Loading...
1// SPDX-License-Identifier: GPL-2.0
2/* Copyright (C) 2022, Intel Corporation. */
3
4#include "ice_virtchnl.h"
5#include "ice_vf_lib_private.h"
6#include "ice.h"
7#include "ice_base.h"
8#include "ice_lib.h"
9#include "ice_fltr.h"
10#include "ice_virtchnl_allowlist.h"
11#include "ice_vf_vsi_vlan_ops.h"
12#include "ice_vlan.h"
13#include "ice_flex_pipe.h"
14#include "ice_dcb_lib.h"
15
16#define FIELD_SELECTOR(proto_hdr_field) \
17 BIT((proto_hdr_field) & PROTO_HDR_FIELD_MASK)
18
19struct ice_vc_hdr_match_type {
20 u32 vc_hdr; /* virtchnl headers (VIRTCHNL_PROTO_HDR_XXX) */
21 u32 ice_hdr; /* ice headers (ICE_FLOW_SEG_HDR_XXX) */
22};
23
24static const struct ice_vc_hdr_match_type ice_vc_hdr_list[] = {
25 {VIRTCHNL_PROTO_HDR_NONE, ICE_FLOW_SEG_HDR_NONE},
26 {VIRTCHNL_PROTO_HDR_ETH, ICE_FLOW_SEG_HDR_ETH},
27 {VIRTCHNL_PROTO_HDR_S_VLAN, ICE_FLOW_SEG_HDR_VLAN},
28 {VIRTCHNL_PROTO_HDR_C_VLAN, ICE_FLOW_SEG_HDR_VLAN},
29 {VIRTCHNL_PROTO_HDR_IPV4, ICE_FLOW_SEG_HDR_IPV4 |
30 ICE_FLOW_SEG_HDR_IPV_OTHER},
31 {VIRTCHNL_PROTO_HDR_IPV6, ICE_FLOW_SEG_HDR_IPV6 |
32 ICE_FLOW_SEG_HDR_IPV_OTHER},
33 {VIRTCHNL_PROTO_HDR_TCP, ICE_FLOW_SEG_HDR_TCP},
34 {VIRTCHNL_PROTO_HDR_UDP, ICE_FLOW_SEG_HDR_UDP},
35 {VIRTCHNL_PROTO_HDR_SCTP, ICE_FLOW_SEG_HDR_SCTP},
36 {VIRTCHNL_PROTO_HDR_PPPOE, ICE_FLOW_SEG_HDR_PPPOE},
37 {VIRTCHNL_PROTO_HDR_GTPU_IP, ICE_FLOW_SEG_HDR_GTPU_IP},
38 {VIRTCHNL_PROTO_HDR_GTPU_EH, ICE_FLOW_SEG_HDR_GTPU_EH},
39 {VIRTCHNL_PROTO_HDR_GTPU_EH_PDU_DWN,
40 ICE_FLOW_SEG_HDR_GTPU_DWN},
41 {VIRTCHNL_PROTO_HDR_GTPU_EH_PDU_UP,
42 ICE_FLOW_SEG_HDR_GTPU_UP},
43 {VIRTCHNL_PROTO_HDR_L2TPV3, ICE_FLOW_SEG_HDR_L2TPV3},
44 {VIRTCHNL_PROTO_HDR_ESP, ICE_FLOW_SEG_HDR_ESP},
45 {VIRTCHNL_PROTO_HDR_AH, ICE_FLOW_SEG_HDR_AH},
46 {VIRTCHNL_PROTO_HDR_PFCP, ICE_FLOW_SEG_HDR_PFCP_SESSION},
47};
48
49struct ice_vc_hash_field_match_type {
50 u32 vc_hdr; /* virtchnl headers
51 * (VIRTCHNL_PROTO_HDR_XXX)
52 */
53 u32 vc_hash_field; /* virtchnl hash fields selector
54 * FIELD_SELECTOR((VIRTCHNL_PROTO_HDR_ETH_XXX))
55 */
56 u64 ice_hash_field; /* ice hash fields
57 * (BIT_ULL(ICE_FLOW_FIELD_IDX_XXX))
58 */
59};
60
61static const struct
62ice_vc_hash_field_match_type ice_vc_hash_field_list[] = {
63 {VIRTCHNL_PROTO_HDR_ETH, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ETH_SRC),
64 BIT_ULL(ICE_FLOW_FIELD_IDX_ETH_SA)},
65 {VIRTCHNL_PROTO_HDR_ETH, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ETH_DST),
66 BIT_ULL(ICE_FLOW_FIELD_IDX_ETH_DA)},
67 {VIRTCHNL_PROTO_HDR_ETH, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ETH_SRC) |
68 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ETH_DST),
69 ICE_FLOW_HASH_ETH},
70 {VIRTCHNL_PROTO_HDR_ETH,
71 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ETH_ETHERTYPE),
72 BIT_ULL(ICE_FLOW_FIELD_IDX_ETH_TYPE)},
73 {VIRTCHNL_PROTO_HDR_S_VLAN,
74 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_S_VLAN_ID),
75 BIT_ULL(ICE_FLOW_FIELD_IDX_S_VLAN)},
76 {VIRTCHNL_PROTO_HDR_C_VLAN,
77 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_C_VLAN_ID),
78 BIT_ULL(ICE_FLOW_FIELD_IDX_C_VLAN)},
79 {VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_SRC),
80 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_SA)},
81 {VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_DST),
82 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_DA)},
83 {VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_SRC) |
84 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_DST),
85 ICE_FLOW_HASH_IPV4},
86 {VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_SRC) |
87 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_PROT),
88 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_SA) |
89 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_PROT)},
90 {VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_DST) |
91 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_PROT),
92 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_DA) |
93 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_PROT)},
94 {VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_SRC) |
95 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_DST) |
96 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_PROT),
97 ICE_FLOW_HASH_IPV4 | BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_PROT)},
98 {VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_PROT),
99 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_PROT)},
100 {VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_SRC),
101 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_SA)},
102 {VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_DST),
103 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_DA)},
104 {VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_SRC) |
105 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_DST),
106 ICE_FLOW_HASH_IPV6},
107 {VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_SRC) |
108 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_PROT),
109 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_SA) |
110 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_PROT)},
111 {VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_DST) |
112 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_PROT),
113 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_DA) |
114 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_PROT)},
115 {VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_SRC) |
116 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_DST) |
117 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_PROT),
118 ICE_FLOW_HASH_IPV6 | BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_PROT)},
119 {VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_PROT),
120 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_PROT)},
121 {VIRTCHNL_PROTO_HDR_TCP,
122 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_TCP_SRC_PORT),
123 BIT_ULL(ICE_FLOW_FIELD_IDX_TCP_SRC_PORT)},
124 {VIRTCHNL_PROTO_HDR_TCP,
125 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_TCP_DST_PORT),
126 BIT_ULL(ICE_FLOW_FIELD_IDX_TCP_DST_PORT)},
127 {VIRTCHNL_PROTO_HDR_TCP,
128 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_TCP_SRC_PORT) |
129 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_TCP_DST_PORT),
130 ICE_FLOW_HASH_TCP_PORT},
131 {VIRTCHNL_PROTO_HDR_UDP,
132 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_UDP_SRC_PORT),
133 BIT_ULL(ICE_FLOW_FIELD_IDX_UDP_SRC_PORT)},
134 {VIRTCHNL_PROTO_HDR_UDP,
135 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_UDP_DST_PORT),
136 BIT_ULL(ICE_FLOW_FIELD_IDX_UDP_DST_PORT)},
137 {VIRTCHNL_PROTO_HDR_UDP,
138 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_UDP_SRC_PORT) |
139 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_UDP_DST_PORT),
140 ICE_FLOW_HASH_UDP_PORT},
141 {VIRTCHNL_PROTO_HDR_SCTP,
142 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_SCTP_SRC_PORT),
143 BIT_ULL(ICE_FLOW_FIELD_IDX_SCTP_SRC_PORT)},
144 {VIRTCHNL_PROTO_HDR_SCTP,
145 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_SCTP_DST_PORT),
146 BIT_ULL(ICE_FLOW_FIELD_IDX_SCTP_DST_PORT)},
147 {VIRTCHNL_PROTO_HDR_SCTP,
148 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_SCTP_SRC_PORT) |
149 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_SCTP_DST_PORT),
150 ICE_FLOW_HASH_SCTP_PORT},
151 {VIRTCHNL_PROTO_HDR_PPPOE,
152 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_PPPOE_SESS_ID),
153 BIT_ULL(ICE_FLOW_FIELD_IDX_PPPOE_SESS_ID)},
154 {VIRTCHNL_PROTO_HDR_GTPU_IP,
155 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_GTPU_IP_TEID),
156 BIT_ULL(ICE_FLOW_FIELD_IDX_GTPU_IP_TEID)},
157 {VIRTCHNL_PROTO_HDR_L2TPV3,
158 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_L2TPV3_SESS_ID),
159 BIT_ULL(ICE_FLOW_FIELD_IDX_L2TPV3_SESS_ID)},
160 {VIRTCHNL_PROTO_HDR_ESP, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ESP_SPI),
161 BIT_ULL(ICE_FLOW_FIELD_IDX_ESP_SPI)},
162 {VIRTCHNL_PROTO_HDR_AH, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_AH_SPI),
163 BIT_ULL(ICE_FLOW_FIELD_IDX_AH_SPI)},
164 {VIRTCHNL_PROTO_HDR_PFCP, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_PFCP_SEID),
165 BIT_ULL(ICE_FLOW_FIELD_IDX_PFCP_SEID)},
166};
167
168/**
169 * ice_vc_vf_broadcast - Broadcast a message to all VFs on PF
170 * @pf: pointer to the PF structure
171 * @v_opcode: operation code
172 * @v_retval: return value
173 * @msg: pointer to the msg buffer
174 * @msglen: msg length
175 */
176static void
177ice_vc_vf_broadcast(struct ice_pf *pf, enum virtchnl_ops v_opcode,
178 enum virtchnl_status_code v_retval, u8 *msg, u16 msglen)
179{
180 struct ice_hw *hw = &pf->hw;
181 struct ice_vf *vf;
182 unsigned int bkt;
183
184 mutex_lock(&pf->vfs.table_lock);
185 ice_for_each_vf(pf, bkt, vf) {
186 /* Not all vfs are enabled so skip the ones that are not */
187 if (!test_bit(ICE_VF_STATE_INIT, vf->vf_states) &&
188 !test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states))
189 continue;
190
191 /* Ignore return value on purpose - a given VF may fail, but
192 * we need to keep going and send to all of them
193 */
194 ice_aq_send_msg_to_vf(hw, vf->vf_id, v_opcode, v_retval, msg,
195 msglen, NULL);
196 }
197 mutex_unlock(&pf->vfs.table_lock);
198}
199
200/**
201 * ice_set_pfe_link - Set the link speed/status of the virtchnl_pf_event
202 * @vf: pointer to the VF structure
203 * @pfe: pointer to the virtchnl_pf_event to set link speed/status for
204 * @ice_link_speed: link speed specified by ICE_AQ_LINK_SPEED_*
205 * @link_up: whether or not to set the link up/down
206 */
207static void
208ice_set_pfe_link(struct ice_vf *vf, struct virtchnl_pf_event *pfe,
209 int ice_link_speed, bool link_up)
210{
211 if (vf->driver_caps & VIRTCHNL_VF_CAP_ADV_LINK_SPEED) {
212 pfe->event_data.link_event_adv.link_status = link_up;
213 /* Speed in Mbps */
214 pfe->event_data.link_event_adv.link_speed =
215 ice_conv_link_speed_to_virtchnl(true, ice_link_speed);
216 } else {
217 pfe->event_data.link_event.link_status = link_up;
218 /* Legacy method for virtchnl link speeds */
219 pfe->event_data.link_event.link_speed =
220 (enum virtchnl_link_speed)
221 ice_conv_link_speed_to_virtchnl(false, ice_link_speed);
222 }
223}
224
225/**
226 * ice_vc_notify_vf_link_state - Inform a VF of link status
227 * @vf: pointer to the VF structure
228 *
229 * send a link status message to a single VF
230 */
231void ice_vc_notify_vf_link_state(struct ice_vf *vf)
232{
233 struct virtchnl_pf_event pfe = { 0 };
234 struct ice_hw *hw = &vf->pf->hw;
235
236 pfe.event = VIRTCHNL_EVENT_LINK_CHANGE;
237 pfe.severity = PF_EVENT_SEVERITY_INFO;
238
239 if (ice_is_vf_link_up(vf))
240 ice_set_pfe_link(vf, &pfe,
241 hw->port_info->phy.link_info.link_speed, true);
242 else
243 ice_set_pfe_link(vf, &pfe, ICE_AQ_LINK_SPEED_UNKNOWN, false);
244
245 ice_aq_send_msg_to_vf(hw, vf->vf_id, VIRTCHNL_OP_EVENT,
246 VIRTCHNL_STATUS_SUCCESS, (u8 *)&pfe,
247 sizeof(pfe), NULL);
248}
249
250/**
251 * ice_vc_notify_link_state - Inform all VFs on a PF of link status
252 * @pf: pointer to the PF structure
253 */
254void ice_vc_notify_link_state(struct ice_pf *pf)
255{
256 struct ice_vf *vf;
257 unsigned int bkt;
258
259 mutex_lock(&pf->vfs.table_lock);
260 ice_for_each_vf(pf, bkt, vf)
261 ice_vc_notify_vf_link_state(vf);
262 mutex_unlock(&pf->vfs.table_lock);
263}
264
265/**
266 * ice_vc_notify_reset - Send pending reset message to all VFs
267 * @pf: pointer to the PF structure
268 *
269 * indicate a pending reset to all VFs on a given PF
270 */
271void ice_vc_notify_reset(struct ice_pf *pf)
272{
273 struct virtchnl_pf_event pfe;
274
275 if (!ice_has_vfs(pf))
276 return;
277
278 pfe.event = VIRTCHNL_EVENT_RESET_IMPENDING;
279 pfe.severity = PF_EVENT_SEVERITY_CERTAIN_DOOM;
280 ice_vc_vf_broadcast(pf, VIRTCHNL_OP_EVENT, VIRTCHNL_STATUS_SUCCESS,
281 (u8 *)&pfe, sizeof(struct virtchnl_pf_event));
282}
283
284/**
285 * ice_vc_send_msg_to_vf - Send message to VF
286 * @vf: pointer to the VF info
287 * @v_opcode: virtual channel opcode
288 * @v_retval: virtual channel return value
289 * @msg: pointer to the msg buffer
290 * @msglen: msg length
291 *
292 * send msg to VF
293 */
294int
295ice_vc_send_msg_to_vf(struct ice_vf *vf, u32 v_opcode,
296 enum virtchnl_status_code v_retval, u8 *msg, u16 msglen)
297{
298 struct device *dev;
299 struct ice_pf *pf;
300 int aq_ret;
301
302 pf = vf->pf;
303 dev = ice_pf_to_dev(pf);
304
305 aq_ret = ice_aq_send_msg_to_vf(&pf->hw, vf->vf_id, v_opcode, v_retval,
306 msg, msglen, NULL);
307 if (aq_ret && pf->hw.mailboxq.sq_last_status != ICE_AQ_RC_ENOSYS) {
308 dev_info(dev, "Unable to send the message to VF %d ret %d aq_err %s\n",
309 vf->vf_id, aq_ret,
310 ice_aq_str(pf->hw.mailboxq.sq_last_status));
311 return -EIO;
312 }
313
314 return 0;
315}
316
317/**
318 * ice_vc_get_ver_msg
319 * @vf: pointer to the VF info
320 * @msg: pointer to the msg buffer
321 *
322 * called from the VF to request the API version used by the PF
323 */
324static int ice_vc_get_ver_msg(struct ice_vf *vf, u8 *msg)
325{
326 struct virtchnl_version_info info = {
327 VIRTCHNL_VERSION_MAJOR, VIRTCHNL_VERSION_MINOR
328 };
329
330 vf->vf_ver = *(struct virtchnl_version_info *)msg;
331 /* VFs running the 1.0 API expect to get 1.0 back or they will cry. */
332 if (VF_IS_V10(&vf->vf_ver))
333 info.minor = VIRTCHNL_VERSION_MINOR_NO_VF_CAPS;
334
335 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_VERSION,
336 VIRTCHNL_STATUS_SUCCESS, (u8 *)&info,
337 sizeof(struct virtchnl_version_info));
338}
339
340/**
341 * ice_vc_get_max_frame_size - get max frame size allowed for VF
342 * @vf: VF used to determine max frame size
343 *
344 * Max frame size is determined based on the current port's max frame size and
345 * whether a port VLAN is configured on this VF. The VF is not aware whether
346 * it's in a port VLAN so the PF needs to account for this in max frame size
347 * checks and sending the max frame size to the VF.
348 */
349static u16 ice_vc_get_max_frame_size(struct ice_vf *vf)
350{
351 struct ice_port_info *pi = ice_vf_get_port_info(vf);
352 u16 max_frame_size;
353
354 max_frame_size = pi->phy.link_info.max_frame_size;
355
356 if (ice_vf_is_port_vlan_ena(vf))
357 max_frame_size -= VLAN_HLEN;
358
359 return max_frame_size;
360}
361
362/**
363 * ice_vc_get_vlan_caps
364 * @hw: pointer to the hw
365 * @vf: pointer to the VF info
366 * @vsi: pointer to the VSI
367 * @driver_caps: current driver caps
368 *
369 * Return 0 if there is no VLAN caps supported, or VLAN caps value
370 */
371static u32
372ice_vc_get_vlan_caps(struct ice_hw *hw, struct ice_vf *vf, struct ice_vsi *vsi,
373 u32 driver_caps)
374{
375 if (ice_is_eswitch_mode_switchdev(vf->pf))
376 /* In switchdev setting VLAN from VF isn't supported */
377 return 0;
378
379 if (driver_caps & VIRTCHNL_VF_OFFLOAD_VLAN_V2) {
380 /* VLAN offloads based on current device configuration */
381 return VIRTCHNL_VF_OFFLOAD_VLAN_V2;
382 } else if (driver_caps & VIRTCHNL_VF_OFFLOAD_VLAN) {
383 /* allow VF to negotiate VIRTCHNL_VF_OFFLOAD explicitly for
384 * these two conditions, which amounts to guest VLAN filtering
385 * and offloads being based on the inner VLAN or the
386 * inner/single VLAN respectively and don't allow VF to
387 * negotiate VIRTCHNL_VF_OFFLOAD in any other cases
388 */
389 if (ice_is_dvm_ena(hw) && ice_vf_is_port_vlan_ena(vf)) {
390 return VIRTCHNL_VF_OFFLOAD_VLAN;
391 } else if (!ice_is_dvm_ena(hw) &&
392 !ice_vf_is_port_vlan_ena(vf)) {
393 /* configure backward compatible support for VFs that
394 * only support VIRTCHNL_VF_OFFLOAD_VLAN, the PF is
395 * configured in SVM, and no port VLAN is configured
396 */
397 ice_vf_vsi_cfg_svm_legacy_vlan_mode(vsi);
398 return VIRTCHNL_VF_OFFLOAD_VLAN;
399 } else if (ice_is_dvm_ena(hw)) {
400 /* configure software offloaded VLAN support when DVM
401 * is enabled, but no port VLAN is enabled
402 */
403 ice_vf_vsi_cfg_dvm_legacy_vlan_mode(vsi);
404 }
405 }
406
407 return 0;
408}
409
410/**
411 * ice_vc_get_vf_res_msg
412 * @vf: pointer to the VF info
413 * @msg: pointer to the msg buffer
414 *
415 * called from the VF to request its resources
416 */
417static int ice_vc_get_vf_res_msg(struct ice_vf *vf, u8 *msg)
418{
419 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
420 struct virtchnl_vf_resource *vfres = NULL;
421 struct ice_hw *hw = &vf->pf->hw;
422 struct ice_vsi *vsi;
423 int len = 0;
424 int ret;
425
426 if (ice_check_vf_init(vf)) {
427 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
428 goto err;
429 }
430
431 len = virtchnl_struct_size(vfres, vsi_res, 0);
432
433 vfres = kzalloc(len, GFP_KERNEL);
434 if (!vfres) {
435 v_ret = VIRTCHNL_STATUS_ERR_NO_MEMORY;
436 len = 0;
437 goto err;
438 }
439 if (VF_IS_V11(&vf->vf_ver))
440 vf->driver_caps = *(u32 *)msg;
441 else
442 vf->driver_caps = VIRTCHNL_VF_OFFLOAD_L2 |
443 VIRTCHNL_VF_OFFLOAD_VLAN;
444
445 vfres->vf_cap_flags = VIRTCHNL_VF_OFFLOAD_L2;
446 vsi = ice_get_vf_vsi(vf);
447 if (!vsi) {
448 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
449 goto err;
450 }
451
452 vfres->vf_cap_flags |= ice_vc_get_vlan_caps(hw, vf, vsi,
453 vf->driver_caps);
454
455 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RSS_PF)
456 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RSS_PF;
457
458 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC)
459 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC;
460
461 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_FDIR_PF)
462 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_FDIR_PF;
463
464 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_TC_U32 &&
465 vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_FDIR_PF)
466 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_TC_U32;
467
468 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RSS_PCTYPE_V2)
469 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RSS_PCTYPE_V2;
470
471 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_ENCAP)
472 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_ENCAP;
473
474 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_ENCAP_CSUM)
475 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_ENCAP_CSUM;
476
477 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RX_POLLING)
478 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RX_POLLING;
479
480 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_WB_ON_ITR)
481 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_WB_ON_ITR;
482
483 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_REQ_QUEUES)
484 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_REQ_QUEUES;
485
486 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_CRC)
487 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_CRC;
488
489 if (vf->driver_caps & VIRTCHNL_VF_CAP_ADV_LINK_SPEED)
490 vfres->vf_cap_flags |= VIRTCHNL_VF_CAP_ADV_LINK_SPEED;
491
492 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_ADV_RSS_PF)
493 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_ADV_RSS_PF;
494
495 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_USO)
496 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_USO;
497
498 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_QOS)
499 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_QOS;
500
501 vfres->num_vsis = 1;
502 /* Tx and Rx queue are equal for VF */
503 vfres->num_queue_pairs = vsi->num_txq;
504 vfres->max_vectors = vf->num_msix;
505 vfres->rss_key_size = ICE_VSIQF_HKEY_ARRAY_SIZE;
506 vfres->rss_lut_size = ICE_LUT_VSI_SIZE;
507 vfres->max_mtu = ice_vc_get_max_frame_size(vf);
508
509 vfres->vsi_res[0].vsi_id = ICE_VF_VSI_ID;
510 vfres->vsi_res[0].vsi_type = VIRTCHNL_VSI_SRIOV;
511 vfres->vsi_res[0].num_queue_pairs = vsi->num_txq;
512 ether_addr_copy(vfres->vsi_res[0].default_mac_addr,
513 vf->hw_lan_addr);
514
515 /* match guest capabilities */
516 vf->driver_caps = vfres->vf_cap_flags;
517
518 ice_vc_set_caps_allowlist(vf);
519 ice_vc_set_working_allowlist(vf);
520
521 set_bit(ICE_VF_STATE_ACTIVE, vf->vf_states);
522
523err:
524 /* send the response back to the VF */
525 ret = ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_GET_VF_RESOURCES, v_ret,
526 (u8 *)vfres, len);
527
528 kfree(vfres);
529 return ret;
530}
531
532/**
533 * ice_vc_reset_vf_msg
534 * @vf: pointer to the VF info
535 *
536 * called from the VF to reset itself,
537 * unlike other virtchnl messages, PF driver
538 * doesn't send the response back to the VF
539 */
540static void ice_vc_reset_vf_msg(struct ice_vf *vf)
541{
542 if (test_bit(ICE_VF_STATE_INIT, vf->vf_states))
543 ice_reset_vf(vf, 0);
544}
545
546/**
547 * ice_vc_isvalid_vsi_id
548 * @vf: pointer to the VF info
549 * @vsi_id: VF relative VSI ID
550 *
551 * check for the valid VSI ID
552 */
553bool ice_vc_isvalid_vsi_id(struct ice_vf *vf, u16 vsi_id)
554{
555 return vsi_id == ICE_VF_VSI_ID;
556}
557
558/**
559 * ice_vc_isvalid_q_id
560 * @vsi: VSI to check queue ID against
561 * @qid: VSI relative queue ID
562 *
563 * check for the valid queue ID
564 */
565static bool ice_vc_isvalid_q_id(struct ice_vsi *vsi, u8 qid)
566{
567 /* allocated Tx and Rx queues should be always equal for VF VSI */
568 return qid < vsi->alloc_txq;
569}
570
571/**
572 * ice_vc_isvalid_ring_len
573 * @ring_len: length of ring
574 *
575 * check for the valid ring count, should be multiple of ICE_REQ_DESC_MULTIPLE
576 * or zero
577 */
578static bool ice_vc_isvalid_ring_len(u16 ring_len)
579{
580 return ring_len == 0 ||
581 (ring_len >= ICE_MIN_NUM_DESC &&
582 ring_len <= ICE_MAX_NUM_DESC &&
583 !(ring_len % ICE_REQ_DESC_MULTIPLE));
584}
585
586/**
587 * ice_vc_validate_pattern
588 * @vf: pointer to the VF info
589 * @proto: virtchnl protocol headers
590 *
591 * validate the pattern is supported or not.
592 *
593 * Return: true on success, false on error.
594 */
595bool
596ice_vc_validate_pattern(struct ice_vf *vf, struct virtchnl_proto_hdrs *proto)
597{
598 bool is_ipv4 = false;
599 bool is_ipv6 = false;
600 bool is_udp = false;
601 u16 ptype = -1;
602 int i = 0;
603
604 while (i < proto->count &&
605 proto->proto_hdr[i].type != VIRTCHNL_PROTO_HDR_NONE) {
606 switch (proto->proto_hdr[i].type) {
607 case VIRTCHNL_PROTO_HDR_ETH:
608 ptype = ICE_PTYPE_MAC_PAY;
609 break;
610 case VIRTCHNL_PROTO_HDR_IPV4:
611 ptype = ICE_PTYPE_IPV4_PAY;
612 is_ipv4 = true;
613 break;
614 case VIRTCHNL_PROTO_HDR_IPV6:
615 ptype = ICE_PTYPE_IPV6_PAY;
616 is_ipv6 = true;
617 break;
618 case VIRTCHNL_PROTO_HDR_UDP:
619 if (is_ipv4)
620 ptype = ICE_PTYPE_IPV4_UDP_PAY;
621 else if (is_ipv6)
622 ptype = ICE_PTYPE_IPV6_UDP_PAY;
623 is_udp = true;
624 break;
625 case VIRTCHNL_PROTO_HDR_TCP:
626 if (is_ipv4)
627 ptype = ICE_PTYPE_IPV4_TCP_PAY;
628 else if (is_ipv6)
629 ptype = ICE_PTYPE_IPV6_TCP_PAY;
630 break;
631 case VIRTCHNL_PROTO_HDR_SCTP:
632 if (is_ipv4)
633 ptype = ICE_PTYPE_IPV4_SCTP_PAY;
634 else if (is_ipv6)
635 ptype = ICE_PTYPE_IPV6_SCTP_PAY;
636 break;
637 case VIRTCHNL_PROTO_HDR_GTPU_IP:
638 case VIRTCHNL_PROTO_HDR_GTPU_EH:
639 if (is_ipv4)
640 ptype = ICE_MAC_IPV4_GTPU;
641 else if (is_ipv6)
642 ptype = ICE_MAC_IPV6_GTPU;
643 goto out;
644 case VIRTCHNL_PROTO_HDR_L2TPV3:
645 if (is_ipv4)
646 ptype = ICE_MAC_IPV4_L2TPV3;
647 else if (is_ipv6)
648 ptype = ICE_MAC_IPV6_L2TPV3;
649 goto out;
650 case VIRTCHNL_PROTO_HDR_ESP:
651 if (is_ipv4)
652 ptype = is_udp ? ICE_MAC_IPV4_NAT_T_ESP :
653 ICE_MAC_IPV4_ESP;
654 else if (is_ipv6)
655 ptype = is_udp ? ICE_MAC_IPV6_NAT_T_ESP :
656 ICE_MAC_IPV6_ESP;
657 goto out;
658 case VIRTCHNL_PROTO_HDR_AH:
659 if (is_ipv4)
660 ptype = ICE_MAC_IPV4_AH;
661 else if (is_ipv6)
662 ptype = ICE_MAC_IPV6_AH;
663 goto out;
664 case VIRTCHNL_PROTO_HDR_PFCP:
665 if (is_ipv4)
666 ptype = ICE_MAC_IPV4_PFCP_SESSION;
667 else if (is_ipv6)
668 ptype = ICE_MAC_IPV6_PFCP_SESSION;
669 goto out;
670 default:
671 break;
672 }
673 i++;
674 }
675
676out:
677 return ice_hw_ptype_ena(&vf->pf->hw, ptype);
678}
679
680/**
681 * ice_vc_parse_rss_cfg - parses hash fields and headers from
682 * a specific virtchnl RSS cfg
683 * @hw: pointer to the hardware
684 * @rss_cfg: pointer to the virtchnl RSS cfg
685 * @hash_cfg: pointer to the HW hash configuration
686 *
687 * Return true if all the protocol header and hash fields in the RSS cfg could
688 * be parsed, else return false
689 *
690 * This function parses the virtchnl RSS cfg to be the intended
691 * hash fields and the intended header for RSS configuration
692 */
693static bool ice_vc_parse_rss_cfg(struct ice_hw *hw,
694 struct virtchnl_rss_cfg *rss_cfg,
695 struct ice_rss_hash_cfg *hash_cfg)
696{
697 const struct ice_vc_hash_field_match_type *hf_list;
698 const struct ice_vc_hdr_match_type *hdr_list;
699 int i, hf_list_len, hdr_list_len;
700 u32 *addl_hdrs = &hash_cfg->addl_hdrs;
701 u64 *hash_flds = &hash_cfg->hash_flds;
702
703 /* set outer layer RSS as default */
704 hash_cfg->hdr_type = ICE_RSS_OUTER_HEADERS;
705
706 if (rss_cfg->rss_algorithm == VIRTCHNL_RSS_ALG_TOEPLITZ_SYMMETRIC)
707 hash_cfg->symm = true;
708 else
709 hash_cfg->symm = false;
710
711 hf_list = ice_vc_hash_field_list;
712 hf_list_len = ARRAY_SIZE(ice_vc_hash_field_list);
713 hdr_list = ice_vc_hdr_list;
714 hdr_list_len = ARRAY_SIZE(ice_vc_hdr_list);
715
716 for (i = 0; i < rss_cfg->proto_hdrs.count; i++) {
717 struct virtchnl_proto_hdr *proto_hdr =
718 &rss_cfg->proto_hdrs.proto_hdr[i];
719 bool hdr_found = false;
720 int j;
721
722 /* Find matched ice headers according to virtchnl headers. */
723 for (j = 0; j < hdr_list_len; j++) {
724 struct ice_vc_hdr_match_type hdr_map = hdr_list[j];
725
726 if (proto_hdr->type == hdr_map.vc_hdr) {
727 *addl_hdrs |= hdr_map.ice_hdr;
728 hdr_found = true;
729 }
730 }
731
732 if (!hdr_found)
733 return false;
734
735 /* Find matched ice hash fields according to
736 * virtchnl hash fields.
737 */
738 for (j = 0; j < hf_list_len; j++) {
739 struct ice_vc_hash_field_match_type hf_map = hf_list[j];
740
741 if (proto_hdr->type == hf_map.vc_hdr &&
742 proto_hdr->field_selector == hf_map.vc_hash_field) {
743 *hash_flds |= hf_map.ice_hash_field;
744 break;
745 }
746 }
747 }
748
749 return true;
750}
751
752/**
753 * ice_vf_adv_rss_offload_ena - determine if capabilities support advanced
754 * RSS offloads
755 * @caps: VF driver negotiated capabilities
756 *
757 * Return true if VIRTCHNL_VF_OFFLOAD_ADV_RSS_PF capability is set,
758 * else return false
759 */
760static bool ice_vf_adv_rss_offload_ena(u32 caps)
761{
762 return !!(caps & VIRTCHNL_VF_OFFLOAD_ADV_RSS_PF);
763}
764
765/**
766 * ice_vc_handle_rss_cfg
767 * @vf: pointer to the VF info
768 * @msg: pointer to the message buffer
769 * @add: add a RSS config if true, otherwise delete a RSS config
770 *
771 * This function adds/deletes a RSS config
772 */
773static int ice_vc_handle_rss_cfg(struct ice_vf *vf, u8 *msg, bool add)
774{
775 u32 v_opcode = add ? VIRTCHNL_OP_ADD_RSS_CFG : VIRTCHNL_OP_DEL_RSS_CFG;
776 struct virtchnl_rss_cfg *rss_cfg = (struct virtchnl_rss_cfg *)msg;
777 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
778 struct device *dev = ice_pf_to_dev(vf->pf);
779 struct ice_hw *hw = &vf->pf->hw;
780 struct ice_vsi *vsi;
781
782 if (!test_bit(ICE_FLAG_RSS_ENA, vf->pf->flags)) {
783 dev_dbg(dev, "VF %d attempting to configure RSS, but RSS is not supported by the PF\n",
784 vf->vf_id);
785 v_ret = VIRTCHNL_STATUS_ERR_NOT_SUPPORTED;
786 goto error_param;
787 }
788
789 if (!ice_vf_adv_rss_offload_ena(vf->driver_caps)) {
790 dev_dbg(dev, "VF %d attempting to configure RSS, but Advanced RSS offload is not supported\n",
791 vf->vf_id);
792 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
793 goto error_param;
794 }
795
796 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
797 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
798 goto error_param;
799 }
800
801 if (rss_cfg->proto_hdrs.count > VIRTCHNL_MAX_NUM_PROTO_HDRS ||
802 rss_cfg->rss_algorithm < VIRTCHNL_RSS_ALG_TOEPLITZ_ASYMMETRIC ||
803 rss_cfg->rss_algorithm > VIRTCHNL_RSS_ALG_XOR_SYMMETRIC) {
804 dev_dbg(dev, "VF %d attempting to configure RSS, but RSS configuration is not valid\n",
805 vf->vf_id);
806 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
807 goto error_param;
808 }
809
810 vsi = ice_get_vf_vsi(vf);
811 if (!vsi) {
812 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
813 goto error_param;
814 }
815
816 if (!ice_vc_validate_pattern(vf, &rss_cfg->proto_hdrs)) {
817 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
818 goto error_param;
819 }
820
821 if (rss_cfg->rss_algorithm == VIRTCHNL_RSS_ALG_R_ASYMMETRIC) {
822 struct ice_vsi_ctx *ctx;
823 u8 lut_type, hash_type;
824 int status;
825
826 lut_type = ICE_AQ_VSI_Q_OPT_RSS_LUT_VSI;
827 hash_type = add ? ICE_AQ_VSI_Q_OPT_RSS_HASH_XOR :
828 ICE_AQ_VSI_Q_OPT_RSS_HASH_TPLZ;
829
830 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
831 if (!ctx) {
832 v_ret = VIRTCHNL_STATUS_ERR_NO_MEMORY;
833 goto error_param;
834 }
835
836 ctx->info.q_opt_rss =
837 FIELD_PREP(ICE_AQ_VSI_Q_OPT_RSS_LUT_M, lut_type) |
838 FIELD_PREP(ICE_AQ_VSI_Q_OPT_RSS_HASH_M, hash_type);
839
840 /* Preserve existing queueing option setting */
841 ctx->info.q_opt_rss |= (vsi->info.q_opt_rss &
842 ICE_AQ_VSI_Q_OPT_RSS_GBL_LUT_M);
843 ctx->info.q_opt_tc = vsi->info.q_opt_tc;
844 ctx->info.q_opt_flags = vsi->info.q_opt_rss;
845
846 ctx->info.valid_sections =
847 cpu_to_le16(ICE_AQ_VSI_PROP_Q_OPT_VALID);
848
849 status = ice_update_vsi(hw, vsi->idx, ctx, NULL);
850 if (status) {
851 dev_err(dev, "update VSI for RSS failed, err %d aq_err %s\n",
852 status, ice_aq_str(hw->adminq.sq_last_status));
853 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
854 } else {
855 vsi->info.q_opt_rss = ctx->info.q_opt_rss;
856 }
857
858 kfree(ctx);
859 } else {
860 struct ice_rss_hash_cfg cfg;
861
862 /* Only check for none raw pattern case */
863 if (!ice_vc_validate_pattern(vf, &rss_cfg->proto_hdrs)) {
864 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
865 goto error_param;
866 }
867 cfg.addl_hdrs = ICE_FLOW_SEG_HDR_NONE;
868 cfg.hash_flds = ICE_HASH_INVALID;
869 cfg.hdr_type = ICE_RSS_ANY_HEADERS;
870
871 if (!ice_vc_parse_rss_cfg(hw, rss_cfg, &cfg)) {
872 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
873 goto error_param;
874 }
875
876 if (add) {
877 if (ice_add_rss_cfg(hw, vsi, &cfg)) {
878 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
879 dev_err(dev, "ice_add_rss_cfg failed for vsi = %d, v_ret = %d\n",
880 vsi->vsi_num, v_ret);
881 }
882 } else {
883 int status;
884
885 status = ice_rem_rss_cfg(hw, vsi->idx, &cfg);
886 /* We just ignore -ENOENT, because if two configurations
887 * share the same profile remove one of them actually
888 * removes both, since the profile is deleted.
889 */
890 if (status && status != -ENOENT) {
891 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
892 dev_err(dev, "ice_rem_rss_cfg failed for VF ID:%d, error:%d\n",
893 vf->vf_id, status);
894 }
895 }
896 }
897
898error_param:
899 return ice_vc_send_msg_to_vf(vf, v_opcode, v_ret, NULL, 0);
900}
901
902/**
903 * ice_vc_config_rss_key
904 * @vf: pointer to the VF info
905 * @msg: pointer to the msg buffer
906 *
907 * Configure the VF's RSS key
908 */
909static int ice_vc_config_rss_key(struct ice_vf *vf, u8 *msg)
910{
911 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
912 struct virtchnl_rss_key *vrk =
913 (struct virtchnl_rss_key *)msg;
914 struct ice_vsi *vsi;
915
916 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
917 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
918 goto error_param;
919 }
920
921 if (!ice_vc_isvalid_vsi_id(vf, vrk->vsi_id)) {
922 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
923 goto error_param;
924 }
925
926 if (vrk->key_len != ICE_VSIQF_HKEY_ARRAY_SIZE) {
927 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
928 goto error_param;
929 }
930
931 if (!test_bit(ICE_FLAG_RSS_ENA, vf->pf->flags)) {
932 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
933 goto error_param;
934 }
935
936 vsi = ice_get_vf_vsi(vf);
937 if (!vsi) {
938 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
939 goto error_param;
940 }
941
942 if (ice_set_rss_key(vsi, vrk->key))
943 v_ret = VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR;
944error_param:
945 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_RSS_KEY, v_ret,
946 NULL, 0);
947}
948
949/**
950 * ice_vc_config_rss_lut
951 * @vf: pointer to the VF info
952 * @msg: pointer to the msg buffer
953 *
954 * Configure the VF's RSS LUT
955 */
956static int ice_vc_config_rss_lut(struct ice_vf *vf, u8 *msg)
957{
958 struct virtchnl_rss_lut *vrl = (struct virtchnl_rss_lut *)msg;
959 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
960 struct ice_vsi *vsi;
961
962 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
963 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
964 goto error_param;
965 }
966
967 if (!ice_vc_isvalid_vsi_id(vf, vrl->vsi_id)) {
968 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
969 goto error_param;
970 }
971
972 if (vrl->lut_entries != ICE_LUT_VSI_SIZE) {
973 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
974 goto error_param;
975 }
976
977 if (!test_bit(ICE_FLAG_RSS_ENA, vf->pf->flags)) {
978 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
979 goto error_param;
980 }
981
982 vsi = ice_get_vf_vsi(vf);
983 if (!vsi) {
984 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
985 goto error_param;
986 }
987
988 if (ice_set_rss_lut(vsi, vrl->lut, ICE_LUT_VSI_SIZE))
989 v_ret = VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR;
990error_param:
991 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_RSS_LUT, v_ret,
992 NULL, 0);
993}
994
995/**
996 * ice_vc_config_rss_hfunc
997 * @vf: pointer to the VF info
998 * @msg: pointer to the msg buffer
999 *
1000 * Configure the VF's RSS Hash function
1001 */
1002static int ice_vc_config_rss_hfunc(struct ice_vf *vf, u8 *msg)
1003{
1004 struct virtchnl_rss_hfunc *vrh = (struct virtchnl_rss_hfunc *)msg;
1005 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
1006 u8 hfunc = ICE_AQ_VSI_Q_OPT_RSS_HASH_TPLZ;
1007 struct ice_vsi *vsi;
1008
1009 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
1010 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1011 goto error_param;
1012 }
1013
1014 if (!ice_vc_isvalid_vsi_id(vf, vrh->vsi_id)) {
1015 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1016 goto error_param;
1017 }
1018
1019 if (!test_bit(ICE_FLAG_RSS_ENA, vf->pf->flags)) {
1020 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1021 goto error_param;
1022 }
1023
1024 vsi = ice_get_vf_vsi(vf);
1025 if (!vsi) {
1026 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1027 goto error_param;
1028 }
1029
1030 if (vrh->rss_algorithm == VIRTCHNL_RSS_ALG_TOEPLITZ_SYMMETRIC)
1031 hfunc = ICE_AQ_VSI_Q_OPT_RSS_HASH_SYM_TPLZ;
1032
1033 if (ice_set_rss_hfunc(vsi, hfunc))
1034 v_ret = VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR;
1035error_param:
1036 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_RSS_HFUNC, v_ret,
1037 NULL, 0);
1038}
1039
1040/**
1041 * ice_vc_get_qos_caps - Get current QoS caps from PF
1042 * @vf: pointer to the VF info
1043 *
1044 * Get VF's QoS capabilities, such as TC number, arbiter and
1045 * bandwidth from PF.
1046 *
1047 * Return: 0 on success or negative error value.
1048 */
1049static int ice_vc_get_qos_caps(struct ice_vf *vf)
1050{
1051 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
1052 struct virtchnl_qos_cap_list *cap_list = NULL;
1053 u8 tc_prio[ICE_MAX_TRAFFIC_CLASS] = { 0 };
1054 struct virtchnl_qos_cap_elem *cfg = NULL;
1055 struct ice_vsi_ctx *vsi_ctx;
1056 struct ice_pf *pf = vf->pf;
1057 struct ice_port_info *pi;
1058 struct ice_vsi *vsi;
1059 u8 numtc, tc;
1060 u16 len = 0;
1061 int ret, i;
1062
1063 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
1064 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1065 goto err;
1066 }
1067
1068 vsi = ice_get_vf_vsi(vf);
1069 if (!vsi) {
1070 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1071 goto err;
1072 }
1073
1074 pi = pf->hw.port_info;
1075 numtc = vsi->tc_cfg.numtc;
1076
1077 vsi_ctx = ice_get_vsi_ctx(pi->hw, vf->lan_vsi_idx);
1078 if (!vsi_ctx) {
1079 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1080 goto err;
1081 }
1082
1083 len = struct_size(cap_list, cap, numtc);
1084 cap_list = kzalloc(len, GFP_KERNEL);
1085 if (!cap_list) {
1086 v_ret = VIRTCHNL_STATUS_ERR_NO_MEMORY;
1087 len = 0;
1088 goto err;
1089 }
1090
1091 cap_list->vsi_id = vsi->vsi_num;
1092 cap_list->num_elem = numtc;
1093
1094 /* Store the UP2TC configuration from DCB to a user priority bitmap
1095 * of each TC. Each element of prio_of_tc represents one TC. Each
1096 * bitmap indicates the user priorities belong to this TC.
1097 */
1098 for (i = 0; i < ICE_MAX_USER_PRIORITY; i++) {
1099 tc = pi->qos_cfg.local_dcbx_cfg.etscfg.prio_table[i];
1100 tc_prio[tc] |= BIT(i);
1101 }
1102
1103 for (i = 0; i < numtc; i++) {
1104 cfg = &cap_list->cap[i];
1105 cfg->tc_num = i;
1106 cfg->tc_prio = tc_prio[i];
1107 cfg->arbiter = pi->qos_cfg.local_dcbx_cfg.etscfg.tsatable[i];
1108 cfg->weight = VIRTCHNL_STRICT_WEIGHT;
1109 cfg->type = VIRTCHNL_BW_SHAPER;
1110 cfg->shaper.committed = vsi_ctx->sched.bw_t_info[i].cir_bw.bw;
1111 cfg->shaper.peak = vsi_ctx->sched.bw_t_info[i].eir_bw.bw;
1112 }
1113
1114err:
1115 ret = ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_GET_QOS_CAPS, v_ret,
1116 (u8 *)cap_list, len);
1117 kfree(cap_list);
1118 return ret;
1119}
1120
1121/**
1122 * ice_vf_cfg_qs_bw - Configure per queue bandwidth
1123 * @vf: pointer to the VF info
1124 * @num_queues: number of queues to be configured
1125 *
1126 * Configure per queue bandwidth.
1127 *
1128 * Return: 0 on success or negative error value.
1129 */
1130static int ice_vf_cfg_qs_bw(struct ice_vf *vf, u16 num_queues)
1131{
1132 struct ice_hw *hw = &vf->pf->hw;
1133 struct ice_vsi *vsi;
1134 int ret;
1135 u16 i;
1136
1137 vsi = ice_get_vf_vsi(vf);
1138 if (!vsi)
1139 return -EINVAL;
1140
1141 for (i = 0; i < num_queues; i++) {
1142 u32 p_rate, min_rate;
1143 u8 tc;
1144
1145 p_rate = vf->qs_bw[i].peak;
1146 min_rate = vf->qs_bw[i].committed;
1147 tc = vf->qs_bw[i].tc;
1148 if (p_rate)
1149 ret = ice_cfg_q_bw_lmt(hw->port_info, vsi->idx, tc,
1150 vf->qs_bw[i].queue_id,
1151 ICE_MAX_BW, p_rate);
1152 else
1153 ret = ice_cfg_q_bw_dflt_lmt(hw->port_info, vsi->idx, tc,
1154 vf->qs_bw[i].queue_id,
1155 ICE_MAX_BW);
1156 if (ret)
1157 return ret;
1158
1159 if (min_rate)
1160 ret = ice_cfg_q_bw_lmt(hw->port_info, vsi->idx, tc,
1161 vf->qs_bw[i].queue_id,
1162 ICE_MIN_BW, min_rate);
1163 else
1164 ret = ice_cfg_q_bw_dflt_lmt(hw->port_info, vsi->idx, tc,
1165 vf->qs_bw[i].queue_id,
1166 ICE_MIN_BW);
1167
1168 if (ret)
1169 return ret;
1170 }
1171
1172 return 0;
1173}
1174
1175/**
1176 * ice_vf_cfg_q_quanta_profile - Configure quanta profile
1177 * @vf: pointer to the VF info
1178 * @quanta_prof_idx: pointer to the quanta profile index
1179 * @quanta_size: quanta size to be set
1180 *
1181 * This function chooses available quanta profile and configures the register.
1182 * The quanta profile is evenly divided by the number of device ports, and then
1183 * available to the specific PF and VFs. The first profile for each PF is a
1184 * reserved default profile. Only quanta size of the rest unused profile can be
1185 * modified.
1186 *
1187 * Return: 0 on success or negative error value.
1188 */
1189static int ice_vf_cfg_q_quanta_profile(struct ice_vf *vf, u16 quanta_size,
1190 u16 *quanta_prof_idx)
1191{
1192 const u16 n_desc = calc_quanta_desc(quanta_size);
1193 struct ice_hw *hw = &vf->pf->hw;
1194 const u16 n_cmd = 2 * n_desc;
1195 struct ice_pf *pf = vf->pf;
1196 u16 per_pf, begin_id;
1197 u8 n_used;
1198 u32 reg;
1199
1200 begin_id = (GLCOMM_QUANTA_PROF_MAX_INDEX + 1) / hw->dev_caps.num_funcs *
1201 hw->logical_pf_id;
1202
1203 if (quanta_size == ICE_DFLT_QUANTA) {
1204 *quanta_prof_idx = begin_id;
1205 } else {
1206 per_pf = (GLCOMM_QUANTA_PROF_MAX_INDEX + 1) /
1207 hw->dev_caps.num_funcs;
1208 n_used = pf->num_quanta_prof_used;
1209 if (n_used < per_pf) {
1210 *quanta_prof_idx = begin_id + 1 + n_used;
1211 pf->num_quanta_prof_used++;
1212 } else {
1213 return -EINVAL;
1214 }
1215 }
1216
1217 reg = FIELD_PREP(GLCOMM_QUANTA_PROF_QUANTA_SIZE_M, quanta_size) |
1218 FIELD_PREP(GLCOMM_QUANTA_PROF_MAX_CMD_M, n_cmd) |
1219 FIELD_PREP(GLCOMM_QUANTA_PROF_MAX_DESC_M, n_desc);
1220 wr32(hw, GLCOMM_QUANTA_PROF(*quanta_prof_idx), reg);
1221
1222 return 0;
1223}
1224
1225/**
1226 * ice_vc_cfg_promiscuous_mode_msg
1227 * @vf: pointer to the VF info
1228 * @msg: pointer to the msg buffer
1229 *
1230 * called from the VF to configure VF VSIs promiscuous mode
1231 */
1232static int ice_vc_cfg_promiscuous_mode_msg(struct ice_vf *vf, u8 *msg)
1233{
1234 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
1235 bool rm_promisc, alluni = false, allmulti = false;
1236 struct virtchnl_promisc_info *info =
1237 (struct virtchnl_promisc_info *)msg;
1238 struct ice_vsi_vlan_ops *vlan_ops;
1239 int mcast_err = 0, ucast_err = 0;
1240 struct ice_pf *pf = vf->pf;
1241 struct ice_vsi *vsi;
1242 u8 mcast_m, ucast_m;
1243 struct device *dev;
1244 int ret = 0;
1245
1246 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
1247 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1248 goto error_param;
1249 }
1250
1251 if (!ice_vc_isvalid_vsi_id(vf, info->vsi_id)) {
1252 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1253 goto error_param;
1254 }
1255
1256 vsi = ice_get_vf_vsi(vf);
1257 if (!vsi) {
1258 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1259 goto error_param;
1260 }
1261
1262 dev = ice_pf_to_dev(pf);
1263 if (!ice_is_vf_trusted(vf)) {
1264 dev_err(dev, "Unprivileged VF %d is attempting to configure promiscuous mode\n",
1265 vf->vf_id);
1266 /* Leave v_ret alone, lie to the VF on purpose. */
1267 goto error_param;
1268 }
1269
1270 if (info->flags & FLAG_VF_UNICAST_PROMISC)
1271 alluni = true;
1272
1273 if (info->flags & FLAG_VF_MULTICAST_PROMISC)
1274 allmulti = true;
1275
1276 rm_promisc = !allmulti && !alluni;
1277
1278 vlan_ops = ice_get_compat_vsi_vlan_ops(vsi);
1279 if (rm_promisc)
1280 ret = vlan_ops->ena_rx_filtering(vsi);
1281 else
1282 ret = vlan_ops->dis_rx_filtering(vsi);
1283 if (ret) {
1284 dev_err(dev, "Failed to configure VLAN pruning in promiscuous mode\n");
1285 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1286 goto error_param;
1287 }
1288
1289 ice_vf_get_promisc_masks(vf, vsi, &ucast_m, &mcast_m);
1290
1291 if (!test_bit(ICE_FLAG_VF_TRUE_PROMISC_ENA, pf->flags)) {
1292 if (alluni) {
1293 /* in this case we're turning on promiscuous mode */
1294 ret = ice_set_dflt_vsi(vsi);
1295 } else {
1296 /* in this case we're turning off promiscuous mode */
1297 if (ice_is_dflt_vsi_in_use(vsi->port_info))
1298 ret = ice_clear_dflt_vsi(vsi);
1299 }
1300
1301 /* in this case we're turning on/off only
1302 * allmulticast
1303 */
1304 if (allmulti)
1305 mcast_err = ice_vf_set_vsi_promisc(vf, vsi, mcast_m);
1306 else
1307 mcast_err = ice_vf_clear_vsi_promisc(vf, vsi, mcast_m);
1308
1309 if (ret) {
1310 dev_err(dev, "Turning on/off promiscuous mode for VF %d failed, error: %d\n",
1311 vf->vf_id, ret);
1312 v_ret = VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR;
1313 goto error_param;
1314 }
1315 } else {
1316 if (alluni)
1317 ucast_err = ice_vf_set_vsi_promisc(vf, vsi, ucast_m);
1318 else
1319 ucast_err = ice_vf_clear_vsi_promisc(vf, vsi, ucast_m);
1320
1321 if (allmulti)
1322 mcast_err = ice_vf_set_vsi_promisc(vf, vsi, mcast_m);
1323 else
1324 mcast_err = ice_vf_clear_vsi_promisc(vf, vsi, mcast_m);
1325
1326 if (ucast_err || mcast_err)
1327 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1328 }
1329
1330 if (!mcast_err) {
1331 if (allmulti &&
1332 !test_and_set_bit(ICE_VF_STATE_MC_PROMISC, vf->vf_states))
1333 dev_info(dev, "VF %u successfully set multicast promiscuous mode\n",
1334 vf->vf_id);
1335 else if (!allmulti &&
1336 test_and_clear_bit(ICE_VF_STATE_MC_PROMISC,
1337 vf->vf_states))
1338 dev_info(dev, "VF %u successfully unset multicast promiscuous mode\n",
1339 vf->vf_id);
1340 } else {
1341 dev_err(dev, "Error while modifying multicast promiscuous mode for VF %u, error: %d\n",
1342 vf->vf_id, mcast_err);
1343 }
1344
1345 if (!ucast_err) {
1346 if (alluni &&
1347 !test_and_set_bit(ICE_VF_STATE_UC_PROMISC, vf->vf_states))
1348 dev_info(dev, "VF %u successfully set unicast promiscuous mode\n",
1349 vf->vf_id);
1350 else if (!alluni &&
1351 test_and_clear_bit(ICE_VF_STATE_UC_PROMISC,
1352 vf->vf_states))
1353 dev_info(dev, "VF %u successfully unset unicast promiscuous mode\n",
1354 vf->vf_id);
1355 } else {
1356 dev_err(dev, "Error while modifying unicast promiscuous mode for VF %u, error: %d\n",
1357 vf->vf_id, ucast_err);
1358 }
1359
1360error_param:
1361 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_PROMISCUOUS_MODE,
1362 v_ret, NULL, 0);
1363}
1364
1365/**
1366 * ice_vc_get_stats_msg
1367 * @vf: pointer to the VF info
1368 * @msg: pointer to the msg buffer
1369 *
1370 * called from the VF to get VSI stats
1371 */
1372static int ice_vc_get_stats_msg(struct ice_vf *vf, u8 *msg)
1373{
1374 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
1375 struct virtchnl_queue_select *vqs =
1376 (struct virtchnl_queue_select *)msg;
1377 struct ice_eth_stats stats = { 0 };
1378 struct ice_vsi *vsi;
1379
1380 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
1381 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1382 goto error_param;
1383 }
1384
1385 if (!ice_vc_isvalid_vsi_id(vf, vqs->vsi_id)) {
1386 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1387 goto error_param;
1388 }
1389
1390 vsi = ice_get_vf_vsi(vf);
1391 if (!vsi) {
1392 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1393 goto error_param;
1394 }
1395
1396 ice_update_eth_stats(vsi);
1397
1398 stats = vsi->eth_stats;
1399
1400error_param:
1401 /* send the response to the VF */
1402 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_GET_STATS, v_ret,
1403 (u8 *)&stats, sizeof(stats));
1404}
1405
1406/**
1407 * ice_vc_validate_vqs_bitmaps - validate Rx/Tx queue bitmaps from VIRTCHNL
1408 * @vqs: virtchnl_queue_select structure containing bitmaps to validate
1409 *
1410 * Return true on successful validation, else false
1411 */
1412static bool ice_vc_validate_vqs_bitmaps(struct virtchnl_queue_select *vqs)
1413{
1414 if ((!vqs->rx_queues && !vqs->tx_queues) ||
1415 vqs->rx_queues >= BIT(ICE_MAX_RSS_QS_PER_VF) ||
1416 vqs->tx_queues >= BIT(ICE_MAX_RSS_QS_PER_VF))
1417 return false;
1418
1419 return true;
1420}
1421
1422/**
1423 * ice_vf_ena_txq_interrupt - enable Tx queue interrupt via QINT_TQCTL
1424 * @vsi: VSI of the VF to configure
1425 * @q_idx: VF queue index used to determine the queue in the PF's space
1426 */
1427static void ice_vf_ena_txq_interrupt(struct ice_vsi *vsi, u32 q_idx)
1428{
1429 struct ice_hw *hw = &vsi->back->hw;
1430 u32 pfq = vsi->txq_map[q_idx];
1431 u32 reg;
1432
1433 reg = rd32(hw, QINT_TQCTL(pfq));
1434
1435 /* MSI-X index 0 in the VF's space is always for the OICR, which means
1436 * this is most likely a poll mode VF driver, so don't enable an
1437 * interrupt that was never configured via VIRTCHNL_OP_CONFIG_IRQ_MAP
1438 */
1439 if (!(reg & QINT_TQCTL_MSIX_INDX_M))
1440 return;
1441
1442 wr32(hw, QINT_TQCTL(pfq), reg | QINT_TQCTL_CAUSE_ENA_M);
1443}
1444
1445/**
1446 * ice_vf_ena_rxq_interrupt - enable Tx queue interrupt via QINT_RQCTL
1447 * @vsi: VSI of the VF to configure
1448 * @q_idx: VF queue index used to determine the queue in the PF's space
1449 */
1450static void ice_vf_ena_rxq_interrupt(struct ice_vsi *vsi, u32 q_idx)
1451{
1452 struct ice_hw *hw = &vsi->back->hw;
1453 u32 pfq = vsi->rxq_map[q_idx];
1454 u32 reg;
1455
1456 reg = rd32(hw, QINT_RQCTL(pfq));
1457
1458 /* MSI-X index 0 in the VF's space is always for the OICR, which means
1459 * this is most likely a poll mode VF driver, so don't enable an
1460 * interrupt that was never configured via VIRTCHNL_OP_CONFIG_IRQ_MAP
1461 */
1462 if (!(reg & QINT_RQCTL_MSIX_INDX_M))
1463 return;
1464
1465 wr32(hw, QINT_RQCTL(pfq), reg | QINT_RQCTL_CAUSE_ENA_M);
1466}
1467
1468/**
1469 * ice_vc_ena_qs_msg
1470 * @vf: pointer to the VF info
1471 * @msg: pointer to the msg buffer
1472 *
1473 * called from the VF to enable all or specific queue(s)
1474 */
1475static int ice_vc_ena_qs_msg(struct ice_vf *vf, u8 *msg)
1476{
1477 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
1478 struct virtchnl_queue_select *vqs =
1479 (struct virtchnl_queue_select *)msg;
1480 struct ice_vsi *vsi;
1481 unsigned long q_map;
1482 u16 vf_q_id;
1483
1484 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
1485 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1486 goto error_param;
1487 }
1488
1489 if (!ice_vc_isvalid_vsi_id(vf, vqs->vsi_id)) {
1490 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1491 goto error_param;
1492 }
1493
1494 if (!ice_vc_validate_vqs_bitmaps(vqs)) {
1495 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1496 goto error_param;
1497 }
1498
1499 vsi = ice_get_vf_vsi(vf);
1500 if (!vsi) {
1501 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1502 goto error_param;
1503 }
1504
1505 /* Enable only Rx rings, Tx rings were enabled by the FW when the
1506 * Tx queue group list was configured and the context bits were
1507 * programmed using ice_vsi_cfg_txqs
1508 */
1509 q_map = vqs->rx_queues;
1510 for_each_set_bit(vf_q_id, &q_map, ICE_MAX_RSS_QS_PER_VF) {
1511 if (!ice_vc_isvalid_q_id(vsi, vf_q_id)) {
1512 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1513 goto error_param;
1514 }
1515
1516 /* Skip queue if enabled */
1517 if (test_bit(vf_q_id, vf->rxq_ena))
1518 continue;
1519
1520 if (ice_vsi_ctrl_one_rx_ring(vsi, true, vf_q_id, true)) {
1521 dev_err(ice_pf_to_dev(vsi->back), "Failed to enable Rx ring %d on VSI %d\n",
1522 vf_q_id, vsi->vsi_num);
1523 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1524 goto error_param;
1525 }
1526
1527 ice_vf_ena_rxq_interrupt(vsi, vf_q_id);
1528 set_bit(vf_q_id, vf->rxq_ena);
1529 }
1530
1531 q_map = vqs->tx_queues;
1532 for_each_set_bit(vf_q_id, &q_map, ICE_MAX_RSS_QS_PER_VF) {
1533 if (!ice_vc_isvalid_q_id(vsi, vf_q_id)) {
1534 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1535 goto error_param;
1536 }
1537
1538 /* Skip queue if enabled */
1539 if (test_bit(vf_q_id, vf->txq_ena))
1540 continue;
1541
1542 ice_vf_ena_txq_interrupt(vsi, vf_q_id);
1543 set_bit(vf_q_id, vf->txq_ena);
1544 }
1545
1546 /* Set flag to indicate that queues are enabled */
1547 if (v_ret == VIRTCHNL_STATUS_SUCCESS)
1548 set_bit(ICE_VF_STATE_QS_ENA, vf->vf_states);
1549
1550error_param:
1551 /* send the response to the VF */
1552 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ENABLE_QUEUES, v_ret,
1553 NULL, 0);
1554}
1555
1556/**
1557 * ice_vf_vsi_dis_single_txq - disable a single Tx queue
1558 * @vf: VF to disable queue for
1559 * @vsi: VSI for the VF
1560 * @q_id: VF relative (0-based) queue ID
1561 *
1562 * Attempt to disable the Tx queue passed in. If the Tx queue was successfully
1563 * disabled then clear q_id bit in the enabled queues bitmap and return
1564 * success. Otherwise return error.
1565 */
1566static int
1567ice_vf_vsi_dis_single_txq(struct ice_vf *vf, struct ice_vsi *vsi, u16 q_id)
1568{
1569 struct ice_txq_meta txq_meta = { 0 };
1570 struct ice_tx_ring *ring;
1571 int err;
1572
1573 if (!test_bit(q_id, vf->txq_ena))
1574 dev_dbg(ice_pf_to_dev(vsi->back), "Queue %u on VSI %u is not enabled, but stopping it anyway\n",
1575 q_id, vsi->vsi_num);
1576
1577 ring = vsi->tx_rings[q_id];
1578 if (!ring)
1579 return -EINVAL;
1580
1581 ice_fill_txq_meta(vsi, ring, &txq_meta);
1582
1583 err = ice_vsi_stop_tx_ring(vsi, ICE_NO_RESET, vf->vf_id, ring, &txq_meta);
1584 if (err) {
1585 dev_err(ice_pf_to_dev(vsi->back), "Failed to stop Tx ring %d on VSI %d\n",
1586 q_id, vsi->vsi_num);
1587 return err;
1588 }
1589
1590 /* Clear enabled queues flag */
1591 clear_bit(q_id, vf->txq_ena);
1592
1593 return 0;
1594}
1595
1596/**
1597 * ice_vc_dis_qs_msg
1598 * @vf: pointer to the VF info
1599 * @msg: pointer to the msg buffer
1600 *
1601 * called from the VF to disable all or specific queue(s)
1602 */
1603static int ice_vc_dis_qs_msg(struct ice_vf *vf, u8 *msg)
1604{
1605 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
1606 struct virtchnl_queue_select *vqs =
1607 (struct virtchnl_queue_select *)msg;
1608 struct ice_vsi *vsi;
1609 unsigned long q_map;
1610 u16 vf_q_id;
1611
1612 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states) &&
1613 !test_bit(ICE_VF_STATE_QS_ENA, vf->vf_states)) {
1614 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1615 goto error_param;
1616 }
1617
1618 if (!ice_vc_isvalid_vsi_id(vf, vqs->vsi_id)) {
1619 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1620 goto error_param;
1621 }
1622
1623 if (!ice_vc_validate_vqs_bitmaps(vqs)) {
1624 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1625 goto error_param;
1626 }
1627
1628 vsi = ice_get_vf_vsi(vf);
1629 if (!vsi) {
1630 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1631 goto error_param;
1632 }
1633
1634 if (vqs->tx_queues) {
1635 q_map = vqs->tx_queues;
1636
1637 for_each_set_bit(vf_q_id, &q_map, ICE_MAX_RSS_QS_PER_VF) {
1638 if (!ice_vc_isvalid_q_id(vsi, vf_q_id)) {
1639 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1640 goto error_param;
1641 }
1642
1643 if (ice_vf_vsi_dis_single_txq(vf, vsi, vf_q_id)) {
1644 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1645 goto error_param;
1646 }
1647 }
1648 }
1649
1650 q_map = vqs->rx_queues;
1651 /* speed up Rx queue disable by batching them if possible */
1652 if (q_map &&
1653 bitmap_equal(&q_map, vf->rxq_ena, ICE_MAX_RSS_QS_PER_VF)) {
1654 if (ice_vsi_stop_all_rx_rings(vsi)) {
1655 dev_err(ice_pf_to_dev(vsi->back), "Failed to stop all Rx rings on VSI %d\n",
1656 vsi->vsi_num);
1657 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1658 goto error_param;
1659 }
1660
1661 bitmap_zero(vf->rxq_ena, ICE_MAX_RSS_QS_PER_VF);
1662 } else if (q_map) {
1663 for_each_set_bit(vf_q_id, &q_map, ICE_MAX_RSS_QS_PER_VF) {
1664 if (!ice_vc_isvalid_q_id(vsi, vf_q_id)) {
1665 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1666 goto error_param;
1667 }
1668
1669 /* Skip queue if not enabled */
1670 if (!test_bit(vf_q_id, vf->rxq_ena))
1671 continue;
1672
1673 if (ice_vsi_ctrl_one_rx_ring(vsi, false, vf_q_id,
1674 true)) {
1675 dev_err(ice_pf_to_dev(vsi->back), "Failed to stop Rx ring %d on VSI %d\n",
1676 vf_q_id, vsi->vsi_num);
1677 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1678 goto error_param;
1679 }
1680
1681 /* Clear enabled queues flag */
1682 clear_bit(vf_q_id, vf->rxq_ena);
1683 }
1684 }
1685
1686 /* Clear enabled queues flag */
1687 if (v_ret == VIRTCHNL_STATUS_SUCCESS && ice_vf_has_no_qs_ena(vf))
1688 clear_bit(ICE_VF_STATE_QS_ENA, vf->vf_states);
1689
1690error_param:
1691 /* send the response to the VF */
1692 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DISABLE_QUEUES, v_ret,
1693 NULL, 0);
1694}
1695
1696/**
1697 * ice_cfg_interrupt
1698 * @vf: pointer to the VF info
1699 * @vsi: the VSI being configured
1700 * @map: vector map for mapping vectors to queues
1701 * @q_vector: structure for interrupt vector
1702 * configure the IRQ to queue map
1703 */
1704static enum virtchnl_status_code
1705ice_cfg_interrupt(struct ice_vf *vf, struct ice_vsi *vsi,
1706 struct virtchnl_vector_map *map,
1707 struct ice_q_vector *q_vector)
1708{
1709 u16 vsi_q_id, vsi_q_id_idx;
1710 unsigned long qmap;
1711
1712 q_vector->num_ring_rx = 0;
1713 q_vector->num_ring_tx = 0;
1714
1715 qmap = map->rxq_map;
1716 for_each_set_bit(vsi_q_id_idx, &qmap, ICE_MAX_RSS_QS_PER_VF) {
1717 vsi_q_id = vsi_q_id_idx;
1718
1719 if (!ice_vc_isvalid_q_id(vsi, vsi_q_id))
1720 return VIRTCHNL_STATUS_ERR_PARAM;
1721
1722 q_vector->num_ring_rx++;
1723 q_vector->rx.itr_idx = map->rxitr_idx;
1724 vsi->rx_rings[vsi_q_id]->q_vector = q_vector;
1725 ice_cfg_rxq_interrupt(vsi, vsi_q_id,
1726 q_vector->vf_reg_idx,
1727 q_vector->rx.itr_idx);
1728 }
1729
1730 qmap = map->txq_map;
1731 for_each_set_bit(vsi_q_id_idx, &qmap, ICE_MAX_RSS_QS_PER_VF) {
1732 vsi_q_id = vsi_q_id_idx;
1733
1734 if (!ice_vc_isvalid_q_id(vsi, vsi_q_id))
1735 return VIRTCHNL_STATUS_ERR_PARAM;
1736
1737 q_vector->num_ring_tx++;
1738 q_vector->tx.itr_idx = map->txitr_idx;
1739 vsi->tx_rings[vsi_q_id]->q_vector = q_vector;
1740 ice_cfg_txq_interrupt(vsi, vsi_q_id,
1741 q_vector->vf_reg_idx,
1742 q_vector->tx.itr_idx);
1743 }
1744
1745 return VIRTCHNL_STATUS_SUCCESS;
1746}
1747
1748/**
1749 * ice_vc_cfg_irq_map_msg
1750 * @vf: pointer to the VF info
1751 * @msg: pointer to the msg buffer
1752 *
1753 * called from the VF to configure the IRQ to queue map
1754 */
1755static int ice_vc_cfg_irq_map_msg(struct ice_vf *vf, u8 *msg)
1756{
1757 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
1758 u16 num_q_vectors_mapped, vsi_id, vector_id;
1759 struct virtchnl_irq_map_info *irqmap_info;
1760 struct virtchnl_vector_map *map;
1761 struct ice_vsi *vsi;
1762 int i;
1763
1764 irqmap_info = (struct virtchnl_irq_map_info *)msg;
1765 num_q_vectors_mapped = irqmap_info->num_vectors;
1766
1767 /* Check to make sure number of VF vectors mapped is not greater than
1768 * number of VF vectors originally allocated, and check that
1769 * there is actually at least a single VF queue vector mapped
1770 */
1771 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states) ||
1772 vf->num_msix < num_q_vectors_mapped ||
1773 !num_q_vectors_mapped) {
1774 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1775 goto error_param;
1776 }
1777
1778 vsi = ice_get_vf_vsi(vf);
1779 if (!vsi) {
1780 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1781 goto error_param;
1782 }
1783
1784 for (i = 0; i < num_q_vectors_mapped; i++) {
1785 struct ice_q_vector *q_vector;
1786
1787 map = &irqmap_info->vecmap[i];
1788
1789 vector_id = map->vector_id;
1790 vsi_id = map->vsi_id;
1791 /* vector_id is always 0-based for each VF, and can never be
1792 * larger than or equal to the max allowed interrupts per VF
1793 */
1794 if (!(vector_id < vf->num_msix) ||
1795 !ice_vc_isvalid_vsi_id(vf, vsi_id) ||
1796 (!vector_id && (map->rxq_map || map->txq_map))) {
1797 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1798 goto error_param;
1799 }
1800
1801 /* No need to map VF miscellaneous or rogue vector */
1802 if (!vector_id)
1803 continue;
1804
1805 /* Subtract non queue vector from vector_id passed by VF
1806 * to get actual number of VSI queue vector array index
1807 */
1808 q_vector = vsi->q_vectors[vector_id - ICE_NONQ_VECS_VF];
1809 if (!q_vector) {
1810 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1811 goto error_param;
1812 }
1813
1814 /* lookout for the invalid queue index */
1815 v_ret = ice_cfg_interrupt(vf, vsi, map, q_vector);
1816 if (v_ret)
1817 goto error_param;
1818 }
1819
1820error_param:
1821 /* send the response to the VF */
1822 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_IRQ_MAP, v_ret,
1823 NULL, 0);
1824}
1825
1826/**
1827 * ice_vc_cfg_q_bw - Configure per queue bandwidth
1828 * @vf: pointer to the VF info
1829 * @msg: pointer to the msg buffer which holds the command descriptor
1830 *
1831 * Configure VF queues bandwidth.
1832 *
1833 * Return: 0 on success or negative error value.
1834 */
1835static int ice_vc_cfg_q_bw(struct ice_vf *vf, u8 *msg)
1836{
1837 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
1838 struct virtchnl_queues_bw_cfg *qbw =
1839 (struct virtchnl_queues_bw_cfg *)msg;
1840 struct ice_vsi *vsi;
1841 u16 i;
1842
1843 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states) ||
1844 !ice_vc_isvalid_vsi_id(vf, qbw->vsi_id)) {
1845 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1846 goto err;
1847 }
1848
1849 vsi = ice_get_vf_vsi(vf);
1850 if (!vsi) {
1851 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1852 goto err;
1853 }
1854
1855 if (qbw->num_queues > ICE_MAX_RSS_QS_PER_VF ||
1856 qbw->num_queues > min_t(u16, vsi->alloc_txq, vsi->alloc_rxq)) {
1857 dev_err(ice_pf_to_dev(vf->pf), "VF-%d trying to configure more than allocated number of queues: %d\n",
1858 vf->vf_id, min_t(u16, vsi->alloc_txq, vsi->alloc_rxq));
1859 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1860 goto err;
1861 }
1862
1863 for (i = 0; i < qbw->num_queues; i++) {
1864 if (qbw->cfg[i].shaper.peak != 0 && vf->max_tx_rate != 0 &&
1865 qbw->cfg[i].shaper.peak > vf->max_tx_rate)
1866 dev_warn(ice_pf_to_dev(vf->pf), "The maximum queue %d rate limit configuration may not take effect because the maximum TX rate for VF-%d is %d\n",
1867 qbw->cfg[i].queue_id, vf->vf_id,
1868 vf->max_tx_rate);
1869 if (qbw->cfg[i].shaper.committed != 0 && vf->min_tx_rate != 0 &&
1870 qbw->cfg[i].shaper.committed < vf->min_tx_rate)
1871 dev_warn(ice_pf_to_dev(vf->pf), "The minimum queue %d rate limit configuration may not take effect because the minimum TX rate for VF-%d is %d\n",
1872 qbw->cfg[i].queue_id, vf->vf_id,
1873 vf->max_tx_rate);
1874 }
1875
1876 for (i = 0; i < qbw->num_queues; i++) {
1877 vf->qs_bw[i].queue_id = qbw->cfg[i].queue_id;
1878 vf->qs_bw[i].peak = qbw->cfg[i].shaper.peak;
1879 vf->qs_bw[i].committed = qbw->cfg[i].shaper.committed;
1880 vf->qs_bw[i].tc = qbw->cfg[i].tc;
1881 }
1882
1883 if (ice_vf_cfg_qs_bw(vf, qbw->num_queues))
1884 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1885
1886err:
1887 /* send the response to the VF */
1888 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_QUEUE_BW,
1889 v_ret, NULL, 0);
1890}
1891
1892/**
1893 * ice_vc_cfg_q_quanta - Configure per queue quanta
1894 * @vf: pointer to the VF info
1895 * @msg: pointer to the msg buffer which holds the command descriptor
1896 *
1897 * Configure VF queues quanta.
1898 *
1899 * Return: 0 on success or negative error value.
1900 */
1901static int ice_vc_cfg_q_quanta(struct ice_vf *vf, u8 *msg)
1902{
1903 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
1904 u16 quanta_prof_id, quanta_size, start_qid, end_qid, i;
1905 struct virtchnl_quanta_cfg *qquanta =
1906 (struct virtchnl_quanta_cfg *)msg;
1907 struct ice_vsi *vsi;
1908 int ret;
1909
1910 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
1911 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1912 goto err;
1913 }
1914
1915 vsi = ice_get_vf_vsi(vf);
1916 if (!vsi) {
1917 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1918 goto err;
1919 }
1920
1921 end_qid = qquanta->queue_select.start_queue_id +
1922 qquanta->queue_select.num_queues;
1923 if (end_qid > ICE_MAX_RSS_QS_PER_VF ||
1924 end_qid > min_t(u16, vsi->alloc_txq, vsi->alloc_rxq)) {
1925 dev_err(ice_pf_to_dev(vf->pf), "VF-%d trying to configure more than allocated number of queues: %d\n",
1926 vf->vf_id, min_t(u16, vsi->alloc_txq, vsi->alloc_rxq));
1927 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1928 goto err;
1929 }
1930
1931 quanta_size = qquanta->quanta_size;
1932 if (quanta_size > ICE_MAX_QUANTA_SIZE ||
1933 quanta_size < ICE_MIN_QUANTA_SIZE) {
1934 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1935 goto err;
1936 }
1937
1938 if (quanta_size % 64) {
1939 dev_err(ice_pf_to_dev(vf->pf), "quanta size should be the product of 64\n");
1940 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1941 goto err;
1942 }
1943
1944 ret = ice_vf_cfg_q_quanta_profile(vf, quanta_size,
1945 &quanta_prof_id);
1946 if (ret) {
1947 v_ret = VIRTCHNL_STATUS_ERR_NOT_SUPPORTED;
1948 goto err;
1949 }
1950
1951 start_qid = qquanta->queue_select.start_queue_id;
1952 for (i = start_qid; i < end_qid; i++)
1953 vsi->tx_rings[i]->quanta_prof_id = quanta_prof_id;
1954
1955err:
1956 /* send the response to the VF */
1957 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_QUANTA,
1958 v_ret, NULL, 0);
1959}
1960
1961/**
1962 * ice_vc_cfg_qs_msg
1963 * @vf: pointer to the VF info
1964 * @msg: pointer to the msg buffer
1965 *
1966 * called from the VF to configure the Rx/Tx queues
1967 */
1968static int ice_vc_cfg_qs_msg(struct ice_vf *vf, u8 *msg)
1969{
1970 struct virtchnl_vsi_queue_config_info *qci =
1971 (struct virtchnl_vsi_queue_config_info *)msg;
1972 struct virtchnl_queue_pair_info *qpi;
1973 struct ice_pf *pf = vf->pf;
1974 struct ice_lag *lag;
1975 struct ice_vsi *vsi;
1976 u8 act_prt, pri_prt;
1977 int i = -1, q_idx;
1978
1979 lag = pf->lag;
1980 mutex_lock(&pf->lag_mutex);
1981 act_prt = ICE_LAG_INVALID_PORT;
1982 pri_prt = pf->hw.port_info->lport;
1983 if (lag && lag->bonded && lag->primary) {
1984 act_prt = lag->active_port;
1985 if (act_prt != pri_prt && act_prt != ICE_LAG_INVALID_PORT &&
1986 lag->upper_netdev)
1987 ice_lag_move_vf_nodes_cfg(lag, act_prt, pri_prt);
1988 else
1989 act_prt = ICE_LAG_INVALID_PORT;
1990 }
1991
1992 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states))
1993 goto error_param;
1994
1995 if (!ice_vc_isvalid_vsi_id(vf, qci->vsi_id))
1996 goto error_param;
1997
1998 vsi = ice_get_vf_vsi(vf);
1999 if (!vsi)
2000 goto error_param;
2001
2002 if (qci->num_queue_pairs > ICE_MAX_RSS_QS_PER_VF ||
2003 qci->num_queue_pairs > min_t(u16, vsi->alloc_txq, vsi->alloc_rxq)) {
2004 dev_err(ice_pf_to_dev(pf), "VF-%d requesting more than supported number of queues: %d\n",
2005 vf->vf_id, min_t(u16, vsi->alloc_txq, vsi->alloc_rxq));
2006 goto error_param;
2007 }
2008
2009 for (i = 0; i < qci->num_queue_pairs; i++) {
2010 if (!qci->qpair[i].rxq.crc_disable)
2011 continue;
2012
2013 if (!(vf->driver_caps & VIRTCHNL_VF_OFFLOAD_CRC) ||
2014 vf->vlan_strip_ena)
2015 goto error_param;
2016 }
2017
2018 for (i = 0; i < qci->num_queue_pairs; i++) {
2019 qpi = &qci->qpair[i];
2020 if (qpi->txq.vsi_id != qci->vsi_id ||
2021 qpi->rxq.vsi_id != qci->vsi_id ||
2022 qpi->rxq.queue_id != qpi->txq.queue_id ||
2023 qpi->txq.headwb_enabled ||
2024 !ice_vc_isvalid_ring_len(qpi->txq.ring_len) ||
2025 !ice_vc_isvalid_ring_len(qpi->rxq.ring_len) ||
2026 !ice_vc_isvalid_q_id(vsi, qpi->txq.queue_id)) {
2027 goto error_param;
2028 }
2029
2030 q_idx = qpi->rxq.queue_id;
2031
2032 /* make sure selected "q_idx" is in valid range of queues
2033 * for selected "vsi"
2034 */
2035 if (q_idx >= vsi->alloc_txq || q_idx >= vsi->alloc_rxq) {
2036 goto error_param;
2037 }
2038
2039 /* copy Tx queue info from VF into VSI */
2040 if (qpi->txq.ring_len > 0) {
2041 vsi->tx_rings[q_idx]->dma = qpi->txq.dma_ring_addr;
2042 vsi->tx_rings[q_idx]->count = qpi->txq.ring_len;
2043
2044 /* Disable any existing queue first */
2045 if (ice_vf_vsi_dis_single_txq(vf, vsi, q_idx))
2046 goto error_param;
2047
2048 /* Configure a queue with the requested settings */
2049 if (ice_vsi_cfg_single_txq(vsi, vsi->tx_rings, q_idx)) {
2050 dev_warn(ice_pf_to_dev(pf), "VF-%d failed to configure TX queue %d\n",
2051 vf->vf_id, q_idx);
2052 goto error_param;
2053 }
2054 }
2055
2056 /* copy Rx queue info from VF into VSI */
2057 if (qpi->rxq.ring_len > 0) {
2058 u16 max_frame_size = ice_vc_get_max_frame_size(vf);
2059 struct ice_rx_ring *ring = vsi->rx_rings[q_idx];
2060 u32 rxdid;
2061
2062 ring->dma = qpi->rxq.dma_ring_addr;
2063 ring->count = qpi->rxq.ring_len;
2064
2065 if (qpi->rxq.crc_disable)
2066 ring->flags |= ICE_RX_FLAGS_CRC_STRIP_DIS;
2067 else
2068 ring->flags &= ~ICE_RX_FLAGS_CRC_STRIP_DIS;
2069
2070 if (qpi->rxq.databuffer_size != 0 &&
2071 (qpi->rxq.databuffer_size > ((16 * 1024) - 128) ||
2072 qpi->rxq.databuffer_size < 1024))
2073 goto error_param;
2074 ring->rx_buf_len = qpi->rxq.databuffer_size;
2075 if (qpi->rxq.max_pkt_size > max_frame_size ||
2076 qpi->rxq.max_pkt_size < 64)
2077 goto error_param;
2078
2079 ring->max_frame = qpi->rxq.max_pkt_size;
2080 /* add space for the port VLAN since the VF driver is
2081 * not expected to account for it in the MTU
2082 * calculation
2083 */
2084 if (ice_vf_is_port_vlan_ena(vf))
2085 ring->max_frame += VLAN_HLEN;
2086
2087 if (ice_vsi_cfg_single_rxq(vsi, q_idx)) {
2088 dev_warn(ice_pf_to_dev(pf), "VF-%d failed to configure RX queue %d\n",
2089 vf->vf_id, q_idx);
2090 goto error_param;
2091 }
2092
2093 /* If Rx flex desc is supported, select RXDID for Rx
2094 * queues. Otherwise, use legacy 32byte descriptor
2095 * format. Legacy 16byte descriptor is not supported.
2096 * If this RXDID is selected, return error.
2097 */
2098 if (vf->driver_caps &
2099 VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC) {
2100 rxdid = qpi->rxq.rxdid;
2101 if (!(BIT(rxdid) & pf->supported_rxdids))
2102 goto error_param;
2103 } else {
2104 rxdid = ICE_RXDID_LEGACY_1;
2105 }
2106
2107 ice_write_qrxflxp_cntxt(&vsi->back->hw,
2108 vsi->rxq_map[q_idx],
2109 rxdid, 0x03, false);
2110 }
2111 }
2112
2113 if (lag && lag->bonded && lag->primary &&
2114 act_prt != ICE_LAG_INVALID_PORT)
2115 ice_lag_move_vf_nodes_cfg(lag, pri_prt, act_prt);
2116 mutex_unlock(&pf->lag_mutex);
2117
2118 /* send the response to the VF */
2119 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_VSI_QUEUES,
2120 VIRTCHNL_STATUS_SUCCESS, NULL, 0);
2121error_param:
2122 /* disable whatever we can */
2123 for (; i >= 0; i--) {
2124 if (ice_vsi_ctrl_one_rx_ring(vsi, false, i, true))
2125 dev_err(ice_pf_to_dev(pf), "VF-%d could not disable RX queue %d\n",
2126 vf->vf_id, i);
2127 if (ice_vf_vsi_dis_single_txq(vf, vsi, i))
2128 dev_err(ice_pf_to_dev(pf), "VF-%d could not disable TX queue %d\n",
2129 vf->vf_id, i);
2130 }
2131
2132 if (lag && lag->bonded && lag->primary &&
2133 act_prt != ICE_LAG_INVALID_PORT)
2134 ice_lag_move_vf_nodes_cfg(lag, pri_prt, act_prt);
2135 mutex_unlock(&pf->lag_mutex);
2136
2137 ice_lag_move_new_vf_nodes(vf);
2138
2139 /* send the response to the VF */
2140 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_VSI_QUEUES,
2141 VIRTCHNL_STATUS_ERR_PARAM, NULL, 0);
2142}
2143
2144/**
2145 * ice_can_vf_change_mac
2146 * @vf: pointer to the VF info
2147 *
2148 * Return true if the VF is allowed to change its MAC filters, false otherwise
2149 */
2150static bool ice_can_vf_change_mac(struct ice_vf *vf)
2151{
2152 /* If the VF MAC address has been set administratively (via the
2153 * ndo_set_vf_mac command), then deny permission to the VF to
2154 * add/delete unicast MAC addresses, unless the VF is trusted
2155 */
2156 if (vf->pf_set_mac && !ice_is_vf_trusted(vf))
2157 return false;
2158
2159 return true;
2160}
2161
2162/**
2163 * ice_vc_ether_addr_type - get type of virtchnl_ether_addr
2164 * @vc_ether_addr: used to extract the type
2165 */
2166static u8
2167ice_vc_ether_addr_type(struct virtchnl_ether_addr *vc_ether_addr)
2168{
2169 return (vc_ether_addr->type & VIRTCHNL_ETHER_ADDR_TYPE_MASK);
2170}
2171
2172/**
2173 * ice_is_vc_addr_legacy - check if the MAC address is from an older VF
2174 * @vc_ether_addr: VIRTCHNL structure that contains MAC and type
2175 */
2176static bool
2177ice_is_vc_addr_legacy(struct virtchnl_ether_addr *vc_ether_addr)
2178{
2179 u8 type = ice_vc_ether_addr_type(vc_ether_addr);
2180
2181 return (type == VIRTCHNL_ETHER_ADDR_LEGACY);
2182}
2183
2184/**
2185 * ice_is_vc_addr_primary - check if the MAC address is the VF's primary MAC
2186 * @vc_ether_addr: VIRTCHNL structure that contains MAC and type
2187 *
2188 * This function should only be called when the MAC address in
2189 * virtchnl_ether_addr is a valid unicast MAC
2190 */
2191static bool
2192ice_is_vc_addr_primary(struct virtchnl_ether_addr __maybe_unused *vc_ether_addr)
2193{
2194 u8 type = ice_vc_ether_addr_type(vc_ether_addr);
2195
2196 return (type == VIRTCHNL_ETHER_ADDR_PRIMARY);
2197}
2198
2199/**
2200 * ice_vfhw_mac_add - update the VF's cached hardware MAC if allowed
2201 * @vf: VF to update
2202 * @vc_ether_addr: structure from VIRTCHNL with MAC to add
2203 */
2204static void
2205ice_vfhw_mac_add(struct ice_vf *vf, struct virtchnl_ether_addr *vc_ether_addr)
2206{
2207 u8 *mac_addr = vc_ether_addr->addr;
2208
2209 if (!is_valid_ether_addr(mac_addr))
2210 return;
2211
2212 /* only allow legacy VF drivers to set the device and hardware MAC if it
2213 * is zero and allow new VF drivers to set the hardware MAC if the type
2214 * was correctly specified over VIRTCHNL
2215 */
2216 if ((ice_is_vc_addr_legacy(vc_ether_addr) &&
2217 is_zero_ether_addr(vf->hw_lan_addr)) ||
2218 ice_is_vc_addr_primary(vc_ether_addr)) {
2219 ether_addr_copy(vf->dev_lan_addr, mac_addr);
2220 ether_addr_copy(vf->hw_lan_addr, mac_addr);
2221 }
2222
2223 /* hardware and device MACs are already set, but its possible that the
2224 * VF driver sent the VIRTCHNL_OP_ADD_ETH_ADDR message before the
2225 * VIRTCHNL_OP_DEL_ETH_ADDR when trying to update its MAC, so save it
2226 * away for the legacy VF driver case as it will be updated in the
2227 * delete flow for this case
2228 */
2229 if (ice_is_vc_addr_legacy(vc_ether_addr)) {
2230 ether_addr_copy(vf->legacy_last_added_umac.addr,
2231 mac_addr);
2232 vf->legacy_last_added_umac.time_modified = jiffies;
2233 }
2234}
2235
2236/**
2237 * ice_vc_add_mac_addr - attempt to add the MAC address passed in
2238 * @vf: pointer to the VF info
2239 * @vsi: pointer to the VF's VSI
2240 * @vc_ether_addr: VIRTCHNL MAC address structure used to add MAC
2241 */
2242static int
2243ice_vc_add_mac_addr(struct ice_vf *vf, struct ice_vsi *vsi,
2244 struct virtchnl_ether_addr *vc_ether_addr)
2245{
2246 struct device *dev = ice_pf_to_dev(vf->pf);
2247 u8 *mac_addr = vc_ether_addr->addr;
2248 int ret;
2249
2250 /* device MAC already added */
2251 if (ether_addr_equal(mac_addr, vf->dev_lan_addr))
2252 return 0;
2253
2254 if (is_unicast_ether_addr(mac_addr) && !ice_can_vf_change_mac(vf)) {
2255 dev_err(dev, "VF attempting to override administratively set MAC address, bring down and up the VF interface to resume normal operation\n");
2256 return -EPERM;
2257 }
2258
2259 ret = ice_fltr_add_mac(vsi, mac_addr, ICE_FWD_TO_VSI);
2260 if (ret == -EEXIST) {
2261 dev_dbg(dev, "MAC %pM already exists for VF %d\n", mac_addr,
2262 vf->vf_id);
2263 /* don't return since we might need to update
2264 * the primary MAC in ice_vfhw_mac_add() below
2265 */
2266 } else if (ret) {
2267 dev_err(dev, "Failed to add MAC %pM for VF %d\n, error %d\n",
2268 mac_addr, vf->vf_id, ret);
2269 return ret;
2270 } else {
2271 vf->num_mac++;
2272 }
2273
2274 ice_vfhw_mac_add(vf, vc_ether_addr);
2275
2276 return ret;
2277}
2278
2279/**
2280 * ice_is_legacy_umac_expired - check if last added legacy unicast MAC expired
2281 * @last_added_umac: structure used to check expiration
2282 */
2283static bool ice_is_legacy_umac_expired(struct ice_time_mac *last_added_umac)
2284{
2285#define ICE_LEGACY_VF_MAC_CHANGE_EXPIRE_TIME msecs_to_jiffies(3000)
2286 return time_is_before_jiffies(last_added_umac->time_modified +
2287 ICE_LEGACY_VF_MAC_CHANGE_EXPIRE_TIME);
2288}
2289
2290/**
2291 * ice_update_legacy_cached_mac - update cached hardware MAC for legacy VF
2292 * @vf: VF to update
2293 * @vc_ether_addr: structure from VIRTCHNL with MAC to check
2294 *
2295 * only update cached hardware MAC for legacy VF drivers on delete
2296 * because we cannot guarantee order/type of MAC from the VF driver
2297 */
2298static void
2299ice_update_legacy_cached_mac(struct ice_vf *vf,
2300 struct virtchnl_ether_addr *vc_ether_addr)
2301{
2302 if (!ice_is_vc_addr_legacy(vc_ether_addr) ||
2303 ice_is_legacy_umac_expired(&vf->legacy_last_added_umac))
2304 return;
2305
2306 ether_addr_copy(vf->dev_lan_addr, vf->legacy_last_added_umac.addr);
2307 ether_addr_copy(vf->hw_lan_addr, vf->legacy_last_added_umac.addr);
2308}
2309
2310/**
2311 * ice_vfhw_mac_del - update the VF's cached hardware MAC if allowed
2312 * @vf: VF to update
2313 * @vc_ether_addr: structure from VIRTCHNL with MAC to delete
2314 */
2315static void
2316ice_vfhw_mac_del(struct ice_vf *vf, struct virtchnl_ether_addr *vc_ether_addr)
2317{
2318 u8 *mac_addr = vc_ether_addr->addr;
2319
2320 if (!is_valid_ether_addr(mac_addr) ||
2321 !ether_addr_equal(vf->dev_lan_addr, mac_addr))
2322 return;
2323
2324 /* allow the device MAC to be repopulated in the add flow and don't
2325 * clear the hardware MAC (i.e. hw_lan_addr) here as that is meant
2326 * to be persistent on VM reboot and across driver unload/load, which
2327 * won't work if we clear the hardware MAC here
2328 */
2329 eth_zero_addr(vf->dev_lan_addr);
2330
2331 ice_update_legacy_cached_mac(vf, vc_ether_addr);
2332}
2333
2334/**
2335 * ice_vc_del_mac_addr - attempt to delete the MAC address passed in
2336 * @vf: pointer to the VF info
2337 * @vsi: pointer to the VF's VSI
2338 * @vc_ether_addr: VIRTCHNL MAC address structure used to delete MAC
2339 */
2340static int
2341ice_vc_del_mac_addr(struct ice_vf *vf, struct ice_vsi *vsi,
2342 struct virtchnl_ether_addr *vc_ether_addr)
2343{
2344 struct device *dev = ice_pf_to_dev(vf->pf);
2345 u8 *mac_addr = vc_ether_addr->addr;
2346 int status;
2347
2348 if (!ice_can_vf_change_mac(vf) &&
2349 ether_addr_equal(vf->dev_lan_addr, mac_addr))
2350 return 0;
2351
2352 status = ice_fltr_remove_mac(vsi, mac_addr, ICE_FWD_TO_VSI);
2353 if (status == -ENOENT) {
2354 dev_err(dev, "MAC %pM does not exist for VF %d\n", mac_addr,
2355 vf->vf_id);
2356 return -ENOENT;
2357 } else if (status) {
2358 dev_err(dev, "Failed to delete MAC %pM for VF %d, error %d\n",
2359 mac_addr, vf->vf_id, status);
2360 return -EIO;
2361 }
2362
2363 ice_vfhw_mac_del(vf, vc_ether_addr);
2364
2365 vf->num_mac--;
2366
2367 return 0;
2368}
2369
2370/**
2371 * ice_vc_handle_mac_addr_msg
2372 * @vf: pointer to the VF info
2373 * @msg: pointer to the msg buffer
2374 * @set: true if MAC filters are being set, false otherwise
2375 *
2376 * add guest MAC address filter
2377 */
2378static int
2379ice_vc_handle_mac_addr_msg(struct ice_vf *vf, u8 *msg, bool set)
2380{
2381 int (*ice_vc_cfg_mac)
2382 (struct ice_vf *vf, struct ice_vsi *vsi,
2383 struct virtchnl_ether_addr *virtchnl_ether_addr);
2384 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
2385 struct virtchnl_ether_addr_list *al =
2386 (struct virtchnl_ether_addr_list *)msg;
2387 struct ice_pf *pf = vf->pf;
2388 enum virtchnl_ops vc_op;
2389 struct ice_vsi *vsi;
2390 int i;
2391
2392 if (set) {
2393 vc_op = VIRTCHNL_OP_ADD_ETH_ADDR;
2394 ice_vc_cfg_mac = ice_vc_add_mac_addr;
2395 } else {
2396 vc_op = VIRTCHNL_OP_DEL_ETH_ADDR;
2397 ice_vc_cfg_mac = ice_vc_del_mac_addr;
2398 }
2399
2400 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states) ||
2401 !ice_vc_isvalid_vsi_id(vf, al->vsi_id)) {
2402 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2403 goto handle_mac_exit;
2404 }
2405
2406 /* If this VF is not privileged, then we can't add more than a
2407 * limited number of addresses. Check to make sure that the
2408 * additions do not push us over the limit.
2409 */
2410 if (set && !ice_is_vf_trusted(vf) &&
2411 (vf->num_mac + al->num_elements) > ICE_MAX_MACADDR_PER_VF) {
2412 dev_err(ice_pf_to_dev(pf), "Can't add more MAC addresses, because VF-%d is not trusted, switch the VF to trusted mode in order to add more functionalities\n",
2413 vf->vf_id);
2414 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2415 goto handle_mac_exit;
2416 }
2417
2418 vsi = ice_get_vf_vsi(vf);
2419 if (!vsi) {
2420 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2421 goto handle_mac_exit;
2422 }
2423
2424 for (i = 0; i < al->num_elements; i++) {
2425 u8 *mac_addr = al->list[i].addr;
2426 int result;
2427
2428 if (is_broadcast_ether_addr(mac_addr) ||
2429 is_zero_ether_addr(mac_addr))
2430 continue;
2431
2432 result = ice_vc_cfg_mac(vf, vsi, &al->list[i]);
2433 if (result == -EEXIST || result == -ENOENT) {
2434 continue;
2435 } else if (result) {
2436 v_ret = VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR;
2437 goto handle_mac_exit;
2438 }
2439 }
2440
2441handle_mac_exit:
2442 /* send the response to the VF */
2443 return ice_vc_send_msg_to_vf(vf, vc_op, v_ret, NULL, 0);
2444}
2445
2446/**
2447 * ice_vc_add_mac_addr_msg
2448 * @vf: pointer to the VF info
2449 * @msg: pointer to the msg buffer
2450 *
2451 * add guest MAC address filter
2452 */
2453static int ice_vc_add_mac_addr_msg(struct ice_vf *vf, u8 *msg)
2454{
2455 return ice_vc_handle_mac_addr_msg(vf, msg, true);
2456}
2457
2458/**
2459 * ice_vc_del_mac_addr_msg
2460 * @vf: pointer to the VF info
2461 * @msg: pointer to the msg buffer
2462 *
2463 * remove guest MAC address filter
2464 */
2465static int ice_vc_del_mac_addr_msg(struct ice_vf *vf, u8 *msg)
2466{
2467 return ice_vc_handle_mac_addr_msg(vf, msg, false);
2468}
2469
2470/**
2471 * ice_vc_request_qs_msg
2472 * @vf: pointer to the VF info
2473 * @msg: pointer to the msg buffer
2474 *
2475 * VFs get a default number of queues but can use this message to request a
2476 * different number. If the request is successful, PF will reset the VF and
2477 * return 0. If unsuccessful, PF will send message informing VF of number of
2478 * available queue pairs via virtchnl message response to VF.
2479 */
2480static int ice_vc_request_qs_msg(struct ice_vf *vf, u8 *msg)
2481{
2482 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
2483 struct virtchnl_vf_res_request *vfres =
2484 (struct virtchnl_vf_res_request *)msg;
2485 u16 req_queues = vfres->num_queue_pairs;
2486 struct ice_pf *pf = vf->pf;
2487 u16 max_allowed_vf_queues;
2488 u16 tx_rx_queue_left;
2489 struct device *dev;
2490 u16 cur_queues;
2491
2492 dev = ice_pf_to_dev(pf);
2493 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
2494 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2495 goto error_param;
2496 }
2497
2498 cur_queues = vf->num_vf_qs;
2499 tx_rx_queue_left = min_t(u16, ice_get_avail_txq_count(pf),
2500 ice_get_avail_rxq_count(pf));
2501 max_allowed_vf_queues = tx_rx_queue_left + cur_queues;
2502 if (!req_queues) {
2503 dev_err(dev, "VF %d tried to request 0 queues. Ignoring.\n",
2504 vf->vf_id);
2505 } else if (req_queues > ICE_MAX_RSS_QS_PER_VF) {
2506 dev_err(dev, "VF %d tried to request more than %d queues.\n",
2507 vf->vf_id, ICE_MAX_RSS_QS_PER_VF);
2508 vfres->num_queue_pairs = ICE_MAX_RSS_QS_PER_VF;
2509 } else if (req_queues > cur_queues &&
2510 req_queues - cur_queues > tx_rx_queue_left) {
2511 dev_warn(dev, "VF %d requested %u more queues, but only %u left.\n",
2512 vf->vf_id, req_queues - cur_queues, tx_rx_queue_left);
2513 vfres->num_queue_pairs = min_t(u16, max_allowed_vf_queues,
2514 ICE_MAX_RSS_QS_PER_VF);
2515 } else {
2516 /* request is successful, then reset VF */
2517 vf->num_req_qs = req_queues;
2518 ice_reset_vf(vf, ICE_VF_RESET_NOTIFY);
2519 dev_info(dev, "VF %d granted request of %u queues.\n",
2520 vf->vf_id, req_queues);
2521 return 0;
2522 }
2523
2524error_param:
2525 /* send the response to the VF */
2526 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_REQUEST_QUEUES,
2527 v_ret, (u8 *)vfres, sizeof(*vfres));
2528}
2529
2530/**
2531 * ice_vf_vlan_offload_ena - determine if capabilities support VLAN offloads
2532 * @caps: VF driver negotiated capabilities
2533 *
2534 * Return true if VIRTCHNL_VF_OFFLOAD_VLAN capability is set, else return false
2535 */
2536static bool ice_vf_vlan_offload_ena(u32 caps)
2537{
2538 return !!(caps & VIRTCHNL_VF_OFFLOAD_VLAN);
2539}
2540
2541/**
2542 * ice_is_vlan_promisc_allowed - check if VLAN promiscuous config is allowed
2543 * @vf: VF used to determine if VLAN promiscuous config is allowed
2544 */
2545static bool ice_is_vlan_promisc_allowed(struct ice_vf *vf)
2546{
2547 if ((test_bit(ICE_VF_STATE_UC_PROMISC, vf->vf_states) ||
2548 test_bit(ICE_VF_STATE_MC_PROMISC, vf->vf_states)) &&
2549 test_bit(ICE_FLAG_VF_TRUE_PROMISC_ENA, vf->pf->flags))
2550 return true;
2551
2552 return false;
2553}
2554
2555/**
2556 * ice_vf_ena_vlan_promisc - Enable Tx/Rx VLAN promiscuous for the VLAN
2557 * @vf: VF to enable VLAN promisc on
2558 * @vsi: VF's VSI used to enable VLAN promiscuous mode
2559 * @vlan: VLAN used to enable VLAN promiscuous
2560 *
2561 * This function should only be called if VLAN promiscuous mode is allowed,
2562 * which can be determined via ice_is_vlan_promisc_allowed().
2563 */
2564static int ice_vf_ena_vlan_promisc(struct ice_vf *vf, struct ice_vsi *vsi,
2565 struct ice_vlan *vlan)
2566{
2567 u8 promisc_m = 0;
2568 int status;
2569
2570 if (test_bit(ICE_VF_STATE_UC_PROMISC, vf->vf_states))
2571 promisc_m |= ICE_UCAST_VLAN_PROMISC_BITS;
2572 if (test_bit(ICE_VF_STATE_MC_PROMISC, vf->vf_states))
2573 promisc_m |= ICE_MCAST_VLAN_PROMISC_BITS;
2574
2575 if (!promisc_m)
2576 return 0;
2577
2578 status = ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx, promisc_m,
2579 vlan->vid);
2580 if (status && status != -EEXIST)
2581 return status;
2582
2583 return 0;
2584}
2585
2586/**
2587 * ice_vf_dis_vlan_promisc - Disable Tx/Rx VLAN promiscuous for the VLAN
2588 * @vsi: VF's VSI used to disable VLAN promiscuous mode for
2589 * @vlan: VLAN used to disable VLAN promiscuous
2590 *
2591 * This function should only be called if VLAN promiscuous mode is allowed,
2592 * which can be determined via ice_is_vlan_promisc_allowed().
2593 */
2594static int ice_vf_dis_vlan_promisc(struct ice_vsi *vsi, struct ice_vlan *vlan)
2595{
2596 u8 promisc_m = ICE_UCAST_VLAN_PROMISC_BITS | ICE_MCAST_VLAN_PROMISC_BITS;
2597 int status;
2598
2599 status = ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx, promisc_m,
2600 vlan->vid);
2601 if (status && status != -ENOENT)
2602 return status;
2603
2604 return 0;
2605}
2606
2607/**
2608 * ice_vf_has_max_vlans - check if VF already has the max allowed VLAN filters
2609 * @vf: VF to check against
2610 * @vsi: VF's VSI
2611 *
2612 * If the VF is trusted then the VF is allowed to add as many VLANs as it
2613 * wants to, so return false.
2614 *
2615 * When the VF is untrusted compare the number of non-zero VLANs + 1 to the max
2616 * allowed VLANs for an untrusted VF. Return the result of this comparison.
2617 */
2618static bool ice_vf_has_max_vlans(struct ice_vf *vf, struct ice_vsi *vsi)
2619{
2620 if (ice_is_vf_trusted(vf))
2621 return false;
2622
2623#define ICE_VF_ADDED_VLAN_ZERO_FLTRS 1
2624 return ((ice_vsi_num_non_zero_vlans(vsi) +
2625 ICE_VF_ADDED_VLAN_ZERO_FLTRS) >= ICE_MAX_VLAN_PER_VF);
2626}
2627
2628/**
2629 * ice_vc_process_vlan_msg
2630 * @vf: pointer to the VF info
2631 * @msg: pointer to the msg buffer
2632 * @add_v: Add VLAN if true, otherwise delete VLAN
2633 *
2634 * Process virtchnl op to add or remove programmed guest VLAN ID
2635 */
2636static int ice_vc_process_vlan_msg(struct ice_vf *vf, u8 *msg, bool add_v)
2637{
2638 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
2639 struct virtchnl_vlan_filter_list *vfl =
2640 (struct virtchnl_vlan_filter_list *)msg;
2641 struct ice_pf *pf = vf->pf;
2642 bool vlan_promisc = false;
2643 struct ice_vsi *vsi;
2644 struct device *dev;
2645 int status = 0;
2646 int i;
2647
2648 dev = ice_pf_to_dev(pf);
2649 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
2650 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2651 goto error_param;
2652 }
2653
2654 if (!ice_vf_vlan_offload_ena(vf->driver_caps)) {
2655 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2656 goto error_param;
2657 }
2658
2659 if (!ice_vc_isvalid_vsi_id(vf, vfl->vsi_id)) {
2660 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2661 goto error_param;
2662 }
2663
2664 for (i = 0; i < vfl->num_elements; i++) {
2665 if (vfl->vlan_id[i] >= VLAN_N_VID) {
2666 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2667 dev_err(dev, "invalid VF VLAN id %d\n",
2668 vfl->vlan_id[i]);
2669 goto error_param;
2670 }
2671 }
2672
2673 vsi = ice_get_vf_vsi(vf);
2674 if (!vsi) {
2675 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2676 goto error_param;
2677 }
2678
2679 if (add_v && ice_vf_has_max_vlans(vf, vsi)) {
2680 dev_info(dev, "VF-%d is not trusted, switch the VF to trusted mode, in order to add more VLAN addresses\n",
2681 vf->vf_id);
2682 /* There is no need to let VF know about being not trusted,
2683 * so we can just return success message here
2684 */
2685 goto error_param;
2686 }
2687
2688 /* in DVM a VF can add/delete inner VLAN filters when
2689 * VIRTCHNL_VF_OFFLOAD_VLAN is negotiated, so only reject in SVM
2690 */
2691 if (ice_vf_is_port_vlan_ena(vf) && !ice_is_dvm_ena(&pf->hw)) {
2692 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2693 goto error_param;
2694 }
2695
2696 /* in DVM VLAN promiscuous is based on the outer VLAN, which would be
2697 * the port VLAN if VIRTCHNL_VF_OFFLOAD_VLAN was negotiated, so only
2698 * allow vlan_promisc = true in SVM and if no port VLAN is configured
2699 */
2700 vlan_promisc = ice_is_vlan_promisc_allowed(vf) &&
2701 !ice_is_dvm_ena(&pf->hw) &&
2702 !ice_vf_is_port_vlan_ena(vf);
2703
2704 if (add_v) {
2705 for (i = 0; i < vfl->num_elements; i++) {
2706 u16 vid = vfl->vlan_id[i];
2707 struct ice_vlan vlan;
2708
2709 if (ice_vf_has_max_vlans(vf, vsi)) {
2710 dev_info(dev, "VF-%d is not trusted, switch the VF to trusted mode, in order to add more VLAN addresses\n",
2711 vf->vf_id);
2712 /* There is no need to let VF know about being
2713 * not trusted, so we can just return success
2714 * message here as well.
2715 */
2716 goto error_param;
2717 }
2718
2719 /* we add VLAN 0 by default for each VF so we can enable
2720 * Tx VLAN anti-spoof without triggering MDD events so
2721 * we don't need to add it again here
2722 */
2723 if (!vid)
2724 continue;
2725
2726 vlan = ICE_VLAN(ETH_P_8021Q, vid, 0);
2727 status = vsi->inner_vlan_ops.add_vlan(vsi, &vlan);
2728 if (status) {
2729 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2730 goto error_param;
2731 }
2732
2733 /* Enable VLAN filtering on first non-zero VLAN */
2734 if (!vlan_promisc && vid && !ice_is_dvm_ena(&pf->hw)) {
2735 if (vf->spoofchk) {
2736 status = vsi->inner_vlan_ops.ena_tx_filtering(vsi);
2737 if (status) {
2738 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2739 dev_err(dev, "Enable VLAN anti-spoofing on VLAN ID: %d failed error-%d\n",
2740 vid, status);
2741 goto error_param;
2742 }
2743 }
2744 if (vsi->inner_vlan_ops.ena_rx_filtering(vsi)) {
2745 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2746 dev_err(dev, "Enable VLAN pruning on VLAN ID: %d failed error-%d\n",
2747 vid, status);
2748 goto error_param;
2749 }
2750 } else if (vlan_promisc) {
2751 status = ice_vf_ena_vlan_promisc(vf, vsi, &vlan);
2752 if (status) {
2753 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2754 dev_err(dev, "Enable Unicast/multicast promiscuous mode on VLAN ID:%d failed error-%d\n",
2755 vid, status);
2756 }
2757 }
2758 }
2759 } else {
2760 /* In case of non_trusted VF, number of VLAN elements passed
2761 * to PF for removal might be greater than number of VLANs
2762 * filter programmed for that VF - So, use actual number of
2763 * VLANS added earlier with add VLAN opcode. In order to avoid
2764 * removing VLAN that doesn't exist, which result to sending
2765 * erroneous failed message back to the VF
2766 */
2767 int num_vf_vlan;
2768
2769 num_vf_vlan = vsi->num_vlan;
2770 for (i = 0; i < vfl->num_elements && i < num_vf_vlan; i++) {
2771 u16 vid = vfl->vlan_id[i];
2772 struct ice_vlan vlan;
2773
2774 /* we add VLAN 0 by default for each VF so we can enable
2775 * Tx VLAN anti-spoof without triggering MDD events so
2776 * we don't want a VIRTCHNL request to remove it
2777 */
2778 if (!vid)
2779 continue;
2780
2781 vlan = ICE_VLAN(ETH_P_8021Q, vid, 0);
2782 status = vsi->inner_vlan_ops.del_vlan(vsi, &vlan);
2783 if (status) {
2784 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2785 goto error_param;
2786 }
2787
2788 /* Disable VLAN filtering when only VLAN 0 is left */
2789 if (!ice_vsi_has_non_zero_vlans(vsi)) {
2790 vsi->inner_vlan_ops.dis_tx_filtering(vsi);
2791 vsi->inner_vlan_ops.dis_rx_filtering(vsi);
2792 }
2793
2794 if (vlan_promisc)
2795 ice_vf_dis_vlan_promisc(vsi, &vlan);
2796 }
2797 }
2798
2799error_param:
2800 /* send the response to the VF */
2801 if (add_v)
2802 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ADD_VLAN, v_ret,
2803 NULL, 0);
2804 else
2805 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DEL_VLAN, v_ret,
2806 NULL, 0);
2807}
2808
2809/**
2810 * ice_vc_add_vlan_msg
2811 * @vf: pointer to the VF info
2812 * @msg: pointer to the msg buffer
2813 *
2814 * Add and program guest VLAN ID
2815 */
2816static int ice_vc_add_vlan_msg(struct ice_vf *vf, u8 *msg)
2817{
2818 return ice_vc_process_vlan_msg(vf, msg, true);
2819}
2820
2821/**
2822 * ice_vc_remove_vlan_msg
2823 * @vf: pointer to the VF info
2824 * @msg: pointer to the msg buffer
2825 *
2826 * remove programmed guest VLAN ID
2827 */
2828static int ice_vc_remove_vlan_msg(struct ice_vf *vf, u8 *msg)
2829{
2830 return ice_vc_process_vlan_msg(vf, msg, false);
2831}
2832
2833/**
2834 * ice_vsi_is_rxq_crc_strip_dis - check if Rx queue CRC strip is disabled or not
2835 * @vsi: pointer to the VF VSI info
2836 */
2837static bool ice_vsi_is_rxq_crc_strip_dis(struct ice_vsi *vsi)
2838{
2839 unsigned int i;
2840
2841 ice_for_each_alloc_rxq(vsi, i)
2842 if (vsi->rx_rings[i]->flags & ICE_RX_FLAGS_CRC_STRIP_DIS)
2843 return true;
2844
2845 return false;
2846}
2847
2848/**
2849 * ice_vc_ena_vlan_stripping
2850 * @vf: pointer to the VF info
2851 *
2852 * Enable VLAN header stripping for a given VF
2853 */
2854static int ice_vc_ena_vlan_stripping(struct ice_vf *vf)
2855{
2856 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
2857 struct ice_vsi *vsi;
2858
2859 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
2860 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2861 goto error_param;
2862 }
2863
2864 if (!ice_vf_vlan_offload_ena(vf->driver_caps)) {
2865 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2866 goto error_param;
2867 }
2868
2869 vsi = ice_get_vf_vsi(vf);
2870 if (!vsi) {
2871 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2872 goto error_param;
2873 }
2874
2875 if (vsi->inner_vlan_ops.ena_stripping(vsi, ETH_P_8021Q))
2876 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2877 else
2878 vf->vlan_strip_ena |= ICE_INNER_VLAN_STRIP_ENA;
2879
2880error_param:
2881 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ENABLE_VLAN_STRIPPING,
2882 v_ret, NULL, 0);
2883}
2884
2885/**
2886 * ice_vc_dis_vlan_stripping
2887 * @vf: pointer to the VF info
2888 *
2889 * Disable VLAN header stripping for a given VF
2890 */
2891static int ice_vc_dis_vlan_stripping(struct ice_vf *vf)
2892{
2893 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
2894 struct ice_vsi *vsi;
2895
2896 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
2897 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2898 goto error_param;
2899 }
2900
2901 if (!ice_vf_vlan_offload_ena(vf->driver_caps)) {
2902 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2903 goto error_param;
2904 }
2905
2906 vsi = ice_get_vf_vsi(vf);
2907 if (!vsi) {
2908 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2909 goto error_param;
2910 }
2911
2912 if (vsi->inner_vlan_ops.dis_stripping(vsi))
2913 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2914 else
2915 vf->vlan_strip_ena &= ~ICE_INNER_VLAN_STRIP_ENA;
2916
2917error_param:
2918 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DISABLE_VLAN_STRIPPING,
2919 v_ret, NULL, 0);
2920}
2921
2922/**
2923 * ice_vc_get_rss_hena - return the RSS HENA bits allowed by the hardware
2924 * @vf: pointer to the VF info
2925 */
2926static int ice_vc_get_rss_hena(struct ice_vf *vf)
2927{
2928 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
2929 struct virtchnl_rss_hena *vrh = NULL;
2930 int len = 0, ret;
2931
2932 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
2933 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2934 goto err;
2935 }
2936
2937 if (!test_bit(ICE_FLAG_RSS_ENA, vf->pf->flags)) {
2938 dev_err(ice_pf_to_dev(vf->pf), "RSS not supported by PF\n");
2939 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2940 goto err;
2941 }
2942
2943 len = sizeof(struct virtchnl_rss_hena);
2944 vrh = kzalloc(len, GFP_KERNEL);
2945 if (!vrh) {
2946 v_ret = VIRTCHNL_STATUS_ERR_NO_MEMORY;
2947 len = 0;
2948 goto err;
2949 }
2950
2951 vrh->hena = ICE_DEFAULT_RSS_HENA;
2952err:
2953 /* send the response back to the VF */
2954 ret = ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_GET_RSS_HENA_CAPS, v_ret,
2955 (u8 *)vrh, len);
2956 kfree(vrh);
2957 return ret;
2958}
2959
2960/**
2961 * ice_vc_set_rss_hena - set RSS HENA bits for the VF
2962 * @vf: pointer to the VF info
2963 * @msg: pointer to the msg buffer
2964 */
2965static int ice_vc_set_rss_hena(struct ice_vf *vf, u8 *msg)
2966{
2967 struct virtchnl_rss_hena *vrh = (struct virtchnl_rss_hena *)msg;
2968 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
2969 struct ice_pf *pf = vf->pf;
2970 struct ice_vsi *vsi;
2971 struct device *dev;
2972 int status;
2973
2974 dev = ice_pf_to_dev(pf);
2975
2976 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
2977 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2978 goto err;
2979 }
2980
2981 if (!test_bit(ICE_FLAG_RSS_ENA, pf->flags)) {
2982 dev_err(dev, "RSS not supported by PF\n");
2983 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2984 goto err;
2985 }
2986
2987 vsi = ice_get_vf_vsi(vf);
2988 if (!vsi) {
2989 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2990 goto err;
2991 }
2992
2993 /* clear all previously programmed RSS configuration to allow VF drivers
2994 * the ability to customize the RSS configuration and/or completely
2995 * disable RSS
2996 */
2997 status = ice_rem_vsi_rss_cfg(&pf->hw, vsi->idx);
2998 if (status && !vrh->hena) {
2999 /* only report failure to clear the current RSS configuration if
3000 * that was clearly the VF's intention (i.e. vrh->hena = 0)
3001 */
3002 v_ret = ice_err_to_virt_err(status);
3003 goto err;
3004 } else if (status) {
3005 /* allow the VF to update the RSS configuration even on failure
3006 * to clear the current RSS confguration in an attempt to keep
3007 * RSS in a working state
3008 */
3009 dev_warn(dev, "Failed to clear the RSS configuration for VF %u\n",
3010 vf->vf_id);
3011 }
3012
3013 if (vrh->hena) {
3014 status = ice_add_avf_rss_cfg(&pf->hw, vsi, vrh->hena);
3015 v_ret = ice_err_to_virt_err(status);
3016 }
3017
3018 /* send the response to the VF */
3019err:
3020 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_SET_RSS_HENA, v_ret,
3021 NULL, 0);
3022}
3023
3024/**
3025 * ice_vc_query_rxdid - query RXDID supported by DDP package
3026 * @vf: pointer to VF info
3027 *
3028 * Called from VF to query a bitmap of supported flexible
3029 * descriptor RXDIDs of a DDP package.
3030 */
3031static int ice_vc_query_rxdid(struct ice_vf *vf)
3032{
3033 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
3034 struct virtchnl_supported_rxdids rxdid = {};
3035 struct ice_pf *pf = vf->pf;
3036
3037 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
3038 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3039 goto err;
3040 }
3041
3042 if (!(vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC)) {
3043 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3044 goto err;
3045 }
3046
3047 rxdid.supported_rxdids = pf->supported_rxdids;
3048
3049err:
3050 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_GET_SUPPORTED_RXDIDS,
3051 v_ret, (u8 *)&rxdid, sizeof(rxdid));
3052}
3053
3054/**
3055 * ice_vf_init_vlan_stripping - enable/disable VLAN stripping on initialization
3056 * @vf: VF to enable/disable VLAN stripping for on initialization
3057 *
3058 * Set the default for VLAN stripping based on whether a port VLAN is configured
3059 * and the current VLAN mode of the device.
3060 */
3061static int ice_vf_init_vlan_stripping(struct ice_vf *vf)
3062{
3063 struct ice_vsi *vsi = ice_get_vf_vsi(vf);
3064
3065 vf->vlan_strip_ena = 0;
3066
3067 if (!vsi)
3068 return -EINVAL;
3069
3070 /* don't modify stripping if port VLAN is configured in SVM since the
3071 * port VLAN is based on the inner/single VLAN in SVM
3072 */
3073 if (ice_vf_is_port_vlan_ena(vf) && !ice_is_dvm_ena(&vsi->back->hw))
3074 return 0;
3075
3076 if (ice_vf_vlan_offload_ena(vf->driver_caps)) {
3077 int err;
3078
3079 err = vsi->inner_vlan_ops.ena_stripping(vsi, ETH_P_8021Q);
3080 if (!err)
3081 vf->vlan_strip_ena |= ICE_INNER_VLAN_STRIP_ENA;
3082 return err;
3083 }
3084
3085 return vsi->inner_vlan_ops.dis_stripping(vsi);
3086}
3087
3088static u16 ice_vc_get_max_vlan_fltrs(struct ice_vf *vf)
3089{
3090 if (vf->trusted)
3091 return VLAN_N_VID;
3092 else
3093 return ICE_MAX_VLAN_PER_VF;
3094}
3095
3096/**
3097 * ice_vf_outer_vlan_not_allowed - check if outer VLAN can be used
3098 * @vf: VF that being checked for
3099 *
3100 * When the device is in double VLAN mode, check whether or not the outer VLAN
3101 * is allowed.
3102 */
3103static bool ice_vf_outer_vlan_not_allowed(struct ice_vf *vf)
3104{
3105 if (ice_vf_is_port_vlan_ena(vf))
3106 return true;
3107
3108 return false;
3109}
3110
3111/**
3112 * ice_vc_set_dvm_caps - set VLAN capabilities when the device is in DVM
3113 * @vf: VF that capabilities are being set for
3114 * @caps: VLAN capabilities to populate
3115 *
3116 * Determine VLAN capabilities support based on whether a port VLAN is
3117 * configured. If a port VLAN is configured then the VF should use the inner
3118 * filtering/offload capabilities since the port VLAN is using the outer VLAN
3119 * capabilies.
3120 */
3121static void
3122ice_vc_set_dvm_caps(struct ice_vf *vf, struct virtchnl_vlan_caps *caps)
3123{
3124 struct virtchnl_vlan_supported_caps *supported_caps;
3125
3126 if (ice_vf_outer_vlan_not_allowed(vf)) {
3127 /* until support for inner VLAN filtering is added when a port
3128 * VLAN is configured, only support software offloaded inner
3129 * VLANs when a port VLAN is confgured in DVM
3130 */
3131 supported_caps = &caps->filtering.filtering_support;
3132 supported_caps->inner = VIRTCHNL_VLAN_UNSUPPORTED;
3133
3134 supported_caps = &caps->offloads.stripping_support;
3135 supported_caps->inner = VIRTCHNL_VLAN_ETHERTYPE_8100 |
3136 VIRTCHNL_VLAN_TOGGLE |
3137 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1;
3138 supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED;
3139
3140 supported_caps = &caps->offloads.insertion_support;
3141 supported_caps->inner = VIRTCHNL_VLAN_ETHERTYPE_8100 |
3142 VIRTCHNL_VLAN_TOGGLE |
3143 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1;
3144 supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED;
3145
3146 caps->offloads.ethertype_init = VIRTCHNL_VLAN_ETHERTYPE_8100;
3147 caps->offloads.ethertype_match =
3148 VIRTCHNL_ETHERTYPE_STRIPPING_MATCHES_INSERTION;
3149 } else {
3150 supported_caps = &caps->filtering.filtering_support;
3151 supported_caps->inner = VIRTCHNL_VLAN_UNSUPPORTED;
3152 supported_caps->outer = VIRTCHNL_VLAN_ETHERTYPE_8100 |
3153 VIRTCHNL_VLAN_ETHERTYPE_88A8 |
3154 VIRTCHNL_VLAN_ETHERTYPE_9100 |
3155 VIRTCHNL_VLAN_ETHERTYPE_AND;
3156 caps->filtering.ethertype_init = VIRTCHNL_VLAN_ETHERTYPE_8100 |
3157 VIRTCHNL_VLAN_ETHERTYPE_88A8 |
3158 VIRTCHNL_VLAN_ETHERTYPE_9100;
3159
3160 supported_caps = &caps->offloads.stripping_support;
3161 supported_caps->inner = VIRTCHNL_VLAN_TOGGLE |
3162 VIRTCHNL_VLAN_ETHERTYPE_8100 |
3163 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1;
3164 supported_caps->outer = VIRTCHNL_VLAN_TOGGLE |
3165 VIRTCHNL_VLAN_ETHERTYPE_8100 |
3166 VIRTCHNL_VLAN_ETHERTYPE_88A8 |
3167 VIRTCHNL_VLAN_ETHERTYPE_9100 |
3168 VIRTCHNL_VLAN_ETHERTYPE_XOR |
3169 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2;
3170
3171 supported_caps = &caps->offloads.insertion_support;
3172 supported_caps->inner = VIRTCHNL_VLAN_TOGGLE |
3173 VIRTCHNL_VLAN_ETHERTYPE_8100 |
3174 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1;
3175 supported_caps->outer = VIRTCHNL_VLAN_TOGGLE |
3176 VIRTCHNL_VLAN_ETHERTYPE_8100 |
3177 VIRTCHNL_VLAN_ETHERTYPE_88A8 |
3178 VIRTCHNL_VLAN_ETHERTYPE_9100 |
3179 VIRTCHNL_VLAN_ETHERTYPE_XOR |
3180 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2;
3181
3182 caps->offloads.ethertype_init = VIRTCHNL_VLAN_ETHERTYPE_8100;
3183
3184 caps->offloads.ethertype_match =
3185 VIRTCHNL_ETHERTYPE_STRIPPING_MATCHES_INSERTION;
3186 }
3187
3188 caps->filtering.max_filters = ice_vc_get_max_vlan_fltrs(vf);
3189}
3190
3191/**
3192 * ice_vc_set_svm_caps - set VLAN capabilities when the device is in SVM
3193 * @vf: VF that capabilities are being set for
3194 * @caps: VLAN capabilities to populate
3195 *
3196 * Determine VLAN capabilities support based on whether a port VLAN is
3197 * configured. If a port VLAN is configured then the VF does not have any VLAN
3198 * filtering or offload capabilities since the port VLAN is using the inner VLAN
3199 * capabilities in single VLAN mode (SVM). Otherwise allow the VF to use inner
3200 * VLAN fitlering and offload capabilities.
3201 */
3202static void
3203ice_vc_set_svm_caps(struct ice_vf *vf, struct virtchnl_vlan_caps *caps)
3204{
3205 struct virtchnl_vlan_supported_caps *supported_caps;
3206
3207 if (ice_vf_is_port_vlan_ena(vf)) {
3208 supported_caps = &caps->filtering.filtering_support;
3209 supported_caps->inner = VIRTCHNL_VLAN_UNSUPPORTED;
3210 supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED;
3211
3212 supported_caps = &caps->offloads.stripping_support;
3213 supported_caps->inner = VIRTCHNL_VLAN_UNSUPPORTED;
3214 supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED;
3215
3216 supported_caps = &caps->offloads.insertion_support;
3217 supported_caps->inner = VIRTCHNL_VLAN_UNSUPPORTED;
3218 supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED;
3219
3220 caps->offloads.ethertype_init = VIRTCHNL_VLAN_UNSUPPORTED;
3221 caps->offloads.ethertype_match = VIRTCHNL_VLAN_UNSUPPORTED;
3222 caps->filtering.max_filters = 0;
3223 } else {
3224 supported_caps = &caps->filtering.filtering_support;
3225 supported_caps->inner = VIRTCHNL_VLAN_ETHERTYPE_8100;
3226 supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED;
3227 caps->filtering.ethertype_init = VIRTCHNL_VLAN_ETHERTYPE_8100;
3228
3229 supported_caps = &caps->offloads.stripping_support;
3230 supported_caps->inner = VIRTCHNL_VLAN_ETHERTYPE_8100 |
3231 VIRTCHNL_VLAN_TOGGLE |
3232 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1;
3233 supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED;
3234
3235 supported_caps = &caps->offloads.insertion_support;
3236 supported_caps->inner = VIRTCHNL_VLAN_ETHERTYPE_8100 |
3237 VIRTCHNL_VLAN_TOGGLE |
3238 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1;
3239 supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED;
3240
3241 caps->offloads.ethertype_init = VIRTCHNL_VLAN_ETHERTYPE_8100;
3242 caps->offloads.ethertype_match =
3243 VIRTCHNL_ETHERTYPE_STRIPPING_MATCHES_INSERTION;
3244 caps->filtering.max_filters = ice_vc_get_max_vlan_fltrs(vf);
3245 }
3246}
3247
3248/**
3249 * ice_vc_get_offload_vlan_v2_caps - determine VF's VLAN capabilities
3250 * @vf: VF to determine VLAN capabilities for
3251 *
3252 * This will only be called if the VF and PF successfully negotiated
3253 * VIRTCHNL_VF_OFFLOAD_VLAN_V2.
3254 *
3255 * Set VLAN capabilities based on the current VLAN mode and whether a port VLAN
3256 * is configured or not.
3257 */
3258static int ice_vc_get_offload_vlan_v2_caps(struct ice_vf *vf)
3259{
3260 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
3261 struct virtchnl_vlan_caps *caps = NULL;
3262 int err, len = 0;
3263
3264 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
3265 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3266 goto out;
3267 }
3268
3269 caps = kzalloc(sizeof(*caps), GFP_KERNEL);
3270 if (!caps) {
3271 v_ret = VIRTCHNL_STATUS_ERR_NO_MEMORY;
3272 goto out;
3273 }
3274 len = sizeof(*caps);
3275
3276 if (ice_is_dvm_ena(&vf->pf->hw))
3277 ice_vc_set_dvm_caps(vf, caps);
3278 else
3279 ice_vc_set_svm_caps(vf, caps);
3280
3281 /* store negotiated caps to prevent invalid VF messages */
3282 memcpy(&vf->vlan_v2_caps, caps, sizeof(*caps));
3283
3284out:
3285 err = ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS,
3286 v_ret, (u8 *)caps, len);
3287 kfree(caps);
3288 return err;
3289}
3290
3291/**
3292 * ice_vc_validate_vlan_tpid - validate VLAN TPID
3293 * @filtering_caps: negotiated/supported VLAN filtering capabilities
3294 * @tpid: VLAN TPID used for validation
3295 *
3296 * Convert the VLAN TPID to a VIRTCHNL_VLAN_ETHERTYPE_* and then compare against
3297 * the negotiated/supported filtering caps to see if the VLAN TPID is valid.
3298 */
3299static bool ice_vc_validate_vlan_tpid(u16 filtering_caps, u16 tpid)
3300{
3301 enum virtchnl_vlan_support vlan_ethertype = VIRTCHNL_VLAN_UNSUPPORTED;
3302
3303 switch (tpid) {
3304 case ETH_P_8021Q:
3305 vlan_ethertype = VIRTCHNL_VLAN_ETHERTYPE_8100;
3306 break;
3307 case ETH_P_8021AD:
3308 vlan_ethertype = VIRTCHNL_VLAN_ETHERTYPE_88A8;
3309 break;
3310 case ETH_P_QINQ1:
3311 vlan_ethertype = VIRTCHNL_VLAN_ETHERTYPE_9100;
3312 break;
3313 }
3314
3315 if (!(filtering_caps & vlan_ethertype))
3316 return false;
3317
3318 return true;
3319}
3320
3321/**
3322 * ice_vc_is_valid_vlan - validate the virtchnl_vlan
3323 * @vc_vlan: virtchnl_vlan to validate
3324 *
3325 * If the VLAN TCI and VLAN TPID are 0, then this filter is invalid, so return
3326 * false. Otherwise return true.
3327 */
3328static bool ice_vc_is_valid_vlan(struct virtchnl_vlan *vc_vlan)
3329{
3330 if (!vc_vlan->tci || !vc_vlan->tpid)
3331 return false;
3332
3333 return true;
3334}
3335
3336/**
3337 * ice_vc_validate_vlan_filter_list - validate the filter list from the VF
3338 * @vfc: negotiated/supported VLAN filtering capabilities
3339 * @vfl: VLAN filter list from VF to validate
3340 *
3341 * Validate all of the filters in the VLAN filter list from the VF. If any of
3342 * the checks fail then return false. Otherwise return true.
3343 */
3344static bool
3345ice_vc_validate_vlan_filter_list(struct virtchnl_vlan_filtering_caps *vfc,
3346 struct virtchnl_vlan_filter_list_v2 *vfl)
3347{
3348 u16 i;
3349
3350 if (!vfl->num_elements)
3351 return false;
3352
3353 for (i = 0; i < vfl->num_elements; i++) {
3354 struct virtchnl_vlan_supported_caps *filtering_support =
3355 &vfc->filtering_support;
3356 struct virtchnl_vlan_filter *vlan_fltr = &vfl->filters[i];
3357 struct virtchnl_vlan *outer = &vlan_fltr->outer;
3358 struct virtchnl_vlan *inner = &vlan_fltr->inner;
3359
3360 if ((ice_vc_is_valid_vlan(outer) &&
3361 filtering_support->outer == VIRTCHNL_VLAN_UNSUPPORTED) ||
3362 (ice_vc_is_valid_vlan(inner) &&
3363 filtering_support->inner == VIRTCHNL_VLAN_UNSUPPORTED))
3364 return false;
3365
3366 if ((outer->tci_mask &&
3367 !(filtering_support->outer & VIRTCHNL_VLAN_FILTER_MASK)) ||
3368 (inner->tci_mask &&
3369 !(filtering_support->inner & VIRTCHNL_VLAN_FILTER_MASK)))
3370 return false;
3371
3372 if (((outer->tci & VLAN_PRIO_MASK) &&
3373 !(filtering_support->outer & VIRTCHNL_VLAN_PRIO)) ||
3374 ((inner->tci & VLAN_PRIO_MASK) &&
3375 !(filtering_support->inner & VIRTCHNL_VLAN_PRIO)))
3376 return false;
3377
3378 if ((ice_vc_is_valid_vlan(outer) &&
3379 !ice_vc_validate_vlan_tpid(filtering_support->outer,
3380 outer->tpid)) ||
3381 (ice_vc_is_valid_vlan(inner) &&
3382 !ice_vc_validate_vlan_tpid(filtering_support->inner,
3383 inner->tpid)))
3384 return false;
3385 }
3386
3387 return true;
3388}
3389
3390/**
3391 * ice_vc_to_vlan - transform from struct virtchnl_vlan to struct ice_vlan
3392 * @vc_vlan: struct virtchnl_vlan to transform
3393 */
3394static struct ice_vlan ice_vc_to_vlan(struct virtchnl_vlan *vc_vlan)
3395{
3396 struct ice_vlan vlan = { 0 };
3397
3398 vlan.prio = FIELD_GET(VLAN_PRIO_MASK, vc_vlan->tci);
3399 vlan.vid = vc_vlan->tci & VLAN_VID_MASK;
3400 vlan.tpid = vc_vlan->tpid;
3401
3402 return vlan;
3403}
3404
3405/**
3406 * ice_vc_vlan_action - action to perform on the virthcnl_vlan
3407 * @vsi: VF's VSI used to perform the action
3408 * @vlan_action: function to perform the action with (i.e. add/del)
3409 * @vlan: VLAN filter to perform the action with
3410 */
3411static int
3412ice_vc_vlan_action(struct ice_vsi *vsi,
3413 int (*vlan_action)(struct ice_vsi *, struct ice_vlan *),
3414 struct ice_vlan *vlan)
3415{
3416 int err;
3417
3418 err = vlan_action(vsi, vlan);
3419 if (err)
3420 return err;
3421
3422 return 0;
3423}
3424
3425/**
3426 * ice_vc_del_vlans - delete VLAN(s) from the virtchnl filter list
3427 * @vf: VF used to delete the VLAN(s)
3428 * @vsi: VF's VSI used to delete the VLAN(s)
3429 * @vfl: virthchnl filter list used to delete the filters
3430 */
3431static int
3432ice_vc_del_vlans(struct ice_vf *vf, struct ice_vsi *vsi,
3433 struct virtchnl_vlan_filter_list_v2 *vfl)
3434{
3435 bool vlan_promisc = ice_is_vlan_promisc_allowed(vf);
3436 int err;
3437 u16 i;
3438
3439 for (i = 0; i < vfl->num_elements; i++) {
3440 struct virtchnl_vlan_filter *vlan_fltr = &vfl->filters[i];
3441 struct virtchnl_vlan *vc_vlan;
3442
3443 vc_vlan = &vlan_fltr->outer;
3444 if (ice_vc_is_valid_vlan(vc_vlan)) {
3445 struct ice_vlan vlan = ice_vc_to_vlan(vc_vlan);
3446
3447 err = ice_vc_vlan_action(vsi,
3448 vsi->outer_vlan_ops.del_vlan,
3449 &vlan);
3450 if (err)
3451 return err;
3452
3453 if (vlan_promisc)
3454 ice_vf_dis_vlan_promisc(vsi, &vlan);
3455
3456 /* Disable VLAN filtering when only VLAN 0 is left */
3457 if (!ice_vsi_has_non_zero_vlans(vsi) && ice_is_dvm_ena(&vsi->back->hw)) {
3458 err = vsi->outer_vlan_ops.dis_tx_filtering(vsi);
3459 if (err)
3460 return err;
3461 }
3462 }
3463
3464 vc_vlan = &vlan_fltr->inner;
3465 if (ice_vc_is_valid_vlan(vc_vlan)) {
3466 struct ice_vlan vlan = ice_vc_to_vlan(vc_vlan);
3467
3468 err = ice_vc_vlan_action(vsi,
3469 vsi->inner_vlan_ops.del_vlan,
3470 &vlan);
3471 if (err)
3472 return err;
3473
3474 /* no support for VLAN promiscuous on inner VLAN unless
3475 * we are in Single VLAN Mode (SVM)
3476 */
3477 if (!ice_is_dvm_ena(&vsi->back->hw)) {
3478 if (vlan_promisc)
3479 ice_vf_dis_vlan_promisc(vsi, &vlan);
3480
3481 /* Disable VLAN filtering when only VLAN 0 is left */
3482 if (!ice_vsi_has_non_zero_vlans(vsi)) {
3483 err = vsi->inner_vlan_ops.dis_tx_filtering(vsi);
3484 if (err)
3485 return err;
3486 }
3487 }
3488 }
3489 }
3490
3491 return 0;
3492}
3493
3494/**
3495 * ice_vc_remove_vlan_v2_msg - virtchnl handler for VIRTCHNL_OP_DEL_VLAN_V2
3496 * @vf: VF the message was received from
3497 * @msg: message received from the VF
3498 */
3499static int ice_vc_remove_vlan_v2_msg(struct ice_vf *vf, u8 *msg)
3500{
3501 struct virtchnl_vlan_filter_list_v2 *vfl =
3502 (struct virtchnl_vlan_filter_list_v2 *)msg;
3503 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
3504 struct ice_vsi *vsi;
3505
3506 if (!ice_vc_validate_vlan_filter_list(&vf->vlan_v2_caps.filtering,
3507 vfl)) {
3508 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3509 goto out;
3510 }
3511
3512 if (!ice_vc_isvalid_vsi_id(vf, vfl->vport_id)) {
3513 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3514 goto out;
3515 }
3516
3517 vsi = ice_get_vf_vsi(vf);
3518 if (!vsi) {
3519 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3520 goto out;
3521 }
3522
3523 if (ice_vc_del_vlans(vf, vsi, vfl))
3524 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3525
3526out:
3527 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DEL_VLAN_V2, v_ret, NULL,
3528 0);
3529}
3530
3531/**
3532 * ice_vc_add_vlans - add VLAN(s) from the virtchnl filter list
3533 * @vf: VF used to add the VLAN(s)
3534 * @vsi: VF's VSI used to add the VLAN(s)
3535 * @vfl: virthchnl filter list used to add the filters
3536 */
3537static int
3538ice_vc_add_vlans(struct ice_vf *vf, struct ice_vsi *vsi,
3539 struct virtchnl_vlan_filter_list_v2 *vfl)
3540{
3541 bool vlan_promisc = ice_is_vlan_promisc_allowed(vf);
3542 int err;
3543 u16 i;
3544
3545 for (i = 0; i < vfl->num_elements; i++) {
3546 struct virtchnl_vlan_filter *vlan_fltr = &vfl->filters[i];
3547 struct virtchnl_vlan *vc_vlan;
3548
3549 vc_vlan = &vlan_fltr->outer;
3550 if (ice_vc_is_valid_vlan(vc_vlan)) {
3551 struct ice_vlan vlan = ice_vc_to_vlan(vc_vlan);
3552
3553 err = ice_vc_vlan_action(vsi,
3554 vsi->outer_vlan_ops.add_vlan,
3555 &vlan);
3556 if (err)
3557 return err;
3558
3559 if (vlan_promisc) {
3560 err = ice_vf_ena_vlan_promisc(vf, vsi, &vlan);
3561 if (err)
3562 return err;
3563 }
3564
3565 /* Enable VLAN filtering on first non-zero VLAN */
3566 if (vf->spoofchk && vlan.vid && ice_is_dvm_ena(&vsi->back->hw)) {
3567 err = vsi->outer_vlan_ops.ena_tx_filtering(vsi);
3568 if (err)
3569 return err;
3570 }
3571 }
3572
3573 vc_vlan = &vlan_fltr->inner;
3574 if (ice_vc_is_valid_vlan(vc_vlan)) {
3575 struct ice_vlan vlan = ice_vc_to_vlan(vc_vlan);
3576
3577 err = ice_vc_vlan_action(vsi,
3578 vsi->inner_vlan_ops.add_vlan,
3579 &vlan);
3580 if (err)
3581 return err;
3582
3583 /* no support for VLAN promiscuous on inner VLAN unless
3584 * we are in Single VLAN Mode (SVM)
3585 */
3586 if (!ice_is_dvm_ena(&vsi->back->hw)) {
3587 if (vlan_promisc) {
3588 err = ice_vf_ena_vlan_promisc(vf, vsi,
3589 &vlan);
3590 if (err)
3591 return err;
3592 }
3593
3594 /* Enable VLAN filtering on first non-zero VLAN */
3595 if (vf->spoofchk && vlan.vid) {
3596 err = vsi->inner_vlan_ops.ena_tx_filtering(vsi);
3597 if (err)
3598 return err;
3599 }
3600 }
3601 }
3602 }
3603
3604 return 0;
3605}
3606
3607/**
3608 * ice_vc_validate_add_vlan_filter_list - validate add filter list from the VF
3609 * @vsi: VF VSI used to get number of existing VLAN filters
3610 * @vfc: negotiated/supported VLAN filtering capabilities
3611 * @vfl: VLAN filter list from VF to validate
3612 *
3613 * Validate all of the filters in the VLAN filter list from the VF during the
3614 * VIRTCHNL_OP_ADD_VLAN_V2 opcode. If any of the checks fail then return false.
3615 * Otherwise return true.
3616 */
3617static bool
3618ice_vc_validate_add_vlan_filter_list(struct ice_vsi *vsi,
3619 struct virtchnl_vlan_filtering_caps *vfc,
3620 struct virtchnl_vlan_filter_list_v2 *vfl)
3621{
3622 u16 num_requested_filters = ice_vsi_num_non_zero_vlans(vsi) +
3623 vfl->num_elements;
3624
3625 if (num_requested_filters > vfc->max_filters)
3626 return false;
3627
3628 return ice_vc_validate_vlan_filter_list(vfc, vfl);
3629}
3630
3631/**
3632 * ice_vc_add_vlan_v2_msg - virtchnl handler for VIRTCHNL_OP_ADD_VLAN_V2
3633 * @vf: VF the message was received from
3634 * @msg: message received from the VF
3635 */
3636static int ice_vc_add_vlan_v2_msg(struct ice_vf *vf, u8 *msg)
3637{
3638 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
3639 struct virtchnl_vlan_filter_list_v2 *vfl =
3640 (struct virtchnl_vlan_filter_list_v2 *)msg;
3641 struct ice_vsi *vsi;
3642
3643 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
3644 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3645 goto out;
3646 }
3647
3648 if (!ice_vc_isvalid_vsi_id(vf, vfl->vport_id)) {
3649 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3650 goto out;
3651 }
3652
3653 vsi = ice_get_vf_vsi(vf);
3654 if (!vsi) {
3655 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3656 goto out;
3657 }
3658
3659 if (!ice_vc_validate_add_vlan_filter_list(vsi,
3660 &vf->vlan_v2_caps.filtering,
3661 vfl)) {
3662 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3663 goto out;
3664 }
3665
3666 if (ice_vc_add_vlans(vf, vsi, vfl))
3667 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3668
3669out:
3670 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ADD_VLAN_V2, v_ret, NULL,
3671 0);
3672}
3673
3674/**
3675 * ice_vc_valid_vlan_setting - validate VLAN setting
3676 * @negotiated_settings: negotiated VLAN settings during VF init
3677 * @ethertype_setting: ethertype(s) requested for the VLAN setting
3678 */
3679static bool
3680ice_vc_valid_vlan_setting(u32 negotiated_settings, u32 ethertype_setting)
3681{
3682 if (ethertype_setting && !(negotiated_settings & ethertype_setting))
3683 return false;
3684
3685 /* only allow a single VIRTCHNL_VLAN_ETHERTYPE if
3686 * VIRTHCNL_VLAN_ETHERTYPE_AND is not negotiated/supported
3687 */
3688 if (!(negotiated_settings & VIRTCHNL_VLAN_ETHERTYPE_AND) &&
3689 hweight32(ethertype_setting) > 1)
3690 return false;
3691
3692 /* ability to modify the VLAN setting was not negotiated */
3693 if (!(negotiated_settings & VIRTCHNL_VLAN_TOGGLE))
3694 return false;
3695
3696 return true;
3697}
3698
3699/**
3700 * ice_vc_valid_vlan_setting_msg - validate the VLAN setting message
3701 * @caps: negotiated VLAN settings during VF init
3702 * @msg: message to validate
3703 *
3704 * Used to validate any VLAN virtchnl message sent as a
3705 * virtchnl_vlan_setting structure. Validates the message against the
3706 * negotiated/supported caps during VF driver init.
3707 */
3708static bool
3709ice_vc_valid_vlan_setting_msg(struct virtchnl_vlan_supported_caps *caps,
3710 struct virtchnl_vlan_setting *msg)
3711{
3712 if ((!msg->outer_ethertype_setting &&
3713 !msg->inner_ethertype_setting) ||
3714 (!caps->outer && !caps->inner))
3715 return false;
3716
3717 if (msg->outer_ethertype_setting &&
3718 !ice_vc_valid_vlan_setting(caps->outer,
3719 msg->outer_ethertype_setting))
3720 return false;
3721
3722 if (msg->inner_ethertype_setting &&
3723 !ice_vc_valid_vlan_setting(caps->inner,
3724 msg->inner_ethertype_setting))
3725 return false;
3726
3727 return true;
3728}
3729
3730/**
3731 * ice_vc_get_tpid - transform from VIRTCHNL_VLAN_ETHERTYPE_* to VLAN TPID
3732 * @ethertype_setting: VIRTCHNL_VLAN_ETHERTYPE_* used to get VLAN TPID
3733 * @tpid: VLAN TPID to populate
3734 */
3735static int ice_vc_get_tpid(u32 ethertype_setting, u16 *tpid)
3736{
3737 switch (ethertype_setting) {
3738 case VIRTCHNL_VLAN_ETHERTYPE_8100:
3739 *tpid = ETH_P_8021Q;
3740 break;
3741 case VIRTCHNL_VLAN_ETHERTYPE_88A8:
3742 *tpid = ETH_P_8021AD;
3743 break;
3744 case VIRTCHNL_VLAN_ETHERTYPE_9100:
3745 *tpid = ETH_P_QINQ1;
3746 break;
3747 default:
3748 *tpid = 0;
3749 return -EINVAL;
3750 }
3751
3752 return 0;
3753}
3754
3755/**
3756 * ice_vc_ena_vlan_offload - enable VLAN offload based on the ethertype_setting
3757 * @vsi: VF's VSI used to enable the VLAN offload
3758 * @ena_offload: function used to enable the VLAN offload
3759 * @ethertype_setting: VIRTCHNL_VLAN_ETHERTYPE_* to enable offloads for
3760 */
3761static int
3762ice_vc_ena_vlan_offload(struct ice_vsi *vsi,
3763 int (*ena_offload)(struct ice_vsi *vsi, u16 tpid),
3764 u32 ethertype_setting)
3765{
3766 u16 tpid;
3767 int err;
3768
3769 err = ice_vc_get_tpid(ethertype_setting, &tpid);
3770 if (err)
3771 return err;
3772
3773 err = ena_offload(vsi, tpid);
3774 if (err)
3775 return err;
3776
3777 return 0;
3778}
3779
3780#define ICE_L2TSEL_QRX_CONTEXT_REG_IDX 3
3781#define ICE_L2TSEL_BIT_OFFSET 23
3782enum ice_l2tsel {
3783 ICE_L2TSEL_EXTRACT_FIRST_TAG_L2TAG2_2ND,
3784 ICE_L2TSEL_EXTRACT_FIRST_TAG_L2TAG1,
3785};
3786
3787/**
3788 * ice_vsi_update_l2tsel - update l2tsel field for all Rx rings on this VSI
3789 * @vsi: VSI used to update l2tsel on
3790 * @l2tsel: l2tsel setting requested
3791 *
3792 * Use the l2tsel setting to update all of the Rx queue context bits for l2tsel.
3793 * This will modify which descriptor field the first offloaded VLAN will be
3794 * stripped into.
3795 */
3796static void ice_vsi_update_l2tsel(struct ice_vsi *vsi, enum ice_l2tsel l2tsel)
3797{
3798 struct ice_hw *hw = &vsi->back->hw;
3799 u32 l2tsel_bit;
3800 int i;
3801
3802 if (l2tsel == ICE_L2TSEL_EXTRACT_FIRST_TAG_L2TAG2_2ND)
3803 l2tsel_bit = 0;
3804 else
3805 l2tsel_bit = BIT(ICE_L2TSEL_BIT_OFFSET);
3806
3807 for (i = 0; i < vsi->alloc_rxq; i++) {
3808 u16 pfq = vsi->rxq_map[i];
3809 u32 qrx_context_offset;
3810 u32 regval;
3811
3812 qrx_context_offset =
3813 QRX_CONTEXT(ICE_L2TSEL_QRX_CONTEXT_REG_IDX, pfq);
3814
3815 regval = rd32(hw, qrx_context_offset);
3816 regval &= ~BIT(ICE_L2TSEL_BIT_OFFSET);
3817 regval |= l2tsel_bit;
3818 wr32(hw, qrx_context_offset, regval);
3819 }
3820}
3821
3822/**
3823 * ice_vc_ena_vlan_stripping_v2_msg
3824 * @vf: VF the message was received from
3825 * @msg: message received from the VF
3826 *
3827 * virthcnl handler for VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2
3828 */
3829static int ice_vc_ena_vlan_stripping_v2_msg(struct ice_vf *vf, u8 *msg)
3830{
3831 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
3832 struct virtchnl_vlan_supported_caps *stripping_support;
3833 struct virtchnl_vlan_setting *strip_msg =
3834 (struct virtchnl_vlan_setting *)msg;
3835 u32 ethertype_setting;
3836 struct ice_vsi *vsi;
3837
3838 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
3839 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3840 goto out;
3841 }
3842
3843 if (!ice_vc_isvalid_vsi_id(vf, strip_msg->vport_id)) {
3844 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3845 goto out;
3846 }
3847
3848 vsi = ice_get_vf_vsi(vf);
3849 if (!vsi) {
3850 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3851 goto out;
3852 }
3853
3854 stripping_support = &vf->vlan_v2_caps.offloads.stripping_support;
3855 if (!ice_vc_valid_vlan_setting_msg(stripping_support, strip_msg)) {
3856 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3857 goto out;
3858 }
3859
3860 if (ice_vsi_is_rxq_crc_strip_dis(vsi)) {
3861 v_ret = VIRTCHNL_STATUS_ERR_NOT_SUPPORTED;
3862 goto out;
3863 }
3864
3865 ethertype_setting = strip_msg->outer_ethertype_setting;
3866 if (ethertype_setting) {
3867 if (ice_vc_ena_vlan_offload(vsi,
3868 vsi->outer_vlan_ops.ena_stripping,
3869 ethertype_setting)) {
3870 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3871 goto out;
3872 } else {
3873 enum ice_l2tsel l2tsel =
3874 ICE_L2TSEL_EXTRACT_FIRST_TAG_L2TAG2_2ND;
3875
3876 /* PF tells the VF that the outer VLAN tag is always
3877 * extracted to VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2 and
3878 * inner is always extracted to
3879 * VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1. This is needed to
3880 * support outer stripping so the first tag always ends
3881 * up in L2TAG2_2ND and the second/inner tag, if
3882 * enabled, is extracted in L2TAG1.
3883 */
3884 ice_vsi_update_l2tsel(vsi, l2tsel);
3885
3886 vf->vlan_strip_ena |= ICE_OUTER_VLAN_STRIP_ENA;
3887 }
3888 }
3889
3890 ethertype_setting = strip_msg->inner_ethertype_setting;
3891 if (ethertype_setting &&
3892 ice_vc_ena_vlan_offload(vsi, vsi->inner_vlan_ops.ena_stripping,
3893 ethertype_setting)) {
3894 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3895 goto out;
3896 }
3897
3898 if (ethertype_setting)
3899 vf->vlan_strip_ena |= ICE_INNER_VLAN_STRIP_ENA;
3900
3901out:
3902 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2,
3903 v_ret, NULL, 0);
3904}
3905
3906/**
3907 * ice_vc_dis_vlan_stripping_v2_msg
3908 * @vf: VF the message was received from
3909 * @msg: message received from the VF
3910 *
3911 * virthcnl handler for VIRTCHNL_OP_DISABLE_VLAN_STRIPPING_V2
3912 */
3913static int ice_vc_dis_vlan_stripping_v2_msg(struct ice_vf *vf, u8 *msg)
3914{
3915 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
3916 struct virtchnl_vlan_supported_caps *stripping_support;
3917 struct virtchnl_vlan_setting *strip_msg =
3918 (struct virtchnl_vlan_setting *)msg;
3919 u32 ethertype_setting;
3920 struct ice_vsi *vsi;
3921
3922 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
3923 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3924 goto out;
3925 }
3926
3927 if (!ice_vc_isvalid_vsi_id(vf, strip_msg->vport_id)) {
3928 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3929 goto out;
3930 }
3931
3932 vsi = ice_get_vf_vsi(vf);
3933 if (!vsi) {
3934 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3935 goto out;
3936 }
3937
3938 stripping_support = &vf->vlan_v2_caps.offloads.stripping_support;
3939 if (!ice_vc_valid_vlan_setting_msg(stripping_support, strip_msg)) {
3940 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3941 goto out;
3942 }
3943
3944 ethertype_setting = strip_msg->outer_ethertype_setting;
3945 if (ethertype_setting) {
3946 if (vsi->outer_vlan_ops.dis_stripping(vsi)) {
3947 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3948 goto out;
3949 } else {
3950 enum ice_l2tsel l2tsel =
3951 ICE_L2TSEL_EXTRACT_FIRST_TAG_L2TAG1;
3952
3953 /* PF tells the VF that the outer VLAN tag is always
3954 * extracted to VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2 and
3955 * inner is always extracted to
3956 * VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1. This is needed to
3957 * support inner stripping while outer stripping is
3958 * disabled so that the first and only tag is extracted
3959 * in L2TAG1.
3960 */
3961 ice_vsi_update_l2tsel(vsi, l2tsel);
3962
3963 vf->vlan_strip_ena &= ~ICE_OUTER_VLAN_STRIP_ENA;
3964 }
3965 }
3966
3967 ethertype_setting = strip_msg->inner_ethertype_setting;
3968 if (ethertype_setting && vsi->inner_vlan_ops.dis_stripping(vsi)) {
3969 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3970 goto out;
3971 }
3972
3973 if (ethertype_setting)
3974 vf->vlan_strip_ena &= ~ICE_INNER_VLAN_STRIP_ENA;
3975
3976out:
3977 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DISABLE_VLAN_STRIPPING_V2,
3978 v_ret, NULL, 0);
3979}
3980
3981/**
3982 * ice_vc_ena_vlan_insertion_v2_msg
3983 * @vf: VF the message was received from
3984 * @msg: message received from the VF
3985 *
3986 * virthcnl handler for VIRTCHNL_OP_ENABLE_VLAN_INSERTION_V2
3987 */
3988static int ice_vc_ena_vlan_insertion_v2_msg(struct ice_vf *vf, u8 *msg)
3989{
3990 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
3991 struct virtchnl_vlan_supported_caps *insertion_support;
3992 struct virtchnl_vlan_setting *insertion_msg =
3993 (struct virtchnl_vlan_setting *)msg;
3994 u32 ethertype_setting;
3995 struct ice_vsi *vsi;
3996
3997 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
3998 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3999 goto out;
4000 }
4001
4002 if (!ice_vc_isvalid_vsi_id(vf, insertion_msg->vport_id)) {
4003 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
4004 goto out;
4005 }
4006
4007 vsi = ice_get_vf_vsi(vf);
4008 if (!vsi) {
4009 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
4010 goto out;
4011 }
4012
4013 insertion_support = &vf->vlan_v2_caps.offloads.insertion_support;
4014 if (!ice_vc_valid_vlan_setting_msg(insertion_support, insertion_msg)) {
4015 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
4016 goto out;
4017 }
4018
4019 ethertype_setting = insertion_msg->outer_ethertype_setting;
4020 if (ethertype_setting &&
4021 ice_vc_ena_vlan_offload(vsi, vsi->outer_vlan_ops.ena_insertion,
4022 ethertype_setting)) {
4023 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
4024 goto out;
4025 }
4026
4027 ethertype_setting = insertion_msg->inner_ethertype_setting;
4028 if (ethertype_setting &&
4029 ice_vc_ena_vlan_offload(vsi, vsi->inner_vlan_ops.ena_insertion,
4030 ethertype_setting)) {
4031 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
4032 goto out;
4033 }
4034
4035out:
4036 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ENABLE_VLAN_INSERTION_V2,
4037 v_ret, NULL, 0);
4038}
4039
4040/**
4041 * ice_vc_dis_vlan_insertion_v2_msg
4042 * @vf: VF the message was received from
4043 * @msg: message received from the VF
4044 *
4045 * virthcnl handler for VIRTCHNL_OP_DISABLE_VLAN_INSERTION_V2
4046 */
4047static int ice_vc_dis_vlan_insertion_v2_msg(struct ice_vf *vf, u8 *msg)
4048{
4049 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
4050 struct virtchnl_vlan_supported_caps *insertion_support;
4051 struct virtchnl_vlan_setting *insertion_msg =
4052 (struct virtchnl_vlan_setting *)msg;
4053 u32 ethertype_setting;
4054 struct ice_vsi *vsi;
4055
4056 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
4057 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
4058 goto out;
4059 }
4060
4061 if (!ice_vc_isvalid_vsi_id(vf, insertion_msg->vport_id)) {
4062 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
4063 goto out;
4064 }
4065
4066 vsi = ice_get_vf_vsi(vf);
4067 if (!vsi) {
4068 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
4069 goto out;
4070 }
4071
4072 insertion_support = &vf->vlan_v2_caps.offloads.insertion_support;
4073 if (!ice_vc_valid_vlan_setting_msg(insertion_support, insertion_msg)) {
4074 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
4075 goto out;
4076 }
4077
4078 ethertype_setting = insertion_msg->outer_ethertype_setting;
4079 if (ethertype_setting && vsi->outer_vlan_ops.dis_insertion(vsi)) {
4080 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
4081 goto out;
4082 }
4083
4084 ethertype_setting = insertion_msg->inner_ethertype_setting;
4085 if (ethertype_setting && vsi->inner_vlan_ops.dis_insertion(vsi)) {
4086 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
4087 goto out;
4088 }
4089
4090out:
4091 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DISABLE_VLAN_INSERTION_V2,
4092 v_ret, NULL, 0);
4093}
4094
4095static const struct ice_virtchnl_ops ice_virtchnl_dflt_ops = {
4096 .get_ver_msg = ice_vc_get_ver_msg,
4097 .get_vf_res_msg = ice_vc_get_vf_res_msg,
4098 .reset_vf = ice_vc_reset_vf_msg,
4099 .add_mac_addr_msg = ice_vc_add_mac_addr_msg,
4100 .del_mac_addr_msg = ice_vc_del_mac_addr_msg,
4101 .cfg_qs_msg = ice_vc_cfg_qs_msg,
4102 .ena_qs_msg = ice_vc_ena_qs_msg,
4103 .dis_qs_msg = ice_vc_dis_qs_msg,
4104 .request_qs_msg = ice_vc_request_qs_msg,
4105 .cfg_irq_map_msg = ice_vc_cfg_irq_map_msg,
4106 .config_rss_key = ice_vc_config_rss_key,
4107 .config_rss_lut = ice_vc_config_rss_lut,
4108 .config_rss_hfunc = ice_vc_config_rss_hfunc,
4109 .get_stats_msg = ice_vc_get_stats_msg,
4110 .cfg_promiscuous_mode_msg = ice_vc_cfg_promiscuous_mode_msg,
4111 .add_vlan_msg = ice_vc_add_vlan_msg,
4112 .remove_vlan_msg = ice_vc_remove_vlan_msg,
4113 .query_rxdid = ice_vc_query_rxdid,
4114 .get_rss_hena = ice_vc_get_rss_hena,
4115 .set_rss_hena_msg = ice_vc_set_rss_hena,
4116 .ena_vlan_stripping = ice_vc_ena_vlan_stripping,
4117 .dis_vlan_stripping = ice_vc_dis_vlan_stripping,
4118 .handle_rss_cfg_msg = ice_vc_handle_rss_cfg,
4119 .add_fdir_fltr_msg = ice_vc_add_fdir_fltr,
4120 .del_fdir_fltr_msg = ice_vc_del_fdir_fltr,
4121 .get_offload_vlan_v2_caps = ice_vc_get_offload_vlan_v2_caps,
4122 .add_vlan_v2_msg = ice_vc_add_vlan_v2_msg,
4123 .remove_vlan_v2_msg = ice_vc_remove_vlan_v2_msg,
4124 .ena_vlan_stripping_v2_msg = ice_vc_ena_vlan_stripping_v2_msg,
4125 .dis_vlan_stripping_v2_msg = ice_vc_dis_vlan_stripping_v2_msg,
4126 .ena_vlan_insertion_v2_msg = ice_vc_ena_vlan_insertion_v2_msg,
4127 .dis_vlan_insertion_v2_msg = ice_vc_dis_vlan_insertion_v2_msg,
4128 .get_qos_caps = ice_vc_get_qos_caps,
4129 .cfg_q_bw = ice_vc_cfg_q_bw,
4130 .cfg_q_quanta = ice_vc_cfg_q_quanta,
4131 /* If you add a new op here please make sure to add it to
4132 * ice_virtchnl_repr_ops as well.
4133 */
4134};
4135
4136/**
4137 * ice_virtchnl_set_dflt_ops - Switch to default virtchnl ops
4138 * @vf: the VF to switch ops
4139 */
4140void ice_virtchnl_set_dflt_ops(struct ice_vf *vf)
4141{
4142 vf->virtchnl_ops = &ice_virtchnl_dflt_ops;
4143}
4144
4145/**
4146 * ice_vc_repr_add_mac
4147 * @vf: pointer to VF
4148 * @msg: virtchannel message
4149 *
4150 * When port representors are created, we do not add MAC rule
4151 * to firmware, we store it so that PF could report same
4152 * MAC as VF.
4153 */
4154static int ice_vc_repr_add_mac(struct ice_vf *vf, u8 *msg)
4155{
4156 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
4157 struct virtchnl_ether_addr_list *al =
4158 (struct virtchnl_ether_addr_list *)msg;
4159 struct ice_vsi *vsi;
4160 struct ice_pf *pf;
4161 int i;
4162
4163 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states) ||
4164 !ice_vc_isvalid_vsi_id(vf, al->vsi_id)) {
4165 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
4166 goto handle_mac_exit;
4167 }
4168
4169 pf = vf->pf;
4170
4171 vsi = ice_get_vf_vsi(vf);
4172 if (!vsi) {
4173 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
4174 goto handle_mac_exit;
4175 }
4176
4177 for (i = 0; i < al->num_elements; i++) {
4178 u8 *mac_addr = al->list[i].addr;
4179
4180 if (!is_unicast_ether_addr(mac_addr) ||
4181 ether_addr_equal(mac_addr, vf->hw_lan_addr))
4182 continue;
4183
4184 if (vf->pf_set_mac) {
4185 dev_err(ice_pf_to_dev(pf), "VF attempting to override administratively set MAC address\n");
4186 v_ret = VIRTCHNL_STATUS_ERR_NOT_SUPPORTED;
4187 goto handle_mac_exit;
4188 }
4189
4190 ice_vfhw_mac_add(vf, &al->list[i]);
4191 vf->num_mac++;
4192 break;
4193 }
4194
4195handle_mac_exit:
4196 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ADD_ETH_ADDR,
4197 v_ret, NULL, 0);
4198}
4199
4200/**
4201 * ice_vc_repr_del_mac - response with success for deleting MAC
4202 * @vf: pointer to VF
4203 * @msg: virtchannel message
4204 *
4205 * Respond with success to not break normal VF flow.
4206 * For legacy VF driver try to update cached MAC address.
4207 */
4208static int
4209ice_vc_repr_del_mac(struct ice_vf __always_unused *vf, u8 __always_unused *msg)
4210{
4211 struct virtchnl_ether_addr_list *al =
4212 (struct virtchnl_ether_addr_list *)msg;
4213
4214 ice_update_legacy_cached_mac(vf, &al->list[0]);
4215
4216 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DEL_ETH_ADDR,
4217 VIRTCHNL_STATUS_SUCCESS, NULL, 0);
4218}
4219
4220static int
4221ice_vc_repr_cfg_promiscuous_mode(struct ice_vf *vf, u8 __always_unused *msg)
4222{
4223 dev_dbg(ice_pf_to_dev(vf->pf),
4224 "Can't config promiscuous mode in switchdev mode for VF %d\n",
4225 vf->vf_id);
4226 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_PROMISCUOUS_MODE,
4227 VIRTCHNL_STATUS_ERR_NOT_SUPPORTED,
4228 NULL, 0);
4229}
4230
4231static const struct ice_virtchnl_ops ice_virtchnl_repr_ops = {
4232 .get_ver_msg = ice_vc_get_ver_msg,
4233 .get_vf_res_msg = ice_vc_get_vf_res_msg,
4234 .reset_vf = ice_vc_reset_vf_msg,
4235 .add_mac_addr_msg = ice_vc_repr_add_mac,
4236 .del_mac_addr_msg = ice_vc_repr_del_mac,
4237 .cfg_qs_msg = ice_vc_cfg_qs_msg,
4238 .ena_qs_msg = ice_vc_ena_qs_msg,
4239 .dis_qs_msg = ice_vc_dis_qs_msg,
4240 .request_qs_msg = ice_vc_request_qs_msg,
4241 .cfg_irq_map_msg = ice_vc_cfg_irq_map_msg,
4242 .config_rss_key = ice_vc_config_rss_key,
4243 .config_rss_lut = ice_vc_config_rss_lut,
4244 .config_rss_hfunc = ice_vc_config_rss_hfunc,
4245 .get_stats_msg = ice_vc_get_stats_msg,
4246 .cfg_promiscuous_mode_msg = ice_vc_repr_cfg_promiscuous_mode,
4247 .add_vlan_msg = ice_vc_add_vlan_msg,
4248 .remove_vlan_msg = ice_vc_remove_vlan_msg,
4249 .query_rxdid = ice_vc_query_rxdid,
4250 .get_rss_hena = ice_vc_get_rss_hena,
4251 .set_rss_hena_msg = ice_vc_set_rss_hena,
4252 .ena_vlan_stripping = ice_vc_ena_vlan_stripping,
4253 .dis_vlan_stripping = ice_vc_dis_vlan_stripping,
4254 .handle_rss_cfg_msg = ice_vc_handle_rss_cfg,
4255 .add_fdir_fltr_msg = ice_vc_add_fdir_fltr,
4256 .del_fdir_fltr_msg = ice_vc_del_fdir_fltr,
4257 .get_offload_vlan_v2_caps = ice_vc_get_offload_vlan_v2_caps,
4258 .add_vlan_v2_msg = ice_vc_add_vlan_v2_msg,
4259 .remove_vlan_v2_msg = ice_vc_remove_vlan_v2_msg,
4260 .ena_vlan_stripping_v2_msg = ice_vc_ena_vlan_stripping_v2_msg,
4261 .dis_vlan_stripping_v2_msg = ice_vc_dis_vlan_stripping_v2_msg,
4262 .ena_vlan_insertion_v2_msg = ice_vc_ena_vlan_insertion_v2_msg,
4263 .dis_vlan_insertion_v2_msg = ice_vc_dis_vlan_insertion_v2_msg,
4264 .get_qos_caps = ice_vc_get_qos_caps,
4265 .cfg_q_bw = ice_vc_cfg_q_bw,
4266 .cfg_q_quanta = ice_vc_cfg_q_quanta,
4267};
4268
4269/**
4270 * ice_virtchnl_set_repr_ops - Switch to representor virtchnl ops
4271 * @vf: the VF to switch ops
4272 */
4273void ice_virtchnl_set_repr_ops(struct ice_vf *vf)
4274{
4275 vf->virtchnl_ops = &ice_virtchnl_repr_ops;
4276}
4277
4278/**
4279 * ice_is_malicious_vf - check if this vf might be overflowing mailbox
4280 * @vf: the VF to check
4281 * @mbxdata: data about the state of the mailbox
4282 *
4283 * Detect if a given VF might be malicious and attempting to overflow the PF
4284 * mailbox. If so, log a warning message and ignore this event.
4285 */
4286static bool
4287ice_is_malicious_vf(struct ice_vf *vf, struct ice_mbx_data *mbxdata)
4288{
4289 bool report_malvf = false;
4290 struct device *dev;
4291 struct ice_pf *pf;
4292 int status;
4293
4294 pf = vf->pf;
4295 dev = ice_pf_to_dev(pf);
4296
4297 if (test_bit(ICE_VF_STATE_DIS, vf->vf_states))
4298 return vf->mbx_info.malicious;
4299
4300 /* check to see if we have a newly malicious VF */
4301 status = ice_mbx_vf_state_handler(&pf->hw, mbxdata, &vf->mbx_info,
4302 &report_malvf);
4303 if (status)
4304 dev_warn_ratelimited(dev, "Unable to check status of mailbox overflow for VF %u MAC %pM, status %d\n",
4305 vf->vf_id, vf->dev_lan_addr, status);
4306
4307 if (report_malvf) {
4308 struct ice_vsi *pf_vsi = ice_get_main_vsi(pf);
4309 u8 zero_addr[ETH_ALEN] = {};
4310
4311 dev_warn(dev, "VF MAC %pM on PF MAC %pM is generating asynchronous messages and may be overflowing the PF message queue. Please see the Adapter User Guide for more information\n",
4312 vf->dev_lan_addr,
4313 pf_vsi ? pf_vsi->netdev->dev_addr : zero_addr);
4314 }
4315
4316 return vf->mbx_info.malicious;
4317}
4318
4319/**
4320 * ice_vc_process_vf_msg - Process request from VF
4321 * @pf: pointer to the PF structure
4322 * @event: pointer to the AQ event
4323 * @mbxdata: information used to detect VF attempting mailbox overflow
4324 *
4325 * Called from the common asq/arq handler to process request from VF. When this
4326 * flow is used for devices with hardware VF to PF message queue overflow
4327 * support (ICE_F_MBX_LIMIT) mbxdata is set to NULL and ice_is_malicious_vf
4328 * check is skipped.
4329 */
4330void ice_vc_process_vf_msg(struct ice_pf *pf, struct ice_rq_event_info *event,
4331 struct ice_mbx_data *mbxdata)
4332{
4333 u32 v_opcode = le32_to_cpu(event->desc.cookie_high);
4334 s16 vf_id = le16_to_cpu(event->desc.retval);
4335 const struct ice_virtchnl_ops *ops;
4336 u16 msglen = event->msg_len;
4337 u8 *msg = event->msg_buf;
4338 struct ice_vf *vf = NULL;
4339 struct device *dev;
4340 int err = 0;
4341
4342 dev = ice_pf_to_dev(pf);
4343
4344 vf = ice_get_vf_by_id(pf, vf_id);
4345 if (!vf) {
4346 dev_err(dev, "Unable to locate VF for message from VF ID %d, opcode %d, len %d\n",
4347 vf_id, v_opcode, msglen);
4348 return;
4349 }
4350
4351 mutex_lock(&vf->cfg_lock);
4352
4353 /* Check if the VF is trying to overflow the mailbox */
4354 if (mbxdata && ice_is_malicious_vf(vf, mbxdata))
4355 goto finish;
4356
4357 /* Check if VF is disabled. */
4358 if (test_bit(ICE_VF_STATE_DIS, vf->vf_states)) {
4359 err = -EPERM;
4360 goto error_handler;
4361 }
4362
4363 ops = vf->virtchnl_ops;
4364
4365 /* Perform basic checks on the msg */
4366 err = virtchnl_vc_validate_vf_msg(&vf->vf_ver, v_opcode, msg, msglen);
4367 if (err) {
4368 if (err == VIRTCHNL_STATUS_ERR_PARAM)
4369 err = -EPERM;
4370 else
4371 err = -EINVAL;
4372 }
4373
4374error_handler:
4375 if (err) {
4376 ice_vc_send_msg_to_vf(vf, v_opcode, VIRTCHNL_STATUS_ERR_PARAM,
4377 NULL, 0);
4378 dev_err(dev, "Invalid message from VF %d, opcode %d, len %d, error %d\n",
4379 vf_id, v_opcode, msglen, err);
4380 goto finish;
4381 }
4382
4383 if (!ice_vc_is_opcode_allowed(vf, v_opcode)) {
4384 ice_vc_send_msg_to_vf(vf, v_opcode,
4385 VIRTCHNL_STATUS_ERR_NOT_SUPPORTED, NULL,
4386 0);
4387 goto finish;
4388 }
4389
4390 switch (v_opcode) {
4391 case VIRTCHNL_OP_VERSION:
4392 err = ops->get_ver_msg(vf, msg);
4393 break;
4394 case VIRTCHNL_OP_GET_VF_RESOURCES:
4395 err = ops->get_vf_res_msg(vf, msg);
4396 if (ice_vf_init_vlan_stripping(vf))
4397 dev_dbg(dev, "Failed to initialize VLAN stripping for VF %d\n",
4398 vf->vf_id);
4399 ice_vc_notify_vf_link_state(vf);
4400 break;
4401 case VIRTCHNL_OP_RESET_VF:
4402 ops->reset_vf(vf);
4403 break;
4404 case VIRTCHNL_OP_ADD_ETH_ADDR:
4405 err = ops->add_mac_addr_msg(vf, msg);
4406 break;
4407 case VIRTCHNL_OP_DEL_ETH_ADDR:
4408 err = ops->del_mac_addr_msg(vf, msg);
4409 break;
4410 case VIRTCHNL_OP_CONFIG_VSI_QUEUES:
4411 err = ops->cfg_qs_msg(vf, msg);
4412 break;
4413 case VIRTCHNL_OP_ENABLE_QUEUES:
4414 err = ops->ena_qs_msg(vf, msg);
4415 ice_vc_notify_vf_link_state(vf);
4416 break;
4417 case VIRTCHNL_OP_DISABLE_QUEUES:
4418 err = ops->dis_qs_msg(vf, msg);
4419 break;
4420 case VIRTCHNL_OP_REQUEST_QUEUES:
4421 err = ops->request_qs_msg(vf, msg);
4422 break;
4423 case VIRTCHNL_OP_CONFIG_IRQ_MAP:
4424 err = ops->cfg_irq_map_msg(vf, msg);
4425 break;
4426 case VIRTCHNL_OP_CONFIG_RSS_KEY:
4427 err = ops->config_rss_key(vf, msg);
4428 break;
4429 case VIRTCHNL_OP_CONFIG_RSS_LUT:
4430 err = ops->config_rss_lut(vf, msg);
4431 break;
4432 case VIRTCHNL_OP_CONFIG_RSS_HFUNC:
4433 err = ops->config_rss_hfunc(vf, msg);
4434 break;
4435 case VIRTCHNL_OP_GET_STATS:
4436 err = ops->get_stats_msg(vf, msg);
4437 break;
4438 case VIRTCHNL_OP_CONFIG_PROMISCUOUS_MODE:
4439 err = ops->cfg_promiscuous_mode_msg(vf, msg);
4440 break;
4441 case VIRTCHNL_OP_ADD_VLAN:
4442 err = ops->add_vlan_msg(vf, msg);
4443 break;
4444 case VIRTCHNL_OP_DEL_VLAN:
4445 err = ops->remove_vlan_msg(vf, msg);
4446 break;
4447 case VIRTCHNL_OP_GET_SUPPORTED_RXDIDS:
4448 err = ops->query_rxdid(vf);
4449 break;
4450 case VIRTCHNL_OP_GET_RSS_HENA_CAPS:
4451 err = ops->get_rss_hena(vf);
4452 break;
4453 case VIRTCHNL_OP_SET_RSS_HENA:
4454 err = ops->set_rss_hena_msg(vf, msg);
4455 break;
4456 case VIRTCHNL_OP_ENABLE_VLAN_STRIPPING:
4457 err = ops->ena_vlan_stripping(vf);
4458 break;
4459 case VIRTCHNL_OP_DISABLE_VLAN_STRIPPING:
4460 err = ops->dis_vlan_stripping(vf);
4461 break;
4462 case VIRTCHNL_OP_ADD_FDIR_FILTER:
4463 err = ops->add_fdir_fltr_msg(vf, msg);
4464 break;
4465 case VIRTCHNL_OP_DEL_FDIR_FILTER:
4466 err = ops->del_fdir_fltr_msg(vf, msg);
4467 break;
4468 case VIRTCHNL_OP_ADD_RSS_CFG:
4469 err = ops->handle_rss_cfg_msg(vf, msg, true);
4470 break;
4471 case VIRTCHNL_OP_DEL_RSS_CFG:
4472 err = ops->handle_rss_cfg_msg(vf, msg, false);
4473 break;
4474 case VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS:
4475 err = ops->get_offload_vlan_v2_caps(vf);
4476 break;
4477 case VIRTCHNL_OP_ADD_VLAN_V2:
4478 err = ops->add_vlan_v2_msg(vf, msg);
4479 break;
4480 case VIRTCHNL_OP_DEL_VLAN_V2:
4481 err = ops->remove_vlan_v2_msg(vf, msg);
4482 break;
4483 case VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2:
4484 err = ops->ena_vlan_stripping_v2_msg(vf, msg);
4485 break;
4486 case VIRTCHNL_OP_DISABLE_VLAN_STRIPPING_V2:
4487 err = ops->dis_vlan_stripping_v2_msg(vf, msg);
4488 break;
4489 case VIRTCHNL_OP_ENABLE_VLAN_INSERTION_V2:
4490 err = ops->ena_vlan_insertion_v2_msg(vf, msg);
4491 break;
4492 case VIRTCHNL_OP_DISABLE_VLAN_INSERTION_V2:
4493 err = ops->dis_vlan_insertion_v2_msg(vf, msg);
4494 break;
4495 case VIRTCHNL_OP_GET_QOS_CAPS:
4496 err = ops->get_qos_caps(vf);
4497 break;
4498 case VIRTCHNL_OP_CONFIG_QUEUE_BW:
4499 err = ops->cfg_q_bw(vf, msg);
4500 break;
4501 case VIRTCHNL_OP_CONFIG_QUANTA:
4502 err = ops->cfg_q_quanta(vf, msg);
4503 break;
4504 case VIRTCHNL_OP_UNKNOWN:
4505 default:
4506 dev_err(dev, "Unsupported opcode %d from VF %d\n", v_opcode,
4507 vf_id);
4508 err = ice_vc_send_msg_to_vf(vf, v_opcode,
4509 VIRTCHNL_STATUS_ERR_NOT_SUPPORTED,
4510 NULL, 0);
4511 break;
4512 }
4513 if (err) {
4514 /* Helper function cares less about error return values here
4515 * as it is busy with pending work.
4516 */
4517 dev_info(dev, "PF failed to honor VF %d, opcode %d, error %d\n",
4518 vf_id, v_opcode, err);
4519 }
4520
4521finish:
4522 mutex_unlock(&vf->cfg_lock);
4523 ice_put_vf(vf);
4524}
1// SPDX-License-Identifier: GPL-2.0
2/* Copyright (C) 2022, Intel Corporation. */
3
4#include "ice_virtchnl.h"
5#include "ice_vf_lib_private.h"
6#include "ice.h"
7#include "ice_base.h"
8#include "ice_lib.h"
9#include "ice_fltr.h"
10#include "ice_virtchnl_allowlist.h"
11#include "ice_vf_vsi_vlan_ops.h"
12#include "ice_vlan.h"
13#include "ice_flex_pipe.h"
14#include "ice_dcb_lib.h"
15
16#define FIELD_SELECTOR(proto_hdr_field) \
17 BIT((proto_hdr_field) & PROTO_HDR_FIELD_MASK)
18
19struct ice_vc_hdr_match_type {
20 u32 vc_hdr; /* virtchnl headers (VIRTCHNL_PROTO_HDR_XXX) */
21 u32 ice_hdr; /* ice headers (ICE_FLOW_SEG_HDR_XXX) */
22};
23
24static const struct ice_vc_hdr_match_type ice_vc_hdr_list[] = {
25 {VIRTCHNL_PROTO_HDR_NONE, ICE_FLOW_SEG_HDR_NONE},
26 {VIRTCHNL_PROTO_HDR_ETH, ICE_FLOW_SEG_HDR_ETH},
27 {VIRTCHNL_PROTO_HDR_S_VLAN, ICE_FLOW_SEG_HDR_VLAN},
28 {VIRTCHNL_PROTO_HDR_C_VLAN, ICE_FLOW_SEG_HDR_VLAN},
29 {VIRTCHNL_PROTO_HDR_IPV4, ICE_FLOW_SEG_HDR_IPV4 |
30 ICE_FLOW_SEG_HDR_IPV_OTHER},
31 {VIRTCHNL_PROTO_HDR_IPV6, ICE_FLOW_SEG_HDR_IPV6 |
32 ICE_FLOW_SEG_HDR_IPV_OTHER},
33 {VIRTCHNL_PROTO_HDR_TCP, ICE_FLOW_SEG_HDR_TCP},
34 {VIRTCHNL_PROTO_HDR_UDP, ICE_FLOW_SEG_HDR_UDP},
35 {VIRTCHNL_PROTO_HDR_SCTP, ICE_FLOW_SEG_HDR_SCTP},
36 {VIRTCHNL_PROTO_HDR_PPPOE, ICE_FLOW_SEG_HDR_PPPOE},
37 {VIRTCHNL_PROTO_HDR_GTPU_IP, ICE_FLOW_SEG_HDR_GTPU_IP},
38 {VIRTCHNL_PROTO_HDR_GTPU_EH, ICE_FLOW_SEG_HDR_GTPU_EH},
39 {VIRTCHNL_PROTO_HDR_GTPU_EH_PDU_DWN,
40 ICE_FLOW_SEG_HDR_GTPU_DWN},
41 {VIRTCHNL_PROTO_HDR_GTPU_EH_PDU_UP,
42 ICE_FLOW_SEG_HDR_GTPU_UP},
43 {VIRTCHNL_PROTO_HDR_L2TPV3, ICE_FLOW_SEG_HDR_L2TPV3},
44 {VIRTCHNL_PROTO_HDR_ESP, ICE_FLOW_SEG_HDR_ESP},
45 {VIRTCHNL_PROTO_HDR_AH, ICE_FLOW_SEG_HDR_AH},
46 {VIRTCHNL_PROTO_HDR_PFCP, ICE_FLOW_SEG_HDR_PFCP_SESSION},
47};
48
49struct ice_vc_hash_field_match_type {
50 u32 vc_hdr; /* virtchnl headers
51 * (VIRTCHNL_PROTO_HDR_XXX)
52 */
53 u32 vc_hash_field; /* virtchnl hash fields selector
54 * FIELD_SELECTOR((VIRTCHNL_PROTO_HDR_ETH_XXX))
55 */
56 u64 ice_hash_field; /* ice hash fields
57 * (BIT_ULL(ICE_FLOW_FIELD_IDX_XXX))
58 */
59};
60
61static const struct
62ice_vc_hash_field_match_type ice_vc_hash_field_list[] = {
63 {VIRTCHNL_PROTO_HDR_ETH, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ETH_SRC),
64 BIT_ULL(ICE_FLOW_FIELD_IDX_ETH_SA)},
65 {VIRTCHNL_PROTO_HDR_ETH, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ETH_DST),
66 BIT_ULL(ICE_FLOW_FIELD_IDX_ETH_DA)},
67 {VIRTCHNL_PROTO_HDR_ETH, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ETH_SRC) |
68 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ETH_DST),
69 ICE_FLOW_HASH_ETH},
70 {VIRTCHNL_PROTO_HDR_ETH,
71 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ETH_ETHERTYPE),
72 BIT_ULL(ICE_FLOW_FIELD_IDX_ETH_TYPE)},
73 {VIRTCHNL_PROTO_HDR_S_VLAN,
74 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_S_VLAN_ID),
75 BIT_ULL(ICE_FLOW_FIELD_IDX_S_VLAN)},
76 {VIRTCHNL_PROTO_HDR_C_VLAN,
77 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_C_VLAN_ID),
78 BIT_ULL(ICE_FLOW_FIELD_IDX_C_VLAN)},
79 {VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_SRC),
80 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_SA)},
81 {VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_DST),
82 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_DA)},
83 {VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_SRC) |
84 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_DST),
85 ICE_FLOW_HASH_IPV4},
86 {VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_SRC) |
87 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_PROT),
88 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_SA) |
89 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_PROT)},
90 {VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_DST) |
91 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_PROT),
92 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_DA) |
93 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_PROT)},
94 {VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_SRC) |
95 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_DST) |
96 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_PROT),
97 ICE_FLOW_HASH_IPV4 | BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_PROT)},
98 {VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_PROT),
99 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_PROT)},
100 {VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_SRC),
101 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_SA)},
102 {VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_DST),
103 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_DA)},
104 {VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_SRC) |
105 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_DST),
106 ICE_FLOW_HASH_IPV6},
107 {VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_SRC) |
108 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_PROT),
109 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_SA) |
110 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_PROT)},
111 {VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_DST) |
112 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_PROT),
113 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_DA) |
114 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_PROT)},
115 {VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_SRC) |
116 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_DST) |
117 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_PROT),
118 ICE_FLOW_HASH_IPV6 | BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_PROT)},
119 {VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_PROT),
120 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_PROT)},
121 {VIRTCHNL_PROTO_HDR_TCP,
122 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_TCP_SRC_PORT),
123 BIT_ULL(ICE_FLOW_FIELD_IDX_TCP_SRC_PORT)},
124 {VIRTCHNL_PROTO_HDR_TCP,
125 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_TCP_DST_PORT),
126 BIT_ULL(ICE_FLOW_FIELD_IDX_TCP_DST_PORT)},
127 {VIRTCHNL_PROTO_HDR_TCP,
128 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_TCP_SRC_PORT) |
129 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_TCP_DST_PORT),
130 ICE_FLOW_HASH_TCP_PORT},
131 {VIRTCHNL_PROTO_HDR_UDP,
132 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_UDP_SRC_PORT),
133 BIT_ULL(ICE_FLOW_FIELD_IDX_UDP_SRC_PORT)},
134 {VIRTCHNL_PROTO_HDR_UDP,
135 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_UDP_DST_PORT),
136 BIT_ULL(ICE_FLOW_FIELD_IDX_UDP_DST_PORT)},
137 {VIRTCHNL_PROTO_HDR_UDP,
138 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_UDP_SRC_PORT) |
139 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_UDP_DST_PORT),
140 ICE_FLOW_HASH_UDP_PORT},
141 {VIRTCHNL_PROTO_HDR_SCTP,
142 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_SCTP_SRC_PORT),
143 BIT_ULL(ICE_FLOW_FIELD_IDX_SCTP_SRC_PORT)},
144 {VIRTCHNL_PROTO_HDR_SCTP,
145 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_SCTP_DST_PORT),
146 BIT_ULL(ICE_FLOW_FIELD_IDX_SCTP_DST_PORT)},
147 {VIRTCHNL_PROTO_HDR_SCTP,
148 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_SCTP_SRC_PORT) |
149 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_SCTP_DST_PORT),
150 ICE_FLOW_HASH_SCTP_PORT},
151 {VIRTCHNL_PROTO_HDR_PPPOE,
152 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_PPPOE_SESS_ID),
153 BIT_ULL(ICE_FLOW_FIELD_IDX_PPPOE_SESS_ID)},
154 {VIRTCHNL_PROTO_HDR_GTPU_IP,
155 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_GTPU_IP_TEID),
156 BIT_ULL(ICE_FLOW_FIELD_IDX_GTPU_IP_TEID)},
157 {VIRTCHNL_PROTO_HDR_L2TPV3,
158 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_L2TPV3_SESS_ID),
159 BIT_ULL(ICE_FLOW_FIELD_IDX_L2TPV3_SESS_ID)},
160 {VIRTCHNL_PROTO_HDR_ESP, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ESP_SPI),
161 BIT_ULL(ICE_FLOW_FIELD_IDX_ESP_SPI)},
162 {VIRTCHNL_PROTO_HDR_AH, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_AH_SPI),
163 BIT_ULL(ICE_FLOW_FIELD_IDX_AH_SPI)},
164 {VIRTCHNL_PROTO_HDR_PFCP, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_PFCP_SEID),
165 BIT_ULL(ICE_FLOW_FIELD_IDX_PFCP_SEID)},
166};
167
168/**
169 * ice_vc_vf_broadcast - Broadcast a message to all VFs on PF
170 * @pf: pointer to the PF structure
171 * @v_opcode: operation code
172 * @v_retval: return value
173 * @msg: pointer to the msg buffer
174 * @msglen: msg length
175 */
176static void
177ice_vc_vf_broadcast(struct ice_pf *pf, enum virtchnl_ops v_opcode,
178 enum virtchnl_status_code v_retval, u8 *msg, u16 msglen)
179{
180 struct ice_hw *hw = &pf->hw;
181 struct ice_vf *vf;
182 unsigned int bkt;
183
184 mutex_lock(&pf->vfs.table_lock);
185 ice_for_each_vf(pf, bkt, vf) {
186 /* Not all vfs are enabled so skip the ones that are not */
187 if (!test_bit(ICE_VF_STATE_INIT, vf->vf_states) &&
188 !test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states))
189 continue;
190
191 /* Ignore return value on purpose - a given VF may fail, but
192 * we need to keep going and send to all of them
193 */
194 ice_aq_send_msg_to_vf(hw, vf->vf_id, v_opcode, v_retval, msg,
195 msglen, NULL);
196 }
197 mutex_unlock(&pf->vfs.table_lock);
198}
199
200/**
201 * ice_set_pfe_link - Set the link speed/status of the virtchnl_pf_event
202 * @vf: pointer to the VF structure
203 * @pfe: pointer to the virtchnl_pf_event to set link speed/status for
204 * @ice_link_speed: link speed specified by ICE_AQ_LINK_SPEED_*
205 * @link_up: whether or not to set the link up/down
206 */
207static void
208ice_set_pfe_link(struct ice_vf *vf, struct virtchnl_pf_event *pfe,
209 int ice_link_speed, bool link_up)
210{
211 if (vf->driver_caps & VIRTCHNL_VF_CAP_ADV_LINK_SPEED) {
212 pfe->event_data.link_event_adv.link_status = link_up;
213 /* Speed in Mbps */
214 pfe->event_data.link_event_adv.link_speed =
215 ice_conv_link_speed_to_virtchnl(true, ice_link_speed);
216 } else {
217 pfe->event_data.link_event.link_status = link_up;
218 /* Legacy method for virtchnl link speeds */
219 pfe->event_data.link_event.link_speed =
220 (enum virtchnl_link_speed)
221 ice_conv_link_speed_to_virtchnl(false, ice_link_speed);
222 }
223}
224
225/**
226 * ice_vc_notify_vf_link_state - Inform a VF of link status
227 * @vf: pointer to the VF structure
228 *
229 * send a link status message to a single VF
230 */
231void ice_vc_notify_vf_link_state(struct ice_vf *vf)
232{
233 struct virtchnl_pf_event pfe = { 0 };
234 struct ice_hw *hw = &vf->pf->hw;
235
236 pfe.event = VIRTCHNL_EVENT_LINK_CHANGE;
237 pfe.severity = PF_EVENT_SEVERITY_INFO;
238
239 if (ice_is_vf_link_up(vf))
240 ice_set_pfe_link(vf, &pfe,
241 hw->port_info->phy.link_info.link_speed, true);
242 else
243 ice_set_pfe_link(vf, &pfe, ICE_AQ_LINK_SPEED_UNKNOWN, false);
244
245 ice_aq_send_msg_to_vf(hw, vf->vf_id, VIRTCHNL_OP_EVENT,
246 VIRTCHNL_STATUS_SUCCESS, (u8 *)&pfe,
247 sizeof(pfe), NULL);
248}
249
250/**
251 * ice_vc_notify_link_state - Inform all VFs on a PF of link status
252 * @pf: pointer to the PF structure
253 */
254void ice_vc_notify_link_state(struct ice_pf *pf)
255{
256 struct ice_vf *vf;
257 unsigned int bkt;
258
259 mutex_lock(&pf->vfs.table_lock);
260 ice_for_each_vf(pf, bkt, vf)
261 ice_vc_notify_vf_link_state(vf);
262 mutex_unlock(&pf->vfs.table_lock);
263}
264
265/**
266 * ice_vc_notify_reset - Send pending reset message to all VFs
267 * @pf: pointer to the PF structure
268 *
269 * indicate a pending reset to all VFs on a given PF
270 */
271void ice_vc_notify_reset(struct ice_pf *pf)
272{
273 struct virtchnl_pf_event pfe;
274
275 if (!ice_has_vfs(pf))
276 return;
277
278 pfe.event = VIRTCHNL_EVENT_RESET_IMPENDING;
279 pfe.severity = PF_EVENT_SEVERITY_CERTAIN_DOOM;
280 ice_vc_vf_broadcast(pf, VIRTCHNL_OP_EVENT, VIRTCHNL_STATUS_SUCCESS,
281 (u8 *)&pfe, sizeof(struct virtchnl_pf_event));
282}
283
284/**
285 * ice_vc_send_msg_to_vf - Send message to VF
286 * @vf: pointer to the VF info
287 * @v_opcode: virtual channel opcode
288 * @v_retval: virtual channel return value
289 * @msg: pointer to the msg buffer
290 * @msglen: msg length
291 *
292 * send msg to VF
293 */
294int
295ice_vc_send_msg_to_vf(struct ice_vf *vf, u32 v_opcode,
296 enum virtchnl_status_code v_retval, u8 *msg, u16 msglen)
297{
298 struct device *dev;
299 struct ice_pf *pf;
300 int aq_ret;
301
302 pf = vf->pf;
303 dev = ice_pf_to_dev(pf);
304
305 aq_ret = ice_aq_send_msg_to_vf(&pf->hw, vf->vf_id, v_opcode, v_retval,
306 msg, msglen, NULL);
307 if (aq_ret && pf->hw.mailboxq.sq_last_status != ICE_AQ_RC_ENOSYS) {
308 dev_info(dev, "Unable to send the message to VF %d ret %d aq_err %s\n",
309 vf->vf_id, aq_ret,
310 ice_aq_str(pf->hw.mailboxq.sq_last_status));
311 return -EIO;
312 }
313
314 return 0;
315}
316
317/**
318 * ice_vc_get_ver_msg
319 * @vf: pointer to the VF info
320 * @msg: pointer to the msg buffer
321 *
322 * called from the VF to request the API version used by the PF
323 */
324static int ice_vc_get_ver_msg(struct ice_vf *vf, u8 *msg)
325{
326 struct virtchnl_version_info info = {
327 VIRTCHNL_VERSION_MAJOR, VIRTCHNL_VERSION_MINOR
328 };
329
330 vf->vf_ver = *(struct virtchnl_version_info *)msg;
331 /* VFs running the 1.0 API expect to get 1.0 back or they will cry. */
332 if (VF_IS_V10(&vf->vf_ver))
333 info.minor = VIRTCHNL_VERSION_MINOR_NO_VF_CAPS;
334
335 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_VERSION,
336 VIRTCHNL_STATUS_SUCCESS, (u8 *)&info,
337 sizeof(struct virtchnl_version_info));
338}
339
340/**
341 * ice_vc_get_max_frame_size - get max frame size allowed for VF
342 * @vf: VF used to determine max frame size
343 *
344 * Max frame size is determined based on the current port's max frame size and
345 * whether a port VLAN is configured on this VF. The VF is not aware whether
346 * it's in a port VLAN so the PF needs to account for this in max frame size
347 * checks and sending the max frame size to the VF.
348 */
349static u16 ice_vc_get_max_frame_size(struct ice_vf *vf)
350{
351 struct ice_port_info *pi = ice_vf_get_port_info(vf);
352 u16 max_frame_size;
353
354 max_frame_size = pi->phy.link_info.max_frame_size;
355
356 if (ice_vf_is_port_vlan_ena(vf))
357 max_frame_size -= VLAN_HLEN;
358
359 return max_frame_size;
360}
361
362/**
363 * ice_vc_get_vlan_caps
364 * @hw: pointer to the hw
365 * @vf: pointer to the VF info
366 * @vsi: pointer to the VSI
367 * @driver_caps: current driver caps
368 *
369 * Return 0 if there is no VLAN caps supported, or VLAN caps value
370 */
371static u32
372ice_vc_get_vlan_caps(struct ice_hw *hw, struct ice_vf *vf, struct ice_vsi *vsi,
373 u32 driver_caps)
374{
375 if (ice_is_eswitch_mode_switchdev(vf->pf))
376 /* In switchdev setting VLAN from VF isn't supported */
377 return 0;
378
379 if (driver_caps & VIRTCHNL_VF_OFFLOAD_VLAN_V2) {
380 /* VLAN offloads based on current device configuration */
381 return VIRTCHNL_VF_OFFLOAD_VLAN_V2;
382 } else if (driver_caps & VIRTCHNL_VF_OFFLOAD_VLAN) {
383 /* allow VF to negotiate VIRTCHNL_VF_OFFLOAD explicitly for
384 * these two conditions, which amounts to guest VLAN filtering
385 * and offloads being based on the inner VLAN or the
386 * inner/single VLAN respectively and don't allow VF to
387 * negotiate VIRTCHNL_VF_OFFLOAD in any other cases
388 */
389 if (ice_is_dvm_ena(hw) && ice_vf_is_port_vlan_ena(vf)) {
390 return VIRTCHNL_VF_OFFLOAD_VLAN;
391 } else if (!ice_is_dvm_ena(hw) &&
392 !ice_vf_is_port_vlan_ena(vf)) {
393 /* configure backward compatible support for VFs that
394 * only support VIRTCHNL_VF_OFFLOAD_VLAN, the PF is
395 * configured in SVM, and no port VLAN is configured
396 */
397 ice_vf_vsi_cfg_svm_legacy_vlan_mode(vsi);
398 return VIRTCHNL_VF_OFFLOAD_VLAN;
399 } else if (ice_is_dvm_ena(hw)) {
400 /* configure software offloaded VLAN support when DVM
401 * is enabled, but no port VLAN is enabled
402 */
403 ice_vf_vsi_cfg_dvm_legacy_vlan_mode(vsi);
404 }
405 }
406
407 return 0;
408}
409
410/**
411 * ice_vc_get_vf_res_msg
412 * @vf: pointer to the VF info
413 * @msg: pointer to the msg buffer
414 *
415 * called from the VF to request its resources
416 */
417static int ice_vc_get_vf_res_msg(struct ice_vf *vf, u8 *msg)
418{
419 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
420 struct virtchnl_vf_resource *vfres = NULL;
421 struct ice_hw *hw = &vf->pf->hw;
422 struct ice_vsi *vsi;
423 int len = 0;
424 int ret;
425
426 if (ice_check_vf_init(vf)) {
427 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
428 goto err;
429 }
430
431 len = virtchnl_struct_size(vfres, vsi_res, 0);
432
433 vfres = kzalloc(len, GFP_KERNEL);
434 if (!vfres) {
435 v_ret = VIRTCHNL_STATUS_ERR_NO_MEMORY;
436 len = 0;
437 goto err;
438 }
439 if (VF_IS_V11(&vf->vf_ver))
440 vf->driver_caps = *(u32 *)msg;
441 else
442 vf->driver_caps = VIRTCHNL_VF_OFFLOAD_L2 |
443 VIRTCHNL_VF_OFFLOAD_VLAN;
444
445 vfres->vf_cap_flags = VIRTCHNL_VF_OFFLOAD_L2;
446 vsi = ice_get_vf_vsi(vf);
447 if (!vsi) {
448 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
449 goto err;
450 }
451
452 vfres->vf_cap_flags |= ice_vc_get_vlan_caps(hw, vf, vsi,
453 vf->driver_caps);
454
455 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RSS_PF)
456 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RSS_PF;
457
458 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC)
459 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC;
460
461 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_FDIR_PF)
462 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_FDIR_PF;
463
464 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RSS_PCTYPE_V2)
465 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RSS_PCTYPE_V2;
466
467 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_ENCAP)
468 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_ENCAP;
469
470 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_ENCAP_CSUM)
471 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_ENCAP_CSUM;
472
473 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RX_POLLING)
474 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RX_POLLING;
475
476 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_WB_ON_ITR)
477 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_WB_ON_ITR;
478
479 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_REQ_QUEUES)
480 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_REQ_QUEUES;
481
482 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_CRC)
483 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_CRC;
484
485 if (vf->driver_caps & VIRTCHNL_VF_CAP_ADV_LINK_SPEED)
486 vfres->vf_cap_flags |= VIRTCHNL_VF_CAP_ADV_LINK_SPEED;
487
488 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_ADV_RSS_PF)
489 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_ADV_RSS_PF;
490
491 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_USO)
492 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_USO;
493
494 vfres->num_vsis = 1;
495 /* Tx and Rx queue are equal for VF */
496 vfres->num_queue_pairs = vsi->num_txq;
497 vfres->max_vectors = vf->num_msix;
498 vfres->rss_key_size = ICE_VSIQF_HKEY_ARRAY_SIZE;
499 vfres->rss_lut_size = ICE_LUT_VSI_SIZE;
500 vfres->max_mtu = ice_vc_get_max_frame_size(vf);
501
502 vfres->vsi_res[0].vsi_id = ICE_VF_VSI_ID;
503 vfres->vsi_res[0].vsi_type = VIRTCHNL_VSI_SRIOV;
504 vfres->vsi_res[0].num_queue_pairs = vsi->num_txq;
505 ether_addr_copy(vfres->vsi_res[0].default_mac_addr,
506 vf->hw_lan_addr);
507
508 /* match guest capabilities */
509 vf->driver_caps = vfres->vf_cap_flags;
510
511 ice_vc_set_caps_allowlist(vf);
512 ice_vc_set_working_allowlist(vf);
513
514 set_bit(ICE_VF_STATE_ACTIVE, vf->vf_states);
515
516err:
517 /* send the response back to the VF */
518 ret = ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_GET_VF_RESOURCES, v_ret,
519 (u8 *)vfres, len);
520
521 kfree(vfres);
522 return ret;
523}
524
525/**
526 * ice_vc_reset_vf_msg
527 * @vf: pointer to the VF info
528 *
529 * called from the VF to reset itself,
530 * unlike other virtchnl messages, PF driver
531 * doesn't send the response back to the VF
532 */
533static void ice_vc_reset_vf_msg(struct ice_vf *vf)
534{
535 if (test_bit(ICE_VF_STATE_INIT, vf->vf_states))
536 ice_reset_vf(vf, 0);
537}
538
539/**
540 * ice_vc_isvalid_vsi_id
541 * @vf: pointer to the VF info
542 * @vsi_id: VF relative VSI ID
543 *
544 * check for the valid VSI ID
545 */
546bool ice_vc_isvalid_vsi_id(struct ice_vf *vf, u16 vsi_id)
547{
548 return vsi_id == ICE_VF_VSI_ID;
549}
550
551/**
552 * ice_vc_isvalid_q_id
553 * @vsi: VSI to check queue ID against
554 * @qid: VSI relative queue ID
555 *
556 * check for the valid queue ID
557 */
558static bool ice_vc_isvalid_q_id(struct ice_vsi *vsi, u8 qid)
559{
560 /* allocated Tx and Rx queues should be always equal for VF VSI */
561 return qid < vsi->alloc_txq;
562}
563
564/**
565 * ice_vc_isvalid_ring_len
566 * @ring_len: length of ring
567 *
568 * check for the valid ring count, should be multiple of ICE_REQ_DESC_MULTIPLE
569 * or zero
570 */
571static bool ice_vc_isvalid_ring_len(u16 ring_len)
572{
573 return ring_len == 0 ||
574 (ring_len >= ICE_MIN_NUM_DESC &&
575 ring_len <= ICE_MAX_NUM_DESC &&
576 !(ring_len % ICE_REQ_DESC_MULTIPLE));
577}
578
579/**
580 * ice_vc_validate_pattern
581 * @vf: pointer to the VF info
582 * @proto: virtchnl protocol headers
583 *
584 * validate the pattern is supported or not.
585 *
586 * Return: true on success, false on error.
587 */
588bool
589ice_vc_validate_pattern(struct ice_vf *vf, struct virtchnl_proto_hdrs *proto)
590{
591 bool is_ipv4 = false;
592 bool is_ipv6 = false;
593 bool is_udp = false;
594 u16 ptype = -1;
595 int i = 0;
596
597 while (i < proto->count &&
598 proto->proto_hdr[i].type != VIRTCHNL_PROTO_HDR_NONE) {
599 switch (proto->proto_hdr[i].type) {
600 case VIRTCHNL_PROTO_HDR_ETH:
601 ptype = ICE_PTYPE_MAC_PAY;
602 break;
603 case VIRTCHNL_PROTO_HDR_IPV4:
604 ptype = ICE_PTYPE_IPV4_PAY;
605 is_ipv4 = true;
606 break;
607 case VIRTCHNL_PROTO_HDR_IPV6:
608 ptype = ICE_PTYPE_IPV6_PAY;
609 is_ipv6 = true;
610 break;
611 case VIRTCHNL_PROTO_HDR_UDP:
612 if (is_ipv4)
613 ptype = ICE_PTYPE_IPV4_UDP_PAY;
614 else if (is_ipv6)
615 ptype = ICE_PTYPE_IPV6_UDP_PAY;
616 is_udp = true;
617 break;
618 case VIRTCHNL_PROTO_HDR_TCP:
619 if (is_ipv4)
620 ptype = ICE_PTYPE_IPV4_TCP_PAY;
621 else if (is_ipv6)
622 ptype = ICE_PTYPE_IPV6_TCP_PAY;
623 break;
624 case VIRTCHNL_PROTO_HDR_SCTP:
625 if (is_ipv4)
626 ptype = ICE_PTYPE_IPV4_SCTP_PAY;
627 else if (is_ipv6)
628 ptype = ICE_PTYPE_IPV6_SCTP_PAY;
629 break;
630 case VIRTCHNL_PROTO_HDR_GTPU_IP:
631 case VIRTCHNL_PROTO_HDR_GTPU_EH:
632 if (is_ipv4)
633 ptype = ICE_MAC_IPV4_GTPU;
634 else if (is_ipv6)
635 ptype = ICE_MAC_IPV6_GTPU;
636 goto out;
637 case VIRTCHNL_PROTO_HDR_L2TPV3:
638 if (is_ipv4)
639 ptype = ICE_MAC_IPV4_L2TPV3;
640 else if (is_ipv6)
641 ptype = ICE_MAC_IPV6_L2TPV3;
642 goto out;
643 case VIRTCHNL_PROTO_HDR_ESP:
644 if (is_ipv4)
645 ptype = is_udp ? ICE_MAC_IPV4_NAT_T_ESP :
646 ICE_MAC_IPV4_ESP;
647 else if (is_ipv6)
648 ptype = is_udp ? ICE_MAC_IPV6_NAT_T_ESP :
649 ICE_MAC_IPV6_ESP;
650 goto out;
651 case VIRTCHNL_PROTO_HDR_AH:
652 if (is_ipv4)
653 ptype = ICE_MAC_IPV4_AH;
654 else if (is_ipv6)
655 ptype = ICE_MAC_IPV6_AH;
656 goto out;
657 case VIRTCHNL_PROTO_HDR_PFCP:
658 if (is_ipv4)
659 ptype = ICE_MAC_IPV4_PFCP_SESSION;
660 else if (is_ipv6)
661 ptype = ICE_MAC_IPV6_PFCP_SESSION;
662 goto out;
663 default:
664 break;
665 }
666 i++;
667 }
668
669out:
670 return ice_hw_ptype_ena(&vf->pf->hw, ptype);
671}
672
673/**
674 * ice_vc_parse_rss_cfg - parses hash fields and headers from
675 * a specific virtchnl RSS cfg
676 * @hw: pointer to the hardware
677 * @rss_cfg: pointer to the virtchnl RSS cfg
678 * @hash_cfg: pointer to the HW hash configuration
679 *
680 * Return true if all the protocol header and hash fields in the RSS cfg could
681 * be parsed, else return false
682 *
683 * This function parses the virtchnl RSS cfg to be the intended
684 * hash fields and the intended header for RSS configuration
685 */
686static bool ice_vc_parse_rss_cfg(struct ice_hw *hw,
687 struct virtchnl_rss_cfg *rss_cfg,
688 struct ice_rss_hash_cfg *hash_cfg)
689{
690 const struct ice_vc_hash_field_match_type *hf_list;
691 const struct ice_vc_hdr_match_type *hdr_list;
692 int i, hf_list_len, hdr_list_len;
693 u32 *addl_hdrs = &hash_cfg->addl_hdrs;
694 u64 *hash_flds = &hash_cfg->hash_flds;
695
696 /* set outer layer RSS as default */
697 hash_cfg->hdr_type = ICE_RSS_OUTER_HEADERS;
698
699 if (rss_cfg->rss_algorithm == VIRTCHNL_RSS_ALG_TOEPLITZ_SYMMETRIC)
700 hash_cfg->symm = true;
701 else
702 hash_cfg->symm = false;
703
704 hf_list = ice_vc_hash_field_list;
705 hf_list_len = ARRAY_SIZE(ice_vc_hash_field_list);
706 hdr_list = ice_vc_hdr_list;
707 hdr_list_len = ARRAY_SIZE(ice_vc_hdr_list);
708
709 for (i = 0; i < rss_cfg->proto_hdrs.count; i++) {
710 struct virtchnl_proto_hdr *proto_hdr =
711 &rss_cfg->proto_hdrs.proto_hdr[i];
712 bool hdr_found = false;
713 int j;
714
715 /* Find matched ice headers according to virtchnl headers. */
716 for (j = 0; j < hdr_list_len; j++) {
717 struct ice_vc_hdr_match_type hdr_map = hdr_list[j];
718
719 if (proto_hdr->type == hdr_map.vc_hdr) {
720 *addl_hdrs |= hdr_map.ice_hdr;
721 hdr_found = true;
722 }
723 }
724
725 if (!hdr_found)
726 return false;
727
728 /* Find matched ice hash fields according to
729 * virtchnl hash fields.
730 */
731 for (j = 0; j < hf_list_len; j++) {
732 struct ice_vc_hash_field_match_type hf_map = hf_list[j];
733
734 if (proto_hdr->type == hf_map.vc_hdr &&
735 proto_hdr->field_selector == hf_map.vc_hash_field) {
736 *hash_flds |= hf_map.ice_hash_field;
737 break;
738 }
739 }
740 }
741
742 return true;
743}
744
745/**
746 * ice_vf_adv_rss_offload_ena - determine if capabilities support advanced
747 * RSS offloads
748 * @caps: VF driver negotiated capabilities
749 *
750 * Return true if VIRTCHNL_VF_OFFLOAD_ADV_RSS_PF capability is set,
751 * else return false
752 */
753static bool ice_vf_adv_rss_offload_ena(u32 caps)
754{
755 return !!(caps & VIRTCHNL_VF_OFFLOAD_ADV_RSS_PF);
756}
757
758/**
759 * ice_vc_handle_rss_cfg
760 * @vf: pointer to the VF info
761 * @msg: pointer to the message buffer
762 * @add: add a RSS config if true, otherwise delete a RSS config
763 *
764 * This function adds/deletes a RSS config
765 */
766static int ice_vc_handle_rss_cfg(struct ice_vf *vf, u8 *msg, bool add)
767{
768 u32 v_opcode = add ? VIRTCHNL_OP_ADD_RSS_CFG : VIRTCHNL_OP_DEL_RSS_CFG;
769 struct virtchnl_rss_cfg *rss_cfg = (struct virtchnl_rss_cfg *)msg;
770 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
771 struct device *dev = ice_pf_to_dev(vf->pf);
772 struct ice_hw *hw = &vf->pf->hw;
773 struct ice_vsi *vsi;
774
775 if (!test_bit(ICE_FLAG_RSS_ENA, vf->pf->flags)) {
776 dev_dbg(dev, "VF %d attempting to configure RSS, but RSS is not supported by the PF\n",
777 vf->vf_id);
778 v_ret = VIRTCHNL_STATUS_ERR_NOT_SUPPORTED;
779 goto error_param;
780 }
781
782 if (!ice_vf_adv_rss_offload_ena(vf->driver_caps)) {
783 dev_dbg(dev, "VF %d attempting to configure RSS, but Advanced RSS offload is not supported\n",
784 vf->vf_id);
785 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
786 goto error_param;
787 }
788
789 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
790 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
791 goto error_param;
792 }
793
794 if (rss_cfg->proto_hdrs.count > VIRTCHNL_MAX_NUM_PROTO_HDRS ||
795 rss_cfg->rss_algorithm < VIRTCHNL_RSS_ALG_TOEPLITZ_ASYMMETRIC ||
796 rss_cfg->rss_algorithm > VIRTCHNL_RSS_ALG_XOR_SYMMETRIC) {
797 dev_dbg(dev, "VF %d attempting to configure RSS, but RSS configuration is not valid\n",
798 vf->vf_id);
799 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
800 goto error_param;
801 }
802
803 vsi = ice_get_vf_vsi(vf);
804 if (!vsi) {
805 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
806 goto error_param;
807 }
808
809 if (!ice_vc_validate_pattern(vf, &rss_cfg->proto_hdrs)) {
810 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
811 goto error_param;
812 }
813
814 if (rss_cfg->rss_algorithm == VIRTCHNL_RSS_ALG_R_ASYMMETRIC) {
815 struct ice_vsi_ctx *ctx;
816 u8 lut_type, hash_type;
817 int status;
818
819 lut_type = ICE_AQ_VSI_Q_OPT_RSS_LUT_VSI;
820 hash_type = add ? ICE_AQ_VSI_Q_OPT_RSS_HASH_XOR :
821 ICE_AQ_VSI_Q_OPT_RSS_HASH_TPLZ;
822
823 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
824 if (!ctx) {
825 v_ret = VIRTCHNL_STATUS_ERR_NO_MEMORY;
826 goto error_param;
827 }
828
829 ctx->info.q_opt_rss =
830 FIELD_PREP(ICE_AQ_VSI_Q_OPT_RSS_LUT_M, lut_type) |
831 FIELD_PREP(ICE_AQ_VSI_Q_OPT_RSS_HASH_M, hash_type);
832
833 /* Preserve existing queueing option setting */
834 ctx->info.q_opt_rss |= (vsi->info.q_opt_rss &
835 ICE_AQ_VSI_Q_OPT_RSS_GBL_LUT_M);
836 ctx->info.q_opt_tc = vsi->info.q_opt_tc;
837 ctx->info.q_opt_flags = vsi->info.q_opt_rss;
838
839 ctx->info.valid_sections =
840 cpu_to_le16(ICE_AQ_VSI_PROP_Q_OPT_VALID);
841
842 status = ice_update_vsi(hw, vsi->idx, ctx, NULL);
843 if (status) {
844 dev_err(dev, "update VSI for RSS failed, err %d aq_err %s\n",
845 status, ice_aq_str(hw->adminq.sq_last_status));
846 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
847 } else {
848 vsi->info.q_opt_rss = ctx->info.q_opt_rss;
849 }
850
851 kfree(ctx);
852 } else {
853 struct ice_rss_hash_cfg cfg;
854
855 /* Only check for none raw pattern case */
856 if (!ice_vc_validate_pattern(vf, &rss_cfg->proto_hdrs)) {
857 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
858 goto error_param;
859 }
860 cfg.addl_hdrs = ICE_FLOW_SEG_HDR_NONE;
861 cfg.hash_flds = ICE_HASH_INVALID;
862 cfg.hdr_type = ICE_RSS_ANY_HEADERS;
863
864 if (!ice_vc_parse_rss_cfg(hw, rss_cfg, &cfg)) {
865 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
866 goto error_param;
867 }
868
869 if (add) {
870 if (ice_add_rss_cfg(hw, vsi, &cfg)) {
871 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
872 dev_err(dev, "ice_add_rss_cfg failed for vsi = %d, v_ret = %d\n",
873 vsi->vsi_num, v_ret);
874 }
875 } else {
876 int status;
877
878 status = ice_rem_rss_cfg(hw, vsi->idx, &cfg);
879 /* We just ignore -ENOENT, because if two configurations
880 * share the same profile remove one of them actually
881 * removes both, since the profile is deleted.
882 */
883 if (status && status != -ENOENT) {
884 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
885 dev_err(dev, "ice_rem_rss_cfg failed for VF ID:%d, error:%d\n",
886 vf->vf_id, status);
887 }
888 }
889 }
890
891error_param:
892 return ice_vc_send_msg_to_vf(vf, v_opcode, v_ret, NULL, 0);
893}
894
895/**
896 * ice_vc_config_rss_key
897 * @vf: pointer to the VF info
898 * @msg: pointer to the msg buffer
899 *
900 * Configure the VF's RSS key
901 */
902static int ice_vc_config_rss_key(struct ice_vf *vf, u8 *msg)
903{
904 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
905 struct virtchnl_rss_key *vrk =
906 (struct virtchnl_rss_key *)msg;
907 struct ice_vsi *vsi;
908
909 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
910 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
911 goto error_param;
912 }
913
914 if (!ice_vc_isvalid_vsi_id(vf, vrk->vsi_id)) {
915 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
916 goto error_param;
917 }
918
919 if (vrk->key_len != ICE_VSIQF_HKEY_ARRAY_SIZE) {
920 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
921 goto error_param;
922 }
923
924 if (!test_bit(ICE_FLAG_RSS_ENA, vf->pf->flags)) {
925 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
926 goto error_param;
927 }
928
929 vsi = ice_get_vf_vsi(vf);
930 if (!vsi) {
931 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
932 goto error_param;
933 }
934
935 if (ice_set_rss_key(vsi, vrk->key))
936 v_ret = VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR;
937error_param:
938 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_RSS_KEY, v_ret,
939 NULL, 0);
940}
941
942/**
943 * ice_vc_config_rss_lut
944 * @vf: pointer to the VF info
945 * @msg: pointer to the msg buffer
946 *
947 * Configure the VF's RSS LUT
948 */
949static int ice_vc_config_rss_lut(struct ice_vf *vf, u8 *msg)
950{
951 struct virtchnl_rss_lut *vrl = (struct virtchnl_rss_lut *)msg;
952 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
953 struct ice_vsi *vsi;
954
955 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
956 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
957 goto error_param;
958 }
959
960 if (!ice_vc_isvalid_vsi_id(vf, vrl->vsi_id)) {
961 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
962 goto error_param;
963 }
964
965 if (vrl->lut_entries != ICE_LUT_VSI_SIZE) {
966 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
967 goto error_param;
968 }
969
970 if (!test_bit(ICE_FLAG_RSS_ENA, vf->pf->flags)) {
971 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
972 goto error_param;
973 }
974
975 vsi = ice_get_vf_vsi(vf);
976 if (!vsi) {
977 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
978 goto error_param;
979 }
980
981 if (ice_set_rss_lut(vsi, vrl->lut, ICE_LUT_VSI_SIZE))
982 v_ret = VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR;
983error_param:
984 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_RSS_LUT, v_ret,
985 NULL, 0);
986}
987
988/**
989 * ice_vc_config_rss_hfunc
990 * @vf: pointer to the VF info
991 * @msg: pointer to the msg buffer
992 *
993 * Configure the VF's RSS Hash function
994 */
995static int ice_vc_config_rss_hfunc(struct ice_vf *vf, u8 *msg)
996{
997 struct virtchnl_rss_hfunc *vrh = (struct virtchnl_rss_hfunc *)msg;
998 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
999 u8 hfunc = ICE_AQ_VSI_Q_OPT_RSS_HASH_TPLZ;
1000 struct ice_vsi *vsi;
1001
1002 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
1003 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1004 goto error_param;
1005 }
1006
1007 if (!ice_vc_isvalid_vsi_id(vf, vrh->vsi_id)) {
1008 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1009 goto error_param;
1010 }
1011
1012 if (!test_bit(ICE_FLAG_RSS_ENA, vf->pf->flags)) {
1013 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1014 goto error_param;
1015 }
1016
1017 vsi = ice_get_vf_vsi(vf);
1018 if (!vsi) {
1019 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1020 goto error_param;
1021 }
1022
1023 if (vrh->rss_algorithm == VIRTCHNL_RSS_ALG_TOEPLITZ_SYMMETRIC)
1024 hfunc = ICE_AQ_VSI_Q_OPT_RSS_HASH_SYM_TPLZ;
1025
1026 if (ice_set_rss_hfunc(vsi, hfunc))
1027 v_ret = VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR;
1028error_param:
1029 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_RSS_HFUNC, v_ret,
1030 NULL, 0);
1031}
1032
1033/**
1034 * ice_vc_cfg_promiscuous_mode_msg
1035 * @vf: pointer to the VF info
1036 * @msg: pointer to the msg buffer
1037 *
1038 * called from the VF to configure VF VSIs promiscuous mode
1039 */
1040static int ice_vc_cfg_promiscuous_mode_msg(struct ice_vf *vf, u8 *msg)
1041{
1042 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
1043 bool rm_promisc, alluni = false, allmulti = false;
1044 struct virtchnl_promisc_info *info =
1045 (struct virtchnl_promisc_info *)msg;
1046 struct ice_vsi_vlan_ops *vlan_ops;
1047 int mcast_err = 0, ucast_err = 0;
1048 struct ice_pf *pf = vf->pf;
1049 struct ice_vsi *vsi;
1050 u8 mcast_m, ucast_m;
1051 struct device *dev;
1052 int ret = 0;
1053
1054 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
1055 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1056 goto error_param;
1057 }
1058
1059 if (!ice_vc_isvalid_vsi_id(vf, info->vsi_id)) {
1060 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1061 goto error_param;
1062 }
1063
1064 vsi = ice_get_vf_vsi(vf);
1065 if (!vsi) {
1066 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1067 goto error_param;
1068 }
1069
1070 dev = ice_pf_to_dev(pf);
1071 if (!ice_is_vf_trusted(vf)) {
1072 dev_err(dev, "Unprivileged VF %d is attempting to configure promiscuous mode\n",
1073 vf->vf_id);
1074 /* Leave v_ret alone, lie to the VF on purpose. */
1075 goto error_param;
1076 }
1077
1078 if (info->flags & FLAG_VF_UNICAST_PROMISC)
1079 alluni = true;
1080
1081 if (info->flags & FLAG_VF_MULTICAST_PROMISC)
1082 allmulti = true;
1083
1084 rm_promisc = !allmulti && !alluni;
1085
1086 vlan_ops = ice_get_compat_vsi_vlan_ops(vsi);
1087 if (rm_promisc)
1088 ret = vlan_ops->ena_rx_filtering(vsi);
1089 else
1090 ret = vlan_ops->dis_rx_filtering(vsi);
1091 if (ret) {
1092 dev_err(dev, "Failed to configure VLAN pruning in promiscuous mode\n");
1093 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1094 goto error_param;
1095 }
1096
1097 ice_vf_get_promisc_masks(vf, vsi, &ucast_m, &mcast_m);
1098
1099 if (!test_bit(ICE_FLAG_VF_TRUE_PROMISC_ENA, pf->flags)) {
1100 if (alluni) {
1101 /* in this case we're turning on promiscuous mode */
1102 ret = ice_set_dflt_vsi(vsi);
1103 } else {
1104 /* in this case we're turning off promiscuous mode */
1105 if (ice_is_dflt_vsi_in_use(vsi->port_info))
1106 ret = ice_clear_dflt_vsi(vsi);
1107 }
1108
1109 /* in this case we're turning on/off only
1110 * allmulticast
1111 */
1112 if (allmulti)
1113 mcast_err = ice_vf_set_vsi_promisc(vf, vsi, mcast_m);
1114 else
1115 mcast_err = ice_vf_clear_vsi_promisc(vf, vsi, mcast_m);
1116
1117 if (ret) {
1118 dev_err(dev, "Turning on/off promiscuous mode for VF %d failed, error: %d\n",
1119 vf->vf_id, ret);
1120 v_ret = VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR;
1121 goto error_param;
1122 }
1123 } else {
1124 if (alluni)
1125 ucast_err = ice_vf_set_vsi_promisc(vf, vsi, ucast_m);
1126 else
1127 ucast_err = ice_vf_clear_vsi_promisc(vf, vsi, ucast_m);
1128
1129 if (allmulti)
1130 mcast_err = ice_vf_set_vsi_promisc(vf, vsi, mcast_m);
1131 else
1132 mcast_err = ice_vf_clear_vsi_promisc(vf, vsi, mcast_m);
1133
1134 if (ucast_err || mcast_err)
1135 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1136 }
1137
1138 if (!mcast_err) {
1139 if (allmulti &&
1140 !test_and_set_bit(ICE_VF_STATE_MC_PROMISC, vf->vf_states))
1141 dev_info(dev, "VF %u successfully set multicast promiscuous mode\n",
1142 vf->vf_id);
1143 else if (!allmulti &&
1144 test_and_clear_bit(ICE_VF_STATE_MC_PROMISC,
1145 vf->vf_states))
1146 dev_info(dev, "VF %u successfully unset multicast promiscuous mode\n",
1147 vf->vf_id);
1148 } else {
1149 dev_err(dev, "Error while modifying multicast promiscuous mode for VF %u, error: %d\n",
1150 vf->vf_id, mcast_err);
1151 }
1152
1153 if (!ucast_err) {
1154 if (alluni &&
1155 !test_and_set_bit(ICE_VF_STATE_UC_PROMISC, vf->vf_states))
1156 dev_info(dev, "VF %u successfully set unicast promiscuous mode\n",
1157 vf->vf_id);
1158 else if (!alluni &&
1159 test_and_clear_bit(ICE_VF_STATE_UC_PROMISC,
1160 vf->vf_states))
1161 dev_info(dev, "VF %u successfully unset unicast promiscuous mode\n",
1162 vf->vf_id);
1163 } else {
1164 dev_err(dev, "Error while modifying unicast promiscuous mode for VF %u, error: %d\n",
1165 vf->vf_id, ucast_err);
1166 }
1167
1168error_param:
1169 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_PROMISCUOUS_MODE,
1170 v_ret, NULL, 0);
1171}
1172
1173/**
1174 * ice_vc_get_stats_msg
1175 * @vf: pointer to the VF info
1176 * @msg: pointer to the msg buffer
1177 *
1178 * called from the VF to get VSI stats
1179 */
1180static int ice_vc_get_stats_msg(struct ice_vf *vf, u8 *msg)
1181{
1182 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
1183 struct virtchnl_queue_select *vqs =
1184 (struct virtchnl_queue_select *)msg;
1185 struct ice_eth_stats stats = { 0 };
1186 struct ice_vsi *vsi;
1187
1188 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
1189 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1190 goto error_param;
1191 }
1192
1193 if (!ice_vc_isvalid_vsi_id(vf, vqs->vsi_id)) {
1194 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1195 goto error_param;
1196 }
1197
1198 vsi = ice_get_vf_vsi(vf);
1199 if (!vsi) {
1200 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1201 goto error_param;
1202 }
1203
1204 ice_update_eth_stats(vsi);
1205
1206 stats = vsi->eth_stats;
1207
1208error_param:
1209 /* send the response to the VF */
1210 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_GET_STATS, v_ret,
1211 (u8 *)&stats, sizeof(stats));
1212}
1213
1214/**
1215 * ice_vc_validate_vqs_bitmaps - validate Rx/Tx queue bitmaps from VIRTCHNL
1216 * @vqs: virtchnl_queue_select structure containing bitmaps to validate
1217 *
1218 * Return true on successful validation, else false
1219 */
1220static bool ice_vc_validate_vqs_bitmaps(struct virtchnl_queue_select *vqs)
1221{
1222 if ((!vqs->rx_queues && !vqs->tx_queues) ||
1223 vqs->rx_queues >= BIT(ICE_MAX_RSS_QS_PER_VF) ||
1224 vqs->tx_queues >= BIT(ICE_MAX_RSS_QS_PER_VF))
1225 return false;
1226
1227 return true;
1228}
1229
1230/**
1231 * ice_vf_ena_txq_interrupt - enable Tx queue interrupt via QINT_TQCTL
1232 * @vsi: VSI of the VF to configure
1233 * @q_idx: VF queue index used to determine the queue in the PF's space
1234 */
1235static void ice_vf_ena_txq_interrupt(struct ice_vsi *vsi, u32 q_idx)
1236{
1237 struct ice_hw *hw = &vsi->back->hw;
1238 u32 pfq = vsi->txq_map[q_idx];
1239 u32 reg;
1240
1241 reg = rd32(hw, QINT_TQCTL(pfq));
1242
1243 /* MSI-X index 0 in the VF's space is always for the OICR, which means
1244 * this is most likely a poll mode VF driver, so don't enable an
1245 * interrupt that was never configured via VIRTCHNL_OP_CONFIG_IRQ_MAP
1246 */
1247 if (!(reg & QINT_TQCTL_MSIX_INDX_M))
1248 return;
1249
1250 wr32(hw, QINT_TQCTL(pfq), reg | QINT_TQCTL_CAUSE_ENA_M);
1251}
1252
1253/**
1254 * ice_vf_ena_rxq_interrupt - enable Tx queue interrupt via QINT_RQCTL
1255 * @vsi: VSI of the VF to configure
1256 * @q_idx: VF queue index used to determine the queue in the PF's space
1257 */
1258static void ice_vf_ena_rxq_interrupt(struct ice_vsi *vsi, u32 q_idx)
1259{
1260 struct ice_hw *hw = &vsi->back->hw;
1261 u32 pfq = vsi->rxq_map[q_idx];
1262 u32 reg;
1263
1264 reg = rd32(hw, QINT_RQCTL(pfq));
1265
1266 /* MSI-X index 0 in the VF's space is always for the OICR, which means
1267 * this is most likely a poll mode VF driver, so don't enable an
1268 * interrupt that was never configured via VIRTCHNL_OP_CONFIG_IRQ_MAP
1269 */
1270 if (!(reg & QINT_RQCTL_MSIX_INDX_M))
1271 return;
1272
1273 wr32(hw, QINT_RQCTL(pfq), reg | QINT_RQCTL_CAUSE_ENA_M);
1274}
1275
1276/**
1277 * ice_vc_ena_qs_msg
1278 * @vf: pointer to the VF info
1279 * @msg: pointer to the msg buffer
1280 *
1281 * called from the VF to enable all or specific queue(s)
1282 */
1283static int ice_vc_ena_qs_msg(struct ice_vf *vf, u8 *msg)
1284{
1285 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
1286 struct virtchnl_queue_select *vqs =
1287 (struct virtchnl_queue_select *)msg;
1288 struct ice_vsi *vsi;
1289 unsigned long q_map;
1290 u16 vf_q_id;
1291
1292 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
1293 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1294 goto error_param;
1295 }
1296
1297 if (!ice_vc_isvalid_vsi_id(vf, vqs->vsi_id)) {
1298 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1299 goto error_param;
1300 }
1301
1302 if (!ice_vc_validate_vqs_bitmaps(vqs)) {
1303 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1304 goto error_param;
1305 }
1306
1307 vsi = ice_get_vf_vsi(vf);
1308 if (!vsi) {
1309 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1310 goto error_param;
1311 }
1312
1313 /* Enable only Rx rings, Tx rings were enabled by the FW when the
1314 * Tx queue group list was configured and the context bits were
1315 * programmed using ice_vsi_cfg_txqs
1316 */
1317 q_map = vqs->rx_queues;
1318 for_each_set_bit(vf_q_id, &q_map, ICE_MAX_RSS_QS_PER_VF) {
1319 if (!ice_vc_isvalid_q_id(vsi, vf_q_id)) {
1320 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1321 goto error_param;
1322 }
1323
1324 /* Skip queue if enabled */
1325 if (test_bit(vf_q_id, vf->rxq_ena))
1326 continue;
1327
1328 if (ice_vsi_ctrl_one_rx_ring(vsi, true, vf_q_id, true)) {
1329 dev_err(ice_pf_to_dev(vsi->back), "Failed to enable Rx ring %d on VSI %d\n",
1330 vf_q_id, vsi->vsi_num);
1331 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1332 goto error_param;
1333 }
1334
1335 ice_vf_ena_rxq_interrupt(vsi, vf_q_id);
1336 set_bit(vf_q_id, vf->rxq_ena);
1337 }
1338
1339 q_map = vqs->tx_queues;
1340 for_each_set_bit(vf_q_id, &q_map, ICE_MAX_RSS_QS_PER_VF) {
1341 if (!ice_vc_isvalid_q_id(vsi, vf_q_id)) {
1342 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1343 goto error_param;
1344 }
1345
1346 /* Skip queue if enabled */
1347 if (test_bit(vf_q_id, vf->txq_ena))
1348 continue;
1349
1350 ice_vf_ena_txq_interrupt(vsi, vf_q_id);
1351 set_bit(vf_q_id, vf->txq_ena);
1352 }
1353
1354 /* Set flag to indicate that queues are enabled */
1355 if (v_ret == VIRTCHNL_STATUS_SUCCESS)
1356 set_bit(ICE_VF_STATE_QS_ENA, vf->vf_states);
1357
1358error_param:
1359 /* send the response to the VF */
1360 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ENABLE_QUEUES, v_ret,
1361 NULL, 0);
1362}
1363
1364/**
1365 * ice_vf_vsi_dis_single_txq - disable a single Tx queue
1366 * @vf: VF to disable queue for
1367 * @vsi: VSI for the VF
1368 * @q_id: VF relative (0-based) queue ID
1369 *
1370 * Attempt to disable the Tx queue passed in. If the Tx queue was successfully
1371 * disabled then clear q_id bit in the enabled queues bitmap and return
1372 * success. Otherwise return error.
1373 */
1374static int
1375ice_vf_vsi_dis_single_txq(struct ice_vf *vf, struct ice_vsi *vsi, u16 q_id)
1376{
1377 struct ice_txq_meta txq_meta = { 0 };
1378 struct ice_tx_ring *ring;
1379 int err;
1380
1381 if (!test_bit(q_id, vf->txq_ena))
1382 dev_dbg(ice_pf_to_dev(vsi->back), "Queue %u on VSI %u is not enabled, but stopping it anyway\n",
1383 q_id, vsi->vsi_num);
1384
1385 ring = vsi->tx_rings[q_id];
1386 if (!ring)
1387 return -EINVAL;
1388
1389 ice_fill_txq_meta(vsi, ring, &txq_meta);
1390
1391 err = ice_vsi_stop_tx_ring(vsi, ICE_NO_RESET, vf->vf_id, ring, &txq_meta);
1392 if (err) {
1393 dev_err(ice_pf_to_dev(vsi->back), "Failed to stop Tx ring %d on VSI %d\n",
1394 q_id, vsi->vsi_num);
1395 return err;
1396 }
1397
1398 /* Clear enabled queues flag */
1399 clear_bit(q_id, vf->txq_ena);
1400
1401 return 0;
1402}
1403
1404/**
1405 * ice_vc_dis_qs_msg
1406 * @vf: pointer to the VF info
1407 * @msg: pointer to the msg buffer
1408 *
1409 * called from the VF to disable all or specific queue(s)
1410 */
1411static int ice_vc_dis_qs_msg(struct ice_vf *vf, u8 *msg)
1412{
1413 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
1414 struct virtchnl_queue_select *vqs =
1415 (struct virtchnl_queue_select *)msg;
1416 struct ice_vsi *vsi;
1417 unsigned long q_map;
1418 u16 vf_q_id;
1419
1420 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states) &&
1421 !test_bit(ICE_VF_STATE_QS_ENA, vf->vf_states)) {
1422 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1423 goto error_param;
1424 }
1425
1426 if (!ice_vc_isvalid_vsi_id(vf, vqs->vsi_id)) {
1427 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1428 goto error_param;
1429 }
1430
1431 if (!ice_vc_validate_vqs_bitmaps(vqs)) {
1432 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1433 goto error_param;
1434 }
1435
1436 vsi = ice_get_vf_vsi(vf);
1437 if (!vsi) {
1438 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1439 goto error_param;
1440 }
1441
1442 if (vqs->tx_queues) {
1443 q_map = vqs->tx_queues;
1444
1445 for_each_set_bit(vf_q_id, &q_map, ICE_MAX_RSS_QS_PER_VF) {
1446 if (!ice_vc_isvalid_q_id(vsi, vf_q_id)) {
1447 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1448 goto error_param;
1449 }
1450
1451 if (ice_vf_vsi_dis_single_txq(vf, vsi, vf_q_id)) {
1452 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1453 goto error_param;
1454 }
1455 }
1456 }
1457
1458 q_map = vqs->rx_queues;
1459 /* speed up Rx queue disable by batching them if possible */
1460 if (q_map &&
1461 bitmap_equal(&q_map, vf->rxq_ena, ICE_MAX_RSS_QS_PER_VF)) {
1462 if (ice_vsi_stop_all_rx_rings(vsi)) {
1463 dev_err(ice_pf_to_dev(vsi->back), "Failed to stop all Rx rings on VSI %d\n",
1464 vsi->vsi_num);
1465 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1466 goto error_param;
1467 }
1468
1469 bitmap_zero(vf->rxq_ena, ICE_MAX_RSS_QS_PER_VF);
1470 } else if (q_map) {
1471 for_each_set_bit(vf_q_id, &q_map, ICE_MAX_RSS_QS_PER_VF) {
1472 if (!ice_vc_isvalid_q_id(vsi, vf_q_id)) {
1473 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1474 goto error_param;
1475 }
1476
1477 /* Skip queue if not enabled */
1478 if (!test_bit(vf_q_id, vf->rxq_ena))
1479 continue;
1480
1481 if (ice_vsi_ctrl_one_rx_ring(vsi, false, vf_q_id,
1482 true)) {
1483 dev_err(ice_pf_to_dev(vsi->back), "Failed to stop Rx ring %d on VSI %d\n",
1484 vf_q_id, vsi->vsi_num);
1485 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1486 goto error_param;
1487 }
1488
1489 /* Clear enabled queues flag */
1490 clear_bit(vf_q_id, vf->rxq_ena);
1491 }
1492 }
1493
1494 /* Clear enabled queues flag */
1495 if (v_ret == VIRTCHNL_STATUS_SUCCESS && ice_vf_has_no_qs_ena(vf))
1496 clear_bit(ICE_VF_STATE_QS_ENA, vf->vf_states);
1497
1498error_param:
1499 /* send the response to the VF */
1500 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DISABLE_QUEUES, v_ret,
1501 NULL, 0);
1502}
1503
1504/**
1505 * ice_cfg_interrupt
1506 * @vf: pointer to the VF info
1507 * @vsi: the VSI being configured
1508 * @vector_id: vector ID
1509 * @map: vector map for mapping vectors to queues
1510 * @q_vector: structure for interrupt vector
1511 * configure the IRQ to queue map
1512 */
1513static int
1514ice_cfg_interrupt(struct ice_vf *vf, struct ice_vsi *vsi, u16 vector_id,
1515 struct virtchnl_vector_map *map,
1516 struct ice_q_vector *q_vector)
1517{
1518 u16 vsi_q_id, vsi_q_id_idx;
1519 unsigned long qmap;
1520
1521 q_vector->num_ring_rx = 0;
1522 q_vector->num_ring_tx = 0;
1523
1524 qmap = map->rxq_map;
1525 for_each_set_bit(vsi_q_id_idx, &qmap, ICE_MAX_RSS_QS_PER_VF) {
1526 vsi_q_id = vsi_q_id_idx;
1527
1528 if (!ice_vc_isvalid_q_id(vsi, vsi_q_id))
1529 return VIRTCHNL_STATUS_ERR_PARAM;
1530
1531 q_vector->num_ring_rx++;
1532 q_vector->rx.itr_idx = map->rxitr_idx;
1533 vsi->rx_rings[vsi_q_id]->q_vector = q_vector;
1534 ice_cfg_rxq_interrupt(vsi, vsi_q_id, vector_id,
1535 q_vector->rx.itr_idx);
1536 }
1537
1538 qmap = map->txq_map;
1539 for_each_set_bit(vsi_q_id_idx, &qmap, ICE_MAX_RSS_QS_PER_VF) {
1540 vsi_q_id = vsi_q_id_idx;
1541
1542 if (!ice_vc_isvalid_q_id(vsi, vsi_q_id))
1543 return VIRTCHNL_STATUS_ERR_PARAM;
1544
1545 q_vector->num_ring_tx++;
1546 q_vector->tx.itr_idx = map->txitr_idx;
1547 vsi->tx_rings[vsi_q_id]->q_vector = q_vector;
1548 ice_cfg_txq_interrupt(vsi, vsi_q_id, vector_id,
1549 q_vector->tx.itr_idx);
1550 }
1551
1552 return VIRTCHNL_STATUS_SUCCESS;
1553}
1554
1555/**
1556 * ice_vc_cfg_irq_map_msg
1557 * @vf: pointer to the VF info
1558 * @msg: pointer to the msg buffer
1559 *
1560 * called from the VF to configure the IRQ to queue map
1561 */
1562static int ice_vc_cfg_irq_map_msg(struct ice_vf *vf, u8 *msg)
1563{
1564 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
1565 u16 num_q_vectors_mapped, vsi_id, vector_id;
1566 struct virtchnl_irq_map_info *irqmap_info;
1567 struct virtchnl_vector_map *map;
1568 struct ice_vsi *vsi;
1569 int i;
1570
1571 irqmap_info = (struct virtchnl_irq_map_info *)msg;
1572 num_q_vectors_mapped = irqmap_info->num_vectors;
1573
1574 /* Check to make sure number of VF vectors mapped is not greater than
1575 * number of VF vectors originally allocated, and check that
1576 * there is actually at least a single VF queue vector mapped
1577 */
1578 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states) ||
1579 vf->num_msix < num_q_vectors_mapped ||
1580 !num_q_vectors_mapped) {
1581 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1582 goto error_param;
1583 }
1584
1585 vsi = ice_get_vf_vsi(vf);
1586 if (!vsi) {
1587 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1588 goto error_param;
1589 }
1590
1591 for (i = 0; i < num_q_vectors_mapped; i++) {
1592 struct ice_q_vector *q_vector;
1593
1594 map = &irqmap_info->vecmap[i];
1595
1596 vector_id = map->vector_id;
1597 vsi_id = map->vsi_id;
1598 /* vector_id is always 0-based for each VF, and can never be
1599 * larger than or equal to the max allowed interrupts per VF
1600 */
1601 if (!(vector_id < vf->num_msix) ||
1602 !ice_vc_isvalid_vsi_id(vf, vsi_id) ||
1603 (!vector_id && (map->rxq_map || map->txq_map))) {
1604 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1605 goto error_param;
1606 }
1607
1608 /* No need to map VF miscellaneous or rogue vector */
1609 if (!vector_id)
1610 continue;
1611
1612 /* Subtract non queue vector from vector_id passed by VF
1613 * to get actual number of VSI queue vector array index
1614 */
1615 q_vector = vsi->q_vectors[vector_id - ICE_NONQ_VECS_VF];
1616 if (!q_vector) {
1617 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1618 goto error_param;
1619 }
1620
1621 /* lookout for the invalid queue index */
1622 v_ret = (enum virtchnl_status_code)
1623 ice_cfg_interrupt(vf, vsi, vector_id, map, q_vector);
1624 if (v_ret)
1625 goto error_param;
1626 }
1627
1628error_param:
1629 /* send the response to the VF */
1630 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_IRQ_MAP, v_ret,
1631 NULL, 0);
1632}
1633
1634/**
1635 * ice_vc_cfg_qs_msg
1636 * @vf: pointer to the VF info
1637 * @msg: pointer to the msg buffer
1638 *
1639 * called from the VF to configure the Rx/Tx queues
1640 */
1641static int ice_vc_cfg_qs_msg(struct ice_vf *vf, u8 *msg)
1642{
1643 struct virtchnl_vsi_queue_config_info *qci =
1644 (struct virtchnl_vsi_queue_config_info *)msg;
1645 struct virtchnl_queue_pair_info *qpi;
1646 struct ice_pf *pf = vf->pf;
1647 struct ice_lag *lag;
1648 struct ice_vsi *vsi;
1649 u8 act_prt, pri_prt;
1650 int i = -1, q_idx;
1651
1652 lag = pf->lag;
1653 mutex_lock(&pf->lag_mutex);
1654 act_prt = ICE_LAG_INVALID_PORT;
1655 pri_prt = pf->hw.port_info->lport;
1656 if (lag && lag->bonded && lag->primary) {
1657 act_prt = lag->active_port;
1658 if (act_prt != pri_prt && act_prt != ICE_LAG_INVALID_PORT &&
1659 lag->upper_netdev)
1660 ice_lag_move_vf_nodes_cfg(lag, act_prt, pri_prt);
1661 else
1662 act_prt = ICE_LAG_INVALID_PORT;
1663 }
1664
1665 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states))
1666 goto error_param;
1667
1668 if (!ice_vc_isvalid_vsi_id(vf, qci->vsi_id))
1669 goto error_param;
1670
1671 vsi = ice_get_vf_vsi(vf);
1672 if (!vsi)
1673 goto error_param;
1674
1675 if (qci->num_queue_pairs > ICE_MAX_RSS_QS_PER_VF ||
1676 qci->num_queue_pairs > min_t(u16, vsi->alloc_txq, vsi->alloc_rxq)) {
1677 dev_err(ice_pf_to_dev(pf), "VF-%d requesting more than supported number of queues: %d\n",
1678 vf->vf_id, min_t(u16, vsi->alloc_txq, vsi->alloc_rxq));
1679 goto error_param;
1680 }
1681
1682 for (i = 0; i < qci->num_queue_pairs; i++) {
1683 if (!qci->qpair[i].rxq.crc_disable)
1684 continue;
1685
1686 if (!(vf->driver_caps & VIRTCHNL_VF_OFFLOAD_CRC) ||
1687 vf->vlan_strip_ena)
1688 goto error_param;
1689 }
1690
1691 for (i = 0; i < qci->num_queue_pairs; i++) {
1692 qpi = &qci->qpair[i];
1693 if (qpi->txq.vsi_id != qci->vsi_id ||
1694 qpi->rxq.vsi_id != qci->vsi_id ||
1695 qpi->rxq.queue_id != qpi->txq.queue_id ||
1696 qpi->txq.headwb_enabled ||
1697 !ice_vc_isvalid_ring_len(qpi->txq.ring_len) ||
1698 !ice_vc_isvalid_ring_len(qpi->rxq.ring_len) ||
1699 !ice_vc_isvalid_q_id(vsi, qpi->txq.queue_id)) {
1700 goto error_param;
1701 }
1702
1703 q_idx = qpi->rxq.queue_id;
1704
1705 /* make sure selected "q_idx" is in valid range of queues
1706 * for selected "vsi"
1707 */
1708 if (q_idx >= vsi->alloc_txq || q_idx >= vsi->alloc_rxq) {
1709 goto error_param;
1710 }
1711
1712 /* copy Tx queue info from VF into VSI */
1713 if (qpi->txq.ring_len > 0) {
1714 vsi->tx_rings[i]->dma = qpi->txq.dma_ring_addr;
1715 vsi->tx_rings[i]->count = qpi->txq.ring_len;
1716
1717 /* Disable any existing queue first */
1718 if (ice_vf_vsi_dis_single_txq(vf, vsi, q_idx))
1719 goto error_param;
1720
1721 /* Configure a queue with the requested settings */
1722 if (ice_vsi_cfg_single_txq(vsi, vsi->tx_rings, q_idx)) {
1723 dev_warn(ice_pf_to_dev(pf), "VF-%d failed to configure TX queue %d\n",
1724 vf->vf_id, i);
1725 goto error_param;
1726 }
1727 }
1728
1729 /* copy Rx queue info from VF into VSI */
1730 if (qpi->rxq.ring_len > 0) {
1731 u16 max_frame_size = ice_vc_get_max_frame_size(vf);
1732 u32 rxdid;
1733
1734 vsi->rx_rings[i]->dma = qpi->rxq.dma_ring_addr;
1735 vsi->rx_rings[i]->count = qpi->rxq.ring_len;
1736
1737 if (qpi->rxq.crc_disable)
1738 vsi->rx_rings[q_idx]->flags |=
1739 ICE_RX_FLAGS_CRC_STRIP_DIS;
1740 else
1741 vsi->rx_rings[q_idx]->flags &=
1742 ~ICE_RX_FLAGS_CRC_STRIP_DIS;
1743
1744 if (qpi->rxq.databuffer_size != 0 &&
1745 (qpi->rxq.databuffer_size > ((16 * 1024) - 128) ||
1746 qpi->rxq.databuffer_size < 1024))
1747 goto error_param;
1748 vsi->rx_buf_len = qpi->rxq.databuffer_size;
1749 vsi->rx_rings[i]->rx_buf_len = vsi->rx_buf_len;
1750 if (qpi->rxq.max_pkt_size > max_frame_size ||
1751 qpi->rxq.max_pkt_size < 64)
1752 goto error_param;
1753
1754 vsi->max_frame = qpi->rxq.max_pkt_size;
1755 /* add space for the port VLAN since the VF driver is
1756 * not expected to account for it in the MTU
1757 * calculation
1758 */
1759 if (ice_vf_is_port_vlan_ena(vf))
1760 vsi->max_frame += VLAN_HLEN;
1761
1762 if (ice_vsi_cfg_single_rxq(vsi, q_idx)) {
1763 dev_warn(ice_pf_to_dev(pf), "VF-%d failed to configure RX queue %d\n",
1764 vf->vf_id, i);
1765 goto error_param;
1766 }
1767
1768 /* If Rx flex desc is supported, select RXDID for Rx
1769 * queues. Otherwise, use legacy 32byte descriptor
1770 * format. Legacy 16byte descriptor is not supported.
1771 * If this RXDID is selected, return error.
1772 */
1773 if (vf->driver_caps &
1774 VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC) {
1775 rxdid = qpi->rxq.rxdid;
1776 if (!(BIT(rxdid) & pf->supported_rxdids))
1777 goto error_param;
1778 } else {
1779 rxdid = ICE_RXDID_LEGACY_1;
1780 }
1781
1782 ice_write_qrxflxp_cntxt(&vsi->back->hw,
1783 vsi->rxq_map[q_idx],
1784 rxdid, 0x03, false);
1785 }
1786 }
1787
1788 if (lag && lag->bonded && lag->primary &&
1789 act_prt != ICE_LAG_INVALID_PORT)
1790 ice_lag_move_vf_nodes_cfg(lag, pri_prt, act_prt);
1791 mutex_unlock(&pf->lag_mutex);
1792
1793 /* send the response to the VF */
1794 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_VSI_QUEUES,
1795 VIRTCHNL_STATUS_SUCCESS, NULL, 0);
1796error_param:
1797 /* disable whatever we can */
1798 for (; i >= 0; i--) {
1799 if (ice_vsi_ctrl_one_rx_ring(vsi, false, i, true))
1800 dev_err(ice_pf_to_dev(pf), "VF-%d could not disable RX queue %d\n",
1801 vf->vf_id, i);
1802 if (ice_vf_vsi_dis_single_txq(vf, vsi, i))
1803 dev_err(ice_pf_to_dev(pf), "VF-%d could not disable TX queue %d\n",
1804 vf->vf_id, i);
1805 }
1806
1807 if (lag && lag->bonded && lag->primary &&
1808 act_prt != ICE_LAG_INVALID_PORT)
1809 ice_lag_move_vf_nodes_cfg(lag, pri_prt, act_prt);
1810 mutex_unlock(&pf->lag_mutex);
1811
1812 ice_lag_move_new_vf_nodes(vf);
1813
1814 /* send the response to the VF */
1815 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_VSI_QUEUES,
1816 VIRTCHNL_STATUS_ERR_PARAM, NULL, 0);
1817}
1818
1819/**
1820 * ice_can_vf_change_mac
1821 * @vf: pointer to the VF info
1822 *
1823 * Return true if the VF is allowed to change its MAC filters, false otherwise
1824 */
1825static bool ice_can_vf_change_mac(struct ice_vf *vf)
1826{
1827 /* If the VF MAC address has been set administratively (via the
1828 * ndo_set_vf_mac command), then deny permission to the VF to
1829 * add/delete unicast MAC addresses, unless the VF is trusted
1830 */
1831 if (vf->pf_set_mac && !ice_is_vf_trusted(vf))
1832 return false;
1833
1834 return true;
1835}
1836
1837/**
1838 * ice_vc_ether_addr_type - get type of virtchnl_ether_addr
1839 * @vc_ether_addr: used to extract the type
1840 */
1841static u8
1842ice_vc_ether_addr_type(struct virtchnl_ether_addr *vc_ether_addr)
1843{
1844 return (vc_ether_addr->type & VIRTCHNL_ETHER_ADDR_TYPE_MASK);
1845}
1846
1847/**
1848 * ice_is_vc_addr_legacy - check if the MAC address is from an older VF
1849 * @vc_ether_addr: VIRTCHNL structure that contains MAC and type
1850 */
1851static bool
1852ice_is_vc_addr_legacy(struct virtchnl_ether_addr *vc_ether_addr)
1853{
1854 u8 type = ice_vc_ether_addr_type(vc_ether_addr);
1855
1856 return (type == VIRTCHNL_ETHER_ADDR_LEGACY);
1857}
1858
1859/**
1860 * ice_is_vc_addr_primary - check if the MAC address is the VF's primary MAC
1861 * @vc_ether_addr: VIRTCHNL structure that contains MAC and type
1862 *
1863 * This function should only be called when the MAC address in
1864 * virtchnl_ether_addr is a valid unicast MAC
1865 */
1866static bool
1867ice_is_vc_addr_primary(struct virtchnl_ether_addr __maybe_unused *vc_ether_addr)
1868{
1869 u8 type = ice_vc_ether_addr_type(vc_ether_addr);
1870
1871 return (type == VIRTCHNL_ETHER_ADDR_PRIMARY);
1872}
1873
1874/**
1875 * ice_vfhw_mac_add - update the VF's cached hardware MAC if allowed
1876 * @vf: VF to update
1877 * @vc_ether_addr: structure from VIRTCHNL with MAC to add
1878 */
1879static void
1880ice_vfhw_mac_add(struct ice_vf *vf, struct virtchnl_ether_addr *vc_ether_addr)
1881{
1882 u8 *mac_addr = vc_ether_addr->addr;
1883
1884 if (!is_valid_ether_addr(mac_addr))
1885 return;
1886
1887 /* only allow legacy VF drivers to set the device and hardware MAC if it
1888 * is zero and allow new VF drivers to set the hardware MAC if the type
1889 * was correctly specified over VIRTCHNL
1890 */
1891 if ((ice_is_vc_addr_legacy(vc_ether_addr) &&
1892 is_zero_ether_addr(vf->hw_lan_addr)) ||
1893 ice_is_vc_addr_primary(vc_ether_addr)) {
1894 ether_addr_copy(vf->dev_lan_addr, mac_addr);
1895 ether_addr_copy(vf->hw_lan_addr, mac_addr);
1896 }
1897
1898 /* hardware and device MACs are already set, but its possible that the
1899 * VF driver sent the VIRTCHNL_OP_ADD_ETH_ADDR message before the
1900 * VIRTCHNL_OP_DEL_ETH_ADDR when trying to update its MAC, so save it
1901 * away for the legacy VF driver case as it will be updated in the
1902 * delete flow for this case
1903 */
1904 if (ice_is_vc_addr_legacy(vc_ether_addr)) {
1905 ether_addr_copy(vf->legacy_last_added_umac.addr,
1906 mac_addr);
1907 vf->legacy_last_added_umac.time_modified = jiffies;
1908 }
1909}
1910
1911/**
1912 * ice_vc_add_mac_addr - attempt to add the MAC address passed in
1913 * @vf: pointer to the VF info
1914 * @vsi: pointer to the VF's VSI
1915 * @vc_ether_addr: VIRTCHNL MAC address structure used to add MAC
1916 */
1917static int
1918ice_vc_add_mac_addr(struct ice_vf *vf, struct ice_vsi *vsi,
1919 struct virtchnl_ether_addr *vc_ether_addr)
1920{
1921 struct device *dev = ice_pf_to_dev(vf->pf);
1922 u8 *mac_addr = vc_ether_addr->addr;
1923 int ret;
1924
1925 /* device MAC already added */
1926 if (ether_addr_equal(mac_addr, vf->dev_lan_addr))
1927 return 0;
1928
1929 if (is_unicast_ether_addr(mac_addr) && !ice_can_vf_change_mac(vf)) {
1930 dev_err(dev, "VF attempting to override administratively set MAC address, bring down and up the VF interface to resume normal operation\n");
1931 return -EPERM;
1932 }
1933
1934 ret = ice_fltr_add_mac(vsi, mac_addr, ICE_FWD_TO_VSI);
1935 if (ret == -EEXIST) {
1936 dev_dbg(dev, "MAC %pM already exists for VF %d\n", mac_addr,
1937 vf->vf_id);
1938 /* don't return since we might need to update
1939 * the primary MAC in ice_vfhw_mac_add() below
1940 */
1941 } else if (ret) {
1942 dev_err(dev, "Failed to add MAC %pM for VF %d\n, error %d\n",
1943 mac_addr, vf->vf_id, ret);
1944 return ret;
1945 } else {
1946 vf->num_mac++;
1947 }
1948
1949 ice_vfhw_mac_add(vf, vc_ether_addr);
1950
1951 return ret;
1952}
1953
1954/**
1955 * ice_is_legacy_umac_expired - check if last added legacy unicast MAC expired
1956 * @last_added_umac: structure used to check expiration
1957 */
1958static bool ice_is_legacy_umac_expired(struct ice_time_mac *last_added_umac)
1959{
1960#define ICE_LEGACY_VF_MAC_CHANGE_EXPIRE_TIME msecs_to_jiffies(3000)
1961 return time_is_before_jiffies(last_added_umac->time_modified +
1962 ICE_LEGACY_VF_MAC_CHANGE_EXPIRE_TIME);
1963}
1964
1965/**
1966 * ice_update_legacy_cached_mac - update cached hardware MAC for legacy VF
1967 * @vf: VF to update
1968 * @vc_ether_addr: structure from VIRTCHNL with MAC to check
1969 *
1970 * only update cached hardware MAC for legacy VF drivers on delete
1971 * because we cannot guarantee order/type of MAC from the VF driver
1972 */
1973static void
1974ice_update_legacy_cached_mac(struct ice_vf *vf,
1975 struct virtchnl_ether_addr *vc_ether_addr)
1976{
1977 if (!ice_is_vc_addr_legacy(vc_ether_addr) ||
1978 ice_is_legacy_umac_expired(&vf->legacy_last_added_umac))
1979 return;
1980
1981 ether_addr_copy(vf->dev_lan_addr, vf->legacy_last_added_umac.addr);
1982 ether_addr_copy(vf->hw_lan_addr, vf->legacy_last_added_umac.addr);
1983}
1984
1985/**
1986 * ice_vfhw_mac_del - update the VF's cached hardware MAC if allowed
1987 * @vf: VF to update
1988 * @vc_ether_addr: structure from VIRTCHNL with MAC to delete
1989 */
1990static void
1991ice_vfhw_mac_del(struct ice_vf *vf, struct virtchnl_ether_addr *vc_ether_addr)
1992{
1993 u8 *mac_addr = vc_ether_addr->addr;
1994
1995 if (!is_valid_ether_addr(mac_addr) ||
1996 !ether_addr_equal(vf->dev_lan_addr, mac_addr))
1997 return;
1998
1999 /* allow the device MAC to be repopulated in the add flow and don't
2000 * clear the hardware MAC (i.e. hw_lan_addr) here as that is meant
2001 * to be persistent on VM reboot and across driver unload/load, which
2002 * won't work if we clear the hardware MAC here
2003 */
2004 eth_zero_addr(vf->dev_lan_addr);
2005
2006 ice_update_legacy_cached_mac(vf, vc_ether_addr);
2007}
2008
2009/**
2010 * ice_vc_del_mac_addr - attempt to delete the MAC address passed in
2011 * @vf: pointer to the VF info
2012 * @vsi: pointer to the VF's VSI
2013 * @vc_ether_addr: VIRTCHNL MAC address structure used to delete MAC
2014 */
2015static int
2016ice_vc_del_mac_addr(struct ice_vf *vf, struct ice_vsi *vsi,
2017 struct virtchnl_ether_addr *vc_ether_addr)
2018{
2019 struct device *dev = ice_pf_to_dev(vf->pf);
2020 u8 *mac_addr = vc_ether_addr->addr;
2021 int status;
2022
2023 if (!ice_can_vf_change_mac(vf) &&
2024 ether_addr_equal(vf->dev_lan_addr, mac_addr))
2025 return 0;
2026
2027 status = ice_fltr_remove_mac(vsi, mac_addr, ICE_FWD_TO_VSI);
2028 if (status == -ENOENT) {
2029 dev_err(dev, "MAC %pM does not exist for VF %d\n", mac_addr,
2030 vf->vf_id);
2031 return -ENOENT;
2032 } else if (status) {
2033 dev_err(dev, "Failed to delete MAC %pM for VF %d, error %d\n",
2034 mac_addr, vf->vf_id, status);
2035 return -EIO;
2036 }
2037
2038 ice_vfhw_mac_del(vf, vc_ether_addr);
2039
2040 vf->num_mac--;
2041
2042 return 0;
2043}
2044
2045/**
2046 * ice_vc_handle_mac_addr_msg
2047 * @vf: pointer to the VF info
2048 * @msg: pointer to the msg buffer
2049 * @set: true if MAC filters are being set, false otherwise
2050 *
2051 * add guest MAC address filter
2052 */
2053static int
2054ice_vc_handle_mac_addr_msg(struct ice_vf *vf, u8 *msg, bool set)
2055{
2056 int (*ice_vc_cfg_mac)
2057 (struct ice_vf *vf, struct ice_vsi *vsi,
2058 struct virtchnl_ether_addr *virtchnl_ether_addr);
2059 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
2060 struct virtchnl_ether_addr_list *al =
2061 (struct virtchnl_ether_addr_list *)msg;
2062 struct ice_pf *pf = vf->pf;
2063 enum virtchnl_ops vc_op;
2064 struct ice_vsi *vsi;
2065 int i;
2066
2067 if (set) {
2068 vc_op = VIRTCHNL_OP_ADD_ETH_ADDR;
2069 ice_vc_cfg_mac = ice_vc_add_mac_addr;
2070 } else {
2071 vc_op = VIRTCHNL_OP_DEL_ETH_ADDR;
2072 ice_vc_cfg_mac = ice_vc_del_mac_addr;
2073 }
2074
2075 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states) ||
2076 !ice_vc_isvalid_vsi_id(vf, al->vsi_id)) {
2077 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2078 goto handle_mac_exit;
2079 }
2080
2081 /* If this VF is not privileged, then we can't add more than a
2082 * limited number of addresses. Check to make sure that the
2083 * additions do not push us over the limit.
2084 */
2085 if (set && !ice_is_vf_trusted(vf) &&
2086 (vf->num_mac + al->num_elements) > ICE_MAX_MACADDR_PER_VF) {
2087 dev_err(ice_pf_to_dev(pf), "Can't add more MAC addresses, because VF-%d is not trusted, switch the VF to trusted mode in order to add more functionalities\n",
2088 vf->vf_id);
2089 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2090 goto handle_mac_exit;
2091 }
2092
2093 vsi = ice_get_vf_vsi(vf);
2094 if (!vsi) {
2095 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2096 goto handle_mac_exit;
2097 }
2098
2099 for (i = 0; i < al->num_elements; i++) {
2100 u8 *mac_addr = al->list[i].addr;
2101 int result;
2102
2103 if (is_broadcast_ether_addr(mac_addr) ||
2104 is_zero_ether_addr(mac_addr))
2105 continue;
2106
2107 result = ice_vc_cfg_mac(vf, vsi, &al->list[i]);
2108 if (result == -EEXIST || result == -ENOENT) {
2109 continue;
2110 } else if (result) {
2111 v_ret = VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR;
2112 goto handle_mac_exit;
2113 }
2114 }
2115
2116handle_mac_exit:
2117 /* send the response to the VF */
2118 return ice_vc_send_msg_to_vf(vf, vc_op, v_ret, NULL, 0);
2119}
2120
2121/**
2122 * ice_vc_add_mac_addr_msg
2123 * @vf: pointer to the VF info
2124 * @msg: pointer to the msg buffer
2125 *
2126 * add guest MAC address filter
2127 */
2128static int ice_vc_add_mac_addr_msg(struct ice_vf *vf, u8 *msg)
2129{
2130 return ice_vc_handle_mac_addr_msg(vf, msg, true);
2131}
2132
2133/**
2134 * ice_vc_del_mac_addr_msg
2135 * @vf: pointer to the VF info
2136 * @msg: pointer to the msg buffer
2137 *
2138 * remove guest MAC address filter
2139 */
2140static int ice_vc_del_mac_addr_msg(struct ice_vf *vf, u8 *msg)
2141{
2142 return ice_vc_handle_mac_addr_msg(vf, msg, false);
2143}
2144
2145/**
2146 * ice_vc_request_qs_msg
2147 * @vf: pointer to the VF info
2148 * @msg: pointer to the msg buffer
2149 *
2150 * VFs get a default number of queues but can use this message to request a
2151 * different number. If the request is successful, PF will reset the VF and
2152 * return 0. If unsuccessful, PF will send message informing VF of number of
2153 * available queue pairs via virtchnl message response to VF.
2154 */
2155static int ice_vc_request_qs_msg(struct ice_vf *vf, u8 *msg)
2156{
2157 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
2158 struct virtchnl_vf_res_request *vfres =
2159 (struct virtchnl_vf_res_request *)msg;
2160 u16 req_queues = vfres->num_queue_pairs;
2161 struct ice_pf *pf = vf->pf;
2162 u16 max_allowed_vf_queues;
2163 u16 tx_rx_queue_left;
2164 struct device *dev;
2165 u16 cur_queues;
2166
2167 dev = ice_pf_to_dev(pf);
2168 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
2169 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2170 goto error_param;
2171 }
2172
2173 cur_queues = vf->num_vf_qs;
2174 tx_rx_queue_left = min_t(u16, ice_get_avail_txq_count(pf),
2175 ice_get_avail_rxq_count(pf));
2176 max_allowed_vf_queues = tx_rx_queue_left + cur_queues;
2177 if (!req_queues) {
2178 dev_err(dev, "VF %d tried to request 0 queues. Ignoring.\n",
2179 vf->vf_id);
2180 } else if (req_queues > ICE_MAX_RSS_QS_PER_VF) {
2181 dev_err(dev, "VF %d tried to request more than %d queues.\n",
2182 vf->vf_id, ICE_MAX_RSS_QS_PER_VF);
2183 vfres->num_queue_pairs = ICE_MAX_RSS_QS_PER_VF;
2184 } else if (req_queues > cur_queues &&
2185 req_queues - cur_queues > tx_rx_queue_left) {
2186 dev_warn(dev, "VF %d requested %u more queues, but only %u left.\n",
2187 vf->vf_id, req_queues - cur_queues, tx_rx_queue_left);
2188 vfres->num_queue_pairs = min_t(u16, max_allowed_vf_queues,
2189 ICE_MAX_RSS_QS_PER_VF);
2190 } else {
2191 /* request is successful, then reset VF */
2192 vf->num_req_qs = req_queues;
2193 ice_reset_vf(vf, ICE_VF_RESET_NOTIFY);
2194 dev_info(dev, "VF %d granted request of %u queues.\n",
2195 vf->vf_id, req_queues);
2196 return 0;
2197 }
2198
2199error_param:
2200 /* send the response to the VF */
2201 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_REQUEST_QUEUES,
2202 v_ret, (u8 *)vfres, sizeof(*vfres));
2203}
2204
2205/**
2206 * ice_vf_vlan_offload_ena - determine if capabilities support VLAN offloads
2207 * @caps: VF driver negotiated capabilities
2208 *
2209 * Return true if VIRTCHNL_VF_OFFLOAD_VLAN capability is set, else return false
2210 */
2211static bool ice_vf_vlan_offload_ena(u32 caps)
2212{
2213 return !!(caps & VIRTCHNL_VF_OFFLOAD_VLAN);
2214}
2215
2216/**
2217 * ice_is_vlan_promisc_allowed - check if VLAN promiscuous config is allowed
2218 * @vf: VF used to determine if VLAN promiscuous config is allowed
2219 */
2220static bool ice_is_vlan_promisc_allowed(struct ice_vf *vf)
2221{
2222 if ((test_bit(ICE_VF_STATE_UC_PROMISC, vf->vf_states) ||
2223 test_bit(ICE_VF_STATE_MC_PROMISC, vf->vf_states)) &&
2224 test_bit(ICE_FLAG_VF_TRUE_PROMISC_ENA, vf->pf->flags))
2225 return true;
2226
2227 return false;
2228}
2229
2230/**
2231 * ice_vf_ena_vlan_promisc - Enable Tx/Rx VLAN promiscuous for the VLAN
2232 * @vsi: VF's VSI used to enable VLAN promiscuous mode
2233 * @vlan: VLAN used to enable VLAN promiscuous
2234 *
2235 * This function should only be called if VLAN promiscuous mode is allowed,
2236 * which can be determined via ice_is_vlan_promisc_allowed().
2237 */
2238static int ice_vf_ena_vlan_promisc(struct ice_vsi *vsi, struct ice_vlan *vlan)
2239{
2240 u8 promisc_m = ICE_PROMISC_VLAN_TX | ICE_PROMISC_VLAN_RX;
2241 int status;
2242
2243 status = ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx, promisc_m,
2244 vlan->vid);
2245 if (status && status != -EEXIST)
2246 return status;
2247
2248 return 0;
2249}
2250
2251/**
2252 * ice_vf_dis_vlan_promisc - Disable Tx/Rx VLAN promiscuous for the VLAN
2253 * @vsi: VF's VSI used to disable VLAN promiscuous mode for
2254 * @vlan: VLAN used to disable VLAN promiscuous
2255 *
2256 * This function should only be called if VLAN promiscuous mode is allowed,
2257 * which can be determined via ice_is_vlan_promisc_allowed().
2258 */
2259static int ice_vf_dis_vlan_promisc(struct ice_vsi *vsi, struct ice_vlan *vlan)
2260{
2261 u8 promisc_m = ICE_PROMISC_VLAN_TX | ICE_PROMISC_VLAN_RX;
2262 int status;
2263
2264 status = ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx, promisc_m,
2265 vlan->vid);
2266 if (status && status != -ENOENT)
2267 return status;
2268
2269 return 0;
2270}
2271
2272/**
2273 * ice_vf_has_max_vlans - check if VF already has the max allowed VLAN filters
2274 * @vf: VF to check against
2275 * @vsi: VF's VSI
2276 *
2277 * If the VF is trusted then the VF is allowed to add as many VLANs as it
2278 * wants to, so return false.
2279 *
2280 * When the VF is untrusted compare the number of non-zero VLANs + 1 to the max
2281 * allowed VLANs for an untrusted VF. Return the result of this comparison.
2282 */
2283static bool ice_vf_has_max_vlans(struct ice_vf *vf, struct ice_vsi *vsi)
2284{
2285 if (ice_is_vf_trusted(vf))
2286 return false;
2287
2288#define ICE_VF_ADDED_VLAN_ZERO_FLTRS 1
2289 return ((ice_vsi_num_non_zero_vlans(vsi) +
2290 ICE_VF_ADDED_VLAN_ZERO_FLTRS) >= ICE_MAX_VLAN_PER_VF);
2291}
2292
2293/**
2294 * ice_vc_process_vlan_msg
2295 * @vf: pointer to the VF info
2296 * @msg: pointer to the msg buffer
2297 * @add_v: Add VLAN if true, otherwise delete VLAN
2298 *
2299 * Process virtchnl op to add or remove programmed guest VLAN ID
2300 */
2301static int ice_vc_process_vlan_msg(struct ice_vf *vf, u8 *msg, bool add_v)
2302{
2303 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
2304 struct virtchnl_vlan_filter_list *vfl =
2305 (struct virtchnl_vlan_filter_list *)msg;
2306 struct ice_pf *pf = vf->pf;
2307 bool vlan_promisc = false;
2308 struct ice_vsi *vsi;
2309 struct device *dev;
2310 int status = 0;
2311 int i;
2312
2313 dev = ice_pf_to_dev(pf);
2314 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
2315 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2316 goto error_param;
2317 }
2318
2319 if (!ice_vf_vlan_offload_ena(vf->driver_caps)) {
2320 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2321 goto error_param;
2322 }
2323
2324 if (!ice_vc_isvalid_vsi_id(vf, vfl->vsi_id)) {
2325 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2326 goto error_param;
2327 }
2328
2329 for (i = 0; i < vfl->num_elements; i++) {
2330 if (vfl->vlan_id[i] >= VLAN_N_VID) {
2331 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2332 dev_err(dev, "invalid VF VLAN id %d\n",
2333 vfl->vlan_id[i]);
2334 goto error_param;
2335 }
2336 }
2337
2338 vsi = ice_get_vf_vsi(vf);
2339 if (!vsi) {
2340 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2341 goto error_param;
2342 }
2343
2344 if (add_v && ice_vf_has_max_vlans(vf, vsi)) {
2345 dev_info(dev, "VF-%d is not trusted, switch the VF to trusted mode, in order to add more VLAN addresses\n",
2346 vf->vf_id);
2347 /* There is no need to let VF know about being not trusted,
2348 * so we can just return success message here
2349 */
2350 goto error_param;
2351 }
2352
2353 /* in DVM a VF can add/delete inner VLAN filters when
2354 * VIRTCHNL_VF_OFFLOAD_VLAN is negotiated, so only reject in SVM
2355 */
2356 if (ice_vf_is_port_vlan_ena(vf) && !ice_is_dvm_ena(&pf->hw)) {
2357 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2358 goto error_param;
2359 }
2360
2361 /* in DVM VLAN promiscuous is based on the outer VLAN, which would be
2362 * the port VLAN if VIRTCHNL_VF_OFFLOAD_VLAN was negotiated, so only
2363 * allow vlan_promisc = true in SVM and if no port VLAN is configured
2364 */
2365 vlan_promisc = ice_is_vlan_promisc_allowed(vf) &&
2366 !ice_is_dvm_ena(&pf->hw) &&
2367 !ice_vf_is_port_vlan_ena(vf);
2368
2369 if (add_v) {
2370 for (i = 0; i < vfl->num_elements; i++) {
2371 u16 vid = vfl->vlan_id[i];
2372 struct ice_vlan vlan;
2373
2374 if (ice_vf_has_max_vlans(vf, vsi)) {
2375 dev_info(dev, "VF-%d is not trusted, switch the VF to trusted mode, in order to add more VLAN addresses\n",
2376 vf->vf_id);
2377 /* There is no need to let VF know about being
2378 * not trusted, so we can just return success
2379 * message here as well.
2380 */
2381 goto error_param;
2382 }
2383
2384 /* we add VLAN 0 by default for each VF so we can enable
2385 * Tx VLAN anti-spoof without triggering MDD events so
2386 * we don't need to add it again here
2387 */
2388 if (!vid)
2389 continue;
2390
2391 vlan = ICE_VLAN(ETH_P_8021Q, vid, 0);
2392 status = vsi->inner_vlan_ops.add_vlan(vsi, &vlan);
2393 if (status) {
2394 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2395 goto error_param;
2396 }
2397
2398 /* Enable VLAN filtering on first non-zero VLAN */
2399 if (!vlan_promisc && vid && !ice_is_dvm_ena(&pf->hw)) {
2400 if (vf->spoofchk) {
2401 status = vsi->inner_vlan_ops.ena_tx_filtering(vsi);
2402 if (status) {
2403 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2404 dev_err(dev, "Enable VLAN anti-spoofing on VLAN ID: %d failed error-%d\n",
2405 vid, status);
2406 goto error_param;
2407 }
2408 }
2409 if (vsi->inner_vlan_ops.ena_rx_filtering(vsi)) {
2410 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2411 dev_err(dev, "Enable VLAN pruning on VLAN ID: %d failed error-%d\n",
2412 vid, status);
2413 goto error_param;
2414 }
2415 } else if (vlan_promisc) {
2416 status = ice_vf_ena_vlan_promisc(vsi, &vlan);
2417 if (status) {
2418 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2419 dev_err(dev, "Enable Unicast/multicast promiscuous mode on VLAN ID:%d failed error-%d\n",
2420 vid, status);
2421 }
2422 }
2423 }
2424 } else {
2425 /* In case of non_trusted VF, number of VLAN elements passed
2426 * to PF for removal might be greater than number of VLANs
2427 * filter programmed for that VF - So, use actual number of
2428 * VLANS added earlier with add VLAN opcode. In order to avoid
2429 * removing VLAN that doesn't exist, which result to sending
2430 * erroneous failed message back to the VF
2431 */
2432 int num_vf_vlan;
2433
2434 num_vf_vlan = vsi->num_vlan;
2435 for (i = 0; i < vfl->num_elements && i < num_vf_vlan; i++) {
2436 u16 vid = vfl->vlan_id[i];
2437 struct ice_vlan vlan;
2438
2439 /* we add VLAN 0 by default for each VF so we can enable
2440 * Tx VLAN anti-spoof without triggering MDD events so
2441 * we don't want a VIRTCHNL request to remove it
2442 */
2443 if (!vid)
2444 continue;
2445
2446 vlan = ICE_VLAN(ETH_P_8021Q, vid, 0);
2447 status = vsi->inner_vlan_ops.del_vlan(vsi, &vlan);
2448 if (status) {
2449 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2450 goto error_param;
2451 }
2452
2453 /* Disable VLAN filtering when only VLAN 0 is left */
2454 if (!ice_vsi_has_non_zero_vlans(vsi)) {
2455 vsi->inner_vlan_ops.dis_tx_filtering(vsi);
2456 vsi->inner_vlan_ops.dis_rx_filtering(vsi);
2457 }
2458
2459 if (vlan_promisc)
2460 ice_vf_dis_vlan_promisc(vsi, &vlan);
2461 }
2462 }
2463
2464error_param:
2465 /* send the response to the VF */
2466 if (add_v)
2467 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ADD_VLAN, v_ret,
2468 NULL, 0);
2469 else
2470 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DEL_VLAN, v_ret,
2471 NULL, 0);
2472}
2473
2474/**
2475 * ice_vc_add_vlan_msg
2476 * @vf: pointer to the VF info
2477 * @msg: pointer to the msg buffer
2478 *
2479 * Add and program guest VLAN ID
2480 */
2481static int ice_vc_add_vlan_msg(struct ice_vf *vf, u8 *msg)
2482{
2483 return ice_vc_process_vlan_msg(vf, msg, true);
2484}
2485
2486/**
2487 * ice_vc_remove_vlan_msg
2488 * @vf: pointer to the VF info
2489 * @msg: pointer to the msg buffer
2490 *
2491 * remove programmed guest VLAN ID
2492 */
2493static int ice_vc_remove_vlan_msg(struct ice_vf *vf, u8 *msg)
2494{
2495 return ice_vc_process_vlan_msg(vf, msg, false);
2496}
2497
2498/**
2499 * ice_vsi_is_rxq_crc_strip_dis - check if Rx queue CRC strip is disabled or not
2500 * @vsi: pointer to the VF VSI info
2501 */
2502static bool ice_vsi_is_rxq_crc_strip_dis(struct ice_vsi *vsi)
2503{
2504 unsigned int i;
2505
2506 ice_for_each_alloc_rxq(vsi, i)
2507 if (vsi->rx_rings[i]->flags & ICE_RX_FLAGS_CRC_STRIP_DIS)
2508 return true;
2509
2510 return false;
2511}
2512
2513/**
2514 * ice_vc_ena_vlan_stripping
2515 * @vf: pointer to the VF info
2516 *
2517 * Enable VLAN header stripping for a given VF
2518 */
2519static int ice_vc_ena_vlan_stripping(struct ice_vf *vf)
2520{
2521 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
2522 struct ice_vsi *vsi;
2523
2524 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
2525 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2526 goto error_param;
2527 }
2528
2529 if (!ice_vf_vlan_offload_ena(vf->driver_caps)) {
2530 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2531 goto error_param;
2532 }
2533
2534 vsi = ice_get_vf_vsi(vf);
2535 if (!vsi) {
2536 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2537 goto error_param;
2538 }
2539
2540 if (vsi->inner_vlan_ops.ena_stripping(vsi, ETH_P_8021Q))
2541 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2542 else
2543 vf->vlan_strip_ena |= ICE_INNER_VLAN_STRIP_ENA;
2544
2545error_param:
2546 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ENABLE_VLAN_STRIPPING,
2547 v_ret, NULL, 0);
2548}
2549
2550/**
2551 * ice_vc_dis_vlan_stripping
2552 * @vf: pointer to the VF info
2553 *
2554 * Disable VLAN header stripping for a given VF
2555 */
2556static int ice_vc_dis_vlan_stripping(struct ice_vf *vf)
2557{
2558 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
2559 struct ice_vsi *vsi;
2560
2561 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
2562 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2563 goto error_param;
2564 }
2565
2566 if (!ice_vf_vlan_offload_ena(vf->driver_caps)) {
2567 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2568 goto error_param;
2569 }
2570
2571 vsi = ice_get_vf_vsi(vf);
2572 if (!vsi) {
2573 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2574 goto error_param;
2575 }
2576
2577 if (vsi->inner_vlan_ops.dis_stripping(vsi))
2578 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2579 else
2580 vf->vlan_strip_ena &= ~ICE_INNER_VLAN_STRIP_ENA;
2581
2582error_param:
2583 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DISABLE_VLAN_STRIPPING,
2584 v_ret, NULL, 0);
2585}
2586
2587/**
2588 * ice_vc_get_rss_hena - return the RSS HENA bits allowed by the hardware
2589 * @vf: pointer to the VF info
2590 */
2591static int ice_vc_get_rss_hena(struct ice_vf *vf)
2592{
2593 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
2594 struct virtchnl_rss_hena *vrh = NULL;
2595 int len = 0, ret;
2596
2597 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
2598 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2599 goto err;
2600 }
2601
2602 if (!test_bit(ICE_FLAG_RSS_ENA, vf->pf->flags)) {
2603 dev_err(ice_pf_to_dev(vf->pf), "RSS not supported by PF\n");
2604 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2605 goto err;
2606 }
2607
2608 len = sizeof(struct virtchnl_rss_hena);
2609 vrh = kzalloc(len, GFP_KERNEL);
2610 if (!vrh) {
2611 v_ret = VIRTCHNL_STATUS_ERR_NO_MEMORY;
2612 len = 0;
2613 goto err;
2614 }
2615
2616 vrh->hena = ICE_DEFAULT_RSS_HENA;
2617err:
2618 /* send the response back to the VF */
2619 ret = ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_GET_RSS_HENA_CAPS, v_ret,
2620 (u8 *)vrh, len);
2621 kfree(vrh);
2622 return ret;
2623}
2624
2625/**
2626 * ice_vc_set_rss_hena - set RSS HENA bits for the VF
2627 * @vf: pointer to the VF info
2628 * @msg: pointer to the msg buffer
2629 */
2630static int ice_vc_set_rss_hena(struct ice_vf *vf, u8 *msg)
2631{
2632 struct virtchnl_rss_hena *vrh = (struct virtchnl_rss_hena *)msg;
2633 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
2634 struct ice_pf *pf = vf->pf;
2635 struct ice_vsi *vsi;
2636 struct device *dev;
2637 int status;
2638
2639 dev = ice_pf_to_dev(pf);
2640
2641 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
2642 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2643 goto err;
2644 }
2645
2646 if (!test_bit(ICE_FLAG_RSS_ENA, pf->flags)) {
2647 dev_err(dev, "RSS not supported by PF\n");
2648 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2649 goto err;
2650 }
2651
2652 vsi = ice_get_vf_vsi(vf);
2653 if (!vsi) {
2654 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2655 goto err;
2656 }
2657
2658 /* clear all previously programmed RSS configuration to allow VF drivers
2659 * the ability to customize the RSS configuration and/or completely
2660 * disable RSS
2661 */
2662 status = ice_rem_vsi_rss_cfg(&pf->hw, vsi->idx);
2663 if (status && !vrh->hena) {
2664 /* only report failure to clear the current RSS configuration if
2665 * that was clearly the VF's intention (i.e. vrh->hena = 0)
2666 */
2667 v_ret = ice_err_to_virt_err(status);
2668 goto err;
2669 } else if (status) {
2670 /* allow the VF to update the RSS configuration even on failure
2671 * to clear the current RSS confguration in an attempt to keep
2672 * RSS in a working state
2673 */
2674 dev_warn(dev, "Failed to clear the RSS configuration for VF %u\n",
2675 vf->vf_id);
2676 }
2677
2678 if (vrh->hena) {
2679 status = ice_add_avf_rss_cfg(&pf->hw, vsi, vrh->hena);
2680 v_ret = ice_err_to_virt_err(status);
2681 }
2682
2683 /* send the response to the VF */
2684err:
2685 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_SET_RSS_HENA, v_ret,
2686 NULL, 0);
2687}
2688
2689/**
2690 * ice_vc_query_rxdid - query RXDID supported by DDP package
2691 * @vf: pointer to VF info
2692 *
2693 * Called from VF to query a bitmap of supported flexible
2694 * descriptor RXDIDs of a DDP package.
2695 */
2696static int ice_vc_query_rxdid(struct ice_vf *vf)
2697{
2698 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
2699 struct virtchnl_supported_rxdids *rxdid = NULL;
2700 struct ice_hw *hw = &vf->pf->hw;
2701 struct ice_pf *pf = vf->pf;
2702 int len = 0;
2703 int ret, i;
2704 u32 regval;
2705
2706 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
2707 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2708 goto err;
2709 }
2710
2711 if (!(vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC)) {
2712 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2713 goto err;
2714 }
2715
2716 len = sizeof(struct virtchnl_supported_rxdids);
2717 rxdid = kzalloc(len, GFP_KERNEL);
2718 if (!rxdid) {
2719 v_ret = VIRTCHNL_STATUS_ERR_NO_MEMORY;
2720 len = 0;
2721 goto err;
2722 }
2723
2724 /* RXDIDs supported by DDP package can be read from the register
2725 * to get the supported RXDID bitmap. But the legacy 32byte RXDID
2726 * is not listed in DDP package, add it in the bitmap manually.
2727 * Legacy 16byte descriptor is not supported.
2728 */
2729 rxdid->supported_rxdids |= BIT(ICE_RXDID_LEGACY_1);
2730
2731 for (i = ICE_RXDID_FLEX_NIC; i < ICE_FLEX_DESC_RXDID_MAX_NUM; i++) {
2732 regval = rd32(hw, GLFLXP_RXDID_FLAGS(i, 0));
2733 if ((regval >> GLFLXP_RXDID_FLAGS_FLEXIFLAG_4N_S)
2734 & GLFLXP_RXDID_FLAGS_FLEXIFLAG_4N_M)
2735 rxdid->supported_rxdids |= BIT(i);
2736 }
2737
2738 pf->supported_rxdids = rxdid->supported_rxdids;
2739
2740err:
2741 ret = ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_GET_SUPPORTED_RXDIDS,
2742 v_ret, (u8 *)rxdid, len);
2743 kfree(rxdid);
2744 return ret;
2745}
2746
2747/**
2748 * ice_vf_init_vlan_stripping - enable/disable VLAN stripping on initialization
2749 * @vf: VF to enable/disable VLAN stripping for on initialization
2750 *
2751 * Set the default for VLAN stripping based on whether a port VLAN is configured
2752 * and the current VLAN mode of the device.
2753 */
2754static int ice_vf_init_vlan_stripping(struct ice_vf *vf)
2755{
2756 struct ice_vsi *vsi = ice_get_vf_vsi(vf);
2757
2758 vf->vlan_strip_ena = 0;
2759
2760 if (!vsi)
2761 return -EINVAL;
2762
2763 /* don't modify stripping if port VLAN is configured in SVM since the
2764 * port VLAN is based on the inner/single VLAN in SVM
2765 */
2766 if (ice_vf_is_port_vlan_ena(vf) && !ice_is_dvm_ena(&vsi->back->hw))
2767 return 0;
2768
2769 if (ice_vf_vlan_offload_ena(vf->driver_caps)) {
2770 int err;
2771
2772 err = vsi->inner_vlan_ops.ena_stripping(vsi, ETH_P_8021Q);
2773 if (!err)
2774 vf->vlan_strip_ena |= ICE_INNER_VLAN_STRIP_ENA;
2775 return err;
2776 }
2777
2778 return vsi->inner_vlan_ops.dis_stripping(vsi);
2779}
2780
2781static u16 ice_vc_get_max_vlan_fltrs(struct ice_vf *vf)
2782{
2783 if (vf->trusted)
2784 return VLAN_N_VID;
2785 else
2786 return ICE_MAX_VLAN_PER_VF;
2787}
2788
2789/**
2790 * ice_vf_outer_vlan_not_allowed - check if outer VLAN can be used
2791 * @vf: VF that being checked for
2792 *
2793 * When the device is in double VLAN mode, check whether or not the outer VLAN
2794 * is allowed.
2795 */
2796static bool ice_vf_outer_vlan_not_allowed(struct ice_vf *vf)
2797{
2798 if (ice_vf_is_port_vlan_ena(vf))
2799 return true;
2800
2801 return false;
2802}
2803
2804/**
2805 * ice_vc_set_dvm_caps - set VLAN capabilities when the device is in DVM
2806 * @vf: VF that capabilities are being set for
2807 * @caps: VLAN capabilities to populate
2808 *
2809 * Determine VLAN capabilities support based on whether a port VLAN is
2810 * configured. If a port VLAN is configured then the VF should use the inner
2811 * filtering/offload capabilities since the port VLAN is using the outer VLAN
2812 * capabilies.
2813 */
2814static void
2815ice_vc_set_dvm_caps(struct ice_vf *vf, struct virtchnl_vlan_caps *caps)
2816{
2817 struct virtchnl_vlan_supported_caps *supported_caps;
2818
2819 if (ice_vf_outer_vlan_not_allowed(vf)) {
2820 /* until support for inner VLAN filtering is added when a port
2821 * VLAN is configured, only support software offloaded inner
2822 * VLANs when a port VLAN is confgured in DVM
2823 */
2824 supported_caps = &caps->filtering.filtering_support;
2825 supported_caps->inner = VIRTCHNL_VLAN_UNSUPPORTED;
2826
2827 supported_caps = &caps->offloads.stripping_support;
2828 supported_caps->inner = VIRTCHNL_VLAN_ETHERTYPE_8100 |
2829 VIRTCHNL_VLAN_TOGGLE |
2830 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1;
2831 supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED;
2832
2833 supported_caps = &caps->offloads.insertion_support;
2834 supported_caps->inner = VIRTCHNL_VLAN_ETHERTYPE_8100 |
2835 VIRTCHNL_VLAN_TOGGLE |
2836 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1;
2837 supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED;
2838
2839 caps->offloads.ethertype_init = VIRTCHNL_VLAN_ETHERTYPE_8100;
2840 caps->offloads.ethertype_match =
2841 VIRTCHNL_ETHERTYPE_STRIPPING_MATCHES_INSERTION;
2842 } else {
2843 supported_caps = &caps->filtering.filtering_support;
2844 supported_caps->inner = VIRTCHNL_VLAN_UNSUPPORTED;
2845 supported_caps->outer = VIRTCHNL_VLAN_ETHERTYPE_8100 |
2846 VIRTCHNL_VLAN_ETHERTYPE_88A8 |
2847 VIRTCHNL_VLAN_ETHERTYPE_9100 |
2848 VIRTCHNL_VLAN_ETHERTYPE_AND;
2849 caps->filtering.ethertype_init = VIRTCHNL_VLAN_ETHERTYPE_8100 |
2850 VIRTCHNL_VLAN_ETHERTYPE_88A8 |
2851 VIRTCHNL_VLAN_ETHERTYPE_9100;
2852
2853 supported_caps = &caps->offloads.stripping_support;
2854 supported_caps->inner = VIRTCHNL_VLAN_TOGGLE |
2855 VIRTCHNL_VLAN_ETHERTYPE_8100 |
2856 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1;
2857 supported_caps->outer = VIRTCHNL_VLAN_TOGGLE |
2858 VIRTCHNL_VLAN_ETHERTYPE_8100 |
2859 VIRTCHNL_VLAN_ETHERTYPE_88A8 |
2860 VIRTCHNL_VLAN_ETHERTYPE_9100 |
2861 VIRTCHNL_VLAN_ETHERTYPE_XOR |
2862 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2;
2863
2864 supported_caps = &caps->offloads.insertion_support;
2865 supported_caps->inner = VIRTCHNL_VLAN_TOGGLE |
2866 VIRTCHNL_VLAN_ETHERTYPE_8100 |
2867 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1;
2868 supported_caps->outer = VIRTCHNL_VLAN_TOGGLE |
2869 VIRTCHNL_VLAN_ETHERTYPE_8100 |
2870 VIRTCHNL_VLAN_ETHERTYPE_88A8 |
2871 VIRTCHNL_VLAN_ETHERTYPE_9100 |
2872 VIRTCHNL_VLAN_ETHERTYPE_XOR |
2873 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2;
2874
2875 caps->offloads.ethertype_init = VIRTCHNL_VLAN_ETHERTYPE_8100;
2876
2877 caps->offloads.ethertype_match =
2878 VIRTCHNL_ETHERTYPE_STRIPPING_MATCHES_INSERTION;
2879 }
2880
2881 caps->filtering.max_filters = ice_vc_get_max_vlan_fltrs(vf);
2882}
2883
2884/**
2885 * ice_vc_set_svm_caps - set VLAN capabilities when the device is in SVM
2886 * @vf: VF that capabilities are being set for
2887 * @caps: VLAN capabilities to populate
2888 *
2889 * Determine VLAN capabilities support based on whether a port VLAN is
2890 * configured. If a port VLAN is configured then the VF does not have any VLAN
2891 * filtering or offload capabilities since the port VLAN is using the inner VLAN
2892 * capabilities in single VLAN mode (SVM). Otherwise allow the VF to use inner
2893 * VLAN fitlering and offload capabilities.
2894 */
2895static void
2896ice_vc_set_svm_caps(struct ice_vf *vf, struct virtchnl_vlan_caps *caps)
2897{
2898 struct virtchnl_vlan_supported_caps *supported_caps;
2899
2900 if (ice_vf_is_port_vlan_ena(vf)) {
2901 supported_caps = &caps->filtering.filtering_support;
2902 supported_caps->inner = VIRTCHNL_VLAN_UNSUPPORTED;
2903 supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED;
2904
2905 supported_caps = &caps->offloads.stripping_support;
2906 supported_caps->inner = VIRTCHNL_VLAN_UNSUPPORTED;
2907 supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED;
2908
2909 supported_caps = &caps->offloads.insertion_support;
2910 supported_caps->inner = VIRTCHNL_VLAN_UNSUPPORTED;
2911 supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED;
2912
2913 caps->offloads.ethertype_init = VIRTCHNL_VLAN_UNSUPPORTED;
2914 caps->offloads.ethertype_match = VIRTCHNL_VLAN_UNSUPPORTED;
2915 caps->filtering.max_filters = 0;
2916 } else {
2917 supported_caps = &caps->filtering.filtering_support;
2918 supported_caps->inner = VIRTCHNL_VLAN_ETHERTYPE_8100;
2919 supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED;
2920 caps->filtering.ethertype_init = VIRTCHNL_VLAN_ETHERTYPE_8100;
2921
2922 supported_caps = &caps->offloads.stripping_support;
2923 supported_caps->inner = VIRTCHNL_VLAN_ETHERTYPE_8100 |
2924 VIRTCHNL_VLAN_TOGGLE |
2925 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1;
2926 supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED;
2927
2928 supported_caps = &caps->offloads.insertion_support;
2929 supported_caps->inner = VIRTCHNL_VLAN_ETHERTYPE_8100 |
2930 VIRTCHNL_VLAN_TOGGLE |
2931 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1;
2932 supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED;
2933
2934 caps->offloads.ethertype_init = VIRTCHNL_VLAN_ETHERTYPE_8100;
2935 caps->offloads.ethertype_match =
2936 VIRTCHNL_ETHERTYPE_STRIPPING_MATCHES_INSERTION;
2937 caps->filtering.max_filters = ice_vc_get_max_vlan_fltrs(vf);
2938 }
2939}
2940
2941/**
2942 * ice_vc_get_offload_vlan_v2_caps - determine VF's VLAN capabilities
2943 * @vf: VF to determine VLAN capabilities for
2944 *
2945 * This will only be called if the VF and PF successfully negotiated
2946 * VIRTCHNL_VF_OFFLOAD_VLAN_V2.
2947 *
2948 * Set VLAN capabilities based on the current VLAN mode and whether a port VLAN
2949 * is configured or not.
2950 */
2951static int ice_vc_get_offload_vlan_v2_caps(struct ice_vf *vf)
2952{
2953 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
2954 struct virtchnl_vlan_caps *caps = NULL;
2955 int err, len = 0;
2956
2957 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
2958 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2959 goto out;
2960 }
2961
2962 caps = kzalloc(sizeof(*caps), GFP_KERNEL);
2963 if (!caps) {
2964 v_ret = VIRTCHNL_STATUS_ERR_NO_MEMORY;
2965 goto out;
2966 }
2967 len = sizeof(*caps);
2968
2969 if (ice_is_dvm_ena(&vf->pf->hw))
2970 ice_vc_set_dvm_caps(vf, caps);
2971 else
2972 ice_vc_set_svm_caps(vf, caps);
2973
2974 /* store negotiated caps to prevent invalid VF messages */
2975 memcpy(&vf->vlan_v2_caps, caps, sizeof(*caps));
2976
2977out:
2978 err = ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS,
2979 v_ret, (u8 *)caps, len);
2980 kfree(caps);
2981 return err;
2982}
2983
2984/**
2985 * ice_vc_validate_vlan_tpid - validate VLAN TPID
2986 * @filtering_caps: negotiated/supported VLAN filtering capabilities
2987 * @tpid: VLAN TPID used for validation
2988 *
2989 * Convert the VLAN TPID to a VIRTCHNL_VLAN_ETHERTYPE_* and then compare against
2990 * the negotiated/supported filtering caps to see if the VLAN TPID is valid.
2991 */
2992static bool ice_vc_validate_vlan_tpid(u16 filtering_caps, u16 tpid)
2993{
2994 enum virtchnl_vlan_support vlan_ethertype = VIRTCHNL_VLAN_UNSUPPORTED;
2995
2996 switch (tpid) {
2997 case ETH_P_8021Q:
2998 vlan_ethertype = VIRTCHNL_VLAN_ETHERTYPE_8100;
2999 break;
3000 case ETH_P_8021AD:
3001 vlan_ethertype = VIRTCHNL_VLAN_ETHERTYPE_88A8;
3002 break;
3003 case ETH_P_QINQ1:
3004 vlan_ethertype = VIRTCHNL_VLAN_ETHERTYPE_9100;
3005 break;
3006 }
3007
3008 if (!(filtering_caps & vlan_ethertype))
3009 return false;
3010
3011 return true;
3012}
3013
3014/**
3015 * ice_vc_is_valid_vlan - validate the virtchnl_vlan
3016 * @vc_vlan: virtchnl_vlan to validate
3017 *
3018 * If the VLAN TCI and VLAN TPID are 0, then this filter is invalid, so return
3019 * false. Otherwise return true.
3020 */
3021static bool ice_vc_is_valid_vlan(struct virtchnl_vlan *vc_vlan)
3022{
3023 if (!vc_vlan->tci || !vc_vlan->tpid)
3024 return false;
3025
3026 return true;
3027}
3028
3029/**
3030 * ice_vc_validate_vlan_filter_list - validate the filter list from the VF
3031 * @vfc: negotiated/supported VLAN filtering capabilities
3032 * @vfl: VLAN filter list from VF to validate
3033 *
3034 * Validate all of the filters in the VLAN filter list from the VF. If any of
3035 * the checks fail then return false. Otherwise return true.
3036 */
3037static bool
3038ice_vc_validate_vlan_filter_list(struct virtchnl_vlan_filtering_caps *vfc,
3039 struct virtchnl_vlan_filter_list_v2 *vfl)
3040{
3041 u16 i;
3042
3043 if (!vfl->num_elements)
3044 return false;
3045
3046 for (i = 0; i < vfl->num_elements; i++) {
3047 struct virtchnl_vlan_supported_caps *filtering_support =
3048 &vfc->filtering_support;
3049 struct virtchnl_vlan_filter *vlan_fltr = &vfl->filters[i];
3050 struct virtchnl_vlan *outer = &vlan_fltr->outer;
3051 struct virtchnl_vlan *inner = &vlan_fltr->inner;
3052
3053 if ((ice_vc_is_valid_vlan(outer) &&
3054 filtering_support->outer == VIRTCHNL_VLAN_UNSUPPORTED) ||
3055 (ice_vc_is_valid_vlan(inner) &&
3056 filtering_support->inner == VIRTCHNL_VLAN_UNSUPPORTED))
3057 return false;
3058
3059 if ((outer->tci_mask &&
3060 !(filtering_support->outer & VIRTCHNL_VLAN_FILTER_MASK)) ||
3061 (inner->tci_mask &&
3062 !(filtering_support->inner & VIRTCHNL_VLAN_FILTER_MASK)))
3063 return false;
3064
3065 if (((outer->tci & VLAN_PRIO_MASK) &&
3066 !(filtering_support->outer & VIRTCHNL_VLAN_PRIO)) ||
3067 ((inner->tci & VLAN_PRIO_MASK) &&
3068 !(filtering_support->inner & VIRTCHNL_VLAN_PRIO)))
3069 return false;
3070
3071 if ((ice_vc_is_valid_vlan(outer) &&
3072 !ice_vc_validate_vlan_tpid(filtering_support->outer,
3073 outer->tpid)) ||
3074 (ice_vc_is_valid_vlan(inner) &&
3075 !ice_vc_validate_vlan_tpid(filtering_support->inner,
3076 inner->tpid)))
3077 return false;
3078 }
3079
3080 return true;
3081}
3082
3083/**
3084 * ice_vc_to_vlan - transform from struct virtchnl_vlan to struct ice_vlan
3085 * @vc_vlan: struct virtchnl_vlan to transform
3086 */
3087static struct ice_vlan ice_vc_to_vlan(struct virtchnl_vlan *vc_vlan)
3088{
3089 struct ice_vlan vlan = { 0 };
3090
3091 vlan.prio = FIELD_GET(VLAN_PRIO_MASK, vc_vlan->tci);
3092 vlan.vid = vc_vlan->tci & VLAN_VID_MASK;
3093 vlan.tpid = vc_vlan->tpid;
3094
3095 return vlan;
3096}
3097
3098/**
3099 * ice_vc_vlan_action - action to perform on the virthcnl_vlan
3100 * @vsi: VF's VSI used to perform the action
3101 * @vlan_action: function to perform the action with (i.e. add/del)
3102 * @vlan: VLAN filter to perform the action with
3103 */
3104static int
3105ice_vc_vlan_action(struct ice_vsi *vsi,
3106 int (*vlan_action)(struct ice_vsi *, struct ice_vlan *),
3107 struct ice_vlan *vlan)
3108{
3109 int err;
3110
3111 err = vlan_action(vsi, vlan);
3112 if (err)
3113 return err;
3114
3115 return 0;
3116}
3117
3118/**
3119 * ice_vc_del_vlans - delete VLAN(s) from the virtchnl filter list
3120 * @vf: VF used to delete the VLAN(s)
3121 * @vsi: VF's VSI used to delete the VLAN(s)
3122 * @vfl: virthchnl filter list used to delete the filters
3123 */
3124static int
3125ice_vc_del_vlans(struct ice_vf *vf, struct ice_vsi *vsi,
3126 struct virtchnl_vlan_filter_list_v2 *vfl)
3127{
3128 bool vlan_promisc = ice_is_vlan_promisc_allowed(vf);
3129 int err;
3130 u16 i;
3131
3132 for (i = 0; i < vfl->num_elements; i++) {
3133 struct virtchnl_vlan_filter *vlan_fltr = &vfl->filters[i];
3134 struct virtchnl_vlan *vc_vlan;
3135
3136 vc_vlan = &vlan_fltr->outer;
3137 if (ice_vc_is_valid_vlan(vc_vlan)) {
3138 struct ice_vlan vlan = ice_vc_to_vlan(vc_vlan);
3139
3140 err = ice_vc_vlan_action(vsi,
3141 vsi->outer_vlan_ops.del_vlan,
3142 &vlan);
3143 if (err)
3144 return err;
3145
3146 if (vlan_promisc)
3147 ice_vf_dis_vlan_promisc(vsi, &vlan);
3148
3149 /* Disable VLAN filtering when only VLAN 0 is left */
3150 if (!ice_vsi_has_non_zero_vlans(vsi) && ice_is_dvm_ena(&vsi->back->hw)) {
3151 err = vsi->outer_vlan_ops.dis_tx_filtering(vsi);
3152 if (err)
3153 return err;
3154 }
3155 }
3156
3157 vc_vlan = &vlan_fltr->inner;
3158 if (ice_vc_is_valid_vlan(vc_vlan)) {
3159 struct ice_vlan vlan = ice_vc_to_vlan(vc_vlan);
3160
3161 err = ice_vc_vlan_action(vsi,
3162 vsi->inner_vlan_ops.del_vlan,
3163 &vlan);
3164 if (err)
3165 return err;
3166
3167 /* no support for VLAN promiscuous on inner VLAN unless
3168 * we are in Single VLAN Mode (SVM)
3169 */
3170 if (!ice_is_dvm_ena(&vsi->back->hw)) {
3171 if (vlan_promisc)
3172 ice_vf_dis_vlan_promisc(vsi, &vlan);
3173
3174 /* Disable VLAN filtering when only VLAN 0 is left */
3175 if (!ice_vsi_has_non_zero_vlans(vsi)) {
3176 err = vsi->inner_vlan_ops.dis_tx_filtering(vsi);
3177 if (err)
3178 return err;
3179 }
3180 }
3181 }
3182 }
3183
3184 return 0;
3185}
3186
3187/**
3188 * ice_vc_remove_vlan_v2_msg - virtchnl handler for VIRTCHNL_OP_DEL_VLAN_V2
3189 * @vf: VF the message was received from
3190 * @msg: message received from the VF
3191 */
3192static int ice_vc_remove_vlan_v2_msg(struct ice_vf *vf, u8 *msg)
3193{
3194 struct virtchnl_vlan_filter_list_v2 *vfl =
3195 (struct virtchnl_vlan_filter_list_v2 *)msg;
3196 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
3197 struct ice_vsi *vsi;
3198
3199 if (!ice_vc_validate_vlan_filter_list(&vf->vlan_v2_caps.filtering,
3200 vfl)) {
3201 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3202 goto out;
3203 }
3204
3205 if (!ice_vc_isvalid_vsi_id(vf, vfl->vport_id)) {
3206 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3207 goto out;
3208 }
3209
3210 vsi = ice_get_vf_vsi(vf);
3211 if (!vsi) {
3212 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3213 goto out;
3214 }
3215
3216 if (ice_vc_del_vlans(vf, vsi, vfl))
3217 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3218
3219out:
3220 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DEL_VLAN_V2, v_ret, NULL,
3221 0);
3222}
3223
3224/**
3225 * ice_vc_add_vlans - add VLAN(s) from the virtchnl filter list
3226 * @vf: VF used to add the VLAN(s)
3227 * @vsi: VF's VSI used to add the VLAN(s)
3228 * @vfl: virthchnl filter list used to add the filters
3229 */
3230static int
3231ice_vc_add_vlans(struct ice_vf *vf, struct ice_vsi *vsi,
3232 struct virtchnl_vlan_filter_list_v2 *vfl)
3233{
3234 bool vlan_promisc = ice_is_vlan_promisc_allowed(vf);
3235 int err;
3236 u16 i;
3237
3238 for (i = 0; i < vfl->num_elements; i++) {
3239 struct virtchnl_vlan_filter *vlan_fltr = &vfl->filters[i];
3240 struct virtchnl_vlan *vc_vlan;
3241
3242 vc_vlan = &vlan_fltr->outer;
3243 if (ice_vc_is_valid_vlan(vc_vlan)) {
3244 struct ice_vlan vlan = ice_vc_to_vlan(vc_vlan);
3245
3246 err = ice_vc_vlan_action(vsi,
3247 vsi->outer_vlan_ops.add_vlan,
3248 &vlan);
3249 if (err)
3250 return err;
3251
3252 if (vlan_promisc) {
3253 err = ice_vf_ena_vlan_promisc(vsi, &vlan);
3254 if (err)
3255 return err;
3256 }
3257
3258 /* Enable VLAN filtering on first non-zero VLAN */
3259 if (vf->spoofchk && vlan.vid && ice_is_dvm_ena(&vsi->back->hw)) {
3260 err = vsi->outer_vlan_ops.ena_tx_filtering(vsi);
3261 if (err)
3262 return err;
3263 }
3264 }
3265
3266 vc_vlan = &vlan_fltr->inner;
3267 if (ice_vc_is_valid_vlan(vc_vlan)) {
3268 struct ice_vlan vlan = ice_vc_to_vlan(vc_vlan);
3269
3270 err = ice_vc_vlan_action(vsi,
3271 vsi->inner_vlan_ops.add_vlan,
3272 &vlan);
3273 if (err)
3274 return err;
3275
3276 /* no support for VLAN promiscuous on inner VLAN unless
3277 * we are in Single VLAN Mode (SVM)
3278 */
3279 if (!ice_is_dvm_ena(&vsi->back->hw)) {
3280 if (vlan_promisc) {
3281 err = ice_vf_ena_vlan_promisc(vsi, &vlan);
3282 if (err)
3283 return err;
3284 }
3285
3286 /* Enable VLAN filtering on first non-zero VLAN */
3287 if (vf->spoofchk && vlan.vid) {
3288 err = vsi->inner_vlan_ops.ena_tx_filtering(vsi);
3289 if (err)
3290 return err;
3291 }
3292 }
3293 }
3294 }
3295
3296 return 0;
3297}
3298
3299/**
3300 * ice_vc_validate_add_vlan_filter_list - validate add filter list from the VF
3301 * @vsi: VF VSI used to get number of existing VLAN filters
3302 * @vfc: negotiated/supported VLAN filtering capabilities
3303 * @vfl: VLAN filter list from VF to validate
3304 *
3305 * Validate all of the filters in the VLAN filter list from the VF during the
3306 * VIRTCHNL_OP_ADD_VLAN_V2 opcode. If any of the checks fail then return false.
3307 * Otherwise return true.
3308 */
3309static bool
3310ice_vc_validate_add_vlan_filter_list(struct ice_vsi *vsi,
3311 struct virtchnl_vlan_filtering_caps *vfc,
3312 struct virtchnl_vlan_filter_list_v2 *vfl)
3313{
3314 u16 num_requested_filters = ice_vsi_num_non_zero_vlans(vsi) +
3315 vfl->num_elements;
3316
3317 if (num_requested_filters > vfc->max_filters)
3318 return false;
3319
3320 return ice_vc_validate_vlan_filter_list(vfc, vfl);
3321}
3322
3323/**
3324 * ice_vc_add_vlan_v2_msg - virtchnl handler for VIRTCHNL_OP_ADD_VLAN_V2
3325 * @vf: VF the message was received from
3326 * @msg: message received from the VF
3327 */
3328static int ice_vc_add_vlan_v2_msg(struct ice_vf *vf, u8 *msg)
3329{
3330 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
3331 struct virtchnl_vlan_filter_list_v2 *vfl =
3332 (struct virtchnl_vlan_filter_list_v2 *)msg;
3333 struct ice_vsi *vsi;
3334
3335 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
3336 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3337 goto out;
3338 }
3339
3340 if (!ice_vc_isvalid_vsi_id(vf, vfl->vport_id)) {
3341 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3342 goto out;
3343 }
3344
3345 vsi = ice_get_vf_vsi(vf);
3346 if (!vsi) {
3347 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3348 goto out;
3349 }
3350
3351 if (!ice_vc_validate_add_vlan_filter_list(vsi,
3352 &vf->vlan_v2_caps.filtering,
3353 vfl)) {
3354 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3355 goto out;
3356 }
3357
3358 if (ice_vc_add_vlans(vf, vsi, vfl))
3359 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3360
3361out:
3362 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ADD_VLAN_V2, v_ret, NULL,
3363 0);
3364}
3365
3366/**
3367 * ice_vc_valid_vlan_setting - validate VLAN setting
3368 * @negotiated_settings: negotiated VLAN settings during VF init
3369 * @ethertype_setting: ethertype(s) requested for the VLAN setting
3370 */
3371static bool
3372ice_vc_valid_vlan_setting(u32 negotiated_settings, u32 ethertype_setting)
3373{
3374 if (ethertype_setting && !(negotiated_settings & ethertype_setting))
3375 return false;
3376
3377 /* only allow a single VIRTCHNL_VLAN_ETHERTYPE if
3378 * VIRTHCNL_VLAN_ETHERTYPE_AND is not negotiated/supported
3379 */
3380 if (!(negotiated_settings & VIRTCHNL_VLAN_ETHERTYPE_AND) &&
3381 hweight32(ethertype_setting) > 1)
3382 return false;
3383
3384 /* ability to modify the VLAN setting was not negotiated */
3385 if (!(negotiated_settings & VIRTCHNL_VLAN_TOGGLE))
3386 return false;
3387
3388 return true;
3389}
3390
3391/**
3392 * ice_vc_valid_vlan_setting_msg - validate the VLAN setting message
3393 * @caps: negotiated VLAN settings during VF init
3394 * @msg: message to validate
3395 *
3396 * Used to validate any VLAN virtchnl message sent as a
3397 * virtchnl_vlan_setting structure. Validates the message against the
3398 * negotiated/supported caps during VF driver init.
3399 */
3400static bool
3401ice_vc_valid_vlan_setting_msg(struct virtchnl_vlan_supported_caps *caps,
3402 struct virtchnl_vlan_setting *msg)
3403{
3404 if ((!msg->outer_ethertype_setting &&
3405 !msg->inner_ethertype_setting) ||
3406 (!caps->outer && !caps->inner))
3407 return false;
3408
3409 if (msg->outer_ethertype_setting &&
3410 !ice_vc_valid_vlan_setting(caps->outer,
3411 msg->outer_ethertype_setting))
3412 return false;
3413
3414 if (msg->inner_ethertype_setting &&
3415 !ice_vc_valid_vlan_setting(caps->inner,
3416 msg->inner_ethertype_setting))
3417 return false;
3418
3419 return true;
3420}
3421
3422/**
3423 * ice_vc_get_tpid - transform from VIRTCHNL_VLAN_ETHERTYPE_* to VLAN TPID
3424 * @ethertype_setting: VIRTCHNL_VLAN_ETHERTYPE_* used to get VLAN TPID
3425 * @tpid: VLAN TPID to populate
3426 */
3427static int ice_vc_get_tpid(u32 ethertype_setting, u16 *tpid)
3428{
3429 switch (ethertype_setting) {
3430 case VIRTCHNL_VLAN_ETHERTYPE_8100:
3431 *tpid = ETH_P_8021Q;
3432 break;
3433 case VIRTCHNL_VLAN_ETHERTYPE_88A8:
3434 *tpid = ETH_P_8021AD;
3435 break;
3436 case VIRTCHNL_VLAN_ETHERTYPE_9100:
3437 *tpid = ETH_P_QINQ1;
3438 break;
3439 default:
3440 *tpid = 0;
3441 return -EINVAL;
3442 }
3443
3444 return 0;
3445}
3446
3447/**
3448 * ice_vc_ena_vlan_offload - enable VLAN offload based on the ethertype_setting
3449 * @vsi: VF's VSI used to enable the VLAN offload
3450 * @ena_offload: function used to enable the VLAN offload
3451 * @ethertype_setting: VIRTCHNL_VLAN_ETHERTYPE_* to enable offloads for
3452 */
3453static int
3454ice_vc_ena_vlan_offload(struct ice_vsi *vsi,
3455 int (*ena_offload)(struct ice_vsi *vsi, u16 tpid),
3456 u32 ethertype_setting)
3457{
3458 u16 tpid;
3459 int err;
3460
3461 err = ice_vc_get_tpid(ethertype_setting, &tpid);
3462 if (err)
3463 return err;
3464
3465 err = ena_offload(vsi, tpid);
3466 if (err)
3467 return err;
3468
3469 return 0;
3470}
3471
3472#define ICE_L2TSEL_QRX_CONTEXT_REG_IDX 3
3473#define ICE_L2TSEL_BIT_OFFSET 23
3474enum ice_l2tsel {
3475 ICE_L2TSEL_EXTRACT_FIRST_TAG_L2TAG2_2ND,
3476 ICE_L2TSEL_EXTRACT_FIRST_TAG_L2TAG1,
3477};
3478
3479/**
3480 * ice_vsi_update_l2tsel - update l2tsel field for all Rx rings on this VSI
3481 * @vsi: VSI used to update l2tsel on
3482 * @l2tsel: l2tsel setting requested
3483 *
3484 * Use the l2tsel setting to update all of the Rx queue context bits for l2tsel.
3485 * This will modify which descriptor field the first offloaded VLAN will be
3486 * stripped into.
3487 */
3488static void ice_vsi_update_l2tsel(struct ice_vsi *vsi, enum ice_l2tsel l2tsel)
3489{
3490 struct ice_hw *hw = &vsi->back->hw;
3491 u32 l2tsel_bit;
3492 int i;
3493
3494 if (l2tsel == ICE_L2TSEL_EXTRACT_FIRST_TAG_L2TAG2_2ND)
3495 l2tsel_bit = 0;
3496 else
3497 l2tsel_bit = BIT(ICE_L2TSEL_BIT_OFFSET);
3498
3499 for (i = 0; i < vsi->alloc_rxq; i++) {
3500 u16 pfq = vsi->rxq_map[i];
3501 u32 qrx_context_offset;
3502 u32 regval;
3503
3504 qrx_context_offset =
3505 QRX_CONTEXT(ICE_L2TSEL_QRX_CONTEXT_REG_IDX, pfq);
3506
3507 regval = rd32(hw, qrx_context_offset);
3508 regval &= ~BIT(ICE_L2TSEL_BIT_OFFSET);
3509 regval |= l2tsel_bit;
3510 wr32(hw, qrx_context_offset, regval);
3511 }
3512}
3513
3514/**
3515 * ice_vc_ena_vlan_stripping_v2_msg
3516 * @vf: VF the message was received from
3517 * @msg: message received from the VF
3518 *
3519 * virthcnl handler for VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2
3520 */
3521static int ice_vc_ena_vlan_stripping_v2_msg(struct ice_vf *vf, u8 *msg)
3522{
3523 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
3524 struct virtchnl_vlan_supported_caps *stripping_support;
3525 struct virtchnl_vlan_setting *strip_msg =
3526 (struct virtchnl_vlan_setting *)msg;
3527 u32 ethertype_setting;
3528 struct ice_vsi *vsi;
3529
3530 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
3531 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3532 goto out;
3533 }
3534
3535 if (!ice_vc_isvalid_vsi_id(vf, strip_msg->vport_id)) {
3536 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3537 goto out;
3538 }
3539
3540 vsi = ice_get_vf_vsi(vf);
3541 if (!vsi) {
3542 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3543 goto out;
3544 }
3545
3546 stripping_support = &vf->vlan_v2_caps.offloads.stripping_support;
3547 if (!ice_vc_valid_vlan_setting_msg(stripping_support, strip_msg)) {
3548 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3549 goto out;
3550 }
3551
3552 if (ice_vsi_is_rxq_crc_strip_dis(vsi)) {
3553 v_ret = VIRTCHNL_STATUS_ERR_NOT_SUPPORTED;
3554 goto out;
3555 }
3556
3557 ethertype_setting = strip_msg->outer_ethertype_setting;
3558 if (ethertype_setting) {
3559 if (ice_vc_ena_vlan_offload(vsi,
3560 vsi->outer_vlan_ops.ena_stripping,
3561 ethertype_setting)) {
3562 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3563 goto out;
3564 } else {
3565 enum ice_l2tsel l2tsel =
3566 ICE_L2TSEL_EXTRACT_FIRST_TAG_L2TAG2_2ND;
3567
3568 /* PF tells the VF that the outer VLAN tag is always
3569 * extracted to VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2 and
3570 * inner is always extracted to
3571 * VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1. This is needed to
3572 * support outer stripping so the first tag always ends
3573 * up in L2TAG2_2ND and the second/inner tag, if
3574 * enabled, is extracted in L2TAG1.
3575 */
3576 ice_vsi_update_l2tsel(vsi, l2tsel);
3577
3578 vf->vlan_strip_ena |= ICE_OUTER_VLAN_STRIP_ENA;
3579 }
3580 }
3581
3582 ethertype_setting = strip_msg->inner_ethertype_setting;
3583 if (ethertype_setting &&
3584 ice_vc_ena_vlan_offload(vsi, vsi->inner_vlan_ops.ena_stripping,
3585 ethertype_setting)) {
3586 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3587 goto out;
3588 }
3589
3590 if (ethertype_setting)
3591 vf->vlan_strip_ena |= ICE_INNER_VLAN_STRIP_ENA;
3592
3593out:
3594 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2,
3595 v_ret, NULL, 0);
3596}
3597
3598/**
3599 * ice_vc_dis_vlan_stripping_v2_msg
3600 * @vf: VF the message was received from
3601 * @msg: message received from the VF
3602 *
3603 * virthcnl handler for VIRTCHNL_OP_DISABLE_VLAN_STRIPPING_V2
3604 */
3605static int ice_vc_dis_vlan_stripping_v2_msg(struct ice_vf *vf, u8 *msg)
3606{
3607 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
3608 struct virtchnl_vlan_supported_caps *stripping_support;
3609 struct virtchnl_vlan_setting *strip_msg =
3610 (struct virtchnl_vlan_setting *)msg;
3611 u32 ethertype_setting;
3612 struct ice_vsi *vsi;
3613
3614 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
3615 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3616 goto out;
3617 }
3618
3619 if (!ice_vc_isvalid_vsi_id(vf, strip_msg->vport_id)) {
3620 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3621 goto out;
3622 }
3623
3624 vsi = ice_get_vf_vsi(vf);
3625 if (!vsi) {
3626 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3627 goto out;
3628 }
3629
3630 stripping_support = &vf->vlan_v2_caps.offloads.stripping_support;
3631 if (!ice_vc_valid_vlan_setting_msg(stripping_support, strip_msg)) {
3632 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3633 goto out;
3634 }
3635
3636 ethertype_setting = strip_msg->outer_ethertype_setting;
3637 if (ethertype_setting) {
3638 if (vsi->outer_vlan_ops.dis_stripping(vsi)) {
3639 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3640 goto out;
3641 } else {
3642 enum ice_l2tsel l2tsel =
3643 ICE_L2TSEL_EXTRACT_FIRST_TAG_L2TAG1;
3644
3645 /* PF tells the VF that the outer VLAN tag is always
3646 * extracted to VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2 and
3647 * inner is always extracted to
3648 * VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1. This is needed to
3649 * support inner stripping while outer stripping is
3650 * disabled so that the first and only tag is extracted
3651 * in L2TAG1.
3652 */
3653 ice_vsi_update_l2tsel(vsi, l2tsel);
3654
3655 vf->vlan_strip_ena &= ~ICE_OUTER_VLAN_STRIP_ENA;
3656 }
3657 }
3658
3659 ethertype_setting = strip_msg->inner_ethertype_setting;
3660 if (ethertype_setting && vsi->inner_vlan_ops.dis_stripping(vsi)) {
3661 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3662 goto out;
3663 }
3664
3665 if (ethertype_setting)
3666 vf->vlan_strip_ena &= ~ICE_INNER_VLAN_STRIP_ENA;
3667
3668out:
3669 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DISABLE_VLAN_STRIPPING_V2,
3670 v_ret, NULL, 0);
3671}
3672
3673/**
3674 * ice_vc_ena_vlan_insertion_v2_msg
3675 * @vf: VF the message was received from
3676 * @msg: message received from the VF
3677 *
3678 * virthcnl handler for VIRTCHNL_OP_ENABLE_VLAN_INSERTION_V2
3679 */
3680static int ice_vc_ena_vlan_insertion_v2_msg(struct ice_vf *vf, u8 *msg)
3681{
3682 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
3683 struct virtchnl_vlan_supported_caps *insertion_support;
3684 struct virtchnl_vlan_setting *insertion_msg =
3685 (struct virtchnl_vlan_setting *)msg;
3686 u32 ethertype_setting;
3687 struct ice_vsi *vsi;
3688
3689 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
3690 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3691 goto out;
3692 }
3693
3694 if (!ice_vc_isvalid_vsi_id(vf, insertion_msg->vport_id)) {
3695 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3696 goto out;
3697 }
3698
3699 vsi = ice_get_vf_vsi(vf);
3700 if (!vsi) {
3701 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3702 goto out;
3703 }
3704
3705 insertion_support = &vf->vlan_v2_caps.offloads.insertion_support;
3706 if (!ice_vc_valid_vlan_setting_msg(insertion_support, insertion_msg)) {
3707 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3708 goto out;
3709 }
3710
3711 ethertype_setting = insertion_msg->outer_ethertype_setting;
3712 if (ethertype_setting &&
3713 ice_vc_ena_vlan_offload(vsi, vsi->outer_vlan_ops.ena_insertion,
3714 ethertype_setting)) {
3715 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3716 goto out;
3717 }
3718
3719 ethertype_setting = insertion_msg->inner_ethertype_setting;
3720 if (ethertype_setting &&
3721 ice_vc_ena_vlan_offload(vsi, vsi->inner_vlan_ops.ena_insertion,
3722 ethertype_setting)) {
3723 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3724 goto out;
3725 }
3726
3727out:
3728 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ENABLE_VLAN_INSERTION_V2,
3729 v_ret, NULL, 0);
3730}
3731
3732/**
3733 * ice_vc_dis_vlan_insertion_v2_msg
3734 * @vf: VF the message was received from
3735 * @msg: message received from the VF
3736 *
3737 * virthcnl handler for VIRTCHNL_OP_DISABLE_VLAN_INSERTION_V2
3738 */
3739static int ice_vc_dis_vlan_insertion_v2_msg(struct ice_vf *vf, u8 *msg)
3740{
3741 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
3742 struct virtchnl_vlan_supported_caps *insertion_support;
3743 struct virtchnl_vlan_setting *insertion_msg =
3744 (struct virtchnl_vlan_setting *)msg;
3745 u32 ethertype_setting;
3746 struct ice_vsi *vsi;
3747
3748 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
3749 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3750 goto out;
3751 }
3752
3753 if (!ice_vc_isvalid_vsi_id(vf, insertion_msg->vport_id)) {
3754 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3755 goto out;
3756 }
3757
3758 vsi = ice_get_vf_vsi(vf);
3759 if (!vsi) {
3760 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3761 goto out;
3762 }
3763
3764 insertion_support = &vf->vlan_v2_caps.offloads.insertion_support;
3765 if (!ice_vc_valid_vlan_setting_msg(insertion_support, insertion_msg)) {
3766 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3767 goto out;
3768 }
3769
3770 ethertype_setting = insertion_msg->outer_ethertype_setting;
3771 if (ethertype_setting && vsi->outer_vlan_ops.dis_insertion(vsi)) {
3772 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3773 goto out;
3774 }
3775
3776 ethertype_setting = insertion_msg->inner_ethertype_setting;
3777 if (ethertype_setting && vsi->inner_vlan_ops.dis_insertion(vsi)) {
3778 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3779 goto out;
3780 }
3781
3782out:
3783 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DISABLE_VLAN_INSERTION_V2,
3784 v_ret, NULL, 0);
3785}
3786
3787static const struct ice_virtchnl_ops ice_virtchnl_dflt_ops = {
3788 .get_ver_msg = ice_vc_get_ver_msg,
3789 .get_vf_res_msg = ice_vc_get_vf_res_msg,
3790 .reset_vf = ice_vc_reset_vf_msg,
3791 .add_mac_addr_msg = ice_vc_add_mac_addr_msg,
3792 .del_mac_addr_msg = ice_vc_del_mac_addr_msg,
3793 .cfg_qs_msg = ice_vc_cfg_qs_msg,
3794 .ena_qs_msg = ice_vc_ena_qs_msg,
3795 .dis_qs_msg = ice_vc_dis_qs_msg,
3796 .request_qs_msg = ice_vc_request_qs_msg,
3797 .cfg_irq_map_msg = ice_vc_cfg_irq_map_msg,
3798 .config_rss_key = ice_vc_config_rss_key,
3799 .config_rss_lut = ice_vc_config_rss_lut,
3800 .config_rss_hfunc = ice_vc_config_rss_hfunc,
3801 .get_stats_msg = ice_vc_get_stats_msg,
3802 .cfg_promiscuous_mode_msg = ice_vc_cfg_promiscuous_mode_msg,
3803 .add_vlan_msg = ice_vc_add_vlan_msg,
3804 .remove_vlan_msg = ice_vc_remove_vlan_msg,
3805 .query_rxdid = ice_vc_query_rxdid,
3806 .get_rss_hena = ice_vc_get_rss_hena,
3807 .set_rss_hena_msg = ice_vc_set_rss_hena,
3808 .ena_vlan_stripping = ice_vc_ena_vlan_stripping,
3809 .dis_vlan_stripping = ice_vc_dis_vlan_stripping,
3810 .handle_rss_cfg_msg = ice_vc_handle_rss_cfg,
3811 .add_fdir_fltr_msg = ice_vc_add_fdir_fltr,
3812 .del_fdir_fltr_msg = ice_vc_del_fdir_fltr,
3813 .get_offload_vlan_v2_caps = ice_vc_get_offload_vlan_v2_caps,
3814 .add_vlan_v2_msg = ice_vc_add_vlan_v2_msg,
3815 .remove_vlan_v2_msg = ice_vc_remove_vlan_v2_msg,
3816 .ena_vlan_stripping_v2_msg = ice_vc_ena_vlan_stripping_v2_msg,
3817 .dis_vlan_stripping_v2_msg = ice_vc_dis_vlan_stripping_v2_msg,
3818 .ena_vlan_insertion_v2_msg = ice_vc_ena_vlan_insertion_v2_msg,
3819 .dis_vlan_insertion_v2_msg = ice_vc_dis_vlan_insertion_v2_msg,
3820};
3821
3822/**
3823 * ice_virtchnl_set_dflt_ops - Switch to default virtchnl ops
3824 * @vf: the VF to switch ops
3825 */
3826void ice_virtchnl_set_dflt_ops(struct ice_vf *vf)
3827{
3828 vf->virtchnl_ops = &ice_virtchnl_dflt_ops;
3829}
3830
3831/**
3832 * ice_vc_repr_add_mac
3833 * @vf: pointer to VF
3834 * @msg: virtchannel message
3835 *
3836 * When port representors are created, we do not add MAC rule
3837 * to firmware, we store it so that PF could report same
3838 * MAC as VF.
3839 */
3840static int ice_vc_repr_add_mac(struct ice_vf *vf, u8 *msg)
3841{
3842 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
3843 struct virtchnl_ether_addr_list *al =
3844 (struct virtchnl_ether_addr_list *)msg;
3845 struct ice_vsi *vsi;
3846 struct ice_pf *pf;
3847 int i;
3848
3849 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states) ||
3850 !ice_vc_isvalid_vsi_id(vf, al->vsi_id)) {
3851 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3852 goto handle_mac_exit;
3853 }
3854
3855 pf = vf->pf;
3856
3857 vsi = ice_get_vf_vsi(vf);
3858 if (!vsi) {
3859 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3860 goto handle_mac_exit;
3861 }
3862
3863 for (i = 0; i < al->num_elements; i++) {
3864 u8 *mac_addr = al->list[i].addr;
3865
3866 if (!is_unicast_ether_addr(mac_addr) ||
3867 ether_addr_equal(mac_addr, vf->hw_lan_addr))
3868 continue;
3869
3870 if (vf->pf_set_mac) {
3871 dev_err(ice_pf_to_dev(pf), "VF attempting to override administratively set MAC address\n");
3872 v_ret = VIRTCHNL_STATUS_ERR_NOT_SUPPORTED;
3873 goto handle_mac_exit;
3874 }
3875
3876 ice_vfhw_mac_add(vf, &al->list[i]);
3877 vf->num_mac++;
3878 break;
3879 }
3880
3881handle_mac_exit:
3882 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ADD_ETH_ADDR,
3883 v_ret, NULL, 0);
3884}
3885
3886/**
3887 * ice_vc_repr_del_mac - response with success for deleting MAC
3888 * @vf: pointer to VF
3889 * @msg: virtchannel message
3890 *
3891 * Respond with success to not break normal VF flow.
3892 * For legacy VF driver try to update cached MAC address.
3893 */
3894static int
3895ice_vc_repr_del_mac(struct ice_vf __always_unused *vf, u8 __always_unused *msg)
3896{
3897 struct virtchnl_ether_addr_list *al =
3898 (struct virtchnl_ether_addr_list *)msg;
3899
3900 ice_update_legacy_cached_mac(vf, &al->list[0]);
3901
3902 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DEL_ETH_ADDR,
3903 VIRTCHNL_STATUS_SUCCESS, NULL, 0);
3904}
3905
3906static int
3907ice_vc_repr_cfg_promiscuous_mode(struct ice_vf *vf, u8 __always_unused *msg)
3908{
3909 dev_dbg(ice_pf_to_dev(vf->pf),
3910 "Can't config promiscuous mode in switchdev mode for VF %d\n",
3911 vf->vf_id);
3912 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_PROMISCUOUS_MODE,
3913 VIRTCHNL_STATUS_ERR_NOT_SUPPORTED,
3914 NULL, 0);
3915}
3916
3917static const struct ice_virtchnl_ops ice_virtchnl_repr_ops = {
3918 .get_ver_msg = ice_vc_get_ver_msg,
3919 .get_vf_res_msg = ice_vc_get_vf_res_msg,
3920 .reset_vf = ice_vc_reset_vf_msg,
3921 .add_mac_addr_msg = ice_vc_repr_add_mac,
3922 .del_mac_addr_msg = ice_vc_repr_del_mac,
3923 .cfg_qs_msg = ice_vc_cfg_qs_msg,
3924 .ena_qs_msg = ice_vc_ena_qs_msg,
3925 .dis_qs_msg = ice_vc_dis_qs_msg,
3926 .request_qs_msg = ice_vc_request_qs_msg,
3927 .cfg_irq_map_msg = ice_vc_cfg_irq_map_msg,
3928 .config_rss_key = ice_vc_config_rss_key,
3929 .config_rss_lut = ice_vc_config_rss_lut,
3930 .config_rss_hfunc = ice_vc_config_rss_hfunc,
3931 .get_stats_msg = ice_vc_get_stats_msg,
3932 .cfg_promiscuous_mode_msg = ice_vc_repr_cfg_promiscuous_mode,
3933 .add_vlan_msg = ice_vc_add_vlan_msg,
3934 .remove_vlan_msg = ice_vc_remove_vlan_msg,
3935 .query_rxdid = ice_vc_query_rxdid,
3936 .get_rss_hena = ice_vc_get_rss_hena,
3937 .set_rss_hena_msg = ice_vc_set_rss_hena,
3938 .ena_vlan_stripping = ice_vc_ena_vlan_stripping,
3939 .dis_vlan_stripping = ice_vc_dis_vlan_stripping,
3940 .handle_rss_cfg_msg = ice_vc_handle_rss_cfg,
3941 .add_fdir_fltr_msg = ice_vc_add_fdir_fltr,
3942 .del_fdir_fltr_msg = ice_vc_del_fdir_fltr,
3943 .get_offload_vlan_v2_caps = ice_vc_get_offload_vlan_v2_caps,
3944 .add_vlan_v2_msg = ice_vc_add_vlan_v2_msg,
3945 .remove_vlan_v2_msg = ice_vc_remove_vlan_v2_msg,
3946 .ena_vlan_stripping_v2_msg = ice_vc_ena_vlan_stripping_v2_msg,
3947 .dis_vlan_stripping_v2_msg = ice_vc_dis_vlan_stripping_v2_msg,
3948 .ena_vlan_insertion_v2_msg = ice_vc_ena_vlan_insertion_v2_msg,
3949 .dis_vlan_insertion_v2_msg = ice_vc_dis_vlan_insertion_v2_msg,
3950};
3951
3952/**
3953 * ice_virtchnl_set_repr_ops - Switch to representor virtchnl ops
3954 * @vf: the VF to switch ops
3955 */
3956void ice_virtchnl_set_repr_ops(struct ice_vf *vf)
3957{
3958 vf->virtchnl_ops = &ice_virtchnl_repr_ops;
3959}
3960
3961/**
3962 * ice_is_malicious_vf - check if this vf might be overflowing mailbox
3963 * @vf: the VF to check
3964 * @mbxdata: data about the state of the mailbox
3965 *
3966 * Detect if a given VF might be malicious and attempting to overflow the PF
3967 * mailbox. If so, log a warning message and ignore this event.
3968 */
3969static bool
3970ice_is_malicious_vf(struct ice_vf *vf, struct ice_mbx_data *mbxdata)
3971{
3972 bool report_malvf = false;
3973 struct device *dev;
3974 struct ice_pf *pf;
3975 int status;
3976
3977 pf = vf->pf;
3978 dev = ice_pf_to_dev(pf);
3979
3980 if (test_bit(ICE_VF_STATE_DIS, vf->vf_states))
3981 return vf->mbx_info.malicious;
3982
3983 /* check to see if we have a newly malicious VF */
3984 status = ice_mbx_vf_state_handler(&pf->hw, mbxdata, &vf->mbx_info,
3985 &report_malvf);
3986 if (status)
3987 dev_warn_ratelimited(dev, "Unable to check status of mailbox overflow for VF %u MAC %pM, status %d\n",
3988 vf->vf_id, vf->dev_lan_addr, status);
3989
3990 if (report_malvf) {
3991 struct ice_vsi *pf_vsi = ice_get_main_vsi(pf);
3992 u8 zero_addr[ETH_ALEN] = {};
3993
3994 dev_warn(dev, "VF MAC %pM on PF MAC %pM is generating asynchronous messages and may be overflowing the PF message queue. Please see the Adapter User Guide for more information\n",
3995 vf->dev_lan_addr,
3996 pf_vsi ? pf_vsi->netdev->dev_addr : zero_addr);
3997 }
3998
3999 return vf->mbx_info.malicious;
4000}
4001
4002/**
4003 * ice_vc_process_vf_msg - Process request from VF
4004 * @pf: pointer to the PF structure
4005 * @event: pointer to the AQ event
4006 * @mbxdata: information used to detect VF attempting mailbox overflow
4007 *
4008 * called from the common asq/arq handler to
4009 * process request from VF
4010 */
4011void ice_vc_process_vf_msg(struct ice_pf *pf, struct ice_rq_event_info *event,
4012 struct ice_mbx_data *mbxdata)
4013{
4014 u32 v_opcode = le32_to_cpu(event->desc.cookie_high);
4015 s16 vf_id = le16_to_cpu(event->desc.retval);
4016 const struct ice_virtchnl_ops *ops;
4017 u16 msglen = event->msg_len;
4018 u8 *msg = event->msg_buf;
4019 struct ice_vf *vf = NULL;
4020 struct device *dev;
4021 int err = 0;
4022
4023 dev = ice_pf_to_dev(pf);
4024
4025 vf = ice_get_vf_by_id(pf, vf_id);
4026 if (!vf) {
4027 dev_err(dev, "Unable to locate VF for message from VF ID %d, opcode %d, len %d\n",
4028 vf_id, v_opcode, msglen);
4029 return;
4030 }
4031
4032 mutex_lock(&vf->cfg_lock);
4033
4034 /* Check if the VF is trying to overflow the mailbox */
4035 if (ice_is_malicious_vf(vf, mbxdata))
4036 goto finish;
4037
4038 /* Check if VF is disabled. */
4039 if (test_bit(ICE_VF_STATE_DIS, vf->vf_states)) {
4040 err = -EPERM;
4041 goto error_handler;
4042 }
4043
4044 ops = vf->virtchnl_ops;
4045
4046 /* Perform basic checks on the msg */
4047 err = virtchnl_vc_validate_vf_msg(&vf->vf_ver, v_opcode, msg, msglen);
4048 if (err) {
4049 if (err == VIRTCHNL_STATUS_ERR_PARAM)
4050 err = -EPERM;
4051 else
4052 err = -EINVAL;
4053 }
4054
4055error_handler:
4056 if (err) {
4057 ice_vc_send_msg_to_vf(vf, v_opcode, VIRTCHNL_STATUS_ERR_PARAM,
4058 NULL, 0);
4059 dev_err(dev, "Invalid message from VF %d, opcode %d, len %d, error %d\n",
4060 vf_id, v_opcode, msglen, err);
4061 goto finish;
4062 }
4063
4064 if (!ice_vc_is_opcode_allowed(vf, v_opcode)) {
4065 ice_vc_send_msg_to_vf(vf, v_opcode,
4066 VIRTCHNL_STATUS_ERR_NOT_SUPPORTED, NULL,
4067 0);
4068 goto finish;
4069 }
4070
4071 switch (v_opcode) {
4072 case VIRTCHNL_OP_VERSION:
4073 err = ops->get_ver_msg(vf, msg);
4074 break;
4075 case VIRTCHNL_OP_GET_VF_RESOURCES:
4076 err = ops->get_vf_res_msg(vf, msg);
4077 if (ice_vf_init_vlan_stripping(vf))
4078 dev_dbg(dev, "Failed to initialize VLAN stripping for VF %d\n",
4079 vf->vf_id);
4080 ice_vc_notify_vf_link_state(vf);
4081 break;
4082 case VIRTCHNL_OP_RESET_VF:
4083 ops->reset_vf(vf);
4084 break;
4085 case VIRTCHNL_OP_ADD_ETH_ADDR:
4086 err = ops->add_mac_addr_msg(vf, msg);
4087 break;
4088 case VIRTCHNL_OP_DEL_ETH_ADDR:
4089 err = ops->del_mac_addr_msg(vf, msg);
4090 break;
4091 case VIRTCHNL_OP_CONFIG_VSI_QUEUES:
4092 err = ops->cfg_qs_msg(vf, msg);
4093 break;
4094 case VIRTCHNL_OP_ENABLE_QUEUES:
4095 err = ops->ena_qs_msg(vf, msg);
4096 ice_vc_notify_vf_link_state(vf);
4097 break;
4098 case VIRTCHNL_OP_DISABLE_QUEUES:
4099 err = ops->dis_qs_msg(vf, msg);
4100 break;
4101 case VIRTCHNL_OP_REQUEST_QUEUES:
4102 err = ops->request_qs_msg(vf, msg);
4103 break;
4104 case VIRTCHNL_OP_CONFIG_IRQ_MAP:
4105 err = ops->cfg_irq_map_msg(vf, msg);
4106 break;
4107 case VIRTCHNL_OP_CONFIG_RSS_KEY:
4108 err = ops->config_rss_key(vf, msg);
4109 break;
4110 case VIRTCHNL_OP_CONFIG_RSS_LUT:
4111 err = ops->config_rss_lut(vf, msg);
4112 break;
4113 case VIRTCHNL_OP_CONFIG_RSS_HFUNC:
4114 err = ops->config_rss_hfunc(vf, msg);
4115 break;
4116 case VIRTCHNL_OP_GET_STATS:
4117 err = ops->get_stats_msg(vf, msg);
4118 break;
4119 case VIRTCHNL_OP_CONFIG_PROMISCUOUS_MODE:
4120 err = ops->cfg_promiscuous_mode_msg(vf, msg);
4121 break;
4122 case VIRTCHNL_OP_ADD_VLAN:
4123 err = ops->add_vlan_msg(vf, msg);
4124 break;
4125 case VIRTCHNL_OP_DEL_VLAN:
4126 err = ops->remove_vlan_msg(vf, msg);
4127 break;
4128 case VIRTCHNL_OP_GET_SUPPORTED_RXDIDS:
4129 err = ops->query_rxdid(vf);
4130 break;
4131 case VIRTCHNL_OP_GET_RSS_HENA_CAPS:
4132 err = ops->get_rss_hena(vf);
4133 break;
4134 case VIRTCHNL_OP_SET_RSS_HENA:
4135 err = ops->set_rss_hena_msg(vf, msg);
4136 break;
4137 case VIRTCHNL_OP_ENABLE_VLAN_STRIPPING:
4138 err = ops->ena_vlan_stripping(vf);
4139 break;
4140 case VIRTCHNL_OP_DISABLE_VLAN_STRIPPING:
4141 err = ops->dis_vlan_stripping(vf);
4142 break;
4143 case VIRTCHNL_OP_ADD_FDIR_FILTER:
4144 err = ops->add_fdir_fltr_msg(vf, msg);
4145 break;
4146 case VIRTCHNL_OP_DEL_FDIR_FILTER:
4147 err = ops->del_fdir_fltr_msg(vf, msg);
4148 break;
4149 case VIRTCHNL_OP_ADD_RSS_CFG:
4150 err = ops->handle_rss_cfg_msg(vf, msg, true);
4151 break;
4152 case VIRTCHNL_OP_DEL_RSS_CFG:
4153 err = ops->handle_rss_cfg_msg(vf, msg, false);
4154 break;
4155 case VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS:
4156 err = ops->get_offload_vlan_v2_caps(vf);
4157 break;
4158 case VIRTCHNL_OP_ADD_VLAN_V2:
4159 err = ops->add_vlan_v2_msg(vf, msg);
4160 break;
4161 case VIRTCHNL_OP_DEL_VLAN_V2:
4162 err = ops->remove_vlan_v2_msg(vf, msg);
4163 break;
4164 case VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2:
4165 err = ops->ena_vlan_stripping_v2_msg(vf, msg);
4166 break;
4167 case VIRTCHNL_OP_DISABLE_VLAN_STRIPPING_V2:
4168 err = ops->dis_vlan_stripping_v2_msg(vf, msg);
4169 break;
4170 case VIRTCHNL_OP_ENABLE_VLAN_INSERTION_V2:
4171 err = ops->ena_vlan_insertion_v2_msg(vf, msg);
4172 break;
4173 case VIRTCHNL_OP_DISABLE_VLAN_INSERTION_V2:
4174 err = ops->dis_vlan_insertion_v2_msg(vf, msg);
4175 break;
4176 case VIRTCHNL_OP_UNKNOWN:
4177 default:
4178 dev_err(dev, "Unsupported opcode %d from VF %d\n", v_opcode,
4179 vf_id);
4180 err = ice_vc_send_msg_to_vf(vf, v_opcode,
4181 VIRTCHNL_STATUS_ERR_NOT_SUPPORTED,
4182 NULL, 0);
4183 break;
4184 }
4185 if (err) {
4186 /* Helper function cares less about error return values here
4187 * as it is busy with pending work.
4188 */
4189 dev_info(dev, "PF failed to honor VF %d, opcode %d, error %d\n",
4190 vf_id, v_opcode, err);
4191 }
4192
4193finish:
4194 mutex_unlock(&vf->cfg_lock);
4195 ice_put_vf(vf);
4196}