Linux Audio

Check our new training course

Loading...
Note: File does not exist in v5.4.
   1// SPDX-License-Identifier: GPL-2.0
   2/* Copyright (C) 2022, Intel Corporation. */
   3
   4#include "ice_virtchnl.h"
   5#include "ice_vf_lib_private.h"
   6#include "ice.h"
   7#include "ice_base.h"
   8#include "ice_lib.h"
   9#include "ice_fltr.h"
  10#include "ice_virtchnl_allowlist.h"
  11#include "ice_vf_vsi_vlan_ops.h"
  12#include "ice_vlan.h"
  13#include "ice_flex_pipe.h"
  14#include "ice_dcb_lib.h"
  15
  16#define FIELD_SELECTOR(proto_hdr_field) \
  17		BIT((proto_hdr_field) & PROTO_HDR_FIELD_MASK)
  18
  19struct ice_vc_hdr_match_type {
  20	u32 vc_hdr;	/* virtchnl headers (VIRTCHNL_PROTO_HDR_XXX) */
  21	u32 ice_hdr;	/* ice headers (ICE_FLOW_SEG_HDR_XXX) */
  22};
  23
  24static const struct ice_vc_hdr_match_type ice_vc_hdr_list[] = {
  25	{VIRTCHNL_PROTO_HDR_NONE,	ICE_FLOW_SEG_HDR_NONE},
  26	{VIRTCHNL_PROTO_HDR_ETH,	ICE_FLOW_SEG_HDR_ETH},
  27	{VIRTCHNL_PROTO_HDR_S_VLAN,	ICE_FLOW_SEG_HDR_VLAN},
  28	{VIRTCHNL_PROTO_HDR_C_VLAN,	ICE_FLOW_SEG_HDR_VLAN},
  29	{VIRTCHNL_PROTO_HDR_IPV4,	ICE_FLOW_SEG_HDR_IPV4 |
  30					ICE_FLOW_SEG_HDR_IPV_OTHER},
  31	{VIRTCHNL_PROTO_HDR_IPV6,	ICE_FLOW_SEG_HDR_IPV6 |
  32					ICE_FLOW_SEG_HDR_IPV_OTHER},
  33	{VIRTCHNL_PROTO_HDR_TCP,	ICE_FLOW_SEG_HDR_TCP},
  34	{VIRTCHNL_PROTO_HDR_UDP,	ICE_FLOW_SEG_HDR_UDP},
  35	{VIRTCHNL_PROTO_HDR_SCTP,	ICE_FLOW_SEG_HDR_SCTP},
  36	{VIRTCHNL_PROTO_HDR_PPPOE,	ICE_FLOW_SEG_HDR_PPPOE},
  37	{VIRTCHNL_PROTO_HDR_GTPU_IP,	ICE_FLOW_SEG_HDR_GTPU_IP},
  38	{VIRTCHNL_PROTO_HDR_GTPU_EH,	ICE_FLOW_SEG_HDR_GTPU_EH},
  39	{VIRTCHNL_PROTO_HDR_GTPU_EH_PDU_DWN,
  40					ICE_FLOW_SEG_HDR_GTPU_DWN},
  41	{VIRTCHNL_PROTO_HDR_GTPU_EH_PDU_UP,
  42					ICE_FLOW_SEG_HDR_GTPU_UP},
  43	{VIRTCHNL_PROTO_HDR_L2TPV3,	ICE_FLOW_SEG_HDR_L2TPV3},
  44	{VIRTCHNL_PROTO_HDR_ESP,	ICE_FLOW_SEG_HDR_ESP},
  45	{VIRTCHNL_PROTO_HDR_AH,		ICE_FLOW_SEG_HDR_AH},
  46	{VIRTCHNL_PROTO_HDR_PFCP,	ICE_FLOW_SEG_HDR_PFCP_SESSION},
  47};
  48
  49struct ice_vc_hash_field_match_type {
  50	u32 vc_hdr;		/* virtchnl headers
  51				 * (VIRTCHNL_PROTO_HDR_XXX)
  52				 */
  53	u32 vc_hash_field;	/* virtchnl hash fields selector
  54				 * FIELD_SELECTOR((VIRTCHNL_PROTO_HDR_ETH_XXX))
  55				 */
  56	u64 ice_hash_field;	/* ice hash fields
  57				 * (BIT_ULL(ICE_FLOW_FIELD_IDX_XXX))
  58				 */
  59};
  60
  61static const struct
  62ice_vc_hash_field_match_type ice_vc_hash_field_list[] = {
  63	{VIRTCHNL_PROTO_HDR_ETH, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ETH_SRC),
  64		BIT_ULL(ICE_FLOW_FIELD_IDX_ETH_SA)},
  65	{VIRTCHNL_PROTO_HDR_ETH, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ETH_DST),
  66		BIT_ULL(ICE_FLOW_FIELD_IDX_ETH_DA)},
  67	{VIRTCHNL_PROTO_HDR_ETH, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ETH_SRC) |
  68		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ETH_DST),
  69		ICE_FLOW_HASH_ETH},
  70	{VIRTCHNL_PROTO_HDR_ETH,
  71		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ETH_ETHERTYPE),
  72		BIT_ULL(ICE_FLOW_FIELD_IDX_ETH_TYPE)},
  73	{VIRTCHNL_PROTO_HDR_S_VLAN,
  74		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_S_VLAN_ID),
  75		BIT_ULL(ICE_FLOW_FIELD_IDX_S_VLAN)},
  76	{VIRTCHNL_PROTO_HDR_C_VLAN,
  77		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_C_VLAN_ID),
  78		BIT_ULL(ICE_FLOW_FIELD_IDX_C_VLAN)},
  79	{VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_SRC),
  80		BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_SA)},
  81	{VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_DST),
  82		BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_DA)},
  83	{VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_SRC) |
  84		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_DST),
  85		ICE_FLOW_HASH_IPV4},
  86	{VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_SRC) |
  87		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_PROT),
  88		BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_SA) |
  89		BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_PROT)},
  90	{VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_DST) |
  91		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_PROT),
  92		BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_DA) |
  93		BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_PROT)},
  94	{VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_SRC) |
  95		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_DST) |
  96		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_PROT),
  97		ICE_FLOW_HASH_IPV4 | BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_PROT)},
  98	{VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_PROT),
  99		BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_PROT)},
 100	{VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_SRC),
 101		BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_SA)},
 102	{VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_DST),
 103		BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_DA)},
 104	{VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_SRC) |
 105		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_DST),
 106		ICE_FLOW_HASH_IPV6},
 107	{VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_SRC) |
 108		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_PROT),
 109		BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_SA) |
 110		BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_PROT)},
 111	{VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_DST) |
 112		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_PROT),
 113		BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_DA) |
 114		BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_PROT)},
 115	{VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_SRC) |
 116		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_DST) |
 117		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_PROT),
 118		ICE_FLOW_HASH_IPV6 | BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_PROT)},
 119	{VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_PROT),
 120		BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_PROT)},
 121	{VIRTCHNL_PROTO_HDR_TCP,
 122		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_TCP_SRC_PORT),
 123		BIT_ULL(ICE_FLOW_FIELD_IDX_TCP_SRC_PORT)},
 124	{VIRTCHNL_PROTO_HDR_TCP,
 125		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_TCP_DST_PORT),
 126		BIT_ULL(ICE_FLOW_FIELD_IDX_TCP_DST_PORT)},
 127	{VIRTCHNL_PROTO_HDR_TCP,
 128		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_TCP_SRC_PORT) |
 129		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_TCP_DST_PORT),
 130		ICE_FLOW_HASH_TCP_PORT},
 131	{VIRTCHNL_PROTO_HDR_UDP,
 132		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_UDP_SRC_PORT),
 133		BIT_ULL(ICE_FLOW_FIELD_IDX_UDP_SRC_PORT)},
 134	{VIRTCHNL_PROTO_HDR_UDP,
 135		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_UDP_DST_PORT),
 136		BIT_ULL(ICE_FLOW_FIELD_IDX_UDP_DST_PORT)},
 137	{VIRTCHNL_PROTO_HDR_UDP,
 138		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_UDP_SRC_PORT) |
 139		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_UDP_DST_PORT),
 140		ICE_FLOW_HASH_UDP_PORT},
 141	{VIRTCHNL_PROTO_HDR_SCTP,
 142		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_SCTP_SRC_PORT),
 143		BIT_ULL(ICE_FLOW_FIELD_IDX_SCTP_SRC_PORT)},
 144	{VIRTCHNL_PROTO_HDR_SCTP,
 145		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_SCTP_DST_PORT),
 146		BIT_ULL(ICE_FLOW_FIELD_IDX_SCTP_DST_PORT)},
 147	{VIRTCHNL_PROTO_HDR_SCTP,
 148		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_SCTP_SRC_PORT) |
 149		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_SCTP_DST_PORT),
 150		ICE_FLOW_HASH_SCTP_PORT},
 151	{VIRTCHNL_PROTO_HDR_PPPOE,
 152		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_PPPOE_SESS_ID),
 153		BIT_ULL(ICE_FLOW_FIELD_IDX_PPPOE_SESS_ID)},
 154	{VIRTCHNL_PROTO_HDR_GTPU_IP,
 155		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_GTPU_IP_TEID),
 156		BIT_ULL(ICE_FLOW_FIELD_IDX_GTPU_IP_TEID)},
 157	{VIRTCHNL_PROTO_HDR_L2TPV3,
 158		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_L2TPV3_SESS_ID),
 159		BIT_ULL(ICE_FLOW_FIELD_IDX_L2TPV3_SESS_ID)},
 160	{VIRTCHNL_PROTO_HDR_ESP, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ESP_SPI),
 161		BIT_ULL(ICE_FLOW_FIELD_IDX_ESP_SPI)},
 162	{VIRTCHNL_PROTO_HDR_AH, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_AH_SPI),
 163		BIT_ULL(ICE_FLOW_FIELD_IDX_AH_SPI)},
 164	{VIRTCHNL_PROTO_HDR_PFCP, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_PFCP_SEID),
 165		BIT_ULL(ICE_FLOW_FIELD_IDX_PFCP_SEID)},
 166};
 167
 168/**
 169 * ice_vc_vf_broadcast - Broadcast a message to all VFs on PF
 170 * @pf: pointer to the PF structure
 171 * @v_opcode: operation code
 172 * @v_retval: return value
 173 * @msg: pointer to the msg buffer
 174 * @msglen: msg length
 175 */
 176static void
 177ice_vc_vf_broadcast(struct ice_pf *pf, enum virtchnl_ops v_opcode,
 178		    enum virtchnl_status_code v_retval, u8 *msg, u16 msglen)
 179{
 180	struct ice_hw *hw = &pf->hw;
 181	struct ice_vf *vf;
 182	unsigned int bkt;
 183
 184	mutex_lock(&pf->vfs.table_lock);
 185	ice_for_each_vf(pf, bkt, vf) {
 186		/* Not all vfs are enabled so skip the ones that are not */
 187		if (!test_bit(ICE_VF_STATE_INIT, vf->vf_states) &&
 188		    !test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states))
 189			continue;
 190
 191		/* Ignore return value on purpose - a given VF may fail, but
 192		 * we need to keep going and send to all of them
 193		 */
 194		ice_aq_send_msg_to_vf(hw, vf->vf_id, v_opcode, v_retval, msg,
 195				      msglen, NULL);
 196	}
 197	mutex_unlock(&pf->vfs.table_lock);
 198}
 199
 200/**
 201 * ice_set_pfe_link - Set the link speed/status of the virtchnl_pf_event
 202 * @vf: pointer to the VF structure
 203 * @pfe: pointer to the virtchnl_pf_event to set link speed/status for
 204 * @ice_link_speed: link speed specified by ICE_AQ_LINK_SPEED_*
 205 * @link_up: whether or not to set the link up/down
 206 */
 207static void
 208ice_set_pfe_link(struct ice_vf *vf, struct virtchnl_pf_event *pfe,
 209		 int ice_link_speed, bool link_up)
 210{
 211	if (vf->driver_caps & VIRTCHNL_VF_CAP_ADV_LINK_SPEED) {
 212		pfe->event_data.link_event_adv.link_status = link_up;
 213		/* Speed in Mbps */
 214		pfe->event_data.link_event_adv.link_speed =
 215			ice_conv_link_speed_to_virtchnl(true, ice_link_speed);
 216	} else {
 217		pfe->event_data.link_event.link_status = link_up;
 218		/* Legacy method for virtchnl link speeds */
 219		pfe->event_data.link_event.link_speed =
 220			(enum virtchnl_link_speed)
 221			ice_conv_link_speed_to_virtchnl(false, ice_link_speed);
 222	}
 223}
 224
 225/**
 226 * ice_vc_notify_vf_link_state - Inform a VF of link status
 227 * @vf: pointer to the VF structure
 228 *
 229 * send a link status message to a single VF
 230 */
 231void ice_vc_notify_vf_link_state(struct ice_vf *vf)
 232{
 233	struct virtchnl_pf_event pfe = { 0 };
 234	struct ice_hw *hw = &vf->pf->hw;
 235
 236	pfe.event = VIRTCHNL_EVENT_LINK_CHANGE;
 237	pfe.severity = PF_EVENT_SEVERITY_INFO;
 238
 239	if (ice_is_vf_link_up(vf))
 240		ice_set_pfe_link(vf, &pfe,
 241				 hw->port_info->phy.link_info.link_speed, true);
 242	else
 243		ice_set_pfe_link(vf, &pfe, ICE_AQ_LINK_SPEED_UNKNOWN, false);
 244
 245	ice_aq_send_msg_to_vf(hw, vf->vf_id, VIRTCHNL_OP_EVENT,
 246			      VIRTCHNL_STATUS_SUCCESS, (u8 *)&pfe,
 247			      sizeof(pfe), NULL);
 248}
 249
 250/**
 251 * ice_vc_notify_link_state - Inform all VFs on a PF of link status
 252 * @pf: pointer to the PF structure
 253 */
 254void ice_vc_notify_link_state(struct ice_pf *pf)
 255{
 256	struct ice_vf *vf;
 257	unsigned int bkt;
 258
 259	mutex_lock(&pf->vfs.table_lock);
 260	ice_for_each_vf(pf, bkt, vf)
 261		ice_vc_notify_vf_link_state(vf);
 262	mutex_unlock(&pf->vfs.table_lock);
 263}
 264
 265/**
 266 * ice_vc_notify_reset - Send pending reset message to all VFs
 267 * @pf: pointer to the PF structure
 268 *
 269 * indicate a pending reset to all VFs on a given PF
 270 */
 271void ice_vc_notify_reset(struct ice_pf *pf)
 272{
 273	struct virtchnl_pf_event pfe;
 274
 275	if (!ice_has_vfs(pf))
 276		return;
 277
 278	pfe.event = VIRTCHNL_EVENT_RESET_IMPENDING;
 279	pfe.severity = PF_EVENT_SEVERITY_CERTAIN_DOOM;
 280	ice_vc_vf_broadcast(pf, VIRTCHNL_OP_EVENT, VIRTCHNL_STATUS_SUCCESS,
 281			    (u8 *)&pfe, sizeof(struct virtchnl_pf_event));
 282}
 283
 284/**
 285 * ice_vc_send_msg_to_vf - Send message to VF
 286 * @vf: pointer to the VF info
 287 * @v_opcode: virtual channel opcode
 288 * @v_retval: virtual channel return value
 289 * @msg: pointer to the msg buffer
 290 * @msglen: msg length
 291 *
 292 * send msg to VF
 293 */
 294int
 295ice_vc_send_msg_to_vf(struct ice_vf *vf, u32 v_opcode,
 296		      enum virtchnl_status_code v_retval, u8 *msg, u16 msglen)
 297{
 298	struct device *dev;
 299	struct ice_pf *pf;
 300	int aq_ret;
 301
 302	pf = vf->pf;
 303	dev = ice_pf_to_dev(pf);
 304
 305	aq_ret = ice_aq_send_msg_to_vf(&pf->hw, vf->vf_id, v_opcode, v_retval,
 306				       msg, msglen, NULL);
 307	if (aq_ret && pf->hw.mailboxq.sq_last_status != ICE_AQ_RC_ENOSYS) {
 308		dev_info(dev, "Unable to send the message to VF %d ret %d aq_err %s\n",
 309			 vf->vf_id, aq_ret,
 310			 ice_aq_str(pf->hw.mailboxq.sq_last_status));
 311		return -EIO;
 312	}
 313
 314	return 0;
 315}
 316
 317/**
 318 * ice_vc_get_ver_msg
 319 * @vf: pointer to the VF info
 320 * @msg: pointer to the msg buffer
 321 *
 322 * called from the VF to request the API version used by the PF
 323 */
 324static int ice_vc_get_ver_msg(struct ice_vf *vf, u8 *msg)
 325{
 326	struct virtchnl_version_info info = {
 327		VIRTCHNL_VERSION_MAJOR, VIRTCHNL_VERSION_MINOR
 328	};
 329
 330	vf->vf_ver = *(struct virtchnl_version_info *)msg;
 331	/* VFs running the 1.0 API expect to get 1.0 back or they will cry. */
 332	if (VF_IS_V10(&vf->vf_ver))
 333		info.minor = VIRTCHNL_VERSION_MINOR_NO_VF_CAPS;
 334
 335	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_VERSION,
 336				     VIRTCHNL_STATUS_SUCCESS, (u8 *)&info,
 337				     sizeof(struct virtchnl_version_info));
 338}
 339
 340/**
 341 * ice_vc_get_max_frame_size - get max frame size allowed for VF
 342 * @vf: VF used to determine max frame size
 343 *
 344 * Max frame size is determined based on the current port's max frame size and
 345 * whether a port VLAN is configured on this VF. The VF is not aware whether
 346 * it's in a port VLAN so the PF needs to account for this in max frame size
 347 * checks and sending the max frame size to the VF.
 348 */
 349static u16 ice_vc_get_max_frame_size(struct ice_vf *vf)
 350{
 351	struct ice_port_info *pi = ice_vf_get_port_info(vf);
 352	u16 max_frame_size;
 353
 354	max_frame_size = pi->phy.link_info.max_frame_size;
 355
 356	if (ice_vf_is_port_vlan_ena(vf))
 357		max_frame_size -= VLAN_HLEN;
 358
 359	return max_frame_size;
 360}
 361
 362/**
 363 * ice_vc_get_vlan_caps
 364 * @hw: pointer to the hw
 365 * @vf: pointer to the VF info
 366 * @vsi: pointer to the VSI
 367 * @driver_caps: current driver caps
 368 *
 369 * Return 0 if there is no VLAN caps supported, or VLAN caps value
 370 */
 371static u32
 372ice_vc_get_vlan_caps(struct ice_hw *hw, struct ice_vf *vf, struct ice_vsi *vsi,
 373		     u32 driver_caps)
 374{
 375	if (ice_is_eswitch_mode_switchdev(vf->pf))
 376		/* In switchdev setting VLAN from VF isn't supported */
 377		return 0;
 378
 379	if (driver_caps & VIRTCHNL_VF_OFFLOAD_VLAN_V2) {
 380		/* VLAN offloads based on current device configuration */
 381		return VIRTCHNL_VF_OFFLOAD_VLAN_V2;
 382	} else if (driver_caps & VIRTCHNL_VF_OFFLOAD_VLAN) {
 383		/* allow VF to negotiate VIRTCHNL_VF_OFFLOAD explicitly for
 384		 * these two conditions, which amounts to guest VLAN filtering
 385		 * and offloads being based on the inner VLAN or the
 386		 * inner/single VLAN respectively and don't allow VF to
 387		 * negotiate VIRTCHNL_VF_OFFLOAD in any other cases
 388		 */
 389		if (ice_is_dvm_ena(hw) && ice_vf_is_port_vlan_ena(vf)) {
 390			return VIRTCHNL_VF_OFFLOAD_VLAN;
 391		} else if (!ice_is_dvm_ena(hw) &&
 392			   !ice_vf_is_port_vlan_ena(vf)) {
 393			/* configure backward compatible support for VFs that
 394			 * only support VIRTCHNL_VF_OFFLOAD_VLAN, the PF is
 395			 * configured in SVM, and no port VLAN is configured
 396			 */
 397			ice_vf_vsi_cfg_svm_legacy_vlan_mode(vsi);
 398			return VIRTCHNL_VF_OFFLOAD_VLAN;
 399		} else if (ice_is_dvm_ena(hw)) {
 400			/* configure software offloaded VLAN support when DVM
 401			 * is enabled, but no port VLAN is enabled
 402			 */
 403			ice_vf_vsi_cfg_dvm_legacy_vlan_mode(vsi);
 404		}
 405	}
 406
 407	return 0;
 408}
 409
 410/**
 411 * ice_vc_get_vf_res_msg
 412 * @vf: pointer to the VF info
 413 * @msg: pointer to the msg buffer
 414 *
 415 * called from the VF to request its resources
 416 */
 417static int ice_vc_get_vf_res_msg(struct ice_vf *vf, u8 *msg)
 418{
 419	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
 420	struct virtchnl_vf_resource *vfres = NULL;
 421	struct ice_hw *hw = &vf->pf->hw;
 422	struct ice_vsi *vsi;
 423	int len = 0;
 424	int ret;
 425
 426	if (ice_check_vf_init(vf)) {
 427		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
 428		goto err;
 429	}
 430
 431	len = virtchnl_struct_size(vfres, vsi_res, 0);
 432
 433	vfres = kzalloc(len, GFP_KERNEL);
 434	if (!vfres) {
 435		v_ret = VIRTCHNL_STATUS_ERR_NO_MEMORY;
 436		len = 0;
 437		goto err;
 438	}
 439	if (VF_IS_V11(&vf->vf_ver))
 440		vf->driver_caps = *(u32 *)msg;
 441	else
 442		vf->driver_caps = VIRTCHNL_VF_OFFLOAD_L2 |
 443				  VIRTCHNL_VF_OFFLOAD_VLAN;
 444
 445	vfres->vf_cap_flags = VIRTCHNL_VF_OFFLOAD_L2;
 446	vsi = ice_get_vf_vsi(vf);
 447	if (!vsi) {
 448		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
 449		goto err;
 450	}
 451
 452	vfres->vf_cap_flags |= ice_vc_get_vlan_caps(hw, vf, vsi,
 453						    vf->driver_caps);
 454
 455	if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RSS_PF)
 456		vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RSS_PF;
 457
 458	if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC)
 459		vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC;
 460
 461	if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_FDIR_PF)
 462		vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_FDIR_PF;
 463
 464	if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_TC_U32 &&
 465	    vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_FDIR_PF)
 466		vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_TC_U32;
 467
 468	if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RSS_PCTYPE_V2)
 469		vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RSS_PCTYPE_V2;
 470
 471	if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_ENCAP)
 472		vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_ENCAP;
 473
 474	if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_ENCAP_CSUM)
 475		vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_ENCAP_CSUM;
 476
 477	if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RX_POLLING)
 478		vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RX_POLLING;
 479
 480	if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_WB_ON_ITR)
 481		vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_WB_ON_ITR;
 482
 483	if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_REQ_QUEUES)
 484		vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_REQ_QUEUES;
 485
 486	if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_CRC)
 487		vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_CRC;
 488
 489	if (vf->driver_caps & VIRTCHNL_VF_CAP_ADV_LINK_SPEED)
 490		vfres->vf_cap_flags |= VIRTCHNL_VF_CAP_ADV_LINK_SPEED;
 491
 492	if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_ADV_RSS_PF)
 493		vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_ADV_RSS_PF;
 494
 495	if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_USO)
 496		vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_USO;
 497
 498	if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_QOS)
 499		vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_QOS;
 500
 501	vfres->num_vsis = 1;
 502	/* Tx and Rx queue are equal for VF */
 503	vfres->num_queue_pairs = vsi->num_txq;
 504	vfres->max_vectors = vf->num_msix;
 505	vfres->rss_key_size = ICE_VSIQF_HKEY_ARRAY_SIZE;
 506	vfres->rss_lut_size = ICE_LUT_VSI_SIZE;
 507	vfres->max_mtu = ice_vc_get_max_frame_size(vf);
 508
 509	vfres->vsi_res[0].vsi_id = ICE_VF_VSI_ID;
 510	vfres->vsi_res[0].vsi_type = VIRTCHNL_VSI_SRIOV;
 511	vfres->vsi_res[0].num_queue_pairs = vsi->num_txq;
 512	ether_addr_copy(vfres->vsi_res[0].default_mac_addr,
 513			vf->hw_lan_addr);
 514
 515	/* match guest capabilities */
 516	vf->driver_caps = vfres->vf_cap_flags;
 517
 518	ice_vc_set_caps_allowlist(vf);
 519	ice_vc_set_working_allowlist(vf);
 520
 521	set_bit(ICE_VF_STATE_ACTIVE, vf->vf_states);
 522
 523err:
 524	/* send the response back to the VF */
 525	ret = ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_GET_VF_RESOURCES, v_ret,
 526				    (u8 *)vfres, len);
 527
 528	kfree(vfres);
 529	return ret;
 530}
 531
 532/**
 533 * ice_vc_reset_vf_msg
 534 * @vf: pointer to the VF info
 535 *
 536 * called from the VF to reset itself,
 537 * unlike other virtchnl messages, PF driver
 538 * doesn't send the response back to the VF
 539 */
 540static void ice_vc_reset_vf_msg(struct ice_vf *vf)
 541{
 542	if (test_bit(ICE_VF_STATE_INIT, vf->vf_states))
 543		ice_reset_vf(vf, 0);
 544}
 545
 546/**
 547 * ice_vc_isvalid_vsi_id
 548 * @vf: pointer to the VF info
 549 * @vsi_id: VF relative VSI ID
 550 *
 551 * check for the valid VSI ID
 552 */
 553bool ice_vc_isvalid_vsi_id(struct ice_vf *vf, u16 vsi_id)
 554{
 555	return vsi_id == ICE_VF_VSI_ID;
 556}
 557
 558/**
 559 * ice_vc_isvalid_q_id
 560 * @vsi: VSI to check queue ID against
 561 * @qid: VSI relative queue ID
 562 *
 563 * check for the valid queue ID
 564 */
 565static bool ice_vc_isvalid_q_id(struct ice_vsi *vsi, u8 qid)
 566{
 567	/* allocated Tx and Rx queues should be always equal for VF VSI */
 568	return qid < vsi->alloc_txq;
 569}
 570
 571/**
 572 * ice_vc_isvalid_ring_len
 573 * @ring_len: length of ring
 574 *
 575 * check for the valid ring count, should be multiple of ICE_REQ_DESC_MULTIPLE
 576 * or zero
 577 */
 578static bool ice_vc_isvalid_ring_len(u16 ring_len)
 579{
 580	return ring_len == 0 ||
 581	       (ring_len >= ICE_MIN_NUM_DESC &&
 582		ring_len <= ICE_MAX_NUM_DESC &&
 583		!(ring_len % ICE_REQ_DESC_MULTIPLE));
 584}
 585
 586/**
 587 * ice_vc_validate_pattern
 588 * @vf: pointer to the VF info
 589 * @proto: virtchnl protocol headers
 590 *
 591 * validate the pattern is supported or not.
 592 *
 593 * Return: true on success, false on error.
 594 */
 595bool
 596ice_vc_validate_pattern(struct ice_vf *vf, struct virtchnl_proto_hdrs *proto)
 597{
 598	bool is_ipv4 = false;
 599	bool is_ipv6 = false;
 600	bool is_udp = false;
 601	u16 ptype = -1;
 602	int i = 0;
 603
 604	while (i < proto->count &&
 605	       proto->proto_hdr[i].type != VIRTCHNL_PROTO_HDR_NONE) {
 606		switch (proto->proto_hdr[i].type) {
 607		case VIRTCHNL_PROTO_HDR_ETH:
 608			ptype = ICE_PTYPE_MAC_PAY;
 609			break;
 610		case VIRTCHNL_PROTO_HDR_IPV4:
 611			ptype = ICE_PTYPE_IPV4_PAY;
 612			is_ipv4 = true;
 613			break;
 614		case VIRTCHNL_PROTO_HDR_IPV6:
 615			ptype = ICE_PTYPE_IPV6_PAY;
 616			is_ipv6 = true;
 617			break;
 618		case VIRTCHNL_PROTO_HDR_UDP:
 619			if (is_ipv4)
 620				ptype = ICE_PTYPE_IPV4_UDP_PAY;
 621			else if (is_ipv6)
 622				ptype = ICE_PTYPE_IPV6_UDP_PAY;
 623			is_udp = true;
 624			break;
 625		case VIRTCHNL_PROTO_HDR_TCP:
 626			if (is_ipv4)
 627				ptype = ICE_PTYPE_IPV4_TCP_PAY;
 628			else if (is_ipv6)
 629				ptype = ICE_PTYPE_IPV6_TCP_PAY;
 630			break;
 631		case VIRTCHNL_PROTO_HDR_SCTP:
 632			if (is_ipv4)
 633				ptype = ICE_PTYPE_IPV4_SCTP_PAY;
 634			else if (is_ipv6)
 635				ptype = ICE_PTYPE_IPV6_SCTP_PAY;
 636			break;
 637		case VIRTCHNL_PROTO_HDR_GTPU_IP:
 638		case VIRTCHNL_PROTO_HDR_GTPU_EH:
 639			if (is_ipv4)
 640				ptype = ICE_MAC_IPV4_GTPU;
 641			else if (is_ipv6)
 642				ptype = ICE_MAC_IPV6_GTPU;
 643			goto out;
 644		case VIRTCHNL_PROTO_HDR_L2TPV3:
 645			if (is_ipv4)
 646				ptype = ICE_MAC_IPV4_L2TPV3;
 647			else if (is_ipv6)
 648				ptype = ICE_MAC_IPV6_L2TPV3;
 649			goto out;
 650		case VIRTCHNL_PROTO_HDR_ESP:
 651			if (is_ipv4)
 652				ptype = is_udp ? ICE_MAC_IPV4_NAT_T_ESP :
 653						ICE_MAC_IPV4_ESP;
 654			else if (is_ipv6)
 655				ptype = is_udp ? ICE_MAC_IPV6_NAT_T_ESP :
 656						ICE_MAC_IPV6_ESP;
 657			goto out;
 658		case VIRTCHNL_PROTO_HDR_AH:
 659			if (is_ipv4)
 660				ptype = ICE_MAC_IPV4_AH;
 661			else if (is_ipv6)
 662				ptype = ICE_MAC_IPV6_AH;
 663			goto out;
 664		case VIRTCHNL_PROTO_HDR_PFCP:
 665			if (is_ipv4)
 666				ptype = ICE_MAC_IPV4_PFCP_SESSION;
 667			else if (is_ipv6)
 668				ptype = ICE_MAC_IPV6_PFCP_SESSION;
 669			goto out;
 670		default:
 671			break;
 672		}
 673		i++;
 674	}
 675
 676out:
 677	return ice_hw_ptype_ena(&vf->pf->hw, ptype);
 678}
 679
 680/**
 681 * ice_vc_parse_rss_cfg - parses hash fields and headers from
 682 * a specific virtchnl RSS cfg
 683 * @hw: pointer to the hardware
 684 * @rss_cfg: pointer to the virtchnl RSS cfg
 685 * @hash_cfg: pointer to the HW hash configuration
 686 *
 687 * Return true if all the protocol header and hash fields in the RSS cfg could
 688 * be parsed, else return false
 689 *
 690 * This function parses the virtchnl RSS cfg to be the intended
 691 * hash fields and the intended header for RSS configuration
 692 */
 693static bool ice_vc_parse_rss_cfg(struct ice_hw *hw,
 694				 struct virtchnl_rss_cfg *rss_cfg,
 695				 struct ice_rss_hash_cfg *hash_cfg)
 696{
 697	const struct ice_vc_hash_field_match_type *hf_list;
 698	const struct ice_vc_hdr_match_type *hdr_list;
 699	int i, hf_list_len, hdr_list_len;
 700	u32 *addl_hdrs = &hash_cfg->addl_hdrs;
 701	u64 *hash_flds = &hash_cfg->hash_flds;
 702
 703	/* set outer layer RSS as default */
 704	hash_cfg->hdr_type = ICE_RSS_OUTER_HEADERS;
 705
 706	if (rss_cfg->rss_algorithm == VIRTCHNL_RSS_ALG_TOEPLITZ_SYMMETRIC)
 707		hash_cfg->symm = true;
 708	else
 709		hash_cfg->symm = false;
 710
 711	hf_list = ice_vc_hash_field_list;
 712	hf_list_len = ARRAY_SIZE(ice_vc_hash_field_list);
 713	hdr_list = ice_vc_hdr_list;
 714	hdr_list_len = ARRAY_SIZE(ice_vc_hdr_list);
 715
 716	for (i = 0; i < rss_cfg->proto_hdrs.count; i++) {
 717		struct virtchnl_proto_hdr *proto_hdr =
 718					&rss_cfg->proto_hdrs.proto_hdr[i];
 719		bool hdr_found = false;
 720		int j;
 721
 722		/* Find matched ice headers according to virtchnl headers. */
 723		for (j = 0; j < hdr_list_len; j++) {
 724			struct ice_vc_hdr_match_type hdr_map = hdr_list[j];
 725
 726			if (proto_hdr->type == hdr_map.vc_hdr) {
 727				*addl_hdrs |= hdr_map.ice_hdr;
 728				hdr_found = true;
 729			}
 730		}
 731
 732		if (!hdr_found)
 733			return false;
 734
 735		/* Find matched ice hash fields according to
 736		 * virtchnl hash fields.
 737		 */
 738		for (j = 0; j < hf_list_len; j++) {
 739			struct ice_vc_hash_field_match_type hf_map = hf_list[j];
 740
 741			if (proto_hdr->type == hf_map.vc_hdr &&
 742			    proto_hdr->field_selector == hf_map.vc_hash_field) {
 743				*hash_flds |= hf_map.ice_hash_field;
 744				break;
 745			}
 746		}
 747	}
 748
 749	return true;
 750}
 751
 752/**
 753 * ice_vf_adv_rss_offload_ena - determine if capabilities support advanced
 754 * RSS offloads
 755 * @caps: VF driver negotiated capabilities
 756 *
 757 * Return true if VIRTCHNL_VF_OFFLOAD_ADV_RSS_PF capability is set,
 758 * else return false
 759 */
 760static bool ice_vf_adv_rss_offload_ena(u32 caps)
 761{
 762	return !!(caps & VIRTCHNL_VF_OFFLOAD_ADV_RSS_PF);
 763}
 764
 765/**
 766 * ice_vc_handle_rss_cfg
 767 * @vf: pointer to the VF info
 768 * @msg: pointer to the message buffer
 769 * @add: add a RSS config if true, otherwise delete a RSS config
 770 *
 771 * This function adds/deletes a RSS config
 772 */
 773static int ice_vc_handle_rss_cfg(struct ice_vf *vf, u8 *msg, bool add)
 774{
 775	u32 v_opcode = add ? VIRTCHNL_OP_ADD_RSS_CFG : VIRTCHNL_OP_DEL_RSS_CFG;
 776	struct virtchnl_rss_cfg *rss_cfg = (struct virtchnl_rss_cfg *)msg;
 777	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
 778	struct device *dev = ice_pf_to_dev(vf->pf);
 779	struct ice_hw *hw = &vf->pf->hw;
 780	struct ice_vsi *vsi;
 781
 782	if (!test_bit(ICE_FLAG_RSS_ENA, vf->pf->flags)) {
 783		dev_dbg(dev, "VF %d attempting to configure RSS, but RSS is not supported by the PF\n",
 784			vf->vf_id);
 785		v_ret = VIRTCHNL_STATUS_ERR_NOT_SUPPORTED;
 786		goto error_param;
 787	}
 788
 789	if (!ice_vf_adv_rss_offload_ena(vf->driver_caps)) {
 790		dev_dbg(dev, "VF %d attempting to configure RSS, but Advanced RSS offload is not supported\n",
 791			vf->vf_id);
 792		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
 793		goto error_param;
 794	}
 795
 796	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
 797		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
 798		goto error_param;
 799	}
 800
 801	if (rss_cfg->proto_hdrs.count > VIRTCHNL_MAX_NUM_PROTO_HDRS ||
 802	    rss_cfg->rss_algorithm < VIRTCHNL_RSS_ALG_TOEPLITZ_ASYMMETRIC ||
 803	    rss_cfg->rss_algorithm > VIRTCHNL_RSS_ALG_XOR_SYMMETRIC) {
 804		dev_dbg(dev, "VF %d attempting to configure RSS, but RSS configuration is not valid\n",
 805			vf->vf_id);
 806		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
 807		goto error_param;
 808	}
 809
 810	vsi = ice_get_vf_vsi(vf);
 811	if (!vsi) {
 812		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
 813		goto error_param;
 814	}
 815
 816	if (!ice_vc_validate_pattern(vf, &rss_cfg->proto_hdrs)) {
 817		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
 818		goto error_param;
 819	}
 820
 821	if (rss_cfg->rss_algorithm == VIRTCHNL_RSS_ALG_R_ASYMMETRIC) {
 822		struct ice_vsi_ctx *ctx;
 823		u8 lut_type, hash_type;
 824		int status;
 825
 826		lut_type = ICE_AQ_VSI_Q_OPT_RSS_LUT_VSI;
 827		hash_type = add ? ICE_AQ_VSI_Q_OPT_RSS_HASH_XOR :
 828				ICE_AQ_VSI_Q_OPT_RSS_HASH_TPLZ;
 829
 830		ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
 831		if (!ctx) {
 832			v_ret = VIRTCHNL_STATUS_ERR_NO_MEMORY;
 833			goto error_param;
 834		}
 835
 836		ctx->info.q_opt_rss =
 837			FIELD_PREP(ICE_AQ_VSI_Q_OPT_RSS_LUT_M, lut_type) |
 838			FIELD_PREP(ICE_AQ_VSI_Q_OPT_RSS_HASH_M, hash_type);
 839
 840		/* Preserve existing queueing option setting */
 841		ctx->info.q_opt_rss |= (vsi->info.q_opt_rss &
 842					  ICE_AQ_VSI_Q_OPT_RSS_GBL_LUT_M);
 843		ctx->info.q_opt_tc = vsi->info.q_opt_tc;
 844		ctx->info.q_opt_flags = vsi->info.q_opt_rss;
 845
 846		ctx->info.valid_sections =
 847				cpu_to_le16(ICE_AQ_VSI_PROP_Q_OPT_VALID);
 848
 849		status = ice_update_vsi(hw, vsi->idx, ctx, NULL);
 850		if (status) {
 851			dev_err(dev, "update VSI for RSS failed, err %d aq_err %s\n",
 852				status, ice_aq_str(hw->adminq.sq_last_status));
 853			v_ret = VIRTCHNL_STATUS_ERR_PARAM;
 854		} else {
 855			vsi->info.q_opt_rss = ctx->info.q_opt_rss;
 856		}
 857
 858		kfree(ctx);
 859	} else {
 860		struct ice_rss_hash_cfg cfg;
 861
 862		/* Only check for none raw pattern case */
 863		if (!ice_vc_validate_pattern(vf, &rss_cfg->proto_hdrs)) {
 864			v_ret = VIRTCHNL_STATUS_ERR_PARAM;
 865			goto error_param;
 866		}
 867		cfg.addl_hdrs = ICE_FLOW_SEG_HDR_NONE;
 868		cfg.hash_flds = ICE_HASH_INVALID;
 869		cfg.hdr_type = ICE_RSS_ANY_HEADERS;
 870
 871		if (!ice_vc_parse_rss_cfg(hw, rss_cfg, &cfg)) {
 872			v_ret = VIRTCHNL_STATUS_ERR_PARAM;
 873			goto error_param;
 874		}
 875
 876		if (add) {
 877			if (ice_add_rss_cfg(hw, vsi, &cfg)) {
 878				v_ret = VIRTCHNL_STATUS_ERR_PARAM;
 879				dev_err(dev, "ice_add_rss_cfg failed for vsi = %d, v_ret = %d\n",
 880					vsi->vsi_num, v_ret);
 881			}
 882		} else {
 883			int status;
 884
 885			status = ice_rem_rss_cfg(hw, vsi->idx, &cfg);
 886			/* We just ignore -ENOENT, because if two configurations
 887			 * share the same profile remove one of them actually
 888			 * removes both, since the profile is deleted.
 889			 */
 890			if (status && status != -ENOENT) {
 891				v_ret = VIRTCHNL_STATUS_ERR_PARAM;
 892				dev_err(dev, "ice_rem_rss_cfg failed for VF ID:%d, error:%d\n",
 893					vf->vf_id, status);
 894			}
 895		}
 896	}
 897
 898error_param:
 899	return ice_vc_send_msg_to_vf(vf, v_opcode, v_ret, NULL, 0);
 900}
 901
 902/**
 903 * ice_vc_config_rss_key
 904 * @vf: pointer to the VF info
 905 * @msg: pointer to the msg buffer
 906 *
 907 * Configure the VF's RSS key
 908 */
 909static int ice_vc_config_rss_key(struct ice_vf *vf, u8 *msg)
 910{
 911	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
 912	struct virtchnl_rss_key *vrk =
 913		(struct virtchnl_rss_key *)msg;
 914	struct ice_vsi *vsi;
 915
 916	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
 917		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
 918		goto error_param;
 919	}
 920
 921	if (!ice_vc_isvalid_vsi_id(vf, vrk->vsi_id)) {
 922		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
 923		goto error_param;
 924	}
 925
 926	if (vrk->key_len != ICE_VSIQF_HKEY_ARRAY_SIZE) {
 927		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
 928		goto error_param;
 929	}
 930
 931	if (!test_bit(ICE_FLAG_RSS_ENA, vf->pf->flags)) {
 932		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
 933		goto error_param;
 934	}
 935
 936	vsi = ice_get_vf_vsi(vf);
 937	if (!vsi) {
 938		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
 939		goto error_param;
 940	}
 941
 942	if (ice_set_rss_key(vsi, vrk->key))
 943		v_ret = VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR;
 944error_param:
 945	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_RSS_KEY, v_ret,
 946				     NULL, 0);
 947}
 948
 949/**
 950 * ice_vc_config_rss_lut
 951 * @vf: pointer to the VF info
 952 * @msg: pointer to the msg buffer
 953 *
 954 * Configure the VF's RSS LUT
 955 */
 956static int ice_vc_config_rss_lut(struct ice_vf *vf, u8 *msg)
 957{
 958	struct virtchnl_rss_lut *vrl = (struct virtchnl_rss_lut *)msg;
 959	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
 960	struct ice_vsi *vsi;
 961
 962	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
 963		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
 964		goto error_param;
 965	}
 966
 967	if (!ice_vc_isvalid_vsi_id(vf, vrl->vsi_id)) {
 968		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
 969		goto error_param;
 970	}
 971
 972	if (vrl->lut_entries != ICE_LUT_VSI_SIZE) {
 973		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
 974		goto error_param;
 975	}
 976
 977	if (!test_bit(ICE_FLAG_RSS_ENA, vf->pf->flags)) {
 978		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
 979		goto error_param;
 980	}
 981
 982	vsi = ice_get_vf_vsi(vf);
 983	if (!vsi) {
 984		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
 985		goto error_param;
 986	}
 987
 988	if (ice_set_rss_lut(vsi, vrl->lut, ICE_LUT_VSI_SIZE))
 989		v_ret = VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR;
 990error_param:
 991	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_RSS_LUT, v_ret,
 992				     NULL, 0);
 993}
 994
 995/**
 996 * ice_vc_config_rss_hfunc
 997 * @vf: pointer to the VF info
 998 * @msg: pointer to the msg buffer
 999 *
1000 * Configure the VF's RSS Hash function
1001 */
1002static int ice_vc_config_rss_hfunc(struct ice_vf *vf, u8 *msg)
1003{
1004	struct virtchnl_rss_hfunc *vrh = (struct virtchnl_rss_hfunc *)msg;
1005	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
1006	u8 hfunc = ICE_AQ_VSI_Q_OPT_RSS_HASH_TPLZ;
1007	struct ice_vsi *vsi;
1008
1009	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
1010		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1011		goto error_param;
1012	}
1013
1014	if (!ice_vc_isvalid_vsi_id(vf, vrh->vsi_id)) {
1015		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1016		goto error_param;
1017	}
1018
1019	if (!test_bit(ICE_FLAG_RSS_ENA, vf->pf->flags)) {
1020		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1021		goto error_param;
1022	}
1023
1024	vsi = ice_get_vf_vsi(vf);
1025	if (!vsi) {
1026		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1027		goto error_param;
1028	}
1029
1030	if (vrh->rss_algorithm == VIRTCHNL_RSS_ALG_TOEPLITZ_SYMMETRIC)
1031		hfunc = ICE_AQ_VSI_Q_OPT_RSS_HASH_SYM_TPLZ;
1032
1033	if (ice_set_rss_hfunc(vsi, hfunc))
1034		v_ret = VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR;
1035error_param:
1036	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_RSS_HFUNC, v_ret,
1037				     NULL, 0);
1038}
1039
1040/**
1041 * ice_vc_get_qos_caps - Get current QoS caps from PF
1042 * @vf: pointer to the VF info
1043 *
1044 * Get VF's QoS capabilities, such as TC number, arbiter and
1045 * bandwidth from PF.
1046 *
1047 * Return: 0 on success or negative error value.
1048 */
1049static int ice_vc_get_qos_caps(struct ice_vf *vf)
1050{
1051	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
1052	struct virtchnl_qos_cap_list *cap_list = NULL;
1053	u8 tc_prio[ICE_MAX_TRAFFIC_CLASS] = { 0 };
1054	struct virtchnl_qos_cap_elem *cfg = NULL;
1055	struct ice_vsi_ctx *vsi_ctx;
1056	struct ice_pf *pf = vf->pf;
1057	struct ice_port_info *pi;
1058	struct ice_vsi *vsi;
1059	u8 numtc, tc;
1060	u16 len = 0;
1061	int ret, i;
1062
1063	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
1064		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1065		goto err;
1066	}
1067
1068	vsi = ice_get_vf_vsi(vf);
1069	if (!vsi) {
1070		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1071		goto err;
1072	}
1073
1074	pi = pf->hw.port_info;
1075	numtc = vsi->tc_cfg.numtc;
1076
1077	vsi_ctx = ice_get_vsi_ctx(pi->hw, vf->lan_vsi_idx);
1078	if (!vsi_ctx) {
1079		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1080		goto err;
1081	}
1082
1083	len = struct_size(cap_list, cap, numtc);
1084	cap_list = kzalloc(len, GFP_KERNEL);
1085	if (!cap_list) {
1086		v_ret = VIRTCHNL_STATUS_ERR_NO_MEMORY;
1087		len = 0;
1088		goto err;
1089	}
1090
1091	cap_list->vsi_id = vsi->vsi_num;
1092	cap_list->num_elem = numtc;
1093
1094	/* Store the UP2TC configuration from DCB to a user priority bitmap
1095	 * of each TC. Each element of prio_of_tc represents one TC. Each
1096	 * bitmap indicates the user priorities belong to this TC.
1097	 */
1098	for (i = 0; i < ICE_MAX_USER_PRIORITY; i++) {
1099		tc = pi->qos_cfg.local_dcbx_cfg.etscfg.prio_table[i];
1100		tc_prio[tc] |= BIT(i);
1101	}
1102
1103	for (i = 0; i < numtc; i++) {
1104		cfg = &cap_list->cap[i];
1105		cfg->tc_num = i;
1106		cfg->tc_prio = tc_prio[i];
1107		cfg->arbiter = pi->qos_cfg.local_dcbx_cfg.etscfg.tsatable[i];
1108		cfg->weight = VIRTCHNL_STRICT_WEIGHT;
1109		cfg->type = VIRTCHNL_BW_SHAPER;
1110		cfg->shaper.committed = vsi_ctx->sched.bw_t_info[i].cir_bw.bw;
1111		cfg->shaper.peak = vsi_ctx->sched.bw_t_info[i].eir_bw.bw;
1112	}
1113
1114err:
1115	ret = ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_GET_QOS_CAPS, v_ret,
1116				    (u8 *)cap_list, len);
1117	kfree(cap_list);
1118	return ret;
1119}
1120
1121/**
1122 * ice_vf_cfg_qs_bw - Configure per queue bandwidth
1123 * @vf: pointer to the VF info
1124 * @num_queues: number of queues to be configured
1125 *
1126 * Configure per queue bandwidth.
1127 *
1128 * Return: 0 on success or negative error value.
1129 */
1130static int ice_vf_cfg_qs_bw(struct ice_vf *vf, u16 num_queues)
1131{
1132	struct ice_hw *hw = &vf->pf->hw;
1133	struct ice_vsi *vsi;
1134	int ret;
1135	u16 i;
1136
1137	vsi = ice_get_vf_vsi(vf);
1138	if (!vsi)
1139		return -EINVAL;
1140
1141	for (i = 0; i < num_queues; i++) {
1142		u32 p_rate, min_rate;
1143		u8 tc;
1144
1145		p_rate = vf->qs_bw[i].peak;
1146		min_rate = vf->qs_bw[i].committed;
1147		tc = vf->qs_bw[i].tc;
1148		if (p_rate)
1149			ret = ice_cfg_q_bw_lmt(hw->port_info, vsi->idx, tc,
1150					       vf->qs_bw[i].queue_id,
1151					       ICE_MAX_BW, p_rate);
1152		else
1153			ret = ice_cfg_q_bw_dflt_lmt(hw->port_info, vsi->idx, tc,
1154						    vf->qs_bw[i].queue_id,
1155						    ICE_MAX_BW);
1156		if (ret)
1157			return ret;
1158
1159		if (min_rate)
1160			ret = ice_cfg_q_bw_lmt(hw->port_info, vsi->idx, tc,
1161					       vf->qs_bw[i].queue_id,
1162					       ICE_MIN_BW, min_rate);
1163		else
1164			ret = ice_cfg_q_bw_dflt_lmt(hw->port_info, vsi->idx, tc,
1165						    vf->qs_bw[i].queue_id,
1166						    ICE_MIN_BW);
1167
1168		if (ret)
1169			return ret;
1170	}
1171
1172	return 0;
1173}
1174
1175/**
1176 * ice_vf_cfg_q_quanta_profile - Configure quanta profile
1177 * @vf: pointer to the VF info
1178 * @quanta_prof_idx: pointer to the quanta profile index
1179 * @quanta_size: quanta size to be set
1180 *
1181 * This function chooses available quanta profile and configures the register.
1182 * The quanta profile is evenly divided by the number of device ports, and then
1183 * available to the specific PF and VFs. The first profile for each PF is a
1184 * reserved default profile. Only quanta size of the rest unused profile can be
1185 * modified.
1186 *
1187 * Return: 0 on success or negative error value.
1188 */
1189static int ice_vf_cfg_q_quanta_profile(struct ice_vf *vf, u16 quanta_size,
1190				       u16 *quanta_prof_idx)
1191{
1192	const u16 n_desc = calc_quanta_desc(quanta_size);
1193	struct ice_hw *hw = &vf->pf->hw;
1194	const u16 n_cmd = 2 * n_desc;
1195	struct ice_pf *pf = vf->pf;
1196	u16 per_pf, begin_id;
1197	u8 n_used;
1198	u32 reg;
1199
1200	begin_id = (GLCOMM_QUANTA_PROF_MAX_INDEX + 1) / hw->dev_caps.num_funcs *
1201		   hw->logical_pf_id;
1202
1203	if (quanta_size == ICE_DFLT_QUANTA) {
1204		*quanta_prof_idx = begin_id;
1205	} else {
1206		per_pf = (GLCOMM_QUANTA_PROF_MAX_INDEX + 1) /
1207			 hw->dev_caps.num_funcs;
1208		n_used = pf->num_quanta_prof_used;
1209		if (n_used < per_pf) {
1210			*quanta_prof_idx = begin_id + 1 + n_used;
1211			pf->num_quanta_prof_used++;
1212		} else {
1213			return -EINVAL;
1214		}
1215	}
1216
1217	reg = FIELD_PREP(GLCOMM_QUANTA_PROF_QUANTA_SIZE_M, quanta_size) |
1218	      FIELD_PREP(GLCOMM_QUANTA_PROF_MAX_CMD_M, n_cmd) |
1219	      FIELD_PREP(GLCOMM_QUANTA_PROF_MAX_DESC_M, n_desc);
1220	wr32(hw, GLCOMM_QUANTA_PROF(*quanta_prof_idx), reg);
1221
1222	return 0;
1223}
1224
1225/**
1226 * ice_vc_cfg_promiscuous_mode_msg
1227 * @vf: pointer to the VF info
1228 * @msg: pointer to the msg buffer
1229 *
1230 * called from the VF to configure VF VSIs promiscuous mode
1231 */
1232static int ice_vc_cfg_promiscuous_mode_msg(struct ice_vf *vf, u8 *msg)
1233{
1234	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
1235	bool rm_promisc, alluni = false, allmulti = false;
1236	struct virtchnl_promisc_info *info =
1237	    (struct virtchnl_promisc_info *)msg;
1238	struct ice_vsi_vlan_ops *vlan_ops;
1239	int mcast_err = 0, ucast_err = 0;
1240	struct ice_pf *pf = vf->pf;
1241	struct ice_vsi *vsi;
1242	u8 mcast_m, ucast_m;
1243	struct device *dev;
1244	int ret = 0;
1245
1246	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
1247		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1248		goto error_param;
1249	}
1250
1251	if (!ice_vc_isvalid_vsi_id(vf, info->vsi_id)) {
1252		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1253		goto error_param;
1254	}
1255
1256	vsi = ice_get_vf_vsi(vf);
1257	if (!vsi) {
1258		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1259		goto error_param;
1260	}
1261
1262	dev = ice_pf_to_dev(pf);
1263	if (!ice_is_vf_trusted(vf)) {
1264		dev_err(dev, "Unprivileged VF %d is attempting to configure promiscuous mode\n",
1265			vf->vf_id);
1266		/* Leave v_ret alone, lie to the VF on purpose. */
1267		goto error_param;
1268	}
1269
1270	if (info->flags & FLAG_VF_UNICAST_PROMISC)
1271		alluni = true;
1272
1273	if (info->flags & FLAG_VF_MULTICAST_PROMISC)
1274		allmulti = true;
1275
1276	rm_promisc = !allmulti && !alluni;
1277
1278	vlan_ops = ice_get_compat_vsi_vlan_ops(vsi);
1279	if (rm_promisc)
1280		ret = vlan_ops->ena_rx_filtering(vsi);
1281	else
1282		ret = vlan_ops->dis_rx_filtering(vsi);
1283	if (ret) {
1284		dev_err(dev, "Failed to configure VLAN pruning in promiscuous mode\n");
1285		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1286		goto error_param;
1287	}
1288
1289	ice_vf_get_promisc_masks(vf, vsi, &ucast_m, &mcast_m);
1290
1291	if (!test_bit(ICE_FLAG_VF_TRUE_PROMISC_ENA, pf->flags)) {
1292		if (alluni) {
1293			/* in this case we're turning on promiscuous mode */
1294			ret = ice_set_dflt_vsi(vsi);
1295		} else {
1296			/* in this case we're turning off promiscuous mode */
1297			if (ice_is_dflt_vsi_in_use(vsi->port_info))
1298				ret = ice_clear_dflt_vsi(vsi);
1299		}
1300
1301		/* in this case we're turning on/off only
1302		 * allmulticast
1303		 */
1304		if (allmulti)
1305			mcast_err = ice_vf_set_vsi_promisc(vf, vsi, mcast_m);
1306		else
1307			mcast_err = ice_vf_clear_vsi_promisc(vf, vsi, mcast_m);
1308
1309		if (ret) {
1310			dev_err(dev, "Turning on/off promiscuous mode for VF %d failed, error: %d\n",
1311				vf->vf_id, ret);
1312			v_ret = VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR;
1313			goto error_param;
1314		}
1315	} else {
1316		if (alluni)
1317			ucast_err = ice_vf_set_vsi_promisc(vf, vsi, ucast_m);
1318		else
1319			ucast_err = ice_vf_clear_vsi_promisc(vf, vsi, ucast_m);
1320
1321		if (allmulti)
1322			mcast_err = ice_vf_set_vsi_promisc(vf, vsi, mcast_m);
1323		else
1324			mcast_err = ice_vf_clear_vsi_promisc(vf, vsi, mcast_m);
1325
1326		if (ucast_err || mcast_err)
1327			v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1328	}
1329
1330	if (!mcast_err) {
1331		if (allmulti &&
1332		    !test_and_set_bit(ICE_VF_STATE_MC_PROMISC, vf->vf_states))
1333			dev_info(dev, "VF %u successfully set multicast promiscuous mode\n",
1334				 vf->vf_id);
1335		else if (!allmulti &&
1336			 test_and_clear_bit(ICE_VF_STATE_MC_PROMISC,
1337					    vf->vf_states))
1338			dev_info(dev, "VF %u successfully unset multicast promiscuous mode\n",
1339				 vf->vf_id);
1340	} else {
1341		dev_err(dev, "Error while modifying multicast promiscuous mode for VF %u, error: %d\n",
1342			vf->vf_id, mcast_err);
1343	}
1344
1345	if (!ucast_err) {
1346		if (alluni &&
1347		    !test_and_set_bit(ICE_VF_STATE_UC_PROMISC, vf->vf_states))
1348			dev_info(dev, "VF %u successfully set unicast promiscuous mode\n",
1349				 vf->vf_id);
1350		else if (!alluni &&
1351			 test_and_clear_bit(ICE_VF_STATE_UC_PROMISC,
1352					    vf->vf_states))
1353			dev_info(dev, "VF %u successfully unset unicast promiscuous mode\n",
1354				 vf->vf_id);
1355	} else {
1356		dev_err(dev, "Error while modifying unicast promiscuous mode for VF %u, error: %d\n",
1357			vf->vf_id, ucast_err);
1358	}
1359
1360error_param:
1361	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_PROMISCUOUS_MODE,
1362				     v_ret, NULL, 0);
1363}
1364
1365/**
1366 * ice_vc_get_stats_msg
1367 * @vf: pointer to the VF info
1368 * @msg: pointer to the msg buffer
1369 *
1370 * called from the VF to get VSI stats
1371 */
1372static int ice_vc_get_stats_msg(struct ice_vf *vf, u8 *msg)
1373{
1374	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
1375	struct virtchnl_queue_select *vqs =
1376		(struct virtchnl_queue_select *)msg;
1377	struct ice_eth_stats stats = { 0 };
1378	struct ice_vsi *vsi;
1379
1380	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
1381		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1382		goto error_param;
1383	}
1384
1385	if (!ice_vc_isvalid_vsi_id(vf, vqs->vsi_id)) {
1386		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1387		goto error_param;
1388	}
1389
1390	vsi = ice_get_vf_vsi(vf);
1391	if (!vsi) {
1392		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1393		goto error_param;
1394	}
1395
1396	ice_update_eth_stats(vsi);
1397
1398	stats = vsi->eth_stats;
1399
1400error_param:
1401	/* send the response to the VF */
1402	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_GET_STATS, v_ret,
1403				     (u8 *)&stats, sizeof(stats));
1404}
1405
1406/**
1407 * ice_vc_validate_vqs_bitmaps - validate Rx/Tx queue bitmaps from VIRTCHNL
1408 * @vqs: virtchnl_queue_select structure containing bitmaps to validate
1409 *
1410 * Return true on successful validation, else false
1411 */
1412static bool ice_vc_validate_vqs_bitmaps(struct virtchnl_queue_select *vqs)
1413{
1414	if ((!vqs->rx_queues && !vqs->tx_queues) ||
1415	    vqs->rx_queues >= BIT(ICE_MAX_RSS_QS_PER_VF) ||
1416	    vqs->tx_queues >= BIT(ICE_MAX_RSS_QS_PER_VF))
1417		return false;
1418
1419	return true;
1420}
1421
1422/**
1423 * ice_vf_ena_txq_interrupt - enable Tx queue interrupt via QINT_TQCTL
1424 * @vsi: VSI of the VF to configure
1425 * @q_idx: VF queue index used to determine the queue in the PF's space
1426 */
1427static void ice_vf_ena_txq_interrupt(struct ice_vsi *vsi, u32 q_idx)
1428{
1429	struct ice_hw *hw = &vsi->back->hw;
1430	u32 pfq = vsi->txq_map[q_idx];
1431	u32 reg;
1432
1433	reg = rd32(hw, QINT_TQCTL(pfq));
1434
1435	/* MSI-X index 0 in the VF's space is always for the OICR, which means
1436	 * this is most likely a poll mode VF driver, so don't enable an
1437	 * interrupt that was never configured via VIRTCHNL_OP_CONFIG_IRQ_MAP
1438	 */
1439	if (!(reg & QINT_TQCTL_MSIX_INDX_M))
1440		return;
1441
1442	wr32(hw, QINT_TQCTL(pfq), reg | QINT_TQCTL_CAUSE_ENA_M);
1443}
1444
1445/**
1446 * ice_vf_ena_rxq_interrupt - enable Tx queue interrupt via QINT_RQCTL
1447 * @vsi: VSI of the VF to configure
1448 * @q_idx: VF queue index used to determine the queue in the PF's space
1449 */
1450static void ice_vf_ena_rxq_interrupt(struct ice_vsi *vsi, u32 q_idx)
1451{
1452	struct ice_hw *hw = &vsi->back->hw;
1453	u32 pfq = vsi->rxq_map[q_idx];
1454	u32 reg;
1455
1456	reg = rd32(hw, QINT_RQCTL(pfq));
1457
1458	/* MSI-X index 0 in the VF's space is always for the OICR, which means
1459	 * this is most likely a poll mode VF driver, so don't enable an
1460	 * interrupt that was never configured via VIRTCHNL_OP_CONFIG_IRQ_MAP
1461	 */
1462	if (!(reg & QINT_RQCTL_MSIX_INDX_M))
1463		return;
1464
1465	wr32(hw, QINT_RQCTL(pfq), reg | QINT_RQCTL_CAUSE_ENA_M);
1466}
1467
1468/**
1469 * ice_vc_ena_qs_msg
1470 * @vf: pointer to the VF info
1471 * @msg: pointer to the msg buffer
1472 *
1473 * called from the VF to enable all or specific queue(s)
1474 */
1475static int ice_vc_ena_qs_msg(struct ice_vf *vf, u8 *msg)
1476{
1477	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
1478	struct virtchnl_queue_select *vqs =
1479	    (struct virtchnl_queue_select *)msg;
1480	struct ice_vsi *vsi;
1481	unsigned long q_map;
1482	u16 vf_q_id;
1483
1484	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
1485		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1486		goto error_param;
1487	}
1488
1489	if (!ice_vc_isvalid_vsi_id(vf, vqs->vsi_id)) {
1490		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1491		goto error_param;
1492	}
1493
1494	if (!ice_vc_validate_vqs_bitmaps(vqs)) {
1495		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1496		goto error_param;
1497	}
1498
1499	vsi = ice_get_vf_vsi(vf);
1500	if (!vsi) {
1501		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1502		goto error_param;
1503	}
1504
1505	/* Enable only Rx rings, Tx rings were enabled by the FW when the
1506	 * Tx queue group list was configured and the context bits were
1507	 * programmed using ice_vsi_cfg_txqs
1508	 */
1509	q_map = vqs->rx_queues;
1510	for_each_set_bit(vf_q_id, &q_map, ICE_MAX_RSS_QS_PER_VF) {
1511		if (!ice_vc_isvalid_q_id(vsi, vf_q_id)) {
1512			v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1513			goto error_param;
1514		}
1515
1516		/* Skip queue if enabled */
1517		if (test_bit(vf_q_id, vf->rxq_ena))
1518			continue;
1519
1520		if (ice_vsi_ctrl_one_rx_ring(vsi, true, vf_q_id, true)) {
1521			dev_err(ice_pf_to_dev(vsi->back), "Failed to enable Rx ring %d on VSI %d\n",
1522				vf_q_id, vsi->vsi_num);
1523			v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1524			goto error_param;
1525		}
1526
1527		ice_vf_ena_rxq_interrupt(vsi, vf_q_id);
1528		set_bit(vf_q_id, vf->rxq_ena);
1529	}
1530
1531	q_map = vqs->tx_queues;
1532	for_each_set_bit(vf_q_id, &q_map, ICE_MAX_RSS_QS_PER_VF) {
1533		if (!ice_vc_isvalid_q_id(vsi, vf_q_id)) {
1534			v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1535			goto error_param;
1536		}
1537
1538		/* Skip queue if enabled */
1539		if (test_bit(vf_q_id, vf->txq_ena))
1540			continue;
1541
1542		ice_vf_ena_txq_interrupt(vsi, vf_q_id);
1543		set_bit(vf_q_id, vf->txq_ena);
1544	}
1545
1546	/* Set flag to indicate that queues are enabled */
1547	if (v_ret == VIRTCHNL_STATUS_SUCCESS)
1548		set_bit(ICE_VF_STATE_QS_ENA, vf->vf_states);
1549
1550error_param:
1551	/* send the response to the VF */
1552	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ENABLE_QUEUES, v_ret,
1553				     NULL, 0);
1554}
1555
1556/**
1557 * ice_vf_vsi_dis_single_txq - disable a single Tx queue
1558 * @vf: VF to disable queue for
1559 * @vsi: VSI for the VF
1560 * @q_id: VF relative (0-based) queue ID
1561 *
1562 * Attempt to disable the Tx queue passed in. If the Tx queue was successfully
1563 * disabled then clear q_id bit in the enabled queues bitmap and return
1564 * success. Otherwise return error.
1565 */
1566static int
1567ice_vf_vsi_dis_single_txq(struct ice_vf *vf, struct ice_vsi *vsi, u16 q_id)
1568{
1569	struct ice_txq_meta txq_meta = { 0 };
1570	struct ice_tx_ring *ring;
1571	int err;
1572
1573	if (!test_bit(q_id, vf->txq_ena))
1574		dev_dbg(ice_pf_to_dev(vsi->back), "Queue %u on VSI %u is not enabled, but stopping it anyway\n",
1575			q_id, vsi->vsi_num);
1576
1577	ring = vsi->tx_rings[q_id];
1578	if (!ring)
1579		return -EINVAL;
1580
1581	ice_fill_txq_meta(vsi, ring, &txq_meta);
1582
1583	err = ice_vsi_stop_tx_ring(vsi, ICE_NO_RESET, vf->vf_id, ring, &txq_meta);
1584	if (err) {
1585		dev_err(ice_pf_to_dev(vsi->back), "Failed to stop Tx ring %d on VSI %d\n",
1586			q_id, vsi->vsi_num);
1587		return err;
1588	}
1589
1590	/* Clear enabled queues flag */
1591	clear_bit(q_id, vf->txq_ena);
1592
1593	return 0;
1594}
1595
1596/**
1597 * ice_vc_dis_qs_msg
1598 * @vf: pointer to the VF info
1599 * @msg: pointer to the msg buffer
1600 *
1601 * called from the VF to disable all or specific queue(s)
1602 */
1603static int ice_vc_dis_qs_msg(struct ice_vf *vf, u8 *msg)
1604{
1605	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
1606	struct virtchnl_queue_select *vqs =
1607	    (struct virtchnl_queue_select *)msg;
1608	struct ice_vsi *vsi;
1609	unsigned long q_map;
1610	u16 vf_q_id;
1611
1612	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states) &&
1613	    !test_bit(ICE_VF_STATE_QS_ENA, vf->vf_states)) {
1614		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1615		goto error_param;
1616	}
1617
1618	if (!ice_vc_isvalid_vsi_id(vf, vqs->vsi_id)) {
1619		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1620		goto error_param;
1621	}
1622
1623	if (!ice_vc_validate_vqs_bitmaps(vqs)) {
1624		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1625		goto error_param;
1626	}
1627
1628	vsi = ice_get_vf_vsi(vf);
1629	if (!vsi) {
1630		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1631		goto error_param;
1632	}
1633
1634	if (vqs->tx_queues) {
1635		q_map = vqs->tx_queues;
1636
1637		for_each_set_bit(vf_q_id, &q_map, ICE_MAX_RSS_QS_PER_VF) {
1638			if (!ice_vc_isvalid_q_id(vsi, vf_q_id)) {
1639				v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1640				goto error_param;
1641			}
1642
1643			if (ice_vf_vsi_dis_single_txq(vf, vsi, vf_q_id)) {
1644				v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1645				goto error_param;
1646			}
1647		}
1648	}
1649
1650	q_map = vqs->rx_queues;
1651	/* speed up Rx queue disable by batching them if possible */
1652	if (q_map &&
1653	    bitmap_equal(&q_map, vf->rxq_ena, ICE_MAX_RSS_QS_PER_VF)) {
1654		if (ice_vsi_stop_all_rx_rings(vsi)) {
1655			dev_err(ice_pf_to_dev(vsi->back), "Failed to stop all Rx rings on VSI %d\n",
1656				vsi->vsi_num);
1657			v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1658			goto error_param;
1659		}
1660
1661		bitmap_zero(vf->rxq_ena, ICE_MAX_RSS_QS_PER_VF);
1662	} else if (q_map) {
1663		for_each_set_bit(vf_q_id, &q_map, ICE_MAX_RSS_QS_PER_VF) {
1664			if (!ice_vc_isvalid_q_id(vsi, vf_q_id)) {
1665				v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1666				goto error_param;
1667			}
1668
1669			/* Skip queue if not enabled */
1670			if (!test_bit(vf_q_id, vf->rxq_ena))
1671				continue;
1672
1673			if (ice_vsi_ctrl_one_rx_ring(vsi, false, vf_q_id,
1674						     true)) {
1675				dev_err(ice_pf_to_dev(vsi->back), "Failed to stop Rx ring %d on VSI %d\n",
1676					vf_q_id, vsi->vsi_num);
1677				v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1678				goto error_param;
1679			}
1680
1681			/* Clear enabled queues flag */
1682			clear_bit(vf_q_id, vf->rxq_ena);
1683		}
1684	}
1685
1686	/* Clear enabled queues flag */
1687	if (v_ret == VIRTCHNL_STATUS_SUCCESS && ice_vf_has_no_qs_ena(vf))
1688		clear_bit(ICE_VF_STATE_QS_ENA, vf->vf_states);
1689
1690error_param:
1691	/* send the response to the VF */
1692	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DISABLE_QUEUES, v_ret,
1693				     NULL, 0);
1694}
1695
1696/**
1697 * ice_cfg_interrupt
1698 * @vf: pointer to the VF info
1699 * @vsi: the VSI being configured
1700 * @map: vector map for mapping vectors to queues
1701 * @q_vector: structure for interrupt vector
1702 * configure the IRQ to queue map
1703 */
1704static enum virtchnl_status_code
1705ice_cfg_interrupt(struct ice_vf *vf, struct ice_vsi *vsi,
1706		  struct virtchnl_vector_map *map,
1707		  struct ice_q_vector *q_vector)
1708{
1709	u16 vsi_q_id, vsi_q_id_idx;
1710	unsigned long qmap;
1711
1712	q_vector->num_ring_rx = 0;
1713	q_vector->num_ring_tx = 0;
1714
1715	qmap = map->rxq_map;
1716	for_each_set_bit(vsi_q_id_idx, &qmap, ICE_MAX_RSS_QS_PER_VF) {
1717		vsi_q_id = vsi_q_id_idx;
1718
1719		if (!ice_vc_isvalid_q_id(vsi, vsi_q_id))
1720			return VIRTCHNL_STATUS_ERR_PARAM;
1721
1722		q_vector->num_ring_rx++;
1723		q_vector->rx.itr_idx = map->rxitr_idx;
1724		vsi->rx_rings[vsi_q_id]->q_vector = q_vector;
1725		ice_cfg_rxq_interrupt(vsi, vsi_q_id,
1726				      q_vector->vf_reg_idx,
1727				      q_vector->rx.itr_idx);
1728	}
1729
1730	qmap = map->txq_map;
1731	for_each_set_bit(vsi_q_id_idx, &qmap, ICE_MAX_RSS_QS_PER_VF) {
1732		vsi_q_id = vsi_q_id_idx;
1733
1734		if (!ice_vc_isvalid_q_id(vsi, vsi_q_id))
1735			return VIRTCHNL_STATUS_ERR_PARAM;
1736
1737		q_vector->num_ring_tx++;
1738		q_vector->tx.itr_idx = map->txitr_idx;
1739		vsi->tx_rings[vsi_q_id]->q_vector = q_vector;
1740		ice_cfg_txq_interrupt(vsi, vsi_q_id,
1741				      q_vector->vf_reg_idx,
1742				      q_vector->tx.itr_idx);
1743	}
1744
1745	return VIRTCHNL_STATUS_SUCCESS;
1746}
1747
1748/**
1749 * ice_vc_cfg_irq_map_msg
1750 * @vf: pointer to the VF info
1751 * @msg: pointer to the msg buffer
1752 *
1753 * called from the VF to configure the IRQ to queue map
1754 */
1755static int ice_vc_cfg_irq_map_msg(struct ice_vf *vf, u8 *msg)
1756{
1757	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
1758	u16 num_q_vectors_mapped, vsi_id, vector_id;
1759	struct virtchnl_irq_map_info *irqmap_info;
1760	struct virtchnl_vector_map *map;
1761	struct ice_vsi *vsi;
1762	int i;
1763
1764	irqmap_info = (struct virtchnl_irq_map_info *)msg;
1765	num_q_vectors_mapped = irqmap_info->num_vectors;
1766
1767	/* Check to make sure number of VF vectors mapped is not greater than
1768	 * number of VF vectors originally allocated, and check that
1769	 * there is actually at least a single VF queue vector mapped
1770	 */
1771	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states) ||
1772	    vf->num_msix < num_q_vectors_mapped ||
1773	    !num_q_vectors_mapped) {
1774		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1775		goto error_param;
1776	}
1777
1778	vsi = ice_get_vf_vsi(vf);
1779	if (!vsi) {
1780		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1781		goto error_param;
1782	}
1783
1784	for (i = 0; i < num_q_vectors_mapped; i++) {
1785		struct ice_q_vector *q_vector;
1786
1787		map = &irqmap_info->vecmap[i];
1788
1789		vector_id = map->vector_id;
1790		vsi_id = map->vsi_id;
1791		/* vector_id is always 0-based for each VF, and can never be
1792		 * larger than or equal to the max allowed interrupts per VF
1793		 */
1794		if (!(vector_id < vf->num_msix) ||
1795		    !ice_vc_isvalid_vsi_id(vf, vsi_id) ||
1796		    (!vector_id && (map->rxq_map || map->txq_map))) {
1797			v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1798			goto error_param;
1799		}
1800
1801		/* No need to map VF miscellaneous or rogue vector */
1802		if (!vector_id)
1803			continue;
1804
1805		/* Subtract non queue vector from vector_id passed by VF
1806		 * to get actual number of VSI queue vector array index
1807		 */
1808		q_vector = vsi->q_vectors[vector_id - ICE_NONQ_VECS_VF];
1809		if (!q_vector) {
1810			v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1811			goto error_param;
1812		}
1813
1814		/* lookout for the invalid queue index */
1815		v_ret = ice_cfg_interrupt(vf, vsi, map, q_vector);
1816		if (v_ret)
1817			goto error_param;
1818	}
1819
1820error_param:
1821	/* send the response to the VF */
1822	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_IRQ_MAP, v_ret,
1823				     NULL, 0);
1824}
1825
1826/**
1827 * ice_vc_cfg_q_bw - Configure per queue bandwidth
1828 * @vf: pointer to the VF info
1829 * @msg: pointer to the msg buffer which holds the command descriptor
1830 *
1831 * Configure VF queues bandwidth.
1832 *
1833 * Return: 0 on success or negative error value.
1834 */
1835static int ice_vc_cfg_q_bw(struct ice_vf *vf, u8 *msg)
1836{
1837	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
1838	struct virtchnl_queues_bw_cfg *qbw =
1839		(struct virtchnl_queues_bw_cfg *)msg;
1840	struct ice_vsi *vsi;
1841	u16 i;
1842
1843	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states) ||
1844	    !ice_vc_isvalid_vsi_id(vf, qbw->vsi_id)) {
1845		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1846		goto err;
1847	}
1848
1849	vsi = ice_get_vf_vsi(vf);
1850	if (!vsi) {
1851		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1852		goto err;
1853	}
1854
1855	if (qbw->num_queues > ICE_MAX_RSS_QS_PER_VF ||
1856	    qbw->num_queues > min_t(u16, vsi->alloc_txq, vsi->alloc_rxq)) {
1857		dev_err(ice_pf_to_dev(vf->pf), "VF-%d trying to configure more than allocated number of queues: %d\n",
1858			vf->vf_id, min_t(u16, vsi->alloc_txq, vsi->alloc_rxq));
1859		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1860		goto err;
1861	}
1862
1863	for (i = 0; i < qbw->num_queues; i++) {
1864		if (qbw->cfg[i].shaper.peak != 0 && vf->max_tx_rate != 0 &&
1865		    qbw->cfg[i].shaper.peak > vf->max_tx_rate)
1866			dev_warn(ice_pf_to_dev(vf->pf), "The maximum queue %d rate limit configuration may not take effect because the maximum TX rate for VF-%d is %d\n",
1867				 qbw->cfg[i].queue_id, vf->vf_id,
1868				 vf->max_tx_rate);
1869		if (qbw->cfg[i].shaper.committed != 0 && vf->min_tx_rate != 0 &&
1870		    qbw->cfg[i].shaper.committed < vf->min_tx_rate)
1871			dev_warn(ice_pf_to_dev(vf->pf), "The minimum queue %d rate limit configuration may not take effect because the minimum TX rate for VF-%d is %d\n",
1872				 qbw->cfg[i].queue_id, vf->vf_id,
1873				 vf->max_tx_rate);
1874	}
1875
1876	for (i = 0; i < qbw->num_queues; i++) {
1877		vf->qs_bw[i].queue_id = qbw->cfg[i].queue_id;
1878		vf->qs_bw[i].peak = qbw->cfg[i].shaper.peak;
1879		vf->qs_bw[i].committed = qbw->cfg[i].shaper.committed;
1880		vf->qs_bw[i].tc = qbw->cfg[i].tc;
1881	}
1882
1883	if (ice_vf_cfg_qs_bw(vf, qbw->num_queues))
1884		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1885
1886err:
1887	/* send the response to the VF */
1888	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_QUEUE_BW,
1889				    v_ret, NULL, 0);
1890}
1891
1892/**
1893 * ice_vc_cfg_q_quanta - Configure per queue quanta
1894 * @vf: pointer to the VF info
1895 * @msg: pointer to the msg buffer which holds the command descriptor
1896 *
1897 * Configure VF queues quanta.
1898 *
1899 * Return: 0 on success or negative error value.
1900 */
1901static int ice_vc_cfg_q_quanta(struct ice_vf *vf, u8 *msg)
1902{
1903	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
1904	u16 quanta_prof_id, quanta_size, start_qid, end_qid, i;
1905	struct virtchnl_quanta_cfg *qquanta =
1906		(struct virtchnl_quanta_cfg *)msg;
1907	struct ice_vsi *vsi;
1908	int ret;
1909
1910	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
1911		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1912		goto err;
1913	}
1914
1915	vsi = ice_get_vf_vsi(vf);
1916	if (!vsi) {
1917		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1918		goto err;
1919	}
1920
1921	end_qid = qquanta->queue_select.start_queue_id +
1922		  qquanta->queue_select.num_queues;
1923	if (end_qid > ICE_MAX_RSS_QS_PER_VF ||
1924	    end_qid > min_t(u16, vsi->alloc_txq, vsi->alloc_rxq)) {
1925		dev_err(ice_pf_to_dev(vf->pf), "VF-%d trying to configure more than allocated number of queues: %d\n",
1926			vf->vf_id, min_t(u16, vsi->alloc_txq, vsi->alloc_rxq));
1927		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1928		goto err;
1929	}
1930
1931	quanta_size = qquanta->quanta_size;
1932	if (quanta_size > ICE_MAX_QUANTA_SIZE ||
1933	    quanta_size < ICE_MIN_QUANTA_SIZE) {
1934		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1935		goto err;
1936	}
1937
1938	if (quanta_size % 64) {
1939		dev_err(ice_pf_to_dev(vf->pf), "quanta size should be the product of 64\n");
1940		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1941		goto err;
1942	}
1943
1944	ret = ice_vf_cfg_q_quanta_profile(vf, quanta_size,
1945					  &quanta_prof_id);
1946	if (ret) {
1947		v_ret = VIRTCHNL_STATUS_ERR_NOT_SUPPORTED;
1948		goto err;
1949	}
1950
1951	start_qid = qquanta->queue_select.start_queue_id;
1952	for (i = start_qid; i < end_qid; i++)
1953		vsi->tx_rings[i]->quanta_prof_id = quanta_prof_id;
1954
1955err:
1956	/* send the response to the VF */
1957	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_QUANTA,
1958				     v_ret, NULL, 0);
1959}
1960
1961/**
1962 * ice_vc_cfg_qs_msg
1963 * @vf: pointer to the VF info
1964 * @msg: pointer to the msg buffer
1965 *
1966 * called from the VF to configure the Rx/Tx queues
1967 */
1968static int ice_vc_cfg_qs_msg(struct ice_vf *vf, u8 *msg)
1969{
1970	struct virtchnl_vsi_queue_config_info *qci =
1971	    (struct virtchnl_vsi_queue_config_info *)msg;
1972	struct virtchnl_queue_pair_info *qpi;
1973	struct ice_pf *pf = vf->pf;
1974	struct ice_lag *lag;
1975	struct ice_vsi *vsi;
1976	u8 act_prt, pri_prt;
1977	int i = -1, q_idx;
1978
1979	lag = pf->lag;
1980	mutex_lock(&pf->lag_mutex);
1981	act_prt = ICE_LAG_INVALID_PORT;
1982	pri_prt = pf->hw.port_info->lport;
1983	if (lag && lag->bonded && lag->primary) {
1984		act_prt = lag->active_port;
1985		if (act_prt != pri_prt && act_prt != ICE_LAG_INVALID_PORT &&
1986		    lag->upper_netdev)
1987			ice_lag_move_vf_nodes_cfg(lag, act_prt, pri_prt);
1988		else
1989			act_prt = ICE_LAG_INVALID_PORT;
1990	}
1991
1992	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states))
1993		goto error_param;
1994
1995	if (!ice_vc_isvalid_vsi_id(vf, qci->vsi_id))
1996		goto error_param;
1997
1998	vsi = ice_get_vf_vsi(vf);
1999	if (!vsi)
2000		goto error_param;
2001
2002	if (qci->num_queue_pairs > ICE_MAX_RSS_QS_PER_VF ||
2003	    qci->num_queue_pairs > min_t(u16, vsi->alloc_txq, vsi->alloc_rxq)) {
2004		dev_err(ice_pf_to_dev(pf), "VF-%d requesting more than supported number of queues: %d\n",
2005			vf->vf_id, min_t(u16, vsi->alloc_txq, vsi->alloc_rxq));
2006		goto error_param;
2007	}
2008
2009	for (i = 0; i < qci->num_queue_pairs; i++) {
2010		if (!qci->qpair[i].rxq.crc_disable)
2011			continue;
2012
2013		if (!(vf->driver_caps & VIRTCHNL_VF_OFFLOAD_CRC) ||
2014		    vf->vlan_strip_ena)
2015			goto error_param;
2016	}
2017
2018	for (i = 0; i < qci->num_queue_pairs; i++) {
2019		qpi = &qci->qpair[i];
2020		if (qpi->txq.vsi_id != qci->vsi_id ||
2021		    qpi->rxq.vsi_id != qci->vsi_id ||
2022		    qpi->rxq.queue_id != qpi->txq.queue_id ||
2023		    qpi->txq.headwb_enabled ||
2024		    !ice_vc_isvalid_ring_len(qpi->txq.ring_len) ||
2025		    !ice_vc_isvalid_ring_len(qpi->rxq.ring_len) ||
2026		    !ice_vc_isvalid_q_id(vsi, qpi->txq.queue_id)) {
2027			goto error_param;
2028		}
2029
2030		q_idx = qpi->rxq.queue_id;
2031
2032		/* make sure selected "q_idx" is in valid range of queues
2033		 * for selected "vsi"
2034		 */
2035		if (q_idx >= vsi->alloc_txq || q_idx >= vsi->alloc_rxq) {
2036			goto error_param;
2037		}
2038
2039		/* copy Tx queue info from VF into VSI */
2040		if (qpi->txq.ring_len > 0) {
2041			vsi->tx_rings[q_idx]->dma = qpi->txq.dma_ring_addr;
2042			vsi->tx_rings[q_idx]->count = qpi->txq.ring_len;
2043
2044			/* Disable any existing queue first */
2045			if (ice_vf_vsi_dis_single_txq(vf, vsi, q_idx))
2046				goto error_param;
2047
2048			/* Configure a queue with the requested settings */
2049			if (ice_vsi_cfg_single_txq(vsi, vsi->tx_rings, q_idx)) {
2050				dev_warn(ice_pf_to_dev(pf), "VF-%d failed to configure TX queue %d\n",
2051					 vf->vf_id, q_idx);
2052				goto error_param;
2053			}
2054		}
2055
2056		/* copy Rx queue info from VF into VSI */
2057		if (qpi->rxq.ring_len > 0) {
2058			u16 max_frame_size = ice_vc_get_max_frame_size(vf);
2059			struct ice_rx_ring *ring = vsi->rx_rings[q_idx];
2060			u32 rxdid;
2061
2062			ring->dma = qpi->rxq.dma_ring_addr;
2063			ring->count = qpi->rxq.ring_len;
2064
2065			if (qpi->rxq.crc_disable)
2066				ring->flags |= ICE_RX_FLAGS_CRC_STRIP_DIS;
2067			else
2068				ring->flags &= ~ICE_RX_FLAGS_CRC_STRIP_DIS;
2069
2070			if (qpi->rxq.databuffer_size != 0 &&
2071			    (qpi->rxq.databuffer_size > ((16 * 1024) - 128) ||
2072			     qpi->rxq.databuffer_size < 1024))
2073				goto error_param;
2074			ring->rx_buf_len = qpi->rxq.databuffer_size;
2075			if (qpi->rxq.max_pkt_size > max_frame_size ||
2076			    qpi->rxq.max_pkt_size < 64)
2077				goto error_param;
2078
2079			ring->max_frame = qpi->rxq.max_pkt_size;
2080			/* add space for the port VLAN since the VF driver is
2081			 * not expected to account for it in the MTU
2082			 * calculation
2083			 */
2084			if (ice_vf_is_port_vlan_ena(vf))
2085				ring->max_frame += VLAN_HLEN;
2086
2087			if (ice_vsi_cfg_single_rxq(vsi, q_idx)) {
2088				dev_warn(ice_pf_to_dev(pf), "VF-%d failed to configure RX queue %d\n",
2089					 vf->vf_id, q_idx);
2090				goto error_param;
2091			}
2092
2093			/* If Rx flex desc is supported, select RXDID for Rx
2094			 * queues. Otherwise, use legacy 32byte descriptor
2095			 * format. Legacy 16byte descriptor is not supported.
2096			 * If this RXDID is selected, return error.
2097			 */
2098			if (vf->driver_caps &
2099			    VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC) {
2100				rxdid = qpi->rxq.rxdid;
2101				if (!(BIT(rxdid) & pf->supported_rxdids))
2102					goto error_param;
2103			} else {
2104				rxdid = ICE_RXDID_LEGACY_1;
2105			}
2106
2107			ice_write_qrxflxp_cntxt(&vsi->back->hw,
2108						vsi->rxq_map[q_idx],
2109						rxdid, 0x03, false);
2110		}
2111	}
2112
2113	if (lag && lag->bonded && lag->primary &&
2114	    act_prt != ICE_LAG_INVALID_PORT)
2115		ice_lag_move_vf_nodes_cfg(lag, pri_prt, act_prt);
2116	mutex_unlock(&pf->lag_mutex);
2117
2118	/* send the response to the VF */
2119	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_VSI_QUEUES,
2120				     VIRTCHNL_STATUS_SUCCESS, NULL, 0);
2121error_param:
2122	/* disable whatever we can */
2123	for (; i >= 0; i--) {
2124		if (ice_vsi_ctrl_one_rx_ring(vsi, false, i, true))
2125			dev_err(ice_pf_to_dev(pf), "VF-%d could not disable RX queue %d\n",
2126				vf->vf_id, i);
2127		if (ice_vf_vsi_dis_single_txq(vf, vsi, i))
2128			dev_err(ice_pf_to_dev(pf), "VF-%d could not disable TX queue %d\n",
2129				vf->vf_id, i);
2130	}
2131
2132	if (lag && lag->bonded && lag->primary &&
2133	    act_prt != ICE_LAG_INVALID_PORT)
2134		ice_lag_move_vf_nodes_cfg(lag, pri_prt, act_prt);
2135	mutex_unlock(&pf->lag_mutex);
2136
2137	ice_lag_move_new_vf_nodes(vf);
2138
2139	/* send the response to the VF */
2140	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_VSI_QUEUES,
2141				     VIRTCHNL_STATUS_ERR_PARAM, NULL, 0);
2142}
2143
2144/**
2145 * ice_can_vf_change_mac
2146 * @vf: pointer to the VF info
2147 *
2148 * Return true if the VF is allowed to change its MAC filters, false otherwise
2149 */
2150static bool ice_can_vf_change_mac(struct ice_vf *vf)
2151{
2152	/* If the VF MAC address has been set administratively (via the
2153	 * ndo_set_vf_mac command), then deny permission to the VF to
2154	 * add/delete unicast MAC addresses, unless the VF is trusted
2155	 */
2156	if (vf->pf_set_mac && !ice_is_vf_trusted(vf))
2157		return false;
2158
2159	return true;
2160}
2161
2162/**
2163 * ice_vc_ether_addr_type - get type of virtchnl_ether_addr
2164 * @vc_ether_addr: used to extract the type
2165 */
2166static u8
2167ice_vc_ether_addr_type(struct virtchnl_ether_addr *vc_ether_addr)
2168{
2169	return (vc_ether_addr->type & VIRTCHNL_ETHER_ADDR_TYPE_MASK);
2170}
2171
2172/**
2173 * ice_is_vc_addr_legacy - check if the MAC address is from an older VF
2174 * @vc_ether_addr: VIRTCHNL structure that contains MAC and type
2175 */
2176static bool
2177ice_is_vc_addr_legacy(struct virtchnl_ether_addr *vc_ether_addr)
2178{
2179	u8 type = ice_vc_ether_addr_type(vc_ether_addr);
2180
2181	return (type == VIRTCHNL_ETHER_ADDR_LEGACY);
2182}
2183
2184/**
2185 * ice_is_vc_addr_primary - check if the MAC address is the VF's primary MAC
2186 * @vc_ether_addr: VIRTCHNL structure that contains MAC and type
2187 *
2188 * This function should only be called when the MAC address in
2189 * virtchnl_ether_addr is a valid unicast MAC
2190 */
2191static bool
2192ice_is_vc_addr_primary(struct virtchnl_ether_addr __maybe_unused *vc_ether_addr)
2193{
2194	u8 type = ice_vc_ether_addr_type(vc_ether_addr);
2195
2196	return (type == VIRTCHNL_ETHER_ADDR_PRIMARY);
2197}
2198
2199/**
2200 * ice_vfhw_mac_add - update the VF's cached hardware MAC if allowed
2201 * @vf: VF to update
2202 * @vc_ether_addr: structure from VIRTCHNL with MAC to add
2203 */
2204static void
2205ice_vfhw_mac_add(struct ice_vf *vf, struct virtchnl_ether_addr *vc_ether_addr)
2206{
2207	u8 *mac_addr = vc_ether_addr->addr;
2208
2209	if (!is_valid_ether_addr(mac_addr))
2210		return;
2211
2212	/* only allow legacy VF drivers to set the device and hardware MAC if it
2213	 * is zero and allow new VF drivers to set the hardware MAC if the type
2214	 * was correctly specified over VIRTCHNL
2215	 */
2216	if ((ice_is_vc_addr_legacy(vc_ether_addr) &&
2217	     is_zero_ether_addr(vf->hw_lan_addr)) ||
2218	    ice_is_vc_addr_primary(vc_ether_addr)) {
2219		ether_addr_copy(vf->dev_lan_addr, mac_addr);
2220		ether_addr_copy(vf->hw_lan_addr, mac_addr);
2221	}
2222
2223	/* hardware and device MACs are already set, but its possible that the
2224	 * VF driver sent the VIRTCHNL_OP_ADD_ETH_ADDR message before the
2225	 * VIRTCHNL_OP_DEL_ETH_ADDR when trying to update its MAC, so save it
2226	 * away for the legacy VF driver case as it will be updated in the
2227	 * delete flow for this case
2228	 */
2229	if (ice_is_vc_addr_legacy(vc_ether_addr)) {
2230		ether_addr_copy(vf->legacy_last_added_umac.addr,
2231				mac_addr);
2232		vf->legacy_last_added_umac.time_modified = jiffies;
2233	}
2234}
2235
2236/**
2237 * ice_vc_add_mac_addr - attempt to add the MAC address passed in
2238 * @vf: pointer to the VF info
2239 * @vsi: pointer to the VF's VSI
2240 * @vc_ether_addr: VIRTCHNL MAC address structure used to add MAC
2241 */
2242static int
2243ice_vc_add_mac_addr(struct ice_vf *vf, struct ice_vsi *vsi,
2244		    struct virtchnl_ether_addr *vc_ether_addr)
2245{
2246	struct device *dev = ice_pf_to_dev(vf->pf);
2247	u8 *mac_addr = vc_ether_addr->addr;
2248	int ret;
2249
2250	/* device MAC already added */
2251	if (ether_addr_equal(mac_addr, vf->dev_lan_addr))
2252		return 0;
2253
2254	if (is_unicast_ether_addr(mac_addr) && !ice_can_vf_change_mac(vf)) {
2255		dev_err(dev, "VF attempting to override administratively set MAC address, bring down and up the VF interface to resume normal operation\n");
2256		return -EPERM;
2257	}
2258
2259	ret = ice_fltr_add_mac(vsi, mac_addr, ICE_FWD_TO_VSI);
2260	if (ret == -EEXIST) {
2261		dev_dbg(dev, "MAC %pM already exists for VF %d\n", mac_addr,
2262			vf->vf_id);
2263		/* don't return since we might need to update
2264		 * the primary MAC in ice_vfhw_mac_add() below
2265		 */
2266	} else if (ret) {
2267		dev_err(dev, "Failed to add MAC %pM for VF %d\n, error %d\n",
2268			mac_addr, vf->vf_id, ret);
2269		return ret;
2270	} else {
2271		vf->num_mac++;
2272	}
2273
2274	ice_vfhw_mac_add(vf, vc_ether_addr);
2275
2276	return ret;
2277}
2278
2279/**
2280 * ice_is_legacy_umac_expired - check if last added legacy unicast MAC expired
2281 * @last_added_umac: structure used to check expiration
2282 */
2283static bool ice_is_legacy_umac_expired(struct ice_time_mac *last_added_umac)
2284{
2285#define ICE_LEGACY_VF_MAC_CHANGE_EXPIRE_TIME	msecs_to_jiffies(3000)
2286	return time_is_before_jiffies(last_added_umac->time_modified +
2287				      ICE_LEGACY_VF_MAC_CHANGE_EXPIRE_TIME);
2288}
2289
2290/**
2291 * ice_update_legacy_cached_mac - update cached hardware MAC for legacy VF
2292 * @vf: VF to update
2293 * @vc_ether_addr: structure from VIRTCHNL with MAC to check
2294 *
2295 * only update cached hardware MAC for legacy VF drivers on delete
2296 * because we cannot guarantee order/type of MAC from the VF driver
2297 */
2298static void
2299ice_update_legacy_cached_mac(struct ice_vf *vf,
2300			     struct virtchnl_ether_addr *vc_ether_addr)
2301{
2302	if (!ice_is_vc_addr_legacy(vc_ether_addr) ||
2303	    ice_is_legacy_umac_expired(&vf->legacy_last_added_umac))
2304		return;
2305
2306	ether_addr_copy(vf->dev_lan_addr, vf->legacy_last_added_umac.addr);
2307	ether_addr_copy(vf->hw_lan_addr, vf->legacy_last_added_umac.addr);
2308}
2309
2310/**
2311 * ice_vfhw_mac_del - update the VF's cached hardware MAC if allowed
2312 * @vf: VF to update
2313 * @vc_ether_addr: structure from VIRTCHNL with MAC to delete
2314 */
2315static void
2316ice_vfhw_mac_del(struct ice_vf *vf, struct virtchnl_ether_addr *vc_ether_addr)
2317{
2318	u8 *mac_addr = vc_ether_addr->addr;
2319
2320	if (!is_valid_ether_addr(mac_addr) ||
2321	    !ether_addr_equal(vf->dev_lan_addr, mac_addr))
2322		return;
2323
2324	/* allow the device MAC to be repopulated in the add flow and don't
2325	 * clear the hardware MAC (i.e. hw_lan_addr) here as that is meant
2326	 * to be persistent on VM reboot and across driver unload/load, which
2327	 * won't work if we clear the hardware MAC here
2328	 */
2329	eth_zero_addr(vf->dev_lan_addr);
2330
2331	ice_update_legacy_cached_mac(vf, vc_ether_addr);
2332}
2333
2334/**
2335 * ice_vc_del_mac_addr - attempt to delete the MAC address passed in
2336 * @vf: pointer to the VF info
2337 * @vsi: pointer to the VF's VSI
2338 * @vc_ether_addr: VIRTCHNL MAC address structure used to delete MAC
2339 */
2340static int
2341ice_vc_del_mac_addr(struct ice_vf *vf, struct ice_vsi *vsi,
2342		    struct virtchnl_ether_addr *vc_ether_addr)
2343{
2344	struct device *dev = ice_pf_to_dev(vf->pf);
2345	u8 *mac_addr = vc_ether_addr->addr;
2346	int status;
2347
2348	if (!ice_can_vf_change_mac(vf) &&
2349	    ether_addr_equal(vf->dev_lan_addr, mac_addr))
2350		return 0;
2351
2352	status = ice_fltr_remove_mac(vsi, mac_addr, ICE_FWD_TO_VSI);
2353	if (status == -ENOENT) {
2354		dev_err(dev, "MAC %pM does not exist for VF %d\n", mac_addr,
2355			vf->vf_id);
2356		return -ENOENT;
2357	} else if (status) {
2358		dev_err(dev, "Failed to delete MAC %pM for VF %d, error %d\n",
2359			mac_addr, vf->vf_id, status);
2360		return -EIO;
2361	}
2362
2363	ice_vfhw_mac_del(vf, vc_ether_addr);
2364
2365	vf->num_mac--;
2366
2367	return 0;
2368}
2369
2370/**
2371 * ice_vc_handle_mac_addr_msg
2372 * @vf: pointer to the VF info
2373 * @msg: pointer to the msg buffer
2374 * @set: true if MAC filters are being set, false otherwise
2375 *
2376 * add guest MAC address filter
2377 */
2378static int
2379ice_vc_handle_mac_addr_msg(struct ice_vf *vf, u8 *msg, bool set)
2380{
2381	int (*ice_vc_cfg_mac)
2382		(struct ice_vf *vf, struct ice_vsi *vsi,
2383		 struct virtchnl_ether_addr *virtchnl_ether_addr);
2384	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
2385	struct virtchnl_ether_addr_list *al =
2386	    (struct virtchnl_ether_addr_list *)msg;
2387	struct ice_pf *pf = vf->pf;
2388	enum virtchnl_ops vc_op;
2389	struct ice_vsi *vsi;
2390	int i;
2391
2392	if (set) {
2393		vc_op = VIRTCHNL_OP_ADD_ETH_ADDR;
2394		ice_vc_cfg_mac = ice_vc_add_mac_addr;
2395	} else {
2396		vc_op = VIRTCHNL_OP_DEL_ETH_ADDR;
2397		ice_vc_cfg_mac = ice_vc_del_mac_addr;
2398	}
2399
2400	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states) ||
2401	    !ice_vc_isvalid_vsi_id(vf, al->vsi_id)) {
2402		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2403		goto handle_mac_exit;
2404	}
2405
2406	/* If this VF is not privileged, then we can't add more than a
2407	 * limited number of addresses. Check to make sure that the
2408	 * additions do not push us over the limit.
2409	 */
2410	if (set && !ice_is_vf_trusted(vf) &&
2411	    (vf->num_mac + al->num_elements) > ICE_MAX_MACADDR_PER_VF) {
2412		dev_err(ice_pf_to_dev(pf), "Can't add more MAC addresses, because VF-%d is not trusted, switch the VF to trusted mode in order to add more functionalities\n",
2413			vf->vf_id);
2414		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2415		goto handle_mac_exit;
2416	}
2417
2418	vsi = ice_get_vf_vsi(vf);
2419	if (!vsi) {
2420		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2421		goto handle_mac_exit;
2422	}
2423
2424	for (i = 0; i < al->num_elements; i++) {
2425		u8 *mac_addr = al->list[i].addr;
2426		int result;
2427
2428		if (is_broadcast_ether_addr(mac_addr) ||
2429		    is_zero_ether_addr(mac_addr))
2430			continue;
2431
2432		result = ice_vc_cfg_mac(vf, vsi, &al->list[i]);
2433		if (result == -EEXIST || result == -ENOENT) {
2434			continue;
2435		} else if (result) {
2436			v_ret = VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR;
2437			goto handle_mac_exit;
2438		}
2439	}
2440
2441handle_mac_exit:
2442	/* send the response to the VF */
2443	return ice_vc_send_msg_to_vf(vf, vc_op, v_ret, NULL, 0);
2444}
2445
2446/**
2447 * ice_vc_add_mac_addr_msg
2448 * @vf: pointer to the VF info
2449 * @msg: pointer to the msg buffer
2450 *
2451 * add guest MAC address filter
2452 */
2453static int ice_vc_add_mac_addr_msg(struct ice_vf *vf, u8 *msg)
2454{
2455	return ice_vc_handle_mac_addr_msg(vf, msg, true);
2456}
2457
2458/**
2459 * ice_vc_del_mac_addr_msg
2460 * @vf: pointer to the VF info
2461 * @msg: pointer to the msg buffer
2462 *
2463 * remove guest MAC address filter
2464 */
2465static int ice_vc_del_mac_addr_msg(struct ice_vf *vf, u8 *msg)
2466{
2467	return ice_vc_handle_mac_addr_msg(vf, msg, false);
2468}
2469
2470/**
2471 * ice_vc_request_qs_msg
2472 * @vf: pointer to the VF info
2473 * @msg: pointer to the msg buffer
2474 *
2475 * VFs get a default number of queues but can use this message to request a
2476 * different number. If the request is successful, PF will reset the VF and
2477 * return 0. If unsuccessful, PF will send message informing VF of number of
2478 * available queue pairs via virtchnl message response to VF.
2479 */
2480static int ice_vc_request_qs_msg(struct ice_vf *vf, u8 *msg)
2481{
2482	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
2483	struct virtchnl_vf_res_request *vfres =
2484		(struct virtchnl_vf_res_request *)msg;
2485	u16 req_queues = vfres->num_queue_pairs;
2486	struct ice_pf *pf = vf->pf;
2487	u16 max_allowed_vf_queues;
2488	u16 tx_rx_queue_left;
2489	struct device *dev;
2490	u16 cur_queues;
2491
2492	dev = ice_pf_to_dev(pf);
2493	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
2494		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2495		goto error_param;
2496	}
2497
2498	cur_queues = vf->num_vf_qs;
2499	tx_rx_queue_left = min_t(u16, ice_get_avail_txq_count(pf),
2500				 ice_get_avail_rxq_count(pf));
2501	max_allowed_vf_queues = tx_rx_queue_left + cur_queues;
2502	if (!req_queues) {
2503		dev_err(dev, "VF %d tried to request 0 queues. Ignoring.\n",
2504			vf->vf_id);
2505	} else if (req_queues > ICE_MAX_RSS_QS_PER_VF) {
2506		dev_err(dev, "VF %d tried to request more than %d queues.\n",
2507			vf->vf_id, ICE_MAX_RSS_QS_PER_VF);
2508		vfres->num_queue_pairs = ICE_MAX_RSS_QS_PER_VF;
2509	} else if (req_queues > cur_queues &&
2510		   req_queues - cur_queues > tx_rx_queue_left) {
2511		dev_warn(dev, "VF %d requested %u more queues, but only %u left.\n",
2512			 vf->vf_id, req_queues - cur_queues, tx_rx_queue_left);
2513		vfres->num_queue_pairs = min_t(u16, max_allowed_vf_queues,
2514					       ICE_MAX_RSS_QS_PER_VF);
2515	} else {
2516		/* request is successful, then reset VF */
2517		vf->num_req_qs = req_queues;
2518		ice_reset_vf(vf, ICE_VF_RESET_NOTIFY);
2519		dev_info(dev, "VF %d granted request of %u queues.\n",
2520			 vf->vf_id, req_queues);
2521		return 0;
2522	}
2523
2524error_param:
2525	/* send the response to the VF */
2526	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_REQUEST_QUEUES,
2527				     v_ret, (u8 *)vfres, sizeof(*vfres));
2528}
2529
2530/**
2531 * ice_vf_vlan_offload_ena - determine if capabilities support VLAN offloads
2532 * @caps: VF driver negotiated capabilities
2533 *
2534 * Return true if VIRTCHNL_VF_OFFLOAD_VLAN capability is set, else return false
2535 */
2536static bool ice_vf_vlan_offload_ena(u32 caps)
2537{
2538	return !!(caps & VIRTCHNL_VF_OFFLOAD_VLAN);
2539}
2540
2541/**
2542 * ice_is_vlan_promisc_allowed - check if VLAN promiscuous config is allowed
2543 * @vf: VF used to determine if VLAN promiscuous config is allowed
2544 */
2545static bool ice_is_vlan_promisc_allowed(struct ice_vf *vf)
2546{
2547	if ((test_bit(ICE_VF_STATE_UC_PROMISC, vf->vf_states) ||
2548	     test_bit(ICE_VF_STATE_MC_PROMISC, vf->vf_states)) &&
2549	    test_bit(ICE_FLAG_VF_TRUE_PROMISC_ENA, vf->pf->flags))
2550		return true;
2551
2552	return false;
2553}
2554
2555/**
2556 * ice_vf_ena_vlan_promisc - Enable Tx/Rx VLAN promiscuous for the VLAN
2557 * @vf: VF to enable VLAN promisc on
2558 * @vsi: VF's VSI used to enable VLAN promiscuous mode
2559 * @vlan: VLAN used to enable VLAN promiscuous
2560 *
2561 * This function should only be called if VLAN promiscuous mode is allowed,
2562 * which can be determined via ice_is_vlan_promisc_allowed().
2563 */
2564static int ice_vf_ena_vlan_promisc(struct ice_vf *vf, struct ice_vsi *vsi,
2565				   struct ice_vlan *vlan)
2566{
2567	u8 promisc_m = 0;
2568	int status;
2569
2570	if (test_bit(ICE_VF_STATE_UC_PROMISC, vf->vf_states))
2571		promisc_m |= ICE_UCAST_VLAN_PROMISC_BITS;
2572	if (test_bit(ICE_VF_STATE_MC_PROMISC, vf->vf_states))
2573		promisc_m |= ICE_MCAST_VLAN_PROMISC_BITS;
2574
2575	if (!promisc_m)
2576		return 0;
2577
2578	status = ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx, promisc_m,
2579					  vlan->vid);
2580	if (status && status != -EEXIST)
2581		return status;
2582
2583	return 0;
2584}
2585
2586/**
2587 * ice_vf_dis_vlan_promisc - Disable Tx/Rx VLAN promiscuous for the VLAN
2588 * @vsi: VF's VSI used to disable VLAN promiscuous mode for
2589 * @vlan: VLAN used to disable VLAN promiscuous
2590 *
2591 * This function should only be called if VLAN promiscuous mode is allowed,
2592 * which can be determined via ice_is_vlan_promisc_allowed().
2593 */
2594static int ice_vf_dis_vlan_promisc(struct ice_vsi *vsi, struct ice_vlan *vlan)
2595{
2596	u8 promisc_m = ICE_UCAST_VLAN_PROMISC_BITS | ICE_MCAST_VLAN_PROMISC_BITS;
2597	int status;
2598
2599	status = ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx, promisc_m,
2600					    vlan->vid);
2601	if (status && status != -ENOENT)
2602		return status;
2603
2604	return 0;
2605}
2606
2607/**
2608 * ice_vf_has_max_vlans - check if VF already has the max allowed VLAN filters
2609 * @vf: VF to check against
2610 * @vsi: VF's VSI
2611 *
2612 * If the VF is trusted then the VF is allowed to add as many VLANs as it
2613 * wants to, so return false.
2614 *
2615 * When the VF is untrusted compare the number of non-zero VLANs + 1 to the max
2616 * allowed VLANs for an untrusted VF. Return the result of this comparison.
2617 */
2618static bool ice_vf_has_max_vlans(struct ice_vf *vf, struct ice_vsi *vsi)
2619{
2620	if (ice_is_vf_trusted(vf))
2621		return false;
2622
2623#define ICE_VF_ADDED_VLAN_ZERO_FLTRS	1
2624	return ((ice_vsi_num_non_zero_vlans(vsi) +
2625		ICE_VF_ADDED_VLAN_ZERO_FLTRS) >= ICE_MAX_VLAN_PER_VF);
2626}
2627
2628/**
2629 * ice_vc_process_vlan_msg
2630 * @vf: pointer to the VF info
2631 * @msg: pointer to the msg buffer
2632 * @add_v: Add VLAN if true, otherwise delete VLAN
2633 *
2634 * Process virtchnl op to add or remove programmed guest VLAN ID
2635 */
2636static int ice_vc_process_vlan_msg(struct ice_vf *vf, u8 *msg, bool add_v)
2637{
2638	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
2639	struct virtchnl_vlan_filter_list *vfl =
2640	    (struct virtchnl_vlan_filter_list *)msg;
2641	struct ice_pf *pf = vf->pf;
2642	bool vlan_promisc = false;
2643	struct ice_vsi *vsi;
2644	struct device *dev;
2645	int status = 0;
2646	int i;
2647
2648	dev = ice_pf_to_dev(pf);
2649	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
2650		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2651		goto error_param;
2652	}
2653
2654	if (!ice_vf_vlan_offload_ena(vf->driver_caps)) {
2655		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2656		goto error_param;
2657	}
2658
2659	if (!ice_vc_isvalid_vsi_id(vf, vfl->vsi_id)) {
2660		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2661		goto error_param;
2662	}
2663
2664	for (i = 0; i < vfl->num_elements; i++) {
2665		if (vfl->vlan_id[i] >= VLAN_N_VID) {
2666			v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2667			dev_err(dev, "invalid VF VLAN id %d\n",
2668				vfl->vlan_id[i]);
2669			goto error_param;
2670		}
2671	}
2672
2673	vsi = ice_get_vf_vsi(vf);
2674	if (!vsi) {
2675		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2676		goto error_param;
2677	}
2678
2679	if (add_v && ice_vf_has_max_vlans(vf, vsi)) {
2680		dev_info(dev, "VF-%d is not trusted, switch the VF to trusted mode, in order to add more VLAN addresses\n",
2681			 vf->vf_id);
2682		/* There is no need to let VF know about being not trusted,
2683		 * so we can just return success message here
2684		 */
2685		goto error_param;
2686	}
2687
2688	/* in DVM a VF can add/delete inner VLAN filters when
2689	 * VIRTCHNL_VF_OFFLOAD_VLAN is negotiated, so only reject in SVM
2690	 */
2691	if (ice_vf_is_port_vlan_ena(vf) && !ice_is_dvm_ena(&pf->hw)) {
2692		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2693		goto error_param;
2694	}
2695
2696	/* in DVM VLAN promiscuous is based on the outer VLAN, which would be
2697	 * the port VLAN if VIRTCHNL_VF_OFFLOAD_VLAN was negotiated, so only
2698	 * allow vlan_promisc = true in SVM and if no port VLAN is configured
2699	 */
2700	vlan_promisc = ice_is_vlan_promisc_allowed(vf) &&
2701		!ice_is_dvm_ena(&pf->hw) &&
2702		!ice_vf_is_port_vlan_ena(vf);
2703
2704	if (add_v) {
2705		for (i = 0; i < vfl->num_elements; i++) {
2706			u16 vid = vfl->vlan_id[i];
2707			struct ice_vlan vlan;
2708
2709			if (ice_vf_has_max_vlans(vf, vsi)) {
2710				dev_info(dev, "VF-%d is not trusted, switch the VF to trusted mode, in order to add more VLAN addresses\n",
2711					 vf->vf_id);
2712				/* There is no need to let VF know about being
2713				 * not trusted, so we can just return success
2714				 * message here as well.
2715				 */
2716				goto error_param;
2717			}
2718
2719			/* we add VLAN 0 by default for each VF so we can enable
2720			 * Tx VLAN anti-spoof without triggering MDD events so
2721			 * we don't need to add it again here
2722			 */
2723			if (!vid)
2724				continue;
2725
2726			vlan = ICE_VLAN(ETH_P_8021Q, vid, 0);
2727			status = vsi->inner_vlan_ops.add_vlan(vsi, &vlan);
2728			if (status) {
2729				v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2730				goto error_param;
2731			}
2732
2733			/* Enable VLAN filtering on first non-zero VLAN */
2734			if (!vlan_promisc && vid && !ice_is_dvm_ena(&pf->hw)) {
2735				if (vf->spoofchk) {
2736					status = vsi->inner_vlan_ops.ena_tx_filtering(vsi);
2737					if (status) {
2738						v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2739						dev_err(dev, "Enable VLAN anti-spoofing on VLAN ID: %d failed error-%d\n",
2740							vid, status);
2741						goto error_param;
2742					}
2743				}
2744				if (vsi->inner_vlan_ops.ena_rx_filtering(vsi)) {
2745					v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2746					dev_err(dev, "Enable VLAN pruning on VLAN ID: %d failed error-%d\n",
2747						vid, status);
2748					goto error_param;
2749				}
2750			} else if (vlan_promisc) {
2751				status = ice_vf_ena_vlan_promisc(vf, vsi, &vlan);
2752				if (status) {
2753					v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2754					dev_err(dev, "Enable Unicast/multicast promiscuous mode on VLAN ID:%d failed error-%d\n",
2755						vid, status);
2756				}
2757			}
2758		}
2759	} else {
2760		/* In case of non_trusted VF, number of VLAN elements passed
2761		 * to PF for removal might be greater than number of VLANs
2762		 * filter programmed for that VF - So, use actual number of
2763		 * VLANS added earlier with add VLAN opcode. In order to avoid
2764		 * removing VLAN that doesn't exist, which result to sending
2765		 * erroneous failed message back to the VF
2766		 */
2767		int num_vf_vlan;
2768
2769		num_vf_vlan = vsi->num_vlan;
2770		for (i = 0; i < vfl->num_elements && i < num_vf_vlan; i++) {
2771			u16 vid = vfl->vlan_id[i];
2772			struct ice_vlan vlan;
2773
2774			/* we add VLAN 0 by default for each VF so we can enable
2775			 * Tx VLAN anti-spoof without triggering MDD events so
2776			 * we don't want a VIRTCHNL request to remove it
2777			 */
2778			if (!vid)
2779				continue;
2780
2781			vlan = ICE_VLAN(ETH_P_8021Q, vid, 0);
2782			status = vsi->inner_vlan_ops.del_vlan(vsi, &vlan);
2783			if (status) {
2784				v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2785				goto error_param;
2786			}
2787
2788			/* Disable VLAN filtering when only VLAN 0 is left */
2789			if (!ice_vsi_has_non_zero_vlans(vsi)) {
2790				vsi->inner_vlan_ops.dis_tx_filtering(vsi);
2791				vsi->inner_vlan_ops.dis_rx_filtering(vsi);
2792			}
2793
2794			if (vlan_promisc)
2795				ice_vf_dis_vlan_promisc(vsi, &vlan);
2796		}
2797	}
2798
2799error_param:
2800	/* send the response to the VF */
2801	if (add_v)
2802		return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ADD_VLAN, v_ret,
2803					     NULL, 0);
2804	else
2805		return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DEL_VLAN, v_ret,
2806					     NULL, 0);
2807}
2808
2809/**
2810 * ice_vc_add_vlan_msg
2811 * @vf: pointer to the VF info
2812 * @msg: pointer to the msg buffer
2813 *
2814 * Add and program guest VLAN ID
2815 */
2816static int ice_vc_add_vlan_msg(struct ice_vf *vf, u8 *msg)
2817{
2818	return ice_vc_process_vlan_msg(vf, msg, true);
2819}
2820
2821/**
2822 * ice_vc_remove_vlan_msg
2823 * @vf: pointer to the VF info
2824 * @msg: pointer to the msg buffer
2825 *
2826 * remove programmed guest VLAN ID
2827 */
2828static int ice_vc_remove_vlan_msg(struct ice_vf *vf, u8 *msg)
2829{
2830	return ice_vc_process_vlan_msg(vf, msg, false);
2831}
2832
2833/**
2834 * ice_vsi_is_rxq_crc_strip_dis - check if Rx queue CRC strip is disabled or not
2835 * @vsi: pointer to the VF VSI info
2836 */
2837static bool ice_vsi_is_rxq_crc_strip_dis(struct ice_vsi *vsi)
2838{
2839	unsigned int i;
2840
2841	ice_for_each_alloc_rxq(vsi, i)
2842		if (vsi->rx_rings[i]->flags & ICE_RX_FLAGS_CRC_STRIP_DIS)
2843			return true;
2844
2845	return false;
2846}
2847
2848/**
2849 * ice_vc_ena_vlan_stripping
2850 * @vf: pointer to the VF info
2851 *
2852 * Enable VLAN header stripping for a given VF
2853 */
2854static int ice_vc_ena_vlan_stripping(struct ice_vf *vf)
2855{
2856	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
2857	struct ice_vsi *vsi;
2858
2859	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
2860		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2861		goto error_param;
2862	}
2863
2864	if (!ice_vf_vlan_offload_ena(vf->driver_caps)) {
2865		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2866		goto error_param;
2867	}
2868
2869	vsi = ice_get_vf_vsi(vf);
2870	if (!vsi) {
2871		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2872		goto error_param;
2873	}
2874
2875	if (vsi->inner_vlan_ops.ena_stripping(vsi, ETH_P_8021Q))
2876		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2877	else
2878		vf->vlan_strip_ena |= ICE_INNER_VLAN_STRIP_ENA;
2879
2880error_param:
2881	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ENABLE_VLAN_STRIPPING,
2882				     v_ret, NULL, 0);
2883}
2884
2885/**
2886 * ice_vc_dis_vlan_stripping
2887 * @vf: pointer to the VF info
2888 *
2889 * Disable VLAN header stripping for a given VF
2890 */
2891static int ice_vc_dis_vlan_stripping(struct ice_vf *vf)
2892{
2893	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
2894	struct ice_vsi *vsi;
2895
2896	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
2897		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2898		goto error_param;
2899	}
2900
2901	if (!ice_vf_vlan_offload_ena(vf->driver_caps)) {
2902		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2903		goto error_param;
2904	}
2905
2906	vsi = ice_get_vf_vsi(vf);
2907	if (!vsi) {
2908		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2909		goto error_param;
2910	}
2911
2912	if (vsi->inner_vlan_ops.dis_stripping(vsi))
2913		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2914	else
2915		vf->vlan_strip_ena &= ~ICE_INNER_VLAN_STRIP_ENA;
2916
2917error_param:
2918	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DISABLE_VLAN_STRIPPING,
2919				     v_ret, NULL, 0);
2920}
2921
2922/**
2923 * ice_vc_get_rss_hena - return the RSS HENA bits allowed by the hardware
2924 * @vf: pointer to the VF info
2925 */
2926static int ice_vc_get_rss_hena(struct ice_vf *vf)
2927{
2928	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
2929	struct virtchnl_rss_hena *vrh = NULL;
2930	int len = 0, ret;
2931
2932	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
2933		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2934		goto err;
2935	}
2936
2937	if (!test_bit(ICE_FLAG_RSS_ENA, vf->pf->flags)) {
2938		dev_err(ice_pf_to_dev(vf->pf), "RSS not supported by PF\n");
2939		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2940		goto err;
2941	}
2942
2943	len = sizeof(struct virtchnl_rss_hena);
2944	vrh = kzalloc(len, GFP_KERNEL);
2945	if (!vrh) {
2946		v_ret = VIRTCHNL_STATUS_ERR_NO_MEMORY;
2947		len = 0;
2948		goto err;
2949	}
2950
2951	vrh->hena = ICE_DEFAULT_RSS_HENA;
2952err:
2953	/* send the response back to the VF */
2954	ret = ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_GET_RSS_HENA_CAPS, v_ret,
2955				    (u8 *)vrh, len);
2956	kfree(vrh);
2957	return ret;
2958}
2959
2960/**
2961 * ice_vc_set_rss_hena - set RSS HENA bits for the VF
2962 * @vf: pointer to the VF info
2963 * @msg: pointer to the msg buffer
2964 */
2965static int ice_vc_set_rss_hena(struct ice_vf *vf, u8 *msg)
2966{
2967	struct virtchnl_rss_hena *vrh = (struct virtchnl_rss_hena *)msg;
2968	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
2969	struct ice_pf *pf = vf->pf;
2970	struct ice_vsi *vsi;
2971	struct device *dev;
2972	int status;
2973
2974	dev = ice_pf_to_dev(pf);
2975
2976	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
2977		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2978		goto err;
2979	}
2980
2981	if (!test_bit(ICE_FLAG_RSS_ENA, pf->flags)) {
2982		dev_err(dev, "RSS not supported by PF\n");
2983		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2984		goto err;
2985	}
2986
2987	vsi = ice_get_vf_vsi(vf);
2988	if (!vsi) {
2989		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2990		goto err;
2991	}
2992
2993	/* clear all previously programmed RSS configuration to allow VF drivers
2994	 * the ability to customize the RSS configuration and/or completely
2995	 * disable RSS
2996	 */
2997	status = ice_rem_vsi_rss_cfg(&pf->hw, vsi->idx);
2998	if (status && !vrh->hena) {
2999		/* only report failure to clear the current RSS configuration if
3000		 * that was clearly the VF's intention (i.e. vrh->hena = 0)
3001		 */
3002		v_ret = ice_err_to_virt_err(status);
3003		goto err;
3004	} else if (status) {
3005		/* allow the VF to update the RSS configuration even on failure
3006		 * to clear the current RSS confguration in an attempt to keep
3007		 * RSS in a working state
3008		 */
3009		dev_warn(dev, "Failed to clear the RSS configuration for VF %u\n",
3010			 vf->vf_id);
3011	}
3012
3013	if (vrh->hena) {
3014		status = ice_add_avf_rss_cfg(&pf->hw, vsi, vrh->hena);
3015		v_ret = ice_err_to_virt_err(status);
3016	}
3017
3018	/* send the response to the VF */
3019err:
3020	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_SET_RSS_HENA, v_ret,
3021				     NULL, 0);
3022}
3023
3024/**
3025 * ice_vc_query_rxdid - query RXDID supported by DDP package
3026 * @vf: pointer to VF info
3027 *
3028 * Called from VF to query a bitmap of supported flexible
3029 * descriptor RXDIDs of a DDP package.
3030 */
3031static int ice_vc_query_rxdid(struct ice_vf *vf)
3032{
3033	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
3034	struct virtchnl_supported_rxdids rxdid = {};
3035	struct ice_pf *pf = vf->pf;
3036
3037	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
3038		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3039		goto err;
3040	}
3041
3042	if (!(vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC)) {
3043		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3044		goto err;
3045	}
3046
3047	rxdid.supported_rxdids = pf->supported_rxdids;
3048
3049err:
3050	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_GET_SUPPORTED_RXDIDS,
3051				     v_ret, (u8 *)&rxdid, sizeof(rxdid));
3052}
3053
3054/**
3055 * ice_vf_init_vlan_stripping - enable/disable VLAN stripping on initialization
3056 * @vf: VF to enable/disable VLAN stripping for on initialization
3057 *
3058 * Set the default for VLAN stripping based on whether a port VLAN is configured
3059 * and the current VLAN mode of the device.
3060 */
3061static int ice_vf_init_vlan_stripping(struct ice_vf *vf)
3062{
3063	struct ice_vsi *vsi = ice_get_vf_vsi(vf);
3064
3065	vf->vlan_strip_ena = 0;
3066
3067	if (!vsi)
3068		return -EINVAL;
3069
3070	/* don't modify stripping if port VLAN is configured in SVM since the
3071	 * port VLAN is based on the inner/single VLAN in SVM
3072	 */
3073	if (ice_vf_is_port_vlan_ena(vf) && !ice_is_dvm_ena(&vsi->back->hw))
3074		return 0;
3075
3076	if (ice_vf_vlan_offload_ena(vf->driver_caps)) {
3077		int err;
3078
3079		err = vsi->inner_vlan_ops.ena_stripping(vsi, ETH_P_8021Q);
3080		if (!err)
3081			vf->vlan_strip_ena |= ICE_INNER_VLAN_STRIP_ENA;
3082		return err;
3083	}
3084
3085	return vsi->inner_vlan_ops.dis_stripping(vsi);
3086}
3087
3088static u16 ice_vc_get_max_vlan_fltrs(struct ice_vf *vf)
3089{
3090	if (vf->trusted)
3091		return VLAN_N_VID;
3092	else
3093		return ICE_MAX_VLAN_PER_VF;
3094}
3095
3096/**
3097 * ice_vf_outer_vlan_not_allowed - check if outer VLAN can be used
3098 * @vf: VF that being checked for
3099 *
3100 * When the device is in double VLAN mode, check whether or not the outer VLAN
3101 * is allowed.
3102 */
3103static bool ice_vf_outer_vlan_not_allowed(struct ice_vf *vf)
3104{
3105	if (ice_vf_is_port_vlan_ena(vf))
3106		return true;
3107
3108	return false;
3109}
3110
3111/**
3112 * ice_vc_set_dvm_caps - set VLAN capabilities when the device is in DVM
3113 * @vf: VF that capabilities are being set for
3114 * @caps: VLAN capabilities to populate
3115 *
3116 * Determine VLAN capabilities support based on whether a port VLAN is
3117 * configured. If a port VLAN is configured then the VF should use the inner
3118 * filtering/offload capabilities since the port VLAN is using the outer VLAN
3119 * capabilies.
3120 */
3121static void
3122ice_vc_set_dvm_caps(struct ice_vf *vf, struct virtchnl_vlan_caps *caps)
3123{
3124	struct virtchnl_vlan_supported_caps *supported_caps;
3125
3126	if (ice_vf_outer_vlan_not_allowed(vf)) {
3127		/* until support for inner VLAN filtering is added when a port
3128		 * VLAN is configured, only support software offloaded inner
3129		 * VLANs when a port VLAN is confgured in DVM
3130		 */
3131		supported_caps = &caps->filtering.filtering_support;
3132		supported_caps->inner = VIRTCHNL_VLAN_UNSUPPORTED;
3133
3134		supported_caps = &caps->offloads.stripping_support;
3135		supported_caps->inner = VIRTCHNL_VLAN_ETHERTYPE_8100 |
3136					VIRTCHNL_VLAN_TOGGLE |
3137					VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1;
3138		supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED;
3139
3140		supported_caps = &caps->offloads.insertion_support;
3141		supported_caps->inner = VIRTCHNL_VLAN_ETHERTYPE_8100 |
3142					VIRTCHNL_VLAN_TOGGLE |
3143					VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1;
3144		supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED;
3145
3146		caps->offloads.ethertype_init = VIRTCHNL_VLAN_ETHERTYPE_8100;
3147		caps->offloads.ethertype_match =
3148			VIRTCHNL_ETHERTYPE_STRIPPING_MATCHES_INSERTION;
3149	} else {
3150		supported_caps = &caps->filtering.filtering_support;
3151		supported_caps->inner = VIRTCHNL_VLAN_UNSUPPORTED;
3152		supported_caps->outer = VIRTCHNL_VLAN_ETHERTYPE_8100 |
3153					VIRTCHNL_VLAN_ETHERTYPE_88A8 |
3154					VIRTCHNL_VLAN_ETHERTYPE_9100 |
3155					VIRTCHNL_VLAN_ETHERTYPE_AND;
3156		caps->filtering.ethertype_init = VIRTCHNL_VLAN_ETHERTYPE_8100 |
3157						 VIRTCHNL_VLAN_ETHERTYPE_88A8 |
3158						 VIRTCHNL_VLAN_ETHERTYPE_9100;
3159
3160		supported_caps = &caps->offloads.stripping_support;
3161		supported_caps->inner = VIRTCHNL_VLAN_TOGGLE |
3162					VIRTCHNL_VLAN_ETHERTYPE_8100 |
3163					VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1;
3164		supported_caps->outer = VIRTCHNL_VLAN_TOGGLE |
3165					VIRTCHNL_VLAN_ETHERTYPE_8100 |
3166					VIRTCHNL_VLAN_ETHERTYPE_88A8 |
3167					VIRTCHNL_VLAN_ETHERTYPE_9100 |
3168					VIRTCHNL_VLAN_ETHERTYPE_XOR |
3169					VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2;
3170
3171		supported_caps = &caps->offloads.insertion_support;
3172		supported_caps->inner = VIRTCHNL_VLAN_TOGGLE |
3173					VIRTCHNL_VLAN_ETHERTYPE_8100 |
3174					VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1;
3175		supported_caps->outer = VIRTCHNL_VLAN_TOGGLE |
3176					VIRTCHNL_VLAN_ETHERTYPE_8100 |
3177					VIRTCHNL_VLAN_ETHERTYPE_88A8 |
3178					VIRTCHNL_VLAN_ETHERTYPE_9100 |
3179					VIRTCHNL_VLAN_ETHERTYPE_XOR |
3180					VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2;
3181
3182		caps->offloads.ethertype_init = VIRTCHNL_VLAN_ETHERTYPE_8100;
3183
3184		caps->offloads.ethertype_match =
3185			VIRTCHNL_ETHERTYPE_STRIPPING_MATCHES_INSERTION;
3186	}
3187
3188	caps->filtering.max_filters = ice_vc_get_max_vlan_fltrs(vf);
3189}
3190
3191/**
3192 * ice_vc_set_svm_caps - set VLAN capabilities when the device is in SVM
3193 * @vf: VF that capabilities are being set for
3194 * @caps: VLAN capabilities to populate
3195 *
3196 * Determine VLAN capabilities support based on whether a port VLAN is
3197 * configured. If a port VLAN is configured then the VF does not have any VLAN
3198 * filtering or offload capabilities since the port VLAN is using the inner VLAN
3199 * capabilities in single VLAN mode (SVM). Otherwise allow the VF to use inner
3200 * VLAN fitlering and offload capabilities.
3201 */
3202static void
3203ice_vc_set_svm_caps(struct ice_vf *vf, struct virtchnl_vlan_caps *caps)
3204{
3205	struct virtchnl_vlan_supported_caps *supported_caps;
3206
3207	if (ice_vf_is_port_vlan_ena(vf)) {
3208		supported_caps = &caps->filtering.filtering_support;
3209		supported_caps->inner = VIRTCHNL_VLAN_UNSUPPORTED;
3210		supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED;
3211
3212		supported_caps = &caps->offloads.stripping_support;
3213		supported_caps->inner = VIRTCHNL_VLAN_UNSUPPORTED;
3214		supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED;
3215
3216		supported_caps = &caps->offloads.insertion_support;
3217		supported_caps->inner = VIRTCHNL_VLAN_UNSUPPORTED;
3218		supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED;
3219
3220		caps->offloads.ethertype_init = VIRTCHNL_VLAN_UNSUPPORTED;
3221		caps->offloads.ethertype_match = VIRTCHNL_VLAN_UNSUPPORTED;
3222		caps->filtering.max_filters = 0;
3223	} else {
3224		supported_caps = &caps->filtering.filtering_support;
3225		supported_caps->inner = VIRTCHNL_VLAN_ETHERTYPE_8100;
3226		supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED;
3227		caps->filtering.ethertype_init = VIRTCHNL_VLAN_ETHERTYPE_8100;
3228
3229		supported_caps = &caps->offloads.stripping_support;
3230		supported_caps->inner = VIRTCHNL_VLAN_ETHERTYPE_8100 |
3231					VIRTCHNL_VLAN_TOGGLE |
3232					VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1;
3233		supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED;
3234
3235		supported_caps = &caps->offloads.insertion_support;
3236		supported_caps->inner = VIRTCHNL_VLAN_ETHERTYPE_8100 |
3237					VIRTCHNL_VLAN_TOGGLE |
3238					VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1;
3239		supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED;
3240
3241		caps->offloads.ethertype_init = VIRTCHNL_VLAN_ETHERTYPE_8100;
3242		caps->offloads.ethertype_match =
3243			VIRTCHNL_ETHERTYPE_STRIPPING_MATCHES_INSERTION;
3244		caps->filtering.max_filters = ice_vc_get_max_vlan_fltrs(vf);
3245	}
3246}
3247
3248/**
3249 * ice_vc_get_offload_vlan_v2_caps - determine VF's VLAN capabilities
3250 * @vf: VF to determine VLAN capabilities for
3251 *
3252 * This will only be called if the VF and PF successfully negotiated
3253 * VIRTCHNL_VF_OFFLOAD_VLAN_V2.
3254 *
3255 * Set VLAN capabilities based on the current VLAN mode and whether a port VLAN
3256 * is configured or not.
3257 */
3258static int ice_vc_get_offload_vlan_v2_caps(struct ice_vf *vf)
3259{
3260	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
3261	struct virtchnl_vlan_caps *caps = NULL;
3262	int err, len = 0;
3263
3264	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
3265		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3266		goto out;
3267	}
3268
3269	caps = kzalloc(sizeof(*caps), GFP_KERNEL);
3270	if (!caps) {
3271		v_ret = VIRTCHNL_STATUS_ERR_NO_MEMORY;
3272		goto out;
3273	}
3274	len = sizeof(*caps);
3275
3276	if (ice_is_dvm_ena(&vf->pf->hw))
3277		ice_vc_set_dvm_caps(vf, caps);
3278	else
3279		ice_vc_set_svm_caps(vf, caps);
3280
3281	/* store negotiated caps to prevent invalid VF messages */
3282	memcpy(&vf->vlan_v2_caps, caps, sizeof(*caps));
3283
3284out:
3285	err = ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS,
3286				    v_ret, (u8 *)caps, len);
3287	kfree(caps);
3288	return err;
3289}
3290
3291/**
3292 * ice_vc_validate_vlan_tpid - validate VLAN TPID
3293 * @filtering_caps: negotiated/supported VLAN filtering capabilities
3294 * @tpid: VLAN TPID used for validation
3295 *
3296 * Convert the VLAN TPID to a VIRTCHNL_VLAN_ETHERTYPE_* and then compare against
3297 * the negotiated/supported filtering caps to see if the VLAN TPID is valid.
3298 */
3299static bool ice_vc_validate_vlan_tpid(u16 filtering_caps, u16 tpid)
3300{
3301	enum virtchnl_vlan_support vlan_ethertype = VIRTCHNL_VLAN_UNSUPPORTED;
3302
3303	switch (tpid) {
3304	case ETH_P_8021Q:
3305		vlan_ethertype = VIRTCHNL_VLAN_ETHERTYPE_8100;
3306		break;
3307	case ETH_P_8021AD:
3308		vlan_ethertype = VIRTCHNL_VLAN_ETHERTYPE_88A8;
3309		break;
3310	case ETH_P_QINQ1:
3311		vlan_ethertype = VIRTCHNL_VLAN_ETHERTYPE_9100;
3312		break;
3313	}
3314
3315	if (!(filtering_caps & vlan_ethertype))
3316		return false;
3317
3318	return true;
3319}
3320
3321/**
3322 * ice_vc_is_valid_vlan - validate the virtchnl_vlan
3323 * @vc_vlan: virtchnl_vlan to validate
3324 *
3325 * If the VLAN TCI and VLAN TPID are 0, then this filter is invalid, so return
3326 * false. Otherwise return true.
3327 */
3328static bool ice_vc_is_valid_vlan(struct virtchnl_vlan *vc_vlan)
3329{
3330	if (!vc_vlan->tci || !vc_vlan->tpid)
3331		return false;
3332
3333	return true;
3334}
3335
3336/**
3337 * ice_vc_validate_vlan_filter_list - validate the filter list from the VF
3338 * @vfc: negotiated/supported VLAN filtering capabilities
3339 * @vfl: VLAN filter list from VF to validate
3340 *
3341 * Validate all of the filters in the VLAN filter list from the VF. If any of
3342 * the checks fail then return false. Otherwise return true.
3343 */
3344static bool
3345ice_vc_validate_vlan_filter_list(struct virtchnl_vlan_filtering_caps *vfc,
3346				 struct virtchnl_vlan_filter_list_v2 *vfl)
3347{
3348	u16 i;
3349
3350	if (!vfl->num_elements)
3351		return false;
3352
3353	for (i = 0; i < vfl->num_elements; i++) {
3354		struct virtchnl_vlan_supported_caps *filtering_support =
3355			&vfc->filtering_support;
3356		struct virtchnl_vlan_filter *vlan_fltr = &vfl->filters[i];
3357		struct virtchnl_vlan *outer = &vlan_fltr->outer;
3358		struct virtchnl_vlan *inner = &vlan_fltr->inner;
3359
3360		if ((ice_vc_is_valid_vlan(outer) &&
3361		     filtering_support->outer == VIRTCHNL_VLAN_UNSUPPORTED) ||
3362		    (ice_vc_is_valid_vlan(inner) &&
3363		     filtering_support->inner == VIRTCHNL_VLAN_UNSUPPORTED))
3364			return false;
3365
3366		if ((outer->tci_mask &&
3367		     !(filtering_support->outer & VIRTCHNL_VLAN_FILTER_MASK)) ||
3368		    (inner->tci_mask &&
3369		     !(filtering_support->inner & VIRTCHNL_VLAN_FILTER_MASK)))
3370			return false;
3371
3372		if (((outer->tci & VLAN_PRIO_MASK) &&
3373		     !(filtering_support->outer & VIRTCHNL_VLAN_PRIO)) ||
3374		    ((inner->tci & VLAN_PRIO_MASK) &&
3375		     !(filtering_support->inner & VIRTCHNL_VLAN_PRIO)))
3376			return false;
3377
3378		if ((ice_vc_is_valid_vlan(outer) &&
3379		     !ice_vc_validate_vlan_tpid(filtering_support->outer,
3380						outer->tpid)) ||
3381		    (ice_vc_is_valid_vlan(inner) &&
3382		     !ice_vc_validate_vlan_tpid(filtering_support->inner,
3383						inner->tpid)))
3384			return false;
3385	}
3386
3387	return true;
3388}
3389
3390/**
3391 * ice_vc_to_vlan - transform from struct virtchnl_vlan to struct ice_vlan
3392 * @vc_vlan: struct virtchnl_vlan to transform
3393 */
3394static struct ice_vlan ice_vc_to_vlan(struct virtchnl_vlan *vc_vlan)
3395{
3396	struct ice_vlan vlan = { 0 };
3397
3398	vlan.prio = FIELD_GET(VLAN_PRIO_MASK, vc_vlan->tci);
3399	vlan.vid = vc_vlan->tci & VLAN_VID_MASK;
3400	vlan.tpid = vc_vlan->tpid;
3401
3402	return vlan;
3403}
3404
3405/**
3406 * ice_vc_vlan_action - action to perform on the virthcnl_vlan
3407 * @vsi: VF's VSI used to perform the action
3408 * @vlan_action: function to perform the action with (i.e. add/del)
3409 * @vlan: VLAN filter to perform the action with
3410 */
3411static int
3412ice_vc_vlan_action(struct ice_vsi *vsi,
3413		   int (*vlan_action)(struct ice_vsi *, struct ice_vlan *),
3414		   struct ice_vlan *vlan)
3415{
3416	int err;
3417
3418	err = vlan_action(vsi, vlan);
3419	if (err)
3420		return err;
3421
3422	return 0;
3423}
3424
3425/**
3426 * ice_vc_del_vlans - delete VLAN(s) from the virtchnl filter list
3427 * @vf: VF used to delete the VLAN(s)
3428 * @vsi: VF's VSI used to delete the VLAN(s)
3429 * @vfl: virthchnl filter list used to delete the filters
3430 */
3431static int
3432ice_vc_del_vlans(struct ice_vf *vf, struct ice_vsi *vsi,
3433		 struct virtchnl_vlan_filter_list_v2 *vfl)
3434{
3435	bool vlan_promisc = ice_is_vlan_promisc_allowed(vf);
3436	int err;
3437	u16 i;
3438
3439	for (i = 0; i < vfl->num_elements; i++) {
3440		struct virtchnl_vlan_filter *vlan_fltr = &vfl->filters[i];
3441		struct virtchnl_vlan *vc_vlan;
3442
3443		vc_vlan = &vlan_fltr->outer;
3444		if (ice_vc_is_valid_vlan(vc_vlan)) {
3445			struct ice_vlan vlan = ice_vc_to_vlan(vc_vlan);
3446
3447			err = ice_vc_vlan_action(vsi,
3448						 vsi->outer_vlan_ops.del_vlan,
3449						 &vlan);
3450			if (err)
3451				return err;
3452
3453			if (vlan_promisc)
3454				ice_vf_dis_vlan_promisc(vsi, &vlan);
3455
3456			/* Disable VLAN filtering when only VLAN 0 is left */
3457			if (!ice_vsi_has_non_zero_vlans(vsi) && ice_is_dvm_ena(&vsi->back->hw)) {
3458				err = vsi->outer_vlan_ops.dis_tx_filtering(vsi);
3459				if (err)
3460					return err;
3461			}
3462		}
3463
3464		vc_vlan = &vlan_fltr->inner;
3465		if (ice_vc_is_valid_vlan(vc_vlan)) {
3466			struct ice_vlan vlan = ice_vc_to_vlan(vc_vlan);
3467
3468			err = ice_vc_vlan_action(vsi,
3469						 vsi->inner_vlan_ops.del_vlan,
3470						 &vlan);
3471			if (err)
3472				return err;
3473
3474			/* no support for VLAN promiscuous on inner VLAN unless
3475			 * we are in Single VLAN Mode (SVM)
3476			 */
3477			if (!ice_is_dvm_ena(&vsi->back->hw)) {
3478				if (vlan_promisc)
3479					ice_vf_dis_vlan_promisc(vsi, &vlan);
3480
3481				/* Disable VLAN filtering when only VLAN 0 is left */
3482				if (!ice_vsi_has_non_zero_vlans(vsi)) {
3483					err = vsi->inner_vlan_ops.dis_tx_filtering(vsi);
3484					if (err)
3485						return err;
3486				}
3487			}
3488		}
3489	}
3490
3491	return 0;
3492}
3493
3494/**
3495 * ice_vc_remove_vlan_v2_msg - virtchnl handler for VIRTCHNL_OP_DEL_VLAN_V2
3496 * @vf: VF the message was received from
3497 * @msg: message received from the VF
3498 */
3499static int ice_vc_remove_vlan_v2_msg(struct ice_vf *vf, u8 *msg)
3500{
3501	struct virtchnl_vlan_filter_list_v2 *vfl =
3502		(struct virtchnl_vlan_filter_list_v2 *)msg;
3503	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
3504	struct ice_vsi *vsi;
3505
3506	if (!ice_vc_validate_vlan_filter_list(&vf->vlan_v2_caps.filtering,
3507					      vfl)) {
3508		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3509		goto out;
3510	}
3511
3512	if (!ice_vc_isvalid_vsi_id(vf, vfl->vport_id)) {
3513		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3514		goto out;
3515	}
3516
3517	vsi = ice_get_vf_vsi(vf);
3518	if (!vsi) {
3519		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3520		goto out;
3521	}
3522
3523	if (ice_vc_del_vlans(vf, vsi, vfl))
3524		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3525
3526out:
3527	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DEL_VLAN_V2, v_ret, NULL,
3528				     0);
3529}
3530
3531/**
3532 * ice_vc_add_vlans - add VLAN(s) from the virtchnl filter list
3533 * @vf: VF used to add the VLAN(s)
3534 * @vsi: VF's VSI used to add the VLAN(s)
3535 * @vfl: virthchnl filter list used to add the filters
3536 */
3537static int
3538ice_vc_add_vlans(struct ice_vf *vf, struct ice_vsi *vsi,
3539		 struct virtchnl_vlan_filter_list_v2 *vfl)
3540{
3541	bool vlan_promisc = ice_is_vlan_promisc_allowed(vf);
3542	int err;
3543	u16 i;
3544
3545	for (i = 0; i < vfl->num_elements; i++) {
3546		struct virtchnl_vlan_filter *vlan_fltr = &vfl->filters[i];
3547		struct virtchnl_vlan *vc_vlan;
3548
3549		vc_vlan = &vlan_fltr->outer;
3550		if (ice_vc_is_valid_vlan(vc_vlan)) {
3551			struct ice_vlan vlan = ice_vc_to_vlan(vc_vlan);
3552
3553			err = ice_vc_vlan_action(vsi,
3554						 vsi->outer_vlan_ops.add_vlan,
3555						 &vlan);
3556			if (err)
3557				return err;
3558
3559			if (vlan_promisc) {
3560				err = ice_vf_ena_vlan_promisc(vf, vsi, &vlan);
3561				if (err)
3562					return err;
3563			}
3564
3565			/* Enable VLAN filtering on first non-zero VLAN */
3566			if (vf->spoofchk && vlan.vid && ice_is_dvm_ena(&vsi->back->hw)) {
3567				err = vsi->outer_vlan_ops.ena_tx_filtering(vsi);
3568				if (err)
3569					return err;
3570			}
3571		}
3572
3573		vc_vlan = &vlan_fltr->inner;
3574		if (ice_vc_is_valid_vlan(vc_vlan)) {
3575			struct ice_vlan vlan = ice_vc_to_vlan(vc_vlan);
3576
3577			err = ice_vc_vlan_action(vsi,
3578						 vsi->inner_vlan_ops.add_vlan,
3579						 &vlan);
3580			if (err)
3581				return err;
3582
3583			/* no support for VLAN promiscuous on inner VLAN unless
3584			 * we are in Single VLAN Mode (SVM)
3585			 */
3586			if (!ice_is_dvm_ena(&vsi->back->hw)) {
3587				if (vlan_promisc) {
3588					err = ice_vf_ena_vlan_promisc(vf, vsi,
3589								      &vlan);
3590					if (err)
3591						return err;
3592				}
3593
3594				/* Enable VLAN filtering on first non-zero VLAN */
3595				if (vf->spoofchk && vlan.vid) {
3596					err = vsi->inner_vlan_ops.ena_tx_filtering(vsi);
3597					if (err)
3598						return err;
3599				}
3600			}
3601		}
3602	}
3603
3604	return 0;
3605}
3606
3607/**
3608 * ice_vc_validate_add_vlan_filter_list - validate add filter list from the VF
3609 * @vsi: VF VSI used to get number of existing VLAN filters
3610 * @vfc: negotiated/supported VLAN filtering capabilities
3611 * @vfl: VLAN filter list from VF to validate
3612 *
3613 * Validate all of the filters in the VLAN filter list from the VF during the
3614 * VIRTCHNL_OP_ADD_VLAN_V2 opcode. If any of the checks fail then return false.
3615 * Otherwise return true.
3616 */
3617static bool
3618ice_vc_validate_add_vlan_filter_list(struct ice_vsi *vsi,
3619				     struct virtchnl_vlan_filtering_caps *vfc,
3620				     struct virtchnl_vlan_filter_list_v2 *vfl)
3621{
3622	u16 num_requested_filters = ice_vsi_num_non_zero_vlans(vsi) +
3623		vfl->num_elements;
3624
3625	if (num_requested_filters > vfc->max_filters)
3626		return false;
3627
3628	return ice_vc_validate_vlan_filter_list(vfc, vfl);
3629}
3630
3631/**
3632 * ice_vc_add_vlan_v2_msg - virtchnl handler for VIRTCHNL_OP_ADD_VLAN_V2
3633 * @vf: VF the message was received from
3634 * @msg: message received from the VF
3635 */
3636static int ice_vc_add_vlan_v2_msg(struct ice_vf *vf, u8 *msg)
3637{
3638	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
3639	struct virtchnl_vlan_filter_list_v2 *vfl =
3640		(struct virtchnl_vlan_filter_list_v2 *)msg;
3641	struct ice_vsi *vsi;
3642
3643	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
3644		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3645		goto out;
3646	}
3647
3648	if (!ice_vc_isvalid_vsi_id(vf, vfl->vport_id)) {
3649		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3650		goto out;
3651	}
3652
3653	vsi = ice_get_vf_vsi(vf);
3654	if (!vsi) {
3655		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3656		goto out;
3657	}
3658
3659	if (!ice_vc_validate_add_vlan_filter_list(vsi,
3660						  &vf->vlan_v2_caps.filtering,
3661						  vfl)) {
3662		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3663		goto out;
3664	}
3665
3666	if (ice_vc_add_vlans(vf, vsi, vfl))
3667		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3668
3669out:
3670	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ADD_VLAN_V2, v_ret, NULL,
3671				     0);
3672}
3673
3674/**
3675 * ice_vc_valid_vlan_setting - validate VLAN setting
3676 * @negotiated_settings: negotiated VLAN settings during VF init
3677 * @ethertype_setting: ethertype(s) requested for the VLAN setting
3678 */
3679static bool
3680ice_vc_valid_vlan_setting(u32 negotiated_settings, u32 ethertype_setting)
3681{
3682	if (ethertype_setting && !(negotiated_settings & ethertype_setting))
3683		return false;
3684
3685	/* only allow a single VIRTCHNL_VLAN_ETHERTYPE if
3686	 * VIRTHCNL_VLAN_ETHERTYPE_AND is not negotiated/supported
3687	 */
3688	if (!(negotiated_settings & VIRTCHNL_VLAN_ETHERTYPE_AND) &&
3689	    hweight32(ethertype_setting) > 1)
3690		return false;
3691
3692	/* ability to modify the VLAN setting was not negotiated */
3693	if (!(negotiated_settings & VIRTCHNL_VLAN_TOGGLE))
3694		return false;
3695
3696	return true;
3697}
3698
3699/**
3700 * ice_vc_valid_vlan_setting_msg - validate the VLAN setting message
3701 * @caps: negotiated VLAN settings during VF init
3702 * @msg: message to validate
3703 *
3704 * Used to validate any VLAN virtchnl message sent as a
3705 * virtchnl_vlan_setting structure. Validates the message against the
3706 * negotiated/supported caps during VF driver init.
3707 */
3708static bool
3709ice_vc_valid_vlan_setting_msg(struct virtchnl_vlan_supported_caps *caps,
3710			      struct virtchnl_vlan_setting *msg)
3711{
3712	if ((!msg->outer_ethertype_setting &&
3713	     !msg->inner_ethertype_setting) ||
3714	    (!caps->outer && !caps->inner))
3715		return false;
3716
3717	if (msg->outer_ethertype_setting &&
3718	    !ice_vc_valid_vlan_setting(caps->outer,
3719				       msg->outer_ethertype_setting))
3720		return false;
3721
3722	if (msg->inner_ethertype_setting &&
3723	    !ice_vc_valid_vlan_setting(caps->inner,
3724				       msg->inner_ethertype_setting))
3725		return false;
3726
3727	return true;
3728}
3729
3730/**
3731 * ice_vc_get_tpid - transform from VIRTCHNL_VLAN_ETHERTYPE_* to VLAN TPID
3732 * @ethertype_setting: VIRTCHNL_VLAN_ETHERTYPE_* used to get VLAN TPID
3733 * @tpid: VLAN TPID to populate
3734 */
3735static int ice_vc_get_tpid(u32 ethertype_setting, u16 *tpid)
3736{
3737	switch (ethertype_setting) {
3738	case VIRTCHNL_VLAN_ETHERTYPE_8100:
3739		*tpid = ETH_P_8021Q;
3740		break;
3741	case VIRTCHNL_VLAN_ETHERTYPE_88A8:
3742		*tpid = ETH_P_8021AD;
3743		break;
3744	case VIRTCHNL_VLAN_ETHERTYPE_9100:
3745		*tpid = ETH_P_QINQ1;
3746		break;
3747	default:
3748		*tpid = 0;
3749		return -EINVAL;
3750	}
3751
3752	return 0;
3753}
3754
3755/**
3756 * ice_vc_ena_vlan_offload - enable VLAN offload based on the ethertype_setting
3757 * @vsi: VF's VSI used to enable the VLAN offload
3758 * @ena_offload: function used to enable the VLAN offload
3759 * @ethertype_setting: VIRTCHNL_VLAN_ETHERTYPE_* to enable offloads for
3760 */
3761static int
3762ice_vc_ena_vlan_offload(struct ice_vsi *vsi,
3763			int (*ena_offload)(struct ice_vsi *vsi, u16 tpid),
3764			u32 ethertype_setting)
3765{
3766	u16 tpid;
3767	int err;
3768
3769	err = ice_vc_get_tpid(ethertype_setting, &tpid);
3770	if (err)
3771		return err;
3772
3773	err = ena_offload(vsi, tpid);
3774	if (err)
3775		return err;
3776
3777	return 0;
3778}
3779
3780#define ICE_L2TSEL_QRX_CONTEXT_REG_IDX	3
3781#define ICE_L2TSEL_BIT_OFFSET		23
3782enum ice_l2tsel {
3783	ICE_L2TSEL_EXTRACT_FIRST_TAG_L2TAG2_2ND,
3784	ICE_L2TSEL_EXTRACT_FIRST_TAG_L2TAG1,
3785};
3786
3787/**
3788 * ice_vsi_update_l2tsel - update l2tsel field for all Rx rings on this VSI
3789 * @vsi: VSI used to update l2tsel on
3790 * @l2tsel: l2tsel setting requested
3791 *
3792 * Use the l2tsel setting to update all of the Rx queue context bits for l2tsel.
3793 * This will modify which descriptor field the first offloaded VLAN will be
3794 * stripped into.
3795 */
3796static void ice_vsi_update_l2tsel(struct ice_vsi *vsi, enum ice_l2tsel l2tsel)
3797{
3798	struct ice_hw *hw = &vsi->back->hw;
3799	u32 l2tsel_bit;
3800	int i;
3801
3802	if (l2tsel == ICE_L2TSEL_EXTRACT_FIRST_TAG_L2TAG2_2ND)
3803		l2tsel_bit = 0;
3804	else
3805		l2tsel_bit = BIT(ICE_L2TSEL_BIT_OFFSET);
3806
3807	for (i = 0; i < vsi->alloc_rxq; i++) {
3808		u16 pfq = vsi->rxq_map[i];
3809		u32 qrx_context_offset;
3810		u32 regval;
3811
3812		qrx_context_offset =
3813			QRX_CONTEXT(ICE_L2TSEL_QRX_CONTEXT_REG_IDX, pfq);
3814
3815		regval = rd32(hw, qrx_context_offset);
3816		regval &= ~BIT(ICE_L2TSEL_BIT_OFFSET);
3817		regval |= l2tsel_bit;
3818		wr32(hw, qrx_context_offset, regval);
3819	}
3820}
3821
3822/**
3823 * ice_vc_ena_vlan_stripping_v2_msg
3824 * @vf: VF the message was received from
3825 * @msg: message received from the VF
3826 *
3827 * virthcnl handler for VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2
3828 */
3829static int ice_vc_ena_vlan_stripping_v2_msg(struct ice_vf *vf, u8 *msg)
3830{
3831	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
3832	struct virtchnl_vlan_supported_caps *stripping_support;
3833	struct virtchnl_vlan_setting *strip_msg =
3834		(struct virtchnl_vlan_setting *)msg;
3835	u32 ethertype_setting;
3836	struct ice_vsi *vsi;
3837
3838	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
3839		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3840		goto out;
3841	}
3842
3843	if (!ice_vc_isvalid_vsi_id(vf, strip_msg->vport_id)) {
3844		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3845		goto out;
3846	}
3847
3848	vsi = ice_get_vf_vsi(vf);
3849	if (!vsi) {
3850		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3851		goto out;
3852	}
3853
3854	stripping_support = &vf->vlan_v2_caps.offloads.stripping_support;
3855	if (!ice_vc_valid_vlan_setting_msg(stripping_support, strip_msg)) {
3856		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3857		goto out;
3858	}
3859
3860	if (ice_vsi_is_rxq_crc_strip_dis(vsi)) {
3861		v_ret = VIRTCHNL_STATUS_ERR_NOT_SUPPORTED;
3862		goto out;
3863	}
3864
3865	ethertype_setting = strip_msg->outer_ethertype_setting;
3866	if (ethertype_setting) {
3867		if (ice_vc_ena_vlan_offload(vsi,
3868					    vsi->outer_vlan_ops.ena_stripping,
3869					    ethertype_setting)) {
3870			v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3871			goto out;
3872		} else {
3873			enum ice_l2tsel l2tsel =
3874				ICE_L2TSEL_EXTRACT_FIRST_TAG_L2TAG2_2ND;
3875
3876			/* PF tells the VF that the outer VLAN tag is always
3877			 * extracted to VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2 and
3878			 * inner is always extracted to
3879			 * VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1. This is needed to
3880			 * support outer stripping so the first tag always ends
3881			 * up in L2TAG2_2ND and the second/inner tag, if
3882			 * enabled, is extracted in L2TAG1.
3883			 */
3884			ice_vsi_update_l2tsel(vsi, l2tsel);
3885
3886			vf->vlan_strip_ena |= ICE_OUTER_VLAN_STRIP_ENA;
3887		}
3888	}
3889
3890	ethertype_setting = strip_msg->inner_ethertype_setting;
3891	if (ethertype_setting &&
3892	    ice_vc_ena_vlan_offload(vsi, vsi->inner_vlan_ops.ena_stripping,
3893				    ethertype_setting)) {
3894		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3895		goto out;
3896	}
3897
3898	if (ethertype_setting)
3899		vf->vlan_strip_ena |= ICE_INNER_VLAN_STRIP_ENA;
3900
3901out:
3902	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2,
3903				     v_ret, NULL, 0);
3904}
3905
3906/**
3907 * ice_vc_dis_vlan_stripping_v2_msg
3908 * @vf: VF the message was received from
3909 * @msg: message received from the VF
3910 *
3911 * virthcnl handler for VIRTCHNL_OP_DISABLE_VLAN_STRIPPING_V2
3912 */
3913static int ice_vc_dis_vlan_stripping_v2_msg(struct ice_vf *vf, u8 *msg)
3914{
3915	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
3916	struct virtchnl_vlan_supported_caps *stripping_support;
3917	struct virtchnl_vlan_setting *strip_msg =
3918		(struct virtchnl_vlan_setting *)msg;
3919	u32 ethertype_setting;
3920	struct ice_vsi *vsi;
3921
3922	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
3923		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3924		goto out;
3925	}
3926
3927	if (!ice_vc_isvalid_vsi_id(vf, strip_msg->vport_id)) {
3928		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3929		goto out;
3930	}
3931
3932	vsi = ice_get_vf_vsi(vf);
3933	if (!vsi) {
3934		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3935		goto out;
3936	}
3937
3938	stripping_support = &vf->vlan_v2_caps.offloads.stripping_support;
3939	if (!ice_vc_valid_vlan_setting_msg(stripping_support, strip_msg)) {
3940		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3941		goto out;
3942	}
3943
3944	ethertype_setting = strip_msg->outer_ethertype_setting;
3945	if (ethertype_setting) {
3946		if (vsi->outer_vlan_ops.dis_stripping(vsi)) {
3947			v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3948			goto out;
3949		} else {
3950			enum ice_l2tsel l2tsel =
3951				ICE_L2TSEL_EXTRACT_FIRST_TAG_L2TAG1;
3952
3953			/* PF tells the VF that the outer VLAN tag is always
3954			 * extracted to VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2 and
3955			 * inner is always extracted to
3956			 * VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1. This is needed to
3957			 * support inner stripping while outer stripping is
3958			 * disabled so that the first and only tag is extracted
3959			 * in L2TAG1.
3960			 */
3961			ice_vsi_update_l2tsel(vsi, l2tsel);
3962
3963			vf->vlan_strip_ena &= ~ICE_OUTER_VLAN_STRIP_ENA;
3964		}
3965	}
3966
3967	ethertype_setting = strip_msg->inner_ethertype_setting;
3968	if (ethertype_setting && vsi->inner_vlan_ops.dis_stripping(vsi)) {
3969		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3970		goto out;
3971	}
3972
3973	if (ethertype_setting)
3974		vf->vlan_strip_ena &= ~ICE_INNER_VLAN_STRIP_ENA;
3975
3976out:
3977	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DISABLE_VLAN_STRIPPING_V2,
3978				     v_ret, NULL, 0);
3979}
3980
3981/**
3982 * ice_vc_ena_vlan_insertion_v2_msg
3983 * @vf: VF the message was received from
3984 * @msg: message received from the VF
3985 *
3986 * virthcnl handler for VIRTCHNL_OP_ENABLE_VLAN_INSERTION_V2
3987 */
3988static int ice_vc_ena_vlan_insertion_v2_msg(struct ice_vf *vf, u8 *msg)
3989{
3990	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
3991	struct virtchnl_vlan_supported_caps *insertion_support;
3992	struct virtchnl_vlan_setting *insertion_msg =
3993		(struct virtchnl_vlan_setting *)msg;
3994	u32 ethertype_setting;
3995	struct ice_vsi *vsi;
3996
3997	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
3998		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3999		goto out;
4000	}
4001
4002	if (!ice_vc_isvalid_vsi_id(vf, insertion_msg->vport_id)) {
4003		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
4004		goto out;
4005	}
4006
4007	vsi = ice_get_vf_vsi(vf);
4008	if (!vsi) {
4009		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
4010		goto out;
4011	}
4012
4013	insertion_support = &vf->vlan_v2_caps.offloads.insertion_support;
4014	if (!ice_vc_valid_vlan_setting_msg(insertion_support, insertion_msg)) {
4015		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
4016		goto out;
4017	}
4018
4019	ethertype_setting = insertion_msg->outer_ethertype_setting;
4020	if (ethertype_setting &&
4021	    ice_vc_ena_vlan_offload(vsi, vsi->outer_vlan_ops.ena_insertion,
4022				    ethertype_setting)) {
4023		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
4024		goto out;
4025	}
4026
4027	ethertype_setting = insertion_msg->inner_ethertype_setting;
4028	if (ethertype_setting &&
4029	    ice_vc_ena_vlan_offload(vsi, vsi->inner_vlan_ops.ena_insertion,
4030				    ethertype_setting)) {
4031		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
4032		goto out;
4033	}
4034
4035out:
4036	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ENABLE_VLAN_INSERTION_V2,
4037				     v_ret, NULL, 0);
4038}
4039
4040/**
4041 * ice_vc_dis_vlan_insertion_v2_msg
4042 * @vf: VF the message was received from
4043 * @msg: message received from the VF
4044 *
4045 * virthcnl handler for VIRTCHNL_OP_DISABLE_VLAN_INSERTION_V2
4046 */
4047static int ice_vc_dis_vlan_insertion_v2_msg(struct ice_vf *vf, u8 *msg)
4048{
4049	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
4050	struct virtchnl_vlan_supported_caps *insertion_support;
4051	struct virtchnl_vlan_setting *insertion_msg =
4052		(struct virtchnl_vlan_setting *)msg;
4053	u32 ethertype_setting;
4054	struct ice_vsi *vsi;
4055
4056	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
4057		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
4058		goto out;
4059	}
4060
4061	if (!ice_vc_isvalid_vsi_id(vf, insertion_msg->vport_id)) {
4062		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
4063		goto out;
4064	}
4065
4066	vsi = ice_get_vf_vsi(vf);
4067	if (!vsi) {
4068		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
4069		goto out;
4070	}
4071
4072	insertion_support = &vf->vlan_v2_caps.offloads.insertion_support;
4073	if (!ice_vc_valid_vlan_setting_msg(insertion_support, insertion_msg)) {
4074		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
4075		goto out;
4076	}
4077
4078	ethertype_setting = insertion_msg->outer_ethertype_setting;
4079	if (ethertype_setting && vsi->outer_vlan_ops.dis_insertion(vsi)) {
4080		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
4081		goto out;
4082	}
4083
4084	ethertype_setting = insertion_msg->inner_ethertype_setting;
4085	if (ethertype_setting && vsi->inner_vlan_ops.dis_insertion(vsi)) {
4086		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
4087		goto out;
4088	}
4089
4090out:
4091	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DISABLE_VLAN_INSERTION_V2,
4092				     v_ret, NULL, 0);
4093}
4094
4095static const struct ice_virtchnl_ops ice_virtchnl_dflt_ops = {
4096	.get_ver_msg = ice_vc_get_ver_msg,
4097	.get_vf_res_msg = ice_vc_get_vf_res_msg,
4098	.reset_vf = ice_vc_reset_vf_msg,
4099	.add_mac_addr_msg = ice_vc_add_mac_addr_msg,
4100	.del_mac_addr_msg = ice_vc_del_mac_addr_msg,
4101	.cfg_qs_msg = ice_vc_cfg_qs_msg,
4102	.ena_qs_msg = ice_vc_ena_qs_msg,
4103	.dis_qs_msg = ice_vc_dis_qs_msg,
4104	.request_qs_msg = ice_vc_request_qs_msg,
4105	.cfg_irq_map_msg = ice_vc_cfg_irq_map_msg,
4106	.config_rss_key = ice_vc_config_rss_key,
4107	.config_rss_lut = ice_vc_config_rss_lut,
4108	.config_rss_hfunc = ice_vc_config_rss_hfunc,
4109	.get_stats_msg = ice_vc_get_stats_msg,
4110	.cfg_promiscuous_mode_msg = ice_vc_cfg_promiscuous_mode_msg,
4111	.add_vlan_msg = ice_vc_add_vlan_msg,
4112	.remove_vlan_msg = ice_vc_remove_vlan_msg,
4113	.query_rxdid = ice_vc_query_rxdid,
4114	.get_rss_hena = ice_vc_get_rss_hena,
4115	.set_rss_hena_msg = ice_vc_set_rss_hena,
4116	.ena_vlan_stripping = ice_vc_ena_vlan_stripping,
4117	.dis_vlan_stripping = ice_vc_dis_vlan_stripping,
4118	.handle_rss_cfg_msg = ice_vc_handle_rss_cfg,
4119	.add_fdir_fltr_msg = ice_vc_add_fdir_fltr,
4120	.del_fdir_fltr_msg = ice_vc_del_fdir_fltr,
4121	.get_offload_vlan_v2_caps = ice_vc_get_offload_vlan_v2_caps,
4122	.add_vlan_v2_msg = ice_vc_add_vlan_v2_msg,
4123	.remove_vlan_v2_msg = ice_vc_remove_vlan_v2_msg,
4124	.ena_vlan_stripping_v2_msg = ice_vc_ena_vlan_stripping_v2_msg,
4125	.dis_vlan_stripping_v2_msg = ice_vc_dis_vlan_stripping_v2_msg,
4126	.ena_vlan_insertion_v2_msg = ice_vc_ena_vlan_insertion_v2_msg,
4127	.dis_vlan_insertion_v2_msg = ice_vc_dis_vlan_insertion_v2_msg,
4128	.get_qos_caps = ice_vc_get_qos_caps,
4129	.cfg_q_bw = ice_vc_cfg_q_bw,
4130	.cfg_q_quanta = ice_vc_cfg_q_quanta,
4131	/* If you add a new op here please make sure to add it to
4132	 * ice_virtchnl_repr_ops as well.
4133	 */
4134};
4135
4136/**
4137 * ice_virtchnl_set_dflt_ops - Switch to default virtchnl ops
4138 * @vf: the VF to switch ops
4139 */
4140void ice_virtchnl_set_dflt_ops(struct ice_vf *vf)
4141{
4142	vf->virtchnl_ops = &ice_virtchnl_dflt_ops;
4143}
4144
4145/**
4146 * ice_vc_repr_add_mac
4147 * @vf: pointer to VF
4148 * @msg: virtchannel message
4149 *
4150 * When port representors are created, we do not add MAC rule
4151 * to firmware, we store it so that PF could report same
4152 * MAC as VF.
4153 */
4154static int ice_vc_repr_add_mac(struct ice_vf *vf, u8 *msg)
4155{
4156	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
4157	struct virtchnl_ether_addr_list *al =
4158	    (struct virtchnl_ether_addr_list *)msg;
4159	struct ice_vsi *vsi;
4160	struct ice_pf *pf;
4161	int i;
4162
4163	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states) ||
4164	    !ice_vc_isvalid_vsi_id(vf, al->vsi_id)) {
4165		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
4166		goto handle_mac_exit;
4167	}
4168
4169	pf = vf->pf;
4170
4171	vsi = ice_get_vf_vsi(vf);
4172	if (!vsi) {
4173		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
4174		goto handle_mac_exit;
4175	}
4176
4177	for (i = 0; i < al->num_elements; i++) {
4178		u8 *mac_addr = al->list[i].addr;
4179
4180		if (!is_unicast_ether_addr(mac_addr) ||
4181		    ether_addr_equal(mac_addr, vf->hw_lan_addr))
4182			continue;
4183
4184		if (vf->pf_set_mac) {
4185			dev_err(ice_pf_to_dev(pf), "VF attempting to override administratively set MAC address\n");
4186			v_ret = VIRTCHNL_STATUS_ERR_NOT_SUPPORTED;
4187			goto handle_mac_exit;
4188		}
4189
4190		ice_vfhw_mac_add(vf, &al->list[i]);
4191		vf->num_mac++;
4192		break;
4193	}
4194
4195handle_mac_exit:
4196	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ADD_ETH_ADDR,
4197				     v_ret, NULL, 0);
4198}
4199
4200/**
4201 * ice_vc_repr_del_mac - response with success for deleting MAC
4202 * @vf: pointer to VF
4203 * @msg: virtchannel message
4204 *
4205 * Respond with success to not break normal VF flow.
4206 * For legacy VF driver try to update cached MAC address.
4207 */
4208static int
4209ice_vc_repr_del_mac(struct ice_vf __always_unused *vf, u8 __always_unused *msg)
4210{
4211	struct virtchnl_ether_addr_list *al =
4212		(struct virtchnl_ether_addr_list *)msg;
4213
4214	ice_update_legacy_cached_mac(vf, &al->list[0]);
4215
4216	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DEL_ETH_ADDR,
4217				     VIRTCHNL_STATUS_SUCCESS, NULL, 0);
4218}
4219
4220static int
4221ice_vc_repr_cfg_promiscuous_mode(struct ice_vf *vf, u8 __always_unused *msg)
4222{
4223	dev_dbg(ice_pf_to_dev(vf->pf),
4224		"Can't config promiscuous mode in switchdev mode for VF %d\n",
4225		vf->vf_id);
4226	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_PROMISCUOUS_MODE,
4227				     VIRTCHNL_STATUS_ERR_NOT_SUPPORTED,
4228				     NULL, 0);
4229}
4230
4231static const struct ice_virtchnl_ops ice_virtchnl_repr_ops = {
4232	.get_ver_msg = ice_vc_get_ver_msg,
4233	.get_vf_res_msg = ice_vc_get_vf_res_msg,
4234	.reset_vf = ice_vc_reset_vf_msg,
4235	.add_mac_addr_msg = ice_vc_repr_add_mac,
4236	.del_mac_addr_msg = ice_vc_repr_del_mac,
4237	.cfg_qs_msg = ice_vc_cfg_qs_msg,
4238	.ena_qs_msg = ice_vc_ena_qs_msg,
4239	.dis_qs_msg = ice_vc_dis_qs_msg,
4240	.request_qs_msg = ice_vc_request_qs_msg,
4241	.cfg_irq_map_msg = ice_vc_cfg_irq_map_msg,
4242	.config_rss_key = ice_vc_config_rss_key,
4243	.config_rss_lut = ice_vc_config_rss_lut,
4244	.config_rss_hfunc = ice_vc_config_rss_hfunc,
4245	.get_stats_msg = ice_vc_get_stats_msg,
4246	.cfg_promiscuous_mode_msg = ice_vc_repr_cfg_promiscuous_mode,
4247	.add_vlan_msg = ice_vc_add_vlan_msg,
4248	.remove_vlan_msg = ice_vc_remove_vlan_msg,
4249	.query_rxdid = ice_vc_query_rxdid,
4250	.get_rss_hena = ice_vc_get_rss_hena,
4251	.set_rss_hena_msg = ice_vc_set_rss_hena,
4252	.ena_vlan_stripping = ice_vc_ena_vlan_stripping,
4253	.dis_vlan_stripping = ice_vc_dis_vlan_stripping,
4254	.handle_rss_cfg_msg = ice_vc_handle_rss_cfg,
4255	.add_fdir_fltr_msg = ice_vc_add_fdir_fltr,
4256	.del_fdir_fltr_msg = ice_vc_del_fdir_fltr,
4257	.get_offload_vlan_v2_caps = ice_vc_get_offload_vlan_v2_caps,
4258	.add_vlan_v2_msg = ice_vc_add_vlan_v2_msg,
4259	.remove_vlan_v2_msg = ice_vc_remove_vlan_v2_msg,
4260	.ena_vlan_stripping_v2_msg = ice_vc_ena_vlan_stripping_v2_msg,
4261	.dis_vlan_stripping_v2_msg = ice_vc_dis_vlan_stripping_v2_msg,
4262	.ena_vlan_insertion_v2_msg = ice_vc_ena_vlan_insertion_v2_msg,
4263	.dis_vlan_insertion_v2_msg = ice_vc_dis_vlan_insertion_v2_msg,
4264	.get_qos_caps = ice_vc_get_qos_caps,
4265	.cfg_q_bw = ice_vc_cfg_q_bw,
4266	.cfg_q_quanta = ice_vc_cfg_q_quanta,
4267};
4268
4269/**
4270 * ice_virtchnl_set_repr_ops - Switch to representor virtchnl ops
4271 * @vf: the VF to switch ops
4272 */
4273void ice_virtchnl_set_repr_ops(struct ice_vf *vf)
4274{
4275	vf->virtchnl_ops = &ice_virtchnl_repr_ops;
4276}
4277
4278/**
4279 * ice_is_malicious_vf - check if this vf might be overflowing mailbox
4280 * @vf: the VF to check
4281 * @mbxdata: data about the state of the mailbox
4282 *
4283 * Detect if a given VF might be malicious and attempting to overflow the PF
4284 * mailbox. If so, log a warning message and ignore this event.
4285 */
4286static bool
4287ice_is_malicious_vf(struct ice_vf *vf, struct ice_mbx_data *mbxdata)
4288{
4289	bool report_malvf = false;
4290	struct device *dev;
4291	struct ice_pf *pf;
4292	int status;
4293
4294	pf = vf->pf;
4295	dev = ice_pf_to_dev(pf);
4296
4297	if (test_bit(ICE_VF_STATE_DIS, vf->vf_states))
4298		return vf->mbx_info.malicious;
4299
4300	/* check to see if we have a newly malicious VF */
4301	status = ice_mbx_vf_state_handler(&pf->hw, mbxdata, &vf->mbx_info,
4302					  &report_malvf);
4303	if (status)
4304		dev_warn_ratelimited(dev, "Unable to check status of mailbox overflow for VF %u MAC %pM, status %d\n",
4305				     vf->vf_id, vf->dev_lan_addr, status);
4306
4307	if (report_malvf) {
4308		struct ice_vsi *pf_vsi = ice_get_main_vsi(pf);
4309		u8 zero_addr[ETH_ALEN] = {};
4310
4311		dev_warn(dev, "VF MAC %pM on PF MAC %pM is generating asynchronous messages and may be overflowing the PF message queue. Please see the Adapter User Guide for more information\n",
4312			 vf->dev_lan_addr,
4313			 pf_vsi ? pf_vsi->netdev->dev_addr : zero_addr);
4314	}
4315
4316	return vf->mbx_info.malicious;
4317}
4318
4319/**
4320 * ice_vc_process_vf_msg - Process request from VF
4321 * @pf: pointer to the PF structure
4322 * @event: pointer to the AQ event
4323 * @mbxdata: information used to detect VF attempting mailbox overflow
4324 *
4325 * Called from the common asq/arq handler to process request from VF. When this
4326 * flow is used for devices with hardware VF to PF message queue overflow
4327 * support (ICE_F_MBX_LIMIT) mbxdata is set to NULL and ice_is_malicious_vf
4328 * check is skipped.
4329 */
4330void ice_vc_process_vf_msg(struct ice_pf *pf, struct ice_rq_event_info *event,
4331			   struct ice_mbx_data *mbxdata)
4332{
4333	u32 v_opcode = le32_to_cpu(event->desc.cookie_high);
4334	s16 vf_id = le16_to_cpu(event->desc.retval);
4335	const struct ice_virtchnl_ops *ops;
4336	u16 msglen = event->msg_len;
4337	u8 *msg = event->msg_buf;
4338	struct ice_vf *vf = NULL;
4339	struct device *dev;
4340	int err = 0;
4341
4342	dev = ice_pf_to_dev(pf);
4343
4344	vf = ice_get_vf_by_id(pf, vf_id);
4345	if (!vf) {
4346		dev_err(dev, "Unable to locate VF for message from VF ID %d, opcode %d, len %d\n",
4347			vf_id, v_opcode, msglen);
4348		return;
4349	}
4350
4351	mutex_lock(&vf->cfg_lock);
4352
4353	/* Check if the VF is trying to overflow the mailbox */
4354	if (mbxdata && ice_is_malicious_vf(vf, mbxdata))
4355		goto finish;
4356
4357	/* Check if VF is disabled. */
4358	if (test_bit(ICE_VF_STATE_DIS, vf->vf_states)) {
4359		err = -EPERM;
4360		goto error_handler;
4361	}
4362
4363	ops = vf->virtchnl_ops;
4364
4365	/* Perform basic checks on the msg */
4366	err = virtchnl_vc_validate_vf_msg(&vf->vf_ver, v_opcode, msg, msglen);
4367	if (err) {
4368		if (err == VIRTCHNL_STATUS_ERR_PARAM)
4369			err = -EPERM;
4370		else
4371			err = -EINVAL;
4372	}
4373
4374error_handler:
4375	if (err) {
4376		ice_vc_send_msg_to_vf(vf, v_opcode, VIRTCHNL_STATUS_ERR_PARAM,
4377				      NULL, 0);
4378		dev_err(dev, "Invalid message from VF %d, opcode %d, len %d, error %d\n",
4379			vf_id, v_opcode, msglen, err);
4380		goto finish;
4381	}
4382
4383	if (!ice_vc_is_opcode_allowed(vf, v_opcode)) {
4384		ice_vc_send_msg_to_vf(vf, v_opcode,
4385				      VIRTCHNL_STATUS_ERR_NOT_SUPPORTED, NULL,
4386				      0);
4387		goto finish;
4388	}
4389
4390	switch (v_opcode) {
4391	case VIRTCHNL_OP_VERSION:
4392		err = ops->get_ver_msg(vf, msg);
4393		break;
4394	case VIRTCHNL_OP_GET_VF_RESOURCES:
4395		err = ops->get_vf_res_msg(vf, msg);
4396		if (ice_vf_init_vlan_stripping(vf))
4397			dev_dbg(dev, "Failed to initialize VLAN stripping for VF %d\n",
4398				vf->vf_id);
4399		ice_vc_notify_vf_link_state(vf);
4400		break;
4401	case VIRTCHNL_OP_RESET_VF:
4402		ops->reset_vf(vf);
4403		break;
4404	case VIRTCHNL_OP_ADD_ETH_ADDR:
4405		err = ops->add_mac_addr_msg(vf, msg);
4406		break;
4407	case VIRTCHNL_OP_DEL_ETH_ADDR:
4408		err = ops->del_mac_addr_msg(vf, msg);
4409		break;
4410	case VIRTCHNL_OP_CONFIG_VSI_QUEUES:
4411		err = ops->cfg_qs_msg(vf, msg);
4412		break;
4413	case VIRTCHNL_OP_ENABLE_QUEUES:
4414		err = ops->ena_qs_msg(vf, msg);
4415		ice_vc_notify_vf_link_state(vf);
4416		break;
4417	case VIRTCHNL_OP_DISABLE_QUEUES:
4418		err = ops->dis_qs_msg(vf, msg);
4419		break;
4420	case VIRTCHNL_OP_REQUEST_QUEUES:
4421		err = ops->request_qs_msg(vf, msg);
4422		break;
4423	case VIRTCHNL_OP_CONFIG_IRQ_MAP:
4424		err = ops->cfg_irq_map_msg(vf, msg);
4425		break;
4426	case VIRTCHNL_OP_CONFIG_RSS_KEY:
4427		err = ops->config_rss_key(vf, msg);
4428		break;
4429	case VIRTCHNL_OP_CONFIG_RSS_LUT:
4430		err = ops->config_rss_lut(vf, msg);
4431		break;
4432	case VIRTCHNL_OP_CONFIG_RSS_HFUNC:
4433		err = ops->config_rss_hfunc(vf, msg);
4434		break;
4435	case VIRTCHNL_OP_GET_STATS:
4436		err = ops->get_stats_msg(vf, msg);
4437		break;
4438	case VIRTCHNL_OP_CONFIG_PROMISCUOUS_MODE:
4439		err = ops->cfg_promiscuous_mode_msg(vf, msg);
4440		break;
4441	case VIRTCHNL_OP_ADD_VLAN:
4442		err = ops->add_vlan_msg(vf, msg);
4443		break;
4444	case VIRTCHNL_OP_DEL_VLAN:
4445		err = ops->remove_vlan_msg(vf, msg);
4446		break;
4447	case VIRTCHNL_OP_GET_SUPPORTED_RXDIDS:
4448		err = ops->query_rxdid(vf);
4449		break;
4450	case VIRTCHNL_OP_GET_RSS_HENA_CAPS:
4451		err = ops->get_rss_hena(vf);
4452		break;
4453	case VIRTCHNL_OP_SET_RSS_HENA:
4454		err = ops->set_rss_hena_msg(vf, msg);
4455		break;
4456	case VIRTCHNL_OP_ENABLE_VLAN_STRIPPING:
4457		err = ops->ena_vlan_stripping(vf);
4458		break;
4459	case VIRTCHNL_OP_DISABLE_VLAN_STRIPPING:
4460		err = ops->dis_vlan_stripping(vf);
4461		break;
4462	case VIRTCHNL_OP_ADD_FDIR_FILTER:
4463		err = ops->add_fdir_fltr_msg(vf, msg);
4464		break;
4465	case VIRTCHNL_OP_DEL_FDIR_FILTER:
4466		err = ops->del_fdir_fltr_msg(vf, msg);
4467		break;
4468	case VIRTCHNL_OP_ADD_RSS_CFG:
4469		err = ops->handle_rss_cfg_msg(vf, msg, true);
4470		break;
4471	case VIRTCHNL_OP_DEL_RSS_CFG:
4472		err = ops->handle_rss_cfg_msg(vf, msg, false);
4473		break;
4474	case VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS:
4475		err = ops->get_offload_vlan_v2_caps(vf);
4476		break;
4477	case VIRTCHNL_OP_ADD_VLAN_V2:
4478		err = ops->add_vlan_v2_msg(vf, msg);
4479		break;
4480	case VIRTCHNL_OP_DEL_VLAN_V2:
4481		err = ops->remove_vlan_v2_msg(vf, msg);
4482		break;
4483	case VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2:
4484		err = ops->ena_vlan_stripping_v2_msg(vf, msg);
4485		break;
4486	case VIRTCHNL_OP_DISABLE_VLAN_STRIPPING_V2:
4487		err = ops->dis_vlan_stripping_v2_msg(vf, msg);
4488		break;
4489	case VIRTCHNL_OP_ENABLE_VLAN_INSERTION_V2:
4490		err = ops->ena_vlan_insertion_v2_msg(vf, msg);
4491		break;
4492	case VIRTCHNL_OP_DISABLE_VLAN_INSERTION_V2:
4493		err = ops->dis_vlan_insertion_v2_msg(vf, msg);
4494		break;
4495	case VIRTCHNL_OP_GET_QOS_CAPS:
4496		err = ops->get_qos_caps(vf);
4497		break;
4498	case VIRTCHNL_OP_CONFIG_QUEUE_BW:
4499		err = ops->cfg_q_bw(vf, msg);
4500		break;
4501	case VIRTCHNL_OP_CONFIG_QUANTA:
4502		err = ops->cfg_q_quanta(vf, msg);
4503		break;
4504	case VIRTCHNL_OP_UNKNOWN:
4505	default:
4506		dev_err(dev, "Unsupported opcode %d from VF %d\n", v_opcode,
4507			vf_id);
4508		err = ice_vc_send_msg_to_vf(vf, v_opcode,
4509					    VIRTCHNL_STATUS_ERR_NOT_SUPPORTED,
4510					    NULL, 0);
4511		break;
4512	}
4513	if (err) {
4514		/* Helper function cares less about error return values here
4515		 * as it is busy with pending work.
4516		 */
4517		dev_info(dev, "PF failed to honor VF %d, opcode %d, error %d\n",
4518			 vf_id, v_opcode, err);
4519	}
4520
4521finish:
4522	mutex_unlock(&vf->cfg_lock);
4523	ice_put_vf(vf);
4524}