Linux Audio

Check our new training course

Loading...
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0
   2/* Copyright(c) 1999 - 2018 Intel Corporation. */
   3
   4/* ethtool support for e1000 */
   5
   6#include <linux/netdevice.h>
   7#include <linux/interrupt.h>
   8#include <linux/ethtool.h>
   9#include <linux/pci.h>
  10#include <linux/slab.h>
  11#include <linux/delay.h>
  12#include <linux/vmalloc.h>
  13#include <linux/pm_runtime.h>
  14
  15#include "e1000.h"
  16
  17enum { NETDEV_STATS, E1000_STATS };
  18
  19struct e1000_stats {
  20	char stat_string[ETH_GSTRING_LEN];
  21	int type;
  22	int sizeof_stat;
  23	int stat_offset;
  24};
  25
  26static const char e1000e_priv_flags_strings[][ETH_GSTRING_LEN] = {
  27#define E1000E_PRIV_FLAGS_S0IX_ENABLED	BIT(0)
  28	"s0ix-enabled",
  29};
  30
  31#define E1000E_PRIV_FLAGS_STR_LEN ARRAY_SIZE(e1000e_priv_flags_strings)
  32
  33#define E1000_STAT(str, m) { \
  34		.stat_string = str, \
  35		.type = E1000_STATS, \
  36		.sizeof_stat = sizeof(((struct e1000_adapter *)0)->m), \
  37		.stat_offset = offsetof(struct e1000_adapter, m) }
  38#define E1000_NETDEV_STAT(str, m) { \
  39		.stat_string = str, \
  40		.type = NETDEV_STATS, \
  41		.sizeof_stat = sizeof(((struct rtnl_link_stats64 *)0)->m), \
  42		.stat_offset = offsetof(struct rtnl_link_stats64, m) }
  43
  44static const struct e1000_stats e1000_gstrings_stats[] = {
  45	E1000_STAT("rx_packets", stats.gprc),
  46	E1000_STAT("tx_packets", stats.gptc),
  47	E1000_STAT("rx_bytes", stats.gorc),
  48	E1000_STAT("tx_bytes", stats.gotc),
  49	E1000_STAT("rx_broadcast", stats.bprc),
  50	E1000_STAT("tx_broadcast", stats.bptc),
  51	E1000_STAT("rx_multicast", stats.mprc),
  52	E1000_STAT("tx_multicast", stats.mptc),
  53	E1000_NETDEV_STAT("rx_errors", rx_errors),
  54	E1000_NETDEV_STAT("tx_errors", tx_errors),
  55	E1000_NETDEV_STAT("tx_dropped", tx_dropped),
  56	E1000_STAT("multicast", stats.mprc),
  57	E1000_STAT("collisions", stats.colc),
  58	E1000_NETDEV_STAT("rx_length_errors", rx_length_errors),
  59	E1000_NETDEV_STAT("rx_over_errors", rx_over_errors),
  60	E1000_STAT("rx_crc_errors", stats.crcerrs),
  61	E1000_NETDEV_STAT("rx_frame_errors", rx_frame_errors),
  62	E1000_STAT("rx_no_buffer_count", stats.rnbc),
  63	E1000_STAT("rx_missed_errors", stats.mpc),
  64	E1000_STAT("tx_aborted_errors", stats.ecol),
  65	E1000_STAT("tx_carrier_errors", stats.tncrs),
  66	E1000_NETDEV_STAT("tx_fifo_errors", tx_fifo_errors),
  67	E1000_NETDEV_STAT("tx_heartbeat_errors", tx_heartbeat_errors),
  68	E1000_STAT("tx_window_errors", stats.latecol),
  69	E1000_STAT("tx_abort_late_coll", stats.latecol),
  70	E1000_STAT("tx_deferred_ok", stats.dc),
  71	E1000_STAT("tx_single_coll_ok", stats.scc),
  72	E1000_STAT("tx_multi_coll_ok", stats.mcc),
  73	E1000_STAT("tx_timeout_count", tx_timeout_count),
  74	E1000_STAT("tx_restart_queue", restart_queue),
  75	E1000_STAT("rx_long_length_errors", stats.roc),
  76	E1000_STAT("rx_short_length_errors", stats.ruc),
  77	E1000_STAT("rx_align_errors", stats.algnerrc),
  78	E1000_STAT("tx_tcp_seg_good", stats.tsctc),
  79	E1000_STAT("tx_tcp_seg_failed", stats.tsctfc),
  80	E1000_STAT("rx_flow_control_xon", stats.xonrxc),
  81	E1000_STAT("rx_flow_control_xoff", stats.xoffrxc),
  82	E1000_STAT("tx_flow_control_xon", stats.xontxc),
  83	E1000_STAT("tx_flow_control_xoff", stats.xofftxc),
  84	E1000_STAT("rx_csum_offload_good", hw_csum_good),
  85	E1000_STAT("rx_csum_offload_errors", hw_csum_err),
  86	E1000_STAT("rx_header_split", rx_hdr_split),
  87	E1000_STAT("alloc_rx_buff_failed", alloc_rx_buff_failed),
  88	E1000_STAT("tx_smbus", stats.mgptc),
  89	E1000_STAT("rx_smbus", stats.mgprc),
  90	E1000_STAT("dropped_smbus", stats.mgpdc),
  91	E1000_STAT("rx_dma_failed", rx_dma_failed),
  92	E1000_STAT("tx_dma_failed", tx_dma_failed),
  93	E1000_STAT("rx_hwtstamp_cleared", rx_hwtstamp_cleared),
  94	E1000_STAT("uncorr_ecc_errors", uncorr_errors),
  95	E1000_STAT("corr_ecc_errors", corr_errors),
  96	E1000_STAT("tx_hwtstamp_timeouts", tx_hwtstamp_timeouts),
  97	E1000_STAT("tx_hwtstamp_skipped", tx_hwtstamp_skipped),
  98};
  99
 100#define E1000_GLOBAL_STATS_LEN	ARRAY_SIZE(e1000_gstrings_stats)
 101#define E1000_STATS_LEN (E1000_GLOBAL_STATS_LEN)
 102static const char e1000_gstrings_test[][ETH_GSTRING_LEN] = {
 103	"Register test  (offline)", "Eeprom test    (offline)",
 104	"Interrupt test (offline)", "Loopback test  (offline)",
 105	"Link test   (on/offline)"
 106};
 107
 108#define E1000_TEST_LEN ARRAY_SIZE(e1000_gstrings_test)
 109
 110static int e1000_get_link_ksettings(struct net_device *netdev,
 111				    struct ethtool_link_ksettings *cmd)
 112{
 113	u32 speed, supported, advertising, lp_advertising, lpa_t;
 114	struct e1000_adapter *adapter = netdev_priv(netdev);
 115	struct e1000_hw *hw = &adapter->hw;
 
 116
 117	if (hw->phy.media_type == e1000_media_type_copper) {
 118		supported = (SUPPORTED_10baseT_Half |
 119			     SUPPORTED_10baseT_Full |
 120			     SUPPORTED_100baseT_Half |
 121			     SUPPORTED_100baseT_Full |
 122			     SUPPORTED_1000baseT_Full |
 123			     SUPPORTED_Asym_Pause |
 124			     SUPPORTED_Autoneg |
 125			     SUPPORTED_Pause |
 126			     SUPPORTED_TP);
 127		if (hw->phy.type == e1000_phy_ife)
 128			supported &= ~SUPPORTED_1000baseT_Full;
 129		advertising = ADVERTISED_TP;
 130
 131		if (hw->mac.autoneg == 1) {
 132			advertising |= ADVERTISED_Autoneg;
 133			/* the e1000 autoneg seems to match ethtool nicely */
 134			advertising |= hw->phy.autoneg_advertised;
 135		}
 136
 137		cmd->base.port = PORT_TP;
 138		cmd->base.phy_address = hw->phy.addr;
 139	} else {
 140		supported   = (SUPPORTED_1000baseT_Full |
 141			       SUPPORTED_FIBRE |
 142			       SUPPORTED_Autoneg);
 143
 144		advertising = (ADVERTISED_1000baseT_Full |
 145			       ADVERTISED_FIBRE |
 146			       ADVERTISED_Autoneg);
 147
 148		cmd->base.port = PORT_FIBRE;
 149	}
 150
 151	speed = SPEED_UNKNOWN;
 152	cmd->base.duplex = DUPLEX_UNKNOWN;
 153
 154	if (netif_running(netdev)) {
 155		if (netif_carrier_ok(netdev)) {
 156			speed = adapter->link_speed;
 157			cmd->base.duplex = adapter->link_duplex - 1;
 158		}
 159	} else {
 160		u32 status = er32(STATUS);
 161
 162		if (status & E1000_STATUS_LU) {
 163			if (status & E1000_STATUS_SPEED_1000)
 164				speed = SPEED_1000;
 165			else if (status & E1000_STATUS_SPEED_100)
 166				speed = SPEED_100;
 167			else
 168				speed = SPEED_10;
 169
 170			if (status & E1000_STATUS_FD)
 171				cmd->base.duplex = DUPLEX_FULL;
 172			else
 173				cmd->base.duplex = DUPLEX_HALF;
 174		}
 175	}
 176
 177	cmd->base.speed = speed;
 178	cmd->base.autoneg = ((hw->phy.media_type == e1000_media_type_fiber) ||
 179			 hw->mac.autoneg) ? AUTONEG_ENABLE : AUTONEG_DISABLE;
 180
 181	/* MDI-X => 2; MDI =>1; Invalid =>0 */
 182	if ((hw->phy.media_type == e1000_media_type_copper) &&
 183	    netif_carrier_ok(netdev))
 184		cmd->base.eth_tp_mdix = hw->phy.is_mdix ?
 185			ETH_TP_MDI_X : ETH_TP_MDI;
 186	else
 187		cmd->base.eth_tp_mdix = ETH_TP_MDI_INVALID;
 188
 189	if (hw->phy.mdix == AUTO_ALL_MODES)
 190		cmd->base.eth_tp_mdix_ctrl = ETH_TP_MDI_AUTO;
 191	else
 192		cmd->base.eth_tp_mdix_ctrl = hw->phy.mdix;
 193
 194	if (hw->phy.media_type != e1000_media_type_copper)
 195		cmd->base.eth_tp_mdix_ctrl = ETH_TP_MDI_INVALID;
 196
 197	lpa_t = mii_stat1000_to_ethtool_lpa_t(adapter->phy_regs.stat1000);
 198	lp_advertising = lpa_t |
 199	mii_lpa_to_ethtool_lpa_t(adapter->phy_regs.lpa);
 200
 201	ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.supported,
 202						supported);
 203	ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.advertising,
 204						advertising);
 205	ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.lp_advertising,
 206						lp_advertising);
 207
 208	return 0;
 209}
 210
 211static int e1000_set_spd_dplx(struct e1000_adapter *adapter, u32 spd, u8 dplx)
 212{
 213	struct e1000_mac_info *mac = &adapter->hw.mac;
 214
 215	mac->autoneg = 0;
 216
 217	/* Make sure dplx is at most 1 bit and lsb of speed is not set
 218	 * for the switch() below to work
 219	 */
 220	if ((spd & 1) || (dplx & ~1))
 221		goto err_inval;
 222
 223	/* Fiber NICs only allow 1000 gbps Full duplex */
 224	if ((adapter->hw.phy.media_type == e1000_media_type_fiber) &&
 225	    (spd != SPEED_1000) && (dplx != DUPLEX_FULL)) {
 226		goto err_inval;
 227	}
 228
 229	switch (spd + dplx) {
 230	case SPEED_10 + DUPLEX_HALF:
 231		mac->forced_speed_duplex = ADVERTISE_10_HALF;
 232		break;
 233	case SPEED_10 + DUPLEX_FULL:
 234		mac->forced_speed_duplex = ADVERTISE_10_FULL;
 235		break;
 236	case SPEED_100 + DUPLEX_HALF:
 237		mac->forced_speed_duplex = ADVERTISE_100_HALF;
 238		break;
 239	case SPEED_100 + DUPLEX_FULL:
 240		mac->forced_speed_duplex = ADVERTISE_100_FULL;
 241		break;
 242	case SPEED_1000 + DUPLEX_FULL:
 243		if (adapter->hw.phy.media_type == e1000_media_type_copper) {
 244			mac->autoneg = 1;
 245			adapter->hw.phy.autoneg_advertised =
 246				ADVERTISE_1000_FULL;
 247		} else {
 248			mac->forced_speed_duplex = ADVERTISE_1000_FULL;
 249		}
 250		break;
 251	case SPEED_1000 + DUPLEX_HALF:	/* not supported */
 252	default:
 253		goto err_inval;
 254	}
 255
 256	/* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
 257	adapter->hw.phy.mdix = AUTO_ALL_MODES;
 258
 259	return 0;
 260
 261err_inval:
 262	e_err("Unsupported Speed/Duplex configuration\n");
 263	return -EINVAL;
 264}
 265
 266static int e1000_set_link_ksettings(struct net_device *netdev,
 267				    const struct ethtool_link_ksettings *cmd)
 268{
 269	struct e1000_adapter *adapter = netdev_priv(netdev);
 270	struct e1000_hw *hw = &adapter->hw;
 271	int ret_val = 0;
 272	u32 advertising;
 273
 274	ethtool_convert_link_mode_to_legacy_u32(&advertising,
 275						cmd->link_modes.advertising);
 276
 
 
 277	/* When SoL/IDER sessions are active, autoneg/speed/duplex
 278	 * cannot be changed
 279	 */
 280	if (hw->phy.ops.check_reset_block &&
 281	    hw->phy.ops.check_reset_block(hw)) {
 282		e_err("Cannot change link characteristics when SoL/IDER is active.\n");
 283		return -EINVAL;
 
 284	}
 285
 286	/* MDI setting is only allowed when autoneg enabled because
 287	 * some hardware doesn't allow MDI setting when speed or
 288	 * duplex is forced.
 289	 */
 290	if (cmd->base.eth_tp_mdix_ctrl) {
 291		if (hw->phy.media_type != e1000_media_type_copper)
 292			return -EOPNOTSUPP;
 
 
 293
 294		if ((cmd->base.eth_tp_mdix_ctrl != ETH_TP_MDI_AUTO) &&
 295		    (cmd->base.autoneg != AUTONEG_ENABLE)) {
 296			e_err("forcing MDI/MDI-X state is not supported when link speed and/or duplex are forced\n");
 297			return -EINVAL;
 
 298		}
 299	}
 300
 301	while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
 302		usleep_range(1000, 2000);
 303
 304	if (cmd->base.autoneg == AUTONEG_ENABLE) {
 305		hw->mac.autoneg = 1;
 306		if (hw->phy.media_type == e1000_media_type_fiber)
 307			hw->phy.autoneg_advertised = ADVERTISED_1000baseT_Full |
 308			    ADVERTISED_FIBRE | ADVERTISED_Autoneg;
 309		else
 310			hw->phy.autoneg_advertised = advertising |
 311			    ADVERTISED_TP | ADVERTISED_Autoneg;
 312		advertising = hw->phy.autoneg_advertised;
 313		if (adapter->fc_autoneg)
 314			hw->fc.requested_mode = e1000_fc_default;
 315	} else {
 316		u32 speed = cmd->base.speed;
 317		/* calling this overrides forced MDI setting */
 318		if (e1000_set_spd_dplx(adapter, speed, cmd->base.duplex)) {
 319			ret_val = -EINVAL;
 320			goto out;
 321		}
 322	}
 323
 324	/* MDI-X => 2; MDI => 1; Auto => 3 */
 325	if (cmd->base.eth_tp_mdix_ctrl) {
 326		/* fix up the value for auto (3 => 0) as zero is mapped
 327		 * internally to auto
 328		 */
 329		if (cmd->base.eth_tp_mdix_ctrl == ETH_TP_MDI_AUTO)
 330			hw->phy.mdix = AUTO_ALL_MODES;
 331		else
 332			hw->phy.mdix = cmd->base.eth_tp_mdix_ctrl;
 333	}
 334
 335	/* reset the link */
 336	if (netif_running(adapter->netdev)) {
 337		e1000e_down(adapter, true);
 338		e1000e_up(adapter);
 339	} else {
 340		e1000e_reset(adapter);
 341	}
 342
 343out:
 
 344	clear_bit(__E1000_RESETTING, &adapter->state);
 345	return ret_val;
 346}
 347
 348static void e1000_get_pauseparam(struct net_device *netdev,
 349				 struct ethtool_pauseparam *pause)
 350{
 351	struct e1000_adapter *adapter = netdev_priv(netdev);
 352	struct e1000_hw *hw = &adapter->hw;
 353
 354	pause->autoneg =
 355	    (adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
 356
 357	if (hw->fc.current_mode == e1000_fc_rx_pause) {
 358		pause->rx_pause = 1;
 359	} else if (hw->fc.current_mode == e1000_fc_tx_pause) {
 360		pause->tx_pause = 1;
 361	} else if (hw->fc.current_mode == e1000_fc_full) {
 362		pause->rx_pause = 1;
 363		pause->tx_pause = 1;
 364	}
 365}
 366
 367static int e1000_set_pauseparam(struct net_device *netdev,
 368				struct ethtool_pauseparam *pause)
 369{
 370	struct e1000_adapter *adapter = netdev_priv(netdev);
 371	struct e1000_hw *hw = &adapter->hw;
 372	int retval = 0;
 373
 374	adapter->fc_autoneg = pause->autoneg;
 375
 376	while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
 377		usleep_range(1000, 2000);
 378
 
 
 379	if (adapter->fc_autoneg == AUTONEG_ENABLE) {
 380		hw->fc.requested_mode = e1000_fc_default;
 381		if (netif_running(adapter->netdev)) {
 382			e1000e_down(adapter, true);
 383			e1000e_up(adapter);
 384		} else {
 385			e1000e_reset(adapter);
 386		}
 387	} else {
 388		if (pause->rx_pause && pause->tx_pause)
 389			hw->fc.requested_mode = e1000_fc_full;
 390		else if (pause->rx_pause && !pause->tx_pause)
 391			hw->fc.requested_mode = e1000_fc_rx_pause;
 392		else if (!pause->rx_pause && pause->tx_pause)
 393			hw->fc.requested_mode = e1000_fc_tx_pause;
 394		else if (!pause->rx_pause && !pause->tx_pause)
 395			hw->fc.requested_mode = e1000_fc_none;
 396
 397		hw->fc.current_mode = hw->fc.requested_mode;
 398
 399		if (hw->phy.media_type == e1000_media_type_fiber) {
 400			retval = hw->mac.ops.setup_link(hw);
 401			/* implicit goto out */
 402		} else {
 403			retval = e1000e_force_mac_fc(hw);
 404			if (retval)
 405				goto out;
 406			e1000e_set_fc_watermarks(hw);
 407		}
 408	}
 409
 410out:
 
 411	clear_bit(__E1000_RESETTING, &adapter->state);
 412	return retval;
 413}
 414
 415static u32 e1000_get_msglevel(struct net_device *netdev)
 416{
 417	struct e1000_adapter *adapter = netdev_priv(netdev);
 418	return adapter->msg_enable;
 419}
 420
 421static void e1000_set_msglevel(struct net_device *netdev, u32 data)
 422{
 423	struct e1000_adapter *adapter = netdev_priv(netdev);
 424	adapter->msg_enable = data;
 425}
 426
 427static int e1000_get_regs_len(struct net_device __always_unused *netdev)
 428{
 429#define E1000_REGS_LEN 32	/* overestimate */
 430	return E1000_REGS_LEN * sizeof(u32);
 431}
 432
 433static void e1000_get_regs(struct net_device *netdev,
 434			   struct ethtool_regs *regs, void *p)
 435{
 436	struct e1000_adapter *adapter = netdev_priv(netdev);
 437	struct e1000_hw *hw = &adapter->hw;
 438	u32 *regs_buff = p;
 439	u16 phy_data;
 440
 
 
 441	memset(p, 0, E1000_REGS_LEN * sizeof(u32));
 442
 443	regs->version = (1u << 24) |
 444			(adapter->pdev->revision << 16) |
 445			adapter->pdev->device;
 446
 447	regs_buff[0] = er32(CTRL);
 448	regs_buff[1] = er32(STATUS);
 449
 450	regs_buff[2] = er32(RCTL);
 451	regs_buff[3] = er32(RDLEN(0));
 452	regs_buff[4] = er32(RDH(0));
 453	regs_buff[5] = er32(RDT(0));
 454	regs_buff[6] = er32(RDTR);
 455
 456	regs_buff[7] = er32(TCTL);
 457	regs_buff[8] = er32(TDLEN(0));
 458	regs_buff[9] = er32(TDH(0));
 459	regs_buff[10] = er32(TDT(0));
 460	regs_buff[11] = er32(TIDV);
 461
 462	regs_buff[12] = adapter->hw.phy.type;	/* PHY type (IGP=1, M88=0) */
 463
 464	/* ethtool doesn't use anything past this point, so all this
 465	 * code is likely legacy junk for apps that may or may not exist
 466	 */
 467	if (hw->phy.type == e1000_phy_m88) {
 468		e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
 469		regs_buff[13] = (u32)phy_data; /* cable length */
 470		regs_buff[14] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
 471		regs_buff[15] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
 472		regs_buff[16] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
 473		e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
 474		regs_buff[17] = (u32)phy_data; /* extended 10bt distance */
 475		regs_buff[18] = regs_buff[13]; /* cable polarity */
 476		regs_buff[19] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
 477		regs_buff[20] = regs_buff[17]; /* polarity correction */
 478		/* phy receive errors */
 479		regs_buff[22] = adapter->phy_stats.receive_errors;
 480		regs_buff[23] = regs_buff[13]; /* mdix mode */
 481	}
 482	regs_buff[21] = 0;	/* was idle_errors */
 483	e1e_rphy(hw, MII_STAT1000, &phy_data);
 484	regs_buff[24] = (u32)phy_data;	/* phy local receiver status */
 485	regs_buff[25] = regs_buff[24];	/* phy remote receiver status */
 
 
 486}
 487
 488static int e1000_get_eeprom_len(struct net_device *netdev)
 489{
 490	struct e1000_adapter *adapter = netdev_priv(netdev);
 491	return adapter->hw.nvm.word_size * 2;
 492}
 493
 494static int e1000_get_eeprom(struct net_device *netdev,
 495			    struct ethtool_eeprom *eeprom, u8 *bytes)
 496{
 497	struct e1000_adapter *adapter = netdev_priv(netdev);
 498	struct e1000_hw *hw = &adapter->hw;
 499	u16 *eeprom_buff;
 500	int first_word;
 501	int last_word;
 502	int ret_val = 0;
 503	u16 i;
 504
 505	if (eeprom->len == 0)
 506		return -EINVAL;
 507
 508	eeprom->magic = adapter->pdev->vendor | (adapter->pdev->device << 16);
 509
 510	first_word = eeprom->offset >> 1;
 511	last_word = (eeprom->offset + eeprom->len - 1) >> 1;
 512
 513	eeprom_buff = kmalloc_array(last_word - first_word + 1, sizeof(u16),
 514				    GFP_KERNEL);
 515	if (!eeprom_buff)
 516		return -ENOMEM;
 517
 
 
 518	if (hw->nvm.type == e1000_nvm_eeprom_spi) {
 519		ret_val = e1000_read_nvm(hw, first_word,
 520					 last_word - first_word + 1,
 521					 eeprom_buff);
 522	} else {
 523		for (i = 0; i < last_word - first_word + 1; i++) {
 524			ret_val = e1000_read_nvm(hw, first_word + i, 1,
 525						 &eeprom_buff[i]);
 526			if (ret_val)
 527				break;
 528		}
 529	}
 530
 
 
 531	if (ret_val) {
 532		/* a read error occurred, throw away the result */
 533		memset(eeprom_buff, 0xff, sizeof(u16) *
 534		       (last_word - first_word + 1));
 535	} else {
 536		/* Device's eeprom is always little-endian, word addressable */
 537		for (i = 0; i < last_word - first_word + 1; i++)
 538			le16_to_cpus(&eeprom_buff[i]);
 539	}
 540
 541	memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1), eeprom->len);
 542	kfree(eeprom_buff);
 543
 544	return ret_val;
 545}
 546
 547static int e1000_set_eeprom(struct net_device *netdev,
 548			    struct ethtool_eeprom *eeprom, u8 *bytes)
 549{
 550	struct e1000_adapter *adapter = netdev_priv(netdev);
 551	struct e1000_hw *hw = &adapter->hw;
 552	u16 *eeprom_buff;
 553	void *ptr;
 554	int max_len;
 555	int first_word;
 556	int last_word;
 557	int ret_val = 0;
 558	u16 i;
 559
 560	if (eeprom->len == 0)
 561		return -EOPNOTSUPP;
 562
 563	if (eeprom->magic !=
 564	    (adapter->pdev->vendor | (adapter->pdev->device << 16)))
 565		return -EFAULT;
 566
 567	if (adapter->flags & FLAG_READ_ONLY_NVM)
 568		return -EINVAL;
 569
 570	max_len = hw->nvm.word_size * 2;
 571
 572	first_word = eeprom->offset >> 1;
 573	last_word = (eeprom->offset + eeprom->len - 1) >> 1;
 574	eeprom_buff = kmalloc(max_len, GFP_KERNEL);
 575	if (!eeprom_buff)
 576		return -ENOMEM;
 577
 578	ptr = (void *)eeprom_buff;
 579
 
 
 580	if (eeprom->offset & 1) {
 581		/* need read/modify/write of first changed EEPROM word */
 582		/* only the second byte of the word is being modified */
 583		ret_val = e1000_read_nvm(hw, first_word, 1, &eeprom_buff[0]);
 584		ptr++;
 585	}
 586	if (((eeprom->offset + eeprom->len) & 1) && (!ret_val))
 587		/* need read/modify/write of last changed EEPROM word */
 588		/* only the first byte of the word is being modified */
 589		ret_val = e1000_read_nvm(hw, last_word, 1,
 590					 &eeprom_buff[last_word - first_word]);
 591
 592	if (ret_val)
 593		goto out;
 594
 595	/* Device's eeprom is always little-endian, word addressable */
 596	for (i = 0; i < last_word - first_word + 1; i++)
 597		le16_to_cpus(&eeprom_buff[i]);
 598
 599	memcpy(ptr, bytes, eeprom->len);
 600
 601	for (i = 0; i < last_word - first_word + 1; i++)
 602		cpu_to_le16s(&eeprom_buff[i]);
 603
 604	ret_val = e1000_write_nvm(hw, first_word,
 605				  last_word - first_word + 1, eeprom_buff);
 606
 607	if (ret_val)
 608		goto out;
 609
 610	/* Update the checksum over the first part of the EEPROM if needed
 611	 * and flush shadow RAM for applicable controllers
 612	 */
 613	if ((first_word <= NVM_CHECKSUM_REG) ||
 614	    (hw->mac.type == e1000_82583) ||
 615	    (hw->mac.type == e1000_82574) ||
 616	    (hw->mac.type == e1000_82573))
 617		ret_val = e1000e_update_nvm_checksum(hw);
 618
 619out:
 
 620	kfree(eeprom_buff);
 621	return ret_val;
 622}
 623
 624static void e1000_get_drvinfo(struct net_device *netdev,
 625			      struct ethtool_drvinfo *drvinfo)
 626{
 627	struct e1000_adapter *adapter = netdev_priv(netdev);
 628
 629	strscpy(drvinfo->driver, e1000e_driver_name, sizeof(drvinfo->driver));
 
 
 630
 631	/* EEPROM image version # is reported as firmware version # for
 632	 * PCI-E controllers
 633	 */
 634	snprintf(drvinfo->fw_version, sizeof(drvinfo->fw_version),
 635		 "%d.%d-%d",
 636		 FIELD_GET(0xF000, adapter->eeprom_vers),
 637		 FIELD_GET(0x0FF0, adapter->eeprom_vers),
 638		 (adapter->eeprom_vers & 0x000F));
 639
 640	strscpy(drvinfo->bus_info, pci_name(adapter->pdev),
 641		sizeof(drvinfo->bus_info));
 642}
 643
 644static void e1000_get_ringparam(struct net_device *netdev,
 645				struct ethtool_ringparam *ring,
 646				struct kernel_ethtool_ringparam *kernel_ring,
 647				struct netlink_ext_ack *extack)
 648{
 649	struct e1000_adapter *adapter = netdev_priv(netdev);
 650
 651	ring->rx_max_pending = E1000_MAX_RXD;
 652	ring->tx_max_pending = E1000_MAX_TXD;
 653	ring->rx_pending = adapter->rx_ring_count;
 654	ring->tx_pending = adapter->tx_ring_count;
 655}
 656
 657static int e1000_set_ringparam(struct net_device *netdev,
 658			       struct ethtool_ringparam *ring,
 659			       struct kernel_ethtool_ringparam *kernel_ring,
 660			       struct netlink_ext_ack *extack)
 661{
 662	struct e1000_adapter *adapter = netdev_priv(netdev);
 663	struct e1000_ring *temp_tx = NULL, *temp_rx = NULL;
 664	int err = 0, size = sizeof(struct e1000_ring);
 665	bool set_tx = false, set_rx = false;
 666	u16 new_rx_count, new_tx_count;
 667
 668	if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
 669		return -EINVAL;
 670
 671	new_rx_count = clamp_t(u32, ring->rx_pending, E1000_MIN_RXD,
 672			       E1000_MAX_RXD);
 673	new_rx_count = ALIGN(new_rx_count, REQ_RX_DESCRIPTOR_MULTIPLE);
 674
 675	new_tx_count = clamp_t(u32, ring->tx_pending, E1000_MIN_TXD,
 676			       E1000_MAX_TXD);
 677	new_tx_count = ALIGN(new_tx_count, REQ_TX_DESCRIPTOR_MULTIPLE);
 678
 679	if ((new_tx_count == adapter->tx_ring_count) &&
 680	    (new_rx_count == adapter->rx_ring_count))
 681		/* nothing to do */
 682		return 0;
 683
 684	while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
 685		usleep_range(1000, 2000);
 686
 687	if (!netif_running(adapter->netdev)) {
 688		/* Set counts now and allocate resources during open() */
 689		adapter->tx_ring->count = new_tx_count;
 690		adapter->rx_ring->count = new_rx_count;
 691		adapter->tx_ring_count = new_tx_count;
 692		adapter->rx_ring_count = new_rx_count;
 693		goto clear_reset;
 694	}
 695
 696	set_tx = (new_tx_count != adapter->tx_ring_count);
 697	set_rx = (new_rx_count != adapter->rx_ring_count);
 698
 699	/* Allocate temporary storage for ring updates */
 700	if (set_tx) {
 701		temp_tx = vmalloc(size);
 702		if (!temp_tx) {
 703			err = -ENOMEM;
 704			goto free_temp;
 705		}
 706	}
 707	if (set_rx) {
 708		temp_rx = vmalloc(size);
 709		if (!temp_rx) {
 710			err = -ENOMEM;
 711			goto free_temp;
 712		}
 713	}
 714
 
 
 715	e1000e_down(adapter, true);
 716
 717	/* We can't just free everything and then setup again, because the
 718	 * ISRs in MSI-X mode get passed pointers to the Tx and Rx ring
 719	 * structs.  First, attempt to allocate new resources...
 720	 */
 721	if (set_tx) {
 722		memcpy(temp_tx, adapter->tx_ring, size);
 723		temp_tx->count = new_tx_count;
 724		err = e1000e_setup_tx_resources(temp_tx);
 725		if (err)
 726			goto err_setup;
 727	}
 728	if (set_rx) {
 729		memcpy(temp_rx, adapter->rx_ring, size);
 730		temp_rx->count = new_rx_count;
 731		err = e1000e_setup_rx_resources(temp_rx);
 732		if (err)
 733			goto err_setup_rx;
 734	}
 735
 736	/* ...then free the old resources and copy back any new ring data */
 737	if (set_tx) {
 738		e1000e_free_tx_resources(adapter->tx_ring);
 739		memcpy(adapter->tx_ring, temp_tx, size);
 740		adapter->tx_ring_count = new_tx_count;
 741	}
 742	if (set_rx) {
 743		e1000e_free_rx_resources(adapter->rx_ring);
 744		memcpy(adapter->rx_ring, temp_rx, size);
 745		adapter->rx_ring_count = new_rx_count;
 746	}
 747
 748err_setup_rx:
 749	if (err && set_tx)
 750		e1000e_free_tx_resources(temp_tx);
 751err_setup:
 752	e1000e_up(adapter);
 
 753free_temp:
 754	vfree(temp_tx);
 755	vfree(temp_rx);
 756clear_reset:
 757	clear_bit(__E1000_RESETTING, &adapter->state);
 758	return err;
 759}
 760
 761static bool reg_pattern_test(struct e1000_adapter *adapter, u64 *data,
 762			     int reg, int offset, u32 mask, u32 write)
 763{
 764	u32 pat, val;
 765	static const u32 test[] = {
 766		0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF
 767	};
 768	for (pat = 0; pat < ARRAY_SIZE(test); pat++) {
 769		E1000_WRITE_REG_ARRAY(&adapter->hw, reg, offset,
 770				      (test[pat] & write));
 771		val = E1000_READ_REG_ARRAY(&adapter->hw, reg, offset);
 772		if (val != (test[pat] & write & mask)) {
 773			e_err("pattern test failed (reg 0x%05X): got 0x%08X expected 0x%08X\n",
 774			      reg + (offset << 2), val,
 775			      (test[pat] & write & mask));
 776			*data = reg;
 777			return true;
 778		}
 779	}
 780	return false;
 781}
 782
 783static bool reg_set_and_check(struct e1000_adapter *adapter, u64 *data,
 784			      int reg, u32 mask, u32 write)
 785{
 786	u32 val;
 787
 788	__ew32(&adapter->hw, reg, write & mask);
 789	val = __er32(&adapter->hw, reg);
 790	if ((write & mask) != (val & mask)) {
 791		e_err("set/check test failed (reg 0x%05X): got 0x%08X expected 0x%08X\n",
 792		      reg, (val & mask), (write & mask));
 793		*data = reg;
 794		return true;
 795	}
 796	return false;
 797}
 798
 799#define REG_PATTERN_TEST_ARRAY(reg, offset, mask, write)                       \
 800	do {                                                                   \
 801		if (reg_pattern_test(adapter, data, reg, offset, mask, write)) \
 802			return 1;                                              \
 803	} while (0)
 804#define REG_PATTERN_TEST(reg, mask, write)                                     \
 805	REG_PATTERN_TEST_ARRAY(reg, 0, mask, write)
 806
 807#define REG_SET_AND_CHECK(reg, mask, write)                                    \
 808	do {                                                                   \
 809		if (reg_set_and_check(adapter, data, reg, mask, write))        \
 810			return 1;                                              \
 811	} while (0)
 812
 813static int e1000_reg_test(struct e1000_adapter *adapter, u64 *data)
 814{
 815	struct e1000_hw *hw = &adapter->hw;
 816	struct e1000_mac_info *mac = &adapter->hw.mac;
 817	u32 value;
 818	u32 before;
 819	u32 after;
 820	u32 i;
 821	u32 toggle;
 822	u32 mask;
 823	u32 wlock_mac = 0;
 824
 825	/* The status register is Read Only, so a write should fail.
 826	 * Some bits that get toggled are ignored.  There are several bits
 827	 * on newer hardware that are r/w.
 828	 */
 829	switch (mac->type) {
 830	case e1000_82571:
 831	case e1000_82572:
 832	case e1000_80003es2lan:
 833		toggle = 0x7FFFF3FF;
 834		break;
 835	default:
 836		toggle = 0x7FFFF033;
 837		break;
 838	}
 839
 840	before = er32(STATUS);
 841	value = (er32(STATUS) & toggle);
 842	ew32(STATUS, toggle);
 843	after = er32(STATUS) & toggle;
 844	if (value != after) {
 845		e_err("failed STATUS register test got: 0x%08X expected: 0x%08X\n",
 846		      after, value);
 847		*data = 1;
 848		return 1;
 849	}
 850	/* restore previous status */
 851	ew32(STATUS, before);
 852
 853	if (!(adapter->flags & FLAG_IS_ICH)) {
 854		REG_PATTERN_TEST(E1000_FCAL, 0xFFFFFFFF, 0xFFFFFFFF);
 855		REG_PATTERN_TEST(E1000_FCAH, 0x0000FFFF, 0xFFFFFFFF);
 856		REG_PATTERN_TEST(E1000_FCT, 0x0000FFFF, 0xFFFFFFFF);
 857		REG_PATTERN_TEST(E1000_VET, 0x0000FFFF, 0xFFFFFFFF);
 858	}
 859
 860	REG_PATTERN_TEST(E1000_RDTR, 0x0000FFFF, 0xFFFFFFFF);
 861	REG_PATTERN_TEST(E1000_RDBAH(0), 0xFFFFFFFF, 0xFFFFFFFF);
 862	REG_PATTERN_TEST(E1000_RDLEN(0), 0x000FFF80, 0x000FFFFF);
 863	REG_PATTERN_TEST(E1000_RDH(0), 0x0000FFFF, 0x0000FFFF);
 864	REG_PATTERN_TEST(E1000_RDT(0), 0x0000FFFF, 0x0000FFFF);
 865	REG_PATTERN_TEST(E1000_FCRTH, 0x0000FFF8, 0x0000FFF8);
 866	REG_PATTERN_TEST(E1000_FCTTV, 0x0000FFFF, 0x0000FFFF);
 867	REG_PATTERN_TEST(E1000_TIPG, 0x3FFFFFFF, 0x3FFFFFFF);
 868	REG_PATTERN_TEST(E1000_TDBAH(0), 0xFFFFFFFF, 0xFFFFFFFF);
 869	REG_PATTERN_TEST(E1000_TDLEN(0), 0x000FFF80, 0x000FFFFF);
 870
 871	REG_SET_AND_CHECK(E1000_RCTL, 0xFFFFFFFF, 0x00000000);
 872
 873	before = ((adapter->flags & FLAG_IS_ICH) ? 0x06C3B33E : 0x06DFB3FE);
 874	REG_SET_AND_CHECK(E1000_RCTL, before, 0x003FFFFB);
 875	REG_SET_AND_CHECK(E1000_TCTL, 0xFFFFFFFF, 0x00000000);
 876
 877	REG_SET_AND_CHECK(E1000_RCTL, before, 0xFFFFFFFF);
 878	REG_PATTERN_TEST(E1000_RDBAL(0), 0xFFFFFFF0, 0xFFFFFFFF);
 879	if (!(adapter->flags & FLAG_IS_ICH))
 880		REG_PATTERN_TEST(E1000_TXCW, 0xC000FFFF, 0x0000FFFF);
 881	REG_PATTERN_TEST(E1000_TDBAL(0), 0xFFFFFFF0, 0xFFFFFFFF);
 882	REG_PATTERN_TEST(E1000_TIDV, 0x0000FFFF, 0x0000FFFF);
 883	mask = 0x8003FFFF;
 884	switch (mac->type) {
 885	case e1000_ich10lan:
 886	case e1000_pchlan:
 887	case e1000_pch2lan:
 888	case e1000_pch_lpt:
 889	case e1000_pch_spt:
 
 890	case e1000_pch_cnp:
 891	case e1000_pch_tgp:
 892	case e1000_pch_adp:
 893	case e1000_pch_mtp:
 894	case e1000_pch_lnp:
 895	case e1000_pch_ptp:
 896	case e1000_pch_nvp:
 897		mask |= BIT(18);
 898		break;
 899	default:
 900		break;
 901	}
 902
 903	if (mac->type >= e1000_pch_lpt)
 904		wlock_mac = FIELD_GET(E1000_FWSM_WLOCK_MAC_MASK, er32(FWSM));
 
 905
 906	for (i = 0; i < mac->rar_entry_count; i++) {
 907		if (mac->type >= e1000_pch_lpt) {
 908			/* Cannot test write-protected SHRAL[n] registers */
 909			if ((wlock_mac == 1) || (wlock_mac && (i > wlock_mac)))
 910				continue;
 911
 912			/* SHRAH[9] different than the others */
 913			if (i == 10)
 914				mask |= BIT(30);
 915			else
 916				mask &= ~BIT(30);
 917		}
 918		if (mac->type == e1000_pch2lan) {
 919			/* SHRAH[0,1,2] different than previous */
 920			if (i == 1)
 921				mask &= 0xFFF4FFFF;
 922			/* SHRAH[3] different than SHRAH[0,1,2] */
 923			if (i == 4)
 924				mask |= BIT(30);
 925			/* RAR[1-6] owned by management engine - skipping */
 926			if (i > 0)
 927				i += 6;
 928		}
 929
 930		REG_PATTERN_TEST_ARRAY(E1000_RA, ((i << 1) + 1), mask,
 931				       0xFFFFFFFF);
 932		/* reset index to actual value */
 933		if ((mac->type == e1000_pch2lan) && (i > 6))
 934			i -= 6;
 935	}
 936
 937	for (i = 0; i < mac->mta_reg_count; i++)
 938		REG_PATTERN_TEST_ARRAY(E1000_MTA, i, 0xFFFFFFFF, 0xFFFFFFFF);
 939
 940	*data = 0;
 941
 942	return 0;
 943}
 944
 945static int e1000_eeprom_test(struct e1000_adapter *adapter, u64 *data)
 946{
 947	u16 temp;
 948	u16 checksum = 0;
 949	u16 i;
 950
 951	*data = 0;
 952	/* Read and add up the contents of the EEPROM */
 953	for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) {
 954		if ((e1000_read_nvm(&adapter->hw, i, 1, &temp)) < 0) {
 955			*data = 1;
 956			return *data;
 957		}
 958		checksum += temp;
 959	}
 960
 961	/* If Checksum is not Correct return error else test passed */
 962	if ((checksum != (u16)NVM_SUM) && !(*data))
 963		*data = 2;
 964
 965	return *data;
 966}
 967
 968static irqreturn_t e1000_test_intr(int __always_unused irq, void *data)
 969{
 970	struct net_device *netdev = (struct net_device *)data;
 971	struct e1000_adapter *adapter = netdev_priv(netdev);
 972	struct e1000_hw *hw = &adapter->hw;
 973
 974	adapter->test_icr |= er32(ICR);
 975
 976	return IRQ_HANDLED;
 977}
 978
 979static int e1000_intr_test(struct e1000_adapter *adapter, u64 *data)
 980{
 981	struct net_device *netdev = adapter->netdev;
 982	struct e1000_hw *hw = &adapter->hw;
 983	u32 mask;
 984	u32 shared_int = 1;
 985	u32 irq = adapter->pdev->irq;
 986	int i;
 987	int ret_val = 0;
 988	int int_mode = E1000E_INT_MODE_LEGACY;
 989
 990	*data = 0;
 991
 992	/* NOTE: we don't test MSI/MSI-X interrupts here, yet */
 993	if (adapter->int_mode == E1000E_INT_MODE_MSIX) {
 994		int_mode = adapter->int_mode;
 995		e1000e_reset_interrupt_capability(adapter);
 996		adapter->int_mode = E1000E_INT_MODE_LEGACY;
 997		e1000e_set_interrupt_capability(adapter);
 998	}
 999	/* Hook up test interrupt handler just for this test */
1000	if (!request_irq(irq, e1000_test_intr, IRQF_PROBE_SHARED, netdev->name,
1001			 netdev)) {
1002		shared_int = 0;
1003	} else if (request_irq(irq, e1000_test_intr, IRQF_SHARED, netdev->name,
1004			       netdev)) {
1005		*data = 1;
1006		ret_val = -1;
1007		goto out;
1008	}
1009	e_info("testing %s interrupt\n", (shared_int ? "shared" : "unshared"));
1010
1011	/* Disable all the interrupts */
1012	ew32(IMC, 0xFFFFFFFF);
1013	e1e_flush();
1014	usleep_range(10000, 11000);
1015
1016	/* Test each interrupt */
1017	for (i = 0; i < 10; i++) {
1018		/* Interrupt to test */
1019		mask = BIT(i);
1020
1021		if (adapter->flags & FLAG_IS_ICH) {
1022			switch (mask) {
1023			case E1000_ICR_RXSEQ:
1024				continue;
1025			case 0x00000100:
1026				if (adapter->hw.mac.type == e1000_ich8lan ||
1027				    adapter->hw.mac.type == e1000_ich9lan)
1028					continue;
1029				break;
1030			default:
1031				break;
1032			}
1033		}
1034
1035		if (!shared_int) {
1036			/* Disable the interrupt to be reported in
1037			 * the cause register and then force the same
1038			 * interrupt and see if one gets posted.  If
1039			 * an interrupt was posted to the bus, the
1040			 * test failed.
1041			 */
1042			adapter->test_icr = 0;
1043			ew32(IMC, mask);
1044			ew32(ICS, mask);
1045			e1e_flush();
1046			usleep_range(10000, 11000);
1047
1048			if (adapter->test_icr & mask) {
1049				*data = 3;
1050				break;
1051			}
1052		}
1053
1054		/* Enable the interrupt to be reported in
1055		 * the cause register and then force the same
1056		 * interrupt and see if one gets posted.  If
1057		 * an interrupt was not posted to the bus, the
1058		 * test failed.
1059		 */
1060		adapter->test_icr = 0;
1061		ew32(IMS, mask);
1062		ew32(ICS, mask);
1063		e1e_flush();
1064		usleep_range(10000, 11000);
1065
1066		if (!(adapter->test_icr & mask)) {
1067			*data = 4;
1068			break;
1069		}
1070
1071		if (!shared_int) {
1072			/* Disable the other interrupts to be reported in
1073			 * the cause register and then force the other
1074			 * interrupts and see if any get posted.  If
1075			 * an interrupt was posted to the bus, the
1076			 * test failed.
1077			 */
1078			adapter->test_icr = 0;
1079			ew32(IMC, ~mask & 0x00007FFF);
1080			ew32(ICS, ~mask & 0x00007FFF);
1081			e1e_flush();
1082			usleep_range(10000, 11000);
1083
1084			if (adapter->test_icr) {
1085				*data = 5;
1086				break;
1087			}
1088		}
1089	}
1090
1091	/* Disable all the interrupts */
1092	ew32(IMC, 0xFFFFFFFF);
1093	e1e_flush();
1094	usleep_range(10000, 11000);
1095
1096	/* Unhook test interrupt handler */
1097	free_irq(irq, netdev);
1098
1099out:
1100	if (int_mode == E1000E_INT_MODE_MSIX) {
1101		e1000e_reset_interrupt_capability(adapter);
1102		adapter->int_mode = int_mode;
1103		e1000e_set_interrupt_capability(adapter);
1104	}
1105
1106	return ret_val;
1107}
1108
1109static void e1000_free_desc_rings(struct e1000_adapter *adapter)
1110{
1111	struct e1000_ring *tx_ring = &adapter->test_tx_ring;
1112	struct e1000_ring *rx_ring = &adapter->test_rx_ring;
1113	struct pci_dev *pdev = adapter->pdev;
1114	struct e1000_buffer *buffer_info;
1115	int i;
1116
1117	if (tx_ring->desc && tx_ring->buffer_info) {
1118		for (i = 0; i < tx_ring->count; i++) {
1119			buffer_info = &tx_ring->buffer_info[i];
1120
1121			if (buffer_info->dma)
1122				dma_unmap_single(&pdev->dev,
1123						 buffer_info->dma,
1124						 buffer_info->length,
1125						 DMA_TO_DEVICE);
1126			dev_kfree_skb(buffer_info->skb);
1127		}
1128	}
1129
1130	if (rx_ring->desc && rx_ring->buffer_info) {
1131		for (i = 0; i < rx_ring->count; i++) {
1132			buffer_info = &rx_ring->buffer_info[i];
1133
1134			if (buffer_info->dma)
1135				dma_unmap_single(&pdev->dev,
1136						 buffer_info->dma,
1137						 2048, DMA_FROM_DEVICE);
1138			dev_kfree_skb(buffer_info->skb);
1139		}
1140	}
1141
1142	if (tx_ring->desc) {
1143		dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
1144				  tx_ring->dma);
1145		tx_ring->desc = NULL;
1146	}
1147	if (rx_ring->desc) {
1148		dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
1149				  rx_ring->dma);
1150		rx_ring->desc = NULL;
1151	}
1152
1153	kfree(tx_ring->buffer_info);
1154	tx_ring->buffer_info = NULL;
1155	kfree(rx_ring->buffer_info);
1156	rx_ring->buffer_info = NULL;
1157}
1158
1159static int e1000_setup_desc_rings(struct e1000_adapter *adapter)
1160{
1161	struct e1000_ring *tx_ring = &adapter->test_tx_ring;
1162	struct e1000_ring *rx_ring = &adapter->test_rx_ring;
1163	struct pci_dev *pdev = adapter->pdev;
1164	struct e1000_hw *hw = &adapter->hw;
1165	u32 rctl;
1166	int i;
1167	int ret_val;
1168
1169	/* Setup Tx descriptor ring and Tx buffers */
1170
1171	if (!tx_ring->count)
1172		tx_ring->count = E1000_DEFAULT_TXD;
1173
1174	tx_ring->buffer_info = kcalloc(tx_ring->count,
1175				       sizeof(struct e1000_buffer), GFP_KERNEL);
1176	if (!tx_ring->buffer_info) {
1177		ret_val = 1;
1178		goto err_nomem;
1179	}
1180
1181	tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
1182	tx_ring->size = ALIGN(tx_ring->size, 4096);
1183	tx_ring->desc = dma_alloc_coherent(&pdev->dev, tx_ring->size,
1184					   &tx_ring->dma, GFP_KERNEL);
1185	if (!tx_ring->desc) {
1186		ret_val = 2;
1187		goto err_nomem;
1188	}
1189	tx_ring->next_to_use = 0;
1190	tx_ring->next_to_clean = 0;
1191
1192	ew32(TDBAL(0), ((u64)tx_ring->dma & 0x00000000FFFFFFFF));
1193	ew32(TDBAH(0), ((u64)tx_ring->dma >> 32));
1194	ew32(TDLEN(0), tx_ring->count * sizeof(struct e1000_tx_desc));
1195	ew32(TDH(0), 0);
1196	ew32(TDT(0), 0);
1197	ew32(TCTL, E1000_TCTL_PSP | E1000_TCTL_EN | E1000_TCTL_MULR |
1198	     E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT |
1199	     E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT);
1200
1201	for (i = 0; i < tx_ring->count; i++) {
1202		struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*tx_ring, i);
1203		struct sk_buff *skb;
1204		unsigned int skb_size = 1024;
1205
1206		skb = alloc_skb(skb_size, GFP_KERNEL);
1207		if (!skb) {
1208			ret_val = 3;
1209			goto err_nomem;
1210		}
1211		skb_put(skb, skb_size);
1212		tx_ring->buffer_info[i].skb = skb;
1213		tx_ring->buffer_info[i].length = skb->len;
1214		tx_ring->buffer_info[i].dma =
1215		    dma_map_single(&pdev->dev, skb->data, skb->len,
1216				   DMA_TO_DEVICE);
1217		if (dma_mapping_error(&pdev->dev,
1218				      tx_ring->buffer_info[i].dma)) {
1219			ret_val = 4;
1220			goto err_nomem;
1221		}
1222		tx_desc->buffer_addr = cpu_to_le64(tx_ring->buffer_info[i].dma);
1223		tx_desc->lower.data = cpu_to_le32(skb->len);
1224		tx_desc->lower.data |= cpu_to_le32(E1000_TXD_CMD_EOP |
1225						   E1000_TXD_CMD_IFCS |
1226						   E1000_TXD_CMD_RS);
1227		tx_desc->upper.data = 0;
1228	}
1229
1230	/* Setup Rx descriptor ring and Rx buffers */
1231
1232	if (!rx_ring->count)
1233		rx_ring->count = E1000_DEFAULT_RXD;
1234
1235	rx_ring->buffer_info = kcalloc(rx_ring->count,
1236				       sizeof(struct e1000_buffer), GFP_KERNEL);
1237	if (!rx_ring->buffer_info) {
1238		ret_val = 5;
1239		goto err_nomem;
1240	}
1241
1242	rx_ring->size = rx_ring->count * sizeof(union e1000_rx_desc_extended);
1243	rx_ring->desc = dma_alloc_coherent(&pdev->dev, rx_ring->size,
1244					   &rx_ring->dma, GFP_KERNEL);
1245	if (!rx_ring->desc) {
1246		ret_val = 6;
1247		goto err_nomem;
1248	}
1249	rx_ring->next_to_use = 0;
1250	rx_ring->next_to_clean = 0;
1251
1252	rctl = er32(RCTL);
1253	if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX))
1254		ew32(RCTL, rctl & ~E1000_RCTL_EN);
1255	ew32(RDBAL(0), ((u64)rx_ring->dma & 0xFFFFFFFF));
1256	ew32(RDBAH(0), ((u64)rx_ring->dma >> 32));
1257	ew32(RDLEN(0), rx_ring->size);
1258	ew32(RDH(0), 0);
1259	ew32(RDT(0), 0);
1260	rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_SZ_2048 |
1261	    E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_LPE |
1262	    E1000_RCTL_SBP | E1000_RCTL_SECRC |
1263	    E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1264	    (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
1265	ew32(RCTL, rctl);
1266
1267	for (i = 0; i < rx_ring->count; i++) {
1268		union e1000_rx_desc_extended *rx_desc;
1269		struct sk_buff *skb;
1270
1271		skb = alloc_skb(2048 + NET_IP_ALIGN, GFP_KERNEL);
1272		if (!skb) {
1273			ret_val = 7;
1274			goto err_nomem;
1275		}
1276		skb_reserve(skb, NET_IP_ALIGN);
1277		rx_ring->buffer_info[i].skb = skb;
1278		rx_ring->buffer_info[i].dma =
1279		    dma_map_single(&pdev->dev, skb->data, 2048,
1280				   DMA_FROM_DEVICE);
1281		if (dma_mapping_error(&pdev->dev,
1282				      rx_ring->buffer_info[i].dma)) {
1283			ret_val = 8;
1284			goto err_nomem;
1285		}
1286		rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
1287		rx_desc->read.buffer_addr =
1288		    cpu_to_le64(rx_ring->buffer_info[i].dma);
1289		memset(skb->data, 0x00, skb->len);
1290	}
1291
1292	return 0;
1293
1294err_nomem:
1295	e1000_free_desc_rings(adapter);
1296	return ret_val;
1297}
1298
1299static void e1000_phy_disable_receiver(struct e1000_adapter *adapter)
1300{
1301	/* Write out to PHY registers 29 and 30 to disable the Receiver. */
1302	e1e_wphy(&adapter->hw, 29, 0x001F);
1303	e1e_wphy(&adapter->hw, 30, 0x8FFC);
1304	e1e_wphy(&adapter->hw, 29, 0x001A);
1305	e1e_wphy(&adapter->hw, 30, 0x8FF0);
1306}
1307
1308static int e1000_integrated_phy_loopback(struct e1000_adapter *adapter)
1309{
1310	struct e1000_hw *hw = &adapter->hw;
1311	u32 ctrl_reg = 0;
1312	u16 phy_reg = 0;
1313	s32 ret_val = 0;
1314
1315	hw->mac.autoneg = 0;
1316
1317	if (hw->phy.type == e1000_phy_ife) {
1318		/* force 100, set loopback */
1319		e1e_wphy(hw, MII_BMCR, 0x6100);
1320
1321		/* Now set up the MAC to the same speed/duplex as the PHY. */
1322		ctrl_reg = er32(CTRL);
1323		ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1324		ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1325			     E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1326			     E1000_CTRL_SPD_100 |/* Force Speed to 100 */
1327			     E1000_CTRL_FD);	 /* Force Duplex to FULL */
1328
1329		ew32(CTRL, ctrl_reg);
1330		e1e_flush();
1331		usleep_range(500, 1000);
1332
1333		return 0;
1334	}
1335
1336	/* Specific PHY configuration for loopback */
1337	switch (hw->phy.type) {
1338	case e1000_phy_m88:
1339		/* Auto-MDI/MDIX Off */
1340		e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, 0x0808);
1341		/* reset to update Auto-MDI/MDIX */
1342		e1e_wphy(hw, MII_BMCR, 0x9140);
1343		/* autoneg off */
1344		e1e_wphy(hw, MII_BMCR, 0x8140);
1345		break;
1346	case e1000_phy_gg82563:
1347		e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, 0x1CC);
1348		break;
1349	case e1000_phy_bm:
1350		/* Set Default MAC Interface speed to 1GB */
1351		e1e_rphy(hw, PHY_REG(2, 21), &phy_reg);
1352		phy_reg &= ~0x0007;
1353		phy_reg |= 0x006;
1354		e1e_wphy(hw, PHY_REG(2, 21), phy_reg);
1355		/* Assert SW reset for above settings to take effect */
1356		hw->phy.ops.commit(hw);
1357		usleep_range(1000, 2000);
1358		/* Force Full Duplex */
1359		e1e_rphy(hw, PHY_REG(769, 16), &phy_reg);
1360		e1e_wphy(hw, PHY_REG(769, 16), phy_reg | 0x000C);
1361		/* Set Link Up (in force link) */
1362		e1e_rphy(hw, PHY_REG(776, 16), &phy_reg);
1363		e1e_wphy(hw, PHY_REG(776, 16), phy_reg | 0x0040);
1364		/* Force Link */
1365		e1e_rphy(hw, PHY_REG(769, 16), &phy_reg);
1366		e1e_wphy(hw, PHY_REG(769, 16), phy_reg | 0x0040);
1367		/* Set Early Link Enable */
1368		e1e_rphy(hw, PHY_REG(769, 20), &phy_reg);
1369		e1e_wphy(hw, PHY_REG(769, 20), phy_reg | 0x0400);
1370		break;
1371	case e1000_phy_82577:
1372	case e1000_phy_82578:
1373		/* Workaround: K1 must be disabled for stable 1Gbps operation */
1374		ret_val = hw->phy.ops.acquire(hw);
1375		if (ret_val) {
1376			e_err("Cannot setup 1Gbps loopback.\n");
1377			return ret_val;
1378		}
1379		e1000_configure_k1_ich8lan(hw, false);
1380		hw->phy.ops.release(hw);
1381		break;
1382	case e1000_phy_82579:
1383		/* Disable PHY energy detect power down */
1384		e1e_rphy(hw, PHY_REG(0, 21), &phy_reg);
1385		e1e_wphy(hw, PHY_REG(0, 21), phy_reg & ~BIT(3));
1386		/* Disable full chip energy detect */
1387		e1e_rphy(hw, PHY_REG(776, 18), &phy_reg);
1388		e1e_wphy(hw, PHY_REG(776, 18), phy_reg | 1);
1389		/* Enable loopback on the PHY */
1390		e1e_wphy(hw, I82577_PHY_LBK_CTRL, 0x8001);
1391		break;
1392	default:
1393		break;
1394	}
1395
1396	/* force 1000, set loopback */
1397	e1e_wphy(hw, MII_BMCR, 0x4140);
1398	msleep(250);
1399
1400	/* Now set up the MAC to the same speed/duplex as the PHY. */
1401	ctrl_reg = er32(CTRL);
1402	ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1403	ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1404		     E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1405		     E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
1406		     E1000_CTRL_FD);	 /* Force Duplex to FULL */
1407
1408	if (adapter->flags & FLAG_IS_ICH)
1409		ctrl_reg |= E1000_CTRL_SLU;	/* Set Link Up */
1410
1411	if (hw->phy.media_type == e1000_media_type_copper &&
1412	    hw->phy.type == e1000_phy_m88) {
1413		ctrl_reg |= E1000_CTRL_ILOS;	/* Invert Loss of Signal */
1414	} else {
1415		/* Set the ILOS bit on the fiber Nic if half duplex link is
1416		 * detected.
1417		 */
1418		if ((er32(STATUS) & E1000_STATUS_FD) == 0)
1419			ctrl_reg |= (E1000_CTRL_ILOS | E1000_CTRL_SLU);
1420	}
1421
1422	ew32(CTRL, ctrl_reg);
1423
1424	/* Disable the receiver on the PHY so when a cable is plugged in, the
1425	 * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1426	 */
1427	if (hw->phy.type == e1000_phy_m88)
1428		e1000_phy_disable_receiver(adapter);
1429
1430	usleep_range(500, 1000);
1431
1432	return 0;
1433}
1434
1435static int e1000_set_82571_fiber_loopback(struct e1000_adapter *adapter)
1436{
1437	struct e1000_hw *hw = &adapter->hw;
1438	u32 ctrl = er32(CTRL);
1439	int link;
1440
1441	/* special requirements for 82571/82572 fiber adapters */
1442
1443	/* jump through hoops to make sure link is up because serdes
1444	 * link is hardwired up
1445	 */
1446	ctrl |= E1000_CTRL_SLU;
1447	ew32(CTRL, ctrl);
1448
1449	/* disable autoneg */
1450	ctrl = er32(TXCW);
1451	ctrl &= ~BIT(31);
1452	ew32(TXCW, ctrl);
1453
1454	link = (er32(STATUS) & E1000_STATUS_LU);
1455
1456	if (!link) {
1457		/* set invert loss of signal */
1458		ctrl = er32(CTRL);
1459		ctrl |= E1000_CTRL_ILOS;
1460		ew32(CTRL, ctrl);
1461	}
1462
1463	/* special write to serdes control register to enable SerDes analog
1464	 * loopback
1465	 */
1466	ew32(SCTL, E1000_SCTL_ENABLE_SERDES_LOOPBACK);
1467	e1e_flush();
1468	usleep_range(10000, 11000);
1469
1470	return 0;
1471}
1472
1473/* only call this for fiber/serdes connections to es2lan */
1474static int e1000_set_es2lan_mac_loopback(struct e1000_adapter *adapter)
1475{
1476	struct e1000_hw *hw = &adapter->hw;
1477	u32 ctrlext = er32(CTRL_EXT);
1478	u32 ctrl = er32(CTRL);
1479
1480	/* save CTRL_EXT to restore later, reuse an empty variable (unused
1481	 * on mac_type 80003es2lan)
1482	 */
1483	adapter->tx_fifo_head = ctrlext;
1484
1485	/* clear the serdes mode bits, putting the device into mac loopback */
1486	ctrlext &= ~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
1487	ew32(CTRL_EXT, ctrlext);
1488
1489	/* force speed to 1000/FD, link up */
1490	ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
1491	ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX |
1492		 E1000_CTRL_SPD_1000 | E1000_CTRL_FD);
1493	ew32(CTRL, ctrl);
1494
1495	/* set mac loopback */
1496	ctrl = er32(RCTL);
1497	ctrl |= E1000_RCTL_LBM_MAC;
1498	ew32(RCTL, ctrl);
1499
1500	/* set testing mode parameters (no need to reset later) */
1501#define KMRNCTRLSTA_OPMODE (0x1F << 16)
1502#define KMRNCTRLSTA_OPMODE_1GB_FD_GMII 0x0582
1503	ew32(KMRNCTRLSTA,
1504	     (KMRNCTRLSTA_OPMODE | KMRNCTRLSTA_OPMODE_1GB_FD_GMII));
1505
1506	return 0;
1507}
1508
1509static int e1000_setup_loopback_test(struct e1000_adapter *adapter)
1510{
1511	struct e1000_hw *hw = &adapter->hw;
1512	u32 rctl, fext_nvm11, tarc0;
1513
1514	if (hw->mac.type >= e1000_pch_spt) {
1515		fext_nvm11 = er32(FEXTNVM11);
1516		fext_nvm11 |= E1000_FEXTNVM11_DISABLE_MULR_FIX;
1517		ew32(FEXTNVM11, fext_nvm11);
1518		tarc0 = er32(TARC(0));
1519		/* clear bits 28 & 29 (control of MULR concurrent requests) */
1520		tarc0 &= 0xcfffffff;
1521		/* set bit 29 (value of MULR requests is now 2) */
1522		tarc0 |= 0x20000000;
1523		ew32(TARC(0), tarc0);
1524	}
1525	if (hw->phy.media_type == e1000_media_type_fiber ||
1526	    hw->phy.media_type == e1000_media_type_internal_serdes) {
1527		switch (hw->mac.type) {
1528		case e1000_80003es2lan:
1529			return e1000_set_es2lan_mac_loopback(adapter);
1530		case e1000_82571:
1531		case e1000_82572:
1532			return e1000_set_82571_fiber_loopback(adapter);
1533		default:
1534			rctl = er32(RCTL);
1535			rctl |= E1000_RCTL_LBM_TCVR;
1536			ew32(RCTL, rctl);
1537			return 0;
1538		}
1539	} else if (hw->phy.media_type == e1000_media_type_copper) {
1540		return e1000_integrated_phy_loopback(adapter);
1541	}
1542
1543	return 7;
1544}
1545
1546static void e1000_loopback_cleanup(struct e1000_adapter *adapter)
1547{
1548	struct e1000_hw *hw = &adapter->hw;
1549	u32 rctl, fext_nvm11, tarc0;
1550	u16 phy_reg;
1551
1552	rctl = er32(RCTL);
1553	rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1554	ew32(RCTL, rctl);
1555
1556	switch (hw->mac.type) {
1557	case e1000_pch_spt:
1558	case e1000_pch_cnp:
1559	case e1000_pch_tgp:
1560	case e1000_pch_adp:
1561	case e1000_pch_mtp:
1562	case e1000_pch_lnp:
1563	case e1000_pch_ptp:
1564	case e1000_pch_nvp:
1565		fext_nvm11 = er32(FEXTNVM11);
1566		fext_nvm11 &= ~E1000_FEXTNVM11_DISABLE_MULR_FIX;
1567		ew32(FEXTNVM11, fext_nvm11);
1568		tarc0 = er32(TARC(0));
1569		/* clear bits 28 & 29 (control of MULR concurrent requests) */
1570		/* set bit 29 (value of MULR requests is now 0) */
1571		tarc0 &= 0xcfffffff;
1572		ew32(TARC(0), tarc0);
1573		fallthrough;
1574	case e1000_80003es2lan:
1575		if (hw->phy.media_type == e1000_media_type_fiber ||
1576		    hw->phy.media_type == e1000_media_type_internal_serdes) {
1577			/* restore CTRL_EXT, stealing space from tx_fifo_head */
1578			ew32(CTRL_EXT, adapter->tx_fifo_head);
1579			adapter->tx_fifo_head = 0;
1580		}
1581		fallthrough;
1582	case e1000_82571:
1583	case e1000_82572:
1584		if (hw->phy.media_type == e1000_media_type_fiber ||
1585		    hw->phy.media_type == e1000_media_type_internal_serdes) {
1586			ew32(SCTL, E1000_SCTL_DISABLE_SERDES_LOOPBACK);
1587			e1e_flush();
1588			usleep_range(10000, 11000);
1589			break;
1590		}
1591		fallthrough;
1592	default:
1593		hw->mac.autoneg = 1;
1594		if (hw->phy.type == e1000_phy_gg82563)
1595			e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, 0x180);
1596		e1e_rphy(hw, MII_BMCR, &phy_reg);
1597		if (phy_reg & BMCR_LOOPBACK) {
1598			phy_reg &= ~BMCR_LOOPBACK;
1599			e1e_wphy(hw, MII_BMCR, phy_reg);
1600			if (hw->phy.ops.commit)
1601				hw->phy.ops.commit(hw);
1602		}
1603		break;
1604	}
1605}
1606
1607static void e1000_create_lbtest_frame(struct sk_buff *skb,
1608				      unsigned int frame_size)
1609{
1610	memset(skb->data, 0xFF, frame_size);
1611	frame_size &= ~1;
1612	memset(&skb->data[frame_size / 2], 0xAA, frame_size / 2 - 1);
1613	skb->data[frame_size / 2 + 10] = 0xBE;
1614	skb->data[frame_size / 2 + 12] = 0xAF;
1615}
1616
1617static int e1000_check_lbtest_frame(struct sk_buff *skb,
1618				    unsigned int frame_size)
1619{
1620	frame_size &= ~1;
1621	if (*(skb->data + 3) == 0xFF)
1622		if ((*(skb->data + frame_size / 2 + 10) == 0xBE) &&
1623		    (*(skb->data + frame_size / 2 + 12) == 0xAF))
1624			return 0;
1625	return 13;
1626}
1627
1628static int e1000_run_loopback_test(struct e1000_adapter *adapter)
1629{
1630	struct e1000_ring *tx_ring = &adapter->test_tx_ring;
1631	struct e1000_ring *rx_ring = &adapter->test_rx_ring;
1632	struct pci_dev *pdev = adapter->pdev;
1633	struct e1000_hw *hw = &adapter->hw;
1634	struct e1000_buffer *buffer_info;
1635	int i, j, k, l;
1636	int lc;
1637	int good_cnt;
1638	int ret_val = 0;
1639	unsigned long time;
1640
1641	ew32(RDT(0), rx_ring->count - 1);
1642
1643	/* Calculate the loop count based on the largest descriptor ring
1644	 * The idea is to wrap the largest ring a number of times using 64
1645	 * send/receive pairs during each loop
1646	 */
1647
1648	if (rx_ring->count <= tx_ring->count)
1649		lc = ((tx_ring->count / 64) * 2) + 1;
1650	else
1651		lc = ((rx_ring->count / 64) * 2) + 1;
1652
1653	k = 0;
1654	l = 0;
1655	/* loop count loop */
1656	for (j = 0; j <= lc; j++) {
1657		/* send the packets */
1658		for (i = 0; i < 64; i++) {
1659			buffer_info = &tx_ring->buffer_info[k];
1660
1661			e1000_create_lbtest_frame(buffer_info->skb, 1024);
1662			dma_sync_single_for_device(&pdev->dev,
1663						   buffer_info->dma,
1664						   buffer_info->length,
1665						   DMA_TO_DEVICE);
1666			k++;
1667			if (k == tx_ring->count)
1668				k = 0;
1669		}
1670		ew32(TDT(0), k);
1671		e1e_flush();
1672		msleep(200);
1673		time = jiffies;	/* set the start time for the receive */
1674		good_cnt = 0;
1675		/* receive the sent packets */
1676		do {
1677			buffer_info = &rx_ring->buffer_info[l];
1678
1679			dma_sync_single_for_cpu(&pdev->dev,
1680						buffer_info->dma, 2048,
1681						DMA_FROM_DEVICE);
1682
1683			ret_val = e1000_check_lbtest_frame(buffer_info->skb,
1684							   1024);
1685			if (!ret_val)
1686				good_cnt++;
1687			l++;
1688			if (l == rx_ring->count)
1689				l = 0;
1690			/* time + 20 msecs (200 msecs on 2.4) is more than
1691			 * enough time to complete the receives, if it's
1692			 * exceeded, break and error off
1693			 */
1694		} while ((good_cnt < 64) && !time_after(jiffies, time + 20));
1695		if (good_cnt != 64) {
1696			ret_val = 13;	/* ret_val is the same as mis-compare */
1697			break;
1698		}
1699		if (time_after(jiffies, time + 20)) {
1700			ret_val = 14;	/* error code for time out error */
1701			break;
1702		}
1703	}
1704	return ret_val;
1705}
1706
1707static int e1000_loopback_test(struct e1000_adapter *adapter, u64 *data)
1708{
1709	struct e1000_hw *hw = &adapter->hw;
1710
1711	/* PHY loopback cannot be performed if SoL/IDER sessions are active */
1712	if (hw->phy.ops.check_reset_block &&
1713	    hw->phy.ops.check_reset_block(hw)) {
1714		e_err("Cannot do PHY loopback test when SoL/IDER is active.\n");
1715		*data = 0;
1716		goto out;
1717	}
1718
1719	*data = e1000_setup_desc_rings(adapter);
1720	if (*data)
1721		goto out;
1722
1723	*data = e1000_setup_loopback_test(adapter);
1724	if (*data)
1725		goto err_loopback;
1726
1727	*data = e1000_run_loopback_test(adapter);
1728	e1000_loopback_cleanup(adapter);
1729
1730err_loopback:
1731	e1000_free_desc_rings(adapter);
1732out:
1733	return *data;
1734}
1735
1736static int e1000_link_test(struct e1000_adapter *adapter, u64 *data)
1737{
1738	struct e1000_hw *hw = &adapter->hw;
1739
1740	*data = 0;
1741	if (hw->phy.media_type == e1000_media_type_internal_serdes) {
1742		int i = 0;
1743
1744		hw->mac.serdes_has_link = false;
1745
1746		/* On some blade server designs, link establishment
1747		 * could take as long as 2-3 minutes
1748		 */
1749		do {
1750			hw->mac.ops.check_for_link(hw);
1751			if (hw->mac.serdes_has_link)
1752				return *data;
1753			msleep(20);
1754		} while (i++ < 3750);
1755
1756		*data = 1;
1757	} else {
1758		hw->mac.ops.check_for_link(hw);
1759		if (hw->mac.autoneg)
1760			/* On some Phy/switch combinations, link establishment
1761			 * can take a few seconds more than expected.
1762			 */
1763			msleep_interruptible(5000);
1764
1765		if (!(er32(STATUS) & E1000_STATUS_LU))
1766			*data = 1;
1767	}
1768	return *data;
1769}
1770
1771static int e1000e_get_sset_count(struct net_device __always_unused *netdev,
1772				 int sset)
1773{
1774	switch (sset) {
1775	case ETH_SS_TEST:
1776		return E1000_TEST_LEN;
1777	case ETH_SS_STATS:
1778		return E1000_STATS_LEN;
1779	case ETH_SS_PRIV_FLAGS:
1780		return E1000E_PRIV_FLAGS_STR_LEN;
1781	default:
1782		return -EOPNOTSUPP;
1783	}
1784}
1785
1786static void e1000_diag_test(struct net_device *netdev,
1787			    struct ethtool_test *eth_test, u64 *data)
1788{
1789	struct e1000_adapter *adapter = netdev_priv(netdev);
1790	u16 autoneg_advertised;
1791	u8 forced_speed_duplex;
1792	u8 autoneg;
1793	bool if_running = netif_running(netdev);
1794
 
 
1795	set_bit(__E1000_TESTING, &adapter->state);
1796
1797	if (!if_running) {
1798		/* Get control of and reset hardware */
1799		if (adapter->flags & FLAG_HAS_AMT)
1800			e1000e_get_hw_control(adapter);
1801
1802		e1000e_power_up_phy(adapter);
1803
1804		adapter->hw.phy.autoneg_wait_to_complete = 1;
1805		e1000e_reset(adapter);
1806		adapter->hw.phy.autoneg_wait_to_complete = 0;
1807	}
1808
1809	if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
1810		/* Offline tests */
1811
1812		/* save speed, duplex, autoneg settings */
1813		autoneg_advertised = adapter->hw.phy.autoneg_advertised;
1814		forced_speed_duplex = adapter->hw.mac.forced_speed_duplex;
1815		autoneg = adapter->hw.mac.autoneg;
1816
1817		e_info("offline testing starting\n");
1818
1819		if (if_running)
1820			/* indicate we're in test mode */
1821			e1000e_close(netdev);
1822
1823		if (e1000_reg_test(adapter, &data[0]))
1824			eth_test->flags |= ETH_TEST_FL_FAILED;
1825
1826		e1000e_reset(adapter);
1827		if (e1000_eeprom_test(adapter, &data[1]))
1828			eth_test->flags |= ETH_TEST_FL_FAILED;
1829
1830		e1000e_reset(adapter);
1831		if (e1000_intr_test(adapter, &data[2]))
1832			eth_test->flags |= ETH_TEST_FL_FAILED;
1833
1834		e1000e_reset(adapter);
1835		if (e1000_loopback_test(adapter, &data[3]))
1836			eth_test->flags |= ETH_TEST_FL_FAILED;
1837
1838		/* force this routine to wait until autoneg complete/timeout */
1839		adapter->hw.phy.autoneg_wait_to_complete = 1;
1840		e1000e_reset(adapter);
1841		adapter->hw.phy.autoneg_wait_to_complete = 0;
1842
1843		if (e1000_link_test(adapter, &data[4]))
1844			eth_test->flags |= ETH_TEST_FL_FAILED;
1845
1846		/* restore speed, duplex, autoneg settings */
1847		adapter->hw.phy.autoneg_advertised = autoneg_advertised;
1848		adapter->hw.mac.forced_speed_duplex = forced_speed_duplex;
1849		adapter->hw.mac.autoneg = autoneg;
1850		e1000e_reset(adapter);
1851
1852		clear_bit(__E1000_TESTING, &adapter->state);
1853		if (if_running)
1854			e1000e_open(netdev);
1855	} else {
1856		/* Online tests */
1857
1858		e_info("online testing starting\n");
1859
1860		/* register, eeprom, intr and loopback tests not run online */
1861		data[0] = 0;
1862		data[1] = 0;
1863		data[2] = 0;
1864		data[3] = 0;
1865
1866		if (e1000_link_test(adapter, &data[4]))
1867			eth_test->flags |= ETH_TEST_FL_FAILED;
1868
1869		clear_bit(__E1000_TESTING, &adapter->state);
1870	}
1871
1872	if (!if_running) {
1873		e1000e_reset(adapter);
1874
1875		if (adapter->flags & FLAG_HAS_AMT)
1876			e1000e_release_hw_control(adapter);
1877	}
1878
1879	msleep_interruptible(4 * 1000);
 
 
1880}
1881
1882static void e1000_get_wol(struct net_device *netdev,
1883			  struct ethtool_wolinfo *wol)
1884{
1885	struct e1000_adapter *adapter = netdev_priv(netdev);
1886
1887	wol->supported = 0;
1888	wol->wolopts = 0;
1889
1890	if (!(adapter->flags & FLAG_HAS_WOL) ||
1891	    !device_can_wakeup(&adapter->pdev->dev))
1892		return;
1893
1894	wol->supported = WAKE_UCAST | WAKE_MCAST |
1895	    WAKE_BCAST | WAKE_MAGIC | WAKE_PHY;
1896
1897	/* apply any specific unsupported masks here */
1898	if (adapter->flags & FLAG_NO_WAKE_UCAST) {
1899		wol->supported &= ~WAKE_UCAST;
1900
1901		if (adapter->wol & E1000_WUFC_EX)
1902			e_err("Interface does not support directed (unicast) frame wake-up packets\n");
1903	}
1904
1905	if (adapter->wol & E1000_WUFC_EX)
1906		wol->wolopts |= WAKE_UCAST;
1907	if (adapter->wol & E1000_WUFC_MC)
1908		wol->wolopts |= WAKE_MCAST;
1909	if (adapter->wol & E1000_WUFC_BC)
1910		wol->wolopts |= WAKE_BCAST;
1911	if (adapter->wol & E1000_WUFC_MAG)
1912		wol->wolopts |= WAKE_MAGIC;
1913	if (adapter->wol & E1000_WUFC_LNKC)
1914		wol->wolopts |= WAKE_PHY;
1915}
1916
1917static int e1000_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
1918{
1919	struct e1000_adapter *adapter = netdev_priv(netdev);
1920
1921	if (!(adapter->flags & FLAG_HAS_WOL) ||
1922	    !device_can_wakeup(&adapter->pdev->dev) ||
1923	    (wol->wolopts & ~(WAKE_UCAST | WAKE_MCAST | WAKE_BCAST |
1924			      WAKE_MAGIC | WAKE_PHY)))
1925		return -EOPNOTSUPP;
1926
1927	/* these settings will always override what we currently have */
1928	adapter->wol = 0;
1929
1930	if (wol->wolopts & WAKE_UCAST)
1931		adapter->wol |= E1000_WUFC_EX;
1932	if (wol->wolopts & WAKE_MCAST)
1933		adapter->wol |= E1000_WUFC_MC;
1934	if (wol->wolopts & WAKE_BCAST)
1935		adapter->wol |= E1000_WUFC_BC;
1936	if (wol->wolopts & WAKE_MAGIC)
1937		adapter->wol |= E1000_WUFC_MAG;
1938	if (wol->wolopts & WAKE_PHY)
1939		adapter->wol |= E1000_WUFC_LNKC;
1940
1941	device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1942
1943	return 0;
1944}
1945
1946static int e1000_set_phys_id(struct net_device *netdev,
1947			     enum ethtool_phys_id_state state)
1948{
1949	struct e1000_adapter *adapter = netdev_priv(netdev);
1950	struct e1000_hw *hw = &adapter->hw;
1951
1952	switch (state) {
1953	case ETHTOOL_ID_ACTIVE:
1954		pm_runtime_get_sync(netdev->dev.parent);
1955
1956		if (!hw->mac.ops.blink_led)
1957			return 2;	/* cycle on/off twice per second */
1958
1959		hw->mac.ops.blink_led(hw);
1960		break;
1961
1962	case ETHTOOL_ID_INACTIVE:
1963		if (hw->phy.type == e1000_phy_ife)
1964			e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0);
1965		hw->mac.ops.led_off(hw);
1966		hw->mac.ops.cleanup_led(hw);
1967		pm_runtime_put_sync(netdev->dev.parent);
1968		break;
1969
1970	case ETHTOOL_ID_ON:
1971		hw->mac.ops.led_on(hw);
1972		break;
1973
1974	case ETHTOOL_ID_OFF:
1975		hw->mac.ops.led_off(hw);
1976		break;
1977	}
1978
1979	return 0;
1980}
1981
1982static int e1000_get_coalesce(struct net_device *netdev,
1983			      struct ethtool_coalesce *ec,
1984			      struct kernel_ethtool_coalesce *kernel_coal,
1985			      struct netlink_ext_ack *extack)
1986{
1987	struct e1000_adapter *adapter = netdev_priv(netdev);
1988
1989	if (adapter->itr_setting <= 4)
1990		ec->rx_coalesce_usecs = adapter->itr_setting;
1991	else
1992		ec->rx_coalesce_usecs = 1000000 / adapter->itr_setting;
1993
1994	return 0;
1995}
1996
1997static int e1000_set_coalesce(struct net_device *netdev,
1998			      struct ethtool_coalesce *ec,
1999			      struct kernel_ethtool_coalesce *kernel_coal,
2000			      struct netlink_ext_ack *extack)
2001{
2002	struct e1000_adapter *adapter = netdev_priv(netdev);
2003
2004	if ((ec->rx_coalesce_usecs > E1000_MAX_ITR_USECS) ||
2005	    ((ec->rx_coalesce_usecs > 4) &&
2006	     (ec->rx_coalesce_usecs < E1000_MIN_ITR_USECS)) ||
2007	    (ec->rx_coalesce_usecs == 2))
2008		return -EINVAL;
2009
2010	if (ec->rx_coalesce_usecs == 4) {
2011		adapter->itr_setting = 4;
2012		adapter->itr = adapter->itr_setting;
2013	} else if (ec->rx_coalesce_usecs <= 3) {
2014		adapter->itr = 20000;
2015		adapter->itr_setting = ec->rx_coalesce_usecs;
2016	} else {
2017		adapter->itr = (1000000 / ec->rx_coalesce_usecs);
2018		adapter->itr_setting = adapter->itr & ~3;
2019	}
2020
 
 
2021	if (adapter->itr_setting != 0)
2022		e1000e_write_itr(adapter, adapter->itr);
2023	else
2024		e1000e_write_itr(adapter, 0);
2025
 
 
2026	return 0;
2027}
2028
2029static int e1000_nway_reset(struct net_device *netdev)
2030{
2031	struct e1000_adapter *adapter = netdev_priv(netdev);
2032
2033	if (!netif_running(netdev))
2034		return -EAGAIN;
2035
2036	if (!adapter->hw.mac.autoneg)
2037		return -EINVAL;
2038
 
2039	e1000e_reinit_locked(adapter);
 
2040
2041	return 0;
2042}
2043
2044static void e1000_get_ethtool_stats(struct net_device *netdev,
2045				    struct ethtool_stats __always_unused *stats,
2046				    u64 *data)
2047{
2048	struct e1000_adapter *adapter = netdev_priv(netdev);
2049	struct rtnl_link_stats64 net_stats;
2050	int i;
2051	char *p = NULL;
2052
 
 
2053	dev_get_stats(netdev, &net_stats);
2054
 
 
2055	for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
2056		switch (e1000_gstrings_stats[i].type) {
2057		case NETDEV_STATS:
2058			p = (char *)&net_stats +
2059			    e1000_gstrings_stats[i].stat_offset;
2060			break;
2061		case E1000_STATS:
2062			p = (char *)adapter +
2063			    e1000_gstrings_stats[i].stat_offset;
2064			break;
2065		default:
2066			data[i] = 0;
2067			continue;
2068		}
2069
2070		data[i] = (e1000_gstrings_stats[i].sizeof_stat ==
2071			   sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
2072	}
2073}
2074
2075static void e1000_get_strings(struct net_device __always_unused *netdev,
2076			      u32 stringset, u8 *data)
2077{
2078	u8 *p = data;
2079	int i;
2080
2081	switch (stringset) {
2082	case ETH_SS_TEST:
2083		memcpy(data, e1000_gstrings_test, sizeof(e1000_gstrings_test));
2084		break;
2085	case ETH_SS_STATS:
2086		for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
2087			memcpy(p, e1000_gstrings_stats[i].stat_string,
2088			       ETH_GSTRING_LEN);
2089			p += ETH_GSTRING_LEN;
2090		}
2091		break;
2092	case ETH_SS_PRIV_FLAGS:
2093		memcpy(data, e1000e_priv_flags_strings,
2094		       E1000E_PRIV_FLAGS_STR_LEN * ETH_GSTRING_LEN);
2095		break;
2096	}
2097}
2098
2099static int e1000_get_rxnfc(struct net_device *netdev,
2100			   struct ethtool_rxnfc *info,
2101			   u32 __always_unused *rule_locs)
2102{
2103	info->data = 0;
2104
2105	switch (info->cmd) {
2106	case ETHTOOL_GRXFH: {
2107		struct e1000_adapter *adapter = netdev_priv(netdev);
2108		struct e1000_hw *hw = &adapter->hw;
2109		u32 mrqc;
2110
 
2111		mrqc = er32(MRQC);
 
2112
2113		if (!(mrqc & E1000_MRQC_RSS_FIELD_MASK))
2114			return 0;
2115
2116		switch (info->flow_type) {
2117		case TCP_V4_FLOW:
2118			if (mrqc & E1000_MRQC_RSS_FIELD_IPV4_TCP)
2119				info->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2120			fallthrough;
2121		case UDP_V4_FLOW:
2122		case SCTP_V4_FLOW:
2123		case AH_ESP_V4_FLOW:
2124		case IPV4_FLOW:
2125			if (mrqc & E1000_MRQC_RSS_FIELD_IPV4)
2126				info->data |= RXH_IP_SRC | RXH_IP_DST;
2127			break;
2128		case TCP_V6_FLOW:
2129			if (mrqc & E1000_MRQC_RSS_FIELD_IPV6_TCP)
2130				info->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2131			fallthrough;
2132		case UDP_V6_FLOW:
2133		case SCTP_V6_FLOW:
2134		case AH_ESP_V6_FLOW:
2135		case IPV6_FLOW:
2136			if (mrqc & E1000_MRQC_RSS_FIELD_IPV6)
2137				info->data |= RXH_IP_SRC | RXH_IP_DST;
2138			break;
2139		default:
2140			break;
2141		}
2142		return 0;
2143	}
2144	default:
2145		return -EOPNOTSUPP;
2146	}
2147}
2148
2149static int e1000e_get_eee(struct net_device *netdev, struct ethtool_keee *edata)
2150{
2151	struct e1000_adapter *adapter = netdev_priv(netdev);
2152	struct e1000_hw *hw = &adapter->hw;
2153	u16 cap_addr, lpa_addr, pcs_stat_addr, phy_data;
2154	u32 ret_val;
2155
2156	if (!(adapter->flags2 & FLAG2_HAS_EEE))
2157		return -EOPNOTSUPP;
2158
2159	switch (hw->phy.type) {
2160	case e1000_phy_82579:
2161		cap_addr = I82579_EEE_CAPABILITY;
2162		lpa_addr = I82579_EEE_LP_ABILITY;
2163		pcs_stat_addr = I82579_EEE_PCS_STATUS;
2164		break;
2165	case e1000_phy_i217:
2166		cap_addr = I217_EEE_CAPABILITY;
2167		lpa_addr = I217_EEE_LP_ABILITY;
2168		pcs_stat_addr = I217_EEE_PCS_STATUS;
2169		break;
2170	default:
2171		return -EOPNOTSUPP;
2172	}
2173
 
 
2174	ret_val = hw->phy.ops.acquire(hw);
2175	if (ret_val)
 
2176		return -EBUSY;
 
2177
2178	/* EEE Capability */
2179	ret_val = e1000_read_emi_reg_locked(hw, cap_addr, &phy_data);
2180	if (ret_val)
2181		goto release;
2182	mii_eee_cap1_mod_linkmode_t(edata->supported, phy_data);
2183
2184	/* EEE Advertised */
2185	mii_eee_cap1_mod_linkmode_t(edata->advertised, adapter->eee_advert);
2186
2187	/* EEE Link Partner Advertised */
2188	ret_val = e1000_read_emi_reg_locked(hw, lpa_addr, &phy_data);
2189	if (ret_val)
2190		goto release;
2191	mii_eee_cap1_mod_linkmode_t(edata->lp_advertised, phy_data);
2192
2193	/* EEE PCS Status */
2194	ret_val = e1000_read_emi_reg_locked(hw, pcs_stat_addr, &phy_data);
2195	if (ret_val)
2196		goto release;
2197	if (hw->phy.type == e1000_phy_82579)
2198		phy_data <<= 8;
2199
2200	/* Result of the EEE auto negotiation - there is no register that
2201	 * has the status of the EEE negotiation so do a best-guess based
2202	 * on whether Tx or Rx LPI indications have been received.
2203	 */
2204	if (phy_data & (E1000_EEE_TX_LPI_RCVD | E1000_EEE_RX_LPI_RCVD))
2205		edata->eee_active = true;
2206
2207	edata->eee_enabled = !hw->dev_spec.ich8lan.eee_disable;
2208	edata->tx_lpi_enabled = true;
2209	edata->tx_lpi_timer = er32(LPIC) >> E1000_LPIC_LPIET_SHIFT;
2210
2211release:
2212	hw->phy.ops.release(hw);
2213	if (ret_val)
2214		ret_val = -ENODATA;
2215
 
 
2216	return ret_val;
2217}
2218
2219static int e1000e_set_eee(struct net_device *netdev, struct ethtool_keee *edata)
2220{
2221	struct e1000_adapter *adapter = netdev_priv(netdev);
2222	__ETHTOOL_DECLARE_LINK_MODE_MASK(supported) = {};
2223	__ETHTOOL_DECLARE_LINK_MODE_MASK(tmp) = {};
2224	struct e1000_hw *hw = &adapter->hw;
2225	struct ethtool_keee eee_curr;
2226	s32 ret_val;
2227
2228	ret_val = e1000e_get_eee(netdev, &eee_curr);
2229	if (ret_val)
2230		return ret_val;
2231
2232	if (eee_curr.tx_lpi_enabled != edata->tx_lpi_enabled) {
2233		e_err("Setting EEE tx-lpi is not supported\n");
2234		return -EINVAL;
2235	}
2236
2237	if (eee_curr.tx_lpi_timer != edata->tx_lpi_timer) {
2238		e_err("Setting EEE Tx LPI timer is not supported\n");
2239		return -EINVAL;
2240	}
2241
2242	linkmode_set_bit(ETHTOOL_LINK_MODE_1000baseT_Full_BIT,
2243			 supported);
2244	linkmode_set_bit(ETHTOOL_LINK_MODE_100baseT_Full_BIT,
2245			 supported);
2246
2247	if (linkmode_andnot(tmp, edata->advertised, supported)) {
2248		e_err("EEE advertisement supports only 100TX and/or 1000T full-duplex\n");
2249		return -EINVAL;
2250	}
2251
2252	adapter->eee_advert = linkmode_to_mii_eee_cap1_t(edata->advertised);
2253
2254	hw->dev_spec.ich8lan.eee_disable = !edata->eee_enabled;
2255
 
 
2256	/* reset the link */
2257	if (netif_running(netdev))
2258		e1000e_reinit_locked(adapter);
2259	else
2260		e1000e_reset(adapter);
2261
 
 
2262	return 0;
2263}
2264
2265static int e1000e_get_ts_info(struct net_device *netdev,
2266			      struct kernel_ethtool_ts_info *info)
2267{
2268	struct e1000_adapter *adapter = netdev_priv(netdev);
2269
2270	ethtool_op_get_ts_info(netdev, info);
2271
2272	if (!(adapter->flags & FLAG_HAS_HW_TIMESTAMP))
2273		return 0;
2274
2275	info->so_timestamping |= (SOF_TIMESTAMPING_TX_HARDWARE |
2276				  SOF_TIMESTAMPING_RX_HARDWARE |
2277				  SOF_TIMESTAMPING_RAW_HARDWARE);
2278
2279	info->tx_types = BIT(HWTSTAMP_TX_OFF) | BIT(HWTSTAMP_TX_ON);
2280
2281	info->rx_filters = (BIT(HWTSTAMP_FILTER_NONE) |
2282			    BIT(HWTSTAMP_FILTER_PTP_V1_L4_SYNC) |
2283			    BIT(HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ) |
2284			    BIT(HWTSTAMP_FILTER_PTP_V2_L4_SYNC) |
2285			    BIT(HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ) |
2286			    BIT(HWTSTAMP_FILTER_PTP_V2_L2_SYNC) |
2287			    BIT(HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ) |
2288			    BIT(HWTSTAMP_FILTER_PTP_V2_EVENT) |
2289			    BIT(HWTSTAMP_FILTER_PTP_V2_SYNC) |
2290			    BIT(HWTSTAMP_FILTER_PTP_V2_DELAY_REQ) |
2291			    BIT(HWTSTAMP_FILTER_ALL));
2292
2293	if (adapter->ptp_clock)
2294		info->phc_index = ptp_clock_index(adapter->ptp_clock);
2295
2296	return 0;
2297}
2298
2299static u32 e1000e_get_priv_flags(struct net_device *netdev)
2300{
2301	struct e1000_adapter *adapter = netdev_priv(netdev);
2302	u32 priv_flags = 0;
2303
2304	if (adapter->flags2 & FLAG2_ENABLE_S0IX_FLOWS)
2305		priv_flags |= E1000E_PRIV_FLAGS_S0IX_ENABLED;
2306
2307	return priv_flags;
2308}
2309
2310static int e1000e_set_priv_flags(struct net_device *netdev, u32 priv_flags)
2311{
2312	struct e1000_adapter *adapter = netdev_priv(netdev);
2313	unsigned int flags2 = adapter->flags2;
2314
2315	flags2 &= ~FLAG2_ENABLE_S0IX_FLOWS;
2316	if (priv_flags & E1000E_PRIV_FLAGS_S0IX_ENABLED) {
2317		struct e1000_hw *hw = &adapter->hw;
2318
2319		if (hw->mac.type < e1000_pch_cnp)
2320			return -EINVAL;
2321		flags2 |= FLAG2_ENABLE_S0IX_FLOWS;
2322	}
2323
2324	if (flags2 != adapter->flags2)
2325		adapter->flags2 = flags2;
2326
2327	return 0;
2328}
2329
2330static const struct ethtool_ops e1000_ethtool_ops = {
2331	.supported_coalesce_params = ETHTOOL_COALESCE_RX_USECS,
2332	.get_drvinfo		= e1000_get_drvinfo,
2333	.get_regs_len		= e1000_get_regs_len,
2334	.get_regs		= e1000_get_regs,
2335	.get_wol		= e1000_get_wol,
2336	.set_wol		= e1000_set_wol,
2337	.get_msglevel		= e1000_get_msglevel,
2338	.set_msglevel		= e1000_set_msglevel,
2339	.nway_reset		= e1000_nway_reset,
2340	.get_link		= ethtool_op_get_link,
2341	.get_eeprom_len		= e1000_get_eeprom_len,
2342	.get_eeprom		= e1000_get_eeprom,
2343	.set_eeprom		= e1000_set_eeprom,
2344	.get_ringparam		= e1000_get_ringparam,
2345	.set_ringparam		= e1000_set_ringparam,
2346	.get_pauseparam		= e1000_get_pauseparam,
2347	.set_pauseparam		= e1000_set_pauseparam,
2348	.self_test		= e1000_diag_test,
2349	.get_strings		= e1000_get_strings,
2350	.set_phys_id		= e1000_set_phys_id,
2351	.get_ethtool_stats	= e1000_get_ethtool_stats,
2352	.get_sset_count		= e1000e_get_sset_count,
2353	.get_coalesce		= e1000_get_coalesce,
2354	.set_coalesce		= e1000_set_coalesce,
2355	.get_rxnfc		= e1000_get_rxnfc,
2356	.get_ts_info		= e1000e_get_ts_info,
2357	.get_eee		= e1000e_get_eee,
2358	.set_eee		= e1000e_set_eee,
2359	.get_link_ksettings	= e1000_get_link_ksettings,
2360	.set_link_ksettings	= e1000_set_link_ksettings,
2361	.get_priv_flags		= e1000e_get_priv_flags,
2362	.set_priv_flags		= e1000e_set_priv_flags,
2363};
2364
2365void e1000e_set_ethtool_ops(struct net_device *netdev)
2366{
2367	netdev->ethtool_ops = &e1000_ethtool_ops;
2368}
v5.4
   1// SPDX-License-Identifier: GPL-2.0
   2/* Copyright(c) 1999 - 2018 Intel Corporation. */
   3
   4/* ethtool support for e1000 */
   5
   6#include <linux/netdevice.h>
   7#include <linux/interrupt.h>
   8#include <linux/ethtool.h>
   9#include <linux/pci.h>
  10#include <linux/slab.h>
  11#include <linux/delay.h>
  12#include <linux/vmalloc.h>
  13#include <linux/pm_runtime.h>
  14
  15#include "e1000.h"
  16
  17enum { NETDEV_STATS, E1000_STATS };
  18
  19struct e1000_stats {
  20	char stat_string[ETH_GSTRING_LEN];
  21	int type;
  22	int sizeof_stat;
  23	int stat_offset;
  24};
  25
 
 
 
 
 
 
 
  26#define E1000_STAT(str, m) { \
  27		.stat_string = str, \
  28		.type = E1000_STATS, \
  29		.sizeof_stat = sizeof(((struct e1000_adapter *)0)->m), \
  30		.stat_offset = offsetof(struct e1000_adapter, m) }
  31#define E1000_NETDEV_STAT(str, m) { \
  32		.stat_string = str, \
  33		.type = NETDEV_STATS, \
  34		.sizeof_stat = sizeof(((struct rtnl_link_stats64 *)0)->m), \
  35		.stat_offset = offsetof(struct rtnl_link_stats64, m) }
  36
  37static const struct e1000_stats e1000_gstrings_stats[] = {
  38	E1000_STAT("rx_packets", stats.gprc),
  39	E1000_STAT("tx_packets", stats.gptc),
  40	E1000_STAT("rx_bytes", stats.gorc),
  41	E1000_STAT("tx_bytes", stats.gotc),
  42	E1000_STAT("rx_broadcast", stats.bprc),
  43	E1000_STAT("tx_broadcast", stats.bptc),
  44	E1000_STAT("rx_multicast", stats.mprc),
  45	E1000_STAT("tx_multicast", stats.mptc),
  46	E1000_NETDEV_STAT("rx_errors", rx_errors),
  47	E1000_NETDEV_STAT("tx_errors", tx_errors),
  48	E1000_NETDEV_STAT("tx_dropped", tx_dropped),
  49	E1000_STAT("multicast", stats.mprc),
  50	E1000_STAT("collisions", stats.colc),
  51	E1000_NETDEV_STAT("rx_length_errors", rx_length_errors),
  52	E1000_NETDEV_STAT("rx_over_errors", rx_over_errors),
  53	E1000_STAT("rx_crc_errors", stats.crcerrs),
  54	E1000_NETDEV_STAT("rx_frame_errors", rx_frame_errors),
  55	E1000_STAT("rx_no_buffer_count", stats.rnbc),
  56	E1000_STAT("rx_missed_errors", stats.mpc),
  57	E1000_STAT("tx_aborted_errors", stats.ecol),
  58	E1000_STAT("tx_carrier_errors", stats.tncrs),
  59	E1000_NETDEV_STAT("tx_fifo_errors", tx_fifo_errors),
  60	E1000_NETDEV_STAT("tx_heartbeat_errors", tx_heartbeat_errors),
  61	E1000_STAT("tx_window_errors", stats.latecol),
  62	E1000_STAT("tx_abort_late_coll", stats.latecol),
  63	E1000_STAT("tx_deferred_ok", stats.dc),
  64	E1000_STAT("tx_single_coll_ok", stats.scc),
  65	E1000_STAT("tx_multi_coll_ok", stats.mcc),
  66	E1000_STAT("tx_timeout_count", tx_timeout_count),
  67	E1000_STAT("tx_restart_queue", restart_queue),
  68	E1000_STAT("rx_long_length_errors", stats.roc),
  69	E1000_STAT("rx_short_length_errors", stats.ruc),
  70	E1000_STAT("rx_align_errors", stats.algnerrc),
  71	E1000_STAT("tx_tcp_seg_good", stats.tsctc),
  72	E1000_STAT("tx_tcp_seg_failed", stats.tsctfc),
  73	E1000_STAT("rx_flow_control_xon", stats.xonrxc),
  74	E1000_STAT("rx_flow_control_xoff", stats.xoffrxc),
  75	E1000_STAT("tx_flow_control_xon", stats.xontxc),
  76	E1000_STAT("tx_flow_control_xoff", stats.xofftxc),
  77	E1000_STAT("rx_csum_offload_good", hw_csum_good),
  78	E1000_STAT("rx_csum_offload_errors", hw_csum_err),
  79	E1000_STAT("rx_header_split", rx_hdr_split),
  80	E1000_STAT("alloc_rx_buff_failed", alloc_rx_buff_failed),
  81	E1000_STAT("tx_smbus", stats.mgptc),
  82	E1000_STAT("rx_smbus", stats.mgprc),
  83	E1000_STAT("dropped_smbus", stats.mgpdc),
  84	E1000_STAT("rx_dma_failed", rx_dma_failed),
  85	E1000_STAT("tx_dma_failed", tx_dma_failed),
  86	E1000_STAT("rx_hwtstamp_cleared", rx_hwtstamp_cleared),
  87	E1000_STAT("uncorr_ecc_errors", uncorr_errors),
  88	E1000_STAT("corr_ecc_errors", corr_errors),
  89	E1000_STAT("tx_hwtstamp_timeouts", tx_hwtstamp_timeouts),
  90	E1000_STAT("tx_hwtstamp_skipped", tx_hwtstamp_skipped),
  91};
  92
  93#define E1000_GLOBAL_STATS_LEN	ARRAY_SIZE(e1000_gstrings_stats)
  94#define E1000_STATS_LEN (E1000_GLOBAL_STATS_LEN)
  95static const char e1000_gstrings_test[][ETH_GSTRING_LEN] = {
  96	"Register test  (offline)", "Eeprom test    (offline)",
  97	"Interrupt test (offline)", "Loopback test  (offline)",
  98	"Link test   (on/offline)"
  99};
 100
 101#define E1000_TEST_LEN ARRAY_SIZE(e1000_gstrings_test)
 102
 103static int e1000_get_link_ksettings(struct net_device *netdev,
 104				    struct ethtool_link_ksettings *cmd)
 105{
 
 106	struct e1000_adapter *adapter = netdev_priv(netdev);
 107	struct e1000_hw *hw = &adapter->hw;
 108	u32 speed, supported, advertising;
 109
 110	if (hw->phy.media_type == e1000_media_type_copper) {
 111		supported = (SUPPORTED_10baseT_Half |
 112			     SUPPORTED_10baseT_Full |
 113			     SUPPORTED_100baseT_Half |
 114			     SUPPORTED_100baseT_Full |
 115			     SUPPORTED_1000baseT_Full |
 
 116			     SUPPORTED_Autoneg |
 
 117			     SUPPORTED_TP);
 118		if (hw->phy.type == e1000_phy_ife)
 119			supported &= ~SUPPORTED_1000baseT_Full;
 120		advertising = ADVERTISED_TP;
 121
 122		if (hw->mac.autoneg == 1) {
 123			advertising |= ADVERTISED_Autoneg;
 124			/* the e1000 autoneg seems to match ethtool nicely */
 125			advertising |= hw->phy.autoneg_advertised;
 126		}
 127
 128		cmd->base.port = PORT_TP;
 129		cmd->base.phy_address = hw->phy.addr;
 130	} else {
 131		supported   = (SUPPORTED_1000baseT_Full |
 132			       SUPPORTED_FIBRE |
 133			       SUPPORTED_Autoneg);
 134
 135		advertising = (ADVERTISED_1000baseT_Full |
 136			       ADVERTISED_FIBRE |
 137			       ADVERTISED_Autoneg);
 138
 139		cmd->base.port = PORT_FIBRE;
 140	}
 141
 142	speed = SPEED_UNKNOWN;
 143	cmd->base.duplex = DUPLEX_UNKNOWN;
 144
 145	if (netif_running(netdev)) {
 146		if (netif_carrier_ok(netdev)) {
 147			speed = adapter->link_speed;
 148			cmd->base.duplex = adapter->link_duplex - 1;
 149		}
 150	} else if (!pm_runtime_suspended(netdev->dev.parent)) {
 151		u32 status = er32(STATUS);
 152
 153		if (status & E1000_STATUS_LU) {
 154			if (status & E1000_STATUS_SPEED_1000)
 155				speed = SPEED_1000;
 156			else if (status & E1000_STATUS_SPEED_100)
 157				speed = SPEED_100;
 158			else
 159				speed = SPEED_10;
 160
 161			if (status & E1000_STATUS_FD)
 162				cmd->base.duplex = DUPLEX_FULL;
 163			else
 164				cmd->base.duplex = DUPLEX_HALF;
 165		}
 166	}
 167
 168	cmd->base.speed = speed;
 169	cmd->base.autoneg = ((hw->phy.media_type == e1000_media_type_fiber) ||
 170			 hw->mac.autoneg) ? AUTONEG_ENABLE : AUTONEG_DISABLE;
 171
 172	/* MDI-X => 2; MDI =>1; Invalid =>0 */
 173	if ((hw->phy.media_type == e1000_media_type_copper) &&
 174	    netif_carrier_ok(netdev))
 175		cmd->base.eth_tp_mdix = hw->phy.is_mdix ?
 176			ETH_TP_MDI_X : ETH_TP_MDI;
 177	else
 178		cmd->base.eth_tp_mdix = ETH_TP_MDI_INVALID;
 179
 180	if (hw->phy.mdix == AUTO_ALL_MODES)
 181		cmd->base.eth_tp_mdix_ctrl = ETH_TP_MDI_AUTO;
 182	else
 183		cmd->base.eth_tp_mdix_ctrl = hw->phy.mdix;
 184
 185	if (hw->phy.media_type != e1000_media_type_copper)
 186		cmd->base.eth_tp_mdix_ctrl = ETH_TP_MDI_INVALID;
 187
 
 
 
 
 188	ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.supported,
 189						supported);
 190	ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.advertising,
 191						advertising);
 
 
 192
 193	return 0;
 194}
 195
 196static int e1000_set_spd_dplx(struct e1000_adapter *adapter, u32 spd, u8 dplx)
 197{
 198	struct e1000_mac_info *mac = &adapter->hw.mac;
 199
 200	mac->autoneg = 0;
 201
 202	/* Make sure dplx is at most 1 bit and lsb of speed is not set
 203	 * for the switch() below to work
 204	 */
 205	if ((spd & 1) || (dplx & ~1))
 206		goto err_inval;
 207
 208	/* Fiber NICs only allow 1000 gbps Full duplex */
 209	if ((adapter->hw.phy.media_type == e1000_media_type_fiber) &&
 210	    (spd != SPEED_1000) && (dplx != DUPLEX_FULL)) {
 211		goto err_inval;
 212	}
 213
 214	switch (spd + dplx) {
 215	case SPEED_10 + DUPLEX_HALF:
 216		mac->forced_speed_duplex = ADVERTISE_10_HALF;
 217		break;
 218	case SPEED_10 + DUPLEX_FULL:
 219		mac->forced_speed_duplex = ADVERTISE_10_FULL;
 220		break;
 221	case SPEED_100 + DUPLEX_HALF:
 222		mac->forced_speed_duplex = ADVERTISE_100_HALF;
 223		break;
 224	case SPEED_100 + DUPLEX_FULL:
 225		mac->forced_speed_duplex = ADVERTISE_100_FULL;
 226		break;
 227	case SPEED_1000 + DUPLEX_FULL:
 228		if (adapter->hw.phy.media_type == e1000_media_type_copper) {
 229			mac->autoneg = 1;
 230			adapter->hw.phy.autoneg_advertised =
 231				ADVERTISE_1000_FULL;
 232		} else {
 233			mac->forced_speed_duplex = ADVERTISE_1000_FULL;
 234		}
 235		break;
 236	case SPEED_1000 + DUPLEX_HALF:	/* not supported */
 237	default:
 238		goto err_inval;
 239	}
 240
 241	/* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
 242	adapter->hw.phy.mdix = AUTO_ALL_MODES;
 243
 244	return 0;
 245
 246err_inval:
 247	e_err("Unsupported Speed/Duplex configuration\n");
 248	return -EINVAL;
 249}
 250
 251static int e1000_set_link_ksettings(struct net_device *netdev,
 252				    const struct ethtool_link_ksettings *cmd)
 253{
 254	struct e1000_adapter *adapter = netdev_priv(netdev);
 255	struct e1000_hw *hw = &adapter->hw;
 256	int ret_val = 0;
 257	u32 advertising;
 258
 259	ethtool_convert_link_mode_to_legacy_u32(&advertising,
 260						cmd->link_modes.advertising);
 261
 262	pm_runtime_get_sync(netdev->dev.parent);
 263
 264	/* When SoL/IDER sessions are active, autoneg/speed/duplex
 265	 * cannot be changed
 266	 */
 267	if (hw->phy.ops.check_reset_block &&
 268	    hw->phy.ops.check_reset_block(hw)) {
 269		e_err("Cannot change link characteristics when SoL/IDER is active.\n");
 270		ret_val = -EINVAL;
 271		goto out;
 272	}
 273
 274	/* MDI setting is only allowed when autoneg enabled because
 275	 * some hardware doesn't allow MDI setting when speed or
 276	 * duplex is forced.
 277	 */
 278	if (cmd->base.eth_tp_mdix_ctrl) {
 279		if (hw->phy.media_type != e1000_media_type_copper) {
 280			ret_val = -EOPNOTSUPP;
 281			goto out;
 282		}
 283
 284		if ((cmd->base.eth_tp_mdix_ctrl != ETH_TP_MDI_AUTO) &&
 285		    (cmd->base.autoneg != AUTONEG_ENABLE)) {
 286			e_err("forcing MDI/MDI-X state is not supported when link speed and/or duplex are forced\n");
 287			ret_val = -EINVAL;
 288			goto out;
 289		}
 290	}
 291
 292	while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
 293		usleep_range(1000, 2000);
 294
 295	if (cmd->base.autoneg == AUTONEG_ENABLE) {
 296		hw->mac.autoneg = 1;
 297		if (hw->phy.media_type == e1000_media_type_fiber)
 298			hw->phy.autoneg_advertised = ADVERTISED_1000baseT_Full |
 299			    ADVERTISED_FIBRE | ADVERTISED_Autoneg;
 300		else
 301			hw->phy.autoneg_advertised = advertising |
 302			    ADVERTISED_TP | ADVERTISED_Autoneg;
 303		advertising = hw->phy.autoneg_advertised;
 304		if (adapter->fc_autoneg)
 305			hw->fc.requested_mode = e1000_fc_default;
 306	} else {
 307		u32 speed = cmd->base.speed;
 308		/* calling this overrides forced MDI setting */
 309		if (e1000_set_spd_dplx(adapter, speed, cmd->base.duplex)) {
 310			ret_val = -EINVAL;
 311			goto out;
 312		}
 313	}
 314
 315	/* MDI-X => 2; MDI => 1; Auto => 3 */
 316	if (cmd->base.eth_tp_mdix_ctrl) {
 317		/* fix up the value for auto (3 => 0) as zero is mapped
 318		 * internally to auto
 319		 */
 320		if (cmd->base.eth_tp_mdix_ctrl == ETH_TP_MDI_AUTO)
 321			hw->phy.mdix = AUTO_ALL_MODES;
 322		else
 323			hw->phy.mdix = cmd->base.eth_tp_mdix_ctrl;
 324	}
 325
 326	/* reset the link */
 327	if (netif_running(adapter->netdev)) {
 328		e1000e_down(adapter, true);
 329		e1000e_up(adapter);
 330	} else {
 331		e1000e_reset(adapter);
 332	}
 333
 334out:
 335	pm_runtime_put_sync(netdev->dev.parent);
 336	clear_bit(__E1000_RESETTING, &adapter->state);
 337	return ret_val;
 338}
 339
 340static void e1000_get_pauseparam(struct net_device *netdev,
 341				 struct ethtool_pauseparam *pause)
 342{
 343	struct e1000_adapter *adapter = netdev_priv(netdev);
 344	struct e1000_hw *hw = &adapter->hw;
 345
 346	pause->autoneg =
 347	    (adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
 348
 349	if (hw->fc.current_mode == e1000_fc_rx_pause) {
 350		pause->rx_pause = 1;
 351	} else if (hw->fc.current_mode == e1000_fc_tx_pause) {
 352		pause->tx_pause = 1;
 353	} else if (hw->fc.current_mode == e1000_fc_full) {
 354		pause->rx_pause = 1;
 355		pause->tx_pause = 1;
 356	}
 357}
 358
 359static int e1000_set_pauseparam(struct net_device *netdev,
 360				struct ethtool_pauseparam *pause)
 361{
 362	struct e1000_adapter *adapter = netdev_priv(netdev);
 363	struct e1000_hw *hw = &adapter->hw;
 364	int retval = 0;
 365
 366	adapter->fc_autoneg = pause->autoneg;
 367
 368	while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
 369		usleep_range(1000, 2000);
 370
 371	pm_runtime_get_sync(netdev->dev.parent);
 372
 373	if (adapter->fc_autoneg == AUTONEG_ENABLE) {
 374		hw->fc.requested_mode = e1000_fc_default;
 375		if (netif_running(adapter->netdev)) {
 376			e1000e_down(adapter, true);
 377			e1000e_up(adapter);
 378		} else {
 379			e1000e_reset(adapter);
 380		}
 381	} else {
 382		if (pause->rx_pause && pause->tx_pause)
 383			hw->fc.requested_mode = e1000_fc_full;
 384		else if (pause->rx_pause && !pause->tx_pause)
 385			hw->fc.requested_mode = e1000_fc_rx_pause;
 386		else if (!pause->rx_pause && pause->tx_pause)
 387			hw->fc.requested_mode = e1000_fc_tx_pause;
 388		else if (!pause->rx_pause && !pause->tx_pause)
 389			hw->fc.requested_mode = e1000_fc_none;
 390
 391		hw->fc.current_mode = hw->fc.requested_mode;
 392
 393		if (hw->phy.media_type == e1000_media_type_fiber) {
 394			retval = hw->mac.ops.setup_link(hw);
 395			/* implicit goto out */
 396		} else {
 397			retval = e1000e_force_mac_fc(hw);
 398			if (retval)
 399				goto out;
 400			e1000e_set_fc_watermarks(hw);
 401		}
 402	}
 403
 404out:
 405	pm_runtime_put_sync(netdev->dev.parent);
 406	clear_bit(__E1000_RESETTING, &adapter->state);
 407	return retval;
 408}
 409
 410static u32 e1000_get_msglevel(struct net_device *netdev)
 411{
 412	struct e1000_adapter *adapter = netdev_priv(netdev);
 413	return adapter->msg_enable;
 414}
 415
 416static void e1000_set_msglevel(struct net_device *netdev, u32 data)
 417{
 418	struct e1000_adapter *adapter = netdev_priv(netdev);
 419	adapter->msg_enable = data;
 420}
 421
 422static int e1000_get_regs_len(struct net_device __always_unused *netdev)
 423{
 424#define E1000_REGS_LEN 32	/* overestimate */
 425	return E1000_REGS_LEN * sizeof(u32);
 426}
 427
 428static void e1000_get_regs(struct net_device *netdev,
 429			   struct ethtool_regs *regs, void *p)
 430{
 431	struct e1000_adapter *adapter = netdev_priv(netdev);
 432	struct e1000_hw *hw = &adapter->hw;
 433	u32 *regs_buff = p;
 434	u16 phy_data;
 435
 436	pm_runtime_get_sync(netdev->dev.parent);
 437
 438	memset(p, 0, E1000_REGS_LEN * sizeof(u32));
 439
 440	regs->version = (1u << 24) |
 441			(adapter->pdev->revision << 16) |
 442			adapter->pdev->device;
 443
 444	regs_buff[0] = er32(CTRL);
 445	regs_buff[1] = er32(STATUS);
 446
 447	regs_buff[2] = er32(RCTL);
 448	regs_buff[3] = er32(RDLEN(0));
 449	regs_buff[4] = er32(RDH(0));
 450	regs_buff[5] = er32(RDT(0));
 451	regs_buff[6] = er32(RDTR);
 452
 453	regs_buff[7] = er32(TCTL);
 454	regs_buff[8] = er32(TDLEN(0));
 455	regs_buff[9] = er32(TDH(0));
 456	regs_buff[10] = er32(TDT(0));
 457	regs_buff[11] = er32(TIDV);
 458
 459	regs_buff[12] = adapter->hw.phy.type;	/* PHY type (IGP=1, M88=0) */
 460
 461	/* ethtool doesn't use anything past this point, so all this
 462	 * code is likely legacy junk for apps that may or may not exist
 463	 */
 464	if (hw->phy.type == e1000_phy_m88) {
 465		e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
 466		regs_buff[13] = (u32)phy_data; /* cable length */
 467		regs_buff[14] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
 468		regs_buff[15] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
 469		regs_buff[16] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
 470		e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
 471		regs_buff[17] = (u32)phy_data; /* extended 10bt distance */
 472		regs_buff[18] = regs_buff[13]; /* cable polarity */
 473		regs_buff[19] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
 474		regs_buff[20] = regs_buff[17]; /* polarity correction */
 475		/* phy receive errors */
 476		regs_buff[22] = adapter->phy_stats.receive_errors;
 477		regs_buff[23] = regs_buff[13]; /* mdix mode */
 478	}
 479	regs_buff[21] = 0;	/* was idle_errors */
 480	e1e_rphy(hw, MII_STAT1000, &phy_data);
 481	regs_buff[24] = (u32)phy_data;	/* phy local receiver status */
 482	regs_buff[25] = regs_buff[24];	/* phy remote receiver status */
 483
 484	pm_runtime_put_sync(netdev->dev.parent);
 485}
 486
 487static int e1000_get_eeprom_len(struct net_device *netdev)
 488{
 489	struct e1000_adapter *adapter = netdev_priv(netdev);
 490	return adapter->hw.nvm.word_size * 2;
 491}
 492
 493static int e1000_get_eeprom(struct net_device *netdev,
 494			    struct ethtool_eeprom *eeprom, u8 *bytes)
 495{
 496	struct e1000_adapter *adapter = netdev_priv(netdev);
 497	struct e1000_hw *hw = &adapter->hw;
 498	u16 *eeprom_buff;
 499	int first_word;
 500	int last_word;
 501	int ret_val = 0;
 502	u16 i;
 503
 504	if (eeprom->len == 0)
 505		return -EINVAL;
 506
 507	eeprom->magic = adapter->pdev->vendor | (adapter->pdev->device << 16);
 508
 509	first_word = eeprom->offset >> 1;
 510	last_word = (eeprom->offset + eeprom->len - 1) >> 1;
 511
 512	eeprom_buff = kmalloc_array(last_word - first_word + 1, sizeof(u16),
 513				    GFP_KERNEL);
 514	if (!eeprom_buff)
 515		return -ENOMEM;
 516
 517	pm_runtime_get_sync(netdev->dev.parent);
 518
 519	if (hw->nvm.type == e1000_nvm_eeprom_spi) {
 520		ret_val = e1000_read_nvm(hw, first_word,
 521					 last_word - first_word + 1,
 522					 eeprom_buff);
 523	} else {
 524		for (i = 0; i < last_word - first_word + 1; i++) {
 525			ret_val = e1000_read_nvm(hw, first_word + i, 1,
 526						 &eeprom_buff[i]);
 527			if (ret_val)
 528				break;
 529		}
 530	}
 531
 532	pm_runtime_put_sync(netdev->dev.parent);
 533
 534	if (ret_val) {
 535		/* a read error occurred, throw away the result */
 536		memset(eeprom_buff, 0xff, sizeof(u16) *
 537		       (last_word - first_word + 1));
 538	} else {
 539		/* Device's eeprom is always little-endian, word addressable */
 540		for (i = 0; i < last_word - first_word + 1; i++)
 541			le16_to_cpus(&eeprom_buff[i]);
 542	}
 543
 544	memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1), eeprom->len);
 545	kfree(eeprom_buff);
 546
 547	return ret_val;
 548}
 549
 550static int e1000_set_eeprom(struct net_device *netdev,
 551			    struct ethtool_eeprom *eeprom, u8 *bytes)
 552{
 553	struct e1000_adapter *adapter = netdev_priv(netdev);
 554	struct e1000_hw *hw = &adapter->hw;
 555	u16 *eeprom_buff;
 556	void *ptr;
 557	int max_len;
 558	int first_word;
 559	int last_word;
 560	int ret_val = 0;
 561	u16 i;
 562
 563	if (eeprom->len == 0)
 564		return -EOPNOTSUPP;
 565
 566	if (eeprom->magic !=
 567	    (adapter->pdev->vendor | (adapter->pdev->device << 16)))
 568		return -EFAULT;
 569
 570	if (adapter->flags & FLAG_READ_ONLY_NVM)
 571		return -EINVAL;
 572
 573	max_len = hw->nvm.word_size * 2;
 574
 575	first_word = eeprom->offset >> 1;
 576	last_word = (eeprom->offset + eeprom->len - 1) >> 1;
 577	eeprom_buff = kmalloc(max_len, GFP_KERNEL);
 578	if (!eeprom_buff)
 579		return -ENOMEM;
 580
 581	ptr = (void *)eeprom_buff;
 582
 583	pm_runtime_get_sync(netdev->dev.parent);
 584
 585	if (eeprom->offset & 1) {
 586		/* need read/modify/write of first changed EEPROM word */
 587		/* only the second byte of the word is being modified */
 588		ret_val = e1000_read_nvm(hw, first_word, 1, &eeprom_buff[0]);
 589		ptr++;
 590	}
 591	if (((eeprom->offset + eeprom->len) & 1) && (!ret_val))
 592		/* need read/modify/write of last changed EEPROM word */
 593		/* only the first byte of the word is being modified */
 594		ret_val = e1000_read_nvm(hw, last_word, 1,
 595					 &eeprom_buff[last_word - first_word]);
 596
 597	if (ret_val)
 598		goto out;
 599
 600	/* Device's eeprom is always little-endian, word addressable */
 601	for (i = 0; i < last_word - first_word + 1; i++)
 602		le16_to_cpus(&eeprom_buff[i]);
 603
 604	memcpy(ptr, bytes, eeprom->len);
 605
 606	for (i = 0; i < last_word - first_word + 1; i++)
 607		cpu_to_le16s(&eeprom_buff[i]);
 608
 609	ret_val = e1000_write_nvm(hw, first_word,
 610				  last_word - first_word + 1, eeprom_buff);
 611
 612	if (ret_val)
 613		goto out;
 614
 615	/* Update the checksum over the first part of the EEPROM if needed
 616	 * and flush shadow RAM for applicable controllers
 617	 */
 618	if ((first_word <= NVM_CHECKSUM_REG) ||
 619	    (hw->mac.type == e1000_82583) ||
 620	    (hw->mac.type == e1000_82574) ||
 621	    (hw->mac.type == e1000_82573))
 622		ret_val = e1000e_update_nvm_checksum(hw);
 623
 624out:
 625	pm_runtime_put_sync(netdev->dev.parent);
 626	kfree(eeprom_buff);
 627	return ret_val;
 628}
 629
 630static void e1000_get_drvinfo(struct net_device *netdev,
 631			      struct ethtool_drvinfo *drvinfo)
 632{
 633	struct e1000_adapter *adapter = netdev_priv(netdev);
 634
 635	strlcpy(drvinfo->driver, e1000e_driver_name, sizeof(drvinfo->driver));
 636	strlcpy(drvinfo->version, e1000e_driver_version,
 637		sizeof(drvinfo->version));
 638
 639	/* EEPROM image version # is reported as firmware version # for
 640	 * PCI-E controllers
 641	 */
 642	snprintf(drvinfo->fw_version, sizeof(drvinfo->fw_version),
 643		 "%d.%d-%d",
 644		 (adapter->eeprom_vers & 0xF000) >> 12,
 645		 (adapter->eeprom_vers & 0x0FF0) >> 4,
 646		 (adapter->eeprom_vers & 0x000F));
 647
 648	strlcpy(drvinfo->bus_info, pci_name(adapter->pdev),
 649		sizeof(drvinfo->bus_info));
 650}
 651
 652static void e1000_get_ringparam(struct net_device *netdev,
 653				struct ethtool_ringparam *ring)
 
 
 654{
 655	struct e1000_adapter *adapter = netdev_priv(netdev);
 656
 657	ring->rx_max_pending = E1000_MAX_RXD;
 658	ring->tx_max_pending = E1000_MAX_TXD;
 659	ring->rx_pending = adapter->rx_ring_count;
 660	ring->tx_pending = adapter->tx_ring_count;
 661}
 662
 663static int e1000_set_ringparam(struct net_device *netdev,
 664			       struct ethtool_ringparam *ring)
 
 
 665{
 666	struct e1000_adapter *adapter = netdev_priv(netdev);
 667	struct e1000_ring *temp_tx = NULL, *temp_rx = NULL;
 668	int err = 0, size = sizeof(struct e1000_ring);
 669	bool set_tx = false, set_rx = false;
 670	u16 new_rx_count, new_tx_count;
 671
 672	if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
 673		return -EINVAL;
 674
 675	new_rx_count = clamp_t(u32, ring->rx_pending, E1000_MIN_RXD,
 676			       E1000_MAX_RXD);
 677	new_rx_count = ALIGN(new_rx_count, REQ_RX_DESCRIPTOR_MULTIPLE);
 678
 679	new_tx_count = clamp_t(u32, ring->tx_pending, E1000_MIN_TXD,
 680			       E1000_MAX_TXD);
 681	new_tx_count = ALIGN(new_tx_count, REQ_TX_DESCRIPTOR_MULTIPLE);
 682
 683	if ((new_tx_count == adapter->tx_ring_count) &&
 684	    (new_rx_count == adapter->rx_ring_count))
 685		/* nothing to do */
 686		return 0;
 687
 688	while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
 689		usleep_range(1000, 2000);
 690
 691	if (!netif_running(adapter->netdev)) {
 692		/* Set counts now and allocate resources during open() */
 693		adapter->tx_ring->count = new_tx_count;
 694		adapter->rx_ring->count = new_rx_count;
 695		adapter->tx_ring_count = new_tx_count;
 696		adapter->rx_ring_count = new_rx_count;
 697		goto clear_reset;
 698	}
 699
 700	set_tx = (new_tx_count != adapter->tx_ring_count);
 701	set_rx = (new_rx_count != adapter->rx_ring_count);
 702
 703	/* Allocate temporary storage for ring updates */
 704	if (set_tx) {
 705		temp_tx = vmalloc(size);
 706		if (!temp_tx) {
 707			err = -ENOMEM;
 708			goto free_temp;
 709		}
 710	}
 711	if (set_rx) {
 712		temp_rx = vmalloc(size);
 713		if (!temp_rx) {
 714			err = -ENOMEM;
 715			goto free_temp;
 716		}
 717	}
 718
 719	pm_runtime_get_sync(netdev->dev.parent);
 720
 721	e1000e_down(adapter, true);
 722
 723	/* We can't just free everything and then setup again, because the
 724	 * ISRs in MSI-X mode get passed pointers to the Tx and Rx ring
 725	 * structs.  First, attempt to allocate new resources...
 726	 */
 727	if (set_tx) {
 728		memcpy(temp_tx, adapter->tx_ring, size);
 729		temp_tx->count = new_tx_count;
 730		err = e1000e_setup_tx_resources(temp_tx);
 731		if (err)
 732			goto err_setup;
 733	}
 734	if (set_rx) {
 735		memcpy(temp_rx, adapter->rx_ring, size);
 736		temp_rx->count = new_rx_count;
 737		err = e1000e_setup_rx_resources(temp_rx);
 738		if (err)
 739			goto err_setup_rx;
 740	}
 741
 742	/* ...then free the old resources and copy back any new ring data */
 743	if (set_tx) {
 744		e1000e_free_tx_resources(adapter->tx_ring);
 745		memcpy(adapter->tx_ring, temp_tx, size);
 746		adapter->tx_ring_count = new_tx_count;
 747	}
 748	if (set_rx) {
 749		e1000e_free_rx_resources(adapter->rx_ring);
 750		memcpy(adapter->rx_ring, temp_rx, size);
 751		adapter->rx_ring_count = new_rx_count;
 752	}
 753
 754err_setup_rx:
 755	if (err && set_tx)
 756		e1000e_free_tx_resources(temp_tx);
 757err_setup:
 758	e1000e_up(adapter);
 759	pm_runtime_put_sync(netdev->dev.parent);
 760free_temp:
 761	vfree(temp_tx);
 762	vfree(temp_rx);
 763clear_reset:
 764	clear_bit(__E1000_RESETTING, &adapter->state);
 765	return err;
 766}
 767
 768static bool reg_pattern_test(struct e1000_adapter *adapter, u64 *data,
 769			     int reg, int offset, u32 mask, u32 write)
 770{
 771	u32 pat, val;
 772	static const u32 test[] = {
 773		0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF
 774	};
 775	for (pat = 0; pat < ARRAY_SIZE(test); pat++) {
 776		E1000_WRITE_REG_ARRAY(&adapter->hw, reg, offset,
 777				      (test[pat] & write));
 778		val = E1000_READ_REG_ARRAY(&adapter->hw, reg, offset);
 779		if (val != (test[pat] & write & mask)) {
 780			e_err("pattern test failed (reg 0x%05X): got 0x%08X expected 0x%08X\n",
 781			      reg + (offset << 2), val,
 782			      (test[pat] & write & mask));
 783			*data = reg;
 784			return true;
 785		}
 786	}
 787	return false;
 788}
 789
 790static bool reg_set_and_check(struct e1000_adapter *adapter, u64 *data,
 791			      int reg, u32 mask, u32 write)
 792{
 793	u32 val;
 794
 795	__ew32(&adapter->hw, reg, write & mask);
 796	val = __er32(&adapter->hw, reg);
 797	if ((write & mask) != (val & mask)) {
 798		e_err("set/check test failed (reg 0x%05X): got 0x%08X expected 0x%08X\n",
 799		      reg, (val & mask), (write & mask));
 800		*data = reg;
 801		return true;
 802	}
 803	return false;
 804}
 805
 806#define REG_PATTERN_TEST_ARRAY(reg, offset, mask, write)                       \
 807	do {                                                                   \
 808		if (reg_pattern_test(adapter, data, reg, offset, mask, write)) \
 809			return 1;                                              \
 810	} while (0)
 811#define REG_PATTERN_TEST(reg, mask, write)                                     \
 812	REG_PATTERN_TEST_ARRAY(reg, 0, mask, write)
 813
 814#define REG_SET_AND_CHECK(reg, mask, write)                                    \
 815	do {                                                                   \
 816		if (reg_set_and_check(adapter, data, reg, mask, write))        \
 817			return 1;                                              \
 818	} while (0)
 819
 820static int e1000_reg_test(struct e1000_adapter *adapter, u64 *data)
 821{
 822	struct e1000_hw *hw = &adapter->hw;
 823	struct e1000_mac_info *mac = &adapter->hw.mac;
 824	u32 value;
 825	u32 before;
 826	u32 after;
 827	u32 i;
 828	u32 toggle;
 829	u32 mask;
 830	u32 wlock_mac = 0;
 831
 832	/* The status register is Read Only, so a write should fail.
 833	 * Some bits that get toggled are ignored.  There are several bits
 834	 * on newer hardware that are r/w.
 835	 */
 836	switch (mac->type) {
 837	case e1000_82571:
 838	case e1000_82572:
 839	case e1000_80003es2lan:
 840		toggle = 0x7FFFF3FF;
 841		break;
 842	default:
 843		toggle = 0x7FFFF033;
 844		break;
 845	}
 846
 847	before = er32(STATUS);
 848	value = (er32(STATUS) & toggle);
 849	ew32(STATUS, toggle);
 850	after = er32(STATUS) & toggle;
 851	if (value != after) {
 852		e_err("failed STATUS register test got: 0x%08X expected: 0x%08X\n",
 853		      after, value);
 854		*data = 1;
 855		return 1;
 856	}
 857	/* restore previous status */
 858	ew32(STATUS, before);
 859
 860	if (!(adapter->flags & FLAG_IS_ICH)) {
 861		REG_PATTERN_TEST(E1000_FCAL, 0xFFFFFFFF, 0xFFFFFFFF);
 862		REG_PATTERN_TEST(E1000_FCAH, 0x0000FFFF, 0xFFFFFFFF);
 863		REG_PATTERN_TEST(E1000_FCT, 0x0000FFFF, 0xFFFFFFFF);
 864		REG_PATTERN_TEST(E1000_VET, 0x0000FFFF, 0xFFFFFFFF);
 865	}
 866
 867	REG_PATTERN_TEST(E1000_RDTR, 0x0000FFFF, 0xFFFFFFFF);
 868	REG_PATTERN_TEST(E1000_RDBAH(0), 0xFFFFFFFF, 0xFFFFFFFF);
 869	REG_PATTERN_TEST(E1000_RDLEN(0), 0x000FFF80, 0x000FFFFF);
 870	REG_PATTERN_TEST(E1000_RDH(0), 0x0000FFFF, 0x0000FFFF);
 871	REG_PATTERN_TEST(E1000_RDT(0), 0x0000FFFF, 0x0000FFFF);
 872	REG_PATTERN_TEST(E1000_FCRTH, 0x0000FFF8, 0x0000FFF8);
 873	REG_PATTERN_TEST(E1000_FCTTV, 0x0000FFFF, 0x0000FFFF);
 874	REG_PATTERN_TEST(E1000_TIPG, 0x3FFFFFFF, 0x3FFFFFFF);
 875	REG_PATTERN_TEST(E1000_TDBAH(0), 0xFFFFFFFF, 0xFFFFFFFF);
 876	REG_PATTERN_TEST(E1000_TDLEN(0), 0x000FFF80, 0x000FFFFF);
 877
 878	REG_SET_AND_CHECK(E1000_RCTL, 0xFFFFFFFF, 0x00000000);
 879
 880	before = ((adapter->flags & FLAG_IS_ICH) ? 0x06C3B33E : 0x06DFB3FE);
 881	REG_SET_AND_CHECK(E1000_RCTL, before, 0x003FFFFB);
 882	REG_SET_AND_CHECK(E1000_TCTL, 0xFFFFFFFF, 0x00000000);
 883
 884	REG_SET_AND_CHECK(E1000_RCTL, before, 0xFFFFFFFF);
 885	REG_PATTERN_TEST(E1000_RDBAL(0), 0xFFFFFFF0, 0xFFFFFFFF);
 886	if (!(adapter->flags & FLAG_IS_ICH))
 887		REG_PATTERN_TEST(E1000_TXCW, 0xC000FFFF, 0x0000FFFF);
 888	REG_PATTERN_TEST(E1000_TDBAL(0), 0xFFFFFFF0, 0xFFFFFFFF);
 889	REG_PATTERN_TEST(E1000_TIDV, 0x0000FFFF, 0x0000FFFF);
 890	mask = 0x8003FFFF;
 891	switch (mac->type) {
 892	case e1000_ich10lan:
 893	case e1000_pchlan:
 894	case e1000_pch2lan:
 895	case e1000_pch_lpt:
 896	case e1000_pch_spt:
 897		/* fall through */
 898	case e1000_pch_cnp:
 
 
 
 
 
 
 899		mask |= BIT(18);
 900		break;
 901	default:
 902		break;
 903	}
 904
 905	if (mac->type >= e1000_pch_lpt)
 906		wlock_mac = (er32(FWSM) & E1000_FWSM_WLOCK_MAC_MASK) >>
 907		    E1000_FWSM_WLOCK_MAC_SHIFT;
 908
 909	for (i = 0; i < mac->rar_entry_count; i++) {
 910		if (mac->type >= e1000_pch_lpt) {
 911			/* Cannot test write-protected SHRAL[n] registers */
 912			if ((wlock_mac == 1) || (wlock_mac && (i > wlock_mac)))
 913				continue;
 914
 915			/* SHRAH[9] different than the others */
 916			if (i == 10)
 917				mask |= BIT(30);
 918			else
 919				mask &= ~BIT(30);
 920		}
 921		if (mac->type == e1000_pch2lan) {
 922			/* SHRAH[0,1,2] different than previous */
 923			if (i == 1)
 924				mask &= 0xFFF4FFFF;
 925			/* SHRAH[3] different than SHRAH[0,1,2] */
 926			if (i == 4)
 927				mask |= BIT(30);
 928			/* RAR[1-6] owned by management engine - skipping */
 929			if (i > 0)
 930				i += 6;
 931		}
 932
 933		REG_PATTERN_TEST_ARRAY(E1000_RA, ((i << 1) + 1), mask,
 934				       0xFFFFFFFF);
 935		/* reset index to actual value */
 936		if ((mac->type == e1000_pch2lan) && (i > 6))
 937			i -= 6;
 938	}
 939
 940	for (i = 0; i < mac->mta_reg_count; i++)
 941		REG_PATTERN_TEST_ARRAY(E1000_MTA, i, 0xFFFFFFFF, 0xFFFFFFFF);
 942
 943	*data = 0;
 944
 945	return 0;
 946}
 947
 948static int e1000_eeprom_test(struct e1000_adapter *adapter, u64 *data)
 949{
 950	u16 temp;
 951	u16 checksum = 0;
 952	u16 i;
 953
 954	*data = 0;
 955	/* Read and add up the contents of the EEPROM */
 956	for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) {
 957		if ((e1000_read_nvm(&adapter->hw, i, 1, &temp)) < 0) {
 958			*data = 1;
 959			return *data;
 960		}
 961		checksum += temp;
 962	}
 963
 964	/* If Checksum is not Correct return error else test passed */
 965	if ((checksum != (u16)NVM_SUM) && !(*data))
 966		*data = 2;
 967
 968	return *data;
 969}
 970
 971static irqreturn_t e1000_test_intr(int __always_unused irq, void *data)
 972{
 973	struct net_device *netdev = (struct net_device *)data;
 974	struct e1000_adapter *adapter = netdev_priv(netdev);
 975	struct e1000_hw *hw = &adapter->hw;
 976
 977	adapter->test_icr |= er32(ICR);
 978
 979	return IRQ_HANDLED;
 980}
 981
 982static int e1000_intr_test(struct e1000_adapter *adapter, u64 *data)
 983{
 984	struct net_device *netdev = adapter->netdev;
 985	struct e1000_hw *hw = &adapter->hw;
 986	u32 mask;
 987	u32 shared_int = 1;
 988	u32 irq = adapter->pdev->irq;
 989	int i;
 990	int ret_val = 0;
 991	int int_mode = E1000E_INT_MODE_LEGACY;
 992
 993	*data = 0;
 994
 995	/* NOTE: we don't test MSI/MSI-X interrupts here, yet */
 996	if (adapter->int_mode == E1000E_INT_MODE_MSIX) {
 997		int_mode = adapter->int_mode;
 998		e1000e_reset_interrupt_capability(adapter);
 999		adapter->int_mode = E1000E_INT_MODE_LEGACY;
1000		e1000e_set_interrupt_capability(adapter);
1001	}
1002	/* Hook up test interrupt handler just for this test */
1003	if (!request_irq(irq, e1000_test_intr, IRQF_PROBE_SHARED, netdev->name,
1004			 netdev)) {
1005		shared_int = 0;
1006	} else if (request_irq(irq, e1000_test_intr, IRQF_SHARED, netdev->name,
1007			       netdev)) {
1008		*data = 1;
1009		ret_val = -1;
1010		goto out;
1011	}
1012	e_info("testing %s interrupt\n", (shared_int ? "shared" : "unshared"));
1013
1014	/* Disable all the interrupts */
1015	ew32(IMC, 0xFFFFFFFF);
1016	e1e_flush();
1017	usleep_range(10000, 11000);
1018
1019	/* Test each interrupt */
1020	for (i = 0; i < 10; i++) {
1021		/* Interrupt to test */
1022		mask = BIT(i);
1023
1024		if (adapter->flags & FLAG_IS_ICH) {
1025			switch (mask) {
1026			case E1000_ICR_RXSEQ:
1027				continue;
1028			case 0x00000100:
1029				if (adapter->hw.mac.type == e1000_ich8lan ||
1030				    adapter->hw.mac.type == e1000_ich9lan)
1031					continue;
1032				break;
1033			default:
1034				break;
1035			}
1036		}
1037
1038		if (!shared_int) {
1039			/* Disable the interrupt to be reported in
1040			 * the cause register and then force the same
1041			 * interrupt and see if one gets posted.  If
1042			 * an interrupt was posted to the bus, the
1043			 * test failed.
1044			 */
1045			adapter->test_icr = 0;
1046			ew32(IMC, mask);
1047			ew32(ICS, mask);
1048			e1e_flush();
1049			usleep_range(10000, 11000);
1050
1051			if (adapter->test_icr & mask) {
1052				*data = 3;
1053				break;
1054			}
1055		}
1056
1057		/* Enable the interrupt to be reported in
1058		 * the cause register and then force the same
1059		 * interrupt and see if one gets posted.  If
1060		 * an interrupt was not posted to the bus, the
1061		 * test failed.
1062		 */
1063		adapter->test_icr = 0;
1064		ew32(IMS, mask);
1065		ew32(ICS, mask);
1066		e1e_flush();
1067		usleep_range(10000, 11000);
1068
1069		if (!(adapter->test_icr & mask)) {
1070			*data = 4;
1071			break;
1072		}
1073
1074		if (!shared_int) {
1075			/* Disable the other interrupts to be reported in
1076			 * the cause register and then force the other
1077			 * interrupts and see if any get posted.  If
1078			 * an interrupt was posted to the bus, the
1079			 * test failed.
1080			 */
1081			adapter->test_icr = 0;
1082			ew32(IMC, ~mask & 0x00007FFF);
1083			ew32(ICS, ~mask & 0x00007FFF);
1084			e1e_flush();
1085			usleep_range(10000, 11000);
1086
1087			if (adapter->test_icr) {
1088				*data = 5;
1089				break;
1090			}
1091		}
1092	}
1093
1094	/* Disable all the interrupts */
1095	ew32(IMC, 0xFFFFFFFF);
1096	e1e_flush();
1097	usleep_range(10000, 11000);
1098
1099	/* Unhook test interrupt handler */
1100	free_irq(irq, netdev);
1101
1102out:
1103	if (int_mode == E1000E_INT_MODE_MSIX) {
1104		e1000e_reset_interrupt_capability(adapter);
1105		adapter->int_mode = int_mode;
1106		e1000e_set_interrupt_capability(adapter);
1107	}
1108
1109	return ret_val;
1110}
1111
1112static void e1000_free_desc_rings(struct e1000_adapter *adapter)
1113{
1114	struct e1000_ring *tx_ring = &adapter->test_tx_ring;
1115	struct e1000_ring *rx_ring = &adapter->test_rx_ring;
1116	struct pci_dev *pdev = adapter->pdev;
1117	struct e1000_buffer *buffer_info;
1118	int i;
1119
1120	if (tx_ring->desc && tx_ring->buffer_info) {
1121		for (i = 0; i < tx_ring->count; i++) {
1122			buffer_info = &tx_ring->buffer_info[i];
1123
1124			if (buffer_info->dma)
1125				dma_unmap_single(&pdev->dev,
1126						 buffer_info->dma,
1127						 buffer_info->length,
1128						 DMA_TO_DEVICE);
1129			dev_kfree_skb(buffer_info->skb);
1130		}
1131	}
1132
1133	if (rx_ring->desc && rx_ring->buffer_info) {
1134		for (i = 0; i < rx_ring->count; i++) {
1135			buffer_info = &rx_ring->buffer_info[i];
1136
1137			if (buffer_info->dma)
1138				dma_unmap_single(&pdev->dev,
1139						 buffer_info->dma,
1140						 2048, DMA_FROM_DEVICE);
1141			dev_kfree_skb(buffer_info->skb);
1142		}
1143	}
1144
1145	if (tx_ring->desc) {
1146		dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
1147				  tx_ring->dma);
1148		tx_ring->desc = NULL;
1149	}
1150	if (rx_ring->desc) {
1151		dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
1152				  rx_ring->dma);
1153		rx_ring->desc = NULL;
1154	}
1155
1156	kfree(tx_ring->buffer_info);
1157	tx_ring->buffer_info = NULL;
1158	kfree(rx_ring->buffer_info);
1159	rx_ring->buffer_info = NULL;
1160}
1161
1162static int e1000_setup_desc_rings(struct e1000_adapter *adapter)
1163{
1164	struct e1000_ring *tx_ring = &adapter->test_tx_ring;
1165	struct e1000_ring *rx_ring = &adapter->test_rx_ring;
1166	struct pci_dev *pdev = adapter->pdev;
1167	struct e1000_hw *hw = &adapter->hw;
1168	u32 rctl;
1169	int i;
1170	int ret_val;
1171
1172	/* Setup Tx descriptor ring and Tx buffers */
1173
1174	if (!tx_ring->count)
1175		tx_ring->count = E1000_DEFAULT_TXD;
1176
1177	tx_ring->buffer_info = kcalloc(tx_ring->count,
1178				       sizeof(struct e1000_buffer), GFP_KERNEL);
1179	if (!tx_ring->buffer_info) {
1180		ret_val = 1;
1181		goto err_nomem;
1182	}
1183
1184	tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
1185	tx_ring->size = ALIGN(tx_ring->size, 4096);
1186	tx_ring->desc = dma_alloc_coherent(&pdev->dev, tx_ring->size,
1187					   &tx_ring->dma, GFP_KERNEL);
1188	if (!tx_ring->desc) {
1189		ret_val = 2;
1190		goto err_nomem;
1191	}
1192	tx_ring->next_to_use = 0;
1193	tx_ring->next_to_clean = 0;
1194
1195	ew32(TDBAL(0), ((u64)tx_ring->dma & 0x00000000FFFFFFFF));
1196	ew32(TDBAH(0), ((u64)tx_ring->dma >> 32));
1197	ew32(TDLEN(0), tx_ring->count * sizeof(struct e1000_tx_desc));
1198	ew32(TDH(0), 0);
1199	ew32(TDT(0), 0);
1200	ew32(TCTL, E1000_TCTL_PSP | E1000_TCTL_EN | E1000_TCTL_MULR |
1201	     E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT |
1202	     E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT);
1203
1204	for (i = 0; i < tx_ring->count; i++) {
1205		struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*tx_ring, i);
1206		struct sk_buff *skb;
1207		unsigned int skb_size = 1024;
1208
1209		skb = alloc_skb(skb_size, GFP_KERNEL);
1210		if (!skb) {
1211			ret_val = 3;
1212			goto err_nomem;
1213		}
1214		skb_put(skb, skb_size);
1215		tx_ring->buffer_info[i].skb = skb;
1216		tx_ring->buffer_info[i].length = skb->len;
1217		tx_ring->buffer_info[i].dma =
1218		    dma_map_single(&pdev->dev, skb->data, skb->len,
1219				   DMA_TO_DEVICE);
1220		if (dma_mapping_error(&pdev->dev,
1221				      tx_ring->buffer_info[i].dma)) {
1222			ret_val = 4;
1223			goto err_nomem;
1224		}
1225		tx_desc->buffer_addr = cpu_to_le64(tx_ring->buffer_info[i].dma);
1226		tx_desc->lower.data = cpu_to_le32(skb->len);
1227		tx_desc->lower.data |= cpu_to_le32(E1000_TXD_CMD_EOP |
1228						   E1000_TXD_CMD_IFCS |
1229						   E1000_TXD_CMD_RS);
1230		tx_desc->upper.data = 0;
1231	}
1232
1233	/* Setup Rx descriptor ring and Rx buffers */
1234
1235	if (!rx_ring->count)
1236		rx_ring->count = E1000_DEFAULT_RXD;
1237
1238	rx_ring->buffer_info = kcalloc(rx_ring->count,
1239				       sizeof(struct e1000_buffer), GFP_KERNEL);
1240	if (!rx_ring->buffer_info) {
1241		ret_val = 5;
1242		goto err_nomem;
1243	}
1244
1245	rx_ring->size = rx_ring->count * sizeof(union e1000_rx_desc_extended);
1246	rx_ring->desc = dma_alloc_coherent(&pdev->dev, rx_ring->size,
1247					   &rx_ring->dma, GFP_KERNEL);
1248	if (!rx_ring->desc) {
1249		ret_val = 6;
1250		goto err_nomem;
1251	}
1252	rx_ring->next_to_use = 0;
1253	rx_ring->next_to_clean = 0;
1254
1255	rctl = er32(RCTL);
1256	if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX))
1257		ew32(RCTL, rctl & ~E1000_RCTL_EN);
1258	ew32(RDBAL(0), ((u64)rx_ring->dma & 0xFFFFFFFF));
1259	ew32(RDBAH(0), ((u64)rx_ring->dma >> 32));
1260	ew32(RDLEN(0), rx_ring->size);
1261	ew32(RDH(0), 0);
1262	ew32(RDT(0), 0);
1263	rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_SZ_2048 |
1264	    E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_LPE |
1265	    E1000_RCTL_SBP | E1000_RCTL_SECRC |
1266	    E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1267	    (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
1268	ew32(RCTL, rctl);
1269
1270	for (i = 0; i < rx_ring->count; i++) {
1271		union e1000_rx_desc_extended *rx_desc;
1272		struct sk_buff *skb;
1273
1274		skb = alloc_skb(2048 + NET_IP_ALIGN, GFP_KERNEL);
1275		if (!skb) {
1276			ret_val = 7;
1277			goto err_nomem;
1278		}
1279		skb_reserve(skb, NET_IP_ALIGN);
1280		rx_ring->buffer_info[i].skb = skb;
1281		rx_ring->buffer_info[i].dma =
1282		    dma_map_single(&pdev->dev, skb->data, 2048,
1283				   DMA_FROM_DEVICE);
1284		if (dma_mapping_error(&pdev->dev,
1285				      rx_ring->buffer_info[i].dma)) {
1286			ret_val = 8;
1287			goto err_nomem;
1288		}
1289		rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
1290		rx_desc->read.buffer_addr =
1291		    cpu_to_le64(rx_ring->buffer_info[i].dma);
1292		memset(skb->data, 0x00, skb->len);
1293	}
1294
1295	return 0;
1296
1297err_nomem:
1298	e1000_free_desc_rings(adapter);
1299	return ret_val;
1300}
1301
1302static void e1000_phy_disable_receiver(struct e1000_adapter *adapter)
1303{
1304	/* Write out to PHY registers 29 and 30 to disable the Receiver. */
1305	e1e_wphy(&adapter->hw, 29, 0x001F);
1306	e1e_wphy(&adapter->hw, 30, 0x8FFC);
1307	e1e_wphy(&adapter->hw, 29, 0x001A);
1308	e1e_wphy(&adapter->hw, 30, 0x8FF0);
1309}
1310
1311static int e1000_integrated_phy_loopback(struct e1000_adapter *adapter)
1312{
1313	struct e1000_hw *hw = &adapter->hw;
1314	u32 ctrl_reg = 0;
1315	u16 phy_reg = 0;
1316	s32 ret_val = 0;
1317
1318	hw->mac.autoneg = 0;
1319
1320	if (hw->phy.type == e1000_phy_ife) {
1321		/* force 100, set loopback */
1322		e1e_wphy(hw, MII_BMCR, 0x6100);
1323
1324		/* Now set up the MAC to the same speed/duplex as the PHY. */
1325		ctrl_reg = er32(CTRL);
1326		ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1327		ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1328			     E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1329			     E1000_CTRL_SPD_100 |/* Force Speed to 100 */
1330			     E1000_CTRL_FD);	 /* Force Duplex to FULL */
1331
1332		ew32(CTRL, ctrl_reg);
1333		e1e_flush();
1334		usleep_range(500, 1000);
1335
1336		return 0;
1337	}
1338
1339	/* Specific PHY configuration for loopback */
1340	switch (hw->phy.type) {
1341	case e1000_phy_m88:
1342		/* Auto-MDI/MDIX Off */
1343		e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, 0x0808);
1344		/* reset to update Auto-MDI/MDIX */
1345		e1e_wphy(hw, MII_BMCR, 0x9140);
1346		/* autoneg off */
1347		e1e_wphy(hw, MII_BMCR, 0x8140);
1348		break;
1349	case e1000_phy_gg82563:
1350		e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, 0x1CC);
1351		break;
1352	case e1000_phy_bm:
1353		/* Set Default MAC Interface speed to 1GB */
1354		e1e_rphy(hw, PHY_REG(2, 21), &phy_reg);
1355		phy_reg &= ~0x0007;
1356		phy_reg |= 0x006;
1357		e1e_wphy(hw, PHY_REG(2, 21), phy_reg);
1358		/* Assert SW reset for above settings to take effect */
1359		hw->phy.ops.commit(hw);
1360		usleep_range(1000, 2000);
1361		/* Force Full Duplex */
1362		e1e_rphy(hw, PHY_REG(769, 16), &phy_reg);
1363		e1e_wphy(hw, PHY_REG(769, 16), phy_reg | 0x000C);
1364		/* Set Link Up (in force link) */
1365		e1e_rphy(hw, PHY_REG(776, 16), &phy_reg);
1366		e1e_wphy(hw, PHY_REG(776, 16), phy_reg | 0x0040);
1367		/* Force Link */
1368		e1e_rphy(hw, PHY_REG(769, 16), &phy_reg);
1369		e1e_wphy(hw, PHY_REG(769, 16), phy_reg | 0x0040);
1370		/* Set Early Link Enable */
1371		e1e_rphy(hw, PHY_REG(769, 20), &phy_reg);
1372		e1e_wphy(hw, PHY_REG(769, 20), phy_reg | 0x0400);
1373		break;
1374	case e1000_phy_82577:
1375	case e1000_phy_82578:
1376		/* Workaround: K1 must be disabled for stable 1Gbps operation */
1377		ret_val = hw->phy.ops.acquire(hw);
1378		if (ret_val) {
1379			e_err("Cannot setup 1Gbps loopback.\n");
1380			return ret_val;
1381		}
1382		e1000_configure_k1_ich8lan(hw, false);
1383		hw->phy.ops.release(hw);
1384		break;
1385	case e1000_phy_82579:
1386		/* Disable PHY energy detect power down */
1387		e1e_rphy(hw, PHY_REG(0, 21), &phy_reg);
1388		e1e_wphy(hw, PHY_REG(0, 21), phy_reg & ~BIT(3));
1389		/* Disable full chip energy detect */
1390		e1e_rphy(hw, PHY_REG(776, 18), &phy_reg);
1391		e1e_wphy(hw, PHY_REG(776, 18), phy_reg | 1);
1392		/* Enable loopback on the PHY */
1393		e1e_wphy(hw, I82577_PHY_LBK_CTRL, 0x8001);
1394		break;
1395	default:
1396		break;
1397	}
1398
1399	/* force 1000, set loopback */
1400	e1e_wphy(hw, MII_BMCR, 0x4140);
1401	msleep(250);
1402
1403	/* Now set up the MAC to the same speed/duplex as the PHY. */
1404	ctrl_reg = er32(CTRL);
1405	ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1406	ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1407		     E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1408		     E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
1409		     E1000_CTRL_FD);	 /* Force Duplex to FULL */
1410
1411	if (adapter->flags & FLAG_IS_ICH)
1412		ctrl_reg |= E1000_CTRL_SLU;	/* Set Link Up */
1413
1414	if (hw->phy.media_type == e1000_media_type_copper &&
1415	    hw->phy.type == e1000_phy_m88) {
1416		ctrl_reg |= E1000_CTRL_ILOS;	/* Invert Loss of Signal */
1417	} else {
1418		/* Set the ILOS bit on the fiber Nic if half duplex link is
1419		 * detected.
1420		 */
1421		if ((er32(STATUS) & E1000_STATUS_FD) == 0)
1422			ctrl_reg |= (E1000_CTRL_ILOS | E1000_CTRL_SLU);
1423	}
1424
1425	ew32(CTRL, ctrl_reg);
1426
1427	/* Disable the receiver on the PHY so when a cable is plugged in, the
1428	 * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1429	 */
1430	if (hw->phy.type == e1000_phy_m88)
1431		e1000_phy_disable_receiver(adapter);
1432
1433	usleep_range(500, 1000);
1434
1435	return 0;
1436}
1437
1438static int e1000_set_82571_fiber_loopback(struct e1000_adapter *adapter)
1439{
1440	struct e1000_hw *hw = &adapter->hw;
1441	u32 ctrl = er32(CTRL);
1442	int link;
1443
1444	/* special requirements for 82571/82572 fiber adapters */
1445
1446	/* jump through hoops to make sure link is up because serdes
1447	 * link is hardwired up
1448	 */
1449	ctrl |= E1000_CTRL_SLU;
1450	ew32(CTRL, ctrl);
1451
1452	/* disable autoneg */
1453	ctrl = er32(TXCW);
1454	ctrl &= ~BIT(31);
1455	ew32(TXCW, ctrl);
1456
1457	link = (er32(STATUS) & E1000_STATUS_LU);
1458
1459	if (!link) {
1460		/* set invert loss of signal */
1461		ctrl = er32(CTRL);
1462		ctrl |= E1000_CTRL_ILOS;
1463		ew32(CTRL, ctrl);
1464	}
1465
1466	/* special write to serdes control register to enable SerDes analog
1467	 * loopback
1468	 */
1469	ew32(SCTL, E1000_SCTL_ENABLE_SERDES_LOOPBACK);
1470	e1e_flush();
1471	usleep_range(10000, 11000);
1472
1473	return 0;
1474}
1475
1476/* only call this for fiber/serdes connections to es2lan */
1477static int e1000_set_es2lan_mac_loopback(struct e1000_adapter *adapter)
1478{
1479	struct e1000_hw *hw = &adapter->hw;
1480	u32 ctrlext = er32(CTRL_EXT);
1481	u32 ctrl = er32(CTRL);
1482
1483	/* save CTRL_EXT to restore later, reuse an empty variable (unused
1484	 * on mac_type 80003es2lan)
1485	 */
1486	adapter->tx_fifo_head = ctrlext;
1487
1488	/* clear the serdes mode bits, putting the device into mac loopback */
1489	ctrlext &= ~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
1490	ew32(CTRL_EXT, ctrlext);
1491
1492	/* force speed to 1000/FD, link up */
1493	ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
1494	ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX |
1495		 E1000_CTRL_SPD_1000 | E1000_CTRL_FD);
1496	ew32(CTRL, ctrl);
1497
1498	/* set mac loopback */
1499	ctrl = er32(RCTL);
1500	ctrl |= E1000_RCTL_LBM_MAC;
1501	ew32(RCTL, ctrl);
1502
1503	/* set testing mode parameters (no need to reset later) */
1504#define KMRNCTRLSTA_OPMODE (0x1F << 16)
1505#define KMRNCTRLSTA_OPMODE_1GB_FD_GMII 0x0582
1506	ew32(KMRNCTRLSTA,
1507	     (KMRNCTRLSTA_OPMODE | KMRNCTRLSTA_OPMODE_1GB_FD_GMII));
1508
1509	return 0;
1510}
1511
1512static int e1000_setup_loopback_test(struct e1000_adapter *adapter)
1513{
1514	struct e1000_hw *hw = &adapter->hw;
1515	u32 rctl, fext_nvm11, tarc0;
1516
1517	if (hw->mac.type >= e1000_pch_spt) {
1518		fext_nvm11 = er32(FEXTNVM11);
1519		fext_nvm11 |= E1000_FEXTNVM11_DISABLE_MULR_FIX;
1520		ew32(FEXTNVM11, fext_nvm11);
1521		tarc0 = er32(TARC(0));
1522		/* clear bits 28 & 29 (control of MULR concurrent requests) */
1523		tarc0 &= 0xcfffffff;
1524		/* set bit 29 (value of MULR requests is now 2) */
1525		tarc0 |= 0x20000000;
1526		ew32(TARC(0), tarc0);
1527	}
1528	if (hw->phy.media_type == e1000_media_type_fiber ||
1529	    hw->phy.media_type == e1000_media_type_internal_serdes) {
1530		switch (hw->mac.type) {
1531		case e1000_80003es2lan:
1532			return e1000_set_es2lan_mac_loopback(adapter);
1533		case e1000_82571:
1534		case e1000_82572:
1535			return e1000_set_82571_fiber_loopback(adapter);
1536		default:
1537			rctl = er32(RCTL);
1538			rctl |= E1000_RCTL_LBM_TCVR;
1539			ew32(RCTL, rctl);
1540			return 0;
1541		}
1542	} else if (hw->phy.media_type == e1000_media_type_copper) {
1543		return e1000_integrated_phy_loopback(adapter);
1544	}
1545
1546	return 7;
1547}
1548
1549static void e1000_loopback_cleanup(struct e1000_adapter *adapter)
1550{
1551	struct e1000_hw *hw = &adapter->hw;
1552	u32 rctl, fext_nvm11, tarc0;
1553	u16 phy_reg;
1554
1555	rctl = er32(RCTL);
1556	rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1557	ew32(RCTL, rctl);
1558
1559	switch (hw->mac.type) {
1560	case e1000_pch_spt:
1561	case e1000_pch_cnp:
 
 
 
 
 
 
1562		fext_nvm11 = er32(FEXTNVM11);
1563		fext_nvm11 &= ~E1000_FEXTNVM11_DISABLE_MULR_FIX;
1564		ew32(FEXTNVM11, fext_nvm11);
1565		tarc0 = er32(TARC(0));
1566		/* clear bits 28 & 29 (control of MULR concurrent requests) */
1567		/* set bit 29 (value of MULR requests is now 0) */
1568		tarc0 &= 0xcfffffff;
1569		ew32(TARC(0), tarc0);
1570		/* fall through */
1571	case e1000_80003es2lan:
1572		if (hw->phy.media_type == e1000_media_type_fiber ||
1573		    hw->phy.media_type == e1000_media_type_internal_serdes) {
1574			/* restore CTRL_EXT, stealing space from tx_fifo_head */
1575			ew32(CTRL_EXT, adapter->tx_fifo_head);
1576			adapter->tx_fifo_head = 0;
1577		}
1578		/* fall through */
1579	case e1000_82571:
1580	case e1000_82572:
1581		if (hw->phy.media_type == e1000_media_type_fiber ||
1582		    hw->phy.media_type == e1000_media_type_internal_serdes) {
1583			ew32(SCTL, E1000_SCTL_DISABLE_SERDES_LOOPBACK);
1584			e1e_flush();
1585			usleep_range(10000, 11000);
1586			break;
1587		}
1588		/* Fall Through */
1589	default:
1590		hw->mac.autoneg = 1;
1591		if (hw->phy.type == e1000_phy_gg82563)
1592			e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, 0x180);
1593		e1e_rphy(hw, MII_BMCR, &phy_reg);
1594		if (phy_reg & BMCR_LOOPBACK) {
1595			phy_reg &= ~BMCR_LOOPBACK;
1596			e1e_wphy(hw, MII_BMCR, phy_reg);
1597			if (hw->phy.ops.commit)
1598				hw->phy.ops.commit(hw);
1599		}
1600		break;
1601	}
1602}
1603
1604static void e1000_create_lbtest_frame(struct sk_buff *skb,
1605				      unsigned int frame_size)
1606{
1607	memset(skb->data, 0xFF, frame_size);
1608	frame_size &= ~1;
1609	memset(&skb->data[frame_size / 2], 0xAA, frame_size / 2 - 1);
1610	memset(&skb->data[frame_size / 2 + 10], 0xBE, 1);
1611	memset(&skb->data[frame_size / 2 + 12], 0xAF, 1);
1612}
1613
1614static int e1000_check_lbtest_frame(struct sk_buff *skb,
1615				    unsigned int frame_size)
1616{
1617	frame_size &= ~1;
1618	if (*(skb->data + 3) == 0xFF)
1619		if ((*(skb->data + frame_size / 2 + 10) == 0xBE) &&
1620		    (*(skb->data + frame_size / 2 + 12) == 0xAF))
1621			return 0;
1622	return 13;
1623}
1624
1625static int e1000_run_loopback_test(struct e1000_adapter *adapter)
1626{
1627	struct e1000_ring *tx_ring = &adapter->test_tx_ring;
1628	struct e1000_ring *rx_ring = &adapter->test_rx_ring;
1629	struct pci_dev *pdev = adapter->pdev;
1630	struct e1000_hw *hw = &adapter->hw;
1631	struct e1000_buffer *buffer_info;
1632	int i, j, k, l;
1633	int lc;
1634	int good_cnt;
1635	int ret_val = 0;
1636	unsigned long time;
1637
1638	ew32(RDT(0), rx_ring->count - 1);
1639
1640	/* Calculate the loop count based on the largest descriptor ring
1641	 * The idea is to wrap the largest ring a number of times using 64
1642	 * send/receive pairs during each loop
1643	 */
1644
1645	if (rx_ring->count <= tx_ring->count)
1646		lc = ((tx_ring->count / 64) * 2) + 1;
1647	else
1648		lc = ((rx_ring->count / 64) * 2) + 1;
1649
1650	k = 0;
1651	l = 0;
1652	/* loop count loop */
1653	for (j = 0; j <= lc; j++) {
1654		/* send the packets */
1655		for (i = 0; i < 64; i++) {
1656			buffer_info = &tx_ring->buffer_info[k];
1657
1658			e1000_create_lbtest_frame(buffer_info->skb, 1024);
1659			dma_sync_single_for_device(&pdev->dev,
1660						   buffer_info->dma,
1661						   buffer_info->length,
1662						   DMA_TO_DEVICE);
1663			k++;
1664			if (k == tx_ring->count)
1665				k = 0;
1666		}
1667		ew32(TDT(0), k);
1668		e1e_flush();
1669		msleep(200);
1670		time = jiffies;	/* set the start time for the receive */
1671		good_cnt = 0;
1672		/* receive the sent packets */
1673		do {
1674			buffer_info = &rx_ring->buffer_info[l];
1675
1676			dma_sync_single_for_cpu(&pdev->dev,
1677						buffer_info->dma, 2048,
1678						DMA_FROM_DEVICE);
1679
1680			ret_val = e1000_check_lbtest_frame(buffer_info->skb,
1681							   1024);
1682			if (!ret_val)
1683				good_cnt++;
1684			l++;
1685			if (l == rx_ring->count)
1686				l = 0;
1687			/* time + 20 msecs (200 msecs on 2.4) is more than
1688			 * enough time to complete the receives, if it's
1689			 * exceeded, break and error off
1690			 */
1691		} while ((good_cnt < 64) && !time_after(jiffies, time + 20));
1692		if (good_cnt != 64) {
1693			ret_val = 13;	/* ret_val is the same as mis-compare */
1694			break;
1695		}
1696		if (time_after(jiffies, time + 20)) {
1697			ret_val = 14;	/* error code for time out error */
1698			break;
1699		}
1700	}
1701	return ret_val;
1702}
1703
1704static int e1000_loopback_test(struct e1000_adapter *adapter, u64 *data)
1705{
1706	struct e1000_hw *hw = &adapter->hw;
1707
1708	/* PHY loopback cannot be performed if SoL/IDER sessions are active */
1709	if (hw->phy.ops.check_reset_block &&
1710	    hw->phy.ops.check_reset_block(hw)) {
1711		e_err("Cannot do PHY loopback test when SoL/IDER is active.\n");
1712		*data = 0;
1713		goto out;
1714	}
1715
1716	*data = e1000_setup_desc_rings(adapter);
1717	if (*data)
1718		goto out;
1719
1720	*data = e1000_setup_loopback_test(adapter);
1721	if (*data)
1722		goto err_loopback;
1723
1724	*data = e1000_run_loopback_test(adapter);
1725	e1000_loopback_cleanup(adapter);
1726
1727err_loopback:
1728	e1000_free_desc_rings(adapter);
1729out:
1730	return *data;
1731}
1732
1733static int e1000_link_test(struct e1000_adapter *adapter, u64 *data)
1734{
1735	struct e1000_hw *hw = &adapter->hw;
1736
1737	*data = 0;
1738	if (hw->phy.media_type == e1000_media_type_internal_serdes) {
1739		int i = 0;
1740
1741		hw->mac.serdes_has_link = false;
1742
1743		/* On some blade server designs, link establishment
1744		 * could take as long as 2-3 minutes
1745		 */
1746		do {
1747			hw->mac.ops.check_for_link(hw);
1748			if (hw->mac.serdes_has_link)
1749				return *data;
1750			msleep(20);
1751		} while (i++ < 3750);
1752
1753		*data = 1;
1754	} else {
1755		hw->mac.ops.check_for_link(hw);
1756		if (hw->mac.autoneg)
1757			/* On some Phy/switch combinations, link establishment
1758			 * can take a few seconds more than expected.
1759			 */
1760			msleep_interruptible(5000);
1761
1762		if (!(er32(STATUS) & E1000_STATUS_LU))
1763			*data = 1;
1764	}
1765	return *data;
1766}
1767
1768static int e1000e_get_sset_count(struct net_device __always_unused *netdev,
1769				 int sset)
1770{
1771	switch (sset) {
1772	case ETH_SS_TEST:
1773		return E1000_TEST_LEN;
1774	case ETH_SS_STATS:
1775		return E1000_STATS_LEN;
 
 
1776	default:
1777		return -EOPNOTSUPP;
1778	}
1779}
1780
1781static void e1000_diag_test(struct net_device *netdev,
1782			    struct ethtool_test *eth_test, u64 *data)
1783{
1784	struct e1000_adapter *adapter = netdev_priv(netdev);
1785	u16 autoneg_advertised;
1786	u8 forced_speed_duplex;
1787	u8 autoneg;
1788	bool if_running = netif_running(netdev);
1789
1790	pm_runtime_get_sync(netdev->dev.parent);
1791
1792	set_bit(__E1000_TESTING, &adapter->state);
1793
1794	if (!if_running) {
1795		/* Get control of and reset hardware */
1796		if (adapter->flags & FLAG_HAS_AMT)
1797			e1000e_get_hw_control(adapter);
1798
1799		e1000e_power_up_phy(adapter);
1800
1801		adapter->hw.phy.autoneg_wait_to_complete = 1;
1802		e1000e_reset(adapter);
1803		adapter->hw.phy.autoneg_wait_to_complete = 0;
1804	}
1805
1806	if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
1807		/* Offline tests */
1808
1809		/* save speed, duplex, autoneg settings */
1810		autoneg_advertised = adapter->hw.phy.autoneg_advertised;
1811		forced_speed_duplex = adapter->hw.mac.forced_speed_duplex;
1812		autoneg = adapter->hw.mac.autoneg;
1813
1814		e_info("offline testing starting\n");
1815
1816		if (if_running)
1817			/* indicate we're in test mode */
1818			e1000e_close(netdev);
1819
1820		if (e1000_reg_test(adapter, &data[0]))
1821			eth_test->flags |= ETH_TEST_FL_FAILED;
1822
1823		e1000e_reset(adapter);
1824		if (e1000_eeprom_test(adapter, &data[1]))
1825			eth_test->flags |= ETH_TEST_FL_FAILED;
1826
1827		e1000e_reset(adapter);
1828		if (e1000_intr_test(adapter, &data[2]))
1829			eth_test->flags |= ETH_TEST_FL_FAILED;
1830
1831		e1000e_reset(adapter);
1832		if (e1000_loopback_test(adapter, &data[3]))
1833			eth_test->flags |= ETH_TEST_FL_FAILED;
1834
1835		/* force this routine to wait until autoneg complete/timeout */
1836		adapter->hw.phy.autoneg_wait_to_complete = 1;
1837		e1000e_reset(adapter);
1838		adapter->hw.phy.autoneg_wait_to_complete = 0;
1839
1840		if (e1000_link_test(adapter, &data[4]))
1841			eth_test->flags |= ETH_TEST_FL_FAILED;
1842
1843		/* restore speed, duplex, autoneg settings */
1844		adapter->hw.phy.autoneg_advertised = autoneg_advertised;
1845		adapter->hw.mac.forced_speed_duplex = forced_speed_duplex;
1846		adapter->hw.mac.autoneg = autoneg;
1847		e1000e_reset(adapter);
1848
1849		clear_bit(__E1000_TESTING, &adapter->state);
1850		if (if_running)
1851			e1000e_open(netdev);
1852	} else {
1853		/* Online tests */
1854
1855		e_info("online testing starting\n");
1856
1857		/* register, eeprom, intr and loopback tests not run online */
1858		data[0] = 0;
1859		data[1] = 0;
1860		data[2] = 0;
1861		data[3] = 0;
1862
1863		if (e1000_link_test(adapter, &data[4]))
1864			eth_test->flags |= ETH_TEST_FL_FAILED;
1865
1866		clear_bit(__E1000_TESTING, &adapter->state);
1867	}
1868
1869	if (!if_running) {
1870		e1000e_reset(adapter);
1871
1872		if (adapter->flags & FLAG_HAS_AMT)
1873			e1000e_release_hw_control(adapter);
1874	}
1875
1876	msleep_interruptible(4 * 1000);
1877
1878	pm_runtime_put_sync(netdev->dev.parent);
1879}
1880
1881static void e1000_get_wol(struct net_device *netdev,
1882			  struct ethtool_wolinfo *wol)
1883{
1884	struct e1000_adapter *adapter = netdev_priv(netdev);
1885
1886	wol->supported = 0;
1887	wol->wolopts = 0;
1888
1889	if (!(adapter->flags & FLAG_HAS_WOL) ||
1890	    !device_can_wakeup(&adapter->pdev->dev))
1891		return;
1892
1893	wol->supported = WAKE_UCAST | WAKE_MCAST |
1894	    WAKE_BCAST | WAKE_MAGIC | WAKE_PHY;
1895
1896	/* apply any specific unsupported masks here */
1897	if (adapter->flags & FLAG_NO_WAKE_UCAST) {
1898		wol->supported &= ~WAKE_UCAST;
1899
1900		if (adapter->wol & E1000_WUFC_EX)
1901			e_err("Interface does not support directed (unicast) frame wake-up packets\n");
1902	}
1903
1904	if (adapter->wol & E1000_WUFC_EX)
1905		wol->wolopts |= WAKE_UCAST;
1906	if (adapter->wol & E1000_WUFC_MC)
1907		wol->wolopts |= WAKE_MCAST;
1908	if (adapter->wol & E1000_WUFC_BC)
1909		wol->wolopts |= WAKE_BCAST;
1910	if (adapter->wol & E1000_WUFC_MAG)
1911		wol->wolopts |= WAKE_MAGIC;
1912	if (adapter->wol & E1000_WUFC_LNKC)
1913		wol->wolopts |= WAKE_PHY;
1914}
1915
1916static int e1000_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
1917{
1918	struct e1000_adapter *adapter = netdev_priv(netdev);
1919
1920	if (!(adapter->flags & FLAG_HAS_WOL) ||
1921	    !device_can_wakeup(&adapter->pdev->dev) ||
1922	    (wol->wolopts & ~(WAKE_UCAST | WAKE_MCAST | WAKE_BCAST |
1923			      WAKE_MAGIC | WAKE_PHY)))
1924		return -EOPNOTSUPP;
1925
1926	/* these settings will always override what we currently have */
1927	adapter->wol = 0;
1928
1929	if (wol->wolopts & WAKE_UCAST)
1930		adapter->wol |= E1000_WUFC_EX;
1931	if (wol->wolopts & WAKE_MCAST)
1932		adapter->wol |= E1000_WUFC_MC;
1933	if (wol->wolopts & WAKE_BCAST)
1934		adapter->wol |= E1000_WUFC_BC;
1935	if (wol->wolopts & WAKE_MAGIC)
1936		adapter->wol |= E1000_WUFC_MAG;
1937	if (wol->wolopts & WAKE_PHY)
1938		adapter->wol |= E1000_WUFC_LNKC;
1939
1940	device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1941
1942	return 0;
1943}
1944
1945static int e1000_set_phys_id(struct net_device *netdev,
1946			     enum ethtool_phys_id_state state)
1947{
1948	struct e1000_adapter *adapter = netdev_priv(netdev);
1949	struct e1000_hw *hw = &adapter->hw;
1950
1951	switch (state) {
1952	case ETHTOOL_ID_ACTIVE:
1953		pm_runtime_get_sync(netdev->dev.parent);
1954
1955		if (!hw->mac.ops.blink_led)
1956			return 2;	/* cycle on/off twice per second */
1957
1958		hw->mac.ops.blink_led(hw);
1959		break;
1960
1961	case ETHTOOL_ID_INACTIVE:
1962		if (hw->phy.type == e1000_phy_ife)
1963			e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0);
1964		hw->mac.ops.led_off(hw);
1965		hw->mac.ops.cleanup_led(hw);
1966		pm_runtime_put_sync(netdev->dev.parent);
1967		break;
1968
1969	case ETHTOOL_ID_ON:
1970		hw->mac.ops.led_on(hw);
1971		break;
1972
1973	case ETHTOOL_ID_OFF:
1974		hw->mac.ops.led_off(hw);
1975		break;
1976	}
1977
1978	return 0;
1979}
1980
1981static int e1000_get_coalesce(struct net_device *netdev,
1982			      struct ethtool_coalesce *ec)
 
 
1983{
1984	struct e1000_adapter *adapter = netdev_priv(netdev);
1985
1986	if (adapter->itr_setting <= 4)
1987		ec->rx_coalesce_usecs = adapter->itr_setting;
1988	else
1989		ec->rx_coalesce_usecs = 1000000 / adapter->itr_setting;
1990
1991	return 0;
1992}
1993
1994static int e1000_set_coalesce(struct net_device *netdev,
1995			      struct ethtool_coalesce *ec)
 
 
1996{
1997	struct e1000_adapter *adapter = netdev_priv(netdev);
1998
1999	if ((ec->rx_coalesce_usecs > E1000_MAX_ITR_USECS) ||
2000	    ((ec->rx_coalesce_usecs > 4) &&
2001	     (ec->rx_coalesce_usecs < E1000_MIN_ITR_USECS)) ||
2002	    (ec->rx_coalesce_usecs == 2))
2003		return -EINVAL;
2004
2005	if (ec->rx_coalesce_usecs == 4) {
2006		adapter->itr_setting = 4;
2007		adapter->itr = adapter->itr_setting;
2008	} else if (ec->rx_coalesce_usecs <= 3) {
2009		adapter->itr = 20000;
2010		adapter->itr_setting = ec->rx_coalesce_usecs;
2011	} else {
2012		adapter->itr = (1000000 / ec->rx_coalesce_usecs);
2013		adapter->itr_setting = adapter->itr & ~3;
2014	}
2015
2016	pm_runtime_get_sync(netdev->dev.parent);
2017
2018	if (adapter->itr_setting != 0)
2019		e1000e_write_itr(adapter, adapter->itr);
2020	else
2021		e1000e_write_itr(adapter, 0);
2022
2023	pm_runtime_put_sync(netdev->dev.parent);
2024
2025	return 0;
2026}
2027
2028static int e1000_nway_reset(struct net_device *netdev)
2029{
2030	struct e1000_adapter *adapter = netdev_priv(netdev);
2031
2032	if (!netif_running(netdev))
2033		return -EAGAIN;
2034
2035	if (!adapter->hw.mac.autoneg)
2036		return -EINVAL;
2037
2038	pm_runtime_get_sync(netdev->dev.parent);
2039	e1000e_reinit_locked(adapter);
2040	pm_runtime_put_sync(netdev->dev.parent);
2041
2042	return 0;
2043}
2044
2045static void e1000_get_ethtool_stats(struct net_device *netdev,
2046				    struct ethtool_stats __always_unused *stats,
2047				    u64 *data)
2048{
2049	struct e1000_adapter *adapter = netdev_priv(netdev);
2050	struct rtnl_link_stats64 net_stats;
2051	int i;
2052	char *p = NULL;
2053
2054	pm_runtime_get_sync(netdev->dev.parent);
2055
2056	dev_get_stats(netdev, &net_stats);
2057
2058	pm_runtime_put_sync(netdev->dev.parent);
2059
2060	for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
2061		switch (e1000_gstrings_stats[i].type) {
2062		case NETDEV_STATS:
2063			p = (char *)&net_stats +
2064			    e1000_gstrings_stats[i].stat_offset;
2065			break;
2066		case E1000_STATS:
2067			p = (char *)adapter +
2068			    e1000_gstrings_stats[i].stat_offset;
2069			break;
2070		default:
2071			data[i] = 0;
2072			continue;
2073		}
2074
2075		data[i] = (e1000_gstrings_stats[i].sizeof_stat ==
2076			   sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
2077	}
2078}
2079
2080static void e1000_get_strings(struct net_device __always_unused *netdev,
2081			      u32 stringset, u8 *data)
2082{
2083	u8 *p = data;
2084	int i;
2085
2086	switch (stringset) {
2087	case ETH_SS_TEST:
2088		memcpy(data, e1000_gstrings_test, sizeof(e1000_gstrings_test));
2089		break;
2090	case ETH_SS_STATS:
2091		for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
2092			memcpy(p, e1000_gstrings_stats[i].stat_string,
2093			       ETH_GSTRING_LEN);
2094			p += ETH_GSTRING_LEN;
2095		}
2096		break;
 
 
 
 
2097	}
2098}
2099
2100static int e1000_get_rxnfc(struct net_device *netdev,
2101			   struct ethtool_rxnfc *info,
2102			   u32 __always_unused *rule_locs)
2103{
2104	info->data = 0;
2105
2106	switch (info->cmd) {
2107	case ETHTOOL_GRXFH: {
2108		struct e1000_adapter *adapter = netdev_priv(netdev);
2109		struct e1000_hw *hw = &adapter->hw;
2110		u32 mrqc;
2111
2112		pm_runtime_get_sync(netdev->dev.parent);
2113		mrqc = er32(MRQC);
2114		pm_runtime_put_sync(netdev->dev.parent);
2115
2116		if (!(mrqc & E1000_MRQC_RSS_FIELD_MASK))
2117			return 0;
2118
2119		switch (info->flow_type) {
2120		case TCP_V4_FLOW:
2121			if (mrqc & E1000_MRQC_RSS_FIELD_IPV4_TCP)
2122				info->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2123			/* fall through */
2124		case UDP_V4_FLOW:
2125		case SCTP_V4_FLOW:
2126		case AH_ESP_V4_FLOW:
2127		case IPV4_FLOW:
2128			if (mrqc & E1000_MRQC_RSS_FIELD_IPV4)
2129				info->data |= RXH_IP_SRC | RXH_IP_DST;
2130			break;
2131		case TCP_V6_FLOW:
2132			if (mrqc & E1000_MRQC_RSS_FIELD_IPV6_TCP)
2133				info->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2134			/* fall through */
2135		case UDP_V6_FLOW:
2136		case SCTP_V6_FLOW:
2137		case AH_ESP_V6_FLOW:
2138		case IPV6_FLOW:
2139			if (mrqc & E1000_MRQC_RSS_FIELD_IPV6)
2140				info->data |= RXH_IP_SRC | RXH_IP_DST;
2141			break;
2142		default:
2143			break;
2144		}
2145		return 0;
2146	}
2147	default:
2148		return -EOPNOTSUPP;
2149	}
2150}
2151
2152static int e1000e_get_eee(struct net_device *netdev, struct ethtool_eee *edata)
2153{
2154	struct e1000_adapter *adapter = netdev_priv(netdev);
2155	struct e1000_hw *hw = &adapter->hw;
2156	u16 cap_addr, lpa_addr, pcs_stat_addr, phy_data;
2157	u32 ret_val;
2158
2159	if (!(adapter->flags2 & FLAG2_HAS_EEE))
2160		return -EOPNOTSUPP;
2161
2162	switch (hw->phy.type) {
2163	case e1000_phy_82579:
2164		cap_addr = I82579_EEE_CAPABILITY;
2165		lpa_addr = I82579_EEE_LP_ABILITY;
2166		pcs_stat_addr = I82579_EEE_PCS_STATUS;
2167		break;
2168	case e1000_phy_i217:
2169		cap_addr = I217_EEE_CAPABILITY;
2170		lpa_addr = I217_EEE_LP_ABILITY;
2171		pcs_stat_addr = I217_EEE_PCS_STATUS;
2172		break;
2173	default:
2174		return -EOPNOTSUPP;
2175	}
2176
2177	pm_runtime_get_sync(netdev->dev.parent);
2178
2179	ret_val = hw->phy.ops.acquire(hw);
2180	if (ret_val) {
2181		pm_runtime_put_sync(netdev->dev.parent);
2182		return -EBUSY;
2183	}
2184
2185	/* EEE Capability */
2186	ret_val = e1000_read_emi_reg_locked(hw, cap_addr, &phy_data);
2187	if (ret_val)
2188		goto release;
2189	edata->supported = mmd_eee_cap_to_ethtool_sup_t(phy_data);
2190
2191	/* EEE Advertised */
2192	edata->advertised = mmd_eee_adv_to_ethtool_adv_t(adapter->eee_advert);
2193
2194	/* EEE Link Partner Advertised */
2195	ret_val = e1000_read_emi_reg_locked(hw, lpa_addr, &phy_data);
2196	if (ret_val)
2197		goto release;
2198	edata->lp_advertised = mmd_eee_adv_to_ethtool_adv_t(phy_data);
2199
2200	/* EEE PCS Status */
2201	ret_val = e1000_read_emi_reg_locked(hw, pcs_stat_addr, &phy_data);
2202	if (ret_val)
2203		goto release;
2204	if (hw->phy.type == e1000_phy_82579)
2205		phy_data <<= 8;
2206
2207	/* Result of the EEE auto negotiation - there is no register that
2208	 * has the status of the EEE negotiation so do a best-guess based
2209	 * on whether Tx or Rx LPI indications have been received.
2210	 */
2211	if (phy_data & (E1000_EEE_TX_LPI_RCVD | E1000_EEE_RX_LPI_RCVD))
2212		edata->eee_active = true;
2213
2214	edata->eee_enabled = !hw->dev_spec.ich8lan.eee_disable;
2215	edata->tx_lpi_enabled = true;
2216	edata->tx_lpi_timer = er32(LPIC) >> E1000_LPIC_LPIET_SHIFT;
2217
2218release:
2219	hw->phy.ops.release(hw);
2220	if (ret_val)
2221		ret_val = -ENODATA;
2222
2223	pm_runtime_put_sync(netdev->dev.parent);
2224
2225	return ret_val;
2226}
2227
2228static int e1000e_set_eee(struct net_device *netdev, struct ethtool_eee *edata)
2229{
2230	struct e1000_adapter *adapter = netdev_priv(netdev);
 
 
2231	struct e1000_hw *hw = &adapter->hw;
2232	struct ethtool_eee eee_curr;
2233	s32 ret_val;
2234
2235	ret_val = e1000e_get_eee(netdev, &eee_curr);
2236	if (ret_val)
2237		return ret_val;
2238
2239	if (eee_curr.tx_lpi_enabled != edata->tx_lpi_enabled) {
2240		e_err("Setting EEE tx-lpi is not supported\n");
2241		return -EINVAL;
2242	}
2243
2244	if (eee_curr.tx_lpi_timer != edata->tx_lpi_timer) {
2245		e_err("Setting EEE Tx LPI timer is not supported\n");
2246		return -EINVAL;
2247	}
2248
2249	if (edata->advertised & ~(ADVERTISE_100_FULL | ADVERTISE_1000_FULL)) {
 
 
 
 
 
2250		e_err("EEE advertisement supports only 100TX and/or 1000T full-duplex\n");
2251		return -EINVAL;
2252	}
2253
2254	adapter->eee_advert = ethtool_adv_to_mmd_eee_adv_t(edata->advertised);
2255
2256	hw->dev_spec.ich8lan.eee_disable = !edata->eee_enabled;
2257
2258	pm_runtime_get_sync(netdev->dev.parent);
2259
2260	/* reset the link */
2261	if (netif_running(netdev))
2262		e1000e_reinit_locked(adapter);
2263	else
2264		e1000e_reset(adapter);
2265
2266	pm_runtime_put_sync(netdev->dev.parent);
2267
2268	return 0;
2269}
2270
2271static int e1000e_get_ts_info(struct net_device *netdev,
2272			      struct ethtool_ts_info *info)
2273{
2274	struct e1000_adapter *adapter = netdev_priv(netdev);
2275
2276	ethtool_op_get_ts_info(netdev, info);
2277
2278	if (!(adapter->flags & FLAG_HAS_HW_TIMESTAMP))
2279		return 0;
2280
2281	info->so_timestamping |= (SOF_TIMESTAMPING_TX_HARDWARE |
2282				  SOF_TIMESTAMPING_RX_HARDWARE |
2283				  SOF_TIMESTAMPING_RAW_HARDWARE);
2284
2285	info->tx_types = BIT(HWTSTAMP_TX_OFF) | BIT(HWTSTAMP_TX_ON);
2286
2287	info->rx_filters = (BIT(HWTSTAMP_FILTER_NONE) |
2288			    BIT(HWTSTAMP_FILTER_PTP_V1_L4_SYNC) |
2289			    BIT(HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ) |
2290			    BIT(HWTSTAMP_FILTER_PTP_V2_L4_SYNC) |
2291			    BIT(HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ) |
2292			    BIT(HWTSTAMP_FILTER_PTP_V2_L2_SYNC) |
2293			    BIT(HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ) |
2294			    BIT(HWTSTAMP_FILTER_PTP_V2_EVENT) |
2295			    BIT(HWTSTAMP_FILTER_PTP_V2_SYNC) |
2296			    BIT(HWTSTAMP_FILTER_PTP_V2_DELAY_REQ) |
2297			    BIT(HWTSTAMP_FILTER_ALL));
2298
2299	if (adapter->ptp_clock)
2300		info->phc_index = ptp_clock_index(adapter->ptp_clock);
2301
2302	return 0;
2303}
2304
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2305static const struct ethtool_ops e1000_ethtool_ops = {
 
2306	.get_drvinfo		= e1000_get_drvinfo,
2307	.get_regs_len		= e1000_get_regs_len,
2308	.get_regs		= e1000_get_regs,
2309	.get_wol		= e1000_get_wol,
2310	.set_wol		= e1000_set_wol,
2311	.get_msglevel		= e1000_get_msglevel,
2312	.set_msglevel		= e1000_set_msglevel,
2313	.nway_reset		= e1000_nway_reset,
2314	.get_link		= ethtool_op_get_link,
2315	.get_eeprom_len		= e1000_get_eeprom_len,
2316	.get_eeprom		= e1000_get_eeprom,
2317	.set_eeprom		= e1000_set_eeprom,
2318	.get_ringparam		= e1000_get_ringparam,
2319	.set_ringparam		= e1000_set_ringparam,
2320	.get_pauseparam		= e1000_get_pauseparam,
2321	.set_pauseparam		= e1000_set_pauseparam,
2322	.self_test		= e1000_diag_test,
2323	.get_strings		= e1000_get_strings,
2324	.set_phys_id		= e1000_set_phys_id,
2325	.get_ethtool_stats	= e1000_get_ethtool_stats,
2326	.get_sset_count		= e1000e_get_sset_count,
2327	.get_coalesce		= e1000_get_coalesce,
2328	.set_coalesce		= e1000_set_coalesce,
2329	.get_rxnfc		= e1000_get_rxnfc,
2330	.get_ts_info		= e1000e_get_ts_info,
2331	.get_eee		= e1000e_get_eee,
2332	.set_eee		= e1000e_set_eee,
2333	.get_link_ksettings	= e1000_get_link_ksettings,
2334	.set_link_ksettings	= e1000_set_link_ksettings,
 
 
2335};
2336
2337void e1000e_set_ethtool_ops(struct net_device *netdev)
2338{
2339	netdev->ethtool_ops = &e1000_ethtool_ops;
2340}