_size = NETVSC_RECEIVE_BUFFER_SIZE;
1720
1721	ring->rx_max_pending = max_buf_size / nvdev->recv_section_size;
1722	ring->tx_max_pending = NETVSC_SEND_BUFFER_SIZE
1723		/ nvdev->send_section_size;
1724}
1725
1726static void netvsc_get_ringparam(struct net_device *ndev,
1727				 struct ethtool_ringparam *ring)
 
 
1728{
1729	struct net_device_context *ndevctx = netdev_priv(ndev);
1730	struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
1731
1732	if (!nvdev)
1733		return;
1734
1735	__netvsc_get_ringparam(nvdev, ring);
1736}
1737
1738static int netvsc_set_ringparam(struct net_device *ndev,
1739				struct ethtool_ringparam *ring)
 
 
1740{
1741	struct net_device_context *ndevctx = netdev_priv(ndev);
1742	struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
1743	struct netvsc_device_info *device_info;
1744	struct ethtool_ringparam orig;
1745	u32 new_tx, new_rx;
1746	int ret = 0;
1747
1748	if (!nvdev || nvdev->destroy)
1749		return -ENODEV;
1750
1751	memset(&orig, 0, sizeof(orig));
1752	__netvsc_get_ringparam(nvdev, &orig);
1753
1754	new_tx = clamp_t(u32, ring->tx_pending,
1755			 NETVSC_MIN_TX_SECTIONS, orig.tx_max_pending);
1756	new_rx = clamp_t(u32, ring->rx_pending,
1757			 NETVSC_MIN_RX_SECTIONS, orig.rx_max_pending);
1758
1759	if (new_tx == orig.tx_pending &&
1760	    new_rx == orig.rx_pending)
1761		return 0;	 /* no change */
1762
1763	device_info = netvsc_devinfo_get(nvdev);
1764
1765	if (!device_info)
1766		return -ENOMEM;
1767
1768	device_info->send_sections = new_tx;
1769	device_info->recv_sections = new_rx;
1770
1771	ret = netvsc_detach(ndev, nvdev);
1772	if (ret)
1773		goto out;
1774
1775	ret = netvsc_attach(ndev, device_info);
1776	if (ret) {
1777		device_info->send_sections = orig.tx_pending;
1778		device_info->recv_sections = orig.rx_pending;
1779
1780		if (netvsc_attach(ndev, device_info))
1781			netdev_err(ndev, "restoring ringparam failed");
1782	}
1783
1784out:
1785	kfree(device_info);
1786	return ret;
1787}
1788
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1789static int netvsc_set_features(struct net_device *ndev,
1790			       netdev_features_t features)
1791{
1792	netdev_features_t change = features ^ ndev->features;
1793	struct net_device_context *ndevctx = netdev_priv(ndev);
1794	struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
1795	struct net_device *vf_netdev = rtnl_dereference(ndevctx->vf_netdev);
1796	struct ndis_offload_params offloads;
1797	int ret = 0;
1798
1799	if (!nvdev || nvdev->destroy)
1800		return -ENODEV;
1801
1802	if (!(change & NETIF_F_LRO))
1803		goto syncvf;
1804
1805	memset(&offloads, 0, sizeof(struct ndis_offload_params));
1806
1807	if (features & NETIF_F_LRO) {
1808		offloads.rsc_ip_v4 = NDIS_OFFLOAD_PARAMETERS_RSC_ENABLED;
1809		offloads.rsc_ip_v6 = NDIS_OFFLOAD_PARAMETERS_RSC_ENABLED;
1810	} else {
1811		offloads.rsc_ip_v4 = NDIS_OFFLOAD_PARAMETERS_RSC_DISABLED;
1812		offloads.rsc_ip_v6 = NDIS_OFFLOAD_PARAMETERS_RSC_DISABLED;
1813	}
1814
1815	ret = rndis_filter_set_offload_params(ndev, nvdev, &offloads);
1816
1817	if (ret) {
1818		features ^= NETIF_F_LRO;
1819		ndev->features = features;
1820	}
1821
1822syncvf:
1823	if (!vf_netdev)
1824		return ret;
1825
1826	vf_netdev->wanted_features = features;
1827	netdev_update_features(vf_netdev);
1828
1829	return ret;
1830}
1831
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1832static u32 netvsc_get_msglevel(struct net_device *ndev)
1833{
1834	struct net_device_context *ndev_ctx = netdev_priv(ndev);
1835
1836	return ndev_ctx->msg_enable;
1837}
1838
1839static void netvsc_set_msglevel(struct net_device *ndev, u32 val)
1840{
1841	struct net_device_context *ndev_ctx = netdev_priv(ndev);
1842
1843	ndev_ctx->msg_enable = val;
1844}
1845
1846static const struct ethtool_ops ethtool_ops = {
1847	.get_drvinfo	= netvsc_get_drvinfo,
 
 
1848	.get_msglevel	= netvsc_get_msglevel,
1849	.set_msglevel	= netvsc_set_msglevel,
1850	.get_link	= ethtool_op_get_link,
1851	.get_ethtool_stats = netvsc_get_ethtool_stats,
1852	.get_sset_count = netvsc_get_sset_count,
1853	.get_strings	= netvsc_get_strings,
1854	.get_channels   = netvsc_get_channels,
1855	.set_channels   = netvsc_set_channels,
1856	.get_ts_info	= ethtool_op_get_ts_info,
1857	.get_rxnfc	= netvsc_get_rxnfc,
1858	.set_rxnfc	= netvsc_set_rxnfc,
1859	.get_rxfh_key_size = netvsc_get_rxfh_key_size,
1860	.get_rxfh_indir_size = netvsc_rss_indir_size,
1861	.get_rxfh	= netvsc_get_rxfh,
1862	.set_rxfh	= netvsc_set_rxfh,
1863	.get_link_ksettings = netvsc_get_link_ksettings,
1864	.set_link_ksettings = netvsc_set_link_ksettings,
1865	.get_ringparam	= netvsc_get_ringparam,
1866	.set_ringparam	= netvsc_set_ringparam,
1867};
1868
1869static const struct net_device_ops device_ops = {
1870	.ndo_open =			netvsc_open,
1871	.ndo_stop =			netvsc_close,
1872	.ndo_start_xmit =		netvsc_start_xmit,
1873	.ndo_change_rx_flags =		netvsc_change_rx_flags,
1874	.ndo_set_rx_mode =		netvsc_set_rx_mode,
 
1875	.ndo_set_features =		netvsc_set_features,
1876	.ndo_change_mtu =		netvsc_change_mtu,
1877	.ndo_validate_addr =		eth_validate_addr,
1878	.ndo_set_mac_address =		netvsc_set_mac_addr,
1879	.ndo_select_queue =		netvsc_select_queue,
1880	.ndo_get_stats64 =		netvsc_get_stats64,
 
 
1881};
1882
1883/*
1884 * Handle link status changes. For RNDIS_STATUS_NETWORK_CHANGE emulate link
1885 * down/up sequence. In case of RNDIS_STATUS_MEDIA_CONNECT when carrier is
1886 * present send GARP packet to network peers with netif_notify_peers().
1887 */
1888static void netvsc_link_change(struct work_struct *w)
1889{
1890	struct net_device_context *ndev_ctx =
1891		container_of(w, struct net_device_context, dwork.work);
1892	struct hv_device *device_obj = ndev_ctx->device_ctx;
1893	struct net_device *net = hv_get_drvdata(device_obj);
 
 
1894	struct netvsc_device *net_device;
1895	struct rndis_device *rdev;
1896	struct netvsc_reconfig *event = NULL;
1897	bool notify = false, reschedule = false;
1898	unsigned long flags, next_reconfig, delay;
1899
1900	/* if changes are happening, comeback later */
1901	if (!rtnl_trylock()) {
1902		schedule_delayed_work(&ndev_ctx->dwork, LINKCHANGE_INT);
1903		return;
1904	}
1905
1906	net_device = rtnl_dereference(ndev_ctx->nvdev);
1907	if (!net_device)
1908		goto out_unlock;
1909
1910	rdev = net_device->extension;
1911
1912	next_reconfig = ndev_ctx->last_reconfig + LINKCHANGE_INT;
1913	if (time_is_after_jiffies(next_reconfig)) {
1914		/* link_watch only sends one notification with current state
1915		 * per second, avoid doing reconfig more frequently. Handle
1916		 * wrap around.
1917		 */
1918		delay = next_reconfig - jiffies;
1919		delay = delay < LINKCHANGE_INT ? delay : LINKCHANGE_INT;
1920		schedule_delayed_work(&ndev_ctx->dwork, delay);
1921		goto out_unlock;
1922	}
1923	ndev_ctx->last_reconfig = jiffies;
1924
1925	spin_lock_irqsave(&ndev_ctx->lock, flags);
1926	if (!list_empty(&ndev_ctx->reconfig_events)) {
1927		event = list_first_entry(&ndev_ctx->reconfig_events,
1928					 struct netvsc_reconfig, list);
1929		list_del(&event->list);
1930		reschedule = !list_empty(&ndev_ctx->reconfig_events);
1931	}
1932	spin_unlock_irqrestore(&ndev_ctx->lock, flags);
1933
1934	if (!event)
1935		goto out_unlock;
1936
1937	switch (event->event) {
1938		/* Only the following events are possible due to the check in
1939		 * netvsc_linkstatus_callback()
1940		 */
1941	case RNDIS_STATUS_MEDIA_CONNECT:
1942		if (rdev->link_state) {
1943			rdev->link_state = false;
1944			netif_carrier_on(net);
1945			netvsc_tx_enable(net_device, net);
1946		} else {
1947			notify = true;
1948		}
1949		kfree(event);
1950		break;
1951	case RNDIS_STATUS_MEDIA_DISCONNECT:
1952		if (!rdev->link_state) {
1953			rdev->link_state = true;
1954			netif_carrier_off(net);
1955			netvsc_tx_disable(net_device, net);
1956		}
1957		kfree(event);
1958		break;
1959	case RNDIS_STATUS_NETWORK_CHANGE:
1960		/* Only makes sense if carrier is present */
1961		if (!rdev->link_state) {
1962			rdev->link_state = true;
1963			netif_carrier_off(net);
1964			netvsc_tx_disable(net_device, net);
1965			event->event = RNDIS_STATUS_MEDIA_CONNECT;
1966			spin_lock_irqsave(&ndev_ctx->lock, flags);
1967			list_add(&event->list, &ndev_ctx->reconfig_events);
1968			spin_unlock_irqrestore(&ndev_ctx->lock, flags);
1969			reschedule = true;
1970		}
1971		break;
1972	}
1973
1974	rtnl_unlock();
1975
1976	if (notify)
1977		netdev_notify_peers(net);
1978
1979	/* link_watch only sends one notification with current state per
1980	 * second, handle next reconfig event in 2 seconds.
1981	 */
1982	if (reschedule)
1983		schedule_delayed_work(&ndev_ctx->dwork, LINKCHANGE_INT);
1984
1985	return;
1986
1987out_unlock:
1988	rtnl_unlock();
1989}
1990
1991static struct net_device *get_netvsc_byref(struct net_device *vf_netdev)
1992{
1993	struct net_device_context *net_device_ctx;
1994	struct net_device *dev;
1995
1996	dev = netdev_master_upper_dev_get(vf_netdev);
1997	if (!dev || dev->netdev_ops != &device_ops)
1998		return NULL;	/* not a netvsc device */
1999
2000	net_device_ctx = netdev_priv(dev);
2001	if (!rtnl_dereference(net_device_ctx->nvdev))
2002		return NULL;	/* device is removed */
2003
2004	return dev;
2005}
2006
2007/* Called when VF is injecting data into network stack.
2008 * Change the associated network device from VF to netvsc.
2009 * note: already called with rcu_read_lock
2010 */
2011static rx_handler_result_t netvsc_vf_handle_frame(struct sk_buff **pskb)
2012{
2013	struct sk_buff *skb = *pskb;
2014	struct net_device *ndev = rcu_dereference(skb->dev->rx_handler_data);
2015	struct net_device_context *ndev_ctx = netdev_priv(ndev);
2016	struct netvsc_vf_pcpu_stats *pcpu_stats
2017		 = this_cpu_ptr(ndev_ctx->vf_stats);
2018
2019	skb = skb_share_check(skb, GFP_ATOMIC);
2020	if (unlikely(!skb))
2021		return RX_HANDLER_CONSUMED;
2022
2023	*pskb = skb;
2024
2025	skb->dev = ndev;
2026
2027	u64_stats_update_begin(&pcpu_stats->syncp);
2028	pcpu_stats->rx_packets++;
2029	pcpu_stats->rx_bytes += skb->len;
2030	u64_stats_update_end(&pcpu_stats->syncp);
2031
2032	return RX_HANDLER_ANOTHER;
2033}
2034
2035static int netvsc_vf_join(struct net_device *vf_netdev,
2036			  struct net_device *ndev)
2037{
2038	struct net_device_context *ndev_ctx = netdev_priv(ndev);
2039	int ret;
2040
2041	ret = netdev_rx_handler_register(vf_netdev,
2042					 netvsc_vf_handle_frame, ndev);
2043	if (ret != 0) {
2044		netdev_err(vf_netdev,
2045			   "can not register netvsc VF receive handler (err = %d)\n",
2046			   ret);
2047		goto rx_handler_failed;
2048	}
2049
2050	ret = netdev_master_upper_dev_link(vf_netdev, ndev,
2051					   NULL, NULL, NULL);
2052	if (ret != 0) {
2053		netdev_err(vf_netdev,
2054			   "can not set master device %s (err = %d)\n",
2055			   ndev->name, ret);
2056		goto upper_link_failed;
2057	}
2058
2059	/* set slave flag before open to prevent IPv6 addrconf */
2060	vf_netdev->flags |= IFF_SLAVE;
2061
2062	schedule_delayed_work(&ndev_ctx->vf_takeover, VF_TAKEOVER_INT);
 
2063
2064	call_netdevice_notifiers(NETDEV_JOIN, vf_netdev);
2065
2066	netdev_info(vf_netdev, "joined to %s\n", ndev->name);
2067	return 0;
2068
2069upper_link_failed:
2070	netdev_rx_handler_unregister(vf_netdev);
2071rx_handler_failed:
2072	return ret;
2073}
2074
2075static void __netvsc_vf_setup(struct net_device *ndev,
2076			      struct net_device *vf_netdev)
2077{
2078	int ret;
2079
2080	/* Align MTU of VF with master */
2081	ret = dev_set_mtu(vf_netdev, ndev->mtu);
2082	if (ret)
2083		netdev_warn(vf_netdev,
2084			    "unable to change mtu to %u\n", ndev->mtu);
2085
2086	/* set multicast etc flags on VF */
2087	dev_change_flags(vf_netdev, ndev->flags | IFF_SLAVE, NULL);
2088
2089	/* sync address list from ndev to VF */
2090	netif_addr_lock_bh(ndev);
2091	dev_uc_sync(vf_netdev, ndev);
2092	dev_mc_sync(vf_netdev, ndev);
2093	netif_addr_unlock_bh(ndev);
2094
2095	if (netif_running(ndev)) {
2096		ret = dev_open(vf_netdev, NULL);
2097		if (ret)
2098			netdev_warn(vf_netdev,
2099				    "unable to open: %d\n", ret);
2100	}
2101}
2102
2103/* Setup VF as slave of the synthetic device.
2104 * Runs in workqueue to avoid recursion in netlink callbacks.
2105 */
2106static void netvsc_vf_setup(struct work_struct *w)
2107{
2108	struct net_device_context *ndev_ctx
2109		= container_of(w, struct net_device_context, vf_takeover.work);
2110	struct net_device *ndev = hv_get_drvdata(ndev_ctx->device_ctx);
2111	struct net_device *vf_netdev;
2112
2113	if (!rtnl_trylock()) {
2114		schedule_delayed_work(&ndev_ctx->vf_takeover, 0);
2115		return;
2116	}
2117
2118	vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev);
2119	if (vf_netdev)
2120		__netvsc_vf_setup(ndev, vf_netdev);
2121
2122	rtnl_unlock();
2123}
2124
2125/* Find netvsc by VF serial number.
2126 * The PCI hyperv controller records the serial number as the slot kobj name.
2127 */
2128static struct net_device *get_netvsc_byslot(const struct net_device *vf_netdev)
2129{
2130	struct device *parent = vf_netdev->dev.parent;
2131	struct net_device_context *ndev_ctx;
 
2132	struct pci_dev *pdev;
2133	u32 serial;
2134
2135	if (!parent || !dev_is_pci(parent))
2136		return NULL; /* not a PCI device */
2137
2138	pdev = to_pci_dev(parent);
2139	if (!pdev->slot) {
2140		netdev_notice(vf_netdev, "no PCI slot information\n");
2141		return NULL;
2142	}
2143
2144	if (kstrtou32(pci_slot_name(pdev->slot), 10, &serial)) {
2145		netdev_notice(vf_netdev, "Invalid vf serial:%s\n",
2146			      pci_slot_name(pdev->slot));
2147		return NULL;
2148	}
2149
2150	list_for_each_entry(ndev_ctx, &netvsc_dev_list, list) {
2151		if (!ndev_ctx->vf_alloc)
2152			continue;
2153
2154		if (ndev_ctx->vf_serial == serial)
2155			return hv_get_drvdata(ndev_ctx->device_ctx);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2156	}
2157
2158	netdev_notice(vf_netdev,
2159		      "no netdev found for vf serial:%u\n", serial);
2160	return NULL;
2161}
2162
2163static int netvsc_register_vf(struct net_device *vf_netdev)
 
 
 
 
 
 
 
 
 
 
 
 
 
2164{
2165	struct net_device_context *net_device_ctx;
2166	struct netvsc_device *netvsc_dev;
 
2167	struct net_device *ndev;
2168	int ret;
2169
2170	if (vf_netdev->addr_len != ETH_ALEN)
2171		return NOTIFY_DONE;
2172
2173	ndev = get_netvsc_byslot(vf_netdev);
2174	if (!ndev)
2175		return NOTIFY_DONE;
2176
2177	net_device_ctx = netdev_priv(ndev);
2178	netvsc_dev = rtnl_dereference(net_device_ctx->nvdev);
2179	if (!netvsc_dev || rtnl_dereference(net_device_ctx->vf_netdev))
2180		return NOTIFY_DONE;
2181
2182	/* if synthetic interface is a different namespace,
2183	 * then move the VF to that namespace; join will be
2184	 * done again in that context.
2185	 */
2186	if (!net_eq(dev_net(ndev), dev_net(vf_netdev))) {
2187		ret = dev_change_net_namespace(vf_netdev,
2188					       dev_net(ndev), "eth%d");
2189		if (ret)
2190			netdev_err(vf_netdev,
2191				   "could not move to same namespace as %s: %d\n",
2192				   ndev->name, ret);
2193		else
2194			netdev_info(vf_netdev,
2195				    "VF moved to namespace with: %s\n",
2196				    ndev->name);
2197		return NOTIFY_DONE;
2198	}
2199
2200	netdev_info(ndev, "VF registering: %s\n", vf_netdev->name);
2201
2202	if (netvsc_vf_join(vf_netdev, ndev) != 0)
2203		return NOTIFY_DONE;
2204
2205	dev_hold(vf_netdev);
2206	rcu_assign_pointer(net_device_ctx->vf_netdev, vf_netdev);
2207
 
 
 
2208	vf_netdev->wanted_features = ndev->features;
2209	netdev_update_features(vf_netdev);
2210
 
 
 
2211	return NOTIFY_OK;
2212}
2213
2214/* VF up/down change detected, schedule to change data path */
2215static int netvsc_vf_changed(struct net_device *vf_netdev)
 
 
 
 
 
 
 
 
 
2216{
2217	struct net_device_context *net_device_ctx;
2218	struct netvsc_device *netvsc_dev;
2219	struct net_device *ndev;
2220	bool vf_is_up = netif_running(vf_netdev);
 
 
 
 
2221
2222	ndev = get_netvsc_byref(vf_netdev);
2223	if (!ndev)
2224		return NOTIFY_DONE;
2225
2226	net_device_ctx = netdev_priv(ndev);
2227	netvsc_dev = rtnl_dereference(net_device_ctx->nvdev);
2228	if (!netvsc_dev)
2229		return NOTIFY_DONE;
2230
2231	netvsc_switch_datapath(ndev, vf_is_up);
2232	netdev_info(ndev, "Data path switched %s VF: %s\n",
2233		    vf_is_up ? "to" : "from", vf_netdev->name);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2234
2235	return NOTIFY_OK;
2236}
2237
2238static int netvsc_unregister_vf(struct net_device *vf_netdev)
2239{
2240	struct net_device *ndev;
2241	struct net_device_context *net_device_ctx;
2242
2243	ndev = get_netvsc_byref(vf_netdev);
2244	if (!ndev)
2245		return NOTIFY_DONE;
2246
2247	net_device_ctx = netdev_priv(ndev);
2248	cancel_delayed_work_sync(&net_device_ctx->vf_takeover);
2249
2250	netdev_info(ndev, "VF unregistering: %s\n", vf_netdev->name);
2251
 
 
 
2252	netdev_rx_handler_unregister(vf_netdev);
2253	netdev_upper_dev_unlink(vf_netdev, ndev);
2254	RCU_INIT_POINTER(net_device_ctx->vf_netdev, NULL);
2255	dev_put(vf_netdev);
2256
 
 
2257	return NOTIFY_OK;
2258}
2259
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2260static int netvsc_probe(struct hv_device *dev,
2261			const struct hv_vmbus_device_id *dev_id)
2262{
2263	struct net_device *net = NULL;
2264	struct net_device_context *net_device_ctx;
2265	struct netvsc_device_info *device_info = NULL;
2266	struct netvsc_device *nvdev;
2267	int ret = -ENOMEM;
2268
2269	net = alloc_etherdev_mq(sizeof(struct net_device_context),
2270				VRSS_CHANNEL_MAX);
2271	if (!net)
2272		goto no_net;
2273
2274	netif_carrier_off(net);
2275
2276	netvsc_init_settings(net);
2277
2278	net_device_ctx = netdev_priv(net);
2279	net_device_ctx->device_ctx = dev;
2280	net_device_ctx->msg_enable = netif_msg_init(debug, default_msg);
2281	if (netif_msg_probe(net_device_ctx))
2282		netdev_dbg(net, "netvsc msg_enable: %d\n",
2283			   net_device_ctx->msg_enable);
2284
2285	hv_set_drvdata(dev, net);
2286
2287	INIT_DELAYED_WORK(&net_device_ctx->dwork, netvsc_link_change);
2288
 
2289	spin_lock_init(&net_device_ctx->lock);
2290	INIT_LIST_HEAD(&net_device_ctx->reconfig_events);
2291	INIT_DELAYED_WORK(&net_device_ctx->vf_takeover, netvsc_vf_setup);
2292
2293	net_device_ctx->vf_stats
2294		= netdev_alloc_pcpu_stats(struct netvsc_vf_pcpu_stats);
2295	if (!net_device_ctx->vf_stats)
2296		goto no_stats;
2297
2298	net->netdev_ops = &device_ops;
2299	net->ethtool_ops = &ethtool_ops;
2300	SET_NETDEV_DEV(net, &dev->device);
 
2301
2302	/* We always need headroom for rndis header */
2303	net->needed_headroom = RNDIS_AND_PPI_SIZE;
2304
2305	/* Initialize the number of queues to be 1, we may change it if more
2306	 * channels are offered later.
2307	 */
2308	netif_set_real_num_tx_queues(net, 1);
2309	netif_set_real_num_rx_queues(net, 1);
2310
2311	/* Notify the netvsc driver of the new device */
2312	device_info = netvsc_devinfo_get(NULL);
2313
2314	if (!device_info) {
2315		ret = -ENOMEM;
2316		goto devinfo_failed;
2317	}
2318
2319	nvdev = rndis_filter_device_add(dev, device_info);
2320	if (IS_ERR(nvdev)) {
2321		ret = PTR_ERR(nvdev);
2322		netdev_err(net, "unable to add netvsc device (ret %d)\n", ret);
2323		goto rndis_failed;
2324	}
2325
2326	memcpy(net->dev_addr, device_info->mac_adr, ETH_ALEN);
2327
2328	/* We must get rtnl lock before scheduling nvdev->subchan_work,
2329	 * otherwise netvsc_subchan_work() can get rtnl lock first and wait
2330	 * all subchannels to show up, but that may not happen because
2331	 * netvsc_probe() can't get rtnl lock and as a result vmbus_onoffer()
2332	 * -> ... -> device_add() -> ... -> __device_attach() can't get
2333	 * the device lock, so all the subchannels can't be processed --
2334	 * finally netvsc_subchan_work() hangs forever.
 
 
 
 
 
2335	 */
2336	rtnl_lock();
2337
 
 
 
 
 
 
 
 
 
2338	if (nvdev->num_chn > 1)
2339		schedule_work(&nvdev->subchan_work);
2340
2341	/* hw_features computed in rndis_netdev_set_hwcaps() */
2342	net->features = net->hw_features |
2343		NETIF_F_HIGHDMA | NETIF_F_HW_VLAN_CTAG_TX |
2344		NETIF_F_HW_VLAN_CTAG_RX;
2345	net->vlan_features = net->features;
2346
 
 
 
 
 
2347	/* MTU range: 68 - 1500 or 65521 */
2348	net->min_mtu = NETVSC_MTU_MIN;
2349	if (nvdev->nvsp_version >= NVSP_PROTOCOL_VERSION_2)
2350		net->max_mtu = NETVSC_MTU - ETH_HLEN;
2351	else
2352		net->max_mtu = ETH_DATA_LEN;
2353
 
 
2354	ret = register_netdevice(net);
2355	if (ret != 0) {
2356		pr_err("Unable to register netdev.\n");
2357		goto register_failed;
2358	}
2359
2360	list_add(&net_device_ctx->list, &netvsc_dev_list);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2361	rtnl_unlock();
2362
2363	kfree(device_info);
2364	return 0;
2365
2366register_failed:
2367	rtnl_unlock();
2368	rndis_filter_device_remove(dev, nvdev);
2369rndis_failed:
2370	kfree(device_info);
 
2371devinfo_failed:
2372	free_percpu(net_device_ctx->vf_stats);
2373no_stats:
2374	hv_set_drvdata(dev, NULL);
2375	free_netdev(net);
2376no_net:
2377	return ret;
2378}
2379
2380static int netvsc_remove(struct hv_device *dev)
2381{
2382	struct net_device_context *ndev_ctx;
2383	struct net_device *vf_netdev, *net;
2384	struct netvsc_device *nvdev;
2385
2386	net = hv_get_drvdata(dev);
2387	if (net == NULL) {
2388		dev_err(&dev->device, "No net device to remove\n");
2389		return 0;
2390	}
2391
2392	ndev_ctx = netdev_priv(net);
2393
2394	cancel_delayed_work_sync(&ndev_ctx->dwork);
2395
2396	rtnl_lock();
2397	nvdev = rtnl_dereference(ndev_ctx->nvdev);
2398	if (nvdev)
2399		cancel_work_sync(&nvdev->subchan_work);
 
 
2400
2401	/*
2402	 * Call to the vsc driver to let it know that the device is being
2403	 * removed. Also blocks mtu and channel changes.
2404	 */
2405	vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev);
2406	if (vf_netdev)
2407		netvsc_unregister_vf(vf_netdev);
2408
2409	if (nvdev)
2410		rndis_filter_device_remove(dev, nvdev);
2411
2412	unregister_netdevice(net);
2413	list_del(&ndev_ctx->list);
2414
2415	rtnl_unlock();
2416
2417	hv_set_drvdata(dev, NULL);
2418
2419	free_percpu(ndev_ctx->vf_stats);
2420	free_netdev(net);
2421	return 0;
2422}
2423
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2424static const struct hv_vmbus_device_id id_table[] = {
2425	/* Network guid */
2426	{ HV_NIC_GUID, },
2427	{ },
2428};
2429
2430MODULE_DEVICE_TABLE(vmbus, id_table);
2431
2432/* The one and only one */
2433static struct  hv_driver netvsc_drv = {
2434	.name = KBUILD_MODNAME,
2435	.id_table = id_table,
2436	.probe = netvsc_probe,
2437	.remove = netvsc_remove,
 
 
2438	.driver = {
2439		.probe_type = PROBE_FORCE_SYNCHRONOUS,
2440	},
2441};
2442
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2443/*
2444 * On Hyper-V, every VF interface is matched with a corresponding
2445 * synthetic interface. The synthetic interface is presented first
2446 * to the guest. When the corresponding VF instance is registered,
2447 * we will take care of switching the data path.
2448 */
2449static int netvsc_netdev_event(struct notifier_block *this,
2450			       unsigned long event, void *ptr)
2451{
2452	struct net_device *event_dev = netdev_notifier_info_to_dev(ptr);
 
2453
2454	/* Skip our own events */
2455	if (event_dev->netdev_ops == &device_ops)
2456		return NOTIFY_DONE;
2457
2458	/* Avoid non-Ethernet type devices */
2459	if (event_dev->type != ARPHRD_ETHER)
2460		return NOTIFY_DONE;
2461
2462	/* Avoid Vlan dev with same MAC registering as VF */
2463	if (is_vlan_dev(event_dev))
2464		return NOTIFY_DONE;
 
2465
2466	/* Avoid Bonding master dev with same MAC registering as VF */
2467	if ((event_dev->priv_flags & IFF_BONDING) &&
2468	    (event_dev->flags & IFF_MASTER))
2469		return NOTIFY_DONE;
2470
2471	switch (event) {
 
 
2472	case NETDEV_REGISTER:
2473		return netvsc_register_vf(event_dev);
2474	case NETDEV_UNREGISTER:
2475		return netvsc_unregister_vf(event_dev);
2476	case NETDEV_UP:
2477	case NETDEV_DOWN:
2478		return netvsc_vf_changed(event_dev);
 
 
2479	default:
2480		return NOTIFY_DONE;
2481	}
2482}
2483
2484static struct notifier_block netvsc_netdev_notifier = {
2485	.notifier_call = netvsc_netdev_event,
2486};
2487
2488static void __exit netvsc_drv_exit(void)
2489{
2490	unregister_netdevice_notifier(&netvsc_netdev_notifier);
2491	vmbus_driver_unregister(&netvsc_drv);
2492}
2493
2494static int __init netvsc_drv_init(void)
2495{
2496	int ret;
2497
2498	if (ring_size < RING_SIZE_MIN) {
2499		ring_size = RING_SIZE_MIN;
2500		pr_info("Increased ring_size to %u (min allowed)\n",
2501			ring_size);
2502	}
2503	netvsc_ring_bytes = ring_size * PAGE_SIZE;
 
 
2504
2505	ret = vmbus_driver_register(&netvsc_drv);
2506	if (ret)
2507		return ret;
2508
2509	register_netdevice_notifier(&netvsc_netdev_notifier);
2510	return 0;
 
 
 
 
2511}
2512
2513MODULE_LICENSE("GPL");
2514MODULE_DESCRIPTION("Microsoft Hyper-V network driver");
2515
2516module_init(netvsc_drv_init);
2517module_exit(netvsc_drv_exit);