Loading...
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * Broadcom Starfighter 2 DSA switch CFP support
4 *
5 * Copyright (C) 2016, Broadcom
6 */
7
8#include <linux/list.h>
9#include <linux/ethtool.h>
10#include <linux/if_ether.h>
11#include <linux/in.h>
12#include <linux/netdevice.h>
13#include <net/dsa.h>
14#include <linux/bitmap.h>
15#include <net/flow_offload.h>
16#include <net/switchdev.h>
17#include <uapi/linux/if_bridge.h>
18
19#include "bcm_sf2.h"
20#include "bcm_sf2_regs.h"
21
22struct cfp_rule {
23 int port;
24 struct ethtool_rx_flow_spec fs;
25 struct list_head next;
26};
27
28struct cfp_udf_slice_layout {
29 u8 slices[UDFS_PER_SLICE];
30 u32 mask_value;
31 u32 base_offset;
32};
33
34struct cfp_udf_layout {
35 struct cfp_udf_slice_layout udfs[UDF_NUM_SLICES];
36};
37
38static const u8 zero_slice[UDFS_PER_SLICE] = { };
39
40/* UDF slices layout for a TCPv4/UDPv4 specification */
41static const struct cfp_udf_layout udf_tcpip4_layout = {
42 .udfs = {
43 [1] = {
44 .slices = {
45 /* End of L2, byte offset 12, src IP[0:15] */
46 CFG_UDF_EOL2 | 6,
47 /* End of L2, byte offset 14, src IP[16:31] */
48 CFG_UDF_EOL2 | 7,
49 /* End of L2, byte offset 16, dst IP[0:15] */
50 CFG_UDF_EOL2 | 8,
51 /* End of L2, byte offset 18, dst IP[16:31] */
52 CFG_UDF_EOL2 | 9,
53 /* End of L3, byte offset 0, src port */
54 CFG_UDF_EOL3 | 0,
55 /* End of L3, byte offset 2, dst port */
56 CFG_UDF_EOL3 | 1,
57 0, 0, 0
58 },
59 .mask_value = L3_FRAMING_MASK | IPPROTO_MASK | IP_FRAG,
60 .base_offset = CORE_UDF_0_A_0_8_PORT_0 + UDF_SLICE_OFFSET,
61 },
62 },
63};
64
65/* UDF slices layout for a TCPv6/UDPv6 specification */
66static const struct cfp_udf_layout udf_tcpip6_layout = {
67 .udfs = {
68 [0] = {
69 .slices = {
70 /* End of L2, byte offset 8, src IP[0:15] */
71 CFG_UDF_EOL2 | 4,
72 /* End of L2, byte offset 10, src IP[16:31] */
73 CFG_UDF_EOL2 | 5,
74 /* End of L2, byte offset 12, src IP[32:47] */
75 CFG_UDF_EOL2 | 6,
76 /* End of L2, byte offset 14, src IP[48:63] */
77 CFG_UDF_EOL2 | 7,
78 /* End of L2, byte offset 16, src IP[64:79] */
79 CFG_UDF_EOL2 | 8,
80 /* End of L2, byte offset 18, src IP[80:95] */
81 CFG_UDF_EOL2 | 9,
82 /* End of L2, byte offset 20, src IP[96:111] */
83 CFG_UDF_EOL2 | 10,
84 /* End of L2, byte offset 22, src IP[112:127] */
85 CFG_UDF_EOL2 | 11,
86 /* End of L3, byte offset 0, src port */
87 CFG_UDF_EOL3 | 0,
88 },
89 .mask_value = L3_FRAMING_MASK | IPPROTO_MASK | IP_FRAG,
90 .base_offset = CORE_UDF_0_B_0_8_PORT_0,
91 },
92 [3] = {
93 .slices = {
94 /* End of L2, byte offset 24, dst IP[0:15] */
95 CFG_UDF_EOL2 | 12,
96 /* End of L2, byte offset 26, dst IP[16:31] */
97 CFG_UDF_EOL2 | 13,
98 /* End of L2, byte offset 28, dst IP[32:47] */
99 CFG_UDF_EOL2 | 14,
100 /* End of L2, byte offset 30, dst IP[48:63] */
101 CFG_UDF_EOL2 | 15,
102 /* End of L2, byte offset 32, dst IP[64:79] */
103 CFG_UDF_EOL2 | 16,
104 /* End of L2, byte offset 34, dst IP[80:95] */
105 CFG_UDF_EOL2 | 17,
106 /* End of L2, byte offset 36, dst IP[96:111] */
107 CFG_UDF_EOL2 | 18,
108 /* End of L2, byte offset 38, dst IP[112:127] */
109 CFG_UDF_EOL2 | 19,
110 /* End of L3, byte offset 2, dst port */
111 CFG_UDF_EOL3 | 1,
112 },
113 .mask_value = L3_FRAMING_MASK | IPPROTO_MASK | IP_FRAG,
114 .base_offset = CORE_UDF_0_D_0_11_PORT_0,
115 },
116 },
117};
118
119static inline unsigned int bcm_sf2_get_num_udf_slices(const u8 *layout)
120{
121 unsigned int i, count = 0;
122
123 for (i = 0; i < UDFS_PER_SLICE; i++) {
124 if (layout[i] != 0)
125 count++;
126 }
127
128 return count;
129}
130
131static inline u32 udf_upper_bits(int num_udf)
132{
133 return GENMASK(num_udf - 1, 0) >> (UDFS_PER_SLICE - 1);
134}
135
136static inline u32 udf_lower_bits(int num_udf)
137{
138 return (u8)GENMASK(num_udf - 1, 0);
139}
140
141static unsigned int bcm_sf2_get_slice_number(const struct cfp_udf_layout *l,
142 unsigned int start)
143{
144 const struct cfp_udf_slice_layout *slice_layout;
145 unsigned int slice_idx;
146
147 for (slice_idx = start; slice_idx < UDF_NUM_SLICES; slice_idx++) {
148 slice_layout = &l->udfs[slice_idx];
149 if (memcmp(slice_layout->slices, zero_slice,
150 sizeof(zero_slice)))
151 break;
152 }
153
154 return slice_idx;
155}
156
157static void bcm_sf2_cfp_udf_set(struct bcm_sf2_priv *priv,
158 const struct cfp_udf_layout *layout,
159 unsigned int slice_num)
160{
161 u32 offset = layout->udfs[slice_num].base_offset;
162 unsigned int i;
163
164 for (i = 0; i < UDFS_PER_SLICE; i++)
165 core_writel(priv, layout->udfs[slice_num].slices[i],
166 offset + i * 4);
167}
168
169static int bcm_sf2_cfp_op(struct bcm_sf2_priv *priv, unsigned int op)
170{
171 unsigned int timeout = 1000;
172 u32 reg;
173
174 reg = core_readl(priv, CORE_CFP_ACC);
175 reg &= ~(OP_SEL_MASK | RAM_SEL_MASK);
176 reg |= OP_STR_DONE | op;
177 core_writel(priv, reg, CORE_CFP_ACC);
178
179 do {
180 reg = core_readl(priv, CORE_CFP_ACC);
181 if (!(reg & OP_STR_DONE))
182 break;
183
184 cpu_relax();
185 } while (timeout--);
186
187 if (!timeout)
188 return -ETIMEDOUT;
189
190 return 0;
191}
192
193static inline void bcm_sf2_cfp_rule_addr_set(struct bcm_sf2_priv *priv,
194 unsigned int addr)
195{
196 u32 reg;
197
198 WARN_ON(addr >= priv->num_cfp_rules);
199
200 reg = core_readl(priv, CORE_CFP_ACC);
201 reg &= ~(XCESS_ADDR_MASK << XCESS_ADDR_SHIFT);
202 reg |= addr << XCESS_ADDR_SHIFT;
203 core_writel(priv, reg, CORE_CFP_ACC);
204}
205
206static inline unsigned int bcm_sf2_cfp_rule_size(struct bcm_sf2_priv *priv)
207{
208 /* Entry #0 is reserved */
209 return priv->num_cfp_rules - 1;
210}
211
212static int bcm_sf2_cfp_act_pol_set(struct bcm_sf2_priv *priv,
213 unsigned int rule_index,
214 int src_port,
215 unsigned int port_num,
216 unsigned int queue_num,
217 bool fwd_map_change)
218{
219 int ret;
220 u32 reg;
221
222 /* Replace ARL derived destination with DST_MAP derived, define
223 * which port and queue this should be forwarded to.
224 */
225 if (fwd_map_change)
226 reg = CHANGE_FWRD_MAP_IB_REP_ARL |
227 BIT(port_num + DST_MAP_IB_SHIFT) |
228 CHANGE_TC | queue_num << NEW_TC_SHIFT;
229 else
230 reg = 0;
231
232 /* Enable looping back to the original port */
233 if (src_port == port_num)
234 reg |= LOOP_BK_EN;
235
236 core_writel(priv, reg, CORE_ACT_POL_DATA0);
237
238 /* Set classification ID that needs to be put in Broadcom tag */
239 core_writel(priv, rule_index << CHAIN_ID_SHIFT, CORE_ACT_POL_DATA1);
240
241 core_writel(priv, 0, CORE_ACT_POL_DATA2);
242
243 /* Configure policer RAM now */
244 ret = bcm_sf2_cfp_op(priv, OP_SEL_WRITE | ACT_POL_RAM);
245 if (ret) {
246 pr_err("Policer entry at %d failed\n", rule_index);
247 return ret;
248 }
249
250 /* Disable the policer */
251 core_writel(priv, POLICER_MODE_DISABLE, CORE_RATE_METER0);
252
253 /* Now the rate meter */
254 ret = bcm_sf2_cfp_op(priv, OP_SEL_WRITE | RATE_METER_RAM);
255 if (ret) {
256 pr_err("Meter entry at %d failed\n", rule_index);
257 return ret;
258 }
259
260 return 0;
261}
262
263static void bcm_sf2_cfp_slice_ipv4(struct bcm_sf2_priv *priv,
264 struct flow_dissector_key_ipv4_addrs *addrs,
265 struct flow_dissector_key_ports *ports,
266 const __be16 vlan_tci,
267 unsigned int slice_num, u8 num_udf,
268 bool mask)
269{
270 u32 reg, offset;
271
272 /* UDF_Valid[7:0] [31:24]
273 * S-Tag [23:8]
274 * C-Tag [7:0]
275 */
276 reg = udf_lower_bits(num_udf) << 24 | be16_to_cpu(vlan_tci) >> 8;
277 if (mask)
278 core_writel(priv, reg, CORE_CFP_MASK_PORT(5));
279 else
280 core_writel(priv, reg, CORE_CFP_DATA_PORT(5));
281
282 /* C-Tag [31:24]
283 * UDF_n_A8 [23:8]
284 * UDF_n_A7 [7:0]
285 */
286 reg = (u32)(be16_to_cpu(vlan_tci) & 0xff) << 24;
287 if (mask)
288 offset = CORE_CFP_MASK_PORT(4);
289 else
290 offset = CORE_CFP_DATA_PORT(4);
291 core_writel(priv, reg, offset);
292
293 /* UDF_n_A7 [31:24]
294 * UDF_n_A6 [23:8]
295 * UDF_n_A5 [7:0]
296 */
297 reg = be16_to_cpu(ports->dst) >> 8;
298 if (mask)
299 offset = CORE_CFP_MASK_PORT(3);
300 else
301 offset = CORE_CFP_DATA_PORT(3);
302 core_writel(priv, reg, offset);
303
304 /* UDF_n_A5 [31:24]
305 * UDF_n_A4 [23:8]
306 * UDF_n_A3 [7:0]
307 */
308 reg = (be16_to_cpu(ports->dst) & 0xff) << 24 |
309 (u32)be16_to_cpu(ports->src) << 8 |
310 (be32_to_cpu(addrs->dst) & 0x0000ff00) >> 8;
311 if (mask)
312 offset = CORE_CFP_MASK_PORT(2);
313 else
314 offset = CORE_CFP_DATA_PORT(2);
315 core_writel(priv, reg, offset);
316
317 /* UDF_n_A3 [31:24]
318 * UDF_n_A2 [23:8]
319 * UDF_n_A1 [7:0]
320 */
321 reg = (u32)(be32_to_cpu(addrs->dst) & 0xff) << 24 |
322 (u32)(be32_to_cpu(addrs->dst) >> 16) << 8 |
323 (be32_to_cpu(addrs->src) & 0x0000ff00) >> 8;
324 if (mask)
325 offset = CORE_CFP_MASK_PORT(1);
326 else
327 offset = CORE_CFP_DATA_PORT(1);
328 core_writel(priv, reg, offset);
329
330 /* UDF_n_A1 [31:24]
331 * UDF_n_A0 [23:8]
332 * Reserved [7:4]
333 * Slice ID [3:2]
334 * Slice valid [1:0]
335 */
336 reg = (u32)(be32_to_cpu(addrs->src) & 0xff) << 24 |
337 (u32)(be32_to_cpu(addrs->src) >> 16) << 8 |
338 SLICE_NUM(slice_num) | SLICE_VALID;
339 if (mask)
340 offset = CORE_CFP_MASK_PORT(0);
341 else
342 offset = CORE_CFP_DATA_PORT(0);
343 core_writel(priv, reg, offset);
344}
345
346static int bcm_sf2_cfp_ipv4_rule_set(struct bcm_sf2_priv *priv, int port,
347 unsigned int port_num,
348 unsigned int queue_num,
349 struct ethtool_rx_flow_spec *fs)
350{
351 __be16 vlan_tci = 0, vlan_m_tci = htons(0xffff);
352 struct ethtool_rx_flow_spec_input input = {};
353 const struct cfp_udf_layout *layout;
354 unsigned int slice_num, rule_index;
355 struct ethtool_rx_flow_rule *flow;
356 struct flow_match_ipv4_addrs ipv4;
357 struct flow_match_ports ports;
358 struct flow_match_ip ip;
359 u8 ip_proto, ip_frag;
360 u8 num_udf;
361 u32 reg;
362 int ret;
363
364 switch (fs->flow_type & ~FLOW_EXT) {
365 case TCP_V4_FLOW:
366 ip_proto = IPPROTO_TCP;
367 break;
368 case UDP_V4_FLOW:
369 ip_proto = IPPROTO_UDP;
370 break;
371 default:
372 return -EINVAL;
373 }
374
375 ip_frag = !!(be32_to_cpu(fs->h_ext.data[0]) & 1);
376
377 /* Extract VLAN TCI */
378 if (fs->flow_type & FLOW_EXT) {
379 vlan_tci = fs->h_ext.vlan_tci;
380 vlan_m_tci = fs->m_ext.vlan_tci;
381 }
382
383 /* Locate the first rule available */
384 if (fs->location == RX_CLS_LOC_ANY)
385 rule_index = find_first_zero_bit(priv->cfp.used,
386 priv->num_cfp_rules);
387 else
388 rule_index = fs->location;
389
390 if (rule_index > bcm_sf2_cfp_rule_size(priv))
391 return -ENOSPC;
392
393 input.fs = fs;
394 flow = ethtool_rx_flow_rule_create(&input);
395 if (IS_ERR(flow))
396 return PTR_ERR(flow);
397
398 flow_rule_match_ipv4_addrs(flow->rule, &ipv4);
399 flow_rule_match_ports(flow->rule, &ports);
400 flow_rule_match_ip(flow->rule, &ip);
401
402 layout = &udf_tcpip4_layout;
403 /* We only use one UDF slice for now */
404 slice_num = bcm_sf2_get_slice_number(layout, 0);
405 if (slice_num == UDF_NUM_SLICES) {
406 ret = -EINVAL;
407 goto out_err_flow_rule;
408 }
409
410 num_udf = bcm_sf2_get_num_udf_slices(layout->udfs[slice_num].slices);
411
412 /* Apply the UDF layout for this filter */
413 bcm_sf2_cfp_udf_set(priv, layout, slice_num);
414
415 /* Apply to all packets received through this port */
416 core_writel(priv, BIT(port), CORE_CFP_DATA_PORT(7));
417
418 /* Source port map match */
419 core_writel(priv, 0xff, CORE_CFP_MASK_PORT(7));
420
421 /* S-Tag status [31:30]
422 * C-Tag status [29:28]
423 * L2 framing [27:26]
424 * L3 framing [25:24]
425 * IP ToS [23:16]
426 * IP proto [15:08]
427 * IP Fragm [7]
428 * Non 1st frag [6]
429 * IP Authen [5]
430 * TTL range [4:3]
431 * PPPoE session [2]
432 * Reserved [1]
433 * UDF_Valid[8] [0]
434 */
435 core_writel(priv, ip.key->tos << IPTOS_SHIFT |
436 ip_proto << IPPROTO_SHIFT | ip_frag << IP_FRAG_SHIFT |
437 udf_upper_bits(num_udf),
438 CORE_CFP_DATA_PORT(6));
439
440 /* Mask with the specific layout for IPv4 packets */
441 core_writel(priv, layout->udfs[slice_num].mask_value |
442 udf_upper_bits(num_udf), CORE_CFP_MASK_PORT(6));
443
444 /* Program the match and the mask */
445 bcm_sf2_cfp_slice_ipv4(priv, ipv4.key, ports.key, vlan_tci,
446 slice_num, num_udf, false);
447 bcm_sf2_cfp_slice_ipv4(priv, ipv4.mask, ports.mask, vlan_m_tci,
448 SLICE_NUM_MASK, num_udf, true);
449
450 /* Insert into TCAM now */
451 bcm_sf2_cfp_rule_addr_set(priv, rule_index);
452
453 ret = bcm_sf2_cfp_op(priv, OP_SEL_WRITE | TCAM_SEL);
454 if (ret) {
455 pr_err("TCAM entry at addr %d failed\n", rule_index);
456 goto out_err_flow_rule;
457 }
458
459 /* Insert into Action and policer RAMs now */
460 ret = bcm_sf2_cfp_act_pol_set(priv, rule_index, port, port_num,
461 queue_num, true);
462 if (ret)
463 goto out_err_flow_rule;
464
465 /* Turn on CFP for this rule now */
466 reg = core_readl(priv, CORE_CFP_CTL_REG);
467 reg |= BIT(port);
468 core_writel(priv, reg, CORE_CFP_CTL_REG);
469
470 /* Flag the rule as being used and return it */
471 set_bit(rule_index, priv->cfp.used);
472 set_bit(rule_index, priv->cfp.unique);
473 fs->location = rule_index;
474
475 return 0;
476
477out_err_flow_rule:
478 ethtool_rx_flow_rule_destroy(flow);
479 return ret;
480}
481
482static void bcm_sf2_cfp_slice_ipv6(struct bcm_sf2_priv *priv,
483 const __be32 *ip6_addr, const __be16 port,
484 const __be16 vlan_tci,
485 unsigned int slice_num, u32 udf_bits,
486 bool mask)
487{
488 u32 reg, tmp, val, offset;
489
490 /* UDF_Valid[7:0] [31:24]
491 * S-Tag [23:8]
492 * C-Tag [7:0]
493 */
494 reg = udf_bits << 24 | be16_to_cpu(vlan_tci) >> 8;
495 if (mask)
496 core_writel(priv, reg, CORE_CFP_MASK_PORT(5));
497 else
498 core_writel(priv, reg, CORE_CFP_DATA_PORT(5));
499
500 /* C-Tag [31:24]
501 * UDF_n_B8 [23:8] (port)
502 * UDF_n_B7 (upper) [7:0] (addr[15:8])
503 */
504 reg = be32_to_cpu(ip6_addr[3]);
505 val = (u32)be16_to_cpu(port) << 8 | ((reg >> 8) & 0xff);
506 val |= (u32)(be16_to_cpu(vlan_tci) & 0xff) << 24;
507 if (mask)
508 offset = CORE_CFP_MASK_PORT(4);
509 else
510 offset = CORE_CFP_DATA_PORT(4);
511 core_writel(priv, val, offset);
512
513 /* UDF_n_B7 (lower) [31:24] (addr[7:0])
514 * UDF_n_B6 [23:8] (addr[31:16])
515 * UDF_n_B5 (upper) [7:0] (addr[47:40])
516 */
517 tmp = be32_to_cpu(ip6_addr[2]);
518 val = (u32)(reg & 0xff) << 24 | (u32)(reg >> 16) << 8 |
519 ((tmp >> 8) & 0xff);
520 if (mask)
521 offset = CORE_CFP_MASK_PORT(3);
522 else
523 offset = CORE_CFP_DATA_PORT(3);
524 core_writel(priv, val, offset);
525
526 /* UDF_n_B5 (lower) [31:24] (addr[39:32])
527 * UDF_n_B4 [23:8] (addr[63:48])
528 * UDF_n_B3 (upper) [7:0] (addr[79:72])
529 */
530 reg = be32_to_cpu(ip6_addr[1]);
531 val = (u32)(tmp & 0xff) << 24 | (u32)(tmp >> 16) << 8 |
532 ((reg >> 8) & 0xff);
533 if (mask)
534 offset = CORE_CFP_MASK_PORT(2);
535 else
536 offset = CORE_CFP_DATA_PORT(2);
537 core_writel(priv, val, offset);
538
539 /* UDF_n_B3 (lower) [31:24] (addr[71:64])
540 * UDF_n_B2 [23:8] (addr[95:80])
541 * UDF_n_B1 (upper) [7:0] (addr[111:104])
542 */
543 tmp = be32_to_cpu(ip6_addr[0]);
544 val = (u32)(reg & 0xff) << 24 | (u32)(reg >> 16) << 8 |
545 ((tmp >> 8) & 0xff);
546 if (mask)
547 offset = CORE_CFP_MASK_PORT(1);
548 else
549 offset = CORE_CFP_DATA_PORT(1);
550 core_writel(priv, val, offset);
551
552 /* UDF_n_B1 (lower) [31:24] (addr[103:96])
553 * UDF_n_B0 [23:8] (addr[127:112])
554 * Reserved [7:4]
555 * Slice ID [3:2]
556 * Slice valid [1:0]
557 */
558 reg = (u32)(tmp & 0xff) << 24 | (u32)(tmp >> 16) << 8 |
559 SLICE_NUM(slice_num) | SLICE_VALID;
560 if (mask)
561 offset = CORE_CFP_MASK_PORT(0);
562 else
563 offset = CORE_CFP_DATA_PORT(0);
564 core_writel(priv, reg, offset);
565}
566
567static struct cfp_rule *bcm_sf2_cfp_rule_find(struct bcm_sf2_priv *priv,
568 int port, u32 location)
569{
570 struct cfp_rule *rule;
571
572 list_for_each_entry(rule, &priv->cfp.rules_list, next) {
573 if (rule->port == port && rule->fs.location == location)
574 return rule;
575 }
576
577 return NULL;
578}
579
580static int bcm_sf2_cfp_rule_cmp(struct bcm_sf2_priv *priv, int port,
581 struct ethtool_rx_flow_spec *fs)
582{
583 struct cfp_rule *rule = NULL;
584 size_t fs_size = 0;
585 int ret = 1;
586
587 if (list_empty(&priv->cfp.rules_list))
588 return ret;
589
590 list_for_each_entry(rule, &priv->cfp.rules_list, next) {
591 ret = 1;
592 if (rule->port != port)
593 continue;
594
595 if (rule->fs.flow_type != fs->flow_type ||
596 rule->fs.ring_cookie != fs->ring_cookie ||
597 rule->fs.h_ext.data[0] != fs->h_ext.data[0])
598 continue;
599
600 switch (fs->flow_type & ~FLOW_EXT) {
601 case TCP_V6_FLOW:
602 case UDP_V6_FLOW:
603 fs_size = sizeof(struct ethtool_tcpip6_spec);
604 break;
605 case TCP_V4_FLOW:
606 case UDP_V4_FLOW:
607 fs_size = sizeof(struct ethtool_tcpip4_spec);
608 break;
609 default:
610 continue;
611 }
612
613 ret = memcmp(&rule->fs.h_u, &fs->h_u, fs_size);
614 ret |= memcmp(&rule->fs.m_u, &fs->m_u, fs_size);
615 /* Compare VLAN TCI values as well */
616 if (rule->fs.flow_type & FLOW_EXT) {
617 ret |= rule->fs.h_ext.vlan_tci != fs->h_ext.vlan_tci;
618 ret |= rule->fs.m_ext.vlan_tci != fs->m_ext.vlan_tci;
619 }
620 if (ret == 0)
621 break;
622 }
623
624 return ret;
625}
626
627static int bcm_sf2_cfp_ipv6_rule_set(struct bcm_sf2_priv *priv, int port,
628 unsigned int port_num,
629 unsigned int queue_num,
630 struct ethtool_rx_flow_spec *fs)
631{
632 __be16 vlan_tci = 0, vlan_m_tci = htons(0xffff);
633 struct ethtool_rx_flow_spec_input input = {};
634 unsigned int slice_num, rule_index[2];
635 const struct cfp_udf_layout *layout;
636 struct ethtool_rx_flow_rule *flow;
637 struct flow_match_ipv6_addrs ipv6;
638 struct flow_match_ports ports;
639 u8 ip_proto, ip_frag;
640 int ret = 0;
641 u8 num_udf;
642 u32 reg;
643
644 switch (fs->flow_type & ~FLOW_EXT) {
645 case TCP_V6_FLOW:
646 ip_proto = IPPROTO_TCP;
647 break;
648 case UDP_V6_FLOW:
649 ip_proto = IPPROTO_UDP;
650 break;
651 default:
652 return -EINVAL;
653 }
654
655 ip_frag = !!(be32_to_cpu(fs->h_ext.data[0]) & 1);
656
657 /* Extract VLAN TCI */
658 if (fs->flow_type & FLOW_EXT) {
659 vlan_tci = fs->h_ext.vlan_tci;
660 vlan_m_tci = fs->m_ext.vlan_tci;
661 }
662
663 layout = &udf_tcpip6_layout;
664 slice_num = bcm_sf2_get_slice_number(layout, 0);
665 if (slice_num == UDF_NUM_SLICES)
666 return -EINVAL;
667
668 num_udf = bcm_sf2_get_num_udf_slices(layout->udfs[slice_num].slices);
669
670 /* Negotiate two indexes, one for the second half which we are chained
671 * from, which is what we will return to user-space, and a second one
672 * which is used to store its first half. That first half does not
673 * allow any choice of placement, so it just needs to find the next
674 * available bit. We return the second half as fs->location because
675 * that helps with the rule lookup later on since the second half is
676 * chained from its first half, we can easily identify IPv6 CFP rules
677 * by looking whether they carry a CHAIN_ID.
678 *
679 * We also want the second half to have a lower rule_index than its
680 * first half because the HW search is by incrementing addresses.
681 */
682 if (fs->location == RX_CLS_LOC_ANY)
683 rule_index[1] = find_first_zero_bit(priv->cfp.used,
684 priv->num_cfp_rules);
685 else
686 rule_index[1] = fs->location;
687 if (rule_index[1] > bcm_sf2_cfp_rule_size(priv))
688 return -ENOSPC;
689
690 /* Flag it as used (cleared on error path) such that we can immediately
691 * obtain a second one to chain from.
692 */
693 set_bit(rule_index[1], priv->cfp.used);
694
695 rule_index[0] = find_first_zero_bit(priv->cfp.used,
696 priv->num_cfp_rules);
697 if (rule_index[0] > bcm_sf2_cfp_rule_size(priv)) {
698 ret = -ENOSPC;
699 goto out_err;
700 }
701
702 input.fs = fs;
703 flow = ethtool_rx_flow_rule_create(&input);
704 if (IS_ERR(flow)) {
705 ret = PTR_ERR(flow);
706 goto out_err;
707 }
708 flow_rule_match_ipv6_addrs(flow->rule, &ipv6);
709 flow_rule_match_ports(flow->rule, &ports);
710
711 /* Apply the UDF layout for this filter */
712 bcm_sf2_cfp_udf_set(priv, layout, slice_num);
713
714 /* Apply to all packets received through this port */
715 core_writel(priv, BIT(port), CORE_CFP_DATA_PORT(7));
716
717 /* Source port map match */
718 core_writel(priv, 0xff, CORE_CFP_MASK_PORT(7));
719
720 /* S-Tag status [31:30]
721 * C-Tag status [29:28]
722 * L2 framing [27:26]
723 * L3 framing [25:24]
724 * IP ToS [23:16]
725 * IP proto [15:08]
726 * IP Fragm [7]
727 * Non 1st frag [6]
728 * IP Authen [5]
729 * TTL range [4:3]
730 * PPPoE session [2]
731 * Reserved [1]
732 * UDF_Valid[8] [0]
733 */
734 reg = 1 << L3_FRAMING_SHIFT | ip_proto << IPPROTO_SHIFT |
735 ip_frag << IP_FRAG_SHIFT | udf_upper_bits(num_udf);
736 core_writel(priv, reg, CORE_CFP_DATA_PORT(6));
737
738 /* Mask with the specific layout for IPv6 packets including
739 * UDF_Valid[8]
740 */
741 reg = layout->udfs[slice_num].mask_value | udf_upper_bits(num_udf);
742 core_writel(priv, reg, CORE_CFP_MASK_PORT(6));
743
744 /* Slice the IPv6 source address and port */
745 bcm_sf2_cfp_slice_ipv6(priv, ipv6.key->src.in6_u.u6_addr32,
746 ports.key->src, vlan_tci, slice_num,
747 udf_lower_bits(num_udf), false);
748 bcm_sf2_cfp_slice_ipv6(priv, ipv6.mask->src.in6_u.u6_addr32,
749 ports.mask->src, vlan_m_tci, SLICE_NUM_MASK,
750 udf_lower_bits(num_udf), true);
751
752 /* Insert into TCAM now because we need to insert a second rule */
753 bcm_sf2_cfp_rule_addr_set(priv, rule_index[0]);
754
755 ret = bcm_sf2_cfp_op(priv, OP_SEL_WRITE | TCAM_SEL);
756 if (ret) {
757 pr_err("TCAM entry at addr %d failed\n", rule_index[0]);
758 goto out_err_flow_rule;
759 }
760
761 /* Insert into Action and policer RAMs now */
762 ret = bcm_sf2_cfp_act_pol_set(priv, rule_index[0], port, port_num,
763 queue_num, false);
764 if (ret)
765 goto out_err_flow_rule;
766
767 /* Now deal with the second slice to chain this rule */
768 slice_num = bcm_sf2_get_slice_number(layout, slice_num + 1);
769 if (slice_num == UDF_NUM_SLICES) {
770 ret = -EINVAL;
771 goto out_err_flow_rule;
772 }
773
774 num_udf = bcm_sf2_get_num_udf_slices(layout->udfs[slice_num].slices);
775
776 /* Apply the UDF layout for this filter */
777 bcm_sf2_cfp_udf_set(priv, layout, slice_num);
778
779 /* Chained rule, source port match is coming from the rule we are
780 * chained from.
781 */
782 core_writel(priv, 0, CORE_CFP_DATA_PORT(7));
783 core_writel(priv, 0, CORE_CFP_MASK_PORT(7));
784
785 /*
786 * CHAIN ID [31:24] chain to previous slice
787 * Reserved [23:20]
788 * UDF_Valid[11:8] [19:16]
789 * UDF_Valid[7:0] [15:8]
790 * UDF_n_D11 [7:0]
791 */
792 reg = rule_index[0] << 24 | udf_upper_bits(num_udf) << 16 |
793 udf_lower_bits(num_udf) << 8;
794 core_writel(priv, reg, CORE_CFP_DATA_PORT(6));
795
796 /* Mask all except chain ID, UDF Valid[8] and UDF Valid[7:0] */
797 reg = XCESS_ADDR_MASK << 24 | udf_upper_bits(num_udf) << 16 |
798 udf_lower_bits(num_udf) << 8;
799 core_writel(priv, reg, CORE_CFP_MASK_PORT(6));
800
801 bcm_sf2_cfp_slice_ipv6(priv, ipv6.key->dst.in6_u.u6_addr32,
802 ports.key->dst, 0, slice_num,
803 0, false);
804 bcm_sf2_cfp_slice_ipv6(priv, ipv6.mask->dst.in6_u.u6_addr32,
805 ports.key->dst, 0, SLICE_NUM_MASK,
806 0, true);
807
808 /* Insert into TCAM now */
809 bcm_sf2_cfp_rule_addr_set(priv, rule_index[1]);
810
811 ret = bcm_sf2_cfp_op(priv, OP_SEL_WRITE | TCAM_SEL);
812 if (ret) {
813 pr_err("TCAM entry at addr %d failed\n", rule_index[1]);
814 goto out_err_flow_rule;
815 }
816
817 /* Insert into Action and policer RAMs now, set chain ID to
818 * the one we are chained to
819 */
820 ret = bcm_sf2_cfp_act_pol_set(priv, rule_index[1], port, port_num,
821 queue_num, true);
822 if (ret)
823 goto out_err_flow_rule;
824
825 /* Turn on CFP for this rule now */
826 reg = core_readl(priv, CORE_CFP_CTL_REG);
827 reg |= BIT(port);
828 core_writel(priv, reg, CORE_CFP_CTL_REG);
829
830 /* Flag the second half rule as being used now, return it as the
831 * location, and flag it as unique while dumping rules
832 */
833 set_bit(rule_index[0], priv->cfp.used);
834 set_bit(rule_index[1], priv->cfp.unique);
835 fs->location = rule_index[1];
836
837 return ret;
838
839out_err_flow_rule:
840 ethtool_rx_flow_rule_destroy(flow);
841out_err:
842 clear_bit(rule_index[1], priv->cfp.used);
843 return ret;
844}
845
846static int bcm_sf2_cfp_rule_insert(struct dsa_switch *ds, int port,
847 struct ethtool_rx_flow_spec *fs)
848{
849 struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
850 s8 cpu_port = dsa_to_port(ds, port)->cpu_dp->index;
851 __u64 ring_cookie = fs->ring_cookie;
852 struct switchdev_obj_port_vlan vlan;
853 unsigned int queue_num, port_num;
854 u16 vid;
855 int ret;
856
857 /* This rule is a Wake-on-LAN filter and we must specifically
858 * target the CPU port in order for it to be working.
859 */
860 if (ring_cookie == RX_CLS_FLOW_WAKE)
861 ring_cookie = cpu_port * SF2_NUM_EGRESS_QUEUES;
862
863 /* We do not support discarding packets, check that the
864 * destination port is enabled and that we are within the
865 * number of ports supported by the switch
866 */
867 port_num = ring_cookie / SF2_NUM_EGRESS_QUEUES;
868
869 if (ring_cookie == RX_CLS_FLOW_DISC ||
870 !(dsa_is_user_port(ds, port_num) ||
871 dsa_is_cpu_port(ds, port_num)) ||
872 port_num >= priv->hw_params.num_ports)
873 return -EINVAL;
874
875 /* If the rule is matching a particular VLAN, make sure that we honor
876 * the matching and have it tagged or untagged on the destination port,
877 * we do this on egress with a VLAN entry. The egress tagging attribute
878 * is expected to be provided in h_ext.data[1] bit 0. A 1 means untagged,
879 * a 0 means tagged.
880 */
881 if (fs->flow_type & FLOW_EXT) {
882 /* We cannot support matching multiple VLAN IDs yet */
883 if ((be16_to_cpu(fs->m_ext.vlan_tci) & VLAN_VID_MASK) !=
884 VLAN_VID_MASK)
885 return -EINVAL;
886
887 vid = be16_to_cpu(fs->h_ext.vlan_tci) & VLAN_VID_MASK;
888 vlan.vid = vid;
889 if (be32_to_cpu(fs->h_ext.data[1]) & 1)
890 vlan.flags = BRIDGE_VLAN_INFO_UNTAGGED;
891 else
892 vlan.flags = 0;
893
894 ret = ds->ops->port_vlan_add(ds, port_num, &vlan, NULL);
895 if (ret)
896 return ret;
897 }
898
899 /*
900 * We have a small oddity where Port 6 just does not have a
901 * valid bit here (so we substract by one).
902 */
903 queue_num = ring_cookie % SF2_NUM_EGRESS_QUEUES;
904 if (port_num >= 7)
905 port_num -= 1;
906
907 switch (fs->flow_type & ~FLOW_EXT) {
908 case TCP_V4_FLOW:
909 case UDP_V4_FLOW:
910 ret = bcm_sf2_cfp_ipv4_rule_set(priv, port, port_num,
911 queue_num, fs);
912 break;
913 case TCP_V6_FLOW:
914 case UDP_V6_FLOW:
915 ret = bcm_sf2_cfp_ipv6_rule_set(priv, port, port_num,
916 queue_num, fs);
917 break;
918 default:
919 ret = -EINVAL;
920 break;
921 }
922
923 return ret;
924}
925
926static int bcm_sf2_cfp_rule_set(struct dsa_switch *ds, int port,
927 struct ethtool_rx_flow_spec *fs)
928{
929 struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
930 struct cfp_rule *rule = NULL;
931 int ret = -EINVAL;
932
933 /* Check for unsupported extensions */
934 if (fs->flow_type & FLOW_MAC_EXT)
935 return -EINVAL;
936
937 if (fs->location != RX_CLS_LOC_ANY &&
938 fs->location > bcm_sf2_cfp_rule_size(priv))
939 return -EINVAL;
940
941 if ((fs->flow_type & FLOW_EXT) &&
942 !(ds->ops->port_vlan_add || ds->ops->port_vlan_del))
943 return -EOPNOTSUPP;
944
945 if (fs->location != RX_CLS_LOC_ANY &&
946 test_bit(fs->location, priv->cfp.used))
947 return -EBUSY;
948
949 ret = bcm_sf2_cfp_rule_cmp(priv, port, fs);
950 if (ret == 0)
951 return -EEXIST;
952
953 rule = kzalloc(sizeof(*rule), GFP_KERNEL);
954 if (!rule)
955 return -ENOMEM;
956
957 ret = bcm_sf2_cfp_rule_insert(ds, port, fs);
958 if (ret) {
959 kfree(rule);
960 return ret;
961 }
962
963 rule->port = port;
964 memcpy(&rule->fs, fs, sizeof(*fs));
965 list_add_tail(&rule->next, &priv->cfp.rules_list);
966
967 return ret;
968}
969
970static int bcm_sf2_cfp_rule_del_one(struct bcm_sf2_priv *priv, int port,
971 u32 loc, u32 *next_loc)
972{
973 int ret;
974 u32 reg;
975
976 /* Indicate which rule we want to read */
977 bcm_sf2_cfp_rule_addr_set(priv, loc);
978
979 ret = bcm_sf2_cfp_op(priv, OP_SEL_READ | TCAM_SEL);
980 if (ret)
981 return ret;
982
983 /* Check if this is possibly an IPv6 rule that would
984 * indicate we need to delete its companion rule
985 * as well
986 */
987 reg = core_readl(priv, CORE_CFP_DATA_PORT(6));
988 if (next_loc)
989 *next_loc = (reg >> 24) & CHAIN_ID_MASK;
990
991 /* Clear its valid bits */
992 reg = core_readl(priv, CORE_CFP_DATA_PORT(0));
993 reg &= ~SLICE_VALID;
994 core_writel(priv, reg, CORE_CFP_DATA_PORT(0));
995
996 /* Write back this entry into the TCAM now */
997 ret = bcm_sf2_cfp_op(priv, OP_SEL_WRITE | TCAM_SEL);
998 if (ret)
999 return ret;
1000
1001 clear_bit(loc, priv->cfp.used);
1002 clear_bit(loc, priv->cfp.unique);
1003
1004 return 0;
1005}
1006
1007static int bcm_sf2_cfp_rule_remove(struct bcm_sf2_priv *priv, int port,
1008 u32 loc)
1009{
1010 u32 next_loc = 0;
1011 int ret;
1012
1013 ret = bcm_sf2_cfp_rule_del_one(priv, port, loc, &next_loc);
1014 if (ret)
1015 return ret;
1016
1017 /* If this was an IPv6 rule, delete is companion rule too */
1018 if (next_loc)
1019 ret = bcm_sf2_cfp_rule_del_one(priv, port, next_loc, NULL);
1020
1021 return ret;
1022}
1023
1024static int bcm_sf2_cfp_rule_del(struct bcm_sf2_priv *priv, int port, u32 loc)
1025{
1026 struct cfp_rule *rule;
1027 int ret;
1028
1029 if (loc > bcm_sf2_cfp_rule_size(priv))
1030 return -EINVAL;
1031
1032 /* Refuse deleting unused rules, and those that are not unique since
1033 * that could leave IPv6 rules with one of the chained rule in the
1034 * table.
1035 */
1036 if (!test_bit(loc, priv->cfp.unique) || loc == 0)
1037 return -EINVAL;
1038
1039 rule = bcm_sf2_cfp_rule_find(priv, port, loc);
1040 if (!rule)
1041 return -EINVAL;
1042
1043 ret = bcm_sf2_cfp_rule_remove(priv, port, loc);
1044
1045 list_del(&rule->next);
1046 kfree(rule);
1047
1048 return ret;
1049}
1050
1051static void bcm_sf2_invert_masks(struct ethtool_rx_flow_spec *flow)
1052{
1053 unsigned int i;
1054
1055 for (i = 0; i < sizeof(flow->m_u); i++)
1056 flow->m_u.hdata[i] ^= 0xff;
1057
1058 flow->m_ext.vlan_etype ^= cpu_to_be16(~0);
1059 flow->m_ext.vlan_tci ^= cpu_to_be16(~0);
1060 flow->m_ext.data[0] ^= cpu_to_be32(~0);
1061 flow->m_ext.data[1] ^= cpu_to_be32(~0);
1062}
1063
1064static int bcm_sf2_cfp_rule_get(struct bcm_sf2_priv *priv, int port,
1065 struct ethtool_rxnfc *nfc)
1066{
1067 struct cfp_rule *rule;
1068
1069 rule = bcm_sf2_cfp_rule_find(priv, port, nfc->fs.location);
1070 if (!rule)
1071 return -EINVAL;
1072
1073 memcpy(&nfc->fs, &rule->fs, sizeof(rule->fs));
1074
1075 bcm_sf2_invert_masks(&nfc->fs);
1076
1077 /* Put the TCAM size here */
1078 nfc->data = bcm_sf2_cfp_rule_size(priv);
1079
1080 return 0;
1081}
1082
1083/* We implement the search doing a TCAM search operation */
1084static int bcm_sf2_cfp_rule_get_all(struct bcm_sf2_priv *priv,
1085 int port, struct ethtool_rxnfc *nfc,
1086 u32 *rule_locs)
1087{
1088 unsigned int index = 1, rules_cnt = 0;
1089
1090 for_each_set_bit_from(index, priv->cfp.unique, priv->num_cfp_rules) {
1091 rule_locs[rules_cnt] = index;
1092 rules_cnt++;
1093 }
1094
1095 /* Put the TCAM size here */
1096 nfc->data = bcm_sf2_cfp_rule_size(priv);
1097 nfc->rule_cnt = rules_cnt;
1098
1099 return 0;
1100}
1101
1102int bcm_sf2_get_rxnfc(struct dsa_switch *ds, int port,
1103 struct ethtool_rxnfc *nfc, u32 *rule_locs)
1104{
1105 struct net_device *p = dsa_port_to_conduit(dsa_to_port(ds, port));
1106 struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
1107 int ret = 0;
1108
1109 mutex_lock(&priv->cfp.lock);
1110
1111 switch (nfc->cmd) {
1112 case ETHTOOL_GRXCLSRLCNT:
1113 /* Subtract the default, unusable rule */
1114 nfc->rule_cnt = bitmap_weight(priv->cfp.unique,
1115 priv->num_cfp_rules) - 1;
1116 /* We support specifying rule locations */
1117 nfc->data |= RX_CLS_LOC_SPECIAL;
1118 break;
1119 case ETHTOOL_GRXCLSRULE:
1120 ret = bcm_sf2_cfp_rule_get(priv, port, nfc);
1121 break;
1122 case ETHTOOL_GRXCLSRLALL:
1123 ret = bcm_sf2_cfp_rule_get_all(priv, port, nfc, rule_locs);
1124 break;
1125 default:
1126 ret = -EOPNOTSUPP;
1127 break;
1128 }
1129
1130 mutex_unlock(&priv->cfp.lock);
1131
1132 if (ret)
1133 return ret;
1134
1135 /* Pass up the commands to the attached master network device */
1136 if (p->ethtool_ops->get_rxnfc) {
1137 ret = p->ethtool_ops->get_rxnfc(p, nfc, rule_locs);
1138 if (ret == -EOPNOTSUPP)
1139 ret = 0;
1140 }
1141
1142 return ret;
1143}
1144
1145int bcm_sf2_set_rxnfc(struct dsa_switch *ds, int port,
1146 struct ethtool_rxnfc *nfc)
1147{
1148 struct net_device *p = dsa_port_to_conduit(dsa_to_port(ds, port));
1149 struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
1150 int ret = 0;
1151
1152 mutex_lock(&priv->cfp.lock);
1153
1154 switch (nfc->cmd) {
1155 case ETHTOOL_SRXCLSRLINS:
1156 ret = bcm_sf2_cfp_rule_set(ds, port, &nfc->fs);
1157 break;
1158
1159 case ETHTOOL_SRXCLSRLDEL:
1160 ret = bcm_sf2_cfp_rule_del(priv, port, nfc->fs.location);
1161 break;
1162 default:
1163 ret = -EOPNOTSUPP;
1164 break;
1165 }
1166
1167 mutex_unlock(&priv->cfp.lock);
1168
1169 if (ret)
1170 return ret;
1171
1172 /* Pass up the commands to the attached master network device.
1173 * This can fail, so rollback the operation if we need to.
1174 */
1175 if (p->ethtool_ops->set_rxnfc) {
1176 ret = p->ethtool_ops->set_rxnfc(p, nfc);
1177 if (ret && ret != -EOPNOTSUPP) {
1178 mutex_lock(&priv->cfp.lock);
1179 bcm_sf2_cfp_rule_del(priv, port, nfc->fs.location);
1180 mutex_unlock(&priv->cfp.lock);
1181 } else {
1182 ret = 0;
1183 }
1184 }
1185
1186 return ret;
1187}
1188
1189int bcm_sf2_cfp_rst(struct bcm_sf2_priv *priv)
1190{
1191 unsigned int timeout = 1000;
1192 u32 reg;
1193
1194 reg = core_readl(priv, CORE_CFP_ACC);
1195 reg |= TCAM_RESET;
1196 core_writel(priv, reg, CORE_CFP_ACC);
1197
1198 do {
1199 reg = core_readl(priv, CORE_CFP_ACC);
1200 if (!(reg & TCAM_RESET))
1201 break;
1202
1203 cpu_relax();
1204 } while (timeout--);
1205
1206 if (!timeout)
1207 return -ETIMEDOUT;
1208
1209 return 0;
1210}
1211
1212void bcm_sf2_cfp_exit(struct dsa_switch *ds)
1213{
1214 struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
1215 struct cfp_rule *rule, *n;
1216
1217 if (list_empty(&priv->cfp.rules_list))
1218 return;
1219
1220 list_for_each_entry_safe_reverse(rule, n, &priv->cfp.rules_list, next)
1221 bcm_sf2_cfp_rule_del(priv, rule->port, rule->fs.location);
1222}
1223
1224int bcm_sf2_cfp_resume(struct dsa_switch *ds)
1225{
1226 struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
1227 struct cfp_rule *rule;
1228 int ret = 0;
1229 u32 reg;
1230
1231 if (list_empty(&priv->cfp.rules_list))
1232 return ret;
1233
1234 reg = core_readl(priv, CORE_CFP_CTL_REG);
1235 reg &= ~CFP_EN_MAP_MASK;
1236 core_writel(priv, reg, CORE_CFP_CTL_REG);
1237
1238 ret = bcm_sf2_cfp_rst(priv);
1239 if (ret)
1240 return ret;
1241
1242 list_for_each_entry(rule, &priv->cfp.rules_list, next) {
1243 ret = bcm_sf2_cfp_rule_remove(priv, rule->port,
1244 rule->fs.location);
1245 if (ret) {
1246 dev_err(ds->dev, "failed to remove rule\n");
1247 return ret;
1248 }
1249
1250 ret = bcm_sf2_cfp_rule_insert(ds, rule->port, &rule->fs);
1251 if (ret) {
1252 dev_err(ds->dev, "failed to restore rule\n");
1253 return ret;
1254 }
1255 }
1256
1257 return ret;
1258}
1259
1260static const struct bcm_sf2_cfp_stat {
1261 unsigned int offset;
1262 unsigned int ram_loc;
1263 const char *name;
1264} bcm_sf2_cfp_stats[] = {
1265 {
1266 .offset = CORE_STAT_GREEN_CNTR,
1267 .ram_loc = GREEN_STAT_RAM,
1268 .name = "Green"
1269 },
1270 {
1271 .offset = CORE_STAT_YELLOW_CNTR,
1272 .ram_loc = YELLOW_STAT_RAM,
1273 .name = "Yellow"
1274 },
1275 {
1276 .offset = CORE_STAT_RED_CNTR,
1277 .ram_loc = RED_STAT_RAM,
1278 .name = "Red"
1279 },
1280};
1281
1282void bcm_sf2_cfp_get_strings(struct dsa_switch *ds, int port, u32 stringset,
1283 uint8_t **data)
1284{
1285 struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
1286 unsigned int i, j;
1287
1288 if (stringset != ETH_SS_STATS)
1289 return;
1290
1291 for (i = 1; i < priv->num_cfp_rules; i++)
1292 for (j = 0; j < ARRAY_SIZE(bcm_sf2_cfp_stats); j++)
1293 ethtool_sprintf(data, "CFP%03d_%sCntr", i,
1294 bcm_sf2_cfp_stats[j].name);
1295}
1296
1297void bcm_sf2_cfp_get_ethtool_stats(struct dsa_switch *ds, int port,
1298 uint64_t *data)
1299{
1300 struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
1301 unsigned int s = ARRAY_SIZE(bcm_sf2_cfp_stats);
1302 const struct bcm_sf2_cfp_stat *stat;
1303 unsigned int i, j, iter;
1304 struct cfp_rule *rule;
1305 int ret;
1306
1307 mutex_lock(&priv->cfp.lock);
1308 for (i = 1; i < priv->num_cfp_rules; i++) {
1309 rule = bcm_sf2_cfp_rule_find(priv, port, i);
1310 if (!rule)
1311 continue;
1312
1313 for (j = 0; j < s; j++) {
1314 stat = &bcm_sf2_cfp_stats[j];
1315
1316 bcm_sf2_cfp_rule_addr_set(priv, i);
1317 ret = bcm_sf2_cfp_op(priv, stat->ram_loc | OP_SEL_READ);
1318 if (ret)
1319 continue;
1320
1321 iter = (i - 1) * s + j;
1322 data[iter] = core_readl(priv, stat->offset);
1323 }
1324
1325 }
1326 mutex_unlock(&priv->cfp.lock);
1327}
1328
1329int bcm_sf2_cfp_get_sset_count(struct dsa_switch *ds, int port, int sset)
1330{
1331 struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
1332
1333 if (sset != ETH_SS_STATS)
1334 return 0;
1335
1336 /* 3 counters per CFP rules */
1337 return (priv->num_cfp_rules - 1) * ARRAY_SIZE(bcm_sf2_cfp_stats);
1338}
1/*
2 * Broadcom Starfighter 2 DSA switch CFP support
3 *
4 * Copyright (C) 2016, Broadcom
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 */
11
12#include <linux/list.h>
13#include <linux/ethtool.h>
14#include <linux/if_ether.h>
15#include <linux/in.h>
16#include <linux/netdevice.h>
17#include <net/dsa.h>
18#include <linux/bitmap.h>
19
20#include "bcm_sf2.h"
21#include "bcm_sf2_regs.h"
22
23struct cfp_udf_slice_layout {
24 u8 slices[UDFS_PER_SLICE];
25 u32 mask_value;
26 u32 base_offset;
27};
28
29struct cfp_udf_layout {
30 struct cfp_udf_slice_layout udfs[UDF_NUM_SLICES];
31};
32
33static const u8 zero_slice[UDFS_PER_SLICE] = { };
34
35/* UDF slices layout for a TCPv4/UDPv4 specification */
36static const struct cfp_udf_layout udf_tcpip4_layout = {
37 .udfs = {
38 [1] = {
39 .slices = {
40 /* End of L2, byte offset 12, src IP[0:15] */
41 CFG_UDF_EOL2 | 6,
42 /* End of L2, byte offset 14, src IP[16:31] */
43 CFG_UDF_EOL2 | 7,
44 /* End of L2, byte offset 16, dst IP[0:15] */
45 CFG_UDF_EOL2 | 8,
46 /* End of L2, byte offset 18, dst IP[16:31] */
47 CFG_UDF_EOL2 | 9,
48 /* End of L3, byte offset 0, src port */
49 CFG_UDF_EOL3 | 0,
50 /* End of L3, byte offset 2, dst port */
51 CFG_UDF_EOL3 | 1,
52 0, 0, 0
53 },
54 .mask_value = L3_FRAMING_MASK | IPPROTO_MASK | IP_FRAG,
55 .base_offset = CORE_UDF_0_A_0_8_PORT_0 + UDF_SLICE_OFFSET,
56 },
57 },
58};
59
60/* UDF slices layout for a TCPv6/UDPv6 specification */
61static const struct cfp_udf_layout udf_tcpip6_layout = {
62 .udfs = {
63 [0] = {
64 .slices = {
65 /* End of L2, byte offset 8, src IP[0:15] */
66 CFG_UDF_EOL2 | 4,
67 /* End of L2, byte offset 10, src IP[16:31] */
68 CFG_UDF_EOL2 | 5,
69 /* End of L2, byte offset 12, src IP[32:47] */
70 CFG_UDF_EOL2 | 6,
71 /* End of L2, byte offset 14, src IP[48:63] */
72 CFG_UDF_EOL2 | 7,
73 /* End of L2, byte offset 16, src IP[64:79] */
74 CFG_UDF_EOL2 | 8,
75 /* End of L2, byte offset 18, src IP[80:95] */
76 CFG_UDF_EOL2 | 9,
77 /* End of L2, byte offset 20, src IP[96:111] */
78 CFG_UDF_EOL2 | 10,
79 /* End of L2, byte offset 22, src IP[112:127] */
80 CFG_UDF_EOL2 | 11,
81 /* End of L3, byte offset 0, src port */
82 CFG_UDF_EOL3 | 0,
83 },
84 .mask_value = L3_FRAMING_MASK | IPPROTO_MASK | IP_FRAG,
85 .base_offset = CORE_UDF_0_B_0_8_PORT_0,
86 },
87 [3] = {
88 .slices = {
89 /* End of L2, byte offset 24, dst IP[0:15] */
90 CFG_UDF_EOL2 | 12,
91 /* End of L2, byte offset 26, dst IP[16:31] */
92 CFG_UDF_EOL2 | 13,
93 /* End of L2, byte offset 28, dst IP[32:47] */
94 CFG_UDF_EOL2 | 14,
95 /* End of L2, byte offset 30, dst IP[48:63] */
96 CFG_UDF_EOL2 | 15,
97 /* End of L2, byte offset 32, dst IP[64:79] */
98 CFG_UDF_EOL2 | 16,
99 /* End of L2, byte offset 34, dst IP[80:95] */
100 CFG_UDF_EOL2 | 17,
101 /* End of L2, byte offset 36, dst IP[96:111] */
102 CFG_UDF_EOL2 | 18,
103 /* End of L2, byte offset 38, dst IP[112:127] */
104 CFG_UDF_EOL2 | 19,
105 /* End of L3, byte offset 2, dst port */
106 CFG_UDF_EOL3 | 1,
107 },
108 .mask_value = L3_FRAMING_MASK | IPPROTO_MASK | IP_FRAG,
109 .base_offset = CORE_UDF_0_D_0_11_PORT_0,
110 },
111 },
112};
113
114static inline unsigned int bcm_sf2_get_num_udf_slices(const u8 *layout)
115{
116 unsigned int i, count = 0;
117
118 for (i = 0; i < UDFS_PER_SLICE; i++) {
119 if (layout[i] != 0)
120 count++;
121 }
122
123 return count;
124}
125
126static inline u32 udf_upper_bits(unsigned int num_udf)
127{
128 return GENMASK(num_udf - 1, 0) >> (UDFS_PER_SLICE - 1);
129}
130
131static inline u32 udf_lower_bits(unsigned int num_udf)
132{
133 return (u8)GENMASK(num_udf - 1, 0);
134}
135
136static unsigned int bcm_sf2_get_slice_number(const struct cfp_udf_layout *l,
137 unsigned int start)
138{
139 const struct cfp_udf_slice_layout *slice_layout;
140 unsigned int slice_idx;
141
142 for (slice_idx = start; slice_idx < UDF_NUM_SLICES; slice_idx++) {
143 slice_layout = &l->udfs[slice_idx];
144 if (memcmp(slice_layout->slices, zero_slice,
145 sizeof(zero_slice)))
146 break;
147 }
148
149 return slice_idx;
150}
151
152static void bcm_sf2_cfp_udf_set(struct bcm_sf2_priv *priv,
153 const struct cfp_udf_layout *layout,
154 unsigned int slice_num)
155{
156 u32 offset = layout->udfs[slice_num].base_offset;
157 unsigned int i;
158
159 for (i = 0; i < UDFS_PER_SLICE; i++)
160 core_writel(priv, layout->udfs[slice_num].slices[i],
161 offset + i * 4);
162}
163
164static int bcm_sf2_cfp_op(struct bcm_sf2_priv *priv, unsigned int op)
165{
166 unsigned int timeout = 1000;
167 u32 reg;
168
169 reg = core_readl(priv, CORE_CFP_ACC);
170 reg &= ~(OP_SEL_MASK | RAM_SEL_MASK);
171 reg |= OP_STR_DONE | op;
172 core_writel(priv, reg, CORE_CFP_ACC);
173
174 do {
175 reg = core_readl(priv, CORE_CFP_ACC);
176 if (!(reg & OP_STR_DONE))
177 break;
178
179 cpu_relax();
180 } while (timeout--);
181
182 if (!timeout)
183 return -ETIMEDOUT;
184
185 return 0;
186}
187
188static inline void bcm_sf2_cfp_rule_addr_set(struct bcm_sf2_priv *priv,
189 unsigned int addr)
190{
191 u32 reg;
192
193 WARN_ON(addr >= priv->num_cfp_rules);
194
195 reg = core_readl(priv, CORE_CFP_ACC);
196 reg &= ~(XCESS_ADDR_MASK << XCESS_ADDR_SHIFT);
197 reg |= addr << XCESS_ADDR_SHIFT;
198 core_writel(priv, reg, CORE_CFP_ACC);
199}
200
201static inline unsigned int bcm_sf2_cfp_rule_size(struct bcm_sf2_priv *priv)
202{
203 /* Entry #0 is reserved */
204 return priv->num_cfp_rules - 1;
205}
206
207static int bcm_sf2_cfp_act_pol_set(struct bcm_sf2_priv *priv,
208 unsigned int rule_index,
209 unsigned int port_num,
210 unsigned int queue_num,
211 bool fwd_map_change)
212{
213 int ret;
214 u32 reg;
215
216 /* Replace ARL derived destination with DST_MAP derived, define
217 * which port and queue this should be forwarded to.
218 */
219 if (fwd_map_change)
220 reg = CHANGE_FWRD_MAP_IB_REP_ARL |
221 BIT(port_num + DST_MAP_IB_SHIFT) |
222 CHANGE_TC | queue_num << NEW_TC_SHIFT;
223 else
224 reg = 0;
225
226 core_writel(priv, reg, CORE_ACT_POL_DATA0);
227
228 /* Set classification ID that needs to be put in Broadcom tag */
229 core_writel(priv, rule_index << CHAIN_ID_SHIFT, CORE_ACT_POL_DATA1);
230
231 core_writel(priv, 0, CORE_ACT_POL_DATA2);
232
233 /* Configure policer RAM now */
234 ret = bcm_sf2_cfp_op(priv, OP_SEL_WRITE | ACT_POL_RAM);
235 if (ret) {
236 pr_err("Policer entry at %d failed\n", rule_index);
237 return ret;
238 }
239
240 /* Disable the policer */
241 core_writel(priv, POLICER_MODE_DISABLE, CORE_RATE_METER0);
242
243 /* Now the rate meter */
244 ret = bcm_sf2_cfp_op(priv, OP_SEL_WRITE | RATE_METER_RAM);
245 if (ret) {
246 pr_err("Meter entry at %d failed\n", rule_index);
247 return ret;
248 }
249
250 return 0;
251}
252
253static void bcm_sf2_cfp_slice_ipv4(struct bcm_sf2_priv *priv,
254 struct ethtool_tcpip4_spec *v4_spec,
255 unsigned int slice_num,
256 bool mask)
257{
258 u32 reg, offset;
259
260 /* C-Tag [31:24]
261 * UDF_n_A8 [23:8]
262 * UDF_n_A7 [7:0]
263 */
264 reg = 0;
265 if (mask)
266 offset = CORE_CFP_MASK_PORT(4);
267 else
268 offset = CORE_CFP_DATA_PORT(4);
269 core_writel(priv, reg, offset);
270
271 /* UDF_n_A7 [31:24]
272 * UDF_n_A6 [23:8]
273 * UDF_n_A5 [7:0]
274 */
275 reg = be16_to_cpu(v4_spec->pdst) >> 8;
276 if (mask)
277 offset = CORE_CFP_MASK_PORT(3);
278 else
279 offset = CORE_CFP_DATA_PORT(3);
280 core_writel(priv, reg, offset);
281
282 /* UDF_n_A5 [31:24]
283 * UDF_n_A4 [23:8]
284 * UDF_n_A3 [7:0]
285 */
286 reg = (be16_to_cpu(v4_spec->pdst) & 0xff) << 24 |
287 (u32)be16_to_cpu(v4_spec->psrc) << 8 |
288 (be32_to_cpu(v4_spec->ip4dst) & 0x0000ff00) >> 8;
289 if (mask)
290 offset = CORE_CFP_MASK_PORT(2);
291 else
292 offset = CORE_CFP_DATA_PORT(2);
293 core_writel(priv, reg, offset);
294
295 /* UDF_n_A3 [31:24]
296 * UDF_n_A2 [23:8]
297 * UDF_n_A1 [7:0]
298 */
299 reg = (u32)(be32_to_cpu(v4_spec->ip4dst) & 0xff) << 24 |
300 (u32)(be32_to_cpu(v4_spec->ip4dst) >> 16) << 8 |
301 (be32_to_cpu(v4_spec->ip4src) & 0x0000ff00) >> 8;
302 if (mask)
303 offset = CORE_CFP_MASK_PORT(1);
304 else
305 offset = CORE_CFP_DATA_PORT(1);
306 core_writel(priv, reg, offset);
307
308 /* UDF_n_A1 [31:24]
309 * UDF_n_A0 [23:8]
310 * Reserved [7:4]
311 * Slice ID [3:2]
312 * Slice valid [1:0]
313 */
314 reg = (u32)(be32_to_cpu(v4_spec->ip4src) & 0xff) << 24 |
315 (u32)(be32_to_cpu(v4_spec->ip4src) >> 16) << 8 |
316 SLICE_NUM(slice_num) | SLICE_VALID;
317 if (mask)
318 offset = CORE_CFP_MASK_PORT(0);
319 else
320 offset = CORE_CFP_DATA_PORT(0);
321 core_writel(priv, reg, offset);
322}
323
324static int bcm_sf2_cfp_ipv4_rule_set(struct bcm_sf2_priv *priv, int port,
325 unsigned int port_num,
326 unsigned int queue_num,
327 struct ethtool_rx_flow_spec *fs)
328{
329 struct ethtool_tcpip4_spec *v4_spec, *v4_m_spec;
330 const struct cfp_udf_layout *layout;
331 unsigned int slice_num, rule_index;
332 u8 ip_proto, ip_frag;
333 u8 num_udf;
334 u32 reg;
335 int ret;
336
337 switch (fs->flow_type & ~FLOW_EXT) {
338 case TCP_V4_FLOW:
339 ip_proto = IPPROTO_TCP;
340 v4_spec = &fs->h_u.tcp_ip4_spec;
341 v4_m_spec = &fs->m_u.tcp_ip4_spec;
342 break;
343 case UDP_V4_FLOW:
344 ip_proto = IPPROTO_UDP;
345 v4_spec = &fs->h_u.udp_ip4_spec;
346 v4_m_spec = &fs->m_u.udp_ip4_spec;
347 break;
348 default:
349 return -EINVAL;
350 }
351
352 ip_frag = be32_to_cpu(fs->m_ext.data[0]);
353
354 /* Locate the first rule available */
355 if (fs->location == RX_CLS_LOC_ANY)
356 rule_index = find_first_zero_bit(priv->cfp.used,
357 priv->num_cfp_rules);
358 else
359 rule_index = fs->location;
360
361 if (rule_index > bcm_sf2_cfp_rule_size(priv))
362 return -ENOSPC;
363
364 layout = &udf_tcpip4_layout;
365 /* We only use one UDF slice for now */
366 slice_num = bcm_sf2_get_slice_number(layout, 0);
367 if (slice_num == UDF_NUM_SLICES)
368 return -EINVAL;
369
370 num_udf = bcm_sf2_get_num_udf_slices(layout->udfs[slice_num].slices);
371
372 /* Apply the UDF layout for this filter */
373 bcm_sf2_cfp_udf_set(priv, layout, slice_num);
374
375 /* Apply to all packets received through this port */
376 core_writel(priv, BIT(port), CORE_CFP_DATA_PORT(7));
377
378 /* Source port map match */
379 core_writel(priv, 0xff, CORE_CFP_MASK_PORT(7));
380
381 /* S-Tag status [31:30]
382 * C-Tag status [29:28]
383 * L2 framing [27:26]
384 * L3 framing [25:24]
385 * IP ToS [23:16]
386 * IP proto [15:08]
387 * IP Fragm [7]
388 * Non 1st frag [6]
389 * IP Authen [5]
390 * TTL range [4:3]
391 * PPPoE session [2]
392 * Reserved [1]
393 * UDF_Valid[8] [0]
394 */
395 core_writel(priv, v4_spec->tos << IPTOS_SHIFT |
396 ip_proto << IPPROTO_SHIFT | ip_frag << IP_FRAG_SHIFT |
397 udf_upper_bits(num_udf),
398 CORE_CFP_DATA_PORT(6));
399
400 /* Mask with the specific layout for IPv4 packets */
401 core_writel(priv, layout->udfs[slice_num].mask_value |
402 udf_upper_bits(num_udf), CORE_CFP_MASK_PORT(6));
403
404 /* UDF_Valid[7:0] [31:24]
405 * S-Tag [23:8]
406 * C-Tag [7:0]
407 */
408 core_writel(priv, udf_lower_bits(num_udf) << 24, CORE_CFP_DATA_PORT(5));
409
410 /* Mask all but valid UDFs */
411 core_writel(priv, udf_lower_bits(num_udf) << 24, CORE_CFP_MASK_PORT(5));
412
413 /* Program the match and the mask */
414 bcm_sf2_cfp_slice_ipv4(priv, v4_spec, slice_num, false);
415 bcm_sf2_cfp_slice_ipv4(priv, v4_m_spec, SLICE_NUM_MASK, true);
416
417 /* Insert into TCAM now */
418 bcm_sf2_cfp_rule_addr_set(priv, rule_index);
419
420 ret = bcm_sf2_cfp_op(priv, OP_SEL_WRITE | TCAM_SEL);
421 if (ret) {
422 pr_err("TCAM entry at addr %d failed\n", rule_index);
423 return ret;
424 }
425
426 /* Insert into Action and policer RAMs now */
427 ret = bcm_sf2_cfp_act_pol_set(priv, rule_index, port_num,
428 queue_num, true);
429 if (ret)
430 return ret;
431
432 /* Turn on CFP for this rule now */
433 reg = core_readl(priv, CORE_CFP_CTL_REG);
434 reg |= BIT(port);
435 core_writel(priv, reg, CORE_CFP_CTL_REG);
436
437 /* Flag the rule as being used and return it */
438 set_bit(rule_index, priv->cfp.used);
439 set_bit(rule_index, priv->cfp.unique);
440 fs->location = rule_index;
441
442 return 0;
443}
444
445static void bcm_sf2_cfp_slice_ipv6(struct bcm_sf2_priv *priv,
446 const __be32 *ip6_addr, const __be16 port,
447 unsigned int slice_num,
448 bool mask)
449{
450 u32 reg, tmp, val, offset;
451
452 /* C-Tag [31:24]
453 * UDF_n_B8 [23:8] (port)
454 * UDF_n_B7 (upper) [7:0] (addr[15:8])
455 */
456 reg = be32_to_cpu(ip6_addr[3]);
457 val = (u32)be16_to_cpu(port) << 8 | ((reg >> 8) & 0xff);
458 if (mask)
459 offset = CORE_CFP_MASK_PORT(4);
460 else
461 offset = CORE_CFP_DATA_PORT(4);
462 core_writel(priv, val, offset);
463
464 /* UDF_n_B7 (lower) [31:24] (addr[7:0])
465 * UDF_n_B6 [23:8] (addr[31:16])
466 * UDF_n_B5 (upper) [7:0] (addr[47:40])
467 */
468 tmp = be32_to_cpu(ip6_addr[2]);
469 val = (u32)(reg & 0xff) << 24 | (u32)(reg >> 16) << 8 |
470 ((tmp >> 8) & 0xff);
471 if (mask)
472 offset = CORE_CFP_MASK_PORT(3);
473 else
474 offset = CORE_CFP_DATA_PORT(3);
475 core_writel(priv, val, offset);
476
477 /* UDF_n_B5 (lower) [31:24] (addr[39:32])
478 * UDF_n_B4 [23:8] (addr[63:48])
479 * UDF_n_B3 (upper) [7:0] (addr[79:72])
480 */
481 reg = be32_to_cpu(ip6_addr[1]);
482 val = (u32)(tmp & 0xff) << 24 | (u32)(tmp >> 16) << 8 |
483 ((reg >> 8) & 0xff);
484 if (mask)
485 offset = CORE_CFP_MASK_PORT(2);
486 else
487 offset = CORE_CFP_DATA_PORT(2);
488 core_writel(priv, val, offset);
489
490 /* UDF_n_B3 (lower) [31:24] (addr[71:64])
491 * UDF_n_B2 [23:8] (addr[95:80])
492 * UDF_n_B1 (upper) [7:0] (addr[111:104])
493 */
494 tmp = be32_to_cpu(ip6_addr[0]);
495 val = (u32)(reg & 0xff) << 24 | (u32)(reg >> 16) << 8 |
496 ((tmp >> 8) & 0xff);
497 if (mask)
498 offset = CORE_CFP_MASK_PORT(1);
499 else
500 offset = CORE_CFP_DATA_PORT(1);
501 core_writel(priv, val, offset);
502
503 /* UDF_n_B1 (lower) [31:24] (addr[103:96])
504 * UDF_n_B0 [23:8] (addr[127:112])
505 * Reserved [7:4]
506 * Slice ID [3:2]
507 * Slice valid [1:0]
508 */
509 reg = (u32)(tmp & 0xff) << 24 | (u32)(tmp >> 16) << 8 |
510 SLICE_NUM(slice_num) | SLICE_VALID;
511 if (mask)
512 offset = CORE_CFP_MASK_PORT(0);
513 else
514 offset = CORE_CFP_DATA_PORT(0);
515 core_writel(priv, reg, offset);
516}
517
518static int bcm_sf2_cfp_ipv6_rule_set(struct bcm_sf2_priv *priv, int port,
519 unsigned int port_num,
520 unsigned int queue_num,
521 struct ethtool_rx_flow_spec *fs)
522{
523 struct ethtool_tcpip6_spec *v6_spec, *v6_m_spec;
524 unsigned int slice_num, rule_index[2];
525 const struct cfp_udf_layout *layout;
526 u8 ip_proto, ip_frag;
527 int ret = 0;
528 u8 num_udf;
529 u32 reg;
530
531 switch (fs->flow_type & ~FLOW_EXT) {
532 case TCP_V6_FLOW:
533 ip_proto = IPPROTO_TCP;
534 v6_spec = &fs->h_u.tcp_ip6_spec;
535 v6_m_spec = &fs->m_u.tcp_ip6_spec;
536 break;
537 case UDP_V6_FLOW:
538 ip_proto = IPPROTO_UDP;
539 v6_spec = &fs->h_u.udp_ip6_spec;
540 v6_m_spec = &fs->m_u.udp_ip6_spec;
541 break;
542 default:
543 return -EINVAL;
544 }
545
546 ip_frag = be32_to_cpu(fs->m_ext.data[0]);
547
548 layout = &udf_tcpip6_layout;
549 slice_num = bcm_sf2_get_slice_number(layout, 0);
550 if (slice_num == UDF_NUM_SLICES)
551 return -EINVAL;
552
553 num_udf = bcm_sf2_get_num_udf_slices(layout->udfs[slice_num].slices);
554
555 /* Negotiate two indexes, one for the second half which we are chained
556 * from, which is what we will return to user-space, and a second one
557 * which is used to store its first half. That first half does not
558 * allow any choice of placement, so it just needs to find the next
559 * available bit. We return the second half as fs->location because
560 * that helps with the rule lookup later on since the second half is
561 * chained from its first half, we can easily identify IPv6 CFP rules
562 * by looking whether they carry a CHAIN_ID.
563 *
564 * We also want the second half to have a lower rule_index than its
565 * first half because the HW search is by incrementing addresses.
566 */
567 if (fs->location == RX_CLS_LOC_ANY)
568 rule_index[1] = find_first_zero_bit(priv->cfp.used,
569 priv->num_cfp_rules);
570 else
571 rule_index[1] = fs->location;
572 if (rule_index[1] > bcm_sf2_cfp_rule_size(priv))
573 return -ENOSPC;
574
575 /* Flag it as used (cleared on error path) such that we can immediately
576 * obtain a second one to chain from.
577 */
578 set_bit(rule_index[1], priv->cfp.used);
579
580 rule_index[0] = find_first_zero_bit(priv->cfp.used,
581 priv->num_cfp_rules);
582 if (rule_index[0] > bcm_sf2_cfp_rule_size(priv)) {
583 ret = -ENOSPC;
584 goto out_err;
585 }
586
587 /* Apply the UDF layout for this filter */
588 bcm_sf2_cfp_udf_set(priv, layout, slice_num);
589
590 /* Apply to all packets received through this port */
591 core_writel(priv, BIT(port), CORE_CFP_DATA_PORT(7));
592
593 /* Source port map match */
594 core_writel(priv, 0xff, CORE_CFP_MASK_PORT(7));
595
596 /* S-Tag status [31:30]
597 * C-Tag status [29:28]
598 * L2 framing [27:26]
599 * L3 framing [25:24]
600 * IP ToS [23:16]
601 * IP proto [15:08]
602 * IP Fragm [7]
603 * Non 1st frag [6]
604 * IP Authen [5]
605 * TTL range [4:3]
606 * PPPoE session [2]
607 * Reserved [1]
608 * UDF_Valid[8] [0]
609 */
610 reg = 1 << L3_FRAMING_SHIFT | ip_proto << IPPROTO_SHIFT |
611 ip_frag << IP_FRAG_SHIFT | udf_upper_bits(num_udf);
612 core_writel(priv, reg, CORE_CFP_DATA_PORT(6));
613
614 /* Mask with the specific layout for IPv6 packets including
615 * UDF_Valid[8]
616 */
617 reg = layout->udfs[slice_num].mask_value | udf_upper_bits(num_udf);
618 core_writel(priv, reg, CORE_CFP_MASK_PORT(6));
619
620 /* UDF_Valid[7:0] [31:24]
621 * S-Tag [23:8]
622 * C-Tag [7:0]
623 */
624 core_writel(priv, udf_lower_bits(num_udf) << 24, CORE_CFP_DATA_PORT(5));
625
626 /* Mask all but valid UDFs */
627 core_writel(priv, udf_lower_bits(num_udf) << 24, CORE_CFP_MASK_PORT(5));
628
629 /* Slice the IPv6 source address and port */
630 bcm_sf2_cfp_slice_ipv6(priv, v6_spec->ip6src, v6_spec->psrc,
631 slice_num, false);
632 bcm_sf2_cfp_slice_ipv6(priv, v6_m_spec->ip6src, v6_m_spec->psrc,
633 SLICE_NUM_MASK, true);
634
635 /* Insert into TCAM now because we need to insert a second rule */
636 bcm_sf2_cfp_rule_addr_set(priv, rule_index[0]);
637
638 ret = bcm_sf2_cfp_op(priv, OP_SEL_WRITE | TCAM_SEL);
639 if (ret) {
640 pr_err("TCAM entry at addr %d failed\n", rule_index[0]);
641 goto out_err;
642 }
643
644 /* Insert into Action and policer RAMs now */
645 ret = bcm_sf2_cfp_act_pol_set(priv, rule_index[0], port_num,
646 queue_num, false);
647 if (ret)
648 goto out_err;
649
650 /* Now deal with the second slice to chain this rule */
651 slice_num = bcm_sf2_get_slice_number(layout, slice_num + 1);
652 if (slice_num == UDF_NUM_SLICES) {
653 ret = -EINVAL;
654 goto out_err;
655 }
656
657 num_udf = bcm_sf2_get_num_udf_slices(layout->udfs[slice_num].slices);
658
659 /* Apply the UDF layout for this filter */
660 bcm_sf2_cfp_udf_set(priv, layout, slice_num);
661
662 /* Chained rule, source port match is coming from the rule we are
663 * chained from.
664 */
665 core_writel(priv, 0, CORE_CFP_DATA_PORT(7));
666 core_writel(priv, 0, CORE_CFP_MASK_PORT(7));
667
668 /*
669 * CHAIN ID [31:24] chain to previous slice
670 * Reserved [23:20]
671 * UDF_Valid[11:8] [19:16]
672 * UDF_Valid[7:0] [15:8]
673 * UDF_n_D11 [7:0]
674 */
675 reg = rule_index[0] << 24 | udf_upper_bits(num_udf) << 16 |
676 udf_lower_bits(num_udf) << 8;
677 core_writel(priv, reg, CORE_CFP_DATA_PORT(6));
678
679 /* Mask all except chain ID, UDF Valid[8] and UDF Valid[7:0] */
680 reg = XCESS_ADDR_MASK << 24 | udf_upper_bits(num_udf) << 16 |
681 udf_lower_bits(num_udf) << 8;
682 core_writel(priv, reg, CORE_CFP_MASK_PORT(6));
683
684 /* Don't care */
685 core_writel(priv, 0, CORE_CFP_DATA_PORT(5));
686
687 /* Mask all */
688 core_writel(priv, 0, CORE_CFP_MASK_PORT(5));
689
690 bcm_sf2_cfp_slice_ipv6(priv, v6_spec->ip6dst, v6_spec->pdst, slice_num,
691 false);
692 bcm_sf2_cfp_slice_ipv6(priv, v6_m_spec->ip6dst, v6_m_spec->pdst,
693 SLICE_NUM_MASK, true);
694
695 /* Insert into TCAM now */
696 bcm_sf2_cfp_rule_addr_set(priv, rule_index[1]);
697
698 ret = bcm_sf2_cfp_op(priv, OP_SEL_WRITE | TCAM_SEL);
699 if (ret) {
700 pr_err("TCAM entry at addr %d failed\n", rule_index[1]);
701 goto out_err;
702 }
703
704 /* Insert into Action and policer RAMs now, set chain ID to
705 * the one we are chained to
706 */
707 ret = bcm_sf2_cfp_act_pol_set(priv, rule_index[1], port_num,
708 queue_num, true);
709 if (ret)
710 goto out_err;
711
712 /* Turn on CFP for this rule now */
713 reg = core_readl(priv, CORE_CFP_CTL_REG);
714 reg |= BIT(port);
715 core_writel(priv, reg, CORE_CFP_CTL_REG);
716
717 /* Flag the second half rule as being used now, return it as the
718 * location, and flag it as unique while dumping rules
719 */
720 set_bit(rule_index[0], priv->cfp.used);
721 set_bit(rule_index[1], priv->cfp.unique);
722 fs->location = rule_index[1];
723
724 return ret;
725
726out_err:
727 clear_bit(rule_index[1], priv->cfp.used);
728 return ret;
729}
730
731static int bcm_sf2_cfp_rule_set(struct dsa_switch *ds, int port,
732 struct ethtool_rx_flow_spec *fs)
733{
734 struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
735 unsigned int queue_num, port_num;
736 int ret = -EINVAL;
737
738 /* Check for unsupported extensions */
739 if ((fs->flow_type & FLOW_EXT) && (fs->m_ext.vlan_etype ||
740 fs->m_ext.data[1]))
741 return -EINVAL;
742
743 if (fs->location != RX_CLS_LOC_ANY &&
744 test_bit(fs->location, priv->cfp.used))
745 return -EBUSY;
746
747 if (fs->location != RX_CLS_LOC_ANY &&
748 fs->location > bcm_sf2_cfp_rule_size(priv))
749 return -EINVAL;
750
751 /* We do not support discarding packets, check that the
752 * destination port is enabled and that we are within the
753 * number of ports supported by the switch
754 */
755 port_num = fs->ring_cookie / SF2_NUM_EGRESS_QUEUES;
756
757 if (fs->ring_cookie == RX_CLS_FLOW_DISC ||
758 !dsa_is_user_port(ds, port_num) ||
759 port_num >= priv->hw_params.num_ports)
760 return -EINVAL;
761 /*
762 * We have a small oddity where Port 6 just does not have a
763 * valid bit here (so we substract by one).
764 */
765 queue_num = fs->ring_cookie % SF2_NUM_EGRESS_QUEUES;
766 if (port_num >= 7)
767 port_num -= 1;
768
769 switch (fs->flow_type & ~FLOW_EXT) {
770 case TCP_V4_FLOW:
771 case UDP_V4_FLOW:
772 ret = bcm_sf2_cfp_ipv4_rule_set(priv, port, port_num,
773 queue_num, fs);
774 break;
775 case TCP_V6_FLOW:
776 case UDP_V6_FLOW:
777 ret = bcm_sf2_cfp_ipv6_rule_set(priv, port, port_num,
778 queue_num, fs);
779 break;
780 default:
781 break;
782 }
783
784 return ret;
785}
786
787static int bcm_sf2_cfp_rule_del_one(struct bcm_sf2_priv *priv, int port,
788 u32 loc, u32 *next_loc)
789{
790 int ret;
791 u32 reg;
792
793 /* Indicate which rule we want to read */
794 bcm_sf2_cfp_rule_addr_set(priv, loc);
795
796 ret = bcm_sf2_cfp_op(priv, OP_SEL_READ | TCAM_SEL);
797 if (ret)
798 return ret;
799
800 /* Check if this is possibly an IPv6 rule that would
801 * indicate we need to delete its companion rule
802 * as well
803 */
804 reg = core_readl(priv, CORE_CFP_DATA_PORT(6));
805 if (next_loc)
806 *next_loc = (reg >> 24) & CHAIN_ID_MASK;
807
808 /* Clear its valid bits */
809 reg = core_readl(priv, CORE_CFP_DATA_PORT(0));
810 reg &= ~SLICE_VALID;
811 core_writel(priv, reg, CORE_CFP_DATA_PORT(0));
812
813 /* Write back this entry into the TCAM now */
814 ret = bcm_sf2_cfp_op(priv, OP_SEL_WRITE | TCAM_SEL);
815 if (ret)
816 return ret;
817
818 clear_bit(loc, priv->cfp.used);
819 clear_bit(loc, priv->cfp.unique);
820
821 return 0;
822}
823
824static int bcm_sf2_cfp_rule_del(struct bcm_sf2_priv *priv, int port,
825 u32 loc)
826{
827 u32 next_loc = 0;
828 int ret;
829
830 /* Refuse deleting unused rules, and those that are not unique since
831 * that could leave IPv6 rules with one of the chained rule in the
832 * table.
833 */
834 if (!test_bit(loc, priv->cfp.unique) || loc == 0)
835 return -EINVAL;
836
837 ret = bcm_sf2_cfp_rule_del_one(priv, port, loc, &next_loc);
838 if (ret)
839 return ret;
840
841 /* If this was an IPv6 rule, delete is companion rule too */
842 if (next_loc)
843 ret = bcm_sf2_cfp_rule_del_one(priv, port, next_loc, NULL);
844
845 return ret;
846}
847
848static void bcm_sf2_invert_masks(struct ethtool_rx_flow_spec *flow)
849{
850 unsigned int i;
851
852 for (i = 0; i < sizeof(flow->m_u); i++)
853 flow->m_u.hdata[i] ^= 0xff;
854
855 flow->m_ext.vlan_etype ^= cpu_to_be16(~0);
856 flow->m_ext.vlan_tci ^= cpu_to_be16(~0);
857 flow->m_ext.data[0] ^= cpu_to_be32(~0);
858 flow->m_ext.data[1] ^= cpu_to_be32(~0);
859}
860
861static int bcm_sf2_cfp_unslice_ipv4(struct bcm_sf2_priv *priv,
862 struct ethtool_tcpip4_spec *v4_spec,
863 bool mask)
864{
865 u32 reg, offset, ipv4;
866 u16 src_dst_port;
867
868 if (mask)
869 offset = CORE_CFP_MASK_PORT(3);
870 else
871 offset = CORE_CFP_DATA_PORT(3);
872
873 reg = core_readl(priv, offset);
874 /* src port [15:8] */
875 src_dst_port = reg << 8;
876
877 if (mask)
878 offset = CORE_CFP_MASK_PORT(2);
879 else
880 offset = CORE_CFP_DATA_PORT(2);
881
882 reg = core_readl(priv, offset);
883 /* src port [7:0] */
884 src_dst_port |= (reg >> 24);
885
886 v4_spec->pdst = cpu_to_be16(src_dst_port);
887 v4_spec->psrc = cpu_to_be16((u16)(reg >> 8));
888
889 /* IPv4 dst [15:8] */
890 ipv4 = (reg & 0xff) << 8;
891
892 if (mask)
893 offset = CORE_CFP_MASK_PORT(1);
894 else
895 offset = CORE_CFP_DATA_PORT(1);
896
897 reg = core_readl(priv, offset);
898 /* IPv4 dst [31:16] */
899 ipv4 |= ((reg >> 8) & 0xffff) << 16;
900 /* IPv4 dst [7:0] */
901 ipv4 |= (reg >> 24) & 0xff;
902 v4_spec->ip4dst = cpu_to_be32(ipv4);
903
904 /* IPv4 src [15:8] */
905 ipv4 = (reg & 0xff) << 8;
906
907 if (mask)
908 offset = CORE_CFP_MASK_PORT(0);
909 else
910 offset = CORE_CFP_DATA_PORT(0);
911 reg = core_readl(priv, offset);
912
913 /* Once the TCAM is programmed, the mask reflects the slice number
914 * being matched, don't bother checking it when reading back the
915 * mask spec
916 */
917 if (!mask && !(reg & SLICE_VALID))
918 return -EINVAL;
919
920 /* IPv4 src [7:0] */
921 ipv4 |= (reg >> 24) & 0xff;
922 /* IPv4 src [31:16] */
923 ipv4 |= ((reg >> 8) & 0xffff) << 16;
924 v4_spec->ip4src = cpu_to_be32(ipv4);
925
926 return 0;
927}
928
929static int bcm_sf2_cfp_ipv4_rule_get(struct bcm_sf2_priv *priv, int port,
930 struct ethtool_rx_flow_spec *fs)
931{
932 struct ethtool_tcpip4_spec *v4_spec = NULL, *v4_m_spec = NULL;
933 u32 reg;
934 int ret;
935
936 reg = core_readl(priv, CORE_CFP_DATA_PORT(6));
937
938 switch ((reg & IPPROTO_MASK) >> IPPROTO_SHIFT) {
939 case IPPROTO_TCP:
940 fs->flow_type = TCP_V4_FLOW;
941 v4_spec = &fs->h_u.tcp_ip4_spec;
942 v4_m_spec = &fs->m_u.tcp_ip4_spec;
943 break;
944 case IPPROTO_UDP:
945 fs->flow_type = UDP_V4_FLOW;
946 v4_spec = &fs->h_u.udp_ip4_spec;
947 v4_m_spec = &fs->m_u.udp_ip4_spec;
948 break;
949 default:
950 return -EINVAL;
951 }
952
953 fs->m_ext.data[0] = cpu_to_be32((reg >> IP_FRAG_SHIFT) & 1);
954 v4_spec->tos = (reg >> IPTOS_SHIFT) & IPTOS_MASK;
955
956 ret = bcm_sf2_cfp_unslice_ipv4(priv, v4_spec, false);
957 if (ret)
958 return ret;
959
960 return bcm_sf2_cfp_unslice_ipv4(priv, v4_m_spec, true);
961}
962
963static int bcm_sf2_cfp_unslice_ipv6(struct bcm_sf2_priv *priv,
964 __be32 *ip6_addr, __be16 *port,
965 bool mask)
966{
967 u32 reg, tmp, offset;
968
969 /* C-Tag [31:24]
970 * UDF_n_B8 [23:8] (port)
971 * UDF_n_B7 (upper) [7:0] (addr[15:8])
972 */
973 if (mask)
974 offset = CORE_CFP_MASK_PORT(4);
975 else
976 offset = CORE_CFP_DATA_PORT(4);
977 reg = core_readl(priv, offset);
978 *port = cpu_to_be32(reg) >> 8;
979 tmp = (u32)(reg & 0xff) << 8;
980
981 /* UDF_n_B7 (lower) [31:24] (addr[7:0])
982 * UDF_n_B6 [23:8] (addr[31:16])
983 * UDF_n_B5 (upper) [7:0] (addr[47:40])
984 */
985 if (mask)
986 offset = CORE_CFP_MASK_PORT(3);
987 else
988 offset = CORE_CFP_DATA_PORT(3);
989 reg = core_readl(priv, offset);
990 tmp |= (reg >> 24) & 0xff;
991 tmp |= (u32)((reg >> 8) << 16);
992 ip6_addr[3] = cpu_to_be32(tmp);
993 tmp = (u32)(reg & 0xff) << 8;
994
995 /* UDF_n_B5 (lower) [31:24] (addr[39:32])
996 * UDF_n_B4 [23:8] (addr[63:48])
997 * UDF_n_B3 (upper) [7:0] (addr[79:72])
998 */
999 if (mask)
1000 offset = CORE_CFP_MASK_PORT(2);
1001 else
1002 offset = CORE_CFP_DATA_PORT(2);
1003 reg = core_readl(priv, offset);
1004 tmp |= (reg >> 24) & 0xff;
1005 tmp |= (u32)((reg >> 8) << 16);
1006 ip6_addr[2] = cpu_to_be32(tmp);
1007 tmp = (u32)(reg & 0xff) << 8;
1008
1009 /* UDF_n_B3 (lower) [31:24] (addr[71:64])
1010 * UDF_n_B2 [23:8] (addr[95:80])
1011 * UDF_n_B1 (upper) [7:0] (addr[111:104])
1012 */
1013 if (mask)
1014 offset = CORE_CFP_MASK_PORT(1);
1015 else
1016 offset = CORE_CFP_DATA_PORT(1);
1017 reg = core_readl(priv, offset);
1018 tmp |= (reg >> 24) & 0xff;
1019 tmp |= (u32)((reg >> 8) << 16);
1020 ip6_addr[1] = cpu_to_be32(tmp);
1021 tmp = (u32)(reg & 0xff) << 8;
1022
1023 /* UDF_n_B1 (lower) [31:24] (addr[103:96])
1024 * UDF_n_B0 [23:8] (addr[127:112])
1025 * Reserved [7:4]
1026 * Slice ID [3:2]
1027 * Slice valid [1:0]
1028 */
1029 if (mask)
1030 offset = CORE_CFP_MASK_PORT(0);
1031 else
1032 offset = CORE_CFP_DATA_PORT(0);
1033 reg = core_readl(priv, offset);
1034 tmp |= (reg >> 24) & 0xff;
1035 tmp |= (u32)((reg >> 8) << 16);
1036 ip6_addr[0] = cpu_to_be32(tmp);
1037
1038 if (!mask && !(reg & SLICE_VALID))
1039 return -EINVAL;
1040
1041 return 0;
1042}
1043
1044static int bcm_sf2_cfp_ipv6_rule_get(struct bcm_sf2_priv *priv, int port,
1045 struct ethtool_rx_flow_spec *fs,
1046 u32 next_loc)
1047{
1048 struct ethtool_tcpip6_spec *v6_spec = NULL, *v6_m_spec = NULL;
1049 u32 reg;
1050 int ret;
1051
1052 /* UDPv6 and TCPv6 both use ethtool_tcpip6_spec so we are fine
1053 * assuming tcp_ip6_spec here being an union.
1054 */
1055 v6_spec = &fs->h_u.tcp_ip6_spec;
1056 v6_m_spec = &fs->m_u.tcp_ip6_spec;
1057
1058 /* Read the second half first */
1059 ret = bcm_sf2_cfp_unslice_ipv6(priv, v6_spec->ip6dst, &v6_spec->pdst,
1060 false);
1061 if (ret)
1062 return ret;
1063
1064 ret = bcm_sf2_cfp_unslice_ipv6(priv, v6_m_spec->ip6dst,
1065 &v6_m_spec->pdst, true);
1066 if (ret)
1067 return ret;
1068
1069 /* Read last to avoid next entry clobbering the results during search
1070 * operations. We would not have the port enabled for this rule, so
1071 * don't bother checking it.
1072 */
1073 (void)core_readl(priv, CORE_CFP_DATA_PORT(7));
1074
1075 /* The slice number is valid, so read the rule we are chained from now
1076 * which is our first half.
1077 */
1078 bcm_sf2_cfp_rule_addr_set(priv, next_loc);
1079 ret = bcm_sf2_cfp_op(priv, OP_SEL_READ | TCAM_SEL);
1080 if (ret)
1081 return ret;
1082
1083 reg = core_readl(priv, CORE_CFP_DATA_PORT(6));
1084
1085 switch ((reg & IPPROTO_MASK) >> IPPROTO_SHIFT) {
1086 case IPPROTO_TCP:
1087 fs->flow_type = TCP_V6_FLOW;
1088 break;
1089 case IPPROTO_UDP:
1090 fs->flow_type = UDP_V6_FLOW;
1091 break;
1092 default:
1093 return -EINVAL;
1094 }
1095
1096 ret = bcm_sf2_cfp_unslice_ipv6(priv, v6_spec->ip6src, &v6_spec->psrc,
1097 false);
1098 if (ret)
1099 return ret;
1100
1101 return bcm_sf2_cfp_unslice_ipv6(priv, v6_m_spec->ip6src,
1102 &v6_m_spec->psrc, true);
1103}
1104
1105static int bcm_sf2_cfp_rule_get(struct bcm_sf2_priv *priv, int port,
1106 struct ethtool_rxnfc *nfc)
1107{
1108 u32 reg, ipv4_or_chain_id;
1109 unsigned int queue_num;
1110 int ret;
1111
1112 bcm_sf2_cfp_rule_addr_set(priv, nfc->fs.location);
1113
1114 ret = bcm_sf2_cfp_op(priv, OP_SEL_READ | ACT_POL_RAM);
1115 if (ret)
1116 return ret;
1117
1118 reg = core_readl(priv, CORE_ACT_POL_DATA0);
1119
1120 ret = bcm_sf2_cfp_op(priv, OP_SEL_READ | TCAM_SEL);
1121 if (ret)
1122 return ret;
1123
1124 /* Extract the destination port */
1125 nfc->fs.ring_cookie = fls((reg >> DST_MAP_IB_SHIFT) &
1126 DST_MAP_IB_MASK) - 1;
1127
1128 /* There is no Port 6, so we compensate for that here */
1129 if (nfc->fs.ring_cookie >= 6)
1130 nfc->fs.ring_cookie++;
1131 nfc->fs.ring_cookie *= SF2_NUM_EGRESS_QUEUES;
1132
1133 /* Extract the destination queue */
1134 queue_num = (reg >> NEW_TC_SHIFT) & NEW_TC_MASK;
1135 nfc->fs.ring_cookie += queue_num;
1136
1137 /* Extract the L3_FRAMING or CHAIN_ID */
1138 reg = core_readl(priv, CORE_CFP_DATA_PORT(6));
1139
1140 /* With IPv6 rules this would contain a non-zero chain ID since
1141 * we reserve entry 0 and it cannot be used. So if we read 0 here
1142 * this means an IPv4 rule.
1143 */
1144 ipv4_or_chain_id = (reg >> L3_FRAMING_SHIFT) & 0xff;
1145 if (ipv4_or_chain_id == 0)
1146 ret = bcm_sf2_cfp_ipv4_rule_get(priv, port, &nfc->fs);
1147 else
1148 ret = bcm_sf2_cfp_ipv6_rule_get(priv, port, &nfc->fs,
1149 ipv4_or_chain_id);
1150 if (ret)
1151 return ret;
1152
1153 /* Read last to avoid next entry clobbering the results during search
1154 * operations
1155 */
1156 reg = core_readl(priv, CORE_CFP_DATA_PORT(7));
1157 if (!(reg & 1 << port))
1158 return -EINVAL;
1159
1160 bcm_sf2_invert_masks(&nfc->fs);
1161
1162 /* Put the TCAM size here */
1163 nfc->data = bcm_sf2_cfp_rule_size(priv);
1164
1165 return 0;
1166}
1167
1168/* We implement the search doing a TCAM search operation */
1169static int bcm_sf2_cfp_rule_get_all(struct bcm_sf2_priv *priv,
1170 int port, struct ethtool_rxnfc *nfc,
1171 u32 *rule_locs)
1172{
1173 unsigned int index = 1, rules_cnt = 0;
1174
1175 for_each_set_bit_from(index, priv->cfp.unique, priv->num_cfp_rules) {
1176 rule_locs[rules_cnt] = index;
1177 rules_cnt++;
1178 }
1179
1180 /* Put the TCAM size here */
1181 nfc->data = bcm_sf2_cfp_rule_size(priv);
1182 nfc->rule_cnt = rules_cnt;
1183
1184 return 0;
1185}
1186
1187int bcm_sf2_get_rxnfc(struct dsa_switch *ds, int port,
1188 struct ethtool_rxnfc *nfc, u32 *rule_locs)
1189{
1190 struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
1191 int ret = 0;
1192
1193 mutex_lock(&priv->cfp.lock);
1194
1195 switch (nfc->cmd) {
1196 case ETHTOOL_GRXCLSRLCNT:
1197 /* Subtract the default, unusable rule */
1198 nfc->rule_cnt = bitmap_weight(priv->cfp.unique,
1199 priv->num_cfp_rules) - 1;
1200 /* We support specifying rule locations */
1201 nfc->data |= RX_CLS_LOC_SPECIAL;
1202 break;
1203 case ETHTOOL_GRXCLSRULE:
1204 ret = bcm_sf2_cfp_rule_get(priv, port, nfc);
1205 break;
1206 case ETHTOOL_GRXCLSRLALL:
1207 ret = bcm_sf2_cfp_rule_get_all(priv, port, nfc, rule_locs);
1208 break;
1209 default:
1210 ret = -EOPNOTSUPP;
1211 break;
1212 }
1213
1214 mutex_unlock(&priv->cfp.lock);
1215
1216 return ret;
1217}
1218
1219int bcm_sf2_set_rxnfc(struct dsa_switch *ds, int port,
1220 struct ethtool_rxnfc *nfc)
1221{
1222 struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
1223 int ret = 0;
1224
1225 mutex_lock(&priv->cfp.lock);
1226
1227 switch (nfc->cmd) {
1228 case ETHTOOL_SRXCLSRLINS:
1229 ret = bcm_sf2_cfp_rule_set(ds, port, &nfc->fs);
1230 break;
1231
1232 case ETHTOOL_SRXCLSRLDEL:
1233 ret = bcm_sf2_cfp_rule_del(priv, port, nfc->fs.location);
1234 break;
1235 default:
1236 ret = -EOPNOTSUPP;
1237 break;
1238 }
1239
1240 mutex_unlock(&priv->cfp.lock);
1241
1242 return ret;
1243}
1244
1245int bcm_sf2_cfp_rst(struct bcm_sf2_priv *priv)
1246{
1247 unsigned int timeout = 1000;
1248 u32 reg;
1249
1250 reg = core_readl(priv, CORE_CFP_ACC);
1251 reg |= TCAM_RESET;
1252 core_writel(priv, reg, CORE_CFP_ACC);
1253
1254 do {
1255 reg = core_readl(priv, CORE_CFP_ACC);
1256 if (!(reg & TCAM_RESET))
1257 break;
1258
1259 cpu_relax();
1260 } while (timeout--);
1261
1262 if (!timeout)
1263 return -ETIMEDOUT;
1264
1265 return 0;
1266}