Linux Audio

Check our new training course

Loading...
Note: File does not exist in v5.4.
   1// SPDX-License-Identifier: GPL-2.0-only
   2/* Copyright (C) 2023 Intel Corporation */
   3
   4#include <net/libeth/rx.h>
   5#include <net/libeth/tx.h>
   6
   7#include "idpf.h"
   8#include "idpf_virtchnl.h"
   9
  10struct idpf_tx_stash {
  11	struct hlist_node hlist;
  12	struct libeth_sqe buf;
  13};
  14
  15#define idpf_tx_buf_compl_tag(buf)	(*(u32 *)&(buf)->priv)
  16LIBETH_SQE_CHECK_PRIV(u32);
  17
  18static bool idpf_chk_linearize(struct sk_buff *skb, unsigned int max_bufs,
  19			       unsigned int count);
  20
  21/**
  22 * idpf_buf_lifo_push - push a buffer pointer onto stack
  23 * @stack: pointer to stack struct
  24 * @buf: pointer to buf to push
  25 *
  26 * Returns 0 on success, negative on failure
  27 **/
  28static int idpf_buf_lifo_push(struct idpf_buf_lifo *stack,
  29			      struct idpf_tx_stash *buf)
  30{
  31	if (unlikely(stack->top == stack->size))
  32		return -ENOSPC;
  33
  34	stack->bufs[stack->top++] = buf;
  35
  36	return 0;
  37}
  38
  39/**
  40 * idpf_buf_lifo_pop - pop a buffer pointer from stack
  41 * @stack: pointer to stack struct
  42 **/
  43static struct idpf_tx_stash *idpf_buf_lifo_pop(struct idpf_buf_lifo *stack)
  44{
  45	if (unlikely(!stack->top))
  46		return NULL;
  47
  48	return stack->bufs[--stack->top];
  49}
  50
  51/**
  52 * idpf_tx_timeout - Respond to a Tx Hang
  53 * @netdev: network interface device structure
  54 * @txqueue: TX queue
  55 */
  56void idpf_tx_timeout(struct net_device *netdev, unsigned int txqueue)
  57{
  58	struct idpf_adapter *adapter = idpf_netdev_to_adapter(netdev);
  59
  60	adapter->tx_timeout_count++;
  61
  62	netdev_err(netdev, "Detected Tx timeout: Count %d, Queue %d\n",
  63		   adapter->tx_timeout_count, txqueue);
  64	if (!idpf_is_reset_in_prog(adapter)) {
  65		set_bit(IDPF_HR_FUNC_RESET, adapter->flags);
  66		queue_delayed_work(adapter->vc_event_wq,
  67				   &adapter->vc_event_task,
  68				   msecs_to_jiffies(10));
  69	}
  70}
  71
  72/**
  73 * idpf_tx_buf_rel_all - Free any empty Tx buffers
  74 * @txq: queue to be cleaned
  75 */
  76static void idpf_tx_buf_rel_all(struct idpf_tx_queue *txq)
  77{
  78	struct libeth_sq_napi_stats ss = { };
  79	struct idpf_buf_lifo *buf_stack;
  80	struct idpf_tx_stash *stash;
  81	struct libeth_cq_pp cp = {
  82		.dev	= txq->dev,
  83		.ss	= &ss,
  84	};
  85	struct hlist_node *tmp;
  86	u32 i, tag;
  87
  88	/* Buffers already cleared, nothing to do */
  89	if (!txq->tx_buf)
  90		return;
  91
  92	/* Free all the Tx buffer sk_buffs */
  93	for (i = 0; i < txq->desc_count; i++)
  94		libeth_tx_complete(&txq->tx_buf[i], &cp);
  95
  96	kfree(txq->tx_buf);
  97	txq->tx_buf = NULL;
  98
  99	if (!idpf_queue_has(FLOW_SCH_EN, txq))
 100		return;
 101
 102	buf_stack = &txq->stash->buf_stack;
 103	if (!buf_stack->bufs)
 104		return;
 105
 106	/*
 107	 * If a Tx timeout occurred, there are potentially still bufs in the
 108	 * hash table, free them here.
 109	 */
 110	hash_for_each_safe(txq->stash->sched_buf_hash, tag, tmp, stash,
 111			   hlist) {
 112		if (!stash)
 113			continue;
 114
 115		libeth_tx_complete(&stash->buf, &cp);
 116		hash_del(&stash->hlist);
 117		idpf_buf_lifo_push(buf_stack, stash);
 118	}
 119
 120	for (i = 0; i < buf_stack->size; i++)
 121		kfree(buf_stack->bufs[i]);
 122
 123	kfree(buf_stack->bufs);
 124	buf_stack->bufs = NULL;
 125}
 126
 127/**
 128 * idpf_tx_desc_rel - Free Tx resources per queue
 129 * @txq: Tx descriptor ring for a specific queue
 130 *
 131 * Free all transmit software resources
 132 */
 133static void idpf_tx_desc_rel(struct idpf_tx_queue *txq)
 134{
 135	idpf_tx_buf_rel_all(txq);
 136	netdev_tx_reset_subqueue(txq->netdev, txq->idx);
 137
 138	if (!txq->desc_ring)
 139		return;
 140
 141	dmam_free_coherent(txq->dev, txq->size, txq->desc_ring, txq->dma);
 142	txq->desc_ring = NULL;
 143	txq->next_to_use = 0;
 144	txq->next_to_clean = 0;
 145}
 146
 147/**
 148 * idpf_compl_desc_rel - Free completion resources per queue
 149 * @complq: completion queue
 150 *
 151 * Free all completion software resources.
 152 */
 153static void idpf_compl_desc_rel(struct idpf_compl_queue *complq)
 154{
 155	if (!complq->comp)
 156		return;
 157
 158	dma_free_coherent(complq->netdev->dev.parent, complq->size,
 159			  complq->comp, complq->dma);
 160	complq->comp = NULL;
 161	complq->next_to_use = 0;
 162	complq->next_to_clean = 0;
 163}
 164
 165/**
 166 * idpf_tx_desc_rel_all - Free Tx Resources for All Queues
 167 * @vport: virtual port structure
 168 *
 169 * Free all transmit software resources
 170 */
 171static void idpf_tx_desc_rel_all(struct idpf_vport *vport)
 172{
 173	int i, j;
 174
 175	if (!vport->txq_grps)
 176		return;
 177
 178	for (i = 0; i < vport->num_txq_grp; i++) {
 179		struct idpf_txq_group *txq_grp = &vport->txq_grps[i];
 180
 181		for (j = 0; j < txq_grp->num_txq; j++)
 182			idpf_tx_desc_rel(txq_grp->txqs[j]);
 183
 184		if (idpf_is_queue_model_split(vport->txq_model))
 185			idpf_compl_desc_rel(txq_grp->complq);
 186	}
 187}
 188
 189/**
 190 * idpf_tx_buf_alloc_all - Allocate memory for all buffer resources
 191 * @tx_q: queue for which the buffers are allocated
 192 *
 193 * Returns 0 on success, negative on failure
 194 */
 195static int idpf_tx_buf_alloc_all(struct idpf_tx_queue *tx_q)
 196{
 197	struct idpf_buf_lifo *buf_stack;
 198	int buf_size;
 199	int i;
 200
 201	/* Allocate book keeping buffers only. Buffers to be supplied to HW
 202	 * are allocated by kernel network stack and received as part of skb
 203	 */
 204	buf_size = sizeof(struct idpf_tx_buf) * tx_q->desc_count;
 205	tx_q->tx_buf = kzalloc(buf_size, GFP_KERNEL);
 206	if (!tx_q->tx_buf)
 207		return -ENOMEM;
 208
 209	if (!idpf_queue_has(FLOW_SCH_EN, tx_q))
 210		return 0;
 211
 212	buf_stack = &tx_q->stash->buf_stack;
 213
 214	/* Initialize tx buf stack for out-of-order completions if
 215	 * flow scheduling offload is enabled
 216	 */
 217	buf_stack->bufs = kcalloc(tx_q->desc_count, sizeof(*buf_stack->bufs),
 218				  GFP_KERNEL);
 219	if (!buf_stack->bufs)
 220		return -ENOMEM;
 221
 222	buf_stack->size = tx_q->desc_count;
 223	buf_stack->top = tx_q->desc_count;
 224
 225	for (i = 0; i < tx_q->desc_count; i++) {
 226		buf_stack->bufs[i] = kzalloc(sizeof(*buf_stack->bufs[i]),
 227					     GFP_KERNEL);
 228		if (!buf_stack->bufs[i])
 229			return -ENOMEM;
 230	}
 231
 232	return 0;
 233}
 234
 235/**
 236 * idpf_tx_desc_alloc - Allocate the Tx descriptors
 237 * @vport: vport to allocate resources for
 238 * @tx_q: the tx ring to set up
 239 *
 240 * Returns 0 on success, negative on failure
 241 */
 242static int idpf_tx_desc_alloc(const struct idpf_vport *vport,
 243			      struct idpf_tx_queue *tx_q)
 244{
 245	struct device *dev = tx_q->dev;
 246	int err;
 247
 248	err = idpf_tx_buf_alloc_all(tx_q);
 249	if (err)
 250		goto err_alloc;
 251
 252	tx_q->size = tx_q->desc_count * sizeof(*tx_q->base_tx);
 253
 254	/* Allocate descriptors also round up to nearest 4K */
 255	tx_q->size = ALIGN(tx_q->size, 4096);
 256	tx_q->desc_ring = dmam_alloc_coherent(dev, tx_q->size, &tx_q->dma,
 257					      GFP_KERNEL);
 258	if (!tx_q->desc_ring) {
 259		dev_err(dev, "Unable to allocate memory for the Tx descriptor ring, size=%d\n",
 260			tx_q->size);
 261		err = -ENOMEM;
 262		goto err_alloc;
 263	}
 264
 265	tx_q->next_to_use = 0;
 266	tx_q->next_to_clean = 0;
 267	idpf_queue_set(GEN_CHK, tx_q);
 268
 269	return 0;
 270
 271err_alloc:
 272	idpf_tx_desc_rel(tx_q);
 273
 274	return err;
 275}
 276
 277/**
 278 * idpf_compl_desc_alloc - allocate completion descriptors
 279 * @vport: vport to allocate resources for
 280 * @complq: completion queue to set up
 281 *
 282 * Return: 0 on success, -errno on failure.
 283 */
 284static int idpf_compl_desc_alloc(const struct idpf_vport *vport,
 285				 struct idpf_compl_queue *complq)
 286{
 287	complq->size = array_size(complq->desc_count, sizeof(*complq->comp));
 288
 289	complq->comp = dma_alloc_coherent(complq->netdev->dev.parent,
 290					  complq->size, &complq->dma,
 291					  GFP_KERNEL);
 292	if (!complq->comp)
 293		return -ENOMEM;
 294
 295	complq->next_to_use = 0;
 296	complq->next_to_clean = 0;
 297	idpf_queue_set(GEN_CHK, complq);
 298
 299	return 0;
 300}
 301
 302/**
 303 * idpf_tx_desc_alloc_all - allocate all queues Tx resources
 304 * @vport: virtual port private structure
 305 *
 306 * Returns 0 on success, negative on failure
 307 */
 308static int idpf_tx_desc_alloc_all(struct idpf_vport *vport)
 309{
 310	int err = 0;
 311	int i, j;
 312
 313	/* Setup buffer queues. In single queue model buffer queues and
 314	 * completion queues will be same
 315	 */
 316	for (i = 0; i < vport->num_txq_grp; i++) {
 317		for (j = 0; j < vport->txq_grps[i].num_txq; j++) {
 318			struct idpf_tx_queue *txq = vport->txq_grps[i].txqs[j];
 319			u8 gen_bits = 0;
 320			u16 bufidx_mask;
 321
 322			err = idpf_tx_desc_alloc(vport, txq);
 323			if (err) {
 324				pci_err(vport->adapter->pdev,
 325					"Allocation for Tx Queue %u failed\n",
 326					i);
 327				goto err_out;
 328			}
 329
 330			if (!idpf_is_queue_model_split(vport->txq_model))
 331				continue;
 332
 333			txq->compl_tag_cur_gen = 0;
 334
 335			/* Determine the number of bits in the bufid
 336			 * mask and add one to get the start of the
 337			 * generation bits
 338			 */
 339			bufidx_mask = txq->desc_count - 1;
 340			while (bufidx_mask >> 1) {
 341				txq->compl_tag_gen_s++;
 342				bufidx_mask = bufidx_mask >> 1;
 343			}
 344			txq->compl_tag_gen_s++;
 345
 346			gen_bits = IDPF_TX_SPLITQ_COMPL_TAG_WIDTH -
 347							txq->compl_tag_gen_s;
 348			txq->compl_tag_gen_max = GETMAXVAL(gen_bits);
 349
 350			/* Set bufid mask based on location of first
 351			 * gen bit; it cannot simply be the descriptor
 352			 * ring size-1 since we can have size values
 353			 * where not all of those bits are set.
 354			 */
 355			txq->compl_tag_bufid_m =
 356				GETMAXVAL(txq->compl_tag_gen_s);
 357		}
 358
 359		if (!idpf_is_queue_model_split(vport->txq_model))
 360			continue;
 361
 362		/* Setup completion queues */
 363		err = idpf_compl_desc_alloc(vport, vport->txq_grps[i].complq);
 364		if (err) {
 365			pci_err(vport->adapter->pdev,
 366				"Allocation for Tx Completion Queue %u failed\n",
 367				i);
 368			goto err_out;
 369		}
 370	}
 371
 372err_out:
 373	if (err)
 374		idpf_tx_desc_rel_all(vport);
 375
 376	return err;
 377}
 378
 379/**
 380 * idpf_rx_page_rel - Release an rx buffer page
 381 * @rx_buf: the buffer to free
 382 */
 383static void idpf_rx_page_rel(struct libeth_fqe *rx_buf)
 384{
 385	if (unlikely(!rx_buf->page))
 386		return;
 387
 388	page_pool_put_full_page(rx_buf->page->pp, rx_buf->page, false);
 389
 390	rx_buf->page = NULL;
 391	rx_buf->offset = 0;
 392}
 393
 394/**
 395 * idpf_rx_hdr_buf_rel_all - Release header buffer memory
 396 * @bufq: queue to use
 397 */
 398static void idpf_rx_hdr_buf_rel_all(struct idpf_buf_queue *bufq)
 399{
 400	struct libeth_fq fq = {
 401		.fqes	= bufq->hdr_buf,
 402		.pp	= bufq->hdr_pp,
 403	};
 404
 405	for (u32 i = 0; i < bufq->desc_count; i++)
 406		idpf_rx_page_rel(&bufq->hdr_buf[i]);
 407
 408	libeth_rx_fq_destroy(&fq);
 409	bufq->hdr_buf = NULL;
 410	bufq->hdr_pp = NULL;
 411}
 412
 413/**
 414 * idpf_rx_buf_rel_bufq - Free all Rx buffer resources for a buffer queue
 415 * @bufq: queue to be cleaned
 416 */
 417static void idpf_rx_buf_rel_bufq(struct idpf_buf_queue *bufq)
 418{
 419	struct libeth_fq fq = {
 420		.fqes	= bufq->buf,
 421		.pp	= bufq->pp,
 422	};
 423
 424	/* queue already cleared, nothing to do */
 425	if (!bufq->buf)
 426		return;
 427
 428	/* Free all the bufs allocated and given to hw on Rx queue */
 429	for (u32 i = 0; i < bufq->desc_count; i++)
 430		idpf_rx_page_rel(&bufq->buf[i]);
 431
 432	if (idpf_queue_has(HSPLIT_EN, bufq))
 433		idpf_rx_hdr_buf_rel_all(bufq);
 434
 435	libeth_rx_fq_destroy(&fq);
 436	bufq->buf = NULL;
 437	bufq->pp = NULL;
 438}
 439
 440/**
 441 * idpf_rx_buf_rel_all - Free all Rx buffer resources for a receive queue
 442 * @rxq: queue to be cleaned
 443 */
 444static void idpf_rx_buf_rel_all(struct idpf_rx_queue *rxq)
 445{
 446	struct libeth_fq fq = {
 447		.fqes	= rxq->rx_buf,
 448		.pp	= rxq->pp,
 449	};
 450
 451	if (!rxq->rx_buf)
 452		return;
 453
 454	for (u32 i = 0; i < rxq->desc_count; i++)
 455		idpf_rx_page_rel(&rxq->rx_buf[i]);
 456
 457	libeth_rx_fq_destroy(&fq);
 458	rxq->rx_buf = NULL;
 459	rxq->pp = NULL;
 460}
 461
 462/**
 463 * idpf_rx_desc_rel - Free a specific Rx q resources
 464 * @rxq: queue to clean the resources from
 465 * @dev: device to free DMA memory
 466 * @model: single or split queue model
 467 *
 468 * Free a specific rx queue resources
 469 */
 470static void idpf_rx_desc_rel(struct idpf_rx_queue *rxq, struct device *dev,
 471			     u32 model)
 472{
 473	if (!rxq)
 474		return;
 475
 476	if (rxq->skb) {
 477		dev_kfree_skb_any(rxq->skb);
 478		rxq->skb = NULL;
 479	}
 480
 481	if (!idpf_is_queue_model_split(model))
 482		idpf_rx_buf_rel_all(rxq);
 483
 484	rxq->next_to_alloc = 0;
 485	rxq->next_to_clean = 0;
 486	rxq->next_to_use = 0;
 487	if (!rxq->desc_ring)
 488		return;
 489
 490	dmam_free_coherent(dev, rxq->size, rxq->desc_ring, rxq->dma);
 491	rxq->desc_ring = NULL;
 492}
 493
 494/**
 495 * idpf_rx_desc_rel_bufq - free buffer queue resources
 496 * @bufq: buffer queue to clean the resources from
 497 * @dev: device to free DMA memory
 498 */
 499static void idpf_rx_desc_rel_bufq(struct idpf_buf_queue *bufq,
 500				  struct device *dev)
 501{
 502	if (!bufq)
 503		return;
 504
 505	idpf_rx_buf_rel_bufq(bufq);
 506
 507	bufq->next_to_alloc = 0;
 508	bufq->next_to_clean = 0;
 509	bufq->next_to_use = 0;
 510
 511	if (!bufq->split_buf)
 512		return;
 513
 514	dma_free_coherent(dev, bufq->size, bufq->split_buf, bufq->dma);
 515	bufq->split_buf = NULL;
 516}
 517
 518/**
 519 * idpf_rx_desc_rel_all - Free Rx Resources for All Queues
 520 * @vport: virtual port structure
 521 *
 522 * Free all rx queues resources
 523 */
 524static void idpf_rx_desc_rel_all(struct idpf_vport *vport)
 525{
 526	struct device *dev = &vport->adapter->pdev->dev;
 527	struct idpf_rxq_group *rx_qgrp;
 528	u16 num_rxq;
 529	int i, j;
 530
 531	if (!vport->rxq_grps)
 532		return;
 533
 534	for (i = 0; i < vport->num_rxq_grp; i++) {
 535		rx_qgrp = &vport->rxq_grps[i];
 536
 537		if (!idpf_is_queue_model_split(vport->rxq_model)) {
 538			for (j = 0; j < rx_qgrp->singleq.num_rxq; j++)
 539				idpf_rx_desc_rel(rx_qgrp->singleq.rxqs[j], dev,
 540						 VIRTCHNL2_QUEUE_MODEL_SINGLE);
 541			continue;
 542		}
 543
 544		num_rxq = rx_qgrp->splitq.num_rxq_sets;
 545		for (j = 0; j < num_rxq; j++)
 546			idpf_rx_desc_rel(&rx_qgrp->splitq.rxq_sets[j]->rxq,
 547					 dev, VIRTCHNL2_QUEUE_MODEL_SPLIT);
 548
 549		if (!rx_qgrp->splitq.bufq_sets)
 550			continue;
 551
 552		for (j = 0; j < vport->num_bufqs_per_qgrp; j++) {
 553			struct idpf_bufq_set *bufq_set =
 554				&rx_qgrp->splitq.bufq_sets[j];
 555
 556			idpf_rx_desc_rel_bufq(&bufq_set->bufq, dev);
 557		}
 558	}
 559}
 560
 561/**
 562 * idpf_rx_buf_hw_update - Store the new tail and head values
 563 * @bufq: queue to bump
 564 * @val: new head index
 565 */
 566static void idpf_rx_buf_hw_update(struct idpf_buf_queue *bufq, u32 val)
 567{
 568	bufq->next_to_use = val;
 569
 570	if (unlikely(!bufq->tail))
 571		return;
 572
 573	/* writel has an implicit memory barrier */
 574	writel(val, bufq->tail);
 575}
 576
 577/**
 578 * idpf_rx_hdr_buf_alloc_all - Allocate memory for header buffers
 579 * @bufq: ring to use
 580 *
 581 * Returns 0 on success, negative on failure.
 582 */
 583static int idpf_rx_hdr_buf_alloc_all(struct idpf_buf_queue *bufq)
 584{
 585	struct libeth_fq fq = {
 586		.count	= bufq->desc_count,
 587		.type	= LIBETH_FQE_HDR,
 588		.nid	= idpf_q_vector_to_mem(bufq->q_vector),
 589	};
 590	int ret;
 591
 592	ret = libeth_rx_fq_create(&fq, &bufq->q_vector->napi);
 593	if (ret)
 594		return ret;
 595
 596	bufq->hdr_pp = fq.pp;
 597	bufq->hdr_buf = fq.fqes;
 598	bufq->hdr_truesize = fq.truesize;
 599	bufq->rx_hbuf_size = fq.buf_len;
 600
 601	return 0;
 602}
 603
 604/**
 605 * idpf_rx_post_buf_refill - Post buffer id to refill queue
 606 * @refillq: refill queue to post to
 607 * @buf_id: buffer id to post
 608 */
 609static void idpf_rx_post_buf_refill(struct idpf_sw_queue *refillq, u16 buf_id)
 610{
 611	u32 nta = refillq->next_to_use;
 612
 613	/* store the buffer ID and the SW maintained GEN bit to the refillq */
 614	refillq->ring[nta] =
 615		FIELD_PREP(IDPF_RX_BI_BUFID_M, buf_id) |
 616		FIELD_PREP(IDPF_RX_BI_GEN_M,
 617			   idpf_queue_has(GEN_CHK, refillq));
 618
 619	if (unlikely(++nta == refillq->desc_count)) {
 620		nta = 0;
 621		idpf_queue_change(GEN_CHK, refillq);
 622	}
 623
 624	refillq->next_to_use = nta;
 625}
 626
 627/**
 628 * idpf_rx_post_buf_desc - Post buffer to bufq descriptor ring
 629 * @bufq: buffer queue to post to
 630 * @buf_id: buffer id to post
 631 *
 632 * Returns false if buffer could not be allocated, true otherwise.
 633 */
 634static bool idpf_rx_post_buf_desc(struct idpf_buf_queue *bufq, u16 buf_id)
 635{
 636	struct virtchnl2_splitq_rx_buf_desc *splitq_rx_desc = NULL;
 637	struct libeth_fq_fp fq = {
 638		.count	= bufq->desc_count,
 639	};
 640	u16 nta = bufq->next_to_alloc;
 641	dma_addr_t addr;
 642
 643	splitq_rx_desc = &bufq->split_buf[nta];
 644
 645	if (idpf_queue_has(HSPLIT_EN, bufq)) {
 646		fq.pp = bufq->hdr_pp;
 647		fq.fqes = bufq->hdr_buf;
 648		fq.truesize = bufq->hdr_truesize;
 649
 650		addr = libeth_rx_alloc(&fq, buf_id);
 651		if (addr == DMA_MAPPING_ERROR)
 652			return false;
 653
 654		splitq_rx_desc->hdr_addr = cpu_to_le64(addr);
 655	}
 656
 657	fq.pp = bufq->pp;
 658	fq.fqes = bufq->buf;
 659	fq.truesize = bufq->truesize;
 660
 661	addr = libeth_rx_alloc(&fq, buf_id);
 662	if (addr == DMA_MAPPING_ERROR)
 663		return false;
 664
 665	splitq_rx_desc->pkt_addr = cpu_to_le64(addr);
 666	splitq_rx_desc->qword0.buf_id = cpu_to_le16(buf_id);
 667
 668	nta++;
 669	if (unlikely(nta == bufq->desc_count))
 670		nta = 0;
 671	bufq->next_to_alloc = nta;
 672
 673	return true;
 674}
 675
 676/**
 677 * idpf_rx_post_init_bufs - Post initial buffers to bufq
 678 * @bufq: buffer queue to post working set to
 679 * @working_set: number of buffers to put in working set
 680 *
 681 * Returns true if @working_set bufs were posted successfully, false otherwise.
 682 */
 683static bool idpf_rx_post_init_bufs(struct idpf_buf_queue *bufq,
 684				   u16 working_set)
 685{
 686	int i;
 687
 688	for (i = 0; i < working_set; i++) {
 689		if (!idpf_rx_post_buf_desc(bufq, i))
 690			return false;
 691	}
 692
 693	idpf_rx_buf_hw_update(bufq, ALIGN_DOWN(bufq->next_to_alloc,
 694					       IDPF_RX_BUF_STRIDE));
 695
 696	return true;
 697}
 698
 699/**
 700 * idpf_rx_buf_alloc_singleq - Allocate memory for all buffer resources
 701 * @rxq: queue for which the buffers are allocated
 702 *
 703 * Return: 0 on success, -ENOMEM on failure.
 704 */
 705static int idpf_rx_buf_alloc_singleq(struct idpf_rx_queue *rxq)
 706{
 707	if (idpf_rx_singleq_buf_hw_alloc_all(rxq, rxq->desc_count - 1))
 708		goto err;
 709
 710	return 0;
 711
 712err:
 713	idpf_rx_buf_rel_all(rxq);
 714
 715	return -ENOMEM;
 716}
 717
 718/**
 719 * idpf_rx_bufs_init_singleq - Initialize page pool and allocate Rx bufs
 720 * @rxq: buffer queue to create page pool for
 721 *
 722 * Return: 0 on success, -errno on failure.
 723 */
 724static int idpf_rx_bufs_init_singleq(struct idpf_rx_queue *rxq)
 725{
 726	struct libeth_fq fq = {
 727		.count	= rxq->desc_count,
 728		.type	= LIBETH_FQE_MTU,
 729		.nid	= idpf_q_vector_to_mem(rxq->q_vector),
 730	};
 731	int ret;
 732
 733	ret = libeth_rx_fq_create(&fq, &rxq->q_vector->napi);
 734	if (ret)
 735		return ret;
 736
 737	rxq->pp = fq.pp;
 738	rxq->rx_buf = fq.fqes;
 739	rxq->truesize = fq.truesize;
 740	rxq->rx_buf_size = fq.buf_len;
 741
 742	return idpf_rx_buf_alloc_singleq(rxq);
 743}
 744
 745/**
 746 * idpf_rx_buf_alloc_all - Allocate memory for all buffer resources
 747 * @rxbufq: queue for which the buffers are allocated
 748 *
 749 * Returns 0 on success, negative on failure
 750 */
 751static int idpf_rx_buf_alloc_all(struct idpf_buf_queue *rxbufq)
 752{
 753	int err = 0;
 754
 755	if (idpf_queue_has(HSPLIT_EN, rxbufq)) {
 756		err = idpf_rx_hdr_buf_alloc_all(rxbufq);
 757		if (err)
 758			goto rx_buf_alloc_all_out;
 759	}
 760
 761	/* Allocate buffers to be given to HW.	 */
 762	if (!idpf_rx_post_init_bufs(rxbufq, IDPF_RX_BUFQ_WORKING_SET(rxbufq)))
 763		err = -ENOMEM;
 764
 765rx_buf_alloc_all_out:
 766	if (err)
 767		idpf_rx_buf_rel_bufq(rxbufq);
 768
 769	return err;
 770}
 771
 772/**
 773 * idpf_rx_bufs_init - Initialize page pool, allocate rx bufs, and post to HW
 774 * @bufq: buffer queue to create page pool for
 775 * @type: type of Rx buffers to allocate
 776 *
 777 * Returns 0 on success, negative on failure
 778 */
 779static int idpf_rx_bufs_init(struct idpf_buf_queue *bufq,
 780			     enum libeth_fqe_type type)
 781{
 782	struct libeth_fq fq = {
 783		.truesize	= bufq->truesize,
 784		.count		= bufq->desc_count,
 785		.type		= type,
 786		.hsplit		= idpf_queue_has(HSPLIT_EN, bufq),
 787		.nid		= idpf_q_vector_to_mem(bufq->q_vector),
 788	};
 789	int ret;
 790
 791	ret = libeth_rx_fq_create(&fq, &bufq->q_vector->napi);
 792	if (ret)
 793		return ret;
 794
 795	bufq->pp = fq.pp;
 796	bufq->buf = fq.fqes;
 797	bufq->truesize = fq.truesize;
 798	bufq->rx_buf_size = fq.buf_len;
 799
 800	return idpf_rx_buf_alloc_all(bufq);
 801}
 802
 803/**
 804 * idpf_rx_bufs_init_all - Initialize all RX bufs
 805 * @vport: virtual port struct
 806 *
 807 * Returns 0 on success, negative on failure
 808 */
 809int idpf_rx_bufs_init_all(struct idpf_vport *vport)
 810{
 811	bool split = idpf_is_queue_model_split(vport->rxq_model);
 812	int i, j, err;
 813
 814	for (i = 0; i < vport->num_rxq_grp; i++) {
 815		struct idpf_rxq_group *rx_qgrp = &vport->rxq_grps[i];
 816		u32 truesize = 0;
 817
 818		/* Allocate bufs for the rxq itself in singleq */
 819		if (!split) {
 820			int num_rxq = rx_qgrp->singleq.num_rxq;
 821
 822			for (j = 0; j < num_rxq; j++) {
 823				struct idpf_rx_queue *q;
 824
 825				q = rx_qgrp->singleq.rxqs[j];
 826				err = idpf_rx_bufs_init_singleq(q);
 827				if (err)
 828					return err;
 829			}
 830
 831			continue;
 832		}
 833
 834		/* Otherwise, allocate bufs for the buffer queues */
 835		for (j = 0; j < vport->num_bufqs_per_qgrp; j++) {
 836			enum libeth_fqe_type type;
 837			struct idpf_buf_queue *q;
 838
 839			q = &rx_qgrp->splitq.bufq_sets[j].bufq;
 840			q->truesize = truesize;
 841
 842			type = truesize ? LIBETH_FQE_SHORT : LIBETH_FQE_MTU;
 843
 844			err = idpf_rx_bufs_init(q, type);
 845			if (err)
 846				return err;
 847
 848			truesize = q->truesize >> 1;
 849		}
 850	}
 851
 852	return 0;
 853}
 854
 855/**
 856 * idpf_rx_desc_alloc - Allocate queue Rx resources
 857 * @vport: vport to allocate resources for
 858 * @rxq: Rx queue for which the resources are setup
 859 *
 860 * Returns 0 on success, negative on failure
 861 */
 862static int idpf_rx_desc_alloc(const struct idpf_vport *vport,
 863			      struct idpf_rx_queue *rxq)
 864{
 865	struct device *dev = &vport->adapter->pdev->dev;
 866
 867	rxq->size = rxq->desc_count * sizeof(union virtchnl2_rx_desc);
 868
 869	/* Allocate descriptors and also round up to nearest 4K */
 870	rxq->size = ALIGN(rxq->size, 4096);
 871	rxq->desc_ring = dmam_alloc_coherent(dev, rxq->size,
 872					     &rxq->dma, GFP_KERNEL);
 873	if (!rxq->desc_ring) {
 874		dev_err(dev, "Unable to allocate memory for the Rx descriptor ring, size=%d\n",
 875			rxq->size);
 876		return -ENOMEM;
 877	}
 878
 879	rxq->next_to_alloc = 0;
 880	rxq->next_to_clean = 0;
 881	rxq->next_to_use = 0;
 882	idpf_queue_set(GEN_CHK, rxq);
 883
 884	return 0;
 885}
 886
 887/**
 888 * idpf_bufq_desc_alloc - Allocate buffer queue descriptor ring
 889 * @vport: vport to allocate resources for
 890 * @bufq: buffer queue for which the resources are set up
 891 *
 892 * Return: 0 on success, -ENOMEM on failure.
 893 */
 894static int idpf_bufq_desc_alloc(const struct idpf_vport *vport,
 895				struct idpf_buf_queue *bufq)
 896{
 897	struct device *dev = &vport->adapter->pdev->dev;
 898
 899	bufq->size = array_size(bufq->desc_count, sizeof(*bufq->split_buf));
 900
 901	bufq->split_buf = dma_alloc_coherent(dev, bufq->size, &bufq->dma,
 902					     GFP_KERNEL);
 903	if (!bufq->split_buf)
 904		return -ENOMEM;
 905
 906	bufq->next_to_alloc = 0;
 907	bufq->next_to_clean = 0;
 908	bufq->next_to_use = 0;
 909
 910	idpf_queue_set(GEN_CHK, bufq);
 911
 912	return 0;
 913}
 914
 915/**
 916 * idpf_rx_desc_alloc_all - allocate all RX queues resources
 917 * @vport: virtual port structure
 918 *
 919 * Returns 0 on success, negative on failure
 920 */
 921static int idpf_rx_desc_alloc_all(struct idpf_vport *vport)
 922{
 923	struct idpf_rxq_group *rx_qgrp;
 924	int i, j, err;
 925	u16 num_rxq;
 926
 927	for (i = 0; i < vport->num_rxq_grp; i++) {
 928		rx_qgrp = &vport->rxq_grps[i];
 929		if (idpf_is_queue_model_split(vport->rxq_model))
 930			num_rxq = rx_qgrp->splitq.num_rxq_sets;
 931		else
 932			num_rxq = rx_qgrp->singleq.num_rxq;
 933
 934		for (j = 0; j < num_rxq; j++) {
 935			struct idpf_rx_queue *q;
 936
 937			if (idpf_is_queue_model_split(vport->rxq_model))
 938				q = &rx_qgrp->splitq.rxq_sets[j]->rxq;
 939			else
 940				q = rx_qgrp->singleq.rxqs[j];
 941
 942			err = idpf_rx_desc_alloc(vport, q);
 943			if (err) {
 944				pci_err(vport->adapter->pdev,
 945					"Memory allocation for Rx Queue %u failed\n",
 946					i);
 947				goto err_out;
 948			}
 949		}
 950
 951		if (!idpf_is_queue_model_split(vport->rxq_model))
 952			continue;
 953
 954		for (j = 0; j < vport->num_bufqs_per_qgrp; j++) {
 955			struct idpf_buf_queue *q;
 956
 957			q = &rx_qgrp->splitq.bufq_sets[j].bufq;
 958
 959			err = idpf_bufq_desc_alloc(vport, q);
 960			if (err) {
 961				pci_err(vport->adapter->pdev,
 962					"Memory allocation for Rx Buffer Queue %u failed\n",
 963					i);
 964				goto err_out;
 965			}
 966		}
 967	}
 968
 969	return 0;
 970
 971err_out:
 972	idpf_rx_desc_rel_all(vport);
 973
 974	return err;
 975}
 976
 977/**
 978 * idpf_txq_group_rel - Release all resources for txq groups
 979 * @vport: vport to release txq groups on
 980 */
 981static void idpf_txq_group_rel(struct idpf_vport *vport)
 982{
 983	bool split, flow_sch_en;
 984	int i, j;
 985
 986	if (!vport->txq_grps)
 987		return;
 988
 989	split = idpf_is_queue_model_split(vport->txq_model);
 990	flow_sch_en = !idpf_is_cap_ena(vport->adapter, IDPF_OTHER_CAPS,
 991				       VIRTCHNL2_CAP_SPLITQ_QSCHED);
 992
 993	for (i = 0; i < vport->num_txq_grp; i++) {
 994		struct idpf_txq_group *txq_grp = &vport->txq_grps[i];
 995
 996		for (j = 0; j < txq_grp->num_txq; j++) {
 997			kfree(txq_grp->txqs[j]);
 998			txq_grp->txqs[j] = NULL;
 999		}
1000
1001		if (!split)
1002			continue;
1003
1004		kfree(txq_grp->complq);
1005		txq_grp->complq = NULL;
1006
1007		if (flow_sch_en)
1008			kfree(txq_grp->stashes);
1009	}
1010	kfree(vport->txq_grps);
1011	vport->txq_grps = NULL;
1012}
1013
1014/**
1015 * idpf_rxq_sw_queue_rel - Release software queue resources
1016 * @rx_qgrp: rx queue group with software queues
1017 */
1018static void idpf_rxq_sw_queue_rel(struct idpf_rxq_group *rx_qgrp)
1019{
1020	int i, j;
1021
1022	for (i = 0; i < rx_qgrp->vport->num_bufqs_per_qgrp; i++) {
1023		struct idpf_bufq_set *bufq_set = &rx_qgrp->splitq.bufq_sets[i];
1024
1025		for (j = 0; j < bufq_set->num_refillqs; j++) {
1026			kfree(bufq_set->refillqs[j].ring);
1027			bufq_set->refillqs[j].ring = NULL;
1028		}
1029		kfree(bufq_set->refillqs);
1030		bufq_set->refillqs = NULL;
1031	}
1032}
1033
1034/**
1035 * idpf_rxq_group_rel - Release all resources for rxq groups
1036 * @vport: vport to release rxq groups on
1037 */
1038static void idpf_rxq_group_rel(struct idpf_vport *vport)
1039{
1040	int i;
1041
1042	if (!vport->rxq_grps)
1043		return;
1044
1045	for (i = 0; i < vport->num_rxq_grp; i++) {
1046		struct idpf_rxq_group *rx_qgrp = &vport->rxq_grps[i];
1047		u16 num_rxq;
1048		int j;
1049
1050		if (idpf_is_queue_model_split(vport->rxq_model)) {
1051			num_rxq = rx_qgrp->splitq.num_rxq_sets;
1052			for (j = 0; j < num_rxq; j++) {
1053				kfree(rx_qgrp->splitq.rxq_sets[j]);
1054				rx_qgrp->splitq.rxq_sets[j] = NULL;
1055			}
1056
1057			idpf_rxq_sw_queue_rel(rx_qgrp);
1058			kfree(rx_qgrp->splitq.bufq_sets);
1059			rx_qgrp->splitq.bufq_sets = NULL;
1060		} else {
1061			num_rxq = rx_qgrp->singleq.num_rxq;
1062			for (j = 0; j < num_rxq; j++) {
1063				kfree(rx_qgrp->singleq.rxqs[j]);
1064				rx_qgrp->singleq.rxqs[j] = NULL;
1065			}
1066		}
1067	}
1068	kfree(vport->rxq_grps);
1069	vport->rxq_grps = NULL;
1070}
1071
1072/**
1073 * idpf_vport_queue_grp_rel_all - Release all queue groups
1074 * @vport: vport to release queue groups for
1075 */
1076static void idpf_vport_queue_grp_rel_all(struct idpf_vport *vport)
1077{
1078	idpf_txq_group_rel(vport);
1079	idpf_rxq_group_rel(vport);
1080}
1081
1082/**
1083 * idpf_vport_queues_rel - Free memory for all queues
1084 * @vport: virtual port
1085 *
1086 * Free the memory allocated for queues associated to a vport
1087 */
1088void idpf_vport_queues_rel(struct idpf_vport *vport)
1089{
1090	idpf_tx_desc_rel_all(vport);
1091	idpf_rx_desc_rel_all(vport);
1092	idpf_vport_queue_grp_rel_all(vport);
1093
1094	kfree(vport->txqs);
1095	vport->txqs = NULL;
1096}
1097
1098/**
1099 * idpf_vport_init_fast_path_txqs - Initialize fast path txq array
1100 * @vport: vport to init txqs on
1101 *
1102 * We get a queue index from skb->queue_mapping and we need a fast way to
1103 * dereference the queue from queue groups.  This allows us to quickly pull a
1104 * txq based on a queue index.
1105 *
1106 * Returns 0 on success, negative on failure
1107 */
1108static int idpf_vport_init_fast_path_txqs(struct idpf_vport *vport)
1109{
1110	int i, j, k = 0;
1111
1112	vport->txqs = kcalloc(vport->num_txq, sizeof(*vport->txqs),
1113			      GFP_KERNEL);
1114
1115	if (!vport->txqs)
1116		return -ENOMEM;
1117
1118	for (i = 0; i < vport->num_txq_grp; i++) {
1119		struct idpf_txq_group *tx_grp = &vport->txq_grps[i];
1120
1121		for (j = 0; j < tx_grp->num_txq; j++, k++) {
1122			vport->txqs[k] = tx_grp->txqs[j];
1123			vport->txqs[k]->idx = k;
1124		}
1125	}
1126
1127	return 0;
1128}
1129
1130/**
1131 * idpf_vport_init_num_qs - Initialize number of queues
1132 * @vport: vport to initialize queues
1133 * @vport_msg: data to be filled into vport
1134 */
1135void idpf_vport_init_num_qs(struct idpf_vport *vport,
1136			    struct virtchnl2_create_vport *vport_msg)
1137{
1138	struct idpf_vport_user_config_data *config_data;
1139	u16 idx = vport->idx;
1140
1141	config_data = &vport->adapter->vport_config[idx]->user_config;
1142	vport->num_txq = le16_to_cpu(vport_msg->num_tx_q);
1143	vport->num_rxq = le16_to_cpu(vport_msg->num_rx_q);
1144	/* number of txqs and rxqs in config data will be zeros only in the
1145	 * driver load path and we dont update them there after
1146	 */
1147	if (!config_data->num_req_tx_qs && !config_data->num_req_rx_qs) {
1148		config_data->num_req_tx_qs = le16_to_cpu(vport_msg->num_tx_q);
1149		config_data->num_req_rx_qs = le16_to_cpu(vport_msg->num_rx_q);
1150	}
1151
1152	if (idpf_is_queue_model_split(vport->txq_model))
1153		vport->num_complq = le16_to_cpu(vport_msg->num_tx_complq);
1154	if (idpf_is_queue_model_split(vport->rxq_model))
1155		vport->num_bufq = le16_to_cpu(vport_msg->num_rx_bufq);
1156
1157	/* Adjust number of buffer queues per Rx queue group. */
1158	if (!idpf_is_queue_model_split(vport->rxq_model)) {
1159		vport->num_bufqs_per_qgrp = 0;
1160
1161		return;
1162	}
1163
1164	vport->num_bufqs_per_qgrp = IDPF_MAX_BUFQS_PER_RXQ_GRP;
1165}
1166
1167/**
1168 * idpf_vport_calc_num_q_desc - Calculate number of queue groups
1169 * @vport: vport to calculate q groups for
1170 */
1171void idpf_vport_calc_num_q_desc(struct idpf_vport *vport)
1172{
1173	struct idpf_vport_user_config_data *config_data;
1174	int num_bufqs = vport->num_bufqs_per_qgrp;
1175	u32 num_req_txq_desc, num_req_rxq_desc;
1176	u16 idx = vport->idx;
1177	int i;
1178
1179	config_data =  &vport->adapter->vport_config[idx]->user_config;
1180	num_req_txq_desc = config_data->num_req_txq_desc;
1181	num_req_rxq_desc = config_data->num_req_rxq_desc;
1182
1183	vport->complq_desc_count = 0;
1184	if (num_req_txq_desc) {
1185		vport->txq_desc_count = num_req_txq_desc;
1186		if (idpf_is_queue_model_split(vport->txq_model)) {
1187			vport->complq_desc_count = num_req_txq_desc;
1188			if (vport->complq_desc_count < IDPF_MIN_TXQ_COMPLQ_DESC)
1189				vport->complq_desc_count =
1190					IDPF_MIN_TXQ_COMPLQ_DESC;
1191		}
1192	} else {
1193		vport->txq_desc_count =	IDPF_DFLT_TX_Q_DESC_COUNT;
1194		if (idpf_is_queue_model_split(vport->txq_model))
1195			vport->complq_desc_count =
1196				IDPF_DFLT_TX_COMPLQ_DESC_COUNT;
1197	}
1198
1199	if (num_req_rxq_desc)
1200		vport->rxq_desc_count = num_req_rxq_desc;
1201	else
1202		vport->rxq_desc_count = IDPF_DFLT_RX_Q_DESC_COUNT;
1203
1204	for (i = 0; i < num_bufqs; i++) {
1205		if (!vport->bufq_desc_count[i])
1206			vport->bufq_desc_count[i] =
1207				IDPF_RX_BUFQ_DESC_COUNT(vport->rxq_desc_count,
1208							num_bufqs);
1209	}
1210}
1211
1212/**
1213 * idpf_vport_calc_total_qs - Calculate total number of queues
1214 * @adapter: private data struct
1215 * @vport_idx: vport idx to retrieve vport pointer
1216 * @vport_msg: message to fill with data
1217 * @max_q: vport max queue info
1218 *
1219 * Return 0 on success, error value on failure.
1220 */
1221int idpf_vport_calc_total_qs(struct idpf_adapter *adapter, u16 vport_idx,
1222			     struct virtchnl2_create_vport *vport_msg,
1223			     struct idpf_vport_max_q *max_q)
1224{
1225	int dflt_splitq_txq_grps = 0, dflt_singleq_txqs = 0;
1226	int dflt_splitq_rxq_grps = 0, dflt_singleq_rxqs = 0;
1227	u16 num_req_tx_qs = 0, num_req_rx_qs = 0;
1228	struct idpf_vport_config *vport_config;
1229	u16 num_txq_grps, num_rxq_grps;
1230	u32 num_qs;
1231
1232	vport_config = adapter->vport_config[vport_idx];
1233	if (vport_config) {
1234		num_req_tx_qs = vport_config->user_config.num_req_tx_qs;
1235		num_req_rx_qs = vport_config->user_config.num_req_rx_qs;
1236	} else {
1237		int num_cpus;
1238
1239		/* Restrict num of queues to cpus online as a default
1240		 * configuration to give best performance. User can always
1241		 * override to a max number of queues via ethtool.
1242		 */
1243		num_cpus = num_online_cpus();
1244
1245		dflt_splitq_txq_grps = min_t(int, max_q->max_txq, num_cpus);
1246		dflt_singleq_txqs = min_t(int, max_q->max_txq, num_cpus);
1247		dflt_splitq_rxq_grps = min_t(int, max_q->max_rxq, num_cpus);
1248		dflt_singleq_rxqs = min_t(int, max_q->max_rxq, num_cpus);
1249	}
1250
1251	if (idpf_is_queue_model_split(le16_to_cpu(vport_msg->txq_model))) {
1252		num_txq_grps = num_req_tx_qs ? num_req_tx_qs : dflt_splitq_txq_grps;
1253		vport_msg->num_tx_complq = cpu_to_le16(num_txq_grps *
1254						       IDPF_COMPLQ_PER_GROUP);
1255		vport_msg->num_tx_q = cpu_to_le16(num_txq_grps *
1256						  IDPF_DFLT_SPLITQ_TXQ_PER_GROUP);
1257	} else {
1258		num_txq_grps = IDPF_DFLT_SINGLEQ_TX_Q_GROUPS;
1259		num_qs = num_txq_grps * (num_req_tx_qs ? num_req_tx_qs :
1260					 dflt_singleq_txqs);
1261		vport_msg->num_tx_q = cpu_to_le16(num_qs);
1262		vport_msg->num_tx_complq = 0;
1263	}
1264	if (idpf_is_queue_model_split(le16_to_cpu(vport_msg->rxq_model))) {
1265		num_rxq_grps = num_req_rx_qs ? num_req_rx_qs : dflt_splitq_rxq_grps;
1266		vport_msg->num_rx_bufq = cpu_to_le16(num_rxq_grps *
1267						     IDPF_MAX_BUFQS_PER_RXQ_GRP);
1268		vport_msg->num_rx_q = cpu_to_le16(num_rxq_grps *
1269						  IDPF_DFLT_SPLITQ_RXQ_PER_GROUP);
1270	} else {
1271		num_rxq_grps = IDPF_DFLT_SINGLEQ_RX_Q_GROUPS;
1272		num_qs = num_rxq_grps * (num_req_rx_qs ? num_req_rx_qs :
1273					 dflt_singleq_rxqs);
1274		vport_msg->num_rx_q = cpu_to_le16(num_qs);
1275		vport_msg->num_rx_bufq = 0;
1276	}
1277
1278	return 0;
1279}
1280
1281/**
1282 * idpf_vport_calc_num_q_groups - Calculate number of queue groups
1283 * @vport: vport to calculate q groups for
1284 */
1285void idpf_vport_calc_num_q_groups(struct idpf_vport *vport)
1286{
1287	if (idpf_is_queue_model_split(vport->txq_model))
1288		vport->num_txq_grp = vport->num_txq;
1289	else
1290		vport->num_txq_grp = IDPF_DFLT_SINGLEQ_TX_Q_GROUPS;
1291
1292	if (idpf_is_queue_model_split(vport->rxq_model))
1293		vport->num_rxq_grp = vport->num_rxq;
1294	else
1295		vport->num_rxq_grp = IDPF_DFLT_SINGLEQ_RX_Q_GROUPS;
1296}
1297
1298/**
1299 * idpf_vport_calc_numq_per_grp - Calculate number of queues per group
1300 * @vport: vport to calculate queues for
1301 * @num_txq: return parameter for number of TX queues
1302 * @num_rxq: return parameter for number of RX queues
1303 */
1304static void idpf_vport_calc_numq_per_grp(struct idpf_vport *vport,
1305					 u16 *num_txq, u16 *num_rxq)
1306{
1307	if (idpf_is_queue_model_split(vport->txq_model))
1308		*num_txq = IDPF_DFLT_SPLITQ_TXQ_PER_GROUP;
1309	else
1310		*num_txq = vport->num_txq;
1311
1312	if (idpf_is_queue_model_split(vport->rxq_model))
1313		*num_rxq = IDPF_DFLT_SPLITQ_RXQ_PER_GROUP;
1314	else
1315		*num_rxq = vport->num_rxq;
1316}
1317
1318/**
1319 * idpf_rxq_set_descids - set the descids supported by this queue
1320 * @vport: virtual port data structure
1321 * @q: rx queue for which descids are set
1322 *
1323 */
1324static void idpf_rxq_set_descids(const struct idpf_vport *vport,
1325				 struct idpf_rx_queue *q)
1326{
1327	if (idpf_is_queue_model_split(vport->rxq_model)) {
1328		q->rxdids = VIRTCHNL2_RXDID_2_FLEX_SPLITQ_M;
1329	} else {
1330		if (vport->base_rxd)
1331			q->rxdids = VIRTCHNL2_RXDID_1_32B_BASE_M;
1332		else
1333			q->rxdids = VIRTCHNL2_RXDID_2_FLEX_SQ_NIC_M;
1334	}
1335}
1336
1337/**
1338 * idpf_txq_group_alloc - Allocate all txq group resources
1339 * @vport: vport to allocate txq groups for
1340 * @num_txq: number of txqs to allocate for each group
1341 *
1342 * Returns 0 on success, negative on failure
1343 */
1344static int idpf_txq_group_alloc(struct idpf_vport *vport, u16 num_txq)
1345{
1346	bool split, flow_sch_en;
1347	int i;
1348
1349	vport->txq_grps = kcalloc(vport->num_txq_grp,
1350				  sizeof(*vport->txq_grps), GFP_KERNEL);
1351	if (!vport->txq_grps)
1352		return -ENOMEM;
1353
1354	split = idpf_is_queue_model_split(vport->txq_model);
1355	flow_sch_en = !idpf_is_cap_ena(vport->adapter, IDPF_OTHER_CAPS,
1356				       VIRTCHNL2_CAP_SPLITQ_QSCHED);
1357
1358	for (i = 0; i < vport->num_txq_grp; i++) {
1359		struct idpf_txq_group *tx_qgrp = &vport->txq_grps[i];
1360		struct idpf_adapter *adapter = vport->adapter;
1361		struct idpf_txq_stash *stashes;
1362		int j;
1363
1364		tx_qgrp->vport = vport;
1365		tx_qgrp->num_txq = num_txq;
1366
1367		for (j = 0; j < tx_qgrp->num_txq; j++) {
1368			tx_qgrp->txqs[j] = kzalloc(sizeof(*tx_qgrp->txqs[j]),
1369						   GFP_KERNEL);
1370			if (!tx_qgrp->txqs[j])
1371				goto err_alloc;
1372		}
1373
1374		if (split && flow_sch_en) {
1375			stashes = kcalloc(num_txq, sizeof(*stashes),
1376					  GFP_KERNEL);
1377			if (!stashes)
1378				goto err_alloc;
1379
1380			tx_qgrp->stashes = stashes;
1381		}
1382
1383		for (j = 0; j < tx_qgrp->num_txq; j++) {
1384			struct idpf_tx_queue *q = tx_qgrp->txqs[j];
1385
1386			q->dev = &adapter->pdev->dev;
1387			q->desc_count = vport->txq_desc_count;
1388			q->tx_max_bufs = idpf_get_max_tx_bufs(adapter);
1389			q->tx_min_pkt_len = idpf_get_min_tx_pkt_len(adapter);
1390			q->netdev = vport->netdev;
1391			q->txq_grp = tx_qgrp;
1392
1393			if (!split) {
1394				q->clean_budget = vport->compln_clean_budget;
1395				idpf_queue_assign(CRC_EN, q,
1396						  vport->crc_enable);
1397			}
1398
1399			if (!flow_sch_en)
1400				continue;
1401
1402			if (split) {
1403				q->stash = &stashes[j];
1404				hash_init(q->stash->sched_buf_hash);
1405			}
1406
1407			idpf_queue_set(FLOW_SCH_EN, q);
1408		}
1409
1410		if (!split)
1411			continue;
1412
1413		tx_qgrp->complq = kcalloc(IDPF_COMPLQ_PER_GROUP,
1414					  sizeof(*tx_qgrp->complq),
1415					  GFP_KERNEL);
1416		if (!tx_qgrp->complq)
1417			goto err_alloc;
1418
1419		tx_qgrp->complq->desc_count = vport->complq_desc_count;
1420		tx_qgrp->complq->txq_grp = tx_qgrp;
1421		tx_qgrp->complq->netdev = vport->netdev;
1422		tx_qgrp->complq->clean_budget = vport->compln_clean_budget;
1423
1424		if (flow_sch_en)
1425			idpf_queue_set(FLOW_SCH_EN, tx_qgrp->complq);
1426	}
1427
1428	return 0;
1429
1430err_alloc:
1431	idpf_txq_group_rel(vport);
1432
1433	return -ENOMEM;
1434}
1435
1436/**
1437 * idpf_rxq_group_alloc - Allocate all rxq group resources
1438 * @vport: vport to allocate rxq groups for
1439 * @num_rxq: number of rxqs to allocate for each group
1440 *
1441 * Returns 0 on success, negative on failure
1442 */
1443static int idpf_rxq_group_alloc(struct idpf_vport *vport, u16 num_rxq)
1444{
1445	int i, k, err = 0;
1446	bool hs;
1447
1448	vport->rxq_grps = kcalloc(vport->num_rxq_grp,
1449				  sizeof(struct idpf_rxq_group), GFP_KERNEL);
1450	if (!vport->rxq_grps)
1451		return -ENOMEM;
1452
1453	hs = idpf_vport_get_hsplit(vport) == ETHTOOL_TCP_DATA_SPLIT_ENABLED;
1454
1455	for (i = 0; i < vport->num_rxq_grp; i++) {
1456		struct idpf_rxq_group *rx_qgrp = &vport->rxq_grps[i];
1457		int j;
1458
1459		rx_qgrp->vport = vport;
1460		if (!idpf_is_queue_model_split(vport->rxq_model)) {
1461			rx_qgrp->singleq.num_rxq = num_rxq;
1462			for (j = 0; j < num_rxq; j++) {
1463				rx_qgrp->singleq.rxqs[j] =
1464						kzalloc(sizeof(*rx_qgrp->singleq.rxqs[j]),
1465							GFP_KERNEL);
1466				if (!rx_qgrp->singleq.rxqs[j]) {
1467					err = -ENOMEM;
1468					goto err_alloc;
1469				}
1470			}
1471			goto skip_splitq_rx_init;
1472		}
1473		rx_qgrp->splitq.num_rxq_sets = num_rxq;
1474
1475		for (j = 0; j < num_rxq; j++) {
1476			rx_qgrp->splitq.rxq_sets[j] =
1477				kzalloc(sizeof(struct idpf_rxq_set),
1478					GFP_KERNEL);
1479			if (!rx_qgrp->splitq.rxq_sets[j]) {
1480				err = -ENOMEM;
1481				goto err_alloc;
1482			}
1483		}
1484
1485		rx_qgrp->splitq.bufq_sets = kcalloc(vport->num_bufqs_per_qgrp,
1486						    sizeof(struct idpf_bufq_set),
1487						    GFP_KERNEL);
1488		if (!rx_qgrp->splitq.bufq_sets) {
1489			err = -ENOMEM;
1490			goto err_alloc;
1491		}
1492
1493		for (j = 0; j < vport->num_bufqs_per_qgrp; j++) {
1494			struct idpf_bufq_set *bufq_set =
1495				&rx_qgrp->splitq.bufq_sets[j];
1496			int swq_size = sizeof(struct idpf_sw_queue);
1497			struct idpf_buf_queue *q;
1498
1499			q = &rx_qgrp->splitq.bufq_sets[j].bufq;
1500			q->desc_count = vport->bufq_desc_count[j];
1501			q->rx_buffer_low_watermark = IDPF_LOW_WATERMARK;
1502
1503			idpf_queue_assign(HSPLIT_EN, q, hs);
1504
1505			bufq_set->num_refillqs = num_rxq;
1506			bufq_set->refillqs = kcalloc(num_rxq, swq_size,
1507						     GFP_KERNEL);
1508			if (!bufq_set->refillqs) {
1509				err = -ENOMEM;
1510				goto err_alloc;
1511			}
1512			for (k = 0; k < bufq_set->num_refillqs; k++) {
1513				struct idpf_sw_queue *refillq =
1514					&bufq_set->refillqs[k];
1515
1516				refillq->desc_count =
1517					vport->bufq_desc_count[j];
1518				idpf_queue_set(GEN_CHK, refillq);
1519				idpf_queue_set(RFL_GEN_CHK, refillq);
1520				refillq->ring = kcalloc(refillq->desc_count,
1521							sizeof(*refillq->ring),
1522							GFP_KERNEL);
1523				if (!refillq->ring) {
1524					err = -ENOMEM;
1525					goto err_alloc;
1526				}
1527			}
1528		}
1529
1530skip_splitq_rx_init:
1531		for (j = 0; j < num_rxq; j++) {
1532			struct idpf_rx_queue *q;
1533
1534			if (!idpf_is_queue_model_split(vport->rxq_model)) {
1535				q = rx_qgrp->singleq.rxqs[j];
1536				goto setup_rxq;
1537			}
1538			q = &rx_qgrp->splitq.rxq_sets[j]->rxq;
1539			rx_qgrp->splitq.rxq_sets[j]->refillq[0] =
1540			      &rx_qgrp->splitq.bufq_sets[0].refillqs[j];
1541			if (vport->num_bufqs_per_qgrp > IDPF_SINGLE_BUFQ_PER_RXQ_GRP)
1542				rx_qgrp->splitq.rxq_sets[j]->refillq[1] =
1543				      &rx_qgrp->splitq.bufq_sets[1].refillqs[j];
1544
1545			idpf_queue_assign(HSPLIT_EN, q, hs);
1546
1547setup_rxq:
1548			q->desc_count = vport->rxq_desc_count;
1549			q->rx_ptype_lkup = vport->rx_ptype_lkup;
1550			q->netdev = vport->netdev;
1551			q->bufq_sets = rx_qgrp->splitq.bufq_sets;
1552			q->idx = (i * num_rxq) + j;
1553			q->rx_buffer_low_watermark = IDPF_LOW_WATERMARK;
1554			q->rx_max_pkt_size = vport->netdev->mtu +
1555							LIBETH_RX_LL_LEN;
1556			idpf_rxq_set_descids(vport, q);
1557		}
1558	}
1559
1560err_alloc:
1561	if (err)
1562		idpf_rxq_group_rel(vport);
1563
1564	return err;
1565}
1566
1567/**
1568 * idpf_vport_queue_grp_alloc_all - Allocate all queue groups/resources
1569 * @vport: vport with qgrps to allocate
1570 *
1571 * Returns 0 on success, negative on failure
1572 */
1573static int idpf_vport_queue_grp_alloc_all(struct idpf_vport *vport)
1574{
1575	u16 num_txq, num_rxq;
1576	int err;
1577
1578	idpf_vport_calc_numq_per_grp(vport, &num_txq, &num_rxq);
1579
1580	err = idpf_txq_group_alloc(vport, num_txq);
1581	if (err)
1582		goto err_out;
1583
1584	err = idpf_rxq_group_alloc(vport, num_rxq);
1585	if (err)
1586		goto err_out;
1587
1588	return 0;
1589
1590err_out:
1591	idpf_vport_queue_grp_rel_all(vport);
1592
1593	return err;
1594}
1595
1596/**
1597 * idpf_vport_queues_alloc - Allocate memory for all queues
1598 * @vport: virtual port
1599 *
1600 * Allocate memory for queues associated with a vport.  Returns 0 on success,
1601 * negative on failure.
1602 */
1603int idpf_vport_queues_alloc(struct idpf_vport *vport)
1604{
1605	int err;
1606
1607	err = idpf_vport_queue_grp_alloc_all(vport);
1608	if (err)
1609		goto err_out;
1610
1611	err = idpf_tx_desc_alloc_all(vport);
1612	if (err)
1613		goto err_out;
1614
1615	err = idpf_rx_desc_alloc_all(vport);
1616	if (err)
1617		goto err_out;
1618
1619	err = idpf_vport_init_fast_path_txqs(vport);
1620	if (err)
1621		goto err_out;
1622
1623	return 0;
1624
1625err_out:
1626	idpf_vport_queues_rel(vport);
1627
1628	return err;
1629}
1630
1631/**
1632 * idpf_tx_handle_sw_marker - Handle queue marker packet
1633 * @tx_q: tx queue to handle software marker
1634 */
1635static void idpf_tx_handle_sw_marker(struct idpf_tx_queue *tx_q)
1636{
1637	struct idpf_netdev_priv *priv = netdev_priv(tx_q->netdev);
1638	struct idpf_vport *vport = priv->vport;
1639	int i;
1640
1641	idpf_queue_clear(SW_MARKER, tx_q);
1642	/* Hardware must write marker packets to all queues associated with
1643	 * completion queues. So check if all queues received marker packets
1644	 */
1645	for (i = 0; i < vport->num_txq; i++)
1646		/* If we're still waiting on any other TXQ marker completions,
1647		 * just return now since we cannot wake up the marker_wq yet.
1648		 */
1649		if (idpf_queue_has(SW_MARKER, vport->txqs[i]))
1650			return;
1651
1652	/* Drain complete */
1653	set_bit(IDPF_VPORT_SW_MARKER, vport->flags);
1654	wake_up(&vport->sw_marker_wq);
1655}
1656
1657/**
1658 * idpf_tx_clean_stashed_bufs - clean bufs that were stored for
1659 * out of order completions
1660 * @txq: queue to clean
1661 * @compl_tag: completion tag of packet to clean (from completion descriptor)
1662 * @cleaned: pointer to stats struct to track cleaned packets/bytes
1663 * @budget: Used to determine if we are in netpoll
1664 */
1665static void idpf_tx_clean_stashed_bufs(struct idpf_tx_queue *txq,
1666				       u16 compl_tag,
1667				       struct libeth_sq_napi_stats *cleaned,
1668				       int budget)
1669{
1670	struct idpf_tx_stash *stash;
1671	struct hlist_node *tmp_buf;
1672	struct libeth_cq_pp cp = {
1673		.dev	= txq->dev,
1674		.ss	= cleaned,
1675		.napi	= budget,
1676	};
1677
1678	/* Buffer completion */
1679	hash_for_each_possible_safe(txq->stash->sched_buf_hash, stash, tmp_buf,
1680				    hlist, compl_tag) {
1681		if (unlikely(idpf_tx_buf_compl_tag(&stash->buf) != compl_tag))
1682			continue;
1683
1684		hash_del(&stash->hlist);
1685		libeth_tx_complete(&stash->buf, &cp);
1686
1687		/* Push shadow buf back onto stack */
1688		idpf_buf_lifo_push(&txq->stash->buf_stack, stash);
1689	}
1690}
1691
1692/**
1693 * idpf_stash_flow_sch_buffers - store buffer parameters info to be freed at a
1694 * later time (only relevant for flow scheduling mode)
1695 * @txq: Tx queue to clean
1696 * @tx_buf: buffer to store
1697 */
1698static int idpf_stash_flow_sch_buffers(struct idpf_tx_queue *txq,
1699				       struct idpf_tx_buf *tx_buf)
1700{
1701	struct idpf_tx_stash *stash;
1702
1703	if (unlikely(tx_buf->type <= LIBETH_SQE_CTX))
1704		return 0;
1705
1706	stash = idpf_buf_lifo_pop(&txq->stash->buf_stack);
1707	if (unlikely(!stash)) {
1708		net_err_ratelimited("%s: No out-of-order TX buffers left!\n",
1709				    netdev_name(txq->netdev));
1710
1711		return -ENOMEM;
1712	}
1713
1714	/* Store buffer params in shadow buffer */
1715	stash->buf.skb = tx_buf->skb;
1716	stash->buf.bytes = tx_buf->bytes;
1717	stash->buf.packets = tx_buf->packets;
1718	stash->buf.type = tx_buf->type;
1719	stash->buf.nr_frags = tx_buf->nr_frags;
1720	dma_unmap_addr_set(&stash->buf, dma, dma_unmap_addr(tx_buf, dma));
1721	dma_unmap_len_set(&stash->buf, len, dma_unmap_len(tx_buf, len));
1722	idpf_tx_buf_compl_tag(&stash->buf) = idpf_tx_buf_compl_tag(tx_buf);
1723
1724	/* Add buffer to buf_hash table to be freed later */
1725	hash_add(txq->stash->sched_buf_hash, &stash->hlist,
1726		 idpf_tx_buf_compl_tag(&stash->buf));
1727
1728	tx_buf->type = LIBETH_SQE_EMPTY;
1729
1730	return 0;
1731}
1732
1733#define idpf_tx_splitq_clean_bump_ntc(txq, ntc, desc, buf)	\
1734do {								\
1735	if (unlikely(++(ntc) == (txq)->desc_count)) {		\
1736		ntc = 0;					\
1737		buf = (txq)->tx_buf;				\
1738		desc = &(txq)->flex_tx[0];			\
1739	} else {						\
1740		(buf)++;					\
1741		(desc)++;					\
1742	}							\
1743} while (0)
1744
1745/**
1746 * idpf_tx_splitq_clean - Reclaim resources from buffer queue
1747 * @tx_q: Tx queue to clean
1748 * @end: queue index until which it should be cleaned
1749 * @napi_budget: Used to determine if we are in netpoll
1750 * @cleaned: pointer to stats struct to track cleaned packets/bytes
1751 * @descs_only: true if queue is using flow-based scheduling and should
1752 * not clean buffers at this time
1753 *
1754 * Cleans the queue descriptor ring. If the queue is using queue-based
1755 * scheduling, the buffers will be cleaned as well. If the queue is using
1756 * flow-based scheduling, only the descriptors are cleaned at this time.
1757 * Separate packet completion events will be reported on the completion queue,
1758 * and the buffers will be cleaned separately. The stats are not updated from
1759 * this function when using flow-based scheduling.
1760 *
1761 * Furthermore, in flow scheduling mode, check to make sure there are enough
1762 * reserve buffers to stash the packet. If there are not, return early, which
1763 * will leave next_to_clean pointing to the packet that failed to be stashed.
1764 *
1765 * Return: false in the scenario above, true otherwise.
1766 */
1767static bool idpf_tx_splitq_clean(struct idpf_tx_queue *tx_q, u16 end,
1768				 int napi_budget,
1769				 struct libeth_sq_napi_stats *cleaned,
1770				 bool descs_only)
1771{
1772	union idpf_tx_flex_desc *next_pending_desc = NULL;
1773	union idpf_tx_flex_desc *tx_desc;
1774	u32 ntc = tx_q->next_to_clean;
1775	struct libeth_cq_pp cp = {
1776		.dev	= tx_q->dev,
1777		.ss	= cleaned,
1778		.napi	= napi_budget,
1779	};
1780	struct idpf_tx_buf *tx_buf;
1781	bool clean_complete = true;
1782
1783	tx_desc = &tx_q->flex_tx[ntc];
1784	next_pending_desc = &tx_q->flex_tx[end];
1785	tx_buf = &tx_q->tx_buf[ntc];
1786
1787	while (tx_desc != next_pending_desc) {
1788		u32 eop_idx;
1789
1790		/* If this entry in the ring was used as a context descriptor,
1791		 * it's corresponding entry in the buffer ring is reserved. We
1792		 * can skip this descriptor since there is no buffer to clean.
1793		 */
1794		if (tx_buf->type <= LIBETH_SQE_CTX)
1795			goto fetch_next_txq_desc;
1796
1797		if (unlikely(tx_buf->type != LIBETH_SQE_SKB))
1798			break;
1799
1800		eop_idx = tx_buf->rs_idx;
1801
1802		if (descs_only) {
1803			if (IDPF_TX_BUF_RSV_UNUSED(tx_q) < tx_buf->nr_frags) {
1804				clean_complete = false;
1805				goto tx_splitq_clean_out;
1806			}
1807
1808			idpf_stash_flow_sch_buffers(tx_q, tx_buf);
1809
1810			while (ntc != eop_idx) {
1811				idpf_tx_splitq_clean_bump_ntc(tx_q, ntc,
1812							      tx_desc, tx_buf);
1813				idpf_stash_flow_sch_buffers(tx_q, tx_buf);
1814			}
1815		} else {
1816			libeth_tx_complete(tx_buf, &cp);
1817
1818			/* unmap remaining buffers */
1819			while (ntc != eop_idx) {
1820				idpf_tx_splitq_clean_bump_ntc(tx_q, ntc,
1821							      tx_desc, tx_buf);
1822
1823				/* unmap any remaining paged data */
1824				libeth_tx_complete(tx_buf, &cp);
1825			}
1826		}
1827
1828fetch_next_txq_desc:
1829		idpf_tx_splitq_clean_bump_ntc(tx_q, ntc, tx_desc, tx_buf);
1830	}
1831
1832tx_splitq_clean_out:
1833	tx_q->next_to_clean = ntc;
1834
1835	return clean_complete;
1836}
1837
1838#define idpf_tx_clean_buf_ring_bump_ntc(txq, ntc, buf)	\
1839do {							\
1840	(buf)++;					\
1841	(ntc)++;					\
1842	if (unlikely((ntc) == (txq)->desc_count)) {	\
1843		buf = (txq)->tx_buf;			\
1844		ntc = 0;				\
1845	}						\
1846} while (0)
1847
1848/**
1849 * idpf_tx_clean_buf_ring - clean flow scheduling TX queue buffers
1850 * @txq: queue to clean
1851 * @compl_tag: completion tag of packet to clean (from completion descriptor)
1852 * @cleaned: pointer to stats struct to track cleaned packets/bytes
1853 * @budget: Used to determine if we are in netpoll
1854 *
1855 * Cleans all buffers associated with the input completion tag either from the
1856 * TX buffer ring or from the hash table if the buffers were previously
1857 * stashed. Returns the byte/segment count for the cleaned packet associated
1858 * this completion tag.
1859 */
1860static bool idpf_tx_clean_buf_ring(struct idpf_tx_queue *txq, u16 compl_tag,
1861				   struct libeth_sq_napi_stats *cleaned,
1862				   int budget)
1863{
1864	u16 idx = compl_tag & txq->compl_tag_bufid_m;
1865	struct idpf_tx_buf *tx_buf = NULL;
1866	struct libeth_cq_pp cp = {
1867		.dev	= txq->dev,
1868		.ss	= cleaned,
1869		.napi	= budget,
1870	};
1871	u16 ntc, orig_idx = idx;
1872
1873	tx_buf = &txq->tx_buf[idx];
1874
1875	if (unlikely(tx_buf->type <= LIBETH_SQE_CTX ||
1876		     idpf_tx_buf_compl_tag(tx_buf) != compl_tag))
1877		return false;
1878
1879	if (tx_buf->type == LIBETH_SQE_SKB)
1880		libeth_tx_complete(tx_buf, &cp);
1881
1882	idpf_tx_clean_buf_ring_bump_ntc(txq, idx, tx_buf);
1883
1884	while (idpf_tx_buf_compl_tag(tx_buf) == compl_tag) {
1885		libeth_tx_complete(tx_buf, &cp);
1886		idpf_tx_clean_buf_ring_bump_ntc(txq, idx, tx_buf);
1887	}
1888
1889	/*
1890	 * It's possible the packet we just cleaned was an out of order
1891	 * completion, which means we can stash the buffers starting from
1892	 * the original next_to_clean and reuse the descriptors. We need
1893	 * to compare the descriptor ring next_to_clean packet's "first" buffer
1894	 * to the "first" buffer of the packet we just cleaned to determine if
1895	 * this is the case. Howevever, next_to_clean can point to either a
1896	 * reserved buffer that corresponds to a context descriptor used for the
1897	 * next_to_clean packet (TSO packet) or the "first" buffer (single
1898	 * packet). The orig_idx from the packet we just cleaned will always
1899	 * point to the "first" buffer. If next_to_clean points to a reserved
1900	 * buffer, let's bump ntc once and start the comparison from there.
1901	 */
1902	ntc = txq->next_to_clean;
1903	tx_buf = &txq->tx_buf[ntc];
1904
1905	if (tx_buf->type == LIBETH_SQE_CTX)
1906		idpf_tx_clean_buf_ring_bump_ntc(txq, ntc, tx_buf);
1907
1908	/*
1909	 * If ntc still points to a different "first" buffer, clean the
1910	 * descriptor ring and stash all of the buffers for later cleaning. If
1911	 * we cannot stash all of the buffers, next_to_clean will point to the
1912	 * "first" buffer of the packet that could not be stashed and cleaning
1913	 * will start there next time.
1914	 */
1915	if (unlikely(tx_buf != &txq->tx_buf[orig_idx] &&
1916		     !idpf_tx_splitq_clean(txq, orig_idx, budget, cleaned,
1917					   true)))
1918		return true;
1919
1920	/*
1921	 * Otherwise, update next_to_clean to reflect the cleaning that was
1922	 * done above.
1923	 */
1924	txq->next_to_clean = idx;
1925
1926	return true;
1927}
1928
1929/**
1930 * idpf_tx_handle_rs_completion - clean a single packet and all of its buffers
1931 * whether on the buffer ring or in the hash table
1932 * @txq: Tx ring to clean
1933 * @desc: pointer to completion queue descriptor to extract completion
1934 * information from
1935 * @cleaned: pointer to stats struct to track cleaned packets/bytes
1936 * @budget: Used to determine if we are in netpoll
1937 *
1938 * Returns bytes/packets cleaned
1939 */
1940static void idpf_tx_handle_rs_completion(struct idpf_tx_queue *txq,
1941					 struct idpf_splitq_tx_compl_desc *desc,
1942					 struct libeth_sq_napi_stats *cleaned,
1943					 int budget)
1944{
1945	u16 compl_tag;
1946
1947	if (!idpf_queue_has(FLOW_SCH_EN, txq)) {
1948		u16 head = le16_to_cpu(desc->q_head_compl_tag.q_head);
1949
1950		idpf_tx_splitq_clean(txq, head, budget, cleaned, false);
1951		return;
1952	}
1953
1954	compl_tag = le16_to_cpu(desc->q_head_compl_tag.compl_tag);
1955
1956	/* If we didn't clean anything on the ring, this packet must be
1957	 * in the hash table. Go clean it there.
1958	 */
1959	if (!idpf_tx_clean_buf_ring(txq, compl_tag, cleaned, budget))
1960		idpf_tx_clean_stashed_bufs(txq, compl_tag, cleaned, budget);
1961}
1962
1963/**
1964 * idpf_tx_clean_complq - Reclaim resources on completion queue
1965 * @complq: Tx ring to clean
1966 * @budget: Used to determine if we are in netpoll
1967 * @cleaned: returns number of packets cleaned
1968 *
1969 * Returns true if there's any budget left (e.g. the clean is finished)
1970 */
1971static bool idpf_tx_clean_complq(struct idpf_compl_queue *complq, int budget,
1972				 int *cleaned)
1973{
1974	struct idpf_splitq_tx_compl_desc *tx_desc;
1975	s16 ntc = complq->next_to_clean;
1976	struct idpf_netdev_priv *np;
1977	unsigned int complq_budget;
1978	bool complq_ok = true;
1979	int i;
1980
1981	complq_budget = complq->clean_budget;
1982	tx_desc = &complq->comp[ntc];
1983	ntc -= complq->desc_count;
1984
1985	do {
1986		struct libeth_sq_napi_stats cleaned_stats = { };
1987		struct idpf_tx_queue *tx_q;
1988		int rel_tx_qid;
1989		u16 hw_head;
1990		u8 ctype;	/* completion type */
1991		u16 gen;
1992
1993		/* if the descriptor isn't done, no work yet to do */
1994		gen = le16_get_bits(tx_desc->qid_comptype_gen,
1995				    IDPF_TXD_COMPLQ_GEN_M);
1996		if (idpf_queue_has(GEN_CHK, complq) != gen)
1997			break;
1998
1999		/* Find necessary info of TX queue to clean buffers */
2000		rel_tx_qid = le16_get_bits(tx_desc->qid_comptype_gen,
2001					   IDPF_TXD_COMPLQ_QID_M);
2002		if (rel_tx_qid >= complq->txq_grp->num_txq ||
2003		    !complq->txq_grp->txqs[rel_tx_qid]) {
2004			netdev_err(complq->netdev, "TxQ not found\n");
2005			goto fetch_next_desc;
2006		}
2007		tx_q = complq->txq_grp->txqs[rel_tx_qid];
2008
2009		/* Determine completion type */
2010		ctype = le16_get_bits(tx_desc->qid_comptype_gen,
2011				      IDPF_TXD_COMPLQ_COMPL_TYPE_M);
2012		switch (ctype) {
2013		case IDPF_TXD_COMPLT_RE:
2014			hw_head = le16_to_cpu(tx_desc->q_head_compl_tag.q_head);
2015
2016			idpf_tx_splitq_clean(tx_q, hw_head, budget,
2017					     &cleaned_stats, true);
2018			break;
2019		case IDPF_TXD_COMPLT_RS:
2020			idpf_tx_handle_rs_completion(tx_q, tx_desc,
2021						     &cleaned_stats, budget);
2022			break;
2023		case IDPF_TXD_COMPLT_SW_MARKER:
2024			idpf_tx_handle_sw_marker(tx_q);
2025			break;
2026		default:
2027			netdev_err(tx_q->netdev,
2028				   "Unknown TX completion type: %d\n", ctype);
2029			goto fetch_next_desc;
2030		}
2031
2032		u64_stats_update_begin(&tx_q->stats_sync);
2033		u64_stats_add(&tx_q->q_stats.packets, cleaned_stats.packets);
2034		u64_stats_add(&tx_q->q_stats.bytes, cleaned_stats.bytes);
2035		tx_q->cleaned_pkts += cleaned_stats.packets;
2036		tx_q->cleaned_bytes += cleaned_stats.bytes;
2037		complq->num_completions++;
2038		u64_stats_update_end(&tx_q->stats_sync);
2039
2040fetch_next_desc:
2041		tx_desc++;
2042		ntc++;
2043		if (unlikely(!ntc)) {
2044			ntc -= complq->desc_count;
2045			tx_desc = &complq->comp[0];
2046			idpf_queue_change(GEN_CHK, complq);
2047		}
2048
2049		prefetch(tx_desc);
2050
2051		/* update budget accounting */
2052		complq_budget--;
2053	} while (likely(complq_budget));
2054
2055	/* Store the state of the complq to be used later in deciding if a
2056	 * TXQ can be started again
2057	 */
2058	if (unlikely(IDPF_TX_COMPLQ_PENDING(complq->txq_grp) >
2059		     IDPF_TX_COMPLQ_OVERFLOW_THRESH(complq)))
2060		complq_ok = false;
2061
2062	np = netdev_priv(complq->netdev);
2063	for (i = 0; i < complq->txq_grp->num_txq; ++i) {
2064		struct idpf_tx_queue *tx_q = complq->txq_grp->txqs[i];
2065		struct netdev_queue *nq;
2066		bool dont_wake;
2067
2068		/* We didn't clean anything on this queue, move along */
2069		if (!tx_q->cleaned_bytes)
2070			continue;
2071
2072		*cleaned += tx_q->cleaned_pkts;
2073
2074		/* Update BQL */
2075		nq = netdev_get_tx_queue(tx_q->netdev, tx_q->idx);
2076
2077		dont_wake = !complq_ok || IDPF_TX_BUF_RSV_LOW(tx_q) ||
2078			    np->state != __IDPF_VPORT_UP ||
2079			    !netif_carrier_ok(tx_q->netdev);
2080		/* Check if the TXQ needs to and can be restarted */
2081		__netif_txq_completed_wake(nq, tx_q->cleaned_pkts, tx_q->cleaned_bytes,
2082					   IDPF_DESC_UNUSED(tx_q), IDPF_TX_WAKE_THRESH,
2083					   dont_wake);
2084
2085		/* Reset cleaned stats for the next time this queue is
2086		 * cleaned
2087		 */
2088		tx_q->cleaned_bytes = 0;
2089		tx_q->cleaned_pkts = 0;
2090	}
2091
2092	ntc += complq->desc_count;
2093	complq->next_to_clean = ntc;
2094
2095	return !!complq_budget;
2096}
2097
2098/**
2099 * idpf_tx_splitq_build_ctb - populate command tag and size for queue
2100 * based scheduling descriptors
2101 * @desc: descriptor to populate
2102 * @params: pointer to tx params struct
2103 * @td_cmd: command to be filled in desc
2104 * @size: size of buffer
2105 */
2106void idpf_tx_splitq_build_ctb(union idpf_tx_flex_desc *desc,
2107			      struct idpf_tx_splitq_params *params,
2108			      u16 td_cmd, u16 size)
2109{
2110	desc->q.qw1.cmd_dtype =
2111		le16_encode_bits(params->dtype, IDPF_FLEX_TXD_QW1_DTYPE_M);
2112	desc->q.qw1.cmd_dtype |=
2113		le16_encode_bits(td_cmd, IDPF_FLEX_TXD_QW1_CMD_M);
2114	desc->q.qw1.buf_size = cpu_to_le16(size);
2115	desc->q.qw1.l2tags.l2tag1 = cpu_to_le16(params->td_tag);
2116}
2117
2118/**
2119 * idpf_tx_splitq_build_flow_desc - populate command tag and size for flow
2120 * scheduling descriptors
2121 * @desc: descriptor to populate
2122 * @params: pointer to tx params struct
2123 * @td_cmd: command to be filled in desc
2124 * @size: size of buffer
2125 */
2126void idpf_tx_splitq_build_flow_desc(union idpf_tx_flex_desc *desc,
2127				    struct idpf_tx_splitq_params *params,
2128				    u16 td_cmd, u16 size)
2129{
2130	desc->flow.qw1.cmd_dtype = (u16)params->dtype | td_cmd;
2131	desc->flow.qw1.rxr_bufsize = cpu_to_le16((u16)size);
2132	desc->flow.qw1.compl_tag = cpu_to_le16(params->compl_tag);
2133}
2134
2135/**
2136 * idpf_tx_maybe_stop_splitq - 1st level check for Tx splitq stop conditions
2137 * @tx_q: the queue to be checked
2138 * @descs_needed: number of descriptors required for this packet
2139 *
2140 * Returns 0 if stop is not needed
2141 */
2142static int idpf_tx_maybe_stop_splitq(struct idpf_tx_queue *tx_q,
2143				     unsigned int descs_needed)
2144{
2145	if (idpf_tx_maybe_stop_common(tx_q, descs_needed))
2146		goto out;
2147
2148	/* If there are too many outstanding completions expected on the
2149	 * completion queue, stop the TX queue to give the device some time to
2150	 * catch up
2151	 */
2152	if (unlikely(IDPF_TX_COMPLQ_PENDING(tx_q->txq_grp) >
2153		     IDPF_TX_COMPLQ_OVERFLOW_THRESH(tx_q->txq_grp->complq)))
2154		goto splitq_stop;
2155
2156	/* Also check for available book keeping buffers; if we are low, stop
2157	 * the queue to wait for more completions
2158	 */
2159	if (unlikely(IDPF_TX_BUF_RSV_LOW(tx_q)))
2160		goto splitq_stop;
2161
2162	return 0;
2163
2164splitq_stop:
2165	netif_stop_subqueue(tx_q->netdev, tx_q->idx);
2166
2167out:
2168	u64_stats_update_begin(&tx_q->stats_sync);
2169	u64_stats_inc(&tx_q->q_stats.q_busy);
2170	u64_stats_update_end(&tx_q->stats_sync);
2171
2172	return -EBUSY;
2173}
2174
2175/**
2176 * idpf_tx_buf_hw_update - Store the new tail value
2177 * @tx_q: queue to bump
2178 * @val: new tail index
2179 * @xmit_more: more skb's pending
2180 *
2181 * The naming here is special in that 'hw' signals that this function is about
2182 * to do a register write to update our queue status. We know this can only
2183 * mean tail here as HW should be owning head for TX.
2184 */
2185void idpf_tx_buf_hw_update(struct idpf_tx_queue *tx_q, u32 val,
2186			   bool xmit_more)
2187{
2188	struct netdev_queue *nq;
2189
2190	nq = netdev_get_tx_queue(tx_q->netdev, tx_q->idx);
2191	tx_q->next_to_use = val;
2192
2193	if (idpf_tx_maybe_stop_common(tx_q, IDPF_TX_DESC_NEEDED)) {
2194		u64_stats_update_begin(&tx_q->stats_sync);
2195		u64_stats_inc(&tx_q->q_stats.q_busy);
2196		u64_stats_update_end(&tx_q->stats_sync);
2197	}
2198
2199	/* Force memory writes to complete before letting h/w
2200	 * know there are new descriptors to fetch.  (Only
2201	 * applicable for weak-ordered memory model archs,
2202	 * such as IA-64).
2203	 */
2204	wmb();
2205
2206	/* notify HW of packet */
2207	if (netif_xmit_stopped(nq) || !xmit_more)
2208		writel(val, tx_q->tail);
2209}
2210
2211/**
2212 * idpf_tx_desc_count_required - calculate number of Tx descriptors needed
2213 * @txq: queue to send buffer on
2214 * @skb: send buffer
2215 *
2216 * Returns number of data descriptors needed for this skb.
2217 */
2218unsigned int idpf_tx_desc_count_required(struct idpf_tx_queue *txq,
2219					 struct sk_buff *skb)
2220{
2221	const struct skb_shared_info *shinfo;
2222	unsigned int count = 0, i;
2223
2224	count += !!skb_headlen(skb);
2225
2226	if (!skb_is_nonlinear(skb))
2227		return count;
2228
2229	shinfo = skb_shinfo(skb);
2230	for (i = 0; i < shinfo->nr_frags; i++) {
2231		unsigned int size;
2232
2233		size = skb_frag_size(&shinfo->frags[i]);
2234
2235		/* We only need to use the idpf_size_to_txd_count check if the
2236		 * fragment is going to span multiple descriptors,
2237		 * i.e. size >= 16K.
2238		 */
2239		if (size >= SZ_16K)
2240			count += idpf_size_to_txd_count(size);
2241		else
2242			count++;
2243	}
2244
2245	if (idpf_chk_linearize(skb, txq->tx_max_bufs, count)) {
2246		if (__skb_linearize(skb))
2247			return 0;
2248
2249		count = idpf_size_to_txd_count(skb->len);
2250		u64_stats_update_begin(&txq->stats_sync);
2251		u64_stats_inc(&txq->q_stats.linearize);
2252		u64_stats_update_end(&txq->stats_sync);
2253	}
2254
2255	return count;
2256}
2257
2258/**
2259 * idpf_tx_dma_map_error - handle TX DMA map errors
2260 * @txq: queue to send buffer on
2261 * @skb: send buffer
2262 * @first: original first buffer info buffer for packet
2263 * @idx: starting point on ring to unwind
2264 */
2265void idpf_tx_dma_map_error(struct idpf_tx_queue *txq, struct sk_buff *skb,
2266			   struct idpf_tx_buf *first, u16 idx)
2267{
2268	struct libeth_sq_napi_stats ss = { };
2269	struct libeth_cq_pp cp = {
2270		.dev	= txq->dev,
2271		.ss	= &ss,
2272	};
2273
2274	u64_stats_update_begin(&txq->stats_sync);
2275	u64_stats_inc(&txq->q_stats.dma_map_errs);
2276	u64_stats_update_end(&txq->stats_sync);
2277
2278	/* clear dma mappings for failed tx_buf map */
2279	for (;;) {
2280		struct idpf_tx_buf *tx_buf;
2281
2282		tx_buf = &txq->tx_buf[idx];
2283		libeth_tx_complete(tx_buf, &cp);
2284		if (tx_buf == first)
2285			break;
2286		if (idx == 0)
2287			idx = txq->desc_count;
2288		idx--;
2289	}
2290
2291	if (skb_is_gso(skb)) {
2292		union idpf_tx_flex_desc *tx_desc;
2293
2294		/* If we failed a DMA mapping for a TSO packet, we will have
2295		 * used one additional descriptor for a context
2296		 * descriptor. Reset that here.
2297		 */
2298		tx_desc = &txq->flex_tx[idx];
2299		memset(tx_desc, 0, sizeof(struct idpf_flex_tx_ctx_desc));
2300		if (idx == 0)
2301			idx = txq->desc_count;
2302		idx--;
2303	}
2304
2305	/* Update tail in case netdev_xmit_more was previously true */
2306	idpf_tx_buf_hw_update(txq, idx, false);
2307}
2308
2309/**
2310 * idpf_tx_splitq_bump_ntu - adjust NTU and generation
2311 * @txq: the tx ring to wrap
2312 * @ntu: ring index to bump
2313 */
2314static unsigned int idpf_tx_splitq_bump_ntu(struct idpf_tx_queue *txq, u16 ntu)
2315{
2316	ntu++;
2317
2318	if (ntu == txq->desc_count) {
2319		ntu = 0;
2320		txq->compl_tag_cur_gen = IDPF_TX_ADJ_COMPL_TAG_GEN(txq);
2321	}
2322
2323	return ntu;
2324}
2325
2326/**
2327 * idpf_tx_splitq_map - Build the Tx flex descriptor
2328 * @tx_q: queue to send buffer on
2329 * @params: pointer to splitq params struct
2330 * @first: first buffer info buffer to use
2331 *
2332 * This function loops over the skb data pointed to by *first
2333 * and gets a physical address for each memory location and programs
2334 * it and the length into the transmit flex descriptor.
2335 */
2336static void idpf_tx_splitq_map(struct idpf_tx_queue *tx_q,
2337			       struct idpf_tx_splitq_params *params,
2338			       struct idpf_tx_buf *first)
2339{
2340	union idpf_tx_flex_desc *tx_desc;
2341	unsigned int data_len, size;
2342	struct idpf_tx_buf *tx_buf;
2343	u16 i = tx_q->next_to_use;
2344	struct netdev_queue *nq;
2345	struct sk_buff *skb;
2346	skb_frag_t *frag;
2347	u16 td_cmd = 0;
2348	dma_addr_t dma;
2349
2350	skb = first->skb;
2351
2352	td_cmd = params->offload.td_cmd;
2353
2354	data_len = skb->data_len;
2355	size = skb_headlen(skb);
2356
2357	tx_desc = &tx_q->flex_tx[i];
2358
2359	dma = dma_map_single(tx_q->dev, skb->data, size, DMA_TO_DEVICE);
2360
2361	tx_buf = first;
2362	first->nr_frags = 0;
2363
2364	params->compl_tag =
2365		(tx_q->compl_tag_cur_gen << tx_q->compl_tag_gen_s) | i;
2366
2367	for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
2368		unsigned int max_data = IDPF_TX_MAX_DESC_DATA_ALIGNED;
2369
2370		if (dma_mapping_error(tx_q->dev, dma))
2371			return idpf_tx_dma_map_error(tx_q, skb, first, i);
2372
2373		first->nr_frags++;
2374		idpf_tx_buf_compl_tag(tx_buf) = params->compl_tag;
2375		tx_buf->type = LIBETH_SQE_FRAG;
2376
2377		/* record length, and DMA address */
2378		dma_unmap_len_set(tx_buf, len, size);
2379		dma_unmap_addr_set(tx_buf, dma, dma);
2380
2381		/* buf_addr is in same location for both desc types */
2382		tx_desc->q.buf_addr = cpu_to_le64(dma);
2383
2384		/* The stack can send us fragments that are too large for a
2385		 * single descriptor i.e. frag size > 16K-1. We will need to
2386		 * split the fragment across multiple descriptors in this case.
2387		 * To adhere to HW alignment restrictions, the fragment needs
2388		 * to be split such that the first chunk ends on a 4K boundary
2389		 * and all subsequent chunks start on a 4K boundary. We still
2390		 * want to send as much data as possible though, so our
2391		 * intermediate descriptor chunk size will be 12K.
2392		 *
2393		 * For example, consider a 32K fragment mapped to DMA addr 2600.
2394		 * ------------------------------------------------------------
2395		 * |                    frag_size = 32K                       |
2396		 * ------------------------------------------------------------
2397		 * |2600		  |16384	    |28672
2398		 *
2399		 * 3 descriptors will be used for this fragment. The HW expects
2400		 * the descriptors to contain the following:
2401		 * ------------------------------------------------------------
2402		 * | size = 13784         | size = 12K      | size = 6696     |
2403		 * | dma = 2600           | dma = 16384     | dma = 28672     |
2404		 * ------------------------------------------------------------
2405		 *
2406		 * We need to first adjust the max_data for the first chunk so
2407		 * that it ends on a 4K boundary. By negating the value of the
2408		 * DMA address and taking only the low order bits, we're
2409		 * effectively calculating
2410		 *	4K - (DMA addr lower order bits) =
2411		 *				bytes to next boundary.
2412		 *
2413		 * Add that to our base aligned max_data (12K) and we have
2414		 * our first chunk size. In the example above,
2415		 *	13784 = 12K + (4096-2600)
2416		 *
2417		 * After guaranteeing the first chunk ends on a 4K boundary, we
2418		 * will give the intermediate descriptors 12K chunks and
2419		 * whatever is left to the final descriptor. This ensures that
2420		 * all descriptors used for the remaining chunks of the
2421		 * fragment start on a 4K boundary and we use as few
2422		 * descriptors as possible.
2423		 */
2424		max_data += -dma & (IDPF_TX_MAX_READ_REQ_SIZE - 1);
2425		while (unlikely(size > IDPF_TX_MAX_DESC_DATA)) {
2426			idpf_tx_splitq_build_desc(tx_desc, params, td_cmd,
2427						  max_data);
2428
2429			if (unlikely(++i == tx_q->desc_count)) {
2430				tx_buf = tx_q->tx_buf;
2431				tx_desc = &tx_q->flex_tx[0];
2432				i = 0;
2433				tx_q->compl_tag_cur_gen =
2434					IDPF_TX_ADJ_COMPL_TAG_GEN(tx_q);
2435			} else {
2436				tx_buf++;
2437				tx_desc++;
2438			}
2439
2440			/* Since this packet has a buffer that is going to span
2441			 * multiple descriptors, it's going to leave holes in
2442			 * to the TX buffer ring. To ensure these holes do not
2443			 * cause issues in the cleaning routines, we will clear
2444			 * them of any stale data and assign them the same
2445			 * completion tag as the current packet. Then when the
2446			 * packet is being cleaned, the cleaning routines will
2447			 * simply pass over these holes and finish cleaning the
2448			 * rest of the packet.
2449			 */
2450			tx_buf->type = LIBETH_SQE_EMPTY;
2451			idpf_tx_buf_compl_tag(tx_buf) = params->compl_tag;
2452
2453			/* Adjust the DMA offset and the remaining size of the
2454			 * fragment.  On the first iteration of this loop,
2455			 * max_data will be >= 12K and <= 16K-1.  On any
2456			 * subsequent iteration of this loop, max_data will
2457			 * always be 12K.
2458			 */
2459			dma += max_data;
2460			size -= max_data;
2461
2462			/* Reset max_data since remaining chunks will be 12K
2463			 * at most
2464			 */
2465			max_data = IDPF_TX_MAX_DESC_DATA_ALIGNED;
2466
2467			/* buf_addr is in same location for both desc types */
2468			tx_desc->q.buf_addr = cpu_to_le64(dma);
2469		}
2470
2471		if (!data_len)
2472			break;
2473
2474		idpf_tx_splitq_build_desc(tx_desc, params, td_cmd, size);
2475
2476		if (unlikely(++i == tx_q->desc_count)) {
2477			tx_buf = tx_q->tx_buf;
2478			tx_desc = &tx_q->flex_tx[0];
2479			i = 0;
2480			tx_q->compl_tag_cur_gen = IDPF_TX_ADJ_COMPL_TAG_GEN(tx_q);
2481		} else {
2482			tx_buf++;
2483			tx_desc++;
2484		}
2485
2486		size = skb_frag_size(frag);
2487		data_len -= size;
2488
2489		dma = skb_frag_dma_map(tx_q->dev, frag, 0, size,
2490				       DMA_TO_DEVICE);
2491	}
2492
2493	/* record SW timestamp if HW timestamp is not available */
2494	skb_tx_timestamp(skb);
2495
2496	first->type = LIBETH_SQE_SKB;
2497
2498	/* write last descriptor with RS and EOP bits */
2499	first->rs_idx = i;
2500	td_cmd |= params->eop_cmd;
2501	idpf_tx_splitq_build_desc(tx_desc, params, td_cmd, size);
2502	i = idpf_tx_splitq_bump_ntu(tx_q, i);
2503
2504	tx_q->txq_grp->num_completions_pending++;
2505
2506	/* record bytecount for BQL */
2507	nq = netdev_get_tx_queue(tx_q->netdev, tx_q->idx);
2508	netdev_tx_sent_queue(nq, first->bytes);
2509
2510	idpf_tx_buf_hw_update(tx_q, i, netdev_xmit_more());
2511}
2512
2513/**
2514 * idpf_tso - computes mss and TSO length to prepare for TSO
2515 * @skb: pointer to skb
2516 * @off: pointer to struct that holds offload parameters
2517 *
2518 * Returns error (negative) if TSO was requested but cannot be applied to the
2519 * given skb, 0 if TSO does not apply to the given skb, or 1 otherwise.
2520 */
2521int idpf_tso(struct sk_buff *skb, struct idpf_tx_offload_params *off)
2522{
2523	const struct skb_shared_info *shinfo;
2524	union {
2525		struct iphdr *v4;
2526		struct ipv6hdr *v6;
2527		unsigned char *hdr;
2528	} ip;
2529	union {
2530		struct tcphdr *tcp;
2531		struct udphdr *udp;
2532		unsigned char *hdr;
2533	} l4;
2534	u32 paylen, l4_start;
2535	int err;
2536
2537	if (!skb_is_gso(skb))
2538		return 0;
2539
2540	err = skb_cow_head(skb, 0);
2541	if (err < 0)
2542		return err;
2543
2544	shinfo = skb_shinfo(skb);
2545
2546	ip.hdr = skb_network_header(skb);
2547	l4.hdr = skb_transport_header(skb);
2548
2549	/* initialize outer IP header fields */
2550	if (ip.v4->version == 4) {
2551		ip.v4->tot_len = 0;
2552		ip.v4->check = 0;
2553	} else if (ip.v6->version == 6) {
2554		ip.v6->payload_len = 0;
2555	}
2556
2557	l4_start = skb_transport_offset(skb);
2558
2559	/* remove payload length from checksum */
2560	paylen = skb->len - l4_start;
2561
2562	switch (shinfo->gso_type & ~SKB_GSO_DODGY) {
2563	case SKB_GSO_TCPV4:
2564	case SKB_GSO_TCPV6:
2565		csum_replace_by_diff(&l4.tcp->check,
2566				     (__force __wsum)htonl(paylen));
2567		off->tso_hdr_len = __tcp_hdrlen(l4.tcp) + l4_start;
2568		break;
2569	case SKB_GSO_UDP_L4:
2570		csum_replace_by_diff(&l4.udp->check,
2571				     (__force __wsum)htonl(paylen));
2572		/* compute length of segmentation header */
2573		off->tso_hdr_len = sizeof(struct udphdr) + l4_start;
2574		l4.udp->len = htons(shinfo->gso_size + sizeof(struct udphdr));
2575		break;
2576	default:
2577		return -EINVAL;
2578	}
2579
2580	off->tso_len = skb->len - off->tso_hdr_len;
2581	off->mss = shinfo->gso_size;
2582	off->tso_segs = shinfo->gso_segs;
2583
2584	off->tx_flags |= IDPF_TX_FLAGS_TSO;
2585
2586	return 1;
2587}
2588
2589/**
2590 * __idpf_chk_linearize - Check skb is not using too many buffers
2591 * @skb: send buffer
2592 * @max_bufs: maximum number of buffers
2593 *
2594 * For TSO we need to count the TSO header and segment payload separately.  As
2595 * such we need to check cases where we have max_bufs-1 fragments or more as we
2596 * can potentially require max_bufs+1 DMA transactions, 1 for the TSO header, 1
2597 * for the segment payload in the first descriptor, and another max_buf-1 for
2598 * the fragments.
2599 */
2600static bool __idpf_chk_linearize(struct sk_buff *skb, unsigned int max_bufs)
2601{
2602	const struct skb_shared_info *shinfo = skb_shinfo(skb);
2603	const skb_frag_t *frag, *stale;
2604	int nr_frags, sum;
2605
2606	/* no need to check if number of frags is less than max_bufs - 1 */
2607	nr_frags = shinfo->nr_frags;
2608	if (nr_frags < (max_bufs - 1))
2609		return false;
2610
2611	/* We need to walk through the list and validate that each group
2612	 * of max_bufs-2 fragments totals at least gso_size.
2613	 */
2614	nr_frags -= max_bufs - 2;
2615	frag = &shinfo->frags[0];
2616
2617	/* Initialize size to the negative value of gso_size minus 1.  We use
2618	 * this as the worst case scenario in which the frag ahead of us only
2619	 * provides one byte which is why we are limited to max_bufs-2
2620	 * descriptors for a single transmit as the header and previous
2621	 * fragment are already consuming 2 descriptors.
2622	 */
2623	sum = 1 - shinfo->gso_size;
2624
2625	/* Add size of frags 0 through 4 to create our initial sum */
2626	sum += skb_frag_size(frag++);
2627	sum += skb_frag_size(frag++);
2628	sum += skb_frag_size(frag++);
2629	sum += skb_frag_size(frag++);
2630	sum += skb_frag_size(frag++);
2631
2632	/* Walk through fragments adding latest fragment, testing it, and
2633	 * then removing stale fragments from the sum.
2634	 */
2635	for (stale = &shinfo->frags[0];; stale++) {
2636		int stale_size = skb_frag_size(stale);
2637
2638		sum += skb_frag_size(frag++);
2639
2640		/* The stale fragment may present us with a smaller
2641		 * descriptor than the actual fragment size. To account
2642		 * for that we need to remove all the data on the front and
2643		 * figure out what the remainder would be in the last
2644		 * descriptor associated with the fragment.
2645		 */
2646		if (stale_size > IDPF_TX_MAX_DESC_DATA) {
2647			int align_pad = -(skb_frag_off(stale)) &
2648					(IDPF_TX_MAX_READ_REQ_SIZE - 1);
2649
2650			sum -= align_pad;
2651			stale_size -= align_pad;
2652
2653			do {
2654				sum -= IDPF_TX_MAX_DESC_DATA_ALIGNED;
2655				stale_size -= IDPF_TX_MAX_DESC_DATA_ALIGNED;
2656			} while (stale_size > IDPF_TX_MAX_DESC_DATA);
2657		}
2658
2659		/* if sum is negative we failed to make sufficient progress */
2660		if (sum < 0)
2661			return true;
2662
2663		if (!nr_frags--)
2664			break;
2665
2666		sum -= stale_size;
2667	}
2668
2669	return false;
2670}
2671
2672/**
2673 * idpf_chk_linearize - Check if skb exceeds max descriptors per packet
2674 * @skb: send buffer
2675 * @max_bufs: maximum scatter gather buffers for single packet
2676 * @count: number of buffers this packet needs
2677 *
2678 * Make sure we don't exceed maximum scatter gather buffers for a single
2679 * packet. We have to do some special checking around the boundary (max_bufs-1)
2680 * if TSO is on since we need count the TSO header and payload separately.
2681 * E.g.: a packet with 7 fragments can require 9 DMA transactions; 1 for TSO
2682 * header, 1 for segment payload, and then 7 for the fragments.
2683 */
2684static bool idpf_chk_linearize(struct sk_buff *skb, unsigned int max_bufs,
2685			       unsigned int count)
2686{
2687	if (likely(count < max_bufs))
2688		return false;
2689	if (skb_is_gso(skb))
2690		return __idpf_chk_linearize(skb, max_bufs);
2691
2692	return count > max_bufs;
2693}
2694
2695/**
2696 * idpf_tx_splitq_get_ctx_desc - grab next desc and update buffer ring
2697 * @txq: queue to put context descriptor on
2698 *
2699 * Since the TX buffer rings mimics the descriptor ring, update the tx buffer
2700 * ring entry to reflect that this index is a context descriptor
2701 */
2702static struct idpf_flex_tx_ctx_desc *
2703idpf_tx_splitq_get_ctx_desc(struct idpf_tx_queue *txq)
2704{
2705	struct idpf_flex_tx_ctx_desc *desc;
2706	int i = txq->next_to_use;
2707
2708	txq->tx_buf[i].type = LIBETH_SQE_CTX;
2709
2710	/* grab the next descriptor */
2711	desc = &txq->flex_ctx[i];
2712	txq->next_to_use = idpf_tx_splitq_bump_ntu(txq, i);
2713
2714	return desc;
2715}
2716
2717/**
2718 * idpf_tx_drop_skb - free the SKB and bump tail if necessary
2719 * @tx_q: queue to send buffer on
2720 * @skb: pointer to skb
2721 */
2722netdev_tx_t idpf_tx_drop_skb(struct idpf_tx_queue *tx_q, struct sk_buff *skb)
2723{
2724	u64_stats_update_begin(&tx_q->stats_sync);
2725	u64_stats_inc(&tx_q->q_stats.skb_drops);
2726	u64_stats_update_end(&tx_q->stats_sync);
2727
2728	idpf_tx_buf_hw_update(tx_q, tx_q->next_to_use, false);
2729
2730	dev_kfree_skb(skb);
2731
2732	return NETDEV_TX_OK;
2733}
2734
2735/**
2736 * idpf_tx_splitq_frame - Sends buffer on Tx ring using flex descriptors
2737 * @skb: send buffer
2738 * @tx_q: queue to send buffer on
2739 *
2740 * Returns NETDEV_TX_OK if sent, else an error code
2741 */
2742static netdev_tx_t idpf_tx_splitq_frame(struct sk_buff *skb,
2743					struct idpf_tx_queue *tx_q)
2744{
2745	struct idpf_tx_splitq_params tx_params = { };
2746	struct idpf_tx_buf *first;
2747	unsigned int count;
2748	int tso;
2749
2750	count = idpf_tx_desc_count_required(tx_q, skb);
2751	if (unlikely(!count))
2752		return idpf_tx_drop_skb(tx_q, skb);
2753
2754	tso = idpf_tso(skb, &tx_params.offload);
2755	if (unlikely(tso < 0))
2756		return idpf_tx_drop_skb(tx_q, skb);
2757
2758	/* Check for splitq specific TX resources */
2759	count += (IDPF_TX_DESCS_PER_CACHE_LINE + tso);
2760	if (idpf_tx_maybe_stop_splitq(tx_q, count)) {
2761		idpf_tx_buf_hw_update(tx_q, tx_q->next_to_use, false);
2762
2763		return NETDEV_TX_BUSY;
2764	}
2765
2766	if (tso) {
2767		/* If tso is needed, set up context desc */
2768		struct idpf_flex_tx_ctx_desc *ctx_desc =
2769			idpf_tx_splitq_get_ctx_desc(tx_q);
2770
2771		ctx_desc->tso.qw1.cmd_dtype =
2772				cpu_to_le16(IDPF_TX_DESC_DTYPE_FLEX_TSO_CTX |
2773					    IDPF_TX_FLEX_CTX_DESC_CMD_TSO);
2774		ctx_desc->tso.qw0.flex_tlen =
2775				cpu_to_le32(tx_params.offload.tso_len &
2776					    IDPF_TXD_FLEX_CTX_TLEN_M);
2777		ctx_desc->tso.qw0.mss_rt =
2778				cpu_to_le16(tx_params.offload.mss &
2779					    IDPF_TXD_FLEX_CTX_MSS_RT_M);
2780		ctx_desc->tso.qw0.hdr_len = tx_params.offload.tso_hdr_len;
2781
2782		u64_stats_update_begin(&tx_q->stats_sync);
2783		u64_stats_inc(&tx_q->q_stats.lso_pkts);
2784		u64_stats_update_end(&tx_q->stats_sync);
2785	}
2786
2787	/* record the location of the first descriptor for this packet */
2788	first = &tx_q->tx_buf[tx_q->next_to_use];
2789	first->skb = skb;
2790
2791	if (tso) {
2792		first->packets = tx_params.offload.tso_segs;
2793		first->bytes = skb->len +
2794			((first->packets - 1) * tx_params.offload.tso_hdr_len);
2795	} else {
2796		first->packets = 1;
2797		first->bytes = max_t(unsigned int, skb->len, ETH_ZLEN);
2798	}
2799
2800	if (idpf_queue_has(FLOW_SCH_EN, tx_q)) {
2801		tx_params.dtype = IDPF_TX_DESC_DTYPE_FLEX_FLOW_SCHE;
2802		tx_params.eop_cmd = IDPF_TXD_FLEX_FLOW_CMD_EOP;
2803		/* Set the RE bit to catch any packets that may have not been
2804		 * stashed during RS completion cleaning. MIN_GAP is set to
2805		 * MIN_RING size to ensure it will be set at least once each
2806		 * time around the ring.
2807		 */
2808		if (!(tx_q->next_to_use % IDPF_TX_SPLITQ_RE_MIN_GAP)) {
2809			tx_params.eop_cmd |= IDPF_TXD_FLEX_FLOW_CMD_RE;
2810			tx_q->txq_grp->num_completions_pending++;
2811		}
2812
2813		if (skb->ip_summed == CHECKSUM_PARTIAL)
2814			tx_params.offload.td_cmd |= IDPF_TXD_FLEX_FLOW_CMD_CS_EN;
2815
2816	} else {
2817		tx_params.dtype = IDPF_TX_DESC_DTYPE_FLEX_L2TAG1_L2TAG2;
2818		tx_params.eop_cmd = IDPF_TXD_LAST_DESC_CMD;
2819
2820		if (skb->ip_summed == CHECKSUM_PARTIAL)
2821			tx_params.offload.td_cmd |= IDPF_TX_FLEX_DESC_CMD_CS_EN;
2822	}
2823
2824	idpf_tx_splitq_map(tx_q, &tx_params, first);
2825
2826	return NETDEV_TX_OK;
2827}
2828
2829/**
2830 * idpf_tx_start - Selects the right Tx queue to send buffer
2831 * @skb: send buffer
2832 * @netdev: network interface device structure
2833 *
2834 * Returns NETDEV_TX_OK if sent, else an error code
2835 */
2836netdev_tx_t idpf_tx_start(struct sk_buff *skb, struct net_device *netdev)
2837{
2838	struct idpf_vport *vport = idpf_netdev_to_vport(netdev);
2839	struct idpf_tx_queue *tx_q;
2840
2841	if (unlikely(skb_get_queue_mapping(skb) >= vport->num_txq)) {
2842		dev_kfree_skb_any(skb);
2843
2844		return NETDEV_TX_OK;
2845	}
2846
2847	tx_q = vport->txqs[skb_get_queue_mapping(skb)];
2848
2849	/* hardware can't handle really short frames, hardware padding works
2850	 * beyond this point
2851	 */
2852	if (skb_put_padto(skb, tx_q->tx_min_pkt_len)) {
2853		idpf_tx_buf_hw_update(tx_q, tx_q->next_to_use, false);
2854
2855		return NETDEV_TX_OK;
2856	}
2857
2858	if (idpf_is_queue_model_split(vport->txq_model))
2859		return idpf_tx_splitq_frame(skb, tx_q);
2860	else
2861		return idpf_tx_singleq_frame(skb, tx_q);
2862}
2863
2864/**
2865 * idpf_rx_hash - set the hash value in the skb
2866 * @rxq: Rx descriptor ring packet is being transacted on
2867 * @skb: pointer to current skb being populated
2868 * @rx_desc: Receive descriptor
2869 * @decoded: Decoded Rx packet type related fields
2870 */
2871static void
2872idpf_rx_hash(const struct idpf_rx_queue *rxq, struct sk_buff *skb,
2873	     const struct virtchnl2_rx_flex_desc_adv_nic_3 *rx_desc,
2874	     struct libeth_rx_pt decoded)
2875{
2876	u32 hash;
2877
2878	if (!libeth_rx_pt_has_hash(rxq->netdev, decoded))
2879		return;
2880
2881	hash = le16_to_cpu(rx_desc->hash1) |
2882	       (rx_desc->ff2_mirrid_hash2.hash2 << 16) |
2883	       (rx_desc->hash3 << 24);
2884
2885	libeth_rx_pt_set_hash(skb, hash, decoded);
2886}
2887
2888/**
2889 * idpf_rx_csum - Indicate in skb if checksum is good
2890 * @rxq: Rx descriptor ring packet is being transacted on
2891 * @skb: pointer to current skb being populated
2892 * @csum_bits: checksum fields extracted from the descriptor
2893 * @decoded: Decoded Rx packet type related fields
2894 *
2895 * skb->protocol must be set before this function is called
2896 */
2897static void idpf_rx_csum(struct idpf_rx_queue *rxq, struct sk_buff *skb,
2898			 struct idpf_rx_csum_decoded csum_bits,
2899			 struct libeth_rx_pt decoded)
2900{
2901	bool ipv4, ipv6;
2902
2903	/* check if Rx checksum is enabled */
2904	if (!libeth_rx_pt_has_checksum(rxq->netdev, decoded))
2905		return;
2906
2907	/* check if HW has decoded the packet and checksum */
2908	if (unlikely(!csum_bits.l3l4p))
2909		return;
2910
2911	ipv4 = libeth_rx_pt_get_ip_ver(decoded) == LIBETH_RX_PT_OUTER_IPV4;
2912	ipv6 = libeth_rx_pt_get_ip_ver(decoded) == LIBETH_RX_PT_OUTER_IPV6;
2913
2914	if (unlikely(ipv4 && (csum_bits.ipe || csum_bits.eipe)))
2915		goto checksum_fail;
2916
2917	if (unlikely(ipv6 && csum_bits.ipv6exadd))
2918		return;
2919
2920	/* check for L4 errors and handle packets that were not able to be
2921	 * checksummed
2922	 */
2923	if (unlikely(csum_bits.l4e))
2924		goto checksum_fail;
2925
2926	if (csum_bits.raw_csum_inv ||
2927	    decoded.inner_prot == LIBETH_RX_PT_INNER_SCTP) {
2928		skb->ip_summed = CHECKSUM_UNNECESSARY;
2929		return;
2930	}
2931
2932	skb->csum = csum_unfold((__force __sum16)~swab16(csum_bits.raw_csum));
2933	skb->ip_summed = CHECKSUM_COMPLETE;
2934
2935	return;
2936
2937checksum_fail:
2938	u64_stats_update_begin(&rxq->stats_sync);
2939	u64_stats_inc(&rxq->q_stats.hw_csum_err);
2940	u64_stats_update_end(&rxq->stats_sync);
2941}
2942
2943/**
2944 * idpf_rx_splitq_extract_csum_bits - Extract checksum bits from descriptor
2945 * @rx_desc: receive descriptor
2946 *
2947 * Return: parsed checksum status.
2948 **/
2949static struct idpf_rx_csum_decoded
2950idpf_rx_splitq_extract_csum_bits(const struct virtchnl2_rx_flex_desc_adv_nic_3 *rx_desc)
2951{
2952	struct idpf_rx_csum_decoded csum = { };
2953	u8 qword0, qword1;
2954
2955	qword0 = rx_desc->status_err0_qw0;
2956	qword1 = rx_desc->status_err0_qw1;
2957
2958	csum.ipe = FIELD_GET(VIRTCHNL2_RX_FLEX_DESC_ADV_STATUS0_XSUM_IPE_M,
2959			     qword1);
2960	csum.eipe = FIELD_GET(VIRTCHNL2_RX_FLEX_DESC_ADV_STATUS0_XSUM_EIPE_M,
2961			      qword1);
2962	csum.l4e = FIELD_GET(VIRTCHNL2_RX_FLEX_DESC_ADV_STATUS0_XSUM_L4E_M,
2963			     qword1);
2964	csum.l3l4p = FIELD_GET(VIRTCHNL2_RX_FLEX_DESC_ADV_STATUS0_L3L4P_M,
2965			       qword1);
2966	csum.ipv6exadd = FIELD_GET(VIRTCHNL2_RX_FLEX_DESC_ADV_STATUS0_IPV6EXADD_M,
2967				   qword0);
2968	csum.raw_csum_inv =
2969		le16_get_bits(rx_desc->ptype_err_fflags0,
2970			      VIRTCHNL2_RX_FLEX_DESC_ADV_RAW_CSUM_INV_M);
2971	csum.raw_csum = le16_to_cpu(rx_desc->misc.raw_cs);
2972
2973	return csum;
2974}
2975
2976/**
2977 * idpf_rx_rsc - Set the RSC fields in the skb
2978 * @rxq : Rx descriptor ring packet is being transacted on
2979 * @skb : pointer to current skb being populated
2980 * @rx_desc: Receive descriptor
2981 * @decoded: Decoded Rx packet type related fields
2982 *
2983 * Return 0 on success and error code on failure
2984 *
2985 * Populate the skb fields with the total number of RSC segments, RSC payload
2986 * length and packet type.
2987 */
2988static int idpf_rx_rsc(struct idpf_rx_queue *rxq, struct sk_buff *skb,
2989		       const struct virtchnl2_rx_flex_desc_adv_nic_3 *rx_desc,
2990		       struct libeth_rx_pt decoded)
2991{
2992	u16 rsc_segments, rsc_seg_len;
2993	bool ipv4, ipv6;
2994	int len;
2995
2996	if (unlikely(libeth_rx_pt_get_ip_ver(decoded) ==
2997		     LIBETH_RX_PT_OUTER_L2))
2998		return -EINVAL;
2999
3000	rsc_seg_len = le16_to_cpu(rx_desc->misc.rscseglen);
3001	if (unlikely(!rsc_seg_len))
3002		return -EINVAL;
3003
3004	ipv4 = libeth_rx_pt_get_ip_ver(decoded) == LIBETH_RX_PT_OUTER_IPV4;
3005	ipv6 = libeth_rx_pt_get_ip_ver(decoded) == LIBETH_RX_PT_OUTER_IPV6;
3006
3007	if (unlikely(!(ipv4 ^ ipv6)))
3008		return -EINVAL;
3009
3010	rsc_segments = DIV_ROUND_UP(skb->data_len, rsc_seg_len);
3011
3012	NAPI_GRO_CB(skb)->count = rsc_segments;
3013	skb_shinfo(skb)->gso_size = rsc_seg_len;
3014
3015	skb_reset_network_header(skb);
3016
3017	if (ipv4) {
3018		struct iphdr *ipv4h = ip_hdr(skb);
3019
3020		skb_shinfo(skb)->gso_type = SKB_GSO_TCPV4;
3021
3022		/* Reset and set transport header offset in skb */
3023		skb_set_transport_header(skb, sizeof(struct iphdr));
3024		len = skb->len - skb_transport_offset(skb);
3025
3026		/* Compute the TCP pseudo header checksum*/
3027		tcp_hdr(skb)->check =
3028			~tcp_v4_check(len, ipv4h->saddr, ipv4h->daddr, 0);
3029	} else {
3030		struct ipv6hdr *ipv6h = ipv6_hdr(skb);
3031
3032		skb_shinfo(skb)->gso_type = SKB_GSO_TCPV6;
3033		skb_set_transport_header(skb, sizeof(struct ipv6hdr));
3034		len = skb->len - skb_transport_offset(skb);
3035		tcp_hdr(skb)->check =
3036			~tcp_v6_check(len, &ipv6h->saddr, &ipv6h->daddr, 0);
3037	}
3038
3039	tcp_gro_complete(skb);
3040
3041	u64_stats_update_begin(&rxq->stats_sync);
3042	u64_stats_inc(&rxq->q_stats.rsc_pkts);
3043	u64_stats_update_end(&rxq->stats_sync);
3044
3045	return 0;
3046}
3047
3048/**
3049 * idpf_rx_process_skb_fields - Populate skb header fields from Rx descriptor
3050 * @rxq: Rx descriptor ring packet is being transacted on
3051 * @skb: pointer to current skb being populated
3052 * @rx_desc: Receive descriptor
3053 *
3054 * This function checks the ring, descriptor, and packet information in
3055 * order to populate the hash, checksum, protocol, and
3056 * other fields within the skb.
3057 */
3058static int
3059idpf_rx_process_skb_fields(struct idpf_rx_queue *rxq, struct sk_buff *skb,
3060			   const struct virtchnl2_rx_flex_desc_adv_nic_3 *rx_desc)
3061{
3062	struct idpf_rx_csum_decoded csum_bits;
3063	struct libeth_rx_pt decoded;
3064	u16 rx_ptype;
3065
3066	rx_ptype = le16_get_bits(rx_desc->ptype_err_fflags0,
3067				 VIRTCHNL2_RX_FLEX_DESC_ADV_PTYPE_M);
3068	decoded = rxq->rx_ptype_lkup[rx_ptype];
3069
3070	/* process RSS/hash */
3071	idpf_rx_hash(rxq, skb, rx_desc, decoded);
3072
3073	skb->protocol = eth_type_trans(skb, rxq->netdev);
3074	skb_record_rx_queue(skb, rxq->idx);
3075
3076	if (le16_get_bits(rx_desc->hdrlen_flags,
3077			  VIRTCHNL2_RX_FLEX_DESC_ADV_RSC_M))
3078		return idpf_rx_rsc(rxq, skb, rx_desc, decoded);
3079
3080	csum_bits = idpf_rx_splitq_extract_csum_bits(rx_desc);
3081	idpf_rx_csum(rxq, skb, csum_bits, decoded);
3082
3083	return 0;
3084}
3085
3086/**
3087 * idpf_rx_add_frag - Add contents of Rx buffer to sk_buff as a frag
3088 * @rx_buf: buffer containing page to add
3089 * @skb: sk_buff to place the data into
3090 * @size: packet length from rx_desc
3091 *
3092 * This function will add the data contained in rx_buf->page to the skb.
3093 * It will just attach the page as a frag to the skb.
3094 * The function will then update the page offset.
3095 */
3096void idpf_rx_add_frag(struct idpf_rx_buf *rx_buf, struct sk_buff *skb,
3097		      unsigned int size)
3098{
3099	u32 hr = rx_buf->page->pp->p.offset;
3100
3101	skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buf->page,
3102			rx_buf->offset + hr, size, rx_buf->truesize);
3103}
3104
3105/**
3106 * idpf_rx_hsplit_wa - handle header buffer overflows and split errors
3107 * @hdr: Rx buffer for the headers
3108 * @buf: Rx buffer for the payload
3109 * @data_len: number of bytes received to the payload buffer
3110 *
3111 * When a header buffer overflow occurs or the HW was unable do parse the
3112 * packet type to perform header split, the whole frame gets placed to the
3113 * payload buffer. We can't build a valid skb around a payload buffer when
3114 * the header split is active since it doesn't reserve any head- or tailroom.
3115 * In that case, copy either the whole frame when it's short or just the
3116 * Ethernet header to the header buffer to be able to build an skb and adjust
3117 * the data offset in the payload buffer, IOW emulate the header split.
3118 *
3119 * Return: number of bytes copied to the header buffer.
3120 */
3121static u32 idpf_rx_hsplit_wa(const struct libeth_fqe *hdr,
3122			     struct libeth_fqe *buf, u32 data_len)
3123{
3124	u32 copy = data_len <= L1_CACHE_BYTES ? data_len : ETH_HLEN;
3125	const void *src;
3126	void *dst;
3127
3128	if (!libeth_rx_sync_for_cpu(buf, copy))
3129		return 0;
3130
3131	dst = page_address(hdr->page) + hdr->offset + hdr->page->pp->p.offset;
3132	src = page_address(buf->page) + buf->offset + buf->page->pp->p.offset;
3133	memcpy(dst, src, LARGEST_ALIGN(copy));
3134
3135	buf->offset += copy;
3136
3137	return copy;
3138}
3139
3140/**
3141 * idpf_rx_build_skb - Allocate skb and populate it from header buffer
3142 * @buf: Rx buffer to pull data from
3143 * @size: the length of the packet
3144 *
3145 * This function allocates an skb. It then populates it with the page data from
3146 * the current receive descriptor, taking care to set up the skb correctly.
3147 */
3148struct sk_buff *idpf_rx_build_skb(const struct libeth_fqe *buf, u32 size)
3149{
3150	u32 hr = buf->page->pp->p.offset;
3151	struct sk_buff *skb;
3152	void *va;
3153
3154	va = page_address(buf->page) + buf->offset;
3155	prefetch(va + hr);
3156
3157	skb = napi_build_skb(va, buf->truesize);
3158	if (unlikely(!skb))
3159		return NULL;
3160
3161	skb_mark_for_recycle(skb);
3162
3163	skb_reserve(skb, hr);
3164	__skb_put(skb, size);
3165
3166	return skb;
3167}
3168
3169/**
3170 * idpf_rx_splitq_test_staterr - tests bits in Rx descriptor
3171 * status and error fields
3172 * @stat_err_field: field from descriptor to test bits in
3173 * @stat_err_bits: value to mask
3174 *
3175 */
3176static bool idpf_rx_splitq_test_staterr(const u8 stat_err_field,
3177					const u8 stat_err_bits)
3178{
3179	return !!(stat_err_field & stat_err_bits);
3180}
3181
3182/**
3183 * idpf_rx_splitq_is_eop - process handling of EOP buffers
3184 * @rx_desc: Rx descriptor for current buffer
3185 *
3186 * If the buffer is an EOP buffer, this function exits returning true,
3187 * otherwise return false indicating that this is in fact a non-EOP buffer.
3188 */
3189static bool idpf_rx_splitq_is_eop(struct virtchnl2_rx_flex_desc_adv_nic_3 *rx_desc)
3190{
3191	/* if we are the last buffer then there is nothing else to do */
3192	return likely(idpf_rx_splitq_test_staterr(rx_desc->status_err0_qw1,
3193						  IDPF_RXD_EOF_SPLITQ));
3194}
3195
3196/**
3197 * idpf_rx_splitq_clean - Clean completed descriptors from Rx queue
3198 * @rxq: Rx descriptor queue to retrieve receive buffer queue
3199 * @budget: Total limit on number of packets to process
3200 *
3201 * This function provides a "bounce buffer" approach to Rx interrupt
3202 * processing. The advantage to this is that on systems that have
3203 * expensive overhead for IOMMU access this provides a means of avoiding
3204 * it by maintaining the mapping of the page to the system.
3205 *
3206 * Returns amount of work completed
3207 */
3208static int idpf_rx_splitq_clean(struct idpf_rx_queue *rxq, int budget)
3209{
3210	int total_rx_bytes = 0, total_rx_pkts = 0;
3211	struct idpf_buf_queue *rx_bufq = NULL;
3212	struct sk_buff *skb = rxq->skb;
3213	u16 ntc = rxq->next_to_clean;
3214
3215	/* Process Rx packets bounded by budget */
3216	while (likely(total_rx_pkts < budget)) {
3217		struct virtchnl2_rx_flex_desc_adv_nic_3 *rx_desc;
3218		struct libeth_fqe *hdr, *rx_buf = NULL;
3219		struct idpf_sw_queue *refillq = NULL;
3220		struct idpf_rxq_set *rxq_set = NULL;
3221		unsigned int pkt_len = 0;
3222		unsigned int hdr_len = 0;
3223		u16 gen_id, buf_id = 0;
3224		int bufq_id;
3225		u8 rxdid;
3226
3227		/* get the Rx desc from Rx queue based on 'next_to_clean' */
3228		rx_desc = &rxq->rx[ntc].flex_adv_nic_3_wb;
3229
3230		/* This memory barrier is needed to keep us from reading
3231		 * any other fields out of the rx_desc
3232		 */
3233		dma_rmb();
3234
3235		/* if the descriptor isn't done, no work yet to do */
3236		gen_id = le16_get_bits(rx_desc->pktlen_gen_bufq_id,
3237				       VIRTCHNL2_RX_FLEX_DESC_ADV_GEN_M);
3238
3239		if (idpf_queue_has(GEN_CHK, rxq) != gen_id)
3240			break;
3241
3242		rxdid = FIELD_GET(VIRTCHNL2_RX_FLEX_DESC_ADV_RXDID_M,
3243				  rx_desc->rxdid_ucast);
3244		if (rxdid != VIRTCHNL2_RXDID_2_FLEX_SPLITQ) {
3245			IDPF_RX_BUMP_NTC(rxq, ntc);
3246			u64_stats_update_begin(&rxq->stats_sync);
3247			u64_stats_inc(&rxq->q_stats.bad_descs);
3248			u64_stats_update_end(&rxq->stats_sync);
3249			continue;
3250		}
3251
3252		pkt_len = le16_get_bits(rx_desc->pktlen_gen_bufq_id,
3253					VIRTCHNL2_RX_FLEX_DESC_ADV_LEN_PBUF_M);
3254
3255		bufq_id = le16_get_bits(rx_desc->pktlen_gen_bufq_id,
3256					VIRTCHNL2_RX_FLEX_DESC_ADV_BUFQ_ID_M);
3257
3258		rxq_set = container_of(rxq, struct idpf_rxq_set, rxq);
3259		refillq = rxq_set->refillq[bufq_id];
3260
3261		/* retrieve buffer from the rxq */
3262		rx_bufq = &rxq->bufq_sets[bufq_id].bufq;
3263
3264		buf_id = le16_to_cpu(rx_desc->buf_id);
3265
3266		rx_buf = &rx_bufq->buf[buf_id];
3267
3268		if (!rx_bufq->hdr_pp)
3269			goto payload;
3270
3271#define __HBO_BIT	VIRTCHNL2_RX_FLEX_DESC_ADV_STATUS0_HBO_M
3272#define __HDR_LEN_MASK	VIRTCHNL2_RX_FLEX_DESC_ADV_LEN_HDR_M
3273		if (likely(!(rx_desc->status_err0_qw1 & __HBO_BIT)))
3274			/* If a header buffer overflow, occurs, i.e. header is
3275			 * too large to fit in the header split buffer, HW will
3276			 * put the entire packet, including headers, in the
3277			 * data/payload buffer.
3278			 */
3279			hdr_len = le16_get_bits(rx_desc->hdrlen_flags,
3280						__HDR_LEN_MASK);
3281#undef __HDR_LEN_MASK
3282#undef __HBO_BIT
3283
3284		hdr = &rx_bufq->hdr_buf[buf_id];
3285
3286		if (unlikely(!hdr_len && !skb)) {
3287			hdr_len = idpf_rx_hsplit_wa(hdr, rx_buf, pkt_len);
3288			pkt_len -= hdr_len;
3289
3290			u64_stats_update_begin(&rxq->stats_sync);
3291			u64_stats_inc(&rxq->q_stats.hsplit_buf_ovf);
3292			u64_stats_update_end(&rxq->stats_sync);
3293		}
3294
3295		if (libeth_rx_sync_for_cpu(hdr, hdr_len)) {
3296			skb = idpf_rx_build_skb(hdr, hdr_len);
3297			if (!skb)
3298				break;
3299
3300			u64_stats_update_begin(&rxq->stats_sync);
3301			u64_stats_inc(&rxq->q_stats.hsplit_pkts);
3302			u64_stats_update_end(&rxq->stats_sync);
3303		}
3304
3305		hdr->page = NULL;
3306
3307payload:
3308		if (!libeth_rx_sync_for_cpu(rx_buf, pkt_len))
3309			goto skip_data;
3310
3311		if (skb)
3312			idpf_rx_add_frag(rx_buf, skb, pkt_len);
3313		else
3314			skb = idpf_rx_build_skb(rx_buf, pkt_len);
3315
3316		/* exit if we failed to retrieve a buffer */
3317		if (!skb)
3318			break;
3319
3320skip_data:
3321		rx_buf->page = NULL;
3322
3323		idpf_rx_post_buf_refill(refillq, buf_id);
3324		IDPF_RX_BUMP_NTC(rxq, ntc);
3325
3326		/* skip if it is non EOP desc */
3327		if (!idpf_rx_splitq_is_eop(rx_desc) || unlikely(!skb))
3328			continue;
3329
3330		/* pad skb if needed (to make valid ethernet frame) */
3331		if (eth_skb_pad(skb)) {
3332			skb = NULL;
3333			continue;
3334		}
3335
3336		/* probably a little skewed due to removing CRC */
3337		total_rx_bytes += skb->len;
3338
3339		/* protocol */
3340		if (unlikely(idpf_rx_process_skb_fields(rxq, skb, rx_desc))) {
3341			dev_kfree_skb_any(skb);
3342			skb = NULL;
3343			continue;
3344		}
3345
3346		/* send completed skb up the stack */
3347		napi_gro_receive(rxq->napi, skb);
3348		skb = NULL;
3349
3350		/* update budget accounting */
3351		total_rx_pkts++;
3352	}
3353
3354	rxq->next_to_clean = ntc;
3355
3356	rxq->skb = skb;
3357	u64_stats_update_begin(&rxq->stats_sync);
3358	u64_stats_add(&rxq->q_stats.packets, total_rx_pkts);
3359	u64_stats_add(&rxq->q_stats.bytes, total_rx_bytes);
3360	u64_stats_update_end(&rxq->stats_sync);
3361
3362	/* guarantee a trip back through this routine if there was a failure */
3363	return total_rx_pkts;
3364}
3365
3366/**
3367 * idpf_rx_update_bufq_desc - Update buffer queue descriptor
3368 * @bufq: Pointer to the buffer queue
3369 * @buf_id: buffer ID
3370 * @buf_desc: Buffer queue descriptor
3371 *
3372 * Return 0 on success and negative on failure.
3373 */
3374static int idpf_rx_update_bufq_desc(struct idpf_buf_queue *bufq, u32 buf_id,
3375				    struct virtchnl2_splitq_rx_buf_desc *buf_desc)
3376{
3377	struct libeth_fq_fp fq = {
3378		.pp		= bufq->pp,
3379		.fqes		= bufq->buf,
3380		.truesize	= bufq->truesize,
3381		.count		= bufq->desc_count,
3382	};
3383	dma_addr_t addr;
3384
3385	addr = libeth_rx_alloc(&fq, buf_id);
3386	if (addr == DMA_MAPPING_ERROR)
3387		return -ENOMEM;
3388
3389	buf_desc->pkt_addr = cpu_to_le64(addr);
3390	buf_desc->qword0.buf_id = cpu_to_le16(buf_id);
3391
3392	if (!idpf_queue_has(HSPLIT_EN, bufq))
3393		return 0;
3394
3395	fq.pp = bufq->hdr_pp;
3396	fq.fqes = bufq->hdr_buf;
3397	fq.truesize = bufq->hdr_truesize;
3398
3399	addr = libeth_rx_alloc(&fq, buf_id);
3400	if (addr == DMA_MAPPING_ERROR)
3401		return -ENOMEM;
3402
3403	buf_desc->hdr_addr = cpu_to_le64(addr);
3404
3405	return 0;
3406}
3407
3408/**
3409 * idpf_rx_clean_refillq - Clean refill queue buffers
3410 * @bufq: buffer queue to post buffers back to
3411 * @refillq: refill queue to clean
3412 *
3413 * This function takes care of the buffer refill management
3414 */
3415static void idpf_rx_clean_refillq(struct idpf_buf_queue *bufq,
3416				  struct idpf_sw_queue *refillq)
3417{
3418	struct virtchnl2_splitq_rx_buf_desc *buf_desc;
3419	u16 bufq_nta = bufq->next_to_alloc;
3420	u16 ntc = refillq->next_to_clean;
3421	int cleaned = 0;
3422
3423	buf_desc = &bufq->split_buf[bufq_nta];
3424
3425	/* make sure we stop at ring wrap in the unlikely case ring is full */
3426	while (likely(cleaned < refillq->desc_count)) {
3427		u32 buf_id, refill_desc = refillq->ring[ntc];
3428		bool failure;
3429
3430		if (idpf_queue_has(RFL_GEN_CHK, refillq) !=
3431		    !!(refill_desc & IDPF_RX_BI_GEN_M))
3432			break;
3433
3434		buf_id = FIELD_GET(IDPF_RX_BI_BUFID_M, refill_desc);
3435		failure = idpf_rx_update_bufq_desc(bufq, buf_id, buf_desc);
3436		if (failure)
3437			break;
3438
3439		if (unlikely(++ntc == refillq->desc_count)) {
3440			idpf_queue_change(RFL_GEN_CHK, refillq);
3441			ntc = 0;
3442		}
3443
3444		if (unlikely(++bufq_nta == bufq->desc_count)) {
3445			buf_desc = &bufq->split_buf[0];
3446			bufq_nta = 0;
3447		} else {
3448			buf_desc++;
3449		}
3450
3451		cleaned++;
3452	}
3453
3454	if (!cleaned)
3455		return;
3456
3457	/* We want to limit how many transactions on the bus we trigger with
3458	 * tail writes so we only do it in strides. It's also important we
3459	 * align the write to a multiple of 8 as required by HW.
3460	 */
3461	if (((bufq->next_to_use <= bufq_nta ? 0 : bufq->desc_count) +
3462	    bufq_nta - bufq->next_to_use) >= IDPF_RX_BUF_POST_STRIDE)
3463		idpf_rx_buf_hw_update(bufq, ALIGN_DOWN(bufq_nta,
3464						       IDPF_RX_BUF_POST_STRIDE));
3465
3466	/* update next to alloc since we have filled the ring */
3467	refillq->next_to_clean = ntc;
3468	bufq->next_to_alloc = bufq_nta;
3469}
3470
3471/**
3472 * idpf_rx_clean_refillq_all - Clean all refill queues
3473 * @bufq: buffer queue with refill queues
3474 * @nid: ID of the closest NUMA node with memory
3475 *
3476 * Iterates through all refill queues assigned to the buffer queue assigned to
3477 * this vector.  Returns true if clean is complete within budget, false
3478 * otherwise.
3479 */
3480static void idpf_rx_clean_refillq_all(struct idpf_buf_queue *bufq, int nid)
3481{
3482	struct idpf_bufq_set *bufq_set;
3483	int i;
3484
3485	page_pool_nid_changed(bufq->pp, nid);
3486	if (bufq->hdr_pp)
3487		page_pool_nid_changed(bufq->hdr_pp, nid);
3488
3489	bufq_set = container_of(bufq, struct idpf_bufq_set, bufq);
3490	for (i = 0; i < bufq_set->num_refillqs; i++)
3491		idpf_rx_clean_refillq(bufq, &bufq_set->refillqs[i]);
3492}
3493
3494/**
3495 * idpf_vport_intr_clean_queues - MSIX mode Interrupt Handler
3496 * @irq: interrupt number
3497 * @data: pointer to a q_vector
3498 *
3499 */
3500static irqreturn_t idpf_vport_intr_clean_queues(int __always_unused irq,
3501						void *data)
3502{
3503	struct idpf_q_vector *q_vector = (struct idpf_q_vector *)data;
3504
3505	q_vector->total_events++;
3506	napi_schedule(&q_vector->napi);
3507
3508	return IRQ_HANDLED;
3509}
3510
3511/**
3512 * idpf_vport_intr_napi_del_all - Unregister napi for all q_vectors in vport
3513 * @vport: virtual port structure
3514 *
3515 */
3516static void idpf_vport_intr_napi_del_all(struct idpf_vport *vport)
3517{
3518	u16 v_idx;
3519
3520	for (v_idx = 0; v_idx < vport->num_q_vectors; v_idx++)
3521		netif_napi_del(&vport->q_vectors[v_idx].napi);
3522}
3523
3524/**
3525 * idpf_vport_intr_napi_dis_all - Disable NAPI for all q_vectors in the vport
3526 * @vport: main vport structure
3527 */
3528static void idpf_vport_intr_napi_dis_all(struct idpf_vport *vport)
3529{
3530	int v_idx;
3531
3532	for (v_idx = 0; v_idx < vport->num_q_vectors; v_idx++)
3533		napi_disable(&vport->q_vectors[v_idx].napi);
3534}
3535
3536/**
3537 * idpf_vport_intr_rel - Free memory allocated for interrupt vectors
3538 * @vport: virtual port
3539 *
3540 * Free the memory allocated for interrupt vectors  associated to a vport
3541 */
3542void idpf_vport_intr_rel(struct idpf_vport *vport)
3543{
3544	for (u32 v_idx = 0; v_idx < vport->num_q_vectors; v_idx++) {
3545		struct idpf_q_vector *q_vector = &vport->q_vectors[v_idx];
3546
3547		kfree(q_vector->complq);
3548		q_vector->complq = NULL;
3549		kfree(q_vector->bufq);
3550		q_vector->bufq = NULL;
3551		kfree(q_vector->tx);
3552		q_vector->tx = NULL;
3553		kfree(q_vector->rx);
3554		q_vector->rx = NULL;
3555
3556		free_cpumask_var(q_vector->affinity_mask);
3557	}
3558
3559	kfree(vport->q_vectors);
3560	vport->q_vectors = NULL;
3561}
3562
3563/**
3564 * idpf_vport_intr_rel_irq - Free the IRQ association with the OS
3565 * @vport: main vport structure
3566 */
3567static void idpf_vport_intr_rel_irq(struct idpf_vport *vport)
3568{
3569	struct idpf_adapter *adapter = vport->adapter;
3570	int vector;
3571
3572	for (vector = 0; vector < vport->num_q_vectors; vector++) {
3573		struct idpf_q_vector *q_vector = &vport->q_vectors[vector];
3574		int irq_num, vidx;
3575
3576		/* free only the irqs that were actually requested */
3577		if (!q_vector)
3578			continue;
3579
3580		vidx = vport->q_vector_idxs[vector];
3581		irq_num = adapter->msix_entries[vidx].vector;
3582
3583		/* clear the affinity_mask in the IRQ descriptor */
3584		irq_set_affinity_hint(irq_num, NULL);
3585		kfree(free_irq(irq_num, q_vector));
3586	}
3587}
3588
3589/**
3590 * idpf_vport_intr_dis_irq_all - Disable all interrupt
3591 * @vport: main vport structure
3592 */
3593static void idpf_vport_intr_dis_irq_all(struct idpf_vport *vport)
3594{
3595	struct idpf_q_vector *q_vector = vport->q_vectors;
3596	int q_idx;
3597
3598	for (q_idx = 0; q_idx < vport->num_q_vectors; q_idx++)
3599		writel(0, q_vector[q_idx].intr_reg.dyn_ctl);
3600}
3601
3602/**
3603 * idpf_vport_intr_buildreg_itr - Enable default interrupt generation settings
3604 * @q_vector: pointer to q_vector
3605 */
3606static u32 idpf_vport_intr_buildreg_itr(struct idpf_q_vector *q_vector)
3607{
3608	u32 itr_val = q_vector->intr_reg.dyn_ctl_intena_m;
3609	int type = IDPF_NO_ITR_UPDATE_IDX;
3610	u16 itr = 0;
3611
3612	if (q_vector->wb_on_itr) {
3613		/*
3614		 * Trigger a software interrupt when exiting wb_on_itr, to make
3615		 * sure we catch any pending write backs that might have been
3616		 * missed due to interrupt state transition.
3617		 */
3618		itr_val |= q_vector->intr_reg.dyn_ctl_swint_trig_m |
3619			   q_vector->intr_reg.dyn_ctl_sw_itridx_ena_m;
3620		type = IDPF_SW_ITR_UPDATE_IDX;
3621		itr = IDPF_ITR_20K;
3622	}
3623
3624	itr &= IDPF_ITR_MASK;
3625	/* Don't clear PBA because that can cause lost interrupts that
3626	 * came in while we were cleaning/polling
3627	 */
3628	itr_val |= (type << q_vector->intr_reg.dyn_ctl_itridx_s) |
3629		   (itr << (q_vector->intr_reg.dyn_ctl_intrvl_s - 1));
3630
3631	return itr_val;
3632}
3633
3634/**
3635 * idpf_update_dim_sample - Update dim sample with packets and bytes
3636 * @q_vector: the vector associated with the interrupt
3637 * @dim_sample: dim sample to update
3638 * @dim: dim instance structure
3639 * @packets: total packets
3640 * @bytes: total bytes
3641 *
3642 * Update the dim sample with the packets and bytes which are passed to this
3643 * function. Set the dim state appropriately if the dim settings gets stale.
3644 */
3645static void idpf_update_dim_sample(struct idpf_q_vector *q_vector,
3646				   struct dim_sample *dim_sample,
3647				   struct dim *dim, u64 packets, u64 bytes)
3648{
3649	dim_update_sample(q_vector->total_events, packets, bytes, dim_sample);
3650	dim_sample->comp_ctr = 0;
3651
3652	/* if dim settings get stale, like when not updated for 1 second or
3653	 * longer, force it to start again. This addresses the frequent case
3654	 * of an idle queue being switched to by the scheduler.
3655	 */
3656	if (ktime_ms_delta(dim_sample->time, dim->start_sample.time) >= HZ)
3657		dim->state = DIM_START_MEASURE;
3658}
3659
3660/**
3661 * idpf_net_dim - Update net DIM algorithm
3662 * @q_vector: the vector associated with the interrupt
3663 *
3664 * Create a DIM sample and notify net_dim() so that it can possibly decide
3665 * a new ITR value based on incoming packets, bytes, and interrupts.
3666 *
3667 * This function is a no-op if the queue is not configured to dynamic ITR.
3668 */
3669static void idpf_net_dim(struct idpf_q_vector *q_vector)
3670{
3671	struct dim_sample dim_sample = { };
3672	u64 packets, bytes;
3673	u32 i;
3674
3675	if (!IDPF_ITR_IS_DYNAMIC(q_vector->tx_intr_mode))
3676		goto check_rx_itr;
3677
3678	for (i = 0, packets = 0, bytes = 0; i < q_vector->num_txq; i++) {
3679		struct idpf_tx_queue *txq = q_vector->tx[i];
3680		unsigned int start;
3681
3682		do {
3683			start = u64_stats_fetch_begin(&txq->stats_sync);
3684			packets += u64_stats_read(&txq->q_stats.packets);
3685			bytes += u64_stats_read(&txq->q_stats.bytes);
3686		} while (u64_stats_fetch_retry(&txq->stats_sync, start));
3687	}
3688
3689	idpf_update_dim_sample(q_vector, &dim_sample, &q_vector->tx_dim,
3690			       packets, bytes);
3691	net_dim(&q_vector->tx_dim, &dim_sample);
3692
3693check_rx_itr:
3694	if (!IDPF_ITR_IS_DYNAMIC(q_vector->rx_intr_mode))
3695		return;
3696
3697	for (i = 0, packets = 0, bytes = 0; i < q_vector->num_rxq; i++) {
3698		struct idpf_rx_queue *rxq = q_vector->rx[i];
3699		unsigned int start;
3700
3701		do {
3702			start = u64_stats_fetch_begin(&rxq->stats_sync);
3703			packets += u64_stats_read(&rxq->q_stats.packets);
3704			bytes += u64_stats_read(&rxq->q_stats.bytes);
3705		} while (u64_stats_fetch_retry(&rxq->stats_sync, start));
3706	}
3707
3708	idpf_update_dim_sample(q_vector, &dim_sample, &q_vector->rx_dim,
3709			       packets, bytes);
3710	net_dim(&q_vector->rx_dim, &dim_sample);
3711}
3712
3713/**
3714 * idpf_vport_intr_update_itr_ena_irq - Update itr and re-enable MSIX interrupt
3715 * @q_vector: q_vector for which itr is being updated and interrupt enabled
3716 *
3717 * Update the net_dim() algorithm and re-enable the interrupt associated with
3718 * this vector.
3719 */
3720void idpf_vport_intr_update_itr_ena_irq(struct idpf_q_vector *q_vector)
3721{
3722	u32 intval;
3723
3724	/* net_dim() updates ITR out-of-band using a work item */
3725	idpf_net_dim(q_vector);
3726
3727	intval = idpf_vport_intr_buildreg_itr(q_vector);
3728	q_vector->wb_on_itr = false;
3729
3730	writel(intval, q_vector->intr_reg.dyn_ctl);
3731}
3732
3733/**
3734 * idpf_vport_intr_req_irq - get MSI-X vectors from the OS for the vport
3735 * @vport: main vport structure
3736 */
3737static int idpf_vport_intr_req_irq(struct idpf_vport *vport)
3738{
3739	struct idpf_adapter *adapter = vport->adapter;
3740	const char *drv_name, *if_name, *vec_name;
3741	int vector, err, irq_num, vidx;
3742
3743	drv_name = dev_driver_string(&adapter->pdev->dev);
3744	if_name = netdev_name(vport->netdev);
3745
3746	for (vector = 0; vector < vport->num_q_vectors; vector++) {
3747		struct idpf_q_vector *q_vector = &vport->q_vectors[vector];
3748		char *name;
3749
3750		vidx = vport->q_vector_idxs[vector];
3751		irq_num = adapter->msix_entries[vidx].vector;
3752
3753		if (q_vector->num_rxq && q_vector->num_txq)
3754			vec_name = "TxRx";
3755		else if (q_vector->num_rxq)
3756			vec_name = "Rx";
3757		else if (q_vector->num_txq)
3758			vec_name = "Tx";
3759		else
3760			continue;
3761
3762		name = kasprintf(GFP_KERNEL, "%s-%s-%s-%d", drv_name, if_name,
3763				 vec_name, vidx);
3764
3765		err = request_irq(irq_num, idpf_vport_intr_clean_queues, 0,
3766				  name, q_vector);
3767		if (err) {
3768			netdev_err(vport->netdev,
3769				   "Request_irq failed, error: %d\n", err);
3770			goto free_q_irqs;
3771		}
3772		/* assign the mask for this irq */
3773		irq_set_affinity_hint(irq_num, q_vector->affinity_mask);
3774	}
3775
3776	return 0;
3777
3778free_q_irqs:
3779	while (--vector >= 0) {
3780		vidx = vport->q_vector_idxs[vector];
3781		irq_num = adapter->msix_entries[vidx].vector;
3782		kfree(free_irq(irq_num, &vport->q_vectors[vector]));
3783	}
3784
3785	return err;
3786}
3787
3788/**
3789 * idpf_vport_intr_write_itr - Write ITR value to the ITR register
3790 * @q_vector: q_vector structure
3791 * @itr: Interrupt throttling rate
3792 * @tx: Tx or Rx ITR
3793 */
3794void idpf_vport_intr_write_itr(struct idpf_q_vector *q_vector, u16 itr, bool tx)
3795{
3796	struct idpf_intr_reg *intr_reg;
3797
3798	if (tx && !q_vector->tx)
3799		return;
3800	else if (!tx && !q_vector->rx)
3801		return;
3802
3803	intr_reg = &q_vector->intr_reg;
3804	writel(ITR_REG_ALIGN(itr) >> IDPF_ITR_GRAN_S,
3805	       tx ? intr_reg->tx_itr : intr_reg->rx_itr);
3806}
3807
3808/**
3809 * idpf_vport_intr_ena_irq_all - Enable IRQ for the given vport
3810 * @vport: main vport structure
3811 */
3812static void idpf_vport_intr_ena_irq_all(struct idpf_vport *vport)
3813{
3814	bool dynamic;
3815	int q_idx;
3816	u16 itr;
3817
3818	for (q_idx = 0; q_idx < vport->num_q_vectors; q_idx++) {
3819		struct idpf_q_vector *qv = &vport->q_vectors[q_idx];
3820
3821		/* Set the initial ITR values */
3822		if (qv->num_txq) {
3823			dynamic = IDPF_ITR_IS_DYNAMIC(qv->tx_intr_mode);
3824			itr = vport->tx_itr_profile[qv->tx_dim.profile_ix];
3825			idpf_vport_intr_write_itr(qv, dynamic ?
3826						  itr : qv->tx_itr_value,
3827						  true);
3828		}
3829
3830		if (qv->num_rxq) {
3831			dynamic = IDPF_ITR_IS_DYNAMIC(qv->rx_intr_mode);
3832			itr = vport->rx_itr_profile[qv->rx_dim.profile_ix];
3833			idpf_vport_intr_write_itr(qv, dynamic ?
3834						  itr : qv->rx_itr_value,
3835						  false);
3836		}
3837
3838		if (qv->num_txq || qv->num_rxq)
3839			idpf_vport_intr_update_itr_ena_irq(qv);
3840	}
3841}
3842
3843/**
3844 * idpf_vport_intr_deinit - Release all vector associations for the vport
3845 * @vport: main vport structure
3846 */
3847void idpf_vport_intr_deinit(struct idpf_vport *vport)
3848{
3849	idpf_vport_intr_dis_irq_all(vport);
3850	idpf_vport_intr_napi_dis_all(vport);
3851	idpf_vport_intr_napi_del_all(vport);
3852	idpf_vport_intr_rel_irq(vport);
3853}
3854
3855/**
3856 * idpf_tx_dim_work - Call back from the stack
3857 * @work: work queue structure
3858 */
3859static void idpf_tx_dim_work(struct work_struct *work)
3860{
3861	struct idpf_q_vector *q_vector;
3862	struct idpf_vport *vport;
3863	struct dim *dim;
3864	u16 itr;
3865
3866	dim = container_of(work, struct dim, work);
3867	q_vector = container_of(dim, struct idpf_q_vector, tx_dim);
3868	vport = q_vector->vport;
3869
3870	if (dim->profile_ix >= ARRAY_SIZE(vport->tx_itr_profile))
3871		dim->profile_ix = ARRAY_SIZE(vport->tx_itr_profile) - 1;
3872
3873	/* look up the values in our local table */
3874	itr = vport->tx_itr_profile[dim->profile_ix];
3875
3876	idpf_vport_intr_write_itr(q_vector, itr, true);
3877
3878	dim->state = DIM_START_MEASURE;
3879}
3880
3881/**
3882 * idpf_rx_dim_work - Call back from the stack
3883 * @work: work queue structure
3884 */
3885static void idpf_rx_dim_work(struct work_struct *work)
3886{
3887	struct idpf_q_vector *q_vector;
3888	struct idpf_vport *vport;
3889	struct dim *dim;
3890	u16 itr;
3891
3892	dim = container_of(work, struct dim, work);
3893	q_vector = container_of(dim, struct idpf_q_vector, rx_dim);
3894	vport = q_vector->vport;
3895
3896	if (dim->profile_ix >= ARRAY_SIZE(vport->rx_itr_profile))
3897		dim->profile_ix = ARRAY_SIZE(vport->rx_itr_profile) - 1;
3898
3899	/* look up the values in our local table */
3900	itr = vport->rx_itr_profile[dim->profile_ix];
3901
3902	idpf_vport_intr_write_itr(q_vector, itr, false);
3903
3904	dim->state = DIM_START_MEASURE;
3905}
3906
3907/**
3908 * idpf_init_dim - Set up dynamic interrupt moderation
3909 * @qv: q_vector structure
3910 */
3911static void idpf_init_dim(struct idpf_q_vector *qv)
3912{
3913	INIT_WORK(&qv->tx_dim.work, idpf_tx_dim_work);
3914	qv->tx_dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE;
3915	qv->tx_dim.profile_ix = IDPF_DIM_DEFAULT_PROFILE_IX;
3916
3917	INIT_WORK(&qv->rx_dim.work, idpf_rx_dim_work);
3918	qv->rx_dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE;
3919	qv->rx_dim.profile_ix = IDPF_DIM_DEFAULT_PROFILE_IX;
3920}
3921
3922/**
3923 * idpf_vport_intr_napi_ena_all - Enable NAPI for all q_vectors in the vport
3924 * @vport: main vport structure
3925 */
3926static void idpf_vport_intr_napi_ena_all(struct idpf_vport *vport)
3927{
3928	int q_idx;
3929
3930	for (q_idx = 0; q_idx < vport->num_q_vectors; q_idx++) {
3931		struct idpf_q_vector *q_vector = &vport->q_vectors[q_idx];
3932
3933		idpf_init_dim(q_vector);
3934		napi_enable(&q_vector->napi);
3935	}
3936}
3937
3938/**
3939 * idpf_tx_splitq_clean_all- Clean completion queues
3940 * @q_vec: queue vector
3941 * @budget: Used to determine if we are in netpoll
3942 * @cleaned: returns number of packets cleaned
3943 *
3944 * Returns false if clean is not complete else returns true
3945 */
3946static bool idpf_tx_splitq_clean_all(struct idpf_q_vector *q_vec,
3947				     int budget, int *cleaned)
3948{
3949	u16 num_complq = q_vec->num_complq;
3950	bool clean_complete = true;
3951	int i, budget_per_q;
3952
3953	if (unlikely(!num_complq))
3954		return true;
3955
3956	budget_per_q = DIV_ROUND_UP(budget, num_complq);
3957
3958	for (i = 0; i < num_complq; i++)
3959		clean_complete &= idpf_tx_clean_complq(q_vec->complq[i],
3960						       budget_per_q, cleaned);
3961
3962	return clean_complete;
3963}
3964
3965/**
3966 * idpf_rx_splitq_clean_all- Clean completion queues
3967 * @q_vec: queue vector
3968 * @budget: Used to determine if we are in netpoll
3969 * @cleaned: returns number of packets cleaned
3970 *
3971 * Returns false if clean is not complete else returns true
3972 */
3973static bool idpf_rx_splitq_clean_all(struct idpf_q_vector *q_vec, int budget,
3974				     int *cleaned)
3975{
3976	u16 num_rxq = q_vec->num_rxq;
3977	bool clean_complete = true;
3978	int pkts_cleaned = 0;
3979	int i, budget_per_q;
3980	int nid;
3981
3982	/* We attempt to distribute budget to each Rx queue fairly, but don't
3983	 * allow the budget to go below 1 because that would exit polling early.
3984	 */
3985	budget_per_q = num_rxq ? max(budget / num_rxq, 1) : 0;
3986	for (i = 0; i < num_rxq; i++) {
3987		struct idpf_rx_queue *rxq = q_vec->rx[i];
3988		int pkts_cleaned_per_q;
3989
3990		pkts_cleaned_per_q = idpf_rx_splitq_clean(rxq, budget_per_q);
3991		/* if we clean as many as budgeted, we must not be done */
3992		if (pkts_cleaned_per_q >= budget_per_q)
3993			clean_complete = false;
3994		pkts_cleaned += pkts_cleaned_per_q;
3995	}
3996	*cleaned = pkts_cleaned;
3997
3998	nid = numa_mem_id();
3999
4000	for (i = 0; i < q_vec->num_bufq; i++)
4001		idpf_rx_clean_refillq_all(q_vec->bufq[i], nid);
4002
4003	return clean_complete;
4004}
4005
4006/**
4007 * idpf_vport_splitq_napi_poll - NAPI handler
4008 * @napi: struct from which you get q_vector
4009 * @budget: budget provided by stack
4010 */
4011static int idpf_vport_splitq_napi_poll(struct napi_struct *napi, int budget)
4012{
4013	struct idpf_q_vector *q_vector =
4014				container_of(napi, struct idpf_q_vector, napi);
4015	bool clean_complete;
4016	int work_done = 0;
4017
4018	/* Handle case where we are called by netpoll with a budget of 0 */
4019	if (unlikely(!budget)) {
4020		idpf_tx_splitq_clean_all(q_vector, budget, &work_done);
4021
4022		return 0;
4023	}
4024
4025	clean_complete = idpf_rx_splitq_clean_all(q_vector, budget, &work_done);
4026	clean_complete &= idpf_tx_splitq_clean_all(q_vector, budget, &work_done);
4027
4028	/* If work not completed, return budget and polling will return */
4029	if (!clean_complete) {
4030		idpf_vport_intr_set_wb_on_itr(q_vector);
4031		return budget;
4032	}
4033
4034	work_done = min_t(int, work_done, budget - 1);
4035
4036	/* Exit the polling mode, but don't re-enable interrupts if stack might
4037	 * poll us due to busy-polling
4038	 */
4039	if (likely(napi_complete_done(napi, work_done)))
4040		idpf_vport_intr_update_itr_ena_irq(q_vector);
4041	else
4042		idpf_vport_intr_set_wb_on_itr(q_vector);
4043
4044	/* Switch to poll mode in the tear-down path after sending disable
4045	 * queues virtchnl message, as the interrupts will be disabled after
4046	 * that
4047	 */
4048	if (unlikely(q_vector->num_txq && idpf_queue_has(POLL_MODE,
4049							 q_vector->tx[0])))
4050		return budget;
4051	else
4052		return work_done;
4053}
4054
4055/**
4056 * idpf_vport_intr_map_vector_to_qs - Map vectors to queues
4057 * @vport: virtual port
4058 *
4059 * Mapping for vectors to queues
4060 */
4061static void idpf_vport_intr_map_vector_to_qs(struct idpf_vport *vport)
4062{
4063	bool split = idpf_is_queue_model_split(vport->rxq_model);
4064	u16 num_txq_grp = vport->num_txq_grp;
4065	struct idpf_rxq_group *rx_qgrp;
4066	struct idpf_txq_group *tx_qgrp;
4067	u32 i, qv_idx, q_index;
4068
4069	for (i = 0, qv_idx = 0; i < vport->num_rxq_grp; i++) {
4070		u16 num_rxq;
4071
4072		if (qv_idx >= vport->num_q_vectors)
4073			qv_idx = 0;
4074
4075		rx_qgrp = &vport->rxq_grps[i];
4076		if (split)
4077			num_rxq = rx_qgrp->splitq.num_rxq_sets;
4078		else
4079			num_rxq = rx_qgrp->singleq.num_rxq;
4080
4081		for (u32 j = 0; j < num_rxq; j++) {
4082			struct idpf_rx_queue *q;
4083
4084			if (split)
4085				q = &rx_qgrp->splitq.rxq_sets[j]->rxq;
4086			else
4087				q = rx_qgrp->singleq.rxqs[j];
4088			q->q_vector = &vport->q_vectors[qv_idx];
4089			q_index = q->q_vector->num_rxq;
4090			q->q_vector->rx[q_index] = q;
4091			q->q_vector->num_rxq++;
4092
4093			if (split)
4094				q->napi = &q->q_vector->napi;
4095		}
4096
4097		if (split) {
4098			for (u32 j = 0; j < vport->num_bufqs_per_qgrp; j++) {
4099				struct idpf_buf_queue *bufq;
4100
4101				bufq = &rx_qgrp->splitq.bufq_sets[j].bufq;
4102				bufq->q_vector = &vport->q_vectors[qv_idx];
4103				q_index = bufq->q_vector->num_bufq;
4104				bufq->q_vector->bufq[q_index] = bufq;
4105				bufq->q_vector->num_bufq++;
4106			}
4107		}
4108
4109		qv_idx++;
4110	}
4111
4112	split = idpf_is_queue_model_split(vport->txq_model);
4113
4114	for (i = 0, qv_idx = 0; i < num_txq_grp; i++) {
4115		u16 num_txq;
4116
4117		if (qv_idx >= vport->num_q_vectors)
4118			qv_idx = 0;
4119
4120		tx_qgrp = &vport->txq_grps[i];
4121		num_txq = tx_qgrp->num_txq;
4122
4123		for (u32 j = 0; j < num_txq; j++) {
4124			struct idpf_tx_queue *q;
4125
4126			q = tx_qgrp->txqs[j];
4127			q->q_vector = &vport->q_vectors[qv_idx];
4128			q->q_vector->tx[q->q_vector->num_txq++] = q;
4129		}
4130
4131		if (split) {
4132			struct idpf_compl_queue *q = tx_qgrp->complq;
4133
4134			q->q_vector = &vport->q_vectors[qv_idx];
4135			q->q_vector->complq[q->q_vector->num_complq++] = q;
4136		}
4137
4138		qv_idx++;
4139	}
4140}
4141
4142/**
4143 * idpf_vport_intr_init_vec_idx - Initialize the vector indexes
4144 * @vport: virtual port
4145 *
4146 * Initialize vector indexes with values returened over mailbox
4147 */
4148static int idpf_vport_intr_init_vec_idx(struct idpf_vport *vport)
4149{
4150	struct idpf_adapter *adapter = vport->adapter;
4151	struct virtchnl2_alloc_vectors *ac;
4152	u16 *vecids, total_vecs;
4153	int i;
4154
4155	ac = adapter->req_vec_chunks;
4156	if (!ac) {
4157		for (i = 0; i < vport->num_q_vectors; i++)
4158			vport->q_vectors[i].v_idx = vport->q_vector_idxs[i];
4159
4160		return 0;
4161	}
4162
4163	total_vecs = idpf_get_reserved_vecs(adapter);
4164	vecids = kcalloc(total_vecs, sizeof(u16), GFP_KERNEL);
4165	if (!vecids)
4166		return -ENOMEM;
4167
4168	idpf_get_vec_ids(adapter, vecids, total_vecs, &ac->vchunks);
4169
4170	for (i = 0; i < vport->num_q_vectors; i++)
4171		vport->q_vectors[i].v_idx = vecids[vport->q_vector_idxs[i]];
4172
4173	kfree(vecids);
4174
4175	return 0;
4176}
4177
4178/**
4179 * idpf_vport_intr_napi_add_all- Register napi handler for all qvectors
4180 * @vport: virtual port structure
4181 */
4182static void idpf_vport_intr_napi_add_all(struct idpf_vport *vport)
4183{
4184	int (*napi_poll)(struct napi_struct *napi, int budget);
4185	u16 v_idx;
4186
4187	if (idpf_is_queue_model_split(vport->txq_model))
4188		napi_poll = idpf_vport_splitq_napi_poll;
4189	else
4190		napi_poll = idpf_vport_singleq_napi_poll;
4191
4192	for (v_idx = 0; v_idx < vport->num_q_vectors; v_idx++) {
4193		struct idpf_q_vector *q_vector = &vport->q_vectors[v_idx];
4194
4195		netif_napi_add(vport->netdev, &q_vector->napi, napi_poll);
4196
4197		/* only set affinity_mask if the CPU is online */
4198		if (cpu_online(v_idx))
4199			cpumask_set_cpu(v_idx, q_vector->affinity_mask);
4200	}
4201}
4202
4203/**
4204 * idpf_vport_intr_alloc - Allocate memory for interrupt vectors
4205 * @vport: virtual port
4206 *
4207 * We allocate one q_vector per queue interrupt. If allocation fails we
4208 * return -ENOMEM.
4209 */
4210int idpf_vport_intr_alloc(struct idpf_vport *vport)
4211{
4212	u16 txqs_per_vector, rxqs_per_vector, bufqs_per_vector;
4213	struct idpf_q_vector *q_vector;
4214	u32 complqs_per_vector, v_idx;
4215
4216	vport->q_vectors = kcalloc(vport->num_q_vectors,
4217				   sizeof(struct idpf_q_vector), GFP_KERNEL);
4218	if (!vport->q_vectors)
4219		return -ENOMEM;
4220
4221	txqs_per_vector = DIV_ROUND_UP(vport->num_txq_grp,
4222				       vport->num_q_vectors);
4223	rxqs_per_vector = DIV_ROUND_UP(vport->num_rxq_grp,
4224				       vport->num_q_vectors);
4225	bufqs_per_vector = vport->num_bufqs_per_qgrp *
4226			   DIV_ROUND_UP(vport->num_rxq_grp,
4227					vport->num_q_vectors);
4228	complqs_per_vector = DIV_ROUND_UP(vport->num_txq_grp,
4229					  vport->num_q_vectors);
4230
4231	for (v_idx = 0; v_idx < vport->num_q_vectors; v_idx++) {
4232		q_vector = &vport->q_vectors[v_idx];
4233		q_vector->vport = vport;
4234
4235		q_vector->tx_itr_value = IDPF_ITR_TX_DEF;
4236		q_vector->tx_intr_mode = IDPF_ITR_DYNAMIC;
4237		q_vector->tx_itr_idx = VIRTCHNL2_ITR_IDX_1;
4238
4239		q_vector->rx_itr_value = IDPF_ITR_RX_DEF;
4240		q_vector->rx_intr_mode = IDPF_ITR_DYNAMIC;
4241		q_vector->rx_itr_idx = VIRTCHNL2_ITR_IDX_0;
4242
4243		if (!zalloc_cpumask_var(&q_vector->affinity_mask, GFP_KERNEL))
4244			goto error;
4245
4246		q_vector->tx = kcalloc(txqs_per_vector, sizeof(*q_vector->tx),
4247				       GFP_KERNEL);
4248		if (!q_vector->tx)
4249			goto error;
4250
4251		q_vector->rx = kcalloc(rxqs_per_vector, sizeof(*q_vector->rx),
4252				       GFP_KERNEL);
4253		if (!q_vector->rx)
4254			goto error;
4255
4256		if (!idpf_is_queue_model_split(vport->rxq_model))
4257			continue;
4258
4259		q_vector->bufq = kcalloc(bufqs_per_vector,
4260					 sizeof(*q_vector->bufq),
4261					 GFP_KERNEL);
4262		if (!q_vector->bufq)
4263			goto error;
4264
4265		q_vector->complq = kcalloc(complqs_per_vector,
4266					   sizeof(*q_vector->complq),
4267					   GFP_KERNEL);
4268		if (!q_vector->complq)
4269			goto error;
4270	}
4271
4272	return 0;
4273
4274error:
4275	idpf_vport_intr_rel(vport);
4276
4277	return -ENOMEM;
4278}
4279
4280/**
4281 * idpf_vport_intr_init - Setup all vectors for the given vport
4282 * @vport: virtual port
4283 *
4284 * Returns 0 on success or negative on failure
4285 */
4286int idpf_vport_intr_init(struct idpf_vport *vport)
4287{
4288	int err;
4289
4290	err = idpf_vport_intr_init_vec_idx(vport);
4291	if (err)
4292		return err;
4293
4294	idpf_vport_intr_map_vector_to_qs(vport);
4295	idpf_vport_intr_napi_add_all(vport);
4296
4297	err = vport->adapter->dev_ops.reg_ops.intr_reg_init(vport);
4298	if (err)
4299		goto unroll_vectors_alloc;
4300
4301	err = idpf_vport_intr_req_irq(vport);
4302	if (err)
4303		goto unroll_vectors_alloc;
4304
4305	return 0;
4306
4307unroll_vectors_alloc:
4308	idpf_vport_intr_napi_del_all(vport);
4309
4310	return err;
4311}
4312
4313void idpf_vport_intr_ena(struct idpf_vport *vport)
4314{
4315	idpf_vport_intr_napi_ena_all(vport);
4316	idpf_vport_intr_ena_irq_all(vport);
4317}
4318
4319/**
4320 * idpf_config_rss - Send virtchnl messages to configure RSS
4321 * @vport: virtual port
4322 *
4323 * Return 0 on success, negative on failure
4324 */
4325int idpf_config_rss(struct idpf_vport *vport)
4326{
4327	int err;
4328
4329	err = idpf_send_get_set_rss_key_msg(vport, false);
4330	if (err)
4331		return err;
4332
4333	return idpf_send_get_set_rss_lut_msg(vport, false);
4334}
4335
4336/**
4337 * idpf_fill_dflt_rss_lut - Fill the indirection table with the default values
4338 * @vport: virtual port structure
4339 */
4340static void idpf_fill_dflt_rss_lut(struct idpf_vport *vport)
4341{
4342	struct idpf_adapter *adapter = vport->adapter;
4343	u16 num_active_rxq = vport->num_rxq;
4344	struct idpf_rss_data *rss_data;
4345	int i;
4346
4347	rss_data = &adapter->vport_config[vport->idx]->user_config.rss_data;
4348
4349	for (i = 0; i < rss_data->rss_lut_size; i++) {
4350		rss_data->rss_lut[i] = i % num_active_rxq;
4351		rss_data->cached_lut[i] = rss_data->rss_lut[i];
4352	}
4353}
4354
4355/**
4356 * idpf_init_rss - Allocate and initialize RSS resources
4357 * @vport: virtual port
4358 *
4359 * Return 0 on success, negative on failure
4360 */
4361int idpf_init_rss(struct idpf_vport *vport)
4362{
4363	struct idpf_adapter *adapter = vport->adapter;
4364	struct idpf_rss_data *rss_data;
4365	u32 lut_size;
4366
4367	rss_data = &adapter->vport_config[vport->idx]->user_config.rss_data;
4368
4369	lut_size = rss_data->rss_lut_size * sizeof(u32);
4370	rss_data->rss_lut = kzalloc(lut_size, GFP_KERNEL);
4371	if (!rss_data->rss_lut)
4372		return -ENOMEM;
4373
4374	rss_data->cached_lut = kzalloc(lut_size, GFP_KERNEL);
4375	if (!rss_data->cached_lut) {
4376		kfree(rss_data->rss_lut);
4377		rss_data->rss_lut = NULL;
4378
4379		return -ENOMEM;
4380	}
4381
4382	/* Fill the default RSS lut values */
4383	idpf_fill_dflt_rss_lut(vport);
4384
4385	return idpf_config_rss(vport);
4386}
4387
4388/**
4389 * idpf_deinit_rss - Release RSS resources
4390 * @vport: virtual port
4391 */
4392void idpf_deinit_rss(struct idpf_vport *vport)
4393{
4394	struct idpf_adapter *adapter = vport->adapter;
4395	struct idpf_rss_data *rss_data;
4396
4397	rss_data = &adapter->vport_config[vport->idx]->user_config.rss_data;
4398	kfree(rss_data->cached_lut);
4399	rss_data->cached_lut = NULL;
4400	kfree(rss_data->rss_lut);
4401	rss_data->rss_lut = NULL;
4402}