Loading...
1// SPDX-License-Identifier: GPL-2.0
2/* Copyright(c) 2013 - 2018 Intel Corporation. */
3
4#include <linux/net/intel/libie/rx.h>
5
6#include "iavf.h"
7#include "iavf_prototype.h"
8/* All iavf tracepoints are defined by the include below, which must
9 * be included exactly once across the whole kernel with
10 * CREATE_TRACE_POINTS defined
11 */
12#define CREATE_TRACE_POINTS
13#include "iavf_trace.h"
14
15static int iavf_setup_all_tx_resources(struct iavf_adapter *adapter);
16static int iavf_setup_all_rx_resources(struct iavf_adapter *adapter);
17static int iavf_close(struct net_device *netdev);
18static void iavf_init_get_resources(struct iavf_adapter *adapter);
19static int iavf_check_reset_complete(struct iavf_hw *hw);
20
21char iavf_driver_name[] = "iavf";
22static const char iavf_driver_string[] =
23 "Intel(R) Ethernet Adaptive Virtual Function Network Driver";
24
25static const char iavf_copyright[] =
26 "Copyright (c) 2013 - 2018 Intel Corporation.";
27
28/* iavf_pci_tbl - PCI Device ID Table
29 *
30 * Wildcard entries (PCI_ANY_ID) should come last
31 * Last entry must be all 0s
32 *
33 * { Vendor ID, Device ID, SubVendor ID, SubDevice ID,
34 * Class, Class Mask, private data (not used) }
35 */
36static const struct pci_device_id iavf_pci_tbl[] = {
37 {PCI_VDEVICE(INTEL, IAVF_DEV_ID_VF), 0},
38 {PCI_VDEVICE(INTEL, IAVF_DEV_ID_VF_HV), 0},
39 {PCI_VDEVICE(INTEL, IAVF_DEV_ID_X722_VF), 0},
40 {PCI_VDEVICE(INTEL, IAVF_DEV_ID_ADAPTIVE_VF), 0},
41 /* required last entry */
42 {0, }
43};
44
45MODULE_DEVICE_TABLE(pci, iavf_pci_tbl);
46
47MODULE_ALIAS("i40evf");
48MODULE_DESCRIPTION("Intel(R) Ethernet Adaptive Virtual Function Network Driver");
49MODULE_IMPORT_NS("LIBETH");
50MODULE_IMPORT_NS("LIBIE");
51MODULE_LICENSE("GPL v2");
52
53static const struct net_device_ops iavf_netdev_ops;
54
55int iavf_status_to_errno(enum iavf_status status)
56{
57 switch (status) {
58 case IAVF_SUCCESS:
59 return 0;
60 case IAVF_ERR_PARAM:
61 case IAVF_ERR_MAC_TYPE:
62 case IAVF_ERR_INVALID_MAC_ADDR:
63 case IAVF_ERR_INVALID_LINK_SETTINGS:
64 case IAVF_ERR_INVALID_PD_ID:
65 case IAVF_ERR_INVALID_QP_ID:
66 case IAVF_ERR_INVALID_CQ_ID:
67 case IAVF_ERR_INVALID_CEQ_ID:
68 case IAVF_ERR_INVALID_AEQ_ID:
69 case IAVF_ERR_INVALID_SIZE:
70 case IAVF_ERR_INVALID_ARP_INDEX:
71 case IAVF_ERR_INVALID_FPM_FUNC_ID:
72 case IAVF_ERR_QP_INVALID_MSG_SIZE:
73 case IAVF_ERR_INVALID_FRAG_COUNT:
74 case IAVF_ERR_INVALID_ALIGNMENT:
75 case IAVF_ERR_INVALID_PUSH_PAGE_INDEX:
76 case IAVF_ERR_INVALID_IMM_DATA_SIZE:
77 case IAVF_ERR_INVALID_VF_ID:
78 case IAVF_ERR_INVALID_HMCFN_ID:
79 case IAVF_ERR_INVALID_PBLE_INDEX:
80 case IAVF_ERR_INVALID_SD_INDEX:
81 case IAVF_ERR_INVALID_PAGE_DESC_INDEX:
82 case IAVF_ERR_INVALID_SD_TYPE:
83 case IAVF_ERR_INVALID_HMC_OBJ_INDEX:
84 case IAVF_ERR_INVALID_HMC_OBJ_COUNT:
85 case IAVF_ERR_INVALID_SRQ_ARM_LIMIT:
86 return -EINVAL;
87 case IAVF_ERR_NVM:
88 case IAVF_ERR_NVM_CHECKSUM:
89 case IAVF_ERR_PHY:
90 case IAVF_ERR_CONFIG:
91 case IAVF_ERR_UNKNOWN_PHY:
92 case IAVF_ERR_LINK_SETUP:
93 case IAVF_ERR_ADAPTER_STOPPED:
94 case IAVF_ERR_PRIMARY_REQUESTS_PENDING:
95 case IAVF_ERR_AUTONEG_NOT_COMPLETE:
96 case IAVF_ERR_RESET_FAILED:
97 case IAVF_ERR_BAD_PTR:
98 case IAVF_ERR_SWFW_SYNC:
99 case IAVF_ERR_QP_TOOMANY_WRS_POSTED:
100 case IAVF_ERR_QUEUE_EMPTY:
101 case IAVF_ERR_FLUSHED_QUEUE:
102 case IAVF_ERR_OPCODE_MISMATCH:
103 case IAVF_ERR_CQP_COMPL_ERROR:
104 case IAVF_ERR_BACKING_PAGE_ERROR:
105 case IAVF_ERR_NO_PBLCHUNKS_AVAILABLE:
106 case IAVF_ERR_MEMCPY_FAILED:
107 case IAVF_ERR_SRQ_ENABLED:
108 case IAVF_ERR_ADMIN_QUEUE_ERROR:
109 case IAVF_ERR_ADMIN_QUEUE_FULL:
110 case IAVF_ERR_BAD_RDMA_CQE:
111 case IAVF_ERR_NVM_BLANK_MODE:
112 case IAVF_ERR_PE_DOORBELL_NOT_ENABLED:
113 case IAVF_ERR_DIAG_TEST_FAILED:
114 case IAVF_ERR_FIRMWARE_API_VERSION:
115 case IAVF_ERR_ADMIN_QUEUE_CRITICAL_ERROR:
116 return -EIO;
117 case IAVF_ERR_DEVICE_NOT_SUPPORTED:
118 return -ENODEV;
119 case IAVF_ERR_NO_AVAILABLE_VSI:
120 case IAVF_ERR_RING_FULL:
121 return -ENOSPC;
122 case IAVF_ERR_NO_MEMORY:
123 return -ENOMEM;
124 case IAVF_ERR_TIMEOUT:
125 case IAVF_ERR_ADMIN_QUEUE_TIMEOUT:
126 return -ETIMEDOUT;
127 case IAVF_ERR_NOT_IMPLEMENTED:
128 case IAVF_NOT_SUPPORTED:
129 return -EOPNOTSUPP;
130 case IAVF_ERR_ADMIN_QUEUE_NO_WORK:
131 return -EALREADY;
132 case IAVF_ERR_NOT_READY:
133 return -EBUSY;
134 case IAVF_ERR_BUF_TOO_SHORT:
135 return -EMSGSIZE;
136 }
137
138 return -EIO;
139}
140
141int virtchnl_status_to_errno(enum virtchnl_status_code v_status)
142{
143 switch (v_status) {
144 case VIRTCHNL_STATUS_SUCCESS:
145 return 0;
146 case VIRTCHNL_STATUS_ERR_PARAM:
147 case VIRTCHNL_STATUS_ERR_INVALID_VF_ID:
148 return -EINVAL;
149 case VIRTCHNL_STATUS_ERR_NO_MEMORY:
150 return -ENOMEM;
151 case VIRTCHNL_STATUS_ERR_OPCODE_MISMATCH:
152 case VIRTCHNL_STATUS_ERR_CQP_COMPL_ERROR:
153 case VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR:
154 return -EIO;
155 case VIRTCHNL_STATUS_ERR_NOT_SUPPORTED:
156 return -EOPNOTSUPP;
157 }
158
159 return -EIO;
160}
161
162/**
163 * iavf_pdev_to_adapter - go from pci_dev to adapter
164 * @pdev: pci_dev pointer
165 */
166static struct iavf_adapter *iavf_pdev_to_adapter(struct pci_dev *pdev)
167{
168 return netdev_priv(pci_get_drvdata(pdev));
169}
170
171/**
172 * iavf_is_reset_in_progress - Check if a reset is in progress
173 * @adapter: board private structure
174 */
175static bool iavf_is_reset_in_progress(struct iavf_adapter *adapter)
176{
177 if (adapter->state == __IAVF_RESETTING ||
178 adapter->flags & (IAVF_FLAG_RESET_PENDING |
179 IAVF_FLAG_RESET_NEEDED))
180 return true;
181
182 return false;
183}
184
185/**
186 * iavf_wait_for_reset - Wait for reset to finish.
187 * @adapter: board private structure
188 *
189 * Returns 0 if reset finished successfully, negative on timeout or interrupt.
190 */
191int iavf_wait_for_reset(struct iavf_adapter *adapter)
192{
193 int ret = wait_event_interruptible_timeout(adapter->reset_waitqueue,
194 !iavf_is_reset_in_progress(adapter),
195 msecs_to_jiffies(5000));
196
197 /* If ret < 0 then it means wait was interrupted.
198 * If ret == 0 then it means we got a timeout while waiting
199 * for reset to finish.
200 * If ret > 0 it means reset has finished.
201 */
202 if (ret > 0)
203 return 0;
204 else if (ret < 0)
205 return -EINTR;
206 else
207 return -EBUSY;
208}
209
210/**
211 * iavf_allocate_dma_mem_d - OS specific memory alloc for shared code
212 * @hw: pointer to the HW structure
213 * @mem: ptr to mem struct to fill out
214 * @size: size of memory requested
215 * @alignment: what to align the allocation to
216 **/
217enum iavf_status iavf_allocate_dma_mem_d(struct iavf_hw *hw,
218 struct iavf_dma_mem *mem,
219 u64 size, u32 alignment)
220{
221 struct iavf_adapter *adapter = (struct iavf_adapter *)hw->back;
222
223 if (!mem)
224 return IAVF_ERR_PARAM;
225
226 mem->size = ALIGN(size, alignment);
227 mem->va = dma_alloc_coherent(&adapter->pdev->dev, mem->size,
228 (dma_addr_t *)&mem->pa, GFP_KERNEL);
229 if (mem->va)
230 return 0;
231 else
232 return IAVF_ERR_NO_MEMORY;
233}
234
235/**
236 * iavf_free_dma_mem - wrapper for DMA memory freeing
237 * @hw: pointer to the HW structure
238 * @mem: ptr to mem struct to free
239 **/
240enum iavf_status iavf_free_dma_mem(struct iavf_hw *hw, struct iavf_dma_mem *mem)
241{
242 struct iavf_adapter *adapter = (struct iavf_adapter *)hw->back;
243
244 if (!mem || !mem->va)
245 return IAVF_ERR_PARAM;
246 dma_free_coherent(&adapter->pdev->dev, mem->size,
247 mem->va, (dma_addr_t)mem->pa);
248 return 0;
249}
250
251/**
252 * iavf_allocate_virt_mem - virt memory alloc wrapper
253 * @hw: pointer to the HW structure
254 * @mem: ptr to mem struct to fill out
255 * @size: size of memory requested
256 **/
257enum iavf_status iavf_allocate_virt_mem(struct iavf_hw *hw,
258 struct iavf_virt_mem *mem, u32 size)
259{
260 if (!mem)
261 return IAVF_ERR_PARAM;
262
263 mem->size = size;
264 mem->va = kzalloc(size, GFP_KERNEL);
265
266 if (mem->va)
267 return 0;
268 else
269 return IAVF_ERR_NO_MEMORY;
270}
271
272/**
273 * iavf_free_virt_mem - virt memory free wrapper
274 * @hw: pointer to the HW structure
275 * @mem: ptr to mem struct to free
276 **/
277void iavf_free_virt_mem(struct iavf_hw *hw, struct iavf_virt_mem *mem)
278{
279 kfree(mem->va);
280}
281
282/**
283 * iavf_schedule_reset - Set the flags and schedule a reset event
284 * @adapter: board private structure
285 * @flags: IAVF_FLAG_RESET_PENDING or IAVF_FLAG_RESET_NEEDED
286 **/
287void iavf_schedule_reset(struct iavf_adapter *adapter, u64 flags)
288{
289 if (!test_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section) &&
290 !(adapter->flags &
291 (IAVF_FLAG_RESET_PENDING | IAVF_FLAG_RESET_NEEDED))) {
292 adapter->flags |= flags;
293 queue_work(adapter->wq, &adapter->reset_task);
294 }
295}
296
297/**
298 * iavf_schedule_aq_request - Set the flags and schedule aq request
299 * @adapter: board private structure
300 * @flags: requested aq flags
301 **/
302void iavf_schedule_aq_request(struct iavf_adapter *adapter, u64 flags)
303{
304 adapter->aq_required |= flags;
305 mod_delayed_work(adapter->wq, &adapter->watchdog_task, 0);
306}
307
308/**
309 * iavf_tx_timeout - Respond to a Tx Hang
310 * @netdev: network interface device structure
311 * @txqueue: queue number that is timing out
312 **/
313static void iavf_tx_timeout(struct net_device *netdev, unsigned int txqueue)
314{
315 struct iavf_adapter *adapter = netdev_priv(netdev);
316
317 adapter->tx_timeout_count++;
318 iavf_schedule_reset(adapter, IAVF_FLAG_RESET_NEEDED);
319}
320
321/**
322 * iavf_misc_irq_disable - Mask off interrupt generation on the NIC
323 * @adapter: board private structure
324 **/
325static void iavf_misc_irq_disable(struct iavf_adapter *adapter)
326{
327 struct iavf_hw *hw = &adapter->hw;
328
329 if (!adapter->msix_entries)
330 return;
331
332 wr32(hw, IAVF_VFINT_DYN_CTL01, 0);
333
334 iavf_flush(hw);
335
336 synchronize_irq(adapter->msix_entries[0].vector);
337}
338
339/**
340 * iavf_misc_irq_enable - Enable default interrupt generation settings
341 * @adapter: board private structure
342 **/
343static void iavf_misc_irq_enable(struct iavf_adapter *adapter)
344{
345 struct iavf_hw *hw = &adapter->hw;
346
347 wr32(hw, IAVF_VFINT_DYN_CTL01, IAVF_VFINT_DYN_CTL01_INTENA_MASK |
348 IAVF_VFINT_DYN_CTL01_ITR_INDX_MASK);
349 wr32(hw, IAVF_VFINT_ICR0_ENA1, IAVF_VFINT_ICR0_ENA1_ADMINQ_MASK);
350
351 iavf_flush(hw);
352}
353
354/**
355 * iavf_irq_disable - Mask off interrupt generation on the NIC
356 * @adapter: board private structure
357 **/
358static void iavf_irq_disable(struct iavf_adapter *adapter)
359{
360 int i;
361 struct iavf_hw *hw = &adapter->hw;
362
363 if (!adapter->msix_entries)
364 return;
365
366 for (i = 1; i < adapter->num_msix_vectors; i++) {
367 wr32(hw, IAVF_VFINT_DYN_CTLN1(i - 1), 0);
368 synchronize_irq(adapter->msix_entries[i].vector);
369 }
370 iavf_flush(hw);
371}
372
373/**
374 * iavf_irq_enable_queues - Enable interrupt for all queues
375 * @adapter: board private structure
376 **/
377static void iavf_irq_enable_queues(struct iavf_adapter *adapter)
378{
379 struct iavf_hw *hw = &adapter->hw;
380 int i;
381
382 for (i = 1; i < adapter->num_msix_vectors; i++) {
383 wr32(hw, IAVF_VFINT_DYN_CTLN1(i - 1),
384 IAVF_VFINT_DYN_CTLN1_INTENA_MASK |
385 IAVF_VFINT_DYN_CTLN1_ITR_INDX_MASK);
386 }
387}
388
389/**
390 * iavf_irq_enable - Enable default interrupt generation settings
391 * @adapter: board private structure
392 * @flush: boolean value whether to run rd32()
393 **/
394void iavf_irq_enable(struct iavf_adapter *adapter, bool flush)
395{
396 struct iavf_hw *hw = &adapter->hw;
397
398 iavf_misc_irq_enable(adapter);
399 iavf_irq_enable_queues(adapter);
400
401 if (flush)
402 iavf_flush(hw);
403}
404
405/**
406 * iavf_msix_aq - Interrupt handler for vector 0
407 * @irq: interrupt number
408 * @data: pointer to netdev
409 **/
410static irqreturn_t iavf_msix_aq(int irq, void *data)
411{
412 struct net_device *netdev = data;
413 struct iavf_adapter *adapter = netdev_priv(netdev);
414 struct iavf_hw *hw = &adapter->hw;
415
416 /* handle non-queue interrupts, these reads clear the registers */
417 rd32(hw, IAVF_VFINT_ICR01);
418 rd32(hw, IAVF_VFINT_ICR0_ENA1);
419
420 if (adapter->state != __IAVF_REMOVE)
421 /* schedule work on the private workqueue */
422 queue_work(adapter->wq, &adapter->adminq_task);
423
424 return IRQ_HANDLED;
425}
426
427/**
428 * iavf_msix_clean_rings - MSIX mode Interrupt Handler
429 * @irq: interrupt number
430 * @data: pointer to a q_vector
431 **/
432static irqreturn_t iavf_msix_clean_rings(int irq, void *data)
433{
434 struct iavf_q_vector *q_vector = data;
435
436 if (!q_vector->tx.ring && !q_vector->rx.ring)
437 return IRQ_HANDLED;
438
439 napi_schedule_irqoff(&q_vector->napi);
440
441 return IRQ_HANDLED;
442}
443
444/**
445 * iavf_map_vector_to_rxq - associate irqs with rx queues
446 * @adapter: board private structure
447 * @v_idx: interrupt number
448 * @r_idx: queue number
449 **/
450static void
451iavf_map_vector_to_rxq(struct iavf_adapter *adapter, int v_idx, int r_idx)
452{
453 struct iavf_q_vector *q_vector = &adapter->q_vectors[v_idx];
454 struct iavf_ring *rx_ring = &adapter->rx_rings[r_idx];
455 struct iavf_hw *hw = &adapter->hw;
456
457 rx_ring->q_vector = q_vector;
458 rx_ring->next = q_vector->rx.ring;
459 rx_ring->vsi = &adapter->vsi;
460 q_vector->rx.ring = rx_ring;
461 q_vector->rx.count++;
462 q_vector->rx.next_update = jiffies + 1;
463 q_vector->rx.target_itr = ITR_TO_REG(rx_ring->itr_setting);
464 q_vector->ring_mask |= BIT(r_idx);
465 wr32(hw, IAVF_VFINT_ITRN1(IAVF_RX_ITR, q_vector->reg_idx),
466 q_vector->rx.current_itr >> 1);
467 q_vector->rx.current_itr = q_vector->rx.target_itr;
468}
469
470/**
471 * iavf_map_vector_to_txq - associate irqs with tx queues
472 * @adapter: board private structure
473 * @v_idx: interrupt number
474 * @t_idx: queue number
475 **/
476static void
477iavf_map_vector_to_txq(struct iavf_adapter *adapter, int v_idx, int t_idx)
478{
479 struct iavf_q_vector *q_vector = &adapter->q_vectors[v_idx];
480 struct iavf_ring *tx_ring = &adapter->tx_rings[t_idx];
481 struct iavf_hw *hw = &adapter->hw;
482
483 tx_ring->q_vector = q_vector;
484 tx_ring->next = q_vector->tx.ring;
485 tx_ring->vsi = &adapter->vsi;
486 q_vector->tx.ring = tx_ring;
487 q_vector->tx.count++;
488 q_vector->tx.next_update = jiffies + 1;
489 q_vector->tx.target_itr = ITR_TO_REG(tx_ring->itr_setting);
490 q_vector->num_ringpairs++;
491 wr32(hw, IAVF_VFINT_ITRN1(IAVF_TX_ITR, q_vector->reg_idx),
492 q_vector->tx.target_itr >> 1);
493 q_vector->tx.current_itr = q_vector->tx.target_itr;
494}
495
496/**
497 * iavf_map_rings_to_vectors - Maps descriptor rings to vectors
498 * @adapter: board private structure to initialize
499 *
500 * This function maps descriptor rings to the queue-specific vectors
501 * we were allotted through the MSI-X enabling code. Ideally, we'd have
502 * one vector per ring/queue, but on a constrained vector budget, we
503 * group the rings as "efficiently" as possible. You would add new
504 * mapping configurations in here.
505 **/
506static void iavf_map_rings_to_vectors(struct iavf_adapter *adapter)
507{
508 int rings_remaining = adapter->num_active_queues;
509 int ridx = 0, vidx = 0;
510 int q_vectors;
511
512 q_vectors = adapter->num_msix_vectors - NONQ_VECS;
513
514 for (; ridx < rings_remaining; ridx++) {
515 iavf_map_vector_to_rxq(adapter, vidx, ridx);
516 iavf_map_vector_to_txq(adapter, vidx, ridx);
517
518 /* In the case where we have more queues than vectors, continue
519 * round-robin on vectors until all queues are mapped.
520 */
521 if (++vidx >= q_vectors)
522 vidx = 0;
523 }
524
525 adapter->aq_required |= IAVF_FLAG_AQ_MAP_VECTORS;
526}
527
528/**
529 * iavf_irq_affinity_notify - Callback for affinity changes
530 * @notify: context as to what irq was changed
531 * @mask: the new affinity mask
532 *
533 * This is a callback function used by the irq_set_affinity_notifier function
534 * so that we may register to receive changes to the irq affinity masks.
535 **/
536static void iavf_irq_affinity_notify(struct irq_affinity_notify *notify,
537 const cpumask_t *mask)
538{
539 struct iavf_q_vector *q_vector =
540 container_of(notify, struct iavf_q_vector, affinity_notify);
541
542 cpumask_copy(&q_vector->affinity_mask, mask);
543}
544
545/**
546 * iavf_irq_affinity_release - Callback for affinity notifier release
547 * @ref: internal core kernel usage
548 *
549 * This is a callback function used by the irq_set_affinity_notifier function
550 * to inform the current notification subscriber that they will no longer
551 * receive notifications.
552 **/
553static void iavf_irq_affinity_release(struct kref *ref) {}
554
555/**
556 * iavf_request_traffic_irqs - Initialize MSI-X interrupts
557 * @adapter: board private structure
558 * @basename: device basename
559 *
560 * Allocates MSI-X vectors for tx and rx handling, and requests
561 * interrupts from the kernel.
562 **/
563static int
564iavf_request_traffic_irqs(struct iavf_adapter *adapter, char *basename)
565{
566 unsigned int vector, q_vectors;
567 unsigned int rx_int_idx = 0, tx_int_idx = 0;
568 int irq_num, err;
569 int cpu;
570
571 iavf_irq_disable(adapter);
572 /* Decrement for Other and TCP Timer vectors */
573 q_vectors = adapter->num_msix_vectors - NONQ_VECS;
574
575 for (vector = 0; vector < q_vectors; vector++) {
576 struct iavf_q_vector *q_vector = &adapter->q_vectors[vector];
577
578 irq_num = adapter->msix_entries[vector + NONQ_VECS].vector;
579
580 if (q_vector->tx.ring && q_vector->rx.ring) {
581 snprintf(q_vector->name, sizeof(q_vector->name),
582 "iavf-%s-TxRx-%u", basename, rx_int_idx++);
583 tx_int_idx++;
584 } else if (q_vector->rx.ring) {
585 snprintf(q_vector->name, sizeof(q_vector->name),
586 "iavf-%s-rx-%u", basename, rx_int_idx++);
587 } else if (q_vector->tx.ring) {
588 snprintf(q_vector->name, sizeof(q_vector->name),
589 "iavf-%s-tx-%u", basename, tx_int_idx++);
590 } else {
591 /* skip this unused q_vector */
592 continue;
593 }
594 err = request_irq(irq_num,
595 iavf_msix_clean_rings,
596 0,
597 q_vector->name,
598 q_vector);
599 if (err) {
600 dev_info(&adapter->pdev->dev,
601 "Request_irq failed, error: %d\n", err);
602 goto free_queue_irqs;
603 }
604 /* register for affinity change notifications */
605 q_vector->affinity_notify.notify = iavf_irq_affinity_notify;
606 q_vector->affinity_notify.release =
607 iavf_irq_affinity_release;
608 irq_set_affinity_notifier(irq_num, &q_vector->affinity_notify);
609 /* Spread the IRQ affinity hints across online CPUs. Note that
610 * get_cpu_mask returns a mask with a permanent lifetime so
611 * it's safe to use as a hint for irq_update_affinity_hint.
612 */
613 cpu = cpumask_local_spread(q_vector->v_idx, -1);
614 irq_update_affinity_hint(irq_num, get_cpu_mask(cpu));
615 }
616
617 return 0;
618
619free_queue_irqs:
620 while (vector) {
621 vector--;
622 irq_num = adapter->msix_entries[vector + NONQ_VECS].vector;
623 irq_set_affinity_notifier(irq_num, NULL);
624 irq_update_affinity_hint(irq_num, NULL);
625 free_irq(irq_num, &adapter->q_vectors[vector]);
626 }
627 return err;
628}
629
630/**
631 * iavf_request_misc_irq - Initialize MSI-X interrupts
632 * @adapter: board private structure
633 *
634 * Allocates MSI-X vector 0 and requests interrupts from the kernel. This
635 * vector is only for the admin queue, and stays active even when the netdev
636 * is closed.
637 **/
638static int iavf_request_misc_irq(struct iavf_adapter *adapter)
639{
640 struct net_device *netdev = adapter->netdev;
641 int err;
642
643 snprintf(adapter->misc_vector_name,
644 sizeof(adapter->misc_vector_name) - 1, "iavf-%s:mbx",
645 dev_name(&adapter->pdev->dev));
646 err = request_irq(adapter->msix_entries[0].vector,
647 &iavf_msix_aq, 0,
648 adapter->misc_vector_name, netdev);
649 if (err) {
650 dev_err(&adapter->pdev->dev,
651 "request_irq for %s failed: %d\n",
652 adapter->misc_vector_name, err);
653 free_irq(adapter->msix_entries[0].vector, netdev);
654 }
655 return err;
656}
657
658/**
659 * iavf_free_traffic_irqs - Free MSI-X interrupts
660 * @adapter: board private structure
661 *
662 * Frees all MSI-X vectors other than 0.
663 **/
664static void iavf_free_traffic_irqs(struct iavf_adapter *adapter)
665{
666 int vector, irq_num, q_vectors;
667
668 if (!adapter->msix_entries)
669 return;
670
671 q_vectors = adapter->num_msix_vectors - NONQ_VECS;
672
673 for (vector = 0; vector < q_vectors; vector++) {
674 irq_num = adapter->msix_entries[vector + NONQ_VECS].vector;
675 irq_set_affinity_notifier(irq_num, NULL);
676 irq_update_affinity_hint(irq_num, NULL);
677 free_irq(irq_num, &adapter->q_vectors[vector]);
678 }
679}
680
681/**
682 * iavf_free_misc_irq - Free MSI-X miscellaneous vector
683 * @adapter: board private structure
684 *
685 * Frees MSI-X vector 0.
686 **/
687static void iavf_free_misc_irq(struct iavf_adapter *adapter)
688{
689 struct net_device *netdev = adapter->netdev;
690
691 if (!adapter->msix_entries)
692 return;
693
694 free_irq(adapter->msix_entries[0].vector, netdev);
695}
696
697/**
698 * iavf_configure_tx - Configure Transmit Unit after Reset
699 * @adapter: board private structure
700 *
701 * Configure the Tx unit of the MAC after a reset.
702 **/
703static void iavf_configure_tx(struct iavf_adapter *adapter)
704{
705 struct iavf_hw *hw = &adapter->hw;
706 int i;
707
708 for (i = 0; i < adapter->num_active_queues; i++)
709 adapter->tx_rings[i].tail = hw->hw_addr + IAVF_QTX_TAIL1(i);
710}
711
712/**
713 * iavf_configure_rx - Configure Receive Unit after Reset
714 * @adapter: board private structure
715 *
716 * Configure the Rx unit of the MAC after a reset.
717 **/
718static void iavf_configure_rx(struct iavf_adapter *adapter)
719{
720 struct iavf_hw *hw = &adapter->hw;
721
722 for (u32 i = 0; i < adapter->num_active_queues; i++)
723 adapter->rx_rings[i].tail = hw->hw_addr + IAVF_QRX_TAIL1(i);
724}
725
726/**
727 * iavf_find_vlan - Search filter list for specific vlan filter
728 * @adapter: board private structure
729 * @vlan: vlan tag
730 *
731 * Returns ptr to the filter object or NULL. Must be called while holding the
732 * mac_vlan_list_lock.
733 **/
734static struct
735iavf_vlan_filter *iavf_find_vlan(struct iavf_adapter *adapter,
736 struct iavf_vlan vlan)
737{
738 struct iavf_vlan_filter *f;
739
740 list_for_each_entry(f, &adapter->vlan_filter_list, list) {
741 if (f->vlan.vid == vlan.vid &&
742 f->vlan.tpid == vlan.tpid)
743 return f;
744 }
745
746 return NULL;
747}
748
749/**
750 * iavf_add_vlan - Add a vlan filter to the list
751 * @adapter: board private structure
752 * @vlan: VLAN tag
753 *
754 * Returns ptr to the filter object or NULL when no memory available.
755 **/
756static struct
757iavf_vlan_filter *iavf_add_vlan(struct iavf_adapter *adapter,
758 struct iavf_vlan vlan)
759{
760 struct iavf_vlan_filter *f = NULL;
761
762 spin_lock_bh(&adapter->mac_vlan_list_lock);
763
764 f = iavf_find_vlan(adapter, vlan);
765 if (!f) {
766 f = kzalloc(sizeof(*f), GFP_ATOMIC);
767 if (!f)
768 goto clearout;
769
770 f->vlan = vlan;
771
772 list_add_tail(&f->list, &adapter->vlan_filter_list);
773 f->state = IAVF_VLAN_ADD;
774 adapter->num_vlan_filters++;
775 iavf_schedule_aq_request(adapter, IAVF_FLAG_AQ_ADD_VLAN_FILTER);
776 } else if (f->state == IAVF_VLAN_REMOVE) {
777 /* IAVF_VLAN_REMOVE means that VLAN wasn't yet removed.
778 * We can safely only change the state here.
779 */
780 f->state = IAVF_VLAN_ACTIVE;
781 }
782
783clearout:
784 spin_unlock_bh(&adapter->mac_vlan_list_lock);
785 return f;
786}
787
788/**
789 * iavf_del_vlan - Remove a vlan filter from the list
790 * @adapter: board private structure
791 * @vlan: VLAN tag
792 **/
793static void iavf_del_vlan(struct iavf_adapter *adapter, struct iavf_vlan vlan)
794{
795 struct iavf_vlan_filter *f;
796
797 spin_lock_bh(&adapter->mac_vlan_list_lock);
798
799 f = iavf_find_vlan(adapter, vlan);
800 if (f) {
801 /* IAVF_ADD_VLAN means that VLAN wasn't even added yet.
802 * Remove it from the list.
803 */
804 if (f->state == IAVF_VLAN_ADD) {
805 list_del(&f->list);
806 kfree(f);
807 adapter->num_vlan_filters--;
808 } else {
809 f->state = IAVF_VLAN_REMOVE;
810 iavf_schedule_aq_request(adapter,
811 IAVF_FLAG_AQ_DEL_VLAN_FILTER);
812 }
813 }
814
815 spin_unlock_bh(&adapter->mac_vlan_list_lock);
816}
817
818/**
819 * iavf_restore_filters
820 * @adapter: board private structure
821 *
822 * Restore existing non MAC filters when VF netdev comes back up
823 **/
824static void iavf_restore_filters(struct iavf_adapter *adapter)
825{
826 struct iavf_vlan_filter *f;
827
828 /* re-add all VLAN filters */
829 spin_lock_bh(&adapter->mac_vlan_list_lock);
830
831 list_for_each_entry(f, &adapter->vlan_filter_list, list) {
832 if (f->state == IAVF_VLAN_INACTIVE)
833 f->state = IAVF_VLAN_ADD;
834 }
835
836 spin_unlock_bh(&adapter->mac_vlan_list_lock);
837 adapter->aq_required |= IAVF_FLAG_AQ_ADD_VLAN_FILTER;
838}
839
840/**
841 * iavf_get_num_vlans_added - get number of VLANs added
842 * @adapter: board private structure
843 */
844u16 iavf_get_num_vlans_added(struct iavf_adapter *adapter)
845{
846 return adapter->num_vlan_filters;
847}
848
849/**
850 * iavf_get_max_vlans_allowed - get maximum VLANs allowed for this VF
851 * @adapter: board private structure
852 *
853 * This depends on the negotiated VLAN capability. For VIRTCHNL_VF_OFFLOAD_VLAN,
854 * do not impose a limit as that maintains current behavior and for
855 * VIRTCHNL_VF_OFFLOAD_VLAN_V2, use the maximum allowed sent from the PF.
856 **/
857static u16 iavf_get_max_vlans_allowed(struct iavf_adapter *adapter)
858{
859 /* don't impose any limit for VIRTCHNL_VF_OFFLOAD_VLAN since there has
860 * never been a limit on the VF driver side
861 */
862 if (VLAN_ALLOWED(adapter))
863 return VLAN_N_VID;
864 else if (VLAN_V2_ALLOWED(adapter))
865 return adapter->vlan_v2_caps.filtering.max_filters;
866
867 return 0;
868}
869
870/**
871 * iavf_max_vlans_added - check if maximum VLANs allowed already exist
872 * @adapter: board private structure
873 **/
874static bool iavf_max_vlans_added(struct iavf_adapter *adapter)
875{
876 if (iavf_get_num_vlans_added(adapter) <
877 iavf_get_max_vlans_allowed(adapter))
878 return false;
879
880 return true;
881}
882
883/**
884 * iavf_vlan_rx_add_vid - Add a VLAN filter to a device
885 * @netdev: network device struct
886 * @proto: unused protocol data
887 * @vid: VLAN tag
888 **/
889static int iavf_vlan_rx_add_vid(struct net_device *netdev,
890 __always_unused __be16 proto, u16 vid)
891{
892 struct iavf_adapter *adapter = netdev_priv(netdev);
893
894 /* Do not track VLAN 0 filter, always added by the PF on VF init */
895 if (!vid)
896 return 0;
897
898 if (!VLAN_FILTERING_ALLOWED(adapter))
899 return -EIO;
900
901 if (iavf_max_vlans_added(adapter)) {
902 netdev_err(netdev, "Max allowed VLAN filters %u. Remove existing VLANs or disable filtering via Ethtool if supported.\n",
903 iavf_get_max_vlans_allowed(adapter));
904 return -EIO;
905 }
906
907 if (!iavf_add_vlan(adapter, IAVF_VLAN(vid, be16_to_cpu(proto))))
908 return -ENOMEM;
909
910 return 0;
911}
912
913/**
914 * iavf_vlan_rx_kill_vid - Remove a VLAN filter from a device
915 * @netdev: network device struct
916 * @proto: unused protocol data
917 * @vid: VLAN tag
918 **/
919static int iavf_vlan_rx_kill_vid(struct net_device *netdev,
920 __always_unused __be16 proto, u16 vid)
921{
922 struct iavf_adapter *adapter = netdev_priv(netdev);
923
924 /* We do not track VLAN 0 filter */
925 if (!vid)
926 return 0;
927
928 iavf_del_vlan(adapter, IAVF_VLAN(vid, be16_to_cpu(proto)));
929 return 0;
930}
931
932/**
933 * iavf_find_filter - Search filter list for specific mac filter
934 * @adapter: board private structure
935 * @macaddr: the MAC address
936 *
937 * Returns ptr to the filter object or NULL. Must be called while holding the
938 * mac_vlan_list_lock.
939 **/
940static struct
941iavf_mac_filter *iavf_find_filter(struct iavf_adapter *adapter,
942 const u8 *macaddr)
943{
944 struct iavf_mac_filter *f;
945
946 if (!macaddr)
947 return NULL;
948
949 list_for_each_entry(f, &adapter->mac_filter_list, list) {
950 if (ether_addr_equal(macaddr, f->macaddr))
951 return f;
952 }
953 return NULL;
954}
955
956/**
957 * iavf_add_filter - Add a mac filter to the filter list
958 * @adapter: board private structure
959 * @macaddr: the MAC address
960 *
961 * Returns ptr to the filter object or NULL when no memory available.
962 **/
963struct iavf_mac_filter *iavf_add_filter(struct iavf_adapter *adapter,
964 const u8 *macaddr)
965{
966 struct iavf_mac_filter *f;
967
968 if (!macaddr)
969 return NULL;
970
971 f = iavf_find_filter(adapter, macaddr);
972 if (!f) {
973 f = kzalloc(sizeof(*f), GFP_ATOMIC);
974 if (!f)
975 return f;
976
977 ether_addr_copy(f->macaddr, macaddr);
978
979 list_add_tail(&f->list, &adapter->mac_filter_list);
980 f->add = true;
981 f->add_handled = false;
982 f->is_new_mac = true;
983 f->is_primary = ether_addr_equal(macaddr, adapter->hw.mac.addr);
984 adapter->aq_required |= IAVF_FLAG_AQ_ADD_MAC_FILTER;
985 } else {
986 f->remove = false;
987 }
988
989 return f;
990}
991
992/**
993 * iavf_replace_primary_mac - Replace current primary address
994 * @adapter: board private structure
995 * @new_mac: new MAC address to be applied
996 *
997 * Replace current dev_addr and send request to PF for removal of previous
998 * primary MAC address filter and addition of new primary MAC filter.
999 * Return 0 for success, -ENOMEM for failure.
1000 *
1001 * Do not call this with mac_vlan_list_lock!
1002 **/
1003static int iavf_replace_primary_mac(struct iavf_adapter *adapter,
1004 const u8 *new_mac)
1005{
1006 struct iavf_hw *hw = &adapter->hw;
1007 struct iavf_mac_filter *new_f;
1008 struct iavf_mac_filter *old_f;
1009
1010 spin_lock_bh(&adapter->mac_vlan_list_lock);
1011
1012 new_f = iavf_add_filter(adapter, new_mac);
1013 if (!new_f) {
1014 spin_unlock_bh(&adapter->mac_vlan_list_lock);
1015 return -ENOMEM;
1016 }
1017
1018 old_f = iavf_find_filter(adapter, hw->mac.addr);
1019 if (old_f) {
1020 old_f->is_primary = false;
1021 old_f->remove = true;
1022 adapter->aq_required |= IAVF_FLAG_AQ_DEL_MAC_FILTER;
1023 }
1024 /* Always send the request to add if changing primary MAC,
1025 * even if filter is already present on the list
1026 */
1027 new_f->is_primary = true;
1028 new_f->add = true;
1029 ether_addr_copy(hw->mac.addr, new_mac);
1030
1031 spin_unlock_bh(&adapter->mac_vlan_list_lock);
1032
1033 /* schedule the watchdog task to immediately process the request */
1034 iavf_schedule_aq_request(adapter, IAVF_FLAG_AQ_ADD_MAC_FILTER);
1035 return 0;
1036}
1037
1038/**
1039 * iavf_is_mac_set_handled - wait for a response to set MAC from PF
1040 * @netdev: network interface device structure
1041 * @macaddr: MAC address to set
1042 *
1043 * Returns true on success, false on failure
1044 */
1045static bool iavf_is_mac_set_handled(struct net_device *netdev,
1046 const u8 *macaddr)
1047{
1048 struct iavf_adapter *adapter = netdev_priv(netdev);
1049 struct iavf_mac_filter *f;
1050 bool ret = false;
1051
1052 spin_lock_bh(&adapter->mac_vlan_list_lock);
1053
1054 f = iavf_find_filter(adapter, macaddr);
1055
1056 if (!f || (!f->add && f->add_handled))
1057 ret = true;
1058
1059 spin_unlock_bh(&adapter->mac_vlan_list_lock);
1060
1061 return ret;
1062}
1063
1064/**
1065 * iavf_set_mac - NDO callback to set port MAC address
1066 * @netdev: network interface device structure
1067 * @p: pointer to an address structure
1068 *
1069 * Returns 0 on success, negative on failure
1070 */
1071static int iavf_set_mac(struct net_device *netdev, void *p)
1072{
1073 struct iavf_adapter *adapter = netdev_priv(netdev);
1074 struct sockaddr *addr = p;
1075 int ret;
1076
1077 if (!is_valid_ether_addr(addr->sa_data))
1078 return -EADDRNOTAVAIL;
1079
1080 ret = iavf_replace_primary_mac(adapter, addr->sa_data);
1081
1082 if (ret)
1083 return ret;
1084
1085 ret = wait_event_interruptible_timeout(adapter->vc_waitqueue,
1086 iavf_is_mac_set_handled(netdev, addr->sa_data),
1087 msecs_to_jiffies(2500));
1088
1089 /* If ret < 0 then it means wait was interrupted.
1090 * If ret == 0 then it means we got a timeout.
1091 * else it means we got response for set MAC from PF,
1092 * check if netdev MAC was updated to requested MAC,
1093 * if yes then set MAC succeeded otherwise it failed return -EACCES
1094 */
1095 if (ret < 0)
1096 return ret;
1097
1098 if (!ret)
1099 return -EAGAIN;
1100
1101 if (!ether_addr_equal(netdev->dev_addr, addr->sa_data))
1102 return -EACCES;
1103
1104 return 0;
1105}
1106
1107/**
1108 * iavf_addr_sync - Callback for dev_(mc|uc)_sync to add address
1109 * @netdev: the netdevice
1110 * @addr: address to add
1111 *
1112 * Called by __dev_(mc|uc)_sync when an address needs to be added. We call
1113 * __dev_(uc|mc)_sync from .set_rx_mode and guarantee to hold the hash lock.
1114 */
1115static int iavf_addr_sync(struct net_device *netdev, const u8 *addr)
1116{
1117 struct iavf_adapter *adapter = netdev_priv(netdev);
1118
1119 if (iavf_add_filter(adapter, addr))
1120 return 0;
1121 else
1122 return -ENOMEM;
1123}
1124
1125/**
1126 * iavf_addr_unsync - Callback for dev_(mc|uc)_sync to remove address
1127 * @netdev: the netdevice
1128 * @addr: address to add
1129 *
1130 * Called by __dev_(mc|uc)_sync when an address needs to be removed. We call
1131 * __dev_(uc|mc)_sync from .set_rx_mode and guarantee to hold the hash lock.
1132 */
1133static int iavf_addr_unsync(struct net_device *netdev, const u8 *addr)
1134{
1135 struct iavf_adapter *adapter = netdev_priv(netdev);
1136 struct iavf_mac_filter *f;
1137
1138 /* Under some circumstances, we might receive a request to delete
1139 * our own device address from our uc list. Because we store the
1140 * device address in the VSI's MAC/VLAN filter list, we need to ignore
1141 * such requests and not delete our device address from this list.
1142 */
1143 if (ether_addr_equal(addr, netdev->dev_addr))
1144 return 0;
1145
1146 f = iavf_find_filter(adapter, addr);
1147 if (f) {
1148 f->remove = true;
1149 adapter->aq_required |= IAVF_FLAG_AQ_DEL_MAC_FILTER;
1150 }
1151 return 0;
1152}
1153
1154/**
1155 * iavf_promiscuous_mode_changed - check if promiscuous mode bits changed
1156 * @adapter: device specific adapter
1157 */
1158bool iavf_promiscuous_mode_changed(struct iavf_adapter *adapter)
1159{
1160 return (adapter->current_netdev_promisc_flags ^ adapter->netdev->flags) &
1161 (IFF_PROMISC | IFF_ALLMULTI);
1162}
1163
1164/**
1165 * iavf_set_rx_mode - NDO callback to set the netdev filters
1166 * @netdev: network interface device structure
1167 **/
1168static void iavf_set_rx_mode(struct net_device *netdev)
1169{
1170 struct iavf_adapter *adapter = netdev_priv(netdev);
1171
1172 spin_lock_bh(&adapter->mac_vlan_list_lock);
1173 __dev_uc_sync(netdev, iavf_addr_sync, iavf_addr_unsync);
1174 __dev_mc_sync(netdev, iavf_addr_sync, iavf_addr_unsync);
1175 spin_unlock_bh(&adapter->mac_vlan_list_lock);
1176
1177 spin_lock_bh(&adapter->current_netdev_promisc_flags_lock);
1178 if (iavf_promiscuous_mode_changed(adapter))
1179 adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_PROMISC_MODE;
1180 spin_unlock_bh(&adapter->current_netdev_promisc_flags_lock);
1181}
1182
1183/**
1184 * iavf_napi_enable_all - enable NAPI on all queue vectors
1185 * @adapter: board private structure
1186 **/
1187static void iavf_napi_enable_all(struct iavf_adapter *adapter)
1188{
1189 int q_idx;
1190 struct iavf_q_vector *q_vector;
1191 int q_vectors = adapter->num_msix_vectors - NONQ_VECS;
1192
1193 for (q_idx = 0; q_idx < q_vectors; q_idx++) {
1194 struct napi_struct *napi;
1195
1196 q_vector = &adapter->q_vectors[q_idx];
1197 napi = &q_vector->napi;
1198 napi_enable(napi);
1199 }
1200}
1201
1202/**
1203 * iavf_napi_disable_all - disable NAPI on all queue vectors
1204 * @adapter: board private structure
1205 **/
1206static void iavf_napi_disable_all(struct iavf_adapter *adapter)
1207{
1208 int q_idx;
1209 struct iavf_q_vector *q_vector;
1210 int q_vectors = adapter->num_msix_vectors - NONQ_VECS;
1211
1212 for (q_idx = 0; q_idx < q_vectors; q_idx++) {
1213 q_vector = &adapter->q_vectors[q_idx];
1214 napi_disable(&q_vector->napi);
1215 }
1216}
1217
1218/**
1219 * iavf_configure - set up transmit and receive data structures
1220 * @adapter: board private structure
1221 **/
1222static void iavf_configure(struct iavf_adapter *adapter)
1223{
1224 struct net_device *netdev = adapter->netdev;
1225 int i;
1226
1227 iavf_set_rx_mode(netdev);
1228
1229 iavf_configure_tx(adapter);
1230 iavf_configure_rx(adapter);
1231 adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_QUEUES;
1232
1233 for (i = 0; i < adapter->num_active_queues; i++) {
1234 struct iavf_ring *ring = &adapter->rx_rings[i];
1235
1236 iavf_alloc_rx_buffers(ring, IAVF_DESC_UNUSED(ring));
1237 }
1238}
1239
1240/**
1241 * iavf_up_complete - Finish the last steps of bringing up a connection
1242 * @adapter: board private structure
1243 *
1244 * Expects to be called while holding crit_lock.
1245 **/
1246static void iavf_up_complete(struct iavf_adapter *adapter)
1247{
1248 iavf_change_state(adapter, __IAVF_RUNNING);
1249 clear_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
1250
1251 iavf_napi_enable_all(adapter);
1252
1253 iavf_schedule_aq_request(adapter, IAVF_FLAG_AQ_ENABLE_QUEUES);
1254}
1255
1256/**
1257 * iavf_clear_mac_vlan_filters - Remove mac and vlan filters not sent to PF
1258 * yet and mark other to be removed.
1259 * @adapter: board private structure
1260 **/
1261static void iavf_clear_mac_vlan_filters(struct iavf_adapter *adapter)
1262{
1263 struct iavf_vlan_filter *vlf, *vlftmp;
1264 struct iavf_mac_filter *f, *ftmp;
1265
1266 spin_lock_bh(&adapter->mac_vlan_list_lock);
1267 /* clear the sync flag on all filters */
1268 __dev_uc_unsync(adapter->netdev, NULL);
1269 __dev_mc_unsync(adapter->netdev, NULL);
1270
1271 /* remove all MAC filters */
1272 list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list,
1273 list) {
1274 if (f->add) {
1275 list_del(&f->list);
1276 kfree(f);
1277 } else {
1278 f->remove = true;
1279 }
1280 }
1281
1282 /* disable all VLAN filters */
1283 list_for_each_entry_safe(vlf, vlftmp, &adapter->vlan_filter_list,
1284 list)
1285 vlf->state = IAVF_VLAN_DISABLE;
1286
1287 spin_unlock_bh(&adapter->mac_vlan_list_lock);
1288}
1289
1290/**
1291 * iavf_clear_cloud_filters - Remove cloud filters not sent to PF yet and
1292 * mark other to be removed.
1293 * @adapter: board private structure
1294 **/
1295static void iavf_clear_cloud_filters(struct iavf_adapter *adapter)
1296{
1297 struct iavf_cloud_filter *cf, *cftmp;
1298
1299 /* remove all cloud filters */
1300 spin_lock_bh(&adapter->cloud_filter_list_lock);
1301 list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list,
1302 list) {
1303 if (cf->add) {
1304 list_del(&cf->list);
1305 kfree(cf);
1306 adapter->num_cloud_filters--;
1307 } else {
1308 cf->del = true;
1309 }
1310 }
1311 spin_unlock_bh(&adapter->cloud_filter_list_lock);
1312}
1313
1314/**
1315 * iavf_clear_fdir_filters - Remove fdir filters not sent to PF yet and mark
1316 * other to be removed.
1317 * @adapter: board private structure
1318 **/
1319static void iavf_clear_fdir_filters(struct iavf_adapter *adapter)
1320{
1321 struct iavf_fdir_fltr *fdir;
1322
1323 /* remove all Flow Director filters */
1324 spin_lock_bh(&adapter->fdir_fltr_lock);
1325 list_for_each_entry(fdir, &adapter->fdir_list_head, list) {
1326 if (fdir->state == IAVF_FDIR_FLTR_ADD_REQUEST) {
1327 /* Cancel a request, keep filter as inactive */
1328 fdir->state = IAVF_FDIR_FLTR_INACTIVE;
1329 } else if (fdir->state == IAVF_FDIR_FLTR_ADD_PENDING ||
1330 fdir->state == IAVF_FDIR_FLTR_ACTIVE) {
1331 /* Disable filters which are active or have a pending
1332 * request to PF to be added
1333 */
1334 fdir->state = IAVF_FDIR_FLTR_DIS_REQUEST;
1335 }
1336 }
1337 spin_unlock_bh(&adapter->fdir_fltr_lock);
1338}
1339
1340/**
1341 * iavf_clear_adv_rss_conf - Remove adv rss conf not sent to PF yet and mark
1342 * other to be removed.
1343 * @adapter: board private structure
1344 **/
1345static void iavf_clear_adv_rss_conf(struct iavf_adapter *adapter)
1346{
1347 struct iavf_adv_rss *rss, *rsstmp;
1348
1349 /* remove all advance RSS configuration */
1350 spin_lock_bh(&adapter->adv_rss_lock);
1351 list_for_each_entry_safe(rss, rsstmp, &adapter->adv_rss_list_head,
1352 list) {
1353 if (rss->state == IAVF_ADV_RSS_ADD_REQUEST) {
1354 list_del(&rss->list);
1355 kfree(rss);
1356 } else {
1357 rss->state = IAVF_ADV_RSS_DEL_REQUEST;
1358 }
1359 }
1360 spin_unlock_bh(&adapter->adv_rss_lock);
1361}
1362
1363/**
1364 * iavf_down - Shutdown the connection processing
1365 * @adapter: board private structure
1366 *
1367 * Expects to be called while holding crit_lock.
1368 **/
1369void iavf_down(struct iavf_adapter *adapter)
1370{
1371 struct net_device *netdev = adapter->netdev;
1372
1373 if (adapter->state <= __IAVF_DOWN_PENDING)
1374 return;
1375
1376 netif_carrier_off(netdev);
1377 netif_tx_disable(netdev);
1378 adapter->link_up = false;
1379 iavf_napi_disable_all(adapter);
1380 iavf_irq_disable(adapter);
1381
1382 iavf_clear_mac_vlan_filters(adapter);
1383 iavf_clear_cloud_filters(adapter);
1384 iavf_clear_fdir_filters(adapter);
1385 iavf_clear_adv_rss_conf(adapter);
1386
1387 if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED)
1388 return;
1389
1390 if (!test_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section)) {
1391 /* cancel any current operation */
1392 adapter->current_op = VIRTCHNL_OP_UNKNOWN;
1393 /* Schedule operations to close down the HW. Don't wait
1394 * here for this to complete. The watchdog is still running
1395 * and it will take care of this.
1396 */
1397 if (!list_empty(&adapter->mac_filter_list))
1398 adapter->aq_required |= IAVF_FLAG_AQ_DEL_MAC_FILTER;
1399 if (!list_empty(&adapter->vlan_filter_list))
1400 adapter->aq_required |= IAVF_FLAG_AQ_DEL_VLAN_FILTER;
1401 if (!list_empty(&adapter->cloud_filter_list))
1402 adapter->aq_required |= IAVF_FLAG_AQ_DEL_CLOUD_FILTER;
1403 if (!list_empty(&adapter->fdir_list_head))
1404 adapter->aq_required |= IAVF_FLAG_AQ_DEL_FDIR_FILTER;
1405 if (!list_empty(&adapter->adv_rss_list_head))
1406 adapter->aq_required |= IAVF_FLAG_AQ_DEL_ADV_RSS_CFG;
1407 }
1408
1409 iavf_schedule_aq_request(adapter, IAVF_FLAG_AQ_DISABLE_QUEUES);
1410}
1411
1412/**
1413 * iavf_acquire_msix_vectors - Setup the MSIX capability
1414 * @adapter: board private structure
1415 * @vectors: number of vectors to request
1416 *
1417 * Work with the OS to set up the MSIX vectors needed.
1418 *
1419 * Returns 0 on success, negative on failure
1420 **/
1421static int
1422iavf_acquire_msix_vectors(struct iavf_adapter *adapter, int vectors)
1423{
1424 int err, vector_threshold;
1425
1426 /* We'll want at least 3 (vector_threshold):
1427 * 0) Other (Admin Queue and link, mostly)
1428 * 1) TxQ[0] Cleanup
1429 * 2) RxQ[0] Cleanup
1430 */
1431 vector_threshold = MIN_MSIX_COUNT;
1432
1433 /* The more we get, the more we will assign to Tx/Rx Cleanup
1434 * for the separate queues...where Rx Cleanup >= Tx Cleanup.
1435 * Right now, we simply care about how many we'll get; we'll
1436 * set them up later while requesting irq's.
1437 */
1438 err = pci_enable_msix_range(adapter->pdev, adapter->msix_entries,
1439 vector_threshold, vectors);
1440 if (err < 0) {
1441 dev_err(&adapter->pdev->dev, "Unable to allocate MSI-X interrupts\n");
1442 kfree(adapter->msix_entries);
1443 adapter->msix_entries = NULL;
1444 return err;
1445 }
1446
1447 /* Adjust for only the vectors we'll use, which is minimum
1448 * of max_msix_q_vectors + NONQ_VECS, or the number of
1449 * vectors we were allocated.
1450 */
1451 adapter->num_msix_vectors = err;
1452 return 0;
1453}
1454
1455/**
1456 * iavf_free_queues - Free memory for all rings
1457 * @adapter: board private structure to initialize
1458 *
1459 * Free all of the memory associated with queue pairs.
1460 **/
1461static void iavf_free_queues(struct iavf_adapter *adapter)
1462{
1463 if (!adapter->vsi_res)
1464 return;
1465 adapter->num_active_queues = 0;
1466 kfree(adapter->tx_rings);
1467 adapter->tx_rings = NULL;
1468 kfree(adapter->rx_rings);
1469 adapter->rx_rings = NULL;
1470}
1471
1472/**
1473 * iavf_set_queue_vlan_tag_loc - set location for VLAN tag offload
1474 * @adapter: board private structure
1475 *
1476 * Based on negotiated capabilities, the VLAN tag needs to be inserted and/or
1477 * stripped in certain descriptor fields. Instead of checking the offload
1478 * capability bits in the hot path, cache the location the ring specific
1479 * flags.
1480 */
1481void iavf_set_queue_vlan_tag_loc(struct iavf_adapter *adapter)
1482{
1483 int i;
1484
1485 for (i = 0; i < adapter->num_active_queues; i++) {
1486 struct iavf_ring *tx_ring = &adapter->tx_rings[i];
1487 struct iavf_ring *rx_ring = &adapter->rx_rings[i];
1488
1489 /* prevent multiple L2TAG bits being set after VFR */
1490 tx_ring->flags &=
1491 ~(IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1 |
1492 IAVF_TXR_FLAGS_VLAN_TAG_LOC_L2TAG2);
1493 rx_ring->flags &=
1494 ~(IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1 |
1495 IAVF_RXR_FLAGS_VLAN_TAG_LOC_L2TAG2_2);
1496
1497 if (VLAN_ALLOWED(adapter)) {
1498 tx_ring->flags |= IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1;
1499 rx_ring->flags |= IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1;
1500 } else if (VLAN_V2_ALLOWED(adapter)) {
1501 struct virtchnl_vlan_supported_caps *stripping_support;
1502 struct virtchnl_vlan_supported_caps *insertion_support;
1503
1504 stripping_support =
1505 &adapter->vlan_v2_caps.offloads.stripping_support;
1506 insertion_support =
1507 &adapter->vlan_v2_caps.offloads.insertion_support;
1508
1509 if (stripping_support->outer) {
1510 if (stripping_support->outer &
1511 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1)
1512 rx_ring->flags |=
1513 IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1;
1514 else if (stripping_support->outer &
1515 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2)
1516 rx_ring->flags |=
1517 IAVF_RXR_FLAGS_VLAN_TAG_LOC_L2TAG2_2;
1518 } else if (stripping_support->inner) {
1519 if (stripping_support->inner &
1520 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1)
1521 rx_ring->flags |=
1522 IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1;
1523 else if (stripping_support->inner &
1524 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2)
1525 rx_ring->flags |=
1526 IAVF_RXR_FLAGS_VLAN_TAG_LOC_L2TAG2_2;
1527 }
1528
1529 if (insertion_support->outer) {
1530 if (insertion_support->outer &
1531 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1)
1532 tx_ring->flags |=
1533 IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1;
1534 else if (insertion_support->outer &
1535 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2)
1536 tx_ring->flags |=
1537 IAVF_TXR_FLAGS_VLAN_TAG_LOC_L2TAG2;
1538 } else if (insertion_support->inner) {
1539 if (insertion_support->inner &
1540 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1)
1541 tx_ring->flags |=
1542 IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1;
1543 else if (insertion_support->inner &
1544 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2)
1545 tx_ring->flags |=
1546 IAVF_TXR_FLAGS_VLAN_TAG_LOC_L2TAG2;
1547 }
1548 }
1549 }
1550}
1551
1552/**
1553 * iavf_alloc_queues - Allocate memory for all rings
1554 * @adapter: board private structure to initialize
1555 *
1556 * We allocate one ring per queue at run-time since we don't know the
1557 * number of queues at compile-time. The polling_netdev array is
1558 * intended for Multiqueue, but should work fine with a single queue.
1559 **/
1560static int iavf_alloc_queues(struct iavf_adapter *adapter)
1561{
1562 int i, num_active_queues;
1563
1564 /* If we're in reset reallocating queues we don't actually know yet for
1565 * certain the PF gave us the number of queues we asked for but we'll
1566 * assume it did. Once basic reset is finished we'll confirm once we
1567 * start negotiating config with PF.
1568 */
1569 if (adapter->num_req_queues)
1570 num_active_queues = adapter->num_req_queues;
1571 else if ((adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) &&
1572 adapter->num_tc)
1573 num_active_queues = adapter->ch_config.total_qps;
1574 else
1575 num_active_queues = min_t(int,
1576 adapter->vsi_res->num_queue_pairs,
1577 (int)(num_online_cpus()));
1578
1579
1580 adapter->tx_rings = kcalloc(num_active_queues,
1581 sizeof(struct iavf_ring), GFP_KERNEL);
1582 if (!adapter->tx_rings)
1583 goto err_out;
1584 adapter->rx_rings = kcalloc(num_active_queues,
1585 sizeof(struct iavf_ring), GFP_KERNEL);
1586 if (!adapter->rx_rings)
1587 goto err_out;
1588
1589 for (i = 0; i < num_active_queues; i++) {
1590 struct iavf_ring *tx_ring;
1591 struct iavf_ring *rx_ring;
1592
1593 tx_ring = &adapter->tx_rings[i];
1594
1595 tx_ring->queue_index = i;
1596 tx_ring->netdev = adapter->netdev;
1597 tx_ring->dev = &adapter->pdev->dev;
1598 tx_ring->count = adapter->tx_desc_count;
1599 tx_ring->itr_setting = IAVF_ITR_TX_DEF;
1600 if (adapter->flags & IAVF_FLAG_WB_ON_ITR_CAPABLE)
1601 tx_ring->flags |= IAVF_TXR_FLAGS_WB_ON_ITR;
1602
1603 rx_ring = &adapter->rx_rings[i];
1604 rx_ring->queue_index = i;
1605 rx_ring->netdev = adapter->netdev;
1606 rx_ring->count = adapter->rx_desc_count;
1607 rx_ring->itr_setting = IAVF_ITR_RX_DEF;
1608 }
1609
1610 adapter->num_active_queues = num_active_queues;
1611
1612 iavf_set_queue_vlan_tag_loc(adapter);
1613
1614 return 0;
1615
1616err_out:
1617 iavf_free_queues(adapter);
1618 return -ENOMEM;
1619}
1620
1621/**
1622 * iavf_set_interrupt_capability - set MSI-X or FAIL if not supported
1623 * @adapter: board private structure to initialize
1624 *
1625 * Attempt to configure the interrupts using the best available
1626 * capabilities of the hardware and the kernel.
1627 **/
1628static int iavf_set_interrupt_capability(struct iavf_adapter *adapter)
1629{
1630 int vector, v_budget;
1631 int pairs = 0;
1632 int err = 0;
1633
1634 if (!adapter->vsi_res) {
1635 err = -EIO;
1636 goto out;
1637 }
1638 pairs = adapter->num_active_queues;
1639
1640 /* It's easy to be greedy for MSI-X vectors, but it really doesn't do
1641 * us much good if we have more vectors than CPUs. However, we already
1642 * limit the total number of queues by the number of CPUs so we do not
1643 * need any further limiting here.
1644 */
1645 v_budget = min_t(int, pairs + NONQ_VECS,
1646 (int)adapter->vf_res->max_vectors);
1647
1648 adapter->msix_entries = kcalloc(v_budget,
1649 sizeof(struct msix_entry), GFP_KERNEL);
1650 if (!adapter->msix_entries) {
1651 err = -ENOMEM;
1652 goto out;
1653 }
1654
1655 for (vector = 0; vector < v_budget; vector++)
1656 adapter->msix_entries[vector].entry = vector;
1657
1658 err = iavf_acquire_msix_vectors(adapter, v_budget);
1659 if (!err)
1660 iavf_schedule_finish_config(adapter);
1661
1662out:
1663 return err;
1664}
1665
1666/**
1667 * iavf_config_rss_aq - Configure RSS keys and lut by using AQ commands
1668 * @adapter: board private structure
1669 *
1670 * Return 0 on success, negative on failure
1671 **/
1672static int iavf_config_rss_aq(struct iavf_adapter *adapter)
1673{
1674 struct iavf_aqc_get_set_rss_key_data *rss_key =
1675 (struct iavf_aqc_get_set_rss_key_data *)adapter->rss_key;
1676 struct iavf_hw *hw = &adapter->hw;
1677 enum iavf_status status;
1678
1679 if (adapter->current_op != VIRTCHNL_OP_UNKNOWN) {
1680 /* bail because we already have a command pending */
1681 dev_err(&adapter->pdev->dev, "Cannot configure RSS, command %d pending\n",
1682 adapter->current_op);
1683 return -EBUSY;
1684 }
1685
1686 status = iavf_aq_set_rss_key(hw, adapter->vsi.id, rss_key);
1687 if (status) {
1688 dev_err(&adapter->pdev->dev, "Cannot set RSS key, err %s aq_err %s\n",
1689 iavf_stat_str(hw, status),
1690 iavf_aq_str(hw, hw->aq.asq_last_status));
1691 return iavf_status_to_errno(status);
1692
1693 }
1694
1695 status = iavf_aq_set_rss_lut(hw, adapter->vsi.id, false,
1696 adapter->rss_lut, adapter->rss_lut_size);
1697 if (status) {
1698 dev_err(&adapter->pdev->dev, "Cannot set RSS lut, err %s aq_err %s\n",
1699 iavf_stat_str(hw, status),
1700 iavf_aq_str(hw, hw->aq.asq_last_status));
1701 return iavf_status_to_errno(status);
1702 }
1703
1704 return 0;
1705
1706}
1707
1708/**
1709 * iavf_config_rss_reg - Configure RSS keys and lut by writing registers
1710 * @adapter: board private structure
1711 *
1712 * Returns 0 on success, negative on failure
1713 **/
1714static int iavf_config_rss_reg(struct iavf_adapter *adapter)
1715{
1716 struct iavf_hw *hw = &adapter->hw;
1717 u32 *dw;
1718 u16 i;
1719
1720 dw = (u32 *)adapter->rss_key;
1721 for (i = 0; i <= adapter->rss_key_size / 4; i++)
1722 wr32(hw, IAVF_VFQF_HKEY(i), dw[i]);
1723
1724 dw = (u32 *)adapter->rss_lut;
1725 for (i = 0; i <= adapter->rss_lut_size / 4; i++)
1726 wr32(hw, IAVF_VFQF_HLUT(i), dw[i]);
1727
1728 iavf_flush(hw);
1729
1730 return 0;
1731}
1732
1733/**
1734 * iavf_config_rss - Configure RSS keys and lut
1735 * @adapter: board private structure
1736 *
1737 * Returns 0 on success, negative on failure
1738 **/
1739int iavf_config_rss(struct iavf_adapter *adapter)
1740{
1741
1742 if (RSS_PF(adapter)) {
1743 adapter->aq_required |= IAVF_FLAG_AQ_SET_RSS_LUT |
1744 IAVF_FLAG_AQ_SET_RSS_KEY;
1745 return 0;
1746 } else if (RSS_AQ(adapter)) {
1747 return iavf_config_rss_aq(adapter);
1748 } else {
1749 return iavf_config_rss_reg(adapter);
1750 }
1751}
1752
1753/**
1754 * iavf_fill_rss_lut - Fill the lut with default values
1755 * @adapter: board private structure
1756 **/
1757static void iavf_fill_rss_lut(struct iavf_adapter *adapter)
1758{
1759 u16 i;
1760
1761 for (i = 0; i < adapter->rss_lut_size; i++)
1762 adapter->rss_lut[i] = i % adapter->num_active_queues;
1763}
1764
1765/**
1766 * iavf_init_rss - Prepare for RSS
1767 * @adapter: board private structure
1768 *
1769 * Return 0 on success, negative on failure
1770 **/
1771static int iavf_init_rss(struct iavf_adapter *adapter)
1772{
1773 struct iavf_hw *hw = &adapter->hw;
1774
1775 if (!RSS_PF(adapter)) {
1776 /* Enable PCTYPES for RSS, TCP/UDP with IPv4/IPv6 */
1777 if (adapter->vf_res->vf_cap_flags &
1778 VIRTCHNL_VF_OFFLOAD_RSS_PCTYPE_V2)
1779 adapter->hena = IAVF_DEFAULT_RSS_HENA_EXPANDED;
1780 else
1781 adapter->hena = IAVF_DEFAULT_RSS_HENA;
1782
1783 wr32(hw, IAVF_VFQF_HENA(0), (u32)adapter->hena);
1784 wr32(hw, IAVF_VFQF_HENA(1), (u32)(adapter->hena >> 32));
1785 }
1786
1787 iavf_fill_rss_lut(adapter);
1788 netdev_rss_key_fill((void *)adapter->rss_key, adapter->rss_key_size);
1789
1790 return iavf_config_rss(adapter);
1791}
1792
1793/**
1794 * iavf_alloc_q_vectors - Allocate memory for interrupt vectors
1795 * @adapter: board private structure to initialize
1796 *
1797 * We allocate one q_vector per queue interrupt. If allocation fails we
1798 * return -ENOMEM.
1799 **/
1800static int iavf_alloc_q_vectors(struct iavf_adapter *adapter)
1801{
1802 int q_idx = 0, num_q_vectors;
1803 struct iavf_q_vector *q_vector;
1804
1805 num_q_vectors = adapter->num_msix_vectors - NONQ_VECS;
1806 adapter->q_vectors = kcalloc(num_q_vectors, sizeof(*q_vector),
1807 GFP_KERNEL);
1808 if (!adapter->q_vectors)
1809 return -ENOMEM;
1810
1811 for (q_idx = 0; q_idx < num_q_vectors; q_idx++) {
1812 q_vector = &adapter->q_vectors[q_idx];
1813 q_vector->adapter = adapter;
1814 q_vector->vsi = &adapter->vsi;
1815 q_vector->v_idx = q_idx;
1816 q_vector->reg_idx = q_idx;
1817 cpumask_copy(&q_vector->affinity_mask, cpu_possible_mask);
1818 netif_napi_add(adapter->netdev, &q_vector->napi,
1819 iavf_napi_poll);
1820 }
1821
1822 return 0;
1823}
1824
1825/**
1826 * iavf_free_q_vectors - Free memory allocated for interrupt vectors
1827 * @adapter: board private structure to initialize
1828 *
1829 * This function frees the memory allocated to the q_vectors. In addition if
1830 * NAPI is enabled it will delete any references to the NAPI struct prior
1831 * to freeing the q_vector.
1832 **/
1833static void iavf_free_q_vectors(struct iavf_adapter *adapter)
1834{
1835 int q_idx, num_q_vectors;
1836
1837 if (!adapter->q_vectors)
1838 return;
1839
1840 num_q_vectors = adapter->num_msix_vectors - NONQ_VECS;
1841
1842 for (q_idx = 0; q_idx < num_q_vectors; q_idx++) {
1843 struct iavf_q_vector *q_vector = &adapter->q_vectors[q_idx];
1844
1845 netif_napi_del(&q_vector->napi);
1846 }
1847 kfree(adapter->q_vectors);
1848 adapter->q_vectors = NULL;
1849}
1850
1851/**
1852 * iavf_reset_interrupt_capability - Reset MSIX setup
1853 * @adapter: board private structure
1854 *
1855 **/
1856static void iavf_reset_interrupt_capability(struct iavf_adapter *adapter)
1857{
1858 if (!adapter->msix_entries)
1859 return;
1860
1861 pci_disable_msix(adapter->pdev);
1862 kfree(adapter->msix_entries);
1863 adapter->msix_entries = NULL;
1864}
1865
1866/**
1867 * iavf_init_interrupt_scheme - Determine if MSIX is supported and init
1868 * @adapter: board private structure to initialize
1869 *
1870 **/
1871static int iavf_init_interrupt_scheme(struct iavf_adapter *adapter)
1872{
1873 int err;
1874
1875 err = iavf_alloc_queues(adapter);
1876 if (err) {
1877 dev_err(&adapter->pdev->dev,
1878 "Unable to allocate memory for queues\n");
1879 goto err_alloc_queues;
1880 }
1881
1882 err = iavf_set_interrupt_capability(adapter);
1883 if (err) {
1884 dev_err(&adapter->pdev->dev,
1885 "Unable to setup interrupt capabilities\n");
1886 goto err_set_interrupt;
1887 }
1888
1889 err = iavf_alloc_q_vectors(adapter);
1890 if (err) {
1891 dev_err(&adapter->pdev->dev,
1892 "Unable to allocate memory for queue vectors\n");
1893 goto err_alloc_q_vectors;
1894 }
1895
1896 /* If we've made it so far while ADq flag being ON, then we haven't
1897 * bailed out anywhere in middle. And ADq isn't just enabled but actual
1898 * resources have been allocated in the reset path.
1899 * Now we can truly claim that ADq is enabled.
1900 */
1901 if ((adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) &&
1902 adapter->num_tc)
1903 dev_info(&adapter->pdev->dev, "ADq Enabled, %u TCs created",
1904 adapter->num_tc);
1905
1906 dev_info(&adapter->pdev->dev, "Multiqueue %s: Queue pair count = %u",
1907 (adapter->num_active_queues > 1) ? "Enabled" : "Disabled",
1908 adapter->num_active_queues);
1909
1910 return 0;
1911err_alloc_q_vectors:
1912 iavf_reset_interrupt_capability(adapter);
1913err_set_interrupt:
1914 iavf_free_queues(adapter);
1915err_alloc_queues:
1916 return err;
1917}
1918
1919/**
1920 * iavf_free_interrupt_scheme - Undo what iavf_init_interrupt_scheme does
1921 * @adapter: board private structure
1922 **/
1923static void iavf_free_interrupt_scheme(struct iavf_adapter *adapter)
1924{
1925 iavf_free_q_vectors(adapter);
1926 iavf_reset_interrupt_capability(adapter);
1927 iavf_free_queues(adapter);
1928}
1929
1930/**
1931 * iavf_free_rss - Free memory used by RSS structs
1932 * @adapter: board private structure
1933 **/
1934static void iavf_free_rss(struct iavf_adapter *adapter)
1935{
1936 kfree(adapter->rss_key);
1937 adapter->rss_key = NULL;
1938
1939 kfree(adapter->rss_lut);
1940 adapter->rss_lut = NULL;
1941}
1942
1943/**
1944 * iavf_reinit_interrupt_scheme - Reallocate queues and vectors
1945 * @adapter: board private structure
1946 * @running: true if adapter->state == __IAVF_RUNNING
1947 *
1948 * Returns 0 on success, negative on failure
1949 **/
1950static int iavf_reinit_interrupt_scheme(struct iavf_adapter *adapter, bool running)
1951{
1952 struct net_device *netdev = adapter->netdev;
1953 int err;
1954
1955 if (running)
1956 iavf_free_traffic_irqs(adapter);
1957 iavf_free_misc_irq(adapter);
1958 iavf_free_interrupt_scheme(adapter);
1959
1960 err = iavf_init_interrupt_scheme(adapter);
1961 if (err)
1962 goto err;
1963
1964 netif_tx_stop_all_queues(netdev);
1965
1966 err = iavf_request_misc_irq(adapter);
1967 if (err)
1968 goto err;
1969
1970 set_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
1971
1972 iavf_map_rings_to_vectors(adapter);
1973err:
1974 return err;
1975}
1976
1977/**
1978 * iavf_finish_config - do all netdev work that needs RTNL
1979 * @work: our work_struct
1980 *
1981 * Do work that needs both RTNL and crit_lock.
1982 **/
1983static void iavf_finish_config(struct work_struct *work)
1984{
1985 struct iavf_adapter *adapter;
1986 int pairs, err;
1987
1988 adapter = container_of(work, struct iavf_adapter, finish_config);
1989
1990 /* Always take RTNL first to prevent circular lock dependency;
1991 * The dev->lock is needed to update the queue number
1992 */
1993 rtnl_lock();
1994 mutex_lock(&adapter->netdev->lock);
1995 mutex_lock(&adapter->crit_lock);
1996
1997 if ((adapter->flags & IAVF_FLAG_SETUP_NETDEV_FEATURES) &&
1998 adapter->netdev->reg_state == NETREG_REGISTERED &&
1999 !test_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section)) {
2000 netdev_update_features(adapter->netdev);
2001 adapter->flags &= ~IAVF_FLAG_SETUP_NETDEV_FEATURES;
2002 }
2003
2004 switch (adapter->state) {
2005 case __IAVF_DOWN:
2006 if (adapter->netdev->reg_state != NETREG_REGISTERED) {
2007 err = register_netdevice(adapter->netdev);
2008 if (err) {
2009 dev_err(&adapter->pdev->dev, "Unable to register netdev (%d)\n",
2010 err);
2011
2012 /* go back and try again.*/
2013 iavf_free_rss(adapter);
2014 iavf_free_misc_irq(adapter);
2015 iavf_reset_interrupt_capability(adapter);
2016 iavf_change_state(adapter,
2017 __IAVF_INIT_CONFIG_ADAPTER);
2018 goto out;
2019 }
2020 }
2021
2022 /* Set the real number of queues when reset occurs while
2023 * state == __IAVF_DOWN
2024 */
2025 fallthrough;
2026 case __IAVF_RUNNING:
2027 pairs = adapter->num_active_queues;
2028 netif_set_real_num_rx_queues(adapter->netdev, pairs);
2029 netif_set_real_num_tx_queues(adapter->netdev, pairs);
2030 break;
2031
2032 default:
2033 break;
2034 }
2035
2036out:
2037 mutex_unlock(&adapter->crit_lock);
2038 mutex_unlock(&adapter->netdev->lock);
2039 rtnl_unlock();
2040}
2041
2042/**
2043 * iavf_schedule_finish_config - Set the flags and schedule a reset event
2044 * @adapter: board private structure
2045 **/
2046void iavf_schedule_finish_config(struct iavf_adapter *adapter)
2047{
2048 if (!test_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section))
2049 queue_work(adapter->wq, &adapter->finish_config);
2050}
2051
2052/**
2053 * iavf_process_aq_command - process aq_required flags
2054 * and sends aq command
2055 * @adapter: pointer to iavf adapter structure
2056 *
2057 * Returns 0 on success
2058 * Returns error code if no command was sent
2059 * or error code if the command failed.
2060 **/
2061static int iavf_process_aq_command(struct iavf_adapter *adapter)
2062{
2063 if (adapter->aq_required & IAVF_FLAG_AQ_GET_CONFIG)
2064 return iavf_send_vf_config_msg(adapter);
2065 if (adapter->aq_required & IAVF_FLAG_AQ_GET_OFFLOAD_VLAN_V2_CAPS)
2066 return iavf_send_vf_offload_vlan_v2_msg(adapter);
2067 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_QUEUES) {
2068 iavf_disable_queues(adapter);
2069 return 0;
2070 }
2071
2072 if (adapter->aq_required & IAVF_FLAG_AQ_MAP_VECTORS) {
2073 iavf_map_queues(adapter);
2074 return 0;
2075 }
2076
2077 if (adapter->aq_required & IAVF_FLAG_AQ_ADD_MAC_FILTER) {
2078 iavf_add_ether_addrs(adapter);
2079 return 0;
2080 }
2081
2082 if (adapter->aq_required & IAVF_FLAG_AQ_ADD_VLAN_FILTER) {
2083 iavf_add_vlans(adapter);
2084 return 0;
2085 }
2086
2087 if (adapter->aq_required & IAVF_FLAG_AQ_DEL_MAC_FILTER) {
2088 iavf_del_ether_addrs(adapter);
2089 return 0;
2090 }
2091
2092 if (adapter->aq_required & IAVF_FLAG_AQ_DEL_VLAN_FILTER) {
2093 iavf_del_vlans(adapter);
2094 return 0;
2095 }
2096
2097 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_VLAN_STRIPPING) {
2098 iavf_enable_vlan_stripping(adapter);
2099 return 0;
2100 }
2101
2102 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_VLAN_STRIPPING) {
2103 iavf_disable_vlan_stripping(adapter);
2104 return 0;
2105 }
2106
2107 if (adapter->aq_required & IAVF_FLAG_AQ_CONFIGURE_QUEUES_BW) {
2108 iavf_cfg_queues_bw(adapter);
2109 return 0;
2110 }
2111
2112 if (adapter->aq_required & IAVF_FLAG_AQ_GET_QOS_CAPS) {
2113 iavf_get_qos_caps(adapter);
2114 return 0;
2115 }
2116
2117 if (adapter->aq_required & IAVF_FLAG_AQ_CFG_QUEUES_QUANTA_SIZE) {
2118 iavf_cfg_queues_quanta_size(adapter);
2119 return 0;
2120 }
2121
2122 if (adapter->aq_required & IAVF_FLAG_AQ_CONFIGURE_QUEUES) {
2123 iavf_configure_queues(adapter);
2124 return 0;
2125 }
2126
2127 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_QUEUES) {
2128 iavf_enable_queues(adapter);
2129 return 0;
2130 }
2131
2132 if (adapter->aq_required & IAVF_FLAG_AQ_CONFIGURE_RSS) {
2133 /* This message goes straight to the firmware, not the
2134 * PF, so we don't have to set current_op as we will
2135 * not get a response through the ARQ.
2136 */
2137 adapter->aq_required &= ~IAVF_FLAG_AQ_CONFIGURE_RSS;
2138 return 0;
2139 }
2140 if (adapter->aq_required & IAVF_FLAG_AQ_GET_HENA) {
2141 iavf_get_hena(adapter);
2142 return 0;
2143 }
2144 if (adapter->aq_required & IAVF_FLAG_AQ_SET_HENA) {
2145 iavf_set_hena(adapter);
2146 return 0;
2147 }
2148 if (adapter->aq_required & IAVF_FLAG_AQ_SET_RSS_KEY) {
2149 iavf_set_rss_key(adapter);
2150 return 0;
2151 }
2152 if (adapter->aq_required & IAVF_FLAG_AQ_SET_RSS_LUT) {
2153 iavf_set_rss_lut(adapter);
2154 return 0;
2155 }
2156 if (adapter->aq_required & IAVF_FLAG_AQ_SET_RSS_HFUNC) {
2157 iavf_set_rss_hfunc(adapter);
2158 return 0;
2159 }
2160
2161 if (adapter->aq_required & IAVF_FLAG_AQ_CONFIGURE_PROMISC_MODE) {
2162 iavf_set_promiscuous(adapter);
2163 return 0;
2164 }
2165
2166 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_CHANNELS) {
2167 iavf_enable_channels(adapter);
2168 return 0;
2169 }
2170
2171 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_CHANNELS) {
2172 iavf_disable_channels(adapter);
2173 return 0;
2174 }
2175 if (adapter->aq_required & IAVF_FLAG_AQ_ADD_CLOUD_FILTER) {
2176 iavf_add_cloud_filter(adapter);
2177 return 0;
2178 }
2179 if (adapter->aq_required & IAVF_FLAG_AQ_DEL_CLOUD_FILTER) {
2180 iavf_del_cloud_filter(adapter);
2181 return 0;
2182 }
2183 if (adapter->aq_required & IAVF_FLAG_AQ_ADD_FDIR_FILTER) {
2184 iavf_add_fdir_filter(adapter);
2185 return IAVF_SUCCESS;
2186 }
2187 if (adapter->aq_required & IAVF_FLAG_AQ_DEL_FDIR_FILTER) {
2188 iavf_del_fdir_filter(adapter);
2189 return IAVF_SUCCESS;
2190 }
2191 if (adapter->aq_required & IAVF_FLAG_AQ_ADD_ADV_RSS_CFG) {
2192 iavf_add_adv_rss_cfg(adapter);
2193 return 0;
2194 }
2195 if (adapter->aq_required & IAVF_FLAG_AQ_DEL_ADV_RSS_CFG) {
2196 iavf_del_adv_rss_cfg(adapter);
2197 return 0;
2198 }
2199 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_CTAG_VLAN_STRIPPING) {
2200 iavf_disable_vlan_stripping_v2(adapter, ETH_P_8021Q);
2201 return 0;
2202 }
2203 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_STAG_VLAN_STRIPPING) {
2204 iavf_disable_vlan_stripping_v2(adapter, ETH_P_8021AD);
2205 return 0;
2206 }
2207 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_CTAG_VLAN_STRIPPING) {
2208 iavf_enable_vlan_stripping_v2(adapter, ETH_P_8021Q);
2209 return 0;
2210 }
2211 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_STAG_VLAN_STRIPPING) {
2212 iavf_enable_vlan_stripping_v2(adapter, ETH_P_8021AD);
2213 return 0;
2214 }
2215 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_CTAG_VLAN_INSERTION) {
2216 iavf_disable_vlan_insertion_v2(adapter, ETH_P_8021Q);
2217 return 0;
2218 }
2219 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_STAG_VLAN_INSERTION) {
2220 iavf_disable_vlan_insertion_v2(adapter, ETH_P_8021AD);
2221 return 0;
2222 }
2223 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_CTAG_VLAN_INSERTION) {
2224 iavf_enable_vlan_insertion_v2(adapter, ETH_P_8021Q);
2225 return 0;
2226 }
2227 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_STAG_VLAN_INSERTION) {
2228 iavf_enable_vlan_insertion_v2(adapter, ETH_P_8021AD);
2229 return 0;
2230 }
2231
2232 if (adapter->aq_required & IAVF_FLAG_AQ_REQUEST_STATS) {
2233 iavf_request_stats(adapter);
2234 return 0;
2235 }
2236
2237 return -EAGAIN;
2238}
2239
2240/**
2241 * iavf_set_vlan_offload_features - set VLAN offload configuration
2242 * @adapter: board private structure
2243 * @prev_features: previous features used for comparison
2244 * @features: updated features used for configuration
2245 *
2246 * Set the aq_required bit(s) based on the requested features passed in to
2247 * configure VLAN stripping and/or VLAN insertion if supported. Also, schedule
2248 * the watchdog if any changes are requested to expedite the request via
2249 * virtchnl.
2250 **/
2251static void
2252iavf_set_vlan_offload_features(struct iavf_adapter *adapter,
2253 netdev_features_t prev_features,
2254 netdev_features_t features)
2255{
2256 bool enable_stripping = true, enable_insertion = true;
2257 u16 vlan_ethertype = 0;
2258 u64 aq_required = 0;
2259
2260 /* keep cases separate because one ethertype for offloads can be
2261 * disabled at the same time as another is disabled, so check for an
2262 * enabled ethertype first, then check for disabled. Default to
2263 * ETH_P_8021Q so an ethertype is specified if disabling insertion and
2264 * stripping.
2265 */
2266 if (features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX))
2267 vlan_ethertype = ETH_P_8021AD;
2268 else if (features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX))
2269 vlan_ethertype = ETH_P_8021Q;
2270 else if (prev_features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX))
2271 vlan_ethertype = ETH_P_8021AD;
2272 else if (prev_features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX))
2273 vlan_ethertype = ETH_P_8021Q;
2274 else
2275 vlan_ethertype = ETH_P_8021Q;
2276
2277 if (!(features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_CTAG_RX)))
2278 enable_stripping = false;
2279 if (!(features & (NETIF_F_HW_VLAN_STAG_TX | NETIF_F_HW_VLAN_CTAG_TX)))
2280 enable_insertion = false;
2281
2282 if (VLAN_ALLOWED(adapter)) {
2283 /* VIRTCHNL_VF_OFFLOAD_VLAN only has support for toggling VLAN
2284 * stripping via virtchnl. VLAN insertion can be toggled on the
2285 * netdev, but it doesn't require a virtchnl message
2286 */
2287 if (enable_stripping)
2288 aq_required |= IAVF_FLAG_AQ_ENABLE_VLAN_STRIPPING;
2289 else
2290 aq_required |= IAVF_FLAG_AQ_DISABLE_VLAN_STRIPPING;
2291
2292 } else if (VLAN_V2_ALLOWED(adapter)) {
2293 switch (vlan_ethertype) {
2294 case ETH_P_8021Q:
2295 if (enable_stripping)
2296 aq_required |= IAVF_FLAG_AQ_ENABLE_CTAG_VLAN_STRIPPING;
2297 else
2298 aq_required |= IAVF_FLAG_AQ_DISABLE_CTAG_VLAN_STRIPPING;
2299
2300 if (enable_insertion)
2301 aq_required |= IAVF_FLAG_AQ_ENABLE_CTAG_VLAN_INSERTION;
2302 else
2303 aq_required |= IAVF_FLAG_AQ_DISABLE_CTAG_VLAN_INSERTION;
2304 break;
2305 case ETH_P_8021AD:
2306 if (enable_stripping)
2307 aq_required |= IAVF_FLAG_AQ_ENABLE_STAG_VLAN_STRIPPING;
2308 else
2309 aq_required |= IAVF_FLAG_AQ_DISABLE_STAG_VLAN_STRIPPING;
2310
2311 if (enable_insertion)
2312 aq_required |= IAVF_FLAG_AQ_ENABLE_STAG_VLAN_INSERTION;
2313 else
2314 aq_required |= IAVF_FLAG_AQ_DISABLE_STAG_VLAN_INSERTION;
2315 break;
2316 }
2317 }
2318
2319 if (aq_required)
2320 iavf_schedule_aq_request(adapter, aq_required);
2321}
2322
2323/**
2324 * iavf_startup - first step of driver startup
2325 * @adapter: board private structure
2326 *
2327 * Function process __IAVF_STARTUP driver state.
2328 * When success the state is changed to __IAVF_INIT_VERSION_CHECK
2329 * when fails the state is changed to __IAVF_INIT_FAILED
2330 **/
2331static void iavf_startup(struct iavf_adapter *adapter)
2332{
2333 struct pci_dev *pdev = adapter->pdev;
2334 struct iavf_hw *hw = &adapter->hw;
2335 enum iavf_status status;
2336 int ret;
2337
2338 WARN_ON(adapter->state != __IAVF_STARTUP);
2339
2340 /* driver loaded, probe complete */
2341 adapter->flags &= ~IAVF_FLAG_PF_COMMS_FAILED;
2342 adapter->flags &= ~IAVF_FLAG_RESET_PENDING;
2343
2344 ret = iavf_check_reset_complete(hw);
2345 if (ret) {
2346 dev_info(&pdev->dev, "Device is still in reset (%d), retrying\n",
2347 ret);
2348 goto err;
2349 }
2350 hw->aq.num_arq_entries = IAVF_AQ_LEN;
2351 hw->aq.num_asq_entries = IAVF_AQ_LEN;
2352 hw->aq.arq_buf_size = IAVF_MAX_AQ_BUF_SIZE;
2353 hw->aq.asq_buf_size = IAVF_MAX_AQ_BUF_SIZE;
2354
2355 status = iavf_init_adminq(hw);
2356 if (status) {
2357 dev_err(&pdev->dev, "Failed to init Admin Queue (%d)\n",
2358 status);
2359 goto err;
2360 }
2361 ret = iavf_send_api_ver(adapter);
2362 if (ret) {
2363 dev_err(&pdev->dev, "Unable to send to PF (%d)\n", ret);
2364 iavf_shutdown_adminq(hw);
2365 goto err;
2366 }
2367 iavf_change_state(adapter, __IAVF_INIT_VERSION_CHECK);
2368 return;
2369err:
2370 iavf_change_state(adapter, __IAVF_INIT_FAILED);
2371}
2372
2373/**
2374 * iavf_init_version_check - second step of driver startup
2375 * @adapter: board private structure
2376 *
2377 * Function process __IAVF_INIT_VERSION_CHECK driver state.
2378 * When success the state is changed to __IAVF_INIT_GET_RESOURCES
2379 * when fails the state is changed to __IAVF_INIT_FAILED
2380 **/
2381static void iavf_init_version_check(struct iavf_adapter *adapter)
2382{
2383 struct pci_dev *pdev = adapter->pdev;
2384 struct iavf_hw *hw = &adapter->hw;
2385 int err = -EAGAIN;
2386
2387 WARN_ON(adapter->state != __IAVF_INIT_VERSION_CHECK);
2388
2389 if (!iavf_asq_done(hw)) {
2390 dev_err(&pdev->dev, "Admin queue command never completed\n");
2391 iavf_shutdown_adminq(hw);
2392 iavf_change_state(adapter, __IAVF_STARTUP);
2393 goto err;
2394 }
2395
2396 /* aq msg sent, awaiting reply */
2397 err = iavf_verify_api_ver(adapter);
2398 if (err) {
2399 if (err == -EALREADY)
2400 err = iavf_send_api_ver(adapter);
2401 else
2402 dev_err(&pdev->dev, "Unsupported PF API version %d.%d, expected %d.%d\n",
2403 adapter->pf_version.major,
2404 adapter->pf_version.minor,
2405 VIRTCHNL_VERSION_MAJOR,
2406 VIRTCHNL_VERSION_MINOR);
2407 goto err;
2408 }
2409 err = iavf_send_vf_config_msg(adapter);
2410 if (err) {
2411 dev_err(&pdev->dev, "Unable to send config request (%d)\n",
2412 err);
2413 goto err;
2414 }
2415 iavf_change_state(adapter, __IAVF_INIT_GET_RESOURCES);
2416 return;
2417err:
2418 iavf_change_state(adapter, __IAVF_INIT_FAILED);
2419}
2420
2421/**
2422 * iavf_parse_vf_resource_msg - parse response from VIRTCHNL_OP_GET_VF_RESOURCES
2423 * @adapter: board private structure
2424 */
2425int iavf_parse_vf_resource_msg(struct iavf_adapter *adapter)
2426{
2427 int i, num_req_queues = adapter->num_req_queues;
2428 struct iavf_vsi *vsi = &adapter->vsi;
2429
2430 for (i = 0; i < adapter->vf_res->num_vsis; i++) {
2431 if (adapter->vf_res->vsi_res[i].vsi_type == VIRTCHNL_VSI_SRIOV)
2432 adapter->vsi_res = &adapter->vf_res->vsi_res[i];
2433 }
2434 if (!adapter->vsi_res) {
2435 dev_err(&adapter->pdev->dev, "No LAN VSI found\n");
2436 return -ENODEV;
2437 }
2438
2439 if (num_req_queues &&
2440 num_req_queues > adapter->vsi_res->num_queue_pairs) {
2441 /* Problem. The PF gave us fewer queues than what we had
2442 * negotiated in our request. Need a reset to see if we can't
2443 * get back to a working state.
2444 */
2445 dev_err(&adapter->pdev->dev,
2446 "Requested %d queues, but PF only gave us %d.\n",
2447 num_req_queues,
2448 adapter->vsi_res->num_queue_pairs);
2449 adapter->flags |= IAVF_FLAG_REINIT_MSIX_NEEDED;
2450 adapter->num_req_queues = adapter->vsi_res->num_queue_pairs;
2451 iavf_schedule_reset(adapter, IAVF_FLAG_RESET_NEEDED);
2452
2453 return -EAGAIN;
2454 }
2455 adapter->num_req_queues = 0;
2456 adapter->vsi.id = adapter->vsi_res->vsi_id;
2457
2458 adapter->vsi.back = adapter;
2459 adapter->vsi.base_vector = 1;
2460 vsi->netdev = adapter->netdev;
2461 vsi->qs_handle = adapter->vsi_res->qset_handle;
2462 if (adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF) {
2463 adapter->rss_key_size = adapter->vf_res->rss_key_size;
2464 adapter->rss_lut_size = adapter->vf_res->rss_lut_size;
2465 } else {
2466 adapter->rss_key_size = IAVF_HKEY_ARRAY_SIZE;
2467 adapter->rss_lut_size = IAVF_HLUT_ARRAY_SIZE;
2468 }
2469
2470 return 0;
2471}
2472
2473/**
2474 * iavf_init_get_resources - third step of driver startup
2475 * @adapter: board private structure
2476 *
2477 * Function process __IAVF_INIT_GET_RESOURCES driver state and
2478 * finishes driver initialization procedure.
2479 * When success the state is changed to __IAVF_DOWN
2480 * when fails the state is changed to __IAVF_INIT_FAILED
2481 **/
2482static void iavf_init_get_resources(struct iavf_adapter *adapter)
2483{
2484 struct pci_dev *pdev = adapter->pdev;
2485 struct iavf_hw *hw = &adapter->hw;
2486 int err;
2487
2488 WARN_ON(adapter->state != __IAVF_INIT_GET_RESOURCES);
2489 /* aq msg sent, awaiting reply */
2490 if (!adapter->vf_res) {
2491 adapter->vf_res = kzalloc(IAVF_VIRTCHNL_VF_RESOURCE_SIZE,
2492 GFP_KERNEL);
2493 if (!adapter->vf_res) {
2494 err = -ENOMEM;
2495 goto err;
2496 }
2497 }
2498 err = iavf_get_vf_config(adapter);
2499 if (err == -EALREADY) {
2500 err = iavf_send_vf_config_msg(adapter);
2501 goto err;
2502 } else if (err == -EINVAL) {
2503 /* We only get -EINVAL if the device is in a very bad
2504 * state or if we've been disabled for previous bad
2505 * behavior. Either way, we're done now.
2506 */
2507 iavf_shutdown_adminq(hw);
2508 dev_err(&pdev->dev, "Unable to get VF config due to PF error condition, not retrying\n");
2509 return;
2510 }
2511 if (err) {
2512 dev_err(&pdev->dev, "Unable to get VF config (%d)\n", err);
2513 goto err_alloc;
2514 }
2515
2516 err = iavf_parse_vf_resource_msg(adapter);
2517 if (err) {
2518 dev_err(&pdev->dev, "Failed to parse VF resource message from PF (%d)\n",
2519 err);
2520 goto err_alloc;
2521 }
2522 /* Some features require additional messages to negotiate extended
2523 * capabilities. These are processed in sequence by the
2524 * __IAVF_INIT_EXTENDED_CAPS driver state.
2525 */
2526 adapter->extended_caps = IAVF_EXTENDED_CAPS;
2527
2528 iavf_change_state(adapter, __IAVF_INIT_EXTENDED_CAPS);
2529 return;
2530
2531err_alloc:
2532 kfree(adapter->vf_res);
2533 adapter->vf_res = NULL;
2534err:
2535 iavf_change_state(adapter, __IAVF_INIT_FAILED);
2536}
2537
2538/**
2539 * iavf_init_send_offload_vlan_v2_caps - part of initializing VLAN V2 caps
2540 * @adapter: board private structure
2541 *
2542 * Function processes send of the extended VLAN V2 capability message to the
2543 * PF. Must clear IAVF_EXTENDED_CAP_RECV_VLAN_V2 if the message is not sent,
2544 * e.g. due to PF not negotiating VIRTCHNL_VF_OFFLOAD_VLAN_V2.
2545 */
2546static void iavf_init_send_offload_vlan_v2_caps(struct iavf_adapter *adapter)
2547{
2548 int ret;
2549
2550 WARN_ON(!(adapter->extended_caps & IAVF_EXTENDED_CAP_SEND_VLAN_V2));
2551
2552 ret = iavf_send_vf_offload_vlan_v2_msg(adapter);
2553 if (ret && ret == -EOPNOTSUPP) {
2554 /* PF does not support VIRTCHNL_VF_OFFLOAD_V2. In this case,
2555 * we did not send the capability exchange message and do not
2556 * expect a response.
2557 */
2558 adapter->extended_caps &= ~IAVF_EXTENDED_CAP_RECV_VLAN_V2;
2559 }
2560
2561 /* We sent the message, so move on to the next step */
2562 adapter->extended_caps &= ~IAVF_EXTENDED_CAP_SEND_VLAN_V2;
2563}
2564
2565/**
2566 * iavf_init_recv_offload_vlan_v2_caps - part of initializing VLAN V2 caps
2567 * @adapter: board private structure
2568 *
2569 * Function processes receipt of the extended VLAN V2 capability message from
2570 * the PF.
2571 **/
2572static void iavf_init_recv_offload_vlan_v2_caps(struct iavf_adapter *adapter)
2573{
2574 int ret;
2575
2576 WARN_ON(!(adapter->extended_caps & IAVF_EXTENDED_CAP_RECV_VLAN_V2));
2577
2578 memset(&adapter->vlan_v2_caps, 0, sizeof(adapter->vlan_v2_caps));
2579
2580 ret = iavf_get_vf_vlan_v2_caps(adapter);
2581 if (ret)
2582 goto err;
2583
2584 /* We've processed receipt of the VLAN V2 caps message */
2585 adapter->extended_caps &= ~IAVF_EXTENDED_CAP_RECV_VLAN_V2;
2586 return;
2587err:
2588 /* We didn't receive a reply. Make sure we try sending again when
2589 * __IAVF_INIT_FAILED attempts to recover.
2590 */
2591 adapter->extended_caps |= IAVF_EXTENDED_CAP_SEND_VLAN_V2;
2592 iavf_change_state(adapter, __IAVF_INIT_FAILED);
2593}
2594
2595/**
2596 * iavf_init_process_extended_caps - Part of driver startup
2597 * @adapter: board private structure
2598 *
2599 * Function processes __IAVF_INIT_EXTENDED_CAPS driver state. This state
2600 * handles negotiating capabilities for features which require an additional
2601 * message.
2602 *
2603 * Once all extended capabilities exchanges are finished, the driver will
2604 * transition into __IAVF_INIT_CONFIG_ADAPTER.
2605 */
2606static void iavf_init_process_extended_caps(struct iavf_adapter *adapter)
2607{
2608 WARN_ON(adapter->state != __IAVF_INIT_EXTENDED_CAPS);
2609
2610 /* Process capability exchange for VLAN V2 */
2611 if (adapter->extended_caps & IAVF_EXTENDED_CAP_SEND_VLAN_V2) {
2612 iavf_init_send_offload_vlan_v2_caps(adapter);
2613 return;
2614 } else if (adapter->extended_caps & IAVF_EXTENDED_CAP_RECV_VLAN_V2) {
2615 iavf_init_recv_offload_vlan_v2_caps(adapter);
2616 return;
2617 }
2618
2619 /* When we reach here, no further extended capabilities exchanges are
2620 * necessary, so we finally transition into __IAVF_INIT_CONFIG_ADAPTER
2621 */
2622 iavf_change_state(adapter, __IAVF_INIT_CONFIG_ADAPTER);
2623}
2624
2625/**
2626 * iavf_init_config_adapter - last part of driver startup
2627 * @adapter: board private structure
2628 *
2629 * After all the supported capabilities are negotiated, then the
2630 * __IAVF_INIT_CONFIG_ADAPTER state will finish driver initialization.
2631 */
2632static void iavf_init_config_adapter(struct iavf_adapter *adapter)
2633{
2634 struct net_device *netdev = adapter->netdev;
2635 struct pci_dev *pdev = adapter->pdev;
2636 int err;
2637
2638 WARN_ON(adapter->state != __IAVF_INIT_CONFIG_ADAPTER);
2639
2640 if (iavf_process_config(adapter))
2641 goto err;
2642
2643 adapter->current_op = VIRTCHNL_OP_UNKNOWN;
2644
2645 adapter->flags |= IAVF_FLAG_RX_CSUM_ENABLED;
2646
2647 netdev->netdev_ops = &iavf_netdev_ops;
2648 iavf_set_ethtool_ops(netdev);
2649 netdev->watchdog_timeo = 5 * HZ;
2650
2651 netdev->min_mtu = ETH_MIN_MTU;
2652 netdev->max_mtu = LIBIE_MAX_MTU;
2653
2654 if (!is_valid_ether_addr(adapter->hw.mac.addr)) {
2655 dev_info(&pdev->dev, "Invalid MAC address %pM, using random\n",
2656 adapter->hw.mac.addr);
2657 eth_hw_addr_random(netdev);
2658 ether_addr_copy(adapter->hw.mac.addr, netdev->dev_addr);
2659 } else {
2660 eth_hw_addr_set(netdev, adapter->hw.mac.addr);
2661 ether_addr_copy(netdev->perm_addr, adapter->hw.mac.addr);
2662 }
2663
2664 adapter->tx_desc_count = IAVF_DEFAULT_TXD;
2665 adapter->rx_desc_count = IAVF_DEFAULT_RXD;
2666 err = iavf_init_interrupt_scheme(adapter);
2667 if (err)
2668 goto err_sw_init;
2669 iavf_map_rings_to_vectors(adapter);
2670 if (adapter->vf_res->vf_cap_flags &
2671 VIRTCHNL_VF_OFFLOAD_WB_ON_ITR)
2672 adapter->flags |= IAVF_FLAG_WB_ON_ITR_CAPABLE;
2673
2674 err = iavf_request_misc_irq(adapter);
2675 if (err)
2676 goto err_sw_init;
2677
2678 netif_carrier_off(netdev);
2679 adapter->link_up = false;
2680 netif_tx_stop_all_queues(netdev);
2681
2682 dev_info(&pdev->dev, "MAC address: %pM\n", adapter->hw.mac.addr);
2683 if (netdev->features & NETIF_F_GRO)
2684 dev_info(&pdev->dev, "GRO is enabled\n");
2685
2686 iavf_change_state(adapter, __IAVF_DOWN);
2687 set_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
2688
2689 iavf_misc_irq_enable(adapter);
2690 wake_up(&adapter->down_waitqueue);
2691
2692 adapter->rss_key = kzalloc(adapter->rss_key_size, GFP_KERNEL);
2693 adapter->rss_lut = kzalloc(adapter->rss_lut_size, GFP_KERNEL);
2694 if (!adapter->rss_key || !adapter->rss_lut) {
2695 err = -ENOMEM;
2696 goto err_mem;
2697 }
2698 if (RSS_AQ(adapter))
2699 adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_RSS;
2700 else
2701 iavf_init_rss(adapter);
2702
2703 if (VLAN_V2_ALLOWED(adapter))
2704 /* request initial VLAN offload settings */
2705 iavf_set_vlan_offload_features(adapter, 0, netdev->features);
2706
2707 if (QOS_ALLOWED(adapter))
2708 adapter->aq_required |= IAVF_FLAG_AQ_GET_QOS_CAPS;
2709
2710 iavf_schedule_finish_config(adapter);
2711 return;
2712
2713err_mem:
2714 iavf_free_rss(adapter);
2715 iavf_free_misc_irq(adapter);
2716err_sw_init:
2717 iavf_reset_interrupt_capability(adapter);
2718err:
2719 iavf_change_state(adapter, __IAVF_INIT_FAILED);
2720}
2721
2722/**
2723 * iavf_watchdog_task - Periodic call-back task
2724 * @work: pointer to work_struct
2725 **/
2726static void iavf_watchdog_task(struct work_struct *work)
2727{
2728 struct iavf_adapter *adapter = container_of(work,
2729 struct iavf_adapter,
2730 watchdog_task.work);
2731 struct iavf_hw *hw = &adapter->hw;
2732 u32 reg_val;
2733
2734 if (!mutex_trylock(&adapter->crit_lock)) {
2735 if (adapter->state == __IAVF_REMOVE)
2736 return;
2737
2738 goto restart_watchdog;
2739 }
2740
2741 if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED)
2742 iavf_change_state(adapter, __IAVF_COMM_FAILED);
2743
2744 switch (adapter->state) {
2745 case __IAVF_STARTUP:
2746 iavf_startup(adapter);
2747 mutex_unlock(&adapter->crit_lock);
2748 queue_delayed_work(adapter->wq, &adapter->watchdog_task,
2749 msecs_to_jiffies(30));
2750 return;
2751 case __IAVF_INIT_VERSION_CHECK:
2752 iavf_init_version_check(adapter);
2753 mutex_unlock(&adapter->crit_lock);
2754 queue_delayed_work(adapter->wq, &adapter->watchdog_task,
2755 msecs_to_jiffies(30));
2756 return;
2757 case __IAVF_INIT_GET_RESOURCES:
2758 iavf_init_get_resources(adapter);
2759 mutex_unlock(&adapter->crit_lock);
2760 queue_delayed_work(adapter->wq, &adapter->watchdog_task,
2761 msecs_to_jiffies(1));
2762 return;
2763 case __IAVF_INIT_EXTENDED_CAPS:
2764 iavf_init_process_extended_caps(adapter);
2765 mutex_unlock(&adapter->crit_lock);
2766 queue_delayed_work(adapter->wq, &adapter->watchdog_task,
2767 msecs_to_jiffies(1));
2768 return;
2769 case __IAVF_INIT_CONFIG_ADAPTER:
2770 iavf_init_config_adapter(adapter);
2771 mutex_unlock(&adapter->crit_lock);
2772 queue_delayed_work(adapter->wq, &adapter->watchdog_task,
2773 msecs_to_jiffies(1));
2774 return;
2775 case __IAVF_INIT_FAILED:
2776 if (test_bit(__IAVF_IN_REMOVE_TASK,
2777 &adapter->crit_section)) {
2778 /* Do not update the state and do not reschedule
2779 * watchdog task, iavf_remove should handle this state
2780 * as it can loop forever
2781 */
2782 mutex_unlock(&adapter->crit_lock);
2783 return;
2784 }
2785 if (++adapter->aq_wait_count > IAVF_AQ_MAX_ERR) {
2786 dev_err(&adapter->pdev->dev,
2787 "Failed to communicate with PF; waiting before retry\n");
2788 adapter->flags |= IAVF_FLAG_PF_COMMS_FAILED;
2789 iavf_shutdown_adminq(hw);
2790 mutex_unlock(&adapter->crit_lock);
2791 queue_delayed_work(adapter->wq,
2792 &adapter->watchdog_task, (5 * HZ));
2793 return;
2794 }
2795 /* Try again from failed step*/
2796 iavf_change_state(adapter, adapter->last_state);
2797 mutex_unlock(&adapter->crit_lock);
2798 queue_delayed_work(adapter->wq, &adapter->watchdog_task, HZ);
2799 return;
2800 case __IAVF_COMM_FAILED:
2801 if (test_bit(__IAVF_IN_REMOVE_TASK,
2802 &adapter->crit_section)) {
2803 /* Set state to __IAVF_INIT_FAILED and perform remove
2804 * steps. Remove IAVF_FLAG_PF_COMMS_FAILED so the task
2805 * doesn't bring the state back to __IAVF_COMM_FAILED.
2806 */
2807 iavf_change_state(adapter, __IAVF_INIT_FAILED);
2808 adapter->flags &= ~IAVF_FLAG_PF_COMMS_FAILED;
2809 mutex_unlock(&adapter->crit_lock);
2810 return;
2811 }
2812 reg_val = rd32(hw, IAVF_VFGEN_RSTAT) &
2813 IAVF_VFGEN_RSTAT_VFR_STATE_MASK;
2814 if (reg_val == VIRTCHNL_VFR_VFACTIVE ||
2815 reg_val == VIRTCHNL_VFR_COMPLETED) {
2816 /* A chance for redemption! */
2817 dev_err(&adapter->pdev->dev,
2818 "Hardware came out of reset. Attempting reinit.\n");
2819 /* When init task contacts the PF and
2820 * gets everything set up again, it'll restart the
2821 * watchdog for us. Down, boy. Sit. Stay. Woof.
2822 */
2823 iavf_change_state(adapter, __IAVF_STARTUP);
2824 adapter->flags &= ~IAVF_FLAG_PF_COMMS_FAILED;
2825 }
2826 adapter->aq_required = 0;
2827 adapter->current_op = VIRTCHNL_OP_UNKNOWN;
2828 mutex_unlock(&adapter->crit_lock);
2829 queue_delayed_work(adapter->wq,
2830 &adapter->watchdog_task,
2831 msecs_to_jiffies(10));
2832 return;
2833 case __IAVF_RESETTING:
2834 mutex_unlock(&adapter->crit_lock);
2835 queue_delayed_work(adapter->wq, &adapter->watchdog_task,
2836 HZ * 2);
2837 return;
2838 case __IAVF_DOWN:
2839 case __IAVF_DOWN_PENDING:
2840 case __IAVF_TESTING:
2841 case __IAVF_RUNNING:
2842 if (adapter->current_op) {
2843 if (!iavf_asq_done(hw)) {
2844 dev_dbg(&adapter->pdev->dev,
2845 "Admin queue timeout\n");
2846 iavf_send_api_ver(adapter);
2847 }
2848 } else {
2849 int ret = iavf_process_aq_command(adapter);
2850
2851 /* An error will be returned if no commands were
2852 * processed; use this opportunity to update stats
2853 * if the error isn't -ENOTSUPP
2854 */
2855 if (ret && ret != -EOPNOTSUPP &&
2856 adapter->state == __IAVF_RUNNING)
2857 iavf_request_stats(adapter);
2858 }
2859 if (adapter->state == __IAVF_RUNNING)
2860 iavf_detect_recover_hung(&adapter->vsi);
2861 break;
2862 case __IAVF_REMOVE:
2863 default:
2864 mutex_unlock(&adapter->crit_lock);
2865 return;
2866 }
2867
2868 /* check for hw reset */
2869 reg_val = rd32(hw, IAVF_VF_ARQLEN1) & IAVF_VF_ARQLEN1_ARQENABLE_MASK;
2870 if (!reg_val) {
2871 adapter->aq_required = 0;
2872 adapter->current_op = VIRTCHNL_OP_UNKNOWN;
2873 dev_err(&adapter->pdev->dev, "Hardware reset detected\n");
2874 iavf_schedule_reset(adapter, IAVF_FLAG_RESET_PENDING);
2875 mutex_unlock(&adapter->crit_lock);
2876 queue_delayed_work(adapter->wq,
2877 &adapter->watchdog_task, HZ * 2);
2878 return;
2879 }
2880
2881 mutex_unlock(&adapter->crit_lock);
2882restart_watchdog:
2883 if (adapter->state >= __IAVF_DOWN)
2884 queue_work(adapter->wq, &adapter->adminq_task);
2885 if (adapter->aq_required)
2886 queue_delayed_work(adapter->wq, &adapter->watchdog_task,
2887 msecs_to_jiffies(20));
2888 else
2889 queue_delayed_work(adapter->wq, &adapter->watchdog_task,
2890 HZ * 2);
2891}
2892
2893/**
2894 * iavf_disable_vf - disable VF
2895 * @adapter: board private structure
2896 *
2897 * Set communication failed flag and free all resources.
2898 * NOTE: This function is expected to be called with crit_lock being held.
2899 **/
2900static void iavf_disable_vf(struct iavf_adapter *adapter)
2901{
2902 struct iavf_mac_filter *f, *ftmp;
2903 struct iavf_vlan_filter *fv, *fvtmp;
2904 struct iavf_cloud_filter *cf, *cftmp;
2905
2906 adapter->flags |= IAVF_FLAG_PF_COMMS_FAILED;
2907
2908 /* We don't use netif_running() because it may be true prior to
2909 * ndo_open() returning, so we can't assume it means all our open
2910 * tasks have finished, since we're not holding the rtnl_lock here.
2911 */
2912 if (adapter->state == __IAVF_RUNNING) {
2913 set_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
2914 netif_carrier_off(adapter->netdev);
2915 netif_tx_disable(adapter->netdev);
2916 adapter->link_up = false;
2917 iavf_napi_disable_all(adapter);
2918 iavf_irq_disable(adapter);
2919 iavf_free_traffic_irqs(adapter);
2920 iavf_free_all_tx_resources(adapter);
2921 iavf_free_all_rx_resources(adapter);
2922 }
2923
2924 spin_lock_bh(&adapter->mac_vlan_list_lock);
2925
2926 /* Delete all of the filters */
2927 list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list, list) {
2928 list_del(&f->list);
2929 kfree(f);
2930 }
2931
2932 list_for_each_entry_safe(fv, fvtmp, &adapter->vlan_filter_list, list) {
2933 list_del(&fv->list);
2934 kfree(fv);
2935 }
2936 adapter->num_vlan_filters = 0;
2937
2938 spin_unlock_bh(&adapter->mac_vlan_list_lock);
2939
2940 spin_lock_bh(&adapter->cloud_filter_list_lock);
2941 list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list, list) {
2942 list_del(&cf->list);
2943 kfree(cf);
2944 adapter->num_cloud_filters--;
2945 }
2946 spin_unlock_bh(&adapter->cloud_filter_list_lock);
2947
2948 iavf_free_misc_irq(adapter);
2949 iavf_free_interrupt_scheme(adapter);
2950 memset(adapter->vf_res, 0, IAVF_VIRTCHNL_VF_RESOURCE_SIZE);
2951 iavf_shutdown_adminq(&adapter->hw);
2952 adapter->flags &= ~IAVF_FLAG_RESET_PENDING;
2953 iavf_change_state(adapter, __IAVF_DOWN);
2954 wake_up(&adapter->down_waitqueue);
2955 dev_info(&adapter->pdev->dev, "Reset task did not complete, VF disabled\n");
2956}
2957
2958/**
2959 * iavf_reconfig_qs_bw - Call-back task to handle hardware reset
2960 * @adapter: board private structure
2961 *
2962 * After a reset, the shaper parameters of queues need to be replayed again.
2963 * Since the net_shaper object inside TX rings persists across reset,
2964 * set the update flag for all queues so that the virtchnl message is triggered
2965 * for all queues.
2966 **/
2967static void iavf_reconfig_qs_bw(struct iavf_adapter *adapter)
2968{
2969 int i, num = 0;
2970
2971 for (i = 0; i < adapter->num_active_queues; i++)
2972 if (adapter->tx_rings[i].q_shaper.bw_min ||
2973 adapter->tx_rings[i].q_shaper.bw_max) {
2974 adapter->tx_rings[i].q_shaper_update = true;
2975 num++;
2976 }
2977
2978 if (num)
2979 adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_QUEUES_BW;
2980}
2981
2982/**
2983 * iavf_reset_task - Call-back task to handle hardware reset
2984 * @work: pointer to work_struct
2985 *
2986 * During reset we need to shut down and reinitialize the admin queue
2987 * before we can use it to communicate with the PF again. We also clear
2988 * and reinit the rings because that context is lost as well.
2989 **/
2990static void iavf_reset_task(struct work_struct *work)
2991{
2992 struct iavf_adapter *adapter = container_of(work,
2993 struct iavf_adapter,
2994 reset_task);
2995 struct virtchnl_vf_resource *vfres = adapter->vf_res;
2996 struct net_device *netdev = adapter->netdev;
2997 struct iavf_hw *hw = &adapter->hw;
2998 struct iavf_mac_filter *f, *ftmp;
2999 struct iavf_cloud_filter *cf;
3000 enum iavf_status status;
3001 u32 reg_val;
3002 int i = 0, err;
3003 bool running;
3004
3005 /* When device is being removed it doesn't make sense to run the reset
3006 * task, just return in such a case.
3007 */
3008 mutex_lock(&netdev->lock);
3009 if (!mutex_trylock(&adapter->crit_lock)) {
3010 if (adapter->state != __IAVF_REMOVE)
3011 queue_work(adapter->wq, &adapter->reset_task);
3012
3013 mutex_unlock(&netdev->lock);
3014 return;
3015 }
3016
3017 iavf_misc_irq_disable(adapter);
3018 if (adapter->flags & IAVF_FLAG_RESET_NEEDED) {
3019 adapter->flags &= ~IAVF_FLAG_RESET_NEEDED;
3020 /* Restart the AQ here. If we have been reset but didn't
3021 * detect it, or if the PF had to reinit, our AQ will be hosed.
3022 */
3023 iavf_shutdown_adminq(hw);
3024 iavf_init_adminq(hw);
3025 iavf_request_reset(adapter);
3026 }
3027 adapter->flags |= IAVF_FLAG_RESET_PENDING;
3028
3029 /* poll until we see the reset actually happen */
3030 for (i = 0; i < IAVF_RESET_WAIT_DETECTED_COUNT; i++) {
3031 reg_val = rd32(hw, IAVF_VF_ARQLEN1) &
3032 IAVF_VF_ARQLEN1_ARQENABLE_MASK;
3033 if (!reg_val)
3034 break;
3035 usleep_range(5000, 10000);
3036 }
3037 if (i == IAVF_RESET_WAIT_DETECTED_COUNT) {
3038 dev_info(&adapter->pdev->dev, "Never saw reset\n");
3039 goto continue_reset; /* act like the reset happened */
3040 }
3041
3042 /* wait until the reset is complete and the PF is responding to us */
3043 for (i = 0; i < IAVF_RESET_WAIT_COMPLETE_COUNT; i++) {
3044 /* sleep first to make sure a minimum wait time is met */
3045 msleep(IAVF_RESET_WAIT_MS);
3046
3047 reg_val = rd32(hw, IAVF_VFGEN_RSTAT) &
3048 IAVF_VFGEN_RSTAT_VFR_STATE_MASK;
3049 if (reg_val == VIRTCHNL_VFR_VFACTIVE)
3050 break;
3051 }
3052
3053 pci_set_master(adapter->pdev);
3054 pci_restore_msi_state(adapter->pdev);
3055
3056 if (i == IAVF_RESET_WAIT_COMPLETE_COUNT) {
3057 dev_err(&adapter->pdev->dev, "Reset never finished (%x)\n",
3058 reg_val);
3059 iavf_disable_vf(adapter);
3060 mutex_unlock(&adapter->crit_lock);
3061 mutex_unlock(&netdev->lock);
3062 return; /* Do not attempt to reinit. It's dead, Jim. */
3063 }
3064
3065continue_reset:
3066 /* We don't use netif_running() because it may be true prior to
3067 * ndo_open() returning, so we can't assume it means all our open
3068 * tasks have finished, since we're not holding the rtnl_lock here.
3069 */
3070 running = adapter->state == __IAVF_RUNNING;
3071
3072 if (running) {
3073 netif_carrier_off(netdev);
3074 netif_tx_stop_all_queues(netdev);
3075 adapter->link_up = false;
3076 iavf_napi_disable_all(adapter);
3077 }
3078 iavf_irq_disable(adapter);
3079
3080 iavf_change_state(adapter, __IAVF_RESETTING);
3081 adapter->flags &= ~IAVF_FLAG_RESET_PENDING;
3082
3083 /* free the Tx/Rx rings and descriptors, might be better to just
3084 * re-use them sometime in the future
3085 */
3086 iavf_free_all_rx_resources(adapter);
3087 iavf_free_all_tx_resources(adapter);
3088
3089 adapter->flags |= IAVF_FLAG_QUEUES_DISABLED;
3090 /* kill and reinit the admin queue */
3091 iavf_shutdown_adminq(hw);
3092 adapter->current_op = VIRTCHNL_OP_UNKNOWN;
3093 status = iavf_init_adminq(hw);
3094 if (status) {
3095 dev_info(&adapter->pdev->dev, "Failed to init adminq: %d\n",
3096 status);
3097 goto reset_err;
3098 }
3099 adapter->aq_required = 0;
3100
3101 if ((adapter->flags & IAVF_FLAG_REINIT_MSIX_NEEDED) ||
3102 (adapter->flags & IAVF_FLAG_REINIT_ITR_NEEDED)) {
3103 err = iavf_reinit_interrupt_scheme(adapter, running);
3104 if (err)
3105 goto reset_err;
3106 }
3107
3108 if (RSS_AQ(adapter)) {
3109 adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_RSS;
3110 } else {
3111 err = iavf_init_rss(adapter);
3112 if (err)
3113 goto reset_err;
3114 }
3115
3116 adapter->aq_required |= IAVF_FLAG_AQ_GET_CONFIG;
3117 /* always set since VIRTCHNL_OP_GET_VF_RESOURCES has not been
3118 * sent/received yet, so VLAN_V2_ALLOWED() cannot is not reliable here,
3119 * however the VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS won't be sent until
3120 * VIRTCHNL_OP_GET_VF_RESOURCES and VIRTCHNL_VF_OFFLOAD_VLAN_V2 have
3121 * been successfully sent and negotiated
3122 */
3123 adapter->aq_required |= IAVF_FLAG_AQ_GET_OFFLOAD_VLAN_V2_CAPS;
3124 adapter->aq_required |= IAVF_FLAG_AQ_MAP_VECTORS;
3125
3126 spin_lock_bh(&adapter->mac_vlan_list_lock);
3127
3128 /* Delete filter for the current MAC address, it could have
3129 * been changed by the PF via administratively set MAC.
3130 * Will be re-added via VIRTCHNL_OP_GET_VF_RESOURCES.
3131 */
3132 list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list, list) {
3133 if (ether_addr_equal(f->macaddr, adapter->hw.mac.addr)) {
3134 list_del(&f->list);
3135 kfree(f);
3136 }
3137 }
3138 /* re-add all MAC filters */
3139 list_for_each_entry(f, &adapter->mac_filter_list, list) {
3140 f->add = true;
3141 }
3142 spin_unlock_bh(&adapter->mac_vlan_list_lock);
3143
3144 /* check if TCs are running and re-add all cloud filters */
3145 spin_lock_bh(&adapter->cloud_filter_list_lock);
3146 if ((vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) &&
3147 adapter->num_tc) {
3148 list_for_each_entry(cf, &adapter->cloud_filter_list, list) {
3149 cf->add = true;
3150 }
3151 }
3152 spin_unlock_bh(&adapter->cloud_filter_list_lock);
3153
3154 adapter->aq_required |= IAVF_FLAG_AQ_ADD_MAC_FILTER;
3155 adapter->aq_required |= IAVF_FLAG_AQ_ADD_CLOUD_FILTER;
3156 iavf_misc_irq_enable(adapter);
3157
3158 mod_delayed_work(adapter->wq, &adapter->watchdog_task, 2);
3159
3160 /* We were running when the reset started, so we need to restore some
3161 * state here.
3162 */
3163 if (running) {
3164 /* allocate transmit descriptors */
3165 err = iavf_setup_all_tx_resources(adapter);
3166 if (err)
3167 goto reset_err;
3168
3169 /* allocate receive descriptors */
3170 err = iavf_setup_all_rx_resources(adapter);
3171 if (err)
3172 goto reset_err;
3173
3174 if ((adapter->flags & IAVF_FLAG_REINIT_MSIX_NEEDED) ||
3175 (adapter->flags & IAVF_FLAG_REINIT_ITR_NEEDED)) {
3176 err = iavf_request_traffic_irqs(adapter, netdev->name);
3177 if (err)
3178 goto reset_err;
3179
3180 adapter->flags &= ~IAVF_FLAG_REINIT_MSIX_NEEDED;
3181 }
3182
3183 iavf_configure(adapter);
3184
3185 /* iavf_up_complete() will switch device back
3186 * to __IAVF_RUNNING
3187 */
3188 iavf_up_complete(adapter);
3189
3190 iavf_irq_enable(adapter, true);
3191
3192 iavf_reconfig_qs_bw(adapter);
3193 } else {
3194 iavf_change_state(adapter, __IAVF_DOWN);
3195 wake_up(&adapter->down_waitqueue);
3196 }
3197
3198 adapter->flags &= ~IAVF_FLAG_REINIT_ITR_NEEDED;
3199
3200 wake_up(&adapter->reset_waitqueue);
3201 mutex_unlock(&adapter->crit_lock);
3202 mutex_unlock(&netdev->lock);
3203
3204 return;
3205reset_err:
3206 if (running) {
3207 set_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
3208 iavf_free_traffic_irqs(adapter);
3209 }
3210 iavf_disable_vf(adapter);
3211
3212 mutex_unlock(&adapter->crit_lock);
3213 mutex_unlock(&netdev->lock);
3214 dev_err(&adapter->pdev->dev, "failed to allocate resources during reinit\n");
3215}
3216
3217/**
3218 * iavf_adminq_task - worker thread to clean the admin queue
3219 * @work: pointer to work_struct containing our data
3220 **/
3221static void iavf_adminq_task(struct work_struct *work)
3222{
3223 struct iavf_adapter *adapter =
3224 container_of(work, struct iavf_adapter, adminq_task);
3225 struct iavf_hw *hw = &adapter->hw;
3226 struct iavf_arq_event_info event;
3227 enum virtchnl_ops v_op;
3228 enum iavf_status ret, v_ret;
3229 u32 val, oldval;
3230 u16 pending;
3231
3232 if (!mutex_trylock(&adapter->crit_lock)) {
3233 if (adapter->state == __IAVF_REMOVE)
3234 return;
3235
3236 queue_work(adapter->wq, &adapter->adminq_task);
3237 goto out;
3238 }
3239
3240 if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED)
3241 goto unlock;
3242
3243 event.buf_len = IAVF_MAX_AQ_BUF_SIZE;
3244 event.msg_buf = kzalloc(event.buf_len, GFP_KERNEL);
3245 if (!event.msg_buf)
3246 goto unlock;
3247
3248 do {
3249 ret = iavf_clean_arq_element(hw, &event, &pending);
3250 v_op = (enum virtchnl_ops)le32_to_cpu(event.desc.cookie_high);
3251 v_ret = (enum iavf_status)le32_to_cpu(event.desc.cookie_low);
3252
3253 if (ret || !v_op)
3254 break; /* No event to process or error cleaning ARQ */
3255
3256 iavf_virtchnl_completion(adapter, v_op, v_ret, event.msg_buf,
3257 event.msg_len);
3258 if (pending != 0)
3259 memset(event.msg_buf, 0, IAVF_MAX_AQ_BUF_SIZE);
3260 } while (pending);
3261
3262 if (iavf_is_reset_in_progress(adapter))
3263 goto freedom;
3264
3265 /* check for error indications */
3266 val = rd32(hw, IAVF_VF_ARQLEN1);
3267 if (val == 0xdeadbeef || val == 0xffffffff) /* device in reset */
3268 goto freedom;
3269 oldval = val;
3270 if (val & IAVF_VF_ARQLEN1_ARQVFE_MASK) {
3271 dev_info(&adapter->pdev->dev, "ARQ VF Error detected\n");
3272 val &= ~IAVF_VF_ARQLEN1_ARQVFE_MASK;
3273 }
3274 if (val & IAVF_VF_ARQLEN1_ARQOVFL_MASK) {
3275 dev_info(&adapter->pdev->dev, "ARQ Overflow Error detected\n");
3276 val &= ~IAVF_VF_ARQLEN1_ARQOVFL_MASK;
3277 }
3278 if (val & IAVF_VF_ARQLEN1_ARQCRIT_MASK) {
3279 dev_info(&adapter->pdev->dev, "ARQ Critical Error detected\n");
3280 val &= ~IAVF_VF_ARQLEN1_ARQCRIT_MASK;
3281 }
3282 if (oldval != val)
3283 wr32(hw, IAVF_VF_ARQLEN1, val);
3284
3285 val = rd32(hw, IAVF_VF_ATQLEN1);
3286 oldval = val;
3287 if (val & IAVF_VF_ATQLEN1_ATQVFE_MASK) {
3288 dev_info(&adapter->pdev->dev, "ASQ VF Error detected\n");
3289 val &= ~IAVF_VF_ATQLEN1_ATQVFE_MASK;
3290 }
3291 if (val & IAVF_VF_ATQLEN1_ATQOVFL_MASK) {
3292 dev_info(&adapter->pdev->dev, "ASQ Overflow Error detected\n");
3293 val &= ~IAVF_VF_ATQLEN1_ATQOVFL_MASK;
3294 }
3295 if (val & IAVF_VF_ATQLEN1_ATQCRIT_MASK) {
3296 dev_info(&adapter->pdev->dev, "ASQ Critical Error detected\n");
3297 val &= ~IAVF_VF_ATQLEN1_ATQCRIT_MASK;
3298 }
3299 if (oldval != val)
3300 wr32(hw, IAVF_VF_ATQLEN1, val);
3301
3302freedom:
3303 kfree(event.msg_buf);
3304unlock:
3305 mutex_unlock(&adapter->crit_lock);
3306out:
3307 /* re-enable Admin queue interrupt cause */
3308 iavf_misc_irq_enable(adapter);
3309}
3310
3311/**
3312 * iavf_free_all_tx_resources - Free Tx Resources for All Queues
3313 * @adapter: board private structure
3314 *
3315 * Free all transmit software resources
3316 **/
3317void iavf_free_all_tx_resources(struct iavf_adapter *adapter)
3318{
3319 int i;
3320
3321 if (!adapter->tx_rings)
3322 return;
3323
3324 for (i = 0; i < adapter->num_active_queues; i++)
3325 if (adapter->tx_rings[i].desc)
3326 iavf_free_tx_resources(&adapter->tx_rings[i]);
3327}
3328
3329/**
3330 * iavf_setup_all_tx_resources - allocate all queues Tx resources
3331 * @adapter: board private structure
3332 *
3333 * If this function returns with an error, then it's possible one or
3334 * more of the rings is populated (while the rest are not). It is the
3335 * callers duty to clean those orphaned rings.
3336 *
3337 * Return 0 on success, negative on failure
3338 **/
3339static int iavf_setup_all_tx_resources(struct iavf_adapter *adapter)
3340{
3341 int i, err = 0;
3342
3343 for (i = 0; i < adapter->num_active_queues; i++) {
3344 adapter->tx_rings[i].count = adapter->tx_desc_count;
3345 err = iavf_setup_tx_descriptors(&adapter->tx_rings[i]);
3346 if (!err)
3347 continue;
3348 dev_err(&adapter->pdev->dev,
3349 "Allocation for Tx Queue %u failed\n", i);
3350 break;
3351 }
3352
3353 return err;
3354}
3355
3356/**
3357 * iavf_setup_all_rx_resources - allocate all queues Rx resources
3358 * @adapter: board private structure
3359 *
3360 * If this function returns with an error, then it's possible one or
3361 * more of the rings is populated (while the rest are not). It is the
3362 * callers duty to clean those orphaned rings.
3363 *
3364 * Return 0 on success, negative on failure
3365 **/
3366static int iavf_setup_all_rx_resources(struct iavf_adapter *adapter)
3367{
3368 int i, err = 0;
3369
3370 for (i = 0; i < adapter->num_active_queues; i++) {
3371 adapter->rx_rings[i].count = adapter->rx_desc_count;
3372 err = iavf_setup_rx_descriptors(&adapter->rx_rings[i]);
3373 if (!err)
3374 continue;
3375 dev_err(&adapter->pdev->dev,
3376 "Allocation for Rx Queue %u failed\n", i);
3377 break;
3378 }
3379 return err;
3380}
3381
3382/**
3383 * iavf_free_all_rx_resources - Free Rx Resources for All Queues
3384 * @adapter: board private structure
3385 *
3386 * Free all receive software resources
3387 **/
3388void iavf_free_all_rx_resources(struct iavf_adapter *adapter)
3389{
3390 int i;
3391
3392 if (!adapter->rx_rings)
3393 return;
3394
3395 for (i = 0; i < adapter->num_active_queues; i++)
3396 if (adapter->rx_rings[i].desc)
3397 iavf_free_rx_resources(&adapter->rx_rings[i]);
3398}
3399
3400/**
3401 * iavf_validate_tx_bandwidth - validate the max Tx bandwidth
3402 * @adapter: board private structure
3403 * @max_tx_rate: max Tx bw for a tc
3404 **/
3405static int iavf_validate_tx_bandwidth(struct iavf_adapter *adapter,
3406 u64 max_tx_rate)
3407{
3408 int speed = 0, ret = 0;
3409
3410 if (ADV_LINK_SUPPORT(adapter)) {
3411 if (adapter->link_speed_mbps < U32_MAX) {
3412 speed = adapter->link_speed_mbps;
3413 goto validate_bw;
3414 } else {
3415 dev_err(&adapter->pdev->dev, "Unknown link speed\n");
3416 return -EINVAL;
3417 }
3418 }
3419
3420 switch (adapter->link_speed) {
3421 case VIRTCHNL_LINK_SPEED_40GB:
3422 speed = SPEED_40000;
3423 break;
3424 case VIRTCHNL_LINK_SPEED_25GB:
3425 speed = SPEED_25000;
3426 break;
3427 case VIRTCHNL_LINK_SPEED_20GB:
3428 speed = SPEED_20000;
3429 break;
3430 case VIRTCHNL_LINK_SPEED_10GB:
3431 speed = SPEED_10000;
3432 break;
3433 case VIRTCHNL_LINK_SPEED_5GB:
3434 speed = SPEED_5000;
3435 break;
3436 case VIRTCHNL_LINK_SPEED_2_5GB:
3437 speed = SPEED_2500;
3438 break;
3439 case VIRTCHNL_LINK_SPEED_1GB:
3440 speed = SPEED_1000;
3441 break;
3442 case VIRTCHNL_LINK_SPEED_100MB:
3443 speed = SPEED_100;
3444 break;
3445 default:
3446 break;
3447 }
3448
3449validate_bw:
3450 if (max_tx_rate > speed) {
3451 dev_err(&adapter->pdev->dev,
3452 "Invalid tx rate specified\n");
3453 ret = -EINVAL;
3454 }
3455
3456 return ret;
3457}
3458
3459/**
3460 * iavf_validate_ch_config - validate queue mapping info
3461 * @adapter: board private structure
3462 * @mqprio_qopt: queue parameters
3463 *
3464 * This function validates if the config provided by the user to
3465 * configure queue channels is valid or not. Returns 0 on a valid
3466 * config.
3467 **/
3468static int iavf_validate_ch_config(struct iavf_adapter *adapter,
3469 struct tc_mqprio_qopt_offload *mqprio_qopt)
3470{
3471 u64 total_max_rate = 0;
3472 u32 tx_rate_rem = 0;
3473 int i, num_qps = 0;
3474 u64 tx_rate = 0;
3475 int ret = 0;
3476
3477 if (mqprio_qopt->qopt.num_tc > IAVF_MAX_TRAFFIC_CLASS ||
3478 mqprio_qopt->qopt.num_tc < 1)
3479 return -EINVAL;
3480
3481 for (i = 0; i <= mqprio_qopt->qopt.num_tc - 1; i++) {
3482 if (!mqprio_qopt->qopt.count[i] ||
3483 mqprio_qopt->qopt.offset[i] != num_qps)
3484 return -EINVAL;
3485 if (mqprio_qopt->min_rate[i]) {
3486 dev_err(&adapter->pdev->dev,
3487 "Invalid min tx rate (greater than 0) specified for TC%d\n",
3488 i);
3489 return -EINVAL;
3490 }
3491
3492 /* convert to Mbps */
3493 tx_rate = div_u64(mqprio_qopt->max_rate[i],
3494 IAVF_MBPS_DIVISOR);
3495
3496 if (mqprio_qopt->max_rate[i] &&
3497 tx_rate < IAVF_MBPS_QUANTA) {
3498 dev_err(&adapter->pdev->dev,
3499 "Invalid max tx rate for TC%d, minimum %dMbps\n",
3500 i, IAVF_MBPS_QUANTA);
3501 return -EINVAL;
3502 }
3503
3504 (void)div_u64_rem(tx_rate, IAVF_MBPS_QUANTA, &tx_rate_rem);
3505
3506 if (tx_rate_rem != 0) {
3507 dev_err(&adapter->pdev->dev,
3508 "Invalid max tx rate for TC%d, not divisible by %d\n",
3509 i, IAVF_MBPS_QUANTA);
3510 return -EINVAL;
3511 }
3512
3513 total_max_rate += tx_rate;
3514 num_qps += mqprio_qopt->qopt.count[i];
3515 }
3516 if (num_qps > adapter->num_active_queues) {
3517 dev_err(&adapter->pdev->dev,
3518 "Cannot support requested number of queues\n");
3519 return -EINVAL;
3520 }
3521
3522 ret = iavf_validate_tx_bandwidth(adapter, total_max_rate);
3523 return ret;
3524}
3525
3526/**
3527 * iavf_del_all_cloud_filters - delete all cloud filters on the traffic classes
3528 * @adapter: board private structure
3529 **/
3530static void iavf_del_all_cloud_filters(struct iavf_adapter *adapter)
3531{
3532 struct iavf_cloud_filter *cf, *cftmp;
3533
3534 spin_lock_bh(&adapter->cloud_filter_list_lock);
3535 list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list,
3536 list) {
3537 list_del(&cf->list);
3538 kfree(cf);
3539 adapter->num_cloud_filters--;
3540 }
3541 spin_unlock_bh(&adapter->cloud_filter_list_lock);
3542}
3543
3544/**
3545 * iavf_is_tc_config_same - Compare the mqprio TC config with the
3546 * TC config already configured on this adapter.
3547 * @adapter: board private structure
3548 * @mqprio_qopt: TC config received from kernel.
3549 *
3550 * This function compares the TC config received from the kernel
3551 * with the config already configured on the adapter.
3552 *
3553 * Return: True if configuration is same, false otherwise.
3554 **/
3555static bool iavf_is_tc_config_same(struct iavf_adapter *adapter,
3556 struct tc_mqprio_qopt *mqprio_qopt)
3557{
3558 struct virtchnl_channel_info *ch = &adapter->ch_config.ch_info[0];
3559 int i;
3560
3561 if (adapter->num_tc != mqprio_qopt->num_tc)
3562 return false;
3563
3564 for (i = 0; i < adapter->num_tc; i++) {
3565 if (ch[i].count != mqprio_qopt->count[i] ||
3566 ch[i].offset != mqprio_qopt->offset[i])
3567 return false;
3568 }
3569 return true;
3570}
3571
3572/**
3573 * __iavf_setup_tc - configure multiple traffic classes
3574 * @netdev: network interface device structure
3575 * @type_data: tc offload data
3576 *
3577 * This function processes the config information provided by the
3578 * user to configure traffic classes/queue channels and packages the
3579 * information to request the PF to setup traffic classes.
3580 *
3581 * Returns 0 on success.
3582 **/
3583static int __iavf_setup_tc(struct net_device *netdev, void *type_data)
3584{
3585 struct tc_mqprio_qopt_offload *mqprio_qopt = type_data;
3586 struct iavf_adapter *adapter = netdev_priv(netdev);
3587 struct virtchnl_vf_resource *vfres = adapter->vf_res;
3588 u8 num_tc = 0, total_qps = 0;
3589 int ret = 0, netdev_tc = 0;
3590 u64 max_tx_rate;
3591 u16 mode;
3592 int i;
3593
3594 num_tc = mqprio_qopt->qopt.num_tc;
3595 mode = mqprio_qopt->mode;
3596
3597 /* delete queue_channel */
3598 if (!mqprio_qopt->qopt.hw) {
3599 if (adapter->ch_config.state == __IAVF_TC_RUNNING) {
3600 /* reset the tc configuration */
3601 netdev_reset_tc(netdev);
3602 adapter->num_tc = 0;
3603 netif_tx_stop_all_queues(netdev);
3604 netif_tx_disable(netdev);
3605 iavf_del_all_cloud_filters(adapter);
3606 adapter->aq_required = IAVF_FLAG_AQ_DISABLE_CHANNELS;
3607 total_qps = adapter->orig_num_active_queues;
3608 goto exit;
3609 } else {
3610 return -EINVAL;
3611 }
3612 }
3613
3614 /* add queue channel */
3615 if (mode == TC_MQPRIO_MODE_CHANNEL) {
3616 if (!(vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ)) {
3617 dev_err(&adapter->pdev->dev, "ADq not supported\n");
3618 return -EOPNOTSUPP;
3619 }
3620 if (adapter->ch_config.state != __IAVF_TC_INVALID) {
3621 dev_err(&adapter->pdev->dev, "TC configuration already exists\n");
3622 return -EINVAL;
3623 }
3624
3625 ret = iavf_validate_ch_config(adapter, mqprio_qopt);
3626 if (ret)
3627 return ret;
3628 /* Return if same TC config is requested */
3629 if (iavf_is_tc_config_same(adapter, &mqprio_qopt->qopt))
3630 return 0;
3631 adapter->num_tc = num_tc;
3632
3633 for (i = 0; i < IAVF_MAX_TRAFFIC_CLASS; i++) {
3634 if (i < num_tc) {
3635 adapter->ch_config.ch_info[i].count =
3636 mqprio_qopt->qopt.count[i];
3637 adapter->ch_config.ch_info[i].offset =
3638 mqprio_qopt->qopt.offset[i];
3639 total_qps += mqprio_qopt->qopt.count[i];
3640 max_tx_rate = mqprio_qopt->max_rate[i];
3641 /* convert to Mbps */
3642 max_tx_rate = div_u64(max_tx_rate,
3643 IAVF_MBPS_DIVISOR);
3644 adapter->ch_config.ch_info[i].max_tx_rate =
3645 max_tx_rate;
3646 } else {
3647 adapter->ch_config.ch_info[i].count = 1;
3648 adapter->ch_config.ch_info[i].offset = 0;
3649 }
3650 }
3651
3652 /* Take snapshot of original config such as "num_active_queues"
3653 * It is used later when delete ADQ flow is exercised, so that
3654 * once delete ADQ flow completes, VF shall go back to its
3655 * original queue configuration
3656 */
3657
3658 adapter->orig_num_active_queues = adapter->num_active_queues;
3659
3660 /* Store queue info based on TC so that VF gets configured
3661 * with correct number of queues when VF completes ADQ config
3662 * flow
3663 */
3664 adapter->ch_config.total_qps = total_qps;
3665
3666 netif_tx_stop_all_queues(netdev);
3667 netif_tx_disable(netdev);
3668 adapter->aq_required |= IAVF_FLAG_AQ_ENABLE_CHANNELS;
3669 netdev_reset_tc(netdev);
3670 /* Report the tc mapping up the stack */
3671 netdev_set_num_tc(adapter->netdev, num_tc);
3672 for (i = 0; i < IAVF_MAX_TRAFFIC_CLASS; i++) {
3673 u16 qcount = mqprio_qopt->qopt.count[i];
3674 u16 qoffset = mqprio_qopt->qopt.offset[i];
3675
3676 if (i < num_tc)
3677 netdev_set_tc_queue(netdev, netdev_tc++, qcount,
3678 qoffset);
3679 }
3680 }
3681exit:
3682 if (test_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section))
3683 return 0;
3684
3685 mutex_lock(&netdev->lock);
3686 netif_set_real_num_rx_queues(netdev, total_qps);
3687 netif_set_real_num_tx_queues(netdev, total_qps);
3688 mutex_unlock(&netdev->lock);
3689
3690 return ret;
3691}
3692
3693/**
3694 * iavf_parse_cls_flower - Parse tc flower filters provided by kernel
3695 * @adapter: board private structure
3696 * @f: pointer to struct flow_cls_offload
3697 * @filter: pointer to cloud filter structure
3698 */
3699static int iavf_parse_cls_flower(struct iavf_adapter *adapter,
3700 struct flow_cls_offload *f,
3701 struct iavf_cloud_filter *filter)
3702{
3703 struct flow_rule *rule = flow_cls_offload_flow_rule(f);
3704 struct flow_dissector *dissector = rule->match.dissector;
3705 u16 n_proto_mask = 0;
3706 u16 n_proto_key = 0;
3707 u8 field_flags = 0;
3708 u16 addr_type = 0;
3709 u16 n_proto = 0;
3710 int i = 0;
3711 struct virtchnl_filter *vf = &filter->f;
3712
3713 if (dissector->used_keys &
3714 ~(BIT_ULL(FLOW_DISSECTOR_KEY_CONTROL) |
3715 BIT_ULL(FLOW_DISSECTOR_KEY_BASIC) |
3716 BIT_ULL(FLOW_DISSECTOR_KEY_ETH_ADDRS) |
3717 BIT_ULL(FLOW_DISSECTOR_KEY_VLAN) |
3718 BIT_ULL(FLOW_DISSECTOR_KEY_IPV4_ADDRS) |
3719 BIT_ULL(FLOW_DISSECTOR_KEY_IPV6_ADDRS) |
3720 BIT_ULL(FLOW_DISSECTOR_KEY_PORTS) |
3721 BIT_ULL(FLOW_DISSECTOR_KEY_ENC_KEYID))) {
3722 dev_err(&adapter->pdev->dev, "Unsupported key used: 0x%llx\n",
3723 dissector->used_keys);
3724 return -EOPNOTSUPP;
3725 }
3726
3727 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ENC_KEYID)) {
3728 struct flow_match_enc_keyid match;
3729
3730 flow_rule_match_enc_keyid(rule, &match);
3731 if (match.mask->keyid != 0)
3732 field_flags |= IAVF_CLOUD_FIELD_TEN_ID;
3733 }
3734
3735 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_BASIC)) {
3736 struct flow_match_basic match;
3737
3738 flow_rule_match_basic(rule, &match);
3739 n_proto_key = ntohs(match.key->n_proto);
3740 n_proto_mask = ntohs(match.mask->n_proto);
3741
3742 if (n_proto_key == ETH_P_ALL) {
3743 n_proto_key = 0;
3744 n_proto_mask = 0;
3745 }
3746 n_proto = n_proto_key & n_proto_mask;
3747 if (n_proto != ETH_P_IP && n_proto != ETH_P_IPV6)
3748 return -EINVAL;
3749 if (n_proto == ETH_P_IPV6) {
3750 /* specify flow type as TCP IPv6 */
3751 vf->flow_type = VIRTCHNL_TCP_V6_FLOW;
3752 }
3753
3754 if (match.key->ip_proto != IPPROTO_TCP) {
3755 dev_info(&adapter->pdev->dev, "Only TCP transport is supported\n");
3756 return -EINVAL;
3757 }
3758 }
3759
3760 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ETH_ADDRS)) {
3761 struct flow_match_eth_addrs match;
3762
3763 flow_rule_match_eth_addrs(rule, &match);
3764
3765 /* use is_broadcast and is_zero to check for all 0xf or 0 */
3766 if (!is_zero_ether_addr(match.mask->dst)) {
3767 if (is_broadcast_ether_addr(match.mask->dst)) {
3768 field_flags |= IAVF_CLOUD_FIELD_OMAC;
3769 } else {
3770 dev_err(&adapter->pdev->dev, "Bad ether dest mask %pM\n",
3771 match.mask->dst);
3772 return -EINVAL;
3773 }
3774 }
3775
3776 if (!is_zero_ether_addr(match.mask->src)) {
3777 if (is_broadcast_ether_addr(match.mask->src)) {
3778 field_flags |= IAVF_CLOUD_FIELD_IMAC;
3779 } else {
3780 dev_err(&adapter->pdev->dev, "Bad ether src mask %pM\n",
3781 match.mask->src);
3782 return -EINVAL;
3783 }
3784 }
3785
3786 if (!is_zero_ether_addr(match.key->dst))
3787 if (is_valid_ether_addr(match.key->dst) ||
3788 is_multicast_ether_addr(match.key->dst)) {
3789 /* set the mask if a valid dst_mac address */
3790 for (i = 0; i < ETH_ALEN; i++)
3791 vf->mask.tcp_spec.dst_mac[i] |= 0xff;
3792 ether_addr_copy(vf->data.tcp_spec.dst_mac,
3793 match.key->dst);
3794 }
3795
3796 if (!is_zero_ether_addr(match.key->src))
3797 if (is_valid_ether_addr(match.key->src) ||
3798 is_multicast_ether_addr(match.key->src)) {
3799 /* set the mask if a valid dst_mac address */
3800 for (i = 0; i < ETH_ALEN; i++)
3801 vf->mask.tcp_spec.src_mac[i] |= 0xff;
3802 ether_addr_copy(vf->data.tcp_spec.src_mac,
3803 match.key->src);
3804 }
3805 }
3806
3807 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_VLAN)) {
3808 struct flow_match_vlan match;
3809
3810 flow_rule_match_vlan(rule, &match);
3811 if (match.mask->vlan_id) {
3812 if (match.mask->vlan_id == VLAN_VID_MASK) {
3813 field_flags |= IAVF_CLOUD_FIELD_IVLAN;
3814 } else {
3815 dev_err(&adapter->pdev->dev, "Bad vlan mask %u\n",
3816 match.mask->vlan_id);
3817 return -EINVAL;
3818 }
3819 }
3820 vf->mask.tcp_spec.vlan_id |= cpu_to_be16(0xffff);
3821 vf->data.tcp_spec.vlan_id = cpu_to_be16(match.key->vlan_id);
3822 }
3823
3824 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_CONTROL)) {
3825 struct flow_match_control match;
3826
3827 flow_rule_match_control(rule, &match);
3828 addr_type = match.key->addr_type;
3829
3830 if (flow_rule_has_control_flags(match.mask->flags,
3831 f->common.extack))
3832 return -EOPNOTSUPP;
3833 }
3834
3835 if (addr_type == FLOW_DISSECTOR_KEY_IPV4_ADDRS) {
3836 struct flow_match_ipv4_addrs match;
3837
3838 flow_rule_match_ipv4_addrs(rule, &match);
3839 if (match.mask->dst) {
3840 if (match.mask->dst == cpu_to_be32(0xffffffff)) {
3841 field_flags |= IAVF_CLOUD_FIELD_IIP;
3842 } else {
3843 dev_err(&adapter->pdev->dev, "Bad ip dst mask 0x%08x\n",
3844 be32_to_cpu(match.mask->dst));
3845 return -EINVAL;
3846 }
3847 }
3848
3849 if (match.mask->src) {
3850 if (match.mask->src == cpu_to_be32(0xffffffff)) {
3851 field_flags |= IAVF_CLOUD_FIELD_IIP;
3852 } else {
3853 dev_err(&adapter->pdev->dev, "Bad ip src mask 0x%08x\n",
3854 be32_to_cpu(match.mask->src));
3855 return -EINVAL;
3856 }
3857 }
3858
3859 if (field_flags & IAVF_CLOUD_FIELD_TEN_ID) {
3860 dev_info(&adapter->pdev->dev, "Tenant id not allowed for ip filter\n");
3861 return -EINVAL;
3862 }
3863 if (match.key->dst) {
3864 vf->mask.tcp_spec.dst_ip[0] |= cpu_to_be32(0xffffffff);
3865 vf->data.tcp_spec.dst_ip[0] = match.key->dst;
3866 }
3867 if (match.key->src) {
3868 vf->mask.tcp_spec.src_ip[0] |= cpu_to_be32(0xffffffff);
3869 vf->data.tcp_spec.src_ip[0] = match.key->src;
3870 }
3871 }
3872
3873 if (addr_type == FLOW_DISSECTOR_KEY_IPV6_ADDRS) {
3874 struct flow_match_ipv6_addrs match;
3875
3876 flow_rule_match_ipv6_addrs(rule, &match);
3877
3878 /* validate mask, make sure it is not IPV6_ADDR_ANY */
3879 if (ipv6_addr_any(&match.mask->dst)) {
3880 dev_err(&adapter->pdev->dev, "Bad ipv6 dst mask 0x%02x\n",
3881 IPV6_ADDR_ANY);
3882 return -EINVAL;
3883 }
3884
3885 /* src and dest IPv6 address should not be LOOPBACK
3886 * (0:0:0:0:0:0:0:1) which can be represented as ::1
3887 */
3888 if (ipv6_addr_loopback(&match.key->dst) ||
3889 ipv6_addr_loopback(&match.key->src)) {
3890 dev_err(&adapter->pdev->dev,
3891 "ipv6 addr should not be loopback\n");
3892 return -EINVAL;
3893 }
3894 if (!ipv6_addr_any(&match.mask->dst) ||
3895 !ipv6_addr_any(&match.mask->src))
3896 field_flags |= IAVF_CLOUD_FIELD_IIP;
3897
3898 for (i = 0; i < 4; i++)
3899 vf->mask.tcp_spec.dst_ip[i] |= cpu_to_be32(0xffffffff);
3900 memcpy(&vf->data.tcp_spec.dst_ip, &match.key->dst.s6_addr32,
3901 sizeof(vf->data.tcp_spec.dst_ip));
3902 for (i = 0; i < 4; i++)
3903 vf->mask.tcp_spec.src_ip[i] |= cpu_to_be32(0xffffffff);
3904 memcpy(&vf->data.tcp_spec.src_ip, &match.key->src.s6_addr32,
3905 sizeof(vf->data.tcp_spec.src_ip));
3906 }
3907 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_PORTS)) {
3908 struct flow_match_ports match;
3909
3910 flow_rule_match_ports(rule, &match);
3911 if (match.mask->src) {
3912 if (match.mask->src == cpu_to_be16(0xffff)) {
3913 field_flags |= IAVF_CLOUD_FIELD_IIP;
3914 } else {
3915 dev_err(&adapter->pdev->dev, "Bad src port mask %u\n",
3916 be16_to_cpu(match.mask->src));
3917 return -EINVAL;
3918 }
3919 }
3920
3921 if (match.mask->dst) {
3922 if (match.mask->dst == cpu_to_be16(0xffff)) {
3923 field_flags |= IAVF_CLOUD_FIELD_IIP;
3924 } else {
3925 dev_err(&adapter->pdev->dev, "Bad dst port mask %u\n",
3926 be16_to_cpu(match.mask->dst));
3927 return -EINVAL;
3928 }
3929 }
3930 if (match.key->dst) {
3931 vf->mask.tcp_spec.dst_port |= cpu_to_be16(0xffff);
3932 vf->data.tcp_spec.dst_port = match.key->dst;
3933 }
3934
3935 if (match.key->src) {
3936 vf->mask.tcp_spec.src_port |= cpu_to_be16(0xffff);
3937 vf->data.tcp_spec.src_port = match.key->src;
3938 }
3939 }
3940 vf->field_flags = field_flags;
3941
3942 return 0;
3943}
3944
3945/**
3946 * iavf_handle_tclass - Forward to a traffic class on the device
3947 * @adapter: board private structure
3948 * @tc: traffic class index on the device
3949 * @filter: pointer to cloud filter structure
3950 */
3951static int iavf_handle_tclass(struct iavf_adapter *adapter, u32 tc,
3952 struct iavf_cloud_filter *filter)
3953{
3954 if (tc == 0)
3955 return 0;
3956 if (tc < adapter->num_tc) {
3957 if (!filter->f.data.tcp_spec.dst_port) {
3958 dev_err(&adapter->pdev->dev,
3959 "Specify destination port to redirect to traffic class other than TC0\n");
3960 return -EINVAL;
3961 }
3962 }
3963 /* redirect to a traffic class on the same device */
3964 filter->f.action = VIRTCHNL_ACTION_TC_REDIRECT;
3965 filter->f.action_meta = tc;
3966 return 0;
3967}
3968
3969/**
3970 * iavf_find_cf - Find the cloud filter in the list
3971 * @adapter: Board private structure
3972 * @cookie: filter specific cookie
3973 *
3974 * Returns ptr to the filter object or NULL. Must be called while holding the
3975 * cloud_filter_list_lock.
3976 */
3977static struct iavf_cloud_filter *iavf_find_cf(struct iavf_adapter *adapter,
3978 unsigned long *cookie)
3979{
3980 struct iavf_cloud_filter *filter = NULL;
3981
3982 if (!cookie)
3983 return NULL;
3984
3985 list_for_each_entry(filter, &adapter->cloud_filter_list, list) {
3986 if (!memcmp(cookie, &filter->cookie, sizeof(filter->cookie)))
3987 return filter;
3988 }
3989 return NULL;
3990}
3991
3992/**
3993 * iavf_configure_clsflower - Add tc flower filters
3994 * @adapter: board private structure
3995 * @cls_flower: Pointer to struct flow_cls_offload
3996 */
3997static int iavf_configure_clsflower(struct iavf_adapter *adapter,
3998 struct flow_cls_offload *cls_flower)
3999{
4000 int tc = tc_classid_to_hwtc(adapter->netdev, cls_flower->classid);
4001 struct iavf_cloud_filter *filter = NULL;
4002 int err = -EINVAL, count = 50;
4003
4004 if (tc < 0) {
4005 dev_err(&adapter->pdev->dev, "Invalid traffic class\n");
4006 return -EINVAL;
4007 }
4008
4009 filter = kzalloc(sizeof(*filter), GFP_KERNEL);
4010 if (!filter)
4011 return -ENOMEM;
4012
4013 while (!mutex_trylock(&adapter->crit_lock)) {
4014 if (--count == 0) {
4015 kfree(filter);
4016 return err;
4017 }
4018 udelay(1);
4019 }
4020
4021 filter->cookie = cls_flower->cookie;
4022
4023 /* bail out here if filter already exists */
4024 spin_lock_bh(&adapter->cloud_filter_list_lock);
4025 if (iavf_find_cf(adapter, &cls_flower->cookie)) {
4026 dev_err(&adapter->pdev->dev, "Failed to add TC Flower filter, it already exists\n");
4027 err = -EEXIST;
4028 goto spin_unlock;
4029 }
4030 spin_unlock_bh(&adapter->cloud_filter_list_lock);
4031
4032 /* set the mask to all zeroes to begin with */
4033 memset(&filter->f.mask.tcp_spec, 0, sizeof(struct virtchnl_l4_spec));
4034 /* start out with flow type and eth type IPv4 to begin with */
4035 filter->f.flow_type = VIRTCHNL_TCP_V4_FLOW;
4036 err = iavf_parse_cls_flower(adapter, cls_flower, filter);
4037 if (err)
4038 goto err;
4039
4040 err = iavf_handle_tclass(adapter, tc, filter);
4041 if (err)
4042 goto err;
4043
4044 /* add filter to the list */
4045 spin_lock_bh(&adapter->cloud_filter_list_lock);
4046 list_add_tail(&filter->list, &adapter->cloud_filter_list);
4047 adapter->num_cloud_filters++;
4048 filter->add = true;
4049 adapter->aq_required |= IAVF_FLAG_AQ_ADD_CLOUD_FILTER;
4050spin_unlock:
4051 spin_unlock_bh(&adapter->cloud_filter_list_lock);
4052err:
4053 if (err)
4054 kfree(filter);
4055
4056 mutex_unlock(&adapter->crit_lock);
4057 return err;
4058}
4059
4060/**
4061 * iavf_delete_clsflower - Remove tc flower filters
4062 * @adapter: board private structure
4063 * @cls_flower: Pointer to struct flow_cls_offload
4064 */
4065static int iavf_delete_clsflower(struct iavf_adapter *adapter,
4066 struct flow_cls_offload *cls_flower)
4067{
4068 struct iavf_cloud_filter *filter = NULL;
4069 int err = 0;
4070
4071 spin_lock_bh(&adapter->cloud_filter_list_lock);
4072 filter = iavf_find_cf(adapter, &cls_flower->cookie);
4073 if (filter) {
4074 filter->del = true;
4075 adapter->aq_required |= IAVF_FLAG_AQ_DEL_CLOUD_FILTER;
4076 } else {
4077 err = -EINVAL;
4078 }
4079 spin_unlock_bh(&adapter->cloud_filter_list_lock);
4080
4081 return err;
4082}
4083
4084/**
4085 * iavf_setup_tc_cls_flower - flower classifier offloads
4086 * @adapter: pointer to iavf adapter structure
4087 * @cls_flower: pointer to flow_cls_offload struct with flow info
4088 */
4089static int iavf_setup_tc_cls_flower(struct iavf_adapter *adapter,
4090 struct flow_cls_offload *cls_flower)
4091{
4092 switch (cls_flower->command) {
4093 case FLOW_CLS_REPLACE:
4094 return iavf_configure_clsflower(adapter, cls_flower);
4095 case FLOW_CLS_DESTROY:
4096 return iavf_delete_clsflower(adapter, cls_flower);
4097 case FLOW_CLS_STATS:
4098 return -EOPNOTSUPP;
4099 default:
4100 return -EOPNOTSUPP;
4101 }
4102}
4103
4104/**
4105 * iavf_add_cls_u32 - Add U32 classifier offloads
4106 * @adapter: pointer to iavf adapter structure
4107 * @cls_u32: pointer to tc_cls_u32_offload struct with flow info
4108 *
4109 * Return: 0 on success or negative errno on failure.
4110 */
4111static int iavf_add_cls_u32(struct iavf_adapter *adapter,
4112 struct tc_cls_u32_offload *cls_u32)
4113{
4114 struct netlink_ext_ack *extack = cls_u32->common.extack;
4115 struct virtchnl_fdir_rule *rule_cfg;
4116 struct virtchnl_filter_action *vact;
4117 struct virtchnl_proto_hdrs *hdrs;
4118 struct ethhdr *spec_h, *mask_h;
4119 const struct tc_action *act;
4120 struct iavf_fdir_fltr *fltr;
4121 struct tcf_exts *exts;
4122 unsigned int q_index;
4123 int i, status = 0;
4124 int off_base = 0;
4125
4126 if (cls_u32->knode.link_handle) {
4127 NL_SET_ERR_MSG_MOD(extack, "Linking not supported");
4128 return -EOPNOTSUPP;
4129 }
4130
4131 fltr = kzalloc(sizeof(*fltr), GFP_KERNEL);
4132 if (!fltr)
4133 return -ENOMEM;
4134
4135 rule_cfg = &fltr->vc_add_msg.rule_cfg;
4136 hdrs = &rule_cfg->proto_hdrs;
4137 hdrs->count = 0;
4138
4139 /* The parser lib at the PF expects the packet starting with MAC hdr */
4140 switch (ntohs(cls_u32->common.protocol)) {
4141 case ETH_P_802_3:
4142 break;
4143 case ETH_P_IP:
4144 spec_h = (struct ethhdr *)hdrs->raw.spec;
4145 mask_h = (struct ethhdr *)hdrs->raw.mask;
4146 spec_h->h_proto = htons(ETH_P_IP);
4147 mask_h->h_proto = htons(0xFFFF);
4148 off_base += ETH_HLEN;
4149 break;
4150 default:
4151 NL_SET_ERR_MSG_MOD(extack, "Only 802_3 and ip filter protocols are supported");
4152 status = -EOPNOTSUPP;
4153 goto free_alloc;
4154 }
4155
4156 for (i = 0; i < cls_u32->knode.sel->nkeys; i++) {
4157 __be32 val, mask;
4158 int off;
4159
4160 off = off_base + cls_u32->knode.sel->keys[i].off;
4161 val = cls_u32->knode.sel->keys[i].val;
4162 mask = cls_u32->knode.sel->keys[i].mask;
4163
4164 if (off >= sizeof(hdrs->raw.spec)) {
4165 NL_SET_ERR_MSG_MOD(extack, "Input exceeds maximum allowed.");
4166 status = -EINVAL;
4167 goto free_alloc;
4168 }
4169
4170 memcpy(&hdrs->raw.spec[off], &val, sizeof(val));
4171 memcpy(&hdrs->raw.mask[off], &mask, sizeof(mask));
4172 hdrs->raw.pkt_len = off + sizeof(val);
4173 }
4174
4175 /* Only one action is allowed */
4176 rule_cfg->action_set.count = 1;
4177 vact = &rule_cfg->action_set.actions[0];
4178 exts = cls_u32->knode.exts;
4179
4180 tcf_exts_for_each_action(i, act, exts) {
4181 /* FDIR queue */
4182 if (is_tcf_skbedit_rx_queue_mapping(act)) {
4183 q_index = tcf_skbedit_rx_queue_mapping(act);
4184 if (q_index >= adapter->num_active_queues) {
4185 status = -EINVAL;
4186 goto free_alloc;
4187 }
4188
4189 vact->type = VIRTCHNL_ACTION_QUEUE;
4190 vact->act_conf.queue.index = q_index;
4191 break;
4192 }
4193
4194 /* Drop */
4195 if (is_tcf_gact_shot(act)) {
4196 vact->type = VIRTCHNL_ACTION_DROP;
4197 break;
4198 }
4199
4200 /* Unsupported action */
4201 NL_SET_ERR_MSG_MOD(extack, "Unsupported action.");
4202 status = -EOPNOTSUPP;
4203 goto free_alloc;
4204 }
4205
4206 fltr->vc_add_msg.vsi_id = adapter->vsi.id;
4207 fltr->cls_u32_handle = cls_u32->knode.handle;
4208 return iavf_fdir_add_fltr(adapter, fltr);
4209
4210free_alloc:
4211 kfree(fltr);
4212 return status;
4213}
4214
4215/**
4216 * iavf_del_cls_u32 - Delete U32 classifier offloads
4217 * @adapter: pointer to iavf adapter structure
4218 * @cls_u32: pointer to tc_cls_u32_offload struct with flow info
4219 *
4220 * Return: 0 on success or negative errno on failure.
4221 */
4222static int iavf_del_cls_u32(struct iavf_adapter *adapter,
4223 struct tc_cls_u32_offload *cls_u32)
4224{
4225 return iavf_fdir_del_fltr(adapter, true, cls_u32->knode.handle);
4226}
4227
4228/**
4229 * iavf_setup_tc_cls_u32 - U32 filter offloads
4230 * @adapter: pointer to iavf adapter structure
4231 * @cls_u32: pointer to tc_cls_u32_offload struct with flow info
4232 *
4233 * Return: 0 on success or negative errno on failure.
4234 */
4235static int iavf_setup_tc_cls_u32(struct iavf_adapter *adapter,
4236 struct tc_cls_u32_offload *cls_u32)
4237{
4238 if (!TC_U32_SUPPORT(adapter) || !FDIR_FLTR_SUPPORT(adapter))
4239 return -EOPNOTSUPP;
4240
4241 switch (cls_u32->command) {
4242 case TC_CLSU32_NEW_KNODE:
4243 case TC_CLSU32_REPLACE_KNODE:
4244 return iavf_add_cls_u32(adapter, cls_u32);
4245 case TC_CLSU32_DELETE_KNODE:
4246 return iavf_del_cls_u32(adapter, cls_u32);
4247 default:
4248 return -EOPNOTSUPP;
4249 }
4250}
4251
4252/**
4253 * iavf_setup_tc_block_cb - block callback for tc
4254 * @type: type of offload
4255 * @type_data: offload data
4256 * @cb_priv:
4257 *
4258 * This function is the block callback for traffic classes
4259 **/
4260static int iavf_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
4261 void *cb_priv)
4262{
4263 struct iavf_adapter *adapter = cb_priv;
4264
4265 if (!tc_cls_can_offload_and_chain0(adapter->netdev, type_data))
4266 return -EOPNOTSUPP;
4267
4268 switch (type) {
4269 case TC_SETUP_CLSFLOWER:
4270 return iavf_setup_tc_cls_flower(cb_priv, type_data);
4271 case TC_SETUP_CLSU32:
4272 return iavf_setup_tc_cls_u32(cb_priv, type_data);
4273 default:
4274 return -EOPNOTSUPP;
4275 }
4276}
4277
4278static LIST_HEAD(iavf_block_cb_list);
4279
4280/**
4281 * iavf_setup_tc - configure multiple traffic classes
4282 * @netdev: network interface device structure
4283 * @type: type of offload
4284 * @type_data: tc offload data
4285 *
4286 * This function is the callback to ndo_setup_tc in the
4287 * netdev_ops.
4288 *
4289 * Returns 0 on success
4290 **/
4291static int iavf_setup_tc(struct net_device *netdev, enum tc_setup_type type,
4292 void *type_data)
4293{
4294 struct iavf_adapter *adapter = netdev_priv(netdev);
4295
4296 switch (type) {
4297 case TC_SETUP_QDISC_MQPRIO:
4298 return __iavf_setup_tc(netdev, type_data);
4299 case TC_SETUP_BLOCK:
4300 return flow_block_cb_setup_simple(type_data,
4301 &iavf_block_cb_list,
4302 iavf_setup_tc_block_cb,
4303 adapter, adapter, true);
4304 default:
4305 return -EOPNOTSUPP;
4306 }
4307}
4308
4309/**
4310 * iavf_restore_fdir_filters
4311 * @adapter: board private structure
4312 *
4313 * Restore existing FDIR filters when VF netdev comes back up.
4314 **/
4315static void iavf_restore_fdir_filters(struct iavf_adapter *adapter)
4316{
4317 struct iavf_fdir_fltr *f;
4318
4319 spin_lock_bh(&adapter->fdir_fltr_lock);
4320 list_for_each_entry(f, &adapter->fdir_list_head, list) {
4321 if (f->state == IAVF_FDIR_FLTR_DIS_REQUEST) {
4322 /* Cancel a request, keep filter as active */
4323 f->state = IAVF_FDIR_FLTR_ACTIVE;
4324 } else if (f->state == IAVF_FDIR_FLTR_DIS_PENDING ||
4325 f->state == IAVF_FDIR_FLTR_INACTIVE) {
4326 /* Add filters which are inactive or have a pending
4327 * request to PF to be deleted
4328 */
4329 f->state = IAVF_FDIR_FLTR_ADD_REQUEST;
4330 adapter->aq_required |= IAVF_FLAG_AQ_ADD_FDIR_FILTER;
4331 }
4332 }
4333 spin_unlock_bh(&adapter->fdir_fltr_lock);
4334}
4335
4336/**
4337 * iavf_open - Called when a network interface is made active
4338 * @netdev: network interface device structure
4339 *
4340 * Returns 0 on success, negative value on failure
4341 *
4342 * The open entry point is called when a network interface is made
4343 * active by the system (IFF_UP). At this point all resources needed
4344 * for transmit and receive operations are allocated, the interrupt
4345 * handler is registered with the OS, the watchdog is started,
4346 * and the stack is notified that the interface is ready.
4347 **/
4348static int iavf_open(struct net_device *netdev)
4349{
4350 struct iavf_adapter *adapter = netdev_priv(netdev);
4351 int err;
4352
4353 if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED) {
4354 dev_err(&adapter->pdev->dev, "Unable to open device due to PF driver failure.\n");
4355 return -EIO;
4356 }
4357
4358 while (!mutex_trylock(&adapter->crit_lock)) {
4359 /* If we are in __IAVF_INIT_CONFIG_ADAPTER state the crit_lock
4360 * is already taken and iavf_open is called from an upper
4361 * device's notifier reacting on NETDEV_REGISTER event.
4362 * We have to leave here to avoid dead lock.
4363 */
4364 if (adapter->state == __IAVF_INIT_CONFIG_ADAPTER)
4365 return -EBUSY;
4366
4367 usleep_range(500, 1000);
4368 }
4369
4370 if (adapter->state != __IAVF_DOWN) {
4371 err = -EBUSY;
4372 goto err_unlock;
4373 }
4374
4375 if (adapter->state == __IAVF_RUNNING &&
4376 !test_bit(__IAVF_VSI_DOWN, adapter->vsi.state)) {
4377 dev_dbg(&adapter->pdev->dev, "VF is already open.\n");
4378 err = 0;
4379 goto err_unlock;
4380 }
4381
4382 /* allocate transmit descriptors */
4383 err = iavf_setup_all_tx_resources(adapter);
4384 if (err)
4385 goto err_setup_tx;
4386
4387 /* allocate receive descriptors */
4388 err = iavf_setup_all_rx_resources(adapter);
4389 if (err)
4390 goto err_setup_rx;
4391
4392 /* clear any pending interrupts, may auto mask */
4393 err = iavf_request_traffic_irqs(adapter, netdev->name);
4394 if (err)
4395 goto err_req_irq;
4396
4397 spin_lock_bh(&adapter->mac_vlan_list_lock);
4398
4399 iavf_add_filter(adapter, adapter->hw.mac.addr);
4400
4401 spin_unlock_bh(&adapter->mac_vlan_list_lock);
4402
4403 /* Restore filters that were removed with IFF_DOWN */
4404 iavf_restore_filters(adapter);
4405 iavf_restore_fdir_filters(adapter);
4406
4407 iavf_configure(adapter);
4408
4409 iavf_up_complete(adapter);
4410
4411 iavf_irq_enable(adapter, true);
4412
4413 mutex_unlock(&adapter->crit_lock);
4414
4415 return 0;
4416
4417err_req_irq:
4418 iavf_down(adapter);
4419 iavf_free_traffic_irqs(adapter);
4420err_setup_rx:
4421 iavf_free_all_rx_resources(adapter);
4422err_setup_tx:
4423 iavf_free_all_tx_resources(adapter);
4424err_unlock:
4425 mutex_unlock(&adapter->crit_lock);
4426
4427 return err;
4428}
4429
4430/**
4431 * iavf_close - Disables a network interface
4432 * @netdev: network interface device structure
4433 *
4434 * Returns 0, this is not allowed to fail
4435 *
4436 * The close entry point is called when an interface is de-activated
4437 * by the OS. The hardware is still under the drivers control, but
4438 * needs to be disabled. All IRQs except vector 0 (reserved for admin queue)
4439 * are freed, along with all transmit and receive resources.
4440 **/
4441static int iavf_close(struct net_device *netdev)
4442{
4443 struct iavf_adapter *adapter = netdev_priv(netdev);
4444 u64 aq_to_restore;
4445 int status;
4446
4447 mutex_lock(&adapter->crit_lock);
4448
4449 if (adapter->state <= __IAVF_DOWN_PENDING) {
4450 mutex_unlock(&adapter->crit_lock);
4451 return 0;
4452 }
4453
4454 set_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
4455 /* We cannot send IAVF_FLAG_AQ_GET_OFFLOAD_VLAN_V2_CAPS before
4456 * IAVF_FLAG_AQ_DISABLE_QUEUES because in such case there is rtnl
4457 * deadlock with adminq_task() until iavf_close timeouts. We must send
4458 * IAVF_FLAG_AQ_GET_CONFIG before IAVF_FLAG_AQ_DISABLE_QUEUES to make
4459 * disable queues possible for vf. Give only necessary flags to
4460 * iavf_down and save other to set them right before iavf_close()
4461 * returns, when IAVF_FLAG_AQ_DISABLE_QUEUES will be already sent and
4462 * iavf will be in DOWN state.
4463 */
4464 aq_to_restore = adapter->aq_required;
4465 adapter->aq_required &= IAVF_FLAG_AQ_GET_CONFIG;
4466
4467 /* Remove flags which we do not want to send after close or we want to
4468 * send before disable queues.
4469 */
4470 aq_to_restore &= ~(IAVF_FLAG_AQ_GET_CONFIG |
4471 IAVF_FLAG_AQ_ENABLE_QUEUES |
4472 IAVF_FLAG_AQ_CONFIGURE_QUEUES |
4473 IAVF_FLAG_AQ_ADD_VLAN_FILTER |
4474 IAVF_FLAG_AQ_ADD_MAC_FILTER |
4475 IAVF_FLAG_AQ_ADD_CLOUD_FILTER |
4476 IAVF_FLAG_AQ_ADD_FDIR_FILTER |
4477 IAVF_FLAG_AQ_ADD_ADV_RSS_CFG);
4478
4479 iavf_down(adapter);
4480 iavf_change_state(adapter, __IAVF_DOWN_PENDING);
4481 iavf_free_traffic_irqs(adapter);
4482
4483 mutex_unlock(&adapter->crit_lock);
4484
4485 /* We explicitly don't free resources here because the hardware is
4486 * still active and can DMA into memory. Resources are cleared in
4487 * iavf_virtchnl_completion() after we get confirmation from the PF
4488 * driver that the rings have been stopped.
4489 *
4490 * Also, we wait for state to transition to __IAVF_DOWN before
4491 * returning. State change occurs in iavf_virtchnl_completion() after
4492 * VF resources are released (which occurs after PF driver processes and
4493 * responds to admin queue commands).
4494 */
4495
4496 status = wait_event_timeout(adapter->down_waitqueue,
4497 adapter->state == __IAVF_DOWN,
4498 msecs_to_jiffies(500));
4499 if (!status)
4500 netdev_warn(netdev, "Device resources not yet released\n");
4501
4502 mutex_lock(&adapter->crit_lock);
4503 adapter->aq_required |= aq_to_restore;
4504 mutex_unlock(&adapter->crit_lock);
4505 return 0;
4506}
4507
4508/**
4509 * iavf_change_mtu - Change the Maximum Transfer Unit
4510 * @netdev: network interface device structure
4511 * @new_mtu: new value for maximum frame size
4512 *
4513 * Returns 0 on success, negative on failure
4514 **/
4515static int iavf_change_mtu(struct net_device *netdev, int new_mtu)
4516{
4517 struct iavf_adapter *adapter = netdev_priv(netdev);
4518 int ret = 0;
4519
4520 netdev_dbg(netdev, "changing MTU from %d to %d\n",
4521 netdev->mtu, new_mtu);
4522 WRITE_ONCE(netdev->mtu, new_mtu);
4523
4524 if (netif_running(netdev)) {
4525 iavf_schedule_reset(adapter, IAVF_FLAG_RESET_NEEDED);
4526 ret = iavf_wait_for_reset(adapter);
4527 if (ret < 0)
4528 netdev_warn(netdev, "MTU change interrupted waiting for reset");
4529 else if (ret)
4530 netdev_warn(netdev, "MTU change timed out waiting for reset");
4531 }
4532
4533 return ret;
4534}
4535
4536/**
4537 * iavf_disable_fdir - disable Flow Director and clear existing filters
4538 * @adapter: board private structure
4539 **/
4540static void iavf_disable_fdir(struct iavf_adapter *adapter)
4541{
4542 struct iavf_fdir_fltr *fdir, *fdirtmp;
4543 bool del_filters = false;
4544
4545 adapter->flags &= ~IAVF_FLAG_FDIR_ENABLED;
4546
4547 /* remove all Flow Director filters */
4548 spin_lock_bh(&adapter->fdir_fltr_lock);
4549 list_for_each_entry_safe(fdir, fdirtmp, &adapter->fdir_list_head,
4550 list) {
4551 if (fdir->state == IAVF_FDIR_FLTR_ADD_REQUEST ||
4552 fdir->state == IAVF_FDIR_FLTR_INACTIVE) {
4553 /* Delete filters not registered in PF */
4554 list_del(&fdir->list);
4555 iavf_dec_fdir_active_fltr(adapter, fdir);
4556 kfree(fdir);
4557 } else if (fdir->state == IAVF_FDIR_FLTR_ADD_PENDING ||
4558 fdir->state == IAVF_FDIR_FLTR_DIS_REQUEST ||
4559 fdir->state == IAVF_FDIR_FLTR_ACTIVE) {
4560 /* Filters registered in PF, schedule their deletion */
4561 fdir->state = IAVF_FDIR_FLTR_DEL_REQUEST;
4562 del_filters = true;
4563 } else if (fdir->state == IAVF_FDIR_FLTR_DIS_PENDING) {
4564 /* Request to delete filter already sent to PF, change
4565 * state to DEL_PENDING to delete filter after PF's
4566 * response, not set as INACTIVE
4567 */
4568 fdir->state = IAVF_FDIR_FLTR_DEL_PENDING;
4569 }
4570 }
4571 spin_unlock_bh(&adapter->fdir_fltr_lock);
4572
4573 if (del_filters) {
4574 adapter->aq_required |= IAVF_FLAG_AQ_DEL_FDIR_FILTER;
4575 mod_delayed_work(adapter->wq, &adapter->watchdog_task, 0);
4576 }
4577}
4578
4579#define NETIF_VLAN_OFFLOAD_FEATURES (NETIF_F_HW_VLAN_CTAG_RX | \
4580 NETIF_F_HW_VLAN_CTAG_TX | \
4581 NETIF_F_HW_VLAN_STAG_RX | \
4582 NETIF_F_HW_VLAN_STAG_TX)
4583
4584/**
4585 * iavf_set_features - set the netdev feature flags
4586 * @netdev: ptr to the netdev being adjusted
4587 * @features: the feature set that the stack is suggesting
4588 * Note: expects to be called while under rtnl_lock()
4589 **/
4590static int iavf_set_features(struct net_device *netdev,
4591 netdev_features_t features)
4592{
4593 struct iavf_adapter *adapter = netdev_priv(netdev);
4594
4595 /* trigger update on any VLAN feature change */
4596 if ((netdev->features & NETIF_VLAN_OFFLOAD_FEATURES) ^
4597 (features & NETIF_VLAN_OFFLOAD_FEATURES))
4598 iavf_set_vlan_offload_features(adapter, netdev->features,
4599 features);
4600 if (CRC_OFFLOAD_ALLOWED(adapter) &&
4601 ((netdev->features & NETIF_F_RXFCS) ^ (features & NETIF_F_RXFCS)))
4602 iavf_schedule_reset(adapter, IAVF_FLAG_RESET_NEEDED);
4603
4604 if ((netdev->features & NETIF_F_NTUPLE) ^ (features & NETIF_F_NTUPLE)) {
4605 if (features & NETIF_F_NTUPLE)
4606 adapter->flags |= IAVF_FLAG_FDIR_ENABLED;
4607 else
4608 iavf_disable_fdir(adapter);
4609 }
4610
4611 return 0;
4612}
4613
4614/**
4615 * iavf_features_check - Validate encapsulated packet conforms to limits
4616 * @skb: skb buff
4617 * @dev: This physical port's netdev
4618 * @features: Offload features that the stack believes apply
4619 **/
4620static netdev_features_t iavf_features_check(struct sk_buff *skb,
4621 struct net_device *dev,
4622 netdev_features_t features)
4623{
4624 size_t len;
4625
4626 /* No point in doing any of this if neither checksum nor GSO are
4627 * being requested for this frame. We can rule out both by just
4628 * checking for CHECKSUM_PARTIAL
4629 */
4630 if (skb->ip_summed != CHECKSUM_PARTIAL)
4631 return features;
4632
4633 /* We cannot support GSO if the MSS is going to be less than
4634 * 64 bytes. If it is then we need to drop support for GSO.
4635 */
4636 if (skb_is_gso(skb) && (skb_shinfo(skb)->gso_size < 64))
4637 features &= ~NETIF_F_GSO_MASK;
4638
4639 /* MACLEN can support at most 63 words */
4640 len = skb_network_offset(skb);
4641 if (len & ~(63 * 2))
4642 goto out_err;
4643
4644 /* IPLEN and EIPLEN can support at most 127 dwords */
4645 len = skb_network_header_len(skb);
4646 if (len & ~(127 * 4))
4647 goto out_err;
4648
4649 if (skb->encapsulation) {
4650 /* L4TUNLEN can support 127 words */
4651 len = skb_inner_network_header(skb) - skb_transport_header(skb);
4652 if (len & ~(127 * 2))
4653 goto out_err;
4654
4655 /* IPLEN can support at most 127 dwords */
4656 len = skb_inner_transport_header(skb) -
4657 skb_inner_network_header(skb);
4658 if (len & ~(127 * 4))
4659 goto out_err;
4660 }
4661
4662 /* No need to validate L4LEN as TCP is the only protocol with a
4663 * flexible value and we support all possible values supported
4664 * by TCP, which is at most 15 dwords
4665 */
4666
4667 return features;
4668out_err:
4669 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
4670}
4671
4672/**
4673 * iavf_get_netdev_vlan_hw_features - get NETDEV VLAN features that can toggle on/off
4674 * @adapter: board private structure
4675 *
4676 * Depending on whether VIRTHCNL_VF_OFFLOAD_VLAN or VIRTCHNL_VF_OFFLOAD_VLAN_V2
4677 * were negotiated determine the VLAN features that can be toggled on and off.
4678 **/
4679static netdev_features_t
4680iavf_get_netdev_vlan_hw_features(struct iavf_adapter *adapter)
4681{
4682 netdev_features_t hw_features = 0;
4683
4684 if (!adapter->vf_res || !adapter->vf_res->vf_cap_flags)
4685 return hw_features;
4686
4687 /* Enable VLAN features if supported */
4688 if (VLAN_ALLOWED(adapter)) {
4689 hw_features |= (NETIF_F_HW_VLAN_CTAG_TX |
4690 NETIF_F_HW_VLAN_CTAG_RX);
4691 } else if (VLAN_V2_ALLOWED(adapter)) {
4692 struct virtchnl_vlan_caps *vlan_v2_caps =
4693 &adapter->vlan_v2_caps;
4694 struct virtchnl_vlan_supported_caps *stripping_support =
4695 &vlan_v2_caps->offloads.stripping_support;
4696 struct virtchnl_vlan_supported_caps *insertion_support =
4697 &vlan_v2_caps->offloads.insertion_support;
4698
4699 if (stripping_support->outer != VIRTCHNL_VLAN_UNSUPPORTED &&
4700 stripping_support->outer & VIRTCHNL_VLAN_TOGGLE) {
4701 if (stripping_support->outer &
4702 VIRTCHNL_VLAN_ETHERTYPE_8100)
4703 hw_features |= NETIF_F_HW_VLAN_CTAG_RX;
4704 if (stripping_support->outer &
4705 VIRTCHNL_VLAN_ETHERTYPE_88A8)
4706 hw_features |= NETIF_F_HW_VLAN_STAG_RX;
4707 } else if (stripping_support->inner !=
4708 VIRTCHNL_VLAN_UNSUPPORTED &&
4709 stripping_support->inner & VIRTCHNL_VLAN_TOGGLE) {
4710 if (stripping_support->inner &
4711 VIRTCHNL_VLAN_ETHERTYPE_8100)
4712 hw_features |= NETIF_F_HW_VLAN_CTAG_RX;
4713 }
4714
4715 if (insertion_support->outer != VIRTCHNL_VLAN_UNSUPPORTED &&
4716 insertion_support->outer & VIRTCHNL_VLAN_TOGGLE) {
4717 if (insertion_support->outer &
4718 VIRTCHNL_VLAN_ETHERTYPE_8100)
4719 hw_features |= NETIF_F_HW_VLAN_CTAG_TX;
4720 if (insertion_support->outer &
4721 VIRTCHNL_VLAN_ETHERTYPE_88A8)
4722 hw_features |= NETIF_F_HW_VLAN_STAG_TX;
4723 } else if (insertion_support->inner &&
4724 insertion_support->inner & VIRTCHNL_VLAN_TOGGLE) {
4725 if (insertion_support->inner &
4726 VIRTCHNL_VLAN_ETHERTYPE_8100)
4727 hw_features |= NETIF_F_HW_VLAN_CTAG_TX;
4728 }
4729 }
4730
4731 if (CRC_OFFLOAD_ALLOWED(adapter))
4732 hw_features |= NETIF_F_RXFCS;
4733
4734 return hw_features;
4735}
4736
4737/**
4738 * iavf_get_netdev_vlan_features - get the enabled NETDEV VLAN fetures
4739 * @adapter: board private structure
4740 *
4741 * Depending on whether VIRTHCNL_VF_OFFLOAD_VLAN or VIRTCHNL_VF_OFFLOAD_VLAN_V2
4742 * were negotiated determine the VLAN features that are enabled by default.
4743 **/
4744static netdev_features_t
4745iavf_get_netdev_vlan_features(struct iavf_adapter *adapter)
4746{
4747 netdev_features_t features = 0;
4748
4749 if (!adapter->vf_res || !adapter->vf_res->vf_cap_flags)
4750 return features;
4751
4752 if (VLAN_ALLOWED(adapter)) {
4753 features |= NETIF_F_HW_VLAN_CTAG_FILTER |
4754 NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX;
4755 } else if (VLAN_V2_ALLOWED(adapter)) {
4756 struct virtchnl_vlan_caps *vlan_v2_caps =
4757 &adapter->vlan_v2_caps;
4758 struct virtchnl_vlan_supported_caps *filtering_support =
4759 &vlan_v2_caps->filtering.filtering_support;
4760 struct virtchnl_vlan_supported_caps *stripping_support =
4761 &vlan_v2_caps->offloads.stripping_support;
4762 struct virtchnl_vlan_supported_caps *insertion_support =
4763 &vlan_v2_caps->offloads.insertion_support;
4764 u32 ethertype_init;
4765
4766 /* give priority to outer stripping and don't support both outer
4767 * and inner stripping
4768 */
4769 ethertype_init = vlan_v2_caps->offloads.ethertype_init;
4770 if (stripping_support->outer != VIRTCHNL_VLAN_UNSUPPORTED) {
4771 if (stripping_support->outer &
4772 VIRTCHNL_VLAN_ETHERTYPE_8100 &&
4773 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100)
4774 features |= NETIF_F_HW_VLAN_CTAG_RX;
4775 else if (stripping_support->outer &
4776 VIRTCHNL_VLAN_ETHERTYPE_88A8 &&
4777 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_88A8)
4778 features |= NETIF_F_HW_VLAN_STAG_RX;
4779 } else if (stripping_support->inner !=
4780 VIRTCHNL_VLAN_UNSUPPORTED) {
4781 if (stripping_support->inner &
4782 VIRTCHNL_VLAN_ETHERTYPE_8100 &&
4783 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100)
4784 features |= NETIF_F_HW_VLAN_CTAG_RX;
4785 }
4786
4787 /* give priority to outer insertion and don't support both outer
4788 * and inner insertion
4789 */
4790 if (insertion_support->outer != VIRTCHNL_VLAN_UNSUPPORTED) {
4791 if (insertion_support->outer &
4792 VIRTCHNL_VLAN_ETHERTYPE_8100 &&
4793 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100)
4794 features |= NETIF_F_HW_VLAN_CTAG_TX;
4795 else if (insertion_support->outer &
4796 VIRTCHNL_VLAN_ETHERTYPE_88A8 &&
4797 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_88A8)
4798 features |= NETIF_F_HW_VLAN_STAG_TX;
4799 } else if (insertion_support->inner !=
4800 VIRTCHNL_VLAN_UNSUPPORTED) {
4801 if (insertion_support->inner &
4802 VIRTCHNL_VLAN_ETHERTYPE_8100 &&
4803 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100)
4804 features |= NETIF_F_HW_VLAN_CTAG_TX;
4805 }
4806
4807 /* give priority to outer filtering and don't bother if both
4808 * outer and inner filtering are enabled
4809 */
4810 ethertype_init = vlan_v2_caps->filtering.ethertype_init;
4811 if (filtering_support->outer != VIRTCHNL_VLAN_UNSUPPORTED) {
4812 if (filtering_support->outer &
4813 VIRTCHNL_VLAN_ETHERTYPE_8100 &&
4814 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100)
4815 features |= NETIF_F_HW_VLAN_CTAG_FILTER;
4816 if (filtering_support->outer &
4817 VIRTCHNL_VLAN_ETHERTYPE_88A8 &&
4818 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_88A8)
4819 features |= NETIF_F_HW_VLAN_STAG_FILTER;
4820 } else if (filtering_support->inner !=
4821 VIRTCHNL_VLAN_UNSUPPORTED) {
4822 if (filtering_support->inner &
4823 VIRTCHNL_VLAN_ETHERTYPE_8100 &&
4824 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100)
4825 features |= NETIF_F_HW_VLAN_CTAG_FILTER;
4826 if (filtering_support->inner &
4827 VIRTCHNL_VLAN_ETHERTYPE_88A8 &&
4828 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_88A8)
4829 features |= NETIF_F_HW_VLAN_STAG_FILTER;
4830 }
4831 }
4832
4833 return features;
4834}
4835
4836#define IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested, allowed, feature_bit) \
4837 (!(((requested) & (feature_bit)) && \
4838 !((allowed) & (feature_bit))))
4839
4840/**
4841 * iavf_fix_netdev_vlan_features - fix NETDEV VLAN features based on support
4842 * @adapter: board private structure
4843 * @requested_features: stack requested NETDEV features
4844 **/
4845static netdev_features_t
4846iavf_fix_netdev_vlan_features(struct iavf_adapter *adapter,
4847 netdev_features_t requested_features)
4848{
4849 netdev_features_t allowed_features;
4850
4851 allowed_features = iavf_get_netdev_vlan_hw_features(adapter) |
4852 iavf_get_netdev_vlan_features(adapter);
4853
4854 if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features,
4855 allowed_features,
4856 NETIF_F_HW_VLAN_CTAG_TX))
4857 requested_features &= ~NETIF_F_HW_VLAN_CTAG_TX;
4858
4859 if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features,
4860 allowed_features,
4861 NETIF_F_HW_VLAN_CTAG_RX))
4862 requested_features &= ~NETIF_F_HW_VLAN_CTAG_RX;
4863
4864 if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features,
4865 allowed_features,
4866 NETIF_F_HW_VLAN_STAG_TX))
4867 requested_features &= ~NETIF_F_HW_VLAN_STAG_TX;
4868 if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features,
4869 allowed_features,
4870 NETIF_F_HW_VLAN_STAG_RX))
4871 requested_features &= ~NETIF_F_HW_VLAN_STAG_RX;
4872
4873 if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features,
4874 allowed_features,
4875 NETIF_F_HW_VLAN_CTAG_FILTER))
4876 requested_features &= ~NETIF_F_HW_VLAN_CTAG_FILTER;
4877
4878 if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features,
4879 allowed_features,
4880 NETIF_F_HW_VLAN_STAG_FILTER))
4881 requested_features &= ~NETIF_F_HW_VLAN_STAG_FILTER;
4882
4883 if ((requested_features &
4884 (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX)) &&
4885 (requested_features &
4886 (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX)) &&
4887 adapter->vlan_v2_caps.offloads.ethertype_match ==
4888 VIRTCHNL_ETHERTYPE_STRIPPING_MATCHES_INSERTION) {
4889 netdev_warn(adapter->netdev, "cannot support CTAG and STAG VLAN stripping and/or insertion simultaneously since CTAG and STAG offloads are mutually exclusive, clearing STAG offload settings\n");
4890 requested_features &= ~(NETIF_F_HW_VLAN_STAG_RX |
4891 NETIF_F_HW_VLAN_STAG_TX);
4892 }
4893
4894 return requested_features;
4895}
4896
4897/**
4898 * iavf_fix_strip_features - fix NETDEV CRC and VLAN strip features
4899 * @adapter: board private structure
4900 * @requested_features: stack requested NETDEV features
4901 *
4902 * Returns fixed-up features bits
4903 **/
4904static netdev_features_t
4905iavf_fix_strip_features(struct iavf_adapter *adapter,
4906 netdev_features_t requested_features)
4907{
4908 struct net_device *netdev = adapter->netdev;
4909 bool crc_offload_req, is_vlan_strip;
4910 netdev_features_t vlan_strip;
4911 int num_non_zero_vlan;
4912
4913 crc_offload_req = CRC_OFFLOAD_ALLOWED(adapter) &&
4914 (requested_features & NETIF_F_RXFCS);
4915 num_non_zero_vlan = iavf_get_num_vlans_added(adapter);
4916 vlan_strip = (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_STAG_RX);
4917 is_vlan_strip = requested_features & vlan_strip;
4918
4919 if (!crc_offload_req)
4920 return requested_features;
4921
4922 if (!num_non_zero_vlan && (netdev->features & vlan_strip) &&
4923 !(netdev->features & NETIF_F_RXFCS) && is_vlan_strip) {
4924 requested_features &= ~vlan_strip;
4925 netdev_info(netdev, "Disabling VLAN stripping as FCS/CRC stripping is also disabled and there is no VLAN configured\n");
4926 return requested_features;
4927 }
4928
4929 if ((netdev->features & NETIF_F_RXFCS) && is_vlan_strip) {
4930 requested_features &= ~vlan_strip;
4931 if (!(netdev->features & vlan_strip))
4932 netdev_info(netdev, "To enable VLAN stripping, first need to enable FCS/CRC stripping");
4933
4934 return requested_features;
4935 }
4936
4937 if (num_non_zero_vlan && is_vlan_strip &&
4938 !(netdev->features & NETIF_F_RXFCS)) {
4939 requested_features &= ~NETIF_F_RXFCS;
4940 netdev_info(netdev, "To disable FCS/CRC stripping, first need to disable VLAN stripping");
4941 }
4942
4943 return requested_features;
4944}
4945
4946/**
4947 * iavf_fix_features - fix up the netdev feature bits
4948 * @netdev: our net device
4949 * @features: desired feature bits
4950 *
4951 * Returns fixed-up features bits
4952 **/
4953static netdev_features_t iavf_fix_features(struct net_device *netdev,
4954 netdev_features_t features)
4955{
4956 struct iavf_adapter *adapter = netdev_priv(netdev);
4957
4958 features = iavf_fix_netdev_vlan_features(adapter, features);
4959
4960 if (!FDIR_FLTR_SUPPORT(adapter))
4961 features &= ~NETIF_F_NTUPLE;
4962
4963 return iavf_fix_strip_features(adapter, features);
4964}
4965
4966static int
4967iavf_verify_shaper(struct net_shaper_binding *binding,
4968 const struct net_shaper *shaper,
4969 struct netlink_ext_ack *extack)
4970{
4971 struct iavf_adapter *adapter = netdev_priv(binding->netdev);
4972 u64 vf_max;
4973
4974 if (shaper->handle.scope == NET_SHAPER_SCOPE_QUEUE) {
4975 vf_max = adapter->qos_caps->cap[0].shaper.peak;
4976 if (vf_max && shaper->bw_max > vf_max) {
4977 NL_SET_ERR_MSG_FMT(extack, "Max rate (%llu) of queue %d can't exceed max TX rate of VF (%llu kbps)",
4978 shaper->bw_max, shaper->handle.id,
4979 vf_max);
4980 return -EINVAL;
4981 }
4982 }
4983 return 0;
4984}
4985
4986static int
4987iavf_shaper_set(struct net_shaper_binding *binding,
4988 const struct net_shaper *shaper,
4989 struct netlink_ext_ack *extack)
4990{
4991 struct iavf_adapter *adapter = netdev_priv(binding->netdev);
4992 const struct net_shaper_handle *handle = &shaper->handle;
4993 struct iavf_ring *tx_ring;
4994 int ret = 0;
4995
4996 mutex_lock(&adapter->crit_lock);
4997 if (handle->id >= adapter->num_active_queues)
4998 goto unlock;
4999
5000 ret = iavf_verify_shaper(binding, shaper, extack);
5001 if (ret)
5002 goto unlock;
5003
5004 tx_ring = &adapter->tx_rings[handle->id];
5005
5006 tx_ring->q_shaper.bw_min = div_u64(shaper->bw_min, 1000);
5007 tx_ring->q_shaper.bw_max = div_u64(shaper->bw_max, 1000);
5008 tx_ring->q_shaper_update = true;
5009
5010 adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_QUEUES_BW;
5011
5012unlock:
5013 mutex_unlock(&adapter->crit_lock);
5014 return ret;
5015}
5016
5017static int iavf_shaper_del(struct net_shaper_binding *binding,
5018 const struct net_shaper_handle *handle,
5019 struct netlink_ext_ack *extack)
5020{
5021 struct iavf_adapter *adapter = netdev_priv(binding->netdev);
5022 struct iavf_ring *tx_ring;
5023
5024 mutex_lock(&adapter->crit_lock);
5025 if (handle->id >= adapter->num_active_queues)
5026 goto unlock;
5027
5028 tx_ring = &adapter->tx_rings[handle->id];
5029 tx_ring->q_shaper.bw_min = 0;
5030 tx_ring->q_shaper.bw_max = 0;
5031 tx_ring->q_shaper_update = true;
5032
5033 adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_QUEUES_BW;
5034
5035unlock:
5036 mutex_unlock(&adapter->crit_lock);
5037 return 0;
5038}
5039
5040static void iavf_shaper_cap(struct net_shaper_binding *binding,
5041 enum net_shaper_scope scope,
5042 unsigned long *flags)
5043{
5044 if (scope != NET_SHAPER_SCOPE_QUEUE)
5045 return;
5046
5047 *flags = BIT(NET_SHAPER_A_CAPS_SUPPORT_BW_MIN) |
5048 BIT(NET_SHAPER_A_CAPS_SUPPORT_BW_MAX) |
5049 BIT(NET_SHAPER_A_CAPS_SUPPORT_METRIC_BPS);
5050}
5051
5052static const struct net_shaper_ops iavf_shaper_ops = {
5053 .set = iavf_shaper_set,
5054 .delete = iavf_shaper_del,
5055 .capabilities = iavf_shaper_cap,
5056};
5057
5058static const struct net_device_ops iavf_netdev_ops = {
5059 .ndo_open = iavf_open,
5060 .ndo_stop = iavf_close,
5061 .ndo_start_xmit = iavf_xmit_frame,
5062 .ndo_set_rx_mode = iavf_set_rx_mode,
5063 .ndo_validate_addr = eth_validate_addr,
5064 .ndo_set_mac_address = iavf_set_mac,
5065 .ndo_change_mtu = iavf_change_mtu,
5066 .ndo_tx_timeout = iavf_tx_timeout,
5067 .ndo_vlan_rx_add_vid = iavf_vlan_rx_add_vid,
5068 .ndo_vlan_rx_kill_vid = iavf_vlan_rx_kill_vid,
5069 .ndo_features_check = iavf_features_check,
5070 .ndo_fix_features = iavf_fix_features,
5071 .ndo_set_features = iavf_set_features,
5072 .ndo_setup_tc = iavf_setup_tc,
5073 .net_shaper_ops = &iavf_shaper_ops,
5074};
5075
5076/**
5077 * iavf_check_reset_complete - check that VF reset is complete
5078 * @hw: pointer to hw struct
5079 *
5080 * Returns 0 if device is ready to use, or -EBUSY if it's in reset.
5081 **/
5082static int iavf_check_reset_complete(struct iavf_hw *hw)
5083{
5084 u32 rstat;
5085 int i;
5086
5087 for (i = 0; i < IAVF_RESET_WAIT_COMPLETE_COUNT; i++) {
5088 rstat = rd32(hw, IAVF_VFGEN_RSTAT) &
5089 IAVF_VFGEN_RSTAT_VFR_STATE_MASK;
5090 if ((rstat == VIRTCHNL_VFR_VFACTIVE) ||
5091 (rstat == VIRTCHNL_VFR_COMPLETED))
5092 return 0;
5093 msleep(IAVF_RESET_WAIT_MS);
5094 }
5095 return -EBUSY;
5096}
5097
5098/**
5099 * iavf_process_config - Process the config information we got from the PF
5100 * @adapter: board private structure
5101 *
5102 * Verify that we have a valid config struct, and set up our netdev features
5103 * and our VSI struct.
5104 **/
5105int iavf_process_config(struct iavf_adapter *adapter)
5106{
5107 struct virtchnl_vf_resource *vfres = adapter->vf_res;
5108 netdev_features_t hw_vlan_features, vlan_features;
5109 struct net_device *netdev = adapter->netdev;
5110 netdev_features_t hw_enc_features;
5111 netdev_features_t hw_features;
5112
5113 hw_enc_features = NETIF_F_SG |
5114 NETIF_F_IP_CSUM |
5115 NETIF_F_IPV6_CSUM |
5116 NETIF_F_HIGHDMA |
5117 NETIF_F_SOFT_FEATURES |
5118 NETIF_F_TSO |
5119 NETIF_F_TSO_ECN |
5120 NETIF_F_TSO6 |
5121 NETIF_F_SCTP_CRC |
5122 NETIF_F_RXHASH |
5123 NETIF_F_RXCSUM |
5124 0;
5125
5126 /* advertise to stack only if offloads for encapsulated packets is
5127 * supported
5128 */
5129 if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ENCAP) {
5130 hw_enc_features |= NETIF_F_GSO_UDP_TUNNEL |
5131 NETIF_F_GSO_GRE |
5132 NETIF_F_GSO_GRE_CSUM |
5133 NETIF_F_GSO_IPXIP4 |
5134 NETIF_F_GSO_IPXIP6 |
5135 NETIF_F_GSO_UDP_TUNNEL_CSUM |
5136 NETIF_F_GSO_PARTIAL |
5137 0;
5138
5139 if (!(vfres->vf_cap_flags &
5140 VIRTCHNL_VF_OFFLOAD_ENCAP_CSUM))
5141 netdev->gso_partial_features |=
5142 NETIF_F_GSO_UDP_TUNNEL_CSUM;
5143
5144 netdev->gso_partial_features |= NETIF_F_GSO_GRE_CSUM;
5145 netdev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
5146 netdev->hw_enc_features |= hw_enc_features;
5147 }
5148 /* record features VLANs can make use of */
5149 netdev->vlan_features |= hw_enc_features | NETIF_F_TSO_MANGLEID;
5150
5151 /* Write features and hw_features separately to avoid polluting
5152 * with, or dropping, features that are set when we registered.
5153 */
5154 hw_features = hw_enc_features;
5155
5156 /* get HW VLAN features that can be toggled */
5157 hw_vlan_features = iavf_get_netdev_vlan_hw_features(adapter);
5158
5159 /* Enable HW TC offload if ADQ or tc U32 is supported */
5160 if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ ||
5161 TC_U32_SUPPORT(adapter))
5162 hw_features |= NETIF_F_HW_TC;
5163
5164 if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_USO)
5165 hw_features |= NETIF_F_GSO_UDP_L4;
5166
5167 netdev->hw_features |= hw_features | hw_vlan_features;
5168 vlan_features = iavf_get_netdev_vlan_features(adapter);
5169
5170 netdev->features |= hw_features | vlan_features;
5171
5172 if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_VLAN)
5173 netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
5174
5175 if (FDIR_FLTR_SUPPORT(adapter)) {
5176 netdev->hw_features |= NETIF_F_NTUPLE;
5177 netdev->features |= NETIF_F_NTUPLE;
5178 adapter->flags |= IAVF_FLAG_FDIR_ENABLED;
5179 }
5180
5181 netdev->priv_flags |= IFF_UNICAST_FLT;
5182
5183 /* Do not turn on offloads when they are requested to be turned off.
5184 * TSO needs minimum 576 bytes to work correctly.
5185 */
5186 if (netdev->wanted_features) {
5187 if (!(netdev->wanted_features & NETIF_F_TSO) ||
5188 netdev->mtu < 576)
5189 netdev->features &= ~NETIF_F_TSO;
5190 if (!(netdev->wanted_features & NETIF_F_TSO6) ||
5191 netdev->mtu < 576)
5192 netdev->features &= ~NETIF_F_TSO6;
5193 if (!(netdev->wanted_features & NETIF_F_TSO_ECN))
5194 netdev->features &= ~NETIF_F_TSO_ECN;
5195 if (!(netdev->wanted_features & NETIF_F_GRO))
5196 netdev->features &= ~NETIF_F_GRO;
5197 if (!(netdev->wanted_features & NETIF_F_GSO))
5198 netdev->features &= ~NETIF_F_GSO;
5199 }
5200
5201 return 0;
5202}
5203
5204/**
5205 * iavf_probe - Device Initialization Routine
5206 * @pdev: PCI device information struct
5207 * @ent: entry in iavf_pci_tbl
5208 *
5209 * Returns 0 on success, negative on failure
5210 *
5211 * iavf_probe initializes an adapter identified by a pci_dev structure.
5212 * The OS initialization, configuring of the adapter private structure,
5213 * and a hardware reset occur.
5214 **/
5215static int iavf_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
5216{
5217 struct net_device *netdev;
5218 struct iavf_adapter *adapter = NULL;
5219 struct iavf_hw *hw = NULL;
5220 int err, len;
5221
5222 err = pci_enable_device(pdev);
5223 if (err)
5224 return err;
5225
5226 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
5227 if (err) {
5228 dev_err(&pdev->dev,
5229 "DMA configuration failed: 0x%x\n", err);
5230 goto err_dma;
5231 }
5232
5233 err = pci_request_regions(pdev, iavf_driver_name);
5234 if (err) {
5235 dev_err(&pdev->dev,
5236 "pci_request_regions failed 0x%x\n", err);
5237 goto err_pci_reg;
5238 }
5239
5240 pci_set_master(pdev);
5241
5242 netdev = alloc_etherdev_mq(sizeof(struct iavf_adapter),
5243 IAVF_MAX_REQ_QUEUES);
5244 if (!netdev) {
5245 err = -ENOMEM;
5246 goto err_alloc_etherdev;
5247 }
5248
5249 SET_NETDEV_DEV(netdev, &pdev->dev);
5250
5251 pci_set_drvdata(pdev, netdev);
5252 adapter = netdev_priv(netdev);
5253
5254 adapter->netdev = netdev;
5255 adapter->pdev = pdev;
5256
5257 hw = &adapter->hw;
5258 hw->back = adapter;
5259
5260 adapter->wq = alloc_ordered_workqueue("%s", WQ_MEM_RECLAIM,
5261 iavf_driver_name);
5262 if (!adapter->wq) {
5263 err = -ENOMEM;
5264 goto err_alloc_wq;
5265 }
5266
5267 adapter->msg_enable = BIT(DEFAULT_DEBUG_LEVEL_SHIFT) - 1;
5268 iavf_change_state(adapter, __IAVF_STARTUP);
5269
5270 /* Call save state here because it relies on the adapter struct. */
5271 pci_save_state(pdev);
5272
5273 hw->hw_addr = ioremap(pci_resource_start(pdev, 0),
5274 pci_resource_len(pdev, 0));
5275 if (!hw->hw_addr) {
5276 err = -EIO;
5277 goto err_ioremap;
5278 }
5279 hw->vendor_id = pdev->vendor;
5280 hw->device_id = pdev->device;
5281 pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id);
5282 hw->subsystem_vendor_id = pdev->subsystem_vendor;
5283 hw->subsystem_device_id = pdev->subsystem_device;
5284 hw->bus.device = PCI_SLOT(pdev->devfn);
5285 hw->bus.func = PCI_FUNC(pdev->devfn);
5286 hw->bus.bus_id = pdev->bus->number;
5287
5288 len = struct_size(adapter->qos_caps, cap, IAVF_MAX_QOS_TC_NUM);
5289 adapter->qos_caps = kzalloc(len, GFP_KERNEL);
5290 if (!adapter->qos_caps) {
5291 err = -ENOMEM;
5292 goto err_alloc_qos_cap;
5293 }
5294
5295 /* set up the locks for the AQ, do this only once in probe
5296 * and destroy them only once in remove
5297 */
5298 mutex_init(&adapter->crit_lock);
5299 mutex_init(&hw->aq.asq_mutex);
5300 mutex_init(&hw->aq.arq_mutex);
5301
5302 spin_lock_init(&adapter->mac_vlan_list_lock);
5303 spin_lock_init(&adapter->cloud_filter_list_lock);
5304 spin_lock_init(&adapter->fdir_fltr_lock);
5305 spin_lock_init(&adapter->adv_rss_lock);
5306 spin_lock_init(&adapter->current_netdev_promisc_flags_lock);
5307
5308 INIT_LIST_HEAD(&adapter->mac_filter_list);
5309 INIT_LIST_HEAD(&adapter->vlan_filter_list);
5310 INIT_LIST_HEAD(&adapter->cloud_filter_list);
5311 INIT_LIST_HEAD(&adapter->fdir_list_head);
5312 INIT_LIST_HEAD(&adapter->adv_rss_list_head);
5313
5314 INIT_WORK(&adapter->reset_task, iavf_reset_task);
5315 INIT_WORK(&adapter->adminq_task, iavf_adminq_task);
5316 INIT_WORK(&adapter->finish_config, iavf_finish_config);
5317 INIT_DELAYED_WORK(&adapter->watchdog_task, iavf_watchdog_task);
5318
5319 /* Setup the wait queue for indicating transition to down status */
5320 init_waitqueue_head(&adapter->down_waitqueue);
5321
5322 /* Setup the wait queue for indicating transition to running state */
5323 init_waitqueue_head(&adapter->reset_waitqueue);
5324
5325 /* Setup the wait queue for indicating virtchannel events */
5326 init_waitqueue_head(&adapter->vc_waitqueue);
5327
5328 queue_delayed_work(adapter->wq, &adapter->watchdog_task,
5329 msecs_to_jiffies(5 * (pdev->devfn & 0x07)));
5330 /* Initialization goes on in the work. Do not add more of it below. */
5331 return 0;
5332
5333err_alloc_qos_cap:
5334 iounmap(hw->hw_addr);
5335err_ioremap:
5336 destroy_workqueue(adapter->wq);
5337err_alloc_wq:
5338 free_netdev(netdev);
5339err_alloc_etherdev:
5340 pci_release_regions(pdev);
5341err_pci_reg:
5342err_dma:
5343 pci_disable_device(pdev);
5344 return err;
5345}
5346
5347/**
5348 * iavf_suspend - Power management suspend routine
5349 * @dev_d: device info pointer
5350 *
5351 * Called when the system (VM) is entering sleep/suspend.
5352 **/
5353static int iavf_suspend(struct device *dev_d)
5354{
5355 struct net_device *netdev = dev_get_drvdata(dev_d);
5356 struct iavf_adapter *adapter = netdev_priv(netdev);
5357
5358 netif_device_detach(netdev);
5359
5360 mutex_lock(&adapter->crit_lock);
5361
5362 if (netif_running(netdev)) {
5363 rtnl_lock();
5364 iavf_down(adapter);
5365 rtnl_unlock();
5366 }
5367 iavf_free_misc_irq(adapter);
5368 iavf_reset_interrupt_capability(adapter);
5369
5370 mutex_unlock(&adapter->crit_lock);
5371
5372 return 0;
5373}
5374
5375/**
5376 * iavf_resume - Power management resume routine
5377 * @dev_d: device info pointer
5378 *
5379 * Called when the system (VM) is resumed from sleep/suspend.
5380 **/
5381static int iavf_resume(struct device *dev_d)
5382{
5383 struct pci_dev *pdev = to_pci_dev(dev_d);
5384 struct iavf_adapter *adapter;
5385 u32 err;
5386
5387 adapter = iavf_pdev_to_adapter(pdev);
5388
5389 pci_set_master(pdev);
5390
5391 rtnl_lock();
5392 err = iavf_set_interrupt_capability(adapter);
5393 if (err) {
5394 rtnl_unlock();
5395 dev_err(&pdev->dev, "Cannot enable MSI-X interrupts.\n");
5396 return err;
5397 }
5398 err = iavf_request_misc_irq(adapter);
5399 rtnl_unlock();
5400 if (err) {
5401 dev_err(&pdev->dev, "Cannot get interrupt vector.\n");
5402 return err;
5403 }
5404
5405 queue_work(adapter->wq, &adapter->reset_task);
5406
5407 netif_device_attach(adapter->netdev);
5408
5409 return err;
5410}
5411
5412/**
5413 * iavf_remove - Device Removal Routine
5414 * @pdev: PCI device information struct
5415 *
5416 * iavf_remove is called by the PCI subsystem to alert the driver
5417 * that it should release a PCI device. The could be caused by a
5418 * Hot-Plug event, or because the driver is going to be removed from
5419 * memory.
5420 **/
5421static void iavf_remove(struct pci_dev *pdev)
5422{
5423 struct iavf_fdir_fltr *fdir, *fdirtmp;
5424 struct iavf_vlan_filter *vlf, *vlftmp;
5425 struct iavf_cloud_filter *cf, *cftmp;
5426 struct iavf_adv_rss *rss, *rsstmp;
5427 struct iavf_mac_filter *f, *ftmp;
5428 struct iavf_adapter *adapter;
5429 struct net_device *netdev;
5430 struct iavf_hw *hw;
5431
5432 /* Don't proceed with remove if netdev is already freed */
5433 netdev = pci_get_drvdata(pdev);
5434 if (!netdev)
5435 return;
5436
5437 adapter = iavf_pdev_to_adapter(pdev);
5438 hw = &adapter->hw;
5439
5440 if (test_and_set_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section))
5441 return;
5442
5443 /* Wait until port initialization is complete.
5444 * There are flows where register/unregister netdev may race.
5445 */
5446 while (1) {
5447 mutex_lock(&adapter->crit_lock);
5448 if (adapter->state == __IAVF_RUNNING ||
5449 adapter->state == __IAVF_DOWN ||
5450 adapter->state == __IAVF_INIT_FAILED) {
5451 mutex_unlock(&adapter->crit_lock);
5452 break;
5453 }
5454 /* Simply return if we already went through iavf_shutdown */
5455 if (adapter->state == __IAVF_REMOVE) {
5456 mutex_unlock(&adapter->crit_lock);
5457 return;
5458 }
5459
5460 mutex_unlock(&adapter->crit_lock);
5461 usleep_range(500, 1000);
5462 }
5463 cancel_delayed_work_sync(&adapter->watchdog_task);
5464 cancel_work_sync(&adapter->finish_config);
5465
5466 if (netdev->reg_state == NETREG_REGISTERED)
5467 unregister_netdev(netdev);
5468
5469 mutex_lock(&adapter->crit_lock);
5470 dev_info(&adapter->pdev->dev, "Removing device\n");
5471 iavf_change_state(adapter, __IAVF_REMOVE);
5472
5473 iavf_request_reset(adapter);
5474 msleep(50);
5475 /* If the FW isn't responding, kick it once, but only once. */
5476 if (!iavf_asq_done(hw)) {
5477 iavf_request_reset(adapter);
5478 msleep(50);
5479 }
5480
5481 iavf_misc_irq_disable(adapter);
5482 /* Shut down all the garbage mashers on the detention level */
5483 cancel_work_sync(&adapter->reset_task);
5484 cancel_delayed_work_sync(&adapter->watchdog_task);
5485 cancel_work_sync(&adapter->adminq_task);
5486
5487 adapter->aq_required = 0;
5488 adapter->flags &= ~IAVF_FLAG_REINIT_ITR_NEEDED;
5489
5490 iavf_free_all_tx_resources(adapter);
5491 iavf_free_all_rx_resources(adapter);
5492 iavf_free_misc_irq(adapter);
5493 iavf_free_interrupt_scheme(adapter);
5494
5495 iavf_free_rss(adapter);
5496
5497 if (hw->aq.asq.count)
5498 iavf_shutdown_adminq(hw);
5499
5500 /* destroy the locks only once, here */
5501 mutex_destroy(&hw->aq.arq_mutex);
5502 mutex_destroy(&hw->aq.asq_mutex);
5503 mutex_unlock(&adapter->crit_lock);
5504 mutex_destroy(&adapter->crit_lock);
5505
5506 iounmap(hw->hw_addr);
5507 pci_release_regions(pdev);
5508 kfree(adapter->vf_res);
5509 spin_lock_bh(&adapter->mac_vlan_list_lock);
5510 /* If we got removed before an up/down sequence, we've got a filter
5511 * hanging out there that we need to get rid of.
5512 */
5513 list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list, list) {
5514 list_del(&f->list);
5515 kfree(f);
5516 }
5517 list_for_each_entry_safe(vlf, vlftmp, &adapter->vlan_filter_list,
5518 list) {
5519 list_del(&vlf->list);
5520 kfree(vlf);
5521 }
5522
5523 spin_unlock_bh(&adapter->mac_vlan_list_lock);
5524
5525 spin_lock_bh(&adapter->cloud_filter_list_lock);
5526 list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list, list) {
5527 list_del(&cf->list);
5528 kfree(cf);
5529 }
5530 spin_unlock_bh(&adapter->cloud_filter_list_lock);
5531
5532 spin_lock_bh(&adapter->fdir_fltr_lock);
5533 list_for_each_entry_safe(fdir, fdirtmp, &adapter->fdir_list_head, list) {
5534 list_del(&fdir->list);
5535 kfree(fdir);
5536 }
5537 spin_unlock_bh(&adapter->fdir_fltr_lock);
5538
5539 spin_lock_bh(&adapter->adv_rss_lock);
5540 list_for_each_entry_safe(rss, rsstmp, &adapter->adv_rss_list_head,
5541 list) {
5542 list_del(&rss->list);
5543 kfree(rss);
5544 }
5545 spin_unlock_bh(&adapter->adv_rss_lock);
5546
5547 destroy_workqueue(adapter->wq);
5548
5549 pci_set_drvdata(pdev, NULL);
5550
5551 free_netdev(netdev);
5552
5553 pci_disable_device(pdev);
5554}
5555
5556/**
5557 * iavf_shutdown - Shutdown the device in preparation for a reboot
5558 * @pdev: pci device structure
5559 **/
5560static void iavf_shutdown(struct pci_dev *pdev)
5561{
5562 iavf_remove(pdev);
5563
5564 if (system_state == SYSTEM_POWER_OFF)
5565 pci_set_power_state(pdev, PCI_D3hot);
5566}
5567
5568static DEFINE_SIMPLE_DEV_PM_OPS(iavf_pm_ops, iavf_suspend, iavf_resume);
5569
5570static struct pci_driver iavf_driver = {
5571 .name = iavf_driver_name,
5572 .id_table = iavf_pci_tbl,
5573 .probe = iavf_probe,
5574 .remove = iavf_remove,
5575 .driver.pm = pm_sleep_ptr(&iavf_pm_ops),
5576 .shutdown = iavf_shutdown,
5577};
5578
5579/**
5580 * iavf_init_module - Driver Registration Routine
5581 *
5582 * iavf_init_module is the first routine called when the driver is
5583 * loaded. All it does is register with the PCI subsystem.
5584 **/
5585static int __init iavf_init_module(void)
5586{
5587 pr_info("iavf: %s\n", iavf_driver_string);
5588
5589 pr_info("%s\n", iavf_copyright);
5590
5591 return pci_register_driver(&iavf_driver);
5592}
5593
5594module_init(iavf_init_module);
5595
5596/**
5597 * iavf_exit_module - Driver Exit Cleanup Routine
5598 *
5599 * iavf_exit_module is called just before the driver is removed
5600 * from memory.
5601 **/
5602static void __exit iavf_exit_module(void)
5603{
5604 pci_unregister_driver(&iavf_driver);
5605}
5606
5607module_exit(iavf_exit_module);
5608
5609/* iavf_main.c */
1// SPDX-License-Identifier: GPL-2.0
2/* Copyright(c) 2013 - 2018 Intel Corporation. */
3
4#include "iavf.h"
5#include "iavf_prototype.h"
6#include "iavf_client.h"
7/* All iavf tracepoints are defined by the include below, which must
8 * be included exactly once across the whole kernel with
9 * CREATE_TRACE_POINTS defined
10 */
11#define CREATE_TRACE_POINTS
12#include "iavf_trace.h"
13
14static int iavf_setup_all_tx_resources(struct iavf_adapter *adapter);
15static int iavf_setup_all_rx_resources(struct iavf_adapter *adapter);
16static int iavf_close(struct net_device *netdev);
17static int iavf_init_get_resources(struct iavf_adapter *adapter);
18static int iavf_check_reset_complete(struct iavf_hw *hw);
19
20char iavf_driver_name[] = "iavf";
21static const char iavf_driver_string[] =
22 "Intel(R) Ethernet Adaptive Virtual Function Network Driver";
23
24#define DRV_KERN "-k"
25
26#define DRV_VERSION_MAJOR 3
27#define DRV_VERSION_MINOR 2
28#define DRV_VERSION_BUILD 3
29#define DRV_VERSION __stringify(DRV_VERSION_MAJOR) "." \
30 __stringify(DRV_VERSION_MINOR) "." \
31 __stringify(DRV_VERSION_BUILD) \
32 DRV_KERN
33const char iavf_driver_version[] = DRV_VERSION;
34static const char iavf_copyright[] =
35 "Copyright (c) 2013 - 2018 Intel Corporation.";
36
37/* iavf_pci_tbl - PCI Device ID Table
38 *
39 * Wildcard entries (PCI_ANY_ID) should come last
40 * Last entry must be all 0s
41 *
42 * { Vendor ID, Device ID, SubVendor ID, SubDevice ID,
43 * Class, Class Mask, private data (not used) }
44 */
45static const struct pci_device_id iavf_pci_tbl[] = {
46 {PCI_VDEVICE(INTEL, IAVF_DEV_ID_VF), 0},
47 {PCI_VDEVICE(INTEL, IAVF_DEV_ID_VF_HV), 0},
48 {PCI_VDEVICE(INTEL, IAVF_DEV_ID_X722_VF), 0},
49 {PCI_VDEVICE(INTEL, IAVF_DEV_ID_ADAPTIVE_VF), 0},
50 /* required last entry */
51 {0, }
52};
53
54MODULE_DEVICE_TABLE(pci, iavf_pci_tbl);
55
56MODULE_ALIAS("i40evf");
57MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
58MODULE_DESCRIPTION("Intel(R) Ethernet Adaptive Virtual Function Network Driver");
59MODULE_LICENSE("GPL v2");
60MODULE_VERSION(DRV_VERSION);
61
62static const struct net_device_ops iavf_netdev_ops;
63struct workqueue_struct *iavf_wq;
64
65/**
66 * iavf_allocate_dma_mem_d - OS specific memory alloc for shared code
67 * @hw: pointer to the HW structure
68 * @mem: ptr to mem struct to fill out
69 * @size: size of memory requested
70 * @alignment: what to align the allocation to
71 **/
72enum iavf_status iavf_allocate_dma_mem_d(struct iavf_hw *hw,
73 struct iavf_dma_mem *mem,
74 u64 size, u32 alignment)
75{
76 struct iavf_adapter *adapter = (struct iavf_adapter *)hw->back;
77
78 if (!mem)
79 return IAVF_ERR_PARAM;
80
81 mem->size = ALIGN(size, alignment);
82 mem->va = dma_alloc_coherent(&adapter->pdev->dev, mem->size,
83 (dma_addr_t *)&mem->pa, GFP_KERNEL);
84 if (mem->va)
85 return 0;
86 else
87 return IAVF_ERR_NO_MEMORY;
88}
89
90/**
91 * iavf_free_dma_mem_d - OS specific memory free for shared code
92 * @hw: pointer to the HW structure
93 * @mem: ptr to mem struct to free
94 **/
95enum iavf_status iavf_free_dma_mem_d(struct iavf_hw *hw,
96 struct iavf_dma_mem *mem)
97{
98 struct iavf_adapter *adapter = (struct iavf_adapter *)hw->back;
99
100 if (!mem || !mem->va)
101 return IAVF_ERR_PARAM;
102 dma_free_coherent(&adapter->pdev->dev, mem->size,
103 mem->va, (dma_addr_t)mem->pa);
104 return 0;
105}
106
107/**
108 * iavf_allocate_virt_mem_d - OS specific memory alloc for shared code
109 * @hw: pointer to the HW structure
110 * @mem: ptr to mem struct to fill out
111 * @size: size of memory requested
112 **/
113enum iavf_status iavf_allocate_virt_mem_d(struct iavf_hw *hw,
114 struct iavf_virt_mem *mem, u32 size)
115{
116 if (!mem)
117 return IAVF_ERR_PARAM;
118
119 mem->size = size;
120 mem->va = kzalloc(size, GFP_KERNEL);
121
122 if (mem->va)
123 return 0;
124 else
125 return IAVF_ERR_NO_MEMORY;
126}
127
128/**
129 * iavf_free_virt_mem_d - OS specific memory free for shared code
130 * @hw: pointer to the HW structure
131 * @mem: ptr to mem struct to free
132 **/
133enum iavf_status iavf_free_virt_mem_d(struct iavf_hw *hw,
134 struct iavf_virt_mem *mem)
135{
136 if (!mem)
137 return IAVF_ERR_PARAM;
138
139 /* it's ok to kfree a NULL pointer */
140 kfree(mem->va);
141
142 return 0;
143}
144
145/**
146 * iavf_schedule_reset - Set the flags and schedule a reset event
147 * @adapter: board private structure
148 **/
149void iavf_schedule_reset(struct iavf_adapter *adapter)
150{
151 if (!(adapter->flags &
152 (IAVF_FLAG_RESET_PENDING | IAVF_FLAG_RESET_NEEDED))) {
153 adapter->flags |= IAVF_FLAG_RESET_NEEDED;
154 queue_work(iavf_wq, &adapter->reset_task);
155 }
156}
157
158/**
159 * iavf_tx_timeout - Respond to a Tx Hang
160 * @netdev: network interface device structure
161 **/
162static void iavf_tx_timeout(struct net_device *netdev)
163{
164 struct iavf_adapter *adapter = netdev_priv(netdev);
165
166 adapter->tx_timeout_count++;
167 iavf_schedule_reset(adapter);
168}
169
170/**
171 * iavf_misc_irq_disable - Mask off interrupt generation on the NIC
172 * @adapter: board private structure
173 **/
174static void iavf_misc_irq_disable(struct iavf_adapter *adapter)
175{
176 struct iavf_hw *hw = &adapter->hw;
177
178 if (!adapter->msix_entries)
179 return;
180
181 wr32(hw, IAVF_VFINT_DYN_CTL01, 0);
182
183 iavf_flush(hw);
184
185 synchronize_irq(adapter->msix_entries[0].vector);
186}
187
188/**
189 * iavf_misc_irq_enable - Enable default interrupt generation settings
190 * @adapter: board private structure
191 **/
192static void iavf_misc_irq_enable(struct iavf_adapter *adapter)
193{
194 struct iavf_hw *hw = &adapter->hw;
195
196 wr32(hw, IAVF_VFINT_DYN_CTL01, IAVF_VFINT_DYN_CTL01_INTENA_MASK |
197 IAVF_VFINT_DYN_CTL01_ITR_INDX_MASK);
198 wr32(hw, IAVF_VFINT_ICR0_ENA1, IAVF_VFINT_ICR0_ENA1_ADMINQ_MASK);
199
200 iavf_flush(hw);
201}
202
203/**
204 * iavf_irq_disable - Mask off interrupt generation on the NIC
205 * @adapter: board private structure
206 **/
207static void iavf_irq_disable(struct iavf_adapter *adapter)
208{
209 int i;
210 struct iavf_hw *hw = &adapter->hw;
211
212 if (!adapter->msix_entries)
213 return;
214
215 for (i = 1; i < adapter->num_msix_vectors; i++) {
216 wr32(hw, IAVF_VFINT_DYN_CTLN1(i - 1), 0);
217 synchronize_irq(adapter->msix_entries[i].vector);
218 }
219 iavf_flush(hw);
220}
221
222/**
223 * iavf_irq_enable_queues - Enable interrupt for specified queues
224 * @adapter: board private structure
225 * @mask: bitmap of queues to enable
226 **/
227void iavf_irq_enable_queues(struct iavf_adapter *adapter, u32 mask)
228{
229 struct iavf_hw *hw = &adapter->hw;
230 int i;
231
232 for (i = 1; i < adapter->num_msix_vectors; i++) {
233 if (mask & BIT(i - 1)) {
234 wr32(hw, IAVF_VFINT_DYN_CTLN1(i - 1),
235 IAVF_VFINT_DYN_CTLN1_INTENA_MASK |
236 IAVF_VFINT_DYN_CTLN1_ITR_INDX_MASK);
237 }
238 }
239}
240
241/**
242 * iavf_irq_enable - Enable default interrupt generation settings
243 * @adapter: board private structure
244 * @flush: boolean value whether to run rd32()
245 **/
246void iavf_irq_enable(struct iavf_adapter *adapter, bool flush)
247{
248 struct iavf_hw *hw = &adapter->hw;
249
250 iavf_misc_irq_enable(adapter);
251 iavf_irq_enable_queues(adapter, ~0);
252
253 if (flush)
254 iavf_flush(hw);
255}
256
257/**
258 * iavf_msix_aq - Interrupt handler for vector 0
259 * @irq: interrupt number
260 * @data: pointer to netdev
261 **/
262static irqreturn_t iavf_msix_aq(int irq, void *data)
263{
264 struct net_device *netdev = data;
265 struct iavf_adapter *adapter = netdev_priv(netdev);
266 struct iavf_hw *hw = &adapter->hw;
267
268 /* handle non-queue interrupts, these reads clear the registers */
269 rd32(hw, IAVF_VFINT_ICR01);
270 rd32(hw, IAVF_VFINT_ICR0_ENA1);
271
272 /* schedule work on the private workqueue */
273 queue_work(iavf_wq, &adapter->adminq_task);
274
275 return IRQ_HANDLED;
276}
277
278/**
279 * iavf_msix_clean_rings - MSIX mode Interrupt Handler
280 * @irq: interrupt number
281 * @data: pointer to a q_vector
282 **/
283static irqreturn_t iavf_msix_clean_rings(int irq, void *data)
284{
285 struct iavf_q_vector *q_vector = data;
286
287 if (!q_vector->tx.ring && !q_vector->rx.ring)
288 return IRQ_HANDLED;
289
290 napi_schedule_irqoff(&q_vector->napi);
291
292 return IRQ_HANDLED;
293}
294
295/**
296 * iavf_map_vector_to_rxq - associate irqs with rx queues
297 * @adapter: board private structure
298 * @v_idx: interrupt number
299 * @r_idx: queue number
300 **/
301static void
302iavf_map_vector_to_rxq(struct iavf_adapter *adapter, int v_idx, int r_idx)
303{
304 struct iavf_q_vector *q_vector = &adapter->q_vectors[v_idx];
305 struct iavf_ring *rx_ring = &adapter->rx_rings[r_idx];
306 struct iavf_hw *hw = &adapter->hw;
307
308 rx_ring->q_vector = q_vector;
309 rx_ring->next = q_vector->rx.ring;
310 rx_ring->vsi = &adapter->vsi;
311 q_vector->rx.ring = rx_ring;
312 q_vector->rx.count++;
313 q_vector->rx.next_update = jiffies + 1;
314 q_vector->rx.target_itr = ITR_TO_REG(rx_ring->itr_setting);
315 q_vector->ring_mask |= BIT(r_idx);
316 wr32(hw, IAVF_VFINT_ITRN1(IAVF_RX_ITR, q_vector->reg_idx),
317 q_vector->rx.current_itr >> 1);
318 q_vector->rx.current_itr = q_vector->rx.target_itr;
319}
320
321/**
322 * iavf_map_vector_to_txq - associate irqs with tx queues
323 * @adapter: board private structure
324 * @v_idx: interrupt number
325 * @t_idx: queue number
326 **/
327static void
328iavf_map_vector_to_txq(struct iavf_adapter *adapter, int v_idx, int t_idx)
329{
330 struct iavf_q_vector *q_vector = &adapter->q_vectors[v_idx];
331 struct iavf_ring *tx_ring = &adapter->tx_rings[t_idx];
332 struct iavf_hw *hw = &adapter->hw;
333
334 tx_ring->q_vector = q_vector;
335 tx_ring->next = q_vector->tx.ring;
336 tx_ring->vsi = &adapter->vsi;
337 q_vector->tx.ring = tx_ring;
338 q_vector->tx.count++;
339 q_vector->tx.next_update = jiffies + 1;
340 q_vector->tx.target_itr = ITR_TO_REG(tx_ring->itr_setting);
341 q_vector->num_ringpairs++;
342 wr32(hw, IAVF_VFINT_ITRN1(IAVF_TX_ITR, q_vector->reg_idx),
343 q_vector->tx.target_itr >> 1);
344 q_vector->tx.current_itr = q_vector->tx.target_itr;
345}
346
347/**
348 * iavf_map_rings_to_vectors - Maps descriptor rings to vectors
349 * @adapter: board private structure to initialize
350 *
351 * This function maps descriptor rings to the queue-specific vectors
352 * we were allotted through the MSI-X enabling code. Ideally, we'd have
353 * one vector per ring/queue, but on a constrained vector budget, we
354 * group the rings as "efficiently" as possible. You would add new
355 * mapping configurations in here.
356 **/
357static void iavf_map_rings_to_vectors(struct iavf_adapter *adapter)
358{
359 int rings_remaining = adapter->num_active_queues;
360 int ridx = 0, vidx = 0;
361 int q_vectors;
362
363 q_vectors = adapter->num_msix_vectors - NONQ_VECS;
364
365 for (; ridx < rings_remaining; ridx++) {
366 iavf_map_vector_to_rxq(adapter, vidx, ridx);
367 iavf_map_vector_to_txq(adapter, vidx, ridx);
368
369 /* In the case where we have more queues than vectors, continue
370 * round-robin on vectors until all queues are mapped.
371 */
372 if (++vidx >= q_vectors)
373 vidx = 0;
374 }
375
376 adapter->aq_required |= IAVF_FLAG_AQ_MAP_VECTORS;
377}
378
379/**
380 * iavf_irq_affinity_notify - Callback for affinity changes
381 * @notify: context as to what irq was changed
382 * @mask: the new affinity mask
383 *
384 * This is a callback function used by the irq_set_affinity_notifier function
385 * so that we may register to receive changes to the irq affinity masks.
386 **/
387static void iavf_irq_affinity_notify(struct irq_affinity_notify *notify,
388 const cpumask_t *mask)
389{
390 struct iavf_q_vector *q_vector =
391 container_of(notify, struct iavf_q_vector, affinity_notify);
392
393 cpumask_copy(&q_vector->affinity_mask, mask);
394}
395
396/**
397 * iavf_irq_affinity_release - Callback for affinity notifier release
398 * @ref: internal core kernel usage
399 *
400 * This is a callback function used by the irq_set_affinity_notifier function
401 * to inform the current notification subscriber that they will no longer
402 * receive notifications.
403 **/
404static void iavf_irq_affinity_release(struct kref *ref) {}
405
406/**
407 * iavf_request_traffic_irqs - Initialize MSI-X interrupts
408 * @adapter: board private structure
409 * @basename: device basename
410 *
411 * Allocates MSI-X vectors for tx and rx handling, and requests
412 * interrupts from the kernel.
413 **/
414static int
415iavf_request_traffic_irqs(struct iavf_adapter *adapter, char *basename)
416{
417 unsigned int vector, q_vectors;
418 unsigned int rx_int_idx = 0, tx_int_idx = 0;
419 int irq_num, err;
420 int cpu;
421
422 iavf_irq_disable(adapter);
423 /* Decrement for Other and TCP Timer vectors */
424 q_vectors = adapter->num_msix_vectors - NONQ_VECS;
425
426 for (vector = 0; vector < q_vectors; vector++) {
427 struct iavf_q_vector *q_vector = &adapter->q_vectors[vector];
428
429 irq_num = adapter->msix_entries[vector + NONQ_VECS].vector;
430
431 if (q_vector->tx.ring && q_vector->rx.ring) {
432 snprintf(q_vector->name, sizeof(q_vector->name),
433 "iavf-%s-TxRx-%d", basename, rx_int_idx++);
434 tx_int_idx++;
435 } else if (q_vector->rx.ring) {
436 snprintf(q_vector->name, sizeof(q_vector->name),
437 "iavf-%s-rx-%d", basename, rx_int_idx++);
438 } else if (q_vector->tx.ring) {
439 snprintf(q_vector->name, sizeof(q_vector->name),
440 "iavf-%s-tx-%d", basename, tx_int_idx++);
441 } else {
442 /* skip this unused q_vector */
443 continue;
444 }
445 err = request_irq(irq_num,
446 iavf_msix_clean_rings,
447 0,
448 q_vector->name,
449 q_vector);
450 if (err) {
451 dev_info(&adapter->pdev->dev,
452 "Request_irq failed, error: %d\n", err);
453 goto free_queue_irqs;
454 }
455 /* register for affinity change notifications */
456 q_vector->affinity_notify.notify = iavf_irq_affinity_notify;
457 q_vector->affinity_notify.release =
458 iavf_irq_affinity_release;
459 irq_set_affinity_notifier(irq_num, &q_vector->affinity_notify);
460 /* Spread the IRQ affinity hints across online CPUs. Note that
461 * get_cpu_mask returns a mask with a permanent lifetime so
462 * it's safe to use as a hint for irq_set_affinity_hint.
463 */
464 cpu = cpumask_local_spread(q_vector->v_idx, -1);
465 irq_set_affinity_hint(irq_num, get_cpu_mask(cpu));
466 }
467
468 return 0;
469
470free_queue_irqs:
471 while (vector) {
472 vector--;
473 irq_num = adapter->msix_entries[vector + NONQ_VECS].vector;
474 irq_set_affinity_notifier(irq_num, NULL);
475 irq_set_affinity_hint(irq_num, NULL);
476 free_irq(irq_num, &adapter->q_vectors[vector]);
477 }
478 return err;
479}
480
481/**
482 * iavf_request_misc_irq - Initialize MSI-X interrupts
483 * @adapter: board private structure
484 *
485 * Allocates MSI-X vector 0 and requests interrupts from the kernel. This
486 * vector is only for the admin queue, and stays active even when the netdev
487 * is closed.
488 **/
489static int iavf_request_misc_irq(struct iavf_adapter *adapter)
490{
491 struct net_device *netdev = adapter->netdev;
492 int err;
493
494 snprintf(adapter->misc_vector_name,
495 sizeof(adapter->misc_vector_name) - 1, "iavf-%s:mbx",
496 dev_name(&adapter->pdev->dev));
497 err = request_irq(adapter->msix_entries[0].vector,
498 &iavf_msix_aq, 0,
499 adapter->misc_vector_name, netdev);
500 if (err) {
501 dev_err(&adapter->pdev->dev,
502 "request_irq for %s failed: %d\n",
503 adapter->misc_vector_name, err);
504 free_irq(adapter->msix_entries[0].vector, netdev);
505 }
506 return err;
507}
508
509/**
510 * iavf_free_traffic_irqs - Free MSI-X interrupts
511 * @adapter: board private structure
512 *
513 * Frees all MSI-X vectors other than 0.
514 **/
515static void iavf_free_traffic_irqs(struct iavf_adapter *adapter)
516{
517 int vector, irq_num, q_vectors;
518
519 if (!adapter->msix_entries)
520 return;
521
522 q_vectors = adapter->num_msix_vectors - NONQ_VECS;
523
524 for (vector = 0; vector < q_vectors; vector++) {
525 irq_num = adapter->msix_entries[vector + NONQ_VECS].vector;
526 irq_set_affinity_notifier(irq_num, NULL);
527 irq_set_affinity_hint(irq_num, NULL);
528 free_irq(irq_num, &adapter->q_vectors[vector]);
529 }
530}
531
532/**
533 * iavf_free_misc_irq - Free MSI-X miscellaneous vector
534 * @adapter: board private structure
535 *
536 * Frees MSI-X vector 0.
537 **/
538static void iavf_free_misc_irq(struct iavf_adapter *adapter)
539{
540 struct net_device *netdev = adapter->netdev;
541
542 if (!adapter->msix_entries)
543 return;
544
545 free_irq(adapter->msix_entries[0].vector, netdev);
546}
547
548/**
549 * iavf_configure_tx - Configure Transmit Unit after Reset
550 * @adapter: board private structure
551 *
552 * Configure the Tx unit of the MAC after a reset.
553 **/
554static void iavf_configure_tx(struct iavf_adapter *adapter)
555{
556 struct iavf_hw *hw = &adapter->hw;
557 int i;
558
559 for (i = 0; i < adapter->num_active_queues; i++)
560 adapter->tx_rings[i].tail = hw->hw_addr + IAVF_QTX_TAIL1(i);
561}
562
563/**
564 * iavf_configure_rx - Configure Receive Unit after Reset
565 * @adapter: board private structure
566 *
567 * Configure the Rx unit of the MAC after a reset.
568 **/
569static void iavf_configure_rx(struct iavf_adapter *adapter)
570{
571 unsigned int rx_buf_len = IAVF_RXBUFFER_2048;
572 struct iavf_hw *hw = &adapter->hw;
573 int i;
574
575 /* Legacy Rx will always default to a 2048 buffer size. */
576#if (PAGE_SIZE < 8192)
577 if (!(adapter->flags & IAVF_FLAG_LEGACY_RX)) {
578 struct net_device *netdev = adapter->netdev;
579
580 /* For jumbo frames on systems with 4K pages we have to use
581 * an order 1 page, so we might as well increase the size
582 * of our Rx buffer to make better use of the available space
583 */
584 rx_buf_len = IAVF_RXBUFFER_3072;
585
586 /* We use a 1536 buffer size for configurations with
587 * standard Ethernet mtu. On x86 this gives us enough room
588 * for shared info and 192 bytes of padding.
589 */
590 if (!IAVF_2K_TOO_SMALL_WITH_PADDING &&
591 (netdev->mtu <= ETH_DATA_LEN))
592 rx_buf_len = IAVF_RXBUFFER_1536 - NET_IP_ALIGN;
593 }
594#endif
595
596 for (i = 0; i < adapter->num_active_queues; i++) {
597 adapter->rx_rings[i].tail = hw->hw_addr + IAVF_QRX_TAIL1(i);
598 adapter->rx_rings[i].rx_buf_len = rx_buf_len;
599
600 if (adapter->flags & IAVF_FLAG_LEGACY_RX)
601 clear_ring_build_skb_enabled(&adapter->rx_rings[i]);
602 else
603 set_ring_build_skb_enabled(&adapter->rx_rings[i]);
604 }
605}
606
607/**
608 * iavf_find_vlan - Search filter list for specific vlan filter
609 * @adapter: board private structure
610 * @vlan: vlan tag
611 *
612 * Returns ptr to the filter object or NULL. Must be called while holding the
613 * mac_vlan_list_lock.
614 **/
615static struct
616iavf_vlan_filter *iavf_find_vlan(struct iavf_adapter *adapter, u16 vlan)
617{
618 struct iavf_vlan_filter *f;
619
620 list_for_each_entry(f, &adapter->vlan_filter_list, list) {
621 if (vlan == f->vlan)
622 return f;
623 }
624 return NULL;
625}
626
627/**
628 * iavf_add_vlan - Add a vlan filter to the list
629 * @adapter: board private structure
630 * @vlan: VLAN tag
631 *
632 * Returns ptr to the filter object or NULL when no memory available.
633 **/
634static struct
635iavf_vlan_filter *iavf_add_vlan(struct iavf_adapter *adapter, u16 vlan)
636{
637 struct iavf_vlan_filter *f = NULL;
638
639 spin_lock_bh(&adapter->mac_vlan_list_lock);
640
641 f = iavf_find_vlan(adapter, vlan);
642 if (!f) {
643 f = kzalloc(sizeof(*f), GFP_ATOMIC);
644 if (!f)
645 goto clearout;
646
647 f->vlan = vlan;
648
649 list_add_tail(&f->list, &adapter->vlan_filter_list);
650 f->add = true;
651 adapter->aq_required |= IAVF_FLAG_AQ_ADD_VLAN_FILTER;
652 }
653
654clearout:
655 spin_unlock_bh(&adapter->mac_vlan_list_lock);
656 return f;
657}
658
659/**
660 * iavf_del_vlan - Remove a vlan filter from the list
661 * @adapter: board private structure
662 * @vlan: VLAN tag
663 **/
664static void iavf_del_vlan(struct iavf_adapter *adapter, u16 vlan)
665{
666 struct iavf_vlan_filter *f;
667
668 spin_lock_bh(&adapter->mac_vlan_list_lock);
669
670 f = iavf_find_vlan(adapter, vlan);
671 if (f) {
672 f->remove = true;
673 adapter->aq_required |= IAVF_FLAG_AQ_DEL_VLAN_FILTER;
674 }
675
676 spin_unlock_bh(&adapter->mac_vlan_list_lock);
677}
678
679/**
680 * iavf_vlan_rx_add_vid - Add a VLAN filter to a device
681 * @netdev: network device struct
682 * @proto: unused protocol data
683 * @vid: VLAN tag
684 **/
685static int iavf_vlan_rx_add_vid(struct net_device *netdev,
686 __always_unused __be16 proto, u16 vid)
687{
688 struct iavf_adapter *adapter = netdev_priv(netdev);
689
690 if (!VLAN_ALLOWED(adapter))
691 return -EIO;
692 if (iavf_add_vlan(adapter, vid) == NULL)
693 return -ENOMEM;
694 return 0;
695}
696
697/**
698 * iavf_vlan_rx_kill_vid - Remove a VLAN filter from a device
699 * @netdev: network device struct
700 * @proto: unused protocol data
701 * @vid: VLAN tag
702 **/
703static int iavf_vlan_rx_kill_vid(struct net_device *netdev,
704 __always_unused __be16 proto, u16 vid)
705{
706 struct iavf_adapter *adapter = netdev_priv(netdev);
707
708 if (VLAN_ALLOWED(adapter)) {
709 iavf_del_vlan(adapter, vid);
710 return 0;
711 }
712 return -EIO;
713}
714
715/**
716 * iavf_find_filter - Search filter list for specific mac filter
717 * @adapter: board private structure
718 * @macaddr: the MAC address
719 *
720 * Returns ptr to the filter object or NULL. Must be called while holding the
721 * mac_vlan_list_lock.
722 **/
723static struct
724iavf_mac_filter *iavf_find_filter(struct iavf_adapter *adapter,
725 const u8 *macaddr)
726{
727 struct iavf_mac_filter *f;
728
729 if (!macaddr)
730 return NULL;
731
732 list_for_each_entry(f, &adapter->mac_filter_list, list) {
733 if (ether_addr_equal(macaddr, f->macaddr))
734 return f;
735 }
736 return NULL;
737}
738
739/**
740 * iavf_add_filter - Add a mac filter to the filter list
741 * @adapter: board private structure
742 * @macaddr: the MAC address
743 *
744 * Returns ptr to the filter object or NULL when no memory available.
745 **/
746static struct
747iavf_mac_filter *iavf_add_filter(struct iavf_adapter *adapter,
748 const u8 *macaddr)
749{
750 struct iavf_mac_filter *f;
751
752 if (!macaddr)
753 return NULL;
754
755 f = iavf_find_filter(adapter, macaddr);
756 if (!f) {
757 f = kzalloc(sizeof(*f), GFP_ATOMIC);
758 if (!f)
759 return f;
760
761 ether_addr_copy(f->macaddr, macaddr);
762
763 list_add_tail(&f->list, &adapter->mac_filter_list);
764 f->add = true;
765 adapter->aq_required |= IAVF_FLAG_AQ_ADD_MAC_FILTER;
766 } else {
767 f->remove = false;
768 }
769
770 return f;
771}
772
773/**
774 * iavf_set_mac - NDO callback to set port mac address
775 * @netdev: network interface device structure
776 * @p: pointer to an address structure
777 *
778 * Returns 0 on success, negative on failure
779 **/
780static int iavf_set_mac(struct net_device *netdev, void *p)
781{
782 struct iavf_adapter *adapter = netdev_priv(netdev);
783 struct iavf_hw *hw = &adapter->hw;
784 struct iavf_mac_filter *f;
785 struct sockaddr *addr = p;
786
787 if (!is_valid_ether_addr(addr->sa_data))
788 return -EADDRNOTAVAIL;
789
790 if (ether_addr_equal(netdev->dev_addr, addr->sa_data))
791 return 0;
792
793 spin_lock_bh(&adapter->mac_vlan_list_lock);
794
795 f = iavf_find_filter(adapter, hw->mac.addr);
796 if (f) {
797 f->remove = true;
798 adapter->aq_required |= IAVF_FLAG_AQ_DEL_MAC_FILTER;
799 }
800
801 f = iavf_add_filter(adapter, addr->sa_data);
802
803 spin_unlock_bh(&adapter->mac_vlan_list_lock);
804
805 if (f) {
806 ether_addr_copy(hw->mac.addr, addr->sa_data);
807 }
808
809 return (f == NULL) ? -ENOMEM : 0;
810}
811
812/**
813 * iavf_addr_sync - Callback for dev_(mc|uc)_sync to add address
814 * @netdev: the netdevice
815 * @addr: address to add
816 *
817 * Called by __dev_(mc|uc)_sync when an address needs to be added. We call
818 * __dev_(uc|mc)_sync from .set_rx_mode and guarantee to hold the hash lock.
819 */
820static int iavf_addr_sync(struct net_device *netdev, const u8 *addr)
821{
822 struct iavf_adapter *adapter = netdev_priv(netdev);
823
824 if (iavf_add_filter(adapter, addr))
825 return 0;
826 else
827 return -ENOMEM;
828}
829
830/**
831 * iavf_addr_unsync - Callback for dev_(mc|uc)_sync to remove address
832 * @netdev: the netdevice
833 * @addr: address to add
834 *
835 * Called by __dev_(mc|uc)_sync when an address needs to be removed. We call
836 * __dev_(uc|mc)_sync from .set_rx_mode and guarantee to hold the hash lock.
837 */
838static int iavf_addr_unsync(struct net_device *netdev, const u8 *addr)
839{
840 struct iavf_adapter *adapter = netdev_priv(netdev);
841 struct iavf_mac_filter *f;
842
843 /* Under some circumstances, we might receive a request to delete
844 * our own device address from our uc list. Because we store the
845 * device address in the VSI's MAC/VLAN filter list, we need to ignore
846 * such requests and not delete our device address from this list.
847 */
848 if (ether_addr_equal(addr, netdev->dev_addr))
849 return 0;
850
851 f = iavf_find_filter(adapter, addr);
852 if (f) {
853 f->remove = true;
854 adapter->aq_required |= IAVF_FLAG_AQ_DEL_MAC_FILTER;
855 }
856 return 0;
857}
858
859/**
860 * iavf_set_rx_mode - NDO callback to set the netdev filters
861 * @netdev: network interface device structure
862 **/
863static void iavf_set_rx_mode(struct net_device *netdev)
864{
865 struct iavf_adapter *adapter = netdev_priv(netdev);
866
867 spin_lock_bh(&adapter->mac_vlan_list_lock);
868 __dev_uc_sync(netdev, iavf_addr_sync, iavf_addr_unsync);
869 __dev_mc_sync(netdev, iavf_addr_sync, iavf_addr_unsync);
870 spin_unlock_bh(&adapter->mac_vlan_list_lock);
871
872 if (netdev->flags & IFF_PROMISC &&
873 !(adapter->flags & IAVF_FLAG_PROMISC_ON))
874 adapter->aq_required |= IAVF_FLAG_AQ_REQUEST_PROMISC;
875 else if (!(netdev->flags & IFF_PROMISC) &&
876 adapter->flags & IAVF_FLAG_PROMISC_ON)
877 adapter->aq_required |= IAVF_FLAG_AQ_RELEASE_PROMISC;
878
879 if (netdev->flags & IFF_ALLMULTI &&
880 !(adapter->flags & IAVF_FLAG_ALLMULTI_ON))
881 adapter->aq_required |= IAVF_FLAG_AQ_REQUEST_ALLMULTI;
882 else if (!(netdev->flags & IFF_ALLMULTI) &&
883 adapter->flags & IAVF_FLAG_ALLMULTI_ON)
884 adapter->aq_required |= IAVF_FLAG_AQ_RELEASE_ALLMULTI;
885}
886
887/**
888 * iavf_napi_enable_all - enable NAPI on all queue vectors
889 * @adapter: board private structure
890 **/
891static void iavf_napi_enable_all(struct iavf_adapter *adapter)
892{
893 int q_idx;
894 struct iavf_q_vector *q_vector;
895 int q_vectors = adapter->num_msix_vectors - NONQ_VECS;
896
897 for (q_idx = 0; q_idx < q_vectors; q_idx++) {
898 struct napi_struct *napi;
899
900 q_vector = &adapter->q_vectors[q_idx];
901 napi = &q_vector->napi;
902 napi_enable(napi);
903 }
904}
905
906/**
907 * iavf_napi_disable_all - disable NAPI on all queue vectors
908 * @adapter: board private structure
909 **/
910static void iavf_napi_disable_all(struct iavf_adapter *adapter)
911{
912 int q_idx;
913 struct iavf_q_vector *q_vector;
914 int q_vectors = adapter->num_msix_vectors - NONQ_VECS;
915
916 for (q_idx = 0; q_idx < q_vectors; q_idx++) {
917 q_vector = &adapter->q_vectors[q_idx];
918 napi_disable(&q_vector->napi);
919 }
920}
921
922/**
923 * iavf_configure - set up transmit and receive data structures
924 * @adapter: board private structure
925 **/
926static void iavf_configure(struct iavf_adapter *adapter)
927{
928 struct net_device *netdev = adapter->netdev;
929 int i;
930
931 iavf_set_rx_mode(netdev);
932
933 iavf_configure_tx(adapter);
934 iavf_configure_rx(adapter);
935 adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_QUEUES;
936
937 for (i = 0; i < adapter->num_active_queues; i++) {
938 struct iavf_ring *ring = &adapter->rx_rings[i];
939
940 iavf_alloc_rx_buffers(ring, IAVF_DESC_UNUSED(ring));
941 }
942}
943
944/**
945 * iavf_up_complete - Finish the last steps of bringing up a connection
946 * @adapter: board private structure
947 *
948 * Expects to be called while holding the __IAVF_IN_CRITICAL_TASK bit lock.
949 **/
950static void iavf_up_complete(struct iavf_adapter *adapter)
951{
952 adapter->state = __IAVF_RUNNING;
953 clear_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
954
955 iavf_napi_enable_all(adapter);
956
957 adapter->aq_required |= IAVF_FLAG_AQ_ENABLE_QUEUES;
958 if (CLIENT_ENABLED(adapter))
959 adapter->flags |= IAVF_FLAG_CLIENT_NEEDS_OPEN;
960 mod_delayed_work(iavf_wq, &adapter->watchdog_task, 0);
961}
962
963/**
964 * iavf_down - Shutdown the connection processing
965 * @adapter: board private structure
966 *
967 * Expects to be called while holding the __IAVF_IN_CRITICAL_TASK bit lock.
968 **/
969void iavf_down(struct iavf_adapter *adapter)
970{
971 struct net_device *netdev = adapter->netdev;
972 struct iavf_vlan_filter *vlf;
973 struct iavf_mac_filter *f;
974 struct iavf_cloud_filter *cf;
975
976 if (adapter->state <= __IAVF_DOWN_PENDING)
977 return;
978
979 netif_carrier_off(netdev);
980 netif_tx_disable(netdev);
981 adapter->link_up = false;
982 iavf_napi_disable_all(adapter);
983 iavf_irq_disable(adapter);
984
985 spin_lock_bh(&adapter->mac_vlan_list_lock);
986
987 /* clear the sync flag on all filters */
988 __dev_uc_unsync(adapter->netdev, NULL);
989 __dev_mc_unsync(adapter->netdev, NULL);
990
991 /* remove all MAC filters */
992 list_for_each_entry(f, &adapter->mac_filter_list, list) {
993 f->remove = true;
994 }
995
996 /* remove all VLAN filters */
997 list_for_each_entry(vlf, &adapter->vlan_filter_list, list) {
998 vlf->remove = true;
999 }
1000
1001 spin_unlock_bh(&adapter->mac_vlan_list_lock);
1002
1003 /* remove all cloud filters */
1004 spin_lock_bh(&adapter->cloud_filter_list_lock);
1005 list_for_each_entry(cf, &adapter->cloud_filter_list, list) {
1006 cf->del = true;
1007 }
1008 spin_unlock_bh(&adapter->cloud_filter_list_lock);
1009
1010 if (!(adapter->flags & IAVF_FLAG_PF_COMMS_FAILED) &&
1011 adapter->state != __IAVF_RESETTING) {
1012 /* cancel any current operation */
1013 adapter->current_op = VIRTCHNL_OP_UNKNOWN;
1014 /* Schedule operations to close down the HW. Don't wait
1015 * here for this to complete. The watchdog is still running
1016 * and it will take care of this.
1017 */
1018 adapter->aq_required = IAVF_FLAG_AQ_DEL_MAC_FILTER;
1019 adapter->aq_required |= IAVF_FLAG_AQ_DEL_VLAN_FILTER;
1020 adapter->aq_required |= IAVF_FLAG_AQ_DEL_CLOUD_FILTER;
1021 adapter->aq_required |= IAVF_FLAG_AQ_DISABLE_QUEUES;
1022 }
1023
1024 mod_delayed_work(iavf_wq, &adapter->watchdog_task, 0);
1025}
1026
1027/**
1028 * iavf_acquire_msix_vectors - Setup the MSIX capability
1029 * @adapter: board private structure
1030 * @vectors: number of vectors to request
1031 *
1032 * Work with the OS to set up the MSIX vectors needed.
1033 *
1034 * Returns 0 on success, negative on failure
1035 **/
1036static int
1037iavf_acquire_msix_vectors(struct iavf_adapter *adapter, int vectors)
1038{
1039 int err, vector_threshold;
1040
1041 /* We'll want at least 3 (vector_threshold):
1042 * 0) Other (Admin Queue and link, mostly)
1043 * 1) TxQ[0] Cleanup
1044 * 2) RxQ[0] Cleanup
1045 */
1046 vector_threshold = MIN_MSIX_COUNT;
1047
1048 /* The more we get, the more we will assign to Tx/Rx Cleanup
1049 * for the separate queues...where Rx Cleanup >= Tx Cleanup.
1050 * Right now, we simply care about how many we'll get; we'll
1051 * set them up later while requesting irq's.
1052 */
1053 err = pci_enable_msix_range(adapter->pdev, adapter->msix_entries,
1054 vector_threshold, vectors);
1055 if (err < 0) {
1056 dev_err(&adapter->pdev->dev, "Unable to allocate MSI-X interrupts\n");
1057 kfree(adapter->msix_entries);
1058 adapter->msix_entries = NULL;
1059 return err;
1060 }
1061
1062 /* Adjust for only the vectors we'll use, which is minimum
1063 * of max_msix_q_vectors + NONQ_VECS, or the number of
1064 * vectors we were allocated.
1065 */
1066 adapter->num_msix_vectors = err;
1067 return 0;
1068}
1069
1070/**
1071 * iavf_free_queues - Free memory for all rings
1072 * @adapter: board private structure to initialize
1073 *
1074 * Free all of the memory associated with queue pairs.
1075 **/
1076static void iavf_free_queues(struct iavf_adapter *adapter)
1077{
1078 if (!adapter->vsi_res)
1079 return;
1080 adapter->num_active_queues = 0;
1081 kfree(adapter->tx_rings);
1082 adapter->tx_rings = NULL;
1083 kfree(adapter->rx_rings);
1084 adapter->rx_rings = NULL;
1085}
1086
1087/**
1088 * iavf_alloc_queues - Allocate memory for all rings
1089 * @adapter: board private structure to initialize
1090 *
1091 * We allocate one ring per queue at run-time since we don't know the
1092 * number of queues at compile-time. The polling_netdev array is
1093 * intended for Multiqueue, but should work fine with a single queue.
1094 **/
1095static int iavf_alloc_queues(struct iavf_adapter *adapter)
1096{
1097 int i, num_active_queues;
1098
1099 /* If we're in reset reallocating queues we don't actually know yet for
1100 * certain the PF gave us the number of queues we asked for but we'll
1101 * assume it did. Once basic reset is finished we'll confirm once we
1102 * start negotiating config with PF.
1103 */
1104 if (adapter->num_req_queues)
1105 num_active_queues = adapter->num_req_queues;
1106 else if ((adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) &&
1107 adapter->num_tc)
1108 num_active_queues = adapter->ch_config.total_qps;
1109 else
1110 num_active_queues = min_t(int,
1111 adapter->vsi_res->num_queue_pairs,
1112 (int)(num_online_cpus()));
1113
1114
1115 adapter->tx_rings = kcalloc(num_active_queues,
1116 sizeof(struct iavf_ring), GFP_KERNEL);
1117 if (!adapter->tx_rings)
1118 goto err_out;
1119 adapter->rx_rings = kcalloc(num_active_queues,
1120 sizeof(struct iavf_ring), GFP_KERNEL);
1121 if (!adapter->rx_rings)
1122 goto err_out;
1123
1124 for (i = 0; i < num_active_queues; i++) {
1125 struct iavf_ring *tx_ring;
1126 struct iavf_ring *rx_ring;
1127
1128 tx_ring = &adapter->tx_rings[i];
1129
1130 tx_ring->queue_index = i;
1131 tx_ring->netdev = adapter->netdev;
1132 tx_ring->dev = &adapter->pdev->dev;
1133 tx_ring->count = adapter->tx_desc_count;
1134 tx_ring->itr_setting = IAVF_ITR_TX_DEF;
1135 if (adapter->flags & IAVF_FLAG_WB_ON_ITR_CAPABLE)
1136 tx_ring->flags |= IAVF_TXR_FLAGS_WB_ON_ITR;
1137
1138 rx_ring = &adapter->rx_rings[i];
1139 rx_ring->queue_index = i;
1140 rx_ring->netdev = adapter->netdev;
1141 rx_ring->dev = &adapter->pdev->dev;
1142 rx_ring->count = adapter->rx_desc_count;
1143 rx_ring->itr_setting = IAVF_ITR_RX_DEF;
1144 }
1145
1146 adapter->num_active_queues = num_active_queues;
1147
1148 return 0;
1149
1150err_out:
1151 iavf_free_queues(adapter);
1152 return -ENOMEM;
1153}
1154
1155/**
1156 * iavf_set_interrupt_capability - set MSI-X or FAIL if not supported
1157 * @adapter: board private structure to initialize
1158 *
1159 * Attempt to configure the interrupts using the best available
1160 * capabilities of the hardware and the kernel.
1161 **/
1162static int iavf_set_interrupt_capability(struct iavf_adapter *adapter)
1163{
1164 int vector, v_budget;
1165 int pairs = 0;
1166 int err = 0;
1167
1168 if (!adapter->vsi_res) {
1169 err = -EIO;
1170 goto out;
1171 }
1172 pairs = adapter->num_active_queues;
1173
1174 /* It's easy to be greedy for MSI-X vectors, but it really doesn't do
1175 * us much good if we have more vectors than CPUs. However, we already
1176 * limit the total number of queues by the number of CPUs so we do not
1177 * need any further limiting here.
1178 */
1179 v_budget = min_t(int, pairs + NONQ_VECS,
1180 (int)adapter->vf_res->max_vectors);
1181
1182 adapter->msix_entries = kcalloc(v_budget,
1183 sizeof(struct msix_entry), GFP_KERNEL);
1184 if (!adapter->msix_entries) {
1185 err = -ENOMEM;
1186 goto out;
1187 }
1188
1189 for (vector = 0; vector < v_budget; vector++)
1190 adapter->msix_entries[vector].entry = vector;
1191
1192 err = iavf_acquire_msix_vectors(adapter, v_budget);
1193
1194out:
1195 netif_set_real_num_rx_queues(adapter->netdev, pairs);
1196 netif_set_real_num_tx_queues(adapter->netdev, pairs);
1197 return err;
1198}
1199
1200/**
1201 * iavf_config_rss_aq - Configure RSS keys and lut by using AQ commands
1202 * @adapter: board private structure
1203 *
1204 * Return 0 on success, negative on failure
1205 **/
1206static int iavf_config_rss_aq(struct iavf_adapter *adapter)
1207{
1208 struct iavf_aqc_get_set_rss_key_data *rss_key =
1209 (struct iavf_aqc_get_set_rss_key_data *)adapter->rss_key;
1210 struct iavf_hw *hw = &adapter->hw;
1211 int ret = 0;
1212
1213 if (adapter->current_op != VIRTCHNL_OP_UNKNOWN) {
1214 /* bail because we already have a command pending */
1215 dev_err(&adapter->pdev->dev, "Cannot configure RSS, command %d pending\n",
1216 adapter->current_op);
1217 return -EBUSY;
1218 }
1219
1220 ret = iavf_aq_set_rss_key(hw, adapter->vsi.id, rss_key);
1221 if (ret) {
1222 dev_err(&adapter->pdev->dev, "Cannot set RSS key, err %s aq_err %s\n",
1223 iavf_stat_str(hw, ret),
1224 iavf_aq_str(hw, hw->aq.asq_last_status));
1225 return ret;
1226
1227 }
1228
1229 ret = iavf_aq_set_rss_lut(hw, adapter->vsi.id, false,
1230 adapter->rss_lut, adapter->rss_lut_size);
1231 if (ret) {
1232 dev_err(&adapter->pdev->dev, "Cannot set RSS lut, err %s aq_err %s\n",
1233 iavf_stat_str(hw, ret),
1234 iavf_aq_str(hw, hw->aq.asq_last_status));
1235 }
1236
1237 return ret;
1238
1239}
1240
1241/**
1242 * iavf_config_rss_reg - Configure RSS keys and lut by writing registers
1243 * @adapter: board private structure
1244 *
1245 * Returns 0 on success, negative on failure
1246 **/
1247static int iavf_config_rss_reg(struct iavf_adapter *adapter)
1248{
1249 struct iavf_hw *hw = &adapter->hw;
1250 u32 *dw;
1251 u16 i;
1252
1253 dw = (u32 *)adapter->rss_key;
1254 for (i = 0; i <= adapter->rss_key_size / 4; i++)
1255 wr32(hw, IAVF_VFQF_HKEY(i), dw[i]);
1256
1257 dw = (u32 *)adapter->rss_lut;
1258 for (i = 0; i <= adapter->rss_lut_size / 4; i++)
1259 wr32(hw, IAVF_VFQF_HLUT(i), dw[i]);
1260
1261 iavf_flush(hw);
1262
1263 return 0;
1264}
1265
1266/**
1267 * iavf_config_rss - Configure RSS keys and lut
1268 * @adapter: board private structure
1269 *
1270 * Returns 0 on success, negative on failure
1271 **/
1272int iavf_config_rss(struct iavf_adapter *adapter)
1273{
1274
1275 if (RSS_PF(adapter)) {
1276 adapter->aq_required |= IAVF_FLAG_AQ_SET_RSS_LUT |
1277 IAVF_FLAG_AQ_SET_RSS_KEY;
1278 return 0;
1279 } else if (RSS_AQ(adapter)) {
1280 return iavf_config_rss_aq(adapter);
1281 } else {
1282 return iavf_config_rss_reg(adapter);
1283 }
1284}
1285
1286/**
1287 * iavf_fill_rss_lut - Fill the lut with default values
1288 * @adapter: board private structure
1289 **/
1290static void iavf_fill_rss_lut(struct iavf_adapter *adapter)
1291{
1292 u16 i;
1293
1294 for (i = 0; i < adapter->rss_lut_size; i++)
1295 adapter->rss_lut[i] = i % adapter->num_active_queues;
1296}
1297
1298/**
1299 * iavf_init_rss - Prepare for RSS
1300 * @adapter: board private structure
1301 *
1302 * Return 0 on success, negative on failure
1303 **/
1304static int iavf_init_rss(struct iavf_adapter *adapter)
1305{
1306 struct iavf_hw *hw = &adapter->hw;
1307 int ret;
1308
1309 if (!RSS_PF(adapter)) {
1310 /* Enable PCTYPES for RSS, TCP/UDP with IPv4/IPv6 */
1311 if (adapter->vf_res->vf_cap_flags &
1312 VIRTCHNL_VF_OFFLOAD_RSS_PCTYPE_V2)
1313 adapter->hena = IAVF_DEFAULT_RSS_HENA_EXPANDED;
1314 else
1315 adapter->hena = IAVF_DEFAULT_RSS_HENA;
1316
1317 wr32(hw, IAVF_VFQF_HENA(0), (u32)adapter->hena);
1318 wr32(hw, IAVF_VFQF_HENA(1), (u32)(adapter->hena >> 32));
1319 }
1320
1321 iavf_fill_rss_lut(adapter);
1322 netdev_rss_key_fill((void *)adapter->rss_key, adapter->rss_key_size);
1323 ret = iavf_config_rss(adapter);
1324
1325 return ret;
1326}
1327
1328/**
1329 * iavf_alloc_q_vectors - Allocate memory for interrupt vectors
1330 * @adapter: board private structure to initialize
1331 *
1332 * We allocate one q_vector per queue interrupt. If allocation fails we
1333 * return -ENOMEM.
1334 **/
1335static int iavf_alloc_q_vectors(struct iavf_adapter *adapter)
1336{
1337 int q_idx = 0, num_q_vectors;
1338 struct iavf_q_vector *q_vector;
1339
1340 num_q_vectors = adapter->num_msix_vectors - NONQ_VECS;
1341 adapter->q_vectors = kcalloc(num_q_vectors, sizeof(*q_vector),
1342 GFP_KERNEL);
1343 if (!adapter->q_vectors)
1344 return -ENOMEM;
1345
1346 for (q_idx = 0; q_idx < num_q_vectors; q_idx++) {
1347 q_vector = &adapter->q_vectors[q_idx];
1348 q_vector->adapter = adapter;
1349 q_vector->vsi = &adapter->vsi;
1350 q_vector->v_idx = q_idx;
1351 q_vector->reg_idx = q_idx;
1352 cpumask_copy(&q_vector->affinity_mask, cpu_possible_mask);
1353 netif_napi_add(adapter->netdev, &q_vector->napi,
1354 iavf_napi_poll, NAPI_POLL_WEIGHT);
1355 }
1356
1357 return 0;
1358}
1359
1360/**
1361 * iavf_free_q_vectors - Free memory allocated for interrupt vectors
1362 * @adapter: board private structure to initialize
1363 *
1364 * This function frees the memory allocated to the q_vectors. In addition if
1365 * NAPI is enabled it will delete any references to the NAPI struct prior
1366 * to freeing the q_vector.
1367 **/
1368static void iavf_free_q_vectors(struct iavf_adapter *adapter)
1369{
1370 int q_idx, num_q_vectors;
1371 int napi_vectors;
1372
1373 if (!adapter->q_vectors)
1374 return;
1375
1376 num_q_vectors = adapter->num_msix_vectors - NONQ_VECS;
1377 napi_vectors = adapter->num_active_queues;
1378
1379 for (q_idx = 0; q_idx < num_q_vectors; q_idx++) {
1380 struct iavf_q_vector *q_vector = &adapter->q_vectors[q_idx];
1381
1382 if (q_idx < napi_vectors)
1383 netif_napi_del(&q_vector->napi);
1384 }
1385 kfree(adapter->q_vectors);
1386 adapter->q_vectors = NULL;
1387}
1388
1389/**
1390 * iavf_reset_interrupt_capability - Reset MSIX setup
1391 * @adapter: board private structure
1392 *
1393 **/
1394void iavf_reset_interrupt_capability(struct iavf_adapter *adapter)
1395{
1396 if (!adapter->msix_entries)
1397 return;
1398
1399 pci_disable_msix(adapter->pdev);
1400 kfree(adapter->msix_entries);
1401 adapter->msix_entries = NULL;
1402}
1403
1404/**
1405 * iavf_init_interrupt_scheme - Determine if MSIX is supported and init
1406 * @adapter: board private structure to initialize
1407 *
1408 **/
1409int iavf_init_interrupt_scheme(struct iavf_adapter *adapter)
1410{
1411 int err;
1412
1413 err = iavf_alloc_queues(adapter);
1414 if (err) {
1415 dev_err(&adapter->pdev->dev,
1416 "Unable to allocate memory for queues\n");
1417 goto err_alloc_queues;
1418 }
1419
1420 rtnl_lock();
1421 err = iavf_set_interrupt_capability(adapter);
1422 rtnl_unlock();
1423 if (err) {
1424 dev_err(&adapter->pdev->dev,
1425 "Unable to setup interrupt capabilities\n");
1426 goto err_set_interrupt;
1427 }
1428
1429 err = iavf_alloc_q_vectors(adapter);
1430 if (err) {
1431 dev_err(&adapter->pdev->dev,
1432 "Unable to allocate memory for queue vectors\n");
1433 goto err_alloc_q_vectors;
1434 }
1435
1436 /* If we've made it so far while ADq flag being ON, then we haven't
1437 * bailed out anywhere in middle. And ADq isn't just enabled but actual
1438 * resources have been allocated in the reset path.
1439 * Now we can truly claim that ADq is enabled.
1440 */
1441 if ((adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) &&
1442 adapter->num_tc)
1443 dev_info(&adapter->pdev->dev, "ADq Enabled, %u TCs created",
1444 adapter->num_tc);
1445
1446 dev_info(&adapter->pdev->dev, "Multiqueue %s: Queue pair count = %u",
1447 (adapter->num_active_queues > 1) ? "Enabled" : "Disabled",
1448 adapter->num_active_queues);
1449
1450 return 0;
1451err_alloc_q_vectors:
1452 iavf_reset_interrupt_capability(adapter);
1453err_set_interrupt:
1454 iavf_free_queues(adapter);
1455err_alloc_queues:
1456 return err;
1457}
1458
1459/**
1460 * iavf_free_rss - Free memory used by RSS structs
1461 * @adapter: board private structure
1462 **/
1463static void iavf_free_rss(struct iavf_adapter *adapter)
1464{
1465 kfree(adapter->rss_key);
1466 adapter->rss_key = NULL;
1467
1468 kfree(adapter->rss_lut);
1469 adapter->rss_lut = NULL;
1470}
1471
1472/**
1473 * iavf_reinit_interrupt_scheme - Reallocate queues and vectors
1474 * @adapter: board private structure
1475 *
1476 * Returns 0 on success, negative on failure
1477 **/
1478static int iavf_reinit_interrupt_scheme(struct iavf_adapter *adapter)
1479{
1480 struct net_device *netdev = adapter->netdev;
1481 int err;
1482
1483 if (netif_running(netdev))
1484 iavf_free_traffic_irqs(adapter);
1485 iavf_free_misc_irq(adapter);
1486 iavf_reset_interrupt_capability(adapter);
1487 iavf_free_q_vectors(adapter);
1488 iavf_free_queues(adapter);
1489
1490 err = iavf_init_interrupt_scheme(adapter);
1491 if (err)
1492 goto err;
1493
1494 netif_tx_stop_all_queues(netdev);
1495
1496 err = iavf_request_misc_irq(adapter);
1497 if (err)
1498 goto err;
1499
1500 set_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
1501
1502 iavf_map_rings_to_vectors(adapter);
1503
1504 if (RSS_AQ(adapter))
1505 adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_RSS;
1506 else
1507 err = iavf_init_rss(adapter);
1508err:
1509 return err;
1510}
1511
1512/**
1513 * iavf_process_aq_command - process aq_required flags
1514 * and sends aq command
1515 * @adapter: pointer to iavf adapter structure
1516 *
1517 * Returns 0 on success
1518 * Returns error code if no command was sent
1519 * or error code if the command failed.
1520 **/
1521static int iavf_process_aq_command(struct iavf_adapter *adapter)
1522{
1523 if (adapter->aq_required & IAVF_FLAG_AQ_GET_CONFIG)
1524 return iavf_send_vf_config_msg(adapter);
1525 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_QUEUES) {
1526 iavf_disable_queues(adapter);
1527 return 0;
1528 }
1529
1530 if (adapter->aq_required & IAVF_FLAG_AQ_MAP_VECTORS) {
1531 iavf_map_queues(adapter);
1532 return 0;
1533 }
1534
1535 if (adapter->aq_required & IAVF_FLAG_AQ_ADD_MAC_FILTER) {
1536 iavf_add_ether_addrs(adapter);
1537 return 0;
1538 }
1539
1540 if (adapter->aq_required & IAVF_FLAG_AQ_ADD_VLAN_FILTER) {
1541 iavf_add_vlans(adapter);
1542 return 0;
1543 }
1544
1545 if (adapter->aq_required & IAVF_FLAG_AQ_DEL_MAC_FILTER) {
1546 iavf_del_ether_addrs(adapter);
1547 return 0;
1548 }
1549
1550 if (adapter->aq_required & IAVF_FLAG_AQ_DEL_VLAN_FILTER) {
1551 iavf_del_vlans(adapter);
1552 return 0;
1553 }
1554
1555 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_VLAN_STRIPPING) {
1556 iavf_enable_vlan_stripping(adapter);
1557 return 0;
1558 }
1559
1560 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_VLAN_STRIPPING) {
1561 iavf_disable_vlan_stripping(adapter);
1562 return 0;
1563 }
1564
1565 if (adapter->aq_required & IAVF_FLAG_AQ_CONFIGURE_QUEUES) {
1566 iavf_configure_queues(adapter);
1567 return 0;
1568 }
1569
1570 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_QUEUES) {
1571 iavf_enable_queues(adapter);
1572 return 0;
1573 }
1574
1575 if (adapter->aq_required & IAVF_FLAG_AQ_CONFIGURE_RSS) {
1576 /* This message goes straight to the firmware, not the
1577 * PF, so we don't have to set current_op as we will
1578 * not get a response through the ARQ.
1579 */
1580 adapter->aq_required &= ~IAVF_FLAG_AQ_CONFIGURE_RSS;
1581 return 0;
1582 }
1583 if (adapter->aq_required & IAVF_FLAG_AQ_GET_HENA) {
1584 iavf_get_hena(adapter);
1585 return 0;
1586 }
1587 if (adapter->aq_required & IAVF_FLAG_AQ_SET_HENA) {
1588 iavf_set_hena(adapter);
1589 return 0;
1590 }
1591 if (adapter->aq_required & IAVF_FLAG_AQ_SET_RSS_KEY) {
1592 iavf_set_rss_key(adapter);
1593 return 0;
1594 }
1595 if (adapter->aq_required & IAVF_FLAG_AQ_SET_RSS_LUT) {
1596 iavf_set_rss_lut(adapter);
1597 return 0;
1598 }
1599
1600 if (adapter->aq_required & IAVF_FLAG_AQ_REQUEST_PROMISC) {
1601 iavf_set_promiscuous(adapter, FLAG_VF_UNICAST_PROMISC |
1602 FLAG_VF_MULTICAST_PROMISC);
1603 return 0;
1604 }
1605
1606 if (adapter->aq_required & IAVF_FLAG_AQ_REQUEST_ALLMULTI) {
1607 iavf_set_promiscuous(adapter, FLAG_VF_MULTICAST_PROMISC);
1608 return 0;
1609 }
1610
1611 if ((adapter->aq_required & IAVF_FLAG_AQ_RELEASE_PROMISC) &&
1612 (adapter->aq_required & IAVF_FLAG_AQ_RELEASE_ALLMULTI)) {
1613 iavf_set_promiscuous(adapter, 0);
1614 return 0;
1615 }
1616
1617 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_CHANNELS) {
1618 iavf_enable_channels(adapter);
1619 return 0;
1620 }
1621
1622 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_CHANNELS) {
1623 iavf_disable_channels(adapter);
1624 return 0;
1625 }
1626 if (adapter->aq_required & IAVF_FLAG_AQ_ADD_CLOUD_FILTER) {
1627 iavf_add_cloud_filter(adapter);
1628 return 0;
1629 }
1630
1631 if (adapter->aq_required & IAVF_FLAG_AQ_DEL_CLOUD_FILTER) {
1632 iavf_del_cloud_filter(adapter);
1633 return 0;
1634 }
1635 if (adapter->aq_required & IAVF_FLAG_AQ_DEL_CLOUD_FILTER) {
1636 iavf_del_cloud_filter(adapter);
1637 return 0;
1638 }
1639 if (adapter->aq_required & IAVF_FLAG_AQ_ADD_CLOUD_FILTER) {
1640 iavf_add_cloud_filter(adapter);
1641 return 0;
1642 }
1643 return -EAGAIN;
1644}
1645
1646/**
1647 * iavf_startup - first step of driver startup
1648 * @adapter: board private structure
1649 *
1650 * Function process __IAVF_STARTUP driver state.
1651 * When success the state is changed to __IAVF_INIT_VERSION_CHECK
1652 * when fails it returns -EAGAIN
1653 **/
1654static int iavf_startup(struct iavf_adapter *adapter)
1655{
1656 struct pci_dev *pdev = adapter->pdev;
1657 struct iavf_hw *hw = &adapter->hw;
1658 int err;
1659
1660 WARN_ON(adapter->state != __IAVF_STARTUP);
1661
1662 /* driver loaded, probe complete */
1663 adapter->flags &= ~IAVF_FLAG_PF_COMMS_FAILED;
1664 adapter->flags &= ~IAVF_FLAG_RESET_PENDING;
1665 err = iavf_set_mac_type(hw);
1666 if (err) {
1667 dev_err(&pdev->dev, "Failed to set MAC type (%d)\n", err);
1668 goto err;
1669 }
1670
1671 err = iavf_check_reset_complete(hw);
1672 if (err) {
1673 dev_info(&pdev->dev, "Device is still in reset (%d), retrying\n",
1674 err);
1675 goto err;
1676 }
1677 hw->aq.num_arq_entries = IAVF_AQ_LEN;
1678 hw->aq.num_asq_entries = IAVF_AQ_LEN;
1679 hw->aq.arq_buf_size = IAVF_MAX_AQ_BUF_SIZE;
1680 hw->aq.asq_buf_size = IAVF_MAX_AQ_BUF_SIZE;
1681
1682 err = iavf_init_adminq(hw);
1683 if (err) {
1684 dev_err(&pdev->dev, "Failed to init Admin Queue (%d)\n", err);
1685 goto err;
1686 }
1687 err = iavf_send_api_ver(adapter);
1688 if (err) {
1689 dev_err(&pdev->dev, "Unable to send to PF (%d)\n", err);
1690 iavf_shutdown_adminq(hw);
1691 goto err;
1692 }
1693 adapter->state = __IAVF_INIT_VERSION_CHECK;
1694err:
1695 return err;
1696}
1697
1698/**
1699 * iavf_init_version_check - second step of driver startup
1700 * @adapter: board private structure
1701 *
1702 * Function process __IAVF_INIT_VERSION_CHECK driver state.
1703 * When success the state is changed to __IAVF_INIT_GET_RESOURCES
1704 * when fails it returns -EAGAIN
1705 **/
1706static int iavf_init_version_check(struct iavf_adapter *adapter)
1707{
1708 struct pci_dev *pdev = adapter->pdev;
1709 struct iavf_hw *hw = &adapter->hw;
1710 int err = -EAGAIN;
1711
1712 WARN_ON(adapter->state != __IAVF_INIT_VERSION_CHECK);
1713
1714 if (!iavf_asq_done(hw)) {
1715 dev_err(&pdev->dev, "Admin queue command never completed\n");
1716 iavf_shutdown_adminq(hw);
1717 adapter->state = __IAVF_STARTUP;
1718 goto err;
1719 }
1720
1721 /* aq msg sent, awaiting reply */
1722 err = iavf_verify_api_ver(adapter);
1723 if (err) {
1724 if (err == IAVF_ERR_ADMIN_QUEUE_NO_WORK)
1725 err = iavf_send_api_ver(adapter);
1726 else
1727 dev_err(&pdev->dev, "Unsupported PF API version %d.%d, expected %d.%d\n",
1728 adapter->pf_version.major,
1729 adapter->pf_version.minor,
1730 VIRTCHNL_VERSION_MAJOR,
1731 VIRTCHNL_VERSION_MINOR);
1732 goto err;
1733 }
1734 err = iavf_send_vf_config_msg(adapter);
1735 if (err) {
1736 dev_err(&pdev->dev, "Unable to send config request (%d)\n",
1737 err);
1738 goto err;
1739 }
1740 adapter->state = __IAVF_INIT_GET_RESOURCES;
1741
1742err:
1743 return err;
1744}
1745
1746/**
1747 * iavf_init_get_resources - third step of driver startup
1748 * @adapter: board private structure
1749 *
1750 * Function process __IAVF_INIT_GET_RESOURCES driver state and
1751 * finishes driver initialization procedure.
1752 * When success the state is changed to __IAVF_DOWN
1753 * when fails it returns -EAGAIN
1754 **/
1755static int iavf_init_get_resources(struct iavf_adapter *adapter)
1756{
1757 struct net_device *netdev = adapter->netdev;
1758 struct pci_dev *pdev = adapter->pdev;
1759 struct iavf_hw *hw = &adapter->hw;
1760 int err = 0, bufsz;
1761
1762 WARN_ON(adapter->state != __IAVF_INIT_GET_RESOURCES);
1763 /* aq msg sent, awaiting reply */
1764 if (!adapter->vf_res) {
1765 bufsz = sizeof(struct virtchnl_vf_resource) +
1766 (IAVF_MAX_VF_VSI *
1767 sizeof(struct virtchnl_vsi_resource));
1768 adapter->vf_res = kzalloc(bufsz, GFP_KERNEL);
1769 if (!adapter->vf_res)
1770 goto err;
1771 }
1772 err = iavf_get_vf_config(adapter);
1773 if (err == IAVF_ERR_ADMIN_QUEUE_NO_WORK) {
1774 err = iavf_send_vf_config_msg(adapter);
1775 goto err;
1776 } else if (err == IAVF_ERR_PARAM) {
1777 /* We only get ERR_PARAM if the device is in a very bad
1778 * state or if we've been disabled for previous bad
1779 * behavior. Either way, we're done now.
1780 */
1781 iavf_shutdown_adminq(hw);
1782 dev_err(&pdev->dev, "Unable to get VF config due to PF error condition, not retrying\n");
1783 return 0;
1784 }
1785 if (err) {
1786 dev_err(&pdev->dev, "Unable to get VF config (%d)\n", err);
1787 goto err_alloc;
1788 }
1789
1790 if (iavf_process_config(adapter))
1791 goto err_alloc;
1792 adapter->current_op = VIRTCHNL_OP_UNKNOWN;
1793
1794 adapter->flags |= IAVF_FLAG_RX_CSUM_ENABLED;
1795
1796 netdev->netdev_ops = &iavf_netdev_ops;
1797 iavf_set_ethtool_ops(netdev);
1798 netdev->watchdog_timeo = 5 * HZ;
1799
1800 /* MTU range: 68 - 9710 */
1801 netdev->min_mtu = ETH_MIN_MTU;
1802 netdev->max_mtu = IAVF_MAX_RXBUFFER - IAVF_PACKET_HDR_PAD;
1803
1804 if (!is_valid_ether_addr(adapter->hw.mac.addr)) {
1805 dev_info(&pdev->dev, "Invalid MAC address %pM, using random\n",
1806 adapter->hw.mac.addr);
1807 eth_hw_addr_random(netdev);
1808 ether_addr_copy(adapter->hw.mac.addr, netdev->dev_addr);
1809 } else {
1810 ether_addr_copy(netdev->dev_addr, adapter->hw.mac.addr);
1811 ether_addr_copy(netdev->perm_addr, adapter->hw.mac.addr);
1812 }
1813
1814 adapter->tx_desc_count = IAVF_DEFAULT_TXD;
1815 adapter->rx_desc_count = IAVF_DEFAULT_RXD;
1816 err = iavf_init_interrupt_scheme(adapter);
1817 if (err)
1818 goto err_sw_init;
1819 iavf_map_rings_to_vectors(adapter);
1820 if (adapter->vf_res->vf_cap_flags &
1821 VIRTCHNL_VF_OFFLOAD_WB_ON_ITR)
1822 adapter->flags |= IAVF_FLAG_WB_ON_ITR_CAPABLE;
1823
1824 err = iavf_request_misc_irq(adapter);
1825 if (err)
1826 goto err_sw_init;
1827
1828 netif_carrier_off(netdev);
1829 adapter->link_up = false;
1830
1831 /* set the semaphore to prevent any callbacks after device registration
1832 * up to time when state of driver will be set to __IAVF_DOWN
1833 */
1834 rtnl_lock();
1835 if (!adapter->netdev_registered) {
1836 err = register_netdevice(netdev);
1837 if (err) {
1838 rtnl_unlock();
1839 goto err_register;
1840 }
1841 }
1842
1843 adapter->netdev_registered = true;
1844
1845 netif_tx_stop_all_queues(netdev);
1846 if (CLIENT_ALLOWED(adapter)) {
1847 err = iavf_lan_add_device(adapter);
1848 if (err) {
1849 rtnl_unlock();
1850 dev_info(&pdev->dev, "Failed to add VF to client API service list: %d\n",
1851 err);
1852 }
1853 }
1854 dev_info(&pdev->dev, "MAC address: %pM\n", adapter->hw.mac.addr);
1855 if (netdev->features & NETIF_F_GRO)
1856 dev_info(&pdev->dev, "GRO is enabled\n");
1857
1858 adapter->state = __IAVF_DOWN;
1859 set_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
1860 rtnl_unlock();
1861
1862 iavf_misc_irq_enable(adapter);
1863 wake_up(&adapter->down_waitqueue);
1864
1865 adapter->rss_key = kzalloc(adapter->rss_key_size, GFP_KERNEL);
1866 adapter->rss_lut = kzalloc(adapter->rss_lut_size, GFP_KERNEL);
1867 if (!adapter->rss_key || !adapter->rss_lut)
1868 goto err_mem;
1869 if (RSS_AQ(adapter))
1870 adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_RSS;
1871 else
1872 iavf_init_rss(adapter);
1873
1874 return err;
1875err_mem:
1876 iavf_free_rss(adapter);
1877err_register:
1878 iavf_free_misc_irq(adapter);
1879err_sw_init:
1880 iavf_reset_interrupt_capability(adapter);
1881err_alloc:
1882 kfree(adapter->vf_res);
1883 adapter->vf_res = NULL;
1884err:
1885 return err;
1886}
1887
1888/**
1889 * iavf_watchdog_task - Periodic call-back task
1890 * @work: pointer to work_struct
1891 **/
1892static void iavf_watchdog_task(struct work_struct *work)
1893{
1894 struct iavf_adapter *adapter = container_of(work,
1895 struct iavf_adapter,
1896 watchdog_task.work);
1897 struct iavf_hw *hw = &adapter->hw;
1898 u32 reg_val;
1899
1900 if (test_and_set_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section))
1901 goto restart_watchdog;
1902
1903 if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED)
1904 adapter->state = __IAVF_COMM_FAILED;
1905
1906 switch (adapter->state) {
1907 case __IAVF_COMM_FAILED:
1908 reg_val = rd32(hw, IAVF_VFGEN_RSTAT) &
1909 IAVF_VFGEN_RSTAT_VFR_STATE_MASK;
1910 if (reg_val == VIRTCHNL_VFR_VFACTIVE ||
1911 reg_val == VIRTCHNL_VFR_COMPLETED) {
1912 /* A chance for redemption! */
1913 dev_err(&adapter->pdev->dev,
1914 "Hardware came out of reset. Attempting reinit.\n");
1915 adapter->state = __IAVF_STARTUP;
1916 adapter->flags &= ~IAVF_FLAG_PF_COMMS_FAILED;
1917 queue_delayed_work(iavf_wq, &adapter->init_task, 10);
1918 clear_bit(__IAVF_IN_CRITICAL_TASK,
1919 &adapter->crit_section);
1920 /* Don't reschedule the watchdog, since we've restarted
1921 * the init task. When init_task contacts the PF and
1922 * gets everything set up again, it'll restart the
1923 * watchdog for us. Down, boy. Sit. Stay. Woof.
1924 */
1925 return;
1926 }
1927 adapter->aq_required = 0;
1928 adapter->current_op = VIRTCHNL_OP_UNKNOWN;
1929 clear_bit(__IAVF_IN_CRITICAL_TASK,
1930 &adapter->crit_section);
1931 queue_delayed_work(iavf_wq,
1932 &adapter->watchdog_task,
1933 msecs_to_jiffies(10));
1934 goto watchdog_done;
1935 case __IAVF_RESETTING:
1936 clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section);
1937 queue_delayed_work(iavf_wq, &adapter->watchdog_task, HZ * 2);
1938 return;
1939 case __IAVF_DOWN:
1940 case __IAVF_DOWN_PENDING:
1941 case __IAVF_TESTING:
1942 case __IAVF_RUNNING:
1943 if (adapter->current_op) {
1944 if (!iavf_asq_done(hw)) {
1945 dev_dbg(&adapter->pdev->dev,
1946 "Admin queue timeout\n");
1947 iavf_send_api_ver(adapter);
1948 }
1949 } else {
1950 if (!iavf_process_aq_command(adapter) &&
1951 adapter->state == __IAVF_RUNNING)
1952 iavf_request_stats(adapter);
1953 }
1954 break;
1955 case __IAVF_REMOVE:
1956 clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section);
1957 return;
1958 default:
1959 goto restart_watchdog;
1960 }
1961
1962 /* check for hw reset */
1963 reg_val = rd32(hw, IAVF_VF_ARQLEN1) & IAVF_VF_ARQLEN1_ARQENABLE_MASK;
1964 if (!reg_val) {
1965 adapter->state = __IAVF_RESETTING;
1966 adapter->flags |= IAVF_FLAG_RESET_PENDING;
1967 adapter->aq_required = 0;
1968 adapter->current_op = VIRTCHNL_OP_UNKNOWN;
1969 dev_err(&adapter->pdev->dev, "Hardware reset detected\n");
1970 queue_work(iavf_wq, &adapter->reset_task);
1971 goto watchdog_done;
1972 }
1973
1974 schedule_delayed_work(&adapter->client_task, msecs_to_jiffies(5));
1975watchdog_done:
1976 if (adapter->state == __IAVF_RUNNING ||
1977 adapter->state == __IAVF_COMM_FAILED)
1978 iavf_detect_recover_hung(&adapter->vsi);
1979 clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section);
1980restart_watchdog:
1981 if (adapter->aq_required)
1982 queue_delayed_work(iavf_wq, &adapter->watchdog_task,
1983 msecs_to_jiffies(20));
1984 else
1985 queue_delayed_work(iavf_wq, &adapter->watchdog_task, HZ * 2);
1986 queue_work(iavf_wq, &adapter->adminq_task);
1987}
1988
1989static void iavf_disable_vf(struct iavf_adapter *adapter)
1990{
1991 struct iavf_mac_filter *f, *ftmp;
1992 struct iavf_vlan_filter *fv, *fvtmp;
1993 struct iavf_cloud_filter *cf, *cftmp;
1994
1995 adapter->flags |= IAVF_FLAG_PF_COMMS_FAILED;
1996
1997 /* We don't use netif_running() because it may be true prior to
1998 * ndo_open() returning, so we can't assume it means all our open
1999 * tasks have finished, since we're not holding the rtnl_lock here.
2000 */
2001 if (adapter->state == __IAVF_RUNNING) {
2002 set_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
2003 netif_carrier_off(adapter->netdev);
2004 netif_tx_disable(adapter->netdev);
2005 adapter->link_up = false;
2006 iavf_napi_disable_all(adapter);
2007 iavf_irq_disable(adapter);
2008 iavf_free_traffic_irqs(adapter);
2009 iavf_free_all_tx_resources(adapter);
2010 iavf_free_all_rx_resources(adapter);
2011 }
2012
2013 spin_lock_bh(&adapter->mac_vlan_list_lock);
2014
2015 /* Delete all of the filters */
2016 list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list, list) {
2017 list_del(&f->list);
2018 kfree(f);
2019 }
2020
2021 list_for_each_entry_safe(fv, fvtmp, &adapter->vlan_filter_list, list) {
2022 list_del(&fv->list);
2023 kfree(fv);
2024 }
2025
2026 spin_unlock_bh(&adapter->mac_vlan_list_lock);
2027
2028 spin_lock_bh(&adapter->cloud_filter_list_lock);
2029 list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list, list) {
2030 list_del(&cf->list);
2031 kfree(cf);
2032 adapter->num_cloud_filters--;
2033 }
2034 spin_unlock_bh(&adapter->cloud_filter_list_lock);
2035
2036 iavf_free_misc_irq(adapter);
2037 iavf_reset_interrupt_capability(adapter);
2038 iavf_free_queues(adapter);
2039 iavf_free_q_vectors(adapter);
2040 kfree(adapter->vf_res);
2041 iavf_shutdown_adminq(&adapter->hw);
2042 adapter->netdev->flags &= ~IFF_UP;
2043 clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section);
2044 adapter->flags &= ~IAVF_FLAG_RESET_PENDING;
2045 adapter->state = __IAVF_DOWN;
2046 wake_up(&adapter->down_waitqueue);
2047 dev_info(&adapter->pdev->dev, "Reset task did not complete, VF disabled\n");
2048}
2049
2050#define IAVF_RESET_WAIT_MS 10
2051#define IAVF_RESET_WAIT_COUNT 500
2052/**
2053 * iavf_reset_task - Call-back task to handle hardware reset
2054 * @work: pointer to work_struct
2055 *
2056 * During reset we need to shut down and reinitialize the admin queue
2057 * before we can use it to communicate with the PF again. We also clear
2058 * and reinit the rings because that context is lost as well.
2059 **/
2060static void iavf_reset_task(struct work_struct *work)
2061{
2062 struct iavf_adapter *adapter = container_of(work,
2063 struct iavf_adapter,
2064 reset_task);
2065 struct virtchnl_vf_resource *vfres = adapter->vf_res;
2066 struct net_device *netdev = adapter->netdev;
2067 struct iavf_hw *hw = &adapter->hw;
2068 struct iavf_vlan_filter *vlf;
2069 struct iavf_cloud_filter *cf;
2070 struct iavf_mac_filter *f;
2071 u32 reg_val;
2072 int i = 0, err;
2073 bool running;
2074
2075 /* When device is being removed it doesn't make sense to run the reset
2076 * task, just return in such a case.
2077 */
2078 if (test_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section))
2079 return;
2080
2081 while (test_and_set_bit(__IAVF_IN_CLIENT_TASK,
2082 &adapter->crit_section))
2083 usleep_range(500, 1000);
2084 if (CLIENT_ENABLED(adapter)) {
2085 adapter->flags &= ~(IAVF_FLAG_CLIENT_NEEDS_OPEN |
2086 IAVF_FLAG_CLIENT_NEEDS_CLOSE |
2087 IAVF_FLAG_CLIENT_NEEDS_L2_PARAMS |
2088 IAVF_FLAG_SERVICE_CLIENT_REQUESTED);
2089 cancel_delayed_work_sync(&adapter->client_task);
2090 iavf_notify_client_close(&adapter->vsi, true);
2091 }
2092 iavf_misc_irq_disable(adapter);
2093 if (adapter->flags & IAVF_FLAG_RESET_NEEDED) {
2094 adapter->flags &= ~IAVF_FLAG_RESET_NEEDED;
2095 /* Restart the AQ here. If we have been reset but didn't
2096 * detect it, or if the PF had to reinit, our AQ will be hosed.
2097 */
2098 iavf_shutdown_adminq(hw);
2099 iavf_init_adminq(hw);
2100 iavf_request_reset(adapter);
2101 }
2102 adapter->flags |= IAVF_FLAG_RESET_PENDING;
2103
2104 /* poll until we see the reset actually happen */
2105 for (i = 0; i < IAVF_RESET_WAIT_COUNT; i++) {
2106 reg_val = rd32(hw, IAVF_VF_ARQLEN1) &
2107 IAVF_VF_ARQLEN1_ARQENABLE_MASK;
2108 if (!reg_val)
2109 break;
2110 usleep_range(5000, 10000);
2111 }
2112 if (i == IAVF_RESET_WAIT_COUNT) {
2113 dev_info(&adapter->pdev->dev, "Never saw reset\n");
2114 goto continue_reset; /* act like the reset happened */
2115 }
2116
2117 /* wait until the reset is complete and the PF is responding to us */
2118 for (i = 0; i < IAVF_RESET_WAIT_COUNT; i++) {
2119 /* sleep first to make sure a minimum wait time is met */
2120 msleep(IAVF_RESET_WAIT_MS);
2121
2122 reg_val = rd32(hw, IAVF_VFGEN_RSTAT) &
2123 IAVF_VFGEN_RSTAT_VFR_STATE_MASK;
2124 if (reg_val == VIRTCHNL_VFR_VFACTIVE)
2125 break;
2126 }
2127
2128 pci_set_master(adapter->pdev);
2129
2130 if (i == IAVF_RESET_WAIT_COUNT) {
2131 dev_err(&adapter->pdev->dev, "Reset never finished (%x)\n",
2132 reg_val);
2133 iavf_disable_vf(adapter);
2134 clear_bit(__IAVF_IN_CLIENT_TASK, &adapter->crit_section);
2135 return; /* Do not attempt to reinit. It's dead, Jim. */
2136 }
2137
2138continue_reset:
2139 /* We don't use netif_running() because it may be true prior to
2140 * ndo_open() returning, so we can't assume it means all our open
2141 * tasks have finished, since we're not holding the rtnl_lock here.
2142 */
2143 running = ((adapter->state == __IAVF_RUNNING) ||
2144 (adapter->state == __IAVF_RESETTING));
2145
2146 if (running) {
2147 netif_carrier_off(netdev);
2148 netif_tx_stop_all_queues(netdev);
2149 adapter->link_up = false;
2150 iavf_napi_disable_all(adapter);
2151 }
2152 iavf_irq_disable(adapter);
2153
2154 adapter->state = __IAVF_RESETTING;
2155 adapter->flags &= ~IAVF_FLAG_RESET_PENDING;
2156
2157 /* free the Tx/Rx rings and descriptors, might be better to just
2158 * re-use them sometime in the future
2159 */
2160 iavf_free_all_rx_resources(adapter);
2161 iavf_free_all_tx_resources(adapter);
2162
2163 adapter->flags |= IAVF_FLAG_QUEUES_DISABLED;
2164 /* kill and reinit the admin queue */
2165 iavf_shutdown_adminq(hw);
2166 adapter->current_op = VIRTCHNL_OP_UNKNOWN;
2167 err = iavf_init_adminq(hw);
2168 if (err)
2169 dev_info(&adapter->pdev->dev, "Failed to init adminq: %d\n",
2170 err);
2171 adapter->aq_required = 0;
2172
2173 if (adapter->flags & IAVF_FLAG_REINIT_ITR_NEEDED) {
2174 err = iavf_reinit_interrupt_scheme(adapter);
2175 if (err)
2176 goto reset_err;
2177 }
2178
2179 adapter->aq_required |= IAVF_FLAG_AQ_GET_CONFIG;
2180 adapter->aq_required |= IAVF_FLAG_AQ_MAP_VECTORS;
2181
2182 spin_lock_bh(&adapter->mac_vlan_list_lock);
2183
2184 /* re-add all MAC filters */
2185 list_for_each_entry(f, &adapter->mac_filter_list, list) {
2186 f->add = true;
2187 }
2188 /* re-add all VLAN filters */
2189 list_for_each_entry(vlf, &adapter->vlan_filter_list, list) {
2190 vlf->add = true;
2191 }
2192
2193 spin_unlock_bh(&adapter->mac_vlan_list_lock);
2194
2195 /* check if TCs are running and re-add all cloud filters */
2196 spin_lock_bh(&adapter->cloud_filter_list_lock);
2197 if ((vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) &&
2198 adapter->num_tc) {
2199 list_for_each_entry(cf, &adapter->cloud_filter_list, list) {
2200 cf->add = true;
2201 }
2202 }
2203 spin_unlock_bh(&adapter->cloud_filter_list_lock);
2204
2205 adapter->aq_required |= IAVF_FLAG_AQ_ADD_MAC_FILTER;
2206 adapter->aq_required |= IAVF_FLAG_AQ_ADD_VLAN_FILTER;
2207 adapter->aq_required |= IAVF_FLAG_AQ_ADD_CLOUD_FILTER;
2208 iavf_misc_irq_enable(adapter);
2209
2210 mod_delayed_work(iavf_wq, &adapter->watchdog_task, 2);
2211
2212 /* We were running when the reset started, so we need to restore some
2213 * state here.
2214 */
2215 if (running) {
2216 /* allocate transmit descriptors */
2217 err = iavf_setup_all_tx_resources(adapter);
2218 if (err)
2219 goto reset_err;
2220
2221 /* allocate receive descriptors */
2222 err = iavf_setup_all_rx_resources(adapter);
2223 if (err)
2224 goto reset_err;
2225
2226 if (adapter->flags & IAVF_FLAG_REINIT_ITR_NEEDED) {
2227 err = iavf_request_traffic_irqs(adapter, netdev->name);
2228 if (err)
2229 goto reset_err;
2230
2231 adapter->flags &= ~IAVF_FLAG_REINIT_ITR_NEEDED;
2232 }
2233
2234 iavf_configure(adapter);
2235
2236 iavf_up_complete(adapter);
2237
2238 iavf_irq_enable(adapter, true);
2239 } else {
2240 adapter->state = __IAVF_DOWN;
2241 wake_up(&adapter->down_waitqueue);
2242 }
2243 clear_bit(__IAVF_IN_CLIENT_TASK, &adapter->crit_section);
2244 clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section);
2245
2246 return;
2247reset_err:
2248 clear_bit(__IAVF_IN_CLIENT_TASK, &adapter->crit_section);
2249 clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section);
2250 dev_err(&adapter->pdev->dev, "failed to allocate resources during reinit\n");
2251 iavf_close(netdev);
2252}
2253
2254/**
2255 * iavf_adminq_task - worker thread to clean the admin queue
2256 * @work: pointer to work_struct containing our data
2257 **/
2258static void iavf_adminq_task(struct work_struct *work)
2259{
2260 struct iavf_adapter *adapter =
2261 container_of(work, struct iavf_adapter, adminq_task);
2262 struct iavf_hw *hw = &adapter->hw;
2263 struct iavf_arq_event_info event;
2264 enum virtchnl_ops v_op;
2265 enum iavf_status ret, v_ret;
2266 u32 val, oldval;
2267 u16 pending;
2268
2269 if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED)
2270 goto out;
2271
2272 event.buf_len = IAVF_MAX_AQ_BUF_SIZE;
2273 event.msg_buf = kzalloc(event.buf_len, GFP_KERNEL);
2274 if (!event.msg_buf)
2275 goto out;
2276
2277 do {
2278 ret = iavf_clean_arq_element(hw, &event, &pending);
2279 v_op = (enum virtchnl_ops)le32_to_cpu(event.desc.cookie_high);
2280 v_ret = (enum iavf_status)le32_to_cpu(event.desc.cookie_low);
2281
2282 if (ret || !v_op)
2283 break; /* No event to process or error cleaning ARQ */
2284
2285 iavf_virtchnl_completion(adapter, v_op, v_ret, event.msg_buf,
2286 event.msg_len);
2287 if (pending != 0)
2288 memset(event.msg_buf, 0, IAVF_MAX_AQ_BUF_SIZE);
2289 } while (pending);
2290
2291 if ((adapter->flags &
2292 (IAVF_FLAG_RESET_PENDING | IAVF_FLAG_RESET_NEEDED)) ||
2293 adapter->state == __IAVF_RESETTING)
2294 goto freedom;
2295
2296 /* check for error indications */
2297 val = rd32(hw, hw->aq.arq.len);
2298 if (val == 0xdeadbeef) /* indicates device in reset */
2299 goto freedom;
2300 oldval = val;
2301 if (val & IAVF_VF_ARQLEN1_ARQVFE_MASK) {
2302 dev_info(&adapter->pdev->dev, "ARQ VF Error detected\n");
2303 val &= ~IAVF_VF_ARQLEN1_ARQVFE_MASK;
2304 }
2305 if (val & IAVF_VF_ARQLEN1_ARQOVFL_MASK) {
2306 dev_info(&adapter->pdev->dev, "ARQ Overflow Error detected\n");
2307 val &= ~IAVF_VF_ARQLEN1_ARQOVFL_MASK;
2308 }
2309 if (val & IAVF_VF_ARQLEN1_ARQCRIT_MASK) {
2310 dev_info(&adapter->pdev->dev, "ARQ Critical Error detected\n");
2311 val &= ~IAVF_VF_ARQLEN1_ARQCRIT_MASK;
2312 }
2313 if (oldval != val)
2314 wr32(hw, hw->aq.arq.len, val);
2315
2316 val = rd32(hw, hw->aq.asq.len);
2317 oldval = val;
2318 if (val & IAVF_VF_ATQLEN1_ATQVFE_MASK) {
2319 dev_info(&adapter->pdev->dev, "ASQ VF Error detected\n");
2320 val &= ~IAVF_VF_ATQLEN1_ATQVFE_MASK;
2321 }
2322 if (val & IAVF_VF_ATQLEN1_ATQOVFL_MASK) {
2323 dev_info(&adapter->pdev->dev, "ASQ Overflow Error detected\n");
2324 val &= ~IAVF_VF_ATQLEN1_ATQOVFL_MASK;
2325 }
2326 if (val & IAVF_VF_ATQLEN1_ATQCRIT_MASK) {
2327 dev_info(&adapter->pdev->dev, "ASQ Critical Error detected\n");
2328 val &= ~IAVF_VF_ATQLEN1_ATQCRIT_MASK;
2329 }
2330 if (oldval != val)
2331 wr32(hw, hw->aq.asq.len, val);
2332
2333freedom:
2334 kfree(event.msg_buf);
2335out:
2336 /* re-enable Admin queue interrupt cause */
2337 iavf_misc_irq_enable(adapter);
2338}
2339
2340/**
2341 * iavf_client_task - worker thread to perform client work
2342 * @work: pointer to work_struct containing our data
2343 *
2344 * This task handles client interactions. Because client calls can be
2345 * reentrant, we can't handle them in the watchdog.
2346 **/
2347static void iavf_client_task(struct work_struct *work)
2348{
2349 struct iavf_adapter *adapter =
2350 container_of(work, struct iavf_adapter, client_task.work);
2351
2352 /* If we can't get the client bit, just give up. We'll be rescheduled
2353 * later.
2354 */
2355
2356 if (test_and_set_bit(__IAVF_IN_CLIENT_TASK, &adapter->crit_section))
2357 return;
2358
2359 if (adapter->flags & IAVF_FLAG_SERVICE_CLIENT_REQUESTED) {
2360 iavf_client_subtask(adapter);
2361 adapter->flags &= ~IAVF_FLAG_SERVICE_CLIENT_REQUESTED;
2362 goto out;
2363 }
2364 if (adapter->flags & IAVF_FLAG_CLIENT_NEEDS_L2_PARAMS) {
2365 iavf_notify_client_l2_params(&adapter->vsi);
2366 adapter->flags &= ~IAVF_FLAG_CLIENT_NEEDS_L2_PARAMS;
2367 goto out;
2368 }
2369 if (adapter->flags & IAVF_FLAG_CLIENT_NEEDS_CLOSE) {
2370 iavf_notify_client_close(&adapter->vsi, false);
2371 adapter->flags &= ~IAVF_FLAG_CLIENT_NEEDS_CLOSE;
2372 goto out;
2373 }
2374 if (adapter->flags & IAVF_FLAG_CLIENT_NEEDS_OPEN) {
2375 iavf_notify_client_open(&adapter->vsi);
2376 adapter->flags &= ~IAVF_FLAG_CLIENT_NEEDS_OPEN;
2377 }
2378out:
2379 clear_bit(__IAVF_IN_CLIENT_TASK, &adapter->crit_section);
2380}
2381
2382/**
2383 * iavf_free_all_tx_resources - Free Tx Resources for All Queues
2384 * @adapter: board private structure
2385 *
2386 * Free all transmit software resources
2387 **/
2388void iavf_free_all_tx_resources(struct iavf_adapter *adapter)
2389{
2390 int i;
2391
2392 if (!adapter->tx_rings)
2393 return;
2394
2395 for (i = 0; i < adapter->num_active_queues; i++)
2396 if (adapter->tx_rings[i].desc)
2397 iavf_free_tx_resources(&adapter->tx_rings[i]);
2398}
2399
2400/**
2401 * iavf_setup_all_tx_resources - allocate all queues Tx resources
2402 * @adapter: board private structure
2403 *
2404 * If this function returns with an error, then it's possible one or
2405 * more of the rings is populated (while the rest are not). It is the
2406 * callers duty to clean those orphaned rings.
2407 *
2408 * Return 0 on success, negative on failure
2409 **/
2410static int iavf_setup_all_tx_resources(struct iavf_adapter *adapter)
2411{
2412 int i, err = 0;
2413
2414 for (i = 0; i < adapter->num_active_queues; i++) {
2415 adapter->tx_rings[i].count = adapter->tx_desc_count;
2416 err = iavf_setup_tx_descriptors(&adapter->tx_rings[i]);
2417 if (!err)
2418 continue;
2419 dev_err(&adapter->pdev->dev,
2420 "Allocation for Tx Queue %u failed\n", i);
2421 break;
2422 }
2423
2424 return err;
2425}
2426
2427/**
2428 * iavf_setup_all_rx_resources - allocate all queues Rx resources
2429 * @adapter: board private structure
2430 *
2431 * If this function returns with an error, then it's possible one or
2432 * more of the rings is populated (while the rest are not). It is the
2433 * callers duty to clean those orphaned rings.
2434 *
2435 * Return 0 on success, negative on failure
2436 **/
2437static int iavf_setup_all_rx_resources(struct iavf_adapter *adapter)
2438{
2439 int i, err = 0;
2440
2441 for (i = 0; i < adapter->num_active_queues; i++) {
2442 adapter->rx_rings[i].count = adapter->rx_desc_count;
2443 err = iavf_setup_rx_descriptors(&adapter->rx_rings[i]);
2444 if (!err)
2445 continue;
2446 dev_err(&adapter->pdev->dev,
2447 "Allocation for Rx Queue %u failed\n", i);
2448 break;
2449 }
2450 return err;
2451}
2452
2453/**
2454 * iavf_free_all_rx_resources - Free Rx Resources for All Queues
2455 * @adapter: board private structure
2456 *
2457 * Free all receive software resources
2458 **/
2459void iavf_free_all_rx_resources(struct iavf_adapter *adapter)
2460{
2461 int i;
2462
2463 if (!adapter->rx_rings)
2464 return;
2465
2466 for (i = 0; i < adapter->num_active_queues; i++)
2467 if (adapter->rx_rings[i].desc)
2468 iavf_free_rx_resources(&adapter->rx_rings[i]);
2469}
2470
2471/**
2472 * iavf_validate_tx_bandwidth - validate the max Tx bandwidth
2473 * @adapter: board private structure
2474 * @max_tx_rate: max Tx bw for a tc
2475 **/
2476static int iavf_validate_tx_bandwidth(struct iavf_adapter *adapter,
2477 u64 max_tx_rate)
2478{
2479 int speed = 0, ret = 0;
2480
2481 switch (adapter->link_speed) {
2482 case IAVF_LINK_SPEED_40GB:
2483 speed = 40000;
2484 break;
2485 case IAVF_LINK_SPEED_25GB:
2486 speed = 25000;
2487 break;
2488 case IAVF_LINK_SPEED_20GB:
2489 speed = 20000;
2490 break;
2491 case IAVF_LINK_SPEED_10GB:
2492 speed = 10000;
2493 break;
2494 case IAVF_LINK_SPEED_1GB:
2495 speed = 1000;
2496 break;
2497 case IAVF_LINK_SPEED_100MB:
2498 speed = 100;
2499 break;
2500 default:
2501 break;
2502 }
2503
2504 if (max_tx_rate > speed) {
2505 dev_err(&adapter->pdev->dev,
2506 "Invalid tx rate specified\n");
2507 ret = -EINVAL;
2508 }
2509
2510 return ret;
2511}
2512
2513/**
2514 * iavf_validate_channel_config - validate queue mapping info
2515 * @adapter: board private structure
2516 * @mqprio_qopt: queue parameters
2517 *
2518 * This function validates if the config provided by the user to
2519 * configure queue channels is valid or not. Returns 0 on a valid
2520 * config.
2521 **/
2522static int iavf_validate_ch_config(struct iavf_adapter *adapter,
2523 struct tc_mqprio_qopt_offload *mqprio_qopt)
2524{
2525 u64 total_max_rate = 0;
2526 int i, num_qps = 0;
2527 u64 tx_rate = 0;
2528 int ret = 0;
2529
2530 if (mqprio_qopt->qopt.num_tc > IAVF_MAX_TRAFFIC_CLASS ||
2531 mqprio_qopt->qopt.num_tc < 1)
2532 return -EINVAL;
2533
2534 for (i = 0; i <= mqprio_qopt->qopt.num_tc - 1; i++) {
2535 if (!mqprio_qopt->qopt.count[i] ||
2536 mqprio_qopt->qopt.offset[i] != num_qps)
2537 return -EINVAL;
2538 if (mqprio_qopt->min_rate[i]) {
2539 dev_err(&adapter->pdev->dev,
2540 "Invalid min tx rate (greater than 0) specified\n");
2541 return -EINVAL;
2542 }
2543 /*convert to Mbps */
2544 tx_rate = div_u64(mqprio_qopt->max_rate[i],
2545 IAVF_MBPS_DIVISOR);
2546 total_max_rate += tx_rate;
2547 num_qps += mqprio_qopt->qopt.count[i];
2548 }
2549 if (num_qps > IAVF_MAX_REQ_QUEUES)
2550 return -EINVAL;
2551
2552 ret = iavf_validate_tx_bandwidth(adapter, total_max_rate);
2553 return ret;
2554}
2555
2556/**
2557 * iavf_del_all_cloud_filters - delete all cloud filters
2558 * on the traffic classes
2559 **/
2560static void iavf_del_all_cloud_filters(struct iavf_adapter *adapter)
2561{
2562 struct iavf_cloud_filter *cf, *cftmp;
2563
2564 spin_lock_bh(&adapter->cloud_filter_list_lock);
2565 list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list,
2566 list) {
2567 list_del(&cf->list);
2568 kfree(cf);
2569 adapter->num_cloud_filters--;
2570 }
2571 spin_unlock_bh(&adapter->cloud_filter_list_lock);
2572}
2573
2574/**
2575 * __iavf_setup_tc - configure multiple traffic classes
2576 * @netdev: network interface device structure
2577 * @type_date: tc offload data
2578 *
2579 * This function processes the config information provided by the
2580 * user to configure traffic classes/queue channels and packages the
2581 * information to request the PF to setup traffic classes.
2582 *
2583 * Returns 0 on success.
2584 **/
2585static int __iavf_setup_tc(struct net_device *netdev, void *type_data)
2586{
2587 struct tc_mqprio_qopt_offload *mqprio_qopt = type_data;
2588 struct iavf_adapter *adapter = netdev_priv(netdev);
2589 struct virtchnl_vf_resource *vfres = adapter->vf_res;
2590 u8 num_tc = 0, total_qps = 0;
2591 int ret = 0, netdev_tc = 0;
2592 u64 max_tx_rate;
2593 u16 mode;
2594 int i;
2595
2596 num_tc = mqprio_qopt->qopt.num_tc;
2597 mode = mqprio_qopt->mode;
2598
2599 /* delete queue_channel */
2600 if (!mqprio_qopt->qopt.hw) {
2601 if (adapter->ch_config.state == __IAVF_TC_RUNNING) {
2602 /* reset the tc configuration */
2603 netdev_reset_tc(netdev);
2604 adapter->num_tc = 0;
2605 netif_tx_stop_all_queues(netdev);
2606 netif_tx_disable(netdev);
2607 iavf_del_all_cloud_filters(adapter);
2608 adapter->aq_required = IAVF_FLAG_AQ_DISABLE_CHANNELS;
2609 goto exit;
2610 } else {
2611 return -EINVAL;
2612 }
2613 }
2614
2615 /* add queue channel */
2616 if (mode == TC_MQPRIO_MODE_CHANNEL) {
2617 if (!(vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ)) {
2618 dev_err(&adapter->pdev->dev, "ADq not supported\n");
2619 return -EOPNOTSUPP;
2620 }
2621 if (adapter->ch_config.state != __IAVF_TC_INVALID) {
2622 dev_err(&adapter->pdev->dev, "TC configuration already exists\n");
2623 return -EINVAL;
2624 }
2625
2626 ret = iavf_validate_ch_config(adapter, mqprio_qopt);
2627 if (ret)
2628 return ret;
2629 /* Return if same TC config is requested */
2630 if (adapter->num_tc == num_tc)
2631 return 0;
2632 adapter->num_tc = num_tc;
2633
2634 for (i = 0; i < IAVF_MAX_TRAFFIC_CLASS; i++) {
2635 if (i < num_tc) {
2636 adapter->ch_config.ch_info[i].count =
2637 mqprio_qopt->qopt.count[i];
2638 adapter->ch_config.ch_info[i].offset =
2639 mqprio_qopt->qopt.offset[i];
2640 total_qps += mqprio_qopt->qopt.count[i];
2641 max_tx_rate = mqprio_qopt->max_rate[i];
2642 /* convert to Mbps */
2643 max_tx_rate = div_u64(max_tx_rate,
2644 IAVF_MBPS_DIVISOR);
2645 adapter->ch_config.ch_info[i].max_tx_rate =
2646 max_tx_rate;
2647 } else {
2648 adapter->ch_config.ch_info[i].count = 1;
2649 adapter->ch_config.ch_info[i].offset = 0;
2650 }
2651 }
2652 adapter->ch_config.total_qps = total_qps;
2653 netif_tx_stop_all_queues(netdev);
2654 netif_tx_disable(netdev);
2655 adapter->aq_required |= IAVF_FLAG_AQ_ENABLE_CHANNELS;
2656 netdev_reset_tc(netdev);
2657 /* Report the tc mapping up the stack */
2658 netdev_set_num_tc(adapter->netdev, num_tc);
2659 for (i = 0; i < IAVF_MAX_TRAFFIC_CLASS; i++) {
2660 u16 qcount = mqprio_qopt->qopt.count[i];
2661 u16 qoffset = mqprio_qopt->qopt.offset[i];
2662
2663 if (i < num_tc)
2664 netdev_set_tc_queue(netdev, netdev_tc++, qcount,
2665 qoffset);
2666 }
2667 }
2668exit:
2669 return ret;
2670}
2671
2672/**
2673 * iavf_parse_cls_flower - Parse tc flower filters provided by kernel
2674 * @adapter: board private structure
2675 * @cls_flower: pointer to struct flow_cls_offload
2676 * @filter: pointer to cloud filter structure
2677 */
2678static int iavf_parse_cls_flower(struct iavf_adapter *adapter,
2679 struct flow_cls_offload *f,
2680 struct iavf_cloud_filter *filter)
2681{
2682 struct flow_rule *rule = flow_cls_offload_flow_rule(f);
2683 struct flow_dissector *dissector = rule->match.dissector;
2684 u16 n_proto_mask = 0;
2685 u16 n_proto_key = 0;
2686 u8 field_flags = 0;
2687 u16 addr_type = 0;
2688 u16 n_proto = 0;
2689 int i = 0;
2690 struct virtchnl_filter *vf = &filter->f;
2691
2692 if (dissector->used_keys &
2693 ~(BIT(FLOW_DISSECTOR_KEY_CONTROL) |
2694 BIT(FLOW_DISSECTOR_KEY_BASIC) |
2695 BIT(FLOW_DISSECTOR_KEY_ETH_ADDRS) |
2696 BIT(FLOW_DISSECTOR_KEY_VLAN) |
2697 BIT(FLOW_DISSECTOR_KEY_IPV4_ADDRS) |
2698 BIT(FLOW_DISSECTOR_KEY_IPV6_ADDRS) |
2699 BIT(FLOW_DISSECTOR_KEY_PORTS) |
2700 BIT(FLOW_DISSECTOR_KEY_ENC_KEYID))) {
2701 dev_err(&adapter->pdev->dev, "Unsupported key used: 0x%x\n",
2702 dissector->used_keys);
2703 return -EOPNOTSUPP;
2704 }
2705
2706 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ENC_KEYID)) {
2707 struct flow_match_enc_keyid match;
2708
2709 flow_rule_match_enc_keyid(rule, &match);
2710 if (match.mask->keyid != 0)
2711 field_flags |= IAVF_CLOUD_FIELD_TEN_ID;
2712 }
2713
2714 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_BASIC)) {
2715 struct flow_match_basic match;
2716
2717 flow_rule_match_basic(rule, &match);
2718 n_proto_key = ntohs(match.key->n_proto);
2719 n_proto_mask = ntohs(match.mask->n_proto);
2720
2721 if (n_proto_key == ETH_P_ALL) {
2722 n_proto_key = 0;
2723 n_proto_mask = 0;
2724 }
2725 n_proto = n_proto_key & n_proto_mask;
2726 if (n_proto != ETH_P_IP && n_proto != ETH_P_IPV6)
2727 return -EINVAL;
2728 if (n_proto == ETH_P_IPV6) {
2729 /* specify flow type as TCP IPv6 */
2730 vf->flow_type = VIRTCHNL_TCP_V6_FLOW;
2731 }
2732
2733 if (match.key->ip_proto != IPPROTO_TCP) {
2734 dev_info(&adapter->pdev->dev, "Only TCP transport is supported\n");
2735 return -EINVAL;
2736 }
2737 }
2738
2739 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ETH_ADDRS)) {
2740 struct flow_match_eth_addrs match;
2741
2742 flow_rule_match_eth_addrs(rule, &match);
2743
2744 /* use is_broadcast and is_zero to check for all 0xf or 0 */
2745 if (!is_zero_ether_addr(match.mask->dst)) {
2746 if (is_broadcast_ether_addr(match.mask->dst)) {
2747 field_flags |= IAVF_CLOUD_FIELD_OMAC;
2748 } else {
2749 dev_err(&adapter->pdev->dev, "Bad ether dest mask %pM\n",
2750 match.mask->dst);
2751 return IAVF_ERR_CONFIG;
2752 }
2753 }
2754
2755 if (!is_zero_ether_addr(match.mask->src)) {
2756 if (is_broadcast_ether_addr(match.mask->src)) {
2757 field_flags |= IAVF_CLOUD_FIELD_IMAC;
2758 } else {
2759 dev_err(&adapter->pdev->dev, "Bad ether src mask %pM\n",
2760 match.mask->src);
2761 return IAVF_ERR_CONFIG;
2762 }
2763 }
2764
2765 if (!is_zero_ether_addr(match.key->dst))
2766 if (is_valid_ether_addr(match.key->dst) ||
2767 is_multicast_ether_addr(match.key->dst)) {
2768 /* set the mask if a valid dst_mac address */
2769 for (i = 0; i < ETH_ALEN; i++)
2770 vf->mask.tcp_spec.dst_mac[i] |= 0xff;
2771 ether_addr_copy(vf->data.tcp_spec.dst_mac,
2772 match.key->dst);
2773 }
2774
2775 if (!is_zero_ether_addr(match.key->src))
2776 if (is_valid_ether_addr(match.key->src) ||
2777 is_multicast_ether_addr(match.key->src)) {
2778 /* set the mask if a valid dst_mac address */
2779 for (i = 0; i < ETH_ALEN; i++)
2780 vf->mask.tcp_spec.src_mac[i] |= 0xff;
2781 ether_addr_copy(vf->data.tcp_spec.src_mac,
2782 match.key->src);
2783 }
2784 }
2785
2786 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_VLAN)) {
2787 struct flow_match_vlan match;
2788
2789 flow_rule_match_vlan(rule, &match);
2790 if (match.mask->vlan_id) {
2791 if (match.mask->vlan_id == VLAN_VID_MASK) {
2792 field_flags |= IAVF_CLOUD_FIELD_IVLAN;
2793 } else {
2794 dev_err(&adapter->pdev->dev, "Bad vlan mask %u\n",
2795 match.mask->vlan_id);
2796 return IAVF_ERR_CONFIG;
2797 }
2798 }
2799 vf->mask.tcp_spec.vlan_id |= cpu_to_be16(0xffff);
2800 vf->data.tcp_spec.vlan_id = cpu_to_be16(match.key->vlan_id);
2801 }
2802
2803 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_CONTROL)) {
2804 struct flow_match_control match;
2805
2806 flow_rule_match_control(rule, &match);
2807 addr_type = match.key->addr_type;
2808 }
2809
2810 if (addr_type == FLOW_DISSECTOR_KEY_IPV4_ADDRS) {
2811 struct flow_match_ipv4_addrs match;
2812
2813 flow_rule_match_ipv4_addrs(rule, &match);
2814 if (match.mask->dst) {
2815 if (match.mask->dst == cpu_to_be32(0xffffffff)) {
2816 field_flags |= IAVF_CLOUD_FIELD_IIP;
2817 } else {
2818 dev_err(&adapter->pdev->dev, "Bad ip dst mask 0x%08x\n",
2819 be32_to_cpu(match.mask->dst));
2820 return IAVF_ERR_CONFIG;
2821 }
2822 }
2823
2824 if (match.mask->src) {
2825 if (match.mask->src == cpu_to_be32(0xffffffff)) {
2826 field_flags |= IAVF_CLOUD_FIELD_IIP;
2827 } else {
2828 dev_err(&adapter->pdev->dev, "Bad ip src mask 0x%08x\n",
2829 be32_to_cpu(match.mask->dst));
2830 return IAVF_ERR_CONFIG;
2831 }
2832 }
2833
2834 if (field_flags & IAVF_CLOUD_FIELD_TEN_ID) {
2835 dev_info(&adapter->pdev->dev, "Tenant id not allowed for ip filter\n");
2836 return IAVF_ERR_CONFIG;
2837 }
2838 if (match.key->dst) {
2839 vf->mask.tcp_spec.dst_ip[0] |= cpu_to_be32(0xffffffff);
2840 vf->data.tcp_spec.dst_ip[0] = match.key->dst;
2841 }
2842 if (match.key->src) {
2843 vf->mask.tcp_spec.src_ip[0] |= cpu_to_be32(0xffffffff);
2844 vf->data.tcp_spec.src_ip[0] = match.key->src;
2845 }
2846 }
2847
2848 if (addr_type == FLOW_DISSECTOR_KEY_IPV6_ADDRS) {
2849 struct flow_match_ipv6_addrs match;
2850
2851 flow_rule_match_ipv6_addrs(rule, &match);
2852
2853 /* validate mask, make sure it is not IPV6_ADDR_ANY */
2854 if (ipv6_addr_any(&match.mask->dst)) {
2855 dev_err(&adapter->pdev->dev, "Bad ipv6 dst mask 0x%02x\n",
2856 IPV6_ADDR_ANY);
2857 return IAVF_ERR_CONFIG;
2858 }
2859
2860 /* src and dest IPv6 address should not be LOOPBACK
2861 * (0:0:0:0:0:0:0:1) which can be represented as ::1
2862 */
2863 if (ipv6_addr_loopback(&match.key->dst) ||
2864 ipv6_addr_loopback(&match.key->src)) {
2865 dev_err(&adapter->pdev->dev,
2866 "ipv6 addr should not be loopback\n");
2867 return IAVF_ERR_CONFIG;
2868 }
2869 if (!ipv6_addr_any(&match.mask->dst) ||
2870 !ipv6_addr_any(&match.mask->src))
2871 field_flags |= IAVF_CLOUD_FIELD_IIP;
2872
2873 for (i = 0; i < 4; i++)
2874 vf->mask.tcp_spec.dst_ip[i] |= cpu_to_be32(0xffffffff);
2875 memcpy(&vf->data.tcp_spec.dst_ip, &match.key->dst.s6_addr32,
2876 sizeof(vf->data.tcp_spec.dst_ip));
2877 for (i = 0; i < 4; i++)
2878 vf->mask.tcp_spec.src_ip[i] |= cpu_to_be32(0xffffffff);
2879 memcpy(&vf->data.tcp_spec.src_ip, &match.key->src.s6_addr32,
2880 sizeof(vf->data.tcp_spec.src_ip));
2881 }
2882 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_PORTS)) {
2883 struct flow_match_ports match;
2884
2885 flow_rule_match_ports(rule, &match);
2886 if (match.mask->src) {
2887 if (match.mask->src == cpu_to_be16(0xffff)) {
2888 field_flags |= IAVF_CLOUD_FIELD_IIP;
2889 } else {
2890 dev_err(&adapter->pdev->dev, "Bad src port mask %u\n",
2891 be16_to_cpu(match.mask->src));
2892 return IAVF_ERR_CONFIG;
2893 }
2894 }
2895
2896 if (match.mask->dst) {
2897 if (match.mask->dst == cpu_to_be16(0xffff)) {
2898 field_flags |= IAVF_CLOUD_FIELD_IIP;
2899 } else {
2900 dev_err(&adapter->pdev->dev, "Bad dst port mask %u\n",
2901 be16_to_cpu(match.mask->dst));
2902 return IAVF_ERR_CONFIG;
2903 }
2904 }
2905 if (match.key->dst) {
2906 vf->mask.tcp_spec.dst_port |= cpu_to_be16(0xffff);
2907 vf->data.tcp_spec.dst_port = match.key->dst;
2908 }
2909
2910 if (match.key->src) {
2911 vf->mask.tcp_spec.src_port |= cpu_to_be16(0xffff);
2912 vf->data.tcp_spec.src_port = match.key->src;
2913 }
2914 }
2915 vf->field_flags = field_flags;
2916
2917 return 0;
2918}
2919
2920/**
2921 * iavf_handle_tclass - Forward to a traffic class on the device
2922 * @adapter: board private structure
2923 * @tc: traffic class index on the device
2924 * @filter: pointer to cloud filter structure
2925 */
2926static int iavf_handle_tclass(struct iavf_adapter *adapter, u32 tc,
2927 struct iavf_cloud_filter *filter)
2928{
2929 if (tc == 0)
2930 return 0;
2931 if (tc < adapter->num_tc) {
2932 if (!filter->f.data.tcp_spec.dst_port) {
2933 dev_err(&adapter->pdev->dev,
2934 "Specify destination port to redirect to traffic class other than TC0\n");
2935 return -EINVAL;
2936 }
2937 }
2938 /* redirect to a traffic class on the same device */
2939 filter->f.action = VIRTCHNL_ACTION_TC_REDIRECT;
2940 filter->f.action_meta = tc;
2941 return 0;
2942}
2943
2944/**
2945 * iavf_configure_clsflower - Add tc flower filters
2946 * @adapter: board private structure
2947 * @cls_flower: Pointer to struct flow_cls_offload
2948 */
2949static int iavf_configure_clsflower(struct iavf_adapter *adapter,
2950 struct flow_cls_offload *cls_flower)
2951{
2952 int tc = tc_classid_to_hwtc(adapter->netdev, cls_flower->classid);
2953 struct iavf_cloud_filter *filter = NULL;
2954 int err = -EINVAL, count = 50;
2955
2956 if (tc < 0) {
2957 dev_err(&adapter->pdev->dev, "Invalid traffic class\n");
2958 return -EINVAL;
2959 }
2960
2961 filter = kzalloc(sizeof(*filter), GFP_KERNEL);
2962 if (!filter)
2963 return -ENOMEM;
2964
2965 while (test_and_set_bit(__IAVF_IN_CRITICAL_TASK,
2966 &adapter->crit_section)) {
2967 if (--count == 0)
2968 goto err;
2969 udelay(1);
2970 }
2971
2972 filter->cookie = cls_flower->cookie;
2973
2974 /* set the mask to all zeroes to begin with */
2975 memset(&filter->f.mask.tcp_spec, 0, sizeof(struct virtchnl_l4_spec));
2976 /* start out with flow type and eth type IPv4 to begin with */
2977 filter->f.flow_type = VIRTCHNL_TCP_V4_FLOW;
2978 err = iavf_parse_cls_flower(adapter, cls_flower, filter);
2979 if (err < 0)
2980 goto err;
2981
2982 err = iavf_handle_tclass(adapter, tc, filter);
2983 if (err < 0)
2984 goto err;
2985
2986 /* add filter to the list */
2987 spin_lock_bh(&adapter->cloud_filter_list_lock);
2988 list_add_tail(&filter->list, &adapter->cloud_filter_list);
2989 adapter->num_cloud_filters++;
2990 filter->add = true;
2991 adapter->aq_required |= IAVF_FLAG_AQ_ADD_CLOUD_FILTER;
2992 spin_unlock_bh(&adapter->cloud_filter_list_lock);
2993err:
2994 if (err)
2995 kfree(filter);
2996
2997 clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section);
2998 return err;
2999}
3000
3001/* iavf_find_cf - Find the cloud filter in the list
3002 * @adapter: Board private structure
3003 * @cookie: filter specific cookie
3004 *
3005 * Returns ptr to the filter object or NULL. Must be called while holding the
3006 * cloud_filter_list_lock.
3007 */
3008static struct iavf_cloud_filter *iavf_find_cf(struct iavf_adapter *adapter,
3009 unsigned long *cookie)
3010{
3011 struct iavf_cloud_filter *filter = NULL;
3012
3013 if (!cookie)
3014 return NULL;
3015
3016 list_for_each_entry(filter, &adapter->cloud_filter_list, list) {
3017 if (!memcmp(cookie, &filter->cookie, sizeof(filter->cookie)))
3018 return filter;
3019 }
3020 return NULL;
3021}
3022
3023/**
3024 * iavf_delete_clsflower - Remove tc flower filters
3025 * @adapter: board private structure
3026 * @cls_flower: Pointer to struct flow_cls_offload
3027 */
3028static int iavf_delete_clsflower(struct iavf_adapter *adapter,
3029 struct flow_cls_offload *cls_flower)
3030{
3031 struct iavf_cloud_filter *filter = NULL;
3032 int err = 0;
3033
3034 spin_lock_bh(&adapter->cloud_filter_list_lock);
3035 filter = iavf_find_cf(adapter, &cls_flower->cookie);
3036 if (filter) {
3037 filter->del = true;
3038 adapter->aq_required |= IAVF_FLAG_AQ_DEL_CLOUD_FILTER;
3039 } else {
3040 err = -EINVAL;
3041 }
3042 spin_unlock_bh(&adapter->cloud_filter_list_lock);
3043
3044 return err;
3045}
3046
3047/**
3048 * iavf_setup_tc_cls_flower - flower classifier offloads
3049 * @netdev: net device to configure
3050 * @type_data: offload data
3051 */
3052static int iavf_setup_tc_cls_flower(struct iavf_adapter *adapter,
3053 struct flow_cls_offload *cls_flower)
3054{
3055 if (cls_flower->common.chain_index)
3056 return -EOPNOTSUPP;
3057
3058 switch (cls_flower->command) {
3059 case FLOW_CLS_REPLACE:
3060 return iavf_configure_clsflower(adapter, cls_flower);
3061 case FLOW_CLS_DESTROY:
3062 return iavf_delete_clsflower(adapter, cls_flower);
3063 case FLOW_CLS_STATS:
3064 return -EOPNOTSUPP;
3065 default:
3066 return -EOPNOTSUPP;
3067 }
3068}
3069
3070/**
3071 * iavf_setup_tc_block_cb - block callback for tc
3072 * @type: type of offload
3073 * @type_data: offload data
3074 * @cb_priv:
3075 *
3076 * This function is the block callback for traffic classes
3077 **/
3078static int iavf_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
3079 void *cb_priv)
3080{
3081 switch (type) {
3082 case TC_SETUP_CLSFLOWER:
3083 return iavf_setup_tc_cls_flower(cb_priv, type_data);
3084 default:
3085 return -EOPNOTSUPP;
3086 }
3087}
3088
3089static LIST_HEAD(iavf_block_cb_list);
3090
3091/**
3092 * iavf_setup_tc - configure multiple traffic classes
3093 * @netdev: network interface device structure
3094 * @type: type of offload
3095 * @type_date: tc offload data
3096 *
3097 * This function is the callback to ndo_setup_tc in the
3098 * netdev_ops.
3099 *
3100 * Returns 0 on success
3101 **/
3102static int iavf_setup_tc(struct net_device *netdev, enum tc_setup_type type,
3103 void *type_data)
3104{
3105 struct iavf_adapter *adapter = netdev_priv(netdev);
3106
3107 switch (type) {
3108 case TC_SETUP_QDISC_MQPRIO:
3109 return __iavf_setup_tc(netdev, type_data);
3110 case TC_SETUP_BLOCK:
3111 return flow_block_cb_setup_simple(type_data,
3112 &iavf_block_cb_list,
3113 iavf_setup_tc_block_cb,
3114 adapter, adapter, true);
3115 default:
3116 return -EOPNOTSUPP;
3117 }
3118}
3119
3120/**
3121 * iavf_open - Called when a network interface is made active
3122 * @netdev: network interface device structure
3123 *
3124 * Returns 0 on success, negative value on failure
3125 *
3126 * The open entry point is called when a network interface is made
3127 * active by the system (IFF_UP). At this point all resources needed
3128 * for transmit and receive operations are allocated, the interrupt
3129 * handler is registered with the OS, the watchdog is started,
3130 * and the stack is notified that the interface is ready.
3131 **/
3132static int iavf_open(struct net_device *netdev)
3133{
3134 struct iavf_adapter *adapter = netdev_priv(netdev);
3135 int err;
3136
3137 if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED) {
3138 dev_err(&adapter->pdev->dev, "Unable to open device due to PF driver failure.\n");
3139 return -EIO;
3140 }
3141
3142 while (test_and_set_bit(__IAVF_IN_CRITICAL_TASK,
3143 &adapter->crit_section))
3144 usleep_range(500, 1000);
3145
3146 if (adapter->state != __IAVF_DOWN) {
3147 err = -EBUSY;
3148 goto err_unlock;
3149 }
3150
3151 /* allocate transmit descriptors */
3152 err = iavf_setup_all_tx_resources(adapter);
3153 if (err)
3154 goto err_setup_tx;
3155
3156 /* allocate receive descriptors */
3157 err = iavf_setup_all_rx_resources(adapter);
3158 if (err)
3159 goto err_setup_rx;
3160
3161 /* clear any pending interrupts, may auto mask */
3162 err = iavf_request_traffic_irqs(adapter, netdev->name);
3163 if (err)
3164 goto err_req_irq;
3165
3166 spin_lock_bh(&adapter->mac_vlan_list_lock);
3167
3168 iavf_add_filter(adapter, adapter->hw.mac.addr);
3169
3170 spin_unlock_bh(&adapter->mac_vlan_list_lock);
3171
3172 iavf_configure(adapter);
3173
3174 iavf_up_complete(adapter);
3175
3176 iavf_irq_enable(adapter, true);
3177
3178 clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section);
3179
3180 return 0;
3181
3182err_req_irq:
3183 iavf_down(adapter);
3184 iavf_free_traffic_irqs(adapter);
3185err_setup_rx:
3186 iavf_free_all_rx_resources(adapter);
3187err_setup_tx:
3188 iavf_free_all_tx_resources(adapter);
3189err_unlock:
3190 clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section);
3191
3192 return err;
3193}
3194
3195/**
3196 * iavf_close - Disables a network interface
3197 * @netdev: network interface device structure
3198 *
3199 * Returns 0, this is not allowed to fail
3200 *
3201 * The close entry point is called when an interface is de-activated
3202 * by the OS. The hardware is still under the drivers control, but
3203 * needs to be disabled. All IRQs except vector 0 (reserved for admin queue)
3204 * are freed, along with all transmit and receive resources.
3205 **/
3206static int iavf_close(struct net_device *netdev)
3207{
3208 struct iavf_adapter *adapter = netdev_priv(netdev);
3209 int status;
3210
3211 if (adapter->state <= __IAVF_DOWN_PENDING)
3212 return 0;
3213
3214 while (test_and_set_bit(__IAVF_IN_CRITICAL_TASK,
3215 &adapter->crit_section))
3216 usleep_range(500, 1000);
3217
3218 set_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
3219 if (CLIENT_ENABLED(adapter))
3220 adapter->flags |= IAVF_FLAG_CLIENT_NEEDS_CLOSE;
3221
3222 iavf_down(adapter);
3223 adapter->state = __IAVF_DOWN_PENDING;
3224 iavf_free_traffic_irqs(adapter);
3225
3226 clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section);
3227
3228 /* We explicitly don't free resources here because the hardware is
3229 * still active and can DMA into memory. Resources are cleared in
3230 * iavf_virtchnl_completion() after we get confirmation from the PF
3231 * driver that the rings have been stopped.
3232 *
3233 * Also, we wait for state to transition to __IAVF_DOWN before
3234 * returning. State change occurs in iavf_virtchnl_completion() after
3235 * VF resources are released (which occurs after PF driver processes and
3236 * responds to admin queue commands).
3237 */
3238
3239 status = wait_event_timeout(adapter->down_waitqueue,
3240 adapter->state == __IAVF_DOWN,
3241 msecs_to_jiffies(500));
3242 if (!status)
3243 netdev_warn(netdev, "Device resources not yet released\n");
3244 return 0;
3245}
3246
3247/**
3248 * iavf_change_mtu - Change the Maximum Transfer Unit
3249 * @netdev: network interface device structure
3250 * @new_mtu: new value for maximum frame size
3251 *
3252 * Returns 0 on success, negative on failure
3253 **/
3254static int iavf_change_mtu(struct net_device *netdev, int new_mtu)
3255{
3256 struct iavf_adapter *adapter = netdev_priv(netdev);
3257
3258 netdev->mtu = new_mtu;
3259 if (CLIENT_ENABLED(adapter)) {
3260 iavf_notify_client_l2_params(&adapter->vsi);
3261 adapter->flags |= IAVF_FLAG_SERVICE_CLIENT_REQUESTED;
3262 }
3263 adapter->flags |= IAVF_FLAG_RESET_NEEDED;
3264 queue_work(iavf_wq, &adapter->reset_task);
3265
3266 return 0;
3267}
3268
3269/**
3270 * iavf_set_features - set the netdev feature flags
3271 * @netdev: ptr to the netdev being adjusted
3272 * @features: the feature set that the stack is suggesting
3273 * Note: expects to be called while under rtnl_lock()
3274 **/
3275static int iavf_set_features(struct net_device *netdev,
3276 netdev_features_t features)
3277{
3278 struct iavf_adapter *adapter = netdev_priv(netdev);
3279
3280 /* Don't allow changing VLAN_RX flag when adapter is not capable
3281 * of VLAN offload
3282 */
3283 if (!VLAN_ALLOWED(adapter)) {
3284 if ((netdev->features ^ features) & NETIF_F_HW_VLAN_CTAG_RX)
3285 return -EINVAL;
3286 } else if ((netdev->features ^ features) & NETIF_F_HW_VLAN_CTAG_RX) {
3287 if (features & NETIF_F_HW_VLAN_CTAG_RX)
3288 adapter->aq_required |=
3289 IAVF_FLAG_AQ_ENABLE_VLAN_STRIPPING;
3290 else
3291 adapter->aq_required |=
3292 IAVF_FLAG_AQ_DISABLE_VLAN_STRIPPING;
3293 }
3294
3295 return 0;
3296}
3297
3298/**
3299 * iavf_features_check - Validate encapsulated packet conforms to limits
3300 * @skb: skb buff
3301 * @dev: This physical port's netdev
3302 * @features: Offload features that the stack believes apply
3303 **/
3304static netdev_features_t iavf_features_check(struct sk_buff *skb,
3305 struct net_device *dev,
3306 netdev_features_t features)
3307{
3308 size_t len;
3309
3310 /* No point in doing any of this if neither checksum nor GSO are
3311 * being requested for this frame. We can rule out both by just
3312 * checking for CHECKSUM_PARTIAL
3313 */
3314 if (skb->ip_summed != CHECKSUM_PARTIAL)
3315 return features;
3316
3317 /* We cannot support GSO if the MSS is going to be less than
3318 * 64 bytes. If it is then we need to drop support for GSO.
3319 */
3320 if (skb_is_gso(skb) && (skb_shinfo(skb)->gso_size < 64))
3321 features &= ~NETIF_F_GSO_MASK;
3322
3323 /* MACLEN can support at most 63 words */
3324 len = skb_network_header(skb) - skb->data;
3325 if (len & ~(63 * 2))
3326 goto out_err;
3327
3328 /* IPLEN and EIPLEN can support at most 127 dwords */
3329 len = skb_transport_header(skb) - skb_network_header(skb);
3330 if (len & ~(127 * 4))
3331 goto out_err;
3332
3333 if (skb->encapsulation) {
3334 /* L4TUNLEN can support 127 words */
3335 len = skb_inner_network_header(skb) - skb_transport_header(skb);
3336 if (len & ~(127 * 2))
3337 goto out_err;
3338
3339 /* IPLEN can support at most 127 dwords */
3340 len = skb_inner_transport_header(skb) -
3341 skb_inner_network_header(skb);
3342 if (len & ~(127 * 4))
3343 goto out_err;
3344 }
3345
3346 /* No need to validate L4LEN as TCP is the only protocol with a
3347 * a flexible value and we support all possible values supported
3348 * by TCP, which is at most 15 dwords
3349 */
3350
3351 return features;
3352out_err:
3353 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3354}
3355
3356/**
3357 * iavf_fix_features - fix up the netdev feature bits
3358 * @netdev: our net device
3359 * @features: desired feature bits
3360 *
3361 * Returns fixed-up features bits
3362 **/
3363static netdev_features_t iavf_fix_features(struct net_device *netdev,
3364 netdev_features_t features)
3365{
3366 struct iavf_adapter *adapter = netdev_priv(netdev);
3367
3368 if (!(adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_VLAN))
3369 features &= ~(NETIF_F_HW_VLAN_CTAG_TX |
3370 NETIF_F_HW_VLAN_CTAG_RX |
3371 NETIF_F_HW_VLAN_CTAG_FILTER);
3372
3373 return features;
3374}
3375
3376static const struct net_device_ops iavf_netdev_ops = {
3377 .ndo_open = iavf_open,
3378 .ndo_stop = iavf_close,
3379 .ndo_start_xmit = iavf_xmit_frame,
3380 .ndo_set_rx_mode = iavf_set_rx_mode,
3381 .ndo_validate_addr = eth_validate_addr,
3382 .ndo_set_mac_address = iavf_set_mac,
3383 .ndo_change_mtu = iavf_change_mtu,
3384 .ndo_tx_timeout = iavf_tx_timeout,
3385 .ndo_vlan_rx_add_vid = iavf_vlan_rx_add_vid,
3386 .ndo_vlan_rx_kill_vid = iavf_vlan_rx_kill_vid,
3387 .ndo_features_check = iavf_features_check,
3388 .ndo_fix_features = iavf_fix_features,
3389 .ndo_set_features = iavf_set_features,
3390 .ndo_setup_tc = iavf_setup_tc,
3391};
3392
3393/**
3394 * iavf_check_reset_complete - check that VF reset is complete
3395 * @hw: pointer to hw struct
3396 *
3397 * Returns 0 if device is ready to use, or -EBUSY if it's in reset.
3398 **/
3399static int iavf_check_reset_complete(struct iavf_hw *hw)
3400{
3401 u32 rstat;
3402 int i;
3403
3404 for (i = 0; i < 100; i++) {
3405 rstat = rd32(hw, IAVF_VFGEN_RSTAT) &
3406 IAVF_VFGEN_RSTAT_VFR_STATE_MASK;
3407 if ((rstat == VIRTCHNL_VFR_VFACTIVE) ||
3408 (rstat == VIRTCHNL_VFR_COMPLETED))
3409 return 0;
3410 usleep_range(10, 20);
3411 }
3412 return -EBUSY;
3413}
3414
3415/**
3416 * iavf_process_config - Process the config information we got from the PF
3417 * @adapter: board private structure
3418 *
3419 * Verify that we have a valid config struct, and set up our netdev features
3420 * and our VSI struct.
3421 **/
3422int iavf_process_config(struct iavf_adapter *adapter)
3423{
3424 struct virtchnl_vf_resource *vfres = adapter->vf_res;
3425 int i, num_req_queues = adapter->num_req_queues;
3426 struct net_device *netdev = adapter->netdev;
3427 struct iavf_vsi *vsi = &adapter->vsi;
3428 netdev_features_t hw_enc_features;
3429 netdev_features_t hw_features;
3430
3431 /* got VF config message back from PF, now we can parse it */
3432 for (i = 0; i < vfres->num_vsis; i++) {
3433 if (vfres->vsi_res[i].vsi_type == VIRTCHNL_VSI_SRIOV)
3434 adapter->vsi_res = &vfres->vsi_res[i];
3435 }
3436 if (!adapter->vsi_res) {
3437 dev_err(&adapter->pdev->dev, "No LAN VSI found\n");
3438 return -ENODEV;
3439 }
3440
3441 if (num_req_queues &&
3442 num_req_queues != adapter->vsi_res->num_queue_pairs) {
3443 /* Problem. The PF gave us fewer queues than what we had
3444 * negotiated in our request. Need a reset to see if we can't
3445 * get back to a working state.
3446 */
3447 dev_err(&adapter->pdev->dev,
3448 "Requested %d queues, but PF only gave us %d.\n",
3449 num_req_queues,
3450 adapter->vsi_res->num_queue_pairs);
3451 adapter->flags |= IAVF_FLAG_REINIT_ITR_NEEDED;
3452 adapter->num_req_queues = adapter->vsi_res->num_queue_pairs;
3453 iavf_schedule_reset(adapter);
3454 return -ENODEV;
3455 }
3456 adapter->num_req_queues = 0;
3457
3458 hw_enc_features = NETIF_F_SG |
3459 NETIF_F_IP_CSUM |
3460 NETIF_F_IPV6_CSUM |
3461 NETIF_F_HIGHDMA |
3462 NETIF_F_SOFT_FEATURES |
3463 NETIF_F_TSO |
3464 NETIF_F_TSO_ECN |
3465 NETIF_F_TSO6 |
3466 NETIF_F_SCTP_CRC |
3467 NETIF_F_RXHASH |
3468 NETIF_F_RXCSUM |
3469 0;
3470
3471 /* advertise to stack only if offloads for encapsulated packets is
3472 * supported
3473 */
3474 if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ENCAP) {
3475 hw_enc_features |= NETIF_F_GSO_UDP_TUNNEL |
3476 NETIF_F_GSO_GRE |
3477 NETIF_F_GSO_GRE_CSUM |
3478 NETIF_F_GSO_IPXIP4 |
3479 NETIF_F_GSO_IPXIP6 |
3480 NETIF_F_GSO_UDP_TUNNEL_CSUM |
3481 NETIF_F_GSO_PARTIAL |
3482 0;
3483
3484 if (!(vfres->vf_cap_flags &
3485 VIRTCHNL_VF_OFFLOAD_ENCAP_CSUM))
3486 netdev->gso_partial_features |=
3487 NETIF_F_GSO_UDP_TUNNEL_CSUM;
3488
3489 netdev->gso_partial_features |= NETIF_F_GSO_GRE_CSUM;
3490 netdev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
3491 netdev->hw_enc_features |= hw_enc_features;
3492 }
3493 /* record features VLANs can make use of */
3494 netdev->vlan_features |= hw_enc_features | NETIF_F_TSO_MANGLEID;
3495
3496 /* Write features and hw_features separately to avoid polluting
3497 * with, or dropping, features that are set when we registered.
3498 */
3499 hw_features = hw_enc_features;
3500
3501 /* Enable VLAN features if supported */
3502 if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_VLAN)
3503 hw_features |= (NETIF_F_HW_VLAN_CTAG_TX |
3504 NETIF_F_HW_VLAN_CTAG_RX);
3505 /* Enable cloud filter if ADQ is supported */
3506 if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ)
3507 hw_features |= NETIF_F_HW_TC;
3508
3509 netdev->hw_features |= hw_features;
3510
3511 netdev->features |= hw_features;
3512
3513 if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_VLAN)
3514 netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
3515
3516 netdev->priv_flags |= IFF_UNICAST_FLT;
3517
3518 /* Do not turn on offloads when they are requested to be turned off.
3519 * TSO needs minimum 576 bytes to work correctly.
3520 */
3521 if (netdev->wanted_features) {
3522 if (!(netdev->wanted_features & NETIF_F_TSO) ||
3523 netdev->mtu < 576)
3524 netdev->features &= ~NETIF_F_TSO;
3525 if (!(netdev->wanted_features & NETIF_F_TSO6) ||
3526 netdev->mtu < 576)
3527 netdev->features &= ~NETIF_F_TSO6;
3528 if (!(netdev->wanted_features & NETIF_F_TSO_ECN))
3529 netdev->features &= ~NETIF_F_TSO_ECN;
3530 if (!(netdev->wanted_features & NETIF_F_GRO))
3531 netdev->features &= ~NETIF_F_GRO;
3532 if (!(netdev->wanted_features & NETIF_F_GSO))
3533 netdev->features &= ~NETIF_F_GSO;
3534 }
3535
3536 adapter->vsi.id = adapter->vsi_res->vsi_id;
3537
3538 adapter->vsi.back = adapter;
3539 adapter->vsi.base_vector = 1;
3540 adapter->vsi.work_limit = IAVF_DEFAULT_IRQ_WORK;
3541 vsi->netdev = adapter->netdev;
3542 vsi->qs_handle = adapter->vsi_res->qset_handle;
3543 if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF) {
3544 adapter->rss_key_size = vfres->rss_key_size;
3545 adapter->rss_lut_size = vfres->rss_lut_size;
3546 } else {
3547 adapter->rss_key_size = IAVF_HKEY_ARRAY_SIZE;
3548 adapter->rss_lut_size = IAVF_HLUT_ARRAY_SIZE;
3549 }
3550
3551 return 0;
3552}
3553
3554/**
3555 * iavf_init_task - worker thread to perform delayed initialization
3556 * @work: pointer to work_struct containing our data
3557 *
3558 * This task completes the work that was begun in probe. Due to the nature
3559 * of VF-PF communications, we may need to wait tens of milliseconds to get
3560 * responses back from the PF. Rather than busy-wait in probe and bog down the
3561 * whole system, we'll do it in a task so we can sleep.
3562 * This task only runs during driver init. Once we've established
3563 * communications with the PF driver and set up our netdev, the watchdog
3564 * takes over.
3565 **/
3566static void iavf_init_task(struct work_struct *work)
3567{
3568 struct iavf_adapter *adapter = container_of(work,
3569 struct iavf_adapter,
3570 init_task.work);
3571 struct iavf_hw *hw = &adapter->hw;
3572
3573 switch (adapter->state) {
3574 case __IAVF_STARTUP:
3575 if (iavf_startup(adapter) < 0)
3576 goto init_failed;
3577 break;
3578 case __IAVF_INIT_VERSION_CHECK:
3579 if (iavf_init_version_check(adapter) < 0)
3580 goto init_failed;
3581 break;
3582 case __IAVF_INIT_GET_RESOURCES:
3583 if (iavf_init_get_resources(adapter) < 0)
3584 goto init_failed;
3585 return;
3586 default:
3587 goto init_failed;
3588 }
3589
3590 queue_delayed_work(iavf_wq, &adapter->init_task,
3591 msecs_to_jiffies(30));
3592 return;
3593init_failed:
3594 if (++adapter->aq_wait_count > IAVF_AQ_MAX_ERR) {
3595 dev_err(&adapter->pdev->dev,
3596 "Failed to communicate with PF; waiting before retry\n");
3597 adapter->flags |= IAVF_FLAG_PF_COMMS_FAILED;
3598 iavf_shutdown_adminq(hw);
3599 adapter->state = __IAVF_STARTUP;
3600 queue_delayed_work(iavf_wq, &adapter->init_task, HZ * 5);
3601 return;
3602 }
3603 queue_delayed_work(iavf_wq, &adapter->init_task, HZ);
3604}
3605
3606/**
3607 * iavf_shutdown - Shutdown the device in preparation for a reboot
3608 * @pdev: pci device structure
3609 **/
3610static void iavf_shutdown(struct pci_dev *pdev)
3611{
3612 struct net_device *netdev = pci_get_drvdata(pdev);
3613 struct iavf_adapter *adapter = netdev_priv(netdev);
3614
3615 netif_device_detach(netdev);
3616
3617 if (netif_running(netdev))
3618 iavf_close(netdev);
3619
3620 /* Prevent the watchdog from running. */
3621 adapter->state = __IAVF_REMOVE;
3622 adapter->aq_required = 0;
3623
3624#ifdef CONFIG_PM
3625 pci_save_state(pdev);
3626
3627#endif
3628 pci_disable_device(pdev);
3629}
3630
3631/**
3632 * iavf_probe - Device Initialization Routine
3633 * @pdev: PCI device information struct
3634 * @ent: entry in iavf_pci_tbl
3635 *
3636 * Returns 0 on success, negative on failure
3637 *
3638 * iavf_probe initializes an adapter identified by a pci_dev structure.
3639 * The OS initialization, configuring of the adapter private structure,
3640 * and a hardware reset occur.
3641 **/
3642static int iavf_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
3643{
3644 struct net_device *netdev;
3645 struct iavf_adapter *adapter = NULL;
3646 struct iavf_hw *hw = NULL;
3647 int err;
3648
3649 err = pci_enable_device(pdev);
3650 if (err)
3651 return err;
3652
3653 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
3654 if (err) {
3655 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
3656 if (err) {
3657 dev_err(&pdev->dev,
3658 "DMA configuration failed: 0x%x\n", err);
3659 goto err_dma;
3660 }
3661 }
3662
3663 err = pci_request_regions(pdev, iavf_driver_name);
3664 if (err) {
3665 dev_err(&pdev->dev,
3666 "pci_request_regions failed 0x%x\n", err);
3667 goto err_pci_reg;
3668 }
3669
3670 pci_enable_pcie_error_reporting(pdev);
3671
3672 pci_set_master(pdev);
3673
3674 netdev = alloc_etherdev_mq(sizeof(struct iavf_adapter),
3675 IAVF_MAX_REQ_QUEUES);
3676 if (!netdev) {
3677 err = -ENOMEM;
3678 goto err_alloc_etherdev;
3679 }
3680
3681 SET_NETDEV_DEV(netdev, &pdev->dev);
3682
3683 pci_set_drvdata(pdev, netdev);
3684 adapter = netdev_priv(netdev);
3685
3686 adapter->netdev = netdev;
3687 adapter->pdev = pdev;
3688
3689 hw = &adapter->hw;
3690 hw->back = adapter;
3691
3692 adapter->msg_enable = BIT(DEFAULT_DEBUG_LEVEL_SHIFT) - 1;
3693 adapter->state = __IAVF_STARTUP;
3694
3695 /* Call save state here because it relies on the adapter struct. */
3696 pci_save_state(pdev);
3697
3698 hw->hw_addr = ioremap(pci_resource_start(pdev, 0),
3699 pci_resource_len(pdev, 0));
3700 if (!hw->hw_addr) {
3701 err = -EIO;
3702 goto err_ioremap;
3703 }
3704 hw->vendor_id = pdev->vendor;
3705 hw->device_id = pdev->device;
3706 pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id);
3707 hw->subsystem_vendor_id = pdev->subsystem_vendor;
3708 hw->subsystem_device_id = pdev->subsystem_device;
3709 hw->bus.device = PCI_SLOT(pdev->devfn);
3710 hw->bus.func = PCI_FUNC(pdev->devfn);
3711 hw->bus.bus_id = pdev->bus->number;
3712
3713 /* set up the locks for the AQ, do this only once in probe
3714 * and destroy them only once in remove
3715 */
3716 mutex_init(&hw->aq.asq_mutex);
3717 mutex_init(&hw->aq.arq_mutex);
3718
3719 spin_lock_init(&adapter->mac_vlan_list_lock);
3720 spin_lock_init(&adapter->cloud_filter_list_lock);
3721
3722 INIT_LIST_HEAD(&adapter->mac_filter_list);
3723 INIT_LIST_HEAD(&adapter->vlan_filter_list);
3724 INIT_LIST_HEAD(&adapter->cloud_filter_list);
3725
3726 INIT_WORK(&adapter->reset_task, iavf_reset_task);
3727 INIT_WORK(&adapter->adminq_task, iavf_adminq_task);
3728 INIT_DELAYED_WORK(&adapter->watchdog_task, iavf_watchdog_task);
3729 INIT_DELAYED_WORK(&adapter->client_task, iavf_client_task);
3730 INIT_DELAYED_WORK(&adapter->init_task, iavf_init_task);
3731 queue_delayed_work(iavf_wq, &adapter->init_task,
3732 msecs_to_jiffies(5 * (pdev->devfn & 0x07)));
3733
3734 /* Setup the wait queue for indicating transition to down status */
3735 init_waitqueue_head(&adapter->down_waitqueue);
3736
3737 return 0;
3738
3739err_ioremap:
3740 free_netdev(netdev);
3741err_alloc_etherdev:
3742 pci_release_regions(pdev);
3743err_pci_reg:
3744err_dma:
3745 pci_disable_device(pdev);
3746 return err;
3747}
3748
3749#ifdef CONFIG_PM
3750/**
3751 * iavf_suspend - Power management suspend routine
3752 * @pdev: PCI device information struct
3753 * @state: unused
3754 *
3755 * Called when the system (VM) is entering sleep/suspend.
3756 **/
3757static int iavf_suspend(struct pci_dev *pdev, pm_message_t state)
3758{
3759 struct net_device *netdev = pci_get_drvdata(pdev);
3760 struct iavf_adapter *adapter = netdev_priv(netdev);
3761 int retval = 0;
3762
3763 netif_device_detach(netdev);
3764
3765 while (test_and_set_bit(__IAVF_IN_CRITICAL_TASK,
3766 &adapter->crit_section))
3767 usleep_range(500, 1000);
3768
3769 if (netif_running(netdev)) {
3770 rtnl_lock();
3771 iavf_down(adapter);
3772 rtnl_unlock();
3773 }
3774 iavf_free_misc_irq(adapter);
3775 iavf_reset_interrupt_capability(adapter);
3776
3777 clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section);
3778
3779 retval = pci_save_state(pdev);
3780 if (retval)
3781 return retval;
3782
3783 pci_disable_device(pdev);
3784
3785 return 0;
3786}
3787
3788/**
3789 * iavf_resume - Power management resume routine
3790 * @pdev: PCI device information struct
3791 *
3792 * Called when the system (VM) is resumed from sleep/suspend.
3793 **/
3794static int iavf_resume(struct pci_dev *pdev)
3795{
3796 struct iavf_adapter *adapter = pci_get_drvdata(pdev);
3797 struct net_device *netdev = adapter->netdev;
3798 u32 err;
3799
3800 pci_set_power_state(pdev, PCI_D0);
3801 pci_restore_state(pdev);
3802 /* pci_restore_state clears dev->state_saved so call
3803 * pci_save_state to restore it.
3804 */
3805 pci_save_state(pdev);
3806
3807 err = pci_enable_device_mem(pdev);
3808 if (err) {
3809 dev_err(&pdev->dev, "Cannot enable PCI device from suspend.\n");
3810 return err;
3811 }
3812 pci_set_master(pdev);
3813
3814 rtnl_lock();
3815 err = iavf_set_interrupt_capability(adapter);
3816 if (err) {
3817 rtnl_unlock();
3818 dev_err(&pdev->dev, "Cannot enable MSI-X interrupts.\n");
3819 return err;
3820 }
3821 err = iavf_request_misc_irq(adapter);
3822 rtnl_unlock();
3823 if (err) {
3824 dev_err(&pdev->dev, "Cannot get interrupt vector.\n");
3825 return err;
3826 }
3827
3828 queue_work(iavf_wq, &adapter->reset_task);
3829
3830 netif_device_attach(netdev);
3831
3832 return err;
3833}
3834
3835#endif /* CONFIG_PM */
3836/**
3837 * iavf_remove - Device Removal Routine
3838 * @pdev: PCI device information struct
3839 *
3840 * iavf_remove is called by the PCI subsystem to alert the driver
3841 * that it should release a PCI device. The could be caused by a
3842 * Hot-Plug event, or because the driver is going to be removed from
3843 * memory.
3844 **/
3845static void iavf_remove(struct pci_dev *pdev)
3846{
3847 struct net_device *netdev = pci_get_drvdata(pdev);
3848 struct iavf_adapter *adapter = netdev_priv(netdev);
3849 struct iavf_vlan_filter *vlf, *vlftmp;
3850 struct iavf_mac_filter *f, *ftmp;
3851 struct iavf_cloud_filter *cf, *cftmp;
3852 struct iavf_hw *hw = &adapter->hw;
3853 int err;
3854 /* Indicate we are in remove and not to run reset_task */
3855 set_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section);
3856 cancel_delayed_work_sync(&adapter->init_task);
3857 cancel_work_sync(&adapter->reset_task);
3858 cancel_delayed_work_sync(&adapter->client_task);
3859 if (adapter->netdev_registered) {
3860 unregister_netdev(netdev);
3861 adapter->netdev_registered = false;
3862 }
3863 if (CLIENT_ALLOWED(adapter)) {
3864 err = iavf_lan_del_device(adapter);
3865 if (err)
3866 dev_warn(&pdev->dev, "Failed to delete client device: %d\n",
3867 err);
3868 }
3869
3870 /* Shut down all the garbage mashers on the detention level */
3871 adapter->state = __IAVF_REMOVE;
3872 adapter->aq_required = 0;
3873 adapter->flags &= ~IAVF_FLAG_REINIT_ITR_NEEDED;
3874 iavf_request_reset(adapter);
3875 msleep(50);
3876 /* If the FW isn't responding, kick it once, but only once. */
3877 if (!iavf_asq_done(hw)) {
3878 iavf_request_reset(adapter);
3879 msleep(50);
3880 }
3881 iavf_free_all_tx_resources(adapter);
3882 iavf_free_all_rx_resources(adapter);
3883 iavf_misc_irq_disable(adapter);
3884 iavf_free_misc_irq(adapter);
3885 iavf_reset_interrupt_capability(adapter);
3886 iavf_free_q_vectors(adapter);
3887
3888 cancel_delayed_work_sync(&adapter->watchdog_task);
3889
3890 cancel_work_sync(&adapter->adminq_task);
3891
3892 iavf_free_rss(adapter);
3893
3894 if (hw->aq.asq.count)
3895 iavf_shutdown_adminq(hw);
3896
3897 /* destroy the locks only once, here */
3898 mutex_destroy(&hw->aq.arq_mutex);
3899 mutex_destroy(&hw->aq.asq_mutex);
3900
3901 iounmap(hw->hw_addr);
3902 pci_release_regions(pdev);
3903 iavf_free_all_tx_resources(adapter);
3904 iavf_free_all_rx_resources(adapter);
3905 iavf_free_queues(adapter);
3906 kfree(adapter->vf_res);
3907 spin_lock_bh(&adapter->mac_vlan_list_lock);
3908 /* If we got removed before an up/down sequence, we've got a filter
3909 * hanging out there that we need to get rid of.
3910 */
3911 list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list, list) {
3912 list_del(&f->list);
3913 kfree(f);
3914 }
3915 list_for_each_entry_safe(vlf, vlftmp, &adapter->vlan_filter_list,
3916 list) {
3917 list_del(&vlf->list);
3918 kfree(vlf);
3919 }
3920
3921 spin_unlock_bh(&adapter->mac_vlan_list_lock);
3922
3923 spin_lock_bh(&adapter->cloud_filter_list_lock);
3924 list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list, list) {
3925 list_del(&cf->list);
3926 kfree(cf);
3927 }
3928 spin_unlock_bh(&adapter->cloud_filter_list_lock);
3929
3930 free_netdev(netdev);
3931
3932 pci_disable_pcie_error_reporting(pdev);
3933
3934 pci_disable_device(pdev);
3935}
3936
3937static struct pci_driver iavf_driver = {
3938 .name = iavf_driver_name,
3939 .id_table = iavf_pci_tbl,
3940 .probe = iavf_probe,
3941 .remove = iavf_remove,
3942#ifdef CONFIG_PM
3943 .suspend = iavf_suspend,
3944 .resume = iavf_resume,
3945#endif
3946 .shutdown = iavf_shutdown,
3947};
3948
3949/**
3950 * iavf_init_module - Driver Registration Routine
3951 *
3952 * iavf_init_module is the first routine called when the driver is
3953 * loaded. All it does is register with the PCI subsystem.
3954 **/
3955static int __init iavf_init_module(void)
3956{
3957 int ret;
3958
3959 pr_info("iavf: %s - version %s\n", iavf_driver_string,
3960 iavf_driver_version);
3961
3962 pr_info("%s\n", iavf_copyright);
3963
3964 iavf_wq = alloc_workqueue("%s", WQ_UNBOUND | WQ_MEM_RECLAIM, 1,
3965 iavf_driver_name);
3966 if (!iavf_wq) {
3967 pr_err("%s: Failed to create workqueue\n", iavf_driver_name);
3968 return -ENOMEM;
3969 }
3970 ret = pci_register_driver(&iavf_driver);
3971 return ret;
3972}
3973
3974module_init(iavf_init_module);
3975
3976/**
3977 * iavf_exit_module - Driver Exit Cleanup Routine
3978 *
3979 * iavf_exit_module is called just before the driver is removed
3980 * from memory.
3981 **/
3982static void __exit iavf_exit_module(void)
3983{
3984 pci_unregister_driver(&iavf_driver);
3985 destroy_workqueue(iavf_wq);
3986}
3987
3988module_exit(iavf_exit_module);
3989
3990/* iavf_main.c */