Linux Audio

Check our new training course

Loading...
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0
   2/* Copyright(c) 1999 - 2018 Intel Corporation. */
   3
   4#include <linux/pci.h>
   5#include <linux/delay.h>
   6#include <linux/iopoll.h>
   7#include <linux/sched.h>
   8
   9#include "ixgbe.h"
  10#include "ixgbe_phy.h"
  11
  12static void ixgbe_i2c_start(struct ixgbe_hw *hw);
  13static void ixgbe_i2c_stop(struct ixgbe_hw *hw);
  14static int ixgbe_clock_in_i2c_byte(struct ixgbe_hw *hw, u8 *data);
  15static int ixgbe_clock_out_i2c_byte(struct ixgbe_hw *hw, u8 data);
  16static int ixgbe_get_i2c_ack(struct ixgbe_hw *hw);
  17static int ixgbe_clock_in_i2c_bit(struct ixgbe_hw *hw, bool *data);
  18static int ixgbe_clock_out_i2c_bit(struct ixgbe_hw *hw, bool data);
  19static void ixgbe_raise_i2c_clk(struct ixgbe_hw *hw, u32 *i2cctl);
  20static void ixgbe_lower_i2c_clk(struct ixgbe_hw *hw, u32 *i2cctl);
  21static int ixgbe_set_i2c_data(struct ixgbe_hw *hw, u32 *i2cctl, bool data);
  22static bool ixgbe_get_i2c_data(struct ixgbe_hw *hw, u32 *i2cctl);
  23static void ixgbe_i2c_bus_clear(struct ixgbe_hw *hw);
  24static enum ixgbe_phy_type ixgbe_get_phy_type_from_id(u32 phy_id);
  25static int ixgbe_get_phy_id(struct ixgbe_hw *hw);
  26static int ixgbe_identify_qsfp_module_generic(struct ixgbe_hw *hw);
  27
  28/**
  29 *  ixgbe_out_i2c_byte_ack - Send I2C byte with ack
  30 *  @hw: pointer to the hardware structure
  31 *  @byte: byte to send
  32 *
  33 *  Returns an error code on error.
  34 **/
  35static int ixgbe_out_i2c_byte_ack(struct ixgbe_hw *hw, u8 byte)
  36{
  37	int status;
  38
  39	status = ixgbe_clock_out_i2c_byte(hw, byte);
  40	if (status)
  41		return status;
  42	return ixgbe_get_i2c_ack(hw);
  43}
  44
  45/**
  46 *  ixgbe_in_i2c_byte_ack - Receive an I2C byte and send ack
  47 *  @hw: pointer to the hardware structure
  48 *  @byte: pointer to a u8 to receive the byte
  49 *
  50 *  Returns an error code on error.
  51 **/
  52static int ixgbe_in_i2c_byte_ack(struct ixgbe_hw *hw, u8 *byte)
  53{
  54	int status;
  55
  56	status = ixgbe_clock_in_i2c_byte(hw, byte);
  57	if (status)
  58		return status;
  59	/* ACK */
  60	return ixgbe_clock_out_i2c_bit(hw, false);
  61}
  62
  63/**
  64 *  ixgbe_ones_comp_byte_add - Perform one's complement addition
  65 *  @add1: addend 1
  66 *  @add2: addend 2
  67 *
  68 *  Returns one's complement 8-bit sum.
  69 **/
  70static u8 ixgbe_ones_comp_byte_add(u8 add1, u8 add2)
  71{
  72	u16 sum = add1 + add2;
  73
  74	sum = (sum & 0xFF) + (sum >> 8);
  75	return sum & 0xFF;
  76}
  77
  78/**
  79 *  ixgbe_read_i2c_combined_generic_int - Perform I2C read combined operation
  80 *  @hw: pointer to the hardware structure
  81 *  @addr: I2C bus address to read from
  82 *  @reg: I2C device register to read from
  83 *  @val: pointer to location to receive read value
  84 *  @lock: true if to take and release semaphore
  85 *
  86 *  Returns an error code on error.
  87 */
  88int ixgbe_read_i2c_combined_generic_int(struct ixgbe_hw *hw, u8 addr,
  89					u16 reg, u16 *val, bool lock)
  90{
  91	u32 swfw_mask = hw->phy.phy_semaphore_mask;
  92	int max_retry = 3;
  93	int retry = 0;
  94	u8 csum_byte;
  95	u8 high_bits;
  96	u8 low_bits;
  97	u8 reg_high;
  98	u8 csum;
  99
 100	reg_high = ((reg >> 7) & 0xFE) | 1;     /* Indicate read combined */
 101	csum = ixgbe_ones_comp_byte_add(reg_high, reg & 0xFF);
 102	csum = ~csum;
 103	do {
 104		if (lock && hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
 105			return -EBUSY;
 106		ixgbe_i2c_start(hw);
 107		/* Device Address and write indication */
 108		if (ixgbe_out_i2c_byte_ack(hw, addr))
 109			goto fail;
 110		/* Write bits 14:8 */
 111		if (ixgbe_out_i2c_byte_ack(hw, reg_high))
 112			goto fail;
 113		/* Write bits 7:0 */
 114		if (ixgbe_out_i2c_byte_ack(hw, reg & 0xFF))
 115			goto fail;
 116		/* Write csum */
 117		if (ixgbe_out_i2c_byte_ack(hw, csum))
 118			goto fail;
 119		/* Re-start condition */
 120		ixgbe_i2c_start(hw);
 121		/* Device Address and read indication */
 122		if (ixgbe_out_i2c_byte_ack(hw, addr | 1))
 123			goto fail;
 124		/* Get upper bits */
 125		if (ixgbe_in_i2c_byte_ack(hw, &high_bits))
 126			goto fail;
 127		/* Get low bits */
 128		if (ixgbe_in_i2c_byte_ack(hw, &low_bits))
 129			goto fail;
 130		/* Get csum */
 131		if (ixgbe_clock_in_i2c_byte(hw, &csum_byte))
 132			goto fail;
 133		/* NACK */
 134		if (ixgbe_clock_out_i2c_bit(hw, false))
 135			goto fail;
 136		ixgbe_i2c_stop(hw);
 137		if (lock)
 138			hw->mac.ops.release_swfw_sync(hw, swfw_mask);
 139		*val = (high_bits << 8) | low_bits;
 140		return 0;
 141
 142fail:
 143		ixgbe_i2c_bus_clear(hw);
 144		if (lock)
 145			hw->mac.ops.release_swfw_sync(hw, swfw_mask);
 146		retry++;
 147		if (retry < max_retry)
 148			hw_dbg(hw, "I2C byte read combined error - Retry.\n");
 149		else
 150			hw_dbg(hw, "I2C byte read combined error.\n");
 151	} while (retry < max_retry);
 152
 153	return -EIO;
 154}
 155
 156/**
 157 *  ixgbe_write_i2c_combined_generic_int - Perform I2C write combined operation
 158 *  @hw: pointer to the hardware structure
 159 *  @addr: I2C bus address to write to
 160 *  @reg: I2C device register to write to
 161 *  @val: value to write
 162 *  @lock: true if to take and release semaphore
 163 *
 164 *  Returns an error code on error.
 165 */
 166int ixgbe_write_i2c_combined_generic_int(struct ixgbe_hw *hw, u8 addr,
 167					 u16 reg, u16 val, bool lock)
 168{
 169	u32 swfw_mask = hw->phy.phy_semaphore_mask;
 170	int max_retry = 1;
 171	int retry = 0;
 172	u8 reg_high;
 173	u8 csum;
 174
 175	reg_high = (reg >> 7) & 0xFE;   /* Indicate write combined */
 176	csum = ixgbe_ones_comp_byte_add(reg_high, reg & 0xFF);
 177	csum = ixgbe_ones_comp_byte_add(csum, val >> 8);
 178	csum = ixgbe_ones_comp_byte_add(csum, val & 0xFF);
 179	csum = ~csum;
 180	do {
 181		if (lock && hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
 182			return -EBUSY;
 183		ixgbe_i2c_start(hw);
 184		/* Device Address and write indication */
 185		if (ixgbe_out_i2c_byte_ack(hw, addr))
 186			goto fail;
 187		/* Write bits 14:8 */
 188		if (ixgbe_out_i2c_byte_ack(hw, reg_high))
 189			goto fail;
 190		/* Write bits 7:0 */
 191		if (ixgbe_out_i2c_byte_ack(hw, reg & 0xFF))
 192			goto fail;
 193		/* Write data 15:8 */
 194		if (ixgbe_out_i2c_byte_ack(hw, val >> 8))
 195			goto fail;
 196		/* Write data 7:0 */
 197		if (ixgbe_out_i2c_byte_ack(hw, val & 0xFF))
 198			goto fail;
 199		/* Write csum */
 200		if (ixgbe_out_i2c_byte_ack(hw, csum))
 201			goto fail;
 202		ixgbe_i2c_stop(hw);
 203		if (lock)
 204			hw->mac.ops.release_swfw_sync(hw, swfw_mask);
 205		return 0;
 206
 207fail:
 208		ixgbe_i2c_bus_clear(hw);
 209		if (lock)
 210			hw->mac.ops.release_swfw_sync(hw, swfw_mask);
 211		retry++;
 212		if (retry < max_retry)
 213			hw_dbg(hw, "I2C byte write combined error - Retry.\n");
 214		else
 215			hw_dbg(hw, "I2C byte write combined error.\n");
 216	} while (retry < max_retry);
 217
 218	return -EIO;
 219}
 220
 221/**
 222 *  ixgbe_probe_phy - Probe a single address for a PHY
 223 *  @hw: pointer to hardware structure
 224 *  @phy_addr: PHY address to probe
 225 *
 226 *  Returns true if PHY found
 227 **/
 228static bool ixgbe_probe_phy(struct ixgbe_hw *hw, u16 phy_addr)
 229{
 230	u16 ext_ability = 0;
 231
 232	hw->phy.mdio.prtad = phy_addr;
 233	if (mdio45_probe(&hw->phy.mdio, phy_addr) != 0)
 234		return false;
 235
 236	if (ixgbe_get_phy_id(hw))
 237		return false;
 238
 239	hw->phy.type = ixgbe_get_phy_type_from_id(hw->phy.id);
 240
 241	if (hw->phy.type == ixgbe_phy_unknown) {
 242		hw->phy.ops.read_reg(hw,
 243				     MDIO_PMA_EXTABLE,
 244				     MDIO_MMD_PMAPMD,
 245				     &ext_ability);
 246		if (ext_ability &
 247		    (MDIO_PMA_EXTABLE_10GBT |
 248		     MDIO_PMA_EXTABLE_1000BT))
 249			hw->phy.type = ixgbe_phy_cu_unknown;
 250		else
 251			hw->phy.type = ixgbe_phy_generic;
 252	}
 253
 254	return true;
 255}
 256
 257/**
 258 *  ixgbe_identify_phy_generic - Get physical layer module
 259 *  @hw: pointer to hardware structure
 260 *
 261 *  Determines the physical layer module found on the current adapter.
 262 **/
 263int ixgbe_identify_phy_generic(struct ixgbe_hw *hw)
 264{
 265	u32 status = -EFAULT;
 266	u32 phy_addr;
 
 267
 268	if (!hw->phy.phy_semaphore_mask) {
 269		if (hw->bus.lan_id)
 270			hw->phy.phy_semaphore_mask = IXGBE_GSSR_PHY1_SM;
 271		else
 272			hw->phy.phy_semaphore_mask = IXGBE_GSSR_PHY0_SM;
 273	}
 274
 275	if (hw->phy.type != ixgbe_phy_unknown)
 276		return 0;
 277
 278	if (hw->phy.nw_mng_if_sel) {
 279		phy_addr = FIELD_GET(IXGBE_NW_MNG_IF_SEL_MDIO_PHY_ADD,
 280				     hw->phy.nw_mng_if_sel);
 
 281		if (ixgbe_probe_phy(hw, phy_addr))
 282			return 0;
 283		else
 284			return -EFAULT;
 285	}
 286
 287	for (phy_addr = 0; phy_addr < IXGBE_MAX_PHY_ADDR; phy_addr++) {
 288		if (ixgbe_probe_phy(hw, phy_addr)) {
 289			status = 0;
 290			break;
 291		}
 292	}
 293
 294	/* Certain media types do not have a phy so an address will not
 295	 * be found and the code will take this path.  Caller has to
 296	 * decide if it is an error or not.
 297	 */
 298	if (status)
 299		hw->phy.mdio.prtad = MDIO_PRTAD_NONE;
 300
 301	return status;
 302}
 303
 304/**
 305 * ixgbe_check_reset_blocked - check status of MNG FW veto bit
 306 * @hw: pointer to the hardware structure
 307 *
 308 * This function checks the MMNGC.MNG_VETO bit to see if there are
 309 * any constraints on link from manageability.  For MAC's that don't
 310 * have this bit just return false since the link can not be blocked
 311 * via this method.
 312 **/
 313bool ixgbe_check_reset_blocked(struct ixgbe_hw *hw)
 314{
 315	u32 mmngc;
 316
 317	/* If we don't have this bit, it can't be blocking */
 318	if (hw->mac.type == ixgbe_mac_82598EB)
 319		return false;
 320
 321	mmngc = IXGBE_READ_REG(hw, IXGBE_MMNGC);
 322	if (mmngc & IXGBE_MMNGC_MNG_VETO) {
 323		hw_dbg(hw, "MNG_VETO bit detected.\n");
 324		return true;
 325	}
 326
 327	return false;
 328}
 329
 330/**
 331 *  ixgbe_get_phy_id - Get the phy type
 332 *  @hw: pointer to hardware structure
 333 *
 334 **/
 335static int ixgbe_get_phy_id(struct ixgbe_hw *hw)
 336{
 
 337	u16 phy_id_high = 0;
 338	u16 phy_id_low = 0;
 339	int status;
 340
 341	status = hw->phy.ops.read_reg(hw, MDIO_DEVID1, MDIO_MMD_PMAPMD,
 342				      &phy_id_high);
 343
 344	if (!status) {
 345		hw->phy.id = (u32)(phy_id_high << 16);
 346		status = hw->phy.ops.read_reg(hw, MDIO_DEVID2, MDIO_MMD_PMAPMD,
 347					      &phy_id_low);
 348		hw->phy.id |= (u32)(phy_id_low & IXGBE_PHY_REVISION_MASK);
 349		hw->phy.revision = (u32)(phy_id_low & ~IXGBE_PHY_REVISION_MASK);
 350	}
 351	return status;
 352}
 353
 354/**
 355 *  ixgbe_get_phy_type_from_id - Get the phy type
 356 *  @phy_id: hardware phy id
 357 *
 358 **/
 359static enum ixgbe_phy_type ixgbe_get_phy_type_from_id(u32 phy_id)
 360{
 361	enum ixgbe_phy_type phy_type;
 362
 363	switch (phy_id) {
 364	case TN1010_PHY_ID:
 365		phy_type = ixgbe_phy_tn;
 366		break;
 367	case X550_PHY_ID2:
 368	case X550_PHY_ID3:
 369	case X540_PHY_ID:
 370		phy_type = ixgbe_phy_aq;
 371		break;
 372	case QT2022_PHY_ID:
 373		phy_type = ixgbe_phy_qt;
 374		break;
 375	case ATH_PHY_ID:
 376		phy_type = ixgbe_phy_nl;
 377		break;
 378	case X557_PHY_ID:
 379	case X557_PHY_ID2:
 380		phy_type = ixgbe_phy_x550em_ext_t;
 381		break;
 382	case BCM54616S_E_PHY_ID:
 383		phy_type = ixgbe_phy_ext_1g_t;
 384		break;
 385	default:
 386		phy_type = ixgbe_phy_unknown;
 387		break;
 388	}
 389
 390	return phy_type;
 391}
 392
 393/**
 394 *  ixgbe_reset_phy_generic - Performs a PHY reset
 395 *  @hw: pointer to hardware structure
 396 **/
 397int ixgbe_reset_phy_generic(struct ixgbe_hw *hw)
 398{
 399	u32 i;
 400	u16 ctrl = 0;
 401	int status = 0;
 402
 403	if (hw->phy.type == ixgbe_phy_unknown)
 404		status = ixgbe_identify_phy_generic(hw);
 405
 406	if (status != 0 || hw->phy.type == ixgbe_phy_none)
 407		return status;
 408
 409	/* Don't reset PHY if it's shut down due to overtemp. */
 410	if (!hw->phy.reset_if_overtemp && hw->phy.ops.check_overtemp(hw))
 
 411		return 0;
 412
 413	/* Blocked by MNG FW so bail */
 414	if (ixgbe_check_reset_blocked(hw))
 415		return 0;
 416
 417	/*
 418	 * Perform soft PHY reset to the PHY_XS.
 419	 * This will cause a soft reset to the PHY
 420	 */
 421	hw->phy.ops.write_reg(hw, MDIO_CTRL1,
 422			      MDIO_MMD_PHYXS,
 423			      MDIO_CTRL1_RESET);
 424
 425	/*
 426	 * Poll for reset bit to self-clear indicating reset is complete.
 427	 * Some PHYs could take up to 3 seconds to complete and need about
 428	 * 1.7 usec delay after the reset is complete.
 429	 */
 430	for (i = 0; i < 30; i++) {
 431		msleep(100);
 432		if (hw->phy.type == ixgbe_phy_x550em_ext_t) {
 433			status = hw->phy.ops.read_reg(hw,
 434						  IXGBE_MDIO_TX_VENDOR_ALARMS_3,
 435						  MDIO_MMD_PMAPMD, &ctrl);
 436			if (status)
 437				return status;
 438
 439			if (ctrl & IXGBE_MDIO_TX_VENDOR_ALARMS_3_RST_MASK) {
 440				udelay(2);
 441				break;
 442			}
 443		} else {
 444			status = hw->phy.ops.read_reg(hw, MDIO_CTRL1,
 445						      MDIO_MMD_PHYXS, &ctrl);
 446			if (status)
 447				return status;
 448
 449			if (!(ctrl & MDIO_CTRL1_RESET)) {
 450				udelay(2);
 451				break;
 452			}
 453		}
 454	}
 455
 456	if (ctrl & MDIO_CTRL1_RESET) {
 457		hw_dbg(hw, "PHY reset polling failed to complete.\n");
 458		return -EIO;
 459	}
 460
 461	return 0;
 462}
 463
 464/**
 465 *  ixgbe_read_phy_reg_mdi - read PHY register
 
 466 *  @hw: pointer to hardware structure
 467 *  @reg_addr: 32 bit address of PHY register to read
 468 *  @device_type: 5 bit device type
 469 *  @phy_data: Pointer to read data from PHY register
 470 *
 471 *  Reads a value from a specified PHY register without the SWFW lock
 472 **/
 473int ixgbe_read_phy_reg_mdi(struct ixgbe_hw *hw, u32 reg_addr, u32 device_type,
 474			   u16 *phy_data)
 475{
 476	u32 i, data, command;
 477
 478	/* Setup and write the address cycle command */
 479	command = ((reg_addr << IXGBE_MSCA_NP_ADDR_SHIFT)  |
 480		   (device_type << IXGBE_MSCA_DEV_TYPE_SHIFT) |
 481		   (hw->phy.mdio.prtad << IXGBE_MSCA_PHY_ADDR_SHIFT) |
 482		   (IXGBE_MSCA_ADDR_CYCLE | IXGBE_MSCA_MDI_COMMAND));
 483
 484	IXGBE_WRITE_REG(hw, IXGBE_MSCA, command);
 485
 486	/* Check every 10 usec to see if the address cycle completed.
 487	 * The MDI Command bit will clear when the operation is
 488	 * complete
 489	 */
 490	for (i = 0; i < IXGBE_MDIO_COMMAND_TIMEOUT; i++) {
 491		udelay(10);
 492
 493		command = IXGBE_READ_REG(hw, IXGBE_MSCA);
 494		if ((command & IXGBE_MSCA_MDI_COMMAND) == 0)
 495				break;
 496	}
 497
 498
 499	if ((command & IXGBE_MSCA_MDI_COMMAND) != 0) {
 500		hw_dbg(hw, "PHY address command did not complete.\n");
 501		return -EIO;
 502	}
 503
 504	/* Address cycle complete, setup and write the read
 505	 * command
 506	 */
 507	command = ((reg_addr << IXGBE_MSCA_NP_ADDR_SHIFT)  |
 508		   (device_type << IXGBE_MSCA_DEV_TYPE_SHIFT) |
 509		   (hw->phy.mdio.prtad << IXGBE_MSCA_PHY_ADDR_SHIFT) |
 510		   (IXGBE_MSCA_READ | IXGBE_MSCA_MDI_COMMAND));
 511
 512	IXGBE_WRITE_REG(hw, IXGBE_MSCA, command);
 513
 514	/* Check every 10 usec to see if the address cycle
 515	 * completed. The MDI Command bit will clear when the
 516	 * operation is complete
 517	 */
 518	for (i = 0; i < IXGBE_MDIO_COMMAND_TIMEOUT; i++) {
 519		udelay(10);
 520
 521		command = IXGBE_READ_REG(hw, IXGBE_MSCA);
 522		if ((command & IXGBE_MSCA_MDI_COMMAND) == 0)
 523			break;
 524	}
 525
 526	if ((command & IXGBE_MSCA_MDI_COMMAND) != 0) {
 527		hw_dbg(hw, "PHY read command didn't complete\n");
 528		return -EIO;
 529	}
 530
 531	/* Read operation is complete.  Get the data
 532	 * from MSRWD
 533	 */
 534	data = IXGBE_READ_REG(hw, IXGBE_MSRWD);
 535	data >>= IXGBE_MSRWD_READ_DATA_SHIFT;
 536	*phy_data = (u16)(data);
 537
 538	return 0;
 539}
 540
 541/**
 542 *  ixgbe_read_phy_reg_generic - Reads a value from a specified PHY register
 543 *  using the SWFW lock - this function is needed in most cases
 544 *  @hw: pointer to hardware structure
 545 *  @reg_addr: 32 bit address of PHY register to read
 546 *  @device_type: 5 bit device type
 547 *  @phy_data: Pointer to read data from PHY register
 548 **/
 549int ixgbe_read_phy_reg_generic(struct ixgbe_hw *hw, u32 reg_addr,
 550			       u32 device_type, u16 *phy_data)
 551{
 
 552	u32 gssr = hw->phy.phy_semaphore_mask;
 553	int status;
 554
 555	if (hw->mac.ops.acquire_swfw_sync(hw, gssr) == 0) {
 556		status = ixgbe_read_phy_reg_mdi(hw, reg_addr, device_type,
 557						phy_data);
 558		hw->mac.ops.release_swfw_sync(hw, gssr);
 559	} else {
 560		return -EBUSY;
 561	}
 562
 563	return status;
 564}
 565
 566/**
 567 *  ixgbe_write_phy_reg_mdi - Writes a value to specified PHY register
 568 *  without SWFW lock
 569 *  @hw: pointer to hardware structure
 570 *  @reg_addr: 32 bit PHY register to write
 571 *  @device_type: 5 bit device type
 572 *  @phy_data: Data to write to the PHY register
 573 **/
 574int ixgbe_write_phy_reg_mdi(struct ixgbe_hw *hw, u32 reg_addr, u32 device_type,
 575			    u16 phy_data)
 576{
 577	u32 i, command;
 578
 579	/* Put the data in the MDI single read and write data register*/
 580	IXGBE_WRITE_REG(hw, IXGBE_MSRWD, (u32)phy_data);
 581
 582	/* Setup and write the address cycle command */
 583	command = ((reg_addr << IXGBE_MSCA_NP_ADDR_SHIFT)  |
 584		   (device_type << IXGBE_MSCA_DEV_TYPE_SHIFT) |
 585		   (hw->phy.mdio.prtad << IXGBE_MSCA_PHY_ADDR_SHIFT) |
 586		   (IXGBE_MSCA_ADDR_CYCLE | IXGBE_MSCA_MDI_COMMAND));
 587
 588	IXGBE_WRITE_REG(hw, IXGBE_MSCA, command);
 589
 590	/*
 591	 * Check every 10 usec to see if the address cycle completed.
 592	 * The MDI Command bit will clear when the operation is
 593	 * complete
 594	 */
 595	for (i = 0; i < IXGBE_MDIO_COMMAND_TIMEOUT; i++) {
 596		udelay(10);
 597
 598		command = IXGBE_READ_REG(hw, IXGBE_MSCA);
 599		if ((command & IXGBE_MSCA_MDI_COMMAND) == 0)
 600			break;
 601	}
 602
 603	if ((command & IXGBE_MSCA_MDI_COMMAND) != 0) {
 604		hw_dbg(hw, "PHY address cmd didn't complete\n");
 605		return -EIO;
 606	}
 607
 608	/*
 609	 * Address cycle complete, setup and write the write
 610	 * command
 611	 */
 612	command = ((reg_addr << IXGBE_MSCA_NP_ADDR_SHIFT)  |
 613		   (device_type << IXGBE_MSCA_DEV_TYPE_SHIFT) |
 614		   (hw->phy.mdio.prtad << IXGBE_MSCA_PHY_ADDR_SHIFT) |
 615		   (IXGBE_MSCA_WRITE | IXGBE_MSCA_MDI_COMMAND));
 616
 617	IXGBE_WRITE_REG(hw, IXGBE_MSCA, command);
 618
 619	/* Check every 10 usec to see if the address cycle
 620	 * completed. The MDI Command bit will clear when the
 621	 * operation is complete
 622	 */
 623	for (i = 0; i < IXGBE_MDIO_COMMAND_TIMEOUT; i++) {
 624		udelay(10);
 625
 626		command = IXGBE_READ_REG(hw, IXGBE_MSCA);
 627		if ((command & IXGBE_MSCA_MDI_COMMAND) == 0)
 628			break;
 629	}
 630
 631	if ((command & IXGBE_MSCA_MDI_COMMAND) != 0) {
 632		hw_dbg(hw, "PHY write cmd didn't complete\n");
 633		return -EIO;
 634	}
 635
 636	return 0;
 637}
 638
 639/**
 640 *  ixgbe_write_phy_reg_generic - Writes a value to specified PHY register
 641 *  using SWFW lock- this function is needed in most cases
 642 *  @hw: pointer to hardware structure
 643 *  @reg_addr: 32 bit PHY register to write
 644 *  @device_type: 5 bit device type
 645 *  @phy_data: Data to write to the PHY register
 646 **/
 647int ixgbe_write_phy_reg_generic(struct ixgbe_hw *hw, u32 reg_addr,
 648				u32 device_type, u16 phy_data)
 649{
 
 650	u32 gssr = hw->phy.phy_semaphore_mask;
 651	int status;
 652
 653	if (hw->mac.ops.acquire_swfw_sync(hw, gssr) == 0) {
 654		status = ixgbe_write_phy_reg_mdi(hw, reg_addr, device_type,
 655						 phy_data);
 656		hw->mac.ops.release_swfw_sync(hw, gssr);
 657	} else {
 658		return -EBUSY;
 659	}
 660
 661	return status;
 662}
 663
 664#define IXGBE_HW_READ_REG(addr) IXGBE_READ_REG(hw, addr)
 665
 666/**
 667 *  ixgbe_msca_cmd - Write the command register and poll for completion/timeout
 668 *  @hw: pointer to hardware structure
 669 *  @cmd: command register value to write
 670 **/
 671static int ixgbe_msca_cmd(struct ixgbe_hw *hw, u32 cmd)
 672{
 673	IXGBE_WRITE_REG(hw, IXGBE_MSCA, cmd);
 674
 675	return readx_poll_timeout(IXGBE_HW_READ_REG, IXGBE_MSCA, cmd,
 676				  !(cmd & IXGBE_MSCA_MDI_COMMAND), 10,
 677				  10 * IXGBE_MDIO_COMMAND_TIMEOUT);
 678}
 679
 680/**
 681 *  ixgbe_mii_bus_read_generic_c22 - Read a clause 22 register with gssr flags
 682 *  @hw: pointer to hardware structure
 683 *  @addr: address
 684 *  @regnum: register number
 685 *  @gssr: semaphore flags to acquire
 686 **/
 687static int ixgbe_mii_bus_read_generic_c22(struct ixgbe_hw *hw, int addr,
 688					  int regnum, u32 gssr)
 689{
 690	u32 hwaddr, cmd;
 691	int data;
 692
 693	if (hw->mac.ops.acquire_swfw_sync(hw, gssr))
 694		return -EBUSY;
 695
 696	hwaddr = addr << IXGBE_MSCA_PHY_ADDR_SHIFT;
 697	hwaddr |= (regnum & GENMASK(5, 0)) << IXGBE_MSCA_DEV_TYPE_SHIFT;
 698	cmd = hwaddr | IXGBE_MSCA_OLD_PROTOCOL |
 699		IXGBE_MSCA_READ_AUTOINC | IXGBE_MSCA_MDI_COMMAND;
 
 
 
 
 
 700
 701	data = ixgbe_msca_cmd(hw, cmd);
 702	if (data < 0)
 703		goto mii_bus_read_done;
 704
 705	data = IXGBE_READ_REG(hw, IXGBE_MSRWD);
 706	data = (data >> IXGBE_MSRWD_READ_DATA_SHIFT) & GENMASK(16, 0);
 707
 708mii_bus_read_done:
 709	hw->mac.ops.release_swfw_sync(hw, gssr);
 710	return data;
 711}
 712
 713/**
 714 *  ixgbe_mii_bus_read_generic_c45 - Read a clause 45 register with gssr flags
 715 *  @hw: pointer to hardware structure
 716 *  @addr: address
 717 *  @devad: device address to read
 718 *  @regnum: register number
 719 *  @gssr: semaphore flags to acquire
 720 **/
 721static int ixgbe_mii_bus_read_generic_c45(struct ixgbe_hw *hw, int addr,
 722					  int devad, int regnum, u32 gssr)
 723{
 724	u32 hwaddr, cmd;
 725	int data;
 726
 727	if (hw->mac.ops.acquire_swfw_sync(hw, gssr))
 728		return -EBUSY;
 729
 730	hwaddr = addr << IXGBE_MSCA_PHY_ADDR_SHIFT;
 731	hwaddr |= devad << 16 | regnum;
 732	cmd = hwaddr | IXGBE_MSCA_ADDR_CYCLE | IXGBE_MSCA_MDI_COMMAND;
 733
 734	data = ixgbe_msca_cmd(hw, cmd);
 735	if (data < 0)
 736		goto mii_bus_read_done;
 737
 738	cmd = hwaddr | IXGBE_MSCA_READ | IXGBE_MSCA_MDI_COMMAND;
 739	data = ixgbe_msca_cmd(hw, cmd);
 740	if (data < 0)
 741		goto mii_bus_read_done;
 742
 
 743	data = IXGBE_READ_REG(hw, IXGBE_MSRWD);
 744	data = (data >> IXGBE_MSRWD_READ_DATA_SHIFT) & GENMASK(16, 0);
 745
 746mii_bus_read_done:
 747	hw->mac.ops.release_swfw_sync(hw, gssr);
 748	return data;
 749}
 750
 751/**
 752 *  ixgbe_mii_bus_write_generic_c22 - Write a clause 22 register with gssr flags
 753 *  @hw: pointer to hardware structure
 754 *  @addr: address
 755 *  @regnum: register number
 756 *  @val: value to write
 757 *  @gssr: semaphore flags to acquire
 758 **/
 759static int ixgbe_mii_bus_write_generic_c22(struct ixgbe_hw *hw, int addr,
 760					   int regnum, u16 val, u32 gssr)
 761{
 762	u32 hwaddr, cmd;
 763	int err;
 764
 765	if (hw->mac.ops.acquire_swfw_sync(hw, gssr))
 766		return -EBUSY;
 767
 768	IXGBE_WRITE_REG(hw, IXGBE_MSRWD, (u32)val);
 769
 770	hwaddr = addr << IXGBE_MSCA_PHY_ADDR_SHIFT;
 771	hwaddr |= (regnum & GENMASK(5, 0)) << IXGBE_MSCA_DEV_TYPE_SHIFT;
 772	cmd = hwaddr | IXGBE_MSCA_OLD_PROTOCOL | IXGBE_MSCA_WRITE |
 773		IXGBE_MSCA_MDI_COMMAND;
 774
 775	err = ixgbe_msca_cmd(hw, cmd);
 776
 777	hw->mac.ops.release_swfw_sync(hw, gssr);
 778	return err;
 779}
 780
 781/**
 782 *  ixgbe_mii_bus_write_generic_c45 - Write a clause 45 register with gssr flags
 783 *  @hw: pointer to hardware structure
 784 *  @addr: address
 785 *  @devad: device address to read
 786 *  @regnum: register number
 787 *  @val: value to write
 788 *  @gssr: semaphore flags to acquire
 789 **/
 790static int ixgbe_mii_bus_write_generic_c45(struct ixgbe_hw *hw, int addr,
 791					   int devad, int regnum, u16 val,
 792					   u32 gssr)
 793{
 794	u32 hwaddr, cmd;
 795	int err;
 796
 797	if (hw->mac.ops.acquire_swfw_sync(hw, gssr))
 798		return -EBUSY;
 799
 800	IXGBE_WRITE_REG(hw, IXGBE_MSRWD, (u32)val);
 801
 802	hwaddr = addr << IXGBE_MSCA_PHY_ADDR_SHIFT;
 803	hwaddr |= devad << 16 | regnum;
 804	cmd = hwaddr | IXGBE_MSCA_ADDR_CYCLE | IXGBE_MSCA_MDI_COMMAND;
 805
 
 
 
 806	err = ixgbe_msca_cmd(hw, cmd);
 807	if (err < 0)
 808		goto mii_bus_write_done;
 809
 810	cmd = hwaddr | IXGBE_MSCA_WRITE | IXGBE_MSCA_MDI_COMMAND;
 811	err = ixgbe_msca_cmd(hw, cmd);
 812
 813mii_bus_write_done:
 814	hw->mac.ops.release_swfw_sync(hw, gssr);
 815	return err;
 816}
 817
 818/**
 819 *  ixgbe_mii_bus_read_c22 - Read a clause 22 register
 820 *  @bus: pointer to mii_bus structure which points to our driver private
 821 *  @addr: address
 822 *  @regnum: register number
 823 **/
 824static int ixgbe_mii_bus_read_c22(struct mii_bus *bus, int addr, int regnum)
 825{
 826	struct ixgbe_adapter *adapter = bus->priv;
 827	struct ixgbe_hw *hw = &adapter->hw;
 828	u32 gssr = hw->phy.phy_semaphore_mask;
 829
 830	return ixgbe_mii_bus_read_generic_c22(hw, addr, regnum, gssr);
 831}
 832
 833/**
 834 *  ixgbe_mii_bus_read_c45 - Read a clause 45 register
 835 *  @bus: pointer to mii_bus structure which points to our driver private
 836 *  @devad: device address to read
 837 *  @addr: address
 838 *  @regnum: register number
 839 **/
 840static int ixgbe_mii_bus_read_c45(struct mii_bus *bus, int devad, int addr,
 841				  int regnum)
 842{
 843	struct ixgbe_adapter *adapter = bus->priv;
 844	struct ixgbe_hw *hw = &adapter->hw;
 845	u32 gssr = hw->phy.phy_semaphore_mask;
 846
 847	return ixgbe_mii_bus_read_generic_c45(hw, addr, devad, regnum, gssr);
 848}
 849
 850/**
 851 *  ixgbe_mii_bus_write_c22 - Write a clause 22 register
 852 *  @bus: pointer to mii_bus structure which points to our driver private
 853 *  @addr: address
 854 *  @regnum: register number
 855 *  @val: value to write
 856 **/
 857static int ixgbe_mii_bus_write_c22(struct mii_bus *bus, int addr, int regnum,
 858				   u16 val)
 859{
 860	struct ixgbe_adapter *adapter = bus->priv;
 861	struct ixgbe_hw *hw = &adapter->hw;
 862	u32 gssr = hw->phy.phy_semaphore_mask;
 863
 864	return ixgbe_mii_bus_write_generic_c22(hw, addr, regnum, val, gssr);
 865}
 866
 867/**
 868 *  ixgbe_mii_bus_write_c45 - Write a clause 45 register
 869 *  @bus: pointer to mii_bus structure which points to our driver private
 870 *  @addr: address
 871 *  @devad: device address to read
 872 *  @regnum: register number
 873 *  @val: value to write
 874 **/
 875static int ixgbe_mii_bus_write_c45(struct mii_bus *bus, int addr, int devad,
 876				   int regnum, u16 val)
 877{
 878	struct ixgbe_adapter *adapter = bus->priv;
 879	struct ixgbe_hw *hw = &adapter->hw;
 880	u32 gssr = hw->phy.phy_semaphore_mask;
 881
 882	return ixgbe_mii_bus_write_generic_c45(hw, addr, devad, regnum, val,
 883					       gssr);
 884}
 885
 886/**
 887 *  ixgbe_x550em_a_mii_bus_read_c22 - Read a clause 22 register on x550em_a
 888 *  @bus: pointer to mii_bus structure which points to our driver private
 889 *  @addr: address
 890 *  @regnum: register number
 891 **/
 892static int ixgbe_x550em_a_mii_bus_read_c22(struct mii_bus *bus, int addr,
 893					   int regnum)
 894{
 895	struct ixgbe_adapter *adapter = bus->priv;
 896	struct ixgbe_hw *hw = &adapter->hw;
 897	u32 gssr = hw->phy.phy_semaphore_mask;
 898
 899	gssr |= IXGBE_GSSR_TOKEN_SM | IXGBE_GSSR_PHY0_SM;
 900	return ixgbe_mii_bus_read_generic_c22(hw, addr, regnum, gssr);
 901}
 902
 903/**
 904 *  ixgbe_x550em_a_mii_bus_read_c45 - Read a clause 45 register on x550em_a
 905 *  @bus: pointer to mii_bus structure which points to our driver private
 906 *  @addr: address
 907 *  @devad: device address to read
 908 *  @regnum: register number
 909 **/
 910static int ixgbe_x550em_a_mii_bus_read_c45(struct mii_bus *bus, int addr,
 911					   int devad, int regnum)
 912{
 913	struct ixgbe_adapter *adapter = bus->priv;
 914	struct ixgbe_hw *hw = &adapter->hw;
 915	u32 gssr = hw->phy.phy_semaphore_mask;
 916
 917	gssr |= IXGBE_GSSR_TOKEN_SM | IXGBE_GSSR_PHY0_SM;
 918	return ixgbe_mii_bus_read_generic_c45(hw, addr, devad, regnum, gssr);
 919}
 920
 921/**
 922 *  ixgbe_x550em_a_mii_bus_write_c22 - Write a clause 22 register on x550em_a
 923 *  @bus: pointer to mii_bus structure which points to our driver private
 924 *  @addr: address
 925 *  @regnum: register number
 926 *  @val: value to write
 927 **/
 928static int ixgbe_x550em_a_mii_bus_write_c22(struct mii_bus *bus, int addr,
 929					    int regnum, u16 val)
 930{
 931	struct ixgbe_adapter *adapter = bus->priv;
 932	struct ixgbe_hw *hw = &adapter->hw;
 933	u32 gssr = hw->phy.phy_semaphore_mask;
 934
 935	gssr |= IXGBE_GSSR_TOKEN_SM | IXGBE_GSSR_PHY0_SM;
 936	return ixgbe_mii_bus_write_generic_c22(hw, addr, regnum, val, gssr);
 937}
 938
 939/**
 940 *  ixgbe_x550em_a_mii_bus_write_c45 - Write a clause 45 register on x550em_a
 941 *  @bus: pointer to mii_bus structure which points to our driver private
 942 *  @addr: address
 943 *  @devad: device address to read
 944 *  @regnum: register number
 945 *  @val: value to write
 946 **/
 947static int ixgbe_x550em_a_mii_bus_write_c45(struct mii_bus *bus, int addr,
 948					    int devad, int regnum, u16 val)
 949{
 950	struct ixgbe_adapter *adapter = bus->priv;
 951	struct ixgbe_hw *hw = &adapter->hw;
 952	u32 gssr = hw->phy.phy_semaphore_mask;
 953
 954	gssr |= IXGBE_GSSR_TOKEN_SM | IXGBE_GSSR_PHY0_SM;
 955	return ixgbe_mii_bus_write_generic_c45(hw, addr, devad, regnum, val,
 956					       gssr);
 957}
 958
 959/**
 960 * ixgbe_get_first_secondary_devfn - get first device downstream of root port
 961 * @devfn: PCI_DEVFN of root port on domain 0, bus 0
 962 *
 963 * Returns pci_dev pointer to PCI_DEVFN(0, 0) on subordinate side of root
 964 * on domain 0, bus 0, devfn = 'devfn'
 965 **/
 966static struct pci_dev *ixgbe_get_first_secondary_devfn(unsigned int devfn)
 967{
 968	struct pci_dev *rp_pdev;
 969	int bus;
 970
 971	rp_pdev = pci_get_domain_bus_and_slot(0, 0, devfn);
 972	if (rp_pdev && rp_pdev->subordinate) {
 973		bus = rp_pdev->subordinate->number;
 974		pci_dev_put(rp_pdev);
 975		return pci_get_domain_bus_and_slot(0, bus, 0);
 976	}
 977
 978	pci_dev_put(rp_pdev);
 979	return NULL;
 980}
 981
 982/**
 983 * ixgbe_x550em_a_has_mii - is this the first ixgbe x550em_a PCI function?
 984 * @hw: pointer to hardware structure
 985 *
 986 * Returns true if hw points to lowest numbered PCI B:D.F x550_em_a device in
 987 * the SoC.  There are up to 4 MACs sharing a single MDIO bus on the x550em_a,
 988 * but we only want to register one MDIO bus.
 989 **/
 990static bool ixgbe_x550em_a_has_mii(struct ixgbe_hw *hw)
 991{
 992	struct ixgbe_adapter *adapter = hw->back;
 993	struct pci_dev *pdev = adapter->pdev;
 994	struct pci_dev *func0_pdev;
 995	bool has_mii = false;
 996
 997	/* For the C3000 family of SoCs (x550em_a) the internal ixgbe devices
 998	 * are always downstream of root ports @ 0000:00:16.0 & 0000:00:17.0
 999	 * It's not valid for function 0 to be disabled and function 1 is up,
1000	 * so the lowest numbered ixgbe dev will be device 0 function 0 on one
1001	 * of those two root ports
1002	 */
1003	func0_pdev = ixgbe_get_first_secondary_devfn(PCI_DEVFN(0x16, 0));
1004	if (func0_pdev) {
1005		if (func0_pdev == pdev)
1006			has_mii = true;
1007		goto out;
 
1008	}
1009	func0_pdev = ixgbe_get_first_secondary_devfn(PCI_DEVFN(0x17, 0));
1010	if (func0_pdev == pdev)
1011		has_mii = true;
1012
1013out:
1014	pci_dev_put(func0_pdev);
1015	return has_mii;
1016}
1017
1018/**
1019 * ixgbe_mii_bus_init - mii_bus structure setup
1020 * @hw: pointer to hardware structure
1021 *
1022 * Returns 0 on success, negative on failure
1023 *
1024 * ixgbe_mii_bus_init initializes a mii_bus structure in adapter
1025 **/
1026int ixgbe_mii_bus_init(struct ixgbe_hw *hw)
1027{
1028	int (*write_c22)(struct mii_bus *bus, int addr, int regnum, u16 val);
1029	int (*read_c22)(struct mii_bus *bus, int addr, int regnum);
1030	int (*write_c45)(struct mii_bus *bus, int addr, int devad, int regnum,
1031			 u16 val);
1032	int (*read_c45)(struct mii_bus *bus, int addr, int devad, int regnum);
1033	struct ixgbe_adapter *adapter = hw->back;
1034	struct pci_dev *pdev = adapter->pdev;
1035	struct device *dev = &adapter->netdev->dev;
1036	struct mii_bus *bus;
 
 
 
 
 
1037
1038	switch (hw->device_id) {
1039	/* C3000 SoCs */
1040	case IXGBE_DEV_ID_X550EM_A_KR:
1041	case IXGBE_DEV_ID_X550EM_A_KR_L:
1042	case IXGBE_DEV_ID_X550EM_A_SFP_N:
1043	case IXGBE_DEV_ID_X550EM_A_SGMII:
1044	case IXGBE_DEV_ID_X550EM_A_SGMII_L:
1045	case IXGBE_DEV_ID_X550EM_A_10G_T:
1046	case IXGBE_DEV_ID_X550EM_A_SFP:
1047	case IXGBE_DEV_ID_X550EM_A_1G_T:
1048	case IXGBE_DEV_ID_X550EM_A_1G_T_L:
1049		if (!ixgbe_x550em_a_has_mii(hw))
1050			return 0;
1051		read_c22 = ixgbe_x550em_a_mii_bus_read_c22;
1052		write_c22 = ixgbe_x550em_a_mii_bus_write_c22;
1053		read_c45 = ixgbe_x550em_a_mii_bus_read_c45;
1054		write_c45 = ixgbe_x550em_a_mii_bus_write_c45;
1055		break;
1056	default:
1057		read_c22 = ixgbe_mii_bus_read_c22;
1058		write_c22 = ixgbe_mii_bus_write_c22;
1059		read_c45 = ixgbe_mii_bus_read_c45;
1060		write_c45 = ixgbe_mii_bus_write_c45;
1061		break;
1062	}
1063
1064	bus = devm_mdiobus_alloc(dev);
1065	if (!bus)
1066		return -ENOMEM;
1067
1068	bus->read = read_c22;
1069	bus->write = write_c22;
1070	bus->read_c45 = read_c45;
1071	bus->write_c45 = write_c45;
1072
1073	/* Use the position of the device in the PCI hierarchy as the id */
1074	snprintf(bus->id, MII_BUS_ID_SIZE, "%s-mdio-%s", ixgbe_driver_name,
1075		 pci_name(pdev));
1076
1077	bus->name = "ixgbe-mdio";
1078	bus->priv = adapter;
1079	bus->parent = dev;
1080	bus->phy_mask = GENMASK(31, 0);
1081
1082	/* Support clause 22/45 natively.  ixgbe_probe() sets MDIO_EMULATE_C22
1083	 * unfortunately that causes some clause 22 frames to be sent with
1084	 * clause 45 addressing.  We don't want that.
1085	 */
1086	hw->phy.mdio.mode_support = MDIO_SUPPORTS_C45 | MDIO_SUPPORTS_C22;
1087
1088	adapter->mii_bus = bus;
1089	return mdiobus_register(bus);
 
 
 
 
 
 
 
1090}
1091
1092/**
1093 *  ixgbe_setup_phy_link_generic - Set and restart autoneg
1094 *  @hw: pointer to hardware structure
1095 *
1096 *  Restart autonegotiation and PHY and waits for completion.
1097 **/
1098int ixgbe_setup_phy_link_generic(struct ixgbe_hw *hw)
1099{
 
1100	u16 autoneg_reg = IXGBE_MII_AUTONEG_REG;
1101	ixgbe_link_speed speed;
1102	bool autoneg = false;
1103	int status = 0;
1104
1105	ixgbe_get_copper_link_capabilities_generic(hw, &speed, &autoneg);
1106
1107	/* Set or unset auto-negotiation 10G advertisement */
1108	hw->phy.ops.read_reg(hw, MDIO_AN_10GBT_CTRL, MDIO_MMD_AN, &autoneg_reg);
1109
1110	autoneg_reg &= ~MDIO_AN_10GBT_CTRL_ADV10G;
1111	if ((hw->phy.autoneg_advertised & IXGBE_LINK_SPEED_10GB_FULL) &&
1112	    (speed & IXGBE_LINK_SPEED_10GB_FULL))
1113		autoneg_reg |= MDIO_AN_10GBT_CTRL_ADV10G;
1114
1115	hw->phy.ops.write_reg(hw, MDIO_AN_10GBT_CTRL, MDIO_MMD_AN, autoneg_reg);
1116
1117	hw->phy.ops.read_reg(hw, IXGBE_MII_AUTONEG_VENDOR_PROVISION_1_REG,
1118			     MDIO_MMD_AN, &autoneg_reg);
1119
1120	if (hw->mac.type == ixgbe_mac_X550) {
1121		/* Set or unset auto-negotiation 5G advertisement */
1122		autoneg_reg &= ~IXGBE_MII_5GBASE_T_ADVERTISE;
1123		if ((hw->phy.autoneg_advertised & IXGBE_LINK_SPEED_5GB_FULL) &&
1124		    (speed & IXGBE_LINK_SPEED_5GB_FULL))
1125			autoneg_reg |= IXGBE_MII_5GBASE_T_ADVERTISE;
1126
1127		/* Set or unset auto-negotiation 2.5G advertisement */
1128		autoneg_reg &= ~IXGBE_MII_2_5GBASE_T_ADVERTISE;
1129		if ((hw->phy.autoneg_advertised &
1130		     IXGBE_LINK_SPEED_2_5GB_FULL) &&
1131		    (speed & IXGBE_LINK_SPEED_2_5GB_FULL))
1132			autoneg_reg |= IXGBE_MII_2_5GBASE_T_ADVERTISE;
1133	}
1134
1135	/* Set or unset auto-negotiation 1G advertisement */
1136	autoneg_reg &= ~IXGBE_MII_1GBASE_T_ADVERTISE;
1137	if ((hw->phy.autoneg_advertised & IXGBE_LINK_SPEED_1GB_FULL) &&
1138	    (speed & IXGBE_LINK_SPEED_1GB_FULL))
1139		autoneg_reg |= IXGBE_MII_1GBASE_T_ADVERTISE;
1140
1141	hw->phy.ops.write_reg(hw, IXGBE_MII_AUTONEG_VENDOR_PROVISION_1_REG,
1142			      MDIO_MMD_AN, autoneg_reg);
1143
1144	/* Set or unset auto-negotiation 100M advertisement */
1145	hw->phy.ops.read_reg(hw, MDIO_AN_ADVERTISE, MDIO_MMD_AN, &autoneg_reg);
1146
1147	autoneg_reg &= ~(ADVERTISE_100FULL | ADVERTISE_100HALF);
1148	if ((hw->phy.autoneg_advertised & IXGBE_LINK_SPEED_100_FULL) &&
1149	    (speed & IXGBE_LINK_SPEED_100_FULL))
1150		autoneg_reg |= ADVERTISE_100FULL;
1151
1152	hw->phy.ops.write_reg(hw, MDIO_AN_ADVERTISE, MDIO_MMD_AN, autoneg_reg);
1153
1154	/* Blocked by MNG FW so don't reset PHY */
1155	if (ixgbe_check_reset_blocked(hw))
1156		return 0;
1157
1158	/* Restart PHY autonegotiation and wait for completion */
1159	hw->phy.ops.read_reg(hw, MDIO_CTRL1,
1160			     MDIO_MMD_AN, &autoneg_reg);
1161
1162	autoneg_reg |= MDIO_AN_CTRL1_RESTART;
1163
1164	hw->phy.ops.write_reg(hw, MDIO_CTRL1,
1165			      MDIO_MMD_AN, autoneg_reg);
1166
1167	return status;
1168}
1169
1170/**
1171 *  ixgbe_setup_phy_link_speed_generic - Sets the auto advertised capabilities
1172 *  @hw: pointer to hardware structure
1173 *  @speed: new link speed
1174 *  @autoneg_wait_to_complete: unused
1175 **/
1176int ixgbe_setup_phy_link_speed_generic(struct ixgbe_hw *hw,
1177				       ixgbe_link_speed speed,
1178				       bool autoneg_wait_to_complete)
1179{
1180	/* Clear autoneg_advertised and set new values based on input link
1181	 * speed.
1182	 */
1183	hw->phy.autoneg_advertised = 0;
1184
1185	if (speed & IXGBE_LINK_SPEED_10GB_FULL)
1186		hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_10GB_FULL;
1187
1188	if (speed & IXGBE_LINK_SPEED_5GB_FULL)
1189		hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_5GB_FULL;
1190
1191	if (speed & IXGBE_LINK_SPEED_2_5GB_FULL)
1192		hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_2_5GB_FULL;
1193
1194	if (speed & IXGBE_LINK_SPEED_1GB_FULL)
1195		hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_1GB_FULL;
1196
1197	if (speed & IXGBE_LINK_SPEED_100_FULL)
1198		hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_100_FULL;
1199
1200	if (speed & IXGBE_LINK_SPEED_10_FULL)
1201		hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_10_FULL;
1202
1203	/* Setup link based on the new speed settings */
1204	if (hw->phy.ops.setup_link)
1205		hw->phy.ops.setup_link(hw);
1206
1207	return 0;
1208}
1209
1210/**
1211 * ixgbe_get_copper_speeds_supported - Get copper link speed from phy
1212 * @hw: pointer to hardware structure
1213 *
1214 * Determines the supported link capabilities by reading the PHY auto
1215 * negotiation register.
1216 */
1217static int ixgbe_get_copper_speeds_supported(struct ixgbe_hw *hw)
1218{
1219	u16 speed_ability;
1220	int status;
1221
1222	status = hw->phy.ops.read_reg(hw, MDIO_SPEED, MDIO_MMD_PMAPMD,
1223				      &speed_ability);
1224	if (status)
1225		return status;
1226
1227	if (speed_ability & MDIO_SPEED_10G)
1228		hw->phy.speeds_supported |= IXGBE_LINK_SPEED_10GB_FULL;
1229	if (speed_ability & MDIO_PMA_SPEED_1000)
1230		hw->phy.speeds_supported |= IXGBE_LINK_SPEED_1GB_FULL;
1231	if (speed_ability & MDIO_PMA_SPEED_100)
1232		hw->phy.speeds_supported |= IXGBE_LINK_SPEED_100_FULL;
1233
1234	switch (hw->mac.type) {
1235	case ixgbe_mac_X550:
1236		hw->phy.speeds_supported |= IXGBE_LINK_SPEED_2_5GB_FULL;
1237		hw->phy.speeds_supported |= IXGBE_LINK_SPEED_5GB_FULL;
1238		break;
1239	case ixgbe_mac_X550EM_x:
1240	case ixgbe_mac_x550em_a:
1241		hw->phy.speeds_supported &= ~IXGBE_LINK_SPEED_100_FULL;
1242		break;
1243	default:
1244		break;
1245	}
1246
1247	return 0;
1248}
1249
1250/**
1251 * ixgbe_get_copper_link_capabilities_generic - Determines link capabilities
1252 * @hw: pointer to hardware structure
1253 * @speed: pointer to link speed
1254 * @autoneg: boolean auto-negotiation value
1255 */
1256int ixgbe_get_copper_link_capabilities_generic(struct ixgbe_hw *hw,
1257					       ixgbe_link_speed *speed,
1258					       bool *autoneg)
1259{
1260	int status = 0;
1261
1262	*autoneg = true;
1263	if (!hw->phy.speeds_supported)
1264		status = ixgbe_get_copper_speeds_supported(hw);
1265
1266	*speed = hw->phy.speeds_supported;
1267	return status;
1268}
1269
1270/**
1271 *  ixgbe_check_phy_link_tnx - Determine link and speed status
1272 *  @hw: pointer to hardware structure
1273 *  @speed: link speed
1274 *  @link_up: status of link
1275 *
1276 *  Reads the VS1 register to determine if link is up and the current speed for
1277 *  the PHY.
1278 **/
1279int ixgbe_check_phy_link_tnx(struct ixgbe_hw *hw, ixgbe_link_speed *speed,
1280			     bool *link_up)
1281{
 
 
1282	u32 max_time_out = 10;
1283	u16 phy_speed = 0;
1284	u16 phy_link = 0;
 
1285	u16 phy_data = 0;
1286	u32 time_out;
1287	int status;
1288
1289	/* Initialize speed and link to default case */
1290	*link_up = false;
1291	*speed = IXGBE_LINK_SPEED_10GB_FULL;
1292
1293	/*
1294	 * Check current speed and link status of the PHY register.
1295	 * This is a vendor specific register and may have to
1296	 * be changed for other copper PHYs.
1297	 */
1298	for (time_out = 0; time_out < max_time_out; time_out++) {
1299		udelay(10);
1300		status = hw->phy.ops.read_reg(hw,
1301					      MDIO_STAT1,
1302					      MDIO_MMD_VEND1,
1303					      &phy_data);
1304		phy_link = phy_data &
1305			    IXGBE_MDIO_VENDOR_SPECIFIC_1_LINK_STATUS;
1306		phy_speed = phy_data &
1307			    IXGBE_MDIO_VENDOR_SPECIFIC_1_SPEED_STATUS;
1308		if (phy_link == IXGBE_MDIO_VENDOR_SPECIFIC_1_LINK_STATUS) {
1309			*link_up = true;
1310			if (phy_speed ==
1311			    IXGBE_MDIO_VENDOR_SPECIFIC_1_SPEED_STATUS)
1312				*speed = IXGBE_LINK_SPEED_1GB_FULL;
1313			break;
1314		}
1315	}
1316
1317	return status;
1318}
1319
1320/**
1321 *	ixgbe_setup_phy_link_tnx - Set and restart autoneg
1322 *	@hw: pointer to hardware structure
1323 *
1324 *	Restart autonegotiation and PHY and waits for completion.
1325 *      This function always returns success, this is nessary since
1326 *	it is called via a function pointer that could call other
1327 *	functions that could return an error.
1328 **/
1329int ixgbe_setup_phy_link_tnx(struct ixgbe_hw *hw)
1330{
1331	u16 autoneg_reg = IXGBE_MII_AUTONEG_REG;
1332	bool autoneg = false;
1333	ixgbe_link_speed speed;
1334
1335	ixgbe_get_copper_link_capabilities_generic(hw, &speed, &autoneg);
1336
1337	if (speed & IXGBE_LINK_SPEED_10GB_FULL) {
1338		/* Set or unset auto-negotiation 10G advertisement */
1339		hw->phy.ops.read_reg(hw, MDIO_AN_10GBT_CTRL,
1340				     MDIO_MMD_AN,
1341				     &autoneg_reg);
1342
1343		autoneg_reg &= ~MDIO_AN_10GBT_CTRL_ADV10G;
1344		if (hw->phy.autoneg_advertised & IXGBE_LINK_SPEED_10GB_FULL)
1345			autoneg_reg |= MDIO_AN_10GBT_CTRL_ADV10G;
1346
1347		hw->phy.ops.write_reg(hw, MDIO_AN_10GBT_CTRL,
1348				      MDIO_MMD_AN,
1349				      autoneg_reg);
1350	}
1351
1352	if (speed & IXGBE_LINK_SPEED_1GB_FULL) {
1353		/* Set or unset auto-negotiation 1G advertisement */
1354		hw->phy.ops.read_reg(hw, IXGBE_MII_AUTONEG_XNP_TX_REG,
1355				     MDIO_MMD_AN,
1356				     &autoneg_reg);
1357
1358		autoneg_reg &= ~IXGBE_MII_1GBASE_T_ADVERTISE_XNP_TX;
1359		if (hw->phy.autoneg_advertised & IXGBE_LINK_SPEED_1GB_FULL)
1360			autoneg_reg |= IXGBE_MII_1GBASE_T_ADVERTISE_XNP_TX;
1361
1362		hw->phy.ops.write_reg(hw, IXGBE_MII_AUTONEG_XNP_TX_REG,
1363				      MDIO_MMD_AN,
1364				      autoneg_reg);
1365	}
1366
1367	if (speed & IXGBE_LINK_SPEED_100_FULL) {
1368		/* Set or unset auto-negotiation 100M advertisement */
1369		hw->phy.ops.read_reg(hw, MDIO_AN_ADVERTISE,
1370				     MDIO_MMD_AN,
1371				     &autoneg_reg);
1372
1373		autoneg_reg &= ~(ADVERTISE_100FULL |
1374				 ADVERTISE_100HALF);
1375		if (hw->phy.autoneg_advertised & IXGBE_LINK_SPEED_100_FULL)
1376			autoneg_reg |= ADVERTISE_100FULL;
1377
1378		hw->phy.ops.write_reg(hw, MDIO_AN_ADVERTISE,
1379				      MDIO_MMD_AN,
1380				      autoneg_reg);
1381	}
1382
1383	/* Blocked by MNG FW so don't reset PHY */
1384	if (ixgbe_check_reset_blocked(hw))
1385		return 0;
1386
1387	/* Restart PHY autonegotiation and wait for completion */
1388	hw->phy.ops.read_reg(hw, MDIO_CTRL1,
1389			     MDIO_MMD_AN, &autoneg_reg);
1390
1391	autoneg_reg |= MDIO_AN_CTRL1_RESTART;
1392
1393	hw->phy.ops.write_reg(hw, MDIO_CTRL1,
1394			      MDIO_MMD_AN, autoneg_reg);
1395	return 0;
1396}
1397
1398/**
1399 *  ixgbe_reset_phy_nl - Performs a PHY reset
1400 *  @hw: pointer to hardware structure
1401 **/
1402int ixgbe_reset_phy_nl(struct ixgbe_hw *hw)
1403{
1404	u16 phy_offset, control, eword, edata, block_crc;
1405	u16 list_offset, data_offset;
1406	bool end_data = false;
 
1407	u16 phy_data = 0;
1408	int ret_val;
1409	u32 i;
1410
1411	/* Blocked by MNG FW so bail */
1412	if (ixgbe_check_reset_blocked(hw))
1413		return 0;
1414
1415	hw->phy.ops.read_reg(hw, MDIO_CTRL1, MDIO_MMD_PHYXS, &phy_data);
1416
1417	/* reset the PHY and poll for completion */
1418	hw->phy.ops.write_reg(hw, MDIO_CTRL1, MDIO_MMD_PHYXS,
1419			      (phy_data | MDIO_CTRL1_RESET));
1420
1421	for (i = 0; i < 100; i++) {
1422		hw->phy.ops.read_reg(hw, MDIO_CTRL1, MDIO_MMD_PHYXS,
1423				     &phy_data);
1424		if ((phy_data & MDIO_CTRL1_RESET) == 0)
1425			break;
1426		usleep_range(10000, 20000);
1427	}
1428
1429	if ((phy_data & MDIO_CTRL1_RESET) != 0) {
1430		hw_dbg(hw, "PHY reset did not complete.\n");
1431		return -EIO;
1432	}
1433
1434	/* Get init offsets */
1435	ret_val = ixgbe_get_sfp_init_sequence_offsets(hw, &list_offset,
1436						      &data_offset);
1437	if (ret_val)
1438		return ret_val;
1439
1440	ret_val = hw->eeprom.ops.read(hw, data_offset, &block_crc);
1441	data_offset++;
1442	while (!end_data) {
1443		/*
1444		 * Read control word from PHY init contents offset
1445		 */
1446		ret_val = hw->eeprom.ops.read(hw, data_offset, &eword);
1447		if (ret_val)
1448			goto err_eeprom;
1449		control = FIELD_GET(IXGBE_CONTROL_MASK_NL, eword);
 
1450		edata = eword & IXGBE_DATA_MASK_NL;
1451		switch (control) {
1452		case IXGBE_DELAY_NL:
1453			data_offset++;
1454			hw_dbg(hw, "DELAY: %d MS\n", edata);
1455			usleep_range(edata * 1000, edata * 2000);
1456			break;
1457		case IXGBE_DATA_NL:
1458			hw_dbg(hw, "DATA:\n");
1459			data_offset++;
1460			ret_val = hw->eeprom.ops.read(hw, data_offset++,
1461						      &phy_offset);
1462			if (ret_val)
1463				goto err_eeprom;
1464			for (i = 0; i < edata; i++) {
1465				ret_val = hw->eeprom.ops.read(hw, data_offset,
1466							      &eword);
1467				if (ret_val)
1468					goto err_eeprom;
1469				hw->phy.ops.write_reg(hw, phy_offset,
1470						      MDIO_MMD_PMAPMD, eword);
1471				hw_dbg(hw, "Wrote %4.4x to %4.4x\n", eword,
1472				       phy_offset);
1473				data_offset++;
1474				phy_offset++;
1475			}
1476			break;
1477		case IXGBE_CONTROL_NL:
1478			data_offset++;
1479			hw_dbg(hw, "CONTROL:\n");
1480			if (edata == IXGBE_CONTROL_EOL_NL) {
1481				hw_dbg(hw, "EOL\n");
1482				end_data = true;
1483			} else if (edata == IXGBE_CONTROL_SOL_NL) {
1484				hw_dbg(hw, "SOL\n");
1485			} else {
1486				hw_dbg(hw, "Bad control value\n");
1487				return -EIO;
1488			}
1489			break;
1490		default:
1491			hw_dbg(hw, "Bad control type\n");
1492			return -EIO;
1493		}
1494	}
1495
1496	return ret_val;
1497
1498err_eeprom:
1499	hw_err(hw, "eeprom read at offset %d failed\n", data_offset);
1500	return -EIO;
1501}
1502
1503/**
1504 *  ixgbe_identify_module_generic - Identifies module type
1505 *  @hw: pointer to hardware structure
1506 *
1507 *  Determines HW type and calls appropriate function.
1508 **/
1509int ixgbe_identify_module_generic(struct ixgbe_hw *hw)
1510{
1511	switch (hw->mac.ops.get_media_type(hw)) {
1512	case ixgbe_media_type_fiber:
1513		return ixgbe_identify_sfp_module_generic(hw);
1514	case ixgbe_media_type_fiber_qsfp:
1515		return ixgbe_identify_qsfp_module_generic(hw);
1516	default:
1517		hw->phy.sfp_type = ixgbe_sfp_type_not_present;
1518		return -ENOENT;
1519	}
1520
1521	return -ENOENT;
1522}
1523
1524/**
1525 *  ixgbe_identify_sfp_module_generic - Identifies SFP modules
1526 *  @hw: pointer to hardware structure
1527 *
1528 *  Searches for and identifies the SFP module and assigns appropriate PHY type.
1529 **/
1530int ixgbe_identify_sfp_module_generic(struct ixgbe_hw *hw)
1531{
1532	enum ixgbe_sfp_type stored_sfp_type = hw->phy.sfp_type;
1533	struct ixgbe_adapter *adapter = hw->back;
1534	u8 oui_bytes[3] = {0, 0, 0};
1535	u8 bitrate_nominal = 0;
1536	u8 comp_codes_10g = 0;
1537	u8 comp_codes_1g = 0;
1538	u16 enforce_sfp = 0;
1539	u32 vendor_oui = 0;
 
1540	u8 identifier = 0;
 
 
 
1541	u8 cable_tech = 0;
1542	u8 cable_spec = 0;
1543	int status;
1544
1545	if (hw->mac.ops.get_media_type(hw) != ixgbe_media_type_fiber) {
1546		hw->phy.sfp_type = ixgbe_sfp_type_not_present;
1547		return -ENOENT;
1548	}
1549
1550	/* LAN ID is needed for sfp_type determination */
1551	hw->mac.ops.set_lan_id(hw);
1552
1553	status = hw->phy.ops.read_i2c_eeprom(hw,
1554					     IXGBE_SFF_IDENTIFIER,
1555					     &identifier);
1556
1557	if (status)
1558		goto err_read_i2c_eeprom;
1559
1560	if (identifier != IXGBE_SFF_IDENTIFIER_SFP) {
1561		hw->phy.type = ixgbe_phy_sfp_unsupported;
1562		return -EOPNOTSUPP;
1563	}
1564	status = hw->phy.ops.read_i2c_eeprom(hw,
1565					     IXGBE_SFF_1GBE_COMP_CODES,
1566					     &comp_codes_1g);
1567
1568	if (status)
1569		goto err_read_i2c_eeprom;
1570
1571	status = hw->phy.ops.read_i2c_eeprom(hw,
1572					     IXGBE_SFF_10GBE_COMP_CODES,
1573					     &comp_codes_10g);
1574
1575	if (status)
1576		goto err_read_i2c_eeprom;
1577	status = hw->phy.ops.read_i2c_eeprom(hw,
1578					     IXGBE_SFF_CABLE_TECHNOLOGY,
1579					     &cable_tech);
1580	if (status)
1581		goto err_read_i2c_eeprom;
1582
1583	status = hw->phy.ops.read_i2c_eeprom(hw,
1584					     IXGBE_SFF_BITRATE_NOMINAL,
1585					     &bitrate_nominal);
1586	if (status)
1587		goto err_read_i2c_eeprom;
1588
1589	 /* ID Module
1590	  * =========
1591	  * 0   SFP_DA_CU
1592	  * 1   SFP_SR
1593	  * 2   SFP_LR
1594	  * 3   SFP_DA_CORE0 - 82599-specific
1595	  * 4   SFP_DA_CORE1 - 82599-specific
1596	  * 5   SFP_SR/LR_CORE0 - 82599-specific
1597	  * 6   SFP_SR/LR_CORE1 - 82599-specific
1598	  * 7   SFP_act_lmt_DA_CORE0 - 82599-specific
1599	  * 8   SFP_act_lmt_DA_CORE1 - 82599-specific
1600	  * 9   SFP_1g_cu_CORE0 - 82599-specific
1601	  * 10  SFP_1g_cu_CORE1 - 82599-specific
1602	  * 11  SFP_1g_sx_CORE0 - 82599-specific
1603	  * 12  SFP_1g_sx_CORE1 - 82599-specific
1604	  */
1605	if (hw->mac.type == ixgbe_mac_82598EB) {
1606		if (cable_tech & IXGBE_SFF_DA_PASSIVE_CABLE)
1607			hw->phy.sfp_type = ixgbe_sfp_type_da_cu;
1608		else if (comp_codes_10g & IXGBE_SFF_10GBASESR_CAPABLE)
1609			hw->phy.sfp_type = ixgbe_sfp_type_sr;
1610		else if (comp_codes_10g & IXGBE_SFF_10GBASELR_CAPABLE)
1611			hw->phy.sfp_type = ixgbe_sfp_type_lr;
1612		else
1613			hw->phy.sfp_type = ixgbe_sfp_type_unknown;
1614	} else {
1615		if (cable_tech & IXGBE_SFF_DA_PASSIVE_CABLE) {
1616			if (hw->bus.lan_id == 0)
1617				hw->phy.sfp_type =
1618					     ixgbe_sfp_type_da_cu_core0;
1619			else
1620				hw->phy.sfp_type =
1621					     ixgbe_sfp_type_da_cu_core1;
1622		} else if (cable_tech & IXGBE_SFF_DA_ACTIVE_CABLE) {
1623			hw->phy.ops.read_i2c_eeprom(
1624					hw, IXGBE_SFF_CABLE_SPEC_COMP,
1625					&cable_spec);
1626			if (cable_spec &
1627			    IXGBE_SFF_DA_SPEC_ACTIVE_LIMITING) {
1628				if (hw->bus.lan_id == 0)
1629					hw->phy.sfp_type =
1630					ixgbe_sfp_type_da_act_lmt_core0;
1631				else
1632					hw->phy.sfp_type =
1633					ixgbe_sfp_type_da_act_lmt_core1;
1634			} else {
1635				hw->phy.sfp_type =
1636						ixgbe_sfp_type_unknown;
1637			}
1638		} else if (comp_codes_10g &
1639			   (IXGBE_SFF_10GBASESR_CAPABLE |
1640			    IXGBE_SFF_10GBASELR_CAPABLE)) {
1641			if (hw->bus.lan_id == 0)
1642				hw->phy.sfp_type =
1643					      ixgbe_sfp_type_srlr_core0;
1644			else
1645				hw->phy.sfp_type =
1646					      ixgbe_sfp_type_srlr_core1;
1647		} else if (comp_codes_1g & IXGBE_SFF_1GBASET_CAPABLE) {
1648			if (hw->bus.lan_id == 0)
1649				hw->phy.sfp_type =
1650					ixgbe_sfp_type_1g_cu_core0;
1651			else
1652				hw->phy.sfp_type =
1653					ixgbe_sfp_type_1g_cu_core1;
1654		} else if (comp_codes_1g & IXGBE_SFF_1GBASESX_CAPABLE) {
1655			if (hw->bus.lan_id == 0)
1656				hw->phy.sfp_type =
1657					ixgbe_sfp_type_1g_sx_core0;
1658			else
1659				hw->phy.sfp_type =
1660					ixgbe_sfp_type_1g_sx_core1;
1661		} else if (comp_codes_1g & IXGBE_SFF_1GBASELX_CAPABLE) {
1662			if (hw->bus.lan_id == 0)
1663				hw->phy.sfp_type =
1664					ixgbe_sfp_type_1g_lx_core0;
1665			else
1666				hw->phy.sfp_type =
1667					ixgbe_sfp_type_1g_lx_core1;
1668		/* Support only Ethernet 1000BASE-BX10, checking the Bit Rate
1669		 * Nominal Value as per SFF-8472 by convention 1.25 Gb/s should
1670		 * be rounded up to 0Dh (13 in units of 100 MBd) for 1000BASE-BX
1671		 */
1672		} else if ((comp_codes_1g & IXGBE_SFF_BASEBX10_CAPABLE) &&
1673			   (bitrate_nominal == 0xD)) {
1674			if (hw->bus.lan_id == 0)
1675				hw->phy.sfp_type =
1676					ixgbe_sfp_type_1g_bx_core0;
1677			else
1678				hw->phy.sfp_type =
1679					ixgbe_sfp_type_1g_bx_core1;
1680		} else {
1681			hw->phy.sfp_type = ixgbe_sfp_type_unknown;
1682		}
1683	}
1684
1685	if (hw->phy.sfp_type != stored_sfp_type)
1686		hw->phy.sfp_setup_needed = true;
1687
1688	/* Determine if the SFP+ PHY is dual speed or not. */
1689	hw->phy.multispeed_fiber = false;
1690	if (((comp_codes_1g & IXGBE_SFF_1GBASESX_CAPABLE) &&
1691	     (comp_codes_10g & IXGBE_SFF_10GBASESR_CAPABLE)) ||
1692	    ((comp_codes_1g & IXGBE_SFF_1GBASELX_CAPABLE) &&
1693	     (comp_codes_10g & IXGBE_SFF_10GBASELR_CAPABLE)))
1694		hw->phy.multispeed_fiber = true;
1695
1696	/* Determine PHY vendor */
1697	if (hw->phy.type != ixgbe_phy_nl) {
1698		hw->phy.id = identifier;
1699		status = hw->phy.ops.read_i2c_eeprom(hw,
1700					    IXGBE_SFF_VENDOR_OUI_BYTE0,
1701					    &oui_bytes[0]);
1702
1703		if (status != 0)
1704			goto err_read_i2c_eeprom;
1705
1706		status = hw->phy.ops.read_i2c_eeprom(hw,
1707					    IXGBE_SFF_VENDOR_OUI_BYTE1,
1708					    &oui_bytes[1]);
1709
1710		if (status != 0)
1711			goto err_read_i2c_eeprom;
1712
1713		status = hw->phy.ops.read_i2c_eeprom(hw,
1714					    IXGBE_SFF_VENDOR_OUI_BYTE2,
1715					    &oui_bytes[2]);
1716
1717		if (status != 0)
1718			goto err_read_i2c_eeprom;
1719
1720		vendor_oui =
1721		  ((oui_bytes[0] << IXGBE_SFF_VENDOR_OUI_BYTE0_SHIFT) |
1722		   (oui_bytes[1] << IXGBE_SFF_VENDOR_OUI_BYTE1_SHIFT) |
1723		   (oui_bytes[2] << IXGBE_SFF_VENDOR_OUI_BYTE2_SHIFT));
1724
1725		switch (vendor_oui) {
1726		case IXGBE_SFF_VENDOR_OUI_TYCO:
1727			if (cable_tech & IXGBE_SFF_DA_PASSIVE_CABLE)
1728				hw->phy.type =
1729					    ixgbe_phy_sfp_passive_tyco;
1730			break;
1731		case IXGBE_SFF_VENDOR_OUI_FTL:
1732			if (cable_tech & IXGBE_SFF_DA_ACTIVE_CABLE)
1733				hw->phy.type = ixgbe_phy_sfp_ftl_active;
1734			else
1735				hw->phy.type = ixgbe_phy_sfp_ftl;
1736			break;
1737		case IXGBE_SFF_VENDOR_OUI_AVAGO:
1738			hw->phy.type = ixgbe_phy_sfp_avago;
1739			break;
1740		case IXGBE_SFF_VENDOR_OUI_INTEL:
1741			hw->phy.type = ixgbe_phy_sfp_intel;
1742			break;
1743		default:
1744			if (cable_tech & IXGBE_SFF_DA_PASSIVE_CABLE)
1745				hw->phy.type =
1746					 ixgbe_phy_sfp_passive_unknown;
1747			else if (cable_tech & IXGBE_SFF_DA_ACTIVE_CABLE)
1748				hw->phy.type =
1749					ixgbe_phy_sfp_active_unknown;
1750			else
1751				hw->phy.type = ixgbe_phy_sfp_unknown;
1752			break;
1753		}
1754	}
1755
1756	/* Allow any DA cable vendor */
1757	if (cable_tech & (IXGBE_SFF_DA_PASSIVE_CABLE |
1758	    IXGBE_SFF_DA_ACTIVE_CABLE))
1759		return 0;
1760
1761	/* Verify supported 1G SFP modules */
1762	if (comp_codes_10g == 0 &&
1763	    !(hw->phy.sfp_type == ixgbe_sfp_type_1g_cu_core1 ||
1764	      hw->phy.sfp_type == ixgbe_sfp_type_1g_cu_core0 ||
1765	      hw->phy.sfp_type == ixgbe_sfp_type_1g_lx_core0 ||
1766	      hw->phy.sfp_type == ixgbe_sfp_type_1g_lx_core1 ||
1767	      hw->phy.sfp_type == ixgbe_sfp_type_1g_sx_core0 ||
1768	      hw->phy.sfp_type == ixgbe_sfp_type_1g_sx_core1 ||
1769	      hw->phy.sfp_type == ixgbe_sfp_type_1g_bx_core0 ||
1770	      hw->phy.sfp_type == ixgbe_sfp_type_1g_bx_core1)) {
1771		hw->phy.type = ixgbe_phy_sfp_unsupported;
1772		return -EOPNOTSUPP;
1773	}
1774
1775	/* Anything else 82598-based is supported */
1776	if (hw->mac.type == ixgbe_mac_82598EB)
1777		return 0;
1778
1779	hw->mac.ops.get_device_caps(hw, &enforce_sfp);
1780	if (!(enforce_sfp & IXGBE_DEVICE_CAPS_ALLOW_ANY_SFP) &&
1781	    !(hw->phy.sfp_type == ixgbe_sfp_type_1g_cu_core0 ||
1782	      hw->phy.sfp_type == ixgbe_sfp_type_1g_cu_core1 ||
1783	      hw->phy.sfp_type == ixgbe_sfp_type_1g_lx_core0 ||
1784	      hw->phy.sfp_type == ixgbe_sfp_type_1g_lx_core1 ||
1785	      hw->phy.sfp_type == ixgbe_sfp_type_1g_sx_core0 ||
1786	      hw->phy.sfp_type == ixgbe_sfp_type_1g_sx_core1 ||
1787	      hw->phy.sfp_type == ixgbe_sfp_type_1g_bx_core0 ||
1788	      hw->phy.sfp_type == ixgbe_sfp_type_1g_bx_core1)) {
1789		/* Make sure we're a supported PHY type */
1790		if (hw->phy.type == ixgbe_phy_sfp_intel)
1791			return 0;
1792		if (hw->allow_unsupported_sfp) {
1793			e_warn(drv, "WARNING: Intel (R) Network Connections are quality tested using Intel (R) Ethernet Optics.  Using untested modules is not supported and may cause unstable operation or damage to the module or the adapter.  Intel Corporation is not responsible for any harm caused by using untested modules.\n");
1794			return 0;
1795		}
1796		hw_dbg(hw, "SFP+ module not supported\n");
1797		hw->phy.type = ixgbe_phy_sfp_unsupported;
1798		return -EOPNOTSUPP;
1799	}
1800	return 0;
1801
1802err_read_i2c_eeprom:
1803	hw->phy.sfp_type = ixgbe_sfp_type_not_present;
1804	if (hw->phy.type != ixgbe_phy_nl) {
1805		hw->phy.id = 0;
1806		hw->phy.type = ixgbe_phy_unknown;
1807	}
1808	return -ENOENT;
1809}
1810
1811/**
1812 * ixgbe_identify_qsfp_module_generic - Identifies QSFP modules
1813 * @hw: pointer to hardware structure
1814 *
1815 * Searches for and identifies the QSFP module and assigns appropriate PHY type
1816 **/
1817static int ixgbe_identify_qsfp_module_generic(struct ixgbe_hw *hw)
1818{
1819	struct ixgbe_adapter *adapter = hw->back;
1820	int status;
1821	u32 vendor_oui = 0;
1822	enum ixgbe_sfp_type stored_sfp_type = hw->phy.sfp_type;
1823	u8 identifier = 0;
1824	u8 comp_codes_1g = 0;
1825	u8 comp_codes_10g = 0;
1826	u8 oui_bytes[3] = {0, 0, 0};
1827	u16 enforce_sfp = 0;
1828	u8 connector = 0;
1829	u8 cable_length = 0;
1830	u8 device_tech = 0;
1831	bool active_cable = false;
1832
1833	if (hw->mac.ops.get_media_type(hw) != ixgbe_media_type_fiber_qsfp) {
1834		hw->phy.sfp_type = ixgbe_sfp_type_not_present;
1835		return -ENOENT;
1836	}
1837
1838	/* LAN ID is needed for sfp_type determination */
1839	hw->mac.ops.set_lan_id(hw);
1840
1841	status = hw->phy.ops.read_i2c_eeprom(hw, IXGBE_SFF_IDENTIFIER,
1842					     &identifier);
1843
1844	if (status != 0)
1845		goto err_read_i2c_eeprom;
1846
1847	if (identifier != IXGBE_SFF_IDENTIFIER_QSFP_PLUS) {
1848		hw->phy.type = ixgbe_phy_sfp_unsupported;
1849		return -EOPNOTSUPP;
1850	}
1851
1852	hw->phy.id = identifier;
1853
1854	status = hw->phy.ops.read_i2c_eeprom(hw, IXGBE_SFF_QSFP_10GBE_COMP,
1855					     &comp_codes_10g);
1856
1857	if (status != 0)
1858		goto err_read_i2c_eeprom;
1859
1860	status = hw->phy.ops.read_i2c_eeprom(hw, IXGBE_SFF_QSFP_1GBE_COMP,
1861					     &comp_codes_1g);
1862
1863	if (status != 0)
1864		goto err_read_i2c_eeprom;
1865
1866	if (comp_codes_10g & IXGBE_SFF_QSFP_DA_PASSIVE_CABLE) {
1867		hw->phy.type = ixgbe_phy_qsfp_passive_unknown;
1868		if (hw->bus.lan_id == 0)
1869			hw->phy.sfp_type = ixgbe_sfp_type_da_cu_core0;
1870		else
1871			hw->phy.sfp_type = ixgbe_sfp_type_da_cu_core1;
1872	} else if (comp_codes_10g & (IXGBE_SFF_10GBASESR_CAPABLE |
1873				     IXGBE_SFF_10GBASELR_CAPABLE)) {
1874		if (hw->bus.lan_id == 0)
1875			hw->phy.sfp_type = ixgbe_sfp_type_srlr_core0;
1876		else
1877			hw->phy.sfp_type = ixgbe_sfp_type_srlr_core1;
1878	} else {
1879		if (comp_codes_10g & IXGBE_SFF_QSFP_DA_ACTIVE_CABLE)
1880			active_cable = true;
1881
1882		if (!active_cable) {
1883			/* check for active DA cables that pre-date
1884			 * SFF-8436 v3.6
1885			 */
1886			hw->phy.ops.read_i2c_eeprom(hw,
1887					IXGBE_SFF_QSFP_CONNECTOR,
1888					&connector);
1889
1890			hw->phy.ops.read_i2c_eeprom(hw,
1891					IXGBE_SFF_QSFP_CABLE_LENGTH,
1892					&cable_length);
1893
1894			hw->phy.ops.read_i2c_eeprom(hw,
1895					IXGBE_SFF_QSFP_DEVICE_TECH,
1896					&device_tech);
1897
1898			if ((connector ==
1899				     IXGBE_SFF_QSFP_CONNECTOR_NOT_SEPARABLE) &&
1900			    (cable_length > 0) &&
1901			    ((device_tech >> 4) ==
1902				     IXGBE_SFF_QSFP_TRANSMITER_850NM_VCSEL))
1903				active_cable = true;
1904		}
1905
1906		if (active_cable) {
1907			hw->phy.type = ixgbe_phy_qsfp_active_unknown;
1908			if (hw->bus.lan_id == 0)
1909				hw->phy.sfp_type =
1910						ixgbe_sfp_type_da_act_lmt_core0;
1911			else
1912				hw->phy.sfp_type =
1913						ixgbe_sfp_type_da_act_lmt_core1;
1914		} else {
1915			/* unsupported module type */
1916			hw->phy.type = ixgbe_phy_sfp_unsupported;
1917			return -EOPNOTSUPP;
1918		}
1919	}
1920
1921	if (hw->phy.sfp_type != stored_sfp_type)
1922		hw->phy.sfp_setup_needed = true;
1923
1924	/* Determine if the QSFP+ PHY is dual speed or not. */
1925	hw->phy.multispeed_fiber = false;
1926	if (((comp_codes_1g & IXGBE_SFF_1GBASESX_CAPABLE) &&
1927	     (comp_codes_10g & IXGBE_SFF_10GBASESR_CAPABLE)) ||
1928	    ((comp_codes_1g & IXGBE_SFF_1GBASELX_CAPABLE) &&
1929	     (comp_codes_10g & IXGBE_SFF_10GBASELR_CAPABLE)))
1930		hw->phy.multispeed_fiber = true;
1931
1932	/* Determine PHY vendor for optical modules */
1933	if (comp_codes_10g & (IXGBE_SFF_10GBASESR_CAPABLE |
1934			      IXGBE_SFF_10GBASELR_CAPABLE)) {
1935		status = hw->phy.ops.read_i2c_eeprom(hw,
1936					IXGBE_SFF_QSFP_VENDOR_OUI_BYTE0,
1937					&oui_bytes[0]);
1938
1939		if (status != 0)
1940			goto err_read_i2c_eeprom;
1941
1942		status = hw->phy.ops.read_i2c_eeprom(hw,
1943					IXGBE_SFF_QSFP_VENDOR_OUI_BYTE1,
1944					&oui_bytes[1]);
1945
1946		if (status != 0)
1947			goto err_read_i2c_eeprom;
1948
1949		status = hw->phy.ops.read_i2c_eeprom(hw,
1950					IXGBE_SFF_QSFP_VENDOR_OUI_BYTE2,
1951					&oui_bytes[2]);
1952
1953		if (status != 0)
1954			goto err_read_i2c_eeprom;
1955
1956		vendor_oui =
1957			((oui_bytes[0] << IXGBE_SFF_VENDOR_OUI_BYTE0_SHIFT) |
1958			 (oui_bytes[1] << IXGBE_SFF_VENDOR_OUI_BYTE1_SHIFT) |
1959			 (oui_bytes[2] << IXGBE_SFF_VENDOR_OUI_BYTE2_SHIFT));
1960
1961		if (vendor_oui == IXGBE_SFF_VENDOR_OUI_INTEL)
1962			hw->phy.type = ixgbe_phy_qsfp_intel;
1963		else
1964			hw->phy.type = ixgbe_phy_qsfp_unknown;
1965
1966		hw->mac.ops.get_device_caps(hw, &enforce_sfp);
1967		if (!(enforce_sfp & IXGBE_DEVICE_CAPS_ALLOW_ANY_SFP)) {
1968			/* Make sure we're a supported PHY type */
1969			if (hw->phy.type == ixgbe_phy_qsfp_intel)
1970				return 0;
1971			if (hw->allow_unsupported_sfp) {
1972				e_warn(drv, "WARNING: Intel (R) Network Connections are quality tested using Intel (R) Ethernet Optics. Using untested modules is not supported and may cause unstable operation or damage to the module or the adapter. Intel Corporation is not responsible for any harm caused by using untested modules.\n");
1973				return 0;
1974			}
1975			hw_dbg(hw, "QSFP module not supported\n");
1976			hw->phy.type = ixgbe_phy_sfp_unsupported;
1977			return -EOPNOTSUPP;
1978		}
1979		return 0;
1980	}
1981	return 0;
1982
1983err_read_i2c_eeprom:
1984	hw->phy.sfp_type = ixgbe_sfp_type_not_present;
1985	hw->phy.id = 0;
1986	hw->phy.type = ixgbe_phy_unknown;
1987
1988	return -ENOENT;
1989}
1990
1991/**
1992 *  ixgbe_get_sfp_init_sequence_offsets - Provides offset of PHY init sequence
1993 *  @hw: pointer to hardware structure
1994 *  @list_offset: offset to the SFP ID list
1995 *  @data_offset: offset to the SFP data block
1996 *
1997 *  Checks the MAC's EEPROM to see if it supports a given SFP+ module type, if
1998 *  so it returns the offsets to the phy init sequence block.
1999 **/
2000int ixgbe_get_sfp_init_sequence_offsets(struct ixgbe_hw *hw,
2001					u16 *list_offset,
2002					u16 *data_offset)
2003{
2004	u16 sfp_id;
2005	u16 sfp_type = hw->phy.sfp_type;
2006
2007	if (hw->phy.sfp_type == ixgbe_sfp_type_unknown)
2008		return -EOPNOTSUPP;
2009
2010	if (hw->phy.sfp_type == ixgbe_sfp_type_not_present)
2011		return -ENOENT;
2012
2013	if ((hw->device_id == IXGBE_DEV_ID_82598_SR_DUAL_PORT_EM) &&
2014	    (hw->phy.sfp_type == ixgbe_sfp_type_da_cu))
2015		return -EOPNOTSUPP;
2016
2017	/*
2018	 * Limiting active cables and 1G Phys must be initialized as
2019	 * SR modules
2020	 */
2021	if (sfp_type == ixgbe_sfp_type_da_act_lmt_core0 ||
2022	    sfp_type == ixgbe_sfp_type_1g_lx_core0 ||
2023	    sfp_type == ixgbe_sfp_type_1g_cu_core0 ||
2024	    sfp_type == ixgbe_sfp_type_1g_sx_core0 ||
2025	    sfp_type == ixgbe_sfp_type_1g_bx_core0)
2026		sfp_type = ixgbe_sfp_type_srlr_core0;
2027	else if (sfp_type == ixgbe_sfp_type_da_act_lmt_core1 ||
2028		 sfp_type == ixgbe_sfp_type_1g_lx_core1 ||
2029		 sfp_type == ixgbe_sfp_type_1g_cu_core1 ||
2030		 sfp_type == ixgbe_sfp_type_1g_sx_core1 ||
2031		 sfp_type == ixgbe_sfp_type_1g_bx_core1)
2032		sfp_type = ixgbe_sfp_type_srlr_core1;
2033
2034	/* Read offset to PHY init contents */
2035	if (hw->eeprom.ops.read(hw, IXGBE_PHY_INIT_OFFSET_NL, list_offset)) {
2036		hw_err(hw, "eeprom read at %d failed\n",
2037		       IXGBE_PHY_INIT_OFFSET_NL);
2038		return -EIO;
2039	}
2040
2041	if ((!*list_offset) || (*list_offset == 0xFFFF))
2042		return -EIO;
2043
2044	/* Shift offset to first ID word */
2045	(*list_offset)++;
2046
2047	/*
2048	 * Find the matching SFP ID in the EEPROM
2049	 * and program the init sequence
2050	 */
2051	if (hw->eeprom.ops.read(hw, *list_offset, &sfp_id))
2052		goto err_phy;
2053
2054	while (sfp_id != IXGBE_PHY_INIT_END_NL) {
2055		if (sfp_id == sfp_type) {
2056			(*list_offset)++;
2057			if (hw->eeprom.ops.read(hw, *list_offset, data_offset))
2058				goto err_phy;
2059			if ((!*data_offset) || (*data_offset == 0xFFFF)) {
2060				hw_dbg(hw, "SFP+ module not supported\n");
2061				return -EOPNOTSUPP;
2062			} else {
2063				break;
2064			}
2065		} else {
2066			(*list_offset) += 2;
2067			if (hw->eeprom.ops.read(hw, *list_offset, &sfp_id))
2068				goto err_phy;
2069		}
2070	}
2071
2072	if (sfp_id == IXGBE_PHY_INIT_END_NL) {
2073		hw_dbg(hw, "No matching SFP+ module found\n");
2074		return -EOPNOTSUPP;
2075	}
2076
2077	return 0;
2078
2079err_phy:
2080	hw_err(hw, "eeprom read at offset %d failed\n", *list_offset);
2081	return -EIO;
2082}
2083
2084/**
2085 *  ixgbe_read_i2c_eeprom_generic - Reads 8 bit EEPROM word over I2C interface
2086 *  @hw: pointer to hardware structure
2087 *  @byte_offset: EEPROM byte offset to read
2088 *  @eeprom_data: value read
2089 *
2090 *  Performs byte read operation to SFP module's EEPROM over I2C interface.
2091 **/
2092int ixgbe_read_i2c_eeprom_generic(struct ixgbe_hw *hw, u8 byte_offset,
2093				  u8 *eeprom_data)
2094{
2095	return hw->phy.ops.read_i2c_byte(hw, byte_offset,
2096					 IXGBE_I2C_EEPROM_DEV_ADDR,
2097					 eeprom_data);
2098}
2099
2100/**
2101 *  ixgbe_read_i2c_sff8472_generic - Reads 8 bit word over I2C interface
2102 *  @hw: pointer to hardware structure
2103 *  @byte_offset: byte offset at address 0xA2
2104 *  @sff8472_data: value read
2105 *
2106 *  Performs byte read operation to SFP module's SFF-8472 data over I2C
2107 **/
2108int ixgbe_read_i2c_sff8472_generic(struct ixgbe_hw *hw, u8 byte_offset,
2109				   u8 *sff8472_data)
2110{
2111	return hw->phy.ops.read_i2c_byte(hw, byte_offset,
2112					 IXGBE_I2C_EEPROM_DEV_ADDR2,
2113					 sff8472_data);
2114}
2115
2116/**
2117 *  ixgbe_write_i2c_eeprom_generic - Writes 8 bit EEPROM word over I2C interface
2118 *  @hw: pointer to hardware structure
2119 *  @byte_offset: EEPROM byte offset to write
2120 *  @eeprom_data: value to write
2121 *
2122 *  Performs byte write operation to SFP module's EEPROM over I2C interface.
2123 **/
2124int ixgbe_write_i2c_eeprom_generic(struct ixgbe_hw *hw, u8 byte_offset,
2125				   u8 eeprom_data)
2126{
2127	return hw->phy.ops.write_i2c_byte(hw, byte_offset,
2128					  IXGBE_I2C_EEPROM_DEV_ADDR,
2129					  eeprom_data);
2130}
2131
2132/**
2133 * ixgbe_is_sfp_probe - Returns true if SFP is being detected
2134 * @hw: pointer to hardware structure
2135 * @offset: eeprom offset to be read
2136 * @addr: I2C address to be read
2137 */
2138static bool ixgbe_is_sfp_probe(struct ixgbe_hw *hw, u8 offset, u8 addr)
2139{
2140	if (addr == IXGBE_I2C_EEPROM_DEV_ADDR &&
2141	    offset == IXGBE_SFF_IDENTIFIER &&
2142	    hw->phy.sfp_type == ixgbe_sfp_type_not_present)
2143		return true;
2144	return false;
2145}
2146
2147/**
2148 *  ixgbe_read_i2c_byte_generic_int - Reads 8 bit word over I2C
2149 *  @hw: pointer to hardware structure
2150 *  @byte_offset: byte offset to read
2151 *  @dev_addr: device address
2152 *  @data: value read
2153 *  @lock: true if to take and release semaphore
2154 *
2155 *  Performs byte read operation to SFP module's EEPROM over I2C interface at
2156 *  a specified device address.
2157 */
2158static int ixgbe_read_i2c_byte_generic_int(struct ixgbe_hw *hw, u8 byte_offset,
2159					   u8 dev_addr, u8 *data, bool lock)
2160{
2161	u32 swfw_mask = hw->phy.phy_semaphore_mask;
2162	u32 max_retry = 10;
2163	bool nack = true;
2164	u32 retry = 0;
2165	int status;
 
2166
2167	if (hw->mac.type >= ixgbe_mac_X550)
2168		max_retry = 3;
2169	if (ixgbe_is_sfp_probe(hw, byte_offset, dev_addr))
2170		max_retry = IXGBE_SFP_DETECT_RETRIES;
2171
2172	*data = 0;
2173
2174	do {
2175		if (lock && hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
2176			return -EBUSY;
2177
2178		ixgbe_i2c_start(hw);
2179
2180		/* Device Address and write indication */
2181		status = ixgbe_clock_out_i2c_byte(hw, dev_addr);
2182		if (status != 0)
2183			goto fail;
2184
2185		status = ixgbe_get_i2c_ack(hw);
2186		if (status != 0)
2187			goto fail;
2188
2189		status = ixgbe_clock_out_i2c_byte(hw, byte_offset);
2190		if (status != 0)
2191			goto fail;
2192
2193		status = ixgbe_get_i2c_ack(hw);
2194		if (status != 0)
2195			goto fail;
2196
2197		ixgbe_i2c_start(hw);
2198
2199		/* Device Address and read indication */
2200		status = ixgbe_clock_out_i2c_byte(hw, (dev_addr | 0x1));
2201		if (status != 0)
2202			goto fail;
2203
2204		status = ixgbe_get_i2c_ack(hw);
2205		if (status != 0)
2206			goto fail;
2207
2208		status = ixgbe_clock_in_i2c_byte(hw, data);
2209		if (status != 0)
2210			goto fail;
2211
2212		status = ixgbe_clock_out_i2c_bit(hw, nack);
2213		if (status != 0)
2214			goto fail;
2215
2216		ixgbe_i2c_stop(hw);
2217		if (lock)
2218			hw->mac.ops.release_swfw_sync(hw, swfw_mask);
2219		return 0;
2220
2221fail:
2222		ixgbe_i2c_bus_clear(hw);
2223		if (lock) {
2224			hw->mac.ops.release_swfw_sync(hw, swfw_mask);
2225			msleep(100);
2226		}
2227		retry++;
2228		if (retry < max_retry)
2229			hw_dbg(hw, "I2C byte read error - Retrying.\n");
2230		else
2231			hw_dbg(hw, "I2C byte read error.\n");
2232
2233	} while (retry < max_retry);
2234
2235	return status;
2236}
2237
2238/**
2239 *  ixgbe_read_i2c_byte_generic - Reads 8 bit word over I2C
2240 *  @hw: pointer to hardware structure
2241 *  @byte_offset: byte offset to read
2242 *  @dev_addr: device address
2243 *  @data: value read
2244 *
2245 *  Performs byte read operation to SFP module's EEPROM over I2C interface at
2246 *  a specified device address.
2247 */
2248int ixgbe_read_i2c_byte_generic(struct ixgbe_hw *hw, u8 byte_offset,
2249				u8 dev_addr, u8 *data)
2250{
2251	return ixgbe_read_i2c_byte_generic_int(hw, byte_offset, dev_addr,
2252					       data, true);
2253}
2254
2255/**
2256 *  ixgbe_read_i2c_byte_generic_unlocked - Reads 8 bit word over I2C
2257 *  @hw: pointer to hardware structure
2258 *  @byte_offset: byte offset to read
2259 *  @dev_addr: device address
2260 *  @data: value read
2261 *
2262 *  Performs byte read operation to SFP module's EEPROM over I2C interface at
2263 *  a specified device address.
2264 */
2265int ixgbe_read_i2c_byte_generic_unlocked(struct ixgbe_hw *hw, u8 byte_offset,
2266					 u8 dev_addr, u8 *data)
2267{
2268	return ixgbe_read_i2c_byte_generic_int(hw, byte_offset, dev_addr,
2269					       data, false);
2270}
2271
2272/**
2273 *  ixgbe_write_i2c_byte_generic_int - Writes 8 bit word over I2C
2274 *  @hw: pointer to hardware structure
2275 *  @byte_offset: byte offset to write
2276 *  @dev_addr: device address
2277 *  @data: value to write
2278 *  @lock: true if to take and release semaphore
2279 *
2280 *  Performs byte write operation to SFP module's EEPROM over I2C interface at
2281 *  a specified device address.
2282 */
2283static int ixgbe_write_i2c_byte_generic_int(struct ixgbe_hw *hw, u8 byte_offset,
2284					    u8 dev_addr, u8 data, bool lock)
2285{
2286	u32 swfw_mask = hw->phy.phy_semaphore_mask;
2287	u32 max_retry = 1;
2288	u32 retry = 0;
2289	int status;
2290
2291	if (lock && hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
2292		return -EBUSY;
2293
2294	do {
2295		ixgbe_i2c_start(hw);
2296
2297		status = ixgbe_clock_out_i2c_byte(hw, dev_addr);
2298		if (status != 0)
2299			goto fail;
2300
2301		status = ixgbe_get_i2c_ack(hw);
2302		if (status != 0)
2303			goto fail;
2304
2305		status = ixgbe_clock_out_i2c_byte(hw, byte_offset);
2306		if (status != 0)
2307			goto fail;
2308
2309		status = ixgbe_get_i2c_ack(hw);
2310		if (status != 0)
2311			goto fail;
2312
2313		status = ixgbe_clock_out_i2c_byte(hw, data);
2314		if (status != 0)
2315			goto fail;
2316
2317		status = ixgbe_get_i2c_ack(hw);
2318		if (status != 0)
2319			goto fail;
2320
2321		ixgbe_i2c_stop(hw);
2322		if (lock)
2323			hw->mac.ops.release_swfw_sync(hw, swfw_mask);
2324		return 0;
2325
2326fail:
2327		ixgbe_i2c_bus_clear(hw);
2328		retry++;
2329		if (retry < max_retry)
2330			hw_dbg(hw, "I2C byte write error - Retrying.\n");
2331		else
2332			hw_dbg(hw, "I2C byte write error.\n");
2333	} while (retry < max_retry);
2334
2335	if (lock)
2336		hw->mac.ops.release_swfw_sync(hw, swfw_mask);
2337
2338	return status;
2339}
2340
2341/**
2342 *  ixgbe_write_i2c_byte_generic - Writes 8 bit word over I2C
2343 *  @hw: pointer to hardware structure
2344 *  @byte_offset: byte offset to write
2345 *  @dev_addr: device address
2346 *  @data: value to write
2347 *
2348 *  Performs byte write operation to SFP module's EEPROM over I2C interface at
2349 *  a specified device address.
2350 */
2351int ixgbe_write_i2c_byte_generic(struct ixgbe_hw *hw, u8 byte_offset,
2352				 u8 dev_addr, u8 data)
2353{
2354	return ixgbe_write_i2c_byte_generic_int(hw, byte_offset, dev_addr,
2355						data, true);
2356}
2357
2358/**
2359 *  ixgbe_write_i2c_byte_generic_unlocked - Writes 8 bit word over I2C
2360 *  @hw: pointer to hardware structure
2361 *  @byte_offset: byte offset to write
2362 *  @dev_addr: device address
2363 *  @data: value to write
2364 *
2365 *  Performs byte write operation to SFP module's EEPROM over I2C interface at
2366 *  a specified device address.
2367 */
2368int ixgbe_write_i2c_byte_generic_unlocked(struct ixgbe_hw *hw, u8 byte_offset,
2369					  u8 dev_addr, u8 data)
2370{
2371	return ixgbe_write_i2c_byte_generic_int(hw, byte_offset, dev_addr,
2372						data, false);
2373}
2374
2375/**
2376 *  ixgbe_i2c_start - Sets I2C start condition
2377 *  @hw: pointer to hardware structure
2378 *
2379 *  Sets I2C start condition (High -> Low on SDA while SCL is High)
2380 *  Set bit-bang mode on X550 hardware.
2381 **/
2382static void ixgbe_i2c_start(struct ixgbe_hw *hw)
2383{
2384	u32 i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL(hw));
2385
2386	i2cctl |= IXGBE_I2C_BB_EN(hw);
2387
2388	/* Start condition must begin with data and clock high */
2389	ixgbe_set_i2c_data(hw, &i2cctl, 1);
2390	ixgbe_raise_i2c_clk(hw, &i2cctl);
2391
2392	/* Setup time for start condition (4.7us) */
2393	udelay(IXGBE_I2C_T_SU_STA);
2394
2395	ixgbe_set_i2c_data(hw, &i2cctl, 0);
2396
2397	/* Hold time for start condition (4us) */
2398	udelay(IXGBE_I2C_T_HD_STA);
2399
2400	ixgbe_lower_i2c_clk(hw, &i2cctl);
2401
2402	/* Minimum low period of clock is 4.7 us */
2403	udelay(IXGBE_I2C_T_LOW);
2404
2405}
2406
2407/**
2408 *  ixgbe_i2c_stop - Sets I2C stop condition
2409 *  @hw: pointer to hardware structure
2410 *
2411 *  Sets I2C stop condition (Low -> High on SDA while SCL is High)
2412 *  Disables bit-bang mode and negates data output enable on X550
2413 *  hardware.
2414 **/
2415static void ixgbe_i2c_stop(struct ixgbe_hw *hw)
2416{
2417	u32 i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL(hw));
2418	u32 data_oe_bit = IXGBE_I2C_DATA_OE_N_EN(hw);
2419	u32 clk_oe_bit = IXGBE_I2C_CLK_OE_N_EN(hw);
2420	u32 bb_en_bit = IXGBE_I2C_BB_EN(hw);
2421
2422	/* Stop condition must begin with data low and clock high */
2423	ixgbe_set_i2c_data(hw, &i2cctl, 0);
2424	ixgbe_raise_i2c_clk(hw, &i2cctl);
2425
2426	/* Setup time for stop condition (4us) */
2427	udelay(IXGBE_I2C_T_SU_STO);
2428
2429	ixgbe_set_i2c_data(hw, &i2cctl, 1);
2430
2431	/* bus free time between stop and start (4.7us)*/
2432	udelay(IXGBE_I2C_T_BUF);
2433
2434	if (bb_en_bit || data_oe_bit || clk_oe_bit) {
2435		i2cctl &= ~bb_en_bit;
2436		i2cctl |= data_oe_bit | clk_oe_bit;
2437		IXGBE_WRITE_REG(hw, IXGBE_I2CCTL(hw), i2cctl);
2438		IXGBE_WRITE_FLUSH(hw);
2439	}
2440}
2441
2442/**
2443 *  ixgbe_clock_in_i2c_byte - Clocks in one byte via I2C
2444 *  @hw: pointer to hardware structure
2445 *  @data: data byte to clock in
2446 *
2447 *  Clocks in one byte data via I2C data/clock
2448 **/
2449static int ixgbe_clock_in_i2c_byte(struct ixgbe_hw *hw, u8 *data)
2450{
 
2451	bool bit = false;
2452	int i;
2453
2454	*data = 0;
2455	for (i = 7; i >= 0; i--) {
2456		ixgbe_clock_in_i2c_bit(hw, &bit);
2457		*data |= bit << i;
2458	}
2459
2460	return 0;
2461}
2462
2463/**
2464 *  ixgbe_clock_out_i2c_byte - Clocks out one byte via I2C
2465 *  @hw: pointer to hardware structure
2466 *  @data: data byte clocked out
2467 *
2468 *  Clocks out one byte data via I2C data/clock
2469 **/
2470static int ixgbe_clock_out_i2c_byte(struct ixgbe_hw *hw, u8 data)
2471{
2472	bool bit = false;
2473	int status;
2474	u32 i2cctl;
2475	int i;
2476
2477	for (i = 7; i >= 0; i--) {
2478		bit = (data >> i) & 0x1;
2479		status = ixgbe_clock_out_i2c_bit(hw, bit);
2480
2481		if (status != 0)
2482			break;
2483	}
2484
2485	/* Release SDA line (set high) */
2486	i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL(hw));
2487	i2cctl |= IXGBE_I2C_DATA_OUT(hw);
2488	i2cctl |= IXGBE_I2C_DATA_OE_N_EN(hw);
2489	IXGBE_WRITE_REG(hw, IXGBE_I2CCTL(hw), i2cctl);
2490	IXGBE_WRITE_FLUSH(hw);
2491
2492	return status;
2493}
2494
2495/**
2496 *  ixgbe_get_i2c_ack - Polls for I2C ACK
2497 *  @hw: pointer to hardware structure
2498 *
2499 *  Clocks in/out one bit via I2C data/clock
2500 **/
2501static int ixgbe_get_i2c_ack(struct ixgbe_hw *hw)
2502{
2503	u32 i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL(hw));
2504	u32 data_oe_bit = IXGBE_I2C_DATA_OE_N_EN(hw);
 
 
 
2505	u32 timeout = 10;
2506	bool ack = true;
2507	int status = 0;
2508	u32 i = 0;
2509
2510	if (data_oe_bit) {
2511		i2cctl |= IXGBE_I2C_DATA_OUT(hw);
2512		i2cctl |= data_oe_bit;
2513		IXGBE_WRITE_REG(hw, IXGBE_I2CCTL(hw), i2cctl);
2514		IXGBE_WRITE_FLUSH(hw);
2515	}
2516	ixgbe_raise_i2c_clk(hw, &i2cctl);
2517
2518	/* Minimum high period of clock is 4us */
2519	udelay(IXGBE_I2C_T_HIGH);
2520
2521	/* Poll for ACK.  Note that ACK in I2C spec is
2522	 * transition from 1 to 0 */
2523	for (i = 0; i < timeout; i++) {
2524		i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL(hw));
2525		ack = ixgbe_get_i2c_data(hw, &i2cctl);
2526
2527		udelay(1);
2528		if (ack == 0)
2529			break;
2530	}
2531
2532	if (ack == 1) {
2533		hw_dbg(hw, "I2C ack was not received.\n");
2534		status = -EIO;
2535	}
2536
2537	ixgbe_lower_i2c_clk(hw, &i2cctl);
2538
2539	/* Minimum low period of clock is 4.7 us */
2540	udelay(IXGBE_I2C_T_LOW);
2541
2542	return status;
2543}
2544
2545/**
2546 *  ixgbe_clock_in_i2c_bit - Clocks in one bit via I2C data/clock
2547 *  @hw: pointer to hardware structure
2548 *  @data: read data value
2549 *
2550 *  Clocks in one bit via I2C data/clock
2551 **/
2552static int ixgbe_clock_in_i2c_bit(struct ixgbe_hw *hw, bool *data)
2553{
2554	u32 i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL(hw));
2555	u32 data_oe_bit = IXGBE_I2C_DATA_OE_N_EN(hw);
2556
2557	if (data_oe_bit) {
2558		i2cctl |= IXGBE_I2C_DATA_OUT(hw);
2559		i2cctl |= data_oe_bit;
2560		IXGBE_WRITE_REG(hw, IXGBE_I2CCTL(hw), i2cctl);
2561		IXGBE_WRITE_FLUSH(hw);
2562	}
2563	ixgbe_raise_i2c_clk(hw, &i2cctl);
2564
2565	/* Minimum high period of clock is 4us */
2566	udelay(IXGBE_I2C_T_HIGH);
2567
2568	i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL(hw));
2569	*data = ixgbe_get_i2c_data(hw, &i2cctl);
2570
2571	ixgbe_lower_i2c_clk(hw, &i2cctl);
2572
2573	/* Minimum low period of clock is 4.7 us */
2574	udelay(IXGBE_I2C_T_LOW);
2575
2576	return 0;
2577}
2578
2579/**
2580 *  ixgbe_clock_out_i2c_bit - Clocks in/out one bit via I2C data/clock
2581 *  @hw: pointer to hardware structure
2582 *  @data: data value to write
2583 *
2584 *  Clocks out one bit via I2C data/clock
2585 **/
2586static int ixgbe_clock_out_i2c_bit(struct ixgbe_hw *hw, bool data)
2587{
 
2588	u32 i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL(hw));
2589	int status;
2590
2591	status = ixgbe_set_i2c_data(hw, &i2cctl, data);
2592	if (status == 0) {
2593		ixgbe_raise_i2c_clk(hw, &i2cctl);
2594
2595		/* Minimum high period of clock is 4us */
2596		udelay(IXGBE_I2C_T_HIGH);
2597
2598		ixgbe_lower_i2c_clk(hw, &i2cctl);
2599
2600		/* Minimum low period of clock is 4.7 us.
2601		 * This also takes care of the data hold time.
2602		 */
2603		udelay(IXGBE_I2C_T_LOW);
2604	} else {
2605		hw_dbg(hw, "I2C data was not set to %X\n", data);
2606		return -EIO;
2607	}
2608
2609	return 0;
2610}
2611/**
2612 *  ixgbe_raise_i2c_clk - Raises the I2C SCL clock
2613 *  @hw: pointer to hardware structure
2614 *  @i2cctl: Current value of I2CCTL register
2615 *
2616 *  Raises the I2C clock line '0'->'1'
2617 *  Negates the I2C clock output enable on X550 hardware.
2618 **/
2619static void ixgbe_raise_i2c_clk(struct ixgbe_hw *hw, u32 *i2cctl)
2620{
2621	u32 clk_oe_bit = IXGBE_I2C_CLK_OE_N_EN(hw);
2622	u32 i = 0;
2623	u32 timeout = IXGBE_I2C_CLOCK_STRETCHING_TIMEOUT;
2624	u32 i2cctl_r = 0;
2625
2626	if (clk_oe_bit) {
2627		*i2cctl |= clk_oe_bit;
2628		IXGBE_WRITE_REG(hw, IXGBE_I2CCTL(hw), *i2cctl);
2629	}
2630
2631	for (i = 0; i < timeout; i++) {
2632		*i2cctl |= IXGBE_I2C_CLK_OUT(hw);
2633		IXGBE_WRITE_REG(hw, IXGBE_I2CCTL(hw), *i2cctl);
2634		IXGBE_WRITE_FLUSH(hw);
2635		/* SCL rise time (1000ns) */
2636		udelay(IXGBE_I2C_T_RISE);
2637
2638		i2cctl_r = IXGBE_READ_REG(hw, IXGBE_I2CCTL(hw));
2639		if (i2cctl_r & IXGBE_I2C_CLK_IN(hw))
2640			break;
2641	}
2642}
2643
2644/**
2645 *  ixgbe_lower_i2c_clk - Lowers the I2C SCL clock
2646 *  @hw: pointer to hardware structure
2647 *  @i2cctl: Current value of I2CCTL register
2648 *
2649 *  Lowers the I2C clock line '1'->'0'
2650 *  Asserts the I2C clock output enable on X550 hardware.
2651 **/
2652static void ixgbe_lower_i2c_clk(struct ixgbe_hw *hw, u32 *i2cctl)
2653{
2654
2655	*i2cctl &= ~IXGBE_I2C_CLK_OUT(hw);
2656	*i2cctl &= ~IXGBE_I2C_CLK_OE_N_EN(hw);
2657
2658	IXGBE_WRITE_REG(hw, IXGBE_I2CCTL(hw), *i2cctl);
2659	IXGBE_WRITE_FLUSH(hw);
2660
2661	/* SCL fall time (300ns) */
2662	udelay(IXGBE_I2C_T_FALL);
2663}
2664
2665/**
2666 *  ixgbe_set_i2c_data - Sets the I2C data bit
2667 *  @hw: pointer to hardware structure
2668 *  @i2cctl: Current value of I2CCTL register
2669 *  @data: I2C data value (0 or 1) to set
2670 *
2671 *  Sets the I2C data bit
2672 *  Asserts the I2C data output enable on X550 hardware.
2673 **/
2674static int ixgbe_set_i2c_data(struct ixgbe_hw *hw, u32 *i2cctl, bool data)
2675{
2676	u32 data_oe_bit = IXGBE_I2C_DATA_OE_N_EN(hw);
2677
2678	if (data)
2679		*i2cctl |= IXGBE_I2C_DATA_OUT(hw);
2680	else
2681		*i2cctl &= ~IXGBE_I2C_DATA_OUT(hw);
2682	*i2cctl &= ~data_oe_bit;
2683
2684	IXGBE_WRITE_REG(hw, IXGBE_I2CCTL(hw), *i2cctl);
2685	IXGBE_WRITE_FLUSH(hw);
2686
2687	/* Data rise/fall (1000ns/300ns) and set-up time (250ns) */
2688	udelay(IXGBE_I2C_T_RISE + IXGBE_I2C_T_FALL + IXGBE_I2C_T_SU_DATA);
2689
2690	if (!data)	/* Can't verify data in this case */
2691		return 0;
2692	if (data_oe_bit) {
2693		*i2cctl |= data_oe_bit;
2694		IXGBE_WRITE_REG(hw, IXGBE_I2CCTL(hw), *i2cctl);
2695		IXGBE_WRITE_FLUSH(hw);
2696	}
2697
2698	/* Verify data was set correctly */
2699	*i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL(hw));
2700	if (data != ixgbe_get_i2c_data(hw, i2cctl)) {
2701		hw_dbg(hw, "Error - I2C data was not set to %X.\n", data);
2702		return -EIO;
2703	}
2704
2705	return 0;
2706}
2707
2708/**
2709 *  ixgbe_get_i2c_data - Reads the I2C SDA data bit
2710 *  @hw: pointer to hardware structure
2711 *  @i2cctl: Current value of I2CCTL register
2712 *
2713 *  Returns the I2C data bit value
2714 *  Negates the I2C data output enable on X550 hardware.
2715 **/
2716static bool ixgbe_get_i2c_data(struct ixgbe_hw *hw, u32 *i2cctl)
2717{
2718	u32 data_oe_bit = IXGBE_I2C_DATA_OE_N_EN(hw);
2719
2720	if (data_oe_bit) {
2721		*i2cctl |= data_oe_bit;
2722		IXGBE_WRITE_REG(hw, IXGBE_I2CCTL(hw), *i2cctl);
2723		IXGBE_WRITE_FLUSH(hw);
2724		udelay(IXGBE_I2C_T_FALL);
2725	}
2726
2727	if (*i2cctl & IXGBE_I2C_DATA_IN(hw))
2728		return true;
2729	return false;
2730}
2731
2732/**
2733 *  ixgbe_i2c_bus_clear - Clears the I2C bus
2734 *  @hw: pointer to hardware structure
2735 *
2736 *  Clears the I2C bus by sending nine clock pulses.
2737 *  Used when data line is stuck low.
2738 **/
2739static void ixgbe_i2c_bus_clear(struct ixgbe_hw *hw)
2740{
2741	u32 i2cctl;
2742	u32 i;
2743
2744	ixgbe_i2c_start(hw);
2745	i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL(hw));
2746
2747	ixgbe_set_i2c_data(hw, &i2cctl, 1);
2748
2749	for (i = 0; i < 9; i++) {
2750		ixgbe_raise_i2c_clk(hw, &i2cctl);
2751
2752		/* Min high period of clock is 4us */
2753		udelay(IXGBE_I2C_T_HIGH);
2754
2755		ixgbe_lower_i2c_clk(hw, &i2cctl);
2756
2757		/* Min low period of clock is 4.7us*/
2758		udelay(IXGBE_I2C_T_LOW);
2759	}
2760
2761	ixgbe_i2c_start(hw);
2762
2763	/* Put the i2c bus back to default state */
2764	ixgbe_i2c_stop(hw);
2765}
2766
2767/**
2768 *  ixgbe_tn_check_overtemp - Checks if an overtemp occurred.
2769 *  @hw: pointer to hardware structure
2770 *
2771 *  Checks if the LASI temp alarm status was triggered due to overtemp
2772 *
2773 *  Return true when an overtemp event detected, otherwise false.
2774 **/
2775bool ixgbe_tn_check_overtemp(struct ixgbe_hw *hw)
2776{
2777	u16 phy_data = 0;
2778	u32 status;
2779
2780	if (hw->device_id != IXGBE_DEV_ID_82599_T3_LOM)
2781		return false;
2782
2783	/* Check that the LASI temp alarm status was triggered */
2784	status = hw->phy.ops.read_reg(hw, IXGBE_TN_LASI_STATUS_REG,
2785				      MDIO_MMD_PMAPMD, &phy_data);
2786	if (status)
2787		return false;
 
2788
2789	return !!(phy_data & IXGBE_TN_LASI_STATUS_TEMP_ALARM);
2790}
2791
2792/** ixgbe_set_copper_phy_power - Control power for copper phy
2793 *  @hw: pointer to hardware structure
2794 *  @on: true for on, false for off
2795 **/
2796int ixgbe_set_copper_phy_power(struct ixgbe_hw *hw, bool on)
2797{
2798	u32 status;
2799	u16 reg;
2800
2801	/* Bail if we don't have copper phy */
2802	if (hw->mac.ops.get_media_type(hw) != ixgbe_media_type_copper)
2803		return 0;
2804
2805	if (!on && ixgbe_mng_present(hw))
2806		return 0;
2807
2808	status = hw->phy.ops.read_reg(hw, MDIO_CTRL1, MDIO_MMD_VEND1, &reg);
2809	if (status)
2810		return status;
2811
2812	if (on) {
2813		reg &= ~IXGBE_MDIO_PHY_SET_LOW_POWER_MODE;
2814	} else {
2815		if (ixgbe_check_reset_blocked(hw))
2816			return 0;
2817		reg |= IXGBE_MDIO_PHY_SET_LOW_POWER_MODE;
2818	}
2819
2820	status = hw->phy.ops.write_reg(hw, MDIO_CTRL1, MDIO_MMD_VEND1, reg);
2821	return status;
2822}
v5.4
   1// SPDX-License-Identifier: GPL-2.0
   2/* Copyright(c) 1999 - 2018 Intel Corporation. */
   3
   4#include <linux/pci.h>
   5#include <linux/delay.h>
   6#include <linux/iopoll.h>
   7#include <linux/sched.h>
   8
   9#include "ixgbe.h"
  10#include "ixgbe_phy.h"
  11
  12static void ixgbe_i2c_start(struct ixgbe_hw *hw);
  13static void ixgbe_i2c_stop(struct ixgbe_hw *hw);
  14static s32 ixgbe_clock_in_i2c_byte(struct ixgbe_hw *hw, u8 *data);
  15static s32 ixgbe_clock_out_i2c_byte(struct ixgbe_hw *hw, u8 data);
  16static s32 ixgbe_get_i2c_ack(struct ixgbe_hw *hw);
  17static s32 ixgbe_clock_in_i2c_bit(struct ixgbe_hw *hw, bool *data);
  18static s32 ixgbe_clock_out_i2c_bit(struct ixgbe_hw *hw, bool data);
  19static void ixgbe_raise_i2c_clk(struct ixgbe_hw *hw, u32 *i2cctl);
  20static void ixgbe_lower_i2c_clk(struct ixgbe_hw *hw, u32 *i2cctl);
  21static s32 ixgbe_set_i2c_data(struct ixgbe_hw *hw, u32 *i2cctl, bool data);
  22static bool ixgbe_get_i2c_data(struct ixgbe_hw *hw, u32 *i2cctl);
  23static void ixgbe_i2c_bus_clear(struct ixgbe_hw *hw);
  24static enum ixgbe_phy_type ixgbe_get_phy_type_from_id(u32 phy_id);
  25static s32 ixgbe_get_phy_id(struct ixgbe_hw *hw);
  26static s32 ixgbe_identify_qsfp_module_generic(struct ixgbe_hw *hw);
  27
  28/**
  29 *  ixgbe_out_i2c_byte_ack - Send I2C byte with ack
  30 *  @hw: pointer to the hardware structure
  31 *  @byte: byte to send
  32 *
  33 *  Returns an error code on error.
  34 **/
  35static s32 ixgbe_out_i2c_byte_ack(struct ixgbe_hw *hw, u8 byte)
  36{
  37	s32 status;
  38
  39	status = ixgbe_clock_out_i2c_byte(hw, byte);
  40	if (status)
  41		return status;
  42	return ixgbe_get_i2c_ack(hw);
  43}
  44
  45/**
  46 *  ixgbe_in_i2c_byte_ack - Receive an I2C byte and send ack
  47 *  @hw: pointer to the hardware structure
  48 *  @byte: pointer to a u8 to receive the byte
  49 *
  50 *  Returns an error code on error.
  51 **/
  52static s32 ixgbe_in_i2c_byte_ack(struct ixgbe_hw *hw, u8 *byte)
  53{
  54	s32 status;
  55
  56	status = ixgbe_clock_in_i2c_byte(hw, byte);
  57	if (status)
  58		return status;
  59	/* ACK */
  60	return ixgbe_clock_out_i2c_bit(hw, false);
  61}
  62
  63/**
  64 *  ixgbe_ones_comp_byte_add - Perform one's complement addition
  65 *  @add1: addend 1
  66 *  @add2: addend 2
  67 *
  68 *  Returns one's complement 8-bit sum.
  69 **/
  70static u8 ixgbe_ones_comp_byte_add(u8 add1, u8 add2)
  71{
  72	u16 sum = add1 + add2;
  73
  74	sum = (sum & 0xFF) + (sum >> 8);
  75	return sum & 0xFF;
  76}
  77
  78/**
  79 *  ixgbe_read_i2c_combined_generic_int - Perform I2C read combined operation
  80 *  @hw: pointer to the hardware structure
  81 *  @addr: I2C bus address to read from
  82 *  @reg: I2C device register to read from
  83 *  @val: pointer to location to receive read value
  84 *  @lock: true if to take and release semaphore
  85 *
  86 *  Returns an error code on error.
  87 */
  88s32 ixgbe_read_i2c_combined_generic_int(struct ixgbe_hw *hw, u8 addr,
  89					u16 reg, u16 *val, bool lock)
  90{
  91	u32 swfw_mask = hw->phy.phy_semaphore_mask;
  92	int max_retry = 3;
  93	int retry = 0;
  94	u8 csum_byte;
  95	u8 high_bits;
  96	u8 low_bits;
  97	u8 reg_high;
  98	u8 csum;
  99
 100	reg_high = ((reg >> 7) & 0xFE) | 1;     /* Indicate read combined */
 101	csum = ixgbe_ones_comp_byte_add(reg_high, reg & 0xFF);
 102	csum = ~csum;
 103	do {
 104		if (lock && hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
 105			return IXGBE_ERR_SWFW_SYNC;
 106		ixgbe_i2c_start(hw);
 107		/* Device Address and write indication */
 108		if (ixgbe_out_i2c_byte_ack(hw, addr))
 109			goto fail;
 110		/* Write bits 14:8 */
 111		if (ixgbe_out_i2c_byte_ack(hw, reg_high))
 112			goto fail;
 113		/* Write bits 7:0 */
 114		if (ixgbe_out_i2c_byte_ack(hw, reg & 0xFF))
 115			goto fail;
 116		/* Write csum */
 117		if (ixgbe_out_i2c_byte_ack(hw, csum))
 118			goto fail;
 119		/* Re-start condition */
 120		ixgbe_i2c_start(hw);
 121		/* Device Address and read indication */
 122		if (ixgbe_out_i2c_byte_ack(hw, addr | 1))
 123			goto fail;
 124		/* Get upper bits */
 125		if (ixgbe_in_i2c_byte_ack(hw, &high_bits))
 126			goto fail;
 127		/* Get low bits */
 128		if (ixgbe_in_i2c_byte_ack(hw, &low_bits))
 129			goto fail;
 130		/* Get csum */
 131		if (ixgbe_clock_in_i2c_byte(hw, &csum_byte))
 132			goto fail;
 133		/* NACK */
 134		if (ixgbe_clock_out_i2c_bit(hw, false))
 135			goto fail;
 136		ixgbe_i2c_stop(hw);
 137		if (lock)
 138			hw->mac.ops.release_swfw_sync(hw, swfw_mask);
 139		*val = (high_bits << 8) | low_bits;
 140		return 0;
 141
 142fail:
 143		ixgbe_i2c_bus_clear(hw);
 144		if (lock)
 145			hw->mac.ops.release_swfw_sync(hw, swfw_mask);
 146		retry++;
 147		if (retry < max_retry)
 148			hw_dbg(hw, "I2C byte read combined error - Retry.\n");
 149		else
 150			hw_dbg(hw, "I2C byte read combined error.\n");
 151	} while (retry < max_retry);
 152
 153	return IXGBE_ERR_I2C;
 154}
 155
 156/**
 157 *  ixgbe_write_i2c_combined_generic_int - Perform I2C write combined operation
 158 *  @hw: pointer to the hardware structure
 159 *  @addr: I2C bus address to write to
 160 *  @reg: I2C device register to write to
 161 *  @val: value to write
 162 *  @lock: true if to take and release semaphore
 163 *
 164 *  Returns an error code on error.
 165 */
 166s32 ixgbe_write_i2c_combined_generic_int(struct ixgbe_hw *hw, u8 addr,
 167					 u16 reg, u16 val, bool lock)
 168{
 169	u32 swfw_mask = hw->phy.phy_semaphore_mask;
 170	int max_retry = 1;
 171	int retry = 0;
 172	u8 reg_high;
 173	u8 csum;
 174
 175	reg_high = (reg >> 7) & 0xFE;   /* Indicate write combined */
 176	csum = ixgbe_ones_comp_byte_add(reg_high, reg & 0xFF);
 177	csum = ixgbe_ones_comp_byte_add(csum, val >> 8);
 178	csum = ixgbe_ones_comp_byte_add(csum, val & 0xFF);
 179	csum = ~csum;
 180	do {
 181		if (lock && hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
 182			return IXGBE_ERR_SWFW_SYNC;
 183		ixgbe_i2c_start(hw);
 184		/* Device Address and write indication */
 185		if (ixgbe_out_i2c_byte_ack(hw, addr))
 186			goto fail;
 187		/* Write bits 14:8 */
 188		if (ixgbe_out_i2c_byte_ack(hw, reg_high))
 189			goto fail;
 190		/* Write bits 7:0 */
 191		if (ixgbe_out_i2c_byte_ack(hw, reg & 0xFF))
 192			goto fail;
 193		/* Write data 15:8 */
 194		if (ixgbe_out_i2c_byte_ack(hw, val >> 8))
 195			goto fail;
 196		/* Write data 7:0 */
 197		if (ixgbe_out_i2c_byte_ack(hw, val & 0xFF))
 198			goto fail;
 199		/* Write csum */
 200		if (ixgbe_out_i2c_byte_ack(hw, csum))
 201			goto fail;
 202		ixgbe_i2c_stop(hw);
 203		if (lock)
 204			hw->mac.ops.release_swfw_sync(hw, swfw_mask);
 205		return 0;
 206
 207fail:
 208		ixgbe_i2c_bus_clear(hw);
 209		if (lock)
 210			hw->mac.ops.release_swfw_sync(hw, swfw_mask);
 211		retry++;
 212		if (retry < max_retry)
 213			hw_dbg(hw, "I2C byte write combined error - Retry.\n");
 214		else
 215			hw_dbg(hw, "I2C byte write combined error.\n");
 216	} while (retry < max_retry);
 217
 218	return IXGBE_ERR_I2C;
 219}
 220
 221/**
 222 *  ixgbe_probe_phy - Probe a single address for a PHY
 223 *  @hw: pointer to hardware structure
 224 *  @phy_addr: PHY address to probe
 225 *
 226 *  Returns true if PHY found
 227 **/
 228static bool ixgbe_probe_phy(struct ixgbe_hw *hw, u16 phy_addr)
 229{
 230	u16 ext_ability = 0;
 231
 232	hw->phy.mdio.prtad = phy_addr;
 233	if (mdio45_probe(&hw->phy.mdio, phy_addr) != 0)
 234		return false;
 235
 236	if (ixgbe_get_phy_id(hw))
 237		return false;
 238
 239	hw->phy.type = ixgbe_get_phy_type_from_id(hw->phy.id);
 240
 241	if (hw->phy.type == ixgbe_phy_unknown) {
 242		hw->phy.ops.read_reg(hw,
 243				     MDIO_PMA_EXTABLE,
 244				     MDIO_MMD_PMAPMD,
 245				     &ext_ability);
 246		if (ext_ability &
 247		    (MDIO_PMA_EXTABLE_10GBT |
 248		     MDIO_PMA_EXTABLE_1000BT))
 249			hw->phy.type = ixgbe_phy_cu_unknown;
 250		else
 251			hw->phy.type = ixgbe_phy_generic;
 252	}
 253
 254	return true;
 255}
 256
 257/**
 258 *  ixgbe_identify_phy_generic - Get physical layer module
 259 *  @hw: pointer to hardware structure
 260 *
 261 *  Determines the physical layer module found on the current adapter.
 262 **/
 263s32 ixgbe_identify_phy_generic(struct ixgbe_hw *hw)
 264{
 
 265	u32 phy_addr;
 266	u32 status = IXGBE_ERR_PHY_ADDR_INVALID;
 267
 268	if (!hw->phy.phy_semaphore_mask) {
 269		if (hw->bus.lan_id)
 270			hw->phy.phy_semaphore_mask = IXGBE_GSSR_PHY1_SM;
 271		else
 272			hw->phy.phy_semaphore_mask = IXGBE_GSSR_PHY0_SM;
 273	}
 274
 275	if (hw->phy.type != ixgbe_phy_unknown)
 276		return 0;
 277
 278	if (hw->phy.nw_mng_if_sel) {
 279		phy_addr = (hw->phy.nw_mng_if_sel &
 280			    IXGBE_NW_MNG_IF_SEL_MDIO_PHY_ADD) >>
 281			   IXGBE_NW_MNG_IF_SEL_MDIO_PHY_ADD_SHIFT;
 282		if (ixgbe_probe_phy(hw, phy_addr))
 283			return 0;
 284		else
 285			return IXGBE_ERR_PHY_ADDR_INVALID;
 286	}
 287
 288	for (phy_addr = 0; phy_addr < IXGBE_MAX_PHY_ADDR; phy_addr++) {
 289		if (ixgbe_probe_phy(hw, phy_addr)) {
 290			status = 0;
 291			break;
 292		}
 293	}
 294
 295	/* Certain media types do not have a phy so an address will not
 296	 * be found and the code will take this path.  Caller has to
 297	 * decide if it is an error or not.
 298	 */
 299	if (status)
 300		hw->phy.mdio.prtad = MDIO_PRTAD_NONE;
 301
 302	return status;
 303}
 304
 305/**
 306 * ixgbe_check_reset_blocked - check status of MNG FW veto bit
 307 * @hw: pointer to the hardware structure
 308 *
 309 * This function checks the MMNGC.MNG_VETO bit to see if there are
 310 * any constraints on link from manageability.  For MAC's that don't
 311 * have this bit just return false since the link can not be blocked
 312 * via this method.
 313 **/
 314bool ixgbe_check_reset_blocked(struct ixgbe_hw *hw)
 315{
 316	u32 mmngc;
 317
 318	/* If we don't have this bit, it can't be blocking */
 319	if (hw->mac.type == ixgbe_mac_82598EB)
 320		return false;
 321
 322	mmngc = IXGBE_READ_REG(hw, IXGBE_MMNGC);
 323	if (mmngc & IXGBE_MMNGC_MNG_VETO) {
 324		hw_dbg(hw, "MNG_VETO bit detected.\n");
 325		return true;
 326	}
 327
 328	return false;
 329}
 330
 331/**
 332 *  ixgbe_get_phy_id - Get the phy type
 333 *  @hw: pointer to hardware structure
 334 *
 335 **/
 336static s32 ixgbe_get_phy_id(struct ixgbe_hw *hw)
 337{
 338	s32 status;
 339	u16 phy_id_high = 0;
 340	u16 phy_id_low = 0;
 
 341
 342	status = hw->phy.ops.read_reg(hw, MDIO_DEVID1, MDIO_MMD_PMAPMD,
 343				      &phy_id_high);
 344
 345	if (!status) {
 346		hw->phy.id = (u32)(phy_id_high << 16);
 347		status = hw->phy.ops.read_reg(hw, MDIO_DEVID2, MDIO_MMD_PMAPMD,
 348					      &phy_id_low);
 349		hw->phy.id |= (u32)(phy_id_low & IXGBE_PHY_REVISION_MASK);
 350		hw->phy.revision = (u32)(phy_id_low & ~IXGBE_PHY_REVISION_MASK);
 351	}
 352	return status;
 353}
 354
 355/**
 356 *  ixgbe_get_phy_type_from_id - Get the phy type
 357 *  @phy_id: hardware phy id
 358 *
 359 **/
 360static enum ixgbe_phy_type ixgbe_get_phy_type_from_id(u32 phy_id)
 361{
 362	enum ixgbe_phy_type phy_type;
 363
 364	switch (phy_id) {
 365	case TN1010_PHY_ID:
 366		phy_type = ixgbe_phy_tn;
 367		break;
 368	case X550_PHY_ID2:
 369	case X550_PHY_ID3:
 370	case X540_PHY_ID:
 371		phy_type = ixgbe_phy_aq;
 372		break;
 373	case QT2022_PHY_ID:
 374		phy_type = ixgbe_phy_qt;
 375		break;
 376	case ATH_PHY_ID:
 377		phy_type = ixgbe_phy_nl;
 378		break;
 379	case X557_PHY_ID:
 380	case X557_PHY_ID2:
 381		phy_type = ixgbe_phy_x550em_ext_t;
 382		break;
 
 
 
 383	default:
 384		phy_type = ixgbe_phy_unknown;
 385		break;
 386	}
 387
 388	return phy_type;
 389}
 390
 391/**
 392 *  ixgbe_reset_phy_generic - Performs a PHY reset
 393 *  @hw: pointer to hardware structure
 394 **/
 395s32 ixgbe_reset_phy_generic(struct ixgbe_hw *hw)
 396{
 397	u32 i;
 398	u16 ctrl = 0;
 399	s32 status = 0;
 400
 401	if (hw->phy.type == ixgbe_phy_unknown)
 402		status = ixgbe_identify_phy_generic(hw);
 403
 404	if (status != 0 || hw->phy.type == ixgbe_phy_none)
 405		return status;
 406
 407	/* Don't reset PHY if it's shut down due to overtemp. */
 408	if (!hw->phy.reset_if_overtemp &&
 409	    (IXGBE_ERR_OVERTEMP == hw->phy.ops.check_overtemp(hw)))
 410		return 0;
 411
 412	/* Blocked by MNG FW so bail */
 413	if (ixgbe_check_reset_blocked(hw))
 414		return 0;
 415
 416	/*
 417	 * Perform soft PHY reset to the PHY_XS.
 418	 * This will cause a soft reset to the PHY
 419	 */
 420	hw->phy.ops.write_reg(hw, MDIO_CTRL1,
 421			      MDIO_MMD_PHYXS,
 422			      MDIO_CTRL1_RESET);
 423
 424	/*
 425	 * Poll for reset bit to self-clear indicating reset is complete.
 426	 * Some PHYs could take up to 3 seconds to complete and need about
 427	 * 1.7 usec delay after the reset is complete.
 428	 */
 429	for (i = 0; i < 30; i++) {
 430		msleep(100);
 431		if (hw->phy.type == ixgbe_phy_x550em_ext_t) {
 432			status = hw->phy.ops.read_reg(hw,
 433						  IXGBE_MDIO_TX_VENDOR_ALARMS_3,
 434						  MDIO_MMD_PMAPMD, &ctrl);
 435			if (status)
 436				return status;
 437
 438			if (ctrl & IXGBE_MDIO_TX_VENDOR_ALARMS_3_RST_MASK) {
 439				udelay(2);
 440				break;
 441			}
 442		} else {
 443			status = hw->phy.ops.read_reg(hw, MDIO_CTRL1,
 444						      MDIO_MMD_PHYXS, &ctrl);
 445			if (status)
 446				return status;
 447
 448			if (!(ctrl & MDIO_CTRL1_RESET)) {
 449				udelay(2);
 450				break;
 451			}
 452		}
 453	}
 454
 455	if (ctrl & MDIO_CTRL1_RESET) {
 456		hw_dbg(hw, "PHY reset polling failed to complete.\n");
 457		return IXGBE_ERR_RESET_FAILED;
 458	}
 459
 460	return 0;
 461}
 462
 463/**
 464 *  ixgbe_read_phy_mdi - Reads a value from a specified PHY register without
 465 *  the SWFW lock
 466 *  @hw: pointer to hardware structure
 467 *  @reg_addr: 32 bit address of PHY register to read
 468 *  @device_type: 5 bit device type
 469 *  @phy_data: Pointer to read data from PHY register
 
 
 470 **/
 471s32 ixgbe_read_phy_reg_mdi(struct ixgbe_hw *hw, u32 reg_addr, u32 device_type,
 472		       u16 *phy_data)
 473{
 474	u32 i, data, command;
 475
 476	/* Setup and write the address cycle command */
 477	command = ((reg_addr << IXGBE_MSCA_NP_ADDR_SHIFT)  |
 478		   (device_type << IXGBE_MSCA_DEV_TYPE_SHIFT) |
 479		   (hw->phy.mdio.prtad << IXGBE_MSCA_PHY_ADDR_SHIFT) |
 480		   (IXGBE_MSCA_ADDR_CYCLE | IXGBE_MSCA_MDI_COMMAND));
 481
 482	IXGBE_WRITE_REG(hw, IXGBE_MSCA, command);
 483
 484	/* Check every 10 usec to see if the address cycle completed.
 485	 * The MDI Command bit will clear when the operation is
 486	 * complete
 487	 */
 488	for (i = 0; i < IXGBE_MDIO_COMMAND_TIMEOUT; i++) {
 489		udelay(10);
 490
 491		command = IXGBE_READ_REG(hw, IXGBE_MSCA);
 492		if ((command & IXGBE_MSCA_MDI_COMMAND) == 0)
 493				break;
 494	}
 495
 496
 497	if ((command & IXGBE_MSCA_MDI_COMMAND) != 0) {
 498		hw_dbg(hw, "PHY address command did not complete.\n");
 499		return IXGBE_ERR_PHY;
 500	}
 501
 502	/* Address cycle complete, setup and write the read
 503	 * command
 504	 */
 505	command = ((reg_addr << IXGBE_MSCA_NP_ADDR_SHIFT)  |
 506		   (device_type << IXGBE_MSCA_DEV_TYPE_SHIFT) |
 507		   (hw->phy.mdio.prtad << IXGBE_MSCA_PHY_ADDR_SHIFT) |
 508		   (IXGBE_MSCA_READ | IXGBE_MSCA_MDI_COMMAND));
 509
 510	IXGBE_WRITE_REG(hw, IXGBE_MSCA, command);
 511
 512	/* Check every 10 usec to see if the address cycle
 513	 * completed. The MDI Command bit will clear when the
 514	 * operation is complete
 515	 */
 516	for (i = 0; i < IXGBE_MDIO_COMMAND_TIMEOUT; i++) {
 517		udelay(10);
 518
 519		command = IXGBE_READ_REG(hw, IXGBE_MSCA);
 520		if ((command & IXGBE_MSCA_MDI_COMMAND) == 0)
 521			break;
 522	}
 523
 524	if ((command & IXGBE_MSCA_MDI_COMMAND) != 0) {
 525		hw_dbg(hw, "PHY read command didn't complete\n");
 526		return IXGBE_ERR_PHY;
 527	}
 528
 529	/* Read operation is complete.  Get the data
 530	 * from MSRWD
 531	 */
 532	data = IXGBE_READ_REG(hw, IXGBE_MSRWD);
 533	data >>= IXGBE_MSRWD_READ_DATA_SHIFT;
 534	*phy_data = (u16)(data);
 535
 536	return 0;
 537}
 538
 539/**
 540 *  ixgbe_read_phy_reg_generic - Reads a value from a specified PHY register
 541 *  using the SWFW lock - this function is needed in most cases
 542 *  @hw: pointer to hardware structure
 543 *  @reg_addr: 32 bit address of PHY register to read
 544 *  @device_type: 5 bit device type
 545 *  @phy_data: Pointer to read data from PHY register
 546 **/
 547s32 ixgbe_read_phy_reg_generic(struct ixgbe_hw *hw, u32 reg_addr,
 548			       u32 device_type, u16 *phy_data)
 549{
 550	s32 status;
 551	u32 gssr = hw->phy.phy_semaphore_mask;
 
 552
 553	if (hw->mac.ops.acquire_swfw_sync(hw, gssr) == 0) {
 554		status = ixgbe_read_phy_reg_mdi(hw, reg_addr, device_type,
 555						phy_data);
 556		hw->mac.ops.release_swfw_sync(hw, gssr);
 557	} else {
 558		return IXGBE_ERR_SWFW_SYNC;
 559	}
 560
 561	return status;
 562}
 563
 564/**
 565 *  ixgbe_write_phy_reg_mdi - Writes a value to specified PHY register
 566 *  without SWFW lock
 567 *  @hw: pointer to hardware structure
 568 *  @reg_addr: 32 bit PHY register to write
 569 *  @device_type: 5 bit device type
 570 *  @phy_data: Data to write to the PHY register
 571 **/
 572s32 ixgbe_write_phy_reg_mdi(struct ixgbe_hw *hw, u32 reg_addr,
 573				u32 device_type, u16 phy_data)
 574{
 575	u32 i, command;
 576
 577	/* Put the data in the MDI single read and write data register*/
 578	IXGBE_WRITE_REG(hw, IXGBE_MSRWD, (u32)phy_data);
 579
 580	/* Setup and write the address cycle command */
 581	command = ((reg_addr << IXGBE_MSCA_NP_ADDR_SHIFT)  |
 582		   (device_type << IXGBE_MSCA_DEV_TYPE_SHIFT) |
 583		   (hw->phy.mdio.prtad << IXGBE_MSCA_PHY_ADDR_SHIFT) |
 584		   (IXGBE_MSCA_ADDR_CYCLE | IXGBE_MSCA_MDI_COMMAND));
 585
 586	IXGBE_WRITE_REG(hw, IXGBE_MSCA, command);
 587
 588	/*
 589	 * Check every 10 usec to see if the address cycle completed.
 590	 * The MDI Command bit will clear when the operation is
 591	 * complete
 592	 */
 593	for (i = 0; i < IXGBE_MDIO_COMMAND_TIMEOUT; i++) {
 594		udelay(10);
 595
 596		command = IXGBE_READ_REG(hw, IXGBE_MSCA);
 597		if ((command & IXGBE_MSCA_MDI_COMMAND) == 0)
 598			break;
 599	}
 600
 601	if ((command & IXGBE_MSCA_MDI_COMMAND) != 0) {
 602		hw_dbg(hw, "PHY address cmd didn't complete\n");
 603		return IXGBE_ERR_PHY;
 604	}
 605
 606	/*
 607	 * Address cycle complete, setup and write the write
 608	 * command
 609	 */
 610	command = ((reg_addr << IXGBE_MSCA_NP_ADDR_SHIFT)  |
 611		   (device_type << IXGBE_MSCA_DEV_TYPE_SHIFT) |
 612		   (hw->phy.mdio.prtad << IXGBE_MSCA_PHY_ADDR_SHIFT) |
 613		   (IXGBE_MSCA_WRITE | IXGBE_MSCA_MDI_COMMAND));
 614
 615	IXGBE_WRITE_REG(hw, IXGBE_MSCA, command);
 616
 617	/* Check every 10 usec to see if the address cycle
 618	 * completed. The MDI Command bit will clear when the
 619	 * operation is complete
 620	 */
 621	for (i = 0; i < IXGBE_MDIO_COMMAND_TIMEOUT; i++) {
 622		udelay(10);
 623
 624		command = IXGBE_READ_REG(hw, IXGBE_MSCA);
 625		if ((command & IXGBE_MSCA_MDI_COMMAND) == 0)
 626			break;
 627	}
 628
 629	if ((command & IXGBE_MSCA_MDI_COMMAND) != 0) {
 630		hw_dbg(hw, "PHY write cmd didn't complete\n");
 631		return IXGBE_ERR_PHY;
 632	}
 633
 634	return 0;
 635}
 636
 637/**
 638 *  ixgbe_write_phy_reg_generic - Writes a value to specified PHY register
 639 *  using SWFW lock- this function is needed in most cases
 640 *  @hw: pointer to hardware structure
 641 *  @reg_addr: 32 bit PHY register to write
 642 *  @device_type: 5 bit device type
 643 *  @phy_data: Data to write to the PHY register
 644 **/
 645s32 ixgbe_write_phy_reg_generic(struct ixgbe_hw *hw, u32 reg_addr,
 646				u32 device_type, u16 phy_data)
 647{
 648	s32 status;
 649	u32 gssr = hw->phy.phy_semaphore_mask;
 
 650
 651	if (hw->mac.ops.acquire_swfw_sync(hw, gssr) == 0) {
 652		status = ixgbe_write_phy_reg_mdi(hw, reg_addr, device_type,
 653						 phy_data);
 654		hw->mac.ops.release_swfw_sync(hw, gssr);
 655	} else {
 656		return IXGBE_ERR_SWFW_SYNC;
 657	}
 658
 659	return status;
 660}
 661
 662#define IXGBE_HW_READ_REG(addr) IXGBE_READ_REG(hw, addr)
 663
 664/**
 665 *  ixgbe_msca_cmd - Write the command register and poll for completion/timeout
 666 *  @hw: pointer to hardware structure
 667 *  @cmd: command register value to write
 668 **/
 669static s32 ixgbe_msca_cmd(struct ixgbe_hw *hw, u32 cmd)
 670{
 671	IXGBE_WRITE_REG(hw, IXGBE_MSCA, cmd);
 672
 673	return readx_poll_timeout(IXGBE_HW_READ_REG, IXGBE_MSCA, cmd,
 674				  !(cmd & IXGBE_MSCA_MDI_COMMAND), 10,
 675				  10 * IXGBE_MDIO_COMMAND_TIMEOUT);
 676}
 677
 678/**
 679 *  ixgbe_mii_bus_read_generic - Read a clause 22/45 register with gssr flags
 680 *  @hw: pointer to hardware structure
 681 *  @addr: address
 682 *  @regnum: register number
 683 *  @gssr: semaphore flags to acquire
 684 **/
 685static s32 ixgbe_mii_bus_read_generic(struct ixgbe_hw *hw, int addr,
 686				      int regnum, u32 gssr)
 687{
 688	u32 hwaddr, cmd;
 689	s32 data;
 690
 691	if (hw->mac.ops.acquire_swfw_sync(hw, gssr))
 692		return -EBUSY;
 693
 694	hwaddr = addr << IXGBE_MSCA_PHY_ADDR_SHIFT;
 695	if (regnum & MII_ADDR_C45) {
 696		hwaddr |= regnum & GENMASK(21, 0);
 697		cmd = hwaddr | IXGBE_MSCA_ADDR_CYCLE | IXGBE_MSCA_MDI_COMMAND;
 698	} else {
 699		hwaddr |= (regnum & GENMASK(5, 0)) << IXGBE_MSCA_DEV_TYPE_SHIFT;
 700		cmd = hwaddr | IXGBE_MSCA_OLD_PROTOCOL |
 701			IXGBE_MSCA_READ_AUTOINC | IXGBE_MSCA_MDI_COMMAND;
 702	}
 703
 704	data = ixgbe_msca_cmd(hw, cmd);
 705	if (data < 0)
 706		goto mii_bus_read_done;
 707
 708	/* For a clause 45 access the address cycle just completed, we still
 709	 * need to do the read command, otherwise just get the data
 710	 */
 711	if (!(regnum & MII_ADDR_C45))
 712		goto do_mii_bus_read;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 713
 714	cmd = hwaddr | IXGBE_MSCA_READ | IXGBE_MSCA_MDI_COMMAND;
 715	data = ixgbe_msca_cmd(hw, cmd);
 716	if (data < 0)
 717		goto mii_bus_read_done;
 718
 719do_mii_bus_read:
 720	data = IXGBE_READ_REG(hw, IXGBE_MSRWD);
 721	data = (data >> IXGBE_MSRWD_READ_DATA_SHIFT) & GENMASK(16, 0);
 722
 723mii_bus_read_done:
 724	hw->mac.ops.release_swfw_sync(hw, gssr);
 725	return data;
 726}
 727
 728/**
 729 *  ixgbe_mii_bus_write_generic - Write a clause 22/45 register with gssr flags
 730 *  @hw: pointer to hardware structure
 731 *  @addr: address
 732 *  @regnum: register number
 733 *  @val: value to write
 734 *  @gssr: semaphore flags to acquire
 735 **/
 736static s32 ixgbe_mii_bus_write_generic(struct ixgbe_hw *hw, int addr,
 737				       int regnum, u16 val, u32 gssr)
 738{
 739	u32 hwaddr, cmd;
 740	s32 err;
 741
 742	if (hw->mac.ops.acquire_swfw_sync(hw, gssr))
 743		return -EBUSY;
 744
 745	IXGBE_WRITE_REG(hw, IXGBE_MSRWD, (u32)val);
 746
 747	hwaddr = addr << IXGBE_MSCA_PHY_ADDR_SHIFT;
 748	if (regnum & MII_ADDR_C45) {
 749		hwaddr |= regnum & GENMASK(21, 0);
 750		cmd = hwaddr | IXGBE_MSCA_ADDR_CYCLE | IXGBE_MSCA_MDI_COMMAND;
 751	} else {
 752		hwaddr |= (regnum & GENMASK(5, 0)) << IXGBE_MSCA_DEV_TYPE_SHIFT;
 753		cmd = hwaddr | IXGBE_MSCA_OLD_PROTOCOL | IXGBE_MSCA_WRITE |
 754			IXGBE_MSCA_MDI_COMMAND;
 755	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 756
 757	/* For clause 45 this is an address cycle, for clause 22 this is the
 758	 * entire transaction
 759	 */
 760	err = ixgbe_msca_cmd(hw, cmd);
 761	if (err < 0 || !(regnum & MII_ADDR_C45))
 762		goto mii_bus_write_done;
 763
 764	cmd = hwaddr | IXGBE_MSCA_WRITE | IXGBE_MSCA_MDI_COMMAND;
 765	err = ixgbe_msca_cmd(hw, cmd);
 766
 767mii_bus_write_done:
 768	hw->mac.ops.release_swfw_sync(hw, gssr);
 769	return err;
 770}
 771
 772/**
 773 *  ixgbe_mii_bus_read - Read a clause 22/45 register
 774 *  @hw: pointer to hardware structure
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 775 *  @addr: address
 776 *  @regnum: register number
 
 777 **/
 778static s32 ixgbe_mii_bus_read(struct mii_bus *bus, int addr, int regnum)
 
 779{
 780	struct ixgbe_adapter *adapter = bus->priv;
 781	struct ixgbe_hw *hw = &adapter->hw;
 782	u32 gssr = hw->phy.phy_semaphore_mask;
 783
 784	return ixgbe_mii_bus_read_generic(hw, addr, regnum, gssr);
 785}
 786
 787/**
 788 *  ixgbe_mii_bus_write - Write a clause 22/45 register
 789 *  @hw: pointer to hardware structure
 790 *  @addr: address
 
 791 *  @regnum: register number
 792 *  @val: value to write
 793 **/
 794static s32 ixgbe_mii_bus_write(struct mii_bus *bus, int addr, int regnum,
 795			       u16 val)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 796{
 797	struct ixgbe_adapter *adapter = bus->priv;
 798	struct ixgbe_hw *hw = &adapter->hw;
 799	u32 gssr = hw->phy.phy_semaphore_mask;
 800
 801	return ixgbe_mii_bus_write_generic(hw, addr, regnum, val, gssr);
 
 802}
 803
 804/**
 805 *  ixgbe_x550em_a_mii_bus_read - Read a clause 22/45 register on x550em_a
 806 *  @hw: pointer to hardware structure
 807 *  @addr: address
 808 *  @regnum: register number
 
 809 **/
 810static s32 ixgbe_x550em_a_mii_bus_read(struct mii_bus *bus, int addr,
 811				       int regnum)
 812{
 813	struct ixgbe_adapter *adapter = bus->priv;
 814	struct ixgbe_hw *hw = &adapter->hw;
 815	u32 gssr = hw->phy.phy_semaphore_mask;
 816
 817	gssr |= IXGBE_GSSR_TOKEN_SM | IXGBE_GSSR_PHY0_SM;
 818	return ixgbe_mii_bus_read_generic(hw, addr, regnum, gssr);
 819}
 820
 821/**
 822 *  ixgbe_x550em_a_mii_bus_write - Write a clause 22/45 register on x550em_a
 823 *  @hw: pointer to hardware structure
 824 *  @addr: address
 
 825 *  @regnum: register number
 826 *  @val: value to write
 827 **/
 828static s32 ixgbe_x550em_a_mii_bus_write(struct mii_bus *bus, int addr,
 829					int regnum, u16 val)
 830{
 831	struct ixgbe_adapter *adapter = bus->priv;
 832	struct ixgbe_hw *hw = &adapter->hw;
 833	u32 gssr = hw->phy.phy_semaphore_mask;
 834
 835	gssr |= IXGBE_GSSR_TOKEN_SM | IXGBE_GSSR_PHY0_SM;
 836	return ixgbe_mii_bus_write_generic(hw, addr, regnum, val, gssr);
 
 837}
 838
 839/**
 840 * ixgbe_get_first_secondary_devfn - get first device downstream of root port
 841 * @devfn: PCI_DEVFN of root port on domain 0, bus 0
 842 *
 843 * Returns pci_dev pointer to PCI_DEVFN(0, 0) on subordinate side of root
 844 * on domain 0, bus 0, devfn = 'devfn'
 845 **/
 846static struct pci_dev *ixgbe_get_first_secondary_devfn(unsigned int devfn)
 847{
 848	struct pci_dev *rp_pdev;
 849	int bus;
 850
 851	rp_pdev = pci_get_domain_bus_and_slot(0, 0, devfn);
 852	if (rp_pdev && rp_pdev->subordinate) {
 853		bus = rp_pdev->subordinate->number;
 
 854		return pci_get_domain_bus_and_slot(0, bus, 0);
 855	}
 856
 
 857	return NULL;
 858}
 859
 860/**
 861 * ixgbe_x550em_a_has_mii - is this the first ixgbe x550em_a PCI function?
 862 * @hw: pointer to hardware structure
 863 *
 864 * Returns true if hw points to lowest numbered PCI B:D.F x550_em_a device in
 865 * the SoC.  There are up to 4 MACs sharing a single MDIO bus on the x550em_a,
 866 * but we only want to register one MDIO bus.
 867 **/
 868static bool ixgbe_x550em_a_has_mii(struct ixgbe_hw *hw)
 869{
 870	struct ixgbe_adapter *adapter = hw->back;
 871	struct pci_dev *pdev = adapter->pdev;
 872	struct pci_dev *func0_pdev;
 
 873
 874	/* For the C3000 family of SoCs (x550em_a) the internal ixgbe devices
 875	 * are always downstream of root ports @ 0000:00:16.0 & 0000:00:17.0
 876	 * It's not valid for function 0 to be disabled and function 1 is up,
 877	 * so the lowest numbered ixgbe dev will be device 0 function 0 on one
 878	 * of those two root ports
 879	 */
 880	func0_pdev = ixgbe_get_first_secondary_devfn(PCI_DEVFN(0x16, 0));
 881	if (func0_pdev) {
 882		if (func0_pdev == pdev)
 883			return true;
 884		else
 885			return false;
 886	}
 887	func0_pdev = ixgbe_get_first_secondary_devfn(PCI_DEVFN(0x17, 0));
 888	if (func0_pdev == pdev)
 889		return true;
 890
 891	return false;
 
 
 892}
 893
 894/**
 895 * ixgbe_mii_bus_init - mii_bus structure setup
 896 * @hw: pointer to hardware structure
 897 *
 898 * Returns 0 on success, negative on failure
 899 *
 900 * ixgbe_mii_bus_init initializes a mii_bus structure in adapter
 901 **/
 902s32 ixgbe_mii_bus_init(struct ixgbe_hw *hw)
 903{
 
 
 
 
 
 904	struct ixgbe_adapter *adapter = hw->back;
 905	struct pci_dev *pdev = adapter->pdev;
 906	struct device *dev = &adapter->netdev->dev;
 907	struct mii_bus *bus;
 908	int err = -ENODEV;
 909
 910	bus = devm_mdiobus_alloc(dev);
 911	if (!bus)
 912		return -ENOMEM;
 913
 914	switch (hw->device_id) {
 915	/* C3000 SoCs */
 916	case IXGBE_DEV_ID_X550EM_A_KR:
 917	case IXGBE_DEV_ID_X550EM_A_KR_L:
 918	case IXGBE_DEV_ID_X550EM_A_SFP_N:
 919	case IXGBE_DEV_ID_X550EM_A_SGMII:
 920	case IXGBE_DEV_ID_X550EM_A_SGMII_L:
 921	case IXGBE_DEV_ID_X550EM_A_10G_T:
 922	case IXGBE_DEV_ID_X550EM_A_SFP:
 923	case IXGBE_DEV_ID_X550EM_A_1G_T:
 924	case IXGBE_DEV_ID_X550EM_A_1G_T_L:
 925		if (!ixgbe_x550em_a_has_mii(hw))
 926			goto ixgbe_no_mii_bus;
 927		bus->read = &ixgbe_x550em_a_mii_bus_read;
 928		bus->write = &ixgbe_x550em_a_mii_bus_write;
 
 
 929		break;
 930	default:
 931		bus->read = &ixgbe_mii_bus_read;
 932		bus->write = &ixgbe_mii_bus_write;
 
 
 933		break;
 934	}
 935
 
 
 
 
 
 
 
 
 
 936	/* Use the position of the device in the PCI hierarchy as the id */
 937	snprintf(bus->id, MII_BUS_ID_SIZE, "%s-mdio-%s", ixgbe_driver_name,
 938		 pci_name(pdev));
 939
 940	bus->name = "ixgbe-mdio";
 941	bus->priv = adapter;
 942	bus->parent = dev;
 943	bus->phy_mask = GENMASK(31, 0);
 944
 945	/* Support clause 22/45 natively.  ixgbe_probe() sets MDIO_EMULATE_C22
 946	 * unfortunately that causes some clause 22 frames to be sent with
 947	 * clause 45 addressing.  We don't want that.
 948	 */
 949	hw->phy.mdio.mode_support = MDIO_SUPPORTS_C45 | MDIO_SUPPORTS_C22;
 950
 951	err = mdiobus_register(bus);
 952	if (!err) {
 953		adapter->mii_bus = bus;
 954		return 0;
 955	}
 956
 957ixgbe_no_mii_bus:
 958	devm_mdiobus_free(dev, bus);
 959	return err;
 960}
 961
 962/**
 963 *  ixgbe_setup_phy_link_generic - Set and restart autoneg
 964 *  @hw: pointer to hardware structure
 965 *
 966 *  Restart autonegotiation and PHY and waits for completion.
 967 **/
 968s32 ixgbe_setup_phy_link_generic(struct ixgbe_hw *hw)
 969{
 970	s32 status = 0;
 971	u16 autoneg_reg = IXGBE_MII_AUTONEG_REG;
 
 972	bool autoneg = false;
 973	ixgbe_link_speed speed;
 974
 975	ixgbe_get_copper_link_capabilities_generic(hw, &speed, &autoneg);
 976
 977	/* Set or unset auto-negotiation 10G advertisement */
 978	hw->phy.ops.read_reg(hw, MDIO_AN_10GBT_CTRL, MDIO_MMD_AN, &autoneg_reg);
 979
 980	autoneg_reg &= ~MDIO_AN_10GBT_CTRL_ADV10G;
 981	if ((hw->phy.autoneg_advertised & IXGBE_LINK_SPEED_10GB_FULL) &&
 982	    (speed & IXGBE_LINK_SPEED_10GB_FULL))
 983		autoneg_reg |= MDIO_AN_10GBT_CTRL_ADV10G;
 984
 985	hw->phy.ops.write_reg(hw, MDIO_AN_10GBT_CTRL, MDIO_MMD_AN, autoneg_reg);
 986
 987	hw->phy.ops.read_reg(hw, IXGBE_MII_AUTONEG_VENDOR_PROVISION_1_REG,
 988			     MDIO_MMD_AN, &autoneg_reg);
 989
 990	if (hw->mac.type == ixgbe_mac_X550) {
 991		/* Set or unset auto-negotiation 5G advertisement */
 992		autoneg_reg &= ~IXGBE_MII_5GBASE_T_ADVERTISE;
 993		if ((hw->phy.autoneg_advertised & IXGBE_LINK_SPEED_5GB_FULL) &&
 994		    (speed & IXGBE_LINK_SPEED_5GB_FULL))
 995			autoneg_reg |= IXGBE_MII_5GBASE_T_ADVERTISE;
 996
 997		/* Set or unset auto-negotiation 2.5G advertisement */
 998		autoneg_reg &= ~IXGBE_MII_2_5GBASE_T_ADVERTISE;
 999		if ((hw->phy.autoneg_advertised &
1000		     IXGBE_LINK_SPEED_2_5GB_FULL) &&
1001		    (speed & IXGBE_LINK_SPEED_2_5GB_FULL))
1002			autoneg_reg |= IXGBE_MII_2_5GBASE_T_ADVERTISE;
1003	}
1004
1005	/* Set or unset auto-negotiation 1G advertisement */
1006	autoneg_reg &= ~IXGBE_MII_1GBASE_T_ADVERTISE;
1007	if ((hw->phy.autoneg_advertised & IXGBE_LINK_SPEED_1GB_FULL) &&
1008	    (speed & IXGBE_LINK_SPEED_1GB_FULL))
1009		autoneg_reg |= IXGBE_MII_1GBASE_T_ADVERTISE;
1010
1011	hw->phy.ops.write_reg(hw, IXGBE_MII_AUTONEG_VENDOR_PROVISION_1_REG,
1012			      MDIO_MMD_AN, autoneg_reg);
1013
1014	/* Set or unset auto-negotiation 100M advertisement */
1015	hw->phy.ops.read_reg(hw, MDIO_AN_ADVERTISE, MDIO_MMD_AN, &autoneg_reg);
1016
1017	autoneg_reg &= ~(ADVERTISE_100FULL | ADVERTISE_100HALF);
1018	if ((hw->phy.autoneg_advertised & IXGBE_LINK_SPEED_100_FULL) &&
1019	    (speed & IXGBE_LINK_SPEED_100_FULL))
1020		autoneg_reg |= ADVERTISE_100FULL;
1021
1022	hw->phy.ops.write_reg(hw, MDIO_AN_ADVERTISE, MDIO_MMD_AN, autoneg_reg);
1023
1024	/* Blocked by MNG FW so don't reset PHY */
1025	if (ixgbe_check_reset_blocked(hw))
1026		return 0;
1027
1028	/* Restart PHY autonegotiation and wait for completion */
1029	hw->phy.ops.read_reg(hw, MDIO_CTRL1,
1030			     MDIO_MMD_AN, &autoneg_reg);
1031
1032	autoneg_reg |= MDIO_AN_CTRL1_RESTART;
1033
1034	hw->phy.ops.write_reg(hw, MDIO_CTRL1,
1035			      MDIO_MMD_AN, autoneg_reg);
1036
1037	return status;
1038}
1039
1040/**
1041 *  ixgbe_setup_phy_link_speed_generic - Sets the auto advertised capabilities
1042 *  @hw: pointer to hardware structure
1043 *  @speed: new link speed
1044 *  @autoneg_wait_to_complete: unused
1045 **/
1046s32 ixgbe_setup_phy_link_speed_generic(struct ixgbe_hw *hw,
1047				       ixgbe_link_speed speed,
1048				       bool autoneg_wait_to_complete)
1049{
1050	/* Clear autoneg_advertised and set new values based on input link
1051	 * speed.
1052	 */
1053	hw->phy.autoneg_advertised = 0;
1054
1055	if (speed & IXGBE_LINK_SPEED_10GB_FULL)
1056		hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_10GB_FULL;
1057
1058	if (speed & IXGBE_LINK_SPEED_5GB_FULL)
1059		hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_5GB_FULL;
1060
1061	if (speed & IXGBE_LINK_SPEED_2_5GB_FULL)
1062		hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_2_5GB_FULL;
1063
1064	if (speed & IXGBE_LINK_SPEED_1GB_FULL)
1065		hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_1GB_FULL;
1066
1067	if (speed & IXGBE_LINK_SPEED_100_FULL)
1068		hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_100_FULL;
1069
1070	if (speed & IXGBE_LINK_SPEED_10_FULL)
1071		hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_10_FULL;
1072
1073	/* Setup link based on the new speed settings */
1074	if (hw->phy.ops.setup_link)
1075		hw->phy.ops.setup_link(hw);
1076
1077	return 0;
1078}
1079
1080/**
1081 * ixgbe_get_copper_speeds_supported - Get copper link speed from phy
1082 * @hw: pointer to hardware structure
1083 *
1084 * Determines the supported link capabilities by reading the PHY auto
1085 * negotiation register.
1086 */
1087static s32 ixgbe_get_copper_speeds_supported(struct ixgbe_hw *hw)
1088{
1089	u16 speed_ability;
1090	s32 status;
1091
1092	status = hw->phy.ops.read_reg(hw, MDIO_SPEED, MDIO_MMD_PMAPMD,
1093				      &speed_ability);
1094	if (status)
1095		return status;
1096
1097	if (speed_ability & MDIO_SPEED_10G)
1098		hw->phy.speeds_supported |= IXGBE_LINK_SPEED_10GB_FULL;
1099	if (speed_ability & MDIO_PMA_SPEED_1000)
1100		hw->phy.speeds_supported |= IXGBE_LINK_SPEED_1GB_FULL;
1101	if (speed_ability & MDIO_PMA_SPEED_100)
1102		hw->phy.speeds_supported |= IXGBE_LINK_SPEED_100_FULL;
1103
1104	switch (hw->mac.type) {
1105	case ixgbe_mac_X550:
1106		hw->phy.speeds_supported |= IXGBE_LINK_SPEED_2_5GB_FULL;
1107		hw->phy.speeds_supported |= IXGBE_LINK_SPEED_5GB_FULL;
1108		break;
1109	case ixgbe_mac_X550EM_x:
1110	case ixgbe_mac_x550em_a:
1111		hw->phy.speeds_supported &= ~IXGBE_LINK_SPEED_100_FULL;
1112		break;
1113	default:
1114		break;
1115	}
1116
1117	return 0;
1118}
1119
1120/**
1121 * ixgbe_get_copper_link_capabilities_generic - Determines link capabilities
1122 * @hw: pointer to hardware structure
1123 * @speed: pointer to link speed
1124 * @autoneg: boolean auto-negotiation value
1125 */
1126s32 ixgbe_get_copper_link_capabilities_generic(struct ixgbe_hw *hw,
1127					       ixgbe_link_speed *speed,
1128					       bool *autoneg)
1129{
1130	s32 status = 0;
1131
1132	*autoneg = true;
1133	if (!hw->phy.speeds_supported)
1134		status = ixgbe_get_copper_speeds_supported(hw);
1135
1136	*speed = hw->phy.speeds_supported;
1137	return status;
1138}
1139
1140/**
1141 *  ixgbe_check_phy_link_tnx - Determine link and speed status
1142 *  @hw: pointer to hardware structure
1143 *  @speed: link speed
1144 *  @link_up: status of link
1145 *
1146 *  Reads the VS1 register to determine if link is up and the current speed for
1147 *  the PHY.
1148 **/
1149s32 ixgbe_check_phy_link_tnx(struct ixgbe_hw *hw, ixgbe_link_speed *speed,
1150			     bool *link_up)
1151{
1152	s32 status;
1153	u32 time_out;
1154	u32 max_time_out = 10;
 
1155	u16 phy_link = 0;
1156	u16 phy_speed = 0;
1157	u16 phy_data = 0;
 
 
1158
1159	/* Initialize speed and link to default case */
1160	*link_up = false;
1161	*speed = IXGBE_LINK_SPEED_10GB_FULL;
1162
1163	/*
1164	 * Check current speed and link status of the PHY register.
1165	 * This is a vendor specific register and may have to
1166	 * be changed for other copper PHYs.
1167	 */
1168	for (time_out = 0; time_out < max_time_out; time_out++) {
1169		udelay(10);
1170		status = hw->phy.ops.read_reg(hw,
1171					      MDIO_STAT1,
1172					      MDIO_MMD_VEND1,
1173					      &phy_data);
1174		phy_link = phy_data &
1175			    IXGBE_MDIO_VENDOR_SPECIFIC_1_LINK_STATUS;
1176		phy_speed = phy_data &
1177			    IXGBE_MDIO_VENDOR_SPECIFIC_1_SPEED_STATUS;
1178		if (phy_link == IXGBE_MDIO_VENDOR_SPECIFIC_1_LINK_STATUS) {
1179			*link_up = true;
1180			if (phy_speed ==
1181			    IXGBE_MDIO_VENDOR_SPECIFIC_1_SPEED_STATUS)
1182				*speed = IXGBE_LINK_SPEED_1GB_FULL;
1183			break;
1184		}
1185	}
1186
1187	return status;
1188}
1189
1190/**
1191 *	ixgbe_setup_phy_link_tnx - Set and restart autoneg
1192 *	@hw: pointer to hardware structure
1193 *
1194 *	Restart autonegotiation and PHY and waits for completion.
1195 *      This function always returns success, this is nessary since
1196 *	it is called via a function pointer that could call other
1197 *	functions that could return an error.
1198 **/
1199s32 ixgbe_setup_phy_link_tnx(struct ixgbe_hw *hw)
1200{
1201	u16 autoneg_reg = IXGBE_MII_AUTONEG_REG;
1202	bool autoneg = false;
1203	ixgbe_link_speed speed;
1204
1205	ixgbe_get_copper_link_capabilities_generic(hw, &speed, &autoneg);
1206
1207	if (speed & IXGBE_LINK_SPEED_10GB_FULL) {
1208		/* Set or unset auto-negotiation 10G advertisement */
1209		hw->phy.ops.read_reg(hw, MDIO_AN_10GBT_CTRL,
1210				     MDIO_MMD_AN,
1211				     &autoneg_reg);
1212
1213		autoneg_reg &= ~MDIO_AN_10GBT_CTRL_ADV10G;
1214		if (hw->phy.autoneg_advertised & IXGBE_LINK_SPEED_10GB_FULL)
1215			autoneg_reg |= MDIO_AN_10GBT_CTRL_ADV10G;
1216
1217		hw->phy.ops.write_reg(hw, MDIO_AN_10GBT_CTRL,
1218				      MDIO_MMD_AN,
1219				      autoneg_reg);
1220	}
1221
1222	if (speed & IXGBE_LINK_SPEED_1GB_FULL) {
1223		/* Set or unset auto-negotiation 1G advertisement */
1224		hw->phy.ops.read_reg(hw, IXGBE_MII_AUTONEG_XNP_TX_REG,
1225				     MDIO_MMD_AN,
1226				     &autoneg_reg);
1227
1228		autoneg_reg &= ~IXGBE_MII_1GBASE_T_ADVERTISE_XNP_TX;
1229		if (hw->phy.autoneg_advertised & IXGBE_LINK_SPEED_1GB_FULL)
1230			autoneg_reg |= IXGBE_MII_1GBASE_T_ADVERTISE_XNP_TX;
1231
1232		hw->phy.ops.write_reg(hw, IXGBE_MII_AUTONEG_XNP_TX_REG,
1233				      MDIO_MMD_AN,
1234				      autoneg_reg);
1235	}
1236
1237	if (speed & IXGBE_LINK_SPEED_100_FULL) {
1238		/* Set or unset auto-negotiation 100M advertisement */
1239		hw->phy.ops.read_reg(hw, MDIO_AN_ADVERTISE,
1240				     MDIO_MMD_AN,
1241				     &autoneg_reg);
1242
1243		autoneg_reg &= ~(ADVERTISE_100FULL |
1244				 ADVERTISE_100HALF);
1245		if (hw->phy.autoneg_advertised & IXGBE_LINK_SPEED_100_FULL)
1246			autoneg_reg |= ADVERTISE_100FULL;
1247
1248		hw->phy.ops.write_reg(hw, MDIO_AN_ADVERTISE,
1249				      MDIO_MMD_AN,
1250				      autoneg_reg);
1251	}
1252
1253	/* Blocked by MNG FW so don't reset PHY */
1254	if (ixgbe_check_reset_blocked(hw))
1255		return 0;
1256
1257	/* Restart PHY autonegotiation and wait for completion */
1258	hw->phy.ops.read_reg(hw, MDIO_CTRL1,
1259			     MDIO_MMD_AN, &autoneg_reg);
1260
1261	autoneg_reg |= MDIO_AN_CTRL1_RESTART;
1262
1263	hw->phy.ops.write_reg(hw, MDIO_CTRL1,
1264			      MDIO_MMD_AN, autoneg_reg);
1265	return 0;
1266}
1267
1268/**
1269 *  ixgbe_reset_phy_nl - Performs a PHY reset
1270 *  @hw: pointer to hardware structure
1271 **/
1272s32 ixgbe_reset_phy_nl(struct ixgbe_hw *hw)
1273{
1274	u16 phy_offset, control, eword, edata, block_crc;
 
1275	bool end_data = false;
1276	u16 list_offset, data_offset;
1277	u16 phy_data = 0;
1278	s32 ret_val;
1279	u32 i;
1280
1281	/* Blocked by MNG FW so bail */
1282	if (ixgbe_check_reset_blocked(hw))
1283		return 0;
1284
1285	hw->phy.ops.read_reg(hw, MDIO_CTRL1, MDIO_MMD_PHYXS, &phy_data);
1286
1287	/* reset the PHY and poll for completion */
1288	hw->phy.ops.write_reg(hw, MDIO_CTRL1, MDIO_MMD_PHYXS,
1289			      (phy_data | MDIO_CTRL1_RESET));
1290
1291	for (i = 0; i < 100; i++) {
1292		hw->phy.ops.read_reg(hw, MDIO_CTRL1, MDIO_MMD_PHYXS,
1293				     &phy_data);
1294		if ((phy_data & MDIO_CTRL1_RESET) == 0)
1295			break;
1296		usleep_range(10000, 20000);
1297	}
1298
1299	if ((phy_data & MDIO_CTRL1_RESET) != 0) {
1300		hw_dbg(hw, "PHY reset did not complete.\n");
1301		return IXGBE_ERR_PHY;
1302	}
1303
1304	/* Get init offsets */
1305	ret_val = ixgbe_get_sfp_init_sequence_offsets(hw, &list_offset,
1306						      &data_offset);
1307	if (ret_val)
1308		return ret_val;
1309
1310	ret_val = hw->eeprom.ops.read(hw, data_offset, &block_crc);
1311	data_offset++;
1312	while (!end_data) {
1313		/*
1314		 * Read control word from PHY init contents offset
1315		 */
1316		ret_val = hw->eeprom.ops.read(hw, data_offset, &eword);
1317		if (ret_val)
1318			goto err_eeprom;
1319		control = (eword & IXGBE_CONTROL_MASK_NL) >>
1320			   IXGBE_CONTROL_SHIFT_NL;
1321		edata = eword & IXGBE_DATA_MASK_NL;
1322		switch (control) {
1323		case IXGBE_DELAY_NL:
1324			data_offset++;
1325			hw_dbg(hw, "DELAY: %d MS\n", edata);
1326			usleep_range(edata * 1000, edata * 2000);
1327			break;
1328		case IXGBE_DATA_NL:
1329			hw_dbg(hw, "DATA:\n");
1330			data_offset++;
1331			ret_val = hw->eeprom.ops.read(hw, data_offset++,
1332						      &phy_offset);
1333			if (ret_val)
1334				goto err_eeprom;
1335			for (i = 0; i < edata; i++) {
1336				ret_val = hw->eeprom.ops.read(hw, data_offset,
1337							      &eword);
1338				if (ret_val)
1339					goto err_eeprom;
1340				hw->phy.ops.write_reg(hw, phy_offset,
1341						      MDIO_MMD_PMAPMD, eword);
1342				hw_dbg(hw, "Wrote %4.4x to %4.4x\n", eword,
1343				       phy_offset);
1344				data_offset++;
1345				phy_offset++;
1346			}
1347			break;
1348		case IXGBE_CONTROL_NL:
1349			data_offset++;
1350			hw_dbg(hw, "CONTROL:\n");
1351			if (edata == IXGBE_CONTROL_EOL_NL) {
1352				hw_dbg(hw, "EOL\n");
1353				end_data = true;
1354			} else if (edata == IXGBE_CONTROL_SOL_NL) {
1355				hw_dbg(hw, "SOL\n");
1356			} else {
1357				hw_dbg(hw, "Bad control value\n");
1358				return IXGBE_ERR_PHY;
1359			}
1360			break;
1361		default:
1362			hw_dbg(hw, "Bad control type\n");
1363			return IXGBE_ERR_PHY;
1364		}
1365	}
1366
1367	return ret_val;
1368
1369err_eeprom:
1370	hw_err(hw, "eeprom read at offset %d failed\n", data_offset);
1371	return IXGBE_ERR_PHY;
1372}
1373
1374/**
1375 *  ixgbe_identify_module_generic - Identifies module type
1376 *  @hw: pointer to hardware structure
1377 *
1378 *  Determines HW type and calls appropriate function.
1379 **/
1380s32 ixgbe_identify_module_generic(struct ixgbe_hw *hw)
1381{
1382	switch (hw->mac.ops.get_media_type(hw)) {
1383	case ixgbe_media_type_fiber:
1384		return ixgbe_identify_sfp_module_generic(hw);
1385	case ixgbe_media_type_fiber_qsfp:
1386		return ixgbe_identify_qsfp_module_generic(hw);
1387	default:
1388		hw->phy.sfp_type = ixgbe_sfp_type_not_present;
1389		return IXGBE_ERR_SFP_NOT_PRESENT;
1390	}
1391
1392	return IXGBE_ERR_SFP_NOT_PRESENT;
1393}
1394
1395/**
1396 *  ixgbe_identify_sfp_module_generic - Identifies SFP modules
1397 *  @hw: pointer to hardware structure
1398 *
1399 *  Searches for and identifies the SFP module and assigns appropriate PHY type.
1400 **/
1401s32 ixgbe_identify_sfp_module_generic(struct ixgbe_hw *hw)
1402{
 
1403	struct ixgbe_adapter *adapter = hw->back;
1404	s32 status;
 
 
 
 
1405	u32 vendor_oui = 0;
1406	enum ixgbe_sfp_type stored_sfp_type = hw->phy.sfp_type;
1407	u8 identifier = 0;
1408	u8 comp_codes_1g = 0;
1409	u8 comp_codes_10g = 0;
1410	u8 oui_bytes[3] = {0, 0, 0};
1411	u8 cable_tech = 0;
1412	u8 cable_spec = 0;
1413	u16 enforce_sfp = 0;
1414
1415	if (hw->mac.ops.get_media_type(hw) != ixgbe_media_type_fiber) {
1416		hw->phy.sfp_type = ixgbe_sfp_type_not_present;
1417		return IXGBE_ERR_SFP_NOT_PRESENT;
1418	}
1419
1420	/* LAN ID is needed for sfp_type determination */
1421	hw->mac.ops.set_lan_id(hw);
1422
1423	status = hw->phy.ops.read_i2c_eeprom(hw,
1424					     IXGBE_SFF_IDENTIFIER,
1425					     &identifier);
1426
1427	if (status)
1428		goto err_read_i2c_eeprom;
1429
1430	if (identifier != IXGBE_SFF_IDENTIFIER_SFP) {
1431		hw->phy.type = ixgbe_phy_sfp_unsupported;
1432		return IXGBE_ERR_SFP_NOT_SUPPORTED;
1433	}
1434	status = hw->phy.ops.read_i2c_eeprom(hw,
1435					     IXGBE_SFF_1GBE_COMP_CODES,
1436					     &comp_codes_1g);
1437
1438	if (status)
1439		goto err_read_i2c_eeprom;
1440
1441	status = hw->phy.ops.read_i2c_eeprom(hw,
1442					     IXGBE_SFF_10GBE_COMP_CODES,
1443					     &comp_codes_10g);
1444
1445	if (status)
1446		goto err_read_i2c_eeprom;
1447	status = hw->phy.ops.read_i2c_eeprom(hw,
1448					     IXGBE_SFF_CABLE_TECHNOLOGY,
1449					     &cable_tech);
 
 
1450
 
 
 
1451	if (status)
1452		goto err_read_i2c_eeprom;
1453
1454	 /* ID Module
1455	  * =========
1456	  * 0   SFP_DA_CU
1457	  * 1   SFP_SR
1458	  * 2   SFP_LR
1459	  * 3   SFP_DA_CORE0 - 82599-specific
1460	  * 4   SFP_DA_CORE1 - 82599-specific
1461	  * 5   SFP_SR/LR_CORE0 - 82599-specific
1462	  * 6   SFP_SR/LR_CORE1 - 82599-specific
1463	  * 7   SFP_act_lmt_DA_CORE0 - 82599-specific
1464	  * 8   SFP_act_lmt_DA_CORE1 - 82599-specific
1465	  * 9   SFP_1g_cu_CORE0 - 82599-specific
1466	  * 10  SFP_1g_cu_CORE1 - 82599-specific
1467	  * 11  SFP_1g_sx_CORE0 - 82599-specific
1468	  * 12  SFP_1g_sx_CORE1 - 82599-specific
1469	  */
1470	if (hw->mac.type == ixgbe_mac_82598EB) {
1471		if (cable_tech & IXGBE_SFF_DA_PASSIVE_CABLE)
1472			hw->phy.sfp_type = ixgbe_sfp_type_da_cu;
1473		else if (comp_codes_10g & IXGBE_SFF_10GBASESR_CAPABLE)
1474			hw->phy.sfp_type = ixgbe_sfp_type_sr;
1475		else if (comp_codes_10g & IXGBE_SFF_10GBASELR_CAPABLE)
1476			hw->phy.sfp_type = ixgbe_sfp_type_lr;
1477		else
1478			hw->phy.sfp_type = ixgbe_sfp_type_unknown;
1479	} else {
1480		if (cable_tech & IXGBE_SFF_DA_PASSIVE_CABLE) {
1481			if (hw->bus.lan_id == 0)
1482				hw->phy.sfp_type =
1483					     ixgbe_sfp_type_da_cu_core0;
1484			else
1485				hw->phy.sfp_type =
1486					     ixgbe_sfp_type_da_cu_core1;
1487		} else if (cable_tech & IXGBE_SFF_DA_ACTIVE_CABLE) {
1488			hw->phy.ops.read_i2c_eeprom(
1489					hw, IXGBE_SFF_CABLE_SPEC_COMP,
1490					&cable_spec);
1491			if (cable_spec &
1492			    IXGBE_SFF_DA_SPEC_ACTIVE_LIMITING) {
1493				if (hw->bus.lan_id == 0)
1494					hw->phy.sfp_type =
1495					ixgbe_sfp_type_da_act_lmt_core0;
1496				else
1497					hw->phy.sfp_type =
1498					ixgbe_sfp_type_da_act_lmt_core1;
1499			} else {
1500				hw->phy.sfp_type =
1501						ixgbe_sfp_type_unknown;
1502			}
1503		} else if (comp_codes_10g &
1504			   (IXGBE_SFF_10GBASESR_CAPABLE |
1505			    IXGBE_SFF_10GBASELR_CAPABLE)) {
1506			if (hw->bus.lan_id == 0)
1507				hw->phy.sfp_type =
1508					      ixgbe_sfp_type_srlr_core0;
1509			else
1510				hw->phy.sfp_type =
1511					      ixgbe_sfp_type_srlr_core1;
1512		} else if (comp_codes_1g & IXGBE_SFF_1GBASET_CAPABLE) {
1513			if (hw->bus.lan_id == 0)
1514				hw->phy.sfp_type =
1515					ixgbe_sfp_type_1g_cu_core0;
1516			else
1517				hw->phy.sfp_type =
1518					ixgbe_sfp_type_1g_cu_core1;
1519		} else if (comp_codes_1g & IXGBE_SFF_1GBASESX_CAPABLE) {
1520			if (hw->bus.lan_id == 0)
1521				hw->phy.sfp_type =
1522					ixgbe_sfp_type_1g_sx_core0;
1523			else
1524				hw->phy.sfp_type =
1525					ixgbe_sfp_type_1g_sx_core1;
1526		} else if (comp_codes_1g & IXGBE_SFF_1GBASELX_CAPABLE) {
1527			if (hw->bus.lan_id == 0)
1528				hw->phy.sfp_type =
1529					ixgbe_sfp_type_1g_lx_core0;
1530			else
1531				hw->phy.sfp_type =
1532					ixgbe_sfp_type_1g_lx_core1;
 
 
 
 
 
 
 
 
 
 
 
 
1533		} else {
1534			hw->phy.sfp_type = ixgbe_sfp_type_unknown;
1535		}
1536	}
1537
1538	if (hw->phy.sfp_type != stored_sfp_type)
1539		hw->phy.sfp_setup_needed = true;
1540
1541	/* Determine if the SFP+ PHY is dual speed or not. */
1542	hw->phy.multispeed_fiber = false;
1543	if (((comp_codes_1g & IXGBE_SFF_1GBASESX_CAPABLE) &&
1544	     (comp_codes_10g & IXGBE_SFF_10GBASESR_CAPABLE)) ||
1545	    ((comp_codes_1g & IXGBE_SFF_1GBASELX_CAPABLE) &&
1546	     (comp_codes_10g & IXGBE_SFF_10GBASELR_CAPABLE)))
1547		hw->phy.multispeed_fiber = true;
1548
1549	/* Determine PHY vendor */
1550	if (hw->phy.type != ixgbe_phy_nl) {
1551		hw->phy.id = identifier;
1552		status = hw->phy.ops.read_i2c_eeprom(hw,
1553					    IXGBE_SFF_VENDOR_OUI_BYTE0,
1554					    &oui_bytes[0]);
1555
1556		if (status != 0)
1557			goto err_read_i2c_eeprom;
1558
1559		status = hw->phy.ops.read_i2c_eeprom(hw,
1560					    IXGBE_SFF_VENDOR_OUI_BYTE1,
1561					    &oui_bytes[1]);
1562
1563		if (status != 0)
1564			goto err_read_i2c_eeprom;
1565
1566		status = hw->phy.ops.read_i2c_eeprom(hw,
1567					    IXGBE_SFF_VENDOR_OUI_BYTE2,
1568					    &oui_bytes[2]);
1569
1570		if (status != 0)
1571			goto err_read_i2c_eeprom;
1572
1573		vendor_oui =
1574		  ((oui_bytes[0] << IXGBE_SFF_VENDOR_OUI_BYTE0_SHIFT) |
1575		   (oui_bytes[1] << IXGBE_SFF_VENDOR_OUI_BYTE1_SHIFT) |
1576		   (oui_bytes[2] << IXGBE_SFF_VENDOR_OUI_BYTE2_SHIFT));
1577
1578		switch (vendor_oui) {
1579		case IXGBE_SFF_VENDOR_OUI_TYCO:
1580			if (cable_tech & IXGBE_SFF_DA_PASSIVE_CABLE)
1581				hw->phy.type =
1582					    ixgbe_phy_sfp_passive_tyco;
1583			break;
1584		case IXGBE_SFF_VENDOR_OUI_FTL:
1585			if (cable_tech & IXGBE_SFF_DA_ACTIVE_CABLE)
1586				hw->phy.type = ixgbe_phy_sfp_ftl_active;
1587			else
1588				hw->phy.type = ixgbe_phy_sfp_ftl;
1589			break;
1590		case IXGBE_SFF_VENDOR_OUI_AVAGO:
1591			hw->phy.type = ixgbe_phy_sfp_avago;
1592			break;
1593		case IXGBE_SFF_VENDOR_OUI_INTEL:
1594			hw->phy.type = ixgbe_phy_sfp_intel;
1595			break;
1596		default:
1597			if (cable_tech & IXGBE_SFF_DA_PASSIVE_CABLE)
1598				hw->phy.type =
1599					 ixgbe_phy_sfp_passive_unknown;
1600			else if (cable_tech & IXGBE_SFF_DA_ACTIVE_CABLE)
1601				hw->phy.type =
1602					ixgbe_phy_sfp_active_unknown;
1603			else
1604				hw->phy.type = ixgbe_phy_sfp_unknown;
1605			break;
1606		}
1607	}
1608
1609	/* Allow any DA cable vendor */
1610	if (cable_tech & (IXGBE_SFF_DA_PASSIVE_CABLE |
1611	    IXGBE_SFF_DA_ACTIVE_CABLE))
1612		return 0;
1613
1614	/* Verify supported 1G SFP modules */
1615	if (comp_codes_10g == 0 &&
1616	    !(hw->phy.sfp_type == ixgbe_sfp_type_1g_cu_core1 ||
1617	      hw->phy.sfp_type == ixgbe_sfp_type_1g_cu_core0 ||
1618	      hw->phy.sfp_type == ixgbe_sfp_type_1g_lx_core0 ||
1619	      hw->phy.sfp_type == ixgbe_sfp_type_1g_lx_core1 ||
1620	      hw->phy.sfp_type == ixgbe_sfp_type_1g_sx_core0 ||
1621	      hw->phy.sfp_type == ixgbe_sfp_type_1g_sx_core1)) {
 
 
1622		hw->phy.type = ixgbe_phy_sfp_unsupported;
1623		return IXGBE_ERR_SFP_NOT_SUPPORTED;
1624	}
1625
1626	/* Anything else 82598-based is supported */
1627	if (hw->mac.type == ixgbe_mac_82598EB)
1628		return 0;
1629
1630	hw->mac.ops.get_device_caps(hw, &enforce_sfp);
1631	if (!(enforce_sfp & IXGBE_DEVICE_CAPS_ALLOW_ANY_SFP) &&
1632	    !(hw->phy.sfp_type == ixgbe_sfp_type_1g_cu_core0 ||
1633	      hw->phy.sfp_type == ixgbe_sfp_type_1g_cu_core1 ||
1634	      hw->phy.sfp_type == ixgbe_sfp_type_1g_lx_core0 ||
1635	      hw->phy.sfp_type == ixgbe_sfp_type_1g_lx_core1 ||
1636	      hw->phy.sfp_type == ixgbe_sfp_type_1g_sx_core0 ||
1637	      hw->phy.sfp_type == ixgbe_sfp_type_1g_sx_core1)) {
 
 
1638		/* Make sure we're a supported PHY type */
1639		if (hw->phy.type == ixgbe_phy_sfp_intel)
1640			return 0;
1641		if (hw->allow_unsupported_sfp) {
1642			e_warn(drv, "WARNING: Intel (R) Network Connections are quality tested using Intel (R) Ethernet Optics.  Using untested modules is not supported and may cause unstable operation or damage to the module or the adapter.  Intel Corporation is not responsible for any harm caused by using untested modules.\n");
1643			return 0;
1644		}
1645		hw_dbg(hw, "SFP+ module not supported\n");
1646		hw->phy.type = ixgbe_phy_sfp_unsupported;
1647		return IXGBE_ERR_SFP_NOT_SUPPORTED;
1648	}
1649	return 0;
1650
1651err_read_i2c_eeprom:
1652	hw->phy.sfp_type = ixgbe_sfp_type_not_present;
1653	if (hw->phy.type != ixgbe_phy_nl) {
1654		hw->phy.id = 0;
1655		hw->phy.type = ixgbe_phy_unknown;
1656	}
1657	return IXGBE_ERR_SFP_NOT_PRESENT;
1658}
1659
1660/**
1661 * ixgbe_identify_qsfp_module_generic - Identifies QSFP modules
1662 * @hw: pointer to hardware structure
1663 *
1664 * Searches for and identifies the QSFP module and assigns appropriate PHY type
1665 **/
1666static s32 ixgbe_identify_qsfp_module_generic(struct ixgbe_hw *hw)
1667{
1668	struct ixgbe_adapter *adapter = hw->back;
1669	s32 status;
1670	u32 vendor_oui = 0;
1671	enum ixgbe_sfp_type stored_sfp_type = hw->phy.sfp_type;
1672	u8 identifier = 0;
1673	u8 comp_codes_1g = 0;
1674	u8 comp_codes_10g = 0;
1675	u8 oui_bytes[3] = {0, 0, 0};
1676	u16 enforce_sfp = 0;
1677	u8 connector = 0;
1678	u8 cable_length = 0;
1679	u8 device_tech = 0;
1680	bool active_cable = false;
1681
1682	if (hw->mac.ops.get_media_type(hw) != ixgbe_media_type_fiber_qsfp) {
1683		hw->phy.sfp_type = ixgbe_sfp_type_not_present;
1684		return IXGBE_ERR_SFP_NOT_PRESENT;
1685	}
1686
1687	/* LAN ID is needed for sfp_type determination */
1688	hw->mac.ops.set_lan_id(hw);
1689
1690	status = hw->phy.ops.read_i2c_eeprom(hw, IXGBE_SFF_IDENTIFIER,
1691					     &identifier);
1692
1693	if (status != 0)
1694		goto err_read_i2c_eeprom;
1695
1696	if (identifier != IXGBE_SFF_IDENTIFIER_QSFP_PLUS) {
1697		hw->phy.type = ixgbe_phy_sfp_unsupported;
1698		return IXGBE_ERR_SFP_NOT_SUPPORTED;
1699	}
1700
1701	hw->phy.id = identifier;
1702
1703	status = hw->phy.ops.read_i2c_eeprom(hw, IXGBE_SFF_QSFP_10GBE_COMP,
1704					     &comp_codes_10g);
1705
1706	if (status != 0)
1707		goto err_read_i2c_eeprom;
1708
1709	status = hw->phy.ops.read_i2c_eeprom(hw, IXGBE_SFF_QSFP_1GBE_COMP,
1710					     &comp_codes_1g);
1711
1712	if (status != 0)
1713		goto err_read_i2c_eeprom;
1714
1715	if (comp_codes_10g & IXGBE_SFF_QSFP_DA_PASSIVE_CABLE) {
1716		hw->phy.type = ixgbe_phy_qsfp_passive_unknown;
1717		if (hw->bus.lan_id == 0)
1718			hw->phy.sfp_type = ixgbe_sfp_type_da_cu_core0;
1719		else
1720			hw->phy.sfp_type = ixgbe_sfp_type_da_cu_core1;
1721	} else if (comp_codes_10g & (IXGBE_SFF_10GBASESR_CAPABLE |
1722				     IXGBE_SFF_10GBASELR_CAPABLE)) {
1723		if (hw->bus.lan_id == 0)
1724			hw->phy.sfp_type = ixgbe_sfp_type_srlr_core0;
1725		else
1726			hw->phy.sfp_type = ixgbe_sfp_type_srlr_core1;
1727	} else {
1728		if (comp_codes_10g & IXGBE_SFF_QSFP_DA_ACTIVE_CABLE)
1729			active_cable = true;
1730
1731		if (!active_cable) {
1732			/* check for active DA cables that pre-date
1733			 * SFF-8436 v3.6
1734			 */
1735			hw->phy.ops.read_i2c_eeprom(hw,
1736					IXGBE_SFF_QSFP_CONNECTOR,
1737					&connector);
1738
1739			hw->phy.ops.read_i2c_eeprom(hw,
1740					IXGBE_SFF_QSFP_CABLE_LENGTH,
1741					&cable_length);
1742
1743			hw->phy.ops.read_i2c_eeprom(hw,
1744					IXGBE_SFF_QSFP_DEVICE_TECH,
1745					&device_tech);
1746
1747			if ((connector ==
1748				     IXGBE_SFF_QSFP_CONNECTOR_NOT_SEPARABLE) &&
1749			    (cable_length > 0) &&
1750			    ((device_tech >> 4) ==
1751				     IXGBE_SFF_QSFP_TRANSMITER_850NM_VCSEL))
1752				active_cable = true;
1753		}
1754
1755		if (active_cable) {
1756			hw->phy.type = ixgbe_phy_qsfp_active_unknown;
1757			if (hw->bus.lan_id == 0)
1758				hw->phy.sfp_type =
1759						ixgbe_sfp_type_da_act_lmt_core0;
1760			else
1761				hw->phy.sfp_type =
1762						ixgbe_sfp_type_da_act_lmt_core1;
1763		} else {
1764			/* unsupported module type */
1765			hw->phy.type = ixgbe_phy_sfp_unsupported;
1766			return IXGBE_ERR_SFP_NOT_SUPPORTED;
1767		}
1768	}
1769
1770	if (hw->phy.sfp_type != stored_sfp_type)
1771		hw->phy.sfp_setup_needed = true;
1772
1773	/* Determine if the QSFP+ PHY is dual speed or not. */
1774	hw->phy.multispeed_fiber = false;
1775	if (((comp_codes_1g & IXGBE_SFF_1GBASESX_CAPABLE) &&
1776	     (comp_codes_10g & IXGBE_SFF_10GBASESR_CAPABLE)) ||
1777	    ((comp_codes_1g & IXGBE_SFF_1GBASELX_CAPABLE) &&
1778	     (comp_codes_10g & IXGBE_SFF_10GBASELR_CAPABLE)))
1779		hw->phy.multispeed_fiber = true;
1780
1781	/* Determine PHY vendor for optical modules */
1782	if (comp_codes_10g & (IXGBE_SFF_10GBASESR_CAPABLE |
1783			      IXGBE_SFF_10GBASELR_CAPABLE)) {
1784		status = hw->phy.ops.read_i2c_eeprom(hw,
1785					IXGBE_SFF_QSFP_VENDOR_OUI_BYTE0,
1786					&oui_bytes[0]);
1787
1788		if (status != 0)
1789			goto err_read_i2c_eeprom;
1790
1791		status = hw->phy.ops.read_i2c_eeprom(hw,
1792					IXGBE_SFF_QSFP_VENDOR_OUI_BYTE1,
1793					&oui_bytes[1]);
1794
1795		if (status != 0)
1796			goto err_read_i2c_eeprom;
1797
1798		status = hw->phy.ops.read_i2c_eeprom(hw,
1799					IXGBE_SFF_QSFP_VENDOR_OUI_BYTE2,
1800					&oui_bytes[2]);
1801
1802		if (status != 0)
1803			goto err_read_i2c_eeprom;
1804
1805		vendor_oui =
1806			((oui_bytes[0] << IXGBE_SFF_VENDOR_OUI_BYTE0_SHIFT) |
1807			 (oui_bytes[1] << IXGBE_SFF_VENDOR_OUI_BYTE1_SHIFT) |
1808			 (oui_bytes[2] << IXGBE_SFF_VENDOR_OUI_BYTE2_SHIFT));
1809
1810		if (vendor_oui == IXGBE_SFF_VENDOR_OUI_INTEL)
1811			hw->phy.type = ixgbe_phy_qsfp_intel;
1812		else
1813			hw->phy.type = ixgbe_phy_qsfp_unknown;
1814
1815		hw->mac.ops.get_device_caps(hw, &enforce_sfp);
1816		if (!(enforce_sfp & IXGBE_DEVICE_CAPS_ALLOW_ANY_SFP)) {
1817			/* Make sure we're a supported PHY type */
1818			if (hw->phy.type == ixgbe_phy_qsfp_intel)
1819				return 0;
1820			if (hw->allow_unsupported_sfp) {
1821				e_warn(drv, "WARNING: Intel (R) Network Connections are quality tested using Intel (R) Ethernet Optics. Using untested modules is not supported and may cause unstable operation or damage to the module or the adapter. Intel Corporation is not responsible for any harm caused by using untested modules.\n");
1822				return 0;
1823			}
1824			hw_dbg(hw, "QSFP module not supported\n");
1825			hw->phy.type = ixgbe_phy_sfp_unsupported;
1826			return IXGBE_ERR_SFP_NOT_SUPPORTED;
1827		}
1828		return 0;
1829	}
1830	return 0;
1831
1832err_read_i2c_eeprom:
1833	hw->phy.sfp_type = ixgbe_sfp_type_not_present;
1834	hw->phy.id = 0;
1835	hw->phy.type = ixgbe_phy_unknown;
1836
1837	return IXGBE_ERR_SFP_NOT_PRESENT;
1838}
1839
1840/**
1841 *  ixgbe_get_sfp_init_sequence_offsets - Provides offset of PHY init sequence
1842 *  @hw: pointer to hardware structure
1843 *  @list_offset: offset to the SFP ID list
1844 *  @data_offset: offset to the SFP data block
1845 *
1846 *  Checks the MAC's EEPROM to see if it supports a given SFP+ module type, if
1847 *  so it returns the offsets to the phy init sequence block.
1848 **/
1849s32 ixgbe_get_sfp_init_sequence_offsets(struct ixgbe_hw *hw,
1850					u16 *list_offset,
1851					u16 *data_offset)
1852{
1853	u16 sfp_id;
1854	u16 sfp_type = hw->phy.sfp_type;
1855
1856	if (hw->phy.sfp_type == ixgbe_sfp_type_unknown)
1857		return IXGBE_ERR_SFP_NOT_SUPPORTED;
1858
1859	if (hw->phy.sfp_type == ixgbe_sfp_type_not_present)
1860		return IXGBE_ERR_SFP_NOT_PRESENT;
1861
1862	if ((hw->device_id == IXGBE_DEV_ID_82598_SR_DUAL_PORT_EM) &&
1863	    (hw->phy.sfp_type == ixgbe_sfp_type_da_cu))
1864		return IXGBE_ERR_SFP_NOT_SUPPORTED;
1865
1866	/*
1867	 * Limiting active cables and 1G Phys must be initialized as
1868	 * SR modules
1869	 */
1870	if (sfp_type == ixgbe_sfp_type_da_act_lmt_core0 ||
1871	    sfp_type == ixgbe_sfp_type_1g_lx_core0 ||
1872	    sfp_type == ixgbe_sfp_type_1g_cu_core0 ||
1873	    sfp_type == ixgbe_sfp_type_1g_sx_core0)
 
1874		sfp_type = ixgbe_sfp_type_srlr_core0;
1875	else if (sfp_type == ixgbe_sfp_type_da_act_lmt_core1 ||
1876		 sfp_type == ixgbe_sfp_type_1g_lx_core1 ||
1877		 sfp_type == ixgbe_sfp_type_1g_cu_core1 ||
1878		 sfp_type == ixgbe_sfp_type_1g_sx_core1)
 
1879		sfp_type = ixgbe_sfp_type_srlr_core1;
1880
1881	/* Read offset to PHY init contents */
1882	if (hw->eeprom.ops.read(hw, IXGBE_PHY_INIT_OFFSET_NL, list_offset)) {
1883		hw_err(hw, "eeprom read at %d failed\n",
1884		       IXGBE_PHY_INIT_OFFSET_NL);
1885		return IXGBE_ERR_SFP_NO_INIT_SEQ_PRESENT;
1886	}
1887
1888	if ((!*list_offset) || (*list_offset == 0xFFFF))
1889		return IXGBE_ERR_SFP_NO_INIT_SEQ_PRESENT;
1890
1891	/* Shift offset to first ID word */
1892	(*list_offset)++;
1893
1894	/*
1895	 * Find the matching SFP ID in the EEPROM
1896	 * and program the init sequence
1897	 */
1898	if (hw->eeprom.ops.read(hw, *list_offset, &sfp_id))
1899		goto err_phy;
1900
1901	while (sfp_id != IXGBE_PHY_INIT_END_NL) {
1902		if (sfp_id == sfp_type) {
1903			(*list_offset)++;
1904			if (hw->eeprom.ops.read(hw, *list_offset, data_offset))
1905				goto err_phy;
1906			if ((!*data_offset) || (*data_offset == 0xFFFF)) {
1907				hw_dbg(hw, "SFP+ module not supported\n");
1908				return IXGBE_ERR_SFP_NOT_SUPPORTED;
1909			} else {
1910				break;
1911			}
1912		} else {
1913			(*list_offset) += 2;
1914			if (hw->eeprom.ops.read(hw, *list_offset, &sfp_id))
1915				goto err_phy;
1916		}
1917	}
1918
1919	if (sfp_id == IXGBE_PHY_INIT_END_NL) {
1920		hw_dbg(hw, "No matching SFP+ module found\n");
1921		return IXGBE_ERR_SFP_NOT_SUPPORTED;
1922	}
1923
1924	return 0;
1925
1926err_phy:
1927	hw_err(hw, "eeprom read at offset %d failed\n", *list_offset);
1928	return IXGBE_ERR_PHY;
1929}
1930
1931/**
1932 *  ixgbe_read_i2c_eeprom_generic - Reads 8 bit EEPROM word over I2C interface
1933 *  @hw: pointer to hardware structure
1934 *  @byte_offset: EEPROM byte offset to read
1935 *  @eeprom_data: value read
1936 *
1937 *  Performs byte read operation to SFP module's EEPROM over I2C interface.
1938 **/
1939s32 ixgbe_read_i2c_eeprom_generic(struct ixgbe_hw *hw, u8 byte_offset,
1940				  u8 *eeprom_data)
1941{
1942	return hw->phy.ops.read_i2c_byte(hw, byte_offset,
1943					 IXGBE_I2C_EEPROM_DEV_ADDR,
1944					 eeprom_data);
1945}
1946
1947/**
1948 *  ixgbe_read_i2c_sff8472_generic - Reads 8 bit word over I2C interface
1949 *  @hw: pointer to hardware structure
1950 *  @byte_offset: byte offset at address 0xA2
1951 *  @sff8472_data: value read
1952 *
1953 *  Performs byte read operation to SFP module's SFF-8472 data over I2C
1954 **/
1955s32 ixgbe_read_i2c_sff8472_generic(struct ixgbe_hw *hw, u8 byte_offset,
1956				   u8 *sff8472_data)
1957{
1958	return hw->phy.ops.read_i2c_byte(hw, byte_offset,
1959					 IXGBE_I2C_EEPROM_DEV_ADDR2,
1960					 sff8472_data);
1961}
1962
1963/**
1964 *  ixgbe_write_i2c_eeprom_generic - Writes 8 bit EEPROM word over I2C interface
1965 *  @hw: pointer to hardware structure
1966 *  @byte_offset: EEPROM byte offset to write
1967 *  @eeprom_data: value to write
1968 *
1969 *  Performs byte write operation to SFP module's EEPROM over I2C interface.
1970 **/
1971s32 ixgbe_write_i2c_eeprom_generic(struct ixgbe_hw *hw, u8 byte_offset,
1972				   u8 eeprom_data)
1973{
1974	return hw->phy.ops.write_i2c_byte(hw, byte_offset,
1975					  IXGBE_I2C_EEPROM_DEV_ADDR,
1976					  eeprom_data);
1977}
1978
1979/**
1980 * ixgbe_is_sfp_probe - Returns true if SFP is being detected
1981 * @hw: pointer to hardware structure
1982 * @offset: eeprom offset to be read
1983 * @addr: I2C address to be read
1984 */
1985static bool ixgbe_is_sfp_probe(struct ixgbe_hw *hw, u8 offset, u8 addr)
1986{
1987	if (addr == IXGBE_I2C_EEPROM_DEV_ADDR &&
1988	    offset == IXGBE_SFF_IDENTIFIER &&
1989	    hw->phy.sfp_type == ixgbe_sfp_type_not_present)
1990		return true;
1991	return false;
1992}
1993
1994/**
1995 *  ixgbe_read_i2c_byte_generic_int - Reads 8 bit word over I2C
1996 *  @hw: pointer to hardware structure
1997 *  @byte_offset: byte offset to read
1998 *  @dev_addr: device address
1999 *  @data: value read
2000 *  @lock: true if to take and release semaphore
2001 *
2002 *  Performs byte read operation to SFP module's EEPROM over I2C interface at
2003 *  a specified device address.
2004 */
2005static s32 ixgbe_read_i2c_byte_generic_int(struct ixgbe_hw *hw, u8 byte_offset,
2006					   u8 dev_addr, u8 *data, bool lock)
2007{
2008	s32 status;
2009	u32 max_retry = 10;
 
2010	u32 retry = 0;
2011	u32 swfw_mask = hw->phy.phy_semaphore_mask;
2012	bool nack = true;
2013
2014	if (hw->mac.type >= ixgbe_mac_X550)
2015		max_retry = 3;
2016	if (ixgbe_is_sfp_probe(hw, byte_offset, dev_addr))
2017		max_retry = IXGBE_SFP_DETECT_RETRIES;
2018
2019	*data = 0;
2020
2021	do {
2022		if (lock && hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
2023			return IXGBE_ERR_SWFW_SYNC;
2024
2025		ixgbe_i2c_start(hw);
2026
2027		/* Device Address and write indication */
2028		status = ixgbe_clock_out_i2c_byte(hw, dev_addr);
2029		if (status != 0)
2030			goto fail;
2031
2032		status = ixgbe_get_i2c_ack(hw);
2033		if (status != 0)
2034			goto fail;
2035
2036		status = ixgbe_clock_out_i2c_byte(hw, byte_offset);
2037		if (status != 0)
2038			goto fail;
2039
2040		status = ixgbe_get_i2c_ack(hw);
2041		if (status != 0)
2042			goto fail;
2043
2044		ixgbe_i2c_start(hw);
2045
2046		/* Device Address and read indication */
2047		status = ixgbe_clock_out_i2c_byte(hw, (dev_addr | 0x1));
2048		if (status != 0)
2049			goto fail;
2050
2051		status = ixgbe_get_i2c_ack(hw);
2052		if (status != 0)
2053			goto fail;
2054
2055		status = ixgbe_clock_in_i2c_byte(hw, data);
2056		if (status != 0)
2057			goto fail;
2058
2059		status = ixgbe_clock_out_i2c_bit(hw, nack);
2060		if (status != 0)
2061			goto fail;
2062
2063		ixgbe_i2c_stop(hw);
2064		if (lock)
2065			hw->mac.ops.release_swfw_sync(hw, swfw_mask);
2066		return 0;
2067
2068fail:
2069		ixgbe_i2c_bus_clear(hw);
2070		if (lock) {
2071			hw->mac.ops.release_swfw_sync(hw, swfw_mask);
2072			msleep(100);
2073		}
2074		retry++;
2075		if (retry < max_retry)
2076			hw_dbg(hw, "I2C byte read error - Retrying.\n");
2077		else
2078			hw_dbg(hw, "I2C byte read error.\n");
2079
2080	} while (retry < max_retry);
2081
2082	return status;
2083}
2084
2085/**
2086 *  ixgbe_read_i2c_byte_generic - Reads 8 bit word over I2C
2087 *  @hw: pointer to hardware structure
2088 *  @byte_offset: byte offset to read
2089 *  @dev_addr: device address
2090 *  @data: value read
2091 *
2092 *  Performs byte read operation to SFP module's EEPROM over I2C interface at
2093 *  a specified device address.
2094 */
2095s32 ixgbe_read_i2c_byte_generic(struct ixgbe_hw *hw, u8 byte_offset,
2096				u8 dev_addr, u8 *data)
2097{
2098	return ixgbe_read_i2c_byte_generic_int(hw, byte_offset, dev_addr,
2099					       data, true);
2100}
2101
2102/**
2103 *  ixgbe_read_i2c_byte_generic_unlocked - Reads 8 bit word over I2C
2104 *  @hw: pointer to hardware structure
2105 *  @byte_offset: byte offset to read
2106 *  @dev_addr: device address
2107 *  @data: value read
2108 *
2109 *  Performs byte read operation to SFP module's EEPROM over I2C interface at
2110 *  a specified device address.
2111 */
2112s32 ixgbe_read_i2c_byte_generic_unlocked(struct ixgbe_hw *hw, u8 byte_offset,
2113					 u8 dev_addr, u8 *data)
2114{
2115	return ixgbe_read_i2c_byte_generic_int(hw, byte_offset, dev_addr,
2116					       data, false);
2117}
2118
2119/**
2120 *  ixgbe_write_i2c_byte_generic_int - Writes 8 bit word over I2C
2121 *  @hw: pointer to hardware structure
2122 *  @byte_offset: byte offset to write
2123 *  @dev_addr: device address
2124 *  @data: value to write
2125 *  @lock: true if to take and release semaphore
2126 *
2127 *  Performs byte write operation to SFP module's EEPROM over I2C interface at
2128 *  a specified device address.
2129 */
2130static s32 ixgbe_write_i2c_byte_generic_int(struct ixgbe_hw *hw, u8 byte_offset,
2131					    u8 dev_addr, u8 data, bool lock)
2132{
2133	s32 status;
2134	u32 max_retry = 1;
2135	u32 retry = 0;
2136	u32 swfw_mask = hw->phy.phy_semaphore_mask;
2137
2138	if (lock && hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
2139		return IXGBE_ERR_SWFW_SYNC;
2140
2141	do {
2142		ixgbe_i2c_start(hw);
2143
2144		status = ixgbe_clock_out_i2c_byte(hw, dev_addr);
2145		if (status != 0)
2146			goto fail;
2147
2148		status = ixgbe_get_i2c_ack(hw);
2149		if (status != 0)
2150			goto fail;
2151
2152		status = ixgbe_clock_out_i2c_byte(hw, byte_offset);
2153		if (status != 0)
2154			goto fail;
2155
2156		status = ixgbe_get_i2c_ack(hw);
2157		if (status != 0)
2158			goto fail;
2159
2160		status = ixgbe_clock_out_i2c_byte(hw, data);
2161		if (status != 0)
2162			goto fail;
2163
2164		status = ixgbe_get_i2c_ack(hw);
2165		if (status != 0)
2166			goto fail;
2167
2168		ixgbe_i2c_stop(hw);
2169		if (lock)
2170			hw->mac.ops.release_swfw_sync(hw, swfw_mask);
2171		return 0;
2172
2173fail:
2174		ixgbe_i2c_bus_clear(hw);
2175		retry++;
2176		if (retry < max_retry)
2177			hw_dbg(hw, "I2C byte write error - Retrying.\n");
2178		else
2179			hw_dbg(hw, "I2C byte write error.\n");
2180	} while (retry < max_retry);
2181
2182	if (lock)
2183		hw->mac.ops.release_swfw_sync(hw, swfw_mask);
2184
2185	return status;
2186}
2187
2188/**
2189 *  ixgbe_write_i2c_byte_generic - Writes 8 bit word over I2C
2190 *  @hw: pointer to hardware structure
2191 *  @byte_offset: byte offset to write
2192 *  @dev_addr: device address
2193 *  @data: value to write
2194 *
2195 *  Performs byte write operation to SFP module's EEPROM over I2C interface at
2196 *  a specified device address.
2197 */
2198s32 ixgbe_write_i2c_byte_generic(struct ixgbe_hw *hw, u8 byte_offset,
2199				 u8 dev_addr, u8 data)
2200{
2201	return ixgbe_write_i2c_byte_generic_int(hw, byte_offset, dev_addr,
2202						data, true);
2203}
2204
2205/**
2206 *  ixgbe_write_i2c_byte_generic_unlocked - Writes 8 bit word over I2C
2207 *  @hw: pointer to hardware structure
2208 *  @byte_offset: byte offset to write
2209 *  @dev_addr: device address
2210 *  @data: value to write
2211 *
2212 *  Performs byte write operation to SFP module's EEPROM over I2C interface at
2213 *  a specified device address.
2214 */
2215s32 ixgbe_write_i2c_byte_generic_unlocked(struct ixgbe_hw *hw, u8 byte_offset,
2216					  u8 dev_addr, u8 data)
2217{
2218	return ixgbe_write_i2c_byte_generic_int(hw, byte_offset, dev_addr,
2219						data, false);
2220}
2221
2222/**
2223 *  ixgbe_i2c_start - Sets I2C start condition
2224 *  @hw: pointer to hardware structure
2225 *
2226 *  Sets I2C start condition (High -> Low on SDA while SCL is High)
2227 *  Set bit-bang mode on X550 hardware.
2228 **/
2229static void ixgbe_i2c_start(struct ixgbe_hw *hw)
2230{
2231	u32 i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL(hw));
2232
2233	i2cctl |= IXGBE_I2C_BB_EN(hw);
2234
2235	/* Start condition must begin with data and clock high */
2236	ixgbe_set_i2c_data(hw, &i2cctl, 1);
2237	ixgbe_raise_i2c_clk(hw, &i2cctl);
2238
2239	/* Setup time for start condition (4.7us) */
2240	udelay(IXGBE_I2C_T_SU_STA);
2241
2242	ixgbe_set_i2c_data(hw, &i2cctl, 0);
2243
2244	/* Hold time for start condition (4us) */
2245	udelay(IXGBE_I2C_T_HD_STA);
2246
2247	ixgbe_lower_i2c_clk(hw, &i2cctl);
2248
2249	/* Minimum low period of clock is 4.7 us */
2250	udelay(IXGBE_I2C_T_LOW);
2251
2252}
2253
2254/**
2255 *  ixgbe_i2c_stop - Sets I2C stop condition
2256 *  @hw: pointer to hardware structure
2257 *
2258 *  Sets I2C stop condition (Low -> High on SDA while SCL is High)
2259 *  Disables bit-bang mode and negates data output enable on X550
2260 *  hardware.
2261 **/
2262static void ixgbe_i2c_stop(struct ixgbe_hw *hw)
2263{
2264	u32 i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL(hw));
2265	u32 data_oe_bit = IXGBE_I2C_DATA_OE_N_EN(hw);
2266	u32 clk_oe_bit = IXGBE_I2C_CLK_OE_N_EN(hw);
2267	u32 bb_en_bit = IXGBE_I2C_BB_EN(hw);
2268
2269	/* Stop condition must begin with data low and clock high */
2270	ixgbe_set_i2c_data(hw, &i2cctl, 0);
2271	ixgbe_raise_i2c_clk(hw, &i2cctl);
2272
2273	/* Setup time for stop condition (4us) */
2274	udelay(IXGBE_I2C_T_SU_STO);
2275
2276	ixgbe_set_i2c_data(hw, &i2cctl, 1);
2277
2278	/* bus free time between stop and start (4.7us)*/
2279	udelay(IXGBE_I2C_T_BUF);
2280
2281	if (bb_en_bit || data_oe_bit || clk_oe_bit) {
2282		i2cctl &= ~bb_en_bit;
2283		i2cctl |= data_oe_bit | clk_oe_bit;
2284		IXGBE_WRITE_REG(hw, IXGBE_I2CCTL(hw), i2cctl);
2285		IXGBE_WRITE_FLUSH(hw);
2286	}
2287}
2288
2289/**
2290 *  ixgbe_clock_in_i2c_byte - Clocks in one byte via I2C
2291 *  @hw: pointer to hardware structure
2292 *  @data: data byte to clock in
2293 *
2294 *  Clocks in one byte data via I2C data/clock
2295 **/
2296static s32 ixgbe_clock_in_i2c_byte(struct ixgbe_hw *hw, u8 *data)
2297{
2298	s32 i;
2299	bool bit = false;
 
2300
2301	*data = 0;
2302	for (i = 7; i >= 0; i--) {
2303		ixgbe_clock_in_i2c_bit(hw, &bit);
2304		*data |= bit << i;
2305	}
2306
2307	return 0;
2308}
2309
2310/**
2311 *  ixgbe_clock_out_i2c_byte - Clocks out one byte via I2C
2312 *  @hw: pointer to hardware structure
2313 *  @data: data byte clocked out
2314 *
2315 *  Clocks out one byte data via I2C data/clock
2316 **/
2317static s32 ixgbe_clock_out_i2c_byte(struct ixgbe_hw *hw, u8 data)
2318{
2319	s32 status;
2320	s32 i;
2321	u32 i2cctl;
2322	bool bit = false;
2323
2324	for (i = 7; i >= 0; i--) {
2325		bit = (data >> i) & 0x1;
2326		status = ixgbe_clock_out_i2c_bit(hw, bit);
2327
2328		if (status != 0)
2329			break;
2330	}
2331
2332	/* Release SDA line (set high) */
2333	i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL(hw));
2334	i2cctl |= IXGBE_I2C_DATA_OUT(hw);
2335	i2cctl |= IXGBE_I2C_DATA_OE_N_EN(hw);
2336	IXGBE_WRITE_REG(hw, IXGBE_I2CCTL(hw), i2cctl);
2337	IXGBE_WRITE_FLUSH(hw);
2338
2339	return status;
2340}
2341
2342/**
2343 *  ixgbe_get_i2c_ack - Polls for I2C ACK
2344 *  @hw: pointer to hardware structure
2345 *
2346 *  Clocks in/out one bit via I2C data/clock
2347 **/
2348static s32 ixgbe_get_i2c_ack(struct ixgbe_hw *hw)
2349{
 
2350	u32 data_oe_bit = IXGBE_I2C_DATA_OE_N_EN(hw);
2351	s32 status = 0;
2352	u32 i = 0;
2353	u32 i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL(hw));
2354	u32 timeout = 10;
2355	bool ack = true;
 
 
2356
2357	if (data_oe_bit) {
2358		i2cctl |= IXGBE_I2C_DATA_OUT(hw);
2359		i2cctl |= data_oe_bit;
2360		IXGBE_WRITE_REG(hw, IXGBE_I2CCTL(hw), i2cctl);
2361		IXGBE_WRITE_FLUSH(hw);
2362	}
2363	ixgbe_raise_i2c_clk(hw, &i2cctl);
2364
2365	/* Minimum high period of clock is 4us */
2366	udelay(IXGBE_I2C_T_HIGH);
2367
2368	/* Poll for ACK.  Note that ACK in I2C spec is
2369	 * transition from 1 to 0 */
2370	for (i = 0; i < timeout; i++) {
2371		i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL(hw));
2372		ack = ixgbe_get_i2c_data(hw, &i2cctl);
2373
2374		udelay(1);
2375		if (ack == 0)
2376			break;
2377	}
2378
2379	if (ack == 1) {
2380		hw_dbg(hw, "I2C ack was not received.\n");
2381		status = IXGBE_ERR_I2C;
2382	}
2383
2384	ixgbe_lower_i2c_clk(hw, &i2cctl);
2385
2386	/* Minimum low period of clock is 4.7 us */
2387	udelay(IXGBE_I2C_T_LOW);
2388
2389	return status;
2390}
2391
2392/**
2393 *  ixgbe_clock_in_i2c_bit - Clocks in one bit via I2C data/clock
2394 *  @hw: pointer to hardware structure
2395 *  @data: read data value
2396 *
2397 *  Clocks in one bit via I2C data/clock
2398 **/
2399static s32 ixgbe_clock_in_i2c_bit(struct ixgbe_hw *hw, bool *data)
2400{
2401	u32 i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL(hw));
2402	u32 data_oe_bit = IXGBE_I2C_DATA_OE_N_EN(hw);
2403
2404	if (data_oe_bit) {
2405		i2cctl |= IXGBE_I2C_DATA_OUT(hw);
2406		i2cctl |= data_oe_bit;
2407		IXGBE_WRITE_REG(hw, IXGBE_I2CCTL(hw), i2cctl);
2408		IXGBE_WRITE_FLUSH(hw);
2409	}
2410	ixgbe_raise_i2c_clk(hw, &i2cctl);
2411
2412	/* Minimum high period of clock is 4us */
2413	udelay(IXGBE_I2C_T_HIGH);
2414
2415	i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL(hw));
2416	*data = ixgbe_get_i2c_data(hw, &i2cctl);
2417
2418	ixgbe_lower_i2c_clk(hw, &i2cctl);
2419
2420	/* Minimum low period of clock is 4.7 us */
2421	udelay(IXGBE_I2C_T_LOW);
2422
2423	return 0;
2424}
2425
2426/**
2427 *  ixgbe_clock_out_i2c_bit - Clocks in/out one bit via I2C data/clock
2428 *  @hw: pointer to hardware structure
2429 *  @data: data value to write
2430 *
2431 *  Clocks out one bit via I2C data/clock
2432 **/
2433static s32 ixgbe_clock_out_i2c_bit(struct ixgbe_hw *hw, bool data)
2434{
2435	s32 status;
2436	u32 i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL(hw));
 
2437
2438	status = ixgbe_set_i2c_data(hw, &i2cctl, data);
2439	if (status == 0) {
2440		ixgbe_raise_i2c_clk(hw, &i2cctl);
2441
2442		/* Minimum high period of clock is 4us */
2443		udelay(IXGBE_I2C_T_HIGH);
2444
2445		ixgbe_lower_i2c_clk(hw, &i2cctl);
2446
2447		/* Minimum low period of clock is 4.7 us.
2448		 * This also takes care of the data hold time.
2449		 */
2450		udelay(IXGBE_I2C_T_LOW);
2451	} else {
2452		hw_dbg(hw, "I2C data was not set to %X\n", data);
2453		return IXGBE_ERR_I2C;
2454	}
2455
2456	return 0;
2457}
2458/**
2459 *  ixgbe_raise_i2c_clk - Raises the I2C SCL clock
2460 *  @hw: pointer to hardware structure
2461 *  @i2cctl: Current value of I2CCTL register
2462 *
2463 *  Raises the I2C clock line '0'->'1'
2464 *  Negates the I2C clock output enable on X550 hardware.
2465 **/
2466static void ixgbe_raise_i2c_clk(struct ixgbe_hw *hw, u32 *i2cctl)
2467{
2468	u32 clk_oe_bit = IXGBE_I2C_CLK_OE_N_EN(hw);
2469	u32 i = 0;
2470	u32 timeout = IXGBE_I2C_CLOCK_STRETCHING_TIMEOUT;
2471	u32 i2cctl_r = 0;
2472
2473	if (clk_oe_bit) {
2474		*i2cctl |= clk_oe_bit;
2475		IXGBE_WRITE_REG(hw, IXGBE_I2CCTL(hw), *i2cctl);
2476	}
2477
2478	for (i = 0; i < timeout; i++) {
2479		*i2cctl |= IXGBE_I2C_CLK_OUT(hw);
2480		IXGBE_WRITE_REG(hw, IXGBE_I2CCTL(hw), *i2cctl);
2481		IXGBE_WRITE_FLUSH(hw);
2482		/* SCL rise time (1000ns) */
2483		udelay(IXGBE_I2C_T_RISE);
2484
2485		i2cctl_r = IXGBE_READ_REG(hw, IXGBE_I2CCTL(hw));
2486		if (i2cctl_r & IXGBE_I2C_CLK_IN(hw))
2487			break;
2488	}
2489}
2490
2491/**
2492 *  ixgbe_lower_i2c_clk - Lowers the I2C SCL clock
2493 *  @hw: pointer to hardware structure
2494 *  @i2cctl: Current value of I2CCTL register
2495 *
2496 *  Lowers the I2C clock line '1'->'0'
2497 *  Asserts the I2C clock output enable on X550 hardware.
2498 **/
2499static void ixgbe_lower_i2c_clk(struct ixgbe_hw *hw, u32 *i2cctl)
2500{
2501
2502	*i2cctl &= ~IXGBE_I2C_CLK_OUT(hw);
2503	*i2cctl &= ~IXGBE_I2C_CLK_OE_N_EN(hw);
2504
2505	IXGBE_WRITE_REG(hw, IXGBE_I2CCTL(hw), *i2cctl);
2506	IXGBE_WRITE_FLUSH(hw);
2507
2508	/* SCL fall time (300ns) */
2509	udelay(IXGBE_I2C_T_FALL);
2510}
2511
2512/**
2513 *  ixgbe_set_i2c_data - Sets the I2C data bit
2514 *  @hw: pointer to hardware structure
2515 *  @i2cctl: Current value of I2CCTL register
2516 *  @data: I2C data value (0 or 1) to set
2517 *
2518 *  Sets the I2C data bit
2519 *  Asserts the I2C data output enable on X550 hardware.
2520 **/
2521static s32 ixgbe_set_i2c_data(struct ixgbe_hw *hw, u32 *i2cctl, bool data)
2522{
2523	u32 data_oe_bit = IXGBE_I2C_DATA_OE_N_EN(hw);
2524
2525	if (data)
2526		*i2cctl |= IXGBE_I2C_DATA_OUT(hw);
2527	else
2528		*i2cctl &= ~IXGBE_I2C_DATA_OUT(hw);
2529	*i2cctl &= ~data_oe_bit;
2530
2531	IXGBE_WRITE_REG(hw, IXGBE_I2CCTL(hw), *i2cctl);
2532	IXGBE_WRITE_FLUSH(hw);
2533
2534	/* Data rise/fall (1000ns/300ns) and set-up time (250ns) */
2535	udelay(IXGBE_I2C_T_RISE + IXGBE_I2C_T_FALL + IXGBE_I2C_T_SU_DATA);
2536
2537	if (!data)	/* Can't verify data in this case */
2538		return 0;
2539	if (data_oe_bit) {
2540		*i2cctl |= data_oe_bit;
2541		IXGBE_WRITE_REG(hw, IXGBE_I2CCTL(hw), *i2cctl);
2542		IXGBE_WRITE_FLUSH(hw);
2543	}
2544
2545	/* Verify data was set correctly */
2546	*i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL(hw));
2547	if (data != ixgbe_get_i2c_data(hw, i2cctl)) {
2548		hw_dbg(hw, "Error - I2C data was not set to %X.\n", data);
2549		return IXGBE_ERR_I2C;
2550	}
2551
2552	return 0;
2553}
2554
2555/**
2556 *  ixgbe_get_i2c_data - Reads the I2C SDA data bit
2557 *  @hw: pointer to hardware structure
2558 *  @i2cctl: Current value of I2CCTL register
2559 *
2560 *  Returns the I2C data bit value
2561 *  Negates the I2C data output enable on X550 hardware.
2562 **/
2563static bool ixgbe_get_i2c_data(struct ixgbe_hw *hw, u32 *i2cctl)
2564{
2565	u32 data_oe_bit = IXGBE_I2C_DATA_OE_N_EN(hw);
2566
2567	if (data_oe_bit) {
2568		*i2cctl |= data_oe_bit;
2569		IXGBE_WRITE_REG(hw, IXGBE_I2CCTL(hw), *i2cctl);
2570		IXGBE_WRITE_FLUSH(hw);
2571		udelay(IXGBE_I2C_T_FALL);
2572	}
2573
2574	if (*i2cctl & IXGBE_I2C_DATA_IN(hw))
2575		return true;
2576	return false;
2577}
2578
2579/**
2580 *  ixgbe_i2c_bus_clear - Clears the I2C bus
2581 *  @hw: pointer to hardware structure
2582 *
2583 *  Clears the I2C bus by sending nine clock pulses.
2584 *  Used when data line is stuck low.
2585 **/
2586static void ixgbe_i2c_bus_clear(struct ixgbe_hw *hw)
2587{
2588	u32 i2cctl;
2589	u32 i;
2590
2591	ixgbe_i2c_start(hw);
2592	i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL(hw));
2593
2594	ixgbe_set_i2c_data(hw, &i2cctl, 1);
2595
2596	for (i = 0; i < 9; i++) {
2597		ixgbe_raise_i2c_clk(hw, &i2cctl);
2598
2599		/* Min high period of clock is 4us */
2600		udelay(IXGBE_I2C_T_HIGH);
2601
2602		ixgbe_lower_i2c_clk(hw, &i2cctl);
2603
2604		/* Min low period of clock is 4.7us*/
2605		udelay(IXGBE_I2C_T_LOW);
2606	}
2607
2608	ixgbe_i2c_start(hw);
2609
2610	/* Put the i2c bus back to default state */
2611	ixgbe_i2c_stop(hw);
2612}
2613
2614/**
2615 *  ixgbe_tn_check_overtemp - Checks if an overtemp occurred.
2616 *  @hw: pointer to hardware structure
2617 *
2618 *  Checks if the LASI temp alarm status was triggered due to overtemp
 
 
2619 **/
2620s32 ixgbe_tn_check_overtemp(struct ixgbe_hw *hw)
2621{
2622	u16 phy_data = 0;
 
2623
2624	if (hw->device_id != IXGBE_DEV_ID_82599_T3_LOM)
2625		return 0;
2626
2627	/* Check that the LASI temp alarm status was triggered */
2628	hw->phy.ops.read_reg(hw, IXGBE_TN_LASI_STATUS_REG,
2629			     MDIO_MMD_PMAPMD, &phy_data);
2630
2631	if (!(phy_data & IXGBE_TN_LASI_STATUS_TEMP_ALARM))
2632		return 0;
2633
2634	return IXGBE_ERR_OVERTEMP;
2635}
2636
2637/** ixgbe_set_copper_phy_power - Control power for copper phy
2638 *  @hw: pointer to hardware structure
2639 *  @on: true for on, false for off
2640 **/
2641s32 ixgbe_set_copper_phy_power(struct ixgbe_hw *hw, bool on)
2642{
2643	u32 status;
2644	u16 reg;
2645
2646	/* Bail if we don't have copper phy */
2647	if (hw->mac.ops.get_media_type(hw) != ixgbe_media_type_copper)
2648		return 0;
2649
2650	if (!on && ixgbe_mng_present(hw))
2651		return 0;
2652
2653	status = hw->phy.ops.read_reg(hw, MDIO_CTRL1, MDIO_MMD_VEND1, &reg);
2654	if (status)
2655		return status;
2656
2657	if (on) {
2658		reg &= ~IXGBE_MDIO_PHY_SET_LOW_POWER_MODE;
2659	} else {
2660		if (ixgbe_check_reset_blocked(hw))
2661			return 0;
2662		reg |= IXGBE_MDIO_PHY_SET_LOW_POWER_MODE;
2663	}
2664
2665	status = hw->phy.ops.write_reg(hw, MDIO_CTRL1, MDIO_MMD_VEND1, reg);
2666	return status;
2667}