Linux Audio

Check our new training course

Loading...
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * Freescale i.MX23/i.MX28 Data Co-Processor driver
   4 *
   5 * Copyright (C) 2013 Marek Vasut <marex@denx.de>
   6 */
   7
   8#include <linux/dma-mapping.h>
   9#include <linux/interrupt.h>
  10#include <linux/io.h>
  11#include <linux/kernel.h>
  12#include <linux/kthread.h>
  13#include <linux/module.h>
  14#include <linux/of.h>
  15#include <linux/platform_device.h>
  16#include <linux/stmp_device.h>
  17#include <linux/clk.h>
  18#include <soc/fsl/dcp.h>
  19
  20#include <crypto/aes.h>
  21#include <crypto/sha1.h>
  22#include <crypto/sha2.h>
  23#include <crypto/internal/hash.h>
  24#include <crypto/internal/skcipher.h>
  25#include <crypto/scatterwalk.h>
  26
  27#define DCP_MAX_CHANS	4
  28#define DCP_BUF_SZ	PAGE_SIZE
  29#define DCP_SHA_PAY_SZ  64
  30
  31#define DCP_ALIGNMENT	64
  32
  33/*
  34 * Null hashes to align with hw behavior on imx6sl and ull
  35 * these are flipped for consistency with hw output
  36 */
  37static const uint8_t sha1_null_hash[] =
  38	"\x09\x07\xd8\xaf\x90\x18\x60\x95\xef\xbf"
  39	"\x55\x32\x0d\x4b\x6b\x5e\xee\xa3\x39\xda";
  40
  41static const uint8_t sha256_null_hash[] =
  42	"\x55\xb8\x52\x78\x1b\x99\x95\xa4"
  43	"\x4c\x93\x9b\x64\xe4\x41\xae\x27"
  44	"\x24\xb9\x6f\x99\xc8\xf4\xfb\x9a"
  45	"\x14\x1c\xfc\x98\x42\xc4\xb0\xe3";
  46
  47/* DCP DMA descriptor. */
  48struct dcp_dma_desc {
  49	uint32_t	next_cmd_addr;
  50	uint32_t	control0;
  51	uint32_t	control1;
  52	uint32_t	source;
  53	uint32_t	destination;
  54	uint32_t	size;
  55	uint32_t	payload;
  56	uint32_t	status;
  57};
  58
  59/* Coherent aligned block for bounce buffering. */
  60struct dcp_coherent_block {
  61	uint8_t			aes_in_buf[DCP_BUF_SZ];
  62	uint8_t			aes_out_buf[DCP_BUF_SZ];
  63	uint8_t			sha_in_buf[DCP_BUF_SZ];
  64	uint8_t			sha_out_buf[DCP_SHA_PAY_SZ];
  65
  66	uint8_t			aes_key[2 * AES_KEYSIZE_128];
  67
  68	struct dcp_dma_desc	desc[DCP_MAX_CHANS];
  69};
  70
  71struct dcp {
  72	struct device			*dev;
  73	void __iomem			*base;
  74
  75	uint32_t			caps;
  76
  77	struct dcp_coherent_block	*coh;
  78
  79	struct completion		completion[DCP_MAX_CHANS];
  80	spinlock_t			lock[DCP_MAX_CHANS];
  81	struct task_struct		*thread[DCP_MAX_CHANS];
  82	struct crypto_queue		queue[DCP_MAX_CHANS];
  83	struct clk			*dcp_clk;
  84};
  85
  86enum dcp_chan {
  87	DCP_CHAN_HASH_SHA	= 0,
  88	DCP_CHAN_CRYPTO		= 2,
  89};
  90
  91struct dcp_async_ctx {
  92	/* Common context */
  93	enum dcp_chan	chan;
  94	uint32_t	fill;
  95
  96	/* SHA Hash-specific context */
  97	struct mutex			mutex;
  98	uint32_t			alg;
  99	unsigned int			hot:1;
 100
 101	/* Crypto-specific context */
 102	struct crypto_skcipher		*fallback;
 103	unsigned int			key_len;
 104	uint8_t				key[AES_KEYSIZE_128];
 105	bool				key_referenced;
 106};
 107
 108struct dcp_aes_req_ctx {
 109	unsigned int	enc:1;
 110	unsigned int	ecb:1;
 111	struct skcipher_request fallback_req;	// keep at the end
 112};
 113
 114struct dcp_sha_req_ctx {
 115	unsigned int	init:1;
 116	unsigned int	fini:1;
 117};
 118
 119struct dcp_export_state {
 120	struct dcp_sha_req_ctx req_ctx;
 121	struct dcp_async_ctx async_ctx;
 122};
 123
 124/*
 125 * There can even be only one instance of the MXS DCP due to the
 126 * design of Linux Crypto API.
 127 */
 128static struct dcp *global_sdcp;
 129
 130/* DCP register layout. */
 131#define MXS_DCP_CTRL				0x00
 132#define MXS_DCP_CTRL_GATHER_RESIDUAL_WRITES	(1 << 23)
 133#define MXS_DCP_CTRL_ENABLE_CONTEXT_CACHING	(1 << 22)
 134
 135#define MXS_DCP_STAT				0x10
 136#define MXS_DCP_STAT_CLR			0x18
 137#define MXS_DCP_STAT_IRQ_MASK			0xf
 138
 139#define MXS_DCP_CHANNELCTRL			0x20
 140#define MXS_DCP_CHANNELCTRL_ENABLE_CHANNEL_MASK	0xff
 141
 142#define MXS_DCP_CAPABILITY1			0x40
 143#define MXS_DCP_CAPABILITY1_SHA256		(4 << 16)
 144#define MXS_DCP_CAPABILITY1_SHA1		(1 << 16)
 145#define MXS_DCP_CAPABILITY1_AES128		(1 << 0)
 146
 147#define MXS_DCP_CONTEXT				0x50
 148
 149#define MXS_DCP_CH_N_CMDPTR(n)			(0x100 + ((n) * 0x40))
 150
 151#define MXS_DCP_CH_N_SEMA(n)			(0x110 + ((n) * 0x40))
 152
 153#define MXS_DCP_CH_N_STAT(n)			(0x120 + ((n) * 0x40))
 154#define MXS_DCP_CH_N_STAT_CLR(n)		(0x128 + ((n) * 0x40))
 155
 156/* DMA descriptor bits. */
 157#define MXS_DCP_CONTROL0_HASH_TERM		(1 << 13)
 158#define MXS_DCP_CONTROL0_HASH_INIT		(1 << 12)
 159#define MXS_DCP_CONTROL0_PAYLOAD_KEY		(1 << 11)
 160#define MXS_DCP_CONTROL0_OTP_KEY		(1 << 10)
 161#define MXS_DCP_CONTROL0_CIPHER_ENCRYPT		(1 << 8)
 162#define MXS_DCP_CONTROL0_CIPHER_INIT		(1 << 9)
 163#define MXS_DCP_CONTROL0_ENABLE_HASH		(1 << 6)
 164#define MXS_DCP_CONTROL0_ENABLE_CIPHER		(1 << 5)
 165#define MXS_DCP_CONTROL0_DECR_SEMAPHORE		(1 << 1)
 166#define MXS_DCP_CONTROL0_INTERRUPT		(1 << 0)
 167
 168#define MXS_DCP_CONTROL1_HASH_SELECT_SHA256	(2 << 16)
 169#define MXS_DCP_CONTROL1_HASH_SELECT_SHA1	(0 << 16)
 170#define MXS_DCP_CONTROL1_CIPHER_MODE_CBC	(1 << 4)
 171#define MXS_DCP_CONTROL1_CIPHER_MODE_ECB	(0 << 4)
 172#define MXS_DCP_CONTROL1_CIPHER_SELECT_AES128	(0 << 0)
 173
 174#define MXS_DCP_CONTROL1_KEY_SELECT_SHIFT	8
 175
 176static int mxs_dcp_start_dma(struct dcp_async_ctx *actx)
 177{
 178	int dma_err;
 179	struct dcp *sdcp = global_sdcp;
 180	const int chan = actx->chan;
 181	uint32_t stat;
 182	unsigned long ret;
 183	struct dcp_dma_desc *desc = &sdcp->coh->desc[actx->chan];
 
 184	dma_addr_t desc_phys = dma_map_single(sdcp->dev, desc, sizeof(*desc),
 185					      DMA_TO_DEVICE);
 186
 187	dma_err = dma_mapping_error(sdcp->dev, desc_phys);
 188	if (dma_err)
 189		return dma_err;
 190
 191	reinit_completion(&sdcp->completion[chan]);
 192
 193	/* Clear status register. */
 194	writel(0xffffffff, sdcp->base + MXS_DCP_CH_N_STAT_CLR(chan));
 195
 196	/* Load the DMA descriptor. */
 197	writel(desc_phys, sdcp->base + MXS_DCP_CH_N_CMDPTR(chan));
 198
 199	/* Increment the semaphore to start the DMA transfer. */
 200	writel(1, sdcp->base + MXS_DCP_CH_N_SEMA(chan));
 201
 202	ret = wait_for_completion_timeout(&sdcp->completion[chan],
 203					  msecs_to_jiffies(1000));
 204	if (!ret) {
 205		dev_err(sdcp->dev, "Channel %i timeout (DCP_STAT=0x%08x)\n",
 206			chan, readl(sdcp->base + MXS_DCP_STAT));
 207		return -ETIMEDOUT;
 208	}
 209
 210	stat = readl(sdcp->base + MXS_DCP_CH_N_STAT(chan));
 211	if (stat & 0xff) {
 212		dev_err(sdcp->dev, "Channel %i error (CH_STAT=0x%08x)\n",
 213			chan, stat);
 214		return -EINVAL;
 215	}
 216
 217	dma_unmap_single(sdcp->dev, desc_phys, sizeof(*desc), DMA_TO_DEVICE);
 218
 219	return 0;
 220}
 221
 222/*
 223 * Encryption (AES128)
 224 */
 225static int mxs_dcp_run_aes(struct dcp_async_ctx *actx,
 226			   struct skcipher_request *req, int init)
 227{
 228	dma_addr_t key_phys, src_phys, dst_phys;
 229	struct dcp *sdcp = global_sdcp;
 230	struct dcp_dma_desc *desc = &sdcp->coh->desc[actx->chan];
 231	struct dcp_aes_req_ctx *rctx = skcipher_request_ctx(req);
 232	bool key_referenced = actx->key_referenced;
 233	int ret;
 234
 235	if (key_referenced)
 236		key_phys = dma_map_single(sdcp->dev, sdcp->coh->aes_key + AES_KEYSIZE_128,
 237					  AES_KEYSIZE_128, DMA_TO_DEVICE);
 238	else
 239		key_phys = dma_map_single(sdcp->dev, sdcp->coh->aes_key,
 240					  2 * AES_KEYSIZE_128, DMA_TO_DEVICE);
 241	ret = dma_mapping_error(sdcp->dev, key_phys);
 242	if (ret)
 243		return ret;
 244
 245	src_phys = dma_map_single(sdcp->dev, sdcp->coh->aes_in_buf,
 246				  DCP_BUF_SZ, DMA_TO_DEVICE);
 247	ret = dma_mapping_error(sdcp->dev, src_phys);
 248	if (ret)
 249		goto err_src;
 250
 251	dst_phys = dma_map_single(sdcp->dev, sdcp->coh->aes_out_buf,
 252				  DCP_BUF_SZ, DMA_FROM_DEVICE);
 253	ret = dma_mapping_error(sdcp->dev, dst_phys);
 254	if (ret)
 255		goto err_dst;
 256
 257	if (actx->fill % AES_BLOCK_SIZE) {
 258		dev_err(sdcp->dev, "Invalid block size!\n");
 259		ret = -EINVAL;
 260		goto aes_done_run;
 261	}
 262
 263	/* Fill in the DMA descriptor. */
 264	desc->control0 = MXS_DCP_CONTROL0_DECR_SEMAPHORE |
 265		    MXS_DCP_CONTROL0_INTERRUPT |
 266		    MXS_DCP_CONTROL0_ENABLE_CIPHER;
 267
 268	if (key_referenced)
 269		/* Set OTP key bit to select the key via KEY_SELECT. */
 270		desc->control0 |= MXS_DCP_CONTROL0_OTP_KEY;
 271	else
 272		/* Payload contains the key. */
 273		desc->control0 |= MXS_DCP_CONTROL0_PAYLOAD_KEY;
 274
 275	if (rctx->enc)
 276		desc->control0 |= MXS_DCP_CONTROL0_CIPHER_ENCRYPT;
 277	if (init)
 278		desc->control0 |= MXS_DCP_CONTROL0_CIPHER_INIT;
 279
 280	desc->control1 = MXS_DCP_CONTROL1_CIPHER_SELECT_AES128;
 281
 282	if (rctx->ecb)
 283		desc->control1 |= MXS_DCP_CONTROL1_CIPHER_MODE_ECB;
 284	else
 285		desc->control1 |= MXS_DCP_CONTROL1_CIPHER_MODE_CBC;
 286
 287	if (key_referenced)
 288		desc->control1 |= sdcp->coh->aes_key[0] << MXS_DCP_CONTROL1_KEY_SELECT_SHIFT;
 289
 290	desc->next_cmd_addr = 0;
 291	desc->source = src_phys;
 292	desc->destination = dst_phys;
 293	desc->size = actx->fill;
 294	desc->payload = key_phys;
 295	desc->status = 0;
 296
 297	ret = mxs_dcp_start_dma(actx);
 298
 299aes_done_run:
 300	dma_unmap_single(sdcp->dev, dst_phys, DCP_BUF_SZ, DMA_FROM_DEVICE);
 301err_dst:
 302	dma_unmap_single(sdcp->dev, src_phys, DCP_BUF_SZ, DMA_TO_DEVICE);
 303err_src:
 304	if (key_referenced)
 305		dma_unmap_single(sdcp->dev, key_phys, AES_KEYSIZE_128,
 306				 DMA_TO_DEVICE);
 307	else
 308		dma_unmap_single(sdcp->dev, key_phys, 2 * AES_KEYSIZE_128,
 309				 DMA_TO_DEVICE);
 310	return ret;
 311}
 312
 313static int mxs_dcp_aes_block_crypt(struct crypto_async_request *arq)
 314{
 315	struct dcp *sdcp = global_sdcp;
 316
 317	struct skcipher_request *req = skcipher_request_cast(arq);
 318	struct dcp_async_ctx *actx = crypto_tfm_ctx(arq->tfm);
 319	struct dcp_aes_req_ctx *rctx = skcipher_request_ctx(req);
 320
 321	struct scatterlist *dst = req->dst;
 322	struct scatterlist *src = req->src;
 323	int dst_nents = sg_nents(dst);
 324
 325	const int out_off = DCP_BUF_SZ;
 326	uint8_t *in_buf = sdcp->coh->aes_in_buf;
 327	uint8_t *out_buf = sdcp->coh->aes_out_buf;
 328
 
 329	uint32_t dst_off = 0;
 330	uint8_t *src_buf = NULL;
 331	uint32_t last_out_len = 0;
 332
 333	uint8_t *key = sdcp->coh->aes_key;
 334
 335	int ret = 0;
 336	unsigned int i, len, clen, tlen = 0;
 
 337	int init = 0;
 338	bool limit_hit = false;
 339
 340	actx->fill = 0;
 341
 342	/* Copy the key from the temporary location. */
 343	memcpy(key, actx->key, actx->key_len);
 344
 345	if (!rctx->ecb) {
 346		/* Copy the CBC IV just past the key. */
 347		memcpy(key + AES_KEYSIZE_128, req->iv, AES_KEYSIZE_128);
 348		/* CBC needs the INIT set. */
 349		init = 1;
 350	} else {
 351		memset(key + AES_KEYSIZE_128, 0, AES_KEYSIZE_128);
 352	}
 353
 354	for_each_sg(req->src, src, sg_nents(req->src), i) {
 355		src_buf = sg_virt(src);
 356		len = sg_dma_len(src);
 357		tlen += len;
 358		limit_hit = tlen > req->cryptlen;
 359
 360		if (limit_hit)
 361			len = req->cryptlen - (tlen - len);
 362
 363		do {
 364			if (actx->fill + len > out_off)
 365				clen = out_off - actx->fill;
 366			else
 367				clen = len;
 368
 369			memcpy(in_buf + actx->fill, src_buf, clen);
 370			len -= clen;
 371			src_buf += clen;
 372			actx->fill += clen;
 373
 374			/*
 375			 * If we filled the buffer or this is the last SG,
 376			 * submit the buffer.
 377			 */
 378			if (actx->fill == out_off || sg_is_last(src) ||
 379			    limit_hit) {
 380				ret = mxs_dcp_run_aes(actx, req, init);
 381				if (ret)
 382					return ret;
 383				init = 0;
 384
 385				sg_pcopy_from_buffer(dst, dst_nents, out_buf,
 386						     actx->fill, dst_off);
 387				dst_off += actx->fill;
 388				last_out_len = actx->fill;
 389				actx->fill = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 390			}
 391		} while (len);
 392
 393		if (limit_hit)
 394			break;
 395	}
 396
 397	/* Copy the IV for CBC for chaining */
 398	if (!rctx->ecb) {
 399		if (rctx->enc)
 400			memcpy(req->iv, out_buf+(last_out_len-AES_BLOCK_SIZE),
 401				AES_BLOCK_SIZE);
 402		else
 403			memcpy(req->iv, in_buf+(last_out_len-AES_BLOCK_SIZE),
 404				AES_BLOCK_SIZE);
 405	}
 406
 407	return ret;
 408}
 409
 410static int dcp_chan_thread_aes(void *data)
 411{
 412	struct dcp *sdcp = global_sdcp;
 413	const int chan = DCP_CHAN_CRYPTO;
 414
 415	struct crypto_async_request *backlog;
 416	struct crypto_async_request *arq;
 417
 418	int ret;
 419
 420	while (!kthread_should_stop()) {
 421		set_current_state(TASK_INTERRUPTIBLE);
 422
 423		spin_lock(&sdcp->lock[chan]);
 424		backlog = crypto_get_backlog(&sdcp->queue[chan]);
 425		arq = crypto_dequeue_request(&sdcp->queue[chan]);
 426		spin_unlock(&sdcp->lock[chan]);
 427
 428		if (!backlog && !arq) {
 429			schedule();
 430			continue;
 431		}
 432
 433		set_current_state(TASK_RUNNING);
 434
 435		if (backlog)
 436			crypto_request_complete(backlog, -EINPROGRESS);
 437
 438		if (arq) {
 439			ret = mxs_dcp_aes_block_crypt(arq);
 440			crypto_request_complete(arq, ret);
 441		}
 442	}
 443
 444	return 0;
 445}
 446
 447static int mxs_dcp_block_fallback(struct skcipher_request *req, int enc)
 448{
 449	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
 450	struct dcp_aes_req_ctx *rctx = skcipher_request_ctx(req);
 451	struct dcp_async_ctx *ctx = crypto_skcipher_ctx(tfm);
 452	int ret;
 453
 454	skcipher_request_set_tfm(&rctx->fallback_req, ctx->fallback);
 455	skcipher_request_set_callback(&rctx->fallback_req, req->base.flags,
 456				      req->base.complete, req->base.data);
 457	skcipher_request_set_crypt(&rctx->fallback_req, req->src, req->dst,
 458				   req->cryptlen, req->iv);
 459
 460	if (enc)
 461		ret = crypto_skcipher_encrypt(&rctx->fallback_req);
 462	else
 463		ret = crypto_skcipher_decrypt(&rctx->fallback_req);
 
 
 464
 465	return ret;
 466}
 467
 468static int mxs_dcp_aes_enqueue(struct skcipher_request *req, int enc, int ecb)
 469{
 470	struct dcp *sdcp = global_sdcp;
 471	struct crypto_async_request *arq = &req->base;
 472	struct dcp_async_ctx *actx = crypto_tfm_ctx(arq->tfm);
 473	struct dcp_aes_req_ctx *rctx = skcipher_request_ctx(req);
 474	int ret;
 475
 476	if (unlikely(actx->key_len != AES_KEYSIZE_128 && !actx->key_referenced))
 477		return mxs_dcp_block_fallback(req, enc);
 478
 479	rctx->enc = enc;
 480	rctx->ecb = ecb;
 481	actx->chan = DCP_CHAN_CRYPTO;
 482
 483	spin_lock(&sdcp->lock[actx->chan]);
 484	ret = crypto_enqueue_request(&sdcp->queue[actx->chan], &req->base);
 485	spin_unlock(&sdcp->lock[actx->chan]);
 486
 487	wake_up_process(sdcp->thread[actx->chan]);
 488
 489	return ret;
 490}
 491
 492static int mxs_dcp_aes_ecb_decrypt(struct skcipher_request *req)
 493{
 494	return mxs_dcp_aes_enqueue(req, 0, 1);
 495}
 496
 497static int mxs_dcp_aes_ecb_encrypt(struct skcipher_request *req)
 498{
 499	return mxs_dcp_aes_enqueue(req, 1, 1);
 500}
 501
 502static int mxs_dcp_aes_cbc_decrypt(struct skcipher_request *req)
 503{
 504	return mxs_dcp_aes_enqueue(req, 0, 0);
 505}
 506
 507static int mxs_dcp_aes_cbc_encrypt(struct skcipher_request *req)
 508{
 509	return mxs_dcp_aes_enqueue(req, 1, 0);
 510}
 511
 512static int mxs_dcp_aes_setkey(struct crypto_skcipher *tfm, const u8 *key,
 513			      unsigned int len)
 514{
 515	struct dcp_async_ctx *actx = crypto_skcipher_ctx(tfm);
 
 516
 517	/*
 518	 * AES 128 is supposed by the hardware, store key into temporary
 519	 * buffer and exit. We must use the temporary buffer here, since
 520	 * there can still be an operation in progress.
 521	 */
 522	actx->key_len = len;
 523	actx->key_referenced = false;
 524	if (len == AES_KEYSIZE_128) {
 525		memcpy(actx->key, key, len);
 526		return 0;
 527	}
 528
 529	/*
 530	 * If the requested AES key size is not supported by the hardware,
 531	 * but is supported by in-kernel software implementation, we use
 532	 * software fallback.
 533	 */
 534	crypto_skcipher_clear_flags(actx->fallback, CRYPTO_TFM_REQ_MASK);
 535	crypto_skcipher_set_flags(actx->fallback,
 536				  tfm->base.crt_flags & CRYPTO_TFM_REQ_MASK);
 537	return crypto_skcipher_setkey(actx->fallback, key, len);
 538}
 539
 540static int mxs_dcp_aes_setrefkey(struct crypto_skcipher *tfm, const u8 *key,
 541				 unsigned int len)
 542{
 543	struct dcp_async_ctx *actx = crypto_skcipher_ctx(tfm);
 544
 545	if (len != DCP_PAES_KEYSIZE)
 546		return -EINVAL;
 547
 548	switch (key[0]) {
 549	case DCP_PAES_KEY_SLOT0:
 550	case DCP_PAES_KEY_SLOT1:
 551	case DCP_PAES_KEY_SLOT2:
 552	case DCP_PAES_KEY_SLOT3:
 553	case DCP_PAES_KEY_UNIQUE:
 554	case DCP_PAES_KEY_OTP:
 555		memcpy(actx->key, key, len);
 556		actx->key_len = len;
 557		actx->key_referenced = true;
 558		break;
 559	default:
 560		return -EINVAL;
 561	}
 562
 563	return 0;
 564}
 565
 566static int mxs_dcp_aes_fallback_init_tfm(struct crypto_skcipher *tfm)
 567{
 568	const char *name = crypto_tfm_alg_name(crypto_skcipher_tfm(tfm));
 569	struct dcp_async_ctx *actx = crypto_skcipher_ctx(tfm);
 570	struct crypto_skcipher *blk;
 571
 572	blk = crypto_alloc_skcipher(name, 0, CRYPTO_ALG_NEED_FALLBACK);
 573	if (IS_ERR(blk))
 574		return PTR_ERR(blk);
 575
 576	actx->fallback = blk;
 577	crypto_skcipher_set_reqsize(tfm, sizeof(struct dcp_aes_req_ctx) +
 578					 crypto_skcipher_reqsize(blk));
 579	return 0;
 580}
 581
 582static void mxs_dcp_aes_fallback_exit_tfm(struct crypto_skcipher *tfm)
 583{
 584	struct dcp_async_ctx *actx = crypto_skcipher_ctx(tfm);
 585
 586	crypto_free_skcipher(actx->fallback);
 587}
 588
 589static int mxs_dcp_paes_init_tfm(struct crypto_skcipher *tfm)
 590{
 591	crypto_skcipher_set_reqsize(tfm, sizeof(struct dcp_aes_req_ctx));
 592
 593	return 0;
 594}
 595
 596/*
 597 * Hashing (SHA1/SHA256)
 598 */
 599static int mxs_dcp_run_sha(struct ahash_request *req)
 600{
 601	struct dcp *sdcp = global_sdcp;
 602	int ret;
 603
 604	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
 605	struct dcp_async_ctx *actx = crypto_ahash_ctx(tfm);
 606	struct dcp_sha_req_ctx *rctx = ahash_request_ctx(req);
 607	struct dcp_dma_desc *desc = &sdcp->coh->desc[actx->chan];
 608
 609	dma_addr_t digest_phys = 0;
 610	dma_addr_t buf_phys = dma_map_single(sdcp->dev, sdcp->coh->sha_in_buf,
 611					     DCP_BUF_SZ, DMA_TO_DEVICE);
 612
 613	ret = dma_mapping_error(sdcp->dev, buf_phys);
 614	if (ret)
 615		return ret;
 616
 617	/* Fill in the DMA descriptor. */
 618	desc->control0 = MXS_DCP_CONTROL0_DECR_SEMAPHORE |
 619		    MXS_DCP_CONTROL0_INTERRUPT |
 620		    MXS_DCP_CONTROL0_ENABLE_HASH;
 621	if (rctx->init)
 622		desc->control0 |= MXS_DCP_CONTROL0_HASH_INIT;
 623
 624	desc->control1 = actx->alg;
 625	desc->next_cmd_addr = 0;
 626	desc->source = buf_phys;
 627	desc->destination = 0;
 628	desc->size = actx->fill;
 629	desc->payload = 0;
 630	desc->status = 0;
 631
 632	/*
 633	 * Align driver with hw behavior when generating null hashes
 634	 */
 635	if (rctx->init && rctx->fini && desc->size == 0) {
 636		struct hash_alg_common *halg = crypto_hash_alg_common(tfm);
 637		const uint8_t *sha_buf =
 638			(actx->alg == MXS_DCP_CONTROL1_HASH_SELECT_SHA1) ?
 639			sha1_null_hash : sha256_null_hash;
 640		memcpy(sdcp->coh->sha_out_buf, sha_buf, halg->digestsize);
 641		ret = 0;
 642		goto done_run;
 643	}
 644
 645	/* Set HASH_TERM bit for last transfer block. */
 646	if (rctx->fini) {
 647		digest_phys = dma_map_single(sdcp->dev, sdcp->coh->sha_out_buf,
 648					     DCP_SHA_PAY_SZ, DMA_FROM_DEVICE);
 649		ret = dma_mapping_error(sdcp->dev, digest_phys);
 650		if (ret)
 651			goto done_run;
 652
 653		desc->control0 |= MXS_DCP_CONTROL0_HASH_TERM;
 654		desc->payload = digest_phys;
 655	}
 656
 657	ret = mxs_dcp_start_dma(actx);
 658
 659	if (rctx->fini)
 660		dma_unmap_single(sdcp->dev, digest_phys, DCP_SHA_PAY_SZ,
 661				 DMA_FROM_DEVICE);
 662
 663done_run:
 664	dma_unmap_single(sdcp->dev, buf_phys, DCP_BUF_SZ, DMA_TO_DEVICE);
 665
 666	return ret;
 667}
 668
 669static int dcp_sha_req_to_buf(struct crypto_async_request *arq)
 670{
 671	struct dcp *sdcp = global_sdcp;
 672
 673	struct ahash_request *req = ahash_request_cast(arq);
 674	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
 675	struct dcp_async_ctx *actx = crypto_ahash_ctx(tfm);
 676	struct dcp_sha_req_ctx *rctx = ahash_request_ctx(req);
 677	struct hash_alg_common *halg = crypto_hash_alg_common(tfm);
 
 678
 679	uint8_t *in_buf = sdcp->coh->sha_in_buf;
 680	uint8_t *out_buf = sdcp->coh->sha_out_buf;
 681
 
 
 682	struct scatterlist *src;
 683
 684	unsigned int i, len, clen, oft = 0;
 685	int ret;
 686
 687	int fin = rctx->fini;
 688	if (fin)
 689		rctx->fini = 0;
 690
 691	src = req->src;
 692	len = req->nbytes;
 
 693
 694	while (len) {
 695		if (actx->fill + len > DCP_BUF_SZ)
 696			clen = DCP_BUF_SZ - actx->fill;
 697		else
 698			clen = len;
 699
 700		scatterwalk_map_and_copy(in_buf + actx->fill, src, oft, clen,
 701					 0);
 
 
 702
 703		len -= clen;
 704		oft += clen;
 705		actx->fill += clen;
 706
 707		/*
 708		 * If we filled the buffer and still have some
 709		 * more data, submit the buffer.
 710		 */
 711		if (len && actx->fill == DCP_BUF_SZ) {
 712			ret = mxs_dcp_run_sha(req);
 713			if (ret)
 714				return ret;
 715			actx->fill = 0;
 716			rctx->init = 0;
 717		}
 718	}
 719
 720	if (fin) {
 721		rctx->fini = 1;
 722
 723		/* Submit whatever is left. */
 724		if (!req->result)
 725			return -EINVAL;
 726
 727		ret = mxs_dcp_run_sha(req);
 728		if (ret)
 729			return ret;
 730
 731		actx->fill = 0;
 732
 733		/* For some reason the result is flipped */
 734		for (i = 0; i < halg->digestsize; i++)
 735			req->result[i] = out_buf[halg->digestsize - i - 1];
 736	}
 737
 738	return 0;
 739}
 740
 741static int dcp_chan_thread_sha(void *data)
 742{
 743	struct dcp *sdcp = global_sdcp;
 744	const int chan = DCP_CHAN_HASH_SHA;
 745
 746	struct crypto_async_request *backlog;
 747	struct crypto_async_request *arq;
 748	int ret;
 749
 750	while (!kthread_should_stop()) {
 751		set_current_state(TASK_INTERRUPTIBLE);
 752
 753		spin_lock(&sdcp->lock[chan]);
 754		backlog = crypto_get_backlog(&sdcp->queue[chan]);
 755		arq = crypto_dequeue_request(&sdcp->queue[chan]);
 756		spin_unlock(&sdcp->lock[chan]);
 757
 758		if (!backlog && !arq) {
 759			schedule();
 760			continue;
 761		}
 762
 763		set_current_state(TASK_RUNNING);
 764
 765		if (backlog)
 766			crypto_request_complete(backlog, -EINPROGRESS);
 767
 768		if (arq) {
 769			ret = dcp_sha_req_to_buf(arq);
 770			crypto_request_complete(arq, ret);
 771		}
 772	}
 773
 774	return 0;
 775}
 776
 777static int dcp_sha_init(struct ahash_request *req)
 778{
 779	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
 780	struct dcp_async_ctx *actx = crypto_ahash_ctx(tfm);
 781
 782	struct hash_alg_common *halg = crypto_hash_alg_common(tfm);
 783
 784	/*
 785	 * Start hashing session. The code below only inits the
 786	 * hashing session context, nothing more.
 787	 */
 788	memset(actx, 0, sizeof(*actx));
 789
 790	if (strcmp(halg->base.cra_name, "sha1") == 0)
 791		actx->alg = MXS_DCP_CONTROL1_HASH_SELECT_SHA1;
 792	else
 793		actx->alg = MXS_DCP_CONTROL1_HASH_SELECT_SHA256;
 794
 795	actx->fill = 0;
 796	actx->hot = 0;
 797	actx->chan = DCP_CHAN_HASH_SHA;
 798
 799	mutex_init(&actx->mutex);
 800
 801	return 0;
 802}
 803
 804static int dcp_sha_update_fx(struct ahash_request *req, int fini)
 805{
 806	struct dcp *sdcp = global_sdcp;
 807
 808	struct dcp_sha_req_ctx *rctx = ahash_request_ctx(req);
 809	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
 810	struct dcp_async_ctx *actx = crypto_ahash_ctx(tfm);
 811
 812	int ret;
 813
 814	/*
 815	 * Ignore requests that have no data in them and are not
 816	 * the trailing requests in the stream of requests.
 817	 */
 818	if (!req->nbytes && !fini)
 819		return 0;
 820
 821	mutex_lock(&actx->mutex);
 822
 823	rctx->fini = fini;
 824
 825	if (!actx->hot) {
 826		actx->hot = 1;
 827		rctx->init = 1;
 828	}
 829
 830	spin_lock(&sdcp->lock[actx->chan]);
 831	ret = crypto_enqueue_request(&sdcp->queue[actx->chan], &req->base);
 832	spin_unlock(&sdcp->lock[actx->chan]);
 833
 834	wake_up_process(sdcp->thread[actx->chan]);
 835	mutex_unlock(&actx->mutex);
 836
 837	return ret;
 838}
 839
 840static int dcp_sha_update(struct ahash_request *req)
 841{
 842	return dcp_sha_update_fx(req, 0);
 843}
 844
 845static int dcp_sha_final(struct ahash_request *req)
 846{
 847	ahash_request_set_crypt(req, NULL, req->result, 0);
 848	req->nbytes = 0;
 849	return dcp_sha_update_fx(req, 1);
 850}
 851
 852static int dcp_sha_finup(struct ahash_request *req)
 853{
 854	return dcp_sha_update_fx(req, 1);
 855}
 856
 857static int dcp_sha_digest(struct ahash_request *req)
 858{
 859	int ret;
 860
 861	ret = dcp_sha_init(req);
 862	if (ret)
 863		return ret;
 864
 865	return dcp_sha_finup(req);
 866}
 867
 868static int dcp_sha_import(struct ahash_request *req, const void *in)
 869{
 870	struct dcp_sha_req_ctx *rctx = ahash_request_ctx(req);
 871	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
 872	struct dcp_async_ctx *actx = crypto_ahash_ctx(tfm);
 873	const struct dcp_export_state *export = in;
 874
 875	memset(rctx, 0, sizeof(struct dcp_sha_req_ctx));
 876	memset(actx, 0, sizeof(struct dcp_async_ctx));
 877	memcpy(rctx, &export->req_ctx, sizeof(struct dcp_sha_req_ctx));
 878	memcpy(actx, &export->async_ctx, sizeof(struct dcp_async_ctx));
 879
 880	return 0;
 881}
 882
 883static int dcp_sha_export(struct ahash_request *req, void *out)
 884{
 885	struct dcp_sha_req_ctx *rctx_state = ahash_request_ctx(req);
 886	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
 887	struct dcp_async_ctx *actx_state = crypto_ahash_ctx(tfm);
 888	struct dcp_export_state *export = out;
 889
 890	memcpy(&export->req_ctx, rctx_state, sizeof(struct dcp_sha_req_ctx));
 891	memcpy(&export->async_ctx, actx_state, sizeof(struct dcp_async_ctx));
 892
 893	return 0;
 894}
 895
 896static int dcp_sha_cra_init(struct crypto_tfm *tfm)
 897{
 898	crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
 899				 sizeof(struct dcp_sha_req_ctx));
 900	return 0;
 901}
 902
 903static void dcp_sha_cra_exit(struct crypto_tfm *tfm)
 904{
 905}
 906
 907/* AES 128 ECB and AES 128 CBC */
 908static struct skcipher_alg dcp_aes_algs[] = {
 909	{
 910		.base.cra_name		= "ecb(aes)",
 911		.base.cra_driver_name	= "ecb-aes-dcp",
 912		.base.cra_priority	= 400,
 913		.base.cra_alignmask	= 15,
 914		.base.cra_flags		= CRYPTO_ALG_ASYNC |
 
 915					  CRYPTO_ALG_NEED_FALLBACK,
 916		.base.cra_blocksize	= AES_BLOCK_SIZE,
 917		.base.cra_ctxsize	= sizeof(struct dcp_async_ctx),
 918		.base.cra_module	= THIS_MODULE,
 919
 920		.min_keysize		= AES_MIN_KEY_SIZE,
 921		.max_keysize		= AES_MAX_KEY_SIZE,
 922		.setkey			= mxs_dcp_aes_setkey,
 923		.encrypt		= mxs_dcp_aes_ecb_encrypt,
 924		.decrypt		= mxs_dcp_aes_ecb_decrypt,
 925		.init			= mxs_dcp_aes_fallback_init_tfm,
 926		.exit			= mxs_dcp_aes_fallback_exit_tfm,
 
 
 
 
 927	}, {
 928		.base.cra_name		= "cbc(aes)",
 929		.base.cra_driver_name	= "cbc-aes-dcp",
 930		.base.cra_priority	= 400,
 931		.base.cra_alignmask	= 15,
 932		.base.cra_flags		= CRYPTO_ALG_ASYNC |
 
 933					  CRYPTO_ALG_NEED_FALLBACK,
 934		.base.cra_blocksize	= AES_BLOCK_SIZE,
 935		.base.cra_ctxsize	= sizeof(struct dcp_async_ctx),
 936		.base.cra_module	= THIS_MODULE,
 937
 938		.min_keysize		= AES_MIN_KEY_SIZE,
 939		.max_keysize		= AES_MAX_KEY_SIZE,
 940		.setkey			= mxs_dcp_aes_setkey,
 941		.encrypt		= mxs_dcp_aes_cbc_encrypt,
 942		.decrypt		= mxs_dcp_aes_cbc_decrypt,
 943		.ivsize			= AES_BLOCK_SIZE,
 944		.init			= mxs_dcp_aes_fallback_init_tfm,
 945		.exit			= mxs_dcp_aes_fallback_exit_tfm,
 946	}, {
 947		.base.cra_name		= "ecb(paes)",
 948		.base.cra_driver_name	= "ecb-paes-dcp",
 949		.base.cra_priority	= 401,
 950		.base.cra_alignmask	= 15,
 951		.base.cra_flags		= CRYPTO_ALG_ASYNC | CRYPTO_ALG_INTERNAL,
 952		.base.cra_blocksize	= AES_BLOCK_SIZE,
 953		.base.cra_ctxsize	= sizeof(struct dcp_async_ctx),
 954		.base.cra_module	= THIS_MODULE,
 955
 956		.min_keysize		= DCP_PAES_KEYSIZE,
 957		.max_keysize		= DCP_PAES_KEYSIZE,
 958		.setkey			= mxs_dcp_aes_setrefkey,
 959		.encrypt		= mxs_dcp_aes_ecb_encrypt,
 960		.decrypt		= mxs_dcp_aes_ecb_decrypt,
 961		.init			= mxs_dcp_paes_init_tfm,
 962	}, {
 963		.base.cra_name		= "cbc(paes)",
 964		.base.cra_driver_name	= "cbc-paes-dcp",
 965		.base.cra_priority	= 401,
 966		.base.cra_alignmask	= 15,
 967		.base.cra_flags		= CRYPTO_ALG_ASYNC | CRYPTO_ALG_INTERNAL,
 968		.base.cra_blocksize	= AES_BLOCK_SIZE,
 969		.base.cra_ctxsize	= sizeof(struct dcp_async_ctx),
 970		.base.cra_module	= THIS_MODULE,
 971
 972		.min_keysize		= DCP_PAES_KEYSIZE,
 973		.max_keysize		= DCP_PAES_KEYSIZE,
 974		.setkey			= mxs_dcp_aes_setrefkey,
 975		.encrypt		= mxs_dcp_aes_cbc_encrypt,
 976		.decrypt		= mxs_dcp_aes_cbc_decrypt,
 977		.ivsize			= AES_BLOCK_SIZE,
 978		.init			= mxs_dcp_paes_init_tfm,
 979	},
 980};
 981
 982/* SHA1 */
 983static struct ahash_alg dcp_sha1_alg = {
 984	.init	= dcp_sha_init,
 985	.update	= dcp_sha_update,
 986	.final	= dcp_sha_final,
 987	.finup	= dcp_sha_finup,
 988	.digest	= dcp_sha_digest,
 989	.import = dcp_sha_import,
 990	.export = dcp_sha_export,
 991	.halg	= {
 992		.digestsize	= SHA1_DIGEST_SIZE,
 993		.statesize	= sizeof(struct dcp_export_state),
 994		.base		= {
 995			.cra_name		= "sha1",
 996			.cra_driver_name	= "sha1-dcp",
 997			.cra_priority		= 400,
 
 998			.cra_flags		= CRYPTO_ALG_ASYNC,
 999			.cra_blocksize		= SHA1_BLOCK_SIZE,
1000			.cra_ctxsize		= sizeof(struct dcp_async_ctx),
1001			.cra_module		= THIS_MODULE,
1002			.cra_init		= dcp_sha_cra_init,
1003			.cra_exit		= dcp_sha_cra_exit,
1004		},
1005	},
1006};
1007
1008/* SHA256 */
1009static struct ahash_alg dcp_sha256_alg = {
1010	.init	= dcp_sha_init,
1011	.update	= dcp_sha_update,
1012	.final	= dcp_sha_final,
1013	.finup	= dcp_sha_finup,
1014	.digest	= dcp_sha_digest,
1015	.import = dcp_sha_import,
1016	.export = dcp_sha_export,
1017	.halg	= {
1018		.digestsize	= SHA256_DIGEST_SIZE,
1019		.statesize	= sizeof(struct dcp_export_state),
1020		.base		= {
1021			.cra_name		= "sha256",
1022			.cra_driver_name	= "sha256-dcp",
1023			.cra_priority		= 400,
 
1024			.cra_flags		= CRYPTO_ALG_ASYNC,
1025			.cra_blocksize		= SHA256_BLOCK_SIZE,
1026			.cra_ctxsize		= sizeof(struct dcp_async_ctx),
1027			.cra_module		= THIS_MODULE,
1028			.cra_init		= dcp_sha_cra_init,
1029			.cra_exit		= dcp_sha_cra_exit,
1030		},
1031	},
1032};
1033
1034static irqreturn_t mxs_dcp_irq(int irq, void *context)
1035{
1036	struct dcp *sdcp = context;
1037	uint32_t stat;
1038	int i;
1039
1040	stat = readl(sdcp->base + MXS_DCP_STAT);
1041	stat &= MXS_DCP_STAT_IRQ_MASK;
1042	if (!stat)
1043		return IRQ_NONE;
1044
1045	/* Clear the interrupts. */
1046	writel(stat, sdcp->base + MXS_DCP_STAT_CLR);
1047
1048	/* Complete the DMA requests that finished. */
1049	for (i = 0; i < DCP_MAX_CHANS; i++)
1050		if (stat & (1 << i))
1051			complete(&sdcp->completion[i]);
1052
1053	return IRQ_HANDLED;
1054}
1055
1056static int mxs_dcp_probe(struct platform_device *pdev)
1057{
1058	struct device *dev = &pdev->dev;
1059	struct dcp *sdcp = NULL;
1060	int i, ret;
1061	int dcp_vmi_irq, dcp_irq;
1062
1063	if (global_sdcp) {
1064		dev_err(dev, "Only one DCP instance allowed!\n");
1065		return -ENODEV;
1066	}
1067
1068	dcp_vmi_irq = platform_get_irq(pdev, 0);
1069	if (dcp_vmi_irq < 0)
1070		return dcp_vmi_irq;
1071
1072	dcp_irq = platform_get_irq(pdev, 1);
1073	if (dcp_irq < 0)
1074		return dcp_irq;
1075
1076	sdcp = devm_kzalloc(dev, sizeof(*sdcp), GFP_KERNEL);
1077	if (!sdcp)
1078		return -ENOMEM;
1079
1080	sdcp->dev = dev;
1081	sdcp->base = devm_platform_ioremap_resource(pdev, 0);
1082	if (IS_ERR(sdcp->base))
1083		return PTR_ERR(sdcp->base);
1084
1085
1086	ret = devm_request_irq(dev, dcp_vmi_irq, mxs_dcp_irq, 0,
1087			       "dcp-vmi-irq", sdcp);
1088	if (ret) {
1089		dev_err(dev, "Failed to claim DCP VMI IRQ!\n");
1090		return ret;
1091	}
1092
1093	ret = devm_request_irq(dev, dcp_irq, mxs_dcp_irq, 0,
1094			       "dcp-irq", sdcp);
1095	if (ret) {
1096		dev_err(dev, "Failed to claim DCP IRQ!\n");
1097		return ret;
1098	}
1099
1100	/* Allocate coherent helper block. */
1101	sdcp->coh = devm_kzalloc(dev, sizeof(*sdcp->coh) + DCP_ALIGNMENT,
1102				   GFP_KERNEL);
1103	if (!sdcp->coh)
1104		return -ENOMEM;
1105
1106	/* Re-align the structure so it fits the DCP constraints. */
1107	sdcp->coh = PTR_ALIGN(sdcp->coh, DCP_ALIGNMENT);
1108
1109	/* DCP clock is optional, only used on some SOCs */
1110	sdcp->dcp_clk = devm_clk_get_optional_enabled(dev, "dcp");
1111	if (IS_ERR(sdcp->dcp_clk))
1112		return PTR_ERR(sdcp->dcp_clk);
 
 
 
 
 
 
1113
1114	/* Restart the DCP block. */
1115	ret = stmp_reset_block(sdcp->base);
1116	if (ret) {
1117		dev_err(dev, "Failed reset\n");
1118		return ret;
1119	}
1120
1121	/* Initialize control register. */
1122	writel(MXS_DCP_CTRL_GATHER_RESIDUAL_WRITES |
1123	       MXS_DCP_CTRL_ENABLE_CONTEXT_CACHING | 0xf,
1124	       sdcp->base + MXS_DCP_CTRL);
1125
1126	/* Enable all DCP DMA channels. */
1127	writel(MXS_DCP_CHANNELCTRL_ENABLE_CHANNEL_MASK,
1128	       sdcp->base + MXS_DCP_CHANNELCTRL);
1129
1130	/*
1131	 * We do not enable context switching. Give the context buffer a
1132	 * pointer to an illegal address so if context switching is
1133	 * inadvertantly enabled, the DCP will return an error instead of
1134	 * trashing good memory. The DCP DMA cannot access ROM, so any ROM
1135	 * address will do.
1136	 */
1137	writel(0xffff0000, sdcp->base + MXS_DCP_CONTEXT);
1138	for (i = 0; i < DCP_MAX_CHANS; i++)
1139		writel(0xffffffff, sdcp->base + MXS_DCP_CH_N_STAT_CLR(i));
1140	writel(0xffffffff, sdcp->base + MXS_DCP_STAT_CLR);
1141
1142	global_sdcp = sdcp;
1143
1144	platform_set_drvdata(pdev, sdcp);
1145
1146	for (i = 0; i < DCP_MAX_CHANS; i++) {
1147		spin_lock_init(&sdcp->lock[i]);
1148		init_completion(&sdcp->completion[i]);
1149		crypto_init_queue(&sdcp->queue[i], 50);
1150	}
1151
1152	/* Create the SHA and AES handler threads. */
1153	sdcp->thread[DCP_CHAN_HASH_SHA] = kthread_run(dcp_chan_thread_sha,
1154						      NULL, "mxs_dcp_chan/sha");
1155	if (IS_ERR(sdcp->thread[DCP_CHAN_HASH_SHA])) {
1156		dev_err(dev, "Error starting SHA thread!\n");
1157		ret = PTR_ERR(sdcp->thread[DCP_CHAN_HASH_SHA]);
1158		return ret;
1159	}
1160
1161	sdcp->thread[DCP_CHAN_CRYPTO] = kthread_run(dcp_chan_thread_aes,
1162						    NULL, "mxs_dcp_chan/aes");
1163	if (IS_ERR(sdcp->thread[DCP_CHAN_CRYPTO])) {
1164		dev_err(dev, "Error starting SHA thread!\n");
1165		ret = PTR_ERR(sdcp->thread[DCP_CHAN_CRYPTO]);
1166		goto err_destroy_sha_thread;
1167	}
1168
1169	/* Register the various crypto algorithms. */
1170	sdcp->caps = readl(sdcp->base + MXS_DCP_CAPABILITY1);
1171
1172	if (sdcp->caps & MXS_DCP_CAPABILITY1_AES128) {
1173		ret = crypto_register_skciphers(dcp_aes_algs,
1174						ARRAY_SIZE(dcp_aes_algs));
1175		if (ret) {
1176			/* Failed to register algorithm. */
1177			dev_err(dev, "Failed to register AES crypto!\n");
1178			goto err_destroy_aes_thread;
1179		}
1180	}
1181
1182	if (sdcp->caps & MXS_DCP_CAPABILITY1_SHA1) {
1183		ret = crypto_register_ahash(&dcp_sha1_alg);
1184		if (ret) {
1185			dev_err(dev, "Failed to register %s hash!\n",
1186				dcp_sha1_alg.halg.base.cra_name);
1187			goto err_unregister_aes;
1188		}
1189	}
1190
1191	if (sdcp->caps & MXS_DCP_CAPABILITY1_SHA256) {
1192		ret = crypto_register_ahash(&dcp_sha256_alg);
1193		if (ret) {
1194			dev_err(dev, "Failed to register %s hash!\n",
1195				dcp_sha256_alg.halg.base.cra_name);
1196			goto err_unregister_sha1;
1197		}
1198	}
1199
1200	return 0;
1201
1202err_unregister_sha1:
1203	if (sdcp->caps & MXS_DCP_CAPABILITY1_SHA1)
1204		crypto_unregister_ahash(&dcp_sha1_alg);
1205
1206err_unregister_aes:
1207	if (sdcp->caps & MXS_DCP_CAPABILITY1_AES128)
1208		crypto_unregister_skciphers(dcp_aes_algs, ARRAY_SIZE(dcp_aes_algs));
1209
1210err_destroy_aes_thread:
1211	kthread_stop(sdcp->thread[DCP_CHAN_CRYPTO]);
1212
1213err_destroy_sha_thread:
1214	kthread_stop(sdcp->thread[DCP_CHAN_HASH_SHA]);
1215
 
 
 
1216	return ret;
1217}
1218
1219static void mxs_dcp_remove(struct platform_device *pdev)
1220{
1221	struct dcp *sdcp = platform_get_drvdata(pdev);
1222
1223	if (sdcp->caps & MXS_DCP_CAPABILITY1_SHA256)
1224		crypto_unregister_ahash(&dcp_sha256_alg);
1225
1226	if (sdcp->caps & MXS_DCP_CAPABILITY1_SHA1)
1227		crypto_unregister_ahash(&dcp_sha1_alg);
1228
1229	if (sdcp->caps & MXS_DCP_CAPABILITY1_AES128)
1230		crypto_unregister_skciphers(dcp_aes_algs, ARRAY_SIZE(dcp_aes_algs));
1231
1232	kthread_stop(sdcp->thread[DCP_CHAN_HASH_SHA]);
1233	kthread_stop(sdcp->thread[DCP_CHAN_CRYPTO]);
1234
 
 
1235	platform_set_drvdata(pdev, NULL);
1236
1237	global_sdcp = NULL;
 
 
1238}
1239
1240static const struct of_device_id mxs_dcp_dt_ids[] = {
1241	{ .compatible = "fsl,imx23-dcp", .data = NULL, },
1242	{ .compatible = "fsl,imx28-dcp", .data = NULL, },
1243	{ /* sentinel */ }
1244};
1245
1246MODULE_DEVICE_TABLE(of, mxs_dcp_dt_ids);
1247
1248static struct platform_driver mxs_dcp_driver = {
1249	.probe	= mxs_dcp_probe,
1250	.remove = mxs_dcp_remove,
1251	.driver	= {
1252		.name		= "mxs-dcp",
1253		.of_match_table	= mxs_dcp_dt_ids,
1254	},
1255};
1256
1257module_platform_driver(mxs_dcp_driver);
1258
1259MODULE_AUTHOR("Marek Vasut <marex@denx.de>");
1260MODULE_DESCRIPTION("Freescale MXS DCP Driver");
1261MODULE_LICENSE("GPL");
1262MODULE_ALIAS("platform:mxs-dcp");
v5.4
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * Freescale i.MX23/i.MX28 Data Co-Processor driver
   4 *
   5 * Copyright (C) 2013 Marek Vasut <marex@denx.de>
   6 */
   7
   8#include <linux/dma-mapping.h>
   9#include <linux/interrupt.h>
  10#include <linux/io.h>
  11#include <linux/kernel.h>
  12#include <linux/kthread.h>
  13#include <linux/module.h>
  14#include <linux/of.h>
  15#include <linux/platform_device.h>
  16#include <linux/stmp_device.h>
  17#include <linux/clk.h>
 
  18
  19#include <crypto/aes.h>
  20#include <crypto/sha.h>
 
  21#include <crypto/internal/hash.h>
  22#include <crypto/internal/skcipher.h>
 
  23
  24#define DCP_MAX_CHANS	4
  25#define DCP_BUF_SZ	PAGE_SIZE
  26#define DCP_SHA_PAY_SZ  64
  27
  28#define DCP_ALIGNMENT	64
  29
  30/*
  31 * Null hashes to align with hw behavior on imx6sl and ull
  32 * these are flipped for consistency with hw output
  33 */
  34static const uint8_t sha1_null_hash[] =
  35	"\x09\x07\xd8\xaf\x90\x18\x60\x95\xef\xbf"
  36	"\x55\x32\x0d\x4b\x6b\x5e\xee\xa3\x39\xda";
  37
  38static const uint8_t sha256_null_hash[] =
  39	"\x55\xb8\x52\x78\x1b\x99\x95\xa4"
  40	"\x4c\x93\x9b\x64\xe4\x41\xae\x27"
  41	"\x24\xb9\x6f\x99\xc8\xf4\xfb\x9a"
  42	"\x14\x1c\xfc\x98\x42\xc4\xb0\xe3";
  43
  44/* DCP DMA descriptor. */
  45struct dcp_dma_desc {
  46	uint32_t	next_cmd_addr;
  47	uint32_t	control0;
  48	uint32_t	control1;
  49	uint32_t	source;
  50	uint32_t	destination;
  51	uint32_t	size;
  52	uint32_t	payload;
  53	uint32_t	status;
  54};
  55
  56/* Coherent aligned block for bounce buffering. */
  57struct dcp_coherent_block {
  58	uint8_t			aes_in_buf[DCP_BUF_SZ];
  59	uint8_t			aes_out_buf[DCP_BUF_SZ];
  60	uint8_t			sha_in_buf[DCP_BUF_SZ];
  61	uint8_t			sha_out_buf[DCP_SHA_PAY_SZ];
  62
  63	uint8_t			aes_key[2 * AES_KEYSIZE_128];
  64
  65	struct dcp_dma_desc	desc[DCP_MAX_CHANS];
  66};
  67
  68struct dcp {
  69	struct device			*dev;
  70	void __iomem			*base;
  71
  72	uint32_t			caps;
  73
  74	struct dcp_coherent_block	*coh;
  75
  76	struct completion		completion[DCP_MAX_CHANS];
  77	spinlock_t			lock[DCP_MAX_CHANS];
  78	struct task_struct		*thread[DCP_MAX_CHANS];
  79	struct crypto_queue		queue[DCP_MAX_CHANS];
  80	struct clk			*dcp_clk;
  81};
  82
  83enum dcp_chan {
  84	DCP_CHAN_HASH_SHA	= 0,
  85	DCP_CHAN_CRYPTO		= 2,
  86};
  87
  88struct dcp_async_ctx {
  89	/* Common context */
  90	enum dcp_chan	chan;
  91	uint32_t	fill;
  92
  93	/* SHA Hash-specific context */
  94	struct mutex			mutex;
  95	uint32_t			alg;
  96	unsigned int			hot:1;
  97
  98	/* Crypto-specific context */
  99	struct crypto_sync_skcipher	*fallback;
 100	unsigned int			key_len;
 101	uint8_t				key[AES_KEYSIZE_128];
 
 102};
 103
 104struct dcp_aes_req_ctx {
 105	unsigned int	enc:1;
 106	unsigned int	ecb:1;
 
 107};
 108
 109struct dcp_sha_req_ctx {
 110	unsigned int	init:1;
 111	unsigned int	fini:1;
 112};
 113
 114struct dcp_export_state {
 115	struct dcp_sha_req_ctx req_ctx;
 116	struct dcp_async_ctx async_ctx;
 117};
 118
 119/*
 120 * There can even be only one instance of the MXS DCP due to the
 121 * design of Linux Crypto API.
 122 */
 123static struct dcp *global_sdcp;
 124
 125/* DCP register layout. */
 126#define MXS_DCP_CTRL				0x00
 127#define MXS_DCP_CTRL_GATHER_RESIDUAL_WRITES	(1 << 23)
 128#define MXS_DCP_CTRL_ENABLE_CONTEXT_CACHING	(1 << 22)
 129
 130#define MXS_DCP_STAT				0x10
 131#define MXS_DCP_STAT_CLR			0x18
 132#define MXS_DCP_STAT_IRQ_MASK			0xf
 133
 134#define MXS_DCP_CHANNELCTRL			0x20
 135#define MXS_DCP_CHANNELCTRL_ENABLE_CHANNEL_MASK	0xff
 136
 137#define MXS_DCP_CAPABILITY1			0x40
 138#define MXS_DCP_CAPABILITY1_SHA256		(4 << 16)
 139#define MXS_DCP_CAPABILITY1_SHA1		(1 << 16)
 140#define MXS_DCP_CAPABILITY1_AES128		(1 << 0)
 141
 142#define MXS_DCP_CONTEXT				0x50
 143
 144#define MXS_DCP_CH_N_CMDPTR(n)			(0x100 + ((n) * 0x40))
 145
 146#define MXS_DCP_CH_N_SEMA(n)			(0x110 + ((n) * 0x40))
 147
 148#define MXS_DCP_CH_N_STAT(n)			(0x120 + ((n) * 0x40))
 149#define MXS_DCP_CH_N_STAT_CLR(n)		(0x128 + ((n) * 0x40))
 150
 151/* DMA descriptor bits. */
 152#define MXS_DCP_CONTROL0_HASH_TERM		(1 << 13)
 153#define MXS_DCP_CONTROL0_HASH_INIT		(1 << 12)
 154#define MXS_DCP_CONTROL0_PAYLOAD_KEY		(1 << 11)
 
 155#define MXS_DCP_CONTROL0_CIPHER_ENCRYPT		(1 << 8)
 156#define MXS_DCP_CONTROL0_CIPHER_INIT		(1 << 9)
 157#define MXS_DCP_CONTROL0_ENABLE_HASH		(1 << 6)
 158#define MXS_DCP_CONTROL0_ENABLE_CIPHER		(1 << 5)
 159#define MXS_DCP_CONTROL0_DECR_SEMAPHORE		(1 << 1)
 160#define MXS_DCP_CONTROL0_INTERRUPT		(1 << 0)
 161
 162#define MXS_DCP_CONTROL1_HASH_SELECT_SHA256	(2 << 16)
 163#define MXS_DCP_CONTROL1_HASH_SELECT_SHA1	(0 << 16)
 164#define MXS_DCP_CONTROL1_CIPHER_MODE_CBC	(1 << 4)
 165#define MXS_DCP_CONTROL1_CIPHER_MODE_ECB	(0 << 4)
 166#define MXS_DCP_CONTROL1_CIPHER_SELECT_AES128	(0 << 0)
 167
 
 
 168static int mxs_dcp_start_dma(struct dcp_async_ctx *actx)
 169{
 
 170	struct dcp *sdcp = global_sdcp;
 171	const int chan = actx->chan;
 172	uint32_t stat;
 173	unsigned long ret;
 174	struct dcp_dma_desc *desc = &sdcp->coh->desc[actx->chan];
 175
 176	dma_addr_t desc_phys = dma_map_single(sdcp->dev, desc, sizeof(*desc),
 177					      DMA_TO_DEVICE);
 178
 
 
 
 
 179	reinit_completion(&sdcp->completion[chan]);
 180
 181	/* Clear status register. */
 182	writel(0xffffffff, sdcp->base + MXS_DCP_CH_N_STAT_CLR(chan));
 183
 184	/* Load the DMA descriptor. */
 185	writel(desc_phys, sdcp->base + MXS_DCP_CH_N_CMDPTR(chan));
 186
 187	/* Increment the semaphore to start the DMA transfer. */
 188	writel(1, sdcp->base + MXS_DCP_CH_N_SEMA(chan));
 189
 190	ret = wait_for_completion_timeout(&sdcp->completion[chan],
 191					  msecs_to_jiffies(1000));
 192	if (!ret) {
 193		dev_err(sdcp->dev, "Channel %i timeout (DCP_STAT=0x%08x)\n",
 194			chan, readl(sdcp->base + MXS_DCP_STAT));
 195		return -ETIMEDOUT;
 196	}
 197
 198	stat = readl(sdcp->base + MXS_DCP_CH_N_STAT(chan));
 199	if (stat & 0xff) {
 200		dev_err(sdcp->dev, "Channel %i error (CH_STAT=0x%08x)\n",
 201			chan, stat);
 202		return -EINVAL;
 203	}
 204
 205	dma_unmap_single(sdcp->dev, desc_phys, sizeof(*desc), DMA_TO_DEVICE);
 206
 207	return 0;
 208}
 209
 210/*
 211 * Encryption (AES128)
 212 */
 213static int mxs_dcp_run_aes(struct dcp_async_ctx *actx,
 214			   struct ablkcipher_request *req, int init)
 215{
 
 216	struct dcp *sdcp = global_sdcp;
 217	struct dcp_dma_desc *desc = &sdcp->coh->desc[actx->chan];
 218	struct dcp_aes_req_ctx *rctx = ablkcipher_request_ctx(req);
 
 219	int ret;
 220
 221	dma_addr_t key_phys = dma_map_single(sdcp->dev, sdcp->coh->aes_key,
 222					     2 * AES_KEYSIZE_128,
 223					     DMA_TO_DEVICE);
 224	dma_addr_t src_phys = dma_map_single(sdcp->dev, sdcp->coh->aes_in_buf,
 225					     DCP_BUF_SZ, DMA_TO_DEVICE);
 226	dma_addr_t dst_phys = dma_map_single(sdcp->dev, sdcp->coh->aes_out_buf,
 227					     DCP_BUF_SZ, DMA_FROM_DEVICE);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 228
 229	if (actx->fill % AES_BLOCK_SIZE) {
 230		dev_err(sdcp->dev, "Invalid block size!\n");
 231		ret = -EINVAL;
 232		goto aes_done_run;
 233	}
 234
 235	/* Fill in the DMA descriptor. */
 236	desc->control0 = MXS_DCP_CONTROL0_DECR_SEMAPHORE |
 237		    MXS_DCP_CONTROL0_INTERRUPT |
 238		    MXS_DCP_CONTROL0_ENABLE_CIPHER;
 239
 240	/* Payload contains the key. */
 241	desc->control0 |= MXS_DCP_CONTROL0_PAYLOAD_KEY;
 
 
 
 
 242
 243	if (rctx->enc)
 244		desc->control0 |= MXS_DCP_CONTROL0_CIPHER_ENCRYPT;
 245	if (init)
 246		desc->control0 |= MXS_DCP_CONTROL0_CIPHER_INIT;
 247
 248	desc->control1 = MXS_DCP_CONTROL1_CIPHER_SELECT_AES128;
 249
 250	if (rctx->ecb)
 251		desc->control1 |= MXS_DCP_CONTROL1_CIPHER_MODE_ECB;
 252	else
 253		desc->control1 |= MXS_DCP_CONTROL1_CIPHER_MODE_CBC;
 254
 
 
 
 255	desc->next_cmd_addr = 0;
 256	desc->source = src_phys;
 257	desc->destination = dst_phys;
 258	desc->size = actx->fill;
 259	desc->payload = key_phys;
 260	desc->status = 0;
 261
 262	ret = mxs_dcp_start_dma(actx);
 263
 264aes_done_run:
 265	dma_unmap_single(sdcp->dev, key_phys, 2 * AES_KEYSIZE_128,
 266			 DMA_TO_DEVICE);
 267	dma_unmap_single(sdcp->dev, src_phys, DCP_BUF_SZ, DMA_TO_DEVICE);
 268	dma_unmap_single(sdcp->dev, dst_phys, DCP_BUF_SZ, DMA_FROM_DEVICE);
 269
 
 
 
 
 
 270	return ret;
 271}
 272
 273static int mxs_dcp_aes_block_crypt(struct crypto_async_request *arq)
 274{
 275	struct dcp *sdcp = global_sdcp;
 276
 277	struct ablkcipher_request *req = ablkcipher_request_cast(arq);
 278	struct dcp_async_ctx *actx = crypto_tfm_ctx(arq->tfm);
 279	struct dcp_aes_req_ctx *rctx = ablkcipher_request_ctx(req);
 280
 281	struct scatterlist *dst = req->dst;
 282	struct scatterlist *src = req->src;
 283	const int nents = sg_nents(req->src);
 284
 285	const int out_off = DCP_BUF_SZ;
 286	uint8_t *in_buf = sdcp->coh->aes_in_buf;
 287	uint8_t *out_buf = sdcp->coh->aes_out_buf;
 288
 289	uint8_t *out_tmp, *src_buf, *dst_buf = NULL;
 290	uint32_t dst_off = 0;
 
 291	uint32_t last_out_len = 0;
 292
 293	uint8_t *key = sdcp->coh->aes_key;
 294
 295	int ret = 0;
 296	int split = 0;
 297	unsigned int i, len, clen, rem = 0, tlen = 0;
 298	int init = 0;
 299	bool limit_hit = false;
 300
 301	actx->fill = 0;
 302
 303	/* Copy the key from the temporary location. */
 304	memcpy(key, actx->key, actx->key_len);
 305
 306	if (!rctx->ecb) {
 307		/* Copy the CBC IV just past the key. */
 308		memcpy(key + AES_KEYSIZE_128, req->info, AES_KEYSIZE_128);
 309		/* CBC needs the INIT set. */
 310		init = 1;
 311	} else {
 312		memset(key + AES_KEYSIZE_128, 0, AES_KEYSIZE_128);
 313	}
 314
 315	for_each_sg(req->src, src, nents, i) {
 316		src_buf = sg_virt(src);
 317		len = sg_dma_len(src);
 318		tlen += len;
 319		limit_hit = tlen > req->nbytes;
 320
 321		if (limit_hit)
 322			len = req->nbytes - (tlen - len);
 323
 324		do {
 325			if (actx->fill + len > out_off)
 326				clen = out_off - actx->fill;
 327			else
 328				clen = len;
 329
 330			memcpy(in_buf + actx->fill, src_buf, clen);
 331			len -= clen;
 332			src_buf += clen;
 333			actx->fill += clen;
 334
 335			/*
 336			 * If we filled the buffer or this is the last SG,
 337			 * submit the buffer.
 338			 */
 339			if (actx->fill == out_off || sg_is_last(src) ||
 340				limit_hit) {
 341				ret = mxs_dcp_run_aes(actx, req, init);
 342				if (ret)
 343					return ret;
 344				init = 0;
 345
 346				out_tmp = out_buf;
 
 
 347				last_out_len = actx->fill;
 348				while (dst && actx->fill) {
 349					if (!split) {
 350						dst_buf = sg_virt(dst);
 351						dst_off = 0;
 352					}
 353					rem = min(sg_dma_len(dst) - dst_off,
 354						  actx->fill);
 355
 356					memcpy(dst_buf + dst_off, out_tmp, rem);
 357					out_tmp += rem;
 358					dst_off += rem;
 359					actx->fill -= rem;
 360
 361					if (dst_off == sg_dma_len(dst)) {
 362						dst = sg_next(dst);
 363						split = 0;
 364					} else {
 365						split = 1;
 366					}
 367				}
 368			}
 369		} while (len);
 370
 371		if (limit_hit)
 372			break;
 373	}
 374
 375	/* Copy the IV for CBC for chaining */
 376	if (!rctx->ecb) {
 377		if (rctx->enc)
 378			memcpy(req->info, out_buf+(last_out_len-AES_BLOCK_SIZE),
 379				AES_BLOCK_SIZE);
 380		else
 381			memcpy(req->info, in_buf+(last_out_len-AES_BLOCK_SIZE),
 382				AES_BLOCK_SIZE);
 383	}
 384
 385	return ret;
 386}
 387
 388static int dcp_chan_thread_aes(void *data)
 389{
 390	struct dcp *sdcp = global_sdcp;
 391	const int chan = DCP_CHAN_CRYPTO;
 392
 393	struct crypto_async_request *backlog;
 394	struct crypto_async_request *arq;
 395
 396	int ret;
 397
 398	while (!kthread_should_stop()) {
 399		set_current_state(TASK_INTERRUPTIBLE);
 400
 401		spin_lock(&sdcp->lock[chan]);
 402		backlog = crypto_get_backlog(&sdcp->queue[chan]);
 403		arq = crypto_dequeue_request(&sdcp->queue[chan]);
 404		spin_unlock(&sdcp->lock[chan]);
 405
 406		if (!backlog && !arq) {
 407			schedule();
 408			continue;
 409		}
 410
 411		set_current_state(TASK_RUNNING);
 412
 413		if (backlog)
 414			backlog->complete(backlog, -EINPROGRESS);
 415
 416		if (arq) {
 417			ret = mxs_dcp_aes_block_crypt(arq);
 418			arq->complete(arq, ret);
 419		}
 420	}
 421
 422	return 0;
 423}
 424
 425static int mxs_dcp_block_fallback(struct ablkcipher_request *req, int enc)
 426{
 427	struct crypto_ablkcipher *tfm = crypto_ablkcipher_reqtfm(req);
 428	struct dcp_async_ctx *ctx = crypto_ablkcipher_ctx(tfm);
 429	SYNC_SKCIPHER_REQUEST_ON_STACK(subreq, ctx->fallback);
 430	int ret;
 431
 432	skcipher_request_set_sync_tfm(subreq, ctx->fallback);
 433	skcipher_request_set_callback(subreq, req->base.flags, NULL, NULL);
 434	skcipher_request_set_crypt(subreq, req->src, req->dst,
 435				   req->nbytes, req->info);
 
 436
 437	if (enc)
 438		ret = crypto_skcipher_encrypt(subreq);
 439	else
 440		ret = crypto_skcipher_decrypt(subreq);
 441
 442	skcipher_request_zero(subreq);
 443
 444	return ret;
 445}
 446
 447static int mxs_dcp_aes_enqueue(struct ablkcipher_request *req, int enc, int ecb)
 448{
 449	struct dcp *sdcp = global_sdcp;
 450	struct crypto_async_request *arq = &req->base;
 451	struct dcp_async_ctx *actx = crypto_tfm_ctx(arq->tfm);
 452	struct dcp_aes_req_ctx *rctx = ablkcipher_request_ctx(req);
 453	int ret;
 454
 455	if (unlikely(actx->key_len != AES_KEYSIZE_128))
 456		return mxs_dcp_block_fallback(req, enc);
 457
 458	rctx->enc = enc;
 459	rctx->ecb = ecb;
 460	actx->chan = DCP_CHAN_CRYPTO;
 461
 462	spin_lock(&sdcp->lock[actx->chan]);
 463	ret = crypto_enqueue_request(&sdcp->queue[actx->chan], &req->base);
 464	spin_unlock(&sdcp->lock[actx->chan]);
 465
 466	wake_up_process(sdcp->thread[actx->chan]);
 467
 468	return ret;
 469}
 470
 471static int mxs_dcp_aes_ecb_decrypt(struct ablkcipher_request *req)
 472{
 473	return mxs_dcp_aes_enqueue(req, 0, 1);
 474}
 475
 476static int mxs_dcp_aes_ecb_encrypt(struct ablkcipher_request *req)
 477{
 478	return mxs_dcp_aes_enqueue(req, 1, 1);
 479}
 480
 481static int mxs_dcp_aes_cbc_decrypt(struct ablkcipher_request *req)
 482{
 483	return mxs_dcp_aes_enqueue(req, 0, 0);
 484}
 485
 486static int mxs_dcp_aes_cbc_encrypt(struct ablkcipher_request *req)
 487{
 488	return mxs_dcp_aes_enqueue(req, 1, 0);
 489}
 490
 491static int mxs_dcp_aes_setkey(struct crypto_ablkcipher *tfm, const u8 *key,
 492			      unsigned int len)
 493{
 494	struct dcp_async_ctx *actx = crypto_ablkcipher_ctx(tfm);
 495	unsigned int ret;
 496
 497	/*
 498	 * AES 128 is supposed by the hardware, store key into temporary
 499	 * buffer and exit. We must use the temporary buffer here, since
 500	 * there can still be an operation in progress.
 501	 */
 502	actx->key_len = len;
 
 503	if (len == AES_KEYSIZE_128) {
 504		memcpy(actx->key, key, len);
 505		return 0;
 506	}
 507
 508	/*
 509	 * If the requested AES key size is not supported by the hardware,
 510	 * but is supported by in-kernel software implementation, we use
 511	 * software fallback.
 512	 */
 513	crypto_sync_skcipher_clear_flags(actx->fallback, CRYPTO_TFM_REQ_MASK);
 514	crypto_sync_skcipher_set_flags(actx->fallback,
 515				  tfm->base.crt_flags & CRYPTO_TFM_REQ_MASK);
 
 
 516
 517	ret = crypto_sync_skcipher_setkey(actx->fallback, key, len);
 518	if (!ret)
 519		return 0;
 
 
 
 
 520
 521	tfm->base.crt_flags &= ~CRYPTO_TFM_RES_MASK;
 522	tfm->base.crt_flags |= crypto_sync_skcipher_get_flags(actx->fallback) &
 523			       CRYPTO_TFM_RES_MASK;
 
 
 
 
 
 
 
 
 
 
 
 524
 525	return ret;
 526}
 527
 528static int mxs_dcp_aes_fallback_init(struct crypto_tfm *tfm)
 529{
 530	const char *name = crypto_tfm_alg_name(tfm);
 531	struct dcp_async_ctx *actx = crypto_tfm_ctx(tfm);
 532	struct crypto_sync_skcipher *blk;
 533
 534	blk = crypto_alloc_sync_skcipher(name, 0, CRYPTO_ALG_NEED_FALLBACK);
 535	if (IS_ERR(blk))
 536		return PTR_ERR(blk);
 537
 538	actx->fallback = blk;
 539	tfm->crt_ablkcipher.reqsize = sizeof(struct dcp_aes_req_ctx);
 
 540	return 0;
 541}
 542
 543static void mxs_dcp_aes_fallback_exit(struct crypto_tfm *tfm)
 544{
 545	struct dcp_async_ctx *actx = crypto_tfm_ctx(tfm);
 546
 547	crypto_free_sync_skcipher(actx->fallback);
 
 
 
 
 
 
 
 548}
 549
 550/*
 551 * Hashing (SHA1/SHA256)
 552 */
 553static int mxs_dcp_run_sha(struct ahash_request *req)
 554{
 555	struct dcp *sdcp = global_sdcp;
 556	int ret;
 557
 558	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
 559	struct dcp_async_ctx *actx = crypto_ahash_ctx(tfm);
 560	struct dcp_sha_req_ctx *rctx = ahash_request_ctx(req);
 561	struct dcp_dma_desc *desc = &sdcp->coh->desc[actx->chan];
 562
 563	dma_addr_t digest_phys = 0;
 564	dma_addr_t buf_phys = dma_map_single(sdcp->dev, sdcp->coh->sha_in_buf,
 565					     DCP_BUF_SZ, DMA_TO_DEVICE);
 566
 
 
 
 
 567	/* Fill in the DMA descriptor. */
 568	desc->control0 = MXS_DCP_CONTROL0_DECR_SEMAPHORE |
 569		    MXS_DCP_CONTROL0_INTERRUPT |
 570		    MXS_DCP_CONTROL0_ENABLE_HASH;
 571	if (rctx->init)
 572		desc->control0 |= MXS_DCP_CONTROL0_HASH_INIT;
 573
 574	desc->control1 = actx->alg;
 575	desc->next_cmd_addr = 0;
 576	desc->source = buf_phys;
 577	desc->destination = 0;
 578	desc->size = actx->fill;
 579	desc->payload = 0;
 580	desc->status = 0;
 581
 582	/*
 583	 * Align driver with hw behavior when generating null hashes
 584	 */
 585	if (rctx->init && rctx->fini && desc->size == 0) {
 586		struct hash_alg_common *halg = crypto_hash_alg_common(tfm);
 587		const uint8_t *sha_buf =
 588			(actx->alg == MXS_DCP_CONTROL1_HASH_SELECT_SHA1) ?
 589			sha1_null_hash : sha256_null_hash;
 590		memcpy(sdcp->coh->sha_out_buf, sha_buf, halg->digestsize);
 591		ret = 0;
 592		goto done_run;
 593	}
 594
 595	/* Set HASH_TERM bit for last transfer block. */
 596	if (rctx->fini) {
 597		digest_phys = dma_map_single(sdcp->dev, sdcp->coh->sha_out_buf,
 598					     DCP_SHA_PAY_SZ, DMA_FROM_DEVICE);
 
 
 
 
 599		desc->control0 |= MXS_DCP_CONTROL0_HASH_TERM;
 600		desc->payload = digest_phys;
 601	}
 602
 603	ret = mxs_dcp_start_dma(actx);
 604
 605	if (rctx->fini)
 606		dma_unmap_single(sdcp->dev, digest_phys, DCP_SHA_PAY_SZ,
 607				 DMA_FROM_DEVICE);
 608
 609done_run:
 610	dma_unmap_single(sdcp->dev, buf_phys, DCP_BUF_SZ, DMA_TO_DEVICE);
 611
 612	return ret;
 613}
 614
 615static int dcp_sha_req_to_buf(struct crypto_async_request *arq)
 616{
 617	struct dcp *sdcp = global_sdcp;
 618
 619	struct ahash_request *req = ahash_request_cast(arq);
 620	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
 621	struct dcp_async_ctx *actx = crypto_ahash_ctx(tfm);
 622	struct dcp_sha_req_ctx *rctx = ahash_request_ctx(req);
 623	struct hash_alg_common *halg = crypto_hash_alg_common(tfm);
 624	const int nents = sg_nents(req->src);
 625
 626	uint8_t *in_buf = sdcp->coh->sha_in_buf;
 627	uint8_t *out_buf = sdcp->coh->sha_out_buf;
 628
 629	uint8_t *src_buf;
 630
 631	struct scatterlist *src;
 632
 633	unsigned int i, len, clen;
 634	int ret;
 635
 636	int fin = rctx->fini;
 637	if (fin)
 638		rctx->fini = 0;
 639
 640	for_each_sg(req->src, src, nents, i) {
 641		src_buf = sg_virt(src);
 642		len = sg_dma_len(src);
 643
 644		do {
 645			if (actx->fill + len > DCP_BUF_SZ)
 646				clen = DCP_BUF_SZ - actx->fill;
 647			else
 648				clen = len;
 649
 650			memcpy(in_buf + actx->fill, src_buf, clen);
 651			len -= clen;
 652			src_buf += clen;
 653			actx->fill += clen;
 654
 655			/*
 656			 * If we filled the buffer and still have some
 657			 * more data, submit the buffer.
 658			 */
 659			if (len && actx->fill == DCP_BUF_SZ) {
 660				ret = mxs_dcp_run_sha(req);
 661				if (ret)
 662					return ret;
 663				actx->fill = 0;
 664				rctx->init = 0;
 665			}
 666		} while (len);
 
 
 
 667	}
 668
 669	if (fin) {
 670		rctx->fini = 1;
 671
 672		/* Submit whatever is left. */
 673		if (!req->result)
 674			return -EINVAL;
 675
 676		ret = mxs_dcp_run_sha(req);
 677		if (ret)
 678			return ret;
 679
 680		actx->fill = 0;
 681
 682		/* For some reason the result is flipped */
 683		for (i = 0; i < halg->digestsize; i++)
 684			req->result[i] = out_buf[halg->digestsize - i - 1];
 685	}
 686
 687	return 0;
 688}
 689
 690static int dcp_chan_thread_sha(void *data)
 691{
 692	struct dcp *sdcp = global_sdcp;
 693	const int chan = DCP_CHAN_HASH_SHA;
 694
 695	struct crypto_async_request *backlog;
 696	struct crypto_async_request *arq;
 697	int ret;
 698
 699	while (!kthread_should_stop()) {
 700		set_current_state(TASK_INTERRUPTIBLE);
 701
 702		spin_lock(&sdcp->lock[chan]);
 703		backlog = crypto_get_backlog(&sdcp->queue[chan]);
 704		arq = crypto_dequeue_request(&sdcp->queue[chan]);
 705		spin_unlock(&sdcp->lock[chan]);
 706
 707		if (!backlog && !arq) {
 708			schedule();
 709			continue;
 710		}
 711
 712		set_current_state(TASK_RUNNING);
 713
 714		if (backlog)
 715			backlog->complete(backlog, -EINPROGRESS);
 716
 717		if (arq) {
 718			ret = dcp_sha_req_to_buf(arq);
 719			arq->complete(arq, ret);
 720		}
 721	}
 722
 723	return 0;
 724}
 725
 726static int dcp_sha_init(struct ahash_request *req)
 727{
 728	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
 729	struct dcp_async_ctx *actx = crypto_ahash_ctx(tfm);
 730
 731	struct hash_alg_common *halg = crypto_hash_alg_common(tfm);
 732
 733	/*
 734	 * Start hashing session. The code below only inits the
 735	 * hashing session context, nothing more.
 736	 */
 737	memset(actx, 0, sizeof(*actx));
 738
 739	if (strcmp(halg->base.cra_name, "sha1") == 0)
 740		actx->alg = MXS_DCP_CONTROL1_HASH_SELECT_SHA1;
 741	else
 742		actx->alg = MXS_DCP_CONTROL1_HASH_SELECT_SHA256;
 743
 744	actx->fill = 0;
 745	actx->hot = 0;
 746	actx->chan = DCP_CHAN_HASH_SHA;
 747
 748	mutex_init(&actx->mutex);
 749
 750	return 0;
 751}
 752
 753static int dcp_sha_update_fx(struct ahash_request *req, int fini)
 754{
 755	struct dcp *sdcp = global_sdcp;
 756
 757	struct dcp_sha_req_ctx *rctx = ahash_request_ctx(req);
 758	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
 759	struct dcp_async_ctx *actx = crypto_ahash_ctx(tfm);
 760
 761	int ret;
 762
 763	/*
 764	 * Ignore requests that have no data in them and are not
 765	 * the trailing requests in the stream of requests.
 766	 */
 767	if (!req->nbytes && !fini)
 768		return 0;
 769
 770	mutex_lock(&actx->mutex);
 771
 772	rctx->fini = fini;
 773
 774	if (!actx->hot) {
 775		actx->hot = 1;
 776		rctx->init = 1;
 777	}
 778
 779	spin_lock(&sdcp->lock[actx->chan]);
 780	ret = crypto_enqueue_request(&sdcp->queue[actx->chan], &req->base);
 781	spin_unlock(&sdcp->lock[actx->chan]);
 782
 783	wake_up_process(sdcp->thread[actx->chan]);
 784	mutex_unlock(&actx->mutex);
 785
 786	return ret;
 787}
 788
 789static int dcp_sha_update(struct ahash_request *req)
 790{
 791	return dcp_sha_update_fx(req, 0);
 792}
 793
 794static int dcp_sha_final(struct ahash_request *req)
 795{
 796	ahash_request_set_crypt(req, NULL, req->result, 0);
 797	req->nbytes = 0;
 798	return dcp_sha_update_fx(req, 1);
 799}
 800
 801static int dcp_sha_finup(struct ahash_request *req)
 802{
 803	return dcp_sha_update_fx(req, 1);
 804}
 805
 806static int dcp_sha_digest(struct ahash_request *req)
 807{
 808	int ret;
 809
 810	ret = dcp_sha_init(req);
 811	if (ret)
 812		return ret;
 813
 814	return dcp_sha_finup(req);
 815}
 816
 817static int dcp_sha_import(struct ahash_request *req, const void *in)
 818{
 819	struct dcp_sha_req_ctx *rctx = ahash_request_ctx(req);
 820	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
 821	struct dcp_async_ctx *actx = crypto_ahash_ctx(tfm);
 822	const struct dcp_export_state *export = in;
 823
 824	memset(rctx, 0, sizeof(struct dcp_sha_req_ctx));
 825	memset(actx, 0, sizeof(struct dcp_async_ctx));
 826	memcpy(rctx, &export->req_ctx, sizeof(struct dcp_sha_req_ctx));
 827	memcpy(actx, &export->async_ctx, sizeof(struct dcp_async_ctx));
 828
 829	return 0;
 830}
 831
 832static int dcp_sha_export(struct ahash_request *req, void *out)
 833{
 834	struct dcp_sha_req_ctx *rctx_state = ahash_request_ctx(req);
 835	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
 836	struct dcp_async_ctx *actx_state = crypto_ahash_ctx(tfm);
 837	struct dcp_export_state *export = out;
 838
 839	memcpy(&export->req_ctx, rctx_state, sizeof(struct dcp_sha_req_ctx));
 840	memcpy(&export->async_ctx, actx_state, sizeof(struct dcp_async_ctx));
 841
 842	return 0;
 843}
 844
 845static int dcp_sha_cra_init(struct crypto_tfm *tfm)
 846{
 847	crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
 848				 sizeof(struct dcp_sha_req_ctx));
 849	return 0;
 850}
 851
 852static void dcp_sha_cra_exit(struct crypto_tfm *tfm)
 853{
 854}
 855
 856/* AES 128 ECB and AES 128 CBC */
 857static struct crypto_alg dcp_aes_algs[] = {
 858	{
 859		.cra_name		= "ecb(aes)",
 860		.cra_driver_name	= "ecb-aes-dcp",
 861		.cra_priority		= 400,
 862		.cra_alignmask		= 15,
 863		.cra_flags		= CRYPTO_ALG_TYPE_ABLKCIPHER |
 864					  CRYPTO_ALG_ASYNC |
 865					  CRYPTO_ALG_NEED_FALLBACK,
 866		.cra_init		= mxs_dcp_aes_fallback_init,
 867		.cra_exit		= mxs_dcp_aes_fallback_exit,
 868		.cra_blocksize		= AES_BLOCK_SIZE,
 869		.cra_ctxsize		= sizeof(struct dcp_async_ctx),
 870		.cra_type		= &crypto_ablkcipher_type,
 871		.cra_module		= THIS_MODULE,
 872		.cra_u	= {
 873			.ablkcipher = {
 874				.min_keysize	= AES_MIN_KEY_SIZE,
 875				.max_keysize	= AES_MAX_KEY_SIZE,
 876				.setkey		= mxs_dcp_aes_setkey,
 877				.encrypt	= mxs_dcp_aes_ecb_encrypt,
 878				.decrypt	= mxs_dcp_aes_ecb_decrypt
 879			},
 880		},
 881	}, {
 882		.cra_name		= "cbc(aes)",
 883		.cra_driver_name	= "cbc-aes-dcp",
 884		.cra_priority		= 400,
 885		.cra_alignmask		= 15,
 886		.cra_flags		= CRYPTO_ALG_TYPE_ABLKCIPHER |
 887					  CRYPTO_ALG_ASYNC |
 888					  CRYPTO_ALG_NEED_FALLBACK,
 889		.cra_init		= mxs_dcp_aes_fallback_init,
 890		.cra_exit		= mxs_dcp_aes_fallback_exit,
 891		.cra_blocksize		= AES_BLOCK_SIZE,
 892		.cra_ctxsize		= sizeof(struct dcp_async_ctx),
 893		.cra_type		= &crypto_ablkcipher_type,
 894		.cra_module		= THIS_MODULE,
 895		.cra_u = {
 896			.ablkcipher = {
 897				.min_keysize	= AES_MIN_KEY_SIZE,
 898				.max_keysize	= AES_MAX_KEY_SIZE,
 899				.setkey		= mxs_dcp_aes_setkey,
 900				.encrypt	= mxs_dcp_aes_cbc_encrypt,
 901				.decrypt	= mxs_dcp_aes_cbc_decrypt,
 902				.ivsize		= AES_BLOCK_SIZE,
 903			},
 904		},
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 905	},
 906};
 907
 908/* SHA1 */
 909static struct ahash_alg dcp_sha1_alg = {
 910	.init	= dcp_sha_init,
 911	.update	= dcp_sha_update,
 912	.final	= dcp_sha_final,
 913	.finup	= dcp_sha_finup,
 914	.digest	= dcp_sha_digest,
 915	.import = dcp_sha_import,
 916	.export = dcp_sha_export,
 917	.halg	= {
 918		.digestsize	= SHA1_DIGEST_SIZE,
 919		.statesize	= sizeof(struct dcp_export_state),
 920		.base		= {
 921			.cra_name		= "sha1",
 922			.cra_driver_name	= "sha1-dcp",
 923			.cra_priority		= 400,
 924			.cra_alignmask		= 63,
 925			.cra_flags		= CRYPTO_ALG_ASYNC,
 926			.cra_blocksize		= SHA1_BLOCK_SIZE,
 927			.cra_ctxsize		= sizeof(struct dcp_async_ctx),
 928			.cra_module		= THIS_MODULE,
 929			.cra_init		= dcp_sha_cra_init,
 930			.cra_exit		= dcp_sha_cra_exit,
 931		},
 932	},
 933};
 934
 935/* SHA256 */
 936static struct ahash_alg dcp_sha256_alg = {
 937	.init	= dcp_sha_init,
 938	.update	= dcp_sha_update,
 939	.final	= dcp_sha_final,
 940	.finup	= dcp_sha_finup,
 941	.digest	= dcp_sha_digest,
 942	.import = dcp_sha_import,
 943	.export = dcp_sha_export,
 944	.halg	= {
 945		.digestsize	= SHA256_DIGEST_SIZE,
 946		.statesize	= sizeof(struct dcp_export_state),
 947		.base		= {
 948			.cra_name		= "sha256",
 949			.cra_driver_name	= "sha256-dcp",
 950			.cra_priority		= 400,
 951			.cra_alignmask		= 63,
 952			.cra_flags		= CRYPTO_ALG_ASYNC,
 953			.cra_blocksize		= SHA256_BLOCK_SIZE,
 954			.cra_ctxsize		= sizeof(struct dcp_async_ctx),
 955			.cra_module		= THIS_MODULE,
 956			.cra_init		= dcp_sha_cra_init,
 957			.cra_exit		= dcp_sha_cra_exit,
 958		},
 959	},
 960};
 961
 962static irqreturn_t mxs_dcp_irq(int irq, void *context)
 963{
 964	struct dcp *sdcp = context;
 965	uint32_t stat;
 966	int i;
 967
 968	stat = readl(sdcp->base + MXS_DCP_STAT);
 969	stat &= MXS_DCP_STAT_IRQ_MASK;
 970	if (!stat)
 971		return IRQ_NONE;
 972
 973	/* Clear the interrupts. */
 974	writel(stat, sdcp->base + MXS_DCP_STAT_CLR);
 975
 976	/* Complete the DMA requests that finished. */
 977	for (i = 0; i < DCP_MAX_CHANS; i++)
 978		if (stat & (1 << i))
 979			complete(&sdcp->completion[i]);
 980
 981	return IRQ_HANDLED;
 982}
 983
 984static int mxs_dcp_probe(struct platform_device *pdev)
 985{
 986	struct device *dev = &pdev->dev;
 987	struct dcp *sdcp = NULL;
 988	int i, ret;
 989	int dcp_vmi_irq, dcp_irq;
 990
 991	if (global_sdcp) {
 992		dev_err(dev, "Only one DCP instance allowed!\n");
 993		return -ENODEV;
 994	}
 995
 996	dcp_vmi_irq = platform_get_irq(pdev, 0);
 997	if (dcp_vmi_irq < 0)
 998		return dcp_vmi_irq;
 999
1000	dcp_irq = platform_get_irq(pdev, 1);
1001	if (dcp_irq < 0)
1002		return dcp_irq;
1003
1004	sdcp = devm_kzalloc(dev, sizeof(*sdcp), GFP_KERNEL);
1005	if (!sdcp)
1006		return -ENOMEM;
1007
1008	sdcp->dev = dev;
1009	sdcp->base = devm_platform_ioremap_resource(pdev, 0);
1010	if (IS_ERR(sdcp->base))
1011		return PTR_ERR(sdcp->base);
1012
1013
1014	ret = devm_request_irq(dev, dcp_vmi_irq, mxs_dcp_irq, 0,
1015			       "dcp-vmi-irq", sdcp);
1016	if (ret) {
1017		dev_err(dev, "Failed to claim DCP VMI IRQ!\n");
1018		return ret;
1019	}
1020
1021	ret = devm_request_irq(dev, dcp_irq, mxs_dcp_irq, 0,
1022			       "dcp-irq", sdcp);
1023	if (ret) {
1024		dev_err(dev, "Failed to claim DCP IRQ!\n");
1025		return ret;
1026	}
1027
1028	/* Allocate coherent helper block. */
1029	sdcp->coh = devm_kzalloc(dev, sizeof(*sdcp->coh) + DCP_ALIGNMENT,
1030				   GFP_KERNEL);
1031	if (!sdcp->coh)
1032		return -ENOMEM;
1033
1034	/* Re-align the structure so it fits the DCP constraints. */
1035	sdcp->coh = PTR_ALIGN(sdcp->coh, DCP_ALIGNMENT);
1036
1037	/* DCP clock is optional, only used on some SOCs */
1038	sdcp->dcp_clk = devm_clk_get(dev, "dcp");
1039	if (IS_ERR(sdcp->dcp_clk)) {
1040		if (sdcp->dcp_clk != ERR_PTR(-ENOENT))
1041			return PTR_ERR(sdcp->dcp_clk);
1042		sdcp->dcp_clk = NULL;
1043	}
1044	ret = clk_prepare_enable(sdcp->dcp_clk);
1045	if (ret)
1046		return ret;
1047
1048	/* Restart the DCP block. */
1049	ret = stmp_reset_block(sdcp->base);
1050	if (ret) {
1051		dev_err(dev, "Failed reset\n");
1052		goto err_disable_unprepare_clk;
1053	}
1054
1055	/* Initialize control register. */
1056	writel(MXS_DCP_CTRL_GATHER_RESIDUAL_WRITES |
1057	       MXS_DCP_CTRL_ENABLE_CONTEXT_CACHING | 0xf,
1058	       sdcp->base + MXS_DCP_CTRL);
1059
1060	/* Enable all DCP DMA channels. */
1061	writel(MXS_DCP_CHANNELCTRL_ENABLE_CHANNEL_MASK,
1062	       sdcp->base + MXS_DCP_CHANNELCTRL);
1063
1064	/*
1065	 * We do not enable context switching. Give the context buffer a
1066	 * pointer to an illegal address so if context switching is
1067	 * inadvertantly enabled, the DCP will return an error instead of
1068	 * trashing good memory. The DCP DMA cannot access ROM, so any ROM
1069	 * address will do.
1070	 */
1071	writel(0xffff0000, sdcp->base + MXS_DCP_CONTEXT);
1072	for (i = 0; i < DCP_MAX_CHANS; i++)
1073		writel(0xffffffff, sdcp->base + MXS_DCP_CH_N_STAT_CLR(i));
1074	writel(0xffffffff, sdcp->base + MXS_DCP_STAT_CLR);
1075
1076	global_sdcp = sdcp;
1077
1078	platform_set_drvdata(pdev, sdcp);
1079
1080	for (i = 0; i < DCP_MAX_CHANS; i++) {
1081		spin_lock_init(&sdcp->lock[i]);
1082		init_completion(&sdcp->completion[i]);
1083		crypto_init_queue(&sdcp->queue[i], 50);
1084	}
1085
1086	/* Create the SHA and AES handler threads. */
1087	sdcp->thread[DCP_CHAN_HASH_SHA] = kthread_run(dcp_chan_thread_sha,
1088						      NULL, "mxs_dcp_chan/sha");
1089	if (IS_ERR(sdcp->thread[DCP_CHAN_HASH_SHA])) {
1090		dev_err(dev, "Error starting SHA thread!\n");
1091		ret = PTR_ERR(sdcp->thread[DCP_CHAN_HASH_SHA]);
1092		goto err_disable_unprepare_clk;
1093	}
1094
1095	sdcp->thread[DCP_CHAN_CRYPTO] = kthread_run(dcp_chan_thread_aes,
1096						    NULL, "mxs_dcp_chan/aes");
1097	if (IS_ERR(sdcp->thread[DCP_CHAN_CRYPTO])) {
1098		dev_err(dev, "Error starting SHA thread!\n");
1099		ret = PTR_ERR(sdcp->thread[DCP_CHAN_CRYPTO]);
1100		goto err_destroy_sha_thread;
1101	}
1102
1103	/* Register the various crypto algorithms. */
1104	sdcp->caps = readl(sdcp->base + MXS_DCP_CAPABILITY1);
1105
1106	if (sdcp->caps & MXS_DCP_CAPABILITY1_AES128) {
1107		ret = crypto_register_algs(dcp_aes_algs,
1108					   ARRAY_SIZE(dcp_aes_algs));
1109		if (ret) {
1110			/* Failed to register algorithm. */
1111			dev_err(dev, "Failed to register AES crypto!\n");
1112			goto err_destroy_aes_thread;
1113		}
1114	}
1115
1116	if (sdcp->caps & MXS_DCP_CAPABILITY1_SHA1) {
1117		ret = crypto_register_ahash(&dcp_sha1_alg);
1118		if (ret) {
1119			dev_err(dev, "Failed to register %s hash!\n",
1120				dcp_sha1_alg.halg.base.cra_name);
1121			goto err_unregister_aes;
1122		}
1123	}
1124
1125	if (sdcp->caps & MXS_DCP_CAPABILITY1_SHA256) {
1126		ret = crypto_register_ahash(&dcp_sha256_alg);
1127		if (ret) {
1128			dev_err(dev, "Failed to register %s hash!\n",
1129				dcp_sha256_alg.halg.base.cra_name);
1130			goto err_unregister_sha1;
1131		}
1132	}
1133
1134	return 0;
1135
1136err_unregister_sha1:
1137	if (sdcp->caps & MXS_DCP_CAPABILITY1_SHA1)
1138		crypto_unregister_ahash(&dcp_sha1_alg);
1139
1140err_unregister_aes:
1141	if (sdcp->caps & MXS_DCP_CAPABILITY1_AES128)
1142		crypto_unregister_algs(dcp_aes_algs, ARRAY_SIZE(dcp_aes_algs));
1143
1144err_destroy_aes_thread:
1145	kthread_stop(sdcp->thread[DCP_CHAN_CRYPTO]);
1146
1147err_destroy_sha_thread:
1148	kthread_stop(sdcp->thread[DCP_CHAN_HASH_SHA]);
1149
1150err_disable_unprepare_clk:
1151	clk_disable_unprepare(sdcp->dcp_clk);
1152
1153	return ret;
1154}
1155
1156static int mxs_dcp_remove(struct platform_device *pdev)
1157{
1158	struct dcp *sdcp = platform_get_drvdata(pdev);
1159
1160	if (sdcp->caps & MXS_DCP_CAPABILITY1_SHA256)
1161		crypto_unregister_ahash(&dcp_sha256_alg);
1162
1163	if (sdcp->caps & MXS_DCP_CAPABILITY1_SHA1)
1164		crypto_unregister_ahash(&dcp_sha1_alg);
1165
1166	if (sdcp->caps & MXS_DCP_CAPABILITY1_AES128)
1167		crypto_unregister_algs(dcp_aes_algs, ARRAY_SIZE(dcp_aes_algs));
1168
1169	kthread_stop(sdcp->thread[DCP_CHAN_HASH_SHA]);
1170	kthread_stop(sdcp->thread[DCP_CHAN_CRYPTO]);
1171
1172	clk_disable_unprepare(sdcp->dcp_clk);
1173
1174	platform_set_drvdata(pdev, NULL);
1175
1176	global_sdcp = NULL;
1177
1178	return 0;
1179}
1180
1181static const struct of_device_id mxs_dcp_dt_ids[] = {
1182	{ .compatible = "fsl,imx23-dcp", .data = NULL, },
1183	{ .compatible = "fsl,imx28-dcp", .data = NULL, },
1184	{ /* sentinel */ }
1185};
1186
1187MODULE_DEVICE_TABLE(of, mxs_dcp_dt_ids);
1188
1189static struct platform_driver mxs_dcp_driver = {
1190	.probe	= mxs_dcp_probe,
1191	.remove	= mxs_dcp_remove,
1192	.driver	= {
1193		.name		= "mxs-dcp",
1194		.of_match_table	= mxs_dcp_dt_ids,
1195	},
1196};
1197
1198module_platform_driver(mxs_dcp_driver);
1199
1200MODULE_AUTHOR("Marek Vasut <marex@denx.de>");
1201MODULE_DESCRIPTION("Freescale MXS DCP Driver");
1202MODULE_LICENSE("GPL");
1203MODULE_ALIAS("platform:mxs-dcp");