Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
4 * All Rights Reserved.
5 */
6#include "xfs.h"
7#include <linux/backing-dev.h>
8#include <linux/dax.h>
9
10#include "xfs_shared.h"
11#include "xfs_format.h"
12#include "xfs_log_format.h"
13#include "xfs_trans_resv.h"
14#include "xfs_mount.h"
15#include "xfs_trace.h"
16#include "xfs_log.h"
17#include "xfs_log_recover.h"
18#include "xfs_log_priv.h"
19#include "xfs_trans.h"
20#include "xfs_buf_item.h"
21#include "xfs_errortag.h"
22#include "xfs_error.h"
23#include "xfs_ag.h"
24#include "xfs_buf_mem.h"
25
26struct kmem_cache *xfs_buf_cache;
27
28/*
29 * Locking orders
30 *
31 * xfs_buf_ioacct_inc:
32 * xfs_buf_ioacct_dec:
33 * b_sema (caller holds)
34 * b_lock
35 *
36 * xfs_buf_stale:
37 * b_sema (caller holds)
38 * b_lock
39 * lru_lock
40 *
41 * xfs_buf_rele:
42 * b_lock
43 * pag_buf_lock
44 * lru_lock
45 *
46 * xfs_buftarg_drain_rele
47 * lru_lock
48 * b_lock (trylock due to inversion)
49 *
50 * xfs_buftarg_isolate
51 * lru_lock
52 * b_lock (trylock due to inversion)
53 */
54
55static int __xfs_buf_submit(struct xfs_buf *bp, bool wait);
56
57static inline int
58xfs_buf_submit(
59 struct xfs_buf *bp)
60{
61 return __xfs_buf_submit(bp, !(bp->b_flags & XBF_ASYNC));
62}
63
64static inline bool xfs_buf_is_uncached(struct xfs_buf *bp)
65{
66 return bp->b_rhash_key == XFS_BUF_DADDR_NULL;
67}
68
69static inline int
70xfs_buf_is_vmapped(
71 struct xfs_buf *bp)
72{
73 /*
74 * Return true if the buffer is vmapped.
75 *
76 * b_addr is null if the buffer is not mapped, but the code is clever
77 * enough to know it doesn't have to map a single page, so the check has
78 * to be both for b_addr and bp->b_page_count > 1.
79 */
80 return bp->b_addr && bp->b_page_count > 1;
81}
82
83static inline int
84xfs_buf_vmap_len(
85 struct xfs_buf *bp)
86{
87 return (bp->b_page_count * PAGE_SIZE);
88}
89
90/*
91 * Bump the I/O in flight count on the buftarg if we haven't yet done so for
92 * this buffer. The count is incremented once per buffer (per hold cycle)
93 * because the corresponding decrement is deferred to buffer release. Buffers
94 * can undergo I/O multiple times in a hold-release cycle and per buffer I/O
95 * tracking adds unnecessary overhead. This is used for sychronization purposes
96 * with unmount (see xfs_buftarg_drain()), so all we really need is a count of
97 * in-flight buffers.
98 *
99 * Buffers that are never released (e.g., superblock, iclog buffers) must set
100 * the XBF_NO_IOACCT flag before I/O submission. Otherwise, the buftarg count
101 * never reaches zero and unmount hangs indefinitely.
102 */
103static inline void
104xfs_buf_ioacct_inc(
105 struct xfs_buf *bp)
106{
107 if (bp->b_flags & XBF_NO_IOACCT)
108 return;
109
110 ASSERT(bp->b_flags & XBF_ASYNC);
111 spin_lock(&bp->b_lock);
112 if (!(bp->b_state & XFS_BSTATE_IN_FLIGHT)) {
113 bp->b_state |= XFS_BSTATE_IN_FLIGHT;
114 percpu_counter_inc(&bp->b_target->bt_io_count);
115 }
116 spin_unlock(&bp->b_lock);
117}
118
119/*
120 * Clear the in-flight state on a buffer about to be released to the LRU or
121 * freed and unaccount from the buftarg.
122 */
123static inline void
124__xfs_buf_ioacct_dec(
125 struct xfs_buf *bp)
126{
127 lockdep_assert_held(&bp->b_lock);
128
129 if (bp->b_state & XFS_BSTATE_IN_FLIGHT) {
130 bp->b_state &= ~XFS_BSTATE_IN_FLIGHT;
131 percpu_counter_dec(&bp->b_target->bt_io_count);
132 }
133}
134
135static inline void
136xfs_buf_ioacct_dec(
137 struct xfs_buf *bp)
138{
139 spin_lock(&bp->b_lock);
140 __xfs_buf_ioacct_dec(bp);
141 spin_unlock(&bp->b_lock);
142}
143
144/*
145 * When we mark a buffer stale, we remove the buffer from the LRU and clear the
146 * b_lru_ref count so that the buffer is freed immediately when the buffer
147 * reference count falls to zero. If the buffer is already on the LRU, we need
148 * to remove the reference that LRU holds on the buffer.
149 *
150 * This prevents build-up of stale buffers on the LRU.
151 */
152void
153xfs_buf_stale(
154 struct xfs_buf *bp)
155{
156 ASSERT(xfs_buf_islocked(bp));
157
158 bp->b_flags |= XBF_STALE;
159
160 /*
161 * Clear the delwri status so that a delwri queue walker will not
162 * flush this buffer to disk now that it is stale. The delwri queue has
163 * a reference to the buffer, so this is safe to do.
164 */
165 bp->b_flags &= ~_XBF_DELWRI_Q;
166
167 /*
168 * Once the buffer is marked stale and unlocked, a subsequent lookup
169 * could reset b_flags. There is no guarantee that the buffer is
170 * unaccounted (released to LRU) before that occurs. Drop in-flight
171 * status now to preserve accounting consistency.
172 */
173 spin_lock(&bp->b_lock);
174 __xfs_buf_ioacct_dec(bp);
175
176 atomic_set(&bp->b_lru_ref, 0);
177 if (!(bp->b_state & XFS_BSTATE_DISPOSE) &&
178 (list_lru_del_obj(&bp->b_target->bt_lru, &bp->b_lru)))
179 atomic_dec(&bp->b_hold);
180
181 ASSERT(atomic_read(&bp->b_hold) >= 1);
182 spin_unlock(&bp->b_lock);
183}
184
185static int
186xfs_buf_get_maps(
187 struct xfs_buf *bp,
188 int map_count)
189{
190 ASSERT(bp->b_maps == NULL);
191 bp->b_map_count = map_count;
192
193 if (map_count == 1) {
194 bp->b_maps = &bp->__b_map;
195 return 0;
196 }
197
198 bp->b_maps = kzalloc(map_count * sizeof(struct xfs_buf_map),
199 GFP_KERNEL | __GFP_NOLOCKDEP | __GFP_NOFAIL);
200 if (!bp->b_maps)
201 return -ENOMEM;
202 return 0;
203}
204
205/*
206 * Frees b_pages if it was allocated.
207 */
208static void
209xfs_buf_free_maps(
210 struct xfs_buf *bp)
211{
212 if (bp->b_maps != &bp->__b_map) {
213 kfree(bp->b_maps);
214 bp->b_maps = NULL;
215 }
216}
217
218static int
219_xfs_buf_alloc(
220 struct xfs_buftarg *target,
221 struct xfs_buf_map *map,
222 int nmaps,
223 xfs_buf_flags_t flags,
224 struct xfs_buf **bpp)
225{
226 struct xfs_buf *bp;
227 int error;
228 int i;
229
230 *bpp = NULL;
231 bp = kmem_cache_zalloc(xfs_buf_cache,
232 GFP_KERNEL | __GFP_NOLOCKDEP | __GFP_NOFAIL);
233
234 /*
235 * We don't want certain flags to appear in b_flags unless they are
236 * specifically set by later operations on the buffer.
237 */
238 flags &= ~(XBF_UNMAPPED | XBF_TRYLOCK | XBF_ASYNC | XBF_READ_AHEAD);
239
240 atomic_set(&bp->b_hold, 1);
241 atomic_set(&bp->b_lru_ref, 1);
242 init_completion(&bp->b_iowait);
243 INIT_LIST_HEAD(&bp->b_lru);
244 INIT_LIST_HEAD(&bp->b_list);
245 INIT_LIST_HEAD(&bp->b_li_list);
246 sema_init(&bp->b_sema, 0); /* held, no waiters */
247 spin_lock_init(&bp->b_lock);
248 bp->b_target = target;
249 bp->b_mount = target->bt_mount;
250 bp->b_flags = flags;
251
252 /*
253 * Set length and io_length to the same value initially.
254 * I/O routines should use io_length, which will be the same in
255 * most cases but may be reset (e.g. XFS recovery).
256 */
257 error = xfs_buf_get_maps(bp, nmaps);
258 if (error) {
259 kmem_cache_free(xfs_buf_cache, bp);
260 return error;
261 }
262
263 bp->b_rhash_key = map[0].bm_bn;
264 bp->b_length = 0;
265 for (i = 0; i < nmaps; i++) {
266 bp->b_maps[i].bm_bn = map[i].bm_bn;
267 bp->b_maps[i].bm_len = map[i].bm_len;
268 bp->b_length += map[i].bm_len;
269 }
270
271 atomic_set(&bp->b_pin_count, 0);
272 init_waitqueue_head(&bp->b_waiters);
273
274 XFS_STATS_INC(bp->b_mount, xb_create);
275 trace_xfs_buf_init(bp, _RET_IP_);
276
277 *bpp = bp;
278 return 0;
279}
280
281static void
282xfs_buf_free_pages(
283 struct xfs_buf *bp)
284{
285 uint i;
286
287 ASSERT(bp->b_flags & _XBF_PAGES);
288
289 if (xfs_buf_is_vmapped(bp))
290 vm_unmap_ram(bp->b_addr, bp->b_page_count);
291
292 for (i = 0; i < bp->b_page_count; i++) {
293 if (bp->b_pages[i])
294 __free_page(bp->b_pages[i]);
295 }
296 mm_account_reclaimed_pages(bp->b_page_count);
297
298 if (bp->b_pages != bp->b_page_array)
299 kfree(bp->b_pages);
300 bp->b_pages = NULL;
301 bp->b_flags &= ~_XBF_PAGES;
302}
303
304static void
305xfs_buf_free_callback(
306 struct callback_head *cb)
307{
308 struct xfs_buf *bp = container_of(cb, struct xfs_buf, b_rcu);
309
310 xfs_buf_free_maps(bp);
311 kmem_cache_free(xfs_buf_cache, bp);
312}
313
314static void
315xfs_buf_free(
316 struct xfs_buf *bp)
317{
318 trace_xfs_buf_free(bp, _RET_IP_);
319
320 ASSERT(list_empty(&bp->b_lru));
321
322 if (xfs_buftarg_is_mem(bp->b_target))
323 xmbuf_unmap_page(bp);
324 else if (bp->b_flags & _XBF_PAGES)
325 xfs_buf_free_pages(bp);
326 else if (bp->b_flags & _XBF_KMEM)
327 kfree(bp->b_addr);
328
329 call_rcu(&bp->b_rcu, xfs_buf_free_callback);
330}
331
332static int
333xfs_buf_alloc_kmem(
334 struct xfs_buf *bp,
335 xfs_buf_flags_t flags)
336{
337 gfp_t gfp_mask = GFP_KERNEL | __GFP_NOLOCKDEP | __GFP_NOFAIL;
338 size_t size = BBTOB(bp->b_length);
339
340 /* Assure zeroed buffer for non-read cases. */
341 if (!(flags & XBF_READ))
342 gfp_mask |= __GFP_ZERO;
343
344 bp->b_addr = kmalloc(size, gfp_mask);
345 if (!bp->b_addr)
346 return -ENOMEM;
347
348 if (((unsigned long)(bp->b_addr + size - 1) & PAGE_MASK) !=
349 ((unsigned long)bp->b_addr & PAGE_MASK)) {
350 /* b_addr spans two pages - use alloc_page instead */
351 kfree(bp->b_addr);
352 bp->b_addr = NULL;
353 return -ENOMEM;
354 }
355 bp->b_offset = offset_in_page(bp->b_addr);
356 bp->b_pages = bp->b_page_array;
357 bp->b_pages[0] = kmem_to_page(bp->b_addr);
358 bp->b_page_count = 1;
359 bp->b_flags |= _XBF_KMEM;
360 return 0;
361}
362
363static int
364xfs_buf_alloc_pages(
365 struct xfs_buf *bp,
366 xfs_buf_flags_t flags)
367{
368 gfp_t gfp_mask = GFP_KERNEL | __GFP_NOLOCKDEP | __GFP_NOWARN;
369 long filled = 0;
370
371 if (flags & XBF_READ_AHEAD)
372 gfp_mask |= __GFP_NORETRY;
373
374 /* Make sure that we have a page list */
375 bp->b_page_count = DIV_ROUND_UP(BBTOB(bp->b_length), PAGE_SIZE);
376 if (bp->b_page_count <= XB_PAGES) {
377 bp->b_pages = bp->b_page_array;
378 } else {
379 bp->b_pages = kzalloc(sizeof(struct page *) * bp->b_page_count,
380 gfp_mask);
381 if (!bp->b_pages)
382 return -ENOMEM;
383 }
384 bp->b_flags |= _XBF_PAGES;
385
386 /* Assure zeroed buffer for non-read cases. */
387 if (!(flags & XBF_READ))
388 gfp_mask |= __GFP_ZERO;
389
390 /*
391 * Bulk filling of pages can take multiple calls. Not filling the entire
392 * array is not an allocation failure, so don't back off if we get at
393 * least one extra page.
394 */
395 for (;;) {
396 long last = filled;
397
398 filled = alloc_pages_bulk_array(gfp_mask, bp->b_page_count,
399 bp->b_pages);
400 if (filled == bp->b_page_count) {
401 XFS_STATS_INC(bp->b_mount, xb_page_found);
402 break;
403 }
404
405 if (filled != last)
406 continue;
407
408 if (flags & XBF_READ_AHEAD) {
409 xfs_buf_free_pages(bp);
410 return -ENOMEM;
411 }
412
413 XFS_STATS_INC(bp->b_mount, xb_page_retries);
414 memalloc_retry_wait(gfp_mask);
415 }
416 return 0;
417}
418
419/*
420 * Map buffer into kernel address-space if necessary.
421 */
422STATIC int
423_xfs_buf_map_pages(
424 struct xfs_buf *bp,
425 xfs_buf_flags_t flags)
426{
427 ASSERT(bp->b_flags & _XBF_PAGES);
428 if (bp->b_page_count == 1) {
429 /* A single page buffer is always mappable */
430 bp->b_addr = page_address(bp->b_pages[0]);
431 } else if (flags & XBF_UNMAPPED) {
432 bp->b_addr = NULL;
433 } else {
434 int retried = 0;
435 unsigned nofs_flag;
436
437 /*
438 * vm_map_ram() will allocate auxiliary structures (e.g.
439 * pagetables) with GFP_KERNEL, yet we often under a scoped nofs
440 * context here. Mixing GFP_KERNEL with GFP_NOFS allocations
441 * from the same call site that can be run from both above and
442 * below memory reclaim causes lockdep false positives. Hence we
443 * always need to force this allocation to nofs context because
444 * we can't pass __GFP_NOLOCKDEP down to auxillary structures to
445 * prevent false positive lockdep reports.
446 *
447 * XXX(dgc): I think dquot reclaim is the only place we can get
448 * to this function from memory reclaim context now. If we fix
449 * that like we've fixed inode reclaim to avoid writeback from
450 * reclaim, this nofs wrapping can go away.
451 */
452 nofs_flag = memalloc_nofs_save();
453 do {
454 bp->b_addr = vm_map_ram(bp->b_pages, bp->b_page_count,
455 -1);
456 if (bp->b_addr)
457 break;
458 vm_unmap_aliases();
459 } while (retried++ <= 1);
460 memalloc_nofs_restore(nofs_flag);
461
462 if (!bp->b_addr)
463 return -ENOMEM;
464 }
465
466 return 0;
467}
468
469/*
470 * Finding and Reading Buffers
471 */
472static int
473_xfs_buf_obj_cmp(
474 struct rhashtable_compare_arg *arg,
475 const void *obj)
476{
477 const struct xfs_buf_map *map = arg->key;
478 const struct xfs_buf *bp = obj;
479
480 /*
481 * The key hashing in the lookup path depends on the key being the
482 * first element of the compare_arg, make sure to assert this.
483 */
484 BUILD_BUG_ON(offsetof(struct xfs_buf_map, bm_bn) != 0);
485
486 if (bp->b_rhash_key != map->bm_bn)
487 return 1;
488
489 if (unlikely(bp->b_length != map->bm_len)) {
490 /*
491 * found a block number match. If the range doesn't
492 * match, the only way this is allowed is if the buffer
493 * in the cache is stale and the transaction that made
494 * it stale has not yet committed. i.e. we are
495 * reallocating a busy extent. Skip this buffer and
496 * continue searching for an exact match.
497 *
498 * Note: If we're scanning for incore buffers to stale, don't
499 * complain if we find non-stale buffers.
500 */
501 if (!(map->bm_flags & XBM_LIVESCAN))
502 ASSERT(bp->b_flags & XBF_STALE);
503 return 1;
504 }
505 return 0;
506}
507
508static const struct rhashtable_params xfs_buf_hash_params = {
509 .min_size = 32, /* empty AGs have minimal footprint */
510 .nelem_hint = 16,
511 .key_len = sizeof(xfs_daddr_t),
512 .key_offset = offsetof(struct xfs_buf, b_rhash_key),
513 .head_offset = offsetof(struct xfs_buf, b_rhash_head),
514 .automatic_shrinking = true,
515 .obj_cmpfn = _xfs_buf_obj_cmp,
516};
517
518int
519xfs_buf_cache_init(
520 struct xfs_buf_cache *bch)
521{
522 spin_lock_init(&bch->bc_lock);
523 return rhashtable_init(&bch->bc_hash, &xfs_buf_hash_params);
524}
525
526void
527xfs_buf_cache_destroy(
528 struct xfs_buf_cache *bch)
529{
530 rhashtable_destroy(&bch->bc_hash);
531}
532
533static int
534xfs_buf_map_verify(
535 struct xfs_buftarg *btp,
536 struct xfs_buf_map *map)
537{
538 xfs_daddr_t eofs;
539
540 /* Check for IOs smaller than the sector size / not sector aligned */
541 ASSERT(!(BBTOB(map->bm_len) < btp->bt_meta_sectorsize));
542 ASSERT(!(BBTOB(map->bm_bn) & (xfs_off_t)btp->bt_meta_sectormask));
543
544 /*
545 * Corrupted block numbers can get through to here, unfortunately, so we
546 * have to check that the buffer falls within the filesystem bounds.
547 */
548 eofs = XFS_FSB_TO_BB(btp->bt_mount, btp->bt_mount->m_sb.sb_dblocks);
549 if (map->bm_bn < 0 || map->bm_bn >= eofs) {
550 xfs_alert(btp->bt_mount,
551 "%s: daddr 0x%llx out of range, EOFS 0x%llx",
552 __func__, map->bm_bn, eofs);
553 WARN_ON(1);
554 return -EFSCORRUPTED;
555 }
556 return 0;
557}
558
559static int
560xfs_buf_find_lock(
561 struct xfs_buf *bp,
562 xfs_buf_flags_t flags)
563{
564 if (flags & XBF_TRYLOCK) {
565 if (!xfs_buf_trylock(bp)) {
566 XFS_STATS_INC(bp->b_mount, xb_busy_locked);
567 return -EAGAIN;
568 }
569 } else {
570 xfs_buf_lock(bp);
571 XFS_STATS_INC(bp->b_mount, xb_get_locked_waited);
572 }
573
574 /*
575 * if the buffer is stale, clear all the external state associated with
576 * it. We need to keep flags such as how we allocated the buffer memory
577 * intact here.
578 */
579 if (bp->b_flags & XBF_STALE) {
580 if (flags & XBF_LIVESCAN) {
581 xfs_buf_unlock(bp);
582 return -ENOENT;
583 }
584 ASSERT((bp->b_flags & _XBF_DELWRI_Q) == 0);
585 bp->b_flags &= _XBF_KMEM | _XBF_PAGES;
586 bp->b_ops = NULL;
587 }
588 return 0;
589}
590
591static inline int
592xfs_buf_lookup(
593 struct xfs_buf_cache *bch,
594 struct xfs_buf_map *map,
595 xfs_buf_flags_t flags,
596 struct xfs_buf **bpp)
597{
598 struct xfs_buf *bp;
599 int error;
600
601 rcu_read_lock();
602 bp = rhashtable_lookup(&bch->bc_hash, map, xfs_buf_hash_params);
603 if (!bp || !atomic_inc_not_zero(&bp->b_hold)) {
604 rcu_read_unlock();
605 return -ENOENT;
606 }
607 rcu_read_unlock();
608
609 error = xfs_buf_find_lock(bp, flags);
610 if (error) {
611 xfs_buf_rele(bp);
612 return error;
613 }
614
615 trace_xfs_buf_find(bp, flags, _RET_IP_);
616 *bpp = bp;
617 return 0;
618}
619
620/*
621 * Insert the new_bp into the hash table. This consumes the perag reference
622 * taken for the lookup regardless of the result of the insert.
623 */
624static int
625xfs_buf_find_insert(
626 struct xfs_buftarg *btp,
627 struct xfs_buf_cache *bch,
628 struct xfs_perag *pag,
629 struct xfs_buf_map *cmap,
630 struct xfs_buf_map *map,
631 int nmaps,
632 xfs_buf_flags_t flags,
633 struct xfs_buf **bpp)
634{
635 struct xfs_buf *new_bp;
636 struct xfs_buf *bp;
637 int error;
638
639 error = _xfs_buf_alloc(btp, map, nmaps, flags, &new_bp);
640 if (error)
641 goto out_drop_pag;
642
643 if (xfs_buftarg_is_mem(new_bp->b_target)) {
644 error = xmbuf_map_page(new_bp);
645 } else if (BBTOB(new_bp->b_length) >= PAGE_SIZE ||
646 xfs_buf_alloc_kmem(new_bp, flags) < 0) {
647 /*
648 * For buffers that fit entirely within a single page, first
649 * attempt to allocate the memory from the heap to minimise
650 * memory usage. If we can't get heap memory for these small
651 * buffers, we fall back to using the page allocator.
652 */
653 error = xfs_buf_alloc_pages(new_bp, flags);
654 }
655 if (error)
656 goto out_free_buf;
657
658 spin_lock(&bch->bc_lock);
659 bp = rhashtable_lookup_get_insert_fast(&bch->bc_hash,
660 &new_bp->b_rhash_head, xfs_buf_hash_params);
661 if (IS_ERR(bp)) {
662 error = PTR_ERR(bp);
663 spin_unlock(&bch->bc_lock);
664 goto out_free_buf;
665 }
666 if (bp && atomic_inc_not_zero(&bp->b_hold)) {
667 /* found an existing buffer */
668 spin_unlock(&bch->bc_lock);
669 error = xfs_buf_find_lock(bp, flags);
670 if (error)
671 xfs_buf_rele(bp);
672 else
673 *bpp = bp;
674 goto out_free_buf;
675 }
676
677 /* The new buffer keeps the perag reference until it is freed. */
678 new_bp->b_pag = pag;
679 spin_unlock(&bch->bc_lock);
680 *bpp = new_bp;
681 return 0;
682
683out_free_buf:
684 xfs_buf_free(new_bp);
685out_drop_pag:
686 if (pag)
687 xfs_perag_put(pag);
688 return error;
689}
690
691static inline struct xfs_perag *
692xfs_buftarg_get_pag(
693 struct xfs_buftarg *btp,
694 const struct xfs_buf_map *map)
695{
696 struct xfs_mount *mp = btp->bt_mount;
697
698 if (xfs_buftarg_is_mem(btp))
699 return NULL;
700 return xfs_perag_get(mp, xfs_daddr_to_agno(mp, map->bm_bn));
701}
702
703static inline struct xfs_buf_cache *
704xfs_buftarg_buf_cache(
705 struct xfs_buftarg *btp,
706 struct xfs_perag *pag)
707{
708 if (pag)
709 return &pag->pag_bcache;
710 return btp->bt_cache;
711}
712
713/*
714 * Assembles a buffer covering the specified range. The code is optimised for
715 * cache hits, as metadata intensive workloads will see 3 orders of magnitude
716 * more hits than misses.
717 */
718int
719xfs_buf_get_map(
720 struct xfs_buftarg *btp,
721 struct xfs_buf_map *map,
722 int nmaps,
723 xfs_buf_flags_t flags,
724 struct xfs_buf **bpp)
725{
726 struct xfs_buf_cache *bch;
727 struct xfs_perag *pag;
728 struct xfs_buf *bp = NULL;
729 struct xfs_buf_map cmap = { .bm_bn = map[0].bm_bn };
730 int error;
731 int i;
732
733 if (flags & XBF_LIVESCAN)
734 cmap.bm_flags |= XBM_LIVESCAN;
735 for (i = 0; i < nmaps; i++)
736 cmap.bm_len += map[i].bm_len;
737
738 error = xfs_buf_map_verify(btp, &cmap);
739 if (error)
740 return error;
741
742 pag = xfs_buftarg_get_pag(btp, &cmap);
743 bch = xfs_buftarg_buf_cache(btp, pag);
744
745 error = xfs_buf_lookup(bch, &cmap, flags, &bp);
746 if (error && error != -ENOENT)
747 goto out_put_perag;
748
749 /* cache hits always outnumber misses by at least 10:1 */
750 if (unlikely(!bp)) {
751 XFS_STATS_INC(btp->bt_mount, xb_miss_locked);
752
753 if (flags & XBF_INCORE)
754 goto out_put_perag;
755
756 /* xfs_buf_find_insert() consumes the perag reference. */
757 error = xfs_buf_find_insert(btp, bch, pag, &cmap, map, nmaps,
758 flags, &bp);
759 if (error)
760 return error;
761 } else {
762 XFS_STATS_INC(btp->bt_mount, xb_get_locked);
763 if (pag)
764 xfs_perag_put(pag);
765 }
766
767 /* We do not hold a perag reference anymore. */
768 if (!bp->b_addr) {
769 error = _xfs_buf_map_pages(bp, flags);
770 if (unlikely(error)) {
771 xfs_warn_ratelimited(btp->bt_mount,
772 "%s: failed to map %u pages", __func__,
773 bp->b_page_count);
774 xfs_buf_relse(bp);
775 return error;
776 }
777 }
778
779 /*
780 * Clear b_error if this is a lookup from a caller that doesn't expect
781 * valid data to be found in the buffer.
782 */
783 if (!(flags & XBF_READ))
784 xfs_buf_ioerror(bp, 0);
785
786 XFS_STATS_INC(btp->bt_mount, xb_get);
787 trace_xfs_buf_get(bp, flags, _RET_IP_);
788 *bpp = bp;
789 return 0;
790
791out_put_perag:
792 if (pag)
793 xfs_perag_put(pag);
794 return error;
795}
796
797int
798_xfs_buf_read(
799 struct xfs_buf *bp,
800 xfs_buf_flags_t flags)
801{
802 ASSERT(!(flags & XBF_WRITE));
803 ASSERT(bp->b_maps[0].bm_bn != XFS_BUF_DADDR_NULL);
804
805 bp->b_flags &= ~(XBF_WRITE | XBF_ASYNC | XBF_READ_AHEAD | XBF_DONE);
806 bp->b_flags |= flags & (XBF_READ | XBF_ASYNC | XBF_READ_AHEAD);
807
808 return xfs_buf_submit(bp);
809}
810
811/*
812 * Reverify a buffer found in cache without an attached ->b_ops.
813 *
814 * If the caller passed an ops structure and the buffer doesn't have ops
815 * assigned, set the ops and use it to verify the contents. If verification
816 * fails, clear XBF_DONE. We assume the buffer has no recorded errors and is
817 * already in XBF_DONE state on entry.
818 *
819 * Under normal operations, every in-core buffer is verified on read I/O
820 * completion. There are two scenarios that can lead to in-core buffers without
821 * an assigned ->b_ops. The first is during log recovery of buffers on a V4
822 * filesystem, though these buffers are purged at the end of recovery. The
823 * other is online repair, which intentionally reads with a NULL buffer ops to
824 * run several verifiers across an in-core buffer in order to establish buffer
825 * type. If repair can't establish that, the buffer will be left in memory
826 * with NULL buffer ops.
827 */
828int
829xfs_buf_reverify(
830 struct xfs_buf *bp,
831 const struct xfs_buf_ops *ops)
832{
833 ASSERT(bp->b_flags & XBF_DONE);
834 ASSERT(bp->b_error == 0);
835
836 if (!ops || bp->b_ops)
837 return 0;
838
839 bp->b_ops = ops;
840 bp->b_ops->verify_read(bp);
841 if (bp->b_error)
842 bp->b_flags &= ~XBF_DONE;
843 return bp->b_error;
844}
845
846int
847xfs_buf_read_map(
848 struct xfs_buftarg *target,
849 struct xfs_buf_map *map,
850 int nmaps,
851 xfs_buf_flags_t flags,
852 struct xfs_buf **bpp,
853 const struct xfs_buf_ops *ops,
854 xfs_failaddr_t fa)
855{
856 struct xfs_buf *bp;
857 int error;
858
859 flags |= XBF_READ;
860 *bpp = NULL;
861
862 error = xfs_buf_get_map(target, map, nmaps, flags, &bp);
863 if (error)
864 return error;
865
866 trace_xfs_buf_read(bp, flags, _RET_IP_);
867
868 if (!(bp->b_flags & XBF_DONE)) {
869 /* Initiate the buffer read and wait. */
870 XFS_STATS_INC(target->bt_mount, xb_get_read);
871 bp->b_ops = ops;
872 error = _xfs_buf_read(bp, flags);
873
874 /* Readahead iodone already dropped the buffer, so exit. */
875 if (flags & XBF_ASYNC)
876 return 0;
877 } else {
878 /* Buffer already read; all we need to do is check it. */
879 error = xfs_buf_reverify(bp, ops);
880
881 /* Readahead already finished; drop the buffer and exit. */
882 if (flags & XBF_ASYNC) {
883 xfs_buf_relse(bp);
884 return 0;
885 }
886
887 /* We do not want read in the flags */
888 bp->b_flags &= ~XBF_READ;
889 ASSERT(bp->b_ops != NULL || ops == NULL);
890 }
891
892 /*
893 * If we've had a read error, then the contents of the buffer are
894 * invalid and should not be used. To ensure that a followup read tries
895 * to pull the buffer from disk again, we clear the XBF_DONE flag and
896 * mark the buffer stale. This ensures that anyone who has a current
897 * reference to the buffer will interpret it's contents correctly and
898 * future cache lookups will also treat it as an empty, uninitialised
899 * buffer.
900 */
901 if (error) {
902 /*
903 * Check against log shutdown for error reporting because
904 * metadata writeback may require a read first and we need to
905 * report errors in metadata writeback until the log is shut
906 * down. High level transaction read functions already check
907 * against mount shutdown, anyway, so we only need to be
908 * concerned about low level IO interactions here.
909 */
910 if (!xlog_is_shutdown(target->bt_mount->m_log))
911 xfs_buf_ioerror_alert(bp, fa);
912
913 bp->b_flags &= ~XBF_DONE;
914 xfs_buf_stale(bp);
915 xfs_buf_relse(bp);
916
917 /* bad CRC means corrupted metadata */
918 if (error == -EFSBADCRC)
919 error = -EFSCORRUPTED;
920 return error;
921 }
922
923 *bpp = bp;
924 return 0;
925}
926
927/*
928 * If we are not low on memory then do the readahead in a deadlock
929 * safe manner.
930 */
931void
932xfs_buf_readahead_map(
933 struct xfs_buftarg *target,
934 struct xfs_buf_map *map,
935 int nmaps,
936 const struct xfs_buf_ops *ops)
937{
938 struct xfs_buf *bp;
939
940 /*
941 * Currently we don't have a good means or justification for performing
942 * xmbuf_map_page asynchronously, so we don't do readahead.
943 */
944 if (xfs_buftarg_is_mem(target))
945 return;
946
947 xfs_buf_read_map(target, map, nmaps,
948 XBF_TRYLOCK | XBF_ASYNC | XBF_READ_AHEAD, &bp, ops,
949 __this_address);
950}
951
952/*
953 * Read an uncached buffer from disk. Allocates and returns a locked
954 * buffer containing the disk contents or nothing. Uncached buffers always have
955 * a cache index of XFS_BUF_DADDR_NULL so we can easily determine if the buffer
956 * is cached or uncached during fault diagnosis.
957 */
958int
959xfs_buf_read_uncached(
960 struct xfs_buftarg *target,
961 xfs_daddr_t daddr,
962 size_t numblks,
963 xfs_buf_flags_t flags,
964 struct xfs_buf **bpp,
965 const struct xfs_buf_ops *ops)
966{
967 struct xfs_buf *bp;
968 int error;
969
970 *bpp = NULL;
971
972 error = xfs_buf_get_uncached(target, numblks, flags, &bp);
973 if (error)
974 return error;
975
976 /* set up the buffer for a read IO */
977 ASSERT(bp->b_map_count == 1);
978 bp->b_rhash_key = XFS_BUF_DADDR_NULL;
979 bp->b_maps[0].bm_bn = daddr;
980 bp->b_flags |= XBF_READ;
981 bp->b_ops = ops;
982
983 xfs_buf_submit(bp);
984 if (bp->b_error) {
985 error = bp->b_error;
986 xfs_buf_relse(bp);
987 return error;
988 }
989
990 *bpp = bp;
991 return 0;
992}
993
994int
995xfs_buf_get_uncached(
996 struct xfs_buftarg *target,
997 size_t numblks,
998 xfs_buf_flags_t flags,
999 struct xfs_buf **bpp)
1000{
1001 int error;
1002 struct xfs_buf *bp;
1003 DEFINE_SINGLE_BUF_MAP(map, XFS_BUF_DADDR_NULL, numblks);
1004
1005 *bpp = NULL;
1006
1007 /* flags might contain irrelevant bits, pass only what we care about */
1008 error = _xfs_buf_alloc(target, &map, 1, flags & XBF_NO_IOACCT, &bp);
1009 if (error)
1010 return error;
1011
1012 if (xfs_buftarg_is_mem(bp->b_target))
1013 error = xmbuf_map_page(bp);
1014 else
1015 error = xfs_buf_alloc_pages(bp, flags);
1016 if (error)
1017 goto fail_free_buf;
1018
1019 error = _xfs_buf_map_pages(bp, 0);
1020 if (unlikely(error)) {
1021 xfs_warn(target->bt_mount,
1022 "%s: failed to map pages", __func__);
1023 goto fail_free_buf;
1024 }
1025
1026 trace_xfs_buf_get_uncached(bp, _RET_IP_);
1027 *bpp = bp;
1028 return 0;
1029
1030fail_free_buf:
1031 xfs_buf_free(bp);
1032 return error;
1033}
1034
1035/*
1036 * Increment reference count on buffer, to hold the buffer concurrently
1037 * with another thread which may release (free) the buffer asynchronously.
1038 * Must hold the buffer already to call this function.
1039 */
1040void
1041xfs_buf_hold(
1042 struct xfs_buf *bp)
1043{
1044 trace_xfs_buf_hold(bp, _RET_IP_);
1045 atomic_inc(&bp->b_hold);
1046}
1047
1048static void
1049xfs_buf_rele_uncached(
1050 struct xfs_buf *bp)
1051{
1052 ASSERT(list_empty(&bp->b_lru));
1053 if (atomic_dec_and_test(&bp->b_hold)) {
1054 xfs_buf_ioacct_dec(bp);
1055 xfs_buf_free(bp);
1056 }
1057}
1058
1059static void
1060xfs_buf_rele_cached(
1061 struct xfs_buf *bp)
1062{
1063 struct xfs_buftarg *btp = bp->b_target;
1064 struct xfs_perag *pag = bp->b_pag;
1065 struct xfs_buf_cache *bch = xfs_buftarg_buf_cache(btp, pag);
1066 bool release;
1067 bool freebuf = false;
1068
1069 trace_xfs_buf_rele(bp, _RET_IP_);
1070
1071 ASSERT(atomic_read(&bp->b_hold) > 0);
1072
1073 /*
1074 * We grab the b_lock here first to serialise racing xfs_buf_rele()
1075 * calls. The pag_buf_lock being taken on the last reference only
1076 * serialises against racing lookups in xfs_buf_find(). IOWs, the second
1077 * to last reference we drop here is not serialised against the last
1078 * reference until we take bp->b_lock. Hence if we don't grab b_lock
1079 * first, the last "release" reference can win the race to the lock and
1080 * free the buffer before the second-to-last reference is processed,
1081 * leading to a use-after-free scenario.
1082 */
1083 spin_lock(&bp->b_lock);
1084 release = atomic_dec_and_lock(&bp->b_hold, &bch->bc_lock);
1085 if (!release) {
1086 /*
1087 * Drop the in-flight state if the buffer is already on the LRU
1088 * and it holds the only reference. This is racy because we
1089 * haven't acquired the pag lock, but the use of _XBF_IN_FLIGHT
1090 * ensures the decrement occurs only once per-buf.
1091 */
1092 if ((atomic_read(&bp->b_hold) == 1) && !list_empty(&bp->b_lru))
1093 __xfs_buf_ioacct_dec(bp);
1094 goto out_unlock;
1095 }
1096
1097 /* the last reference has been dropped ... */
1098 __xfs_buf_ioacct_dec(bp);
1099 if (!(bp->b_flags & XBF_STALE) && atomic_read(&bp->b_lru_ref)) {
1100 /*
1101 * If the buffer is added to the LRU take a new reference to the
1102 * buffer for the LRU and clear the (now stale) dispose list
1103 * state flag
1104 */
1105 if (list_lru_add_obj(&btp->bt_lru, &bp->b_lru)) {
1106 bp->b_state &= ~XFS_BSTATE_DISPOSE;
1107 atomic_inc(&bp->b_hold);
1108 }
1109 spin_unlock(&bch->bc_lock);
1110 } else {
1111 /*
1112 * most of the time buffers will already be removed from the
1113 * LRU, so optimise that case by checking for the
1114 * XFS_BSTATE_DISPOSE flag indicating the last list the buffer
1115 * was on was the disposal list
1116 */
1117 if (!(bp->b_state & XFS_BSTATE_DISPOSE)) {
1118 list_lru_del_obj(&btp->bt_lru, &bp->b_lru);
1119 } else {
1120 ASSERT(list_empty(&bp->b_lru));
1121 }
1122
1123 ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
1124 rhashtable_remove_fast(&bch->bc_hash, &bp->b_rhash_head,
1125 xfs_buf_hash_params);
1126 spin_unlock(&bch->bc_lock);
1127 if (pag)
1128 xfs_perag_put(pag);
1129 freebuf = true;
1130 }
1131
1132out_unlock:
1133 spin_unlock(&bp->b_lock);
1134
1135 if (freebuf)
1136 xfs_buf_free(bp);
1137}
1138
1139/*
1140 * Release a hold on the specified buffer.
1141 */
1142void
1143xfs_buf_rele(
1144 struct xfs_buf *bp)
1145{
1146 trace_xfs_buf_rele(bp, _RET_IP_);
1147 if (xfs_buf_is_uncached(bp))
1148 xfs_buf_rele_uncached(bp);
1149 else
1150 xfs_buf_rele_cached(bp);
1151}
1152
1153/*
1154 * Lock a buffer object, if it is not already locked.
1155 *
1156 * If we come across a stale, pinned, locked buffer, we know that we are
1157 * being asked to lock a buffer that has been reallocated. Because it is
1158 * pinned, we know that the log has not been pushed to disk and hence it
1159 * will still be locked. Rather than continuing to have trylock attempts
1160 * fail until someone else pushes the log, push it ourselves before
1161 * returning. This means that the xfsaild will not get stuck trying
1162 * to push on stale inode buffers.
1163 */
1164int
1165xfs_buf_trylock(
1166 struct xfs_buf *bp)
1167{
1168 int locked;
1169
1170 locked = down_trylock(&bp->b_sema) == 0;
1171 if (locked)
1172 trace_xfs_buf_trylock(bp, _RET_IP_);
1173 else
1174 trace_xfs_buf_trylock_fail(bp, _RET_IP_);
1175 return locked;
1176}
1177
1178/*
1179 * Lock a buffer object.
1180 *
1181 * If we come across a stale, pinned, locked buffer, we know that we
1182 * are being asked to lock a buffer that has been reallocated. Because
1183 * it is pinned, we know that the log has not been pushed to disk and
1184 * hence it will still be locked. Rather than sleeping until someone
1185 * else pushes the log, push it ourselves before trying to get the lock.
1186 */
1187void
1188xfs_buf_lock(
1189 struct xfs_buf *bp)
1190{
1191 trace_xfs_buf_lock(bp, _RET_IP_);
1192
1193 if (atomic_read(&bp->b_pin_count) && (bp->b_flags & XBF_STALE))
1194 xfs_log_force(bp->b_mount, 0);
1195 down(&bp->b_sema);
1196
1197 trace_xfs_buf_lock_done(bp, _RET_IP_);
1198}
1199
1200void
1201xfs_buf_unlock(
1202 struct xfs_buf *bp)
1203{
1204 ASSERT(xfs_buf_islocked(bp));
1205
1206 up(&bp->b_sema);
1207 trace_xfs_buf_unlock(bp, _RET_IP_);
1208}
1209
1210STATIC void
1211xfs_buf_wait_unpin(
1212 struct xfs_buf *bp)
1213{
1214 DECLARE_WAITQUEUE (wait, current);
1215
1216 if (atomic_read(&bp->b_pin_count) == 0)
1217 return;
1218
1219 add_wait_queue(&bp->b_waiters, &wait);
1220 for (;;) {
1221 set_current_state(TASK_UNINTERRUPTIBLE);
1222 if (atomic_read(&bp->b_pin_count) == 0)
1223 break;
1224 io_schedule();
1225 }
1226 remove_wait_queue(&bp->b_waiters, &wait);
1227 set_current_state(TASK_RUNNING);
1228}
1229
1230static void
1231xfs_buf_ioerror_alert_ratelimited(
1232 struct xfs_buf *bp)
1233{
1234 static unsigned long lasttime;
1235 static struct xfs_buftarg *lasttarg;
1236
1237 if (bp->b_target != lasttarg ||
1238 time_after(jiffies, (lasttime + 5*HZ))) {
1239 lasttime = jiffies;
1240 xfs_buf_ioerror_alert(bp, __this_address);
1241 }
1242 lasttarg = bp->b_target;
1243}
1244
1245/*
1246 * Account for this latest trip around the retry handler, and decide if
1247 * we've failed enough times to constitute a permanent failure.
1248 */
1249static bool
1250xfs_buf_ioerror_permanent(
1251 struct xfs_buf *bp,
1252 struct xfs_error_cfg *cfg)
1253{
1254 struct xfs_mount *mp = bp->b_mount;
1255
1256 if (cfg->max_retries != XFS_ERR_RETRY_FOREVER &&
1257 ++bp->b_retries > cfg->max_retries)
1258 return true;
1259 if (cfg->retry_timeout != XFS_ERR_RETRY_FOREVER &&
1260 time_after(jiffies, cfg->retry_timeout + bp->b_first_retry_time))
1261 return true;
1262
1263 /* At unmount we may treat errors differently */
1264 if (xfs_is_unmounting(mp) && mp->m_fail_unmount)
1265 return true;
1266
1267 return false;
1268}
1269
1270/*
1271 * On a sync write or shutdown we just want to stale the buffer and let the
1272 * caller handle the error in bp->b_error appropriately.
1273 *
1274 * If the write was asynchronous then no one will be looking for the error. If
1275 * this is the first failure of this type, clear the error state and write the
1276 * buffer out again. This means we always retry an async write failure at least
1277 * once, but we also need to set the buffer up to behave correctly now for
1278 * repeated failures.
1279 *
1280 * If we get repeated async write failures, then we take action according to the
1281 * error configuration we have been set up to use.
1282 *
1283 * Returns true if this function took care of error handling and the caller must
1284 * not touch the buffer again. Return false if the caller should proceed with
1285 * normal I/O completion handling.
1286 */
1287static bool
1288xfs_buf_ioend_handle_error(
1289 struct xfs_buf *bp)
1290{
1291 struct xfs_mount *mp = bp->b_mount;
1292 struct xfs_error_cfg *cfg;
1293
1294 /*
1295 * If we've already shutdown the journal because of I/O errors, there's
1296 * no point in giving this a retry.
1297 */
1298 if (xlog_is_shutdown(mp->m_log))
1299 goto out_stale;
1300
1301 xfs_buf_ioerror_alert_ratelimited(bp);
1302
1303 /*
1304 * We're not going to bother about retrying this during recovery.
1305 * One strike!
1306 */
1307 if (bp->b_flags & _XBF_LOGRECOVERY) {
1308 xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
1309 return false;
1310 }
1311
1312 /*
1313 * Synchronous writes will have callers process the error.
1314 */
1315 if (!(bp->b_flags & XBF_ASYNC))
1316 goto out_stale;
1317
1318 trace_xfs_buf_iodone_async(bp, _RET_IP_);
1319
1320 cfg = xfs_error_get_cfg(mp, XFS_ERR_METADATA, bp->b_error);
1321 if (bp->b_last_error != bp->b_error ||
1322 !(bp->b_flags & (XBF_STALE | XBF_WRITE_FAIL))) {
1323 bp->b_last_error = bp->b_error;
1324 if (cfg->retry_timeout != XFS_ERR_RETRY_FOREVER &&
1325 !bp->b_first_retry_time)
1326 bp->b_first_retry_time = jiffies;
1327 goto resubmit;
1328 }
1329
1330 /*
1331 * Permanent error - we need to trigger a shutdown if we haven't already
1332 * to indicate that inconsistency will result from this action.
1333 */
1334 if (xfs_buf_ioerror_permanent(bp, cfg)) {
1335 xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
1336 goto out_stale;
1337 }
1338
1339 /* Still considered a transient error. Caller will schedule retries. */
1340 if (bp->b_flags & _XBF_INODES)
1341 xfs_buf_inode_io_fail(bp);
1342 else if (bp->b_flags & _XBF_DQUOTS)
1343 xfs_buf_dquot_io_fail(bp);
1344 else
1345 ASSERT(list_empty(&bp->b_li_list));
1346 xfs_buf_ioerror(bp, 0);
1347 xfs_buf_relse(bp);
1348 return true;
1349
1350resubmit:
1351 xfs_buf_ioerror(bp, 0);
1352 bp->b_flags |= (XBF_DONE | XBF_WRITE_FAIL);
1353 xfs_buf_submit(bp);
1354 return true;
1355out_stale:
1356 xfs_buf_stale(bp);
1357 bp->b_flags |= XBF_DONE;
1358 bp->b_flags &= ~XBF_WRITE;
1359 trace_xfs_buf_error_relse(bp, _RET_IP_);
1360 return false;
1361}
1362
1363static void
1364xfs_buf_ioend(
1365 struct xfs_buf *bp)
1366{
1367 trace_xfs_buf_iodone(bp, _RET_IP_);
1368
1369 /*
1370 * Pull in IO completion errors now. We are guaranteed to be running
1371 * single threaded, so we don't need the lock to read b_io_error.
1372 */
1373 if (!bp->b_error && bp->b_io_error)
1374 xfs_buf_ioerror(bp, bp->b_io_error);
1375
1376 if (bp->b_flags & XBF_READ) {
1377 if (!bp->b_error && bp->b_ops)
1378 bp->b_ops->verify_read(bp);
1379 if (!bp->b_error)
1380 bp->b_flags |= XBF_DONE;
1381 } else {
1382 if (!bp->b_error) {
1383 bp->b_flags &= ~XBF_WRITE_FAIL;
1384 bp->b_flags |= XBF_DONE;
1385 }
1386
1387 if (unlikely(bp->b_error) && xfs_buf_ioend_handle_error(bp))
1388 return;
1389
1390 /* clear the retry state */
1391 bp->b_last_error = 0;
1392 bp->b_retries = 0;
1393 bp->b_first_retry_time = 0;
1394
1395 /*
1396 * Note that for things like remote attribute buffers, there may
1397 * not be a buffer log item here, so processing the buffer log
1398 * item must remain optional.
1399 */
1400 if (bp->b_log_item)
1401 xfs_buf_item_done(bp);
1402
1403 if (bp->b_flags & _XBF_INODES)
1404 xfs_buf_inode_iodone(bp);
1405 else if (bp->b_flags & _XBF_DQUOTS)
1406 xfs_buf_dquot_iodone(bp);
1407
1408 }
1409
1410 bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_READ_AHEAD |
1411 _XBF_LOGRECOVERY);
1412
1413 if (bp->b_flags & XBF_ASYNC)
1414 xfs_buf_relse(bp);
1415 else
1416 complete(&bp->b_iowait);
1417}
1418
1419static void
1420xfs_buf_ioend_work(
1421 struct work_struct *work)
1422{
1423 struct xfs_buf *bp =
1424 container_of(work, struct xfs_buf, b_ioend_work);
1425
1426 xfs_buf_ioend(bp);
1427}
1428
1429static void
1430xfs_buf_ioend_async(
1431 struct xfs_buf *bp)
1432{
1433 INIT_WORK(&bp->b_ioend_work, xfs_buf_ioend_work);
1434 queue_work(bp->b_mount->m_buf_workqueue, &bp->b_ioend_work);
1435}
1436
1437void
1438__xfs_buf_ioerror(
1439 struct xfs_buf *bp,
1440 int error,
1441 xfs_failaddr_t failaddr)
1442{
1443 ASSERT(error <= 0 && error >= -1000);
1444 bp->b_error = error;
1445 trace_xfs_buf_ioerror(bp, error, failaddr);
1446}
1447
1448void
1449xfs_buf_ioerror_alert(
1450 struct xfs_buf *bp,
1451 xfs_failaddr_t func)
1452{
1453 xfs_buf_alert_ratelimited(bp, "XFS: metadata IO error",
1454 "metadata I/O error in \"%pS\" at daddr 0x%llx len %d error %d",
1455 func, (uint64_t)xfs_buf_daddr(bp),
1456 bp->b_length, -bp->b_error);
1457}
1458
1459/*
1460 * To simulate an I/O failure, the buffer must be locked and held with at least
1461 * three references. The LRU reference is dropped by the stale call. The buf
1462 * item reference is dropped via ioend processing. The third reference is owned
1463 * by the caller and is dropped on I/O completion if the buffer is XBF_ASYNC.
1464 */
1465void
1466xfs_buf_ioend_fail(
1467 struct xfs_buf *bp)
1468{
1469 bp->b_flags &= ~XBF_DONE;
1470 xfs_buf_stale(bp);
1471 xfs_buf_ioerror(bp, -EIO);
1472 xfs_buf_ioend(bp);
1473}
1474
1475int
1476xfs_bwrite(
1477 struct xfs_buf *bp)
1478{
1479 int error;
1480
1481 ASSERT(xfs_buf_islocked(bp));
1482
1483 bp->b_flags |= XBF_WRITE;
1484 bp->b_flags &= ~(XBF_ASYNC | XBF_READ | _XBF_DELWRI_Q |
1485 XBF_DONE);
1486
1487 error = xfs_buf_submit(bp);
1488 if (error)
1489 xfs_force_shutdown(bp->b_mount, SHUTDOWN_META_IO_ERROR);
1490 return error;
1491}
1492
1493static void
1494xfs_buf_bio_end_io(
1495 struct bio *bio)
1496{
1497 struct xfs_buf *bp = (struct xfs_buf *)bio->bi_private;
1498
1499 if (!bio->bi_status &&
1500 (bp->b_flags & XBF_WRITE) && (bp->b_flags & XBF_ASYNC) &&
1501 XFS_TEST_ERROR(false, bp->b_mount, XFS_ERRTAG_BUF_IOERROR))
1502 bio->bi_status = BLK_STS_IOERR;
1503
1504 /*
1505 * don't overwrite existing errors - otherwise we can lose errors on
1506 * buffers that require multiple bios to complete.
1507 */
1508 if (bio->bi_status) {
1509 int error = blk_status_to_errno(bio->bi_status);
1510
1511 cmpxchg(&bp->b_io_error, 0, error);
1512 }
1513
1514 if (!bp->b_error && xfs_buf_is_vmapped(bp) && (bp->b_flags & XBF_READ))
1515 invalidate_kernel_vmap_range(bp->b_addr, xfs_buf_vmap_len(bp));
1516
1517 if (atomic_dec_and_test(&bp->b_io_remaining) == 1)
1518 xfs_buf_ioend_async(bp);
1519 bio_put(bio);
1520}
1521
1522static void
1523xfs_buf_ioapply_map(
1524 struct xfs_buf *bp,
1525 int map,
1526 int *buf_offset,
1527 int *count,
1528 blk_opf_t op)
1529{
1530 int page_index;
1531 unsigned int total_nr_pages = bp->b_page_count;
1532 int nr_pages;
1533 struct bio *bio;
1534 sector_t sector = bp->b_maps[map].bm_bn;
1535 int size;
1536 int offset;
1537
1538 /* skip the pages in the buffer before the start offset */
1539 page_index = 0;
1540 offset = *buf_offset;
1541 while (offset >= PAGE_SIZE) {
1542 page_index++;
1543 offset -= PAGE_SIZE;
1544 }
1545
1546 /*
1547 * Limit the IO size to the length of the current vector, and update the
1548 * remaining IO count for the next time around.
1549 */
1550 size = min_t(int, BBTOB(bp->b_maps[map].bm_len), *count);
1551 *count -= size;
1552 *buf_offset += size;
1553
1554next_chunk:
1555 atomic_inc(&bp->b_io_remaining);
1556 nr_pages = bio_max_segs(total_nr_pages);
1557
1558 bio = bio_alloc(bp->b_target->bt_bdev, nr_pages, op, GFP_NOIO);
1559 bio->bi_iter.bi_sector = sector;
1560 bio->bi_end_io = xfs_buf_bio_end_io;
1561 bio->bi_private = bp;
1562
1563 for (; size && nr_pages; nr_pages--, page_index++) {
1564 int rbytes, nbytes = PAGE_SIZE - offset;
1565
1566 if (nbytes > size)
1567 nbytes = size;
1568
1569 rbytes = bio_add_page(bio, bp->b_pages[page_index], nbytes,
1570 offset);
1571 if (rbytes < nbytes)
1572 break;
1573
1574 offset = 0;
1575 sector += BTOBB(nbytes);
1576 size -= nbytes;
1577 total_nr_pages--;
1578 }
1579
1580 if (likely(bio->bi_iter.bi_size)) {
1581 if (xfs_buf_is_vmapped(bp)) {
1582 flush_kernel_vmap_range(bp->b_addr,
1583 xfs_buf_vmap_len(bp));
1584 }
1585 submit_bio(bio);
1586 if (size)
1587 goto next_chunk;
1588 } else {
1589 /*
1590 * This is guaranteed not to be the last io reference count
1591 * because the caller (xfs_buf_submit) holds a count itself.
1592 */
1593 atomic_dec(&bp->b_io_remaining);
1594 xfs_buf_ioerror(bp, -EIO);
1595 bio_put(bio);
1596 }
1597
1598}
1599
1600STATIC void
1601_xfs_buf_ioapply(
1602 struct xfs_buf *bp)
1603{
1604 struct blk_plug plug;
1605 blk_opf_t op;
1606 int offset;
1607 int size;
1608 int i;
1609
1610 /*
1611 * Make sure we capture only current IO errors rather than stale errors
1612 * left over from previous use of the buffer (e.g. failed readahead).
1613 */
1614 bp->b_error = 0;
1615
1616 if (bp->b_flags & XBF_WRITE) {
1617 op = REQ_OP_WRITE;
1618
1619 /*
1620 * Run the write verifier callback function if it exists. If
1621 * this function fails it will mark the buffer with an error and
1622 * the IO should not be dispatched.
1623 */
1624 if (bp->b_ops) {
1625 bp->b_ops->verify_write(bp);
1626 if (bp->b_error) {
1627 xfs_force_shutdown(bp->b_mount,
1628 SHUTDOWN_CORRUPT_INCORE);
1629 return;
1630 }
1631 } else if (bp->b_rhash_key != XFS_BUF_DADDR_NULL) {
1632 struct xfs_mount *mp = bp->b_mount;
1633
1634 /*
1635 * non-crc filesystems don't attach verifiers during
1636 * log recovery, so don't warn for such filesystems.
1637 */
1638 if (xfs_has_crc(mp)) {
1639 xfs_warn(mp,
1640 "%s: no buf ops on daddr 0x%llx len %d",
1641 __func__, xfs_buf_daddr(bp),
1642 bp->b_length);
1643 xfs_hex_dump(bp->b_addr,
1644 XFS_CORRUPTION_DUMP_LEN);
1645 dump_stack();
1646 }
1647 }
1648 } else {
1649 op = REQ_OP_READ;
1650 if (bp->b_flags & XBF_READ_AHEAD)
1651 op |= REQ_RAHEAD;
1652 }
1653
1654 /* we only use the buffer cache for meta-data */
1655 op |= REQ_META;
1656
1657 /* in-memory targets are directly mapped, no IO required. */
1658 if (xfs_buftarg_is_mem(bp->b_target)) {
1659 xfs_buf_ioend(bp);
1660 return;
1661 }
1662
1663 /*
1664 * Walk all the vectors issuing IO on them. Set up the initial offset
1665 * into the buffer and the desired IO size before we start -
1666 * _xfs_buf_ioapply_vec() will modify them appropriately for each
1667 * subsequent call.
1668 */
1669 offset = bp->b_offset;
1670 size = BBTOB(bp->b_length);
1671 blk_start_plug(&plug);
1672 for (i = 0; i < bp->b_map_count; i++) {
1673 xfs_buf_ioapply_map(bp, i, &offset, &size, op);
1674 if (bp->b_error)
1675 break;
1676 if (size <= 0)
1677 break; /* all done */
1678 }
1679 blk_finish_plug(&plug);
1680}
1681
1682/*
1683 * Wait for I/O completion of a sync buffer and return the I/O error code.
1684 */
1685static int
1686xfs_buf_iowait(
1687 struct xfs_buf *bp)
1688{
1689 ASSERT(!(bp->b_flags & XBF_ASYNC));
1690
1691 trace_xfs_buf_iowait(bp, _RET_IP_);
1692 wait_for_completion(&bp->b_iowait);
1693 trace_xfs_buf_iowait_done(bp, _RET_IP_);
1694
1695 return bp->b_error;
1696}
1697
1698/*
1699 * Buffer I/O submission path, read or write. Asynchronous submission transfers
1700 * the buffer lock ownership and the current reference to the IO. It is not
1701 * safe to reference the buffer after a call to this function unless the caller
1702 * holds an additional reference itself.
1703 */
1704static int
1705__xfs_buf_submit(
1706 struct xfs_buf *bp,
1707 bool wait)
1708{
1709 int error = 0;
1710
1711 trace_xfs_buf_submit(bp, _RET_IP_);
1712
1713 ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
1714
1715 /*
1716 * On log shutdown we stale and complete the buffer immediately. We can
1717 * be called to read the superblock before the log has been set up, so
1718 * be careful checking the log state.
1719 *
1720 * Checking the mount shutdown state here can result in the log tail
1721 * moving inappropriately on disk as the log may not yet be shut down.
1722 * i.e. failing this buffer on mount shutdown can remove it from the AIL
1723 * and move the tail of the log forwards without having written this
1724 * buffer to disk. This corrupts the log tail state in memory, and
1725 * because the log may not be shut down yet, it can then be propagated
1726 * to disk before the log is shutdown. Hence we check log shutdown
1727 * state here rather than mount state to avoid corrupting the log tail
1728 * on shutdown.
1729 */
1730 if (bp->b_mount->m_log &&
1731 xlog_is_shutdown(bp->b_mount->m_log)) {
1732 xfs_buf_ioend_fail(bp);
1733 return -EIO;
1734 }
1735
1736 /*
1737 * Grab a reference so the buffer does not go away underneath us. For
1738 * async buffers, I/O completion drops the callers reference, which
1739 * could occur before submission returns.
1740 */
1741 xfs_buf_hold(bp);
1742
1743 if (bp->b_flags & XBF_WRITE)
1744 xfs_buf_wait_unpin(bp);
1745
1746 /* clear the internal error state to avoid spurious errors */
1747 bp->b_io_error = 0;
1748
1749 /*
1750 * Set the count to 1 initially, this will stop an I/O completion
1751 * callout which happens before we have started all the I/O from calling
1752 * xfs_buf_ioend too early.
1753 */
1754 atomic_set(&bp->b_io_remaining, 1);
1755 if (bp->b_flags & XBF_ASYNC)
1756 xfs_buf_ioacct_inc(bp);
1757 _xfs_buf_ioapply(bp);
1758
1759 /*
1760 * If _xfs_buf_ioapply failed, we can get back here with only the IO
1761 * reference we took above. If we drop it to zero, run completion so
1762 * that we don't return to the caller with completion still pending.
1763 */
1764 if (atomic_dec_and_test(&bp->b_io_remaining) == 1) {
1765 if (bp->b_error || !(bp->b_flags & XBF_ASYNC))
1766 xfs_buf_ioend(bp);
1767 else
1768 xfs_buf_ioend_async(bp);
1769 }
1770
1771 if (wait)
1772 error = xfs_buf_iowait(bp);
1773
1774 /*
1775 * Release the hold that keeps the buffer referenced for the entire
1776 * I/O. Note that if the buffer is async, it is not safe to reference
1777 * after this release.
1778 */
1779 xfs_buf_rele(bp);
1780 return error;
1781}
1782
1783void *
1784xfs_buf_offset(
1785 struct xfs_buf *bp,
1786 size_t offset)
1787{
1788 struct page *page;
1789
1790 if (bp->b_addr)
1791 return bp->b_addr + offset;
1792
1793 page = bp->b_pages[offset >> PAGE_SHIFT];
1794 return page_address(page) + (offset & (PAGE_SIZE-1));
1795}
1796
1797void
1798xfs_buf_zero(
1799 struct xfs_buf *bp,
1800 size_t boff,
1801 size_t bsize)
1802{
1803 size_t bend;
1804
1805 bend = boff + bsize;
1806 while (boff < bend) {
1807 struct page *page;
1808 int page_index, page_offset, csize;
1809
1810 page_index = (boff + bp->b_offset) >> PAGE_SHIFT;
1811 page_offset = (boff + bp->b_offset) & ~PAGE_MASK;
1812 page = bp->b_pages[page_index];
1813 csize = min_t(size_t, PAGE_SIZE - page_offset,
1814 BBTOB(bp->b_length) - boff);
1815
1816 ASSERT((csize + page_offset) <= PAGE_SIZE);
1817
1818 memset(page_address(page) + page_offset, 0, csize);
1819
1820 boff += csize;
1821 }
1822}
1823
1824/*
1825 * Log a message about and stale a buffer that a caller has decided is corrupt.
1826 *
1827 * This function should be called for the kinds of metadata corruption that
1828 * cannot be detect from a verifier, such as incorrect inter-block relationship
1829 * data. Do /not/ call this function from a verifier function.
1830 *
1831 * The buffer must be XBF_DONE prior to the call. Afterwards, the buffer will
1832 * be marked stale, but b_error will not be set. The caller is responsible for
1833 * releasing the buffer or fixing it.
1834 */
1835void
1836__xfs_buf_mark_corrupt(
1837 struct xfs_buf *bp,
1838 xfs_failaddr_t fa)
1839{
1840 ASSERT(bp->b_flags & XBF_DONE);
1841
1842 xfs_buf_corruption_error(bp, fa);
1843 xfs_buf_stale(bp);
1844}
1845
1846/*
1847 * Handling of buffer targets (buftargs).
1848 */
1849
1850/*
1851 * Wait for any bufs with callbacks that have been submitted but have not yet
1852 * returned. These buffers will have an elevated hold count, so wait on those
1853 * while freeing all the buffers only held by the LRU.
1854 */
1855static enum lru_status
1856xfs_buftarg_drain_rele(
1857 struct list_head *item,
1858 struct list_lru_one *lru,
1859 void *arg)
1860
1861{
1862 struct xfs_buf *bp = container_of(item, struct xfs_buf, b_lru);
1863 struct list_head *dispose = arg;
1864
1865 if (atomic_read(&bp->b_hold) > 1) {
1866 /* need to wait, so skip it this pass */
1867 trace_xfs_buf_drain_buftarg(bp, _RET_IP_);
1868 return LRU_SKIP;
1869 }
1870 if (!spin_trylock(&bp->b_lock))
1871 return LRU_SKIP;
1872
1873 /*
1874 * clear the LRU reference count so the buffer doesn't get
1875 * ignored in xfs_buf_rele().
1876 */
1877 atomic_set(&bp->b_lru_ref, 0);
1878 bp->b_state |= XFS_BSTATE_DISPOSE;
1879 list_lru_isolate_move(lru, item, dispose);
1880 spin_unlock(&bp->b_lock);
1881 return LRU_REMOVED;
1882}
1883
1884/*
1885 * Wait for outstanding I/O on the buftarg to complete.
1886 */
1887void
1888xfs_buftarg_wait(
1889 struct xfs_buftarg *btp)
1890{
1891 /*
1892 * First wait on the buftarg I/O count for all in-flight buffers to be
1893 * released. This is critical as new buffers do not make the LRU until
1894 * they are released.
1895 *
1896 * Next, flush the buffer workqueue to ensure all completion processing
1897 * has finished. Just waiting on buffer locks is not sufficient for
1898 * async IO as the reference count held over IO is not released until
1899 * after the buffer lock is dropped. Hence we need to ensure here that
1900 * all reference counts have been dropped before we start walking the
1901 * LRU list.
1902 */
1903 while (percpu_counter_sum(&btp->bt_io_count))
1904 delay(100);
1905 flush_workqueue(btp->bt_mount->m_buf_workqueue);
1906}
1907
1908void
1909xfs_buftarg_drain(
1910 struct xfs_buftarg *btp)
1911{
1912 LIST_HEAD(dispose);
1913 int loop = 0;
1914 bool write_fail = false;
1915
1916 xfs_buftarg_wait(btp);
1917
1918 /* loop until there is nothing left on the lru list. */
1919 while (list_lru_count(&btp->bt_lru)) {
1920 list_lru_walk(&btp->bt_lru, xfs_buftarg_drain_rele,
1921 &dispose, LONG_MAX);
1922
1923 while (!list_empty(&dispose)) {
1924 struct xfs_buf *bp;
1925 bp = list_first_entry(&dispose, struct xfs_buf, b_lru);
1926 list_del_init(&bp->b_lru);
1927 if (bp->b_flags & XBF_WRITE_FAIL) {
1928 write_fail = true;
1929 xfs_buf_alert_ratelimited(bp,
1930 "XFS: Corruption Alert",
1931"Corruption Alert: Buffer at daddr 0x%llx had permanent write failures!",
1932 (long long)xfs_buf_daddr(bp));
1933 }
1934 xfs_buf_rele(bp);
1935 }
1936 if (loop++ != 0)
1937 delay(100);
1938 }
1939
1940 /*
1941 * If one or more failed buffers were freed, that means dirty metadata
1942 * was thrown away. This should only ever happen after I/O completion
1943 * handling has elevated I/O error(s) to permanent failures and shuts
1944 * down the journal.
1945 */
1946 if (write_fail) {
1947 ASSERT(xlog_is_shutdown(btp->bt_mount->m_log));
1948 xfs_alert(btp->bt_mount,
1949 "Please run xfs_repair to determine the extent of the problem.");
1950 }
1951}
1952
1953static enum lru_status
1954xfs_buftarg_isolate(
1955 struct list_head *item,
1956 struct list_lru_one *lru,
1957 void *arg)
1958{
1959 struct xfs_buf *bp = container_of(item, struct xfs_buf, b_lru);
1960 struct list_head *dispose = arg;
1961
1962 /*
1963 * we are inverting the lru lock/bp->b_lock here, so use a trylock.
1964 * If we fail to get the lock, just skip it.
1965 */
1966 if (!spin_trylock(&bp->b_lock))
1967 return LRU_SKIP;
1968 /*
1969 * Decrement the b_lru_ref count unless the value is already
1970 * zero. If the value is already zero, we need to reclaim the
1971 * buffer, otherwise it gets another trip through the LRU.
1972 */
1973 if (atomic_add_unless(&bp->b_lru_ref, -1, 0)) {
1974 spin_unlock(&bp->b_lock);
1975 return LRU_ROTATE;
1976 }
1977
1978 bp->b_state |= XFS_BSTATE_DISPOSE;
1979 list_lru_isolate_move(lru, item, dispose);
1980 spin_unlock(&bp->b_lock);
1981 return LRU_REMOVED;
1982}
1983
1984static unsigned long
1985xfs_buftarg_shrink_scan(
1986 struct shrinker *shrink,
1987 struct shrink_control *sc)
1988{
1989 struct xfs_buftarg *btp = shrink->private_data;
1990 LIST_HEAD(dispose);
1991 unsigned long freed;
1992
1993 freed = list_lru_shrink_walk(&btp->bt_lru, sc,
1994 xfs_buftarg_isolate, &dispose);
1995
1996 while (!list_empty(&dispose)) {
1997 struct xfs_buf *bp;
1998 bp = list_first_entry(&dispose, struct xfs_buf, b_lru);
1999 list_del_init(&bp->b_lru);
2000 xfs_buf_rele(bp);
2001 }
2002
2003 return freed;
2004}
2005
2006static unsigned long
2007xfs_buftarg_shrink_count(
2008 struct shrinker *shrink,
2009 struct shrink_control *sc)
2010{
2011 struct xfs_buftarg *btp = shrink->private_data;
2012 return list_lru_shrink_count(&btp->bt_lru, sc);
2013}
2014
2015void
2016xfs_destroy_buftarg(
2017 struct xfs_buftarg *btp)
2018{
2019 shrinker_free(btp->bt_shrinker);
2020 ASSERT(percpu_counter_sum(&btp->bt_io_count) == 0);
2021 percpu_counter_destroy(&btp->bt_io_count);
2022 list_lru_destroy(&btp->bt_lru);
2023}
2024
2025void
2026xfs_free_buftarg(
2027 struct xfs_buftarg *btp)
2028{
2029 xfs_destroy_buftarg(btp);
2030 fs_put_dax(btp->bt_daxdev, btp->bt_mount);
2031 /* the main block device is closed by kill_block_super */
2032 if (btp->bt_bdev != btp->bt_mount->m_super->s_bdev)
2033 bdev_fput(btp->bt_bdev_file);
2034 kfree(btp);
2035}
2036
2037int
2038xfs_setsize_buftarg(
2039 struct xfs_buftarg *btp,
2040 unsigned int sectorsize)
2041{
2042 /* Set up metadata sector size info */
2043 btp->bt_meta_sectorsize = sectorsize;
2044 btp->bt_meta_sectormask = sectorsize - 1;
2045
2046 if (set_blocksize(btp->bt_bdev_file, sectorsize)) {
2047 xfs_warn(btp->bt_mount,
2048 "Cannot set_blocksize to %u on device %pg",
2049 sectorsize, btp->bt_bdev);
2050 return -EINVAL;
2051 }
2052
2053 return 0;
2054}
2055
2056int
2057xfs_init_buftarg(
2058 struct xfs_buftarg *btp,
2059 size_t logical_sectorsize,
2060 const char *descr)
2061{
2062 /* Set up device logical sector size mask */
2063 btp->bt_logical_sectorsize = logical_sectorsize;
2064 btp->bt_logical_sectormask = logical_sectorsize - 1;
2065
2066 /*
2067 * Buffer IO error rate limiting. Limit it to no more than 10 messages
2068 * per 30 seconds so as to not spam logs too much on repeated errors.
2069 */
2070 ratelimit_state_init(&btp->bt_ioerror_rl, 30 * HZ,
2071 DEFAULT_RATELIMIT_BURST);
2072
2073 if (list_lru_init(&btp->bt_lru))
2074 return -ENOMEM;
2075 if (percpu_counter_init(&btp->bt_io_count, 0, GFP_KERNEL))
2076 goto out_destroy_lru;
2077
2078 btp->bt_shrinker =
2079 shrinker_alloc(SHRINKER_NUMA_AWARE, "xfs-buf:%s", descr);
2080 if (!btp->bt_shrinker)
2081 goto out_destroy_io_count;
2082 btp->bt_shrinker->count_objects = xfs_buftarg_shrink_count;
2083 btp->bt_shrinker->scan_objects = xfs_buftarg_shrink_scan;
2084 btp->bt_shrinker->private_data = btp;
2085 shrinker_register(btp->bt_shrinker);
2086 return 0;
2087
2088out_destroy_io_count:
2089 percpu_counter_destroy(&btp->bt_io_count);
2090out_destroy_lru:
2091 list_lru_destroy(&btp->bt_lru);
2092 return -ENOMEM;
2093}
2094
2095struct xfs_buftarg *
2096xfs_alloc_buftarg(
2097 struct xfs_mount *mp,
2098 struct file *bdev_file)
2099{
2100 struct xfs_buftarg *btp;
2101 const struct dax_holder_operations *ops = NULL;
2102
2103#if defined(CONFIG_FS_DAX) && defined(CONFIG_MEMORY_FAILURE)
2104 ops = &xfs_dax_holder_operations;
2105#endif
2106 btp = kzalloc(sizeof(*btp), GFP_KERNEL | __GFP_NOFAIL);
2107
2108 btp->bt_mount = mp;
2109 btp->bt_bdev_file = bdev_file;
2110 btp->bt_bdev = file_bdev(bdev_file);
2111 btp->bt_dev = btp->bt_bdev->bd_dev;
2112 btp->bt_daxdev = fs_dax_get_by_bdev(btp->bt_bdev, &btp->bt_dax_part_off,
2113 mp, ops);
2114
2115 if (bdev_can_atomic_write(btp->bt_bdev)) {
2116 btp->bt_bdev_awu_min = bdev_atomic_write_unit_min_bytes(
2117 btp->bt_bdev);
2118 btp->bt_bdev_awu_max = bdev_atomic_write_unit_max_bytes(
2119 btp->bt_bdev);
2120 }
2121
2122 /*
2123 * When allocating the buftargs we have not yet read the super block and
2124 * thus don't know the file system sector size yet.
2125 */
2126 if (xfs_setsize_buftarg(btp, bdev_logical_block_size(btp->bt_bdev)))
2127 goto error_free;
2128 if (xfs_init_buftarg(btp, bdev_logical_block_size(btp->bt_bdev),
2129 mp->m_super->s_id))
2130 goto error_free;
2131
2132 return btp;
2133
2134error_free:
2135 kfree(btp);
2136 return NULL;
2137}
2138
2139static inline void
2140xfs_buf_list_del(
2141 struct xfs_buf *bp)
2142{
2143 list_del_init(&bp->b_list);
2144 wake_up_var(&bp->b_list);
2145}
2146
2147/*
2148 * Cancel a delayed write list.
2149 *
2150 * Remove each buffer from the list, clear the delwri queue flag and drop the
2151 * associated buffer reference.
2152 */
2153void
2154xfs_buf_delwri_cancel(
2155 struct list_head *list)
2156{
2157 struct xfs_buf *bp;
2158
2159 while (!list_empty(list)) {
2160 bp = list_first_entry(list, struct xfs_buf, b_list);
2161
2162 xfs_buf_lock(bp);
2163 bp->b_flags &= ~_XBF_DELWRI_Q;
2164 xfs_buf_list_del(bp);
2165 xfs_buf_relse(bp);
2166 }
2167}
2168
2169/*
2170 * Add a buffer to the delayed write list.
2171 *
2172 * This queues a buffer for writeout if it hasn't already been. Note that
2173 * neither this routine nor the buffer list submission functions perform
2174 * any internal synchronization. It is expected that the lists are thread-local
2175 * to the callers.
2176 *
2177 * Returns true if we queued up the buffer, or false if it already had
2178 * been on the buffer list.
2179 */
2180bool
2181xfs_buf_delwri_queue(
2182 struct xfs_buf *bp,
2183 struct list_head *list)
2184{
2185 ASSERT(xfs_buf_islocked(bp));
2186 ASSERT(!(bp->b_flags & XBF_READ));
2187
2188 /*
2189 * If the buffer is already marked delwri it already is queued up
2190 * by someone else for imediate writeout. Just ignore it in that
2191 * case.
2192 */
2193 if (bp->b_flags & _XBF_DELWRI_Q) {
2194 trace_xfs_buf_delwri_queued(bp, _RET_IP_);
2195 return false;
2196 }
2197
2198 trace_xfs_buf_delwri_queue(bp, _RET_IP_);
2199
2200 /*
2201 * If a buffer gets written out synchronously or marked stale while it
2202 * is on a delwri list we lazily remove it. To do this, the other party
2203 * clears the _XBF_DELWRI_Q flag but otherwise leaves the buffer alone.
2204 * It remains referenced and on the list. In a rare corner case it
2205 * might get readded to a delwri list after the synchronous writeout, in
2206 * which case we need just need to re-add the flag here.
2207 */
2208 bp->b_flags |= _XBF_DELWRI_Q;
2209 if (list_empty(&bp->b_list)) {
2210 atomic_inc(&bp->b_hold);
2211 list_add_tail(&bp->b_list, list);
2212 }
2213
2214 return true;
2215}
2216
2217/*
2218 * Queue a buffer to this delwri list as part of a data integrity operation.
2219 * If the buffer is on any other delwri list, we'll wait for that to clear
2220 * so that the caller can submit the buffer for IO and wait for the result.
2221 * Callers must ensure the buffer is not already on the list.
2222 */
2223void
2224xfs_buf_delwri_queue_here(
2225 struct xfs_buf *bp,
2226 struct list_head *buffer_list)
2227{
2228 /*
2229 * We need this buffer to end up on the /caller's/ delwri list, not any
2230 * old list. This can happen if the buffer is marked stale (which
2231 * clears DELWRI_Q) after the AIL queues the buffer to its list but
2232 * before the AIL has a chance to submit the list.
2233 */
2234 while (!list_empty(&bp->b_list)) {
2235 xfs_buf_unlock(bp);
2236 wait_var_event(&bp->b_list, list_empty(&bp->b_list));
2237 xfs_buf_lock(bp);
2238 }
2239
2240 ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
2241
2242 xfs_buf_delwri_queue(bp, buffer_list);
2243}
2244
2245/*
2246 * Compare function is more complex than it needs to be because
2247 * the return value is only 32 bits and we are doing comparisons
2248 * on 64 bit values
2249 */
2250static int
2251xfs_buf_cmp(
2252 void *priv,
2253 const struct list_head *a,
2254 const struct list_head *b)
2255{
2256 struct xfs_buf *ap = container_of(a, struct xfs_buf, b_list);
2257 struct xfs_buf *bp = container_of(b, struct xfs_buf, b_list);
2258 xfs_daddr_t diff;
2259
2260 diff = ap->b_maps[0].bm_bn - bp->b_maps[0].bm_bn;
2261 if (diff < 0)
2262 return -1;
2263 if (diff > 0)
2264 return 1;
2265 return 0;
2266}
2267
2268/*
2269 * Submit buffers for write. If wait_list is specified, the buffers are
2270 * submitted using sync I/O and placed on the wait list such that the caller can
2271 * iowait each buffer. Otherwise async I/O is used and the buffers are released
2272 * at I/O completion time. In either case, buffers remain locked until I/O
2273 * completes and the buffer is released from the queue.
2274 */
2275static int
2276xfs_buf_delwri_submit_buffers(
2277 struct list_head *buffer_list,
2278 struct list_head *wait_list)
2279{
2280 struct xfs_buf *bp, *n;
2281 int pinned = 0;
2282 struct blk_plug plug;
2283
2284 list_sort(NULL, buffer_list, xfs_buf_cmp);
2285
2286 blk_start_plug(&plug);
2287 list_for_each_entry_safe(bp, n, buffer_list, b_list) {
2288 if (!wait_list) {
2289 if (!xfs_buf_trylock(bp))
2290 continue;
2291 if (xfs_buf_ispinned(bp)) {
2292 xfs_buf_unlock(bp);
2293 pinned++;
2294 continue;
2295 }
2296 } else {
2297 xfs_buf_lock(bp);
2298 }
2299
2300 /*
2301 * Someone else might have written the buffer synchronously or
2302 * marked it stale in the meantime. In that case only the
2303 * _XBF_DELWRI_Q flag got cleared, and we have to drop the
2304 * reference and remove it from the list here.
2305 */
2306 if (!(bp->b_flags & _XBF_DELWRI_Q)) {
2307 xfs_buf_list_del(bp);
2308 xfs_buf_relse(bp);
2309 continue;
2310 }
2311
2312 trace_xfs_buf_delwri_split(bp, _RET_IP_);
2313
2314 /*
2315 * If we have a wait list, each buffer (and associated delwri
2316 * queue reference) transfers to it and is submitted
2317 * synchronously. Otherwise, drop the buffer from the delwri
2318 * queue and submit async.
2319 */
2320 bp->b_flags &= ~_XBF_DELWRI_Q;
2321 bp->b_flags |= XBF_WRITE;
2322 if (wait_list) {
2323 bp->b_flags &= ~XBF_ASYNC;
2324 list_move_tail(&bp->b_list, wait_list);
2325 } else {
2326 bp->b_flags |= XBF_ASYNC;
2327 xfs_buf_list_del(bp);
2328 }
2329 __xfs_buf_submit(bp, false);
2330 }
2331 blk_finish_plug(&plug);
2332
2333 return pinned;
2334}
2335
2336/*
2337 * Write out a buffer list asynchronously.
2338 *
2339 * This will take the @buffer_list, write all non-locked and non-pinned buffers
2340 * out and not wait for I/O completion on any of the buffers. This interface
2341 * is only safely useable for callers that can track I/O completion by higher
2342 * level means, e.g. AIL pushing as the @buffer_list is consumed in this
2343 * function.
2344 *
2345 * Note: this function will skip buffers it would block on, and in doing so
2346 * leaves them on @buffer_list so they can be retried on a later pass. As such,
2347 * it is up to the caller to ensure that the buffer list is fully submitted or
2348 * cancelled appropriately when they are finished with the list. Failure to
2349 * cancel or resubmit the list until it is empty will result in leaked buffers
2350 * at unmount time.
2351 */
2352int
2353xfs_buf_delwri_submit_nowait(
2354 struct list_head *buffer_list)
2355{
2356 return xfs_buf_delwri_submit_buffers(buffer_list, NULL);
2357}
2358
2359/*
2360 * Write out a buffer list synchronously.
2361 *
2362 * This will take the @buffer_list, write all buffers out and wait for I/O
2363 * completion on all of the buffers. @buffer_list is consumed by the function,
2364 * so callers must have some other way of tracking buffers if they require such
2365 * functionality.
2366 */
2367int
2368xfs_buf_delwri_submit(
2369 struct list_head *buffer_list)
2370{
2371 LIST_HEAD (wait_list);
2372 int error = 0, error2;
2373 struct xfs_buf *bp;
2374
2375 xfs_buf_delwri_submit_buffers(buffer_list, &wait_list);
2376
2377 /* Wait for IO to complete. */
2378 while (!list_empty(&wait_list)) {
2379 bp = list_first_entry(&wait_list, struct xfs_buf, b_list);
2380
2381 xfs_buf_list_del(bp);
2382
2383 /*
2384 * Wait on the locked buffer, check for errors and unlock and
2385 * release the delwri queue reference.
2386 */
2387 error2 = xfs_buf_iowait(bp);
2388 xfs_buf_relse(bp);
2389 if (!error)
2390 error = error2;
2391 }
2392
2393 return error;
2394}
2395
2396/*
2397 * Push a single buffer on a delwri queue.
2398 *
2399 * The purpose of this function is to submit a single buffer of a delwri queue
2400 * and return with the buffer still on the original queue. The waiting delwri
2401 * buffer submission infrastructure guarantees transfer of the delwri queue
2402 * buffer reference to a temporary wait list. We reuse this infrastructure to
2403 * transfer the buffer back to the original queue.
2404 *
2405 * Note the buffer transitions from the queued state, to the submitted and wait
2406 * listed state and back to the queued state during this call. The buffer
2407 * locking and queue management logic between _delwri_pushbuf() and
2408 * _delwri_queue() guarantee that the buffer cannot be queued to another list
2409 * before returning.
2410 */
2411int
2412xfs_buf_delwri_pushbuf(
2413 struct xfs_buf *bp,
2414 struct list_head *buffer_list)
2415{
2416 LIST_HEAD (submit_list);
2417 int error;
2418
2419 ASSERT(bp->b_flags & _XBF_DELWRI_Q);
2420
2421 trace_xfs_buf_delwri_pushbuf(bp, _RET_IP_);
2422
2423 /*
2424 * Isolate the buffer to a new local list so we can submit it for I/O
2425 * independently from the rest of the original list.
2426 */
2427 xfs_buf_lock(bp);
2428 list_move(&bp->b_list, &submit_list);
2429 xfs_buf_unlock(bp);
2430
2431 /*
2432 * Delwri submission clears the DELWRI_Q buffer flag and returns with
2433 * the buffer on the wait list with the original reference. Rather than
2434 * bounce the buffer from a local wait list back to the original list
2435 * after I/O completion, reuse the original list as the wait list.
2436 */
2437 xfs_buf_delwri_submit_buffers(&submit_list, buffer_list);
2438
2439 /*
2440 * The buffer is now locked, under I/O and wait listed on the original
2441 * delwri queue. Wait for I/O completion, restore the DELWRI_Q flag and
2442 * return with the buffer unlocked and on the original queue.
2443 */
2444 error = xfs_buf_iowait(bp);
2445 bp->b_flags |= _XBF_DELWRI_Q;
2446 xfs_buf_unlock(bp);
2447
2448 return error;
2449}
2450
2451void xfs_buf_set_ref(struct xfs_buf *bp, int lru_ref)
2452{
2453 /*
2454 * Set the lru reference count to 0 based on the error injection tag.
2455 * This allows userspace to disrupt buffer caching for debug/testing
2456 * purposes.
2457 */
2458 if (XFS_TEST_ERROR(false, bp->b_mount, XFS_ERRTAG_BUF_LRU_REF))
2459 lru_ref = 0;
2460
2461 atomic_set(&bp->b_lru_ref, lru_ref);
2462}
2463
2464/*
2465 * Verify an on-disk magic value against the magic value specified in the
2466 * verifier structure. The verifier magic is in disk byte order so the caller is
2467 * expected to pass the value directly from disk.
2468 */
2469bool
2470xfs_verify_magic(
2471 struct xfs_buf *bp,
2472 __be32 dmagic)
2473{
2474 struct xfs_mount *mp = bp->b_mount;
2475 int idx;
2476
2477 idx = xfs_has_crc(mp);
2478 if (WARN_ON(!bp->b_ops || !bp->b_ops->magic[idx]))
2479 return false;
2480 return dmagic == bp->b_ops->magic[idx];
2481}
2482/*
2483 * Verify an on-disk magic value against the magic value specified in the
2484 * verifier structure. The verifier magic is in disk byte order so the caller is
2485 * expected to pass the value directly from disk.
2486 */
2487bool
2488xfs_verify_magic16(
2489 struct xfs_buf *bp,
2490 __be16 dmagic)
2491{
2492 struct xfs_mount *mp = bp->b_mount;
2493 int idx;
2494
2495 idx = xfs_has_crc(mp);
2496 if (WARN_ON(!bp->b_ops || !bp->b_ops->magic16[idx]))
2497 return false;
2498 return dmagic == bp->b_ops->magic16[idx];
2499}
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
4 * All Rights Reserved.
5 */
6#include "xfs.h"
7#include <linux/backing-dev.h>
8
9#include "xfs_shared.h"
10#include "xfs_format.h"
11#include "xfs_log_format.h"
12#include "xfs_trans_resv.h"
13#include "xfs_sb.h"
14#include "xfs_mount.h"
15#include "xfs_trace.h"
16#include "xfs_log.h"
17#include "xfs_errortag.h"
18#include "xfs_error.h"
19
20static kmem_zone_t *xfs_buf_zone;
21
22#define xb_to_gfp(flags) \
23 ((((flags) & XBF_READ_AHEAD) ? __GFP_NORETRY : GFP_NOFS) | __GFP_NOWARN)
24
25/*
26 * Locking orders
27 *
28 * xfs_buf_ioacct_inc:
29 * xfs_buf_ioacct_dec:
30 * b_sema (caller holds)
31 * b_lock
32 *
33 * xfs_buf_stale:
34 * b_sema (caller holds)
35 * b_lock
36 * lru_lock
37 *
38 * xfs_buf_rele:
39 * b_lock
40 * pag_buf_lock
41 * lru_lock
42 *
43 * xfs_buftarg_wait_rele
44 * lru_lock
45 * b_lock (trylock due to inversion)
46 *
47 * xfs_buftarg_isolate
48 * lru_lock
49 * b_lock (trylock due to inversion)
50 */
51
52static inline int
53xfs_buf_is_vmapped(
54 struct xfs_buf *bp)
55{
56 /*
57 * Return true if the buffer is vmapped.
58 *
59 * b_addr is null if the buffer is not mapped, but the code is clever
60 * enough to know it doesn't have to map a single page, so the check has
61 * to be both for b_addr and bp->b_page_count > 1.
62 */
63 return bp->b_addr && bp->b_page_count > 1;
64}
65
66static inline int
67xfs_buf_vmap_len(
68 struct xfs_buf *bp)
69{
70 return (bp->b_page_count * PAGE_SIZE) - bp->b_offset;
71}
72
73/*
74 * Bump the I/O in flight count on the buftarg if we haven't yet done so for
75 * this buffer. The count is incremented once per buffer (per hold cycle)
76 * because the corresponding decrement is deferred to buffer release. Buffers
77 * can undergo I/O multiple times in a hold-release cycle and per buffer I/O
78 * tracking adds unnecessary overhead. This is used for sychronization purposes
79 * with unmount (see xfs_wait_buftarg()), so all we really need is a count of
80 * in-flight buffers.
81 *
82 * Buffers that are never released (e.g., superblock, iclog buffers) must set
83 * the XBF_NO_IOACCT flag before I/O submission. Otherwise, the buftarg count
84 * never reaches zero and unmount hangs indefinitely.
85 */
86static inline void
87xfs_buf_ioacct_inc(
88 struct xfs_buf *bp)
89{
90 if (bp->b_flags & XBF_NO_IOACCT)
91 return;
92
93 ASSERT(bp->b_flags & XBF_ASYNC);
94 spin_lock(&bp->b_lock);
95 if (!(bp->b_state & XFS_BSTATE_IN_FLIGHT)) {
96 bp->b_state |= XFS_BSTATE_IN_FLIGHT;
97 percpu_counter_inc(&bp->b_target->bt_io_count);
98 }
99 spin_unlock(&bp->b_lock);
100}
101
102/*
103 * Clear the in-flight state on a buffer about to be released to the LRU or
104 * freed and unaccount from the buftarg.
105 */
106static inline void
107__xfs_buf_ioacct_dec(
108 struct xfs_buf *bp)
109{
110 lockdep_assert_held(&bp->b_lock);
111
112 if (bp->b_state & XFS_BSTATE_IN_FLIGHT) {
113 bp->b_state &= ~XFS_BSTATE_IN_FLIGHT;
114 percpu_counter_dec(&bp->b_target->bt_io_count);
115 }
116}
117
118static inline void
119xfs_buf_ioacct_dec(
120 struct xfs_buf *bp)
121{
122 spin_lock(&bp->b_lock);
123 __xfs_buf_ioacct_dec(bp);
124 spin_unlock(&bp->b_lock);
125}
126
127/*
128 * When we mark a buffer stale, we remove the buffer from the LRU and clear the
129 * b_lru_ref count so that the buffer is freed immediately when the buffer
130 * reference count falls to zero. If the buffer is already on the LRU, we need
131 * to remove the reference that LRU holds on the buffer.
132 *
133 * This prevents build-up of stale buffers on the LRU.
134 */
135void
136xfs_buf_stale(
137 struct xfs_buf *bp)
138{
139 ASSERT(xfs_buf_islocked(bp));
140
141 bp->b_flags |= XBF_STALE;
142
143 /*
144 * Clear the delwri status so that a delwri queue walker will not
145 * flush this buffer to disk now that it is stale. The delwri queue has
146 * a reference to the buffer, so this is safe to do.
147 */
148 bp->b_flags &= ~_XBF_DELWRI_Q;
149
150 /*
151 * Once the buffer is marked stale and unlocked, a subsequent lookup
152 * could reset b_flags. There is no guarantee that the buffer is
153 * unaccounted (released to LRU) before that occurs. Drop in-flight
154 * status now to preserve accounting consistency.
155 */
156 spin_lock(&bp->b_lock);
157 __xfs_buf_ioacct_dec(bp);
158
159 atomic_set(&bp->b_lru_ref, 0);
160 if (!(bp->b_state & XFS_BSTATE_DISPOSE) &&
161 (list_lru_del(&bp->b_target->bt_lru, &bp->b_lru)))
162 atomic_dec(&bp->b_hold);
163
164 ASSERT(atomic_read(&bp->b_hold) >= 1);
165 spin_unlock(&bp->b_lock);
166}
167
168static int
169xfs_buf_get_maps(
170 struct xfs_buf *bp,
171 int map_count)
172{
173 ASSERT(bp->b_maps == NULL);
174 bp->b_map_count = map_count;
175
176 if (map_count == 1) {
177 bp->b_maps = &bp->__b_map;
178 return 0;
179 }
180
181 bp->b_maps = kmem_zalloc(map_count * sizeof(struct xfs_buf_map),
182 KM_NOFS);
183 if (!bp->b_maps)
184 return -ENOMEM;
185 return 0;
186}
187
188/*
189 * Frees b_pages if it was allocated.
190 */
191static void
192xfs_buf_free_maps(
193 struct xfs_buf *bp)
194{
195 if (bp->b_maps != &bp->__b_map) {
196 kmem_free(bp->b_maps);
197 bp->b_maps = NULL;
198 }
199}
200
201static struct xfs_buf *
202_xfs_buf_alloc(
203 struct xfs_buftarg *target,
204 struct xfs_buf_map *map,
205 int nmaps,
206 xfs_buf_flags_t flags)
207{
208 struct xfs_buf *bp;
209 int error;
210 int i;
211
212 bp = kmem_zone_zalloc(xfs_buf_zone, KM_NOFS);
213 if (unlikely(!bp))
214 return NULL;
215
216 /*
217 * We don't want certain flags to appear in b_flags unless they are
218 * specifically set by later operations on the buffer.
219 */
220 flags &= ~(XBF_UNMAPPED | XBF_TRYLOCK | XBF_ASYNC | XBF_READ_AHEAD);
221
222 atomic_set(&bp->b_hold, 1);
223 atomic_set(&bp->b_lru_ref, 1);
224 init_completion(&bp->b_iowait);
225 INIT_LIST_HEAD(&bp->b_lru);
226 INIT_LIST_HEAD(&bp->b_list);
227 INIT_LIST_HEAD(&bp->b_li_list);
228 sema_init(&bp->b_sema, 0); /* held, no waiters */
229 spin_lock_init(&bp->b_lock);
230 bp->b_target = target;
231 bp->b_mount = target->bt_mount;
232 bp->b_flags = flags;
233
234 /*
235 * Set length and io_length to the same value initially.
236 * I/O routines should use io_length, which will be the same in
237 * most cases but may be reset (e.g. XFS recovery).
238 */
239 error = xfs_buf_get_maps(bp, nmaps);
240 if (error) {
241 kmem_zone_free(xfs_buf_zone, bp);
242 return NULL;
243 }
244
245 bp->b_bn = map[0].bm_bn;
246 bp->b_length = 0;
247 for (i = 0; i < nmaps; i++) {
248 bp->b_maps[i].bm_bn = map[i].bm_bn;
249 bp->b_maps[i].bm_len = map[i].bm_len;
250 bp->b_length += map[i].bm_len;
251 }
252
253 atomic_set(&bp->b_pin_count, 0);
254 init_waitqueue_head(&bp->b_waiters);
255
256 XFS_STATS_INC(bp->b_mount, xb_create);
257 trace_xfs_buf_init(bp, _RET_IP_);
258
259 return bp;
260}
261
262/*
263 * Allocate a page array capable of holding a specified number
264 * of pages, and point the page buf at it.
265 */
266STATIC int
267_xfs_buf_get_pages(
268 xfs_buf_t *bp,
269 int page_count)
270{
271 /* Make sure that we have a page list */
272 if (bp->b_pages == NULL) {
273 bp->b_page_count = page_count;
274 if (page_count <= XB_PAGES) {
275 bp->b_pages = bp->b_page_array;
276 } else {
277 bp->b_pages = kmem_alloc(sizeof(struct page *) *
278 page_count, KM_NOFS);
279 if (bp->b_pages == NULL)
280 return -ENOMEM;
281 }
282 memset(bp->b_pages, 0, sizeof(struct page *) * page_count);
283 }
284 return 0;
285}
286
287/*
288 * Frees b_pages if it was allocated.
289 */
290STATIC void
291_xfs_buf_free_pages(
292 xfs_buf_t *bp)
293{
294 if (bp->b_pages != bp->b_page_array) {
295 kmem_free(bp->b_pages);
296 bp->b_pages = NULL;
297 }
298}
299
300/*
301 * Releases the specified buffer.
302 *
303 * The modification state of any associated pages is left unchanged.
304 * The buffer must not be on any hash - use xfs_buf_rele instead for
305 * hashed and refcounted buffers
306 */
307void
308xfs_buf_free(
309 xfs_buf_t *bp)
310{
311 trace_xfs_buf_free(bp, _RET_IP_);
312
313 ASSERT(list_empty(&bp->b_lru));
314
315 if (bp->b_flags & _XBF_PAGES) {
316 uint i;
317
318 if (xfs_buf_is_vmapped(bp))
319 vm_unmap_ram(bp->b_addr - bp->b_offset,
320 bp->b_page_count);
321
322 for (i = 0; i < bp->b_page_count; i++) {
323 struct page *page = bp->b_pages[i];
324
325 __free_page(page);
326 }
327 } else if (bp->b_flags & _XBF_KMEM)
328 kmem_free(bp->b_addr);
329 _xfs_buf_free_pages(bp);
330 xfs_buf_free_maps(bp);
331 kmem_zone_free(xfs_buf_zone, bp);
332}
333
334/*
335 * Allocates all the pages for buffer in question and builds it's page list.
336 */
337STATIC int
338xfs_buf_allocate_memory(
339 xfs_buf_t *bp,
340 uint flags)
341{
342 size_t size;
343 size_t nbytes, offset;
344 gfp_t gfp_mask = xb_to_gfp(flags);
345 unsigned short page_count, i;
346 xfs_off_t start, end;
347 int error;
348 xfs_km_flags_t kmflag_mask = 0;
349
350 /*
351 * assure zeroed buffer for non-read cases.
352 */
353 if (!(flags & XBF_READ)) {
354 kmflag_mask |= KM_ZERO;
355 gfp_mask |= __GFP_ZERO;
356 }
357
358 /*
359 * for buffers that are contained within a single page, just allocate
360 * the memory from the heap - there's no need for the complexity of
361 * page arrays to keep allocation down to order 0.
362 */
363 size = BBTOB(bp->b_length);
364 if (size < PAGE_SIZE) {
365 int align_mask = xfs_buftarg_dma_alignment(bp->b_target);
366 bp->b_addr = kmem_alloc_io(size, align_mask,
367 KM_NOFS | kmflag_mask);
368 if (!bp->b_addr) {
369 /* low memory - use alloc_page loop instead */
370 goto use_alloc_page;
371 }
372
373 if (((unsigned long)(bp->b_addr + size - 1) & PAGE_MASK) !=
374 ((unsigned long)bp->b_addr & PAGE_MASK)) {
375 /* b_addr spans two pages - use alloc_page instead */
376 kmem_free(bp->b_addr);
377 bp->b_addr = NULL;
378 goto use_alloc_page;
379 }
380 bp->b_offset = offset_in_page(bp->b_addr);
381 bp->b_pages = bp->b_page_array;
382 bp->b_pages[0] = kmem_to_page(bp->b_addr);
383 bp->b_page_count = 1;
384 bp->b_flags |= _XBF_KMEM;
385 return 0;
386 }
387
388use_alloc_page:
389 start = BBTOB(bp->b_maps[0].bm_bn) >> PAGE_SHIFT;
390 end = (BBTOB(bp->b_maps[0].bm_bn + bp->b_length) + PAGE_SIZE - 1)
391 >> PAGE_SHIFT;
392 page_count = end - start;
393 error = _xfs_buf_get_pages(bp, page_count);
394 if (unlikely(error))
395 return error;
396
397 offset = bp->b_offset;
398 bp->b_flags |= _XBF_PAGES;
399
400 for (i = 0; i < bp->b_page_count; i++) {
401 struct page *page;
402 uint retries = 0;
403retry:
404 page = alloc_page(gfp_mask);
405 if (unlikely(page == NULL)) {
406 if (flags & XBF_READ_AHEAD) {
407 bp->b_page_count = i;
408 error = -ENOMEM;
409 goto out_free_pages;
410 }
411
412 /*
413 * This could deadlock.
414 *
415 * But until all the XFS lowlevel code is revamped to
416 * handle buffer allocation failures we can't do much.
417 */
418 if (!(++retries % 100))
419 xfs_err(NULL,
420 "%s(%u) possible memory allocation deadlock in %s (mode:0x%x)",
421 current->comm, current->pid,
422 __func__, gfp_mask);
423
424 XFS_STATS_INC(bp->b_mount, xb_page_retries);
425 congestion_wait(BLK_RW_ASYNC, HZ/50);
426 goto retry;
427 }
428
429 XFS_STATS_INC(bp->b_mount, xb_page_found);
430
431 nbytes = min_t(size_t, size, PAGE_SIZE - offset);
432 size -= nbytes;
433 bp->b_pages[i] = page;
434 offset = 0;
435 }
436 return 0;
437
438out_free_pages:
439 for (i = 0; i < bp->b_page_count; i++)
440 __free_page(bp->b_pages[i]);
441 bp->b_flags &= ~_XBF_PAGES;
442 return error;
443}
444
445/*
446 * Map buffer into kernel address-space if necessary.
447 */
448STATIC int
449_xfs_buf_map_pages(
450 xfs_buf_t *bp,
451 uint flags)
452{
453 ASSERT(bp->b_flags & _XBF_PAGES);
454 if (bp->b_page_count == 1) {
455 /* A single page buffer is always mappable */
456 bp->b_addr = page_address(bp->b_pages[0]) + bp->b_offset;
457 } else if (flags & XBF_UNMAPPED) {
458 bp->b_addr = NULL;
459 } else {
460 int retried = 0;
461 unsigned nofs_flag;
462
463 /*
464 * vm_map_ram() will allocate auxillary structures (e.g.
465 * pagetables) with GFP_KERNEL, yet we are likely to be under
466 * GFP_NOFS context here. Hence we need to tell memory reclaim
467 * that we are in such a context via PF_MEMALLOC_NOFS to prevent
468 * memory reclaim re-entering the filesystem here and
469 * potentially deadlocking.
470 */
471 nofs_flag = memalloc_nofs_save();
472 do {
473 bp->b_addr = vm_map_ram(bp->b_pages, bp->b_page_count,
474 -1, PAGE_KERNEL);
475 if (bp->b_addr)
476 break;
477 vm_unmap_aliases();
478 } while (retried++ <= 1);
479 memalloc_nofs_restore(nofs_flag);
480
481 if (!bp->b_addr)
482 return -ENOMEM;
483 bp->b_addr += bp->b_offset;
484 }
485
486 return 0;
487}
488
489/*
490 * Finding and Reading Buffers
491 */
492static int
493_xfs_buf_obj_cmp(
494 struct rhashtable_compare_arg *arg,
495 const void *obj)
496{
497 const struct xfs_buf_map *map = arg->key;
498 const struct xfs_buf *bp = obj;
499
500 /*
501 * The key hashing in the lookup path depends on the key being the
502 * first element of the compare_arg, make sure to assert this.
503 */
504 BUILD_BUG_ON(offsetof(struct xfs_buf_map, bm_bn) != 0);
505
506 if (bp->b_bn != map->bm_bn)
507 return 1;
508
509 if (unlikely(bp->b_length != map->bm_len)) {
510 /*
511 * found a block number match. If the range doesn't
512 * match, the only way this is allowed is if the buffer
513 * in the cache is stale and the transaction that made
514 * it stale has not yet committed. i.e. we are
515 * reallocating a busy extent. Skip this buffer and
516 * continue searching for an exact match.
517 */
518 ASSERT(bp->b_flags & XBF_STALE);
519 return 1;
520 }
521 return 0;
522}
523
524static const struct rhashtable_params xfs_buf_hash_params = {
525 .min_size = 32, /* empty AGs have minimal footprint */
526 .nelem_hint = 16,
527 .key_len = sizeof(xfs_daddr_t),
528 .key_offset = offsetof(struct xfs_buf, b_bn),
529 .head_offset = offsetof(struct xfs_buf, b_rhash_head),
530 .automatic_shrinking = true,
531 .obj_cmpfn = _xfs_buf_obj_cmp,
532};
533
534int
535xfs_buf_hash_init(
536 struct xfs_perag *pag)
537{
538 spin_lock_init(&pag->pag_buf_lock);
539 return rhashtable_init(&pag->pag_buf_hash, &xfs_buf_hash_params);
540}
541
542void
543xfs_buf_hash_destroy(
544 struct xfs_perag *pag)
545{
546 rhashtable_destroy(&pag->pag_buf_hash);
547}
548
549/*
550 * Look up a buffer in the buffer cache and return it referenced and locked
551 * in @found_bp.
552 *
553 * If @new_bp is supplied and we have a lookup miss, insert @new_bp into the
554 * cache.
555 *
556 * If XBF_TRYLOCK is set in @flags, only try to lock the buffer and return
557 * -EAGAIN if we fail to lock it.
558 *
559 * Return values are:
560 * -EFSCORRUPTED if have been supplied with an invalid address
561 * -EAGAIN on trylock failure
562 * -ENOENT if we fail to find a match and @new_bp was NULL
563 * 0, with @found_bp:
564 * - @new_bp if we inserted it into the cache
565 * - the buffer we found and locked.
566 */
567static int
568xfs_buf_find(
569 struct xfs_buftarg *btp,
570 struct xfs_buf_map *map,
571 int nmaps,
572 xfs_buf_flags_t flags,
573 struct xfs_buf *new_bp,
574 struct xfs_buf **found_bp)
575{
576 struct xfs_perag *pag;
577 xfs_buf_t *bp;
578 struct xfs_buf_map cmap = { .bm_bn = map[0].bm_bn };
579 xfs_daddr_t eofs;
580 int i;
581
582 *found_bp = NULL;
583
584 for (i = 0; i < nmaps; i++)
585 cmap.bm_len += map[i].bm_len;
586
587 /* Check for IOs smaller than the sector size / not sector aligned */
588 ASSERT(!(BBTOB(cmap.bm_len) < btp->bt_meta_sectorsize));
589 ASSERT(!(BBTOB(cmap.bm_bn) & (xfs_off_t)btp->bt_meta_sectormask));
590
591 /*
592 * Corrupted block numbers can get through to here, unfortunately, so we
593 * have to check that the buffer falls within the filesystem bounds.
594 */
595 eofs = XFS_FSB_TO_BB(btp->bt_mount, btp->bt_mount->m_sb.sb_dblocks);
596 if (cmap.bm_bn < 0 || cmap.bm_bn >= eofs) {
597 xfs_alert(btp->bt_mount,
598 "%s: daddr 0x%llx out of range, EOFS 0x%llx",
599 __func__, cmap.bm_bn, eofs);
600 WARN_ON(1);
601 return -EFSCORRUPTED;
602 }
603
604 pag = xfs_perag_get(btp->bt_mount,
605 xfs_daddr_to_agno(btp->bt_mount, cmap.bm_bn));
606
607 spin_lock(&pag->pag_buf_lock);
608 bp = rhashtable_lookup_fast(&pag->pag_buf_hash, &cmap,
609 xfs_buf_hash_params);
610 if (bp) {
611 atomic_inc(&bp->b_hold);
612 goto found;
613 }
614
615 /* No match found */
616 if (!new_bp) {
617 XFS_STATS_INC(btp->bt_mount, xb_miss_locked);
618 spin_unlock(&pag->pag_buf_lock);
619 xfs_perag_put(pag);
620 return -ENOENT;
621 }
622
623 /* the buffer keeps the perag reference until it is freed */
624 new_bp->b_pag = pag;
625 rhashtable_insert_fast(&pag->pag_buf_hash, &new_bp->b_rhash_head,
626 xfs_buf_hash_params);
627 spin_unlock(&pag->pag_buf_lock);
628 *found_bp = new_bp;
629 return 0;
630
631found:
632 spin_unlock(&pag->pag_buf_lock);
633 xfs_perag_put(pag);
634
635 if (!xfs_buf_trylock(bp)) {
636 if (flags & XBF_TRYLOCK) {
637 xfs_buf_rele(bp);
638 XFS_STATS_INC(btp->bt_mount, xb_busy_locked);
639 return -EAGAIN;
640 }
641 xfs_buf_lock(bp);
642 XFS_STATS_INC(btp->bt_mount, xb_get_locked_waited);
643 }
644
645 /*
646 * if the buffer is stale, clear all the external state associated with
647 * it. We need to keep flags such as how we allocated the buffer memory
648 * intact here.
649 */
650 if (bp->b_flags & XBF_STALE) {
651 ASSERT((bp->b_flags & _XBF_DELWRI_Q) == 0);
652 ASSERT(bp->b_iodone == NULL);
653 bp->b_flags &= _XBF_KMEM | _XBF_PAGES;
654 bp->b_ops = NULL;
655 }
656
657 trace_xfs_buf_find(bp, flags, _RET_IP_);
658 XFS_STATS_INC(btp->bt_mount, xb_get_locked);
659 *found_bp = bp;
660 return 0;
661}
662
663struct xfs_buf *
664xfs_buf_incore(
665 struct xfs_buftarg *target,
666 xfs_daddr_t blkno,
667 size_t numblks,
668 xfs_buf_flags_t flags)
669{
670 struct xfs_buf *bp;
671 int error;
672 DEFINE_SINGLE_BUF_MAP(map, blkno, numblks);
673
674 error = xfs_buf_find(target, &map, 1, flags, NULL, &bp);
675 if (error)
676 return NULL;
677 return bp;
678}
679
680/*
681 * Assembles a buffer covering the specified range. The code is optimised for
682 * cache hits, as metadata intensive workloads will see 3 orders of magnitude
683 * more hits than misses.
684 */
685struct xfs_buf *
686xfs_buf_get_map(
687 struct xfs_buftarg *target,
688 struct xfs_buf_map *map,
689 int nmaps,
690 xfs_buf_flags_t flags)
691{
692 struct xfs_buf *bp;
693 struct xfs_buf *new_bp;
694 int error = 0;
695
696 error = xfs_buf_find(target, map, nmaps, flags, NULL, &bp);
697
698 switch (error) {
699 case 0:
700 /* cache hit */
701 goto found;
702 case -EAGAIN:
703 /* cache hit, trylock failure, caller handles failure */
704 ASSERT(flags & XBF_TRYLOCK);
705 return NULL;
706 case -ENOENT:
707 /* cache miss, go for insert */
708 break;
709 case -EFSCORRUPTED:
710 default:
711 /*
712 * None of the higher layers understand failure types
713 * yet, so return NULL to signal a fatal lookup error.
714 */
715 return NULL;
716 }
717
718 new_bp = _xfs_buf_alloc(target, map, nmaps, flags);
719 if (unlikely(!new_bp))
720 return NULL;
721
722 error = xfs_buf_allocate_memory(new_bp, flags);
723 if (error) {
724 xfs_buf_free(new_bp);
725 return NULL;
726 }
727
728 error = xfs_buf_find(target, map, nmaps, flags, new_bp, &bp);
729 if (error) {
730 xfs_buf_free(new_bp);
731 return NULL;
732 }
733
734 if (bp != new_bp)
735 xfs_buf_free(new_bp);
736
737found:
738 if (!bp->b_addr) {
739 error = _xfs_buf_map_pages(bp, flags);
740 if (unlikely(error)) {
741 xfs_warn(target->bt_mount,
742 "%s: failed to map pagesn", __func__);
743 xfs_buf_relse(bp);
744 return NULL;
745 }
746 }
747
748 /*
749 * Clear b_error if this is a lookup from a caller that doesn't expect
750 * valid data to be found in the buffer.
751 */
752 if (!(flags & XBF_READ))
753 xfs_buf_ioerror(bp, 0);
754
755 XFS_STATS_INC(target->bt_mount, xb_get);
756 trace_xfs_buf_get(bp, flags, _RET_IP_);
757 return bp;
758}
759
760STATIC int
761_xfs_buf_read(
762 xfs_buf_t *bp,
763 xfs_buf_flags_t flags)
764{
765 ASSERT(!(flags & XBF_WRITE));
766 ASSERT(bp->b_maps[0].bm_bn != XFS_BUF_DADDR_NULL);
767
768 bp->b_flags &= ~(XBF_WRITE | XBF_ASYNC | XBF_READ_AHEAD);
769 bp->b_flags |= flags & (XBF_READ | XBF_ASYNC | XBF_READ_AHEAD);
770
771 return xfs_buf_submit(bp);
772}
773
774/*
775 * Reverify a buffer found in cache without an attached ->b_ops.
776 *
777 * If the caller passed an ops structure and the buffer doesn't have ops
778 * assigned, set the ops and use it to verify the contents. If verification
779 * fails, clear XBF_DONE. We assume the buffer has no recorded errors and is
780 * already in XBF_DONE state on entry.
781 *
782 * Under normal operations, every in-core buffer is verified on read I/O
783 * completion. There are two scenarios that can lead to in-core buffers without
784 * an assigned ->b_ops. The first is during log recovery of buffers on a V4
785 * filesystem, though these buffers are purged at the end of recovery. The
786 * other is online repair, which intentionally reads with a NULL buffer ops to
787 * run several verifiers across an in-core buffer in order to establish buffer
788 * type. If repair can't establish that, the buffer will be left in memory
789 * with NULL buffer ops.
790 */
791int
792xfs_buf_reverify(
793 struct xfs_buf *bp,
794 const struct xfs_buf_ops *ops)
795{
796 ASSERT(bp->b_flags & XBF_DONE);
797 ASSERT(bp->b_error == 0);
798
799 if (!ops || bp->b_ops)
800 return 0;
801
802 bp->b_ops = ops;
803 bp->b_ops->verify_read(bp);
804 if (bp->b_error)
805 bp->b_flags &= ~XBF_DONE;
806 return bp->b_error;
807}
808
809xfs_buf_t *
810xfs_buf_read_map(
811 struct xfs_buftarg *target,
812 struct xfs_buf_map *map,
813 int nmaps,
814 xfs_buf_flags_t flags,
815 const struct xfs_buf_ops *ops)
816{
817 struct xfs_buf *bp;
818
819 flags |= XBF_READ;
820
821 bp = xfs_buf_get_map(target, map, nmaps, flags);
822 if (!bp)
823 return NULL;
824
825 trace_xfs_buf_read(bp, flags, _RET_IP_);
826
827 if (!(bp->b_flags & XBF_DONE)) {
828 XFS_STATS_INC(target->bt_mount, xb_get_read);
829 bp->b_ops = ops;
830 _xfs_buf_read(bp, flags);
831 return bp;
832 }
833
834 xfs_buf_reverify(bp, ops);
835
836 if (flags & XBF_ASYNC) {
837 /*
838 * Read ahead call which is already satisfied,
839 * drop the buffer
840 */
841 xfs_buf_relse(bp);
842 return NULL;
843 }
844
845 /* We do not want read in the flags */
846 bp->b_flags &= ~XBF_READ;
847 ASSERT(bp->b_ops != NULL || ops == NULL);
848 return bp;
849}
850
851/*
852 * If we are not low on memory then do the readahead in a deadlock
853 * safe manner.
854 */
855void
856xfs_buf_readahead_map(
857 struct xfs_buftarg *target,
858 struct xfs_buf_map *map,
859 int nmaps,
860 const struct xfs_buf_ops *ops)
861{
862 if (bdi_read_congested(target->bt_bdev->bd_bdi))
863 return;
864
865 xfs_buf_read_map(target, map, nmaps,
866 XBF_TRYLOCK|XBF_ASYNC|XBF_READ_AHEAD, ops);
867}
868
869/*
870 * Read an uncached buffer from disk. Allocates and returns a locked
871 * buffer containing the disk contents or nothing.
872 */
873int
874xfs_buf_read_uncached(
875 struct xfs_buftarg *target,
876 xfs_daddr_t daddr,
877 size_t numblks,
878 int flags,
879 struct xfs_buf **bpp,
880 const struct xfs_buf_ops *ops)
881{
882 struct xfs_buf *bp;
883
884 *bpp = NULL;
885
886 bp = xfs_buf_get_uncached(target, numblks, flags);
887 if (!bp)
888 return -ENOMEM;
889
890 /* set up the buffer for a read IO */
891 ASSERT(bp->b_map_count == 1);
892 bp->b_bn = XFS_BUF_DADDR_NULL; /* always null for uncached buffers */
893 bp->b_maps[0].bm_bn = daddr;
894 bp->b_flags |= XBF_READ;
895 bp->b_ops = ops;
896
897 xfs_buf_submit(bp);
898 if (bp->b_error) {
899 int error = bp->b_error;
900 xfs_buf_relse(bp);
901 return error;
902 }
903
904 *bpp = bp;
905 return 0;
906}
907
908xfs_buf_t *
909xfs_buf_get_uncached(
910 struct xfs_buftarg *target,
911 size_t numblks,
912 int flags)
913{
914 unsigned long page_count;
915 int error, i;
916 struct xfs_buf *bp;
917 DEFINE_SINGLE_BUF_MAP(map, XFS_BUF_DADDR_NULL, numblks);
918
919 /* flags might contain irrelevant bits, pass only what we care about */
920 bp = _xfs_buf_alloc(target, &map, 1, flags & XBF_NO_IOACCT);
921 if (unlikely(bp == NULL))
922 goto fail;
923
924 page_count = PAGE_ALIGN(numblks << BBSHIFT) >> PAGE_SHIFT;
925 error = _xfs_buf_get_pages(bp, page_count);
926 if (error)
927 goto fail_free_buf;
928
929 for (i = 0; i < page_count; i++) {
930 bp->b_pages[i] = alloc_page(xb_to_gfp(flags));
931 if (!bp->b_pages[i])
932 goto fail_free_mem;
933 }
934 bp->b_flags |= _XBF_PAGES;
935
936 error = _xfs_buf_map_pages(bp, 0);
937 if (unlikely(error)) {
938 xfs_warn(target->bt_mount,
939 "%s: failed to map pages", __func__);
940 goto fail_free_mem;
941 }
942
943 trace_xfs_buf_get_uncached(bp, _RET_IP_);
944 return bp;
945
946 fail_free_mem:
947 while (--i >= 0)
948 __free_page(bp->b_pages[i]);
949 _xfs_buf_free_pages(bp);
950 fail_free_buf:
951 xfs_buf_free_maps(bp);
952 kmem_zone_free(xfs_buf_zone, bp);
953 fail:
954 return NULL;
955}
956
957/*
958 * Increment reference count on buffer, to hold the buffer concurrently
959 * with another thread which may release (free) the buffer asynchronously.
960 * Must hold the buffer already to call this function.
961 */
962void
963xfs_buf_hold(
964 xfs_buf_t *bp)
965{
966 trace_xfs_buf_hold(bp, _RET_IP_);
967 atomic_inc(&bp->b_hold);
968}
969
970/*
971 * Release a hold on the specified buffer. If the hold count is 1, the buffer is
972 * placed on LRU or freed (depending on b_lru_ref).
973 */
974void
975xfs_buf_rele(
976 xfs_buf_t *bp)
977{
978 struct xfs_perag *pag = bp->b_pag;
979 bool release;
980 bool freebuf = false;
981
982 trace_xfs_buf_rele(bp, _RET_IP_);
983
984 if (!pag) {
985 ASSERT(list_empty(&bp->b_lru));
986 if (atomic_dec_and_test(&bp->b_hold)) {
987 xfs_buf_ioacct_dec(bp);
988 xfs_buf_free(bp);
989 }
990 return;
991 }
992
993 ASSERT(atomic_read(&bp->b_hold) > 0);
994
995 /*
996 * We grab the b_lock here first to serialise racing xfs_buf_rele()
997 * calls. The pag_buf_lock being taken on the last reference only
998 * serialises against racing lookups in xfs_buf_find(). IOWs, the second
999 * to last reference we drop here is not serialised against the last
1000 * reference until we take bp->b_lock. Hence if we don't grab b_lock
1001 * first, the last "release" reference can win the race to the lock and
1002 * free the buffer before the second-to-last reference is processed,
1003 * leading to a use-after-free scenario.
1004 */
1005 spin_lock(&bp->b_lock);
1006 release = atomic_dec_and_lock(&bp->b_hold, &pag->pag_buf_lock);
1007 if (!release) {
1008 /*
1009 * Drop the in-flight state if the buffer is already on the LRU
1010 * and it holds the only reference. This is racy because we
1011 * haven't acquired the pag lock, but the use of _XBF_IN_FLIGHT
1012 * ensures the decrement occurs only once per-buf.
1013 */
1014 if ((atomic_read(&bp->b_hold) == 1) && !list_empty(&bp->b_lru))
1015 __xfs_buf_ioacct_dec(bp);
1016 goto out_unlock;
1017 }
1018
1019 /* the last reference has been dropped ... */
1020 __xfs_buf_ioacct_dec(bp);
1021 if (!(bp->b_flags & XBF_STALE) && atomic_read(&bp->b_lru_ref)) {
1022 /*
1023 * If the buffer is added to the LRU take a new reference to the
1024 * buffer for the LRU and clear the (now stale) dispose list
1025 * state flag
1026 */
1027 if (list_lru_add(&bp->b_target->bt_lru, &bp->b_lru)) {
1028 bp->b_state &= ~XFS_BSTATE_DISPOSE;
1029 atomic_inc(&bp->b_hold);
1030 }
1031 spin_unlock(&pag->pag_buf_lock);
1032 } else {
1033 /*
1034 * most of the time buffers will already be removed from the
1035 * LRU, so optimise that case by checking for the
1036 * XFS_BSTATE_DISPOSE flag indicating the last list the buffer
1037 * was on was the disposal list
1038 */
1039 if (!(bp->b_state & XFS_BSTATE_DISPOSE)) {
1040 list_lru_del(&bp->b_target->bt_lru, &bp->b_lru);
1041 } else {
1042 ASSERT(list_empty(&bp->b_lru));
1043 }
1044
1045 ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
1046 rhashtable_remove_fast(&pag->pag_buf_hash, &bp->b_rhash_head,
1047 xfs_buf_hash_params);
1048 spin_unlock(&pag->pag_buf_lock);
1049 xfs_perag_put(pag);
1050 freebuf = true;
1051 }
1052
1053out_unlock:
1054 spin_unlock(&bp->b_lock);
1055
1056 if (freebuf)
1057 xfs_buf_free(bp);
1058}
1059
1060
1061/*
1062 * Lock a buffer object, if it is not already locked.
1063 *
1064 * If we come across a stale, pinned, locked buffer, we know that we are
1065 * being asked to lock a buffer that has been reallocated. Because it is
1066 * pinned, we know that the log has not been pushed to disk and hence it
1067 * will still be locked. Rather than continuing to have trylock attempts
1068 * fail until someone else pushes the log, push it ourselves before
1069 * returning. This means that the xfsaild will not get stuck trying
1070 * to push on stale inode buffers.
1071 */
1072int
1073xfs_buf_trylock(
1074 struct xfs_buf *bp)
1075{
1076 int locked;
1077
1078 locked = down_trylock(&bp->b_sema) == 0;
1079 if (locked)
1080 trace_xfs_buf_trylock(bp, _RET_IP_);
1081 else
1082 trace_xfs_buf_trylock_fail(bp, _RET_IP_);
1083 return locked;
1084}
1085
1086/*
1087 * Lock a buffer object.
1088 *
1089 * If we come across a stale, pinned, locked buffer, we know that we
1090 * are being asked to lock a buffer that has been reallocated. Because
1091 * it is pinned, we know that the log has not been pushed to disk and
1092 * hence it will still be locked. Rather than sleeping until someone
1093 * else pushes the log, push it ourselves before trying to get the lock.
1094 */
1095void
1096xfs_buf_lock(
1097 struct xfs_buf *bp)
1098{
1099 trace_xfs_buf_lock(bp, _RET_IP_);
1100
1101 if (atomic_read(&bp->b_pin_count) && (bp->b_flags & XBF_STALE))
1102 xfs_log_force(bp->b_mount, 0);
1103 down(&bp->b_sema);
1104
1105 trace_xfs_buf_lock_done(bp, _RET_IP_);
1106}
1107
1108void
1109xfs_buf_unlock(
1110 struct xfs_buf *bp)
1111{
1112 ASSERT(xfs_buf_islocked(bp));
1113
1114 up(&bp->b_sema);
1115 trace_xfs_buf_unlock(bp, _RET_IP_);
1116}
1117
1118STATIC void
1119xfs_buf_wait_unpin(
1120 xfs_buf_t *bp)
1121{
1122 DECLARE_WAITQUEUE (wait, current);
1123
1124 if (atomic_read(&bp->b_pin_count) == 0)
1125 return;
1126
1127 add_wait_queue(&bp->b_waiters, &wait);
1128 for (;;) {
1129 set_current_state(TASK_UNINTERRUPTIBLE);
1130 if (atomic_read(&bp->b_pin_count) == 0)
1131 break;
1132 io_schedule();
1133 }
1134 remove_wait_queue(&bp->b_waiters, &wait);
1135 set_current_state(TASK_RUNNING);
1136}
1137
1138/*
1139 * Buffer Utility Routines
1140 */
1141
1142void
1143xfs_buf_ioend(
1144 struct xfs_buf *bp)
1145{
1146 bool read = bp->b_flags & XBF_READ;
1147
1148 trace_xfs_buf_iodone(bp, _RET_IP_);
1149
1150 bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_READ_AHEAD);
1151
1152 /*
1153 * Pull in IO completion errors now. We are guaranteed to be running
1154 * single threaded, so we don't need the lock to read b_io_error.
1155 */
1156 if (!bp->b_error && bp->b_io_error)
1157 xfs_buf_ioerror(bp, bp->b_io_error);
1158
1159 /* Only validate buffers that were read without errors */
1160 if (read && !bp->b_error && bp->b_ops) {
1161 ASSERT(!bp->b_iodone);
1162 bp->b_ops->verify_read(bp);
1163 }
1164
1165 if (!bp->b_error)
1166 bp->b_flags |= XBF_DONE;
1167
1168 if (bp->b_iodone)
1169 (*(bp->b_iodone))(bp);
1170 else if (bp->b_flags & XBF_ASYNC)
1171 xfs_buf_relse(bp);
1172 else
1173 complete(&bp->b_iowait);
1174}
1175
1176static void
1177xfs_buf_ioend_work(
1178 struct work_struct *work)
1179{
1180 struct xfs_buf *bp =
1181 container_of(work, xfs_buf_t, b_ioend_work);
1182
1183 xfs_buf_ioend(bp);
1184}
1185
1186static void
1187xfs_buf_ioend_async(
1188 struct xfs_buf *bp)
1189{
1190 INIT_WORK(&bp->b_ioend_work, xfs_buf_ioend_work);
1191 queue_work(bp->b_mount->m_buf_workqueue, &bp->b_ioend_work);
1192}
1193
1194void
1195__xfs_buf_ioerror(
1196 xfs_buf_t *bp,
1197 int error,
1198 xfs_failaddr_t failaddr)
1199{
1200 ASSERT(error <= 0 && error >= -1000);
1201 bp->b_error = error;
1202 trace_xfs_buf_ioerror(bp, error, failaddr);
1203}
1204
1205void
1206xfs_buf_ioerror_alert(
1207 struct xfs_buf *bp,
1208 const char *func)
1209{
1210 xfs_alert(bp->b_mount,
1211"metadata I/O error in \"%s\" at daddr 0x%llx len %d error %d",
1212 func, (uint64_t)XFS_BUF_ADDR(bp), bp->b_length,
1213 -bp->b_error);
1214}
1215
1216int
1217xfs_bwrite(
1218 struct xfs_buf *bp)
1219{
1220 int error;
1221
1222 ASSERT(xfs_buf_islocked(bp));
1223
1224 bp->b_flags |= XBF_WRITE;
1225 bp->b_flags &= ~(XBF_ASYNC | XBF_READ | _XBF_DELWRI_Q |
1226 XBF_WRITE_FAIL | XBF_DONE);
1227
1228 error = xfs_buf_submit(bp);
1229 if (error)
1230 xfs_force_shutdown(bp->b_mount, SHUTDOWN_META_IO_ERROR);
1231 return error;
1232}
1233
1234static void
1235xfs_buf_bio_end_io(
1236 struct bio *bio)
1237{
1238 struct xfs_buf *bp = (struct xfs_buf *)bio->bi_private;
1239
1240 /*
1241 * don't overwrite existing errors - otherwise we can lose errors on
1242 * buffers that require multiple bios to complete.
1243 */
1244 if (bio->bi_status) {
1245 int error = blk_status_to_errno(bio->bi_status);
1246
1247 cmpxchg(&bp->b_io_error, 0, error);
1248 }
1249
1250 if (!bp->b_error && xfs_buf_is_vmapped(bp) && (bp->b_flags & XBF_READ))
1251 invalidate_kernel_vmap_range(bp->b_addr, xfs_buf_vmap_len(bp));
1252
1253 if (atomic_dec_and_test(&bp->b_io_remaining) == 1)
1254 xfs_buf_ioend_async(bp);
1255 bio_put(bio);
1256}
1257
1258static void
1259xfs_buf_ioapply_map(
1260 struct xfs_buf *bp,
1261 int map,
1262 int *buf_offset,
1263 int *count,
1264 int op,
1265 int op_flags)
1266{
1267 int page_index;
1268 int total_nr_pages = bp->b_page_count;
1269 int nr_pages;
1270 struct bio *bio;
1271 sector_t sector = bp->b_maps[map].bm_bn;
1272 int size;
1273 int offset;
1274
1275 /* skip the pages in the buffer before the start offset */
1276 page_index = 0;
1277 offset = *buf_offset;
1278 while (offset >= PAGE_SIZE) {
1279 page_index++;
1280 offset -= PAGE_SIZE;
1281 }
1282
1283 /*
1284 * Limit the IO size to the length of the current vector, and update the
1285 * remaining IO count for the next time around.
1286 */
1287 size = min_t(int, BBTOB(bp->b_maps[map].bm_len), *count);
1288 *count -= size;
1289 *buf_offset += size;
1290
1291next_chunk:
1292 atomic_inc(&bp->b_io_remaining);
1293 nr_pages = min(total_nr_pages, BIO_MAX_PAGES);
1294
1295 bio = bio_alloc(GFP_NOIO, nr_pages);
1296 bio_set_dev(bio, bp->b_target->bt_bdev);
1297 bio->bi_iter.bi_sector = sector;
1298 bio->bi_end_io = xfs_buf_bio_end_io;
1299 bio->bi_private = bp;
1300 bio_set_op_attrs(bio, op, op_flags);
1301
1302 for (; size && nr_pages; nr_pages--, page_index++) {
1303 int rbytes, nbytes = PAGE_SIZE - offset;
1304
1305 if (nbytes > size)
1306 nbytes = size;
1307
1308 rbytes = bio_add_page(bio, bp->b_pages[page_index], nbytes,
1309 offset);
1310 if (rbytes < nbytes)
1311 break;
1312
1313 offset = 0;
1314 sector += BTOBB(nbytes);
1315 size -= nbytes;
1316 total_nr_pages--;
1317 }
1318
1319 if (likely(bio->bi_iter.bi_size)) {
1320 if (xfs_buf_is_vmapped(bp)) {
1321 flush_kernel_vmap_range(bp->b_addr,
1322 xfs_buf_vmap_len(bp));
1323 }
1324 submit_bio(bio);
1325 if (size)
1326 goto next_chunk;
1327 } else {
1328 /*
1329 * This is guaranteed not to be the last io reference count
1330 * because the caller (xfs_buf_submit) holds a count itself.
1331 */
1332 atomic_dec(&bp->b_io_remaining);
1333 xfs_buf_ioerror(bp, -EIO);
1334 bio_put(bio);
1335 }
1336
1337}
1338
1339STATIC void
1340_xfs_buf_ioapply(
1341 struct xfs_buf *bp)
1342{
1343 struct blk_plug plug;
1344 int op;
1345 int op_flags = 0;
1346 int offset;
1347 int size;
1348 int i;
1349
1350 /*
1351 * Make sure we capture only current IO errors rather than stale errors
1352 * left over from previous use of the buffer (e.g. failed readahead).
1353 */
1354 bp->b_error = 0;
1355
1356 if (bp->b_flags & XBF_WRITE) {
1357 op = REQ_OP_WRITE;
1358
1359 /*
1360 * Run the write verifier callback function if it exists. If
1361 * this function fails it will mark the buffer with an error and
1362 * the IO should not be dispatched.
1363 */
1364 if (bp->b_ops) {
1365 bp->b_ops->verify_write(bp);
1366 if (bp->b_error) {
1367 xfs_force_shutdown(bp->b_mount,
1368 SHUTDOWN_CORRUPT_INCORE);
1369 return;
1370 }
1371 } else if (bp->b_bn != XFS_BUF_DADDR_NULL) {
1372 struct xfs_mount *mp = bp->b_mount;
1373
1374 /*
1375 * non-crc filesystems don't attach verifiers during
1376 * log recovery, so don't warn for such filesystems.
1377 */
1378 if (xfs_sb_version_hascrc(&mp->m_sb)) {
1379 xfs_warn(mp,
1380 "%s: no buf ops on daddr 0x%llx len %d",
1381 __func__, bp->b_bn, bp->b_length);
1382 xfs_hex_dump(bp->b_addr,
1383 XFS_CORRUPTION_DUMP_LEN);
1384 dump_stack();
1385 }
1386 }
1387 } else if (bp->b_flags & XBF_READ_AHEAD) {
1388 op = REQ_OP_READ;
1389 op_flags = REQ_RAHEAD;
1390 } else {
1391 op = REQ_OP_READ;
1392 }
1393
1394 /* we only use the buffer cache for meta-data */
1395 op_flags |= REQ_META;
1396
1397 /*
1398 * Walk all the vectors issuing IO on them. Set up the initial offset
1399 * into the buffer and the desired IO size before we start -
1400 * _xfs_buf_ioapply_vec() will modify them appropriately for each
1401 * subsequent call.
1402 */
1403 offset = bp->b_offset;
1404 size = BBTOB(bp->b_length);
1405 blk_start_plug(&plug);
1406 for (i = 0; i < bp->b_map_count; i++) {
1407 xfs_buf_ioapply_map(bp, i, &offset, &size, op, op_flags);
1408 if (bp->b_error)
1409 break;
1410 if (size <= 0)
1411 break; /* all done */
1412 }
1413 blk_finish_plug(&plug);
1414}
1415
1416/*
1417 * Wait for I/O completion of a sync buffer and return the I/O error code.
1418 */
1419static int
1420xfs_buf_iowait(
1421 struct xfs_buf *bp)
1422{
1423 ASSERT(!(bp->b_flags & XBF_ASYNC));
1424
1425 trace_xfs_buf_iowait(bp, _RET_IP_);
1426 wait_for_completion(&bp->b_iowait);
1427 trace_xfs_buf_iowait_done(bp, _RET_IP_);
1428
1429 return bp->b_error;
1430}
1431
1432/*
1433 * Buffer I/O submission path, read or write. Asynchronous submission transfers
1434 * the buffer lock ownership and the current reference to the IO. It is not
1435 * safe to reference the buffer after a call to this function unless the caller
1436 * holds an additional reference itself.
1437 */
1438int
1439__xfs_buf_submit(
1440 struct xfs_buf *bp,
1441 bool wait)
1442{
1443 int error = 0;
1444
1445 trace_xfs_buf_submit(bp, _RET_IP_);
1446
1447 ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
1448
1449 /* on shutdown we stale and complete the buffer immediately */
1450 if (XFS_FORCED_SHUTDOWN(bp->b_mount)) {
1451 xfs_buf_ioerror(bp, -EIO);
1452 bp->b_flags &= ~XBF_DONE;
1453 xfs_buf_stale(bp);
1454 xfs_buf_ioend(bp);
1455 return -EIO;
1456 }
1457
1458 /*
1459 * Grab a reference so the buffer does not go away underneath us. For
1460 * async buffers, I/O completion drops the callers reference, which
1461 * could occur before submission returns.
1462 */
1463 xfs_buf_hold(bp);
1464
1465 if (bp->b_flags & XBF_WRITE)
1466 xfs_buf_wait_unpin(bp);
1467
1468 /* clear the internal error state to avoid spurious errors */
1469 bp->b_io_error = 0;
1470
1471 /*
1472 * Set the count to 1 initially, this will stop an I/O completion
1473 * callout which happens before we have started all the I/O from calling
1474 * xfs_buf_ioend too early.
1475 */
1476 atomic_set(&bp->b_io_remaining, 1);
1477 if (bp->b_flags & XBF_ASYNC)
1478 xfs_buf_ioacct_inc(bp);
1479 _xfs_buf_ioapply(bp);
1480
1481 /*
1482 * If _xfs_buf_ioapply failed, we can get back here with only the IO
1483 * reference we took above. If we drop it to zero, run completion so
1484 * that we don't return to the caller with completion still pending.
1485 */
1486 if (atomic_dec_and_test(&bp->b_io_remaining) == 1) {
1487 if (bp->b_error || !(bp->b_flags & XBF_ASYNC))
1488 xfs_buf_ioend(bp);
1489 else
1490 xfs_buf_ioend_async(bp);
1491 }
1492
1493 if (wait)
1494 error = xfs_buf_iowait(bp);
1495
1496 /*
1497 * Release the hold that keeps the buffer referenced for the entire
1498 * I/O. Note that if the buffer is async, it is not safe to reference
1499 * after this release.
1500 */
1501 xfs_buf_rele(bp);
1502 return error;
1503}
1504
1505void *
1506xfs_buf_offset(
1507 struct xfs_buf *bp,
1508 size_t offset)
1509{
1510 struct page *page;
1511
1512 if (bp->b_addr)
1513 return bp->b_addr + offset;
1514
1515 offset += bp->b_offset;
1516 page = bp->b_pages[offset >> PAGE_SHIFT];
1517 return page_address(page) + (offset & (PAGE_SIZE-1));
1518}
1519
1520void
1521xfs_buf_zero(
1522 struct xfs_buf *bp,
1523 size_t boff,
1524 size_t bsize)
1525{
1526 size_t bend;
1527
1528 bend = boff + bsize;
1529 while (boff < bend) {
1530 struct page *page;
1531 int page_index, page_offset, csize;
1532
1533 page_index = (boff + bp->b_offset) >> PAGE_SHIFT;
1534 page_offset = (boff + bp->b_offset) & ~PAGE_MASK;
1535 page = bp->b_pages[page_index];
1536 csize = min_t(size_t, PAGE_SIZE - page_offset,
1537 BBTOB(bp->b_length) - boff);
1538
1539 ASSERT((csize + page_offset) <= PAGE_SIZE);
1540
1541 memset(page_address(page) + page_offset, 0, csize);
1542
1543 boff += csize;
1544 }
1545}
1546
1547/*
1548 * Handling of buffer targets (buftargs).
1549 */
1550
1551/*
1552 * Wait for any bufs with callbacks that have been submitted but have not yet
1553 * returned. These buffers will have an elevated hold count, so wait on those
1554 * while freeing all the buffers only held by the LRU.
1555 */
1556static enum lru_status
1557xfs_buftarg_wait_rele(
1558 struct list_head *item,
1559 struct list_lru_one *lru,
1560 spinlock_t *lru_lock,
1561 void *arg)
1562
1563{
1564 struct xfs_buf *bp = container_of(item, struct xfs_buf, b_lru);
1565 struct list_head *dispose = arg;
1566
1567 if (atomic_read(&bp->b_hold) > 1) {
1568 /* need to wait, so skip it this pass */
1569 trace_xfs_buf_wait_buftarg(bp, _RET_IP_);
1570 return LRU_SKIP;
1571 }
1572 if (!spin_trylock(&bp->b_lock))
1573 return LRU_SKIP;
1574
1575 /*
1576 * clear the LRU reference count so the buffer doesn't get
1577 * ignored in xfs_buf_rele().
1578 */
1579 atomic_set(&bp->b_lru_ref, 0);
1580 bp->b_state |= XFS_BSTATE_DISPOSE;
1581 list_lru_isolate_move(lru, item, dispose);
1582 spin_unlock(&bp->b_lock);
1583 return LRU_REMOVED;
1584}
1585
1586void
1587xfs_wait_buftarg(
1588 struct xfs_buftarg *btp)
1589{
1590 LIST_HEAD(dispose);
1591 int loop = 0;
1592
1593 /*
1594 * First wait on the buftarg I/O count for all in-flight buffers to be
1595 * released. This is critical as new buffers do not make the LRU until
1596 * they are released.
1597 *
1598 * Next, flush the buffer workqueue to ensure all completion processing
1599 * has finished. Just waiting on buffer locks is not sufficient for
1600 * async IO as the reference count held over IO is not released until
1601 * after the buffer lock is dropped. Hence we need to ensure here that
1602 * all reference counts have been dropped before we start walking the
1603 * LRU list.
1604 */
1605 while (percpu_counter_sum(&btp->bt_io_count))
1606 delay(100);
1607 flush_workqueue(btp->bt_mount->m_buf_workqueue);
1608
1609 /* loop until there is nothing left on the lru list. */
1610 while (list_lru_count(&btp->bt_lru)) {
1611 list_lru_walk(&btp->bt_lru, xfs_buftarg_wait_rele,
1612 &dispose, LONG_MAX);
1613
1614 while (!list_empty(&dispose)) {
1615 struct xfs_buf *bp;
1616 bp = list_first_entry(&dispose, struct xfs_buf, b_lru);
1617 list_del_init(&bp->b_lru);
1618 if (bp->b_flags & XBF_WRITE_FAIL) {
1619 xfs_alert(btp->bt_mount,
1620"Corruption Alert: Buffer at daddr 0x%llx had permanent write failures!",
1621 (long long)bp->b_bn);
1622 xfs_alert(btp->bt_mount,
1623"Please run xfs_repair to determine the extent of the problem.");
1624 }
1625 xfs_buf_rele(bp);
1626 }
1627 if (loop++ != 0)
1628 delay(100);
1629 }
1630}
1631
1632static enum lru_status
1633xfs_buftarg_isolate(
1634 struct list_head *item,
1635 struct list_lru_one *lru,
1636 spinlock_t *lru_lock,
1637 void *arg)
1638{
1639 struct xfs_buf *bp = container_of(item, struct xfs_buf, b_lru);
1640 struct list_head *dispose = arg;
1641
1642 /*
1643 * we are inverting the lru lock/bp->b_lock here, so use a trylock.
1644 * If we fail to get the lock, just skip it.
1645 */
1646 if (!spin_trylock(&bp->b_lock))
1647 return LRU_SKIP;
1648 /*
1649 * Decrement the b_lru_ref count unless the value is already
1650 * zero. If the value is already zero, we need to reclaim the
1651 * buffer, otherwise it gets another trip through the LRU.
1652 */
1653 if (atomic_add_unless(&bp->b_lru_ref, -1, 0)) {
1654 spin_unlock(&bp->b_lock);
1655 return LRU_ROTATE;
1656 }
1657
1658 bp->b_state |= XFS_BSTATE_DISPOSE;
1659 list_lru_isolate_move(lru, item, dispose);
1660 spin_unlock(&bp->b_lock);
1661 return LRU_REMOVED;
1662}
1663
1664static unsigned long
1665xfs_buftarg_shrink_scan(
1666 struct shrinker *shrink,
1667 struct shrink_control *sc)
1668{
1669 struct xfs_buftarg *btp = container_of(shrink,
1670 struct xfs_buftarg, bt_shrinker);
1671 LIST_HEAD(dispose);
1672 unsigned long freed;
1673
1674 freed = list_lru_shrink_walk(&btp->bt_lru, sc,
1675 xfs_buftarg_isolate, &dispose);
1676
1677 while (!list_empty(&dispose)) {
1678 struct xfs_buf *bp;
1679 bp = list_first_entry(&dispose, struct xfs_buf, b_lru);
1680 list_del_init(&bp->b_lru);
1681 xfs_buf_rele(bp);
1682 }
1683
1684 return freed;
1685}
1686
1687static unsigned long
1688xfs_buftarg_shrink_count(
1689 struct shrinker *shrink,
1690 struct shrink_control *sc)
1691{
1692 struct xfs_buftarg *btp = container_of(shrink,
1693 struct xfs_buftarg, bt_shrinker);
1694 return list_lru_shrink_count(&btp->bt_lru, sc);
1695}
1696
1697void
1698xfs_free_buftarg(
1699 struct xfs_buftarg *btp)
1700{
1701 unregister_shrinker(&btp->bt_shrinker);
1702 ASSERT(percpu_counter_sum(&btp->bt_io_count) == 0);
1703 percpu_counter_destroy(&btp->bt_io_count);
1704 list_lru_destroy(&btp->bt_lru);
1705
1706 xfs_blkdev_issue_flush(btp);
1707
1708 kmem_free(btp);
1709}
1710
1711int
1712xfs_setsize_buftarg(
1713 xfs_buftarg_t *btp,
1714 unsigned int sectorsize)
1715{
1716 /* Set up metadata sector size info */
1717 btp->bt_meta_sectorsize = sectorsize;
1718 btp->bt_meta_sectormask = sectorsize - 1;
1719
1720 if (set_blocksize(btp->bt_bdev, sectorsize)) {
1721 xfs_warn(btp->bt_mount,
1722 "Cannot set_blocksize to %u on device %pg",
1723 sectorsize, btp->bt_bdev);
1724 return -EINVAL;
1725 }
1726
1727 /* Set up device logical sector size mask */
1728 btp->bt_logical_sectorsize = bdev_logical_block_size(btp->bt_bdev);
1729 btp->bt_logical_sectormask = bdev_logical_block_size(btp->bt_bdev) - 1;
1730
1731 return 0;
1732}
1733
1734/*
1735 * When allocating the initial buffer target we have not yet
1736 * read in the superblock, so don't know what sized sectors
1737 * are being used at this early stage. Play safe.
1738 */
1739STATIC int
1740xfs_setsize_buftarg_early(
1741 xfs_buftarg_t *btp,
1742 struct block_device *bdev)
1743{
1744 return xfs_setsize_buftarg(btp, bdev_logical_block_size(bdev));
1745}
1746
1747xfs_buftarg_t *
1748xfs_alloc_buftarg(
1749 struct xfs_mount *mp,
1750 struct block_device *bdev,
1751 struct dax_device *dax_dev)
1752{
1753 xfs_buftarg_t *btp;
1754
1755 btp = kmem_zalloc(sizeof(*btp), KM_NOFS);
1756
1757 btp->bt_mount = mp;
1758 btp->bt_dev = bdev->bd_dev;
1759 btp->bt_bdev = bdev;
1760 btp->bt_daxdev = dax_dev;
1761
1762 if (xfs_setsize_buftarg_early(btp, bdev))
1763 goto error_free;
1764
1765 if (list_lru_init(&btp->bt_lru))
1766 goto error_free;
1767
1768 if (percpu_counter_init(&btp->bt_io_count, 0, GFP_KERNEL))
1769 goto error_lru;
1770
1771 btp->bt_shrinker.count_objects = xfs_buftarg_shrink_count;
1772 btp->bt_shrinker.scan_objects = xfs_buftarg_shrink_scan;
1773 btp->bt_shrinker.seeks = DEFAULT_SEEKS;
1774 btp->bt_shrinker.flags = SHRINKER_NUMA_AWARE;
1775 if (register_shrinker(&btp->bt_shrinker))
1776 goto error_pcpu;
1777 return btp;
1778
1779error_pcpu:
1780 percpu_counter_destroy(&btp->bt_io_count);
1781error_lru:
1782 list_lru_destroy(&btp->bt_lru);
1783error_free:
1784 kmem_free(btp);
1785 return NULL;
1786}
1787
1788/*
1789 * Cancel a delayed write list.
1790 *
1791 * Remove each buffer from the list, clear the delwri queue flag and drop the
1792 * associated buffer reference.
1793 */
1794void
1795xfs_buf_delwri_cancel(
1796 struct list_head *list)
1797{
1798 struct xfs_buf *bp;
1799
1800 while (!list_empty(list)) {
1801 bp = list_first_entry(list, struct xfs_buf, b_list);
1802
1803 xfs_buf_lock(bp);
1804 bp->b_flags &= ~_XBF_DELWRI_Q;
1805 list_del_init(&bp->b_list);
1806 xfs_buf_relse(bp);
1807 }
1808}
1809
1810/*
1811 * Add a buffer to the delayed write list.
1812 *
1813 * This queues a buffer for writeout if it hasn't already been. Note that
1814 * neither this routine nor the buffer list submission functions perform
1815 * any internal synchronization. It is expected that the lists are thread-local
1816 * to the callers.
1817 *
1818 * Returns true if we queued up the buffer, or false if it already had
1819 * been on the buffer list.
1820 */
1821bool
1822xfs_buf_delwri_queue(
1823 struct xfs_buf *bp,
1824 struct list_head *list)
1825{
1826 ASSERT(xfs_buf_islocked(bp));
1827 ASSERT(!(bp->b_flags & XBF_READ));
1828
1829 /*
1830 * If the buffer is already marked delwri it already is queued up
1831 * by someone else for imediate writeout. Just ignore it in that
1832 * case.
1833 */
1834 if (bp->b_flags & _XBF_DELWRI_Q) {
1835 trace_xfs_buf_delwri_queued(bp, _RET_IP_);
1836 return false;
1837 }
1838
1839 trace_xfs_buf_delwri_queue(bp, _RET_IP_);
1840
1841 /*
1842 * If a buffer gets written out synchronously or marked stale while it
1843 * is on a delwri list we lazily remove it. To do this, the other party
1844 * clears the _XBF_DELWRI_Q flag but otherwise leaves the buffer alone.
1845 * It remains referenced and on the list. In a rare corner case it
1846 * might get readded to a delwri list after the synchronous writeout, in
1847 * which case we need just need to re-add the flag here.
1848 */
1849 bp->b_flags |= _XBF_DELWRI_Q;
1850 if (list_empty(&bp->b_list)) {
1851 atomic_inc(&bp->b_hold);
1852 list_add_tail(&bp->b_list, list);
1853 }
1854
1855 return true;
1856}
1857
1858/*
1859 * Compare function is more complex than it needs to be because
1860 * the return value is only 32 bits and we are doing comparisons
1861 * on 64 bit values
1862 */
1863static int
1864xfs_buf_cmp(
1865 void *priv,
1866 struct list_head *a,
1867 struct list_head *b)
1868{
1869 struct xfs_buf *ap = container_of(a, struct xfs_buf, b_list);
1870 struct xfs_buf *bp = container_of(b, struct xfs_buf, b_list);
1871 xfs_daddr_t diff;
1872
1873 diff = ap->b_maps[0].bm_bn - bp->b_maps[0].bm_bn;
1874 if (diff < 0)
1875 return -1;
1876 if (diff > 0)
1877 return 1;
1878 return 0;
1879}
1880
1881/*
1882 * Submit buffers for write. If wait_list is specified, the buffers are
1883 * submitted using sync I/O and placed on the wait list such that the caller can
1884 * iowait each buffer. Otherwise async I/O is used and the buffers are released
1885 * at I/O completion time. In either case, buffers remain locked until I/O
1886 * completes and the buffer is released from the queue.
1887 */
1888static int
1889xfs_buf_delwri_submit_buffers(
1890 struct list_head *buffer_list,
1891 struct list_head *wait_list)
1892{
1893 struct xfs_buf *bp, *n;
1894 int pinned = 0;
1895 struct blk_plug plug;
1896
1897 list_sort(NULL, buffer_list, xfs_buf_cmp);
1898
1899 blk_start_plug(&plug);
1900 list_for_each_entry_safe(bp, n, buffer_list, b_list) {
1901 if (!wait_list) {
1902 if (xfs_buf_ispinned(bp)) {
1903 pinned++;
1904 continue;
1905 }
1906 if (!xfs_buf_trylock(bp))
1907 continue;
1908 } else {
1909 xfs_buf_lock(bp);
1910 }
1911
1912 /*
1913 * Someone else might have written the buffer synchronously or
1914 * marked it stale in the meantime. In that case only the
1915 * _XBF_DELWRI_Q flag got cleared, and we have to drop the
1916 * reference and remove it from the list here.
1917 */
1918 if (!(bp->b_flags & _XBF_DELWRI_Q)) {
1919 list_del_init(&bp->b_list);
1920 xfs_buf_relse(bp);
1921 continue;
1922 }
1923
1924 trace_xfs_buf_delwri_split(bp, _RET_IP_);
1925
1926 /*
1927 * If we have a wait list, each buffer (and associated delwri
1928 * queue reference) transfers to it and is submitted
1929 * synchronously. Otherwise, drop the buffer from the delwri
1930 * queue and submit async.
1931 */
1932 bp->b_flags &= ~(_XBF_DELWRI_Q | XBF_WRITE_FAIL);
1933 bp->b_flags |= XBF_WRITE;
1934 if (wait_list) {
1935 bp->b_flags &= ~XBF_ASYNC;
1936 list_move_tail(&bp->b_list, wait_list);
1937 } else {
1938 bp->b_flags |= XBF_ASYNC;
1939 list_del_init(&bp->b_list);
1940 }
1941 __xfs_buf_submit(bp, false);
1942 }
1943 blk_finish_plug(&plug);
1944
1945 return pinned;
1946}
1947
1948/*
1949 * Write out a buffer list asynchronously.
1950 *
1951 * This will take the @buffer_list, write all non-locked and non-pinned buffers
1952 * out and not wait for I/O completion on any of the buffers. This interface
1953 * is only safely useable for callers that can track I/O completion by higher
1954 * level means, e.g. AIL pushing as the @buffer_list is consumed in this
1955 * function.
1956 *
1957 * Note: this function will skip buffers it would block on, and in doing so
1958 * leaves them on @buffer_list so they can be retried on a later pass. As such,
1959 * it is up to the caller to ensure that the buffer list is fully submitted or
1960 * cancelled appropriately when they are finished with the list. Failure to
1961 * cancel or resubmit the list until it is empty will result in leaked buffers
1962 * at unmount time.
1963 */
1964int
1965xfs_buf_delwri_submit_nowait(
1966 struct list_head *buffer_list)
1967{
1968 return xfs_buf_delwri_submit_buffers(buffer_list, NULL);
1969}
1970
1971/*
1972 * Write out a buffer list synchronously.
1973 *
1974 * This will take the @buffer_list, write all buffers out and wait for I/O
1975 * completion on all of the buffers. @buffer_list is consumed by the function,
1976 * so callers must have some other way of tracking buffers if they require such
1977 * functionality.
1978 */
1979int
1980xfs_buf_delwri_submit(
1981 struct list_head *buffer_list)
1982{
1983 LIST_HEAD (wait_list);
1984 int error = 0, error2;
1985 struct xfs_buf *bp;
1986
1987 xfs_buf_delwri_submit_buffers(buffer_list, &wait_list);
1988
1989 /* Wait for IO to complete. */
1990 while (!list_empty(&wait_list)) {
1991 bp = list_first_entry(&wait_list, struct xfs_buf, b_list);
1992
1993 list_del_init(&bp->b_list);
1994
1995 /*
1996 * Wait on the locked buffer, check for errors and unlock and
1997 * release the delwri queue reference.
1998 */
1999 error2 = xfs_buf_iowait(bp);
2000 xfs_buf_relse(bp);
2001 if (!error)
2002 error = error2;
2003 }
2004
2005 return error;
2006}
2007
2008/*
2009 * Push a single buffer on a delwri queue.
2010 *
2011 * The purpose of this function is to submit a single buffer of a delwri queue
2012 * and return with the buffer still on the original queue. The waiting delwri
2013 * buffer submission infrastructure guarantees transfer of the delwri queue
2014 * buffer reference to a temporary wait list. We reuse this infrastructure to
2015 * transfer the buffer back to the original queue.
2016 *
2017 * Note the buffer transitions from the queued state, to the submitted and wait
2018 * listed state and back to the queued state during this call. The buffer
2019 * locking and queue management logic between _delwri_pushbuf() and
2020 * _delwri_queue() guarantee that the buffer cannot be queued to another list
2021 * before returning.
2022 */
2023int
2024xfs_buf_delwri_pushbuf(
2025 struct xfs_buf *bp,
2026 struct list_head *buffer_list)
2027{
2028 LIST_HEAD (submit_list);
2029 int error;
2030
2031 ASSERT(bp->b_flags & _XBF_DELWRI_Q);
2032
2033 trace_xfs_buf_delwri_pushbuf(bp, _RET_IP_);
2034
2035 /*
2036 * Isolate the buffer to a new local list so we can submit it for I/O
2037 * independently from the rest of the original list.
2038 */
2039 xfs_buf_lock(bp);
2040 list_move(&bp->b_list, &submit_list);
2041 xfs_buf_unlock(bp);
2042
2043 /*
2044 * Delwri submission clears the DELWRI_Q buffer flag and returns with
2045 * the buffer on the wait list with the original reference. Rather than
2046 * bounce the buffer from a local wait list back to the original list
2047 * after I/O completion, reuse the original list as the wait list.
2048 */
2049 xfs_buf_delwri_submit_buffers(&submit_list, buffer_list);
2050
2051 /*
2052 * The buffer is now locked, under I/O and wait listed on the original
2053 * delwri queue. Wait for I/O completion, restore the DELWRI_Q flag and
2054 * return with the buffer unlocked and on the original queue.
2055 */
2056 error = xfs_buf_iowait(bp);
2057 bp->b_flags |= _XBF_DELWRI_Q;
2058 xfs_buf_unlock(bp);
2059
2060 return error;
2061}
2062
2063int __init
2064xfs_buf_init(void)
2065{
2066 xfs_buf_zone = kmem_zone_init_flags(sizeof(xfs_buf_t), "xfs_buf",
2067 KM_ZONE_HWALIGN, NULL);
2068 if (!xfs_buf_zone)
2069 goto out;
2070
2071 return 0;
2072
2073 out:
2074 return -ENOMEM;
2075}
2076
2077void
2078xfs_buf_terminate(void)
2079{
2080 kmem_zone_destroy(xfs_buf_zone);
2081}
2082
2083void xfs_buf_set_ref(struct xfs_buf *bp, int lru_ref)
2084{
2085 /*
2086 * Set the lru reference count to 0 based on the error injection tag.
2087 * This allows userspace to disrupt buffer caching for debug/testing
2088 * purposes.
2089 */
2090 if (XFS_TEST_ERROR(false, bp->b_mount, XFS_ERRTAG_BUF_LRU_REF))
2091 lru_ref = 0;
2092
2093 atomic_set(&bp->b_lru_ref, lru_ref);
2094}
2095
2096/*
2097 * Verify an on-disk magic value against the magic value specified in the
2098 * verifier structure. The verifier magic is in disk byte order so the caller is
2099 * expected to pass the value directly from disk.
2100 */
2101bool
2102xfs_verify_magic(
2103 struct xfs_buf *bp,
2104 __be32 dmagic)
2105{
2106 struct xfs_mount *mp = bp->b_mount;
2107 int idx;
2108
2109 idx = xfs_sb_version_hascrc(&mp->m_sb);
2110 if (WARN_ON(!bp->b_ops || !bp->b_ops->magic[idx]))
2111 return false;
2112 return dmagic == bp->b_ops->magic[idx];
2113}
2114/*
2115 * Verify an on-disk magic value against the magic value specified in the
2116 * verifier structure. The verifier magic is in disk byte order so the caller is
2117 * expected to pass the value directly from disk.
2118 */
2119bool
2120xfs_verify_magic16(
2121 struct xfs_buf *bp,
2122 __be16 dmagic)
2123{
2124 struct xfs_mount *mp = bp->b_mount;
2125 int idx;
2126
2127 idx = xfs_sb_version_hascrc(&mp->m_sb);
2128 if (WARN_ON(!bp->b_ops || !bp->b_ops->magic16[idx]))
2129 return false;
2130 return dmagic == bp->b_ops->magic16[idx];
2131}