Linux Audio

Check our new training course

Loading...
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0
   2/* Copyright(c) 1999 - 2018 Intel Corporation. */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   3
   4#include <linux/pci.h>
   5#include <linux/delay.h>
   6#include <linux/iopoll.h>
   7#include <linux/sched.h>
   8
   9#include "ixgbe.h"
  10#include "ixgbe_phy.h"
  11
  12static void ixgbe_i2c_start(struct ixgbe_hw *hw);
  13static void ixgbe_i2c_stop(struct ixgbe_hw *hw);
  14static int ixgbe_clock_in_i2c_byte(struct ixgbe_hw *hw, u8 *data);
  15static int ixgbe_clock_out_i2c_byte(struct ixgbe_hw *hw, u8 data);
  16static int ixgbe_get_i2c_ack(struct ixgbe_hw *hw);
  17static int ixgbe_clock_in_i2c_bit(struct ixgbe_hw *hw, bool *data);
  18static int ixgbe_clock_out_i2c_bit(struct ixgbe_hw *hw, bool data);
  19static void ixgbe_raise_i2c_clk(struct ixgbe_hw *hw, u32 *i2cctl);
  20static void ixgbe_lower_i2c_clk(struct ixgbe_hw *hw, u32 *i2cctl);
  21static int ixgbe_set_i2c_data(struct ixgbe_hw *hw, u32 *i2cctl, bool data);
  22static bool ixgbe_get_i2c_data(struct ixgbe_hw *hw, u32 *i2cctl);
  23static void ixgbe_i2c_bus_clear(struct ixgbe_hw *hw);
  24static enum ixgbe_phy_type ixgbe_get_phy_type_from_id(u32 phy_id);
  25static int ixgbe_get_phy_id(struct ixgbe_hw *hw);
  26static int ixgbe_identify_qsfp_module_generic(struct ixgbe_hw *hw);
  27
  28/**
  29 *  ixgbe_out_i2c_byte_ack - Send I2C byte with ack
  30 *  @hw: pointer to the hardware structure
  31 *  @byte: byte to send
  32 *
  33 *  Returns an error code on error.
  34 **/
  35static int ixgbe_out_i2c_byte_ack(struct ixgbe_hw *hw, u8 byte)
  36{
  37	int status;
  38
  39	status = ixgbe_clock_out_i2c_byte(hw, byte);
  40	if (status)
  41		return status;
  42	return ixgbe_get_i2c_ack(hw);
  43}
  44
  45/**
  46 *  ixgbe_in_i2c_byte_ack - Receive an I2C byte and send ack
  47 *  @hw: pointer to the hardware structure
  48 *  @byte: pointer to a u8 to receive the byte
  49 *
  50 *  Returns an error code on error.
  51 **/
  52static int ixgbe_in_i2c_byte_ack(struct ixgbe_hw *hw, u8 *byte)
  53{
  54	int status;
  55
  56	status = ixgbe_clock_in_i2c_byte(hw, byte);
  57	if (status)
  58		return status;
  59	/* ACK */
  60	return ixgbe_clock_out_i2c_bit(hw, false);
  61}
  62
  63/**
  64 *  ixgbe_ones_comp_byte_add - Perform one's complement addition
  65 *  @add1: addend 1
  66 *  @add2: addend 2
  67 *
  68 *  Returns one's complement 8-bit sum.
  69 **/
  70static u8 ixgbe_ones_comp_byte_add(u8 add1, u8 add2)
  71{
  72	u16 sum = add1 + add2;
  73
  74	sum = (sum & 0xFF) + (sum >> 8);
  75	return sum & 0xFF;
  76}
  77
  78/**
  79 *  ixgbe_read_i2c_combined_generic_int - Perform I2C read combined operation
  80 *  @hw: pointer to the hardware structure
  81 *  @addr: I2C bus address to read from
  82 *  @reg: I2C device register to read from
  83 *  @val: pointer to location to receive read value
  84 *  @lock: true if to take and release semaphore
  85 *
  86 *  Returns an error code on error.
  87 */
  88int ixgbe_read_i2c_combined_generic_int(struct ixgbe_hw *hw, u8 addr,
  89					u16 reg, u16 *val, bool lock)
  90{
  91	u32 swfw_mask = hw->phy.phy_semaphore_mask;
  92	int max_retry = 3;
  93	int retry = 0;
  94	u8 csum_byte;
  95	u8 high_bits;
  96	u8 low_bits;
  97	u8 reg_high;
  98	u8 csum;
  99
 100	reg_high = ((reg >> 7) & 0xFE) | 1;     /* Indicate read combined */
 101	csum = ixgbe_ones_comp_byte_add(reg_high, reg & 0xFF);
 102	csum = ~csum;
 103	do {
 104		if (lock && hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
 105			return -EBUSY;
 106		ixgbe_i2c_start(hw);
 107		/* Device Address and write indication */
 108		if (ixgbe_out_i2c_byte_ack(hw, addr))
 109			goto fail;
 110		/* Write bits 14:8 */
 111		if (ixgbe_out_i2c_byte_ack(hw, reg_high))
 112			goto fail;
 113		/* Write bits 7:0 */
 114		if (ixgbe_out_i2c_byte_ack(hw, reg & 0xFF))
 115			goto fail;
 116		/* Write csum */
 117		if (ixgbe_out_i2c_byte_ack(hw, csum))
 118			goto fail;
 119		/* Re-start condition */
 120		ixgbe_i2c_start(hw);
 121		/* Device Address and read indication */
 122		if (ixgbe_out_i2c_byte_ack(hw, addr | 1))
 123			goto fail;
 124		/* Get upper bits */
 125		if (ixgbe_in_i2c_byte_ack(hw, &high_bits))
 126			goto fail;
 127		/* Get low bits */
 128		if (ixgbe_in_i2c_byte_ack(hw, &low_bits))
 129			goto fail;
 130		/* Get csum */
 131		if (ixgbe_clock_in_i2c_byte(hw, &csum_byte))
 132			goto fail;
 133		/* NACK */
 134		if (ixgbe_clock_out_i2c_bit(hw, false))
 135			goto fail;
 136		ixgbe_i2c_stop(hw);
 137		if (lock)
 138			hw->mac.ops.release_swfw_sync(hw, swfw_mask);
 139		*val = (high_bits << 8) | low_bits;
 140		return 0;
 141
 142fail:
 143		ixgbe_i2c_bus_clear(hw);
 144		if (lock)
 145			hw->mac.ops.release_swfw_sync(hw, swfw_mask);
 146		retry++;
 147		if (retry < max_retry)
 148			hw_dbg(hw, "I2C byte read combined error - Retry.\n");
 149		else
 150			hw_dbg(hw, "I2C byte read combined error.\n");
 151	} while (retry < max_retry);
 152
 153	return -EIO;
 154}
 155
 156/**
 157 *  ixgbe_write_i2c_combined_generic_int - Perform I2C write combined operation
 158 *  @hw: pointer to the hardware structure
 159 *  @addr: I2C bus address to write to
 160 *  @reg: I2C device register to write to
 161 *  @val: value to write
 162 *  @lock: true if to take and release semaphore
 163 *
 164 *  Returns an error code on error.
 165 */
 166int ixgbe_write_i2c_combined_generic_int(struct ixgbe_hw *hw, u8 addr,
 167					 u16 reg, u16 val, bool lock)
 168{
 169	u32 swfw_mask = hw->phy.phy_semaphore_mask;
 170	int max_retry = 1;
 171	int retry = 0;
 172	u8 reg_high;
 173	u8 csum;
 174
 175	reg_high = (reg >> 7) & 0xFE;   /* Indicate write combined */
 176	csum = ixgbe_ones_comp_byte_add(reg_high, reg & 0xFF);
 177	csum = ixgbe_ones_comp_byte_add(csum, val >> 8);
 178	csum = ixgbe_ones_comp_byte_add(csum, val & 0xFF);
 179	csum = ~csum;
 180	do {
 181		if (lock && hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
 182			return -EBUSY;
 183		ixgbe_i2c_start(hw);
 184		/* Device Address and write indication */
 185		if (ixgbe_out_i2c_byte_ack(hw, addr))
 186			goto fail;
 187		/* Write bits 14:8 */
 188		if (ixgbe_out_i2c_byte_ack(hw, reg_high))
 189			goto fail;
 190		/* Write bits 7:0 */
 191		if (ixgbe_out_i2c_byte_ack(hw, reg & 0xFF))
 192			goto fail;
 193		/* Write data 15:8 */
 194		if (ixgbe_out_i2c_byte_ack(hw, val >> 8))
 195			goto fail;
 196		/* Write data 7:0 */
 197		if (ixgbe_out_i2c_byte_ack(hw, val & 0xFF))
 198			goto fail;
 199		/* Write csum */
 200		if (ixgbe_out_i2c_byte_ack(hw, csum))
 201			goto fail;
 202		ixgbe_i2c_stop(hw);
 203		if (lock)
 204			hw->mac.ops.release_swfw_sync(hw, swfw_mask);
 205		return 0;
 206
 207fail:
 208		ixgbe_i2c_bus_clear(hw);
 209		if (lock)
 210			hw->mac.ops.release_swfw_sync(hw, swfw_mask);
 211		retry++;
 212		if (retry < max_retry)
 213			hw_dbg(hw, "I2C byte write combined error - Retry.\n");
 214		else
 215			hw_dbg(hw, "I2C byte write combined error.\n");
 216	} while (retry < max_retry);
 217
 218	return -EIO;
 219}
 220
 221/**
 222 *  ixgbe_probe_phy - Probe a single address for a PHY
 223 *  @hw: pointer to hardware structure
 224 *  @phy_addr: PHY address to probe
 225 *
 226 *  Returns true if PHY found
 227 **/
 228static bool ixgbe_probe_phy(struct ixgbe_hw *hw, u16 phy_addr)
 229{
 230	u16 ext_ability = 0;
 231
 232	hw->phy.mdio.prtad = phy_addr;
 233	if (mdio45_probe(&hw->phy.mdio, phy_addr) != 0)
 234		return false;
 235
 236	if (ixgbe_get_phy_id(hw))
 237		return false;
 238
 239	hw->phy.type = ixgbe_get_phy_type_from_id(hw->phy.id);
 240
 241	if (hw->phy.type == ixgbe_phy_unknown) {
 242		hw->phy.ops.read_reg(hw,
 243				     MDIO_PMA_EXTABLE,
 244				     MDIO_MMD_PMAPMD,
 245				     &ext_ability);
 246		if (ext_ability &
 247		    (MDIO_PMA_EXTABLE_10GBT |
 248		     MDIO_PMA_EXTABLE_1000BT))
 249			hw->phy.type = ixgbe_phy_cu_unknown;
 250		else
 251			hw->phy.type = ixgbe_phy_generic;
 252	}
 253
 254	return true;
 255}
 256
 257/**
 258 *  ixgbe_identify_phy_generic - Get physical layer module
 259 *  @hw: pointer to hardware structure
 260 *
 261 *  Determines the physical layer module found on the current adapter.
 262 **/
 263int ixgbe_identify_phy_generic(struct ixgbe_hw *hw)
 264{
 265	u32 status = -EFAULT;
 266	u32 phy_addr;
 
 267
 268	if (!hw->phy.phy_semaphore_mask) {
 269		if (hw->bus.lan_id)
 270			hw->phy.phy_semaphore_mask = IXGBE_GSSR_PHY1_SM;
 271		else
 272			hw->phy.phy_semaphore_mask = IXGBE_GSSR_PHY0_SM;
 273	}
 274
 275	if (hw->phy.type != ixgbe_phy_unknown)
 276		return 0;
 277
 278	if (hw->phy.nw_mng_if_sel) {
 279		phy_addr = FIELD_GET(IXGBE_NW_MNG_IF_SEL_MDIO_PHY_ADD,
 280				     hw->phy.nw_mng_if_sel);
 281		if (ixgbe_probe_phy(hw, phy_addr))
 282			return 0;
 283		else
 284			return -EFAULT;
 285	}
 
 
 
 
 
 
 286
 287	for (phy_addr = 0; phy_addr < IXGBE_MAX_PHY_ADDR; phy_addr++) {
 288		if (ixgbe_probe_phy(hw, phy_addr)) {
 289			status = 0;
 290			break;
 291		}
 
 
 
 
 
 292	}
 293
 294	/* Certain media types do not have a phy so an address will not
 295	 * be found and the code will take this path.  Caller has to
 296	 * decide if it is an error or not.
 297	 */
 298	if (status)
 299		hw->phy.mdio.prtad = MDIO_PRTAD_NONE;
 300
 301	return status;
 302}
 303
 304/**
 305 * ixgbe_check_reset_blocked - check status of MNG FW veto bit
 306 * @hw: pointer to the hardware structure
 307 *
 308 * This function checks the MMNGC.MNG_VETO bit to see if there are
 309 * any constraints on link from manageability.  For MAC's that don't
 310 * have this bit just return false since the link can not be blocked
 311 * via this method.
 312 **/
 313bool ixgbe_check_reset_blocked(struct ixgbe_hw *hw)
 314{
 315	u32 mmngc;
 316
 317	/* If we don't have this bit, it can't be blocking */
 318	if (hw->mac.type == ixgbe_mac_82598EB)
 319		return false;
 320
 321	mmngc = IXGBE_READ_REG(hw, IXGBE_MMNGC);
 322	if (mmngc & IXGBE_MMNGC_MNG_VETO) {
 323		hw_dbg(hw, "MNG_VETO bit detected.\n");
 324		return true;
 325	}
 326
 327	return false;
 328}
 329
 330/**
 331 *  ixgbe_get_phy_id - Get the phy type
 332 *  @hw: pointer to hardware structure
 333 *
 334 **/
 335static int ixgbe_get_phy_id(struct ixgbe_hw *hw)
 336{
 
 337	u16 phy_id_high = 0;
 338	u16 phy_id_low = 0;
 339	int status;
 340
 341	status = hw->phy.ops.read_reg(hw, MDIO_DEVID1, MDIO_MMD_PMAPMD,
 342				      &phy_id_high);
 343
 344	if (!status) {
 345		hw->phy.id = (u32)(phy_id_high << 16);
 346		status = hw->phy.ops.read_reg(hw, MDIO_DEVID2, MDIO_MMD_PMAPMD,
 347					      &phy_id_low);
 348		hw->phy.id |= (u32)(phy_id_low & IXGBE_PHY_REVISION_MASK);
 349		hw->phy.revision = (u32)(phy_id_low & ~IXGBE_PHY_REVISION_MASK);
 350	}
 351	return status;
 352}
 353
 354/**
 355 *  ixgbe_get_phy_type_from_id - Get the phy type
 356 *  @phy_id: hardware phy id
 357 *
 358 **/
 359static enum ixgbe_phy_type ixgbe_get_phy_type_from_id(u32 phy_id)
 360{
 361	enum ixgbe_phy_type phy_type;
 362
 363	switch (phy_id) {
 364	case TN1010_PHY_ID:
 365		phy_type = ixgbe_phy_tn;
 366		break;
 367	case X550_PHY_ID2:
 368	case X550_PHY_ID3:
 369	case X540_PHY_ID:
 370		phy_type = ixgbe_phy_aq;
 371		break;
 372	case QT2022_PHY_ID:
 373		phy_type = ixgbe_phy_qt;
 374		break;
 375	case ATH_PHY_ID:
 376		phy_type = ixgbe_phy_nl;
 377		break;
 378	case X557_PHY_ID:
 379	case X557_PHY_ID2:
 380		phy_type = ixgbe_phy_x550em_ext_t;
 381		break;
 382	case BCM54616S_E_PHY_ID:
 383		phy_type = ixgbe_phy_ext_1g_t;
 384		break;
 385	default:
 386		phy_type = ixgbe_phy_unknown;
 387		break;
 388	}
 389
 390	return phy_type;
 391}
 392
 393/**
 394 *  ixgbe_reset_phy_generic - Performs a PHY reset
 395 *  @hw: pointer to hardware structure
 396 **/
 397int ixgbe_reset_phy_generic(struct ixgbe_hw *hw)
 398{
 399	u32 i;
 400	u16 ctrl = 0;
 401	int status = 0;
 402
 403	if (hw->phy.type == ixgbe_phy_unknown)
 404		status = ixgbe_identify_phy_generic(hw);
 405
 406	if (status != 0 || hw->phy.type == ixgbe_phy_none)
 407		return status;
 408
 409	/* Don't reset PHY if it's shut down due to overtemp. */
 410	if (!hw->phy.reset_if_overtemp && hw->phy.ops.check_overtemp(hw))
 411		return 0;
 412
 413	/* Blocked by MNG FW so bail */
 414	if (ixgbe_check_reset_blocked(hw))
 415		return 0;
 416
 417	/*
 418	 * Perform soft PHY reset to the PHY_XS.
 419	 * This will cause a soft reset to the PHY
 420	 */
 421	hw->phy.ops.write_reg(hw, MDIO_CTRL1,
 422			      MDIO_MMD_PHYXS,
 423			      MDIO_CTRL1_RESET);
 424
 425	/*
 426	 * Poll for reset bit to self-clear indicating reset is complete.
 427	 * Some PHYs could take up to 3 seconds to complete and need about
 428	 * 1.7 usec delay after the reset is complete.
 429	 */
 430	for (i = 0; i < 30; i++) {
 431		msleep(100);
 432		if (hw->phy.type == ixgbe_phy_x550em_ext_t) {
 433			status = hw->phy.ops.read_reg(hw,
 434						  IXGBE_MDIO_TX_VENDOR_ALARMS_3,
 435						  MDIO_MMD_PMAPMD, &ctrl);
 436			if (status)
 437				return status;
 438
 439			if (ctrl & IXGBE_MDIO_TX_VENDOR_ALARMS_3_RST_MASK) {
 440				udelay(2);
 441				break;
 442			}
 443		} else {
 444			status = hw->phy.ops.read_reg(hw, MDIO_CTRL1,
 445						      MDIO_MMD_PHYXS, &ctrl);
 446			if (status)
 447				return status;
 448
 449			if (!(ctrl & MDIO_CTRL1_RESET)) {
 450				udelay(2);
 451				break;
 452			}
 453		}
 454	}
 455
 456	if (ctrl & MDIO_CTRL1_RESET) {
 
 457		hw_dbg(hw, "PHY reset polling failed to complete.\n");
 458		return -EIO;
 459	}
 460
 461	return 0;
 
 462}
 463
 464/**
 465 *  ixgbe_read_phy_reg_mdi - read PHY register
 466 *  @hw: pointer to hardware structure
 467 *  @reg_addr: 32 bit address of PHY register to read
 468 *  @device_type: 5 bit device type
 469 *  @phy_data: Pointer to read data from PHY register
 470 *
 471 *  Reads a value from a specified PHY register without the SWFW lock
 472 **/
 473int ixgbe_read_phy_reg_mdi(struct ixgbe_hw *hw, u32 reg_addr, u32 device_type,
 474			   u16 *phy_data)
 475{
 476	u32 i, data, command;
 
 
 
 
 477
 478	/* Setup and write the address cycle command */
 479	command = ((reg_addr << IXGBE_MSCA_NP_ADDR_SHIFT)  |
 480		   (device_type << IXGBE_MSCA_DEV_TYPE_SHIFT) |
 481		   (hw->phy.mdio.prtad << IXGBE_MSCA_PHY_ADDR_SHIFT) |
 482		   (IXGBE_MSCA_ADDR_CYCLE | IXGBE_MSCA_MDI_COMMAND));
 483
 484	IXGBE_WRITE_REG(hw, IXGBE_MSCA, command);
 
 485
 486	/* Check every 10 usec to see if the address cycle completed.
 487	 * The MDI Command bit will clear when the operation is
 488	 * complete
 489	 */
 490	for (i = 0; i < IXGBE_MDIO_COMMAND_TIMEOUT; i++) {
 491		udelay(10);
 492
 493		command = IXGBE_READ_REG(hw, IXGBE_MSCA);
 494		if ((command & IXGBE_MSCA_MDI_COMMAND) == 0)
 495				break;
 496	}
 497
 
 
 
 
 
 
 
 498
 499	if ((command & IXGBE_MSCA_MDI_COMMAND) != 0) {
 500		hw_dbg(hw, "PHY address command did not complete.\n");
 501		return -EIO;
 502	}
 503
 504	/* Address cycle complete, setup and write the read
 505	 * command
 506	 */
 507	command = ((reg_addr << IXGBE_MSCA_NP_ADDR_SHIFT)  |
 508		   (device_type << IXGBE_MSCA_DEV_TYPE_SHIFT) |
 509		   (hw->phy.mdio.prtad << IXGBE_MSCA_PHY_ADDR_SHIFT) |
 510		   (IXGBE_MSCA_READ | IXGBE_MSCA_MDI_COMMAND));
 511
 512	IXGBE_WRITE_REG(hw, IXGBE_MSCA, command);
 513
 514	/* Check every 10 usec to see if the address cycle
 515	 * completed. The MDI Command bit will clear when the
 516	 * operation is complete
 517	 */
 518	for (i = 0; i < IXGBE_MDIO_COMMAND_TIMEOUT; i++) {
 519		udelay(10);
 520
 521		command = IXGBE_READ_REG(hw, IXGBE_MSCA);
 522		if ((command & IXGBE_MSCA_MDI_COMMAND) == 0)
 523			break;
 524	}
 525
 526	if ((command & IXGBE_MSCA_MDI_COMMAND) != 0) {
 527		hw_dbg(hw, "PHY read command didn't complete\n");
 528		return -EIO;
 529	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 530
 531	/* Read operation is complete.  Get the data
 532	 * from MSRWD
 533	 */
 534	data = IXGBE_READ_REG(hw, IXGBE_MSRWD);
 535	data >>= IXGBE_MSRWD_READ_DATA_SHIFT;
 536	*phy_data = (u16)(data);
 537
 538	return 0;
 539}
 
 540
 541/**
 542 *  ixgbe_read_phy_reg_generic - Reads a value from a specified PHY register
 543 *  using the SWFW lock - this function is needed in most cases
 544 *  @hw: pointer to hardware structure
 545 *  @reg_addr: 32 bit address of PHY register to read
 546 *  @device_type: 5 bit device type
 547 *  @phy_data: Pointer to read data from PHY register
 548 **/
 549int ixgbe_read_phy_reg_generic(struct ixgbe_hw *hw, u32 reg_addr,
 550			       u32 device_type, u16 *phy_data)
 551{
 552	u32 gssr = hw->phy.phy_semaphore_mask;
 553	int status;
 554
 555	if (hw->mac.ops.acquire_swfw_sync(hw, gssr) == 0) {
 556		status = ixgbe_read_phy_reg_mdi(hw, reg_addr, device_type,
 557						phy_data);
 558		hw->mac.ops.release_swfw_sync(hw, gssr);
 559	} else {
 560		return -EBUSY;
 561	}
 562
 563	return status;
 564}
 565
 566/**
 567 *  ixgbe_write_phy_reg_mdi - Writes a value to specified PHY register
 568 *  without SWFW lock
 569 *  @hw: pointer to hardware structure
 570 *  @reg_addr: 32 bit PHY register to write
 571 *  @device_type: 5 bit device type
 572 *  @phy_data: Data to write to the PHY register
 573 **/
 574int ixgbe_write_phy_reg_mdi(struct ixgbe_hw *hw, u32 reg_addr, u32 device_type,
 575			    u16 phy_data)
 576{
 577	u32 i, command;
 578
 579	/* Put the data in the MDI single read and write data register*/
 580	IXGBE_WRITE_REG(hw, IXGBE_MSRWD, (u32)phy_data);
 581
 582	/* Setup and write the address cycle command */
 583	command = ((reg_addr << IXGBE_MSCA_NP_ADDR_SHIFT)  |
 584		   (device_type << IXGBE_MSCA_DEV_TYPE_SHIFT) |
 585		   (hw->phy.mdio.prtad << IXGBE_MSCA_PHY_ADDR_SHIFT) |
 586		   (IXGBE_MSCA_ADDR_CYCLE | IXGBE_MSCA_MDI_COMMAND));
 587
 588	IXGBE_WRITE_REG(hw, IXGBE_MSCA, command);
 589
 590	/*
 591	 * Check every 10 usec to see if the address cycle completed.
 592	 * The MDI Command bit will clear when the operation is
 593	 * complete
 594	 */
 595	for (i = 0; i < IXGBE_MDIO_COMMAND_TIMEOUT; i++) {
 596		udelay(10);
 597
 598		command = IXGBE_READ_REG(hw, IXGBE_MSCA);
 599		if ((command & IXGBE_MSCA_MDI_COMMAND) == 0)
 600			break;
 601	}
 602
 603	if ((command & IXGBE_MSCA_MDI_COMMAND) != 0) {
 604		hw_dbg(hw, "PHY address cmd didn't complete\n");
 605		return -EIO;
 606	}
 607
 608	/*
 609	 * Address cycle complete, setup and write the write
 610	 * command
 611	 */
 612	command = ((reg_addr << IXGBE_MSCA_NP_ADDR_SHIFT)  |
 613		   (device_type << IXGBE_MSCA_DEV_TYPE_SHIFT) |
 614		   (hw->phy.mdio.prtad << IXGBE_MSCA_PHY_ADDR_SHIFT) |
 615		   (IXGBE_MSCA_WRITE | IXGBE_MSCA_MDI_COMMAND));
 616
 617	IXGBE_WRITE_REG(hw, IXGBE_MSCA, command);
 618
 619	/* Check every 10 usec to see if the address cycle
 620	 * completed. The MDI Command bit will clear when the
 621	 * operation is complete
 622	 */
 623	for (i = 0; i < IXGBE_MDIO_COMMAND_TIMEOUT; i++) {
 624		udelay(10);
 625
 626		command = IXGBE_READ_REG(hw, IXGBE_MSCA);
 627		if ((command & IXGBE_MSCA_MDI_COMMAND) == 0)
 628			break;
 629	}
 630
 631	if ((command & IXGBE_MSCA_MDI_COMMAND) != 0) {
 632		hw_dbg(hw, "PHY write cmd didn't complete\n");
 633		return -EIO;
 634	}
 635
 636	return 0;
 637}
 638
 639/**
 640 *  ixgbe_write_phy_reg_generic - Writes a value to specified PHY register
 641 *  using SWFW lock- this function is needed in most cases
 642 *  @hw: pointer to hardware structure
 643 *  @reg_addr: 32 bit PHY register to write
 644 *  @device_type: 5 bit device type
 645 *  @phy_data: Data to write to the PHY register
 646 **/
 647int ixgbe_write_phy_reg_generic(struct ixgbe_hw *hw, u32 reg_addr,
 648				u32 device_type, u16 phy_data)
 649{
 650	u32 gssr = hw->phy.phy_semaphore_mask;
 651	int status;
 652
 653	if (hw->mac.ops.acquire_swfw_sync(hw, gssr) == 0) {
 654		status = ixgbe_write_phy_reg_mdi(hw, reg_addr, device_type,
 655						 phy_data);
 656		hw->mac.ops.release_swfw_sync(hw, gssr);
 657	} else {
 658		return -EBUSY;
 659	}
 660
 661	return status;
 662}
 663
 664#define IXGBE_HW_READ_REG(addr) IXGBE_READ_REG(hw, addr)
 665
 666/**
 667 *  ixgbe_msca_cmd - Write the command register and poll for completion/timeout
 668 *  @hw: pointer to hardware structure
 669 *  @cmd: command register value to write
 670 **/
 671static int ixgbe_msca_cmd(struct ixgbe_hw *hw, u32 cmd)
 672{
 673	IXGBE_WRITE_REG(hw, IXGBE_MSCA, cmd);
 674
 675	return readx_poll_timeout(IXGBE_HW_READ_REG, IXGBE_MSCA, cmd,
 676				  !(cmd & IXGBE_MSCA_MDI_COMMAND), 10,
 677				  10 * IXGBE_MDIO_COMMAND_TIMEOUT);
 678}
 679
 680/**
 681 *  ixgbe_mii_bus_read_generic_c22 - Read a clause 22 register with gssr flags
 682 *  @hw: pointer to hardware structure
 683 *  @addr: address
 684 *  @regnum: register number
 685 *  @gssr: semaphore flags to acquire
 686 **/
 687static int ixgbe_mii_bus_read_generic_c22(struct ixgbe_hw *hw, int addr,
 688					  int regnum, u32 gssr)
 689{
 690	u32 hwaddr, cmd;
 691	int data;
 692
 693	if (hw->mac.ops.acquire_swfw_sync(hw, gssr))
 694		return -EBUSY;
 695
 696	hwaddr = addr << IXGBE_MSCA_PHY_ADDR_SHIFT;
 697	hwaddr |= (regnum & GENMASK(5, 0)) << IXGBE_MSCA_DEV_TYPE_SHIFT;
 698	cmd = hwaddr | IXGBE_MSCA_OLD_PROTOCOL |
 699		IXGBE_MSCA_READ_AUTOINC | IXGBE_MSCA_MDI_COMMAND;
 700
 701	data = ixgbe_msca_cmd(hw, cmd);
 702	if (data < 0)
 703		goto mii_bus_read_done;
 704
 705	data = IXGBE_READ_REG(hw, IXGBE_MSRWD);
 706	data = (data >> IXGBE_MSRWD_READ_DATA_SHIFT) & GENMASK(16, 0);
 707
 708mii_bus_read_done:
 709	hw->mac.ops.release_swfw_sync(hw, gssr);
 710	return data;
 711}
 712
 713/**
 714 *  ixgbe_mii_bus_read_generic_c45 - Read a clause 45 register with gssr flags
 715 *  @hw: pointer to hardware structure
 716 *  @addr: address
 717 *  @devad: device address to read
 718 *  @regnum: register number
 719 *  @gssr: semaphore flags to acquire
 720 **/
 721static int ixgbe_mii_bus_read_generic_c45(struct ixgbe_hw *hw, int addr,
 722					  int devad, int regnum, u32 gssr)
 723{
 724	u32 hwaddr, cmd;
 725	int data;
 726
 727	if (hw->mac.ops.acquire_swfw_sync(hw, gssr))
 728		return -EBUSY;
 729
 730	hwaddr = addr << IXGBE_MSCA_PHY_ADDR_SHIFT;
 731	hwaddr |= devad << 16 | regnum;
 732	cmd = hwaddr | IXGBE_MSCA_ADDR_CYCLE | IXGBE_MSCA_MDI_COMMAND;
 733
 734	data = ixgbe_msca_cmd(hw, cmd);
 735	if (data < 0)
 736		goto mii_bus_read_done;
 737
 738	cmd = hwaddr | IXGBE_MSCA_READ | IXGBE_MSCA_MDI_COMMAND;
 739	data = ixgbe_msca_cmd(hw, cmd);
 740	if (data < 0)
 741		goto mii_bus_read_done;
 742
 743	data = IXGBE_READ_REG(hw, IXGBE_MSRWD);
 744	data = (data >> IXGBE_MSRWD_READ_DATA_SHIFT) & GENMASK(16, 0);
 745
 746mii_bus_read_done:
 747	hw->mac.ops.release_swfw_sync(hw, gssr);
 748	return data;
 749}
 750
 751/**
 752 *  ixgbe_mii_bus_write_generic_c22 - Write a clause 22 register with gssr flags
 753 *  @hw: pointer to hardware structure
 754 *  @addr: address
 755 *  @regnum: register number
 756 *  @val: value to write
 757 *  @gssr: semaphore flags to acquire
 758 **/
 759static int ixgbe_mii_bus_write_generic_c22(struct ixgbe_hw *hw, int addr,
 760					   int regnum, u16 val, u32 gssr)
 761{
 762	u32 hwaddr, cmd;
 763	int err;
 764
 765	if (hw->mac.ops.acquire_swfw_sync(hw, gssr))
 766		return -EBUSY;
 767
 768	IXGBE_WRITE_REG(hw, IXGBE_MSRWD, (u32)val);
 769
 770	hwaddr = addr << IXGBE_MSCA_PHY_ADDR_SHIFT;
 771	hwaddr |= (regnum & GENMASK(5, 0)) << IXGBE_MSCA_DEV_TYPE_SHIFT;
 772	cmd = hwaddr | IXGBE_MSCA_OLD_PROTOCOL | IXGBE_MSCA_WRITE |
 773		IXGBE_MSCA_MDI_COMMAND;
 774
 775	err = ixgbe_msca_cmd(hw, cmd);
 776
 777	hw->mac.ops.release_swfw_sync(hw, gssr);
 778	return err;
 779}
 780
 781/**
 782 *  ixgbe_mii_bus_write_generic_c45 - Write a clause 45 register with gssr flags
 783 *  @hw: pointer to hardware structure
 784 *  @addr: address
 785 *  @devad: device address to read
 786 *  @regnum: register number
 787 *  @val: value to write
 788 *  @gssr: semaphore flags to acquire
 789 **/
 790static int ixgbe_mii_bus_write_generic_c45(struct ixgbe_hw *hw, int addr,
 791					   int devad, int regnum, u16 val,
 792					   u32 gssr)
 793{
 794	u32 hwaddr, cmd;
 795	int err;
 796
 797	if (hw->mac.ops.acquire_swfw_sync(hw, gssr))
 798		return -EBUSY;
 799
 800	IXGBE_WRITE_REG(hw, IXGBE_MSRWD, (u32)val);
 801
 802	hwaddr = addr << IXGBE_MSCA_PHY_ADDR_SHIFT;
 803	hwaddr |= devad << 16 | regnum;
 804	cmd = hwaddr | IXGBE_MSCA_ADDR_CYCLE | IXGBE_MSCA_MDI_COMMAND;
 805
 806	err = ixgbe_msca_cmd(hw, cmd);
 807	if (err < 0)
 808		goto mii_bus_write_done;
 809
 810	cmd = hwaddr | IXGBE_MSCA_WRITE | IXGBE_MSCA_MDI_COMMAND;
 811	err = ixgbe_msca_cmd(hw, cmd);
 812
 813mii_bus_write_done:
 814	hw->mac.ops.release_swfw_sync(hw, gssr);
 815	return err;
 816}
 817
 818/**
 819 *  ixgbe_mii_bus_read_c22 - Read a clause 22 register
 820 *  @bus: pointer to mii_bus structure which points to our driver private
 821 *  @addr: address
 822 *  @regnum: register number
 823 **/
 824static int ixgbe_mii_bus_read_c22(struct mii_bus *bus, int addr, int regnum)
 825{
 826	struct ixgbe_adapter *adapter = bus->priv;
 827	struct ixgbe_hw *hw = &adapter->hw;
 828	u32 gssr = hw->phy.phy_semaphore_mask;
 829
 830	return ixgbe_mii_bus_read_generic_c22(hw, addr, regnum, gssr);
 831}
 832
 833/**
 834 *  ixgbe_mii_bus_read_c45 - Read a clause 45 register
 835 *  @bus: pointer to mii_bus structure which points to our driver private
 836 *  @devad: device address to read
 837 *  @addr: address
 838 *  @regnum: register number
 839 **/
 840static int ixgbe_mii_bus_read_c45(struct mii_bus *bus, int devad, int addr,
 841				  int regnum)
 842{
 843	struct ixgbe_adapter *adapter = bus->priv;
 844	struct ixgbe_hw *hw = &adapter->hw;
 845	u32 gssr = hw->phy.phy_semaphore_mask;
 846
 847	return ixgbe_mii_bus_read_generic_c45(hw, addr, devad, regnum, gssr);
 848}
 849
 850/**
 851 *  ixgbe_mii_bus_write_c22 - Write a clause 22 register
 852 *  @bus: pointer to mii_bus structure which points to our driver private
 853 *  @addr: address
 854 *  @regnum: register number
 855 *  @val: value to write
 856 **/
 857static int ixgbe_mii_bus_write_c22(struct mii_bus *bus, int addr, int regnum,
 858				   u16 val)
 859{
 860	struct ixgbe_adapter *adapter = bus->priv;
 861	struct ixgbe_hw *hw = &adapter->hw;
 862	u32 gssr = hw->phy.phy_semaphore_mask;
 863
 864	return ixgbe_mii_bus_write_generic_c22(hw, addr, regnum, val, gssr);
 865}
 866
 867/**
 868 *  ixgbe_mii_bus_write_c45 - Write a clause 45 register
 869 *  @bus: pointer to mii_bus structure which points to our driver private
 870 *  @addr: address
 871 *  @devad: device address to read
 872 *  @regnum: register number
 873 *  @val: value to write
 874 **/
 875static int ixgbe_mii_bus_write_c45(struct mii_bus *bus, int addr, int devad,
 876				   int regnum, u16 val)
 877{
 878	struct ixgbe_adapter *adapter = bus->priv;
 879	struct ixgbe_hw *hw = &adapter->hw;
 880	u32 gssr = hw->phy.phy_semaphore_mask;
 881
 882	return ixgbe_mii_bus_write_generic_c45(hw, addr, devad, regnum, val,
 883					       gssr);
 884}
 885
 886/**
 887 *  ixgbe_x550em_a_mii_bus_read_c22 - Read a clause 22 register on x550em_a
 888 *  @bus: pointer to mii_bus structure which points to our driver private
 889 *  @addr: address
 890 *  @regnum: register number
 891 **/
 892static int ixgbe_x550em_a_mii_bus_read_c22(struct mii_bus *bus, int addr,
 893					   int regnum)
 894{
 895	struct ixgbe_adapter *adapter = bus->priv;
 896	struct ixgbe_hw *hw = &adapter->hw;
 897	u32 gssr = hw->phy.phy_semaphore_mask;
 898
 899	gssr |= IXGBE_GSSR_TOKEN_SM | IXGBE_GSSR_PHY0_SM;
 900	return ixgbe_mii_bus_read_generic_c22(hw, addr, regnum, gssr);
 901}
 902
 903/**
 904 *  ixgbe_x550em_a_mii_bus_read_c45 - Read a clause 45 register on x550em_a
 905 *  @bus: pointer to mii_bus structure which points to our driver private
 906 *  @addr: address
 907 *  @devad: device address to read
 908 *  @regnum: register number
 909 **/
 910static int ixgbe_x550em_a_mii_bus_read_c45(struct mii_bus *bus, int addr,
 911					   int devad, int regnum)
 912{
 913	struct ixgbe_adapter *adapter = bus->priv;
 914	struct ixgbe_hw *hw = &adapter->hw;
 915	u32 gssr = hw->phy.phy_semaphore_mask;
 916
 917	gssr |= IXGBE_GSSR_TOKEN_SM | IXGBE_GSSR_PHY0_SM;
 918	return ixgbe_mii_bus_read_generic_c45(hw, addr, devad, regnum, gssr);
 919}
 
 
 920
 921/**
 922 *  ixgbe_x550em_a_mii_bus_write_c22 - Write a clause 22 register on x550em_a
 923 *  @bus: pointer to mii_bus structure which points to our driver private
 924 *  @addr: address
 925 *  @regnum: register number
 926 *  @val: value to write
 927 **/
 928static int ixgbe_x550em_a_mii_bus_write_c22(struct mii_bus *bus, int addr,
 929					    int regnum, u16 val)
 930{
 931	struct ixgbe_adapter *adapter = bus->priv;
 932	struct ixgbe_hw *hw = &adapter->hw;
 933	u32 gssr = hw->phy.phy_semaphore_mask;
 934
 935	gssr |= IXGBE_GSSR_TOKEN_SM | IXGBE_GSSR_PHY0_SM;
 936	return ixgbe_mii_bus_write_generic_c22(hw, addr, regnum, val, gssr);
 937}
 
 
 
 
 938
 939/**
 940 *  ixgbe_x550em_a_mii_bus_write_c45 - Write a clause 45 register on x550em_a
 941 *  @bus: pointer to mii_bus structure which points to our driver private
 942 *  @addr: address
 943 *  @devad: device address to read
 944 *  @regnum: register number
 945 *  @val: value to write
 946 **/
 947static int ixgbe_x550em_a_mii_bus_write_c45(struct mii_bus *bus, int addr,
 948					    int devad, int regnum, u16 val)
 949{
 950	struct ixgbe_adapter *adapter = bus->priv;
 951	struct ixgbe_hw *hw = &adapter->hw;
 952	u32 gssr = hw->phy.phy_semaphore_mask;
 953
 954	gssr |= IXGBE_GSSR_TOKEN_SM | IXGBE_GSSR_PHY0_SM;
 955	return ixgbe_mii_bus_write_generic_c45(hw, addr, devad, regnum, val,
 956					       gssr);
 957}
 958
 959/**
 960 * ixgbe_get_first_secondary_devfn - get first device downstream of root port
 961 * @devfn: PCI_DEVFN of root port on domain 0, bus 0
 962 *
 963 * Returns pci_dev pointer to PCI_DEVFN(0, 0) on subordinate side of root
 964 * on domain 0, bus 0, devfn = 'devfn'
 965 **/
 966static struct pci_dev *ixgbe_get_first_secondary_devfn(unsigned int devfn)
 967{
 968	struct pci_dev *rp_pdev;
 969	int bus;
 970
 971	rp_pdev = pci_get_domain_bus_and_slot(0, 0, devfn);
 972	if (rp_pdev && rp_pdev->subordinate) {
 973		bus = rp_pdev->subordinate->number;
 974		pci_dev_put(rp_pdev);
 975		return pci_get_domain_bus_and_slot(0, bus, 0);
 976	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 977
 978	pci_dev_put(rp_pdev);
 979	return NULL;
 980}
 981
 982/**
 983 * ixgbe_x550em_a_has_mii - is this the first ixgbe x550em_a PCI function?
 984 * @hw: pointer to hardware structure
 985 *
 986 * Returns true if hw points to lowest numbered PCI B:D.F x550_em_a device in
 987 * the SoC.  There are up to 4 MACs sharing a single MDIO bus on the x550em_a,
 988 * but we only want to register one MDIO bus.
 989 **/
 990static bool ixgbe_x550em_a_has_mii(struct ixgbe_hw *hw)
 991{
 992	struct ixgbe_adapter *adapter = hw->back;
 993	struct pci_dev *pdev = adapter->pdev;
 994	struct pci_dev *func0_pdev;
 995	bool has_mii = false;
 996
 997	/* For the C3000 family of SoCs (x550em_a) the internal ixgbe devices
 998	 * are always downstream of root ports @ 0000:00:16.0 & 0000:00:17.0
 999	 * It's not valid for function 0 to be disabled and function 1 is up,
1000	 * so the lowest numbered ixgbe dev will be device 0 function 0 on one
1001	 * of those two root ports
1002	 */
1003	func0_pdev = ixgbe_get_first_secondary_devfn(PCI_DEVFN(0x16, 0));
1004	if (func0_pdev) {
1005		if (func0_pdev == pdev)
1006			has_mii = true;
1007		goto out;
1008	}
1009	func0_pdev = ixgbe_get_first_secondary_devfn(PCI_DEVFN(0x17, 0));
1010	if (func0_pdev == pdev)
1011		has_mii = true;
1012
1013out:
1014	pci_dev_put(func0_pdev);
1015	return has_mii;
1016}
 
1017
1018/**
1019 * ixgbe_mii_bus_init - mii_bus structure setup
1020 * @hw: pointer to hardware structure
1021 *
1022 * Returns 0 on success, negative on failure
1023 *
1024 * ixgbe_mii_bus_init initializes a mii_bus structure in adapter
1025 **/
1026int ixgbe_mii_bus_init(struct ixgbe_hw *hw)
1027{
1028	int (*write_c22)(struct mii_bus *bus, int addr, int regnum, u16 val);
1029	int (*read_c22)(struct mii_bus *bus, int addr, int regnum);
1030	int (*write_c45)(struct mii_bus *bus, int addr, int devad, int regnum,
1031			 u16 val);
1032	int (*read_c45)(struct mii_bus *bus, int addr, int devad, int regnum);
1033	struct ixgbe_adapter *adapter = hw->back;
1034	struct pci_dev *pdev = adapter->pdev;
1035	struct device *dev = &adapter->netdev->dev;
1036	struct mii_bus *bus;
1037
1038	switch (hw->device_id) {
1039	/* C3000 SoCs */
1040	case IXGBE_DEV_ID_X550EM_A_KR:
1041	case IXGBE_DEV_ID_X550EM_A_KR_L:
1042	case IXGBE_DEV_ID_X550EM_A_SFP_N:
1043	case IXGBE_DEV_ID_X550EM_A_SGMII:
1044	case IXGBE_DEV_ID_X550EM_A_SGMII_L:
1045	case IXGBE_DEV_ID_X550EM_A_10G_T:
1046	case IXGBE_DEV_ID_X550EM_A_SFP:
1047	case IXGBE_DEV_ID_X550EM_A_1G_T:
1048	case IXGBE_DEV_ID_X550EM_A_1G_T_L:
1049		if (!ixgbe_x550em_a_has_mii(hw))
1050			return 0;
1051		read_c22 = ixgbe_x550em_a_mii_bus_read_c22;
1052		write_c22 = ixgbe_x550em_a_mii_bus_write_c22;
1053		read_c45 = ixgbe_x550em_a_mii_bus_read_c45;
1054		write_c45 = ixgbe_x550em_a_mii_bus_write_c45;
1055		break;
1056	default:
1057		read_c22 = ixgbe_mii_bus_read_c22;
1058		write_c22 = ixgbe_mii_bus_write_c22;
1059		read_c45 = ixgbe_mii_bus_read_c45;
1060		write_c45 = ixgbe_mii_bus_write_c45;
1061		break;
1062	}
1063
1064	bus = devm_mdiobus_alloc(dev);
1065	if (!bus)
1066		return -ENOMEM;
1067
1068	bus->read = read_c22;
1069	bus->write = write_c22;
1070	bus->read_c45 = read_c45;
1071	bus->write_c45 = write_c45;
1072
1073	/* Use the position of the device in the PCI hierarchy as the id */
1074	snprintf(bus->id, MII_BUS_ID_SIZE, "%s-mdio-%s", ixgbe_driver_name,
1075		 pci_name(pdev));
1076
1077	bus->name = "ixgbe-mdio";
1078	bus->priv = adapter;
1079	bus->parent = dev;
1080	bus->phy_mask = GENMASK(31, 0);
1081
1082	/* Support clause 22/45 natively.  ixgbe_probe() sets MDIO_EMULATE_C22
1083	 * unfortunately that causes some clause 22 frames to be sent with
1084	 * clause 45 addressing.  We don't want that.
1085	 */
1086	hw->phy.mdio.mode_support = MDIO_SUPPORTS_C45 | MDIO_SUPPORTS_C22;
1087
1088	adapter->mii_bus = bus;
1089	return mdiobus_register(bus);
1090}
1091
1092/**
1093 *  ixgbe_setup_phy_link_generic - Set and restart autoneg
1094 *  @hw: pointer to hardware structure
1095 *
1096 *  Restart autonegotiation and PHY and waits for completion.
1097 **/
1098int ixgbe_setup_phy_link_generic(struct ixgbe_hw *hw)
1099{
 
 
 
1100	u16 autoneg_reg = IXGBE_MII_AUTONEG_REG;
1101	ixgbe_link_speed speed;
1102	bool autoneg = false;
1103	int status = 0;
1104
1105	ixgbe_get_copper_link_capabilities_generic(hw, &speed, &autoneg);
1106
1107	/* Set or unset auto-negotiation 10G advertisement */
1108	hw->phy.ops.read_reg(hw, MDIO_AN_10GBT_CTRL, MDIO_MMD_AN, &autoneg_reg);
 
 
 
1109
1110	autoneg_reg &= ~MDIO_AN_10GBT_CTRL_ADV10G;
1111	if ((hw->phy.autoneg_advertised & IXGBE_LINK_SPEED_10GB_FULL) &&
1112	    (speed & IXGBE_LINK_SPEED_10GB_FULL))
1113		autoneg_reg |= MDIO_AN_10GBT_CTRL_ADV10G;
1114
1115	hw->phy.ops.write_reg(hw, MDIO_AN_10GBT_CTRL, MDIO_MMD_AN, autoneg_reg);
 
 
 
1116
1117	hw->phy.ops.read_reg(hw, IXGBE_MII_AUTONEG_VENDOR_PROVISION_1_REG,
1118			     MDIO_MMD_AN, &autoneg_reg);
 
 
 
 
1119
1120	if (hw->mac.type == ixgbe_mac_X550) {
1121		/* Set or unset auto-negotiation 5G advertisement */
1122		autoneg_reg &= ~IXGBE_MII_5GBASE_T_ADVERTISE;
1123		if ((hw->phy.autoneg_advertised & IXGBE_LINK_SPEED_5GB_FULL) &&
1124		    (speed & IXGBE_LINK_SPEED_5GB_FULL))
1125			autoneg_reg |= IXGBE_MII_5GBASE_T_ADVERTISE;
1126
1127		/* Set or unset auto-negotiation 2.5G advertisement */
1128		autoneg_reg &= ~IXGBE_MII_2_5GBASE_T_ADVERTISE;
1129		if ((hw->phy.autoneg_advertised &
1130		     IXGBE_LINK_SPEED_2_5GB_FULL) &&
1131		    (speed & IXGBE_LINK_SPEED_2_5GB_FULL))
1132			autoneg_reg |= IXGBE_MII_2_5GBASE_T_ADVERTISE;
1133	}
1134
1135	/* Set or unset auto-negotiation 1G advertisement */
1136	autoneg_reg &= ~IXGBE_MII_1GBASE_T_ADVERTISE;
1137	if ((hw->phy.autoneg_advertised & IXGBE_LINK_SPEED_1GB_FULL) &&
1138	    (speed & IXGBE_LINK_SPEED_1GB_FULL))
1139		autoneg_reg |= IXGBE_MII_1GBASE_T_ADVERTISE;
1140
1141	hw->phy.ops.write_reg(hw, IXGBE_MII_AUTONEG_VENDOR_PROVISION_1_REG,
1142			      MDIO_MMD_AN, autoneg_reg);
 
 
 
1143
1144	/* Set or unset auto-negotiation 100M advertisement */
1145	hw->phy.ops.read_reg(hw, MDIO_AN_ADVERTISE, MDIO_MMD_AN, &autoneg_reg);
 
 
 
 
 
 
 
 
1146
1147	autoneg_reg &= ~(ADVERTISE_100FULL | ADVERTISE_100HALF);
1148	if ((hw->phy.autoneg_advertised & IXGBE_LINK_SPEED_100_FULL) &&
1149	    (speed & IXGBE_LINK_SPEED_100_FULL))
1150		autoneg_reg |= ADVERTISE_100FULL;
1151
1152	hw->phy.ops.write_reg(hw, MDIO_AN_ADVERTISE, MDIO_MMD_AN, autoneg_reg);
1153
1154	/* Blocked by MNG FW so don't reset PHY */
1155	if (ixgbe_check_reset_blocked(hw))
1156		return 0;
1157
1158	/* Restart PHY autonegotiation and wait for completion */
1159	hw->phy.ops.read_reg(hw, MDIO_CTRL1,
1160			     MDIO_MMD_AN, &autoneg_reg);
1161
1162	autoneg_reg |= MDIO_AN_CTRL1_RESTART;
1163
1164	hw->phy.ops.write_reg(hw, MDIO_CTRL1,
1165			      MDIO_MMD_AN, autoneg_reg);
1166
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1167	return status;
1168}
1169
1170/**
1171 *  ixgbe_setup_phy_link_speed_generic - Sets the auto advertised capabilities
1172 *  @hw: pointer to hardware structure
1173 *  @speed: new link speed
1174 *  @autoneg_wait_to_complete: unused
1175 **/
1176int ixgbe_setup_phy_link_speed_generic(struct ixgbe_hw *hw,
1177				       ixgbe_link_speed speed,
1178				       bool autoneg_wait_to_complete)
 
1179{
1180	/* Clear autoneg_advertised and set new values based on input link
 
 
1181	 * speed.
1182	 */
1183	hw->phy.autoneg_advertised = 0;
1184
1185	if (speed & IXGBE_LINK_SPEED_10GB_FULL)
1186		hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_10GB_FULL;
1187
1188	if (speed & IXGBE_LINK_SPEED_5GB_FULL)
1189		hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_5GB_FULL;
1190
1191	if (speed & IXGBE_LINK_SPEED_2_5GB_FULL)
1192		hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_2_5GB_FULL;
1193
1194	if (speed & IXGBE_LINK_SPEED_1GB_FULL)
1195		hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_1GB_FULL;
1196
1197	if (speed & IXGBE_LINK_SPEED_100_FULL)
1198		hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_100_FULL;
1199
1200	if (speed & IXGBE_LINK_SPEED_10_FULL)
1201		hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_10_FULL;
1202
1203	/* Setup link based on the new speed settings */
1204	if (hw->phy.ops.setup_link)
1205		hw->phy.ops.setup_link(hw);
1206
1207	return 0;
1208}
1209
1210/**
1211 * ixgbe_get_copper_speeds_supported - Get copper link speed from phy
1212 * @hw: pointer to hardware structure
1213 *
1214 * Determines the supported link capabilities by reading the PHY auto
1215 * negotiation register.
1216 */
1217static int ixgbe_get_copper_speeds_supported(struct ixgbe_hw *hw)
1218{
1219	u16 speed_ability;
1220	int status;
1221
1222	status = hw->phy.ops.read_reg(hw, MDIO_SPEED, MDIO_MMD_PMAPMD,
1223				      &speed_ability);
1224	if (status)
1225		return status;
1226
1227	if (speed_ability & MDIO_SPEED_10G)
1228		hw->phy.speeds_supported |= IXGBE_LINK_SPEED_10GB_FULL;
1229	if (speed_ability & MDIO_PMA_SPEED_1000)
1230		hw->phy.speeds_supported |= IXGBE_LINK_SPEED_1GB_FULL;
1231	if (speed_ability & MDIO_PMA_SPEED_100)
1232		hw->phy.speeds_supported |= IXGBE_LINK_SPEED_100_FULL;
1233
1234	switch (hw->mac.type) {
1235	case ixgbe_mac_X550:
1236		hw->phy.speeds_supported |= IXGBE_LINK_SPEED_2_5GB_FULL;
1237		hw->phy.speeds_supported |= IXGBE_LINK_SPEED_5GB_FULL;
1238		break;
1239	case ixgbe_mac_X550EM_x:
1240	case ixgbe_mac_x550em_a:
1241		hw->phy.speeds_supported &= ~IXGBE_LINK_SPEED_100_FULL;
1242		break;
1243	default:
1244		break;
1245	}
1246
1247	return 0;
1248}
1249
1250/**
1251 * ixgbe_get_copper_link_capabilities_generic - Determines link capabilities
1252 * @hw: pointer to hardware structure
1253 * @speed: pointer to link speed
1254 * @autoneg: boolean auto-negotiation value
 
 
1255 */
1256int ixgbe_get_copper_link_capabilities_generic(struct ixgbe_hw *hw,
1257					       ixgbe_link_speed *speed,
1258					       bool *autoneg)
1259{
1260	int status = 0;
 
1261
 
1262	*autoneg = true;
1263	if (!hw->phy.speeds_supported)
1264		status = ixgbe_get_copper_speeds_supported(hw);
1265
1266	*speed = hw->phy.speeds_supported;
 
 
 
 
 
 
 
 
 
 
 
1267	return status;
1268}
1269
1270/**
1271 *  ixgbe_check_phy_link_tnx - Determine link and speed status
1272 *  @hw: pointer to hardware structure
1273 *  @speed: link speed
1274 *  @link_up: status of link
1275 *
1276 *  Reads the VS1 register to determine if link is up and the current speed for
1277 *  the PHY.
1278 **/
1279int ixgbe_check_phy_link_tnx(struct ixgbe_hw *hw, ixgbe_link_speed *speed,
1280			     bool *link_up)
1281{
 
 
1282	u32 max_time_out = 10;
1283	u16 phy_speed = 0;
1284	u16 phy_link = 0;
 
1285	u16 phy_data = 0;
1286	u32 time_out;
1287	int status;
1288
1289	/* Initialize speed and link to default case */
1290	*link_up = false;
1291	*speed = IXGBE_LINK_SPEED_10GB_FULL;
1292
1293	/*
1294	 * Check current speed and link status of the PHY register.
1295	 * This is a vendor specific register and may have to
1296	 * be changed for other copper PHYs.
1297	 */
1298	for (time_out = 0; time_out < max_time_out; time_out++) {
1299		udelay(10);
1300		status = hw->phy.ops.read_reg(hw,
1301					      MDIO_STAT1,
1302					      MDIO_MMD_VEND1,
1303					      &phy_data);
1304		phy_link = phy_data &
1305			    IXGBE_MDIO_VENDOR_SPECIFIC_1_LINK_STATUS;
1306		phy_speed = phy_data &
1307			    IXGBE_MDIO_VENDOR_SPECIFIC_1_SPEED_STATUS;
1308		if (phy_link == IXGBE_MDIO_VENDOR_SPECIFIC_1_LINK_STATUS) {
1309			*link_up = true;
1310			if (phy_speed ==
1311			    IXGBE_MDIO_VENDOR_SPECIFIC_1_SPEED_STATUS)
1312				*speed = IXGBE_LINK_SPEED_1GB_FULL;
1313			break;
1314		}
1315	}
1316
1317	return status;
1318}
1319
1320/**
1321 *	ixgbe_setup_phy_link_tnx - Set and restart autoneg
1322 *	@hw: pointer to hardware structure
1323 *
1324 *	Restart autonegotiation and PHY and waits for completion.
1325 *      This function always returns success, this is nessary since
1326 *	it is called via a function pointer that could call other
1327 *	functions that could return an error.
1328 **/
1329int ixgbe_setup_phy_link_tnx(struct ixgbe_hw *hw)
1330{
 
 
 
1331	u16 autoneg_reg = IXGBE_MII_AUTONEG_REG;
1332	bool autoneg = false;
1333	ixgbe_link_speed speed;
1334
1335	ixgbe_get_copper_link_capabilities_generic(hw, &speed, &autoneg);
1336
1337	if (speed & IXGBE_LINK_SPEED_10GB_FULL) {
1338		/* Set or unset auto-negotiation 10G advertisement */
1339		hw->phy.ops.read_reg(hw, MDIO_AN_10GBT_CTRL,
1340				     MDIO_MMD_AN,
1341				     &autoneg_reg);
1342
1343		autoneg_reg &= ~MDIO_AN_10GBT_CTRL_ADV10G;
1344		if (hw->phy.autoneg_advertised & IXGBE_LINK_SPEED_10GB_FULL)
1345			autoneg_reg |= MDIO_AN_10GBT_CTRL_ADV10G;
1346
1347		hw->phy.ops.write_reg(hw, MDIO_AN_10GBT_CTRL,
1348				      MDIO_MMD_AN,
1349				      autoneg_reg);
1350	}
1351
1352	if (speed & IXGBE_LINK_SPEED_1GB_FULL) {
1353		/* Set or unset auto-negotiation 1G advertisement */
1354		hw->phy.ops.read_reg(hw, IXGBE_MII_AUTONEG_XNP_TX_REG,
1355				     MDIO_MMD_AN,
1356				     &autoneg_reg);
1357
1358		autoneg_reg &= ~IXGBE_MII_1GBASE_T_ADVERTISE_XNP_TX;
1359		if (hw->phy.autoneg_advertised & IXGBE_LINK_SPEED_1GB_FULL)
1360			autoneg_reg |= IXGBE_MII_1GBASE_T_ADVERTISE_XNP_TX;
1361
1362		hw->phy.ops.write_reg(hw, IXGBE_MII_AUTONEG_XNP_TX_REG,
1363				      MDIO_MMD_AN,
1364				      autoneg_reg);
1365	}
1366
1367	if (speed & IXGBE_LINK_SPEED_100_FULL) {
1368		/* Set or unset auto-negotiation 100M advertisement */
1369		hw->phy.ops.read_reg(hw, MDIO_AN_ADVERTISE,
1370				     MDIO_MMD_AN,
1371				     &autoneg_reg);
1372
1373		autoneg_reg &= ~(ADVERTISE_100FULL |
1374				 ADVERTISE_100HALF);
1375		if (hw->phy.autoneg_advertised & IXGBE_LINK_SPEED_100_FULL)
1376			autoneg_reg |= ADVERTISE_100FULL;
1377
1378		hw->phy.ops.write_reg(hw, MDIO_AN_ADVERTISE,
1379				      MDIO_MMD_AN,
1380				      autoneg_reg);
1381	}
1382
1383	/* Blocked by MNG FW so don't reset PHY */
1384	if (ixgbe_check_reset_blocked(hw))
1385		return 0;
1386
1387	/* Restart PHY autonegotiation and wait for completion */
1388	hw->phy.ops.read_reg(hw, MDIO_CTRL1,
1389			     MDIO_MMD_AN, &autoneg_reg);
1390
1391	autoneg_reg |= MDIO_AN_CTRL1_RESTART;
1392
1393	hw->phy.ops.write_reg(hw, MDIO_CTRL1,
1394			      MDIO_MMD_AN, autoneg_reg);
1395	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1396}
1397
1398/**
1399 *  ixgbe_reset_phy_nl - Performs a PHY reset
1400 *  @hw: pointer to hardware structure
1401 **/
1402int ixgbe_reset_phy_nl(struct ixgbe_hw *hw)
1403{
1404	u16 phy_offset, control, eword, edata, block_crc;
1405	u16 list_offset, data_offset;
1406	bool end_data = false;
 
1407	u16 phy_data = 0;
1408	int ret_val;
1409	u32 i;
1410
1411	/* Blocked by MNG FW so bail */
1412	if (ixgbe_check_reset_blocked(hw))
1413		return 0;
1414
1415	hw->phy.ops.read_reg(hw, MDIO_CTRL1, MDIO_MMD_PHYXS, &phy_data);
1416
1417	/* reset the PHY and poll for completion */
1418	hw->phy.ops.write_reg(hw, MDIO_CTRL1, MDIO_MMD_PHYXS,
1419			      (phy_data | MDIO_CTRL1_RESET));
1420
1421	for (i = 0; i < 100; i++) {
1422		hw->phy.ops.read_reg(hw, MDIO_CTRL1, MDIO_MMD_PHYXS,
1423				     &phy_data);
1424		if ((phy_data & MDIO_CTRL1_RESET) == 0)
1425			break;
1426		usleep_range(10000, 20000);
1427	}
1428
1429	if ((phy_data & MDIO_CTRL1_RESET) != 0) {
1430		hw_dbg(hw, "PHY reset did not complete.\n");
1431		return -EIO;
 
1432	}
1433
1434	/* Get init offsets */
1435	ret_val = ixgbe_get_sfp_init_sequence_offsets(hw, &list_offset,
1436						      &data_offset);
1437	if (ret_val)
1438		return ret_val;
1439
1440	ret_val = hw->eeprom.ops.read(hw, data_offset, &block_crc);
1441	data_offset++;
1442	while (!end_data) {
1443		/*
1444		 * Read control word from PHY init contents offset
1445		 */
1446		ret_val = hw->eeprom.ops.read(hw, data_offset, &eword);
1447		if (ret_val)
1448			goto err_eeprom;
1449		control = FIELD_GET(IXGBE_CONTROL_MASK_NL, eword);
1450		edata = eword & IXGBE_DATA_MASK_NL;
1451		switch (control) {
1452		case IXGBE_DELAY_NL:
1453			data_offset++;
1454			hw_dbg(hw, "DELAY: %d MS\n", edata);
1455			usleep_range(edata * 1000, edata * 2000);
1456			break;
1457		case IXGBE_DATA_NL:
1458			hw_dbg(hw, "DATA:\n");
1459			data_offset++;
1460			ret_val = hw->eeprom.ops.read(hw, data_offset++,
1461						      &phy_offset);
1462			if (ret_val)
1463				goto err_eeprom;
1464			for (i = 0; i < edata; i++) {
1465				ret_val = hw->eeprom.ops.read(hw, data_offset,
1466							      &eword);
1467				if (ret_val)
1468					goto err_eeprom;
1469				hw->phy.ops.write_reg(hw, phy_offset,
1470						      MDIO_MMD_PMAPMD, eword);
1471				hw_dbg(hw, "Wrote %4.4x to %4.4x\n", eword,
1472				       phy_offset);
1473				data_offset++;
1474				phy_offset++;
1475			}
1476			break;
1477		case IXGBE_CONTROL_NL:
1478			data_offset++;
1479			hw_dbg(hw, "CONTROL:\n");
1480			if (edata == IXGBE_CONTROL_EOL_NL) {
1481				hw_dbg(hw, "EOL\n");
1482				end_data = true;
1483			} else if (edata == IXGBE_CONTROL_SOL_NL) {
1484				hw_dbg(hw, "SOL\n");
1485			} else {
1486				hw_dbg(hw, "Bad control value\n");
1487				return -EIO;
 
1488			}
1489			break;
1490		default:
1491			hw_dbg(hw, "Bad control type\n");
1492			return -EIO;
 
1493		}
1494	}
1495
 
1496	return ret_val;
1497
1498err_eeprom:
1499	hw_err(hw, "eeprom read at offset %d failed\n", data_offset);
1500	return -EIO;
1501}
1502
1503/**
1504 *  ixgbe_identify_module_generic - Identifies module type
1505 *  @hw: pointer to hardware structure
1506 *
1507 *  Determines HW type and calls appropriate function.
1508 **/
1509int ixgbe_identify_module_generic(struct ixgbe_hw *hw)
1510{
1511	switch (hw->mac.ops.get_media_type(hw)) {
1512	case ixgbe_media_type_fiber:
1513		return ixgbe_identify_sfp_module_generic(hw);
1514	case ixgbe_media_type_fiber_qsfp:
1515		return ixgbe_identify_qsfp_module_generic(hw);
1516	default:
1517		hw->phy.sfp_type = ixgbe_sfp_type_not_present;
1518		return -ENOENT;
1519	}
1520
1521	return -ENOENT;
1522}
1523
1524/**
1525 *  ixgbe_identify_sfp_module_generic - Identifies SFP modules
1526 *  @hw: pointer to hardware structure
1527 *
1528 *  Searches for and identifies the SFP module and assigns appropriate PHY type.
1529 **/
1530int ixgbe_identify_sfp_module_generic(struct ixgbe_hw *hw)
1531{
1532	enum ixgbe_sfp_type stored_sfp_type = hw->phy.sfp_type;
1533	struct ixgbe_adapter *adapter = hw->back;
1534	u8 oui_bytes[3] = {0, 0, 0};
1535	u8 bitrate_nominal = 0;
1536	u8 comp_codes_10g = 0;
1537	u8 comp_codes_1g = 0;
1538	u16 enforce_sfp = 0;
1539	u32 vendor_oui = 0;
 
1540	u8 identifier = 0;
 
 
 
1541	u8 cable_tech = 0;
1542	u8 cable_spec = 0;
1543	int status;
1544
1545	if (hw->mac.ops.get_media_type(hw) != ixgbe_media_type_fiber) {
1546		hw->phy.sfp_type = ixgbe_sfp_type_not_present;
1547		return -ENOENT;
 
1548	}
1549
1550	/* LAN ID is needed for sfp_type determination */
1551	hw->mac.ops.set_lan_id(hw);
1552
1553	status = hw->phy.ops.read_i2c_eeprom(hw,
1554					     IXGBE_SFF_IDENTIFIER,
1555					     &identifier);
1556
1557	if (status)
 
 
1558		goto err_read_i2c_eeprom;
1559
 
 
 
1560	if (identifier != IXGBE_SFF_IDENTIFIER_SFP) {
1561		hw->phy.type = ixgbe_phy_sfp_unsupported;
1562		return -EOPNOTSUPP;
1563	}
1564	status = hw->phy.ops.read_i2c_eeprom(hw,
1565					     IXGBE_SFF_1GBE_COMP_CODES,
1566					     &comp_codes_1g);
1567
1568	if (status)
1569		goto err_read_i2c_eeprom;
1570
1571	status = hw->phy.ops.read_i2c_eeprom(hw,
1572					     IXGBE_SFF_10GBE_COMP_CODES,
1573					     &comp_codes_10g);
1574
1575	if (status)
1576		goto err_read_i2c_eeprom;
1577	status = hw->phy.ops.read_i2c_eeprom(hw,
1578					     IXGBE_SFF_CABLE_TECHNOLOGY,
1579					     &cable_tech);
1580	if (status)
1581		goto err_read_i2c_eeprom;
1582
1583	status = hw->phy.ops.read_i2c_eeprom(hw,
1584					     IXGBE_SFF_BITRATE_NOMINAL,
1585					     &bitrate_nominal);
1586	if (status)
1587		goto err_read_i2c_eeprom;
1588
1589	 /* ID Module
1590	  * =========
1591	  * 0   SFP_DA_CU
1592	  * 1   SFP_SR
1593	  * 2   SFP_LR
1594	  * 3   SFP_DA_CORE0 - 82599-specific
1595	  * 4   SFP_DA_CORE1 - 82599-specific
1596	  * 5   SFP_SR/LR_CORE0 - 82599-specific
1597	  * 6   SFP_SR/LR_CORE1 - 82599-specific
1598	  * 7   SFP_act_lmt_DA_CORE0 - 82599-specific
1599	  * 8   SFP_act_lmt_DA_CORE1 - 82599-specific
1600	  * 9   SFP_1g_cu_CORE0 - 82599-specific
1601	  * 10  SFP_1g_cu_CORE1 - 82599-specific
1602	  * 11  SFP_1g_sx_CORE0 - 82599-specific
1603	  * 12  SFP_1g_sx_CORE1 - 82599-specific
1604	  */
1605	if (hw->mac.type == ixgbe_mac_82598EB) {
1606		if (cable_tech & IXGBE_SFF_DA_PASSIVE_CABLE)
1607			hw->phy.sfp_type = ixgbe_sfp_type_da_cu;
1608		else if (comp_codes_10g & IXGBE_SFF_10GBASESR_CAPABLE)
1609			hw->phy.sfp_type = ixgbe_sfp_type_sr;
1610		else if (comp_codes_10g & IXGBE_SFF_10GBASELR_CAPABLE)
1611			hw->phy.sfp_type = ixgbe_sfp_type_lr;
1612		else
1613			hw->phy.sfp_type = ixgbe_sfp_type_unknown;
1614	} else {
1615		if (cable_tech & IXGBE_SFF_DA_PASSIVE_CABLE) {
1616			if (hw->bus.lan_id == 0)
1617				hw->phy.sfp_type =
1618					     ixgbe_sfp_type_da_cu_core0;
1619			else
1620				hw->phy.sfp_type =
1621					     ixgbe_sfp_type_da_cu_core1;
1622		} else if (cable_tech & IXGBE_SFF_DA_ACTIVE_CABLE) {
1623			hw->phy.ops.read_i2c_eeprom(
1624					hw, IXGBE_SFF_CABLE_SPEC_COMP,
1625					&cable_spec);
1626			if (cable_spec &
1627			    IXGBE_SFF_DA_SPEC_ACTIVE_LIMITING) {
1628				if (hw->bus.lan_id == 0)
1629					hw->phy.sfp_type =
1630					ixgbe_sfp_type_da_act_lmt_core0;
1631				else
1632					hw->phy.sfp_type =
1633					ixgbe_sfp_type_da_act_lmt_core1;
1634			} else {
1635				hw->phy.sfp_type =
1636						ixgbe_sfp_type_unknown;
1637			}
1638		} else if (comp_codes_10g &
1639			   (IXGBE_SFF_10GBASESR_CAPABLE |
1640			    IXGBE_SFF_10GBASELR_CAPABLE)) {
1641			if (hw->bus.lan_id == 0)
1642				hw->phy.sfp_type =
1643					      ixgbe_sfp_type_srlr_core0;
1644			else
1645				hw->phy.sfp_type =
1646					      ixgbe_sfp_type_srlr_core1;
1647		} else if (comp_codes_1g & IXGBE_SFF_1GBASET_CAPABLE) {
1648			if (hw->bus.lan_id == 0)
1649				hw->phy.sfp_type =
1650					ixgbe_sfp_type_1g_cu_core0;
1651			else
1652				hw->phy.sfp_type =
1653					ixgbe_sfp_type_1g_cu_core1;
1654		} else if (comp_codes_1g & IXGBE_SFF_1GBASESX_CAPABLE) {
1655			if (hw->bus.lan_id == 0)
1656				hw->phy.sfp_type =
1657					ixgbe_sfp_type_1g_sx_core0;
1658			else
1659				hw->phy.sfp_type =
1660					ixgbe_sfp_type_1g_sx_core1;
1661		} else if (comp_codes_1g & IXGBE_SFF_1GBASELX_CAPABLE) {
1662			if (hw->bus.lan_id == 0)
1663				hw->phy.sfp_type =
1664					ixgbe_sfp_type_1g_lx_core0;
1665			else
1666				hw->phy.sfp_type =
1667					ixgbe_sfp_type_1g_lx_core1;
1668		/* Support only Ethernet 1000BASE-BX10, checking the Bit Rate
1669		 * Nominal Value as per SFF-8472 by convention 1.25 Gb/s should
1670		 * be rounded up to 0Dh (13 in units of 100 MBd) for 1000BASE-BX
1671		 */
1672		} else if ((comp_codes_1g & IXGBE_SFF_BASEBX10_CAPABLE) &&
1673			   (bitrate_nominal == 0xD)) {
1674			if (hw->bus.lan_id == 0)
1675				hw->phy.sfp_type =
1676					ixgbe_sfp_type_1g_bx_core0;
1677			else
1678				hw->phy.sfp_type =
1679					ixgbe_sfp_type_1g_bx_core1;
1680		} else {
1681			hw->phy.sfp_type = ixgbe_sfp_type_unknown;
1682		}
1683	}
1684
1685	if (hw->phy.sfp_type != stored_sfp_type)
1686		hw->phy.sfp_setup_needed = true;
1687
1688	/* Determine if the SFP+ PHY is dual speed or not. */
1689	hw->phy.multispeed_fiber = false;
1690	if (((comp_codes_1g & IXGBE_SFF_1GBASESX_CAPABLE) &&
1691	     (comp_codes_10g & IXGBE_SFF_10GBASESR_CAPABLE)) ||
1692	    ((comp_codes_1g & IXGBE_SFF_1GBASELX_CAPABLE) &&
1693	     (comp_codes_10g & IXGBE_SFF_10GBASELR_CAPABLE)))
1694		hw->phy.multispeed_fiber = true;
1695
1696	/* Determine PHY vendor */
1697	if (hw->phy.type != ixgbe_phy_nl) {
1698		hw->phy.id = identifier;
1699		status = hw->phy.ops.read_i2c_eeprom(hw,
1700					    IXGBE_SFF_VENDOR_OUI_BYTE0,
1701					    &oui_bytes[0]);
1702
1703		if (status != 0)
 
 
1704			goto err_read_i2c_eeprom;
1705
1706		status = hw->phy.ops.read_i2c_eeprom(hw,
1707					    IXGBE_SFF_VENDOR_OUI_BYTE1,
1708					    &oui_bytes[1]);
1709
1710		if (status != 0)
 
 
1711			goto err_read_i2c_eeprom;
1712
1713		status = hw->phy.ops.read_i2c_eeprom(hw,
1714					    IXGBE_SFF_VENDOR_OUI_BYTE2,
1715					    &oui_bytes[2]);
1716
1717		if (status != 0)
 
 
1718			goto err_read_i2c_eeprom;
1719
1720		vendor_oui =
1721		  ((oui_bytes[0] << IXGBE_SFF_VENDOR_OUI_BYTE0_SHIFT) |
1722		   (oui_bytes[1] << IXGBE_SFF_VENDOR_OUI_BYTE1_SHIFT) |
1723		   (oui_bytes[2] << IXGBE_SFF_VENDOR_OUI_BYTE2_SHIFT));
1724
1725		switch (vendor_oui) {
1726		case IXGBE_SFF_VENDOR_OUI_TYCO:
 
 
 
 
 
 
 
 
1727			if (cable_tech & IXGBE_SFF_DA_PASSIVE_CABLE)
1728				hw->phy.type =
1729					    ixgbe_phy_sfp_passive_tyco;
1730			break;
1731		case IXGBE_SFF_VENDOR_OUI_FTL:
1732			if (cable_tech & IXGBE_SFF_DA_ACTIVE_CABLE)
1733				hw->phy.type = ixgbe_phy_sfp_ftl_active;
1734			else
1735				hw->phy.type = ixgbe_phy_sfp_ftl;
1736			break;
1737		case IXGBE_SFF_VENDOR_OUI_AVAGO:
1738			hw->phy.type = ixgbe_phy_sfp_avago;
1739			break;
1740		case IXGBE_SFF_VENDOR_OUI_INTEL:
1741			hw->phy.type = ixgbe_phy_sfp_intel;
1742			break;
1743		default:
1744			if (cable_tech & IXGBE_SFF_DA_PASSIVE_CABLE)
1745				hw->phy.type =
1746					 ixgbe_phy_sfp_passive_unknown;
1747			else if (cable_tech & IXGBE_SFF_DA_ACTIVE_CABLE)
1748				hw->phy.type =
1749					ixgbe_phy_sfp_active_unknown;
1750			else
1751				hw->phy.type = ixgbe_phy_sfp_unknown;
1752			break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1753		}
1754	}
1755
1756	/* Allow any DA cable vendor */
1757	if (cable_tech & (IXGBE_SFF_DA_PASSIVE_CABLE |
1758	    IXGBE_SFF_DA_ACTIVE_CABLE))
1759		return 0;
1760
1761	/* Verify supported 1G SFP modules */
1762	if (comp_codes_10g == 0 &&
1763	    !(hw->phy.sfp_type == ixgbe_sfp_type_1g_cu_core1 ||
1764	      hw->phy.sfp_type == ixgbe_sfp_type_1g_cu_core0 ||
1765	      hw->phy.sfp_type == ixgbe_sfp_type_1g_lx_core0 ||
1766	      hw->phy.sfp_type == ixgbe_sfp_type_1g_lx_core1 ||
1767	      hw->phy.sfp_type == ixgbe_sfp_type_1g_sx_core0 ||
1768	      hw->phy.sfp_type == ixgbe_sfp_type_1g_sx_core1 ||
1769	      hw->phy.sfp_type == ixgbe_sfp_type_1g_bx_core0 ||
1770	      hw->phy.sfp_type == ixgbe_sfp_type_1g_bx_core1)) {
1771		hw->phy.type = ixgbe_phy_sfp_unsupported;
1772		return -EOPNOTSUPP;
1773	}
1774
1775	/* Anything else 82598-based is supported */
1776	if (hw->mac.type == ixgbe_mac_82598EB)
1777		return 0;
1778
1779	hw->mac.ops.get_device_caps(hw, &enforce_sfp);
1780	if (!(enforce_sfp & IXGBE_DEVICE_CAPS_ALLOW_ANY_SFP) &&
1781	    !(hw->phy.sfp_type == ixgbe_sfp_type_1g_cu_core0 ||
1782	      hw->phy.sfp_type == ixgbe_sfp_type_1g_cu_core1 ||
1783	      hw->phy.sfp_type == ixgbe_sfp_type_1g_lx_core0 ||
1784	      hw->phy.sfp_type == ixgbe_sfp_type_1g_lx_core1 ||
1785	      hw->phy.sfp_type == ixgbe_sfp_type_1g_sx_core0 ||
1786	      hw->phy.sfp_type == ixgbe_sfp_type_1g_sx_core1 ||
1787	      hw->phy.sfp_type == ixgbe_sfp_type_1g_bx_core0 ||
1788	      hw->phy.sfp_type == ixgbe_sfp_type_1g_bx_core1)) {
1789		/* Make sure we're a supported PHY type */
1790		if (hw->phy.type == ixgbe_phy_sfp_intel)
1791			return 0;
1792		if (hw->allow_unsupported_sfp) {
1793			e_warn(drv, "WARNING: Intel (R) Network Connections are quality tested using Intel (R) Ethernet Optics.  Using untested modules is not supported and may cause unstable operation or damage to the module or the adapter.  Intel Corporation is not responsible for any harm caused by using untested modules.\n");
1794			return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1795		}
1796		hw_dbg(hw, "SFP+ module not supported\n");
1797		hw->phy.type = ixgbe_phy_sfp_unsupported;
1798		return -EOPNOTSUPP;
1799	}
1800	return 0;
1801
1802err_read_i2c_eeprom:
1803	hw->phy.sfp_type = ixgbe_sfp_type_not_present;
1804	if (hw->phy.type != ixgbe_phy_nl) {
1805		hw->phy.id = 0;
1806		hw->phy.type = ixgbe_phy_unknown;
1807	}
1808	return -ENOENT;
1809}
1810
1811/**
1812 * ixgbe_identify_qsfp_module_generic - Identifies QSFP modules
1813 * @hw: pointer to hardware structure
1814 *
1815 * Searches for and identifies the QSFP module and assigns appropriate PHY type
1816 **/
1817static int ixgbe_identify_qsfp_module_generic(struct ixgbe_hw *hw)
1818{
1819	struct ixgbe_adapter *adapter = hw->back;
1820	int status;
1821	u32 vendor_oui = 0;
1822	enum ixgbe_sfp_type stored_sfp_type = hw->phy.sfp_type;
1823	u8 identifier = 0;
1824	u8 comp_codes_1g = 0;
1825	u8 comp_codes_10g = 0;
1826	u8 oui_bytes[3] = {0, 0, 0};
1827	u16 enforce_sfp = 0;
1828	u8 connector = 0;
1829	u8 cable_length = 0;
1830	u8 device_tech = 0;
1831	bool active_cable = false;
1832
1833	if (hw->mac.ops.get_media_type(hw) != ixgbe_media_type_fiber_qsfp) {
1834		hw->phy.sfp_type = ixgbe_sfp_type_not_present;
1835		return -ENOENT;
1836	}
1837
1838	/* LAN ID is needed for sfp_type determination */
1839	hw->mac.ops.set_lan_id(hw);
1840
1841	status = hw->phy.ops.read_i2c_eeprom(hw, IXGBE_SFF_IDENTIFIER,
1842					     &identifier);
1843
1844	if (status != 0)
1845		goto err_read_i2c_eeprom;
1846
1847	if (identifier != IXGBE_SFF_IDENTIFIER_QSFP_PLUS) {
1848		hw->phy.type = ixgbe_phy_sfp_unsupported;
1849		return -EOPNOTSUPP;
1850	}
1851
1852	hw->phy.id = identifier;
1853
1854	status = hw->phy.ops.read_i2c_eeprom(hw, IXGBE_SFF_QSFP_10GBE_COMP,
1855					     &comp_codes_10g);
1856
1857	if (status != 0)
1858		goto err_read_i2c_eeprom;
1859
1860	status = hw->phy.ops.read_i2c_eeprom(hw, IXGBE_SFF_QSFP_1GBE_COMP,
1861					     &comp_codes_1g);
1862
1863	if (status != 0)
1864		goto err_read_i2c_eeprom;
1865
1866	if (comp_codes_10g & IXGBE_SFF_QSFP_DA_PASSIVE_CABLE) {
1867		hw->phy.type = ixgbe_phy_qsfp_passive_unknown;
1868		if (hw->bus.lan_id == 0)
1869			hw->phy.sfp_type = ixgbe_sfp_type_da_cu_core0;
1870		else
1871			hw->phy.sfp_type = ixgbe_sfp_type_da_cu_core1;
1872	} else if (comp_codes_10g & (IXGBE_SFF_10GBASESR_CAPABLE |
1873				     IXGBE_SFF_10GBASELR_CAPABLE)) {
1874		if (hw->bus.lan_id == 0)
1875			hw->phy.sfp_type = ixgbe_sfp_type_srlr_core0;
1876		else
1877			hw->phy.sfp_type = ixgbe_sfp_type_srlr_core1;
1878	} else {
1879		if (comp_codes_10g & IXGBE_SFF_QSFP_DA_ACTIVE_CABLE)
1880			active_cable = true;
1881
1882		if (!active_cable) {
1883			/* check for active DA cables that pre-date
1884			 * SFF-8436 v3.6
1885			 */
1886			hw->phy.ops.read_i2c_eeprom(hw,
1887					IXGBE_SFF_QSFP_CONNECTOR,
1888					&connector);
1889
1890			hw->phy.ops.read_i2c_eeprom(hw,
1891					IXGBE_SFF_QSFP_CABLE_LENGTH,
1892					&cable_length);
1893
1894			hw->phy.ops.read_i2c_eeprom(hw,
1895					IXGBE_SFF_QSFP_DEVICE_TECH,
1896					&device_tech);
1897
1898			if ((connector ==
1899				     IXGBE_SFF_QSFP_CONNECTOR_NOT_SEPARABLE) &&
1900			    (cable_length > 0) &&
1901			    ((device_tech >> 4) ==
1902				     IXGBE_SFF_QSFP_TRANSMITER_850NM_VCSEL))
1903				active_cable = true;
1904		}
1905
1906		if (active_cable) {
1907			hw->phy.type = ixgbe_phy_qsfp_active_unknown;
1908			if (hw->bus.lan_id == 0)
1909				hw->phy.sfp_type =
1910						ixgbe_sfp_type_da_act_lmt_core0;
1911			else
1912				hw->phy.sfp_type =
1913						ixgbe_sfp_type_da_act_lmt_core1;
1914		} else {
1915			/* unsupported module type */
1916			hw->phy.type = ixgbe_phy_sfp_unsupported;
1917			return -EOPNOTSUPP;
 
1918		}
1919	}
1920
1921	if (hw->phy.sfp_type != stored_sfp_type)
1922		hw->phy.sfp_setup_needed = true;
1923
1924	/* Determine if the QSFP+ PHY is dual speed or not. */
1925	hw->phy.multispeed_fiber = false;
1926	if (((comp_codes_1g & IXGBE_SFF_1GBASESX_CAPABLE) &&
1927	     (comp_codes_10g & IXGBE_SFF_10GBASESR_CAPABLE)) ||
1928	    ((comp_codes_1g & IXGBE_SFF_1GBASELX_CAPABLE) &&
1929	     (comp_codes_10g & IXGBE_SFF_10GBASELR_CAPABLE)))
1930		hw->phy.multispeed_fiber = true;
1931
1932	/* Determine PHY vendor for optical modules */
1933	if (comp_codes_10g & (IXGBE_SFF_10GBASESR_CAPABLE |
1934			      IXGBE_SFF_10GBASELR_CAPABLE)) {
1935		status = hw->phy.ops.read_i2c_eeprom(hw,
1936					IXGBE_SFF_QSFP_VENDOR_OUI_BYTE0,
1937					&oui_bytes[0]);
1938
1939		if (status != 0)
1940			goto err_read_i2c_eeprom;
1941
1942		status = hw->phy.ops.read_i2c_eeprom(hw,
1943					IXGBE_SFF_QSFP_VENDOR_OUI_BYTE1,
1944					&oui_bytes[1]);
1945
1946		if (status != 0)
1947			goto err_read_i2c_eeprom;
1948
1949		status = hw->phy.ops.read_i2c_eeprom(hw,
1950					IXGBE_SFF_QSFP_VENDOR_OUI_BYTE2,
1951					&oui_bytes[2]);
1952
1953		if (status != 0)
1954			goto err_read_i2c_eeprom;
1955
1956		vendor_oui =
1957			((oui_bytes[0] << IXGBE_SFF_VENDOR_OUI_BYTE0_SHIFT) |
1958			 (oui_bytes[1] << IXGBE_SFF_VENDOR_OUI_BYTE1_SHIFT) |
1959			 (oui_bytes[2] << IXGBE_SFF_VENDOR_OUI_BYTE2_SHIFT));
1960
1961		if (vendor_oui == IXGBE_SFF_VENDOR_OUI_INTEL)
1962			hw->phy.type = ixgbe_phy_qsfp_intel;
1963		else
1964			hw->phy.type = ixgbe_phy_qsfp_unknown;
1965
1966		hw->mac.ops.get_device_caps(hw, &enforce_sfp);
1967		if (!(enforce_sfp & IXGBE_DEVICE_CAPS_ALLOW_ANY_SFP)) {
 
 
1968			/* Make sure we're a supported PHY type */
1969			if (hw->phy.type == ixgbe_phy_qsfp_intel)
1970				return 0;
1971			if (hw->allow_unsupported_sfp) {
1972				e_warn(drv, "WARNING: Intel (R) Network Connections are quality tested using Intel (R) Ethernet Optics. Using untested modules is not supported and may cause unstable operation or damage to the module or the adapter. Intel Corporation is not responsible for any harm caused by using untested modules.\n");
1973				return 0;
 
 
 
 
 
 
 
 
1974			}
1975			hw_dbg(hw, "QSFP module not supported\n");
1976			hw->phy.type = ixgbe_phy_sfp_unsupported;
1977			return -EOPNOTSUPP;
1978		}
1979		return 0;
1980	}
1981	return 0;
 
 
1982
1983err_read_i2c_eeprom:
1984	hw->phy.sfp_type = ixgbe_sfp_type_not_present;
1985	hw->phy.id = 0;
1986	hw->phy.type = ixgbe_phy_unknown;
1987
1988	return -ENOENT;
 
1989}
1990
1991/**
1992 *  ixgbe_get_sfp_init_sequence_offsets - Provides offset of PHY init sequence
1993 *  @hw: pointer to hardware structure
1994 *  @list_offset: offset to the SFP ID list
1995 *  @data_offset: offset to the SFP data block
1996 *
1997 *  Checks the MAC's EEPROM to see if it supports a given SFP+ module type, if
1998 *  so it returns the offsets to the phy init sequence block.
1999 **/
2000int ixgbe_get_sfp_init_sequence_offsets(struct ixgbe_hw *hw,
2001					u16 *list_offset,
2002					u16 *data_offset)
2003{
2004	u16 sfp_id;
2005	u16 sfp_type = hw->phy.sfp_type;
2006
2007	if (hw->phy.sfp_type == ixgbe_sfp_type_unknown)
2008		return -EOPNOTSUPP;
2009
2010	if (hw->phy.sfp_type == ixgbe_sfp_type_not_present)
2011		return -ENOENT;
2012
2013	if ((hw->device_id == IXGBE_DEV_ID_82598_SR_DUAL_PORT_EM) &&
2014	    (hw->phy.sfp_type == ixgbe_sfp_type_da_cu))
2015		return -EOPNOTSUPP;
2016
2017	/*
2018	 * Limiting active cables and 1G Phys must be initialized as
2019	 * SR modules
2020	 */
2021	if (sfp_type == ixgbe_sfp_type_da_act_lmt_core0 ||
2022	    sfp_type == ixgbe_sfp_type_1g_lx_core0 ||
2023	    sfp_type == ixgbe_sfp_type_1g_cu_core0 ||
2024	    sfp_type == ixgbe_sfp_type_1g_sx_core0 ||
2025	    sfp_type == ixgbe_sfp_type_1g_bx_core0)
2026		sfp_type = ixgbe_sfp_type_srlr_core0;
2027	else if (sfp_type == ixgbe_sfp_type_da_act_lmt_core1 ||
2028		 sfp_type == ixgbe_sfp_type_1g_lx_core1 ||
2029		 sfp_type == ixgbe_sfp_type_1g_cu_core1 ||
2030		 sfp_type == ixgbe_sfp_type_1g_sx_core1 ||
2031		 sfp_type == ixgbe_sfp_type_1g_bx_core1)
2032		sfp_type = ixgbe_sfp_type_srlr_core1;
2033
2034	/* Read offset to PHY init contents */
2035	if (hw->eeprom.ops.read(hw, IXGBE_PHY_INIT_OFFSET_NL, list_offset)) {
2036		hw_err(hw, "eeprom read at %d failed\n",
2037		       IXGBE_PHY_INIT_OFFSET_NL);
2038		return -EIO;
2039	}
2040
2041	if ((!*list_offset) || (*list_offset == 0xFFFF))
2042		return -EIO;
2043
2044	/* Shift offset to first ID word */
2045	(*list_offset)++;
2046
2047	/*
2048	 * Find the matching SFP ID in the EEPROM
2049	 * and program the init sequence
2050	 */
2051	if (hw->eeprom.ops.read(hw, *list_offset, &sfp_id))
2052		goto err_phy;
2053
2054	while (sfp_id != IXGBE_PHY_INIT_END_NL) {
2055		if (sfp_id == sfp_type) {
2056			(*list_offset)++;
2057			if (hw->eeprom.ops.read(hw, *list_offset, data_offset))
2058				goto err_phy;
2059			if ((!*data_offset) || (*data_offset == 0xFFFF)) {
2060				hw_dbg(hw, "SFP+ module not supported\n");
2061				return -EOPNOTSUPP;
2062			} else {
2063				break;
2064			}
2065		} else {
2066			(*list_offset) += 2;
2067			if (hw->eeprom.ops.read(hw, *list_offset, &sfp_id))
2068				goto err_phy;
2069		}
2070	}
2071
2072	if (sfp_id == IXGBE_PHY_INIT_END_NL) {
2073		hw_dbg(hw, "No matching SFP+ module found\n");
2074		return -EOPNOTSUPP;
2075	}
2076
2077	return 0;
2078
2079err_phy:
2080	hw_err(hw, "eeprom read at offset %d failed\n", *list_offset);
2081	return -EIO;
2082}
2083
2084/**
2085 *  ixgbe_read_i2c_eeprom_generic - Reads 8 bit EEPROM word over I2C interface
2086 *  @hw: pointer to hardware structure
2087 *  @byte_offset: EEPROM byte offset to read
2088 *  @eeprom_data: value read
2089 *
2090 *  Performs byte read operation to SFP module's EEPROM over I2C interface.
2091 **/
2092int ixgbe_read_i2c_eeprom_generic(struct ixgbe_hw *hw, u8 byte_offset,
2093				  u8 *eeprom_data)
2094{
2095	return hw->phy.ops.read_i2c_byte(hw, byte_offset,
2096					 IXGBE_I2C_EEPROM_DEV_ADDR,
2097					 eeprom_data);
2098}
2099
2100/**
2101 *  ixgbe_read_i2c_sff8472_generic - Reads 8 bit word over I2C interface
2102 *  @hw: pointer to hardware structure
2103 *  @byte_offset: byte offset at address 0xA2
2104 *  @sff8472_data: value read
2105 *
2106 *  Performs byte read operation to SFP module's SFF-8472 data over I2C
2107 **/
2108int ixgbe_read_i2c_sff8472_generic(struct ixgbe_hw *hw, u8 byte_offset,
2109				   u8 *sff8472_data)
2110{
2111	return hw->phy.ops.read_i2c_byte(hw, byte_offset,
2112					 IXGBE_I2C_EEPROM_DEV_ADDR2,
2113					 sff8472_data);
2114}
2115
2116/**
2117 *  ixgbe_write_i2c_eeprom_generic - Writes 8 bit EEPROM word over I2C interface
2118 *  @hw: pointer to hardware structure
2119 *  @byte_offset: EEPROM byte offset to write
2120 *  @eeprom_data: value to write
2121 *
2122 *  Performs byte write operation to SFP module's EEPROM over I2C interface.
2123 **/
2124int ixgbe_write_i2c_eeprom_generic(struct ixgbe_hw *hw, u8 byte_offset,
2125				   u8 eeprom_data)
2126{
2127	return hw->phy.ops.write_i2c_byte(hw, byte_offset,
2128					  IXGBE_I2C_EEPROM_DEV_ADDR,
2129					  eeprom_data);
2130}
2131
2132/**
2133 * ixgbe_is_sfp_probe - Returns true if SFP is being detected
2134 * @hw: pointer to hardware structure
2135 * @offset: eeprom offset to be read
2136 * @addr: I2C address to be read
2137 */
2138static bool ixgbe_is_sfp_probe(struct ixgbe_hw *hw, u8 offset, u8 addr)
2139{
2140	if (addr == IXGBE_I2C_EEPROM_DEV_ADDR &&
2141	    offset == IXGBE_SFF_IDENTIFIER &&
2142	    hw->phy.sfp_type == ixgbe_sfp_type_not_present)
2143		return true;
2144	return false;
2145}
2146
2147/**
2148 *  ixgbe_read_i2c_byte_generic_int - Reads 8 bit word over I2C
2149 *  @hw: pointer to hardware structure
2150 *  @byte_offset: byte offset to read
2151 *  @dev_addr: device address
2152 *  @data: value read
2153 *  @lock: true if to take and release semaphore
2154 *
2155 *  Performs byte read operation to SFP module's EEPROM over I2C interface at
2156 *  a specified device address.
2157 */
2158static int ixgbe_read_i2c_byte_generic_int(struct ixgbe_hw *hw, u8 byte_offset,
2159					   u8 dev_addr, u8 *data, bool lock)
2160{
2161	u32 swfw_mask = hw->phy.phy_semaphore_mask;
2162	u32 max_retry = 10;
2163	bool nack = true;
2164	u32 retry = 0;
2165	int status;
2166
2167	if (hw->mac.type >= ixgbe_mac_X550)
2168		max_retry = 3;
2169	if (ixgbe_is_sfp_probe(hw, byte_offset, dev_addr))
2170		max_retry = IXGBE_SFP_DETECT_RETRIES;
2171
2172	*data = 0;
2173
 
 
 
 
 
2174	do {
2175		if (lock && hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
2176			return -EBUSY;
 
 
2177
2178		ixgbe_i2c_start(hw);
2179
2180		/* Device Address and write indication */
2181		status = ixgbe_clock_out_i2c_byte(hw, dev_addr);
2182		if (status != 0)
2183			goto fail;
2184
2185		status = ixgbe_get_i2c_ack(hw);
2186		if (status != 0)
2187			goto fail;
2188
2189		status = ixgbe_clock_out_i2c_byte(hw, byte_offset);
2190		if (status != 0)
2191			goto fail;
2192
2193		status = ixgbe_get_i2c_ack(hw);
2194		if (status != 0)
2195			goto fail;
2196
2197		ixgbe_i2c_start(hw);
2198
2199		/* Device Address and read indication */
2200		status = ixgbe_clock_out_i2c_byte(hw, (dev_addr | 0x1));
2201		if (status != 0)
2202			goto fail;
2203
2204		status = ixgbe_get_i2c_ack(hw);
2205		if (status != 0)
2206			goto fail;
2207
2208		status = ixgbe_clock_in_i2c_byte(hw, data);
2209		if (status != 0)
2210			goto fail;
2211
2212		status = ixgbe_clock_out_i2c_bit(hw, nack);
2213		if (status != 0)
2214			goto fail;
2215
2216		ixgbe_i2c_stop(hw);
2217		if (lock)
2218			hw->mac.ops.release_swfw_sync(hw, swfw_mask);
2219		return 0;
2220
2221fail:
 
 
2222		ixgbe_i2c_bus_clear(hw);
2223		if (lock) {
2224			hw->mac.ops.release_swfw_sync(hw, swfw_mask);
2225			msleep(100);
2226		}
2227		retry++;
2228		if (retry < max_retry)
2229			hw_dbg(hw, "I2C byte read error - Retrying.\n");
2230		else
2231			hw_dbg(hw, "I2C byte read error.\n");
2232
2233	} while (retry < max_retry);
2234
2235	return status;
2236}
2237
2238/**
2239 *  ixgbe_read_i2c_byte_generic - Reads 8 bit word over I2C
2240 *  @hw: pointer to hardware structure
2241 *  @byte_offset: byte offset to read
2242 *  @dev_addr: device address
2243 *  @data: value read
2244 *
2245 *  Performs byte read operation to SFP module's EEPROM over I2C interface at
2246 *  a specified device address.
2247 */
2248int ixgbe_read_i2c_byte_generic(struct ixgbe_hw *hw, u8 byte_offset,
2249				u8 dev_addr, u8 *data)
2250{
2251	return ixgbe_read_i2c_byte_generic_int(hw, byte_offset, dev_addr,
2252					       data, true);
2253}
2254
2255/**
2256 *  ixgbe_read_i2c_byte_generic_unlocked - Reads 8 bit word over I2C
2257 *  @hw: pointer to hardware structure
2258 *  @byte_offset: byte offset to read
2259 *  @dev_addr: device address
2260 *  @data: value read
2261 *
2262 *  Performs byte read operation to SFP module's EEPROM over I2C interface at
2263 *  a specified device address.
2264 */
2265int ixgbe_read_i2c_byte_generic_unlocked(struct ixgbe_hw *hw, u8 byte_offset,
2266					 u8 dev_addr, u8 *data)
2267{
2268	return ixgbe_read_i2c_byte_generic_int(hw, byte_offset, dev_addr,
2269					       data, false);
2270}
2271
2272/**
2273 *  ixgbe_write_i2c_byte_generic_int - Writes 8 bit word over I2C
2274 *  @hw: pointer to hardware structure
2275 *  @byte_offset: byte offset to write
2276 *  @dev_addr: device address
2277 *  @data: value to write
2278 *  @lock: true if to take and release semaphore
2279 *
2280 *  Performs byte write operation to SFP module's EEPROM over I2C interface at
2281 *  a specified device address.
2282 */
2283static int ixgbe_write_i2c_byte_generic_int(struct ixgbe_hw *hw, u8 byte_offset,
2284					    u8 dev_addr, u8 data, bool lock)
2285{
2286	u32 swfw_mask = hw->phy.phy_semaphore_mask;
2287	u32 max_retry = 1;
2288	u32 retry = 0;
2289	int status;
2290
2291	if (lock && hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
2292		return -EBUSY;
 
 
 
 
 
 
 
2293
2294	do {
2295		ixgbe_i2c_start(hw);
2296
2297		status = ixgbe_clock_out_i2c_byte(hw, dev_addr);
2298		if (status != 0)
2299			goto fail;
2300
2301		status = ixgbe_get_i2c_ack(hw);
2302		if (status != 0)
2303			goto fail;
2304
2305		status = ixgbe_clock_out_i2c_byte(hw, byte_offset);
2306		if (status != 0)
2307			goto fail;
2308
2309		status = ixgbe_get_i2c_ack(hw);
2310		if (status != 0)
2311			goto fail;
2312
2313		status = ixgbe_clock_out_i2c_byte(hw, data);
2314		if (status != 0)
2315			goto fail;
2316
2317		status = ixgbe_get_i2c_ack(hw);
2318		if (status != 0)
2319			goto fail;
2320
2321		ixgbe_i2c_stop(hw);
2322		if (lock)
2323			hw->mac.ops.release_swfw_sync(hw, swfw_mask);
2324		return 0;
2325
2326fail:
2327		ixgbe_i2c_bus_clear(hw);
2328		retry++;
2329		if (retry < max_retry)
2330			hw_dbg(hw, "I2C byte write error - Retrying.\n");
2331		else
2332			hw_dbg(hw, "I2C byte write error.\n");
2333	} while (retry < max_retry);
2334
2335	if (lock)
2336		hw->mac.ops.release_swfw_sync(hw, swfw_mask);
2337
 
2338	return status;
2339}
2340
2341/**
2342 *  ixgbe_write_i2c_byte_generic - Writes 8 bit word over I2C
2343 *  @hw: pointer to hardware structure
2344 *  @byte_offset: byte offset to write
2345 *  @dev_addr: device address
2346 *  @data: value to write
2347 *
2348 *  Performs byte write operation to SFP module's EEPROM over I2C interface at
2349 *  a specified device address.
2350 */
2351int ixgbe_write_i2c_byte_generic(struct ixgbe_hw *hw, u8 byte_offset,
2352				 u8 dev_addr, u8 data)
2353{
2354	return ixgbe_write_i2c_byte_generic_int(hw, byte_offset, dev_addr,
2355						data, true);
2356}
2357
2358/**
2359 *  ixgbe_write_i2c_byte_generic_unlocked - Writes 8 bit word over I2C
2360 *  @hw: pointer to hardware structure
2361 *  @byte_offset: byte offset to write
2362 *  @dev_addr: device address
2363 *  @data: value to write
2364 *
2365 *  Performs byte write operation to SFP module's EEPROM over I2C interface at
2366 *  a specified device address.
2367 */
2368int ixgbe_write_i2c_byte_generic_unlocked(struct ixgbe_hw *hw, u8 byte_offset,
2369					  u8 dev_addr, u8 data)
2370{
2371	return ixgbe_write_i2c_byte_generic_int(hw, byte_offset, dev_addr,
2372						data, false);
2373}
2374
2375/**
2376 *  ixgbe_i2c_start - Sets I2C start condition
2377 *  @hw: pointer to hardware structure
2378 *
2379 *  Sets I2C start condition (High -> Low on SDA while SCL is High)
2380 *  Set bit-bang mode on X550 hardware.
2381 **/
2382static void ixgbe_i2c_start(struct ixgbe_hw *hw)
2383{
2384	u32 i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL(hw));
2385
2386	i2cctl |= IXGBE_I2C_BB_EN(hw);
2387
2388	/* Start condition must begin with data and clock high */
2389	ixgbe_set_i2c_data(hw, &i2cctl, 1);
2390	ixgbe_raise_i2c_clk(hw, &i2cctl);
2391
2392	/* Setup time for start condition (4.7us) */
2393	udelay(IXGBE_I2C_T_SU_STA);
2394
2395	ixgbe_set_i2c_data(hw, &i2cctl, 0);
2396
2397	/* Hold time for start condition (4us) */
2398	udelay(IXGBE_I2C_T_HD_STA);
2399
2400	ixgbe_lower_i2c_clk(hw, &i2cctl);
2401
2402	/* Minimum low period of clock is 4.7 us */
2403	udelay(IXGBE_I2C_T_LOW);
2404
2405}
2406
2407/**
2408 *  ixgbe_i2c_stop - Sets I2C stop condition
2409 *  @hw: pointer to hardware structure
2410 *
2411 *  Sets I2C stop condition (Low -> High on SDA while SCL is High)
2412 *  Disables bit-bang mode and negates data output enable on X550
2413 *  hardware.
2414 **/
2415static void ixgbe_i2c_stop(struct ixgbe_hw *hw)
2416{
2417	u32 i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL(hw));
2418	u32 data_oe_bit = IXGBE_I2C_DATA_OE_N_EN(hw);
2419	u32 clk_oe_bit = IXGBE_I2C_CLK_OE_N_EN(hw);
2420	u32 bb_en_bit = IXGBE_I2C_BB_EN(hw);
2421
2422	/* Stop condition must begin with data low and clock high */
2423	ixgbe_set_i2c_data(hw, &i2cctl, 0);
2424	ixgbe_raise_i2c_clk(hw, &i2cctl);
2425
2426	/* Setup time for stop condition (4us) */
2427	udelay(IXGBE_I2C_T_SU_STO);
2428
2429	ixgbe_set_i2c_data(hw, &i2cctl, 1);
2430
2431	/* bus free time between stop and start (4.7us)*/
2432	udelay(IXGBE_I2C_T_BUF);
2433
2434	if (bb_en_bit || data_oe_bit || clk_oe_bit) {
2435		i2cctl &= ~bb_en_bit;
2436		i2cctl |= data_oe_bit | clk_oe_bit;
2437		IXGBE_WRITE_REG(hw, IXGBE_I2CCTL(hw), i2cctl);
2438		IXGBE_WRITE_FLUSH(hw);
2439	}
2440}
2441
2442/**
2443 *  ixgbe_clock_in_i2c_byte - Clocks in one byte via I2C
2444 *  @hw: pointer to hardware structure
2445 *  @data: data byte to clock in
2446 *
2447 *  Clocks in one byte data via I2C data/clock
2448 **/
2449static int ixgbe_clock_in_i2c_byte(struct ixgbe_hw *hw, u8 *data)
2450{
 
2451	bool bit = false;
2452	int i;
2453
2454	*data = 0;
2455	for (i = 7; i >= 0; i--) {
2456		ixgbe_clock_in_i2c_bit(hw, &bit);
2457		*data |= bit << i;
2458	}
2459
2460	return 0;
2461}
2462
2463/**
2464 *  ixgbe_clock_out_i2c_byte - Clocks out one byte via I2C
2465 *  @hw: pointer to hardware structure
2466 *  @data: data byte clocked out
2467 *
2468 *  Clocks out one byte data via I2C data/clock
2469 **/
2470static int ixgbe_clock_out_i2c_byte(struct ixgbe_hw *hw, u8 data)
2471{
2472	bool bit = false;
2473	int status;
2474	u32 i2cctl;
2475	int i;
2476
2477	for (i = 7; i >= 0; i--) {
2478		bit = (data >> i) & 0x1;
2479		status = ixgbe_clock_out_i2c_bit(hw, bit);
2480
2481		if (status != 0)
2482			break;
2483	}
2484
2485	/* Release SDA line (set high) */
2486	i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL(hw));
2487	i2cctl |= IXGBE_I2C_DATA_OUT(hw);
2488	i2cctl |= IXGBE_I2C_DATA_OE_N_EN(hw);
2489	IXGBE_WRITE_REG(hw, IXGBE_I2CCTL(hw), i2cctl);
2490	IXGBE_WRITE_FLUSH(hw);
2491
2492	return status;
2493}
2494
2495/**
2496 *  ixgbe_get_i2c_ack - Polls for I2C ACK
2497 *  @hw: pointer to hardware structure
2498 *
2499 *  Clocks in/out one bit via I2C data/clock
2500 **/
2501static int ixgbe_get_i2c_ack(struct ixgbe_hw *hw)
2502{
2503	u32 i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL(hw));
2504	u32 data_oe_bit = IXGBE_I2C_DATA_OE_N_EN(hw);
 
2505	u32 timeout = 10;
2506	bool ack = true;
2507	int status = 0;
2508	u32 i = 0;
2509
2510	if (data_oe_bit) {
2511		i2cctl |= IXGBE_I2C_DATA_OUT(hw);
2512		i2cctl |= data_oe_bit;
2513		IXGBE_WRITE_REG(hw, IXGBE_I2CCTL(hw), i2cctl);
2514		IXGBE_WRITE_FLUSH(hw);
2515	}
2516	ixgbe_raise_i2c_clk(hw, &i2cctl);
2517
 
2518	/* Minimum high period of clock is 4us */
2519	udelay(IXGBE_I2C_T_HIGH);
2520
2521	/* Poll for ACK.  Note that ACK in I2C spec is
2522	 * transition from 1 to 0 */
2523	for (i = 0; i < timeout; i++) {
2524		i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL(hw));
2525		ack = ixgbe_get_i2c_data(hw, &i2cctl);
2526
2527		udelay(1);
2528		if (ack == 0)
2529			break;
2530	}
2531
2532	if (ack == 1) {
2533		hw_dbg(hw, "I2C ack was not received.\n");
2534		status = -EIO;
2535	}
2536
2537	ixgbe_lower_i2c_clk(hw, &i2cctl);
2538
2539	/* Minimum low period of clock is 4.7 us */
2540	udelay(IXGBE_I2C_T_LOW);
2541
2542	return status;
2543}
2544
2545/**
2546 *  ixgbe_clock_in_i2c_bit - Clocks in one bit via I2C data/clock
2547 *  @hw: pointer to hardware structure
2548 *  @data: read data value
2549 *
2550 *  Clocks in one bit via I2C data/clock
2551 **/
2552static int ixgbe_clock_in_i2c_bit(struct ixgbe_hw *hw, bool *data)
2553{
2554	u32 i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL(hw));
2555	u32 data_oe_bit = IXGBE_I2C_DATA_OE_N_EN(hw);
2556
2557	if (data_oe_bit) {
2558		i2cctl |= IXGBE_I2C_DATA_OUT(hw);
2559		i2cctl |= data_oe_bit;
2560		IXGBE_WRITE_REG(hw, IXGBE_I2CCTL(hw), i2cctl);
2561		IXGBE_WRITE_FLUSH(hw);
2562	}
2563	ixgbe_raise_i2c_clk(hw, &i2cctl);
2564
2565	/* Minimum high period of clock is 4us */
2566	udelay(IXGBE_I2C_T_HIGH);
2567
2568	i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL(hw));
2569	*data = ixgbe_get_i2c_data(hw, &i2cctl);
2570
2571	ixgbe_lower_i2c_clk(hw, &i2cctl);
2572
2573	/* Minimum low period of clock is 4.7 us */
2574	udelay(IXGBE_I2C_T_LOW);
2575
2576	return 0;
2577}
2578
2579/**
2580 *  ixgbe_clock_out_i2c_bit - Clocks in/out one bit via I2C data/clock
2581 *  @hw: pointer to hardware structure
2582 *  @data: data value to write
2583 *
2584 *  Clocks out one bit via I2C data/clock
2585 **/
2586static int ixgbe_clock_out_i2c_bit(struct ixgbe_hw *hw, bool data)
2587{
2588	u32 i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL(hw));
2589	int status;
2590
2591	status = ixgbe_set_i2c_data(hw, &i2cctl, data);
2592	if (status == 0) {
2593		ixgbe_raise_i2c_clk(hw, &i2cctl);
2594
2595		/* Minimum high period of clock is 4us */
2596		udelay(IXGBE_I2C_T_HIGH);
2597
2598		ixgbe_lower_i2c_clk(hw, &i2cctl);
2599
2600		/* Minimum low period of clock is 4.7 us.
2601		 * This also takes care of the data hold time.
2602		 */
2603		udelay(IXGBE_I2C_T_LOW);
2604	} else {
 
2605		hw_dbg(hw, "I2C data was not set to %X\n", data);
2606		return -EIO;
2607	}
2608
2609	return 0;
2610}
2611/**
2612 *  ixgbe_raise_i2c_clk - Raises the I2C SCL clock
2613 *  @hw: pointer to hardware structure
2614 *  @i2cctl: Current value of I2CCTL register
2615 *
2616 *  Raises the I2C clock line '0'->'1'
2617 *  Negates the I2C clock output enable on X550 hardware.
2618 **/
2619static void ixgbe_raise_i2c_clk(struct ixgbe_hw *hw, u32 *i2cctl)
2620{
2621	u32 clk_oe_bit = IXGBE_I2C_CLK_OE_N_EN(hw);
2622	u32 i = 0;
2623	u32 timeout = IXGBE_I2C_CLOCK_STRETCHING_TIMEOUT;
2624	u32 i2cctl_r = 0;
2625
2626	if (clk_oe_bit) {
2627		*i2cctl |= clk_oe_bit;
2628		IXGBE_WRITE_REG(hw, IXGBE_I2CCTL(hw), *i2cctl);
2629	}
2630
2631	for (i = 0; i < timeout; i++) {
2632		*i2cctl |= IXGBE_I2C_CLK_OUT(hw);
2633		IXGBE_WRITE_REG(hw, IXGBE_I2CCTL(hw), *i2cctl);
2634		IXGBE_WRITE_FLUSH(hw);
2635		/* SCL rise time (1000ns) */
2636		udelay(IXGBE_I2C_T_RISE);
2637
2638		i2cctl_r = IXGBE_READ_REG(hw, IXGBE_I2CCTL(hw));
2639		if (i2cctl_r & IXGBE_I2C_CLK_IN(hw))
2640			break;
2641	}
2642}
2643
2644/**
2645 *  ixgbe_lower_i2c_clk - Lowers the I2C SCL clock
2646 *  @hw: pointer to hardware structure
2647 *  @i2cctl: Current value of I2CCTL register
2648 *
2649 *  Lowers the I2C clock line '1'->'0'
2650 *  Asserts the I2C clock output enable on X550 hardware.
2651 **/
2652static void ixgbe_lower_i2c_clk(struct ixgbe_hw *hw, u32 *i2cctl)
2653{
2654
2655	*i2cctl &= ~IXGBE_I2C_CLK_OUT(hw);
2656	*i2cctl &= ~IXGBE_I2C_CLK_OE_N_EN(hw);
2657
2658	IXGBE_WRITE_REG(hw, IXGBE_I2CCTL(hw), *i2cctl);
2659	IXGBE_WRITE_FLUSH(hw);
2660
2661	/* SCL fall time (300ns) */
2662	udelay(IXGBE_I2C_T_FALL);
2663}
2664
2665/**
2666 *  ixgbe_set_i2c_data - Sets the I2C data bit
2667 *  @hw: pointer to hardware structure
2668 *  @i2cctl: Current value of I2CCTL register
2669 *  @data: I2C data value (0 or 1) to set
2670 *
2671 *  Sets the I2C data bit
2672 *  Asserts the I2C data output enable on X550 hardware.
2673 **/
2674static int ixgbe_set_i2c_data(struct ixgbe_hw *hw, u32 *i2cctl, bool data)
2675{
2676	u32 data_oe_bit = IXGBE_I2C_DATA_OE_N_EN(hw);
2677
2678	if (data)
2679		*i2cctl |= IXGBE_I2C_DATA_OUT(hw);
2680	else
2681		*i2cctl &= ~IXGBE_I2C_DATA_OUT(hw);
2682	*i2cctl &= ~data_oe_bit;
2683
2684	IXGBE_WRITE_REG(hw, IXGBE_I2CCTL(hw), *i2cctl);
2685	IXGBE_WRITE_FLUSH(hw);
2686
2687	/* Data rise/fall (1000ns/300ns) and set-up time (250ns) */
2688	udelay(IXGBE_I2C_T_RISE + IXGBE_I2C_T_FALL + IXGBE_I2C_T_SU_DATA);
2689
2690	if (!data)	/* Can't verify data in this case */
2691		return 0;
2692	if (data_oe_bit) {
2693		*i2cctl |= data_oe_bit;
2694		IXGBE_WRITE_REG(hw, IXGBE_I2CCTL(hw), *i2cctl);
2695		IXGBE_WRITE_FLUSH(hw);
2696	}
2697
2698	/* Verify data was set correctly */
2699	*i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL(hw));
2700	if (data != ixgbe_get_i2c_data(hw, i2cctl)) {
 
2701		hw_dbg(hw, "Error - I2C data was not set to %X.\n", data);
2702		return -EIO;
2703	}
2704
2705	return 0;
2706}
2707
2708/**
2709 *  ixgbe_get_i2c_data - Reads the I2C SDA data bit
2710 *  @hw: pointer to hardware structure
2711 *  @i2cctl: Current value of I2CCTL register
2712 *
2713 *  Returns the I2C data bit value
2714 *  Negates the I2C data output enable on X550 hardware.
2715 **/
2716static bool ixgbe_get_i2c_data(struct ixgbe_hw *hw, u32 *i2cctl)
2717{
2718	u32 data_oe_bit = IXGBE_I2C_DATA_OE_N_EN(hw);
2719
2720	if (data_oe_bit) {
2721		*i2cctl |= data_oe_bit;
2722		IXGBE_WRITE_REG(hw, IXGBE_I2CCTL(hw), *i2cctl);
2723		IXGBE_WRITE_FLUSH(hw);
2724		udelay(IXGBE_I2C_T_FALL);
2725	}
2726
2727	if (*i2cctl & IXGBE_I2C_DATA_IN(hw))
2728		return true;
2729	return false;
2730}
2731
2732/**
2733 *  ixgbe_i2c_bus_clear - Clears the I2C bus
2734 *  @hw: pointer to hardware structure
2735 *
2736 *  Clears the I2C bus by sending nine clock pulses.
2737 *  Used when data line is stuck low.
2738 **/
2739static void ixgbe_i2c_bus_clear(struct ixgbe_hw *hw)
2740{
2741	u32 i2cctl;
2742	u32 i;
2743
2744	ixgbe_i2c_start(hw);
2745	i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL(hw));
2746
2747	ixgbe_set_i2c_data(hw, &i2cctl, 1);
2748
2749	for (i = 0; i < 9; i++) {
2750		ixgbe_raise_i2c_clk(hw, &i2cctl);
2751
2752		/* Min high period of clock is 4us */
2753		udelay(IXGBE_I2C_T_HIGH);
2754
2755		ixgbe_lower_i2c_clk(hw, &i2cctl);
2756
2757		/* Min low period of clock is 4.7us*/
2758		udelay(IXGBE_I2C_T_LOW);
2759	}
2760
2761	ixgbe_i2c_start(hw);
2762
2763	/* Put the i2c bus back to default state */
2764	ixgbe_i2c_stop(hw);
2765}
2766
2767/**
2768 *  ixgbe_tn_check_overtemp - Checks if an overtemp occurred.
2769 *  @hw: pointer to hardware structure
2770 *
2771 *  Checks if the LASI temp alarm status was triggered due to overtemp
2772 *
2773 *  Return true when an overtemp event detected, otherwise false.
2774 **/
2775bool ixgbe_tn_check_overtemp(struct ixgbe_hw *hw)
2776{
 
2777	u16 phy_data = 0;
2778	u32 status;
2779
2780	if (hw->device_id != IXGBE_DEV_ID_82599_T3_LOM)
2781		return false;
2782
2783	/* Check that the LASI temp alarm status was triggered */
2784	status = hw->phy.ops.read_reg(hw, IXGBE_TN_LASI_STATUS_REG,
2785				      MDIO_MMD_PMAPMD, &phy_data);
2786	if (status)
2787		return false;
2788
2789	return !!(phy_data & IXGBE_TN_LASI_STATUS_TEMP_ALARM);
2790}
2791
2792/** ixgbe_set_copper_phy_power - Control power for copper phy
2793 *  @hw: pointer to hardware structure
2794 *  @on: true for on, false for off
2795 **/
2796int ixgbe_set_copper_phy_power(struct ixgbe_hw *hw, bool on)
2797{
2798	u32 status;
2799	u16 reg;
2800
2801	/* Bail if we don't have copper phy */
2802	if (hw->mac.ops.get_media_type(hw) != ixgbe_media_type_copper)
2803		return 0;
2804
2805	if (!on && ixgbe_mng_present(hw))
2806		return 0;
2807
2808	status = hw->phy.ops.read_reg(hw, MDIO_CTRL1, MDIO_MMD_VEND1, &reg);
2809	if (status)
2810		return status;
2811
2812	if (on) {
2813		reg &= ~IXGBE_MDIO_PHY_SET_LOW_POWER_MODE;
2814	} else {
2815		if (ixgbe_check_reset_blocked(hw))
2816			return 0;
2817		reg |= IXGBE_MDIO_PHY_SET_LOW_POWER_MODE;
2818	}
2819
2820	status = hw->phy.ops.write_reg(hw, MDIO_CTRL1, MDIO_MMD_VEND1, reg);
 
2821	return status;
2822}
v3.5.6
   1/*******************************************************************************
   2
   3  Intel 10 Gigabit PCI Express Linux driver
   4  Copyright(c) 1999 - 2012 Intel Corporation.
   5
   6  This program is free software; you can redistribute it and/or modify it
   7  under the terms and conditions of the GNU General Public License,
   8  version 2, as published by the Free Software Foundation.
   9
  10  This program is distributed in the hope it will be useful, but WITHOUT
  11  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  13  more details.
  14
  15  You should have received a copy of the GNU General Public License along with
  16  this program; if not, write to the Free Software Foundation, Inc.,
  17  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
  18
  19  The full GNU General Public License is included in this distribution in
  20  the file called "COPYING".
  21
  22  Contact Information:
  23  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
  24  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
  25
  26*******************************************************************************/
  27
  28#include <linux/pci.h>
  29#include <linux/delay.h>
 
  30#include <linux/sched.h>
  31
  32#include "ixgbe_common.h"
  33#include "ixgbe_phy.h"
  34
  35static void ixgbe_i2c_start(struct ixgbe_hw *hw);
  36static void ixgbe_i2c_stop(struct ixgbe_hw *hw);
  37static s32 ixgbe_clock_in_i2c_byte(struct ixgbe_hw *hw, u8 *data);
  38static s32 ixgbe_clock_out_i2c_byte(struct ixgbe_hw *hw, u8 data);
  39static s32 ixgbe_get_i2c_ack(struct ixgbe_hw *hw);
  40static s32 ixgbe_clock_in_i2c_bit(struct ixgbe_hw *hw, bool *data);
  41static s32 ixgbe_clock_out_i2c_bit(struct ixgbe_hw *hw, bool data);
  42static void ixgbe_raise_i2c_clk(struct ixgbe_hw *hw, u32 *i2cctl);
  43static void ixgbe_lower_i2c_clk(struct ixgbe_hw *hw, u32 *i2cctl);
  44static s32 ixgbe_set_i2c_data(struct ixgbe_hw *hw, u32 *i2cctl, bool data);
  45static bool ixgbe_get_i2c_data(u32 *i2cctl);
  46static void ixgbe_i2c_bus_clear(struct ixgbe_hw *hw);
  47static enum ixgbe_phy_type ixgbe_get_phy_type_from_id(u32 phy_id);
  48static s32 ixgbe_get_phy_id(struct ixgbe_hw *hw);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  49
  50/**
  51 *  ixgbe_identify_phy_generic - Get physical layer module
  52 *  @hw: pointer to hardware structure
  53 *
  54 *  Determines the physical layer module found on the current adapter.
  55 **/
  56s32 ixgbe_identify_phy_generic(struct ixgbe_hw *hw)
  57{
  58	s32 status = IXGBE_ERR_PHY_ADDR_INVALID;
  59	u32 phy_addr;
  60	u16 ext_ability = 0;
  61
  62	if (hw->phy.type == ixgbe_phy_unknown) {
  63		for (phy_addr = 0; phy_addr < IXGBE_MAX_PHY_ADDR; phy_addr++) {
  64			hw->phy.mdio.prtad = phy_addr;
  65			if (mdio45_probe(&hw->phy.mdio, phy_addr) == 0) {
  66				ixgbe_get_phy_id(hw);
  67				hw->phy.type =
  68				        ixgbe_get_phy_type_from_id(hw->phy.id);
 
 
  69
  70				if (hw->phy.type == ixgbe_phy_unknown) {
  71					hw->phy.ops.read_reg(hw,
  72							     MDIO_PMA_EXTABLE,
  73							     MDIO_MMD_PMAPMD,
  74							     &ext_ability);
  75					if (ext_ability &
  76					    (MDIO_PMA_EXTABLE_10GBT |
  77					     MDIO_PMA_EXTABLE_1000BT))
  78						hw->phy.type =
  79							 ixgbe_phy_cu_unknown;
  80					else
  81						hw->phy.type =
  82							 ixgbe_phy_generic;
  83				}
  84
  85				status = 0;
  86				break;
  87			}
 
  88		}
  89		/* clear value if nothing found */
  90		if (status != 0)
  91			hw->phy.mdio.prtad = 0;
  92	} else {
  93		status = 0;
  94	}
  95
 
 
 
 
 
 
 
  96	return status;
  97}
  98
  99/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 100 *  ixgbe_get_phy_id - Get the phy type
 101 *  @hw: pointer to hardware structure
 102 *
 103 **/
 104static s32 ixgbe_get_phy_id(struct ixgbe_hw *hw)
 105{
 106	u32 status;
 107	u16 phy_id_high = 0;
 108	u16 phy_id_low = 0;
 
 109
 110	status = hw->phy.ops.read_reg(hw, MDIO_DEVID1, MDIO_MMD_PMAPMD,
 111	                              &phy_id_high);
 112
 113	if (status == 0) {
 114		hw->phy.id = (u32)(phy_id_high << 16);
 115		status = hw->phy.ops.read_reg(hw, MDIO_DEVID2, MDIO_MMD_PMAPMD,
 116		                              &phy_id_low);
 117		hw->phy.id |= (u32)(phy_id_low & IXGBE_PHY_REVISION_MASK);
 118		hw->phy.revision = (u32)(phy_id_low & ~IXGBE_PHY_REVISION_MASK);
 119	}
 120	return status;
 121}
 122
 123/**
 124 *  ixgbe_get_phy_type_from_id - Get the phy type
 125 *  @hw: pointer to hardware structure
 126 *
 127 **/
 128static enum ixgbe_phy_type ixgbe_get_phy_type_from_id(u32 phy_id)
 129{
 130	enum ixgbe_phy_type phy_type;
 131
 132	switch (phy_id) {
 133	case TN1010_PHY_ID:
 134		phy_type = ixgbe_phy_tn;
 135		break;
 
 
 136	case X540_PHY_ID:
 137		phy_type = ixgbe_phy_aq;
 138		break;
 139	case QT2022_PHY_ID:
 140		phy_type = ixgbe_phy_qt;
 141		break;
 142	case ATH_PHY_ID:
 143		phy_type = ixgbe_phy_nl;
 144		break;
 
 
 
 
 
 
 
 145	default:
 146		phy_type = ixgbe_phy_unknown;
 147		break;
 148	}
 149
 150	return phy_type;
 151}
 152
 153/**
 154 *  ixgbe_reset_phy_generic - Performs a PHY reset
 155 *  @hw: pointer to hardware structure
 156 **/
 157s32 ixgbe_reset_phy_generic(struct ixgbe_hw *hw)
 158{
 159	u32 i;
 160	u16 ctrl = 0;
 161	s32 status = 0;
 162
 163	if (hw->phy.type == ixgbe_phy_unknown)
 164		status = ixgbe_identify_phy_generic(hw);
 165
 166	if (status != 0 || hw->phy.type == ixgbe_phy_none)
 167		goto out;
 168
 169	/* Don't reset PHY if it's shut down due to overtemp. */
 170	if (!hw->phy.reset_if_overtemp &&
 171	    (IXGBE_ERR_OVERTEMP == hw->phy.ops.check_overtemp(hw)))
 172		goto out;
 
 
 
 173
 174	/*
 175	 * Perform soft PHY reset to the PHY_XS.
 176	 * This will cause a soft reset to the PHY
 177	 */
 178	hw->phy.ops.write_reg(hw, MDIO_CTRL1,
 179			      MDIO_MMD_PHYXS,
 180			      MDIO_CTRL1_RESET);
 181
 182	/*
 183	 * Poll for reset bit to self-clear indicating reset is complete.
 184	 * Some PHYs could take up to 3 seconds to complete and need about
 185	 * 1.7 usec delay after the reset is complete.
 186	 */
 187	for (i = 0; i < 30; i++) {
 188		msleep(100);
 189		hw->phy.ops.read_reg(hw, MDIO_CTRL1,
 190				     MDIO_MMD_PHYXS, &ctrl);
 191		if (!(ctrl & MDIO_CTRL1_RESET)) {
 192			udelay(2);
 193			break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 194		}
 195	}
 196
 197	if (ctrl & MDIO_CTRL1_RESET) {
 198		status = IXGBE_ERR_RESET_FAILED;
 199		hw_dbg(hw, "PHY reset polling failed to complete.\n");
 
 200	}
 201
 202out:
 203	return status;
 204}
 205
 206/**
 207 *  ixgbe_read_phy_reg_generic - Reads a value from a specified PHY register
 208 *  @hw: pointer to hardware structure
 209 *  @reg_addr: 32 bit address of PHY register to read
 
 210 *  @phy_data: Pointer to read data from PHY register
 
 
 211 **/
 212s32 ixgbe_read_phy_reg_generic(struct ixgbe_hw *hw, u32 reg_addr,
 213                               u32 device_type, u16 *phy_data)
 214{
 215	u32 command;
 216	u32 i;
 217	u32 data;
 218	s32 status = 0;
 219	u16 gssr;
 220
 221	if (IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_LAN_ID_1)
 222		gssr = IXGBE_GSSR_PHY1_SM;
 223	else
 224		gssr = IXGBE_GSSR_PHY0_SM;
 
 225
 226	if (hw->mac.ops.acquire_swfw_sync(hw, gssr) != 0)
 227		status = IXGBE_ERR_SWFW_SYNC;
 228
 229	if (status == 0) {
 230		/* Setup and write the address cycle command */
 231		command = ((reg_addr << IXGBE_MSCA_NP_ADDR_SHIFT)  |
 232		           (device_type << IXGBE_MSCA_DEV_TYPE_SHIFT) |
 233		           (hw->phy.mdio.prtad << IXGBE_MSCA_PHY_ADDR_SHIFT) |
 234		           (IXGBE_MSCA_ADDR_CYCLE | IXGBE_MSCA_MDI_COMMAND));
 235
 236		IXGBE_WRITE_REG(hw, IXGBE_MSCA, command);
 
 
 
 237
 238		/*
 239		 * Check every 10 usec to see if the address cycle completed.
 240		 * The MDI Command bit will clear when the operation is
 241		 * complete
 242		 */
 243		for (i = 0; i < IXGBE_MDIO_COMMAND_TIMEOUT; i++) {
 244			udelay(10);
 245
 246			command = IXGBE_READ_REG(hw, IXGBE_MSCA);
 
 
 
 247
 248			if ((command & IXGBE_MSCA_MDI_COMMAND) == 0)
 249				break;
 250		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 251
 252		if ((command & IXGBE_MSCA_MDI_COMMAND) != 0) {
 253			hw_dbg(hw, "PHY address command did not complete.\n");
 254			status = IXGBE_ERR_PHY;
 255		}
 256
 257		if (status == 0) {
 258			/*
 259			 * Address cycle complete, setup and write the read
 260			 * command
 261			 */
 262			command = ((reg_addr << IXGBE_MSCA_NP_ADDR_SHIFT)  |
 263			           (device_type << IXGBE_MSCA_DEV_TYPE_SHIFT) |
 264			           (hw->phy.mdio.prtad <<
 265				    IXGBE_MSCA_PHY_ADDR_SHIFT) |
 266			           (IXGBE_MSCA_READ | IXGBE_MSCA_MDI_COMMAND));
 267
 268			IXGBE_WRITE_REG(hw, IXGBE_MSCA, command);
 269
 270			/*
 271			 * Check every 10 usec to see if the address cycle
 272			 * completed. The MDI Command bit will clear when the
 273			 * operation is complete
 274			 */
 275			for (i = 0; i < IXGBE_MDIO_COMMAND_TIMEOUT; i++) {
 276				udelay(10);
 277
 278				command = IXGBE_READ_REG(hw, IXGBE_MSCA);
 
 
 
 
 
 279
 280				if ((command & IXGBE_MSCA_MDI_COMMAND) == 0)
 281					break;
 282			}
 283
 284			if ((command & IXGBE_MSCA_MDI_COMMAND) != 0) {
 285				hw_dbg(hw, "PHY read command didn't complete\n");
 286				status = IXGBE_ERR_PHY;
 287			} else {
 288				/*
 289				 * Read operation is complete.  Get the data
 290				 * from MSRWD
 291				 */
 292				data = IXGBE_READ_REG(hw, IXGBE_MSRWD);
 293				data >>= IXGBE_MSRWD_READ_DATA_SHIFT;
 294				*phy_data = (u16)(data);
 295			}
 296		}
 297
 
 
 
 298		hw->mac.ops.release_swfw_sync(hw, gssr);
 
 
 299	}
 300
 301	return status;
 302}
 303
 304/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 305 *  ixgbe_write_phy_reg_generic - Writes a value to specified PHY register
 
 306 *  @hw: pointer to hardware structure
 307 *  @reg_addr: 32 bit PHY register to write
 308 *  @device_type: 5 bit device type
 309 *  @phy_data: Data to write to the PHY register
 310 **/
 311s32 ixgbe_write_phy_reg_generic(struct ixgbe_hw *hw, u32 reg_addr,
 312                                u32 device_type, u16 phy_data)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 313{
 314	u32 command;
 315	u32 i;
 316	s32 status = 0;
 317	u16 gssr;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 318
 319	if (IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_LAN_ID_1)
 320		gssr = IXGBE_GSSR_PHY1_SM;
 321	else
 322		gssr = IXGBE_GSSR_PHY0_SM;
 
 
 
 
 
 
 
 
 323
 324	if (hw->mac.ops.acquire_swfw_sync(hw, gssr) != 0)
 325		status = IXGBE_ERR_SWFW_SYNC;
 
 326
 327	if (status == 0) {
 328		/* Put the data in the MDI single read and write data register*/
 329		IXGBE_WRITE_REG(hw, IXGBE_MSRWD, (u32)phy_data);
 
 
 
 
 
 
 
 
 
 
 330
 331		/* Setup and write the address cycle command */
 332		command = ((reg_addr << IXGBE_MSCA_NP_ADDR_SHIFT)  |
 333		           (device_type << IXGBE_MSCA_DEV_TYPE_SHIFT) |
 334		           (hw->phy.mdio.prtad << IXGBE_MSCA_PHY_ADDR_SHIFT) |
 335		           (IXGBE_MSCA_ADDR_CYCLE | IXGBE_MSCA_MDI_COMMAND));
 336
 337		IXGBE_WRITE_REG(hw, IXGBE_MSCA, command);
 
 
 
 
 
 
 
 
 
 
 
 
 338
 339		/*
 340		 * Check every 10 usec to see if the address cycle completed.
 341		 * The MDI Command bit will clear when the operation is
 342		 * complete
 343		 */
 344		for (i = 0; i < IXGBE_MDIO_COMMAND_TIMEOUT; i++) {
 345			udelay(10);
 346
 347			command = IXGBE_READ_REG(hw, IXGBE_MSCA);
 
 
 
 
 
 
 
 
 
 
 
 
 
 348
 349			if ((command & IXGBE_MSCA_MDI_COMMAND) == 0)
 350				break;
 351		}
 
 352
 353		if ((command & IXGBE_MSCA_MDI_COMMAND) != 0) {
 354			hw_dbg(hw, "PHY address cmd didn't complete\n");
 355			status = IXGBE_ERR_PHY;
 356		}
 
 
 
 
 
 
 
 357
 358		if (status == 0) {
 359			/*
 360			 * Address cycle complete, setup and write the write
 361			 * command
 362			 */
 363			command = ((reg_addr << IXGBE_MSCA_NP_ADDR_SHIFT)  |
 364			           (device_type << IXGBE_MSCA_DEV_TYPE_SHIFT) |
 365			           (hw->phy.mdio.prtad <<
 366				    IXGBE_MSCA_PHY_ADDR_SHIFT) |
 367			           (IXGBE_MSCA_WRITE | IXGBE_MSCA_MDI_COMMAND));
 368
 369			IXGBE_WRITE_REG(hw, IXGBE_MSCA, command);
 370
 371			/*
 372			 * Check every 10 usec to see if the address cycle
 373			 * completed. The MDI Command bit will clear when the
 374			 * operation is complete
 375			 */
 376			for (i = 0; i < IXGBE_MDIO_COMMAND_TIMEOUT; i++) {
 377				udelay(10);
 378
 379				command = IXGBE_READ_REG(hw, IXGBE_MSCA);
 
 
 380
 381				if ((command & IXGBE_MSCA_MDI_COMMAND) == 0)
 382					break;
 383			}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 384
 385			if ((command & IXGBE_MSCA_MDI_COMMAND) != 0) {
 386				hw_dbg(hw, "PHY address cmd didn't complete\n");
 387				status = IXGBE_ERR_PHY;
 388			}
 389		}
 390
 391		hw->mac.ops.release_swfw_sync(hw, gssr);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 392	}
 393
 394	return status;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 395}
 396
 397/**
 398 *  ixgbe_setup_phy_link_generic - Set and restart autoneg
 399 *  @hw: pointer to hardware structure
 400 *
 401 *  Restart autonegotiation and PHY and waits for completion.
 402 **/
 403s32 ixgbe_setup_phy_link_generic(struct ixgbe_hw *hw)
 404{
 405	s32 status = 0;
 406	u32 time_out;
 407	u32 max_time_out = 10;
 408	u16 autoneg_reg = IXGBE_MII_AUTONEG_REG;
 
 409	bool autoneg = false;
 410	ixgbe_link_speed speed;
 411
 412	ixgbe_get_copper_link_capabilities_generic(hw, &speed, &autoneg);
 413
 414	if (speed & IXGBE_LINK_SPEED_10GB_FULL) {
 415		/* Set or unset auto-negotiation 10G advertisement */
 416		hw->phy.ops.read_reg(hw, MDIO_AN_10GBT_CTRL,
 417				     MDIO_MMD_AN,
 418				     &autoneg_reg);
 419
 420		autoneg_reg &= ~MDIO_AN_10GBT_CTRL_ADV10G;
 421		if (hw->phy.autoneg_advertised & IXGBE_LINK_SPEED_10GB_FULL)
 422			autoneg_reg |= MDIO_AN_10GBT_CTRL_ADV10G;
 
 423
 424		hw->phy.ops.write_reg(hw, MDIO_AN_10GBT_CTRL,
 425				      MDIO_MMD_AN,
 426				      autoneg_reg);
 427	}
 428
 429	if (speed & IXGBE_LINK_SPEED_1GB_FULL) {
 430		/* Set or unset auto-negotiation 1G advertisement */
 431		hw->phy.ops.read_reg(hw,
 432				     IXGBE_MII_AUTONEG_VENDOR_PROVISION_1_REG,
 433				     MDIO_MMD_AN,
 434				     &autoneg_reg);
 435
 436		autoneg_reg &= ~IXGBE_MII_1GBASE_T_ADVERTISE;
 437		if (hw->phy.autoneg_advertised & IXGBE_LINK_SPEED_1GB_FULL)
 438			autoneg_reg |= IXGBE_MII_1GBASE_T_ADVERTISE;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 439
 440		hw->phy.ops.write_reg(hw,
 441				      IXGBE_MII_AUTONEG_VENDOR_PROVISION_1_REG,
 442				      MDIO_MMD_AN,
 443				      autoneg_reg);
 444	}
 445
 446	if (speed & IXGBE_LINK_SPEED_100_FULL) {
 447		/* Set or unset auto-negotiation 100M advertisement */
 448		hw->phy.ops.read_reg(hw, MDIO_AN_ADVERTISE,
 449				     MDIO_MMD_AN,
 450				     &autoneg_reg);
 451
 452		autoneg_reg &= ~(ADVERTISE_100FULL |
 453				 ADVERTISE_100HALF);
 454		if (hw->phy.autoneg_advertised & IXGBE_LINK_SPEED_100_FULL)
 455			autoneg_reg |= ADVERTISE_100FULL;
 456
 457		hw->phy.ops.write_reg(hw, MDIO_AN_ADVERTISE,
 458				      MDIO_MMD_AN,
 459				      autoneg_reg);
 460	}
 
 
 
 
 
 
 461
 462	/* Restart PHY autonegotiation and wait for completion */
 463	hw->phy.ops.read_reg(hw, MDIO_CTRL1,
 464			     MDIO_MMD_AN, &autoneg_reg);
 465
 466	autoneg_reg |= MDIO_AN_CTRL1_RESTART;
 467
 468	hw->phy.ops.write_reg(hw, MDIO_CTRL1,
 469			      MDIO_MMD_AN, autoneg_reg);
 470
 471	/* Wait for autonegotiation to finish */
 472	for (time_out = 0; time_out < max_time_out; time_out++) {
 473		udelay(10);
 474		/* Restart PHY autonegotiation and wait for completion */
 475		status = hw->phy.ops.read_reg(hw, MDIO_STAT1,
 476					      MDIO_MMD_AN,
 477					      &autoneg_reg);
 478
 479		autoneg_reg &= MDIO_AN_STAT1_COMPLETE;
 480		if (autoneg_reg == MDIO_AN_STAT1_COMPLETE) {
 481			break;
 482		}
 483	}
 484
 485	if (time_out == max_time_out) {
 486		status = IXGBE_ERR_LINK_SETUP;
 487		hw_dbg(hw, "ixgbe_setup_phy_link_generic: time out");
 488	}
 489
 490	return status;
 491}
 492
 493/**
 494 *  ixgbe_setup_phy_link_speed_generic - Sets the auto advertised capabilities
 495 *  @hw: pointer to hardware structure
 496 *  @speed: new link speed
 497 *  @autoneg: true if autonegotiation enabled
 498 **/
 499s32 ixgbe_setup_phy_link_speed_generic(struct ixgbe_hw *hw,
 500                                       ixgbe_link_speed speed,
 501                                       bool autoneg,
 502                                       bool autoneg_wait_to_complete)
 503{
 504
 505	/*
 506	 * Clear autoneg_advertised and set new values based on input link
 507	 * speed.
 508	 */
 509	hw->phy.autoneg_advertised = 0;
 510
 511	if (speed & IXGBE_LINK_SPEED_10GB_FULL)
 512		hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_10GB_FULL;
 513
 
 
 
 
 
 
 514	if (speed & IXGBE_LINK_SPEED_1GB_FULL)
 515		hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_1GB_FULL;
 516
 517	if (speed & IXGBE_LINK_SPEED_100_FULL)
 518		hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_100_FULL;
 519
 
 
 
 520	/* Setup link based on the new speed settings */
 521	hw->phy.ops.setup_link(hw);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 522
 523	return 0;
 524}
 525
 526/**
 527 * ixgbe_get_copper_link_capabilities_generic - Determines link capabilities
 528 * @hw: pointer to hardware structure
 529 * @speed: pointer to link speed
 530 * @autoneg: boolean auto-negotiation value
 531 *
 532 * Determines the link capabilities by reading the AUTOC register.
 533 */
 534s32 ixgbe_get_copper_link_capabilities_generic(struct ixgbe_hw *hw,
 535                                               ixgbe_link_speed *speed,
 536                                               bool *autoneg)
 537{
 538	s32 status = IXGBE_ERR_LINK_SETUP;
 539	u16 speed_ability;
 540
 541	*speed = 0;
 542	*autoneg = true;
 
 
 543
 544	status = hw->phy.ops.read_reg(hw, MDIO_SPEED, MDIO_MMD_PMAPMD,
 545	                              &speed_ability);
 546
 547	if (status == 0) {
 548		if (speed_ability & MDIO_SPEED_10G)
 549			*speed |= IXGBE_LINK_SPEED_10GB_FULL;
 550		if (speed_ability & MDIO_PMA_SPEED_1000)
 551			*speed |= IXGBE_LINK_SPEED_1GB_FULL;
 552		if (speed_ability & MDIO_PMA_SPEED_100)
 553			*speed |= IXGBE_LINK_SPEED_100_FULL;
 554	}
 555
 556	return status;
 557}
 558
 559/**
 560 *  ixgbe_check_phy_link_tnx - Determine link and speed status
 561 *  @hw: pointer to hardware structure
 
 
 562 *
 563 *  Reads the VS1 register to determine if link is up and the current speed for
 564 *  the PHY.
 565 **/
 566s32 ixgbe_check_phy_link_tnx(struct ixgbe_hw *hw, ixgbe_link_speed *speed,
 567			     bool *link_up)
 568{
 569	s32 status = 0;
 570	u32 time_out;
 571	u32 max_time_out = 10;
 
 572	u16 phy_link = 0;
 573	u16 phy_speed = 0;
 574	u16 phy_data = 0;
 
 
 575
 576	/* Initialize speed and link to default case */
 577	*link_up = false;
 578	*speed = IXGBE_LINK_SPEED_10GB_FULL;
 579
 580	/*
 581	 * Check current speed and link status of the PHY register.
 582	 * This is a vendor specific register and may have to
 583	 * be changed for other copper PHYs.
 584	 */
 585	for (time_out = 0; time_out < max_time_out; time_out++) {
 586		udelay(10);
 587		status = hw->phy.ops.read_reg(hw,
 588					      MDIO_STAT1,
 589					      MDIO_MMD_VEND1,
 590					      &phy_data);
 591		phy_link = phy_data &
 592			    IXGBE_MDIO_VENDOR_SPECIFIC_1_LINK_STATUS;
 593		phy_speed = phy_data &
 594			    IXGBE_MDIO_VENDOR_SPECIFIC_1_SPEED_STATUS;
 595		if (phy_link == IXGBE_MDIO_VENDOR_SPECIFIC_1_LINK_STATUS) {
 596			*link_up = true;
 597			if (phy_speed ==
 598			    IXGBE_MDIO_VENDOR_SPECIFIC_1_SPEED_STATUS)
 599				*speed = IXGBE_LINK_SPEED_1GB_FULL;
 600			break;
 601		}
 602	}
 603
 604	return status;
 605}
 606
 607/**
 608 *	ixgbe_setup_phy_link_tnx - Set and restart autoneg
 609 *	@hw: pointer to hardware structure
 610 *
 611 *	Restart autonegotiation and PHY and waits for completion.
 
 
 
 612 **/
 613s32 ixgbe_setup_phy_link_tnx(struct ixgbe_hw *hw)
 614{
 615	s32 status = 0;
 616	u32 time_out;
 617	u32 max_time_out = 10;
 618	u16 autoneg_reg = IXGBE_MII_AUTONEG_REG;
 619	bool autoneg = false;
 620	ixgbe_link_speed speed;
 621
 622	ixgbe_get_copper_link_capabilities_generic(hw, &speed, &autoneg);
 623
 624	if (speed & IXGBE_LINK_SPEED_10GB_FULL) {
 625		/* Set or unset auto-negotiation 10G advertisement */
 626		hw->phy.ops.read_reg(hw, MDIO_AN_10GBT_CTRL,
 627				     MDIO_MMD_AN,
 628				     &autoneg_reg);
 629
 630		autoneg_reg &= ~MDIO_AN_10GBT_CTRL_ADV10G;
 631		if (hw->phy.autoneg_advertised & IXGBE_LINK_SPEED_10GB_FULL)
 632			autoneg_reg |= MDIO_AN_10GBT_CTRL_ADV10G;
 633
 634		hw->phy.ops.write_reg(hw, MDIO_AN_10GBT_CTRL,
 635				      MDIO_MMD_AN,
 636				      autoneg_reg);
 637	}
 638
 639	if (speed & IXGBE_LINK_SPEED_1GB_FULL) {
 640		/* Set or unset auto-negotiation 1G advertisement */
 641		hw->phy.ops.read_reg(hw, IXGBE_MII_AUTONEG_XNP_TX_REG,
 642				     MDIO_MMD_AN,
 643				     &autoneg_reg);
 644
 645		autoneg_reg &= ~IXGBE_MII_1GBASE_T_ADVERTISE_XNP_TX;
 646		if (hw->phy.autoneg_advertised & IXGBE_LINK_SPEED_1GB_FULL)
 647			autoneg_reg |= IXGBE_MII_1GBASE_T_ADVERTISE_XNP_TX;
 648
 649		hw->phy.ops.write_reg(hw, IXGBE_MII_AUTONEG_XNP_TX_REG,
 650				      MDIO_MMD_AN,
 651				      autoneg_reg);
 652	}
 653
 654	if (speed & IXGBE_LINK_SPEED_100_FULL) {
 655		/* Set or unset auto-negotiation 100M advertisement */
 656		hw->phy.ops.read_reg(hw, MDIO_AN_ADVERTISE,
 657				     MDIO_MMD_AN,
 658				     &autoneg_reg);
 659
 660		autoneg_reg &= ~(ADVERTISE_100FULL |
 661				 ADVERTISE_100HALF);
 662		if (hw->phy.autoneg_advertised & IXGBE_LINK_SPEED_100_FULL)
 663			autoneg_reg |= ADVERTISE_100FULL;
 664
 665		hw->phy.ops.write_reg(hw, MDIO_AN_ADVERTISE,
 666				      MDIO_MMD_AN,
 667				      autoneg_reg);
 668	}
 669
 
 
 
 
 670	/* Restart PHY autonegotiation and wait for completion */
 671	hw->phy.ops.read_reg(hw, MDIO_CTRL1,
 672			     MDIO_MMD_AN, &autoneg_reg);
 673
 674	autoneg_reg |= MDIO_AN_CTRL1_RESTART;
 675
 676	hw->phy.ops.write_reg(hw, MDIO_CTRL1,
 677			      MDIO_MMD_AN, autoneg_reg);
 678
 679	/* Wait for autonegotiation to finish */
 680	for (time_out = 0; time_out < max_time_out; time_out++) {
 681		udelay(10);
 682		/* Restart PHY autonegotiation and wait for completion */
 683		status = hw->phy.ops.read_reg(hw, MDIO_STAT1,
 684					      MDIO_MMD_AN,
 685					      &autoneg_reg);
 686
 687		autoneg_reg &= MDIO_AN_STAT1_COMPLETE;
 688		if (autoneg_reg == MDIO_AN_STAT1_COMPLETE)
 689			break;
 690	}
 691
 692	if (time_out == max_time_out) {
 693		status = IXGBE_ERR_LINK_SETUP;
 694		hw_dbg(hw, "ixgbe_setup_phy_link_tnx: time out");
 695	}
 696
 697	return status;
 698}
 699
 700/**
 701 *  ixgbe_get_phy_firmware_version_tnx - Gets the PHY Firmware Version
 702 *  @hw: pointer to hardware structure
 703 *  @firmware_version: pointer to the PHY Firmware Version
 704 **/
 705s32 ixgbe_get_phy_firmware_version_tnx(struct ixgbe_hw *hw,
 706				       u16 *firmware_version)
 707{
 708	s32 status = 0;
 709
 710	status = hw->phy.ops.read_reg(hw, TNX_FW_REV,
 711				      MDIO_MMD_VEND1,
 712				      firmware_version);
 713
 714	return status;
 715}
 716
 717/**
 718 *  ixgbe_get_phy_firmware_version_generic - Gets the PHY Firmware Version
 719 *  @hw: pointer to hardware structure
 720 *  @firmware_version: pointer to the PHY Firmware Version
 721 **/
 722s32 ixgbe_get_phy_firmware_version_generic(struct ixgbe_hw *hw,
 723					   u16 *firmware_version)
 724{
 725	s32 status = 0;
 726
 727	status = hw->phy.ops.read_reg(hw, AQ_FW_REV,
 728				      MDIO_MMD_VEND1,
 729				      firmware_version);
 730
 731	return status;
 732}
 733
 734/**
 735 *  ixgbe_reset_phy_nl - Performs a PHY reset
 736 *  @hw: pointer to hardware structure
 737 **/
 738s32 ixgbe_reset_phy_nl(struct ixgbe_hw *hw)
 739{
 740	u16 phy_offset, control, eword, edata, block_crc;
 
 741	bool end_data = false;
 742	u16 list_offset, data_offset;
 743	u16 phy_data = 0;
 744	s32 ret_val = 0;
 745	u32 i;
 746
 
 
 
 
 747	hw->phy.ops.read_reg(hw, MDIO_CTRL1, MDIO_MMD_PHYXS, &phy_data);
 748
 749	/* reset the PHY and poll for completion */
 750	hw->phy.ops.write_reg(hw, MDIO_CTRL1, MDIO_MMD_PHYXS,
 751	                      (phy_data | MDIO_CTRL1_RESET));
 752
 753	for (i = 0; i < 100; i++) {
 754		hw->phy.ops.read_reg(hw, MDIO_CTRL1, MDIO_MMD_PHYXS,
 755		                     &phy_data);
 756		if ((phy_data & MDIO_CTRL1_RESET) == 0)
 757			break;
 758		usleep_range(10000, 20000);
 759	}
 760
 761	if ((phy_data & MDIO_CTRL1_RESET) != 0) {
 762		hw_dbg(hw, "PHY reset did not complete.\n");
 763		ret_val = IXGBE_ERR_PHY;
 764		goto out;
 765	}
 766
 767	/* Get init offsets */
 768	ret_val = ixgbe_get_sfp_init_sequence_offsets(hw, &list_offset,
 769	                                              &data_offset);
 770	if (ret_val != 0)
 771		goto out;
 772
 773	ret_val = hw->eeprom.ops.read(hw, data_offset, &block_crc);
 774	data_offset++;
 775	while (!end_data) {
 776		/*
 777		 * Read control word from PHY init contents offset
 778		 */
 779		ret_val = hw->eeprom.ops.read(hw, data_offset, &eword);
 780		control = (eword & IXGBE_CONTROL_MASK_NL) >>
 781		           IXGBE_CONTROL_SHIFT_NL;
 
 782		edata = eword & IXGBE_DATA_MASK_NL;
 783		switch (control) {
 784		case IXGBE_DELAY_NL:
 785			data_offset++;
 786			hw_dbg(hw, "DELAY: %d MS\n", edata);
 787			usleep_range(edata * 1000, edata * 2000);
 788			break;
 789		case IXGBE_DATA_NL:
 790			hw_dbg(hw, "DATA:\n");
 791			data_offset++;
 792			hw->eeprom.ops.read(hw, data_offset++,
 793			                    &phy_offset);
 
 
 794			for (i = 0; i < edata; i++) {
 795				hw->eeprom.ops.read(hw, data_offset, &eword);
 
 
 
 796				hw->phy.ops.write_reg(hw, phy_offset,
 797				                      MDIO_MMD_PMAPMD, eword);
 798				hw_dbg(hw, "Wrote %4.4x to %4.4x\n", eword,
 799				       phy_offset);
 800				data_offset++;
 801				phy_offset++;
 802			}
 803			break;
 804		case IXGBE_CONTROL_NL:
 805			data_offset++;
 806			hw_dbg(hw, "CONTROL:\n");
 807			if (edata == IXGBE_CONTROL_EOL_NL) {
 808				hw_dbg(hw, "EOL\n");
 809				end_data = true;
 810			} else if (edata == IXGBE_CONTROL_SOL_NL) {
 811				hw_dbg(hw, "SOL\n");
 812			} else {
 813				hw_dbg(hw, "Bad control value\n");
 814				ret_val = IXGBE_ERR_PHY;
 815				goto out;
 816			}
 817			break;
 818		default:
 819			hw_dbg(hw, "Bad control type\n");
 820			ret_val = IXGBE_ERR_PHY;
 821			goto out;
 822		}
 823	}
 824
 825out:
 826	return ret_val;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 827}
 828
 829/**
 830 *  ixgbe_identify_sfp_module_generic - Identifies SFP modules
 831 *  @hw: pointer to hardware structure
 832 *
 833 *  Searches for and identifies the SFP module and assigns appropriate PHY type.
 834 **/
 835s32 ixgbe_identify_sfp_module_generic(struct ixgbe_hw *hw)
 836{
 
 837	struct ixgbe_adapter *adapter = hw->back;
 838	s32 status = IXGBE_ERR_PHY_ADDR_INVALID;
 
 
 
 
 839	u32 vendor_oui = 0;
 840	enum ixgbe_sfp_type stored_sfp_type = hw->phy.sfp_type;
 841	u8 identifier = 0;
 842	u8 comp_codes_1g = 0;
 843	u8 comp_codes_10g = 0;
 844	u8 oui_bytes[3] = {0, 0, 0};
 845	u8 cable_tech = 0;
 846	u8 cable_spec = 0;
 847	u16 enforce_sfp = 0;
 848
 849	if (hw->mac.ops.get_media_type(hw) != ixgbe_media_type_fiber) {
 850		hw->phy.sfp_type = ixgbe_sfp_type_not_present;
 851		status = IXGBE_ERR_SFP_NOT_PRESENT;
 852		goto out;
 853	}
 854
 
 
 
 855	status = hw->phy.ops.read_i2c_eeprom(hw,
 856					     IXGBE_SFF_IDENTIFIER,
 857	                                     &identifier);
 858
 859	if (status == IXGBE_ERR_SWFW_SYNC ||
 860	    status == IXGBE_ERR_I2C ||
 861	    status == IXGBE_ERR_SFP_NOT_PRESENT)
 862		goto err_read_i2c_eeprom;
 863
 864	/* LAN ID is needed for sfp_type determination */
 865	hw->mac.ops.set_lan_id(hw);
 866
 867	if (identifier != IXGBE_SFF_IDENTIFIER_SFP) {
 868		hw->phy.type = ixgbe_phy_sfp_unsupported;
 869		status = IXGBE_ERR_SFP_NOT_SUPPORTED;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 870	} else {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 871		status = hw->phy.ops.read_i2c_eeprom(hw,
 872						     IXGBE_SFF_1GBE_COMP_CODES,
 873						     &comp_codes_1g);
 874
 875		if (status == IXGBE_ERR_SWFW_SYNC ||
 876		    status == IXGBE_ERR_I2C ||
 877		    status == IXGBE_ERR_SFP_NOT_PRESENT)
 878			goto err_read_i2c_eeprom;
 879
 880		status = hw->phy.ops.read_i2c_eeprom(hw,
 881						     IXGBE_SFF_10GBE_COMP_CODES,
 882						     &comp_codes_10g);
 883
 884		if (status == IXGBE_ERR_SWFW_SYNC ||
 885		    status == IXGBE_ERR_I2C ||
 886		    status == IXGBE_ERR_SFP_NOT_PRESENT)
 887			goto err_read_i2c_eeprom;
 
 888		status = hw->phy.ops.read_i2c_eeprom(hw,
 889						     IXGBE_SFF_CABLE_TECHNOLOGY,
 890						     &cable_tech);
 891
 892		if (status == IXGBE_ERR_SWFW_SYNC ||
 893		    status == IXGBE_ERR_I2C ||
 894		    status == IXGBE_ERR_SFP_NOT_PRESENT)
 895			goto err_read_i2c_eeprom;
 896
 897		 /* ID Module
 898		  * =========
 899		  * 0   SFP_DA_CU
 900		  * 1   SFP_SR
 901		  * 2   SFP_LR
 902		  * 3   SFP_DA_CORE0 - 82599-specific
 903		  * 4   SFP_DA_CORE1 - 82599-specific
 904		  * 5   SFP_SR/LR_CORE0 - 82599-specific
 905		  * 6   SFP_SR/LR_CORE1 - 82599-specific
 906		  * 7   SFP_act_lmt_DA_CORE0 - 82599-specific
 907		  * 8   SFP_act_lmt_DA_CORE1 - 82599-specific
 908		  * 9   SFP_1g_cu_CORE0 - 82599-specific
 909		  * 10  SFP_1g_cu_CORE1 - 82599-specific
 910		  */
 911		if (hw->mac.type == ixgbe_mac_82598EB) {
 912			if (cable_tech & IXGBE_SFF_DA_PASSIVE_CABLE)
 913				hw->phy.sfp_type = ixgbe_sfp_type_da_cu;
 914			else if (comp_codes_10g & IXGBE_SFF_10GBASESR_CAPABLE)
 915				hw->phy.sfp_type = ixgbe_sfp_type_sr;
 916			else if (comp_codes_10g & IXGBE_SFF_10GBASELR_CAPABLE)
 917				hw->phy.sfp_type = ixgbe_sfp_type_lr;
 
 918			else
 919				hw->phy.sfp_type = ixgbe_sfp_type_unknown;
 920		} else if (hw->mac.type == ixgbe_mac_82599EB) {
 921			if (cable_tech & IXGBE_SFF_DA_PASSIVE_CABLE) {
 922				if (hw->bus.lan_id == 0)
 923					hw->phy.sfp_type =
 924					             ixgbe_sfp_type_da_cu_core0;
 925				else
 926					hw->phy.sfp_type =
 927					             ixgbe_sfp_type_da_cu_core1;
 928			} else if (cable_tech & IXGBE_SFF_DA_ACTIVE_CABLE) {
 929				hw->phy.ops.read_i2c_eeprom(
 930						hw, IXGBE_SFF_CABLE_SPEC_COMP,
 931						&cable_spec);
 932				if (cable_spec &
 933				    IXGBE_SFF_DA_SPEC_ACTIVE_LIMITING) {
 934					if (hw->bus.lan_id == 0)
 935						hw->phy.sfp_type =
 936						ixgbe_sfp_type_da_act_lmt_core0;
 937					else
 938						hw->phy.sfp_type =
 939						ixgbe_sfp_type_da_act_lmt_core1;
 940				} else {
 941					hw->phy.sfp_type =
 942							ixgbe_sfp_type_unknown;
 943				}
 944			} else if (comp_codes_10g &
 945				   (IXGBE_SFF_10GBASESR_CAPABLE |
 946				    IXGBE_SFF_10GBASELR_CAPABLE)) {
 947				if (hw->bus.lan_id == 0)
 948					hw->phy.sfp_type =
 949					              ixgbe_sfp_type_srlr_core0;
 950				else
 951					hw->phy.sfp_type =
 952					              ixgbe_sfp_type_srlr_core1;
 953			} else if (comp_codes_1g & IXGBE_SFF_1GBASET_CAPABLE) {
 954				if (hw->bus.lan_id == 0)
 955					hw->phy.sfp_type =
 956						ixgbe_sfp_type_1g_cu_core0;
 957				else
 958					hw->phy.sfp_type =
 959						ixgbe_sfp_type_1g_cu_core1;
 960			} else {
 961				hw->phy.sfp_type = ixgbe_sfp_type_unknown;
 962			}
 963		}
 
 964
 965		if (hw->phy.sfp_type != stored_sfp_type)
 966			hw->phy.sfp_setup_needed = true;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 967
 968		/* Determine if the SFP+ PHY is dual speed or not. */
 969		hw->phy.multispeed_fiber = false;
 970		if (((comp_codes_1g & IXGBE_SFF_1GBASESX_CAPABLE) &&
 971		   (comp_codes_10g & IXGBE_SFF_10GBASESR_CAPABLE)) ||
 972		   ((comp_codes_1g & IXGBE_SFF_1GBASELX_CAPABLE) &&
 973		   (comp_codes_10g & IXGBE_SFF_10GBASELR_CAPABLE)))
 974			hw->phy.multispeed_fiber = true;
 975
 976		/* Determine PHY vendor */
 977		if (hw->phy.type != ixgbe_phy_nl) {
 978			hw->phy.id = identifier;
 979			status = hw->phy.ops.read_i2c_eeprom(hw,
 980			                            IXGBE_SFF_VENDOR_OUI_BYTE0,
 981			                            &oui_bytes[0]);
 982
 983			if (status == IXGBE_ERR_SWFW_SYNC ||
 984			    status == IXGBE_ERR_I2C ||
 985			    status == IXGBE_ERR_SFP_NOT_PRESENT)
 986				goto err_read_i2c_eeprom;
 987
 988			status = hw->phy.ops.read_i2c_eeprom(hw,
 989			                            IXGBE_SFF_VENDOR_OUI_BYTE1,
 990			                            &oui_bytes[1]);
 991
 992			if (status == IXGBE_ERR_SWFW_SYNC ||
 993			    status == IXGBE_ERR_I2C ||
 994			    status == IXGBE_ERR_SFP_NOT_PRESENT)
 995				goto err_read_i2c_eeprom;
 996
 997			status = hw->phy.ops.read_i2c_eeprom(hw,
 998			                            IXGBE_SFF_VENDOR_OUI_BYTE2,
 999			                            &oui_bytes[2]);
1000
1001			if (status == IXGBE_ERR_SWFW_SYNC ||
1002			    status == IXGBE_ERR_I2C ||
1003			    status == IXGBE_ERR_SFP_NOT_PRESENT)
1004				goto err_read_i2c_eeprom;
1005
1006			vendor_oui =
1007			  ((oui_bytes[0] << IXGBE_SFF_VENDOR_OUI_BYTE0_SHIFT) |
1008			   (oui_bytes[1] << IXGBE_SFF_VENDOR_OUI_BYTE1_SHIFT) |
1009			   (oui_bytes[2] << IXGBE_SFF_VENDOR_OUI_BYTE2_SHIFT));
1010
1011			switch (vendor_oui) {
1012			case IXGBE_SFF_VENDOR_OUI_TYCO:
1013				if (cable_tech & IXGBE_SFF_DA_PASSIVE_CABLE)
1014					hw->phy.type =
1015						    ixgbe_phy_sfp_passive_tyco;
1016				break;
1017			case IXGBE_SFF_VENDOR_OUI_FTL:
1018				if (cable_tech & IXGBE_SFF_DA_ACTIVE_CABLE)
1019					hw->phy.type = ixgbe_phy_sfp_ftl_active;
1020				else
1021					hw->phy.type = ixgbe_phy_sfp_ftl;
1022				break;
1023			case IXGBE_SFF_VENDOR_OUI_AVAGO:
1024				hw->phy.type = ixgbe_phy_sfp_avago;
1025				break;
1026			case IXGBE_SFF_VENDOR_OUI_INTEL:
1027				hw->phy.type = ixgbe_phy_sfp_intel;
1028				break;
1029			default:
1030				if (cable_tech & IXGBE_SFF_DA_PASSIVE_CABLE)
1031					hw->phy.type =
1032						 ixgbe_phy_sfp_passive_unknown;
1033				else if (cable_tech & IXGBE_SFF_DA_ACTIVE_CABLE)
1034					hw->phy.type =
1035						ixgbe_phy_sfp_active_unknown;
1036				else
1037					hw->phy.type = ixgbe_phy_sfp_unknown;
1038				break;
1039			}
1040		}
 
 
 
 
 
1041
1042		/* Allow any DA cable vendor */
1043		if (cable_tech & (IXGBE_SFF_DA_PASSIVE_CABLE |
1044		    IXGBE_SFF_DA_ACTIVE_CABLE)) {
1045			status = 0;
1046			goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1047		}
1048
1049		/* Verify supported 1G SFP modules */
1050		if (comp_codes_10g == 0 &&
1051		    !(hw->phy.sfp_type == ixgbe_sfp_type_1g_cu_core1 ||
1052		      hw->phy.sfp_type == ixgbe_sfp_type_1g_cu_core0)) {
 
 
 
 
 
 
1053			hw->phy.type = ixgbe_phy_sfp_unsupported;
1054			status = IXGBE_ERR_SFP_NOT_SUPPORTED;
1055			goto out;
1056		}
 
1057
1058		/* Anything else 82598-based is supported */
1059		if (hw->mac.type == ixgbe_mac_82598EB) {
1060			status = 0;
1061			goto out;
1062		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1063
1064		hw->mac.ops.get_device_caps(hw, &enforce_sfp);
1065		if (!(enforce_sfp & IXGBE_DEVICE_CAPS_ALLOW_ANY_SFP) &&
1066		    !((hw->phy.sfp_type == ixgbe_sfp_type_1g_cu_core0) ||
1067		      (hw->phy.sfp_type == ixgbe_sfp_type_1g_cu_core1))) {
1068			/* Make sure we're a supported PHY type */
1069			if (hw->phy.type == ixgbe_phy_sfp_intel) {
1070				status = 0;
1071			} else {
1072				if (hw->allow_unsupported_sfp) {
1073					e_warn(drv, "WARNING: Intel (R) Network Connections are quality tested using Intel (R) Ethernet Optics.  Using untested modules is not supported and may cause unstable operation or damage to the module or the adapter.  Intel Corporation is not responsible for any harm caused by using untested modules.");
1074					status = 0;
1075				} else {
1076					hw_dbg(hw,
1077					       "SFP+ module not supported\n");
1078					hw->phy.type =
1079						ixgbe_phy_sfp_unsupported;
1080					status = IXGBE_ERR_SFP_NOT_SUPPORTED;
1081				}
1082			}
1083		} else {
1084			status = 0;
 
1085		}
 
1086	}
1087
1088out:
1089	return status;
1090
1091err_read_i2c_eeprom:
1092	hw->phy.sfp_type = ixgbe_sfp_type_not_present;
1093	if (hw->phy.type != ixgbe_phy_nl) {
1094		hw->phy.id = 0;
1095		hw->phy.type = ixgbe_phy_unknown;
1096	}
1097	return IXGBE_ERR_SFP_NOT_PRESENT;
1098}
1099
1100/**
1101 *  ixgbe_get_sfp_init_sequence_offsets - Provides offset of PHY init sequence
1102 *  @hw: pointer to hardware structure
1103 *  @list_offset: offset to the SFP ID list
1104 *  @data_offset: offset to the SFP data block
1105 *
1106 *  Checks the MAC's EEPROM to see if it supports a given SFP+ module type, if
1107 *  so it returns the offsets to the phy init sequence block.
1108 **/
1109s32 ixgbe_get_sfp_init_sequence_offsets(struct ixgbe_hw *hw,
1110                                        u16 *list_offset,
1111                                        u16 *data_offset)
1112{
1113	u16 sfp_id;
1114	u16 sfp_type = hw->phy.sfp_type;
1115
1116	if (hw->phy.sfp_type == ixgbe_sfp_type_unknown)
1117		return IXGBE_ERR_SFP_NOT_SUPPORTED;
1118
1119	if (hw->phy.sfp_type == ixgbe_sfp_type_not_present)
1120		return IXGBE_ERR_SFP_NOT_PRESENT;
1121
1122	if ((hw->device_id == IXGBE_DEV_ID_82598_SR_DUAL_PORT_EM) &&
1123	    (hw->phy.sfp_type == ixgbe_sfp_type_da_cu))
1124		return IXGBE_ERR_SFP_NOT_SUPPORTED;
1125
1126	/*
1127	 * Limiting active cables and 1G Phys must be initialized as
1128	 * SR modules
1129	 */
1130	if (sfp_type == ixgbe_sfp_type_da_act_lmt_core0 ||
1131	    sfp_type == ixgbe_sfp_type_1g_cu_core0)
 
 
 
1132		sfp_type = ixgbe_sfp_type_srlr_core0;
1133	else if (sfp_type == ixgbe_sfp_type_da_act_lmt_core1 ||
1134	         sfp_type == ixgbe_sfp_type_1g_cu_core1)
 
 
 
1135		sfp_type = ixgbe_sfp_type_srlr_core1;
1136
1137	/* Read offset to PHY init contents */
1138	hw->eeprom.ops.read(hw, IXGBE_PHY_INIT_OFFSET_NL, list_offset);
 
 
 
 
1139
1140	if ((!*list_offset) || (*list_offset == 0xFFFF))
1141		return IXGBE_ERR_SFP_NO_INIT_SEQ_PRESENT;
1142
1143	/* Shift offset to first ID word */
1144	(*list_offset)++;
1145
1146	/*
1147	 * Find the matching SFP ID in the EEPROM
1148	 * and program the init sequence
1149	 */
1150	hw->eeprom.ops.read(hw, *list_offset, &sfp_id);
 
1151
1152	while (sfp_id != IXGBE_PHY_INIT_END_NL) {
1153		if (sfp_id == sfp_type) {
1154			(*list_offset)++;
1155			hw->eeprom.ops.read(hw, *list_offset, data_offset);
 
1156			if ((!*data_offset) || (*data_offset == 0xFFFF)) {
1157				hw_dbg(hw, "SFP+ module not supported\n");
1158				return IXGBE_ERR_SFP_NOT_SUPPORTED;
1159			} else {
1160				break;
1161			}
1162		} else {
1163			(*list_offset) += 2;
1164			if (hw->eeprom.ops.read(hw, *list_offset, &sfp_id))
1165				return IXGBE_ERR_PHY;
1166		}
1167	}
1168
1169	if (sfp_id == IXGBE_PHY_INIT_END_NL) {
1170		hw_dbg(hw, "No matching SFP+ module found\n");
1171		return IXGBE_ERR_SFP_NOT_SUPPORTED;
1172	}
1173
1174	return 0;
 
 
 
 
1175}
1176
1177/**
1178 *  ixgbe_read_i2c_eeprom_generic - Reads 8 bit EEPROM word over I2C interface
1179 *  @hw: pointer to hardware structure
1180 *  @byte_offset: EEPROM byte offset to read
1181 *  @eeprom_data: value read
1182 *
1183 *  Performs byte read operation to SFP module's EEPROM over I2C interface.
1184 **/
1185s32 ixgbe_read_i2c_eeprom_generic(struct ixgbe_hw *hw, u8 byte_offset,
1186                                  u8 *eeprom_data)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1187{
1188	return hw->phy.ops.read_i2c_byte(hw, byte_offset,
1189	                                 IXGBE_I2C_EEPROM_DEV_ADDR,
1190	                                 eeprom_data);
1191}
1192
1193/**
1194 *  ixgbe_write_i2c_eeprom_generic - Writes 8 bit EEPROM word over I2C interface
1195 *  @hw: pointer to hardware structure
1196 *  @byte_offset: EEPROM byte offset to write
1197 *  @eeprom_data: value to write
1198 *
1199 *  Performs byte write operation to SFP module's EEPROM over I2C interface.
1200 **/
1201s32 ixgbe_write_i2c_eeprom_generic(struct ixgbe_hw *hw, u8 byte_offset,
1202                                   u8 eeprom_data)
1203{
1204	return hw->phy.ops.write_i2c_byte(hw, byte_offset,
1205	                                  IXGBE_I2C_EEPROM_DEV_ADDR,
1206	                                  eeprom_data);
1207}
1208
1209/**
1210 *  ixgbe_read_i2c_byte_generic - Reads 8 bit word over I2C
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1211 *  @hw: pointer to hardware structure
1212 *  @byte_offset: byte offset to read
 
1213 *  @data: value read
 
1214 *
1215 *  Performs byte read operation to SFP module's EEPROM over I2C interface at
1216 *  a specified device address.
1217 **/
1218s32 ixgbe_read_i2c_byte_generic(struct ixgbe_hw *hw, u8 byte_offset,
1219                                u8 dev_addr, u8 *data)
1220{
1221	s32 status = 0;
1222	u32 max_retry = 10;
 
1223	u32 retry = 0;
1224	u16 swfw_mask = 0;
1225	bool nack = true;
 
 
 
 
 
1226	*data = 0;
1227
1228	if (IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_LAN_ID_1)
1229		swfw_mask = IXGBE_GSSR_PHY1_SM;
1230	else
1231		swfw_mask = IXGBE_GSSR_PHY0_SM;
1232
1233	do {
1234		if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask) != 0) {
1235			status = IXGBE_ERR_SWFW_SYNC;
1236			goto read_byte_out;
1237		}
1238
1239		ixgbe_i2c_start(hw);
1240
1241		/* Device Address and write indication */
1242		status = ixgbe_clock_out_i2c_byte(hw, dev_addr);
1243		if (status != 0)
1244			goto fail;
1245
1246		status = ixgbe_get_i2c_ack(hw);
1247		if (status != 0)
1248			goto fail;
1249
1250		status = ixgbe_clock_out_i2c_byte(hw, byte_offset);
1251		if (status != 0)
1252			goto fail;
1253
1254		status = ixgbe_get_i2c_ack(hw);
1255		if (status != 0)
1256			goto fail;
1257
1258		ixgbe_i2c_start(hw);
1259
1260		/* Device Address and read indication */
1261		status = ixgbe_clock_out_i2c_byte(hw, (dev_addr | 0x1));
1262		if (status != 0)
1263			goto fail;
1264
1265		status = ixgbe_get_i2c_ack(hw);
1266		if (status != 0)
1267			goto fail;
1268
1269		status = ixgbe_clock_in_i2c_byte(hw, data);
1270		if (status != 0)
1271			goto fail;
1272
1273		status = ixgbe_clock_out_i2c_bit(hw, nack);
1274		if (status != 0)
1275			goto fail;
1276
1277		ixgbe_i2c_stop(hw);
1278		break;
 
 
1279
1280fail:
1281		hw->mac.ops.release_swfw_sync(hw, swfw_mask);
1282		msleep(100);
1283		ixgbe_i2c_bus_clear(hw);
 
 
 
 
1284		retry++;
1285		if (retry < max_retry)
1286			hw_dbg(hw, "I2C byte read error - Retrying.\n");
1287		else
1288			hw_dbg(hw, "I2C byte read error.\n");
1289
1290	} while (retry < max_retry);
1291
1292	hw->mac.ops.release_swfw_sync(hw, swfw_mask);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1293
1294read_byte_out:
1295	return status;
 
 
 
 
 
 
 
 
 
 
 
 
 
1296}
1297
1298/**
1299 *  ixgbe_write_i2c_byte_generic - Writes 8 bit word over I2C
1300 *  @hw: pointer to hardware structure
1301 *  @byte_offset: byte offset to write
 
1302 *  @data: value to write
 
1303 *
1304 *  Performs byte write operation to SFP module's EEPROM over I2C interface at
1305 *  a specified device address.
1306 **/
1307s32 ixgbe_write_i2c_byte_generic(struct ixgbe_hw *hw, u8 byte_offset,
1308                                 u8 dev_addr, u8 data)
1309{
1310	s32 status = 0;
1311	u32 max_retry = 1;
1312	u32 retry = 0;
1313	u16 swfw_mask = 0;
1314
1315	if (IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_LAN_ID_1)
1316		swfw_mask = IXGBE_GSSR_PHY1_SM;
1317	else
1318		swfw_mask = IXGBE_GSSR_PHY0_SM;
1319
1320	if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask) != 0) {
1321		status = IXGBE_ERR_SWFW_SYNC;
1322		goto write_byte_out;
1323	}
1324
1325	do {
1326		ixgbe_i2c_start(hw);
1327
1328		status = ixgbe_clock_out_i2c_byte(hw, dev_addr);
1329		if (status != 0)
1330			goto fail;
1331
1332		status = ixgbe_get_i2c_ack(hw);
1333		if (status != 0)
1334			goto fail;
1335
1336		status = ixgbe_clock_out_i2c_byte(hw, byte_offset);
1337		if (status != 0)
1338			goto fail;
1339
1340		status = ixgbe_get_i2c_ack(hw);
1341		if (status != 0)
1342			goto fail;
1343
1344		status = ixgbe_clock_out_i2c_byte(hw, data);
1345		if (status != 0)
1346			goto fail;
1347
1348		status = ixgbe_get_i2c_ack(hw);
1349		if (status != 0)
1350			goto fail;
1351
1352		ixgbe_i2c_stop(hw);
1353		break;
 
 
1354
1355fail:
1356		ixgbe_i2c_bus_clear(hw);
1357		retry++;
1358		if (retry < max_retry)
1359			hw_dbg(hw, "I2C byte write error - Retrying.\n");
1360		else
1361			hw_dbg(hw, "I2C byte write error.\n");
1362	} while (retry < max_retry);
1363
1364	hw->mac.ops.release_swfw_sync(hw, swfw_mask);
 
1365
1366write_byte_out:
1367	return status;
1368}
1369
1370/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1371 *  ixgbe_i2c_start - Sets I2C start condition
1372 *  @hw: pointer to hardware structure
1373 *
1374 *  Sets I2C start condition (High -> Low on SDA while SCL is High)
 
1375 **/
1376static void ixgbe_i2c_start(struct ixgbe_hw *hw)
1377{
1378	u32 i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL);
 
 
1379
1380	/* Start condition must begin with data and clock high */
1381	ixgbe_set_i2c_data(hw, &i2cctl, 1);
1382	ixgbe_raise_i2c_clk(hw, &i2cctl);
1383
1384	/* Setup time for start condition (4.7us) */
1385	udelay(IXGBE_I2C_T_SU_STA);
1386
1387	ixgbe_set_i2c_data(hw, &i2cctl, 0);
1388
1389	/* Hold time for start condition (4us) */
1390	udelay(IXGBE_I2C_T_HD_STA);
1391
1392	ixgbe_lower_i2c_clk(hw, &i2cctl);
1393
1394	/* Minimum low period of clock is 4.7 us */
1395	udelay(IXGBE_I2C_T_LOW);
1396
1397}
1398
1399/**
1400 *  ixgbe_i2c_stop - Sets I2C stop condition
1401 *  @hw: pointer to hardware structure
1402 *
1403 *  Sets I2C stop condition (Low -> High on SDA while SCL is High)
 
 
1404 **/
1405static void ixgbe_i2c_stop(struct ixgbe_hw *hw)
1406{
1407	u32 i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL);
 
 
 
1408
1409	/* Stop condition must begin with data low and clock high */
1410	ixgbe_set_i2c_data(hw, &i2cctl, 0);
1411	ixgbe_raise_i2c_clk(hw, &i2cctl);
1412
1413	/* Setup time for stop condition (4us) */
1414	udelay(IXGBE_I2C_T_SU_STO);
1415
1416	ixgbe_set_i2c_data(hw, &i2cctl, 1);
1417
1418	/* bus free time between stop and start (4.7us)*/
1419	udelay(IXGBE_I2C_T_BUF);
 
 
 
 
 
 
 
1420}
1421
1422/**
1423 *  ixgbe_clock_in_i2c_byte - Clocks in one byte via I2C
1424 *  @hw: pointer to hardware structure
1425 *  @data: data byte to clock in
1426 *
1427 *  Clocks in one byte data via I2C data/clock
1428 **/
1429static s32 ixgbe_clock_in_i2c_byte(struct ixgbe_hw *hw, u8 *data)
1430{
1431	s32 i;
1432	bool bit = false;
 
1433
 
1434	for (i = 7; i >= 0; i--) {
1435		ixgbe_clock_in_i2c_bit(hw, &bit);
1436		*data |= bit << i;
1437	}
1438
1439	return 0;
1440}
1441
1442/**
1443 *  ixgbe_clock_out_i2c_byte - Clocks out one byte via I2C
1444 *  @hw: pointer to hardware structure
1445 *  @data: data byte clocked out
1446 *
1447 *  Clocks out one byte data via I2C data/clock
1448 **/
1449static s32 ixgbe_clock_out_i2c_byte(struct ixgbe_hw *hw, u8 data)
1450{
1451	s32 status = 0;
1452	s32 i;
1453	u32 i2cctl;
1454	bool bit = false;
1455
1456	for (i = 7; i >= 0; i--) {
1457		bit = (data >> i) & 0x1;
1458		status = ixgbe_clock_out_i2c_bit(hw, bit);
1459
1460		if (status != 0)
1461			break;
1462	}
1463
1464	/* Release SDA line (set high) */
1465	i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL);
1466	i2cctl |= IXGBE_I2C_DATA_OUT;
1467	IXGBE_WRITE_REG(hw, IXGBE_I2CCTL, i2cctl);
 
1468	IXGBE_WRITE_FLUSH(hw);
1469
1470	return status;
1471}
1472
1473/**
1474 *  ixgbe_get_i2c_ack - Polls for I2C ACK
1475 *  @hw: pointer to hardware structure
1476 *
1477 *  Clocks in/out one bit via I2C data/clock
1478 **/
1479static s32 ixgbe_get_i2c_ack(struct ixgbe_hw *hw)
1480{
1481	s32 status = 0;
1482	u32 i = 0;
1483	u32 i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL);
1484	u32 timeout = 10;
1485	bool ack = true;
 
 
1486
 
 
 
 
 
 
1487	ixgbe_raise_i2c_clk(hw, &i2cctl);
1488
1489
1490	/* Minimum high period of clock is 4us */
1491	udelay(IXGBE_I2C_T_HIGH);
1492
1493	/* Poll for ACK.  Note that ACK in I2C spec is
1494	 * transition from 1 to 0 */
1495	for (i = 0; i < timeout; i++) {
1496		i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL);
1497		ack = ixgbe_get_i2c_data(&i2cctl);
1498
1499		udelay(1);
1500		if (ack == 0)
1501			break;
1502	}
1503
1504	if (ack == 1) {
1505		hw_dbg(hw, "I2C ack was not received.\n");
1506		status = IXGBE_ERR_I2C;
1507	}
1508
1509	ixgbe_lower_i2c_clk(hw, &i2cctl);
1510
1511	/* Minimum low period of clock is 4.7 us */
1512	udelay(IXGBE_I2C_T_LOW);
1513
1514	return status;
1515}
1516
1517/**
1518 *  ixgbe_clock_in_i2c_bit - Clocks in one bit via I2C data/clock
1519 *  @hw: pointer to hardware structure
1520 *  @data: read data value
1521 *
1522 *  Clocks in one bit via I2C data/clock
1523 **/
1524static s32 ixgbe_clock_in_i2c_bit(struct ixgbe_hw *hw, bool *data)
1525{
1526	u32 i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL);
 
1527
 
 
 
 
 
 
1528	ixgbe_raise_i2c_clk(hw, &i2cctl);
1529
1530	/* Minimum high period of clock is 4us */
1531	udelay(IXGBE_I2C_T_HIGH);
1532
1533	i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL);
1534	*data = ixgbe_get_i2c_data(&i2cctl);
1535
1536	ixgbe_lower_i2c_clk(hw, &i2cctl);
1537
1538	/* Minimum low period of clock is 4.7 us */
1539	udelay(IXGBE_I2C_T_LOW);
1540
1541	return 0;
1542}
1543
1544/**
1545 *  ixgbe_clock_out_i2c_bit - Clocks in/out one bit via I2C data/clock
1546 *  @hw: pointer to hardware structure
1547 *  @data: data value to write
1548 *
1549 *  Clocks out one bit via I2C data/clock
1550 **/
1551static s32 ixgbe_clock_out_i2c_bit(struct ixgbe_hw *hw, bool data)
1552{
1553	s32 status;
1554	u32 i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL);
1555
1556	status = ixgbe_set_i2c_data(hw, &i2cctl, data);
1557	if (status == 0) {
1558		ixgbe_raise_i2c_clk(hw, &i2cctl);
1559
1560		/* Minimum high period of clock is 4us */
1561		udelay(IXGBE_I2C_T_HIGH);
1562
1563		ixgbe_lower_i2c_clk(hw, &i2cctl);
1564
1565		/* Minimum low period of clock is 4.7 us.
1566		 * This also takes care of the data hold time.
1567		 */
1568		udelay(IXGBE_I2C_T_LOW);
1569	} else {
1570		status = IXGBE_ERR_I2C;
1571		hw_dbg(hw, "I2C data was not set to %X\n", data);
 
1572	}
1573
1574	return status;
1575}
1576/**
1577 *  ixgbe_raise_i2c_clk - Raises the I2C SCL clock
1578 *  @hw: pointer to hardware structure
1579 *  @i2cctl: Current value of I2CCTL register
1580 *
1581 *  Raises the I2C clock line '0'->'1'
 
1582 **/
1583static void ixgbe_raise_i2c_clk(struct ixgbe_hw *hw, u32 *i2cctl)
1584{
 
1585	u32 i = 0;
1586	u32 timeout = IXGBE_I2C_CLOCK_STRETCHING_TIMEOUT;
1587	u32 i2cctl_r = 0;
1588
 
 
 
 
 
1589	for (i = 0; i < timeout; i++) {
1590		*i2cctl |= IXGBE_I2C_CLK_OUT;
1591		IXGBE_WRITE_REG(hw, IXGBE_I2CCTL, *i2cctl);
1592		IXGBE_WRITE_FLUSH(hw);
1593		/* SCL rise time (1000ns) */
1594		udelay(IXGBE_I2C_T_RISE);
1595
1596		i2cctl_r = IXGBE_READ_REG(hw, IXGBE_I2CCTL);
1597		if (i2cctl_r & IXGBE_I2C_CLK_IN)
1598			break;
1599	}
1600}
1601
1602/**
1603 *  ixgbe_lower_i2c_clk - Lowers the I2C SCL clock
1604 *  @hw: pointer to hardware structure
1605 *  @i2cctl: Current value of I2CCTL register
1606 *
1607 *  Lowers the I2C clock line '1'->'0'
 
1608 **/
1609static void ixgbe_lower_i2c_clk(struct ixgbe_hw *hw, u32 *i2cctl)
1610{
1611
1612	*i2cctl &= ~IXGBE_I2C_CLK_OUT;
 
1613
1614	IXGBE_WRITE_REG(hw, IXGBE_I2CCTL, *i2cctl);
1615	IXGBE_WRITE_FLUSH(hw);
1616
1617	/* SCL fall time (300ns) */
1618	udelay(IXGBE_I2C_T_FALL);
1619}
1620
1621/**
1622 *  ixgbe_set_i2c_data - Sets the I2C data bit
1623 *  @hw: pointer to hardware structure
1624 *  @i2cctl: Current value of I2CCTL register
1625 *  @data: I2C data value (0 or 1) to set
1626 *
1627 *  Sets the I2C data bit
 
1628 **/
1629static s32 ixgbe_set_i2c_data(struct ixgbe_hw *hw, u32 *i2cctl, bool data)
1630{
1631	s32 status = 0;
1632
1633	if (data)
1634		*i2cctl |= IXGBE_I2C_DATA_OUT;
1635	else
1636		*i2cctl &= ~IXGBE_I2C_DATA_OUT;
 
1637
1638	IXGBE_WRITE_REG(hw, IXGBE_I2CCTL, *i2cctl);
1639	IXGBE_WRITE_FLUSH(hw);
1640
1641	/* Data rise/fall (1000ns/300ns) and set-up time (250ns) */
1642	udelay(IXGBE_I2C_T_RISE + IXGBE_I2C_T_FALL + IXGBE_I2C_T_SU_DATA);
1643
 
 
 
 
 
 
 
 
1644	/* Verify data was set correctly */
1645	*i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL);
1646	if (data != ixgbe_get_i2c_data(i2cctl)) {
1647		status = IXGBE_ERR_I2C;
1648		hw_dbg(hw, "Error - I2C data was not set to %X.\n", data);
 
1649	}
1650
1651	return status;
1652}
1653
1654/**
1655 *  ixgbe_get_i2c_data - Reads the I2C SDA data bit
1656 *  @hw: pointer to hardware structure
1657 *  @i2cctl: Current value of I2CCTL register
1658 *
1659 *  Returns the I2C data bit value
 
1660 **/
1661static bool ixgbe_get_i2c_data(u32 *i2cctl)
1662{
1663	bool data;
1664
1665	if (*i2cctl & IXGBE_I2C_DATA_IN)
1666		data = true;
1667	else
1668		data = false;
 
 
1669
1670	return data;
 
 
1671}
1672
1673/**
1674 *  ixgbe_i2c_bus_clear - Clears the I2C bus
1675 *  @hw: pointer to hardware structure
1676 *
1677 *  Clears the I2C bus by sending nine clock pulses.
1678 *  Used when data line is stuck low.
1679 **/
1680static void ixgbe_i2c_bus_clear(struct ixgbe_hw *hw)
1681{
1682	u32 i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL);
1683	u32 i;
1684
1685	ixgbe_i2c_start(hw);
 
1686
1687	ixgbe_set_i2c_data(hw, &i2cctl, 1);
1688
1689	for (i = 0; i < 9; i++) {
1690		ixgbe_raise_i2c_clk(hw, &i2cctl);
1691
1692		/* Min high period of clock is 4us */
1693		udelay(IXGBE_I2C_T_HIGH);
1694
1695		ixgbe_lower_i2c_clk(hw, &i2cctl);
1696
1697		/* Min low period of clock is 4.7us*/
1698		udelay(IXGBE_I2C_T_LOW);
1699	}
1700
1701	ixgbe_i2c_start(hw);
1702
1703	/* Put the i2c bus back to default state */
1704	ixgbe_i2c_stop(hw);
1705}
1706
1707/**
1708 *  ixgbe_tn_check_overtemp - Checks if an overtemp occurred.
1709 *  @hw: pointer to hardware structure
1710 *
1711 *  Checks if the LASI temp alarm status was triggered due to overtemp
 
 
1712 **/
1713s32 ixgbe_tn_check_overtemp(struct ixgbe_hw *hw)
1714{
1715	s32 status = 0;
1716	u16 phy_data = 0;
 
1717
1718	if (hw->device_id != IXGBE_DEV_ID_82599_T3_LOM)
1719		goto out;
1720
1721	/* Check that the LASI temp alarm status was triggered */
1722	hw->phy.ops.read_reg(hw, IXGBE_TN_LASI_STATUS_REG,
1723	                     MDIO_MMD_PMAPMD, &phy_data);
 
 
 
 
 
1724
1725	if (!(phy_data & IXGBE_TN_LASI_STATUS_TEMP_ALARM))
1726		goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1727
1728	status = IXGBE_ERR_OVERTEMP;
1729out:
1730	return status;
1731}