Linux Audio

Check our new training course

Loading...
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0
   2/* Copyright(c) 1999 - 2018 Intel Corporation. */
   3
   4/* 82562G 10/100 Network Connection
   5 * 82562G-2 10/100 Network Connection
   6 * 82562GT 10/100 Network Connection
   7 * 82562GT-2 10/100 Network Connection
   8 * 82562V 10/100 Network Connection
   9 * 82562V-2 10/100 Network Connection
  10 * 82566DC-2 Gigabit Network Connection
  11 * 82566DC Gigabit Network Connection
  12 * 82566DM-2 Gigabit Network Connection
  13 * 82566DM Gigabit Network Connection
  14 * 82566MC Gigabit Network Connection
  15 * 82566MM Gigabit Network Connection
  16 * 82567LM Gigabit Network Connection
  17 * 82567LF Gigabit Network Connection
  18 * 82567V Gigabit Network Connection
  19 * 82567LM-2 Gigabit Network Connection
  20 * 82567LF-2 Gigabit Network Connection
  21 * 82567V-2 Gigabit Network Connection
  22 * 82567LF-3 Gigabit Network Connection
  23 * 82567LM-3 Gigabit Network Connection
  24 * 82567LM-4 Gigabit Network Connection
  25 * 82577LM Gigabit Network Connection
  26 * 82577LC Gigabit Network Connection
  27 * 82578DM Gigabit Network Connection
  28 * 82578DC Gigabit Network Connection
  29 * 82579LM Gigabit Network Connection
  30 * 82579V Gigabit Network Connection
  31 * Ethernet Connection I217-LM
  32 * Ethernet Connection I217-V
  33 * Ethernet Connection I218-V
  34 * Ethernet Connection I218-LM
  35 * Ethernet Connection (2) I218-LM
  36 * Ethernet Connection (2) I218-V
  37 * Ethernet Connection (3) I218-LM
  38 * Ethernet Connection (3) I218-V
  39 */
  40
  41#include "e1000.h"
  42
  43/* ICH GbE Flash Hardware Sequencing Flash Status Register bit breakdown */
  44/* Offset 04h HSFSTS */
  45union ich8_hws_flash_status {
  46	struct ich8_hsfsts {
  47		u16 flcdone:1;	/* bit 0 Flash Cycle Done */
  48		u16 flcerr:1;	/* bit 1 Flash Cycle Error */
  49		u16 dael:1;	/* bit 2 Direct Access error Log */
  50		u16 berasesz:2;	/* bit 4:3 Sector Erase Size */
  51		u16 flcinprog:1;	/* bit 5 flash cycle in Progress */
  52		u16 reserved1:2;	/* bit 13:6 Reserved */
  53		u16 reserved2:6;	/* bit 13:6 Reserved */
  54		u16 fldesvalid:1;	/* bit 14 Flash Descriptor Valid */
  55		u16 flockdn:1;	/* bit 15 Flash Config Lock-Down */
  56	} hsf_status;
  57	u16 regval;
  58};
  59
  60/* ICH GbE Flash Hardware Sequencing Flash control Register bit breakdown */
  61/* Offset 06h FLCTL */
  62union ich8_hws_flash_ctrl {
  63	struct ich8_hsflctl {
  64		u16 flcgo:1;	/* 0 Flash Cycle Go */
  65		u16 flcycle:2;	/* 2:1 Flash Cycle */
  66		u16 reserved:5;	/* 7:3 Reserved  */
  67		u16 fldbcount:2;	/* 9:8 Flash Data Byte Count */
  68		u16 flockdn:6;	/* 15:10 Reserved */
  69	} hsf_ctrl;
  70	u16 regval;
  71};
  72
  73/* ICH Flash Region Access Permissions */
  74union ich8_hws_flash_regacc {
  75	struct ich8_flracc {
  76		u32 grra:8;	/* 0:7 GbE region Read Access */
  77		u32 grwa:8;	/* 8:15 GbE region Write Access */
  78		u32 gmrag:8;	/* 23:16 GbE Master Read Access Grant */
  79		u32 gmwag:8;	/* 31:24 GbE Master Write Access Grant */
  80	} hsf_flregacc;
  81	u16 regval;
  82};
  83
  84/* ICH Flash Protected Region */
  85union ich8_flash_protected_range {
  86	struct ich8_pr {
  87		u32 base:13;	/* 0:12 Protected Range Base */
  88		u32 reserved1:2;	/* 13:14 Reserved */
  89		u32 rpe:1;	/* 15 Read Protection Enable */
  90		u32 limit:13;	/* 16:28 Protected Range Limit */
  91		u32 reserved2:2;	/* 29:30 Reserved */
  92		u32 wpe:1;	/* 31 Write Protection Enable */
  93	} range;
  94	u32 regval;
  95};
  96
  97static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw);
  98static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw);
  99static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank);
 100static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
 101						u32 offset, u8 byte);
 102static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
 103					 u8 *data);
 104static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
 105					 u16 *data);
 106static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
 107					 u8 size, u16 *data);
 108static s32 e1000_read_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset,
 109					   u32 *data);
 110static s32 e1000_read_flash_dword_ich8lan(struct e1000_hw *hw,
 111					  u32 offset, u32 *data);
 112static s32 e1000_write_flash_data32_ich8lan(struct e1000_hw *hw,
 113					    u32 offset, u32 data);
 114static s32 e1000_retry_write_flash_dword_ich8lan(struct e1000_hw *hw,
 115						 u32 offset, u32 dword);
 116static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw);
 117static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw);
 118static s32 e1000_led_on_ich8lan(struct e1000_hw *hw);
 119static s32 e1000_led_off_ich8lan(struct e1000_hw *hw);
 120static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw);
 121static s32 e1000_setup_led_pchlan(struct e1000_hw *hw);
 122static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw);
 123static s32 e1000_led_on_pchlan(struct e1000_hw *hw);
 124static s32 e1000_led_off_pchlan(struct e1000_hw *hw);
 125static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active);
 126static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw);
 127static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw);
 128static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link);
 129static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw);
 130static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw);
 131static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw);
 132static int e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index);
 133static int e1000_rar_set_pch_lpt(struct e1000_hw *hw, u8 *addr, u32 index);
 134static u32 e1000_rar_get_count_pch_lpt(struct e1000_hw *hw);
 135static s32 e1000_k1_workaround_lv(struct e1000_hw *hw);
 136static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate);
 137static s32 e1000_disable_ulp_lpt_lp(struct e1000_hw *hw, bool force);
 138static s32 e1000_setup_copper_link_pch_lpt(struct e1000_hw *hw);
 139static s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state);
 140
 141static inline u16 __er16flash(struct e1000_hw *hw, unsigned long reg)
 142{
 143	return readw(hw->flash_address + reg);
 144}
 145
 146static inline u32 __er32flash(struct e1000_hw *hw, unsigned long reg)
 147{
 148	return readl(hw->flash_address + reg);
 149}
 150
 151static inline void __ew16flash(struct e1000_hw *hw, unsigned long reg, u16 val)
 152{
 153	writew(val, hw->flash_address + reg);
 154}
 155
 156static inline void __ew32flash(struct e1000_hw *hw, unsigned long reg, u32 val)
 157{
 158	writel(val, hw->flash_address + reg);
 159}
 160
 161#define er16flash(reg)		__er16flash(hw, (reg))
 162#define er32flash(reg)		__er32flash(hw, (reg))
 163#define ew16flash(reg, val)	__ew16flash(hw, (reg), (val))
 164#define ew32flash(reg, val)	__ew32flash(hw, (reg), (val))
 165
 166/**
 167 *  e1000_phy_is_accessible_pchlan - Check if able to access PHY registers
 168 *  @hw: pointer to the HW structure
 169 *
 170 *  Test access to the PHY registers by reading the PHY ID registers.  If
 171 *  the PHY ID is already known (e.g. resume path) compare it with known ID,
 172 *  otherwise assume the read PHY ID is correct if it is valid.
 173 *
 174 *  Assumes the sw/fw/hw semaphore is already acquired.
 175 **/
 176static bool e1000_phy_is_accessible_pchlan(struct e1000_hw *hw)
 177{
 178	u16 phy_reg = 0;
 179	u32 phy_id = 0;
 180	s32 ret_val = 0;
 181	u16 retry_count;
 182	u32 mac_reg = 0;
 183
 184	for (retry_count = 0; retry_count < 2; retry_count++) {
 185		ret_val = e1e_rphy_locked(hw, MII_PHYSID1, &phy_reg);
 186		if (ret_val || (phy_reg == 0xFFFF))
 187			continue;
 188		phy_id = (u32)(phy_reg << 16);
 189
 190		ret_val = e1e_rphy_locked(hw, MII_PHYSID2, &phy_reg);
 191		if (ret_val || (phy_reg == 0xFFFF)) {
 192			phy_id = 0;
 193			continue;
 194		}
 195		phy_id |= (u32)(phy_reg & PHY_REVISION_MASK);
 196		break;
 197	}
 198
 199	if (hw->phy.id) {
 200		if (hw->phy.id == phy_id)
 201			goto out;
 202	} else if (phy_id) {
 203		hw->phy.id = phy_id;
 204		hw->phy.revision = (u32)(phy_reg & ~PHY_REVISION_MASK);
 205		goto out;
 206	}
 207
 208	/* In case the PHY needs to be in mdio slow mode,
 209	 * set slow mode and try to get the PHY id again.
 210	 */
 211	if (hw->mac.type < e1000_pch_lpt) {
 212		hw->phy.ops.release(hw);
 213		ret_val = e1000_set_mdio_slow_mode_hv(hw);
 214		if (!ret_val)
 215			ret_val = e1000e_get_phy_id(hw);
 216		hw->phy.ops.acquire(hw);
 217	}
 218
 219	if (ret_val)
 220		return false;
 221out:
 222	if (hw->mac.type >= e1000_pch_lpt) {
 223		/* Only unforce SMBus if ME is not active */
 224		if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
 225			/* Switching PHY interface always returns MDI error
 226			 * so disable retry mechanism to avoid wasting time
 227			 */
 228			e1000e_disable_phy_retry(hw);
 229
 230			/* Unforce SMBus mode in PHY */
 231			e1e_rphy_locked(hw, CV_SMB_CTRL, &phy_reg);
 232			phy_reg &= ~CV_SMB_CTRL_FORCE_SMBUS;
 233			e1e_wphy_locked(hw, CV_SMB_CTRL, phy_reg);
 234
 235			e1000e_enable_phy_retry(hw);
 236
 237			/* Unforce SMBus mode in MAC */
 238			mac_reg = er32(CTRL_EXT);
 239			mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
 240			ew32(CTRL_EXT, mac_reg);
 241		}
 242	}
 243
 244	return true;
 245}
 246
 247/**
 248 *  e1000_toggle_lanphypc_pch_lpt - toggle the LANPHYPC pin value
 249 *  @hw: pointer to the HW structure
 250 *
 251 *  Toggling the LANPHYPC pin value fully power-cycles the PHY and is
 252 *  used to reset the PHY to a quiescent state when necessary.
 253 **/
 254static void e1000_toggle_lanphypc_pch_lpt(struct e1000_hw *hw)
 255{
 256	u32 mac_reg;
 257
 258	/* Set Phy Config Counter to 50msec */
 259	mac_reg = er32(FEXTNVM3);
 260	mac_reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK;
 261	mac_reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC;
 262	ew32(FEXTNVM3, mac_reg);
 263
 264	/* Toggle LANPHYPC Value bit */
 265	mac_reg = er32(CTRL);
 266	mac_reg |= E1000_CTRL_LANPHYPC_OVERRIDE;
 267	mac_reg &= ~E1000_CTRL_LANPHYPC_VALUE;
 268	ew32(CTRL, mac_reg);
 269	e1e_flush();
 270	usleep_range(10, 20);
 271	mac_reg &= ~E1000_CTRL_LANPHYPC_OVERRIDE;
 272	ew32(CTRL, mac_reg);
 273	e1e_flush();
 274
 275	if (hw->mac.type < e1000_pch_lpt) {
 276		msleep(50);
 277	} else {
 278		u16 count = 20;
 279
 280		do {
 281			usleep_range(5000, 6000);
 282		} while (!(er32(CTRL_EXT) & E1000_CTRL_EXT_LPCD) && count--);
 283
 284		msleep(30);
 285	}
 286}
 287
 288/**
 289 *  e1000_init_phy_workarounds_pchlan - PHY initialization workarounds
 290 *  @hw: pointer to the HW structure
 291 *
 292 *  Workarounds/flow necessary for PHY initialization during driver load
 293 *  and resume paths.
 294 **/
 295static s32 e1000_init_phy_workarounds_pchlan(struct e1000_hw *hw)
 296{
 297	struct e1000_adapter *adapter = hw->adapter;
 298	u32 mac_reg, fwsm = er32(FWSM);
 299	s32 ret_val;
 300
 301	/* Gate automatic PHY configuration by hardware on managed and
 302	 * non-managed 82579 and newer adapters.
 303	 */
 304	e1000_gate_hw_phy_config_ich8lan(hw, true);
 305
 306	/* It is not possible to be certain of the current state of ULP
 307	 * so forcibly disable it.
 308	 */
 309	hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_unknown;
 310	ret_val = e1000_disable_ulp_lpt_lp(hw, true);
 311	if (ret_val)
 312		e_warn("Failed to disable ULP\n");
 313
 314	ret_val = hw->phy.ops.acquire(hw);
 315	if (ret_val) {
 316		e_dbg("Failed to initialize PHY flow\n");
 317		goto out;
 318	}
 319
 320	/* There is no guarantee that the PHY is accessible at this time
 321	 * so disable retry mechanism to avoid wasting time
 322	 */
 323	e1000e_disable_phy_retry(hw);
 324
 325	/* The MAC-PHY interconnect may be in SMBus mode.  If the PHY is
 326	 * inaccessible and resetting the PHY is not blocked, toggle the
 327	 * LANPHYPC Value bit to force the interconnect to PCIe mode.
 328	 */
 329	switch (hw->mac.type) {
 330	case e1000_pch_lpt:
 331	case e1000_pch_spt:
 332	case e1000_pch_cnp:
 333	case e1000_pch_tgp:
 334	case e1000_pch_adp:
 335	case e1000_pch_mtp:
 336	case e1000_pch_lnp:
 337	case e1000_pch_ptp:
 338	case e1000_pch_nvp:
 339		if (e1000_phy_is_accessible_pchlan(hw))
 340			break;
 341
 342		/* Before toggling LANPHYPC, see if PHY is accessible by
 343		 * forcing MAC to SMBus mode first.
 344		 */
 345		mac_reg = er32(CTRL_EXT);
 346		mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
 347		ew32(CTRL_EXT, mac_reg);
 348
 349		/* Wait 50 milliseconds for MAC to finish any retries
 350		 * that it might be trying to perform from previous
 351		 * attempts to acknowledge any phy read requests.
 352		 */
 353		msleep(50);
 354
 355		fallthrough;
 356	case e1000_pch2lan:
 357		if (e1000_phy_is_accessible_pchlan(hw))
 358			break;
 359
 360		fallthrough;
 361	case e1000_pchlan:
 362		if ((hw->mac.type == e1000_pchlan) &&
 363		    (fwsm & E1000_ICH_FWSM_FW_VALID))
 364			break;
 365
 366		if (hw->phy.ops.check_reset_block(hw)) {
 367			e_dbg("Required LANPHYPC toggle blocked by ME\n");
 368			ret_val = -E1000_ERR_PHY;
 369			break;
 370		}
 371
 372		/* Toggle LANPHYPC Value bit */
 373		e1000_toggle_lanphypc_pch_lpt(hw);
 374		if (hw->mac.type >= e1000_pch_lpt) {
 375			if (e1000_phy_is_accessible_pchlan(hw))
 376				break;
 377
 378			/* Toggling LANPHYPC brings the PHY out of SMBus mode
 379			 * so ensure that the MAC is also out of SMBus mode
 380			 */
 381			mac_reg = er32(CTRL_EXT);
 382			mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
 383			ew32(CTRL_EXT, mac_reg);
 384
 385			if (e1000_phy_is_accessible_pchlan(hw))
 386				break;
 387
 388			ret_val = -E1000_ERR_PHY;
 389		}
 390		break;
 391	default:
 392		break;
 393	}
 394
 395	e1000e_enable_phy_retry(hw);
 396
 397	hw->phy.ops.release(hw);
 398	if (!ret_val) {
 399
 400		/* Check to see if able to reset PHY.  Print error if not */
 401		if (hw->phy.ops.check_reset_block(hw)) {
 402			e_err("Reset blocked by ME\n");
 403			goto out;
 404		}
 405
 406		/* Reset the PHY before any access to it.  Doing so, ensures
 407		 * that the PHY is in a known good state before we read/write
 408		 * PHY registers.  The generic reset is sufficient here,
 409		 * because we haven't determined the PHY type yet.
 410		 */
 411		ret_val = e1000e_phy_hw_reset_generic(hw);
 412		if (ret_val)
 413			goto out;
 414
 415		/* On a successful reset, possibly need to wait for the PHY
 416		 * to quiesce to an accessible state before returning control
 417		 * to the calling function.  If the PHY does not quiesce, then
 418		 * return E1000E_BLK_PHY_RESET, as this is the condition that
 419		 *  the PHY is in.
 420		 */
 421		ret_val = hw->phy.ops.check_reset_block(hw);
 422		if (ret_val)
 423			e_err("ME blocked access to PHY after reset\n");
 424	}
 425
 426out:
 427	/* Ungate automatic PHY configuration on non-managed 82579 */
 428	if ((hw->mac.type == e1000_pch2lan) &&
 429	    !(fwsm & E1000_ICH_FWSM_FW_VALID)) {
 430		usleep_range(10000, 11000);
 431		e1000_gate_hw_phy_config_ich8lan(hw, false);
 432	}
 433
 434	return ret_val;
 435}
 436
 437/**
 438 *  e1000_init_phy_params_pchlan - Initialize PHY function pointers
 439 *  @hw: pointer to the HW structure
 440 *
 441 *  Initialize family-specific PHY parameters and function pointers.
 442 **/
 443static s32 e1000_init_phy_params_pchlan(struct e1000_hw *hw)
 444{
 445	struct e1000_phy_info *phy = &hw->phy;
 446	s32 ret_val;
 447
 448	phy->addr = 1;
 449	phy->reset_delay_us = 100;
 450
 451	phy->ops.set_page = e1000_set_page_igp;
 452	phy->ops.read_reg = e1000_read_phy_reg_hv;
 453	phy->ops.read_reg_locked = e1000_read_phy_reg_hv_locked;
 454	phy->ops.read_reg_page = e1000_read_phy_reg_page_hv;
 455	phy->ops.set_d0_lplu_state = e1000_set_lplu_state_pchlan;
 456	phy->ops.set_d3_lplu_state = e1000_set_lplu_state_pchlan;
 457	phy->ops.write_reg = e1000_write_phy_reg_hv;
 458	phy->ops.write_reg_locked = e1000_write_phy_reg_hv_locked;
 459	phy->ops.write_reg_page = e1000_write_phy_reg_page_hv;
 460	phy->ops.power_up = e1000_power_up_phy_copper;
 461	phy->ops.power_down = e1000_power_down_phy_copper_ich8lan;
 462	phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
 463
 464	phy->id = e1000_phy_unknown;
 465
 466	if (hw->mac.type == e1000_pch_mtp) {
 467		phy->retry_count = 2;
 468		e1000e_enable_phy_retry(hw);
 469	}
 470
 471	ret_val = e1000_init_phy_workarounds_pchlan(hw);
 472	if (ret_val)
 473		return ret_val;
 474
 475	if (phy->id == e1000_phy_unknown)
 476		switch (hw->mac.type) {
 477		default:
 478			ret_val = e1000e_get_phy_id(hw);
 479			if (ret_val)
 480				return ret_val;
 481			if ((phy->id != 0) && (phy->id != PHY_REVISION_MASK))
 482				break;
 483			fallthrough;
 484		case e1000_pch2lan:
 485		case e1000_pch_lpt:
 486		case e1000_pch_spt:
 487		case e1000_pch_cnp:
 488		case e1000_pch_tgp:
 489		case e1000_pch_adp:
 490		case e1000_pch_mtp:
 491		case e1000_pch_lnp:
 492		case e1000_pch_ptp:
 493		case e1000_pch_nvp:
 494			/* In case the PHY needs to be in mdio slow mode,
 495			 * set slow mode and try to get the PHY id again.
 496			 */
 497			ret_val = e1000_set_mdio_slow_mode_hv(hw);
 498			if (ret_val)
 499				return ret_val;
 500			ret_val = e1000e_get_phy_id(hw);
 501			if (ret_val)
 502				return ret_val;
 503			break;
 504		}
 505	phy->type = e1000e_get_phy_type_from_id(phy->id);
 506
 507	switch (phy->type) {
 508	case e1000_phy_82577:
 509	case e1000_phy_82579:
 510	case e1000_phy_i217:
 511		phy->ops.check_polarity = e1000_check_polarity_82577;
 512		phy->ops.force_speed_duplex =
 513		    e1000_phy_force_speed_duplex_82577;
 514		phy->ops.get_cable_length = e1000_get_cable_length_82577;
 515		phy->ops.get_info = e1000_get_phy_info_82577;
 516		phy->ops.commit = e1000e_phy_sw_reset;
 517		break;
 518	case e1000_phy_82578:
 519		phy->ops.check_polarity = e1000_check_polarity_m88;
 520		phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88;
 521		phy->ops.get_cable_length = e1000e_get_cable_length_m88;
 522		phy->ops.get_info = e1000e_get_phy_info_m88;
 523		break;
 524	default:
 525		ret_val = -E1000_ERR_PHY;
 526		break;
 527	}
 528
 529	return ret_val;
 530}
 531
 532/**
 533 *  e1000_init_phy_params_ich8lan - Initialize PHY function pointers
 534 *  @hw: pointer to the HW structure
 535 *
 536 *  Initialize family-specific PHY parameters and function pointers.
 537 **/
 538static s32 e1000_init_phy_params_ich8lan(struct e1000_hw *hw)
 539{
 540	struct e1000_phy_info *phy = &hw->phy;
 541	s32 ret_val;
 542	u16 i = 0;
 543
 544	phy->addr = 1;
 545	phy->reset_delay_us = 100;
 546
 547	phy->ops.power_up = e1000_power_up_phy_copper;
 548	phy->ops.power_down = e1000_power_down_phy_copper_ich8lan;
 549
 550	/* We may need to do this twice - once for IGP and if that fails,
 551	 * we'll set BM func pointers and try again
 552	 */
 553	ret_val = e1000e_determine_phy_address(hw);
 554	if (ret_val) {
 555		phy->ops.write_reg = e1000e_write_phy_reg_bm;
 556		phy->ops.read_reg = e1000e_read_phy_reg_bm;
 557		ret_val = e1000e_determine_phy_address(hw);
 558		if (ret_val) {
 559			e_dbg("Cannot determine PHY addr. Erroring out\n");
 560			return ret_val;
 561		}
 562	}
 563
 564	phy->id = 0;
 565	while ((e1000_phy_unknown == e1000e_get_phy_type_from_id(phy->id)) &&
 566	       (i++ < 100)) {
 567		usleep_range(1000, 1100);
 568		ret_val = e1000e_get_phy_id(hw);
 569		if (ret_val)
 570			return ret_val;
 571	}
 572
 573	/* Verify phy id */
 574	switch (phy->id) {
 575	case IGP03E1000_E_PHY_ID:
 576		phy->type = e1000_phy_igp_3;
 577		phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
 578		phy->ops.read_reg_locked = e1000e_read_phy_reg_igp_locked;
 579		phy->ops.write_reg_locked = e1000e_write_phy_reg_igp_locked;
 580		phy->ops.get_info = e1000e_get_phy_info_igp;
 581		phy->ops.check_polarity = e1000_check_polarity_igp;
 582		phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_igp;
 583		break;
 584	case IFE_E_PHY_ID:
 585	case IFE_PLUS_E_PHY_ID:
 586	case IFE_C_E_PHY_ID:
 587		phy->type = e1000_phy_ife;
 588		phy->autoneg_mask = E1000_ALL_NOT_GIG;
 589		phy->ops.get_info = e1000_get_phy_info_ife;
 590		phy->ops.check_polarity = e1000_check_polarity_ife;
 591		phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_ife;
 592		break;
 593	case BME1000_E_PHY_ID:
 594		phy->type = e1000_phy_bm;
 595		phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
 596		phy->ops.read_reg = e1000e_read_phy_reg_bm;
 597		phy->ops.write_reg = e1000e_write_phy_reg_bm;
 598		phy->ops.commit = e1000e_phy_sw_reset;
 599		phy->ops.get_info = e1000e_get_phy_info_m88;
 600		phy->ops.check_polarity = e1000_check_polarity_m88;
 601		phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88;
 602		break;
 603	default:
 604		return -E1000_ERR_PHY;
 605	}
 606
 607	return 0;
 608}
 609
 610/**
 611 *  e1000_init_nvm_params_ich8lan - Initialize NVM function pointers
 612 *  @hw: pointer to the HW structure
 613 *
 614 *  Initialize family-specific NVM parameters and function
 615 *  pointers.
 616 **/
 617static s32 e1000_init_nvm_params_ich8lan(struct e1000_hw *hw)
 618{
 619	struct e1000_nvm_info *nvm = &hw->nvm;
 620	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
 621	u32 gfpreg, sector_base_addr, sector_end_addr;
 622	u16 i;
 623	u32 nvm_size;
 624
 625	nvm->type = e1000_nvm_flash_sw;
 626
 627	if (hw->mac.type >= e1000_pch_spt) {
 628		/* in SPT, gfpreg doesn't exist. NVM size is taken from the
 629		 * STRAP register. This is because in SPT the GbE Flash region
 630		 * is no longer accessed through the flash registers. Instead,
 631		 * the mechanism has changed, and the Flash region access
 632		 * registers are now implemented in GbE memory space.
 633		 */
 634		nvm->flash_base_addr = 0;
 635		nvm_size = (((er32(STRAP) >> 1) & 0x1F) + 1)
 636		    * NVM_SIZE_MULTIPLIER;
 637		nvm->flash_bank_size = nvm_size / 2;
 638		/* Adjust to word count */
 639		nvm->flash_bank_size /= sizeof(u16);
 640		/* Set the base address for flash register access */
 641		hw->flash_address = hw->hw_addr + E1000_FLASH_BASE_ADDR;
 642	} else {
 643		/* Can't read flash registers if register set isn't mapped. */
 644		if (!hw->flash_address) {
 645			e_dbg("ERROR: Flash registers not mapped\n");
 646			return -E1000_ERR_CONFIG;
 647		}
 648
 649		gfpreg = er32flash(ICH_FLASH_GFPREG);
 650
 651		/* sector_X_addr is a "sector"-aligned address (4096 bytes)
 652		 * Add 1 to sector_end_addr since this sector is included in
 653		 * the overall size.
 654		 */
 655		sector_base_addr = gfpreg & FLASH_GFPREG_BASE_MASK;
 656		sector_end_addr = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK) + 1;
 657
 658		/* flash_base_addr is byte-aligned */
 659		nvm->flash_base_addr = sector_base_addr
 660		    << FLASH_SECTOR_ADDR_SHIFT;
 661
 662		/* find total size of the NVM, then cut in half since the total
 663		 * size represents two separate NVM banks.
 664		 */
 665		nvm->flash_bank_size = ((sector_end_addr - sector_base_addr)
 666					<< FLASH_SECTOR_ADDR_SHIFT);
 667		nvm->flash_bank_size /= 2;
 668		/* Adjust to word count */
 669		nvm->flash_bank_size /= sizeof(u16);
 670	}
 671
 672	nvm->word_size = E1000_ICH8_SHADOW_RAM_WORDS;
 673
 674	/* Clear shadow ram */
 675	for (i = 0; i < nvm->word_size; i++) {
 676		dev_spec->shadow_ram[i].modified = false;
 677		dev_spec->shadow_ram[i].value = 0xFFFF;
 678	}
 679
 680	return 0;
 681}
 682
 683/**
 684 *  e1000_init_mac_params_ich8lan - Initialize MAC function pointers
 685 *  @hw: pointer to the HW structure
 686 *
 687 *  Initialize family-specific MAC parameters and function
 688 *  pointers.
 689 **/
 690static s32 e1000_init_mac_params_ich8lan(struct e1000_hw *hw)
 691{
 692	struct e1000_mac_info *mac = &hw->mac;
 693
 694	/* Set media type function pointer */
 695	hw->phy.media_type = e1000_media_type_copper;
 696
 697	/* Set mta register count */
 698	mac->mta_reg_count = 32;
 699	/* Set rar entry count */
 700	mac->rar_entry_count = E1000_ICH_RAR_ENTRIES;
 701	if (mac->type == e1000_ich8lan)
 702		mac->rar_entry_count--;
 703	/* FWSM register */
 704	mac->has_fwsm = true;
 705	/* ARC subsystem not supported */
 706	mac->arc_subsystem_valid = false;
 707	/* Adaptive IFS supported */
 708	mac->adaptive_ifs = true;
 709
 710	/* LED and other operations */
 711	switch (mac->type) {
 712	case e1000_ich8lan:
 713	case e1000_ich9lan:
 714	case e1000_ich10lan:
 715		/* check management mode */
 716		mac->ops.check_mng_mode = e1000_check_mng_mode_ich8lan;
 717		/* ID LED init */
 718		mac->ops.id_led_init = e1000e_id_led_init_generic;
 719		/* blink LED */
 720		mac->ops.blink_led = e1000e_blink_led_generic;
 721		/* setup LED */
 722		mac->ops.setup_led = e1000e_setup_led_generic;
 723		/* cleanup LED */
 724		mac->ops.cleanup_led = e1000_cleanup_led_ich8lan;
 725		/* turn on/off LED */
 726		mac->ops.led_on = e1000_led_on_ich8lan;
 727		mac->ops.led_off = e1000_led_off_ich8lan;
 728		break;
 729	case e1000_pch2lan:
 730		mac->rar_entry_count = E1000_PCH2_RAR_ENTRIES;
 731		mac->ops.rar_set = e1000_rar_set_pch2lan;
 732		fallthrough;
 733	case e1000_pch_lpt:
 734	case e1000_pch_spt:
 735	case e1000_pch_cnp:
 736	case e1000_pch_tgp:
 737	case e1000_pch_adp:
 738	case e1000_pch_mtp:
 739	case e1000_pch_lnp:
 740	case e1000_pch_ptp:
 741	case e1000_pch_nvp:
 742	case e1000_pchlan:
 743		/* check management mode */
 744		mac->ops.check_mng_mode = e1000_check_mng_mode_pchlan;
 745		/* ID LED init */
 746		mac->ops.id_led_init = e1000_id_led_init_pchlan;
 747		/* setup LED */
 748		mac->ops.setup_led = e1000_setup_led_pchlan;
 749		/* cleanup LED */
 750		mac->ops.cleanup_led = e1000_cleanup_led_pchlan;
 751		/* turn on/off LED */
 752		mac->ops.led_on = e1000_led_on_pchlan;
 753		mac->ops.led_off = e1000_led_off_pchlan;
 754		break;
 755	default:
 756		break;
 757	}
 758
 759	if (mac->type >= e1000_pch_lpt) {
 760		mac->rar_entry_count = E1000_PCH_LPT_RAR_ENTRIES;
 761		mac->ops.rar_set = e1000_rar_set_pch_lpt;
 762		mac->ops.setup_physical_interface =
 763		    e1000_setup_copper_link_pch_lpt;
 764		mac->ops.rar_get_count = e1000_rar_get_count_pch_lpt;
 765	}
 766
 767	/* Enable PCS Lock-loss workaround for ICH8 */
 768	if (mac->type == e1000_ich8lan)
 769		e1000e_set_kmrn_lock_loss_workaround_ich8lan(hw, true);
 770
 771	return 0;
 772}
 773
 774/**
 775 *  __e1000_access_emi_reg_locked - Read/write EMI register
 776 *  @hw: pointer to the HW structure
 777 *  @address: EMI address to program
 778 *  @data: pointer to value to read/write from/to the EMI address
 779 *  @read: boolean flag to indicate read or write
 780 *
 781 *  This helper function assumes the SW/FW/HW Semaphore is already acquired.
 782 **/
 783static s32 __e1000_access_emi_reg_locked(struct e1000_hw *hw, u16 address,
 784					 u16 *data, bool read)
 785{
 786	s32 ret_val;
 787
 788	ret_val = e1e_wphy_locked(hw, I82579_EMI_ADDR, address);
 789	if (ret_val)
 790		return ret_val;
 791
 792	if (read)
 793		ret_val = e1e_rphy_locked(hw, I82579_EMI_DATA, data);
 794	else
 795		ret_val = e1e_wphy_locked(hw, I82579_EMI_DATA, *data);
 796
 797	return ret_val;
 798}
 799
 800/**
 801 *  e1000_read_emi_reg_locked - Read Extended Management Interface register
 802 *  @hw: pointer to the HW structure
 803 *  @addr: EMI address to program
 804 *  @data: value to be read from the EMI address
 805 *
 806 *  Assumes the SW/FW/HW Semaphore is already acquired.
 807 **/
 808s32 e1000_read_emi_reg_locked(struct e1000_hw *hw, u16 addr, u16 *data)
 809{
 810	return __e1000_access_emi_reg_locked(hw, addr, data, true);
 811}
 812
 813/**
 814 *  e1000_write_emi_reg_locked - Write Extended Management Interface register
 815 *  @hw: pointer to the HW structure
 816 *  @addr: EMI address to program
 817 *  @data: value to be written to the EMI address
 818 *
 819 *  Assumes the SW/FW/HW Semaphore is already acquired.
 820 **/
 821s32 e1000_write_emi_reg_locked(struct e1000_hw *hw, u16 addr, u16 data)
 822{
 823	return __e1000_access_emi_reg_locked(hw, addr, &data, false);
 824}
 825
 826/**
 827 *  e1000_set_eee_pchlan - Enable/disable EEE support
 828 *  @hw: pointer to the HW structure
 829 *
 830 *  Enable/disable EEE based on setting in dev_spec structure, the duplex of
 831 *  the link and the EEE capabilities of the link partner.  The LPI Control
 832 *  register bits will remain set only if/when link is up.
 833 *
 834 *  EEE LPI must not be asserted earlier than one second after link is up.
 835 *  On 82579, EEE LPI should not be enabled until such time otherwise there
 836 *  can be link issues with some switches.  Other devices can have EEE LPI
 837 *  enabled immediately upon link up since they have a timer in hardware which
 838 *  prevents LPI from being asserted too early.
 839 **/
 840s32 e1000_set_eee_pchlan(struct e1000_hw *hw)
 841{
 842	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
 843	s32 ret_val;
 844	u16 lpa, pcs_status, adv, adv_addr, lpi_ctrl, data;
 845
 846	switch (hw->phy.type) {
 847	case e1000_phy_82579:
 848		lpa = I82579_EEE_LP_ABILITY;
 849		pcs_status = I82579_EEE_PCS_STATUS;
 850		adv_addr = I82579_EEE_ADVERTISEMENT;
 851		break;
 852	case e1000_phy_i217:
 853		lpa = I217_EEE_LP_ABILITY;
 854		pcs_status = I217_EEE_PCS_STATUS;
 855		adv_addr = I217_EEE_ADVERTISEMENT;
 856		break;
 857	default:
 858		return 0;
 859	}
 860
 861	ret_val = hw->phy.ops.acquire(hw);
 862	if (ret_val)
 863		return ret_val;
 864
 865	ret_val = e1e_rphy_locked(hw, I82579_LPI_CTRL, &lpi_ctrl);
 866	if (ret_val)
 867		goto release;
 868
 869	/* Clear bits that enable EEE in various speeds */
 870	lpi_ctrl &= ~I82579_LPI_CTRL_ENABLE_MASK;
 871
 872	/* Enable EEE if not disabled by user */
 873	if (!dev_spec->eee_disable) {
 874		/* Save off link partner's EEE ability */
 875		ret_val = e1000_read_emi_reg_locked(hw, lpa,
 876						    &dev_spec->eee_lp_ability);
 877		if (ret_val)
 878			goto release;
 879
 880		/* Read EEE advertisement */
 881		ret_val = e1000_read_emi_reg_locked(hw, adv_addr, &adv);
 882		if (ret_val)
 883			goto release;
 884
 885		/* Enable EEE only for speeds in which the link partner is
 886		 * EEE capable and for which we advertise EEE.
 887		 */
 888		if (adv & dev_spec->eee_lp_ability & I82579_EEE_1000_SUPPORTED)
 889			lpi_ctrl |= I82579_LPI_CTRL_1000_ENABLE;
 890
 891		if (adv & dev_spec->eee_lp_ability & I82579_EEE_100_SUPPORTED) {
 892			e1e_rphy_locked(hw, MII_LPA, &data);
 893			if (data & LPA_100FULL)
 894				lpi_ctrl |= I82579_LPI_CTRL_100_ENABLE;
 895			else
 896				/* EEE is not supported in 100Half, so ignore
 897				 * partner's EEE in 100 ability if full-duplex
 898				 * is not advertised.
 899				 */
 900				dev_spec->eee_lp_ability &=
 901				    ~I82579_EEE_100_SUPPORTED;
 902		}
 903	}
 904
 905	if (hw->phy.type == e1000_phy_82579) {
 906		ret_val = e1000_read_emi_reg_locked(hw, I82579_LPI_PLL_SHUT,
 907						    &data);
 908		if (ret_val)
 909			goto release;
 910
 911		data &= ~I82579_LPI_100_PLL_SHUT;
 912		ret_val = e1000_write_emi_reg_locked(hw, I82579_LPI_PLL_SHUT,
 913						     data);
 914	}
 915
 916	/* R/Clr IEEE MMD 3.1 bits 11:10 - Tx/Rx LPI Received */
 917	ret_val = e1000_read_emi_reg_locked(hw, pcs_status, &data);
 918	if (ret_val)
 919		goto release;
 920
 921	ret_val = e1e_wphy_locked(hw, I82579_LPI_CTRL, lpi_ctrl);
 922release:
 923	hw->phy.ops.release(hw);
 924
 925	return ret_val;
 926}
 927
 928/**
 929 *  e1000_k1_workaround_lpt_lp - K1 workaround on Lynxpoint-LP
 930 *  @hw:   pointer to the HW structure
 931 *  @link: link up bool flag
 932 *
 933 *  When K1 is enabled for 1Gbps, the MAC can miss 2 DMA completion indications
 934 *  preventing further DMA write requests.  Workaround the issue by disabling
 935 *  the de-assertion of the clock request when in 1Gpbs mode.
 936 *  Also, set appropriate Tx re-transmission timeouts for 10 and 100Half link
 937 *  speeds in order to avoid Tx hangs.
 938 **/
 939static s32 e1000_k1_workaround_lpt_lp(struct e1000_hw *hw, bool link)
 940{
 941	u32 fextnvm6 = er32(FEXTNVM6);
 942	u32 status = er32(STATUS);
 943	s32 ret_val = 0;
 944	u16 reg;
 945
 946	if (link && (status & E1000_STATUS_SPEED_1000)) {
 947		ret_val = hw->phy.ops.acquire(hw);
 948		if (ret_val)
 949			return ret_val;
 950
 951		ret_val =
 952		    e1000e_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
 953						&reg);
 954		if (ret_val)
 955			goto release;
 956
 957		ret_val =
 958		    e1000e_write_kmrn_reg_locked(hw,
 959						 E1000_KMRNCTRLSTA_K1_CONFIG,
 960						 reg &
 961						 ~E1000_KMRNCTRLSTA_K1_ENABLE);
 962		if (ret_val)
 963			goto release;
 964
 965		usleep_range(10, 20);
 966
 967		ew32(FEXTNVM6, fextnvm6 | E1000_FEXTNVM6_REQ_PLL_CLK);
 968
 969		ret_val =
 970		    e1000e_write_kmrn_reg_locked(hw,
 971						 E1000_KMRNCTRLSTA_K1_CONFIG,
 972						 reg);
 973release:
 974		hw->phy.ops.release(hw);
 975	} else {
 976		/* clear FEXTNVM6 bit 8 on link down or 10/100 */
 977		fextnvm6 &= ~E1000_FEXTNVM6_REQ_PLL_CLK;
 978
 979		if ((hw->phy.revision > 5) || !link ||
 980		    ((status & E1000_STATUS_SPEED_100) &&
 981		     (status & E1000_STATUS_FD)))
 982			goto update_fextnvm6;
 983
 984		ret_val = e1e_rphy(hw, I217_INBAND_CTRL, &reg);
 985		if (ret_val)
 986			return ret_val;
 987
 988		/* Clear link status transmit timeout */
 989		reg &= ~I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_MASK;
 990
 991		if (status & E1000_STATUS_SPEED_100) {
 992			/* Set inband Tx timeout to 5x10us for 100Half */
 993			reg |= 5 << I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_SHIFT;
 994
 995			/* Do not extend the K1 entry latency for 100Half */
 996			fextnvm6 &= ~E1000_FEXTNVM6_ENABLE_K1_ENTRY_CONDITION;
 997		} else {
 998			/* Set inband Tx timeout to 50x10us for 10Full/Half */
 999			reg |= 50 <<
1000			    I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_SHIFT;
1001
1002			/* Extend the K1 entry latency for 10 Mbps */
1003			fextnvm6 |= E1000_FEXTNVM6_ENABLE_K1_ENTRY_CONDITION;
1004		}
1005
1006		ret_val = e1e_wphy(hw, I217_INBAND_CTRL, reg);
1007		if (ret_val)
1008			return ret_val;
1009
1010update_fextnvm6:
1011		ew32(FEXTNVM6, fextnvm6);
1012	}
1013
1014	return ret_val;
1015}
1016
1017/**
1018 *  e1000_platform_pm_pch_lpt - Set platform power management values
1019 *  @hw: pointer to the HW structure
1020 *  @link: bool indicating link status
1021 *
1022 *  Set the Latency Tolerance Reporting (LTR) values for the "PCIe-like"
1023 *  GbE MAC in the Lynx Point PCH based on Rx buffer size and link speed
1024 *  when link is up (which must not exceed the maximum latency supported
1025 *  by the platform), otherwise specify there is no LTR requirement.
1026 *  Unlike true-PCIe devices which set the LTR maximum snoop/no-snoop
1027 *  latencies in the LTR Extended Capability Structure in the PCIe Extended
1028 *  Capability register set, on this device LTR is set by writing the
1029 *  equivalent snoop/no-snoop latencies in the LTRV register in the MAC and
1030 *  set the SEND bit to send an Intel On-chip System Fabric sideband (IOSF-SB)
1031 *  message to the PMC.
1032 **/
1033static s32 e1000_platform_pm_pch_lpt(struct e1000_hw *hw, bool link)
1034{
1035	u32 reg = link << (E1000_LTRV_REQ_SHIFT + E1000_LTRV_NOSNOOP_SHIFT) |
1036	    link << E1000_LTRV_REQ_SHIFT | E1000_LTRV_SEND;
1037	u32 max_ltr_enc_d = 0;	/* maximum LTR decoded by platform */
1038	u32 lat_enc_d = 0;	/* latency decoded */
1039	u16 lat_enc = 0;	/* latency encoded */
1040
1041	if (link) {
1042		u16 speed, duplex, scale = 0;
1043		u16 max_snoop, max_nosnoop;
1044		u16 max_ltr_enc;	/* max LTR latency encoded */
1045		u64 value;
1046		u32 rxa;
1047
1048		if (!hw->adapter->max_frame_size) {
1049			e_dbg("max_frame_size not set.\n");
1050			return -E1000_ERR_CONFIG;
1051		}
1052
1053		hw->mac.ops.get_link_up_info(hw, &speed, &duplex);
1054		if (!speed) {
1055			e_dbg("Speed not set.\n");
1056			return -E1000_ERR_CONFIG;
1057		}
1058
1059		/* Rx Packet Buffer Allocation size (KB) */
1060		rxa = er32(PBA) & E1000_PBA_RXA_MASK;
1061
1062		/* Determine the maximum latency tolerated by the device.
1063		 *
1064		 * Per the PCIe spec, the tolerated latencies are encoded as
1065		 * a 3-bit encoded scale (only 0-5 are valid) multiplied by
1066		 * a 10-bit value (0-1023) to provide a range from 1 ns to
1067		 * 2^25*(2^10-1) ns.  The scale is encoded as 0=2^0ns,
1068		 * 1=2^5ns, 2=2^10ns,...5=2^25ns.
1069		 */
1070		rxa *= 512;
1071		value = (rxa > hw->adapter->max_frame_size) ?
1072			(rxa - hw->adapter->max_frame_size) * (16000 / speed) :
1073			0;
1074
1075		while (value > PCI_LTR_VALUE_MASK) {
1076			scale++;
1077			value = DIV_ROUND_UP(value, BIT(5));
1078		}
1079		if (scale > E1000_LTRV_SCALE_MAX) {
1080			e_dbg("Invalid LTR latency scale %d\n", scale);
1081			return -E1000_ERR_CONFIG;
1082		}
1083		lat_enc = (u16)((scale << PCI_LTR_SCALE_SHIFT) | value);
1084
1085		/* Determine the maximum latency tolerated by the platform */
1086		pci_read_config_word(hw->adapter->pdev, E1000_PCI_LTR_CAP_LPT,
1087				     &max_snoop);
1088		pci_read_config_word(hw->adapter->pdev,
1089				     E1000_PCI_LTR_CAP_LPT + 2, &max_nosnoop);
1090		max_ltr_enc = max_t(u16, max_snoop, max_nosnoop);
1091
1092		lat_enc_d = (lat_enc & E1000_LTRV_VALUE_MASK) *
1093			     (1U << (E1000_LTRV_SCALE_FACTOR *
1094			     FIELD_GET(E1000_LTRV_SCALE_MASK, lat_enc)));
1095
1096		max_ltr_enc_d = (max_ltr_enc & E1000_LTRV_VALUE_MASK) *
1097			(1U << (E1000_LTRV_SCALE_FACTOR *
1098				FIELD_GET(E1000_LTRV_SCALE_MASK, max_ltr_enc)));
1099
1100		if (lat_enc_d > max_ltr_enc_d)
1101			lat_enc = max_ltr_enc;
1102	}
1103
1104	/* Set Snoop and No-Snoop latencies the same */
1105	reg |= lat_enc | (lat_enc << E1000_LTRV_NOSNOOP_SHIFT);
1106	ew32(LTRV, reg);
1107
1108	return 0;
1109}
1110
1111/**
1112 *  e1000e_force_smbus - Force interfaces to transition to SMBUS mode.
1113 *  @hw: pointer to the HW structure
1114 *
1115 *  Force the MAC and the PHY to SMBUS mode. Assumes semaphore already
1116 *  acquired.
1117 *
1118 * Return: 0 on success, negative errno on failure.
1119 **/
1120static s32 e1000e_force_smbus(struct e1000_hw *hw)
1121{
1122	u16 smb_ctrl = 0;
1123	u32 ctrl_ext;
1124	s32 ret_val;
1125
1126	/* Switching PHY interface always returns MDI error
1127	 * so disable retry mechanism to avoid wasting time
1128	 */
1129	e1000e_disable_phy_retry(hw);
1130
1131	/* Force SMBus mode in the PHY */
1132	ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL, &smb_ctrl);
1133	if (ret_val) {
1134		e1000e_enable_phy_retry(hw);
1135		return ret_val;
1136	}
1137
1138	smb_ctrl |= CV_SMB_CTRL_FORCE_SMBUS;
1139	e1000_write_phy_reg_hv_locked(hw, CV_SMB_CTRL, smb_ctrl);
1140
1141	e1000e_enable_phy_retry(hw);
1142
1143	/* Force SMBus mode in the MAC */
1144	ctrl_ext = er32(CTRL_EXT);
1145	ctrl_ext |= E1000_CTRL_EXT_FORCE_SMBUS;
1146	ew32(CTRL_EXT, ctrl_ext);
1147
1148	return 0;
1149}
1150
1151/**
1152 *  e1000_enable_ulp_lpt_lp - configure Ultra Low Power mode for LynxPoint-LP
1153 *  @hw: pointer to the HW structure
1154 *  @to_sx: boolean indicating a system power state transition to Sx
1155 *
1156 *  When link is down, configure ULP mode to significantly reduce the power
1157 *  to the PHY.  If on a Manageability Engine (ME) enabled system, tell the
1158 *  ME firmware to start the ULP configuration.  If not on an ME enabled
1159 *  system, configure the ULP mode by software.
1160 */
1161s32 e1000_enable_ulp_lpt_lp(struct e1000_hw *hw, bool to_sx)
1162{
1163	u32 mac_reg;
1164	s32 ret_val = 0;
1165	u16 phy_reg;
1166	u16 oem_reg = 0;
1167
1168	if ((hw->mac.type < e1000_pch_lpt) ||
1169	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_LM) ||
1170	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_V) ||
1171	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_LM2) ||
1172	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_V2) ||
1173	    (hw->dev_spec.ich8lan.ulp_state == e1000_ulp_state_on))
1174		return 0;
1175
1176	if (er32(FWSM) & E1000_ICH_FWSM_FW_VALID) {
1177		/* Request ME configure ULP mode in the PHY */
1178		mac_reg = er32(H2ME);
1179		mac_reg |= E1000_H2ME_ULP | E1000_H2ME_ENFORCE_SETTINGS;
1180		ew32(H2ME, mac_reg);
1181
1182		goto out;
1183	}
1184
1185	if (!to_sx) {
1186		int i = 0;
1187
1188		/* Poll up to 5 seconds for Cable Disconnected indication */
1189		while (!(er32(FEXT) & E1000_FEXT_PHY_CABLE_DISCONNECTED)) {
1190			/* Bail if link is re-acquired */
1191			if (er32(STATUS) & E1000_STATUS_LU)
1192				return -E1000_ERR_PHY;
1193
1194			if (i++ == 100)
1195				break;
1196
1197			msleep(50);
1198		}
1199		e_dbg("CABLE_DISCONNECTED %s set after %dmsec\n",
1200		      (er32(FEXT) &
1201		       E1000_FEXT_PHY_CABLE_DISCONNECTED) ? "" : "not", i * 50);
1202	}
1203
1204	ret_val = hw->phy.ops.acquire(hw);
1205	if (ret_val)
1206		goto out;
1207
1208	ret_val = e1000e_force_smbus(hw);
1209	if (ret_val) {
1210		e_dbg("Failed to force SMBUS: %d\n", ret_val);
1211		goto release;
1212	}
 
 
 
 
 
 
1213
1214	/* Si workaround for ULP entry flow on i127/rev6 h/w.  Enable
1215	 * LPLU and disable Gig speed when entering ULP
1216	 */
1217	if ((hw->phy.type == e1000_phy_i217) && (hw->phy.revision == 6)) {
1218		ret_val = e1000_read_phy_reg_hv_locked(hw, HV_OEM_BITS,
1219						       &oem_reg);
1220		if (ret_val)
1221			goto release;
1222
1223		phy_reg = oem_reg;
1224		phy_reg |= HV_OEM_BITS_LPLU | HV_OEM_BITS_GBE_DIS;
1225
1226		ret_val = e1000_write_phy_reg_hv_locked(hw, HV_OEM_BITS,
1227							phy_reg);
1228
1229		if (ret_val)
1230			goto release;
1231	}
1232
1233	/* Set Inband ULP Exit, Reset to SMBus mode and
1234	 * Disable SMBus Release on PERST# in PHY
1235	 */
1236	ret_val = e1000_read_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, &phy_reg);
1237	if (ret_val)
1238		goto release;
1239	phy_reg |= (I218_ULP_CONFIG1_RESET_TO_SMBUS |
1240		    I218_ULP_CONFIG1_DISABLE_SMB_PERST);
1241	if (to_sx) {
1242		if (er32(WUFC) & E1000_WUFC_LNKC)
1243			phy_reg |= I218_ULP_CONFIG1_WOL_HOST;
1244		else
1245			phy_reg &= ~I218_ULP_CONFIG1_WOL_HOST;
1246
1247		phy_reg |= I218_ULP_CONFIG1_STICKY_ULP;
1248		phy_reg &= ~I218_ULP_CONFIG1_INBAND_EXIT;
1249	} else {
1250		phy_reg |= I218_ULP_CONFIG1_INBAND_EXIT;
1251		phy_reg &= ~I218_ULP_CONFIG1_STICKY_ULP;
1252		phy_reg &= ~I218_ULP_CONFIG1_WOL_HOST;
1253	}
1254	e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1255
1256	/* Set Disable SMBus Release on PERST# in MAC */
1257	mac_reg = er32(FEXTNVM7);
1258	mac_reg |= E1000_FEXTNVM7_DISABLE_SMB_PERST;
1259	ew32(FEXTNVM7, mac_reg);
1260
1261	/* Commit ULP changes in PHY by starting auto ULP configuration */
1262	phy_reg |= I218_ULP_CONFIG1_START;
1263	e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1264
1265	if ((hw->phy.type == e1000_phy_i217) && (hw->phy.revision == 6) &&
1266	    to_sx && (er32(STATUS) & E1000_STATUS_LU)) {
1267		ret_val = e1000_write_phy_reg_hv_locked(hw, HV_OEM_BITS,
1268							oem_reg);
1269		if (ret_val)
1270			goto release;
1271	}
1272
1273release:
1274	hw->phy.ops.release(hw);
1275out:
1276	if (ret_val)
1277		e_dbg("Error in ULP enable flow: %d\n", ret_val);
1278	else
1279		hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_on;
1280
1281	return ret_val;
1282}
1283
1284/**
1285 *  e1000_disable_ulp_lpt_lp - unconfigure Ultra Low Power mode for LynxPoint-LP
1286 *  @hw: pointer to the HW structure
1287 *  @force: boolean indicating whether or not to force disabling ULP
1288 *
1289 *  Un-configure ULP mode when link is up, the system is transitioned from
1290 *  Sx or the driver is unloaded.  If on a Manageability Engine (ME) enabled
1291 *  system, poll for an indication from ME that ULP has been un-configured.
1292 *  If not on an ME enabled system, un-configure the ULP mode by software.
1293 *
1294 *  During nominal operation, this function is called when link is acquired
1295 *  to disable ULP mode (force=false); otherwise, for example when unloading
1296 *  the driver or during Sx->S0 transitions, this is called with force=true
1297 *  to forcibly disable ULP.
1298 */
1299static s32 e1000_disable_ulp_lpt_lp(struct e1000_hw *hw, bool force)
1300{
1301	s32 ret_val = 0;
1302	u32 mac_reg;
1303	u16 phy_reg;
1304	int i = 0;
1305
1306	if ((hw->mac.type < e1000_pch_lpt) ||
1307	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_LM) ||
1308	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_V) ||
1309	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_LM2) ||
1310	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_V2) ||
1311	    (hw->dev_spec.ich8lan.ulp_state == e1000_ulp_state_off))
1312		return 0;
1313
1314	if (er32(FWSM) & E1000_ICH_FWSM_FW_VALID) {
1315		struct e1000_adapter *adapter = hw->adapter;
1316		bool firmware_bug = false;
1317
1318		if (force) {
1319			/* Request ME un-configure ULP mode in the PHY */
1320			mac_reg = er32(H2ME);
1321			mac_reg &= ~E1000_H2ME_ULP;
1322			mac_reg |= E1000_H2ME_ENFORCE_SETTINGS;
1323			ew32(H2ME, mac_reg);
1324		}
1325
1326		/* Poll up to 2.5 seconds for ME to clear ULP_CFG_DONE.
1327		 * If this takes more than 1 second, show a warning indicating a
1328		 * firmware bug
1329		 */
1330		while (er32(FWSM) & E1000_FWSM_ULP_CFG_DONE) {
1331			if (i++ == 250) {
1332				ret_val = -E1000_ERR_PHY;
1333				goto out;
1334			}
1335			if (i > 100 && !firmware_bug)
1336				firmware_bug = true;
1337
1338			usleep_range(10000, 11000);
1339		}
1340		if (firmware_bug)
1341			e_warn("ULP_CONFIG_DONE took %d msec. This is a firmware bug\n",
1342			       i * 10);
1343		else
1344			e_dbg("ULP_CONFIG_DONE cleared after %d msec\n",
1345			      i * 10);
1346
1347		if (force) {
1348			mac_reg = er32(H2ME);
1349			mac_reg &= ~E1000_H2ME_ENFORCE_SETTINGS;
1350			ew32(H2ME, mac_reg);
1351		} else {
1352			/* Clear H2ME.ULP after ME ULP configuration */
1353			mac_reg = er32(H2ME);
1354			mac_reg &= ~E1000_H2ME_ULP;
1355			ew32(H2ME, mac_reg);
1356		}
1357
1358		goto out;
1359	}
1360
1361	ret_val = hw->phy.ops.acquire(hw);
1362	if (ret_val)
1363		goto out;
1364
1365	if (force)
1366		/* Toggle LANPHYPC Value bit */
1367		e1000_toggle_lanphypc_pch_lpt(hw);
1368
1369	/* Switching PHY interface always returns MDI error
1370	 * so disable retry mechanism to avoid wasting time
1371	 */
1372	e1000e_disable_phy_retry(hw);
1373
1374	/* Unforce SMBus mode in PHY */
1375	ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL, &phy_reg);
1376	if (ret_val) {
1377		/* The MAC might be in PCIe mode, so temporarily force to
1378		 * SMBus mode in order to access the PHY.
1379		 */
1380		mac_reg = er32(CTRL_EXT);
1381		mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
1382		ew32(CTRL_EXT, mac_reg);
1383
1384		msleep(50);
1385
1386		ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL,
1387						       &phy_reg);
1388		if (ret_val)
1389			goto release;
1390	}
1391	phy_reg &= ~CV_SMB_CTRL_FORCE_SMBUS;
1392	e1000_write_phy_reg_hv_locked(hw, CV_SMB_CTRL, phy_reg);
1393
1394	e1000e_enable_phy_retry(hw);
1395
1396	/* Unforce SMBus mode in MAC */
1397	mac_reg = er32(CTRL_EXT);
1398	mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
1399	ew32(CTRL_EXT, mac_reg);
1400
1401	/* When ULP mode was previously entered, K1 was disabled by the
1402	 * hardware.  Re-Enable K1 in the PHY when exiting ULP.
1403	 */
1404	ret_val = e1000_read_phy_reg_hv_locked(hw, HV_PM_CTRL, &phy_reg);
1405	if (ret_val)
1406		goto release;
1407	phy_reg |= HV_PM_CTRL_K1_ENABLE;
1408	e1000_write_phy_reg_hv_locked(hw, HV_PM_CTRL, phy_reg);
1409
1410	/* Clear ULP enabled configuration */
1411	ret_val = e1000_read_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, &phy_reg);
1412	if (ret_val)
1413		goto release;
1414	phy_reg &= ~(I218_ULP_CONFIG1_IND |
1415		     I218_ULP_CONFIG1_STICKY_ULP |
1416		     I218_ULP_CONFIG1_RESET_TO_SMBUS |
1417		     I218_ULP_CONFIG1_WOL_HOST |
1418		     I218_ULP_CONFIG1_INBAND_EXIT |
1419		     I218_ULP_CONFIG1_EN_ULP_LANPHYPC |
1420		     I218_ULP_CONFIG1_DIS_CLR_STICKY_ON_PERST |
1421		     I218_ULP_CONFIG1_DISABLE_SMB_PERST);
1422	e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1423
1424	/* Commit ULP changes by starting auto ULP configuration */
1425	phy_reg |= I218_ULP_CONFIG1_START;
1426	e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1427
1428	/* Clear Disable SMBus Release on PERST# in MAC */
1429	mac_reg = er32(FEXTNVM7);
1430	mac_reg &= ~E1000_FEXTNVM7_DISABLE_SMB_PERST;
1431	ew32(FEXTNVM7, mac_reg);
1432
1433release:
1434	hw->phy.ops.release(hw);
1435	if (force) {
1436		e1000_phy_hw_reset(hw);
1437		msleep(50);
1438	}
1439out:
1440	if (ret_val)
1441		e_dbg("Error in ULP disable flow: %d\n", ret_val);
1442	else
1443		hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_off;
1444
1445	return ret_val;
1446}
1447
1448/**
1449 *  e1000_check_for_copper_link_ich8lan - Check for link (Copper)
1450 *  @hw: pointer to the HW structure
1451 *
1452 *  Checks to see of the link status of the hardware has changed.  If a
1453 *  change in link status has been detected, then we read the PHY registers
1454 *  to get the current speed/duplex if link exists.
1455 **/
1456static s32 e1000_check_for_copper_link_ich8lan(struct e1000_hw *hw)
1457{
1458	struct e1000_mac_info *mac = &hw->mac;
1459	s32 ret_val, tipg_reg = 0;
1460	u16 emi_addr, emi_val = 0;
1461	bool link;
1462	u16 phy_reg;
1463
1464	/* We only want to go out to the PHY registers to see if Auto-Neg
1465	 * has completed and/or if our link status has changed.  The
1466	 * get_link_status flag is set upon receiving a Link Status
1467	 * Change or Rx Sequence Error interrupt.
1468	 */
1469	if (!mac->get_link_status)
1470		return 0;
1471	mac->get_link_status = false;
1472
1473	/* First we want to see if the MII Status Register reports
1474	 * link.  If so, then we want to get the current speed/duplex
1475	 * of the PHY.
1476	 */
1477	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
1478	if (ret_val)
1479		goto out;
1480
1481	if (hw->mac.type == e1000_pchlan) {
1482		ret_val = e1000_k1_gig_workaround_hv(hw, link);
1483		if (ret_val)
1484			goto out;
1485	}
1486
1487	/* When connected at 10Mbps half-duplex, some parts are excessively
1488	 * aggressive resulting in many collisions. To avoid this, increase
1489	 * the IPG and reduce Rx latency in the PHY.
1490	 */
1491	if ((hw->mac.type >= e1000_pch2lan) && link) {
1492		u16 speed, duplex;
1493
1494		e1000e_get_speed_and_duplex_copper(hw, &speed, &duplex);
1495		tipg_reg = er32(TIPG);
1496		tipg_reg &= ~E1000_TIPG_IPGT_MASK;
1497
1498		if (duplex == HALF_DUPLEX && speed == SPEED_10) {
1499			tipg_reg |= 0xFF;
1500			/* Reduce Rx latency in analog PHY */
1501			emi_val = 0;
1502		} else if (hw->mac.type >= e1000_pch_spt &&
1503			   duplex == FULL_DUPLEX && speed != SPEED_1000) {
1504			tipg_reg |= 0xC;
1505			emi_val = 1;
1506		} else {
1507
1508			/* Roll back the default values */
1509			tipg_reg |= 0x08;
1510			emi_val = 1;
1511		}
1512
1513		ew32(TIPG, tipg_reg);
1514
1515		ret_val = hw->phy.ops.acquire(hw);
1516		if (ret_val)
1517			goto out;
1518
1519		if (hw->mac.type == e1000_pch2lan)
1520			emi_addr = I82579_RX_CONFIG;
1521		else
1522			emi_addr = I217_RX_CONFIG;
1523		ret_val = e1000_write_emi_reg_locked(hw, emi_addr, emi_val);
1524
1525		if (hw->mac.type >= e1000_pch_lpt) {
1526			u16 phy_reg;
1527
1528			e1e_rphy_locked(hw, I217_PLL_CLOCK_GATE_REG, &phy_reg);
1529			phy_reg &= ~I217_PLL_CLOCK_GATE_MASK;
1530			if (speed == SPEED_100 || speed == SPEED_10)
1531				phy_reg |= 0x3E8;
1532			else
1533				phy_reg |= 0xFA;
1534			e1e_wphy_locked(hw, I217_PLL_CLOCK_GATE_REG, phy_reg);
1535
1536			if (speed == SPEED_1000) {
1537				hw->phy.ops.read_reg_locked(hw, HV_PM_CTRL,
1538							    &phy_reg);
1539
1540				phy_reg |= HV_PM_CTRL_K1_CLK_REQ;
1541
1542				hw->phy.ops.write_reg_locked(hw, HV_PM_CTRL,
1543							     phy_reg);
1544			}
1545		}
1546		hw->phy.ops.release(hw);
1547
1548		if (ret_val)
1549			goto out;
1550
1551		if (hw->mac.type >= e1000_pch_spt) {
1552			u16 data;
1553			u16 ptr_gap;
1554
1555			if (speed == SPEED_1000) {
1556				ret_val = hw->phy.ops.acquire(hw);
1557				if (ret_val)
1558					goto out;
1559
1560				ret_val = e1e_rphy_locked(hw,
1561							  PHY_REG(776, 20),
1562							  &data);
1563				if (ret_val) {
1564					hw->phy.ops.release(hw);
1565					goto out;
1566				}
1567
1568				ptr_gap = (data & (0x3FF << 2)) >> 2;
1569				if (ptr_gap < 0x18) {
1570					data &= ~(0x3FF << 2);
1571					data |= (0x18 << 2);
1572					ret_val =
1573					    e1e_wphy_locked(hw,
1574							    PHY_REG(776, 20),
1575							    data);
1576				}
1577				hw->phy.ops.release(hw);
1578				if (ret_val)
1579					goto out;
1580			} else {
1581				ret_val = hw->phy.ops.acquire(hw);
1582				if (ret_val)
1583					goto out;
1584
1585				ret_val = e1e_wphy_locked(hw,
1586							  PHY_REG(776, 20),
1587							  0xC023);
1588				hw->phy.ops.release(hw);
1589				if (ret_val)
1590					goto out;
1591
1592			}
1593		}
1594	}
1595
1596	/* I217 Packet Loss issue:
1597	 * ensure that FEXTNVM4 Beacon Duration is set correctly
1598	 * on power up.
1599	 * Set the Beacon Duration for I217 to 8 usec
1600	 */
1601	if (hw->mac.type >= e1000_pch_lpt) {
1602		u32 mac_reg;
1603
1604		mac_reg = er32(FEXTNVM4);
1605		mac_reg &= ~E1000_FEXTNVM4_BEACON_DURATION_MASK;
1606		mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_8USEC;
1607		ew32(FEXTNVM4, mac_reg);
1608	}
1609
1610	/* Work-around I218 hang issue */
1611	if ((hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPTLP_I218_LM) ||
1612	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPTLP_I218_V) ||
1613	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_LM3) ||
1614	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_V3)) {
1615		ret_val = e1000_k1_workaround_lpt_lp(hw, link);
1616		if (ret_val)
1617			goto out;
1618	}
1619	if (hw->mac.type >= e1000_pch_lpt) {
1620		/* Set platform power management values for
1621		 * Latency Tolerance Reporting (LTR)
1622		 */
1623		ret_val = e1000_platform_pm_pch_lpt(hw, link);
1624		if (ret_val)
1625			goto out;
1626	}
1627
1628	/* Clear link partner's EEE ability */
1629	hw->dev_spec.ich8lan.eee_lp_ability = 0;
1630
1631	if (hw->mac.type >= e1000_pch_lpt) {
1632		u32 fextnvm6 = er32(FEXTNVM6);
1633
1634		if (hw->mac.type == e1000_pch_spt) {
1635			/* FEXTNVM6 K1-off workaround - for SPT only */
1636			u32 pcieanacfg = er32(PCIEANACFG);
1637
1638			if (pcieanacfg & E1000_FEXTNVM6_K1_OFF_ENABLE)
1639				fextnvm6 |= E1000_FEXTNVM6_K1_OFF_ENABLE;
1640			else
1641				fextnvm6 &= ~E1000_FEXTNVM6_K1_OFF_ENABLE;
1642		}
1643
1644		ew32(FEXTNVM6, fextnvm6);
1645	}
1646
1647	if (!link)
1648		goto out;
1649
1650	switch (hw->mac.type) {
1651	case e1000_pch2lan:
1652		ret_val = e1000_k1_workaround_lv(hw);
1653		if (ret_val)
1654			return ret_val;
1655		fallthrough;
1656	case e1000_pchlan:
1657		if (hw->phy.type == e1000_phy_82578) {
1658			ret_val = e1000_link_stall_workaround_hv(hw);
1659			if (ret_val)
1660				return ret_val;
1661		}
1662
1663		/* Workaround for PCHx parts in half-duplex:
1664		 * Set the number of preambles removed from the packet
1665		 * when it is passed from the PHY to the MAC to prevent
1666		 * the MAC from misinterpreting the packet type.
1667		 */
1668		e1e_rphy(hw, HV_KMRN_FIFO_CTRLSTA, &phy_reg);
1669		phy_reg &= ~HV_KMRN_FIFO_CTRLSTA_PREAMBLE_MASK;
1670
1671		if ((er32(STATUS) & E1000_STATUS_FD) != E1000_STATUS_FD)
1672			phy_reg |= BIT(HV_KMRN_FIFO_CTRLSTA_PREAMBLE_SHIFT);
1673
1674		e1e_wphy(hw, HV_KMRN_FIFO_CTRLSTA, phy_reg);
1675		break;
1676	default:
1677		break;
1678	}
1679
1680	/* Check if there was DownShift, must be checked
1681	 * immediately after link-up
1682	 */
1683	e1000e_check_downshift(hw);
1684
1685	/* Enable/Disable EEE after link up */
1686	if (hw->phy.type > e1000_phy_82579) {
1687		ret_val = e1000_set_eee_pchlan(hw);
1688		if (ret_val)
1689			return ret_val;
1690	}
1691
1692	/* If we are forcing speed/duplex, then we simply return since
1693	 * we have already determined whether we have link or not.
1694	 */
1695	if (!mac->autoneg)
1696		return -E1000_ERR_CONFIG;
1697
1698	/* Auto-Neg is enabled.  Auto Speed Detection takes care
1699	 * of MAC speed/duplex configuration.  So we only need to
1700	 * configure Collision Distance in the MAC.
1701	 */
1702	mac->ops.config_collision_dist(hw);
1703
1704	/* Configure Flow Control now that Auto-Neg has completed.
1705	 * First, we need to restore the desired flow control
1706	 * settings because we may have had to re-autoneg with a
1707	 * different link partner.
1708	 */
1709	ret_val = e1000e_config_fc_after_link_up(hw);
1710	if (ret_val)
1711		e_dbg("Error configuring flow control\n");
1712
1713	return ret_val;
1714
1715out:
1716	mac->get_link_status = true;
1717	return ret_val;
1718}
1719
1720static s32 e1000_get_variants_ich8lan(struct e1000_adapter *adapter)
1721{
1722	struct e1000_hw *hw = &adapter->hw;
1723	s32 rc;
1724
1725	rc = e1000_init_mac_params_ich8lan(hw);
1726	if (rc)
1727		return rc;
1728
1729	rc = e1000_init_nvm_params_ich8lan(hw);
1730	if (rc)
1731		return rc;
1732
1733	switch (hw->mac.type) {
1734	case e1000_ich8lan:
1735	case e1000_ich9lan:
1736	case e1000_ich10lan:
1737		rc = e1000_init_phy_params_ich8lan(hw);
1738		break;
1739	case e1000_pchlan:
1740	case e1000_pch2lan:
1741	case e1000_pch_lpt:
1742	case e1000_pch_spt:
1743	case e1000_pch_cnp:
1744	case e1000_pch_tgp:
1745	case e1000_pch_adp:
1746	case e1000_pch_mtp:
1747	case e1000_pch_lnp:
1748	case e1000_pch_ptp:
1749	case e1000_pch_nvp:
1750		rc = e1000_init_phy_params_pchlan(hw);
1751		break;
1752	default:
1753		break;
1754	}
1755	if (rc)
1756		return rc;
1757
1758	/* Disable Jumbo Frame support on parts with Intel 10/100 PHY or
1759	 * on parts with MACsec enabled in NVM (reflected in CTRL_EXT).
1760	 */
1761	if ((adapter->hw.phy.type == e1000_phy_ife) ||
1762	    ((adapter->hw.mac.type >= e1000_pch2lan) &&
1763	     (!(er32(CTRL_EXT) & E1000_CTRL_EXT_LSECCK)))) {
1764		adapter->flags &= ~FLAG_HAS_JUMBO_FRAMES;
1765		adapter->max_hw_frame_size = VLAN_ETH_FRAME_LEN + ETH_FCS_LEN;
1766
1767		hw->mac.ops.blink_led = NULL;
1768	}
1769
1770	if ((adapter->hw.mac.type == e1000_ich8lan) &&
1771	    (adapter->hw.phy.type != e1000_phy_ife))
1772		adapter->flags |= FLAG_LSC_GIG_SPEED_DROP;
1773
1774	/* Enable workaround for 82579 w/ ME enabled */
1775	if ((adapter->hw.mac.type == e1000_pch2lan) &&
1776	    (er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
1777		adapter->flags2 |= FLAG2_PCIM2PCI_ARBITER_WA;
1778
1779	return 0;
1780}
1781
1782static DEFINE_MUTEX(nvm_mutex);
1783
1784/**
1785 *  e1000_acquire_nvm_ich8lan - Acquire NVM mutex
1786 *  @hw: pointer to the HW structure
1787 *
1788 *  Acquires the mutex for performing NVM operations.
1789 **/
1790static s32 e1000_acquire_nvm_ich8lan(struct e1000_hw __always_unused *hw)
1791{
1792	mutex_lock(&nvm_mutex);
1793
1794	return 0;
1795}
1796
1797/**
1798 *  e1000_release_nvm_ich8lan - Release NVM mutex
1799 *  @hw: pointer to the HW structure
1800 *
1801 *  Releases the mutex used while performing NVM operations.
1802 **/
1803static void e1000_release_nvm_ich8lan(struct e1000_hw __always_unused *hw)
1804{
1805	mutex_unlock(&nvm_mutex);
1806}
1807
1808/**
1809 *  e1000_acquire_swflag_ich8lan - Acquire software control flag
1810 *  @hw: pointer to the HW structure
1811 *
1812 *  Acquires the software control flag for performing PHY and select
1813 *  MAC CSR accesses.
1814 **/
1815static s32 e1000_acquire_swflag_ich8lan(struct e1000_hw *hw)
1816{
1817	u32 extcnf_ctrl, timeout = PHY_CFG_TIMEOUT;
1818	s32 ret_val = 0;
1819
1820	if (test_and_set_bit(__E1000_ACCESS_SHARED_RESOURCE,
1821			     &hw->adapter->state)) {
1822		e_dbg("contention for Phy access\n");
1823		return -E1000_ERR_PHY;
1824	}
1825
1826	while (timeout) {
1827		extcnf_ctrl = er32(EXTCNF_CTRL);
1828		if (!(extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG))
1829			break;
1830
1831		mdelay(1);
1832		timeout--;
1833	}
1834
1835	if (!timeout) {
1836		e_dbg("SW has already locked the resource.\n");
1837		ret_val = -E1000_ERR_CONFIG;
1838		goto out;
1839	}
1840
1841	timeout = SW_FLAG_TIMEOUT;
1842
1843	extcnf_ctrl |= E1000_EXTCNF_CTRL_SWFLAG;
1844	ew32(EXTCNF_CTRL, extcnf_ctrl);
1845
1846	while (timeout) {
1847		extcnf_ctrl = er32(EXTCNF_CTRL);
1848		if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG)
1849			break;
1850
1851		mdelay(1);
1852		timeout--;
1853	}
1854
1855	if (!timeout) {
1856		e_dbg("Failed to acquire the semaphore, FW or HW has it: FWSM=0x%8.8x EXTCNF_CTRL=0x%8.8x)\n",
1857		      er32(FWSM), extcnf_ctrl);
1858		extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
1859		ew32(EXTCNF_CTRL, extcnf_ctrl);
1860		ret_val = -E1000_ERR_CONFIG;
1861		goto out;
1862	}
1863
1864out:
1865	if (ret_val)
1866		clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
1867
1868	return ret_val;
1869}
1870
1871/**
1872 *  e1000_release_swflag_ich8lan - Release software control flag
1873 *  @hw: pointer to the HW structure
1874 *
1875 *  Releases the software control flag for performing PHY and select
1876 *  MAC CSR accesses.
1877 **/
1878static void e1000_release_swflag_ich8lan(struct e1000_hw *hw)
1879{
1880	u32 extcnf_ctrl;
1881
1882	extcnf_ctrl = er32(EXTCNF_CTRL);
1883
1884	if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG) {
1885		extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
1886		ew32(EXTCNF_CTRL, extcnf_ctrl);
1887	} else {
1888		e_dbg("Semaphore unexpectedly released by sw/fw/hw\n");
1889	}
1890
1891	clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
1892}
1893
1894/**
1895 *  e1000_check_mng_mode_ich8lan - Checks management mode
1896 *  @hw: pointer to the HW structure
1897 *
1898 *  This checks if the adapter has any manageability enabled.
1899 *  This is a function pointer entry point only called by read/write
1900 *  routines for the PHY and NVM parts.
1901 **/
1902static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw)
1903{
1904	u32 fwsm;
1905
1906	fwsm = er32(FWSM);
1907	return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
1908		((fwsm & E1000_FWSM_MODE_MASK) ==
1909		 (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
1910}
1911
1912/**
1913 *  e1000_check_mng_mode_pchlan - Checks management mode
1914 *  @hw: pointer to the HW structure
1915 *
1916 *  This checks if the adapter has iAMT enabled.
1917 *  This is a function pointer entry point only called by read/write
1918 *  routines for the PHY and NVM parts.
1919 **/
1920static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw)
1921{
1922	u32 fwsm;
1923
1924	fwsm = er32(FWSM);
1925	return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
1926	    (fwsm & (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
1927}
1928
1929/**
1930 *  e1000_rar_set_pch2lan - Set receive address register
1931 *  @hw: pointer to the HW structure
1932 *  @addr: pointer to the receive address
1933 *  @index: receive address array register
1934 *
1935 *  Sets the receive address array register at index to the address passed
1936 *  in by addr.  For 82579, RAR[0] is the base address register that is to
1937 *  contain the MAC address but RAR[1-6] are reserved for manageability (ME).
1938 *  Use SHRA[0-3] in place of those reserved for ME.
1939 **/
1940static int e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index)
1941{
1942	u32 rar_low, rar_high;
1943
1944	/* HW expects these in little endian so we reverse the byte order
1945	 * from network order (big endian) to little endian
1946	 */
1947	rar_low = ((u32)addr[0] |
1948		   ((u32)addr[1] << 8) |
1949		   ((u32)addr[2] << 16) | ((u32)addr[3] << 24));
1950
1951	rar_high = ((u32)addr[4] | ((u32)addr[5] << 8));
1952
1953	/* If MAC address zero, no need to set the AV bit */
1954	if (rar_low || rar_high)
1955		rar_high |= E1000_RAH_AV;
1956
1957	if (index == 0) {
1958		ew32(RAL(index), rar_low);
1959		e1e_flush();
1960		ew32(RAH(index), rar_high);
1961		e1e_flush();
1962		return 0;
1963	}
1964
1965	/* RAR[1-6] are owned by manageability.  Skip those and program the
1966	 * next address into the SHRA register array.
1967	 */
1968	if (index < (u32)(hw->mac.rar_entry_count)) {
1969		s32 ret_val;
1970
1971		ret_val = e1000_acquire_swflag_ich8lan(hw);
1972		if (ret_val)
1973			goto out;
1974
1975		ew32(SHRAL(index - 1), rar_low);
1976		e1e_flush();
1977		ew32(SHRAH(index - 1), rar_high);
1978		e1e_flush();
1979
1980		e1000_release_swflag_ich8lan(hw);
1981
1982		/* verify the register updates */
1983		if ((er32(SHRAL(index - 1)) == rar_low) &&
1984		    (er32(SHRAH(index - 1)) == rar_high))
1985			return 0;
1986
1987		e_dbg("SHRA[%d] might be locked by ME - FWSM=0x%8.8x\n",
1988		      (index - 1), er32(FWSM));
1989	}
1990
1991out:
1992	e_dbg("Failed to write receive address at index %d\n", index);
1993	return -E1000_ERR_CONFIG;
1994}
1995
1996/**
1997 *  e1000_rar_get_count_pch_lpt - Get the number of available SHRA
1998 *  @hw: pointer to the HW structure
1999 *
2000 *  Get the number of available receive registers that the Host can
2001 *  program. SHRA[0-10] are the shared receive address registers
2002 *  that are shared between the Host and manageability engine (ME).
2003 *  ME can reserve any number of addresses and the host needs to be
2004 *  able to tell how many available registers it has access to.
2005 **/
2006static u32 e1000_rar_get_count_pch_lpt(struct e1000_hw *hw)
2007{
2008	u32 wlock_mac;
2009	u32 num_entries;
2010
2011	wlock_mac = er32(FWSM) & E1000_FWSM_WLOCK_MAC_MASK;
2012	wlock_mac >>= E1000_FWSM_WLOCK_MAC_SHIFT;
2013
2014	switch (wlock_mac) {
2015	case 0:
2016		/* All SHRA[0..10] and RAR[0] available */
2017		num_entries = hw->mac.rar_entry_count;
2018		break;
2019	case 1:
2020		/* Only RAR[0] available */
2021		num_entries = 1;
2022		break;
2023	default:
2024		/* SHRA[0..(wlock_mac - 1)] available + RAR[0] */
2025		num_entries = wlock_mac + 1;
2026		break;
2027	}
2028
2029	return num_entries;
2030}
2031
2032/**
2033 *  e1000_rar_set_pch_lpt - Set receive address registers
2034 *  @hw: pointer to the HW structure
2035 *  @addr: pointer to the receive address
2036 *  @index: receive address array register
2037 *
2038 *  Sets the receive address register array at index to the address passed
2039 *  in by addr. For LPT, RAR[0] is the base address register that is to
2040 *  contain the MAC address. SHRA[0-10] are the shared receive address
2041 *  registers that are shared between the Host and manageability engine (ME).
2042 **/
2043static int e1000_rar_set_pch_lpt(struct e1000_hw *hw, u8 *addr, u32 index)
2044{
2045	u32 rar_low, rar_high;
2046	u32 wlock_mac;
2047
2048	/* HW expects these in little endian so we reverse the byte order
2049	 * from network order (big endian) to little endian
2050	 */
2051	rar_low = ((u32)addr[0] | ((u32)addr[1] << 8) |
2052		   ((u32)addr[2] << 16) | ((u32)addr[3] << 24));
2053
2054	rar_high = ((u32)addr[4] | ((u32)addr[5] << 8));
2055
2056	/* If MAC address zero, no need to set the AV bit */
2057	if (rar_low || rar_high)
2058		rar_high |= E1000_RAH_AV;
2059
2060	if (index == 0) {
2061		ew32(RAL(index), rar_low);
2062		e1e_flush();
2063		ew32(RAH(index), rar_high);
2064		e1e_flush();
2065		return 0;
2066	}
2067
2068	/* The manageability engine (ME) can lock certain SHRAR registers that
2069	 * it is using - those registers are unavailable for use.
2070	 */
2071	if (index < hw->mac.rar_entry_count) {
2072		wlock_mac = er32(FWSM) & E1000_FWSM_WLOCK_MAC_MASK;
2073		wlock_mac >>= E1000_FWSM_WLOCK_MAC_SHIFT;
2074
2075		/* Check if all SHRAR registers are locked */
2076		if (wlock_mac == 1)
2077			goto out;
2078
2079		if ((wlock_mac == 0) || (index <= wlock_mac)) {
2080			s32 ret_val;
2081
2082			ret_val = e1000_acquire_swflag_ich8lan(hw);
2083
2084			if (ret_val)
2085				goto out;
2086
2087			ew32(SHRAL_PCH_LPT(index - 1), rar_low);
2088			e1e_flush();
2089			ew32(SHRAH_PCH_LPT(index - 1), rar_high);
2090			e1e_flush();
2091
2092			e1000_release_swflag_ich8lan(hw);
2093
2094			/* verify the register updates */
2095			if ((er32(SHRAL_PCH_LPT(index - 1)) == rar_low) &&
2096			    (er32(SHRAH_PCH_LPT(index - 1)) == rar_high))
2097				return 0;
2098		}
2099	}
2100
2101out:
2102	e_dbg("Failed to write receive address at index %d\n", index);
2103	return -E1000_ERR_CONFIG;
2104}
2105
2106/**
2107 *  e1000_check_reset_block_ich8lan - Check if PHY reset is blocked
2108 *  @hw: pointer to the HW structure
2109 *
2110 *  Checks if firmware is blocking the reset of the PHY.
2111 *  This is a function pointer entry point only called by
2112 *  reset routines.
2113 **/
2114static s32 e1000_check_reset_block_ich8lan(struct e1000_hw *hw)
2115{
2116	bool blocked = false;
2117	int i = 0;
2118
2119	while ((blocked = !(er32(FWSM) & E1000_ICH_FWSM_RSPCIPHY)) &&
2120	       (i++ < 30))
2121		usleep_range(10000, 11000);
2122	return blocked ? E1000_BLK_PHY_RESET : 0;
2123}
2124
2125/**
2126 *  e1000_write_smbus_addr - Write SMBus address to PHY needed during Sx states
2127 *  @hw: pointer to the HW structure
2128 *
2129 *  Assumes semaphore already acquired.
2130 *
2131 **/
2132static s32 e1000_write_smbus_addr(struct e1000_hw *hw)
2133{
2134	u16 phy_data;
2135	u32 strap = er32(STRAP);
2136	u32 freq = FIELD_GET(E1000_STRAP_SMT_FREQ_MASK, strap);
 
2137	s32 ret_val;
2138
2139	strap &= E1000_STRAP_SMBUS_ADDRESS_MASK;
2140
2141	ret_val = e1000_read_phy_reg_hv_locked(hw, HV_SMB_ADDR, &phy_data);
2142	if (ret_val)
2143		return ret_val;
2144
2145	phy_data &= ~HV_SMB_ADDR_MASK;
2146	phy_data |= (strap >> E1000_STRAP_SMBUS_ADDRESS_SHIFT);
2147	phy_data |= HV_SMB_ADDR_PEC_EN | HV_SMB_ADDR_VALID;
2148
2149	if (hw->phy.type == e1000_phy_i217) {
2150		/* Restore SMBus frequency */
2151		if (freq--) {
2152			phy_data &= ~HV_SMB_ADDR_FREQ_MASK;
2153			phy_data |= (freq & BIT(0)) <<
2154			    HV_SMB_ADDR_FREQ_LOW_SHIFT;
2155			phy_data |= (freq & BIT(1)) <<
2156			    (HV_SMB_ADDR_FREQ_HIGH_SHIFT - 1);
2157		} else {
2158			e_dbg("Unsupported SMB frequency in PHY\n");
2159		}
2160	}
2161
2162	return e1000_write_phy_reg_hv_locked(hw, HV_SMB_ADDR, phy_data);
2163}
2164
2165/**
2166 *  e1000_sw_lcd_config_ich8lan - SW-based LCD Configuration
2167 *  @hw:   pointer to the HW structure
2168 *
2169 *  SW should configure the LCD from the NVM extended configuration region
2170 *  as a workaround for certain parts.
2171 **/
2172static s32 e1000_sw_lcd_config_ich8lan(struct e1000_hw *hw)
2173{
2174	struct e1000_phy_info *phy = &hw->phy;
2175	u32 i, data, cnf_size, cnf_base_addr, sw_cfg_mask;
2176	s32 ret_val = 0;
2177	u16 word_addr, reg_data, reg_addr, phy_page = 0;
2178
2179	/* Initialize the PHY from the NVM on ICH platforms.  This
2180	 * is needed due to an issue where the NVM configuration is
2181	 * not properly autoloaded after power transitions.
2182	 * Therefore, after each PHY reset, we will load the
2183	 * configuration data out of the NVM manually.
2184	 */
2185	switch (hw->mac.type) {
2186	case e1000_ich8lan:
2187		if (phy->type != e1000_phy_igp_3)
2188			return ret_val;
2189
2190		if ((hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_AMT) ||
2191		    (hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_C)) {
2192			sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG;
2193			break;
2194		}
2195		fallthrough;
2196	case e1000_pchlan:
2197	case e1000_pch2lan:
2198	case e1000_pch_lpt:
2199	case e1000_pch_spt:
2200	case e1000_pch_cnp:
2201	case e1000_pch_tgp:
2202	case e1000_pch_adp:
2203	case e1000_pch_mtp:
2204	case e1000_pch_lnp:
2205	case e1000_pch_ptp:
2206	case e1000_pch_nvp:
2207		sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG_ICH8M;
2208		break;
2209	default:
2210		return ret_val;
2211	}
2212
2213	ret_val = hw->phy.ops.acquire(hw);
2214	if (ret_val)
2215		return ret_val;
2216
2217	data = er32(FEXTNVM);
2218	if (!(data & sw_cfg_mask))
2219		goto release;
2220
2221	/* Make sure HW does not configure LCD from PHY
2222	 * extended configuration before SW configuration
2223	 */
2224	data = er32(EXTCNF_CTRL);
2225	if ((hw->mac.type < e1000_pch2lan) &&
2226	    (data & E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE))
2227		goto release;
2228
2229	cnf_size = er32(EXTCNF_SIZE);
2230	cnf_size &= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_MASK;
2231	cnf_size >>= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_SHIFT;
2232	if (!cnf_size)
2233		goto release;
2234
2235	cnf_base_addr = data & E1000_EXTCNF_CTRL_EXT_CNF_POINTER_MASK;
2236	cnf_base_addr >>= E1000_EXTCNF_CTRL_EXT_CNF_POINTER_SHIFT;
2237
2238	if (((hw->mac.type == e1000_pchlan) &&
2239	     !(data & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)) ||
2240	    (hw->mac.type > e1000_pchlan)) {
2241		/* HW configures the SMBus address and LEDs when the
2242		 * OEM and LCD Write Enable bits are set in the NVM.
2243		 * When both NVM bits are cleared, SW will configure
2244		 * them instead.
2245		 */
2246		ret_val = e1000_write_smbus_addr(hw);
2247		if (ret_val)
2248			goto release;
2249
2250		data = er32(LEDCTL);
2251		ret_val = e1000_write_phy_reg_hv_locked(hw, HV_LED_CONFIG,
2252							(u16)data);
2253		if (ret_val)
2254			goto release;
2255	}
2256
2257	/* Configure LCD from extended configuration region. */
2258
2259	/* cnf_base_addr is in DWORD */
2260	word_addr = (u16)(cnf_base_addr << 1);
2261
2262	for (i = 0; i < cnf_size; i++) {
2263		ret_val = e1000_read_nvm(hw, (word_addr + i * 2), 1, &reg_data);
2264		if (ret_val)
2265			goto release;
2266
2267		ret_val = e1000_read_nvm(hw, (word_addr + i * 2 + 1),
2268					 1, &reg_addr);
2269		if (ret_val)
2270			goto release;
2271
2272		/* Save off the PHY page for future writes. */
2273		if (reg_addr == IGP01E1000_PHY_PAGE_SELECT) {
2274			phy_page = reg_data;
2275			continue;
2276		}
2277
2278		reg_addr &= PHY_REG_MASK;
2279		reg_addr |= phy_page;
2280
2281		ret_val = e1e_wphy_locked(hw, (u32)reg_addr, reg_data);
2282		if (ret_val)
2283			goto release;
2284	}
2285
2286release:
2287	hw->phy.ops.release(hw);
2288	return ret_val;
2289}
2290
2291/**
2292 *  e1000_k1_gig_workaround_hv - K1 Si workaround
2293 *  @hw:   pointer to the HW structure
2294 *  @link: link up bool flag
2295 *
2296 *  If K1 is enabled for 1Gbps, the MAC might stall when transitioning
2297 *  from a lower speed.  This workaround disables K1 whenever link is at 1Gig
2298 *  If link is down, the function will restore the default K1 setting located
2299 *  in the NVM.
2300 **/
2301static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link)
2302{
2303	s32 ret_val = 0;
2304	u16 status_reg = 0;
2305	bool k1_enable = hw->dev_spec.ich8lan.nvm_k1_enabled;
2306
2307	if (hw->mac.type != e1000_pchlan)
2308		return 0;
2309
2310	/* Wrap the whole flow with the sw flag */
2311	ret_val = hw->phy.ops.acquire(hw);
2312	if (ret_val)
2313		return ret_val;
2314
2315	/* Disable K1 when link is 1Gbps, otherwise use the NVM setting */
2316	if (link) {
2317		if (hw->phy.type == e1000_phy_82578) {
2318			ret_val = e1e_rphy_locked(hw, BM_CS_STATUS,
2319						  &status_reg);
2320			if (ret_val)
2321				goto release;
2322
2323			status_reg &= (BM_CS_STATUS_LINK_UP |
2324				       BM_CS_STATUS_RESOLVED |
2325				       BM_CS_STATUS_SPEED_MASK);
2326
2327			if (status_reg == (BM_CS_STATUS_LINK_UP |
2328					   BM_CS_STATUS_RESOLVED |
2329					   BM_CS_STATUS_SPEED_1000))
2330				k1_enable = false;
2331		}
2332
2333		if (hw->phy.type == e1000_phy_82577) {
2334			ret_val = e1e_rphy_locked(hw, HV_M_STATUS, &status_reg);
2335			if (ret_val)
2336				goto release;
2337
2338			status_reg &= (HV_M_STATUS_LINK_UP |
2339				       HV_M_STATUS_AUTONEG_COMPLETE |
2340				       HV_M_STATUS_SPEED_MASK);
2341
2342			if (status_reg == (HV_M_STATUS_LINK_UP |
2343					   HV_M_STATUS_AUTONEG_COMPLETE |
2344					   HV_M_STATUS_SPEED_1000))
2345				k1_enable = false;
2346		}
2347
2348		/* Link stall fix for link up */
2349		ret_val = e1e_wphy_locked(hw, PHY_REG(770, 19), 0x0100);
2350		if (ret_val)
2351			goto release;
2352
2353	} else {
2354		/* Link stall fix for link down */
2355		ret_val = e1e_wphy_locked(hw, PHY_REG(770, 19), 0x4100);
2356		if (ret_val)
2357			goto release;
2358	}
2359
2360	ret_val = e1000_configure_k1_ich8lan(hw, k1_enable);
2361
2362release:
2363	hw->phy.ops.release(hw);
2364
2365	return ret_val;
2366}
2367
2368/**
2369 *  e1000_configure_k1_ich8lan - Configure K1 power state
2370 *  @hw: pointer to the HW structure
2371 *  @k1_enable: K1 state to configure
2372 *
2373 *  Configure the K1 power state based on the provided parameter.
2374 *  Assumes semaphore already acquired.
2375 *
2376 *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
2377 **/
2378s32 e1000_configure_k1_ich8lan(struct e1000_hw *hw, bool k1_enable)
2379{
2380	s32 ret_val;
2381	u32 ctrl_reg = 0;
2382	u32 ctrl_ext = 0;
2383	u32 reg = 0;
2384	u16 kmrn_reg = 0;
2385
2386	ret_val = e1000e_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
2387					      &kmrn_reg);
2388	if (ret_val)
2389		return ret_val;
2390
2391	if (k1_enable)
2392		kmrn_reg |= E1000_KMRNCTRLSTA_K1_ENABLE;
2393	else
2394		kmrn_reg &= ~E1000_KMRNCTRLSTA_K1_ENABLE;
2395
2396	ret_val = e1000e_write_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
2397					       kmrn_reg);
2398	if (ret_val)
2399		return ret_val;
2400
2401	usleep_range(20, 40);
2402	ctrl_ext = er32(CTRL_EXT);
2403	ctrl_reg = er32(CTRL);
2404
2405	reg = ctrl_reg & ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
2406	reg |= E1000_CTRL_FRCSPD;
2407	ew32(CTRL, reg);
2408
2409	ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_SPD_BYPS);
2410	e1e_flush();
2411	usleep_range(20, 40);
2412	ew32(CTRL, ctrl_reg);
2413	ew32(CTRL_EXT, ctrl_ext);
2414	e1e_flush();
2415	usleep_range(20, 40);
2416
2417	return 0;
2418}
2419
2420/**
2421 *  e1000_oem_bits_config_ich8lan - SW-based LCD Configuration
2422 *  @hw:       pointer to the HW structure
2423 *  @d0_state: boolean if entering d0 or d3 device state
2424 *
2425 *  SW will configure Gbe Disable and LPLU based on the NVM. The four bits are
2426 *  collectively called OEM bits.  The OEM Write Enable bit and SW Config bit
2427 *  in NVM determines whether HW should configure LPLU and Gbe Disable.
2428 **/
2429static s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state)
2430{
2431	s32 ret_val = 0;
2432	u32 mac_reg;
2433	u16 oem_reg;
2434
2435	if (hw->mac.type < e1000_pchlan)
2436		return ret_val;
2437
2438	ret_val = hw->phy.ops.acquire(hw);
2439	if (ret_val)
2440		return ret_val;
2441
2442	if (hw->mac.type == e1000_pchlan) {
2443		mac_reg = er32(EXTCNF_CTRL);
2444		if (mac_reg & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)
2445			goto release;
2446	}
2447
2448	mac_reg = er32(FEXTNVM);
2449	if (!(mac_reg & E1000_FEXTNVM_SW_CONFIG_ICH8M))
2450		goto release;
2451
2452	mac_reg = er32(PHY_CTRL);
2453
2454	ret_val = e1e_rphy_locked(hw, HV_OEM_BITS, &oem_reg);
2455	if (ret_val)
2456		goto release;
2457
2458	oem_reg &= ~(HV_OEM_BITS_GBE_DIS | HV_OEM_BITS_LPLU);
2459
2460	if (d0_state) {
2461		if (mac_reg & E1000_PHY_CTRL_GBE_DISABLE)
2462			oem_reg |= HV_OEM_BITS_GBE_DIS;
2463
2464		if (mac_reg & E1000_PHY_CTRL_D0A_LPLU)
2465			oem_reg |= HV_OEM_BITS_LPLU;
2466	} else {
2467		if (mac_reg & (E1000_PHY_CTRL_GBE_DISABLE |
2468			       E1000_PHY_CTRL_NOND0A_GBE_DISABLE))
2469			oem_reg |= HV_OEM_BITS_GBE_DIS;
2470
2471		if (mac_reg & (E1000_PHY_CTRL_D0A_LPLU |
2472			       E1000_PHY_CTRL_NOND0A_LPLU))
2473			oem_reg |= HV_OEM_BITS_LPLU;
2474	}
2475
2476	/* Set Restart auto-neg to activate the bits */
2477	if ((d0_state || (hw->mac.type != e1000_pchlan)) &&
2478	    !hw->phy.ops.check_reset_block(hw))
2479		oem_reg |= HV_OEM_BITS_RESTART_AN;
2480
2481	ret_val = e1e_wphy_locked(hw, HV_OEM_BITS, oem_reg);
2482
2483release:
2484	hw->phy.ops.release(hw);
2485
2486	return ret_val;
2487}
2488
2489/**
2490 *  e1000_set_mdio_slow_mode_hv - Set slow MDIO access mode
2491 *  @hw:   pointer to the HW structure
2492 **/
2493static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw)
2494{
2495	s32 ret_val;
2496	u16 data;
2497
2498	ret_val = e1e_rphy(hw, HV_KMRN_MODE_CTRL, &data);
2499	if (ret_val)
2500		return ret_val;
2501
2502	data |= HV_KMRN_MDIO_SLOW;
2503
2504	ret_val = e1e_wphy(hw, HV_KMRN_MODE_CTRL, data);
2505
2506	return ret_val;
2507}
2508
2509/**
2510 *  e1000_hv_phy_workarounds_ich8lan - apply PHY workarounds
2511 *  @hw: pointer to the HW structure
2512 *
2513 *  A series of PHY workarounds to be done after every PHY reset.
2514 **/
2515static s32 e1000_hv_phy_workarounds_ich8lan(struct e1000_hw *hw)
2516{
2517	s32 ret_val = 0;
2518	u16 phy_data;
2519
2520	if (hw->mac.type != e1000_pchlan)
2521		return 0;
2522
2523	/* Set MDIO slow mode before any other MDIO access */
2524	if (hw->phy.type == e1000_phy_82577) {
2525		ret_val = e1000_set_mdio_slow_mode_hv(hw);
2526		if (ret_val)
2527			return ret_val;
2528	}
2529
2530	if (((hw->phy.type == e1000_phy_82577) &&
2531	     ((hw->phy.revision == 1) || (hw->phy.revision == 2))) ||
2532	    ((hw->phy.type == e1000_phy_82578) && (hw->phy.revision == 1))) {
2533		/* Disable generation of early preamble */
2534		ret_val = e1e_wphy(hw, PHY_REG(769, 25), 0x4431);
2535		if (ret_val)
2536			return ret_val;
2537
2538		/* Preamble tuning for SSC */
2539		ret_val = e1e_wphy(hw, HV_KMRN_FIFO_CTRLSTA, 0xA204);
2540		if (ret_val)
2541			return ret_val;
2542	}
2543
2544	if (hw->phy.type == e1000_phy_82578) {
2545		/* Return registers to default by doing a soft reset then
2546		 * writing 0x3140 to the control register.
2547		 */
2548		if (hw->phy.revision < 2) {
2549			e1000e_phy_sw_reset(hw);
2550			ret_val = e1e_wphy(hw, MII_BMCR, 0x3140);
2551			if (ret_val)
2552				return ret_val;
2553		}
2554	}
2555
2556	/* Select page 0 */
2557	ret_val = hw->phy.ops.acquire(hw);
2558	if (ret_val)
2559		return ret_val;
2560
2561	hw->phy.addr = 1;
2562	ret_val = e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, 0);
2563	hw->phy.ops.release(hw);
2564	if (ret_val)
2565		return ret_val;
2566
2567	/* Configure the K1 Si workaround during phy reset assuming there is
2568	 * link so that it disables K1 if link is in 1Gbps.
2569	 */
2570	ret_val = e1000_k1_gig_workaround_hv(hw, true);
2571	if (ret_val)
2572		return ret_val;
2573
2574	/* Workaround for link disconnects on a busy hub in half duplex */
2575	ret_val = hw->phy.ops.acquire(hw);
2576	if (ret_val)
2577		return ret_val;
2578	ret_val = e1e_rphy_locked(hw, BM_PORT_GEN_CFG, &phy_data);
2579	if (ret_val)
2580		goto release;
2581	ret_val = e1e_wphy_locked(hw, BM_PORT_GEN_CFG, phy_data & 0x00FF);
2582	if (ret_val)
2583		goto release;
2584
2585	/* set MSE higher to enable link to stay up when noise is high */
2586	ret_val = e1000_write_emi_reg_locked(hw, I82577_MSE_THRESHOLD, 0x0034);
2587release:
2588	hw->phy.ops.release(hw);
2589
2590	return ret_val;
2591}
2592
2593/**
2594 *  e1000_copy_rx_addrs_to_phy_ich8lan - Copy Rx addresses from MAC to PHY
2595 *  @hw:   pointer to the HW structure
2596 **/
2597void e1000_copy_rx_addrs_to_phy_ich8lan(struct e1000_hw *hw)
2598{
2599	u32 mac_reg;
2600	u16 i, phy_reg = 0;
2601	s32 ret_val;
2602
2603	ret_val = hw->phy.ops.acquire(hw);
2604	if (ret_val)
2605		return;
2606	ret_val = e1000_enable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2607	if (ret_val)
2608		goto release;
2609
2610	/* Copy both RAL/H (rar_entry_count) and SHRAL/H to PHY */
2611	for (i = 0; i < (hw->mac.rar_entry_count); i++) {
2612		mac_reg = er32(RAL(i));
2613		hw->phy.ops.write_reg_page(hw, BM_RAR_L(i),
2614					   (u16)(mac_reg & 0xFFFF));
2615		hw->phy.ops.write_reg_page(hw, BM_RAR_M(i),
2616					   (u16)((mac_reg >> 16) & 0xFFFF));
2617
2618		mac_reg = er32(RAH(i));
2619		hw->phy.ops.write_reg_page(hw, BM_RAR_H(i),
2620					   (u16)(mac_reg & 0xFFFF));
2621		hw->phy.ops.write_reg_page(hw, BM_RAR_CTRL(i),
2622					   (u16)((mac_reg & E1000_RAH_AV) >> 16));
 
2623	}
2624
2625	e1000_disable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2626
2627release:
2628	hw->phy.ops.release(hw);
2629}
2630
2631/**
2632 *  e1000_lv_jumbo_workaround_ich8lan - required for jumbo frame operation
2633 *  with 82579 PHY
2634 *  @hw: pointer to the HW structure
2635 *  @enable: flag to enable/disable workaround when enabling/disabling jumbos
2636 **/
2637s32 e1000_lv_jumbo_workaround_ich8lan(struct e1000_hw *hw, bool enable)
2638{
2639	s32 ret_val = 0;
2640	u16 phy_reg, data;
2641	u32 mac_reg;
2642	u16 i;
2643
2644	if (hw->mac.type < e1000_pch2lan)
2645		return 0;
2646
2647	/* disable Rx path while enabling/disabling workaround */
2648	e1e_rphy(hw, PHY_REG(769, 20), &phy_reg);
2649	ret_val = e1e_wphy(hw, PHY_REG(769, 20), phy_reg | BIT(14));
2650	if (ret_val)
2651		return ret_val;
2652
2653	if (enable) {
2654		/* Write Rx addresses (rar_entry_count for RAL/H, and
2655		 * SHRAL/H) and initial CRC values to the MAC
2656		 */
2657		for (i = 0; i < hw->mac.rar_entry_count; i++) {
2658			u8 mac_addr[ETH_ALEN] = { 0 };
2659			u32 addr_high, addr_low;
2660
2661			addr_high = er32(RAH(i));
2662			if (!(addr_high & E1000_RAH_AV))
2663				continue;
2664			addr_low = er32(RAL(i));
2665			mac_addr[0] = (addr_low & 0xFF);
2666			mac_addr[1] = ((addr_low >> 8) & 0xFF);
2667			mac_addr[2] = ((addr_low >> 16) & 0xFF);
2668			mac_addr[3] = ((addr_low >> 24) & 0xFF);
2669			mac_addr[4] = (addr_high & 0xFF);
2670			mac_addr[5] = ((addr_high >> 8) & 0xFF);
2671
2672			ew32(PCH_RAICC(i), ~ether_crc_le(ETH_ALEN, mac_addr));
2673		}
2674
2675		/* Write Rx addresses to the PHY */
2676		e1000_copy_rx_addrs_to_phy_ich8lan(hw);
2677
2678		/* Enable jumbo frame workaround in the MAC */
2679		mac_reg = er32(FFLT_DBG);
2680		mac_reg &= ~BIT(14);
2681		mac_reg |= (7 << 15);
2682		ew32(FFLT_DBG, mac_reg);
2683
2684		mac_reg = er32(RCTL);
2685		mac_reg |= E1000_RCTL_SECRC;
2686		ew32(RCTL, mac_reg);
2687
2688		ret_val = e1000e_read_kmrn_reg(hw,
2689					       E1000_KMRNCTRLSTA_CTRL_OFFSET,
2690					       &data);
2691		if (ret_val)
2692			return ret_val;
2693		ret_val = e1000e_write_kmrn_reg(hw,
2694						E1000_KMRNCTRLSTA_CTRL_OFFSET,
2695						data | BIT(0));
2696		if (ret_val)
2697			return ret_val;
2698		ret_val = e1000e_read_kmrn_reg(hw,
2699					       E1000_KMRNCTRLSTA_HD_CTRL,
2700					       &data);
2701		if (ret_val)
2702			return ret_val;
2703		data &= ~(0xF << 8);
2704		data |= (0xB << 8);
2705		ret_val = e1000e_write_kmrn_reg(hw,
2706						E1000_KMRNCTRLSTA_HD_CTRL,
2707						data);
2708		if (ret_val)
2709			return ret_val;
2710
2711		/* Enable jumbo frame workaround in the PHY */
2712		e1e_rphy(hw, PHY_REG(769, 23), &data);
2713		data &= ~(0x7F << 5);
2714		data |= (0x37 << 5);
2715		ret_val = e1e_wphy(hw, PHY_REG(769, 23), data);
2716		if (ret_val)
2717			return ret_val;
2718		e1e_rphy(hw, PHY_REG(769, 16), &data);
2719		data &= ~BIT(13);
2720		ret_val = e1e_wphy(hw, PHY_REG(769, 16), data);
2721		if (ret_val)
2722			return ret_val;
2723		e1e_rphy(hw, PHY_REG(776, 20), &data);
2724		data &= ~(0x3FF << 2);
2725		data |= (E1000_TX_PTR_GAP << 2);
2726		ret_val = e1e_wphy(hw, PHY_REG(776, 20), data);
2727		if (ret_val)
2728			return ret_val;
2729		ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0xF100);
2730		if (ret_val)
2731			return ret_val;
2732		e1e_rphy(hw, HV_PM_CTRL, &data);
2733		ret_val = e1e_wphy(hw, HV_PM_CTRL, data | BIT(10));
2734		if (ret_val)
2735			return ret_val;
2736	} else {
2737		/* Write MAC register values back to h/w defaults */
2738		mac_reg = er32(FFLT_DBG);
2739		mac_reg &= ~(0xF << 14);
2740		ew32(FFLT_DBG, mac_reg);
2741
2742		mac_reg = er32(RCTL);
2743		mac_reg &= ~E1000_RCTL_SECRC;
2744		ew32(RCTL, mac_reg);
2745
2746		ret_val = e1000e_read_kmrn_reg(hw,
2747					       E1000_KMRNCTRLSTA_CTRL_OFFSET,
2748					       &data);
2749		if (ret_val)
2750			return ret_val;
2751		ret_val = e1000e_write_kmrn_reg(hw,
2752						E1000_KMRNCTRLSTA_CTRL_OFFSET,
2753						data & ~BIT(0));
2754		if (ret_val)
2755			return ret_val;
2756		ret_val = e1000e_read_kmrn_reg(hw,
2757					       E1000_KMRNCTRLSTA_HD_CTRL,
2758					       &data);
2759		if (ret_val)
2760			return ret_val;
2761		data &= ~(0xF << 8);
2762		data |= (0xB << 8);
2763		ret_val = e1000e_write_kmrn_reg(hw,
2764						E1000_KMRNCTRLSTA_HD_CTRL,
2765						data);
2766		if (ret_val)
2767			return ret_val;
2768
2769		/* Write PHY register values back to h/w defaults */
2770		e1e_rphy(hw, PHY_REG(769, 23), &data);
2771		data &= ~(0x7F << 5);
2772		ret_val = e1e_wphy(hw, PHY_REG(769, 23), data);
2773		if (ret_val)
2774			return ret_val;
2775		e1e_rphy(hw, PHY_REG(769, 16), &data);
2776		data |= BIT(13);
2777		ret_val = e1e_wphy(hw, PHY_REG(769, 16), data);
2778		if (ret_val)
2779			return ret_val;
2780		e1e_rphy(hw, PHY_REG(776, 20), &data);
2781		data &= ~(0x3FF << 2);
2782		data |= (0x8 << 2);
2783		ret_val = e1e_wphy(hw, PHY_REG(776, 20), data);
2784		if (ret_val)
2785			return ret_val;
2786		ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0x7E00);
2787		if (ret_val)
2788			return ret_val;
2789		e1e_rphy(hw, HV_PM_CTRL, &data);
2790		ret_val = e1e_wphy(hw, HV_PM_CTRL, data & ~BIT(10));
2791		if (ret_val)
2792			return ret_val;
2793	}
2794
2795	/* re-enable Rx path after enabling/disabling workaround */
2796	return e1e_wphy(hw, PHY_REG(769, 20), phy_reg & ~BIT(14));
2797}
2798
2799/**
2800 *  e1000_lv_phy_workarounds_ich8lan - apply ich8 specific workarounds
2801 *  @hw: pointer to the HW structure
2802 *
2803 *  A series of PHY workarounds to be done after every PHY reset.
2804 **/
2805static s32 e1000_lv_phy_workarounds_ich8lan(struct e1000_hw *hw)
2806{
2807	s32 ret_val = 0;
2808
2809	if (hw->mac.type != e1000_pch2lan)
2810		return 0;
2811
2812	/* Set MDIO slow mode before any other MDIO access */
2813	ret_val = e1000_set_mdio_slow_mode_hv(hw);
2814	if (ret_val)
2815		return ret_val;
2816
2817	ret_val = hw->phy.ops.acquire(hw);
2818	if (ret_val)
2819		return ret_val;
2820	/* set MSE higher to enable link to stay up when noise is high */
2821	ret_val = e1000_write_emi_reg_locked(hw, I82579_MSE_THRESHOLD, 0x0034);
2822	if (ret_val)
2823		goto release;
2824	/* drop link after 5 times MSE threshold was reached */
2825	ret_val = e1000_write_emi_reg_locked(hw, I82579_MSE_LINK_DOWN, 0x0005);
2826release:
2827	hw->phy.ops.release(hw);
2828
2829	return ret_val;
2830}
2831
2832/**
2833 *  e1000_k1_workaround_lv - K1 Si workaround
2834 *  @hw:   pointer to the HW structure
2835 *
2836 *  Workaround to set the K1 beacon duration for 82579 parts in 10Mbps
2837 *  Disable K1 in 1000Mbps and 100Mbps
2838 **/
2839static s32 e1000_k1_workaround_lv(struct e1000_hw *hw)
2840{
2841	s32 ret_val = 0;
2842	u16 status_reg = 0;
2843
2844	if (hw->mac.type != e1000_pch2lan)
2845		return 0;
2846
2847	/* Set K1 beacon duration based on 10Mbs speed */
2848	ret_val = e1e_rphy(hw, HV_M_STATUS, &status_reg);
2849	if (ret_val)
2850		return ret_val;
2851
2852	if ((status_reg & (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE))
2853	    == (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE)) {
2854		if (status_reg &
2855		    (HV_M_STATUS_SPEED_1000 | HV_M_STATUS_SPEED_100)) {
2856			u16 pm_phy_reg;
2857
2858			/* LV 1G/100 Packet drop issue wa  */
2859			ret_val = e1e_rphy(hw, HV_PM_CTRL, &pm_phy_reg);
2860			if (ret_val)
2861				return ret_val;
2862			pm_phy_reg &= ~HV_PM_CTRL_K1_ENABLE;
2863			ret_val = e1e_wphy(hw, HV_PM_CTRL, pm_phy_reg);
2864			if (ret_val)
2865				return ret_val;
2866		} else {
2867			u32 mac_reg;
2868
2869			mac_reg = er32(FEXTNVM4);
2870			mac_reg &= ~E1000_FEXTNVM4_BEACON_DURATION_MASK;
2871			mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_16USEC;
2872			ew32(FEXTNVM4, mac_reg);
2873		}
2874	}
2875
2876	return ret_val;
2877}
2878
2879/**
2880 *  e1000_gate_hw_phy_config_ich8lan - disable PHY config via hardware
2881 *  @hw:   pointer to the HW structure
2882 *  @gate: boolean set to true to gate, false to ungate
2883 *
2884 *  Gate/ungate the automatic PHY configuration via hardware; perform
2885 *  the configuration via software instead.
2886 **/
2887static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate)
2888{
2889	u32 extcnf_ctrl;
2890
2891	if (hw->mac.type < e1000_pch2lan)
2892		return;
2893
2894	extcnf_ctrl = er32(EXTCNF_CTRL);
2895
2896	if (gate)
2897		extcnf_ctrl |= E1000_EXTCNF_CTRL_GATE_PHY_CFG;
2898	else
2899		extcnf_ctrl &= ~E1000_EXTCNF_CTRL_GATE_PHY_CFG;
2900
2901	ew32(EXTCNF_CTRL, extcnf_ctrl);
2902}
2903
2904/**
2905 *  e1000_lan_init_done_ich8lan - Check for PHY config completion
2906 *  @hw: pointer to the HW structure
2907 *
2908 *  Check the appropriate indication the MAC has finished configuring the
2909 *  PHY after a software reset.
2910 **/
2911static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw)
2912{
2913	u32 data, loop = E1000_ICH8_LAN_INIT_TIMEOUT;
2914
2915	/* Wait for basic configuration completes before proceeding */
2916	do {
2917		data = er32(STATUS);
2918		data &= E1000_STATUS_LAN_INIT_DONE;
2919		usleep_range(100, 200);
2920	} while ((!data) && --loop);
2921
2922	/* If basic configuration is incomplete before the above loop
2923	 * count reaches 0, loading the configuration from NVM will
2924	 * leave the PHY in a bad state possibly resulting in no link.
2925	 */
2926	if (loop == 0)
2927		e_dbg("LAN_INIT_DONE not set, increase timeout\n");
2928
2929	/* Clear the Init Done bit for the next init event */
2930	data = er32(STATUS);
2931	data &= ~E1000_STATUS_LAN_INIT_DONE;
2932	ew32(STATUS, data);
2933}
2934
2935/**
2936 *  e1000_post_phy_reset_ich8lan - Perform steps required after a PHY reset
2937 *  @hw: pointer to the HW structure
2938 **/
2939static s32 e1000_post_phy_reset_ich8lan(struct e1000_hw *hw)
2940{
2941	s32 ret_val = 0;
2942	u16 reg;
2943
2944	if (hw->phy.ops.check_reset_block(hw))
2945		return 0;
2946
2947	/* Allow time for h/w to get to quiescent state after reset */
2948	usleep_range(10000, 11000);
2949
2950	/* Perform any necessary post-reset workarounds */
2951	switch (hw->mac.type) {
2952	case e1000_pchlan:
2953		ret_val = e1000_hv_phy_workarounds_ich8lan(hw);
2954		if (ret_val)
2955			return ret_val;
2956		break;
2957	case e1000_pch2lan:
2958		ret_val = e1000_lv_phy_workarounds_ich8lan(hw);
2959		if (ret_val)
2960			return ret_val;
2961		break;
2962	default:
2963		break;
2964	}
2965
2966	/* Clear the host wakeup bit after lcd reset */
2967	if (hw->mac.type >= e1000_pchlan) {
2968		e1e_rphy(hw, BM_PORT_GEN_CFG, &reg);
2969		reg &= ~BM_WUC_HOST_WU_BIT;
2970		e1e_wphy(hw, BM_PORT_GEN_CFG, reg);
2971	}
2972
2973	/* Configure the LCD with the extended configuration region in NVM */
2974	ret_val = e1000_sw_lcd_config_ich8lan(hw);
2975	if (ret_val)
2976		return ret_val;
2977
2978	/* Configure the LCD with the OEM bits in NVM */
2979	ret_val = e1000_oem_bits_config_ich8lan(hw, true);
2980
2981	if (hw->mac.type == e1000_pch2lan) {
2982		/* Ungate automatic PHY configuration on non-managed 82579 */
2983		if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
2984			usleep_range(10000, 11000);
2985			e1000_gate_hw_phy_config_ich8lan(hw, false);
2986		}
2987
2988		/* Set EEE LPI Update Timer to 200usec */
2989		ret_val = hw->phy.ops.acquire(hw);
2990		if (ret_val)
2991			return ret_val;
2992		ret_val = e1000_write_emi_reg_locked(hw,
2993						     I82579_LPI_UPDATE_TIMER,
2994						     0x1387);
2995		hw->phy.ops.release(hw);
2996	}
2997
2998	return ret_val;
2999}
3000
3001/**
3002 *  e1000_phy_hw_reset_ich8lan - Performs a PHY reset
3003 *  @hw: pointer to the HW structure
3004 *
3005 *  Resets the PHY
3006 *  This is a function pointer entry point called by drivers
3007 *  or other shared routines.
3008 **/
3009static s32 e1000_phy_hw_reset_ich8lan(struct e1000_hw *hw)
3010{
3011	s32 ret_val = 0;
3012
3013	/* Gate automatic PHY configuration by hardware on non-managed 82579 */
3014	if ((hw->mac.type == e1000_pch2lan) &&
3015	    !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
3016		e1000_gate_hw_phy_config_ich8lan(hw, true);
3017
3018	ret_val = e1000e_phy_hw_reset_generic(hw);
3019	if (ret_val)
3020		return ret_val;
3021
3022	return e1000_post_phy_reset_ich8lan(hw);
3023}
3024
3025/**
3026 *  e1000_set_lplu_state_pchlan - Set Low Power Link Up state
3027 *  @hw: pointer to the HW structure
3028 *  @active: true to enable LPLU, false to disable
3029 *
3030 *  Sets the LPLU state according to the active flag.  For PCH, if OEM write
3031 *  bit are disabled in the NVM, writing the LPLU bits in the MAC will not set
3032 *  the phy speed. This function will manually set the LPLU bit and restart
3033 *  auto-neg as hw would do. D3 and D0 LPLU will call the same function
3034 *  since it configures the same bit.
3035 **/
3036static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active)
3037{
3038	s32 ret_val;
3039	u16 oem_reg;
3040
3041	ret_val = e1e_rphy(hw, HV_OEM_BITS, &oem_reg);
3042	if (ret_val)
3043		return ret_val;
3044
3045	if (active)
3046		oem_reg |= HV_OEM_BITS_LPLU;
3047	else
3048		oem_reg &= ~HV_OEM_BITS_LPLU;
3049
3050	if (!hw->phy.ops.check_reset_block(hw))
3051		oem_reg |= HV_OEM_BITS_RESTART_AN;
3052
3053	return e1e_wphy(hw, HV_OEM_BITS, oem_reg);
3054}
3055
3056/**
3057 *  e1000_set_d0_lplu_state_ich8lan - Set Low Power Linkup D0 state
3058 *  @hw: pointer to the HW structure
3059 *  @active: true to enable LPLU, false to disable
3060 *
3061 *  Sets the LPLU D0 state according to the active flag.  When
3062 *  activating LPLU this function also disables smart speed
3063 *  and vice versa.  LPLU will not be activated unless the
3064 *  device autonegotiation advertisement meets standards of
3065 *  either 10 or 10/100 or 10/100/1000 at all duplexes.
3066 *  This is a function pointer entry point only called by
3067 *  PHY setup routines.
3068 **/
3069static s32 e1000_set_d0_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
3070{
3071	struct e1000_phy_info *phy = &hw->phy;
3072	u32 phy_ctrl;
3073	s32 ret_val = 0;
3074	u16 data;
3075
3076	if (phy->type == e1000_phy_ife)
3077		return 0;
3078
3079	phy_ctrl = er32(PHY_CTRL);
3080
3081	if (active) {
3082		phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
3083		ew32(PHY_CTRL, phy_ctrl);
3084
3085		if (phy->type != e1000_phy_igp_3)
3086			return 0;
3087
3088		/* Call gig speed drop workaround on LPLU before accessing
3089		 * any PHY registers
3090		 */
3091		if (hw->mac.type == e1000_ich8lan)
3092			e1000e_gig_downshift_workaround_ich8lan(hw);
3093
3094		/* When LPLU is enabled, we should disable SmartSpeed */
3095		ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
3096		if (ret_val)
3097			return ret_val;
3098		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3099		ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
3100		if (ret_val)
3101			return ret_val;
3102	} else {
3103		phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
3104		ew32(PHY_CTRL, phy_ctrl);
3105
3106		if (phy->type != e1000_phy_igp_3)
3107			return 0;
3108
3109		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
3110		 * during Dx states where the power conservation is most
3111		 * important.  During driver activity we should enable
3112		 * SmartSpeed, so performance is maintained.
3113		 */
3114		if (phy->smart_speed == e1000_smart_speed_on) {
3115			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3116					   &data);
3117			if (ret_val)
3118				return ret_val;
3119
3120			data |= IGP01E1000_PSCFR_SMART_SPEED;
3121			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3122					   data);
3123			if (ret_val)
3124				return ret_val;
3125		} else if (phy->smart_speed == e1000_smart_speed_off) {
3126			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3127					   &data);
3128			if (ret_val)
3129				return ret_val;
3130
3131			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3132			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3133					   data);
3134			if (ret_val)
3135				return ret_val;
3136		}
3137	}
3138
3139	return 0;
3140}
3141
3142/**
3143 *  e1000_set_d3_lplu_state_ich8lan - Set Low Power Linkup D3 state
3144 *  @hw: pointer to the HW structure
3145 *  @active: true to enable LPLU, false to disable
3146 *
3147 *  Sets the LPLU D3 state according to the active flag.  When
3148 *  activating LPLU this function also disables smart speed
3149 *  and vice versa.  LPLU will not be activated unless the
3150 *  device autonegotiation advertisement meets standards of
3151 *  either 10 or 10/100 or 10/100/1000 at all duplexes.
3152 *  This is a function pointer entry point only called by
3153 *  PHY setup routines.
3154 **/
3155static s32 e1000_set_d3_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
3156{
3157	struct e1000_phy_info *phy = &hw->phy;
3158	u32 phy_ctrl;
3159	s32 ret_val = 0;
3160	u16 data;
3161
3162	phy_ctrl = er32(PHY_CTRL);
3163
3164	if (!active) {
3165		phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU;
3166		ew32(PHY_CTRL, phy_ctrl);
3167
3168		if (phy->type != e1000_phy_igp_3)
3169			return 0;
3170
3171		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
3172		 * during Dx states where the power conservation is most
3173		 * important.  During driver activity we should enable
3174		 * SmartSpeed, so performance is maintained.
3175		 */
3176		if (phy->smart_speed == e1000_smart_speed_on) {
3177			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3178					   &data);
3179			if (ret_val)
3180				return ret_val;
3181
3182			data |= IGP01E1000_PSCFR_SMART_SPEED;
3183			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3184					   data);
3185			if (ret_val)
3186				return ret_val;
3187		} else if (phy->smart_speed == e1000_smart_speed_off) {
3188			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3189					   &data);
3190			if (ret_val)
3191				return ret_val;
3192
3193			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3194			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3195					   data);
3196			if (ret_val)
3197				return ret_val;
3198		}
3199	} else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
3200		   (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
3201		   (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
3202		phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU;
3203		ew32(PHY_CTRL, phy_ctrl);
3204
3205		if (phy->type != e1000_phy_igp_3)
3206			return 0;
3207
3208		/* Call gig speed drop workaround on LPLU before accessing
3209		 * any PHY registers
3210		 */
3211		if (hw->mac.type == e1000_ich8lan)
3212			e1000e_gig_downshift_workaround_ich8lan(hw);
3213
3214		/* When LPLU is enabled, we should disable SmartSpeed */
3215		ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
3216		if (ret_val)
3217			return ret_val;
3218
3219		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3220		ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
3221	}
3222
3223	return ret_val;
3224}
3225
3226/**
3227 *  e1000_valid_nvm_bank_detect_ich8lan - finds out the valid bank 0 or 1
3228 *  @hw: pointer to the HW structure
3229 *  @bank:  pointer to the variable that returns the active bank
3230 *
3231 *  Reads signature byte from the NVM using the flash access registers.
3232 *  Word 0x13 bits 15:14 = 10b indicate a valid signature for that bank.
3233 **/
3234static s32 e1000_valid_nvm_bank_detect_ich8lan(struct e1000_hw *hw, u32 *bank)
3235{
3236	u32 eecd;
3237	struct e1000_nvm_info *nvm = &hw->nvm;
3238	u32 bank1_offset = nvm->flash_bank_size * sizeof(u16);
3239	u32 act_offset = E1000_ICH_NVM_SIG_WORD * 2 + 1;
3240	u32 nvm_dword = 0;
3241	u8 sig_byte = 0;
3242	s32 ret_val;
3243
3244	switch (hw->mac.type) {
3245	case e1000_pch_spt:
3246	case e1000_pch_cnp:
3247	case e1000_pch_tgp:
3248	case e1000_pch_adp:
3249	case e1000_pch_mtp:
3250	case e1000_pch_lnp:
3251	case e1000_pch_ptp:
3252	case e1000_pch_nvp:
3253		bank1_offset = nvm->flash_bank_size;
3254		act_offset = E1000_ICH_NVM_SIG_WORD;
3255
3256		/* set bank to 0 in case flash read fails */
3257		*bank = 0;
3258
3259		/* Check bank 0 */
3260		ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset,
3261							 &nvm_dword);
3262		if (ret_val)
3263			return ret_val;
3264		sig_byte = FIELD_GET(0xFF00, nvm_dword);
3265		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3266		    E1000_ICH_NVM_SIG_VALUE) {
3267			*bank = 0;
3268			return 0;
3269		}
3270
3271		/* Check bank 1 */
3272		ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset +
3273							 bank1_offset,
3274							 &nvm_dword);
3275		if (ret_val)
3276			return ret_val;
3277		sig_byte = FIELD_GET(0xFF00, nvm_dword);
3278		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3279		    E1000_ICH_NVM_SIG_VALUE) {
3280			*bank = 1;
3281			return 0;
3282		}
3283
3284		e_dbg("ERROR: No valid NVM bank present\n");
3285		return -E1000_ERR_NVM;
3286	case e1000_ich8lan:
3287	case e1000_ich9lan:
3288		eecd = er32(EECD);
3289		if ((eecd & E1000_EECD_SEC1VAL_VALID_MASK) ==
3290		    E1000_EECD_SEC1VAL_VALID_MASK) {
3291			if (eecd & E1000_EECD_SEC1VAL)
3292				*bank = 1;
3293			else
3294				*bank = 0;
3295
3296			return 0;
3297		}
3298		e_dbg("Unable to determine valid NVM bank via EEC - reading flash signature\n");
3299		fallthrough;
3300	default:
3301		/* set bank to 0 in case flash read fails */
3302		*bank = 0;
3303
3304		/* Check bank 0 */
3305		ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset,
3306							&sig_byte);
3307		if (ret_val)
3308			return ret_val;
3309		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3310		    E1000_ICH_NVM_SIG_VALUE) {
3311			*bank = 0;
3312			return 0;
3313		}
3314
3315		/* Check bank 1 */
3316		ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset +
3317							bank1_offset,
3318							&sig_byte);
3319		if (ret_val)
3320			return ret_val;
3321		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3322		    E1000_ICH_NVM_SIG_VALUE) {
3323			*bank = 1;
3324			return 0;
3325		}
3326
3327		e_dbg("ERROR: No valid NVM bank present\n");
3328		return -E1000_ERR_NVM;
3329	}
3330}
3331
3332/**
3333 *  e1000_read_nvm_spt - NVM access for SPT
3334 *  @hw: pointer to the HW structure
3335 *  @offset: The offset (in bytes) of the word(s) to read.
3336 *  @words: Size of data to read in words.
3337 *  @data: pointer to the word(s) to read at offset.
3338 *
3339 *  Reads a word(s) from the NVM
3340 **/
3341static s32 e1000_read_nvm_spt(struct e1000_hw *hw, u16 offset, u16 words,
3342			      u16 *data)
3343{
3344	struct e1000_nvm_info *nvm = &hw->nvm;
3345	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3346	u32 act_offset;
3347	s32 ret_val = 0;
3348	u32 bank = 0;
3349	u32 dword = 0;
3350	u16 offset_to_read;
3351	u16 i;
3352
3353	if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
3354	    (words == 0)) {
3355		e_dbg("nvm parameter(s) out of bounds\n");
3356		ret_val = -E1000_ERR_NVM;
3357		goto out;
3358	}
3359
3360	nvm->ops.acquire(hw);
3361
3362	ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3363	if (ret_val) {
3364		e_dbg("Could not detect valid bank, assuming bank 0\n");
3365		bank = 0;
3366	}
3367
3368	act_offset = (bank) ? nvm->flash_bank_size : 0;
3369	act_offset += offset;
3370
3371	ret_val = 0;
3372
3373	for (i = 0; i < words; i += 2) {
3374		if (words - i == 1) {
3375			if (dev_spec->shadow_ram[offset + i].modified) {
3376				data[i] =
3377				    dev_spec->shadow_ram[offset + i].value;
3378			} else {
3379				offset_to_read = act_offset + i -
3380				    ((act_offset + i) % 2);
3381				ret_val =
3382				  e1000_read_flash_dword_ich8lan(hw,
3383								 offset_to_read,
3384								 &dword);
3385				if (ret_val)
3386					break;
3387				if ((act_offset + i) % 2 == 0)
3388					data[i] = (u16)(dword & 0xFFFF);
3389				else
3390					data[i] = (u16)((dword >> 16) & 0xFFFF);
3391			}
3392		} else {
3393			offset_to_read = act_offset + i;
3394			if (!(dev_spec->shadow_ram[offset + i].modified) ||
3395			    !(dev_spec->shadow_ram[offset + i + 1].modified)) {
3396				ret_val =
3397				  e1000_read_flash_dword_ich8lan(hw,
3398								 offset_to_read,
3399								 &dword);
3400				if (ret_val)
3401					break;
3402			}
3403			if (dev_spec->shadow_ram[offset + i].modified)
3404				data[i] =
3405				    dev_spec->shadow_ram[offset + i].value;
3406			else
3407				data[i] = (u16)(dword & 0xFFFF);
3408			if (dev_spec->shadow_ram[offset + i].modified)
3409				data[i + 1] =
3410				    dev_spec->shadow_ram[offset + i + 1].value;
3411			else
3412				data[i + 1] = (u16)(dword >> 16 & 0xFFFF);
3413		}
3414	}
3415
3416	nvm->ops.release(hw);
3417
3418out:
3419	if (ret_val)
3420		e_dbg("NVM read error: %d\n", ret_val);
3421
3422	return ret_val;
3423}
3424
3425/**
3426 *  e1000_read_nvm_ich8lan - Read word(s) from the NVM
3427 *  @hw: pointer to the HW structure
3428 *  @offset: The offset (in bytes) of the word(s) to read.
3429 *  @words: Size of data to read in words
3430 *  @data: Pointer to the word(s) to read at offset.
3431 *
3432 *  Reads a word(s) from the NVM using the flash access registers.
3433 **/
3434static s32 e1000_read_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
3435				  u16 *data)
3436{
3437	struct e1000_nvm_info *nvm = &hw->nvm;
3438	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3439	u32 act_offset;
3440	s32 ret_val = 0;
3441	u32 bank = 0;
3442	u16 i, word;
3443
3444	if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
3445	    (words == 0)) {
3446		e_dbg("nvm parameter(s) out of bounds\n");
3447		ret_val = -E1000_ERR_NVM;
3448		goto out;
3449	}
3450
3451	nvm->ops.acquire(hw);
3452
3453	ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3454	if (ret_val) {
3455		e_dbg("Could not detect valid bank, assuming bank 0\n");
3456		bank = 0;
3457	}
3458
3459	act_offset = (bank) ? nvm->flash_bank_size : 0;
3460	act_offset += offset;
3461
3462	ret_val = 0;
3463	for (i = 0; i < words; i++) {
3464		if (dev_spec->shadow_ram[offset + i].modified) {
3465			data[i] = dev_spec->shadow_ram[offset + i].value;
3466		} else {
3467			ret_val = e1000_read_flash_word_ich8lan(hw,
3468								act_offset + i,
3469								&word);
3470			if (ret_val)
3471				break;
3472			data[i] = word;
3473		}
3474	}
3475
3476	nvm->ops.release(hw);
3477
3478out:
3479	if (ret_val)
3480		e_dbg("NVM read error: %d\n", ret_val);
3481
3482	return ret_val;
3483}
3484
3485/**
3486 *  e1000_flash_cycle_init_ich8lan - Initialize flash
3487 *  @hw: pointer to the HW structure
3488 *
3489 *  This function does initial flash setup so that a new read/write/erase cycle
3490 *  can be started.
3491 **/
3492static s32 e1000_flash_cycle_init_ich8lan(struct e1000_hw *hw)
3493{
3494	union ich8_hws_flash_status hsfsts;
3495	s32 ret_val = -E1000_ERR_NVM;
3496
3497	hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3498
3499	/* Check if the flash descriptor is valid */
3500	if (!hsfsts.hsf_status.fldesvalid) {
3501		e_dbg("Flash descriptor invalid.  SW Sequencing must be used.\n");
3502		return -E1000_ERR_NVM;
3503	}
3504
3505	/* Clear FCERR and DAEL in hw status by writing 1 */
3506	hsfsts.hsf_status.flcerr = 1;
3507	hsfsts.hsf_status.dael = 1;
3508	if (hw->mac.type >= e1000_pch_spt)
3509		ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval & 0xFFFF);
3510	else
3511		ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
3512
3513	/* Either we should have a hardware SPI cycle in progress
3514	 * bit to check against, in order to start a new cycle or
3515	 * FDONE bit should be changed in the hardware so that it
3516	 * is 1 after hardware reset, which can then be used as an
3517	 * indication whether a cycle is in progress or has been
3518	 * completed.
3519	 */
3520
3521	if (!hsfsts.hsf_status.flcinprog) {
3522		/* There is no cycle running at present,
3523		 * so we can start a cycle.
3524		 * Begin by setting Flash Cycle Done.
3525		 */
3526		hsfsts.hsf_status.flcdone = 1;
3527		if (hw->mac.type >= e1000_pch_spt)
3528			ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval & 0xFFFF);
3529		else
3530			ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
3531		ret_val = 0;
3532	} else {
3533		s32 i;
3534
3535		/* Otherwise poll for sometime so the current
3536		 * cycle has a chance to end before giving up.
3537		 */
3538		for (i = 0; i < ICH_FLASH_READ_COMMAND_TIMEOUT; i++) {
3539			hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3540			if (!hsfsts.hsf_status.flcinprog) {
3541				ret_val = 0;
3542				break;
3543			}
3544			udelay(1);
3545		}
3546		if (!ret_val) {
3547			/* Successful in waiting for previous cycle to timeout,
3548			 * now set the Flash Cycle Done.
3549			 */
3550			hsfsts.hsf_status.flcdone = 1;
3551			if (hw->mac.type >= e1000_pch_spt)
3552				ew32flash(ICH_FLASH_HSFSTS,
3553					  hsfsts.regval & 0xFFFF);
3554			else
3555				ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
3556		} else {
3557			e_dbg("Flash controller busy, cannot get access\n");
3558		}
3559	}
3560
3561	return ret_val;
3562}
3563
3564/**
3565 *  e1000_flash_cycle_ich8lan - Starts flash cycle (read/write/erase)
3566 *  @hw: pointer to the HW structure
3567 *  @timeout: maximum time to wait for completion
3568 *
3569 *  This function starts a flash cycle and waits for its completion.
3570 **/
3571static s32 e1000_flash_cycle_ich8lan(struct e1000_hw *hw, u32 timeout)
3572{
3573	union ich8_hws_flash_ctrl hsflctl;
3574	union ich8_hws_flash_status hsfsts;
3575	u32 i = 0;
3576
3577	/* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */
3578	if (hw->mac.type >= e1000_pch_spt)
3579		hsflctl.regval = er32flash(ICH_FLASH_HSFSTS) >> 16;
3580	else
3581		hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
3582	hsflctl.hsf_ctrl.flcgo = 1;
3583
3584	if (hw->mac.type >= e1000_pch_spt)
3585		ew32flash(ICH_FLASH_HSFSTS, hsflctl.regval << 16);
3586	else
3587		ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
3588
3589	/* wait till FDONE bit is set to 1 */
3590	do {
3591		hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3592		if (hsfsts.hsf_status.flcdone)
3593			break;
3594		udelay(1);
3595	} while (i++ < timeout);
3596
3597	if (hsfsts.hsf_status.flcdone && !hsfsts.hsf_status.flcerr)
3598		return 0;
3599
3600	return -E1000_ERR_NVM;
3601}
3602
3603/**
3604 *  e1000_read_flash_dword_ich8lan - Read dword from flash
3605 *  @hw: pointer to the HW structure
3606 *  @offset: offset to data location
3607 *  @data: pointer to the location for storing the data
3608 *
3609 *  Reads the flash dword at offset into data.  Offset is converted
3610 *  to bytes before read.
3611 **/
3612static s32 e1000_read_flash_dword_ich8lan(struct e1000_hw *hw, u32 offset,
3613					  u32 *data)
3614{
3615	/* Must convert word offset into bytes. */
3616	offset <<= 1;
3617	return e1000_read_flash_data32_ich8lan(hw, offset, data);
3618}
3619
3620/**
3621 *  e1000_read_flash_word_ich8lan - Read word from flash
3622 *  @hw: pointer to the HW structure
3623 *  @offset: offset to data location
3624 *  @data: pointer to the location for storing the data
3625 *
3626 *  Reads the flash word at offset into data.  Offset is converted
3627 *  to bytes before read.
3628 **/
3629static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
3630					 u16 *data)
3631{
3632	/* Must convert offset into bytes. */
3633	offset <<= 1;
3634
3635	return e1000_read_flash_data_ich8lan(hw, offset, 2, data);
3636}
3637
3638/**
3639 *  e1000_read_flash_byte_ich8lan - Read byte from flash
3640 *  @hw: pointer to the HW structure
3641 *  @offset: The offset of the byte to read.
3642 *  @data: Pointer to a byte to store the value read.
3643 *
3644 *  Reads a single byte from the NVM using the flash access registers.
3645 **/
3646static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
3647					 u8 *data)
3648{
3649	s32 ret_val;
3650	u16 word = 0;
3651
3652	/* In SPT, only 32 bits access is supported,
3653	 * so this function should not be called.
3654	 */
3655	if (hw->mac.type >= e1000_pch_spt)
3656		return -E1000_ERR_NVM;
3657	else
3658		ret_val = e1000_read_flash_data_ich8lan(hw, offset, 1, &word);
3659
3660	if (ret_val)
3661		return ret_val;
3662
3663	*data = (u8)word;
3664
3665	return 0;
3666}
3667
3668/**
3669 *  e1000_read_flash_data_ich8lan - Read byte or word from NVM
3670 *  @hw: pointer to the HW structure
3671 *  @offset: The offset (in bytes) of the byte or word to read.
3672 *  @size: Size of data to read, 1=byte 2=word
3673 *  @data: Pointer to the word to store the value read.
3674 *
3675 *  Reads a byte or word from the NVM using the flash access registers.
3676 **/
3677static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
3678					 u8 size, u16 *data)
3679{
3680	union ich8_hws_flash_status hsfsts;
3681	union ich8_hws_flash_ctrl hsflctl;
3682	u32 flash_linear_addr;
3683	u32 flash_data = 0;
3684	s32 ret_val = -E1000_ERR_NVM;
3685	u8 count = 0;
3686
3687	if (size < 1 || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
3688		return -E1000_ERR_NVM;
3689
3690	flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
3691			     hw->nvm.flash_base_addr);
3692
3693	do {
3694		udelay(1);
3695		/* Steps */
3696		ret_val = e1000_flash_cycle_init_ich8lan(hw);
3697		if (ret_val)
3698			break;
3699
3700		hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
3701		/* 0b/1b corresponds to 1 or 2 byte size, respectively. */
3702		hsflctl.hsf_ctrl.fldbcount = size - 1;
3703		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
3704		ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
3705
3706		ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
3707
3708		ret_val =
3709		    e1000_flash_cycle_ich8lan(hw,
3710					      ICH_FLASH_READ_COMMAND_TIMEOUT);
3711
3712		/* Check if FCERR is set to 1, if set to 1, clear it
3713		 * and try the whole sequence a few more times, else
3714		 * read in (shift in) the Flash Data0, the order is
3715		 * least significant byte first msb to lsb
3716		 */
3717		if (!ret_val) {
3718			flash_data = er32flash(ICH_FLASH_FDATA0);
3719			if (size == 1)
3720				*data = (u8)(flash_data & 0x000000FF);
3721			else if (size == 2)
3722				*data = (u16)(flash_data & 0x0000FFFF);
3723			break;
3724		} else {
3725			/* If we've gotten here, then things are probably
3726			 * completely hosed, but if the error condition is
3727			 * detected, it won't hurt to give it another try...
3728			 * ICH_FLASH_CYCLE_REPEAT_COUNT times.
3729			 */
3730			hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3731			if (hsfsts.hsf_status.flcerr) {
3732				/* Repeat for some time before giving up. */
3733				continue;
3734			} else if (!hsfsts.hsf_status.flcdone) {
3735				e_dbg("Timeout error - flash cycle did not complete.\n");
3736				break;
3737			}
3738		}
3739	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
3740
3741	return ret_val;
3742}
3743
3744/**
3745 *  e1000_read_flash_data32_ich8lan - Read dword from NVM
3746 *  @hw: pointer to the HW structure
3747 *  @offset: The offset (in bytes) of the dword to read.
3748 *  @data: Pointer to the dword to store the value read.
3749 *
3750 *  Reads a byte or word from the NVM using the flash access registers.
3751 **/
3752
3753static s32 e1000_read_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset,
3754					   u32 *data)
3755{
3756	union ich8_hws_flash_status hsfsts;
3757	union ich8_hws_flash_ctrl hsflctl;
3758	u32 flash_linear_addr;
3759	s32 ret_val = -E1000_ERR_NVM;
3760	u8 count = 0;
3761
3762	if (offset > ICH_FLASH_LINEAR_ADDR_MASK || hw->mac.type < e1000_pch_spt)
3763		return -E1000_ERR_NVM;
3764	flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
3765			     hw->nvm.flash_base_addr);
3766
3767	do {
3768		udelay(1);
3769		/* Steps */
3770		ret_val = e1000_flash_cycle_init_ich8lan(hw);
3771		if (ret_val)
3772			break;
3773		/* In SPT, This register is in Lan memory space, not flash.
3774		 * Therefore, only 32 bit access is supported
3775		 */
3776		hsflctl.regval = er32flash(ICH_FLASH_HSFSTS) >> 16;
3777
3778		/* 0b/1b corresponds to 1 or 2 byte size, respectively. */
3779		hsflctl.hsf_ctrl.fldbcount = sizeof(u32) - 1;
3780		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
3781		/* In SPT, This register is in Lan memory space, not flash.
3782		 * Therefore, only 32 bit access is supported
3783		 */
3784		ew32flash(ICH_FLASH_HSFSTS, (u32)hsflctl.regval << 16);
3785		ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
3786
3787		ret_val =
3788		   e1000_flash_cycle_ich8lan(hw,
3789					     ICH_FLASH_READ_COMMAND_TIMEOUT);
3790
3791		/* Check if FCERR is set to 1, if set to 1, clear it
3792		 * and try the whole sequence a few more times, else
3793		 * read in (shift in) the Flash Data0, the order is
3794		 * least significant byte first msb to lsb
3795		 */
3796		if (!ret_val) {
3797			*data = er32flash(ICH_FLASH_FDATA0);
3798			break;
3799		} else {
3800			/* If we've gotten here, then things are probably
3801			 * completely hosed, but if the error condition is
3802			 * detected, it won't hurt to give it another try...
3803			 * ICH_FLASH_CYCLE_REPEAT_COUNT times.
3804			 */
3805			hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3806			if (hsfsts.hsf_status.flcerr) {
3807				/* Repeat for some time before giving up. */
3808				continue;
3809			} else if (!hsfsts.hsf_status.flcdone) {
3810				e_dbg("Timeout error - flash cycle did not complete.\n");
3811				break;
3812			}
3813		}
3814	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
3815
3816	return ret_val;
3817}
3818
3819/**
3820 *  e1000_write_nvm_ich8lan - Write word(s) to the NVM
3821 *  @hw: pointer to the HW structure
3822 *  @offset: The offset (in bytes) of the word(s) to write.
3823 *  @words: Size of data to write in words
3824 *  @data: Pointer to the word(s) to write at offset.
3825 *
3826 *  Writes a byte or word to the NVM using the flash access registers.
3827 **/
3828static s32 e1000_write_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
3829				   u16 *data)
3830{
3831	struct e1000_nvm_info *nvm = &hw->nvm;
3832	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3833	u16 i;
3834
3835	if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
3836	    (words == 0)) {
3837		e_dbg("nvm parameter(s) out of bounds\n");
3838		return -E1000_ERR_NVM;
3839	}
3840
3841	nvm->ops.acquire(hw);
3842
3843	for (i = 0; i < words; i++) {
3844		dev_spec->shadow_ram[offset + i].modified = true;
3845		dev_spec->shadow_ram[offset + i].value = data[i];
3846	}
3847
3848	nvm->ops.release(hw);
3849
3850	return 0;
3851}
3852
3853/**
3854 *  e1000_update_nvm_checksum_spt - Update the checksum for NVM
3855 *  @hw: pointer to the HW structure
3856 *
3857 *  The NVM checksum is updated by calling the generic update_nvm_checksum,
3858 *  which writes the checksum to the shadow ram.  The changes in the shadow
3859 *  ram are then committed to the EEPROM by processing each bank at a time
3860 *  checking for the modified bit and writing only the pending changes.
3861 *  After a successful commit, the shadow ram is cleared and is ready for
3862 *  future writes.
3863 **/
3864static s32 e1000_update_nvm_checksum_spt(struct e1000_hw *hw)
3865{
3866	struct e1000_nvm_info *nvm = &hw->nvm;
3867	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3868	u32 i, act_offset, new_bank_offset, old_bank_offset, bank;
3869	s32 ret_val;
3870	u32 dword = 0;
3871
3872	ret_val = e1000e_update_nvm_checksum_generic(hw);
3873	if (ret_val)
3874		goto out;
3875
3876	if (nvm->type != e1000_nvm_flash_sw)
3877		goto out;
3878
3879	nvm->ops.acquire(hw);
3880
3881	/* We're writing to the opposite bank so if we're on bank 1,
3882	 * write to bank 0 etc.  We also need to erase the segment that
3883	 * is going to be written
3884	 */
3885	ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3886	if (ret_val) {
3887		e_dbg("Could not detect valid bank, assuming bank 0\n");
3888		bank = 0;
3889	}
3890
3891	if (bank == 0) {
3892		new_bank_offset = nvm->flash_bank_size;
3893		old_bank_offset = 0;
3894		ret_val = e1000_erase_flash_bank_ich8lan(hw, 1);
3895		if (ret_val)
3896			goto release;
3897	} else {
3898		old_bank_offset = nvm->flash_bank_size;
3899		new_bank_offset = 0;
3900		ret_val = e1000_erase_flash_bank_ich8lan(hw, 0);
3901		if (ret_val)
3902			goto release;
3903	}
3904	for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i += 2) {
3905		/* Determine whether to write the value stored
3906		 * in the other NVM bank or a modified value stored
3907		 * in the shadow RAM
3908		 */
3909		ret_val = e1000_read_flash_dword_ich8lan(hw,
3910							 i + old_bank_offset,
3911							 &dword);
3912
3913		if (dev_spec->shadow_ram[i].modified) {
3914			dword &= 0xffff0000;
3915			dword |= (dev_spec->shadow_ram[i].value & 0xffff);
3916		}
3917		if (dev_spec->shadow_ram[i + 1].modified) {
3918			dword &= 0x0000ffff;
3919			dword |= ((dev_spec->shadow_ram[i + 1].value & 0xffff)
3920				  << 16);
3921		}
3922		if (ret_val)
3923			break;
3924
3925		/* If the word is 0x13, then make sure the signature bits
3926		 * (15:14) are 11b until the commit has completed.
3927		 * This will allow us to write 10b which indicates the
3928		 * signature is valid.  We want to do this after the write
3929		 * has completed so that we don't mark the segment valid
3930		 * while the write is still in progress
3931		 */
3932		if (i == E1000_ICH_NVM_SIG_WORD - 1)
3933			dword |= E1000_ICH_NVM_SIG_MASK << 16;
3934
3935		/* Convert offset to bytes. */
3936		act_offset = (i + new_bank_offset) << 1;
3937
3938		usleep_range(100, 200);
3939
3940		/* Write the data to the new bank. Offset in words */
3941		act_offset = i + new_bank_offset;
3942		ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset,
3943								dword);
3944		if (ret_val)
3945			break;
3946	}
3947
3948	/* Don't bother writing the segment valid bits if sector
3949	 * programming failed.
3950	 */
3951	if (ret_val) {
3952		/* Possibly read-only, see e1000e_write_protect_nvm_ich8lan() */
3953		e_dbg("Flash commit failed.\n");
3954		goto release;
3955	}
3956
3957	/* Finally validate the new segment by setting bit 15:14
3958	 * to 10b in word 0x13 , this can be done without an
3959	 * erase as well since these bits are 11 to start with
3960	 * and we need to change bit 14 to 0b
3961	 */
3962	act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD;
3963
3964	/*offset in words but we read dword */
3965	--act_offset;
3966	ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset, &dword);
3967
3968	if (ret_val)
3969		goto release;
3970
3971	dword &= 0xBFFFFFFF;
3972	ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset, dword);
3973
3974	if (ret_val)
3975		goto release;
3976
 
 
 
 
 
 
 
3977	/* offset in words but we read dword */
3978	act_offset = old_bank_offset + E1000_ICH_NVM_SIG_WORD - 1;
3979	ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset, &dword);
3980
3981	if (ret_val)
3982		goto release;
3983
3984	dword &= 0x00FFFFFF;
3985	ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset, dword);
3986
3987	if (ret_val)
3988		goto release;
3989
3990	/* Great!  Everything worked, we can now clear the cached entries. */
3991	for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
3992		dev_spec->shadow_ram[i].modified = false;
3993		dev_spec->shadow_ram[i].value = 0xFFFF;
3994	}
3995
3996release:
3997	nvm->ops.release(hw);
3998
3999	/* Reload the EEPROM, or else modifications will not appear
4000	 * until after the next adapter reset.
4001	 */
4002	if (!ret_val) {
4003		nvm->ops.reload(hw);
4004		usleep_range(10000, 11000);
4005	}
4006
4007out:
4008	if (ret_val)
4009		e_dbg("NVM update error: %d\n", ret_val);
4010
4011	return ret_val;
4012}
4013
4014/**
4015 *  e1000_update_nvm_checksum_ich8lan - Update the checksum for NVM
4016 *  @hw: pointer to the HW structure
4017 *
4018 *  The NVM checksum is updated by calling the generic update_nvm_checksum,
4019 *  which writes the checksum to the shadow ram.  The changes in the shadow
4020 *  ram are then committed to the EEPROM by processing each bank at a time
4021 *  checking for the modified bit and writing only the pending changes.
4022 *  After a successful commit, the shadow ram is cleared and is ready for
4023 *  future writes.
4024 **/
4025static s32 e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw)
4026{
4027	struct e1000_nvm_info *nvm = &hw->nvm;
4028	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
4029	u32 i, act_offset, new_bank_offset, old_bank_offset, bank;
4030	s32 ret_val;
4031	u16 data = 0;
4032
4033	ret_val = e1000e_update_nvm_checksum_generic(hw);
4034	if (ret_val)
4035		goto out;
4036
4037	if (nvm->type != e1000_nvm_flash_sw)
4038		goto out;
4039
4040	nvm->ops.acquire(hw);
4041
4042	/* We're writing to the opposite bank so if we're on bank 1,
4043	 * write to bank 0 etc.  We also need to erase the segment that
4044	 * is going to be written
4045	 */
4046	ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
4047	if (ret_val) {
4048		e_dbg("Could not detect valid bank, assuming bank 0\n");
4049		bank = 0;
4050	}
4051
4052	if (bank == 0) {
4053		new_bank_offset = nvm->flash_bank_size;
4054		old_bank_offset = 0;
4055		ret_val = e1000_erase_flash_bank_ich8lan(hw, 1);
4056		if (ret_val)
4057			goto release;
4058	} else {
4059		old_bank_offset = nvm->flash_bank_size;
4060		new_bank_offset = 0;
4061		ret_val = e1000_erase_flash_bank_ich8lan(hw, 0);
4062		if (ret_val)
4063			goto release;
4064	}
4065	for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
4066		if (dev_spec->shadow_ram[i].modified) {
4067			data = dev_spec->shadow_ram[i].value;
4068		} else {
4069			ret_val = e1000_read_flash_word_ich8lan(hw, i +
4070								old_bank_offset,
4071								&data);
4072			if (ret_val)
4073				break;
4074		}
4075
4076		/* If the word is 0x13, then make sure the signature bits
4077		 * (15:14) are 11b until the commit has completed.
4078		 * This will allow us to write 10b which indicates the
4079		 * signature is valid.  We want to do this after the write
4080		 * has completed so that we don't mark the segment valid
4081		 * while the write is still in progress
4082		 */
4083		if (i == E1000_ICH_NVM_SIG_WORD)
4084			data |= E1000_ICH_NVM_SIG_MASK;
4085
4086		/* Convert offset to bytes. */
4087		act_offset = (i + new_bank_offset) << 1;
4088
4089		usleep_range(100, 200);
4090		/* Write the bytes to the new bank. */
4091		ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
4092							       act_offset,
4093							       (u8)data);
4094		if (ret_val)
4095			break;
4096
4097		usleep_range(100, 200);
4098		ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
4099							       act_offset + 1,
4100							       (u8)(data >> 8));
4101		if (ret_val)
4102			break;
4103	}
4104
4105	/* Don't bother writing the segment valid bits if sector
4106	 * programming failed.
4107	 */
4108	if (ret_val) {
4109		/* Possibly read-only, see e1000e_write_protect_nvm_ich8lan() */
4110		e_dbg("Flash commit failed.\n");
4111		goto release;
4112	}
4113
4114	/* Finally validate the new segment by setting bit 15:14
4115	 * to 10b in word 0x13 , this can be done without an
4116	 * erase as well since these bits are 11 to start with
4117	 * and we need to change bit 14 to 0b
4118	 */
4119	act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD;
4120	ret_val = e1000_read_flash_word_ich8lan(hw, act_offset, &data);
4121	if (ret_val)
4122		goto release;
4123
4124	data &= 0xBFFF;
4125	ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
4126						       act_offset * 2 + 1,
4127						       (u8)(data >> 8));
4128	if (ret_val)
4129		goto release;
4130
4131	/* And invalidate the previously valid segment by setting
4132	 * its signature word (0x13) high_byte to 0b. This can be
4133	 * done without an erase because flash erase sets all bits
4134	 * to 1's. We can write 1's to 0's without an erase
4135	 */
4136	act_offset = (old_bank_offset + E1000_ICH_NVM_SIG_WORD) * 2 + 1;
4137	ret_val = e1000_retry_write_flash_byte_ich8lan(hw, act_offset, 0);
4138	if (ret_val)
4139		goto release;
4140
4141	/* Great!  Everything worked, we can now clear the cached entries. */
4142	for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
4143		dev_spec->shadow_ram[i].modified = false;
4144		dev_spec->shadow_ram[i].value = 0xFFFF;
4145	}
4146
4147release:
4148	nvm->ops.release(hw);
4149
4150	/* Reload the EEPROM, or else modifications will not appear
4151	 * until after the next adapter reset.
4152	 */
4153	if (!ret_val) {
4154		nvm->ops.reload(hw);
4155		usleep_range(10000, 11000);
4156	}
4157
4158out:
4159	if (ret_val)
4160		e_dbg("NVM update error: %d\n", ret_val);
4161
4162	return ret_val;
4163}
4164
4165/**
4166 *  e1000_validate_nvm_checksum_ich8lan - Validate EEPROM checksum
4167 *  @hw: pointer to the HW structure
4168 *
4169 *  Check to see if checksum needs to be fixed by reading bit 6 in word 0x19.
4170 *  If the bit is 0, that the EEPROM had been modified, but the checksum was not
4171 *  calculated, in which case we need to calculate the checksum and set bit 6.
4172 **/
4173static s32 e1000_validate_nvm_checksum_ich8lan(struct e1000_hw *hw)
4174{
4175	s32 ret_val;
4176	u16 data;
4177	u16 word;
4178	u16 valid_csum_mask;
4179
4180	/* Read NVM and check Invalid Image CSUM bit.  If this bit is 0,
4181	 * the checksum needs to be fixed.  This bit is an indication that
4182	 * the NVM was prepared by OEM software and did not calculate
4183	 * the checksum...a likely scenario.
4184	 */
4185	switch (hw->mac.type) {
4186	case e1000_pch_lpt:
4187	case e1000_pch_spt:
4188	case e1000_pch_cnp:
4189	case e1000_pch_tgp:
4190	case e1000_pch_adp:
4191	case e1000_pch_mtp:
4192	case e1000_pch_lnp:
4193	case e1000_pch_ptp:
4194	case e1000_pch_nvp:
4195		word = NVM_COMPAT;
4196		valid_csum_mask = NVM_COMPAT_VALID_CSUM;
4197		break;
4198	default:
4199		word = NVM_FUTURE_INIT_WORD1;
4200		valid_csum_mask = NVM_FUTURE_INIT_WORD1_VALID_CSUM;
4201		break;
4202	}
4203
4204	ret_val = e1000_read_nvm(hw, word, 1, &data);
4205	if (ret_val)
4206		return ret_val;
4207
4208	if (!(data & valid_csum_mask)) {
4209		e_dbg("NVM Checksum valid bit not set\n");
4210
4211		if (hw->mac.type < e1000_pch_tgp) {
4212			data |= valid_csum_mask;
4213			ret_val = e1000_write_nvm(hw, word, 1, &data);
4214			if (ret_val)
4215				return ret_val;
4216			ret_val = e1000e_update_nvm_checksum(hw);
4217			if (ret_val)
4218				return ret_val;
4219		}
4220	}
4221
4222	return e1000e_validate_nvm_checksum_generic(hw);
4223}
4224
4225/**
4226 *  e1000e_write_protect_nvm_ich8lan - Make the NVM read-only
4227 *  @hw: pointer to the HW structure
4228 *
4229 *  To prevent malicious write/erase of the NVM, set it to be read-only
4230 *  so that the hardware ignores all write/erase cycles of the NVM via
4231 *  the flash control registers.  The shadow-ram copy of the NVM will
4232 *  still be updated, however any updates to this copy will not stick
4233 *  across driver reloads.
4234 **/
4235void e1000e_write_protect_nvm_ich8lan(struct e1000_hw *hw)
4236{
4237	struct e1000_nvm_info *nvm = &hw->nvm;
4238	union ich8_flash_protected_range pr0;
4239	union ich8_hws_flash_status hsfsts;
4240	u32 gfpreg;
4241
4242	nvm->ops.acquire(hw);
4243
4244	gfpreg = er32flash(ICH_FLASH_GFPREG);
4245
4246	/* Write-protect GbE Sector of NVM */
4247	pr0.regval = er32flash(ICH_FLASH_PR0);
4248	pr0.range.base = gfpreg & FLASH_GFPREG_BASE_MASK;
4249	pr0.range.limit = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK);
4250	pr0.range.wpe = true;
4251	ew32flash(ICH_FLASH_PR0, pr0.regval);
4252
4253	/* Lock down a subset of GbE Flash Control Registers, e.g.
4254	 * PR0 to prevent the write-protection from being lifted.
4255	 * Once FLOCKDN is set, the registers protected by it cannot
4256	 * be written until FLOCKDN is cleared by a hardware reset.
4257	 */
4258	hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4259	hsfsts.hsf_status.flockdn = true;
4260	ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval);
4261
4262	nvm->ops.release(hw);
4263}
4264
4265/**
4266 *  e1000_write_flash_data_ich8lan - Writes bytes to the NVM
4267 *  @hw: pointer to the HW structure
4268 *  @offset: The offset (in bytes) of the byte/word to read.
4269 *  @size: Size of data to read, 1=byte 2=word
4270 *  @data: The byte(s) to write to the NVM.
4271 *
4272 *  Writes one/two bytes to the NVM using the flash access registers.
4273 **/
4274static s32 e1000_write_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
4275					  u8 size, u16 data)
4276{
4277	union ich8_hws_flash_status hsfsts;
4278	union ich8_hws_flash_ctrl hsflctl;
4279	u32 flash_linear_addr;
4280	u32 flash_data = 0;
4281	s32 ret_val;
4282	u8 count = 0;
4283
4284	if (hw->mac.type >= e1000_pch_spt) {
4285		if (size != 4 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
4286			return -E1000_ERR_NVM;
4287	} else {
4288		if (size < 1 || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
4289			return -E1000_ERR_NVM;
4290	}
4291
4292	flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
4293			     hw->nvm.flash_base_addr);
4294
4295	do {
4296		udelay(1);
4297		/* Steps */
4298		ret_val = e1000_flash_cycle_init_ich8lan(hw);
4299		if (ret_val)
4300			break;
4301		/* In SPT, This register is in Lan memory space, not
4302		 * flash.  Therefore, only 32 bit access is supported
4303		 */
4304		if (hw->mac.type >= e1000_pch_spt)
4305			hsflctl.regval = er32flash(ICH_FLASH_HSFSTS) >> 16;
4306		else
4307			hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
4308
4309		/* 0b/1b corresponds to 1 or 2 byte size, respectively. */
4310		hsflctl.hsf_ctrl.fldbcount = size - 1;
4311		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
4312		/* In SPT, This register is in Lan memory space,
4313		 * not flash.  Therefore, only 32 bit access is
4314		 * supported
4315		 */
4316		if (hw->mac.type >= e1000_pch_spt)
4317			ew32flash(ICH_FLASH_HSFSTS, hsflctl.regval << 16);
4318		else
4319			ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
4320
4321		ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
4322
4323		if (size == 1)
4324			flash_data = (u32)data & 0x00FF;
4325		else
4326			flash_data = (u32)data;
4327
4328		ew32flash(ICH_FLASH_FDATA0, flash_data);
4329
4330		/* check if FCERR is set to 1 , if set to 1, clear it
4331		 * and try the whole sequence a few more times else done
4332		 */
4333		ret_val =
4334		    e1000_flash_cycle_ich8lan(hw,
4335					      ICH_FLASH_WRITE_COMMAND_TIMEOUT);
4336		if (!ret_val)
4337			break;
4338
4339		/* If we're here, then things are most likely
4340		 * completely hosed, but if the error condition
4341		 * is detected, it won't hurt to give it another
4342		 * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
4343		 */
4344		hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4345		if (hsfsts.hsf_status.flcerr)
4346			/* Repeat for some time before giving up. */
4347			continue;
4348		if (!hsfsts.hsf_status.flcdone) {
4349			e_dbg("Timeout error - flash cycle did not complete.\n");
4350			break;
4351		}
4352	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
4353
4354	return ret_val;
4355}
4356
4357/**
4358*  e1000_write_flash_data32_ich8lan - Writes 4 bytes to the NVM
4359*  @hw: pointer to the HW structure
4360*  @offset: The offset (in bytes) of the dwords to read.
4361*  @data: The 4 bytes to write to the NVM.
4362*
4363*  Writes one/two/four bytes to the NVM using the flash access registers.
4364**/
4365static s32 e1000_write_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset,
4366					    u32 data)
4367{
4368	union ich8_hws_flash_status hsfsts;
4369	union ich8_hws_flash_ctrl hsflctl;
4370	u32 flash_linear_addr;
4371	s32 ret_val;
4372	u8 count = 0;
4373
4374	if (hw->mac.type >= e1000_pch_spt) {
4375		if (offset > ICH_FLASH_LINEAR_ADDR_MASK)
4376			return -E1000_ERR_NVM;
4377	}
4378	flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
4379			     hw->nvm.flash_base_addr);
4380	do {
4381		udelay(1);
4382		/* Steps */
4383		ret_val = e1000_flash_cycle_init_ich8lan(hw);
4384		if (ret_val)
4385			break;
4386
4387		/* In SPT, This register is in Lan memory space, not
4388		 * flash.  Therefore, only 32 bit access is supported
4389		 */
4390		if (hw->mac.type >= e1000_pch_spt)
4391			hsflctl.regval = er32flash(ICH_FLASH_HSFSTS)
4392			    >> 16;
4393		else
4394			hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
4395
4396		hsflctl.hsf_ctrl.fldbcount = sizeof(u32) - 1;
4397		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
4398
4399		/* In SPT, This register is in Lan memory space,
4400		 * not flash.  Therefore, only 32 bit access is
4401		 * supported
4402		 */
4403		if (hw->mac.type >= e1000_pch_spt)
4404			ew32flash(ICH_FLASH_HSFSTS, hsflctl.regval << 16);
4405		else
4406			ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
4407
4408		ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
4409
4410		ew32flash(ICH_FLASH_FDATA0, data);
4411
4412		/* check if FCERR is set to 1 , if set to 1, clear it
4413		 * and try the whole sequence a few more times else done
4414		 */
4415		ret_val =
4416		   e1000_flash_cycle_ich8lan(hw,
4417					     ICH_FLASH_WRITE_COMMAND_TIMEOUT);
4418
4419		if (!ret_val)
4420			break;
4421
4422		/* If we're here, then things are most likely
4423		 * completely hosed, but if the error condition
4424		 * is detected, it won't hurt to give it another
4425		 * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
4426		 */
4427		hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4428
4429		if (hsfsts.hsf_status.flcerr)
4430			/* Repeat for some time before giving up. */
4431			continue;
4432		if (!hsfsts.hsf_status.flcdone) {
4433			e_dbg("Timeout error - flash cycle did not complete.\n");
4434			break;
4435		}
4436	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
4437
4438	return ret_val;
4439}
4440
4441/**
4442 *  e1000_write_flash_byte_ich8lan - Write a single byte to NVM
4443 *  @hw: pointer to the HW structure
4444 *  @offset: The index of the byte to read.
4445 *  @data: The byte to write to the NVM.
4446 *
4447 *  Writes a single byte to the NVM using the flash access registers.
4448 **/
4449static s32 e1000_write_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
4450					  u8 data)
4451{
4452	u16 word = (u16)data;
4453
4454	return e1000_write_flash_data_ich8lan(hw, offset, 1, word);
4455}
4456
4457/**
4458*  e1000_retry_write_flash_dword_ich8lan - Writes a dword to NVM
4459*  @hw: pointer to the HW structure
4460*  @offset: The offset of the word to write.
4461*  @dword: The dword to write to the NVM.
4462*
4463*  Writes a single dword to the NVM using the flash access registers.
4464*  Goes through a retry algorithm before giving up.
4465**/
4466static s32 e1000_retry_write_flash_dword_ich8lan(struct e1000_hw *hw,
4467						 u32 offset, u32 dword)
4468{
4469	s32 ret_val;
4470	u16 program_retries;
4471
4472	/* Must convert word offset into bytes. */
4473	offset <<= 1;
4474	ret_val = e1000_write_flash_data32_ich8lan(hw, offset, dword);
4475
4476	if (!ret_val)
4477		return ret_val;
4478	for (program_retries = 0; program_retries < 100; program_retries++) {
4479		e_dbg("Retrying Byte %8.8X at offset %u\n", dword, offset);
4480		usleep_range(100, 200);
4481		ret_val = e1000_write_flash_data32_ich8lan(hw, offset, dword);
4482		if (!ret_val)
4483			break;
4484	}
4485	if (program_retries == 100)
4486		return -E1000_ERR_NVM;
4487
4488	return 0;
4489}
4490
4491/**
4492 *  e1000_retry_write_flash_byte_ich8lan - Writes a single byte to NVM
4493 *  @hw: pointer to the HW structure
4494 *  @offset: The offset of the byte to write.
4495 *  @byte: The byte to write to the NVM.
4496 *
4497 *  Writes a single byte to the NVM using the flash access registers.
4498 *  Goes through a retry algorithm before giving up.
4499 **/
4500static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
4501						u32 offset, u8 byte)
4502{
4503	s32 ret_val;
4504	u16 program_retries;
4505
4506	ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
4507	if (!ret_val)
4508		return ret_val;
4509
4510	for (program_retries = 0; program_retries < 100; program_retries++) {
4511		e_dbg("Retrying Byte %2.2X at offset %u\n", byte, offset);
4512		usleep_range(100, 200);
4513		ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
4514		if (!ret_val)
4515			break;
4516	}
4517	if (program_retries == 100)
4518		return -E1000_ERR_NVM;
4519
4520	return 0;
4521}
4522
4523/**
4524 *  e1000_erase_flash_bank_ich8lan - Erase a bank (4k) from NVM
4525 *  @hw: pointer to the HW structure
4526 *  @bank: 0 for first bank, 1 for second bank, etc.
4527 *
4528 *  Erases the bank specified. Each bank is a 4k block. Banks are 0 based.
4529 *  bank N is 4096 * N + flash_reg_addr.
4530 **/
4531static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank)
4532{
4533	struct e1000_nvm_info *nvm = &hw->nvm;
4534	union ich8_hws_flash_status hsfsts;
4535	union ich8_hws_flash_ctrl hsflctl;
4536	u32 flash_linear_addr;
4537	/* bank size is in 16bit words - adjust to bytes */
4538	u32 flash_bank_size = nvm->flash_bank_size * 2;
4539	s32 ret_val;
4540	s32 count = 0;
4541	s32 j, iteration, sector_size;
4542
4543	hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4544
4545	/* Determine HW Sector size: Read BERASE bits of hw flash status
4546	 * register
4547	 * 00: The Hw sector is 256 bytes, hence we need to erase 16
4548	 *     consecutive sectors.  The start index for the nth Hw sector
4549	 *     can be calculated as = bank * 4096 + n * 256
4550	 * 01: The Hw sector is 4K bytes, hence we need to erase 1 sector.
4551	 *     The start index for the nth Hw sector can be calculated
4552	 *     as = bank * 4096
4553	 * 10: The Hw sector is 8K bytes, nth sector = bank * 8192
4554	 *     (ich9 only, otherwise error condition)
4555	 * 11: The Hw sector is 64K bytes, nth sector = bank * 65536
4556	 */
4557	switch (hsfsts.hsf_status.berasesz) {
4558	case 0:
4559		/* Hw sector size 256 */
4560		sector_size = ICH_FLASH_SEG_SIZE_256;
4561		iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_256;
4562		break;
4563	case 1:
4564		sector_size = ICH_FLASH_SEG_SIZE_4K;
4565		iteration = 1;
4566		break;
4567	case 2:
4568		sector_size = ICH_FLASH_SEG_SIZE_8K;
4569		iteration = 1;
4570		break;
4571	case 3:
4572		sector_size = ICH_FLASH_SEG_SIZE_64K;
4573		iteration = 1;
4574		break;
4575	default:
4576		return -E1000_ERR_NVM;
4577	}
4578
4579	/* Start with the base address, then add the sector offset. */
4580	flash_linear_addr = hw->nvm.flash_base_addr;
4581	flash_linear_addr += (bank) ? flash_bank_size : 0;
4582
4583	for (j = 0; j < iteration; j++) {
4584		do {
4585			u32 timeout = ICH_FLASH_ERASE_COMMAND_TIMEOUT;
4586
4587			/* Steps */
4588			ret_val = e1000_flash_cycle_init_ich8lan(hw);
4589			if (ret_val)
4590				return ret_val;
4591
4592			/* Write a value 11 (block Erase) in Flash
4593			 * Cycle field in hw flash control
4594			 */
4595			if (hw->mac.type >= e1000_pch_spt)
4596				hsflctl.regval =
4597				    er32flash(ICH_FLASH_HSFSTS) >> 16;
4598			else
4599				hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
4600
4601			hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_ERASE;
4602			if (hw->mac.type >= e1000_pch_spt)
4603				ew32flash(ICH_FLASH_HSFSTS,
4604					  hsflctl.regval << 16);
4605			else
4606				ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
4607
4608			/* Write the last 24 bits of an index within the
4609			 * block into Flash Linear address field in Flash
4610			 * Address.
4611			 */
4612			flash_linear_addr += (j * sector_size);
4613			ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
4614
4615			ret_val = e1000_flash_cycle_ich8lan(hw, timeout);
4616			if (!ret_val)
4617				break;
4618
4619			/* Check if FCERR is set to 1.  If 1,
4620			 * clear it and try the whole sequence
4621			 * a few more times else Done
4622			 */
4623			hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4624			if (hsfsts.hsf_status.flcerr)
4625				/* repeat for some time before giving up */
4626				continue;
4627			else if (!hsfsts.hsf_status.flcdone)
4628				return ret_val;
4629		} while (++count < ICH_FLASH_CYCLE_REPEAT_COUNT);
4630	}
4631
4632	return 0;
4633}
4634
4635/**
4636 *  e1000_valid_led_default_ich8lan - Set the default LED settings
4637 *  @hw: pointer to the HW structure
4638 *  @data: Pointer to the LED settings
4639 *
4640 *  Reads the LED default settings from the NVM to data.  If the NVM LED
4641 *  settings is all 0's or F's, set the LED default to a valid LED default
4642 *  setting.
4643 **/
4644static s32 e1000_valid_led_default_ich8lan(struct e1000_hw *hw, u16 *data)
4645{
4646	s32 ret_val;
4647
4648	ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
4649	if (ret_val) {
4650		e_dbg("NVM Read Error\n");
4651		return ret_val;
4652	}
4653
4654	if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF)
4655		*data = ID_LED_DEFAULT_ICH8LAN;
4656
4657	return 0;
4658}
4659
4660/**
4661 *  e1000_id_led_init_pchlan - store LED configurations
4662 *  @hw: pointer to the HW structure
4663 *
4664 *  PCH does not control LEDs via the LEDCTL register, rather it uses
4665 *  the PHY LED configuration register.
4666 *
4667 *  PCH also does not have an "always on" or "always off" mode which
4668 *  complicates the ID feature.  Instead of using the "on" mode to indicate
4669 *  in ledctl_mode2 the LEDs to use for ID (see e1000e_id_led_init_generic()),
4670 *  use "link_up" mode.  The LEDs will still ID on request if there is no
4671 *  link based on logic in e1000_led_[on|off]_pchlan().
4672 **/
4673static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw)
4674{
4675	struct e1000_mac_info *mac = &hw->mac;
4676	s32 ret_val;
4677	const u32 ledctl_on = E1000_LEDCTL_MODE_LINK_UP;
4678	const u32 ledctl_off = E1000_LEDCTL_MODE_LINK_UP | E1000_PHY_LED0_IVRT;
4679	u16 data, i, temp, shift;
4680
4681	/* Get default ID LED modes */
4682	ret_val = hw->nvm.ops.valid_led_default(hw, &data);
4683	if (ret_val)
4684		return ret_val;
4685
4686	mac->ledctl_default = er32(LEDCTL);
4687	mac->ledctl_mode1 = mac->ledctl_default;
4688	mac->ledctl_mode2 = mac->ledctl_default;
4689
4690	for (i = 0; i < 4; i++) {
4691		temp = (data >> (i << 2)) & E1000_LEDCTL_LED0_MODE_MASK;
4692		shift = (i * 5);
4693		switch (temp) {
4694		case ID_LED_ON1_DEF2:
4695		case ID_LED_ON1_ON2:
4696		case ID_LED_ON1_OFF2:
4697			mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
4698			mac->ledctl_mode1 |= (ledctl_on << shift);
4699			break;
4700		case ID_LED_OFF1_DEF2:
4701		case ID_LED_OFF1_ON2:
4702		case ID_LED_OFF1_OFF2:
4703			mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
4704			mac->ledctl_mode1 |= (ledctl_off << shift);
4705			break;
4706		default:
4707			/* Do nothing */
4708			break;
4709		}
4710		switch (temp) {
4711		case ID_LED_DEF1_ON2:
4712		case ID_LED_ON1_ON2:
4713		case ID_LED_OFF1_ON2:
4714			mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
4715			mac->ledctl_mode2 |= (ledctl_on << shift);
4716			break;
4717		case ID_LED_DEF1_OFF2:
4718		case ID_LED_ON1_OFF2:
4719		case ID_LED_OFF1_OFF2:
4720			mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
4721			mac->ledctl_mode2 |= (ledctl_off << shift);
4722			break;
4723		default:
4724			/* Do nothing */
4725			break;
4726		}
4727	}
4728
4729	return 0;
4730}
4731
4732/**
4733 *  e1000_get_bus_info_ich8lan - Get/Set the bus type and width
4734 *  @hw: pointer to the HW structure
4735 *
4736 *  ICH8 use the PCI Express bus, but does not contain a PCI Express Capability
4737 *  register, so the bus width is hard coded.
4738 **/
4739static s32 e1000_get_bus_info_ich8lan(struct e1000_hw *hw)
4740{
4741	struct e1000_bus_info *bus = &hw->bus;
4742	s32 ret_val;
4743
4744	ret_val = e1000e_get_bus_info_pcie(hw);
4745
4746	/* ICH devices are "PCI Express"-ish.  They have
4747	 * a configuration space, but do not contain
4748	 * PCI Express Capability registers, so bus width
4749	 * must be hardcoded.
4750	 */
4751	if (bus->width == e1000_bus_width_unknown)
4752		bus->width = e1000_bus_width_pcie_x1;
4753
4754	return ret_val;
4755}
4756
4757/**
4758 *  e1000_reset_hw_ich8lan - Reset the hardware
4759 *  @hw: pointer to the HW structure
4760 *
4761 *  Does a full reset of the hardware which includes a reset of the PHY and
4762 *  MAC.
4763 **/
4764static s32 e1000_reset_hw_ich8lan(struct e1000_hw *hw)
4765{
4766	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
4767	u16 kum_cfg;
4768	u32 ctrl, reg;
4769	s32 ret_val;
4770
4771	/* Prevent the PCI-E bus from sticking if there is no TLP connection
4772	 * on the last TLP read/write transaction when MAC is reset.
4773	 */
4774	ret_val = e1000e_disable_pcie_master(hw);
4775	if (ret_val)
4776		e_dbg("PCI-E Master disable polling has failed.\n");
4777
4778	e_dbg("Masking off all interrupts\n");
4779	ew32(IMC, 0xffffffff);
4780
4781	/* Disable the Transmit and Receive units.  Then delay to allow
4782	 * any pending transactions to complete before we hit the MAC
4783	 * with the global reset.
4784	 */
4785	ew32(RCTL, 0);
4786	ew32(TCTL, E1000_TCTL_PSP);
4787	e1e_flush();
4788
4789	usleep_range(10000, 11000);
4790
4791	/* Workaround for ICH8 bit corruption issue in FIFO memory */
4792	if (hw->mac.type == e1000_ich8lan) {
4793		/* Set Tx and Rx buffer allocation to 8k apiece. */
4794		ew32(PBA, E1000_PBA_8K);
4795		/* Set Packet Buffer Size to 16k. */
4796		ew32(PBS, E1000_PBS_16K);
4797	}
4798
4799	if (hw->mac.type == e1000_pchlan) {
4800		/* Save the NVM K1 bit setting */
4801		ret_val = e1000_read_nvm(hw, E1000_NVM_K1_CONFIG, 1, &kum_cfg);
4802		if (ret_val)
4803			return ret_val;
4804
4805		if (kum_cfg & E1000_NVM_K1_ENABLE)
4806			dev_spec->nvm_k1_enabled = true;
4807		else
4808			dev_spec->nvm_k1_enabled = false;
4809	}
4810
4811	ctrl = er32(CTRL);
4812
4813	if (!hw->phy.ops.check_reset_block(hw)) {
4814		/* Full-chip reset requires MAC and PHY reset at the same
4815		 * time to make sure the interface between MAC and the
4816		 * external PHY is reset.
4817		 */
4818		ctrl |= E1000_CTRL_PHY_RST;
4819
4820		/* Gate automatic PHY configuration by hardware on
4821		 * non-managed 82579
4822		 */
4823		if ((hw->mac.type == e1000_pch2lan) &&
4824		    !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
4825			e1000_gate_hw_phy_config_ich8lan(hw, true);
4826	}
4827	ret_val = e1000_acquire_swflag_ich8lan(hw);
4828	e_dbg("Issuing a global reset to ich8lan\n");
4829	ew32(CTRL, (ctrl | E1000_CTRL_RST));
4830	/* cannot issue a flush here because it hangs the hardware */
4831	msleep(20);
4832
4833	/* Set Phy Config Counter to 50msec */
4834	if (hw->mac.type == e1000_pch2lan) {
4835		reg = er32(FEXTNVM3);
4836		reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK;
4837		reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC;
4838		ew32(FEXTNVM3, reg);
4839	}
4840
4841	if (!ret_val)
4842		clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
4843
4844	if (ctrl & E1000_CTRL_PHY_RST) {
4845		ret_val = hw->phy.ops.get_cfg_done(hw);
4846		if (ret_val)
4847			return ret_val;
4848
4849		ret_val = e1000_post_phy_reset_ich8lan(hw);
4850		if (ret_val)
4851			return ret_val;
4852	}
4853
4854	/* For PCH, this write will make sure that any noise
4855	 * will be detected as a CRC error and be dropped rather than show up
4856	 * as a bad packet to the DMA engine.
4857	 */
4858	if (hw->mac.type == e1000_pchlan)
4859		ew32(CRC_OFFSET, 0x65656565);
4860
4861	ew32(IMC, 0xffffffff);
4862	er32(ICR);
4863
4864	reg = er32(KABGTXD);
4865	reg |= E1000_KABGTXD_BGSQLBIAS;
4866	ew32(KABGTXD, reg);
4867
4868	return 0;
4869}
4870
4871/**
4872 *  e1000_init_hw_ich8lan - Initialize the hardware
4873 *  @hw: pointer to the HW structure
4874 *
4875 *  Prepares the hardware for transmit and receive by doing the following:
4876 *   - initialize hardware bits
4877 *   - initialize LED identification
4878 *   - setup receive address registers
4879 *   - setup flow control
4880 *   - setup transmit descriptors
4881 *   - clear statistics
4882 **/
4883static s32 e1000_init_hw_ich8lan(struct e1000_hw *hw)
4884{
4885	struct e1000_mac_info *mac = &hw->mac;
4886	u32 ctrl_ext, txdctl, snoop, fflt_dbg;
4887	s32 ret_val;
4888	u16 i;
4889
4890	e1000_initialize_hw_bits_ich8lan(hw);
4891
4892	/* Initialize identification LED */
4893	ret_val = mac->ops.id_led_init(hw);
4894	/* An error is not fatal and we should not stop init due to this */
4895	if (ret_val)
4896		e_dbg("Error initializing identification LED\n");
4897
4898	/* Setup the receive address. */
4899	e1000e_init_rx_addrs(hw, mac->rar_entry_count);
4900
4901	/* Zero out the Multicast HASH table */
4902	e_dbg("Zeroing the MTA\n");
4903	for (i = 0; i < mac->mta_reg_count; i++)
4904		E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
4905
4906	/* The 82578 Rx buffer will stall if wakeup is enabled in host and
4907	 * the ME.  Disable wakeup by clearing the host wakeup bit.
4908	 * Reset the phy after disabling host wakeup to reset the Rx buffer.
4909	 */
4910	if (hw->phy.type == e1000_phy_82578) {
4911		e1e_rphy(hw, BM_PORT_GEN_CFG, &i);
4912		i &= ~BM_WUC_HOST_WU_BIT;
4913		e1e_wphy(hw, BM_PORT_GEN_CFG, i);
4914		ret_val = e1000_phy_hw_reset_ich8lan(hw);
4915		if (ret_val)
4916			return ret_val;
4917	}
4918
4919	/* Setup link and flow control */
4920	ret_val = mac->ops.setup_link(hw);
4921
4922	/* Set the transmit descriptor write-back policy for both queues */
4923	txdctl = er32(TXDCTL(0));
4924	txdctl = ((txdctl & ~E1000_TXDCTL_WTHRESH) |
4925		  E1000_TXDCTL_FULL_TX_DESC_WB);
4926	txdctl = ((txdctl & ~E1000_TXDCTL_PTHRESH) |
4927		  E1000_TXDCTL_MAX_TX_DESC_PREFETCH);
4928	ew32(TXDCTL(0), txdctl);
4929	txdctl = er32(TXDCTL(1));
4930	txdctl = ((txdctl & ~E1000_TXDCTL_WTHRESH) |
4931		  E1000_TXDCTL_FULL_TX_DESC_WB);
4932	txdctl = ((txdctl & ~E1000_TXDCTL_PTHRESH) |
4933		  E1000_TXDCTL_MAX_TX_DESC_PREFETCH);
4934	ew32(TXDCTL(1), txdctl);
4935
4936	/* ICH8 has opposite polarity of no_snoop bits.
4937	 * By default, we should use snoop behavior.
4938	 */
4939	if (mac->type == e1000_ich8lan)
4940		snoop = PCIE_ICH8_SNOOP_ALL;
4941	else
4942		snoop = (u32)~(PCIE_NO_SNOOP_ALL);
4943	e1000e_set_pcie_no_snoop(hw, snoop);
4944
4945	/* Enable workaround for packet loss issue on TGP PCH
4946	 * Do not gate DMA clock from the modPHY block
4947	 */
4948	if (mac->type >= e1000_pch_tgp) {
4949		fflt_dbg = er32(FFLT_DBG);
4950		fflt_dbg |= E1000_FFLT_DBG_DONT_GATE_WAKE_DMA_CLK;
4951		ew32(FFLT_DBG, fflt_dbg);
4952	}
4953
4954	ctrl_ext = er32(CTRL_EXT);
4955	ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
4956	ew32(CTRL_EXT, ctrl_ext);
4957
4958	/* Clear all of the statistics registers (clear on read).  It is
4959	 * important that we do this after we have tried to establish link
4960	 * because the symbol error count will increment wildly if there
4961	 * is no link.
4962	 */
4963	e1000_clear_hw_cntrs_ich8lan(hw);
4964
4965	return ret_val;
4966}
4967
4968/**
4969 *  e1000_initialize_hw_bits_ich8lan - Initialize required hardware bits
4970 *  @hw: pointer to the HW structure
4971 *
4972 *  Sets/Clears required hardware bits necessary for correctly setting up the
4973 *  hardware for transmit and receive.
4974 **/
4975static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw)
4976{
4977	u32 reg;
4978
4979	/* Extended Device Control */
4980	reg = er32(CTRL_EXT);
4981	reg |= BIT(22);
4982	/* Enable PHY low-power state when MAC is at D3 w/o WoL */
4983	if (hw->mac.type >= e1000_pchlan)
4984		reg |= E1000_CTRL_EXT_PHYPDEN;
4985	ew32(CTRL_EXT, reg);
4986
4987	/* Transmit Descriptor Control 0 */
4988	reg = er32(TXDCTL(0));
4989	reg |= BIT(22);
4990	ew32(TXDCTL(0), reg);
4991
4992	/* Transmit Descriptor Control 1 */
4993	reg = er32(TXDCTL(1));
4994	reg |= BIT(22);
4995	ew32(TXDCTL(1), reg);
4996
4997	/* Transmit Arbitration Control 0 */
4998	reg = er32(TARC(0));
4999	if (hw->mac.type == e1000_ich8lan)
5000		reg |= BIT(28) | BIT(29);
5001	reg |= BIT(23) | BIT(24) | BIT(26) | BIT(27);
5002	ew32(TARC(0), reg);
5003
5004	/* Transmit Arbitration Control 1 */
5005	reg = er32(TARC(1));
5006	if (er32(TCTL) & E1000_TCTL_MULR)
5007		reg &= ~BIT(28);
5008	else
5009		reg |= BIT(28);
5010	reg |= BIT(24) | BIT(26) | BIT(30);
5011	ew32(TARC(1), reg);
5012
5013	/* Device Status */
5014	if (hw->mac.type == e1000_ich8lan) {
5015		reg = er32(STATUS);
5016		reg &= ~BIT(31);
5017		ew32(STATUS, reg);
5018	}
5019
5020	/* work-around descriptor data corruption issue during nfs v2 udp
5021	 * traffic, just disable the nfs filtering capability
5022	 */
5023	reg = er32(RFCTL);
5024	reg |= (E1000_RFCTL_NFSW_DIS | E1000_RFCTL_NFSR_DIS);
5025
5026	/* Disable IPv6 extension header parsing because some malformed
5027	 * IPv6 headers can hang the Rx.
5028	 */
5029	if (hw->mac.type == e1000_ich8lan)
5030		reg |= (E1000_RFCTL_IPV6_EX_DIS | E1000_RFCTL_NEW_IPV6_EXT_DIS);
5031	ew32(RFCTL, reg);
5032
5033	/* Enable ECC on Lynxpoint */
5034	if (hw->mac.type >= e1000_pch_lpt) {
5035		reg = er32(PBECCSTS);
5036		reg |= E1000_PBECCSTS_ECC_ENABLE;
5037		ew32(PBECCSTS, reg);
5038
5039		reg = er32(CTRL);
5040		reg |= E1000_CTRL_MEHE;
5041		ew32(CTRL, reg);
5042	}
5043}
5044
5045/**
5046 *  e1000_setup_link_ich8lan - Setup flow control and link settings
5047 *  @hw: pointer to the HW structure
5048 *
5049 *  Determines which flow control settings to use, then configures flow
5050 *  control.  Calls the appropriate media-specific link configuration
5051 *  function.  Assuming the adapter has a valid link partner, a valid link
5052 *  should be established.  Assumes the hardware has previously been reset
5053 *  and the transmitter and receiver are not enabled.
5054 **/
5055static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw)
5056{
5057	s32 ret_val;
5058
5059	if (hw->phy.ops.check_reset_block(hw))
5060		return 0;
5061
5062	/* ICH parts do not have a word in the NVM to determine
5063	 * the default flow control setting, so we explicitly
5064	 * set it to full.
5065	 */
5066	if (hw->fc.requested_mode == e1000_fc_default) {
5067		/* Workaround h/w hang when Tx flow control enabled */
5068		if (hw->mac.type == e1000_pchlan)
5069			hw->fc.requested_mode = e1000_fc_rx_pause;
5070		else
5071			hw->fc.requested_mode = e1000_fc_full;
5072	}
5073
5074	/* Save off the requested flow control mode for use later.  Depending
5075	 * on the link partner's capabilities, we may or may not use this mode.
5076	 */
5077	hw->fc.current_mode = hw->fc.requested_mode;
5078
5079	e_dbg("After fix-ups FlowControl is now = %x\n", hw->fc.current_mode);
5080
5081	/* Continue to configure the copper link. */
5082	ret_val = hw->mac.ops.setup_physical_interface(hw);
5083	if (ret_val)
5084		return ret_val;
5085
5086	ew32(FCTTV, hw->fc.pause_time);
5087	if ((hw->phy.type == e1000_phy_82578) ||
5088	    (hw->phy.type == e1000_phy_82579) ||
5089	    (hw->phy.type == e1000_phy_i217) ||
5090	    (hw->phy.type == e1000_phy_82577)) {
5091		ew32(FCRTV_PCH, hw->fc.refresh_time);
5092
5093		ret_val = e1e_wphy(hw, PHY_REG(BM_PORT_CTRL_PAGE, 27),
5094				   hw->fc.pause_time);
5095		if (ret_val)
5096			return ret_val;
5097	}
5098
5099	return e1000e_set_fc_watermarks(hw);
5100}
5101
5102/**
5103 *  e1000_setup_copper_link_ich8lan - Configure MAC/PHY interface
5104 *  @hw: pointer to the HW structure
5105 *
5106 *  Configures the kumeran interface to the PHY to wait the appropriate time
5107 *  when polling the PHY, then call the generic setup_copper_link to finish
5108 *  configuring the copper link.
5109 **/
5110static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw)
5111{
5112	u32 ctrl;
5113	s32 ret_val;
5114	u16 reg_data;
5115
5116	ctrl = er32(CTRL);
5117	ctrl |= E1000_CTRL_SLU;
5118	ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
5119	ew32(CTRL, ctrl);
5120
5121	/* Set the mac to wait the maximum time between each iteration
5122	 * and increase the max iterations when polling the phy;
5123	 * this fixes erroneous timeouts at 10Mbps.
5124	 */
5125	ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_TIMEOUTS, 0xFFFF);
5126	if (ret_val)
5127		return ret_val;
5128	ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
5129				       &reg_data);
5130	if (ret_val)
5131		return ret_val;
5132	reg_data |= 0x3F;
5133	ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
5134					reg_data);
5135	if (ret_val)
5136		return ret_val;
5137
5138	switch (hw->phy.type) {
5139	case e1000_phy_igp_3:
5140		ret_val = e1000e_copper_link_setup_igp(hw);
5141		if (ret_val)
5142			return ret_val;
5143		break;
5144	case e1000_phy_bm:
5145	case e1000_phy_82578:
5146		ret_val = e1000e_copper_link_setup_m88(hw);
5147		if (ret_val)
5148			return ret_val;
5149		break;
5150	case e1000_phy_82577:
5151	case e1000_phy_82579:
5152		ret_val = e1000_copper_link_setup_82577(hw);
5153		if (ret_val)
5154			return ret_val;
5155		break;
5156	case e1000_phy_ife:
5157		ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &reg_data);
5158		if (ret_val)
5159			return ret_val;
5160
5161		reg_data &= ~IFE_PMC_AUTO_MDIX;
5162
5163		switch (hw->phy.mdix) {
5164		case 1:
5165			reg_data &= ~IFE_PMC_FORCE_MDIX;
5166			break;
5167		case 2:
5168			reg_data |= IFE_PMC_FORCE_MDIX;
5169			break;
5170		case 0:
5171		default:
5172			reg_data |= IFE_PMC_AUTO_MDIX;
5173			break;
5174		}
5175		ret_val = e1e_wphy(hw, IFE_PHY_MDIX_CONTROL, reg_data);
5176		if (ret_val)
5177			return ret_val;
5178		break;
5179	default:
5180		break;
5181	}
5182
5183	return e1000e_setup_copper_link(hw);
5184}
5185
5186/**
5187 *  e1000_setup_copper_link_pch_lpt - Configure MAC/PHY interface
5188 *  @hw: pointer to the HW structure
5189 *
5190 *  Calls the PHY specific link setup function and then calls the
5191 *  generic setup_copper_link to finish configuring the link for
5192 *  Lynxpoint PCH devices
5193 **/
5194static s32 e1000_setup_copper_link_pch_lpt(struct e1000_hw *hw)
5195{
5196	u32 ctrl;
5197	s32 ret_val;
5198
5199	ctrl = er32(CTRL);
5200	ctrl |= E1000_CTRL_SLU;
5201	ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
5202	ew32(CTRL, ctrl);
5203
5204	ret_val = e1000_copper_link_setup_82577(hw);
5205	if (ret_val)
5206		return ret_val;
5207
5208	return e1000e_setup_copper_link(hw);
5209}
5210
5211/**
5212 *  e1000_get_link_up_info_ich8lan - Get current link speed and duplex
5213 *  @hw: pointer to the HW structure
5214 *  @speed: pointer to store current link speed
5215 *  @duplex: pointer to store the current link duplex
5216 *
5217 *  Calls the generic get_speed_and_duplex to retrieve the current link
5218 *  information and then calls the Kumeran lock loss workaround for links at
5219 *  gigabit speeds.
5220 **/
5221static s32 e1000_get_link_up_info_ich8lan(struct e1000_hw *hw, u16 *speed,
5222					  u16 *duplex)
5223{
5224	s32 ret_val;
5225
5226	ret_val = e1000e_get_speed_and_duplex_copper(hw, speed, duplex);
5227	if (ret_val)
5228		return ret_val;
5229
5230	if ((hw->mac.type == e1000_ich8lan) &&
5231	    (hw->phy.type == e1000_phy_igp_3) && (*speed == SPEED_1000)) {
5232		ret_val = e1000_kmrn_lock_loss_workaround_ich8lan(hw);
5233	}
5234
5235	return ret_val;
5236}
5237
5238/**
5239 *  e1000_kmrn_lock_loss_workaround_ich8lan - Kumeran workaround
5240 *  @hw: pointer to the HW structure
5241 *
5242 *  Work-around for 82566 Kumeran PCS lock loss:
5243 *  On link status change (i.e. PCI reset, speed change) and link is up and
5244 *  speed is gigabit-
5245 *    0) if workaround is optionally disabled do nothing
5246 *    1) wait 1ms for Kumeran link to come up
5247 *    2) check Kumeran Diagnostic register PCS lock loss bit
5248 *    3) if not set the link is locked (all is good), otherwise...
5249 *    4) reset the PHY
5250 *    5) repeat up to 10 times
5251 *  Note: this is only called for IGP3 copper when speed is 1gb.
5252 **/
5253static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw)
5254{
5255	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
5256	u32 phy_ctrl;
5257	s32 ret_val;
5258	u16 i, data;
5259	bool link;
5260
5261	if (!dev_spec->kmrn_lock_loss_workaround_enabled)
5262		return 0;
5263
5264	/* Make sure link is up before proceeding.  If not just return.
5265	 * Attempting this while link is negotiating fouled up link
5266	 * stability
5267	 */
5268	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
5269	if (!link)
5270		return 0;
5271
5272	for (i = 0; i < 10; i++) {
5273		/* read once to clear */
5274		ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
5275		if (ret_val)
5276			return ret_val;
5277		/* and again to get new status */
5278		ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
5279		if (ret_val)
5280			return ret_val;
5281
5282		/* check for PCS lock */
5283		if (!(data & IGP3_KMRN_DIAG_PCS_LOCK_LOSS))
5284			return 0;
5285
5286		/* Issue PHY reset */
5287		e1000_phy_hw_reset(hw);
5288		mdelay(5);
5289	}
5290	/* Disable GigE link negotiation */
5291	phy_ctrl = er32(PHY_CTRL);
5292	phy_ctrl |= (E1000_PHY_CTRL_GBE_DISABLE |
5293		     E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
5294	ew32(PHY_CTRL, phy_ctrl);
5295
5296	/* Call gig speed drop workaround on Gig disable before accessing
5297	 * any PHY registers
5298	 */
5299	e1000e_gig_downshift_workaround_ich8lan(hw);
5300
5301	/* unable to acquire PCS lock */
5302	return -E1000_ERR_PHY;
5303}
5304
5305/**
5306 *  e1000e_set_kmrn_lock_loss_workaround_ich8lan - Set Kumeran workaround state
5307 *  @hw: pointer to the HW structure
5308 *  @state: boolean value used to set the current Kumeran workaround state
5309 *
5310 *  If ICH8, set the current Kumeran workaround state (enabled - true
5311 *  /disabled - false).
5312 **/
5313void e1000e_set_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw,
5314						  bool state)
5315{
5316	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
5317
5318	if (hw->mac.type != e1000_ich8lan) {
5319		e_dbg("Workaround applies to ICH8 only.\n");
5320		return;
5321	}
5322
5323	dev_spec->kmrn_lock_loss_workaround_enabled = state;
5324}
5325
5326/**
5327 *  e1000e_igp3_phy_powerdown_workaround_ich8lan - Power down workaround on D3
5328 *  @hw: pointer to the HW structure
5329 *
5330 *  Workaround for 82566 power-down on D3 entry:
5331 *    1) disable gigabit link
5332 *    2) write VR power-down enable
5333 *    3) read it back
5334 *  Continue if successful, else issue LCD reset and repeat
5335 **/
5336void e1000e_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw *hw)
5337{
5338	u32 reg;
5339	u16 data;
5340	u8 retry = 0;
5341
5342	if (hw->phy.type != e1000_phy_igp_3)
5343		return;
5344
5345	/* Try the workaround twice (if needed) */
5346	do {
5347		/* Disable link */
5348		reg = er32(PHY_CTRL);
5349		reg |= (E1000_PHY_CTRL_GBE_DISABLE |
5350			E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
5351		ew32(PHY_CTRL, reg);
5352
5353		/* Call gig speed drop workaround on Gig disable before
5354		 * accessing any PHY registers
5355		 */
5356		if (hw->mac.type == e1000_ich8lan)
5357			e1000e_gig_downshift_workaround_ich8lan(hw);
5358
5359		/* Write VR power-down enable */
5360		e1e_rphy(hw, IGP3_VR_CTRL, &data);
5361		data &= ~IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
5362		e1e_wphy(hw, IGP3_VR_CTRL, data | IGP3_VR_CTRL_MODE_SHUTDOWN);
5363
5364		/* Read it back and test */
5365		e1e_rphy(hw, IGP3_VR_CTRL, &data);
5366		data &= IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
5367		if ((data == IGP3_VR_CTRL_MODE_SHUTDOWN) || retry)
5368			break;
5369
5370		/* Issue PHY reset and repeat at most one more time */
5371		reg = er32(CTRL);
5372		ew32(CTRL, reg | E1000_CTRL_PHY_RST);
5373		retry++;
5374	} while (retry);
5375}
5376
5377/**
5378 *  e1000e_gig_downshift_workaround_ich8lan - WoL from S5 stops working
5379 *  @hw: pointer to the HW structure
5380 *
5381 *  Steps to take when dropping from 1Gb/s (eg. link cable removal (LSC),
5382 *  LPLU, Gig disable, MDIC PHY reset):
5383 *    1) Set Kumeran Near-end loopback
5384 *    2) Clear Kumeran Near-end loopback
5385 *  Should only be called for ICH8[m] devices with any 1G Phy.
5386 **/
5387void e1000e_gig_downshift_workaround_ich8lan(struct e1000_hw *hw)
5388{
5389	s32 ret_val;
5390	u16 reg_data;
5391
5392	if ((hw->mac.type != e1000_ich8lan) || (hw->phy.type == e1000_phy_ife))
5393		return;
5394
5395	ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
5396				       &reg_data);
5397	if (ret_val)
5398		return;
5399	reg_data |= E1000_KMRNCTRLSTA_DIAG_NELPBK;
5400	ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
5401					reg_data);
5402	if (ret_val)
5403		return;
5404	reg_data &= ~E1000_KMRNCTRLSTA_DIAG_NELPBK;
5405	e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET, reg_data);
5406}
5407
5408/**
5409 *  e1000_suspend_workarounds_ich8lan - workarounds needed during S0->Sx
5410 *  @hw: pointer to the HW structure
5411 *
5412 *  During S0 to Sx transition, it is possible the link remains at gig
5413 *  instead of negotiating to a lower speed.  Before going to Sx, set
5414 *  'Gig Disable' to force link speed negotiation to a lower speed based on
5415 *  the LPLU setting in the NVM or custom setting.  For PCH and newer parts,
5416 *  the OEM bits PHY register (LED, GbE disable and LPLU configurations) also
5417 *  needs to be written.
5418 *  Parts that support (and are linked to a partner which support) EEE in
5419 *  100Mbps should disable LPLU since 100Mbps w/ EEE requires less power
5420 *  than 10Mbps w/o EEE.
5421 **/
5422void e1000_suspend_workarounds_ich8lan(struct e1000_hw *hw)
5423{
5424	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
5425	u32 phy_ctrl;
5426	s32 ret_val;
5427
5428	phy_ctrl = er32(PHY_CTRL);
5429	phy_ctrl |= E1000_PHY_CTRL_GBE_DISABLE;
5430
5431	if (hw->phy.type == e1000_phy_i217) {
5432		u16 phy_reg, device_id = hw->adapter->pdev->device;
5433
5434		if ((device_id == E1000_DEV_ID_PCH_LPTLP_I218_LM) ||
5435		    (device_id == E1000_DEV_ID_PCH_LPTLP_I218_V) ||
5436		    (device_id == E1000_DEV_ID_PCH_I218_LM3) ||
5437		    (device_id == E1000_DEV_ID_PCH_I218_V3) ||
5438		    (hw->mac.type >= e1000_pch_spt)) {
5439			u32 fextnvm6 = er32(FEXTNVM6);
5440
5441			ew32(FEXTNVM6, fextnvm6 & ~E1000_FEXTNVM6_REQ_PLL_CLK);
5442		}
5443
5444		ret_val = hw->phy.ops.acquire(hw);
5445		if (ret_val)
5446			goto out;
5447
5448		if (!dev_spec->eee_disable) {
5449			u16 eee_advert;
5450
5451			ret_val =
5452			    e1000_read_emi_reg_locked(hw,
5453						      I217_EEE_ADVERTISEMENT,
5454						      &eee_advert);
5455			if (ret_val)
5456				goto release;
5457
5458			/* Disable LPLU if both link partners support 100BaseT
5459			 * EEE and 100Full is advertised on both ends of the
5460			 * link, and enable Auto Enable LPI since there will
5461			 * be no driver to enable LPI while in Sx.
5462			 */
5463			if ((eee_advert & I82579_EEE_100_SUPPORTED) &&
5464			    (dev_spec->eee_lp_ability &
5465			     I82579_EEE_100_SUPPORTED) &&
5466			    (hw->phy.autoneg_advertised & ADVERTISE_100_FULL)) {
5467				phy_ctrl &= ~(E1000_PHY_CTRL_D0A_LPLU |
5468					      E1000_PHY_CTRL_NOND0A_LPLU);
5469
5470				/* Set Auto Enable LPI after link up */
5471				e1e_rphy_locked(hw,
5472						I217_LPI_GPIO_CTRL, &phy_reg);
5473				phy_reg |= I217_LPI_GPIO_CTRL_AUTO_EN_LPI;
5474				e1e_wphy_locked(hw,
5475						I217_LPI_GPIO_CTRL, phy_reg);
5476			}
5477		}
5478
5479		/* For i217 Intel Rapid Start Technology support,
5480		 * when the system is going into Sx and no manageability engine
5481		 * is present, the driver must configure proxy to reset only on
5482		 * power good.  LPI (Low Power Idle) state must also reset only
5483		 * on power good, as well as the MTA (Multicast table array).
5484		 * The SMBus release must also be disabled on LCD reset.
5485		 */
5486		if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
5487			/* Enable proxy to reset only on power good. */
5488			e1e_rphy_locked(hw, I217_PROXY_CTRL, &phy_reg);
5489			phy_reg |= I217_PROXY_CTRL_AUTO_DISABLE;
5490			e1e_wphy_locked(hw, I217_PROXY_CTRL, phy_reg);
5491
5492			/* Set bit enable LPI (EEE) to reset only on
5493			 * power good.
5494			 */
5495			e1e_rphy_locked(hw, I217_SxCTRL, &phy_reg);
5496			phy_reg |= I217_SxCTRL_ENABLE_LPI_RESET;
5497			e1e_wphy_locked(hw, I217_SxCTRL, phy_reg);
5498
5499			/* Disable the SMB release on LCD reset. */
5500			e1e_rphy_locked(hw, I217_MEMPWR, &phy_reg);
5501			phy_reg &= ~I217_MEMPWR_DISABLE_SMB_RELEASE;
5502			e1e_wphy_locked(hw, I217_MEMPWR, phy_reg);
5503		}
5504
5505		/* Enable MTA to reset for Intel Rapid Start Technology
5506		 * Support
5507		 */
5508		e1e_rphy_locked(hw, I217_CGFREG, &phy_reg);
5509		phy_reg |= I217_CGFREG_ENABLE_MTA_RESET;
5510		e1e_wphy_locked(hw, I217_CGFREG, phy_reg);
5511
5512release:
5513		hw->phy.ops.release(hw);
5514	}
5515out:
5516	ew32(PHY_CTRL, phy_ctrl);
5517
5518	if (hw->mac.type == e1000_ich8lan)
5519		e1000e_gig_downshift_workaround_ich8lan(hw);
5520
5521	if (hw->mac.type >= e1000_pchlan) {
5522		e1000_oem_bits_config_ich8lan(hw, false);
5523
5524		/* Reset PHY to activate OEM bits on 82577/8 */
5525		if (hw->mac.type == e1000_pchlan)
5526			e1000e_phy_hw_reset_generic(hw);
5527
5528		ret_val = hw->phy.ops.acquire(hw);
5529		if (ret_val)
5530			return;
5531		e1000_write_smbus_addr(hw);
5532		hw->phy.ops.release(hw);
5533	}
5534}
5535
5536/**
5537 *  e1000_resume_workarounds_pchlan - workarounds needed during Sx->S0
5538 *  @hw: pointer to the HW structure
5539 *
5540 *  During Sx to S0 transitions on non-managed devices or managed devices
5541 *  on which PHY resets are not blocked, if the PHY registers cannot be
5542 *  accessed properly by the s/w toggle the LANPHYPC value to power cycle
5543 *  the PHY.
5544 *  On i217, setup Intel Rapid Start Technology.
5545 **/
5546void e1000_resume_workarounds_pchlan(struct e1000_hw *hw)
5547{
5548	s32 ret_val;
5549
5550	if (hw->mac.type < e1000_pch2lan)
5551		return;
5552
5553	ret_val = e1000_init_phy_workarounds_pchlan(hw);
5554	if (ret_val) {
5555		e_dbg("Failed to init PHY flow ret_val=%d\n", ret_val);
5556		return;
5557	}
5558
5559	/* For i217 Intel Rapid Start Technology support when the system
5560	 * is transitioning from Sx and no manageability engine is present
5561	 * configure SMBus to restore on reset, disable proxy, and enable
5562	 * the reset on MTA (Multicast table array).
5563	 */
5564	if (hw->phy.type == e1000_phy_i217) {
5565		u16 phy_reg;
5566
5567		ret_val = hw->phy.ops.acquire(hw);
5568		if (ret_val) {
5569			e_dbg("Failed to setup iRST\n");
5570			return;
5571		}
5572
5573		/* Clear Auto Enable LPI after link up */
5574		e1e_rphy_locked(hw, I217_LPI_GPIO_CTRL, &phy_reg);
5575		phy_reg &= ~I217_LPI_GPIO_CTRL_AUTO_EN_LPI;
5576		e1e_wphy_locked(hw, I217_LPI_GPIO_CTRL, phy_reg);
5577
5578		if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
5579			/* Restore clear on SMB if no manageability engine
5580			 * is present
5581			 */
5582			ret_val = e1e_rphy_locked(hw, I217_MEMPWR, &phy_reg);
5583			if (ret_val)
5584				goto release;
5585			phy_reg |= I217_MEMPWR_DISABLE_SMB_RELEASE;
5586			e1e_wphy_locked(hw, I217_MEMPWR, phy_reg);
5587
5588			/* Disable Proxy */
5589			e1e_wphy_locked(hw, I217_PROXY_CTRL, 0);
5590		}
5591		/* Enable reset on MTA */
5592		ret_val = e1e_rphy_locked(hw, I217_CGFREG, &phy_reg);
5593		if (ret_val)
5594			goto release;
5595		phy_reg &= ~I217_CGFREG_ENABLE_MTA_RESET;
5596		e1e_wphy_locked(hw, I217_CGFREG, phy_reg);
5597release:
5598		if (ret_val)
5599			e_dbg("Error %d in resume workarounds\n", ret_val);
5600		hw->phy.ops.release(hw);
5601	}
5602}
5603
5604/**
5605 *  e1000_cleanup_led_ich8lan - Restore the default LED operation
5606 *  @hw: pointer to the HW structure
5607 *
5608 *  Return the LED back to the default configuration.
5609 **/
5610static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw)
5611{
5612	if (hw->phy.type == e1000_phy_ife)
5613		return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0);
5614
5615	ew32(LEDCTL, hw->mac.ledctl_default);
5616	return 0;
5617}
5618
5619/**
5620 *  e1000_led_on_ich8lan - Turn LEDs on
5621 *  @hw: pointer to the HW structure
5622 *
5623 *  Turn on the LEDs.
5624 **/
5625static s32 e1000_led_on_ich8lan(struct e1000_hw *hw)
5626{
5627	if (hw->phy.type == e1000_phy_ife)
5628		return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
5629				(IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_ON));
5630
5631	ew32(LEDCTL, hw->mac.ledctl_mode2);
5632	return 0;
5633}
5634
5635/**
5636 *  e1000_led_off_ich8lan - Turn LEDs off
5637 *  @hw: pointer to the HW structure
5638 *
5639 *  Turn off the LEDs.
5640 **/
5641static s32 e1000_led_off_ich8lan(struct e1000_hw *hw)
5642{
5643	if (hw->phy.type == e1000_phy_ife)
5644		return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
5645				(IFE_PSCL_PROBE_MODE |
5646				 IFE_PSCL_PROBE_LEDS_OFF));
5647
5648	ew32(LEDCTL, hw->mac.ledctl_mode1);
5649	return 0;
5650}
5651
5652/**
5653 *  e1000_setup_led_pchlan - Configures SW controllable LED
5654 *  @hw: pointer to the HW structure
5655 *
5656 *  This prepares the SW controllable LED for use.
5657 **/
5658static s32 e1000_setup_led_pchlan(struct e1000_hw *hw)
5659{
5660	return e1e_wphy(hw, HV_LED_CONFIG, (u16)hw->mac.ledctl_mode1);
5661}
5662
5663/**
5664 *  e1000_cleanup_led_pchlan - Restore the default LED operation
5665 *  @hw: pointer to the HW structure
5666 *
5667 *  Return the LED back to the default configuration.
5668 **/
5669static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw)
5670{
5671	return e1e_wphy(hw, HV_LED_CONFIG, (u16)hw->mac.ledctl_default);
5672}
5673
5674/**
5675 *  e1000_led_on_pchlan - Turn LEDs on
5676 *  @hw: pointer to the HW structure
5677 *
5678 *  Turn on the LEDs.
5679 **/
5680static s32 e1000_led_on_pchlan(struct e1000_hw *hw)
5681{
5682	u16 data = (u16)hw->mac.ledctl_mode2;
5683	u32 i, led;
5684
5685	/* If no link, then turn LED on by setting the invert bit
5686	 * for each LED that's mode is "link_up" in ledctl_mode2.
5687	 */
5688	if (!(er32(STATUS) & E1000_STATUS_LU)) {
5689		for (i = 0; i < 3; i++) {
5690			led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
5691			if ((led & E1000_PHY_LED0_MODE_MASK) !=
5692			    E1000_LEDCTL_MODE_LINK_UP)
5693				continue;
5694			if (led & E1000_PHY_LED0_IVRT)
5695				data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
5696			else
5697				data |= (E1000_PHY_LED0_IVRT << (i * 5));
5698		}
5699	}
5700
5701	return e1e_wphy(hw, HV_LED_CONFIG, data);
5702}
5703
5704/**
5705 *  e1000_led_off_pchlan - Turn LEDs off
5706 *  @hw: pointer to the HW structure
5707 *
5708 *  Turn off the LEDs.
5709 **/
5710static s32 e1000_led_off_pchlan(struct e1000_hw *hw)
5711{
5712	u16 data = (u16)hw->mac.ledctl_mode1;
5713	u32 i, led;
5714
5715	/* If no link, then turn LED off by clearing the invert bit
5716	 * for each LED that's mode is "link_up" in ledctl_mode1.
5717	 */
5718	if (!(er32(STATUS) & E1000_STATUS_LU)) {
5719		for (i = 0; i < 3; i++) {
5720			led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
5721			if ((led & E1000_PHY_LED0_MODE_MASK) !=
5722			    E1000_LEDCTL_MODE_LINK_UP)
5723				continue;
5724			if (led & E1000_PHY_LED0_IVRT)
5725				data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
5726			else
5727				data |= (E1000_PHY_LED0_IVRT << (i * 5));
5728		}
5729	}
5730
5731	return e1e_wphy(hw, HV_LED_CONFIG, data);
5732}
5733
5734/**
5735 *  e1000_get_cfg_done_ich8lan - Read config done bit after Full or PHY reset
5736 *  @hw: pointer to the HW structure
5737 *
5738 *  Read appropriate register for the config done bit for completion status
5739 *  and configure the PHY through s/w for EEPROM-less parts.
5740 *
5741 *  NOTE: some silicon which is EEPROM-less will fail trying to read the
5742 *  config done bit, so only an error is logged and continues.  If we were
5743 *  to return with error, EEPROM-less silicon would not be able to be reset
5744 *  or change link.
5745 **/
5746static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw)
5747{
5748	s32 ret_val = 0;
5749	u32 bank = 0;
5750	u32 status;
5751
5752	e1000e_get_cfg_done_generic(hw);
5753
5754	/* Wait for indication from h/w that it has completed basic config */
5755	if (hw->mac.type >= e1000_ich10lan) {
5756		e1000_lan_init_done_ich8lan(hw);
5757	} else {
5758		ret_val = e1000e_get_auto_rd_done(hw);
5759		if (ret_val) {
5760			/* When auto config read does not complete, do not
5761			 * return with an error. This can happen in situations
5762			 * where there is no eeprom and prevents getting link.
5763			 */
5764			e_dbg("Auto Read Done did not complete\n");
5765			ret_val = 0;
5766		}
5767	}
5768
5769	/* Clear PHY Reset Asserted bit */
5770	status = er32(STATUS);
5771	if (status & E1000_STATUS_PHYRA)
5772		ew32(STATUS, status & ~E1000_STATUS_PHYRA);
5773	else
5774		e_dbg("PHY Reset Asserted not set - needs delay\n");
5775
5776	/* If EEPROM is not marked present, init the IGP 3 PHY manually */
5777	if (hw->mac.type <= e1000_ich9lan) {
5778		if (!(er32(EECD) & E1000_EECD_PRES) &&
5779		    (hw->phy.type == e1000_phy_igp_3)) {
5780			e1000e_phy_init_script_igp3(hw);
5781		}
5782	} else {
5783		if (e1000_valid_nvm_bank_detect_ich8lan(hw, &bank)) {
5784			/* Maybe we should do a basic PHY config */
5785			e_dbg("EEPROM not present\n");
5786			ret_val = -E1000_ERR_CONFIG;
5787		}
5788	}
5789
5790	return ret_val;
5791}
5792
5793/**
5794 * e1000_power_down_phy_copper_ich8lan - Remove link during PHY power down
5795 * @hw: pointer to the HW structure
5796 *
5797 * In the case of a PHY power down to save power, or to turn off link during a
5798 * driver unload, or wake on lan is not enabled, remove the link.
5799 **/
5800static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw)
5801{
5802	/* If the management interface is not enabled, then power down */
5803	if (!(hw->mac.ops.check_mng_mode(hw) ||
5804	      hw->phy.ops.check_reset_block(hw)))
5805		e1000_power_down_phy_copper(hw);
5806}
5807
5808/**
5809 *  e1000_clear_hw_cntrs_ich8lan - Clear statistical counters
5810 *  @hw: pointer to the HW structure
5811 *
5812 *  Clears hardware counters specific to the silicon family and calls
5813 *  clear_hw_cntrs_generic to clear all general purpose counters.
5814 **/
5815static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw)
5816{
5817	u16 phy_data;
5818	s32 ret_val;
5819
5820	e1000e_clear_hw_cntrs_base(hw);
5821
5822	er32(ALGNERRC);
5823	er32(RXERRC);
5824	er32(TNCRS);
5825	er32(CEXTERR);
5826	er32(TSCTC);
5827	er32(TSCTFC);
5828
5829	er32(MGTPRC);
5830	er32(MGTPDC);
5831	er32(MGTPTC);
5832
5833	er32(IAC);
5834	er32(ICRXOC);
5835
5836	/* Clear PHY statistics registers */
5837	if ((hw->phy.type == e1000_phy_82578) ||
5838	    (hw->phy.type == e1000_phy_82579) ||
5839	    (hw->phy.type == e1000_phy_i217) ||
5840	    (hw->phy.type == e1000_phy_82577)) {
5841		ret_val = hw->phy.ops.acquire(hw);
5842		if (ret_val)
5843			return;
5844		ret_val = hw->phy.ops.set_page(hw,
5845					       HV_STATS_PAGE << IGP_PAGE_SHIFT);
5846		if (ret_val)
5847			goto release;
5848		hw->phy.ops.read_reg_page(hw, HV_SCC_UPPER, &phy_data);
5849		hw->phy.ops.read_reg_page(hw, HV_SCC_LOWER, &phy_data);
5850		hw->phy.ops.read_reg_page(hw, HV_ECOL_UPPER, &phy_data);
5851		hw->phy.ops.read_reg_page(hw, HV_ECOL_LOWER, &phy_data);
5852		hw->phy.ops.read_reg_page(hw, HV_MCC_UPPER, &phy_data);
5853		hw->phy.ops.read_reg_page(hw, HV_MCC_LOWER, &phy_data);
5854		hw->phy.ops.read_reg_page(hw, HV_LATECOL_UPPER, &phy_data);
5855		hw->phy.ops.read_reg_page(hw, HV_LATECOL_LOWER, &phy_data);
5856		hw->phy.ops.read_reg_page(hw, HV_COLC_UPPER, &phy_data);
5857		hw->phy.ops.read_reg_page(hw, HV_COLC_LOWER, &phy_data);
5858		hw->phy.ops.read_reg_page(hw, HV_DC_UPPER, &phy_data);
5859		hw->phy.ops.read_reg_page(hw, HV_DC_LOWER, &phy_data);
5860		hw->phy.ops.read_reg_page(hw, HV_TNCRS_UPPER, &phy_data);
5861		hw->phy.ops.read_reg_page(hw, HV_TNCRS_LOWER, &phy_data);
5862release:
5863		hw->phy.ops.release(hw);
5864	}
5865}
5866
5867static const struct e1000_mac_operations ich8_mac_ops = {
5868	/* check_mng_mode dependent on mac type */
5869	.check_for_link		= e1000_check_for_copper_link_ich8lan,
5870	/* cleanup_led dependent on mac type */
5871	.clear_hw_cntrs		= e1000_clear_hw_cntrs_ich8lan,
5872	.get_bus_info		= e1000_get_bus_info_ich8lan,
5873	.set_lan_id		= e1000_set_lan_id_single_port,
5874	.get_link_up_info	= e1000_get_link_up_info_ich8lan,
5875	/* led_on dependent on mac type */
5876	/* led_off dependent on mac type */
5877	.update_mc_addr_list	= e1000e_update_mc_addr_list_generic,
5878	.reset_hw		= e1000_reset_hw_ich8lan,
5879	.init_hw		= e1000_init_hw_ich8lan,
5880	.setup_link		= e1000_setup_link_ich8lan,
5881	.setup_physical_interface = e1000_setup_copper_link_ich8lan,
5882	/* id_led_init dependent on mac type */
5883	.config_collision_dist	= e1000e_config_collision_dist_generic,
5884	.rar_set		= e1000e_rar_set_generic,
5885	.rar_get_count		= e1000e_rar_get_count_generic,
5886};
5887
5888static const struct e1000_phy_operations ich8_phy_ops = {
5889	.acquire		= e1000_acquire_swflag_ich8lan,
5890	.check_reset_block	= e1000_check_reset_block_ich8lan,
5891	.commit			= NULL,
5892	.get_cfg_done		= e1000_get_cfg_done_ich8lan,
5893	.get_cable_length	= e1000e_get_cable_length_igp_2,
5894	.read_reg		= e1000e_read_phy_reg_igp,
5895	.release		= e1000_release_swflag_ich8lan,
5896	.reset			= e1000_phy_hw_reset_ich8lan,
5897	.set_d0_lplu_state	= e1000_set_d0_lplu_state_ich8lan,
5898	.set_d3_lplu_state	= e1000_set_d3_lplu_state_ich8lan,
5899	.write_reg		= e1000e_write_phy_reg_igp,
5900};
5901
5902static const struct e1000_nvm_operations ich8_nvm_ops = {
5903	.acquire		= e1000_acquire_nvm_ich8lan,
5904	.read			= e1000_read_nvm_ich8lan,
5905	.release		= e1000_release_nvm_ich8lan,
5906	.reload			= e1000e_reload_nvm_generic,
5907	.update			= e1000_update_nvm_checksum_ich8lan,
5908	.valid_led_default	= e1000_valid_led_default_ich8lan,
5909	.validate		= e1000_validate_nvm_checksum_ich8lan,
5910	.write			= e1000_write_nvm_ich8lan,
5911};
5912
5913static const struct e1000_nvm_operations spt_nvm_ops = {
5914	.acquire		= e1000_acquire_nvm_ich8lan,
5915	.release		= e1000_release_nvm_ich8lan,
5916	.read			= e1000_read_nvm_spt,
5917	.update			= e1000_update_nvm_checksum_spt,
5918	.reload			= e1000e_reload_nvm_generic,
5919	.valid_led_default	= e1000_valid_led_default_ich8lan,
5920	.validate		= e1000_validate_nvm_checksum_ich8lan,
5921	.write			= e1000_write_nvm_ich8lan,
5922};
5923
5924const struct e1000_info e1000_ich8_info = {
5925	.mac			= e1000_ich8lan,
5926	.flags			= FLAG_HAS_WOL
5927				  | FLAG_IS_ICH
5928				  | FLAG_HAS_CTRLEXT_ON_LOAD
5929				  | FLAG_HAS_AMT
5930				  | FLAG_HAS_FLASH
5931				  | FLAG_APME_IN_WUC,
5932	.pba			= 8,
5933	.max_hw_frame_size	= VLAN_ETH_FRAME_LEN + ETH_FCS_LEN,
5934	.get_variants		= e1000_get_variants_ich8lan,
5935	.mac_ops		= &ich8_mac_ops,
5936	.phy_ops		= &ich8_phy_ops,
5937	.nvm_ops		= &ich8_nvm_ops,
5938};
5939
5940const struct e1000_info e1000_ich9_info = {
5941	.mac			= e1000_ich9lan,
5942	.flags			= FLAG_HAS_JUMBO_FRAMES
5943				  | FLAG_IS_ICH
5944				  | FLAG_HAS_WOL
5945				  | FLAG_HAS_CTRLEXT_ON_LOAD
5946				  | FLAG_HAS_AMT
5947				  | FLAG_HAS_FLASH
5948				  | FLAG_APME_IN_WUC,
5949	.pba			= 18,
5950	.max_hw_frame_size	= DEFAULT_JUMBO,
5951	.get_variants		= e1000_get_variants_ich8lan,
5952	.mac_ops		= &ich8_mac_ops,
5953	.phy_ops		= &ich8_phy_ops,
5954	.nvm_ops		= &ich8_nvm_ops,
5955};
5956
5957const struct e1000_info e1000_ich10_info = {
5958	.mac			= e1000_ich10lan,
5959	.flags			= FLAG_HAS_JUMBO_FRAMES
5960				  | FLAG_IS_ICH
5961				  | FLAG_HAS_WOL
5962				  | FLAG_HAS_CTRLEXT_ON_LOAD
5963				  | FLAG_HAS_AMT
5964				  | FLAG_HAS_FLASH
5965				  | FLAG_APME_IN_WUC,
5966	.pba			= 18,
5967	.max_hw_frame_size	= DEFAULT_JUMBO,
5968	.get_variants		= e1000_get_variants_ich8lan,
5969	.mac_ops		= &ich8_mac_ops,
5970	.phy_ops		= &ich8_phy_ops,
5971	.nvm_ops		= &ich8_nvm_ops,
5972};
5973
5974const struct e1000_info e1000_pch_info = {
5975	.mac			= e1000_pchlan,
5976	.flags			= FLAG_IS_ICH
5977				  | FLAG_HAS_WOL
5978				  | FLAG_HAS_CTRLEXT_ON_LOAD
5979				  | FLAG_HAS_AMT
5980				  | FLAG_HAS_FLASH
5981				  | FLAG_HAS_JUMBO_FRAMES
5982				  | FLAG_DISABLE_FC_PAUSE_TIME /* errata */
5983				  | FLAG_APME_IN_WUC,
5984	.flags2			= FLAG2_HAS_PHY_STATS,
5985	.pba			= 26,
5986	.max_hw_frame_size	= 4096,
5987	.get_variants		= e1000_get_variants_ich8lan,
5988	.mac_ops		= &ich8_mac_ops,
5989	.phy_ops		= &ich8_phy_ops,
5990	.nvm_ops		= &ich8_nvm_ops,
5991};
5992
5993const struct e1000_info e1000_pch2_info = {
5994	.mac			= e1000_pch2lan,
5995	.flags			= FLAG_IS_ICH
5996				  | FLAG_HAS_WOL
5997				  | FLAG_HAS_HW_TIMESTAMP
5998				  | FLAG_HAS_CTRLEXT_ON_LOAD
5999				  | FLAG_HAS_AMT
6000				  | FLAG_HAS_FLASH
6001				  | FLAG_HAS_JUMBO_FRAMES
6002				  | FLAG_APME_IN_WUC,
6003	.flags2			= FLAG2_HAS_PHY_STATS
6004				  | FLAG2_HAS_EEE
6005				  | FLAG2_CHECK_SYSTIM_OVERFLOW,
6006	.pba			= 26,
6007	.max_hw_frame_size	= 9022,
6008	.get_variants		= e1000_get_variants_ich8lan,
6009	.mac_ops		= &ich8_mac_ops,
6010	.phy_ops		= &ich8_phy_ops,
6011	.nvm_ops		= &ich8_nvm_ops,
6012};
6013
6014const struct e1000_info e1000_pch_lpt_info = {
6015	.mac			= e1000_pch_lpt,
6016	.flags			= FLAG_IS_ICH
6017				  | FLAG_HAS_WOL
6018				  | FLAG_HAS_HW_TIMESTAMP
6019				  | FLAG_HAS_CTRLEXT_ON_LOAD
6020				  | FLAG_HAS_AMT
6021				  | FLAG_HAS_FLASH
6022				  | FLAG_HAS_JUMBO_FRAMES
6023				  | FLAG_APME_IN_WUC,
6024	.flags2			= FLAG2_HAS_PHY_STATS
6025				  | FLAG2_HAS_EEE
6026				  | FLAG2_CHECK_SYSTIM_OVERFLOW,
6027	.pba			= 26,
6028	.max_hw_frame_size	= 9022,
6029	.get_variants		= e1000_get_variants_ich8lan,
6030	.mac_ops		= &ich8_mac_ops,
6031	.phy_ops		= &ich8_phy_ops,
6032	.nvm_ops		= &ich8_nvm_ops,
6033};
6034
6035const struct e1000_info e1000_pch_spt_info = {
6036	.mac			= e1000_pch_spt,
6037	.flags			= FLAG_IS_ICH
6038				  | FLAG_HAS_WOL
6039				  | FLAG_HAS_HW_TIMESTAMP
6040				  | FLAG_HAS_CTRLEXT_ON_LOAD
6041				  | FLAG_HAS_AMT
6042				  | FLAG_HAS_FLASH
6043				  | FLAG_HAS_JUMBO_FRAMES
6044				  | FLAG_APME_IN_WUC,
6045	.flags2			= FLAG2_HAS_PHY_STATS
6046				  | FLAG2_HAS_EEE,
6047	.pba			= 26,
6048	.max_hw_frame_size	= 9022,
6049	.get_variants		= e1000_get_variants_ich8lan,
6050	.mac_ops		= &ich8_mac_ops,
6051	.phy_ops		= &ich8_phy_ops,
6052	.nvm_ops		= &spt_nvm_ops,
6053};
6054
6055const struct e1000_info e1000_pch_cnp_info = {
6056	.mac			= e1000_pch_cnp,
6057	.flags			= FLAG_IS_ICH
6058				  | FLAG_HAS_WOL
6059				  | FLAG_HAS_HW_TIMESTAMP
6060				  | FLAG_HAS_CTRLEXT_ON_LOAD
6061				  | FLAG_HAS_AMT
6062				  | FLAG_HAS_FLASH
6063				  | FLAG_HAS_JUMBO_FRAMES
6064				  | FLAG_APME_IN_WUC,
6065	.flags2			= FLAG2_HAS_PHY_STATS
6066				  | FLAG2_HAS_EEE,
6067	.pba			= 26,
6068	.max_hw_frame_size	= 9022,
6069	.get_variants		= e1000_get_variants_ich8lan,
6070	.mac_ops		= &ich8_mac_ops,
6071	.phy_ops		= &ich8_phy_ops,
6072	.nvm_ops		= &spt_nvm_ops,
6073};
6074
6075const struct e1000_info e1000_pch_tgp_info = {
6076	.mac			= e1000_pch_tgp,
6077	.flags			= FLAG_IS_ICH
6078				  | FLAG_HAS_WOL
6079				  | FLAG_HAS_HW_TIMESTAMP
6080				  | FLAG_HAS_CTRLEXT_ON_LOAD
6081				  | FLAG_HAS_AMT
6082				  | FLAG_HAS_FLASH
6083				  | FLAG_HAS_JUMBO_FRAMES
6084				  | FLAG_APME_IN_WUC,
6085	.flags2			= FLAG2_HAS_PHY_STATS
6086				  | FLAG2_HAS_EEE,
6087	.pba			= 26,
6088	.max_hw_frame_size	= 9022,
6089	.get_variants		= e1000_get_variants_ich8lan,
6090	.mac_ops		= &ich8_mac_ops,
6091	.phy_ops		= &ich8_phy_ops,
6092	.nvm_ops		= &spt_nvm_ops,
6093};
6094
6095const struct e1000_info e1000_pch_adp_info = {
6096	.mac			= e1000_pch_adp,
6097	.flags			= FLAG_IS_ICH
6098				  | FLAG_HAS_WOL
6099				  | FLAG_HAS_HW_TIMESTAMP
6100				  | FLAG_HAS_CTRLEXT_ON_LOAD
6101				  | FLAG_HAS_AMT
6102				  | FLAG_HAS_FLASH
6103				  | FLAG_HAS_JUMBO_FRAMES
6104				  | FLAG_APME_IN_WUC,
6105	.flags2			= FLAG2_HAS_PHY_STATS
6106				  | FLAG2_HAS_EEE,
6107	.pba			= 26,
6108	.max_hw_frame_size	= 9022,
6109	.get_variants		= e1000_get_variants_ich8lan,
6110	.mac_ops		= &ich8_mac_ops,
6111	.phy_ops		= &ich8_phy_ops,
6112	.nvm_ops		= &spt_nvm_ops,
6113};
6114
6115const struct e1000_info e1000_pch_mtp_info = {
6116	.mac			= e1000_pch_mtp,
6117	.flags			= FLAG_IS_ICH
6118				  | FLAG_HAS_WOL
6119				  | FLAG_HAS_HW_TIMESTAMP
6120				  | FLAG_HAS_CTRLEXT_ON_LOAD
6121				  | FLAG_HAS_AMT
6122				  | FLAG_HAS_FLASH
6123				  | FLAG_HAS_JUMBO_FRAMES
6124				  | FLAG_APME_IN_WUC,
6125	.flags2			= FLAG2_HAS_PHY_STATS
6126				  | FLAG2_HAS_EEE,
6127	.pba			= 26,
6128	.max_hw_frame_size	= 9022,
6129	.get_variants		= e1000_get_variants_ich8lan,
6130	.mac_ops		= &ich8_mac_ops,
6131	.phy_ops		= &ich8_phy_ops,
6132	.nvm_ops		= &spt_nvm_ops,
6133};
v5.4
   1// SPDX-License-Identifier: GPL-2.0
   2/* Copyright(c) 1999 - 2018 Intel Corporation. */
   3
   4/* 82562G 10/100 Network Connection
   5 * 82562G-2 10/100 Network Connection
   6 * 82562GT 10/100 Network Connection
   7 * 82562GT-2 10/100 Network Connection
   8 * 82562V 10/100 Network Connection
   9 * 82562V-2 10/100 Network Connection
  10 * 82566DC-2 Gigabit Network Connection
  11 * 82566DC Gigabit Network Connection
  12 * 82566DM-2 Gigabit Network Connection
  13 * 82566DM Gigabit Network Connection
  14 * 82566MC Gigabit Network Connection
  15 * 82566MM Gigabit Network Connection
  16 * 82567LM Gigabit Network Connection
  17 * 82567LF Gigabit Network Connection
  18 * 82567V Gigabit Network Connection
  19 * 82567LM-2 Gigabit Network Connection
  20 * 82567LF-2 Gigabit Network Connection
  21 * 82567V-2 Gigabit Network Connection
  22 * 82567LF-3 Gigabit Network Connection
  23 * 82567LM-3 Gigabit Network Connection
  24 * 82567LM-4 Gigabit Network Connection
  25 * 82577LM Gigabit Network Connection
  26 * 82577LC Gigabit Network Connection
  27 * 82578DM Gigabit Network Connection
  28 * 82578DC Gigabit Network Connection
  29 * 82579LM Gigabit Network Connection
  30 * 82579V Gigabit Network Connection
  31 * Ethernet Connection I217-LM
  32 * Ethernet Connection I217-V
  33 * Ethernet Connection I218-V
  34 * Ethernet Connection I218-LM
  35 * Ethernet Connection (2) I218-LM
  36 * Ethernet Connection (2) I218-V
  37 * Ethernet Connection (3) I218-LM
  38 * Ethernet Connection (3) I218-V
  39 */
  40
  41#include "e1000.h"
  42
  43/* ICH GbE Flash Hardware Sequencing Flash Status Register bit breakdown */
  44/* Offset 04h HSFSTS */
  45union ich8_hws_flash_status {
  46	struct ich8_hsfsts {
  47		u16 flcdone:1;	/* bit 0 Flash Cycle Done */
  48		u16 flcerr:1;	/* bit 1 Flash Cycle Error */
  49		u16 dael:1;	/* bit 2 Direct Access error Log */
  50		u16 berasesz:2;	/* bit 4:3 Sector Erase Size */
  51		u16 flcinprog:1;	/* bit 5 flash cycle in Progress */
  52		u16 reserved1:2;	/* bit 13:6 Reserved */
  53		u16 reserved2:6;	/* bit 13:6 Reserved */
  54		u16 fldesvalid:1;	/* bit 14 Flash Descriptor Valid */
  55		u16 flockdn:1;	/* bit 15 Flash Config Lock-Down */
  56	} hsf_status;
  57	u16 regval;
  58};
  59
  60/* ICH GbE Flash Hardware Sequencing Flash control Register bit breakdown */
  61/* Offset 06h FLCTL */
  62union ich8_hws_flash_ctrl {
  63	struct ich8_hsflctl {
  64		u16 flcgo:1;	/* 0 Flash Cycle Go */
  65		u16 flcycle:2;	/* 2:1 Flash Cycle */
  66		u16 reserved:5;	/* 7:3 Reserved  */
  67		u16 fldbcount:2;	/* 9:8 Flash Data Byte Count */
  68		u16 flockdn:6;	/* 15:10 Reserved */
  69	} hsf_ctrl;
  70	u16 regval;
  71};
  72
  73/* ICH Flash Region Access Permissions */
  74union ich8_hws_flash_regacc {
  75	struct ich8_flracc {
  76		u32 grra:8;	/* 0:7 GbE region Read Access */
  77		u32 grwa:8;	/* 8:15 GbE region Write Access */
  78		u32 gmrag:8;	/* 23:16 GbE Master Read Access Grant */
  79		u32 gmwag:8;	/* 31:24 GbE Master Write Access Grant */
  80	} hsf_flregacc;
  81	u16 regval;
  82};
  83
  84/* ICH Flash Protected Region */
  85union ich8_flash_protected_range {
  86	struct ich8_pr {
  87		u32 base:13;	/* 0:12 Protected Range Base */
  88		u32 reserved1:2;	/* 13:14 Reserved */
  89		u32 rpe:1;	/* 15 Read Protection Enable */
  90		u32 limit:13;	/* 16:28 Protected Range Limit */
  91		u32 reserved2:2;	/* 29:30 Reserved */
  92		u32 wpe:1;	/* 31 Write Protection Enable */
  93	} range;
  94	u32 regval;
  95};
  96
  97static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw);
  98static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw);
  99static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank);
 100static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
 101						u32 offset, u8 byte);
 102static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
 103					 u8 *data);
 104static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
 105					 u16 *data);
 106static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
 107					 u8 size, u16 *data);
 108static s32 e1000_read_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset,
 109					   u32 *data);
 110static s32 e1000_read_flash_dword_ich8lan(struct e1000_hw *hw,
 111					  u32 offset, u32 *data);
 112static s32 e1000_write_flash_data32_ich8lan(struct e1000_hw *hw,
 113					    u32 offset, u32 data);
 114static s32 e1000_retry_write_flash_dword_ich8lan(struct e1000_hw *hw,
 115						 u32 offset, u32 dword);
 116static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw);
 117static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw);
 118static s32 e1000_led_on_ich8lan(struct e1000_hw *hw);
 119static s32 e1000_led_off_ich8lan(struct e1000_hw *hw);
 120static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw);
 121static s32 e1000_setup_led_pchlan(struct e1000_hw *hw);
 122static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw);
 123static s32 e1000_led_on_pchlan(struct e1000_hw *hw);
 124static s32 e1000_led_off_pchlan(struct e1000_hw *hw);
 125static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active);
 126static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw);
 127static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw);
 128static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link);
 129static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw);
 130static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw);
 131static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw);
 132static int e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index);
 133static int e1000_rar_set_pch_lpt(struct e1000_hw *hw, u8 *addr, u32 index);
 134static u32 e1000_rar_get_count_pch_lpt(struct e1000_hw *hw);
 135static s32 e1000_k1_workaround_lv(struct e1000_hw *hw);
 136static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate);
 137static s32 e1000_disable_ulp_lpt_lp(struct e1000_hw *hw, bool force);
 138static s32 e1000_setup_copper_link_pch_lpt(struct e1000_hw *hw);
 139static s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state);
 140
 141static inline u16 __er16flash(struct e1000_hw *hw, unsigned long reg)
 142{
 143	return readw(hw->flash_address + reg);
 144}
 145
 146static inline u32 __er32flash(struct e1000_hw *hw, unsigned long reg)
 147{
 148	return readl(hw->flash_address + reg);
 149}
 150
 151static inline void __ew16flash(struct e1000_hw *hw, unsigned long reg, u16 val)
 152{
 153	writew(val, hw->flash_address + reg);
 154}
 155
 156static inline void __ew32flash(struct e1000_hw *hw, unsigned long reg, u32 val)
 157{
 158	writel(val, hw->flash_address + reg);
 159}
 160
 161#define er16flash(reg)		__er16flash(hw, (reg))
 162#define er32flash(reg)		__er32flash(hw, (reg))
 163#define ew16flash(reg, val)	__ew16flash(hw, (reg), (val))
 164#define ew32flash(reg, val)	__ew32flash(hw, (reg), (val))
 165
 166/**
 167 *  e1000_phy_is_accessible_pchlan - Check if able to access PHY registers
 168 *  @hw: pointer to the HW structure
 169 *
 170 *  Test access to the PHY registers by reading the PHY ID registers.  If
 171 *  the PHY ID is already known (e.g. resume path) compare it with known ID,
 172 *  otherwise assume the read PHY ID is correct if it is valid.
 173 *
 174 *  Assumes the sw/fw/hw semaphore is already acquired.
 175 **/
 176static bool e1000_phy_is_accessible_pchlan(struct e1000_hw *hw)
 177{
 178	u16 phy_reg = 0;
 179	u32 phy_id = 0;
 180	s32 ret_val = 0;
 181	u16 retry_count;
 182	u32 mac_reg = 0;
 183
 184	for (retry_count = 0; retry_count < 2; retry_count++) {
 185		ret_val = e1e_rphy_locked(hw, MII_PHYSID1, &phy_reg);
 186		if (ret_val || (phy_reg == 0xFFFF))
 187			continue;
 188		phy_id = (u32)(phy_reg << 16);
 189
 190		ret_val = e1e_rphy_locked(hw, MII_PHYSID2, &phy_reg);
 191		if (ret_val || (phy_reg == 0xFFFF)) {
 192			phy_id = 0;
 193			continue;
 194		}
 195		phy_id |= (u32)(phy_reg & PHY_REVISION_MASK);
 196		break;
 197	}
 198
 199	if (hw->phy.id) {
 200		if (hw->phy.id == phy_id)
 201			goto out;
 202	} else if (phy_id) {
 203		hw->phy.id = phy_id;
 204		hw->phy.revision = (u32)(phy_reg & ~PHY_REVISION_MASK);
 205		goto out;
 206	}
 207
 208	/* In case the PHY needs to be in mdio slow mode,
 209	 * set slow mode and try to get the PHY id again.
 210	 */
 211	if (hw->mac.type < e1000_pch_lpt) {
 212		hw->phy.ops.release(hw);
 213		ret_val = e1000_set_mdio_slow_mode_hv(hw);
 214		if (!ret_val)
 215			ret_val = e1000e_get_phy_id(hw);
 216		hw->phy.ops.acquire(hw);
 217	}
 218
 219	if (ret_val)
 220		return false;
 221out:
 222	if (hw->mac.type >= e1000_pch_lpt) {
 223		/* Only unforce SMBus if ME is not active */
 224		if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
 
 
 
 
 
 225			/* Unforce SMBus mode in PHY */
 226			e1e_rphy_locked(hw, CV_SMB_CTRL, &phy_reg);
 227			phy_reg &= ~CV_SMB_CTRL_FORCE_SMBUS;
 228			e1e_wphy_locked(hw, CV_SMB_CTRL, phy_reg);
 229
 
 
 230			/* Unforce SMBus mode in MAC */
 231			mac_reg = er32(CTRL_EXT);
 232			mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
 233			ew32(CTRL_EXT, mac_reg);
 234		}
 235	}
 236
 237	return true;
 238}
 239
 240/**
 241 *  e1000_toggle_lanphypc_pch_lpt - toggle the LANPHYPC pin value
 242 *  @hw: pointer to the HW structure
 243 *
 244 *  Toggling the LANPHYPC pin value fully power-cycles the PHY and is
 245 *  used to reset the PHY to a quiescent state when necessary.
 246 **/
 247static void e1000_toggle_lanphypc_pch_lpt(struct e1000_hw *hw)
 248{
 249	u32 mac_reg;
 250
 251	/* Set Phy Config Counter to 50msec */
 252	mac_reg = er32(FEXTNVM3);
 253	mac_reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK;
 254	mac_reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC;
 255	ew32(FEXTNVM3, mac_reg);
 256
 257	/* Toggle LANPHYPC Value bit */
 258	mac_reg = er32(CTRL);
 259	mac_reg |= E1000_CTRL_LANPHYPC_OVERRIDE;
 260	mac_reg &= ~E1000_CTRL_LANPHYPC_VALUE;
 261	ew32(CTRL, mac_reg);
 262	e1e_flush();
 263	usleep_range(10, 20);
 264	mac_reg &= ~E1000_CTRL_LANPHYPC_OVERRIDE;
 265	ew32(CTRL, mac_reg);
 266	e1e_flush();
 267
 268	if (hw->mac.type < e1000_pch_lpt) {
 269		msleep(50);
 270	} else {
 271		u16 count = 20;
 272
 273		do {
 274			usleep_range(5000, 6000);
 275		} while (!(er32(CTRL_EXT) & E1000_CTRL_EXT_LPCD) && count--);
 276
 277		msleep(30);
 278	}
 279}
 280
 281/**
 282 *  e1000_init_phy_workarounds_pchlan - PHY initialization workarounds
 283 *  @hw: pointer to the HW structure
 284 *
 285 *  Workarounds/flow necessary for PHY initialization during driver load
 286 *  and resume paths.
 287 **/
 288static s32 e1000_init_phy_workarounds_pchlan(struct e1000_hw *hw)
 289{
 290	struct e1000_adapter *adapter = hw->adapter;
 291	u32 mac_reg, fwsm = er32(FWSM);
 292	s32 ret_val;
 293
 294	/* Gate automatic PHY configuration by hardware on managed and
 295	 * non-managed 82579 and newer adapters.
 296	 */
 297	e1000_gate_hw_phy_config_ich8lan(hw, true);
 298
 299	/* It is not possible to be certain of the current state of ULP
 300	 * so forcibly disable it.
 301	 */
 302	hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_unknown;
 303	e1000_disable_ulp_lpt_lp(hw, true);
 
 
 304
 305	ret_val = hw->phy.ops.acquire(hw);
 306	if (ret_val) {
 307		e_dbg("Failed to initialize PHY flow\n");
 308		goto out;
 309	}
 310
 
 
 
 
 
 311	/* The MAC-PHY interconnect may be in SMBus mode.  If the PHY is
 312	 * inaccessible and resetting the PHY is not blocked, toggle the
 313	 * LANPHYPC Value bit to force the interconnect to PCIe mode.
 314	 */
 315	switch (hw->mac.type) {
 316	case e1000_pch_lpt:
 317	case e1000_pch_spt:
 318	case e1000_pch_cnp:
 
 
 
 
 
 
 319		if (e1000_phy_is_accessible_pchlan(hw))
 320			break;
 321
 322		/* Before toggling LANPHYPC, see if PHY is accessible by
 323		 * forcing MAC to SMBus mode first.
 324		 */
 325		mac_reg = er32(CTRL_EXT);
 326		mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
 327		ew32(CTRL_EXT, mac_reg);
 328
 329		/* Wait 50 milliseconds for MAC to finish any retries
 330		 * that it might be trying to perform from previous
 331		 * attempts to acknowledge any phy read requests.
 332		 */
 333		msleep(50);
 334
 335		/* fall-through */
 336	case e1000_pch2lan:
 337		if (e1000_phy_is_accessible_pchlan(hw))
 338			break;
 339
 340		/* fall-through */
 341	case e1000_pchlan:
 342		if ((hw->mac.type == e1000_pchlan) &&
 343		    (fwsm & E1000_ICH_FWSM_FW_VALID))
 344			break;
 345
 346		if (hw->phy.ops.check_reset_block(hw)) {
 347			e_dbg("Required LANPHYPC toggle blocked by ME\n");
 348			ret_val = -E1000_ERR_PHY;
 349			break;
 350		}
 351
 352		/* Toggle LANPHYPC Value bit */
 353		e1000_toggle_lanphypc_pch_lpt(hw);
 354		if (hw->mac.type >= e1000_pch_lpt) {
 355			if (e1000_phy_is_accessible_pchlan(hw))
 356				break;
 357
 358			/* Toggling LANPHYPC brings the PHY out of SMBus mode
 359			 * so ensure that the MAC is also out of SMBus mode
 360			 */
 361			mac_reg = er32(CTRL_EXT);
 362			mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
 363			ew32(CTRL_EXT, mac_reg);
 364
 365			if (e1000_phy_is_accessible_pchlan(hw))
 366				break;
 367
 368			ret_val = -E1000_ERR_PHY;
 369		}
 370		break;
 371	default:
 372		break;
 373	}
 374
 
 
 375	hw->phy.ops.release(hw);
 376	if (!ret_val) {
 377
 378		/* Check to see if able to reset PHY.  Print error if not */
 379		if (hw->phy.ops.check_reset_block(hw)) {
 380			e_err("Reset blocked by ME\n");
 381			goto out;
 382		}
 383
 384		/* Reset the PHY before any access to it.  Doing so, ensures
 385		 * that the PHY is in a known good state before we read/write
 386		 * PHY registers.  The generic reset is sufficient here,
 387		 * because we haven't determined the PHY type yet.
 388		 */
 389		ret_val = e1000e_phy_hw_reset_generic(hw);
 390		if (ret_val)
 391			goto out;
 392
 393		/* On a successful reset, possibly need to wait for the PHY
 394		 * to quiesce to an accessible state before returning control
 395		 * to the calling function.  If the PHY does not quiesce, then
 396		 * return E1000E_BLK_PHY_RESET, as this is the condition that
 397		 *  the PHY is in.
 398		 */
 399		ret_val = hw->phy.ops.check_reset_block(hw);
 400		if (ret_val)
 401			e_err("ME blocked access to PHY after reset\n");
 402	}
 403
 404out:
 405	/* Ungate automatic PHY configuration on non-managed 82579 */
 406	if ((hw->mac.type == e1000_pch2lan) &&
 407	    !(fwsm & E1000_ICH_FWSM_FW_VALID)) {
 408		usleep_range(10000, 11000);
 409		e1000_gate_hw_phy_config_ich8lan(hw, false);
 410	}
 411
 412	return ret_val;
 413}
 414
 415/**
 416 *  e1000_init_phy_params_pchlan - Initialize PHY function pointers
 417 *  @hw: pointer to the HW structure
 418 *
 419 *  Initialize family-specific PHY parameters and function pointers.
 420 **/
 421static s32 e1000_init_phy_params_pchlan(struct e1000_hw *hw)
 422{
 423	struct e1000_phy_info *phy = &hw->phy;
 424	s32 ret_val;
 425
 426	phy->addr = 1;
 427	phy->reset_delay_us = 100;
 428
 429	phy->ops.set_page = e1000_set_page_igp;
 430	phy->ops.read_reg = e1000_read_phy_reg_hv;
 431	phy->ops.read_reg_locked = e1000_read_phy_reg_hv_locked;
 432	phy->ops.read_reg_page = e1000_read_phy_reg_page_hv;
 433	phy->ops.set_d0_lplu_state = e1000_set_lplu_state_pchlan;
 434	phy->ops.set_d3_lplu_state = e1000_set_lplu_state_pchlan;
 435	phy->ops.write_reg = e1000_write_phy_reg_hv;
 436	phy->ops.write_reg_locked = e1000_write_phy_reg_hv_locked;
 437	phy->ops.write_reg_page = e1000_write_phy_reg_page_hv;
 438	phy->ops.power_up = e1000_power_up_phy_copper;
 439	phy->ops.power_down = e1000_power_down_phy_copper_ich8lan;
 440	phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
 441
 442	phy->id = e1000_phy_unknown;
 443
 
 
 
 
 
 444	ret_val = e1000_init_phy_workarounds_pchlan(hw);
 445	if (ret_val)
 446		return ret_val;
 447
 448	if (phy->id == e1000_phy_unknown)
 449		switch (hw->mac.type) {
 450		default:
 451			ret_val = e1000e_get_phy_id(hw);
 452			if (ret_val)
 453				return ret_val;
 454			if ((phy->id != 0) && (phy->id != PHY_REVISION_MASK))
 455				break;
 456			/* fall-through */
 457		case e1000_pch2lan:
 458		case e1000_pch_lpt:
 459		case e1000_pch_spt:
 460		case e1000_pch_cnp:
 
 
 
 
 
 
 461			/* In case the PHY needs to be in mdio slow mode,
 462			 * set slow mode and try to get the PHY id again.
 463			 */
 464			ret_val = e1000_set_mdio_slow_mode_hv(hw);
 465			if (ret_val)
 466				return ret_val;
 467			ret_val = e1000e_get_phy_id(hw);
 468			if (ret_val)
 469				return ret_val;
 470			break;
 471		}
 472	phy->type = e1000e_get_phy_type_from_id(phy->id);
 473
 474	switch (phy->type) {
 475	case e1000_phy_82577:
 476	case e1000_phy_82579:
 477	case e1000_phy_i217:
 478		phy->ops.check_polarity = e1000_check_polarity_82577;
 479		phy->ops.force_speed_duplex =
 480		    e1000_phy_force_speed_duplex_82577;
 481		phy->ops.get_cable_length = e1000_get_cable_length_82577;
 482		phy->ops.get_info = e1000_get_phy_info_82577;
 483		phy->ops.commit = e1000e_phy_sw_reset;
 484		break;
 485	case e1000_phy_82578:
 486		phy->ops.check_polarity = e1000_check_polarity_m88;
 487		phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88;
 488		phy->ops.get_cable_length = e1000e_get_cable_length_m88;
 489		phy->ops.get_info = e1000e_get_phy_info_m88;
 490		break;
 491	default:
 492		ret_val = -E1000_ERR_PHY;
 493		break;
 494	}
 495
 496	return ret_val;
 497}
 498
 499/**
 500 *  e1000_init_phy_params_ich8lan - Initialize PHY function pointers
 501 *  @hw: pointer to the HW structure
 502 *
 503 *  Initialize family-specific PHY parameters and function pointers.
 504 **/
 505static s32 e1000_init_phy_params_ich8lan(struct e1000_hw *hw)
 506{
 507	struct e1000_phy_info *phy = &hw->phy;
 508	s32 ret_val;
 509	u16 i = 0;
 510
 511	phy->addr = 1;
 512	phy->reset_delay_us = 100;
 513
 514	phy->ops.power_up = e1000_power_up_phy_copper;
 515	phy->ops.power_down = e1000_power_down_phy_copper_ich8lan;
 516
 517	/* We may need to do this twice - once for IGP and if that fails,
 518	 * we'll set BM func pointers and try again
 519	 */
 520	ret_val = e1000e_determine_phy_address(hw);
 521	if (ret_val) {
 522		phy->ops.write_reg = e1000e_write_phy_reg_bm;
 523		phy->ops.read_reg = e1000e_read_phy_reg_bm;
 524		ret_val = e1000e_determine_phy_address(hw);
 525		if (ret_val) {
 526			e_dbg("Cannot determine PHY addr. Erroring out\n");
 527			return ret_val;
 528		}
 529	}
 530
 531	phy->id = 0;
 532	while ((e1000_phy_unknown == e1000e_get_phy_type_from_id(phy->id)) &&
 533	       (i++ < 100)) {
 534		usleep_range(1000, 1100);
 535		ret_val = e1000e_get_phy_id(hw);
 536		if (ret_val)
 537			return ret_val;
 538	}
 539
 540	/* Verify phy id */
 541	switch (phy->id) {
 542	case IGP03E1000_E_PHY_ID:
 543		phy->type = e1000_phy_igp_3;
 544		phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
 545		phy->ops.read_reg_locked = e1000e_read_phy_reg_igp_locked;
 546		phy->ops.write_reg_locked = e1000e_write_phy_reg_igp_locked;
 547		phy->ops.get_info = e1000e_get_phy_info_igp;
 548		phy->ops.check_polarity = e1000_check_polarity_igp;
 549		phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_igp;
 550		break;
 551	case IFE_E_PHY_ID:
 552	case IFE_PLUS_E_PHY_ID:
 553	case IFE_C_E_PHY_ID:
 554		phy->type = e1000_phy_ife;
 555		phy->autoneg_mask = E1000_ALL_NOT_GIG;
 556		phy->ops.get_info = e1000_get_phy_info_ife;
 557		phy->ops.check_polarity = e1000_check_polarity_ife;
 558		phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_ife;
 559		break;
 560	case BME1000_E_PHY_ID:
 561		phy->type = e1000_phy_bm;
 562		phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
 563		phy->ops.read_reg = e1000e_read_phy_reg_bm;
 564		phy->ops.write_reg = e1000e_write_phy_reg_bm;
 565		phy->ops.commit = e1000e_phy_sw_reset;
 566		phy->ops.get_info = e1000e_get_phy_info_m88;
 567		phy->ops.check_polarity = e1000_check_polarity_m88;
 568		phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88;
 569		break;
 570	default:
 571		return -E1000_ERR_PHY;
 572	}
 573
 574	return 0;
 575}
 576
 577/**
 578 *  e1000_init_nvm_params_ich8lan - Initialize NVM function pointers
 579 *  @hw: pointer to the HW structure
 580 *
 581 *  Initialize family-specific NVM parameters and function
 582 *  pointers.
 583 **/
 584static s32 e1000_init_nvm_params_ich8lan(struct e1000_hw *hw)
 585{
 586	struct e1000_nvm_info *nvm = &hw->nvm;
 587	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
 588	u32 gfpreg, sector_base_addr, sector_end_addr;
 589	u16 i;
 590	u32 nvm_size;
 591
 592	nvm->type = e1000_nvm_flash_sw;
 593
 594	if (hw->mac.type >= e1000_pch_spt) {
 595		/* in SPT, gfpreg doesn't exist. NVM size is taken from the
 596		 * STRAP register. This is because in SPT the GbE Flash region
 597		 * is no longer accessed through the flash registers. Instead,
 598		 * the mechanism has changed, and the Flash region access
 599		 * registers are now implemented in GbE memory space.
 600		 */
 601		nvm->flash_base_addr = 0;
 602		nvm_size = (((er32(STRAP) >> 1) & 0x1F) + 1)
 603		    * NVM_SIZE_MULTIPLIER;
 604		nvm->flash_bank_size = nvm_size / 2;
 605		/* Adjust to word count */
 606		nvm->flash_bank_size /= sizeof(u16);
 607		/* Set the base address for flash register access */
 608		hw->flash_address = hw->hw_addr + E1000_FLASH_BASE_ADDR;
 609	} else {
 610		/* Can't read flash registers if register set isn't mapped. */
 611		if (!hw->flash_address) {
 612			e_dbg("ERROR: Flash registers not mapped\n");
 613			return -E1000_ERR_CONFIG;
 614		}
 615
 616		gfpreg = er32flash(ICH_FLASH_GFPREG);
 617
 618		/* sector_X_addr is a "sector"-aligned address (4096 bytes)
 619		 * Add 1 to sector_end_addr since this sector is included in
 620		 * the overall size.
 621		 */
 622		sector_base_addr = gfpreg & FLASH_GFPREG_BASE_MASK;
 623		sector_end_addr = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK) + 1;
 624
 625		/* flash_base_addr is byte-aligned */
 626		nvm->flash_base_addr = sector_base_addr
 627		    << FLASH_SECTOR_ADDR_SHIFT;
 628
 629		/* find total size of the NVM, then cut in half since the total
 630		 * size represents two separate NVM banks.
 631		 */
 632		nvm->flash_bank_size = ((sector_end_addr - sector_base_addr)
 633					<< FLASH_SECTOR_ADDR_SHIFT);
 634		nvm->flash_bank_size /= 2;
 635		/* Adjust to word count */
 636		nvm->flash_bank_size /= sizeof(u16);
 637	}
 638
 639	nvm->word_size = E1000_ICH8_SHADOW_RAM_WORDS;
 640
 641	/* Clear shadow ram */
 642	for (i = 0; i < nvm->word_size; i++) {
 643		dev_spec->shadow_ram[i].modified = false;
 644		dev_spec->shadow_ram[i].value = 0xFFFF;
 645	}
 646
 647	return 0;
 648}
 649
 650/**
 651 *  e1000_init_mac_params_ich8lan - Initialize MAC function pointers
 652 *  @hw: pointer to the HW structure
 653 *
 654 *  Initialize family-specific MAC parameters and function
 655 *  pointers.
 656 **/
 657static s32 e1000_init_mac_params_ich8lan(struct e1000_hw *hw)
 658{
 659	struct e1000_mac_info *mac = &hw->mac;
 660
 661	/* Set media type function pointer */
 662	hw->phy.media_type = e1000_media_type_copper;
 663
 664	/* Set mta register count */
 665	mac->mta_reg_count = 32;
 666	/* Set rar entry count */
 667	mac->rar_entry_count = E1000_ICH_RAR_ENTRIES;
 668	if (mac->type == e1000_ich8lan)
 669		mac->rar_entry_count--;
 670	/* FWSM register */
 671	mac->has_fwsm = true;
 672	/* ARC subsystem not supported */
 673	mac->arc_subsystem_valid = false;
 674	/* Adaptive IFS supported */
 675	mac->adaptive_ifs = true;
 676
 677	/* LED and other operations */
 678	switch (mac->type) {
 679	case e1000_ich8lan:
 680	case e1000_ich9lan:
 681	case e1000_ich10lan:
 682		/* check management mode */
 683		mac->ops.check_mng_mode = e1000_check_mng_mode_ich8lan;
 684		/* ID LED init */
 685		mac->ops.id_led_init = e1000e_id_led_init_generic;
 686		/* blink LED */
 687		mac->ops.blink_led = e1000e_blink_led_generic;
 688		/* setup LED */
 689		mac->ops.setup_led = e1000e_setup_led_generic;
 690		/* cleanup LED */
 691		mac->ops.cleanup_led = e1000_cleanup_led_ich8lan;
 692		/* turn on/off LED */
 693		mac->ops.led_on = e1000_led_on_ich8lan;
 694		mac->ops.led_off = e1000_led_off_ich8lan;
 695		break;
 696	case e1000_pch2lan:
 697		mac->rar_entry_count = E1000_PCH2_RAR_ENTRIES;
 698		mac->ops.rar_set = e1000_rar_set_pch2lan;
 699		/* fall-through */
 700	case e1000_pch_lpt:
 701	case e1000_pch_spt:
 702	case e1000_pch_cnp:
 
 
 
 
 
 
 703	case e1000_pchlan:
 704		/* check management mode */
 705		mac->ops.check_mng_mode = e1000_check_mng_mode_pchlan;
 706		/* ID LED init */
 707		mac->ops.id_led_init = e1000_id_led_init_pchlan;
 708		/* setup LED */
 709		mac->ops.setup_led = e1000_setup_led_pchlan;
 710		/* cleanup LED */
 711		mac->ops.cleanup_led = e1000_cleanup_led_pchlan;
 712		/* turn on/off LED */
 713		mac->ops.led_on = e1000_led_on_pchlan;
 714		mac->ops.led_off = e1000_led_off_pchlan;
 715		break;
 716	default:
 717		break;
 718	}
 719
 720	if (mac->type >= e1000_pch_lpt) {
 721		mac->rar_entry_count = E1000_PCH_LPT_RAR_ENTRIES;
 722		mac->ops.rar_set = e1000_rar_set_pch_lpt;
 723		mac->ops.setup_physical_interface =
 724		    e1000_setup_copper_link_pch_lpt;
 725		mac->ops.rar_get_count = e1000_rar_get_count_pch_lpt;
 726	}
 727
 728	/* Enable PCS Lock-loss workaround for ICH8 */
 729	if (mac->type == e1000_ich8lan)
 730		e1000e_set_kmrn_lock_loss_workaround_ich8lan(hw, true);
 731
 732	return 0;
 733}
 734
 735/**
 736 *  __e1000_access_emi_reg_locked - Read/write EMI register
 737 *  @hw: pointer to the HW structure
 738 *  @addr: EMI address to program
 739 *  @data: pointer to value to read/write from/to the EMI address
 740 *  @read: boolean flag to indicate read or write
 741 *
 742 *  This helper function assumes the SW/FW/HW Semaphore is already acquired.
 743 **/
 744static s32 __e1000_access_emi_reg_locked(struct e1000_hw *hw, u16 address,
 745					 u16 *data, bool read)
 746{
 747	s32 ret_val;
 748
 749	ret_val = e1e_wphy_locked(hw, I82579_EMI_ADDR, address);
 750	if (ret_val)
 751		return ret_val;
 752
 753	if (read)
 754		ret_val = e1e_rphy_locked(hw, I82579_EMI_DATA, data);
 755	else
 756		ret_val = e1e_wphy_locked(hw, I82579_EMI_DATA, *data);
 757
 758	return ret_val;
 759}
 760
 761/**
 762 *  e1000_read_emi_reg_locked - Read Extended Management Interface register
 763 *  @hw: pointer to the HW structure
 764 *  @addr: EMI address to program
 765 *  @data: value to be read from the EMI address
 766 *
 767 *  Assumes the SW/FW/HW Semaphore is already acquired.
 768 **/
 769s32 e1000_read_emi_reg_locked(struct e1000_hw *hw, u16 addr, u16 *data)
 770{
 771	return __e1000_access_emi_reg_locked(hw, addr, data, true);
 772}
 773
 774/**
 775 *  e1000_write_emi_reg_locked - Write Extended Management Interface register
 776 *  @hw: pointer to the HW structure
 777 *  @addr: EMI address to program
 778 *  @data: value to be written to the EMI address
 779 *
 780 *  Assumes the SW/FW/HW Semaphore is already acquired.
 781 **/
 782s32 e1000_write_emi_reg_locked(struct e1000_hw *hw, u16 addr, u16 data)
 783{
 784	return __e1000_access_emi_reg_locked(hw, addr, &data, false);
 785}
 786
 787/**
 788 *  e1000_set_eee_pchlan - Enable/disable EEE support
 789 *  @hw: pointer to the HW structure
 790 *
 791 *  Enable/disable EEE based on setting in dev_spec structure, the duplex of
 792 *  the link and the EEE capabilities of the link partner.  The LPI Control
 793 *  register bits will remain set only if/when link is up.
 794 *
 795 *  EEE LPI must not be asserted earlier than one second after link is up.
 796 *  On 82579, EEE LPI should not be enabled until such time otherwise there
 797 *  can be link issues with some switches.  Other devices can have EEE LPI
 798 *  enabled immediately upon link up since they have a timer in hardware which
 799 *  prevents LPI from being asserted too early.
 800 **/
 801s32 e1000_set_eee_pchlan(struct e1000_hw *hw)
 802{
 803	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
 804	s32 ret_val;
 805	u16 lpa, pcs_status, adv, adv_addr, lpi_ctrl, data;
 806
 807	switch (hw->phy.type) {
 808	case e1000_phy_82579:
 809		lpa = I82579_EEE_LP_ABILITY;
 810		pcs_status = I82579_EEE_PCS_STATUS;
 811		adv_addr = I82579_EEE_ADVERTISEMENT;
 812		break;
 813	case e1000_phy_i217:
 814		lpa = I217_EEE_LP_ABILITY;
 815		pcs_status = I217_EEE_PCS_STATUS;
 816		adv_addr = I217_EEE_ADVERTISEMENT;
 817		break;
 818	default:
 819		return 0;
 820	}
 821
 822	ret_val = hw->phy.ops.acquire(hw);
 823	if (ret_val)
 824		return ret_val;
 825
 826	ret_val = e1e_rphy_locked(hw, I82579_LPI_CTRL, &lpi_ctrl);
 827	if (ret_val)
 828		goto release;
 829
 830	/* Clear bits that enable EEE in various speeds */
 831	lpi_ctrl &= ~I82579_LPI_CTRL_ENABLE_MASK;
 832
 833	/* Enable EEE if not disabled by user */
 834	if (!dev_spec->eee_disable) {
 835		/* Save off link partner's EEE ability */
 836		ret_val = e1000_read_emi_reg_locked(hw, lpa,
 837						    &dev_spec->eee_lp_ability);
 838		if (ret_val)
 839			goto release;
 840
 841		/* Read EEE advertisement */
 842		ret_val = e1000_read_emi_reg_locked(hw, adv_addr, &adv);
 843		if (ret_val)
 844			goto release;
 845
 846		/* Enable EEE only for speeds in which the link partner is
 847		 * EEE capable and for which we advertise EEE.
 848		 */
 849		if (adv & dev_spec->eee_lp_ability & I82579_EEE_1000_SUPPORTED)
 850			lpi_ctrl |= I82579_LPI_CTRL_1000_ENABLE;
 851
 852		if (adv & dev_spec->eee_lp_ability & I82579_EEE_100_SUPPORTED) {
 853			e1e_rphy_locked(hw, MII_LPA, &data);
 854			if (data & LPA_100FULL)
 855				lpi_ctrl |= I82579_LPI_CTRL_100_ENABLE;
 856			else
 857				/* EEE is not supported in 100Half, so ignore
 858				 * partner's EEE in 100 ability if full-duplex
 859				 * is not advertised.
 860				 */
 861				dev_spec->eee_lp_ability &=
 862				    ~I82579_EEE_100_SUPPORTED;
 863		}
 864	}
 865
 866	if (hw->phy.type == e1000_phy_82579) {
 867		ret_val = e1000_read_emi_reg_locked(hw, I82579_LPI_PLL_SHUT,
 868						    &data);
 869		if (ret_val)
 870			goto release;
 871
 872		data &= ~I82579_LPI_100_PLL_SHUT;
 873		ret_val = e1000_write_emi_reg_locked(hw, I82579_LPI_PLL_SHUT,
 874						     data);
 875	}
 876
 877	/* R/Clr IEEE MMD 3.1 bits 11:10 - Tx/Rx LPI Received */
 878	ret_val = e1000_read_emi_reg_locked(hw, pcs_status, &data);
 879	if (ret_val)
 880		goto release;
 881
 882	ret_val = e1e_wphy_locked(hw, I82579_LPI_CTRL, lpi_ctrl);
 883release:
 884	hw->phy.ops.release(hw);
 885
 886	return ret_val;
 887}
 888
 889/**
 890 *  e1000_k1_workaround_lpt_lp - K1 workaround on Lynxpoint-LP
 891 *  @hw:   pointer to the HW structure
 892 *  @link: link up bool flag
 893 *
 894 *  When K1 is enabled for 1Gbps, the MAC can miss 2 DMA completion indications
 895 *  preventing further DMA write requests.  Workaround the issue by disabling
 896 *  the de-assertion of the clock request when in 1Gpbs mode.
 897 *  Also, set appropriate Tx re-transmission timeouts for 10 and 100Half link
 898 *  speeds in order to avoid Tx hangs.
 899 **/
 900static s32 e1000_k1_workaround_lpt_lp(struct e1000_hw *hw, bool link)
 901{
 902	u32 fextnvm6 = er32(FEXTNVM6);
 903	u32 status = er32(STATUS);
 904	s32 ret_val = 0;
 905	u16 reg;
 906
 907	if (link && (status & E1000_STATUS_SPEED_1000)) {
 908		ret_val = hw->phy.ops.acquire(hw);
 909		if (ret_val)
 910			return ret_val;
 911
 912		ret_val =
 913		    e1000e_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
 914						&reg);
 915		if (ret_val)
 916			goto release;
 917
 918		ret_val =
 919		    e1000e_write_kmrn_reg_locked(hw,
 920						 E1000_KMRNCTRLSTA_K1_CONFIG,
 921						 reg &
 922						 ~E1000_KMRNCTRLSTA_K1_ENABLE);
 923		if (ret_val)
 924			goto release;
 925
 926		usleep_range(10, 20);
 927
 928		ew32(FEXTNVM6, fextnvm6 | E1000_FEXTNVM6_REQ_PLL_CLK);
 929
 930		ret_val =
 931		    e1000e_write_kmrn_reg_locked(hw,
 932						 E1000_KMRNCTRLSTA_K1_CONFIG,
 933						 reg);
 934release:
 935		hw->phy.ops.release(hw);
 936	} else {
 937		/* clear FEXTNVM6 bit 8 on link down or 10/100 */
 938		fextnvm6 &= ~E1000_FEXTNVM6_REQ_PLL_CLK;
 939
 940		if ((hw->phy.revision > 5) || !link ||
 941		    ((status & E1000_STATUS_SPEED_100) &&
 942		     (status & E1000_STATUS_FD)))
 943			goto update_fextnvm6;
 944
 945		ret_val = e1e_rphy(hw, I217_INBAND_CTRL, &reg);
 946		if (ret_val)
 947			return ret_val;
 948
 949		/* Clear link status transmit timeout */
 950		reg &= ~I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_MASK;
 951
 952		if (status & E1000_STATUS_SPEED_100) {
 953			/* Set inband Tx timeout to 5x10us for 100Half */
 954			reg |= 5 << I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_SHIFT;
 955
 956			/* Do not extend the K1 entry latency for 100Half */
 957			fextnvm6 &= ~E1000_FEXTNVM6_ENABLE_K1_ENTRY_CONDITION;
 958		} else {
 959			/* Set inband Tx timeout to 50x10us for 10Full/Half */
 960			reg |= 50 <<
 961			    I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_SHIFT;
 962
 963			/* Extend the K1 entry latency for 10 Mbps */
 964			fextnvm6 |= E1000_FEXTNVM6_ENABLE_K1_ENTRY_CONDITION;
 965		}
 966
 967		ret_val = e1e_wphy(hw, I217_INBAND_CTRL, reg);
 968		if (ret_val)
 969			return ret_val;
 970
 971update_fextnvm6:
 972		ew32(FEXTNVM6, fextnvm6);
 973	}
 974
 975	return ret_val;
 976}
 977
 978/**
 979 *  e1000_platform_pm_pch_lpt - Set platform power management values
 980 *  @hw: pointer to the HW structure
 981 *  @link: bool indicating link status
 982 *
 983 *  Set the Latency Tolerance Reporting (LTR) values for the "PCIe-like"
 984 *  GbE MAC in the Lynx Point PCH based on Rx buffer size and link speed
 985 *  when link is up (which must not exceed the maximum latency supported
 986 *  by the platform), otherwise specify there is no LTR requirement.
 987 *  Unlike true-PCIe devices which set the LTR maximum snoop/no-snoop
 988 *  latencies in the LTR Extended Capability Structure in the PCIe Extended
 989 *  Capability register set, on this device LTR is set by writing the
 990 *  equivalent snoop/no-snoop latencies in the LTRV register in the MAC and
 991 *  set the SEND bit to send an Intel On-chip System Fabric sideband (IOSF-SB)
 992 *  message to the PMC.
 993 **/
 994static s32 e1000_platform_pm_pch_lpt(struct e1000_hw *hw, bool link)
 995{
 996	u32 reg = link << (E1000_LTRV_REQ_SHIFT + E1000_LTRV_NOSNOOP_SHIFT) |
 997	    link << E1000_LTRV_REQ_SHIFT | E1000_LTRV_SEND;
 
 
 998	u16 lat_enc = 0;	/* latency encoded */
 999
1000	if (link) {
1001		u16 speed, duplex, scale = 0;
1002		u16 max_snoop, max_nosnoop;
1003		u16 max_ltr_enc;	/* max LTR latency encoded */
1004		u64 value;
1005		u32 rxa;
1006
1007		if (!hw->adapter->max_frame_size) {
1008			e_dbg("max_frame_size not set.\n");
1009			return -E1000_ERR_CONFIG;
1010		}
1011
1012		hw->mac.ops.get_link_up_info(hw, &speed, &duplex);
1013		if (!speed) {
1014			e_dbg("Speed not set.\n");
1015			return -E1000_ERR_CONFIG;
1016		}
1017
1018		/* Rx Packet Buffer Allocation size (KB) */
1019		rxa = er32(PBA) & E1000_PBA_RXA_MASK;
1020
1021		/* Determine the maximum latency tolerated by the device.
1022		 *
1023		 * Per the PCIe spec, the tolerated latencies are encoded as
1024		 * a 3-bit encoded scale (only 0-5 are valid) multiplied by
1025		 * a 10-bit value (0-1023) to provide a range from 1 ns to
1026		 * 2^25*(2^10-1) ns.  The scale is encoded as 0=2^0ns,
1027		 * 1=2^5ns, 2=2^10ns,...5=2^25ns.
1028		 */
1029		rxa *= 512;
1030		value = (rxa > hw->adapter->max_frame_size) ?
1031			(rxa - hw->adapter->max_frame_size) * (16000 / speed) :
1032			0;
1033
1034		while (value > PCI_LTR_VALUE_MASK) {
1035			scale++;
1036			value = DIV_ROUND_UP(value, BIT(5));
1037		}
1038		if (scale > E1000_LTRV_SCALE_MAX) {
1039			e_dbg("Invalid LTR latency scale %d\n", scale);
1040			return -E1000_ERR_CONFIG;
1041		}
1042		lat_enc = (u16)((scale << PCI_LTR_SCALE_SHIFT) | value);
1043
1044		/* Determine the maximum latency tolerated by the platform */
1045		pci_read_config_word(hw->adapter->pdev, E1000_PCI_LTR_CAP_LPT,
1046				     &max_snoop);
1047		pci_read_config_word(hw->adapter->pdev,
1048				     E1000_PCI_LTR_CAP_LPT + 2, &max_nosnoop);
1049		max_ltr_enc = max_t(u16, max_snoop, max_nosnoop);
1050
1051		if (lat_enc > max_ltr_enc)
 
 
 
 
 
 
 
 
1052			lat_enc = max_ltr_enc;
1053	}
1054
1055	/* Set Snoop and No-Snoop latencies the same */
1056	reg |= lat_enc | (lat_enc << E1000_LTRV_NOSNOOP_SHIFT);
1057	ew32(LTRV, reg);
1058
1059	return 0;
1060}
1061
1062/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1063 *  e1000_enable_ulp_lpt_lp - configure Ultra Low Power mode for LynxPoint-LP
1064 *  @hw: pointer to the HW structure
1065 *  @to_sx: boolean indicating a system power state transition to Sx
1066 *
1067 *  When link is down, configure ULP mode to significantly reduce the power
1068 *  to the PHY.  If on a Manageability Engine (ME) enabled system, tell the
1069 *  ME firmware to start the ULP configuration.  If not on an ME enabled
1070 *  system, configure the ULP mode by software.
1071 */
1072s32 e1000_enable_ulp_lpt_lp(struct e1000_hw *hw, bool to_sx)
1073{
1074	u32 mac_reg;
1075	s32 ret_val = 0;
1076	u16 phy_reg;
1077	u16 oem_reg = 0;
1078
1079	if ((hw->mac.type < e1000_pch_lpt) ||
1080	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_LM) ||
1081	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_V) ||
1082	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_LM2) ||
1083	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_V2) ||
1084	    (hw->dev_spec.ich8lan.ulp_state == e1000_ulp_state_on))
1085		return 0;
1086
1087	if (er32(FWSM) & E1000_ICH_FWSM_FW_VALID) {
1088		/* Request ME configure ULP mode in the PHY */
1089		mac_reg = er32(H2ME);
1090		mac_reg |= E1000_H2ME_ULP | E1000_H2ME_ENFORCE_SETTINGS;
1091		ew32(H2ME, mac_reg);
1092
1093		goto out;
1094	}
1095
1096	if (!to_sx) {
1097		int i = 0;
1098
1099		/* Poll up to 5 seconds for Cable Disconnected indication */
1100		while (!(er32(FEXT) & E1000_FEXT_PHY_CABLE_DISCONNECTED)) {
1101			/* Bail if link is re-acquired */
1102			if (er32(STATUS) & E1000_STATUS_LU)
1103				return -E1000_ERR_PHY;
1104
1105			if (i++ == 100)
1106				break;
1107
1108			msleep(50);
1109		}
1110		e_dbg("CABLE_DISCONNECTED %s set after %dmsec\n",
1111		      (er32(FEXT) &
1112		       E1000_FEXT_PHY_CABLE_DISCONNECTED) ? "" : "not", i * 50);
1113	}
1114
1115	ret_val = hw->phy.ops.acquire(hw);
1116	if (ret_val)
1117		goto out;
1118
1119	/* Force SMBus mode in PHY */
1120	ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL, &phy_reg);
1121	if (ret_val)
1122		goto release;
1123	phy_reg |= CV_SMB_CTRL_FORCE_SMBUS;
1124	e1000_write_phy_reg_hv_locked(hw, CV_SMB_CTRL, phy_reg);
1125
1126	/* Force SMBus mode in MAC */
1127	mac_reg = er32(CTRL_EXT);
1128	mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
1129	ew32(CTRL_EXT, mac_reg);
1130
1131	/* Si workaround for ULP entry flow on i127/rev6 h/w.  Enable
1132	 * LPLU and disable Gig speed when entering ULP
1133	 */
1134	if ((hw->phy.type == e1000_phy_i217) && (hw->phy.revision == 6)) {
1135		ret_val = e1000_read_phy_reg_hv_locked(hw, HV_OEM_BITS,
1136						       &oem_reg);
1137		if (ret_val)
1138			goto release;
1139
1140		phy_reg = oem_reg;
1141		phy_reg |= HV_OEM_BITS_LPLU | HV_OEM_BITS_GBE_DIS;
1142
1143		ret_val = e1000_write_phy_reg_hv_locked(hw, HV_OEM_BITS,
1144							phy_reg);
1145
1146		if (ret_val)
1147			goto release;
1148	}
1149
1150	/* Set Inband ULP Exit, Reset to SMBus mode and
1151	 * Disable SMBus Release on PERST# in PHY
1152	 */
1153	ret_val = e1000_read_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, &phy_reg);
1154	if (ret_val)
1155		goto release;
1156	phy_reg |= (I218_ULP_CONFIG1_RESET_TO_SMBUS |
1157		    I218_ULP_CONFIG1_DISABLE_SMB_PERST);
1158	if (to_sx) {
1159		if (er32(WUFC) & E1000_WUFC_LNKC)
1160			phy_reg |= I218_ULP_CONFIG1_WOL_HOST;
1161		else
1162			phy_reg &= ~I218_ULP_CONFIG1_WOL_HOST;
1163
1164		phy_reg |= I218_ULP_CONFIG1_STICKY_ULP;
1165		phy_reg &= ~I218_ULP_CONFIG1_INBAND_EXIT;
1166	} else {
1167		phy_reg |= I218_ULP_CONFIG1_INBAND_EXIT;
1168		phy_reg &= ~I218_ULP_CONFIG1_STICKY_ULP;
1169		phy_reg &= ~I218_ULP_CONFIG1_WOL_HOST;
1170	}
1171	e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1172
1173	/* Set Disable SMBus Release on PERST# in MAC */
1174	mac_reg = er32(FEXTNVM7);
1175	mac_reg |= E1000_FEXTNVM7_DISABLE_SMB_PERST;
1176	ew32(FEXTNVM7, mac_reg);
1177
1178	/* Commit ULP changes in PHY by starting auto ULP configuration */
1179	phy_reg |= I218_ULP_CONFIG1_START;
1180	e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1181
1182	if ((hw->phy.type == e1000_phy_i217) && (hw->phy.revision == 6) &&
1183	    to_sx && (er32(STATUS) & E1000_STATUS_LU)) {
1184		ret_val = e1000_write_phy_reg_hv_locked(hw, HV_OEM_BITS,
1185							oem_reg);
1186		if (ret_val)
1187			goto release;
1188	}
1189
1190release:
1191	hw->phy.ops.release(hw);
1192out:
1193	if (ret_val)
1194		e_dbg("Error in ULP enable flow: %d\n", ret_val);
1195	else
1196		hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_on;
1197
1198	return ret_val;
1199}
1200
1201/**
1202 *  e1000_disable_ulp_lpt_lp - unconfigure Ultra Low Power mode for LynxPoint-LP
1203 *  @hw: pointer to the HW structure
1204 *  @force: boolean indicating whether or not to force disabling ULP
1205 *
1206 *  Un-configure ULP mode when link is up, the system is transitioned from
1207 *  Sx or the driver is unloaded.  If on a Manageability Engine (ME) enabled
1208 *  system, poll for an indication from ME that ULP has been un-configured.
1209 *  If not on an ME enabled system, un-configure the ULP mode by software.
1210 *
1211 *  During nominal operation, this function is called when link is acquired
1212 *  to disable ULP mode (force=false); otherwise, for example when unloading
1213 *  the driver or during Sx->S0 transitions, this is called with force=true
1214 *  to forcibly disable ULP.
1215 */
1216static s32 e1000_disable_ulp_lpt_lp(struct e1000_hw *hw, bool force)
1217{
1218	s32 ret_val = 0;
1219	u32 mac_reg;
1220	u16 phy_reg;
1221	int i = 0;
1222
1223	if ((hw->mac.type < e1000_pch_lpt) ||
1224	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_LM) ||
1225	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_V) ||
1226	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_LM2) ||
1227	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_V2) ||
1228	    (hw->dev_spec.ich8lan.ulp_state == e1000_ulp_state_off))
1229		return 0;
1230
1231	if (er32(FWSM) & E1000_ICH_FWSM_FW_VALID) {
 
 
 
1232		if (force) {
1233			/* Request ME un-configure ULP mode in the PHY */
1234			mac_reg = er32(H2ME);
1235			mac_reg &= ~E1000_H2ME_ULP;
1236			mac_reg |= E1000_H2ME_ENFORCE_SETTINGS;
1237			ew32(H2ME, mac_reg);
1238		}
1239
1240		/* Poll up to 300msec for ME to clear ULP_CFG_DONE. */
 
 
 
1241		while (er32(FWSM) & E1000_FWSM_ULP_CFG_DONE) {
1242			if (i++ == 30) {
1243				ret_val = -E1000_ERR_PHY;
1244				goto out;
1245			}
 
 
1246
1247			usleep_range(10000, 11000);
1248		}
1249		e_dbg("ULP_CONFIG_DONE cleared after %dmsec\n", i * 10);
 
 
 
 
 
1250
1251		if (force) {
1252			mac_reg = er32(H2ME);
1253			mac_reg &= ~E1000_H2ME_ENFORCE_SETTINGS;
1254			ew32(H2ME, mac_reg);
1255		} else {
1256			/* Clear H2ME.ULP after ME ULP configuration */
1257			mac_reg = er32(H2ME);
1258			mac_reg &= ~E1000_H2ME_ULP;
1259			ew32(H2ME, mac_reg);
1260		}
1261
1262		goto out;
1263	}
1264
1265	ret_val = hw->phy.ops.acquire(hw);
1266	if (ret_val)
1267		goto out;
1268
1269	if (force)
1270		/* Toggle LANPHYPC Value bit */
1271		e1000_toggle_lanphypc_pch_lpt(hw);
1272
 
 
 
 
 
1273	/* Unforce SMBus mode in PHY */
1274	ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL, &phy_reg);
1275	if (ret_val) {
1276		/* The MAC might be in PCIe mode, so temporarily force to
1277		 * SMBus mode in order to access the PHY.
1278		 */
1279		mac_reg = er32(CTRL_EXT);
1280		mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
1281		ew32(CTRL_EXT, mac_reg);
1282
1283		msleep(50);
1284
1285		ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL,
1286						       &phy_reg);
1287		if (ret_val)
1288			goto release;
1289	}
1290	phy_reg &= ~CV_SMB_CTRL_FORCE_SMBUS;
1291	e1000_write_phy_reg_hv_locked(hw, CV_SMB_CTRL, phy_reg);
1292
 
 
1293	/* Unforce SMBus mode in MAC */
1294	mac_reg = er32(CTRL_EXT);
1295	mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
1296	ew32(CTRL_EXT, mac_reg);
1297
1298	/* When ULP mode was previously entered, K1 was disabled by the
1299	 * hardware.  Re-Enable K1 in the PHY when exiting ULP.
1300	 */
1301	ret_val = e1000_read_phy_reg_hv_locked(hw, HV_PM_CTRL, &phy_reg);
1302	if (ret_val)
1303		goto release;
1304	phy_reg |= HV_PM_CTRL_K1_ENABLE;
1305	e1000_write_phy_reg_hv_locked(hw, HV_PM_CTRL, phy_reg);
1306
1307	/* Clear ULP enabled configuration */
1308	ret_val = e1000_read_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, &phy_reg);
1309	if (ret_val)
1310		goto release;
1311	phy_reg &= ~(I218_ULP_CONFIG1_IND |
1312		     I218_ULP_CONFIG1_STICKY_ULP |
1313		     I218_ULP_CONFIG1_RESET_TO_SMBUS |
1314		     I218_ULP_CONFIG1_WOL_HOST |
1315		     I218_ULP_CONFIG1_INBAND_EXIT |
1316		     I218_ULP_CONFIG1_EN_ULP_LANPHYPC |
1317		     I218_ULP_CONFIG1_DIS_CLR_STICKY_ON_PERST |
1318		     I218_ULP_CONFIG1_DISABLE_SMB_PERST);
1319	e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1320
1321	/* Commit ULP changes by starting auto ULP configuration */
1322	phy_reg |= I218_ULP_CONFIG1_START;
1323	e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1324
1325	/* Clear Disable SMBus Release on PERST# in MAC */
1326	mac_reg = er32(FEXTNVM7);
1327	mac_reg &= ~E1000_FEXTNVM7_DISABLE_SMB_PERST;
1328	ew32(FEXTNVM7, mac_reg);
1329
1330release:
1331	hw->phy.ops.release(hw);
1332	if (force) {
1333		e1000_phy_hw_reset(hw);
1334		msleep(50);
1335	}
1336out:
1337	if (ret_val)
1338		e_dbg("Error in ULP disable flow: %d\n", ret_val);
1339	else
1340		hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_off;
1341
1342	return ret_val;
1343}
1344
1345/**
1346 *  e1000_check_for_copper_link_ich8lan - Check for link (Copper)
1347 *  @hw: pointer to the HW structure
1348 *
1349 *  Checks to see of the link status of the hardware has changed.  If a
1350 *  change in link status has been detected, then we read the PHY registers
1351 *  to get the current speed/duplex if link exists.
1352 **/
1353static s32 e1000_check_for_copper_link_ich8lan(struct e1000_hw *hw)
1354{
1355	struct e1000_mac_info *mac = &hw->mac;
1356	s32 ret_val, tipg_reg = 0;
1357	u16 emi_addr, emi_val = 0;
1358	bool link;
1359	u16 phy_reg;
1360
1361	/* We only want to go out to the PHY registers to see if Auto-Neg
1362	 * has completed and/or if our link status has changed.  The
1363	 * get_link_status flag is set upon receiving a Link Status
1364	 * Change or Rx Sequence Error interrupt.
1365	 */
1366	if (!mac->get_link_status)
1367		return 0;
1368	mac->get_link_status = false;
1369
1370	/* First we want to see if the MII Status Register reports
1371	 * link.  If so, then we want to get the current speed/duplex
1372	 * of the PHY.
1373	 */
1374	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
1375	if (ret_val)
1376		goto out;
1377
1378	if (hw->mac.type == e1000_pchlan) {
1379		ret_val = e1000_k1_gig_workaround_hv(hw, link);
1380		if (ret_val)
1381			goto out;
1382	}
1383
1384	/* When connected at 10Mbps half-duplex, some parts are excessively
1385	 * aggressive resulting in many collisions. To avoid this, increase
1386	 * the IPG and reduce Rx latency in the PHY.
1387	 */
1388	if ((hw->mac.type >= e1000_pch2lan) && link) {
1389		u16 speed, duplex;
1390
1391		e1000e_get_speed_and_duplex_copper(hw, &speed, &duplex);
1392		tipg_reg = er32(TIPG);
1393		tipg_reg &= ~E1000_TIPG_IPGT_MASK;
1394
1395		if (duplex == HALF_DUPLEX && speed == SPEED_10) {
1396			tipg_reg |= 0xFF;
1397			/* Reduce Rx latency in analog PHY */
1398			emi_val = 0;
1399		} else if (hw->mac.type >= e1000_pch_spt &&
1400			   duplex == FULL_DUPLEX && speed != SPEED_1000) {
1401			tipg_reg |= 0xC;
1402			emi_val = 1;
1403		} else {
1404
1405			/* Roll back the default values */
1406			tipg_reg |= 0x08;
1407			emi_val = 1;
1408		}
1409
1410		ew32(TIPG, tipg_reg);
1411
1412		ret_val = hw->phy.ops.acquire(hw);
1413		if (ret_val)
1414			goto out;
1415
1416		if (hw->mac.type == e1000_pch2lan)
1417			emi_addr = I82579_RX_CONFIG;
1418		else
1419			emi_addr = I217_RX_CONFIG;
1420		ret_val = e1000_write_emi_reg_locked(hw, emi_addr, emi_val);
1421
1422		if (hw->mac.type >= e1000_pch_lpt) {
1423			u16 phy_reg;
1424
1425			e1e_rphy_locked(hw, I217_PLL_CLOCK_GATE_REG, &phy_reg);
1426			phy_reg &= ~I217_PLL_CLOCK_GATE_MASK;
1427			if (speed == SPEED_100 || speed == SPEED_10)
1428				phy_reg |= 0x3E8;
1429			else
1430				phy_reg |= 0xFA;
1431			e1e_wphy_locked(hw, I217_PLL_CLOCK_GATE_REG, phy_reg);
1432
1433			if (speed == SPEED_1000) {
1434				hw->phy.ops.read_reg_locked(hw, HV_PM_CTRL,
1435							    &phy_reg);
1436
1437				phy_reg |= HV_PM_CTRL_K1_CLK_REQ;
1438
1439				hw->phy.ops.write_reg_locked(hw, HV_PM_CTRL,
1440							     phy_reg);
1441			}
1442		}
1443		hw->phy.ops.release(hw);
1444
1445		if (ret_val)
1446			goto out;
1447
1448		if (hw->mac.type >= e1000_pch_spt) {
1449			u16 data;
1450			u16 ptr_gap;
1451
1452			if (speed == SPEED_1000) {
1453				ret_val = hw->phy.ops.acquire(hw);
1454				if (ret_val)
1455					goto out;
1456
1457				ret_val = e1e_rphy_locked(hw,
1458							  PHY_REG(776, 20),
1459							  &data);
1460				if (ret_val) {
1461					hw->phy.ops.release(hw);
1462					goto out;
1463				}
1464
1465				ptr_gap = (data & (0x3FF << 2)) >> 2;
1466				if (ptr_gap < 0x18) {
1467					data &= ~(0x3FF << 2);
1468					data |= (0x18 << 2);
1469					ret_val =
1470					    e1e_wphy_locked(hw,
1471							    PHY_REG(776, 20),
1472							    data);
1473				}
1474				hw->phy.ops.release(hw);
1475				if (ret_val)
1476					goto out;
1477			} else {
1478				ret_val = hw->phy.ops.acquire(hw);
1479				if (ret_val)
1480					goto out;
1481
1482				ret_val = e1e_wphy_locked(hw,
1483							  PHY_REG(776, 20),
1484							  0xC023);
1485				hw->phy.ops.release(hw);
1486				if (ret_val)
1487					goto out;
1488
1489			}
1490		}
1491	}
1492
1493	/* I217 Packet Loss issue:
1494	 * ensure that FEXTNVM4 Beacon Duration is set correctly
1495	 * on power up.
1496	 * Set the Beacon Duration for I217 to 8 usec
1497	 */
1498	if (hw->mac.type >= e1000_pch_lpt) {
1499		u32 mac_reg;
1500
1501		mac_reg = er32(FEXTNVM4);
1502		mac_reg &= ~E1000_FEXTNVM4_BEACON_DURATION_MASK;
1503		mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_8USEC;
1504		ew32(FEXTNVM4, mac_reg);
1505	}
1506
1507	/* Work-around I218 hang issue */
1508	if ((hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPTLP_I218_LM) ||
1509	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPTLP_I218_V) ||
1510	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_LM3) ||
1511	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_V3)) {
1512		ret_val = e1000_k1_workaround_lpt_lp(hw, link);
1513		if (ret_val)
1514			goto out;
1515	}
1516	if (hw->mac.type >= e1000_pch_lpt) {
1517		/* Set platform power management values for
1518		 * Latency Tolerance Reporting (LTR)
1519		 */
1520		ret_val = e1000_platform_pm_pch_lpt(hw, link);
1521		if (ret_val)
1522			goto out;
1523	}
1524
1525	/* Clear link partner's EEE ability */
1526	hw->dev_spec.ich8lan.eee_lp_ability = 0;
1527
1528	if (hw->mac.type >= e1000_pch_lpt) {
1529		u32 fextnvm6 = er32(FEXTNVM6);
1530
1531		if (hw->mac.type == e1000_pch_spt) {
1532			/* FEXTNVM6 K1-off workaround - for SPT only */
1533			u32 pcieanacfg = er32(PCIEANACFG);
1534
1535			if (pcieanacfg & E1000_FEXTNVM6_K1_OFF_ENABLE)
1536				fextnvm6 |= E1000_FEXTNVM6_K1_OFF_ENABLE;
1537			else
1538				fextnvm6 &= ~E1000_FEXTNVM6_K1_OFF_ENABLE;
1539		}
1540
1541		ew32(FEXTNVM6, fextnvm6);
1542	}
1543
1544	if (!link)
1545		goto out;
1546
1547	switch (hw->mac.type) {
1548	case e1000_pch2lan:
1549		ret_val = e1000_k1_workaround_lv(hw);
1550		if (ret_val)
1551			return ret_val;
1552		/* fall-thru */
1553	case e1000_pchlan:
1554		if (hw->phy.type == e1000_phy_82578) {
1555			ret_val = e1000_link_stall_workaround_hv(hw);
1556			if (ret_val)
1557				return ret_val;
1558		}
1559
1560		/* Workaround for PCHx parts in half-duplex:
1561		 * Set the number of preambles removed from the packet
1562		 * when it is passed from the PHY to the MAC to prevent
1563		 * the MAC from misinterpreting the packet type.
1564		 */
1565		e1e_rphy(hw, HV_KMRN_FIFO_CTRLSTA, &phy_reg);
1566		phy_reg &= ~HV_KMRN_FIFO_CTRLSTA_PREAMBLE_MASK;
1567
1568		if ((er32(STATUS) & E1000_STATUS_FD) != E1000_STATUS_FD)
1569			phy_reg |= BIT(HV_KMRN_FIFO_CTRLSTA_PREAMBLE_SHIFT);
1570
1571		e1e_wphy(hw, HV_KMRN_FIFO_CTRLSTA, phy_reg);
1572		break;
1573	default:
1574		break;
1575	}
1576
1577	/* Check if there was DownShift, must be checked
1578	 * immediately after link-up
1579	 */
1580	e1000e_check_downshift(hw);
1581
1582	/* Enable/Disable EEE after link up */
1583	if (hw->phy.type > e1000_phy_82579) {
1584		ret_val = e1000_set_eee_pchlan(hw);
1585		if (ret_val)
1586			return ret_val;
1587	}
1588
1589	/* If we are forcing speed/duplex, then we simply return since
1590	 * we have already determined whether we have link or not.
1591	 */
1592	if (!mac->autoneg)
1593		return -E1000_ERR_CONFIG;
1594
1595	/* Auto-Neg is enabled.  Auto Speed Detection takes care
1596	 * of MAC speed/duplex configuration.  So we only need to
1597	 * configure Collision Distance in the MAC.
1598	 */
1599	mac->ops.config_collision_dist(hw);
1600
1601	/* Configure Flow Control now that Auto-Neg has completed.
1602	 * First, we need to restore the desired flow control
1603	 * settings because we may have had to re-autoneg with a
1604	 * different link partner.
1605	 */
1606	ret_val = e1000e_config_fc_after_link_up(hw);
1607	if (ret_val)
1608		e_dbg("Error configuring flow control\n");
1609
1610	return ret_val;
1611
1612out:
1613	mac->get_link_status = true;
1614	return ret_val;
1615}
1616
1617static s32 e1000_get_variants_ich8lan(struct e1000_adapter *adapter)
1618{
1619	struct e1000_hw *hw = &adapter->hw;
1620	s32 rc;
1621
1622	rc = e1000_init_mac_params_ich8lan(hw);
1623	if (rc)
1624		return rc;
1625
1626	rc = e1000_init_nvm_params_ich8lan(hw);
1627	if (rc)
1628		return rc;
1629
1630	switch (hw->mac.type) {
1631	case e1000_ich8lan:
1632	case e1000_ich9lan:
1633	case e1000_ich10lan:
1634		rc = e1000_init_phy_params_ich8lan(hw);
1635		break;
1636	case e1000_pchlan:
1637	case e1000_pch2lan:
1638	case e1000_pch_lpt:
1639	case e1000_pch_spt:
1640	case e1000_pch_cnp:
 
 
 
 
 
 
1641		rc = e1000_init_phy_params_pchlan(hw);
1642		break;
1643	default:
1644		break;
1645	}
1646	if (rc)
1647		return rc;
1648
1649	/* Disable Jumbo Frame support on parts with Intel 10/100 PHY or
1650	 * on parts with MACsec enabled in NVM (reflected in CTRL_EXT).
1651	 */
1652	if ((adapter->hw.phy.type == e1000_phy_ife) ||
1653	    ((adapter->hw.mac.type >= e1000_pch2lan) &&
1654	     (!(er32(CTRL_EXT) & E1000_CTRL_EXT_LSECCK)))) {
1655		adapter->flags &= ~FLAG_HAS_JUMBO_FRAMES;
1656		adapter->max_hw_frame_size = VLAN_ETH_FRAME_LEN + ETH_FCS_LEN;
1657
1658		hw->mac.ops.blink_led = NULL;
1659	}
1660
1661	if ((adapter->hw.mac.type == e1000_ich8lan) &&
1662	    (adapter->hw.phy.type != e1000_phy_ife))
1663		adapter->flags |= FLAG_LSC_GIG_SPEED_DROP;
1664
1665	/* Enable workaround for 82579 w/ ME enabled */
1666	if ((adapter->hw.mac.type == e1000_pch2lan) &&
1667	    (er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
1668		adapter->flags2 |= FLAG2_PCIM2PCI_ARBITER_WA;
1669
1670	return 0;
1671}
1672
1673static DEFINE_MUTEX(nvm_mutex);
1674
1675/**
1676 *  e1000_acquire_nvm_ich8lan - Acquire NVM mutex
1677 *  @hw: pointer to the HW structure
1678 *
1679 *  Acquires the mutex for performing NVM operations.
1680 **/
1681static s32 e1000_acquire_nvm_ich8lan(struct e1000_hw __always_unused *hw)
1682{
1683	mutex_lock(&nvm_mutex);
1684
1685	return 0;
1686}
1687
1688/**
1689 *  e1000_release_nvm_ich8lan - Release NVM mutex
1690 *  @hw: pointer to the HW structure
1691 *
1692 *  Releases the mutex used while performing NVM operations.
1693 **/
1694static void e1000_release_nvm_ich8lan(struct e1000_hw __always_unused *hw)
1695{
1696	mutex_unlock(&nvm_mutex);
1697}
1698
1699/**
1700 *  e1000_acquire_swflag_ich8lan - Acquire software control flag
1701 *  @hw: pointer to the HW structure
1702 *
1703 *  Acquires the software control flag for performing PHY and select
1704 *  MAC CSR accesses.
1705 **/
1706static s32 e1000_acquire_swflag_ich8lan(struct e1000_hw *hw)
1707{
1708	u32 extcnf_ctrl, timeout = PHY_CFG_TIMEOUT;
1709	s32 ret_val = 0;
1710
1711	if (test_and_set_bit(__E1000_ACCESS_SHARED_RESOURCE,
1712			     &hw->adapter->state)) {
1713		e_dbg("contention for Phy access\n");
1714		return -E1000_ERR_PHY;
1715	}
1716
1717	while (timeout) {
1718		extcnf_ctrl = er32(EXTCNF_CTRL);
1719		if (!(extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG))
1720			break;
1721
1722		mdelay(1);
1723		timeout--;
1724	}
1725
1726	if (!timeout) {
1727		e_dbg("SW has already locked the resource.\n");
1728		ret_val = -E1000_ERR_CONFIG;
1729		goto out;
1730	}
1731
1732	timeout = SW_FLAG_TIMEOUT;
1733
1734	extcnf_ctrl |= E1000_EXTCNF_CTRL_SWFLAG;
1735	ew32(EXTCNF_CTRL, extcnf_ctrl);
1736
1737	while (timeout) {
1738		extcnf_ctrl = er32(EXTCNF_CTRL);
1739		if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG)
1740			break;
1741
1742		mdelay(1);
1743		timeout--;
1744	}
1745
1746	if (!timeout) {
1747		e_dbg("Failed to acquire the semaphore, FW or HW has it: FWSM=0x%8.8x EXTCNF_CTRL=0x%8.8x)\n",
1748		      er32(FWSM), extcnf_ctrl);
1749		extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
1750		ew32(EXTCNF_CTRL, extcnf_ctrl);
1751		ret_val = -E1000_ERR_CONFIG;
1752		goto out;
1753	}
1754
1755out:
1756	if (ret_val)
1757		clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
1758
1759	return ret_val;
1760}
1761
1762/**
1763 *  e1000_release_swflag_ich8lan - Release software control flag
1764 *  @hw: pointer to the HW structure
1765 *
1766 *  Releases the software control flag for performing PHY and select
1767 *  MAC CSR accesses.
1768 **/
1769static void e1000_release_swflag_ich8lan(struct e1000_hw *hw)
1770{
1771	u32 extcnf_ctrl;
1772
1773	extcnf_ctrl = er32(EXTCNF_CTRL);
1774
1775	if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG) {
1776		extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
1777		ew32(EXTCNF_CTRL, extcnf_ctrl);
1778	} else {
1779		e_dbg("Semaphore unexpectedly released by sw/fw/hw\n");
1780	}
1781
1782	clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
1783}
1784
1785/**
1786 *  e1000_check_mng_mode_ich8lan - Checks management mode
1787 *  @hw: pointer to the HW structure
1788 *
1789 *  This checks if the adapter has any manageability enabled.
1790 *  This is a function pointer entry point only called by read/write
1791 *  routines for the PHY and NVM parts.
1792 **/
1793static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw)
1794{
1795	u32 fwsm;
1796
1797	fwsm = er32(FWSM);
1798	return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
1799		((fwsm & E1000_FWSM_MODE_MASK) ==
1800		 (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
1801}
1802
1803/**
1804 *  e1000_check_mng_mode_pchlan - Checks management mode
1805 *  @hw: pointer to the HW structure
1806 *
1807 *  This checks if the adapter has iAMT enabled.
1808 *  This is a function pointer entry point only called by read/write
1809 *  routines for the PHY and NVM parts.
1810 **/
1811static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw)
1812{
1813	u32 fwsm;
1814
1815	fwsm = er32(FWSM);
1816	return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
1817	    (fwsm & (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
1818}
1819
1820/**
1821 *  e1000_rar_set_pch2lan - Set receive address register
1822 *  @hw: pointer to the HW structure
1823 *  @addr: pointer to the receive address
1824 *  @index: receive address array register
1825 *
1826 *  Sets the receive address array register at index to the address passed
1827 *  in by addr.  For 82579, RAR[0] is the base address register that is to
1828 *  contain the MAC address but RAR[1-6] are reserved for manageability (ME).
1829 *  Use SHRA[0-3] in place of those reserved for ME.
1830 **/
1831static int e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index)
1832{
1833	u32 rar_low, rar_high;
1834
1835	/* HW expects these in little endian so we reverse the byte order
1836	 * from network order (big endian) to little endian
1837	 */
1838	rar_low = ((u32)addr[0] |
1839		   ((u32)addr[1] << 8) |
1840		   ((u32)addr[2] << 16) | ((u32)addr[3] << 24));
1841
1842	rar_high = ((u32)addr[4] | ((u32)addr[5] << 8));
1843
1844	/* If MAC address zero, no need to set the AV bit */
1845	if (rar_low || rar_high)
1846		rar_high |= E1000_RAH_AV;
1847
1848	if (index == 0) {
1849		ew32(RAL(index), rar_low);
1850		e1e_flush();
1851		ew32(RAH(index), rar_high);
1852		e1e_flush();
1853		return 0;
1854	}
1855
1856	/* RAR[1-6] are owned by manageability.  Skip those and program the
1857	 * next address into the SHRA register array.
1858	 */
1859	if (index < (u32)(hw->mac.rar_entry_count)) {
1860		s32 ret_val;
1861
1862		ret_val = e1000_acquire_swflag_ich8lan(hw);
1863		if (ret_val)
1864			goto out;
1865
1866		ew32(SHRAL(index - 1), rar_low);
1867		e1e_flush();
1868		ew32(SHRAH(index - 1), rar_high);
1869		e1e_flush();
1870
1871		e1000_release_swflag_ich8lan(hw);
1872
1873		/* verify the register updates */
1874		if ((er32(SHRAL(index - 1)) == rar_low) &&
1875		    (er32(SHRAH(index - 1)) == rar_high))
1876			return 0;
1877
1878		e_dbg("SHRA[%d] might be locked by ME - FWSM=0x%8.8x\n",
1879		      (index - 1), er32(FWSM));
1880	}
1881
1882out:
1883	e_dbg("Failed to write receive address at index %d\n", index);
1884	return -E1000_ERR_CONFIG;
1885}
1886
1887/**
1888 *  e1000_rar_get_count_pch_lpt - Get the number of available SHRA
1889 *  @hw: pointer to the HW structure
1890 *
1891 *  Get the number of available receive registers that the Host can
1892 *  program. SHRA[0-10] are the shared receive address registers
1893 *  that are shared between the Host and manageability engine (ME).
1894 *  ME can reserve any number of addresses and the host needs to be
1895 *  able to tell how many available registers it has access to.
1896 **/
1897static u32 e1000_rar_get_count_pch_lpt(struct e1000_hw *hw)
1898{
1899	u32 wlock_mac;
1900	u32 num_entries;
1901
1902	wlock_mac = er32(FWSM) & E1000_FWSM_WLOCK_MAC_MASK;
1903	wlock_mac >>= E1000_FWSM_WLOCK_MAC_SHIFT;
1904
1905	switch (wlock_mac) {
1906	case 0:
1907		/* All SHRA[0..10] and RAR[0] available */
1908		num_entries = hw->mac.rar_entry_count;
1909		break;
1910	case 1:
1911		/* Only RAR[0] available */
1912		num_entries = 1;
1913		break;
1914	default:
1915		/* SHRA[0..(wlock_mac - 1)] available + RAR[0] */
1916		num_entries = wlock_mac + 1;
1917		break;
1918	}
1919
1920	return num_entries;
1921}
1922
1923/**
1924 *  e1000_rar_set_pch_lpt - Set receive address registers
1925 *  @hw: pointer to the HW structure
1926 *  @addr: pointer to the receive address
1927 *  @index: receive address array register
1928 *
1929 *  Sets the receive address register array at index to the address passed
1930 *  in by addr. For LPT, RAR[0] is the base address register that is to
1931 *  contain the MAC address. SHRA[0-10] are the shared receive address
1932 *  registers that are shared between the Host and manageability engine (ME).
1933 **/
1934static int e1000_rar_set_pch_lpt(struct e1000_hw *hw, u8 *addr, u32 index)
1935{
1936	u32 rar_low, rar_high;
1937	u32 wlock_mac;
1938
1939	/* HW expects these in little endian so we reverse the byte order
1940	 * from network order (big endian) to little endian
1941	 */
1942	rar_low = ((u32)addr[0] | ((u32)addr[1] << 8) |
1943		   ((u32)addr[2] << 16) | ((u32)addr[3] << 24));
1944
1945	rar_high = ((u32)addr[4] | ((u32)addr[5] << 8));
1946
1947	/* If MAC address zero, no need to set the AV bit */
1948	if (rar_low || rar_high)
1949		rar_high |= E1000_RAH_AV;
1950
1951	if (index == 0) {
1952		ew32(RAL(index), rar_low);
1953		e1e_flush();
1954		ew32(RAH(index), rar_high);
1955		e1e_flush();
1956		return 0;
1957	}
1958
1959	/* The manageability engine (ME) can lock certain SHRAR registers that
1960	 * it is using - those registers are unavailable for use.
1961	 */
1962	if (index < hw->mac.rar_entry_count) {
1963		wlock_mac = er32(FWSM) & E1000_FWSM_WLOCK_MAC_MASK;
1964		wlock_mac >>= E1000_FWSM_WLOCK_MAC_SHIFT;
1965
1966		/* Check if all SHRAR registers are locked */
1967		if (wlock_mac == 1)
1968			goto out;
1969
1970		if ((wlock_mac == 0) || (index <= wlock_mac)) {
1971			s32 ret_val;
1972
1973			ret_val = e1000_acquire_swflag_ich8lan(hw);
1974
1975			if (ret_val)
1976				goto out;
1977
1978			ew32(SHRAL_PCH_LPT(index - 1), rar_low);
1979			e1e_flush();
1980			ew32(SHRAH_PCH_LPT(index - 1), rar_high);
1981			e1e_flush();
1982
1983			e1000_release_swflag_ich8lan(hw);
1984
1985			/* verify the register updates */
1986			if ((er32(SHRAL_PCH_LPT(index - 1)) == rar_low) &&
1987			    (er32(SHRAH_PCH_LPT(index - 1)) == rar_high))
1988				return 0;
1989		}
1990	}
1991
1992out:
1993	e_dbg("Failed to write receive address at index %d\n", index);
1994	return -E1000_ERR_CONFIG;
1995}
1996
1997/**
1998 *  e1000_check_reset_block_ich8lan - Check if PHY reset is blocked
1999 *  @hw: pointer to the HW structure
2000 *
2001 *  Checks if firmware is blocking the reset of the PHY.
2002 *  This is a function pointer entry point only called by
2003 *  reset routines.
2004 **/
2005static s32 e1000_check_reset_block_ich8lan(struct e1000_hw *hw)
2006{
2007	bool blocked = false;
2008	int i = 0;
2009
2010	while ((blocked = !(er32(FWSM) & E1000_ICH_FWSM_RSPCIPHY)) &&
2011	       (i++ < 30))
2012		usleep_range(10000, 11000);
2013	return blocked ? E1000_BLK_PHY_RESET : 0;
2014}
2015
2016/**
2017 *  e1000_write_smbus_addr - Write SMBus address to PHY needed during Sx states
2018 *  @hw: pointer to the HW structure
2019 *
2020 *  Assumes semaphore already acquired.
2021 *
2022 **/
2023static s32 e1000_write_smbus_addr(struct e1000_hw *hw)
2024{
2025	u16 phy_data;
2026	u32 strap = er32(STRAP);
2027	u32 freq = (strap & E1000_STRAP_SMT_FREQ_MASK) >>
2028	    E1000_STRAP_SMT_FREQ_SHIFT;
2029	s32 ret_val;
2030
2031	strap &= E1000_STRAP_SMBUS_ADDRESS_MASK;
2032
2033	ret_val = e1000_read_phy_reg_hv_locked(hw, HV_SMB_ADDR, &phy_data);
2034	if (ret_val)
2035		return ret_val;
2036
2037	phy_data &= ~HV_SMB_ADDR_MASK;
2038	phy_data |= (strap >> E1000_STRAP_SMBUS_ADDRESS_SHIFT);
2039	phy_data |= HV_SMB_ADDR_PEC_EN | HV_SMB_ADDR_VALID;
2040
2041	if (hw->phy.type == e1000_phy_i217) {
2042		/* Restore SMBus frequency */
2043		if (freq--) {
2044			phy_data &= ~HV_SMB_ADDR_FREQ_MASK;
2045			phy_data |= (freq & BIT(0)) <<
2046			    HV_SMB_ADDR_FREQ_LOW_SHIFT;
2047			phy_data |= (freq & BIT(1)) <<
2048			    (HV_SMB_ADDR_FREQ_HIGH_SHIFT - 1);
2049		} else {
2050			e_dbg("Unsupported SMB frequency in PHY\n");
2051		}
2052	}
2053
2054	return e1000_write_phy_reg_hv_locked(hw, HV_SMB_ADDR, phy_data);
2055}
2056
2057/**
2058 *  e1000_sw_lcd_config_ich8lan - SW-based LCD Configuration
2059 *  @hw:   pointer to the HW structure
2060 *
2061 *  SW should configure the LCD from the NVM extended configuration region
2062 *  as a workaround for certain parts.
2063 **/
2064static s32 e1000_sw_lcd_config_ich8lan(struct e1000_hw *hw)
2065{
2066	struct e1000_phy_info *phy = &hw->phy;
2067	u32 i, data, cnf_size, cnf_base_addr, sw_cfg_mask;
2068	s32 ret_val = 0;
2069	u16 word_addr, reg_data, reg_addr, phy_page = 0;
2070
2071	/* Initialize the PHY from the NVM on ICH platforms.  This
2072	 * is needed due to an issue where the NVM configuration is
2073	 * not properly autoloaded after power transitions.
2074	 * Therefore, after each PHY reset, we will load the
2075	 * configuration data out of the NVM manually.
2076	 */
2077	switch (hw->mac.type) {
2078	case e1000_ich8lan:
2079		if (phy->type != e1000_phy_igp_3)
2080			return ret_val;
2081
2082		if ((hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_AMT) ||
2083		    (hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_C)) {
2084			sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG;
2085			break;
2086		}
2087		/* Fall-thru */
2088	case e1000_pchlan:
2089	case e1000_pch2lan:
2090	case e1000_pch_lpt:
2091	case e1000_pch_spt:
2092	case e1000_pch_cnp:
 
 
 
 
 
 
2093		sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG_ICH8M;
2094		break;
2095	default:
2096		return ret_val;
2097	}
2098
2099	ret_val = hw->phy.ops.acquire(hw);
2100	if (ret_val)
2101		return ret_val;
2102
2103	data = er32(FEXTNVM);
2104	if (!(data & sw_cfg_mask))
2105		goto release;
2106
2107	/* Make sure HW does not configure LCD from PHY
2108	 * extended configuration before SW configuration
2109	 */
2110	data = er32(EXTCNF_CTRL);
2111	if ((hw->mac.type < e1000_pch2lan) &&
2112	    (data & E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE))
2113		goto release;
2114
2115	cnf_size = er32(EXTCNF_SIZE);
2116	cnf_size &= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_MASK;
2117	cnf_size >>= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_SHIFT;
2118	if (!cnf_size)
2119		goto release;
2120
2121	cnf_base_addr = data & E1000_EXTCNF_CTRL_EXT_CNF_POINTER_MASK;
2122	cnf_base_addr >>= E1000_EXTCNF_CTRL_EXT_CNF_POINTER_SHIFT;
2123
2124	if (((hw->mac.type == e1000_pchlan) &&
2125	     !(data & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)) ||
2126	    (hw->mac.type > e1000_pchlan)) {
2127		/* HW configures the SMBus address and LEDs when the
2128		 * OEM and LCD Write Enable bits are set in the NVM.
2129		 * When both NVM bits are cleared, SW will configure
2130		 * them instead.
2131		 */
2132		ret_val = e1000_write_smbus_addr(hw);
2133		if (ret_val)
2134			goto release;
2135
2136		data = er32(LEDCTL);
2137		ret_val = e1000_write_phy_reg_hv_locked(hw, HV_LED_CONFIG,
2138							(u16)data);
2139		if (ret_val)
2140			goto release;
2141	}
2142
2143	/* Configure LCD from extended configuration region. */
2144
2145	/* cnf_base_addr is in DWORD */
2146	word_addr = (u16)(cnf_base_addr << 1);
2147
2148	for (i = 0; i < cnf_size; i++) {
2149		ret_val = e1000_read_nvm(hw, (word_addr + i * 2), 1, &reg_data);
2150		if (ret_val)
2151			goto release;
2152
2153		ret_val = e1000_read_nvm(hw, (word_addr + i * 2 + 1),
2154					 1, &reg_addr);
2155		if (ret_val)
2156			goto release;
2157
2158		/* Save off the PHY page for future writes. */
2159		if (reg_addr == IGP01E1000_PHY_PAGE_SELECT) {
2160			phy_page = reg_data;
2161			continue;
2162		}
2163
2164		reg_addr &= PHY_REG_MASK;
2165		reg_addr |= phy_page;
2166
2167		ret_val = e1e_wphy_locked(hw, (u32)reg_addr, reg_data);
2168		if (ret_val)
2169			goto release;
2170	}
2171
2172release:
2173	hw->phy.ops.release(hw);
2174	return ret_val;
2175}
2176
2177/**
2178 *  e1000_k1_gig_workaround_hv - K1 Si workaround
2179 *  @hw:   pointer to the HW structure
2180 *  @link: link up bool flag
2181 *
2182 *  If K1 is enabled for 1Gbps, the MAC might stall when transitioning
2183 *  from a lower speed.  This workaround disables K1 whenever link is at 1Gig
2184 *  If link is down, the function will restore the default K1 setting located
2185 *  in the NVM.
2186 **/
2187static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link)
2188{
2189	s32 ret_val = 0;
2190	u16 status_reg = 0;
2191	bool k1_enable = hw->dev_spec.ich8lan.nvm_k1_enabled;
2192
2193	if (hw->mac.type != e1000_pchlan)
2194		return 0;
2195
2196	/* Wrap the whole flow with the sw flag */
2197	ret_val = hw->phy.ops.acquire(hw);
2198	if (ret_val)
2199		return ret_val;
2200
2201	/* Disable K1 when link is 1Gbps, otherwise use the NVM setting */
2202	if (link) {
2203		if (hw->phy.type == e1000_phy_82578) {
2204			ret_val = e1e_rphy_locked(hw, BM_CS_STATUS,
2205						  &status_reg);
2206			if (ret_val)
2207				goto release;
2208
2209			status_reg &= (BM_CS_STATUS_LINK_UP |
2210				       BM_CS_STATUS_RESOLVED |
2211				       BM_CS_STATUS_SPEED_MASK);
2212
2213			if (status_reg == (BM_CS_STATUS_LINK_UP |
2214					   BM_CS_STATUS_RESOLVED |
2215					   BM_CS_STATUS_SPEED_1000))
2216				k1_enable = false;
2217		}
2218
2219		if (hw->phy.type == e1000_phy_82577) {
2220			ret_val = e1e_rphy_locked(hw, HV_M_STATUS, &status_reg);
2221			if (ret_val)
2222				goto release;
2223
2224			status_reg &= (HV_M_STATUS_LINK_UP |
2225				       HV_M_STATUS_AUTONEG_COMPLETE |
2226				       HV_M_STATUS_SPEED_MASK);
2227
2228			if (status_reg == (HV_M_STATUS_LINK_UP |
2229					   HV_M_STATUS_AUTONEG_COMPLETE |
2230					   HV_M_STATUS_SPEED_1000))
2231				k1_enable = false;
2232		}
2233
2234		/* Link stall fix for link up */
2235		ret_val = e1e_wphy_locked(hw, PHY_REG(770, 19), 0x0100);
2236		if (ret_val)
2237			goto release;
2238
2239	} else {
2240		/* Link stall fix for link down */
2241		ret_val = e1e_wphy_locked(hw, PHY_REG(770, 19), 0x4100);
2242		if (ret_val)
2243			goto release;
2244	}
2245
2246	ret_val = e1000_configure_k1_ich8lan(hw, k1_enable);
2247
2248release:
2249	hw->phy.ops.release(hw);
2250
2251	return ret_val;
2252}
2253
2254/**
2255 *  e1000_configure_k1_ich8lan - Configure K1 power state
2256 *  @hw: pointer to the HW structure
2257 *  @enable: K1 state to configure
2258 *
2259 *  Configure the K1 power state based on the provided parameter.
2260 *  Assumes semaphore already acquired.
2261 *
2262 *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
2263 **/
2264s32 e1000_configure_k1_ich8lan(struct e1000_hw *hw, bool k1_enable)
2265{
2266	s32 ret_val;
2267	u32 ctrl_reg = 0;
2268	u32 ctrl_ext = 0;
2269	u32 reg = 0;
2270	u16 kmrn_reg = 0;
2271
2272	ret_val = e1000e_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
2273					      &kmrn_reg);
2274	if (ret_val)
2275		return ret_val;
2276
2277	if (k1_enable)
2278		kmrn_reg |= E1000_KMRNCTRLSTA_K1_ENABLE;
2279	else
2280		kmrn_reg &= ~E1000_KMRNCTRLSTA_K1_ENABLE;
2281
2282	ret_val = e1000e_write_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
2283					       kmrn_reg);
2284	if (ret_val)
2285		return ret_val;
2286
2287	usleep_range(20, 40);
2288	ctrl_ext = er32(CTRL_EXT);
2289	ctrl_reg = er32(CTRL);
2290
2291	reg = ctrl_reg & ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
2292	reg |= E1000_CTRL_FRCSPD;
2293	ew32(CTRL, reg);
2294
2295	ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_SPD_BYPS);
2296	e1e_flush();
2297	usleep_range(20, 40);
2298	ew32(CTRL, ctrl_reg);
2299	ew32(CTRL_EXT, ctrl_ext);
2300	e1e_flush();
2301	usleep_range(20, 40);
2302
2303	return 0;
2304}
2305
2306/**
2307 *  e1000_oem_bits_config_ich8lan - SW-based LCD Configuration
2308 *  @hw:       pointer to the HW structure
2309 *  @d0_state: boolean if entering d0 or d3 device state
2310 *
2311 *  SW will configure Gbe Disable and LPLU based on the NVM. The four bits are
2312 *  collectively called OEM bits.  The OEM Write Enable bit and SW Config bit
2313 *  in NVM determines whether HW should configure LPLU and Gbe Disable.
2314 **/
2315static s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state)
2316{
2317	s32 ret_val = 0;
2318	u32 mac_reg;
2319	u16 oem_reg;
2320
2321	if (hw->mac.type < e1000_pchlan)
2322		return ret_val;
2323
2324	ret_val = hw->phy.ops.acquire(hw);
2325	if (ret_val)
2326		return ret_val;
2327
2328	if (hw->mac.type == e1000_pchlan) {
2329		mac_reg = er32(EXTCNF_CTRL);
2330		if (mac_reg & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)
2331			goto release;
2332	}
2333
2334	mac_reg = er32(FEXTNVM);
2335	if (!(mac_reg & E1000_FEXTNVM_SW_CONFIG_ICH8M))
2336		goto release;
2337
2338	mac_reg = er32(PHY_CTRL);
2339
2340	ret_val = e1e_rphy_locked(hw, HV_OEM_BITS, &oem_reg);
2341	if (ret_val)
2342		goto release;
2343
2344	oem_reg &= ~(HV_OEM_BITS_GBE_DIS | HV_OEM_BITS_LPLU);
2345
2346	if (d0_state) {
2347		if (mac_reg & E1000_PHY_CTRL_GBE_DISABLE)
2348			oem_reg |= HV_OEM_BITS_GBE_DIS;
2349
2350		if (mac_reg & E1000_PHY_CTRL_D0A_LPLU)
2351			oem_reg |= HV_OEM_BITS_LPLU;
2352	} else {
2353		if (mac_reg & (E1000_PHY_CTRL_GBE_DISABLE |
2354			       E1000_PHY_CTRL_NOND0A_GBE_DISABLE))
2355			oem_reg |= HV_OEM_BITS_GBE_DIS;
2356
2357		if (mac_reg & (E1000_PHY_CTRL_D0A_LPLU |
2358			       E1000_PHY_CTRL_NOND0A_LPLU))
2359			oem_reg |= HV_OEM_BITS_LPLU;
2360	}
2361
2362	/* Set Restart auto-neg to activate the bits */
2363	if ((d0_state || (hw->mac.type != e1000_pchlan)) &&
2364	    !hw->phy.ops.check_reset_block(hw))
2365		oem_reg |= HV_OEM_BITS_RESTART_AN;
2366
2367	ret_val = e1e_wphy_locked(hw, HV_OEM_BITS, oem_reg);
2368
2369release:
2370	hw->phy.ops.release(hw);
2371
2372	return ret_val;
2373}
2374
2375/**
2376 *  e1000_set_mdio_slow_mode_hv - Set slow MDIO access mode
2377 *  @hw:   pointer to the HW structure
2378 **/
2379static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw)
2380{
2381	s32 ret_val;
2382	u16 data;
2383
2384	ret_val = e1e_rphy(hw, HV_KMRN_MODE_CTRL, &data);
2385	if (ret_val)
2386		return ret_val;
2387
2388	data |= HV_KMRN_MDIO_SLOW;
2389
2390	ret_val = e1e_wphy(hw, HV_KMRN_MODE_CTRL, data);
2391
2392	return ret_val;
2393}
2394
2395/**
2396 *  e1000_hv_phy_workarounds_ich8lan - A series of Phy workarounds to be
2397 *  done after every PHY reset.
 
 
2398 **/
2399static s32 e1000_hv_phy_workarounds_ich8lan(struct e1000_hw *hw)
2400{
2401	s32 ret_val = 0;
2402	u16 phy_data;
2403
2404	if (hw->mac.type != e1000_pchlan)
2405		return 0;
2406
2407	/* Set MDIO slow mode before any other MDIO access */
2408	if (hw->phy.type == e1000_phy_82577) {
2409		ret_val = e1000_set_mdio_slow_mode_hv(hw);
2410		if (ret_val)
2411			return ret_val;
2412	}
2413
2414	if (((hw->phy.type == e1000_phy_82577) &&
2415	     ((hw->phy.revision == 1) || (hw->phy.revision == 2))) ||
2416	    ((hw->phy.type == e1000_phy_82578) && (hw->phy.revision == 1))) {
2417		/* Disable generation of early preamble */
2418		ret_val = e1e_wphy(hw, PHY_REG(769, 25), 0x4431);
2419		if (ret_val)
2420			return ret_val;
2421
2422		/* Preamble tuning for SSC */
2423		ret_val = e1e_wphy(hw, HV_KMRN_FIFO_CTRLSTA, 0xA204);
2424		if (ret_val)
2425			return ret_val;
2426	}
2427
2428	if (hw->phy.type == e1000_phy_82578) {
2429		/* Return registers to default by doing a soft reset then
2430		 * writing 0x3140 to the control register.
2431		 */
2432		if (hw->phy.revision < 2) {
2433			e1000e_phy_sw_reset(hw);
2434			ret_val = e1e_wphy(hw, MII_BMCR, 0x3140);
2435			if (ret_val)
2436				return ret_val;
2437		}
2438	}
2439
2440	/* Select page 0 */
2441	ret_val = hw->phy.ops.acquire(hw);
2442	if (ret_val)
2443		return ret_val;
2444
2445	hw->phy.addr = 1;
2446	ret_val = e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, 0);
2447	hw->phy.ops.release(hw);
2448	if (ret_val)
2449		return ret_val;
2450
2451	/* Configure the K1 Si workaround during phy reset assuming there is
2452	 * link so that it disables K1 if link is in 1Gbps.
2453	 */
2454	ret_val = e1000_k1_gig_workaround_hv(hw, true);
2455	if (ret_val)
2456		return ret_val;
2457
2458	/* Workaround for link disconnects on a busy hub in half duplex */
2459	ret_val = hw->phy.ops.acquire(hw);
2460	if (ret_val)
2461		return ret_val;
2462	ret_val = e1e_rphy_locked(hw, BM_PORT_GEN_CFG, &phy_data);
2463	if (ret_val)
2464		goto release;
2465	ret_val = e1e_wphy_locked(hw, BM_PORT_GEN_CFG, phy_data & 0x00FF);
2466	if (ret_val)
2467		goto release;
2468
2469	/* set MSE higher to enable link to stay up when noise is high */
2470	ret_val = e1000_write_emi_reg_locked(hw, I82577_MSE_THRESHOLD, 0x0034);
2471release:
2472	hw->phy.ops.release(hw);
2473
2474	return ret_val;
2475}
2476
2477/**
2478 *  e1000_copy_rx_addrs_to_phy_ich8lan - Copy Rx addresses from MAC to PHY
2479 *  @hw:   pointer to the HW structure
2480 **/
2481void e1000_copy_rx_addrs_to_phy_ich8lan(struct e1000_hw *hw)
2482{
2483	u32 mac_reg;
2484	u16 i, phy_reg = 0;
2485	s32 ret_val;
2486
2487	ret_val = hw->phy.ops.acquire(hw);
2488	if (ret_val)
2489		return;
2490	ret_val = e1000_enable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2491	if (ret_val)
2492		goto release;
2493
2494	/* Copy both RAL/H (rar_entry_count) and SHRAL/H to PHY */
2495	for (i = 0; i < (hw->mac.rar_entry_count); i++) {
2496		mac_reg = er32(RAL(i));
2497		hw->phy.ops.write_reg_page(hw, BM_RAR_L(i),
2498					   (u16)(mac_reg & 0xFFFF));
2499		hw->phy.ops.write_reg_page(hw, BM_RAR_M(i),
2500					   (u16)((mac_reg >> 16) & 0xFFFF));
2501
2502		mac_reg = er32(RAH(i));
2503		hw->phy.ops.write_reg_page(hw, BM_RAR_H(i),
2504					   (u16)(mac_reg & 0xFFFF));
2505		hw->phy.ops.write_reg_page(hw, BM_RAR_CTRL(i),
2506					   (u16)((mac_reg & E1000_RAH_AV)
2507						 >> 16));
2508	}
2509
2510	e1000_disable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2511
2512release:
2513	hw->phy.ops.release(hw);
2514}
2515
2516/**
2517 *  e1000_lv_jumbo_workaround_ich8lan - required for jumbo frame operation
2518 *  with 82579 PHY
2519 *  @hw: pointer to the HW structure
2520 *  @enable: flag to enable/disable workaround when enabling/disabling jumbos
2521 **/
2522s32 e1000_lv_jumbo_workaround_ich8lan(struct e1000_hw *hw, bool enable)
2523{
2524	s32 ret_val = 0;
2525	u16 phy_reg, data;
2526	u32 mac_reg;
2527	u16 i;
2528
2529	if (hw->mac.type < e1000_pch2lan)
2530		return 0;
2531
2532	/* disable Rx path while enabling/disabling workaround */
2533	e1e_rphy(hw, PHY_REG(769, 20), &phy_reg);
2534	ret_val = e1e_wphy(hw, PHY_REG(769, 20), phy_reg | BIT(14));
2535	if (ret_val)
2536		return ret_val;
2537
2538	if (enable) {
2539		/* Write Rx addresses (rar_entry_count for RAL/H, and
2540		 * SHRAL/H) and initial CRC values to the MAC
2541		 */
2542		for (i = 0; i < hw->mac.rar_entry_count; i++) {
2543			u8 mac_addr[ETH_ALEN] = { 0 };
2544			u32 addr_high, addr_low;
2545
2546			addr_high = er32(RAH(i));
2547			if (!(addr_high & E1000_RAH_AV))
2548				continue;
2549			addr_low = er32(RAL(i));
2550			mac_addr[0] = (addr_low & 0xFF);
2551			mac_addr[1] = ((addr_low >> 8) & 0xFF);
2552			mac_addr[2] = ((addr_low >> 16) & 0xFF);
2553			mac_addr[3] = ((addr_low >> 24) & 0xFF);
2554			mac_addr[4] = (addr_high & 0xFF);
2555			mac_addr[5] = ((addr_high >> 8) & 0xFF);
2556
2557			ew32(PCH_RAICC(i), ~ether_crc_le(ETH_ALEN, mac_addr));
2558		}
2559
2560		/* Write Rx addresses to the PHY */
2561		e1000_copy_rx_addrs_to_phy_ich8lan(hw);
2562
2563		/* Enable jumbo frame workaround in the MAC */
2564		mac_reg = er32(FFLT_DBG);
2565		mac_reg &= ~BIT(14);
2566		mac_reg |= (7 << 15);
2567		ew32(FFLT_DBG, mac_reg);
2568
2569		mac_reg = er32(RCTL);
2570		mac_reg |= E1000_RCTL_SECRC;
2571		ew32(RCTL, mac_reg);
2572
2573		ret_val = e1000e_read_kmrn_reg(hw,
2574					       E1000_KMRNCTRLSTA_CTRL_OFFSET,
2575					       &data);
2576		if (ret_val)
2577			return ret_val;
2578		ret_val = e1000e_write_kmrn_reg(hw,
2579						E1000_KMRNCTRLSTA_CTRL_OFFSET,
2580						data | BIT(0));
2581		if (ret_val)
2582			return ret_val;
2583		ret_val = e1000e_read_kmrn_reg(hw,
2584					       E1000_KMRNCTRLSTA_HD_CTRL,
2585					       &data);
2586		if (ret_val)
2587			return ret_val;
2588		data &= ~(0xF << 8);
2589		data |= (0xB << 8);
2590		ret_val = e1000e_write_kmrn_reg(hw,
2591						E1000_KMRNCTRLSTA_HD_CTRL,
2592						data);
2593		if (ret_val)
2594			return ret_val;
2595
2596		/* Enable jumbo frame workaround in the PHY */
2597		e1e_rphy(hw, PHY_REG(769, 23), &data);
2598		data &= ~(0x7F << 5);
2599		data |= (0x37 << 5);
2600		ret_val = e1e_wphy(hw, PHY_REG(769, 23), data);
2601		if (ret_val)
2602			return ret_val;
2603		e1e_rphy(hw, PHY_REG(769, 16), &data);
2604		data &= ~BIT(13);
2605		ret_val = e1e_wphy(hw, PHY_REG(769, 16), data);
2606		if (ret_val)
2607			return ret_val;
2608		e1e_rphy(hw, PHY_REG(776, 20), &data);
2609		data &= ~(0x3FF << 2);
2610		data |= (E1000_TX_PTR_GAP << 2);
2611		ret_val = e1e_wphy(hw, PHY_REG(776, 20), data);
2612		if (ret_val)
2613			return ret_val;
2614		ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0xF100);
2615		if (ret_val)
2616			return ret_val;
2617		e1e_rphy(hw, HV_PM_CTRL, &data);
2618		ret_val = e1e_wphy(hw, HV_PM_CTRL, data | BIT(10));
2619		if (ret_val)
2620			return ret_val;
2621	} else {
2622		/* Write MAC register values back to h/w defaults */
2623		mac_reg = er32(FFLT_DBG);
2624		mac_reg &= ~(0xF << 14);
2625		ew32(FFLT_DBG, mac_reg);
2626
2627		mac_reg = er32(RCTL);
2628		mac_reg &= ~E1000_RCTL_SECRC;
2629		ew32(RCTL, mac_reg);
2630
2631		ret_val = e1000e_read_kmrn_reg(hw,
2632					       E1000_KMRNCTRLSTA_CTRL_OFFSET,
2633					       &data);
2634		if (ret_val)
2635			return ret_val;
2636		ret_val = e1000e_write_kmrn_reg(hw,
2637						E1000_KMRNCTRLSTA_CTRL_OFFSET,
2638						data & ~BIT(0));
2639		if (ret_val)
2640			return ret_val;
2641		ret_val = e1000e_read_kmrn_reg(hw,
2642					       E1000_KMRNCTRLSTA_HD_CTRL,
2643					       &data);
2644		if (ret_val)
2645			return ret_val;
2646		data &= ~(0xF << 8);
2647		data |= (0xB << 8);
2648		ret_val = e1000e_write_kmrn_reg(hw,
2649						E1000_KMRNCTRLSTA_HD_CTRL,
2650						data);
2651		if (ret_val)
2652			return ret_val;
2653
2654		/* Write PHY register values back to h/w defaults */
2655		e1e_rphy(hw, PHY_REG(769, 23), &data);
2656		data &= ~(0x7F << 5);
2657		ret_val = e1e_wphy(hw, PHY_REG(769, 23), data);
2658		if (ret_val)
2659			return ret_val;
2660		e1e_rphy(hw, PHY_REG(769, 16), &data);
2661		data |= BIT(13);
2662		ret_val = e1e_wphy(hw, PHY_REG(769, 16), data);
2663		if (ret_val)
2664			return ret_val;
2665		e1e_rphy(hw, PHY_REG(776, 20), &data);
2666		data &= ~(0x3FF << 2);
2667		data |= (0x8 << 2);
2668		ret_val = e1e_wphy(hw, PHY_REG(776, 20), data);
2669		if (ret_val)
2670			return ret_val;
2671		ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0x7E00);
2672		if (ret_val)
2673			return ret_val;
2674		e1e_rphy(hw, HV_PM_CTRL, &data);
2675		ret_val = e1e_wphy(hw, HV_PM_CTRL, data & ~BIT(10));
2676		if (ret_val)
2677			return ret_val;
2678	}
2679
2680	/* re-enable Rx path after enabling/disabling workaround */
2681	return e1e_wphy(hw, PHY_REG(769, 20), phy_reg & ~BIT(14));
2682}
2683
2684/**
2685 *  e1000_lv_phy_workarounds_ich8lan - A series of Phy workarounds to be
2686 *  done after every PHY reset.
 
 
2687 **/
2688static s32 e1000_lv_phy_workarounds_ich8lan(struct e1000_hw *hw)
2689{
2690	s32 ret_val = 0;
2691
2692	if (hw->mac.type != e1000_pch2lan)
2693		return 0;
2694
2695	/* Set MDIO slow mode before any other MDIO access */
2696	ret_val = e1000_set_mdio_slow_mode_hv(hw);
2697	if (ret_val)
2698		return ret_val;
2699
2700	ret_val = hw->phy.ops.acquire(hw);
2701	if (ret_val)
2702		return ret_val;
2703	/* set MSE higher to enable link to stay up when noise is high */
2704	ret_val = e1000_write_emi_reg_locked(hw, I82579_MSE_THRESHOLD, 0x0034);
2705	if (ret_val)
2706		goto release;
2707	/* drop link after 5 times MSE threshold was reached */
2708	ret_val = e1000_write_emi_reg_locked(hw, I82579_MSE_LINK_DOWN, 0x0005);
2709release:
2710	hw->phy.ops.release(hw);
2711
2712	return ret_val;
2713}
2714
2715/**
2716 *  e1000_k1_gig_workaround_lv - K1 Si workaround
2717 *  @hw:   pointer to the HW structure
2718 *
2719 *  Workaround to set the K1 beacon duration for 82579 parts in 10Mbps
2720 *  Disable K1 in 1000Mbps and 100Mbps
2721 **/
2722static s32 e1000_k1_workaround_lv(struct e1000_hw *hw)
2723{
2724	s32 ret_val = 0;
2725	u16 status_reg = 0;
2726
2727	if (hw->mac.type != e1000_pch2lan)
2728		return 0;
2729
2730	/* Set K1 beacon duration based on 10Mbs speed */
2731	ret_val = e1e_rphy(hw, HV_M_STATUS, &status_reg);
2732	if (ret_val)
2733		return ret_val;
2734
2735	if ((status_reg & (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE))
2736	    == (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE)) {
2737		if (status_reg &
2738		    (HV_M_STATUS_SPEED_1000 | HV_M_STATUS_SPEED_100)) {
2739			u16 pm_phy_reg;
2740
2741			/* LV 1G/100 Packet drop issue wa  */
2742			ret_val = e1e_rphy(hw, HV_PM_CTRL, &pm_phy_reg);
2743			if (ret_val)
2744				return ret_val;
2745			pm_phy_reg &= ~HV_PM_CTRL_K1_ENABLE;
2746			ret_val = e1e_wphy(hw, HV_PM_CTRL, pm_phy_reg);
2747			if (ret_val)
2748				return ret_val;
2749		} else {
2750			u32 mac_reg;
2751
2752			mac_reg = er32(FEXTNVM4);
2753			mac_reg &= ~E1000_FEXTNVM4_BEACON_DURATION_MASK;
2754			mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_16USEC;
2755			ew32(FEXTNVM4, mac_reg);
2756		}
2757	}
2758
2759	return ret_val;
2760}
2761
2762/**
2763 *  e1000_gate_hw_phy_config_ich8lan - disable PHY config via hardware
2764 *  @hw:   pointer to the HW structure
2765 *  @gate: boolean set to true to gate, false to ungate
2766 *
2767 *  Gate/ungate the automatic PHY configuration via hardware; perform
2768 *  the configuration via software instead.
2769 **/
2770static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate)
2771{
2772	u32 extcnf_ctrl;
2773
2774	if (hw->mac.type < e1000_pch2lan)
2775		return;
2776
2777	extcnf_ctrl = er32(EXTCNF_CTRL);
2778
2779	if (gate)
2780		extcnf_ctrl |= E1000_EXTCNF_CTRL_GATE_PHY_CFG;
2781	else
2782		extcnf_ctrl &= ~E1000_EXTCNF_CTRL_GATE_PHY_CFG;
2783
2784	ew32(EXTCNF_CTRL, extcnf_ctrl);
2785}
2786
2787/**
2788 *  e1000_lan_init_done_ich8lan - Check for PHY config completion
2789 *  @hw: pointer to the HW structure
2790 *
2791 *  Check the appropriate indication the MAC has finished configuring the
2792 *  PHY after a software reset.
2793 **/
2794static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw)
2795{
2796	u32 data, loop = E1000_ICH8_LAN_INIT_TIMEOUT;
2797
2798	/* Wait for basic configuration completes before proceeding */
2799	do {
2800		data = er32(STATUS);
2801		data &= E1000_STATUS_LAN_INIT_DONE;
2802		usleep_range(100, 200);
2803	} while ((!data) && --loop);
2804
2805	/* If basic configuration is incomplete before the above loop
2806	 * count reaches 0, loading the configuration from NVM will
2807	 * leave the PHY in a bad state possibly resulting in no link.
2808	 */
2809	if (loop == 0)
2810		e_dbg("LAN_INIT_DONE not set, increase timeout\n");
2811
2812	/* Clear the Init Done bit for the next init event */
2813	data = er32(STATUS);
2814	data &= ~E1000_STATUS_LAN_INIT_DONE;
2815	ew32(STATUS, data);
2816}
2817
2818/**
2819 *  e1000_post_phy_reset_ich8lan - Perform steps required after a PHY reset
2820 *  @hw: pointer to the HW structure
2821 **/
2822static s32 e1000_post_phy_reset_ich8lan(struct e1000_hw *hw)
2823{
2824	s32 ret_val = 0;
2825	u16 reg;
2826
2827	if (hw->phy.ops.check_reset_block(hw))
2828		return 0;
2829
2830	/* Allow time for h/w to get to quiescent state after reset */
2831	usleep_range(10000, 11000);
2832
2833	/* Perform any necessary post-reset workarounds */
2834	switch (hw->mac.type) {
2835	case e1000_pchlan:
2836		ret_val = e1000_hv_phy_workarounds_ich8lan(hw);
2837		if (ret_val)
2838			return ret_val;
2839		break;
2840	case e1000_pch2lan:
2841		ret_val = e1000_lv_phy_workarounds_ich8lan(hw);
2842		if (ret_val)
2843			return ret_val;
2844		break;
2845	default:
2846		break;
2847	}
2848
2849	/* Clear the host wakeup bit after lcd reset */
2850	if (hw->mac.type >= e1000_pchlan) {
2851		e1e_rphy(hw, BM_PORT_GEN_CFG, &reg);
2852		reg &= ~BM_WUC_HOST_WU_BIT;
2853		e1e_wphy(hw, BM_PORT_GEN_CFG, reg);
2854	}
2855
2856	/* Configure the LCD with the extended configuration region in NVM */
2857	ret_val = e1000_sw_lcd_config_ich8lan(hw);
2858	if (ret_val)
2859		return ret_val;
2860
2861	/* Configure the LCD with the OEM bits in NVM */
2862	ret_val = e1000_oem_bits_config_ich8lan(hw, true);
2863
2864	if (hw->mac.type == e1000_pch2lan) {
2865		/* Ungate automatic PHY configuration on non-managed 82579 */
2866		if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
2867			usleep_range(10000, 11000);
2868			e1000_gate_hw_phy_config_ich8lan(hw, false);
2869		}
2870
2871		/* Set EEE LPI Update Timer to 200usec */
2872		ret_val = hw->phy.ops.acquire(hw);
2873		if (ret_val)
2874			return ret_val;
2875		ret_val = e1000_write_emi_reg_locked(hw,
2876						     I82579_LPI_UPDATE_TIMER,
2877						     0x1387);
2878		hw->phy.ops.release(hw);
2879	}
2880
2881	return ret_val;
2882}
2883
2884/**
2885 *  e1000_phy_hw_reset_ich8lan - Performs a PHY reset
2886 *  @hw: pointer to the HW structure
2887 *
2888 *  Resets the PHY
2889 *  This is a function pointer entry point called by drivers
2890 *  or other shared routines.
2891 **/
2892static s32 e1000_phy_hw_reset_ich8lan(struct e1000_hw *hw)
2893{
2894	s32 ret_val = 0;
2895
2896	/* Gate automatic PHY configuration by hardware on non-managed 82579 */
2897	if ((hw->mac.type == e1000_pch2lan) &&
2898	    !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
2899		e1000_gate_hw_phy_config_ich8lan(hw, true);
2900
2901	ret_val = e1000e_phy_hw_reset_generic(hw);
2902	if (ret_val)
2903		return ret_val;
2904
2905	return e1000_post_phy_reset_ich8lan(hw);
2906}
2907
2908/**
2909 *  e1000_set_lplu_state_pchlan - Set Low Power Link Up state
2910 *  @hw: pointer to the HW structure
2911 *  @active: true to enable LPLU, false to disable
2912 *
2913 *  Sets the LPLU state according to the active flag.  For PCH, if OEM write
2914 *  bit are disabled in the NVM, writing the LPLU bits in the MAC will not set
2915 *  the phy speed. This function will manually set the LPLU bit and restart
2916 *  auto-neg as hw would do. D3 and D0 LPLU will call the same function
2917 *  since it configures the same bit.
2918 **/
2919static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active)
2920{
2921	s32 ret_val;
2922	u16 oem_reg;
2923
2924	ret_val = e1e_rphy(hw, HV_OEM_BITS, &oem_reg);
2925	if (ret_val)
2926		return ret_val;
2927
2928	if (active)
2929		oem_reg |= HV_OEM_BITS_LPLU;
2930	else
2931		oem_reg &= ~HV_OEM_BITS_LPLU;
2932
2933	if (!hw->phy.ops.check_reset_block(hw))
2934		oem_reg |= HV_OEM_BITS_RESTART_AN;
2935
2936	return e1e_wphy(hw, HV_OEM_BITS, oem_reg);
2937}
2938
2939/**
2940 *  e1000_set_d0_lplu_state_ich8lan - Set Low Power Linkup D0 state
2941 *  @hw: pointer to the HW structure
2942 *  @active: true to enable LPLU, false to disable
2943 *
2944 *  Sets the LPLU D0 state according to the active flag.  When
2945 *  activating LPLU this function also disables smart speed
2946 *  and vice versa.  LPLU will not be activated unless the
2947 *  device autonegotiation advertisement meets standards of
2948 *  either 10 or 10/100 or 10/100/1000 at all duplexes.
2949 *  This is a function pointer entry point only called by
2950 *  PHY setup routines.
2951 **/
2952static s32 e1000_set_d0_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
2953{
2954	struct e1000_phy_info *phy = &hw->phy;
2955	u32 phy_ctrl;
2956	s32 ret_val = 0;
2957	u16 data;
2958
2959	if (phy->type == e1000_phy_ife)
2960		return 0;
2961
2962	phy_ctrl = er32(PHY_CTRL);
2963
2964	if (active) {
2965		phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
2966		ew32(PHY_CTRL, phy_ctrl);
2967
2968		if (phy->type != e1000_phy_igp_3)
2969			return 0;
2970
2971		/* Call gig speed drop workaround on LPLU before accessing
2972		 * any PHY registers
2973		 */
2974		if (hw->mac.type == e1000_ich8lan)
2975			e1000e_gig_downshift_workaround_ich8lan(hw);
2976
2977		/* When LPLU is enabled, we should disable SmartSpeed */
2978		ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
2979		if (ret_val)
2980			return ret_val;
2981		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2982		ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
2983		if (ret_val)
2984			return ret_val;
2985	} else {
2986		phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
2987		ew32(PHY_CTRL, phy_ctrl);
2988
2989		if (phy->type != e1000_phy_igp_3)
2990			return 0;
2991
2992		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
2993		 * during Dx states where the power conservation is most
2994		 * important.  During driver activity we should enable
2995		 * SmartSpeed, so performance is maintained.
2996		 */
2997		if (phy->smart_speed == e1000_smart_speed_on) {
2998			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2999					   &data);
3000			if (ret_val)
3001				return ret_val;
3002
3003			data |= IGP01E1000_PSCFR_SMART_SPEED;
3004			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3005					   data);
3006			if (ret_val)
3007				return ret_val;
3008		} else if (phy->smart_speed == e1000_smart_speed_off) {
3009			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3010					   &data);
3011			if (ret_val)
3012				return ret_val;
3013
3014			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3015			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3016					   data);
3017			if (ret_val)
3018				return ret_val;
3019		}
3020	}
3021
3022	return 0;
3023}
3024
3025/**
3026 *  e1000_set_d3_lplu_state_ich8lan - Set Low Power Linkup D3 state
3027 *  @hw: pointer to the HW structure
3028 *  @active: true to enable LPLU, false to disable
3029 *
3030 *  Sets the LPLU D3 state according to the active flag.  When
3031 *  activating LPLU this function also disables smart speed
3032 *  and vice versa.  LPLU will not be activated unless the
3033 *  device autonegotiation advertisement meets standards of
3034 *  either 10 or 10/100 or 10/100/1000 at all duplexes.
3035 *  This is a function pointer entry point only called by
3036 *  PHY setup routines.
3037 **/
3038static s32 e1000_set_d3_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
3039{
3040	struct e1000_phy_info *phy = &hw->phy;
3041	u32 phy_ctrl;
3042	s32 ret_val = 0;
3043	u16 data;
3044
3045	phy_ctrl = er32(PHY_CTRL);
3046
3047	if (!active) {
3048		phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU;
3049		ew32(PHY_CTRL, phy_ctrl);
3050
3051		if (phy->type != e1000_phy_igp_3)
3052			return 0;
3053
3054		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
3055		 * during Dx states where the power conservation is most
3056		 * important.  During driver activity we should enable
3057		 * SmartSpeed, so performance is maintained.
3058		 */
3059		if (phy->smart_speed == e1000_smart_speed_on) {
3060			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3061					   &data);
3062			if (ret_val)
3063				return ret_val;
3064
3065			data |= IGP01E1000_PSCFR_SMART_SPEED;
3066			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3067					   data);
3068			if (ret_val)
3069				return ret_val;
3070		} else if (phy->smart_speed == e1000_smart_speed_off) {
3071			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3072					   &data);
3073			if (ret_val)
3074				return ret_val;
3075
3076			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3077			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3078					   data);
3079			if (ret_val)
3080				return ret_val;
3081		}
3082	} else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
3083		   (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
3084		   (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
3085		phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU;
3086		ew32(PHY_CTRL, phy_ctrl);
3087
3088		if (phy->type != e1000_phy_igp_3)
3089			return 0;
3090
3091		/* Call gig speed drop workaround on LPLU before accessing
3092		 * any PHY registers
3093		 */
3094		if (hw->mac.type == e1000_ich8lan)
3095			e1000e_gig_downshift_workaround_ich8lan(hw);
3096
3097		/* When LPLU is enabled, we should disable SmartSpeed */
3098		ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
3099		if (ret_val)
3100			return ret_val;
3101
3102		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3103		ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
3104	}
3105
3106	return ret_val;
3107}
3108
3109/**
3110 *  e1000_valid_nvm_bank_detect_ich8lan - finds out the valid bank 0 or 1
3111 *  @hw: pointer to the HW structure
3112 *  @bank:  pointer to the variable that returns the active bank
3113 *
3114 *  Reads signature byte from the NVM using the flash access registers.
3115 *  Word 0x13 bits 15:14 = 10b indicate a valid signature for that bank.
3116 **/
3117static s32 e1000_valid_nvm_bank_detect_ich8lan(struct e1000_hw *hw, u32 *bank)
3118{
3119	u32 eecd;
3120	struct e1000_nvm_info *nvm = &hw->nvm;
3121	u32 bank1_offset = nvm->flash_bank_size * sizeof(u16);
3122	u32 act_offset = E1000_ICH_NVM_SIG_WORD * 2 + 1;
3123	u32 nvm_dword = 0;
3124	u8 sig_byte = 0;
3125	s32 ret_val;
3126
3127	switch (hw->mac.type) {
3128	case e1000_pch_spt:
3129	case e1000_pch_cnp:
 
 
 
 
 
 
3130		bank1_offset = nvm->flash_bank_size;
3131		act_offset = E1000_ICH_NVM_SIG_WORD;
3132
3133		/* set bank to 0 in case flash read fails */
3134		*bank = 0;
3135
3136		/* Check bank 0 */
3137		ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset,
3138							 &nvm_dword);
3139		if (ret_val)
3140			return ret_val;
3141		sig_byte = (u8)((nvm_dword & 0xFF00) >> 8);
3142		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3143		    E1000_ICH_NVM_SIG_VALUE) {
3144			*bank = 0;
3145			return 0;
3146		}
3147
3148		/* Check bank 1 */
3149		ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset +
3150							 bank1_offset,
3151							 &nvm_dword);
3152		if (ret_val)
3153			return ret_val;
3154		sig_byte = (u8)((nvm_dword & 0xFF00) >> 8);
3155		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3156		    E1000_ICH_NVM_SIG_VALUE) {
3157			*bank = 1;
3158			return 0;
3159		}
3160
3161		e_dbg("ERROR: No valid NVM bank present\n");
3162		return -E1000_ERR_NVM;
3163	case e1000_ich8lan:
3164	case e1000_ich9lan:
3165		eecd = er32(EECD);
3166		if ((eecd & E1000_EECD_SEC1VAL_VALID_MASK) ==
3167		    E1000_EECD_SEC1VAL_VALID_MASK) {
3168			if (eecd & E1000_EECD_SEC1VAL)
3169				*bank = 1;
3170			else
3171				*bank = 0;
3172
3173			return 0;
3174		}
3175		e_dbg("Unable to determine valid NVM bank via EEC - reading flash signature\n");
3176		/* fall-thru */
3177	default:
3178		/* set bank to 0 in case flash read fails */
3179		*bank = 0;
3180
3181		/* Check bank 0 */
3182		ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset,
3183							&sig_byte);
3184		if (ret_val)
3185			return ret_val;
3186		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3187		    E1000_ICH_NVM_SIG_VALUE) {
3188			*bank = 0;
3189			return 0;
3190		}
3191
3192		/* Check bank 1 */
3193		ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset +
3194							bank1_offset,
3195							&sig_byte);
3196		if (ret_val)
3197			return ret_val;
3198		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3199		    E1000_ICH_NVM_SIG_VALUE) {
3200			*bank = 1;
3201			return 0;
3202		}
3203
3204		e_dbg("ERROR: No valid NVM bank present\n");
3205		return -E1000_ERR_NVM;
3206	}
3207}
3208
3209/**
3210 *  e1000_read_nvm_spt - NVM access for SPT
3211 *  @hw: pointer to the HW structure
3212 *  @offset: The offset (in bytes) of the word(s) to read.
3213 *  @words: Size of data to read in words.
3214 *  @data: pointer to the word(s) to read at offset.
3215 *
3216 *  Reads a word(s) from the NVM
3217 **/
3218static s32 e1000_read_nvm_spt(struct e1000_hw *hw, u16 offset, u16 words,
3219			      u16 *data)
3220{
3221	struct e1000_nvm_info *nvm = &hw->nvm;
3222	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3223	u32 act_offset;
3224	s32 ret_val = 0;
3225	u32 bank = 0;
3226	u32 dword = 0;
3227	u16 offset_to_read;
3228	u16 i;
3229
3230	if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
3231	    (words == 0)) {
3232		e_dbg("nvm parameter(s) out of bounds\n");
3233		ret_val = -E1000_ERR_NVM;
3234		goto out;
3235	}
3236
3237	nvm->ops.acquire(hw);
3238
3239	ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3240	if (ret_val) {
3241		e_dbg("Could not detect valid bank, assuming bank 0\n");
3242		bank = 0;
3243	}
3244
3245	act_offset = (bank) ? nvm->flash_bank_size : 0;
3246	act_offset += offset;
3247
3248	ret_val = 0;
3249
3250	for (i = 0; i < words; i += 2) {
3251		if (words - i == 1) {
3252			if (dev_spec->shadow_ram[offset + i].modified) {
3253				data[i] =
3254				    dev_spec->shadow_ram[offset + i].value;
3255			} else {
3256				offset_to_read = act_offset + i -
3257				    ((act_offset + i) % 2);
3258				ret_val =
3259				  e1000_read_flash_dword_ich8lan(hw,
3260								 offset_to_read,
3261								 &dword);
3262				if (ret_val)
3263					break;
3264				if ((act_offset + i) % 2 == 0)
3265					data[i] = (u16)(dword & 0xFFFF);
3266				else
3267					data[i] = (u16)((dword >> 16) & 0xFFFF);
3268			}
3269		} else {
3270			offset_to_read = act_offset + i;
3271			if (!(dev_spec->shadow_ram[offset + i].modified) ||
3272			    !(dev_spec->shadow_ram[offset + i + 1].modified)) {
3273				ret_val =
3274				  e1000_read_flash_dword_ich8lan(hw,
3275								 offset_to_read,
3276								 &dword);
3277				if (ret_val)
3278					break;
3279			}
3280			if (dev_spec->shadow_ram[offset + i].modified)
3281				data[i] =
3282				    dev_spec->shadow_ram[offset + i].value;
3283			else
3284				data[i] = (u16)(dword & 0xFFFF);
3285			if (dev_spec->shadow_ram[offset + i].modified)
3286				data[i + 1] =
3287				    dev_spec->shadow_ram[offset + i + 1].value;
3288			else
3289				data[i + 1] = (u16)(dword >> 16 & 0xFFFF);
3290		}
3291	}
3292
3293	nvm->ops.release(hw);
3294
3295out:
3296	if (ret_val)
3297		e_dbg("NVM read error: %d\n", ret_val);
3298
3299	return ret_val;
3300}
3301
3302/**
3303 *  e1000_read_nvm_ich8lan - Read word(s) from the NVM
3304 *  @hw: pointer to the HW structure
3305 *  @offset: The offset (in bytes) of the word(s) to read.
3306 *  @words: Size of data to read in words
3307 *  @data: Pointer to the word(s) to read at offset.
3308 *
3309 *  Reads a word(s) from the NVM using the flash access registers.
3310 **/
3311static s32 e1000_read_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
3312				  u16 *data)
3313{
3314	struct e1000_nvm_info *nvm = &hw->nvm;
3315	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3316	u32 act_offset;
3317	s32 ret_val = 0;
3318	u32 bank = 0;
3319	u16 i, word;
3320
3321	if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
3322	    (words == 0)) {
3323		e_dbg("nvm parameter(s) out of bounds\n");
3324		ret_val = -E1000_ERR_NVM;
3325		goto out;
3326	}
3327
3328	nvm->ops.acquire(hw);
3329
3330	ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3331	if (ret_val) {
3332		e_dbg("Could not detect valid bank, assuming bank 0\n");
3333		bank = 0;
3334	}
3335
3336	act_offset = (bank) ? nvm->flash_bank_size : 0;
3337	act_offset += offset;
3338
3339	ret_val = 0;
3340	for (i = 0; i < words; i++) {
3341		if (dev_spec->shadow_ram[offset + i].modified) {
3342			data[i] = dev_spec->shadow_ram[offset + i].value;
3343		} else {
3344			ret_val = e1000_read_flash_word_ich8lan(hw,
3345								act_offset + i,
3346								&word);
3347			if (ret_val)
3348				break;
3349			data[i] = word;
3350		}
3351	}
3352
3353	nvm->ops.release(hw);
3354
3355out:
3356	if (ret_val)
3357		e_dbg("NVM read error: %d\n", ret_val);
3358
3359	return ret_val;
3360}
3361
3362/**
3363 *  e1000_flash_cycle_init_ich8lan - Initialize flash
3364 *  @hw: pointer to the HW structure
3365 *
3366 *  This function does initial flash setup so that a new read/write/erase cycle
3367 *  can be started.
3368 **/
3369static s32 e1000_flash_cycle_init_ich8lan(struct e1000_hw *hw)
3370{
3371	union ich8_hws_flash_status hsfsts;
3372	s32 ret_val = -E1000_ERR_NVM;
3373
3374	hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3375
3376	/* Check if the flash descriptor is valid */
3377	if (!hsfsts.hsf_status.fldesvalid) {
3378		e_dbg("Flash descriptor invalid.  SW Sequencing must be used.\n");
3379		return -E1000_ERR_NVM;
3380	}
3381
3382	/* Clear FCERR and DAEL in hw status by writing 1 */
3383	hsfsts.hsf_status.flcerr = 1;
3384	hsfsts.hsf_status.dael = 1;
3385	if (hw->mac.type >= e1000_pch_spt)
3386		ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval & 0xFFFF);
3387	else
3388		ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
3389
3390	/* Either we should have a hardware SPI cycle in progress
3391	 * bit to check against, in order to start a new cycle or
3392	 * FDONE bit should be changed in the hardware so that it
3393	 * is 1 after hardware reset, which can then be used as an
3394	 * indication whether a cycle is in progress or has been
3395	 * completed.
3396	 */
3397
3398	if (!hsfsts.hsf_status.flcinprog) {
3399		/* There is no cycle running at present,
3400		 * so we can start a cycle.
3401		 * Begin by setting Flash Cycle Done.
3402		 */
3403		hsfsts.hsf_status.flcdone = 1;
3404		if (hw->mac.type >= e1000_pch_spt)
3405			ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval & 0xFFFF);
3406		else
3407			ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
3408		ret_val = 0;
3409	} else {
3410		s32 i;
3411
3412		/* Otherwise poll for sometime so the current
3413		 * cycle has a chance to end before giving up.
3414		 */
3415		for (i = 0; i < ICH_FLASH_READ_COMMAND_TIMEOUT; i++) {
3416			hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3417			if (!hsfsts.hsf_status.flcinprog) {
3418				ret_val = 0;
3419				break;
3420			}
3421			udelay(1);
3422		}
3423		if (!ret_val) {
3424			/* Successful in waiting for previous cycle to timeout,
3425			 * now set the Flash Cycle Done.
3426			 */
3427			hsfsts.hsf_status.flcdone = 1;
3428			if (hw->mac.type >= e1000_pch_spt)
3429				ew32flash(ICH_FLASH_HSFSTS,
3430					  hsfsts.regval & 0xFFFF);
3431			else
3432				ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
3433		} else {
3434			e_dbg("Flash controller busy, cannot get access\n");
3435		}
3436	}
3437
3438	return ret_val;
3439}
3440
3441/**
3442 *  e1000_flash_cycle_ich8lan - Starts flash cycle (read/write/erase)
3443 *  @hw: pointer to the HW structure
3444 *  @timeout: maximum time to wait for completion
3445 *
3446 *  This function starts a flash cycle and waits for its completion.
3447 **/
3448static s32 e1000_flash_cycle_ich8lan(struct e1000_hw *hw, u32 timeout)
3449{
3450	union ich8_hws_flash_ctrl hsflctl;
3451	union ich8_hws_flash_status hsfsts;
3452	u32 i = 0;
3453
3454	/* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */
3455	if (hw->mac.type >= e1000_pch_spt)
3456		hsflctl.regval = er32flash(ICH_FLASH_HSFSTS) >> 16;
3457	else
3458		hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
3459	hsflctl.hsf_ctrl.flcgo = 1;
3460
3461	if (hw->mac.type >= e1000_pch_spt)
3462		ew32flash(ICH_FLASH_HSFSTS, hsflctl.regval << 16);
3463	else
3464		ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
3465
3466	/* wait till FDONE bit is set to 1 */
3467	do {
3468		hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3469		if (hsfsts.hsf_status.flcdone)
3470			break;
3471		udelay(1);
3472	} while (i++ < timeout);
3473
3474	if (hsfsts.hsf_status.flcdone && !hsfsts.hsf_status.flcerr)
3475		return 0;
3476
3477	return -E1000_ERR_NVM;
3478}
3479
3480/**
3481 *  e1000_read_flash_dword_ich8lan - Read dword from flash
3482 *  @hw: pointer to the HW structure
3483 *  @offset: offset to data location
3484 *  @data: pointer to the location for storing the data
3485 *
3486 *  Reads the flash dword at offset into data.  Offset is converted
3487 *  to bytes before read.
3488 **/
3489static s32 e1000_read_flash_dword_ich8lan(struct e1000_hw *hw, u32 offset,
3490					  u32 *data)
3491{
3492	/* Must convert word offset into bytes. */
3493	offset <<= 1;
3494	return e1000_read_flash_data32_ich8lan(hw, offset, data);
3495}
3496
3497/**
3498 *  e1000_read_flash_word_ich8lan - Read word from flash
3499 *  @hw: pointer to the HW structure
3500 *  @offset: offset to data location
3501 *  @data: pointer to the location for storing the data
3502 *
3503 *  Reads the flash word at offset into data.  Offset is converted
3504 *  to bytes before read.
3505 **/
3506static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
3507					 u16 *data)
3508{
3509	/* Must convert offset into bytes. */
3510	offset <<= 1;
3511
3512	return e1000_read_flash_data_ich8lan(hw, offset, 2, data);
3513}
3514
3515/**
3516 *  e1000_read_flash_byte_ich8lan - Read byte from flash
3517 *  @hw: pointer to the HW structure
3518 *  @offset: The offset of the byte to read.
3519 *  @data: Pointer to a byte to store the value read.
3520 *
3521 *  Reads a single byte from the NVM using the flash access registers.
3522 **/
3523static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
3524					 u8 *data)
3525{
3526	s32 ret_val;
3527	u16 word = 0;
3528
3529	/* In SPT, only 32 bits access is supported,
3530	 * so this function should not be called.
3531	 */
3532	if (hw->mac.type >= e1000_pch_spt)
3533		return -E1000_ERR_NVM;
3534	else
3535		ret_val = e1000_read_flash_data_ich8lan(hw, offset, 1, &word);
3536
3537	if (ret_val)
3538		return ret_val;
3539
3540	*data = (u8)word;
3541
3542	return 0;
3543}
3544
3545/**
3546 *  e1000_read_flash_data_ich8lan - Read byte or word from NVM
3547 *  @hw: pointer to the HW structure
3548 *  @offset: The offset (in bytes) of the byte or word to read.
3549 *  @size: Size of data to read, 1=byte 2=word
3550 *  @data: Pointer to the word to store the value read.
3551 *
3552 *  Reads a byte or word from the NVM using the flash access registers.
3553 **/
3554static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
3555					 u8 size, u16 *data)
3556{
3557	union ich8_hws_flash_status hsfsts;
3558	union ich8_hws_flash_ctrl hsflctl;
3559	u32 flash_linear_addr;
3560	u32 flash_data = 0;
3561	s32 ret_val = -E1000_ERR_NVM;
3562	u8 count = 0;
3563
3564	if (size < 1 || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
3565		return -E1000_ERR_NVM;
3566
3567	flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
3568			     hw->nvm.flash_base_addr);
3569
3570	do {
3571		udelay(1);
3572		/* Steps */
3573		ret_val = e1000_flash_cycle_init_ich8lan(hw);
3574		if (ret_val)
3575			break;
3576
3577		hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
3578		/* 0b/1b corresponds to 1 or 2 byte size, respectively. */
3579		hsflctl.hsf_ctrl.fldbcount = size - 1;
3580		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
3581		ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
3582
3583		ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
3584
3585		ret_val =
3586		    e1000_flash_cycle_ich8lan(hw,
3587					      ICH_FLASH_READ_COMMAND_TIMEOUT);
3588
3589		/* Check if FCERR is set to 1, if set to 1, clear it
3590		 * and try the whole sequence a few more times, else
3591		 * read in (shift in) the Flash Data0, the order is
3592		 * least significant byte first msb to lsb
3593		 */
3594		if (!ret_val) {
3595			flash_data = er32flash(ICH_FLASH_FDATA0);
3596			if (size == 1)
3597				*data = (u8)(flash_data & 0x000000FF);
3598			else if (size == 2)
3599				*data = (u16)(flash_data & 0x0000FFFF);
3600			break;
3601		} else {
3602			/* If we've gotten here, then things are probably
3603			 * completely hosed, but if the error condition is
3604			 * detected, it won't hurt to give it another try...
3605			 * ICH_FLASH_CYCLE_REPEAT_COUNT times.
3606			 */
3607			hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3608			if (hsfsts.hsf_status.flcerr) {
3609				/* Repeat for some time before giving up. */
3610				continue;
3611			} else if (!hsfsts.hsf_status.flcdone) {
3612				e_dbg("Timeout error - flash cycle did not complete.\n");
3613				break;
3614			}
3615		}
3616	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
3617
3618	return ret_val;
3619}
3620
3621/**
3622 *  e1000_read_flash_data32_ich8lan - Read dword from NVM
3623 *  @hw: pointer to the HW structure
3624 *  @offset: The offset (in bytes) of the dword to read.
3625 *  @data: Pointer to the dword to store the value read.
3626 *
3627 *  Reads a byte or word from the NVM using the flash access registers.
3628 **/
3629
3630static s32 e1000_read_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset,
3631					   u32 *data)
3632{
3633	union ich8_hws_flash_status hsfsts;
3634	union ich8_hws_flash_ctrl hsflctl;
3635	u32 flash_linear_addr;
3636	s32 ret_val = -E1000_ERR_NVM;
3637	u8 count = 0;
3638
3639	if (offset > ICH_FLASH_LINEAR_ADDR_MASK || hw->mac.type < e1000_pch_spt)
3640		return -E1000_ERR_NVM;
3641	flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
3642			     hw->nvm.flash_base_addr);
3643
3644	do {
3645		udelay(1);
3646		/* Steps */
3647		ret_val = e1000_flash_cycle_init_ich8lan(hw);
3648		if (ret_val)
3649			break;
3650		/* In SPT, This register is in Lan memory space, not flash.
3651		 * Therefore, only 32 bit access is supported
3652		 */
3653		hsflctl.regval = er32flash(ICH_FLASH_HSFSTS) >> 16;
3654
3655		/* 0b/1b corresponds to 1 or 2 byte size, respectively. */
3656		hsflctl.hsf_ctrl.fldbcount = sizeof(u32) - 1;
3657		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
3658		/* In SPT, This register is in Lan memory space, not flash.
3659		 * Therefore, only 32 bit access is supported
3660		 */
3661		ew32flash(ICH_FLASH_HSFSTS, (u32)hsflctl.regval << 16);
3662		ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
3663
3664		ret_val =
3665		   e1000_flash_cycle_ich8lan(hw,
3666					     ICH_FLASH_READ_COMMAND_TIMEOUT);
3667
3668		/* Check if FCERR is set to 1, if set to 1, clear it
3669		 * and try the whole sequence a few more times, else
3670		 * read in (shift in) the Flash Data0, the order is
3671		 * least significant byte first msb to lsb
3672		 */
3673		if (!ret_val) {
3674			*data = er32flash(ICH_FLASH_FDATA0);
3675			break;
3676		} else {
3677			/* If we've gotten here, then things are probably
3678			 * completely hosed, but if the error condition is
3679			 * detected, it won't hurt to give it another try...
3680			 * ICH_FLASH_CYCLE_REPEAT_COUNT times.
3681			 */
3682			hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3683			if (hsfsts.hsf_status.flcerr) {
3684				/* Repeat for some time before giving up. */
3685				continue;
3686			} else if (!hsfsts.hsf_status.flcdone) {
3687				e_dbg("Timeout error - flash cycle did not complete.\n");
3688				break;
3689			}
3690		}
3691	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
3692
3693	return ret_val;
3694}
3695
3696/**
3697 *  e1000_write_nvm_ich8lan - Write word(s) to the NVM
3698 *  @hw: pointer to the HW structure
3699 *  @offset: The offset (in bytes) of the word(s) to write.
3700 *  @words: Size of data to write in words
3701 *  @data: Pointer to the word(s) to write at offset.
3702 *
3703 *  Writes a byte or word to the NVM using the flash access registers.
3704 **/
3705static s32 e1000_write_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
3706				   u16 *data)
3707{
3708	struct e1000_nvm_info *nvm = &hw->nvm;
3709	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3710	u16 i;
3711
3712	if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
3713	    (words == 0)) {
3714		e_dbg("nvm parameter(s) out of bounds\n");
3715		return -E1000_ERR_NVM;
3716	}
3717
3718	nvm->ops.acquire(hw);
3719
3720	for (i = 0; i < words; i++) {
3721		dev_spec->shadow_ram[offset + i].modified = true;
3722		dev_spec->shadow_ram[offset + i].value = data[i];
3723	}
3724
3725	nvm->ops.release(hw);
3726
3727	return 0;
3728}
3729
3730/**
3731 *  e1000_update_nvm_checksum_spt - Update the checksum for NVM
3732 *  @hw: pointer to the HW structure
3733 *
3734 *  The NVM checksum is updated by calling the generic update_nvm_checksum,
3735 *  which writes the checksum to the shadow ram.  The changes in the shadow
3736 *  ram are then committed to the EEPROM by processing each bank at a time
3737 *  checking for the modified bit and writing only the pending changes.
3738 *  After a successful commit, the shadow ram is cleared and is ready for
3739 *  future writes.
3740 **/
3741static s32 e1000_update_nvm_checksum_spt(struct e1000_hw *hw)
3742{
3743	struct e1000_nvm_info *nvm = &hw->nvm;
3744	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3745	u32 i, act_offset, new_bank_offset, old_bank_offset, bank;
3746	s32 ret_val;
3747	u32 dword = 0;
3748
3749	ret_val = e1000e_update_nvm_checksum_generic(hw);
3750	if (ret_val)
3751		goto out;
3752
3753	if (nvm->type != e1000_nvm_flash_sw)
3754		goto out;
3755
3756	nvm->ops.acquire(hw);
3757
3758	/* We're writing to the opposite bank so if we're on bank 1,
3759	 * write to bank 0 etc.  We also need to erase the segment that
3760	 * is going to be written
3761	 */
3762	ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3763	if (ret_val) {
3764		e_dbg("Could not detect valid bank, assuming bank 0\n");
3765		bank = 0;
3766	}
3767
3768	if (bank == 0) {
3769		new_bank_offset = nvm->flash_bank_size;
3770		old_bank_offset = 0;
3771		ret_val = e1000_erase_flash_bank_ich8lan(hw, 1);
3772		if (ret_val)
3773			goto release;
3774	} else {
3775		old_bank_offset = nvm->flash_bank_size;
3776		new_bank_offset = 0;
3777		ret_val = e1000_erase_flash_bank_ich8lan(hw, 0);
3778		if (ret_val)
3779			goto release;
3780	}
3781	for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i += 2) {
3782		/* Determine whether to write the value stored
3783		 * in the other NVM bank or a modified value stored
3784		 * in the shadow RAM
3785		 */
3786		ret_val = e1000_read_flash_dword_ich8lan(hw,
3787							 i + old_bank_offset,
3788							 &dword);
3789
3790		if (dev_spec->shadow_ram[i].modified) {
3791			dword &= 0xffff0000;
3792			dword |= (dev_spec->shadow_ram[i].value & 0xffff);
3793		}
3794		if (dev_spec->shadow_ram[i + 1].modified) {
3795			dword &= 0x0000ffff;
3796			dword |= ((dev_spec->shadow_ram[i + 1].value & 0xffff)
3797				  << 16);
3798		}
3799		if (ret_val)
3800			break;
3801
3802		/* If the word is 0x13, then make sure the signature bits
3803		 * (15:14) are 11b until the commit has completed.
3804		 * This will allow us to write 10b which indicates the
3805		 * signature is valid.  We want to do this after the write
3806		 * has completed so that we don't mark the segment valid
3807		 * while the write is still in progress
3808		 */
3809		if (i == E1000_ICH_NVM_SIG_WORD - 1)
3810			dword |= E1000_ICH_NVM_SIG_MASK << 16;
3811
3812		/* Convert offset to bytes. */
3813		act_offset = (i + new_bank_offset) << 1;
3814
3815		usleep_range(100, 200);
3816
3817		/* Write the data to the new bank. Offset in words */
3818		act_offset = i + new_bank_offset;
3819		ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset,
3820								dword);
3821		if (ret_val)
3822			break;
3823	}
3824
3825	/* Don't bother writing the segment valid bits if sector
3826	 * programming failed.
3827	 */
3828	if (ret_val) {
3829		/* Possibly read-only, see e1000e_write_protect_nvm_ich8lan() */
3830		e_dbg("Flash commit failed.\n");
3831		goto release;
3832	}
3833
3834	/* Finally validate the new segment by setting bit 15:14
3835	 * to 10b in word 0x13 , this can be done without an
3836	 * erase as well since these bits are 11 to start with
3837	 * and we need to change bit 14 to 0b
3838	 */
3839	act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD;
3840
3841	/*offset in words but we read dword */
3842	--act_offset;
3843	ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset, &dword);
3844
3845	if (ret_val)
3846		goto release;
3847
3848	dword &= 0xBFFFFFFF;
3849	ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset, dword);
3850
3851	if (ret_val)
3852		goto release;
3853
3854	/* And invalidate the previously valid segment by setting
3855	 * its signature word (0x13) high_byte to 0b. This can be
3856	 * done without an erase because flash erase sets all bits
3857	 * to 1's. We can write 1's to 0's without an erase
3858	 */
3859	act_offset = (old_bank_offset + E1000_ICH_NVM_SIG_WORD) * 2 + 1;
3860
3861	/* offset in words but we read dword */
3862	act_offset = old_bank_offset + E1000_ICH_NVM_SIG_WORD - 1;
3863	ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset, &dword);
3864
3865	if (ret_val)
3866		goto release;
3867
3868	dword &= 0x00FFFFFF;
3869	ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset, dword);
3870
3871	if (ret_val)
3872		goto release;
3873
3874	/* Great!  Everything worked, we can now clear the cached entries. */
3875	for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
3876		dev_spec->shadow_ram[i].modified = false;
3877		dev_spec->shadow_ram[i].value = 0xFFFF;
3878	}
3879
3880release:
3881	nvm->ops.release(hw);
3882
3883	/* Reload the EEPROM, or else modifications will not appear
3884	 * until after the next adapter reset.
3885	 */
3886	if (!ret_val) {
3887		nvm->ops.reload(hw);
3888		usleep_range(10000, 11000);
3889	}
3890
3891out:
3892	if (ret_val)
3893		e_dbg("NVM update error: %d\n", ret_val);
3894
3895	return ret_val;
3896}
3897
3898/**
3899 *  e1000_update_nvm_checksum_ich8lan - Update the checksum for NVM
3900 *  @hw: pointer to the HW structure
3901 *
3902 *  The NVM checksum is updated by calling the generic update_nvm_checksum,
3903 *  which writes the checksum to the shadow ram.  The changes in the shadow
3904 *  ram are then committed to the EEPROM by processing each bank at a time
3905 *  checking for the modified bit and writing only the pending changes.
3906 *  After a successful commit, the shadow ram is cleared and is ready for
3907 *  future writes.
3908 **/
3909static s32 e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw)
3910{
3911	struct e1000_nvm_info *nvm = &hw->nvm;
3912	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3913	u32 i, act_offset, new_bank_offset, old_bank_offset, bank;
3914	s32 ret_val;
3915	u16 data = 0;
3916
3917	ret_val = e1000e_update_nvm_checksum_generic(hw);
3918	if (ret_val)
3919		goto out;
3920
3921	if (nvm->type != e1000_nvm_flash_sw)
3922		goto out;
3923
3924	nvm->ops.acquire(hw);
3925
3926	/* We're writing to the opposite bank so if we're on bank 1,
3927	 * write to bank 0 etc.  We also need to erase the segment that
3928	 * is going to be written
3929	 */
3930	ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3931	if (ret_val) {
3932		e_dbg("Could not detect valid bank, assuming bank 0\n");
3933		bank = 0;
3934	}
3935
3936	if (bank == 0) {
3937		new_bank_offset = nvm->flash_bank_size;
3938		old_bank_offset = 0;
3939		ret_val = e1000_erase_flash_bank_ich8lan(hw, 1);
3940		if (ret_val)
3941			goto release;
3942	} else {
3943		old_bank_offset = nvm->flash_bank_size;
3944		new_bank_offset = 0;
3945		ret_val = e1000_erase_flash_bank_ich8lan(hw, 0);
3946		if (ret_val)
3947			goto release;
3948	}
3949	for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
3950		if (dev_spec->shadow_ram[i].modified) {
3951			data = dev_spec->shadow_ram[i].value;
3952		} else {
3953			ret_val = e1000_read_flash_word_ich8lan(hw, i +
3954								old_bank_offset,
3955								&data);
3956			if (ret_val)
3957				break;
3958		}
3959
3960		/* If the word is 0x13, then make sure the signature bits
3961		 * (15:14) are 11b until the commit has completed.
3962		 * This will allow us to write 10b which indicates the
3963		 * signature is valid.  We want to do this after the write
3964		 * has completed so that we don't mark the segment valid
3965		 * while the write is still in progress
3966		 */
3967		if (i == E1000_ICH_NVM_SIG_WORD)
3968			data |= E1000_ICH_NVM_SIG_MASK;
3969
3970		/* Convert offset to bytes. */
3971		act_offset = (i + new_bank_offset) << 1;
3972
3973		usleep_range(100, 200);
3974		/* Write the bytes to the new bank. */
3975		ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
3976							       act_offset,
3977							       (u8)data);
3978		if (ret_val)
3979			break;
3980
3981		usleep_range(100, 200);
3982		ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
3983							       act_offset + 1,
3984							       (u8)(data >> 8));
3985		if (ret_val)
3986			break;
3987	}
3988
3989	/* Don't bother writing the segment valid bits if sector
3990	 * programming failed.
3991	 */
3992	if (ret_val) {
3993		/* Possibly read-only, see e1000e_write_protect_nvm_ich8lan() */
3994		e_dbg("Flash commit failed.\n");
3995		goto release;
3996	}
3997
3998	/* Finally validate the new segment by setting bit 15:14
3999	 * to 10b in word 0x13 , this can be done without an
4000	 * erase as well since these bits are 11 to start with
4001	 * and we need to change bit 14 to 0b
4002	 */
4003	act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD;
4004	ret_val = e1000_read_flash_word_ich8lan(hw, act_offset, &data);
4005	if (ret_val)
4006		goto release;
4007
4008	data &= 0xBFFF;
4009	ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
4010						       act_offset * 2 + 1,
4011						       (u8)(data >> 8));
4012	if (ret_val)
4013		goto release;
4014
4015	/* And invalidate the previously valid segment by setting
4016	 * its signature word (0x13) high_byte to 0b. This can be
4017	 * done without an erase because flash erase sets all bits
4018	 * to 1's. We can write 1's to 0's without an erase
4019	 */
4020	act_offset = (old_bank_offset + E1000_ICH_NVM_SIG_WORD) * 2 + 1;
4021	ret_val = e1000_retry_write_flash_byte_ich8lan(hw, act_offset, 0);
4022	if (ret_val)
4023		goto release;
4024
4025	/* Great!  Everything worked, we can now clear the cached entries. */
4026	for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
4027		dev_spec->shadow_ram[i].modified = false;
4028		dev_spec->shadow_ram[i].value = 0xFFFF;
4029	}
4030
4031release:
4032	nvm->ops.release(hw);
4033
4034	/* Reload the EEPROM, or else modifications will not appear
4035	 * until after the next adapter reset.
4036	 */
4037	if (!ret_val) {
4038		nvm->ops.reload(hw);
4039		usleep_range(10000, 11000);
4040	}
4041
4042out:
4043	if (ret_val)
4044		e_dbg("NVM update error: %d\n", ret_val);
4045
4046	return ret_val;
4047}
4048
4049/**
4050 *  e1000_validate_nvm_checksum_ich8lan - Validate EEPROM checksum
4051 *  @hw: pointer to the HW structure
4052 *
4053 *  Check to see if checksum needs to be fixed by reading bit 6 in word 0x19.
4054 *  If the bit is 0, that the EEPROM had been modified, but the checksum was not
4055 *  calculated, in which case we need to calculate the checksum and set bit 6.
4056 **/
4057static s32 e1000_validate_nvm_checksum_ich8lan(struct e1000_hw *hw)
4058{
4059	s32 ret_val;
4060	u16 data;
4061	u16 word;
4062	u16 valid_csum_mask;
4063
4064	/* Read NVM and check Invalid Image CSUM bit.  If this bit is 0,
4065	 * the checksum needs to be fixed.  This bit is an indication that
4066	 * the NVM was prepared by OEM software and did not calculate
4067	 * the checksum...a likely scenario.
4068	 */
4069	switch (hw->mac.type) {
4070	case e1000_pch_lpt:
4071	case e1000_pch_spt:
4072	case e1000_pch_cnp:
 
 
 
 
 
 
4073		word = NVM_COMPAT;
4074		valid_csum_mask = NVM_COMPAT_VALID_CSUM;
4075		break;
4076	default:
4077		word = NVM_FUTURE_INIT_WORD1;
4078		valid_csum_mask = NVM_FUTURE_INIT_WORD1_VALID_CSUM;
4079		break;
4080	}
4081
4082	ret_val = e1000_read_nvm(hw, word, 1, &data);
4083	if (ret_val)
4084		return ret_val;
4085
4086	if (!(data & valid_csum_mask)) {
4087		data |= valid_csum_mask;
4088		ret_val = e1000_write_nvm(hw, word, 1, &data);
4089		if (ret_val)
4090			return ret_val;
4091		ret_val = e1000e_update_nvm_checksum(hw);
4092		if (ret_val)
4093			return ret_val;
 
 
 
 
4094	}
4095
4096	return e1000e_validate_nvm_checksum_generic(hw);
4097}
4098
4099/**
4100 *  e1000e_write_protect_nvm_ich8lan - Make the NVM read-only
4101 *  @hw: pointer to the HW structure
4102 *
4103 *  To prevent malicious write/erase of the NVM, set it to be read-only
4104 *  so that the hardware ignores all write/erase cycles of the NVM via
4105 *  the flash control registers.  The shadow-ram copy of the NVM will
4106 *  still be updated, however any updates to this copy will not stick
4107 *  across driver reloads.
4108 **/
4109void e1000e_write_protect_nvm_ich8lan(struct e1000_hw *hw)
4110{
4111	struct e1000_nvm_info *nvm = &hw->nvm;
4112	union ich8_flash_protected_range pr0;
4113	union ich8_hws_flash_status hsfsts;
4114	u32 gfpreg;
4115
4116	nvm->ops.acquire(hw);
4117
4118	gfpreg = er32flash(ICH_FLASH_GFPREG);
4119
4120	/* Write-protect GbE Sector of NVM */
4121	pr0.regval = er32flash(ICH_FLASH_PR0);
4122	pr0.range.base = gfpreg & FLASH_GFPREG_BASE_MASK;
4123	pr0.range.limit = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK);
4124	pr0.range.wpe = true;
4125	ew32flash(ICH_FLASH_PR0, pr0.regval);
4126
4127	/* Lock down a subset of GbE Flash Control Registers, e.g.
4128	 * PR0 to prevent the write-protection from being lifted.
4129	 * Once FLOCKDN is set, the registers protected by it cannot
4130	 * be written until FLOCKDN is cleared by a hardware reset.
4131	 */
4132	hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4133	hsfsts.hsf_status.flockdn = true;
4134	ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval);
4135
4136	nvm->ops.release(hw);
4137}
4138
4139/**
4140 *  e1000_write_flash_data_ich8lan - Writes bytes to the NVM
4141 *  @hw: pointer to the HW structure
4142 *  @offset: The offset (in bytes) of the byte/word to read.
4143 *  @size: Size of data to read, 1=byte 2=word
4144 *  @data: The byte(s) to write to the NVM.
4145 *
4146 *  Writes one/two bytes to the NVM using the flash access registers.
4147 **/
4148static s32 e1000_write_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
4149					  u8 size, u16 data)
4150{
4151	union ich8_hws_flash_status hsfsts;
4152	union ich8_hws_flash_ctrl hsflctl;
4153	u32 flash_linear_addr;
4154	u32 flash_data = 0;
4155	s32 ret_val;
4156	u8 count = 0;
4157
4158	if (hw->mac.type >= e1000_pch_spt) {
4159		if (size != 4 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
4160			return -E1000_ERR_NVM;
4161	} else {
4162		if (size < 1 || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
4163			return -E1000_ERR_NVM;
4164	}
4165
4166	flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
4167			     hw->nvm.flash_base_addr);
4168
4169	do {
4170		udelay(1);
4171		/* Steps */
4172		ret_val = e1000_flash_cycle_init_ich8lan(hw);
4173		if (ret_val)
4174			break;
4175		/* In SPT, This register is in Lan memory space, not
4176		 * flash.  Therefore, only 32 bit access is supported
4177		 */
4178		if (hw->mac.type >= e1000_pch_spt)
4179			hsflctl.regval = er32flash(ICH_FLASH_HSFSTS) >> 16;
4180		else
4181			hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
4182
4183		/* 0b/1b corresponds to 1 or 2 byte size, respectively. */
4184		hsflctl.hsf_ctrl.fldbcount = size - 1;
4185		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
4186		/* In SPT, This register is in Lan memory space,
4187		 * not flash.  Therefore, only 32 bit access is
4188		 * supported
4189		 */
4190		if (hw->mac.type >= e1000_pch_spt)
4191			ew32flash(ICH_FLASH_HSFSTS, hsflctl.regval << 16);
4192		else
4193			ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
4194
4195		ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
4196
4197		if (size == 1)
4198			flash_data = (u32)data & 0x00FF;
4199		else
4200			flash_data = (u32)data;
4201
4202		ew32flash(ICH_FLASH_FDATA0, flash_data);
4203
4204		/* check if FCERR is set to 1 , if set to 1, clear it
4205		 * and try the whole sequence a few more times else done
4206		 */
4207		ret_val =
4208		    e1000_flash_cycle_ich8lan(hw,
4209					      ICH_FLASH_WRITE_COMMAND_TIMEOUT);
4210		if (!ret_val)
4211			break;
4212
4213		/* If we're here, then things are most likely
4214		 * completely hosed, but if the error condition
4215		 * is detected, it won't hurt to give it another
4216		 * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
4217		 */
4218		hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4219		if (hsfsts.hsf_status.flcerr)
4220			/* Repeat for some time before giving up. */
4221			continue;
4222		if (!hsfsts.hsf_status.flcdone) {
4223			e_dbg("Timeout error - flash cycle did not complete.\n");
4224			break;
4225		}
4226	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
4227
4228	return ret_val;
4229}
4230
4231/**
4232*  e1000_write_flash_data32_ich8lan - Writes 4 bytes to the NVM
4233*  @hw: pointer to the HW structure
4234*  @offset: The offset (in bytes) of the dwords to read.
4235*  @data: The 4 bytes to write to the NVM.
4236*
4237*  Writes one/two/four bytes to the NVM using the flash access registers.
4238**/
4239static s32 e1000_write_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset,
4240					    u32 data)
4241{
4242	union ich8_hws_flash_status hsfsts;
4243	union ich8_hws_flash_ctrl hsflctl;
4244	u32 flash_linear_addr;
4245	s32 ret_val;
4246	u8 count = 0;
4247
4248	if (hw->mac.type >= e1000_pch_spt) {
4249		if (offset > ICH_FLASH_LINEAR_ADDR_MASK)
4250			return -E1000_ERR_NVM;
4251	}
4252	flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
4253			     hw->nvm.flash_base_addr);
4254	do {
4255		udelay(1);
4256		/* Steps */
4257		ret_val = e1000_flash_cycle_init_ich8lan(hw);
4258		if (ret_val)
4259			break;
4260
4261		/* In SPT, This register is in Lan memory space, not
4262		 * flash.  Therefore, only 32 bit access is supported
4263		 */
4264		if (hw->mac.type >= e1000_pch_spt)
4265			hsflctl.regval = er32flash(ICH_FLASH_HSFSTS)
4266			    >> 16;
4267		else
4268			hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
4269
4270		hsflctl.hsf_ctrl.fldbcount = sizeof(u32) - 1;
4271		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
4272
4273		/* In SPT, This register is in Lan memory space,
4274		 * not flash.  Therefore, only 32 bit access is
4275		 * supported
4276		 */
4277		if (hw->mac.type >= e1000_pch_spt)
4278			ew32flash(ICH_FLASH_HSFSTS, hsflctl.regval << 16);
4279		else
4280			ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
4281
4282		ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
4283
4284		ew32flash(ICH_FLASH_FDATA0, data);
4285
4286		/* check if FCERR is set to 1 , if set to 1, clear it
4287		 * and try the whole sequence a few more times else done
4288		 */
4289		ret_val =
4290		   e1000_flash_cycle_ich8lan(hw,
4291					     ICH_FLASH_WRITE_COMMAND_TIMEOUT);
4292
4293		if (!ret_val)
4294			break;
4295
4296		/* If we're here, then things are most likely
4297		 * completely hosed, but if the error condition
4298		 * is detected, it won't hurt to give it another
4299		 * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
4300		 */
4301		hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4302
4303		if (hsfsts.hsf_status.flcerr)
4304			/* Repeat for some time before giving up. */
4305			continue;
4306		if (!hsfsts.hsf_status.flcdone) {
4307			e_dbg("Timeout error - flash cycle did not complete.\n");
4308			break;
4309		}
4310	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
4311
4312	return ret_val;
4313}
4314
4315/**
4316 *  e1000_write_flash_byte_ich8lan - Write a single byte to NVM
4317 *  @hw: pointer to the HW structure
4318 *  @offset: The index of the byte to read.
4319 *  @data: The byte to write to the NVM.
4320 *
4321 *  Writes a single byte to the NVM using the flash access registers.
4322 **/
4323static s32 e1000_write_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
4324					  u8 data)
4325{
4326	u16 word = (u16)data;
4327
4328	return e1000_write_flash_data_ich8lan(hw, offset, 1, word);
4329}
4330
4331/**
4332*  e1000_retry_write_flash_dword_ich8lan - Writes a dword to NVM
4333*  @hw: pointer to the HW structure
4334*  @offset: The offset of the word to write.
4335*  @dword: The dword to write to the NVM.
4336*
4337*  Writes a single dword to the NVM using the flash access registers.
4338*  Goes through a retry algorithm before giving up.
4339**/
4340static s32 e1000_retry_write_flash_dword_ich8lan(struct e1000_hw *hw,
4341						 u32 offset, u32 dword)
4342{
4343	s32 ret_val;
4344	u16 program_retries;
4345
4346	/* Must convert word offset into bytes. */
4347	offset <<= 1;
4348	ret_val = e1000_write_flash_data32_ich8lan(hw, offset, dword);
4349
4350	if (!ret_val)
4351		return ret_val;
4352	for (program_retries = 0; program_retries < 100; program_retries++) {
4353		e_dbg("Retrying Byte %8.8X at offset %u\n", dword, offset);
4354		usleep_range(100, 200);
4355		ret_val = e1000_write_flash_data32_ich8lan(hw, offset, dword);
4356		if (!ret_val)
4357			break;
4358	}
4359	if (program_retries == 100)
4360		return -E1000_ERR_NVM;
4361
4362	return 0;
4363}
4364
4365/**
4366 *  e1000_retry_write_flash_byte_ich8lan - Writes a single byte to NVM
4367 *  @hw: pointer to the HW structure
4368 *  @offset: The offset of the byte to write.
4369 *  @byte: The byte to write to the NVM.
4370 *
4371 *  Writes a single byte to the NVM using the flash access registers.
4372 *  Goes through a retry algorithm before giving up.
4373 **/
4374static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
4375						u32 offset, u8 byte)
4376{
4377	s32 ret_val;
4378	u16 program_retries;
4379
4380	ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
4381	if (!ret_val)
4382		return ret_val;
4383
4384	for (program_retries = 0; program_retries < 100; program_retries++) {
4385		e_dbg("Retrying Byte %2.2X at offset %u\n", byte, offset);
4386		usleep_range(100, 200);
4387		ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
4388		if (!ret_val)
4389			break;
4390	}
4391	if (program_retries == 100)
4392		return -E1000_ERR_NVM;
4393
4394	return 0;
4395}
4396
4397/**
4398 *  e1000_erase_flash_bank_ich8lan - Erase a bank (4k) from NVM
4399 *  @hw: pointer to the HW structure
4400 *  @bank: 0 for first bank, 1 for second bank, etc.
4401 *
4402 *  Erases the bank specified. Each bank is a 4k block. Banks are 0 based.
4403 *  bank N is 4096 * N + flash_reg_addr.
4404 **/
4405static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank)
4406{
4407	struct e1000_nvm_info *nvm = &hw->nvm;
4408	union ich8_hws_flash_status hsfsts;
4409	union ich8_hws_flash_ctrl hsflctl;
4410	u32 flash_linear_addr;
4411	/* bank size is in 16bit words - adjust to bytes */
4412	u32 flash_bank_size = nvm->flash_bank_size * 2;
4413	s32 ret_val;
4414	s32 count = 0;
4415	s32 j, iteration, sector_size;
4416
4417	hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4418
4419	/* Determine HW Sector size: Read BERASE bits of hw flash status
4420	 * register
4421	 * 00: The Hw sector is 256 bytes, hence we need to erase 16
4422	 *     consecutive sectors.  The start index for the nth Hw sector
4423	 *     can be calculated as = bank * 4096 + n * 256
4424	 * 01: The Hw sector is 4K bytes, hence we need to erase 1 sector.
4425	 *     The start index for the nth Hw sector can be calculated
4426	 *     as = bank * 4096
4427	 * 10: The Hw sector is 8K bytes, nth sector = bank * 8192
4428	 *     (ich9 only, otherwise error condition)
4429	 * 11: The Hw sector is 64K bytes, nth sector = bank * 65536
4430	 */
4431	switch (hsfsts.hsf_status.berasesz) {
4432	case 0:
4433		/* Hw sector size 256 */
4434		sector_size = ICH_FLASH_SEG_SIZE_256;
4435		iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_256;
4436		break;
4437	case 1:
4438		sector_size = ICH_FLASH_SEG_SIZE_4K;
4439		iteration = 1;
4440		break;
4441	case 2:
4442		sector_size = ICH_FLASH_SEG_SIZE_8K;
4443		iteration = 1;
4444		break;
4445	case 3:
4446		sector_size = ICH_FLASH_SEG_SIZE_64K;
4447		iteration = 1;
4448		break;
4449	default:
4450		return -E1000_ERR_NVM;
4451	}
4452
4453	/* Start with the base address, then add the sector offset. */
4454	flash_linear_addr = hw->nvm.flash_base_addr;
4455	flash_linear_addr += (bank) ? flash_bank_size : 0;
4456
4457	for (j = 0; j < iteration; j++) {
4458		do {
4459			u32 timeout = ICH_FLASH_ERASE_COMMAND_TIMEOUT;
4460
4461			/* Steps */
4462			ret_val = e1000_flash_cycle_init_ich8lan(hw);
4463			if (ret_val)
4464				return ret_val;
4465
4466			/* Write a value 11 (block Erase) in Flash
4467			 * Cycle field in hw flash control
4468			 */
4469			if (hw->mac.type >= e1000_pch_spt)
4470				hsflctl.regval =
4471				    er32flash(ICH_FLASH_HSFSTS) >> 16;
4472			else
4473				hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
4474
4475			hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_ERASE;
4476			if (hw->mac.type >= e1000_pch_spt)
4477				ew32flash(ICH_FLASH_HSFSTS,
4478					  hsflctl.regval << 16);
4479			else
4480				ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
4481
4482			/* Write the last 24 bits of an index within the
4483			 * block into Flash Linear address field in Flash
4484			 * Address.
4485			 */
4486			flash_linear_addr += (j * sector_size);
4487			ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
4488
4489			ret_val = e1000_flash_cycle_ich8lan(hw, timeout);
4490			if (!ret_val)
4491				break;
4492
4493			/* Check if FCERR is set to 1.  If 1,
4494			 * clear it and try the whole sequence
4495			 * a few more times else Done
4496			 */
4497			hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4498			if (hsfsts.hsf_status.flcerr)
4499				/* repeat for some time before giving up */
4500				continue;
4501			else if (!hsfsts.hsf_status.flcdone)
4502				return ret_val;
4503		} while (++count < ICH_FLASH_CYCLE_REPEAT_COUNT);
4504	}
4505
4506	return 0;
4507}
4508
4509/**
4510 *  e1000_valid_led_default_ich8lan - Set the default LED settings
4511 *  @hw: pointer to the HW structure
4512 *  @data: Pointer to the LED settings
4513 *
4514 *  Reads the LED default settings from the NVM to data.  If the NVM LED
4515 *  settings is all 0's or F's, set the LED default to a valid LED default
4516 *  setting.
4517 **/
4518static s32 e1000_valid_led_default_ich8lan(struct e1000_hw *hw, u16 *data)
4519{
4520	s32 ret_val;
4521
4522	ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
4523	if (ret_val) {
4524		e_dbg("NVM Read Error\n");
4525		return ret_val;
4526	}
4527
4528	if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF)
4529		*data = ID_LED_DEFAULT_ICH8LAN;
4530
4531	return 0;
4532}
4533
4534/**
4535 *  e1000_id_led_init_pchlan - store LED configurations
4536 *  @hw: pointer to the HW structure
4537 *
4538 *  PCH does not control LEDs via the LEDCTL register, rather it uses
4539 *  the PHY LED configuration register.
4540 *
4541 *  PCH also does not have an "always on" or "always off" mode which
4542 *  complicates the ID feature.  Instead of using the "on" mode to indicate
4543 *  in ledctl_mode2 the LEDs to use for ID (see e1000e_id_led_init_generic()),
4544 *  use "link_up" mode.  The LEDs will still ID on request if there is no
4545 *  link based on logic in e1000_led_[on|off]_pchlan().
4546 **/
4547static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw)
4548{
4549	struct e1000_mac_info *mac = &hw->mac;
4550	s32 ret_val;
4551	const u32 ledctl_on = E1000_LEDCTL_MODE_LINK_UP;
4552	const u32 ledctl_off = E1000_LEDCTL_MODE_LINK_UP | E1000_PHY_LED0_IVRT;
4553	u16 data, i, temp, shift;
4554
4555	/* Get default ID LED modes */
4556	ret_val = hw->nvm.ops.valid_led_default(hw, &data);
4557	if (ret_val)
4558		return ret_val;
4559
4560	mac->ledctl_default = er32(LEDCTL);
4561	mac->ledctl_mode1 = mac->ledctl_default;
4562	mac->ledctl_mode2 = mac->ledctl_default;
4563
4564	for (i = 0; i < 4; i++) {
4565		temp = (data >> (i << 2)) & E1000_LEDCTL_LED0_MODE_MASK;
4566		shift = (i * 5);
4567		switch (temp) {
4568		case ID_LED_ON1_DEF2:
4569		case ID_LED_ON1_ON2:
4570		case ID_LED_ON1_OFF2:
4571			mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
4572			mac->ledctl_mode1 |= (ledctl_on << shift);
4573			break;
4574		case ID_LED_OFF1_DEF2:
4575		case ID_LED_OFF1_ON2:
4576		case ID_LED_OFF1_OFF2:
4577			mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
4578			mac->ledctl_mode1 |= (ledctl_off << shift);
4579			break;
4580		default:
4581			/* Do nothing */
4582			break;
4583		}
4584		switch (temp) {
4585		case ID_LED_DEF1_ON2:
4586		case ID_LED_ON1_ON2:
4587		case ID_LED_OFF1_ON2:
4588			mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
4589			mac->ledctl_mode2 |= (ledctl_on << shift);
4590			break;
4591		case ID_LED_DEF1_OFF2:
4592		case ID_LED_ON1_OFF2:
4593		case ID_LED_OFF1_OFF2:
4594			mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
4595			mac->ledctl_mode2 |= (ledctl_off << shift);
4596			break;
4597		default:
4598			/* Do nothing */
4599			break;
4600		}
4601	}
4602
4603	return 0;
4604}
4605
4606/**
4607 *  e1000_get_bus_info_ich8lan - Get/Set the bus type and width
4608 *  @hw: pointer to the HW structure
4609 *
4610 *  ICH8 use the PCI Express bus, but does not contain a PCI Express Capability
4611 *  register, so the the bus width is hard coded.
4612 **/
4613static s32 e1000_get_bus_info_ich8lan(struct e1000_hw *hw)
4614{
4615	struct e1000_bus_info *bus = &hw->bus;
4616	s32 ret_val;
4617
4618	ret_val = e1000e_get_bus_info_pcie(hw);
4619
4620	/* ICH devices are "PCI Express"-ish.  They have
4621	 * a configuration space, but do not contain
4622	 * PCI Express Capability registers, so bus width
4623	 * must be hardcoded.
4624	 */
4625	if (bus->width == e1000_bus_width_unknown)
4626		bus->width = e1000_bus_width_pcie_x1;
4627
4628	return ret_val;
4629}
4630
4631/**
4632 *  e1000_reset_hw_ich8lan - Reset the hardware
4633 *  @hw: pointer to the HW structure
4634 *
4635 *  Does a full reset of the hardware which includes a reset of the PHY and
4636 *  MAC.
4637 **/
4638static s32 e1000_reset_hw_ich8lan(struct e1000_hw *hw)
4639{
4640	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
4641	u16 kum_cfg;
4642	u32 ctrl, reg;
4643	s32 ret_val;
4644
4645	/* Prevent the PCI-E bus from sticking if there is no TLP connection
4646	 * on the last TLP read/write transaction when MAC is reset.
4647	 */
4648	ret_val = e1000e_disable_pcie_master(hw);
4649	if (ret_val)
4650		e_dbg("PCI-E Master disable polling has failed.\n");
4651
4652	e_dbg("Masking off all interrupts\n");
4653	ew32(IMC, 0xffffffff);
4654
4655	/* Disable the Transmit and Receive units.  Then delay to allow
4656	 * any pending transactions to complete before we hit the MAC
4657	 * with the global reset.
4658	 */
4659	ew32(RCTL, 0);
4660	ew32(TCTL, E1000_TCTL_PSP);
4661	e1e_flush();
4662
4663	usleep_range(10000, 11000);
4664
4665	/* Workaround for ICH8 bit corruption issue in FIFO memory */
4666	if (hw->mac.type == e1000_ich8lan) {
4667		/* Set Tx and Rx buffer allocation to 8k apiece. */
4668		ew32(PBA, E1000_PBA_8K);
4669		/* Set Packet Buffer Size to 16k. */
4670		ew32(PBS, E1000_PBS_16K);
4671	}
4672
4673	if (hw->mac.type == e1000_pchlan) {
4674		/* Save the NVM K1 bit setting */
4675		ret_val = e1000_read_nvm(hw, E1000_NVM_K1_CONFIG, 1, &kum_cfg);
4676		if (ret_val)
4677			return ret_val;
4678
4679		if (kum_cfg & E1000_NVM_K1_ENABLE)
4680			dev_spec->nvm_k1_enabled = true;
4681		else
4682			dev_spec->nvm_k1_enabled = false;
4683	}
4684
4685	ctrl = er32(CTRL);
4686
4687	if (!hw->phy.ops.check_reset_block(hw)) {
4688		/* Full-chip reset requires MAC and PHY reset at the same
4689		 * time to make sure the interface between MAC and the
4690		 * external PHY is reset.
4691		 */
4692		ctrl |= E1000_CTRL_PHY_RST;
4693
4694		/* Gate automatic PHY configuration by hardware on
4695		 * non-managed 82579
4696		 */
4697		if ((hw->mac.type == e1000_pch2lan) &&
4698		    !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
4699			e1000_gate_hw_phy_config_ich8lan(hw, true);
4700	}
4701	ret_val = e1000_acquire_swflag_ich8lan(hw);
4702	e_dbg("Issuing a global reset to ich8lan\n");
4703	ew32(CTRL, (ctrl | E1000_CTRL_RST));
4704	/* cannot issue a flush here because it hangs the hardware */
4705	msleep(20);
4706
4707	/* Set Phy Config Counter to 50msec */
4708	if (hw->mac.type == e1000_pch2lan) {
4709		reg = er32(FEXTNVM3);
4710		reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK;
4711		reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC;
4712		ew32(FEXTNVM3, reg);
4713	}
4714
4715	if (!ret_val)
4716		clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
4717
4718	if (ctrl & E1000_CTRL_PHY_RST) {
4719		ret_val = hw->phy.ops.get_cfg_done(hw);
4720		if (ret_val)
4721			return ret_val;
4722
4723		ret_val = e1000_post_phy_reset_ich8lan(hw);
4724		if (ret_val)
4725			return ret_val;
4726	}
4727
4728	/* For PCH, this write will make sure that any noise
4729	 * will be detected as a CRC error and be dropped rather than show up
4730	 * as a bad packet to the DMA engine.
4731	 */
4732	if (hw->mac.type == e1000_pchlan)
4733		ew32(CRC_OFFSET, 0x65656565);
4734
4735	ew32(IMC, 0xffffffff);
4736	er32(ICR);
4737
4738	reg = er32(KABGTXD);
4739	reg |= E1000_KABGTXD_BGSQLBIAS;
4740	ew32(KABGTXD, reg);
4741
4742	return 0;
4743}
4744
4745/**
4746 *  e1000_init_hw_ich8lan - Initialize the hardware
4747 *  @hw: pointer to the HW structure
4748 *
4749 *  Prepares the hardware for transmit and receive by doing the following:
4750 *   - initialize hardware bits
4751 *   - initialize LED identification
4752 *   - setup receive address registers
4753 *   - setup flow control
4754 *   - setup transmit descriptors
4755 *   - clear statistics
4756 **/
4757static s32 e1000_init_hw_ich8lan(struct e1000_hw *hw)
4758{
4759	struct e1000_mac_info *mac = &hw->mac;
4760	u32 ctrl_ext, txdctl, snoop;
4761	s32 ret_val;
4762	u16 i;
4763
4764	e1000_initialize_hw_bits_ich8lan(hw);
4765
4766	/* Initialize identification LED */
4767	ret_val = mac->ops.id_led_init(hw);
4768	/* An error is not fatal and we should not stop init due to this */
4769	if (ret_val)
4770		e_dbg("Error initializing identification LED\n");
4771
4772	/* Setup the receive address. */
4773	e1000e_init_rx_addrs(hw, mac->rar_entry_count);
4774
4775	/* Zero out the Multicast HASH table */
4776	e_dbg("Zeroing the MTA\n");
4777	for (i = 0; i < mac->mta_reg_count; i++)
4778		E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
4779
4780	/* The 82578 Rx buffer will stall if wakeup is enabled in host and
4781	 * the ME.  Disable wakeup by clearing the host wakeup bit.
4782	 * Reset the phy after disabling host wakeup to reset the Rx buffer.
4783	 */
4784	if (hw->phy.type == e1000_phy_82578) {
4785		e1e_rphy(hw, BM_PORT_GEN_CFG, &i);
4786		i &= ~BM_WUC_HOST_WU_BIT;
4787		e1e_wphy(hw, BM_PORT_GEN_CFG, i);
4788		ret_val = e1000_phy_hw_reset_ich8lan(hw);
4789		if (ret_val)
4790			return ret_val;
4791	}
4792
4793	/* Setup link and flow control */
4794	ret_val = mac->ops.setup_link(hw);
4795
4796	/* Set the transmit descriptor write-back policy for both queues */
4797	txdctl = er32(TXDCTL(0));
4798	txdctl = ((txdctl & ~E1000_TXDCTL_WTHRESH) |
4799		  E1000_TXDCTL_FULL_TX_DESC_WB);
4800	txdctl = ((txdctl & ~E1000_TXDCTL_PTHRESH) |
4801		  E1000_TXDCTL_MAX_TX_DESC_PREFETCH);
4802	ew32(TXDCTL(0), txdctl);
4803	txdctl = er32(TXDCTL(1));
4804	txdctl = ((txdctl & ~E1000_TXDCTL_WTHRESH) |
4805		  E1000_TXDCTL_FULL_TX_DESC_WB);
4806	txdctl = ((txdctl & ~E1000_TXDCTL_PTHRESH) |
4807		  E1000_TXDCTL_MAX_TX_DESC_PREFETCH);
4808	ew32(TXDCTL(1), txdctl);
4809
4810	/* ICH8 has opposite polarity of no_snoop bits.
4811	 * By default, we should use snoop behavior.
4812	 */
4813	if (mac->type == e1000_ich8lan)
4814		snoop = PCIE_ICH8_SNOOP_ALL;
4815	else
4816		snoop = (u32)~(PCIE_NO_SNOOP_ALL);
4817	e1000e_set_pcie_no_snoop(hw, snoop);
4818
 
 
 
 
 
 
 
 
 
4819	ctrl_ext = er32(CTRL_EXT);
4820	ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
4821	ew32(CTRL_EXT, ctrl_ext);
4822
4823	/* Clear all of the statistics registers (clear on read).  It is
4824	 * important that we do this after we have tried to establish link
4825	 * because the symbol error count will increment wildly if there
4826	 * is no link.
4827	 */
4828	e1000_clear_hw_cntrs_ich8lan(hw);
4829
4830	return ret_val;
4831}
4832
4833/**
4834 *  e1000_initialize_hw_bits_ich8lan - Initialize required hardware bits
4835 *  @hw: pointer to the HW structure
4836 *
4837 *  Sets/Clears required hardware bits necessary for correctly setting up the
4838 *  hardware for transmit and receive.
4839 **/
4840static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw)
4841{
4842	u32 reg;
4843
4844	/* Extended Device Control */
4845	reg = er32(CTRL_EXT);
4846	reg |= BIT(22);
4847	/* Enable PHY low-power state when MAC is at D3 w/o WoL */
4848	if (hw->mac.type >= e1000_pchlan)
4849		reg |= E1000_CTRL_EXT_PHYPDEN;
4850	ew32(CTRL_EXT, reg);
4851
4852	/* Transmit Descriptor Control 0 */
4853	reg = er32(TXDCTL(0));
4854	reg |= BIT(22);
4855	ew32(TXDCTL(0), reg);
4856
4857	/* Transmit Descriptor Control 1 */
4858	reg = er32(TXDCTL(1));
4859	reg |= BIT(22);
4860	ew32(TXDCTL(1), reg);
4861
4862	/* Transmit Arbitration Control 0 */
4863	reg = er32(TARC(0));
4864	if (hw->mac.type == e1000_ich8lan)
4865		reg |= BIT(28) | BIT(29);
4866	reg |= BIT(23) | BIT(24) | BIT(26) | BIT(27);
4867	ew32(TARC(0), reg);
4868
4869	/* Transmit Arbitration Control 1 */
4870	reg = er32(TARC(1));
4871	if (er32(TCTL) & E1000_TCTL_MULR)
4872		reg &= ~BIT(28);
4873	else
4874		reg |= BIT(28);
4875	reg |= BIT(24) | BIT(26) | BIT(30);
4876	ew32(TARC(1), reg);
4877
4878	/* Device Status */
4879	if (hw->mac.type == e1000_ich8lan) {
4880		reg = er32(STATUS);
4881		reg &= ~BIT(31);
4882		ew32(STATUS, reg);
4883	}
4884
4885	/* work-around descriptor data corruption issue during nfs v2 udp
4886	 * traffic, just disable the nfs filtering capability
4887	 */
4888	reg = er32(RFCTL);
4889	reg |= (E1000_RFCTL_NFSW_DIS | E1000_RFCTL_NFSR_DIS);
4890
4891	/* Disable IPv6 extension header parsing because some malformed
4892	 * IPv6 headers can hang the Rx.
4893	 */
4894	if (hw->mac.type == e1000_ich8lan)
4895		reg |= (E1000_RFCTL_IPV6_EX_DIS | E1000_RFCTL_NEW_IPV6_EXT_DIS);
4896	ew32(RFCTL, reg);
4897
4898	/* Enable ECC on Lynxpoint */
4899	if (hw->mac.type >= e1000_pch_lpt) {
4900		reg = er32(PBECCSTS);
4901		reg |= E1000_PBECCSTS_ECC_ENABLE;
4902		ew32(PBECCSTS, reg);
4903
4904		reg = er32(CTRL);
4905		reg |= E1000_CTRL_MEHE;
4906		ew32(CTRL, reg);
4907	}
4908}
4909
4910/**
4911 *  e1000_setup_link_ich8lan - Setup flow control and link settings
4912 *  @hw: pointer to the HW structure
4913 *
4914 *  Determines which flow control settings to use, then configures flow
4915 *  control.  Calls the appropriate media-specific link configuration
4916 *  function.  Assuming the adapter has a valid link partner, a valid link
4917 *  should be established.  Assumes the hardware has previously been reset
4918 *  and the transmitter and receiver are not enabled.
4919 **/
4920static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw)
4921{
4922	s32 ret_val;
4923
4924	if (hw->phy.ops.check_reset_block(hw))
4925		return 0;
4926
4927	/* ICH parts do not have a word in the NVM to determine
4928	 * the default flow control setting, so we explicitly
4929	 * set it to full.
4930	 */
4931	if (hw->fc.requested_mode == e1000_fc_default) {
4932		/* Workaround h/w hang when Tx flow control enabled */
4933		if (hw->mac.type == e1000_pchlan)
4934			hw->fc.requested_mode = e1000_fc_rx_pause;
4935		else
4936			hw->fc.requested_mode = e1000_fc_full;
4937	}
4938
4939	/* Save off the requested flow control mode for use later.  Depending
4940	 * on the link partner's capabilities, we may or may not use this mode.
4941	 */
4942	hw->fc.current_mode = hw->fc.requested_mode;
4943
4944	e_dbg("After fix-ups FlowControl is now = %x\n", hw->fc.current_mode);
4945
4946	/* Continue to configure the copper link. */
4947	ret_val = hw->mac.ops.setup_physical_interface(hw);
4948	if (ret_val)
4949		return ret_val;
4950
4951	ew32(FCTTV, hw->fc.pause_time);
4952	if ((hw->phy.type == e1000_phy_82578) ||
4953	    (hw->phy.type == e1000_phy_82579) ||
4954	    (hw->phy.type == e1000_phy_i217) ||
4955	    (hw->phy.type == e1000_phy_82577)) {
4956		ew32(FCRTV_PCH, hw->fc.refresh_time);
4957
4958		ret_val = e1e_wphy(hw, PHY_REG(BM_PORT_CTRL_PAGE, 27),
4959				   hw->fc.pause_time);
4960		if (ret_val)
4961			return ret_val;
4962	}
4963
4964	return e1000e_set_fc_watermarks(hw);
4965}
4966
4967/**
4968 *  e1000_setup_copper_link_ich8lan - Configure MAC/PHY interface
4969 *  @hw: pointer to the HW structure
4970 *
4971 *  Configures the kumeran interface to the PHY to wait the appropriate time
4972 *  when polling the PHY, then call the generic setup_copper_link to finish
4973 *  configuring the copper link.
4974 **/
4975static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw)
4976{
4977	u32 ctrl;
4978	s32 ret_val;
4979	u16 reg_data;
4980
4981	ctrl = er32(CTRL);
4982	ctrl |= E1000_CTRL_SLU;
4983	ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
4984	ew32(CTRL, ctrl);
4985
4986	/* Set the mac to wait the maximum time between each iteration
4987	 * and increase the max iterations when polling the phy;
4988	 * this fixes erroneous timeouts at 10Mbps.
4989	 */
4990	ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_TIMEOUTS, 0xFFFF);
4991	if (ret_val)
4992		return ret_val;
4993	ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
4994				       &reg_data);
4995	if (ret_val)
4996		return ret_val;
4997	reg_data |= 0x3F;
4998	ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
4999					reg_data);
5000	if (ret_val)
5001		return ret_val;
5002
5003	switch (hw->phy.type) {
5004	case e1000_phy_igp_3:
5005		ret_val = e1000e_copper_link_setup_igp(hw);
5006		if (ret_val)
5007			return ret_val;
5008		break;
5009	case e1000_phy_bm:
5010	case e1000_phy_82578:
5011		ret_val = e1000e_copper_link_setup_m88(hw);
5012		if (ret_val)
5013			return ret_val;
5014		break;
5015	case e1000_phy_82577:
5016	case e1000_phy_82579:
5017		ret_val = e1000_copper_link_setup_82577(hw);
5018		if (ret_val)
5019			return ret_val;
5020		break;
5021	case e1000_phy_ife:
5022		ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &reg_data);
5023		if (ret_val)
5024			return ret_val;
5025
5026		reg_data &= ~IFE_PMC_AUTO_MDIX;
5027
5028		switch (hw->phy.mdix) {
5029		case 1:
5030			reg_data &= ~IFE_PMC_FORCE_MDIX;
5031			break;
5032		case 2:
5033			reg_data |= IFE_PMC_FORCE_MDIX;
5034			break;
5035		case 0:
5036		default:
5037			reg_data |= IFE_PMC_AUTO_MDIX;
5038			break;
5039		}
5040		ret_val = e1e_wphy(hw, IFE_PHY_MDIX_CONTROL, reg_data);
5041		if (ret_val)
5042			return ret_val;
5043		break;
5044	default:
5045		break;
5046	}
5047
5048	return e1000e_setup_copper_link(hw);
5049}
5050
5051/**
5052 *  e1000_setup_copper_link_pch_lpt - Configure MAC/PHY interface
5053 *  @hw: pointer to the HW structure
5054 *
5055 *  Calls the PHY specific link setup function and then calls the
5056 *  generic setup_copper_link to finish configuring the link for
5057 *  Lynxpoint PCH devices
5058 **/
5059static s32 e1000_setup_copper_link_pch_lpt(struct e1000_hw *hw)
5060{
5061	u32 ctrl;
5062	s32 ret_val;
5063
5064	ctrl = er32(CTRL);
5065	ctrl |= E1000_CTRL_SLU;
5066	ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
5067	ew32(CTRL, ctrl);
5068
5069	ret_val = e1000_copper_link_setup_82577(hw);
5070	if (ret_val)
5071		return ret_val;
5072
5073	return e1000e_setup_copper_link(hw);
5074}
5075
5076/**
5077 *  e1000_get_link_up_info_ich8lan - Get current link speed and duplex
5078 *  @hw: pointer to the HW structure
5079 *  @speed: pointer to store current link speed
5080 *  @duplex: pointer to store the current link duplex
5081 *
5082 *  Calls the generic get_speed_and_duplex to retrieve the current link
5083 *  information and then calls the Kumeran lock loss workaround for links at
5084 *  gigabit speeds.
5085 **/
5086static s32 e1000_get_link_up_info_ich8lan(struct e1000_hw *hw, u16 *speed,
5087					  u16 *duplex)
5088{
5089	s32 ret_val;
5090
5091	ret_val = e1000e_get_speed_and_duplex_copper(hw, speed, duplex);
5092	if (ret_val)
5093		return ret_val;
5094
5095	if ((hw->mac.type == e1000_ich8lan) &&
5096	    (hw->phy.type == e1000_phy_igp_3) && (*speed == SPEED_1000)) {
5097		ret_val = e1000_kmrn_lock_loss_workaround_ich8lan(hw);
5098	}
5099
5100	return ret_val;
5101}
5102
5103/**
5104 *  e1000_kmrn_lock_loss_workaround_ich8lan - Kumeran workaround
5105 *  @hw: pointer to the HW structure
5106 *
5107 *  Work-around for 82566 Kumeran PCS lock loss:
5108 *  On link status change (i.e. PCI reset, speed change) and link is up and
5109 *  speed is gigabit-
5110 *    0) if workaround is optionally disabled do nothing
5111 *    1) wait 1ms for Kumeran link to come up
5112 *    2) check Kumeran Diagnostic register PCS lock loss bit
5113 *    3) if not set the link is locked (all is good), otherwise...
5114 *    4) reset the PHY
5115 *    5) repeat up to 10 times
5116 *  Note: this is only called for IGP3 copper when speed is 1gb.
5117 **/
5118static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw)
5119{
5120	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
5121	u32 phy_ctrl;
5122	s32 ret_val;
5123	u16 i, data;
5124	bool link;
5125
5126	if (!dev_spec->kmrn_lock_loss_workaround_enabled)
5127		return 0;
5128
5129	/* Make sure link is up before proceeding.  If not just return.
5130	 * Attempting this while link is negotiating fouled up link
5131	 * stability
5132	 */
5133	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
5134	if (!link)
5135		return 0;
5136
5137	for (i = 0; i < 10; i++) {
5138		/* read once to clear */
5139		ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
5140		if (ret_val)
5141			return ret_val;
5142		/* and again to get new status */
5143		ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
5144		if (ret_val)
5145			return ret_val;
5146
5147		/* check for PCS lock */
5148		if (!(data & IGP3_KMRN_DIAG_PCS_LOCK_LOSS))
5149			return 0;
5150
5151		/* Issue PHY reset */
5152		e1000_phy_hw_reset(hw);
5153		mdelay(5);
5154	}
5155	/* Disable GigE link negotiation */
5156	phy_ctrl = er32(PHY_CTRL);
5157	phy_ctrl |= (E1000_PHY_CTRL_GBE_DISABLE |
5158		     E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
5159	ew32(PHY_CTRL, phy_ctrl);
5160
5161	/* Call gig speed drop workaround on Gig disable before accessing
5162	 * any PHY registers
5163	 */
5164	e1000e_gig_downshift_workaround_ich8lan(hw);
5165
5166	/* unable to acquire PCS lock */
5167	return -E1000_ERR_PHY;
5168}
5169
5170/**
5171 *  e1000e_set_kmrn_lock_loss_workaround_ich8lan - Set Kumeran workaround state
5172 *  @hw: pointer to the HW structure
5173 *  @state: boolean value used to set the current Kumeran workaround state
5174 *
5175 *  If ICH8, set the current Kumeran workaround state (enabled - true
5176 *  /disabled - false).
5177 **/
5178void e1000e_set_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw,
5179						  bool state)
5180{
5181	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
5182
5183	if (hw->mac.type != e1000_ich8lan) {
5184		e_dbg("Workaround applies to ICH8 only.\n");
5185		return;
5186	}
5187
5188	dev_spec->kmrn_lock_loss_workaround_enabled = state;
5189}
5190
5191/**
5192 *  e1000_ipg3_phy_powerdown_workaround_ich8lan - Power down workaround on D3
5193 *  @hw: pointer to the HW structure
5194 *
5195 *  Workaround for 82566 power-down on D3 entry:
5196 *    1) disable gigabit link
5197 *    2) write VR power-down enable
5198 *    3) read it back
5199 *  Continue if successful, else issue LCD reset and repeat
5200 **/
5201void e1000e_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw *hw)
5202{
5203	u32 reg;
5204	u16 data;
5205	u8 retry = 0;
5206
5207	if (hw->phy.type != e1000_phy_igp_3)
5208		return;
5209
5210	/* Try the workaround twice (if needed) */
5211	do {
5212		/* Disable link */
5213		reg = er32(PHY_CTRL);
5214		reg |= (E1000_PHY_CTRL_GBE_DISABLE |
5215			E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
5216		ew32(PHY_CTRL, reg);
5217
5218		/* Call gig speed drop workaround on Gig disable before
5219		 * accessing any PHY registers
5220		 */
5221		if (hw->mac.type == e1000_ich8lan)
5222			e1000e_gig_downshift_workaround_ich8lan(hw);
5223
5224		/* Write VR power-down enable */
5225		e1e_rphy(hw, IGP3_VR_CTRL, &data);
5226		data &= ~IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
5227		e1e_wphy(hw, IGP3_VR_CTRL, data | IGP3_VR_CTRL_MODE_SHUTDOWN);
5228
5229		/* Read it back and test */
5230		e1e_rphy(hw, IGP3_VR_CTRL, &data);
5231		data &= IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
5232		if ((data == IGP3_VR_CTRL_MODE_SHUTDOWN) || retry)
5233			break;
5234
5235		/* Issue PHY reset and repeat at most one more time */
5236		reg = er32(CTRL);
5237		ew32(CTRL, reg | E1000_CTRL_PHY_RST);
5238		retry++;
5239	} while (retry);
5240}
5241
5242/**
5243 *  e1000e_gig_downshift_workaround_ich8lan - WoL from S5 stops working
5244 *  @hw: pointer to the HW structure
5245 *
5246 *  Steps to take when dropping from 1Gb/s (eg. link cable removal (LSC),
5247 *  LPLU, Gig disable, MDIC PHY reset):
5248 *    1) Set Kumeran Near-end loopback
5249 *    2) Clear Kumeran Near-end loopback
5250 *  Should only be called for ICH8[m] devices with any 1G Phy.
5251 **/
5252void e1000e_gig_downshift_workaround_ich8lan(struct e1000_hw *hw)
5253{
5254	s32 ret_val;
5255	u16 reg_data;
5256
5257	if ((hw->mac.type != e1000_ich8lan) || (hw->phy.type == e1000_phy_ife))
5258		return;
5259
5260	ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
5261				       &reg_data);
5262	if (ret_val)
5263		return;
5264	reg_data |= E1000_KMRNCTRLSTA_DIAG_NELPBK;
5265	ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
5266					reg_data);
5267	if (ret_val)
5268		return;
5269	reg_data &= ~E1000_KMRNCTRLSTA_DIAG_NELPBK;
5270	e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET, reg_data);
5271}
5272
5273/**
5274 *  e1000_suspend_workarounds_ich8lan - workarounds needed during S0->Sx
5275 *  @hw: pointer to the HW structure
5276 *
5277 *  During S0 to Sx transition, it is possible the link remains at gig
5278 *  instead of negotiating to a lower speed.  Before going to Sx, set
5279 *  'Gig Disable' to force link speed negotiation to a lower speed based on
5280 *  the LPLU setting in the NVM or custom setting.  For PCH and newer parts,
5281 *  the OEM bits PHY register (LED, GbE disable and LPLU configurations) also
5282 *  needs to be written.
5283 *  Parts that support (and are linked to a partner which support) EEE in
5284 *  100Mbps should disable LPLU since 100Mbps w/ EEE requires less power
5285 *  than 10Mbps w/o EEE.
5286 **/
5287void e1000_suspend_workarounds_ich8lan(struct e1000_hw *hw)
5288{
5289	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
5290	u32 phy_ctrl;
5291	s32 ret_val;
5292
5293	phy_ctrl = er32(PHY_CTRL);
5294	phy_ctrl |= E1000_PHY_CTRL_GBE_DISABLE;
5295
5296	if (hw->phy.type == e1000_phy_i217) {
5297		u16 phy_reg, device_id = hw->adapter->pdev->device;
5298
5299		if ((device_id == E1000_DEV_ID_PCH_LPTLP_I218_LM) ||
5300		    (device_id == E1000_DEV_ID_PCH_LPTLP_I218_V) ||
5301		    (device_id == E1000_DEV_ID_PCH_I218_LM3) ||
5302		    (device_id == E1000_DEV_ID_PCH_I218_V3) ||
5303		    (hw->mac.type >= e1000_pch_spt)) {
5304			u32 fextnvm6 = er32(FEXTNVM6);
5305
5306			ew32(FEXTNVM6, fextnvm6 & ~E1000_FEXTNVM6_REQ_PLL_CLK);
5307		}
5308
5309		ret_val = hw->phy.ops.acquire(hw);
5310		if (ret_val)
5311			goto out;
5312
5313		if (!dev_spec->eee_disable) {
5314			u16 eee_advert;
5315
5316			ret_val =
5317			    e1000_read_emi_reg_locked(hw,
5318						      I217_EEE_ADVERTISEMENT,
5319						      &eee_advert);
5320			if (ret_val)
5321				goto release;
5322
5323			/* Disable LPLU if both link partners support 100BaseT
5324			 * EEE and 100Full is advertised on both ends of the
5325			 * link, and enable Auto Enable LPI since there will
5326			 * be no driver to enable LPI while in Sx.
5327			 */
5328			if ((eee_advert & I82579_EEE_100_SUPPORTED) &&
5329			    (dev_spec->eee_lp_ability &
5330			     I82579_EEE_100_SUPPORTED) &&
5331			    (hw->phy.autoneg_advertised & ADVERTISE_100_FULL)) {
5332				phy_ctrl &= ~(E1000_PHY_CTRL_D0A_LPLU |
5333					      E1000_PHY_CTRL_NOND0A_LPLU);
5334
5335				/* Set Auto Enable LPI after link up */
5336				e1e_rphy_locked(hw,
5337						I217_LPI_GPIO_CTRL, &phy_reg);
5338				phy_reg |= I217_LPI_GPIO_CTRL_AUTO_EN_LPI;
5339				e1e_wphy_locked(hw,
5340						I217_LPI_GPIO_CTRL, phy_reg);
5341			}
5342		}
5343
5344		/* For i217 Intel Rapid Start Technology support,
5345		 * when the system is going into Sx and no manageability engine
5346		 * is present, the driver must configure proxy to reset only on
5347		 * power good.  LPI (Low Power Idle) state must also reset only
5348		 * on power good, as well as the MTA (Multicast table array).
5349		 * The SMBus release must also be disabled on LCD reset.
5350		 */
5351		if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
5352			/* Enable proxy to reset only on power good. */
5353			e1e_rphy_locked(hw, I217_PROXY_CTRL, &phy_reg);
5354			phy_reg |= I217_PROXY_CTRL_AUTO_DISABLE;
5355			e1e_wphy_locked(hw, I217_PROXY_CTRL, phy_reg);
5356
5357			/* Set bit enable LPI (EEE) to reset only on
5358			 * power good.
5359			 */
5360			e1e_rphy_locked(hw, I217_SxCTRL, &phy_reg);
5361			phy_reg |= I217_SxCTRL_ENABLE_LPI_RESET;
5362			e1e_wphy_locked(hw, I217_SxCTRL, phy_reg);
5363
5364			/* Disable the SMB release on LCD reset. */
5365			e1e_rphy_locked(hw, I217_MEMPWR, &phy_reg);
5366			phy_reg &= ~I217_MEMPWR_DISABLE_SMB_RELEASE;
5367			e1e_wphy_locked(hw, I217_MEMPWR, phy_reg);
5368		}
5369
5370		/* Enable MTA to reset for Intel Rapid Start Technology
5371		 * Support
5372		 */
5373		e1e_rphy_locked(hw, I217_CGFREG, &phy_reg);
5374		phy_reg |= I217_CGFREG_ENABLE_MTA_RESET;
5375		e1e_wphy_locked(hw, I217_CGFREG, phy_reg);
5376
5377release:
5378		hw->phy.ops.release(hw);
5379	}
5380out:
5381	ew32(PHY_CTRL, phy_ctrl);
5382
5383	if (hw->mac.type == e1000_ich8lan)
5384		e1000e_gig_downshift_workaround_ich8lan(hw);
5385
5386	if (hw->mac.type >= e1000_pchlan) {
5387		e1000_oem_bits_config_ich8lan(hw, false);
5388
5389		/* Reset PHY to activate OEM bits on 82577/8 */
5390		if (hw->mac.type == e1000_pchlan)
5391			e1000e_phy_hw_reset_generic(hw);
5392
5393		ret_val = hw->phy.ops.acquire(hw);
5394		if (ret_val)
5395			return;
5396		e1000_write_smbus_addr(hw);
5397		hw->phy.ops.release(hw);
5398	}
5399}
5400
5401/**
5402 *  e1000_resume_workarounds_pchlan - workarounds needed during Sx->S0
5403 *  @hw: pointer to the HW structure
5404 *
5405 *  During Sx to S0 transitions on non-managed devices or managed devices
5406 *  on which PHY resets are not blocked, if the PHY registers cannot be
5407 *  accessed properly by the s/w toggle the LANPHYPC value to power cycle
5408 *  the PHY.
5409 *  On i217, setup Intel Rapid Start Technology.
5410 **/
5411void e1000_resume_workarounds_pchlan(struct e1000_hw *hw)
5412{
5413	s32 ret_val;
5414
5415	if (hw->mac.type < e1000_pch2lan)
5416		return;
5417
5418	ret_val = e1000_init_phy_workarounds_pchlan(hw);
5419	if (ret_val) {
5420		e_dbg("Failed to init PHY flow ret_val=%d\n", ret_val);
5421		return;
5422	}
5423
5424	/* For i217 Intel Rapid Start Technology support when the system
5425	 * is transitioning from Sx and no manageability engine is present
5426	 * configure SMBus to restore on reset, disable proxy, and enable
5427	 * the reset on MTA (Multicast table array).
5428	 */
5429	if (hw->phy.type == e1000_phy_i217) {
5430		u16 phy_reg;
5431
5432		ret_val = hw->phy.ops.acquire(hw);
5433		if (ret_val) {
5434			e_dbg("Failed to setup iRST\n");
5435			return;
5436		}
5437
5438		/* Clear Auto Enable LPI after link up */
5439		e1e_rphy_locked(hw, I217_LPI_GPIO_CTRL, &phy_reg);
5440		phy_reg &= ~I217_LPI_GPIO_CTRL_AUTO_EN_LPI;
5441		e1e_wphy_locked(hw, I217_LPI_GPIO_CTRL, phy_reg);
5442
5443		if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
5444			/* Restore clear on SMB if no manageability engine
5445			 * is present
5446			 */
5447			ret_val = e1e_rphy_locked(hw, I217_MEMPWR, &phy_reg);
5448			if (ret_val)
5449				goto release;
5450			phy_reg |= I217_MEMPWR_DISABLE_SMB_RELEASE;
5451			e1e_wphy_locked(hw, I217_MEMPWR, phy_reg);
5452
5453			/* Disable Proxy */
5454			e1e_wphy_locked(hw, I217_PROXY_CTRL, 0);
5455		}
5456		/* Enable reset on MTA */
5457		ret_val = e1e_rphy_locked(hw, I217_CGFREG, &phy_reg);
5458		if (ret_val)
5459			goto release;
5460		phy_reg &= ~I217_CGFREG_ENABLE_MTA_RESET;
5461		e1e_wphy_locked(hw, I217_CGFREG, phy_reg);
5462release:
5463		if (ret_val)
5464			e_dbg("Error %d in resume workarounds\n", ret_val);
5465		hw->phy.ops.release(hw);
5466	}
5467}
5468
5469/**
5470 *  e1000_cleanup_led_ich8lan - Restore the default LED operation
5471 *  @hw: pointer to the HW structure
5472 *
5473 *  Return the LED back to the default configuration.
5474 **/
5475static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw)
5476{
5477	if (hw->phy.type == e1000_phy_ife)
5478		return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0);
5479
5480	ew32(LEDCTL, hw->mac.ledctl_default);
5481	return 0;
5482}
5483
5484/**
5485 *  e1000_led_on_ich8lan - Turn LEDs on
5486 *  @hw: pointer to the HW structure
5487 *
5488 *  Turn on the LEDs.
5489 **/
5490static s32 e1000_led_on_ich8lan(struct e1000_hw *hw)
5491{
5492	if (hw->phy.type == e1000_phy_ife)
5493		return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
5494				(IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_ON));
5495
5496	ew32(LEDCTL, hw->mac.ledctl_mode2);
5497	return 0;
5498}
5499
5500/**
5501 *  e1000_led_off_ich8lan - Turn LEDs off
5502 *  @hw: pointer to the HW structure
5503 *
5504 *  Turn off the LEDs.
5505 **/
5506static s32 e1000_led_off_ich8lan(struct e1000_hw *hw)
5507{
5508	if (hw->phy.type == e1000_phy_ife)
5509		return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
5510				(IFE_PSCL_PROBE_MODE |
5511				 IFE_PSCL_PROBE_LEDS_OFF));
5512
5513	ew32(LEDCTL, hw->mac.ledctl_mode1);
5514	return 0;
5515}
5516
5517/**
5518 *  e1000_setup_led_pchlan - Configures SW controllable LED
5519 *  @hw: pointer to the HW structure
5520 *
5521 *  This prepares the SW controllable LED for use.
5522 **/
5523static s32 e1000_setup_led_pchlan(struct e1000_hw *hw)
5524{
5525	return e1e_wphy(hw, HV_LED_CONFIG, (u16)hw->mac.ledctl_mode1);
5526}
5527
5528/**
5529 *  e1000_cleanup_led_pchlan - Restore the default LED operation
5530 *  @hw: pointer to the HW structure
5531 *
5532 *  Return the LED back to the default configuration.
5533 **/
5534static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw)
5535{
5536	return e1e_wphy(hw, HV_LED_CONFIG, (u16)hw->mac.ledctl_default);
5537}
5538
5539/**
5540 *  e1000_led_on_pchlan - Turn LEDs on
5541 *  @hw: pointer to the HW structure
5542 *
5543 *  Turn on the LEDs.
5544 **/
5545static s32 e1000_led_on_pchlan(struct e1000_hw *hw)
5546{
5547	u16 data = (u16)hw->mac.ledctl_mode2;
5548	u32 i, led;
5549
5550	/* If no link, then turn LED on by setting the invert bit
5551	 * for each LED that's mode is "link_up" in ledctl_mode2.
5552	 */
5553	if (!(er32(STATUS) & E1000_STATUS_LU)) {
5554		for (i = 0; i < 3; i++) {
5555			led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
5556			if ((led & E1000_PHY_LED0_MODE_MASK) !=
5557			    E1000_LEDCTL_MODE_LINK_UP)
5558				continue;
5559			if (led & E1000_PHY_LED0_IVRT)
5560				data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
5561			else
5562				data |= (E1000_PHY_LED0_IVRT << (i * 5));
5563		}
5564	}
5565
5566	return e1e_wphy(hw, HV_LED_CONFIG, data);
5567}
5568
5569/**
5570 *  e1000_led_off_pchlan - Turn LEDs off
5571 *  @hw: pointer to the HW structure
5572 *
5573 *  Turn off the LEDs.
5574 **/
5575static s32 e1000_led_off_pchlan(struct e1000_hw *hw)
5576{
5577	u16 data = (u16)hw->mac.ledctl_mode1;
5578	u32 i, led;
5579
5580	/* If no link, then turn LED off by clearing the invert bit
5581	 * for each LED that's mode is "link_up" in ledctl_mode1.
5582	 */
5583	if (!(er32(STATUS) & E1000_STATUS_LU)) {
5584		for (i = 0; i < 3; i++) {
5585			led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
5586			if ((led & E1000_PHY_LED0_MODE_MASK) !=
5587			    E1000_LEDCTL_MODE_LINK_UP)
5588				continue;
5589			if (led & E1000_PHY_LED0_IVRT)
5590				data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
5591			else
5592				data |= (E1000_PHY_LED0_IVRT << (i * 5));
5593		}
5594	}
5595
5596	return e1e_wphy(hw, HV_LED_CONFIG, data);
5597}
5598
5599/**
5600 *  e1000_get_cfg_done_ich8lan - Read config done bit after Full or PHY reset
5601 *  @hw: pointer to the HW structure
5602 *
5603 *  Read appropriate register for the config done bit for completion status
5604 *  and configure the PHY through s/w for EEPROM-less parts.
5605 *
5606 *  NOTE: some silicon which is EEPROM-less will fail trying to read the
5607 *  config done bit, so only an error is logged and continues.  If we were
5608 *  to return with error, EEPROM-less silicon would not be able to be reset
5609 *  or change link.
5610 **/
5611static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw)
5612{
5613	s32 ret_val = 0;
5614	u32 bank = 0;
5615	u32 status;
5616
5617	e1000e_get_cfg_done_generic(hw);
5618
5619	/* Wait for indication from h/w that it has completed basic config */
5620	if (hw->mac.type >= e1000_ich10lan) {
5621		e1000_lan_init_done_ich8lan(hw);
5622	} else {
5623		ret_val = e1000e_get_auto_rd_done(hw);
5624		if (ret_val) {
5625			/* When auto config read does not complete, do not
5626			 * return with an error. This can happen in situations
5627			 * where there is no eeprom and prevents getting link.
5628			 */
5629			e_dbg("Auto Read Done did not complete\n");
5630			ret_val = 0;
5631		}
5632	}
5633
5634	/* Clear PHY Reset Asserted bit */
5635	status = er32(STATUS);
5636	if (status & E1000_STATUS_PHYRA)
5637		ew32(STATUS, status & ~E1000_STATUS_PHYRA);
5638	else
5639		e_dbg("PHY Reset Asserted not set - needs delay\n");
5640
5641	/* If EEPROM is not marked present, init the IGP 3 PHY manually */
5642	if (hw->mac.type <= e1000_ich9lan) {
5643		if (!(er32(EECD) & E1000_EECD_PRES) &&
5644		    (hw->phy.type == e1000_phy_igp_3)) {
5645			e1000e_phy_init_script_igp3(hw);
5646		}
5647	} else {
5648		if (e1000_valid_nvm_bank_detect_ich8lan(hw, &bank)) {
5649			/* Maybe we should do a basic PHY config */
5650			e_dbg("EEPROM not present\n");
5651			ret_val = -E1000_ERR_CONFIG;
5652		}
5653	}
5654
5655	return ret_val;
5656}
5657
5658/**
5659 * e1000_power_down_phy_copper_ich8lan - Remove link during PHY power down
5660 * @hw: pointer to the HW structure
5661 *
5662 * In the case of a PHY power down to save power, or to turn off link during a
5663 * driver unload, or wake on lan is not enabled, remove the link.
5664 **/
5665static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw)
5666{
5667	/* If the management interface is not enabled, then power down */
5668	if (!(hw->mac.ops.check_mng_mode(hw) ||
5669	      hw->phy.ops.check_reset_block(hw)))
5670		e1000_power_down_phy_copper(hw);
5671}
5672
5673/**
5674 *  e1000_clear_hw_cntrs_ich8lan - Clear statistical counters
5675 *  @hw: pointer to the HW structure
5676 *
5677 *  Clears hardware counters specific to the silicon family and calls
5678 *  clear_hw_cntrs_generic to clear all general purpose counters.
5679 **/
5680static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw)
5681{
5682	u16 phy_data;
5683	s32 ret_val;
5684
5685	e1000e_clear_hw_cntrs_base(hw);
5686
5687	er32(ALGNERRC);
5688	er32(RXERRC);
5689	er32(TNCRS);
5690	er32(CEXTERR);
5691	er32(TSCTC);
5692	er32(TSCTFC);
5693
5694	er32(MGTPRC);
5695	er32(MGTPDC);
5696	er32(MGTPTC);
5697
5698	er32(IAC);
5699	er32(ICRXOC);
5700
5701	/* Clear PHY statistics registers */
5702	if ((hw->phy.type == e1000_phy_82578) ||
5703	    (hw->phy.type == e1000_phy_82579) ||
5704	    (hw->phy.type == e1000_phy_i217) ||
5705	    (hw->phy.type == e1000_phy_82577)) {
5706		ret_val = hw->phy.ops.acquire(hw);
5707		if (ret_val)
5708			return;
5709		ret_val = hw->phy.ops.set_page(hw,
5710					       HV_STATS_PAGE << IGP_PAGE_SHIFT);
5711		if (ret_val)
5712			goto release;
5713		hw->phy.ops.read_reg_page(hw, HV_SCC_UPPER, &phy_data);
5714		hw->phy.ops.read_reg_page(hw, HV_SCC_LOWER, &phy_data);
5715		hw->phy.ops.read_reg_page(hw, HV_ECOL_UPPER, &phy_data);
5716		hw->phy.ops.read_reg_page(hw, HV_ECOL_LOWER, &phy_data);
5717		hw->phy.ops.read_reg_page(hw, HV_MCC_UPPER, &phy_data);
5718		hw->phy.ops.read_reg_page(hw, HV_MCC_LOWER, &phy_data);
5719		hw->phy.ops.read_reg_page(hw, HV_LATECOL_UPPER, &phy_data);
5720		hw->phy.ops.read_reg_page(hw, HV_LATECOL_LOWER, &phy_data);
5721		hw->phy.ops.read_reg_page(hw, HV_COLC_UPPER, &phy_data);
5722		hw->phy.ops.read_reg_page(hw, HV_COLC_LOWER, &phy_data);
5723		hw->phy.ops.read_reg_page(hw, HV_DC_UPPER, &phy_data);
5724		hw->phy.ops.read_reg_page(hw, HV_DC_LOWER, &phy_data);
5725		hw->phy.ops.read_reg_page(hw, HV_TNCRS_UPPER, &phy_data);
5726		hw->phy.ops.read_reg_page(hw, HV_TNCRS_LOWER, &phy_data);
5727release:
5728		hw->phy.ops.release(hw);
5729	}
5730}
5731
5732static const struct e1000_mac_operations ich8_mac_ops = {
5733	/* check_mng_mode dependent on mac type */
5734	.check_for_link		= e1000_check_for_copper_link_ich8lan,
5735	/* cleanup_led dependent on mac type */
5736	.clear_hw_cntrs		= e1000_clear_hw_cntrs_ich8lan,
5737	.get_bus_info		= e1000_get_bus_info_ich8lan,
5738	.set_lan_id		= e1000_set_lan_id_single_port,
5739	.get_link_up_info	= e1000_get_link_up_info_ich8lan,
5740	/* led_on dependent on mac type */
5741	/* led_off dependent on mac type */
5742	.update_mc_addr_list	= e1000e_update_mc_addr_list_generic,
5743	.reset_hw		= e1000_reset_hw_ich8lan,
5744	.init_hw		= e1000_init_hw_ich8lan,
5745	.setup_link		= e1000_setup_link_ich8lan,
5746	.setup_physical_interface = e1000_setup_copper_link_ich8lan,
5747	/* id_led_init dependent on mac type */
5748	.config_collision_dist	= e1000e_config_collision_dist_generic,
5749	.rar_set		= e1000e_rar_set_generic,
5750	.rar_get_count		= e1000e_rar_get_count_generic,
5751};
5752
5753static const struct e1000_phy_operations ich8_phy_ops = {
5754	.acquire		= e1000_acquire_swflag_ich8lan,
5755	.check_reset_block	= e1000_check_reset_block_ich8lan,
5756	.commit			= NULL,
5757	.get_cfg_done		= e1000_get_cfg_done_ich8lan,
5758	.get_cable_length	= e1000e_get_cable_length_igp_2,
5759	.read_reg		= e1000e_read_phy_reg_igp,
5760	.release		= e1000_release_swflag_ich8lan,
5761	.reset			= e1000_phy_hw_reset_ich8lan,
5762	.set_d0_lplu_state	= e1000_set_d0_lplu_state_ich8lan,
5763	.set_d3_lplu_state	= e1000_set_d3_lplu_state_ich8lan,
5764	.write_reg		= e1000e_write_phy_reg_igp,
5765};
5766
5767static const struct e1000_nvm_operations ich8_nvm_ops = {
5768	.acquire		= e1000_acquire_nvm_ich8lan,
5769	.read			= e1000_read_nvm_ich8lan,
5770	.release		= e1000_release_nvm_ich8lan,
5771	.reload			= e1000e_reload_nvm_generic,
5772	.update			= e1000_update_nvm_checksum_ich8lan,
5773	.valid_led_default	= e1000_valid_led_default_ich8lan,
5774	.validate		= e1000_validate_nvm_checksum_ich8lan,
5775	.write			= e1000_write_nvm_ich8lan,
5776};
5777
5778static const struct e1000_nvm_operations spt_nvm_ops = {
5779	.acquire		= e1000_acquire_nvm_ich8lan,
5780	.release		= e1000_release_nvm_ich8lan,
5781	.read			= e1000_read_nvm_spt,
5782	.update			= e1000_update_nvm_checksum_spt,
5783	.reload			= e1000e_reload_nvm_generic,
5784	.valid_led_default	= e1000_valid_led_default_ich8lan,
5785	.validate		= e1000_validate_nvm_checksum_ich8lan,
5786	.write			= e1000_write_nvm_ich8lan,
5787};
5788
5789const struct e1000_info e1000_ich8_info = {
5790	.mac			= e1000_ich8lan,
5791	.flags			= FLAG_HAS_WOL
5792				  | FLAG_IS_ICH
5793				  | FLAG_HAS_CTRLEXT_ON_LOAD
5794				  | FLAG_HAS_AMT
5795				  | FLAG_HAS_FLASH
5796				  | FLAG_APME_IN_WUC,
5797	.pba			= 8,
5798	.max_hw_frame_size	= VLAN_ETH_FRAME_LEN + ETH_FCS_LEN,
5799	.get_variants		= e1000_get_variants_ich8lan,
5800	.mac_ops		= &ich8_mac_ops,
5801	.phy_ops		= &ich8_phy_ops,
5802	.nvm_ops		= &ich8_nvm_ops,
5803};
5804
5805const struct e1000_info e1000_ich9_info = {
5806	.mac			= e1000_ich9lan,
5807	.flags			= FLAG_HAS_JUMBO_FRAMES
5808				  | FLAG_IS_ICH
5809				  | FLAG_HAS_WOL
5810				  | FLAG_HAS_CTRLEXT_ON_LOAD
5811				  | FLAG_HAS_AMT
5812				  | FLAG_HAS_FLASH
5813				  | FLAG_APME_IN_WUC,
5814	.pba			= 18,
5815	.max_hw_frame_size	= DEFAULT_JUMBO,
5816	.get_variants		= e1000_get_variants_ich8lan,
5817	.mac_ops		= &ich8_mac_ops,
5818	.phy_ops		= &ich8_phy_ops,
5819	.nvm_ops		= &ich8_nvm_ops,
5820};
5821
5822const struct e1000_info e1000_ich10_info = {
5823	.mac			= e1000_ich10lan,
5824	.flags			= FLAG_HAS_JUMBO_FRAMES
5825				  | FLAG_IS_ICH
5826				  | FLAG_HAS_WOL
5827				  | FLAG_HAS_CTRLEXT_ON_LOAD
5828				  | FLAG_HAS_AMT
5829				  | FLAG_HAS_FLASH
5830				  | FLAG_APME_IN_WUC,
5831	.pba			= 18,
5832	.max_hw_frame_size	= DEFAULT_JUMBO,
5833	.get_variants		= e1000_get_variants_ich8lan,
5834	.mac_ops		= &ich8_mac_ops,
5835	.phy_ops		= &ich8_phy_ops,
5836	.nvm_ops		= &ich8_nvm_ops,
5837};
5838
5839const struct e1000_info e1000_pch_info = {
5840	.mac			= e1000_pchlan,
5841	.flags			= FLAG_IS_ICH
5842				  | FLAG_HAS_WOL
5843				  | FLAG_HAS_CTRLEXT_ON_LOAD
5844				  | FLAG_HAS_AMT
5845				  | FLAG_HAS_FLASH
5846				  | FLAG_HAS_JUMBO_FRAMES
5847				  | FLAG_DISABLE_FC_PAUSE_TIME /* errata */
5848				  | FLAG_APME_IN_WUC,
5849	.flags2			= FLAG2_HAS_PHY_STATS,
5850	.pba			= 26,
5851	.max_hw_frame_size	= 4096,
5852	.get_variants		= e1000_get_variants_ich8lan,
5853	.mac_ops		= &ich8_mac_ops,
5854	.phy_ops		= &ich8_phy_ops,
5855	.nvm_ops		= &ich8_nvm_ops,
5856};
5857
5858const struct e1000_info e1000_pch2_info = {
5859	.mac			= e1000_pch2lan,
5860	.flags			= FLAG_IS_ICH
5861				  | FLAG_HAS_WOL
5862				  | FLAG_HAS_HW_TIMESTAMP
5863				  | FLAG_HAS_CTRLEXT_ON_LOAD
5864				  | FLAG_HAS_AMT
5865				  | FLAG_HAS_FLASH
5866				  | FLAG_HAS_JUMBO_FRAMES
5867				  | FLAG_APME_IN_WUC,
5868	.flags2			= FLAG2_HAS_PHY_STATS
5869				  | FLAG2_HAS_EEE
5870				  | FLAG2_CHECK_SYSTIM_OVERFLOW,
5871	.pba			= 26,
5872	.max_hw_frame_size	= 9022,
5873	.get_variants		= e1000_get_variants_ich8lan,
5874	.mac_ops		= &ich8_mac_ops,
5875	.phy_ops		= &ich8_phy_ops,
5876	.nvm_ops		= &ich8_nvm_ops,
5877};
5878
5879const struct e1000_info e1000_pch_lpt_info = {
5880	.mac			= e1000_pch_lpt,
5881	.flags			= FLAG_IS_ICH
5882				  | FLAG_HAS_WOL
5883				  | FLAG_HAS_HW_TIMESTAMP
5884				  | FLAG_HAS_CTRLEXT_ON_LOAD
5885				  | FLAG_HAS_AMT
5886				  | FLAG_HAS_FLASH
5887				  | FLAG_HAS_JUMBO_FRAMES
5888				  | FLAG_APME_IN_WUC,
5889	.flags2			= FLAG2_HAS_PHY_STATS
5890				  | FLAG2_HAS_EEE
5891				  | FLAG2_CHECK_SYSTIM_OVERFLOW,
5892	.pba			= 26,
5893	.max_hw_frame_size	= 9022,
5894	.get_variants		= e1000_get_variants_ich8lan,
5895	.mac_ops		= &ich8_mac_ops,
5896	.phy_ops		= &ich8_phy_ops,
5897	.nvm_ops		= &ich8_nvm_ops,
5898};
5899
5900const struct e1000_info e1000_pch_spt_info = {
5901	.mac			= e1000_pch_spt,
5902	.flags			= FLAG_IS_ICH
5903				  | FLAG_HAS_WOL
5904				  | FLAG_HAS_HW_TIMESTAMP
5905				  | FLAG_HAS_CTRLEXT_ON_LOAD
5906				  | FLAG_HAS_AMT
5907				  | FLAG_HAS_FLASH
5908				  | FLAG_HAS_JUMBO_FRAMES
5909				  | FLAG_APME_IN_WUC,
5910	.flags2			= FLAG2_HAS_PHY_STATS
5911				  | FLAG2_HAS_EEE,
5912	.pba			= 26,
5913	.max_hw_frame_size	= 9022,
5914	.get_variants		= e1000_get_variants_ich8lan,
5915	.mac_ops		= &ich8_mac_ops,
5916	.phy_ops		= &ich8_phy_ops,
5917	.nvm_ops		= &spt_nvm_ops,
5918};
5919
5920const struct e1000_info e1000_pch_cnp_info = {
5921	.mac			= e1000_pch_cnp,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5922	.flags			= FLAG_IS_ICH
5923				  | FLAG_HAS_WOL
5924				  | FLAG_HAS_HW_TIMESTAMP
5925				  | FLAG_HAS_CTRLEXT_ON_LOAD
5926				  | FLAG_HAS_AMT
5927				  | FLAG_HAS_FLASH
5928				  | FLAG_HAS_JUMBO_FRAMES
5929				  | FLAG_APME_IN_WUC,
5930	.flags2			= FLAG2_HAS_PHY_STATS
5931				  | FLAG2_HAS_EEE,
5932	.pba			= 26,
5933	.max_hw_frame_size	= 9022,
5934	.get_variants		= e1000_get_variants_ich8lan,
5935	.mac_ops		= &ich8_mac_ops,
5936	.phy_ops		= &ich8_phy_ops,
5937	.nvm_ops		= &spt_nvm_ops,
5938};