Loading...
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * Freescale i.MX23/i.MX28 Data Co-Processor driver
4 *
5 * Copyright (C) 2013 Marek Vasut <marex@denx.de>
6 */
7
8#include <linux/dma-mapping.h>
9#include <linux/interrupt.h>
10#include <linux/io.h>
11#include <linux/kernel.h>
12#include <linux/kthread.h>
13#include <linux/module.h>
14#include <linux/of.h>
15#include <linux/platform_device.h>
16#include <linux/stmp_device.h>
17#include <linux/clk.h>
18#include <soc/fsl/dcp.h>
19
20#include <crypto/aes.h>
21#include <crypto/sha1.h>
22#include <crypto/sha2.h>
23#include <crypto/internal/hash.h>
24#include <crypto/internal/skcipher.h>
25#include <crypto/scatterwalk.h>
26
27#define DCP_MAX_CHANS 4
28#define DCP_BUF_SZ PAGE_SIZE
29#define DCP_SHA_PAY_SZ 64
30
31#define DCP_ALIGNMENT 64
32
33/*
34 * Null hashes to align with hw behavior on imx6sl and ull
35 * these are flipped for consistency with hw output
36 */
37static const uint8_t sha1_null_hash[] =
38 "\x09\x07\xd8\xaf\x90\x18\x60\x95\xef\xbf"
39 "\x55\x32\x0d\x4b\x6b\x5e\xee\xa3\x39\xda";
40
41static const uint8_t sha256_null_hash[] =
42 "\x55\xb8\x52\x78\x1b\x99\x95\xa4"
43 "\x4c\x93\x9b\x64\xe4\x41\xae\x27"
44 "\x24\xb9\x6f\x99\xc8\xf4\xfb\x9a"
45 "\x14\x1c\xfc\x98\x42\xc4\xb0\xe3";
46
47/* DCP DMA descriptor. */
48struct dcp_dma_desc {
49 uint32_t next_cmd_addr;
50 uint32_t control0;
51 uint32_t control1;
52 uint32_t source;
53 uint32_t destination;
54 uint32_t size;
55 uint32_t payload;
56 uint32_t status;
57};
58
59/* Coherent aligned block for bounce buffering. */
60struct dcp_coherent_block {
61 uint8_t aes_in_buf[DCP_BUF_SZ];
62 uint8_t aes_out_buf[DCP_BUF_SZ];
63 uint8_t sha_in_buf[DCP_BUF_SZ];
64 uint8_t sha_out_buf[DCP_SHA_PAY_SZ];
65
66 uint8_t aes_key[2 * AES_KEYSIZE_128];
67
68 struct dcp_dma_desc desc[DCP_MAX_CHANS];
69};
70
71struct dcp {
72 struct device *dev;
73 void __iomem *base;
74
75 uint32_t caps;
76
77 struct dcp_coherent_block *coh;
78
79 struct completion completion[DCP_MAX_CHANS];
80 spinlock_t lock[DCP_MAX_CHANS];
81 struct task_struct *thread[DCP_MAX_CHANS];
82 struct crypto_queue queue[DCP_MAX_CHANS];
83 struct clk *dcp_clk;
84};
85
86enum dcp_chan {
87 DCP_CHAN_HASH_SHA = 0,
88 DCP_CHAN_CRYPTO = 2,
89};
90
91struct dcp_async_ctx {
92 /* Common context */
93 enum dcp_chan chan;
94 uint32_t fill;
95
96 /* SHA Hash-specific context */
97 struct mutex mutex;
98 uint32_t alg;
99 unsigned int hot:1;
100
101 /* Crypto-specific context */
102 struct crypto_skcipher *fallback;
103 unsigned int key_len;
104 uint8_t key[AES_KEYSIZE_128];
105 bool key_referenced;
106};
107
108struct dcp_aes_req_ctx {
109 unsigned int enc:1;
110 unsigned int ecb:1;
111 struct skcipher_request fallback_req; // keep at the end
112};
113
114struct dcp_sha_req_ctx {
115 unsigned int init:1;
116 unsigned int fini:1;
117};
118
119struct dcp_export_state {
120 struct dcp_sha_req_ctx req_ctx;
121 struct dcp_async_ctx async_ctx;
122};
123
124/*
125 * There can even be only one instance of the MXS DCP due to the
126 * design of Linux Crypto API.
127 */
128static struct dcp *global_sdcp;
129
130/* DCP register layout. */
131#define MXS_DCP_CTRL 0x00
132#define MXS_DCP_CTRL_GATHER_RESIDUAL_WRITES (1 << 23)
133#define MXS_DCP_CTRL_ENABLE_CONTEXT_CACHING (1 << 22)
134
135#define MXS_DCP_STAT 0x10
136#define MXS_DCP_STAT_CLR 0x18
137#define MXS_DCP_STAT_IRQ_MASK 0xf
138
139#define MXS_DCP_CHANNELCTRL 0x20
140#define MXS_DCP_CHANNELCTRL_ENABLE_CHANNEL_MASK 0xff
141
142#define MXS_DCP_CAPABILITY1 0x40
143#define MXS_DCP_CAPABILITY1_SHA256 (4 << 16)
144#define MXS_DCP_CAPABILITY1_SHA1 (1 << 16)
145#define MXS_DCP_CAPABILITY1_AES128 (1 << 0)
146
147#define MXS_DCP_CONTEXT 0x50
148
149#define MXS_DCP_CH_N_CMDPTR(n) (0x100 + ((n) * 0x40))
150
151#define MXS_DCP_CH_N_SEMA(n) (0x110 + ((n) * 0x40))
152
153#define MXS_DCP_CH_N_STAT(n) (0x120 + ((n) * 0x40))
154#define MXS_DCP_CH_N_STAT_CLR(n) (0x128 + ((n) * 0x40))
155
156/* DMA descriptor bits. */
157#define MXS_DCP_CONTROL0_HASH_TERM (1 << 13)
158#define MXS_DCP_CONTROL0_HASH_INIT (1 << 12)
159#define MXS_DCP_CONTROL0_PAYLOAD_KEY (1 << 11)
160#define MXS_DCP_CONTROL0_OTP_KEY (1 << 10)
161#define MXS_DCP_CONTROL0_CIPHER_ENCRYPT (1 << 8)
162#define MXS_DCP_CONTROL0_CIPHER_INIT (1 << 9)
163#define MXS_DCP_CONTROL0_ENABLE_HASH (1 << 6)
164#define MXS_DCP_CONTROL0_ENABLE_CIPHER (1 << 5)
165#define MXS_DCP_CONTROL0_DECR_SEMAPHORE (1 << 1)
166#define MXS_DCP_CONTROL0_INTERRUPT (1 << 0)
167
168#define MXS_DCP_CONTROL1_HASH_SELECT_SHA256 (2 << 16)
169#define MXS_DCP_CONTROL1_HASH_SELECT_SHA1 (0 << 16)
170#define MXS_DCP_CONTROL1_CIPHER_MODE_CBC (1 << 4)
171#define MXS_DCP_CONTROL1_CIPHER_MODE_ECB (0 << 4)
172#define MXS_DCP_CONTROL1_CIPHER_SELECT_AES128 (0 << 0)
173
174#define MXS_DCP_CONTROL1_KEY_SELECT_SHIFT 8
175
176static int mxs_dcp_start_dma(struct dcp_async_ctx *actx)
177{
178 int dma_err;
179 struct dcp *sdcp = global_sdcp;
180 const int chan = actx->chan;
181 uint32_t stat;
182 unsigned long ret;
183 struct dcp_dma_desc *desc = &sdcp->coh->desc[actx->chan];
184 dma_addr_t desc_phys = dma_map_single(sdcp->dev, desc, sizeof(*desc),
185 DMA_TO_DEVICE);
186
187 dma_err = dma_mapping_error(sdcp->dev, desc_phys);
188 if (dma_err)
189 return dma_err;
190
191 reinit_completion(&sdcp->completion[chan]);
192
193 /* Clear status register. */
194 writel(0xffffffff, sdcp->base + MXS_DCP_CH_N_STAT_CLR(chan));
195
196 /* Load the DMA descriptor. */
197 writel(desc_phys, sdcp->base + MXS_DCP_CH_N_CMDPTR(chan));
198
199 /* Increment the semaphore to start the DMA transfer. */
200 writel(1, sdcp->base + MXS_DCP_CH_N_SEMA(chan));
201
202 ret = wait_for_completion_timeout(&sdcp->completion[chan],
203 msecs_to_jiffies(1000));
204 if (!ret) {
205 dev_err(sdcp->dev, "Channel %i timeout (DCP_STAT=0x%08x)\n",
206 chan, readl(sdcp->base + MXS_DCP_STAT));
207 return -ETIMEDOUT;
208 }
209
210 stat = readl(sdcp->base + MXS_DCP_CH_N_STAT(chan));
211 if (stat & 0xff) {
212 dev_err(sdcp->dev, "Channel %i error (CH_STAT=0x%08x)\n",
213 chan, stat);
214 return -EINVAL;
215 }
216
217 dma_unmap_single(sdcp->dev, desc_phys, sizeof(*desc), DMA_TO_DEVICE);
218
219 return 0;
220}
221
222/*
223 * Encryption (AES128)
224 */
225static int mxs_dcp_run_aes(struct dcp_async_ctx *actx,
226 struct skcipher_request *req, int init)
227{
228 dma_addr_t key_phys, src_phys, dst_phys;
229 struct dcp *sdcp = global_sdcp;
230 struct dcp_dma_desc *desc = &sdcp->coh->desc[actx->chan];
231 struct dcp_aes_req_ctx *rctx = skcipher_request_ctx(req);
232 bool key_referenced = actx->key_referenced;
233 int ret;
234
235 if (key_referenced)
236 key_phys = dma_map_single(sdcp->dev, sdcp->coh->aes_key + AES_KEYSIZE_128,
237 AES_KEYSIZE_128, DMA_TO_DEVICE);
238 else
239 key_phys = dma_map_single(sdcp->dev, sdcp->coh->aes_key,
240 2 * AES_KEYSIZE_128, DMA_TO_DEVICE);
241 ret = dma_mapping_error(sdcp->dev, key_phys);
242 if (ret)
243 return ret;
244
245 src_phys = dma_map_single(sdcp->dev, sdcp->coh->aes_in_buf,
246 DCP_BUF_SZ, DMA_TO_DEVICE);
247 ret = dma_mapping_error(sdcp->dev, src_phys);
248 if (ret)
249 goto err_src;
250
251 dst_phys = dma_map_single(sdcp->dev, sdcp->coh->aes_out_buf,
252 DCP_BUF_SZ, DMA_FROM_DEVICE);
253 ret = dma_mapping_error(sdcp->dev, dst_phys);
254 if (ret)
255 goto err_dst;
256
257 if (actx->fill % AES_BLOCK_SIZE) {
258 dev_err(sdcp->dev, "Invalid block size!\n");
259 ret = -EINVAL;
260 goto aes_done_run;
261 }
262
263 /* Fill in the DMA descriptor. */
264 desc->control0 = MXS_DCP_CONTROL0_DECR_SEMAPHORE |
265 MXS_DCP_CONTROL0_INTERRUPT |
266 MXS_DCP_CONTROL0_ENABLE_CIPHER;
267
268 if (key_referenced)
269 /* Set OTP key bit to select the key via KEY_SELECT. */
270 desc->control0 |= MXS_DCP_CONTROL0_OTP_KEY;
271 else
272 /* Payload contains the key. */
273 desc->control0 |= MXS_DCP_CONTROL0_PAYLOAD_KEY;
274
275 if (rctx->enc)
276 desc->control0 |= MXS_DCP_CONTROL0_CIPHER_ENCRYPT;
277 if (init)
278 desc->control0 |= MXS_DCP_CONTROL0_CIPHER_INIT;
279
280 desc->control1 = MXS_DCP_CONTROL1_CIPHER_SELECT_AES128;
281
282 if (rctx->ecb)
283 desc->control1 |= MXS_DCP_CONTROL1_CIPHER_MODE_ECB;
284 else
285 desc->control1 |= MXS_DCP_CONTROL1_CIPHER_MODE_CBC;
286
287 if (key_referenced)
288 desc->control1 |= sdcp->coh->aes_key[0] << MXS_DCP_CONTROL1_KEY_SELECT_SHIFT;
289
290 desc->next_cmd_addr = 0;
291 desc->source = src_phys;
292 desc->destination = dst_phys;
293 desc->size = actx->fill;
294 desc->payload = key_phys;
295 desc->status = 0;
296
297 ret = mxs_dcp_start_dma(actx);
298
299aes_done_run:
300 dma_unmap_single(sdcp->dev, dst_phys, DCP_BUF_SZ, DMA_FROM_DEVICE);
301err_dst:
302 dma_unmap_single(sdcp->dev, src_phys, DCP_BUF_SZ, DMA_TO_DEVICE);
303err_src:
304 if (key_referenced)
305 dma_unmap_single(sdcp->dev, key_phys, AES_KEYSIZE_128,
306 DMA_TO_DEVICE);
307 else
308 dma_unmap_single(sdcp->dev, key_phys, 2 * AES_KEYSIZE_128,
309 DMA_TO_DEVICE);
310 return ret;
311}
312
313static int mxs_dcp_aes_block_crypt(struct crypto_async_request *arq)
314{
315 struct dcp *sdcp = global_sdcp;
316
317 struct skcipher_request *req = skcipher_request_cast(arq);
318 struct dcp_async_ctx *actx = crypto_tfm_ctx(arq->tfm);
319 struct dcp_aes_req_ctx *rctx = skcipher_request_ctx(req);
320
321 struct scatterlist *dst = req->dst;
322 struct scatterlist *src = req->src;
323 int dst_nents = sg_nents(dst);
324
325 const int out_off = DCP_BUF_SZ;
326 uint8_t *in_buf = sdcp->coh->aes_in_buf;
327 uint8_t *out_buf = sdcp->coh->aes_out_buf;
328
329 uint32_t dst_off = 0;
330 uint8_t *src_buf = NULL;
331 uint32_t last_out_len = 0;
332
333 uint8_t *key = sdcp->coh->aes_key;
334
335 int ret = 0;
336 unsigned int i, len, clen, tlen = 0;
337 int init = 0;
338 bool limit_hit = false;
339
340 actx->fill = 0;
341
342 /* Copy the key from the temporary location. */
343 memcpy(key, actx->key, actx->key_len);
344
345 if (!rctx->ecb) {
346 /* Copy the CBC IV just past the key. */
347 memcpy(key + AES_KEYSIZE_128, req->iv, AES_KEYSIZE_128);
348 /* CBC needs the INIT set. */
349 init = 1;
350 } else {
351 memset(key + AES_KEYSIZE_128, 0, AES_KEYSIZE_128);
352 }
353
354 for_each_sg(req->src, src, sg_nents(req->src), i) {
355 src_buf = sg_virt(src);
356 len = sg_dma_len(src);
357 tlen += len;
358 limit_hit = tlen > req->cryptlen;
359
360 if (limit_hit)
361 len = req->cryptlen - (tlen - len);
362
363 do {
364 if (actx->fill + len > out_off)
365 clen = out_off - actx->fill;
366 else
367 clen = len;
368
369 memcpy(in_buf + actx->fill, src_buf, clen);
370 len -= clen;
371 src_buf += clen;
372 actx->fill += clen;
373
374 /*
375 * If we filled the buffer or this is the last SG,
376 * submit the buffer.
377 */
378 if (actx->fill == out_off || sg_is_last(src) ||
379 limit_hit) {
380 ret = mxs_dcp_run_aes(actx, req, init);
381 if (ret)
382 return ret;
383 init = 0;
384
385 sg_pcopy_from_buffer(dst, dst_nents, out_buf,
386 actx->fill, dst_off);
387 dst_off += actx->fill;
388 last_out_len = actx->fill;
389 actx->fill = 0;
390 }
391 } while (len);
392
393 if (limit_hit)
394 break;
395 }
396
397 /* Copy the IV for CBC for chaining */
398 if (!rctx->ecb) {
399 if (rctx->enc)
400 memcpy(req->iv, out_buf+(last_out_len-AES_BLOCK_SIZE),
401 AES_BLOCK_SIZE);
402 else
403 memcpy(req->iv, in_buf+(last_out_len-AES_BLOCK_SIZE),
404 AES_BLOCK_SIZE);
405 }
406
407 return ret;
408}
409
410static int dcp_chan_thread_aes(void *data)
411{
412 struct dcp *sdcp = global_sdcp;
413 const int chan = DCP_CHAN_CRYPTO;
414
415 struct crypto_async_request *backlog;
416 struct crypto_async_request *arq;
417
418 int ret;
419
420 while (!kthread_should_stop()) {
421 set_current_state(TASK_INTERRUPTIBLE);
422
423 spin_lock(&sdcp->lock[chan]);
424 backlog = crypto_get_backlog(&sdcp->queue[chan]);
425 arq = crypto_dequeue_request(&sdcp->queue[chan]);
426 spin_unlock(&sdcp->lock[chan]);
427
428 if (!backlog && !arq) {
429 schedule();
430 continue;
431 }
432
433 set_current_state(TASK_RUNNING);
434
435 if (backlog)
436 crypto_request_complete(backlog, -EINPROGRESS);
437
438 if (arq) {
439 ret = mxs_dcp_aes_block_crypt(arq);
440 crypto_request_complete(arq, ret);
441 }
442 }
443
444 return 0;
445}
446
447static int mxs_dcp_block_fallback(struct skcipher_request *req, int enc)
448{
449 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
450 struct dcp_aes_req_ctx *rctx = skcipher_request_ctx(req);
451 struct dcp_async_ctx *ctx = crypto_skcipher_ctx(tfm);
452 int ret;
453
454 skcipher_request_set_tfm(&rctx->fallback_req, ctx->fallback);
455 skcipher_request_set_callback(&rctx->fallback_req, req->base.flags,
456 req->base.complete, req->base.data);
457 skcipher_request_set_crypt(&rctx->fallback_req, req->src, req->dst,
458 req->cryptlen, req->iv);
459
460 if (enc)
461 ret = crypto_skcipher_encrypt(&rctx->fallback_req);
462 else
463 ret = crypto_skcipher_decrypt(&rctx->fallback_req);
464
465 return ret;
466}
467
468static int mxs_dcp_aes_enqueue(struct skcipher_request *req, int enc, int ecb)
469{
470 struct dcp *sdcp = global_sdcp;
471 struct crypto_async_request *arq = &req->base;
472 struct dcp_async_ctx *actx = crypto_tfm_ctx(arq->tfm);
473 struct dcp_aes_req_ctx *rctx = skcipher_request_ctx(req);
474 int ret;
475
476 if (unlikely(actx->key_len != AES_KEYSIZE_128 && !actx->key_referenced))
477 return mxs_dcp_block_fallback(req, enc);
478
479 rctx->enc = enc;
480 rctx->ecb = ecb;
481 actx->chan = DCP_CHAN_CRYPTO;
482
483 spin_lock(&sdcp->lock[actx->chan]);
484 ret = crypto_enqueue_request(&sdcp->queue[actx->chan], &req->base);
485 spin_unlock(&sdcp->lock[actx->chan]);
486
487 wake_up_process(sdcp->thread[actx->chan]);
488
489 return ret;
490}
491
492static int mxs_dcp_aes_ecb_decrypt(struct skcipher_request *req)
493{
494 return mxs_dcp_aes_enqueue(req, 0, 1);
495}
496
497static int mxs_dcp_aes_ecb_encrypt(struct skcipher_request *req)
498{
499 return mxs_dcp_aes_enqueue(req, 1, 1);
500}
501
502static int mxs_dcp_aes_cbc_decrypt(struct skcipher_request *req)
503{
504 return mxs_dcp_aes_enqueue(req, 0, 0);
505}
506
507static int mxs_dcp_aes_cbc_encrypt(struct skcipher_request *req)
508{
509 return mxs_dcp_aes_enqueue(req, 1, 0);
510}
511
512static int mxs_dcp_aes_setkey(struct crypto_skcipher *tfm, const u8 *key,
513 unsigned int len)
514{
515 struct dcp_async_ctx *actx = crypto_skcipher_ctx(tfm);
516
517 /*
518 * AES 128 is supposed by the hardware, store key into temporary
519 * buffer and exit. We must use the temporary buffer here, since
520 * there can still be an operation in progress.
521 */
522 actx->key_len = len;
523 actx->key_referenced = false;
524 if (len == AES_KEYSIZE_128) {
525 memcpy(actx->key, key, len);
526 return 0;
527 }
528
529 /*
530 * If the requested AES key size is not supported by the hardware,
531 * but is supported by in-kernel software implementation, we use
532 * software fallback.
533 */
534 crypto_skcipher_clear_flags(actx->fallback, CRYPTO_TFM_REQ_MASK);
535 crypto_skcipher_set_flags(actx->fallback,
536 tfm->base.crt_flags & CRYPTO_TFM_REQ_MASK);
537 return crypto_skcipher_setkey(actx->fallback, key, len);
538}
539
540static int mxs_dcp_aes_setrefkey(struct crypto_skcipher *tfm, const u8 *key,
541 unsigned int len)
542{
543 struct dcp_async_ctx *actx = crypto_skcipher_ctx(tfm);
544
545 if (len != DCP_PAES_KEYSIZE)
546 return -EINVAL;
547
548 switch (key[0]) {
549 case DCP_PAES_KEY_SLOT0:
550 case DCP_PAES_KEY_SLOT1:
551 case DCP_PAES_KEY_SLOT2:
552 case DCP_PAES_KEY_SLOT3:
553 case DCP_PAES_KEY_UNIQUE:
554 case DCP_PAES_KEY_OTP:
555 memcpy(actx->key, key, len);
556 actx->key_len = len;
557 actx->key_referenced = true;
558 break;
559 default:
560 return -EINVAL;
561 }
562
563 return 0;
564}
565
566static int mxs_dcp_aes_fallback_init_tfm(struct crypto_skcipher *tfm)
567{
568 const char *name = crypto_tfm_alg_name(crypto_skcipher_tfm(tfm));
569 struct dcp_async_ctx *actx = crypto_skcipher_ctx(tfm);
570 struct crypto_skcipher *blk;
571
572 blk = crypto_alloc_skcipher(name, 0, CRYPTO_ALG_NEED_FALLBACK);
573 if (IS_ERR(blk))
574 return PTR_ERR(blk);
575
576 actx->fallback = blk;
577 crypto_skcipher_set_reqsize(tfm, sizeof(struct dcp_aes_req_ctx) +
578 crypto_skcipher_reqsize(blk));
579 return 0;
580}
581
582static void mxs_dcp_aes_fallback_exit_tfm(struct crypto_skcipher *tfm)
583{
584 struct dcp_async_ctx *actx = crypto_skcipher_ctx(tfm);
585
586 crypto_free_skcipher(actx->fallback);
587}
588
589static int mxs_dcp_paes_init_tfm(struct crypto_skcipher *tfm)
590{
591 crypto_skcipher_set_reqsize(tfm, sizeof(struct dcp_aes_req_ctx));
592
593 return 0;
594}
595
596/*
597 * Hashing (SHA1/SHA256)
598 */
599static int mxs_dcp_run_sha(struct ahash_request *req)
600{
601 struct dcp *sdcp = global_sdcp;
602 int ret;
603
604 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
605 struct dcp_async_ctx *actx = crypto_ahash_ctx(tfm);
606 struct dcp_sha_req_ctx *rctx = ahash_request_ctx(req);
607 struct dcp_dma_desc *desc = &sdcp->coh->desc[actx->chan];
608
609 dma_addr_t digest_phys = 0;
610 dma_addr_t buf_phys = dma_map_single(sdcp->dev, sdcp->coh->sha_in_buf,
611 DCP_BUF_SZ, DMA_TO_DEVICE);
612
613 ret = dma_mapping_error(sdcp->dev, buf_phys);
614 if (ret)
615 return ret;
616
617 /* Fill in the DMA descriptor. */
618 desc->control0 = MXS_DCP_CONTROL0_DECR_SEMAPHORE |
619 MXS_DCP_CONTROL0_INTERRUPT |
620 MXS_DCP_CONTROL0_ENABLE_HASH;
621 if (rctx->init)
622 desc->control0 |= MXS_DCP_CONTROL0_HASH_INIT;
623
624 desc->control1 = actx->alg;
625 desc->next_cmd_addr = 0;
626 desc->source = buf_phys;
627 desc->destination = 0;
628 desc->size = actx->fill;
629 desc->payload = 0;
630 desc->status = 0;
631
632 /*
633 * Align driver with hw behavior when generating null hashes
634 */
635 if (rctx->init && rctx->fini && desc->size == 0) {
636 struct hash_alg_common *halg = crypto_hash_alg_common(tfm);
637 const uint8_t *sha_buf =
638 (actx->alg == MXS_DCP_CONTROL1_HASH_SELECT_SHA1) ?
639 sha1_null_hash : sha256_null_hash;
640 memcpy(sdcp->coh->sha_out_buf, sha_buf, halg->digestsize);
641 ret = 0;
642 goto done_run;
643 }
644
645 /* Set HASH_TERM bit for last transfer block. */
646 if (rctx->fini) {
647 digest_phys = dma_map_single(sdcp->dev, sdcp->coh->sha_out_buf,
648 DCP_SHA_PAY_SZ, DMA_FROM_DEVICE);
649 ret = dma_mapping_error(sdcp->dev, digest_phys);
650 if (ret)
651 goto done_run;
652
653 desc->control0 |= MXS_DCP_CONTROL0_HASH_TERM;
654 desc->payload = digest_phys;
655 }
656
657 ret = mxs_dcp_start_dma(actx);
658
659 if (rctx->fini)
660 dma_unmap_single(sdcp->dev, digest_phys, DCP_SHA_PAY_SZ,
661 DMA_FROM_DEVICE);
662
663done_run:
664 dma_unmap_single(sdcp->dev, buf_phys, DCP_BUF_SZ, DMA_TO_DEVICE);
665
666 return ret;
667}
668
669static int dcp_sha_req_to_buf(struct crypto_async_request *arq)
670{
671 struct dcp *sdcp = global_sdcp;
672
673 struct ahash_request *req = ahash_request_cast(arq);
674 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
675 struct dcp_async_ctx *actx = crypto_ahash_ctx(tfm);
676 struct dcp_sha_req_ctx *rctx = ahash_request_ctx(req);
677 struct hash_alg_common *halg = crypto_hash_alg_common(tfm);
678
679 uint8_t *in_buf = sdcp->coh->sha_in_buf;
680 uint8_t *out_buf = sdcp->coh->sha_out_buf;
681
682 struct scatterlist *src;
683
684 unsigned int i, len, clen, oft = 0;
685 int ret;
686
687 int fin = rctx->fini;
688 if (fin)
689 rctx->fini = 0;
690
691 src = req->src;
692 len = req->nbytes;
693
694 while (len) {
695 if (actx->fill + len > DCP_BUF_SZ)
696 clen = DCP_BUF_SZ - actx->fill;
697 else
698 clen = len;
699
700 scatterwalk_map_and_copy(in_buf + actx->fill, src, oft, clen,
701 0);
702
703 len -= clen;
704 oft += clen;
705 actx->fill += clen;
706
707 /*
708 * If we filled the buffer and still have some
709 * more data, submit the buffer.
710 */
711 if (len && actx->fill == DCP_BUF_SZ) {
712 ret = mxs_dcp_run_sha(req);
713 if (ret)
714 return ret;
715 actx->fill = 0;
716 rctx->init = 0;
717 }
718 }
719
720 if (fin) {
721 rctx->fini = 1;
722
723 /* Submit whatever is left. */
724 if (!req->result)
725 return -EINVAL;
726
727 ret = mxs_dcp_run_sha(req);
728 if (ret)
729 return ret;
730
731 actx->fill = 0;
732
733 /* For some reason the result is flipped */
734 for (i = 0; i < halg->digestsize; i++)
735 req->result[i] = out_buf[halg->digestsize - i - 1];
736 }
737
738 return 0;
739}
740
741static int dcp_chan_thread_sha(void *data)
742{
743 struct dcp *sdcp = global_sdcp;
744 const int chan = DCP_CHAN_HASH_SHA;
745
746 struct crypto_async_request *backlog;
747 struct crypto_async_request *arq;
748 int ret;
749
750 while (!kthread_should_stop()) {
751 set_current_state(TASK_INTERRUPTIBLE);
752
753 spin_lock(&sdcp->lock[chan]);
754 backlog = crypto_get_backlog(&sdcp->queue[chan]);
755 arq = crypto_dequeue_request(&sdcp->queue[chan]);
756 spin_unlock(&sdcp->lock[chan]);
757
758 if (!backlog && !arq) {
759 schedule();
760 continue;
761 }
762
763 set_current_state(TASK_RUNNING);
764
765 if (backlog)
766 crypto_request_complete(backlog, -EINPROGRESS);
767
768 if (arq) {
769 ret = dcp_sha_req_to_buf(arq);
770 crypto_request_complete(arq, ret);
771 }
772 }
773
774 return 0;
775}
776
777static int dcp_sha_init(struct ahash_request *req)
778{
779 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
780 struct dcp_async_ctx *actx = crypto_ahash_ctx(tfm);
781
782 struct hash_alg_common *halg = crypto_hash_alg_common(tfm);
783
784 /*
785 * Start hashing session. The code below only inits the
786 * hashing session context, nothing more.
787 */
788 memset(actx, 0, sizeof(*actx));
789
790 if (strcmp(halg->base.cra_name, "sha1") == 0)
791 actx->alg = MXS_DCP_CONTROL1_HASH_SELECT_SHA1;
792 else
793 actx->alg = MXS_DCP_CONTROL1_HASH_SELECT_SHA256;
794
795 actx->fill = 0;
796 actx->hot = 0;
797 actx->chan = DCP_CHAN_HASH_SHA;
798
799 mutex_init(&actx->mutex);
800
801 return 0;
802}
803
804static int dcp_sha_update_fx(struct ahash_request *req, int fini)
805{
806 struct dcp *sdcp = global_sdcp;
807
808 struct dcp_sha_req_ctx *rctx = ahash_request_ctx(req);
809 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
810 struct dcp_async_ctx *actx = crypto_ahash_ctx(tfm);
811
812 int ret;
813
814 /*
815 * Ignore requests that have no data in them and are not
816 * the trailing requests in the stream of requests.
817 */
818 if (!req->nbytes && !fini)
819 return 0;
820
821 mutex_lock(&actx->mutex);
822
823 rctx->fini = fini;
824
825 if (!actx->hot) {
826 actx->hot = 1;
827 rctx->init = 1;
828 }
829
830 spin_lock(&sdcp->lock[actx->chan]);
831 ret = crypto_enqueue_request(&sdcp->queue[actx->chan], &req->base);
832 spin_unlock(&sdcp->lock[actx->chan]);
833
834 wake_up_process(sdcp->thread[actx->chan]);
835 mutex_unlock(&actx->mutex);
836
837 return ret;
838}
839
840static int dcp_sha_update(struct ahash_request *req)
841{
842 return dcp_sha_update_fx(req, 0);
843}
844
845static int dcp_sha_final(struct ahash_request *req)
846{
847 ahash_request_set_crypt(req, NULL, req->result, 0);
848 req->nbytes = 0;
849 return dcp_sha_update_fx(req, 1);
850}
851
852static int dcp_sha_finup(struct ahash_request *req)
853{
854 return dcp_sha_update_fx(req, 1);
855}
856
857static int dcp_sha_digest(struct ahash_request *req)
858{
859 int ret;
860
861 ret = dcp_sha_init(req);
862 if (ret)
863 return ret;
864
865 return dcp_sha_finup(req);
866}
867
868static int dcp_sha_import(struct ahash_request *req, const void *in)
869{
870 struct dcp_sha_req_ctx *rctx = ahash_request_ctx(req);
871 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
872 struct dcp_async_ctx *actx = crypto_ahash_ctx(tfm);
873 const struct dcp_export_state *export = in;
874
875 memset(rctx, 0, sizeof(struct dcp_sha_req_ctx));
876 memset(actx, 0, sizeof(struct dcp_async_ctx));
877 memcpy(rctx, &export->req_ctx, sizeof(struct dcp_sha_req_ctx));
878 memcpy(actx, &export->async_ctx, sizeof(struct dcp_async_ctx));
879
880 return 0;
881}
882
883static int dcp_sha_export(struct ahash_request *req, void *out)
884{
885 struct dcp_sha_req_ctx *rctx_state = ahash_request_ctx(req);
886 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
887 struct dcp_async_ctx *actx_state = crypto_ahash_ctx(tfm);
888 struct dcp_export_state *export = out;
889
890 memcpy(&export->req_ctx, rctx_state, sizeof(struct dcp_sha_req_ctx));
891 memcpy(&export->async_ctx, actx_state, sizeof(struct dcp_async_ctx));
892
893 return 0;
894}
895
896static int dcp_sha_cra_init(struct crypto_tfm *tfm)
897{
898 crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
899 sizeof(struct dcp_sha_req_ctx));
900 return 0;
901}
902
903static void dcp_sha_cra_exit(struct crypto_tfm *tfm)
904{
905}
906
907/* AES 128 ECB and AES 128 CBC */
908static struct skcipher_alg dcp_aes_algs[] = {
909 {
910 .base.cra_name = "ecb(aes)",
911 .base.cra_driver_name = "ecb-aes-dcp",
912 .base.cra_priority = 400,
913 .base.cra_alignmask = 15,
914 .base.cra_flags = CRYPTO_ALG_ASYNC |
915 CRYPTO_ALG_NEED_FALLBACK,
916 .base.cra_blocksize = AES_BLOCK_SIZE,
917 .base.cra_ctxsize = sizeof(struct dcp_async_ctx),
918 .base.cra_module = THIS_MODULE,
919
920 .min_keysize = AES_MIN_KEY_SIZE,
921 .max_keysize = AES_MAX_KEY_SIZE,
922 .setkey = mxs_dcp_aes_setkey,
923 .encrypt = mxs_dcp_aes_ecb_encrypt,
924 .decrypt = mxs_dcp_aes_ecb_decrypt,
925 .init = mxs_dcp_aes_fallback_init_tfm,
926 .exit = mxs_dcp_aes_fallback_exit_tfm,
927 }, {
928 .base.cra_name = "cbc(aes)",
929 .base.cra_driver_name = "cbc-aes-dcp",
930 .base.cra_priority = 400,
931 .base.cra_alignmask = 15,
932 .base.cra_flags = CRYPTO_ALG_ASYNC |
933 CRYPTO_ALG_NEED_FALLBACK,
934 .base.cra_blocksize = AES_BLOCK_SIZE,
935 .base.cra_ctxsize = sizeof(struct dcp_async_ctx),
936 .base.cra_module = THIS_MODULE,
937
938 .min_keysize = AES_MIN_KEY_SIZE,
939 .max_keysize = AES_MAX_KEY_SIZE,
940 .setkey = mxs_dcp_aes_setkey,
941 .encrypt = mxs_dcp_aes_cbc_encrypt,
942 .decrypt = mxs_dcp_aes_cbc_decrypt,
943 .ivsize = AES_BLOCK_SIZE,
944 .init = mxs_dcp_aes_fallback_init_tfm,
945 .exit = mxs_dcp_aes_fallback_exit_tfm,
946 }, {
947 .base.cra_name = "ecb(paes)",
948 .base.cra_driver_name = "ecb-paes-dcp",
949 .base.cra_priority = 401,
950 .base.cra_alignmask = 15,
951 .base.cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_INTERNAL,
952 .base.cra_blocksize = AES_BLOCK_SIZE,
953 .base.cra_ctxsize = sizeof(struct dcp_async_ctx),
954 .base.cra_module = THIS_MODULE,
955
956 .min_keysize = DCP_PAES_KEYSIZE,
957 .max_keysize = DCP_PAES_KEYSIZE,
958 .setkey = mxs_dcp_aes_setrefkey,
959 .encrypt = mxs_dcp_aes_ecb_encrypt,
960 .decrypt = mxs_dcp_aes_ecb_decrypt,
961 .init = mxs_dcp_paes_init_tfm,
962 }, {
963 .base.cra_name = "cbc(paes)",
964 .base.cra_driver_name = "cbc-paes-dcp",
965 .base.cra_priority = 401,
966 .base.cra_alignmask = 15,
967 .base.cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_INTERNAL,
968 .base.cra_blocksize = AES_BLOCK_SIZE,
969 .base.cra_ctxsize = sizeof(struct dcp_async_ctx),
970 .base.cra_module = THIS_MODULE,
971
972 .min_keysize = DCP_PAES_KEYSIZE,
973 .max_keysize = DCP_PAES_KEYSIZE,
974 .setkey = mxs_dcp_aes_setrefkey,
975 .encrypt = mxs_dcp_aes_cbc_encrypt,
976 .decrypt = mxs_dcp_aes_cbc_decrypt,
977 .ivsize = AES_BLOCK_SIZE,
978 .init = mxs_dcp_paes_init_tfm,
979 },
980};
981
982/* SHA1 */
983static struct ahash_alg dcp_sha1_alg = {
984 .init = dcp_sha_init,
985 .update = dcp_sha_update,
986 .final = dcp_sha_final,
987 .finup = dcp_sha_finup,
988 .digest = dcp_sha_digest,
989 .import = dcp_sha_import,
990 .export = dcp_sha_export,
991 .halg = {
992 .digestsize = SHA1_DIGEST_SIZE,
993 .statesize = sizeof(struct dcp_export_state),
994 .base = {
995 .cra_name = "sha1",
996 .cra_driver_name = "sha1-dcp",
997 .cra_priority = 400,
998 .cra_flags = CRYPTO_ALG_ASYNC,
999 .cra_blocksize = SHA1_BLOCK_SIZE,
1000 .cra_ctxsize = sizeof(struct dcp_async_ctx),
1001 .cra_module = THIS_MODULE,
1002 .cra_init = dcp_sha_cra_init,
1003 .cra_exit = dcp_sha_cra_exit,
1004 },
1005 },
1006};
1007
1008/* SHA256 */
1009static struct ahash_alg dcp_sha256_alg = {
1010 .init = dcp_sha_init,
1011 .update = dcp_sha_update,
1012 .final = dcp_sha_final,
1013 .finup = dcp_sha_finup,
1014 .digest = dcp_sha_digest,
1015 .import = dcp_sha_import,
1016 .export = dcp_sha_export,
1017 .halg = {
1018 .digestsize = SHA256_DIGEST_SIZE,
1019 .statesize = sizeof(struct dcp_export_state),
1020 .base = {
1021 .cra_name = "sha256",
1022 .cra_driver_name = "sha256-dcp",
1023 .cra_priority = 400,
1024 .cra_flags = CRYPTO_ALG_ASYNC,
1025 .cra_blocksize = SHA256_BLOCK_SIZE,
1026 .cra_ctxsize = sizeof(struct dcp_async_ctx),
1027 .cra_module = THIS_MODULE,
1028 .cra_init = dcp_sha_cra_init,
1029 .cra_exit = dcp_sha_cra_exit,
1030 },
1031 },
1032};
1033
1034static irqreturn_t mxs_dcp_irq(int irq, void *context)
1035{
1036 struct dcp *sdcp = context;
1037 uint32_t stat;
1038 int i;
1039
1040 stat = readl(sdcp->base + MXS_DCP_STAT);
1041 stat &= MXS_DCP_STAT_IRQ_MASK;
1042 if (!stat)
1043 return IRQ_NONE;
1044
1045 /* Clear the interrupts. */
1046 writel(stat, sdcp->base + MXS_DCP_STAT_CLR);
1047
1048 /* Complete the DMA requests that finished. */
1049 for (i = 0; i < DCP_MAX_CHANS; i++)
1050 if (stat & (1 << i))
1051 complete(&sdcp->completion[i]);
1052
1053 return IRQ_HANDLED;
1054}
1055
1056static int mxs_dcp_probe(struct platform_device *pdev)
1057{
1058 struct device *dev = &pdev->dev;
1059 struct dcp *sdcp = NULL;
1060 int i, ret;
1061 int dcp_vmi_irq, dcp_irq;
1062
1063 if (global_sdcp) {
1064 dev_err(dev, "Only one DCP instance allowed!\n");
1065 return -ENODEV;
1066 }
1067
1068 dcp_vmi_irq = platform_get_irq(pdev, 0);
1069 if (dcp_vmi_irq < 0)
1070 return dcp_vmi_irq;
1071
1072 dcp_irq = platform_get_irq(pdev, 1);
1073 if (dcp_irq < 0)
1074 return dcp_irq;
1075
1076 sdcp = devm_kzalloc(dev, sizeof(*sdcp), GFP_KERNEL);
1077 if (!sdcp)
1078 return -ENOMEM;
1079
1080 sdcp->dev = dev;
1081 sdcp->base = devm_platform_ioremap_resource(pdev, 0);
1082 if (IS_ERR(sdcp->base))
1083 return PTR_ERR(sdcp->base);
1084
1085
1086 ret = devm_request_irq(dev, dcp_vmi_irq, mxs_dcp_irq, 0,
1087 "dcp-vmi-irq", sdcp);
1088 if (ret) {
1089 dev_err(dev, "Failed to claim DCP VMI IRQ!\n");
1090 return ret;
1091 }
1092
1093 ret = devm_request_irq(dev, dcp_irq, mxs_dcp_irq, 0,
1094 "dcp-irq", sdcp);
1095 if (ret) {
1096 dev_err(dev, "Failed to claim DCP IRQ!\n");
1097 return ret;
1098 }
1099
1100 /* Allocate coherent helper block. */
1101 sdcp->coh = devm_kzalloc(dev, sizeof(*sdcp->coh) + DCP_ALIGNMENT,
1102 GFP_KERNEL);
1103 if (!sdcp->coh)
1104 return -ENOMEM;
1105
1106 /* Re-align the structure so it fits the DCP constraints. */
1107 sdcp->coh = PTR_ALIGN(sdcp->coh, DCP_ALIGNMENT);
1108
1109 /* DCP clock is optional, only used on some SOCs */
1110 sdcp->dcp_clk = devm_clk_get_optional_enabled(dev, "dcp");
1111 if (IS_ERR(sdcp->dcp_clk))
1112 return PTR_ERR(sdcp->dcp_clk);
1113
1114 /* Restart the DCP block. */
1115 ret = stmp_reset_block(sdcp->base);
1116 if (ret) {
1117 dev_err(dev, "Failed reset\n");
1118 return ret;
1119 }
1120
1121 /* Initialize control register. */
1122 writel(MXS_DCP_CTRL_GATHER_RESIDUAL_WRITES |
1123 MXS_DCP_CTRL_ENABLE_CONTEXT_CACHING | 0xf,
1124 sdcp->base + MXS_DCP_CTRL);
1125
1126 /* Enable all DCP DMA channels. */
1127 writel(MXS_DCP_CHANNELCTRL_ENABLE_CHANNEL_MASK,
1128 sdcp->base + MXS_DCP_CHANNELCTRL);
1129
1130 /*
1131 * We do not enable context switching. Give the context buffer a
1132 * pointer to an illegal address so if context switching is
1133 * inadvertantly enabled, the DCP will return an error instead of
1134 * trashing good memory. The DCP DMA cannot access ROM, so any ROM
1135 * address will do.
1136 */
1137 writel(0xffff0000, sdcp->base + MXS_DCP_CONTEXT);
1138 for (i = 0; i < DCP_MAX_CHANS; i++)
1139 writel(0xffffffff, sdcp->base + MXS_DCP_CH_N_STAT_CLR(i));
1140 writel(0xffffffff, sdcp->base + MXS_DCP_STAT_CLR);
1141
1142 global_sdcp = sdcp;
1143
1144 platform_set_drvdata(pdev, sdcp);
1145
1146 for (i = 0; i < DCP_MAX_CHANS; i++) {
1147 spin_lock_init(&sdcp->lock[i]);
1148 init_completion(&sdcp->completion[i]);
1149 crypto_init_queue(&sdcp->queue[i], 50);
1150 }
1151
1152 /* Create the SHA and AES handler threads. */
1153 sdcp->thread[DCP_CHAN_HASH_SHA] = kthread_run(dcp_chan_thread_sha,
1154 NULL, "mxs_dcp_chan/sha");
1155 if (IS_ERR(sdcp->thread[DCP_CHAN_HASH_SHA])) {
1156 dev_err(dev, "Error starting SHA thread!\n");
1157 ret = PTR_ERR(sdcp->thread[DCP_CHAN_HASH_SHA]);
1158 return ret;
1159 }
1160
1161 sdcp->thread[DCP_CHAN_CRYPTO] = kthread_run(dcp_chan_thread_aes,
1162 NULL, "mxs_dcp_chan/aes");
1163 if (IS_ERR(sdcp->thread[DCP_CHAN_CRYPTO])) {
1164 dev_err(dev, "Error starting SHA thread!\n");
1165 ret = PTR_ERR(sdcp->thread[DCP_CHAN_CRYPTO]);
1166 goto err_destroy_sha_thread;
1167 }
1168
1169 /* Register the various crypto algorithms. */
1170 sdcp->caps = readl(sdcp->base + MXS_DCP_CAPABILITY1);
1171
1172 if (sdcp->caps & MXS_DCP_CAPABILITY1_AES128) {
1173 ret = crypto_register_skciphers(dcp_aes_algs,
1174 ARRAY_SIZE(dcp_aes_algs));
1175 if (ret) {
1176 /* Failed to register algorithm. */
1177 dev_err(dev, "Failed to register AES crypto!\n");
1178 goto err_destroy_aes_thread;
1179 }
1180 }
1181
1182 if (sdcp->caps & MXS_DCP_CAPABILITY1_SHA1) {
1183 ret = crypto_register_ahash(&dcp_sha1_alg);
1184 if (ret) {
1185 dev_err(dev, "Failed to register %s hash!\n",
1186 dcp_sha1_alg.halg.base.cra_name);
1187 goto err_unregister_aes;
1188 }
1189 }
1190
1191 if (sdcp->caps & MXS_DCP_CAPABILITY1_SHA256) {
1192 ret = crypto_register_ahash(&dcp_sha256_alg);
1193 if (ret) {
1194 dev_err(dev, "Failed to register %s hash!\n",
1195 dcp_sha256_alg.halg.base.cra_name);
1196 goto err_unregister_sha1;
1197 }
1198 }
1199
1200 return 0;
1201
1202err_unregister_sha1:
1203 if (sdcp->caps & MXS_DCP_CAPABILITY1_SHA1)
1204 crypto_unregister_ahash(&dcp_sha1_alg);
1205
1206err_unregister_aes:
1207 if (sdcp->caps & MXS_DCP_CAPABILITY1_AES128)
1208 crypto_unregister_skciphers(dcp_aes_algs, ARRAY_SIZE(dcp_aes_algs));
1209
1210err_destroy_aes_thread:
1211 kthread_stop(sdcp->thread[DCP_CHAN_CRYPTO]);
1212
1213err_destroy_sha_thread:
1214 kthread_stop(sdcp->thread[DCP_CHAN_HASH_SHA]);
1215
1216 return ret;
1217}
1218
1219static void mxs_dcp_remove(struct platform_device *pdev)
1220{
1221 struct dcp *sdcp = platform_get_drvdata(pdev);
1222
1223 if (sdcp->caps & MXS_DCP_CAPABILITY1_SHA256)
1224 crypto_unregister_ahash(&dcp_sha256_alg);
1225
1226 if (sdcp->caps & MXS_DCP_CAPABILITY1_SHA1)
1227 crypto_unregister_ahash(&dcp_sha1_alg);
1228
1229 if (sdcp->caps & MXS_DCP_CAPABILITY1_AES128)
1230 crypto_unregister_skciphers(dcp_aes_algs, ARRAY_SIZE(dcp_aes_algs));
1231
1232 kthread_stop(sdcp->thread[DCP_CHAN_HASH_SHA]);
1233 kthread_stop(sdcp->thread[DCP_CHAN_CRYPTO]);
1234
1235 platform_set_drvdata(pdev, NULL);
1236
1237 global_sdcp = NULL;
1238}
1239
1240static const struct of_device_id mxs_dcp_dt_ids[] = {
1241 { .compatible = "fsl,imx23-dcp", .data = NULL, },
1242 { .compatible = "fsl,imx28-dcp", .data = NULL, },
1243 { /* sentinel */ }
1244};
1245
1246MODULE_DEVICE_TABLE(of, mxs_dcp_dt_ids);
1247
1248static struct platform_driver mxs_dcp_driver = {
1249 .probe = mxs_dcp_probe,
1250 .remove = mxs_dcp_remove,
1251 .driver = {
1252 .name = "mxs-dcp",
1253 .of_match_table = mxs_dcp_dt_ids,
1254 },
1255};
1256
1257module_platform_driver(mxs_dcp_driver);
1258
1259MODULE_AUTHOR("Marek Vasut <marex@denx.de>");
1260MODULE_DESCRIPTION("Freescale MXS DCP Driver");
1261MODULE_LICENSE("GPL");
1262MODULE_ALIAS("platform:mxs-dcp");
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * Freescale i.MX23/i.MX28 Data Co-Processor driver
4 *
5 * Copyright (C) 2013 Marek Vasut <marex@denx.de>
6 */
7
8#include <linux/dma-mapping.h>
9#include <linux/interrupt.h>
10#include <linux/io.h>
11#include <linux/kernel.h>
12#include <linux/kthread.h>
13#include <linux/module.h>
14#include <linux/of.h>
15#include <linux/platform_device.h>
16#include <linux/stmp_device.h>
17#include <linux/clk.h>
18
19#include <crypto/aes.h>
20#include <crypto/sha.h>
21#include <crypto/internal/hash.h>
22#include <crypto/internal/skcipher.h>
23
24#define DCP_MAX_CHANS 4
25#define DCP_BUF_SZ PAGE_SIZE
26#define DCP_SHA_PAY_SZ 64
27
28#define DCP_ALIGNMENT 64
29
30/*
31 * Null hashes to align with hw behavior on imx6sl and ull
32 * these are flipped for consistency with hw output
33 */
34static const uint8_t sha1_null_hash[] =
35 "\x09\x07\xd8\xaf\x90\x18\x60\x95\xef\xbf"
36 "\x55\x32\x0d\x4b\x6b\x5e\xee\xa3\x39\xda";
37
38static const uint8_t sha256_null_hash[] =
39 "\x55\xb8\x52\x78\x1b\x99\x95\xa4"
40 "\x4c\x93\x9b\x64\xe4\x41\xae\x27"
41 "\x24\xb9\x6f\x99\xc8\xf4\xfb\x9a"
42 "\x14\x1c\xfc\x98\x42\xc4\xb0\xe3";
43
44/* DCP DMA descriptor. */
45struct dcp_dma_desc {
46 uint32_t next_cmd_addr;
47 uint32_t control0;
48 uint32_t control1;
49 uint32_t source;
50 uint32_t destination;
51 uint32_t size;
52 uint32_t payload;
53 uint32_t status;
54};
55
56/* Coherent aligned block for bounce buffering. */
57struct dcp_coherent_block {
58 uint8_t aes_in_buf[DCP_BUF_SZ];
59 uint8_t aes_out_buf[DCP_BUF_SZ];
60 uint8_t sha_in_buf[DCP_BUF_SZ];
61 uint8_t sha_out_buf[DCP_SHA_PAY_SZ];
62
63 uint8_t aes_key[2 * AES_KEYSIZE_128];
64
65 struct dcp_dma_desc desc[DCP_MAX_CHANS];
66};
67
68struct dcp {
69 struct device *dev;
70 void __iomem *base;
71
72 uint32_t caps;
73
74 struct dcp_coherent_block *coh;
75
76 struct completion completion[DCP_MAX_CHANS];
77 spinlock_t lock[DCP_MAX_CHANS];
78 struct task_struct *thread[DCP_MAX_CHANS];
79 struct crypto_queue queue[DCP_MAX_CHANS];
80 struct clk *dcp_clk;
81};
82
83enum dcp_chan {
84 DCP_CHAN_HASH_SHA = 0,
85 DCP_CHAN_CRYPTO = 2,
86};
87
88struct dcp_async_ctx {
89 /* Common context */
90 enum dcp_chan chan;
91 uint32_t fill;
92
93 /* SHA Hash-specific context */
94 struct mutex mutex;
95 uint32_t alg;
96 unsigned int hot:1;
97
98 /* Crypto-specific context */
99 struct crypto_sync_skcipher *fallback;
100 unsigned int key_len;
101 uint8_t key[AES_KEYSIZE_128];
102};
103
104struct dcp_aes_req_ctx {
105 unsigned int enc:1;
106 unsigned int ecb:1;
107};
108
109struct dcp_sha_req_ctx {
110 unsigned int init:1;
111 unsigned int fini:1;
112};
113
114struct dcp_export_state {
115 struct dcp_sha_req_ctx req_ctx;
116 struct dcp_async_ctx async_ctx;
117};
118
119/*
120 * There can even be only one instance of the MXS DCP due to the
121 * design of Linux Crypto API.
122 */
123static struct dcp *global_sdcp;
124
125/* DCP register layout. */
126#define MXS_DCP_CTRL 0x00
127#define MXS_DCP_CTRL_GATHER_RESIDUAL_WRITES (1 << 23)
128#define MXS_DCP_CTRL_ENABLE_CONTEXT_CACHING (1 << 22)
129
130#define MXS_DCP_STAT 0x10
131#define MXS_DCP_STAT_CLR 0x18
132#define MXS_DCP_STAT_IRQ_MASK 0xf
133
134#define MXS_DCP_CHANNELCTRL 0x20
135#define MXS_DCP_CHANNELCTRL_ENABLE_CHANNEL_MASK 0xff
136
137#define MXS_DCP_CAPABILITY1 0x40
138#define MXS_DCP_CAPABILITY1_SHA256 (4 << 16)
139#define MXS_DCP_CAPABILITY1_SHA1 (1 << 16)
140#define MXS_DCP_CAPABILITY1_AES128 (1 << 0)
141
142#define MXS_DCP_CONTEXT 0x50
143
144#define MXS_DCP_CH_N_CMDPTR(n) (0x100 + ((n) * 0x40))
145
146#define MXS_DCP_CH_N_SEMA(n) (0x110 + ((n) * 0x40))
147
148#define MXS_DCP_CH_N_STAT(n) (0x120 + ((n) * 0x40))
149#define MXS_DCP_CH_N_STAT_CLR(n) (0x128 + ((n) * 0x40))
150
151/* DMA descriptor bits. */
152#define MXS_DCP_CONTROL0_HASH_TERM (1 << 13)
153#define MXS_DCP_CONTROL0_HASH_INIT (1 << 12)
154#define MXS_DCP_CONTROL0_PAYLOAD_KEY (1 << 11)
155#define MXS_DCP_CONTROL0_CIPHER_ENCRYPT (1 << 8)
156#define MXS_DCP_CONTROL0_CIPHER_INIT (1 << 9)
157#define MXS_DCP_CONTROL0_ENABLE_HASH (1 << 6)
158#define MXS_DCP_CONTROL0_ENABLE_CIPHER (1 << 5)
159#define MXS_DCP_CONTROL0_DECR_SEMAPHORE (1 << 1)
160#define MXS_DCP_CONTROL0_INTERRUPT (1 << 0)
161
162#define MXS_DCP_CONTROL1_HASH_SELECT_SHA256 (2 << 16)
163#define MXS_DCP_CONTROL1_HASH_SELECT_SHA1 (0 << 16)
164#define MXS_DCP_CONTROL1_CIPHER_MODE_CBC (1 << 4)
165#define MXS_DCP_CONTROL1_CIPHER_MODE_ECB (0 << 4)
166#define MXS_DCP_CONTROL1_CIPHER_SELECT_AES128 (0 << 0)
167
168static int mxs_dcp_start_dma(struct dcp_async_ctx *actx)
169{
170 struct dcp *sdcp = global_sdcp;
171 const int chan = actx->chan;
172 uint32_t stat;
173 unsigned long ret;
174 struct dcp_dma_desc *desc = &sdcp->coh->desc[actx->chan];
175
176 dma_addr_t desc_phys = dma_map_single(sdcp->dev, desc, sizeof(*desc),
177 DMA_TO_DEVICE);
178
179 reinit_completion(&sdcp->completion[chan]);
180
181 /* Clear status register. */
182 writel(0xffffffff, sdcp->base + MXS_DCP_CH_N_STAT_CLR(chan));
183
184 /* Load the DMA descriptor. */
185 writel(desc_phys, sdcp->base + MXS_DCP_CH_N_CMDPTR(chan));
186
187 /* Increment the semaphore to start the DMA transfer. */
188 writel(1, sdcp->base + MXS_DCP_CH_N_SEMA(chan));
189
190 ret = wait_for_completion_timeout(&sdcp->completion[chan],
191 msecs_to_jiffies(1000));
192 if (!ret) {
193 dev_err(sdcp->dev, "Channel %i timeout (DCP_STAT=0x%08x)\n",
194 chan, readl(sdcp->base + MXS_DCP_STAT));
195 return -ETIMEDOUT;
196 }
197
198 stat = readl(sdcp->base + MXS_DCP_CH_N_STAT(chan));
199 if (stat & 0xff) {
200 dev_err(sdcp->dev, "Channel %i error (CH_STAT=0x%08x)\n",
201 chan, stat);
202 return -EINVAL;
203 }
204
205 dma_unmap_single(sdcp->dev, desc_phys, sizeof(*desc), DMA_TO_DEVICE);
206
207 return 0;
208}
209
210/*
211 * Encryption (AES128)
212 */
213static int mxs_dcp_run_aes(struct dcp_async_ctx *actx,
214 struct ablkcipher_request *req, int init)
215{
216 struct dcp *sdcp = global_sdcp;
217 struct dcp_dma_desc *desc = &sdcp->coh->desc[actx->chan];
218 struct dcp_aes_req_ctx *rctx = ablkcipher_request_ctx(req);
219 int ret;
220
221 dma_addr_t key_phys = dma_map_single(sdcp->dev, sdcp->coh->aes_key,
222 2 * AES_KEYSIZE_128,
223 DMA_TO_DEVICE);
224 dma_addr_t src_phys = dma_map_single(sdcp->dev, sdcp->coh->aes_in_buf,
225 DCP_BUF_SZ, DMA_TO_DEVICE);
226 dma_addr_t dst_phys = dma_map_single(sdcp->dev, sdcp->coh->aes_out_buf,
227 DCP_BUF_SZ, DMA_FROM_DEVICE);
228
229 if (actx->fill % AES_BLOCK_SIZE) {
230 dev_err(sdcp->dev, "Invalid block size!\n");
231 ret = -EINVAL;
232 goto aes_done_run;
233 }
234
235 /* Fill in the DMA descriptor. */
236 desc->control0 = MXS_DCP_CONTROL0_DECR_SEMAPHORE |
237 MXS_DCP_CONTROL0_INTERRUPT |
238 MXS_DCP_CONTROL0_ENABLE_CIPHER;
239
240 /* Payload contains the key. */
241 desc->control0 |= MXS_DCP_CONTROL0_PAYLOAD_KEY;
242
243 if (rctx->enc)
244 desc->control0 |= MXS_DCP_CONTROL0_CIPHER_ENCRYPT;
245 if (init)
246 desc->control0 |= MXS_DCP_CONTROL0_CIPHER_INIT;
247
248 desc->control1 = MXS_DCP_CONTROL1_CIPHER_SELECT_AES128;
249
250 if (rctx->ecb)
251 desc->control1 |= MXS_DCP_CONTROL1_CIPHER_MODE_ECB;
252 else
253 desc->control1 |= MXS_DCP_CONTROL1_CIPHER_MODE_CBC;
254
255 desc->next_cmd_addr = 0;
256 desc->source = src_phys;
257 desc->destination = dst_phys;
258 desc->size = actx->fill;
259 desc->payload = key_phys;
260 desc->status = 0;
261
262 ret = mxs_dcp_start_dma(actx);
263
264aes_done_run:
265 dma_unmap_single(sdcp->dev, key_phys, 2 * AES_KEYSIZE_128,
266 DMA_TO_DEVICE);
267 dma_unmap_single(sdcp->dev, src_phys, DCP_BUF_SZ, DMA_TO_DEVICE);
268 dma_unmap_single(sdcp->dev, dst_phys, DCP_BUF_SZ, DMA_FROM_DEVICE);
269
270 return ret;
271}
272
273static int mxs_dcp_aes_block_crypt(struct crypto_async_request *arq)
274{
275 struct dcp *sdcp = global_sdcp;
276
277 struct ablkcipher_request *req = ablkcipher_request_cast(arq);
278 struct dcp_async_ctx *actx = crypto_tfm_ctx(arq->tfm);
279 struct dcp_aes_req_ctx *rctx = ablkcipher_request_ctx(req);
280
281 struct scatterlist *dst = req->dst;
282 struct scatterlist *src = req->src;
283 const int nents = sg_nents(req->src);
284
285 const int out_off = DCP_BUF_SZ;
286 uint8_t *in_buf = sdcp->coh->aes_in_buf;
287 uint8_t *out_buf = sdcp->coh->aes_out_buf;
288
289 uint8_t *out_tmp, *src_buf, *dst_buf = NULL;
290 uint32_t dst_off = 0;
291 uint32_t last_out_len = 0;
292
293 uint8_t *key = sdcp->coh->aes_key;
294
295 int ret = 0;
296 int split = 0;
297 unsigned int i, len, clen, rem = 0, tlen = 0;
298 int init = 0;
299 bool limit_hit = false;
300
301 actx->fill = 0;
302
303 /* Copy the key from the temporary location. */
304 memcpy(key, actx->key, actx->key_len);
305
306 if (!rctx->ecb) {
307 /* Copy the CBC IV just past the key. */
308 memcpy(key + AES_KEYSIZE_128, req->info, AES_KEYSIZE_128);
309 /* CBC needs the INIT set. */
310 init = 1;
311 } else {
312 memset(key + AES_KEYSIZE_128, 0, AES_KEYSIZE_128);
313 }
314
315 for_each_sg(req->src, src, nents, i) {
316 src_buf = sg_virt(src);
317 len = sg_dma_len(src);
318 tlen += len;
319 limit_hit = tlen > req->nbytes;
320
321 if (limit_hit)
322 len = req->nbytes - (tlen - len);
323
324 do {
325 if (actx->fill + len > out_off)
326 clen = out_off - actx->fill;
327 else
328 clen = len;
329
330 memcpy(in_buf + actx->fill, src_buf, clen);
331 len -= clen;
332 src_buf += clen;
333 actx->fill += clen;
334
335 /*
336 * If we filled the buffer or this is the last SG,
337 * submit the buffer.
338 */
339 if (actx->fill == out_off || sg_is_last(src) ||
340 limit_hit) {
341 ret = mxs_dcp_run_aes(actx, req, init);
342 if (ret)
343 return ret;
344 init = 0;
345
346 out_tmp = out_buf;
347 last_out_len = actx->fill;
348 while (dst && actx->fill) {
349 if (!split) {
350 dst_buf = sg_virt(dst);
351 dst_off = 0;
352 }
353 rem = min(sg_dma_len(dst) - dst_off,
354 actx->fill);
355
356 memcpy(dst_buf + dst_off, out_tmp, rem);
357 out_tmp += rem;
358 dst_off += rem;
359 actx->fill -= rem;
360
361 if (dst_off == sg_dma_len(dst)) {
362 dst = sg_next(dst);
363 split = 0;
364 } else {
365 split = 1;
366 }
367 }
368 }
369 } while (len);
370
371 if (limit_hit)
372 break;
373 }
374
375 /* Copy the IV for CBC for chaining */
376 if (!rctx->ecb) {
377 if (rctx->enc)
378 memcpy(req->info, out_buf+(last_out_len-AES_BLOCK_SIZE),
379 AES_BLOCK_SIZE);
380 else
381 memcpy(req->info, in_buf+(last_out_len-AES_BLOCK_SIZE),
382 AES_BLOCK_SIZE);
383 }
384
385 return ret;
386}
387
388static int dcp_chan_thread_aes(void *data)
389{
390 struct dcp *sdcp = global_sdcp;
391 const int chan = DCP_CHAN_CRYPTO;
392
393 struct crypto_async_request *backlog;
394 struct crypto_async_request *arq;
395
396 int ret;
397
398 while (!kthread_should_stop()) {
399 set_current_state(TASK_INTERRUPTIBLE);
400
401 spin_lock(&sdcp->lock[chan]);
402 backlog = crypto_get_backlog(&sdcp->queue[chan]);
403 arq = crypto_dequeue_request(&sdcp->queue[chan]);
404 spin_unlock(&sdcp->lock[chan]);
405
406 if (!backlog && !arq) {
407 schedule();
408 continue;
409 }
410
411 set_current_state(TASK_RUNNING);
412
413 if (backlog)
414 backlog->complete(backlog, -EINPROGRESS);
415
416 if (arq) {
417 ret = mxs_dcp_aes_block_crypt(arq);
418 arq->complete(arq, ret);
419 }
420 }
421
422 return 0;
423}
424
425static int mxs_dcp_block_fallback(struct ablkcipher_request *req, int enc)
426{
427 struct crypto_ablkcipher *tfm = crypto_ablkcipher_reqtfm(req);
428 struct dcp_async_ctx *ctx = crypto_ablkcipher_ctx(tfm);
429 SYNC_SKCIPHER_REQUEST_ON_STACK(subreq, ctx->fallback);
430 int ret;
431
432 skcipher_request_set_sync_tfm(subreq, ctx->fallback);
433 skcipher_request_set_callback(subreq, req->base.flags, NULL, NULL);
434 skcipher_request_set_crypt(subreq, req->src, req->dst,
435 req->nbytes, req->info);
436
437 if (enc)
438 ret = crypto_skcipher_encrypt(subreq);
439 else
440 ret = crypto_skcipher_decrypt(subreq);
441
442 skcipher_request_zero(subreq);
443
444 return ret;
445}
446
447static int mxs_dcp_aes_enqueue(struct ablkcipher_request *req, int enc, int ecb)
448{
449 struct dcp *sdcp = global_sdcp;
450 struct crypto_async_request *arq = &req->base;
451 struct dcp_async_ctx *actx = crypto_tfm_ctx(arq->tfm);
452 struct dcp_aes_req_ctx *rctx = ablkcipher_request_ctx(req);
453 int ret;
454
455 if (unlikely(actx->key_len != AES_KEYSIZE_128))
456 return mxs_dcp_block_fallback(req, enc);
457
458 rctx->enc = enc;
459 rctx->ecb = ecb;
460 actx->chan = DCP_CHAN_CRYPTO;
461
462 spin_lock(&sdcp->lock[actx->chan]);
463 ret = crypto_enqueue_request(&sdcp->queue[actx->chan], &req->base);
464 spin_unlock(&sdcp->lock[actx->chan]);
465
466 wake_up_process(sdcp->thread[actx->chan]);
467
468 return ret;
469}
470
471static int mxs_dcp_aes_ecb_decrypt(struct ablkcipher_request *req)
472{
473 return mxs_dcp_aes_enqueue(req, 0, 1);
474}
475
476static int mxs_dcp_aes_ecb_encrypt(struct ablkcipher_request *req)
477{
478 return mxs_dcp_aes_enqueue(req, 1, 1);
479}
480
481static int mxs_dcp_aes_cbc_decrypt(struct ablkcipher_request *req)
482{
483 return mxs_dcp_aes_enqueue(req, 0, 0);
484}
485
486static int mxs_dcp_aes_cbc_encrypt(struct ablkcipher_request *req)
487{
488 return mxs_dcp_aes_enqueue(req, 1, 0);
489}
490
491static int mxs_dcp_aes_setkey(struct crypto_ablkcipher *tfm, const u8 *key,
492 unsigned int len)
493{
494 struct dcp_async_ctx *actx = crypto_ablkcipher_ctx(tfm);
495 unsigned int ret;
496
497 /*
498 * AES 128 is supposed by the hardware, store key into temporary
499 * buffer and exit. We must use the temporary buffer here, since
500 * there can still be an operation in progress.
501 */
502 actx->key_len = len;
503 if (len == AES_KEYSIZE_128) {
504 memcpy(actx->key, key, len);
505 return 0;
506 }
507
508 /*
509 * If the requested AES key size is not supported by the hardware,
510 * but is supported by in-kernel software implementation, we use
511 * software fallback.
512 */
513 crypto_sync_skcipher_clear_flags(actx->fallback, CRYPTO_TFM_REQ_MASK);
514 crypto_sync_skcipher_set_flags(actx->fallback,
515 tfm->base.crt_flags & CRYPTO_TFM_REQ_MASK);
516
517 ret = crypto_sync_skcipher_setkey(actx->fallback, key, len);
518 if (!ret)
519 return 0;
520
521 tfm->base.crt_flags &= ~CRYPTO_TFM_RES_MASK;
522 tfm->base.crt_flags |= crypto_sync_skcipher_get_flags(actx->fallback) &
523 CRYPTO_TFM_RES_MASK;
524
525 return ret;
526}
527
528static int mxs_dcp_aes_fallback_init(struct crypto_tfm *tfm)
529{
530 const char *name = crypto_tfm_alg_name(tfm);
531 struct dcp_async_ctx *actx = crypto_tfm_ctx(tfm);
532 struct crypto_sync_skcipher *blk;
533
534 blk = crypto_alloc_sync_skcipher(name, 0, CRYPTO_ALG_NEED_FALLBACK);
535 if (IS_ERR(blk))
536 return PTR_ERR(blk);
537
538 actx->fallback = blk;
539 tfm->crt_ablkcipher.reqsize = sizeof(struct dcp_aes_req_ctx);
540 return 0;
541}
542
543static void mxs_dcp_aes_fallback_exit(struct crypto_tfm *tfm)
544{
545 struct dcp_async_ctx *actx = crypto_tfm_ctx(tfm);
546
547 crypto_free_sync_skcipher(actx->fallback);
548}
549
550/*
551 * Hashing (SHA1/SHA256)
552 */
553static int mxs_dcp_run_sha(struct ahash_request *req)
554{
555 struct dcp *sdcp = global_sdcp;
556 int ret;
557
558 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
559 struct dcp_async_ctx *actx = crypto_ahash_ctx(tfm);
560 struct dcp_sha_req_ctx *rctx = ahash_request_ctx(req);
561 struct dcp_dma_desc *desc = &sdcp->coh->desc[actx->chan];
562
563 dma_addr_t digest_phys = 0;
564 dma_addr_t buf_phys = dma_map_single(sdcp->dev, sdcp->coh->sha_in_buf,
565 DCP_BUF_SZ, DMA_TO_DEVICE);
566
567 /* Fill in the DMA descriptor. */
568 desc->control0 = MXS_DCP_CONTROL0_DECR_SEMAPHORE |
569 MXS_DCP_CONTROL0_INTERRUPT |
570 MXS_DCP_CONTROL0_ENABLE_HASH;
571 if (rctx->init)
572 desc->control0 |= MXS_DCP_CONTROL0_HASH_INIT;
573
574 desc->control1 = actx->alg;
575 desc->next_cmd_addr = 0;
576 desc->source = buf_phys;
577 desc->destination = 0;
578 desc->size = actx->fill;
579 desc->payload = 0;
580 desc->status = 0;
581
582 /*
583 * Align driver with hw behavior when generating null hashes
584 */
585 if (rctx->init && rctx->fini && desc->size == 0) {
586 struct hash_alg_common *halg = crypto_hash_alg_common(tfm);
587 const uint8_t *sha_buf =
588 (actx->alg == MXS_DCP_CONTROL1_HASH_SELECT_SHA1) ?
589 sha1_null_hash : sha256_null_hash;
590 memcpy(sdcp->coh->sha_out_buf, sha_buf, halg->digestsize);
591 ret = 0;
592 goto done_run;
593 }
594
595 /* Set HASH_TERM bit for last transfer block. */
596 if (rctx->fini) {
597 digest_phys = dma_map_single(sdcp->dev, sdcp->coh->sha_out_buf,
598 DCP_SHA_PAY_SZ, DMA_FROM_DEVICE);
599 desc->control0 |= MXS_DCP_CONTROL0_HASH_TERM;
600 desc->payload = digest_phys;
601 }
602
603 ret = mxs_dcp_start_dma(actx);
604
605 if (rctx->fini)
606 dma_unmap_single(sdcp->dev, digest_phys, DCP_SHA_PAY_SZ,
607 DMA_FROM_DEVICE);
608
609done_run:
610 dma_unmap_single(sdcp->dev, buf_phys, DCP_BUF_SZ, DMA_TO_DEVICE);
611
612 return ret;
613}
614
615static int dcp_sha_req_to_buf(struct crypto_async_request *arq)
616{
617 struct dcp *sdcp = global_sdcp;
618
619 struct ahash_request *req = ahash_request_cast(arq);
620 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
621 struct dcp_async_ctx *actx = crypto_ahash_ctx(tfm);
622 struct dcp_sha_req_ctx *rctx = ahash_request_ctx(req);
623 struct hash_alg_common *halg = crypto_hash_alg_common(tfm);
624 const int nents = sg_nents(req->src);
625
626 uint8_t *in_buf = sdcp->coh->sha_in_buf;
627 uint8_t *out_buf = sdcp->coh->sha_out_buf;
628
629 uint8_t *src_buf;
630
631 struct scatterlist *src;
632
633 unsigned int i, len, clen;
634 int ret;
635
636 int fin = rctx->fini;
637 if (fin)
638 rctx->fini = 0;
639
640 for_each_sg(req->src, src, nents, i) {
641 src_buf = sg_virt(src);
642 len = sg_dma_len(src);
643
644 do {
645 if (actx->fill + len > DCP_BUF_SZ)
646 clen = DCP_BUF_SZ - actx->fill;
647 else
648 clen = len;
649
650 memcpy(in_buf + actx->fill, src_buf, clen);
651 len -= clen;
652 src_buf += clen;
653 actx->fill += clen;
654
655 /*
656 * If we filled the buffer and still have some
657 * more data, submit the buffer.
658 */
659 if (len && actx->fill == DCP_BUF_SZ) {
660 ret = mxs_dcp_run_sha(req);
661 if (ret)
662 return ret;
663 actx->fill = 0;
664 rctx->init = 0;
665 }
666 } while (len);
667 }
668
669 if (fin) {
670 rctx->fini = 1;
671
672 /* Submit whatever is left. */
673 if (!req->result)
674 return -EINVAL;
675
676 ret = mxs_dcp_run_sha(req);
677 if (ret)
678 return ret;
679
680 actx->fill = 0;
681
682 /* For some reason the result is flipped */
683 for (i = 0; i < halg->digestsize; i++)
684 req->result[i] = out_buf[halg->digestsize - i - 1];
685 }
686
687 return 0;
688}
689
690static int dcp_chan_thread_sha(void *data)
691{
692 struct dcp *sdcp = global_sdcp;
693 const int chan = DCP_CHAN_HASH_SHA;
694
695 struct crypto_async_request *backlog;
696 struct crypto_async_request *arq;
697 int ret;
698
699 while (!kthread_should_stop()) {
700 set_current_state(TASK_INTERRUPTIBLE);
701
702 spin_lock(&sdcp->lock[chan]);
703 backlog = crypto_get_backlog(&sdcp->queue[chan]);
704 arq = crypto_dequeue_request(&sdcp->queue[chan]);
705 spin_unlock(&sdcp->lock[chan]);
706
707 if (!backlog && !arq) {
708 schedule();
709 continue;
710 }
711
712 set_current_state(TASK_RUNNING);
713
714 if (backlog)
715 backlog->complete(backlog, -EINPROGRESS);
716
717 if (arq) {
718 ret = dcp_sha_req_to_buf(arq);
719 arq->complete(arq, ret);
720 }
721 }
722
723 return 0;
724}
725
726static int dcp_sha_init(struct ahash_request *req)
727{
728 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
729 struct dcp_async_ctx *actx = crypto_ahash_ctx(tfm);
730
731 struct hash_alg_common *halg = crypto_hash_alg_common(tfm);
732
733 /*
734 * Start hashing session. The code below only inits the
735 * hashing session context, nothing more.
736 */
737 memset(actx, 0, sizeof(*actx));
738
739 if (strcmp(halg->base.cra_name, "sha1") == 0)
740 actx->alg = MXS_DCP_CONTROL1_HASH_SELECT_SHA1;
741 else
742 actx->alg = MXS_DCP_CONTROL1_HASH_SELECT_SHA256;
743
744 actx->fill = 0;
745 actx->hot = 0;
746 actx->chan = DCP_CHAN_HASH_SHA;
747
748 mutex_init(&actx->mutex);
749
750 return 0;
751}
752
753static int dcp_sha_update_fx(struct ahash_request *req, int fini)
754{
755 struct dcp *sdcp = global_sdcp;
756
757 struct dcp_sha_req_ctx *rctx = ahash_request_ctx(req);
758 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
759 struct dcp_async_ctx *actx = crypto_ahash_ctx(tfm);
760
761 int ret;
762
763 /*
764 * Ignore requests that have no data in them and are not
765 * the trailing requests in the stream of requests.
766 */
767 if (!req->nbytes && !fini)
768 return 0;
769
770 mutex_lock(&actx->mutex);
771
772 rctx->fini = fini;
773
774 if (!actx->hot) {
775 actx->hot = 1;
776 rctx->init = 1;
777 }
778
779 spin_lock(&sdcp->lock[actx->chan]);
780 ret = crypto_enqueue_request(&sdcp->queue[actx->chan], &req->base);
781 spin_unlock(&sdcp->lock[actx->chan]);
782
783 wake_up_process(sdcp->thread[actx->chan]);
784 mutex_unlock(&actx->mutex);
785
786 return ret;
787}
788
789static int dcp_sha_update(struct ahash_request *req)
790{
791 return dcp_sha_update_fx(req, 0);
792}
793
794static int dcp_sha_final(struct ahash_request *req)
795{
796 ahash_request_set_crypt(req, NULL, req->result, 0);
797 req->nbytes = 0;
798 return dcp_sha_update_fx(req, 1);
799}
800
801static int dcp_sha_finup(struct ahash_request *req)
802{
803 return dcp_sha_update_fx(req, 1);
804}
805
806static int dcp_sha_digest(struct ahash_request *req)
807{
808 int ret;
809
810 ret = dcp_sha_init(req);
811 if (ret)
812 return ret;
813
814 return dcp_sha_finup(req);
815}
816
817static int dcp_sha_import(struct ahash_request *req, const void *in)
818{
819 struct dcp_sha_req_ctx *rctx = ahash_request_ctx(req);
820 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
821 struct dcp_async_ctx *actx = crypto_ahash_ctx(tfm);
822 const struct dcp_export_state *export = in;
823
824 memset(rctx, 0, sizeof(struct dcp_sha_req_ctx));
825 memset(actx, 0, sizeof(struct dcp_async_ctx));
826 memcpy(rctx, &export->req_ctx, sizeof(struct dcp_sha_req_ctx));
827 memcpy(actx, &export->async_ctx, sizeof(struct dcp_async_ctx));
828
829 return 0;
830}
831
832static int dcp_sha_export(struct ahash_request *req, void *out)
833{
834 struct dcp_sha_req_ctx *rctx_state = ahash_request_ctx(req);
835 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
836 struct dcp_async_ctx *actx_state = crypto_ahash_ctx(tfm);
837 struct dcp_export_state *export = out;
838
839 memcpy(&export->req_ctx, rctx_state, sizeof(struct dcp_sha_req_ctx));
840 memcpy(&export->async_ctx, actx_state, sizeof(struct dcp_async_ctx));
841
842 return 0;
843}
844
845static int dcp_sha_cra_init(struct crypto_tfm *tfm)
846{
847 crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
848 sizeof(struct dcp_sha_req_ctx));
849 return 0;
850}
851
852static void dcp_sha_cra_exit(struct crypto_tfm *tfm)
853{
854}
855
856/* AES 128 ECB and AES 128 CBC */
857static struct crypto_alg dcp_aes_algs[] = {
858 {
859 .cra_name = "ecb(aes)",
860 .cra_driver_name = "ecb-aes-dcp",
861 .cra_priority = 400,
862 .cra_alignmask = 15,
863 .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
864 CRYPTO_ALG_ASYNC |
865 CRYPTO_ALG_NEED_FALLBACK,
866 .cra_init = mxs_dcp_aes_fallback_init,
867 .cra_exit = mxs_dcp_aes_fallback_exit,
868 .cra_blocksize = AES_BLOCK_SIZE,
869 .cra_ctxsize = sizeof(struct dcp_async_ctx),
870 .cra_type = &crypto_ablkcipher_type,
871 .cra_module = THIS_MODULE,
872 .cra_u = {
873 .ablkcipher = {
874 .min_keysize = AES_MIN_KEY_SIZE,
875 .max_keysize = AES_MAX_KEY_SIZE,
876 .setkey = mxs_dcp_aes_setkey,
877 .encrypt = mxs_dcp_aes_ecb_encrypt,
878 .decrypt = mxs_dcp_aes_ecb_decrypt
879 },
880 },
881 }, {
882 .cra_name = "cbc(aes)",
883 .cra_driver_name = "cbc-aes-dcp",
884 .cra_priority = 400,
885 .cra_alignmask = 15,
886 .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
887 CRYPTO_ALG_ASYNC |
888 CRYPTO_ALG_NEED_FALLBACK,
889 .cra_init = mxs_dcp_aes_fallback_init,
890 .cra_exit = mxs_dcp_aes_fallback_exit,
891 .cra_blocksize = AES_BLOCK_SIZE,
892 .cra_ctxsize = sizeof(struct dcp_async_ctx),
893 .cra_type = &crypto_ablkcipher_type,
894 .cra_module = THIS_MODULE,
895 .cra_u = {
896 .ablkcipher = {
897 .min_keysize = AES_MIN_KEY_SIZE,
898 .max_keysize = AES_MAX_KEY_SIZE,
899 .setkey = mxs_dcp_aes_setkey,
900 .encrypt = mxs_dcp_aes_cbc_encrypt,
901 .decrypt = mxs_dcp_aes_cbc_decrypt,
902 .ivsize = AES_BLOCK_SIZE,
903 },
904 },
905 },
906};
907
908/* SHA1 */
909static struct ahash_alg dcp_sha1_alg = {
910 .init = dcp_sha_init,
911 .update = dcp_sha_update,
912 .final = dcp_sha_final,
913 .finup = dcp_sha_finup,
914 .digest = dcp_sha_digest,
915 .import = dcp_sha_import,
916 .export = dcp_sha_export,
917 .halg = {
918 .digestsize = SHA1_DIGEST_SIZE,
919 .statesize = sizeof(struct dcp_export_state),
920 .base = {
921 .cra_name = "sha1",
922 .cra_driver_name = "sha1-dcp",
923 .cra_priority = 400,
924 .cra_alignmask = 63,
925 .cra_flags = CRYPTO_ALG_ASYNC,
926 .cra_blocksize = SHA1_BLOCK_SIZE,
927 .cra_ctxsize = sizeof(struct dcp_async_ctx),
928 .cra_module = THIS_MODULE,
929 .cra_init = dcp_sha_cra_init,
930 .cra_exit = dcp_sha_cra_exit,
931 },
932 },
933};
934
935/* SHA256 */
936static struct ahash_alg dcp_sha256_alg = {
937 .init = dcp_sha_init,
938 .update = dcp_sha_update,
939 .final = dcp_sha_final,
940 .finup = dcp_sha_finup,
941 .digest = dcp_sha_digest,
942 .import = dcp_sha_import,
943 .export = dcp_sha_export,
944 .halg = {
945 .digestsize = SHA256_DIGEST_SIZE,
946 .statesize = sizeof(struct dcp_export_state),
947 .base = {
948 .cra_name = "sha256",
949 .cra_driver_name = "sha256-dcp",
950 .cra_priority = 400,
951 .cra_alignmask = 63,
952 .cra_flags = CRYPTO_ALG_ASYNC,
953 .cra_blocksize = SHA256_BLOCK_SIZE,
954 .cra_ctxsize = sizeof(struct dcp_async_ctx),
955 .cra_module = THIS_MODULE,
956 .cra_init = dcp_sha_cra_init,
957 .cra_exit = dcp_sha_cra_exit,
958 },
959 },
960};
961
962static irqreturn_t mxs_dcp_irq(int irq, void *context)
963{
964 struct dcp *sdcp = context;
965 uint32_t stat;
966 int i;
967
968 stat = readl(sdcp->base + MXS_DCP_STAT);
969 stat &= MXS_DCP_STAT_IRQ_MASK;
970 if (!stat)
971 return IRQ_NONE;
972
973 /* Clear the interrupts. */
974 writel(stat, sdcp->base + MXS_DCP_STAT_CLR);
975
976 /* Complete the DMA requests that finished. */
977 for (i = 0; i < DCP_MAX_CHANS; i++)
978 if (stat & (1 << i))
979 complete(&sdcp->completion[i]);
980
981 return IRQ_HANDLED;
982}
983
984static int mxs_dcp_probe(struct platform_device *pdev)
985{
986 struct device *dev = &pdev->dev;
987 struct dcp *sdcp = NULL;
988 int i, ret;
989 int dcp_vmi_irq, dcp_irq;
990
991 if (global_sdcp) {
992 dev_err(dev, "Only one DCP instance allowed!\n");
993 return -ENODEV;
994 }
995
996 dcp_vmi_irq = platform_get_irq(pdev, 0);
997 if (dcp_vmi_irq < 0)
998 return dcp_vmi_irq;
999
1000 dcp_irq = platform_get_irq(pdev, 1);
1001 if (dcp_irq < 0)
1002 return dcp_irq;
1003
1004 sdcp = devm_kzalloc(dev, sizeof(*sdcp), GFP_KERNEL);
1005 if (!sdcp)
1006 return -ENOMEM;
1007
1008 sdcp->dev = dev;
1009 sdcp->base = devm_platform_ioremap_resource(pdev, 0);
1010 if (IS_ERR(sdcp->base))
1011 return PTR_ERR(sdcp->base);
1012
1013
1014 ret = devm_request_irq(dev, dcp_vmi_irq, mxs_dcp_irq, 0,
1015 "dcp-vmi-irq", sdcp);
1016 if (ret) {
1017 dev_err(dev, "Failed to claim DCP VMI IRQ!\n");
1018 return ret;
1019 }
1020
1021 ret = devm_request_irq(dev, dcp_irq, mxs_dcp_irq, 0,
1022 "dcp-irq", sdcp);
1023 if (ret) {
1024 dev_err(dev, "Failed to claim DCP IRQ!\n");
1025 return ret;
1026 }
1027
1028 /* Allocate coherent helper block. */
1029 sdcp->coh = devm_kzalloc(dev, sizeof(*sdcp->coh) + DCP_ALIGNMENT,
1030 GFP_KERNEL);
1031 if (!sdcp->coh)
1032 return -ENOMEM;
1033
1034 /* Re-align the structure so it fits the DCP constraints. */
1035 sdcp->coh = PTR_ALIGN(sdcp->coh, DCP_ALIGNMENT);
1036
1037 /* DCP clock is optional, only used on some SOCs */
1038 sdcp->dcp_clk = devm_clk_get(dev, "dcp");
1039 if (IS_ERR(sdcp->dcp_clk)) {
1040 if (sdcp->dcp_clk != ERR_PTR(-ENOENT))
1041 return PTR_ERR(sdcp->dcp_clk);
1042 sdcp->dcp_clk = NULL;
1043 }
1044 ret = clk_prepare_enable(sdcp->dcp_clk);
1045 if (ret)
1046 return ret;
1047
1048 /* Restart the DCP block. */
1049 ret = stmp_reset_block(sdcp->base);
1050 if (ret) {
1051 dev_err(dev, "Failed reset\n");
1052 goto err_disable_unprepare_clk;
1053 }
1054
1055 /* Initialize control register. */
1056 writel(MXS_DCP_CTRL_GATHER_RESIDUAL_WRITES |
1057 MXS_DCP_CTRL_ENABLE_CONTEXT_CACHING | 0xf,
1058 sdcp->base + MXS_DCP_CTRL);
1059
1060 /* Enable all DCP DMA channels. */
1061 writel(MXS_DCP_CHANNELCTRL_ENABLE_CHANNEL_MASK,
1062 sdcp->base + MXS_DCP_CHANNELCTRL);
1063
1064 /*
1065 * We do not enable context switching. Give the context buffer a
1066 * pointer to an illegal address so if context switching is
1067 * inadvertantly enabled, the DCP will return an error instead of
1068 * trashing good memory. The DCP DMA cannot access ROM, so any ROM
1069 * address will do.
1070 */
1071 writel(0xffff0000, sdcp->base + MXS_DCP_CONTEXT);
1072 for (i = 0; i < DCP_MAX_CHANS; i++)
1073 writel(0xffffffff, sdcp->base + MXS_DCP_CH_N_STAT_CLR(i));
1074 writel(0xffffffff, sdcp->base + MXS_DCP_STAT_CLR);
1075
1076 global_sdcp = sdcp;
1077
1078 platform_set_drvdata(pdev, sdcp);
1079
1080 for (i = 0; i < DCP_MAX_CHANS; i++) {
1081 spin_lock_init(&sdcp->lock[i]);
1082 init_completion(&sdcp->completion[i]);
1083 crypto_init_queue(&sdcp->queue[i], 50);
1084 }
1085
1086 /* Create the SHA and AES handler threads. */
1087 sdcp->thread[DCP_CHAN_HASH_SHA] = kthread_run(dcp_chan_thread_sha,
1088 NULL, "mxs_dcp_chan/sha");
1089 if (IS_ERR(sdcp->thread[DCP_CHAN_HASH_SHA])) {
1090 dev_err(dev, "Error starting SHA thread!\n");
1091 ret = PTR_ERR(sdcp->thread[DCP_CHAN_HASH_SHA]);
1092 goto err_disable_unprepare_clk;
1093 }
1094
1095 sdcp->thread[DCP_CHAN_CRYPTO] = kthread_run(dcp_chan_thread_aes,
1096 NULL, "mxs_dcp_chan/aes");
1097 if (IS_ERR(sdcp->thread[DCP_CHAN_CRYPTO])) {
1098 dev_err(dev, "Error starting SHA thread!\n");
1099 ret = PTR_ERR(sdcp->thread[DCP_CHAN_CRYPTO]);
1100 goto err_destroy_sha_thread;
1101 }
1102
1103 /* Register the various crypto algorithms. */
1104 sdcp->caps = readl(sdcp->base + MXS_DCP_CAPABILITY1);
1105
1106 if (sdcp->caps & MXS_DCP_CAPABILITY1_AES128) {
1107 ret = crypto_register_algs(dcp_aes_algs,
1108 ARRAY_SIZE(dcp_aes_algs));
1109 if (ret) {
1110 /* Failed to register algorithm. */
1111 dev_err(dev, "Failed to register AES crypto!\n");
1112 goto err_destroy_aes_thread;
1113 }
1114 }
1115
1116 if (sdcp->caps & MXS_DCP_CAPABILITY1_SHA1) {
1117 ret = crypto_register_ahash(&dcp_sha1_alg);
1118 if (ret) {
1119 dev_err(dev, "Failed to register %s hash!\n",
1120 dcp_sha1_alg.halg.base.cra_name);
1121 goto err_unregister_aes;
1122 }
1123 }
1124
1125 if (sdcp->caps & MXS_DCP_CAPABILITY1_SHA256) {
1126 ret = crypto_register_ahash(&dcp_sha256_alg);
1127 if (ret) {
1128 dev_err(dev, "Failed to register %s hash!\n",
1129 dcp_sha256_alg.halg.base.cra_name);
1130 goto err_unregister_sha1;
1131 }
1132 }
1133
1134 return 0;
1135
1136err_unregister_sha1:
1137 if (sdcp->caps & MXS_DCP_CAPABILITY1_SHA1)
1138 crypto_unregister_ahash(&dcp_sha1_alg);
1139
1140err_unregister_aes:
1141 if (sdcp->caps & MXS_DCP_CAPABILITY1_AES128)
1142 crypto_unregister_algs(dcp_aes_algs, ARRAY_SIZE(dcp_aes_algs));
1143
1144err_destroy_aes_thread:
1145 kthread_stop(sdcp->thread[DCP_CHAN_CRYPTO]);
1146
1147err_destroy_sha_thread:
1148 kthread_stop(sdcp->thread[DCP_CHAN_HASH_SHA]);
1149
1150err_disable_unprepare_clk:
1151 clk_disable_unprepare(sdcp->dcp_clk);
1152
1153 return ret;
1154}
1155
1156static int mxs_dcp_remove(struct platform_device *pdev)
1157{
1158 struct dcp *sdcp = platform_get_drvdata(pdev);
1159
1160 if (sdcp->caps & MXS_DCP_CAPABILITY1_SHA256)
1161 crypto_unregister_ahash(&dcp_sha256_alg);
1162
1163 if (sdcp->caps & MXS_DCP_CAPABILITY1_SHA1)
1164 crypto_unregister_ahash(&dcp_sha1_alg);
1165
1166 if (sdcp->caps & MXS_DCP_CAPABILITY1_AES128)
1167 crypto_unregister_algs(dcp_aes_algs, ARRAY_SIZE(dcp_aes_algs));
1168
1169 kthread_stop(sdcp->thread[DCP_CHAN_HASH_SHA]);
1170 kthread_stop(sdcp->thread[DCP_CHAN_CRYPTO]);
1171
1172 clk_disable_unprepare(sdcp->dcp_clk);
1173
1174 platform_set_drvdata(pdev, NULL);
1175
1176 global_sdcp = NULL;
1177
1178 return 0;
1179}
1180
1181static const struct of_device_id mxs_dcp_dt_ids[] = {
1182 { .compatible = "fsl,imx23-dcp", .data = NULL, },
1183 { .compatible = "fsl,imx28-dcp", .data = NULL, },
1184 { /* sentinel */ }
1185};
1186
1187MODULE_DEVICE_TABLE(of, mxs_dcp_dt_ids);
1188
1189static struct platform_driver mxs_dcp_driver = {
1190 .probe = mxs_dcp_probe,
1191 .remove = mxs_dcp_remove,
1192 .driver = {
1193 .name = "mxs-dcp",
1194 .of_match_table = mxs_dcp_dt_ids,
1195 },
1196};
1197
1198module_platform_driver(mxs_dcp_driver);
1199
1200MODULE_AUTHOR("Marek Vasut <marex@denx.de>");
1201MODULE_DESCRIPTION("Freescale MXS DCP Driver");
1202MODULE_LICENSE("GPL");
1203MODULE_ALIAS("platform:mxs-dcp");