Linux Audio

Check our new training course

Loading...
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0
   2/* Copyright(c) 1999 - 2018 Intel Corporation. */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   3
   4/* ethtool support for e1000 */
   5
   6#include <linux/netdevice.h>
   7#include <linux/interrupt.h>
   8#include <linux/ethtool.h>
   9#include <linux/pci.h>
  10#include <linux/slab.h>
  11#include <linux/delay.h>
  12#include <linux/vmalloc.h>
  13#include <linux/pm_runtime.h>
  14
  15#include "e1000.h"
  16
  17enum { NETDEV_STATS, E1000_STATS };
  18
  19struct e1000_stats {
  20	char stat_string[ETH_GSTRING_LEN];
  21	int type;
  22	int sizeof_stat;
  23	int stat_offset;
  24};
  25
  26static const char e1000e_priv_flags_strings[][ETH_GSTRING_LEN] = {
  27#define E1000E_PRIV_FLAGS_S0IX_ENABLED	BIT(0)
  28	"s0ix-enabled",
  29};
  30
  31#define E1000E_PRIV_FLAGS_STR_LEN ARRAY_SIZE(e1000e_priv_flags_strings)
  32
  33#define E1000_STAT(str, m) { \
  34		.stat_string = str, \
  35		.type = E1000_STATS, \
  36		.sizeof_stat = sizeof(((struct e1000_adapter *)0)->m), \
  37		.stat_offset = offsetof(struct e1000_adapter, m) }
  38#define E1000_NETDEV_STAT(str, m) { \
  39		.stat_string = str, \
  40		.type = NETDEV_STATS, \
  41		.sizeof_stat = sizeof(((struct rtnl_link_stats64 *)0)->m), \
  42		.stat_offset = offsetof(struct rtnl_link_stats64, m) }
  43
  44static const struct e1000_stats e1000_gstrings_stats[] = {
  45	E1000_STAT("rx_packets", stats.gprc),
  46	E1000_STAT("tx_packets", stats.gptc),
  47	E1000_STAT("rx_bytes", stats.gorc),
  48	E1000_STAT("tx_bytes", stats.gotc),
  49	E1000_STAT("rx_broadcast", stats.bprc),
  50	E1000_STAT("tx_broadcast", stats.bptc),
  51	E1000_STAT("rx_multicast", stats.mprc),
  52	E1000_STAT("tx_multicast", stats.mptc),
  53	E1000_NETDEV_STAT("rx_errors", rx_errors),
  54	E1000_NETDEV_STAT("tx_errors", tx_errors),
  55	E1000_NETDEV_STAT("tx_dropped", tx_dropped),
  56	E1000_STAT("multicast", stats.mprc),
  57	E1000_STAT("collisions", stats.colc),
  58	E1000_NETDEV_STAT("rx_length_errors", rx_length_errors),
  59	E1000_NETDEV_STAT("rx_over_errors", rx_over_errors),
  60	E1000_STAT("rx_crc_errors", stats.crcerrs),
  61	E1000_NETDEV_STAT("rx_frame_errors", rx_frame_errors),
  62	E1000_STAT("rx_no_buffer_count", stats.rnbc),
  63	E1000_STAT("rx_missed_errors", stats.mpc),
  64	E1000_STAT("tx_aborted_errors", stats.ecol),
  65	E1000_STAT("tx_carrier_errors", stats.tncrs),
  66	E1000_NETDEV_STAT("tx_fifo_errors", tx_fifo_errors),
  67	E1000_NETDEV_STAT("tx_heartbeat_errors", tx_heartbeat_errors),
  68	E1000_STAT("tx_window_errors", stats.latecol),
  69	E1000_STAT("tx_abort_late_coll", stats.latecol),
  70	E1000_STAT("tx_deferred_ok", stats.dc),
  71	E1000_STAT("tx_single_coll_ok", stats.scc),
  72	E1000_STAT("tx_multi_coll_ok", stats.mcc),
  73	E1000_STAT("tx_timeout_count", tx_timeout_count),
  74	E1000_STAT("tx_restart_queue", restart_queue),
  75	E1000_STAT("rx_long_length_errors", stats.roc),
  76	E1000_STAT("rx_short_length_errors", stats.ruc),
  77	E1000_STAT("rx_align_errors", stats.algnerrc),
  78	E1000_STAT("tx_tcp_seg_good", stats.tsctc),
  79	E1000_STAT("tx_tcp_seg_failed", stats.tsctfc),
  80	E1000_STAT("rx_flow_control_xon", stats.xonrxc),
  81	E1000_STAT("rx_flow_control_xoff", stats.xoffrxc),
  82	E1000_STAT("tx_flow_control_xon", stats.xontxc),
  83	E1000_STAT("tx_flow_control_xoff", stats.xofftxc),
  84	E1000_STAT("rx_csum_offload_good", hw_csum_good),
  85	E1000_STAT("rx_csum_offload_errors", hw_csum_err),
  86	E1000_STAT("rx_header_split", rx_hdr_split),
  87	E1000_STAT("alloc_rx_buff_failed", alloc_rx_buff_failed),
  88	E1000_STAT("tx_smbus", stats.mgptc),
  89	E1000_STAT("rx_smbus", stats.mgprc),
  90	E1000_STAT("dropped_smbus", stats.mgpdc),
  91	E1000_STAT("rx_dma_failed", rx_dma_failed),
  92	E1000_STAT("tx_dma_failed", tx_dma_failed),
  93	E1000_STAT("rx_hwtstamp_cleared", rx_hwtstamp_cleared),
  94	E1000_STAT("uncorr_ecc_errors", uncorr_errors),
  95	E1000_STAT("corr_ecc_errors", corr_errors),
  96	E1000_STAT("tx_hwtstamp_timeouts", tx_hwtstamp_timeouts),
  97	E1000_STAT("tx_hwtstamp_skipped", tx_hwtstamp_skipped),
  98};
  99
 100#define E1000_GLOBAL_STATS_LEN	ARRAY_SIZE(e1000_gstrings_stats)
 101#define E1000_STATS_LEN (E1000_GLOBAL_STATS_LEN)
 102static const char e1000_gstrings_test[][ETH_GSTRING_LEN] = {
 103	"Register test  (offline)", "Eeprom test    (offline)",
 104	"Interrupt test (offline)", "Loopback test  (offline)",
 105	"Link test   (on/offline)"
 106};
 107
 108#define E1000_TEST_LEN ARRAY_SIZE(e1000_gstrings_test)
 109
 110static int e1000_get_link_ksettings(struct net_device *netdev,
 111				    struct ethtool_link_ksettings *cmd)
 112{
 113	u32 speed, supported, advertising, lp_advertising, lpa_t;
 114	struct e1000_adapter *adapter = netdev_priv(netdev);
 115	struct e1000_hw *hw = &adapter->hw;
 
 116
 117	if (hw->phy.media_type == e1000_media_type_copper) {
 118		supported = (SUPPORTED_10baseT_Half |
 119			     SUPPORTED_10baseT_Full |
 120			     SUPPORTED_100baseT_Half |
 121			     SUPPORTED_100baseT_Full |
 122			     SUPPORTED_1000baseT_Full |
 123			     SUPPORTED_Asym_Pause |
 124			     SUPPORTED_Autoneg |
 125			     SUPPORTED_Pause |
 126			     SUPPORTED_TP);
 127		if (hw->phy.type == e1000_phy_ife)
 128			supported &= ~SUPPORTED_1000baseT_Full;
 129		advertising = ADVERTISED_TP;
 130
 131		if (hw->mac.autoneg == 1) {
 132			advertising |= ADVERTISED_Autoneg;
 133			/* the e1000 autoneg seems to match ethtool nicely */
 134			advertising |= hw->phy.autoneg_advertised;
 135		}
 136
 137		cmd->base.port = PORT_TP;
 138		cmd->base.phy_address = hw->phy.addr;
 
 
 139	} else {
 140		supported   = (SUPPORTED_1000baseT_Full |
 141			       SUPPORTED_FIBRE |
 142			       SUPPORTED_Autoneg);
 143
 144		advertising = (ADVERTISED_1000baseT_Full |
 145			       ADVERTISED_FIBRE |
 146			       ADVERTISED_Autoneg);
 147
 148		cmd->base.port = PORT_FIBRE;
 
 149	}
 150
 151	speed = SPEED_UNKNOWN;
 152	cmd->base.duplex = DUPLEX_UNKNOWN;
 153
 154	if (netif_running(netdev)) {
 155		if (netif_carrier_ok(netdev)) {
 156			speed = adapter->link_speed;
 157			cmd->base.duplex = adapter->link_duplex - 1;
 158		}
 159	} else {
 160		u32 status = er32(STATUS);
 161
 162		if (status & E1000_STATUS_LU) {
 163			if (status & E1000_STATUS_SPEED_1000)
 164				speed = SPEED_1000;
 165			else if (status & E1000_STATUS_SPEED_100)
 166				speed = SPEED_100;
 167			else
 168				speed = SPEED_10;
 169
 170			if (status & E1000_STATUS_FD)
 171				cmd->base.duplex = DUPLEX_FULL;
 172			else
 173				cmd->base.duplex = DUPLEX_HALF;
 174		}
 175	}
 176
 177	cmd->base.speed = speed;
 178	cmd->base.autoneg = ((hw->phy.media_type == e1000_media_type_fiber) ||
 179			 hw->mac.autoneg) ? AUTONEG_ENABLE : AUTONEG_DISABLE;
 180
 181	/* MDI-X => 2; MDI =>1; Invalid =>0 */
 182	if ((hw->phy.media_type == e1000_media_type_copper) &&
 183	    netif_carrier_ok(netdev))
 184		cmd->base.eth_tp_mdix = hw->phy.is_mdix ?
 185			ETH_TP_MDI_X : ETH_TP_MDI;
 186	else
 187		cmd->base.eth_tp_mdix = ETH_TP_MDI_INVALID;
 188
 189	if (hw->phy.mdix == AUTO_ALL_MODES)
 190		cmd->base.eth_tp_mdix_ctrl = ETH_TP_MDI_AUTO;
 191	else
 192		cmd->base.eth_tp_mdix_ctrl = hw->phy.mdix;
 193
 194	if (hw->phy.media_type != e1000_media_type_copper)
 195		cmd->base.eth_tp_mdix_ctrl = ETH_TP_MDI_INVALID;
 196
 197	lpa_t = mii_stat1000_to_ethtool_lpa_t(adapter->phy_regs.stat1000);
 198	lp_advertising = lpa_t |
 199	mii_lpa_to_ethtool_lpa_t(adapter->phy_regs.lpa);
 200
 201	ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.supported,
 202						supported);
 203	ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.advertising,
 204						advertising);
 205	ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.lp_advertising,
 206						lp_advertising);
 207
 208	return 0;
 209}
 210
 211static int e1000_set_spd_dplx(struct e1000_adapter *adapter, u32 spd, u8 dplx)
 212{
 213	struct e1000_mac_info *mac = &adapter->hw.mac;
 214
 215	mac->autoneg = 0;
 216
 217	/* Make sure dplx is at most 1 bit and lsb of speed is not set
 218	 * for the switch() below to work
 219	 */
 220	if ((spd & 1) || (dplx & ~1))
 221		goto err_inval;
 222
 223	/* Fiber NICs only allow 1000 gbps Full duplex */
 224	if ((adapter->hw.phy.media_type == e1000_media_type_fiber) &&
 225	    (spd != SPEED_1000) && (dplx != DUPLEX_FULL)) {
 226		goto err_inval;
 227	}
 228
 229	switch (spd + dplx) {
 230	case SPEED_10 + DUPLEX_HALF:
 231		mac->forced_speed_duplex = ADVERTISE_10_HALF;
 232		break;
 233	case SPEED_10 + DUPLEX_FULL:
 234		mac->forced_speed_duplex = ADVERTISE_10_FULL;
 235		break;
 236	case SPEED_100 + DUPLEX_HALF:
 237		mac->forced_speed_duplex = ADVERTISE_100_HALF;
 238		break;
 239	case SPEED_100 + DUPLEX_FULL:
 240		mac->forced_speed_duplex = ADVERTISE_100_FULL;
 241		break;
 242	case SPEED_1000 + DUPLEX_FULL:
 243		if (adapter->hw.phy.media_type == e1000_media_type_copper) {
 244			mac->autoneg = 1;
 245			adapter->hw.phy.autoneg_advertised =
 246				ADVERTISE_1000_FULL;
 247		} else {
 248			mac->forced_speed_duplex = ADVERTISE_1000_FULL;
 249		}
 250		break;
 251	case SPEED_1000 + DUPLEX_HALF:	/* not supported */
 252	default:
 253		goto err_inval;
 254	}
 255
 256	/* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
 257	adapter->hw.phy.mdix = AUTO_ALL_MODES;
 258
 259	return 0;
 260
 261err_inval:
 262	e_err("Unsupported Speed/Duplex configuration\n");
 263	return -EINVAL;
 264}
 265
 266static int e1000_set_link_ksettings(struct net_device *netdev,
 267				    const struct ethtool_link_ksettings *cmd)
 268{
 269	struct e1000_adapter *adapter = netdev_priv(netdev);
 270	struct e1000_hw *hw = &adapter->hw;
 271	int ret_val = 0;
 272	u32 advertising;
 273
 274	ethtool_convert_link_mode_to_legacy_u32(&advertising,
 275						cmd->link_modes.advertising);
 276
 277	/* When SoL/IDER sessions are active, autoneg/speed/duplex
 278	 * cannot be changed
 279	 */
 280	if (hw->phy.ops.check_reset_block &&
 281	    hw->phy.ops.check_reset_block(hw)) {
 282		e_err("Cannot change link characteristics when SoL/IDER is active.\n");
 283		return -EINVAL;
 
 284	}
 285
 286	/* MDI setting is only allowed when autoneg enabled because
 287	 * some hardware doesn't allow MDI setting when speed or
 288	 * duplex is forced.
 289	 */
 290	if (cmd->base.eth_tp_mdix_ctrl) {
 291		if (hw->phy.media_type != e1000_media_type_copper)
 292			return -EOPNOTSUPP;
 
 
 293
 294		if ((cmd->base.eth_tp_mdix_ctrl != ETH_TP_MDI_AUTO) &&
 295		    (cmd->base.autoneg != AUTONEG_ENABLE)) {
 296			e_err("forcing MDI/MDI-X state is not supported when link speed and/or duplex are forced\n");
 297			return -EINVAL;
 
 298		}
 299	}
 300
 301	while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
 302		usleep_range(1000, 2000);
 303
 304	if (cmd->base.autoneg == AUTONEG_ENABLE) {
 305		hw->mac.autoneg = 1;
 306		if (hw->phy.media_type == e1000_media_type_fiber)
 307			hw->phy.autoneg_advertised = ADVERTISED_1000baseT_Full |
 308			    ADVERTISED_FIBRE | ADVERTISED_Autoneg;
 309		else
 310			hw->phy.autoneg_advertised = advertising |
 311			    ADVERTISED_TP | ADVERTISED_Autoneg;
 312		advertising = hw->phy.autoneg_advertised;
 313		if (adapter->fc_autoneg)
 314			hw->fc.requested_mode = e1000_fc_default;
 315	} else {
 316		u32 speed = cmd->base.speed;
 317		/* calling this overrides forced MDI setting */
 318		if (e1000_set_spd_dplx(adapter, speed, cmd->base.duplex)) {
 319			ret_val = -EINVAL;
 320			goto out;
 321		}
 322	}
 323
 324	/* MDI-X => 2; MDI => 1; Auto => 3 */
 325	if (cmd->base.eth_tp_mdix_ctrl) {
 326		/* fix up the value for auto (3 => 0) as zero is mapped
 327		 * internally to auto
 328		 */
 329		if (cmd->base.eth_tp_mdix_ctrl == ETH_TP_MDI_AUTO)
 330			hw->phy.mdix = AUTO_ALL_MODES;
 331		else
 332			hw->phy.mdix = cmd->base.eth_tp_mdix_ctrl;
 333	}
 334
 335	/* reset the link */
 336	if (netif_running(adapter->netdev)) {
 337		e1000e_down(adapter, true);
 338		e1000e_up(adapter);
 339	} else {
 340		e1000e_reset(adapter);
 341	}
 342
 343out:
 
 344	clear_bit(__E1000_RESETTING, &adapter->state);
 345	return ret_val;
 346}
 347
 348static void e1000_get_pauseparam(struct net_device *netdev,
 349				 struct ethtool_pauseparam *pause)
 350{
 351	struct e1000_adapter *adapter = netdev_priv(netdev);
 352	struct e1000_hw *hw = &adapter->hw;
 353
 354	pause->autoneg =
 355	    (adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
 356
 357	if (hw->fc.current_mode == e1000_fc_rx_pause) {
 358		pause->rx_pause = 1;
 359	} else if (hw->fc.current_mode == e1000_fc_tx_pause) {
 360		pause->tx_pause = 1;
 361	} else if (hw->fc.current_mode == e1000_fc_full) {
 362		pause->rx_pause = 1;
 363		pause->tx_pause = 1;
 364	}
 365}
 366
 367static int e1000_set_pauseparam(struct net_device *netdev,
 368				struct ethtool_pauseparam *pause)
 369{
 370	struct e1000_adapter *adapter = netdev_priv(netdev);
 371	struct e1000_hw *hw = &adapter->hw;
 372	int retval = 0;
 373
 374	adapter->fc_autoneg = pause->autoneg;
 375
 376	while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
 377		usleep_range(1000, 2000);
 378
 
 
 379	if (adapter->fc_autoneg == AUTONEG_ENABLE) {
 380		hw->fc.requested_mode = e1000_fc_default;
 381		if (netif_running(adapter->netdev)) {
 382			e1000e_down(adapter, true);
 383			e1000e_up(adapter);
 384		} else {
 385			e1000e_reset(adapter);
 386		}
 387	} else {
 388		if (pause->rx_pause && pause->tx_pause)
 389			hw->fc.requested_mode = e1000_fc_full;
 390		else if (pause->rx_pause && !pause->tx_pause)
 391			hw->fc.requested_mode = e1000_fc_rx_pause;
 392		else if (!pause->rx_pause && pause->tx_pause)
 393			hw->fc.requested_mode = e1000_fc_tx_pause;
 394		else if (!pause->rx_pause && !pause->tx_pause)
 395			hw->fc.requested_mode = e1000_fc_none;
 396
 397		hw->fc.current_mode = hw->fc.requested_mode;
 398
 399		if (hw->phy.media_type == e1000_media_type_fiber) {
 400			retval = hw->mac.ops.setup_link(hw);
 401			/* implicit goto out */
 402		} else {
 403			retval = e1000e_force_mac_fc(hw);
 404			if (retval)
 405				goto out;
 406			e1000e_set_fc_watermarks(hw);
 407		}
 408	}
 409
 410out:
 
 411	clear_bit(__E1000_RESETTING, &adapter->state);
 412	return retval;
 413}
 414
 415static u32 e1000_get_msglevel(struct net_device *netdev)
 416{
 417	struct e1000_adapter *adapter = netdev_priv(netdev);
 418	return adapter->msg_enable;
 419}
 420
 421static void e1000_set_msglevel(struct net_device *netdev, u32 data)
 422{
 423	struct e1000_adapter *adapter = netdev_priv(netdev);
 424	adapter->msg_enable = data;
 425}
 426
 427static int e1000_get_regs_len(struct net_device __always_unused *netdev)
 428{
 429#define E1000_REGS_LEN 32	/* overestimate */
 430	return E1000_REGS_LEN * sizeof(u32);
 431}
 432
 433static void e1000_get_regs(struct net_device *netdev,
 434			   struct ethtool_regs *regs, void *p)
 435{
 436	struct e1000_adapter *adapter = netdev_priv(netdev);
 437	struct e1000_hw *hw = &adapter->hw;
 438	u32 *regs_buff = p;
 439	u16 phy_data;
 440
 
 
 441	memset(p, 0, E1000_REGS_LEN * sizeof(u32));
 442
 443	regs->version = (1u << 24) |
 444			(adapter->pdev->revision << 16) |
 445			adapter->pdev->device;
 446
 447	regs_buff[0] = er32(CTRL);
 448	regs_buff[1] = er32(STATUS);
 449
 450	regs_buff[2] = er32(RCTL);
 451	regs_buff[3] = er32(RDLEN(0));
 452	regs_buff[4] = er32(RDH(0));
 453	regs_buff[5] = er32(RDT(0));
 454	regs_buff[6] = er32(RDTR);
 455
 456	regs_buff[7] = er32(TCTL);
 457	regs_buff[8] = er32(TDLEN(0));
 458	regs_buff[9] = er32(TDH(0));
 459	regs_buff[10] = er32(TDT(0));
 460	regs_buff[11] = er32(TIDV);
 461
 462	regs_buff[12] = adapter->hw.phy.type;	/* PHY type (IGP=1, M88=0) */
 463
 464	/* ethtool doesn't use anything past this point, so all this
 465	 * code is likely legacy junk for apps that may or may not exist
 466	 */
 467	if (hw->phy.type == e1000_phy_m88) {
 468		e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
 469		regs_buff[13] = (u32)phy_data; /* cable length */
 470		regs_buff[14] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
 471		regs_buff[15] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
 472		regs_buff[16] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
 473		e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
 474		regs_buff[17] = (u32)phy_data; /* extended 10bt distance */
 475		regs_buff[18] = regs_buff[13]; /* cable polarity */
 476		regs_buff[19] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
 477		regs_buff[20] = regs_buff[17]; /* polarity correction */
 478		/* phy receive errors */
 479		regs_buff[22] = adapter->phy_stats.receive_errors;
 480		regs_buff[23] = regs_buff[13]; /* mdix mode */
 481	}
 482	regs_buff[21] = 0;	/* was idle_errors */
 483	e1e_rphy(hw, MII_STAT1000, &phy_data);
 484	regs_buff[24] = (u32)phy_data;	/* phy local receiver status */
 485	regs_buff[25] = regs_buff[24];	/* phy remote receiver status */
 
 
 486}
 487
 488static int e1000_get_eeprom_len(struct net_device *netdev)
 489{
 490	struct e1000_adapter *adapter = netdev_priv(netdev);
 491	return adapter->hw.nvm.word_size * 2;
 492}
 493
 494static int e1000_get_eeprom(struct net_device *netdev,
 495			    struct ethtool_eeprom *eeprom, u8 *bytes)
 496{
 497	struct e1000_adapter *adapter = netdev_priv(netdev);
 498	struct e1000_hw *hw = &adapter->hw;
 499	u16 *eeprom_buff;
 500	int first_word;
 501	int last_word;
 502	int ret_val = 0;
 503	u16 i;
 504
 505	if (eeprom->len == 0)
 506		return -EINVAL;
 507
 508	eeprom->magic = adapter->pdev->vendor | (adapter->pdev->device << 16);
 509
 510	first_word = eeprom->offset >> 1;
 511	last_word = (eeprom->offset + eeprom->len - 1) >> 1;
 512
 513	eeprom_buff = kmalloc_array(last_word - first_word + 1, sizeof(u16),
 514				    GFP_KERNEL);
 515	if (!eeprom_buff)
 516		return -ENOMEM;
 517
 
 
 518	if (hw->nvm.type == e1000_nvm_eeprom_spi) {
 519		ret_val = e1000_read_nvm(hw, first_word,
 520					 last_word - first_word + 1,
 521					 eeprom_buff);
 522	} else {
 523		for (i = 0; i < last_word - first_word + 1; i++) {
 524			ret_val = e1000_read_nvm(hw, first_word + i, 1,
 525						 &eeprom_buff[i]);
 526			if (ret_val)
 527				break;
 528		}
 529	}
 530
 
 
 531	if (ret_val) {
 532		/* a read error occurred, throw away the result */
 533		memset(eeprom_buff, 0xff, sizeof(u16) *
 534		       (last_word - first_word + 1));
 535	} else {
 536		/* Device's eeprom is always little-endian, word addressable */
 537		for (i = 0; i < last_word - first_word + 1; i++)
 538			le16_to_cpus(&eeprom_buff[i]);
 539	}
 540
 541	memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1), eeprom->len);
 542	kfree(eeprom_buff);
 543
 544	return ret_val;
 545}
 546
 547static int e1000_set_eeprom(struct net_device *netdev,
 548			    struct ethtool_eeprom *eeprom, u8 *bytes)
 549{
 550	struct e1000_adapter *adapter = netdev_priv(netdev);
 551	struct e1000_hw *hw = &adapter->hw;
 552	u16 *eeprom_buff;
 553	void *ptr;
 554	int max_len;
 555	int first_word;
 556	int last_word;
 557	int ret_val = 0;
 558	u16 i;
 559
 560	if (eeprom->len == 0)
 561		return -EOPNOTSUPP;
 562
 563	if (eeprom->magic !=
 564	    (adapter->pdev->vendor | (adapter->pdev->device << 16)))
 565		return -EFAULT;
 566
 567	if (adapter->flags & FLAG_READ_ONLY_NVM)
 568		return -EINVAL;
 569
 570	max_len = hw->nvm.word_size * 2;
 571
 572	first_word = eeprom->offset >> 1;
 573	last_word = (eeprom->offset + eeprom->len - 1) >> 1;
 574	eeprom_buff = kmalloc(max_len, GFP_KERNEL);
 575	if (!eeprom_buff)
 576		return -ENOMEM;
 577
 578	ptr = (void *)eeprom_buff;
 579
 
 
 580	if (eeprom->offset & 1) {
 581		/* need read/modify/write of first changed EEPROM word */
 582		/* only the second byte of the word is being modified */
 583		ret_val = e1000_read_nvm(hw, first_word, 1, &eeprom_buff[0]);
 584		ptr++;
 585	}
 586	if (((eeprom->offset + eeprom->len) & 1) && (!ret_val))
 587		/* need read/modify/write of last changed EEPROM word */
 588		/* only the first byte of the word is being modified */
 589		ret_val = e1000_read_nvm(hw, last_word, 1,
 590					 &eeprom_buff[last_word - first_word]);
 591
 592	if (ret_val)
 593		goto out;
 594
 595	/* Device's eeprom is always little-endian, word addressable */
 596	for (i = 0; i < last_word - first_word + 1; i++)
 597		le16_to_cpus(&eeprom_buff[i]);
 598
 599	memcpy(ptr, bytes, eeprom->len);
 600
 601	for (i = 0; i < last_word - first_word + 1; i++)
 602		cpu_to_le16s(&eeprom_buff[i]);
 603
 604	ret_val = e1000_write_nvm(hw, first_word,
 605				  last_word - first_word + 1, eeprom_buff);
 606
 607	if (ret_val)
 608		goto out;
 609
 610	/* Update the checksum over the first part of the EEPROM if needed
 611	 * and flush shadow RAM for applicable controllers
 612	 */
 613	if ((first_word <= NVM_CHECKSUM_REG) ||
 614	    (hw->mac.type == e1000_82583) ||
 615	    (hw->mac.type == e1000_82574) ||
 616	    (hw->mac.type == e1000_82573))
 617		ret_val = e1000e_update_nvm_checksum(hw);
 618
 619out:
 
 620	kfree(eeprom_buff);
 621	return ret_val;
 622}
 623
 624static void e1000_get_drvinfo(struct net_device *netdev,
 625			      struct ethtool_drvinfo *drvinfo)
 626{
 627	struct e1000_adapter *adapter = netdev_priv(netdev);
 628
 629	strscpy(drvinfo->driver, e1000e_driver_name, sizeof(drvinfo->driver));
 
 
 630
 631	/* EEPROM image version # is reported as firmware version # for
 632	 * PCI-E controllers
 633	 */
 634	snprintf(drvinfo->fw_version, sizeof(drvinfo->fw_version),
 635		 "%d.%d-%d",
 636		 FIELD_GET(0xF000, adapter->eeprom_vers),
 637		 FIELD_GET(0x0FF0, adapter->eeprom_vers),
 638		 (adapter->eeprom_vers & 0x000F));
 639
 640	strscpy(drvinfo->bus_info, pci_name(adapter->pdev),
 641		sizeof(drvinfo->bus_info));
 642}
 643
 644static void e1000_get_ringparam(struct net_device *netdev,
 645				struct ethtool_ringparam *ring,
 646				struct kernel_ethtool_ringparam *kernel_ring,
 647				struct netlink_ext_ack *extack)
 648{
 649	struct e1000_adapter *adapter = netdev_priv(netdev);
 650
 651	ring->rx_max_pending = E1000_MAX_RXD;
 652	ring->tx_max_pending = E1000_MAX_TXD;
 653	ring->rx_pending = adapter->rx_ring_count;
 654	ring->tx_pending = adapter->tx_ring_count;
 655}
 656
 657static int e1000_set_ringparam(struct net_device *netdev,
 658			       struct ethtool_ringparam *ring,
 659			       struct kernel_ethtool_ringparam *kernel_ring,
 660			       struct netlink_ext_ack *extack)
 661{
 662	struct e1000_adapter *adapter = netdev_priv(netdev);
 663	struct e1000_ring *temp_tx = NULL, *temp_rx = NULL;
 664	int err = 0, size = sizeof(struct e1000_ring);
 665	bool set_tx = false, set_rx = false;
 666	u16 new_rx_count, new_tx_count;
 667
 668	if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
 669		return -EINVAL;
 670
 671	new_rx_count = clamp_t(u32, ring->rx_pending, E1000_MIN_RXD,
 672			       E1000_MAX_RXD);
 673	new_rx_count = ALIGN(new_rx_count, REQ_RX_DESCRIPTOR_MULTIPLE);
 674
 675	new_tx_count = clamp_t(u32, ring->tx_pending, E1000_MIN_TXD,
 676			       E1000_MAX_TXD);
 677	new_tx_count = ALIGN(new_tx_count, REQ_TX_DESCRIPTOR_MULTIPLE);
 678
 679	if ((new_tx_count == adapter->tx_ring_count) &&
 680	    (new_rx_count == adapter->rx_ring_count))
 681		/* nothing to do */
 682		return 0;
 683
 684	while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
 685		usleep_range(1000, 2000);
 686
 687	if (!netif_running(adapter->netdev)) {
 688		/* Set counts now and allocate resources during open() */
 689		adapter->tx_ring->count = new_tx_count;
 690		adapter->rx_ring->count = new_rx_count;
 691		adapter->tx_ring_count = new_tx_count;
 692		adapter->rx_ring_count = new_rx_count;
 693		goto clear_reset;
 694	}
 695
 696	set_tx = (new_tx_count != adapter->tx_ring_count);
 697	set_rx = (new_rx_count != adapter->rx_ring_count);
 698
 699	/* Allocate temporary storage for ring updates */
 700	if (set_tx) {
 701		temp_tx = vmalloc(size);
 702		if (!temp_tx) {
 703			err = -ENOMEM;
 704			goto free_temp;
 705		}
 706	}
 707	if (set_rx) {
 708		temp_rx = vmalloc(size);
 709		if (!temp_rx) {
 710			err = -ENOMEM;
 711			goto free_temp;
 712		}
 713	}
 714
 
 
 715	e1000e_down(adapter, true);
 716
 717	/* We can't just free everything and then setup again, because the
 718	 * ISRs in MSI-X mode get passed pointers to the Tx and Rx ring
 719	 * structs.  First, attempt to allocate new resources...
 720	 */
 721	if (set_tx) {
 722		memcpy(temp_tx, adapter->tx_ring, size);
 723		temp_tx->count = new_tx_count;
 724		err = e1000e_setup_tx_resources(temp_tx);
 725		if (err)
 726			goto err_setup;
 727	}
 728	if (set_rx) {
 729		memcpy(temp_rx, adapter->rx_ring, size);
 730		temp_rx->count = new_rx_count;
 731		err = e1000e_setup_rx_resources(temp_rx);
 732		if (err)
 733			goto err_setup_rx;
 734	}
 735
 736	/* ...then free the old resources and copy back any new ring data */
 737	if (set_tx) {
 738		e1000e_free_tx_resources(adapter->tx_ring);
 739		memcpy(adapter->tx_ring, temp_tx, size);
 740		adapter->tx_ring_count = new_tx_count;
 741	}
 742	if (set_rx) {
 743		e1000e_free_rx_resources(adapter->rx_ring);
 744		memcpy(adapter->rx_ring, temp_rx, size);
 745		adapter->rx_ring_count = new_rx_count;
 746	}
 747
 748err_setup_rx:
 749	if (err && set_tx)
 750		e1000e_free_tx_resources(temp_tx);
 751err_setup:
 752	e1000e_up(adapter);
 
 753free_temp:
 754	vfree(temp_tx);
 755	vfree(temp_rx);
 756clear_reset:
 757	clear_bit(__E1000_RESETTING, &adapter->state);
 758	return err;
 759}
 760
 761static bool reg_pattern_test(struct e1000_adapter *adapter, u64 *data,
 762			     int reg, int offset, u32 mask, u32 write)
 763{
 764	u32 pat, val;
 765	static const u32 test[] = {
 766		0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF
 767	};
 768	for (pat = 0; pat < ARRAY_SIZE(test); pat++) {
 769		E1000_WRITE_REG_ARRAY(&adapter->hw, reg, offset,
 770				      (test[pat] & write));
 771		val = E1000_READ_REG_ARRAY(&adapter->hw, reg, offset);
 772		if (val != (test[pat] & write & mask)) {
 773			e_err("pattern test failed (reg 0x%05X): got 0x%08X expected 0x%08X\n",
 774			      reg + (offset << 2), val,
 775			      (test[pat] & write & mask));
 776			*data = reg;
 777			return true;
 778		}
 779	}
 780	return false;
 781}
 782
 783static bool reg_set_and_check(struct e1000_adapter *adapter, u64 *data,
 784			      int reg, u32 mask, u32 write)
 785{
 786	u32 val;
 787
 788	__ew32(&adapter->hw, reg, write & mask);
 789	val = __er32(&adapter->hw, reg);
 790	if ((write & mask) != (val & mask)) {
 791		e_err("set/check test failed (reg 0x%05X): got 0x%08X expected 0x%08X\n",
 792		      reg, (val & mask), (write & mask));
 793		*data = reg;
 794		return true;
 795	}
 796	return false;
 797}
 798
 799#define REG_PATTERN_TEST_ARRAY(reg, offset, mask, write)                       \
 800	do {                                                                   \
 801		if (reg_pattern_test(adapter, data, reg, offset, mask, write)) \
 802			return 1;                                              \
 803	} while (0)
 804#define REG_PATTERN_TEST(reg, mask, write)                                     \
 805	REG_PATTERN_TEST_ARRAY(reg, 0, mask, write)
 806
 807#define REG_SET_AND_CHECK(reg, mask, write)                                    \
 808	do {                                                                   \
 809		if (reg_set_and_check(adapter, data, reg, mask, write))        \
 810			return 1;                                              \
 811	} while (0)
 812
 813static int e1000_reg_test(struct e1000_adapter *adapter, u64 *data)
 814{
 815	struct e1000_hw *hw = &adapter->hw;
 816	struct e1000_mac_info *mac = &adapter->hw.mac;
 817	u32 value;
 818	u32 before;
 819	u32 after;
 820	u32 i;
 821	u32 toggle;
 822	u32 mask;
 823	u32 wlock_mac = 0;
 824
 825	/* The status register is Read Only, so a write should fail.
 826	 * Some bits that get toggled are ignored.  There are several bits
 827	 * on newer hardware that are r/w.
 828	 */
 829	switch (mac->type) {
 830	case e1000_82571:
 831	case e1000_82572:
 832	case e1000_80003es2lan:
 833		toggle = 0x7FFFF3FF;
 834		break;
 835	default:
 836		toggle = 0x7FFFF033;
 837		break;
 838	}
 839
 840	before = er32(STATUS);
 841	value = (er32(STATUS) & toggle);
 842	ew32(STATUS, toggle);
 843	after = er32(STATUS) & toggle;
 844	if (value != after) {
 845		e_err("failed STATUS register test got: 0x%08X expected: 0x%08X\n",
 846		      after, value);
 847		*data = 1;
 848		return 1;
 849	}
 850	/* restore previous status */
 851	ew32(STATUS, before);
 852
 853	if (!(adapter->flags & FLAG_IS_ICH)) {
 854		REG_PATTERN_TEST(E1000_FCAL, 0xFFFFFFFF, 0xFFFFFFFF);
 855		REG_PATTERN_TEST(E1000_FCAH, 0x0000FFFF, 0xFFFFFFFF);
 856		REG_PATTERN_TEST(E1000_FCT, 0x0000FFFF, 0xFFFFFFFF);
 857		REG_PATTERN_TEST(E1000_VET, 0x0000FFFF, 0xFFFFFFFF);
 858	}
 859
 860	REG_PATTERN_TEST(E1000_RDTR, 0x0000FFFF, 0xFFFFFFFF);
 861	REG_PATTERN_TEST(E1000_RDBAH(0), 0xFFFFFFFF, 0xFFFFFFFF);
 862	REG_PATTERN_TEST(E1000_RDLEN(0), 0x000FFF80, 0x000FFFFF);
 863	REG_PATTERN_TEST(E1000_RDH(0), 0x0000FFFF, 0x0000FFFF);
 864	REG_PATTERN_TEST(E1000_RDT(0), 0x0000FFFF, 0x0000FFFF);
 865	REG_PATTERN_TEST(E1000_FCRTH, 0x0000FFF8, 0x0000FFF8);
 866	REG_PATTERN_TEST(E1000_FCTTV, 0x0000FFFF, 0x0000FFFF);
 867	REG_PATTERN_TEST(E1000_TIPG, 0x3FFFFFFF, 0x3FFFFFFF);
 868	REG_PATTERN_TEST(E1000_TDBAH(0), 0xFFFFFFFF, 0xFFFFFFFF);
 869	REG_PATTERN_TEST(E1000_TDLEN(0), 0x000FFF80, 0x000FFFFF);
 870
 871	REG_SET_AND_CHECK(E1000_RCTL, 0xFFFFFFFF, 0x00000000);
 872
 873	before = ((adapter->flags & FLAG_IS_ICH) ? 0x06C3B33E : 0x06DFB3FE);
 874	REG_SET_AND_CHECK(E1000_RCTL, before, 0x003FFFFB);
 875	REG_SET_AND_CHECK(E1000_TCTL, 0xFFFFFFFF, 0x00000000);
 876
 877	REG_SET_AND_CHECK(E1000_RCTL, before, 0xFFFFFFFF);
 878	REG_PATTERN_TEST(E1000_RDBAL(0), 0xFFFFFFF0, 0xFFFFFFFF);
 879	if (!(adapter->flags & FLAG_IS_ICH))
 880		REG_PATTERN_TEST(E1000_TXCW, 0xC000FFFF, 0x0000FFFF);
 881	REG_PATTERN_TEST(E1000_TDBAL(0), 0xFFFFFFF0, 0xFFFFFFFF);
 882	REG_PATTERN_TEST(E1000_TIDV, 0x0000FFFF, 0x0000FFFF);
 883	mask = 0x8003FFFF;
 884	switch (mac->type) {
 885	case e1000_ich10lan:
 886	case e1000_pchlan:
 887	case e1000_pch2lan:
 888	case e1000_pch_lpt:
 889	case e1000_pch_spt:
 890	case e1000_pch_cnp:
 891	case e1000_pch_tgp:
 892	case e1000_pch_adp:
 893	case e1000_pch_mtp:
 894	case e1000_pch_lnp:
 895	case e1000_pch_ptp:
 896	case e1000_pch_nvp:
 897		mask |= BIT(18);
 898		break;
 899	default:
 900		break;
 901	}
 902
 903	if (mac->type >= e1000_pch_lpt)
 904		wlock_mac = FIELD_GET(E1000_FWSM_WLOCK_MAC_MASK, er32(FWSM));
 
 905
 906	for (i = 0; i < mac->rar_entry_count; i++) {
 907		if (mac->type >= e1000_pch_lpt) {
 
 908			/* Cannot test write-protected SHRAL[n] registers */
 909			if ((wlock_mac == 1) || (wlock_mac && (i > wlock_mac)))
 910				continue;
 911
 912			/* SHRAH[9] different than the others */
 913			if (i == 10)
 914				mask |= BIT(30);
 915			else
 916				mask &= ~BIT(30);
 917		}
 918		if (mac->type == e1000_pch2lan) {
 919			/* SHRAH[0,1,2] different than previous */
 920			if (i == 1)
 921				mask &= 0xFFF4FFFF;
 922			/* SHRAH[3] different than SHRAH[0,1,2] */
 923			if (i == 4)
 924				mask |= BIT(30);
 925			/* RAR[1-6] owned by management engine - skipping */
 926			if (i > 0)
 927				i += 6;
 928		}
 929
 930		REG_PATTERN_TEST_ARRAY(E1000_RA, ((i << 1) + 1), mask,
 931				       0xFFFFFFFF);
 932		/* reset index to actual value */
 933		if ((mac->type == e1000_pch2lan) && (i > 6))
 934			i -= 6;
 935	}
 936
 937	for (i = 0; i < mac->mta_reg_count; i++)
 938		REG_PATTERN_TEST_ARRAY(E1000_MTA, i, 0xFFFFFFFF, 0xFFFFFFFF);
 939
 940	*data = 0;
 941
 942	return 0;
 943}
 944
 945static int e1000_eeprom_test(struct e1000_adapter *adapter, u64 *data)
 946{
 947	u16 temp;
 948	u16 checksum = 0;
 949	u16 i;
 950
 951	*data = 0;
 952	/* Read and add up the contents of the EEPROM */
 953	for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) {
 954		if ((e1000_read_nvm(&adapter->hw, i, 1, &temp)) < 0) {
 955			*data = 1;
 956			return *data;
 957		}
 958		checksum += temp;
 959	}
 960
 961	/* If Checksum is not Correct return error else test passed */
 962	if ((checksum != (u16)NVM_SUM) && !(*data))
 963		*data = 2;
 964
 965	return *data;
 966}
 967
 968static irqreturn_t e1000_test_intr(int __always_unused irq, void *data)
 969{
 970	struct net_device *netdev = (struct net_device *)data;
 971	struct e1000_adapter *adapter = netdev_priv(netdev);
 972	struct e1000_hw *hw = &adapter->hw;
 973
 974	adapter->test_icr |= er32(ICR);
 975
 976	return IRQ_HANDLED;
 977}
 978
 979static int e1000_intr_test(struct e1000_adapter *adapter, u64 *data)
 980{
 981	struct net_device *netdev = adapter->netdev;
 982	struct e1000_hw *hw = &adapter->hw;
 983	u32 mask;
 984	u32 shared_int = 1;
 985	u32 irq = adapter->pdev->irq;
 986	int i;
 987	int ret_val = 0;
 988	int int_mode = E1000E_INT_MODE_LEGACY;
 989
 990	*data = 0;
 991
 992	/* NOTE: we don't test MSI/MSI-X interrupts here, yet */
 993	if (adapter->int_mode == E1000E_INT_MODE_MSIX) {
 994		int_mode = adapter->int_mode;
 995		e1000e_reset_interrupt_capability(adapter);
 996		adapter->int_mode = E1000E_INT_MODE_LEGACY;
 997		e1000e_set_interrupt_capability(adapter);
 998	}
 999	/* Hook up test interrupt handler just for this test */
1000	if (!request_irq(irq, e1000_test_intr, IRQF_PROBE_SHARED, netdev->name,
1001			 netdev)) {
1002		shared_int = 0;
1003	} else if (request_irq(irq, e1000_test_intr, IRQF_SHARED, netdev->name,
1004			       netdev)) {
1005		*data = 1;
1006		ret_val = -1;
1007		goto out;
1008	}
1009	e_info("testing %s interrupt\n", (shared_int ? "shared" : "unshared"));
1010
1011	/* Disable all the interrupts */
1012	ew32(IMC, 0xFFFFFFFF);
1013	e1e_flush();
1014	usleep_range(10000, 11000);
1015
1016	/* Test each interrupt */
1017	for (i = 0; i < 10; i++) {
1018		/* Interrupt to test */
1019		mask = BIT(i);
1020
1021		if (adapter->flags & FLAG_IS_ICH) {
1022			switch (mask) {
1023			case E1000_ICR_RXSEQ:
1024				continue;
1025			case 0x00000100:
1026				if (adapter->hw.mac.type == e1000_ich8lan ||
1027				    adapter->hw.mac.type == e1000_ich9lan)
1028					continue;
1029				break;
1030			default:
1031				break;
1032			}
1033		}
1034
1035		if (!shared_int) {
1036			/* Disable the interrupt to be reported in
1037			 * the cause register and then force the same
1038			 * interrupt and see if one gets posted.  If
1039			 * an interrupt was posted to the bus, the
1040			 * test failed.
1041			 */
1042			adapter->test_icr = 0;
1043			ew32(IMC, mask);
1044			ew32(ICS, mask);
1045			e1e_flush();
1046			usleep_range(10000, 11000);
1047
1048			if (adapter->test_icr & mask) {
1049				*data = 3;
1050				break;
1051			}
1052		}
1053
1054		/* Enable the interrupt to be reported in
1055		 * the cause register and then force the same
1056		 * interrupt and see if one gets posted.  If
1057		 * an interrupt was not posted to the bus, the
1058		 * test failed.
1059		 */
1060		adapter->test_icr = 0;
1061		ew32(IMS, mask);
1062		ew32(ICS, mask);
1063		e1e_flush();
1064		usleep_range(10000, 11000);
1065
1066		if (!(adapter->test_icr & mask)) {
1067			*data = 4;
1068			break;
1069		}
1070
1071		if (!shared_int) {
1072			/* Disable the other interrupts to be reported in
1073			 * the cause register and then force the other
1074			 * interrupts and see if any get posted.  If
1075			 * an interrupt was posted to the bus, the
1076			 * test failed.
1077			 */
1078			adapter->test_icr = 0;
1079			ew32(IMC, ~mask & 0x00007FFF);
1080			ew32(ICS, ~mask & 0x00007FFF);
1081			e1e_flush();
1082			usleep_range(10000, 11000);
1083
1084			if (adapter->test_icr) {
1085				*data = 5;
1086				break;
1087			}
1088		}
1089	}
1090
1091	/* Disable all the interrupts */
1092	ew32(IMC, 0xFFFFFFFF);
1093	e1e_flush();
1094	usleep_range(10000, 11000);
1095
1096	/* Unhook test interrupt handler */
1097	free_irq(irq, netdev);
1098
1099out:
1100	if (int_mode == E1000E_INT_MODE_MSIX) {
1101		e1000e_reset_interrupt_capability(adapter);
1102		adapter->int_mode = int_mode;
1103		e1000e_set_interrupt_capability(adapter);
1104	}
1105
1106	return ret_val;
1107}
1108
1109static void e1000_free_desc_rings(struct e1000_adapter *adapter)
1110{
1111	struct e1000_ring *tx_ring = &adapter->test_tx_ring;
1112	struct e1000_ring *rx_ring = &adapter->test_rx_ring;
1113	struct pci_dev *pdev = adapter->pdev;
1114	struct e1000_buffer *buffer_info;
1115	int i;
1116
1117	if (tx_ring->desc && tx_ring->buffer_info) {
1118		for (i = 0; i < tx_ring->count; i++) {
1119			buffer_info = &tx_ring->buffer_info[i];
1120
1121			if (buffer_info->dma)
1122				dma_unmap_single(&pdev->dev,
1123						 buffer_info->dma,
1124						 buffer_info->length,
1125						 DMA_TO_DEVICE);
1126			dev_kfree_skb(buffer_info->skb);
 
1127		}
1128	}
1129
1130	if (rx_ring->desc && rx_ring->buffer_info) {
1131		for (i = 0; i < rx_ring->count; i++) {
1132			buffer_info = &rx_ring->buffer_info[i];
1133
1134			if (buffer_info->dma)
1135				dma_unmap_single(&pdev->dev,
1136						 buffer_info->dma,
1137						 2048, DMA_FROM_DEVICE);
1138			dev_kfree_skb(buffer_info->skb);
 
1139		}
1140	}
1141
1142	if (tx_ring->desc) {
1143		dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
1144				  tx_ring->dma);
1145		tx_ring->desc = NULL;
1146	}
1147	if (rx_ring->desc) {
1148		dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
1149				  rx_ring->dma);
1150		rx_ring->desc = NULL;
1151	}
1152
1153	kfree(tx_ring->buffer_info);
1154	tx_ring->buffer_info = NULL;
1155	kfree(rx_ring->buffer_info);
1156	rx_ring->buffer_info = NULL;
1157}
1158
1159static int e1000_setup_desc_rings(struct e1000_adapter *adapter)
1160{
1161	struct e1000_ring *tx_ring = &adapter->test_tx_ring;
1162	struct e1000_ring *rx_ring = &adapter->test_rx_ring;
1163	struct pci_dev *pdev = adapter->pdev;
1164	struct e1000_hw *hw = &adapter->hw;
1165	u32 rctl;
1166	int i;
1167	int ret_val;
1168
1169	/* Setup Tx descriptor ring and Tx buffers */
1170
1171	if (!tx_ring->count)
1172		tx_ring->count = E1000_DEFAULT_TXD;
1173
1174	tx_ring->buffer_info = kcalloc(tx_ring->count,
1175				       sizeof(struct e1000_buffer), GFP_KERNEL);
1176	if (!tx_ring->buffer_info) {
1177		ret_val = 1;
1178		goto err_nomem;
1179	}
1180
1181	tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
1182	tx_ring->size = ALIGN(tx_ring->size, 4096);
1183	tx_ring->desc = dma_alloc_coherent(&pdev->dev, tx_ring->size,
1184					   &tx_ring->dma, GFP_KERNEL);
1185	if (!tx_ring->desc) {
1186		ret_val = 2;
1187		goto err_nomem;
1188	}
1189	tx_ring->next_to_use = 0;
1190	tx_ring->next_to_clean = 0;
1191
1192	ew32(TDBAL(0), ((u64)tx_ring->dma & 0x00000000FFFFFFFF));
1193	ew32(TDBAH(0), ((u64)tx_ring->dma >> 32));
1194	ew32(TDLEN(0), tx_ring->count * sizeof(struct e1000_tx_desc));
1195	ew32(TDH(0), 0);
1196	ew32(TDT(0), 0);
1197	ew32(TCTL, E1000_TCTL_PSP | E1000_TCTL_EN | E1000_TCTL_MULR |
1198	     E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT |
1199	     E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT);
1200
1201	for (i = 0; i < tx_ring->count; i++) {
1202		struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*tx_ring, i);
1203		struct sk_buff *skb;
1204		unsigned int skb_size = 1024;
1205
1206		skb = alloc_skb(skb_size, GFP_KERNEL);
1207		if (!skb) {
1208			ret_val = 3;
1209			goto err_nomem;
1210		}
1211		skb_put(skb, skb_size);
1212		tx_ring->buffer_info[i].skb = skb;
1213		tx_ring->buffer_info[i].length = skb->len;
1214		tx_ring->buffer_info[i].dma =
1215		    dma_map_single(&pdev->dev, skb->data, skb->len,
1216				   DMA_TO_DEVICE);
1217		if (dma_mapping_error(&pdev->dev,
1218				      tx_ring->buffer_info[i].dma)) {
1219			ret_val = 4;
1220			goto err_nomem;
1221		}
1222		tx_desc->buffer_addr = cpu_to_le64(tx_ring->buffer_info[i].dma);
1223		tx_desc->lower.data = cpu_to_le32(skb->len);
1224		tx_desc->lower.data |= cpu_to_le32(E1000_TXD_CMD_EOP |
1225						   E1000_TXD_CMD_IFCS |
1226						   E1000_TXD_CMD_RS);
1227		tx_desc->upper.data = 0;
1228	}
1229
1230	/* Setup Rx descriptor ring and Rx buffers */
1231
1232	if (!rx_ring->count)
1233		rx_ring->count = E1000_DEFAULT_RXD;
1234
1235	rx_ring->buffer_info = kcalloc(rx_ring->count,
1236				       sizeof(struct e1000_buffer), GFP_KERNEL);
1237	if (!rx_ring->buffer_info) {
1238		ret_val = 5;
1239		goto err_nomem;
1240	}
1241
1242	rx_ring->size = rx_ring->count * sizeof(union e1000_rx_desc_extended);
1243	rx_ring->desc = dma_alloc_coherent(&pdev->dev, rx_ring->size,
1244					   &rx_ring->dma, GFP_KERNEL);
1245	if (!rx_ring->desc) {
1246		ret_val = 6;
1247		goto err_nomem;
1248	}
1249	rx_ring->next_to_use = 0;
1250	rx_ring->next_to_clean = 0;
1251
1252	rctl = er32(RCTL);
1253	if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX))
1254		ew32(RCTL, rctl & ~E1000_RCTL_EN);
1255	ew32(RDBAL(0), ((u64)rx_ring->dma & 0xFFFFFFFF));
1256	ew32(RDBAH(0), ((u64)rx_ring->dma >> 32));
1257	ew32(RDLEN(0), rx_ring->size);
1258	ew32(RDH(0), 0);
1259	ew32(RDT(0), 0);
1260	rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_SZ_2048 |
1261	    E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_LPE |
1262	    E1000_RCTL_SBP | E1000_RCTL_SECRC |
1263	    E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1264	    (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
1265	ew32(RCTL, rctl);
1266
1267	for (i = 0; i < rx_ring->count; i++) {
1268		union e1000_rx_desc_extended *rx_desc;
1269		struct sk_buff *skb;
1270
1271		skb = alloc_skb(2048 + NET_IP_ALIGN, GFP_KERNEL);
1272		if (!skb) {
1273			ret_val = 7;
1274			goto err_nomem;
1275		}
1276		skb_reserve(skb, NET_IP_ALIGN);
1277		rx_ring->buffer_info[i].skb = skb;
1278		rx_ring->buffer_info[i].dma =
1279		    dma_map_single(&pdev->dev, skb->data, 2048,
1280				   DMA_FROM_DEVICE);
1281		if (dma_mapping_error(&pdev->dev,
1282				      rx_ring->buffer_info[i].dma)) {
1283			ret_val = 8;
1284			goto err_nomem;
1285		}
1286		rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
1287		rx_desc->read.buffer_addr =
1288		    cpu_to_le64(rx_ring->buffer_info[i].dma);
1289		memset(skb->data, 0x00, skb->len);
1290	}
1291
1292	return 0;
1293
1294err_nomem:
1295	e1000_free_desc_rings(adapter);
1296	return ret_val;
1297}
1298
1299static void e1000_phy_disable_receiver(struct e1000_adapter *adapter)
1300{
1301	/* Write out to PHY registers 29 and 30 to disable the Receiver. */
1302	e1e_wphy(&adapter->hw, 29, 0x001F);
1303	e1e_wphy(&adapter->hw, 30, 0x8FFC);
1304	e1e_wphy(&adapter->hw, 29, 0x001A);
1305	e1e_wphy(&adapter->hw, 30, 0x8FF0);
1306}
1307
1308static int e1000_integrated_phy_loopback(struct e1000_adapter *adapter)
1309{
1310	struct e1000_hw *hw = &adapter->hw;
1311	u32 ctrl_reg = 0;
1312	u16 phy_reg = 0;
1313	s32 ret_val = 0;
1314
1315	hw->mac.autoneg = 0;
1316
1317	if (hw->phy.type == e1000_phy_ife) {
1318		/* force 100, set loopback */
1319		e1e_wphy(hw, MII_BMCR, 0x6100);
1320
1321		/* Now set up the MAC to the same speed/duplex as the PHY. */
1322		ctrl_reg = er32(CTRL);
1323		ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1324		ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1325			     E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1326			     E1000_CTRL_SPD_100 |/* Force Speed to 100 */
1327			     E1000_CTRL_FD);	 /* Force Duplex to FULL */
1328
1329		ew32(CTRL, ctrl_reg);
1330		e1e_flush();
1331		usleep_range(500, 1000);
1332
1333		return 0;
1334	}
1335
1336	/* Specific PHY configuration for loopback */
1337	switch (hw->phy.type) {
1338	case e1000_phy_m88:
1339		/* Auto-MDI/MDIX Off */
1340		e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, 0x0808);
1341		/* reset to update Auto-MDI/MDIX */
1342		e1e_wphy(hw, MII_BMCR, 0x9140);
1343		/* autoneg off */
1344		e1e_wphy(hw, MII_BMCR, 0x8140);
1345		break;
1346	case e1000_phy_gg82563:
1347		e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, 0x1CC);
1348		break;
1349	case e1000_phy_bm:
1350		/* Set Default MAC Interface speed to 1GB */
1351		e1e_rphy(hw, PHY_REG(2, 21), &phy_reg);
1352		phy_reg &= ~0x0007;
1353		phy_reg |= 0x006;
1354		e1e_wphy(hw, PHY_REG(2, 21), phy_reg);
1355		/* Assert SW reset for above settings to take effect */
1356		hw->phy.ops.commit(hw);
1357		usleep_range(1000, 2000);
1358		/* Force Full Duplex */
1359		e1e_rphy(hw, PHY_REG(769, 16), &phy_reg);
1360		e1e_wphy(hw, PHY_REG(769, 16), phy_reg | 0x000C);
1361		/* Set Link Up (in force link) */
1362		e1e_rphy(hw, PHY_REG(776, 16), &phy_reg);
1363		e1e_wphy(hw, PHY_REG(776, 16), phy_reg | 0x0040);
1364		/* Force Link */
1365		e1e_rphy(hw, PHY_REG(769, 16), &phy_reg);
1366		e1e_wphy(hw, PHY_REG(769, 16), phy_reg | 0x0040);
1367		/* Set Early Link Enable */
1368		e1e_rphy(hw, PHY_REG(769, 20), &phy_reg);
1369		e1e_wphy(hw, PHY_REG(769, 20), phy_reg | 0x0400);
1370		break;
1371	case e1000_phy_82577:
1372	case e1000_phy_82578:
1373		/* Workaround: K1 must be disabled for stable 1Gbps operation */
1374		ret_val = hw->phy.ops.acquire(hw);
1375		if (ret_val) {
1376			e_err("Cannot setup 1Gbps loopback.\n");
1377			return ret_val;
1378		}
1379		e1000_configure_k1_ich8lan(hw, false);
1380		hw->phy.ops.release(hw);
1381		break;
1382	case e1000_phy_82579:
1383		/* Disable PHY energy detect power down */
1384		e1e_rphy(hw, PHY_REG(0, 21), &phy_reg);
1385		e1e_wphy(hw, PHY_REG(0, 21), phy_reg & ~BIT(3));
1386		/* Disable full chip energy detect */
1387		e1e_rphy(hw, PHY_REG(776, 18), &phy_reg);
1388		e1e_wphy(hw, PHY_REG(776, 18), phy_reg | 1);
1389		/* Enable loopback on the PHY */
1390		e1e_wphy(hw, I82577_PHY_LBK_CTRL, 0x8001);
1391		break;
1392	default:
1393		break;
1394	}
1395
1396	/* force 1000, set loopback */
1397	e1e_wphy(hw, MII_BMCR, 0x4140);
1398	msleep(250);
1399
1400	/* Now set up the MAC to the same speed/duplex as the PHY. */
1401	ctrl_reg = er32(CTRL);
1402	ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1403	ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1404		     E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1405		     E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
1406		     E1000_CTRL_FD);	 /* Force Duplex to FULL */
1407
1408	if (adapter->flags & FLAG_IS_ICH)
1409		ctrl_reg |= E1000_CTRL_SLU;	/* Set Link Up */
1410
1411	if (hw->phy.media_type == e1000_media_type_copper &&
1412	    hw->phy.type == e1000_phy_m88) {
1413		ctrl_reg |= E1000_CTRL_ILOS;	/* Invert Loss of Signal */
1414	} else {
1415		/* Set the ILOS bit on the fiber Nic if half duplex link is
1416		 * detected.
1417		 */
1418		if ((er32(STATUS) & E1000_STATUS_FD) == 0)
1419			ctrl_reg |= (E1000_CTRL_ILOS | E1000_CTRL_SLU);
1420	}
1421
1422	ew32(CTRL, ctrl_reg);
1423
1424	/* Disable the receiver on the PHY so when a cable is plugged in, the
1425	 * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1426	 */
1427	if (hw->phy.type == e1000_phy_m88)
1428		e1000_phy_disable_receiver(adapter);
1429
1430	usleep_range(500, 1000);
1431
1432	return 0;
1433}
1434
1435static int e1000_set_82571_fiber_loopback(struct e1000_adapter *adapter)
1436{
1437	struct e1000_hw *hw = &adapter->hw;
1438	u32 ctrl = er32(CTRL);
1439	int link;
1440
1441	/* special requirements for 82571/82572 fiber adapters */
1442
1443	/* jump through hoops to make sure link is up because serdes
1444	 * link is hardwired up
1445	 */
1446	ctrl |= E1000_CTRL_SLU;
1447	ew32(CTRL, ctrl);
1448
1449	/* disable autoneg */
1450	ctrl = er32(TXCW);
1451	ctrl &= ~BIT(31);
1452	ew32(TXCW, ctrl);
1453
1454	link = (er32(STATUS) & E1000_STATUS_LU);
1455
1456	if (!link) {
1457		/* set invert loss of signal */
1458		ctrl = er32(CTRL);
1459		ctrl |= E1000_CTRL_ILOS;
1460		ew32(CTRL, ctrl);
1461	}
1462
1463	/* special write to serdes control register to enable SerDes analog
1464	 * loopback
1465	 */
1466	ew32(SCTL, E1000_SCTL_ENABLE_SERDES_LOOPBACK);
1467	e1e_flush();
1468	usleep_range(10000, 11000);
1469
1470	return 0;
1471}
1472
1473/* only call this for fiber/serdes connections to es2lan */
1474static int e1000_set_es2lan_mac_loopback(struct e1000_adapter *adapter)
1475{
1476	struct e1000_hw *hw = &adapter->hw;
1477	u32 ctrlext = er32(CTRL_EXT);
1478	u32 ctrl = er32(CTRL);
1479
1480	/* save CTRL_EXT to restore later, reuse an empty variable (unused
1481	 * on mac_type 80003es2lan)
1482	 */
1483	adapter->tx_fifo_head = ctrlext;
1484
1485	/* clear the serdes mode bits, putting the device into mac loopback */
1486	ctrlext &= ~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
1487	ew32(CTRL_EXT, ctrlext);
1488
1489	/* force speed to 1000/FD, link up */
1490	ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
1491	ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX |
1492		 E1000_CTRL_SPD_1000 | E1000_CTRL_FD);
1493	ew32(CTRL, ctrl);
1494
1495	/* set mac loopback */
1496	ctrl = er32(RCTL);
1497	ctrl |= E1000_RCTL_LBM_MAC;
1498	ew32(RCTL, ctrl);
1499
1500	/* set testing mode parameters (no need to reset later) */
1501#define KMRNCTRLSTA_OPMODE (0x1F << 16)
1502#define KMRNCTRLSTA_OPMODE_1GB_FD_GMII 0x0582
1503	ew32(KMRNCTRLSTA,
1504	     (KMRNCTRLSTA_OPMODE | KMRNCTRLSTA_OPMODE_1GB_FD_GMII));
1505
1506	return 0;
1507}
1508
1509static int e1000_setup_loopback_test(struct e1000_adapter *adapter)
1510{
1511	struct e1000_hw *hw = &adapter->hw;
1512	u32 rctl, fext_nvm11, tarc0;
1513
1514	if (hw->mac.type >= e1000_pch_spt) {
1515		fext_nvm11 = er32(FEXTNVM11);
1516		fext_nvm11 |= E1000_FEXTNVM11_DISABLE_MULR_FIX;
1517		ew32(FEXTNVM11, fext_nvm11);
1518		tarc0 = er32(TARC(0));
1519		/* clear bits 28 & 29 (control of MULR concurrent requests) */
1520		tarc0 &= 0xcfffffff;
1521		/* set bit 29 (value of MULR requests is now 2) */
1522		tarc0 |= 0x20000000;
1523		ew32(TARC(0), tarc0);
1524	}
1525	if (hw->phy.media_type == e1000_media_type_fiber ||
1526	    hw->phy.media_type == e1000_media_type_internal_serdes) {
1527		switch (hw->mac.type) {
1528		case e1000_80003es2lan:
1529			return e1000_set_es2lan_mac_loopback(adapter);
1530		case e1000_82571:
1531		case e1000_82572:
1532			return e1000_set_82571_fiber_loopback(adapter);
1533		default:
1534			rctl = er32(RCTL);
1535			rctl |= E1000_RCTL_LBM_TCVR;
1536			ew32(RCTL, rctl);
1537			return 0;
1538		}
1539	} else if (hw->phy.media_type == e1000_media_type_copper) {
1540		return e1000_integrated_phy_loopback(adapter);
1541	}
1542
1543	return 7;
1544}
1545
1546static void e1000_loopback_cleanup(struct e1000_adapter *adapter)
1547{
1548	struct e1000_hw *hw = &adapter->hw;
1549	u32 rctl, fext_nvm11, tarc0;
1550	u16 phy_reg;
1551
1552	rctl = er32(RCTL);
1553	rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1554	ew32(RCTL, rctl);
1555
1556	switch (hw->mac.type) {
1557	case e1000_pch_spt:
1558	case e1000_pch_cnp:
1559	case e1000_pch_tgp:
1560	case e1000_pch_adp:
1561	case e1000_pch_mtp:
1562	case e1000_pch_lnp:
1563	case e1000_pch_ptp:
1564	case e1000_pch_nvp:
1565		fext_nvm11 = er32(FEXTNVM11);
1566		fext_nvm11 &= ~E1000_FEXTNVM11_DISABLE_MULR_FIX;
1567		ew32(FEXTNVM11, fext_nvm11);
1568		tarc0 = er32(TARC(0));
1569		/* clear bits 28 & 29 (control of MULR concurrent requests) */
1570		/* set bit 29 (value of MULR requests is now 0) */
1571		tarc0 &= 0xcfffffff;
1572		ew32(TARC(0), tarc0);
1573		fallthrough;
1574	case e1000_80003es2lan:
1575		if (hw->phy.media_type == e1000_media_type_fiber ||
1576		    hw->phy.media_type == e1000_media_type_internal_serdes) {
1577			/* restore CTRL_EXT, stealing space from tx_fifo_head */
1578			ew32(CTRL_EXT, adapter->tx_fifo_head);
1579			adapter->tx_fifo_head = 0;
1580		}
1581		fallthrough;
1582	case e1000_82571:
1583	case e1000_82572:
1584		if (hw->phy.media_type == e1000_media_type_fiber ||
1585		    hw->phy.media_type == e1000_media_type_internal_serdes) {
1586			ew32(SCTL, E1000_SCTL_DISABLE_SERDES_LOOPBACK);
1587			e1e_flush();
1588			usleep_range(10000, 11000);
1589			break;
1590		}
1591		fallthrough;
1592	default:
1593		hw->mac.autoneg = 1;
1594		if (hw->phy.type == e1000_phy_gg82563)
1595			e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, 0x180);
1596		e1e_rphy(hw, MII_BMCR, &phy_reg);
1597		if (phy_reg & BMCR_LOOPBACK) {
1598			phy_reg &= ~BMCR_LOOPBACK;
1599			e1e_wphy(hw, MII_BMCR, phy_reg);
1600			if (hw->phy.ops.commit)
1601				hw->phy.ops.commit(hw);
1602		}
1603		break;
1604	}
1605}
1606
1607static void e1000_create_lbtest_frame(struct sk_buff *skb,
1608				      unsigned int frame_size)
1609{
1610	memset(skb->data, 0xFF, frame_size);
1611	frame_size &= ~1;
1612	memset(&skb->data[frame_size / 2], 0xAA, frame_size / 2 - 1);
1613	skb->data[frame_size / 2 + 10] = 0xBE;
1614	skb->data[frame_size / 2 + 12] = 0xAF;
1615}
1616
1617static int e1000_check_lbtest_frame(struct sk_buff *skb,
1618				    unsigned int frame_size)
1619{
1620	frame_size &= ~1;
1621	if (*(skb->data + 3) == 0xFF)
1622		if ((*(skb->data + frame_size / 2 + 10) == 0xBE) &&
1623		    (*(skb->data + frame_size / 2 + 12) == 0xAF))
1624			return 0;
1625	return 13;
1626}
1627
1628static int e1000_run_loopback_test(struct e1000_adapter *adapter)
1629{
1630	struct e1000_ring *tx_ring = &adapter->test_tx_ring;
1631	struct e1000_ring *rx_ring = &adapter->test_rx_ring;
1632	struct pci_dev *pdev = adapter->pdev;
1633	struct e1000_hw *hw = &adapter->hw;
1634	struct e1000_buffer *buffer_info;
1635	int i, j, k, l;
1636	int lc;
1637	int good_cnt;
1638	int ret_val = 0;
1639	unsigned long time;
1640
1641	ew32(RDT(0), rx_ring->count - 1);
1642
1643	/* Calculate the loop count based on the largest descriptor ring
1644	 * The idea is to wrap the largest ring a number of times using 64
1645	 * send/receive pairs during each loop
1646	 */
1647
1648	if (rx_ring->count <= tx_ring->count)
1649		lc = ((tx_ring->count / 64) * 2) + 1;
1650	else
1651		lc = ((rx_ring->count / 64) * 2) + 1;
1652
1653	k = 0;
1654	l = 0;
1655	/* loop count loop */
1656	for (j = 0; j <= lc; j++) {
1657		/* send the packets */
1658		for (i = 0; i < 64; i++) {
1659			buffer_info = &tx_ring->buffer_info[k];
1660
1661			e1000_create_lbtest_frame(buffer_info->skb, 1024);
1662			dma_sync_single_for_device(&pdev->dev,
1663						   buffer_info->dma,
1664						   buffer_info->length,
1665						   DMA_TO_DEVICE);
1666			k++;
1667			if (k == tx_ring->count)
1668				k = 0;
1669		}
1670		ew32(TDT(0), k);
1671		e1e_flush();
1672		msleep(200);
1673		time = jiffies;	/* set the start time for the receive */
1674		good_cnt = 0;
1675		/* receive the sent packets */
1676		do {
1677			buffer_info = &rx_ring->buffer_info[l];
1678
1679			dma_sync_single_for_cpu(&pdev->dev,
1680						buffer_info->dma, 2048,
1681						DMA_FROM_DEVICE);
1682
1683			ret_val = e1000_check_lbtest_frame(buffer_info->skb,
1684							   1024);
1685			if (!ret_val)
1686				good_cnt++;
1687			l++;
1688			if (l == rx_ring->count)
1689				l = 0;
1690			/* time + 20 msecs (200 msecs on 2.4) is more than
1691			 * enough time to complete the receives, if it's
1692			 * exceeded, break and error off
1693			 */
1694		} while ((good_cnt < 64) && !time_after(jiffies, time + 20));
1695		if (good_cnt != 64) {
1696			ret_val = 13;	/* ret_val is the same as mis-compare */
1697			break;
1698		}
1699		if (time_after(jiffies, time + 20)) {
1700			ret_val = 14;	/* error code for time out error */
1701			break;
1702		}
1703	}
1704	return ret_val;
1705}
1706
1707static int e1000_loopback_test(struct e1000_adapter *adapter, u64 *data)
1708{
1709	struct e1000_hw *hw = &adapter->hw;
1710
1711	/* PHY loopback cannot be performed if SoL/IDER sessions are active */
1712	if (hw->phy.ops.check_reset_block &&
1713	    hw->phy.ops.check_reset_block(hw)) {
1714		e_err("Cannot do PHY loopback test when SoL/IDER is active.\n");
1715		*data = 0;
1716		goto out;
1717	}
1718
1719	*data = e1000_setup_desc_rings(adapter);
1720	if (*data)
1721		goto out;
1722
1723	*data = e1000_setup_loopback_test(adapter);
1724	if (*data)
1725		goto err_loopback;
1726
1727	*data = e1000_run_loopback_test(adapter);
1728	e1000_loopback_cleanup(adapter);
1729
1730err_loopback:
1731	e1000_free_desc_rings(adapter);
1732out:
1733	return *data;
1734}
1735
1736static int e1000_link_test(struct e1000_adapter *adapter, u64 *data)
1737{
1738	struct e1000_hw *hw = &adapter->hw;
1739
1740	*data = 0;
1741	if (hw->phy.media_type == e1000_media_type_internal_serdes) {
1742		int i = 0;
1743
1744		hw->mac.serdes_has_link = false;
1745
1746		/* On some blade server designs, link establishment
1747		 * could take as long as 2-3 minutes
1748		 */
1749		do {
1750			hw->mac.ops.check_for_link(hw);
1751			if (hw->mac.serdes_has_link)
1752				return *data;
1753			msleep(20);
1754		} while (i++ < 3750);
1755
1756		*data = 1;
1757	} else {
1758		hw->mac.ops.check_for_link(hw);
1759		if (hw->mac.autoneg)
1760			/* On some Phy/switch combinations, link establishment
1761			 * can take a few seconds more than expected.
1762			 */
1763			msleep_interruptible(5000);
1764
1765		if (!(er32(STATUS) & E1000_STATUS_LU))
1766			*data = 1;
1767	}
1768	return *data;
1769}
1770
1771static int e1000e_get_sset_count(struct net_device __always_unused *netdev,
1772				 int sset)
1773{
1774	switch (sset) {
1775	case ETH_SS_TEST:
1776		return E1000_TEST_LEN;
1777	case ETH_SS_STATS:
1778		return E1000_STATS_LEN;
1779	case ETH_SS_PRIV_FLAGS:
1780		return E1000E_PRIV_FLAGS_STR_LEN;
1781	default:
1782		return -EOPNOTSUPP;
1783	}
1784}
1785
1786static void e1000_diag_test(struct net_device *netdev,
1787			    struct ethtool_test *eth_test, u64 *data)
1788{
1789	struct e1000_adapter *adapter = netdev_priv(netdev);
1790	u16 autoneg_advertised;
1791	u8 forced_speed_duplex;
1792	u8 autoneg;
1793	bool if_running = netif_running(netdev);
1794
 
 
1795	set_bit(__E1000_TESTING, &adapter->state);
1796
1797	if (!if_running) {
1798		/* Get control of and reset hardware */
1799		if (adapter->flags & FLAG_HAS_AMT)
1800			e1000e_get_hw_control(adapter);
1801
1802		e1000e_power_up_phy(adapter);
1803
1804		adapter->hw.phy.autoneg_wait_to_complete = 1;
1805		e1000e_reset(adapter);
1806		adapter->hw.phy.autoneg_wait_to_complete = 0;
1807	}
1808
1809	if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
1810		/* Offline tests */
1811
1812		/* save speed, duplex, autoneg settings */
1813		autoneg_advertised = adapter->hw.phy.autoneg_advertised;
1814		forced_speed_duplex = adapter->hw.mac.forced_speed_duplex;
1815		autoneg = adapter->hw.mac.autoneg;
1816
1817		e_info("offline testing starting\n");
1818
1819		if (if_running)
1820			/* indicate we're in test mode */
1821			e1000e_close(netdev);
1822
1823		if (e1000_reg_test(adapter, &data[0]))
1824			eth_test->flags |= ETH_TEST_FL_FAILED;
1825
1826		e1000e_reset(adapter);
1827		if (e1000_eeprom_test(adapter, &data[1]))
1828			eth_test->flags |= ETH_TEST_FL_FAILED;
1829
1830		e1000e_reset(adapter);
1831		if (e1000_intr_test(adapter, &data[2]))
1832			eth_test->flags |= ETH_TEST_FL_FAILED;
1833
1834		e1000e_reset(adapter);
1835		if (e1000_loopback_test(adapter, &data[3]))
1836			eth_test->flags |= ETH_TEST_FL_FAILED;
1837
1838		/* force this routine to wait until autoneg complete/timeout */
1839		adapter->hw.phy.autoneg_wait_to_complete = 1;
1840		e1000e_reset(adapter);
1841		adapter->hw.phy.autoneg_wait_to_complete = 0;
1842
1843		if (e1000_link_test(adapter, &data[4]))
1844			eth_test->flags |= ETH_TEST_FL_FAILED;
1845
1846		/* restore speed, duplex, autoneg settings */
1847		adapter->hw.phy.autoneg_advertised = autoneg_advertised;
1848		adapter->hw.mac.forced_speed_duplex = forced_speed_duplex;
1849		adapter->hw.mac.autoneg = autoneg;
1850		e1000e_reset(adapter);
1851
1852		clear_bit(__E1000_TESTING, &adapter->state);
1853		if (if_running)
1854			e1000e_open(netdev);
1855	} else {
1856		/* Online tests */
1857
1858		e_info("online testing starting\n");
1859
1860		/* register, eeprom, intr and loopback tests not run online */
1861		data[0] = 0;
1862		data[1] = 0;
1863		data[2] = 0;
1864		data[3] = 0;
1865
1866		if (e1000_link_test(adapter, &data[4]))
1867			eth_test->flags |= ETH_TEST_FL_FAILED;
1868
1869		clear_bit(__E1000_TESTING, &adapter->state);
1870	}
1871
1872	if (!if_running) {
1873		e1000e_reset(adapter);
1874
1875		if (adapter->flags & FLAG_HAS_AMT)
1876			e1000e_release_hw_control(adapter);
1877	}
1878
1879	msleep_interruptible(4 * 1000);
 
 
1880}
1881
1882static void e1000_get_wol(struct net_device *netdev,
1883			  struct ethtool_wolinfo *wol)
1884{
1885	struct e1000_adapter *adapter = netdev_priv(netdev);
1886
1887	wol->supported = 0;
1888	wol->wolopts = 0;
1889
1890	if (!(adapter->flags & FLAG_HAS_WOL) ||
1891	    !device_can_wakeup(&adapter->pdev->dev))
1892		return;
1893
1894	wol->supported = WAKE_UCAST | WAKE_MCAST |
1895	    WAKE_BCAST | WAKE_MAGIC | WAKE_PHY;
1896
1897	/* apply any specific unsupported masks here */
1898	if (adapter->flags & FLAG_NO_WAKE_UCAST) {
1899		wol->supported &= ~WAKE_UCAST;
1900
1901		if (adapter->wol & E1000_WUFC_EX)
1902			e_err("Interface does not support directed (unicast) frame wake-up packets\n");
1903	}
1904
1905	if (adapter->wol & E1000_WUFC_EX)
1906		wol->wolopts |= WAKE_UCAST;
1907	if (adapter->wol & E1000_WUFC_MC)
1908		wol->wolopts |= WAKE_MCAST;
1909	if (adapter->wol & E1000_WUFC_BC)
1910		wol->wolopts |= WAKE_BCAST;
1911	if (adapter->wol & E1000_WUFC_MAG)
1912		wol->wolopts |= WAKE_MAGIC;
1913	if (adapter->wol & E1000_WUFC_LNKC)
1914		wol->wolopts |= WAKE_PHY;
1915}
1916
1917static int e1000_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
1918{
1919	struct e1000_adapter *adapter = netdev_priv(netdev);
1920
1921	if (!(adapter->flags & FLAG_HAS_WOL) ||
1922	    !device_can_wakeup(&adapter->pdev->dev) ||
1923	    (wol->wolopts & ~(WAKE_UCAST | WAKE_MCAST | WAKE_BCAST |
1924			      WAKE_MAGIC | WAKE_PHY)))
1925		return -EOPNOTSUPP;
1926
1927	/* these settings will always override what we currently have */
1928	adapter->wol = 0;
1929
1930	if (wol->wolopts & WAKE_UCAST)
1931		adapter->wol |= E1000_WUFC_EX;
1932	if (wol->wolopts & WAKE_MCAST)
1933		adapter->wol |= E1000_WUFC_MC;
1934	if (wol->wolopts & WAKE_BCAST)
1935		adapter->wol |= E1000_WUFC_BC;
1936	if (wol->wolopts & WAKE_MAGIC)
1937		adapter->wol |= E1000_WUFC_MAG;
1938	if (wol->wolopts & WAKE_PHY)
1939		adapter->wol |= E1000_WUFC_LNKC;
1940
1941	device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1942
1943	return 0;
1944}
1945
1946static int e1000_set_phys_id(struct net_device *netdev,
1947			     enum ethtool_phys_id_state state)
1948{
1949	struct e1000_adapter *adapter = netdev_priv(netdev);
1950	struct e1000_hw *hw = &adapter->hw;
1951
1952	switch (state) {
1953	case ETHTOOL_ID_ACTIVE:
1954		pm_runtime_get_sync(netdev->dev.parent);
1955
1956		if (!hw->mac.ops.blink_led)
1957			return 2;	/* cycle on/off twice per second */
1958
1959		hw->mac.ops.blink_led(hw);
1960		break;
1961
1962	case ETHTOOL_ID_INACTIVE:
1963		if (hw->phy.type == e1000_phy_ife)
1964			e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0);
1965		hw->mac.ops.led_off(hw);
1966		hw->mac.ops.cleanup_led(hw);
1967		pm_runtime_put_sync(netdev->dev.parent);
1968		break;
1969
1970	case ETHTOOL_ID_ON:
1971		hw->mac.ops.led_on(hw);
1972		break;
1973
1974	case ETHTOOL_ID_OFF:
1975		hw->mac.ops.led_off(hw);
1976		break;
1977	}
1978
1979	return 0;
1980}
1981
1982static int e1000_get_coalesce(struct net_device *netdev,
1983			      struct ethtool_coalesce *ec,
1984			      struct kernel_ethtool_coalesce *kernel_coal,
1985			      struct netlink_ext_ack *extack)
1986{
1987	struct e1000_adapter *adapter = netdev_priv(netdev);
1988
1989	if (adapter->itr_setting <= 4)
1990		ec->rx_coalesce_usecs = adapter->itr_setting;
1991	else
1992		ec->rx_coalesce_usecs = 1000000 / adapter->itr_setting;
1993
1994	return 0;
1995}
1996
1997static int e1000_set_coalesce(struct net_device *netdev,
1998			      struct ethtool_coalesce *ec,
1999			      struct kernel_ethtool_coalesce *kernel_coal,
2000			      struct netlink_ext_ack *extack)
2001{
2002	struct e1000_adapter *adapter = netdev_priv(netdev);
2003
2004	if ((ec->rx_coalesce_usecs > E1000_MAX_ITR_USECS) ||
2005	    ((ec->rx_coalesce_usecs > 4) &&
2006	     (ec->rx_coalesce_usecs < E1000_MIN_ITR_USECS)) ||
2007	    (ec->rx_coalesce_usecs == 2))
2008		return -EINVAL;
2009
2010	if (ec->rx_coalesce_usecs == 4) {
2011		adapter->itr_setting = 4;
2012		adapter->itr = adapter->itr_setting;
2013	} else if (ec->rx_coalesce_usecs <= 3) {
2014		adapter->itr = 20000;
2015		adapter->itr_setting = ec->rx_coalesce_usecs;
2016	} else {
2017		adapter->itr = (1000000 / ec->rx_coalesce_usecs);
2018		adapter->itr_setting = adapter->itr & ~3;
2019	}
2020
 
 
2021	if (adapter->itr_setting != 0)
2022		e1000e_write_itr(adapter, adapter->itr);
2023	else
2024		e1000e_write_itr(adapter, 0);
2025
 
 
2026	return 0;
2027}
2028
2029static int e1000_nway_reset(struct net_device *netdev)
2030{
2031	struct e1000_adapter *adapter = netdev_priv(netdev);
2032
2033	if (!netif_running(netdev))
2034		return -EAGAIN;
2035
2036	if (!adapter->hw.mac.autoneg)
2037		return -EINVAL;
2038
 
2039	e1000e_reinit_locked(adapter);
 
2040
2041	return 0;
2042}
2043
2044static void e1000_get_ethtool_stats(struct net_device *netdev,
2045				    struct ethtool_stats __always_unused *stats,
2046				    u64 *data)
2047{
2048	struct e1000_adapter *adapter = netdev_priv(netdev);
2049	struct rtnl_link_stats64 net_stats;
2050	int i;
2051	char *p = NULL;
2052
2053	dev_get_stats(netdev, &net_stats);
 
 
 
 
2054
2055	for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
2056		switch (e1000_gstrings_stats[i].type) {
2057		case NETDEV_STATS:
2058			p = (char *)&net_stats +
2059			    e1000_gstrings_stats[i].stat_offset;
2060			break;
2061		case E1000_STATS:
2062			p = (char *)adapter +
2063			    e1000_gstrings_stats[i].stat_offset;
2064			break;
2065		default:
2066			data[i] = 0;
2067			continue;
2068		}
2069
2070		data[i] = (e1000_gstrings_stats[i].sizeof_stat ==
2071			   sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
2072	}
2073}
2074
2075static void e1000_get_strings(struct net_device __always_unused *netdev,
2076			      u32 stringset, u8 *data)
2077{
2078	u8 *p = data;
2079	int i;
2080
2081	switch (stringset) {
2082	case ETH_SS_TEST:
2083		memcpy(data, e1000_gstrings_test, sizeof(e1000_gstrings_test));
2084		break;
2085	case ETH_SS_STATS:
2086		for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
2087			memcpy(p, e1000_gstrings_stats[i].stat_string,
2088			       ETH_GSTRING_LEN);
2089			p += ETH_GSTRING_LEN;
2090		}
2091		break;
2092	case ETH_SS_PRIV_FLAGS:
2093		memcpy(data, e1000e_priv_flags_strings,
2094		       E1000E_PRIV_FLAGS_STR_LEN * ETH_GSTRING_LEN);
2095		break;
2096	}
2097}
2098
2099static int e1000_get_rxnfc(struct net_device *netdev,
2100			   struct ethtool_rxnfc *info,
2101			   u32 __always_unused *rule_locs)
2102{
2103	info->data = 0;
2104
2105	switch (info->cmd) {
2106	case ETHTOOL_GRXFH: {
2107		struct e1000_adapter *adapter = netdev_priv(netdev);
2108		struct e1000_hw *hw = &adapter->hw;
2109		u32 mrqc;
2110
 
2111		mrqc = er32(MRQC);
 
2112
2113		if (!(mrqc & E1000_MRQC_RSS_FIELD_MASK))
2114			return 0;
2115
2116		switch (info->flow_type) {
2117		case TCP_V4_FLOW:
2118			if (mrqc & E1000_MRQC_RSS_FIELD_IPV4_TCP)
2119				info->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2120			fallthrough;
2121		case UDP_V4_FLOW:
2122		case SCTP_V4_FLOW:
2123		case AH_ESP_V4_FLOW:
2124		case IPV4_FLOW:
2125			if (mrqc & E1000_MRQC_RSS_FIELD_IPV4)
2126				info->data |= RXH_IP_SRC | RXH_IP_DST;
2127			break;
2128		case TCP_V6_FLOW:
2129			if (mrqc & E1000_MRQC_RSS_FIELD_IPV6_TCP)
2130				info->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2131			fallthrough;
2132		case UDP_V6_FLOW:
2133		case SCTP_V6_FLOW:
2134		case AH_ESP_V6_FLOW:
2135		case IPV6_FLOW:
2136			if (mrqc & E1000_MRQC_RSS_FIELD_IPV6)
2137				info->data |= RXH_IP_SRC | RXH_IP_DST;
2138			break;
2139		default:
2140			break;
2141		}
2142		return 0;
2143	}
2144	default:
2145		return -EOPNOTSUPP;
2146	}
2147}
2148
2149static int e1000e_get_eee(struct net_device *netdev, struct ethtool_keee *edata)
2150{
2151	struct e1000_adapter *adapter = netdev_priv(netdev);
2152	struct e1000_hw *hw = &adapter->hw;
2153	u16 cap_addr, lpa_addr, pcs_stat_addr, phy_data;
2154	u32 ret_val;
2155
2156	if (!(adapter->flags2 & FLAG2_HAS_EEE))
2157		return -EOPNOTSUPP;
2158
2159	switch (hw->phy.type) {
2160	case e1000_phy_82579:
2161		cap_addr = I82579_EEE_CAPABILITY;
2162		lpa_addr = I82579_EEE_LP_ABILITY;
2163		pcs_stat_addr = I82579_EEE_PCS_STATUS;
2164		break;
2165	case e1000_phy_i217:
2166		cap_addr = I217_EEE_CAPABILITY;
2167		lpa_addr = I217_EEE_LP_ABILITY;
2168		pcs_stat_addr = I217_EEE_PCS_STATUS;
2169		break;
2170	default:
2171		return -EOPNOTSUPP;
2172	}
2173
 
 
2174	ret_val = hw->phy.ops.acquire(hw);
2175	if (ret_val)
 
2176		return -EBUSY;
 
2177
2178	/* EEE Capability */
2179	ret_val = e1000_read_emi_reg_locked(hw, cap_addr, &phy_data);
2180	if (ret_val)
2181		goto release;
2182	mii_eee_cap1_mod_linkmode_t(edata->supported, phy_data);
2183
2184	/* EEE Advertised */
2185	mii_eee_cap1_mod_linkmode_t(edata->advertised, adapter->eee_advert);
2186
2187	/* EEE Link Partner Advertised */
2188	ret_val = e1000_read_emi_reg_locked(hw, lpa_addr, &phy_data);
2189	if (ret_val)
2190		goto release;
2191	mii_eee_cap1_mod_linkmode_t(edata->lp_advertised, phy_data);
2192
2193	/* EEE PCS Status */
2194	ret_val = e1000_read_emi_reg_locked(hw, pcs_stat_addr, &phy_data);
2195	if (ret_val)
2196		goto release;
2197	if (hw->phy.type == e1000_phy_82579)
2198		phy_data <<= 8;
2199
2200	/* Result of the EEE auto negotiation - there is no register that
2201	 * has the status of the EEE negotiation so do a best-guess based
2202	 * on whether Tx or Rx LPI indications have been received.
2203	 */
2204	if (phy_data & (E1000_EEE_TX_LPI_RCVD | E1000_EEE_RX_LPI_RCVD))
2205		edata->eee_active = true;
2206
2207	edata->eee_enabled = !hw->dev_spec.ich8lan.eee_disable;
2208	edata->tx_lpi_enabled = true;
2209	edata->tx_lpi_timer = er32(LPIC) >> E1000_LPIC_LPIET_SHIFT;
2210
2211release:
2212	hw->phy.ops.release(hw);
2213	if (ret_val)
2214		ret_val = -ENODATA;
2215
 
 
2216	return ret_val;
2217}
2218
2219static int e1000e_set_eee(struct net_device *netdev, struct ethtool_keee *edata)
2220{
2221	struct e1000_adapter *adapter = netdev_priv(netdev);
2222	__ETHTOOL_DECLARE_LINK_MODE_MASK(supported) = {};
2223	__ETHTOOL_DECLARE_LINK_MODE_MASK(tmp) = {};
2224	struct e1000_hw *hw = &adapter->hw;
2225	struct ethtool_keee eee_curr;
2226	s32 ret_val;
2227
2228	ret_val = e1000e_get_eee(netdev, &eee_curr);
2229	if (ret_val)
2230		return ret_val;
2231
2232	if (eee_curr.tx_lpi_enabled != edata->tx_lpi_enabled) {
2233		e_err("Setting EEE tx-lpi is not supported\n");
2234		return -EINVAL;
2235	}
2236
2237	if (eee_curr.tx_lpi_timer != edata->tx_lpi_timer) {
2238		e_err("Setting EEE Tx LPI timer is not supported\n");
2239		return -EINVAL;
2240	}
2241
2242	linkmode_set_bit(ETHTOOL_LINK_MODE_1000baseT_Full_BIT,
2243			 supported);
2244	linkmode_set_bit(ETHTOOL_LINK_MODE_100baseT_Full_BIT,
2245			 supported);
2246
2247	if (linkmode_andnot(tmp, edata->advertised, supported)) {
2248		e_err("EEE advertisement supports only 100TX and/or 1000T full-duplex\n");
2249		return -EINVAL;
2250	}
2251
2252	adapter->eee_advert = linkmode_to_mii_eee_cap1_t(edata->advertised);
2253
2254	hw->dev_spec.ich8lan.eee_disable = !edata->eee_enabled;
2255
 
 
2256	/* reset the link */
2257	if (netif_running(netdev))
2258		e1000e_reinit_locked(adapter);
2259	else
2260		e1000e_reset(adapter);
2261
 
 
2262	return 0;
2263}
2264
2265static int e1000e_get_ts_info(struct net_device *netdev,
2266			      struct kernel_ethtool_ts_info *info)
2267{
2268	struct e1000_adapter *adapter = netdev_priv(netdev);
2269
2270	ethtool_op_get_ts_info(netdev, info);
2271
2272	if (!(adapter->flags & FLAG_HAS_HW_TIMESTAMP))
2273		return 0;
2274
2275	info->so_timestamping |= (SOF_TIMESTAMPING_TX_HARDWARE |
2276				  SOF_TIMESTAMPING_RX_HARDWARE |
2277				  SOF_TIMESTAMPING_RAW_HARDWARE);
2278
2279	info->tx_types = BIT(HWTSTAMP_TX_OFF) | BIT(HWTSTAMP_TX_ON);
2280
2281	info->rx_filters = (BIT(HWTSTAMP_FILTER_NONE) |
2282			    BIT(HWTSTAMP_FILTER_PTP_V1_L4_SYNC) |
2283			    BIT(HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ) |
2284			    BIT(HWTSTAMP_FILTER_PTP_V2_L4_SYNC) |
2285			    BIT(HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ) |
2286			    BIT(HWTSTAMP_FILTER_PTP_V2_L2_SYNC) |
2287			    BIT(HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ) |
2288			    BIT(HWTSTAMP_FILTER_PTP_V2_EVENT) |
2289			    BIT(HWTSTAMP_FILTER_PTP_V2_SYNC) |
2290			    BIT(HWTSTAMP_FILTER_PTP_V2_DELAY_REQ) |
2291			    BIT(HWTSTAMP_FILTER_ALL));
2292
2293	if (adapter->ptp_clock)
2294		info->phc_index = ptp_clock_index(adapter->ptp_clock);
2295
2296	return 0;
2297}
2298
2299static u32 e1000e_get_priv_flags(struct net_device *netdev)
2300{
2301	struct e1000_adapter *adapter = netdev_priv(netdev);
2302	u32 priv_flags = 0;
2303
2304	if (adapter->flags2 & FLAG2_ENABLE_S0IX_FLOWS)
2305		priv_flags |= E1000E_PRIV_FLAGS_S0IX_ENABLED;
2306
2307	return priv_flags;
2308}
2309
2310static int e1000e_set_priv_flags(struct net_device *netdev, u32 priv_flags)
2311{
2312	struct e1000_adapter *adapter = netdev_priv(netdev);
2313	unsigned int flags2 = adapter->flags2;
2314
2315	flags2 &= ~FLAG2_ENABLE_S0IX_FLOWS;
2316	if (priv_flags & E1000E_PRIV_FLAGS_S0IX_ENABLED) {
2317		struct e1000_hw *hw = &adapter->hw;
2318
2319		if (hw->mac.type < e1000_pch_cnp)
2320			return -EINVAL;
2321		flags2 |= FLAG2_ENABLE_S0IX_FLOWS;
2322	}
2323
2324	if (flags2 != adapter->flags2)
2325		adapter->flags2 = flags2;
2326
2327	return 0;
2328}
2329
2330static const struct ethtool_ops e1000_ethtool_ops = {
2331	.supported_coalesce_params = ETHTOOL_COALESCE_RX_USECS,
 
2332	.get_drvinfo		= e1000_get_drvinfo,
2333	.get_regs_len		= e1000_get_regs_len,
2334	.get_regs		= e1000_get_regs,
2335	.get_wol		= e1000_get_wol,
2336	.set_wol		= e1000_set_wol,
2337	.get_msglevel		= e1000_get_msglevel,
2338	.set_msglevel		= e1000_set_msglevel,
2339	.nway_reset		= e1000_nway_reset,
2340	.get_link		= ethtool_op_get_link,
2341	.get_eeprom_len		= e1000_get_eeprom_len,
2342	.get_eeprom		= e1000_get_eeprom,
2343	.set_eeprom		= e1000_set_eeprom,
2344	.get_ringparam		= e1000_get_ringparam,
2345	.set_ringparam		= e1000_set_ringparam,
2346	.get_pauseparam		= e1000_get_pauseparam,
2347	.set_pauseparam		= e1000_set_pauseparam,
2348	.self_test		= e1000_diag_test,
2349	.get_strings		= e1000_get_strings,
2350	.set_phys_id		= e1000_set_phys_id,
2351	.get_ethtool_stats	= e1000_get_ethtool_stats,
2352	.get_sset_count		= e1000e_get_sset_count,
2353	.get_coalesce		= e1000_get_coalesce,
2354	.set_coalesce		= e1000_set_coalesce,
2355	.get_rxnfc		= e1000_get_rxnfc,
2356	.get_ts_info		= e1000e_get_ts_info,
2357	.get_eee		= e1000e_get_eee,
2358	.set_eee		= e1000e_set_eee,
2359	.get_link_ksettings	= e1000_get_link_ksettings,
2360	.set_link_ksettings	= e1000_set_link_ksettings,
2361	.get_priv_flags		= e1000e_get_priv_flags,
2362	.set_priv_flags		= e1000e_set_priv_flags,
2363};
2364
2365void e1000e_set_ethtool_ops(struct net_device *netdev)
2366{
2367	netdev->ethtool_ops = &e1000_ethtool_ops;
2368}
v4.10.11
   1/* Intel PRO/1000 Linux driver
   2 * Copyright(c) 1999 - 2015 Intel Corporation.
   3 *
   4 * This program is free software; you can redistribute it and/or modify it
   5 * under the terms and conditions of the GNU General Public License,
   6 * version 2, as published by the Free Software Foundation.
   7 *
   8 * This program is distributed in the hope it will be useful, but WITHOUT
   9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  10 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  11 * more details.
  12 *
  13 * The full GNU General Public License is included in this distribution in
  14 * the file called "COPYING".
  15 *
  16 * Contact Information:
  17 * Linux NICS <linux.nics@intel.com>
  18 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
  19 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
  20 */
  21
  22/* ethtool support for e1000 */
  23
  24#include <linux/netdevice.h>
  25#include <linux/interrupt.h>
  26#include <linux/ethtool.h>
  27#include <linux/pci.h>
  28#include <linux/slab.h>
  29#include <linux/delay.h>
  30#include <linux/vmalloc.h>
  31#include <linux/pm_runtime.h>
  32
  33#include "e1000.h"
  34
  35enum { NETDEV_STATS, E1000_STATS };
  36
  37struct e1000_stats {
  38	char stat_string[ETH_GSTRING_LEN];
  39	int type;
  40	int sizeof_stat;
  41	int stat_offset;
  42};
  43
 
 
 
 
 
 
 
  44#define E1000_STAT(str, m) { \
  45		.stat_string = str, \
  46		.type = E1000_STATS, \
  47		.sizeof_stat = sizeof(((struct e1000_adapter *)0)->m), \
  48		.stat_offset = offsetof(struct e1000_adapter, m) }
  49#define E1000_NETDEV_STAT(str, m) { \
  50		.stat_string = str, \
  51		.type = NETDEV_STATS, \
  52		.sizeof_stat = sizeof(((struct rtnl_link_stats64 *)0)->m), \
  53		.stat_offset = offsetof(struct rtnl_link_stats64, m) }
  54
  55static const struct e1000_stats e1000_gstrings_stats[] = {
  56	E1000_STAT("rx_packets", stats.gprc),
  57	E1000_STAT("tx_packets", stats.gptc),
  58	E1000_STAT("rx_bytes", stats.gorc),
  59	E1000_STAT("tx_bytes", stats.gotc),
  60	E1000_STAT("rx_broadcast", stats.bprc),
  61	E1000_STAT("tx_broadcast", stats.bptc),
  62	E1000_STAT("rx_multicast", stats.mprc),
  63	E1000_STAT("tx_multicast", stats.mptc),
  64	E1000_NETDEV_STAT("rx_errors", rx_errors),
  65	E1000_NETDEV_STAT("tx_errors", tx_errors),
  66	E1000_NETDEV_STAT("tx_dropped", tx_dropped),
  67	E1000_STAT("multicast", stats.mprc),
  68	E1000_STAT("collisions", stats.colc),
  69	E1000_NETDEV_STAT("rx_length_errors", rx_length_errors),
  70	E1000_NETDEV_STAT("rx_over_errors", rx_over_errors),
  71	E1000_STAT("rx_crc_errors", stats.crcerrs),
  72	E1000_NETDEV_STAT("rx_frame_errors", rx_frame_errors),
  73	E1000_STAT("rx_no_buffer_count", stats.rnbc),
  74	E1000_STAT("rx_missed_errors", stats.mpc),
  75	E1000_STAT("tx_aborted_errors", stats.ecol),
  76	E1000_STAT("tx_carrier_errors", stats.tncrs),
  77	E1000_NETDEV_STAT("tx_fifo_errors", tx_fifo_errors),
  78	E1000_NETDEV_STAT("tx_heartbeat_errors", tx_heartbeat_errors),
  79	E1000_STAT("tx_window_errors", stats.latecol),
  80	E1000_STAT("tx_abort_late_coll", stats.latecol),
  81	E1000_STAT("tx_deferred_ok", stats.dc),
  82	E1000_STAT("tx_single_coll_ok", stats.scc),
  83	E1000_STAT("tx_multi_coll_ok", stats.mcc),
  84	E1000_STAT("tx_timeout_count", tx_timeout_count),
  85	E1000_STAT("tx_restart_queue", restart_queue),
  86	E1000_STAT("rx_long_length_errors", stats.roc),
  87	E1000_STAT("rx_short_length_errors", stats.ruc),
  88	E1000_STAT("rx_align_errors", stats.algnerrc),
  89	E1000_STAT("tx_tcp_seg_good", stats.tsctc),
  90	E1000_STAT("tx_tcp_seg_failed", stats.tsctfc),
  91	E1000_STAT("rx_flow_control_xon", stats.xonrxc),
  92	E1000_STAT("rx_flow_control_xoff", stats.xoffrxc),
  93	E1000_STAT("tx_flow_control_xon", stats.xontxc),
  94	E1000_STAT("tx_flow_control_xoff", stats.xofftxc),
  95	E1000_STAT("rx_csum_offload_good", hw_csum_good),
  96	E1000_STAT("rx_csum_offload_errors", hw_csum_err),
  97	E1000_STAT("rx_header_split", rx_hdr_split),
  98	E1000_STAT("alloc_rx_buff_failed", alloc_rx_buff_failed),
  99	E1000_STAT("tx_smbus", stats.mgptc),
 100	E1000_STAT("rx_smbus", stats.mgprc),
 101	E1000_STAT("dropped_smbus", stats.mgpdc),
 102	E1000_STAT("rx_dma_failed", rx_dma_failed),
 103	E1000_STAT("tx_dma_failed", tx_dma_failed),
 104	E1000_STAT("rx_hwtstamp_cleared", rx_hwtstamp_cleared),
 105	E1000_STAT("uncorr_ecc_errors", uncorr_errors),
 106	E1000_STAT("corr_ecc_errors", corr_errors),
 107	E1000_STAT("tx_hwtstamp_timeouts", tx_hwtstamp_timeouts),
 
 108};
 109
 110#define E1000_GLOBAL_STATS_LEN	ARRAY_SIZE(e1000_gstrings_stats)
 111#define E1000_STATS_LEN (E1000_GLOBAL_STATS_LEN)
 112static const char e1000_gstrings_test[][ETH_GSTRING_LEN] = {
 113	"Register test  (offline)", "Eeprom test    (offline)",
 114	"Interrupt test (offline)", "Loopback test  (offline)",
 115	"Link test   (on/offline)"
 116};
 117
 118#define E1000_TEST_LEN ARRAY_SIZE(e1000_gstrings_test)
 119
 120static int e1000_get_settings(struct net_device *netdev,
 121			      struct ethtool_cmd *ecmd)
 122{
 
 123	struct e1000_adapter *adapter = netdev_priv(netdev);
 124	struct e1000_hw *hw = &adapter->hw;
 125	u32 speed;
 126
 127	if (hw->phy.media_type == e1000_media_type_copper) {
 128		ecmd->supported = (SUPPORTED_10baseT_Half |
 129				   SUPPORTED_10baseT_Full |
 130				   SUPPORTED_100baseT_Half |
 131				   SUPPORTED_100baseT_Full |
 132				   SUPPORTED_1000baseT_Full |
 133				   SUPPORTED_Autoneg |
 134				   SUPPORTED_TP);
 
 
 135		if (hw->phy.type == e1000_phy_ife)
 136			ecmd->supported &= ~SUPPORTED_1000baseT_Full;
 137		ecmd->advertising = ADVERTISED_TP;
 138
 139		if (hw->mac.autoneg == 1) {
 140			ecmd->advertising |= ADVERTISED_Autoneg;
 141			/* the e1000 autoneg seems to match ethtool nicely */
 142			ecmd->advertising |= hw->phy.autoneg_advertised;
 143		}
 144
 145		ecmd->port = PORT_TP;
 146		ecmd->phy_address = hw->phy.addr;
 147		ecmd->transceiver = XCVR_INTERNAL;
 148
 149	} else {
 150		ecmd->supported   = (SUPPORTED_1000baseT_Full |
 151				     SUPPORTED_FIBRE |
 152				     SUPPORTED_Autoneg);
 153
 154		ecmd->advertising = (ADVERTISED_1000baseT_Full |
 155				     ADVERTISED_FIBRE |
 156				     ADVERTISED_Autoneg);
 157
 158		ecmd->port = PORT_FIBRE;
 159		ecmd->transceiver = XCVR_EXTERNAL;
 160	}
 161
 162	speed = SPEED_UNKNOWN;
 163	ecmd->duplex = DUPLEX_UNKNOWN;
 164
 165	if (netif_running(netdev)) {
 166		if (netif_carrier_ok(netdev)) {
 167			speed = adapter->link_speed;
 168			ecmd->duplex = adapter->link_duplex - 1;
 169		}
 170	} else if (!pm_runtime_suspended(netdev->dev.parent)) {
 171		u32 status = er32(STATUS);
 172
 173		if (status & E1000_STATUS_LU) {
 174			if (status & E1000_STATUS_SPEED_1000)
 175				speed = SPEED_1000;
 176			else if (status & E1000_STATUS_SPEED_100)
 177				speed = SPEED_100;
 178			else
 179				speed = SPEED_10;
 180
 181			if (status & E1000_STATUS_FD)
 182				ecmd->duplex = DUPLEX_FULL;
 183			else
 184				ecmd->duplex = DUPLEX_HALF;
 185		}
 186	}
 187
 188	ethtool_cmd_speed_set(ecmd, speed);
 189	ecmd->autoneg = ((hw->phy.media_type == e1000_media_type_fiber) ||
 190			 hw->mac.autoneg) ? AUTONEG_ENABLE : AUTONEG_DISABLE;
 191
 192	/* MDI-X => 2; MDI =>1; Invalid =>0 */
 193	if ((hw->phy.media_type == e1000_media_type_copper) &&
 194	    netif_carrier_ok(netdev))
 195		ecmd->eth_tp_mdix = hw->phy.is_mdix ? ETH_TP_MDI_X : ETH_TP_MDI;
 
 196	else
 197		ecmd->eth_tp_mdix = ETH_TP_MDI_INVALID;
 198
 199	if (hw->phy.mdix == AUTO_ALL_MODES)
 200		ecmd->eth_tp_mdix_ctrl = ETH_TP_MDI_AUTO;
 201	else
 202		ecmd->eth_tp_mdix_ctrl = hw->phy.mdix;
 203
 204	if (hw->phy.media_type != e1000_media_type_copper)
 205		ecmd->eth_tp_mdix_ctrl = ETH_TP_MDI_INVALID;
 
 
 
 
 
 
 
 
 
 
 
 206
 207	return 0;
 208}
 209
 210static int e1000_set_spd_dplx(struct e1000_adapter *adapter, u32 spd, u8 dplx)
 211{
 212	struct e1000_mac_info *mac = &adapter->hw.mac;
 213
 214	mac->autoneg = 0;
 215
 216	/* Make sure dplx is at most 1 bit and lsb of speed is not set
 217	 * for the switch() below to work
 218	 */
 219	if ((spd & 1) || (dplx & ~1))
 220		goto err_inval;
 221
 222	/* Fiber NICs only allow 1000 gbps Full duplex */
 223	if ((adapter->hw.phy.media_type == e1000_media_type_fiber) &&
 224	    (spd != SPEED_1000) && (dplx != DUPLEX_FULL)) {
 225		goto err_inval;
 226	}
 227
 228	switch (spd + dplx) {
 229	case SPEED_10 + DUPLEX_HALF:
 230		mac->forced_speed_duplex = ADVERTISE_10_HALF;
 231		break;
 232	case SPEED_10 + DUPLEX_FULL:
 233		mac->forced_speed_duplex = ADVERTISE_10_FULL;
 234		break;
 235	case SPEED_100 + DUPLEX_HALF:
 236		mac->forced_speed_duplex = ADVERTISE_100_HALF;
 237		break;
 238	case SPEED_100 + DUPLEX_FULL:
 239		mac->forced_speed_duplex = ADVERTISE_100_FULL;
 240		break;
 241	case SPEED_1000 + DUPLEX_FULL:
 242		if (adapter->hw.phy.media_type == e1000_media_type_copper) {
 243			mac->autoneg = 1;
 244			adapter->hw.phy.autoneg_advertised =
 245				ADVERTISE_1000_FULL;
 246		} else {
 247			mac->forced_speed_duplex = ADVERTISE_1000_FULL;
 248		}
 249		break;
 250	case SPEED_1000 + DUPLEX_HALF:	/* not supported */
 251	default:
 252		goto err_inval;
 253	}
 254
 255	/* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
 256	adapter->hw.phy.mdix = AUTO_ALL_MODES;
 257
 258	return 0;
 259
 260err_inval:
 261	e_err("Unsupported Speed/Duplex configuration\n");
 262	return -EINVAL;
 263}
 264
 265static int e1000_set_settings(struct net_device *netdev,
 266			      struct ethtool_cmd *ecmd)
 267{
 268	struct e1000_adapter *adapter = netdev_priv(netdev);
 269	struct e1000_hw *hw = &adapter->hw;
 270	int ret_val = 0;
 
 271
 272	pm_runtime_get_sync(netdev->dev.parent);
 
 273
 274	/* When SoL/IDER sessions are active, autoneg/speed/duplex
 275	 * cannot be changed
 276	 */
 277	if (hw->phy.ops.check_reset_block &&
 278	    hw->phy.ops.check_reset_block(hw)) {
 279		e_err("Cannot change link characteristics when SoL/IDER is active.\n");
 280		ret_val = -EINVAL;
 281		goto out;
 282	}
 283
 284	/* MDI setting is only allowed when autoneg enabled because
 285	 * some hardware doesn't allow MDI setting when speed or
 286	 * duplex is forced.
 287	 */
 288	if (ecmd->eth_tp_mdix_ctrl) {
 289		if (hw->phy.media_type != e1000_media_type_copper) {
 290			ret_val = -EOPNOTSUPP;
 291			goto out;
 292		}
 293
 294		if ((ecmd->eth_tp_mdix_ctrl != ETH_TP_MDI_AUTO) &&
 295		    (ecmd->autoneg != AUTONEG_ENABLE)) {
 296			e_err("forcing MDI/MDI-X state is not supported when link speed and/or duplex are forced\n");
 297			ret_val = -EINVAL;
 298			goto out;
 299		}
 300	}
 301
 302	while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
 303		usleep_range(1000, 2000);
 304
 305	if (ecmd->autoneg == AUTONEG_ENABLE) {
 306		hw->mac.autoneg = 1;
 307		if (hw->phy.media_type == e1000_media_type_fiber)
 308			hw->phy.autoneg_advertised = ADVERTISED_1000baseT_Full |
 309			    ADVERTISED_FIBRE | ADVERTISED_Autoneg;
 310		else
 311			hw->phy.autoneg_advertised = ecmd->advertising |
 312			    ADVERTISED_TP | ADVERTISED_Autoneg;
 313		ecmd->advertising = hw->phy.autoneg_advertised;
 314		if (adapter->fc_autoneg)
 315			hw->fc.requested_mode = e1000_fc_default;
 316	} else {
 317		u32 speed = ethtool_cmd_speed(ecmd);
 318		/* calling this overrides forced MDI setting */
 319		if (e1000_set_spd_dplx(adapter, speed, ecmd->duplex)) {
 320			ret_val = -EINVAL;
 321			goto out;
 322		}
 323	}
 324
 325	/* MDI-X => 2; MDI => 1; Auto => 3 */
 326	if (ecmd->eth_tp_mdix_ctrl) {
 327		/* fix up the value for auto (3 => 0) as zero is mapped
 328		 * internally to auto
 329		 */
 330		if (ecmd->eth_tp_mdix_ctrl == ETH_TP_MDI_AUTO)
 331			hw->phy.mdix = AUTO_ALL_MODES;
 332		else
 333			hw->phy.mdix = ecmd->eth_tp_mdix_ctrl;
 334	}
 335
 336	/* reset the link */
 337	if (netif_running(adapter->netdev)) {
 338		e1000e_down(adapter, true);
 339		e1000e_up(adapter);
 340	} else {
 341		e1000e_reset(adapter);
 342	}
 343
 344out:
 345	pm_runtime_put_sync(netdev->dev.parent);
 346	clear_bit(__E1000_RESETTING, &adapter->state);
 347	return ret_val;
 348}
 349
 350static void e1000_get_pauseparam(struct net_device *netdev,
 351				 struct ethtool_pauseparam *pause)
 352{
 353	struct e1000_adapter *adapter = netdev_priv(netdev);
 354	struct e1000_hw *hw = &adapter->hw;
 355
 356	pause->autoneg =
 357	    (adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
 358
 359	if (hw->fc.current_mode == e1000_fc_rx_pause) {
 360		pause->rx_pause = 1;
 361	} else if (hw->fc.current_mode == e1000_fc_tx_pause) {
 362		pause->tx_pause = 1;
 363	} else if (hw->fc.current_mode == e1000_fc_full) {
 364		pause->rx_pause = 1;
 365		pause->tx_pause = 1;
 366	}
 367}
 368
 369static int e1000_set_pauseparam(struct net_device *netdev,
 370				struct ethtool_pauseparam *pause)
 371{
 372	struct e1000_adapter *adapter = netdev_priv(netdev);
 373	struct e1000_hw *hw = &adapter->hw;
 374	int retval = 0;
 375
 376	adapter->fc_autoneg = pause->autoneg;
 377
 378	while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
 379		usleep_range(1000, 2000);
 380
 381	pm_runtime_get_sync(netdev->dev.parent);
 382
 383	if (adapter->fc_autoneg == AUTONEG_ENABLE) {
 384		hw->fc.requested_mode = e1000_fc_default;
 385		if (netif_running(adapter->netdev)) {
 386			e1000e_down(adapter, true);
 387			e1000e_up(adapter);
 388		} else {
 389			e1000e_reset(adapter);
 390		}
 391	} else {
 392		if (pause->rx_pause && pause->tx_pause)
 393			hw->fc.requested_mode = e1000_fc_full;
 394		else if (pause->rx_pause && !pause->tx_pause)
 395			hw->fc.requested_mode = e1000_fc_rx_pause;
 396		else if (!pause->rx_pause && pause->tx_pause)
 397			hw->fc.requested_mode = e1000_fc_tx_pause;
 398		else if (!pause->rx_pause && !pause->tx_pause)
 399			hw->fc.requested_mode = e1000_fc_none;
 400
 401		hw->fc.current_mode = hw->fc.requested_mode;
 402
 403		if (hw->phy.media_type == e1000_media_type_fiber) {
 404			retval = hw->mac.ops.setup_link(hw);
 405			/* implicit goto out */
 406		} else {
 407			retval = e1000e_force_mac_fc(hw);
 408			if (retval)
 409				goto out;
 410			e1000e_set_fc_watermarks(hw);
 411		}
 412	}
 413
 414out:
 415	pm_runtime_put_sync(netdev->dev.parent);
 416	clear_bit(__E1000_RESETTING, &adapter->state);
 417	return retval;
 418}
 419
 420static u32 e1000_get_msglevel(struct net_device *netdev)
 421{
 422	struct e1000_adapter *adapter = netdev_priv(netdev);
 423	return adapter->msg_enable;
 424}
 425
 426static void e1000_set_msglevel(struct net_device *netdev, u32 data)
 427{
 428	struct e1000_adapter *adapter = netdev_priv(netdev);
 429	adapter->msg_enable = data;
 430}
 431
 432static int e1000_get_regs_len(struct net_device __always_unused *netdev)
 433{
 434#define E1000_REGS_LEN 32	/* overestimate */
 435	return E1000_REGS_LEN * sizeof(u32);
 436}
 437
 438static void e1000_get_regs(struct net_device *netdev,
 439			   struct ethtool_regs *regs, void *p)
 440{
 441	struct e1000_adapter *adapter = netdev_priv(netdev);
 442	struct e1000_hw *hw = &adapter->hw;
 443	u32 *regs_buff = p;
 444	u16 phy_data;
 445
 446	pm_runtime_get_sync(netdev->dev.parent);
 447
 448	memset(p, 0, E1000_REGS_LEN * sizeof(u32));
 449
 450	regs->version = (1u << 24) |
 451			(adapter->pdev->revision << 16) |
 452			adapter->pdev->device;
 453
 454	regs_buff[0] = er32(CTRL);
 455	regs_buff[1] = er32(STATUS);
 456
 457	regs_buff[2] = er32(RCTL);
 458	regs_buff[3] = er32(RDLEN(0));
 459	regs_buff[4] = er32(RDH(0));
 460	regs_buff[5] = er32(RDT(0));
 461	regs_buff[6] = er32(RDTR);
 462
 463	regs_buff[7] = er32(TCTL);
 464	regs_buff[8] = er32(TDLEN(0));
 465	regs_buff[9] = er32(TDH(0));
 466	regs_buff[10] = er32(TDT(0));
 467	regs_buff[11] = er32(TIDV);
 468
 469	regs_buff[12] = adapter->hw.phy.type;	/* PHY type (IGP=1, M88=0) */
 470
 471	/* ethtool doesn't use anything past this point, so all this
 472	 * code is likely legacy junk for apps that may or may not exist
 473	 */
 474	if (hw->phy.type == e1000_phy_m88) {
 475		e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
 476		regs_buff[13] = (u32)phy_data; /* cable length */
 477		regs_buff[14] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
 478		regs_buff[15] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
 479		regs_buff[16] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
 480		e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
 481		regs_buff[17] = (u32)phy_data; /* extended 10bt distance */
 482		regs_buff[18] = regs_buff[13]; /* cable polarity */
 483		regs_buff[19] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
 484		regs_buff[20] = regs_buff[17]; /* polarity correction */
 485		/* phy receive errors */
 486		regs_buff[22] = adapter->phy_stats.receive_errors;
 487		regs_buff[23] = regs_buff[13]; /* mdix mode */
 488	}
 489	regs_buff[21] = 0;	/* was idle_errors */
 490	e1e_rphy(hw, MII_STAT1000, &phy_data);
 491	regs_buff[24] = (u32)phy_data;	/* phy local receiver status */
 492	regs_buff[25] = regs_buff[24];	/* phy remote receiver status */
 493
 494	pm_runtime_put_sync(netdev->dev.parent);
 495}
 496
 497static int e1000_get_eeprom_len(struct net_device *netdev)
 498{
 499	struct e1000_adapter *adapter = netdev_priv(netdev);
 500	return adapter->hw.nvm.word_size * 2;
 501}
 502
 503static int e1000_get_eeprom(struct net_device *netdev,
 504			    struct ethtool_eeprom *eeprom, u8 *bytes)
 505{
 506	struct e1000_adapter *adapter = netdev_priv(netdev);
 507	struct e1000_hw *hw = &adapter->hw;
 508	u16 *eeprom_buff;
 509	int first_word;
 510	int last_word;
 511	int ret_val = 0;
 512	u16 i;
 513
 514	if (eeprom->len == 0)
 515		return -EINVAL;
 516
 517	eeprom->magic = adapter->pdev->vendor | (adapter->pdev->device << 16);
 518
 519	first_word = eeprom->offset >> 1;
 520	last_word = (eeprom->offset + eeprom->len - 1) >> 1;
 521
 522	eeprom_buff = kmalloc(sizeof(u16) * (last_word - first_word + 1),
 523			      GFP_KERNEL);
 524	if (!eeprom_buff)
 525		return -ENOMEM;
 526
 527	pm_runtime_get_sync(netdev->dev.parent);
 528
 529	if (hw->nvm.type == e1000_nvm_eeprom_spi) {
 530		ret_val = e1000_read_nvm(hw, first_word,
 531					 last_word - first_word + 1,
 532					 eeprom_buff);
 533	} else {
 534		for (i = 0; i < last_word - first_word + 1; i++) {
 535			ret_val = e1000_read_nvm(hw, first_word + i, 1,
 536						 &eeprom_buff[i]);
 537			if (ret_val)
 538				break;
 539		}
 540	}
 541
 542	pm_runtime_put_sync(netdev->dev.parent);
 543
 544	if (ret_val) {
 545		/* a read error occurred, throw away the result */
 546		memset(eeprom_buff, 0xff, sizeof(u16) *
 547		       (last_word - first_word + 1));
 548	} else {
 549		/* Device's eeprom is always little-endian, word addressable */
 550		for (i = 0; i < last_word - first_word + 1; i++)
 551			le16_to_cpus(&eeprom_buff[i]);
 552	}
 553
 554	memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1), eeprom->len);
 555	kfree(eeprom_buff);
 556
 557	return ret_val;
 558}
 559
 560static int e1000_set_eeprom(struct net_device *netdev,
 561			    struct ethtool_eeprom *eeprom, u8 *bytes)
 562{
 563	struct e1000_adapter *adapter = netdev_priv(netdev);
 564	struct e1000_hw *hw = &adapter->hw;
 565	u16 *eeprom_buff;
 566	void *ptr;
 567	int max_len;
 568	int first_word;
 569	int last_word;
 570	int ret_val = 0;
 571	u16 i;
 572
 573	if (eeprom->len == 0)
 574		return -EOPNOTSUPP;
 575
 576	if (eeprom->magic !=
 577	    (adapter->pdev->vendor | (adapter->pdev->device << 16)))
 578		return -EFAULT;
 579
 580	if (adapter->flags & FLAG_READ_ONLY_NVM)
 581		return -EINVAL;
 582
 583	max_len = hw->nvm.word_size * 2;
 584
 585	first_word = eeprom->offset >> 1;
 586	last_word = (eeprom->offset + eeprom->len - 1) >> 1;
 587	eeprom_buff = kmalloc(max_len, GFP_KERNEL);
 588	if (!eeprom_buff)
 589		return -ENOMEM;
 590
 591	ptr = (void *)eeprom_buff;
 592
 593	pm_runtime_get_sync(netdev->dev.parent);
 594
 595	if (eeprom->offset & 1) {
 596		/* need read/modify/write of first changed EEPROM word */
 597		/* only the second byte of the word is being modified */
 598		ret_val = e1000_read_nvm(hw, first_word, 1, &eeprom_buff[0]);
 599		ptr++;
 600	}
 601	if (((eeprom->offset + eeprom->len) & 1) && (!ret_val))
 602		/* need read/modify/write of last changed EEPROM word */
 603		/* only the first byte of the word is being modified */
 604		ret_val = e1000_read_nvm(hw, last_word, 1,
 605					 &eeprom_buff[last_word - first_word]);
 606
 607	if (ret_val)
 608		goto out;
 609
 610	/* Device's eeprom is always little-endian, word addressable */
 611	for (i = 0; i < last_word - first_word + 1; i++)
 612		le16_to_cpus(&eeprom_buff[i]);
 613
 614	memcpy(ptr, bytes, eeprom->len);
 615
 616	for (i = 0; i < last_word - first_word + 1; i++)
 617		cpu_to_le16s(&eeprom_buff[i]);
 618
 619	ret_val = e1000_write_nvm(hw, first_word,
 620				  last_word - first_word + 1, eeprom_buff);
 621
 622	if (ret_val)
 623		goto out;
 624
 625	/* Update the checksum over the first part of the EEPROM if needed
 626	 * and flush shadow RAM for applicable controllers
 627	 */
 628	if ((first_word <= NVM_CHECKSUM_REG) ||
 629	    (hw->mac.type == e1000_82583) ||
 630	    (hw->mac.type == e1000_82574) ||
 631	    (hw->mac.type == e1000_82573))
 632		ret_val = e1000e_update_nvm_checksum(hw);
 633
 634out:
 635	pm_runtime_put_sync(netdev->dev.parent);
 636	kfree(eeprom_buff);
 637	return ret_val;
 638}
 639
 640static void e1000_get_drvinfo(struct net_device *netdev,
 641			      struct ethtool_drvinfo *drvinfo)
 642{
 643	struct e1000_adapter *adapter = netdev_priv(netdev);
 644
 645	strlcpy(drvinfo->driver, e1000e_driver_name, sizeof(drvinfo->driver));
 646	strlcpy(drvinfo->version, e1000e_driver_version,
 647		sizeof(drvinfo->version));
 648
 649	/* EEPROM image version # is reported as firmware version # for
 650	 * PCI-E controllers
 651	 */
 652	snprintf(drvinfo->fw_version, sizeof(drvinfo->fw_version),
 653		 "%d.%d-%d",
 654		 (adapter->eeprom_vers & 0xF000) >> 12,
 655		 (adapter->eeprom_vers & 0x0FF0) >> 4,
 656		 (adapter->eeprom_vers & 0x000F));
 657
 658	strlcpy(drvinfo->bus_info, pci_name(adapter->pdev),
 659		sizeof(drvinfo->bus_info));
 660}
 661
 662static void e1000_get_ringparam(struct net_device *netdev,
 663				struct ethtool_ringparam *ring)
 
 
 664{
 665	struct e1000_adapter *adapter = netdev_priv(netdev);
 666
 667	ring->rx_max_pending = E1000_MAX_RXD;
 668	ring->tx_max_pending = E1000_MAX_TXD;
 669	ring->rx_pending = adapter->rx_ring_count;
 670	ring->tx_pending = adapter->tx_ring_count;
 671}
 672
 673static int e1000_set_ringparam(struct net_device *netdev,
 674			       struct ethtool_ringparam *ring)
 
 
 675{
 676	struct e1000_adapter *adapter = netdev_priv(netdev);
 677	struct e1000_ring *temp_tx = NULL, *temp_rx = NULL;
 678	int err = 0, size = sizeof(struct e1000_ring);
 679	bool set_tx = false, set_rx = false;
 680	u16 new_rx_count, new_tx_count;
 681
 682	if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
 683		return -EINVAL;
 684
 685	new_rx_count = clamp_t(u32, ring->rx_pending, E1000_MIN_RXD,
 686			       E1000_MAX_RXD);
 687	new_rx_count = ALIGN(new_rx_count, REQ_RX_DESCRIPTOR_MULTIPLE);
 688
 689	new_tx_count = clamp_t(u32, ring->tx_pending, E1000_MIN_TXD,
 690			       E1000_MAX_TXD);
 691	new_tx_count = ALIGN(new_tx_count, REQ_TX_DESCRIPTOR_MULTIPLE);
 692
 693	if ((new_tx_count == adapter->tx_ring_count) &&
 694	    (new_rx_count == adapter->rx_ring_count))
 695		/* nothing to do */
 696		return 0;
 697
 698	while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
 699		usleep_range(1000, 2000);
 700
 701	if (!netif_running(adapter->netdev)) {
 702		/* Set counts now and allocate resources during open() */
 703		adapter->tx_ring->count = new_tx_count;
 704		adapter->rx_ring->count = new_rx_count;
 705		adapter->tx_ring_count = new_tx_count;
 706		adapter->rx_ring_count = new_rx_count;
 707		goto clear_reset;
 708	}
 709
 710	set_tx = (new_tx_count != adapter->tx_ring_count);
 711	set_rx = (new_rx_count != adapter->rx_ring_count);
 712
 713	/* Allocate temporary storage for ring updates */
 714	if (set_tx) {
 715		temp_tx = vmalloc(size);
 716		if (!temp_tx) {
 717			err = -ENOMEM;
 718			goto free_temp;
 719		}
 720	}
 721	if (set_rx) {
 722		temp_rx = vmalloc(size);
 723		if (!temp_rx) {
 724			err = -ENOMEM;
 725			goto free_temp;
 726		}
 727	}
 728
 729	pm_runtime_get_sync(netdev->dev.parent);
 730
 731	e1000e_down(adapter, true);
 732
 733	/* We can't just free everything and then setup again, because the
 734	 * ISRs in MSI-X mode get passed pointers to the Tx and Rx ring
 735	 * structs.  First, attempt to allocate new resources...
 736	 */
 737	if (set_tx) {
 738		memcpy(temp_tx, adapter->tx_ring, size);
 739		temp_tx->count = new_tx_count;
 740		err = e1000e_setup_tx_resources(temp_tx);
 741		if (err)
 742			goto err_setup;
 743	}
 744	if (set_rx) {
 745		memcpy(temp_rx, adapter->rx_ring, size);
 746		temp_rx->count = new_rx_count;
 747		err = e1000e_setup_rx_resources(temp_rx);
 748		if (err)
 749			goto err_setup_rx;
 750	}
 751
 752	/* ...then free the old resources and copy back any new ring data */
 753	if (set_tx) {
 754		e1000e_free_tx_resources(adapter->tx_ring);
 755		memcpy(adapter->tx_ring, temp_tx, size);
 756		adapter->tx_ring_count = new_tx_count;
 757	}
 758	if (set_rx) {
 759		e1000e_free_rx_resources(adapter->rx_ring);
 760		memcpy(adapter->rx_ring, temp_rx, size);
 761		adapter->rx_ring_count = new_rx_count;
 762	}
 763
 764err_setup_rx:
 765	if (err && set_tx)
 766		e1000e_free_tx_resources(temp_tx);
 767err_setup:
 768	e1000e_up(adapter);
 769	pm_runtime_put_sync(netdev->dev.parent);
 770free_temp:
 771	vfree(temp_tx);
 772	vfree(temp_rx);
 773clear_reset:
 774	clear_bit(__E1000_RESETTING, &adapter->state);
 775	return err;
 776}
 777
 778static bool reg_pattern_test(struct e1000_adapter *adapter, u64 *data,
 779			     int reg, int offset, u32 mask, u32 write)
 780{
 781	u32 pat, val;
 782	static const u32 test[] = {
 783		0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF
 784	};
 785	for (pat = 0; pat < ARRAY_SIZE(test); pat++) {
 786		E1000_WRITE_REG_ARRAY(&adapter->hw, reg, offset,
 787				      (test[pat] & write));
 788		val = E1000_READ_REG_ARRAY(&adapter->hw, reg, offset);
 789		if (val != (test[pat] & write & mask)) {
 790			e_err("pattern test failed (reg 0x%05X): got 0x%08X expected 0x%08X\n",
 791			      reg + (offset << 2), val,
 792			      (test[pat] & write & mask));
 793			*data = reg;
 794			return true;
 795		}
 796	}
 797	return false;
 798}
 799
 800static bool reg_set_and_check(struct e1000_adapter *adapter, u64 *data,
 801			      int reg, u32 mask, u32 write)
 802{
 803	u32 val;
 804
 805	__ew32(&adapter->hw, reg, write & mask);
 806	val = __er32(&adapter->hw, reg);
 807	if ((write & mask) != (val & mask)) {
 808		e_err("set/check test failed (reg 0x%05X): got 0x%08X expected 0x%08X\n",
 809		      reg, (val & mask), (write & mask));
 810		*data = reg;
 811		return true;
 812	}
 813	return false;
 814}
 815
 816#define REG_PATTERN_TEST_ARRAY(reg, offset, mask, write)                       \
 817	do {                                                                   \
 818		if (reg_pattern_test(adapter, data, reg, offset, mask, write)) \
 819			return 1;                                              \
 820	} while (0)
 821#define REG_PATTERN_TEST(reg, mask, write)                                     \
 822	REG_PATTERN_TEST_ARRAY(reg, 0, mask, write)
 823
 824#define REG_SET_AND_CHECK(reg, mask, write)                                    \
 825	do {                                                                   \
 826		if (reg_set_and_check(adapter, data, reg, mask, write))        \
 827			return 1;                                              \
 828	} while (0)
 829
 830static int e1000_reg_test(struct e1000_adapter *adapter, u64 *data)
 831{
 832	struct e1000_hw *hw = &adapter->hw;
 833	struct e1000_mac_info *mac = &adapter->hw.mac;
 834	u32 value;
 835	u32 before;
 836	u32 after;
 837	u32 i;
 838	u32 toggle;
 839	u32 mask;
 840	u32 wlock_mac = 0;
 841
 842	/* The status register is Read Only, so a write should fail.
 843	 * Some bits that get toggled are ignored.  There are several bits
 844	 * on newer hardware that are r/w.
 845	 */
 846	switch (mac->type) {
 847	case e1000_82571:
 848	case e1000_82572:
 849	case e1000_80003es2lan:
 850		toggle = 0x7FFFF3FF;
 851		break;
 852	default:
 853		toggle = 0x7FFFF033;
 854		break;
 855	}
 856
 857	before = er32(STATUS);
 858	value = (er32(STATUS) & toggle);
 859	ew32(STATUS, toggle);
 860	after = er32(STATUS) & toggle;
 861	if (value != after) {
 862		e_err("failed STATUS register test got: 0x%08X expected: 0x%08X\n",
 863		      after, value);
 864		*data = 1;
 865		return 1;
 866	}
 867	/* restore previous status */
 868	ew32(STATUS, before);
 869
 870	if (!(adapter->flags & FLAG_IS_ICH)) {
 871		REG_PATTERN_TEST(E1000_FCAL, 0xFFFFFFFF, 0xFFFFFFFF);
 872		REG_PATTERN_TEST(E1000_FCAH, 0x0000FFFF, 0xFFFFFFFF);
 873		REG_PATTERN_TEST(E1000_FCT, 0x0000FFFF, 0xFFFFFFFF);
 874		REG_PATTERN_TEST(E1000_VET, 0x0000FFFF, 0xFFFFFFFF);
 875	}
 876
 877	REG_PATTERN_TEST(E1000_RDTR, 0x0000FFFF, 0xFFFFFFFF);
 878	REG_PATTERN_TEST(E1000_RDBAH(0), 0xFFFFFFFF, 0xFFFFFFFF);
 879	REG_PATTERN_TEST(E1000_RDLEN(0), 0x000FFF80, 0x000FFFFF);
 880	REG_PATTERN_TEST(E1000_RDH(0), 0x0000FFFF, 0x0000FFFF);
 881	REG_PATTERN_TEST(E1000_RDT(0), 0x0000FFFF, 0x0000FFFF);
 882	REG_PATTERN_TEST(E1000_FCRTH, 0x0000FFF8, 0x0000FFF8);
 883	REG_PATTERN_TEST(E1000_FCTTV, 0x0000FFFF, 0x0000FFFF);
 884	REG_PATTERN_TEST(E1000_TIPG, 0x3FFFFFFF, 0x3FFFFFFF);
 885	REG_PATTERN_TEST(E1000_TDBAH(0), 0xFFFFFFFF, 0xFFFFFFFF);
 886	REG_PATTERN_TEST(E1000_TDLEN(0), 0x000FFF80, 0x000FFFFF);
 887
 888	REG_SET_AND_CHECK(E1000_RCTL, 0xFFFFFFFF, 0x00000000);
 889
 890	before = ((adapter->flags & FLAG_IS_ICH) ? 0x06C3B33E : 0x06DFB3FE);
 891	REG_SET_AND_CHECK(E1000_RCTL, before, 0x003FFFFB);
 892	REG_SET_AND_CHECK(E1000_TCTL, 0xFFFFFFFF, 0x00000000);
 893
 894	REG_SET_AND_CHECK(E1000_RCTL, before, 0xFFFFFFFF);
 895	REG_PATTERN_TEST(E1000_RDBAL(0), 0xFFFFFFF0, 0xFFFFFFFF);
 896	if (!(adapter->flags & FLAG_IS_ICH))
 897		REG_PATTERN_TEST(E1000_TXCW, 0xC000FFFF, 0x0000FFFF);
 898	REG_PATTERN_TEST(E1000_TDBAL(0), 0xFFFFFFF0, 0xFFFFFFFF);
 899	REG_PATTERN_TEST(E1000_TIDV, 0x0000FFFF, 0x0000FFFF);
 900	mask = 0x8003FFFF;
 901	switch (mac->type) {
 902	case e1000_ich10lan:
 903	case e1000_pchlan:
 904	case e1000_pch2lan:
 905	case e1000_pch_lpt:
 906	case e1000_pch_spt:
 
 
 
 
 
 
 
 907		mask |= BIT(18);
 908		break;
 909	default:
 910		break;
 911	}
 912
 913	if ((mac->type == e1000_pch_lpt) || (mac->type == e1000_pch_spt))
 914		wlock_mac = (er32(FWSM) & E1000_FWSM_WLOCK_MAC_MASK) >>
 915		    E1000_FWSM_WLOCK_MAC_SHIFT;
 916
 917	for (i = 0; i < mac->rar_entry_count; i++) {
 918		if ((mac->type == e1000_pch_lpt) ||
 919		    (mac->type == e1000_pch_spt)) {
 920			/* Cannot test write-protected SHRAL[n] registers */
 921			if ((wlock_mac == 1) || (wlock_mac && (i > wlock_mac)))
 922				continue;
 923
 924			/* SHRAH[9] different than the others */
 925			if (i == 10)
 926				mask |= BIT(30);
 927			else
 928				mask &= ~BIT(30);
 929		}
 930		if (mac->type == e1000_pch2lan) {
 931			/* SHRAH[0,1,2] different than previous */
 932			if (i == 1)
 933				mask &= 0xFFF4FFFF;
 934			/* SHRAH[3] different than SHRAH[0,1,2] */
 935			if (i == 4)
 936				mask |= BIT(30);
 937			/* RAR[1-6] owned by management engine - skipping */
 938			if (i > 0)
 939				i += 6;
 940		}
 941
 942		REG_PATTERN_TEST_ARRAY(E1000_RA, ((i << 1) + 1), mask,
 943				       0xFFFFFFFF);
 944		/* reset index to actual value */
 945		if ((mac->type == e1000_pch2lan) && (i > 6))
 946			i -= 6;
 947	}
 948
 949	for (i = 0; i < mac->mta_reg_count; i++)
 950		REG_PATTERN_TEST_ARRAY(E1000_MTA, i, 0xFFFFFFFF, 0xFFFFFFFF);
 951
 952	*data = 0;
 953
 954	return 0;
 955}
 956
 957static int e1000_eeprom_test(struct e1000_adapter *adapter, u64 *data)
 958{
 959	u16 temp;
 960	u16 checksum = 0;
 961	u16 i;
 962
 963	*data = 0;
 964	/* Read and add up the contents of the EEPROM */
 965	for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) {
 966		if ((e1000_read_nvm(&adapter->hw, i, 1, &temp)) < 0) {
 967			*data = 1;
 968			return *data;
 969		}
 970		checksum += temp;
 971	}
 972
 973	/* If Checksum is not Correct return error else test passed */
 974	if ((checksum != (u16)NVM_SUM) && !(*data))
 975		*data = 2;
 976
 977	return *data;
 978}
 979
 980static irqreturn_t e1000_test_intr(int __always_unused irq, void *data)
 981{
 982	struct net_device *netdev = (struct net_device *)data;
 983	struct e1000_adapter *adapter = netdev_priv(netdev);
 984	struct e1000_hw *hw = &adapter->hw;
 985
 986	adapter->test_icr |= er32(ICR);
 987
 988	return IRQ_HANDLED;
 989}
 990
 991static int e1000_intr_test(struct e1000_adapter *adapter, u64 *data)
 992{
 993	struct net_device *netdev = adapter->netdev;
 994	struct e1000_hw *hw = &adapter->hw;
 995	u32 mask;
 996	u32 shared_int = 1;
 997	u32 irq = adapter->pdev->irq;
 998	int i;
 999	int ret_val = 0;
1000	int int_mode = E1000E_INT_MODE_LEGACY;
1001
1002	*data = 0;
1003
1004	/* NOTE: we don't test MSI/MSI-X interrupts here, yet */
1005	if (adapter->int_mode == E1000E_INT_MODE_MSIX) {
1006		int_mode = adapter->int_mode;
1007		e1000e_reset_interrupt_capability(adapter);
1008		adapter->int_mode = E1000E_INT_MODE_LEGACY;
1009		e1000e_set_interrupt_capability(adapter);
1010	}
1011	/* Hook up test interrupt handler just for this test */
1012	if (!request_irq(irq, e1000_test_intr, IRQF_PROBE_SHARED, netdev->name,
1013			 netdev)) {
1014		shared_int = 0;
1015	} else if (request_irq(irq, e1000_test_intr, IRQF_SHARED, netdev->name,
1016			       netdev)) {
1017		*data = 1;
1018		ret_val = -1;
1019		goto out;
1020	}
1021	e_info("testing %s interrupt\n", (shared_int ? "shared" : "unshared"));
1022
1023	/* Disable all the interrupts */
1024	ew32(IMC, 0xFFFFFFFF);
1025	e1e_flush();
1026	usleep_range(10000, 20000);
1027
1028	/* Test each interrupt */
1029	for (i = 0; i < 10; i++) {
1030		/* Interrupt to test */
1031		mask = BIT(i);
1032
1033		if (adapter->flags & FLAG_IS_ICH) {
1034			switch (mask) {
1035			case E1000_ICR_RXSEQ:
1036				continue;
1037			case 0x00000100:
1038				if (adapter->hw.mac.type == e1000_ich8lan ||
1039				    adapter->hw.mac.type == e1000_ich9lan)
1040					continue;
1041				break;
1042			default:
1043				break;
1044			}
1045		}
1046
1047		if (!shared_int) {
1048			/* Disable the interrupt to be reported in
1049			 * the cause register and then force the same
1050			 * interrupt and see if one gets posted.  If
1051			 * an interrupt was posted to the bus, the
1052			 * test failed.
1053			 */
1054			adapter->test_icr = 0;
1055			ew32(IMC, mask);
1056			ew32(ICS, mask);
1057			e1e_flush();
1058			usleep_range(10000, 20000);
1059
1060			if (adapter->test_icr & mask) {
1061				*data = 3;
1062				break;
1063			}
1064		}
1065
1066		/* Enable the interrupt to be reported in
1067		 * the cause register and then force the same
1068		 * interrupt and see if one gets posted.  If
1069		 * an interrupt was not posted to the bus, the
1070		 * test failed.
1071		 */
1072		adapter->test_icr = 0;
1073		ew32(IMS, mask);
1074		ew32(ICS, mask);
1075		e1e_flush();
1076		usleep_range(10000, 20000);
1077
1078		if (!(adapter->test_icr & mask)) {
1079			*data = 4;
1080			break;
1081		}
1082
1083		if (!shared_int) {
1084			/* Disable the other interrupts to be reported in
1085			 * the cause register and then force the other
1086			 * interrupts and see if any get posted.  If
1087			 * an interrupt was posted to the bus, the
1088			 * test failed.
1089			 */
1090			adapter->test_icr = 0;
1091			ew32(IMC, ~mask & 0x00007FFF);
1092			ew32(ICS, ~mask & 0x00007FFF);
1093			e1e_flush();
1094			usleep_range(10000, 20000);
1095
1096			if (adapter->test_icr) {
1097				*data = 5;
1098				break;
1099			}
1100		}
1101	}
1102
1103	/* Disable all the interrupts */
1104	ew32(IMC, 0xFFFFFFFF);
1105	e1e_flush();
1106	usleep_range(10000, 20000);
1107
1108	/* Unhook test interrupt handler */
1109	free_irq(irq, netdev);
1110
1111out:
1112	if (int_mode == E1000E_INT_MODE_MSIX) {
1113		e1000e_reset_interrupt_capability(adapter);
1114		adapter->int_mode = int_mode;
1115		e1000e_set_interrupt_capability(adapter);
1116	}
1117
1118	return ret_val;
1119}
1120
1121static void e1000_free_desc_rings(struct e1000_adapter *adapter)
1122{
1123	struct e1000_ring *tx_ring = &adapter->test_tx_ring;
1124	struct e1000_ring *rx_ring = &adapter->test_rx_ring;
1125	struct pci_dev *pdev = adapter->pdev;
1126	struct e1000_buffer *buffer_info;
1127	int i;
1128
1129	if (tx_ring->desc && tx_ring->buffer_info) {
1130		for (i = 0; i < tx_ring->count; i++) {
1131			buffer_info = &tx_ring->buffer_info[i];
1132
1133			if (buffer_info->dma)
1134				dma_unmap_single(&pdev->dev,
1135						 buffer_info->dma,
1136						 buffer_info->length,
1137						 DMA_TO_DEVICE);
1138			if (buffer_info->skb)
1139				dev_kfree_skb(buffer_info->skb);
1140		}
1141	}
1142
1143	if (rx_ring->desc && rx_ring->buffer_info) {
1144		for (i = 0; i < rx_ring->count; i++) {
1145			buffer_info = &rx_ring->buffer_info[i];
1146
1147			if (buffer_info->dma)
1148				dma_unmap_single(&pdev->dev,
1149						 buffer_info->dma,
1150						 2048, DMA_FROM_DEVICE);
1151			if (buffer_info->skb)
1152				dev_kfree_skb(buffer_info->skb);
1153		}
1154	}
1155
1156	if (tx_ring->desc) {
1157		dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
1158				  tx_ring->dma);
1159		tx_ring->desc = NULL;
1160	}
1161	if (rx_ring->desc) {
1162		dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
1163				  rx_ring->dma);
1164		rx_ring->desc = NULL;
1165	}
1166
1167	kfree(tx_ring->buffer_info);
1168	tx_ring->buffer_info = NULL;
1169	kfree(rx_ring->buffer_info);
1170	rx_ring->buffer_info = NULL;
1171}
1172
1173static int e1000_setup_desc_rings(struct e1000_adapter *adapter)
1174{
1175	struct e1000_ring *tx_ring = &adapter->test_tx_ring;
1176	struct e1000_ring *rx_ring = &adapter->test_rx_ring;
1177	struct pci_dev *pdev = adapter->pdev;
1178	struct e1000_hw *hw = &adapter->hw;
1179	u32 rctl;
1180	int i;
1181	int ret_val;
1182
1183	/* Setup Tx descriptor ring and Tx buffers */
1184
1185	if (!tx_ring->count)
1186		tx_ring->count = E1000_DEFAULT_TXD;
1187
1188	tx_ring->buffer_info = kcalloc(tx_ring->count,
1189				       sizeof(struct e1000_buffer), GFP_KERNEL);
1190	if (!tx_ring->buffer_info) {
1191		ret_val = 1;
1192		goto err_nomem;
1193	}
1194
1195	tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
1196	tx_ring->size = ALIGN(tx_ring->size, 4096);
1197	tx_ring->desc = dma_alloc_coherent(&pdev->dev, tx_ring->size,
1198					   &tx_ring->dma, GFP_KERNEL);
1199	if (!tx_ring->desc) {
1200		ret_val = 2;
1201		goto err_nomem;
1202	}
1203	tx_ring->next_to_use = 0;
1204	tx_ring->next_to_clean = 0;
1205
1206	ew32(TDBAL(0), ((u64)tx_ring->dma & 0x00000000FFFFFFFF));
1207	ew32(TDBAH(0), ((u64)tx_ring->dma >> 32));
1208	ew32(TDLEN(0), tx_ring->count * sizeof(struct e1000_tx_desc));
1209	ew32(TDH(0), 0);
1210	ew32(TDT(0), 0);
1211	ew32(TCTL, E1000_TCTL_PSP | E1000_TCTL_EN | E1000_TCTL_MULR |
1212	     E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT |
1213	     E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT);
1214
1215	for (i = 0; i < tx_ring->count; i++) {
1216		struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*tx_ring, i);
1217		struct sk_buff *skb;
1218		unsigned int skb_size = 1024;
1219
1220		skb = alloc_skb(skb_size, GFP_KERNEL);
1221		if (!skb) {
1222			ret_val = 3;
1223			goto err_nomem;
1224		}
1225		skb_put(skb, skb_size);
1226		tx_ring->buffer_info[i].skb = skb;
1227		tx_ring->buffer_info[i].length = skb->len;
1228		tx_ring->buffer_info[i].dma =
1229		    dma_map_single(&pdev->dev, skb->data, skb->len,
1230				   DMA_TO_DEVICE);
1231		if (dma_mapping_error(&pdev->dev,
1232				      tx_ring->buffer_info[i].dma)) {
1233			ret_val = 4;
1234			goto err_nomem;
1235		}
1236		tx_desc->buffer_addr = cpu_to_le64(tx_ring->buffer_info[i].dma);
1237		tx_desc->lower.data = cpu_to_le32(skb->len);
1238		tx_desc->lower.data |= cpu_to_le32(E1000_TXD_CMD_EOP |
1239						   E1000_TXD_CMD_IFCS |
1240						   E1000_TXD_CMD_RS);
1241		tx_desc->upper.data = 0;
1242	}
1243
1244	/* Setup Rx descriptor ring and Rx buffers */
1245
1246	if (!rx_ring->count)
1247		rx_ring->count = E1000_DEFAULT_RXD;
1248
1249	rx_ring->buffer_info = kcalloc(rx_ring->count,
1250				       sizeof(struct e1000_buffer), GFP_KERNEL);
1251	if (!rx_ring->buffer_info) {
1252		ret_val = 5;
1253		goto err_nomem;
1254	}
1255
1256	rx_ring->size = rx_ring->count * sizeof(union e1000_rx_desc_extended);
1257	rx_ring->desc = dma_alloc_coherent(&pdev->dev, rx_ring->size,
1258					   &rx_ring->dma, GFP_KERNEL);
1259	if (!rx_ring->desc) {
1260		ret_val = 6;
1261		goto err_nomem;
1262	}
1263	rx_ring->next_to_use = 0;
1264	rx_ring->next_to_clean = 0;
1265
1266	rctl = er32(RCTL);
1267	if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX))
1268		ew32(RCTL, rctl & ~E1000_RCTL_EN);
1269	ew32(RDBAL(0), ((u64)rx_ring->dma & 0xFFFFFFFF));
1270	ew32(RDBAH(0), ((u64)rx_ring->dma >> 32));
1271	ew32(RDLEN(0), rx_ring->size);
1272	ew32(RDH(0), 0);
1273	ew32(RDT(0), 0);
1274	rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_SZ_2048 |
1275	    E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_LPE |
1276	    E1000_RCTL_SBP | E1000_RCTL_SECRC |
1277	    E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1278	    (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
1279	ew32(RCTL, rctl);
1280
1281	for (i = 0; i < rx_ring->count; i++) {
1282		union e1000_rx_desc_extended *rx_desc;
1283		struct sk_buff *skb;
1284
1285		skb = alloc_skb(2048 + NET_IP_ALIGN, GFP_KERNEL);
1286		if (!skb) {
1287			ret_val = 7;
1288			goto err_nomem;
1289		}
1290		skb_reserve(skb, NET_IP_ALIGN);
1291		rx_ring->buffer_info[i].skb = skb;
1292		rx_ring->buffer_info[i].dma =
1293		    dma_map_single(&pdev->dev, skb->data, 2048,
1294				   DMA_FROM_DEVICE);
1295		if (dma_mapping_error(&pdev->dev,
1296				      rx_ring->buffer_info[i].dma)) {
1297			ret_val = 8;
1298			goto err_nomem;
1299		}
1300		rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
1301		rx_desc->read.buffer_addr =
1302		    cpu_to_le64(rx_ring->buffer_info[i].dma);
1303		memset(skb->data, 0x00, skb->len);
1304	}
1305
1306	return 0;
1307
1308err_nomem:
1309	e1000_free_desc_rings(adapter);
1310	return ret_val;
1311}
1312
1313static void e1000_phy_disable_receiver(struct e1000_adapter *adapter)
1314{
1315	/* Write out to PHY registers 29 and 30 to disable the Receiver. */
1316	e1e_wphy(&adapter->hw, 29, 0x001F);
1317	e1e_wphy(&adapter->hw, 30, 0x8FFC);
1318	e1e_wphy(&adapter->hw, 29, 0x001A);
1319	e1e_wphy(&adapter->hw, 30, 0x8FF0);
1320}
1321
1322static int e1000_integrated_phy_loopback(struct e1000_adapter *adapter)
1323{
1324	struct e1000_hw *hw = &adapter->hw;
1325	u32 ctrl_reg = 0;
1326	u16 phy_reg = 0;
1327	s32 ret_val = 0;
1328
1329	hw->mac.autoneg = 0;
1330
1331	if (hw->phy.type == e1000_phy_ife) {
1332		/* force 100, set loopback */
1333		e1e_wphy(hw, MII_BMCR, 0x6100);
1334
1335		/* Now set up the MAC to the same speed/duplex as the PHY. */
1336		ctrl_reg = er32(CTRL);
1337		ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1338		ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1339			     E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1340			     E1000_CTRL_SPD_100 |/* Force Speed to 100 */
1341			     E1000_CTRL_FD);	 /* Force Duplex to FULL */
1342
1343		ew32(CTRL, ctrl_reg);
1344		e1e_flush();
1345		usleep_range(500, 1000);
1346
1347		return 0;
1348	}
1349
1350	/* Specific PHY configuration for loopback */
1351	switch (hw->phy.type) {
1352	case e1000_phy_m88:
1353		/* Auto-MDI/MDIX Off */
1354		e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, 0x0808);
1355		/* reset to update Auto-MDI/MDIX */
1356		e1e_wphy(hw, MII_BMCR, 0x9140);
1357		/* autoneg off */
1358		e1e_wphy(hw, MII_BMCR, 0x8140);
1359		break;
1360	case e1000_phy_gg82563:
1361		e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, 0x1CC);
1362		break;
1363	case e1000_phy_bm:
1364		/* Set Default MAC Interface speed to 1GB */
1365		e1e_rphy(hw, PHY_REG(2, 21), &phy_reg);
1366		phy_reg &= ~0x0007;
1367		phy_reg |= 0x006;
1368		e1e_wphy(hw, PHY_REG(2, 21), phy_reg);
1369		/* Assert SW reset for above settings to take effect */
1370		hw->phy.ops.commit(hw);
1371		usleep_range(1000, 2000);
1372		/* Force Full Duplex */
1373		e1e_rphy(hw, PHY_REG(769, 16), &phy_reg);
1374		e1e_wphy(hw, PHY_REG(769, 16), phy_reg | 0x000C);
1375		/* Set Link Up (in force link) */
1376		e1e_rphy(hw, PHY_REG(776, 16), &phy_reg);
1377		e1e_wphy(hw, PHY_REG(776, 16), phy_reg | 0x0040);
1378		/* Force Link */
1379		e1e_rphy(hw, PHY_REG(769, 16), &phy_reg);
1380		e1e_wphy(hw, PHY_REG(769, 16), phy_reg | 0x0040);
1381		/* Set Early Link Enable */
1382		e1e_rphy(hw, PHY_REG(769, 20), &phy_reg);
1383		e1e_wphy(hw, PHY_REG(769, 20), phy_reg | 0x0400);
1384		break;
1385	case e1000_phy_82577:
1386	case e1000_phy_82578:
1387		/* Workaround: K1 must be disabled for stable 1Gbps operation */
1388		ret_val = hw->phy.ops.acquire(hw);
1389		if (ret_val) {
1390			e_err("Cannot setup 1Gbps loopback.\n");
1391			return ret_val;
1392		}
1393		e1000_configure_k1_ich8lan(hw, false);
1394		hw->phy.ops.release(hw);
1395		break;
1396	case e1000_phy_82579:
1397		/* Disable PHY energy detect power down */
1398		e1e_rphy(hw, PHY_REG(0, 21), &phy_reg);
1399		e1e_wphy(hw, PHY_REG(0, 21), phy_reg & ~BIT(3));
1400		/* Disable full chip energy detect */
1401		e1e_rphy(hw, PHY_REG(776, 18), &phy_reg);
1402		e1e_wphy(hw, PHY_REG(776, 18), phy_reg | 1);
1403		/* Enable loopback on the PHY */
1404		e1e_wphy(hw, I82577_PHY_LBK_CTRL, 0x8001);
1405		break;
1406	default:
1407		break;
1408	}
1409
1410	/* force 1000, set loopback */
1411	e1e_wphy(hw, MII_BMCR, 0x4140);
1412	msleep(250);
1413
1414	/* Now set up the MAC to the same speed/duplex as the PHY. */
1415	ctrl_reg = er32(CTRL);
1416	ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1417	ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1418		     E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1419		     E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
1420		     E1000_CTRL_FD);	 /* Force Duplex to FULL */
1421
1422	if (adapter->flags & FLAG_IS_ICH)
1423		ctrl_reg |= E1000_CTRL_SLU;	/* Set Link Up */
1424
1425	if (hw->phy.media_type == e1000_media_type_copper &&
1426	    hw->phy.type == e1000_phy_m88) {
1427		ctrl_reg |= E1000_CTRL_ILOS;	/* Invert Loss of Signal */
1428	} else {
1429		/* Set the ILOS bit on the fiber Nic if half duplex link is
1430		 * detected.
1431		 */
1432		if ((er32(STATUS) & E1000_STATUS_FD) == 0)
1433			ctrl_reg |= (E1000_CTRL_ILOS | E1000_CTRL_SLU);
1434	}
1435
1436	ew32(CTRL, ctrl_reg);
1437
1438	/* Disable the receiver on the PHY so when a cable is plugged in, the
1439	 * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1440	 */
1441	if (hw->phy.type == e1000_phy_m88)
1442		e1000_phy_disable_receiver(adapter);
1443
1444	usleep_range(500, 1000);
1445
1446	return 0;
1447}
1448
1449static int e1000_set_82571_fiber_loopback(struct e1000_adapter *adapter)
1450{
1451	struct e1000_hw *hw = &adapter->hw;
1452	u32 ctrl = er32(CTRL);
1453	int link;
1454
1455	/* special requirements for 82571/82572 fiber adapters */
1456
1457	/* jump through hoops to make sure link is up because serdes
1458	 * link is hardwired up
1459	 */
1460	ctrl |= E1000_CTRL_SLU;
1461	ew32(CTRL, ctrl);
1462
1463	/* disable autoneg */
1464	ctrl = er32(TXCW);
1465	ctrl &= ~BIT(31);
1466	ew32(TXCW, ctrl);
1467
1468	link = (er32(STATUS) & E1000_STATUS_LU);
1469
1470	if (!link) {
1471		/* set invert loss of signal */
1472		ctrl = er32(CTRL);
1473		ctrl |= E1000_CTRL_ILOS;
1474		ew32(CTRL, ctrl);
1475	}
1476
1477	/* special write to serdes control register to enable SerDes analog
1478	 * loopback
1479	 */
1480	ew32(SCTL, E1000_SCTL_ENABLE_SERDES_LOOPBACK);
1481	e1e_flush();
1482	usleep_range(10000, 20000);
1483
1484	return 0;
1485}
1486
1487/* only call this for fiber/serdes connections to es2lan */
1488static int e1000_set_es2lan_mac_loopback(struct e1000_adapter *adapter)
1489{
1490	struct e1000_hw *hw = &adapter->hw;
1491	u32 ctrlext = er32(CTRL_EXT);
1492	u32 ctrl = er32(CTRL);
1493
1494	/* save CTRL_EXT to restore later, reuse an empty variable (unused
1495	 * on mac_type 80003es2lan)
1496	 */
1497	adapter->tx_fifo_head = ctrlext;
1498
1499	/* clear the serdes mode bits, putting the device into mac loopback */
1500	ctrlext &= ~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
1501	ew32(CTRL_EXT, ctrlext);
1502
1503	/* force speed to 1000/FD, link up */
1504	ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
1505	ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX |
1506		 E1000_CTRL_SPD_1000 | E1000_CTRL_FD);
1507	ew32(CTRL, ctrl);
1508
1509	/* set mac loopback */
1510	ctrl = er32(RCTL);
1511	ctrl |= E1000_RCTL_LBM_MAC;
1512	ew32(RCTL, ctrl);
1513
1514	/* set testing mode parameters (no need to reset later) */
1515#define KMRNCTRLSTA_OPMODE (0x1F << 16)
1516#define KMRNCTRLSTA_OPMODE_1GB_FD_GMII 0x0582
1517	ew32(KMRNCTRLSTA,
1518	     (KMRNCTRLSTA_OPMODE | KMRNCTRLSTA_OPMODE_1GB_FD_GMII));
1519
1520	return 0;
1521}
1522
1523static int e1000_setup_loopback_test(struct e1000_adapter *adapter)
1524{
1525	struct e1000_hw *hw = &adapter->hw;
1526	u32 rctl, fext_nvm11, tarc0;
1527
1528	if (hw->mac.type == e1000_pch_spt) {
1529		fext_nvm11 = er32(FEXTNVM11);
1530		fext_nvm11 |= E1000_FEXTNVM11_DISABLE_MULR_FIX;
1531		ew32(FEXTNVM11, fext_nvm11);
1532		tarc0 = er32(TARC(0));
1533		/* clear bits 28 & 29 (control of MULR concurrent requests) */
1534		tarc0 &= 0xcfffffff;
1535		/* set bit 29 (value of MULR requests is now 2) */
1536		tarc0 |= 0x20000000;
1537		ew32(TARC(0), tarc0);
1538	}
1539	if (hw->phy.media_type == e1000_media_type_fiber ||
1540	    hw->phy.media_type == e1000_media_type_internal_serdes) {
1541		switch (hw->mac.type) {
1542		case e1000_80003es2lan:
1543			return e1000_set_es2lan_mac_loopback(adapter);
1544		case e1000_82571:
1545		case e1000_82572:
1546			return e1000_set_82571_fiber_loopback(adapter);
1547		default:
1548			rctl = er32(RCTL);
1549			rctl |= E1000_RCTL_LBM_TCVR;
1550			ew32(RCTL, rctl);
1551			return 0;
1552		}
1553	} else if (hw->phy.media_type == e1000_media_type_copper) {
1554		return e1000_integrated_phy_loopback(adapter);
1555	}
1556
1557	return 7;
1558}
1559
1560static void e1000_loopback_cleanup(struct e1000_adapter *adapter)
1561{
1562	struct e1000_hw *hw = &adapter->hw;
1563	u32 rctl, fext_nvm11, tarc0;
1564	u16 phy_reg;
1565
1566	rctl = er32(RCTL);
1567	rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1568	ew32(RCTL, rctl);
1569
1570	switch (hw->mac.type) {
1571	case e1000_pch_spt:
 
 
 
 
 
 
 
1572		fext_nvm11 = er32(FEXTNVM11);
1573		fext_nvm11 &= ~E1000_FEXTNVM11_DISABLE_MULR_FIX;
1574		ew32(FEXTNVM11, fext_nvm11);
1575		tarc0 = er32(TARC(0));
1576		/* clear bits 28 & 29 (control of MULR concurrent requests) */
1577		/* set bit 29 (value of MULR requests is now 0) */
1578		tarc0 &= 0xcfffffff;
1579		ew32(TARC(0), tarc0);
1580		/* fall through */
1581	case e1000_80003es2lan:
1582		if (hw->phy.media_type == e1000_media_type_fiber ||
1583		    hw->phy.media_type == e1000_media_type_internal_serdes) {
1584			/* restore CTRL_EXT, stealing space from tx_fifo_head */
1585			ew32(CTRL_EXT, adapter->tx_fifo_head);
1586			adapter->tx_fifo_head = 0;
1587		}
1588		/* fall through */
1589	case e1000_82571:
1590	case e1000_82572:
1591		if (hw->phy.media_type == e1000_media_type_fiber ||
1592		    hw->phy.media_type == e1000_media_type_internal_serdes) {
1593			ew32(SCTL, E1000_SCTL_DISABLE_SERDES_LOOPBACK);
1594			e1e_flush();
1595			usleep_range(10000, 20000);
1596			break;
1597		}
1598		/* Fall Through */
1599	default:
1600		hw->mac.autoneg = 1;
1601		if (hw->phy.type == e1000_phy_gg82563)
1602			e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, 0x180);
1603		e1e_rphy(hw, MII_BMCR, &phy_reg);
1604		if (phy_reg & BMCR_LOOPBACK) {
1605			phy_reg &= ~BMCR_LOOPBACK;
1606			e1e_wphy(hw, MII_BMCR, phy_reg);
1607			if (hw->phy.ops.commit)
1608				hw->phy.ops.commit(hw);
1609		}
1610		break;
1611	}
1612}
1613
1614static void e1000_create_lbtest_frame(struct sk_buff *skb,
1615				      unsigned int frame_size)
1616{
1617	memset(skb->data, 0xFF, frame_size);
1618	frame_size &= ~1;
1619	memset(&skb->data[frame_size / 2], 0xAA, frame_size / 2 - 1);
1620	memset(&skb->data[frame_size / 2 + 10], 0xBE, 1);
1621	memset(&skb->data[frame_size / 2 + 12], 0xAF, 1);
1622}
1623
1624static int e1000_check_lbtest_frame(struct sk_buff *skb,
1625				    unsigned int frame_size)
1626{
1627	frame_size &= ~1;
1628	if (*(skb->data + 3) == 0xFF)
1629		if ((*(skb->data + frame_size / 2 + 10) == 0xBE) &&
1630		    (*(skb->data + frame_size / 2 + 12) == 0xAF))
1631			return 0;
1632	return 13;
1633}
1634
1635static int e1000_run_loopback_test(struct e1000_adapter *adapter)
1636{
1637	struct e1000_ring *tx_ring = &adapter->test_tx_ring;
1638	struct e1000_ring *rx_ring = &adapter->test_rx_ring;
1639	struct pci_dev *pdev = adapter->pdev;
1640	struct e1000_hw *hw = &adapter->hw;
1641	struct e1000_buffer *buffer_info;
1642	int i, j, k, l;
1643	int lc;
1644	int good_cnt;
1645	int ret_val = 0;
1646	unsigned long time;
1647
1648	ew32(RDT(0), rx_ring->count - 1);
1649
1650	/* Calculate the loop count based on the largest descriptor ring
1651	 * The idea is to wrap the largest ring a number of times using 64
1652	 * send/receive pairs during each loop
1653	 */
1654
1655	if (rx_ring->count <= tx_ring->count)
1656		lc = ((tx_ring->count / 64) * 2) + 1;
1657	else
1658		lc = ((rx_ring->count / 64) * 2) + 1;
1659
1660	k = 0;
1661	l = 0;
1662	/* loop count loop */
1663	for (j = 0; j <= lc; j++) {
1664		/* send the packets */
1665		for (i = 0; i < 64; i++) {
1666			buffer_info = &tx_ring->buffer_info[k];
1667
1668			e1000_create_lbtest_frame(buffer_info->skb, 1024);
1669			dma_sync_single_for_device(&pdev->dev,
1670						   buffer_info->dma,
1671						   buffer_info->length,
1672						   DMA_TO_DEVICE);
1673			k++;
1674			if (k == tx_ring->count)
1675				k = 0;
1676		}
1677		ew32(TDT(0), k);
1678		e1e_flush();
1679		msleep(200);
1680		time = jiffies;	/* set the start time for the receive */
1681		good_cnt = 0;
1682		/* receive the sent packets */
1683		do {
1684			buffer_info = &rx_ring->buffer_info[l];
1685
1686			dma_sync_single_for_cpu(&pdev->dev,
1687						buffer_info->dma, 2048,
1688						DMA_FROM_DEVICE);
1689
1690			ret_val = e1000_check_lbtest_frame(buffer_info->skb,
1691							   1024);
1692			if (!ret_val)
1693				good_cnt++;
1694			l++;
1695			if (l == rx_ring->count)
1696				l = 0;
1697			/* time + 20 msecs (200 msecs on 2.4) is more than
1698			 * enough time to complete the receives, if it's
1699			 * exceeded, break and error off
1700			 */
1701		} while ((good_cnt < 64) && !time_after(jiffies, time + 20));
1702		if (good_cnt != 64) {
1703			ret_val = 13;	/* ret_val is the same as mis-compare */
1704			break;
1705		}
1706		if (time_after(jiffies, time + 20)) {
1707			ret_val = 14;	/* error code for time out error */
1708			break;
1709		}
1710	}
1711	return ret_val;
1712}
1713
1714static int e1000_loopback_test(struct e1000_adapter *adapter, u64 *data)
1715{
1716	struct e1000_hw *hw = &adapter->hw;
1717
1718	/* PHY loopback cannot be performed if SoL/IDER sessions are active */
1719	if (hw->phy.ops.check_reset_block &&
1720	    hw->phy.ops.check_reset_block(hw)) {
1721		e_err("Cannot do PHY loopback test when SoL/IDER is active.\n");
1722		*data = 0;
1723		goto out;
1724	}
1725
1726	*data = e1000_setup_desc_rings(adapter);
1727	if (*data)
1728		goto out;
1729
1730	*data = e1000_setup_loopback_test(adapter);
1731	if (*data)
1732		goto err_loopback;
1733
1734	*data = e1000_run_loopback_test(adapter);
1735	e1000_loopback_cleanup(adapter);
1736
1737err_loopback:
1738	e1000_free_desc_rings(adapter);
1739out:
1740	return *data;
1741}
1742
1743static int e1000_link_test(struct e1000_adapter *adapter, u64 *data)
1744{
1745	struct e1000_hw *hw = &adapter->hw;
1746
1747	*data = 0;
1748	if (hw->phy.media_type == e1000_media_type_internal_serdes) {
1749		int i = 0;
1750
1751		hw->mac.serdes_has_link = false;
1752
1753		/* On some blade server designs, link establishment
1754		 * could take as long as 2-3 minutes
1755		 */
1756		do {
1757			hw->mac.ops.check_for_link(hw);
1758			if (hw->mac.serdes_has_link)
1759				return *data;
1760			msleep(20);
1761		} while (i++ < 3750);
1762
1763		*data = 1;
1764	} else {
1765		hw->mac.ops.check_for_link(hw);
1766		if (hw->mac.autoneg)
1767			/* On some Phy/switch combinations, link establishment
1768			 * can take a few seconds more than expected.
1769			 */
1770			msleep_interruptible(5000);
1771
1772		if (!(er32(STATUS) & E1000_STATUS_LU))
1773			*data = 1;
1774	}
1775	return *data;
1776}
1777
1778static int e1000e_get_sset_count(struct net_device __always_unused *netdev,
1779				 int sset)
1780{
1781	switch (sset) {
1782	case ETH_SS_TEST:
1783		return E1000_TEST_LEN;
1784	case ETH_SS_STATS:
1785		return E1000_STATS_LEN;
 
 
1786	default:
1787		return -EOPNOTSUPP;
1788	}
1789}
1790
1791static void e1000_diag_test(struct net_device *netdev,
1792			    struct ethtool_test *eth_test, u64 *data)
1793{
1794	struct e1000_adapter *adapter = netdev_priv(netdev);
1795	u16 autoneg_advertised;
1796	u8 forced_speed_duplex;
1797	u8 autoneg;
1798	bool if_running = netif_running(netdev);
1799
1800	pm_runtime_get_sync(netdev->dev.parent);
1801
1802	set_bit(__E1000_TESTING, &adapter->state);
1803
1804	if (!if_running) {
1805		/* Get control of and reset hardware */
1806		if (adapter->flags & FLAG_HAS_AMT)
1807			e1000e_get_hw_control(adapter);
1808
1809		e1000e_power_up_phy(adapter);
1810
1811		adapter->hw.phy.autoneg_wait_to_complete = 1;
1812		e1000e_reset(adapter);
1813		adapter->hw.phy.autoneg_wait_to_complete = 0;
1814	}
1815
1816	if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
1817		/* Offline tests */
1818
1819		/* save speed, duplex, autoneg settings */
1820		autoneg_advertised = adapter->hw.phy.autoneg_advertised;
1821		forced_speed_duplex = adapter->hw.mac.forced_speed_duplex;
1822		autoneg = adapter->hw.mac.autoneg;
1823
1824		e_info("offline testing starting\n");
1825
1826		if (if_running)
1827			/* indicate we're in test mode */
1828			e1000e_close(netdev);
1829
1830		if (e1000_reg_test(adapter, &data[0]))
1831			eth_test->flags |= ETH_TEST_FL_FAILED;
1832
1833		e1000e_reset(adapter);
1834		if (e1000_eeprom_test(adapter, &data[1]))
1835			eth_test->flags |= ETH_TEST_FL_FAILED;
1836
1837		e1000e_reset(adapter);
1838		if (e1000_intr_test(adapter, &data[2]))
1839			eth_test->flags |= ETH_TEST_FL_FAILED;
1840
1841		e1000e_reset(adapter);
1842		if (e1000_loopback_test(adapter, &data[3]))
1843			eth_test->flags |= ETH_TEST_FL_FAILED;
1844
1845		/* force this routine to wait until autoneg complete/timeout */
1846		adapter->hw.phy.autoneg_wait_to_complete = 1;
1847		e1000e_reset(adapter);
1848		adapter->hw.phy.autoneg_wait_to_complete = 0;
1849
1850		if (e1000_link_test(adapter, &data[4]))
1851			eth_test->flags |= ETH_TEST_FL_FAILED;
1852
1853		/* restore speed, duplex, autoneg settings */
1854		adapter->hw.phy.autoneg_advertised = autoneg_advertised;
1855		adapter->hw.mac.forced_speed_duplex = forced_speed_duplex;
1856		adapter->hw.mac.autoneg = autoneg;
1857		e1000e_reset(adapter);
1858
1859		clear_bit(__E1000_TESTING, &adapter->state);
1860		if (if_running)
1861			e1000e_open(netdev);
1862	} else {
1863		/* Online tests */
1864
1865		e_info("online testing starting\n");
1866
1867		/* register, eeprom, intr and loopback tests not run online */
1868		data[0] = 0;
1869		data[1] = 0;
1870		data[2] = 0;
1871		data[3] = 0;
1872
1873		if (e1000_link_test(adapter, &data[4]))
1874			eth_test->flags |= ETH_TEST_FL_FAILED;
1875
1876		clear_bit(__E1000_TESTING, &adapter->state);
1877	}
1878
1879	if (!if_running) {
1880		e1000e_reset(adapter);
1881
1882		if (adapter->flags & FLAG_HAS_AMT)
1883			e1000e_release_hw_control(adapter);
1884	}
1885
1886	msleep_interruptible(4 * 1000);
1887
1888	pm_runtime_put_sync(netdev->dev.parent);
1889}
1890
1891static void e1000_get_wol(struct net_device *netdev,
1892			  struct ethtool_wolinfo *wol)
1893{
1894	struct e1000_adapter *adapter = netdev_priv(netdev);
1895
1896	wol->supported = 0;
1897	wol->wolopts = 0;
1898
1899	if (!(adapter->flags & FLAG_HAS_WOL) ||
1900	    !device_can_wakeup(&adapter->pdev->dev))
1901		return;
1902
1903	wol->supported = WAKE_UCAST | WAKE_MCAST |
1904	    WAKE_BCAST | WAKE_MAGIC | WAKE_PHY;
1905
1906	/* apply any specific unsupported masks here */
1907	if (adapter->flags & FLAG_NO_WAKE_UCAST) {
1908		wol->supported &= ~WAKE_UCAST;
1909
1910		if (adapter->wol & E1000_WUFC_EX)
1911			e_err("Interface does not support directed (unicast) frame wake-up packets\n");
1912	}
1913
1914	if (adapter->wol & E1000_WUFC_EX)
1915		wol->wolopts |= WAKE_UCAST;
1916	if (adapter->wol & E1000_WUFC_MC)
1917		wol->wolopts |= WAKE_MCAST;
1918	if (adapter->wol & E1000_WUFC_BC)
1919		wol->wolopts |= WAKE_BCAST;
1920	if (adapter->wol & E1000_WUFC_MAG)
1921		wol->wolopts |= WAKE_MAGIC;
1922	if (adapter->wol & E1000_WUFC_LNKC)
1923		wol->wolopts |= WAKE_PHY;
1924}
1925
1926static int e1000_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
1927{
1928	struct e1000_adapter *adapter = netdev_priv(netdev);
1929
1930	if (!(adapter->flags & FLAG_HAS_WOL) ||
1931	    !device_can_wakeup(&adapter->pdev->dev) ||
1932	    (wol->wolopts & ~(WAKE_UCAST | WAKE_MCAST | WAKE_BCAST |
1933			      WAKE_MAGIC | WAKE_PHY)))
1934		return -EOPNOTSUPP;
1935
1936	/* these settings will always override what we currently have */
1937	adapter->wol = 0;
1938
1939	if (wol->wolopts & WAKE_UCAST)
1940		adapter->wol |= E1000_WUFC_EX;
1941	if (wol->wolopts & WAKE_MCAST)
1942		adapter->wol |= E1000_WUFC_MC;
1943	if (wol->wolopts & WAKE_BCAST)
1944		adapter->wol |= E1000_WUFC_BC;
1945	if (wol->wolopts & WAKE_MAGIC)
1946		adapter->wol |= E1000_WUFC_MAG;
1947	if (wol->wolopts & WAKE_PHY)
1948		adapter->wol |= E1000_WUFC_LNKC;
1949
1950	device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1951
1952	return 0;
1953}
1954
1955static int e1000_set_phys_id(struct net_device *netdev,
1956			     enum ethtool_phys_id_state state)
1957{
1958	struct e1000_adapter *adapter = netdev_priv(netdev);
1959	struct e1000_hw *hw = &adapter->hw;
1960
1961	switch (state) {
1962	case ETHTOOL_ID_ACTIVE:
1963		pm_runtime_get_sync(netdev->dev.parent);
1964
1965		if (!hw->mac.ops.blink_led)
1966			return 2;	/* cycle on/off twice per second */
1967
1968		hw->mac.ops.blink_led(hw);
1969		break;
1970
1971	case ETHTOOL_ID_INACTIVE:
1972		if (hw->phy.type == e1000_phy_ife)
1973			e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0);
1974		hw->mac.ops.led_off(hw);
1975		hw->mac.ops.cleanup_led(hw);
1976		pm_runtime_put_sync(netdev->dev.parent);
1977		break;
1978
1979	case ETHTOOL_ID_ON:
1980		hw->mac.ops.led_on(hw);
1981		break;
1982
1983	case ETHTOOL_ID_OFF:
1984		hw->mac.ops.led_off(hw);
1985		break;
1986	}
1987
1988	return 0;
1989}
1990
1991static int e1000_get_coalesce(struct net_device *netdev,
1992			      struct ethtool_coalesce *ec)
 
 
1993{
1994	struct e1000_adapter *adapter = netdev_priv(netdev);
1995
1996	if (adapter->itr_setting <= 4)
1997		ec->rx_coalesce_usecs = adapter->itr_setting;
1998	else
1999		ec->rx_coalesce_usecs = 1000000 / adapter->itr_setting;
2000
2001	return 0;
2002}
2003
2004static int e1000_set_coalesce(struct net_device *netdev,
2005			      struct ethtool_coalesce *ec)
 
 
2006{
2007	struct e1000_adapter *adapter = netdev_priv(netdev);
2008
2009	if ((ec->rx_coalesce_usecs > E1000_MAX_ITR_USECS) ||
2010	    ((ec->rx_coalesce_usecs > 4) &&
2011	     (ec->rx_coalesce_usecs < E1000_MIN_ITR_USECS)) ||
2012	    (ec->rx_coalesce_usecs == 2))
2013		return -EINVAL;
2014
2015	if (ec->rx_coalesce_usecs == 4) {
2016		adapter->itr_setting = 4;
2017		adapter->itr = adapter->itr_setting;
2018	} else if (ec->rx_coalesce_usecs <= 3) {
2019		adapter->itr = 20000;
2020		adapter->itr_setting = ec->rx_coalesce_usecs;
2021	} else {
2022		adapter->itr = (1000000 / ec->rx_coalesce_usecs);
2023		adapter->itr_setting = adapter->itr & ~3;
2024	}
2025
2026	pm_runtime_get_sync(netdev->dev.parent);
2027
2028	if (adapter->itr_setting != 0)
2029		e1000e_write_itr(adapter, adapter->itr);
2030	else
2031		e1000e_write_itr(adapter, 0);
2032
2033	pm_runtime_put_sync(netdev->dev.parent);
2034
2035	return 0;
2036}
2037
2038static int e1000_nway_reset(struct net_device *netdev)
2039{
2040	struct e1000_adapter *adapter = netdev_priv(netdev);
2041
2042	if (!netif_running(netdev))
2043		return -EAGAIN;
2044
2045	if (!adapter->hw.mac.autoneg)
2046		return -EINVAL;
2047
2048	pm_runtime_get_sync(netdev->dev.parent);
2049	e1000e_reinit_locked(adapter);
2050	pm_runtime_put_sync(netdev->dev.parent);
2051
2052	return 0;
2053}
2054
2055static void e1000_get_ethtool_stats(struct net_device *netdev,
2056				    struct ethtool_stats __always_unused *stats,
2057				    u64 *data)
2058{
2059	struct e1000_adapter *adapter = netdev_priv(netdev);
2060	struct rtnl_link_stats64 net_stats;
2061	int i;
2062	char *p = NULL;
2063
2064	pm_runtime_get_sync(netdev->dev.parent);
2065
2066	e1000e_get_stats64(netdev, &net_stats);
2067
2068	pm_runtime_put_sync(netdev->dev.parent);
2069
2070	for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
2071		switch (e1000_gstrings_stats[i].type) {
2072		case NETDEV_STATS:
2073			p = (char *)&net_stats +
2074			    e1000_gstrings_stats[i].stat_offset;
2075			break;
2076		case E1000_STATS:
2077			p = (char *)adapter +
2078			    e1000_gstrings_stats[i].stat_offset;
2079			break;
2080		default:
2081			data[i] = 0;
2082			continue;
2083		}
2084
2085		data[i] = (e1000_gstrings_stats[i].sizeof_stat ==
2086			   sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
2087	}
2088}
2089
2090static void e1000_get_strings(struct net_device __always_unused *netdev,
2091			      u32 stringset, u8 *data)
2092{
2093	u8 *p = data;
2094	int i;
2095
2096	switch (stringset) {
2097	case ETH_SS_TEST:
2098		memcpy(data, e1000_gstrings_test, sizeof(e1000_gstrings_test));
2099		break;
2100	case ETH_SS_STATS:
2101		for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
2102			memcpy(p, e1000_gstrings_stats[i].stat_string,
2103			       ETH_GSTRING_LEN);
2104			p += ETH_GSTRING_LEN;
2105		}
2106		break;
 
 
 
 
2107	}
2108}
2109
2110static int e1000_get_rxnfc(struct net_device *netdev,
2111			   struct ethtool_rxnfc *info,
2112			   u32 __always_unused *rule_locs)
2113{
2114	info->data = 0;
2115
2116	switch (info->cmd) {
2117	case ETHTOOL_GRXFH: {
2118		struct e1000_adapter *adapter = netdev_priv(netdev);
2119		struct e1000_hw *hw = &adapter->hw;
2120		u32 mrqc;
2121
2122		pm_runtime_get_sync(netdev->dev.parent);
2123		mrqc = er32(MRQC);
2124		pm_runtime_put_sync(netdev->dev.parent);
2125
2126		if (!(mrqc & E1000_MRQC_RSS_FIELD_MASK))
2127			return 0;
2128
2129		switch (info->flow_type) {
2130		case TCP_V4_FLOW:
2131			if (mrqc & E1000_MRQC_RSS_FIELD_IPV4_TCP)
2132				info->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2133			/* fall through */
2134		case UDP_V4_FLOW:
2135		case SCTP_V4_FLOW:
2136		case AH_ESP_V4_FLOW:
2137		case IPV4_FLOW:
2138			if (mrqc & E1000_MRQC_RSS_FIELD_IPV4)
2139				info->data |= RXH_IP_SRC | RXH_IP_DST;
2140			break;
2141		case TCP_V6_FLOW:
2142			if (mrqc & E1000_MRQC_RSS_FIELD_IPV6_TCP)
2143				info->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2144			/* fall through */
2145		case UDP_V6_FLOW:
2146		case SCTP_V6_FLOW:
2147		case AH_ESP_V6_FLOW:
2148		case IPV6_FLOW:
2149			if (mrqc & E1000_MRQC_RSS_FIELD_IPV6)
2150				info->data |= RXH_IP_SRC | RXH_IP_DST;
2151			break;
2152		default:
2153			break;
2154		}
2155		return 0;
2156	}
2157	default:
2158		return -EOPNOTSUPP;
2159	}
2160}
2161
2162static int e1000e_get_eee(struct net_device *netdev, struct ethtool_eee *edata)
2163{
2164	struct e1000_adapter *adapter = netdev_priv(netdev);
2165	struct e1000_hw *hw = &adapter->hw;
2166	u16 cap_addr, lpa_addr, pcs_stat_addr, phy_data;
2167	u32 ret_val;
2168
2169	if (!(adapter->flags2 & FLAG2_HAS_EEE))
2170		return -EOPNOTSUPP;
2171
2172	switch (hw->phy.type) {
2173	case e1000_phy_82579:
2174		cap_addr = I82579_EEE_CAPABILITY;
2175		lpa_addr = I82579_EEE_LP_ABILITY;
2176		pcs_stat_addr = I82579_EEE_PCS_STATUS;
2177		break;
2178	case e1000_phy_i217:
2179		cap_addr = I217_EEE_CAPABILITY;
2180		lpa_addr = I217_EEE_LP_ABILITY;
2181		pcs_stat_addr = I217_EEE_PCS_STATUS;
2182		break;
2183	default:
2184		return -EOPNOTSUPP;
2185	}
2186
2187	pm_runtime_get_sync(netdev->dev.parent);
2188
2189	ret_val = hw->phy.ops.acquire(hw);
2190	if (ret_val) {
2191		pm_runtime_put_sync(netdev->dev.parent);
2192		return -EBUSY;
2193	}
2194
2195	/* EEE Capability */
2196	ret_val = e1000_read_emi_reg_locked(hw, cap_addr, &phy_data);
2197	if (ret_val)
2198		goto release;
2199	edata->supported = mmd_eee_cap_to_ethtool_sup_t(phy_data);
2200
2201	/* EEE Advertised */
2202	edata->advertised = mmd_eee_adv_to_ethtool_adv_t(adapter->eee_advert);
2203
2204	/* EEE Link Partner Advertised */
2205	ret_val = e1000_read_emi_reg_locked(hw, lpa_addr, &phy_data);
2206	if (ret_val)
2207		goto release;
2208	edata->lp_advertised = mmd_eee_adv_to_ethtool_adv_t(phy_data);
2209
2210	/* EEE PCS Status */
2211	ret_val = e1000_read_emi_reg_locked(hw, pcs_stat_addr, &phy_data);
2212	if (ret_val)
2213		goto release;
2214	if (hw->phy.type == e1000_phy_82579)
2215		phy_data <<= 8;
2216
2217	/* Result of the EEE auto negotiation - there is no register that
2218	 * has the status of the EEE negotiation so do a best-guess based
2219	 * on whether Tx or Rx LPI indications have been received.
2220	 */
2221	if (phy_data & (E1000_EEE_TX_LPI_RCVD | E1000_EEE_RX_LPI_RCVD))
2222		edata->eee_active = true;
2223
2224	edata->eee_enabled = !hw->dev_spec.ich8lan.eee_disable;
2225	edata->tx_lpi_enabled = true;
2226	edata->tx_lpi_timer = er32(LPIC) >> E1000_LPIC_LPIET_SHIFT;
2227
2228release:
2229	hw->phy.ops.release(hw);
2230	if (ret_val)
2231		ret_val = -ENODATA;
2232
2233	pm_runtime_put_sync(netdev->dev.parent);
2234
2235	return ret_val;
2236}
2237
2238static int e1000e_set_eee(struct net_device *netdev, struct ethtool_eee *edata)
2239{
2240	struct e1000_adapter *adapter = netdev_priv(netdev);
 
 
2241	struct e1000_hw *hw = &adapter->hw;
2242	struct ethtool_eee eee_curr;
2243	s32 ret_val;
2244
2245	ret_val = e1000e_get_eee(netdev, &eee_curr);
2246	if (ret_val)
2247		return ret_val;
2248
2249	if (eee_curr.tx_lpi_enabled != edata->tx_lpi_enabled) {
2250		e_err("Setting EEE tx-lpi is not supported\n");
2251		return -EINVAL;
2252	}
2253
2254	if (eee_curr.tx_lpi_timer != edata->tx_lpi_timer) {
2255		e_err("Setting EEE Tx LPI timer is not supported\n");
2256		return -EINVAL;
2257	}
2258
2259	if (edata->advertised & ~(ADVERTISE_100_FULL | ADVERTISE_1000_FULL)) {
 
 
 
 
 
2260		e_err("EEE advertisement supports only 100TX and/or 1000T full-duplex\n");
2261		return -EINVAL;
2262	}
2263
2264	adapter->eee_advert = ethtool_adv_to_mmd_eee_adv_t(edata->advertised);
2265
2266	hw->dev_spec.ich8lan.eee_disable = !edata->eee_enabled;
2267
2268	pm_runtime_get_sync(netdev->dev.parent);
2269
2270	/* reset the link */
2271	if (netif_running(netdev))
2272		e1000e_reinit_locked(adapter);
2273	else
2274		e1000e_reset(adapter);
2275
2276	pm_runtime_put_sync(netdev->dev.parent);
2277
2278	return 0;
2279}
2280
2281static int e1000e_get_ts_info(struct net_device *netdev,
2282			      struct ethtool_ts_info *info)
2283{
2284	struct e1000_adapter *adapter = netdev_priv(netdev);
2285
2286	ethtool_op_get_ts_info(netdev, info);
2287
2288	if (!(adapter->flags & FLAG_HAS_HW_TIMESTAMP))
2289		return 0;
2290
2291	info->so_timestamping |= (SOF_TIMESTAMPING_TX_HARDWARE |
2292				  SOF_TIMESTAMPING_RX_HARDWARE |
2293				  SOF_TIMESTAMPING_RAW_HARDWARE);
2294
2295	info->tx_types = BIT(HWTSTAMP_TX_OFF) | BIT(HWTSTAMP_TX_ON);
2296
2297	info->rx_filters = (BIT(HWTSTAMP_FILTER_NONE) |
2298			    BIT(HWTSTAMP_FILTER_PTP_V1_L4_SYNC) |
2299			    BIT(HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ) |
2300			    BIT(HWTSTAMP_FILTER_PTP_V2_L4_SYNC) |
2301			    BIT(HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ) |
2302			    BIT(HWTSTAMP_FILTER_PTP_V2_L2_SYNC) |
2303			    BIT(HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ) |
2304			    BIT(HWTSTAMP_FILTER_PTP_V2_EVENT) |
2305			    BIT(HWTSTAMP_FILTER_PTP_V2_SYNC) |
2306			    BIT(HWTSTAMP_FILTER_PTP_V2_DELAY_REQ) |
2307			    BIT(HWTSTAMP_FILTER_ALL));
2308
2309	if (adapter->ptp_clock)
2310		info->phc_index = ptp_clock_index(adapter->ptp_clock);
2311
2312	return 0;
2313}
2314
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2315static const struct ethtool_ops e1000_ethtool_ops = {
2316	.get_settings		= e1000_get_settings,
2317	.set_settings		= e1000_set_settings,
2318	.get_drvinfo		= e1000_get_drvinfo,
2319	.get_regs_len		= e1000_get_regs_len,
2320	.get_regs		= e1000_get_regs,
2321	.get_wol		= e1000_get_wol,
2322	.set_wol		= e1000_set_wol,
2323	.get_msglevel		= e1000_get_msglevel,
2324	.set_msglevel		= e1000_set_msglevel,
2325	.nway_reset		= e1000_nway_reset,
2326	.get_link		= ethtool_op_get_link,
2327	.get_eeprom_len		= e1000_get_eeprom_len,
2328	.get_eeprom		= e1000_get_eeprom,
2329	.set_eeprom		= e1000_set_eeprom,
2330	.get_ringparam		= e1000_get_ringparam,
2331	.set_ringparam		= e1000_set_ringparam,
2332	.get_pauseparam		= e1000_get_pauseparam,
2333	.set_pauseparam		= e1000_set_pauseparam,
2334	.self_test		= e1000_diag_test,
2335	.get_strings		= e1000_get_strings,
2336	.set_phys_id		= e1000_set_phys_id,
2337	.get_ethtool_stats	= e1000_get_ethtool_stats,
2338	.get_sset_count		= e1000e_get_sset_count,
2339	.get_coalesce		= e1000_get_coalesce,
2340	.set_coalesce		= e1000_set_coalesce,
2341	.get_rxnfc		= e1000_get_rxnfc,
2342	.get_ts_info		= e1000e_get_ts_info,
2343	.get_eee		= e1000e_get_eee,
2344	.set_eee		= e1000e_set_eee,
 
 
 
 
2345};
2346
2347void e1000e_set_ethtool_ops(struct net_device *netdev)
2348{
2349	netdev->ethtool_ops = &e1000_ethtool_ops;
2350}