Linux Audio

Check our new training course

Loading...
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * Broadcom Starfighter 2 DSA switch CFP support
   4 *
   5 * Copyright (C) 2016, Broadcom
 
 
 
 
 
   6 */
   7
   8#include <linux/list.h>
   9#include <linux/ethtool.h>
  10#include <linux/if_ether.h>
  11#include <linux/in.h>
  12#include <linux/netdevice.h>
  13#include <net/dsa.h>
  14#include <linux/bitmap.h>
  15#include <net/flow_offload.h>
  16#include <net/switchdev.h>
  17#include <uapi/linux/if_bridge.h>
  18
  19#include "bcm_sf2.h"
  20#include "bcm_sf2_regs.h"
  21
  22struct cfp_rule {
  23	int port;
  24	struct ethtool_rx_flow_spec fs;
  25	struct list_head next;
  26};
  27
  28struct cfp_udf_slice_layout {
  29	u8 slices[UDFS_PER_SLICE];
  30	u32 mask_value;
  31	u32 base_offset;
  32};
  33
  34struct cfp_udf_layout {
  35	struct cfp_udf_slice_layout udfs[UDF_NUM_SLICES];
  36};
  37
  38static const u8 zero_slice[UDFS_PER_SLICE] = { };
  39
  40/* UDF slices layout for a TCPv4/UDPv4 specification */
  41static const struct cfp_udf_layout udf_tcpip4_layout = {
  42	.udfs = {
  43		[1] = {
  44			.slices = {
  45				/* End of L2, byte offset 12, src IP[0:15] */
  46				CFG_UDF_EOL2 | 6,
  47				/* End of L2, byte offset 14, src IP[16:31] */
  48				CFG_UDF_EOL2 | 7,
  49				/* End of L2, byte offset 16, dst IP[0:15] */
  50				CFG_UDF_EOL2 | 8,
  51				/* End of L2, byte offset 18, dst IP[16:31] */
  52				CFG_UDF_EOL2 | 9,
  53				/* End of L3, byte offset 0, src port */
  54				CFG_UDF_EOL3 | 0,
  55				/* End of L3, byte offset 2, dst port */
  56				CFG_UDF_EOL3 | 1,
  57				0, 0, 0
  58			},
  59			.mask_value = L3_FRAMING_MASK | IPPROTO_MASK | IP_FRAG,
  60			.base_offset = CORE_UDF_0_A_0_8_PORT_0 + UDF_SLICE_OFFSET,
  61		},
  62	},
  63};
  64
  65/* UDF slices layout for a TCPv6/UDPv6 specification */
  66static const struct cfp_udf_layout udf_tcpip6_layout = {
  67	.udfs = {
  68		[0] = {
  69			.slices = {
  70				/* End of L2, byte offset 8, src IP[0:15] */
  71				CFG_UDF_EOL2 | 4,
  72				/* End of L2, byte offset 10, src IP[16:31] */
  73				CFG_UDF_EOL2 | 5,
  74				/* End of L2, byte offset 12, src IP[32:47] */
  75				CFG_UDF_EOL2 | 6,
  76				/* End of L2, byte offset 14, src IP[48:63] */
  77				CFG_UDF_EOL2 | 7,
  78				/* End of L2, byte offset 16, src IP[64:79] */
  79				CFG_UDF_EOL2 | 8,
  80				/* End of L2, byte offset 18, src IP[80:95] */
  81				CFG_UDF_EOL2 | 9,
  82				/* End of L2, byte offset 20, src IP[96:111] */
  83				CFG_UDF_EOL2 | 10,
  84				/* End of L2, byte offset 22, src IP[112:127] */
  85				CFG_UDF_EOL2 | 11,
  86				/* End of L3, byte offset 0, src port */
  87				CFG_UDF_EOL3 | 0,
  88			},
  89			.mask_value = L3_FRAMING_MASK | IPPROTO_MASK | IP_FRAG,
  90			.base_offset = CORE_UDF_0_B_0_8_PORT_0,
  91		},
  92		[3] = {
  93			.slices = {
  94				/* End of L2, byte offset 24, dst IP[0:15] */
  95				CFG_UDF_EOL2 | 12,
  96				/* End of L2, byte offset 26, dst IP[16:31] */
  97				CFG_UDF_EOL2 | 13,
  98				/* End of L2, byte offset 28, dst IP[32:47] */
  99				CFG_UDF_EOL2 | 14,
 100				/* End of L2, byte offset 30, dst IP[48:63] */
 101				CFG_UDF_EOL2 | 15,
 102				/* End of L2, byte offset 32, dst IP[64:79] */
 103				CFG_UDF_EOL2 | 16,
 104				/* End of L2, byte offset 34, dst IP[80:95] */
 105				CFG_UDF_EOL2 | 17,
 106				/* End of L2, byte offset 36, dst IP[96:111] */
 107				CFG_UDF_EOL2 | 18,
 108				/* End of L2, byte offset 38, dst IP[112:127] */
 109				CFG_UDF_EOL2 | 19,
 110				/* End of L3, byte offset 2, dst port */
 111				CFG_UDF_EOL3 | 1,
 112			},
 113			.mask_value = L3_FRAMING_MASK | IPPROTO_MASK | IP_FRAG,
 114			.base_offset = CORE_UDF_0_D_0_11_PORT_0,
 115		},
 116	},
 117};
 118
 119static inline unsigned int bcm_sf2_get_num_udf_slices(const u8 *layout)
 120{
 121	unsigned int i, count = 0;
 122
 123	for (i = 0; i < UDFS_PER_SLICE; i++) {
 124		if (layout[i] != 0)
 125			count++;
 126	}
 127
 128	return count;
 129}
 130
 131static inline u32 udf_upper_bits(int num_udf)
 132{
 133	return GENMASK(num_udf - 1, 0) >> (UDFS_PER_SLICE - 1);
 134}
 135
 136static inline u32 udf_lower_bits(int num_udf)
 137{
 138	return (u8)GENMASK(num_udf - 1, 0);
 139}
 140
 141static unsigned int bcm_sf2_get_slice_number(const struct cfp_udf_layout *l,
 142					     unsigned int start)
 143{
 144	const struct cfp_udf_slice_layout *slice_layout;
 145	unsigned int slice_idx;
 146
 147	for (slice_idx = start; slice_idx < UDF_NUM_SLICES; slice_idx++) {
 148		slice_layout = &l->udfs[slice_idx];
 149		if (memcmp(slice_layout->slices, zero_slice,
 150			   sizeof(zero_slice)))
 151			break;
 152	}
 153
 154	return slice_idx;
 155}
 156
 157static void bcm_sf2_cfp_udf_set(struct bcm_sf2_priv *priv,
 158				const struct cfp_udf_layout *layout,
 159				unsigned int slice_num)
 160{
 161	u32 offset = layout->udfs[slice_num].base_offset;
 162	unsigned int i;
 163
 164	for (i = 0; i < UDFS_PER_SLICE; i++)
 165		core_writel(priv, layout->udfs[slice_num].slices[i],
 166			    offset + i * 4);
 167}
 168
 169static int bcm_sf2_cfp_op(struct bcm_sf2_priv *priv, unsigned int op)
 170{
 171	unsigned int timeout = 1000;
 172	u32 reg;
 173
 174	reg = core_readl(priv, CORE_CFP_ACC);
 175	reg &= ~(OP_SEL_MASK | RAM_SEL_MASK);
 176	reg |= OP_STR_DONE | op;
 177	core_writel(priv, reg, CORE_CFP_ACC);
 178
 179	do {
 180		reg = core_readl(priv, CORE_CFP_ACC);
 181		if (!(reg & OP_STR_DONE))
 182			break;
 183
 184		cpu_relax();
 185	} while (timeout--);
 186
 187	if (!timeout)
 188		return -ETIMEDOUT;
 189
 190	return 0;
 191}
 192
 193static inline void bcm_sf2_cfp_rule_addr_set(struct bcm_sf2_priv *priv,
 194					     unsigned int addr)
 195{
 196	u32 reg;
 197
 198	WARN_ON(addr >= priv->num_cfp_rules);
 199
 200	reg = core_readl(priv, CORE_CFP_ACC);
 201	reg &= ~(XCESS_ADDR_MASK << XCESS_ADDR_SHIFT);
 202	reg |= addr << XCESS_ADDR_SHIFT;
 203	core_writel(priv, reg, CORE_CFP_ACC);
 204}
 205
 206static inline unsigned int bcm_sf2_cfp_rule_size(struct bcm_sf2_priv *priv)
 207{
 208	/* Entry #0 is reserved */
 209	return priv->num_cfp_rules - 1;
 210}
 211
 212static int bcm_sf2_cfp_act_pol_set(struct bcm_sf2_priv *priv,
 213				   unsigned int rule_index,
 214				   int src_port,
 215				   unsigned int port_num,
 216				   unsigned int queue_num,
 217				   bool fwd_map_change)
 218{
 219	int ret;
 220	u32 reg;
 221
 222	/* Replace ARL derived destination with DST_MAP derived, define
 223	 * which port and queue this should be forwarded to.
 224	 */
 225	if (fwd_map_change)
 226		reg = CHANGE_FWRD_MAP_IB_REP_ARL |
 227		      BIT(port_num + DST_MAP_IB_SHIFT) |
 228		      CHANGE_TC | queue_num << NEW_TC_SHIFT;
 229	else
 230		reg = 0;
 231
 232	/* Enable looping back to the original port */
 233	if (src_port == port_num)
 234		reg |= LOOP_BK_EN;
 235
 236	core_writel(priv, reg, CORE_ACT_POL_DATA0);
 237
 238	/* Set classification ID that needs to be put in Broadcom tag */
 239	core_writel(priv, rule_index << CHAIN_ID_SHIFT, CORE_ACT_POL_DATA1);
 240
 241	core_writel(priv, 0, CORE_ACT_POL_DATA2);
 242
 243	/* Configure policer RAM now */
 244	ret = bcm_sf2_cfp_op(priv, OP_SEL_WRITE | ACT_POL_RAM);
 245	if (ret) {
 246		pr_err("Policer entry at %d failed\n", rule_index);
 247		return ret;
 248	}
 249
 250	/* Disable the policer */
 251	core_writel(priv, POLICER_MODE_DISABLE, CORE_RATE_METER0);
 252
 253	/* Now the rate meter */
 254	ret = bcm_sf2_cfp_op(priv, OP_SEL_WRITE | RATE_METER_RAM);
 255	if (ret) {
 256		pr_err("Meter entry at %d failed\n", rule_index);
 257		return ret;
 258	}
 259
 260	return 0;
 261}
 262
 263static void bcm_sf2_cfp_slice_ipv4(struct bcm_sf2_priv *priv,
 264				   struct flow_dissector_key_ipv4_addrs *addrs,
 265				   struct flow_dissector_key_ports *ports,
 266				   const __be16 vlan_tci,
 267				   unsigned int slice_num, u8 num_udf,
 268				   bool mask)
 269{
 270	u32 reg, offset;
 271
 272	/* UDF_Valid[7:0]	[31:24]
 273	 * S-Tag		[23:8]
 274	 * C-Tag		[7:0]
 275	 */
 276	reg = udf_lower_bits(num_udf) << 24 | be16_to_cpu(vlan_tci) >> 8;
 277	if (mask)
 278		core_writel(priv, reg, CORE_CFP_MASK_PORT(5));
 279	else
 280		core_writel(priv, reg, CORE_CFP_DATA_PORT(5));
 281
 282	/* C-Tag		[31:24]
 283	 * UDF_n_A8		[23:8]
 284	 * UDF_n_A7		[7:0]
 285	 */
 286	reg = (u32)(be16_to_cpu(vlan_tci) & 0xff) << 24;
 287	if (mask)
 288		offset = CORE_CFP_MASK_PORT(4);
 289	else
 290		offset = CORE_CFP_DATA_PORT(4);
 291	core_writel(priv, reg, offset);
 292
 293	/* UDF_n_A7		[31:24]
 294	 * UDF_n_A6		[23:8]
 295	 * UDF_n_A5		[7:0]
 296	 */
 297	reg = be16_to_cpu(ports->dst) >> 8;
 298	if (mask)
 299		offset = CORE_CFP_MASK_PORT(3);
 300	else
 301		offset = CORE_CFP_DATA_PORT(3);
 302	core_writel(priv, reg, offset);
 303
 304	/* UDF_n_A5		[31:24]
 305	 * UDF_n_A4		[23:8]
 306	 * UDF_n_A3		[7:0]
 307	 */
 308	reg = (be16_to_cpu(ports->dst) & 0xff) << 24 |
 309	      (u32)be16_to_cpu(ports->src) << 8 |
 310	      (be32_to_cpu(addrs->dst) & 0x0000ff00) >> 8;
 311	if (mask)
 312		offset = CORE_CFP_MASK_PORT(2);
 313	else
 314		offset = CORE_CFP_DATA_PORT(2);
 315	core_writel(priv, reg, offset);
 316
 317	/* UDF_n_A3		[31:24]
 318	 * UDF_n_A2		[23:8]
 319	 * UDF_n_A1		[7:0]
 320	 */
 321	reg = (u32)(be32_to_cpu(addrs->dst) & 0xff) << 24 |
 322	      (u32)(be32_to_cpu(addrs->dst) >> 16) << 8 |
 323	      (be32_to_cpu(addrs->src) & 0x0000ff00) >> 8;
 324	if (mask)
 325		offset = CORE_CFP_MASK_PORT(1);
 326	else
 327		offset = CORE_CFP_DATA_PORT(1);
 328	core_writel(priv, reg, offset);
 329
 330	/* UDF_n_A1		[31:24]
 331	 * UDF_n_A0		[23:8]
 332	 * Reserved		[7:4]
 333	 * Slice ID		[3:2]
 334	 * Slice valid		[1:0]
 335	 */
 336	reg = (u32)(be32_to_cpu(addrs->src) & 0xff) << 24 |
 337	      (u32)(be32_to_cpu(addrs->src) >> 16) << 8 |
 338	      SLICE_NUM(slice_num) | SLICE_VALID;
 339	if (mask)
 340		offset = CORE_CFP_MASK_PORT(0);
 341	else
 342		offset = CORE_CFP_DATA_PORT(0);
 343	core_writel(priv, reg, offset);
 344}
 345
 346static int bcm_sf2_cfp_ipv4_rule_set(struct bcm_sf2_priv *priv, int port,
 347				     unsigned int port_num,
 348				     unsigned int queue_num,
 349				     struct ethtool_rx_flow_spec *fs)
 350{
 351	__be16 vlan_tci = 0, vlan_m_tci = htons(0xffff);
 352	struct ethtool_rx_flow_spec_input input = {};
 353	const struct cfp_udf_layout *layout;
 354	unsigned int slice_num, rule_index;
 355	struct ethtool_rx_flow_rule *flow;
 356	struct flow_match_ipv4_addrs ipv4;
 357	struct flow_match_ports ports;
 358	struct flow_match_ip ip;
 359	u8 ip_proto, ip_frag;
 360	u8 num_udf;
 361	u32 reg;
 362	int ret;
 363
 364	switch (fs->flow_type & ~FLOW_EXT) {
 365	case TCP_V4_FLOW:
 366		ip_proto = IPPROTO_TCP;
 
 
 367		break;
 368	case UDP_V4_FLOW:
 369		ip_proto = IPPROTO_UDP;
 
 
 370		break;
 371	default:
 372		return -EINVAL;
 373	}
 374
 375	ip_frag = !!(be32_to_cpu(fs->h_ext.data[0]) & 1);
 376
 377	/* Extract VLAN TCI */
 378	if (fs->flow_type & FLOW_EXT) {
 379		vlan_tci = fs->h_ext.vlan_tci;
 380		vlan_m_tci = fs->m_ext.vlan_tci;
 381	}
 382
 383	/* Locate the first rule available */
 384	if (fs->location == RX_CLS_LOC_ANY)
 385		rule_index = find_first_zero_bit(priv->cfp.used,
 386						 priv->num_cfp_rules);
 387	else
 388		rule_index = fs->location;
 389
 390	if (rule_index > bcm_sf2_cfp_rule_size(priv))
 391		return -ENOSPC;
 392
 393	input.fs = fs;
 394	flow = ethtool_rx_flow_rule_create(&input);
 395	if (IS_ERR(flow))
 396		return PTR_ERR(flow);
 397
 398	flow_rule_match_ipv4_addrs(flow->rule, &ipv4);
 399	flow_rule_match_ports(flow->rule, &ports);
 400	flow_rule_match_ip(flow->rule, &ip);
 401
 402	layout = &udf_tcpip4_layout;
 403	/* We only use one UDF slice for now */
 404	slice_num = bcm_sf2_get_slice_number(layout, 0);
 405	if (slice_num == UDF_NUM_SLICES) {
 406		ret = -EINVAL;
 407		goto out_err_flow_rule;
 408	}
 409
 410	num_udf = bcm_sf2_get_num_udf_slices(layout->udfs[slice_num].slices);
 411
 412	/* Apply the UDF layout for this filter */
 413	bcm_sf2_cfp_udf_set(priv, layout, slice_num);
 414
 415	/* Apply to all packets received through this port */
 416	core_writel(priv, BIT(port), CORE_CFP_DATA_PORT(7));
 417
 418	/* Source port map match */
 419	core_writel(priv, 0xff, CORE_CFP_MASK_PORT(7));
 420
 421	/* S-Tag status		[31:30]
 422	 * C-Tag status		[29:28]
 423	 * L2 framing		[27:26]
 424	 * L3 framing		[25:24]
 425	 * IP ToS		[23:16]
 426	 * IP proto		[15:08]
 427	 * IP Fragm		[7]
 428	 * Non 1st frag		[6]
 429	 * IP Authen		[5]
 430	 * TTL range		[4:3]
 431	 * PPPoE session	[2]
 432	 * Reserved		[1]
 433	 * UDF_Valid[8]		[0]
 434	 */
 435	core_writel(priv, ip.key->tos << IPTOS_SHIFT |
 436		    ip_proto << IPPROTO_SHIFT | ip_frag << IP_FRAG_SHIFT |
 437		    udf_upper_bits(num_udf),
 438		    CORE_CFP_DATA_PORT(6));
 439
 440	/* Mask with the specific layout for IPv4 packets */
 441	core_writel(priv, layout->udfs[slice_num].mask_value |
 442		    udf_upper_bits(num_udf), CORE_CFP_MASK_PORT(6));
 443
 
 
 
 
 
 
 
 
 
 444	/* Program the match and the mask */
 445	bcm_sf2_cfp_slice_ipv4(priv, ipv4.key, ports.key, vlan_tci,
 446			       slice_num, num_udf, false);
 447	bcm_sf2_cfp_slice_ipv4(priv, ipv4.mask, ports.mask, vlan_m_tci,
 448			       SLICE_NUM_MASK, num_udf, true);
 449
 450	/* Insert into TCAM now */
 451	bcm_sf2_cfp_rule_addr_set(priv, rule_index);
 452
 453	ret = bcm_sf2_cfp_op(priv, OP_SEL_WRITE | TCAM_SEL);
 454	if (ret) {
 455		pr_err("TCAM entry at addr %d failed\n", rule_index);
 456		goto out_err_flow_rule;
 457	}
 458
 459	/* Insert into Action and policer RAMs now */
 460	ret = bcm_sf2_cfp_act_pol_set(priv, rule_index, port, port_num,
 461				      queue_num, true);
 462	if (ret)
 463		goto out_err_flow_rule;
 464
 465	/* Turn on CFP for this rule now */
 466	reg = core_readl(priv, CORE_CFP_CTL_REG);
 467	reg |= BIT(port);
 468	core_writel(priv, reg, CORE_CFP_CTL_REG);
 469
 470	/* Flag the rule as being used and return it */
 471	set_bit(rule_index, priv->cfp.used);
 472	set_bit(rule_index, priv->cfp.unique);
 473	fs->location = rule_index;
 474
 475	return 0;
 476
 477out_err_flow_rule:
 478	ethtool_rx_flow_rule_destroy(flow);
 479	return ret;
 480}
 481
 482static void bcm_sf2_cfp_slice_ipv6(struct bcm_sf2_priv *priv,
 483				   const __be32 *ip6_addr, const __be16 port,
 484				   const __be16 vlan_tci,
 485				   unsigned int slice_num, u32 udf_bits,
 486				   bool mask)
 487{
 488	u32 reg, tmp, val, offset;
 489
 490	/* UDF_Valid[7:0]	[31:24]
 491	 * S-Tag		[23:8]
 492	 * C-Tag		[7:0]
 493	 */
 494	reg = udf_bits << 24 | be16_to_cpu(vlan_tci) >> 8;
 495	if (mask)
 496		core_writel(priv, reg, CORE_CFP_MASK_PORT(5));
 497	else
 498		core_writel(priv, reg, CORE_CFP_DATA_PORT(5));
 499
 500	/* C-Tag		[31:24]
 501	 * UDF_n_B8		[23:8]	(port)
 502	 * UDF_n_B7 (upper)	[7:0]	(addr[15:8])
 503	 */
 504	reg = be32_to_cpu(ip6_addr[3]);
 505	val = (u32)be16_to_cpu(port) << 8 | ((reg >> 8) & 0xff);
 506	val |= (u32)(be16_to_cpu(vlan_tci) & 0xff) << 24;
 507	if (mask)
 508		offset = CORE_CFP_MASK_PORT(4);
 509	else
 510		offset = CORE_CFP_DATA_PORT(4);
 511	core_writel(priv, val, offset);
 512
 513	/* UDF_n_B7 (lower)	[31:24]	(addr[7:0])
 514	 * UDF_n_B6		[23:8] (addr[31:16])
 515	 * UDF_n_B5 (upper)	[7:0] (addr[47:40])
 516	 */
 517	tmp = be32_to_cpu(ip6_addr[2]);
 518	val = (u32)(reg & 0xff) << 24 | (u32)(reg >> 16) << 8 |
 519	      ((tmp >> 8) & 0xff);
 520	if (mask)
 521		offset = CORE_CFP_MASK_PORT(3);
 522	else
 523		offset = CORE_CFP_DATA_PORT(3);
 524	core_writel(priv, val, offset);
 525
 526	/* UDF_n_B5 (lower)	[31:24] (addr[39:32])
 527	 * UDF_n_B4		[23:8] (addr[63:48])
 528	 * UDF_n_B3 (upper)	[7:0] (addr[79:72])
 529	 */
 530	reg = be32_to_cpu(ip6_addr[1]);
 531	val = (u32)(tmp & 0xff) << 24 | (u32)(tmp >> 16) << 8 |
 532	      ((reg >> 8) & 0xff);
 533	if (mask)
 534		offset = CORE_CFP_MASK_PORT(2);
 535	else
 536		offset = CORE_CFP_DATA_PORT(2);
 537	core_writel(priv, val, offset);
 538
 539	/* UDF_n_B3 (lower)	[31:24] (addr[71:64])
 540	 * UDF_n_B2		[23:8] (addr[95:80])
 541	 * UDF_n_B1 (upper)	[7:0] (addr[111:104])
 542	 */
 543	tmp = be32_to_cpu(ip6_addr[0]);
 544	val = (u32)(reg & 0xff) << 24 | (u32)(reg >> 16) << 8 |
 545	      ((tmp >> 8) & 0xff);
 546	if (mask)
 547		offset = CORE_CFP_MASK_PORT(1);
 548	else
 549		offset = CORE_CFP_DATA_PORT(1);
 550	core_writel(priv, val, offset);
 551
 552	/* UDF_n_B1 (lower)	[31:24] (addr[103:96])
 553	 * UDF_n_B0		[23:8] (addr[127:112])
 554	 * Reserved		[7:4]
 555	 * Slice ID		[3:2]
 556	 * Slice valid		[1:0]
 557	 */
 558	reg = (u32)(tmp & 0xff) << 24 | (u32)(tmp >> 16) << 8 |
 559	       SLICE_NUM(slice_num) | SLICE_VALID;
 560	if (mask)
 561		offset = CORE_CFP_MASK_PORT(0);
 562	else
 563		offset = CORE_CFP_DATA_PORT(0);
 564	core_writel(priv, reg, offset);
 565}
 566
 567static struct cfp_rule *bcm_sf2_cfp_rule_find(struct bcm_sf2_priv *priv,
 568					      int port, u32 location)
 569{
 570	struct cfp_rule *rule;
 571
 572	list_for_each_entry(rule, &priv->cfp.rules_list, next) {
 573		if (rule->port == port && rule->fs.location == location)
 574			return rule;
 575	}
 576
 577	return NULL;
 578}
 579
 580static int bcm_sf2_cfp_rule_cmp(struct bcm_sf2_priv *priv, int port,
 581				struct ethtool_rx_flow_spec *fs)
 582{
 583	struct cfp_rule *rule = NULL;
 584	size_t fs_size = 0;
 585	int ret = 1;
 586
 587	if (list_empty(&priv->cfp.rules_list))
 588		return ret;
 589
 590	list_for_each_entry(rule, &priv->cfp.rules_list, next) {
 591		ret = 1;
 592		if (rule->port != port)
 593			continue;
 594
 595		if (rule->fs.flow_type != fs->flow_type ||
 596		    rule->fs.ring_cookie != fs->ring_cookie ||
 597		    rule->fs.h_ext.data[0] != fs->h_ext.data[0])
 598			continue;
 599
 600		switch (fs->flow_type & ~FLOW_EXT) {
 601		case TCP_V6_FLOW:
 602		case UDP_V6_FLOW:
 603			fs_size = sizeof(struct ethtool_tcpip6_spec);
 604			break;
 605		case TCP_V4_FLOW:
 606		case UDP_V4_FLOW:
 607			fs_size = sizeof(struct ethtool_tcpip4_spec);
 608			break;
 609		default:
 610			continue;
 611		}
 612
 613		ret = memcmp(&rule->fs.h_u, &fs->h_u, fs_size);
 614		ret |= memcmp(&rule->fs.m_u, &fs->m_u, fs_size);
 615		/* Compare VLAN TCI values as well */
 616		if (rule->fs.flow_type & FLOW_EXT) {
 617			ret |= rule->fs.h_ext.vlan_tci != fs->h_ext.vlan_tci;
 618			ret |= rule->fs.m_ext.vlan_tci != fs->m_ext.vlan_tci;
 619		}
 620		if (ret == 0)
 621			break;
 622	}
 623
 624	return ret;
 625}
 626
 627static int bcm_sf2_cfp_ipv6_rule_set(struct bcm_sf2_priv *priv, int port,
 628				     unsigned int port_num,
 629				     unsigned int queue_num,
 630				     struct ethtool_rx_flow_spec *fs)
 631{
 632	__be16 vlan_tci = 0, vlan_m_tci = htons(0xffff);
 633	struct ethtool_rx_flow_spec_input input = {};
 634	unsigned int slice_num, rule_index[2];
 635	const struct cfp_udf_layout *layout;
 636	struct ethtool_rx_flow_rule *flow;
 637	struct flow_match_ipv6_addrs ipv6;
 638	struct flow_match_ports ports;
 639	u8 ip_proto, ip_frag;
 640	int ret = 0;
 641	u8 num_udf;
 642	u32 reg;
 643
 644	switch (fs->flow_type & ~FLOW_EXT) {
 645	case TCP_V6_FLOW:
 646		ip_proto = IPPROTO_TCP;
 
 
 647		break;
 648	case UDP_V6_FLOW:
 649		ip_proto = IPPROTO_UDP;
 
 
 650		break;
 651	default:
 652		return -EINVAL;
 653	}
 654
 655	ip_frag = !!(be32_to_cpu(fs->h_ext.data[0]) & 1);
 656
 657	/* Extract VLAN TCI */
 658	if (fs->flow_type & FLOW_EXT) {
 659		vlan_tci = fs->h_ext.vlan_tci;
 660		vlan_m_tci = fs->m_ext.vlan_tci;
 661	}
 662
 663	layout = &udf_tcpip6_layout;
 664	slice_num = bcm_sf2_get_slice_number(layout, 0);
 665	if (slice_num == UDF_NUM_SLICES)
 666		return -EINVAL;
 667
 668	num_udf = bcm_sf2_get_num_udf_slices(layout->udfs[slice_num].slices);
 669
 670	/* Negotiate two indexes, one for the second half which we are chained
 671	 * from, which is what we will return to user-space, and a second one
 672	 * which is used to store its first half. That first half does not
 673	 * allow any choice of placement, so it just needs to find the next
 674	 * available bit. We return the second half as fs->location because
 675	 * that helps with the rule lookup later on since the second half is
 676	 * chained from its first half, we can easily identify IPv6 CFP rules
 677	 * by looking whether they carry a CHAIN_ID.
 678	 *
 679	 * We also want the second half to have a lower rule_index than its
 680	 * first half because the HW search is by incrementing addresses.
 681	 */
 682	if (fs->location == RX_CLS_LOC_ANY)
 683		rule_index[1] = find_first_zero_bit(priv->cfp.used,
 684						    priv->num_cfp_rules);
 685	else
 686		rule_index[1] = fs->location;
 687	if (rule_index[1] > bcm_sf2_cfp_rule_size(priv))
 688		return -ENOSPC;
 689
 690	/* Flag it as used (cleared on error path) such that we can immediately
 691	 * obtain a second one to chain from.
 692	 */
 693	set_bit(rule_index[1], priv->cfp.used);
 694
 695	rule_index[0] = find_first_zero_bit(priv->cfp.used,
 696					    priv->num_cfp_rules);
 697	if (rule_index[0] > bcm_sf2_cfp_rule_size(priv)) {
 698		ret = -ENOSPC;
 699		goto out_err;
 700	}
 701
 702	input.fs = fs;
 703	flow = ethtool_rx_flow_rule_create(&input);
 704	if (IS_ERR(flow)) {
 705		ret = PTR_ERR(flow);
 706		goto out_err;
 707	}
 708	flow_rule_match_ipv6_addrs(flow->rule, &ipv6);
 709	flow_rule_match_ports(flow->rule, &ports);
 710
 711	/* Apply the UDF layout for this filter */
 712	bcm_sf2_cfp_udf_set(priv, layout, slice_num);
 713
 714	/* Apply to all packets received through this port */
 715	core_writel(priv, BIT(port), CORE_CFP_DATA_PORT(7));
 716
 717	/* Source port map match */
 718	core_writel(priv, 0xff, CORE_CFP_MASK_PORT(7));
 719
 720	/* S-Tag status		[31:30]
 721	 * C-Tag status		[29:28]
 722	 * L2 framing		[27:26]
 723	 * L3 framing		[25:24]
 724	 * IP ToS		[23:16]
 725	 * IP proto		[15:08]
 726	 * IP Fragm		[7]
 727	 * Non 1st frag		[6]
 728	 * IP Authen		[5]
 729	 * TTL range		[4:3]
 730	 * PPPoE session	[2]
 731	 * Reserved		[1]
 732	 * UDF_Valid[8]		[0]
 733	 */
 734	reg = 1 << L3_FRAMING_SHIFT | ip_proto << IPPROTO_SHIFT |
 735		ip_frag << IP_FRAG_SHIFT | udf_upper_bits(num_udf);
 736	core_writel(priv, reg, CORE_CFP_DATA_PORT(6));
 737
 738	/* Mask with the specific layout for IPv6 packets including
 739	 * UDF_Valid[8]
 740	 */
 741	reg = layout->udfs[slice_num].mask_value | udf_upper_bits(num_udf);
 742	core_writel(priv, reg, CORE_CFP_MASK_PORT(6));
 743
 
 
 
 
 
 
 
 
 
 744	/* Slice the IPv6 source address and port */
 745	bcm_sf2_cfp_slice_ipv6(priv, ipv6.key->src.in6_u.u6_addr32,
 746			       ports.key->src, vlan_tci, slice_num,
 747			       udf_lower_bits(num_udf), false);
 748	bcm_sf2_cfp_slice_ipv6(priv, ipv6.mask->src.in6_u.u6_addr32,
 749			       ports.mask->src, vlan_m_tci, SLICE_NUM_MASK,
 750			       udf_lower_bits(num_udf), true);
 751
 752	/* Insert into TCAM now because we need to insert a second rule */
 753	bcm_sf2_cfp_rule_addr_set(priv, rule_index[0]);
 754
 755	ret = bcm_sf2_cfp_op(priv, OP_SEL_WRITE | TCAM_SEL);
 756	if (ret) {
 757		pr_err("TCAM entry at addr %d failed\n", rule_index[0]);
 758		goto out_err_flow_rule;
 759	}
 760
 761	/* Insert into Action and policer RAMs now */
 762	ret = bcm_sf2_cfp_act_pol_set(priv, rule_index[0], port, port_num,
 763				      queue_num, false);
 764	if (ret)
 765		goto out_err_flow_rule;
 766
 767	/* Now deal with the second slice to chain this rule */
 768	slice_num = bcm_sf2_get_slice_number(layout, slice_num + 1);
 769	if (slice_num == UDF_NUM_SLICES) {
 770		ret = -EINVAL;
 771		goto out_err_flow_rule;
 772	}
 773
 774	num_udf = bcm_sf2_get_num_udf_slices(layout->udfs[slice_num].slices);
 775
 776	/* Apply the UDF layout for this filter */
 777	bcm_sf2_cfp_udf_set(priv, layout, slice_num);
 778
 779	/* Chained rule, source port match is coming from the rule we are
 780	 * chained from.
 781	 */
 782	core_writel(priv, 0, CORE_CFP_DATA_PORT(7));
 783	core_writel(priv, 0, CORE_CFP_MASK_PORT(7));
 784
 785	/*
 786	 * CHAIN ID		[31:24] chain to previous slice
 787	 * Reserved		[23:20]
 788	 * UDF_Valid[11:8]	[19:16]
 789	 * UDF_Valid[7:0]	[15:8]
 790	 * UDF_n_D11		[7:0]
 791	 */
 792	reg = rule_index[0] << 24 | udf_upper_bits(num_udf) << 16 |
 793		udf_lower_bits(num_udf) << 8;
 794	core_writel(priv, reg, CORE_CFP_DATA_PORT(6));
 795
 796	/* Mask all except chain ID, UDF Valid[8] and UDF Valid[7:0] */
 797	reg = XCESS_ADDR_MASK << 24 | udf_upper_bits(num_udf) << 16 |
 798		udf_lower_bits(num_udf) << 8;
 799	core_writel(priv, reg, CORE_CFP_MASK_PORT(6));
 800
 801	bcm_sf2_cfp_slice_ipv6(priv, ipv6.key->dst.in6_u.u6_addr32,
 802			       ports.key->dst, 0, slice_num,
 803			       0, false);
 804	bcm_sf2_cfp_slice_ipv6(priv, ipv6.mask->dst.in6_u.u6_addr32,
 805			       ports.key->dst, 0, SLICE_NUM_MASK,
 806			       0, true);
 
 
 
 
 807
 808	/* Insert into TCAM now */
 809	bcm_sf2_cfp_rule_addr_set(priv, rule_index[1]);
 810
 811	ret = bcm_sf2_cfp_op(priv, OP_SEL_WRITE | TCAM_SEL);
 812	if (ret) {
 813		pr_err("TCAM entry at addr %d failed\n", rule_index[1]);
 814		goto out_err_flow_rule;
 815	}
 816
 817	/* Insert into Action and policer RAMs now, set chain ID to
 818	 * the one we are chained to
 819	 */
 820	ret = bcm_sf2_cfp_act_pol_set(priv, rule_index[1], port, port_num,
 821				      queue_num, true);
 822	if (ret)
 823		goto out_err_flow_rule;
 824
 825	/* Turn on CFP for this rule now */
 826	reg = core_readl(priv, CORE_CFP_CTL_REG);
 827	reg |= BIT(port);
 828	core_writel(priv, reg, CORE_CFP_CTL_REG);
 829
 830	/* Flag the second half rule as being used now, return it as the
 831	 * location, and flag it as unique while dumping rules
 832	 */
 833	set_bit(rule_index[0], priv->cfp.used);
 834	set_bit(rule_index[1], priv->cfp.unique);
 835	fs->location = rule_index[1];
 836
 837	return ret;
 838
 839out_err_flow_rule:
 840	ethtool_rx_flow_rule_destroy(flow);
 841out_err:
 842	clear_bit(rule_index[1], priv->cfp.used);
 843	return ret;
 844}
 845
 846static int bcm_sf2_cfp_rule_insert(struct dsa_switch *ds, int port,
 847				   struct ethtool_rx_flow_spec *fs)
 848{
 849	struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
 850	s8 cpu_port = dsa_to_port(ds, port)->cpu_dp->index;
 851	__u64 ring_cookie = fs->ring_cookie;
 852	struct switchdev_obj_port_vlan vlan;
 853	unsigned int queue_num, port_num;
 854	u16 vid;
 855	int ret;
 856
 857	/* This rule is a Wake-on-LAN filter and we must specifically
 858	 * target the CPU port in order for it to be working.
 859	 */
 860	if (ring_cookie == RX_CLS_FLOW_WAKE)
 861		ring_cookie = cpu_port * SF2_NUM_EGRESS_QUEUES;
 
 
 
 
 
 
 
 862
 863	/* We do not support discarding packets, check that the
 864	 * destination port is enabled and that we are within the
 865	 * number of ports supported by the switch
 866	 */
 867	port_num = ring_cookie / SF2_NUM_EGRESS_QUEUES;
 868
 869	if (ring_cookie == RX_CLS_FLOW_DISC ||
 870	    !(dsa_is_user_port(ds, port_num) ||
 871	      dsa_is_cpu_port(ds, port_num)) ||
 872	    port_num >= priv->hw_params.num_ports)
 873		return -EINVAL;
 874
 875	/* If the rule is matching a particular VLAN, make sure that we honor
 876	 * the matching and have it tagged or untagged on the destination port,
 877	 * we do this on egress with a VLAN entry. The egress tagging attribute
 878	 * is expected to be provided in h_ext.data[1] bit 0. A 1 means untagged,
 879	 * a 0 means tagged.
 880	 */
 881	if (fs->flow_type & FLOW_EXT) {
 882		/* We cannot support matching multiple VLAN IDs yet */
 883		if ((be16_to_cpu(fs->m_ext.vlan_tci) & VLAN_VID_MASK) !=
 884		    VLAN_VID_MASK)
 885			return -EINVAL;
 886
 887		vid = be16_to_cpu(fs->h_ext.vlan_tci) & VLAN_VID_MASK;
 888		vlan.vid = vid;
 889		if (be32_to_cpu(fs->h_ext.data[1]) & 1)
 890			vlan.flags = BRIDGE_VLAN_INFO_UNTAGGED;
 891		else
 892			vlan.flags = 0;
 893
 894		ret = ds->ops->port_vlan_add(ds, port_num, &vlan, NULL);
 895		if (ret)
 896			return ret;
 897	}
 898
 899	/*
 900	 * We have a small oddity where Port 6 just does not have a
 901	 * valid bit here (so we substract by one).
 902	 */
 903	queue_num = ring_cookie % SF2_NUM_EGRESS_QUEUES;
 904	if (port_num >= 7)
 905		port_num -= 1;
 906
 907	switch (fs->flow_type & ~FLOW_EXT) {
 908	case TCP_V4_FLOW:
 909	case UDP_V4_FLOW:
 910		ret = bcm_sf2_cfp_ipv4_rule_set(priv, port, port_num,
 911						queue_num, fs);
 912		break;
 913	case TCP_V6_FLOW:
 914	case UDP_V6_FLOW:
 915		ret = bcm_sf2_cfp_ipv6_rule_set(priv, port, port_num,
 916						queue_num, fs);
 917		break;
 918	default:
 919		ret = -EINVAL;
 920		break;
 921	}
 922
 923	return ret;
 924}
 925
 926static int bcm_sf2_cfp_rule_set(struct dsa_switch *ds, int port,
 927				struct ethtool_rx_flow_spec *fs)
 928{
 929	struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
 930	struct cfp_rule *rule = NULL;
 931	int ret = -EINVAL;
 932
 933	/* Check for unsupported extensions */
 934	if (fs->flow_type & FLOW_MAC_EXT)
 935		return -EINVAL;
 936
 937	if (fs->location != RX_CLS_LOC_ANY &&
 938	    fs->location > bcm_sf2_cfp_rule_size(priv))
 939		return -EINVAL;
 940
 941	if ((fs->flow_type & FLOW_EXT) &&
 942	    !(ds->ops->port_vlan_add || ds->ops->port_vlan_del))
 943		return -EOPNOTSUPP;
 944
 945	if (fs->location != RX_CLS_LOC_ANY &&
 946	    test_bit(fs->location, priv->cfp.used))
 947		return -EBUSY;
 948
 949	ret = bcm_sf2_cfp_rule_cmp(priv, port, fs);
 950	if (ret == 0)
 951		return -EEXIST;
 952
 953	rule = kzalloc(sizeof(*rule), GFP_KERNEL);
 954	if (!rule)
 955		return -ENOMEM;
 956
 957	ret = bcm_sf2_cfp_rule_insert(ds, port, fs);
 958	if (ret) {
 959		kfree(rule);
 960		return ret;
 961	}
 962
 963	rule->port = port;
 964	memcpy(&rule->fs, fs, sizeof(*fs));
 965	list_add_tail(&rule->next, &priv->cfp.rules_list);
 966
 967	return ret;
 968}
 969
 970static int bcm_sf2_cfp_rule_del_one(struct bcm_sf2_priv *priv, int port,
 971				    u32 loc, u32 *next_loc)
 972{
 973	int ret;
 974	u32 reg;
 975
 976	/* Indicate which rule we want to read */
 977	bcm_sf2_cfp_rule_addr_set(priv, loc);
 978
 979	ret =  bcm_sf2_cfp_op(priv, OP_SEL_READ | TCAM_SEL);
 980	if (ret)
 981		return ret;
 982
 983	/* Check if this is possibly an IPv6 rule that would
 984	 * indicate we need to delete its companion rule
 985	 * as well
 986	 */
 987	reg = core_readl(priv, CORE_CFP_DATA_PORT(6));
 988	if (next_loc)
 989		*next_loc = (reg >> 24) & CHAIN_ID_MASK;
 990
 991	/* Clear its valid bits */
 992	reg = core_readl(priv, CORE_CFP_DATA_PORT(0));
 993	reg &= ~SLICE_VALID;
 994	core_writel(priv, reg, CORE_CFP_DATA_PORT(0));
 995
 996	/* Write back this entry into the TCAM now */
 997	ret = bcm_sf2_cfp_op(priv, OP_SEL_WRITE | TCAM_SEL);
 998	if (ret)
 999		return ret;
1000
1001	clear_bit(loc, priv->cfp.used);
1002	clear_bit(loc, priv->cfp.unique);
1003
1004	return 0;
1005}
1006
1007static int bcm_sf2_cfp_rule_remove(struct bcm_sf2_priv *priv, int port,
1008				   u32 loc)
1009{
1010	u32 next_loc = 0;
1011	int ret;
1012
 
 
 
 
 
 
 
1013	ret = bcm_sf2_cfp_rule_del_one(priv, port, loc, &next_loc);
1014	if (ret)
1015		return ret;
1016
1017	/* If this was an IPv6 rule, delete is companion rule too */
1018	if (next_loc)
1019		ret = bcm_sf2_cfp_rule_del_one(priv, port, next_loc, NULL);
1020
1021	return ret;
1022}
1023
1024static int bcm_sf2_cfp_rule_del(struct bcm_sf2_priv *priv, int port, u32 loc)
1025{
1026	struct cfp_rule *rule;
1027	int ret;
1028
1029	if (loc > bcm_sf2_cfp_rule_size(priv))
1030		return -EINVAL;
1031
1032	/* Refuse deleting unused rules, and those that are not unique since
1033	 * that could leave IPv6 rules with one of the chained rule in the
1034	 * table.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1035	 */
1036	if (!test_bit(loc, priv->cfp.unique) || loc == 0)
1037		return -EINVAL;
1038
1039	rule = bcm_sf2_cfp_rule_find(priv, port, loc);
1040	if (!rule)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1041		return -EINVAL;
 
1042
1043	ret = bcm_sf2_cfp_rule_remove(priv, port, loc);
 
1044
1045	list_del(&rule->next);
1046	kfree(rule);
 
1047
1048	return ret;
1049}
1050
1051static void bcm_sf2_invert_masks(struct ethtool_rx_flow_spec *flow)
 
 
1052{
1053	unsigned int i;
1054
1055	for (i = 0; i < sizeof(flow->m_u); i++)
1056		flow->m_u.hdata[i] ^= 0xff;
 
 
 
 
 
 
 
 
 
1057
1058	flow->m_ext.vlan_etype ^= cpu_to_be16(~0);
1059	flow->m_ext.vlan_tci ^= cpu_to_be16(~0);
1060	flow->m_ext.data[0] ^= cpu_to_be32(~0);
1061	flow->m_ext.data[1] ^= cpu_to_be32(~0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1062}
1063
1064static int bcm_sf2_cfp_rule_get(struct bcm_sf2_priv *priv, int port,
1065				struct ethtool_rxnfc *nfc)
1066{
1067	struct cfp_rule *rule;
 
 
1068
1069	rule = bcm_sf2_cfp_rule_find(priv, port, nfc->fs.location);
1070	if (!rule)
1071		return -EINVAL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1072
1073	memcpy(&nfc->fs, &rule->fs, sizeof(rule->fs));
 
 
 
 
 
1074
1075	bcm_sf2_invert_masks(&nfc->fs);
1076
1077	/* Put the TCAM size here */
1078	nfc->data = bcm_sf2_cfp_rule_size(priv);
1079
1080	return 0;
1081}
1082
1083/* We implement the search doing a TCAM search operation */
1084static int bcm_sf2_cfp_rule_get_all(struct bcm_sf2_priv *priv,
1085				    int port, struct ethtool_rxnfc *nfc,
1086				    u32 *rule_locs)
1087{
1088	unsigned int index = 1, rules_cnt = 0;
1089
1090	for_each_set_bit_from(index, priv->cfp.unique, priv->num_cfp_rules) {
1091		rule_locs[rules_cnt] = index;
1092		rules_cnt++;
1093	}
1094
1095	/* Put the TCAM size here */
1096	nfc->data = bcm_sf2_cfp_rule_size(priv);
1097	nfc->rule_cnt = rules_cnt;
1098
1099	return 0;
1100}
1101
1102int bcm_sf2_get_rxnfc(struct dsa_switch *ds, int port,
1103		      struct ethtool_rxnfc *nfc, u32 *rule_locs)
1104{
1105	struct net_device *p = dsa_port_to_conduit(dsa_to_port(ds, port));
1106	struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
1107	int ret = 0;
1108
1109	mutex_lock(&priv->cfp.lock);
1110
1111	switch (nfc->cmd) {
1112	case ETHTOOL_GRXCLSRLCNT:
1113		/* Subtract the default, unusable rule */
1114		nfc->rule_cnt = bitmap_weight(priv->cfp.unique,
1115					      priv->num_cfp_rules) - 1;
1116		/* We support specifying rule locations */
1117		nfc->data |= RX_CLS_LOC_SPECIAL;
1118		break;
1119	case ETHTOOL_GRXCLSRULE:
1120		ret = bcm_sf2_cfp_rule_get(priv, port, nfc);
1121		break;
1122	case ETHTOOL_GRXCLSRLALL:
1123		ret = bcm_sf2_cfp_rule_get_all(priv, port, nfc, rule_locs);
1124		break;
1125	default:
1126		ret = -EOPNOTSUPP;
1127		break;
1128	}
1129
1130	mutex_unlock(&priv->cfp.lock);
1131
1132	if (ret)
1133		return ret;
1134
1135	/* Pass up the commands to the attached master network device */
1136	if (p->ethtool_ops->get_rxnfc) {
1137		ret = p->ethtool_ops->get_rxnfc(p, nfc, rule_locs);
1138		if (ret == -EOPNOTSUPP)
1139			ret = 0;
1140	}
1141
1142	return ret;
1143}
1144
1145int bcm_sf2_set_rxnfc(struct dsa_switch *ds, int port,
1146		      struct ethtool_rxnfc *nfc)
1147{
1148	struct net_device *p = dsa_port_to_conduit(dsa_to_port(ds, port));
1149	struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
1150	int ret = 0;
1151
1152	mutex_lock(&priv->cfp.lock);
1153
1154	switch (nfc->cmd) {
1155	case ETHTOOL_SRXCLSRLINS:
1156		ret = bcm_sf2_cfp_rule_set(ds, port, &nfc->fs);
1157		break;
1158
1159	case ETHTOOL_SRXCLSRLDEL:
1160		ret = bcm_sf2_cfp_rule_del(priv, port, nfc->fs.location);
1161		break;
1162	default:
1163		ret = -EOPNOTSUPP;
1164		break;
1165	}
1166
1167	mutex_unlock(&priv->cfp.lock);
1168
1169	if (ret)
1170		return ret;
1171
1172	/* Pass up the commands to the attached master network device.
1173	 * This can fail, so rollback the operation if we need to.
1174	 */
1175	if (p->ethtool_ops->set_rxnfc) {
1176		ret = p->ethtool_ops->set_rxnfc(p, nfc);
1177		if (ret && ret != -EOPNOTSUPP) {
1178			mutex_lock(&priv->cfp.lock);
1179			bcm_sf2_cfp_rule_del(priv, port, nfc->fs.location);
1180			mutex_unlock(&priv->cfp.lock);
1181		} else {
1182			ret = 0;
1183		}
1184	}
1185
1186	return ret;
1187}
1188
1189int bcm_sf2_cfp_rst(struct bcm_sf2_priv *priv)
1190{
1191	unsigned int timeout = 1000;
1192	u32 reg;
1193
1194	reg = core_readl(priv, CORE_CFP_ACC);
1195	reg |= TCAM_RESET;
1196	core_writel(priv, reg, CORE_CFP_ACC);
1197
1198	do {
1199		reg = core_readl(priv, CORE_CFP_ACC);
1200		if (!(reg & TCAM_RESET))
1201			break;
1202
1203		cpu_relax();
1204	} while (timeout--);
1205
1206	if (!timeout)
1207		return -ETIMEDOUT;
1208
1209	return 0;
1210}
1211
1212void bcm_sf2_cfp_exit(struct dsa_switch *ds)
1213{
1214	struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
1215	struct cfp_rule *rule, *n;
1216
1217	if (list_empty(&priv->cfp.rules_list))
1218		return;
1219
1220	list_for_each_entry_safe_reverse(rule, n, &priv->cfp.rules_list, next)
1221		bcm_sf2_cfp_rule_del(priv, rule->port, rule->fs.location);
1222}
1223
1224int bcm_sf2_cfp_resume(struct dsa_switch *ds)
1225{
1226	struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
1227	struct cfp_rule *rule;
1228	int ret = 0;
1229	u32 reg;
1230
1231	if (list_empty(&priv->cfp.rules_list))
1232		return ret;
1233
1234	reg = core_readl(priv, CORE_CFP_CTL_REG);
1235	reg &= ~CFP_EN_MAP_MASK;
1236	core_writel(priv, reg, CORE_CFP_CTL_REG);
1237
1238	ret = bcm_sf2_cfp_rst(priv);
1239	if (ret)
1240		return ret;
1241
1242	list_for_each_entry(rule, &priv->cfp.rules_list, next) {
1243		ret = bcm_sf2_cfp_rule_remove(priv, rule->port,
1244					      rule->fs.location);
1245		if (ret) {
1246			dev_err(ds->dev, "failed to remove rule\n");
1247			return ret;
1248		}
1249
1250		ret = bcm_sf2_cfp_rule_insert(ds, rule->port, &rule->fs);
1251		if (ret) {
1252			dev_err(ds->dev, "failed to restore rule\n");
1253			return ret;
1254		}
1255	}
1256
1257	return ret;
1258}
1259
1260static const struct bcm_sf2_cfp_stat {
1261	unsigned int offset;
1262	unsigned int ram_loc;
1263	const char *name;
1264} bcm_sf2_cfp_stats[] = {
1265	{
1266		.offset = CORE_STAT_GREEN_CNTR,
1267		.ram_loc = GREEN_STAT_RAM,
1268		.name = "Green"
1269	},
1270	{
1271		.offset = CORE_STAT_YELLOW_CNTR,
1272		.ram_loc = YELLOW_STAT_RAM,
1273		.name = "Yellow"
1274	},
1275	{
1276		.offset = CORE_STAT_RED_CNTR,
1277		.ram_loc = RED_STAT_RAM,
1278		.name = "Red"
1279	},
1280};
1281
1282void bcm_sf2_cfp_get_strings(struct dsa_switch *ds, int port, u32 stringset,
1283			     uint8_t **data)
1284{
1285	struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
1286	unsigned int i, j;
1287
1288	if (stringset != ETH_SS_STATS)
1289		return;
1290
1291	for (i = 1; i < priv->num_cfp_rules; i++)
1292		for (j = 0; j < ARRAY_SIZE(bcm_sf2_cfp_stats); j++)
1293			ethtool_sprintf(data, "CFP%03d_%sCntr", i,
1294					bcm_sf2_cfp_stats[j].name);
1295}
1296
1297void bcm_sf2_cfp_get_ethtool_stats(struct dsa_switch *ds, int port,
1298				   uint64_t *data)
1299{
1300	struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
1301	unsigned int s = ARRAY_SIZE(bcm_sf2_cfp_stats);
1302	const struct bcm_sf2_cfp_stat *stat;
1303	unsigned int i, j, iter;
1304	struct cfp_rule *rule;
1305	int ret;
1306
1307	mutex_lock(&priv->cfp.lock);
1308	for (i = 1; i < priv->num_cfp_rules; i++) {
1309		rule = bcm_sf2_cfp_rule_find(priv, port, i);
1310		if (!rule)
1311			continue;
1312
1313		for (j = 0; j < s; j++) {
1314			stat = &bcm_sf2_cfp_stats[j];
1315
1316			bcm_sf2_cfp_rule_addr_set(priv, i);
1317			ret = bcm_sf2_cfp_op(priv, stat->ram_loc | OP_SEL_READ);
1318			if (ret)
1319				continue;
1320
1321			iter = (i - 1) * s + j;
1322			data[iter] = core_readl(priv, stat->offset);
1323		}
1324
1325	}
1326	mutex_unlock(&priv->cfp.lock);
1327}
1328
1329int bcm_sf2_cfp_get_sset_count(struct dsa_switch *ds, int port, int sset)
1330{
1331	struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
1332
1333	if (sset != ETH_SS_STATS)
1334		return 0;
1335
1336	/* 3 counters per CFP rules */
1337	return (priv->num_cfp_rules - 1) * ARRAY_SIZE(bcm_sf2_cfp_stats);
1338}
v4.17
 
   1/*
   2 * Broadcom Starfighter 2 DSA switch CFP support
   3 *
   4 * Copyright (C) 2016, Broadcom
   5 *
   6 * This program is free software; you can redistribute it and/or modify
   7 * it under the terms of the GNU General Public License as published by
   8 * the Free Software Foundation; either version 2 of the License, or
   9 * (at your option) any later version.
  10 */
  11
  12#include <linux/list.h>
  13#include <linux/ethtool.h>
  14#include <linux/if_ether.h>
  15#include <linux/in.h>
  16#include <linux/netdevice.h>
  17#include <net/dsa.h>
  18#include <linux/bitmap.h>
 
 
 
  19
  20#include "bcm_sf2.h"
  21#include "bcm_sf2_regs.h"
  22
 
 
 
 
 
 
  23struct cfp_udf_slice_layout {
  24	u8 slices[UDFS_PER_SLICE];
  25	u32 mask_value;
  26	u32 base_offset;
  27};
  28
  29struct cfp_udf_layout {
  30	struct cfp_udf_slice_layout udfs[UDF_NUM_SLICES];
  31};
  32
  33static const u8 zero_slice[UDFS_PER_SLICE] = { };
  34
  35/* UDF slices layout for a TCPv4/UDPv4 specification */
  36static const struct cfp_udf_layout udf_tcpip4_layout = {
  37	.udfs = {
  38		[1] = {
  39			.slices = {
  40				/* End of L2, byte offset 12, src IP[0:15] */
  41				CFG_UDF_EOL2 | 6,
  42				/* End of L2, byte offset 14, src IP[16:31] */
  43				CFG_UDF_EOL2 | 7,
  44				/* End of L2, byte offset 16, dst IP[0:15] */
  45				CFG_UDF_EOL2 | 8,
  46				/* End of L2, byte offset 18, dst IP[16:31] */
  47				CFG_UDF_EOL2 | 9,
  48				/* End of L3, byte offset 0, src port */
  49				CFG_UDF_EOL3 | 0,
  50				/* End of L3, byte offset 2, dst port */
  51				CFG_UDF_EOL3 | 1,
  52				0, 0, 0
  53			},
  54			.mask_value = L3_FRAMING_MASK | IPPROTO_MASK | IP_FRAG,
  55			.base_offset = CORE_UDF_0_A_0_8_PORT_0 + UDF_SLICE_OFFSET,
  56		},
  57	},
  58};
  59
  60/* UDF slices layout for a TCPv6/UDPv6 specification */
  61static const struct cfp_udf_layout udf_tcpip6_layout = {
  62	.udfs = {
  63		[0] = {
  64			.slices = {
  65				/* End of L2, byte offset 8, src IP[0:15] */
  66				CFG_UDF_EOL2 | 4,
  67				/* End of L2, byte offset 10, src IP[16:31] */
  68				CFG_UDF_EOL2 | 5,
  69				/* End of L2, byte offset 12, src IP[32:47] */
  70				CFG_UDF_EOL2 | 6,
  71				/* End of L2, byte offset 14, src IP[48:63] */
  72				CFG_UDF_EOL2 | 7,
  73				/* End of L2, byte offset 16, src IP[64:79] */
  74				CFG_UDF_EOL2 | 8,
  75				/* End of L2, byte offset 18, src IP[80:95] */
  76				CFG_UDF_EOL2 | 9,
  77				/* End of L2, byte offset 20, src IP[96:111] */
  78				CFG_UDF_EOL2 | 10,
  79				/* End of L2, byte offset 22, src IP[112:127] */
  80				CFG_UDF_EOL2 | 11,
  81				/* End of L3, byte offset 0, src port */
  82				CFG_UDF_EOL3 | 0,
  83			},
  84			.mask_value = L3_FRAMING_MASK | IPPROTO_MASK | IP_FRAG,
  85			.base_offset = CORE_UDF_0_B_0_8_PORT_0,
  86		},
  87		[3] = {
  88			.slices = {
  89				/* End of L2, byte offset 24, dst IP[0:15] */
  90				CFG_UDF_EOL2 | 12,
  91				/* End of L2, byte offset 26, dst IP[16:31] */
  92				CFG_UDF_EOL2 | 13,
  93				/* End of L2, byte offset 28, dst IP[32:47] */
  94				CFG_UDF_EOL2 | 14,
  95				/* End of L2, byte offset 30, dst IP[48:63] */
  96				CFG_UDF_EOL2 | 15,
  97				/* End of L2, byte offset 32, dst IP[64:79] */
  98				CFG_UDF_EOL2 | 16,
  99				/* End of L2, byte offset 34, dst IP[80:95] */
 100				CFG_UDF_EOL2 | 17,
 101				/* End of L2, byte offset 36, dst IP[96:111] */
 102				CFG_UDF_EOL2 | 18,
 103				/* End of L2, byte offset 38, dst IP[112:127] */
 104				CFG_UDF_EOL2 | 19,
 105				/* End of L3, byte offset 2, dst port */
 106				CFG_UDF_EOL3 | 1,
 107			},
 108			.mask_value = L3_FRAMING_MASK | IPPROTO_MASK | IP_FRAG,
 109			.base_offset = CORE_UDF_0_D_0_11_PORT_0,
 110		},
 111	},
 112};
 113
 114static inline unsigned int bcm_sf2_get_num_udf_slices(const u8 *layout)
 115{
 116	unsigned int i, count = 0;
 117
 118	for (i = 0; i < UDFS_PER_SLICE; i++) {
 119		if (layout[i] != 0)
 120			count++;
 121	}
 122
 123	return count;
 124}
 125
 126static inline u32 udf_upper_bits(unsigned int num_udf)
 127{
 128	return GENMASK(num_udf - 1, 0) >> (UDFS_PER_SLICE - 1);
 129}
 130
 131static inline u32 udf_lower_bits(unsigned int num_udf)
 132{
 133	return (u8)GENMASK(num_udf - 1, 0);
 134}
 135
 136static unsigned int bcm_sf2_get_slice_number(const struct cfp_udf_layout *l,
 137					     unsigned int start)
 138{
 139	const struct cfp_udf_slice_layout *slice_layout;
 140	unsigned int slice_idx;
 141
 142	for (slice_idx = start; slice_idx < UDF_NUM_SLICES; slice_idx++) {
 143		slice_layout = &l->udfs[slice_idx];
 144		if (memcmp(slice_layout->slices, zero_slice,
 145			   sizeof(zero_slice)))
 146			break;
 147	}
 148
 149	return slice_idx;
 150}
 151
 152static void bcm_sf2_cfp_udf_set(struct bcm_sf2_priv *priv,
 153				const struct cfp_udf_layout *layout,
 154				unsigned int slice_num)
 155{
 156	u32 offset = layout->udfs[slice_num].base_offset;
 157	unsigned int i;
 158
 159	for (i = 0; i < UDFS_PER_SLICE; i++)
 160		core_writel(priv, layout->udfs[slice_num].slices[i],
 161			    offset + i * 4);
 162}
 163
 164static int bcm_sf2_cfp_op(struct bcm_sf2_priv *priv, unsigned int op)
 165{
 166	unsigned int timeout = 1000;
 167	u32 reg;
 168
 169	reg = core_readl(priv, CORE_CFP_ACC);
 170	reg &= ~(OP_SEL_MASK | RAM_SEL_MASK);
 171	reg |= OP_STR_DONE | op;
 172	core_writel(priv, reg, CORE_CFP_ACC);
 173
 174	do {
 175		reg = core_readl(priv, CORE_CFP_ACC);
 176		if (!(reg & OP_STR_DONE))
 177			break;
 178
 179		cpu_relax();
 180	} while (timeout--);
 181
 182	if (!timeout)
 183		return -ETIMEDOUT;
 184
 185	return 0;
 186}
 187
 188static inline void bcm_sf2_cfp_rule_addr_set(struct bcm_sf2_priv *priv,
 189					     unsigned int addr)
 190{
 191	u32 reg;
 192
 193	WARN_ON(addr >= priv->num_cfp_rules);
 194
 195	reg = core_readl(priv, CORE_CFP_ACC);
 196	reg &= ~(XCESS_ADDR_MASK << XCESS_ADDR_SHIFT);
 197	reg |= addr << XCESS_ADDR_SHIFT;
 198	core_writel(priv, reg, CORE_CFP_ACC);
 199}
 200
 201static inline unsigned int bcm_sf2_cfp_rule_size(struct bcm_sf2_priv *priv)
 202{
 203	/* Entry #0 is reserved */
 204	return priv->num_cfp_rules - 1;
 205}
 206
 207static int bcm_sf2_cfp_act_pol_set(struct bcm_sf2_priv *priv,
 208				   unsigned int rule_index,
 
 209				   unsigned int port_num,
 210				   unsigned int queue_num,
 211				   bool fwd_map_change)
 212{
 213	int ret;
 214	u32 reg;
 215
 216	/* Replace ARL derived destination with DST_MAP derived, define
 217	 * which port and queue this should be forwarded to.
 218	 */
 219	if (fwd_map_change)
 220		reg = CHANGE_FWRD_MAP_IB_REP_ARL |
 221		      BIT(port_num + DST_MAP_IB_SHIFT) |
 222		      CHANGE_TC | queue_num << NEW_TC_SHIFT;
 223	else
 224		reg = 0;
 225
 
 
 
 
 226	core_writel(priv, reg, CORE_ACT_POL_DATA0);
 227
 228	/* Set classification ID that needs to be put in Broadcom tag */
 229	core_writel(priv, rule_index << CHAIN_ID_SHIFT, CORE_ACT_POL_DATA1);
 230
 231	core_writel(priv, 0, CORE_ACT_POL_DATA2);
 232
 233	/* Configure policer RAM now */
 234	ret = bcm_sf2_cfp_op(priv, OP_SEL_WRITE | ACT_POL_RAM);
 235	if (ret) {
 236		pr_err("Policer entry at %d failed\n", rule_index);
 237		return ret;
 238	}
 239
 240	/* Disable the policer */
 241	core_writel(priv, POLICER_MODE_DISABLE, CORE_RATE_METER0);
 242
 243	/* Now the rate meter */
 244	ret = bcm_sf2_cfp_op(priv, OP_SEL_WRITE | RATE_METER_RAM);
 245	if (ret) {
 246		pr_err("Meter entry at %d failed\n", rule_index);
 247		return ret;
 248	}
 249
 250	return 0;
 251}
 252
 253static void bcm_sf2_cfp_slice_ipv4(struct bcm_sf2_priv *priv,
 254				   struct ethtool_tcpip4_spec *v4_spec,
 255				   unsigned int slice_num,
 
 
 256				   bool mask)
 257{
 258	u32 reg, offset;
 259
 
 
 
 
 
 
 
 
 
 
 260	/* C-Tag		[31:24]
 261	 * UDF_n_A8		[23:8]
 262	 * UDF_n_A7		[7:0]
 263	 */
 264	reg = 0;
 265	if (mask)
 266		offset = CORE_CFP_MASK_PORT(4);
 267	else
 268		offset = CORE_CFP_DATA_PORT(4);
 269	core_writel(priv, reg, offset);
 270
 271	/* UDF_n_A7		[31:24]
 272	 * UDF_n_A6		[23:8]
 273	 * UDF_n_A5		[7:0]
 274	 */
 275	reg = be16_to_cpu(v4_spec->pdst) >> 8;
 276	if (mask)
 277		offset = CORE_CFP_MASK_PORT(3);
 278	else
 279		offset = CORE_CFP_DATA_PORT(3);
 280	core_writel(priv, reg, offset);
 281
 282	/* UDF_n_A5		[31:24]
 283	 * UDF_n_A4		[23:8]
 284	 * UDF_n_A3		[7:0]
 285	 */
 286	reg = (be16_to_cpu(v4_spec->pdst) & 0xff) << 24 |
 287	      (u32)be16_to_cpu(v4_spec->psrc) << 8 |
 288	      (be32_to_cpu(v4_spec->ip4dst) & 0x0000ff00) >> 8;
 289	if (mask)
 290		offset = CORE_CFP_MASK_PORT(2);
 291	else
 292		offset = CORE_CFP_DATA_PORT(2);
 293	core_writel(priv, reg, offset);
 294
 295	/* UDF_n_A3		[31:24]
 296	 * UDF_n_A2		[23:8]
 297	 * UDF_n_A1		[7:0]
 298	 */
 299	reg = (u32)(be32_to_cpu(v4_spec->ip4dst) & 0xff) << 24 |
 300	      (u32)(be32_to_cpu(v4_spec->ip4dst) >> 16) << 8 |
 301	      (be32_to_cpu(v4_spec->ip4src) & 0x0000ff00) >> 8;
 302	if (mask)
 303		offset = CORE_CFP_MASK_PORT(1);
 304	else
 305		offset = CORE_CFP_DATA_PORT(1);
 306	core_writel(priv, reg, offset);
 307
 308	/* UDF_n_A1		[31:24]
 309	 * UDF_n_A0		[23:8]
 310	 * Reserved		[7:4]
 311	 * Slice ID		[3:2]
 312	 * Slice valid		[1:0]
 313	 */
 314	reg = (u32)(be32_to_cpu(v4_spec->ip4src) & 0xff) << 24 |
 315	      (u32)(be32_to_cpu(v4_spec->ip4src) >> 16) << 8 |
 316	      SLICE_NUM(slice_num) | SLICE_VALID;
 317	if (mask)
 318		offset = CORE_CFP_MASK_PORT(0);
 319	else
 320		offset = CORE_CFP_DATA_PORT(0);
 321	core_writel(priv, reg, offset);
 322}
 323
 324static int bcm_sf2_cfp_ipv4_rule_set(struct bcm_sf2_priv *priv, int port,
 325				     unsigned int port_num,
 326				     unsigned int queue_num,
 327				     struct ethtool_rx_flow_spec *fs)
 328{
 329	struct ethtool_tcpip4_spec *v4_spec, *v4_m_spec;
 
 330	const struct cfp_udf_layout *layout;
 331	unsigned int slice_num, rule_index;
 
 
 
 
 332	u8 ip_proto, ip_frag;
 333	u8 num_udf;
 334	u32 reg;
 335	int ret;
 336
 337	switch (fs->flow_type & ~FLOW_EXT) {
 338	case TCP_V4_FLOW:
 339		ip_proto = IPPROTO_TCP;
 340		v4_spec = &fs->h_u.tcp_ip4_spec;
 341		v4_m_spec = &fs->m_u.tcp_ip4_spec;
 342		break;
 343	case UDP_V4_FLOW:
 344		ip_proto = IPPROTO_UDP;
 345		v4_spec = &fs->h_u.udp_ip4_spec;
 346		v4_m_spec = &fs->m_u.udp_ip4_spec;
 347		break;
 348	default:
 349		return -EINVAL;
 350	}
 351
 352	ip_frag = be32_to_cpu(fs->m_ext.data[0]);
 
 
 
 
 
 
 353
 354	/* Locate the first rule available */
 355	if (fs->location == RX_CLS_LOC_ANY)
 356		rule_index = find_first_zero_bit(priv->cfp.used,
 357						 priv->num_cfp_rules);
 358	else
 359		rule_index = fs->location;
 360
 361	if (rule_index > bcm_sf2_cfp_rule_size(priv))
 362		return -ENOSPC;
 363
 
 
 
 
 
 
 
 
 
 364	layout = &udf_tcpip4_layout;
 365	/* We only use one UDF slice for now */
 366	slice_num = bcm_sf2_get_slice_number(layout, 0);
 367	if (slice_num == UDF_NUM_SLICES)
 368		return -EINVAL;
 
 
 369
 370	num_udf = bcm_sf2_get_num_udf_slices(layout->udfs[slice_num].slices);
 371
 372	/* Apply the UDF layout for this filter */
 373	bcm_sf2_cfp_udf_set(priv, layout, slice_num);
 374
 375	/* Apply to all packets received through this port */
 376	core_writel(priv, BIT(port), CORE_CFP_DATA_PORT(7));
 377
 378	/* Source port map match */
 379	core_writel(priv, 0xff, CORE_CFP_MASK_PORT(7));
 380
 381	/* S-Tag status		[31:30]
 382	 * C-Tag status		[29:28]
 383	 * L2 framing		[27:26]
 384	 * L3 framing		[25:24]
 385	 * IP ToS		[23:16]
 386	 * IP proto		[15:08]
 387	 * IP Fragm		[7]
 388	 * Non 1st frag		[6]
 389	 * IP Authen		[5]
 390	 * TTL range		[4:3]
 391	 * PPPoE session	[2]
 392	 * Reserved		[1]
 393	 * UDF_Valid[8]		[0]
 394	 */
 395	core_writel(priv, v4_spec->tos << IPTOS_SHIFT |
 396		    ip_proto << IPPROTO_SHIFT | ip_frag << IP_FRAG_SHIFT |
 397		    udf_upper_bits(num_udf),
 398		    CORE_CFP_DATA_PORT(6));
 399
 400	/* Mask with the specific layout for IPv4 packets */
 401	core_writel(priv, layout->udfs[slice_num].mask_value |
 402		    udf_upper_bits(num_udf), CORE_CFP_MASK_PORT(6));
 403
 404	/* UDF_Valid[7:0]	[31:24]
 405	 * S-Tag		[23:8]
 406	 * C-Tag		[7:0]
 407	 */
 408	core_writel(priv, udf_lower_bits(num_udf) << 24, CORE_CFP_DATA_PORT(5));
 409
 410	/* Mask all but valid UDFs */
 411	core_writel(priv, udf_lower_bits(num_udf) << 24, CORE_CFP_MASK_PORT(5));
 412
 413	/* Program the match and the mask */
 414	bcm_sf2_cfp_slice_ipv4(priv, v4_spec, slice_num, false);
 415	bcm_sf2_cfp_slice_ipv4(priv, v4_m_spec, SLICE_NUM_MASK, true);
 
 
 416
 417	/* Insert into TCAM now */
 418	bcm_sf2_cfp_rule_addr_set(priv, rule_index);
 419
 420	ret = bcm_sf2_cfp_op(priv, OP_SEL_WRITE | TCAM_SEL);
 421	if (ret) {
 422		pr_err("TCAM entry at addr %d failed\n", rule_index);
 423		return ret;
 424	}
 425
 426	/* Insert into Action and policer RAMs now */
 427	ret = bcm_sf2_cfp_act_pol_set(priv, rule_index, port_num,
 428				      queue_num, true);
 429	if (ret)
 430		return ret;
 431
 432	/* Turn on CFP for this rule now */
 433	reg = core_readl(priv, CORE_CFP_CTL_REG);
 434	reg |= BIT(port);
 435	core_writel(priv, reg, CORE_CFP_CTL_REG);
 436
 437	/* Flag the rule as being used and return it */
 438	set_bit(rule_index, priv->cfp.used);
 439	set_bit(rule_index, priv->cfp.unique);
 440	fs->location = rule_index;
 441
 442	return 0;
 
 
 
 
 443}
 444
 445static void bcm_sf2_cfp_slice_ipv6(struct bcm_sf2_priv *priv,
 446				   const __be32 *ip6_addr, const __be16 port,
 447				   unsigned int slice_num,
 
 448				   bool mask)
 449{
 450	u32 reg, tmp, val, offset;
 451
 
 
 
 
 
 
 
 
 
 
 452	/* C-Tag		[31:24]
 453	 * UDF_n_B8		[23:8]	(port)
 454	 * UDF_n_B7 (upper)	[7:0]	(addr[15:8])
 455	 */
 456	reg = be32_to_cpu(ip6_addr[3]);
 457	val = (u32)be16_to_cpu(port) << 8 | ((reg >> 8) & 0xff);
 
 458	if (mask)
 459		offset = CORE_CFP_MASK_PORT(4);
 460	else
 461		offset = CORE_CFP_DATA_PORT(4);
 462	core_writel(priv, val, offset);
 463
 464	/* UDF_n_B7 (lower)	[31:24]	(addr[7:0])
 465	 * UDF_n_B6		[23:8] (addr[31:16])
 466	 * UDF_n_B5 (upper)	[7:0] (addr[47:40])
 467	 */
 468	tmp = be32_to_cpu(ip6_addr[2]);
 469	val = (u32)(reg & 0xff) << 24 | (u32)(reg >> 16) << 8 |
 470	      ((tmp >> 8) & 0xff);
 471	if (mask)
 472		offset = CORE_CFP_MASK_PORT(3);
 473	else
 474		offset = CORE_CFP_DATA_PORT(3);
 475	core_writel(priv, val, offset);
 476
 477	/* UDF_n_B5 (lower)	[31:24] (addr[39:32])
 478	 * UDF_n_B4		[23:8] (addr[63:48])
 479	 * UDF_n_B3 (upper)	[7:0] (addr[79:72])
 480	 */
 481	reg = be32_to_cpu(ip6_addr[1]);
 482	val = (u32)(tmp & 0xff) << 24 | (u32)(tmp >> 16) << 8 |
 483	      ((reg >> 8) & 0xff);
 484	if (mask)
 485		offset = CORE_CFP_MASK_PORT(2);
 486	else
 487		offset = CORE_CFP_DATA_PORT(2);
 488	core_writel(priv, val, offset);
 489
 490	/* UDF_n_B3 (lower)	[31:24] (addr[71:64])
 491	 * UDF_n_B2		[23:8] (addr[95:80])
 492	 * UDF_n_B1 (upper)	[7:0] (addr[111:104])
 493	 */
 494	tmp = be32_to_cpu(ip6_addr[0]);
 495	val = (u32)(reg & 0xff) << 24 | (u32)(reg >> 16) << 8 |
 496	      ((tmp >> 8) & 0xff);
 497	if (mask)
 498		offset = CORE_CFP_MASK_PORT(1);
 499	else
 500		offset = CORE_CFP_DATA_PORT(1);
 501	core_writel(priv, val, offset);
 502
 503	/* UDF_n_B1 (lower)	[31:24] (addr[103:96])
 504	 * UDF_n_B0		[23:8] (addr[127:112])
 505	 * Reserved		[7:4]
 506	 * Slice ID		[3:2]
 507	 * Slice valid		[1:0]
 508	 */
 509	reg = (u32)(tmp & 0xff) << 24 | (u32)(tmp >> 16) << 8 |
 510	       SLICE_NUM(slice_num) | SLICE_VALID;
 511	if (mask)
 512		offset = CORE_CFP_MASK_PORT(0);
 513	else
 514		offset = CORE_CFP_DATA_PORT(0);
 515	core_writel(priv, reg, offset);
 516}
 517
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 518static int bcm_sf2_cfp_ipv6_rule_set(struct bcm_sf2_priv *priv, int port,
 519				     unsigned int port_num,
 520				     unsigned int queue_num,
 521				     struct ethtool_rx_flow_spec *fs)
 522{
 523	struct ethtool_tcpip6_spec *v6_spec, *v6_m_spec;
 
 524	unsigned int slice_num, rule_index[2];
 525	const struct cfp_udf_layout *layout;
 
 
 
 526	u8 ip_proto, ip_frag;
 527	int ret = 0;
 528	u8 num_udf;
 529	u32 reg;
 530
 531	switch (fs->flow_type & ~FLOW_EXT) {
 532	case TCP_V6_FLOW:
 533		ip_proto = IPPROTO_TCP;
 534		v6_spec = &fs->h_u.tcp_ip6_spec;
 535		v6_m_spec = &fs->m_u.tcp_ip6_spec;
 536		break;
 537	case UDP_V6_FLOW:
 538		ip_proto = IPPROTO_UDP;
 539		v6_spec = &fs->h_u.udp_ip6_spec;
 540		v6_m_spec = &fs->m_u.udp_ip6_spec;
 541		break;
 542	default:
 543		return -EINVAL;
 544	}
 545
 546	ip_frag = be32_to_cpu(fs->m_ext.data[0]);
 
 
 
 
 
 
 547
 548	layout = &udf_tcpip6_layout;
 549	slice_num = bcm_sf2_get_slice_number(layout, 0);
 550	if (slice_num == UDF_NUM_SLICES)
 551		return -EINVAL;
 552
 553	num_udf = bcm_sf2_get_num_udf_slices(layout->udfs[slice_num].slices);
 554
 555	/* Negotiate two indexes, one for the second half which we are chained
 556	 * from, which is what we will return to user-space, and a second one
 557	 * which is used to store its first half. That first half does not
 558	 * allow any choice of placement, so it just needs to find the next
 559	 * available bit. We return the second half as fs->location because
 560	 * that helps with the rule lookup later on since the second half is
 561	 * chained from its first half, we can easily identify IPv6 CFP rules
 562	 * by looking whether they carry a CHAIN_ID.
 563	 *
 564	 * We also want the second half to have a lower rule_index than its
 565	 * first half because the HW search is by incrementing addresses.
 566	 */
 567	if (fs->location == RX_CLS_LOC_ANY)
 568		rule_index[1] = find_first_zero_bit(priv->cfp.used,
 569						    priv->num_cfp_rules);
 570	else
 571		rule_index[1] = fs->location;
 572	if (rule_index[1] > bcm_sf2_cfp_rule_size(priv))
 573		return -ENOSPC;
 574
 575	/* Flag it as used (cleared on error path) such that we can immediately
 576	 * obtain a second one to chain from.
 577	 */
 578	set_bit(rule_index[1], priv->cfp.used);
 579
 580	rule_index[0] = find_first_zero_bit(priv->cfp.used,
 581					    priv->num_cfp_rules);
 582	if (rule_index[0] > bcm_sf2_cfp_rule_size(priv)) {
 583		ret = -ENOSPC;
 584		goto out_err;
 585	}
 586
 
 
 
 
 
 
 
 
 
 587	/* Apply the UDF layout for this filter */
 588	bcm_sf2_cfp_udf_set(priv, layout, slice_num);
 589
 590	/* Apply to all packets received through this port */
 591	core_writel(priv, BIT(port), CORE_CFP_DATA_PORT(7));
 592
 593	/* Source port map match */
 594	core_writel(priv, 0xff, CORE_CFP_MASK_PORT(7));
 595
 596	/* S-Tag status		[31:30]
 597	 * C-Tag status		[29:28]
 598	 * L2 framing		[27:26]
 599	 * L3 framing		[25:24]
 600	 * IP ToS		[23:16]
 601	 * IP proto		[15:08]
 602	 * IP Fragm		[7]
 603	 * Non 1st frag		[6]
 604	 * IP Authen		[5]
 605	 * TTL range		[4:3]
 606	 * PPPoE session	[2]
 607	 * Reserved		[1]
 608	 * UDF_Valid[8]		[0]
 609	 */
 610	reg = 1 << L3_FRAMING_SHIFT | ip_proto << IPPROTO_SHIFT |
 611		ip_frag << IP_FRAG_SHIFT | udf_upper_bits(num_udf);
 612	core_writel(priv, reg, CORE_CFP_DATA_PORT(6));
 613
 614	/* Mask with the specific layout for IPv6 packets including
 615	 * UDF_Valid[8]
 616	 */
 617	reg = layout->udfs[slice_num].mask_value | udf_upper_bits(num_udf);
 618	core_writel(priv, reg, CORE_CFP_MASK_PORT(6));
 619
 620	/* UDF_Valid[7:0]	[31:24]
 621	 * S-Tag		[23:8]
 622	 * C-Tag		[7:0]
 623	 */
 624	core_writel(priv, udf_lower_bits(num_udf) << 24, CORE_CFP_DATA_PORT(5));
 625
 626	/* Mask all but valid UDFs */
 627	core_writel(priv, udf_lower_bits(num_udf) << 24, CORE_CFP_MASK_PORT(5));
 628
 629	/* Slice the IPv6 source address and port */
 630	bcm_sf2_cfp_slice_ipv6(priv, v6_spec->ip6src, v6_spec->psrc,
 631				slice_num, false);
 632	bcm_sf2_cfp_slice_ipv6(priv, v6_m_spec->ip6src, v6_m_spec->psrc,
 633				SLICE_NUM_MASK, true);
 
 
 634
 635	/* Insert into TCAM now because we need to insert a second rule */
 636	bcm_sf2_cfp_rule_addr_set(priv, rule_index[0]);
 637
 638	ret = bcm_sf2_cfp_op(priv, OP_SEL_WRITE | TCAM_SEL);
 639	if (ret) {
 640		pr_err("TCAM entry at addr %d failed\n", rule_index[0]);
 641		goto out_err;
 642	}
 643
 644	/* Insert into Action and policer RAMs now */
 645	ret = bcm_sf2_cfp_act_pol_set(priv, rule_index[0], port_num,
 646				      queue_num, false);
 647	if (ret)
 648		goto out_err;
 649
 650	/* Now deal with the second slice to chain this rule */
 651	slice_num = bcm_sf2_get_slice_number(layout, slice_num + 1);
 652	if (slice_num == UDF_NUM_SLICES) {
 653		ret = -EINVAL;
 654		goto out_err;
 655	}
 656
 657	num_udf = bcm_sf2_get_num_udf_slices(layout->udfs[slice_num].slices);
 658
 659	/* Apply the UDF layout for this filter */
 660	bcm_sf2_cfp_udf_set(priv, layout, slice_num);
 661
 662	/* Chained rule, source port match is coming from the rule we are
 663	 * chained from.
 664	 */
 665	core_writel(priv, 0, CORE_CFP_DATA_PORT(7));
 666	core_writel(priv, 0, CORE_CFP_MASK_PORT(7));
 667
 668	/*
 669	 * CHAIN ID		[31:24] chain to previous slice
 670	 * Reserved		[23:20]
 671	 * UDF_Valid[11:8]	[19:16]
 672	 * UDF_Valid[7:0]	[15:8]
 673	 * UDF_n_D11		[7:0]
 674	 */
 675	reg = rule_index[0] << 24 | udf_upper_bits(num_udf) << 16 |
 676		udf_lower_bits(num_udf) << 8;
 677	core_writel(priv, reg, CORE_CFP_DATA_PORT(6));
 678
 679	/* Mask all except chain ID, UDF Valid[8] and UDF Valid[7:0] */
 680	reg = XCESS_ADDR_MASK << 24 | udf_upper_bits(num_udf) << 16 |
 681		udf_lower_bits(num_udf) << 8;
 682	core_writel(priv, reg, CORE_CFP_MASK_PORT(6));
 683
 684	/* Don't care */
 685	core_writel(priv, 0, CORE_CFP_DATA_PORT(5));
 686
 687	/* Mask all */
 688	core_writel(priv, 0, CORE_CFP_MASK_PORT(5));
 689
 690	bcm_sf2_cfp_slice_ipv6(priv, v6_spec->ip6dst, v6_spec->pdst, slice_num,
 691			       false);
 692	bcm_sf2_cfp_slice_ipv6(priv, v6_m_spec->ip6dst, v6_m_spec->pdst,
 693			       SLICE_NUM_MASK, true);
 694
 695	/* Insert into TCAM now */
 696	bcm_sf2_cfp_rule_addr_set(priv, rule_index[1]);
 697
 698	ret = bcm_sf2_cfp_op(priv, OP_SEL_WRITE | TCAM_SEL);
 699	if (ret) {
 700		pr_err("TCAM entry at addr %d failed\n", rule_index[1]);
 701		goto out_err;
 702	}
 703
 704	/* Insert into Action and policer RAMs now, set chain ID to
 705	 * the one we are chained to
 706	 */
 707	ret = bcm_sf2_cfp_act_pol_set(priv, rule_index[1], port_num,
 708				      queue_num, true);
 709	if (ret)
 710		goto out_err;
 711
 712	/* Turn on CFP for this rule now */
 713	reg = core_readl(priv, CORE_CFP_CTL_REG);
 714	reg |= BIT(port);
 715	core_writel(priv, reg, CORE_CFP_CTL_REG);
 716
 717	/* Flag the second half rule as being used now, return it as the
 718	 * location, and flag it as unique while dumping rules
 719	 */
 720	set_bit(rule_index[0], priv->cfp.used);
 721	set_bit(rule_index[1], priv->cfp.unique);
 722	fs->location = rule_index[1];
 723
 724	return ret;
 725
 
 
 726out_err:
 727	clear_bit(rule_index[1], priv->cfp.used);
 728	return ret;
 729}
 730
 731static int bcm_sf2_cfp_rule_set(struct dsa_switch *ds, int port,
 732				struct ethtool_rx_flow_spec *fs)
 733{
 734	struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
 
 
 
 735	unsigned int queue_num, port_num;
 736	int ret = -EINVAL;
 
 737
 738	/* Check for unsupported extensions */
 739	if ((fs->flow_type & FLOW_EXT) && (fs->m_ext.vlan_etype ||
 740	     fs->m_ext.data[1]))
 741		return -EINVAL;
 742
 743	if (fs->location != RX_CLS_LOC_ANY &&
 744	    test_bit(fs->location, priv->cfp.used))
 745		return -EBUSY;
 746
 747	if (fs->location != RX_CLS_LOC_ANY &&
 748	    fs->location > bcm_sf2_cfp_rule_size(priv))
 749		return -EINVAL;
 750
 751	/* We do not support discarding packets, check that the
 752	 * destination port is enabled and that we are within the
 753	 * number of ports supported by the switch
 754	 */
 755	port_num = fs->ring_cookie / SF2_NUM_EGRESS_QUEUES;
 756
 757	if (fs->ring_cookie == RX_CLS_FLOW_DISC ||
 758	    !dsa_is_user_port(ds, port_num) ||
 
 759	    port_num >= priv->hw_params.num_ports)
 760		return -EINVAL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 761	/*
 762	 * We have a small oddity where Port 6 just does not have a
 763	 * valid bit here (so we substract by one).
 764	 */
 765	queue_num = fs->ring_cookie % SF2_NUM_EGRESS_QUEUES;
 766	if (port_num >= 7)
 767		port_num -= 1;
 768
 769	switch (fs->flow_type & ~FLOW_EXT) {
 770	case TCP_V4_FLOW:
 771	case UDP_V4_FLOW:
 772		ret = bcm_sf2_cfp_ipv4_rule_set(priv, port, port_num,
 773						queue_num, fs);
 774		break;
 775	case TCP_V6_FLOW:
 776	case UDP_V6_FLOW:
 777		ret = bcm_sf2_cfp_ipv6_rule_set(priv, port, port_num,
 778						queue_num, fs);
 779		break;
 780	default:
 
 781		break;
 782	}
 783
 784	return ret;
 785}
 786
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 787static int bcm_sf2_cfp_rule_del_one(struct bcm_sf2_priv *priv, int port,
 788				    u32 loc, u32 *next_loc)
 789{
 790	int ret;
 791	u32 reg;
 792
 793	/* Indicate which rule we want to read */
 794	bcm_sf2_cfp_rule_addr_set(priv, loc);
 795
 796	ret =  bcm_sf2_cfp_op(priv, OP_SEL_READ | TCAM_SEL);
 797	if (ret)
 798		return ret;
 799
 800	/* Check if this is possibly an IPv6 rule that would
 801	 * indicate we need to delete its companion rule
 802	 * as well
 803	 */
 804	reg = core_readl(priv, CORE_CFP_DATA_PORT(6));
 805	if (next_loc)
 806		*next_loc = (reg >> 24) & CHAIN_ID_MASK;
 807
 808	/* Clear its valid bits */
 809	reg = core_readl(priv, CORE_CFP_DATA_PORT(0));
 810	reg &= ~SLICE_VALID;
 811	core_writel(priv, reg, CORE_CFP_DATA_PORT(0));
 812
 813	/* Write back this entry into the TCAM now */
 814	ret = bcm_sf2_cfp_op(priv, OP_SEL_WRITE | TCAM_SEL);
 815	if (ret)
 816		return ret;
 817
 818	clear_bit(loc, priv->cfp.used);
 819	clear_bit(loc, priv->cfp.unique);
 820
 821	return 0;
 822}
 823
 824static int bcm_sf2_cfp_rule_del(struct bcm_sf2_priv *priv, int port,
 825				u32 loc)
 826{
 827	u32 next_loc = 0;
 828	int ret;
 829
 830	/* Refuse deleting unused rules, and those that are not unique since
 831	 * that could leave IPv6 rules with one of the chained rule in the
 832	 * table.
 833	 */
 834	if (!test_bit(loc, priv->cfp.unique) || loc == 0)
 835		return -EINVAL;
 836
 837	ret = bcm_sf2_cfp_rule_del_one(priv, port, loc, &next_loc);
 838	if (ret)
 839		return ret;
 840
 841	/* If this was an IPv6 rule, delete is companion rule too */
 842	if (next_loc)
 843		ret = bcm_sf2_cfp_rule_del_one(priv, port, next_loc, NULL);
 844
 845	return ret;
 846}
 847
 848static void bcm_sf2_invert_masks(struct ethtool_rx_flow_spec *flow)
 849{
 850	unsigned int i;
 
 851
 852	for (i = 0; i < sizeof(flow->m_u); i++)
 853		flow->m_u.hdata[i] ^= 0xff;
 854
 855	flow->m_ext.vlan_etype ^= cpu_to_be16(~0);
 856	flow->m_ext.vlan_tci ^= cpu_to_be16(~0);
 857	flow->m_ext.data[0] ^= cpu_to_be32(~0);
 858	flow->m_ext.data[1] ^= cpu_to_be32(~0);
 859}
 860
 861static int bcm_sf2_cfp_unslice_ipv4(struct bcm_sf2_priv *priv,
 862				    struct ethtool_tcpip4_spec *v4_spec,
 863				    bool mask)
 864{
 865	u32 reg, offset, ipv4;
 866	u16 src_dst_port;
 867
 868	if (mask)
 869		offset = CORE_CFP_MASK_PORT(3);
 870	else
 871		offset = CORE_CFP_DATA_PORT(3);
 872
 873	reg = core_readl(priv, offset);
 874	/* src port [15:8] */
 875	src_dst_port = reg << 8;
 876
 877	if (mask)
 878		offset = CORE_CFP_MASK_PORT(2);
 879	else
 880		offset = CORE_CFP_DATA_PORT(2);
 881
 882	reg = core_readl(priv, offset);
 883	/* src port [7:0] */
 884	src_dst_port |= (reg >> 24);
 885
 886	v4_spec->pdst = cpu_to_be16(src_dst_port);
 887	v4_spec->psrc = cpu_to_be16((u16)(reg >> 8));
 888
 889	/* IPv4 dst [15:8] */
 890	ipv4 = (reg & 0xff) << 8;
 891
 892	if (mask)
 893		offset = CORE_CFP_MASK_PORT(1);
 894	else
 895		offset = CORE_CFP_DATA_PORT(1);
 896
 897	reg = core_readl(priv, offset);
 898	/* IPv4 dst [31:16] */
 899	ipv4 |= ((reg >> 8) & 0xffff) << 16;
 900	/* IPv4 dst [7:0] */
 901	ipv4 |= (reg >> 24) & 0xff;
 902	v4_spec->ip4dst = cpu_to_be32(ipv4);
 903
 904	/* IPv4 src [15:8] */
 905	ipv4 = (reg & 0xff) << 8;
 906
 907	if (mask)
 908		offset = CORE_CFP_MASK_PORT(0);
 909	else
 910		offset = CORE_CFP_DATA_PORT(0);
 911	reg = core_readl(priv, offset);
 912
 913	/* Once the TCAM is programmed, the mask reflects the slice number
 914	 * being matched, don't bother checking it when reading back the
 915	 * mask spec
 916	 */
 917	if (!mask && !(reg & SLICE_VALID))
 918		return -EINVAL;
 919
 920	/* IPv4 src [7:0] */
 921	ipv4 |= (reg >> 24) & 0xff;
 922	/* IPv4 src [31:16] */
 923	ipv4 |= ((reg >> 8) & 0xffff) << 16;
 924	v4_spec->ip4src = cpu_to_be32(ipv4);
 925
 926	return 0;
 927}
 928
 929static int bcm_sf2_cfp_ipv4_rule_get(struct bcm_sf2_priv *priv, int port,
 930				     struct ethtool_rx_flow_spec *fs)
 931{
 932	struct ethtool_tcpip4_spec *v4_spec = NULL, *v4_m_spec = NULL;
 933	u32 reg;
 934	int ret;
 935
 936	reg = core_readl(priv, CORE_CFP_DATA_PORT(6));
 937
 938	switch ((reg & IPPROTO_MASK) >> IPPROTO_SHIFT) {
 939	case IPPROTO_TCP:
 940		fs->flow_type = TCP_V4_FLOW;
 941		v4_spec = &fs->h_u.tcp_ip4_spec;
 942		v4_m_spec = &fs->m_u.tcp_ip4_spec;
 943		break;
 944	case IPPROTO_UDP:
 945		fs->flow_type = UDP_V4_FLOW;
 946		v4_spec = &fs->h_u.udp_ip4_spec;
 947		v4_m_spec = &fs->m_u.udp_ip4_spec;
 948		break;
 949	default:
 950		return -EINVAL;
 951	}
 952
 953	fs->m_ext.data[0] = cpu_to_be32((reg >> IP_FRAG_SHIFT) & 1);
 954	v4_spec->tos = (reg >> IPTOS_SHIFT) & IPTOS_MASK;
 955
 956	ret = bcm_sf2_cfp_unslice_ipv4(priv, v4_spec, false);
 957	if (ret)
 958		return ret;
 959
 960	return bcm_sf2_cfp_unslice_ipv4(priv, v4_m_spec, true);
 961}
 962
 963static int bcm_sf2_cfp_unslice_ipv6(struct bcm_sf2_priv *priv,
 964				     __be32 *ip6_addr, __be16 *port,
 965				     bool mask)
 966{
 967	u32 reg, tmp, offset;
 968
 969	/* C-Tag		[31:24]
 970	 * UDF_n_B8		[23:8] (port)
 971	 * UDF_n_B7 (upper)	[7:0] (addr[15:8])
 972	 */
 973	if (mask)
 974		offset = CORE_CFP_MASK_PORT(4);
 975	else
 976		offset = CORE_CFP_DATA_PORT(4);
 977	reg = core_readl(priv, offset);
 978	*port = cpu_to_be32(reg) >> 8;
 979	tmp = (u32)(reg & 0xff) << 8;
 980
 981	/* UDF_n_B7 (lower)	[31:24] (addr[7:0])
 982	 * UDF_n_B6		[23:8] (addr[31:16])
 983	 * UDF_n_B5 (upper)	[7:0] (addr[47:40])
 984	 */
 985	if (mask)
 986		offset = CORE_CFP_MASK_PORT(3);
 987	else
 988		offset = CORE_CFP_DATA_PORT(3);
 989	reg = core_readl(priv, offset);
 990	tmp |= (reg >> 24) & 0xff;
 991	tmp |= (u32)((reg >> 8) << 16);
 992	ip6_addr[3] = cpu_to_be32(tmp);
 993	tmp = (u32)(reg & 0xff) << 8;
 994
 995	/* UDF_n_B5 (lower)	[31:24] (addr[39:32])
 996	 * UDF_n_B4		[23:8] (addr[63:48])
 997	 * UDF_n_B3 (upper)	[7:0] (addr[79:72])
 998	 */
 999	if (mask)
1000		offset = CORE_CFP_MASK_PORT(2);
1001	else
1002		offset = CORE_CFP_DATA_PORT(2);
1003	reg = core_readl(priv, offset);
1004	tmp |= (reg >> 24) & 0xff;
1005	tmp |= (u32)((reg >> 8) << 16);
1006	ip6_addr[2] = cpu_to_be32(tmp);
1007	tmp = (u32)(reg & 0xff) << 8;
1008
1009	/* UDF_n_B3 (lower)	[31:24] (addr[71:64])
1010	 * UDF_n_B2		[23:8] (addr[95:80])
1011	 * UDF_n_B1 (upper)	[7:0] (addr[111:104])
1012	 */
1013	if (mask)
1014		offset = CORE_CFP_MASK_PORT(1);
1015	else
1016		offset = CORE_CFP_DATA_PORT(1);
1017	reg = core_readl(priv, offset);
1018	tmp |= (reg >> 24) & 0xff;
1019	tmp |= (u32)((reg >> 8) << 16);
1020	ip6_addr[1] = cpu_to_be32(tmp);
1021	tmp = (u32)(reg & 0xff) << 8;
1022
1023	/* UDF_n_B1 (lower)	[31:24] (addr[103:96])
1024	 * UDF_n_B0		[23:8] (addr[127:112])
1025	 * Reserved		[7:4]
1026	 * Slice ID		[3:2]
1027	 * Slice valid		[1:0]
1028	 */
1029	if (mask)
1030		offset = CORE_CFP_MASK_PORT(0);
1031	else
1032		offset = CORE_CFP_DATA_PORT(0);
1033	reg = core_readl(priv, offset);
1034	tmp |= (reg >> 24) & 0xff;
1035	tmp |= (u32)((reg >> 8) << 16);
1036	ip6_addr[0] = cpu_to_be32(tmp);
1037
1038	if (!mask && !(reg & SLICE_VALID))
1039		return -EINVAL;
1040
1041	return 0;
1042}
1043
1044static int bcm_sf2_cfp_ipv6_rule_get(struct bcm_sf2_priv *priv, int port,
1045				     struct ethtool_rx_flow_spec *fs,
1046				     u32 next_loc)
1047{
1048	struct ethtool_tcpip6_spec *v6_spec = NULL, *v6_m_spec = NULL;
1049	u32 reg;
1050	int ret;
1051
1052	/* UDPv6 and TCPv6 both use ethtool_tcpip6_spec so we are fine
1053	 * assuming tcp_ip6_spec here being an union.
1054	 */
1055	v6_spec = &fs->h_u.tcp_ip6_spec;
1056	v6_m_spec = &fs->m_u.tcp_ip6_spec;
1057
1058	/* Read the second half first */
1059	ret = bcm_sf2_cfp_unslice_ipv6(priv, v6_spec->ip6dst, &v6_spec->pdst,
1060				       false);
1061	if (ret)
1062		return ret;
1063
1064	ret = bcm_sf2_cfp_unslice_ipv6(priv, v6_m_spec->ip6dst,
1065				       &v6_m_spec->pdst, true);
1066	if (ret)
1067		return ret;
1068
1069	/* Read last to avoid next entry clobbering the results during search
1070	 * operations. We would not have the port enabled for this rule, so
1071	 * don't bother checking it.
1072	 */
1073	(void)core_readl(priv, CORE_CFP_DATA_PORT(7));
1074
1075	/* The slice number is valid, so read the rule we are chained from now
1076	 * which is our first half.
1077	 */
1078	bcm_sf2_cfp_rule_addr_set(priv, next_loc);
1079	ret = bcm_sf2_cfp_op(priv, OP_SEL_READ | TCAM_SEL);
1080	if (ret)
1081		return ret;
1082
1083	reg = core_readl(priv, CORE_CFP_DATA_PORT(6));
1084
1085	switch ((reg & IPPROTO_MASK) >> IPPROTO_SHIFT) {
1086	case IPPROTO_TCP:
1087		fs->flow_type = TCP_V6_FLOW;
1088		break;
1089	case IPPROTO_UDP:
1090		fs->flow_type = UDP_V6_FLOW;
1091		break;
1092	default:
1093		return -EINVAL;
1094	}
1095
1096	ret = bcm_sf2_cfp_unslice_ipv6(priv, v6_spec->ip6src, &v6_spec->psrc,
1097				       false);
1098	if (ret)
1099		return ret;
1100
1101	return bcm_sf2_cfp_unslice_ipv6(priv, v6_m_spec->ip6src,
1102					&v6_m_spec->psrc, true);
1103}
1104
1105static int bcm_sf2_cfp_rule_get(struct bcm_sf2_priv *priv, int port,
1106				struct ethtool_rxnfc *nfc)
1107{
1108	u32 reg, ipv4_or_chain_id;
1109	unsigned int queue_num;
1110	int ret;
1111
1112	bcm_sf2_cfp_rule_addr_set(priv, nfc->fs.location);
1113
1114	ret = bcm_sf2_cfp_op(priv, OP_SEL_READ | ACT_POL_RAM);
1115	if (ret)
1116		return ret;
1117
1118	reg = core_readl(priv, CORE_ACT_POL_DATA0);
1119
1120	ret = bcm_sf2_cfp_op(priv, OP_SEL_READ | TCAM_SEL);
1121	if (ret)
1122		return ret;
1123
1124	/* Extract the destination port */
1125	nfc->fs.ring_cookie = fls((reg >> DST_MAP_IB_SHIFT) &
1126				  DST_MAP_IB_MASK) - 1;
1127
1128	/* There is no Port 6, so we compensate for that here */
1129	if (nfc->fs.ring_cookie >= 6)
1130		nfc->fs.ring_cookie++;
1131	nfc->fs.ring_cookie *= SF2_NUM_EGRESS_QUEUES;
1132
1133	/* Extract the destination queue */
1134	queue_num = (reg >> NEW_TC_SHIFT) & NEW_TC_MASK;
1135	nfc->fs.ring_cookie += queue_num;
1136
1137	/* Extract the L3_FRAMING or CHAIN_ID */
1138	reg = core_readl(priv, CORE_CFP_DATA_PORT(6));
1139
1140	/* With IPv6 rules this would contain a non-zero chain ID since
1141	 * we reserve entry 0 and it cannot be used. So if we read 0 here
1142	 * this means an IPv4 rule.
1143	 */
1144	ipv4_or_chain_id = (reg >> L3_FRAMING_SHIFT) & 0xff;
1145	if (ipv4_or_chain_id == 0)
1146		ret = bcm_sf2_cfp_ipv4_rule_get(priv, port, &nfc->fs);
1147	else
1148		ret = bcm_sf2_cfp_ipv6_rule_get(priv, port, &nfc->fs,
1149						ipv4_or_chain_id);
1150	if (ret)
1151		return ret;
1152
1153	/* Read last to avoid next entry clobbering the results during search
1154	 * operations
1155	 */
1156	reg = core_readl(priv, CORE_CFP_DATA_PORT(7));
1157	if (!(reg & 1 << port))
1158		return -EINVAL;
1159
1160	bcm_sf2_invert_masks(&nfc->fs);
1161
1162	/* Put the TCAM size here */
1163	nfc->data = bcm_sf2_cfp_rule_size(priv);
1164
1165	return 0;
1166}
1167
1168/* We implement the search doing a TCAM search operation */
1169static int bcm_sf2_cfp_rule_get_all(struct bcm_sf2_priv *priv,
1170				    int port, struct ethtool_rxnfc *nfc,
1171				    u32 *rule_locs)
1172{
1173	unsigned int index = 1, rules_cnt = 0;
1174
1175	for_each_set_bit_from(index, priv->cfp.unique, priv->num_cfp_rules) {
1176		rule_locs[rules_cnt] = index;
1177		rules_cnt++;
1178	}
1179
1180	/* Put the TCAM size here */
1181	nfc->data = bcm_sf2_cfp_rule_size(priv);
1182	nfc->rule_cnt = rules_cnt;
1183
1184	return 0;
1185}
1186
1187int bcm_sf2_get_rxnfc(struct dsa_switch *ds, int port,
1188		      struct ethtool_rxnfc *nfc, u32 *rule_locs)
1189{
 
1190	struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
1191	int ret = 0;
1192
1193	mutex_lock(&priv->cfp.lock);
1194
1195	switch (nfc->cmd) {
1196	case ETHTOOL_GRXCLSRLCNT:
1197		/* Subtract the default, unusable rule */
1198		nfc->rule_cnt = bitmap_weight(priv->cfp.unique,
1199					      priv->num_cfp_rules) - 1;
1200		/* We support specifying rule locations */
1201		nfc->data |= RX_CLS_LOC_SPECIAL;
1202		break;
1203	case ETHTOOL_GRXCLSRULE:
1204		ret = bcm_sf2_cfp_rule_get(priv, port, nfc);
1205		break;
1206	case ETHTOOL_GRXCLSRLALL:
1207		ret = bcm_sf2_cfp_rule_get_all(priv, port, nfc, rule_locs);
1208		break;
1209	default:
1210		ret = -EOPNOTSUPP;
1211		break;
1212	}
1213
1214	mutex_unlock(&priv->cfp.lock);
1215
 
 
 
 
 
 
 
 
 
 
1216	return ret;
1217}
1218
1219int bcm_sf2_set_rxnfc(struct dsa_switch *ds, int port,
1220		      struct ethtool_rxnfc *nfc)
1221{
 
1222	struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
1223	int ret = 0;
1224
1225	mutex_lock(&priv->cfp.lock);
1226
1227	switch (nfc->cmd) {
1228	case ETHTOOL_SRXCLSRLINS:
1229		ret = bcm_sf2_cfp_rule_set(ds, port, &nfc->fs);
1230		break;
1231
1232	case ETHTOOL_SRXCLSRLDEL:
1233		ret = bcm_sf2_cfp_rule_del(priv, port, nfc->fs.location);
1234		break;
1235	default:
1236		ret = -EOPNOTSUPP;
1237		break;
1238	}
1239
1240	mutex_unlock(&priv->cfp.lock);
1241
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1242	return ret;
1243}
1244
1245int bcm_sf2_cfp_rst(struct bcm_sf2_priv *priv)
1246{
1247	unsigned int timeout = 1000;
1248	u32 reg;
1249
1250	reg = core_readl(priv, CORE_CFP_ACC);
1251	reg |= TCAM_RESET;
1252	core_writel(priv, reg, CORE_CFP_ACC);
1253
1254	do {
1255		reg = core_readl(priv, CORE_CFP_ACC);
1256		if (!(reg & TCAM_RESET))
1257			break;
1258
1259		cpu_relax();
1260	} while (timeout--);
1261
1262	if (!timeout)
1263		return -ETIMEDOUT;
1264
1265	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1266}