Loading...
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * Freescale i.MX23/i.MX28 Data Co-Processor driver
4 *
5 * Copyright (C) 2013 Marek Vasut <marex@denx.de>
6 */
7
8#include <linux/dma-mapping.h>
9#include <linux/interrupt.h>
10#include <linux/io.h>
11#include <linux/kernel.h>
12#include <linux/kthread.h>
13#include <linux/module.h>
14#include <linux/of.h>
15#include <linux/platform_device.h>
16#include <linux/stmp_device.h>
17#include <linux/clk.h>
18#include <soc/fsl/dcp.h>
19
20#include <crypto/aes.h>
21#include <crypto/sha1.h>
22#include <crypto/sha2.h>
23#include <crypto/internal/hash.h>
24#include <crypto/internal/skcipher.h>
25#include <crypto/scatterwalk.h>
26
27#define DCP_MAX_CHANS 4
28#define DCP_BUF_SZ PAGE_SIZE
29#define DCP_SHA_PAY_SZ 64
30
31#define DCP_ALIGNMENT 64
32
33/*
34 * Null hashes to align with hw behavior on imx6sl and ull
35 * these are flipped for consistency with hw output
36 */
37static const uint8_t sha1_null_hash[] =
38 "\x09\x07\xd8\xaf\x90\x18\x60\x95\xef\xbf"
39 "\x55\x32\x0d\x4b\x6b\x5e\xee\xa3\x39\xda";
40
41static const uint8_t sha256_null_hash[] =
42 "\x55\xb8\x52\x78\x1b\x99\x95\xa4"
43 "\x4c\x93\x9b\x64\xe4\x41\xae\x27"
44 "\x24\xb9\x6f\x99\xc8\xf4\xfb\x9a"
45 "\x14\x1c\xfc\x98\x42\xc4\xb0\xe3";
46
47/* DCP DMA descriptor. */
48struct dcp_dma_desc {
49 uint32_t next_cmd_addr;
50 uint32_t control0;
51 uint32_t control1;
52 uint32_t source;
53 uint32_t destination;
54 uint32_t size;
55 uint32_t payload;
56 uint32_t status;
57};
58
59/* Coherent aligned block for bounce buffering. */
60struct dcp_coherent_block {
61 uint8_t aes_in_buf[DCP_BUF_SZ];
62 uint8_t aes_out_buf[DCP_BUF_SZ];
63 uint8_t sha_in_buf[DCP_BUF_SZ];
64 uint8_t sha_out_buf[DCP_SHA_PAY_SZ];
65
66 uint8_t aes_key[2 * AES_KEYSIZE_128];
67
68 struct dcp_dma_desc desc[DCP_MAX_CHANS];
69};
70
71struct dcp {
72 struct device *dev;
73 void __iomem *base;
74
75 uint32_t caps;
76
77 struct dcp_coherent_block *coh;
78
79 struct completion completion[DCP_MAX_CHANS];
80 spinlock_t lock[DCP_MAX_CHANS];
81 struct task_struct *thread[DCP_MAX_CHANS];
82 struct crypto_queue queue[DCP_MAX_CHANS];
83 struct clk *dcp_clk;
84};
85
86enum dcp_chan {
87 DCP_CHAN_HASH_SHA = 0,
88 DCP_CHAN_CRYPTO = 2,
89};
90
91struct dcp_async_ctx {
92 /* Common context */
93 enum dcp_chan chan;
94 uint32_t fill;
95
96 /* SHA Hash-specific context */
97 struct mutex mutex;
98 uint32_t alg;
99 unsigned int hot:1;
100
101 /* Crypto-specific context */
102 struct crypto_skcipher *fallback;
103 unsigned int key_len;
104 uint8_t key[AES_KEYSIZE_128];
105 bool key_referenced;
106};
107
108struct dcp_aes_req_ctx {
109 unsigned int enc:1;
110 unsigned int ecb:1;
111 struct skcipher_request fallback_req; // keep at the end
112};
113
114struct dcp_sha_req_ctx {
115 unsigned int init:1;
116 unsigned int fini:1;
117};
118
119struct dcp_export_state {
120 struct dcp_sha_req_ctx req_ctx;
121 struct dcp_async_ctx async_ctx;
122};
123
124/*
125 * There can even be only one instance of the MXS DCP due to the
126 * design of Linux Crypto API.
127 */
128static struct dcp *global_sdcp;
129
130/* DCP register layout. */
131#define MXS_DCP_CTRL 0x00
132#define MXS_DCP_CTRL_GATHER_RESIDUAL_WRITES (1 << 23)
133#define MXS_DCP_CTRL_ENABLE_CONTEXT_CACHING (1 << 22)
134
135#define MXS_DCP_STAT 0x10
136#define MXS_DCP_STAT_CLR 0x18
137#define MXS_DCP_STAT_IRQ_MASK 0xf
138
139#define MXS_DCP_CHANNELCTRL 0x20
140#define MXS_DCP_CHANNELCTRL_ENABLE_CHANNEL_MASK 0xff
141
142#define MXS_DCP_CAPABILITY1 0x40
143#define MXS_DCP_CAPABILITY1_SHA256 (4 << 16)
144#define MXS_DCP_CAPABILITY1_SHA1 (1 << 16)
145#define MXS_DCP_CAPABILITY1_AES128 (1 << 0)
146
147#define MXS_DCP_CONTEXT 0x50
148
149#define MXS_DCP_CH_N_CMDPTR(n) (0x100 + ((n) * 0x40))
150
151#define MXS_DCP_CH_N_SEMA(n) (0x110 + ((n) * 0x40))
152
153#define MXS_DCP_CH_N_STAT(n) (0x120 + ((n) * 0x40))
154#define MXS_DCP_CH_N_STAT_CLR(n) (0x128 + ((n) * 0x40))
155
156/* DMA descriptor bits. */
157#define MXS_DCP_CONTROL0_HASH_TERM (1 << 13)
158#define MXS_DCP_CONTROL0_HASH_INIT (1 << 12)
159#define MXS_DCP_CONTROL0_PAYLOAD_KEY (1 << 11)
160#define MXS_DCP_CONTROL0_OTP_KEY (1 << 10)
161#define MXS_DCP_CONTROL0_CIPHER_ENCRYPT (1 << 8)
162#define MXS_DCP_CONTROL0_CIPHER_INIT (1 << 9)
163#define MXS_DCP_CONTROL0_ENABLE_HASH (1 << 6)
164#define MXS_DCP_CONTROL0_ENABLE_CIPHER (1 << 5)
165#define MXS_DCP_CONTROL0_DECR_SEMAPHORE (1 << 1)
166#define MXS_DCP_CONTROL0_INTERRUPT (1 << 0)
167
168#define MXS_DCP_CONTROL1_HASH_SELECT_SHA256 (2 << 16)
169#define MXS_DCP_CONTROL1_HASH_SELECT_SHA1 (0 << 16)
170#define MXS_DCP_CONTROL1_CIPHER_MODE_CBC (1 << 4)
171#define MXS_DCP_CONTROL1_CIPHER_MODE_ECB (0 << 4)
172#define MXS_DCP_CONTROL1_CIPHER_SELECT_AES128 (0 << 0)
173
174#define MXS_DCP_CONTROL1_KEY_SELECT_SHIFT 8
175
176static int mxs_dcp_start_dma(struct dcp_async_ctx *actx)
177{
178 int dma_err;
179 struct dcp *sdcp = global_sdcp;
180 const int chan = actx->chan;
181 uint32_t stat;
182 unsigned long ret;
183 struct dcp_dma_desc *desc = &sdcp->coh->desc[actx->chan];
184 dma_addr_t desc_phys = dma_map_single(sdcp->dev, desc, sizeof(*desc),
185 DMA_TO_DEVICE);
186
187 dma_err = dma_mapping_error(sdcp->dev, desc_phys);
188 if (dma_err)
189 return dma_err;
190
191 reinit_completion(&sdcp->completion[chan]);
192
193 /* Clear status register. */
194 writel(0xffffffff, sdcp->base + MXS_DCP_CH_N_STAT_CLR(chan));
195
196 /* Load the DMA descriptor. */
197 writel(desc_phys, sdcp->base + MXS_DCP_CH_N_CMDPTR(chan));
198
199 /* Increment the semaphore to start the DMA transfer. */
200 writel(1, sdcp->base + MXS_DCP_CH_N_SEMA(chan));
201
202 ret = wait_for_completion_timeout(&sdcp->completion[chan],
203 msecs_to_jiffies(1000));
204 if (!ret) {
205 dev_err(sdcp->dev, "Channel %i timeout (DCP_STAT=0x%08x)\n",
206 chan, readl(sdcp->base + MXS_DCP_STAT));
207 return -ETIMEDOUT;
208 }
209
210 stat = readl(sdcp->base + MXS_DCP_CH_N_STAT(chan));
211 if (stat & 0xff) {
212 dev_err(sdcp->dev, "Channel %i error (CH_STAT=0x%08x)\n",
213 chan, stat);
214 return -EINVAL;
215 }
216
217 dma_unmap_single(sdcp->dev, desc_phys, sizeof(*desc), DMA_TO_DEVICE);
218
219 return 0;
220}
221
222/*
223 * Encryption (AES128)
224 */
225static int mxs_dcp_run_aes(struct dcp_async_ctx *actx,
226 struct skcipher_request *req, int init)
227{
228 dma_addr_t key_phys, src_phys, dst_phys;
229 struct dcp *sdcp = global_sdcp;
230 struct dcp_dma_desc *desc = &sdcp->coh->desc[actx->chan];
231 struct dcp_aes_req_ctx *rctx = skcipher_request_ctx(req);
232 bool key_referenced = actx->key_referenced;
233 int ret;
234
235 if (key_referenced)
236 key_phys = dma_map_single(sdcp->dev, sdcp->coh->aes_key + AES_KEYSIZE_128,
237 AES_KEYSIZE_128, DMA_TO_DEVICE);
238 else
239 key_phys = dma_map_single(sdcp->dev, sdcp->coh->aes_key,
240 2 * AES_KEYSIZE_128, DMA_TO_DEVICE);
241 ret = dma_mapping_error(sdcp->dev, key_phys);
242 if (ret)
243 return ret;
244
245 src_phys = dma_map_single(sdcp->dev, sdcp->coh->aes_in_buf,
246 DCP_BUF_SZ, DMA_TO_DEVICE);
247 ret = dma_mapping_error(sdcp->dev, src_phys);
248 if (ret)
249 goto err_src;
250
251 dst_phys = dma_map_single(sdcp->dev, sdcp->coh->aes_out_buf,
252 DCP_BUF_SZ, DMA_FROM_DEVICE);
253 ret = dma_mapping_error(sdcp->dev, dst_phys);
254 if (ret)
255 goto err_dst;
256
257 if (actx->fill % AES_BLOCK_SIZE) {
258 dev_err(sdcp->dev, "Invalid block size!\n");
259 ret = -EINVAL;
260 goto aes_done_run;
261 }
262
263 /* Fill in the DMA descriptor. */
264 desc->control0 = MXS_DCP_CONTROL0_DECR_SEMAPHORE |
265 MXS_DCP_CONTROL0_INTERRUPT |
266 MXS_DCP_CONTROL0_ENABLE_CIPHER;
267
268 if (key_referenced)
269 /* Set OTP key bit to select the key via KEY_SELECT. */
270 desc->control0 |= MXS_DCP_CONTROL0_OTP_KEY;
271 else
272 /* Payload contains the key. */
273 desc->control0 |= MXS_DCP_CONTROL0_PAYLOAD_KEY;
274
275 if (rctx->enc)
276 desc->control0 |= MXS_DCP_CONTROL0_CIPHER_ENCRYPT;
277 if (init)
278 desc->control0 |= MXS_DCP_CONTROL0_CIPHER_INIT;
279
280 desc->control1 = MXS_DCP_CONTROL1_CIPHER_SELECT_AES128;
281
282 if (rctx->ecb)
283 desc->control1 |= MXS_DCP_CONTROL1_CIPHER_MODE_ECB;
284 else
285 desc->control1 |= MXS_DCP_CONTROL1_CIPHER_MODE_CBC;
286
287 if (key_referenced)
288 desc->control1 |= sdcp->coh->aes_key[0] << MXS_DCP_CONTROL1_KEY_SELECT_SHIFT;
289
290 desc->next_cmd_addr = 0;
291 desc->source = src_phys;
292 desc->destination = dst_phys;
293 desc->size = actx->fill;
294 desc->payload = key_phys;
295 desc->status = 0;
296
297 ret = mxs_dcp_start_dma(actx);
298
299aes_done_run:
300 dma_unmap_single(sdcp->dev, dst_phys, DCP_BUF_SZ, DMA_FROM_DEVICE);
301err_dst:
302 dma_unmap_single(sdcp->dev, src_phys, DCP_BUF_SZ, DMA_TO_DEVICE);
303err_src:
304 if (key_referenced)
305 dma_unmap_single(sdcp->dev, key_phys, AES_KEYSIZE_128,
306 DMA_TO_DEVICE);
307 else
308 dma_unmap_single(sdcp->dev, key_phys, 2 * AES_KEYSIZE_128,
309 DMA_TO_DEVICE);
310 return ret;
311}
312
313static int mxs_dcp_aes_block_crypt(struct crypto_async_request *arq)
314{
315 struct dcp *sdcp = global_sdcp;
316
317 struct skcipher_request *req = skcipher_request_cast(arq);
318 struct dcp_async_ctx *actx = crypto_tfm_ctx(arq->tfm);
319 struct dcp_aes_req_ctx *rctx = skcipher_request_ctx(req);
320
321 struct scatterlist *dst = req->dst;
322 struct scatterlist *src = req->src;
323 int dst_nents = sg_nents(dst);
324
325 const int out_off = DCP_BUF_SZ;
326 uint8_t *in_buf = sdcp->coh->aes_in_buf;
327 uint8_t *out_buf = sdcp->coh->aes_out_buf;
328
329 uint32_t dst_off = 0;
330 uint8_t *src_buf = NULL;
331 uint32_t last_out_len = 0;
332
333 uint8_t *key = sdcp->coh->aes_key;
334
335 int ret = 0;
336 unsigned int i, len, clen, tlen = 0;
337 int init = 0;
338 bool limit_hit = false;
339
340 actx->fill = 0;
341
342 /* Copy the key from the temporary location. */
343 memcpy(key, actx->key, actx->key_len);
344
345 if (!rctx->ecb) {
346 /* Copy the CBC IV just past the key. */
347 memcpy(key + AES_KEYSIZE_128, req->iv, AES_KEYSIZE_128);
348 /* CBC needs the INIT set. */
349 init = 1;
350 } else {
351 memset(key + AES_KEYSIZE_128, 0, AES_KEYSIZE_128);
352 }
353
354 for_each_sg(req->src, src, sg_nents(req->src), i) {
355 src_buf = sg_virt(src);
356 len = sg_dma_len(src);
357 tlen += len;
358 limit_hit = tlen > req->cryptlen;
359
360 if (limit_hit)
361 len = req->cryptlen - (tlen - len);
362
363 do {
364 if (actx->fill + len > out_off)
365 clen = out_off - actx->fill;
366 else
367 clen = len;
368
369 memcpy(in_buf + actx->fill, src_buf, clen);
370 len -= clen;
371 src_buf += clen;
372 actx->fill += clen;
373
374 /*
375 * If we filled the buffer or this is the last SG,
376 * submit the buffer.
377 */
378 if (actx->fill == out_off || sg_is_last(src) ||
379 limit_hit) {
380 ret = mxs_dcp_run_aes(actx, req, init);
381 if (ret)
382 return ret;
383 init = 0;
384
385 sg_pcopy_from_buffer(dst, dst_nents, out_buf,
386 actx->fill, dst_off);
387 dst_off += actx->fill;
388 last_out_len = actx->fill;
389 actx->fill = 0;
390 }
391 } while (len);
392
393 if (limit_hit)
394 break;
395 }
396
397 /* Copy the IV for CBC for chaining */
398 if (!rctx->ecb) {
399 if (rctx->enc)
400 memcpy(req->iv, out_buf+(last_out_len-AES_BLOCK_SIZE),
401 AES_BLOCK_SIZE);
402 else
403 memcpy(req->iv, in_buf+(last_out_len-AES_BLOCK_SIZE),
404 AES_BLOCK_SIZE);
405 }
406
407 return ret;
408}
409
410static int dcp_chan_thread_aes(void *data)
411{
412 struct dcp *sdcp = global_sdcp;
413 const int chan = DCP_CHAN_CRYPTO;
414
415 struct crypto_async_request *backlog;
416 struct crypto_async_request *arq;
417
418 int ret;
419
420 while (!kthread_should_stop()) {
421 set_current_state(TASK_INTERRUPTIBLE);
422
423 spin_lock(&sdcp->lock[chan]);
424 backlog = crypto_get_backlog(&sdcp->queue[chan]);
425 arq = crypto_dequeue_request(&sdcp->queue[chan]);
426 spin_unlock(&sdcp->lock[chan]);
427
428 if (!backlog && !arq) {
429 schedule();
430 continue;
431 }
432
433 set_current_state(TASK_RUNNING);
434
435 if (backlog)
436 crypto_request_complete(backlog, -EINPROGRESS);
437
438 if (arq) {
439 ret = mxs_dcp_aes_block_crypt(arq);
440 crypto_request_complete(arq, ret);
441 }
442 }
443
444 return 0;
445}
446
447static int mxs_dcp_block_fallback(struct skcipher_request *req, int enc)
448{
449 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
450 struct dcp_aes_req_ctx *rctx = skcipher_request_ctx(req);
451 struct dcp_async_ctx *ctx = crypto_skcipher_ctx(tfm);
452 int ret;
453
454 skcipher_request_set_tfm(&rctx->fallback_req, ctx->fallback);
455 skcipher_request_set_callback(&rctx->fallback_req, req->base.flags,
456 req->base.complete, req->base.data);
457 skcipher_request_set_crypt(&rctx->fallback_req, req->src, req->dst,
458 req->cryptlen, req->iv);
459
460 if (enc)
461 ret = crypto_skcipher_encrypt(&rctx->fallback_req);
462 else
463 ret = crypto_skcipher_decrypt(&rctx->fallback_req);
464
465 return ret;
466}
467
468static int mxs_dcp_aes_enqueue(struct skcipher_request *req, int enc, int ecb)
469{
470 struct dcp *sdcp = global_sdcp;
471 struct crypto_async_request *arq = &req->base;
472 struct dcp_async_ctx *actx = crypto_tfm_ctx(arq->tfm);
473 struct dcp_aes_req_ctx *rctx = skcipher_request_ctx(req);
474 int ret;
475
476 if (unlikely(actx->key_len != AES_KEYSIZE_128 && !actx->key_referenced))
477 return mxs_dcp_block_fallback(req, enc);
478
479 rctx->enc = enc;
480 rctx->ecb = ecb;
481 actx->chan = DCP_CHAN_CRYPTO;
482
483 spin_lock(&sdcp->lock[actx->chan]);
484 ret = crypto_enqueue_request(&sdcp->queue[actx->chan], &req->base);
485 spin_unlock(&sdcp->lock[actx->chan]);
486
487 wake_up_process(sdcp->thread[actx->chan]);
488
489 return ret;
490}
491
492static int mxs_dcp_aes_ecb_decrypt(struct skcipher_request *req)
493{
494 return mxs_dcp_aes_enqueue(req, 0, 1);
495}
496
497static int mxs_dcp_aes_ecb_encrypt(struct skcipher_request *req)
498{
499 return mxs_dcp_aes_enqueue(req, 1, 1);
500}
501
502static int mxs_dcp_aes_cbc_decrypt(struct skcipher_request *req)
503{
504 return mxs_dcp_aes_enqueue(req, 0, 0);
505}
506
507static int mxs_dcp_aes_cbc_encrypt(struct skcipher_request *req)
508{
509 return mxs_dcp_aes_enqueue(req, 1, 0);
510}
511
512static int mxs_dcp_aes_setkey(struct crypto_skcipher *tfm, const u8 *key,
513 unsigned int len)
514{
515 struct dcp_async_ctx *actx = crypto_skcipher_ctx(tfm);
516
517 /*
518 * AES 128 is supposed by the hardware, store key into temporary
519 * buffer and exit. We must use the temporary buffer here, since
520 * there can still be an operation in progress.
521 */
522 actx->key_len = len;
523 actx->key_referenced = false;
524 if (len == AES_KEYSIZE_128) {
525 memcpy(actx->key, key, len);
526 return 0;
527 }
528
529 /*
530 * If the requested AES key size is not supported by the hardware,
531 * but is supported by in-kernel software implementation, we use
532 * software fallback.
533 */
534 crypto_skcipher_clear_flags(actx->fallback, CRYPTO_TFM_REQ_MASK);
535 crypto_skcipher_set_flags(actx->fallback,
536 tfm->base.crt_flags & CRYPTO_TFM_REQ_MASK);
537 return crypto_skcipher_setkey(actx->fallback, key, len);
538}
539
540static int mxs_dcp_aes_setrefkey(struct crypto_skcipher *tfm, const u8 *key,
541 unsigned int len)
542{
543 struct dcp_async_ctx *actx = crypto_skcipher_ctx(tfm);
544
545 if (len != DCP_PAES_KEYSIZE)
546 return -EINVAL;
547
548 switch (key[0]) {
549 case DCP_PAES_KEY_SLOT0:
550 case DCP_PAES_KEY_SLOT1:
551 case DCP_PAES_KEY_SLOT2:
552 case DCP_PAES_KEY_SLOT3:
553 case DCP_PAES_KEY_UNIQUE:
554 case DCP_PAES_KEY_OTP:
555 memcpy(actx->key, key, len);
556 actx->key_len = len;
557 actx->key_referenced = true;
558 break;
559 default:
560 return -EINVAL;
561 }
562
563 return 0;
564}
565
566static int mxs_dcp_aes_fallback_init_tfm(struct crypto_skcipher *tfm)
567{
568 const char *name = crypto_tfm_alg_name(crypto_skcipher_tfm(tfm));
569 struct dcp_async_ctx *actx = crypto_skcipher_ctx(tfm);
570 struct crypto_skcipher *blk;
571
572 blk = crypto_alloc_skcipher(name, 0, CRYPTO_ALG_NEED_FALLBACK);
573 if (IS_ERR(blk))
574 return PTR_ERR(blk);
575
576 actx->fallback = blk;
577 crypto_skcipher_set_reqsize(tfm, sizeof(struct dcp_aes_req_ctx) +
578 crypto_skcipher_reqsize(blk));
579 return 0;
580}
581
582static void mxs_dcp_aes_fallback_exit_tfm(struct crypto_skcipher *tfm)
583{
584 struct dcp_async_ctx *actx = crypto_skcipher_ctx(tfm);
585
586 crypto_free_skcipher(actx->fallback);
587}
588
589static int mxs_dcp_paes_init_tfm(struct crypto_skcipher *tfm)
590{
591 crypto_skcipher_set_reqsize(tfm, sizeof(struct dcp_aes_req_ctx));
592
593 return 0;
594}
595
596/*
597 * Hashing (SHA1/SHA256)
598 */
599static int mxs_dcp_run_sha(struct ahash_request *req)
600{
601 struct dcp *sdcp = global_sdcp;
602 int ret;
603
604 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
605 struct dcp_async_ctx *actx = crypto_ahash_ctx(tfm);
606 struct dcp_sha_req_ctx *rctx = ahash_request_ctx(req);
607 struct dcp_dma_desc *desc = &sdcp->coh->desc[actx->chan];
608
609 dma_addr_t digest_phys = 0;
610 dma_addr_t buf_phys = dma_map_single(sdcp->dev, sdcp->coh->sha_in_buf,
611 DCP_BUF_SZ, DMA_TO_DEVICE);
612
613 ret = dma_mapping_error(sdcp->dev, buf_phys);
614 if (ret)
615 return ret;
616
617 /* Fill in the DMA descriptor. */
618 desc->control0 = MXS_DCP_CONTROL0_DECR_SEMAPHORE |
619 MXS_DCP_CONTROL0_INTERRUPT |
620 MXS_DCP_CONTROL0_ENABLE_HASH;
621 if (rctx->init)
622 desc->control0 |= MXS_DCP_CONTROL0_HASH_INIT;
623
624 desc->control1 = actx->alg;
625 desc->next_cmd_addr = 0;
626 desc->source = buf_phys;
627 desc->destination = 0;
628 desc->size = actx->fill;
629 desc->payload = 0;
630 desc->status = 0;
631
632 /*
633 * Align driver with hw behavior when generating null hashes
634 */
635 if (rctx->init && rctx->fini && desc->size == 0) {
636 struct hash_alg_common *halg = crypto_hash_alg_common(tfm);
637 const uint8_t *sha_buf =
638 (actx->alg == MXS_DCP_CONTROL1_HASH_SELECT_SHA1) ?
639 sha1_null_hash : sha256_null_hash;
640 memcpy(sdcp->coh->sha_out_buf, sha_buf, halg->digestsize);
641 ret = 0;
642 goto done_run;
643 }
644
645 /* Set HASH_TERM bit for last transfer block. */
646 if (rctx->fini) {
647 digest_phys = dma_map_single(sdcp->dev, sdcp->coh->sha_out_buf,
648 DCP_SHA_PAY_SZ, DMA_FROM_DEVICE);
649 ret = dma_mapping_error(sdcp->dev, digest_phys);
650 if (ret)
651 goto done_run;
652
653 desc->control0 |= MXS_DCP_CONTROL0_HASH_TERM;
654 desc->payload = digest_phys;
655 }
656
657 ret = mxs_dcp_start_dma(actx);
658
659 if (rctx->fini)
660 dma_unmap_single(sdcp->dev, digest_phys, DCP_SHA_PAY_SZ,
661 DMA_FROM_DEVICE);
662
663done_run:
664 dma_unmap_single(sdcp->dev, buf_phys, DCP_BUF_SZ, DMA_TO_DEVICE);
665
666 return ret;
667}
668
669static int dcp_sha_req_to_buf(struct crypto_async_request *arq)
670{
671 struct dcp *sdcp = global_sdcp;
672
673 struct ahash_request *req = ahash_request_cast(arq);
674 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
675 struct dcp_async_ctx *actx = crypto_ahash_ctx(tfm);
676 struct dcp_sha_req_ctx *rctx = ahash_request_ctx(req);
677 struct hash_alg_common *halg = crypto_hash_alg_common(tfm);
678
679 uint8_t *in_buf = sdcp->coh->sha_in_buf;
680 uint8_t *out_buf = sdcp->coh->sha_out_buf;
681
682 struct scatterlist *src;
683
684 unsigned int i, len, clen, oft = 0;
685 int ret;
686
687 int fin = rctx->fini;
688 if (fin)
689 rctx->fini = 0;
690
691 src = req->src;
692 len = req->nbytes;
693
694 while (len) {
695 if (actx->fill + len > DCP_BUF_SZ)
696 clen = DCP_BUF_SZ - actx->fill;
697 else
698 clen = len;
699
700 scatterwalk_map_and_copy(in_buf + actx->fill, src, oft, clen,
701 0);
702
703 len -= clen;
704 oft += clen;
705 actx->fill += clen;
706
707 /*
708 * If we filled the buffer and still have some
709 * more data, submit the buffer.
710 */
711 if (len && actx->fill == DCP_BUF_SZ) {
712 ret = mxs_dcp_run_sha(req);
713 if (ret)
714 return ret;
715 actx->fill = 0;
716 rctx->init = 0;
717 }
718 }
719
720 if (fin) {
721 rctx->fini = 1;
722
723 /* Submit whatever is left. */
724 if (!req->result)
725 return -EINVAL;
726
727 ret = mxs_dcp_run_sha(req);
728 if (ret)
729 return ret;
730
731 actx->fill = 0;
732
733 /* For some reason the result is flipped */
734 for (i = 0; i < halg->digestsize; i++)
735 req->result[i] = out_buf[halg->digestsize - i - 1];
736 }
737
738 return 0;
739}
740
741static int dcp_chan_thread_sha(void *data)
742{
743 struct dcp *sdcp = global_sdcp;
744 const int chan = DCP_CHAN_HASH_SHA;
745
746 struct crypto_async_request *backlog;
747 struct crypto_async_request *arq;
748 int ret;
749
750 while (!kthread_should_stop()) {
751 set_current_state(TASK_INTERRUPTIBLE);
752
753 spin_lock(&sdcp->lock[chan]);
754 backlog = crypto_get_backlog(&sdcp->queue[chan]);
755 arq = crypto_dequeue_request(&sdcp->queue[chan]);
756 spin_unlock(&sdcp->lock[chan]);
757
758 if (!backlog && !arq) {
759 schedule();
760 continue;
761 }
762
763 set_current_state(TASK_RUNNING);
764
765 if (backlog)
766 crypto_request_complete(backlog, -EINPROGRESS);
767
768 if (arq) {
769 ret = dcp_sha_req_to_buf(arq);
770 crypto_request_complete(arq, ret);
771 }
772 }
773
774 return 0;
775}
776
777static int dcp_sha_init(struct ahash_request *req)
778{
779 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
780 struct dcp_async_ctx *actx = crypto_ahash_ctx(tfm);
781
782 struct hash_alg_common *halg = crypto_hash_alg_common(tfm);
783
784 /*
785 * Start hashing session. The code below only inits the
786 * hashing session context, nothing more.
787 */
788 memset(actx, 0, sizeof(*actx));
789
790 if (strcmp(halg->base.cra_name, "sha1") == 0)
791 actx->alg = MXS_DCP_CONTROL1_HASH_SELECT_SHA1;
792 else
793 actx->alg = MXS_DCP_CONTROL1_HASH_SELECT_SHA256;
794
795 actx->fill = 0;
796 actx->hot = 0;
797 actx->chan = DCP_CHAN_HASH_SHA;
798
799 mutex_init(&actx->mutex);
800
801 return 0;
802}
803
804static int dcp_sha_update_fx(struct ahash_request *req, int fini)
805{
806 struct dcp *sdcp = global_sdcp;
807
808 struct dcp_sha_req_ctx *rctx = ahash_request_ctx(req);
809 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
810 struct dcp_async_ctx *actx = crypto_ahash_ctx(tfm);
811
812 int ret;
813
814 /*
815 * Ignore requests that have no data in them and are not
816 * the trailing requests in the stream of requests.
817 */
818 if (!req->nbytes && !fini)
819 return 0;
820
821 mutex_lock(&actx->mutex);
822
823 rctx->fini = fini;
824
825 if (!actx->hot) {
826 actx->hot = 1;
827 rctx->init = 1;
828 }
829
830 spin_lock(&sdcp->lock[actx->chan]);
831 ret = crypto_enqueue_request(&sdcp->queue[actx->chan], &req->base);
832 spin_unlock(&sdcp->lock[actx->chan]);
833
834 wake_up_process(sdcp->thread[actx->chan]);
835 mutex_unlock(&actx->mutex);
836
837 return ret;
838}
839
840static int dcp_sha_update(struct ahash_request *req)
841{
842 return dcp_sha_update_fx(req, 0);
843}
844
845static int dcp_sha_final(struct ahash_request *req)
846{
847 ahash_request_set_crypt(req, NULL, req->result, 0);
848 req->nbytes = 0;
849 return dcp_sha_update_fx(req, 1);
850}
851
852static int dcp_sha_finup(struct ahash_request *req)
853{
854 return dcp_sha_update_fx(req, 1);
855}
856
857static int dcp_sha_digest(struct ahash_request *req)
858{
859 int ret;
860
861 ret = dcp_sha_init(req);
862 if (ret)
863 return ret;
864
865 return dcp_sha_finup(req);
866}
867
868static int dcp_sha_import(struct ahash_request *req, const void *in)
869{
870 struct dcp_sha_req_ctx *rctx = ahash_request_ctx(req);
871 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
872 struct dcp_async_ctx *actx = crypto_ahash_ctx(tfm);
873 const struct dcp_export_state *export = in;
874
875 memset(rctx, 0, sizeof(struct dcp_sha_req_ctx));
876 memset(actx, 0, sizeof(struct dcp_async_ctx));
877 memcpy(rctx, &export->req_ctx, sizeof(struct dcp_sha_req_ctx));
878 memcpy(actx, &export->async_ctx, sizeof(struct dcp_async_ctx));
879
880 return 0;
881}
882
883static int dcp_sha_export(struct ahash_request *req, void *out)
884{
885 struct dcp_sha_req_ctx *rctx_state = ahash_request_ctx(req);
886 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
887 struct dcp_async_ctx *actx_state = crypto_ahash_ctx(tfm);
888 struct dcp_export_state *export = out;
889
890 memcpy(&export->req_ctx, rctx_state, sizeof(struct dcp_sha_req_ctx));
891 memcpy(&export->async_ctx, actx_state, sizeof(struct dcp_async_ctx));
892
893 return 0;
894}
895
896static int dcp_sha_cra_init(struct crypto_tfm *tfm)
897{
898 crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
899 sizeof(struct dcp_sha_req_ctx));
900 return 0;
901}
902
903static void dcp_sha_cra_exit(struct crypto_tfm *tfm)
904{
905}
906
907/* AES 128 ECB and AES 128 CBC */
908static struct skcipher_alg dcp_aes_algs[] = {
909 {
910 .base.cra_name = "ecb(aes)",
911 .base.cra_driver_name = "ecb-aes-dcp",
912 .base.cra_priority = 400,
913 .base.cra_alignmask = 15,
914 .base.cra_flags = CRYPTO_ALG_ASYNC |
915 CRYPTO_ALG_NEED_FALLBACK,
916 .base.cra_blocksize = AES_BLOCK_SIZE,
917 .base.cra_ctxsize = sizeof(struct dcp_async_ctx),
918 .base.cra_module = THIS_MODULE,
919
920 .min_keysize = AES_MIN_KEY_SIZE,
921 .max_keysize = AES_MAX_KEY_SIZE,
922 .setkey = mxs_dcp_aes_setkey,
923 .encrypt = mxs_dcp_aes_ecb_encrypt,
924 .decrypt = mxs_dcp_aes_ecb_decrypt,
925 .init = mxs_dcp_aes_fallback_init_tfm,
926 .exit = mxs_dcp_aes_fallback_exit_tfm,
927 }, {
928 .base.cra_name = "cbc(aes)",
929 .base.cra_driver_name = "cbc-aes-dcp",
930 .base.cra_priority = 400,
931 .base.cra_alignmask = 15,
932 .base.cra_flags = CRYPTO_ALG_ASYNC |
933 CRYPTO_ALG_NEED_FALLBACK,
934 .base.cra_blocksize = AES_BLOCK_SIZE,
935 .base.cra_ctxsize = sizeof(struct dcp_async_ctx),
936 .base.cra_module = THIS_MODULE,
937
938 .min_keysize = AES_MIN_KEY_SIZE,
939 .max_keysize = AES_MAX_KEY_SIZE,
940 .setkey = mxs_dcp_aes_setkey,
941 .encrypt = mxs_dcp_aes_cbc_encrypt,
942 .decrypt = mxs_dcp_aes_cbc_decrypt,
943 .ivsize = AES_BLOCK_SIZE,
944 .init = mxs_dcp_aes_fallback_init_tfm,
945 .exit = mxs_dcp_aes_fallback_exit_tfm,
946 }, {
947 .base.cra_name = "ecb(paes)",
948 .base.cra_driver_name = "ecb-paes-dcp",
949 .base.cra_priority = 401,
950 .base.cra_alignmask = 15,
951 .base.cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_INTERNAL,
952 .base.cra_blocksize = AES_BLOCK_SIZE,
953 .base.cra_ctxsize = sizeof(struct dcp_async_ctx),
954 .base.cra_module = THIS_MODULE,
955
956 .min_keysize = DCP_PAES_KEYSIZE,
957 .max_keysize = DCP_PAES_KEYSIZE,
958 .setkey = mxs_dcp_aes_setrefkey,
959 .encrypt = mxs_dcp_aes_ecb_encrypt,
960 .decrypt = mxs_dcp_aes_ecb_decrypt,
961 .init = mxs_dcp_paes_init_tfm,
962 }, {
963 .base.cra_name = "cbc(paes)",
964 .base.cra_driver_name = "cbc-paes-dcp",
965 .base.cra_priority = 401,
966 .base.cra_alignmask = 15,
967 .base.cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_INTERNAL,
968 .base.cra_blocksize = AES_BLOCK_SIZE,
969 .base.cra_ctxsize = sizeof(struct dcp_async_ctx),
970 .base.cra_module = THIS_MODULE,
971
972 .min_keysize = DCP_PAES_KEYSIZE,
973 .max_keysize = DCP_PAES_KEYSIZE,
974 .setkey = mxs_dcp_aes_setrefkey,
975 .encrypt = mxs_dcp_aes_cbc_encrypt,
976 .decrypt = mxs_dcp_aes_cbc_decrypt,
977 .ivsize = AES_BLOCK_SIZE,
978 .init = mxs_dcp_paes_init_tfm,
979 },
980};
981
982/* SHA1 */
983static struct ahash_alg dcp_sha1_alg = {
984 .init = dcp_sha_init,
985 .update = dcp_sha_update,
986 .final = dcp_sha_final,
987 .finup = dcp_sha_finup,
988 .digest = dcp_sha_digest,
989 .import = dcp_sha_import,
990 .export = dcp_sha_export,
991 .halg = {
992 .digestsize = SHA1_DIGEST_SIZE,
993 .statesize = sizeof(struct dcp_export_state),
994 .base = {
995 .cra_name = "sha1",
996 .cra_driver_name = "sha1-dcp",
997 .cra_priority = 400,
998 .cra_flags = CRYPTO_ALG_ASYNC,
999 .cra_blocksize = SHA1_BLOCK_SIZE,
1000 .cra_ctxsize = sizeof(struct dcp_async_ctx),
1001 .cra_module = THIS_MODULE,
1002 .cra_init = dcp_sha_cra_init,
1003 .cra_exit = dcp_sha_cra_exit,
1004 },
1005 },
1006};
1007
1008/* SHA256 */
1009static struct ahash_alg dcp_sha256_alg = {
1010 .init = dcp_sha_init,
1011 .update = dcp_sha_update,
1012 .final = dcp_sha_final,
1013 .finup = dcp_sha_finup,
1014 .digest = dcp_sha_digest,
1015 .import = dcp_sha_import,
1016 .export = dcp_sha_export,
1017 .halg = {
1018 .digestsize = SHA256_DIGEST_SIZE,
1019 .statesize = sizeof(struct dcp_export_state),
1020 .base = {
1021 .cra_name = "sha256",
1022 .cra_driver_name = "sha256-dcp",
1023 .cra_priority = 400,
1024 .cra_flags = CRYPTO_ALG_ASYNC,
1025 .cra_blocksize = SHA256_BLOCK_SIZE,
1026 .cra_ctxsize = sizeof(struct dcp_async_ctx),
1027 .cra_module = THIS_MODULE,
1028 .cra_init = dcp_sha_cra_init,
1029 .cra_exit = dcp_sha_cra_exit,
1030 },
1031 },
1032};
1033
1034static irqreturn_t mxs_dcp_irq(int irq, void *context)
1035{
1036 struct dcp *sdcp = context;
1037 uint32_t stat;
1038 int i;
1039
1040 stat = readl(sdcp->base + MXS_DCP_STAT);
1041 stat &= MXS_DCP_STAT_IRQ_MASK;
1042 if (!stat)
1043 return IRQ_NONE;
1044
1045 /* Clear the interrupts. */
1046 writel(stat, sdcp->base + MXS_DCP_STAT_CLR);
1047
1048 /* Complete the DMA requests that finished. */
1049 for (i = 0; i < DCP_MAX_CHANS; i++)
1050 if (stat & (1 << i))
1051 complete(&sdcp->completion[i]);
1052
1053 return IRQ_HANDLED;
1054}
1055
1056static int mxs_dcp_probe(struct platform_device *pdev)
1057{
1058 struct device *dev = &pdev->dev;
1059 struct dcp *sdcp = NULL;
1060 int i, ret;
1061 int dcp_vmi_irq, dcp_irq;
1062
1063 if (global_sdcp) {
1064 dev_err(dev, "Only one DCP instance allowed!\n");
1065 return -ENODEV;
1066 }
1067
1068 dcp_vmi_irq = platform_get_irq(pdev, 0);
1069 if (dcp_vmi_irq < 0)
1070 return dcp_vmi_irq;
1071
1072 dcp_irq = platform_get_irq(pdev, 1);
1073 if (dcp_irq < 0)
1074 return dcp_irq;
1075
1076 sdcp = devm_kzalloc(dev, sizeof(*sdcp), GFP_KERNEL);
1077 if (!sdcp)
1078 return -ENOMEM;
1079
1080 sdcp->dev = dev;
1081 sdcp->base = devm_platform_ioremap_resource(pdev, 0);
1082 if (IS_ERR(sdcp->base))
1083 return PTR_ERR(sdcp->base);
1084
1085
1086 ret = devm_request_irq(dev, dcp_vmi_irq, mxs_dcp_irq, 0,
1087 "dcp-vmi-irq", sdcp);
1088 if (ret) {
1089 dev_err(dev, "Failed to claim DCP VMI IRQ!\n");
1090 return ret;
1091 }
1092
1093 ret = devm_request_irq(dev, dcp_irq, mxs_dcp_irq, 0,
1094 "dcp-irq", sdcp);
1095 if (ret) {
1096 dev_err(dev, "Failed to claim DCP IRQ!\n");
1097 return ret;
1098 }
1099
1100 /* Allocate coherent helper block. */
1101 sdcp->coh = devm_kzalloc(dev, sizeof(*sdcp->coh) + DCP_ALIGNMENT,
1102 GFP_KERNEL);
1103 if (!sdcp->coh)
1104 return -ENOMEM;
1105
1106 /* Re-align the structure so it fits the DCP constraints. */
1107 sdcp->coh = PTR_ALIGN(sdcp->coh, DCP_ALIGNMENT);
1108
1109 /* DCP clock is optional, only used on some SOCs */
1110 sdcp->dcp_clk = devm_clk_get_optional_enabled(dev, "dcp");
1111 if (IS_ERR(sdcp->dcp_clk))
1112 return PTR_ERR(sdcp->dcp_clk);
1113
1114 /* Restart the DCP block. */
1115 ret = stmp_reset_block(sdcp->base);
1116 if (ret) {
1117 dev_err(dev, "Failed reset\n");
1118 return ret;
1119 }
1120
1121 /* Initialize control register. */
1122 writel(MXS_DCP_CTRL_GATHER_RESIDUAL_WRITES |
1123 MXS_DCP_CTRL_ENABLE_CONTEXT_CACHING | 0xf,
1124 sdcp->base + MXS_DCP_CTRL);
1125
1126 /* Enable all DCP DMA channels. */
1127 writel(MXS_DCP_CHANNELCTRL_ENABLE_CHANNEL_MASK,
1128 sdcp->base + MXS_DCP_CHANNELCTRL);
1129
1130 /*
1131 * We do not enable context switching. Give the context buffer a
1132 * pointer to an illegal address so if context switching is
1133 * inadvertantly enabled, the DCP will return an error instead of
1134 * trashing good memory. The DCP DMA cannot access ROM, so any ROM
1135 * address will do.
1136 */
1137 writel(0xffff0000, sdcp->base + MXS_DCP_CONTEXT);
1138 for (i = 0; i < DCP_MAX_CHANS; i++)
1139 writel(0xffffffff, sdcp->base + MXS_DCP_CH_N_STAT_CLR(i));
1140 writel(0xffffffff, sdcp->base + MXS_DCP_STAT_CLR);
1141
1142 global_sdcp = sdcp;
1143
1144 platform_set_drvdata(pdev, sdcp);
1145
1146 for (i = 0; i < DCP_MAX_CHANS; i++) {
1147 spin_lock_init(&sdcp->lock[i]);
1148 init_completion(&sdcp->completion[i]);
1149 crypto_init_queue(&sdcp->queue[i], 50);
1150 }
1151
1152 /* Create the SHA and AES handler threads. */
1153 sdcp->thread[DCP_CHAN_HASH_SHA] = kthread_run(dcp_chan_thread_sha,
1154 NULL, "mxs_dcp_chan/sha");
1155 if (IS_ERR(sdcp->thread[DCP_CHAN_HASH_SHA])) {
1156 dev_err(dev, "Error starting SHA thread!\n");
1157 ret = PTR_ERR(sdcp->thread[DCP_CHAN_HASH_SHA]);
1158 return ret;
1159 }
1160
1161 sdcp->thread[DCP_CHAN_CRYPTO] = kthread_run(dcp_chan_thread_aes,
1162 NULL, "mxs_dcp_chan/aes");
1163 if (IS_ERR(sdcp->thread[DCP_CHAN_CRYPTO])) {
1164 dev_err(dev, "Error starting SHA thread!\n");
1165 ret = PTR_ERR(sdcp->thread[DCP_CHAN_CRYPTO]);
1166 goto err_destroy_sha_thread;
1167 }
1168
1169 /* Register the various crypto algorithms. */
1170 sdcp->caps = readl(sdcp->base + MXS_DCP_CAPABILITY1);
1171
1172 if (sdcp->caps & MXS_DCP_CAPABILITY1_AES128) {
1173 ret = crypto_register_skciphers(dcp_aes_algs,
1174 ARRAY_SIZE(dcp_aes_algs));
1175 if (ret) {
1176 /* Failed to register algorithm. */
1177 dev_err(dev, "Failed to register AES crypto!\n");
1178 goto err_destroy_aes_thread;
1179 }
1180 }
1181
1182 if (sdcp->caps & MXS_DCP_CAPABILITY1_SHA1) {
1183 ret = crypto_register_ahash(&dcp_sha1_alg);
1184 if (ret) {
1185 dev_err(dev, "Failed to register %s hash!\n",
1186 dcp_sha1_alg.halg.base.cra_name);
1187 goto err_unregister_aes;
1188 }
1189 }
1190
1191 if (sdcp->caps & MXS_DCP_CAPABILITY1_SHA256) {
1192 ret = crypto_register_ahash(&dcp_sha256_alg);
1193 if (ret) {
1194 dev_err(dev, "Failed to register %s hash!\n",
1195 dcp_sha256_alg.halg.base.cra_name);
1196 goto err_unregister_sha1;
1197 }
1198 }
1199
1200 return 0;
1201
1202err_unregister_sha1:
1203 if (sdcp->caps & MXS_DCP_CAPABILITY1_SHA1)
1204 crypto_unregister_ahash(&dcp_sha1_alg);
1205
1206err_unregister_aes:
1207 if (sdcp->caps & MXS_DCP_CAPABILITY1_AES128)
1208 crypto_unregister_skciphers(dcp_aes_algs, ARRAY_SIZE(dcp_aes_algs));
1209
1210err_destroy_aes_thread:
1211 kthread_stop(sdcp->thread[DCP_CHAN_CRYPTO]);
1212
1213err_destroy_sha_thread:
1214 kthread_stop(sdcp->thread[DCP_CHAN_HASH_SHA]);
1215
1216 return ret;
1217}
1218
1219static void mxs_dcp_remove(struct platform_device *pdev)
1220{
1221 struct dcp *sdcp = platform_get_drvdata(pdev);
1222
1223 if (sdcp->caps & MXS_DCP_CAPABILITY1_SHA256)
1224 crypto_unregister_ahash(&dcp_sha256_alg);
1225
1226 if (sdcp->caps & MXS_DCP_CAPABILITY1_SHA1)
1227 crypto_unregister_ahash(&dcp_sha1_alg);
1228
1229 if (sdcp->caps & MXS_DCP_CAPABILITY1_AES128)
1230 crypto_unregister_skciphers(dcp_aes_algs, ARRAY_SIZE(dcp_aes_algs));
1231
1232 kthread_stop(sdcp->thread[DCP_CHAN_HASH_SHA]);
1233 kthread_stop(sdcp->thread[DCP_CHAN_CRYPTO]);
1234
1235 platform_set_drvdata(pdev, NULL);
1236
1237 global_sdcp = NULL;
1238}
1239
1240static const struct of_device_id mxs_dcp_dt_ids[] = {
1241 { .compatible = "fsl,imx23-dcp", .data = NULL, },
1242 { .compatible = "fsl,imx28-dcp", .data = NULL, },
1243 { /* sentinel */ }
1244};
1245
1246MODULE_DEVICE_TABLE(of, mxs_dcp_dt_ids);
1247
1248static struct platform_driver mxs_dcp_driver = {
1249 .probe = mxs_dcp_probe,
1250 .remove = mxs_dcp_remove,
1251 .driver = {
1252 .name = "mxs-dcp",
1253 .of_match_table = mxs_dcp_dt_ids,
1254 },
1255};
1256
1257module_platform_driver(mxs_dcp_driver);
1258
1259MODULE_AUTHOR("Marek Vasut <marex@denx.de>");
1260MODULE_DESCRIPTION("Freescale MXS DCP Driver");
1261MODULE_LICENSE("GPL");
1262MODULE_ALIAS("platform:mxs-dcp");
1/*
2 * Freescale i.MX23/i.MX28 Data Co-Processor driver
3 *
4 * Copyright (C) 2013 Marek Vasut <marex@denx.de>
5 *
6 * The code contained herein is licensed under the GNU General Public
7 * License. You may obtain a copy of the GNU General Public License
8 * Version 2 or later at the following locations:
9 *
10 * http://www.opensource.org/licenses/gpl-license.html
11 * http://www.gnu.org/copyleft/gpl.html
12 */
13
14#include <linux/dma-mapping.h>
15#include <linux/interrupt.h>
16#include <linux/io.h>
17#include <linux/kernel.h>
18#include <linux/kthread.h>
19#include <linux/module.h>
20#include <linux/of.h>
21#include <linux/platform_device.h>
22#include <linux/stmp_device.h>
23
24#include <crypto/aes.h>
25#include <crypto/sha.h>
26#include <crypto/internal/hash.h>
27#include <crypto/internal/skcipher.h>
28
29#define DCP_MAX_CHANS 4
30#define DCP_BUF_SZ PAGE_SIZE
31
32#define DCP_ALIGNMENT 64
33
34/* DCP DMA descriptor. */
35struct dcp_dma_desc {
36 uint32_t next_cmd_addr;
37 uint32_t control0;
38 uint32_t control1;
39 uint32_t source;
40 uint32_t destination;
41 uint32_t size;
42 uint32_t payload;
43 uint32_t status;
44};
45
46/* Coherent aligned block for bounce buffering. */
47struct dcp_coherent_block {
48 uint8_t aes_in_buf[DCP_BUF_SZ];
49 uint8_t aes_out_buf[DCP_BUF_SZ];
50 uint8_t sha_in_buf[DCP_BUF_SZ];
51
52 uint8_t aes_key[2 * AES_KEYSIZE_128];
53
54 struct dcp_dma_desc desc[DCP_MAX_CHANS];
55};
56
57struct dcp {
58 struct device *dev;
59 void __iomem *base;
60
61 uint32_t caps;
62
63 struct dcp_coherent_block *coh;
64
65 struct completion completion[DCP_MAX_CHANS];
66 struct mutex mutex[DCP_MAX_CHANS];
67 struct task_struct *thread[DCP_MAX_CHANS];
68 struct crypto_queue queue[DCP_MAX_CHANS];
69};
70
71enum dcp_chan {
72 DCP_CHAN_HASH_SHA = 0,
73 DCP_CHAN_CRYPTO = 2,
74};
75
76struct dcp_async_ctx {
77 /* Common context */
78 enum dcp_chan chan;
79 uint32_t fill;
80
81 /* SHA Hash-specific context */
82 struct mutex mutex;
83 uint32_t alg;
84 unsigned int hot:1;
85
86 /* Crypto-specific context */
87 struct crypto_skcipher *fallback;
88 unsigned int key_len;
89 uint8_t key[AES_KEYSIZE_128];
90};
91
92struct dcp_aes_req_ctx {
93 unsigned int enc:1;
94 unsigned int ecb:1;
95};
96
97struct dcp_sha_req_ctx {
98 unsigned int init:1;
99 unsigned int fini:1;
100};
101
102/*
103 * There can even be only one instance of the MXS DCP due to the
104 * design of Linux Crypto API.
105 */
106static struct dcp *global_sdcp;
107
108/* DCP register layout. */
109#define MXS_DCP_CTRL 0x00
110#define MXS_DCP_CTRL_GATHER_RESIDUAL_WRITES (1 << 23)
111#define MXS_DCP_CTRL_ENABLE_CONTEXT_CACHING (1 << 22)
112
113#define MXS_DCP_STAT 0x10
114#define MXS_DCP_STAT_CLR 0x18
115#define MXS_DCP_STAT_IRQ_MASK 0xf
116
117#define MXS_DCP_CHANNELCTRL 0x20
118#define MXS_DCP_CHANNELCTRL_ENABLE_CHANNEL_MASK 0xff
119
120#define MXS_DCP_CAPABILITY1 0x40
121#define MXS_DCP_CAPABILITY1_SHA256 (4 << 16)
122#define MXS_DCP_CAPABILITY1_SHA1 (1 << 16)
123#define MXS_DCP_CAPABILITY1_AES128 (1 << 0)
124
125#define MXS_DCP_CONTEXT 0x50
126
127#define MXS_DCP_CH_N_CMDPTR(n) (0x100 + ((n) * 0x40))
128
129#define MXS_DCP_CH_N_SEMA(n) (0x110 + ((n) * 0x40))
130
131#define MXS_DCP_CH_N_STAT(n) (0x120 + ((n) * 0x40))
132#define MXS_DCP_CH_N_STAT_CLR(n) (0x128 + ((n) * 0x40))
133
134/* DMA descriptor bits. */
135#define MXS_DCP_CONTROL0_HASH_TERM (1 << 13)
136#define MXS_DCP_CONTROL0_HASH_INIT (1 << 12)
137#define MXS_DCP_CONTROL0_PAYLOAD_KEY (1 << 11)
138#define MXS_DCP_CONTROL0_CIPHER_ENCRYPT (1 << 8)
139#define MXS_DCP_CONTROL0_CIPHER_INIT (1 << 9)
140#define MXS_DCP_CONTROL0_ENABLE_HASH (1 << 6)
141#define MXS_DCP_CONTROL0_ENABLE_CIPHER (1 << 5)
142#define MXS_DCP_CONTROL0_DECR_SEMAPHORE (1 << 1)
143#define MXS_DCP_CONTROL0_INTERRUPT (1 << 0)
144
145#define MXS_DCP_CONTROL1_HASH_SELECT_SHA256 (2 << 16)
146#define MXS_DCP_CONTROL1_HASH_SELECT_SHA1 (0 << 16)
147#define MXS_DCP_CONTROL1_CIPHER_MODE_CBC (1 << 4)
148#define MXS_DCP_CONTROL1_CIPHER_MODE_ECB (0 << 4)
149#define MXS_DCP_CONTROL1_CIPHER_SELECT_AES128 (0 << 0)
150
151static int mxs_dcp_start_dma(struct dcp_async_ctx *actx)
152{
153 struct dcp *sdcp = global_sdcp;
154 const int chan = actx->chan;
155 uint32_t stat;
156 unsigned long ret;
157 struct dcp_dma_desc *desc = &sdcp->coh->desc[actx->chan];
158
159 dma_addr_t desc_phys = dma_map_single(sdcp->dev, desc, sizeof(*desc),
160 DMA_TO_DEVICE);
161
162 reinit_completion(&sdcp->completion[chan]);
163
164 /* Clear status register. */
165 writel(0xffffffff, sdcp->base + MXS_DCP_CH_N_STAT_CLR(chan));
166
167 /* Load the DMA descriptor. */
168 writel(desc_phys, sdcp->base + MXS_DCP_CH_N_CMDPTR(chan));
169
170 /* Increment the semaphore to start the DMA transfer. */
171 writel(1, sdcp->base + MXS_DCP_CH_N_SEMA(chan));
172
173 ret = wait_for_completion_timeout(&sdcp->completion[chan],
174 msecs_to_jiffies(1000));
175 if (!ret) {
176 dev_err(sdcp->dev, "Channel %i timeout (DCP_STAT=0x%08x)\n",
177 chan, readl(sdcp->base + MXS_DCP_STAT));
178 return -ETIMEDOUT;
179 }
180
181 stat = readl(sdcp->base + MXS_DCP_CH_N_STAT(chan));
182 if (stat & 0xff) {
183 dev_err(sdcp->dev, "Channel %i error (CH_STAT=0x%08x)\n",
184 chan, stat);
185 return -EINVAL;
186 }
187
188 dma_unmap_single(sdcp->dev, desc_phys, sizeof(*desc), DMA_TO_DEVICE);
189
190 return 0;
191}
192
193/*
194 * Encryption (AES128)
195 */
196static int mxs_dcp_run_aes(struct dcp_async_ctx *actx,
197 struct ablkcipher_request *req, int init)
198{
199 struct dcp *sdcp = global_sdcp;
200 struct dcp_dma_desc *desc = &sdcp->coh->desc[actx->chan];
201 struct dcp_aes_req_ctx *rctx = ablkcipher_request_ctx(req);
202 int ret;
203
204 dma_addr_t key_phys = dma_map_single(sdcp->dev, sdcp->coh->aes_key,
205 2 * AES_KEYSIZE_128,
206 DMA_TO_DEVICE);
207 dma_addr_t src_phys = dma_map_single(sdcp->dev, sdcp->coh->aes_in_buf,
208 DCP_BUF_SZ, DMA_TO_DEVICE);
209 dma_addr_t dst_phys = dma_map_single(sdcp->dev, sdcp->coh->aes_out_buf,
210 DCP_BUF_SZ, DMA_FROM_DEVICE);
211
212 /* Fill in the DMA descriptor. */
213 desc->control0 = MXS_DCP_CONTROL0_DECR_SEMAPHORE |
214 MXS_DCP_CONTROL0_INTERRUPT |
215 MXS_DCP_CONTROL0_ENABLE_CIPHER;
216
217 /* Payload contains the key. */
218 desc->control0 |= MXS_DCP_CONTROL0_PAYLOAD_KEY;
219
220 if (rctx->enc)
221 desc->control0 |= MXS_DCP_CONTROL0_CIPHER_ENCRYPT;
222 if (init)
223 desc->control0 |= MXS_DCP_CONTROL0_CIPHER_INIT;
224
225 desc->control1 = MXS_DCP_CONTROL1_CIPHER_SELECT_AES128;
226
227 if (rctx->ecb)
228 desc->control1 |= MXS_DCP_CONTROL1_CIPHER_MODE_ECB;
229 else
230 desc->control1 |= MXS_DCP_CONTROL1_CIPHER_MODE_CBC;
231
232 desc->next_cmd_addr = 0;
233 desc->source = src_phys;
234 desc->destination = dst_phys;
235 desc->size = actx->fill;
236 desc->payload = key_phys;
237 desc->status = 0;
238
239 ret = mxs_dcp_start_dma(actx);
240
241 dma_unmap_single(sdcp->dev, key_phys, 2 * AES_KEYSIZE_128,
242 DMA_TO_DEVICE);
243 dma_unmap_single(sdcp->dev, src_phys, DCP_BUF_SZ, DMA_TO_DEVICE);
244 dma_unmap_single(sdcp->dev, dst_phys, DCP_BUF_SZ, DMA_FROM_DEVICE);
245
246 return ret;
247}
248
249static int mxs_dcp_aes_block_crypt(struct crypto_async_request *arq)
250{
251 struct dcp *sdcp = global_sdcp;
252
253 struct ablkcipher_request *req = ablkcipher_request_cast(arq);
254 struct dcp_async_ctx *actx = crypto_tfm_ctx(arq->tfm);
255 struct dcp_aes_req_ctx *rctx = ablkcipher_request_ctx(req);
256
257 struct scatterlist *dst = req->dst;
258 struct scatterlist *src = req->src;
259 const int nents = sg_nents(req->src);
260
261 const int out_off = DCP_BUF_SZ;
262 uint8_t *in_buf = sdcp->coh->aes_in_buf;
263 uint8_t *out_buf = sdcp->coh->aes_out_buf;
264
265 uint8_t *out_tmp, *src_buf, *dst_buf = NULL;
266 uint32_t dst_off = 0;
267
268 uint8_t *key = sdcp->coh->aes_key;
269
270 int ret = 0;
271 int split = 0;
272 unsigned int i, len, clen, rem = 0;
273 int init = 0;
274
275 actx->fill = 0;
276
277 /* Copy the key from the temporary location. */
278 memcpy(key, actx->key, actx->key_len);
279
280 if (!rctx->ecb) {
281 /* Copy the CBC IV just past the key. */
282 memcpy(key + AES_KEYSIZE_128, req->info, AES_KEYSIZE_128);
283 /* CBC needs the INIT set. */
284 init = 1;
285 } else {
286 memset(key + AES_KEYSIZE_128, 0, AES_KEYSIZE_128);
287 }
288
289 for_each_sg(req->src, src, nents, i) {
290 src_buf = sg_virt(src);
291 len = sg_dma_len(src);
292
293 do {
294 if (actx->fill + len > out_off)
295 clen = out_off - actx->fill;
296 else
297 clen = len;
298
299 memcpy(in_buf + actx->fill, src_buf, clen);
300 len -= clen;
301 src_buf += clen;
302 actx->fill += clen;
303
304 /*
305 * If we filled the buffer or this is the last SG,
306 * submit the buffer.
307 */
308 if (actx->fill == out_off || sg_is_last(src)) {
309 ret = mxs_dcp_run_aes(actx, req, init);
310 if (ret)
311 return ret;
312 init = 0;
313
314 out_tmp = out_buf;
315 while (dst && actx->fill) {
316 if (!split) {
317 dst_buf = sg_virt(dst);
318 dst_off = 0;
319 }
320 rem = min(sg_dma_len(dst) - dst_off,
321 actx->fill);
322
323 memcpy(dst_buf + dst_off, out_tmp, rem);
324 out_tmp += rem;
325 dst_off += rem;
326 actx->fill -= rem;
327
328 if (dst_off == sg_dma_len(dst)) {
329 dst = sg_next(dst);
330 split = 0;
331 } else {
332 split = 1;
333 }
334 }
335 }
336 } while (len);
337 }
338
339 return ret;
340}
341
342static int dcp_chan_thread_aes(void *data)
343{
344 struct dcp *sdcp = global_sdcp;
345 const int chan = DCP_CHAN_CRYPTO;
346
347 struct crypto_async_request *backlog;
348 struct crypto_async_request *arq;
349
350 int ret;
351
352 do {
353 __set_current_state(TASK_INTERRUPTIBLE);
354
355 mutex_lock(&sdcp->mutex[chan]);
356 backlog = crypto_get_backlog(&sdcp->queue[chan]);
357 arq = crypto_dequeue_request(&sdcp->queue[chan]);
358 mutex_unlock(&sdcp->mutex[chan]);
359
360 if (backlog)
361 backlog->complete(backlog, -EINPROGRESS);
362
363 if (arq) {
364 ret = mxs_dcp_aes_block_crypt(arq);
365 arq->complete(arq, ret);
366 continue;
367 }
368
369 schedule();
370 } while (!kthread_should_stop());
371
372 return 0;
373}
374
375static int mxs_dcp_block_fallback(struct ablkcipher_request *req, int enc)
376{
377 struct crypto_ablkcipher *tfm = crypto_ablkcipher_reqtfm(req);
378 struct dcp_async_ctx *ctx = crypto_ablkcipher_ctx(tfm);
379 SKCIPHER_REQUEST_ON_STACK(subreq, ctx->fallback);
380 int ret;
381
382 skcipher_request_set_tfm(subreq, ctx->fallback);
383 skcipher_request_set_callback(subreq, req->base.flags, NULL, NULL);
384 skcipher_request_set_crypt(subreq, req->src, req->dst,
385 req->nbytes, req->info);
386
387 if (enc)
388 ret = crypto_skcipher_encrypt(subreq);
389 else
390 ret = crypto_skcipher_decrypt(subreq);
391
392 skcipher_request_zero(subreq);
393
394 return ret;
395}
396
397static int mxs_dcp_aes_enqueue(struct ablkcipher_request *req, int enc, int ecb)
398{
399 struct dcp *sdcp = global_sdcp;
400 struct crypto_async_request *arq = &req->base;
401 struct dcp_async_ctx *actx = crypto_tfm_ctx(arq->tfm);
402 struct dcp_aes_req_ctx *rctx = ablkcipher_request_ctx(req);
403 int ret;
404
405 if (unlikely(actx->key_len != AES_KEYSIZE_128))
406 return mxs_dcp_block_fallback(req, enc);
407
408 rctx->enc = enc;
409 rctx->ecb = ecb;
410 actx->chan = DCP_CHAN_CRYPTO;
411
412 mutex_lock(&sdcp->mutex[actx->chan]);
413 ret = crypto_enqueue_request(&sdcp->queue[actx->chan], &req->base);
414 mutex_unlock(&sdcp->mutex[actx->chan]);
415
416 wake_up_process(sdcp->thread[actx->chan]);
417
418 return -EINPROGRESS;
419}
420
421static int mxs_dcp_aes_ecb_decrypt(struct ablkcipher_request *req)
422{
423 return mxs_dcp_aes_enqueue(req, 0, 1);
424}
425
426static int mxs_dcp_aes_ecb_encrypt(struct ablkcipher_request *req)
427{
428 return mxs_dcp_aes_enqueue(req, 1, 1);
429}
430
431static int mxs_dcp_aes_cbc_decrypt(struct ablkcipher_request *req)
432{
433 return mxs_dcp_aes_enqueue(req, 0, 0);
434}
435
436static int mxs_dcp_aes_cbc_encrypt(struct ablkcipher_request *req)
437{
438 return mxs_dcp_aes_enqueue(req, 1, 0);
439}
440
441static int mxs_dcp_aes_setkey(struct crypto_ablkcipher *tfm, const u8 *key,
442 unsigned int len)
443{
444 struct dcp_async_ctx *actx = crypto_ablkcipher_ctx(tfm);
445 unsigned int ret;
446
447 /*
448 * AES 128 is supposed by the hardware, store key into temporary
449 * buffer and exit. We must use the temporary buffer here, since
450 * there can still be an operation in progress.
451 */
452 actx->key_len = len;
453 if (len == AES_KEYSIZE_128) {
454 memcpy(actx->key, key, len);
455 return 0;
456 }
457
458 /*
459 * If the requested AES key size is not supported by the hardware,
460 * but is supported by in-kernel software implementation, we use
461 * software fallback.
462 */
463 crypto_skcipher_clear_flags(actx->fallback, CRYPTO_TFM_REQ_MASK);
464 crypto_skcipher_set_flags(actx->fallback,
465 tfm->base.crt_flags & CRYPTO_TFM_REQ_MASK);
466
467 ret = crypto_skcipher_setkey(actx->fallback, key, len);
468 if (!ret)
469 return 0;
470
471 tfm->base.crt_flags &= ~CRYPTO_TFM_RES_MASK;
472 tfm->base.crt_flags |= crypto_skcipher_get_flags(actx->fallback) &
473 CRYPTO_TFM_RES_MASK;
474
475 return ret;
476}
477
478static int mxs_dcp_aes_fallback_init(struct crypto_tfm *tfm)
479{
480 const char *name = crypto_tfm_alg_name(tfm);
481 const uint32_t flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_NEED_FALLBACK;
482 struct dcp_async_ctx *actx = crypto_tfm_ctx(tfm);
483 struct crypto_skcipher *blk;
484
485 blk = crypto_alloc_skcipher(name, 0, flags);
486 if (IS_ERR(blk))
487 return PTR_ERR(blk);
488
489 actx->fallback = blk;
490 tfm->crt_ablkcipher.reqsize = sizeof(struct dcp_aes_req_ctx);
491 return 0;
492}
493
494static void mxs_dcp_aes_fallback_exit(struct crypto_tfm *tfm)
495{
496 struct dcp_async_ctx *actx = crypto_tfm_ctx(tfm);
497
498 crypto_free_skcipher(actx->fallback);
499}
500
501/*
502 * Hashing (SHA1/SHA256)
503 */
504static int mxs_dcp_run_sha(struct ahash_request *req)
505{
506 struct dcp *sdcp = global_sdcp;
507 int ret;
508
509 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
510 struct dcp_async_ctx *actx = crypto_ahash_ctx(tfm);
511 struct dcp_sha_req_ctx *rctx = ahash_request_ctx(req);
512 struct hash_alg_common *halg = crypto_hash_alg_common(tfm);
513
514 struct dcp_dma_desc *desc = &sdcp->coh->desc[actx->chan];
515
516 dma_addr_t digest_phys = 0;
517 dma_addr_t buf_phys = dma_map_single(sdcp->dev, sdcp->coh->sha_in_buf,
518 DCP_BUF_SZ, DMA_TO_DEVICE);
519
520 /* Fill in the DMA descriptor. */
521 desc->control0 = MXS_DCP_CONTROL0_DECR_SEMAPHORE |
522 MXS_DCP_CONTROL0_INTERRUPT |
523 MXS_DCP_CONTROL0_ENABLE_HASH;
524 if (rctx->init)
525 desc->control0 |= MXS_DCP_CONTROL0_HASH_INIT;
526
527 desc->control1 = actx->alg;
528 desc->next_cmd_addr = 0;
529 desc->source = buf_phys;
530 desc->destination = 0;
531 desc->size = actx->fill;
532 desc->payload = 0;
533 desc->status = 0;
534
535 /* Set HASH_TERM bit for last transfer block. */
536 if (rctx->fini) {
537 digest_phys = dma_map_single(sdcp->dev, req->result,
538 halg->digestsize, DMA_FROM_DEVICE);
539 desc->control0 |= MXS_DCP_CONTROL0_HASH_TERM;
540 desc->payload = digest_phys;
541 }
542
543 ret = mxs_dcp_start_dma(actx);
544
545 if (rctx->fini)
546 dma_unmap_single(sdcp->dev, digest_phys, halg->digestsize,
547 DMA_FROM_DEVICE);
548
549 dma_unmap_single(sdcp->dev, buf_phys, DCP_BUF_SZ, DMA_TO_DEVICE);
550
551 return ret;
552}
553
554static int dcp_sha_req_to_buf(struct crypto_async_request *arq)
555{
556 struct dcp *sdcp = global_sdcp;
557
558 struct ahash_request *req = ahash_request_cast(arq);
559 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
560 struct dcp_async_ctx *actx = crypto_ahash_ctx(tfm);
561 struct dcp_sha_req_ctx *rctx = ahash_request_ctx(req);
562 struct hash_alg_common *halg = crypto_hash_alg_common(tfm);
563 const int nents = sg_nents(req->src);
564
565 uint8_t *in_buf = sdcp->coh->sha_in_buf;
566
567 uint8_t *src_buf;
568
569 struct scatterlist *src;
570
571 unsigned int i, len, clen;
572 int ret;
573
574 int fin = rctx->fini;
575 if (fin)
576 rctx->fini = 0;
577
578 for_each_sg(req->src, src, nents, i) {
579 src_buf = sg_virt(src);
580 len = sg_dma_len(src);
581
582 do {
583 if (actx->fill + len > DCP_BUF_SZ)
584 clen = DCP_BUF_SZ - actx->fill;
585 else
586 clen = len;
587
588 memcpy(in_buf + actx->fill, src_buf, clen);
589 len -= clen;
590 src_buf += clen;
591 actx->fill += clen;
592
593 /*
594 * If we filled the buffer and still have some
595 * more data, submit the buffer.
596 */
597 if (len && actx->fill == DCP_BUF_SZ) {
598 ret = mxs_dcp_run_sha(req);
599 if (ret)
600 return ret;
601 actx->fill = 0;
602 rctx->init = 0;
603 }
604 } while (len);
605 }
606
607 if (fin) {
608 rctx->fini = 1;
609
610 /* Submit whatever is left. */
611 if (!req->result)
612 return -EINVAL;
613
614 ret = mxs_dcp_run_sha(req);
615 if (ret)
616 return ret;
617
618 actx->fill = 0;
619
620 /* For some reason, the result is flipped. */
621 for (i = 0; i < halg->digestsize / 2; i++) {
622 swap(req->result[i],
623 req->result[halg->digestsize - i - 1]);
624 }
625 }
626
627 return 0;
628}
629
630static int dcp_chan_thread_sha(void *data)
631{
632 struct dcp *sdcp = global_sdcp;
633 const int chan = DCP_CHAN_HASH_SHA;
634
635 struct crypto_async_request *backlog;
636 struct crypto_async_request *arq;
637
638 struct dcp_sha_req_ctx *rctx;
639
640 struct ahash_request *req;
641 int ret, fini;
642
643 do {
644 __set_current_state(TASK_INTERRUPTIBLE);
645
646 mutex_lock(&sdcp->mutex[chan]);
647 backlog = crypto_get_backlog(&sdcp->queue[chan]);
648 arq = crypto_dequeue_request(&sdcp->queue[chan]);
649 mutex_unlock(&sdcp->mutex[chan]);
650
651 if (backlog)
652 backlog->complete(backlog, -EINPROGRESS);
653
654 if (arq) {
655 req = ahash_request_cast(arq);
656 rctx = ahash_request_ctx(req);
657
658 ret = dcp_sha_req_to_buf(arq);
659 fini = rctx->fini;
660 arq->complete(arq, ret);
661 if (!fini)
662 continue;
663 }
664
665 schedule();
666 } while (!kthread_should_stop());
667
668 return 0;
669}
670
671static int dcp_sha_init(struct ahash_request *req)
672{
673 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
674 struct dcp_async_ctx *actx = crypto_ahash_ctx(tfm);
675
676 struct hash_alg_common *halg = crypto_hash_alg_common(tfm);
677
678 /*
679 * Start hashing session. The code below only inits the
680 * hashing session context, nothing more.
681 */
682 memset(actx, 0, sizeof(*actx));
683
684 if (strcmp(halg->base.cra_name, "sha1") == 0)
685 actx->alg = MXS_DCP_CONTROL1_HASH_SELECT_SHA1;
686 else
687 actx->alg = MXS_DCP_CONTROL1_HASH_SELECT_SHA256;
688
689 actx->fill = 0;
690 actx->hot = 0;
691 actx->chan = DCP_CHAN_HASH_SHA;
692
693 mutex_init(&actx->mutex);
694
695 return 0;
696}
697
698static int dcp_sha_update_fx(struct ahash_request *req, int fini)
699{
700 struct dcp *sdcp = global_sdcp;
701
702 struct dcp_sha_req_ctx *rctx = ahash_request_ctx(req);
703 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
704 struct dcp_async_ctx *actx = crypto_ahash_ctx(tfm);
705
706 int ret;
707
708 /*
709 * Ignore requests that have no data in them and are not
710 * the trailing requests in the stream of requests.
711 */
712 if (!req->nbytes && !fini)
713 return 0;
714
715 mutex_lock(&actx->mutex);
716
717 rctx->fini = fini;
718
719 if (!actx->hot) {
720 actx->hot = 1;
721 rctx->init = 1;
722 }
723
724 mutex_lock(&sdcp->mutex[actx->chan]);
725 ret = crypto_enqueue_request(&sdcp->queue[actx->chan], &req->base);
726 mutex_unlock(&sdcp->mutex[actx->chan]);
727
728 wake_up_process(sdcp->thread[actx->chan]);
729 mutex_unlock(&actx->mutex);
730
731 return -EINPROGRESS;
732}
733
734static int dcp_sha_update(struct ahash_request *req)
735{
736 return dcp_sha_update_fx(req, 0);
737}
738
739static int dcp_sha_final(struct ahash_request *req)
740{
741 ahash_request_set_crypt(req, NULL, req->result, 0);
742 req->nbytes = 0;
743 return dcp_sha_update_fx(req, 1);
744}
745
746static int dcp_sha_finup(struct ahash_request *req)
747{
748 return dcp_sha_update_fx(req, 1);
749}
750
751static int dcp_sha_digest(struct ahash_request *req)
752{
753 int ret;
754
755 ret = dcp_sha_init(req);
756 if (ret)
757 return ret;
758
759 return dcp_sha_finup(req);
760}
761
762static int dcp_sha_noimport(struct ahash_request *req, const void *in)
763{
764 return -ENOSYS;
765}
766
767static int dcp_sha_noexport(struct ahash_request *req, void *out)
768{
769 return -ENOSYS;
770}
771
772static int dcp_sha_cra_init(struct crypto_tfm *tfm)
773{
774 crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
775 sizeof(struct dcp_sha_req_ctx));
776 return 0;
777}
778
779static void dcp_sha_cra_exit(struct crypto_tfm *tfm)
780{
781}
782
783/* AES 128 ECB and AES 128 CBC */
784static struct crypto_alg dcp_aes_algs[] = {
785 {
786 .cra_name = "ecb(aes)",
787 .cra_driver_name = "ecb-aes-dcp",
788 .cra_priority = 400,
789 .cra_alignmask = 15,
790 .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
791 CRYPTO_ALG_ASYNC |
792 CRYPTO_ALG_NEED_FALLBACK,
793 .cra_init = mxs_dcp_aes_fallback_init,
794 .cra_exit = mxs_dcp_aes_fallback_exit,
795 .cra_blocksize = AES_BLOCK_SIZE,
796 .cra_ctxsize = sizeof(struct dcp_async_ctx),
797 .cra_type = &crypto_ablkcipher_type,
798 .cra_module = THIS_MODULE,
799 .cra_u = {
800 .ablkcipher = {
801 .min_keysize = AES_MIN_KEY_SIZE,
802 .max_keysize = AES_MAX_KEY_SIZE,
803 .setkey = mxs_dcp_aes_setkey,
804 .encrypt = mxs_dcp_aes_ecb_encrypt,
805 .decrypt = mxs_dcp_aes_ecb_decrypt
806 },
807 },
808 }, {
809 .cra_name = "cbc(aes)",
810 .cra_driver_name = "cbc-aes-dcp",
811 .cra_priority = 400,
812 .cra_alignmask = 15,
813 .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
814 CRYPTO_ALG_ASYNC |
815 CRYPTO_ALG_NEED_FALLBACK,
816 .cra_init = mxs_dcp_aes_fallback_init,
817 .cra_exit = mxs_dcp_aes_fallback_exit,
818 .cra_blocksize = AES_BLOCK_SIZE,
819 .cra_ctxsize = sizeof(struct dcp_async_ctx),
820 .cra_type = &crypto_ablkcipher_type,
821 .cra_module = THIS_MODULE,
822 .cra_u = {
823 .ablkcipher = {
824 .min_keysize = AES_MIN_KEY_SIZE,
825 .max_keysize = AES_MAX_KEY_SIZE,
826 .setkey = mxs_dcp_aes_setkey,
827 .encrypt = mxs_dcp_aes_cbc_encrypt,
828 .decrypt = mxs_dcp_aes_cbc_decrypt,
829 .ivsize = AES_BLOCK_SIZE,
830 },
831 },
832 },
833};
834
835/* SHA1 */
836static struct ahash_alg dcp_sha1_alg = {
837 .init = dcp_sha_init,
838 .update = dcp_sha_update,
839 .final = dcp_sha_final,
840 .finup = dcp_sha_finup,
841 .digest = dcp_sha_digest,
842 .import = dcp_sha_noimport,
843 .export = dcp_sha_noexport,
844 .halg = {
845 .digestsize = SHA1_DIGEST_SIZE,
846 .base = {
847 .cra_name = "sha1",
848 .cra_driver_name = "sha1-dcp",
849 .cra_priority = 400,
850 .cra_alignmask = 63,
851 .cra_flags = CRYPTO_ALG_ASYNC,
852 .cra_blocksize = SHA1_BLOCK_SIZE,
853 .cra_ctxsize = sizeof(struct dcp_async_ctx),
854 .cra_module = THIS_MODULE,
855 .cra_init = dcp_sha_cra_init,
856 .cra_exit = dcp_sha_cra_exit,
857 },
858 },
859};
860
861/* SHA256 */
862static struct ahash_alg dcp_sha256_alg = {
863 .init = dcp_sha_init,
864 .update = dcp_sha_update,
865 .final = dcp_sha_final,
866 .finup = dcp_sha_finup,
867 .digest = dcp_sha_digest,
868 .import = dcp_sha_noimport,
869 .export = dcp_sha_noexport,
870 .halg = {
871 .digestsize = SHA256_DIGEST_SIZE,
872 .base = {
873 .cra_name = "sha256",
874 .cra_driver_name = "sha256-dcp",
875 .cra_priority = 400,
876 .cra_alignmask = 63,
877 .cra_flags = CRYPTO_ALG_ASYNC,
878 .cra_blocksize = SHA256_BLOCK_SIZE,
879 .cra_ctxsize = sizeof(struct dcp_async_ctx),
880 .cra_module = THIS_MODULE,
881 .cra_init = dcp_sha_cra_init,
882 .cra_exit = dcp_sha_cra_exit,
883 },
884 },
885};
886
887static irqreturn_t mxs_dcp_irq(int irq, void *context)
888{
889 struct dcp *sdcp = context;
890 uint32_t stat;
891 int i;
892
893 stat = readl(sdcp->base + MXS_DCP_STAT);
894 stat &= MXS_DCP_STAT_IRQ_MASK;
895 if (!stat)
896 return IRQ_NONE;
897
898 /* Clear the interrupts. */
899 writel(stat, sdcp->base + MXS_DCP_STAT_CLR);
900
901 /* Complete the DMA requests that finished. */
902 for (i = 0; i < DCP_MAX_CHANS; i++)
903 if (stat & (1 << i))
904 complete(&sdcp->completion[i]);
905
906 return IRQ_HANDLED;
907}
908
909static int mxs_dcp_probe(struct platform_device *pdev)
910{
911 struct device *dev = &pdev->dev;
912 struct dcp *sdcp = NULL;
913 int i, ret;
914
915 struct resource *iores;
916 int dcp_vmi_irq, dcp_irq;
917
918 if (global_sdcp) {
919 dev_err(dev, "Only one DCP instance allowed!\n");
920 return -ENODEV;
921 }
922
923 iores = platform_get_resource(pdev, IORESOURCE_MEM, 0);
924 dcp_vmi_irq = platform_get_irq(pdev, 0);
925 if (dcp_vmi_irq < 0) {
926 dev_err(dev, "Failed to get IRQ: (%d)!\n", dcp_vmi_irq);
927 return dcp_vmi_irq;
928 }
929
930 dcp_irq = platform_get_irq(pdev, 1);
931 if (dcp_irq < 0) {
932 dev_err(dev, "Failed to get IRQ: (%d)!\n", dcp_irq);
933 return dcp_irq;
934 }
935
936 sdcp = devm_kzalloc(dev, sizeof(*sdcp), GFP_KERNEL);
937 if (!sdcp)
938 return -ENOMEM;
939
940 sdcp->dev = dev;
941 sdcp->base = devm_ioremap_resource(dev, iores);
942 if (IS_ERR(sdcp->base))
943 return PTR_ERR(sdcp->base);
944
945
946 ret = devm_request_irq(dev, dcp_vmi_irq, mxs_dcp_irq, 0,
947 "dcp-vmi-irq", sdcp);
948 if (ret) {
949 dev_err(dev, "Failed to claim DCP VMI IRQ!\n");
950 return ret;
951 }
952
953 ret = devm_request_irq(dev, dcp_irq, mxs_dcp_irq, 0,
954 "dcp-irq", sdcp);
955 if (ret) {
956 dev_err(dev, "Failed to claim DCP IRQ!\n");
957 return ret;
958 }
959
960 /* Allocate coherent helper block. */
961 sdcp->coh = devm_kzalloc(dev, sizeof(*sdcp->coh) + DCP_ALIGNMENT,
962 GFP_KERNEL);
963 if (!sdcp->coh)
964 return -ENOMEM;
965
966 /* Re-align the structure so it fits the DCP constraints. */
967 sdcp->coh = PTR_ALIGN(sdcp->coh, DCP_ALIGNMENT);
968
969 /* Restart the DCP block. */
970 ret = stmp_reset_block(sdcp->base);
971 if (ret)
972 return ret;
973
974 /* Initialize control register. */
975 writel(MXS_DCP_CTRL_GATHER_RESIDUAL_WRITES |
976 MXS_DCP_CTRL_ENABLE_CONTEXT_CACHING | 0xf,
977 sdcp->base + MXS_DCP_CTRL);
978
979 /* Enable all DCP DMA channels. */
980 writel(MXS_DCP_CHANNELCTRL_ENABLE_CHANNEL_MASK,
981 sdcp->base + MXS_DCP_CHANNELCTRL);
982
983 /*
984 * We do not enable context switching. Give the context buffer a
985 * pointer to an illegal address so if context switching is
986 * inadvertantly enabled, the DCP will return an error instead of
987 * trashing good memory. The DCP DMA cannot access ROM, so any ROM
988 * address will do.
989 */
990 writel(0xffff0000, sdcp->base + MXS_DCP_CONTEXT);
991 for (i = 0; i < DCP_MAX_CHANS; i++)
992 writel(0xffffffff, sdcp->base + MXS_DCP_CH_N_STAT_CLR(i));
993 writel(0xffffffff, sdcp->base + MXS_DCP_STAT_CLR);
994
995 global_sdcp = sdcp;
996
997 platform_set_drvdata(pdev, sdcp);
998
999 for (i = 0; i < DCP_MAX_CHANS; i++) {
1000 mutex_init(&sdcp->mutex[i]);
1001 init_completion(&sdcp->completion[i]);
1002 crypto_init_queue(&sdcp->queue[i], 50);
1003 }
1004
1005 /* Create the SHA and AES handler threads. */
1006 sdcp->thread[DCP_CHAN_HASH_SHA] = kthread_run(dcp_chan_thread_sha,
1007 NULL, "mxs_dcp_chan/sha");
1008 if (IS_ERR(sdcp->thread[DCP_CHAN_HASH_SHA])) {
1009 dev_err(dev, "Error starting SHA thread!\n");
1010 return PTR_ERR(sdcp->thread[DCP_CHAN_HASH_SHA]);
1011 }
1012
1013 sdcp->thread[DCP_CHAN_CRYPTO] = kthread_run(dcp_chan_thread_aes,
1014 NULL, "mxs_dcp_chan/aes");
1015 if (IS_ERR(sdcp->thread[DCP_CHAN_CRYPTO])) {
1016 dev_err(dev, "Error starting SHA thread!\n");
1017 ret = PTR_ERR(sdcp->thread[DCP_CHAN_CRYPTO]);
1018 goto err_destroy_sha_thread;
1019 }
1020
1021 /* Register the various crypto algorithms. */
1022 sdcp->caps = readl(sdcp->base + MXS_DCP_CAPABILITY1);
1023
1024 if (sdcp->caps & MXS_DCP_CAPABILITY1_AES128) {
1025 ret = crypto_register_algs(dcp_aes_algs,
1026 ARRAY_SIZE(dcp_aes_algs));
1027 if (ret) {
1028 /* Failed to register algorithm. */
1029 dev_err(dev, "Failed to register AES crypto!\n");
1030 goto err_destroy_aes_thread;
1031 }
1032 }
1033
1034 if (sdcp->caps & MXS_DCP_CAPABILITY1_SHA1) {
1035 ret = crypto_register_ahash(&dcp_sha1_alg);
1036 if (ret) {
1037 dev_err(dev, "Failed to register %s hash!\n",
1038 dcp_sha1_alg.halg.base.cra_name);
1039 goto err_unregister_aes;
1040 }
1041 }
1042
1043 if (sdcp->caps & MXS_DCP_CAPABILITY1_SHA256) {
1044 ret = crypto_register_ahash(&dcp_sha256_alg);
1045 if (ret) {
1046 dev_err(dev, "Failed to register %s hash!\n",
1047 dcp_sha256_alg.halg.base.cra_name);
1048 goto err_unregister_sha1;
1049 }
1050 }
1051
1052 return 0;
1053
1054err_unregister_sha1:
1055 if (sdcp->caps & MXS_DCP_CAPABILITY1_SHA1)
1056 crypto_unregister_ahash(&dcp_sha1_alg);
1057
1058err_unregister_aes:
1059 if (sdcp->caps & MXS_DCP_CAPABILITY1_AES128)
1060 crypto_unregister_algs(dcp_aes_algs, ARRAY_SIZE(dcp_aes_algs));
1061
1062err_destroy_aes_thread:
1063 kthread_stop(sdcp->thread[DCP_CHAN_CRYPTO]);
1064
1065err_destroy_sha_thread:
1066 kthread_stop(sdcp->thread[DCP_CHAN_HASH_SHA]);
1067 return ret;
1068}
1069
1070static int mxs_dcp_remove(struct platform_device *pdev)
1071{
1072 struct dcp *sdcp = platform_get_drvdata(pdev);
1073
1074 if (sdcp->caps & MXS_DCP_CAPABILITY1_SHA256)
1075 crypto_unregister_ahash(&dcp_sha256_alg);
1076
1077 if (sdcp->caps & MXS_DCP_CAPABILITY1_SHA1)
1078 crypto_unregister_ahash(&dcp_sha1_alg);
1079
1080 if (sdcp->caps & MXS_DCP_CAPABILITY1_AES128)
1081 crypto_unregister_algs(dcp_aes_algs, ARRAY_SIZE(dcp_aes_algs));
1082
1083 kthread_stop(sdcp->thread[DCP_CHAN_HASH_SHA]);
1084 kthread_stop(sdcp->thread[DCP_CHAN_CRYPTO]);
1085
1086 platform_set_drvdata(pdev, NULL);
1087
1088 global_sdcp = NULL;
1089
1090 return 0;
1091}
1092
1093static const struct of_device_id mxs_dcp_dt_ids[] = {
1094 { .compatible = "fsl,imx23-dcp", .data = NULL, },
1095 { .compatible = "fsl,imx28-dcp", .data = NULL, },
1096 { /* sentinel */ }
1097};
1098
1099MODULE_DEVICE_TABLE(of, mxs_dcp_dt_ids);
1100
1101static struct platform_driver mxs_dcp_driver = {
1102 .probe = mxs_dcp_probe,
1103 .remove = mxs_dcp_remove,
1104 .driver = {
1105 .name = "mxs-dcp",
1106 .of_match_table = mxs_dcp_dt_ids,
1107 },
1108};
1109
1110module_platform_driver(mxs_dcp_driver);
1111
1112MODULE_AUTHOR("Marek Vasut <marex@denx.de>");
1113MODULE_DESCRIPTION("Freescale MXS DCP Driver");
1114MODULE_LICENSE("GPL");
1115MODULE_ALIAS("platform:mxs-dcp");