Linux Audio

Check our new training course

Embedded Linux training

Mar 31-Apr 8, 2025
Register
Loading...
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  linux/kernel/exit.c
   4 *
   5 *  Copyright (C) 1991, 1992  Linus Torvalds
   6 */
   7
   8#include <linux/mm.h>
   9#include <linux/slab.h>
  10#include <linux/sched/autogroup.h>
  11#include <linux/sched/mm.h>
  12#include <linux/sched/stat.h>
  13#include <linux/sched/task.h>
  14#include <linux/sched/task_stack.h>
  15#include <linux/sched/cputime.h>
  16#include <linux/interrupt.h>
  17#include <linux/module.h>
  18#include <linux/capability.h>
  19#include <linux/completion.h>
  20#include <linux/personality.h>
  21#include <linux/tty.h>
  22#include <linux/iocontext.h>
  23#include <linux/key.h>
  24#include <linux/cpu.h>
  25#include <linux/acct.h>
  26#include <linux/tsacct_kern.h>
  27#include <linux/file.h>
 
  28#include <linux/freezer.h>
  29#include <linux/binfmts.h>
  30#include <linux/nsproxy.h>
  31#include <linux/pid_namespace.h>
  32#include <linux/ptrace.h>
  33#include <linux/profile.h>
  34#include <linux/mount.h>
  35#include <linux/proc_fs.h>
  36#include <linux/kthread.h>
  37#include <linux/mempolicy.h>
  38#include <linux/taskstats_kern.h>
  39#include <linux/delayacct.h>
  40#include <linux/cgroup.h>
  41#include <linux/syscalls.h>
  42#include <linux/signal.h>
  43#include <linux/posix-timers.h>
  44#include <linux/cn_proc.h>
  45#include <linux/mutex.h>
  46#include <linux/futex.h>
  47#include <linux/pipe_fs_i.h>
  48#include <linux/audit.h> /* for audit_free() */
  49#include <linux/resource.h>
  50#include <linux/task_io_accounting_ops.h>
  51#include <linux/blkdev.h>
  52#include <linux/task_work.h>
 
  53#include <linux/fs_struct.h>
  54#include <linux/init_task.h>
  55#include <linux/perf_event.h>
  56#include <trace/events/sched.h>
  57#include <linux/hw_breakpoint.h>
  58#include <linux/oom.h>
  59#include <linux/writeback.h>
  60#include <linux/shm.h>
  61#include <linux/kcov.h>
  62#include <linux/kmsan.h>
  63#include <linux/random.h>
  64#include <linux/rcuwait.h>
  65#include <linux/compat.h>
  66#include <linux/io_uring.h>
  67#include <linux/kprobes.h>
  68#include <linux/rethook.h>
  69#include <linux/sysfs.h>
  70#include <linux/user_events.h>
  71#include <linux/uaccess.h>
  72
  73#include <uapi/linux/wait.h>
  74
 
  75#include <asm/unistd.h>
 
  76#include <asm/mmu_context.h>
  77
  78#include "exit.h"
  79
  80/*
  81 * The default value should be high enough to not crash a system that randomly
  82 * crashes its kernel from time to time, but low enough to at least not permit
  83 * overflowing 32-bit refcounts or the ldsem writer count.
  84 */
  85static unsigned int oops_limit = 10000;
  86
  87#ifdef CONFIG_SYSCTL
  88static struct ctl_table kern_exit_table[] = {
  89	{
  90		.procname       = "oops_limit",
  91		.data           = &oops_limit,
  92		.maxlen         = sizeof(oops_limit),
  93		.mode           = 0644,
  94		.proc_handler   = proc_douintvec,
  95	},
  96};
  97
  98static __init int kernel_exit_sysctls_init(void)
  99{
 100	register_sysctl_init("kernel", kern_exit_table);
 101	return 0;
 102}
 103late_initcall(kernel_exit_sysctls_init);
 104#endif
 105
 106static atomic_t oops_count = ATOMIC_INIT(0);
 107
 108#ifdef CONFIG_SYSFS
 109static ssize_t oops_count_show(struct kobject *kobj, struct kobj_attribute *attr,
 110			       char *page)
 111{
 112	return sysfs_emit(page, "%d\n", atomic_read(&oops_count));
 113}
 114
 115static struct kobj_attribute oops_count_attr = __ATTR_RO(oops_count);
 116
 117static __init int kernel_exit_sysfs_init(void)
 118{
 119	sysfs_add_file_to_group(kernel_kobj, &oops_count_attr.attr, NULL);
 120	return 0;
 121}
 122late_initcall(kernel_exit_sysfs_init);
 123#endif
 124
 125static void __unhash_process(struct task_struct *p, bool group_dead)
 126{
 127	nr_threads--;
 128	detach_pid(p, PIDTYPE_PID);
 129	if (group_dead) {
 130		detach_pid(p, PIDTYPE_TGID);
 131		detach_pid(p, PIDTYPE_PGID);
 132		detach_pid(p, PIDTYPE_SID);
 133
 134		list_del_rcu(&p->tasks);
 135		list_del_init(&p->sibling);
 136		__this_cpu_dec(process_counts);
 137	}
 
 138	list_del_rcu(&p->thread_node);
 139}
 140
 141/*
 142 * This function expects the tasklist_lock write-locked.
 143 */
 144static void __exit_signal(struct task_struct *tsk)
 145{
 146	struct signal_struct *sig = tsk->signal;
 147	bool group_dead = thread_group_leader(tsk);
 148	struct sighand_struct *sighand;
 149	struct tty_struct *tty;
 150	u64 utime, stime;
 151
 152	sighand = rcu_dereference_check(tsk->sighand,
 153					lockdep_tasklist_lock_is_held());
 154	spin_lock(&sighand->siglock);
 155
 156#ifdef CONFIG_POSIX_TIMERS
 157	posix_cpu_timers_exit(tsk);
 158	if (group_dead)
 159		posix_cpu_timers_exit_group(tsk);
 
 
 
 
 
 
 
 
 
 160#endif
 161
 162	if (group_dead) {
 163		tty = sig->tty;
 164		sig->tty = NULL;
 165	} else {
 166		/*
 167		 * If there is any task waiting for the group exit
 168		 * then notify it:
 169		 */
 170		if (sig->notify_count > 0 && !--sig->notify_count)
 171			wake_up_process(sig->group_exec_task);
 172
 173		if (tsk == sig->curr_target)
 174			sig->curr_target = next_thread(tsk);
 175	}
 176
 177	add_device_randomness((const void*) &tsk->se.sum_exec_runtime,
 178			      sizeof(unsigned long long));
 179
 180	/*
 181	 * Accumulate here the counters for all threads as they die. We could
 182	 * skip the group leader because it is the last user of signal_struct,
 183	 * but we want to avoid the race with thread_group_cputime() which can
 184	 * see the empty ->thread_head list.
 185	 */
 186	task_cputime(tsk, &utime, &stime);
 187	write_seqlock(&sig->stats_lock);
 188	sig->utime += utime;
 189	sig->stime += stime;
 190	sig->gtime += task_gtime(tsk);
 191	sig->min_flt += tsk->min_flt;
 192	sig->maj_flt += tsk->maj_flt;
 193	sig->nvcsw += tsk->nvcsw;
 194	sig->nivcsw += tsk->nivcsw;
 195	sig->inblock += task_io_get_inblock(tsk);
 196	sig->oublock += task_io_get_oublock(tsk);
 197	task_io_accounting_add(&sig->ioac, &tsk->ioac);
 198	sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
 199	sig->nr_threads--;
 200	__unhash_process(tsk, group_dead);
 201	write_sequnlock(&sig->stats_lock);
 202
 203	/*
 204	 * Do this under ->siglock, we can race with another thread
 205	 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
 206	 */
 207	flush_sigqueue(&tsk->pending);
 208	tsk->sighand = NULL;
 209	spin_unlock(&sighand->siglock);
 210
 211	__cleanup_sighand(sighand);
 212	clear_tsk_thread_flag(tsk, TIF_SIGPENDING);
 213	if (group_dead) {
 214		flush_sigqueue(&sig->shared_pending);
 215		tty_kref_put(tty);
 216	}
 217}
 218
 219static void delayed_put_task_struct(struct rcu_head *rhp)
 220{
 221	struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
 222
 223	kprobe_flush_task(tsk);
 224	rethook_flush_task(tsk);
 225	perf_event_delayed_put(tsk);
 226	trace_sched_process_free(tsk);
 227	put_task_struct(tsk);
 228}
 229
 230void put_task_struct_rcu_user(struct task_struct *task)
 231{
 232	if (refcount_dec_and_test(&task->rcu_users))
 233		call_rcu(&task->rcu, delayed_put_task_struct);
 234}
 235
 236void __weak release_thread(struct task_struct *dead_task)
 237{
 238}
 239
 240void release_task(struct task_struct *p)
 241{
 242	struct task_struct *leader;
 243	struct pid *thread_pid;
 244	int zap_leader;
 245repeat:
 246	/* don't need to get the RCU readlock here - the process is dead and
 247	 * can't be modifying its own credentials. But shut RCU-lockdep up */
 248	rcu_read_lock();
 249	dec_rlimit_ucounts(task_ucounts(p), UCOUNT_RLIMIT_NPROC, 1);
 250	rcu_read_unlock();
 251
 
 252	cgroup_release(p);
 253
 254	write_lock_irq(&tasklist_lock);
 255	ptrace_release_task(p);
 256	thread_pid = get_pid(p->thread_pid);
 257	__exit_signal(p);
 258
 259	/*
 260	 * If we are the last non-leader member of the thread
 261	 * group, and the leader is zombie, then notify the
 262	 * group leader's parent process. (if it wants notification.)
 263	 */
 264	zap_leader = 0;
 265	leader = p->group_leader;
 266	if (leader != p && thread_group_empty(leader)
 267			&& leader->exit_state == EXIT_ZOMBIE) {
 268		/*
 269		 * If we were the last child thread and the leader has
 270		 * exited already, and the leader's parent ignores SIGCHLD,
 271		 * then we are the one who should release the leader.
 272		 */
 273		zap_leader = do_notify_parent(leader, leader->exit_signal);
 274		if (zap_leader)
 275			leader->exit_state = EXIT_DEAD;
 276	}
 277
 278	write_unlock_irq(&tasklist_lock);
 279	proc_flush_pid(thread_pid);
 280	put_pid(thread_pid);
 281	release_thread(p);
 282	put_task_struct_rcu_user(p);
 283
 284	p = leader;
 285	if (unlikely(zap_leader))
 286		goto repeat;
 287}
 288
 289int rcuwait_wake_up(struct rcuwait *w)
 290{
 291	int ret = 0;
 292	struct task_struct *task;
 293
 294	rcu_read_lock();
 295
 296	/*
 297	 * Order condition vs @task, such that everything prior to the load
 298	 * of @task is visible. This is the condition as to why the user called
 299	 * rcuwait_wake() in the first place. Pairs with set_current_state()
 300	 * barrier (A) in rcuwait_wait_event().
 301	 *
 302	 *    WAIT                WAKE
 303	 *    [S] tsk = current	  [S] cond = true
 304	 *        MB (A)	      MB (B)
 305	 *    [L] cond		  [L] tsk
 306	 */
 307	smp_mb(); /* (B) */
 308
 309	task = rcu_dereference(w->task);
 310	if (task)
 311		ret = wake_up_process(task);
 312	rcu_read_unlock();
 313
 314	return ret;
 315}
 316EXPORT_SYMBOL_GPL(rcuwait_wake_up);
 317
 318/*
 319 * Determine if a process group is "orphaned", according to the POSIX
 320 * definition in 2.2.2.52.  Orphaned process groups are not to be affected
 321 * by terminal-generated stop signals.  Newly orphaned process groups are
 322 * to receive a SIGHUP and a SIGCONT.
 323 *
 324 * "I ask you, have you ever known what it is to be an orphan?"
 325 */
 326static int will_become_orphaned_pgrp(struct pid *pgrp,
 327					struct task_struct *ignored_task)
 328{
 329	struct task_struct *p;
 330
 331	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
 332		if ((p == ignored_task) ||
 333		    (p->exit_state && thread_group_empty(p)) ||
 334		    is_global_init(p->real_parent))
 335			continue;
 336
 337		if (task_pgrp(p->real_parent) != pgrp &&
 338		    task_session(p->real_parent) == task_session(p))
 339			return 0;
 340	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
 341
 342	return 1;
 343}
 344
 345int is_current_pgrp_orphaned(void)
 346{
 347	int retval;
 348
 349	read_lock(&tasklist_lock);
 350	retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
 351	read_unlock(&tasklist_lock);
 352
 353	return retval;
 354}
 355
 356static bool has_stopped_jobs(struct pid *pgrp)
 357{
 358	struct task_struct *p;
 359
 360	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
 361		if (p->signal->flags & SIGNAL_STOP_STOPPED)
 362			return true;
 363	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
 364
 365	return false;
 366}
 367
 368/*
 369 * Check to see if any process groups have become orphaned as
 370 * a result of our exiting, and if they have any stopped jobs,
 371 * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
 372 */
 373static void
 374kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
 375{
 376	struct pid *pgrp = task_pgrp(tsk);
 377	struct task_struct *ignored_task = tsk;
 378
 379	if (!parent)
 380		/* exit: our father is in a different pgrp than
 381		 * we are and we were the only connection outside.
 382		 */
 383		parent = tsk->real_parent;
 384	else
 385		/* reparent: our child is in a different pgrp than
 386		 * we are, and it was the only connection outside.
 387		 */
 388		ignored_task = NULL;
 389
 390	if (task_pgrp(parent) != pgrp &&
 391	    task_session(parent) == task_session(tsk) &&
 392	    will_become_orphaned_pgrp(pgrp, ignored_task) &&
 393	    has_stopped_jobs(pgrp)) {
 394		__kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
 395		__kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
 396	}
 397}
 398
 399static void coredump_task_exit(struct task_struct *tsk)
 400{
 401	struct core_state *core_state;
 402
 403	/*
 404	 * Serialize with any possible pending coredump.
 405	 * We must hold siglock around checking core_state
 406	 * and setting PF_POSTCOREDUMP.  The core-inducing thread
 407	 * will increment ->nr_threads for each thread in the
 408	 * group without PF_POSTCOREDUMP set.
 409	 */
 410	spin_lock_irq(&tsk->sighand->siglock);
 411	tsk->flags |= PF_POSTCOREDUMP;
 412	core_state = tsk->signal->core_state;
 413	spin_unlock_irq(&tsk->sighand->siglock);
 414	if (core_state) {
 415		struct core_thread self;
 416
 417		self.task = current;
 418		if (self.task->flags & PF_SIGNALED)
 419			self.next = xchg(&core_state->dumper.next, &self);
 420		else
 421			self.task = NULL;
 422		/*
 423		 * Implies mb(), the result of xchg() must be visible
 424		 * to core_state->dumper.
 425		 */
 426		if (atomic_dec_and_test(&core_state->nr_threads))
 427			complete(&core_state->startup);
 428
 429		for (;;) {
 430			set_current_state(TASK_IDLE|TASK_FREEZABLE);
 431			if (!self.task) /* see coredump_finish() */
 432				break;
 433			schedule();
 434		}
 435		__set_current_state(TASK_RUNNING);
 436	}
 437}
 438
 439#ifdef CONFIG_MEMCG
 440/* drops tasklist_lock if succeeds */
 441static bool __try_to_set_owner(struct task_struct *tsk, struct mm_struct *mm)
 442{
 443	bool ret = false;
 444
 445	task_lock(tsk);
 446	if (likely(tsk->mm == mm)) {
 447		/* tsk can't pass exit_mm/exec_mmap and exit */
 448		read_unlock(&tasklist_lock);
 449		WRITE_ONCE(mm->owner, tsk);
 450		lru_gen_migrate_mm(mm);
 451		ret = true;
 452	}
 453	task_unlock(tsk);
 454	return ret;
 455}
 456
 457static bool try_to_set_owner(struct task_struct *g, struct mm_struct *mm)
 458{
 459	struct task_struct *t;
 460
 461	for_each_thread(g, t) {
 462		struct mm_struct *t_mm = READ_ONCE(t->mm);
 463		if (t_mm == mm) {
 464			if (__try_to_set_owner(t, mm))
 465				return true;
 466		} else if (t_mm)
 467			break;
 468	}
 469
 470	return false;
 471}
 472
 473/*
 474 * A task is exiting.   If it owned this mm, find a new owner for the mm.
 475 */
 476void mm_update_next_owner(struct mm_struct *mm)
 477{
 478	struct task_struct *g, *p = current;
 479
 
 480	/*
 481	 * If the exiting or execing task is not the owner, it's
 482	 * someone else's problem.
 483	 */
 484	if (mm->owner != p)
 485		return;
 486	/*
 487	 * The current owner is exiting/execing and there are no other
 488	 * candidates.  Do not leave the mm pointing to a possibly
 489	 * freed task structure.
 490	 */
 491	if (atomic_read(&mm->mm_users) <= 1) {
 492		WRITE_ONCE(mm->owner, NULL);
 493		return;
 494	}
 495
 496	read_lock(&tasklist_lock);
 497	/*
 498	 * Search in the children
 499	 */
 500	list_for_each_entry(g, &p->children, sibling) {
 501		if (try_to_set_owner(g, mm))
 502			goto ret;
 503	}
 
 504	/*
 505	 * Search in the siblings
 506	 */
 507	list_for_each_entry(g, &p->real_parent->children, sibling) {
 508		if (try_to_set_owner(g, mm))
 509			goto ret;
 510	}
 
 511	/*
 512	 * Search through everything else, we should not get here often.
 513	 */
 514	for_each_process(g) {
 515		if (atomic_read(&mm->mm_users) <= 1)
 516			break;
 517		if (g->flags & PF_KTHREAD)
 518			continue;
 519		if (try_to_set_owner(g, mm))
 520			goto ret;
 
 
 
 
 521	}
 522	read_unlock(&tasklist_lock);
 523	/*
 524	 * We found no owner yet mm_users > 1: this implies that we are
 525	 * most likely racing with swapoff (try_to_unuse()) or /proc or
 526	 * ptrace or page migration (get_task_mm()).  Mark owner as NULL.
 527	 */
 528	WRITE_ONCE(mm->owner, NULL);
 529 ret:
 530	return;
 531
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 532}
 533#endif /* CONFIG_MEMCG */
 534
 535/*
 536 * Turn us into a lazy TLB process if we
 537 * aren't already..
 538 */
 539static void exit_mm(void)
 540{
 541	struct mm_struct *mm = current->mm;
 
 542
 543	exit_mm_release(current, mm);
 544	if (!mm)
 545		return;
 546	mmap_read_lock(mm);
 547	mmgrab_lazy_tlb(mm);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 548	BUG_ON(mm != current->active_mm);
 549	/* more a memory barrier than a real lock */
 550	task_lock(current);
 551	/*
 552	 * When a thread stops operating on an address space, the loop
 553	 * in membarrier_private_expedited() may not observe that
 554	 * tsk->mm, and the loop in membarrier_global_expedited() may
 555	 * not observe a MEMBARRIER_STATE_GLOBAL_EXPEDITED
 556	 * rq->membarrier_state, so those would not issue an IPI.
 557	 * Membarrier requires a memory barrier after accessing
 558	 * user-space memory, before clearing tsk->mm or the
 559	 * rq->membarrier_state.
 560	 */
 561	smp_mb__after_spinlock();
 562	local_irq_disable();
 563	current->mm = NULL;
 564	membarrier_update_current_mm(NULL);
 565	enter_lazy_tlb(mm, current);
 566	local_irq_enable();
 567	task_unlock(current);
 568	mmap_read_unlock(mm);
 569	mm_update_next_owner(mm);
 570	mmput(mm);
 571	if (test_thread_flag(TIF_MEMDIE))
 572		exit_oom_victim();
 573}
 574
 575static struct task_struct *find_alive_thread(struct task_struct *p)
 576{
 577	struct task_struct *t;
 578
 579	for_each_thread(p, t) {
 580		if (!(t->flags & PF_EXITING))
 581			return t;
 582	}
 583	return NULL;
 584}
 585
 586static struct task_struct *find_child_reaper(struct task_struct *father,
 587						struct list_head *dead)
 588	__releases(&tasklist_lock)
 589	__acquires(&tasklist_lock)
 590{
 591	struct pid_namespace *pid_ns = task_active_pid_ns(father);
 592	struct task_struct *reaper = pid_ns->child_reaper;
 593	struct task_struct *p, *n;
 594
 595	if (likely(reaper != father))
 596		return reaper;
 597
 598	reaper = find_alive_thread(father);
 599	if (reaper) {
 600		pid_ns->child_reaper = reaper;
 601		return reaper;
 602	}
 603
 604	write_unlock_irq(&tasklist_lock);
 
 
 
 
 605
 606	list_for_each_entry_safe(p, n, dead, ptrace_entry) {
 607		list_del_init(&p->ptrace_entry);
 608		release_task(p);
 609	}
 610
 611	zap_pid_ns_processes(pid_ns);
 612	write_lock_irq(&tasklist_lock);
 613
 614	return father;
 615}
 616
 617/*
 618 * When we die, we re-parent all our children, and try to:
 619 * 1. give them to another thread in our thread group, if such a member exists
 620 * 2. give it to the first ancestor process which prctl'd itself as a
 621 *    child_subreaper for its children (like a service manager)
 622 * 3. give it to the init process (PID 1) in our pid namespace
 623 */
 624static struct task_struct *find_new_reaper(struct task_struct *father,
 625					   struct task_struct *child_reaper)
 626{
 627	struct task_struct *thread, *reaper;
 628
 629	thread = find_alive_thread(father);
 630	if (thread)
 631		return thread;
 632
 633	if (father->signal->has_child_subreaper) {
 634		unsigned int ns_level = task_pid(father)->level;
 635		/*
 636		 * Find the first ->is_child_subreaper ancestor in our pid_ns.
 637		 * We can't check reaper != child_reaper to ensure we do not
 638		 * cross the namespaces, the exiting parent could be injected
 639		 * by setns() + fork().
 640		 * We check pid->level, this is slightly more efficient than
 641		 * task_active_pid_ns(reaper) != task_active_pid_ns(father).
 642		 */
 643		for (reaper = father->real_parent;
 644		     task_pid(reaper)->level == ns_level;
 645		     reaper = reaper->real_parent) {
 646			if (reaper == &init_task)
 647				break;
 648			if (!reaper->signal->is_child_subreaper)
 649				continue;
 650			thread = find_alive_thread(reaper);
 651			if (thread)
 652				return thread;
 653		}
 654	}
 655
 656	return child_reaper;
 657}
 658
 659/*
 660* Any that need to be release_task'd are put on the @dead list.
 661 */
 662static void reparent_leader(struct task_struct *father, struct task_struct *p,
 663				struct list_head *dead)
 664{
 665	if (unlikely(p->exit_state == EXIT_DEAD))
 666		return;
 667
 668	/* We don't want people slaying init. */
 669	p->exit_signal = SIGCHLD;
 670
 671	/* If it has exited notify the new parent about this child's death. */
 672	if (!p->ptrace &&
 673	    p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) {
 674		if (do_notify_parent(p, p->exit_signal)) {
 675			p->exit_state = EXIT_DEAD;
 676			list_add(&p->ptrace_entry, dead);
 677		}
 678	}
 679
 680	kill_orphaned_pgrp(p, father);
 681}
 682
 683/*
 684 * This does two things:
 685 *
 686 * A.  Make init inherit all the child processes
 687 * B.  Check to see if any process groups have become orphaned
 688 *	as a result of our exiting, and if they have any stopped
 689 *	jobs, send them a SIGHUP and then a SIGCONT.  (POSIX 3.2.2.2)
 690 */
 691static void forget_original_parent(struct task_struct *father,
 692					struct list_head *dead)
 693{
 694	struct task_struct *p, *t, *reaper;
 695
 696	if (unlikely(!list_empty(&father->ptraced)))
 697		exit_ptrace(father, dead);
 698
 699	/* Can drop and reacquire tasklist_lock */
 700	reaper = find_child_reaper(father, dead);
 701	if (list_empty(&father->children))
 702		return;
 703
 704	reaper = find_new_reaper(father, reaper);
 705	list_for_each_entry(p, &father->children, sibling) {
 706		for_each_thread(p, t) {
 707			RCU_INIT_POINTER(t->real_parent, reaper);
 708			BUG_ON((!t->ptrace) != (rcu_access_pointer(t->parent) == father));
 709			if (likely(!t->ptrace))
 710				t->parent = t->real_parent;
 711			if (t->pdeath_signal)
 712				group_send_sig_info(t->pdeath_signal,
 713						    SEND_SIG_NOINFO, t,
 714						    PIDTYPE_TGID);
 715		}
 716		/*
 717		 * If this is a threaded reparent there is no need to
 718		 * notify anyone anything has happened.
 719		 */
 720		if (!same_thread_group(reaper, father))
 721			reparent_leader(father, p, dead);
 722	}
 723	list_splice_tail_init(&father->children, &reaper->children);
 724}
 725
 726/*
 727 * Send signals to all our closest relatives so that they know
 728 * to properly mourn us..
 729 */
 730static void exit_notify(struct task_struct *tsk, int group_dead)
 731{
 732	bool autoreap;
 733	struct task_struct *p, *n;
 734	LIST_HEAD(dead);
 735
 736	write_lock_irq(&tasklist_lock);
 737	forget_original_parent(tsk, &dead);
 738
 739	if (group_dead)
 740		kill_orphaned_pgrp(tsk->group_leader, NULL);
 741
 742	tsk->exit_state = EXIT_ZOMBIE;
 743	/*
 744	 * sub-thread or delay_group_leader(), wake up the
 745	 * PIDFD_THREAD waiters.
 746	 */
 747	if (!thread_group_empty(tsk))
 748		do_notify_pidfd(tsk);
 749
 750	if (unlikely(tsk->ptrace)) {
 751		int sig = thread_group_leader(tsk) &&
 752				thread_group_empty(tsk) &&
 753				!ptrace_reparented(tsk) ?
 754			tsk->exit_signal : SIGCHLD;
 755		autoreap = do_notify_parent(tsk, sig);
 756	} else if (thread_group_leader(tsk)) {
 757		autoreap = thread_group_empty(tsk) &&
 758			do_notify_parent(tsk, tsk->exit_signal);
 759	} else {
 760		autoreap = true;
 761	}
 762
 763	if (autoreap) {
 764		tsk->exit_state = EXIT_DEAD;
 765		list_add(&tsk->ptrace_entry, &dead);
 766	}
 767
 768	/* mt-exec, de_thread() is waiting for group leader */
 769	if (unlikely(tsk->signal->notify_count < 0))
 770		wake_up_process(tsk->signal->group_exec_task);
 771	write_unlock_irq(&tasklist_lock);
 772
 773	list_for_each_entry_safe(p, n, &dead, ptrace_entry) {
 774		list_del_init(&p->ptrace_entry);
 775		release_task(p);
 776	}
 777}
 778
 779#ifdef CONFIG_DEBUG_STACK_USAGE
 780unsigned long stack_not_used(struct task_struct *p)
 781{
 782	unsigned long *n = end_of_stack(p);
 783
 784	do {	/* Skip over canary */
 785# ifdef CONFIG_STACK_GROWSUP
 786		n--;
 787# else
 788		n++;
 789# endif
 790	} while (!*n);
 791
 792# ifdef CONFIG_STACK_GROWSUP
 793	return (unsigned long)end_of_stack(p) - (unsigned long)n;
 794# else
 795	return (unsigned long)n - (unsigned long)end_of_stack(p);
 796# endif
 797}
 798
 799/* Count the maximum pages reached in kernel stacks */
 800static inline void kstack_histogram(unsigned long used_stack)
 801{
 802#ifdef CONFIG_VM_EVENT_COUNTERS
 803	if (used_stack <= 1024)
 804		count_vm_event(KSTACK_1K);
 805#if THREAD_SIZE > 1024
 806	else if (used_stack <= 2048)
 807		count_vm_event(KSTACK_2K);
 808#endif
 809#if THREAD_SIZE > 2048
 810	else if (used_stack <= 4096)
 811		count_vm_event(KSTACK_4K);
 812#endif
 813#if THREAD_SIZE > 4096
 814	else if (used_stack <= 8192)
 815		count_vm_event(KSTACK_8K);
 816#endif
 817#if THREAD_SIZE > 8192
 818	else if (used_stack <= 16384)
 819		count_vm_event(KSTACK_16K);
 820#endif
 821#if THREAD_SIZE > 16384
 822	else if (used_stack <= 32768)
 823		count_vm_event(KSTACK_32K);
 824#endif
 825#if THREAD_SIZE > 32768
 826	else if (used_stack <= 65536)
 827		count_vm_event(KSTACK_64K);
 828#endif
 829#if THREAD_SIZE > 65536
 830	else
 831		count_vm_event(KSTACK_REST);
 832#endif
 833#endif /* CONFIG_VM_EVENT_COUNTERS */
 834}
 835
 836static void check_stack_usage(void)
 837{
 838	static DEFINE_SPINLOCK(low_water_lock);
 839	static int lowest_to_date = THREAD_SIZE;
 840	unsigned long free;
 841
 842	free = stack_not_used(current);
 843	kstack_histogram(THREAD_SIZE - free);
 844
 845	if (free >= lowest_to_date)
 846		return;
 847
 848	spin_lock(&low_water_lock);
 849	if (free < lowest_to_date) {
 850		pr_info("%s (%d) used greatest stack depth: %lu bytes left\n",
 851			current->comm, task_pid_nr(current), free);
 852		lowest_to_date = free;
 853	}
 854	spin_unlock(&low_water_lock);
 855}
 856#else
 857static inline void check_stack_usage(void) {}
 858#endif
 859
 860static void synchronize_group_exit(struct task_struct *tsk, long code)
 861{
 862	struct sighand_struct *sighand = tsk->sighand;
 863	struct signal_struct *signal = tsk->signal;
 864
 865	spin_lock_irq(&sighand->siglock);
 866	signal->quick_threads--;
 867	if ((signal->quick_threads == 0) &&
 868	    !(signal->flags & SIGNAL_GROUP_EXIT)) {
 869		signal->flags = SIGNAL_GROUP_EXIT;
 870		signal->group_exit_code = code;
 871		signal->group_stop_count = 0;
 872	}
 873	spin_unlock_irq(&sighand->siglock);
 874}
 875
 876void __noreturn do_exit(long code)
 877{
 878	struct task_struct *tsk = current;
 879	int group_dead;
 880
 881	WARN_ON(irqs_disabled());
 
 882
 883	synchronize_group_exit(tsk, code);
 884
 885	WARN_ON(tsk->plug);
 
 
 
 886
 887	kcov_task_exit(tsk);
 888	kmsan_task_exit(tsk);
 
 
 
 
 
 
 889
 890	coredump_task_exit(tsk);
 891	ptrace_event(PTRACE_EVENT_EXIT, code);
 892	user_events_exit(tsk);
 893
 894	io_uring_files_cancel();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 895	exit_signals(tsk);  /* sets PF_EXITING */
 
 
 
 
 
 
 
 
 
 
 
 896
 897	seccomp_filter_release(tsk);
 
 
 
 
 
 898
 
 
 
 899	acct_update_integrals(tsk);
 900	group_dead = atomic_dec_and_test(&tsk->signal->live);
 901	if (group_dead) {
 902		/*
 903		 * If the last thread of global init has exited, panic
 904		 * immediately to get a useable coredump.
 905		 */
 906		if (unlikely(is_global_init(tsk)))
 907			panic("Attempted to kill init! exitcode=0x%08x\n",
 908				tsk->signal->group_exit_code ?: (int)code);
 909
 910#ifdef CONFIG_POSIX_TIMERS
 911		hrtimer_cancel(&tsk->signal->real_timer);
 912		exit_itimers(tsk);
 913#endif
 914		if (tsk->mm)
 915			setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm);
 916	}
 917	acct_collect(code, group_dead);
 918	if (group_dead)
 919		tty_audit_exit();
 920	audit_free(tsk);
 921
 922	tsk->exit_code = code;
 923	taskstats_exit(tsk, group_dead);
 924
 925	exit_mm();
 926
 927	if (group_dead)
 928		acct_process();
 929	trace_sched_process_exit(tsk);
 930
 931	exit_sem(tsk);
 932	exit_shm(tsk);
 933	exit_files(tsk);
 934	exit_fs(tsk);
 935	if (group_dead)
 936		disassociate_ctty(1);
 937	exit_task_namespaces(tsk);
 938	exit_task_work(tsk);
 939	exit_thread(tsk);
 
 940
 941	/*
 942	 * Flush inherited counters to the parent - before the parent
 943	 * gets woken up by child-exit notifications.
 944	 *
 945	 * because of cgroup mode, must be called before cgroup_exit()
 946	 */
 947	perf_event_exit_task(tsk);
 948
 949	sched_autogroup_exit_task(tsk);
 950	cgroup_exit(tsk);
 951
 952	/*
 953	 * FIXME: do that only when needed, using sched_exit tracepoint
 954	 */
 955	flush_ptrace_hw_breakpoint(tsk);
 956
 957	exit_tasks_rcu_start();
 958	exit_notify(tsk, group_dead);
 959	proc_exit_connector(tsk);
 960	mpol_put_task_policy(tsk);
 961#ifdef CONFIG_FUTEX
 962	if (unlikely(current->pi_state_cache))
 963		kfree(current->pi_state_cache);
 964#endif
 965	/*
 966	 * Make sure we are holding no locks:
 967	 */
 968	debug_check_no_locks_held();
 
 
 
 
 
 
 969
 970	if (tsk->io_context)
 971		exit_io_context(tsk);
 972
 973	if (tsk->splice_pipe)
 974		free_pipe_info(tsk->splice_pipe);
 975
 976	if (tsk->task_frag.page)
 977		put_page(tsk->task_frag.page);
 978
 979	exit_task_stack_account(tsk);
 980
 981	check_stack_usage();
 982	preempt_disable();
 983	if (tsk->nr_dirtied)
 984		__this_cpu_add(dirty_throttle_leaks, tsk->nr_dirtied);
 985	exit_rcu();
 986	exit_tasks_rcu_finish();
 987
 988	lockdep_free_task(tsk);
 989	do_task_dead();
 990}
 
 991
 992void __noreturn make_task_dead(int signr)
 993{
 994	/*
 995	 * Take the task off the cpu after something catastrophic has
 996	 * happened.
 997	 *
 998	 * We can get here from a kernel oops, sometimes with preemption off.
 999	 * Start by checking for critical errors.
1000	 * Then fix up important state like USER_DS and preemption.
1001	 * Then do everything else.
1002	 */
1003	struct task_struct *tsk = current;
1004	unsigned int limit;
1005
1006	if (unlikely(in_interrupt()))
1007		panic("Aiee, killing interrupt handler!");
1008	if (unlikely(!tsk->pid))
1009		panic("Attempted to kill the idle task!");
1010
1011	if (unlikely(irqs_disabled())) {
1012		pr_info("note: %s[%d] exited with irqs disabled\n",
1013			current->comm, task_pid_nr(current));
1014		local_irq_enable();
1015	}
1016	if (unlikely(in_atomic())) {
1017		pr_info("note: %s[%d] exited with preempt_count %d\n",
1018			current->comm, task_pid_nr(current),
1019			preempt_count());
1020		preempt_count_set(PREEMPT_ENABLED);
1021	}
1022
1023	/*
1024	 * Every time the system oopses, if the oops happens while a reference
1025	 * to an object was held, the reference leaks.
1026	 * If the oops doesn't also leak memory, repeated oopsing can cause
1027	 * reference counters to wrap around (if they're not using refcount_t).
1028	 * This means that repeated oopsing can make unexploitable-looking bugs
1029	 * exploitable through repeated oopsing.
1030	 * To make sure this can't happen, place an upper bound on how often the
1031	 * kernel may oops without panic().
1032	 */
1033	limit = READ_ONCE(oops_limit);
1034	if (atomic_inc_return(&oops_count) >= limit && limit)
1035		panic("Oopsed too often (kernel.oops_limit is %d)", limit);
1036
1037	/*
1038	 * We're taking recursive faults here in make_task_dead. Safest is to just
1039	 * leave this task alone and wait for reboot.
1040	 */
1041	if (unlikely(tsk->flags & PF_EXITING)) {
1042		pr_alert("Fixing recursive fault but reboot is needed!\n");
1043		futex_exit_recursive(tsk);
1044		tsk->exit_state = EXIT_DEAD;
1045		refcount_inc(&tsk->rcu_users);
1046		do_task_dead();
1047	}
1048
1049	do_exit(signr);
1050}
 
1051
1052SYSCALL_DEFINE1(exit, int, error_code)
1053{
1054	do_exit((error_code&0xff)<<8);
1055}
1056
1057/*
1058 * Take down every thread in the group.  This is called by fatal signals
1059 * as well as by sys_exit_group (below).
1060 */
1061void __noreturn
1062do_group_exit(int exit_code)
1063{
1064	struct signal_struct *sig = current->signal;
1065
1066	if (sig->flags & SIGNAL_GROUP_EXIT)
 
 
1067		exit_code = sig->group_exit_code;
1068	else if (sig->group_exec_task)
1069		exit_code = 0;
1070	else {
1071		struct sighand_struct *const sighand = current->sighand;
1072
1073		spin_lock_irq(&sighand->siglock);
1074		if (sig->flags & SIGNAL_GROUP_EXIT)
1075			/* Another thread got here before we took the lock.  */
1076			exit_code = sig->group_exit_code;
1077		else if (sig->group_exec_task)
1078			exit_code = 0;
1079		else {
1080			sig->group_exit_code = exit_code;
1081			sig->flags = SIGNAL_GROUP_EXIT;
1082			zap_other_threads(current);
1083		}
1084		spin_unlock_irq(&sighand->siglock);
1085	}
1086
1087	do_exit(exit_code);
1088	/* NOTREACHED */
1089}
1090
1091/*
1092 * this kills every thread in the thread group. Note that any externally
1093 * wait4()-ing process will get the correct exit code - even if this
1094 * thread is not the thread group leader.
1095 */
1096SYSCALL_DEFINE1(exit_group, int, error_code)
1097{
1098	do_group_exit((error_code & 0xff) << 8);
1099	/* NOTREACHED */
1100	return 0;
1101}
1102
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1103static int eligible_pid(struct wait_opts *wo, struct task_struct *p)
1104{
1105	return	wo->wo_type == PIDTYPE_MAX ||
1106		task_pid_type(p, wo->wo_type) == wo->wo_pid;
1107}
1108
1109static int
1110eligible_child(struct wait_opts *wo, bool ptrace, struct task_struct *p)
1111{
1112	if (!eligible_pid(wo, p))
1113		return 0;
1114
1115	/*
1116	 * Wait for all children (clone and not) if __WALL is set or
1117	 * if it is traced by us.
1118	 */
1119	if (ptrace || (wo->wo_flags & __WALL))
1120		return 1;
1121
1122	/*
1123	 * Otherwise, wait for clone children *only* if __WCLONE is set;
1124	 * otherwise, wait for non-clone children *only*.
1125	 *
1126	 * Note: a "clone" child here is one that reports to its parent
1127	 * using a signal other than SIGCHLD, or a non-leader thread which
1128	 * we can only see if it is traced by us.
1129	 */
1130	if ((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE))
1131		return 0;
1132
1133	return 1;
1134}
1135
1136/*
1137 * Handle sys_wait4 work for one task in state EXIT_ZOMBIE.  We hold
1138 * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1139 * the lock and this task is uninteresting.  If we return nonzero, we have
1140 * released the lock and the system call should return.
1141 */
1142static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p)
1143{
1144	int state, status;
1145	pid_t pid = task_pid_vnr(p);
1146	uid_t uid = from_kuid_munged(current_user_ns(), task_uid(p));
1147	struct waitid_info *infop;
1148
1149	if (!likely(wo->wo_flags & WEXITED))
1150		return 0;
1151
1152	if (unlikely(wo->wo_flags & WNOWAIT)) {
1153		status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1154			? p->signal->group_exit_code : p->exit_code;
1155		get_task_struct(p);
1156		read_unlock(&tasklist_lock);
1157		sched_annotate_sleep();
1158		if (wo->wo_rusage)
1159			getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1160		put_task_struct(p);
1161		goto out_info;
1162	}
1163	/*
1164	 * Move the task's state to DEAD/TRACE, only one thread can do this.
1165	 */
1166	state = (ptrace_reparented(p) && thread_group_leader(p)) ?
1167		EXIT_TRACE : EXIT_DEAD;
1168	if (cmpxchg(&p->exit_state, EXIT_ZOMBIE, state) != EXIT_ZOMBIE)
1169		return 0;
1170	/*
1171	 * We own this thread, nobody else can reap it.
1172	 */
1173	read_unlock(&tasklist_lock);
1174	sched_annotate_sleep();
1175
1176	/*
1177	 * Check thread_group_leader() to exclude the traced sub-threads.
1178	 */
1179	if (state == EXIT_DEAD && thread_group_leader(p)) {
1180		struct signal_struct *sig = p->signal;
1181		struct signal_struct *psig = current->signal;
1182		unsigned long maxrss;
1183		u64 tgutime, tgstime;
1184
1185		/*
1186		 * The resource counters for the group leader are in its
1187		 * own task_struct.  Those for dead threads in the group
1188		 * are in its signal_struct, as are those for the child
1189		 * processes it has previously reaped.  All these
1190		 * accumulate in the parent's signal_struct c* fields.
1191		 *
1192		 * We don't bother to take a lock here to protect these
1193		 * p->signal fields because the whole thread group is dead
1194		 * and nobody can change them.
1195		 *
1196		 * psig->stats_lock also protects us from our sub-threads
1197		 * which can reap other children at the same time.
 
 
1198		 *
1199		 * We use thread_group_cputime_adjusted() to get times for
1200		 * the thread group, which consolidates times for all threads
1201		 * in the group including the group leader.
1202		 */
1203		thread_group_cputime_adjusted(p, &tgutime, &tgstime);
1204		write_seqlock_irq(&psig->stats_lock);
 
1205		psig->cutime += tgutime + sig->cutime;
1206		psig->cstime += tgstime + sig->cstime;
1207		psig->cgtime += task_gtime(p) + sig->gtime + sig->cgtime;
1208		psig->cmin_flt +=
1209			p->min_flt + sig->min_flt + sig->cmin_flt;
1210		psig->cmaj_flt +=
1211			p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1212		psig->cnvcsw +=
1213			p->nvcsw + sig->nvcsw + sig->cnvcsw;
1214		psig->cnivcsw +=
1215			p->nivcsw + sig->nivcsw + sig->cnivcsw;
1216		psig->cinblock +=
1217			task_io_get_inblock(p) +
1218			sig->inblock + sig->cinblock;
1219		psig->coublock +=
1220			task_io_get_oublock(p) +
1221			sig->oublock + sig->coublock;
1222		maxrss = max(sig->maxrss, sig->cmaxrss);
1223		if (psig->cmaxrss < maxrss)
1224			psig->cmaxrss = maxrss;
1225		task_io_accounting_add(&psig->ioac, &p->ioac);
1226		task_io_accounting_add(&psig->ioac, &sig->ioac);
1227		write_sequnlock_irq(&psig->stats_lock);
 
1228	}
1229
1230	if (wo->wo_rusage)
1231		getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1232	status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1233		? p->signal->group_exit_code : p->exit_code;
1234	wo->wo_stat = status;
1235
1236	if (state == EXIT_TRACE) {
1237		write_lock_irq(&tasklist_lock);
1238		/* We dropped tasklist, ptracer could die and untrace */
1239		ptrace_unlink(p);
1240
1241		/* If parent wants a zombie, don't release it now */
1242		state = EXIT_ZOMBIE;
1243		if (do_notify_parent(p, p->exit_signal))
1244			state = EXIT_DEAD;
1245		p->exit_state = state;
1246		write_unlock_irq(&tasklist_lock);
1247	}
1248	if (state == EXIT_DEAD)
1249		release_task(p);
1250
1251out_info:
1252	infop = wo->wo_info;
1253	if (infop) {
1254		if ((status & 0x7f) == 0) {
1255			infop->cause = CLD_EXITED;
1256			infop->status = status >> 8;
1257		} else {
1258			infop->cause = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1259			infop->status = status & 0x7f;
1260		}
1261		infop->pid = pid;
1262		infop->uid = uid;
1263	}
1264
1265	return pid;
1266}
1267
1268static int *task_stopped_code(struct task_struct *p, bool ptrace)
1269{
1270	if (ptrace) {
1271		if (task_is_traced(p) && !(p->jobctl & JOBCTL_LISTENING))
1272			return &p->exit_code;
1273	} else {
1274		if (p->signal->flags & SIGNAL_STOP_STOPPED)
1275			return &p->signal->group_exit_code;
1276	}
1277	return NULL;
1278}
1279
1280/**
1281 * wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED
1282 * @wo: wait options
1283 * @ptrace: is the wait for ptrace
1284 * @p: task to wait for
1285 *
1286 * Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED.
1287 *
1288 * CONTEXT:
1289 * read_lock(&tasklist_lock), which is released if return value is
1290 * non-zero.  Also, grabs and releases @p->sighand->siglock.
1291 *
1292 * RETURNS:
1293 * 0 if wait condition didn't exist and search for other wait conditions
1294 * should continue.  Non-zero return, -errno on failure and @p's pid on
1295 * success, implies that tasklist_lock is released and wait condition
1296 * search should terminate.
1297 */
1298static int wait_task_stopped(struct wait_opts *wo,
1299				int ptrace, struct task_struct *p)
1300{
1301	struct waitid_info *infop;
1302	int exit_code, *p_code, why;
1303	uid_t uid = 0; /* unneeded, required by compiler */
1304	pid_t pid;
1305
1306	/*
1307	 * Traditionally we see ptrace'd stopped tasks regardless of options.
1308	 */
1309	if (!ptrace && !(wo->wo_flags & WUNTRACED))
1310		return 0;
1311
1312	if (!task_stopped_code(p, ptrace))
1313		return 0;
1314
1315	exit_code = 0;
1316	spin_lock_irq(&p->sighand->siglock);
1317
1318	p_code = task_stopped_code(p, ptrace);
1319	if (unlikely(!p_code))
1320		goto unlock_sig;
1321
1322	exit_code = *p_code;
1323	if (!exit_code)
1324		goto unlock_sig;
1325
1326	if (!unlikely(wo->wo_flags & WNOWAIT))
1327		*p_code = 0;
1328
1329	uid = from_kuid_munged(current_user_ns(), task_uid(p));
1330unlock_sig:
1331	spin_unlock_irq(&p->sighand->siglock);
1332	if (!exit_code)
1333		return 0;
1334
1335	/*
1336	 * Now we are pretty sure this task is interesting.
1337	 * Make sure it doesn't get reaped out from under us while we
1338	 * give up the lock and then examine it below.  We don't want to
1339	 * keep holding onto the tasklist_lock while we call getrusage and
1340	 * possibly take page faults for user memory.
1341	 */
1342	get_task_struct(p);
1343	pid = task_pid_vnr(p);
1344	why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
1345	read_unlock(&tasklist_lock);
1346	sched_annotate_sleep();
1347	if (wo->wo_rusage)
1348		getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1349	put_task_struct(p);
1350
1351	if (likely(!(wo->wo_flags & WNOWAIT)))
1352		wo->wo_stat = (exit_code << 8) | 0x7f;
1353
1354	infop = wo->wo_info;
1355	if (infop) {
1356		infop->cause = why;
1357		infop->status = exit_code;
1358		infop->pid = pid;
1359		infop->uid = uid;
1360	}
1361	return pid;
1362}
1363
1364/*
1365 * Handle do_wait work for one task in a live, non-stopped state.
1366 * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1367 * the lock and this task is uninteresting.  If we return nonzero, we have
1368 * released the lock and the system call should return.
1369 */
1370static int wait_task_continued(struct wait_opts *wo, struct task_struct *p)
1371{
1372	struct waitid_info *infop;
1373	pid_t pid;
1374	uid_t uid;
1375
1376	if (!unlikely(wo->wo_flags & WCONTINUED))
1377		return 0;
1378
1379	if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1380		return 0;
1381
1382	spin_lock_irq(&p->sighand->siglock);
1383	/* Re-check with the lock held.  */
1384	if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1385		spin_unlock_irq(&p->sighand->siglock);
1386		return 0;
1387	}
1388	if (!unlikely(wo->wo_flags & WNOWAIT))
1389		p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1390	uid = from_kuid_munged(current_user_ns(), task_uid(p));
1391	spin_unlock_irq(&p->sighand->siglock);
1392
1393	pid = task_pid_vnr(p);
1394	get_task_struct(p);
1395	read_unlock(&tasklist_lock);
1396	sched_annotate_sleep();
1397	if (wo->wo_rusage)
1398		getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1399	put_task_struct(p);
1400
1401	infop = wo->wo_info;
1402	if (!infop) {
1403		wo->wo_stat = 0xffff;
1404	} else {
1405		infop->cause = CLD_CONTINUED;
1406		infop->pid = pid;
1407		infop->uid = uid;
1408		infop->status = SIGCONT;
1409	}
1410	return pid;
1411}
1412
1413/*
1414 * Consider @p for a wait by @parent.
1415 *
1416 * -ECHILD should be in ->notask_error before the first call.
1417 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1418 * Returns zero if the search for a child should continue;
1419 * then ->notask_error is 0 if @p is an eligible child,
1420 * or still -ECHILD.
1421 */
1422static int wait_consider_task(struct wait_opts *wo, int ptrace,
1423				struct task_struct *p)
1424{
1425	/*
1426	 * We can race with wait_task_zombie() from another thread.
1427	 * Ensure that EXIT_ZOMBIE -> EXIT_DEAD/EXIT_TRACE transition
1428	 * can't confuse the checks below.
1429	 */
1430	int exit_state = READ_ONCE(p->exit_state);
1431	int ret;
1432
1433	if (unlikely(exit_state == EXIT_DEAD))
1434		return 0;
1435
1436	ret = eligible_child(wo, ptrace, p);
1437	if (!ret)
1438		return ret;
1439
1440	if (unlikely(exit_state == EXIT_TRACE)) {
1441		/*
1442		 * ptrace == 0 means we are the natural parent. In this case
1443		 * we should clear notask_error, debugger will notify us.
1444		 */
1445		if (likely(!ptrace))
1446			wo->notask_error = 0;
1447		return 0;
1448	}
1449
1450	if (likely(!ptrace) && unlikely(p->ptrace)) {
1451		/*
1452		 * If it is traced by its real parent's group, just pretend
1453		 * the caller is ptrace_do_wait() and reap this child if it
1454		 * is zombie.
1455		 *
1456		 * This also hides group stop state from real parent; otherwise
1457		 * a single stop can be reported twice as group and ptrace stop.
1458		 * If a ptracer wants to distinguish these two events for its
1459		 * own children it should create a separate process which takes
1460		 * the role of real parent.
1461		 */
1462		if (!ptrace_reparented(p))
1463			ptrace = 1;
1464	}
1465
1466	/* slay zombie? */
1467	if (exit_state == EXIT_ZOMBIE) {
1468		/* we don't reap group leaders with subthreads */
1469		if (!delay_group_leader(p)) {
1470			/*
1471			 * A zombie ptracee is only visible to its ptracer.
1472			 * Notification and reaping will be cascaded to the
1473			 * real parent when the ptracer detaches.
1474			 */
1475			if (unlikely(ptrace) || likely(!p->ptrace))
1476				return wait_task_zombie(wo, p);
1477		}
1478
1479		/*
1480		 * Allow access to stopped/continued state via zombie by
1481		 * falling through.  Clearing of notask_error is complex.
1482		 *
1483		 * When !@ptrace:
1484		 *
1485		 * If WEXITED is set, notask_error should naturally be
1486		 * cleared.  If not, subset of WSTOPPED|WCONTINUED is set,
1487		 * so, if there are live subthreads, there are events to
1488		 * wait for.  If all subthreads are dead, it's still safe
1489		 * to clear - this function will be called again in finite
1490		 * amount time once all the subthreads are released and
1491		 * will then return without clearing.
1492		 *
1493		 * When @ptrace:
1494		 *
1495		 * Stopped state is per-task and thus can't change once the
1496		 * target task dies.  Only continued and exited can happen.
1497		 * Clear notask_error if WCONTINUED | WEXITED.
1498		 */
1499		if (likely(!ptrace) || (wo->wo_flags & (WCONTINUED | WEXITED)))
1500			wo->notask_error = 0;
1501	} else {
1502		/*
1503		 * @p is alive and it's gonna stop, continue or exit, so
1504		 * there always is something to wait for.
1505		 */
1506		wo->notask_error = 0;
1507	}
1508
1509	/*
1510	 * Wait for stopped.  Depending on @ptrace, different stopped state
1511	 * is used and the two don't interact with each other.
1512	 */
1513	ret = wait_task_stopped(wo, ptrace, p);
1514	if (ret)
1515		return ret;
1516
1517	/*
1518	 * Wait for continued.  There's only one continued state and the
1519	 * ptracer can consume it which can confuse the real parent.  Don't
1520	 * use WCONTINUED from ptracer.  You don't need or want it.
1521	 */
1522	return wait_task_continued(wo, p);
1523}
1524
1525/*
1526 * Do the work of do_wait() for one thread in the group, @tsk.
1527 *
1528 * -ECHILD should be in ->notask_error before the first call.
1529 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1530 * Returns zero if the search for a child should continue; then
1531 * ->notask_error is 0 if there were any eligible children,
1532 * or still -ECHILD.
1533 */
1534static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk)
1535{
1536	struct task_struct *p;
1537
1538	list_for_each_entry(p, &tsk->children, sibling) {
1539		int ret = wait_consider_task(wo, 0, p);
1540
1541		if (ret)
1542			return ret;
1543	}
1544
1545	return 0;
1546}
1547
1548static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk)
1549{
1550	struct task_struct *p;
1551
1552	list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
1553		int ret = wait_consider_task(wo, 1, p);
1554
1555		if (ret)
1556			return ret;
1557	}
1558
1559	return 0;
1560}
1561
1562bool pid_child_should_wake(struct wait_opts *wo, struct task_struct *p)
1563{
1564	if (!eligible_pid(wo, p))
1565		return false;
1566
1567	if ((wo->wo_flags & __WNOTHREAD) && wo->child_wait.private != p->parent)
1568		return false;
1569
1570	return true;
1571}
1572
1573static int child_wait_callback(wait_queue_entry_t *wait, unsigned mode,
1574				int sync, void *key)
1575{
1576	struct wait_opts *wo = container_of(wait, struct wait_opts,
1577						child_wait);
1578	struct task_struct *p = key;
1579
1580	if (pid_child_should_wake(wo, p))
1581		return default_wake_function(wait, mode, sync, key);
1582
1583	return 0;
 
 
 
1584}
1585
1586void __wake_up_parent(struct task_struct *p, struct task_struct *parent)
1587{
1588	__wake_up_sync_key(&parent->signal->wait_chldexit,
1589			   TASK_INTERRUPTIBLE, p);
1590}
1591
1592static bool is_effectively_child(struct wait_opts *wo, bool ptrace,
1593				 struct task_struct *target)
1594{
1595	struct task_struct *parent =
1596		!ptrace ? target->real_parent : target->parent;
1597
1598	return current == parent || (!(wo->wo_flags & __WNOTHREAD) &&
1599				     same_thread_group(current, parent));
1600}
1601
1602/*
1603 * Optimization for waiting on PIDTYPE_PID. No need to iterate through child
1604 * and tracee lists to find the target task.
1605 */
1606static int do_wait_pid(struct wait_opts *wo)
1607{
1608	bool ptrace;
1609	struct task_struct *target;
1610	int retval;
1611
1612	ptrace = false;
1613	target = pid_task(wo->wo_pid, PIDTYPE_TGID);
1614	if (target && is_effectively_child(wo, ptrace, target)) {
1615		retval = wait_consider_task(wo, ptrace, target);
1616		if (retval)
1617			return retval;
1618	}
1619
1620	ptrace = true;
1621	target = pid_task(wo->wo_pid, PIDTYPE_PID);
1622	if (target && target->ptrace &&
1623	    is_effectively_child(wo, ptrace, target)) {
1624		retval = wait_consider_task(wo, ptrace, target);
1625		if (retval)
1626			return retval;
1627	}
1628
1629	return 0;
1630}
1631
1632long __do_wait(struct wait_opts *wo)
1633{
1634	long retval;
1635
 
 
 
 
1636	/*
1637	 * If there is nothing that can match our criteria, just get out.
1638	 * We will clear ->notask_error to zero if we see any child that
1639	 * might later match our criteria, even if we are not able to reap
1640	 * it yet.
1641	 */
1642	wo->notask_error = -ECHILD;
1643	if ((wo->wo_type < PIDTYPE_MAX) &&
1644	   (!wo->wo_pid || !pid_has_task(wo->wo_pid, wo->wo_type)))
1645		goto notask;
1646
 
1647	read_lock(&tasklist_lock);
1648
1649	if (wo->wo_type == PIDTYPE_PID) {
1650		retval = do_wait_pid(wo);
1651		if (retval)
1652			return retval;
1653	} else {
1654		struct task_struct *tsk = current;
1655
1656		do {
1657			retval = do_wait_thread(wo, tsk);
1658			if (retval)
1659				return retval;
1660
1661			retval = ptrace_do_wait(wo, tsk);
1662			if (retval)
1663				return retval;
1664
1665			if (wo->wo_flags & __WNOTHREAD)
1666				break;
1667		} while_each_thread(current, tsk);
1668	}
1669	read_unlock(&tasklist_lock);
1670
1671notask:
1672	retval = wo->notask_error;
1673	if (!retval && !(wo->wo_flags & WNOHANG))
1674		return -ERESTARTSYS;
1675
 
 
 
 
 
 
 
1676	return retval;
1677}
1678
1679static long do_wait(struct wait_opts *wo)
1680{
1681	int retval;
 
1682
1683	trace_sched_process_wait(wo->wo_pid);
 
 
1684
1685	init_waitqueue_func_entry(&wo->child_wait, child_wait_callback);
1686	wo->child_wait.private = current;
1687	add_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1688
1689	do {
1690		set_current_state(TASK_INTERRUPTIBLE);
1691		retval = __do_wait(wo);
1692		if (retval != -ERESTARTSYS)
1693			break;
1694		if (signal_pending(current))
1695			break;
1696		schedule();
1697	} while (1);
1698
1699	__set_current_state(TASK_RUNNING);
1700	remove_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1701	return retval;
1702}
1703
1704int kernel_waitid_prepare(struct wait_opts *wo, int which, pid_t upid,
1705			  struct waitid_info *infop, int options,
1706			  struct rusage *ru)
1707{
1708	unsigned int f_flags = 0;
1709	struct pid *pid = NULL;
1710	enum pid_type type;
 
1711
1712	if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED|
1713			__WNOTHREAD|__WCLONE|__WALL))
1714		return -EINVAL;
1715	if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1716		return -EINVAL;
1717
1718	switch (which) {
1719	case P_ALL:
1720		type = PIDTYPE_MAX;
1721		break;
1722	case P_PID:
1723		type = PIDTYPE_PID;
1724		if (upid <= 0)
1725			return -EINVAL;
1726
1727		pid = find_get_pid(upid);
1728		break;
1729	case P_PGID:
1730		type = PIDTYPE_PGID;
1731		if (upid < 0)
1732			return -EINVAL;
1733
1734		if (upid)
1735			pid = find_get_pid(upid);
1736		else
1737			pid = get_task_pid(current, PIDTYPE_PGID);
1738		break;
1739	case P_PIDFD:
1740		type = PIDTYPE_PID;
1741		if (upid < 0)
1742			return -EINVAL;
1743
1744		pid = pidfd_get_pid(upid, &f_flags);
1745		if (IS_ERR(pid))
1746			return PTR_ERR(pid);
1747
1748		break;
1749	default:
1750		return -EINVAL;
1751	}
1752
1753	wo->wo_type	= type;
1754	wo->wo_pid	= pid;
1755	wo->wo_flags	= options;
1756	wo->wo_info	= infop;
1757	wo->wo_rusage	= ru;
1758	if (f_flags & O_NONBLOCK)
1759		wo->wo_flags |= WNOHANG;
1760
1761	return 0;
1762}
1763
1764static long kernel_waitid(int which, pid_t upid, struct waitid_info *infop,
1765			  int options, struct rusage *ru)
1766{
1767	struct wait_opts wo;
1768	long ret;
1769
1770	ret = kernel_waitid_prepare(&wo, which, upid, infop, options, ru);
1771	if (ret)
1772		return ret;
1773
1774	ret = do_wait(&wo);
1775	if (!ret && !(options & WNOHANG) && (wo.wo_flags & WNOHANG))
1776		ret = -EAGAIN;
1777
1778	put_pid(wo.wo_pid);
1779	return ret;
1780}
1781
1782SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *,
1783		infop, int, options, struct rusage __user *, ru)
1784{
1785	struct rusage r;
1786	struct waitid_info info = {.status = 0};
1787	long err = kernel_waitid(which, upid, &info, options, ru ? &r : NULL);
1788	int signo = 0;
1789
1790	if (err > 0) {
1791		signo = SIGCHLD;
1792		err = 0;
1793		if (ru && copy_to_user(ru, &r, sizeof(struct rusage)))
1794			return -EFAULT;
1795	}
1796	if (!infop)
1797		return err;
1798
1799	if (!user_write_access_begin(infop, sizeof(*infop)))
1800		return -EFAULT;
1801
1802	unsafe_put_user(signo, &infop->si_signo, Efault);
1803	unsafe_put_user(0, &infop->si_errno, Efault);
1804	unsafe_put_user(info.cause, &infop->si_code, Efault);
1805	unsafe_put_user(info.pid, &infop->si_pid, Efault);
1806	unsafe_put_user(info.uid, &infop->si_uid, Efault);
1807	unsafe_put_user(info.status, &infop->si_status, Efault);
1808	user_write_access_end();
1809	return err;
1810Efault:
1811	user_write_access_end();
1812	return -EFAULT;
1813}
1814
1815long kernel_wait4(pid_t upid, int __user *stat_addr, int options,
1816		  struct rusage *ru)
1817{
1818	struct wait_opts wo;
1819	struct pid *pid = NULL;
1820	enum pid_type type;
1821	long ret;
1822
1823	if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1824			__WNOTHREAD|__WCLONE|__WALL))
1825		return -EINVAL;
1826
1827	/* -INT_MIN is not defined */
1828	if (upid == INT_MIN)
1829		return -ESRCH;
1830
1831	if (upid == -1)
1832		type = PIDTYPE_MAX;
1833	else if (upid < 0) {
1834		type = PIDTYPE_PGID;
1835		pid = find_get_pid(-upid);
1836	} else if (upid == 0) {
1837		type = PIDTYPE_PGID;
1838		pid = get_task_pid(current, PIDTYPE_PGID);
1839	} else /* upid > 0 */ {
1840		type = PIDTYPE_PID;
1841		pid = find_get_pid(upid);
1842	}
1843
1844	wo.wo_type	= type;
1845	wo.wo_pid	= pid;
1846	wo.wo_flags	= options | WEXITED;
1847	wo.wo_info	= NULL;
1848	wo.wo_stat	= 0;
1849	wo.wo_rusage	= ru;
1850	ret = do_wait(&wo);
1851	put_pid(pid);
1852	if (ret > 0 && stat_addr && put_user(wo.wo_stat, stat_addr))
1853		ret = -EFAULT;
1854
1855	return ret;
1856}
1857
1858int kernel_wait(pid_t pid, int *stat)
1859{
1860	struct wait_opts wo = {
1861		.wo_type	= PIDTYPE_PID,
1862		.wo_pid		= find_get_pid(pid),
1863		.wo_flags	= WEXITED,
1864	};
1865	int ret;
1866
1867	ret = do_wait(&wo);
1868	if (ret > 0 && wo.wo_stat)
1869		*stat = wo.wo_stat;
1870	put_pid(wo.wo_pid);
1871	return ret;
1872}
1873
1874SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr,
1875		int, options, struct rusage __user *, ru)
1876{
1877	struct rusage r;
1878	long err = kernel_wait4(upid, stat_addr, options, ru ? &r : NULL);
1879
1880	if (err > 0) {
1881		if (ru && copy_to_user(ru, &r, sizeof(struct rusage)))
1882			return -EFAULT;
1883	}
1884	return err;
1885}
1886
1887#ifdef __ARCH_WANT_SYS_WAITPID
1888
1889/*
1890 * sys_waitpid() remains for compatibility. waitpid() should be
1891 * implemented by calling sys_wait4() from libc.a.
1892 */
1893SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options)
1894{
1895	return kernel_wait4(pid, stat_addr, options, NULL);
1896}
1897
1898#endif
1899
1900#ifdef CONFIG_COMPAT
1901COMPAT_SYSCALL_DEFINE4(wait4,
1902	compat_pid_t, pid,
1903	compat_uint_t __user *, stat_addr,
1904	int, options,
1905	struct compat_rusage __user *, ru)
1906{
1907	struct rusage r;
1908	long err = kernel_wait4(pid, stat_addr, options, ru ? &r : NULL);
1909	if (err > 0) {
1910		if (ru && put_compat_rusage(&r, ru))
1911			return -EFAULT;
1912	}
1913	return err;
1914}
1915
1916COMPAT_SYSCALL_DEFINE5(waitid,
1917		int, which, compat_pid_t, pid,
1918		struct compat_siginfo __user *, infop, int, options,
1919		struct compat_rusage __user *, uru)
1920{
1921	struct rusage ru;
1922	struct waitid_info info = {.status = 0};
1923	long err = kernel_waitid(which, pid, &info, options, uru ? &ru : NULL);
1924	int signo = 0;
1925	if (err > 0) {
1926		signo = SIGCHLD;
1927		err = 0;
1928		if (uru) {
1929			/* kernel_waitid() overwrites everything in ru */
1930			if (COMPAT_USE_64BIT_TIME)
1931				err = copy_to_user(uru, &ru, sizeof(ru));
1932			else
1933				err = put_compat_rusage(&ru, uru);
1934			if (err)
1935				return -EFAULT;
1936		}
1937	}
1938
1939	if (!infop)
1940		return err;
1941
1942	if (!user_write_access_begin(infop, sizeof(*infop)))
1943		return -EFAULT;
1944
1945	unsafe_put_user(signo, &infop->si_signo, Efault);
1946	unsafe_put_user(0, &infop->si_errno, Efault);
1947	unsafe_put_user(info.cause, &infop->si_code, Efault);
1948	unsafe_put_user(info.pid, &infop->si_pid, Efault);
1949	unsafe_put_user(info.uid, &infop->si_uid, Efault);
1950	unsafe_put_user(info.status, &infop->si_status, Efault);
1951	user_write_access_end();
1952	return err;
1953Efault:
1954	user_write_access_end();
1955	return -EFAULT;
1956}
1957#endif
1958
1959/*
1960 * This needs to be __function_aligned as GCC implicitly makes any
1961 * implementation of abort() cold and drops alignment specified by
1962 * -falign-functions=N.
1963 *
1964 * See https://gcc.gnu.org/bugzilla/show_bug.cgi?id=88345#c11
1965 */
1966__weak __function_aligned void abort(void)
1967{
1968	BUG();
1969
1970	/* if that doesn't kill us, halt */
1971	panic("Oops failed to kill thread");
1972}
1973EXPORT_SYMBOL(abort);
v5.4
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  linux/kernel/exit.c
   4 *
   5 *  Copyright (C) 1991, 1992  Linus Torvalds
   6 */
   7
   8#include <linux/mm.h>
   9#include <linux/slab.h>
  10#include <linux/sched/autogroup.h>
  11#include <linux/sched/mm.h>
  12#include <linux/sched/stat.h>
  13#include <linux/sched/task.h>
  14#include <linux/sched/task_stack.h>
  15#include <linux/sched/cputime.h>
  16#include <linux/interrupt.h>
  17#include <linux/module.h>
  18#include <linux/capability.h>
  19#include <linux/completion.h>
  20#include <linux/personality.h>
  21#include <linux/tty.h>
  22#include <linux/iocontext.h>
  23#include <linux/key.h>
  24#include <linux/cpu.h>
  25#include <linux/acct.h>
  26#include <linux/tsacct_kern.h>
  27#include <linux/file.h>
  28#include <linux/fdtable.h>
  29#include <linux/freezer.h>
  30#include <linux/binfmts.h>
  31#include <linux/nsproxy.h>
  32#include <linux/pid_namespace.h>
  33#include <linux/ptrace.h>
  34#include <linux/profile.h>
  35#include <linux/mount.h>
  36#include <linux/proc_fs.h>
  37#include <linux/kthread.h>
  38#include <linux/mempolicy.h>
  39#include <linux/taskstats_kern.h>
  40#include <linux/delayacct.h>
  41#include <linux/cgroup.h>
  42#include <linux/syscalls.h>
  43#include <linux/signal.h>
  44#include <linux/posix-timers.h>
  45#include <linux/cn_proc.h>
  46#include <linux/mutex.h>
  47#include <linux/futex.h>
  48#include <linux/pipe_fs_i.h>
  49#include <linux/audit.h> /* for audit_free() */
  50#include <linux/resource.h>
 
  51#include <linux/blkdev.h>
  52#include <linux/task_io_accounting_ops.h>
  53#include <linux/tracehook.h>
  54#include <linux/fs_struct.h>
  55#include <linux/init_task.h>
  56#include <linux/perf_event.h>
  57#include <trace/events/sched.h>
  58#include <linux/hw_breakpoint.h>
  59#include <linux/oom.h>
  60#include <linux/writeback.h>
  61#include <linux/shm.h>
  62#include <linux/kcov.h>
 
  63#include <linux/random.h>
  64#include <linux/rcuwait.h>
  65#include <linux/compat.h>
 
 
 
 
 
 
 
 
  66
  67#include <linux/uaccess.h>
  68#include <asm/unistd.h>
  69#include <asm/pgtable.h>
  70#include <asm/mmu_context.h>
  71
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  72static void __unhash_process(struct task_struct *p, bool group_dead)
  73{
  74	nr_threads--;
  75	detach_pid(p, PIDTYPE_PID);
  76	if (group_dead) {
  77		detach_pid(p, PIDTYPE_TGID);
  78		detach_pid(p, PIDTYPE_PGID);
  79		detach_pid(p, PIDTYPE_SID);
  80
  81		list_del_rcu(&p->tasks);
  82		list_del_init(&p->sibling);
  83		__this_cpu_dec(process_counts);
  84	}
  85	list_del_rcu(&p->thread_group);
  86	list_del_rcu(&p->thread_node);
  87}
  88
  89/*
  90 * This function expects the tasklist_lock write-locked.
  91 */
  92static void __exit_signal(struct task_struct *tsk)
  93{
  94	struct signal_struct *sig = tsk->signal;
  95	bool group_dead = thread_group_leader(tsk);
  96	struct sighand_struct *sighand;
  97	struct tty_struct *uninitialized_var(tty);
  98	u64 utime, stime;
  99
 100	sighand = rcu_dereference_check(tsk->sighand,
 101					lockdep_tasklist_lock_is_held());
 102	spin_lock(&sighand->siglock);
 103
 104#ifdef CONFIG_POSIX_TIMERS
 105	posix_cpu_timers_exit(tsk);
 106	if (group_dead) {
 107		posix_cpu_timers_exit_group(tsk);
 108	} else {
 109		/*
 110		 * This can only happen if the caller is de_thread().
 111		 * FIXME: this is the temporary hack, we should teach
 112		 * posix-cpu-timers to handle this case correctly.
 113		 */
 114		if (unlikely(has_group_leader_pid(tsk)))
 115			posix_cpu_timers_exit_group(tsk);
 116	}
 117#endif
 118
 119	if (group_dead) {
 120		tty = sig->tty;
 121		sig->tty = NULL;
 122	} else {
 123		/*
 124		 * If there is any task waiting for the group exit
 125		 * then notify it:
 126		 */
 127		if (sig->notify_count > 0 && !--sig->notify_count)
 128			wake_up_process(sig->group_exit_task);
 129
 130		if (tsk == sig->curr_target)
 131			sig->curr_target = next_thread(tsk);
 132	}
 133
 134	add_device_randomness((const void*) &tsk->se.sum_exec_runtime,
 135			      sizeof(unsigned long long));
 136
 137	/*
 138	 * Accumulate here the counters for all threads as they die. We could
 139	 * skip the group leader because it is the last user of signal_struct,
 140	 * but we want to avoid the race with thread_group_cputime() which can
 141	 * see the empty ->thread_head list.
 142	 */
 143	task_cputime(tsk, &utime, &stime);
 144	write_seqlock(&sig->stats_lock);
 145	sig->utime += utime;
 146	sig->stime += stime;
 147	sig->gtime += task_gtime(tsk);
 148	sig->min_flt += tsk->min_flt;
 149	sig->maj_flt += tsk->maj_flt;
 150	sig->nvcsw += tsk->nvcsw;
 151	sig->nivcsw += tsk->nivcsw;
 152	sig->inblock += task_io_get_inblock(tsk);
 153	sig->oublock += task_io_get_oublock(tsk);
 154	task_io_accounting_add(&sig->ioac, &tsk->ioac);
 155	sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
 156	sig->nr_threads--;
 157	__unhash_process(tsk, group_dead);
 158	write_sequnlock(&sig->stats_lock);
 159
 160	/*
 161	 * Do this under ->siglock, we can race with another thread
 162	 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
 163	 */
 164	flush_sigqueue(&tsk->pending);
 165	tsk->sighand = NULL;
 166	spin_unlock(&sighand->siglock);
 167
 168	__cleanup_sighand(sighand);
 169	clear_tsk_thread_flag(tsk, TIF_SIGPENDING);
 170	if (group_dead) {
 171		flush_sigqueue(&sig->shared_pending);
 172		tty_kref_put(tty);
 173	}
 174}
 175
 176static void delayed_put_task_struct(struct rcu_head *rhp)
 177{
 178	struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
 179
 
 
 180	perf_event_delayed_put(tsk);
 181	trace_sched_process_free(tsk);
 182	put_task_struct(tsk);
 183}
 184
 185void put_task_struct_rcu_user(struct task_struct *task)
 186{
 187	if (refcount_dec_and_test(&task->rcu_users))
 188		call_rcu(&task->rcu, delayed_put_task_struct);
 189}
 190
 
 
 
 
 191void release_task(struct task_struct *p)
 192{
 193	struct task_struct *leader;
 
 194	int zap_leader;
 195repeat:
 196	/* don't need to get the RCU readlock here - the process is dead and
 197	 * can't be modifying its own credentials. But shut RCU-lockdep up */
 198	rcu_read_lock();
 199	atomic_dec(&__task_cred(p)->user->processes);
 200	rcu_read_unlock();
 201
 202	proc_flush_task(p);
 203	cgroup_release(p);
 204
 205	write_lock_irq(&tasklist_lock);
 206	ptrace_release_task(p);
 
 207	__exit_signal(p);
 208
 209	/*
 210	 * If we are the last non-leader member of the thread
 211	 * group, and the leader is zombie, then notify the
 212	 * group leader's parent process. (if it wants notification.)
 213	 */
 214	zap_leader = 0;
 215	leader = p->group_leader;
 216	if (leader != p && thread_group_empty(leader)
 217			&& leader->exit_state == EXIT_ZOMBIE) {
 218		/*
 219		 * If we were the last child thread and the leader has
 220		 * exited already, and the leader's parent ignores SIGCHLD,
 221		 * then we are the one who should release the leader.
 222		 */
 223		zap_leader = do_notify_parent(leader, leader->exit_signal);
 224		if (zap_leader)
 225			leader->exit_state = EXIT_DEAD;
 226	}
 227
 228	write_unlock_irq(&tasklist_lock);
 
 
 229	release_thread(p);
 230	put_task_struct_rcu_user(p);
 231
 232	p = leader;
 233	if (unlikely(zap_leader))
 234		goto repeat;
 235}
 236
 237void rcuwait_wake_up(struct rcuwait *w)
 238{
 
 239	struct task_struct *task;
 240
 241	rcu_read_lock();
 242
 243	/*
 244	 * Order condition vs @task, such that everything prior to the load
 245	 * of @task is visible. This is the condition as to why the user called
 246	 * rcuwait_trywake() in the first place. Pairs with set_current_state()
 247	 * barrier (A) in rcuwait_wait_event().
 248	 *
 249	 *    WAIT                WAKE
 250	 *    [S] tsk = current	  [S] cond = true
 251	 *        MB (A)	      MB (B)
 252	 *    [L] cond		  [L] tsk
 253	 */
 254	smp_mb(); /* (B) */
 255
 256	task = rcu_dereference(w->task);
 257	if (task)
 258		wake_up_process(task);
 259	rcu_read_unlock();
 
 
 260}
 
 261
 262/*
 263 * Determine if a process group is "orphaned", according to the POSIX
 264 * definition in 2.2.2.52.  Orphaned process groups are not to be affected
 265 * by terminal-generated stop signals.  Newly orphaned process groups are
 266 * to receive a SIGHUP and a SIGCONT.
 267 *
 268 * "I ask you, have you ever known what it is to be an orphan?"
 269 */
 270static int will_become_orphaned_pgrp(struct pid *pgrp,
 271					struct task_struct *ignored_task)
 272{
 273	struct task_struct *p;
 274
 275	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
 276		if ((p == ignored_task) ||
 277		    (p->exit_state && thread_group_empty(p)) ||
 278		    is_global_init(p->real_parent))
 279			continue;
 280
 281		if (task_pgrp(p->real_parent) != pgrp &&
 282		    task_session(p->real_parent) == task_session(p))
 283			return 0;
 284	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
 285
 286	return 1;
 287}
 288
 289int is_current_pgrp_orphaned(void)
 290{
 291	int retval;
 292
 293	read_lock(&tasklist_lock);
 294	retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
 295	read_unlock(&tasklist_lock);
 296
 297	return retval;
 298}
 299
 300static bool has_stopped_jobs(struct pid *pgrp)
 301{
 302	struct task_struct *p;
 303
 304	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
 305		if (p->signal->flags & SIGNAL_STOP_STOPPED)
 306			return true;
 307	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
 308
 309	return false;
 310}
 311
 312/*
 313 * Check to see if any process groups have become orphaned as
 314 * a result of our exiting, and if they have any stopped jobs,
 315 * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
 316 */
 317static void
 318kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
 319{
 320	struct pid *pgrp = task_pgrp(tsk);
 321	struct task_struct *ignored_task = tsk;
 322
 323	if (!parent)
 324		/* exit: our father is in a different pgrp than
 325		 * we are and we were the only connection outside.
 326		 */
 327		parent = tsk->real_parent;
 328	else
 329		/* reparent: our child is in a different pgrp than
 330		 * we are, and it was the only connection outside.
 331		 */
 332		ignored_task = NULL;
 333
 334	if (task_pgrp(parent) != pgrp &&
 335	    task_session(parent) == task_session(tsk) &&
 336	    will_become_orphaned_pgrp(pgrp, ignored_task) &&
 337	    has_stopped_jobs(pgrp)) {
 338		__kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
 339		__kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
 340	}
 341}
 342
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 343#ifdef CONFIG_MEMCG
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 344/*
 345 * A task is exiting.   If it owned this mm, find a new owner for the mm.
 346 */
 347void mm_update_next_owner(struct mm_struct *mm)
 348{
 349	struct task_struct *c, *g, *p = current;
 350
 351retry:
 352	/*
 353	 * If the exiting or execing task is not the owner, it's
 354	 * someone else's problem.
 355	 */
 356	if (mm->owner != p)
 357		return;
 358	/*
 359	 * The current owner is exiting/execing and there are no other
 360	 * candidates.  Do not leave the mm pointing to a possibly
 361	 * freed task structure.
 362	 */
 363	if (atomic_read(&mm->mm_users) <= 1) {
 364		WRITE_ONCE(mm->owner, NULL);
 365		return;
 366	}
 367
 368	read_lock(&tasklist_lock);
 369	/*
 370	 * Search in the children
 371	 */
 372	list_for_each_entry(c, &p->children, sibling) {
 373		if (c->mm == mm)
 374			goto assign_new_owner;
 375	}
 376
 377	/*
 378	 * Search in the siblings
 379	 */
 380	list_for_each_entry(c, &p->real_parent->children, sibling) {
 381		if (c->mm == mm)
 382			goto assign_new_owner;
 383	}
 384
 385	/*
 386	 * Search through everything else, we should not get here often.
 387	 */
 388	for_each_process(g) {
 
 
 389		if (g->flags & PF_KTHREAD)
 390			continue;
 391		for_each_thread(g, c) {
 392			if (c->mm == mm)
 393				goto assign_new_owner;
 394			if (c->mm)
 395				break;
 396		}
 397	}
 398	read_unlock(&tasklist_lock);
 399	/*
 400	 * We found no owner yet mm_users > 1: this implies that we are
 401	 * most likely racing with swapoff (try_to_unuse()) or /proc or
 402	 * ptrace or page migration (get_task_mm()).  Mark owner as NULL.
 403	 */
 404	WRITE_ONCE(mm->owner, NULL);
 
 405	return;
 406
 407assign_new_owner:
 408	BUG_ON(c == p);
 409	get_task_struct(c);
 410	/*
 411	 * The task_lock protects c->mm from changing.
 412	 * We always want mm->owner->mm == mm
 413	 */
 414	task_lock(c);
 415	/*
 416	 * Delay read_unlock() till we have the task_lock()
 417	 * to ensure that c does not slip away underneath us
 418	 */
 419	read_unlock(&tasklist_lock);
 420	if (c->mm != mm) {
 421		task_unlock(c);
 422		put_task_struct(c);
 423		goto retry;
 424	}
 425	WRITE_ONCE(mm->owner, c);
 426	task_unlock(c);
 427	put_task_struct(c);
 428}
 429#endif /* CONFIG_MEMCG */
 430
 431/*
 432 * Turn us into a lazy TLB process if we
 433 * aren't already..
 434 */
 435static void exit_mm(void)
 436{
 437	struct mm_struct *mm = current->mm;
 438	struct core_state *core_state;
 439
 440	mm_release(current, mm);
 441	if (!mm)
 442		return;
 443	sync_mm_rss(mm);
 444	/*
 445	 * Serialize with any possible pending coredump.
 446	 * We must hold mmap_sem around checking core_state
 447	 * and clearing tsk->mm.  The core-inducing thread
 448	 * will increment ->nr_threads for each thread in the
 449	 * group with ->mm != NULL.
 450	 */
 451	down_read(&mm->mmap_sem);
 452	core_state = mm->core_state;
 453	if (core_state) {
 454		struct core_thread self;
 455
 456		up_read(&mm->mmap_sem);
 457
 458		self.task = current;
 459		self.next = xchg(&core_state->dumper.next, &self);
 460		/*
 461		 * Implies mb(), the result of xchg() must be visible
 462		 * to core_state->dumper.
 463		 */
 464		if (atomic_dec_and_test(&core_state->nr_threads))
 465			complete(&core_state->startup);
 466
 467		for (;;) {
 468			set_current_state(TASK_UNINTERRUPTIBLE);
 469			if (!self.task) /* see coredump_finish() */
 470				break;
 471			freezable_schedule();
 472		}
 473		__set_current_state(TASK_RUNNING);
 474		down_read(&mm->mmap_sem);
 475	}
 476	mmgrab(mm);
 477	BUG_ON(mm != current->active_mm);
 478	/* more a memory barrier than a real lock */
 479	task_lock(current);
 
 
 
 
 
 
 
 
 
 
 
 
 480	current->mm = NULL;
 481	up_read(&mm->mmap_sem);
 482	enter_lazy_tlb(mm, current);
 
 483	task_unlock(current);
 
 484	mm_update_next_owner(mm);
 485	mmput(mm);
 486	if (test_thread_flag(TIF_MEMDIE))
 487		exit_oom_victim();
 488}
 489
 490static struct task_struct *find_alive_thread(struct task_struct *p)
 491{
 492	struct task_struct *t;
 493
 494	for_each_thread(p, t) {
 495		if (!(t->flags & PF_EXITING))
 496			return t;
 497	}
 498	return NULL;
 499}
 500
 501static struct task_struct *find_child_reaper(struct task_struct *father,
 502						struct list_head *dead)
 503	__releases(&tasklist_lock)
 504	__acquires(&tasklist_lock)
 505{
 506	struct pid_namespace *pid_ns = task_active_pid_ns(father);
 507	struct task_struct *reaper = pid_ns->child_reaper;
 508	struct task_struct *p, *n;
 509
 510	if (likely(reaper != father))
 511		return reaper;
 512
 513	reaper = find_alive_thread(father);
 514	if (reaper) {
 515		pid_ns->child_reaper = reaper;
 516		return reaper;
 517	}
 518
 519	write_unlock_irq(&tasklist_lock);
 520	if (unlikely(pid_ns == &init_pid_ns)) {
 521		panic("Attempted to kill init! exitcode=0x%08x\n",
 522			father->signal->group_exit_code ?: father->exit_code);
 523	}
 524
 525	list_for_each_entry_safe(p, n, dead, ptrace_entry) {
 526		list_del_init(&p->ptrace_entry);
 527		release_task(p);
 528	}
 529
 530	zap_pid_ns_processes(pid_ns);
 531	write_lock_irq(&tasklist_lock);
 532
 533	return father;
 534}
 535
 536/*
 537 * When we die, we re-parent all our children, and try to:
 538 * 1. give them to another thread in our thread group, if such a member exists
 539 * 2. give it to the first ancestor process which prctl'd itself as a
 540 *    child_subreaper for its children (like a service manager)
 541 * 3. give it to the init process (PID 1) in our pid namespace
 542 */
 543static struct task_struct *find_new_reaper(struct task_struct *father,
 544					   struct task_struct *child_reaper)
 545{
 546	struct task_struct *thread, *reaper;
 547
 548	thread = find_alive_thread(father);
 549	if (thread)
 550		return thread;
 551
 552	if (father->signal->has_child_subreaper) {
 553		unsigned int ns_level = task_pid(father)->level;
 554		/*
 555		 * Find the first ->is_child_subreaper ancestor in our pid_ns.
 556		 * We can't check reaper != child_reaper to ensure we do not
 557		 * cross the namespaces, the exiting parent could be injected
 558		 * by setns() + fork().
 559		 * We check pid->level, this is slightly more efficient than
 560		 * task_active_pid_ns(reaper) != task_active_pid_ns(father).
 561		 */
 562		for (reaper = father->real_parent;
 563		     task_pid(reaper)->level == ns_level;
 564		     reaper = reaper->real_parent) {
 565			if (reaper == &init_task)
 566				break;
 567			if (!reaper->signal->is_child_subreaper)
 568				continue;
 569			thread = find_alive_thread(reaper);
 570			if (thread)
 571				return thread;
 572		}
 573	}
 574
 575	return child_reaper;
 576}
 577
 578/*
 579* Any that need to be release_task'd are put on the @dead list.
 580 */
 581static void reparent_leader(struct task_struct *father, struct task_struct *p,
 582				struct list_head *dead)
 583{
 584	if (unlikely(p->exit_state == EXIT_DEAD))
 585		return;
 586
 587	/* We don't want people slaying init. */
 588	p->exit_signal = SIGCHLD;
 589
 590	/* If it has exited notify the new parent about this child's death. */
 591	if (!p->ptrace &&
 592	    p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) {
 593		if (do_notify_parent(p, p->exit_signal)) {
 594			p->exit_state = EXIT_DEAD;
 595			list_add(&p->ptrace_entry, dead);
 596		}
 597	}
 598
 599	kill_orphaned_pgrp(p, father);
 600}
 601
 602/*
 603 * This does two things:
 604 *
 605 * A.  Make init inherit all the child processes
 606 * B.  Check to see if any process groups have become orphaned
 607 *	as a result of our exiting, and if they have any stopped
 608 *	jobs, send them a SIGHUP and then a SIGCONT.  (POSIX 3.2.2.2)
 609 */
 610static void forget_original_parent(struct task_struct *father,
 611					struct list_head *dead)
 612{
 613	struct task_struct *p, *t, *reaper;
 614
 615	if (unlikely(!list_empty(&father->ptraced)))
 616		exit_ptrace(father, dead);
 617
 618	/* Can drop and reacquire tasklist_lock */
 619	reaper = find_child_reaper(father, dead);
 620	if (list_empty(&father->children))
 621		return;
 622
 623	reaper = find_new_reaper(father, reaper);
 624	list_for_each_entry(p, &father->children, sibling) {
 625		for_each_thread(p, t) {
 626			t->real_parent = reaper;
 627			BUG_ON((!t->ptrace) != (t->parent == father));
 628			if (likely(!t->ptrace))
 629				t->parent = t->real_parent;
 630			if (t->pdeath_signal)
 631				group_send_sig_info(t->pdeath_signal,
 632						    SEND_SIG_NOINFO, t,
 633						    PIDTYPE_TGID);
 634		}
 635		/*
 636		 * If this is a threaded reparent there is no need to
 637		 * notify anyone anything has happened.
 638		 */
 639		if (!same_thread_group(reaper, father))
 640			reparent_leader(father, p, dead);
 641	}
 642	list_splice_tail_init(&father->children, &reaper->children);
 643}
 644
 645/*
 646 * Send signals to all our closest relatives so that they know
 647 * to properly mourn us..
 648 */
 649static void exit_notify(struct task_struct *tsk, int group_dead)
 650{
 651	bool autoreap;
 652	struct task_struct *p, *n;
 653	LIST_HEAD(dead);
 654
 655	write_lock_irq(&tasklist_lock);
 656	forget_original_parent(tsk, &dead);
 657
 658	if (group_dead)
 659		kill_orphaned_pgrp(tsk->group_leader, NULL);
 660
 661	tsk->exit_state = EXIT_ZOMBIE;
 
 
 
 
 
 
 
 662	if (unlikely(tsk->ptrace)) {
 663		int sig = thread_group_leader(tsk) &&
 664				thread_group_empty(tsk) &&
 665				!ptrace_reparented(tsk) ?
 666			tsk->exit_signal : SIGCHLD;
 667		autoreap = do_notify_parent(tsk, sig);
 668	} else if (thread_group_leader(tsk)) {
 669		autoreap = thread_group_empty(tsk) &&
 670			do_notify_parent(tsk, tsk->exit_signal);
 671	} else {
 672		autoreap = true;
 673	}
 674
 675	if (autoreap) {
 676		tsk->exit_state = EXIT_DEAD;
 677		list_add(&tsk->ptrace_entry, &dead);
 678	}
 679
 680	/* mt-exec, de_thread() is waiting for group leader */
 681	if (unlikely(tsk->signal->notify_count < 0))
 682		wake_up_process(tsk->signal->group_exit_task);
 683	write_unlock_irq(&tasklist_lock);
 684
 685	list_for_each_entry_safe(p, n, &dead, ptrace_entry) {
 686		list_del_init(&p->ptrace_entry);
 687		release_task(p);
 688	}
 689}
 690
 691#ifdef CONFIG_DEBUG_STACK_USAGE
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 692static void check_stack_usage(void)
 693{
 694	static DEFINE_SPINLOCK(low_water_lock);
 695	static int lowest_to_date = THREAD_SIZE;
 696	unsigned long free;
 697
 698	free = stack_not_used(current);
 
 699
 700	if (free >= lowest_to_date)
 701		return;
 702
 703	spin_lock(&low_water_lock);
 704	if (free < lowest_to_date) {
 705		pr_info("%s (%d) used greatest stack depth: %lu bytes left\n",
 706			current->comm, task_pid_nr(current), free);
 707		lowest_to_date = free;
 708	}
 709	spin_unlock(&low_water_lock);
 710}
 711#else
 712static inline void check_stack_usage(void) {}
 713#endif
 714
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 715void __noreturn do_exit(long code)
 716{
 717	struct task_struct *tsk = current;
 718	int group_dead;
 719
 720	profile_task_exit(tsk);
 721	kcov_task_exit(tsk);
 722
 723	WARN_ON(blk_needs_flush_plug(tsk));
 724
 725	if (unlikely(in_interrupt()))
 726		panic("Aiee, killing interrupt handler!");
 727	if (unlikely(!tsk->pid))
 728		panic("Attempted to kill the idle task!");
 729
 730	/*
 731	 * If do_exit is called because this processes oopsed, it's possible
 732	 * that get_fs() was left as KERNEL_DS, so reset it to USER_DS before
 733	 * continuing. Amongst other possible reasons, this is to prevent
 734	 * mm_release()->clear_child_tid() from writing to a user-controlled
 735	 * kernel address.
 736	 */
 737	set_fs(USER_DS);
 738
 
 739	ptrace_event(PTRACE_EVENT_EXIT, code);
 
 740
 741	validate_creds_for_do_exit(tsk);
 742
 743	/*
 744	 * We're taking recursive faults here in do_exit. Safest is to just
 745	 * leave this task alone and wait for reboot.
 746	 */
 747	if (unlikely(tsk->flags & PF_EXITING)) {
 748		pr_alert("Fixing recursive fault but reboot is needed!\n");
 749		/*
 750		 * We can do this unlocked here. The futex code uses
 751		 * this flag just to verify whether the pi state
 752		 * cleanup has been done or not. In the worst case it
 753		 * loops once more. We pretend that the cleanup was
 754		 * done as there is no way to return. Either the
 755		 * OWNER_DIED bit is set by now or we push the blocked
 756		 * task into the wait for ever nirwana as well.
 757		 */
 758		tsk->flags |= PF_EXITPIDONE;
 759		set_current_state(TASK_UNINTERRUPTIBLE);
 760		schedule();
 761	}
 762
 763	exit_signals(tsk);  /* sets PF_EXITING */
 764	/*
 765	 * Ensure that all new tsk->pi_lock acquisitions must observe
 766	 * PF_EXITING. Serializes against futex.c:attach_to_pi_owner().
 767	 */
 768	smp_mb();
 769	/*
 770	 * Ensure that we must observe the pi_state in exit_mm() ->
 771	 * mm_release() -> exit_pi_state_list().
 772	 */
 773	raw_spin_lock_irq(&tsk->pi_lock);
 774	raw_spin_unlock_irq(&tsk->pi_lock);
 775
 776	if (unlikely(in_atomic())) {
 777		pr_info("note: %s[%d] exited with preempt_count %d\n",
 778			current->comm, task_pid_nr(current),
 779			preempt_count());
 780		preempt_count_set(PREEMPT_ENABLED);
 781	}
 782
 783	/* sync mm's RSS info before statistics gathering */
 784	if (tsk->mm)
 785		sync_mm_rss(tsk->mm);
 786	acct_update_integrals(tsk);
 787	group_dead = atomic_dec_and_test(&tsk->signal->live);
 788	if (group_dead) {
 
 
 
 
 
 
 
 
 789#ifdef CONFIG_POSIX_TIMERS
 790		hrtimer_cancel(&tsk->signal->real_timer);
 791		exit_itimers(tsk->signal);
 792#endif
 793		if (tsk->mm)
 794			setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm);
 795	}
 796	acct_collect(code, group_dead);
 797	if (group_dead)
 798		tty_audit_exit();
 799	audit_free(tsk);
 800
 801	tsk->exit_code = code;
 802	taskstats_exit(tsk, group_dead);
 803
 804	exit_mm();
 805
 806	if (group_dead)
 807		acct_process();
 808	trace_sched_process_exit(tsk);
 809
 810	exit_sem(tsk);
 811	exit_shm(tsk);
 812	exit_files(tsk);
 813	exit_fs(tsk);
 814	if (group_dead)
 815		disassociate_ctty(1);
 816	exit_task_namespaces(tsk);
 817	exit_task_work(tsk);
 818	exit_thread(tsk);
 819	exit_umh(tsk);
 820
 821	/*
 822	 * Flush inherited counters to the parent - before the parent
 823	 * gets woken up by child-exit notifications.
 824	 *
 825	 * because of cgroup mode, must be called before cgroup_exit()
 826	 */
 827	perf_event_exit_task(tsk);
 828
 829	sched_autogroup_exit_task(tsk);
 830	cgroup_exit(tsk);
 831
 832	/*
 833	 * FIXME: do that only when needed, using sched_exit tracepoint
 834	 */
 835	flush_ptrace_hw_breakpoint(tsk);
 836
 837	exit_tasks_rcu_start();
 838	exit_notify(tsk, group_dead);
 839	proc_exit_connector(tsk);
 840	mpol_put_task_policy(tsk);
 841#ifdef CONFIG_FUTEX
 842	if (unlikely(current->pi_state_cache))
 843		kfree(current->pi_state_cache);
 844#endif
 845	/*
 846	 * Make sure we are holding no locks:
 847	 */
 848	debug_check_no_locks_held();
 849	/*
 850	 * We can do this unlocked here. The futex code uses this flag
 851	 * just to verify whether the pi state cleanup has been done
 852	 * or not. In the worst case it loops once more.
 853	 */
 854	tsk->flags |= PF_EXITPIDONE;
 855
 856	if (tsk->io_context)
 857		exit_io_context(tsk);
 858
 859	if (tsk->splice_pipe)
 860		free_pipe_info(tsk->splice_pipe);
 861
 862	if (tsk->task_frag.page)
 863		put_page(tsk->task_frag.page);
 864
 865	validate_creds_for_do_exit(tsk);
 866
 867	check_stack_usage();
 868	preempt_disable();
 869	if (tsk->nr_dirtied)
 870		__this_cpu_add(dirty_throttle_leaks, tsk->nr_dirtied);
 871	exit_rcu();
 872	exit_tasks_rcu_finish();
 873
 874	lockdep_free_task(tsk);
 875	do_task_dead();
 876}
 877EXPORT_SYMBOL_GPL(do_exit);
 878
 879void complete_and_exit(struct completion *comp, long code)
 880{
 881	if (comp)
 882		complete(comp);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 883
 884	do_exit(code);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 885}
 886EXPORT_SYMBOL(complete_and_exit);
 887
 888SYSCALL_DEFINE1(exit, int, error_code)
 889{
 890	do_exit((error_code&0xff)<<8);
 891}
 892
 893/*
 894 * Take down every thread in the group.  This is called by fatal signals
 895 * as well as by sys_exit_group (below).
 896 */
 897void
 898do_group_exit(int exit_code)
 899{
 900	struct signal_struct *sig = current->signal;
 901
 902	BUG_ON(exit_code & 0x80); /* core dumps don't get here */
 903
 904	if (signal_group_exit(sig))
 905		exit_code = sig->group_exit_code;
 906	else if (!thread_group_empty(current)) {
 
 
 907		struct sighand_struct *const sighand = current->sighand;
 908
 909		spin_lock_irq(&sighand->siglock);
 910		if (signal_group_exit(sig))
 911			/* Another thread got here before we took the lock.  */
 912			exit_code = sig->group_exit_code;
 
 
 913		else {
 914			sig->group_exit_code = exit_code;
 915			sig->flags = SIGNAL_GROUP_EXIT;
 916			zap_other_threads(current);
 917		}
 918		spin_unlock_irq(&sighand->siglock);
 919	}
 920
 921	do_exit(exit_code);
 922	/* NOTREACHED */
 923}
 924
 925/*
 926 * this kills every thread in the thread group. Note that any externally
 927 * wait4()-ing process will get the correct exit code - even if this
 928 * thread is not the thread group leader.
 929 */
 930SYSCALL_DEFINE1(exit_group, int, error_code)
 931{
 932	do_group_exit((error_code & 0xff) << 8);
 933	/* NOTREACHED */
 934	return 0;
 935}
 936
 937struct waitid_info {
 938	pid_t pid;
 939	uid_t uid;
 940	int status;
 941	int cause;
 942};
 943
 944struct wait_opts {
 945	enum pid_type		wo_type;
 946	int			wo_flags;
 947	struct pid		*wo_pid;
 948
 949	struct waitid_info	*wo_info;
 950	int			wo_stat;
 951	struct rusage		*wo_rusage;
 952
 953	wait_queue_entry_t		child_wait;
 954	int			notask_error;
 955};
 956
 957static int eligible_pid(struct wait_opts *wo, struct task_struct *p)
 958{
 959	return	wo->wo_type == PIDTYPE_MAX ||
 960		task_pid_type(p, wo->wo_type) == wo->wo_pid;
 961}
 962
 963static int
 964eligible_child(struct wait_opts *wo, bool ptrace, struct task_struct *p)
 965{
 966	if (!eligible_pid(wo, p))
 967		return 0;
 968
 969	/*
 970	 * Wait for all children (clone and not) if __WALL is set or
 971	 * if it is traced by us.
 972	 */
 973	if (ptrace || (wo->wo_flags & __WALL))
 974		return 1;
 975
 976	/*
 977	 * Otherwise, wait for clone children *only* if __WCLONE is set;
 978	 * otherwise, wait for non-clone children *only*.
 979	 *
 980	 * Note: a "clone" child here is one that reports to its parent
 981	 * using a signal other than SIGCHLD, or a non-leader thread which
 982	 * we can only see if it is traced by us.
 983	 */
 984	if ((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE))
 985		return 0;
 986
 987	return 1;
 988}
 989
 990/*
 991 * Handle sys_wait4 work for one task in state EXIT_ZOMBIE.  We hold
 992 * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
 993 * the lock and this task is uninteresting.  If we return nonzero, we have
 994 * released the lock and the system call should return.
 995 */
 996static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p)
 997{
 998	int state, status;
 999	pid_t pid = task_pid_vnr(p);
1000	uid_t uid = from_kuid_munged(current_user_ns(), task_uid(p));
1001	struct waitid_info *infop;
1002
1003	if (!likely(wo->wo_flags & WEXITED))
1004		return 0;
1005
1006	if (unlikely(wo->wo_flags & WNOWAIT)) {
1007		status = p->exit_code;
 
1008		get_task_struct(p);
1009		read_unlock(&tasklist_lock);
1010		sched_annotate_sleep();
1011		if (wo->wo_rusage)
1012			getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1013		put_task_struct(p);
1014		goto out_info;
1015	}
1016	/*
1017	 * Move the task's state to DEAD/TRACE, only one thread can do this.
1018	 */
1019	state = (ptrace_reparented(p) && thread_group_leader(p)) ?
1020		EXIT_TRACE : EXIT_DEAD;
1021	if (cmpxchg(&p->exit_state, EXIT_ZOMBIE, state) != EXIT_ZOMBIE)
1022		return 0;
1023	/*
1024	 * We own this thread, nobody else can reap it.
1025	 */
1026	read_unlock(&tasklist_lock);
1027	sched_annotate_sleep();
1028
1029	/*
1030	 * Check thread_group_leader() to exclude the traced sub-threads.
1031	 */
1032	if (state == EXIT_DEAD && thread_group_leader(p)) {
1033		struct signal_struct *sig = p->signal;
1034		struct signal_struct *psig = current->signal;
1035		unsigned long maxrss;
1036		u64 tgutime, tgstime;
1037
1038		/*
1039		 * The resource counters for the group leader are in its
1040		 * own task_struct.  Those for dead threads in the group
1041		 * are in its signal_struct, as are those for the child
1042		 * processes it has previously reaped.  All these
1043		 * accumulate in the parent's signal_struct c* fields.
1044		 *
1045		 * We don't bother to take a lock here to protect these
1046		 * p->signal fields because the whole thread group is dead
1047		 * and nobody can change them.
1048		 *
1049		 * psig->stats_lock also protects us from our sub-theads
1050		 * which can reap other children at the same time. Until
1051		 * we change k_getrusage()-like users to rely on this lock
1052		 * we have to take ->siglock as well.
1053		 *
1054		 * We use thread_group_cputime_adjusted() to get times for
1055		 * the thread group, which consolidates times for all threads
1056		 * in the group including the group leader.
1057		 */
1058		thread_group_cputime_adjusted(p, &tgutime, &tgstime);
1059		spin_lock_irq(&current->sighand->siglock);
1060		write_seqlock(&psig->stats_lock);
1061		psig->cutime += tgutime + sig->cutime;
1062		psig->cstime += tgstime + sig->cstime;
1063		psig->cgtime += task_gtime(p) + sig->gtime + sig->cgtime;
1064		psig->cmin_flt +=
1065			p->min_flt + sig->min_flt + sig->cmin_flt;
1066		psig->cmaj_flt +=
1067			p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1068		psig->cnvcsw +=
1069			p->nvcsw + sig->nvcsw + sig->cnvcsw;
1070		psig->cnivcsw +=
1071			p->nivcsw + sig->nivcsw + sig->cnivcsw;
1072		psig->cinblock +=
1073			task_io_get_inblock(p) +
1074			sig->inblock + sig->cinblock;
1075		psig->coublock +=
1076			task_io_get_oublock(p) +
1077			sig->oublock + sig->coublock;
1078		maxrss = max(sig->maxrss, sig->cmaxrss);
1079		if (psig->cmaxrss < maxrss)
1080			psig->cmaxrss = maxrss;
1081		task_io_accounting_add(&psig->ioac, &p->ioac);
1082		task_io_accounting_add(&psig->ioac, &sig->ioac);
1083		write_sequnlock(&psig->stats_lock);
1084		spin_unlock_irq(&current->sighand->siglock);
1085	}
1086
1087	if (wo->wo_rusage)
1088		getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1089	status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1090		? p->signal->group_exit_code : p->exit_code;
1091	wo->wo_stat = status;
1092
1093	if (state == EXIT_TRACE) {
1094		write_lock_irq(&tasklist_lock);
1095		/* We dropped tasklist, ptracer could die and untrace */
1096		ptrace_unlink(p);
1097
1098		/* If parent wants a zombie, don't release it now */
1099		state = EXIT_ZOMBIE;
1100		if (do_notify_parent(p, p->exit_signal))
1101			state = EXIT_DEAD;
1102		p->exit_state = state;
1103		write_unlock_irq(&tasklist_lock);
1104	}
1105	if (state == EXIT_DEAD)
1106		release_task(p);
1107
1108out_info:
1109	infop = wo->wo_info;
1110	if (infop) {
1111		if ((status & 0x7f) == 0) {
1112			infop->cause = CLD_EXITED;
1113			infop->status = status >> 8;
1114		} else {
1115			infop->cause = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1116			infop->status = status & 0x7f;
1117		}
1118		infop->pid = pid;
1119		infop->uid = uid;
1120	}
1121
1122	return pid;
1123}
1124
1125static int *task_stopped_code(struct task_struct *p, bool ptrace)
1126{
1127	if (ptrace) {
1128		if (task_is_traced(p) && !(p->jobctl & JOBCTL_LISTENING))
1129			return &p->exit_code;
1130	} else {
1131		if (p->signal->flags & SIGNAL_STOP_STOPPED)
1132			return &p->signal->group_exit_code;
1133	}
1134	return NULL;
1135}
1136
1137/**
1138 * wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED
1139 * @wo: wait options
1140 * @ptrace: is the wait for ptrace
1141 * @p: task to wait for
1142 *
1143 * Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED.
1144 *
1145 * CONTEXT:
1146 * read_lock(&tasklist_lock), which is released if return value is
1147 * non-zero.  Also, grabs and releases @p->sighand->siglock.
1148 *
1149 * RETURNS:
1150 * 0 if wait condition didn't exist and search for other wait conditions
1151 * should continue.  Non-zero return, -errno on failure and @p's pid on
1152 * success, implies that tasklist_lock is released and wait condition
1153 * search should terminate.
1154 */
1155static int wait_task_stopped(struct wait_opts *wo,
1156				int ptrace, struct task_struct *p)
1157{
1158	struct waitid_info *infop;
1159	int exit_code, *p_code, why;
1160	uid_t uid = 0; /* unneeded, required by compiler */
1161	pid_t pid;
1162
1163	/*
1164	 * Traditionally we see ptrace'd stopped tasks regardless of options.
1165	 */
1166	if (!ptrace && !(wo->wo_flags & WUNTRACED))
1167		return 0;
1168
1169	if (!task_stopped_code(p, ptrace))
1170		return 0;
1171
1172	exit_code = 0;
1173	spin_lock_irq(&p->sighand->siglock);
1174
1175	p_code = task_stopped_code(p, ptrace);
1176	if (unlikely(!p_code))
1177		goto unlock_sig;
1178
1179	exit_code = *p_code;
1180	if (!exit_code)
1181		goto unlock_sig;
1182
1183	if (!unlikely(wo->wo_flags & WNOWAIT))
1184		*p_code = 0;
1185
1186	uid = from_kuid_munged(current_user_ns(), task_uid(p));
1187unlock_sig:
1188	spin_unlock_irq(&p->sighand->siglock);
1189	if (!exit_code)
1190		return 0;
1191
1192	/*
1193	 * Now we are pretty sure this task is interesting.
1194	 * Make sure it doesn't get reaped out from under us while we
1195	 * give up the lock and then examine it below.  We don't want to
1196	 * keep holding onto the tasklist_lock while we call getrusage and
1197	 * possibly take page faults for user memory.
1198	 */
1199	get_task_struct(p);
1200	pid = task_pid_vnr(p);
1201	why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
1202	read_unlock(&tasklist_lock);
1203	sched_annotate_sleep();
1204	if (wo->wo_rusage)
1205		getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1206	put_task_struct(p);
1207
1208	if (likely(!(wo->wo_flags & WNOWAIT)))
1209		wo->wo_stat = (exit_code << 8) | 0x7f;
1210
1211	infop = wo->wo_info;
1212	if (infop) {
1213		infop->cause = why;
1214		infop->status = exit_code;
1215		infop->pid = pid;
1216		infop->uid = uid;
1217	}
1218	return pid;
1219}
1220
1221/*
1222 * Handle do_wait work for one task in a live, non-stopped state.
1223 * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1224 * the lock and this task is uninteresting.  If we return nonzero, we have
1225 * released the lock and the system call should return.
1226 */
1227static int wait_task_continued(struct wait_opts *wo, struct task_struct *p)
1228{
1229	struct waitid_info *infop;
1230	pid_t pid;
1231	uid_t uid;
1232
1233	if (!unlikely(wo->wo_flags & WCONTINUED))
1234		return 0;
1235
1236	if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1237		return 0;
1238
1239	spin_lock_irq(&p->sighand->siglock);
1240	/* Re-check with the lock held.  */
1241	if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1242		spin_unlock_irq(&p->sighand->siglock);
1243		return 0;
1244	}
1245	if (!unlikely(wo->wo_flags & WNOWAIT))
1246		p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1247	uid = from_kuid_munged(current_user_ns(), task_uid(p));
1248	spin_unlock_irq(&p->sighand->siglock);
1249
1250	pid = task_pid_vnr(p);
1251	get_task_struct(p);
1252	read_unlock(&tasklist_lock);
1253	sched_annotate_sleep();
1254	if (wo->wo_rusage)
1255		getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1256	put_task_struct(p);
1257
1258	infop = wo->wo_info;
1259	if (!infop) {
1260		wo->wo_stat = 0xffff;
1261	} else {
1262		infop->cause = CLD_CONTINUED;
1263		infop->pid = pid;
1264		infop->uid = uid;
1265		infop->status = SIGCONT;
1266	}
1267	return pid;
1268}
1269
1270/*
1271 * Consider @p for a wait by @parent.
1272 *
1273 * -ECHILD should be in ->notask_error before the first call.
1274 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1275 * Returns zero if the search for a child should continue;
1276 * then ->notask_error is 0 if @p is an eligible child,
1277 * or still -ECHILD.
1278 */
1279static int wait_consider_task(struct wait_opts *wo, int ptrace,
1280				struct task_struct *p)
1281{
1282	/*
1283	 * We can race with wait_task_zombie() from another thread.
1284	 * Ensure that EXIT_ZOMBIE -> EXIT_DEAD/EXIT_TRACE transition
1285	 * can't confuse the checks below.
1286	 */
1287	int exit_state = READ_ONCE(p->exit_state);
1288	int ret;
1289
1290	if (unlikely(exit_state == EXIT_DEAD))
1291		return 0;
1292
1293	ret = eligible_child(wo, ptrace, p);
1294	if (!ret)
1295		return ret;
1296
1297	if (unlikely(exit_state == EXIT_TRACE)) {
1298		/*
1299		 * ptrace == 0 means we are the natural parent. In this case
1300		 * we should clear notask_error, debugger will notify us.
1301		 */
1302		if (likely(!ptrace))
1303			wo->notask_error = 0;
1304		return 0;
1305	}
1306
1307	if (likely(!ptrace) && unlikely(p->ptrace)) {
1308		/*
1309		 * If it is traced by its real parent's group, just pretend
1310		 * the caller is ptrace_do_wait() and reap this child if it
1311		 * is zombie.
1312		 *
1313		 * This also hides group stop state from real parent; otherwise
1314		 * a single stop can be reported twice as group and ptrace stop.
1315		 * If a ptracer wants to distinguish these two events for its
1316		 * own children it should create a separate process which takes
1317		 * the role of real parent.
1318		 */
1319		if (!ptrace_reparented(p))
1320			ptrace = 1;
1321	}
1322
1323	/* slay zombie? */
1324	if (exit_state == EXIT_ZOMBIE) {
1325		/* we don't reap group leaders with subthreads */
1326		if (!delay_group_leader(p)) {
1327			/*
1328			 * A zombie ptracee is only visible to its ptracer.
1329			 * Notification and reaping will be cascaded to the
1330			 * real parent when the ptracer detaches.
1331			 */
1332			if (unlikely(ptrace) || likely(!p->ptrace))
1333				return wait_task_zombie(wo, p);
1334		}
1335
1336		/*
1337		 * Allow access to stopped/continued state via zombie by
1338		 * falling through.  Clearing of notask_error is complex.
1339		 *
1340		 * When !@ptrace:
1341		 *
1342		 * If WEXITED is set, notask_error should naturally be
1343		 * cleared.  If not, subset of WSTOPPED|WCONTINUED is set,
1344		 * so, if there are live subthreads, there are events to
1345		 * wait for.  If all subthreads are dead, it's still safe
1346		 * to clear - this function will be called again in finite
1347		 * amount time once all the subthreads are released and
1348		 * will then return without clearing.
1349		 *
1350		 * When @ptrace:
1351		 *
1352		 * Stopped state is per-task and thus can't change once the
1353		 * target task dies.  Only continued and exited can happen.
1354		 * Clear notask_error if WCONTINUED | WEXITED.
1355		 */
1356		if (likely(!ptrace) || (wo->wo_flags & (WCONTINUED | WEXITED)))
1357			wo->notask_error = 0;
1358	} else {
1359		/*
1360		 * @p is alive and it's gonna stop, continue or exit, so
1361		 * there always is something to wait for.
1362		 */
1363		wo->notask_error = 0;
1364	}
1365
1366	/*
1367	 * Wait for stopped.  Depending on @ptrace, different stopped state
1368	 * is used and the two don't interact with each other.
1369	 */
1370	ret = wait_task_stopped(wo, ptrace, p);
1371	if (ret)
1372		return ret;
1373
1374	/*
1375	 * Wait for continued.  There's only one continued state and the
1376	 * ptracer can consume it which can confuse the real parent.  Don't
1377	 * use WCONTINUED from ptracer.  You don't need or want it.
1378	 */
1379	return wait_task_continued(wo, p);
1380}
1381
1382/*
1383 * Do the work of do_wait() for one thread in the group, @tsk.
1384 *
1385 * -ECHILD should be in ->notask_error before the first call.
1386 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1387 * Returns zero if the search for a child should continue; then
1388 * ->notask_error is 0 if there were any eligible children,
1389 * or still -ECHILD.
1390 */
1391static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk)
1392{
1393	struct task_struct *p;
1394
1395	list_for_each_entry(p, &tsk->children, sibling) {
1396		int ret = wait_consider_task(wo, 0, p);
1397
1398		if (ret)
1399			return ret;
1400	}
1401
1402	return 0;
1403}
1404
1405static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk)
1406{
1407	struct task_struct *p;
1408
1409	list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
1410		int ret = wait_consider_task(wo, 1, p);
1411
1412		if (ret)
1413			return ret;
1414	}
1415
1416	return 0;
1417}
1418
 
 
 
 
 
 
 
 
 
 
 
1419static int child_wait_callback(wait_queue_entry_t *wait, unsigned mode,
1420				int sync, void *key)
1421{
1422	struct wait_opts *wo = container_of(wait, struct wait_opts,
1423						child_wait);
1424	struct task_struct *p = key;
1425
1426	if (!eligible_pid(wo, p))
1427		return 0;
1428
1429	if ((wo->wo_flags & __WNOTHREAD) && wait->private != p->parent)
1430		return 0;
1431
1432	return default_wake_function(wait, mode, sync, key);
1433}
1434
1435void __wake_up_parent(struct task_struct *p, struct task_struct *parent)
1436{
1437	__wake_up_sync_key(&parent->signal->wait_chldexit,
1438				TASK_INTERRUPTIBLE, 1, p);
 
 
 
 
 
 
 
 
 
 
1439}
1440
1441static long do_wait(struct wait_opts *wo)
 
 
 
 
1442{
1443	struct task_struct *tsk;
 
1444	int retval;
1445
1446	trace_sched_process_wait(wo->wo_pid);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1447
1448	init_waitqueue_func_entry(&wo->child_wait, child_wait_callback);
1449	wo->child_wait.private = current;
1450	add_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1451repeat:
1452	/*
1453	 * If there is nothing that can match our criteria, just get out.
1454	 * We will clear ->notask_error to zero if we see any child that
1455	 * might later match our criteria, even if we are not able to reap
1456	 * it yet.
1457	 */
1458	wo->notask_error = -ECHILD;
1459	if ((wo->wo_type < PIDTYPE_MAX) &&
1460	   (!wo->wo_pid || hlist_empty(&wo->wo_pid->tasks[wo->wo_type])))
1461		goto notask;
1462
1463	set_current_state(TASK_INTERRUPTIBLE);
1464	read_lock(&tasklist_lock);
1465	tsk = current;
1466	do {
1467		retval = do_wait_thread(wo, tsk);
1468		if (retval)
1469			goto end;
 
 
1470
1471		retval = ptrace_do_wait(wo, tsk);
1472		if (retval)
1473			goto end;
 
 
 
 
 
1474
1475		if (wo->wo_flags & __WNOTHREAD)
1476			break;
1477	} while_each_thread(current, tsk);
 
1478	read_unlock(&tasklist_lock);
1479
1480notask:
1481	retval = wo->notask_error;
1482	if (!retval && !(wo->wo_flags & WNOHANG)) {
1483		retval = -ERESTARTSYS;
1484		if (!signal_pending(current)) {
1485			schedule();
1486			goto repeat;
1487		}
1488	}
1489end:
1490	__set_current_state(TASK_RUNNING);
1491	remove_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1492	return retval;
1493}
1494
1495static struct pid *pidfd_get_pid(unsigned int fd)
1496{
1497	struct fd f;
1498	struct pid *pid;
1499
1500	f = fdget(fd);
1501	if (!f.file)
1502		return ERR_PTR(-EBADF);
1503
1504	pid = pidfd_pid(f.file);
1505	if (!IS_ERR(pid))
1506		get_pid(pid);
 
 
 
 
 
 
 
 
 
 
1507
1508	fdput(f);
1509	return pid;
 
1510}
1511
1512static long kernel_waitid(int which, pid_t upid, struct waitid_info *infop,
1513			  int options, struct rusage *ru)
 
1514{
1515	struct wait_opts wo;
1516	struct pid *pid = NULL;
1517	enum pid_type type;
1518	long ret;
1519
1520	if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED|
1521			__WNOTHREAD|__WCLONE|__WALL))
1522		return -EINVAL;
1523	if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1524		return -EINVAL;
1525
1526	switch (which) {
1527	case P_ALL:
1528		type = PIDTYPE_MAX;
1529		break;
1530	case P_PID:
1531		type = PIDTYPE_PID;
1532		if (upid <= 0)
1533			return -EINVAL;
1534
1535		pid = find_get_pid(upid);
1536		break;
1537	case P_PGID:
1538		type = PIDTYPE_PGID;
1539		if (upid < 0)
1540			return -EINVAL;
1541
1542		if (upid)
1543			pid = find_get_pid(upid);
1544		else
1545			pid = get_task_pid(current, PIDTYPE_PGID);
1546		break;
1547	case P_PIDFD:
1548		type = PIDTYPE_PID;
1549		if (upid < 0)
1550			return -EINVAL;
1551
1552		pid = pidfd_get_pid(upid);
1553		if (IS_ERR(pid))
1554			return PTR_ERR(pid);
 
1555		break;
1556	default:
1557		return -EINVAL;
1558	}
1559
1560	wo.wo_type	= type;
1561	wo.wo_pid	= pid;
1562	wo.wo_flags	= options;
1563	wo.wo_info	= infop;
1564	wo.wo_rusage	= ru;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1565	ret = do_wait(&wo);
 
 
1566
1567	put_pid(pid);
1568	return ret;
1569}
1570
1571SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *,
1572		infop, int, options, struct rusage __user *, ru)
1573{
1574	struct rusage r;
1575	struct waitid_info info = {.status = 0};
1576	long err = kernel_waitid(which, upid, &info, options, ru ? &r : NULL);
1577	int signo = 0;
1578
1579	if (err > 0) {
1580		signo = SIGCHLD;
1581		err = 0;
1582		if (ru && copy_to_user(ru, &r, sizeof(struct rusage)))
1583			return -EFAULT;
1584	}
1585	if (!infop)
1586		return err;
1587
1588	if (!user_access_begin(infop, sizeof(*infop)))
1589		return -EFAULT;
1590
1591	unsafe_put_user(signo, &infop->si_signo, Efault);
1592	unsafe_put_user(0, &infop->si_errno, Efault);
1593	unsafe_put_user(info.cause, &infop->si_code, Efault);
1594	unsafe_put_user(info.pid, &infop->si_pid, Efault);
1595	unsafe_put_user(info.uid, &infop->si_uid, Efault);
1596	unsafe_put_user(info.status, &infop->si_status, Efault);
1597	user_access_end();
1598	return err;
1599Efault:
1600	user_access_end();
1601	return -EFAULT;
1602}
1603
1604long kernel_wait4(pid_t upid, int __user *stat_addr, int options,
1605		  struct rusage *ru)
1606{
1607	struct wait_opts wo;
1608	struct pid *pid = NULL;
1609	enum pid_type type;
1610	long ret;
1611
1612	if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1613			__WNOTHREAD|__WCLONE|__WALL))
1614		return -EINVAL;
1615
1616	/* -INT_MIN is not defined */
1617	if (upid == INT_MIN)
1618		return -ESRCH;
1619
1620	if (upid == -1)
1621		type = PIDTYPE_MAX;
1622	else if (upid < 0) {
1623		type = PIDTYPE_PGID;
1624		pid = find_get_pid(-upid);
1625	} else if (upid == 0) {
1626		type = PIDTYPE_PGID;
1627		pid = get_task_pid(current, PIDTYPE_PGID);
1628	} else /* upid > 0 */ {
1629		type = PIDTYPE_PID;
1630		pid = find_get_pid(upid);
1631	}
1632
1633	wo.wo_type	= type;
1634	wo.wo_pid	= pid;
1635	wo.wo_flags	= options | WEXITED;
1636	wo.wo_info	= NULL;
1637	wo.wo_stat	= 0;
1638	wo.wo_rusage	= ru;
1639	ret = do_wait(&wo);
1640	put_pid(pid);
1641	if (ret > 0 && stat_addr && put_user(wo.wo_stat, stat_addr))
1642		ret = -EFAULT;
1643
1644	return ret;
1645}
1646
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1647SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr,
1648		int, options, struct rusage __user *, ru)
1649{
1650	struct rusage r;
1651	long err = kernel_wait4(upid, stat_addr, options, ru ? &r : NULL);
1652
1653	if (err > 0) {
1654		if (ru && copy_to_user(ru, &r, sizeof(struct rusage)))
1655			return -EFAULT;
1656	}
1657	return err;
1658}
1659
1660#ifdef __ARCH_WANT_SYS_WAITPID
1661
1662/*
1663 * sys_waitpid() remains for compatibility. waitpid() should be
1664 * implemented by calling sys_wait4() from libc.a.
1665 */
1666SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options)
1667{
1668	return kernel_wait4(pid, stat_addr, options, NULL);
1669}
1670
1671#endif
1672
1673#ifdef CONFIG_COMPAT
1674COMPAT_SYSCALL_DEFINE4(wait4,
1675	compat_pid_t, pid,
1676	compat_uint_t __user *, stat_addr,
1677	int, options,
1678	struct compat_rusage __user *, ru)
1679{
1680	struct rusage r;
1681	long err = kernel_wait4(pid, stat_addr, options, ru ? &r : NULL);
1682	if (err > 0) {
1683		if (ru && put_compat_rusage(&r, ru))
1684			return -EFAULT;
1685	}
1686	return err;
1687}
1688
1689COMPAT_SYSCALL_DEFINE5(waitid,
1690		int, which, compat_pid_t, pid,
1691		struct compat_siginfo __user *, infop, int, options,
1692		struct compat_rusage __user *, uru)
1693{
1694	struct rusage ru;
1695	struct waitid_info info = {.status = 0};
1696	long err = kernel_waitid(which, pid, &info, options, uru ? &ru : NULL);
1697	int signo = 0;
1698	if (err > 0) {
1699		signo = SIGCHLD;
1700		err = 0;
1701		if (uru) {
1702			/* kernel_waitid() overwrites everything in ru */
1703			if (COMPAT_USE_64BIT_TIME)
1704				err = copy_to_user(uru, &ru, sizeof(ru));
1705			else
1706				err = put_compat_rusage(&ru, uru);
1707			if (err)
1708				return -EFAULT;
1709		}
1710	}
1711
1712	if (!infop)
1713		return err;
1714
1715	if (!user_access_begin(infop, sizeof(*infop)))
1716		return -EFAULT;
1717
1718	unsafe_put_user(signo, &infop->si_signo, Efault);
1719	unsafe_put_user(0, &infop->si_errno, Efault);
1720	unsafe_put_user(info.cause, &infop->si_code, Efault);
1721	unsafe_put_user(info.pid, &infop->si_pid, Efault);
1722	unsafe_put_user(info.uid, &infop->si_uid, Efault);
1723	unsafe_put_user(info.status, &infop->si_status, Efault);
1724	user_access_end();
1725	return err;
1726Efault:
1727	user_access_end();
1728	return -EFAULT;
1729}
1730#endif
1731
1732__weak void abort(void)
 
 
 
 
 
 
 
1733{
1734	BUG();
1735
1736	/* if that doesn't kill us, halt */
1737	panic("Oops failed to kill thread");
1738}
1739EXPORT_SYMBOL(abort);