Linux Audio

Check our new training course

Loading...
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  linux/kernel/exit.c
   4 *
   5 *  Copyright (C) 1991, 1992  Linus Torvalds
   6 */
   7
   8#include <linux/mm.h>
   9#include <linux/slab.h>
  10#include <linux/sched/autogroup.h>
  11#include <linux/sched/mm.h>
  12#include <linux/sched/stat.h>
  13#include <linux/sched/task.h>
  14#include <linux/sched/task_stack.h>
  15#include <linux/sched/cputime.h>
  16#include <linux/interrupt.h>
  17#include <linux/module.h>
  18#include <linux/capability.h>
  19#include <linux/completion.h>
  20#include <linux/personality.h>
  21#include <linux/tty.h>
  22#include <linux/iocontext.h>
  23#include <linux/key.h>
 
  24#include <linux/cpu.h>
  25#include <linux/acct.h>
  26#include <linux/tsacct_kern.h>
  27#include <linux/file.h>
 
  28#include <linux/freezer.h>
  29#include <linux/binfmts.h>
  30#include <linux/nsproxy.h>
  31#include <linux/pid_namespace.h>
  32#include <linux/ptrace.h>
  33#include <linux/profile.h>
  34#include <linux/mount.h>
  35#include <linux/proc_fs.h>
  36#include <linux/kthread.h>
  37#include <linux/mempolicy.h>
  38#include <linux/taskstats_kern.h>
  39#include <linux/delayacct.h>
  40#include <linux/cgroup.h>
  41#include <linux/syscalls.h>
  42#include <linux/signal.h>
  43#include <linux/posix-timers.h>
  44#include <linux/cn_proc.h>
  45#include <linux/mutex.h>
  46#include <linux/futex.h>
  47#include <linux/pipe_fs_i.h>
  48#include <linux/audit.h> /* for audit_free() */
  49#include <linux/resource.h>
  50#include <linux/task_io_accounting_ops.h>
  51#include <linux/blkdev.h>
  52#include <linux/task_work.h>
 
  53#include <linux/fs_struct.h>
  54#include <linux/init_task.h>
  55#include <linux/perf_event.h>
  56#include <trace/events/sched.h>
  57#include <linux/hw_breakpoint.h>
  58#include <linux/oom.h>
  59#include <linux/writeback.h>
  60#include <linux/shm.h>
  61#include <linux/kcov.h>
  62#include <linux/kmsan.h>
  63#include <linux/random.h>
  64#include <linux/rcuwait.h>
  65#include <linux/compat.h>
  66#include <linux/io_uring.h>
  67#include <linux/kprobes.h>
  68#include <linux/rethook.h>
  69#include <linux/sysfs.h>
  70#include <linux/user_events.h>
  71#include <linux/uaccess.h>
  72
  73#include <uapi/linux/wait.h>
  74
 
  75#include <asm/unistd.h>
 
  76#include <asm/mmu_context.h>
  77
  78#include "exit.h"
  79
  80/*
  81 * The default value should be high enough to not crash a system that randomly
  82 * crashes its kernel from time to time, but low enough to at least not permit
  83 * overflowing 32-bit refcounts or the ldsem writer count.
  84 */
  85static unsigned int oops_limit = 10000;
  86
  87#ifdef CONFIG_SYSCTL
  88static struct ctl_table kern_exit_table[] = {
  89	{
  90		.procname       = "oops_limit",
  91		.data           = &oops_limit,
  92		.maxlen         = sizeof(oops_limit),
  93		.mode           = 0644,
  94		.proc_handler   = proc_douintvec,
  95	},
  96};
  97
  98static __init int kernel_exit_sysctls_init(void)
  99{
 100	register_sysctl_init("kernel", kern_exit_table);
 101	return 0;
 102}
 103late_initcall(kernel_exit_sysctls_init);
 104#endif
 105
 106static atomic_t oops_count = ATOMIC_INIT(0);
 107
 108#ifdef CONFIG_SYSFS
 109static ssize_t oops_count_show(struct kobject *kobj, struct kobj_attribute *attr,
 110			       char *page)
 111{
 112	return sysfs_emit(page, "%d\n", atomic_read(&oops_count));
 113}
 114
 115static struct kobj_attribute oops_count_attr = __ATTR_RO(oops_count);
 116
 117static __init int kernel_exit_sysfs_init(void)
 118{
 119	sysfs_add_file_to_group(kernel_kobj, &oops_count_attr.attr, NULL);
 120	return 0;
 121}
 122late_initcall(kernel_exit_sysfs_init);
 123#endif
 124
 125static void __unhash_process(struct task_struct *p, bool group_dead)
 126{
 127	nr_threads--;
 128	detach_pid(p, PIDTYPE_PID);
 129	if (group_dead) {
 130		detach_pid(p, PIDTYPE_TGID);
 131		detach_pid(p, PIDTYPE_PGID);
 132		detach_pid(p, PIDTYPE_SID);
 133
 134		list_del_rcu(&p->tasks);
 135		list_del_init(&p->sibling);
 136		__this_cpu_dec(process_counts);
 137	}
 
 138	list_del_rcu(&p->thread_node);
 139}
 140
 141/*
 142 * This function expects the tasklist_lock write-locked.
 143 */
 144static void __exit_signal(struct task_struct *tsk)
 145{
 146	struct signal_struct *sig = tsk->signal;
 147	bool group_dead = thread_group_leader(tsk);
 148	struct sighand_struct *sighand;
 149	struct tty_struct *tty;
 150	u64 utime, stime;
 151
 152	sighand = rcu_dereference_check(tsk->sighand,
 153					lockdep_tasklist_lock_is_held());
 154	spin_lock(&sighand->siglock);
 155
 156#ifdef CONFIG_POSIX_TIMERS
 157	posix_cpu_timers_exit(tsk);
 158	if (group_dead)
 159		posix_cpu_timers_exit_group(tsk);
 160#endif
 161
 162	if (group_dead) {
 
 163		tty = sig->tty;
 164		sig->tty = NULL;
 165	} else {
 166		/*
 
 
 
 
 
 
 
 
 167		 * If there is any task waiting for the group exit
 168		 * then notify it:
 169		 */
 170		if (sig->notify_count > 0 && !--sig->notify_count)
 171			wake_up_process(sig->group_exec_task);
 172
 173		if (tsk == sig->curr_target)
 174			sig->curr_target = next_thread(tsk);
 175	}
 176
 177	add_device_randomness((const void*) &tsk->se.sum_exec_runtime,
 178			      sizeof(unsigned long long));
 179
 180	/*
 181	 * Accumulate here the counters for all threads as they die. We could
 182	 * skip the group leader because it is the last user of signal_struct,
 183	 * but we want to avoid the race with thread_group_cputime() which can
 184	 * see the empty ->thread_head list.
 185	 */
 186	task_cputime(tsk, &utime, &stime);
 187	write_seqlock(&sig->stats_lock);
 188	sig->utime += utime;
 189	sig->stime += stime;
 190	sig->gtime += task_gtime(tsk);
 191	sig->min_flt += tsk->min_flt;
 192	sig->maj_flt += tsk->maj_flt;
 193	sig->nvcsw += tsk->nvcsw;
 194	sig->nivcsw += tsk->nivcsw;
 195	sig->inblock += task_io_get_inblock(tsk);
 196	sig->oublock += task_io_get_oublock(tsk);
 197	task_io_accounting_add(&sig->ioac, &tsk->ioac);
 198	sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
 199	sig->nr_threads--;
 200	__unhash_process(tsk, group_dead);
 201	write_sequnlock(&sig->stats_lock);
 202
 203	/*
 204	 * Do this under ->siglock, we can race with another thread
 205	 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
 206	 */
 207	flush_sigqueue(&tsk->pending);
 208	tsk->sighand = NULL;
 209	spin_unlock(&sighand->siglock);
 210
 211	__cleanup_sighand(sighand);
 212	clear_tsk_thread_flag(tsk, TIF_SIGPENDING);
 213	if (group_dead) {
 214		flush_sigqueue(&sig->shared_pending);
 215		tty_kref_put(tty);
 216	}
 217}
 218
 219static void delayed_put_task_struct(struct rcu_head *rhp)
 220{
 221	struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
 222
 223	kprobe_flush_task(tsk);
 224	rethook_flush_task(tsk);
 225	perf_event_delayed_put(tsk);
 226	trace_sched_process_free(tsk);
 227	put_task_struct(tsk);
 228}
 229
 230void put_task_struct_rcu_user(struct task_struct *task)
 231{
 232	if (refcount_dec_and_test(&task->rcu_users))
 233		call_rcu(&task->rcu, delayed_put_task_struct);
 234}
 235
 236void __weak release_thread(struct task_struct *dead_task)
 237{
 238}
 239
 240void release_task(struct task_struct *p)
 241{
 242	struct task_struct *leader;
 243	struct pid *thread_pid;
 244	int zap_leader;
 245repeat:
 246	/* don't need to get the RCU readlock here - the process is dead and
 247	 * can't be modifying its own credentials. But shut RCU-lockdep up */
 248	rcu_read_lock();
 249	dec_rlimit_ucounts(task_ucounts(p), UCOUNT_RLIMIT_NPROC, 1);
 250	rcu_read_unlock();
 251
 252	cgroup_release(p);
 253
 254	write_lock_irq(&tasklist_lock);
 255	ptrace_release_task(p);
 256	thread_pid = get_pid(p->thread_pid);
 257	__exit_signal(p);
 258
 259	/*
 260	 * If we are the last non-leader member of the thread
 261	 * group, and the leader is zombie, then notify the
 262	 * group leader's parent process. (if it wants notification.)
 263	 */
 264	zap_leader = 0;
 265	leader = p->group_leader;
 266	if (leader != p && thread_group_empty(leader)
 267			&& leader->exit_state == EXIT_ZOMBIE) {
 268		/*
 269		 * If we were the last child thread and the leader has
 270		 * exited already, and the leader's parent ignores SIGCHLD,
 271		 * then we are the one who should release the leader.
 272		 */
 273		zap_leader = do_notify_parent(leader, leader->exit_signal);
 274		if (zap_leader)
 275			leader->exit_state = EXIT_DEAD;
 276	}
 277
 278	write_unlock_irq(&tasklist_lock);
 279	proc_flush_pid(thread_pid);
 280	put_pid(thread_pid);
 281	release_thread(p);
 282	put_task_struct_rcu_user(p);
 283
 284	p = leader;
 285	if (unlikely(zap_leader))
 286		goto repeat;
 287}
 288
 289int rcuwait_wake_up(struct rcuwait *w)
 290{
 291	int ret = 0;
 292	struct task_struct *task;
 293
 294	rcu_read_lock();
 295
 296	/*
 297	 * Order condition vs @task, such that everything prior to the load
 298	 * of @task is visible. This is the condition as to why the user called
 299	 * rcuwait_wake() in the first place. Pairs with set_current_state()
 300	 * barrier (A) in rcuwait_wait_event().
 301	 *
 302	 *    WAIT                WAKE
 303	 *    [S] tsk = current	  [S] cond = true
 304	 *        MB (A)	      MB (B)
 305	 *    [L] cond		  [L] tsk
 306	 */
 307	smp_mb(); /* (B) */
 308
 309	task = rcu_dereference(w->task);
 310	if (task)
 311		ret = wake_up_process(task);
 312	rcu_read_unlock();
 313
 314	return ret;
 315}
 316EXPORT_SYMBOL_GPL(rcuwait_wake_up);
 317
 318/*
 319 * Determine if a process group is "orphaned", according to the POSIX
 320 * definition in 2.2.2.52.  Orphaned process groups are not to be affected
 321 * by terminal-generated stop signals.  Newly orphaned process groups are
 322 * to receive a SIGHUP and a SIGCONT.
 323 *
 324 * "I ask you, have you ever known what it is to be an orphan?"
 325 */
 326static int will_become_orphaned_pgrp(struct pid *pgrp,
 327					struct task_struct *ignored_task)
 328{
 329	struct task_struct *p;
 330
 331	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
 332		if ((p == ignored_task) ||
 333		    (p->exit_state && thread_group_empty(p)) ||
 334		    is_global_init(p->real_parent))
 335			continue;
 336
 337		if (task_pgrp(p->real_parent) != pgrp &&
 338		    task_session(p->real_parent) == task_session(p))
 339			return 0;
 340	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
 341
 342	return 1;
 343}
 344
 345int is_current_pgrp_orphaned(void)
 346{
 347	int retval;
 348
 349	read_lock(&tasklist_lock);
 350	retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
 351	read_unlock(&tasklist_lock);
 352
 353	return retval;
 354}
 355
 356static bool has_stopped_jobs(struct pid *pgrp)
 357{
 358	struct task_struct *p;
 359
 360	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
 361		if (p->signal->flags & SIGNAL_STOP_STOPPED)
 362			return true;
 363	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
 364
 365	return false;
 366}
 367
 368/*
 369 * Check to see if any process groups have become orphaned as
 370 * a result of our exiting, and if they have any stopped jobs,
 371 * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
 372 */
 373static void
 374kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
 375{
 376	struct pid *pgrp = task_pgrp(tsk);
 377	struct task_struct *ignored_task = tsk;
 378
 379	if (!parent)
 380		/* exit: our father is in a different pgrp than
 381		 * we are and we were the only connection outside.
 382		 */
 383		parent = tsk->real_parent;
 384	else
 385		/* reparent: our child is in a different pgrp than
 386		 * we are, and it was the only connection outside.
 387		 */
 388		ignored_task = NULL;
 389
 390	if (task_pgrp(parent) != pgrp &&
 391	    task_session(parent) == task_session(tsk) &&
 392	    will_become_orphaned_pgrp(pgrp, ignored_task) &&
 393	    has_stopped_jobs(pgrp)) {
 394		__kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
 395		__kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
 396	}
 397}
 398
 399static void coredump_task_exit(struct task_struct *tsk)
 400{
 401	struct core_state *core_state;
 402
 403	/*
 404	 * Serialize with any possible pending coredump.
 405	 * We must hold siglock around checking core_state
 406	 * and setting PF_POSTCOREDUMP.  The core-inducing thread
 407	 * will increment ->nr_threads for each thread in the
 408	 * group without PF_POSTCOREDUMP set.
 409	 */
 410	spin_lock_irq(&tsk->sighand->siglock);
 411	tsk->flags |= PF_POSTCOREDUMP;
 412	core_state = tsk->signal->core_state;
 413	spin_unlock_irq(&tsk->sighand->siglock);
 414	if (core_state) {
 415		struct core_thread self;
 416
 417		self.task = current;
 418		if (self.task->flags & PF_SIGNALED)
 419			self.next = xchg(&core_state->dumper.next, &self);
 420		else
 421			self.task = NULL;
 422		/*
 423		 * Implies mb(), the result of xchg() must be visible
 424		 * to core_state->dumper.
 425		 */
 426		if (atomic_dec_and_test(&core_state->nr_threads))
 427			complete(&core_state->startup);
 428
 429		for (;;) {
 430			set_current_state(TASK_IDLE|TASK_FREEZABLE);
 431			if (!self.task) /* see coredump_finish() */
 432				break;
 433			schedule();
 434		}
 435		__set_current_state(TASK_RUNNING);
 436	}
 437}
 438
 439#ifdef CONFIG_MEMCG
 440/* drops tasklist_lock if succeeds */
 441static bool __try_to_set_owner(struct task_struct *tsk, struct mm_struct *mm)
 442{
 443	bool ret = false;
 444
 445	task_lock(tsk);
 446	if (likely(tsk->mm == mm)) {
 447		/* tsk can't pass exit_mm/exec_mmap and exit */
 448		read_unlock(&tasklist_lock);
 449		WRITE_ONCE(mm->owner, tsk);
 450		lru_gen_migrate_mm(mm);
 451		ret = true;
 452	}
 453	task_unlock(tsk);
 454	return ret;
 455}
 456
 457static bool try_to_set_owner(struct task_struct *g, struct mm_struct *mm)
 458{
 459	struct task_struct *t;
 460
 461	for_each_thread(g, t) {
 462		struct mm_struct *t_mm = READ_ONCE(t->mm);
 463		if (t_mm == mm) {
 464			if (__try_to_set_owner(t, mm))
 465				return true;
 466		} else if (t_mm)
 467			break;
 468	}
 469
 470	return false;
 471}
 472
 473/*
 474 * A task is exiting.   If it owned this mm, find a new owner for the mm.
 475 */
 476void mm_update_next_owner(struct mm_struct *mm)
 477{
 478	struct task_struct *g, *p = current;
 479
 
 480	/*
 481	 * If the exiting or execing task is not the owner, it's
 482	 * someone else's problem.
 483	 */
 484	if (mm->owner != p)
 485		return;
 486	/*
 487	 * The current owner is exiting/execing and there are no other
 488	 * candidates.  Do not leave the mm pointing to a possibly
 489	 * freed task structure.
 490	 */
 491	if (atomic_read(&mm->mm_users) <= 1) {
 492		WRITE_ONCE(mm->owner, NULL);
 493		return;
 494	}
 495
 496	read_lock(&tasklist_lock);
 497	/*
 498	 * Search in the children
 499	 */
 500	list_for_each_entry(g, &p->children, sibling) {
 501		if (try_to_set_owner(g, mm))
 502			goto ret;
 503	}
 
 504	/*
 505	 * Search in the siblings
 506	 */
 507	list_for_each_entry(g, &p->real_parent->children, sibling) {
 508		if (try_to_set_owner(g, mm))
 509			goto ret;
 510	}
 
 511	/*
 512	 * Search through everything else, we should not get here often.
 513	 */
 514	for_each_process(g) {
 515		if (atomic_read(&mm->mm_users) <= 1)
 516			break;
 517		if (g->flags & PF_KTHREAD)
 518			continue;
 519		if (try_to_set_owner(g, mm))
 520			goto ret;
 
 
 
 
 521	}
 522	read_unlock(&tasklist_lock);
 523	/*
 524	 * We found no owner yet mm_users > 1: this implies that we are
 525	 * most likely racing with swapoff (try_to_unuse()) or /proc or
 526	 * ptrace or page migration (get_task_mm()).  Mark owner as NULL.
 527	 */
 528	WRITE_ONCE(mm->owner, NULL);
 529 ret:
 530	return;
 531
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 532}
 533#endif /* CONFIG_MEMCG */
 534
 535/*
 536 * Turn us into a lazy TLB process if we
 537 * aren't already..
 538 */
 539static void exit_mm(void)
 540{
 541	struct mm_struct *mm = current->mm;
 
 542
 543	exit_mm_release(current, mm);
 544	if (!mm)
 545		return;
 546	mmap_read_lock(mm);
 547	mmgrab_lazy_tlb(mm);
 548	BUG_ON(mm != current->active_mm);
 549	/* more a memory barrier than a real lock */
 550	task_lock(current);
 551	/*
 552	 * When a thread stops operating on an address space, the loop
 553	 * in membarrier_private_expedited() may not observe that
 554	 * tsk->mm, and the loop in membarrier_global_expedited() may
 555	 * not observe a MEMBARRIER_STATE_GLOBAL_EXPEDITED
 556	 * rq->membarrier_state, so those would not issue an IPI.
 557	 * Membarrier requires a memory barrier after accessing
 558	 * user-space memory, before clearing tsk->mm or the
 559	 * rq->membarrier_state.
 560	 */
 561	smp_mb__after_spinlock();
 562	local_irq_disable();
 563	current->mm = NULL;
 564	membarrier_update_current_mm(NULL);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 565	enter_lazy_tlb(mm, current);
 566	local_irq_enable();
 567	task_unlock(current);
 568	mmap_read_unlock(mm);
 569	mm_update_next_owner(mm);
 570	mmput(mm);
 571	if (test_thread_flag(TIF_MEMDIE))
 572		exit_oom_victim();
 573}
 574
 575static struct task_struct *find_alive_thread(struct task_struct *p)
 576{
 577	struct task_struct *t;
 578
 579	for_each_thread(p, t) {
 580		if (!(t->flags & PF_EXITING))
 581			return t;
 582	}
 583	return NULL;
 584}
 585
 586static struct task_struct *find_child_reaper(struct task_struct *father,
 587						struct list_head *dead)
 588	__releases(&tasklist_lock)
 589	__acquires(&tasklist_lock)
 590{
 591	struct pid_namespace *pid_ns = task_active_pid_ns(father);
 592	struct task_struct *reaper = pid_ns->child_reaper;
 593	struct task_struct *p, *n;
 594
 595	if (likely(reaper != father))
 596		return reaper;
 597
 598	reaper = find_alive_thread(father);
 599	if (reaper) {
 600		pid_ns->child_reaper = reaper;
 601		return reaper;
 602	}
 603
 604	write_unlock_irq(&tasklist_lock);
 605
 606	list_for_each_entry_safe(p, n, dead, ptrace_entry) {
 607		list_del_init(&p->ptrace_entry);
 608		release_task(p);
 609	}
 610
 611	zap_pid_ns_processes(pid_ns);
 612	write_lock_irq(&tasklist_lock);
 613
 614	return father;
 615}
 616
 617/*
 618 * When we die, we re-parent all our children, and try to:
 619 * 1. give them to another thread in our thread group, if such a member exists
 620 * 2. give it to the first ancestor process which prctl'd itself as a
 621 *    child_subreaper for its children (like a service manager)
 622 * 3. give it to the init process (PID 1) in our pid namespace
 623 */
 624static struct task_struct *find_new_reaper(struct task_struct *father,
 625					   struct task_struct *child_reaper)
 626{
 627	struct task_struct *thread, *reaper;
 628
 629	thread = find_alive_thread(father);
 630	if (thread)
 631		return thread;
 632
 633	if (father->signal->has_child_subreaper) {
 634		unsigned int ns_level = task_pid(father)->level;
 635		/*
 636		 * Find the first ->is_child_subreaper ancestor in our pid_ns.
 637		 * We can't check reaper != child_reaper to ensure we do not
 638		 * cross the namespaces, the exiting parent could be injected
 639		 * by setns() + fork().
 640		 * We check pid->level, this is slightly more efficient than
 641		 * task_active_pid_ns(reaper) != task_active_pid_ns(father).
 642		 */
 643		for (reaper = father->real_parent;
 644		     task_pid(reaper)->level == ns_level;
 645		     reaper = reaper->real_parent) {
 
 646			if (reaper == &init_task)
 647				break;
 648			if (!reaper->signal->is_child_subreaper)
 649				continue;
 650			thread = find_alive_thread(reaper);
 651			if (thread)
 652				return thread;
 653		}
 654	}
 655
 656	return child_reaper;
 657}
 658
 659/*
 660* Any that need to be release_task'd are put on the @dead list.
 661 */
 662static void reparent_leader(struct task_struct *father, struct task_struct *p,
 663				struct list_head *dead)
 664{
 665	if (unlikely(p->exit_state == EXIT_DEAD))
 666		return;
 667
 668	/* We don't want people slaying init. */
 669	p->exit_signal = SIGCHLD;
 670
 671	/* If it has exited notify the new parent about this child's death. */
 672	if (!p->ptrace &&
 673	    p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) {
 674		if (do_notify_parent(p, p->exit_signal)) {
 675			p->exit_state = EXIT_DEAD;
 676			list_add(&p->ptrace_entry, dead);
 677		}
 678	}
 679
 680	kill_orphaned_pgrp(p, father);
 681}
 682
 683/*
 684 * This does two things:
 685 *
 686 * A.  Make init inherit all the child processes
 687 * B.  Check to see if any process groups have become orphaned
 688 *	as a result of our exiting, and if they have any stopped
 689 *	jobs, send them a SIGHUP and then a SIGCONT.  (POSIX 3.2.2.2)
 690 */
 691static void forget_original_parent(struct task_struct *father,
 692					struct list_head *dead)
 693{
 694	struct task_struct *p, *t, *reaper;
 695
 696	if (unlikely(!list_empty(&father->ptraced)))
 697		exit_ptrace(father, dead);
 698
 699	/* Can drop and reacquire tasklist_lock */
 700	reaper = find_child_reaper(father, dead);
 701	if (list_empty(&father->children))
 702		return;
 703
 704	reaper = find_new_reaper(father, reaper);
 705	list_for_each_entry(p, &father->children, sibling) {
 706		for_each_thread(p, t) {
 707			RCU_INIT_POINTER(t->real_parent, reaper);
 708			BUG_ON((!t->ptrace) != (rcu_access_pointer(t->parent) == father));
 709			if (likely(!t->ptrace))
 710				t->parent = t->real_parent;
 711			if (t->pdeath_signal)
 712				group_send_sig_info(t->pdeath_signal,
 713						    SEND_SIG_NOINFO, t,
 714						    PIDTYPE_TGID);
 715		}
 716		/*
 717		 * If this is a threaded reparent there is no need to
 718		 * notify anyone anything has happened.
 719		 */
 720		if (!same_thread_group(reaper, father))
 721			reparent_leader(father, p, dead);
 722	}
 723	list_splice_tail_init(&father->children, &reaper->children);
 724}
 725
 726/*
 727 * Send signals to all our closest relatives so that they know
 728 * to properly mourn us..
 729 */
 730static void exit_notify(struct task_struct *tsk, int group_dead)
 731{
 732	bool autoreap;
 733	struct task_struct *p, *n;
 734	LIST_HEAD(dead);
 735
 736	write_lock_irq(&tasklist_lock);
 737	forget_original_parent(tsk, &dead);
 738
 739	if (group_dead)
 740		kill_orphaned_pgrp(tsk->group_leader, NULL);
 741
 742	tsk->exit_state = EXIT_ZOMBIE;
 743	/*
 744	 * sub-thread or delay_group_leader(), wake up the
 745	 * PIDFD_THREAD waiters.
 746	 */
 747	if (!thread_group_empty(tsk))
 748		do_notify_pidfd(tsk);
 749
 750	if (unlikely(tsk->ptrace)) {
 751		int sig = thread_group_leader(tsk) &&
 752				thread_group_empty(tsk) &&
 753				!ptrace_reparented(tsk) ?
 754			tsk->exit_signal : SIGCHLD;
 755		autoreap = do_notify_parent(tsk, sig);
 756	} else if (thread_group_leader(tsk)) {
 757		autoreap = thread_group_empty(tsk) &&
 758			do_notify_parent(tsk, tsk->exit_signal);
 759	} else {
 760		autoreap = true;
 761	}
 762
 763	if (autoreap) {
 764		tsk->exit_state = EXIT_DEAD;
 765		list_add(&tsk->ptrace_entry, &dead);
 766	}
 767
 768	/* mt-exec, de_thread() is waiting for group leader */
 769	if (unlikely(tsk->signal->notify_count < 0))
 770		wake_up_process(tsk->signal->group_exec_task);
 771	write_unlock_irq(&tasklist_lock);
 772
 773	list_for_each_entry_safe(p, n, &dead, ptrace_entry) {
 774		list_del_init(&p->ptrace_entry);
 775		release_task(p);
 776	}
 777}
 778
 779#ifdef CONFIG_DEBUG_STACK_USAGE
 780unsigned long stack_not_used(struct task_struct *p)
 781{
 782	unsigned long *n = end_of_stack(p);
 783
 784	do {	/* Skip over canary */
 785# ifdef CONFIG_STACK_GROWSUP
 786		n--;
 787# else
 788		n++;
 789# endif
 790	} while (!*n);
 791
 792# ifdef CONFIG_STACK_GROWSUP
 793	return (unsigned long)end_of_stack(p) - (unsigned long)n;
 794# else
 795	return (unsigned long)n - (unsigned long)end_of_stack(p);
 796# endif
 797}
 798
 799/* Count the maximum pages reached in kernel stacks */
 800static inline void kstack_histogram(unsigned long used_stack)
 801{
 802#ifdef CONFIG_VM_EVENT_COUNTERS
 803	if (used_stack <= 1024)
 804		count_vm_event(KSTACK_1K);
 805#if THREAD_SIZE > 1024
 806	else if (used_stack <= 2048)
 807		count_vm_event(KSTACK_2K);
 808#endif
 809#if THREAD_SIZE > 2048
 810	else if (used_stack <= 4096)
 811		count_vm_event(KSTACK_4K);
 812#endif
 813#if THREAD_SIZE > 4096
 814	else if (used_stack <= 8192)
 815		count_vm_event(KSTACK_8K);
 816#endif
 817#if THREAD_SIZE > 8192
 818	else if (used_stack <= 16384)
 819		count_vm_event(KSTACK_16K);
 820#endif
 821#if THREAD_SIZE > 16384
 822	else if (used_stack <= 32768)
 823		count_vm_event(KSTACK_32K);
 824#endif
 825#if THREAD_SIZE > 32768
 826	else if (used_stack <= 65536)
 827		count_vm_event(KSTACK_64K);
 828#endif
 829#if THREAD_SIZE > 65536
 830	else
 831		count_vm_event(KSTACK_REST);
 832#endif
 833#endif /* CONFIG_VM_EVENT_COUNTERS */
 834}
 835
 836static void check_stack_usage(void)
 837{
 838	static DEFINE_SPINLOCK(low_water_lock);
 839	static int lowest_to_date = THREAD_SIZE;
 840	unsigned long free;
 841
 842	free = stack_not_used(current);
 843	kstack_histogram(THREAD_SIZE - free);
 844
 845	if (free >= lowest_to_date)
 846		return;
 847
 848	spin_lock(&low_water_lock);
 849	if (free < lowest_to_date) {
 850		pr_info("%s (%d) used greatest stack depth: %lu bytes left\n",
 851			current->comm, task_pid_nr(current), free);
 852		lowest_to_date = free;
 853	}
 854	spin_unlock(&low_water_lock);
 855}
 856#else
 857static inline void check_stack_usage(void) {}
 858#endif
 859
 860static void synchronize_group_exit(struct task_struct *tsk, long code)
 861{
 862	struct sighand_struct *sighand = tsk->sighand;
 863	struct signal_struct *signal = tsk->signal;
 864
 865	spin_lock_irq(&sighand->siglock);
 866	signal->quick_threads--;
 867	if ((signal->quick_threads == 0) &&
 868	    !(signal->flags & SIGNAL_GROUP_EXIT)) {
 869		signal->flags = SIGNAL_GROUP_EXIT;
 870		signal->group_exit_code = code;
 871		signal->group_stop_count = 0;
 872	}
 873	spin_unlock_irq(&sighand->siglock);
 874}
 875
 876void __noreturn do_exit(long code)
 877{
 878	struct task_struct *tsk = current;
 879	int group_dead;
 
 880
 881	WARN_ON(irqs_disabled());
 
 882
 883	synchronize_group_exit(tsk, code);
 884
 885	WARN_ON(tsk->plug);
 
 
 
 886
 887	kcov_task_exit(tsk);
 888	kmsan_task_exit(tsk);
 
 
 
 
 
 
 889
 890	coredump_task_exit(tsk);
 891	ptrace_event(PTRACE_EVENT_EXIT, code);
 892	user_events_exit(tsk);
 893
 894	io_uring_files_cancel();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 895	exit_signals(tsk);  /* sets PF_EXITING */
 
 
 
 
 
 
 896
 897	seccomp_filter_release(tsk);
 
 
 
 
 
 898
 
 
 
 899	acct_update_integrals(tsk);
 900	group_dead = atomic_dec_and_test(&tsk->signal->live);
 901	if (group_dead) {
 902		/*
 903		 * If the last thread of global init has exited, panic
 904		 * immediately to get a useable coredump.
 905		 */
 906		if (unlikely(is_global_init(tsk)))
 907			panic("Attempted to kill init! exitcode=0x%08x\n",
 908				tsk->signal->group_exit_code ?: (int)code);
 909
 910#ifdef CONFIG_POSIX_TIMERS
 911		hrtimer_cancel(&tsk->signal->real_timer);
 912		exit_itimers(tsk);
 913#endif
 914		if (tsk->mm)
 915			setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm);
 916	}
 917	acct_collect(code, group_dead);
 918	if (group_dead)
 919		tty_audit_exit();
 920	audit_free(tsk);
 921
 922	tsk->exit_code = code;
 923	taskstats_exit(tsk, group_dead);
 924
 925	exit_mm();
 926
 927	if (group_dead)
 928		acct_process();
 929	trace_sched_process_exit(tsk);
 930
 931	exit_sem(tsk);
 932	exit_shm(tsk);
 933	exit_files(tsk);
 934	exit_fs(tsk);
 935	if (group_dead)
 936		disassociate_ctty(1);
 937	exit_task_namespaces(tsk);
 938	exit_task_work(tsk);
 939	exit_thread(tsk);
 940
 941	/*
 942	 * Flush inherited counters to the parent - before the parent
 943	 * gets woken up by child-exit notifications.
 944	 *
 945	 * because of cgroup mode, must be called before cgroup_exit()
 946	 */
 947	perf_event_exit_task(tsk);
 948
 949	sched_autogroup_exit_task(tsk);
 950	cgroup_exit(tsk);
 951
 952	/*
 953	 * FIXME: do that only when needed, using sched_exit tracepoint
 954	 */
 955	flush_ptrace_hw_breakpoint(tsk);
 956
 957	exit_tasks_rcu_start();
 
 
 958	exit_notify(tsk, group_dead);
 959	proc_exit_connector(tsk);
 960	mpol_put_task_policy(tsk);
 
 
 
 
 
 961#ifdef CONFIG_FUTEX
 962	if (unlikely(current->pi_state_cache))
 963		kfree(current->pi_state_cache);
 964#endif
 965	/*
 966	 * Make sure we are holding no locks:
 967	 */
 968	debug_check_no_locks_held();
 
 
 
 
 
 
 969
 970	if (tsk->io_context)
 971		exit_io_context(tsk);
 972
 973	if (tsk->splice_pipe)
 974		free_pipe_info(tsk->splice_pipe);
 975
 976	if (tsk->task_frag.page)
 977		put_page(tsk->task_frag.page);
 978
 979	exit_task_stack_account(tsk);
 980
 981	check_stack_usage();
 982	preempt_disable();
 983	if (tsk->nr_dirtied)
 984		__this_cpu_add(dirty_throttle_leaks, tsk->nr_dirtied);
 985	exit_rcu();
 986	exit_tasks_rcu_finish();
 987
 988	lockdep_free_task(tsk);
 989	do_task_dead();
 990}
 991
 992void __noreturn make_task_dead(int signr)
 993{
 994	/*
 995	 * Take the task off the cpu after something catastrophic has
 996	 * happened.
 
 
 
 
 
 997	 *
 998	 * We can get here from a kernel oops, sometimes with preemption off.
 999	 * Start by checking for critical errors.
1000	 * Then fix up important state like USER_DS and preemption.
1001	 * Then do everything else.
1002	 */
1003	struct task_struct *tsk = current;
1004	unsigned int limit;
1005
1006	if (unlikely(in_interrupt()))
1007		panic("Aiee, killing interrupt handler!");
1008	if (unlikely(!tsk->pid))
1009		panic("Attempted to kill the idle task!");
1010
1011	if (unlikely(irqs_disabled())) {
1012		pr_info("note: %s[%d] exited with irqs disabled\n",
1013			current->comm, task_pid_nr(current));
1014		local_irq_enable();
1015	}
1016	if (unlikely(in_atomic())) {
1017		pr_info("note: %s[%d] exited with preempt_count %d\n",
1018			current->comm, task_pid_nr(current),
1019			preempt_count());
1020		preempt_count_set(PREEMPT_ENABLED);
1021	}
1022
1023	/*
1024	 * Every time the system oopses, if the oops happens while a reference
1025	 * to an object was held, the reference leaks.
1026	 * If the oops doesn't also leak memory, repeated oopsing can cause
1027	 * reference counters to wrap around (if they're not using refcount_t).
1028	 * This means that repeated oopsing can make unexploitable-looking bugs
1029	 * exploitable through repeated oopsing.
1030	 * To make sure this can't happen, place an upper bound on how often the
1031	 * kernel may oops without panic().
1032	 */
1033	limit = READ_ONCE(oops_limit);
1034	if (atomic_inc_return(&oops_count) >= limit && limit)
1035		panic("Oopsed too often (kernel.oops_limit is %d)", limit);
1036
1037	/*
1038	 * We're taking recursive faults here in make_task_dead. Safest is to just
1039	 * leave this task alone and wait for reboot.
1040	 */
1041	if (unlikely(tsk->flags & PF_EXITING)) {
1042		pr_alert("Fixing recursive fault but reboot is needed!\n");
1043		futex_exit_recursive(tsk);
1044		tsk->exit_state = EXIT_DEAD;
1045		refcount_inc(&tsk->rcu_users);
1046		do_task_dead();
1047	}
1048
1049	do_exit(signr);
1050}
 
1051
1052SYSCALL_DEFINE1(exit, int, error_code)
1053{
1054	do_exit((error_code&0xff)<<8);
1055}
1056
1057/*
1058 * Take down every thread in the group.  This is called by fatal signals
1059 * as well as by sys_exit_group (below).
1060 */
1061void __noreturn
1062do_group_exit(int exit_code)
1063{
1064	struct signal_struct *sig = current->signal;
1065
1066	if (sig->flags & SIGNAL_GROUP_EXIT)
 
 
1067		exit_code = sig->group_exit_code;
1068	else if (sig->group_exec_task)
1069		exit_code = 0;
1070	else {
1071		struct sighand_struct *const sighand = current->sighand;
1072
1073		spin_lock_irq(&sighand->siglock);
1074		if (sig->flags & SIGNAL_GROUP_EXIT)
1075			/* Another thread got here before we took the lock.  */
1076			exit_code = sig->group_exit_code;
1077		else if (sig->group_exec_task)
1078			exit_code = 0;
1079		else {
1080			sig->group_exit_code = exit_code;
1081			sig->flags = SIGNAL_GROUP_EXIT;
1082			zap_other_threads(current);
1083		}
1084		spin_unlock_irq(&sighand->siglock);
1085	}
1086
1087	do_exit(exit_code);
1088	/* NOTREACHED */
1089}
1090
1091/*
1092 * this kills every thread in the thread group. Note that any externally
1093 * wait4()-ing process will get the correct exit code - even if this
1094 * thread is not the thread group leader.
1095 */
1096SYSCALL_DEFINE1(exit_group, int, error_code)
1097{
1098	do_group_exit((error_code & 0xff) << 8);
1099	/* NOTREACHED */
1100	return 0;
1101}
1102
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1103static int eligible_pid(struct wait_opts *wo, struct task_struct *p)
1104{
1105	return	wo->wo_type == PIDTYPE_MAX ||
1106		task_pid_type(p, wo->wo_type) == wo->wo_pid;
1107}
1108
1109static int
1110eligible_child(struct wait_opts *wo, bool ptrace, struct task_struct *p)
1111{
1112	if (!eligible_pid(wo, p))
1113		return 0;
1114
1115	/*
1116	 * Wait for all children (clone and not) if __WALL is set or
1117	 * if it is traced by us.
1118	 */
1119	if (ptrace || (wo->wo_flags & __WALL))
1120		return 1;
1121
1122	/*
1123	 * Otherwise, wait for clone children *only* if __WCLONE is set;
1124	 * otherwise, wait for non-clone children *only*.
1125	 *
1126	 * Note: a "clone" child here is one that reports to its parent
1127	 * using a signal other than SIGCHLD, or a non-leader thread which
1128	 * we can only see if it is traced by us.
1129	 */
1130	if ((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE))
1131		return 0;
1132
1133	return 1;
1134}
1135
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1136/*
1137 * Handle sys_wait4 work for one task in state EXIT_ZOMBIE.  We hold
1138 * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1139 * the lock and this task is uninteresting.  If we return nonzero, we have
1140 * released the lock and the system call should return.
1141 */
1142static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p)
1143{
1144	int state, status;
1145	pid_t pid = task_pid_vnr(p);
1146	uid_t uid = from_kuid_munged(current_user_ns(), task_uid(p));
1147	struct waitid_info *infop;
1148
1149	if (!likely(wo->wo_flags & WEXITED))
1150		return 0;
1151
1152	if (unlikely(wo->wo_flags & WNOWAIT)) {
1153		status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1154			? p->signal->group_exit_code : p->exit_code;
 
1155		get_task_struct(p);
1156		read_unlock(&tasklist_lock);
1157		sched_annotate_sleep();
1158		if (wo->wo_rusage)
1159			getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1160		put_task_struct(p);
1161		goto out_info;
 
 
 
 
 
1162	}
1163	/*
1164	 * Move the task's state to DEAD/TRACE, only one thread can do this.
1165	 */
1166	state = (ptrace_reparented(p) && thread_group_leader(p)) ?
1167		EXIT_TRACE : EXIT_DEAD;
1168	if (cmpxchg(&p->exit_state, EXIT_ZOMBIE, state) != EXIT_ZOMBIE)
1169		return 0;
1170	/*
1171	 * We own this thread, nobody else can reap it.
1172	 */
1173	read_unlock(&tasklist_lock);
1174	sched_annotate_sleep();
1175
1176	/*
1177	 * Check thread_group_leader() to exclude the traced sub-threads.
1178	 */
1179	if (state == EXIT_DEAD && thread_group_leader(p)) {
1180		struct signal_struct *sig = p->signal;
1181		struct signal_struct *psig = current->signal;
1182		unsigned long maxrss;
1183		u64 tgutime, tgstime;
1184
1185		/*
1186		 * The resource counters for the group leader are in its
1187		 * own task_struct.  Those for dead threads in the group
1188		 * are in its signal_struct, as are those for the child
1189		 * processes it has previously reaped.  All these
1190		 * accumulate in the parent's signal_struct c* fields.
1191		 *
1192		 * We don't bother to take a lock here to protect these
1193		 * p->signal fields because the whole thread group is dead
1194		 * and nobody can change them.
1195		 *
1196		 * psig->stats_lock also protects us from our sub-threads
1197		 * which can reap other children at the same time.
 
 
1198		 *
1199		 * We use thread_group_cputime_adjusted() to get times for
1200		 * the thread group, which consolidates times for all threads
1201		 * in the group including the group leader.
1202		 */
1203		thread_group_cputime_adjusted(p, &tgutime, &tgstime);
1204		write_seqlock_irq(&psig->stats_lock);
 
1205		psig->cutime += tgutime + sig->cutime;
1206		psig->cstime += tgstime + sig->cstime;
1207		psig->cgtime += task_gtime(p) + sig->gtime + sig->cgtime;
1208		psig->cmin_flt +=
1209			p->min_flt + sig->min_flt + sig->cmin_flt;
1210		psig->cmaj_flt +=
1211			p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1212		psig->cnvcsw +=
1213			p->nvcsw + sig->nvcsw + sig->cnvcsw;
1214		psig->cnivcsw +=
1215			p->nivcsw + sig->nivcsw + sig->cnivcsw;
1216		psig->cinblock +=
1217			task_io_get_inblock(p) +
1218			sig->inblock + sig->cinblock;
1219		psig->coublock +=
1220			task_io_get_oublock(p) +
1221			sig->oublock + sig->coublock;
1222		maxrss = max(sig->maxrss, sig->cmaxrss);
1223		if (psig->cmaxrss < maxrss)
1224			psig->cmaxrss = maxrss;
1225		task_io_accounting_add(&psig->ioac, &p->ioac);
1226		task_io_accounting_add(&psig->ioac, &sig->ioac);
1227		write_sequnlock_irq(&psig->stats_lock);
 
1228	}
1229
1230	if (wo->wo_rusage)
1231		getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1232	status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1233		? p->signal->group_exit_code : p->exit_code;
1234	wo->wo_stat = status;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1235
1236	if (state == EXIT_TRACE) {
1237		write_lock_irq(&tasklist_lock);
1238		/* We dropped tasklist, ptracer could die and untrace */
1239		ptrace_unlink(p);
1240
1241		/* If parent wants a zombie, don't release it now */
1242		state = EXIT_ZOMBIE;
1243		if (do_notify_parent(p, p->exit_signal))
1244			state = EXIT_DEAD;
1245		p->exit_state = state;
1246		write_unlock_irq(&tasklist_lock);
1247	}
1248	if (state == EXIT_DEAD)
1249		release_task(p);
1250
1251out_info:
1252	infop = wo->wo_info;
1253	if (infop) {
1254		if ((status & 0x7f) == 0) {
1255			infop->cause = CLD_EXITED;
1256			infop->status = status >> 8;
1257		} else {
1258			infop->cause = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1259			infop->status = status & 0x7f;
1260		}
1261		infop->pid = pid;
1262		infop->uid = uid;
1263	}
1264
1265	return pid;
1266}
1267
1268static int *task_stopped_code(struct task_struct *p, bool ptrace)
1269{
1270	if (ptrace) {
1271		if (task_is_traced(p) && !(p->jobctl & JOBCTL_LISTENING))
1272			return &p->exit_code;
1273	} else {
1274		if (p->signal->flags & SIGNAL_STOP_STOPPED)
1275			return &p->signal->group_exit_code;
1276	}
1277	return NULL;
1278}
1279
1280/**
1281 * wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED
1282 * @wo: wait options
1283 * @ptrace: is the wait for ptrace
1284 * @p: task to wait for
1285 *
1286 * Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED.
1287 *
1288 * CONTEXT:
1289 * read_lock(&tasklist_lock), which is released if return value is
1290 * non-zero.  Also, grabs and releases @p->sighand->siglock.
1291 *
1292 * RETURNS:
1293 * 0 if wait condition didn't exist and search for other wait conditions
1294 * should continue.  Non-zero return, -errno on failure and @p's pid on
1295 * success, implies that tasklist_lock is released and wait condition
1296 * search should terminate.
1297 */
1298static int wait_task_stopped(struct wait_opts *wo,
1299				int ptrace, struct task_struct *p)
1300{
1301	struct waitid_info *infop;
1302	int exit_code, *p_code, why;
1303	uid_t uid = 0; /* unneeded, required by compiler */
1304	pid_t pid;
1305
1306	/*
1307	 * Traditionally we see ptrace'd stopped tasks regardless of options.
1308	 */
1309	if (!ptrace && !(wo->wo_flags & WUNTRACED))
1310		return 0;
1311
1312	if (!task_stopped_code(p, ptrace))
1313		return 0;
1314
1315	exit_code = 0;
1316	spin_lock_irq(&p->sighand->siglock);
1317
1318	p_code = task_stopped_code(p, ptrace);
1319	if (unlikely(!p_code))
1320		goto unlock_sig;
1321
1322	exit_code = *p_code;
1323	if (!exit_code)
1324		goto unlock_sig;
1325
1326	if (!unlikely(wo->wo_flags & WNOWAIT))
1327		*p_code = 0;
1328
1329	uid = from_kuid_munged(current_user_ns(), task_uid(p));
1330unlock_sig:
1331	spin_unlock_irq(&p->sighand->siglock);
1332	if (!exit_code)
1333		return 0;
1334
1335	/*
1336	 * Now we are pretty sure this task is interesting.
1337	 * Make sure it doesn't get reaped out from under us while we
1338	 * give up the lock and then examine it below.  We don't want to
1339	 * keep holding onto the tasklist_lock while we call getrusage and
1340	 * possibly take page faults for user memory.
1341	 */
1342	get_task_struct(p);
1343	pid = task_pid_vnr(p);
1344	why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
1345	read_unlock(&tasklist_lock);
1346	sched_annotate_sleep();
1347	if (wo->wo_rusage)
1348		getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1349	put_task_struct(p);
1350
1351	if (likely(!(wo->wo_flags & WNOWAIT)))
1352		wo->wo_stat = (exit_code << 8) | 0x7f;
 
 
 
 
 
1353
1354	infop = wo->wo_info;
1355	if (infop) {
1356		infop->cause = why;
1357		infop->status = exit_code;
1358		infop->pid = pid;
1359		infop->uid = uid;
1360	}
1361	return pid;
 
 
 
 
 
 
 
 
 
 
 
1362}
1363
1364/*
1365 * Handle do_wait work for one task in a live, non-stopped state.
1366 * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1367 * the lock and this task is uninteresting.  If we return nonzero, we have
1368 * released the lock and the system call should return.
1369 */
1370static int wait_task_continued(struct wait_opts *wo, struct task_struct *p)
1371{
1372	struct waitid_info *infop;
1373	pid_t pid;
1374	uid_t uid;
1375
1376	if (!unlikely(wo->wo_flags & WCONTINUED))
1377		return 0;
1378
1379	if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1380		return 0;
1381
1382	spin_lock_irq(&p->sighand->siglock);
1383	/* Re-check with the lock held.  */
1384	if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1385		spin_unlock_irq(&p->sighand->siglock);
1386		return 0;
1387	}
1388	if (!unlikely(wo->wo_flags & WNOWAIT))
1389		p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1390	uid = from_kuid_munged(current_user_ns(), task_uid(p));
1391	spin_unlock_irq(&p->sighand->siglock);
1392
1393	pid = task_pid_vnr(p);
1394	get_task_struct(p);
1395	read_unlock(&tasklist_lock);
1396	sched_annotate_sleep();
1397	if (wo->wo_rusage)
1398		getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1399	put_task_struct(p);
1400
1401	infop = wo->wo_info;
1402	if (!infop) {
1403		wo->wo_stat = 0xffff;
 
 
 
 
 
1404	} else {
1405		infop->cause = CLD_CONTINUED;
1406		infop->pid = pid;
1407		infop->uid = uid;
1408		infop->status = SIGCONT;
1409	}
1410	return pid;
 
1411}
1412
1413/*
1414 * Consider @p for a wait by @parent.
1415 *
1416 * -ECHILD should be in ->notask_error before the first call.
1417 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1418 * Returns zero if the search for a child should continue;
1419 * then ->notask_error is 0 if @p is an eligible child,
1420 * or still -ECHILD.
1421 */
1422static int wait_consider_task(struct wait_opts *wo, int ptrace,
1423				struct task_struct *p)
1424{
1425	/*
1426	 * We can race with wait_task_zombie() from another thread.
1427	 * Ensure that EXIT_ZOMBIE -> EXIT_DEAD/EXIT_TRACE transition
1428	 * can't confuse the checks below.
1429	 */
1430	int exit_state = READ_ONCE(p->exit_state);
1431	int ret;
1432
1433	if (unlikely(exit_state == EXIT_DEAD))
1434		return 0;
1435
1436	ret = eligible_child(wo, ptrace, p);
1437	if (!ret)
1438		return ret;
1439
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1440	if (unlikely(exit_state == EXIT_TRACE)) {
1441		/*
1442		 * ptrace == 0 means we are the natural parent. In this case
1443		 * we should clear notask_error, debugger will notify us.
1444		 */
1445		if (likely(!ptrace))
1446			wo->notask_error = 0;
1447		return 0;
1448	}
1449
1450	if (likely(!ptrace) && unlikely(p->ptrace)) {
1451		/*
1452		 * If it is traced by its real parent's group, just pretend
1453		 * the caller is ptrace_do_wait() and reap this child if it
1454		 * is zombie.
1455		 *
1456		 * This also hides group stop state from real parent; otherwise
1457		 * a single stop can be reported twice as group and ptrace stop.
1458		 * If a ptracer wants to distinguish these two events for its
1459		 * own children it should create a separate process which takes
1460		 * the role of real parent.
1461		 */
1462		if (!ptrace_reparented(p))
1463			ptrace = 1;
1464	}
1465
1466	/* slay zombie? */
1467	if (exit_state == EXIT_ZOMBIE) {
1468		/* we don't reap group leaders with subthreads */
1469		if (!delay_group_leader(p)) {
1470			/*
1471			 * A zombie ptracee is only visible to its ptracer.
1472			 * Notification and reaping will be cascaded to the
1473			 * real parent when the ptracer detaches.
1474			 */
1475			if (unlikely(ptrace) || likely(!p->ptrace))
1476				return wait_task_zombie(wo, p);
1477		}
1478
1479		/*
1480		 * Allow access to stopped/continued state via zombie by
1481		 * falling through.  Clearing of notask_error is complex.
1482		 *
1483		 * When !@ptrace:
1484		 *
1485		 * If WEXITED is set, notask_error should naturally be
1486		 * cleared.  If not, subset of WSTOPPED|WCONTINUED is set,
1487		 * so, if there are live subthreads, there are events to
1488		 * wait for.  If all subthreads are dead, it's still safe
1489		 * to clear - this function will be called again in finite
1490		 * amount time once all the subthreads are released and
1491		 * will then return without clearing.
1492		 *
1493		 * When @ptrace:
1494		 *
1495		 * Stopped state is per-task and thus can't change once the
1496		 * target task dies.  Only continued and exited can happen.
1497		 * Clear notask_error if WCONTINUED | WEXITED.
1498		 */
1499		if (likely(!ptrace) || (wo->wo_flags & (WCONTINUED | WEXITED)))
1500			wo->notask_error = 0;
1501	} else {
1502		/*
1503		 * @p is alive and it's gonna stop, continue or exit, so
1504		 * there always is something to wait for.
1505		 */
1506		wo->notask_error = 0;
1507	}
1508
1509	/*
1510	 * Wait for stopped.  Depending on @ptrace, different stopped state
1511	 * is used and the two don't interact with each other.
1512	 */
1513	ret = wait_task_stopped(wo, ptrace, p);
1514	if (ret)
1515		return ret;
1516
1517	/*
1518	 * Wait for continued.  There's only one continued state and the
1519	 * ptracer can consume it which can confuse the real parent.  Don't
1520	 * use WCONTINUED from ptracer.  You don't need or want it.
1521	 */
1522	return wait_task_continued(wo, p);
1523}
1524
1525/*
1526 * Do the work of do_wait() for one thread in the group, @tsk.
1527 *
1528 * -ECHILD should be in ->notask_error before the first call.
1529 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1530 * Returns zero if the search for a child should continue; then
1531 * ->notask_error is 0 if there were any eligible children,
1532 * or still -ECHILD.
1533 */
1534static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk)
1535{
1536	struct task_struct *p;
1537
1538	list_for_each_entry(p, &tsk->children, sibling) {
1539		int ret = wait_consider_task(wo, 0, p);
1540
1541		if (ret)
1542			return ret;
1543	}
1544
1545	return 0;
1546}
1547
1548static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk)
1549{
1550	struct task_struct *p;
1551
1552	list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
1553		int ret = wait_consider_task(wo, 1, p);
1554
1555		if (ret)
1556			return ret;
1557	}
1558
1559	return 0;
1560}
1561
1562bool pid_child_should_wake(struct wait_opts *wo, struct task_struct *p)
1563{
1564	if (!eligible_pid(wo, p))
1565		return false;
1566
1567	if ((wo->wo_flags & __WNOTHREAD) && wo->child_wait.private != p->parent)
1568		return false;
1569
1570	return true;
1571}
1572
1573static int child_wait_callback(wait_queue_entry_t *wait, unsigned mode,
1574				int sync, void *key)
1575{
1576	struct wait_opts *wo = container_of(wait, struct wait_opts,
1577						child_wait);
1578	struct task_struct *p = key;
1579
1580	if (pid_child_should_wake(wo, p))
1581		return default_wake_function(wait, mode, sync, key);
1582
1583	return 0;
 
 
 
1584}
1585
1586void __wake_up_parent(struct task_struct *p, struct task_struct *parent)
1587{
1588	__wake_up_sync_key(&parent->signal->wait_chldexit,
1589			   TASK_INTERRUPTIBLE, p);
1590}
1591
1592static bool is_effectively_child(struct wait_opts *wo, bool ptrace,
1593				 struct task_struct *target)
1594{
1595	struct task_struct *parent =
1596		!ptrace ? target->real_parent : target->parent;
1597
1598	return current == parent || (!(wo->wo_flags & __WNOTHREAD) &&
1599				     same_thread_group(current, parent));
1600}
1601
1602/*
1603 * Optimization for waiting on PIDTYPE_PID. No need to iterate through child
1604 * and tracee lists to find the target task.
1605 */
1606static int do_wait_pid(struct wait_opts *wo)
1607{
1608	bool ptrace;
1609	struct task_struct *target;
1610	int retval;
1611
1612	ptrace = false;
1613	target = pid_task(wo->wo_pid, PIDTYPE_TGID);
1614	if (target && is_effectively_child(wo, ptrace, target)) {
1615		retval = wait_consider_task(wo, ptrace, target);
1616		if (retval)
1617			return retval;
1618	}
1619
1620	ptrace = true;
1621	target = pid_task(wo->wo_pid, PIDTYPE_PID);
1622	if (target && target->ptrace &&
1623	    is_effectively_child(wo, ptrace, target)) {
1624		retval = wait_consider_task(wo, ptrace, target);
1625		if (retval)
1626			return retval;
1627	}
1628
1629	return 0;
1630}
1631
1632long __do_wait(struct wait_opts *wo)
1633{
1634	long retval;
1635
 
 
 
 
1636	/*
1637	 * If there is nothing that can match our criteria, just get out.
1638	 * We will clear ->notask_error to zero if we see any child that
1639	 * might later match our criteria, even if we are not able to reap
1640	 * it yet.
1641	 */
1642	wo->notask_error = -ECHILD;
1643	if ((wo->wo_type < PIDTYPE_MAX) &&
1644	   (!wo->wo_pid || !pid_has_task(wo->wo_pid, wo->wo_type)))
1645		goto notask;
1646
 
1647	read_lock(&tasklist_lock);
1648
1649	if (wo->wo_type == PIDTYPE_PID) {
1650		retval = do_wait_pid(wo);
1651		if (retval)
1652			return retval;
1653	} else {
1654		struct task_struct *tsk = current;
1655
1656		do {
1657			retval = do_wait_thread(wo, tsk);
1658			if (retval)
1659				return retval;
1660
1661			retval = ptrace_do_wait(wo, tsk);
1662			if (retval)
1663				return retval;
1664
1665			if (wo->wo_flags & __WNOTHREAD)
1666				break;
1667		} while_each_thread(current, tsk);
1668	}
1669	read_unlock(&tasklist_lock);
1670
1671notask:
1672	retval = wo->notask_error;
1673	if (!retval && !(wo->wo_flags & WNOHANG))
1674		return -ERESTARTSYS;
1675
1676	return retval;
1677}
1678
1679static long do_wait(struct wait_opts *wo)
1680{
1681	int retval;
1682
1683	trace_sched_process_wait(wo->wo_pid);
1684
1685	init_waitqueue_func_entry(&wo->child_wait, child_wait_callback);
1686	wo->child_wait.private = current;
1687	add_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1688
1689	do {
1690		set_current_state(TASK_INTERRUPTIBLE);
1691		retval = __do_wait(wo);
1692		if (retval != -ERESTARTSYS)
1693			break;
1694		if (signal_pending(current))
1695			break;
1696		schedule();
1697	} while (1);
1698
1699	__set_current_state(TASK_RUNNING);
1700	remove_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1701	return retval;
1702}
1703
1704int kernel_waitid_prepare(struct wait_opts *wo, int which, pid_t upid,
1705			  struct waitid_info *infop, int options,
1706			  struct rusage *ru)
1707{
1708	unsigned int f_flags = 0;
1709	struct pid *pid = NULL;
1710	enum pid_type type;
 
1711
1712	if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED|
1713			__WNOTHREAD|__WCLONE|__WALL))
1714		return -EINVAL;
1715	if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1716		return -EINVAL;
1717
1718	switch (which) {
1719	case P_ALL:
1720		type = PIDTYPE_MAX;
1721		break;
1722	case P_PID:
1723		type = PIDTYPE_PID;
1724		if (upid <= 0)
1725			return -EINVAL;
1726
1727		pid = find_get_pid(upid);
1728		break;
1729	case P_PGID:
1730		type = PIDTYPE_PGID;
1731		if (upid < 0)
1732			return -EINVAL;
1733
1734		if (upid)
1735			pid = find_get_pid(upid);
1736		else
1737			pid = get_task_pid(current, PIDTYPE_PGID);
1738		break;
1739	case P_PIDFD:
1740		type = PIDTYPE_PID;
1741		if (upid < 0)
1742			return -EINVAL;
1743
1744		pid = pidfd_get_pid(upid, &f_flags);
1745		if (IS_ERR(pid))
1746			return PTR_ERR(pid);
1747
1748		break;
1749	default:
1750		return -EINVAL;
1751	}
1752
1753	wo->wo_type	= type;
1754	wo->wo_pid	= pid;
1755	wo->wo_flags	= options;
1756	wo->wo_info	= infop;
1757	wo->wo_rusage	= ru;
1758	if (f_flags & O_NONBLOCK)
1759		wo->wo_flags |= WNOHANG;
1760
1761	return 0;
1762}
1763
1764static long kernel_waitid(int which, pid_t upid, struct waitid_info *infop,
1765			  int options, struct rusage *ru)
1766{
1767	struct wait_opts wo;
1768	long ret;
1769
1770	ret = kernel_waitid_prepare(&wo, which, upid, infop, options, ru);
1771	if (ret)
1772		return ret;
1773
 
 
 
 
 
 
1774	ret = do_wait(&wo);
1775	if (!ret && !(options & WNOHANG) && (wo.wo_flags & WNOHANG))
1776		ret = -EAGAIN;
1777
1778	put_pid(wo.wo_pid);
1779	return ret;
1780}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1781
1782SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *,
1783		infop, int, options, struct rusage __user *, ru)
1784{
1785	struct rusage r;
1786	struct waitid_info info = {.status = 0};
1787	long err = kernel_waitid(which, upid, &info, options, ru ? &r : NULL);
1788	int signo = 0;
1789
1790	if (err > 0) {
1791		signo = SIGCHLD;
1792		err = 0;
1793		if (ru && copy_to_user(ru, &r, sizeof(struct rusage)))
1794			return -EFAULT;
1795	}
1796	if (!infop)
1797		return err;
1798
1799	if (!user_write_access_begin(infop, sizeof(*infop)))
1800		return -EFAULT;
1801
1802	unsafe_put_user(signo, &infop->si_signo, Efault);
1803	unsafe_put_user(0, &infop->si_errno, Efault);
1804	unsafe_put_user(info.cause, &infop->si_code, Efault);
1805	unsafe_put_user(info.pid, &infop->si_pid, Efault);
1806	unsafe_put_user(info.uid, &infop->si_uid, Efault);
1807	unsafe_put_user(info.status, &infop->si_status, Efault);
1808	user_write_access_end();
1809	return err;
1810Efault:
1811	user_write_access_end();
1812	return -EFAULT;
1813}
1814
1815long kernel_wait4(pid_t upid, int __user *stat_addr, int options,
1816		  struct rusage *ru)
1817{
1818	struct wait_opts wo;
1819	struct pid *pid = NULL;
1820	enum pid_type type;
1821	long ret;
1822
1823	if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1824			__WNOTHREAD|__WCLONE|__WALL))
1825		return -EINVAL;
1826
1827	/* -INT_MIN is not defined */
1828	if (upid == INT_MIN)
1829		return -ESRCH;
1830
1831	if (upid == -1)
1832		type = PIDTYPE_MAX;
1833	else if (upid < 0) {
1834		type = PIDTYPE_PGID;
1835		pid = find_get_pid(-upid);
1836	} else if (upid == 0) {
1837		type = PIDTYPE_PGID;
1838		pid = get_task_pid(current, PIDTYPE_PGID);
1839	} else /* upid > 0 */ {
1840		type = PIDTYPE_PID;
1841		pid = find_get_pid(upid);
1842	}
1843
1844	wo.wo_type	= type;
1845	wo.wo_pid	= pid;
1846	wo.wo_flags	= options | WEXITED;
1847	wo.wo_info	= NULL;
1848	wo.wo_stat	= 0;
1849	wo.wo_rusage	= ru;
1850	ret = do_wait(&wo);
1851	put_pid(pid);
1852	if (ret > 0 && stat_addr && put_user(wo.wo_stat, stat_addr))
1853		ret = -EFAULT;
1854
1855	return ret;
1856}
1857
1858int kernel_wait(pid_t pid, int *stat)
1859{
1860	struct wait_opts wo = {
1861		.wo_type	= PIDTYPE_PID,
1862		.wo_pid		= find_get_pid(pid),
1863		.wo_flags	= WEXITED,
1864	};
1865	int ret;
1866
1867	ret = do_wait(&wo);
1868	if (ret > 0 && wo.wo_stat)
1869		*stat = wo.wo_stat;
1870	put_pid(wo.wo_pid);
1871	return ret;
1872}
1873
1874SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr,
1875		int, options, struct rusage __user *, ru)
1876{
1877	struct rusage r;
1878	long err = kernel_wait4(upid, stat_addr, options, ru ? &r : NULL);
1879
1880	if (err > 0) {
1881		if (ru && copy_to_user(ru, &r, sizeof(struct rusage)))
1882			return -EFAULT;
1883	}
1884	return err;
1885}
1886
1887#ifdef __ARCH_WANT_SYS_WAITPID
1888
1889/*
1890 * sys_waitpid() remains for compatibility. waitpid() should be
1891 * implemented by calling sys_wait4() from libc.a.
1892 */
1893SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options)
1894{
1895	return kernel_wait4(pid, stat_addr, options, NULL);
1896}
1897
1898#endif
1899
1900#ifdef CONFIG_COMPAT
1901COMPAT_SYSCALL_DEFINE4(wait4,
1902	compat_pid_t, pid,
1903	compat_uint_t __user *, stat_addr,
1904	int, options,
1905	struct compat_rusage __user *, ru)
1906{
1907	struct rusage r;
1908	long err = kernel_wait4(pid, stat_addr, options, ru ? &r : NULL);
1909	if (err > 0) {
1910		if (ru && put_compat_rusage(&r, ru))
1911			return -EFAULT;
1912	}
1913	return err;
1914}
1915
1916COMPAT_SYSCALL_DEFINE5(waitid,
1917		int, which, compat_pid_t, pid,
1918		struct compat_siginfo __user *, infop, int, options,
1919		struct compat_rusage __user *, uru)
1920{
1921	struct rusage ru;
1922	struct waitid_info info = {.status = 0};
1923	long err = kernel_waitid(which, pid, &info, options, uru ? &ru : NULL);
1924	int signo = 0;
1925	if (err > 0) {
1926		signo = SIGCHLD;
1927		err = 0;
1928		if (uru) {
1929			/* kernel_waitid() overwrites everything in ru */
1930			if (COMPAT_USE_64BIT_TIME)
1931				err = copy_to_user(uru, &ru, sizeof(ru));
1932			else
1933				err = put_compat_rusage(&ru, uru);
1934			if (err)
1935				return -EFAULT;
1936		}
1937	}
1938
1939	if (!infop)
1940		return err;
1941
1942	if (!user_write_access_begin(infop, sizeof(*infop)))
1943		return -EFAULT;
1944
1945	unsafe_put_user(signo, &infop->si_signo, Efault);
1946	unsafe_put_user(0, &infop->si_errno, Efault);
1947	unsafe_put_user(info.cause, &infop->si_code, Efault);
1948	unsafe_put_user(info.pid, &infop->si_pid, Efault);
1949	unsafe_put_user(info.uid, &infop->si_uid, Efault);
1950	unsafe_put_user(info.status, &infop->si_status, Efault);
1951	user_write_access_end();
1952	return err;
1953Efault:
1954	user_write_access_end();
1955	return -EFAULT;
1956}
1957#endif
1958
1959/*
1960 * This needs to be __function_aligned as GCC implicitly makes any
1961 * implementation of abort() cold and drops alignment specified by
1962 * -falign-functions=N.
1963 *
1964 * See https://gcc.gnu.org/bugzilla/show_bug.cgi?id=88345#c11
1965 */
1966__weak __function_aligned void abort(void)
1967{
1968	BUG();
1969
1970	/* if that doesn't kill us, halt */
1971	panic("Oops failed to kill thread");
1972}
1973EXPORT_SYMBOL(abort);
v4.6
 
   1/*
   2 *  linux/kernel/exit.c
   3 *
   4 *  Copyright (C) 1991, 1992  Linus Torvalds
   5 */
   6
   7#include <linux/mm.h>
   8#include <linux/slab.h>
 
 
 
 
 
 
   9#include <linux/interrupt.h>
  10#include <linux/module.h>
  11#include <linux/capability.h>
  12#include <linux/completion.h>
  13#include <linux/personality.h>
  14#include <linux/tty.h>
  15#include <linux/iocontext.h>
  16#include <linux/key.h>
  17#include <linux/security.h>
  18#include <linux/cpu.h>
  19#include <linux/acct.h>
  20#include <linux/tsacct_kern.h>
  21#include <linux/file.h>
  22#include <linux/fdtable.h>
  23#include <linux/freezer.h>
  24#include <linux/binfmts.h>
  25#include <linux/nsproxy.h>
  26#include <linux/pid_namespace.h>
  27#include <linux/ptrace.h>
  28#include <linux/profile.h>
  29#include <linux/mount.h>
  30#include <linux/proc_fs.h>
  31#include <linux/kthread.h>
  32#include <linux/mempolicy.h>
  33#include <linux/taskstats_kern.h>
  34#include <linux/delayacct.h>
  35#include <linux/cgroup.h>
  36#include <linux/syscalls.h>
  37#include <linux/signal.h>
  38#include <linux/posix-timers.h>
  39#include <linux/cn_proc.h>
  40#include <linux/mutex.h>
  41#include <linux/futex.h>
  42#include <linux/pipe_fs_i.h>
  43#include <linux/audit.h> /* for audit_free() */
  44#include <linux/resource.h>
 
  45#include <linux/blkdev.h>
  46#include <linux/task_io_accounting_ops.h>
  47#include <linux/tracehook.h>
  48#include <linux/fs_struct.h>
  49#include <linux/init_task.h>
  50#include <linux/perf_event.h>
  51#include <trace/events/sched.h>
  52#include <linux/hw_breakpoint.h>
  53#include <linux/oom.h>
  54#include <linux/writeback.h>
  55#include <linux/shm.h>
  56#include <linux/kcov.h>
 
 
 
 
 
 
 
 
 
 
 
 
  57
  58#include <asm/uaccess.h>
  59#include <asm/unistd.h>
  60#include <asm/pgtable.h>
  61#include <asm/mmu_context.h>
  62
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  63static void __unhash_process(struct task_struct *p, bool group_dead)
  64{
  65	nr_threads--;
  66	detach_pid(p, PIDTYPE_PID);
  67	if (group_dead) {
 
  68		detach_pid(p, PIDTYPE_PGID);
  69		detach_pid(p, PIDTYPE_SID);
  70
  71		list_del_rcu(&p->tasks);
  72		list_del_init(&p->sibling);
  73		__this_cpu_dec(process_counts);
  74	}
  75	list_del_rcu(&p->thread_group);
  76	list_del_rcu(&p->thread_node);
  77}
  78
  79/*
  80 * This function expects the tasklist_lock write-locked.
  81 */
  82static void __exit_signal(struct task_struct *tsk)
  83{
  84	struct signal_struct *sig = tsk->signal;
  85	bool group_dead = thread_group_leader(tsk);
  86	struct sighand_struct *sighand;
  87	struct tty_struct *uninitialized_var(tty);
  88	cputime_t utime, stime;
  89
  90	sighand = rcu_dereference_check(tsk->sighand,
  91					lockdep_tasklist_lock_is_held());
  92	spin_lock(&sighand->siglock);
  93
 
  94	posix_cpu_timers_exit(tsk);
 
 
 
 
  95	if (group_dead) {
  96		posix_cpu_timers_exit_group(tsk);
  97		tty = sig->tty;
  98		sig->tty = NULL;
  99	} else {
 100		/*
 101		 * This can only happen if the caller is de_thread().
 102		 * FIXME: this is the temporary hack, we should teach
 103		 * posix-cpu-timers to handle this case correctly.
 104		 */
 105		if (unlikely(has_group_leader_pid(tsk)))
 106			posix_cpu_timers_exit_group(tsk);
 107
 108		/*
 109		 * If there is any task waiting for the group exit
 110		 * then notify it:
 111		 */
 112		if (sig->notify_count > 0 && !--sig->notify_count)
 113			wake_up_process(sig->group_exit_task);
 114
 115		if (tsk == sig->curr_target)
 116			sig->curr_target = next_thread(tsk);
 117	}
 118
 
 
 
 119	/*
 120	 * Accumulate here the counters for all threads as they die. We could
 121	 * skip the group leader because it is the last user of signal_struct,
 122	 * but we want to avoid the race with thread_group_cputime() which can
 123	 * see the empty ->thread_head list.
 124	 */
 125	task_cputime(tsk, &utime, &stime);
 126	write_seqlock(&sig->stats_lock);
 127	sig->utime += utime;
 128	sig->stime += stime;
 129	sig->gtime += task_gtime(tsk);
 130	sig->min_flt += tsk->min_flt;
 131	sig->maj_flt += tsk->maj_flt;
 132	sig->nvcsw += tsk->nvcsw;
 133	sig->nivcsw += tsk->nivcsw;
 134	sig->inblock += task_io_get_inblock(tsk);
 135	sig->oublock += task_io_get_oublock(tsk);
 136	task_io_accounting_add(&sig->ioac, &tsk->ioac);
 137	sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
 138	sig->nr_threads--;
 139	__unhash_process(tsk, group_dead);
 140	write_sequnlock(&sig->stats_lock);
 141
 142	/*
 143	 * Do this under ->siglock, we can race with another thread
 144	 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
 145	 */
 146	flush_sigqueue(&tsk->pending);
 147	tsk->sighand = NULL;
 148	spin_unlock(&sighand->siglock);
 149
 150	__cleanup_sighand(sighand);
 151	clear_tsk_thread_flag(tsk, TIF_SIGPENDING);
 152	if (group_dead) {
 153		flush_sigqueue(&sig->shared_pending);
 154		tty_kref_put(tty);
 155	}
 156}
 157
 158static void delayed_put_task_struct(struct rcu_head *rhp)
 159{
 160	struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
 161
 
 
 162	perf_event_delayed_put(tsk);
 163	trace_sched_process_free(tsk);
 164	put_task_struct(tsk);
 165}
 166
 
 
 
 
 
 
 
 
 
 167
 168void release_task(struct task_struct *p)
 169{
 170	struct task_struct *leader;
 
 171	int zap_leader;
 172repeat:
 173	/* don't need to get the RCU readlock here - the process is dead and
 174	 * can't be modifying its own credentials. But shut RCU-lockdep up */
 175	rcu_read_lock();
 176	atomic_dec(&__task_cred(p)->user->processes);
 177	rcu_read_unlock();
 178
 179	proc_flush_task(p);
 180
 181	write_lock_irq(&tasklist_lock);
 182	ptrace_release_task(p);
 
 183	__exit_signal(p);
 184
 185	/*
 186	 * If we are the last non-leader member of the thread
 187	 * group, and the leader is zombie, then notify the
 188	 * group leader's parent process. (if it wants notification.)
 189	 */
 190	zap_leader = 0;
 191	leader = p->group_leader;
 192	if (leader != p && thread_group_empty(leader)
 193			&& leader->exit_state == EXIT_ZOMBIE) {
 194		/*
 195		 * If we were the last child thread and the leader has
 196		 * exited already, and the leader's parent ignores SIGCHLD,
 197		 * then we are the one who should release the leader.
 198		 */
 199		zap_leader = do_notify_parent(leader, leader->exit_signal);
 200		if (zap_leader)
 201			leader->exit_state = EXIT_DEAD;
 202	}
 203
 204	write_unlock_irq(&tasklist_lock);
 
 
 205	release_thread(p);
 206	call_rcu(&p->rcu, delayed_put_task_struct);
 207
 208	p = leader;
 209	if (unlikely(zap_leader))
 210		goto repeat;
 211}
 212
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 213/*
 214 * Determine if a process group is "orphaned", according to the POSIX
 215 * definition in 2.2.2.52.  Orphaned process groups are not to be affected
 216 * by terminal-generated stop signals.  Newly orphaned process groups are
 217 * to receive a SIGHUP and a SIGCONT.
 218 *
 219 * "I ask you, have you ever known what it is to be an orphan?"
 220 */
 221static int will_become_orphaned_pgrp(struct pid *pgrp,
 222					struct task_struct *ignored_task)
 223{
 224	struct task_struct *p;
 225
 226	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
 227		if ((p == ignored_task) ||
 228		    (p->exit_state && thread_group_empty(p)) ||
 229		    is_global_init(p->real_parent))
 230			continue;
 231
 232		if (task_pgrp(p->real_parent) != pgrp &&
 233		    task_session(p->real_parent) == task_session(p))
 234			return 0;
 235	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
 236
 237	return 1;
 238}
 239
 240int is_current_pgrp_orphaned(void)
 241{
 242	int retval;
 243
 244	read_lock(&tasklist_lock);
 245	retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
 246	read_unlock(&tasklist_lock);
 247
 248	return retval;
 249}
 250
 251static bool has_stopped_jobs(struct pid *pgrp)
 252{
 253	struct task_struct *p;
 254
 255	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
 256		if (p->signal->flags & SIGNAL_STOP_STOPPED)
 257			return true;
 258	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
 259
 260	return false;
 261}
 262
 263/*
 264 * Check to see if any process groups have become orphaned as
 265 * a result of our exiting, and if they have any stopped jobs,
 266 * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
 267 */
 268static void
 269kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
 270{
 271	struct pid *pgrp = task_pgrp(tsk);
 272	struct task_struct *ignored_task = tsk;
 273
 274	if (!parent)
 275		/* exit: our father is in a different pgrp than
 276		 * we are and we were the only connection outside.
 277		 */
 278		parent = tsk->real_parent;
 279	else
 280		/* reparent: our child is in a different pgrp than
 281		 * we are, and it was the only connection outside.
 282		 */
 283		ignored_task = NULL;
 284
 285	if (task_pgrp(parent) != pgrp &&
 286	    task_session(parent) == task_session(tsk) &&
 287	    will_become_orphaned_pgrp(pgrp, ignored_task) &&
 288	    has_stopped_jobs(pgrp)) {
 289		__kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
 290		__kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
 291	}
 292}
 293
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 294#ifdef CONFIG_MEMCG
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 295/*
 296 * A task is exiting.   If it owned this mm, find a new owner for the mm.
 297 */
 298void mm_update_next_owner(struct mm_struct *mm)
 299{
 300	struct task_struct *c, *g, *p = current;
 301
 302retry:
 303	/*
 304	 * If the exiting or execing task is not the owner, it's
 305	 * someone else's problem.
 306	 */
 307	if (mm->owner != p)
 308		return;
 309	/*
 310	 * The current owner is exiting/execing and there are no other
 311	 * candidates.  Do not leave the mm pointing to a possibly
 312	 * freed task structure.
 313	 */
 314	if (atomic_read(&mm->mm_users) <= 1) {
 315		mm->owner = NULL;
 316		return;
 317	}
 318
 319	read_lock(&tasklist_lock);
 320	/*
 321	 * Search in the children
 322	 */
 323	list_for_each_entry(c, &p->children, sibling) {
 324		if (c->mm == mm)
 325			goto assign_new_owner;
 326	}
 327
 328	/*
 329	 * Search in the siblings
 330	 */
 331	list_for_each_entry(c, &p->real_parent->children, sibling) {
 332		if (c->mm == mm)
 333			goto assign_new_owner;
 334	}
 335
 336	/*
 337	 * Search through everything else, we should not get here often.
 338	 */
 339	for_each_process(g) {
 
 
 340		if (g->flags & PF_KTHREAD)
 341			continue;
 342		for_each_thread(g, c) {
 343			if (c->mm == mm)
 344				goto assign_new_owner;
 345			if (c->mm)
 346				break;
 347		}
 348	}
 349	read_unlock(&tasklist_lock);
 350	/*
 351	 * We found no owner yet mm_users > 1: this implies that we are
 352	 * most likely racing with swapoff (try_to_unuse()) or /proc or
 353	 * ptrace or page migration (get_task_mm()).  Mark owner as NULL.
 354	 */
 355	mm->owner = NULL;
 
 356	return;
 357
 358assign_new_owner:
 359	BUG_ON(c == p);
 360	get_task_struct(c);
 361	/*
 362	 * The task_lock protects c->mm from changing.
 363	 * We always want mm->owner->mm == mm
 364	 */
 365	task_lock(c);
 366	/*
 367	 * Delay read_unlock() till we have the task_lock()
 368	 * to ensure that c does not slip away underneath us
 369	 */
 370	read_unlock(&tasklist_lock);
 371	if (c->mm != mm) {
 372		task_unlock(c);
 373		put_task_struct(c);
 374		goto retry;
 375	}
 376	mm->owner = c;
 377	task_unlock(c);
 378	put_task_struct(c);
 379}
 380#endif /* CONFIG_MEMCG */
 381
 382/*
 383 * Turn us into a lazy TLB process if we
 384 * aren't already..
 385 */
 386static void exit_mm(struct task_struct *tsk)
 387{
 388	struct mm_struct *mm = tsk->mm;
 389	struct core_state *core_state;
 390
 391	mm_release(tsk, mm);
 392	if (!mm)
 393		return;
 394	sync_mm_rss(mm);
 
 
 
 
 395	/*
 396	 * Serialize with any possible pending coredump.
 397	 * We must hold mmap_sem around checking core_state
 398	 * and clearing tsk->mm.  The core-inducing thread
 399	 * will increment ->nr_threads for each thread in the
 400	 * group with ->mm != NULL.
 401	 */
 402	down_read(&mm->mmap_sem);
 403	core_state = mm->core_state;
 404	if (core_state) {
 405		struct core_thread self;
 406
 407		up_read(&mm->mmap_sem);
 408
 409		self.task = tsk;
 410		self.next = xchg(&core_state->dumper.next, &self);
 411		/*
 412		 * Implies mb(), the result of xchg() must be visible
 413		 * to core_state->dumper.
 414		 */
 415		if (atomic_dec_and_test(&core_state->nr_threads))
 416			complete(&core_state->startup);
 417
 418		for (;;) {
 419			set_task_state(tsk, TASK_UNINTERRUPTIBLE);
 420			if (!self.task) /* see coredump_finish() */
 421				break;
 422			freezable_schedule();
 423		}
 424		__set_task_state(tsk, TASK_RUNNING);
 425		down_read(&mm->mmap_sem);
 426	}
 427	atomic_inc(&mm->mm_count);
 428	BUG_ON(mm != tsk->active_mm);
 429	/* more a memory barrier than a real lock */
 430	task_lock(tsk);
 431	tsk->mm = NULL;
 432	up_read(&mm->mmap_sem);
 433	enter_lazy_tlb(mm, current);
 434	task_unlock(tsk);
 
 
 435	mm_update_next_owner(mm);
 436	mmput(mm);
 437	if (test_thread_flag(TIF_MEMDIE))
 438		exit_oom_victim(tsk);
 439}
 440
 441static struct task_struct *find_alive_thread(struct task_struct *p)
 442{
 443	struct task_struct *t;
 444
 445	for_each_thread(p, t) {
 446		if (!(t->flags & PF_EXITING))
 447			return t;
 448	}
 449	return NULL;
 450}
 451
 452static struct task_struct *find_child_reaper(struct task_struct *father)
 
 453	__releases(&tasklist_lock)
 454	__acquires(&tasklist_lock)
 455{
 456	struct pid_namespace *pid_ns = task_active_pid_ns(father);
 457	struct task_struct *reaper = pid_ns->child_reaper;
 
 458
 459	if (likely(reaper != father))
 460		return reaper;
 461
 462	reaper = find_alive_thread(father);
 463	if (reaper) {
 464		pid_ns->child_reaper = reaper;
 465		return reaper;
 466	}
 467
 468	write_unlock_irq(&tasklist_lock);
 469	if (unlikely(pid_ns == &init_pid_ns)) {
 470		panic("Attempted to kill init! exitcode=0x%08x\n",
 471			father->signal->group_exit_code ?: father->exit_code);
 
 472	}
 
 473	zap_pid_ns_processes(pid_ns);
 474	write_lock_irq(&tasklist_lock);
 475
 476	return father;
 477}
 478
 479/*
 480 * When we die, we re-parent all our children, and try to:
 481 * 1. give them to another thread in our thread group, if such a member exists
 482 * 2. give it to the first ancestor process which prctl'd itself as a
 483 *    child_subreaper for its children (like a service manager)
 484 * 3. give it to the init process (PID 1) in our pid namespace
 485 */
 486static struct task_struct *find_new_reaper(struct task_struct *father,
 487					   struct task_struct *child_reaper)
 488{
 489	struct task_struct *thread, *reaper;
 490
 491	thread = find_alive_thread(father);
 492	if (thread)
 493		return thread;
 494
 495	if (father->signal->has_child_subreaper) {
 
 496		/*
 497		 * Find the first ->is_child_subreaper ancestor in our pid_ns.
 498		 * We start from father to ensure we can not look into another
 499		 * namespace, this is safe because all its threads are dead.
 
 
 
 500		 */
 501		for (reaper = father;
 502		     !same_thread_group(reaper, child_reaper);
 503		     reaper = reaper->real_parent) {
 504			/* call_usermodehelper() descendants need this check */
 505			if (reaper == &init_task)
 506				break;
 507			if (!reaper->signal->is_child_subreaper)
 508				continue;
 509			thread = find_alive_thread(reaper);
 510			if (thread)
 511				return thread;
 512		}
 513	}
 514
 515	return child_reaper;
 516}
 517
 518/*
 519* Any that need to be release_task'd are put on the @dead list.
 520 */
 521static void reparent_leader(struct task_struct *father, struct task_struct *p,
 522				struct list_head *dead)
 523{
 524	if (unlikely(p->exit_state == EXIT_DEAD))
 525		return;
 526
 527	/* We don't want people slaying init. */
 528	p->exit_signal = SIGCHLD;
 529
 530	/* If it has exited notify the new parent about this child's death. */
 531	if (!p->ptrace &&
 532	    p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) {
 533		if (do_notify_parent(p, p->exit_signal)) {
 534			p->exit_state = EXIT_DEAD;
 535			list_add(&p->ptrace_entry, dead);
 536		}
 537	}
 538
 539	kill_orphaned_pgrp(p, father);
 540}
 541
 542/*
 543 * This does two things:
 544 *
 545 * A.  Make init inherit all the child processes
 546 * B.  Check to see if any process groups have become orphaned
 547 *	as a result of our exiting, and if they have any stopped
 548 *	jobs, send them a SIGHUP and then a SIGCONT.  (POSIX 3.2.2.2)
 549 */
 550static void forget_original_parent(struct task_struct *father,
 551					struct list_head *dead)
 552{
 553	struct task_struct *p, *t, *reaper;
 554
 555	if (unlikely(!list_empty(&father->ptraced)))
 556		exit_ptrace(father, dead);
 557
 558	/* Can drop and reacquire tasklist_lock */
 559	reaper = find_child_reaper(father);
 560	if (list_empty(&father->children))
 561		return;
 562
 563	reaper = find_new_reaper(father, reaper);
 564	list_for_each_entry(p, &father->children, sibling) {
 565		for_each_thread(p, t) {
 566			t->real_parent = reaper;
 567			BUG_ON((!t->ptrace) != (t->parent == father));
 568			if (likely(!t->ptrace))
 569				t->parent = t->real_parent;
 570			if (t->pdeath_signal)
 571				group_send_sig_info(t->pdeath_signal,
 572						    SEND_SIG_NOINFO, t);
 
 573		}
 574		/*
 575		 * If this is a threaded reparent there is no need to
 576		 * notify anyone anything has happened.
 577		 */
 578		if (!same_thread_group(reaper, father))
 579			reparent_leader(father, p, dead);
 580	}
 581	list_splice_tail_init(&father->children, &reaper->children);
 582}
 583
 584/*
 585 * Send signals to all our closest relatives so that they know
 586 * to properly mourn us..
 587 */
 588static void exit_notify(struct task_struct *tsk, int group_dead)
 589{
 590	bool autoreap;
 591	struct task_struct *p, *n;
 592	LIST_HEAD(dead);
 593
 594	write_lock_irq(&tasklist_lock);
 595	forget_original_parent(tsk, &dead);
 596
 597	if (group_dead)
 598		kill_orphaned_pgrp(tsk->group_leader, NULL);
 599
 
 
 
 
 
 
 
 
 600	if (unlikely(tsk->ptrace)) {
 601		int sig = thread_group_leader(tsk) &&
 602				thread_group_empty(tsk) &&
 603				!ptrace_reparented(tsk) ?
 604			tsk->exit_signal : SIGCHLD;
 605		autoreap = do_notify_parent(tsk, sig);
 606	} else if (thread_group_leader(tsk)) {
 607		autoreap = thread_group_empty(tsk) &&
 608			do_notify_parent(tsk, tsk->exit_signal);
 609	} else {
 610		autoreap = true;
 611	}
 612
 613	tsk->exit_state = autoreap ? EXIT_DEAD : EXIT_ZOMBIE;
 614	if (tsk->exit_state == EXIT_DEAD)
 615		list_add(&tsk->ptrace_entry, &dead);
 
 616
 617	/* mt-exec, de_thread() is waiting for group leader */
 618	if (unlikely(tsk->signal->notify_count < 0))
 619		wake_up_process(tsk->signal->group_exit_task);
 620	write_unlock_irq(&tasklist_lock);
 621
 622	list_for_each_entry_safe(p, n, &dead, ptrace_entry) {
 623		list_del_init(&p->ptrace_entry);
 624		release_task(p);
 625	}
 626}
 627
 628#ifdef CONFIG_DEBUG_STACK_USAGE
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 629static void check_stack_usage(void)
 630{
 631	static DEFINE_SPINLOCK(low_water_lock);
 632	static int lowest_to_date = THREAD_SIZE;
 633	unsigned long free;
 634
 635	free = stack_not_used(current);
 
 636
 637	if (free >= lowest_to_date)
 638		return;
 639
 640	spin_lock(&low_water_lock);
 641	if (free < lowest_to_date) {
 642		pr_warn("%s (%d) used greatest stack depth: %lu bytes left\n",
 643			current->comm, task_pid_nr(current), free);
 644		lowest_to_date = free;
 645	}
 646	spin_unlock(&low_water_lock);
 647}
 648#else
 649static inline void check_stack_usage(void) {}
 650#endif
 651
 652void do_exit(long code)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 653{
 654	struct task_struct *tsk = current;
 655	int group_dead;
 656	TASKS_RCU(int tasks_rcu_i);
 657
 658	profile_task_exit(tsk);
 659	kcov_task_exit(tsk);
 660
 661	WARN_ON(blk_needs_flush_plug(tsk));
 662
 663	if (unlikely(in_interrupt()))
 664		panic("Aiee, killing interrupt handler!");
 665	if (unlikely(!tsk->pid))
 666		panic("Attempted to kill the idle task!");
 667
 668	/*
 669	 * If do_exit is called because this processes oopsed, it's possible
 670	 * that get_fs() was left as KERNEL_DS, so reset it to USER_DS before
 671	 * continuing. Amongst other possible reasons, this is to prevent
 672	 * mm_release()->clear_child_tid() from writing to a user-controlled
 673	 * kernel address.
 674	 */
 675	set_fs(USER_DS);
 676
 
 677	ptrace_event(PTRACE_EVENT_EXIT, code);
 
 678
 679	validate_creds_for_do_exit(tsk);
 680
 681	/*
 682	 * We're taking recursive faults here in do_exit. Safest is to just
 683	 * leave this task alone and wait for reboot.
 684	 */
 685	if (unlikely(tsk->flags & PF_EXITING)) {
 686		pr_alert("Fixing recursive fault but reboot is needed!\n");
 687		/*
 688		 * We can do this unlocked here. The futex code uses
 689		 * this flag just to verify whether the pi state
 690		 * cleanup has been done or not. In the worst case it
 691		 * loops once more. We pretend that the cleanup was
 692		 * done as there is no way to return. Either the
 693		 * OWNER_DIED bit is set by now or we push the blocked
 694		 * task into the wait for ever nirwana as well.
 695		 */
 696		tsk->flags |= PF_EXITPIDONE;
 697		set_current_state(TASK_UNINTERRUPTIBLE);
 698		schedule();
 699	}
 700
 701	exit_signals(tsk);  /* sets PF_EXITING */
 702	/*
 703	 * tsk->flags are checked in the futex code to protect against
 704	 * an exiting task cleaning up the robust pi futexes.
 705	 */
 706	smp_mb();
 707	raw_spin_unlock_wait(&tsk->pi_lock);
 708
 709	if (unlikely(in_atomic())) {
 710		pr_info("note: %s[%d] exited with preempt_count %d\n",
 711			current->comm, task_pid_nr(current),
 712			preempt_count());
 713		preempt_count_set(PREEMPT_ENABLED);
 714	}
 715
 716	/* sync mm's RSS info before statistics gathering */
 717	if (tsk->mm)
 718		sync_mm_rss(tsk->mm);
 719	acct_update_integrals(tsk);
 720	group_dead = atomic_dec_and_test(&tsk->signal->live);
 721	if (group_dead) {
 
 
 
 
 
 
 
 
 
 722		hrtimer_cancel(&tsk->signal->real_timer);
 723		exit_itimers(tsk->signal);
 
 724		if (tsk->mm)
 725			setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm);
 726	}
 727	acct_collect(code, group_dead);
 728	if (group_dead)
 729		tty_audit_exit();
 730	audit_free(tsk);
 731
 732	tsk->exit_code = code;
 733	taskstats_exit(tsk, group_dead);
 734
 735	exit_mm(tsk);
 736
 737	if (group_dead)
 738		acct_process();
 739	trace_sched_process_exit(tsk);
 740
 741	exit_sem(tsk);
 742	exit_shm(tsk);
 743	exit_files(tsk);
 744	exit_fs(tsk);
 745	if (group_dead)
 746		disassociate_ctty(1);
 747	exit_task_namespaces(tsk);
 748	exit_task_work(tsk);
 749	exit_thread();
 750
 751	/*
 752	 * Flush inherited counters to the parent - before the parent
 753	 * gets woken up by child-exit notifications.
 754	 *
 755	 * because of cgroup mode, must be called before cgroup_exit()
 756	 */
 757	perf_event_exit_task(tsk);
 758
 
 759	cgroup_exit(tsk);
 760
 761	/*
 762	 * FIXME: do that only when needed, using sched_exit tracepoint
 763	 */
 764	flush_ptrace_hw_breakpoint(tsk);
 765
 766	TASKS_RCU(preempt_disable());
 767	TASKS_RCU(tasks_rcu_i = __srcu_read_lock(&tasks_rcu_exit_srcu));
 768	TASKS_RCU(preempt_enable());
 769	exit_notify(tsk, group_dead);
 770	proc_exit_connector(tsk);
 771#ifdef CONFIG_NUMA
 772	task_lock(tsk);
 773	mpol_put(tsk->mempolicy);
 774	tsk->mempolicy = NULL;
 775	task_unlock(tsk);
 776#endif
 777#ifdef CONFIG_FUTEX
 778	if (unlikely(current->pi_state_cache))
 779		kfree(current->pi_state_cache);
 780#endif
 781	/*
 782	 * Make sure we are holding no locks:
 783	 */
 784	debug_check_no_locks_held();
 785	/*
 786	 * We can do this unlocked here. The futex code uses this flag
 787	 * just to verify whether the pi state cleanup has been done
 788	 * or not. In the worst case it loops once more.
 789	 */
 790	tsk->flags |= PF_EXITPIDONE;
 791
 792	if (tsk->io_context)
 793		exit_io_context(tsk);
 794
 795	if (tsk->splice_pipe)
 796		free_pipe_info(tsk->splice_pipe);
 797
 798	if (tsk->task_frag.page)
 799		put_page(tsk->task_frag.page);
 800
 801	validate_creds_for_do_exit(tsk);
 802
 803	check_stack_usage();
 804	preempt_disable();
 805	if (tsk->nr_dirtied)
 806		__this_cpu_add(dirty_throttle_leaks, tsk->nr_dirtied);
 807	exit_rcu();
 808	TASKS_RCU(__srcu_read_unlock(&tasks_rcu_exit_srcu, tasks_rcu_i));
 
 
 
 
 809
 
 
 810	/*
 811	 * The setting of TASK_RUNNING by try_to_wake_up() may be delayed
 812	 * when the following two conditions become true.
 813	 *   - There is race condition of mmap_sem (It is acquired by
 814	 *     exit_mm()), and
 815	 *   - SMI occurs before setting TASK_RUNINNG.
 816	 *     (or hypervisor of virtual machine switches to other guest)
 817	 *  As a result, we may become TASK_RUNNING after becoming TASK_DEAD
 818	 *
 819	 * To avoid it, we have to wait for releasing tsk->pi_lock which
 820	 * is held by try_to_wake_up()
 
 
 821	 */
 822	smp_mb();
 823	raw_spin_unlock_wait(&tsk->pi_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 824
 825	/* causes final put_task_struct in finish_task_switch(). */
 826	tsk->state = TASK_DEAD;
 827	tsk->flags |= PF_NOFREEZE;	/* tell freezer to ignore us */
 828	schedule();
 829	BUG();
 830	/* Avoid "noreturn function does return".  */
 831	for (;;)
 832		cpu_relax();	/* For when BUG is null */
 833}
 834EXPORT_SYMBOL_GPL(do_exit);
 
 
 
 835
 836void complete_and_exit(struct completion *comp, long code)
 837{
 838	if (comp)
 839		complete(comp);
 
 
 
 
 
 
 
 840
 841	do_exit(code);
 842}
 843EXPORT_SYMBOL(complete_and_exit);
 844
 845SYSCALL_DEFINE1(exit, int, error_code)
 846{
 847	do_exit((error_code&0xff)<<8);
 848}
 849
 850/*
 851 * Take down every thread in the group.  This is called by fatal signals
 852 * as well as by sys_exit_group (below).
 853 */
 854void
 855do_group_exit(int exit_code)
 856{
 857	struct signal_struct *sig = current->signal;
 858
 859	BUG_ON(exit_code & 0x80); /* core dumps don't get here */
 860
 861	if (signal_group_exit(sig))
 862		exit_code = sig->group_exit_code;
 863	else if (!thread_group_empty(current)) {
 
 
 864		struct sighand_struct *const sighand = current->sighand;
 865
 866		spin_lock_irq(&sighand->siglock);
 867		if (signal_group_exit(sig))
 868			/* Another thread got here before we took the lock.  */
 869			exit_code = sig->group_exit_code;
 
 
 870		else {
 871			sig->group_exit_code = exit_code;
 872			sig->flags = SIGNAL_GROUP_EXIT;
 873			zap_other_threads(current);
 874		}
 875		spin_unlock_irq(&sighand->siglock);
 876	}
 877
 878	do_exit(exit_code);
 879	/* NOTREACHED */
 880}
 881
 882/*
 883 * this kills every thread in the thread group. Note that any externally
 884 * wait4()-ing process will get the correct exit code - even if this
 885 * thread is not the thread group leader.
 886 */
 887SYSCALL_DEFINE1(exit_group, int, error_code)
 888{
 889	do_group_exit((error_code & 0xff) << 8);
 890	/* NOTREACHED */
 891	return 0;
 892}
 893
 894struct wait_opts {
 895	enum pid_type		wo_type;
 896	int			wo_flags;
 897	struct pid		*wo_pid;
 898
 899	struct siginfo __user	*wo_info;
 900	int __user		*wo_stat;
 901	struct rusage __user	*wo_rusage;
 902
 903	wait_queue_t		child_wait;
 904	int			notask_error;
 905};
 906
 907static inline
 908struct pid *task_pid_type(struct task_struct *task, enum pid_type type)
 909{
 910	if (type != PIDTYPE_PID)
 911		task = task->group_leader;
 912	return task->pids[type].pid;
 913}
 914
 915static int eligible_pid(struct wait_opts *wo, struct task_struct *p)
 916{
 917	return	wo->wo_type == PIDTYPE_MAX ||
 918		task_pid_type(p, wo->wo_type) == wo->wo_pid;
 919}
 920
 921static int eligible_child(struct wait_opts *wo, struct task_struct *p)
 
 922{
 923	if (!eligible_pid(wo, p))
 924		return 0;
 925	/* Wait for all children (clone and not) if __WALL is set;
 926	 * otherwise, wait for clone children *only* if __WCLONE is
 927	 * set; otherwise, wait for non-clone children *only*.  (Note:
 928	 * A "clone" child here is one that reports to its parent
 929	 * using a signal other than SIGCHLD.) */
 930	if (((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE))
 931	    && !(wo->wo_flags & __WALL))
 
 
 
 
 
 
 
 
 
 
 932		return 0;
 933
 934	return 1;
 935}
 936
 937static int wait_noreap_copyout(struct wait_opts *wo, struct task_struct *p,
 938				pid_t pid, uid_t uid, int why, int status)
 939{
 940	struct siginfo __user *infop;
 941	int retval = wo->wo_rusage
 942		? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
 943
 944	put_task_struct(p);
 945	infop = wo->wo_info;
 946	if (infop) {
 947		if (!retval)
 948			retval = put_user(SIGCHLD, &infop->si_signo);
 949		if (!retval)
 950			retval = put_user(0, &infop->si_errno);
 951		if (!retval)
 952			retval = put_user((short)why, &infop->si_code);
 953		if (!retval)
 954			retval = put_user(pid, &infop->si_pid);
 955		if (!retval)
 956			retval = put_user(uid, &infop->si_uid);
 957		if (!retval)
 958			retval = put_user(status, &infop->si_status);
 959	}
 960	if (!retval)
 961		retval = pid;
 962	return retval;
 963}
 964
 965/*
 966 * Handle sys_wait4 work for one task in state EXIT_ZOMBIE.  We hold
 967 * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
 968 * the lock and this task is uninteresting.  If we return nonzero, we have
 969 * released the lock and the system call should return.
 970 */
 971static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p)
 972{
 973	int state, retval, status;
 974	pid_t pid = task_pid_vnr(p);
 975	uid_t uid = from_kuid_munged(current_user_ns(), task_uid(p));
 976	struct siginfo __user *infop;
 977
 978	if (!likely(wo->wo_flags & WEXITED))
 979		return 0;
 980
 981	if (unlikely(wo->wo_flags & WNOWAIT)) {
 982		int exit_code = p->exit_code;
 983		int why;
 984
 985		get_task_struct(p);
 986		read_unlock(&tasklist_lock);
 987		sched_annotate_sleep();
 988
 989		if ((exit_code & 0x7f) == 0) {
 990			why = CLD_EXITED;
 991			status = exit_code >> 8;
 992		} else {
 993			why = (exit_code & 0x80) ? CLD_DUMPED : CLD_KILLED;
 994			status = exit_code & 0x7f;
 995		}
 996		return wait_noreap_copyout(wo, p, pid, uid, why, status);
 997	}
 998	/*
 999	 * Move the task's state to DEAD/TRACE, only one thread can do this.
1000	 */
1001	state = (ptrace_reparented(p) && thread_group_leader(p)) ?
1002		EXIT_TRACE : EXIT_DEAD;
1003	if (cmpxchg(&p->exit_state, EXIT_ZOMBIE, state) != EXIT_ZOMBIE)
1004		return 0;
1005	/*
1006	 * We own this thread, nobody else can reap it.
1007	 */
1008	read_unlock(&tasklist_lock);
1009	sched_annotate_sleep();
1010
1011	/*
1012	 * Check thread_group_leader() to exclude the traced sub-threads.
1013	 */
1014	if (state == EXIT_DEAD && thread_group_leader(p)) {
1015		struct signal_struct *sig = p->signal;
1016		struct signal_struct *psig = current->signal;
1017		unsigned long maxrss;
1018		cputime_t tgutime, tgstime;
1019
1020		/*
1021		 * The resource counters for the group leader are in its
1022		 * own task_struct.  Those for dead threads in the group
1023		 * are in its signal_struct, as are those for the child
1024		 * processes it has previously reaped.  All these
1025		 * accumulate in the parent's signal_struct c* fields.
1026		 *
1027		 * We don't bother to take a lock here to protect these
1028		 * p->signal fields because the whole thread group is dead
1029		 * and nobody can change them.
1030		 *
1031		 * psig->stats_lock also protects us from our sub-theads
1032		 * which can reap other children at the same time. Until
1033		 * we change k_getrusage()-like users to rely on this lock
1034		 * we have to take ->siglock as well.
1035		 *
1036		 * We use thread_group_cputime_adjusted() to get times for
1037		 * the thread group, which consolidates times for all threads
1038		 * in the group including the group leader.
1039		 */
1040		thread_group_cputime_adjusted(p, &tgutime, &tgstime);
1041		spin_lock_irq(&current->sighand->siglock);
1042		write_seqlock(&psig->stats_lock);
1043		psig->cutime += tgutime + sig->cutime;
1044		psig->cstime += tgstime + sig->cstime;
1045		psig->cgtime += task_gtime(p) + sig->gtime + sig->cgtime;
1046		psig->cmin_flt +=
1047			p->min_flt + sig->min_flt + sig->cmin_flt;
1048		psig->cmaj_flt +=
1049			p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1050		psig->cnvcsw +=
1051			p->nvcsw + sig->nvcsw + sig->cnvcsw;
1052		psig->cnivcsw +=
1053			p->nivcsw + sig->nivcsw + sig->cnivcsw;
1054		psig->cinblock +=
1055			task_io_get_inblock(p) +
1056			sig->inblock + sig->cinblock;
1057		psig->coublock +=
1058			task_io_get_oublock(p) +
1059			sig->oublock + sig->coublock;
1060		maxrss = max(sig->maxrss, sig->cmaxrss);
1061		if (psig->cmaxrss < maxrss)
1062			psig->cmaxrss = maxrss;
1063		task_io_accounting_add(&psig->ioac, &p->ioac);
1064		task_io_accounting_add(&psig->ioac, &sig->ioac);
1065		write_sequnlock(&psig->stats_lock);
1066		spin_unlock_irq(&current->sighand->siglock);
1067	}
1068
1069	retval = wo->wo_rusage
1070		? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1071	status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1072		? p->signal->group_exit_code : p->exit_code;
1073	if (!retval && wo->wo_stat)
1074		retval = put_user(status, wo->wo_stat);
1075
1076	infop = wo->wo_info;
1077	if (!retval && infop)
1078		retval = put_user(SIGCHLD, &infop->si_signo);
1079	if (!retval && infop)
1080		retval = put_user(0, &infop->si_errno);
1081	if (!retval && infop) {
1082		int why;
1083
1084		if ((status & 0x7f) == 0) {
1085			why = CLD_EXITED;
1086			status >>= 8;
1087		} else {
1088			why = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1089			status &= 0x7f;
1090		}
1091		retval = put_user((short)why, &infop->si_code);
1092		if (!retval)
1093			retval = put_user(status, &infop->si_status);
1094	}
1095	if (!retval && infop)
1096		retval = put_user(pid, &infop->si_pid);
1097	if (!retval && infop)
1098		retval = put_user(uid, &infop->si_uid);
1099	if (!retval)
1100		retval = pid;
1101
1102	if (state == EXIT_TRACE) {
1103		write_lock_irq(&tasklist_lock);
1104		/* We dropped tasklist, ptracer could die and untrace */
1105		ptrace_unlink(p);
1106
1107		/* If parent wants a zombie, don't release it now */
1108		state = EXIT_ZOMBIE;
1109		if (do_notify_parent(p, p->exit_signal))
1110			state = EXIT_DEAD;
1111		p->exit_state = state;
1112		write_unlock_irq(&tasklist_lock);
1113	}
1114	if (state == EXIT_DEAD)
1115		release_task(p);
1116
1117	return retval;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1118}
1119
1120static int *task_stopped_code(struct task_struct *p, bool ptrace)
1121{
1122	if (ptrace) {
1123		if (task_is_traced(p) && !(p->jobctl & JOBCTL_LISTENING))
1124			return &p->exit_code;
1125	} else {
1126		if (p->signal->flags & SIGNAL_STOP_STOPPED)
1127			return &p->signal->group_exit_code;
1128	}
1129	return NULL;
1130}
1131
1132/**
1133 * wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED
1134 * @wo: wait options
1135 * @ptrace: is the wait for ptrace
1136 * @p: task to wait for
1137 *
1138 * Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED.
1139 *
1140 * CONTEXT:
1141 * read_lock(&tasklist_lock), which is released if return value is
1142 * non-zero.  Also, grabs and releases @p->sighand->siglock.
1143 *
1144 * RETURNS:
1145 * 0 if wait condition didn't exist and search for other wait conditions
1146 * should continue.  Non-zero return, -errno on failure and @p's pid on
1147 * success, implies that tasklist_lock is released and wait condition
1148 * search should terminate.
1149 */
1150static int wait_task_stopped(struct wait_opts *wo,
1151				int ptrace, struct task_struct *p)
1152{
1153	struct siginfo __user *infop;
1154	int retval, exit_code, *p_code, why;
1155	uid_t uid = 0; /* unneeded, required by compiler */
1156	pid_t pid;
1157
1158	/*
1159	 * Traditionally we see ptrace'd stopped tasks regardless of options.
1160	 */
1161	if (!ptrace && !(wo->wo_flags & WUNTRACED))
1162		return 0;
1163
1164	if (!task_stopped_code(p, ptrace))
1165		return 0;
1166
1167	exit_code = 0;
1168	spin_lock_irq(&p->sighand->siglock);
1169
1170	p_code = task_stopped_code(p, ptrace);
1171	if (unlikely(!p_code))
1172		goto unlock_sig;
1173
1174	exit_code = *p_code;
1175	if (!exit_code)
1176		goto unlock_sig;
1177
1178	if (!unlikely(wo->wo_flags & WNOWAIT))
1179		*p_code = 0;
1180
1181	uid = from_kuid_munged(current_user_ns(), task_uid(p));
1182unlock_sig:
1183	spin_unlock_irq(&p->sighand->siglock);
1184	if (!exit_code)
1185		return 0;
1186
1187	/*
1188	 * Now we are pretty sure this task is interesting.
1189	 * Make sure it doesn't get reaped out from under us while we
1190	 * give up the lock and then examine it below.  We don't want to
1191	 * keep holding onto the tasklist_lock while we call getrusage and
1192	 * possibly take page faults for user memory.
1193	 */
1194	get_task_struct(p);
1195	pid = task_pid_vnr(p);
1196	why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
1197	read_unlock(&tasklist_lock);
1198	sched_annotate_sleep();
 
 
 
1199
1200	if (unlikely(wo->wo_flags & WNOWAIT))
1201		return wait_noreap_copyout(wo, p, pid, uid, why, exit_code);
1202
1203	retval = wo->wo_rusage
1204		? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1205	if (!retval && wo->wo_stat)
1206		retval = put_user((exit_code << 8) | 0x7f, wo->wo_stat);
1207
1208	infop = wo->wo_info;
1209	if (!retval && infop)
1210		retval = put_user(SIGCHLD, &infop->si_signo);
1211	if (!retval && infop)
1212		retval = put_user(0, &infop->si_errno);
1213	if (!retval && infop)
1214		retval = put_user((short)why, &infop->si_code);
1215	if (!retval && infop)
1216		retval = put_user(exit_code, &infop->si_status);
1217	if (!retval && infop)
1218		retval = put_user(pid, &infop->si_pid);
1219	if (!retval && infop)
1220		retval = put_user(uid, &infop->si_uid);
1221	if (!retval)
1222		retval = pid;
1223	put_task_struct(p);
1224
1225	BUG_ON(!retval);
1226	return retval;
1227}
1228
1229/*
1230 * Handle do_wait work for one task in a live, non-stopped state.
1231 * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1232 * the lock and this task is uninteresting.  If we return nonzero, we have
1233 * released the lock and the system call should return.
1234 */
1235static int wait_task_continued(struct wait_opts *wo, struct task_struct *p)
1236{
1237	int retval;
1238	pid_t pid;
1239	uid_t uid;
1240
1241	if (!unlikely(wo->wo_flags & WCONTINUED))
1242		return 0;
1243
1244	if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1245		return 0;
1246
1247	spin_lock_irq(&p->sighand->siglock);
1248	/* Re-check with the lock held.  */
1249	if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1250		spin_unlock_irq(&p->sighand->siglock);
1251		return 0;
1252	}
1253	if (!unlikely(wo->wo_flags & WNOWAIT))
1254		p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1255	uid = from_kuid_munged(current_user_ns(), task_uid(p));
1256	spin_unlock_irq(&p->sighand->siglock);
1257
1258	pid = task_pid_vnr(p);
1259	get_task_struct(p);
1260	read_unlock(&tasklist_lock);
1261	sched_annotate_sleep();
 
 
 
1262
1263	if (!wo->wo_info) {
1264		retval = wo->wo_rusage
1265			? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1266		put_task_struct(p);
1267		if (!retval && wo->wo_stat)
1268			retval = put_user(0xffff, wo->wo_stat);
1269		if (!retval)
1270			retval = pid;
1271	} else {
1272		retval = wait_noreap_copyout(wo, p, pid, uid,
1273					     CLD_CONTINUED, SIGCONT);
1274		BUG_ON(retval == 0);
 
1275	}
1276
1277	return retval;
1278}
1279
1280/*
1281 * Consider @p for a wait by @parent.
1282 *
1283 * -ECHILD should be in ->notask_error before the first call.
1284 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1285 * Returns zero if the search for a child should continue;
1286 * then ->notask_error is 0 if @p is an eligible child,
1287 * or another error from security_task_wait(), or still -ECHILD.
1288 */
1289static int wait_consider_task(struct wait_opts *wo, int ptrace,
1290				struct task_struct *p)
1291{
1292	/*
1293	 * We can race with wait_task_zombie() from another thread.
1294	 * Ensure that EXIT_ZOMBIE -> EXIT_DEAD/EXIT_TRACE transition
1295	 * can't confuse the checks below.
1296	 */
1297	int exit_state = ACCESS_ONCE(p->exit_state);
1298	int ret;
1299
1300	if (unlikely(exit_state == EXIT_DEAD))
1301		return 0;
1302
1303	ret = eligible_child(wo, p);
1304	if (!ret)
1305		return ret;
1306
1307	ret = security_task_wait(p);
1308	if (unlikely(ret < 0)) {
1309		/*
1310		 * If we have not yet seen any eligible child,
1311		 * then let this error code replace -ECHILD.
1312		 * A permission error will give the user a clue
1313		 * to look for security policy problems, rather
1314		 * than for mysterious wait bugs.
1315		 */
1316		if (wo->notask_error)
1317			wo->notask_error = ret;
1318		return 0;
1319	}
1320
1321	if (unlikely(exit_state == EXIT_TRACE)) {
1322		/*
1323		 * ptrace == 0 means we are the natural parent. In this case
1324		 * we should clear notask_error, debugger will notify us.
1325		 */
1326		if (likely(!ptrace))
1327			wo->notask_error = 0;
1328		return 0;
1329	}
1330
1331	if (likely(!ptrace) && unlikely(p->ptrace)) {
1332		/*
1333		 * If it is traced by its real parent's group, just pretend
1334		 * the caller is ptrace_do_wait() and reap this child if it
1335		 * is zombie.
1336		 *
1337		 * This also hides group stop state from real parent; otherwise
1338		 * a single stop can be reported twice as group and ptrace stop.
1339		 * If a ptracer wants to distinguish these two events for its
1340		 * own children it should create a separate process which takes
1341		 * the role of real parent.
1342		 */
1343		if (!ptrace_reparented(p))
1344			ptrace = 1;
1345	}
1346
1347	/* slay zombie? */
1348	if (exit_state == EXIT_ZOMBIE) {
1349		/* we don't reap group leaders with subthreads */
1350		if (!delay_group_leader(p)) {
1351			/*
1352			 * A zombie ptracee is only visible to its ptracer.
1353			 * Notification and reaping will be cascaded to the
1354			 * real parent when the ptracer detaches.
1355			 */
1356			if (unlikely(ptrace) || likely(!p->ptrace))
1357				return wait_task_zombie(wo, p);
1358		}
1359
1360		/*
1361		 * Allow access to stopped/continued state via zombie by
1362		 * falling through.  Clearing of notask_error is complex.
1363		 *
1364		 * When !@ptrace:
1365		 *
1366		 * If WEXITED is set, notask_error should naturally be
1367		 * cleared.  If not, subset of WSTOPPED|WCONTINUED is set,
1368		 * so, if there are live subthreads, there are events to
1369		 * wait for.  If all subthreads are dead, it's still safe
1370		 * to clear - this function will be called again in finite
1371		 * amount time once all the subthreads are released and
1372		 * will then return without clearing.
1373		 *
1374		 * When @ptrace:
1375		 *
1376		 * Stopped state is per-task and thus can't change once the
1377		 * target task dies.  Only continued and exited can happen.
1378		 * Clear notask_error if WCONTINUED | WEXITED.
1379		 */
1380		if (likely(!ptrace) || (wo->wo_flags & (WCONTINUED | WEXITED)))
1381			wo->notask_error = 0;
1382	} else {
1383		/*
1384		 * @p is alive and it's gonna stop, continue or exit, so
1385		 * there always is something to wait for.
1386		 */
1387		wo->notask_error = 0;
1388	}
1389
1390	/*
1391	 * Wait for stopped.  Depending on @ptrace, different stopped state
1392	 * is used and the two don't interact with each other.
1393	 */
1394	ret = wait_task_stopped(wo, ptrace, p);
1395	if (ret)
1396		return ret;
1397
1398	/*
1399	 * Wait for continued.  There's only one continued state and the
1400	 * ptracer can consume it which can confuse the real parent.  Don't
1401	 * use WCONTINUED from ptracer.  You don't need or want it.
1402	 */
1403	return wait_task_continued(wo, p);
1404}
1405
1406/*
1407 * Do the work of do_wait() for one thread in the group, @tsk.
1408 *
1409 * -ECHILD should be in ->notask_error before the first call.
1410 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1411 * Returns zero if the search for a child should continue; then
1412 * ->notask_error is 0 if there were any eligible children,
1413 * or another error from security_task_wait(), or still -ECHILD.
1414 */
1415static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk)
1416{
1417	struct task_struct *p;
1418
1419	list_for_each_entry(p, &tsk->children, sibling) {
1420		int ret = wait_consider_task(wo, 0, p);
1421
1422		if (ret)
1423			return ret;
1424	}
1425
1426	return 0;
1427}
1428
1429static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk)
1430{
1431	struct task_struct *p;
1432
1433	list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
1434		int ret = wait_consider_task(wo, 1, p);
1435
1436		if (ret)
1437			return ret;
1438	}
1439
1440	return 0;
1441}
1442
1443static int child_wait_callback(wait_queue_t *wait, unsigned mode,
 
 
 
 
 
 
 
 
 
 
 
1444				int sync, void *key)
1445{
1446	struct wait_opts *wo = container_of(wait, struct wait_opts,
1447						child_wait);
1448	struct task_struct *p = key;
1449
1450	if (!eligible_pid(wo, p))
1451		return 0;
1452
1453	if ((wo->wo_flags & __WNOTHREAD) && wait->private != p->parent)
1454		return 0;
1455
1456	return default_wake_function(wait, mode, sync, key);
1457}
1458
1459void __wake_up_parent(struct task_struct *p, struct task_struct *parent)
1460{
1461	__wake_up_sync_key(&parent->signal->wait_chldexit,
1462				TASK_INTERRUPTIBLE, 1, p);
1463}
1464
1465static long do_wait(struct wait_opts *wo)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1466{
1467	struct task_struct *tsk;
 
1468	int retval;
1469
1470	trace_sched_process_wait(wo->wo_pid);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1471
1472	init_waitqueue_func_entry(&wo->child_wait, child_wait_callback);
1473	wo->child_wait.private = current;
1474	add_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1475repeat:
1476	/*
1477	 * If there is nothing that can match our criteria, just get out.
1478	 * We will clear ->notask_error to zero if we see any child that
1479	 * might later match our criteria, even if we are not able to reap
1480	 * it yet.
1481	 */
1482	wo->notask_error = -ECHILD;
1483	if ((wo->wo_type < PIDTYPE_MAX) &&
1484	   (!wo->wo_pid || hlist_empty(&wo->wo_pid->tasks[wo->wo_type])))
1485		goto notask;
1486
1487	set_current_state(TASK_INTERRUPTIBLE);
1488	read_lock(&tasklist_lock);
1489	tsk = current;
1490	do {
1491		retval = do_wait_thread(wo, tsk);
1492		if (retval)
1493			goto end;
 
 
1494
1495		retval = ptrace_do_wait(wo, tsk);
1496		if (retval)
1497			goto end;
 
 
 
 
 
1498
1499		if (wo->wo_flags & __WNOTHREAD)
1500			break;
1501	} while_each_thread(current, tsk);
 
1502	read_unlock(&tasklist_lock);
1503
1504notask:
1505	retval = wo->notask_error;
1506	if (!retval && !(wo->wo_flags & WNOHANG)) {
1507		retval = -ERESTARTSYS;
1508		if (!signal_pending(current)) {
1509			schedule();
1510			goto repeat;
1511		}
1512	}
1513end:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1514	__set_current_state(TASK_RUNNING);
1515	remove_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1516	return retval;
1517}
1518
1519SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *,
1520		infop, int, options, struct rusage __user *, ru)
 
1521{
1522	struct wait_opts wo;
1523	struct pid *pid = NULL;
1524	enum pid_type type;
1525	long ret;
1526
1527	if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED))
 
1528		return -EINVAL;
1529	if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1530		return -EINVAL;
1531
1532	switch (which) {
1533	case P_ALL:
1534		type = PIDTYPE_MAX;
1535		break;
1536	case P_PID:
1537		type = PIDTYPE_PID;
1538		if (upid <= 0)
1539			return -EINVAL;
 
 
1540		break;
1541	case P_PGID:
1542		type = PIDTYPE_PGID;
1543		if (upid <= 0)
 
 
 
 
 
 
 
 
 
 
1544			return -EINVAL;
 
 
 
 
 
1545		break;
1546	default:
1547		return -EINVAL;
1548	}
1549
1550	if (type < PIDTYPE_MAX)
1551		pid = find_get_pid(upid);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1552
1553	wo.wo_type	= type;
1554	wo.wo_pid	= pid;
1555	wo.wo_flags	= options;
1556	wo.wo_info	= infop;
1557	wo.wo_stat	= NULL;
1558	wo.wo_rusage	= ru;
1559	ret = do_wait(&wo);
 
 
1560
1561	if (ret > 0) {
1562		ret = 0;
1563	} else if (infop) {
1564		/*
1565		 * For a WNOHANG return, clear out all the fields
1566		 * we would set so the user can easily tell the
1567		 * difference.
1568		 */
1569		if (!ret)
1570			ret = put_user(0, &infop->si_signo);
1571		if (!ret)
1572			ret = put_user(0, &infop->si_errno);
1573		if (!ret)
1574			ret = put_user(0, &infop->si_code);
1575		if (!ret)
1576			ret = put_user(0, &infop->si_pid);
1577		if (!ret)
1578			ret = put_user(0, &infop->si_uid);
1579		if (!ret)
1580			ret = put_user(0, &infop->si_status);
1581	}
1582
1583	put_pid(pid);
1584	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1585}
1586
1587SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr,
1588		int, options, struct rusage __user *, ru)
1589{
1590	struct wait_opts wo;
1591	struct pid *pid = NULL;
1592	enum pid_type type;
1593	long ret;
1594
1595	if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1596			__WNOTHREAD|__WCLONE|__WALL))
1597		return -EINVAL;
1598
 
 
 
 
1599	if (upid == -1)
1600		type = PIDTYPE_MAX;
1601	else if (upid < 0) {
1602		type = PIDTYPE_PGID;
1603		pid = find_get_pid(-upid);
1604	} else if (upid == 0) {
1605		type = PIDTYPE_PGID;
1606		pid = get_task_pid(current, PIDTYPE_PGID);
1607	} else /* upid > 0 */ {
1608		type = PIDTYPE_PID;
1609		pid = find_get_pid(upid);
1610	}
1611
1612	wo.wo_type	= type;
1613	wo.wo_pid	= pid;
1614	wo.wo_flags	= options | WEXITED;
1615	wo.wo_info	= NULL;
1616	wo.wo_stat	= stat_addr;
1617	wo.wo_rusage	= ru;
1618	ret = do_wait(&wo);
1619	put_pid(pid);
 
 
1620
1621	return ret;
1622}
1623
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1624#ifdef __ARCH_WANT_SYS_WAITPID
1625
1626/*
1627 * sys_waitpid() remains for compatibility. waitpid() should be
1628 * implemented by calling sys_wait4() from libc.a.
1629 */
1630SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options)
1631{
1632	return sys_wait4(pid, stat_addr, options, NULL);
1633}
1634
1635#endif