Linux Audio

Check our new training course

Loading...
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * Broadcom Starfighter 2 DSA switch CFP support
   4 *
   5 * Copyright (C) 2016, Broadcom
   6 */
   7
   8#include <linux/list.h>
   9#include <linux/ethtool.h>
  10#include <linux/if_ether.h>
  11#include <linux/in.h>
  12#include <linux/netdevice.h>
  13#include <net/dsa.h>
  14#include <linux/bitmap.h>
  15#include <net/flow_offload.h>
  16#include <net/switchdev.h>
  17#include <uapi/linux/if_bridge.h>
  18
  19#include "bcm_sf2.h"
  20#include "bcm_sf2_regs.h"
  21
  22struct cfp_rule {
  23	int port;
  24	struct ethtool_rx_flow_spec fs;
  25	struct list_head next;
  26};
  27
  28struct cfp_udf_slice_layout {
  29	u8 slices[UDFS_PER_SLICE];
  30	u32 mask_value;
  31	u32 base_offset;
  32};
  33
  34struct cfp_udf_layout {
  35	struct cfp_udf_slice_layout udfs[UDF_NUM_SLICES];
  36};
  37
  38static const u8 zero_slice[UDFS_PER_SLICE] = { };
  39
  40/* UDF slices layout for a TCPv4/UDPv4 specification */
  41static const struct cfp_udf_layout udf_tcpip4_layout = {
  42	.udfs = {
  43		[1] = {
  44			.slices = {
  45				/* End of L2, byte offset 12, src IP[0:15] */
  46				CFG_UDF_EOL2 | 6,
  47				/* End of L2, byte offset 14, src IP[16:31] */
  48				CFG_UDF_EOL2 | 7,
  49				/* End of L2, byte offset 16, dst IP[0:15] */
  50				CFG_UDF_EOL2 | 8,
  51				/* End of L2, byte offset 18, dst IP[16:31] */
  52				CFG_UDF_EOL2 | 9,
  53				/* End of L3, byte offset 0, src port */
  54				CFG_UDF_EOL3 | 0,
  55				/* End of L3, byte offset 2, dst port */
  56				CFG_UDF_EOL3 | 1,
  57				0, 0, 0
  58			},
  59			.mask_value = L3_FRAMING_MASK | IPPROTO_MASK | IP_FRAG,
  60			.base_offset = CORE_UDF_0_A_0_8_PORT_0 + UDF_SLICE_OFFSET,
  61		},
  62	},
  63};
  64
  65/* UDF slices layout for a TCPv6/UDPv6 specification */
  66static const struct cfp_udf_layout udf_tcpip6_layout = {
  67	.udfs = {
  68		[0] = {
  69			.slices = {
  70				/* End of L2, byte offset 8, src IP[0:15] */
  71				CFG_UDF_EOL2 | 4,
  72				/* End of L2, byte offset 10, src IP[16:31] */
  73				CFG_UDF_EOL2 | 5,
  74				/* End of L2, byte offset 12, src IP[32:47] */
  75				CFG_UDF_EOL2 | 6,
  76				/* End of L2, byte offset 14, src IP[48:63] */
  77				CFG_UDF_EOL2 | 7,
  78				/* End of L2, byte offset 16, src IP[64:79] */
  79				CFG_UDF_EOL2 | 8,
  80				/* End of L2, byte offset 18, src IP[80:95] */
  81				CFG_UDF_EOL2 | 9,
  82				/* End of L2, byte offset 20, src IP[96:111] */
  83				CFG_UDF_EOL2 | 10,
  84				/* End of L2, byte offset 22, src IP[112:127] */
  85				CFG_UDF_EOL2 | 11,
  86				/* End of L3, byte offset 0, src port */
  87				CFG_UDF_EOL3 | 0,
  88			},
  89			.mask_value = L3_FRAMING_MASK | IPPROTO_MASK | IP_FRAG,
  90			.base_offset = CORE_UDF_0_B_0_8_PORT_0,
  91		},
  92		[3] = {
  93			.slices = {
  94				/* End of L2, byte offset 24, dst IP[0:15] */
  95				CFG_UDF_EOL2 | 12,
  96				/* End of L2, byte offset 26, dst IP[16:31] */
  97				CFG_UDF_EOL2 | 13,
  98				/* End of L2, byte offset 28, dst IP[32:47] */
  99				CFG_UDF_EOL2 | 14,
 100				/* End of L2, byte offset 30, dst IP[48:63] */
 101				CFG_UDF_EOL2 | 15,
 102				/* End of L2, byte offset 32, dst IP[64:79] */
 103				CFG_UDF_EOL2 | 16,
 104				/* End of L2, byte offset 34, dst IP[80:95] */
 105				CFG_UDF_EOL2 | 17,
 106				/* End of L2, byte offset 36, dst IP[96:111] */
 107				CFG_UDF_EOL2 | 18,
 108				/* End of L2, byte offset 38, dst IP[112:127] */
 109				CFG_UDF_EOL2 | 19,
 110				/* End of L3, byte offset 2, dst port */
 111				CFG_UDF_EOL3 | 1,
 112			},
 113			.mask_value = L3_FRAMING_MASK | IPPROTO_MASK | IP_FRAG,
 114			.base_offset = CORE_UDF_0_D_0_11_PORT_0,
 115		},
 116	},
 117};
 118
 119static inline unsigned int bcm_sf2_get_num_udf_slices(const u8 *layout)
 120{
 121	unsigned int i, count = 0;
 122
 123	for (i = 0; i < UDFS_PER_SLICE; i++) {
 124		if (layout[i] != 0)
 125			count++;
 126	}
 127
 128	return count;
 129}
 130
 131static inline u32 udf_upper_bits(int num_udf)
 132{
 133	return GENMASK(num_udf - 1, 0) >> (UDFS_PER_SLICE - 1);
 134}
 135
 136static inline u32 udf_lower_bits(int num_udf)
 137{
 138	return (u8)GENMASK(num_udf - 1, 0);
 139}
 140
 141static unsigned int bcm_sf2_get_slice_number(const struct cfp_udf_layout *l,
 142					     unsigned int start)
 143{
 144	const struct cfp_udf_slice_layout *slice_layout;
 145	unsigned int slice_idx;
 146
 147	for (slice_idx = start; slice_idx < UDF_NUM_SLICES; slice_idx++) {
 148		slice_layout = &l->udfs[slice_idx];
 149		if (memcmp(slice_layout->slices, zero_slice,
 150			   sizeof(zero_slice)))
 151			break;
 152	}
 153
 154	return slice_idx;
 155}
 156
 157static void bcm_sf2_cfp_udf_set(struct bcm_sf2_priv *priv,
 158				const struct cfp_udf_layout *layout,
 159				unsigned int slice_num)
 160{
 161	u32 offset = layout->udfs[slice_num].base_offset;
 162	unsigned int i;
 163
 164	for (i = 0; i < UDFS_PER_SLICE; i++)
 165		core_writel(priv, layout->udfs[slice_num].slices[i],
 166			    offset + i * 4);
 167}
 168
 169static int bcm_sf2_cfp_op(struct bcm_sf2_priv *priv, unsigned int op)
 170{
 171	unsigned int timeout = 1000;
 172	u32 reg;
 173
 174	reg = core_readl(priv, CORE_CFP_ACC);
 175	reg &= ~(OP_SEL_MASK | RAM_SEL_MASK);
 176	reg |= OP_STR_DONE | op;
 177	core_writel(priv, reg, CORE_CFP_ACC);
 178
 179	do {
 180		reg = core_readl(priv, CORE_CFP_ACC);
 181		if (!(reg & OP_STR_DONE))
 182			break;
 183
 184		cpu_relax();
 185	} while (timeout--);
 186
 187	if (!timeout)
 188		return -ETIMEDOUT;
 189
 190	return 0;
 191}
 192
 193static inline void bcm_sf2_cfp_rule_addr_set(struct bcm_sf2_priv *priv,
 194					     unsigned int addr)
 195{
 196	u32 reg;
 197
 198	WARN_ON(addr >= priv->num_cfp_rules);
 199
 200	reg = core_readl(priv, CORE_CFP_ACC);
 201	reg &= ~(XCESS_ADDR_MASK << XCESS_ADDR_SHIFT);
 202	reg |= addr << XCESS_ADDR_SHIFT;
 203	core_writel(priv, reg, CORE_CFP_ACC);
 204}
 205
 206static inline unsigned int bcm_sf2_cfp_rule_size(struct bcm_sf2_priv *priv)
 207{
 208	/* Entry #0 is reserved */
 209	return priv->num_cfp_rules - 1;
 210}
 211
 212static int bcm_sf2_cfp_act_pol_set(struct bcm_sf2_priv *priv,
 213				   unsigned int rule_index,
 214				   int src_port,
 215				   unsigned int port_num,
 216				   unsigned int queue_num,
 217				   bool fwd_map_change)
 218{
 219	int ret;
 220	u32 reg;
 221
 222	/* Replace ARL derived destination with DST_MAP derived, define
 223	 * which port and queue this should be forwarded to.
 224	 */
 225	if (fwd_map_change)
 226		reg = CHANGE_FWRD_MAP_IB_REP_ARL |
 227		      BIT(port_num + DST_MAP_IB_SHIFT) |
 228		      CHANGE_TC | queue_num << NEW_TC_SHIFT;
 229	else
 230		reg = 0;
 231
 232	/* Enable looping back to the original port */
 233	if (src_port == port_num)
 234		reg |= LOOP_BK_EN;
 235
 236	core_writel(priv, reg, CORE_ACT_POL_DATA0);
 237
 238	/* Set classification ID that needs to be put in Broadcom tag */
 239	core_writel(priv, rule_index << CHAIN_ID_SHIFT, CORE_ACT_POL_DATA1);
 240
 241	core_writel(priv, 0, CORE_ACT_POL_DATA2);
 242
 243	/* Configure policer RAM now */
 244	ret = bcm_sf2_cfp_op(priv, OP_SEL_WRITE | ACT_POL_RAM);
 245	if (ret) {
 246		pr_err("Policer entry at %d failed\n", rule_index);
 247		return ret;
 248	}
 249
 250	/* Disable the policer */
 251	core_writel(priv, POLICER_MODE_DISABLE, CORE_RATE_METER0);
 252
 253	/* Now the rate meter */
 254	ret = bcm_sf2_cfp_op(priv, OP_SEL_WRITE | RATE_METER_RAM);
 255	if (ret) {
 256		pr_err("Meter entry at %d failed\n", rule_index);
 257		return ret;
 258	}
 259
 260	return 0;
 261}
 262
 263static void bcm_sf2_cfp_slice_ipv4(struct bcm_sf2_priv *priv,
 264				   struct flow_dissector_key_ipv4_addrs *addrs,
 265				   struct flow_dissector_key_ports *ports,
 266				   const __be16 vlan_tci,
 267				   unsigned int slice_num, u8 num_udf,
 268				   bool mask)
 269{
 270	u32 reg, offset;
 271
 272	/* UDF_Valid[7:0]	[31:24]
 273	 * S-Tag		[23:8]
 274	 * C-Tag		[7:0]
 275	 */
 276	reg = udf_lower_bits(num_udf) << 24 | be16_to_cpu(vlan_tci) >> 8;
 277	if (mask)
 278		core_writel(priv, reg, CORE_CFP_MASK_PORT(5));
 279	else
 280		core_writel(priv, reg, CORE_CFP_DATA_PORT(5));
 281
 282	/* C-Tag		[31:24]
 283	 * UDF_n_A8		[23:8]
 284	 * UDF_n_A7		[7:0]
 285	 */
 286	reg = (u32)(be16_to_cpu(vlan_tci) & 0xff) << 24;
 287	if (mask)
 288		offset = CORE_CFP_MASK_PORT(4);
 289	else
 290		offset = CORE_CFP_DATA_PORT(4);
 291	core_writel(priv, reg, offset);
 292
 293	/* UDF_n_A7		[31:24]
 294	 * UDF_n_A6		[23:8]
 295	 * UDF_n_A5		[7:0]
 296	 */
 297	reg = be16_to_cpu(ports->dst) >> 8;
 298	if (mask)
 299		offset = CORE_CFP_MASK_PORT(3);
 300	else
 301		offset = CORE_CFP_DATA_PORT(3);
 302	core_writel(priv, reg, offset);
 303
 304	/* UDF_n_A5		[31:24]
 305	 * UDF_n_A4		[23:8]
 306	 * UDF_n_A3		[7:0]
 307	 */
 308	reg = (be16_to_cpu(ports->dst) & 0xff) << 24 |
 309	      (u32)be16_to_cpu(ports->src) << 8 |
 310	      (be32_to_cpu(addrs->dst) & 0x0000ff00) >> 8;
 311	if (mask)
 312		offset = CORE_CFP_MASK_PORT(2);
 313	else
 314		offset = CORE_CFP_DATA_PORT(2);
 315	core_writel(priv, reg, offset);
 316
 317	/* UDF_n_A3		[31:24]
 318	 * UDF_n_A2		[23:8]
 319	 * UDF_n_A1		[7:0]
 320	 */
 321	reg = (u32)(be32_to_cpu(addrs->dst) & 0xff) << 24 |
 322	      (u32)(be32_to_cpu(addrs->dst) >> 16) << 8 |
 323	      (be32_to_cpu(addrs->src) & 0x0000ff00) >> 8;
 324	if (mask)
 325		offset = CORE_CFP_MASK_PORT(1);
 326	else
 327		offset = CORE_CFP_DATA_PORT(1);
 328	core_writel(priv, reg, offset);
 329
 330	/* UDF_n_A1		[31:24]
 331	 * UDF_n_A0		[23:8]
 332	 * Reserved		[7:4]
 333	 * Slice ID		[3:2]
 334	 * Slice valid		[1:0]
 335	 */
 336	reg = (u32)(be32_to_cpu(addrs->src) & 0xff) << 24 |
 337	      (u32)(be32_to_cpu(addrs->src) >> 16) << 8 |
 338	      SLICE_NUM(slice_num) | SLICE_VALID;
 339	if (mask)
 340		offset = CORE_CFP_MASK_PORT(0);
 341	else
 342		offset = CORE_CFP_DATA_PORT(0);
 343	core_writel(priv, reg, offset);
 344}
 345
 346static int bcm_sf2_cfp_ipv4_rule_set(struct bcm_sf2_priv *priv, int port,
 347				     unsigned int port_num,
 348				     unsigned int queue_num,
 349				     struct ethtool_rx_flow_spec *fs)
 350{
 351	__be16 vlan_tci = 0, vlan_m_tci = htons(0xffff);
 352	struct ethtool_rx_flow_spec_input input = {};
 353	const struct cfp_udf_layout *layout;
 354	unsigned int slice_num, rule_index;
 355	struct ethtool_rx_flow_rule *flow;
 356	struct flow_match_ipv4_addrs ipv4;
 357	struct flow_match_ports ports;
 358	struct flow_match_ip ip;
 359	u8 ip_proto, ip_frag;
 360	u8 num_udf;
 361	u32 reg;
 362	int ret;
 363
 364	switch (fs->flow_type & ~FLOW_EXT) {
 365	case TCP_V4_FLOW:
 366		ip_proto = IPPROTO_TCP;
 367		break;
 368	case UDP_V4_FLOW:
 369		ip_proto = IPPROTO_UDP;
 370		break;
 371	default:
 372		return -EINVAL;
 373	}
 374
 375	ip_frag = !!(be32_to_cpu(fs->h_ext.data[0]) & 1);
 376
 377	/* Extract VLAN TCI */
 378	if (fs->flow_type & FLOW_EXT) {
 379		vlan_tci = fs->h_ext.vlan_tci;
 380		vlan_m_tci = fs->m_ext.vlan_tci;
 381	}
 382
 383	/* Locate the first rule available */
 384	if (fs->location == RX_CLS_LOC_ANY)
 385		rule_index = find_first_zero_bit(priv->cfp.used,
 386						 priv->num_cfp_rules);
 387	else
 388		rule_index = fs->location;
 389
 390	if (rule_index > bcm_sf2_cfp_rule_size(priv))
 391		return -ENOSPC;
 392
 393	input.fs = fs;
 394	flow = ethtool_rx_flow_rule_create(&input);
 395	if (IS_ERR(flow))
 396		return PTR_ERR(flow);
 397
 398	flow_rule_match_ipv4_addrs(flow->rule, &ipv4);
 399	flow_rule_match_ports(flow->rule, &ports);
 400	flow_rule_match_ip(flow->rule, &ip);
 401
 402	layout = &udf_tcpip4_layout;
 403	/* We only use one UDF slice for now */
 404	slice_num = bcm_sf2_get_slice_number(layout, 0);
 405	if (slice_num == UDF_NUM_SLICES) {
 406		ret = -EINVAL;
 407		goto out_err_flow_rule;
 408	}
 409
 410	num_udf = bcm_sf2_get_num_udf_slices(layout->udfs[slice_num].slices);
 411
 412	/* Apply the UDF layout for this filter */
 413	bcm_sf2_cfp_udf_set(priv, layout, slice_num);
 414
 415	/* Apply to all packets received through this port */
 416	core_writel(priv, BIT(port), CORE_CFP_DATA_PORT(7));
 417
 418	/* Source port map match */
 419	core_writel(priv, 0xff, CORE_CFP_MASK_PORT(7));
 420
 421	/* S-Tag status		[31:30]
 422	 * C-Tag status		[29:28]
 423	 * L2 framing		[27:26]
 424	 * L3 framing		[25:24]
 425	 * IP ToS		[23:16]
 426	 * IP proto		[15:08]
 427	 * IP Fragm		[7]
 428	 * Non 1st frag		[6]
 429	 * IP Authen		[5]
 430	 * TTL range		[4:3]
 431	 * PPPoE session	[2]
 432	 * Reserved		[1]
 433	 * UDF_Valid[8]		[0]
 434	 */
 435	core_writel(priv, ip.key->tos << IPTOS_SHIFT |
 436		    ip_proto << IPPROTO_SHIFT | ip_frag << IP_FRAG_SHIFT |
 437		    udf_upper_bits(num_udf),
 438		    CORE_CFP_DATA_PORT(6));
 439
 440	/* Mask with the specific layout for IPv4 packets */
 441	core_writel(priv, layout->udfs[slice_num].mask_value |
 442		    udf_upper_bits(num_udf), CORE_CFP_MASK_PORT(6));
 443
 
 
 
 
 
 
 
 
 
 444	/* Program the match and the mask */
 445	bcm_sf2_cfp_slice_ipv4(priv, ipv4.key, ports.key, vlan_tci,
 446			       slice_num, num_udf, false);
 447	bcm_sf2_cfp_slice_ipv4(priv, ipv4.mask, ports.mask, vlan_m_tci,
 448			       SLICE_NUM_MASK, num_udf, true);
 449
 450	/* Insert into TCAM now */
 451	bcm_sf2_cfp_rule_addr_set(priv, rule_index);
 452
 453	ret = bcm_sf2_cfp_op(priv, OP_SEL_WRITE | TCAM_SEL);
 454	if (ret) {
 455		pr_err("TCAM entry at addr %d failed\n", rule_index);
 456		goto out_err_flow_rule;
 457	}
 458
 459	/* Insert into Action and policer RAMs now */
 460	ret = bcm_sf2_cfp_act_pol_set(priv, rule_index, port, port_num,
 461				      queue_num, true);
 462	if (ret)
 463		goto out_err_flow_rule;
 464
 465	/* Turn on CFP for this rule now */
 466	reg = core_readl(priv, CORE_CFP_CTL_REG);
 467	reg |= BIT(port);
 468	core_writel(priv, reg, CORE_CFP_CTL_REG);
 469
 470	/* Flag the rule as being used and return it */
 471	set_bit(rule_index, priv->cfp.used);
 472	set_bit(rule_index, priv->cfp.unique);
 473	fs->location = rule_index;
 474
 475	return 0;
 476
 477out_err_flow_rule:
 478	ethtool_rx_flow_rule_destroy(flow);
 479	return ret;
 480}
 481
 482static void bcm_sf2_cfp_slice_ipv6(struct bcm_sf2_priv *priv,
 483				   const __be32 *ip6_addr, const __be16 port,
 484				   const __be16 vlan_tci,
 485				   unsigned int slice_num, u32 udf_bits,
 486				   bool mask)
 487{
 488	u32 reg, tmp, val, offset;
 489
 490	/* UDF_Valid[7:0]	[31:24]
 491	 * S-Tag		[23:8]
 492	 * C-Tag		[7:0]
 493	 */
 494	reg = udf_bits << 24 | be16_to_cpu(vlan_tci) >> 8;
 495	if (mask)
 496		core_writel(priv, reg, CORE_CFP_MASK_PORT(5));
 497	else
 498		core_writel(priv, reg, CORE_CFP_DATA_PORT(5));
 499
 500	/* C-Tag		[31:24]
 501	 * UDF_n_B8		[23:8]	(port)
 502	 * UDF_n_B7 (upper)	[7:0]	(addr[15:8])
 503	 */
 504	reg = be32_to_cpu(ip6_addr[3]);
 505	val = (u32)be16_to_cpu(port) << 8 | ((reg >> 8) & 0xff);
 506	val |= (u32)(be16_to_cpu(vlan_tci) & 0xff) << 24;
 507	if (mask)
 508		offset = CORE_CFP_MASK_PORT(4);
 509	else
 510		offset = CORE_CFP_DATA_PORT(4);
 511	core_writel(priv, val, offset);
 512
 513	/* UDF_n_B7 (lower)	[31:24]	(addr[7:0])
 514	 * UDF_n_B6		[23:8] (addr[31:16])
 515	 * UDF_n_B5 (upper)	[7:0] (addr[47:40])
 516	 */
 517	tmp = be32_to_cpu(ip6_addr[2]);
 518	val = (u32)(reg & 0xff) << 24 | (u32)(reg >> 16) << 8 |
 519	      ((tmp >> 8) & 0xff);
 520	if (mask)
 521		offset = CORE_CFP_MASK_PORT(3);
 522	else
 523		offset = CORE_CFP_DATA_PORT(3);
 524	core_writel(priv, val, offset);
 525
 526	/* UDF_n_B5 (lower)	[31:24] (addr[39:32])
 527	 * UDF_n_B4		[23:8] (addr[63:48])
 528	 * UDF_n_B3 (upper)	[7:0] (addr[79:72])
 529	 */
 530	reg = be32_to_cpu(ip6_addr[1]);
 531	val = (u32)(tmp & 0xff) << 24 | (u32)(tmp >> 16) << 8 |
 532	      ((reg >> 8) & 0xff);
 533	if (mask)
 534		offset = CORE_CFP_MASK_PORT(2);
 535	else
 536		offset = CORE_CFP_DATA_PORT(2);
 537	core_writel(priv, val, offset);
 538
 539	/* UDF_n_B3 (lower)	[31:24] (addr[71:64])
 540	 * UDF_n_B2		[23:8] (addr[95:80])
 541	 * UDF_n_B1 (upper)	[7:0] (addr[111:104])
 542	 */
 543	tmp = be32_to_cpu(ip6_addr[0]);
 544	val = (u32)(reg & 0xff) << 24 | (u32)(reg >> 16) << 8 |
 545	      ((tmp >> 8) & 0xff);
 546	if (mask)
 547		offset = CORE_CFP_MASK_PORT(1);
 548	else
 549		offset = CORE_CFP_DATA_PORT(1);
 550	core_writel(priv, val, offset);
 551
 552	/* UDF_n_B1 (lower)	[31:24] (addr[103:96])
 553	 * UDF_n_B0		[23:8] (addr[127:112])
 554	 * Reserved		[7:4]
 555	 * Slice ID		[3:2]
 556	 * Slice valid		[1:0]
 557	 */
 558	reg = (u32)(tmp & 0xff) << 24 | (u32)(tmp >> 16) << 8 |
 559	       SLICE_NUM(slice_num) | SLICE_VALID;
 560	if (mask)
 561		offset = CORE_CFP_MASK_PORT(0);
 562	else
 563		offset = CORE_CFP_DATA_PORT(0);
 564	core_writel(priv, reg, offset);
 565}
 566
 567static struct cfp_rule *bcm_sf2_cfp_rule_find(struct bcm_sf2_priv *priv,
 568					      int port, u32 location)
 569{
 570	struct cfp_rule *rule;
 571
 572	list_for_each_entry(rule, &priv->cfp.rules_list, next) {
 573		if (rule->port == port && rule->fs.location == location)
 574			return rule;
 575	}
 576
 577	return NULL;
 578}
 579
 580static int bcm_sf2_cfp_rule_cmp(struct bcm_sf2_priv *priv, int port,
 581				struct ethtool_rx_flow_spec *fs)
 582{
 583	struct cfp_rule *rule = NULL;
 584	size_t fs_size = 0;
 585	int ret = 1;
 586
 587	if (list_empty(&priv->cfp.rules_list))
 588		return ret;
 589
 590	list_for_each_entry(rule, &priv->cfp.rules_list, next) {
 591		ret = 1;
 592		if (rule->port != port)
 593			continue;
 594
 595		if (rule->fs.flow_type != fs->flow_type ||
 596		    rule->fs.ring_cookie != fs->ring_cookie ||
 597		    rule->fs.h_ext.data[0] != fs->h_ext.data[0])
 598			continue;
 599
 600		switch (fs->flow_type & ~FLOW_EXT) {
 601		case TCP_V6_FLOW:
 602		case UDP_V6_FLOW:
 603			fs_size = sizeof(struct ethtool_tcpip6_spec);
 604			break;
 605		case TCP_V4_FLOW:
 606		case UDP_V4_FLOW:
 607			fs_size = sizeof(struct ethtool_tcpip4_spec);
 608			break;
 609		default:
 610			continue;
 611		}
 612
 613		ret = memcmp(&rule->fs.h_u, &fs->h_u, fs_size);
 614		ret |= memcmp(&rule->fs.m_u, &fs->m_u, fs_size);
 615		/* Compare VLAN TCI values as well */
 616		if (rule->fs.flow_type & FLOW_EXT) {
 617			ret |= rule->fs.h_ext.vlan_tci != fs->h_ext.vlan_tci;
 618			ret |= rule->fs.m_ext.vlan_tci != fs->m_ext.vlan_tci;
 619		}
 620		if (ret == 0)
 621			break;
 622	}
 623
 624	return ret;
 625}
 626
 627static int bcm_sf2_cfp_ipv6_rule_set(struct bcm_sf2_priv *priv, int port,
 628				     unsigned int port_num,
 629				     unsigned int queue_num,
 630				     struct ethtool_rx_flow_spec *fs)
 631{
 632	__be16 vlan_tci = 0, vlan_m_tci = htons(0xffff);
 633	struct ethtool_rx_flow_spec_input input = {};
 634	unsigned int slice_num, rule_index[2];
 635	const struct cfp_udf_layout *layout;
 636	struct ethtool_rx_flow_rule *flow;
 637	struct flow_match_ipv6_addrs ipv6;
 638	struct flow_match_ports ports;
 639	u8 ip_proto, ip_frag;
 640	int ret = 0;
 641	u8 num_udf;
 642	u32 reg;
 643
 644	switch (fs->flow_type & ~FLOW_EXT) {
 645	case TCP_V6_FLOW:
 646		ip_proto = IPPROTO_TCP;
 647		break;
 648	case UDP_V6_FLOW:
 649		ip_proto = IPPROTO_UDP;
 650		break;
 651	default:
 652		return -EINVAL;
 653	}
 654
 655	ip_frag = !!(be32_to_cpu(fs->h_ext.data[0]) & 1);
 656
 657	/* Extract VLAN TCI */
 658	if (fs->flow_type & FLOW_EXT) {
 659		vlan_tci = fs->h_ext.vlan_tci;
 660		vlan_m_tci = fs->m_ext.vlan_tci;
 661	}
 662
 663	layout = &udf_tcpip6_layout;
 664	slice_num = bcm_sf2_get_slice_number(layout, 0);
 665	if (slice_num == UDF_NUM_SLICES)
 666		return -EINVAL;
 667
 668	num_udf = bcm_sf2_get_num_udf_slices(layout->udfs[slice_num].slices);
 669
 670	/* Negotiate two indexes, one for the second half which we are chained
 671	 * from, which is what we will return to user-space, and a second one
 672	 * which is used to store its first half. That first half does not
 673	 * allow any choice of placement, so it just needs to find the next
 674	 * available bit. We return the second half as fs->location because
 675	 * that helps with the rule lookup later on since the second half is
 676	 * chained from its first half, we can easily identify IPv6 CFP rules
 677	 * by looking whether they carry a CHAIN_ID.
 678	 *
 679	 * We also want the second half to have a lower rule_index than its
 680	 * first half because the HW search is by incrementing addresses.
 681	 */
 682	if (fs->location == RX_CLS_LOC_ANY)
 683		rule_index[1] = find_first_zero_bit(priv->cfp.used,
 684						    priv->num_cfp_rules);
 685	else
 686		rule_index[1] = fs->location;
 687	if (rule_index[1] > bcm_sf2_cfp_rule_size(priv))
 688		return -ENOSPC;
 689
 690	/* Flag it as used (cleared on error path) such that we can immediately
 691	 * obtain a second one to chain from.
 692	 */
 693	set_bit(rule_index[1], priv->cfp.used);
 694
 695	rule_index[0] = find_first_zero_bit(priv->cfp.used,
 696					    priv->num_cfp_rules);
 697	if (rule_index[0] > bcm_sf2_cfp_rule_size(priv)) {
 698		ret = -ENOSPC;
 699		goto out_err;
 700	}
 701
 702	input.fs = fs;
 703	flow = ethtool_rx_flow_rule_create(&input);
 704	if (IS_ERR(flow)) {
 705		ret = PTR_ERR(flow);
 706		goto out_err;
 707	}
 708	flow_rule_match_ipv6_addrs(flow->rule, &ipv6);
 709	flow_rule_match_ports(flow->rule, &ports);
 710
 711	/* Apply the UDF layout for this filter */
 712	bcm_sf2_cfp_udf_set(priv, layout, slice_num);
 713
 714	/* Apply to all packets received through this port */
 715	core_writel(priv, BIT(port), CORE_CFP_DATA_PORT(7));
 716
 717	/* Source port map match */
 718	core_writel(priv, 0xff, CORE_CFP_MASK_PORT(7));
 719
 720	/* S-Tag status		[31:30]
 721	 * C-Tag status		[29:28]
 722	 * L2 framing		[27:26]
 723	 * L3 framing		[25:24]
 724	 * IP ToS		[23:16]
 725	 * IP proto		[15:08]
 726	 * IP Fragm		[7]
 727	 * Non 1st frag		[6]
 728	 * IP Authen		[5]
 729	 * TTL range		[4:3]
 730	 * PPPoE session	[2]
 731	 * Reserved		[1]
 732	 * UDF_Valid[8]		[0]
 733	 */
 734	reg = 1 << L3_FRAMING_SHIFT | ip_proto << IPPROTO_SHIFT |
 735		ip_frag << IP_FRAG_SHIFT | udf_upper_bits(num_udf);
 736	core_writel(priv, reg, CORE_CFP_DATA_PORT(6));
 737
 738	/* Mask with the specific layout for IPv6 packets including
 739	 * UDF_Valid[8]
 740	 */
 741	reg = layout->udfs[slice_num].mask_value | udf_upper_bits(num_udf);
 742	core_writel(priv, reg, CORE_CFP_MASK_PORT(6));
 743
 
 
 
 
 
 
 
 
 
 744	/* Slice the IPv6 source address and port */
 745	bcm_sf2_cfp_slice_ipv6(priv, ipv6.key->src.in6_u.u6_addr32,
 746			       ports.key->src, vlan_tci, slice_num,
 747			       udf_lower_bits(num_udf), false);
 748	bcm_sf2_cfp_slice_ipv6(priv, ipv6.mask->src.in6_u.u6_addr32,
 749			       ports.mask->src, vlan_m_tci, SLICE_NUM_MASK,
 750			       udf_lower_bits(num_udf), true);
 751
 752	/* Insert into TCAM now because we need to insert a second rule */
 753	bcm_sf2_cfp_rule_addr_set(priv, rule_index[0]);
 754
 755	ret = bcm_sf2_cfp_op(priv, OP_SEL_WRITE | TCAM_SEL);
 756	if (ret) {
 757		pr_err("TCAM entry at addr %d failed\n", rule_index[0]);
 758		goto out_err_flow_rule;
 759	}
 760
 761	/* Insert into Action and policer RAMs now */
 762	ret = bcm_sf2_cfp_act_pol_set(priv, rule_index[0], port, port_num,
 763				      queue_num, false);
 764	if (ret)
 765		goto out_err_flow_rule;
 766
 767	/* Now deal with the second slice to chain this rule */
 768	slice_num = bcm_sf2_get_slice_number(layout, slice_num + 1);
 769	if (slice_num == UDF_NUM_SLICES) {
 770		ret = -EINVAL;
 771		goto out_err_flow_rule;
 772	}
 773
 774	num_udf = bcm_sf2_get_num_udf_slices(layout->udfs[slice_num].slices);
 775
 776	/* Apply the UDF layout for this filter */
 777	bcm_sf2_cfp_udf_set(priv, layout, slice_num);
 778
 779	/* Chained rule, source port match is coming from the rule we are
 780	 * chained from.
 781	 */
 782	core_writel(priv, 0, CORE_CFP_DATA_PORT(7));
 783	core_writel(priv, 0, CORE_CFP_MASK_PORT(7));
 784
 785	/*
 786	 * CHAIN ID		[31:24] chain to previous slice
 787	 * Reserved		[23:20]
 788	 * UDF_Valid[11:8]	[19:16]
 789	 * UDF_Valid[7:0]	[15:8]
 790	 * UDF_n_D11		[7:0]
 791	 */
 792	reg = rule_index[0] << 24 | udf_upper_bits(num_udf) << 16 |
 793		udf_lower_bits(num_udf) << 8;
 794	core_writel(priv, reg, CORE_CFP_DATA_PORT(6));
 795
 796	/* Mask all except chain ID, UDF Valid[8] and UDF Valid[7:0] */
 797	reg = XCESS_ADDR_MASK << 24 | udf_upper_bits(num_udf) << 16 |
 798		udf_lower_bits(num_udf) << 8;
 799	core_writel(priv, reg, CORE_CFP_MASK_PORT(6));
 800
 
 
 
 
 
 
 801	bcm_sf2_cfp_slice_ipv6(priv, ipv6.key->dst.in6_u.u6_addr32,
 802			       ports.key->dst, 0, slice_num,
 803			       0, false);
 804	bcm_sf2_cfp_slice_ipv6(priv, ipv6.mask->dst.in6_u.u6_addr32,
 805			       ports.key->dst, 0, SLICE_NUM_MASK,
 806			       0, true);
 807
 808	/* Insert into TCAM now */
 809	bcm_sf2_cfp_rule_addr_set(priv, rule_index[1]);
 810
 811	ret = bcm_sf2_cfp_op(priv, OP_SEL_WRITE | TCAM_SEL);
 812	if (ret) {
 813		pr_err("TCAM entry at addr %d failed\n", rule_index[1]);
 814		goto out_err_flow_rule;
 815	}
 816
 817	/* Insert into Action and policer RAMs now, set chain ID to
 818	 * the one we are chained to
 819	 */
 820	ret = bcm_sf2_cfp_act_pol_set(priv, rule_index[1], port, port_num,
 821				      queue_num, true);
 822	if (ret)
 823		goto out_err_flow_rule;
 824
 825	/* Turn on CFP for this rule now */
 826	reg = core_readl(priv, CORE_CFP_CTL_REG);
 827	reg |= BIT(port);
 828	core_writel(priv, reg, CORE_CFP_CTL_REG);
 829
 830	/* Flag the second half rule as being used now, return it as the
 831	 * location, and flag it as unique while dumping rules
 832	 */
 833	set_bit(rule_index[0], priv->cfp.used);
 834	set_bit(rule_index[1], priv->cfp.unique);
 835	fs->location = rule_index[1];
 836
 837	return ret;
 838
 839out_err_flow_rule:
 840	ethtool_rx_flow_rule_destroy(flow);
 841out_err:
 842	clear_bit(rule_index[1], priv->cfp.used);
 843	return ret;
 844}
 845
 846static int bcm_sf2_cfp_rule_insert(struct dsa_switch *ds, int port,
 847				   struct ethtool_rx_flow_spec *fs)
 848{
 849	struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
 850	s8 cpu_port = dsa_to_port(ds, port)->cpu_dp->index;
 851	__u64 ring_cookie = fs->ring_cookie;
 852	struct switchdev_obj_port_vlan vlan;
 853	unsigned int queue_num, port_num;
 854	u16 vid;
 855	int ret;
 856
 857	/* This rule is a Wake-on-LAN filter and we must specifically
 858	 * target the CPU port in order for it to be working.
 859	 */
 860	if (ring_cookie == RX_CLS_FLOW_WAKE)
 861		ring_cookie = cpu_port * SF2_NUM_EGRESS_QUEUES;
 862
 863	/* We do not support discarding packets, check that the
 864	 * destination port is enabled and that we are within the
 865	 * number of ports supported by the switch
 866	 */
 867	port_num = ring_cookie / SF2_NUM_EGRESS_QUEUES;
 868
 869	if (ring_cookie == RX_CLS_FLOW_DISC ||
 870	    !(dsa_is_user_port(ds, port_num) ||
 871	      dsa_is_cpu_port(ds, port_num)) ||
 872	    port_num >= priv->hw_params.num_ports)
 873		return -EINVAL;
 874
 875	/* If the rule is matching a particular VLAN, make sure that we honor
 876	 * the matching and have it tagged or untagged on the destination port,
 877	 * we do this on egress with a VLAN entry. The egress tagging attribute
 878	 * is expected to be provided in h_ext.data[1] bit 0. A 1 means untagged,
 879	 * a 0 means tagged.
 880	 */
 881	if (fs->flow_type & FLOW_EXT) {
 882		/* We cannot support matching multiple VLAN IDs yet */
 883		if ((be16_to_cpu(fs->m_ext.vlan_tci) & VLAN_VID_MASK) !=
 884		    VLAN_VID_MASK)
 885			return -EINVAL;
 886
 887		vid = be16_to_cpu(fs->h_ext.vlan_tci) & VLAN_VID_MASK;
 888		vlan.vid = vid;
 889		if (be32_to_cpu(fs->h_ext.data[1]) & 1)
 890			vlan.flags = BRIDGE_VLAN_INFO_UNTAGGED;
 891		else
 892			vlan.flags = 0;
 893
 894		ret = ds->ops->port_vlan_add(ds, port_num, &vlan, NULL);
 895		if (ret)
 896			return ret;
 897	}
 898
 899	/*
 900	 * We have a small oddity where Port 6 just does not have a
 901	 * valid bit here (so we substract by one).
 902	 */
 903	queue_num = ring_cookie % SF2_NUM_EGRESS_QUEUES;
 904	if (port_num >= 7)
 905		port_num -= 1;
 906
 907	switch (fs->flow_type & ~FLOW_EXT) {
 908	case TCP_V4_FLOW:
 909	case UDP_V4_FLOW:
 910		ret = bcm_sf2_cfp_ipv4_rule_set(priv, port, port_num,
 911						queue_num, fs);
 912		break;
 913	case TCP_V6_FLOW:
 914	case UDP_V6_FLOW:
 915		ret = bcm_sf2_cfp_ipv6_rule_set(priv, port, port_num,
 916						queue_num, fs);
 917		break;
 918	default:
 919		ret = -EINVAL;
 920		break;
 921	}
 922
 923	return ret;
 924}
 925
 926static int bcm_sf2_cfp_rule_set(struct dsa_switch *ds, int port,
 927				struct ethtool_rx_flow_spec *fs)
 928{
 929	struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
 930	struct cfp_rule *rule = NULL;
 931	int ret = -EINVAL;
 932
 933	/* Check for unsupported extensions */
 934	if (fs->flow_type & FLOW_MAC_EXT)
 
 935		return -EINVAL;
 936
 937	if (fs->location != RX_CLS_LOC_ANY &&
 938	    fs->location > bcm_sf2_cfp_rule_size(priv))
 939		return -EINVAL;
 940
 941	if ((fs->flow_type & FLOW_EXT) &&
 942	    !(ds->ops->port_vlan_add || ds->ops->port_vlan_del))
 943		return -EOPNOTSUPP;
 944
 945	if (fs->location != RX_CLS_LOC_ANY &&
 946	    test_bit(fs->location, priv->cfp.used))
 947		return -EBUSY;
 948
 
 
 
 
 949	ret = bcm_sf2_cfp_rule_cmp(priv, port, fs);
 950	if (ret == 0)
 951		return -EEXIST;
 952
 953	rule = kzalloc(sizeof(*rule), GFP_KERNEL);
 954	if (!rule)
 955		return -ENOMEM;
 956
 957	ret = bcm_sf2_cfp_rule_insert(ds, port, fs);
 958	if (ret) {
 959		kfree(rule);
 960		return ret;
 961	}
 962
 963	rule->port = port;
 964	memcpy(&rule->fs, fs, sizeof(*fs));
 965	list_add_tail(&rule->next, &priv->cfp.rules_list);
 966
 967	return ret;
 968}
 969
 970static int bcm_sf2_cfp_rule_del_one(struct bcm_sf2_priv *priv, int port,
 971				    u32 loc, u32 *next_loc)
 972{
 973	int ret;
 974	u32 reg;
 975
 976	/* Indicate which rule we want to read */
 977	bcm_sf2_cfp_rule_addr_set(priv, loc);
 978
 979	ret =  bcm_sf2_cfp_op(priv, OP_SEL_READ | TCAM_SEL);
 980	if (ret)
 981		return ret;
 982
 983	/* Check if this is possibly an IPv6 rule that would
 984	 * indicate we need to delete its companion rule
 985	 * as well
 986	 */
 987	reg = core_readl(priv, CORE_CFP_DATA_PORT(6));
 988	if (next_loc)
 989		*next_loc = (reg >> 24) & CHAIN_ID_MASK;
 990
 991	/* Clear its valid bits */
 992	reg = core_readl(priv, CORE_CFP_DATA_PORT(0));
 993	reg &= ~SLICE_VALID;
 994	core_writel(priv, reg, CORE_CFP_DATA_PORT(0));
 995
 996	/* Write back this entry into the TCAM now */
 997	ret = bcm_sf2_cfp_op(priv, OP_SEL_WRITE | TCAM_SEL);
 998	if (ret)
 999		return ret;
1000
1001	clear_bit(loc, priv->cfp.used);
1002	clear_bit(loc, priv->cfp.unique);
1003
1004	return 0;
1005}
1006
1007static int bcm_sf2_cfp_rule_remove(struct bcm_sf2_priv *priv, int port,
1008				   u32 loc)
1009{
1010	u32 next_loc = 0;
1011	int ret;
1012
1013	ret = bcm_sf2_cfp_rule_del_one(priv, port, loc, &next_loc);
1014	if (ret)
1015		return ret;
1016
1017	/* If this was an IPv6 rule, delete is companion rule too */
1018	if (next_loc)
1019		ret = bcm_sf2_cfp_rule_del_one(priv, port, next_loc, NULL);
1020
1021	return ret;
1022}
1023
1024static int bcm_sf2_cfp_rule_del(struct bcm_sf2_priv *priv, int port, u32 loc)
1025{
1026	struct cfp_rule *rule;
1027	int ret;
1028
1029	if (loc > bcm_sf2_cfp_rule_size(priv))
1030		return -EINVAL;
1031
1032	/* Refuse deleting unused rules, and those that are not unique since
1033	 * that could leave IPv6 rules with one of the chained rule in the
1034	 * table.
1035	 */
1036	if (!test_bit(loc, priv->cfp.unique) || loc == 0)
1037		return -EINVAL;
1038
1039	rule = bcm_sf2_cfp_rule_find(priv, port, loc);
1040	if (!rule)
1041		return -EINVAL;
1042
1043	ret = bcm_sf2_cfp_rule_remove(priv, port, loc);
1044
1045	list_del(&rule->next);
1046	kfree(rule);
1047
1048	return ret;
1049}
1050
1051static void bcm_sf2_invert_masks(struct ethtool_rx_flow_spec *flow)
1052{
1053	unsigned int i;
1054
1055	for (i = 0; i < sizeof(flow->m_u); i++)
1056		flow->m_u.hdata[i] ^= 0xff;
1057
1058	flow->m_ext.vlan_etype ^= cpu_to_be16(~0);
1059	flow->m_ext.vlan_tci ^= cpu_to_be16(~0);
1060	flow->m_ext.data[0] ^= cpu_to_be32(~0);
1061	flow->m_ext.data[1] ^= cpu_to_be32(~0);
1062}
1063
1064static int bcm_sf2_cfp_rule_get(struct bcm_sf2_priv *priv, int port,
1065				struct ethtool_rxnfc *nfc)
1066{
1067	struct cfp_rule *rule;
1068
1069	rule = bcm_sf2_cfp_rule_find(priv, port, nfc->fs.location);
1070	if (!rule)
1071		return -EINVAL;
1072
1073	memcpy(&nfc->fs, &rule->fs, sizeof(rule->fs));
1074
1075	bcm_sf2_invert_masks(&nfc->fs);
1076
1077	/* Put the TCAM size here */
1078	nfc->data = bcm_sf2_cfp_rule_size(priv);
1079
1080	return 0;
1081}
1082
1083/* We implement the search doing a TCAM search operation */
1084static int bcm_sf2_cfp_rule_get_all(struct bcm_sf2_priv *priv,
1085				    int port, struct ethtool_rxnfc *nfc,
1086				    u32 *rule_locs)
1087{
1088	unsigned int index = 1, rules_cnt = 0;
1089
1090	for_each_set_bit_from(index, priv->cfp.unique, priv->num_cfp_rules) {
1091		rule_locs[rules_cnt] = index;
1092		rules_cnt++;
1093	}
1094
1095	/* Put the TCAM size here */
1096	nfc->data = bcm_sf2_cfp_rule_size(priv);
1097	nfc->rule_cnt = rules_cnt;
1098
1099	return 0;
1100}
1101
1102int bcm_sf2_get_rxnfc(struct dsa_switch *ds, int port,
1103		      struct ethtool_rxnfc *nfc, u32 *rule_locs)
1104{
1105	struct net_device *p = dsa_port_to_conduit(dsa_to_port(ds, port));
1106	struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
1107	int ret = 0;
1108
1109	mutex_lock(&priv->cfp.lock);
1110
1111	switch (nfc->cmd) {
1112	case ETHTOOL_GRXCLSRLCNT:
1113		/* Subtract the default, unusable rule */
1114		nfc->rule_cnt = bitmap_weight(priv->cfp.unique,
1115					      priv->num_cfp_rules) - 1;
1116		/* We support specifying rule locations */
1117		nfc->data |= RX_CLS_LOC_SPECIAL;
1118		break;
1119	case ETHTOOL_GRXCLSRULE:
1120		ret = bcm_sf2_cfp_rule_get(priv, port, nfc);
1121		break;
1122	case ETHTOOL_GRXCLSRLALL:
1123		ret = bcm_sf2_cfp_rule_get_all(priv, port, nfc, rule_locs);
1124		break;
1125	default:
1126		ret = -EOPNOTSUPP;
1127		break;
1128	}
1129
1130	mutex_unlock(&priv->cfp.lock);
1131
1132	if (ret)
1133		return ret;
1134
1135	/* Pass up the commands to the attached master network device */
1136	if (p->ethtool_ops->get_rxnfc) {
1137		ret = p->ethtool_ops->get_rxnfc(p, nfc, rule_locs);
1138		if (ret == -EOPNOTSUPP)
1139			ret = 0;
1140	}
1141
1142	return ret;
1143}
1144
1145int bcm_sf2_set_rxnfc(struct dsa_switch *ds, int port,
1146		      struct ethtool_rxnfc *nfc)
1147{
1148	struct net_device *p = dsa_port_to_conduit(dsa_to_port(ds, port));
1149	struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
1150	int ret = 0;
1151
1152	mutex_lock(&priv->cfp.lock);
1153
1154	switch (nfc->cmd) {
1155	case ETHTOOL_SRXCLSRLINS:
1156		ret = bcm_sf2_cfp_rule_set(ds, port, &nfc->fs);
1157		break;
1158
1159	case ETHTOOL_SRXCLSRLDEL:
1160		ret = bcm_sf2_cfp_rule_del(priv, port, nfc->fs.location);
1161		break;
1162	default:
1163		ret = -EOPNOTSUPP;
1164		break;
1165	}
1166
1167	mutex_unlock(&priv->cfp.lock);
1168
1169	if (ret)
1170		return ret;
1171
1172	/* Pass up the commands to the attached master network device.
1173	 * This can fail, so rollback the operation if we need to.
1174	 */
1175	if (p->ethtool_ops->set_rxnfc) {
1176		ret = p->ethtool_ops->set_rxnfc(p, nfc);
1177		if (ret && ret != -EOPNOTSUPP) {
1178			mutex_lock(&priv->cfp.lock);
1179			bcm_sf2_cfp_rule_del(priv, port, nfc->fs.location);
1180			mutex_unlock(&priv->cfp.lock);
1181		} else {
1182			ret = 0;
1183		}
1184	}
1185
1186	return ret;
1187}
1188
1189int bcm_sf2_cfp_rst(struct bcm_sf2_priv *priv)
1190{
1191	unsigned int timeout = 1000;
1192	u32 reg;
1193
1194	reg = core_readl(priv, CORE_CFP_ACC);
1195	reg |= TCAM_RESET;
1196	core_writel(priv, reg, CORE_CFP_ACC);
1197
1198	do {
1199		reg = core_readl(priv, CORE_CFP_ACC);
1200		if (!(reg & TCAM_RESET))
1201			break;
1202
1203		cpu_relax();
1204	} while (timeout--);
1205
1206	if (!timeout)
1207		return -ETIMEDOUT;
1208
1209	return 0;
1210}
1211
1212void bcm_sf2_cfp_exit(struct dsa_switch *ds)
1213{
1214	struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
1215	struct cfp_rule *rule, *n;
1216
1217	if (list_empty(&priv->cfp.rules_list))
1218		return;
1219
1220	list_for_each_entry_safe_reverse(rule, n, &priv->cfp.rules_list, next)
1221		bcm_sf2_cfp_rule_del(priv, rule->port, rule->fs.location);
1222}
1223
1224int bcm_sf2_cfp_resume(struct dsa_switch *ds)
1225{
1226	struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
1227	struct cfp_rule *rule;
1228	int ret = 0;
1229	u32 reg;
1230
1231	if (list_empty(&priv->cfp.rules_list))
1232		return ret;
1233
1234	reg = core_readl(priv, CORE_CFP_CTL_REG);
1235	reg &= ~CFP_EN_MAP_MASK;
1236	core_writel(priv, reg, CORE_CFP_CTL_REG);
1237
1238	ret = bcm_sf2_cfp_rst(priv);
1239	if (ret)
1240		return ret;
1241
1242	list_for_each_entry(rule, &priv->cfp.rules_list, next) {
1243		ret = bcm_sf2_cfp_rule_remove(priv, rule->port,
1244					      rule->fs.location);
1245		if (ret) {
1246			dev_err(ds->dev, "failed to remove rule\n");
1247			return ret;
1248		}
1249
1250		ret = bcm_sf2_cfp_rule_insert(ds, rule->port, &rule->fs);
1251		if (ret) {
1252			dev_err(ds->dev, "failed to restore rule\n");
1253			return ret;
1254		}
1255	}
1256
1257	return ret;
1258}
1259
1260static const struct bcm_sf2_cfp_stat {
1261	unsigned int offset;
1262	unsigned int ram_loc;
1263	const char *name;
1264} bcm_sf2_cfp_stats[] = {
1265	{
1266		.offset = CORE_STAT_GREEN_CNTR,
1267		.ram_loc = GREEN_STAT_RAM,
1268		.name = "Green"
1269	},
1270	{
1271		.offset = CORE_STAT_YELLOW_CNTR,
1272		.ram_loc = YELLOW_STAT_RAM,
1273		.name = "Yellow"
1274	},
1275	{
1276		.offset = CORE_STAT_RED_CNTR,
1277		.ram_loc = RED_STAT_RAM,
1278		.name = "Red"
1279	},
1280};
1281
1282void bcm_sf2_cfp_get_strings(struct dsa_switch *ds, int port, u32 stringset,
1283			     uint8_t **data)
1284{
1285	struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
1286	unsigned int i, j;
 
 
1287
1288	if (stringset != ETH_SS_STATS)
1289		return;
1290
1291	for (i = 1; i < priv->num_cfp_rules; i++)
1292		for (j = 0; j < ARRAY_SIZE(bcm_sf2_cfp_stats); j++)
1293			ethtool_sprintf(data, "CFP%03d_%sCntr", i,
1294					bcm_sf2_cfp_stats[j].name);
 
 
 
 
 
 
1295}
1296
1297void bcm_sf2_cfp_get_ethtool_stats(struct dsa_switch *ds, int port,
1298				   uint64_t *data)
1299{
1300	struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
1301	unsigned int s = ARRAY_SIZE(bcm_sf2_cfp_stats);
1302	const struct bcm_sf2_cfp_stat *stat;
1303	unsigned int i, j, iter;
1304	struct cfp_rule *rule;
1305	int ret;
1306
1307	mutex_lock(&priv->cfp.lock);
1308	for (i = 1; i < priv->num_cfp_rules; i++) {
1309		rule = bcm_sf2_cfp_rule_find(priv, port, i);
1310		if (!rule)
1311			continue;
1312
1313		for (j = 0; j < s; j++) {
1314			stat = &bcm_sf2_cfp_stats[j];
1315
1316			bcm_sf2_cfp_rule_addr_set(priv, i);
1317			ret = bcm_sf2_cfp_op(priv, stat->ram_loc | OP_SEL_READ);
1318			if (ret)
1319				continue;
1320
1321			iter = (i - 1) * s + j;
1322			data[iter] = core_readl(priv, stat->offset);
1323		}
1324
1325	}
1326	mutex_unlock(&priv->cfp.lock);
1327}
1328
1329int bcm_sf2_cfp_get_sset_count(struct dsa_switch *ds, int port, int sset)
1330{
1331	struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
1332
1333	if (sset != ETH_SS_STATS)
1334		return 0;
1335
1336	/* 3 counters per CFP rules */
1337	return (priv->num_cfp_rules - 1) * ARRAY_SIZE(bcm_sf2_cfp_stats);
1338}
v5.4
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * Broadcom Starfighter 2 DSA switch CFP support
   4 *
   5 * Copyright (C) 2016, Broadcom
   6 */
   7
   8#include <linux/list.h>
   9#include <linux/ethtool.h>
  10#include <linux/if_ether.h>
  11#include <linux/in.h>
  12#include <linux/netdevice.h>
  13#include <net/dsa.h>
  14#include <linux/bitmap.h>
  15#include <net/flow_offload.h>
 
 
  16
  17#include "bcm_sf2.h"
  18#include "bcm_sf2_regs.h"
  19
  20struct cfp_rule {
  21	int port;
  22	struct ethtool_rx_flow_spec fs;
  23	struct list_head next;
  24};
  25
  26struct cfp_udf_slice_layout {
  27	u8 slices[UDFS_PER_SLICE];
  28	u32 mask_value;
  29	u32 base_offset;
  30};
  31
  32struct cfp_udf_layout {
  33	struct cfp_udf_slice_layout udfs[UDF_NUM_SLICES];
  34};
  35
  36static const u8 zero_slice[UDFS_PER_SLICE] = { };
  37
  38/* UDF slices layout for a TCPv4/UDPv4 specification */
  39static const struct cfp_udf_layout udf_tcpip4_layout = {
  40	.udfs = {
  41		[1] = {
  42			.slices = {
  43				/* End of L2, byte offset 12, src IP[0:15] */
  44				CFG_UDF_EOL2 | 6,
  45				/* End of L2, byte offset 14, src IP[16:31] */
  46				CFG_UDF_EOL2 | 7,
  47				/* End of L2, byte offset 16, dst IP[0:15] */
  48				CFG_UDF_EOL2 | 8,
  49				/* End of L2, byte offset 18, dst IP[16:31] */
  50				CFG_UDF_EOL2 | 9,
  51				/* End of L3, byte offset 0, src port */
  52				CFG_UDF_EOL3 | 0,
  53				/* End of L3, byte offset 2, dst port */
  54				CFG_UDF_EOL3 | 1,
  55				0, 0, 0
  56			},
  57			.mask_value = L3_FRAMING_MASK | IPPROTO_MASK | IP_FRAG,
  58			.base_offset = CORE_UDF_0_A_0_8_PORT_0 + UDF_SLICE_OFFSET,
  59		},
  60	},
  61};
  62
  63/* UDF slices layout for a TCPv6/UDPv6 specification */
  64static const struct cfp_udf_layout udf_tcpip6_layout = {
  65	.udfs = {
  66		[0] = {
  67			.slices = {
  68				/* End of L2, byte offset 8, src IP[0:15] */
  69				CFG_UDF_EOL2 | 4,
  70				/* End of L2, byte offset 10, src IP[16:31] */
  71				CFG_UDF_EOL2 | 5,
  72				/* End of L2, byte offset 12, src IP[32:47] */
  73				CFG_UDF_EOL2 | 6,
  74				/* End of L2, byte offset 14, src IP[48:63] */
  75				CFG_UDF_EOL2 | 7,
  76				/* End of L2, byte offset 16, src IP[64:79] */
  77				CFG_UDF_EOL2 | 8,
  78				/* End of L2, byte offset 18, src IP[80:95] */
  79				CFG_UDF_EOL2 | 9,
  80				/* End of L2, byte offset 20, src IP[96:111] */
  81				CFG_UDF_EOL2 | 10,
  82				/* End of L2, byte offset 22, src IP[112:127] */
  83				CFG_UDF_EOL2 | 11,
  84				/* End of L3, byte offset 0, src port */
  85				CFG_UDF_EOL3 | 0,
  86			},
  87			.mask_value = L3_FRAMING_MASK | IPPROTO_MASK | IP_FRAG,
  88			.base_offset = CORE_UDF_0_B_0_8_PORT_0,
  89		},
  90		[3] = {
  91			.slices = {
  92				/* End of L2, byte offset 24, dst IP[0:15] */
  93				CFG_UDF_EOL2 | 12,
  94				/* End of L2, byte offset 26, dst IP[16:31] */
  95				CFG_UDF_EOL2 | 13,
  96				/* End of L2, byte offset 28, dst IP[32:47] */
  97				CFG_UDF_EOL2 | 14,
  98				/* End of L2, byte offset 30, dst IP[48:63] */
  99				CFG_UDF_EOL2 | 15,
 100				/* End of L2, byte offset 32, dst IP[64:79] */
 101				CFG_UDF_EOL2 | 16,
 102				/* End of L2, byte offset 34, dst IP[80:95] */
 103				CFG_UDF_EOL2 | 17,
 104				/* End of L2, byte offset 36, dst IP[96:111] */
 105				CFG_UDF_EOL2 | 18,
 106				/* End of L2, byte offset 38, dst IP[112:127] */
 107				CFG_UDF_EOL2 | 19,
 108				/* End of L3, byte offset 2, dst port */
 109				CFG_UDF_EOL3 | 1,
 110			},
 111			.mask_value = L3_FRAMING_MASK | IPPROTO_MASK | IP_FRAG,
 112			.base_offset = CORE_UDF_0_D_0_11_PORT_0,
 113		},
 114	},
 115};
 116
 117static inline unsigned int bcm_sf2_get_num_udf_slices(const u8 *layout)
 118{
 119	unsigned int i, count = 0;
 120
 121	for (i = 0; i < UDFS_PER_SLICE; i++) {
 122		if (layout[i] != 0)
 123			count++;
 124	}
 125
 126	return count;
 127}
 128
 129static inline u32 udf_upper_bits(unsigned int num_udf)
 130{
 131	return GENMASK(num_udf - 1, 0) >> (UDFS_PER_SLICE - 1);
 132}
 133
 134static inline u32 udf_lower_bits(unsigned int num_udf)
 135{
 136	return (u8)GENMASK(num_udf - 1, 0);
 137}
 138
 139static unsigned int bcm_sf2_get_slice_number(const struct cfp_udf_layout *l,
 140					     unsigned int start)
 141{
 142	const struct cfp_udf_slice_layout *slice_layout;
 143	unsigned int slice_idx;
 144
 145	for (slice_idx = start; slice_idx < UDF_NUM_SLICES; slice_idx++) {
 146		slice_layout = &l->udfs[slice_idx];
 147		if (memcmp(slice_layout->slices, zero_slice,
 148			   sizeof(zero_slice)))
 149			break;
 150	}
 151
 152	return slice_idx;
 153}
 154
 155static void bcm_sf2_cfp_udf_set(struct bcm_sf2_priv *priv,
 156				const struct cfp_udf_layout *layout,
 157				unsigned int slice_num)
 158{
 159	u32 offset = layout->udfs[slice_num].base_offset;
 160	unsigned int i;
 161
 162	for (i = 0; i < UDFS_PER_SLICE; i++)
 163		core_writel(priv, layout->udfs[slice_num].slices[i],
 164			    offset + i * 4);
 165}
 166
 167static int bcm_sf2_cfp_op(struct bcm_sf2_priv *priv, unsigned int op)
 168{
 169	unsigned int timeout = 1000;
 170	u32 reg;
 171
 172	reg = core_readl(priv, CORE_CFP_ACC);
 173	reg &= ~(OP_SEL_MASK | RAM_SEL_MASK);
 174	reg |= OP_STR_DONE | op;
 175	core_writel(priv, reg, CORE_CFP_ACC);
 176
 177	do {
 178		reg = core_readl(priv, CORE_CFP_ACC);
 179		if (!(reg & OP_STR_DONE))
 180			break;
 181
 182		cpu_relax();
 183	} while (timeout--);
 184
 185	if (!timeout)
 186		return -ETIMEDOUT;
 187
 188	return 0;
 189}
 190
 191static inline void bcm_sf2_cfp_rule_addr_set(struct bcm_sf2_priv *priv,
 192					     unsigned int addr)
 193{
 194	u32 reg;
 195
 196	WARN_ON(addr >= priv->num_cfp_rules);
 197
 198	reg = core_readl(priv, CORE_CFP_ACC);
 199	reg &= ~(XCESS_ADDR_MASK << XCESS_ADDR_SHIFT);
 200	reg |= addr << XCESS_ADDR_SHIFT;
 201	core_writel(priv, reg, CORE_CFP_ACC);
 202}
 203
 204static inline unsigned int bcm_sf2_cfp_rule_size(struct bcm_sf2_priv *priv)
 205{
 206	/* Entry #0 is reserved */
 207	return priv->num_cfp_rules - 1;
 208}
 209
 210static int bcm_sf2_cfp_act_pol_set(struct bcm_sf2_priv *priv,
 211				   unsigned int rule_index,
 212				   int src_port,
 213				   unsigned int port_num,
 214				   unsigned int queue_num,
 215				   bool fwd_map_change)
 216{
 217	int ret;
 218	u32 reg;
 219
 220	/* Replace ARL derived destination with DST_MAP derived, define
 221	 * which port and queue this should be forwarded to.
 222	 */
 223	if (fwd_map_change)
 224		reg = CHANGE_FWRD_MAP_IB_REP_ARL |
 225		      BIT(port_num + DST_MAP_IB_SHIFT) |
 226		      CHANGE_TC | queue_num << NEW_TC_SHIFT;
 227	else
 228		reg = 0;
 229
 230	/* Enable looping back to the original port */
 231	if (src_port == port_num)
 232		reg |= LOOP_BK_EN;
 233
 234	core_writel(priv, reg, CORE_ACT_POL_DATA0);
 235
 236	/* Set classification ID that needs to be put in Broadcom tag */
 237	core_writel(priv, rule_index << CHAIN_ID_SHIFT, CORE_ACT_POL_DATA1);
 238
 239	core_writel(priv, 0, CORE_ACT_POL_DATA2);
 240
 241	/* Configure policer RAM now */
 242	ret = bcm_sf2_cfp_op(priv, OP_SEL_WRITE | ACT_POL_RAM);
 243	if (ret) {
 244		pr_err("Policer entry at %d failed\n", rule_index);
 245		return ret;
 246	}
 247
 248	/* Disable the policer */
 249	core_writel(priv, POLICER_MODE_DISABLE, CORE_RATE_METER0);
 250
 251	/* Now the rate meter */
 252	ret = bcm_sf2_cfp_op(priv, OP_SEL_WRITE | RATE_METER_RAM);
 253	if (ret) {
 254		pr_err("Meter entry at %d failed\n", rule_index);
 255		return ret;
 256	}
 257
 258	return 0;
 259}
 260
 261static void bcm_sf2_cfp_slice_ipv4(struct bcm_sf2_priv *priv,
 262				   struct flow_dissector_key_ipv4_addrs *addrs,
 263				   struct flow_dissector_key_ports *ports,
 264				   unsigned int slice_num,
 
 265				   bool mask)
 266{
 267	u32 reg, offset;
 268
 
 
 
 
 
 
 
 
 
 
 269	/* C-Tag		[31:24]
 270	 * UDF_n_A8		[23:8]
 271	 * UDF_n_A7		[7:0]
 272	 */
 273	reg = 0;
 274	if (mask)
 275		offset = CORE_CFP_MASK_PORT(4);
 276	else
 277		offset = CORE_CFP_DATA_PORT(4);
 278	core_writel(priv, reg, offset);
 279
 280	/* UDF_n_A7		[31:24]
 281	 * UDF_n_A6		[23:8]
 282	 * UDF_n_A5		[7:0]
 283	 */
 284	reg = be16_to_cpu(ports->dst) >> 8;
 285	if (mask)
 286		offset = CORE_CFP_MASK_PORT(3);
 287	else
 288		offset = CORE_CFP_DATA_PORT(3);
 289	core_writel(priv, reg, offset);
 290
 291	/* UDF_n_A5		[31:24]
 292	 * UDF_n_A4		[23:8]
 293	 * UDF_n_A3		[7:0]
 294	 */
 295	reg = (be16_to_cpu(ports->dst) & 0xff) << 24 |
 296	      (u32)be16_to_cpu(ports->src) << 8 |
 297	      (be32_to_cpu(addrs->dst) & 0x0000ff00) >> 8;
 298	if (mask)
 299		offset = CORE_CFP_MASK_PORT(2);
 300	else
 301		offset = CORE_CFP_DATA_PORT(2);
 302	core_writel(priv, reg, offset);
 303
 304	/* UDF_n_A3		[31:24]
 305	 * UDF_n_A2		[23:8]
 306	 * UDF_n_A1		[7:0]
 307	 */
 308	reg = (u32)(be32_to_cpu(addrs->dst) & 0xff) << 24 |
 309	      (u32)(be32_to_cpu(addrs->dst) >> 16) << 8 |
 310	      (be32_to_cpu(addrs->src) & 0x0000ff00) >> 8;
 311	if (mask)
 312		offset = CORE_CFP_MASK_PORT(1);
 313	else
 314		offset = CORE_CFP_DATA_PORT(1);
 315	core_writel(priv, reg, offset);
 316
 317	/* UDF_n_A1		[31:24]
 318	 * UDF_n_A0		[23:8]
 319	 * Reserved		[7:4]
 320	 * Slice ID		[3:2]
 321	 * Slice valid		[1:0]
 322	 */
 323	reg = (u32)(be32_to_cpu(addrs->src) & 0xff) << 24 |
 324	      (u32)(be32_to_cpu(addrs->src) >> 16) << 8 |
 325	      SLICE_NUM(slice_num) | SLICE_VALID;
 326	if (mask)
 327		offset = CORE_CFP_MASK_PORT(0);
 328	else
 329		offset = CORE_CFP_DATA_PORT(0);
 330	core_writel(priv, reg, offset);
 331}
 332
 333static int bcm_sf2_cfp_ipv4_rule_set(struct bcm_sf2_priv *priv, int port,
 334				     unsigned int port_num,
 335				     unsigned int queue_num,
 336				     struct ethtool_rx_flow_spec *fs)
 337{
 
 338	struct ethtool_rx_flow_spec_input input = {};
 339	const struct cfp_udf_layout *layout;
 340	unsigned int slice_num, rule_index;
 341	struct ethtool_rx_flow_rule *flow;
 342	struct flow_match_ipv4_addrs ipv4;
 343	struct flow_match_ports ports;
 344	struct flow_match_ip ip;
 345	u8 ip_proto, ip_frag;
 346	u8 num_udf;
 347	u32 reg;
 348	int ret;
 349
 350	switch (fs->flow_type & ~FLOW_EXT) {
 351	case TCP_V4_FLOW:
 352		ip_proto = IPPROTO_TCP;
 353		break;
 354	case UDP_V4_FLOW:
 355		ip_proto = IPPROTO_UDP;
 356		break;
 357	default:
 358		return -EINVAL;
 359	}
 360
 361	ip_frag = be32_to_cpu(fs->m_ext.data[0]);
 
 
 
 
 
 
 362
 363	/* Locate the first rule available */
 364	if (fs->location == RX_CLS_LOC_ANY)
 365		rule_index = find_first_zero_bit(priv->cfp.used,
 366						 priv->num_cfp_rules);
 367	else
 368		rule_index = fs->location;
 369
 370	if (rule_index > bcm_sf2_cfp_rule_size(priv))
 371		return -ENOSPC;
 372
 373	input.fs = fs;
 374	flow = ethtool_rx_flow_rule_create(&input);
 375	if (IS_ERR(flow))
 376		return PTR_ERR(flow);
 377
 378	flow_rule_match_ipv4_addrs(flow->rule, &ipv4);
 379	flow_rule_match_ports(flow->rule, &ports);
 380	flow_rule_match_ip(flow->rule, &ip);
 381
 382	layout = &udf_tcpip4_layout;
 383	/* We only use one UDF slice for now */
 384	slice_num = bcm_sf2_get_slice_number(layout, 0);
 385	if (slice_num == UDF_NUM_SLICES) {
 386		ret = -EINVAL;
 387		goto out_err_flow_rule;
 388	}
 389
 390	num_udf = bcm_sf2_get_num_udf_slices(layout->udfs[slice_num].slices);
 391
 392	/* Apply the UDF layout for this filter */
 393	bcm_sf2_cfp_udf_set(priv, layout, slice_num);
 394
 395	/* Apply to all packets received through this port */
 396	core_writel(priv, BIT(port), CORE_CFP_DATA_PORT(7));
 397
 398	/* Source port map match */
 399	core_writel(priv, 0xff, CORE_CFP_MASK_PORT(7));
 400
 401	/* S-Tag status		[31:30]
 402	 * C-Tag status		[29:28]
 403	 * L2 framing		[27:26]
 404	 * L3 framing		[25:24]
 405	 * IP ToS		[23:16]
 406	 * IP proto		[15:08]
 407	 * IP Fragm		[7]
 408	 * Non 1st frag		[6]
 409	 * IP Authen		[5]
 410	 * TTL range		[4:3]
 411	 * PPPoE session	[2]
 412	 * Reserved		[1]
 413	 * UDF_Valid[8]		[0]
 414	 */
 415	core_writel(priv, ip.key->tos << IPTOS_SHIFT |
 416		    ip_proto << IPPROTO_SHIFT | ip_frag << IP_FRAG_SHIFT |
 417		    udf_upper_bits(num_udf),
 418		    CORE_CFP_DATA_PORT(6));
 419
 420	/* Mask with the specific layout for IPv4 packets */
 421	core_writel(priv, layout->udfs[slice_num].mask_value |
 422		    udf_upper_bits(num_udf), CORE_CFP_MASK_PORT(6));
 423
 424	/* UDF_Valid[7:0]	[31:24]
 425	 * S-Tag		[23:8]
 426	 * C-Tag		[7:0]
 427	 */
 428	core_writel(priv, udf_lower_bits(num_udf) << 24, CORE_CFP_DATA_PORT(5));
 429
 430	/* Mask all but valid UDFs */
 431	core_writel(priv, udf_lower_bits(num_udf) << 24, CORE_CFP_MASK_PORT(5));
 432
 433	/* Program the match and the mask */
 434	bcm_sf2_cfp_slice_ipv4(priv, ipv4.key, ports.key, slice_num, false);
 435	bcm_sf2_cfp_slice_ipv4(priv, ipv4.mask, ports.mask, SLICE_NUM_MASK, true);
 
 
 436
 437	/* Insert into TCAM now */
 438	bcm_sf2_cfp_rule_addr_set(priv, rule_index);
 439
 440	ret = bcm_sf2_cfp_op(priv, OP_SEL_WRITE | TCAM_SEL);
 441	if (ret) {
 442		pr_err("TCAM entry at addr %d failed\n", rule_index);
 443		goto out_err_flow_rule;
 444	}
 445
 446	/* Insert into Action and policer RAMs now */
 447	ret = bcm_sf2_cfp_act_pol_set(priv, rule_index, port, port_num,
 448				      queue_num, true);
 449	if (ret)
 450		goto out_err_flow_rule;
 451
 452	/* Turn on CFP for this rule now */
 453	reg = core_readl(priv, CORE_CFP_CTL_REG);
 454	reg |= BIT(port);
 455	core_writel(priv, reg, CORE_CFP_CTL_REG);
 456
 457	/* Flag the rule as being used and return it */
 458	set_bit(rule_index, priv->cfp.used);
 459	set_bit(rule_index, priv->cfp.unique);
 460	fs->location = rule_index;
 461
 462	return 0;
 463
 464out_err_flow_rule:
 465	ethtool_rx_flow_rule_destroy(flow);
 466	return ret;
 467}
 468
 469static void bcm_sf2_cfp_slice_ipv6(struct bcm_sf2_priv *priv,
 470				   const __be32 *ip6_addr, const __be16 port,
 471				   unsigned int slice_num,
 
 472				   bool mask)
 473{
 474	u32 reg, tmp, val, offset;
 475
 
 
 
 
 
 
 
 
 
 
 476	/* C-Tag		[31:24]
 477	 * UDF_n_B8		[23:8]	(port)
 478	 * UDF_n_B7 (upper)	[7:0]	(addr[15:8])
 479	 */
 480	reg = be32_to_cpu(ip6_addr[3]);
 481	val = (u32)be16_to_cpu(port) << 8 | ((reg >> 8) & 0xff);
 
 482	if (mask)
 483		offset = CORE_CFP_MASK_PORT(4);
 484	else
 485		offset = CORE_CFP_DATA_PORT(4);
 486	core_writel(priv, val, offset);
 487
 488	/* UDF_n_B7 (lower)	[31:24]	(addr[7:0])
 489	 * UDF_n_B6		[23:8] (addr[31:16])
 490	 * UDF_n_B5 (upper)	[7:0] (addr[47:40])
 491	 */
 492	tmp = be32_to_cpu(ip6_addr[2]);
 493	val = (u32)(reg & 0xff) << 24 | (u32)(reg >> 16) << 8 |
 494	      ((tmp >> 8) & 0xff);
 495	if (mask)
 496		offset = CORE_CFP_MASK_PORT(3);
 497	else
 498		offset = CORE_CFP_DATA_PORT(3);
 499	core_writel(priv, val, offset);
 500
 501	/* UDF_n_B5 (lower)	[31:24] (addr[39:32])
 502	 * UDF_n_B4		[23:8] (addr[63:48])
 503	 * UDF_n_B3 (upper)	[7:0] (addr[79:72])
 504	 */
 505	reg = be32_to_cpu(ip6_addr[1]);
 506	val = (u32)(tmp & 0xff) << 24 | (u32)(tmp >> 16) << 8 |
 507	      ((reg >> 8) & 0xff);
 508	if (mask)
 509		offset = CORE_CFP_MASK_PORT(2);
 510	else
 511		offset = CORE_CFP_DATA_PORT(2);
 512	core_writel(priv, val, offset);
 513
 514	/* UDF_n_B3 (lower)	[31:24] (addr[71:64])
 515	 * UDF_n_B2		[23:8] (addr[95:80])
 516	 * UDF_n_B1 (upper)	[7:0] (addr[111:104])
 517	 */
 518	tmp = be32_to_cpu(ip6_addr[0]);
 519	val = (u32)(reg & 0xff) << 24 | (u32)(reg >> 16) << 8 |
 520	      ((tmp >> 8) & 0xff);
 521	if (mask)
 522		offset = CORE_CFP_MASK_PORT(1);
 523	else
 524		offset = CORE_CFP_DATA_PORT(1);
 525	core_writel(priv, val, offset);
 526
 527	/* UDF_n_B1 (lower)	[31:24] (addr[103:96])
 528	 * UDF_n_B0		[23:8] (addr[127:112])
 529	 * Reserved		[7:4]
 530	 * Slice ID		[3:2]
 531	 * Slice valid		[1:0]
 532	 */
 533	reg = (u32)(tmp & 0xff) << 24 | (u32)(tmp >> 16) << 8 |
 534	       SLICE_NUM(slice_num) | SLICE_VALID;
 535	if (mask)
 536		offset = CORE_CFP_MASK_PORT(0);
 537	else
 538		offset = CORE_CFP_DATA_PORT(0);
 539	core_writel(priv, reg, offset);
 540}
 541
 542static struct cfp_rule *bcm_sf2_cfp_rule_find(struct bcm_sf2_priv *priv,
 543					      int port, u32 location)
 544{
 545	struct cfp_rule *rule = NULL;
 546
 547	list_for_each_entry(rule, &priv->cfp.rules_list, next) {
 548		if (rule->port == port && rule->fs.location == location)
 549			break;
 550	}
 551
 552	return rule;
 553}
 554
 555static int bcm_sf2_cfp_rule_cmp(struct bcm_sf2_priv *priv, int port,
 556				struct ethtool_rx_flow_spec *fs)
 557{
 558	struct cfp_rule *rule = NULL;
 559	size_t fs_size = 0;
 560	int ret = 1;
 561
 562	if (list_empty(&priv->cfp.rules_list))
 563		return ret;
 564
 565	list_for_each_entry(rule, &priv->cfp.rules_list, next) {
 566		ret = 1;
 567		if (rule->port != port)
 568			continue;
 569
 570		if (rule->fs.flow_type != fs->flow_type ||
 571		    rule->fs.ring_cookie != fs->ring_cookie ||
 572		    rule->fs.m_ext.data[0] != fs->m_ext.data[0])
 573			continue;
 574
 575		switch (fs->flow_type & ~FLOW_EXT) {
 576		case TCP_V6_FLOW:
 577		case UDP_V6_FLOW:
 578			fs_size = sizeof(struct ethtool_tcpip6_spec);
 579			break;
 580		case TCP_V4_FLOW:
 581		case UDP_V4_FLOW:
 582			fs_size = sizeof(struct ethtool_tcpip4_spec);
 583			break;
 584		default:
 585			continue;
 586		}
 587
 588		ret = memcmp(&rule->fs.h_u, &fs->h_u, fs_size);
 589		ret |= memcmp(&rule->fs.m_u, &fs->m_u, fs_size);
 
 
 
 
 
 590		if (ret == 0)
 591			break;
 592	}
 593
 594	return ret;
 595}
 596
 597static int bcm_sf2_cfp_ipv6_rule_set(struct bcm_sf2_priv *priv, int port,
 598				     unsigned int port_num,
 599				     unsigned int queue_num,
 600				     struct ethtool_rx_flow_spec *fs)
 601{
 
 602	struct ethtool_rx_flow_spec_input input = {};
 603	unsigned int slice_num, rule_index[2];
 604	const struct cfp_udf_layout *layout;
 605	struct ethtool_rx_flow_rule *flow;
 606	struct flow_match_ipv6_addrs ipv6;
 607	struct flow_match_ports ports;
 608	u8 ip_proto, ip_frag;
 609	int ret = 0;
 610	u8 num_udf;
 611	u32 reg;
 612
 613	switch (fs->flow_type & ~FLOW_EXT) {
 614	case TCP_V6_FLOW:
 615		ip_proto = IPPROTO_TCP;
 616		break;
 617	case UDP_V6_FLOW:
 618		ip_proto = IPPROTO_UDP;
 619		break;
 620	default:
 621		return -EINVAL;
 622	}
 623
 624	ip_frag = be32_to_cpu(fs->m_ext.data[0]);
 
 
 
 
 
 
 625
 626	layout = &udf_tcpip6_layout;
 627	slice_num = bcm_sf2_get_slice_number(layout, 0);
 628	if (slice_num == UDF_NUM_SLICES)
 629		return -EINVAL;
 630
 631	num_udf = bcm_sf2_get_num_udf_slices(layout->udfs[slice_num].slices);
 632
 633	/* Negotiate two indexes, one for the second half which we are chained
 634	 * from, which is what we will return to user-space, and a second one
 635	 * which is used to store its first half. That first half does not
 636	 * allow any choice of placement, so it just needs to find the next
 637	 * available bit. We return the second half as fs->location because
 638	 * that helps with the rule lookup later on since the second half is
 639	 * chained from its first half, we can easily identify IPv6 CFP rules
 640	 * by looking whether they carry a CHAIN_ID.
 641	 *
 642	 * We also want the second half to have a lower rule_index than its
 643	 * first half because the HW search is by incrementing addresses.
 644	 */
 645	if (fs->location == RX_CLS_LOC_ANY)
 646		rule_index[1] = find_first_zero_bit(priv->cfp.used,
 647						    priv->num_cfp_rules);
 648	else
 649		rule_index[1] = fs->location;
 650	if (rule_index[1] > bcm_sf2_cfp_rule_size(priv))
 651		return -ENOSPC;
 652
 653	/* Flag it as used (cleared on error path) such that we can immediately
 654	 * obtain a second one to chain from.
 655	 */
 656	set_bit(rule_index[1], priv->cfp.used);
 657
 658	rule_index[0] = find_first_zero_bit(priv->cfp.used,
 659					    priv->num_cfp_rules);
 660	if (rule_index[0] > bcm_sf2_cfp_rule_size(priv)) {
 661		ret = -ENOSPC;
 662		goto out_err;
 663	}
 664
 665	input.fs = fs;
 666	flow = ethtool_rx_flow_rule_create(&input);
 667	if (IS_ERR(flow)) {
 668		ret = PTR_ERR(flow);
 669		goto out_err;
 670	}
 671	flow_rule_match_ipv6_addrs(flow->rule, &ipv6);
 672	flow_rule_match_ports(flow->rule, &ports);
 673
 674	/* Apply the UDF layout for this filter */
 675	bcm_sf2_cfp_udf_set(priv, layout, slice_num);
 676
 677	/* Apply to all packets received through this port */
 678	core_writel(priv, BIT(port), CORE_CFP_DATA_PORT(7));
 679
 680	/* Source port map match */
 681	core_writel(priv, 0xff, CORE_CFP_MASK_PORT(7));
 682
 683	/* S-Tag status		[31:30]
 684	 * C-Tag status		[29:28]
 685	 * L2 framing		[27:26]
 686	 * L3 framing		[25:24]
 687	 * IP ToS		[23:16]
 688	 * IP proto		[15:08]
 689	 * IP Fragm		[7]
 690	 * Non 1st frag		[6]
 691	 * IP Authen		[5]
 692	 * TTL range		[4:3]
 693	 * PPPoE session	[2]
 694	 * Reserved		[1]
 695	 * UDF_Valid[8]		[0]
 696	 */
 697	reg = 1 << L3_FRAMING_SHIFT | ip_proto << IPPROTO_SHIFT |
 698		ip_frag << IP_FRAG_SHIFT | udf_upper_bits(num_udf);
 699	core_writel(priv, reg, CORE_CFP_DATA_PORT(6));
 700
 701	/* Mask with the specific layout for IPv6 packets including
 702	 * UDF_Valid[8]
 703	 */
 704	reg = layout->udfs[slice_num].mask_value | udf_upper_bits(num_udf);
 705	core_writel(priv, reg, CORE_CFP_MASK_PORT(6));
 706
 707	/* UDF_Valid[7:0]	[31:24]
 708	 * S-Tag		[23:8]
 709	 * C-Tag		[7:0]
 710	 */
 711	core_writel(priv, udf_lower_bits(num_udf) << 24, CORE_CFP_DATA_PORT(5));
 712
 713	/* Mask all but valid UDFs */
 714	core_writel(priv, udf_lower_bits(num_udf) << 24, CORE_CFP_MASK_PORT(5));
 715
 716	/* Slice the IPv6 source address and port */
 717	bcm_sf2_cfp_slice_ipv6(priv, ipv6.key->src.in6_u.u6_addr32,
 718			       ports.key->src, slice_num, false);
 
 719	bcm_sf2_cfp_slice_ipv6(priv, ipv6.mask->src.in6_u.u6_addr32,
 720			       ports.mask->src, SLICE_NUM_MASK, true);
 
 721
 722	/* Insert into TCAM now because we need to insert a second rule */
 723	bcm_sf2_cfp_rule_addr_set(priv, rule_index[0]);
 724
 725	ret = bcm_sf2_cfp_op(priv, OP_SEL_WRITE | TCAM_SEL);
 726	if (ret) {
 727		pr_err("TCAM entry at addr %d failed\n", rule_index[0]);
 728		goto out_err_flow_rule;
 729	}
 730
 731	/* Insert into Action and policer RAMs now */
 732	ret = bcm_sf2_cfp_act_pol_set(priv, rule_index[0], port, port_num,
 733				      queue_num, false);
 734	if (ret)
 735		goto out_err_flow_rule;
 736
 737	/* Now deal with the second slice to chain this rule */
 738	slice_num = bcm_sf2_get_slice_number(layout, slice_num + 1);
 739	if (slice_num == UDF_NUM_SLICES) {
 740		ret = -EINVAL;
 741		goto out_err_flow_rule;
 742	}
 743
 744	num_udf = bcm_sf2_get_num_udf_slices(layout->udfs[slice_num].slices);
 745
 746	/* Apply the UDF layout for this filter */
 747	bcm_sf2_cfp_udf_set(priv, layout, slice_num);
 748
 749	/* Chained rule, source port match is coming from the rule we are
 750	 * chained from.
 751	 */
 752	core_writel(priv, 0, CORE_CFP_DATA_PORT(7));
 753	core_writel(priv, 0, CORE_CFP_MASK_PORT(7));
 754
 755	/*
 756	 * CHAIN ID		[31:24] chain to previous slice
 757	 * Reserved		[23:20]
 758	 * UDF_Valid[11:8]	[19:16]
 759	 * UDF_Valid[7:0]	[15:8]
 760	 * UDF_n_D11		[7:0]
 761	 */
 762	reg = rule_index[0] << 24 | udf_upper_bits(num_udf) << 16 |
 763		udf_lower_bits(num_udf) << 8;
 764	core_writel(priv, reg, CORE_CFP_DATA_PORT(6));
 765
 766	/* Mask all except chain ID, UDF Valid[8] and UDF Valid[7:0] */
 767	reg = XCESS_ADDR_MASK << 24 | udf_upper_bits(num_udf) << 16 |
 768		udf_lower_bits(num_udf) << 8;
 769	core_writel(priv, reg, CORE_CFP_MASK_PORT(6));
 770
 771	/* Don't care */
 772	core_writel(priv, 0, CORE_CFP_DATA_PORT(5));
 773
 774	/* Mask all */
 775	core_writel(priv, 0, CORE_CFP_MASK_PORT(5));
 776
 777	bcm_sf2_cfp_slice_ipv6(priv, ipv6.key->dst.in6_u.u6_addr32,
 778			       ports.key->dst, slice_num, false);
 
 779	bcm_sf2_cfp_slice_ipv6(priv, ipv6.mask->dst.in6_u.u6_addr32,
 780			       ports.key->dst, SLICE_NUM_MASK, true);
 
 781
 782	/* Insert into TCAM now */
 783	bcm_sf2_cfp_rule_addr_set(priv, rule_index[1]);
 784
 785	ret = bcm_sf2_cfp_op(priv, OP_SEL_WRITE | TCAM_SEL);
 786	if (ret) {
 787		pr_err("TCAM entry at addr %d failed\n", rule_index[1]);
 788		goto out_err_flow_rule;
 789	}
 790
 791	/* Insert into Action and policer RAMs now, set chain ID to
 792	 * the one we are chained to
 793	 */
 794	ret = bcm_sf2_cfp_act_pol_set(priv, rule_index[1], port, port_num,
 795				      queue_num, true);
 796	if (ret)
 797		goto out_err_flow_rule;
 798
 799	/* Turn on CFP for this rule now */
 800	reg = core_readl(priv, CORE_CFP_CTL_REG);
 801	reg |= BIT(port);
 802	core_writel(priv, reg, CORE_CFP_CTL_REG);
 803
 804	/* Flag the second half rule as being used now, return it as the
 805	 * location, and flag it as unique while dumping rules
 806	 */
 807	set_bit(rule_index[0], priv->cfp.used);
 808	set_bit(rule_index[1], priv->cfp.unique);
 809	fs->location = rule_index[1];
 810
 811	return ret;
 812
 813out_err_flow_rule:
 814	ethtool_rx_flow_rule_destroy(flow);
 815out_err:
 816	clear_bit(rule_index[1], priv->cfp.used);
 817	return ret;
 818}
 819
 820static int bcm_sf2_cfp_rule_insert(struct dsa_switch *ds, int port,
 821				   struct ethtool_rx_flow_spec *fs)
 822{
 823	struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
 824	s8 cpu_port = ds->ports[port].cpu_dp->index;
 825	__u64 ring_cookie = fs->ring_cookie;
 
 826	unsigned int queue_num, port_num;
 
 827	int ret;
 828
 829	/* This rule is a Wake-on-LAN filter and we must specifically
 830	 * target the CPU port in order for it to be working.
 831	 */
 832	if (ring_cookie == RX_CLS_FLOW_WAKE)
 833		ring_cookie = cpu_port * SF2_NUM_EGRESS_QUEUES;
 834
 835	/* We do not support discarding packets, check that the
 836	 * destination port is enabled and that we are within the
 837	 * number of ports supported by the switch
 838	 */
 839	port_num = ring_cookie / SF2_NUM_EGRESS_QUEUES;
 840
 841	if (ring_cookie == RX_CLS_FLOW_DISC ||
 842	    !(dsa_is_user_port(ds, port_num) ||
 843	      dsa_is_cpu_port(ds, port_num)) ||
 844	    port_num >= priv->hw_params.num_ports)
 845		return -EINVAL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 846	/*
 847	 * We have a small oddity where Port 6 just does not have a
 848	 * valid bit here (so we substract by one).
 849	 */
 850	queue_num = ring_cookie % SF2_NUM_EGRESS_QUEUES;
 851	if (port_num >= 7)
 852		port_num -= 1;
 853
 854	switch (fs->flow_type & ~FLOW_EXT) {
 855	case TCP_V4_FLOW:
 856	case UDP_V4_FLOW:
 857		ret = bcm_sf2_cfp_ipv4_rule_set(priv, port, port_num,
 858						queue_num, fs);
 859		break;
 860	case TCP_V6_FLOW:
 861	case UDP_V6_FLOW:
 862		ret = bcm_sf2_cfp_ipv6_rule_set(priv, port, port_num,
 863						queue_num, fs);
 864		break;
 865	default:
 866		ret = -EINVAL;
 867		break;
 868	}
 869
 870	return ret;
 871}
 872
 873static int bcm_sf2_cfp_rule_set(struct dsa_switch *ds, int port,
 874				struct ethtool_rx_flow_spec *fs)
 875{
 876	struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
 877	struct cfp_rule *rule = NULL;
 878	int ret = -EINVAL;
 879
 880	/* Check for unsupported extensions */
 881	if ((fs->flow_type & FLOW_EXT) && (fs->m_ext.vlan_etype ||
 882	     fs->m_ext.data[1]))
 883		return -EINVAL;
 884
 885	if (fs->location != RX_CLS_LOC_ANY && fs->location >= CFP_NUM_RULES)
 
 886		return -EINVAL;
 887
 
 
 
 
 888	if (fs->location != RX_CLS_LOC_ANY &&
 889	    test_bit(fs->location, priv->cfp.used))
 890		return -EBUSY;
 891
 892	if (fs->location != RX_CLS_LOC_ANY &&
 893	    fs->location > bcm_sf2_cfp_rule_size(priv))
 894		return -EINVAL;
 895
 896	ret = bcm_sf2_cfp_rule_cmp(priv, port, fs);
 897	if (ret == 0)
 898		return -EEXIST;
 899
 900	rule = kzalloc(sizeof(*rule), GFP_KERNEL);
 901	if (!rule)
 902		return -ENOMEM;
 903
 904	ret = bcm_sf2_cfp_rule_insert(ds, port, fs);
 905	if (ret) {
 906		kfree(rule);
 907		return ret;
 908	}
 909
 910	rule->port = port;
 911	memcpy(&rule->fs, fs, sizeof(*fs));
 912	list_add_tail(&rule->next, &priv->cfp.rules_list);
 913
 914	return ret;
 915}
 916
 917static int bcm_sf2_cfp_rule_del_one(struct bcm_sf2_priv *priv, int port,
 918				    u32 loc, u32 *next_loc)
 919{
 920	int ret;
 921	u32 reg;
 922
 923	/* Indicate which rule we want to read */
 924	bcm_sf2_cfp_rule_addr_set(priv, loc);
 925
 926	ret =  bcm_sf2_cfp_op(priv, OP_SEL_READ | TCAM_SEL);
 927	if (ret)
 928		return ret;
 929
 930	/* Check if this is possibly an IPv6 rule that would
 931	 * indicate we need to delete its companion rule
 932	 * as well
 933	 */
 934	reg = core_readl(priv, CORE_CFP_DATA_PORT(6));
 935	if (next_loc)
 936		*next_loc = (reg >> 24) & CHAIN_ID_MASK;
 937
 938	/* Clear its valid bits */
 939	reg = core_readl(priv, CORE_CFP_DATA_PORT(0));
 940	reg &= ~SLICE_VALID;
 941	core_writel(priv, reg, CORE_CFP_DATA_PORT(0));
 942
 943	/* Write back this entry into the TCAM now */
 944	ret = bcm_sf2_cfp_op(priv, OP_SEL_WRITE | TCAM_SEL);
 945	if (ret)
 946		return ret;
 947
 948	clear_bit(loc, priv->cfp.used);
 949	clear_bit(loc, priv->cfp.unique);
 950
 951	return 0;
 952}
 953
 954static int bcm_sf2_cfp_rule_remove(struct bcm_sf2_priv *priv, int port,
 955				   u32 loc)
 956{
 957	u32 next_loc = 0;
 958	int ret;
 959
 960	ret = bcm_sf2_cfp_rule_del_one(priv, port, loc, &next_loc);
 961	if (ret)
 962		return ret;
 963
 964	/* If this was an IPv6 rule, delete is companion rule too */
 965	if (next_loc)
 966		ret = bcm_sf2_cfp_rule_del_one(priv, port, next_loc, NULL);
 967
 968	return ret;
 969}
 970
 971static int bcm_sf2_cfp_rule_del(struct bcm_sf2_priv *priv, int port, u32 loc)
 972{
 973	struct cfp_rule *rule;
 974	int ret;
 975
 976	if (loc >= CFP_NUM_RULES)
 977		return -EINVAL;
 978
 979	/* Refuse deleting unused rules, and those that are not unique since
 980	 * that could leave IPv6 rules with one of the chained rule in the
 981	 * table.
 982	 */
 983	if (!test_bit(loc, priv->cfp.unique) || loc == 0)
 984		return -EINVAL;
 985
 986	rule = bcm_sf2_cfp_rule_find(priv, port, loc);
 987	if (!rule)
 988		return -EINVAL;
 989
 990	ret = bcm_sf2_cfp_rule_remove(priv, port, loc);
 991
 992	list_del(&rule->next);
 993	kfree(rule);
 994
 995	return ret;
 996}
 997
 998static void bcm_sf2_invert_masks(struct ethtool_rx_flow_spec *flow)
 999{
1000	unsigned int i;
1001
1002	for (i = 0; i < sizeof(flow->m_u); i++)
1003		flow->m_u.hdata[i] ^= 0xff;
1004
1005	flow->m_ext.vlan_etype ^= cpu_to_be16(~0);
1006	flow->m_ext.vlan_tci ^= cpu_to_be16(~0);
1007	flow->m_ext.data[0] ^= cpu_to_be32(~0);
1008	flow->m_ext.data[1] ^= cpu_to_be32(~0);
1009}
1010
1011static int bcm_sf2_cfp_rule_get(struct bcm_sf2_priv *priv, int port,
1012				struct ethtool_rxnfc *nfc)
1013{
1014	struct cfp_rule *rule;
1015
1016	rule = bcm_sf2_cfp_rule_find(priv, port, nfc->fs.location);
1017	if (!rule)
1018		return -EINVAL;
1019
1020	memcpy(&nfc->fs, &rule->fs, sizeof(rule->fs));
1021
1022	bcm_sf2_invert_masks(&nfc->fs);
1023
1024	/* Put the TCAM size here */
1025	nfc->data = bcm_sf2_cfp_rule_size(priv);
1026
1027	return 0;
1028}
1029
1030/* We implement the search doing a TCAM search operation */
1031static int bcm_sf2_cfp_rule_get_all(struct bcm_sf2_priv *priv,
1032				    int port, struct ethtool_rxnfc *nfc,
1033				    u32 *rule_locs)
1034{
1035	unsigned int index = 1, rules_cnt = 0;
1036
1037	for_each_set_bit_from(index, priv->cfp.unique, priv->num_cfp_rules) {
1038		rule_locs[rules_cnt] = index;
1039		rules_cnt++;
1040	}
1041
1042	/* Put the TCAM size here */
1043	nfc->data = bcm_sf2_cfp_rule_size(priv);
1044	nfc->rule_cnt = rules_cnt;
1045
1046	return 0;
1047}
1048
1049int bcm_sf2_get_rxnfc(struct dsa_switch *ds, int port,
1050		      struct ethtool_rxnfc *nfc, u32 *rule_locs)
1051{
1052	struct net_device *p = ds->ports[port].cpu_dp->master;
1053	struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
1054	int ret = 0;
1055
1056	mutex_lock(&priv->cfp.lock);
1057
1058	switch (nfc->cmd) {
1059	case ETHTOOL_GRXCLSRLCNT:
1060		/* Subtract the default, unusable rule */
1061		nfc->rule_cnt = bitmap_weight(priv->cfp.unique,
1062					      priv->num_cfp_rules) - 1;
1063		/* We support specifying rule locations */
1064		nfc->data |= RX_CLS_LOC_SPECIAL;
1065		break;
1066	case ETHTOOL_GRXCLSRULE:
1067		ret = bcm_sf2_cfp_rule_get(priv, port, nfc);
1068		break;
1069	case ETHTOOL_GRXCLSRLALL:
1070		ret = bcm_sf2_cfp_rule_get_all(priv, port, nfc, rule_locs);
1071		break;
1072	default:
1073		ret = -EOPNOTSUPP;
1074		break;
1075	}
1076
1077	mutex_unlock(&priv->cfp.lock);
1078
1079	if (ret)
1080		return ret;
1081
1082	/* Pass up the commands to the attached master network device */
1083	if (p->ethtool_ops->get_rxnfc) {
1084		ret = p->ethtool_ops->get_rxnfc(p, nfc, rule_locs);
1085		if (ret == -EOPNOTSUPP)
1086			ret = 0;
1087	}
1088
1089	return ret;
1090}
1091
1092int bcm_sf2_set_rxnfc(struct dsa_switch *ds, int port,
1093		      struct ethtool_rxnfc *nfc)
1094{
1095	struct net_device *p = ds->ports[port].cpu_dp->master;
1096	struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
1097	int ret = 0;
1098
1099	mutex_lock(&priv->cfp.lock);
1100
1101	switch (nfc->cmd) {
1102	case ETHTOOL_SRXCLSRLINS:
1103		ret = bcm_sf2_cfp_rule_set(ds, port, &nfc->fs);
1104		break;
1105
1106	case ETHTOOL_SRXCLSRLDEL:
1107		ret = bcm_sf2_cfp_rule_del(priv, port, nfc->fs.location);
1108		break;
1109	default:
1110		ret = -EOPNOTSUPP;
1111		break;
1112	}
1113
1114	mutex_unlock(&priv->cfp.lock);
1115
1116	if (ret)
1117		return ret;
1118
1119	/* Pass up the commands to the attached master network device.
1120	 * This can fail, so rollback the operation if we need to.
1121	 */
1122	if (p->ethtool_ops->set_rxnfc) {
1123		ret = p->ethtool_ops->set_rxnfc(p, nfc);
1124		if (ret && ret != -EOPNOTSUPP) {
1125			mutex_lock(&priv->cfp.lock);
1126			bcm_sf2_cfp_rule_del(priv, port, nfc->fs.location);
1127			mutex_unlock(&priv->cfp.lock);
1128		} else {
1129			ret = 0;
1130		}
1131	}
1132
1133	return ret;
1134}
1135
1136int bcm_sf2_cfp_rst(struct bcm_sf2_priv *priv)
1137{
1138	unsigned int timeout = 1000;
1139	u32 reg;
1140
1141	reg = core_readl(priv, CORE_CFP_ACC);
1142	reg |= TCAM_RESET;
1143	core_writel(priv, reg, CORE_CFP_ACC);
1144
1145	do {
1146		reg = core_readl(priv, CORE_CFP_ACC);
1147		if (!(reg & TCAM_RESET))
1148			break;
1149
1150		cpu_relax();
1151	} while (timeout--);
1152
1153	if (!timeout)
1154		return -ETIMEDOUT;
1155
1156	return 0;
1157}
1158
1159void bcm_sf2_cfp_exit(struct dsa_switch *ds)
1160{
1161	struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
1162	struct cfp_rule *rule, *n;
1163
1164	if (list_empty(&priv->cfp.rules_list))
1165		return;
1166
1167	list_for_each_entry_safe_reverse(rule, n, &priv->cfp.rules_list, next)
1168		bcm_sf2_cfp_rule_del(priv, rule->port, rule->fs.location);
1169}
1170
1171int bcm_sf2_cfp_resume(struct dsa_switch *ds)
1172{
1173	struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
1174	struct cfp_rule *rule;
1175	int ret = 0;
1176	u32 reg;
1177
1178	if (list_empty(&priv->cfp.rules_list))
1179		return ret;
1180
1181	reg = core_readl(priv, CORE_CFP_CTL_REG);
1182	reg &= ~CFP_EN_MAP_MASK;
1183	core_writel(priv, reg, CORE_CFP_CTL_REG);
1184
1185	ret = bcm_sf2_cfp_rst(priv);
1186	if (ret)
1187		return ret;
1188
1189	list_for_each_entry(rule, &priv->cfp.rules_list, next) {
1190		ret = bcm_sf2_cfp_rule_remove(priv, rule->port,
1191					      rule->fs.location);
1192		if (ret) {
1193			dev_err(ds->dev, "failed to remove rule\n");
1194			return ret;
1195		}
1196
1197		ret = bcm_sf2_cfp_rule_insert(ds, rule->port, &rule->fs);
1198		if (ret) {
1199			dev_err(ds->dev, "failed to restore rule\n");
1200			return ret;
1201		}
1202	}
1203
1204	return ret;
1205}
1206
1207static const struct bcm_sf2_cfp_stat {
1208	unsigned int offset;
1209	unsigned int ram_loc;
1210	const char *name;
1211} bcm_sf2_cfp_stats[] = {
1212	{
1213		.offset = CORE_STAT_GREEN_CNTR,
1214		.ram_loc = GREEN_STAT_RAM,
1215		.name = "Green"
1216	},
1217	{
1218		.offset = CORE_STAT_YELLOW_CNTR,
1219		.ram_loc = YELLOW_STAT_RAM,
1220		.name = "Yellow"
1221	},
1222	{
1223		.offset = CORE_STAT_RED_CNTR,
1224		.ram_loc = RED_STAT_RAM,
1225		.name = "Red"
1226	},
1227};
1228
1229void bcm_sf2_cfp_get_strings(struct dsa_switch *ds, int port,
1230			     u32 stringset, uint8_t *data)
1231{
1232	struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
1233	unsigned int s = ARRAY_SIZE(bcm_sf2_cfp_stats);
1234	char buf[ETH_GSTRING_LEN];
1235	unsigned int i, j, iter;
1236
1237	if (stringset != ETH_SS_STATS)
1238		return;
1239
1240	for (i = 1; i < priv->num_cfp_rules; i++) {
1241		for (j = 0; j < s; j++) {
1242			snprintf(buf, sizeof(buf),
1243				 "CFP%03d_%sCntr",
1244				 i, bcm_sf2_cfp_stats[j].name);
1245			iter = (i - 1) * s + j;
1246			strlcpy(data + iter * ETH_GSTRING_LEN,
1247				buf, ETH_GSTRING_LEN);
1248		}
1249	}
1250}
1251
1252void bcm_sf2_cfp_get_ethtool_stats(struct dsa_switch *ds, int port,
1253				   uint64_t *data)
1254{
1255	struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
1256	unsigned int s = ARRAY_SIZE(bcm_sf2_cfp_stats);
1257	const struct bcm_sf2_cfp_stat *stat;
1258	unsigned int i, j, iter;
1259	struct cfp_rule *rule;
1260	int ret;
1261
1262	mutex_lock(&priv->cfp.lock);
1263	for (i = 1; i < priv->num_cfp_rules; i++) {
1264		rule = bcm_sf2_cfp_rule_find(priv, port, i);
1265		if (!rule)
1266			continue;
1267
1268		for (j = 0; j < s; j++) {
1269			stat = &bcm_sf2_cfp_stats[j];
1270
1271			bcm_sf2_cfp_rule_addr_set(priv, i);
1272			ret = bcm_sf2_cfp_op(priv, stat->ram_loc | OP_SEL_READ);
1273			if (ret)
1274				continue;
1275
1276			iter = (i - 1) * s + j;
1277			data[iter] = core_readl(priv, stat->offset);
1278		}
1279
1280	}
1281	mutex_unlock(&priv->cfp.lock);
1282}
1283
1284int bcm_sf2_cfp_get_sset_count(struct dsa_switch *ds, int port, int sset)
1285{
1286	struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
1287
1288	if (sset != ETH_SS_STATS)
1289		return 0;
1290
1291	/* 3 counters per CFP rules */
1292	return (priv->num_cfp_rules - 1) * ARRAY_SIZE(bcm_sf2_cfp_stats);
1293}