Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 | // SPDX-License-Identifier: GPL-2.0-only /* Copyright (C) 2023 Intel Corporation */ #include "idpf.h" #include "idpf_virtchnl.h" /** * idpf_buf_lifo_push - push a buffer pointer onto stack * @stack: pointer to stack struct * @buf: pointer to buf to push * * Returns 0 on success, negative on failure **/ static int idpf_buf_lifo_push(struct idpf_buf_lifo *stack, struct idpf_tx_stash *buf) { if (unlikely(stack->top == stack->size)) return -ENOSPC; stack->bufs[stack->top++] = buf; return 0; } /** * idpf_buf_lifo_pop - pop a buffer pointer from stack * @stack: pointer to stack struct **/ static struct idpf_tx_stash *idpf_buf_lifo_pop(struct idpf_buf_lifo *stack) { if (unlikely(!stack->top)) return NULL; return stack->bufs[--stack->top]; } /** * idpf_tx_timeout - Respond to a Tx Hang * @netdev: network interface device structure * @txqueue: TX queue */ void idpf_tx_timeout(struct net_device *netdev, unsigned int txqueue) { struct idpf_adapter *adapter = idpf_netdev_to_adapter(netdev); adapter->tx_timeout_count++; netdev_err(netdev, "Detected Tx timeout: Count %d, Queue %d\n", adapter->tx_timeout_count, txqueue); if (!idpf_is_reset_in_prog(adapter)) { set_bit(IDPF_HR_FUNC_RESET, adapter->flags); queue_delayed_work(adapter->vc_event_wq, &adapter->vc_event_task, msecs_to_jiffies(10)); } } /** * idpf_tx_buf_rel - Release a Tx buffer * @tx_q: the queue that owns the buffer * @tx_buf: the buffer to free */ static void idpf_tx_buf_rel(struct idpf_queue *tx_q, struct idpf_tx_buf *tx_buf) { if (tx_buf->skb) { if (dma_unmap_len(tx_buf, len)) dma_unmap_single(tx_q->dev, dma_unmap_addr(tx_buf, dma), dma_unmap_len(tx_buf, len), DMA_TO_DEVICE); dev_kfree_skb_any(tx_buf->skb); } else if (dma_unmap_len(tx_buf, len)) { dma_unmap_page(tx_q->dev, dma_unmap_addr(tx_buf, dma), dma_unmap_len(tx_buf, len), DMA_TO_DEVICE); } tx_buf->next_to_watch = NULL; tx_buf->skb = NULL; tx_buf->compl_tag = IDPF_SPLITQ_TX_INVAL_COMPL_TAG; dma_unmap_len_set(tx_buf, len, 0); } /** * idpf_tx_buf_rel_all - Free any empty Tx buffers * @txq: queue to be cleaned */ static void idpf_tx_buf_rel_all(struct idpf_queue *txq) { u16 i; /* Buffers already cleared, nothing to do */ if (!txq->tx_buf) return; /* Free all the Tx buffer sk_buffs */ for (i = 0; i < txq->desc_count; i++) idpf_tx_buf_rel(txq, &txq->tx_buf[i]); kfree(txq->tx_buf); txq->tx_buf = NULL; if (!txq->buf_stack.bufs) return; for (i = 0; i < txq->buf_stack.size; i++) kfree(txq->buf_stack.bufs[i]); kfree(txq->buf_stack.bufs); txq->buf_stack.bufs = NULL; } /** * idpf_tx_desc_rel - Free Tx resources per queue * @txq: Tx descriptor ring for a specific queue * @bufq: buffer q or completion q * * Free all transmit software resources */ static void idpf_tx_desc_rel(struct idpf_queue *txq, bool bufq) { if (bufq) idpf_tx_buf_rel_all(txq); if (!txq->desc_ring) return; dmam_free_coherent(txq->dev, txq->size, txq->desc_ring, txq->dma); txq->desc_ring = NULL; txq->next_to_alloc = 0; txq->next_to_use = 0; txq->next_to_clean = 0; } /** * idpf_tx_desc_rel_all - Free Tx Resources for All Queues * @vport: virtual port structure * * Free all transmit software resources */ static void idpf_tx_desc_rel_all(struct idpf_vport *vport) { int i, j; if (!vport->txq_grps) return; for (i = 0; i < vport->num_txq_grp; i++) { struct idpf_txq_group *txq_grp = &vport->txq_grps[i]; for (j = 0; j < txq_grp->num_txq; j++) idpf_tx_desc_rel(txq_grp->txqs[j], true); if (idpf_is_queue_model_split(vport->txq_model)) idpf_tx_desc_rel(txq_grp->complq, false); } } /** * idpf_tx_buf_alloc_all - Allocate memory for all buffer resources * @tx_q: queue for which the buffers are allocated * * Returns 0 on success, negative on failure */ static int idpf_tx_buf_alloc_all(struct idpf_queue *tx_q) { int buf_size; int i; /* Allocate book keeping buffers only. Buffers to be supplied to HW * are allocated by kernel network stack and received as part of skb */ buf_size = sizeof(struct idpf_tx_buf) * tx_q->desc_count; tx_q->tx_buf = kzalloc(buf_size, GFP_KERNEL); if (!tx_q->tx_buf) return -ENOMEM; /* Initialize tx_bufs with invalid completion tags */ for (i = 0; i < tx_q->desc_count; i++) tx_q->tx_buf[i].compl_tag = IDPF_SPLITQ_TX_INVAL_COMPL_TAG; /* Initialize tx buf stack for out-of-order completions if * flow scheduling offload is enabled */ tx_q->buf_stack.bufs = kcalloc(tx_q->desc_count, sizeof(struct idpf_tx_stash *), GFP_KERNEL); if (!tx_q->buf_stack.bufs) return -ENOMEM; tx_q->buf_stack.size = tx_q->desc_count; tx_q->buf_stack.top = tx_q->desc_count; for (i = 0; i < tx_q->desc_count; i++) { tx_q->buf_stack.bufs[i] = kzalloc(sizeof(*tx_q->buf_stack.bufs[i]), GFP_KERNEL); if (!tx_q->buf_stack.bufs[i]) return -ENOMEM; } return 0; } /** * idpf_tx_desc_alloc - Allocate the Tx descriptors * @tx_q: the tx ring to set up * @bufq: buffer or completion queue * * Returns 0 on success, negative on failure */ static int idpf_tx_desc_alloc(struct idpf_queue *tx_q, bool bufq) { struct device *dev = tx_q->dev; u32 desc_sz; int err; if (bufq) { err = idpf_tx_buf_alloc_all(tx_q); if (err) goto err_alloc; desc_sz = sizeof(struct idpf_base_tx_desc); } else { desc_sz = sizeof(struct idpf_splitq_tx_compl_desc); } tx_q->size = tx_q->desc_count * desc_sz; /* Allocate descriptors also round up to nearest 4K */ tx_q->size = ALIGN(tx_q->size, 4096); tx_q->desc_ring = dmam_alloc_coherent(dev, tx_q->size, &tx_q->dma, GFP_KERNEL); if (!tx_q->desc_ring) { dev_err(dev, "Unable to allocate memory for the Tx descriptor ring, size=%d\n", tx_q->size); err = -ENOMEM; goto err_alloc; } tx_q->next_to_alloc = 0; tx_q->next_to_use = 0; tx_q->next_to_clean = 0; set_bit(__IDPF_Q_GEN_CHK, tx_q->flags); return 0; err_alloc: idpf_tx_desc_rel(tx_q, bufq); return err; } /** * idpf_tx_desc_alloc_all - allocate all queues Tx resources * @vport: virtual port private structure * * Returns 0 on success, negative on failure */ static int idpf_tx_desc_alloc_all(struct idpf_vport *vport) { struct device *dev = &vport->adapter->pdev->dev; int err = 0; int i, j; /* Setup buffer queues. In single queue model buffer queues and * completion queues will be same */ for (i = 0; i < vport->num_txq_grp; i++) { for (j = 0; j < vport->txq_grps[i].num_txq; j++) { struct idpf_queue *txq = vport->txq_grps[i].txqs[j]; u8 gen_bits = 0; u16 bufidx_mask; err = idpf_tx_desc_alloc(txq, true); if (err) { dev_err(dev, "Allocation for Tx Queue %u failed\n", i); goto err_out; } if (!idpf_is_queue_model_split(vport->txq_model)) continue; txq->compl_tag_cur_gen = 0; /* Determine the number of bits in the bufid * mask and add one to get the start of the * generation bits */ bufidx_mask = txq->desc_count - 1; while (bufidx_mask >> 1) { txq->compl_tag_gen_s++; bufidx_mask = bufidx_mask >> 1; } txq->compl_tag_gen_s++; gen_bits = IDPF_TX_SPLITQ_COMPL_TAG_WIDTH - txq->compl_tag_gen_s; txq->compl_tag_gen_max = GETMAXVAL(gen_bits); /* Set bufid mask based on location of first * gen bit; it cannot simply be the descriptor * ring size-1 since we can have size values * where not all of those bits are set. */ txq->compl_tag_bufid_m = GETMAXVAL(txq->compl_tag_gen_s); } if (!idpf_is_queue_model_split(vport->txq_model)) continue; /* Setup completion queues */ err = idpf_tx_desc_alloc(vport->txq_grps[i].complq, false); if (err) { dev_err(dev, "Allocation for Tx Completion Queue %u failed\n", i); goto err_out; } } err_out: if (err) idpf_tx_desc_rel_all(vport); return err; } /** * idpf_rx_page_rel - Release an rx buffer page * @rxq: the queue that owns the buffer * @rx_buf: the buffer to free */ static void idpf_rx_page_rel(struct idpf_queue *rxq, struct idpf_rx_buf *rx_buf) { if (unlikely(!rx_buf->page)) return; page_pool_put_full_page(rxq->pp, rx_buf->page, false); rx_buf->page = NULL; rx_buf->page_offset = 0; } /** * idpf_rx_hdr_buf_rel_all - Release header buffer memory * @rxq: queue to use */ static void idpf_rx_hdr_buf_rel_all(struct idpf_queue *rxq) { struct idpf_adapter *adapter = rxq->vport->adapter; dma_free_coherent(&adapter->pdev->dev, rxq->desc_count * IDPF_HDR_BUF_SIZE, rxq->rx_buf.hdr_buf_va, rxq->rx_buf.hdr_buf_pa); rxq->rx_buf.hdr_buf_va = NULL; } /** * idpf_rx_buf_rel_all - Free all Rx buffer resources for a queue * @rxq: queue to be cleaned */ static void idpf_rx_buf_rel_all(struct idpf_queue *rxq) { u16 i; /* queue already cleared, nothing to do */ if (!rxq->rx_buf.buf) return; /* Free all the bufs allocated and given to hw on Rx queue */ for (i = 0; i < rxq->desc_count; i++) idpf_rx_page_rel(rxq, &rxq->rx_buf.buf[i]); if (rxq->rx_hsplit_en) idpf_rx_hdr_buf_rel_all(rxq); page_pool_destroy(rxq->pp); rxq->pp = NULL; kfree(rxq->rx_buf.buf); rxq->rx_buf.buf = NULL; } /** * idpf_rx_desc_rel - Free a specific Rx q resources * @rxq: queue to clean the resources from * @bufq: buffer q or completion q * @q_model: single or split q model * * Free a specific rx queue resources */ static void idpf_rx_desc_rel(struct idpf_queue *rxq, bool bufq, s32 q_model) { if (!rxq) return; if (rxq->skb) { dev_kfree_skb_any(rxq->skb); rxq->skb = NULL; } if (bufq || !idpf_is_queue_model_split(q_model)) idpf_rx_buf_rel_all(rxq); rxq->next_to_alloc = 0; rxq->next_to_clean = 0; rxq->next_to_use = 0; if (!rxq->desc_ring) return; dmam_free_coherent(rxq->dev, rxq->size, rxq->desc_ring, rxq->dma); rxq->desc_ring = NULL; } /** * idpf_rx_desc_rel_all - Free Rx Resources for All Queues * @vport: virtual port structure * * Free all rx queues resources */ static void idpf_rx_desc_rel_all(struct idpf_vport *vport) { struct idpf_rxq_group *rx_qgrp; u16 num_rxq; int i, j; if (!vport->rxq_grps) return; for (i = 0; i < vport->num_rxq_grp; i++) { rx_qgrp = &vport->rxq_grps[i]; if (!idpf_is_queue_model_split(vport->rxq_model)) { for (j = 0; j < rx_qgrp->singleq.num_rxq; j++) idpf_rx_desc_rel(rx_qgrp->singleq.rxqs[j], false, vport->rxq_model); continue; } num_rxq = rx_qgrp->splitq.num_rxq_sets; for (j = 0; j < num_rxq; j++) idpf_rx_desc_rel(&rx_qgrp->splitq.rxq_sets[j]->rxq, false, vport->rxq_model); if (!rx_qgrp->splitq.bufq_sets) continue; for (j = 0; j < vport->num_bufqs_per_qgrp; j++) { struct idpf_bufq_set *bufq_set = &rx_qgrp->splitq.bufq_sets[j]; idpf_rx_desc_rel(&bufq_set->bufq, true, vport->rxq_model); } } } /** * idpf_rx_buf_hw_update - Store the new tail and head values * @rxq: queue to bump * @val: new head index */ void idpf_rx_buf_hw_update(struct idpf_queue *rxq, u32 val) { rxq->next_to_use = val; if (unlikely(!rxq->tail)) return; /* writel has an implicit memory barrier */ writel(val, rxq->tail); } /** * idpf_rx_hdr_buf_alloc_all - Allocate memory for header buffers * @rxq: ring to use * * Returns 0 on success, negative on failure. */ static int idpf_rx_hdr_buf_alloc_all(struct idpf_queue *rxq) { struct idpf_adapter *adapter = rxq->vport->adapter; rxq->rx_buf.hdr_buf_va = dma_alloc_coherent(&adapter->pdev->dev, IDPF_HDR_BUF_SIZE * rxq->desc_count, &rxq->rx_buf.hdr_buf_pa, GFP_KERNEL); if (!rxq->rx_buf.hdr_buf_va) return -ENOMEM; return 0; } /** * idpf_rx_post_buf_refill - Post buffer id to refill queue * @refillq: refill queue to post to * @buf_id: buffer id to post */ static void idpf_rx_post_buf_refill(struct idpf_sw_queue *refillq, u16 buf_id) { u16 nta = refillq->next_to_alloc; /* store the buffer ID and the SW maintained GEN bit to the refillq */ refillq->ring[nta] = FIELD_PREP(IDPF_RX_BI_BUFID_M, buf_id) | FIELD_PREP(IDPF_RX_BI_GEN_M, test_bit(__IDPF_Q_GEN_CHK, refillq->flags)); if (unlikely(++nta == refillq->desc_count)) { nta = 0; change_bit(__IDPF_Q_GEN_CHK, refillq->flags); } refillq->next_to_alloc = nta; } /** * idpf_rx_post_buf_desc - Post buffer to bufq descriptor ring * @bufq: buffer queue to post to * @buf_id: buffer id to post * * Returns false if buffer could not be allocated, true otherwise. */ static bool idpf_rx_post_buf_desc(struct idpf_queue *bufq, u16 buf_id) { struct virtchnl2_splitq_rx_buf_desc *splitq_rx_desc = NULL; u16 nta = bufq->next_to_alloc; struct idpf_rx_buf *buf; dma_addr_t addr; splitq_rx_desc = IDPF_SPLITQ_RX_BUF_DESC(bufq, nta); buf = &bufq->rx_buf.buf[buf_id]; if (bufq->rx_hsplit_en) { splitq_rx_desc->hdr_addr = cpu_to_le64(bufq->rx_buf.hdr_buf_pa + (u32)buf_id * IDPF_HDR_BUF_SIZE); } addr = idpf_alloc_page(bufq->pp, buf, bufq->rx_buf_size); if (unlikely(addr == DMA_MAPPING_ERROR)) return false; splitq_rx_desc->pkt_addr = cpu_to_le64(addr); splitq_rx_desc->qword0.buf_id = cpu_to_le16(buf_id); nta++; if (unlikely(nta == bufq->desc_count)) nta = 0; bufq->next_to_alloc = nta; return true; } /** * idpf_rx_post_init_bufs - Post initial buffers to bufq * @bufq: buffer queue to post working set to * @working_set: number of buffers to put in working set * * Returns true if @working_set bufs were posted successfully, false otherwise. */ static bool idpf_rx_post_init_bufs(struct idpf_queue *bufq, u16 working_set) { int i; for (i = 0; i < working_set; i++) { if (!idpf_rx_post_buf_desc(bufq, i)) return false; } idpf_rx_buf_hw_update(bufq, bufq->next_to_alloc & ~(bufq->rx_buf_stride - 1)); return true; } /** * idpf_rx_create_page_pool - Create a page pool * @rxbufq: RX queue to create page pool for * * Returns &page_pool on success, casted -errno on failure */ static struct page_pool *idpf_rx_create_page_pool(struct idpf_queue *rxbufq) { struct page_pool_params pp = { .flags = PP_FLAG_DMA_MAP | PP_FLAG_DMA_SYNC_DEV, .order = 0, .pool_size = rxbufq->desc_count, .nid = NUMA_NO_NODE, .dev = rxbufq->vport->netdev->dev.parent, .max_len = PAGE_SIZE, .dma_dir = DMA_FROM_DEVICE, .offset = 0, }; return page_pool_create(&pp); } /** * idpf_rx_buf_alloc_all - Allocate memory for all buffer resources * @rxbufq: queue for which the buffers are allocated; equivalent to * rxq when operating in singleq mode * * Returns 0 on success, negative on failure */ static int idpf_rx_buf_alloc_all(struct idpf_queue *rxbufq) { int err = 0; /* Allocate book keeping buffers */ rxbufq->rx_buf.buf = kcalloc(rxbufq->desc_count, sizeof(struct idpf_rx_buf), GFP_KERNEL); if (!rxbufq->rx_buf.buf) { err = -ENOMEM; goto rx_buf_alloc_all_out; } if (rxbufq->rx_hsplit_en) { err = idpf_rx_hdr_buf_alloc_all(rxbufq); if (err) goto rx_buf_alloc_all_out; } /* Allocate buffers to be given to HW. */ if (idpf_is_queue_model_split(rxbufq->vport->rxq_model)) { int working_set = IDPF_RX_BUFQ_WORKING_SET(rxbufq); if (!idpf_rx_post_init_bufs(rxbufq, working_set)) err = -ENOMEM; } else { if (idpf_rx_singleq_buf_hw_alloc_all(rxbufq, rxbufq->desc_count - 1)) err = -ENOMEM; } rx_buf_alloc_all_out: if (err) idpf_rx_buf_rel_all(rxbufq); return err; } /** * idpf_rx_bufs_init - Initialize page pool, allocate rx bufs, and post to HW * @rxbufq: RX queue to create page pool for * * Returns 0 on success, negative on failure */ static int idpf_rx_bufs_init(struct idpf_queue *rxbufq) { struct page_pool *pool; pool = idpf_rx_create_page_pool(rxbufq); if (IS_ERR(pool)) return PTR_ERR(pool); rxbufq->pp = pool; return idpf_rx_buf_alloc_all(rxbufq); } /** * idpf_rx_bufs_init_all - Initialize all RX bufs * @vport: virtual port struct * * Returns 0 on success, negative on failure */ int idpf_rx_bufs_init_all(struct idpf_vport *vport) { struct idpf_rxq_group *rx_qgrp; struct idpf_queue *q; int i, j, err; for (i = 0; i < vport->num_rxq_grp; i++) { rx_qgrp = &vport->rxq_grps[i]; /* Allocate bufs for the rxq itself in singleq */ if (!idpf_is_queue_model_split(vport->rxq_model)) { int num_rxq = rx_qgrp->singleq.num_rxq; for (j = 0; j < num_rxq; j++) { q = rx_qgrp->singleq.rxqs[j]; err = idpf_rx_bufs_init(q); if (err) return err; } continue; } /* Otherwise, allocate bufs for the buffer queues */ for (j = 0; j < vport->num_bufqs_per_qgrp; j++) { q = &rx_qgrp->splitq.bufq_sets[j].bufq; err = idpf_rx_bufs_init(q); if (err) return err; } } return 0; } /** * idpf_rx_desc_alloc - Allocate queue Rx resources * @rxq: Rx queue for which the resources are setup * @bufq: buffer or completion queue * @q_model: single or split queue model * * Returns 0 on success, negative on failure */ static int idpf_rx_desc_alloc(struct idpf_queue *rxq, bool bufq, s32 q_model) { struct device *dev = rxq->dev; if (bufq) rxq->size = rxq->desc_count * sizeof(struct virtchnl2_splitq_rx_buf_desc); else rxq->size = rxq->desc_count * sizeof(union virtchnl2_rx_desc); /* Allocate descriptors and also round up to nearest 4K */ rxq->size = ALIGN(rxq->size, 4096); rxq->desc_ring = dmam_alloc_coherent(dev, rxq->size, &rxq->dma, GFP_KERNEL); if (!rxq->desc_ring) { dev_err(dev, "Unable to allocate memory for the Rx descriptor ring, size=%d\n", rxq->size); return -ENOMEM; } rxq->next_to_alloc = 0; rxq->next_to_clean = 0; rxq->next_to_use = 0; set_bit(__IDPF_Q_GEN_CHK, rxq->flags); return 0; } /** * idpf_rx_desc_alloc_all - allocate all RX queues resources * @vport: virtual port structure * * Returns 0 on success, negative on failure */ static int idpf_rx_desc_alloc_all(struct idpf_vport *vport) { struct device *dev = &vport->adapter->pdev->dev; struct idpf_rxq_group *rx_qgrp; struct idpf_queue *q; int i, j, err; u16 num_rxq; for (i = 0; i < vport->num_rxq_grp; i++) { rx_qgrp = &vport->rxq_grps[i]; if (idpf_is_queue_model_split(vport->rxq_model)) num_rxq = rx_qgrp->splitq.num_rxq_sets; else num_rxq = rx_qgrp->singleq.num_rxq; for (j = 0; j < num_rxq; j++) { if (idpf_is_queue_model_split(vport->rxq_model)) q = &rx_qgrp->splitq.rxq_sets[j]->rxq; else q = rx_qgrp->singleq.rxqs[j]; err = idpf_rx_desc_alloc(q, false, vport->rxq_model); if (err) { dev_err(dev, "Memory allocation for Rx Queue %u failed\n", i); goto err_out; } } if (!idpf_is_queue_model_split(vport->rxq_model)) continue; for (j = 0; j < vport->num_bufqs_per_qgrp; j++) { q = &rx_qgrp->splitq.bufq_sets[j].bufq; err = idpf_rx_desc_alloc(q, true, vport->rxq_model); if (err) { dev_err(dev, "Memory allocation for Rx Buffer Queue %u failed\n", i); goto err_out; } } } return 0; err_out: idpf_rx_desc_rel_all(vport); return err; } /** * idpf_txq_group_rel - Release all resources for txq groups * @vport: vport to release txq groups on */ static void idpf_txq_group_rel(struct idpf_vport *vport) { int i, j; if (!vport->txq_grps) return; for (i = 0; i < vport->num_txq_grp; i++) { struct idpf_txq_group *txq_grp = &vport->txq_grps[i]; for (j = 0; j < txq_grp->num_txq; j++) { kfree(txq_grp->txqs[j]); txq_grp->txqs[j] = NULL; } kfree(txq_grp->complq); txq_grp->complq = NULL; } kfree(vport->txq_grps); vport->txq_grps = NULL; } /** * idpf_rxq_sw_queue_rel - Release software queue resources * @rx_qgrp: rx queue group with software queues */ static void idpf_rxq_sw_queue_rel(struct idpf_rxq_group *rx_qgrp) { int i, j; for (i = 0; i < rx_qgrp->vport->num_bufqs_per_qgrp; i++) { struct idpf_bufq_set *bufq_set = &rx_qgrp->splitq.bufq_sets[i]; for (j = 0; j < bufq_set->num_refillqs; j++) { kfree(bufq_set->refillqs[j].ring); bufq_set->refillqs[j].ring = NULL; } kfree(bufq_set->refillqs); bufq_set->refillqs = NULL; } } /** * idpf_rxq_group_rel - Release all resources for rxq groups * @vport: vport to release rxq groups on */ static void idpf_rxq_group_rel(struct idpf_vport *vport) { int i; if (!vport->rxq_grps) return; for (i = 0; i < vport->num_rxq_grp; i++) { struct idpf_rxq_group *rx_qgrp = &vport->rxq_grps[i]; u16 num_rxq; int j; if (idpf_is_queue_model_split(vport->rxq_model)) { num_rxq = rx_qgrp->splitq.num_rxq_sets; for (j = 0; j < num_rxq; j++) { kfree(rx_qgrp->splitq.rxq_sets[j]); rx_qgrp->splitq.rxq_sets[j] = NULL; } idpf_rxq_sw_queue_rel(rx_qgrp); kfree(rx_qgrp->splitq.bufq_sets); rx_qgrp->splitq.bufq_sets = NULL; } else { num_rxq = rx_qgrp->singleq.num_rxq; for (j = 0; j < num_rxq; j++) { kfree(rx_qgrp->singleq.rxqs[j]); rx_qgrp->singleq.rxqs[j] = NULL; } } } kfree(vport->rxq_grps); vport->rxq_grps = NULL; } /** * idpf_vport_queue_grp_rel_all - Release all queue groups * @vport: vport to release queue groups for */ static void idpf_vport_queue_grp_rel_all(struct idpf_vport *vport) { idpf_txq_group_rel(vport); idpf_rxq_group_rel(vport); } /** * idpf_vport_queues_rel - Free memory for all queues * @vport: virtual port * * Free the memory allocated for queues associated to a vport */ void idpf_vport_queues_rel(struct idpf_vport *vport) { idpf_tx_desc_rel_all(vport); idpf_rx_desc_rel_all(vport); idpf_vport_queue_grp_rel_all(vport); kfree(vport->txqs); vport->txqs = NULL; } /** * idpf_vport_init_fast_path_txqs - Initialize fast path txq array * @vport: vport to init txqs on * * We get a queue index from skb->queue_mapping and we need a fast way to * dereference the queue from queue groups. This allows us to quickly pull a * txq based on a queue index. * * Returns 0 on success, negative on failure */ static int idpf_vport_init_fast_path_txqs(struct idpf_vport *vport) { int i, j, k = 0; vport->txqs = kcalloc(vport->num_txq, sizeof(struct idpf_queue *), GFP_KERNEL); if (!vport->txqs) return -ENOMEM; for (i = 0; i < vport->num_txq_grp; i++) { struct idpf_txq_group *tx_grp = &vport->txq_grps[i]; for (j = 0; j < tx_grp->num_txq; j++, k++) { vport->txqs[k] = tx_grp->txqs[j]; vport->txqs[k]->idx = k; } } return 0; } /** * idpf_vport_init_num_qs - Initialize number of queues * @vport: vport to initialize queues * @vport_msg: data to be filled into vport */ void idpf_vport_init_num_qs(struct idpf_vport *vport, struct virtchnl2_create_vport *vport_msg) { struct idpf_vport_user_config_data *config_data; u16 idx = vport->idx; config_data = &vport->adapter->vport_config[idx]->user_config; vport->num_txq = le16_to_cpu(vport_msg->num_tx_q); vport->num_rxq = le16_to_cpu(vport_msg->num_rx_q); /* number of txqs and rxqs in config data will be zeros only in the * driver load path and we dont update them there after */ if (!config_data->num_req_tx_qs && !config_data->num_req_rx_qs) { config_data->num_req_tx_qs = le16_to_cpu(vport_msg->num_tx_q); config_data->num_req_rx_qs = le16_to_cpu(vport_msg->num_rx_q); } if (idpf_is_queue_model_split(vport->txq_model)) vport->num_complq = le16_to_cpu(vport_msg->num_tx_complq); if (idpf_is_queue_model_split(vport->rxq_model)) vport->num_bufq = le16_to_cpu(vport_msg->num_rx_bufq); /* Adjust number of buffer queues per Rx queue group. */ if (!idpf_is_queue_model_split(vport->rxq_model)) { vport->num_bufqs_per_qgrp = 0; vport->bufq_size[0] = IDPF_RX_BUF_2048; return; } vport->num_bufqs_per_qgrp = IDPF_MAX_BUFQS_PER_RXQ_GRP; /* Bufq[0] default buffer size is 4K * Bufq[1] default buffer size is 2K */ vport->bufq_size[0] = IDPF_RX_BUF_4096; vport->bufq_size[1] = IDPF_RX_BUF_2048; } /** * idpf_vport_calc_num_q_desc - Calculate number of queue groups * @vport: vport to calculate q groups for */ void idpf_vport_calc_num_q_desc(struct idpf_vport *vport) { struct idpf_vport_user_config_data *config_data; int num_bufqs = vport->num_bufqs_per_qgrp; u32 num_req_txq_desc, num_req_rxq_desc; u16 idx = vport->idx; int i; config_data = &vport->adapter->vport_config[idx]->user_config; num_req_txq_desc = config_data->num_req_txq_desc; num_req_rxq_desc = config_data->num_req_rxq_desc; vport->complq_desc_count = 0; if (num_req_txq_desc) { vport->txq_desc_count = num_req_txq_desc; if (idpf_is_queue_model_split(vport->txq_model)) { vport->complq_desc_count = num_req_txq_desc; if (vport->complq_desc_count < IDPF_MIN_TXQ_COMPLQ_DESC) vport->complq_desc_count = IDPF_MIN_TXQ_COMPLQ_DESC; } } else { vport->txq_desc_count = IDPF_DFLT_TX_Q_DESC_COUNT; if (idpf_is_queue_model_split(vport->txq_model)) vport->complq_desc_count = IDPF_DFLT_TX_COMPLQ_DESC_COUNT; } if (num_req_rxq_desc) vport->rxq_desc_count = num_req_rxq_desc; else vport->rxq_desc_count = IDPF_DFLT_RX_Q_DESC_COUNT; for (i = 0; i < num_bufqs; i++) { if (!vport->bufq_desc_count[i]) vport->bufq_desc_count[i] = IDPF_RX_BUFQ_DESC_COUNT(vport->rxq_desc_count, num_bufqs); } } /** * idpf_vport_calc_total_qs - Calculate total number of queues * @adapter: private data struct * @vport_idx: vport idx to retrieve vport pointer * @vport_msg: message to fill with data * @max_q: vport max queue info * * Return 0 on success, error value on failure. */ int idpf_vport_calc_total_qs(struct idpf_adapter *adapter, u16 vport_idx, struct virtchnl2_create_vport *vport_msg, struct idpf_vport_max_q *max_q) { int dflt_splitq_txq_grps = 0, dflt_singleq_txqs = 0; int dflt_splitq_rxq_grps = 0, dflt_singleq_rxqs = 0; u16 num_req_tx_qs = 0, num_req_rx_qs = 0; struct idpf_vport_config *vport_config; u16 num_txq_grps, num_rxq_grps; u32 num_qs; vport_config = adapter->vport_config[vport_idx]; if (vport_config) { num_req_tx_qs = vport_config->user_config.num_req_tx_qs; num_req_rx_qs = vport_config->user_config.num_req_rx_qs; } else { int num_cpus; /* Restrict num of queues to cpus online as a default * configuration to give best performance. User can always * override to a max number of queues via ethtool. */ num_cpus = num_online_cpus(); dflt_splitq_txq_grps = min_t(int, max_q->max_txq, num_cpus); dflt_singleq_txqs = min_t(int, max_q->max_txq, num_cpus); dflt_splitq_rxq_grps = min_t(int, max_q->max_rxq, num_cpus); dflt_singleq_rxqs = min_t(int, max_q->max_rxq, num_cpus); } if (idpf_is_queue_model_split(le16_to_cpu(vport_msg->txq_model))) { num_txq_grps = num_req_tx_qs ? num_req_tx_qs : dflt_splitq_txq_grps; vport_msg->num_tx_complq = cpu_to_le16(num_txq_grps * IDPF_COMPLQ_PER_GROUP); vport_msg->num_tx_q = cpu_to_le16(num_txq_grps * IDPF_DFLT_SPLITQ_TXQ_PER_GROUP); } else { num_txq_grps = IDPF_DFLT_SINGLEQ_TX_Q_GROUPS; num_qs = num_txq_grps * (num_req_tx_qs ? num_req_tx_qs : dflt_singleq_txqs); vport_msg->num_tx_q = cpu_to_le16(num_qs); vport_msg->num_tx_complq = 0; } if (idpf_is_queue_model_split(le16_to_cpu(vport_msg->rxq_model))) { num_rxq_grps = num_req_rx_qs ? num_req_rx_qs : dflt_splitq_rxq_grps; vport_msg->num_rx_bufq = cpu_to_le16(num_rxq_grps * IDPF_MAX_BUFQS_PER_RXQ_GRP); vport_msg->num_rx_q = cpu_to_le16(num_rxq_grps * IDPF_DFLT_SPLITQ_RXQ_PER_GROUP); } else { num_rxq_grps = IDPF_DFLT_SINGLEQ_RX_Q_GROUPS; num_qs = num_rxq_grps * (num_req_rx_qs ? num_req_rx_qs : dflt_singleq_rxqs); vport_msg->num_rx_q = cpu_to_le16(num_qs); vport_msg->num_rx_bufq = 0; } return 0; } /** * idpf_vport_calc_num_q_groups - Calculate number of queue groups * @vport: vport to calculate q groups for */ void idpf_vport_calc_num_q_groups(struct idpf_vport *vport) { if (idpf_is_queue_model_split(vport->txq_model)) vport->num_txq_grp = vport->num_txq; else vport->num_txq_grp = IDPF_DFLT_SINGLEQ_TX_Q_GROUPS; if (idpf_is_queue_model_split(vport->rxq_model)) vport->num_rxq_grp = vport->num_rxq; else vport->num_rxq_grp = IDPF_DFLT_SINGLEQ_RX_Q_GROUPS; } /** * idpf_vport_calc_numq_per_grp - Calculate number of queues per group * @vport: vport to calculate queues for * @num_txq: return parameter for number of TX queues * @num_rxq: return parameter for number of RX queues */ static void idpf_vport_calc_numq_per_grp(struct idpf_vport *vport, u16 *num_txq, u16 *num_rxq) { if (idpf_is_queue_model_split(vport->txq_model)) *num_txq = IDPF_DFLT_SPLITQ_TXQ_PER_GROUP; else *num_txq = vport->num_txq; if (idpf_is_queue_model_split(vport->rxq_model)) *num_rxq = IDPF_DFLT_SPLITQ_RXQ_PER_GROUP; else *num_rxq = vport->num_rxq; } /** * idpf_rxq_set_descids - set the descids supported by this queue * @vport: virtual port data structure * @q: rx queue for which descids are set * */ static void idpf_rxq_set_descids(struct idpf_vport *vport, struct idpf_queue *q) { if (vport->rxq_model == VIRTCHNL2_QUEUE_MODEL_SPLIT) { q->rxdids = VIRTCHNL2_RXDID_2_FLEX_SPLITQ_M; } else { if (vport->base_rxd) q->rxdids = VIRTCHNL2_RXDID_1_32B_BASE_M; else q->rxdids = VIRTCHNL2_RXDID_2_FLEX_SQ_NIC_M; } } /** * idpf_txq_group_alloc - Allocate all txq group resources * @vport: vport to allocate txq groups for * @num_txq: number of txqs to allocate for each group * * Returns 0 on success, negative on failure */ static int idpf_txq_group_alloc(struct idpf_vport *vport, u16 num_txq) { bool flow_sch_en; int err, i; vport->txq_grps = kcalloc(vport->num_txq_grp, sizeof(*vport->txq_grps), GFP_KERNEL); if (!vport->txq_grps) return -ENOMEM; flow_sch_en = !idpf_is_cap_ena(vport->adapter, IDPF_OTHER_CAPS, VIRTCHNL2_CAP_SPLITQ_QSCHED); for (i = 0; i < vport->num_txq_grp; i++) { struct idpf_txq_group *tx_qgrp = &vport->txq_grps[i]; struct idpf_adapter *adapter = vport->adapter; int j; tx_qgrp->vport = vport; tx_qgrp->num_txq = num_txq; for (j = 0; j < tx_qgrp->num_txq; j++) { tx_qgrp->txqs[j] = kzalloc(sizeof(*tx_qgrp->txqs[j]), GFP_KERNEL); if (!tx_qgrp->txqs[j]) { err = -ENOMEM; goto err_alloc; } } for (j = 0; j < tx_qgrp->num_txq; j++) { struct idpf_queue *q = tx_qgrp->txqs[j]; q->dev = &adapter->pdev->dev; q->desc_count = vport->txq_desc_count; q->tx_max_bufs = idpf_get_max_tx_bufs(adapter); q->tx_min_pkt_len = idpf_get_min_tx_pkt_len(adapter); q->vport = vport; q->txq_grp = tx_qgrp; hash_init(q->sched_buf_hash); if (flow_sch_en) set_bit(__IDPF_Q_FLOW_SCH_EN, q->flags); } if (!idpf_is_queue_model_split(vport->txq_model)) continue; tx_qgrp->complq = kcalloc(IDPF_COMPLQ_PER_GROUP, sizeof(*tx_qgrp->complq), GFP_KERNEL); if (!tx_qgrp->complq) { err = -ENOMEM; goto err_alloc; } tx_qgrp->complq->dev = &adapter->pdev->dev; tx_qgrp->complq->desc_count = vport->complq_desc_count; tx_qgrp->complq->vport = vport; tx_qgrp->complq->txq_grp = tx_qgrp; if (flow_sch_en) __set_bit(__IDPF_Q_FLOW_SCH_EN, tx_qgrp->complq->flags); } return 0; err_alloc: idpf_txq_group_rel(vport); return err; } /** * idpf_rxq_group_alloc - Allocate all rxq group resources * @vport: vport to allocate rxq groups for * @num_rxq: number of rxqs to allocate for each group * * Returns 0 on success, negative on failure */ static int idpf_rxq_group_alloc(struct idpf_vport *vport, u16 num_rxq) { struct idpf_adapter *adapter = vport->adapter; struct idpf_queue *q; int i, k, err = 0; bool hs; vport->rxq_grps = kcalloc(vport->num_rxq_grp, sizeof(struct idpf_rxq_group), GFP_KERNEL); if (!vport->rxq_grps) return -ENOMEM; hs = idpf_vport_get_hsplit(vport) == ETHTOOL_TCP_DATA_SPLIT_ENABLED; for (i = 0; i < vport->num_rxq_grp; i++) { struct idpf_rxq_group *rx_qgrp = &vport->rxq_grps[i]; int j; rx_qgrp->vport = vport; if (!idpf_is_queue_model_split(vport->rxq_model)) { rx_qgrp->singleq.num_rxq = num_rxq; for (j = 0; j < num_rxq; j++) { rx_qgrp->singleq.rxqs[j] = kzalloc(sizeof(*rx_qgrp->singleq.rxqs[j]), GFP_KERNEL); if (!rx_qgrp->singleq.rxqs[j]) { err = -ENOMEM; goto err_alloc; } } goto skip_splitq_rx_init; } rx_qgrp->splitq.num_rxq_sets = num_rxq; for (j = 0; j < num_rxq; j++) { rx_qgrp->splitq.rxq_sets[j] = kzalloc(sizeof(struct idpf_rxq_set), GFP_KERNEL); if (!rx_qgrp->splitq.rxq_sets[j]) { err = -ENOMEM; goto err_alloc; } } rx_qgrp->splitq.bufq_sets = kcalloc(vport->num_bufqs_per_qgrp, sizeof(struct idpf_bufq_set), GFP_KERNEL); if (!rx_qgrp->splitq.bufq_sets) { err = -ENOMEM; goto err_alloc; } for (j = 0; j < vport->num_bufqs_per_qgrp; j++) { struct idpf_bufq_set *bufq_set = &rx_qgrp->splitq.bufq_sets[j]; int swq_size = sizeof(struct idpf_sw_queue); q = &rx_qgrp->splitq.bufq_sets[j].bufq; q->dev = &adapter->pdev->dev; q->desc_count = vport->bufq_desc_count[j]; q->vport = vport; q->rxq_grp = rx_qgrp; q->idx = j; q->rx_buf_size = vport->bufq_size[j]; q->rx_buffer_low_watermark = IDPF_LOW_WATERMARK; q->rx_buf_stride = IDPF_RX_BUF_STRIDE; if (hs) { q->rx_hsplit_en = true; q->rx_hbuf_size = IDPF_HDR_BUF_SIZE; } bufq_set->num_refillqs = num_rxq; bufq_set->refillqs = kcalloc(num_rxq, swq_size, GFP_KERNEL); if (!bufq_set->refillqs) { err = -ENOMEM; goto err_alloc; } for (k = 0; k < bufq_set->num_refillqs; k++) { struct idpf_sw_queue *refillq = &bufq_set->refillqs[k]; refillq->dev = &vport->adapter->pdev->dev; refillq->desc_count = vport->bufq_desc_count[j]; set_bit(__IDPF_Q_GEN_CHK, refillq->flags); set_bit(__IDPF_RFLQ_GEN_CHK, refillq->flags); refillq->ring = kcalloc(refillq->desc_count, sizeof(u16), GFP_KERNEL); if (!refillq->ring) { err = -ENOMEM; goto err_alloc; } } } skip_splitq_rx_init: for (j = 0; j < num_rxq; j++) { if (!idpf_is_queue_model_split(vport->rxq_model)) { q = rx_qgrp->singleq.rxqs[j]; goto setup_rxq; } q = &rx_qgrp->splitq.rxq_sets[j]->rxq; rx_qgrp->splitq.rxq_sets[j]->refillq0 = &rx_qgrp->splitq.bufq_sets[0].refillqs[j]; if (vport->num_bufqs_per_qgrp > IDPF_SINGLE_BUFQ_PER_RXQ_GRP) rx_qgrp->splitq.rxq_sets[j]->refillq1 = &rx_qgrp->splitq.bufq_sets[1].refillqs[j]; if (hs) { q->rx_hsplit_en = true; q->rx_hbuf_size = IDPF_HDR_BUF_SIZE; } setup_rxq: q->dev = &adapter->pdev->dev; q->desc_count = vport->rxq_desc_count; q->vport = vport; q->rxq_grp = rx_qgrp; q->idx = (i * num_rxq) + j; /* In splitq mode, RXQ buffer size should be * set to that of the first buffer queue * associated with this RXQ */ q->rx_buf_size = vport->bufq_size[0]; q->rx_buffer_low_watermark = IDPF_LOW_WATERMARK; q->rx_max_pkt_size = vport->netdev->mtu + IDPF_PACKET_HDR_PAD; idpf_rxq_set_descids(vport, q); } } err_alloc: if (err) idpf_rxq_group_rel(vport); return err; } /** * idpf_vport_queue_grp_alloc_all - Allocate all queue groups/resources * @vport: vport with qgrps to allocate * * Returns 0 on success, negative on failure */ static int idpf_vport_queue_grp_alloc_all(struct idpf_vport *vport) { u16 num_txq, num_rxq; int err; idpf_vport_calc_numq_per_grp(vport, &num_txq, &num_rxq); err = idpf_txq_group_alloc(vport, num_txq); if (err) goto err_out; err = idpf_rxq_group_alloc(vport, num_rxq); if (err) goto err_out; return 0; err_out: idpf_vport_queue_grp_rel_all(vport); return err; } /** * idpf_vport_queues_alloc - Allocate memory for all queues * @vport: virtual port * * Allocate memory for queues associated with a vport. Returns 0 on success, * negative on failure. */ int idpf_vport_queues_alloc(struct idpf_vport *vport) { int err; err = idpf_vport_queue_grp_alloc_all(vport); if (err) goto err_out; err = idpf_tx_desc_alloc_all(vport); if (err) goto err_out; err = idpf_rx_desc_alloc_all(vport); if (err) goto err_out; err = idpf_vport_init_fast_path_txqs(vport); if (err) goto err_out; return 0; err_out: idpf_vport_queues_rel(vport); return err; } /** * idpf_tx_handle_sw_marker - Handle queue marker packet * @tx_q: tx queue to handle software marker */ static void idpf_tx_handle_sw_marker(struct idpf_queue *tx_q) { struct idpf_vport *vport = tx_q->vport; int i; clear_bit(__IDPF_Q_SW_MARKER, tx_q->flags); /* Hardware must write marker packets to all queues associated with * completion queues. So check if all queues received marker packets */ for (i = 0; i < vport->num_txq; i++) /* If we're still waiting on any other TXQ marker completions, * just return now since we cannot wake up the marker_wq yet. */ if (test_bit(__IDPF_Q_SW_MARKER, vport->txqs[i]->flags)) return; /* Drain complete */ set_bit(IDPF_VPORT_SW_MARKER, vport->flags); wake_up(&vport->sw_marker_wq); } /** * idpf_tx_splitq_clean_hdr - Clean TX buffer resources for header portion of * packet * @tx_q: tx queue to clean buffer from * @tx_buf: buffer to be cleaned * @cleaned: pointer to stats struct to track cleaned packets/bytes * @napi_budget: Used to determine if we are in netpoll */ static void idpf_tx_splitq_clean_hdr(struct idpf_queue *tx_q, struct idpf_tx_buf *tx_buf, struct idpf_cleaned_stats *cleaned, int napi_budget) { napi_consume_skb(tx_buf->skb, napi_budget); if (dma_unmap_len(tx_buf, len)) { dma_unmap_single(tx_q->dev, dma_unmap_addr(tx_buf, dma), dma_unmap_len(tx_buf, len), DMA_TO_DEVICE); dma_unmap_len_set(tx_buf, len, 0); } /* clear tx_buf data */ tx_buf->skb = NULL; cleaned->bytes += tx_buf->bytecount; cleaned->packets += tx_buf->gso_segs; } /** * idpf_tx_clean_stashed_bufs - clean bufs that were stored for * out of order completions * @txq: queue to clean * @compl_tag: completion tag of packet to clean (from completion descriptor) * @cleaned: pointer to stats struct to track cleaned packets/bytes * @budget: Used to determine if we are in netpoll */ static void idpf_tx_clean_stashed_bufs(struct idpf_queue *txq, u16 compl_tag, struct idpf_cleaned_stats *cleaned, int budget) { struct idpf_tx_stash *stash; struct hlist_node *tmp_buf; /* Buffer completion */ hash_for_each_possible_safe(txq->sched_buf_hash, stash, tmp_buf, hlist, compl_tag) { if (unlikely(stash->buf.compl_tag != (int)compl_tag)) continue; if (stash->buf.skb) { idpf_tx_splitq_clean_hdr(txq, &stash->buf, cleaned, budget); } else if (dma_unmap_len(&stash->buf, len)) { dma_unmap_page(txq->dev, dma_unmap_addr(&stash->buf, dma), dma_unmap_len(&stash->buf, len), DMA_TO_DEVICE); dma_unmap_len_set(&stash->buf, len, 0); } /* Push shadow buf back onto stack */ idpf_buf_lifo_push(&txq->buf_stack, stash); hash_del(&stash->hlist); } } /** * idpf_stash_flow_sch_buffers - store buffer parameters info to be freed at a * later time (only relevant for flow scheduling mode) * @txq: Tx queue to clean * @tx_buf: buffer to store */ static int idpf_stash_flow_sch_buffers(struct idpf_queue *txq, struct idpf_tx_buf *tx_buf) { struct idpf_tx_stash *stash; if (unlikely(!dma_unmap_addr(tx_buf, dma) && !dma_unmap_len(tx_buf, len))) return 0; stash = idpf_buf_lifo_pop(&txq->buf_stack); if (unlikely(!stash)) { net_err_ratelimited("%s: No out-of-order TX buffers left!\n", txq->vport->netdev->name); return -ENOMEM; } /* Store buffer params in shadow buffer */ stash->buf.skb = tx_buf->skb; stash->buf.bytecount = tx_buf->bytecount; stash->buf.gso_segs = tx_buf->gso_segs; dma_unmap_addr_set(&stash->buf, dma, dma_unmap_addr(tx_buf, dma)); dma_unmap_len_set(&stash->buf, len, dma_unmap_len(tx_buf, len)); stash->buf.compl_tag = tx_buf->compl_tag; /* Add buffer to buf_hash table to be freed later */ hash_add(txq->sched_buf_hash, &stash->hlist, stash->buf.compl_tag); memset(tx_buf, 0, sizeof(struct idpf_tx_buf)); /* Reinitialize buf_id portion of tag */ tx_buf->compl_tag = IDPF_SPLITQ_TX_INVAL_COMPL_TAG; return 0; } #define idpf_tx_splitq_clean_bump_ntc(txq, ntc, desc, buf) \ do { \ (ntc)++; \ if (unlikely(!(ntc))) { \ ntc -= (txq)->desc_count; \ buf = (txq)->tx_buf; \ desc = IDPF_FLEX_TX_DESC(txq, 0); \ } else { \ (buf)++; \ (desc)++; \ } \ } while (0) /** * idpf_tx_splitq_clean - Reclaim resources from buffer queue * @tx_q: Tx queue to clean * @end: queue index until which it should be cleaned * @napi_budget: Used to determine if we are in netpoll * @cleaned: pointer to stats struct to track cleaned packets/bytes * @descs_only: true if queue is using flow-based scheduling and should * not clean buffers at this time * * Cleans the queue descriptor ring. If the queue is using queue-based * scheduling, the buffers will be cleaned as well. If the queue is using * flow-based scheduling, only the descriptors are cleaned at this time. * Separate packet completion events will be reported on the completion queue, * and the buffers will be cleaned separately. The stats are not updated from * this function when using flow-based scheduling. */ static void idpf_tx_splitq_clean(struct idpf_queue *tx_q, u16 end, int napi_budget, struct idpf_cleaned_stats *cleaned, bool descs_only) { union idpf_tx_flex_desc *next_pending_desc = NULL; union idpf_tx_flex_desc *tx_desc; s16 ntc = tx_q->next_to_clean; struct idpf_tx_buf *tx_buf; tx_desc = IDPF_FLEX_TX_DESC(tx_q, ntc); next_pending_desc = IDPF_FLEX_TX_DESC(tx_q, end); tx_buf = &tx_q->tx_buf[ntc]; ntc -= tx_q->desc_count; while (tx_desc != next_pending_desc) { union idpf_tx_flex_desc *eop_desc; /* If this entry in the ring was used as a context descriptor, * it's corresponding entry in the buffer ring will have an * invalid completion tag since no buffer was used. We can * skip this descriptor since there is no buffer to clean. */ if (unlikely(tx_buf->compl_tag == IDPF_SPLITQ_TX_INVAL_COMPL_TAG)) goto fetch_next_txq_desc; eop_desc = (union idpf_tx_flex_desc *)tx_buf->next_to_watch; /* clear next_to_watch to prevent false hangs */ tx_buf->next_to_watch = NULL; if (descs_only) { if (idpf_stash_flow_sch_buffers(tx_q, tx_buf)) goto tx_splitq_clean_out; while (tx_desc != eop_desc) { idpf_tx_splitq_clean_bump_ntc(tx_q, ntc, tx_desc, tx_buf); if (dma_unmap_len(tx_buf, len)) { if (idpf_stash_flow_sch_buffers(tx_q, tx_buf)) goto tx_splitq_clean_out; } } } else { idpf_tx_splitq_clean_hdr(tx_q, tx_buf, cleaned, napi_budget); /* unmap remaining buffers */ while (tx_desc != eop_desc) { idpf_tx_splitq_clean_bump_ntc(tx_q, ntc, tx_desc, tx_buf); /* unmap any remaining paged data */ if (dma_unmap_len(tx_buf, len)) { dma_unmap_page(tx_q->dev, dma_unmap_addr(tx_buf, dma), dma_unmap_len(tx_buf, len), DMA_TO_DEVICE); dma_unmap_len_set(tx_buf, len, 0); } } } fetch_next_txq_desc: idpf_tx_splitq_clean_bump_ntc(tx_q, ntc, tx_desc, tx_buf); } tx_splitq_clean_out: ntc += tx_q->desc_count; tx_q->next_to_clean = ntc; } #define idpf_tx_clean_buf_ring_bump_ntc(txq, ntc, buf) \ do { \ (buf)++; \ (ntc)++; \ if (unlikely((ntc) == (txq)->desc_count)) { \ buf = (txq)->tx_buf; \ ntc = 0; \ } \ } while (0) /** * idpf_tx_clean_buf_ring - clean flow scheduling TX queue buffers * @txq: queue to clean * @compl_tag: completion tag of packet to clean (from completion descriptor) * @cleaned: pointer to stats struct to track cleaned packets/bytes * @budget: Used to determine if we are in netpoll * * Cleans all buffers associated with the input completion tag either from the * TX buffer ring or from the hash table if the buffers were previously * stashed. Returns the byte/segment count for the cleaned packet associated * this completion tag. */ static bool idpf_tx_clean_buf_ring(struct idpf_queue *txq, u16 compl_tag, struct idpf_cleaned_stats *cleaned, int budget) { u16 idx = compl_tag & txq->compl_tag_bufid_m; struct idpf_tx_buf *tx_buf = NULL; u16 ntc = txq->next_to_clean; u16 num_descs_cleaned = 0; u16 orig_idx = idx; tx_buf = &txq->tx_buf[idx]; while (tx_buf->compl_tag == (int)compl_tag) { if (tx_buf->skb) { idpf_tx_splitq_clean_hdr(txq, tx_buf, cleaned, budget); } else if (dma_unmap_len(tx_buf, len)) { dma_unmap_page(txq->dev, dma_unmap_addr(tx_buf, dma), dma_unmap_len(tx_buf, len), DMA_TO_DEVICE); dma_unmap_len_set(tx_buf, len, 0); } memset(tx_buf, 0, sizeof(struct idpf_tx_buf)); tx_buf->compl_tag = IDPF_SPLITQ_TX_INVAL_COMPL_TAG; num_descs_cleaned++; idpf_tx_clean_buf_ring_bump_ntc(txq, idx, tx_buf); } /* If we didn't clean anything on the ring for this completion, there's * nothing more to do. */ if (unlikely(!num_descs_cleaned)) return false; /* Otherwise, if we did clean a packet on the ring directly, it's safe * to assume that the descriptors starting from the original * next_to_clean up until the previously cleaned packet can be reused. * Therefore, we will go back in the ring and stash any buffers still * in the ring into the hash table to be cleaned later. */ tx_buf = &txq->tx_buf[ntc]; while (tx_buf != &txq->tx_buf[orig_idx]) { idpf_stash_flow_sch_buffers(txq, tx_buf); idpf_tx_clean_buf_ring_bump_ntc(txq, ntc, tx_buf); } /* Finally, update next_to_clean to reflect the work that was just done * on the ring, if any. If the packet was only cleaned from the hash * table, the ring will not be impacted, therefore we should not touch * next_to_clean. The updated idx is used here */ txq->next_to_clean = idx; return true; } /** * idpf_tx_handle_rs_completion - clean a single packet and all of its buffers * whether on the buffer ring or in the hash table * @txq: Tx ring to clean * @desc: pointer to completion queue descriptor to extract completion * information from * @cleaned: pointer to stats struct to track cleaned packets/bytes * @budget: Used to determine if we are in netpoll * * Returns bytes/packets cleaned */ static void idpf_tx_handle_rs_completion(struct idpf_queue *txq, struct idpf_splitq_tx_compl_desc *desc, struct idpf_cleaned_stats *cleaned, int budget) { u16 compl_tag; if (!test_bit(__IDPF_Q_FLOW_SCH_EN, txq->flags)) { u16 head = le16_to_cpu(desc->q_head_compl_tag.q_head); return idpf_tx_splitq_clean(txq, head, budget, cleaned, false); } compl_tag = le16_to_cpu(desc->q_head_compl_tag.compl_tag); /* If we didn't clean anything on the ring, this packet must be * in the hash table. Go clean it there. */ if (!idpf_tx_clean_buf_ring(txq, compl_tag, cleaned, budget)) idpf_tx_clean_stashed_bufs(txq, compl_tag, cleaned, budget); } /** * idpf_tx_clean_complq - Reclaim resources on completion queue * @complq: Tx ring to clean * @budget: Used to determine if we are in netpoll * @cleaned: returns number of packets cleaned * * Returns true if there's any budget left (e.g. the clean is finished) */ static bool idpf_tx_clean_complq(struct idpf_queue *complq, int budget, int *cleaned) { struct idpf_splitq_tx_compl_desc *tx_desc; struct idpf_vport *vport = complq->vport; s16 ntc = complq->next_to_clean; struct idpf_netdev_priv *np; unsigned int complq_budget; bool complq_ok = true; int i; complq_budget = vport->compln_clean_budget; tx_desc = IDPF_SPLITQ_TX_COMPLQ_DESC(complq, ntc); ntc -= complq->desc_count; do { struct idpf_cleaned_stats cleaned_stats = { }; struct idpf_queue *tx_q; int rel_tx_qid; u16 hw_head; u8 ctype; /* completion type */ u16 gen; /* if the descriptor isn't done, no work yet to do */ gen = le16_get_bits(tx_desc->qid_comptype_gen, IDPF_TXD_COMPLQ_GEN_M); if (test_bit(__IDPF_Q_GEN_CHK, complq->flags) != gen) break; /* Find necessary info of TX queue to clean buffers */ rel_tx_qid = le16_get_bits(tx_desc->qid_comptype_gen, IDPF_TXD_COMPLQ_QID_M); if (rel_tx_qid >= complq->txq_grp->num_txq || !complq->txq_grp->txqs[rel_tx_qid]) { dev_err(&complq->vport->adapter->pdev->dev, "TxQ not found\n"); goto fetch_next_desc; } tx_q = complq->txq_grp->txqs[rel_tx_qid]; /* Determine completion type */ ctype = le16_get_bits(tx_desc->qid_comptype_gen, IDPF_TXD_COMPLQ_COMPL_TYPE_M); switch (ctype) { case IDPF_TXD_COMPLT_RE: hw_head = le16_to_cpu(tx_desc->q_head_compl_tag.q_head); idpf_tx_splitq_clean(tx_q, hw_head, budget, &cleaned_stats, true); break; case IDPF_TXD_COMPLT_RS: idpf_tx_handle_rs_completion(tx_q, tx_desc, &cleaned_stats, budget); break; case IDPF_TXD_COMPLT_SW_MARKER: idpf_tx_handle_sw_marker(tx_q); break; default: dev_err(&tx_q->vport->adapter->pdev->dev, "Unknown TX completion type: %d\n", ctype); goto fetch_next_desc; } u64_stats_update_begin(&tx_q->stats_sync); u64_stats_add(&tx_q->q_stats.tx.packets, cleaned_stats.packets); u64_stats_add(&tx_q->q_stats.tx.bytes, cleaned_stats.bytes); tx_q->cleaned_pkts += cleaned_stats.packets; tx_q->cleaned_bytes += cleaned_stats.bytes; complq->num_completions++; u64_stats_update_end(&tx_q->stats_sync); fetch_next_desc: tx_desc++; ntc++; if (unlikely(!ntc)) { ntc -= complq->desc_count; tx_desc = IDPF_SPLITQ_TX_COMPLQ_DESC(complq, 0); change_bit(__IDPF_Q_GEN_CHK, complq->flags); } prefetch(tx_desc); /* update budget accounting */ complq_budget--; } while (likely(complq_budget)); /* Store the state of the complq to be used later in deciding if a * TXQ can be started again */ if (unlikely(IDPF_TX_COMPLQ_PENDING(complq->txq_grp) > IDPF_TX_COMPLQ_OVERFLOW_THRESH(complq))) complq_ok = false; np = netdev_priv(complq->vport->netdev); for (i = 0; i < complq->txq_grp->num_txq; ++i) { struct idpf_queue *tx_q = complq->txq_grp->txqs[i]; struct netdev_queue *nq; bool dont_wake; /* We didn't clean anything on this queue, move along */ if (!tx_q->cleaned_bytes) continue; *cleaned += tx_q->cleaned_pkts; /* Update BQL */ nq = netdev_get_tx_queue(tx_q->vport->netdev, tx_q->idx); dont_wake = !complq_ok || IDPF_TX_BUF_RSV_LOW(tx_q) || np->state != __IDPF_VPORT_UP || !netif_carrier_ok(tx_q->vport->netdev); /* Check if the TXQ needs to and can be restarted */ __netif_txq_completed_wake(nq, tx_q->cleaned_pkts, tx_q->cleaned_bytes, IDPF_DESC_UNUSED(tx_q), IDPF_TX_WAKE_THRESH, dont_wake); /* Reset cleaned stats for the next time this queue is * cleaned */ tx_q->cleaned_bytes = 0; tx_q->cleaned_pkts = 0; } ntc += complq->desc_count; complq->next_to_clean = ntc; return !!complq_budget; } /** * idpf_tx_splitq_build_ctb - populate command tag and size for queue * based scheduling descriptors * @desc: descriptor to populate * @params: pointer to tx params struct * @td_cmd: command to be filled in desc * @size: size of buffer */ void idpf_tx_splitq_build_ctb(union idpf_tx_flex_desc *desc, struct idpf_tx_splitq_params *params, u16 td_cmd, u16 size) { desc->q.qw1.cmd_dtype = le16_encode_bits(params->dtype, IDPF_FLEX_TXD_QW1_DTYPE_M); desc->q.qw1.cmd_dtype |= le16_encode_bits(td_cmd, IDPF_FLEX_TXD_QW1_CMD_M); desc->q.qw1.buf_size = cpu_to_le16(size); desc->q.qw1.l2tags.l2tag1 = cpu_to_le16(params->td_tag); } /** * idpf_tx_splitq_build_flow_desc - populate command tag and size for flow * scheduling descriptors * @desc: descriptor to populate * @params: pointer to tx params struct * @td_cmd: command to be filled in desc * @size: size of buffer */ void idpf_tx_splitq_build_flow_desc(union idpf_tx_flex_desc *desc, struct idpf_tx_splitq_params *params, u16 td_cmd, u16 size) { desc->flow.qw1.cmd_dtype = (u16)params->dtype | td_cmd; desc->flow.qw1.rxr_bufsize = cpu_to_le16((u16)size); desc->flow.qw1.compl_tag = cpu_to_le16(params->compl_tag); } /** * idpf_tx_maybe_stop_common - 1st level check for common Tx stop conditions * @tx_q: the queue to be checked * @size: number of descriptors we want to assure is available * * Returns 0 if stop is not needed */ int idpf_tx_maybe_stop_common(struct idpf_queue *tx_q, unsigned int size) { struct netdev_queue *nq; if (likely(IDPF_DESC_UNUSED(tx_q) >= size)) return 0; u64_stats_update_begin(&tx_q->stats_sync); u64_stats_inc(&tx_q->q_stats.tx.q_busy); u64_stats_update_end(&tx_q->stats_sync); nq = netdev_get_tx_queue(tx_q->vport->netdev, tx_q->idx); return netif_txq_maybe_stop(nq, IDPF_DESC_UNUSED(tx_q), size, size); } /** * idpf_tx_maybe_stop_splitq - 1st level check for Tx splitq stop conditions * @tx_q: the queue to be checked * @descs_needed: number of descriptors required for this packet * * Returns 0 if stop is not needed */ static int idpf_tx_maybe_stop_splitq(struct idpf_queue *tx_q, unsigned int descs_needed) { if (idpf_tx_maybe_stop_common(tx_q, descs_needed)) goto splitq_stop; /* If there are too many outstanding completions expected on the * completion queue, stop the TX queue to give the device some time to * catch up */ if (unlikely(IDPF_TX_COMPLQ_PENDING(tx_q->txq_grp) > IDPF_TX_COMPLQ_OVERFLOW_THRESH(tx_q->txq_grp->complq))) goto splitq_stop; /* Also check for available book keeping buffers; if we are low, stop * the queue to wait for more completions */ if (unlikely(IDPF_TX_BUF_RSV_LOW(tx_q))) goto splitq_stop; return 0; splitq_stop: u64_stats_update_begin(&tx_q->stats_sync); u64_stats_inc(&tx_q->q_stats.tx.q_busy); u64_stats_update_end(&tx_q->stats_sync); netif_stop_subqueue(tx_q->vport->netdev, tx_q->idx); return -EBUSY; } /** * idpf_tx_buf_hw_update - Store the new tail value * @tx_q: queue to bump * @val: new tail index * @xmit_more: more skb's pending * * The naming here is special in that 'hw' signals that this function is about * to do a register write to update our queue status. We know this can only * mean tail here as HW should be owning head for TX. */ void idpf_tx_buf_hw_update(struct idpf_queue *tx_q, u32 val, bool xmit_more) { struct netdev_queue *nq; nq = netdev_get_tx_queue(tx_q->vport->netdev, tx_q->idx); tx_q->next_to_use = val; idpf_tx_maybe_stop_common(tx_q, IDPF_TX_DESC_NEEDED); /* Force memory writes to complete before letting h/w * know there are new descriptors to fetch. (Only * applicable for weak-ordered memory model archs, * such as IA-64). */ wmb(); /* notify HW of packet */ if (netif_xmit_stopped(nq) || !xmit_more) writel(val, tx_q->tail); } /** * idpf_tx_desc_count_required - calculate number of Tx descriptors needed * @txq: queue to send buffer on * @skb: send buffer * * Returns number of data descriptors needed for this skb. */ unsigned int idpf_tx_desc_count_required(struct idpf_queue *txq, struct sk_buff *skb) { const struct skb_shared_info *shinfo; unsigned int count = 0, i; count += !!skb_headlen(skb); if (!skb_is_nonlinear(skb)) return count; shinfo = skb_shinfo(skb); for (i = 0; i < shinfo->nr_frags; i++) { unsigned int size; size = skb_frag_size(&shinfo->frags[i]); /* We only need to use the idpf_size_to_txd_count check if the * fragment is going to span multiple descriptors, * i.e. size >= 16K. */ if (size >= SZ_16K) count += idpf_size_to_txd_count(size); else count++; } if (idpf_chk_linearize(skb, txq->tx_max_bufs, count)) { if (__skb_linearize(skb)) return 0; count = idpf_size_to_txd_count(skb->len); u64_stats_update_begin(&txq->stats_sync); u64_stats_inc(&txq->q_stats.tx.linearize); u64_stats_update_end(&txq->stats_sync); } return count; } /** * idpf_tx_dma_map_error - handle TX DMA map errors * @txq: queue to send buffer on * @skb: send buffer * @first: original first buffer info buffer for packet * @idx: starting point on ring to unwind */ void idpf_tx_dma_map_error(struct idpf_queue *txq, struct sk_buff *skb, struct idpf_tx_buf *first, u16 idx) { u64_stats_update_begin(&txq->stats_sync); u64_stats_inc(&txq->q_stats.tx.dma_map_errs); u64_stats_update_end(&txq->stats_sync); /* clear dma mappings for failed tx_buf map */ for (;;) { struct idpf_tx_buf *tx_buf; tx_buf = &txq->tx_buf[idx]; idpf_tx_buf_rel(txq, tx_buf); if (tx_buf == first) break; if (idx == 0) idx = txq->desc_count; idx--; } if (skb_is_gso(skb)) { union idpf_tx_flex_desc *tx_desc; /* If we failed a DMA mapping for a TSO packet, we will have * used one additional descriptor for a context * descriptor. Reset that here. */ tx_desc = IDPF_FLEX_TX_DESC(txq, idx); memset(tx_desc, 0, sizeof(struct idpf_flex_tx_ctx_desc)); if (idx == 0) idx = txq->desc_count; idx--; } /* Update tail in case netdev_xmit_more was previously true */ idpf_tx_buf_hw_update(txq, idx, false); } /** * idpf_tx_splitq_bump_ntu - adjust NTU and generation * @txq: the tx ring to wrap * @ntu: ring index to bump */ static unsigned int idpf_tx_splitq_bump_ntu(struct idpf_queue *txq, u16 ntu) { ntu++; if (ntu == txq->desc_count) { ntu = 0; txq->compl_tag_cur_gen = IDPF_TX_ADJ_COMPL_TAG_GEN(txq); } return ntu; } /** * idpf_tx_splitq_map - Build the Tx flex descriptor * @tx_q: queue to send buffer on * @params: pointer to splitq params struct * @first: first buffer info buffer to use * * This function loops over the skb data pointed to by *first * and gets a physical address for each memory location and programs * it and the length into the transmit flex descriptor. */ static void idpf_tx_splitq_map(struct idpf_queue *tx_q, struct idpf_tx_splitq_params *params, struct idpf_tx_buf *first) { union idpf_tx_flex_desc *tx_desc; unsigned int data_len, size; struct idpf_tx_buf *tx_buf; u16 i = tx_q->next_to_use; struct netdev_queue *nq; struct sk_buff *skb; skb_frag_t *frag; u16 td_cmd = 0; dma_addr_t dma; skb = first->skb; td_cmd = params->offload.td_cmd; data_len = skb->data_len; size = skb_headlen(skb); tx_desc = IDPF_FLEX_TX_DESC(tx_q, i); dma = dma_map_single(tx_q->dev, skb->data, size, DMA_TO_DEVICE); tx_buf = first; params->compl_tag = (tx_q->compl_tag_cur_gen << tx_q->compl_tag_gen_s) | i; for (frag = &skb_shinfo(skb)->frags[0];; frag++) { unsigned int max_data = IDPF_TX_MAX_DESC_DATA_ALIGNED; if (dma_mapping_error(tx_q->dev, dma)) return idpf_tx_dma_map_error(tx_q, skb, first, i); tx_buf->compl_tag = params->compl_tag; /* record length, and DMA address */ dma_unmap_len_set(tx_buf, len, size); dma_unmap_addr_set(tx_buf, dma, dma); /* buf_addr is in same location for both desc types */ tx_desc->q.buf_addr = cpu_to_le64(dma); /* The stack can send us fragments that are too large for a * single descriptor i.e. frag size > 16K-1. We will need to * split the fragment across multiple descriptors in this case. * To adhere to HW alignment restrictions, the fragment needs * to be split such that the first chunk ends on a 4K boundary * and all subsequent chunks start on a 4K boundary. We still * want to send as much data as possible though, so our * intermediate descriptor chunk size will be 12K. * * For example, consider a 32K fragment mapped to DMA addr 2600. * ------------------------------------------------------------ * | frag_size = 32K | * ------------------------------------------------------------ * |2600 |16384 |28672 * * 3 descriptors will be used for this fragment. The HW expects * the descriptors to contain the following: * ------------------------------------------------------------ * | size = 13784 | size = 12K | size = 6696 | * | dma = 2600 | dma = 16384 | dma = 28672 | * ------------------------------------------------------------ * * We need to first adjust the max_data for the first chunk so * that it ends on a 4K boundary. By negating the value of the * DMA address and taking only the low order bits, we're * effectively calculating * 4K - (DMA addr lower order bits) = * bytes to next boundary. * * Add that to our base aligned max_data (12K) and we have * our first chunk size. In the example above, * 13784 = 12K + (4096-2600) * * After guaranteeing the first chunk ends on a 4K boundary, we * will give the intermediate descriptors 12K chunks and * whatever is left to the final descriptor. This ensures that * all descriptors used for the remaining chunks of the * fragment start on a 4K boundary and we use as few * descriptors as possible. */ max_data += -dma & (IDPF_TX_MAX_READ_REQ_SIZE - 1); while (unlikely(size > IDPF_TX_MAX_DESC_DATA)) { idpf_tx_splitq_build_desc(tx_desc, params, td_cmd, max_data); tx_desc++; i++; if (i == tx_q->desc_count) { tx_desc = IDPF_FLEX_TX_DESC(tx_q, 0); i = 0; tx_q->compl_tag_cur_gen = IDPF_TX_ADJ_COMPL_TAG_GEN(tx_q); } /* Since this packet has a buffer that is going to span * multiple descriptors, it's going to leave holes in * to the TX buffer ring. To ensure these holes do not * cause issues in the cleaning routines, we will clear * them of any stale data and assign them the same * completion tag as the current packet. Then when the * packet is being cleaned, the cleaning routines will * simply pass over these holes and finish cleaning the * rest of the packet. */ memset(&tx_q->tx_buf[i], 0, sizeof(struct idpf_tx_buf)); tx_q->tx_buf[i].compl_tag = params->compl_tag; /* Adjust the DMA offset and the remaining size of the * fragment. On the first iteration of this loop, * max_data will be >= 12K and <= 16K-1. On any * subsequent iteration of this loop, max_data will * always be 12K. */ dma += max_data; size -= max_data; /* Reset max_data since remaining chunks will be 12K * at most */ max_data = IDPF_TX_MAX_DESC_DATA_ALIGNED; /* buf_addr is in same location for both desc types */ tx_desc->q.buf_addr = cpu_to_le64(dma); } if (!data_len) break; idpf_tx_splitq_build_desc(tx_desc, params, td_cmd, size); tx_desc++; i++; if (i == tx_q->desc_count) { tx_desc = IDPF_FLEX_TX_DESC(tx_q, 0); i = 0; tx_q->compl_tag_cur_gen = IDPF_TX_ADJ_COMPL_TAG_GEN(tx_q); } size = skb_frag_size(frag); data_len -= size; dma = skb_frag_dma_map(tx_q->dev, frag, 0, size, DMA_TO_DEVICE); tx_buf = &tx_q->tx_buf[i]; } /* record SW timestamp if HW timestamp is not available */ skb_tx_timestamp(skb); /* write last descriptor with RS and EOP bits */ td_cmd |= params->eop_cmd; idpf_tx_splitq_build_desc(tx_desc, params, td_cmd, size); i = idpf_tx_splitq_bump_ntu(tx_q, i); /* set next_to_watch value indicating a packet is present */ first->next_to_watch = tx_desc; tx_q->txq_grp->num_completions_pending++; /* record bytecount for BQL */ nq = netdev_get_tx_queue(tx_q->vport->netdev, tx_q->idx); netdev_tx_sent_queue(nq, first->bytecount); idpf_tx_buf_hw_update(tx_q, i, netdev_xmit_more()); } /** * idpf_tso - computes mss and TSO length to prepare for TSO * @skb: pointer to skb * @off: pointer to struct that holds offload parameters * * Returns error (negative) if TSO was requested but cannot be applied to the * given skb, 0 if TSO does not apply to the given skb, or 1 otherwise. */ int idpf_tso(struct sk_buff *skb, struct idpf_tx_offload_params *off) { const struct skb_shared_info *shinfo; union { struct iphdr *v4; struct ipv6hdr *v6; unsigned char *hdr; } ip; union { struct tcphdr *tcp; struct udphdr *udp; unsigned char *hdr; } l4; u32 paylen, l4_start; int err; if (!skb_is_gso(skb)) return 0; err = skb_cow_head(skb, 0); if (err < 0) return err; shinfo = skb_shinfo(skb); ip.hdr = skb_network_header(skb); l4.hdr = skb_transport_header(skb); /* initialize outer IP header fields */ if (ip.v4->version == 4) { ip.v4->tot_len = 0; ip.v4->check = 0; } else if (ip.v6->version == 6) { ip.v6->payload_len = 0; } l4_start = skb_transport_offset(skb); /* remove payload length from checksum */ paylen = skb->len - l4_start; switch (shinfo->gso_type & ~SKB_GSO_DODGY) { case SKB_GSO_TCPV4: case SKB_GSO_TCPV6: csum_replace_by_diff(&l4.tcp->check, (__force __wsum)htonl(paylen)); off->tso_hdr_len = __tcp_hdrlen(l4.tcp) + l4_start; break; case SKB_GSO_UDP_L4: csum_replace_by_diff(&l4.udp->check, (__force __wsum)htonl(paylen)); /* compute length of segmentation header */ off->tso_hdr_len = sizeof(struct udphdr) + l4_start; l4.udp->len = htons(shinfo->gso_size + sizeof(struct udphdr)); break; default: return -EINVAL; } off->tso_len = skb->len - off->tso_hdr_len; off->mss = shinfo->gso_size; off->tso_segs = shinfo->gso_segs; off->tx_flags |= IDPF_TX_FLAGS_TSO; return 1; } /** * __idpf_chk_linearize - Check skb is not using too many buffers * @skb: send buffer * @max_bufs: maximum number of buffers * * For TSO we need to count the TSO header and segment payload separately. As * such we need to check cases where we have max_bufs-1 fragments or more as we * can potentially require max_bufs+1 DMA transactions, 1 for the TSO header, 1 * for the segment payload in the first descriptor, and another max_buf-1 for * the fragments. */ static bool __idpf_chk_linearize(struct sk_buff *skb, unsigned int max_bufs) { const struct skb_shared_info *shinfo = skb_shinfo(skb); const skb_frag_t *frag, *stale; int nr_frags, sum; /* no need to check if number of frags is less than max_bufs - 1 */ nr_frags = shinfo->nr_frags; if (nr_frags < (max_bufs - 1)) return false; /* We need to walk through the list and validate that each group * of max_bufs-2 fragments totals at least gso_size. */ nr_frags -= max_bufs - 2; frag = &shinfo->frags[0]; /* Initialize size to the negative value of gso_size minus 1. We use * this as the worst case scenario in which the frag ahead of us only * provides one byte which is why we are limited to max_bufs-2 * descriptors for a single transmit as the header and previous * fragment are already consuming 2 descriptors. */ sum = 1 - shinfo->gso_size; /* Add size of frags 0 through 4 to create our initial sum */ sum += skb_frag_size(frag++); sum += skb_frag_size(frag++); sum += skb_frag_size(frag++); sum += skb_frag_size(frag++); sum += skb_frag_size(frag++); /* Walk through fragments adding latest fragment, testing it, and * then removing stale fragments from the sum. */ for (stale = &shinfo->frags[0];; stale++) { int stale_size = skb_frag_size(stale); sum += skb_frag_size(frag++); /* The stale fragment may present us with a smaller * descriptor than the actual fragment size. To account * for that we need to remove all the data on the front and * figure out what the remainder would be in the last * descriptor associated with the fragment. */ if (stale_size > IDPF_TX_MAX_DESC_DATA) { int align_pad = -(skb_frag_off(stale)) & (IDPF_TX_MAX_READ_REQ_SIZE - 1); sum -= align_pad; stale_size -= align_pad; do { sum -= IDPF_TX_MAX_DESC_DATA_ALIGNED; stale_size -= IDPF_TX_MAX_DESC_DATA_ALIGNED; } while (stale_size > IDPF_TX_MAX_DESC_DATA); } /* if sum is negative we failed to make sufficient progress */ if (sum < 0) return true; if (!nr_frags--) break; sum -= stale_size; } return false; } /** * idpf_chk_linearize - Check if skb exceeds max descriptors per packet * @skb: send buffer * @max_bufs: maximum scatter gather buffers for single packet * @count: number of buffers this packet needs * * Make sure we don't exceed maximum scatter gather buffers for a single * packet. We have to do some special checking around the boundary (max_bufs-1) * if TSO is on since we need count the TSO header and payload separately. * E.g.: a packet with 7 fragments can require 9 DMA transactions; 1 for TSO * header, 1 for segment payload, and then 7 for the fragments. */ bool idpf_chk_linearize(struct sk_buff *skb, unsigned int max_bufs, unsigned int count) { if (likely(count < max_bufs)) return false; if (skb_is_gso(skb)) return __idpf_chk_linearize(skb, max_bufs); return count > max_bufs; } /** * idpf_tx_splitq_get_ctx_desc - grab next desc and update buffer ring * @txq: queue to put context descriptor on * * Since the TX buffer rings mimics the descriptor ring, update the tx buffer * ring entry to reflect that this index is a context descriptor */ static struct idpf_flex_tx_ctx_desc * idpf_tx_splitq_get_ctx_desc(struct idpf_queue *txq) { struct idpf_flex_tx_ctx_desc *desc; int i = txq->next_to_use; memset(&txq->tx_buf[i], 0, sizeof(struct idpf_tx_buf)); txq->tx_buf[i].compl_tag = IDPF_SPLITQ_TX_INVAL_COMPL_TAG; /* grab the next descriptor */ desc = IDPF_FLEX_TX_CTX_DESC(txq, i); txq->next_to_use = idpf_tx_splitq_bump_ntu(txq, i); return desc; } /** * idpf_tx_drop_skb - free the SKB and bump tail if necessary * @tx_q: queue to send buffer on * @skb: pointer to skb */ netdev_tx_t idpf_tx_drop_skb(struct idpf_queue *tx_q, struct sk_buff *skb) { u64_stats_update_begin(&tx_q->stats_sync); u64_stats_inc(&tx_q->q_stats.tx.skb_drops); u64_stats_update_end(&tx_q->stats_sync); idpf_tx_buf_hw_update(tx_q, tx_q->next_to_use, false); dev_kfree_skb(skb); return NETDEV_TX_OK; } /** * idpf_tx_splitq_frame - Sends buffer on Tx ring using flex descriptors * @skb: send buffer * @tx_q: queue to send buffer on * * Returns NETDEV_TX_OK if sent, else an error code */ static netdev_tx_t idpf_tx_splitq_frame(struct sk_buff *skb, struct idpf_queue *tx_q) { struct idpf_tx_splitq_params tx_params = { }; struct idpf_tx_buf *first; unsigned int count; int tso; count = idpf_tx_desc_count_required(tx_q, skb); if (unlikely(!count)) return idpf_tx_drop_skb(tx_q, skb); tso = idpf_tso(skb, &tx_params.offload); if (unlikely(tso < 0)) return idpf_tx_drop_skb(tx_q, skb); /* Check for splitq specific TX resources */ count += (IDPF_TX_DESCS_PER_CACHE_LINE + tso); if (idpf_tx_maybe_stop_splitq(tx_q, count)) { idpf_tx_buf_hw_update(tx_q, tx_q->next_to_use, false); return NETDEV_TX_BUSY; } if (tso) { /* If tso is needed, set up context desc */ struct idpf_flex_tx_ctx_desc *ctx_desc = idpf_tx_splitq_get_ctx_desc(tx_q); ctx_desc->tso.qw1.cmd_dtype = cpu_to_le16(IDPF_TX_DESC_DTYPE_FLEX_TSO_CTX | IDPF_TX_FLEX_CTX_DESC_CMD_TSO); ctx_desc->tso.qw0.flex_tlen = cpu_to_le32(tx_params.offload.tso_len & IDPF_TXD_FLEX_CTX_TLEN_M); ctx_desc->tso.qw0.mss_rt = cpu_to_le16(tx_params.offload.mss & IDPF_TXD_FLEX_CTX_MSS_RT_M); ctx_desc->tso.qw0.hdr_len = tx_params.offload.tso_hdr_len; u64_stats_update_begin(&tx_q->stats_sync); u64_stats_inc(&tx_q->q_stats.tx.lso_pkts); u64_stats_update_end(&tx_q->stats_sync); } /* record the location of the first descriptor for this packet */ first = &tx_q->tx_buf[tx_q->next_to_use]; first->skb = skb; if (tso) { first->gso_segs = tx_params.offload.tso_segs; first->bytecount = skb->len + ((first->gso_segs - 1) * tx_params.offload.tso_hdr_len); } else { first->gso_segs = 1; first->bytecount = max_t(unsigned int, skb->len, ETH_ZLEN); } if (test_bit(__IDPF_Q_FLOW_SCH_EN, tx_q->flags)) { tx_params.dtype = IDPF_TX_DESC_DTYPE_FLEX_FLOW_SCHE; tx_params.eop_cmd = IDPF_TXD_FLEX_FLOW_CMD_EOP; /* Set the RE bit to catch any packets that may have not been * stashed during RS completion cleaning. MIN_GAP is set to * MIN_RING size to ensure it will be set at least once each * time around the ring. */ if (!(tx_q->next_to_use % IDPF_TX_SPLITQ_RE_MIN_GAP)) { tx_params.eop_cmd |= IDPF_TXD_FLEX_FLOW_CMD_RE; tx_q->txq_grp->num_completions_pending++; } if (skb->ip_summed == CHECKSUM_PARTIAL) tx_params.offload.td_cmd |= IDPF_TXD_FLEX_FLOW_CMD_CS_EN; } else { tx_params.dtype = IDPF_TX_DESC_DTYPE_FLEX_L2TAG1_L2TAG2; tx_params.eop_cmd = IDPF_TXD_LAST_DESC_CMD; if (skb->ip_summed == CHECKSUM_PARTIAL) tx_params.offload.td_cmd |= IDPF_TX_FLEX_DESC_CMD_CS_EN; } idpf_tx_splitq_map(tx_q, &tx_params, first); return NETDEV_TX_OK; } /** * idpf_tx_splitq_start - Selects the right Tx queue to send buffer * @skb: send buffer * @netdev: network interface device structure * * Returns NETDEV_TX_OK if sent, else an error code */ netdev_tx_t idpf_tx_splitq_start(struct sk_buff *skb, struct net_device *netdev) { struct idpf_vport *vport = idpf_netdev_to_vport(netdev); struct idpf_queue *tx_q; if (unlikely(skb_get_queue_mapping(skb) >= vport->num_txq)) { dev_kfree_skb_any(skb); return NETDEV_TX_OK; } tx_q = vport->txqs[skb_get_queue_mapping(skb)]; /* hardware can't handle really short frames, hardware padding works * beyond this point */ if (skb_put_padto(skb, tx_q->tx_min_pkt_len)) { idpf_tx_buf_hw_update(tx_q, tx_q->next_to_use, false); return NETDEV_TX_OK; } return idpf_tx_splitq_frame(skb, tx_q); } /** * idpf_ptype_to_htype - get a hash type * @decoded: Decoded Rx packet type related fields * * Returns appropriate hash type (such as PKT_HASH_TYPE_L2/L3/L4) to be used by * skb_set_hash based on PTYPE as parsed by HW Rx pipeline and is part of * Rx desc. */ enum pkt_hash_types idpf_ptype_to_htype(const struct idpf_rx_ptype_decoded *decoded) { if (!decoded->known) return PKT_HASH_TYPE_NONE; if (decoded->payload_layer == IDPF_RX_PTYPE_PAYLOAD_LAYER_PAY2 && decoded->inner_prot) return PKT_HASH_TYPE_L4; if (decoded->payload_layer == IDPF_RX_PTYPE_PAYLOAD_LAYER_PAY2 && decoded->outer_ip) return PKT_HASH_TYPE_L3; if (decoded->outer_ip == IDPF_RX_PTYPE_OUTER_L2) return PKT_HASH_TYPE_L2; return PKT_HASH_TYPE_NONE; } /** * idpf_rx_hash - set the hash value in the skb * @rxq: Rx descriptor ring packet is being transacted on * @skb: pointer to current skb being populated * @rx_desc: Receive descriptor * @decoded: Decoded Rx packet type related fields */ static void idpf_rx_hash(struct idpf_queue *rxq, struct sk_buff *skb, struct virtchnl2_rx_flex_desc_adv_nic_3 *rx_desc, struct idpf_rx_ptype_decoded *decoded) { u32 hash; if (unlikely(!idpf_is_feature_ena(rxq->vport, NETIF_F_RXHASH))) return; hash = le16_to_cpu(rx_desc->hash1) | (rx_desc->ff2_mirrid_hash2.hash2 << 16) | (rx_desc->hash3 << 24); skb_set_hash(skb, hash, idpf_ptype_to_htype(decoded)); } /** * idpf_rx_csum - Indicate in skb if checksum is good * @rxq: Rx descriptor ring packet is being transacted on * @skb: pointer to current skb being populated * @csum_bits: checksum fields extracted from the descriptor * @decoded: Decoded Rx packet type related fields * * skb->protocol must be set before this function is called */ static void idpf_rx_csum(struct idpf_queue *rxq, struct sk_buff *skb, struct idpf_rx_csum_decoded *csum_bits, struct idpf_rx_ptype_decoded *decoded) { bool ipv4, ipv6; /* check if Rx checksum is enabled */ if (unlikely(!idpf_is_feature_ena(rxq->vport, NETIF_F_RXCSUM))) return; /* check if HW has decoded the packet and checksum */ if (!(csum_bits->l3l4p)) return; ipv4 = IDPF_RX_PTYPE_TO_IPV(decoded, IDPF_RX_PTYPE_OUTER_IPV4); ipv6 = IDPF_RX_PTYPE_TO_IPV(decoded, IDPF_RX_PTYPE_OUTER_IPV6); if (ipv4 && (csum_bits->ipe || csum_bits->eipe)) goto checksum_fail; if (ipv6 && csum_bits->ipv6exadd) return; /* check for L4 errors and handle packets that were not able to be * checksummed */ if (csum_bits->l4e) goto checksum_fail; /* Only report checksum unnecessary for ICMP, TCP, UDP, or SCTP */ switch (decoded->inner_prot) { case IDPF_RX_PTYPE_INNER_PROT_ICMP: case IDPF_RX_PTYPE_INNER_PROT_TCP: case IDPF_RX_PTYPE_INNER_PROT_UDP: if (!csum_bits->raw_csum_inv) { u16 csum = csum_bits->raw_csum; skb->csum = csum_unfold((__force __sum16)~swab16(csum)); skb->ip_summed = CHECKSUM_COMPLETE; } else { skb->ip_summed = CHECKSUM_UNNECESSARY; } break; case IDPF_RX_PTYPE_INNER_PROT_SCTP: skb->ip_summed = CHECKSUM_UNNECESSARY; break; default: break; } return; checksum_fail: u64_stats_update_begin(&rxq->stats_sync); u64_stats_inc(&rxq->q_stats.rx.hw_csum_err); u64_stats_update_end(&rxq->stats_sync); } /** * idpf_rx_splitq_extract_csum_bits - Extract checksum bits from descriptor * @rx_desc: receive descriptor * @csum: structure to extract checksum fields * **/ static void idpf_rx_splitq_extract_csum_bits(struct virtchnl2_rx_flex_desc_adv_nic_3 *rx_desc, struct idpf_rx_csum_decoded *csum) { u8 qword0, qword1; qword0 = rx_desc->status_err0_qw0; qword1 = rx_desc->status_err0_qw1; csum->ipe = FIELD_GET(VIRTCHNL2_RX_FLEX_DESC_ADV_STATUS0_XSUM_IPE_M, qword1); csum->eipe = FIELD_GET(VIRTCHNL2_RX_FLEX_DESC_ADV_STATUS0_XSUM_EIPE_M, qword1); csum->l4e = FIELD_GET(VIRTCHNL2_RX_FLEX_DESC_ADV_STATUS0_XSUM_L4E_M, qword1); csum->l3l4p = FIELD_GET(VIRTCHNL2_RX_FLEX_DESC_ADV_STATUS0_L3L4P_M, qword1); csum->ipv6exadd = FIELD_GET(VIRTCHNL2_RX_FLEX_DESC_ADV_STATUS0_IPV6EXADD_M, qword0); csum->raw_csum_inv = le16_get_bits(rx_desc->ptype_err_fflags0, VIRTCHNL2_RX_FLEX_DESC_ADV_RAW_CSUM_INV_M); csum->raw_csum = le16_to_cpu(rx_desc->misc.raw_cs); } /** * idpf_rx_rsc - Set the RSC fields in the skb * @rxq : Rx descriptor ring packet is being transacted on * @skb : pointer to current skb being populated * @rx_desc: Receive descriptor * @decoded: Decoded Rx packet type related fields * * Return 0 on success and error code on failure * * Populate the skb fields with the total number of RSC segments, RSC payload * length and packet type. */ static int idpf_rx_rsc(struct idpf_queue *rxq, struct sk_buff *skb, struct virtchnl2_rx_flex_desc_adv_nic_3 *rx_desc, struct idpf_rx_ptype_decoded *decoded) { u16 rsc_segments, rsc_seg_len; bool ipv4, ipv6; int len; if (unlikely(!decoded->outer_ip)) return -EINVAL; rsc_seg_len = le16_to_cpu(rx_desc->misc.rscseglen); if (unlikely(!rsc_seg_len)) return -EINVAL; ipv4 = IDPF_RX_PTYPE_TO_IPV(decoded, IDPF_RX_PTYPE_OUTER_IPV4); ipv6 = IDPF_RX_PTYPE_TO_IPV(decoded, IDPF_RX_PTYPE_OUTER_IPV6); if (unlikely(!(ipv4 ^ ipv6))) return -EINVAL; rsc_segments = DIV_ROUND_UP(skb->data_len, rsc_seg_len); if (unlikely(rsc_segments == 1)) return 0; NAPI_GRO_CB(skb)->count = rsc_segments; skb_shinfo(skb)->gso_size = rsc_seg_len; skb_reset_network_header(skb); len = skb->len - skb_transport_offset(skb); if (ipv4) { struct iphdr *ipv4h = ip_hdr(skb); skb_shinfo(skb)->gso_type = SKB_GSO_TCPV4; /* Reset and set transport header offset in skb */ skb_set_transport_header(skb, sizeof(struct iphdr)); /* Compute the TCP pseudo header checksum*/ tcp_hdr(skb)->check = ~tcp_v4_check(len, ipv4h->saddr, ipv4h->daddr, 0); } else { struct ipv6hdr *ipv6h = ipv6_hdr(skb); skb_shinfo(skb)->gso_type = SKB_GSO_TCPV6; skb_set_transport_header(skb, sizeof(struct ipv6hdr)); tcp_hdr(skb)->check = ~tcp_v6_check(len, &ipv6h->saddr, &ipv6h->daddr, 0); } tcp_gro_complete(skb); u64_stats_update_begin(&rxq->stats_sync); u64_stats_inc(&rxq->q_stats.rx.rsc_pkts); u64_stats_update_end(&rxq->stats_sync); return 0; } /** * idpf_rx_process_skb_fields - Populate skb header fields from Rx descriptor * @rxq: Rx descriptor ring packet is being transacted on * @skb: pointer to current skb being populated * @rx_desc: Receive descriptor * * This function checks the ring, descriptor, and packet information in * order to populate the hash, checksum, protocol, and * other fields within the skb. */ static int idpf_rx_process_skb_fields(struct idpf_queue *rxq, struct sk_buff *skb, struct virtchnl2_rx_flex_desc_adv_nic_3 *rx_desc) { struct idpf_rx_csum_decoded csum_bits = { }; struct idpf_rx_ptype_decoded decoded; u16 rx_ptype; rx_ptype = le16_get_bits(rx_desc->ptype_err_fflags0, VIRTCHNL2_RX_FLEX_DESC_ADV_PTYPE_M); skb->protocol = eth_type_trans(skb, rxq->vport->netdev); decoded = rxq->vport->rx_ptype_lkup[rx_ptype]; /* If we don't know the ptype we can't do anything else with it. Just * pass it up the stack as-is. */ if (!decoded.known) return 0; /* process RSS/hash */ idpf_rx_hash(rxq, skb, rx_desc, &decoded); if (le16_get_bits(rx_desc->hdrlen_flags, VIRTCHNL2_RX_FLEX_DESC_ADV_RSC_M)) return idpf_rx_rsc(rxq, skb, rx_desc, &decoded); idpf_rx_splitq_extract_csum_bits(rx_desc, &csum_bits); idpf_rx_csum(rxq, skb, &csum_bits, &decoded); return 0; } /** * idpf_rx_add_frag - Add contents of Rx buffer to sk_buff as a frag * @rx_buf: buffer containing page to add * @skb: sk_buff to place the data into * @size: packet length from rx_desc * * This function will add the data contained in rx_buf->page to the skb. * It will just attach the page as a frag to the skb. * The function will then update the page offset. */ void idpf_rx_add_frag(struct idpf_rx_buf *rx_buf, struct sk_buff *skb, unsigned int size) { skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buf->page, rx_buf->page_offset, size, rx_buf->truesize); rx_buf->page = NULL; } /** * idpf_rx_construct_skb - Allocate skb and populate it * @rxq: Rx descriptor queue * @rx_buf: Rx buffer to pull data from * @size: the length of the packet * * This function allocates an skb. It then populates it with the page * data from the current receive descriptor, taking care to set up the * skb correctly. */ struct sk_buff *idpf_rx_construct_skb(struct idpf_queue *rxq, struct idpf_rx_buf *rx_buf, unsigned int size) { unsigned int headlen; struct sk_buff *skb; void *va; va = page_address(rx_buf->page) + rx_buf->page_offset; /* prefetch first cache line of first page */ net_prefetch(va); /* allocate a skb to store the frags */ skb = __napi_alloc_skb(&rxq->q_vector->napi, IDPF_RX_HDR_SIZE, GFP_ATOMIC); if (unlikely(!skb)) { idpf_rx_put_page(rx_buf); return NULL; } skb_record_rx_queue(skb, rxq->idx); skb_mark_for_recycle(skb); /* Determine available headroom for copy */ headlen = size; if (headlen > IDPF_RX_HDR_SIZE) headlen = eth_get_headlen(skb->dev, va, IDPF_RX_HDR_SIZE); /* align pull length to size of long to optimize memcpy performance */ memcpy(__skb_put(skb, headlen), va, ALIGN(headlen, sizeof(long))); /* if we exhaust the linear part then add what is left as a frag */ size -= headlen; if (!size) { idpf_rx_put_page(rx_buf); return skb; } skb_add_rx_frag(skb, 0, rx_buf->page, rx_buf->page_offset + headlen, size, rx_buf->truesize); /* Since we're giving the page to the stack, clear our reference to it. * We'll get a new one during buffer posting. */ rx_buf->page = NULL; return skb; } /** * idpf_rx_hdr_construct_skb - Allocate skb and populate it from header buffer * @rxq: Rx descriptor queue * @va: Rx buffer to pull data from * @size: the length of the packet * * This function allocates an skb. It then populates it with the page data from * the current receive descriptor, taking care to set up the skb correctly. * This specifically uses a header buffer to start building the skb. */ static struct sk_buff *idpf_rx_hdr_construct_skb(struct idpf_queue *rxq, const void *va, unsigned int size) { struct sk_buff *skb; /* allocate a skb to store the frags */ skb = __napi_alloc_skb(&rxq->q_vector->napi, size, GFP_ATOMIC); if (unlikely(!skb)) return NULL; skb_record_rx_queue(skb, rxq->idx); memcpy(__skb_put(skb, size), va, ALIGN(size, sizeof(long))); /* More than likely, a payload fragment, which will use a page from * page_pool will be added to the SKB so mark it for recycle * preemptively. And if not, it's inconsequential. */ skb_mark_for_recycle(skb); return skb; } /** * idpf_rx_splitq_test_staterr - tests bits in Rx descriptor * status and error fields * @stat_err_field: field from descriptor to test bits in * @stat_err_bits: value to mask * */ static bool idpf_rx_splitq_test_staterr(const u8 stat_err_field, const u8 stat_err_bits) { return !!(stat_err_field & stat_err_bits); } /** * idpf_rx_splitq_is_eop - process handling of EOP buffers * @rx_desc: Rx descriptor for current buffer * * If the buffer is an EOP buffer, this function exits returning true, * otherwise return false indicating that this is in fact a non-EOP buffer. */ static bool idpf_rx_splitq_is_eop(struct virtchnl2_rx_flex_desc_adv_nic_3 *rx_desc) { /* if we are the last buffer then there is nothing else to do */ return likely(idpf_rx_splitq_test_staterr(rx_desc->status_err0_qw1, IDPF_RXD_EOF_SPLITQ)); } /** * idpf_rx_splitq_clean - Clean completed descriptors from Rx queue * @rxq: Rx descriptor queue to retrieve receive buffer queue * @budget: Total limit on number of packets to process * * This function provides a "bounce buffer" approach to Rx interrupt * processing. The advantage to this is that on systems that have * expensive overhead for IOMMU access this provides a means of avoiding * it by maintaining the mapping of the page to the system. * * Returns amount of work completed */ static int idpf_rx_splitq_clean(struct idpf_queue *rxq, int budget) { int total_rx_bytes = 0, total_rx_pkts = 0; struct idpf_queue *rx_bufq = NULL; struct sk_buff *skb = rxq->skb; u16 ntc = rxq->next_to_clean; /* Process Rx packets bounded by budget */ while (likely(total_rx_pkts < budget)) { struct virtchnl2_rx_flex_desc_adv_nic_3 *rx_desc; struct idpf_sw_queue *refillq = NULL; struct idpf_rxq_set *rxq_set = NULL; struct idpf_rx_buf *rx_buf = NULL; union virtchnl2_rx_desc *desc; unsigned int pkt_len = 0; unsigned int hdr_len = 0; u16 gen_id, buf_id = 0; /* Header buffer overflow only valid for header split */ bool hbo = false; int bufq_id; u8 rxdid; /* get the Rx desc from Rx queue based on 'next_to_clean' */ desc = IDPF_RX_DESC(rxq, ntc); rx_desc = (struct virtchnl2_rx_flex_desc_adv_nic_3 *)desc; /* This memory barrier is needed to keep us from reading * any other fields out of the rx_desc */ dma_rmb(); /* if the descriptor isn't done, no work yet to do */ gen_id = le16_get_bits(rx_desc->pktlen_gen_bufq_id, VIRTCHNL2_RX_FLEX_DESC_ADV_GEN_M); if (test_bit(__IDPF_Q_GEN_CHK, rxq->flags) != gen_id) break; rxdid = FIELD_GET(VIRTCHNL2_RX_FLEX_DESC_ADV_RXDID_M, rx_desc->rxdid_ucast); if (rxdid != VIRTCHNL2_RXDID_2_FLEX_SPLITQ) { IDPF_RX_BUMP_NTC(rxq, ntc); u64_stats_update_begin(&rxq->stats_sync); u64_stats_inc(&rxq->q_stats.rx.bad_descs); u64_stats_update_end(&rxq->stats_sync); continue; } pkt_len = le16_get_bits(rx_desc->pktlen_gen_bufq_id, VIRTCHNL2_RX_FLEX_DESC_ADV_LEN_PBUF_M); hbo = FIELD_GET(VIRTCHNL2_RX_FLEX_DESC_ADV_STATUS0_HBO_M, rx_desc->status_err0_qw1); if (unlikely(hbo)) { /* If a header buffer overflow, occurs, i.e. header is * too large to fit in the header split buffer, HW will * put the entire packet, including headers, in the * data/payload buffer. */ u64_stats_update_begin(&rxq->stats_sync); u64_stats_inc(&rxq->q_stats.rx.hsplit_buf_ovf); u64_stats_update_end(&rxq->stats_sync); goto bypass_hsplit; } hdr_len = le16_get_bits(rx_desc->hdrlen_flags, VIRTCHNL2_RX_FLEX_DESC_ADV_LEN_HDR_M); bypass_hsplit: bufq_id = le16_get_bits(rx_desc->pktlen_gen_bufq_id, VIRTCHNL2_RX_FLEX_DESC_ADV_BUFQ_ID_M); rxq_set = container_of(rxq, struct idpf_rxq_set, rxq); if (!bufq_id) refillq = rxq_set->refillq0; else refillq = rxq_set->refillq1; /* retrieve buffer from the rxq */ rx_bufq = &rxq->rxq_grp->splitq.bufq_sets[bufq_id].bufq; buf_id = le16_to_cpu(rx_desc->buf_id); rx_buf = &rx_bufq->rx_buf.buf[buf_id]; if (hdr_len) { const void *va = (u8 *)rx_bufq->rx_buf.hdr_buf_va + (u32)buf_id * IDPF_HDR_BUF_SIZE; skb = idpf_rx_hdr_construct_skb(rxq, va, hdr_len); u64_stats_update_begin(&rxq->stats_sync); u64_stats_inc(&rxq->q_stats.rx.hsplit_pkts); u64_stats_update_end(&rxq->stats_sync); } if (pkt_len) { idpf_rx_sync_for_cpu(rx_buf, pkt_len); if (skb) idpf_rx_add_frag(rx_buf, skb, pkt_len); else skb = idpf_rx_construct_skb(rxq, rx_buf, pkt_len); } else { idpf_rx_put_page(rx_buf); } /* exit if we failed to retrieve a buffer */ if (!skb) break; idpf_rx_post_buf_refill(refillq, buf_id); IDPF_RX_BUMP_NTC(rxq, ntc); /* skip if it is non EOP desc */ if (!idpf_rx_splitq_is_eop(rx_desc)) continue; /* pad skb if needed (to make valid ethernet frame) */ if (eth_skb_pad(skb)) { skb = NULL; continue; } /* probably a little skewed due to removing CRC */ total_rx_bytes += skb->len; /* protocol */ if (unlikely(idpf_rx_process_skb_fields(rxq, skb, rx_desc))) { dev_kfree_skb_any(skb); skb = NULL; continue; } /* send completed skb up the stack */ napi_gro_receive(&rxq->q_vector->napi, skb); skb = NULL; /* update budget accounting */ total_rx_pkts++; } rxq->next_to_clean = ntc; rxq->skb = skb; u64_stats_update_begin(&rxq->stats_sync); u64_stats_add(&rxq->q_stats.rx.packets, total_rx_pkts); u64_stats_add(&rxq->q_stats.rx.bytes, total_rx_bytes); u64_stats_update_end(&rxq->stats_sync); /* guarantee a trip back through this routine if there was a failure */ return total_rx_pkts; } /** * idpf_rx_update_bufq_desc - Update buffer queue descriptor * @bufq: Pointer to the buffer queue * @refill_desc: SW Refill queue descriptor containing buffer ID * @buf_desc: Buffer queue descriptor * * Return 0 on success and negative on failure. */ static int idpf_rx_update_bufq_desc(struct idpf_queue *bufq, u16 refill_desc, struct virtchnl2_splitq_rx_buf_desc *buf_desc) { struct idpf_rx_buf *buf; dma_addr_t addr; u16 buf_id; buf_id = FIELD_GET(IDPF_RX_BI_BUFID_M, refill_desc); buf = &bufq->rx_buf.buf[buf_id]; addr = idpf_alloc_page(bufq->pp, buf, bufq->rx_buf_size); if (unlikely(addr == DMA_MAPPING_ERROR)) return -ENOMEM; buf_desc->pkt_addr = cpu_to_le64(addr); buf_desc->qword0.buf_id = cpu_to_le16(buf_id); if (!bufq->rx_hsplit_en) return 0; buf_desc->hdr_addr = cpu_to_le64(bufq->rx_buf.hdr_buf_pa + (u32)buf_id * IDPF_HDR_BUF_SIZE); return 0; } /** * idpf_rx_clean_refillq - Clean refill queue buffers * @bufq: buffer queue to post buffers back to * @refillq: refill queue to clean * * This function takes care of the buffer refill management */ static void idpf_rx_clean_refillq(struct idpf_queue *bufq, struct idpf_sw_queue *refillq) { struct virtchnl2_splitq_rx_buf_desc *buf_desc; u16 bufq_nta = bufq->next_to_alloc; u16 ntc = refillq->next_to_clean; int cleaned = 0; u16 gen; buf_desc = IDPF_SPLITQ_RX_BUF_DESC(bufq, bufq_nta); /* make sure we stop at ring wrap in the unlikely case ring is full */ while (likely(cleaned < refillq->desc_count)) { u16 refill_desc = IDPF_SPLITQ_RX_BI_DESC(refillq, ntc); bool failure; gen = FIELD_GET(IDPF_RX_BI_GEN_M, refill_desc); if (test_bit(__IDPF_RFLQ_GEN_CHK, refillq->flags) != gen) break; failure = idpf_rx_update_bufq_desc(bufq, refill_desc, buf_desc); if (failure) break; if (unlikely(++ntc == refillq->desc_count)) { change_bit(__IDPF_RFLQ_GEN_CHK, refillq->flags); ntc = 0; } if (unlikely(++bufq_nta == bufq->desc_count)) { buf_desc = IDPF_SPLITQ_RX_BUF_DESC(bufq, 0); bufq_nta = 0; } else { buf_desc++; } cleaned++; } if (!cleaned) return; /* We want to limit how many transactions on the bus we trigger with * tail writes so we only do it in strides. It's also important we * align the write to a multiple of 8 as required by HW. */ if (((bufq->next_to_use <= bufq_nta ? 0 : bufq->desc_count) + bufq_nta - bufq->next_to_use) >= IDPF_RX_BUF_POST_STRIDE) idpf_rx_buf_hw_update(bufq, ALIGN_DOWN(bufq_nta, IDPF_RX_BUF_POST_STRIDE)); /* update next to alloc since we have filled the ring */ refillq->next_to_clean = ntc; bufq->next_to_alloc = bufq_nta; } /** * idpf_rx_clean_refillq_all - Clean all refill queues * @bufq: buffer queue with refill queues * * Iterates through all refill queues assigned to the buffer queue assigned to * this vector. Returns true if clean is complete within budget, false * otherwise. */ static void idpf_rx_clean_refillq_all(struct idpf_queue *bufq) { struct idpf_bufq_set *bufq_set; int i; bufq_set = container_of(bufq, struct idpf_bufq_set, bufq); for (i = 0; i < bufq_set->num_refillqs; i++) idpf_rx_clean_refillq(bufq, &bufq_set->refillqs[i]); } /** * idpf_vport_intr_clean_queues - MSIX mode Interrupt Handler * @irq: interrupt number * @data: pointer to a q_vector * */ static irqreturn_t idpf_vport_intr_clean_queues(int __always_unused irq, void *data) { struct idpf_q_vector *q_vector = (struct idpf_q_vector *)data; q_vector->total_events++; napi_schedule(&q_vector->napi); return IRQ_HANDLED; } /** * idpf_vport_intr_napi_del_all - Unregister napi for all q_vectors in vport * @vport: virtual port structure * */ static void idpf_vport_intr_napi_del_all(struct idpf_vport *vport) { u16 v_idx; for (v_idx = 0; v_idx < vport->num_q_vectors; v_idx++) netif_napi_del(&vport->q_vectors[v_idx].napi); } /** * idpf_vport_intr_napi_dis_all - Disable NAPI for all q_vectors in the vport * @vport: main vport structure */ static void idpf_vport_intr_napi_dis_all(struct idpf_vport *vport) { int v_idx; for (v_idx = 0; v_idx < vport->num_q_vectors; v_idx++) napi_disable(&vport->q_vectors[v_idx].napi); } /** * idpf_vport_intr_rel - Free memory allocated for interrupt vectors * @vport: virtual port * * Free the memory allocated for interrupt vectors associated to a vport */ void idpf_vport_intr_rel(struct idpf_vport *vport) { int i, j, v_idx; for (v_idx = 0; v_idx < vport->num_q_vectors; v_idx++) { struct idpf_q_vector *q_vector = &vport->q_vectors[v_idx]; kfree(q_vector->bufq); q_vector->bufq = NULL; kfree(q_vector->tx); q_vector->tx = NULL; kfree(q_vector->rx); q_vector->rx = NULL; } /* Clean up the mapping of queues to vectors */ for (i = 0; i < vport->num_rxq_grp; i++) { struct idpf_rxq_group *rx_qgrp = &vport->rxq_grps[i]; if (idpf_is_queue_model_split(vport->rxq_model)) for (j = 0; j < rx_qgrp->splitq.num_rxq_sets; j++) rx_qgrp->splitq.rxq_sets[j]->rxq.q_vector = NULL; else for (j = 0; j < rx_qgrp->singleq.num_rxq; j++) rx_qgrp->singleq.rxqs[j]->q_vector = NULL; } if (idpf_is_queue_model_split(vport->txq_model)) for (i = 0; i < vport->num_txq_grp; i++) vport->txq_grps[i].complq->q_vector = NULL; else for (i = 0; i < vport->num_txq_grp; i++) for (j = 0; j < vport->txq_grps[i].num_txq; j++) vport->txq_grps[i].txqs[j]->q_vector = NULL; kfree(vport->q_vectors); vport->q_vectors = NULL; } /** * idpf_vport_intr_rel_irq - Free the IRQ association with the OS * @vport: main vport structure */ static void idpf_vport_intr_rel_irq(struct idpf_vport *vport) { struct idpf_adapter *adapter = vport->adapter; int vector; for (vector = 0; vector < vport->num_q_vectors; vector++) { struct idpf_q_vector *q_vector = &vport->q_vectors[vector]; int irq_num, vidx; /* free only the irqs that were actually requested */ if (!q_vector) continue; vidx = vport->q_vector_idxs[vector]; irq_num = adapter->msix_entries[vidx].vector; /* clear the affinity_mask in the IRQ descriptor */ irq_set_affinity_hint(irq_num, NULL); free_irq(irq_num, q_vector); } } /** * idpf_vport_intr_dis_irq_all - Disable all interrupt * @vport: main vport structure */ static void idpf_vport_intr_dis_irq_all(struct idpf_vport *vport) { struct idpf_q_vector *q_vector = vport->q_vectors; int q_idx; for (q_idx = 0; q_idx < vport->num_q_vectors; q_idx++) writel(0, q_vector[q_idx].intr_reg.dyn_ctl); } /** * idpf_vport_intr_buildreg_itr - Enable default interrupt generation settings * @q_vector: pointer to q_vector * @type: itr index * @itr: itr value */ static u32 idpf_vport_intr_buildreg_itr(struct idpf_q_vector *q_vector, const int type, u16 itr) { u32 itr_val; itr &= IDPF_ITR_MASK; /* Don't clear PBA because that can cause lost interrupts that * came in while we were cleaning/polling */ itr_val = q_vector->intr_reg.dyn_ctl_intena_m | (type << q_vector->intr_reg.dyn_ctl_itridx_s) | (itr << (q_vector->intr_reg.dyn_ctl_intrvl_s - 1)); return itr_val; } /** * idpf_update_dim_sample - Update dim sample with packets and bytes * @q_vector: the vector associated with the interrupt * @dim_sample: dim sample to update * @dim: dim instance structure * @packets: total packets * @bytes: total bytes * * Update the dim sample with the packets and bytes which are passed to this * function. Set the dim state appropriately if the dim settings gets stale. */ static void idpf_update_dim_sample(struct idpf_q_vector *q_vector, struct dim_sample *dim_sample, struct dim *dim, u64 packets, u64 bytes) { dim_update_sample(q_vector->total_events, packets, bytes, dim_sample); dim_sample->comp_ctr = 0; /* if dim settings get stale, like when not updated for 1 second or * longer, force it to start again. This addresses the frequent case * of an idle queue being switched to by the scheduler. */ if (ktime_ms_delta(dim_sample->time, dim->start_sample.time) >= HZ) dim->state = DIM_START_MEASURE; } /** * idpf_net_dim - Update net DIM algorithm * @q_vector: the vector associated with the interrupt * * Create a DIM sample and notify net_dim() so that it can possibly decide * a new ITR value based on incoming packets, bytes, and interrupts. * * This function is a no-op if the queue is not configured to dynamic ITR. */ static void idpf_net_dim(struct idpf_q_vector *q_vector) { struct dim_sample dim_sample = { }; u64 packets, bytes; u32 i; if (!IDPF_ITR_IS_DYNAMIC(q_vector->tx_intr_mode)) goto check_rx_itr; for (i = 0, packets = 0, bytes = 0; i < q_vector->num_txq; i++) { struct idpf_queue *txq = q_vector->tx[i]; unsigned int start; do { start = u64_stats_fetch_begin(&txq->stats_sync); packets += u64_stats_read(&txq->q_stats.tx.packets); bytes += u64_stats_read(&txq->q_stats.tx.bytes); } while (u64_stats_fetch_retry(&txq->stats_sync, start)); } idpf_update_dim_sample(q_vector, &dim_sample, &q_vector->tx_dim, packets, bytes); net_dim(&q_vector->tx_dim, dim_sample); check_rx_itr: if (!IDPF_ITR_IS_DYNAMIC(q_vector->rx_intr_mode)) return; for (i = 0, packets = 0, bytes = 0; i < q_vector->num_rxq; i++) { struct idpf_queue *rxq = q_vector->rx[i]; unsigned int start; do { start = u64_stats_fetch_begin(&rxq->stats_sync); packets += u64_stats_read(&rxq->q_stats.rx.packets); bytes += u64_stats_read(&rxq->q_stats.rx.bytes); } while (u64_stats_fetch_retry(&rxq->stats_sync, start)); } idpf_update_dim_sample(q_vector, &dim_sample, &q_vector->rx_dim, packets, bytes); net_dim(&q_vector->rx_dim, dim_sample); } /** * idpf_vport_intr_update_itr_ena_irq - Update itr and re-enable MSIX interrupt * @q_vector: q_vector for which itr is being updated and interrupt enabled * * Update the net_dim() algorithm and re-enable the interrupt associated with * this vector. */ void idpf_vport_intr_update_itr_ena_irq(struct idpf_q_vector *q_vector) { u32 intval; /* net_dim() updates ITR out-of-band using a work item */ idpf_net_dim(q_vector); intval = idpf_vport_intr_buildreg_itr(q_vector, IDPF_NO_ITR_UPDATE_IDX, 0); writel(intval, q_vector->intr_reg.dyn_ctl); } /** * idpf_vport_intr_req_irq - get MSI-X vectors from the OS for the vport * @vport: main vport structure * @basename: name for the vector */ static int idpf_vport_intr_req_irq(struct idpf_vport *vport, char *basename) { struct idpf_adapter *adapter = vport->adapter; int vector, err, irq_num, vidx; const char *vec_name; for (vector = 0; vector < vport->num_q_vectors; vector++) { struct idpf_q_vector *q_vector = &vport->q_vectors[vector]; vidx = vport->q_vector_idxs[vector]; irq_num = adapter->msix_entries[vidx].vector; if (q_vector->num_rxq && q_vector->num_txq) vec_name = "TxRx"; else if (q_vector->num_rxq) vec_name = "Rx"; else if (q_vector->num_txq) vec_name = "Tx"; else continue; q_vector->name = kasprintf(GFP_KERNEL, "%s-%s-%d", basename, vec_name, vidx); err = request_irq(irq_num, idpf_vport_intr_clean_queues, 0, q_vector->name, q_vector); if (err) { netdev_err(vport->netdev, "Request_irq failed, error: %d\n", err); goto free_q_irqs; } /* assign the mask for this irq */ irq_set_affinity_hint(irq_num, &q_vector->affinity_mask); } return 0; free_q_irqs: while (--vector >= 0) { vidx = vport->q_vector_idxs[vector]; irq_num = adapter->msix_entries[vidx].vector; free_irq(irq_num, &vport->q_vectors[vector]); } return err; } /** * idpf_vport_intr_write_itr - Write ITR value to the ITR register * @q_vector: q_vector structure * @itr: Interrupt throttling rate * @tx: Tx or Rx ITR */ void idpf_vport_intr_write_itr(struct idpf_q_vector *q_vector, u16 itr, bool tx) { struct idpf_intr_reg *intr_reg; if (tx && !q_vector->tx) return; else if (!tx && !q_vector->rx) return; intr_reg = &q_vector->intr_reg; writel(ITR_REG_ALIGN(itr) >> IDPF_ITR_GRAN_S, tx ? intr_reg->tx_itr : intr_reg->rx_itr); } /** * idpf_vport_intr_ena_irq_all - Enable IRQ for the given vport * @vport: main vport structure */ static void idpf_vport_intr_ena_irq_all(struct idpf_vport *vport) { bool dynamic; int q_idx; u16 itr; for (q_idx = 0; q_idx < vport->num_q_vectors; q_idx++) { struct idpf_q_vector *qv = &vport->q_vectors[q_idx]; /* Set the initial ITR values */ if (qv->num_txq) { dynamic = IDPF_ITR_IS_DYNAMIC(qv->tx_intr_mode); itr = vport->tx_itr_profile[qv->tx_dim.profile_ix]; idpf_vport_intr_write_itr(qv, dynamic ? itr : qv->tx_itr_value, true); } if (qv->num_rxq) { dynamic = IDPF_ITR_IS_DYNAMIC(qv->rx_intr_mode); itr = vport->rx_itr_profile[qv->rx_dim.profile_ix]; idpf_vport_intr_write_itr(qv, dynamic ? itr : qv->rx_itr_value, false); } if (qv->num_txq || qv->num_rxq) idpf_vport_intr_update_itr_ena_irq(qv); } } /** * idpf_vport_intr_deinit - Release all vector associations for the vport * @vport: main vport structure */ void idpf_vport_intr_deinit(struct idpf_vport *vport) { idpf_vport_intr_dis_irq_all(vport); idpf_vport_intr_napi_dis_all(vport); idpf_vport_intr_napi_del_all(vport); idpf_vport_intr_rel_irq(vport); } /** * idpf_tx_dim_work - Call back from the stack * @work: work queue structure */ static void idpf_tx_dim_work(struct work_struct *work) { struct idpf_q_vector *q_vector; struct idpf_vport *vport; struct dim *dim; u16 itr; dim = container_of(work, struct dim, work); q_vector = container_of(dim, struct idpf_q_vector, tx_dim); vport = q_vector->vport; if (dim->profile_ix >= ARRAY_SIZE(vport->tx_itr_profile)) dim->profile_ix = ARRAY_SIZE(vport->tx_itr_profile) - 1; /* look up the values in our local table */ itr = vport->tx_itr_profile[dim->profile_ix]; idpf_vport_intr_write_itr(q_vector, itr, true); dim->state = DIM_START_MEASURE; } /** * idpf_rx_dim_work - Call back from the stack * @work: work queue structure */ static void idpf_rx_dim_work(struct work_struct *work) { struct idpf_q_vector *q_vector; struct idpf_vport *vport; struct dim *dim; u16 itr; dim = container_of(work, struct dim, work); q_vector = container_of(dim, struct idpf_q_vector, rx_dim); vport = q_vector->vport; if (dim->profile_ix >= ARRAY_SIZE(vport->rx_itr_profile)) dim->profile_ix = ARRAY_SIZE(vport->rx_itr_profile) - 1; /* look up the values in our local table */ itr = vport->rx_itr_profile[dim->profile_ix]; idpf_vport_intr_write_itr(q_vector, itr, false); dim->state = DIM_START_MEASURE; } /** * idpf_init_dim - Set up dynamic interrupt moderation * @qv: q_vector structure */ static void idpf_init_dim(struct idpf_q_vector *qv) { INIT_WORK(&qv->tx_dim.work, idpf_tx_dim_work); qv->tx_dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE; qv->tx_dim.profile_ix = IDPF_DIM_DEFAULT_PROFILE_IX; INIT_WORK(&qv->rx_dim.work, idpf_rx_dim_work); qv->rx_dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE; qv->rx_dim.profile_ix = IDPF_DIM_DEFAULT_PROFILE_IX; } /** * idpf_vport_intr_napi_ena_all - Enable NAPI for all q_vectors in the vport * @vport: main vport structure */ static void idpf_vport_intr_napi_ena_all(struct idpf_vport *vport) { int q_idx; for (q_idx = 0; q_idx < vport->num_q_vectors; q_idx++) { struct idpf_q_vector *q_vector = &vport->q_vectors[q_idx]; idpf_init_dim(q_vector); napi_enable(&q_vector->napi); } } /** * idpf_tx_splitq_clean_all- Clean completion queues * @q_vec: queue vector * @budget: Used to determine if we are in netpoll * @cleaned: returns number of packets cleaned * * Returns false if clean is not complete else returns true */ static bool idpf_tx_splitq_clean_all(struct idpf_q_vector *q_vec, int budget, int *cleaned) { u16 num_txq = q_vec->num_txq; bool clean_complete = true; int i, budget_per_q; if (unlikely(!num_txq)) return true; budget_per_q = DIV_ROUND_UP(budget, num_txq); for (i = 0; i < num_txq; i++) clean_complete &= idpf_tx_clean_complq(q_vec->tx[i], budget_per_q, cleaned); return clean_complete; } /** * idpf_rx_splitq_clean_all- Clean completion queues * @q_vec: queue vector * @budget: Used to determine if we are in netpoll * @cleaned: returns number of packets cleaned * * Returns false if clean is not complete else returns true */ static bool idpf_rx_splitq_clean_all(struct idpf_q_vector *q_vec, int budget, int *cleaned) { u16 num_rxq = q_vec->num_rxq; bool clean_complete = true; int pkts_cleaned = 0; int i, budget_per_q; /* We attempt to distribute budget to each Rx queue fairly, but don't * allow the budget to go below 1 because that would exit polling early. */ budget_per_q = num_rxq ? max(budget / num_rxq, 1) : 0; for (i = 0; i < num_rxq; i++) { struct idpf_queue *rxq = q_vec->rx[i]; int pkts_cleaned_per_q; pkts_cleaned_per_q = idpf_rx_splitq_clean(rxq, budget_per_q); /* if we clean as many as budgeted, we must not be done */ if (pkts_cleaned_per_q >= budget_per_q) clean_complete = false; pkts_cleaned += pkts_cleaned_per_q; } *cleaned = pkts_cleaned; for (i = 0; i < q_vec->num_bufq; i++) idpf_rx_clean_refillq_all(q_vec->bufq[i]); return clean_complete; } /** * idpf_vport_splitq_napi_poll - NAPI handler * @napi: struct from which you get q_vector * @budget: budget provided by stack */ static int idpf_vport_splitq_napi_poll(struct napi_struct *napi, int budget) { struct idpf_q_vector *q_vector = container_of(napi, struct idpf_q_vector, napi); bool clean_complete; int work_done = 0; /* Handle case where we are called by netpoll with a budget of 0 */ if (unlikely(!budget)) { idpf_tx_splitq_clean_all(q_vector, budget, &work_done); return 0; } clean_complete = idpf_rx_splitq_clean_all(q_vector, budget, &work_done); clean_complete &= idpf_tx_splitq_clean_all(q_vector, budget, &work_done); /* If work not completed, return budget and polling will return */ if (!clean_complete) return budget; work_done = min_t(int, work_done, budget - 1); /* Exit the polling mode, but don't re-enable interrupts if stack might * poll us due to busy-polling */ if (likely(napi_complete_done(napi, work_done))) idpf_vport_intr_update_itr_ena_irq(q_vector); /* Switch to poll mode in the tear-down path after sending disable * queues virtchnl message, as the interrupts will be disabled after * that */ if (unlikely(q_vector->num_txq && test_bit(__IDPF_Q_POLL_MODE, q_vector->tx[0]->flags))) return budget; else return work_done; } /** * idpf_vport_intr_map_vector_to_qs - Map vectors to queues * @vport: virtual port * * Mapping for vectors to queues */ static void idpf_vport_intr_map_vector_to_qs(struct idpf_vport *vport) { u16 num_txq_grp = vport->num_txq_grp; int i, j, qv_idx, bufq_vidx = 0; struct idpf_rxq_group *rx_qgrp; struct idpf_txq_group *tx_qgrp; struct idpf_queue *q, *bufq; u16 q_index; for (i = 0, qv_idx = 0; i < vport->num_rxq_grp; i++) { u16 num_rxq; rx_qgrp = &vport->rxq_grps[i]; if (idpf_is_queue_model_split(vport->rxq_model)) num_rxq = rx_qgrp->splitq.num_rxq_sets; else num_rxq = rx_qgrp->singleq.num_rxq; for (j = 0; j < num_rxq; j++) { if (qv_idx >= vport->num_q_vectors) qv_idx = 0; if (idpf_is_queue_model_split(vport->rxq_model)) q = &rx_qgrp->splitq.rxq_sets[j]->rxq; else q = rx_qgrp->singleq.rxqs[j]; q->q_vector = &vport->q_vectors[qv_idx]; q_index = q->q_vector->num_rxq; q->q_vector->rx[q_index] = q; q->q_vector->num_rxq++; qv_idx++; } if (idpf_is_queue_model_split(vport->rxq_model)) { for (j = 0; j < vport->num_bufqs_per_qgrp; j++) { bufq = &rx_qgrp->splitq.bufq_sets[j].bufq; bufq->q_vector = &vport->q_vectors[bufq_vidx]; q_index = bufq->q_vector->num_bufq; bufq->q_vector->bufq[q_index] = bufq; bufq->q_vector->num_bufq++; } if (++bufq_vidx >= vport->num_q_vectors) bufq_vidx = 0; } } for (i = 0, qv_idx = 0; i < num_txq_grp; i++) { u16 num_txq; tx_qgrp = &vport->txq_grps[i]; num_txq = tx_qgrp->num_txq; if (idpf_is_queue_model_split(vport->txq_model)) { if (qv_idx >= vport->num_q_vectors) qv_idx = 0; q = tx_qgrp->complq; q->q_vector = &vport->q_vectors[qv_idx]; q_index = q->q_vector->num_txq; q->q_vector->tx[q_index] = q; q->q_vector->num_txq++; qv_idx++; } else { for (j = 0; j < num_txq; j++) { if (qv_idx >= vport->num_q_vectors) qv_idx = 0; q = tx_qgrp->txqs[j]; q->q_vector = &vport->q_vectors[qv_idx]; q_index = q->q_vector->num_txq; q->q_vector->tx[q_index] = q; q->q_vector->num_txq++; qv_idx++; } } } } /** * idpf_vport_intr_init_vec_idx - Initialize the vector indexes * @vport: virtual port * * Initialize vector indexes with values returened over mailbox */ static int idpf_vport_intr_init_vec_idx(struct idpf_vport *vport) { struct idpf_adapter *adapter = vport->adapter; struct virtchnl2_alloc_vectors *ac; u16 *vecids, total_vecs; int i; ac = adapter->req_vec_chunks; if (!ac) { for (i = 0; i < vport->num_q_vectors; i++) vport->q_vectors[i].v_idx = vport->q_vector_idxs[i]; return 0; } total_vecs = idpf_get_reserved_vecs(adapter); vecids = kcalloc(total_vecs, sizeof(u16), GFP_KERNEL); if (!vecids) return -ENOMEM; idpf_get_vec_ids(adapter, vecids, total_vecs, &ac->vchunks); for (i = 0; i < vport->num_q_vectors; i++) vport->q_vectors[i].v_idx = vecids[vport->q_vector_idxs[i]]; kfree(vecids); return 0; } /** * idpf_vport_intr_napi_add_all- Register napi handler for all qvectors * @vport: virtual port structure */ static void idpf_vport_intr_napi_add_all(struct idpf_vport *vport) { int (*napi_poll)(struct napi_struct *napi, int budget); u16 v_idx; if (idpf_is_queue_model_split(vport->txq_model)) napi_poll = idpf_vport_splitq_napi_poll; else napi_poll = idpf_vport_singleq_napi_poll; for (v_idx = 0; v_idx < vport->num_q_vectors; v_idx++) { struct idpf_q_vector *q_vector = &vport->q_vectors[v_idx]; netif_napi_add(vport->netdev, &q_vector->napi, napi_poll); /* only set affinity_mask if the CPU is online */ if (cpu_online(v_idx)) cpumask_set_cpu(v_idx, &q_vector->affinity_mask); } } /** * idpf_vport_intr_alloc - Allocate memory for interrupt vectors * @vport: virtual port * * We allocate one q_vector per queue interrupt. If allocation fails we * return -ENOMEM. */ int idpf_vport_intr_alloc(struct idpf_vport *vport) { u16 txqs_per_vector, rxqs_per_vector, bufqs_per_vector; struct idpf_q_vector *q_vector; int v_idx, err; vport->q_vectors = kcalloc(vport->num_q_vectors, sizeof(struct idpf_q_vector), GFP_KERNEL); if (!vport->q_vectors) return -ENOMEM; txqs_per_vector = DIV_ROUND_UP(vport->num_txq, vport->num_q_vectors); rxqs_per_vector = DIV_ROUND_UP(vport->num_rxq, vport->num_q_vectors); bufqs_per_vector = vport->num_bufqs_per_qgrp * DIV_ROUND_UP(vport->num_rxq_grp, vport->num_q_vectors); for (v_idx = 0; v_idx < vport->num_q_vectors; v_idx++) { q_vector = &vport->q_vectors[v_idx]; q_vector->vport = vport; q_vector->tx_itr_value = IDPF_ITR_TX_DEF; q_vector->tx_intr_mode = IDPF_ITR_DYNAMIC; q_vector->tx_itr_idx = VIRTCHNL2_ITR_IDX_1; q_vector->rx_itr_value = IDPF_ITR_RX_DEF; q_vector->rx_intr_mode = IDPF_ITR_DYNAMIC; q_vector->rx_itr_idx = VIRTCHNL2_ITR_IDX_0; q_vector->tx = kcalloc(txqs_per_vector, sizeof(struct idpf_queue *), GFP_KERNEL); if (!q_vector->tx) { err = -ENOMEM; goto error; } q_vector->rx = kcalloc(rxqs_per_vector, sizeof(struct idpf_queue *), GFP_KERNEL); if (!q_vector->rx) { err = -ENOMEM; goto error; } if (!idpf_is_queue_model_split(vport->rxq_model)) continue; q_vector->bufq = kcalloc(bufqs_per_vector, sizeof(struct idpf_queue *), GFP_KERNEL); if (!q_vector->bufq) { err = -ENOMEM; goto error; } } return 0; error: idpf_vport_intr_rel(vport); return err; } /** * idpf_vport_intr_init - Setup all vectors for the given vport * @vport: virtual port * * Returns 0 on success or negative on failure */ int idpf_vport_intr_init(struct idpf_vport *vport) { char *int_name; int err; err = idpf_vport_intr_init_vec_idx(vport); if (err) return err; idpf_vport_intr_map_vector_to_qs(vport); idpf_vport_intr_napi_add_all(vport); err = vport->adapter->dev_ops.reg_ops.intr_reg_init(vport); if (err) goto unroll_vectors_alloc; int_name = kasprintf(GFP_KERNEL, "%s-%s", dev_driver_string(&vport->adapter->pdev->dev), vport->netdev->name); err = idpf_vport_intr_req_irq(vport, int_name); if (err) goto unroll_vectors_alloc; return 0; unroll_vectors_alloc: idpf_vport_intr_napi_del_all(vport); return err; } void idpf_vport_intr_ena(struct idpf_vport *vport) { idpf_vport_intr_napi_ena_all(vport); idpf_vport_intr_ena_irq_all(vport); } /** * idpf_config_rss - Send virtchnl messages to configure RSS * @vport: virtual port * * Return 0 on success, negative on failure */ int idpf_config_rss(struct idpf_vport *vport) { int err; err = idpf_send_get_set_rss_key_msg(vport, false); if (err) return err; return idpf_send_get_set_rss_lut_msg(vport, false); } /** * idpf_fill_dflt_rss_lut - Fill the indirection table with the default values * @vport: virtual port structure */ static void idpf_fill_dflt_rss_lut(struct idpf_vport *vport) { struct idpf_adapter *adapter = vport->adapter; u16 num_active_rxq = vport->num_rxq; struct idpf_rss_data *rss_data; int i; rss_data = &adapter->vport_config[vport->idx]->user_config.rss_data; for (i = 0; i < rss_data->rss_lut_size; i++) { rss_data->rss_lut[i] = i % num_active_rxq; rss_data->cached_lut[i] = rss_data->rss_lut[i]; } } /** * idpf_init_rss - Allocate and initialize RSS resources * @vport: virtual port * * Return 0 on success, negative on failure */ int idpf_init_rss(struct idpf_vport *vport) { struct idpf_adapter *adapter = vport->adapter; struct idpf_rss_data *rss_data; u32 lut_size; rss_data = &adapter->vport_config[vport->idx]->user_config.rss_data; lut_size = rss_data->rss_lut_size * sizeof(u32); rss_data->rss_lut = kzalloc(lut_size, GFP_KERNEL); if (!rss_data->rss_lut) return -ENOMEM; rss_data->cached_lut = kzalloc(lut_size, GFP_KERNEL); if (!rss_data->cached_lut) { kfree(rss_data->rss_lut); rss_data->rss_lut = NULL; return -ENOMEM; } /* Fill the default RSS lut values */ idpf_fill_dflt_rss_lut(vport); return idpf_config_rss(vport); } /** * idpf_deinit_rss - Release RSS resources * @vport: virtual port */ void idpf_deinit_rss(struct idpf_vport *vport) { struct idpf_adapter *adapter = vport->adapter; struct idpf_rss_data *rss_data; rss_data = &adapter->vport_config[vport->idx]->user_config.rss_data; kfree(rss_data->cached_lut); rss_data->cached_lut = NULL; kfree(rss_data->rss_lut); rss_data->rss_lut = NULL; } |