Linux Audio

Check our new training course

Loading...
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Scheduler topology setup/handling methods
   4 */
   5
   6#include <linux/bsearch.h>
   7
   8DEFINE_MUTEX(sched_domains_mutex);
   9
  10/* Protected by sched_domains_mutex: */
  11static cpumask_var_t sched_domains_tmpmask;
  12static cpumask_var_t sched_domains_tmpmask2;
  13
  14#ifdef CONFIG_SCHED_DEBUG
  15
  16static int __init sched_debug_setup(char *str)
  17{
  18	sched_debug_verbose = true;
  19
  20	return 0;
  21}
  22early_param("sched_verbose", sched_debug_setup);
  23
  24static inline bool sched_debug(void)
  25{
  26	return sched_debug_verbose;
  27}
  28
  29#define SD_FLAG(_name, mflags) [__##_name] = { .meta_flags = mflags, .name = #_name },
  30const struct sd_flag_debug sd_flag_debug[] = {
  31#include <linux/sched/sd_flags.h>
  32};
  33#undef SD_FLAG
  34
  35static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
  36				  struct cpumask *groupmask)
  37{
  38	struct sched_group *group = sd->groups;
  39	unsigned long flags = sd->flags;
  40	unsigned int idx;
  41
  42	cpumask_clear(groupmask);
  43
  44	printk(KERN_DEBUG "%*s domain-%d: ", level, "", level);
  45	printk(KERN_CONT "span=%*pbl level=%s\n",
  46	       cpumask_pr_args(sched_domain_span(sd)), sd->name);
  47
  48	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
  49		printk(KERN_ERR "ERROR: domain->span does not contain CPU%d\n", cpu);
  50	}
  51	if (group && !cpumask_test_cpu(cpu, sched_group_span(group))) {
  52		printk(KERN_ERR "ERROR: domain->groups does not contain CPU%d\n", cpu);
  53	}
  54
  55	for_each_set_bit(idx, &flags, __SD_FLAG_CNT) {
  56		unsigned int flag = BIT(idx);
  57		unsigned int meta_flags = sd_flag_debug[idx].meta_flags;
  58
  59		if ((meta_flags & SDF_SHARED_CHILD) && sd->child &&
  60		    !(sd->child->flags & flag))
  61			printk(KERN_ERR "ERROR: flag %s set here but not in child\n",
  62			       sd_flag_debug[idx].name);
  63
  64		if ((meta_flags & SDF_SHARED_PARENT) && sd->parent &&
  65		    !(sd->parent->flags & flag))
  66			printk(KERN_ERR "ERROR: flag %s set here but not in parent\n",
  67			       sd_flag_debug[idx].name);
  68	}
  69
  70	printk(KERN_DEBUG "%*s groups:", level + 1, "");
  71	do {
  72		if (!group) {
  73			printk("\n");
  74			printk(KERN_ERR "ERROR: group is NULL\n");
  75			break;
  76		}
  77
  78		if (cpumask_empty(sched_group_span(group))) {
  79			printk(KERN_CONT "\n");
  80			printk(KERN_ERR "ERROR: empty group\n");
  81			break;
  82		}
  83
  84		if (!(sd->flags & SD_OVERLAP) &&
  85		    cpumask_intersects(groupmask, sched_group_span(group))) {
  86			printk(KERN_CONT "\n");
  87			printk(KERN_ERR "ERROR: repeated CPUs\n");
  88			break;
  89		}
  90
  91		cpumask_or(groupmask, groupmask, sched_group_span(group));
  92
  93		printk(KERN_CONT " %d:{ span=%*pbl",
  94				group->sgc->id,
  95				cpumask_pr_args(sched_group_span(group)));
  96
  97		if ((sd->flags & SD_OVERLAP) &&
  98		    !cpumask_equal(group_balance_mask(group), sched_group_span(group))) {
  99			printk(KERN_CONT " mask=%*pbl",
 100				cpumask_pr_args(group_balance_mask(group)));
 101		}
 102
 103		if (group->sgc->capacity != SCHED_CAPACITY_SCALE)
 104			printk(KERN_CONT " cap=%lu", group->sgc->capacity);
 105
 106		if (group == sd->groups && sd->child &&
 107		    !cpumask_equal(sched_domain_span(sd->child),
 108				   sched_group_span(group))) {
 109			printk(KERN_ERR "ERROR: domain->groups does not match domain->child\n");
 110		}
 111
 112		printk(KERN_CONT " }");
 113
 114		group = group->next;
 115
 116		if (group != sd->groups)
 117			printk(KERN_CONT ",");
 118
 119	} while (group != sd->groups);
 120	printk(KERN_CONT "\n");
 121
 122	if (!cpumask_equal(sched_domain_span(sd), groupmask))
 123		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
 124
 125	if (sd->parent &&
 126	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
 127		printk(KERN_ERR "ERROR: parent span is not a superset of domain->span\n");
 128	return 0;
 129}
 130
 131static void sched_domain_debug(struct sched_domain *sd, int cpu)
 132{
 133	int level = 0;
 134
 135	if (!sched_debug_verbose)
 136		return;
 137
 138	if (!sd) {
 139		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
 140		return;
 141	}
 142
 143	printk(KERN_DEBUG "CPU%d attaching sched-domain(s):\n", cpu);
 144
 145	for (;;) {
 146		if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
 147			break;
 148		level++;
 149		sd = sd->parent;
 150		if (!sd)
 151			break;
 152	}
 153}
 154#else /* !CONFIG_SCHED_DEBUG */
 155
 156# define sched_debug_verbose 0
 157# define sched_domain_debug(sd, cpu) do { } while (0)
 158static inline bool sched_debug(void)
 159{
 160	return false;
 161}
 162#endif /* CONFIG_SCHED_DEBUG */
 163
 164/* Generate a mask of SD flags with the SDF_NEEDS_GROUPS metaflag */
 165#define SD_FLAG(name, mflags) (name * !!((mflags) & SDF_NEEDS_GROUPS)) |
 166static const unsigned int SD_DEGENERATE_GROUPS_MASK =
 167#include <linux/sched/sd_flags.h>
 1680;
 169#undef SD_FLAG
 170
 171static int sd_degenerate(struct sched_domain *sd)
 172{
 173	if (cpumask_weight(sched_domain_span(sd)) == 1)
 174		return 1;
 175
 176	/* Following flags need at least 2 groups */
 177	if ((sd->flags & SD_DEGENERATE_GROUPS_MASK) &&
 178	    (sd->groups != sd->groups->next))
 179		return 0;
 180
 181	/* Following flags don't use groups */
 182	if (sd->flags & (SD_WAKE_AFFINE))
 183		return 0;
 184
 185	return 1;
 186}
 187
 188static int
 189sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
 190{
 191	unsigned long cflags = sd->flags, pflags = parent->flags;
 192
 193	if (sd_degenerate(parent))
 194		return 1;
 195
 196	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
 197		return 0;
 198
 199	/* Flags needing groups don't count if only 1 group in parent */
 200	if (parent->groups == parent->groups->next)
 201		pflags &= ~SD_DEGENERATE_GROUPS_MASK;
 202
 203	if (~cflags & pflags)
 204		return 0;
 205
 206	return 1;
 207}
 208
 209#if defined(CONFIG_ENERGY_MODEL) && defined(CONFIG_CPU_FREQ_GOV_SCHEDUTIL)
 210DEFINE_STATIC_KEY_FALSE(sched_energy_present);
 211static unsigned int sysctl_sched_energy_aware = 1;
 212static DEFINE_MUTEX(sched_energy_mutex);
 213static bool sched_energy_update;
 214
 215static bool sched_is_eas_possible(const struct cpumask *cpu_mask)
 216{
 217	bool any_asym_capacity = false;
 218	struct cpufreq_policy *policy;
 219	struct cpufreq_governor *gov;
 220	int i;
 221
 222	/* EAS is enabled for asymmetric CPU capacity topologies. */
 223	for_each_cpu(i, cpu_mask) {
 224		if (rcu_access_pointer(per_cpu(sd_asym_cpucapacity, i))) {
 225			any_asym_capacity = true;
 226			break;
 227		}
 228	}
 229	if (!any_asym_capacity) {
 230		if (sched_debug()) {
 231			pr_info("rd %*pbl: Checking EAS, CPUs do not have asymmetric capacities\n",
 232				cpumask_pr_args(cpu_mask));
 233		}
 234		return false;
 235	}
 236
 237	/* EAS definitely does *not* handle SMT */
 238	if (sched_smt_active()) {
 239		if (sched_debug()) {
 240			pr_info("rd %*pbl: Checking EAS, SMT is not supported\n",
 241				cpumask_pr_args(cpu_mask));
 242		}
 243		return false;
 244	}
 245
 246	if (!arch_scale_freq_invariant()) {
 247		if (sched_debug()) {
 248			pr_info("rd %*pbl: Checking EAS: frequency-invariant load tracking not yet supported",
 249				cpumask_pr_args(cpu_mask));
 250		}
 251		return false;
 252	}
 253
 254	/* Do not attempt EAS if schedutil is not being used. */
 255	for_each_cpu(i, cpu_mask) {
 256		policy = cpufreq_cpu_get(i);
 257		if (!policy) {
 258			if (sched_debug()) {
 259				pr_info("rd %*pbl: Checking EAS, cpufreq policy not set for CPU: %d",
 260					cpumask_pr_args(cpu_mask), i);
 261			}
 262			return false;
 263		}
 264		gov = policy->governor;
 265		cpufreq_cpu_put(policy);
 266		if (gov != &schedutil_gov) {
 267			if (sched_debug()) {
 268				pr_info("rd %*pbl: Checking EAS, schedutil is mandatory\n",
 269					cpumask_pr_args(cpu_mask));
 270			}
 271			return false;
 272		}
 273	}
 274
 275	return true;
 276}
 277
 278void rebuild_sched_domains_energy(void)
 279{
 280	mutex_lock(&sched_energy_mutex);
 281	sched_energy_update = true;
 282	rebuild_sched_domains();
 283	sched_energy_update = false;
 284	mutex_unlock(&sched_energy_mutex);
 285}
 286
 287#ifdef CONFIG_PROC_SYSCTL
 288static int sched_energy_aware_handler(const struct ctl_table *table, int write,
 289		void *buffer, size_t *lenp, loff_t *ppos)
 290{
 291	int ret, state;
 292
 293	if (write && !capable(CAP_SYS_ADMIN))
 294		return -EPERM;
 295
 296	if (!sched_is_eas_possible(cpu_active_mask)) {
 297		if (write) {
 298			return -EOPNOTSUPP;
 299		} else {
 300			*lenp = 0;
 301			return 0;
 302		}
 303	}
 304
 305	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
 306	if (!ret && write) {
 307		state = static_branch_unlikely(&sched_energy_present);
 308		if (state != sysctl_sched_energy_aware)
 309			rebuild_sched_domains_energy();
 310	}
 311
 312	return ret;
 313}
 314
 315static struct ctl_table sched_energy_aware_sysctls[] = {
 316	{
 317		.procname       = "sched_energy_aware",
 318		.data           = &sysctl_sched_energy_aware,
 319		.maxlen         = sizeof(unsigned int),
 320		.mode           = 0644,
 321		.proc_handler   = sched_energy_aware_handler,
 322		.extra1         = SYSCTL_ZERO,
 323		.extra2         = SYSCTL_ONE,
 324	},
 325};
 326
 327static int __init sched_energy_aware_sysctl_init(void)
 328{
 329	register_sysctl_init("kernel", sched_energy_aware_sysctls);
 330	return 0;
 331}
 332
 333late_initcall(sched_energy_aware_sysctl_init);
 334#endif
 335
 336static void free_pd(struct perf_domain *pd)
 337{
 338	struct perf_domain *tmp;
 339
 340	while (pd) {
 341		tmp = pd->next;
 342		kfree(pd);
 343		pd = tmp;
 344	}
 345}
 346
 347static struct perf_domain *find_pd(struct perf_domain *pd, int cpu)
 348{
 349	while (pd) {
 350		if (cpumask_test_cpu(cpu, perf_domain_span(pd)))
 351			return pd;
 352		pd = pd->next;
 353	}
 354
 355	return NULL;
 356}
 357
 358static struct perf_domain *pd_init(int cpu)
 359{
 360	struct em_perf_domain *obj = em_cpu_get(cpu);
 361	struct perf_domain *pd;
 362
 363	if (!obj) {
 364		if (sched_debug())
 365			pr_info("%s: no EM found for CPU%d\n", __func__, cpu);
 366		return NULL;
 367	}
 368
 369	pd = kzalloc(sizeof(*pd), GFP_KERNEL);
 370	if (!pd)
 371		return NULL;
 372	pd->em_pd = obj;
 373
 374	return pd;
 375}
 376
 377static void perf_domain_debug(const struct cpumask *cpu_map,
 378						struct perf_domain *pd)
 379{
 380	if (!sched_debug() || !pd)
 381		return;
 382
 383	printk(KERN_DEBUG "root_domain %*pbl:", cpumask_pr_args(cpu_map));
 384
 385	while (pd) {
 386		printk(KERN_CONT " pd%d:{ cpus=%*pbl nr_pstate=%d }",
 387				cpumask_first(perf_domain_span(pd)),
 388				cpumask_pr_args(perf_domain_span(pd)),
 389				em_pd_nr_perf_states(pd->em_pd));
 390		pd = pd->next;
 391	}
 392
 393	printk(KERN_CONT "\n");
 394}
 395
 396static void destroy_perf_domain_rcu(struct rcu_head *rp)
 397{
 398	struct perf_domain *pd;
 399
 400	pd = container_of(rp, struct perf_domain, rcu);
 401	free_pd(pd);
 402}
 403
 404static void sched_energy_set(bool has_eas)
 405{
 406	if (!has_eas && static_branch_unlikely(&sched_energy_present)) {
 407		if (sched_debug())
 408			pr_info("%s: stopping EAS\n", __func__);
 409		static_branch_disable_cpuslocked(&sched_energy_present);
 410	} else if (has_eas && !static_branch_unlikely(&sched_energy_present)) {
 411		if (sched_debug())
 412			pr_info("%s: starting EAS\n", __func__);
 413		static_branch_enable_cpuslocked(&sched_energy_present);
 414	}
 415}
 416
 417/*
 418 * EAS can be used on a root domain if it meets all the following conditions:
 419 *    1. an Energy Model (EM) is available;
 420 *    2. the SD_ASYM_CPUCAPACITY flag is set in the sched_domain hierarchy.
 421 *    3. no SMT is detected.
 422 *    4. schedutil is driving the frequency of all CPUs of the rd;
 423 *    5. frequency invariance support is present;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 424 */
 
 
 
 425static bool build_perf_domains(const struct cpumask *cpu_map)
 426{
 427	int i;
 428	struct perf_domain *pd = NULL, *tmp;
 429	int cpu = cpumask_first(cpu_map);
 430	struct root_domain *rd = cpu_rq(cpu)->rd;
 
 
 431
 432	if (!sysctl_sched_energy_aware)
 433		goto free;
 434
 435	if (!sched_is_eas_possible(cpu_map))
 
 
 
 
 
 436		goto free;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 437
 438	for_each_cpu(i, cpu_map) {
 439		/* Skip already covered CPUs. */
 440		if (find_pd(pd, i))
 441			continue;
 442
 
 
 
 
 
 
 
 
 
 
 
 
 
 443		/* Create the new pd and add it to the local list. */
 444		tmp = pd_init(i);
 445		if (!tmp)
 446			goto free;
 447		tmp->next = pd;
 448		pd = tmp;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 449	}
 450
 451	perf_domain_debug(cpu_map, pd);
 452
 453	/* Attach the new list of performance domains to the root domain. */
 454	tmp = rd->pd;
 455	rcu_assign_pointer(rd->pd, pd);
 456	if (tmp)
 457		call_rcu(&tmp->rcu, destroy_perf_domain_rcu);
 458
 459	return !!pd;
 460
 461free:
 462	free_pd(pd);
 463	tmp = rd->pd;
 464	rcu_assign_pointer(rd->pd, NULL);
 465	if (tmp)
 466		call_rcu(&tmp->rcu, destroy_perf_domain_rcu);
 467
 468	return false;
 469}
 470#else
 471static void free_pd(struct perf_domain *pd) { }
 472#endif /* CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL*/
 473
 474static void free_rootdomain(struct rcu_head *rcu)
 475{
 476	struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
 477
 478	cpupri_cleanup(&rd->cpupri);
 479	cpudl_cleanup(&rd->cpudl);
 480	free_cpumask_var(rd->dlo_mask);
 481	free_cpumask_var(rd->rto_mask);
 482	free_cpumask_var(rd->online);
 483	free_cpumask_var(rd->span);
 484	free_pd(rd->pd);
 485	kfree(rd);
 486}
 487
 488void rq_attach_root(struct rq *rq, struct root_domain *rd)
 489{
 490	struct root_domain *old_rd = NULL;
 491	struct rq_flags rf;
 492
 493	rq_lock_irqsave(rq, &rf);
 494
 495	if (rq->rd) {
 496		old_rd = rq->rd;
 497
 498		if (cpumask_test_cpu(rq->cpu, old_rd->online))
 499			set_rq_offline(rq);
 500
 501		cpumask_clear_cpu(rq->cpu, old_rd->span);
 502
 503		/*
 504		 * If we don't want to free the old_rd yet then
 505		 * set old_rd to NULL to skip the freeing later
 506		 * in this function:
 507		 */
 508		if (!atomic_dec_and_test(&old_rd->refcount))
 509			old_rd = NULL;
 510	}
 511
 512	atomic_inc(&rd->refcount);
 513	rq->rd = rd;
 514
 515	cpumask_set_cpu(rq->cpu, rd->span);
 516	if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
 517		set_rq_online(rq);
 518
 519	/*
 520	 * Because the rq is not a task, dl_add_task_root_domain() did not
 521	 * move the fair server bw to the rd if it already started.
 522	 * Add it now.
 523	 */
 524	if (rq->fair_server.dl_server)
 525		__dl_server_attach_root(&rq->fair_server, rq);
 526
 527	rq_unlock_irqrestore(rq, &rf);
 528
 529	if (old_rd)
 530		call_rcu(&old_rd->rcu, free_rootdomain);
 531}
 532
 533void sched_get_rd(struct root_domain *rd)
 534{
 535	atomic_inc(&rd->refcount);
 536}
 537
 538void sched_put_rd(struct root_domain *rd)
 539{
 540	if (!atomic_dec_and_test(&rd->refcount))
 541		return;
 542
 543	call_rcu(&rd->rcu, free_rootdomain);
 544}
 545
 546static int init_rootdomain(struct root_domain *rd)
 547{
 548	if (!zalloc_cpumask_var(&rd->span, GFP_KERNEL))
 549		goto out;
 550	if (!zalloc_cpumask_var(&rd->online, GFP_KERNEL))
 551		goto free_span;
 552	if (!zalloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
 553		goto free_online;
 554	if (!zalloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
 555		goto free_dlo_mask;
 556
 557#ifdef HAVE_RT_PUSH_IPI
 558	rd->rto_cpu = -1;
 559	raw_spin_lock_init(&rd->rto_lock);
 560	rd->rto_push_work = IRQ_WORK_INIT_HARD(rto_push_irq_work_func);
 561#endif
 562
 563	rd->visit_gen = 0;
 564	init_dl_bw(&rd->dl_bw);
 565	if (cpudl_init(&rd->cpudl) != 0)
 566		goto free_rto_mask;
 567
 568	if (cpupri_init(&rd->cpupri) != 0)
 569		goto free_cpudl;
 570	return 0;
 571
 572free_cpudl:
 573	cpudl_cleanup(&rd->cpudl);
 574free_rto_mask:
 575	free_cpumask_var(rd->rto_mask);
 576free_dlo_mask:
 577	free_cpumask_var(rd->dlo_mask);
 578free_online:
 579	free_cpumask_var(rd->online);
 580free_span:
 581	free_cpumask_var(rd->span);
 582out:
 583	return -ENOMEM;
 584}
 585
 586/*
 587 * By default the system creates a single root-domain with all CPUs as
 588 * members (mimicking the global state we have today).
 589 */
 590struct root_domain def_root_domain;
 591
 592void __init init_defrootdomain(void)
 593{
 594	init_rootdomain(&def_root_domain);
 595
 596	atomic_set(&def_root_domain.refcount, 1);
 597}
 598
 599static struct root_domain *alloc_rootdomain(void)
 600{
 601	struct root_domain *rd;
 602
 603	rd = kzalloc(sizeof(*rd), GFP_KERNEL);
 604	if (!rd)
 605		return NULL;
 606
 607	if (init_rootdomain(rd) != 0) {
 608		kfree(rd);
 609		return NULL;
 610	}
 611
 612	return rd;
 613}
 614
 615static void free_sched_groups(struct sched_group *sg, int free_sgc)
 616{
 617	struct sched_group *tmp, *first;
 618
 619	if (!sg)
 620		return;
 621
 622	first = sg;
 623	do {
 624		tmp = sg->next;
 625
 626		if (free_sgc && atomic_dec_and_test(&sg->sgc->ref))
 627			kfree(sg->sgc);
 628
 629		if (atomic_dec_and_test(&sg->ref))
 630			kfree(sg);
 631		sg = tmp;
 632	} while (sg != first);
 633}
 634
 635static void destroy_sched_domain(struct sched_domain *sd)
 636{
 637	/*
 638	 * A normal sched domain may have multiple group references, an
 639	 * overlapping domain, having private groups, only one.  Iterate,
 640	 * dropping group/capacity references, freeing where none remain.
 641	 */
 642	free_sched_groups(sd->groups, 1);
 643
 644	if (sd->shared && atomic_dec_and_test(&sd->shared->ref))
 645		kfree(sd->shared);
 646	kfree(sd);
 647}
 648
 649static void destroy_sched_domains_rcu(struct rcu_head *rcu)
 650{
 651	struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
 652
 653	while (sd) {
 654		struct sched_domain *parent = sd->parent;
 655		destroy_sched_domain(sd);
 656		sd = parent;
 657	}
 658}
 659
 660static void destroy_sched_domains(struct sched_domain *sd)
 661{
 662	if (sd)
 663		call_rcu(&sd->rcu, destroy_sched_domains_rcu);
 664}
 665
 666/*
 667 * Keep a special pointer to the highest sched_domain that has SD_SHARE_LLC set
 668 * (Last Level Cache Domain) for this allows us to avoid some pointer chasing
 669 * select_idle_sibling().
 670 *
 671 * Also keep a unique ID per domain (we use the first CPU number in the cpumask
 672 * of the domain), this allows us to quickly tell if two CPUs are in the same
 673 * cache domain, see cpus_share_cache().
 674 */
 675DEFINE_PER_CPU(struct sched_domain __rcu *, sd_llc);
 676DEFINE_PER_CPU(int, sd_llc_size);
 677DEFINE_PER_CPU(int, sd_llc_id);
 678DEFINE_PER_CPU(int, sd_share_id);
 679DEFINE_PER_CPU(struct sched_domain_shared __rcu *, sd_llc_shared);
 680DEFINE_PER_CPU(struct sched_domain __rcu *, sd_numa);
 681DEFINE_PER_CPU(struct sched_domain __rcu *, sd_asym_packing);
 682DEFINE_PER_CPU(struct sched_domain __rcu *, sd_asym_cpucapacity);
 683
 684DEFINE_STATIC_KEY_FALSE(sched_asym_cpucapacity);
 685DEFINE_STATIC_KEY_FALSE(sched_cluster_active);
 686
 687static void update_top_cache_domain(int cpu)
 688{
 689	struct sched_domain_shared *sds = NULL;
 690	struct sched_domain *sd;
 691	int id = cpu;
 692	int size = 1;
 693
 694	sd = highest_flag_domain(cpu, SD_SHARE_LLC);
 695	if (sd) {
 696		id = cpumask_first(sched_domain_span(sd));
 697		size = cpumask_weight(sched_domain_span(sd));
 698		sds = sd->shared;
 699	}
 700
 701	rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
 702	per_cpu(sd_llc_size, cpu) = size;
 703	per_cpu(sd_llc_id, cpu) = id;
 704	rcu_assign_pointer(per_cpu(sd_llc_shared, cpu), sds);
 705
 706	sd = lowest_flag_domain(cpu, SD_CLUSTER);
 707	if (sd)
 708		id = cpumask_first(sched_domain_span(sd));
 709
 710	/*
 711	 * This assignment should be placed after the sd_llc_id as
 712	 * we want this id equals to cluster id on cluster machines
 713	 * but equals to LLC id on non-Cluster machines.
 714	 */
 715	per_cpu(sd_share_id, cpu) = id;
 716
 717	sd = lowest_flag_domain(cpu, SD_NUMA);
 718	rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
 719
 720	sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
 721	rcu_assign_pointer(per_cpu(sd_asym_packing, cpu), sd);
 722
 723	sd = lowest_flag_domain(cpu, SD_ASYM_CPUCAPACITY_FULL);
 724	rcu_assign_pointer(per_cpu(sd_asym_cpucapacity, cpu), sd);
 725}
 726
 727/*
 728 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
 729 * hold the hotplug lock.
 730 */
 731static void
 732cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
 733{
 734	struct rq *rq = cpu_rq(cpu);
 735	struct sched_domain *tmp;
 
 736
 737	/* Remove the sched domains which do not contribute to scheduling. */
 738	for (tmp = sd; tmp; ) {
 739		struct sched_domain *parent = tmp->parent;
 740		if (!parent)
 741			break;
 742
 743		if (sd_parent_degenerate(tmp, parent)) {
 744			tmp->parent = parent->parent;
 745
 746			if (parent->parent) {
 747				parent->parent->child = tmp;
 748				parent->parent->groups->flags = tmp->flags;
 749			}
 750
 751			/*
 752			 * Transfer SD_PREFER_SIBLING down in case of a
 753			 * degenerate parent; the spans match for this
 754			 * so the property transfers.
 755			 */
 756			if (parent->flags & SD_PREFER_SIBLING)
 757				tmp->flags |= SD_PREFER_SIBLING;
 758			destroy_sched_domain(parent);
 759		} else
 760			tmp = tmp->parent;
 761	}
 762
 763	if (sd && sd_degenerate(sd)) {
 764		tmp = sd;
 765		sd = sd->parent;
 766		destroy_sched_domain(tmp);
 767		if (sd) {
 768			struct sched_group *sg = sd->groups;
 769
 770			/*
 771			 * sched groups hold the flags of the child sched
 772			 * domain for convenience. Clear such flags since
 773			 * the child is being destroyed.
 774			 */
 775			do {
 776				sg->flags = 0;
 777			} while (sg != sd->groups);
 778
 779			sd->child = NULL;
 780		}
 781	}
 782
 
 
 
 783	sched_domain_debug(sd, cpu);
 784
 785	rq_attach_root(rq, rd);
 786	tmp = rq->sd;
 787	rcu_assign_pointer(rq->sd, sd);
 788	dirty_sched_domain_sysctl(cpu);
 789	destroy_sched_domains(tmp);
 790
 791	update_top_cache_domain(cpu);
 792}
 793
 794struct s_data {
 795	struct sched_domain * __percpu *sd;
 796	struct root_domain	*rd;
 797};
 798
 799enum s_alloc {
 800	sa_rootdomain,
 801	sa_sd,
 802	sa_sd_storage,
 803	sa_none,
 804};
 805
 806/*
 807 * Return the canonical balance CPU for this group, this is the first CPU
 808 * of this group that's also in the balance mask.
 809 *
 810 * The balance mask are all those CPUs that could actually end up at this
 811 * group. See build_balance_mask().
 812 *
 813 * Also see should_we_balance().
 814 */
 815int group_balance_cpu(struct sched_group *sg)
 816{
 817	return cpumask_first(group_balance_mask(sg));
 818}
 819
 820
 821/*
 822 * NUMA topology (first read the regular topology blurb below)
 823 *
 824 * Given a node-distance table, for example:
 825 *
 826 *   node   0   1   2   3
 827 *     0:  10  20  30  20
 828 *     1:  20  10  20  30
 829 *     2:  30  20  10  20
 830 *     3:  20  30  20  10
 831 *
 832 * which represents a 4 node ring topology like:
 833 *
 834 *   0 ----- 1
 835 *   |       |
 836 *   |       |
 837 *   |       |
 838 *   3 ----- 2
 839 *
 840 * We want to construct domains and groups to represent this. The way we go
 841 * about doing this is to build the domains on 'hops'. For each NUMA level we
 842 * construct the mask of all nodes reachable in @level hops.
 843 *
 844 * For the above NUMA topology that gives 3 levels:
 845 *
 846 * NUMA-2	0-3		0-3		0-3		0-3
 847 *  groups:	{0-1,3},{1-3}	{0-2},{0,2-3}	{1-3},{0-1,3}	{0,2-3},{0-2}
 848 *
 849 * NUMA-1	0-1,3		0-2		1-3		0,2-3
 850 *  groups:	{0},{1},{3}	{0},{1},{2}	{1},{2},{3}	{0},{2},{3}
 851 *
 852 * NUMA-0	0		1		2		3
 853 *
 854 *
 855 * As can be seen; things don't nicely line up as with the regular topology.
 856 * When we iterate a domain in child domain chunks some nodes can be
 857 * represented multiple times -- hence the "overlap" naming for this part of
 858 * the topology.
 859 *
 860 * In order to minimize this overlap, we only build enough groups to cover the
 861 * domain. For instance Node-0 NUMA-2 would only get groups: 0-1,3 and 1-3.
 862 *
 863 * Because:
 864 *
 865 *  - the first group of each domain is its child domain; this
 866 *    gets us the first 0-1,3
 867 *  - the only uncovered node is 2, who's child domain is 1-3.
 868 *
 869 * However, because of the overlap, computing a unique CPU for each group is
 870 * more complicated. Consider for instance the groups of NODE-1 NUMA-2, both
 871 * groups include the CPUs of Node-0, while those CPUs would not in fact ever
 872 * end up at those groups (they would end up in group: 0-1,3).
 873 *
 874 * To correct this we have to introduce the group balance mask. This mask
 875 * will contain those CPUs in the group that can reach this group given the
 876 * (child) domain tree.
 877 *
 878 * With this we can once again compute balance_cpu and sched_group_capacity
 879 * relations.
 880 *
 881 * XXX include words on how balance_cpu is unique and therefore can be
 882 * used for sched_group_capacity links.
 883 *
 884 *
 885 * Another 'interesting' topology is:
 886 *
 887 *   node   0   1   2   3
 888 *     0:  10  20  20  30
 889 *     1:  20  10  20  20
 890 *     2:  20  20  10  20
 891 *     3:  30  20  20  10
 892 *
 893 * Which looks a little like:
 894 *
 895 *   0 ----- 1
 896 *   |     / |
 897 *   |   /   |
 898 *   | /     |
 899 *   2 ----- 3
 900 *
 901 * This topology is asymmetric, nodes 1,2 are fully connected, but nodes 0,3
 902 * are not.
 903 *
 904 * This leads to a few particularly weird cases where the sched_domain's are
 905 * not of the same number for each CPU. Consider:
 906 *
 907 * NUMA-2	0-3						0-3
 908 *  groups:	{0-2},{1-3}					{1-3},{0-2}
 909 *
 910 * NUMA-1	0-2		0-3		0-3		1-3
 911 *
 912 * NUMA-0	0		1		2		3
 913 *
 914 */
 915
 916
 917/*
 918 * Build the balance mask; it contains only those CPUs that can arrive at this
 919 * group and should be considered to continue balancing.
 920 *
 921 * We do this during the group creation pass, therefore the group information
 922 * isn't complete yet, however since each group represents a (child) domain we
 923 * can fully construct this using the sched_domain bits (which are already
 924 * complete).
 925 */
 926static void
 927build_balance_mask(struct sched_domain *sd, struct sched_group *sg, struct cpumask *mask)
 928{
 929	const struct cpumask *sg_span = sched_group_span(sg);
 930	struct sd_data *sdd = sd->private;
 931	struct sched_domain *sibling;
 932	int i;
 933
 934	cpumask_clear(mask);
 935
 936	for_each_cpu(i, sg_span) {
 937		sibling = *per_cpu_ptr(sdd->sd, i);
 938
 939		/*
 940		 * Can happen in the asymmetric case, where these siblings are
 941		 * unused. The mask will not be empty because those CPUs that
 942		 * do have the top domain _should_ span the domain.
 943		 */
 944		if (!sibling->child)
 945			continue;
 946
 947		/* If we would not end up here, we can't continue from here */
 948		if (!cpumask_equal(sg_span, sched_domain_span(sibling->child)))
 949			continue;
 950
 951		cpumask_set_cpu(i, mask);
 952	}
 953
 954	/* We must not have empty masks here */
 955	WARN_ON_ONCE(cpumask_empty(mask));
 956}
 957
 958/*
 959 * XXX: This creates per-node group entries; since the load-balancer will
 960 * immediately access remote memory to construct this group's load-balance
 961 * statistics having the groups node local is of dubious benefit.
 962 */
 963static struct sched_group *
 964build_group_from_child_sched_domain(struct sched_domain *sd, int cpu)
 965{
 966	struct sched_group *sg;
 967	struct cpumask *sg_span;
 968
 969	sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
 970			GFP_KERNEL, cpu_to_node(cpu));
 971
 972	if (!sg)
 973		return NULL;
 974
 975	sg_span = sched_group_span(sg);
 976	if (sd->child) {
 977		cpumask_copy(sg_span, sched_domain_span(sd->child));
 978		sg->flags = sd->child->flags;
 979	} else {
 980		cpumask_copy(sg_span, sched_domain_span(sd));
 981	}
 982
 983	atomic_inc(&sg->ref);
 984	return sg;
 985}
 986
 987static void init_overlap_sched_group(struct sched_domain *sd,
 988				     struct sched_group *sg)
 989{
 990	struct cpumask *mask = sched_domains_tmpmask2;
 991	struct sd_data *sdd = sd->private;
 992	struct cpumask *sg_span;
 993	int cpu;
 994
 995	build_balance_mask(sd, sg, mask);
 996	cpu = cpumask_first(mask);
 997
 998	sg->sgc = *per_cpu_ptr(sdd->sgc, cpu);
 999	if (atomic_inc_return(&sg->sgc->ref) == 1)
1000		cpumask_copy(group_balance_mask(sg), mask);
1001	else
1002		WARN_ON_ONCE(!cpumask_equal(group_balance_mask(sg), mask));
1003
1004	/*
1005	 * Initialize sgc->capacity such that even if we mess up the
1006	 * domains and no possible iteration will get us here, we won't
1007	 * die on a /0 trap.
1008	 */
1009	sg_span = sched_group_span(sg);
1010	sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span);
1011	sg->sgc->min_capacity = SCHED_CAPACITY_SCALE;
1012	sg->sgc->max_capacity = SCHED_CAPACITY_SCALE;
1013}
1014
1015static struct sched_domain *
1016find_descended_sibling(struct sched_domain *sd, struct sched_domain *sibling)
1017{
1018	/*
1019	 * The proper descendant would be the one whose child won't span out
1020	 * of sd
1021	 */
1022	while (sibling->child &&
1023	       !cpumask_subset(sched_domain_span(sibling->child),
1024			       sched_domain_span(sd)))
1025		sibling = sibling->child;
1026
1027	/*
1028	 * As we are referencing sgc across different topology level, we need
1029	 * to go down to skip those sched_domains which don't contribute to
1030	 * scheduling because they will be degenerated in cpu_attach_domain
1031	 */
1032	while (sibling->child &&
1033	       cpumask_equal(sched_domain_span(sibling->child),
1034			     sched_domain_span(sibling)))
1035		sibling = sibling->child;
1036
1037	return sibling;
1038}
1039
1040static int
1041build_overlap_sched_groups(struct sched_domain *sd, int cpu)
1042{
1043	struct sched_group *first = NULL, *last = NULL, *sg;
1044	const struct cpumask *span = sched_domain_span(sd);
1045	struct cpumask *covered = sched_domains_tmpmask;
1046	struct sd_data *sdd = sd->private;
1047	struct sched_domain *sibling;
1048	int i;
1049
1050	cpumask_clear(covered);
1051
1052	for_each_cpu_wrap(i, span, cpu) {
1053		struct cpumask *sg_span;
1054
1055		if (cpumask_test_cpu(i, covered))
1056			continue;
1057
1058		sibling = *per_cpu_ptr(sdd->sd, i);
1059
1060		/*
1061		 * Asymmetric node setups can result in situations where the
1062		 * domain tree is of unequal depth, make sure to skip domains
1063		 * that already cover the entire range.
1064		 *
1065		 * In that case build_sched_domains() will have terminated the
1066		 * iteration early and our sibling sd spans will be empty.
1067		 * Domains should always include the CPU they're built on, so
1068		 * check that.
1069		 */
1070		if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
1071			continue;
1072
1073		/*
1074		 * Usually we build sched_group by sibling's child sched_domain
1075		 * But for machines whose NUMA diameter are 3 or above, we move
1076		 * to build sched_group by sibling's proper descendant's child
1077		 * domain because sibling's child sched_domain will span out of
1078		 * the sched_domain being built as below.
1079		 *
1080		 * Smallest diameter=3 topology is:
1081		 *
1082		 *   node   0   1   2   3
1083		 *     0:  10  20  30  40
1084		 *     1:  20  10  20  30
1085		 *     2:  30  20  10  20
1086		 *     3:  40  30  20  10
1087		 *
1088		 *   0 --- 1 --- 2 --- 3
1089		 *
1090		 * NUMA-3       0-3             N/A             N/A             0-3
1091		 *  groups:     {0-2},{1-3}                                     {1-3},{0-2}
1092		 *
1093		 * NUMA-2       0-2             0-3             0-3             1-3
1094		 *  groups:     {0-1},{1-3}     {0-2},{2-3}     {1-3},{0-1}     {2-3},{0-2}
1095		 *
1096		 * NUMA-1       0-1             0-2             1-3             2-3
1097		 *  groups:     {0},{1}         {1},{2},{0}     {2},{3},{1}     {3},{2}
1098		 *
1099		 * NUMA-0       0               1               2               3
1100		 *
1101		 * The NUMA-2 groups for nodes 0 and 3 are obviously buggered, as the
1102		 * group span isn't a subset of the domain span.
1103		 */
1104		if (sibling->child &&
1105		    !cpumask_subset(sched_domain_span(sibling->child), span))
1106			sibling = find_descended_sibling(sd, sibling);
1107
1108		sg = build_group_from_child_sched_domain(sibling, cpu);
1109		if (!sg)
1110			goto fail;
1111
1112		sg_span = sched_group_span(sg);
1113		cpumask_or(covered, covered, sg_span);
1114
1115		init_overlap_sched_group(sibling, sg);
1116
1117		if (!first)
1118			first = sg;
1119		if (last)
1120			last->next = sg;
1121		last = sg;
1122		last->next = first;
1123	}
1124	sd->groups = first;
1125
1126	return 0;
1127
1128fail:
1129	free_sched_groups(first, 0);
1130
1131	return -ENOMEM;
1132}
1133
1134
1135/*
1136 * Package topology (also see the load-balance blurb in fair.c)
1137 *
1138 * The scheduler builds a tree structure to represent a number of important
1139 * topology features. By default (default_topology[]) these include:
1140 *
1141 *  - Simultaneous multithreading (SMT)
1142 *  - Multi-Core Cache (MC)
1143 *  - Package (PKG)
1144 *
1145 * Where the last one more or less denotes everything up to a NUMA node.
1146 *
1147 * The tree consists of 3 primary data structures:
1148 *
1149 *	sched_domain -> sched_group -> sched_group_capacity
1150 *	    ^ ^             ^ ^
1151 *          `-'             `-'
1152 *
1153 * The sched_domains are per-CPU and have a two way link (parent & child) and
1154 * denote the ever growing mask of CPUs belonging to that level of topology.
1155 *
1156 * Each sched_domain has a circular (double) linked list of sched_group's, each
1157 * denoting the domains of the level below (or individual CPUs in case of the
1158 * first domain level). The sched_group linked by a sched_domain includes the
1159 * CPU of that sched_domain [*].
1160 *
1161 * Take for instance a 2 threaded, 2 core, 2 cache cluster part:
1162 *
1163 * CPU   0   1   2   3   4   5   6   7
1164 *
1165 * PKG  [                             ]
1166 * MC   [             ] [             ]
1167 * SMT  [     ] [     ] [     ] [     ]
1168 *
1169 *  - or -
1170 *
1171 * PKG  0-7 0-7 0-7 0-7 0-7 0-7 0-7 0-7
1172 * MC	0-3 0-3 0-3 0-3 4-7 4-7 4-7 4-7
1173 * SMT  0-1 0-1 2-3 2-3 4-5 4-5 6-7 6-7
1174 *
1175 * CPU   0   1   2   3   4   5   6   7
1176 *
1177 * One way to think about it is: sched_domain moves you up and down among these
1178 * topology levels, while sched_group moves you sideways through it, at child
1179 * domain granularity.
1180 *
1181 * sched_group_capacity ensures each unique sched_group has shared storage.
1182 *
1183 * There are two related construction problems, both require a CPU that
1184 * uniquely identify each group (for a given domain):
1185 *
1186 *  - The first is the balance_cpu (see should_we_balance() and the
1187 *    load-balance blurb in fair.c); for each group we only want 1 CPU to
1188 *    continue balancing at a higher domain.
1189 *
1190 *  - The second is the sched_group_capacity; we want all identical groups
1191 *    to share a single sched_group_capacity.
1192 *
1193 * Since these topologies are exclusive by construction. That is, its
1194 * impossible for an SMT thread to belong to multiple cores, and cores to
1195 * be part of multiple caches. There is a very clear and unique location
1196 * for each CPU in the hierarchy.
1197 *
1198 * Therefore computing a unique CPU for each group is trivial (the iteration
1199 * mask is redundant and set all 1s; all CPUs in a group will end up at _that_
1200 * group), we can simply pick the first CPU in each group.
1201 *
1202 *
1203 * [*] in other words, the first group of each domain is its child domain.
1204 */
1205
1206static struct sched_group *get_group(int cpu, struct sd_data *sdd)
1207{
1208	struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
1209	struct sched_domain *child = sd->child;
1210	struct sched_group *sg;
1211	bool already_visited;
1212
1213	if (child)
1214		cpu = cpumask_first(sched_domain_span(child));
1215
1216	sg = *per_cpu_ptr(sdd->sg, cpu);
1217	sg->sgc = *per_cpu_ptr(sdd->sgc, cpu);
1218
1219	/* Increase refcounts for claim_allocations: */
1220	already_visited = atomic_inc_return(&sg->ref) > 1;
1221	/* sgc visits should follow a similar trend as sg */
1222	WARN_ON(already_visited != (atomic_inc_return(&sg->sgc->ref) > 1));
1223
1224	/* If we have already visited that group, it's already initialized. */
1225	if (already_visited)
1226		return sg;
1227
1228	if (child) {
1229		cpumask_copy(sched_group_span(sg), sched_domain_span(child));
1230		cpumask_copy(group_balance_mask(sg), sched_group_span(sg));
1231		sg->flags = child->flags;
1232	} else {
1233		cpumask_set_cpu(cpu, sched_group_span(sg));
1234		cpumask_set_cpu(cpu, group_balance_mask(sg));
1235	}
1236
1237	sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sched_group_span(sg));
1238	sg->sgc->min_capacity = SCHED_CAPACITY_SCALE;
1239	sg->sgc->max_capacity = SCHED_CAPACITY_SCALE;
1240
1241	return sg;
1242}
1243
1244/*
1245 * build_sched_groups will build a circular linked list of the groups
1246 * covered by the given span, will set each group's ->cpumask correctly,
1247 * and will initialize their ->sgc.
1248 *
1249 * Assumes the sched_domain tree is fully constructed
1250 */
1251static int
1252build_sched_groups(struct sched_domain *sd, int cpu)
1253{
1254	struct sched_group *first = NULL, *last = NULL;
1255	struct sd_data *sdd = sd->private;
1256	const struct cpumask *span = sched_domain_span(sd);
1257	struct cpumask *covered;
1258	int i;
1259
1260	lockdep_assert_held(&sched_domains_mutex);
1261	covered = sched_domains_tmpmask;
1262
1263	cpumask_clear(covered);
1264
1265	for_each_cpu_wrap(i, span, cpu) {
1266		struct sched_group *sg;
1267
1268		if (cpumask_test_cpu(i, covered))
1269			continue;
1270
1271		sg = get_group(i, sdd);
1272
1273		cpumask_or(covered, covered, sched_group_span(sg));
1274
1275		if (!first)
1276			first = sg;
1277		if (last)
1278			last->next = sg;
1279		last = sg;
1280	}
1281	last->next = first;
1282	sd->groups = first;
1283
1284	return 0;
1285}
1286
1287/*
1288 * Initialize sched groups cpu_capacity.
1289 *
1290 * cpu_capacity indicates the capacity of sched group, which is used while
1291 * distributing the load between different sched groups in a sched domain.
1292 * Typically cpu_capacity for all the groups in a sched domain will be same
1293 * unless there are asymmetries in the topology. If there are asymmetries,
1294 * group having more cpu_capacity will pickup more load compared to the
1295 * group having less cpu_capacity.
1296 */
1297static void init_sched_groups_capacity(int cpu, struct sched_domain *sd)
1298{
1299	struct sched_group *sg = sd->groups;
1300	struct cpumask *mask = sched_domains_tmpmask2;
1301
1302	WARN_ON(!sg);
1303
1304	do {
1305		int cpu, cores = 0, max_cpu = -1;
1306
1307		sg->group_weight = cpumask_weight(sched_group_span(sg));
1308
1309		cpumask_copy(mask, sched_group_span(sg));
1310		for_each_cpu(cpu, mask) {
1311			cores++;
1312#ifdef CONFIG_SCHED_SMT
1313			cpumask_andnot(mask, mask, cpu_smt_mask(cpu));
1314#endif
1315		}
1316		sg->cores = cores;
1317
1318		if (!(sd->flags & SD_ASYM_PACKING))
1319			goto next;
1320
1321		for_each_cpu(cpu, sched_group_span(sg)) {
1322			if (max_cpu < 0)
1323				max_cpu = cpu;
1324			else if (sched_asym_prefer(cpu, max_cpu))
1325				max_cpu = cpu;
1326		}
1327		sg->asym_prefer_cpu = max_cpu;
1328
1329next:
1330		sg = sg->next;
1331	} while (sg != sd->groups);
1332
1333	if (cpu != group_balance_cpu(sg))
1334		return;
1335
1336	update_group_capacity(sd, cpu);
1337}
1338
1339/*
 
 
 
 
 
 
 
 
 
1340 * Set of available CPUs grouped by their corresponding capacities
1341 * Each list entry contains a CPU mask reflecting CPUs that share the same
1342 * capacity.
1343 * The lifespan of data is unlimited.
1344 */
1345LIST_HEAD(asym_cap_list);
 
 
1346
1347/*
1348 * Verify whether there is any CPU capacity asymmetry in a given sched domain.
1349 * Provides sd_flags reflecting the asymmetry scope.
1350 */
1351static inline int
1352asym_cpu_capacity_classify(const struct cpumask *sd_span,
1353			   const struct cpumask *cpu_map)
1354{
1355	struct asym_cap_data *entry;
1356	int count = 0, miss = 0;
1357
1358	/*
1359	 * Count how many unique CPU capacities this domain spans across
1360	 * (compare sched_domain CPUs mask with ones representing  available
1361	 * CPUs capacities). Take into account CPUs that might be offline:
1362	 * skip those.
1363	 */
1364	list_for_each_entry(entry, &asym_cap_list, link) {
1365		if (cpumask_intersects(sd_span, cpu_capacity_span(entry)))
1366			++count;
1367		else if (cpumask_intersects(cpu_map, cpu_capacity_span(entry)))
1368			++miss;
1369	}
1370
1371	WARN_ON_ONCE(!count && !list_empty(&asym_cap_list));
1372
1373	/* No asymmetry detected */
1374	if (count < 2)
1375		return 0;
1376	/* Some of the available CPU capacity values have not been detected */
1377	if (miss)
1378		return SD_ASYM_CPUCAPACITY;
1379
1380	/* Full asymmetry */
1381	return SD_ASYM_CPUCAPACITY | SD_ASYM_CPUCAPACITY_FULL;
1382
1383}
1384
1385static void free_asym_cap_entry(struct rcu_head *head)
1386{
1387	struct asym_cap_data *entry = container_of(head, struct asym_cap_data, rcu);
1388	kfree(entry);
1389}
1390
1391static inline void asym_cpu_capacity_update_data(int cpu)
1392{
1393	unsigned long capacity = arch_scale_cpu_capacity(cpu);
1394	struct asym_cap_data *insert_entry = NULL;
1395	struct asym_cap_data *entry;
1396
1397	/*
1398	 * Search if capacity already exits. If not, track which the entry
1399	 * where we should insert to keep the list ordered descending.
1400	 */
1401	list_for_each_entry(entry, &asym_cap_list, link) {
1402		if (capacity == entry->capacity)
1403			goto done;
1404		else if (!insert_entry && capacity > entry->capacity)
1405			insert_entry = list_prev_entry(entry, link);
1406	}
1407
1408	entry = kzalloc(sizeof(*entry) + cpumask_size(), GFP_KERNEL);
1409	if (WARN_ONCE(!entry, "Failed to allocate memory for asymmetry data\n"))
1410		return;
1411	entry->capacity = capacity;
1412
1413	/* If NULL then the new capacity is the smallest, add last. */
1414	if (!insert_entry)
1415		list_add_tail_rcu(&entry->link, &asym_cap_list);
1416	else
1417		list_add_rcu(&entry->link, &insert_entry->link);
1418done:
1419	__cpumask_set_cpu(cpu, cpu_capacity_span(entry));
1420}
1421
1422/*
1423 * Build-up/update list of CPUs grouped by their capacities
1424 * An update requires explicit request to rebuild sched domains
1425 * with state indicating CPU topology changes.
1426 */
1427static void asym_cpu_capacity_scan(void)
1428{
1429	struct asym_cap_data *entry, *next;
1430	int cpu;
1431
1432	list_for_each_entry(entry, &asym_cap_list, link)
1433		cpumask_clear(cpu_capacity_span(entry));
1434
1435	for_each_cpu_and(cpu, cpu_possible_mask, housekeeping_cpumask(HK_TYPE_DOMAIN))
1436		asym_cpu_capacity_update_data(cpu);
1437
1438	list_for_each_entry_safe(entry, next, &asym_cap_list, link) {
1439		if (cpumask_empty(cpu_capacity_span(entry))) {
1440			list_del_rcu(&entry->link);
1441			call_rcu(&entry->rcu, free_asym_cap_entry);
1442		}
1443	}
1444
1445	/*
1446	 * Only one capacity value has been detected i.e. this system is symmetric.
1447	 * No need to keep this data around.
1448	 */
1449	if (list_is_singular(&asym_cap_list)) {
1450		entry = list_first_entry(&asym_cap_list, typeof(*entry), link);
1451		list_del_rcu(&entry->link);
1452		call_rcu(&entry->rcu, free_asym_cap_entry);
1453	}
1454}
1455
1456/*
1457 * Initializers for schedule domains
1458 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
1459 */
1460
1461static int default_relax_domain_level = -1;
1462int sched_domain_level_max;
1463
1464static int __init setup_relax_domain_level(char *str)
1465{
1466	if (kstrtoint(str, 0, &default_relax_domain_level))
1467		pr_warn("Unable to set relax_domain_level\n");
1468
1469	return 1;
1470}
1471__setup("relax_domain_level=", setup_relax_domain_level);
1472
1473static void set_domain_attribute(struct sched_domain *sd,
1474				 struct sched_domain_attr *attr)
1475{
1476	int request;
1477
1478	if (!attr || attr->relax_domain_level < 0) {
1479		if (default_relax_domain_level < 0)
1480			return;
1481		request = default_relax_domain_level;
1482	} else
1483		request = attr->relax_domain_level;
1484
1485	if (sd->level >= request) {
1486		/* Turn off idle balance on this domain: */
1487		sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1488	}
1489}
1490
1491static void __sdt_free(const struct cpumask *cpu_map);
1492static int __sdt_alloc(const struct cpumask *cpu_map);
1493
1494static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
1495				 const struct cpumask *cpu_map)
1496{
1497	switch (what) {
1498	case sa_rootdomain:
1499		if (!atomic_read(&d->rd->refcount))
1500			free_rootdomain(&d->rd->rcu);
1501		fallthrough;
1502	case sa_sd:
1503		free_percpu(d->sd);
1504		fallthrough;
1505	case sa_sd_storage:
1506		__sdt_free(cpu_map);
1507		fallthrough;
1508	case sa_none:
1509		break;
1510	}
1511}
1512
1513static enum s_alloc
1514__visit_domain_allocation_hell(struct s_data *d, const struct cpumask *cpu_map)
1515{
1516	memset(d, 0, sizeof(*d));
1517
1518	if (__sdt_alloc(cpu_map))
1519		return sa_sd_storage;
1520	d->sd = alloc_percpu(struct sched_domain *);
1521	if (!d->sd)
1522		return sa_sd_storage;
1523	d->rd = alloc_rootdomain();
1524	if (!d->rd)
1525		return sa_sd;
1526
1527	return sa_rootdomain;
1528}
1529
1530/*
1531 * NULL the sd_data elements we've used to build the sched_domain and
1532 * sched_group structure so that the subsequent __free_domain_allocs()
1533 * will not free the data we're using.
1534 */
1535static void claim_allocations(int cpu, struct sched_domain *sd)
1536{
1537	struct sd_data *sdd = sd->private;
1538
1539	WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
1540	*per_cpu_ptr(sdd->sd, cpu) = NULL;
1541
1542	if (atomic_read(&(*per_cpu_ptr(sdd->sds, cpu))->ref))
1543		*per_cpu_ptr(sdd->sds, cpu) = NULL;
1544
1545	if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
1546		*per_cpu_ptr(sdd->sg, cpu) = NULL;
1547
1548	if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref))
1549		*per_cpu_ptr(sdd->sgc, cpu) = NULL;
1550}
1551
1552#ifdef CONFIG_NUMA
1553enum numa_topology_type sched_numa_topology_type;
1554
1555static int			sched_domains_numa_levels;
1556static int			sched_domains_curr_level;
1557
1558int				sched_max_numa_distance;
1559static int			*sched_domains_numa_distance;
1560static struct cpumask		***sched_domains_numa_masks;
 
 
 
1561#endif
1562
1563/*
1564 * SD_flags allowed in topology descriptions.
1565 *
1566 * These flags are purely descriptive of the topology and do not prescribe
1567 * behaviour. Behaviour is artificial and mapped in the below sd_init()
1568 * function. For details, see include/linux/sched/sd_flags.h.
1569 *
1570 *   SD_SHARE_CPUCAPACITY
1571 *   SD_SHARE_LLC
1572 *   SD_CLUSTER
1573 *   SD_NUMA
1574 *
1575 * Odd one out, which beside describing the topology has a quirk also
1576 * prescribes the desired behaviour that goes along with it:
1577 *
1578 *   SD_ASYM_PACKING        - describes SMT quirks
1579 */
1580#define TOPOLOGY_SD_FLAGS		\
1581	(SD_SHARE_CPUCAPACITY	|	\
1582	 SD_CLUSTER		|	\
1583	 SD_SHARE_LLC		|	\
1584	 SD_NUMA		|	\
1585	 SD_ASYM_PACKING)
1586
1587static struct sched_domain *
1588sd_init(struct sched_domain_topology_level *tl,
1589	const struct cpumask *cpu_map,
1590	struct sched_domain *child, int cpu)
1591{
1592	struct sd_data *sdd = &tl->data;
1593	struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
1594	int sd_id, sd_weight, sd_flags = 0;
1595	struct cpumask *sd_span;
1596
1597#ifdef CONFIG_NUMA
1598	/*
1599	 * Ugly hack to pass state to sd_numa_mask()...
1600	 */
1601	sched_domains_curr_level = tl->numa_level;
1602#endif
1603
1604	sd_weight = cpumask_weight(tl->mask(cpu));
1605
1606	if (tl->sd_flags)
1607		sd_flags = (*tl->sd_flags)();
1608	if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS,
1609			"wrong sd_flags in topology description\n"))
1610		sd_flags &= TOPOLOGY_SD_FLAGS;
1611
1612	*sd = (struct sched_domain){
1613		.min_interval		= sd_weight,
1614		.max_interval		= 2*sd_weight,
1615		.busy_factor		= 16,
1616		.imbalance_pct		= 117,
1617
1618		.cache_nice_tries	= 0,
1619
1620		.flags			= 1*SD_BALANCE_NEWIDLE
1621					| 1*SD_BALANCE_EXEC
1622					| 1*SD_BALANCE_FORK
1623					| 0*SD_BALANCE_WAKE
1624					| 1*SD_WAKE_AFFINE
1625					| 0*SD_SHARE_CPUCAPACITY
1626					| 0*SD_SHARE_LLC
1627					| 0*SD_SERIALIZE
1628					| 1*SD_PREFER_SIBLING
1629					| 0*SD_NUMA
1630					| sd_flags
1631					,
1632
1633		.last_balance		= jiffies,
1634		.balance_interval	= sd_weight,
1635		.max_newidle_lb_cost	= 0,
1636		.last_decay_max_lb_cost	= jiffies,
1637		.child			= child,
1638#ifdef CONFIG_SCHED_DEBUG
1639		.name			= tl->name,
1640#endif
1641	};
1642
1643	sd_span = sched_domain_span(sd);
1644	cpumask_and(sd_span, cpu_map, tl->mask(cpu));
1645	sd_id = cpumask_first(sd_span);
1646
1647	sd->flags |= asym_cpu_capacity_classify(sd_span, cpu_map);
1648
1649	WARN_ONCE((sd->flags & (SD_SHARE_CPUCAPACITY | SD_ASYM_CPUCAPACITY)) ==
1650		  (SD_SHARE_CPUCAPACITY | SD_ASYM_CPUCAPACITY),
1651		  "CPU capacity asymmetry not supported on SMT\n");
1652
1653	/*
1654	 * Convert topological properties into behaviour.
1655	 */
1656	/* Don't attempt to spread across CPUs of different capacities. */
1657	if ((sd->flags & SD_ASYM_CPUCAPACITY) && sd->child)
1658		sd->child->flags &= ~SD_PREFER_SIBLING;
1659
1660	if (sd->flags & SD_SHARE_CPUCAPACITY) {
1661		sd->imbalance_pct = 110;
1662
1663	} else if (sd->flags & SD_SHARE_LLC) {
1664		sd->imbalance_pct = 117;
1665		sd->cache_nice_tries = 1;
1666
1667#ifdef CONFIG_NUMA
1668	} else if (sd->flags & SD_NUMA) {
1669		sd->cache_nice_tries = 2;
1670
1671		sd->flags &= ~SD_PREFER_SIBLING;
1672		sd->flags |= SD_SERIALIZE;
1673		if (sched_domains_numa_distance[tl->numa_level] > node_reclaim_distance) {
1674			sd->flags &= ~(SD_BALANCE_EXEC |
1675				       SD_BALANCE_FORK |
1676				       SD_WAKE_AFFINE);
1677		}
1678
1679#endif
1680	} else {
1681		sd->cache_nice_tries = 1;
1682	}
1683
1684	/*
1685	 * For all levels sharing cache; connect a sched_domain_shared
1686	 * instance.
1687	 */
1688	if (sd->flags & SD_SHARE_LLC) {
1689		sd->shared = *per_cpu_ptr(sdd->sds, sd_id);
1690		atomic_inc(&sd->shared->ref);
1691		atomic_set(&sd->shared->nr_busy_cpus, sd_weight);
1692	}
1693
1694	sd->private = sdd;
1695
1696	return sd;
1697}
1698
1699/*
1700 * Topology list, bottom-up.
1701 */
1702static struct sched_domain_topology_level default_topology[] = {
1703#ifdef CONFIG_SCHED_SMT
1704	{ cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
1705#endif
1706
1707#ifdef CONFIG_SCHED_CLUSTER
1708	{ cpu_clustergroup_mask, cpu_cluster_flags, SD_INIT_NAME(CLS) },
1709#endif
1710
1711#ifdef CONFIG_SCHED_MC
1712	{ cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
1713#endif
1714	{ cpu_cpu_mask, SD_INIT_NAME(PKG) },
1715	{ NULL, },
1716};
1717
1718static struct sched_domain_topology_level *sched_domain_topology =
1719	default_topology;
1720static struct sched_domain_topology_level *sched_domain_topology_saved;
1721
1722#define for_each_sd_topology(tl)			\
1723	for (tl = sched_domain_topology; tl->mask; tl++)
1724
1725void __init set_sched_topology(struct sched_domain_topology_level *tl)
1726{
1727	if (WARN_ON_ONCE(sched_smp_initialized))
1728		return;
1729
1730	sched_domain_topology = tl;
1731	sched_domain_topology_saved = NULL;
1732}
1733
1734#ifdef CONFIG_NUMA
1735
1736static const struct cpumask *sd_numa_mask(int cpu)
1737{
1738	return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
1739}
1740
1741static void sched_numa_warn(const char *str)
1742{
1743	static int done = false;
1744	int i,j;
1745
1746	if (done)
1747		return;
1748
1749	done = true;
1750
1751	printk(KERN_WARNING "ERROR: %s\n\n", str);
1752
1753	for (i = 0; i < nr_node_ids; i++) {
1754		printk(KERN_WARNING "  ");
1755		for (j = 0; j < nr_node_ids; j++) {
1756			if (!node_state(i, N_CPU) || !node_state(j, N_CPU))
1757				printk(KERN_CONT "(%02d) ", node_distance(i,j));
1758			else
1759				printk(KERN_CONT " %02d  ", node_distance(i,j));
1760		}
1761		printk(KERN_CONT "\n");
1762	}
1763	printk(KERN_WARNING "\n");
1764}
1765
1766bool find_numa_distance(int distance)
1767{
1768	bool found = false;
1769	int i, *distances;
1770
1771	if (distance == node_distance(0, 0))
1772		return true;
1773
1774	rcu_read_lock();
1775	distances = rcu_dereference(sched_domains_numa_distance);
1776	if (!distances)
1777		goto unlock;
1778	for (i = 0; i < sched_domains_numa_levels; i++) {
1779		if (distances[i] == distance) {
1780			found = true;
1781			break;
1782		}
1783	}
1784unlock:
1785	rcu_read_unlock();
1786
1787	return found;
1788}
1789
1790#define for_each_cpu_node_but(n, nbut)		\
1791	for_each_node_state(n, N_CPU)		\
1792		if (n == nbut)			\
1793			continue;		\
1794		else
1795
1796/*
1797 * A system can have three types of NUMA topology:
1798 * NUMA_DIRECT: all nodes are directly connected, or not a NUMA system
1799 * NUMA_GLUELESS_MESH: some nodes reachable through intermediary nodes
1800 * NUMA_BACKPLANE: nodes can reach other nodes through a backplane
1801 *
1802 * The difference between a glueless mesh topology and a backplane
1803 * topology lies in whether communication between not directly
1804 * connected nodes goes through intermediary nodes (where programs
1805 * could run), or through backplane controllers. This affects
1806 * placement of programs.
1807 *
1808 * The type of topology can be discerned with the following tests:
1809 * - If the maximum distance between any nodes is 1 hop, the system
1810 *   is directly connected.
1811 * - If for two nodes A and B, located N > 1 hops away from each other,
1812 *   there is an intermediary node C, which is < N hops away from both
1813 *   nodes A and B, the system is a glueless mesh.
1814 */
1815static void init_numa_topology_type(int offline_node)
1816{
1817	int a, b, c, n;
1818
1819	n = sched_max_numa_distance;
1820
1821	if (sched_domains_numa_levels <= 2) {
1822		sched_numa_topology_type = NUMA_DIRECT;
1823		return;
1824	}
1825
1826	for_each_cpu_node_but(a, offline_node) {
1827		for_each_cpu_node_but(b, offline_node) {
1828			/* Find two nodes furthest removed from each other. */
1829			if (node_distance(a, b) < n)
1830				continue;
1831
1832			/* Is there an intermediary node between a and b? */
1833			for_each_cpu_node_but(c, offline_node) {
1834				if (node_distance(a, c) < n &&
1835				    node_distance(b, c) < n) {
1836					sched_numa_topology_type =
1837							NUMA_GLUELESS_MESH;
1838					return;
1839				}
1840			}
1841
1842			sched_numa_topology_type = NUMA_BACKPLANE;
1843			return;
1844		}
1845	}
1846
1847	pr_err("Failed to find a NUMA topology type, defaulting to DIRECT\n");
1848	sched_numa_topology_type = NUMA_DIRECT;
1849}
1850
1851
1852#define NR_DISTANCE_VALUES (1 << DISTANCE_BITS)
1853
1854void sched_init_numa(int offline_node)
1855{
1856	struct sched_domain_topology_level *tl;
1857	unsigned long *distance_map;
1858	int nr_levels = 0;
1859	int i, j;
1860	int *distances;
1861	struct cpumask ***masks;
1862
1863	/*
1864	 * O(nr_nodes^2) de-duplicating selection sort -- in order to find the
1865	 * unique distances in the node_distance() table.
1866	 */
1867	distance_map = bitmap_alloc(NR_DISTANCE_VALUES, GFP_KERNEL);
1868	if (!distance_map)
1869		return;
1870
1871	bitmap_zero(distance_map, NR_DISTANCE_VALUES);
1872	for_each_cpu_node_but(i, offline_node) {
1873		for_each_cpu_node_but(j, offline_node) {
1874			int distance = node_distance(i, j);
1875
1876			if (distance < LOCAL_DISTANCE || distance >= NR_DISTANCE_VALUES) {
1877				sched_numa_warn("Invalid distance value range");
1878				bitmap_free(distance_map);
1879				return;
1880			}
1881
1882			bitmap_set(distance_map, distance, 1);
1883		}
1884	}
1885	/*
1886	 * We can now figure out how many unique distance values there are and
1887	 * allocate memory accordingly.
1888	 */
1889	nr_levels = bitmap_weight(distance_map, NR_DISTANCE_VALUES);
1890
1891	distances = kcalloc(nr_levels, sizeof(int), GFP_KERNEL);
1892	if (!distances) {
1893		bitmap_free(distance_map);
1894		return;
1895	}
1896
1897	for (i = 0, j = 0; i < nr_levels; i++, j++) {
1898		j = find_next_bit(distance_map, NR_DISTANCE_VALUES, j);
1899		distances[i] = j;
1900	}
1901	rcu_assign_pointer(sched_domains_numa_distance, distances);
1902
1903	bitmap_free(distance_map);
1904
1905	/*
1906	 * 'nr_levels' contains the number of unique distances
1907	 *
1908	 * The sched_domains_numa_distance[] array includes the actual distance
1909	 * numbers.
1910	 */
1911
1912	/*
1913	 * Here, we should temporarily reset sched_domains_numa_levels to 0.
1914	 * If it fails to allocate memory for array sched_domains_numa_masks[][],
1915	 * the array will contain less then 'nr_levels' members. This could be
1916	 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
1917	 * in other functions.
1918	 *
1919	 * We reset it to 'nr_levels' at the end of this function.
1920	 */
1921	sched_domains_numa_levels = 0;
1922
1923	masks = kzalloc(sizeof(void *) * nr_levels, GFP_KERNEL);
1924	if (!masks)
1925		return;
1926
1927	/*
1928	 * Now for each level, construct a mask per node which contains all
1929	 * CPUs of nodes that are that many hops away from us.
1930	 */
1931	for (i = 0; i < nr_levels; i++) {
1932		masks[i] = kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
1933		if (!masks[i])
 
1934			return;
1935
1936		for_each_cpu_node_but(j, offline_node) {
1937			struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
1938			int k;
1939
1940			if (!mask)
1941				return;
1942
1943			masks[i][j] = mask;
 
 
 
 
 
 
 
 
 
 
 
1944
1945			for_each_cpu_node_but(k, offline_node) {
1946				if (sched_debug() && (node_distance(j, k) != node_distance(k, j)))
1947					sched_numa_warn("Node-distance not symmetric");
1948
1949				if (node_distance(j, k) > sched_domains_numa_distance[i])
1950					continue;
1951
1952				cpumask_or(mask, mask, cpumask_of_node(k));
1953			}
1954		}
1955	}
1956	rcu_assign_pointer(sched_domains_numa_masks, masks);
1957
1958	/* Compute default topology size */
1959	for (i = 0; sched_domain_topology[i].mask; i++);
1960
1961	tl = kzalloc((i + nr_levels + 1) *
1962			sizeof(struct sched_domain_topology_level), GFP_KERNEL);
1963	if (!tl)
1964		return;
1965
1966	/*
1967	 * Copy the default topology bits..
1968	 */
1969	for (i = 0; sched_domain_topology[i].mask; i++)
1970		tl[i] = sched_domain_topology[i];
1971
1972	/*
1973	 * Add the NUMA identity distance, aka single NODE.
1974	 */
1975	tl[i++] = (struct sched_domain_topology_level){
1976		.mask = sd_numa_mask,
1977		.numa_level = 0,
1978		SD_INIT_NAME(NODE)
1979	};
1980
1981	/*
1982	 * .. and append 'j' levels of NUMA goodness.
1983	 */
1984	for (j = 1; j < nr_levels; i++, j++) {
1985		tl[i] = (struct sched_domain_topology_level){
1986			.mask = sd_numa_mask,
1987			.sd_flags = cpu_numa_flags,
1988			.flags = SDTL_OVERLAP,
1989			.numa_level = j,
1990			SD_INIT_NAME(NUMA)
1991		};
1992	}
1993
1994	sched_domain_topology_saved = sched_domain_topology;
1995	sched_domain_topology = tl;
1996
1997	sched_domains_numa_levels = nr_levels;
1998	WRITE_ONCE(sched_max_numa_distance, sched_domains_numa_distance[nr_levels - 1]);
1999
2000	init_numa_topology_type(offline_node);
2001}
2002
 
2003
2004static void sched_reset_numa(void)
2005{
2006	int nr_levels, *distances;
2007	struct cpumask ***masks;
2008
2009	nr_levels = sched_domains_numa_levels;
2010	sched_domains_numa_levels = 0;
2011	sched_max_numa_distance = 0;
2012	sched_numa_topology_type = NUMA_DIRECT;
2013	distances = sched_domains_numa_distance;
2014	rcu_assign_pointer(sched_domains_numa_distance, NULL);
2015	masks = sched_domains_numa_masks;
2016	rcu_assign_pointer(sched_domains_numa_masks, NULL);
2017	if (distances || masks) {
2018		int i, j;
2019
2020		synchronize_rcu();
2021		kfree(distances);
2022		for (i = 0; i < nr_levels && masks; i++) {
2023			if (!masks[i])
2024				continue;
2025			for_each_node(j)
2026				kfree(masks[i][j]);
2027			kfree(masks[i]);
2028		}
2029		kfree(masks);
2030	}
2031	if (sched_domain_topology_saved) {
2032		kfree(sched_domain_topology);
2033		sched_domain_topology = sched_domain_topology_saved;
2034		sched_domain_topology_saved = NULL;
2035	}
2036}
2037
2038/*
2039 * Call with hotplug lock held
2040 */
2041void sched_update_numa(int cpu, bool online)
2042{
2043	int node;
2044
2045	node = cpu_to_node(cpu);
2046	/*
2047	 * Scheduler NUMA topology is updated when the first CPU of a
2048	 * node is onlined or the last CPU of a node is offlined.
 
 
2049	 */
2050	if (cpumask_weight(cpumask_of_node(node)) != 1)
2051		return;
2052
2053	sched_reset_numa();
2054	sched_init_numa(online ? NUMA_NO_NODE : node);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2055}
2056
2057void sched_domains_numa_masks_set(unsigned int cpu)
2058{
2059	int node = cpu_to_node(cpu);
2060	int i, j;
2061
 
 
2062	for (i = 0; i < sched_domains_numa_levels; i++) {
2063		for (j = 0; j < nr_node_ids; j++) {
2064			if (!node_state(j, N_CPU))
2065				continue;
2066
2067			/* Set ourselves in the remote node's masks */
2068			if (node_distance(j, node) <= sched_domains_numa_distance[i])
2069				cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
2070		}
2071	}
2072}
2073
2074void sched_domains_numa_masks_clear(unsigned int cpu)
2075{
2076	int i, j;
2077
2078	for (i = 0; i < sched_domains_numa_levels; i++) {
2079		for (j = 0; j < nr_node_ids; j++) {
2080			if (sched_domains_numa_masks[i][j])
2081				cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
2082		}
2083	}
2084}
2085
2086/*
2087 * sched_numa_find_closest() - given the NUMA topology, find the cpu
2088 *                             closest to @cpu from @cpumask.
2089 * cpumask: cpumask to find a cpu from
2090 * cpu: cpu to be close to
2091 *
2092 * returns: cpu, or nr_cpu_ids when nothing found.
2093 */
2094int sched_numa_find_closest(const struct cpumask *cpus, int cpu)
2095{
2096	int i, j = cpu_to_node(cpu), found = nr_cpu_ids;
2097	struct cpumask ***masks;
2098
2099	rcu_read_lock();
2100	masks = rcu_dereference(sched_domains_numa_masks);
2101	if (!masks)
2102		goto unlock;
2103	for (i = 0; i < sched_domains_numa_levels; i++) {
2104		if (!masks[i][j])
2105			break;
2106		cpu = cpumask_any_and(cpus, masks[i][j]);
2107		if (cpu < nr_cpu_ids) {
2108			found = cpu;
2109			break;
2110		}
2111	}
2112unlock:
2113	rcu_read_unlock();
2114
2115	return found;
2116}
2117
2118struct __cmp_key {
2119	const struct cpumask *cpus;
2120	struct cpumask ***masks;
2121	int node;
2122	int cpu;
2123	int w;
2124};
2125
2126static int hop_cmp(const void *a, const void *b)
2127{
2128	struct cpumask **prev_hop, **cur_hop = *(struct cpumask ***)b;
2129	struct __cmp_key *k = (struct __cmp_key *)a;
2130
2131	if (cpumask_weight_and(k->cpus, cur_hop[k->node]) <= k->cpu)
2132		return 1;
2133
2134	if (b == k->masks) {
2135		k->w = 0;
2136		return 0;
2137	}
2138
2139	prev_hop = *((struct cpumask ***)b - 1);
2140	k->w = cpumask_weight_and(k->cpus, prev_hop[k->node]);
2141	if (k->w <= k->cpu)
2142		return 0;
2143
2144	return -1;
2145}
2146
2147/**
2148 * sched_numa_find_nth_cpu() - given the NUMA topology, find the Nth closest CPU
2149 *                             from @cpus to @cpu, taking into account distance
2150 *                             from a given @node.
2151 * @cpus: cpumask to find a cpu from
2152 * @cpu: CPU to start searching
2153 * @node: NUMA node to order CPUs by distance
2154 *
2155 * Return: cpu, or nr_cpu_ids when nothing found.
2156 */
2157int sched_numa_find_nth_cpu(const struct cpumask *cpus, int cpu, int node)
2158{
2159	struct __cmp_key k = { .cpus = cpus, .cpu = cpu };
2160	struct cpumask ***hop_masks;
2161	int hop, ret = nr_cpu_ids;
2162
2163	if (node == NUMA_NO_NODE)
2164		return cpumask_nth_and(cpu, cpus, cpu_online_mask);
2165
2166	rcu_read_lock();
2167
2168	/* CPU-less node entries are uninitialized in sched_domains_numa_masks */
2169	node = numa_nearest_node(node, N_CPU);
2170	k.node = node;
2171
2172	k.masks = rcu_dereference(sched_domains_numa_masks);
2173	if (!k.masks)
2174		goto unlock;
2175
2176	hop_masks = bsearch(&k, k.masks, sched_domains_numa_levels, sizeof(k.masks[0]), hop_cmp);
2177	hop = hop_masks	- k.masks;
2178
2179	ret = hop ?
2180		cpumask_nth_and_andnot(cpu - k.w, cpus, k.masks[hop][node], k.masks[hop-1][node]) :
2181		cpumask_nth_and(cpu, cpus, k.masks[0][node]);
2182unlock:
2183	rcu_read_unlock();
2184	return ret;
2185}
2186EXPORT_SYMBOL_GPL(sched_numa_find_nth_cpu);
2187
2188/**
2189 * sched_numa_hop_mask() - Get the cpumask of CPUs at most @hops hops away from
2190 *                         @node
2191 * @node: The node to count hops from.
2192 * @hops: Include CPUs up to that many hops away. 0 means local node.
2193 *
2194 * Return: On success, a pointer to a cpumask of CPUs at most @hops away from
2195 * @node, an error value otherwise.
2196 *
2197 * Requires rcu_lock to be held. Returned cpumask is only valid within that
2198 * read-side section, copy it if required beyond that.
2199 *
2200 * Note that not all hops are equal in distance; see sched_init_numa() for how
2201 * distances and masks are handled.
2202 * Also note that this is a reflection of sched_domains_numa_masks, which may change
2203 * during the lifetime of the system (offline nodes are taken out of the masks).
2204 */
2205const struct cpumask *sched_numa_hop_mask(unsigned int node, unsigned int hops)
2206{
2207	struct cpumask ***masks;
2208
2209	if (node >= nr_node_ids || hops >= sched_domains_numa_levels)
2210		return ERR_PTR(-EINVAL);
2211
2212	masks = rcu_dereference(sched_domains_numa_masks);
2213	if (!masks)
2214		return ERR_PTR(-EBUSY);
2215
2216	return masks[hops][node];
2217}
2218EXPORT_SYMBOL_GPL(sched_numa_hop_mask);
2219
2220#endif /* CONFIG_NUMA */
2221
2222static int __sdt_alloc(const struct cpumask *cpu_map)
2223{
2224	struct sched_domain_topology_level *tl;
2225	int j;
2226
2227	for_each_sd_topology(tl) {
2228		struct sd_data *sdd = &tl->data;
2229
2230		sdd->sd = alloc_percpu(struct sched_domain *);
2231		if (!sdd->sd)
2232			return -ENOMEM;
2233
2234		sdd->sds = alloc_percpu(struct sched_domain_shared *);
2235		if (!sdd->sds)
2236			return -ENOMEM;
2237
2238		sdd->sg = alloc_percpu(struct sched_group *);
2239		if (!sdd->sg)
2240			return -ENOMEM;
2241
2242		sdd->sgc = alloc_percpu(struct sched_group_capacity *);
2243		if (!sdd->sgc)
2244			return -ENOMEM;
2245
2246		for_each_cpu(j, cpu_map) {
2247			struct sched_domain *sd;
2248			struct sched_domain_shared *sds;
2249			struct sched_group *sg;
2250			struct sched_group_capacity *sgc;
2251
2252			sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
2253					GFP_KERNEL, cpu_to_node(j));
2254			if (!sd)
2255				return -ENOMEM;
2256
2257			*per_cpu_ptr(sdd->sd, j) = sd;
2258
2259			sds = kzalloc_node(sizeof(struct sched_domain_shared),
2260					GFP_KERNEL, cpu_to_node(j));
2261			if (!sds)
2262				return -ENOMEM;
2263
2264			*per_cpu_ptr(sdd->sds, j) = sds;
2265
2266			sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
2267					GFP_KERNEL, cpu_to_node(j));
2268			if (!sg)
2269				return -ENOMEM;
2270
2271			sg->next = sg;
2272
2273			*per_cpu_ptr(sdd->sg, j) = sg;
2274
2275			sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(),
2276					GFP_KERNEL, cpu_to_node(j));
2277			if (!sgc)
2278				return -ENOMEM;
2279
2280#ifdef CONFIG_SCHED_DEBUG
2281			sgc->id = j;
2282#endif
2283
2284			*per_cpu_ptr(sdd->sgc, j) = sgc;
2285		}
2286	}
2287
2288	return 0;
2289}
2290
2291static void __sdt_free(const struct cpumask *cpu_map)
2292{
2293	struct sched_domain_topology_level *tl;
2294	int j;
2295
2296	for_each_sd_topology(tl) {
2297		struct sd_data *sdd = &tl->data;
2298
2299		for_each_cpu(j, cpu_map) {
2300			struct sched_domain *sd;
2301
2302			if (sdd->sd) {
2303				sd = *per_cpu_ptr(sdd->sd, j);
2304				if (sd && (sd->flags & SD_OVERLAP))
2305					free_sched_groups(sd->groups, 0);
2306				kfree(*per_cpu_ptr(sdd->sd, j));
2307			}
2308
2309			if (sdd->sds)
2310				kfree(*per_cpu_ptr(sdd->sds, j));
2311			if (sdd->sg)
2312				kfree(*per_cpu_ptr(sdd->sg, j));
2313			if (sdd->sgc)
2314				kfree(*per_cpu_ptr(sdd->sgc, j));
2315		}
2316		free_percpu(sdd->sd);
2317		sdd->sd = NULL;
2318		free_percpu(sdd->sds);
2319		sdd->sds = NULL;
2320		free_percpu(sdd->sg);
2321		sdd->sg = NULL;
2322		free_percpu(sdd->sgc);
2323		sdd->sgc = NULL;
2324	}
2325}
2326
2327static struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
2328		const struct cpumask *cpu_map, struct sched_domain_attr *attr,
2329		struct sched_domain *child, int cpu)
2330{
2331	struct sched_domain *sd = sd_init(tl, cpu_map, child, cpu);
2332
2333	if (child) {
2334		sd->level = child->level + 1;
2335		sched_domain_level_max = max(sched_domain_level_max, sd->level);
2336		child->parent = sd;
2337
2338		if (!cpumask_subset(sched_domain_span(child),
2339				    sched_domain_span(sd))) {
2340			pr_err("BUG: arch topology borken\n");
2341#ifdef CONFIG_SCHED_DEBUG
2342			pr_err("     the %s domain not a subset of the %s domain\n",
2343					child->name, sd->name);
2344#endif
2345			/* Fixup, ensure @sd has at least @child CPUs. */
2346			cpumask_or(sched_domain_span(sd),
2347				   sched_domain_span(sd),
2348				   sched_domain_span(child));
2349		}
2350
2351	}
2352	set_domain_attribute(sd, attr);
2353
2354	return sd;
2355}
2356
2357/*
2358 * Ensure topology masks are sane, i.e. there are no conflicts (overlaps) for
2359 * any two given CPUs at this (non-NUMA) topology level.
2360 */
2361static bool topology_span_sane(struct sched_domain_topology_level *tl,
2362			      const struct cpumask *cpu_map, int cpu)
2363{
2364	int i = cpu + 1;
2365
2366	/* NUMA levels are allowed to overlap */
2367	if (tl->flags & SDTL_OVERLAP)
2368		return true;
2369
2370	/*
2371	 * Non-NUMA levels cannot partially overlap - they must be either
2372	 * completely equal or completely disjoint. Otherwise we can end up
2373	 * breaking the sched_group lists - i.e. a later get_group() pass
2374	 * breaks the linking done for an earlier span.
2375	 */
2376	for_each_cpu_from(i, cpu_map) {
 
 
2377		/*
2378		 * We should 'and' all those masks with 'cpu_map' to exactly
2379		 * match the topology we're about to build, but that can only
2380		 * remove CPUs, which only lessens our ability to detect
2381		 * overlaps
2382		 */
2383		if (!cpumask_equal(tl->mask(cpu), tl->mask(i)) &&
2384		    cpumask_intersects(tl->mask(cpu), tl->mask(i)))
2385			return false;
2386	}
2387
2388	return true;
2389}
2390
2391/*
2392 * Build sched domains for a given set of CPUs and attach the sched domains
2393 * to the individual CPUs
2394 */
2395static int
2396build_sched_domains(const struct cpumask *cpu_map, struct sched_domain_attr *attr)
2397{
2398	enum s_alloc alloc_state = sa_none;
2399	struct sched_domain *sd;
2400	struct s_data d;
2401	struct rq *rq = NULL;
2402	int i, ret = -ENOMEM;
2403	bool has_asym = false;
2404	bool has_cluster = false;
2405
2406	if (WARN_ON(cpumask_empty(cpu_map)))
2407		goto error;
2408
2409	alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
2410	if (alloc_state != sa_rootdomain)
2411		goto error;
2412
2413	/* Set up domains for CPUs specified by the cpu_map: */
2414	for_each_cpu(i, cpu_map) {
2415		struct sched_domain_topology_level *tl;
2416
2417		sd = NULL;
2418		for_each_sd_topology(tl) {
2419
2420			if (WARN_ON(!topology_span_sane(tl, cpu_map, i)))
2421				goto error;
2422
2423			sd = build_sched_domain(tl, cpu_map, attr, sd, i);
2424
2425			has_asym |= sd->flags & SD_ASYM_CPUCAPACITY;
2426
2427			if (tl == sched_domain_topology)
2428				*per_cpu_ptr(d.sd, i) = sd;
2429			if (tl->flags & SDTL_OVERLAP)
2430				sd->flags |= SD_OVERLAP;
2431			if (cpumask_equal(cpu_map, sched_domain_span(sd)))
2432				break;
2433		}
2434	}
2435
2436	/* Build the groups for the domains */
2437	for_each_cpu(i, cpu_map) {
2438		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
2439			sd->span_weight = cpumask_weight(sched_domain_span(sd));
2440			if (sd->flags & SD_OVERLAP) {
2441				if (build_overlap_sched_groups(sd, i))
2442					goto error;
2443			} else {
2444				if (build_sched_groups(sd, i))
2445					goto error;
2446			}
2447		}
2448	}
2449
2450	/*
2451	 * Calculate an allowed NUMA imbalance such that LLCs do not get
2452	 * imbalanced.
2453	 */
2454	for_each_cpu(i, cpu_map) {
2455		unsigned int imb = 0;
2456		unsigned int imb_span = 1;
2457
2458		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
2459			struct sched_domain *child = sd->child;
2460
2461			if (!(sd->flags & SD_SHARE_LLC) && child &&
2462			    (child->flags & SD_SHARE_LLC)) {
2463				struct sched_domain __rcu *top_p;
2464				unsigned int nr_llcs;
2465
2466				/*
2467				 * For a single LLC per node, allow an
2468				 * imbalance up to 12.5% of the node. This is
2469				 * arbitrary cutoff based two factors -- SMT and
2470				 * memory channels. For SMT-2, the intent is to
2471				 * avoid premature sharing of HT resources but
2472				 * SMT-4 or SMT-8 *may* benefit from a different
2473				 * cutoff. For memory channels, this is a very
2474				 * rough estimate of how many channels may be
2475				 * active and is based on recent CPUs with
2476				 * many cores.
2477				 *
2478				 * For multiple LLCs, allow an imbalance
2479				 * until multiple tasks would share an LLC
2480				 * on one node while LLCs on another node
2481				 * remain idle. This assumes that there are
2482				 * enough logical CPUs per LLC to avoid SMT
2483				 * factors and that there is a correlation
2484				 * between LLCs and memory channels.
2485				 */
2486				nr_llcs = sd->span_weight / child->span_weight;
2487				if (nr_llcs == 1)
2488					imb = sd->span_weight >> 3;
2489				else
2490					imb = nr_llcs;
2491				imb = max(1U, imb);
2492				sd->imb_numa_nr = imb;
2493
2494				/* Set span based on the first NUMA domain. */
2495				top_p = sd->parent;
2496				while (top_p && !(top_p->flags & SD_NUMA)) {
2497					top_p = top_p->parent;
2498				}
2499				imb_span = top_p ? top_p->span_weight : sd->span_weight;
2500			} else {
2501				int factor = max(1U, (sd->span_weight / imb_span));
2502
2503				sd->imb_numa_nr = imb * factor;
2504			}
2505		}
2506	}
2507
2508	/* Calculate CPU capacity for physical packages and nodes */
2509	for (i = nr_cpumask_bits-1; i >= 0; i--) {
2510		if (!cpumask_test_cpu(i, cpu_map))
2511			continue;
2512
2513		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
2514			claim_allocations(i, sd);
2515			init_sched_groups_capacity(i, sd);
2516		}
2517	}
2518
2519	/* Attach the domains */
2520	rcu_read_lock();
2521	for_each_cpu(i, cpu_map) {
2522		rq = cpu_rq(i);
2523		sd = *per_cpu_ptr(d.sd, i);
2524
2525		cpu_attach_domain(sd, d.rd, i);
 
 
2526
2527		if (lowest_flag_domain(i, SD_CLUSTER))
2528			has_cluster = true;
2529	}
2530	rcu_read_unlock();
2531
2532	if (has_asym)
2533		static_branch_inc_cpuslocked(&sched_asym_cpucapacity);
2534
2535	if (has_cluster)
2536		static_branch_inc_cpuslocked(&sched_cluster_active);
2537
2538	if (rq && sched_debug_verbose)
2539		pr_info("root domain span: %*pbl\n", cpumask_pr_args(cpu_map));
2540
2541	ret = 0;
2542error:
2543	__free_domain_allocs(&d, alloc_state, cpu_map);
2544
2545	return ret;
2546}
2547
2548/* Current sched domains: */
2549static cpumask_var_t			*doms_cur;
2550
2551/* Number of sched domains in 'doms_cur': */
2552static int				ndoms_cur;
2553
2554/* Attributes of custom domains in 'doms_cur' */
2555static struct sched_domain_attr		*dattr_cur;
2556
2557/*
2558 * Special case: If a kmalloc() of a doms_cur partition (array of
2559 * cpumask) fails, then fallback to a single sched domain,
2560 * as determined by the single cpumask fallback_doms.
2561 */
2562static cpumask_var_t			fallback_doms;
2563
2564/*
2565 * arch_update_cpu_topology lets virtualized architectures update the
2566 * CPU core maps. It is supposed to return 1 if the topology changed
2567 * or 0 if it stayed the same.
2568 */
2569int __weak arch_update_cpu_topology(void)
2570{
2571	return 0;
2572}
2573
2574cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
2575{
2576	int i;
2577	cpumask_var_t *doms;
2578
2579	doms = kmalloc_array(ndoms, sizeof(*doms), GFP_KERNEL);
2580	if (!doms)
2581		return NULL;
2582	for (i = 0; i < ndoms; i++) {
2583		if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
2584			free_sched_domains(doms, i);
2585			return NULL;
2586		}
2587	}
2588	return doms;
2589}
2590
2591void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
2592{
2593	unsigned int i;
2594	for (i = 0; i < ndoms; i++)
2595		free_cpumask_var(doms[i]);
2596	kfree(doms);
2597}
2598
2599/*
2600 * Set up scheduler domains and groups.  For now this just excludes isolated
2601 * CPUs, but could be used to exclude other special cases in the future.
2602 */
2603int __init sched_init_domains(const struct cpumask *cpu_map)
2604{
2605	int err;
2606
2607	zalloc_cpumask_var(&sched_domains_tmpmask, GFP_KERNEL);
2608	zalloc_cpumask_var(&sched_domains_tmpmask2, GFP_KERNEL);
2609	zalloc_cpumask_var(&fallback_doms, GFP_KERNEL);
2610
2611	arch_update_cpu_topology();
2612	asym_cpu_capacity_scan();
2613	ndoms_cur = 1;
2614	doms_cur = alloc_sched_domains(ndoms_cur);
2615	if (!doms_cur)
2616		doms_cur = &fallback_doms;
2617	cpumask_and(doms_cur[0], cpu_map, housekeeping_cpumask(HK_TYPE_DOMAIN));
2618	err = build_sched_domains(doms_cur[0], NULL);
2619
2620	return err;
2621}
2622
2623/*
2624 * Detach sched domains from a group of CPUs specified in cpu_map
2625 * These CPUs will now be attached to the NULL domain
2626 */
2627static void detach_destroy_domains(const struct cpumask *cpu_map)
2628{
2629	unsigned int cpu = cpumask_any(cpu_map);
2630	int i;
2631
2632	if (rcu_access_pointer(per_cpu(sd_asym_cpucapacity, cpu)))
2633		static_branch_dec_cpuslocked(&sched_asym_cpucapacity);
2634
2635	if (static_branch_unlikely(&sched_cluster_active))
2636		static_branch_dec_cpuslocked(&sched_cluster_active);
2637
2638	rcu_read_lock();
2639	for_each_cpu(i, cpu_map)
2640		cpu_attach_domain(NULL, &def_root_domain, i);
2641	rcu_read_unlock();
2642}
2643
2644/* handle null as "default" */
2645static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
2646			struct sched_domain_attr *new, int idx_new)
2647{
2648	struct sched_domain_attr tmp;
2649
2650	/* Fast path: */
2651	if (!new && !cur)
2652		return 1;
2653
2654	tmp = SD_ATTR_INIT;
2655
2656	return !memcmp(cur ? (cur + idx_cur) : &tmp,
2657			new ? (new + idx_new) : &tmp,
2658			sizeof(struct sched_domain_attr));
2659}
2660
2661/*
2662 * Partition sched domains as specified by the 'ndoms_new'
2663 * cpumasks in the array doms_new[] of cpumasks. This compares
2664 * doms_new[] to the current sched domain partitioning, doms_cur[].
2665 * It destroys each deleted domain and builds each new domain.
2666 *
2667 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
2668 * The masks don't intersect (don't overlap.) We should setup one
2669 * sched domain for each mask. CPUs not in any of the cpumasks will
2670 * not be load balanced. If the same cpumask appears both in the
2671 * current 'doms_cur' domains and in the new 'doms_new', we can leave
2672 * it as it is.
2673 *
2674 * The passed in 'doms_new' should be allocated using
2675 * alloc_sched_domains.  This routine takes ownership of it and will
2676 * free_sched_domains it when done with it. If the caller failed the
2677 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
2678 * and partition_sched_domains() will fallback to the single partition
2679 * 'fallback_doms', it also forces the domains to be rebuilt.
2680 *
2681 * If doms_new == NULL it will be replaced with cpu_online_mask.
2682 * ndoms_new == 0 is a special case for destroying existing domains,
2683 * and it will not create the default domain.
2684 *
2685 * Call with hotplug lock and sched_domains_mutex held
2686 */
2687void partition_sched_domains_locked(int ndoms_new, cpumask_var_t doms_new[],
2688				    struct sched_domain_attr *dattr_new)
2689{
2690	bool __maybe_unused has_eas = false;
2691	int i, j, n;
2692	int new_topology;
2693
2694	lockdep_assert_held(&sched_domains_mutex);
2695
2696	/* Let the architecture update CPU core mappings: */
2697	new_topology = arch_update_cpu_topology();
2698	/* Trigger rebuilding CPU capacity asymmetry data */
2699	if (new_topology)
2700		asym_cpu_capacity_scan();
2701
2702	if (!doms_new) {
2703		WARN_ON_ONCE(dattr_new);
2704		n = 0;
2705		doms_new = alloc_sched_domains(1);
2706		if (doms_new) {
2707			n = 1;
2708			cpumask_and(doms_new[0], cpu_active_mask,
2709				    housekeeping_cpumask(HK_TYPE_DOMAIN));
2710		}
2711	} else {
2712		n = ndoms_new;
2713	}
2714
2715	/* Destroy deleted domains: */
2716	for (i = 0; i < ndoms_cur; i++) {
2717		for (j = 0; j < n && !new_topology; j++) {
2718			if (cpumask_equal(doms_cur[i], doms_new[j]) &&
2719			    dattrs_equal(dattr_cur, i, dattr_new, j)) {
2720				struct root_domain *rd;
2721
2722				/*
2723				 * This domain won't be destroyed and as such
2724				 * its dl_bw->total_bw needs to be cleared.  It
2725				 * will be recomputed in function
2726				 * update_tasks_root_domain().
2727				 */
2728				rd = cpu_rq(cpumask_any(doms_cur[i]))->rd;
2729				dl_clear_root_domain(rd);
2730				goto match1;
2731			}
2732		}
2733		/* No match - a current sched domain not in new doms_new[] */
2734		detach_destroy_domains(doms_cur[i]);
2735match1:
2736		;
2737	}
2738
2739	n = ndoms_cur;
2740	if (!doms_new) {
2741		n = 0;
2742		doms_new = &fallback_doms;
2743		cpumask_and(doms_new[0], cpu_active_mask,
2744			    housekeeping_cpumask(HK_TYPE_DOMAIN));
2745	}
2746
2747	/* Build new domains: */
2748	for (i = 0; i < ndoms_new; i++) {
2749		for (j = 0; j < n && !new_topology; j++) {
2750			if (cpumask_equal(doms_new[i], doms_cur[j]) &&
2751			    dattrs_equal(dattr_new, i, dattr_cur, j))
2752				goto match2;
2753		}
2754		/* No match - add a new doms_new */
2755		build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
2756match2:
2757		;
2758	}
2759
2760#if defined(CONFIG_ENERGY_MODEL) && defined(CONFIG_CPU_FREQ_GOV_SCHEDUTIL)
2761	/* Build perf domains: */
2762	for (i = 0; i < ndoms_new; i++) {
2763		for (j = 0; j < n && !sched_energy_update; j++) {
2764			if (cpumask_equal(doms_new[i], doms_cur[j]) &&
2765			    cpu_rq(cpumask_first(doms_cur[j]))->rd->pd) {
2766				has_eas = true;
2767				goto match3;
2768			}
2769		}
2770		/* No match - add perf domains for a new rd */
2771		has_eas |= build_perf_domains(doms_new[i]);
2772match3:
2773		;
2774	}
2775	sched_energy_set(has_eas);
2776#endif
2777
2778	/* Remember the new sched domains: */
2779	if (doms_cur != &fallback_doms)
2780		free_sched_domains(doms_cur, ndoms_cur);
2781
2782	kfree(dattr_cur);
2783	doms_cur = doms_new;
2784	dattr_cur = dattr_new;
2785	ndoms_cur = ndoms_new;
2786
2787	update_sched_domain_debugfs();
2788}
2789
2790/*
2791 * Call with hotplug lock held
2792 */
2793void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
2794			     struct sched_domain_attr *dattr_new)
2795{
2796	mutex_lock(&sched_domains_mutex);
2797	partition_sched_domains_locked(ndoms_new, doms_new, dattr_new);
2798	mutex_unlock(&sched_domains_mutex);
2799}
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Scheduler topology setup/handling methods
   4 */
   5#include "sched.h"
 
   6
   7DEFINE_MUTEX(sched_domains_mutex);
   8
   9/* Protected by sched_domains_mutex: */
  10static cpumask_var_t sched_domains_tmpmask;
  11static cpumask_var_t sched_domains_tmpmask2;
  12
  13#ifdef CONFIG_SCHED_DEBUG
  14
  15static int __init sched_debug_setup(char *str)
  16{
  17	sched_debug_verbose = true;
  18
  19	return 0;
  20}
  21early_param("sched_verbose", sched_debug_setup);
  22
  23static inline bool sched_debug(void)
  24{
  25	return sched_debug_verbose;
  26}
  27
  28#define SD_FLAG(_name, mflags) [__##_name] = { .meta_flags = mflags, .name = #_name },
  29const struct sd_flag_debug sd_flag_debug[] = {
  30#include <linux/sched/sd_flags.h>
  31};
  32#undef SD_FLAG
  33
  34static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
  35				  struct cpumask *groupmask)
  36{
  37	struct sched_group *group = sd->groups;
  38	unsigned long flags = sd->flags;
  39	unsigned int idx;
  40
  41	cpumask_clear(groupmask);
  42
  43	printk(KERN_DEBUG "%*s domain-%d: ", level, "", level);
  44	printk(KERN_CONT "span=%*pbl level=%s\n",
  45	       cpumask_pr_args(sched_domain_span(sd)), sd->name);
  46
  47	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
  48		printk(KERN_ERR "ERROR: domain->span does not contain CPU%d\n", cpu);
  49	}
  50	if (group && !cpumask_test_cpu(cpu, sched_group_span(group))) {
  51		printk(KERN_ERR "ERROR: domain->groups does not contain CPU%d\n", cpu);
  52	}
  53
  54	for_each_set_bit(idx, &flags, __SD_FLAG_CNT) {
  55		unsigned int flag = BIT(idx);
  56		unsigned int meta_flags = sd_flag_debug[idx].meta_flags;
  57
  58		if ((meta_flags & SDF_SHARED_CHILD) && sd->child &&
  59		    !(sd->child->flags & flag))
  60			printk(KERN_ERR "ERROR: flag %s set here but not in child\n",
  61			       sd_flag_debug[idx].name);
  62
  63		if ((meta_flags & SDF_SHARED_PARENT) && sd->parent &&
  64		    !(sd->parent->flags & flag))
  65			printk(KERN_ERR "ERROR: flag %s set here but not in parent\n",
  66			       sd_flag_debug[idx].name);
  67	}
  68
  69	printk(KERN_DEBUG "%*s groups:", level + 1, "");
  70	do {
  71		if (!group) {
  72			printk("\n");
  73			printk(KERN_ERR "ERROR: group is NULL\n");
  74			break;
  75		}
  76
  77		if (!cpumask_weight(sched_group_span(group))) {
  78			printk(KERN_CONT "\n");
  79			printk(KERN_ERR "ERROR: empty group\n");
  80			break;
  81		}
  82
  83		if (!(sd->flags & SD_OVERLAP) &&
  84		    cpumask_intersects(groupmask, sched_group_span(group))) {
  85			printk(KERN_CONT "\n");
  86			printk(KERN_ERR "ERROR: repeated CPUs\n");
  87			break;
  88		}
  89
  90		cpumask_or(groupmask, groupmask, sched_group_span(group));
  91
  92		printk(KERN_CONT " %d:{ span=%*pbl",
  93				group->sgc->id,
  94				cpumask_pr_args(sched_group_span(group)));
  95
  96		if ((sd->flags & SD_OVERLAP) &&
  97		    !cpumask_equal(group_balance_mask(group), sched_group_span(group))) {
  98			printk(KERN_CONT " mask=%*pbl",
  99				cpumask_pr_args(group_balance_mask(group)));
 100		}
 101
 102		if (group->sgc->capacity != SCHED_CAPACITY_SCALE)
 103			printk(KERN_CONT " cap=%lu", group->sgc->capacity);
 104
 105		if (group == sd->groups && sd->child &&
 106		    !cpumask_equal(sched_domain_span(sd->child),
 107				   sched_group_span(group))) {
 108			printk(KERN_ERR "ERROR: domain->groups does not match domain->child\n");
 109		}
 110
 111		printk(KERN_CONT " }");
 112
 113		group = group->next;
 114
 115		if (group != sd->groups)
 116			printk(KERN_CONT ",");
 117
 118	} while (group != sd->groups);
 119	printk(KERN_CONT "\n");
 120
 121	if (!cpumask_equal(sched_domain_span(sd), groupmask))
 122		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
 123
 124	if (sd->parent &&
 125	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
 126		printk(KERN_ERR "ERROR: parent span is not a superset of domain->span\n");
 127	return 0;
 128}
 129
 130static void sched_domain_debug(struct sched_domain *sd, int cpu)
 131{
 132	int level = 0;
 133
 134	if (!sched_debug_verbose)
 135		return;
 136
 137	if (!sd) {
 138		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
 139		return;
 140	}
 141
 142	printk(KERN_DEBUG "CPU%d attaching sched-domain(s):\n", cpu);
 143
 144	for (;;) {
 145		if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
 146			break;
 147		level++;
 148		sd = sd->parent;
 149		if (!sd)
 150			break;
 151	}
 152}
 153#else /* !CONFIG_SCHED_DEBUG */
 154
 155# define sched_debug_verbose 0
 156# define sched_domain_debug(sd, cpu) do { } while (0)
 157static inline bool sched_debug(void)
 158{
 159	return false;
 160}
 161#endif /* CONFIG_SCHED_DEBUG */
 162
 163/* Generate a mask of SD flags with the SDF_NEEDS_GROUPS metaflag */
 164#define SD_FLAG(name, mflags) (name * !!((mflags) & SDF_NEEDS_GROUPS)) |
 165static const unsigned int SD_DEGENERATE_GROUPS_MASK =
 166#include <linux/sched/sd_flags.h>
 1670;
 168#undef SD_FLAG
 169
 170static int sd_degenerate(struct sched_domain *sd)
 171{
 172	if (cpumask_weight(sched_domain_span(sd)) == 1)
 173		return 1;
 174
 175	/* Following flags need at least 2 groups */
 176	if ((sd->flags & SD_DEGENERATE_GROUPS_MASK) &&
 177	    (sd->groups != sd->groups->next))
 178		return 0;
 179
 180	/* Following flags don't use groups */
 181	if (sd->flags & (SD_WAKE_AFFINE))
 182		return 0;
 183
 184	return 1;
 185}
 186
 187static int
 188sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
 189{
 190	unsigned long cflags = sd->flags, pflags = parent->flags;
 191
 192	if (sd_degenerate(parent))
 193		return 1;
 194
 195	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
 196		return 0;
 197
 198	/* Flags needing groups don't count if only 1 group in parent */
 199	if (parent->groups == parent->groups->next)
 200		pflags &= ~SD_DEGENERATE_GROUPS_MASK;
 201
 202	if (~cflags & pflags)
 203		return 0;
 204
 205	return 1;
 206}
 207
 208#if defined(CONFIG_ENERGY_MODEL) && defined(CONFIG_CPU_FREQ_GOV_SCHEDUTIL)
 209DEFINE_STATIC_KEY_FALSE(sched_energy_present);
 210unsigned int sysctl_sched_energy_aware = 1;
 211DEFINE_MUTEX(sched_energy_mutex);
 212bool sched_energy_update;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 213
 214void rebuild_sched_domains_energy(void)
 215{
 216	mutex_lock(&sched_energy_mutex);
 217	sched_energy_update = true;
 218	rebuild_sched_domains();
 219	sched_energy_update = false;
 220	mutex_unlock(&sched_energy_mutex);
 221}
 222
 223#ifdef CONFIG_PROC_SYSCTL
 224int sched_energy_aware_handler(struct ctl_table *table, int write,
 225		void *buffer, size_t *lenp, loff_t *ppos)
 226{
 227	int ret, state;
 228
 229	if (write && !capable(CAP_SYS_ADMIN))
 230		return -EPERM;
 231
 
 
 
 
 
 
 
 
 
 232	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
 233	if (!ret && write) {
 234		state = static_branch_unlikely(&sched_energy_present);
 235		if (state != sysctl_sched_energy_aware)
 236			rebuild_sched_domains_energy();
 237	}
 238
 239	return ret;
 240}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 241#endif
 242
 243static void free_pd(struct perf_domain *pd)
 244{
 245	struct perf_domain *tmp;
 246
 247	while (pd) {
 248		tmp = pd->next;
 249		kfree(pd);
 250		pd = tmp;
 251	}
 252}
 253
 254static struct perf_domain *find_pd(struct perf_domain *pd, int cpu)
 255{
 256	while (pd) {
 257		if (cpumask_test_cpu(cpu, perf_domain_span(pd)))
 258			return pd;
 259		pd = pd->next;
 260	}
 261
 262	return NULL;
 263}
 264
 265static struct perf_domain *pd_init(int cpu)
 266{
 267	struct em_perf_domain *obj = em_cpu_get(cpu);
 268	struct perf_domain *pd;
 269
 270	if (!obj) {
 271		if (sched_debug())
 272			pr_info("%s: no EM found for CPU%d\n", __func__, cpu);
 273		return NULL;
 274	}
 275
 276	pd = kzalloc(sizeof(*pd), GFP_KERNEL);
 277	if (!pd)
 278		return NULL;
 279	pd->em_pd = obj;
 280
 281	return pd;
 282}
 283
 284static void perf_domain_debug(const struct cpumask *cpu_map,
 285						struct perf_domain *pd)
 286{
 287	if (!sched_debug() || !pd)
 288		return;
 289
 290	printk(KERN_DEBUG "root_domain %*pbl:", cpumask_pr_args(cpu_map));
 291
 292	while (pd) {
 293		printk(KERN_CONT " pd%d:{ cpus=%*pbl nr_pstate=%d }",
 294				cpumask_first(perf_domain_span(pd)),
 295				cpumask_pr_args(perf_domain_span(pd)),
 296				em_pd_nr_perf_states(pd->em_pd));
 297		pd = pd->next;
 298	}
 299
 300	printk(KERN_CONT "\n");
 301}
 302
 303static void destroy_perf_domain_rcu(struct rcu_head *rp)
 304{
 305	struct perf_domain *pd;
 306
 307	pd = container_of(rp, struct perf_domain, rcu);
 308	free_pd(pd);
 309}
 310
 311static void sched_energy_set(bool has_eas)
 312{
 313	if (!has_eas && static_branch_unlikely(&sched_energy_present)) {
 314		if (sched_debug())
 315			pr_info("%s: stopping EAS\n", __func__);
 316		static_branch_disable_cpuslocked(&sched_energy_present);
 317	} else if (has_eas && !static_branch_unlikely(&sched_energy_present)) {
 318		if (sched_debug())
 319			pr_info("%s: starting EAS\n", __func__);
 320		static_branch_enable_cpuslocked(&sched_energy_present);
 321	}
 322}
 323
 324/*
 325 * EAS can be used on a root domain if it meets all the following conditions:
 326 *    1. an Energy Model (EM) is available;
 327 *    2. the SD_ASYM_CPUCAPACITY flag is set in the sched_domain hierarchy.
 328 *    3. no SMT is detected.
 329 *    4. the EM complexity is low enough to keep scheduling overheads low;
 330 *    5. schedutil is driving the frequency of all CPUs of the rd;
 331 *    6. frequency invariance support is present;
 332 *
 333 * The complexity of the Energy Model is defined as:
 334 *
 335 *              C = nr_pd * (nr_cpus + nr_ps)
 336 *
 337 * with parameters defined as:
 338 *  - nr_pd:    the number of performance domains
 339 *  - nr_cpus:  the number of CPUs
 340 *  - nr_ps:    the sum of the number of performance states of all performance
 341 *              domains (for example, on a system with 2 performance domains,
 342 *              with 10 performance states each, nr_ps = 2 * 10 = 20).
 343 *
 344 * It is generally not a good idea to use such a model in the wake-up path on
 345 * very complex platforms because of the associated scheduling overheads. The
 346 * arbitrary constraint below prevents that. It makes EAS usable up to 16 CPUs
 347 * with per-CPU DVFS and less than 8 performance states each, for example.
 348 */
 349#define EM_MAX_COMPLEXITY 2048
 350
 351extern struct cpufreq_governor schedutil_gov;
 352static bool build_perf_domains(const struct cpumask *cpu_map)
 353{
 354	int i, nr_pd = 0, nr_ps = 0, nr_cpus = cpumask_weight(cpu_map);
 355	struct perf_domain *pd = NULL, *tmp;
 356	int cpu = cpumask_first(cpu_map);
 357	struct root_domain *rd = cpu_rq(cpu)->rd;
 358	struct cpufreq_policy *policy;
 359	struct cpufreq_governor *gov;
 360
 361	if (!sysctl_sched_energy_aware)
 362		goto free;
 363
 364	/* EAS is enabled for asymmetric CPU capacity topologies. */
 365	if (!per_cpu(sd_asym_cpucapacity, cpu)) {
 366		if (sched_debug()) {
 367			pr_info("rd %*pbl: CPUs do not have asymmetric capacities\n",
 368					cpumask_pr_args(cpu_map));
 369		}
 370		goto free;
 371	}
 372
 373	/* EAS definitely does *not* handle SMT */
 374	if (sched_smt_active()) {
 375		pr_warn("rd %*pbl: Disabling EAS, SMT is not supported\n",
 376			cpumask_pr_args(cpu_map));
 377		goto free;
 378	}
 379
 380	if (!arch_scale_freq_invariant()) {
 381		if (sched_debug()) {
 382			pr_warn("rd %*pbl: Disabling EAS: frequency-invariant load tracking not yet supported",
 383				cpumask_pr_args(cpu_map));
 384		}
 385		goto free;
 386	}
 387
 388	for_each_cpu(i, cpu_map) {
 389		/* Skip already covered CPUs. */
 390		if (find_pd(pd, i))
 391			continue;
 392
 393		/* Do not attempt EAS if schedutil is not being used. */
 394		policy = cpufreq_cpu_get(i);
 395		if (!policy)
 396			goto free;
 397		gov = policy->governor;
 398		cpufreq_cpu_put(policy);
 399		if (gov != &schedutil_gov) {
 400			if (rd->pd)
 401				pr_warn("rd %*pbl: Disabling EAS, schedutil is mandatory\n",
 402						cpumask_pr_args(cpu_map));
 403			goto free;
 404		}
 405
 406		/* Create the new pd and add it to the local list. */
 407		tmp = pd_init(i);
 408		if (!tmp)
 409			goto free;
 410		tmp->next = pd;
 411		pd = tmp;
 412
 413		/*
 414		 * Count performance domains and performance states for the
 415		 * complexity check.
 416		 */
 417		nr_pd++;
 418		nr_ps += em_pd_nr_perf_states(pd->em_pd);
 419	}
 420
 421	/* Bail out if the Energy Model complexity is too high. */
 422	if (nr_pd * (nr_ps + nr_cpus) > EM_MAX_COMPLEXITY) {
 423		WARN(1, "rd %*pbl: Failed to start EAS, EM complexity is too high\n",
 424						cpumask_pr_args(cpu_map));
 425		goto free;
 426	}
 427
 428	perf_domain_debug(cpu_map, pd);
 429
 430	/* Attach the new list of performance domains to the root domain. */
 431	tmp = rd->pd;
 432	rcu_assign_pointer(rd->pd, pd);
 433	if (tmp)
 434		call_rcu(&tmp->rcu, destroy_perf_domain_rcu);
 435
 436	return !!pd;
 437
 438free:
 439	free_pd(pd);
 440	tmp = rd->pd;
 441	rcu_assign_pointer(rd->pd, NULL);
 442	if (tmp)
 443		call_rcu(&tmp->rcu, destroy_perf_domain_rcu);
 444
 445	return false;
 446}
 447#else
 448static void free_pd(struct perf_domain *pd) { }
 449#endif /* CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL*/
 450
 451static void free_rootdomain(struct rcu_head *rcu)
 452{
 453	struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
 454
 455	cpupri_cleanup(&rd->cpupri);
 456	cpudl_cleanup(&rd->cpudl);
 457	free_cpumask_var(rd->dlo_mask);
 458	free_cpumask_var(rd->rto_mask);
 459	free_cpumask_var(rd->online);
 460	free_cpumask_var(rd->span);
 461	free_pd(rd->pd);
 462	kfree(rd);
 463}
 464
 465void rq_attach_root(struct rq *rq, struct root_domain *rd)
 466{
 467	struct root_domain *old_rd = NULL;
 468	unsigned long flags;
 469
 470	raw_spin_rq_lock_irqsave(rq, flags);
 471
 472	if (rq->rd) {
 473		old_rd = rq->rd;
 474
 475		if (cpumask_test_cpu(rq->cpu, old_rd->online))
 476			set_rq_offline(rq);
 477
 478		cpumask_clear_cpu(rq->cpu, old_rd->span);
 479
 480		/*
 481		 * If we dont want to free the old_rd yet then
 482		 * set old_rd to NULL to skip the freeing later
 483		 * in this function:
 484		 */
 485		if (!atomic_dec_and_test(&old_rd->refcount))
 486			old_rd = NULL;
 487	}
 488
 489	atomic_inc(&rd->refcount);
 490	rq->rd = rd;
 491
 492	cpumask_set_cpu(rq->cpu, rd->span);
 493	if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
 494		set_rq_online(rq);
 495
 496	raw_spin_rq_unlock_irqrestore(rq, flags);
 
 
 
 
 
 
 
 
 497
 498	if (old_rd)
 499		call_rcu(&old_rd->rcu, free_rootdomain);
 500}
 501
 502void sched_get_rd(struct root_domain *rd)
 503{
 504	atomic_inc(&rd->refcount);
 505}
 506
 507void sched_put_rd(struct root_domain *rd)
 508{
 509	if (!atomic_dec_and_test(&rd->refcount))
 510		return;
 511
 512	call_rcu(&rd->rcu, free_rootdomain);
 513}
 514
 515static int init_rootdomain(struct root_domain *rd)
 516{
 517	if (!zalloc_cpumask_var(&rd->span, GFP_KERNEL))
 518		goto out;
 519	if (!zalloc_cpumask_var(&rd->online, GFP_KERNEL))
 520		goto free_span;
 521	if (!zalloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
 522		goto free_online;
 523	if (!zalloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
 524		goto free_dlo_mask;
 525
 526#ifdef HAVE_RT_PUSH_IPI
 527	rd->rto_cpu = -1;
 528	raw_spin_lock_init(&rd->rto_lock);
 529	init_irq_work(&rd->rto_push_work, rto_push_irq_work_func);
 530#endif
 531
 532	rd->visit_gen = 0;
 533	init_dl_bw(&rd->dl_bw);
 534	if (cpudl_init(&rd->cpudl) != 0)
 535		goto free_rto_mask;
 536
 537	if (cpupri_init(&rd->cpupri) != 0)
 538		goto free_cpudl;
 539	return 0;
 540
 541free_cpudl:
 542	cpudl_cleanup(&rd->cpudl);
 543free_rto_mask:
 544	free_cpumask_var(rd->rto_mask);
 545free_dlo_mask:
 546	free_cpumask_var(rd->dlo_mask);
 547free_online:
 548	free_cpumask_var(rd->online);
 549free_span:
 550	free_cpumask_var(rd->span);
 551out:
 552	return -ENOMEM;
 553}
 554
 555/*
 556 * By default the system creates a single root-domain with all CPUs as
 557 * members (mimicking the global state we have today).
 558 */
 559struct root_domain def_root_domain;
 560
 561void init_defrootdomain(void)
 562{
 563	init_rootdomain(&def_root_domain);
 564
 565	atomic_set(&def_root_domain.refcount, 1);
 566}
 567
 568static struct root_domain *alloc_rootdomain(void)
 569{
 570	struct root_domain *rd;
 571
 572	rd = kzalloc(sizeof(*rd), GFP_KERNEL);
 573	if (!rd)
 574		return NULL;
 575
 576	if (init_rootdomain(rd) != 0) {
 577		kfree(rd);
 578		return NULL;
 579	}
 580
 581	return rd;
 582}
 583
 584static void free_sched_groups(struct sched_group *sg, int free_sgc)
 585{
 586	struct sched_group *tmp, *first;
 587
 588	if (!sg)
 589		return;
 590
 591	first = sg;
 592	do {
 593		tmp = sg->next;
 594
 595		if (free_sgc && atomic_dec_and_test(&sg->sgc->ref))
 596			kfree(sg->sgc);
 597
 598		if (atomic_dec_and_test(&sg->ref))
 599			kfree(sg);
 600		sg = tmp;
 601	} while (sg != first);
 602}
 603
 604static void destroy_sched_domain(struct sched_domain *sd)
 605{
 606	/*
 607	 * A normal sched domain may have multiple group references, an
 608	 * overlapping domain, having private groups, only one.  Iterate,
 609	 * dropping group/capacity references, freeing where none remain.
 610	 */
 611	free_sched_groups(sd->groups, 1);
 612
 613	if (sd->shared && atomic_dec_and_test(&sd->shared->ref))
 614		kfree(sd->shared);
 615	kfree(sd);
 616}
 617
 618static void destroy_sched_domains_rcu(struct rcu_head *rcu)
 619{
 620	struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
 621
 622	while (sd) {
 623		struct sched_domain *parent = sd->parent;
 624		destroy_sched_domain(sd);
 625		sd = parent;
 626	}
 627}
 628
 629static void destroy_sched_domains(struct sched_domain *sd)
 630{
 631	if (sd)
 632		call_rcu(&sd->rcu, destroy_sched_domains_rcu);
 633}
 634
 635/*
 636 * Keep a special pointer to the highest sched_domain that has
 637 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
 638 * allows us to avoid some pointer chasing select_idle_sibling().
 639 *
 640 * Also keep a unique ID per domain (we use the first CPU number in
 641 * the cpumask of the domain), this allows us to quickly tell if
 642 * two CPUs are in the same cache domain, see cpus_share_cache().
 643 */
 644DEFINE_PER_CPU(struct sched_domain __rcu *, sd_llc);
 645DEFINE_PER_CPU(int, sd_llc_size);
 646DEFINE_PER_CPU(int, sd_llc_id);
 
 647DEFINE_PER_CPU(struct sched_domain_shared __rcu *, sd_llc_shared);
 648DEFINE_PER_CPU(struct sched_domain __rcu *, sd_numa);
 649DEFINE_PER_CPU(struct sched_domain __rcu *, sd_asym_packing);
 650DEFINE_PER_CPU(struct sched_domain __rcu *, sd_asym_cpucapacity);
 
 651DEFINE_STATIC_KEY_FALSE(sched_asym_cpucapacity);
 
 652
 653static void update_top_cache_domain(int cpu)
 654{
 655	struct sched_domain_shared *sds = NULL;
 656	struct sched_domain *sd;
 657	int id = cpu;
 658	int size = 1;
 659
 660	sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
 661	if (sd) {
 662		id = cpumask_first(sched_domain_span(sd));
 663		size = cpumask_weight(sched_domain_span(sd));
 664		sds = sd->shared;
 665	}
 666
 667	rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
 668	per_cpu(sd_llc_size, cpu) = size;
 669	per_cpu(sd_llc_id, cpu) = id;
 670	rcu_assign_pointer(per_cpu(sd_llc_shared, cpu), sds);
 671
 
 
 
 
 
 
 
 
 
 
 
 672	sd = lowest_flag_domain(cpu, SD_NUMA);
 673	rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
 674
 675	sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
 676	rcu_assign_pointer(per_cpu(sd_asym_packing, cpu), sd);
 677
 678	sd = lowest_flag_domain(cpu, SD_ASYM_CPUCAPACITY_FULL);
 679	rcu_assign_pointer(per_cpu(sd_asym_cpucapacity, cpu), sd);
 680}
 681
 682/*
 683 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
 684 * hold the hotplug lock.
 685 */
 686static void
 687cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
 688{
 689	struct rq *rq = cpu_rq(cpu);
 690	struct sched_domain *tmp;
 691	int numa_distance = 0;
 692
 693	/* Remove the sched domains which do not contribute to scheduling. */
 694	for (tmp = sd; tmp; ) {
 695		struct sched_domain *parent = tmp->parent;
 696		if (!parent)
 697			break;
 698
 699		if (sd_parent_degenerate(tmp, parent)) {
 700			tmp->parent = parent->parent;
 701			if (parent->parent)
 
 702				parent->parent->child = tmp;
 
 
 
 703			/*
 704			 * Transfer SD_PREFER_SIBLING down in case of a
 705			 * degenerate parent; the spans match for this
 706			 * so the property transfers.
 707			 */
 708			if (parent->flags & SD_PREFER_SIBLING)
 709				tmp->flags |= SD_PREFER_SIBLING;
 710			destroy_sched_domain(parent);
 711		} else
 712			tmp = tmp->parent;
 713	}
 714
 715	if (sd && sd_degenerate(sd)) {
 716		tmp = sd;
 717		sd = sd->parent;
 718		destroy_sched_domain(tmp);
 719		if (sd)
 
 
 
 
 
 
 
 
 
 
 
 720			sd->child = NULL;
 
 721	}
 722
 723	for (tmp = sd; tmp; tmp = tmp->parent)
 724		numa_distance += !!(tmp->flags & SD_NUMA);
 725
 726	sched_domain_debug(sd, cpu);
 727
 728	rq_attach_root(rq, rd);
 729	tmp = rq->sd;
 730	rcu_assign_pointer(rq->sd, sd);
 731	dirty_sched_domain_sysctl(cpu);
 732	destroy_sched_domains(tmp);
 733
 734	update_top_cache_domain(cpu);
 735}
 736
 737struct s_data {
 738	struct sched_domain * __percpu *sd;
 739	struct root_domain	*rd;
 740};
 741
 742enum s_alloc {
 743	sa_rootdomain,
 744	sa_sd,
 745	sa_sd_storage,
 746	sa_none,
 747};
 748
 749/*
 750 * Return the canonical balance CPU for this group, this is the first CPU
 751 * of this group that's also in the balance mask.
 752 *
 753 * The balance mask are all those CPUs that could actually end up at this
 754 * group. See build_balance_mask().
 755 *
 756 * Also see should_we_balance().
 757 */
 758int group_balance_cpu(struct sched_group *sg)
 759{
 760	return cpumask_first(group_balance_mask(sg));
 761}
 762
 763
 764/*
 765 * NUMA topology (first read the regular topology blurb below)
 766 *
 767 * Given a node-distance table, for example:
 768 *
 769 *   node   0   1   2   3
 770 *     0:  10  20  30  20
 771 *     1:  20  10  20  30
 772 *     2:  30  20  10  20
 773 *     3:  20  30  20  10
 774 *
 775 * which represents a 4 node ring topology like:
 776 *
 777 *   0 ----- 1
 778 *   |       |
 779 *   |       |
 780 *   |       |
 781 *   3 ----- 2
 782 *
 783 * We want to construct domains and groups to represent this. The way we go
 784 * about doing this is to build the domains on 'hops'. For each NUMA level we
 785 * construct the mask of all nodes reachable in @level hops.
 786 *
 787 * For the above NUMA topology that gives 3 levels:
 788 *
 789 * NUMA-2	0-3		0-3		0-3		0-3
 790 *  groups:	{0-1,3},{1-3}	{0-2},{0,2-3}	{1-3},{0-1,3}	{0,2-3},{0-2}
 791 *
 792 * NUMA-1	0-1,3		0-2		1-3		0,2-3
 793 *  groups:	{0},{1},{3}	{0},{1},{2}	{1},{2},{3}	{0},{2},{3}
 794 *
 795 * NUMA-0	0		1		2		3
 796 *
 797 *
 798 * As can be seen; things don't nicely line up as with the regular topology.
 799 * When we iterate a domain in child domain chunks some nodes can be
 800 * represented multiple times -- hence the "overlap" naming for this part of
 801 * the topology.
 802 *
 803 * In order to minimize this overlap, we only build enough groups to cover the
 804 * domain. For instance Node-0 NUMA-2 would only get groups: 0-1,3 and 1-3.
 805 *
 806 * Because:
 807 *
 808 *  - the first group of each domain is its child domain; this
 809 *    gets us the first 0-1,3
 810 *  - the only uncovered node is 2, who's child domain is 1-3.
 811 *
 812 * However, because of the overlap, computing a unique CPU for each group is
 813 * more complicated. Consider for instance the groups of NODE-1 NUMA-2, both
 814 * groups include the CPUs of Node-0, while those CPUs would not in fact ever
 815 * end up at those groups (they would end up in group: 0-1,3).
 816 *
 817 * To correct this we have to introduce the group balance mask. This mask
 818 * will contain those CPUs in the group that can reach this group given the
 819 * (child) domain tree.
 820 *
 821 * With this we can once again compute balance_cpu and sched_group_capacity
 822 * relations.
 823 *
 824 * XXX include words on how balance_cpu is unique and therefore can be
 825 * used for sched_group_capacity links.
 826 *
 827 *
 828 * Another 'interesting' topology is:
 829 *
 830 *   node   0   1   2   3
 831 *     0:  10  20  20  30
 832 *     1:  20  10  20  20
 833 *     2:  20  20  10  20
 834 *     3:  30  20  20  10
 835 *
 836 * Which looks a little like:
 837 *
 838 *   0 ----- 1
 839 *   |     / |
 840 *   |   /   |
 841 *   | /     |
 842 *   2 ----- 3
 843 *
 844 * This topology is asymmetric, nodes 1,2 are fully connected, but nodes 0,3
 845 * are not.
 846 *
 847 * This leads to a few particularly weird cases where the sched_domain's are
 848 * not of the same number for each CPU. Consider:
 849 *
 850 * NUMA-2	0-3						0-3
 851 *  groups:	{0-2},{1-3}					{1-3},{0-2}
 852 *
 853 * NUMA-1	0-2		0-3		0-3		1-3
 854 *
 855 * NUMA-0	0		1		2		3
 856 *
 857 */
 858
 859
 860/*
 861 * Build the balance mask; it contains only those CPUs that can arrive at this
 862 * group and should be considered to continue balancing.
 863 *
 864 * We do this during the group creation pass, therefore the group information
 865 * isn't complete yet, however since each group represents a (child) domain we
 866 * can fully construct this using the sched_domain bits (which are already
 867 * complete).
 868 */
 869static void
 870build_balance_mask(struct sched_domain *sd, struct sched_group *sg, struct cpumask *mask)
 871{
 872	const struct cpumask *sg_span = sched_group_span(sg);
 873	struct sd_data *sdd = sd->private;
 874	struct sched_domain *sibling;
 875	int i;
 876
 877	cpumask_clear(mask);
 878
 879	for_each_cpu(i, sg_span) {
 880		sibling = *per_cpu_ptr(sdd->sd, i);
 881
 882		/*
 883		 * Can happen in the asymmetric case, where these siblings are
 884		 * unused. The mask will not be empty because those CPUs that
 885		 * do have the top domain _should_ span the domain.
 886		 */
 887		if (!sibling->child)
 888			continue;
 889
 890		/* If we would not end up here, we can't continue from here */
 891		if (!cpumask_equal(sg_span, sched_domain_span(sibling->child)))
 892			continue;
 893
 894		cpumask_set_cpu(i, mask);
 895	}
 896
 897	/* We must not have empty masks here */
 898	WARN_ON_ONCE(cpumask_empty(mask));
 899}
 900
 901/*
 902 * XXX: This creates per-node group entries; since the load-balancer will
 903 * immediately access remote memory to construct this group's load-balance
 904 * statistics having the groups node local is of dubious benefit.
 905 */
 906static struct sched_group *
 907build_group_from_child_sched_domain(struct sched_domain *sd, int cpu)
 908{
 909	struct sched_group *sg;
 910	struct cpumask *sg_span;
 911
 912	sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
 913			GFP_KERNEL, cpu_to_node(cpu));
 914
 915	if (!sg)
 916		return NULL;
 917
 918	sg_span = sched_group_span(sg);
 919	if (sd->child)
 920		cpumask_copy(sg_span, sched_domain_span(sd->child));
 921	else
 
 922		cpumask_copy(sg_span, sched_domain_span(sd));
 
 923
 924	atomic_inc(&sg->ref);
 925	return sg;
 926}
 927
 928static void init_overlap_sched_group(struct sched_domain *sd,
 929				     struct sched_group *sg)
 930{
 931	struct cpumask *mask = sched_domains_tmpmask2;
 932	struct sd_data *sdd = sd->private;
 933	struct cpumask *sg_span;
 934	int cpu;
 935
 936	build_balance_mask(sd, sg, mask);
 937	cpu = cpumask_first(mask);
 938
 939	sg->sgc = *per_cpu_ptr(sdd->sgc, cpu);
 940	if (atomic_inc_return(&sg->sgc->ref) == 1)
 941		cpumask_copy(group_balance_mask(sg), mask);
 942	else
 943		WARN_ON_ONCE(!cpumask_equal(group_balance_mask(sg), mask));
 944
 945	/*
 946	 * Initialize sgc->capacity such that even if we mess up the
 947	 * domains and no possible iteration will get us here, we won't
 948	 * die on a /0 trap.
 949	 */
 950	sg_span = sched_group_span(sg);
 951	sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span);
 952	sg->sgc->min_capacity = SCHED_CAPACITY_SCALE;
 953	sg->sgc->max_capacity = SCHED_CAPACITY_SCALE;
 954}
 955
 956static struct sched_domain *
 957find_descended_sibling(struct sched_domain *sd, struct sched_domain *sibling)
 958{
 959	/*
 960	 * The proper descendant would be the one whose child won't span out
 961	 * of sd
 962	 */
 963	while (sibling->child &&
 964	       !cpumask_subset(sched_domain_span(sibling->child),
 965			       sched_domain_span(sd)))
 966		sibling = sibling->child;
 967
 968	/*
 969	 * As we are referencing sgc across different topology level, we need
 970	 * to go down to skip those sched_domains which don't contribute to
 971	 * scheduling because they will be degenerated in cpu_attach_domain
 972	 */
 973	while (sibling->child &&
 974	       cpumask_equal(sched_domain_span(sibling->child),
 975			     sched_domain_span(sibling)))
 976		sibling = sibling->child;
 977
 978	return sibling;
 979}
 980
 981static int
 982build_overlap_sched_groups(struct sched_domain *sd, int cpu)
 983{
 984	struct sched_group *first = NULL, *last = NULL, *sg;
 985	const struct cpumask *span = sched_domain_span(sd);
 986	struct cpumask *covered = sched_domains_tmpmask;
 987	struct sd_data *sdd = sd->private;
 988	struct sched_domain *sibling;
 989	int i;
 990
 991	cpumask_clear(covered);
 992
 993	for_each_cpu_wrap(i, span, cpu) {
 994		struct cpumask *sg_span;
 995
 996		if (cpumask_test_cpu(i, covered))
 997			continue;
 998
 999		sibling = *per_cpu_ptr(sdd->sd, i);
1000
1001		/*
1002		 * Asymmetric node setups can result in situations where the
1003		 * domain tree is of unequal depth, make sure to skip domains
1004		 * that already cover the entire range.
1005		 *
1006		 * In that case build_sched_domains() will have terminated the
1007		 * iteration early and our sibling sd spans will be empty.
1008		 * Domains should always include the CPU they're built on, so
1009		 * check that.
1010		 */
1011		if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
1012			continue;
1013
1014		/*
1015		 * Usually we build sched_group by sibling's child sched_domain
1016		 * But for machines whose NUMA diameter are 3 or above, we move
1017		 * to build sched_group by sibling's proper descendant's child
1018		 * domain because sibling's child sched_domain will span out of
1019		 * the sched_domain being built as below.
1020		 *
1021		 * Smallest diameter=3 topology is:
1022		 *
1023		 *   node   0   1   2   3
1024		 *     0:  10  20  30  40
1025		 *     1:  20  10  20  30
1026		 *     2:  30  20  10  20
1027		 *     3:  40  30  20  10
1028		 *
1029		 *   0 --- 1 --- 2 --- 3
1030		 *
1031		 * NUMA-3       0-3             N/A             N/A             0-3
1032		 *  groups:     {0-2},{1-3}                                     {1-3},{0-2}
1033		 *
1034		 * NUMA-2       0-2             0-3             0-3             1-3
1035		 *  groups:     {0-1},{1-3}     {0-2},{2-3}     {1-3},{0-1}     {2-3},{0-2}
1036		 *
1037		 * NUMA-1       0-1             0-2             1-3             2-3
1038		 *  groups:     {0},{1}         {1},{2},{0}     {2},{3},{1}     {3},{2}
1039		 *
1040		 * NUMA-0       0               1               2               3
1041		 *
1042		 * The NUMA-2 groups for nodes 0 and 3 are obviously buggered, as the
1043		 * group span isn't a subset of the domain span.
1044		 */
1045		if (sibling->child &&
1046		    !cpumask_subset(sched_domain_span(sibling->child), span))
1047			sibling = find_descended_sibling(sd, sibling);
1048
1049		sg = build_group_from_child_sched_domain(sibling, cpu);
1050		if (!sg)
1051			goto fail;
1052
1053		sg_span = sched_group_span(sg);
1054		cpumask_or(covered, covered, sg_span);
1055
1056		init_overlap_sched_group(sibling, sg);
1057
1058		if (!first)
1059			first = sg;
1060		if (last)
1061			last->next = sg;
1062		last = sg;
1063		last->next = first;
1064	}
1065	sd->groups = first;
1066
1067	return 0;
1068
1069fail:
1070	free_sched_groups(first, 0);
1071
1072	return -ENOMEM;
1073}
1074
1075
1076/*
1077 * Package topology (also see the load-balance blurb in fair.c)
1078 *
1079 * The scheduler builds a tree structure to represent a number of important
1080 * topology features. By default (default_topology[]) these include:
1081 *
1082 *  - Simultaneous multithreading (SMT)
1083 *  - Multi-Core Cache (MC)
1084 *  - Package (DIE)
1085 *
1086 * Where the last one more or less denotes everything up to a NUMA node.
1087 *
1088 * The tree consists of 3 primary data structures:
1089 *
1090 *	sched_domain -> sched_group -> sched_group_capacity
1091 *	    ^ ^             ^ ^
1092 *          `-'             `-'
1093 *
1094 * The sched_domains are per-CPU and have a two way link (parent & child) and
1095 * denote the ever growing mask of CPUs belonging to that level of topology.
1096 *
1097 * Each sched_domain has a circular (double) linked list of sched_group's, each
1098 * denoting the domains of the level below (or individual CPUs in case of the
1099 * first domain level). The sched_group linked by a sched_domain includes the
1100 * CPU of that sched_domain [*].
1101 *
1102 * Take for instance a 2 threaded, 2 core, 2 cache cluster part:
1103 *
1104 * CPU   0   1   2   3   4   5   6   7
1105 *
1106 * DIE  [                             ]
1107 * MC   [             ] [             ]
1108 * SMT  [     ] [     ] [     ] [     ]
1109 *
1110 *  - or -
1111 *
1112 * DIE  0-7 0-7 0-7 0-7 0-7 0-7 0-7 0-7
1113 * MC	0-3 0-3 0-3 0-3 4-7 4-7 4-7 4-7
1114 * SMT  0-1 0-1 2-3 2-3 4-5 4-5 6-7 6-7
1115 *
1116 * CPU   0   1   2   3   4   5   6   7
1117 *
1118 * One way to think about it is: sched_domain moves you up and down among these
1119 * topology levels, while sched_group moves you sideways through it, at child
1120 * domain granularity.
1121 *
1122 * sched_group_capacity ensures each unique sched_group has shared storage.
1123 *
1124 * There are two related construction problems, both require a CPU that
1125 * uniquely identify each group (for a given domain):
1126 *
1127 *  - The first is the balance_cpu (see should_we_balance() and the
1128 *    load-balance blub in fair.c); for each group we only want 1 CPU to
1129 *    continue balancing at a higher domain.
1130 *
1131 *  - The second is the sched_group_capacity; we want all identical groups
1132 *    to share a single sched_group_capacity.
1133 *
1134 * Since these topologies are exclusive by construction. That is, its
1135 * impossible for an SMT thread to belong to multiple cores, and cores to
1136 * be part of multiple caches. There is a very clear and unique location
1137 * for each CPU in the hierarchy.
1138 *
1139 * Therefore computing a unique CPU for each group is trivial (the iteration
1140 * mask is redundant and set all 1s; all CPUs in a group will end up at _that_
1141 * group), we can simply pick the first CPU in each group.
1142 *
1143 *
1144 * [*] in other words, the first group of each domain is its child domain.
1145 */
1146
1147static struct sched_group *get_group(int cpu, struct sd_data *sdd)
1148{
1149	struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
1150	struct sched_domain *child = sd->child;
1151	struct sched_group *sg;
1152	bool already_visited;
1153
1154	if (child)
1155		cpu = cpumask_first(sched_domain_span(child));
1156
1157	sg = *per_cpu_ptr(sdd->sg, cpu);
1158	sg->sgc = *per_cpu_ptr(sdd->sgc, cpu);
1159
1160	/* Increase refcounts for claim_allocations: */
1161	already_visited = atomic_inc_return(&sg->ref) > 1;
1162	/* sgc visits should follow a similar trend as sg */
1163	WARN_ON(already_visited != (atomic_inc_return(&sg->sgc->ref) > 1));
1164
1165	/* If we have already visited that group, it's already initialized. */
1166	if (already_visited)
1167		return sg;
1168
1169	if (child) {
1170		cpumask_copy(sched_group_span(sg), sched_domain_span(child));
1171		cpumask_copy(group_balance_mask(sg), sched_group_span(sg));
 
1172	} else {
1173		cpumask_set_cpu(cpu, sched_group_span(sg));
1174		cpumask_set_cpu(cpu, group_balance_mask(sg));
1175	}
1176
1177	sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sched_group_span(sg));
1178	sg->sgc->min_capacity = SCHED_CAPACITY_SCALE;
1179	sg->sgc->max_capacity = SCHED_CAPACITY_SCALE;
1180
1181	return sg;
1182}
1183
1184/*
1185 * build_sched_groups will build a circular linked list of the groups
1186 * covered by the given span, will set each group's ->cpumask correctly,
1187 * and will initialize their ->sgc.
1188 *
1189 * Assumes the sched_domain tree is fully constructed
1190 */
1191static int
1192build_sched_groups(struct sched_domain *sd, int cpu)
1193{
1194	struct sched_group *first = NULL, *last = NULL;
1195	struct sd_data *sdd = sd->private;
1196	const struct cpumask *span = sched_domain_span(sd);
1197	struct cpumask *covered;
1198	int i;
1199
1200	lockdep_assert_held(&sched_domains_mutex);
1201	covered = sched_domains_tmpmask;
1202
1203	cpumask_clear(covered);
1204
1205	for_each_cpu_wrap(i, span, cpu) {
1206		struct sched_group *sg;
1207
1208		if (cpumask_test_cpu(i, covered))
1209			continue;
1210
1211		sg = get_group(i, sdd);
1212
1213		cpumask_or(covered, covered, sched_group_span(sg));
1214
1215		if (!first)
1216			first = sg;
1217		if (last)
1218			last->next = sg;
1219		last = sg;
1220	}
1221	last->next = first;
1222	sd->groups = first;
1223
1224	return 0;
1225}
1226
1227/*
1228 * Initialize sched groups cpu_capacity.
1229 *
1230 * cpu_capacity indicates the capacity of sched group, which is used while
1231 * distributing the load between different sched groups in a sched domain.
1232 * Typically cpu_capacity for all the groups in a sched domain will be same
1233 * unless there are asymmetries in the topology. If there are asymmetries,
1234 * group having more cpu_capacity will pickup more load compared to the
1235 * group having less cpu_capacity.
1236 */
1237static void init_sched_groups_capacity(int cpu, struct sched_domain *sd)
1238{
1239	struct sched_group *sg = sd->groups;
 
1240
1241	WARN_ON(!sg);
1242
1243	do {
1244		int cpu, max_cpu = -1;
1245
1246		sg->group_weight = cpumask_weight(sched_group_span(sg));
1247
 
 
 
 
 
 
 
 
 
1248		if (!(sd->flags & SD_ASYM_PACKING))
1249			goto next;
1250
1251		for_each_cpu(cpu, sched_group_span(sg)) {
1252			if (max_cpu < 0)
1253				max_cpu = cpu;
1254			else if (sched_asym_prefer(cpu, max_cpu))
1255				max_cpu = cpu;
1256		}
1257		sg->asym_prefer_cpu = max_cpu;
1258
1259next:
1260		sg = sg->next;
1261	} while (sg != sd->groups);
1262
1263	if (cpu != group_balance_cpu(sg))
1264		return;
1265
1266	update_group_capacity(sd, cpu);
1267}
1268
1269/*
1270 * Asymmetric CPU capacity bits
1271 */
1272struct asym_cap_data {
1273	struct list_head link;
1274	unsigned long capacity;
1275	unsigned long cpus[];
1276};
1277
1278/*
1279 * Set of available CPUs grouped by their corresponding capacities
1280 * Each list entry contains a CPU mask reflecting CPUs that share the same
1281 * capacity.
1282 * The lifespan of data is unlimited.
1283 */
1284static LIST_HEAD(asym_cap_list);
1285
1286#define cpu_capacity_span(asym_data) to_cpumask((asym_data)->cpus)
1287
1288/*
1289 * Verify whether there is any CPU capacity asymmetry in a given sched domain.
1290 * Provides sd_flags reflecting the asymmetry scope.
1291 */
1292static inline int
1293asym_cpu_capacity_classify(const struct cpumask *sd_span,
1294			   const struct cpumask *cpu_map)
1295{
1296	struct asym_cap_data *entry;
1297	int count = 0, miss = 0;
1298
1299	/*
1300	 * Count how many unique CPU capacities this domain spans across
1301	 * (compare sched_domain CPUs mask with ones representing  available
1302	 * CPUs capacities). Take into account CPUs that might be offline:
1303	 * skip those.
1304	 */
1305	list_for_each_entry(entry, &asym_cap_list, link) {
1306		if (cpumask_intersects(sd_span, cpu_capacity_span(entry)))
1307			++count;
1308		else if (cpumask_intersects(cpu_map, cpu_capacity_span(entry)))
1309			++miss;
1310	}
1311
1312	WARN_ON_ONCE(!count && !list_empty(&asym_cap_list));
1313
1314	/* No asymmetry detected */
1315	if (count < 2)
1316		return 0;
1317	/* Some of the available CPU capacity values have not been detected */
1318	if (miss)
1319		return SD_ASYM_CPUCAPACITY;
1320
1321	/* Full asymmetry */
1322	return SD_ASYM_CPUCAPACITY | SD_ASYM_CPUCAPACITY_FULL;
1323
1324}
1325
 
 
 
 
 
 
1326static inline void asym_cpu_capacity_update_data(int cpu)
1327{
1328	unsigned long capacity = arch_scale_cpu_capacity(cpu);
1329	struct asym_cap_data *entry = NULL;
 
1330
 
 
 
 
1331	list_for_each_entry(entry, &asym_cap_list, link) {
1332		if (capacity == entry->capacity)
1333			goto done;
 
 
1334	}
1335
1336	entry = kzalloc(sizeof(*entry) + cpumask_size(), GFP_KERNEL);
1337	if (WARN_ONCE(!entry, "Failed to allocate memory for asymmetry data\n"))
1338		return;
1339	entry->capacity = capacity;
1340	list_add(&entry->link, &asym_cap_list);
 
 
 
 
 
1341done:
1342	__cpumask_set_cpu(cpu, cpu_capacity_span(entry));
1343}
1344
1345/*
1346 * Build-up/update list of CPUs grouped by their capacities
1347 * An update requires explicit request to rebuild sched domains
1348 * with state indicating CPU topology changes.
1349 */
1350static void asym_cpu_capacity_scan(void)
1351{
1352	struct asym_cap_data *entry, *next;
1353	int cpu;
1354
1355	list_for_each_entry(entry, &asym_cap_list, link)
1356		cpumask_clear(cpu_capacity_span(entry));
1357
1358	for_each_cpu_and(cpu, cpu_possible_mask, housekeeping_cpumask(HK_FLAG_DOMAIN))
1359		asym_cpu_capacity_update_data(cpu);
1360
1361	list_for_each_entry_safe(entry, next, &asym_cap_list, link) {
1362		if (cpumask_empty(cpu_capacity_span(entry))) {
1363			list_del(&entry->link);
1364			kfree(entry);
1365		}
1366	}
1367
1368	/*
1369	 * Only one capacity value has been detected i.e. this system is symmetric.
1370	 * No need to keep this data around.
1371	 */
1372	if (list_is_singular(&asym_cap_list)) {
1373		entry = list_first_entry(&asym_cap_list, typeof(*entry), link);
1374		list_del(&entry->link);
1375		kfree(entry);
1376	}
1377}
1378
1379/*
1380 * Initializers for schedule domains
1381 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
1382 */
1383
1384static int default_relax_domain_level = -1;
1385int sched_domain_level_max;
1386
1387static int __init setup_relax_domain_level(char *str)
1388{
1389	if (kstrtoint(str, 0, &default_relax_domain_level))
1390		pr_warn("Unable to set relax_domain_level\n");
1391
1392	return 1;
1393}
1394__setup("relax_domain_level=", setup_relax_domain_level);
1395
1396static void set_domain_attribute(struct sched_domain *sd,
1397				 struct sched_domain_attr *attr)
1398{
1399	int request;
1400
1401	if (!attr || attr->relax_domain_level < 0) {
1402		if (default_relax_domain_level < 0)
1403			return;
1404		request = default_relax_domain_level;
1405	} else
1406		request = attr->relax_domain_level;
1407
1408	if (sd->level > request) {
1409		/* Turn off idle balance on this domain: */
1410		sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1411	}
1412}
1413
1414static void __sdt_free(const struct cpumask *cpu_map);
1415static int __sdt_alloc(const struct cpumask *cpu_map);
1416
1417static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
1418				 const struct cpumask *cpu_map)
1419{
1420	switch (what) {
1421	case sa_rootdomain:
1422		if (!atomic_read(&d->rd->refcount))
1423			free_rootdomain(&d->rd->rcu);
1424		fallthrough;
1425	case sa_sd:
1426		free_percpu(d->sd);
1427		fallthrough;
1428	case sa_sd_storage:
1429		__sdt_free(cpu_map);
1430		fallthrough;
1431	case sa_none:
1432		break;
1433	}
1434}
1435
1436static enum s_alloc
1437__visit_domain_allocation_hell(struct s_data *d, const struct cpumask *cpu_map)
1438{
1439	memset(d, 0, sizeof(*d));
1440
1441	if (__sdt_alloc(cpu_map))
1442		return sa_sd_storage;
1443	d->sd = alloc_percpu(struct sched_domain *);
1444	if (!d->sd)
1445		return sa_sd_storage;
1446	d->rd = alloc_rootdomain();
1447	if (!d->rd)
1448		return sa_sd;
1449
1450	return sa_rootdomain;
1451}
1452
1453/*
1454 * NULL the sd_data elements we've used to build the sched_domain and
1455 * sched_group structure so that the subsequent __free_domain_allocs()
1456 * will not free the data we're using.
1457 */
1458static void claim_allocations(int cpu, struct sched_domain *sd)
1459{
1460	struct sd_data *sdd = sd->private;
1461
1462	WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
1463	*per_cpu_ptr(sdd->sd, cpu) = NULL;
1464
1465	if (atomic_read(&(*per_cpu_ptr(sdd->sds, cpu))->ref))
1466		*per_cpu_ptr(sdd->sds, cpu) = NULL;
1467
1468	if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
1469		*per_cpu_ptr(sdd->sg, cpu) = NULL;
1470
1471	if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref))
1472		*per_cpu_ptr(sdd->sgc, cpu) = NULL;
1473}
1474
1475#ifdef CONFIG_NUMA
1476enum numa_topology_type sched_numa_topology_type;
1477
1478static int			sched_domains_numa_levels;
1479static int			sched_domains_curr_level;
1480
1481int				sched_max_numa_distance;
1482static int			*sched_domains_numa_distance;
1483static struct cpumask		***sched_domains_numa_masks;
1484int __read_mostly		node_reclaim_distance = RECLAIM_DISTANCE;
1485
1486static unsigned long __read_mostly *sched_numa_onlined_nodes;
1487#endif
1488
1489/*
1490 * SD_flags allowed in topology descriptions.
1491 *
1492 * These flags are purely descriptive of the topology and do not prescribe
1493 * behaviour. Behaviour is artificial and mapped in the below sd_init()
1494 * function:
1495 *
1496 *   SD_SHARE_CPUCAPACITY   - describes SMT topologies
1497 *   SD_SHARE_PKG_RESOURCES - describes shared caches
1498 *   SD_NUMA                - describes NUMA topologies
 
1499 *
1500 * Odd one out, which beside describing the topology has a quirk also
1501 * prescribes the desired behaviour that goes along with it:
1502 *
1503 *   SD_ASYM_PACKING        - describes SMT quirks
1504 */
1505#define TOPOLOGY_SD_FLAGS		\
1506	(SD_SHARE_CPUCAPACITY	|	\
1507	 SD_SHARE_PKG_RESOURCES |	\
 
1508	 SD_NUMA		|	\
1509	 SD_ASYM_PACKING)
1510
1511static struct sched_domain *
1512sd_init(struct sched_domain_topology_level *tl,
1513	const struct cpumask *cpu_map,
1514	struct sched_domain *child, int cpu)
1515{
1516	struct sd_data *sdd = &tl->data;
1517	struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
1518	int sd_id, sd_weight, sd_flags = 0;
1519	struct cpumask *sd_span;
1520
1521#ifdef CONFIG_NUMA
1522	/*
1523	 * Ugly hack to pass state to sd_numa_mask()...
1524	 */
1525	sched_domains_curr_level = tl->numa_level;
1526#endif
1527
1528	sd_weight = cpumask_weight(tl->mask(cpu));
1529
1530	if (tl->sd_flags)
1531		sd_flags = (*tl->sd_flags)();
1532	if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS,
1533			"wrong sd_flags in topology description\n"))
1534		sd_flags &= TOPOLOGY_SD_FLAGS;
1535
1536	*sd = (struct sched_domain){
1537		.min_interval		= sd_weight,
1538		.max_interval		= 2*sd_weight,
1539		.busy_factor		= 16,
1540		.imbalance_pct		= 117,
1541
1542		.cache_nice_tries	= 0,
1543
1544		.flags			= 1*SD_BALANCE_NEWIDLE
1545					| 1*SD_BALANCE_EXEC
1546					| 1*SD_BALANCE_FORK
1547					| 0*SD_BALANCE_WAKE
1548					| 1*SD_WAKE_AFFINE
1549					| 0*SD_SHARE_CPUCAPACITY
1550					| 0*SD_SHARE_PKG_RESOURCES
1551					| 0*SD_SERIALIZE
1552					| 1*SD_PREFER_SIBLING
1553					| 0*SD_NUMA
1554					| sd_flags
1555					,
1556
1557		.last_balance		= jiffies,
1558		.balance_interval	= sd_weight,
1559		.max_newidle_lb_cost	= 0,
1560		.next_decay_max_lb_cost	= jiffies,
1561		.child			= child,
1562#ifdef CONFIG_SCHED_DEBUG
1563		.name			= tl->name,
1564#endif
1565	};
1566
1567	sd_span = sched_domain_span(sd);
1568	cpumask_and(sd_span, cpu_map, tl->mask(cpu));
1569	sd_id = cpumask_first(sd_span);
1570
1571	sd->flags |= asym_cpu_capacity_classify(sd_span, cpu_map);
1572
1573	WARN_ONCE((sd->flags & (SD_SHARE_CPUCAPACITY | SD_ASYM_CPUCAPACITY)) ==
1574		  (SD_SHARE_CPUCAPACITY | SD_ASYM_CPUCAPACITY),
1575		  "CPU capacity asymmetry not supported on SMT\n");
1576
1577	/*
1578	 * Convert topological properties into behaviour.
1579	 */
1580	/* Don't attempt to spread across CPUs of different capacities. */
1581	if ((sd->flags & SD_ASYM_CPUCAPACITY) && sd->child)
1582		sd->child->flags &= ~SD_PREFER_SIBLING;
1583
1584	if (sd->flags & SD_SHARE_CPUCAPACITY) {
1585		sd->imbalance_pct = 110;
1586
1587	} else if (sd->flags & SD_SHARE_PKG_RESOURCES) {
1588		sd->imbalance_pct = 117;
1589		sd->cache_nice_tries = 1;
1590
1591#ifdef CONFIG_NUMA
1592	} else if (sd->flags & SD_NUMA) {
1593		sd->cache_nice_tries = 2;
1594
1595		sd->flags &= ~SD_PREFER_SIBLING;
1596		sd->flags |= SD_SERIALIZE;
1597		if (sched_domains_numa_distance[tl->numa_level] > node_reclaim_distance) {
1598			sd->flags &= ~(SD_BALANCE_EXEC |
1599				       SD_BALANCE_FORK |
1600				       SD_WAKE_AFFINE);
1601		}
1602
1603#endif
1604	} else {
1605		sd->cache_nice_tries = 1;
1606	}
1607
1608	/*
1609	 * For all levels sharing cache; connect a sched_domain_shared
1610	 * instance.
1611	 */
1612	if (sd->flags & SD_SHARE_PKG_RESOURCES) {
1613		sd->shared = *per_cpu_ptr(sdd->sds, sd_id);
1614		atomic_inc(&sd->shared->ref);
1615		atomic_set(&sd->shared->nr_busy_cpus, sd_weight);
1616	}
1617
1618	sd->private = sdd;
1619
1620	return sd;
1621}
1622
1623/*
1624 * Topology list, bottom-up.
1625 */
1626static struct sched_domain_topology_level default_topology[] = {
1627#ifdef CONFIG_SCHED_SMT
1628	{ cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
1629#endif
 
 
 
 
 
1630#ifdef CONFIG_SCHED_MC
1631	{ cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
1632#endif
1633	{ cpu_cpu_mask, SD_INIT_NAME(DIE) },
1634	{ NULL, },
1635};
1636
1637static struct sched_domain_topology_level *sched_domain_topology =
1638	default_topology;
 
1639
1640#define for_each_sd_topology(tl)			\
1641	for (tl = sched_domain_topology; tl->mask; tl++)
1642
1643void set_sched_topology(struct sched_domain_topology_level *tl)
1644{
1645	if (WARN_ON_ONCE(sched_smp_initialized))
1646		return;
1647
1648	sched_domain_topology = tl;
 
1649}
1650
1651#ifdef CONFIG_NUMA
1652
1653static const struct cpumask *sd_numa_mask(int cpu)
1654{
1655	return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
1656}
1657
1658static void sched_numa_warn(const char *str)
1659{
1660	static int done = false;
1661	int i,j;
1662
1663	if (done)
1664		return;
1665
1666	done = true;
1667
1668	printk(KERN_WARNING "ERROR: %s\n\n", str);
1669
1670	for (i = 0; i < nr_node_ids; i++) {
1671		printk(KERN_WARNING "  ");
1672		for (j = 0; j < nr_node_ids; j++)
1673			printk(KERN_CONT "%02d ", node_distance(i,j));
 
 
 
 
1674		printk(KERN_CONT "\n");
1675	}
1676	printk(KERN_WARNING "\n");
1677}
1678
1679bool find_numa_distance(int distance)
1680{
1681	int i;
 
1682
1683	if (distance == node_distance(0, 0))
1684		return true;
1685
 
 
 
 
1686	for (i = 0; i < sched_domains_numa_levels; i++) {
1687		if (sched_domains_numa_distance[i] == distance)
1688			return true;
 
 
1689	}
 
 
1690
1691	return false;
1692}
1693
 
 
 
 
 
 
1694/*
1695 * A system can have three types of NUMA topology:
1696 * NUMA_DIRECT: all nodes are directly connected, or not a NUMA system
1697 * NUMA_GLUELESS_MESH: some nodes reachable through intermediary nodes
1698 * NUMA_BACKPLANE: nodes can reach other nodes through a backplane
1699 *
1700 * The difference between a glueless mesh topology and a backplane
1701 * topology lies in whether communication between not directly
1702 * connected nodes goes through intermediary nodes (where programs
1703 * could run), or through backplane controllers. This affects
1704 * placement of programs.
1705 *
1706 * The type of topology can be discerned with the following tests:
1707 * - If the maximum distance between any nodes is 1 hop, the system
1708 *   is directly connected.
1709 * - If for two nodes A and B, located N > 1 hops away from each other,
1710 *   there is an intermediary node C, which is < N hops away from both
1711 *   nodes A and B, the system is a glueless mesh.
1712 */
1713static void init_numa_topology_type(void)
1714{
1715	int a, b, c, n;
1716
1717	n = sched_max_numa_distance;
1718
1719	if (sched_domains_numa_levels <= 2) {
1720		sched_numa_topology_type = NUMA_DIRECT;
1721		return;
1722	}
1723
1724	for_each_online_node(a) {
1725		for_each_online_node(b) {
1726			/* Find two nodes furthest removed from each other. */
1727			if (node_distance(a, b) < n)
1728				continue;
1729
1730			/* Is there an intermediary node between a and b? */
1731			for_each_online_node(c) {
1732				if (node_distance(a, c) < n &&
1733				    node_distance(b, c) < n) {
1734					sched_numa_topology_type =
1735							NUMA_GLUELESS_MESH;
1736					return;
1737				}
1738			}
1739
1740			sched_numa_topology_type = NUMA_BACKPLANE;
1741			return;
1742		}
1743	}
 
 
 
1744}
1745
1746
1747#define NR_DISTANCE_VALUES (1 << DISTANCE_BITS)
1748
1749void sched_init_numa(void)
1750{
1751	struct sched_domain_topology_level *tl;
1752	unsigned long *distance_map;
1753	int nr_levels = 0;
1754	int i, j;
 
 
1755
1756	/*
1757	 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
1758	 * unique distances in the node_distance() table.
1759	 */
1760	distance_map = bitmap_alloc(NR_DISTANCE_VALUES, GFP_KERNEL);
1761	if (!distance_map)
1762		return;
1763
1764	bitmap_zero(distance_map, NR_DISTANCE_VALUES);
1765	for (i = 0; i < nr_node_ids; i++) {
1766		for (j = 0; j < nr_node_ids; j++) {
1767			int distance = node_distance(i, j);
1768
1769			if (distance < LOCAL_DISTANCE || distance >= NR_DISTANCE_VALUES) {
1770				sched_numa_warn("Invalid distance value range");
 
1771				return;
1772			}
1773
1774			bitmap_set(distance_map, distance, 1);
1775		}
1776	}
1777	/*
1778	 * We can now figure out how many unique distance values there are and
1779	 * allocate memory accordingly.
1780	 */
1781	nr_levels = bitmap_weight(distance_map, NR_DISTANCE_VALUES);
1782
1783	sched_domains_numa_distance = kcalloc(nr_levels, sizeof(int), GFP_KERNEL);
1784	if (!sched_domains_numa_distance) {
1785		bitmap_free(distance_map);
1786		return;
1787	}
1788
1789	for (i = 0, j = 0; i < nr_levels; i++, j++) {
1790		j = find_next_bit(distance_map, NR_DISTANCE_VALUES, j);
1791		sched_domains_numa_distance[i] = j;
1792	}
 
1793
1794	bitmap_free(distance_map);
1795
1796	/*
1797	 * 'nr_levels' contains the number of unique distances
1798	 *
1799	 * The sched_domains_numa_distance[] array includes the actual distance
1800	 * numbers.
1801	 */
1802
1803	/*
1804	 * Here, we should temporarily reset sched_domains_numa_levels to 0.
1805	 * If it fails to allocate memory for array sched_domains_numa_masks[][],
1806	 * the array will contain less then 'nr_levels' members. This could be
1807	 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
1808	 * in other functions.
1809	 *
1810	 * We reset it to 'nr_levels' at the end of this function.
1811	 */
1812	sched_domains_numa_levels = 0;
1813
1814	sched_domains_numa_masks = kzalloc(sizeof(void *) * nr_levels, GFP_KERNEL);
1815	if (!sched_domains_numa_masks)
1816		return;
1817
1818	/*
1819	 * Now for each level, construct a mask per node which contains all
1820	 * CPUs of nodes that are that many hops away from us.
1821	 */
1822	for (i = 0; i < nr_levels; i++) {
1823		sched_domains_numa_masks[i] =
1824			kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
1825		if (!sched_domains_numa_masks[i])
1826			return;
1827
1828		for (j = 0; j < nr_node_ids; j++) {
1829			struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
1830			int k;
1831
1832			if (!mask)
1833				return;
1834
1835			sched_domains_numa_masks[i][j] = mask;
1836
1837			for_each_node(k) {
1838				/*
1839				 * Distance information can be unreliable for
1840				 * offline nodes, defer building the node
1841				 * masks to its bringup.
1842				 * This relies on all unique distance values
1843				 * still being visible at init time.
1844				 */
1845				if (!node_online(j))
1846					continue;
1847
 
1848				if (sched_debug() && (node_distance(j, k) != node_distance(k, j)))
1849					sched_numa_warn("Node-distance not symmetric");
1850
1851				if (node_distance(j, k) > sched_domains_numa_distance[i])
1852					continue;
1853
1854				cpumask_or(mask, mask, cpumask_of_node(k));
1855			}
1856		}
1857	}
 
1858
1859	/* Compute default topology size */
1860	for (i = 0; sched_domain_topology[i].mask; i++);
1861
1862	tl = kzalloc((i + nr_levels + 1) *
1863			sizeof(struct sched_domain_topology_level), GFP_KERNEL);
1864	if (!tl)
1865		return;
1866
1867	/*
1868	 * Copy the default topology bits..
1869	 */
1870	for (i = 0; sched_domain_topology[i].mask; i++)
1871		tl[i] = sched_domain_topology[i];
1872
1873	/*
1874	 * Add the NUMA identity distance, aka single NODE.
1875	 */
1876	tl[i++] = (struct sched_domain_topology_level){
1877		.mask = sd_numa_mask,
1878		.numa_level = 0,
1879		SD_INIT_NAME(NODE)
1880	};
1881
1882	/*
1883	 * .. and append 'j' levels of NUMA goodness.
1884	 */
1885	for (j = 1; j < nr_levels; i++, j++) {
1886		tl[i] = (struct sched_domain_topology_level){
1887			.mask = sd_numa_mask,
1888			.sd_flags = cpu_numa_flags,
1889			.flags = SDTL_OVERLAP,
1890			.numa_level = j,
1891			SD_INIT_NAME(NUMA)
1892		};
1893	}
1894
 
1895	sched_domain_topology = tl;
1896
1897	sched_domains_numa_levels = nr_levels;
1898	sched_max_numa_distance = sched_domains_numa_distance[nr_levels - 1];
 
 
 
1899
1900	init_numa_topology_type();
1901
1902	sched_numa_onlined_nodes = bitmap_alloc(nr_node_ids, GFP_KERNEL);
1903	if (!sched_numa_onlined_nodes)
1904		return;
 
1905
1906	bitmap_zero(sched_numa_onlined_nodes, nr_node_ids);
1907	for_each_online_node(i)
1908		bitmap_set(sched_numa_onlined_nodes, i, 1);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1909}
1910
1911static void __sched_domains_numa_masks_set(unsigned int node)
 
 
 
1912{
1913	int i, j;
1914
 
1915	/*
1916	 * NUMA masks are not built for offline nodes in sched_init_numa().
1917	 * Thus, when a CPU of a never-onlined-before node gets plugged in,
1918	 * adding that new CPU to the right NUMA masks is not sufficient: the
1919	 * masks of that CPU's node must also be updated.
1920	 */
1921	if (test_bit(node, sched_numa_onlined_nodes))
1922		return;
1923
1924	bitmap_set(sched_numa_onlined_nodes, node, 1);
1925
1926	for (i = 0; i < sched_domains_numa_levels; i++) {
1927		for (j = 0; j < nr_node_ids; j++) {
1928			if (!node_online(j) || node == j)
1929				continue;
1930
1931			if (node_distance(j, node) > sched_domains_numa_distance[i])
1932				continue;
1933
1934			/* Add remote nodes in our masks */
1935			cpumask_or(sched_domains_numa_masks[i][node],
1936				   sched_domains_numa_masks[i][node],
1937				   sched_domains_numa_masks[0][j]);
1938		}
1939	}
1940
1941	/*
1942	 * A new node has been brought up, potentially changing the topology
1943	 * classification.
1944	 *
1945	 * Note that this is racy vs any use of sched_numa_topology_type :/
1946	 */
1947	init_numa_topology_type();
1948}
1949
1950void sched_domains_numa_masks_set(unsigned int cpu)
1951{
1952	int node = cpu_to_node(cpu);
1953	int i, j;
1954
1955	__sched_domains_numa_masks_set(node);
1956
1957	for (i = 0; i < sched_domains_numa_levels; i++) {
1958		for (j = 0; j < nr_node_ids; j++) {
1959			if (!node_online(j))
1960				continue;
1961
1962			/* Set ourselves in the remote node's masks */
1963			if (node_distance(j, node) <= sched_domains_numa_distance[i])
1964				cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
1965		}
1966	}
1967}
1968
1969void sched_domains_numa_masks_clear(unsigned int cpu)
1970{
1971	int i, j;
1972
1973	for (i = 0; i < sched_domains_numa_levels; i++) {
1974		for (j = 0; j < nr_node_ids; j++)
1975			cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
 
 
1976	}
1977}
1978
1979/*
1980 * sched_numa_find_closest() - given the NUMA topology, find the cpu
1981 *                             closest to @cpu from @cpumask.
1982 * cpumask: cpumask to find a cpu from
1983 * cpu: cpu to be close to
1984 *
1985 * returns: cpu, or nr_cpu_ids when nothing found.
1986 */
1987int sched_numa_find_closest(const struct cpumask *cpus, int cpu)
1988{
1989	int i, j = cpu_to_node(cpu);
 
1990
 
 
 
 
1991	for (i = 0; i < sched_domains_numa_levels; i++) {
1992		cpu = cpumask_any_and(cpus, sched_domains_numa_masks[i][j]);
1993		if (cpu < nr_cpu_ids)
1994			return cpu;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1995	}
1996	return nr_cpu_ids;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1997}
 
1998
1999#endif /* CONFIG_NUMA */
2000
2001static int __sdt_alloc(const struct cpumask *cpu_map)
2002{
2003	struct sched_domain_topology_level *tl;
2004	int j;
2005
2006	for_each_sd_topology(tl) {
2007		struct sd_data *sdd = &tl->data;
2008
2009		sdd->sd = alloc_percpu(struct sched_domain *);
2010		if (!sdd->sd)
2011			return -ENOMEM;
2012
2013		sdd->sds = alloc_percpu(struct sched_domain_shared *);
2014		if (!sdd->sds)
2015			return -ENOMEM;
2016
2017		sdd->sg = alloc_percpu(struct sched_group *);
2018		if (!sdd->sg)
2019			return -ENOMEM;
2020
2021		sdd->sgc = alloc_percpu(struct sched_group_capacity *);
2022		if (!sdd->sgc)
2023			return -ENOMEM;
2024
2025		for_each_cpu(j, cpu_map) {
2026			struct sched_domain *sd;
2027			struct sched_domain_shared *sds;
2028			struct sched_group *sg;
2029			struct sched_group_capacity *sgc;
2030
2031			sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
2032					GFP_KERNEL, cpu_to_node(j));
2033			if (!sd)
2034				return -ENOMEM;
2035
2036			*per_cpu_ptr(sdd->sd, j) = sd;
2037
2038			sds = kzalloc_node(sizeof(struct sched_domain_shared),
2039					GFP_KERNEL, cpu_to_node(j));
2040			if (!sds)
2041				return -ENOMEM;
2042
2043			*per_cpu_ptr(sdd->sds, j) = sds;
2044
2045			sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
2046					GFP_KERNEL, cpu_to_node(j));
2047			if (!sg)
2048				return -ENOMEM;
2049
2050			sg->next = sg;
2051
2052			*per_cpu_ptr(sdd->sg, j) = sg;
2053
2054			sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(),
2055					GFP_KERNEL, cpu_to_node(j));
2056			if (!sgc)
2057				return -ENOMEM;
2058
2059#ifdef CONFIG_SCHED_DEBUG
2060			sgc->id = j;
2061#endif
2062
2063			*per_cpu_ptr(sdd->sgc, j) = sgc;
2064		}
2065	}
2066
2067	return 0;
2068}
2069
2070static void __sdt_free(const struct cpumask *cpu_map)
2071{
2072	struct sched_domain_topology_level *tl;
2073	int j;
2074
2075	for_each_sd_topology(tl) {
2076		struct sd_data *sdd = &tl->data;
2077
2078		for_each_cpu(j, cpu_map) {
2079			struct sched_domain *sd;
2080
2081			if (sdd->sd) {
2082				sd = *per_cpu_ptr(sdd->sd, j);
2083				if (sd && (sd->flags & SD_OVERLAP))
2084					free_sched_groups(sd->groups, 0);
2085				kfree(*per_cpu_ptr(sdd->sd, j));
2086			}
2087
2088			if (sdd->sds)
2089				kfree(*per_cpu_ptr(sdd->sds, j));
2090			if (sdd->sg)
2091				kfree(*per_cpu_ptr(sdd->sg, j));
2092			if (sdd->sgc)
2093				kfree(*per_cpu_ptr(sdd->sgc, j));
2094		}
2095		free_percpu(sdd->sd);
2096		sdd->sd = NULL;
2097		free_percpu(sdd->sds);
2098		sdd->sds = NULL;
2099		free_percpu(sdd->sg);
2100		sdd->sg = NULL;
2101		free_percpu(sdd->sgc);
2102		sdd->sgc = NULL;
2103	}
2104}
2105
2106static struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
2107		const struct cpumask *cpu_map, struct sched_domain_attr *attr,
2108		struct sched_domain *child, int cpu)
2109{
2110	struct sched_domain *sd = sd_init(tl, cpu_map, child, cpu);
2111
2112	if (child) {
2113		sd->level = child->level + 1;
2114		sched_domain_level_max = max(sched_domain_level_max, sd->level);
2115		child->parent = sd;
2116
2117		if (!cpumask_subset(sched_domain_span(child),
2118				    sched_domain_span(sd))) {
2119			pr_err("BUG: arch topology borken\n");
2120#ifdef CONFIG_SCHED_DEBUG
2121			pr_err("     the %s domain not a subset of the %s domain\n",
2122					child->name, sd->name);
2123#endif
2124			/* Fixup, ensure @sd has at least @child CPUs. */
2125			cpumask_or(sched_domain_span(sd),
2126				   sched_domain_span(sd),
2127				   sched_domain_span(child));
2128		}
2129
2130	}
2131	set_domain_attribute(sd, attr);
2132
2133	return sd;
2134}
2135
2136/*
2137 * Ensure topology masks are sane, i.e. there are no conflicts (overlaps) for
2138 * any two given CPUs at this (non-NUMA) topology level.
2139 */
2140static bool topology_span_sane(struct sched_domain_topology_level *tl,
2141			      const struct cpumask *cpu_map, int cpu)
2142{
2143	int i;
2144
2145	/* NUMA levels are allowed to overlap */
2146	if (tl->flags & SDTL_OVERLAP)
2147		return true;
2148
2149	/*
2150	 * Non-NUMA levels cannot partially overlap - they must be either
2151	 * completely equal or completely disjoint. Otherwise we can end up
2152	 * breaking the sched_group lists - i.e. a later get_group() pass
2153	 * breaks the linking done for an earlier span.
2154	 */
2155	for_each_cpu(i, cpu_map) {
2156		if (i == cpu)
2157			continue;
2158		/*
2159		 * We should 'and' all those masks with 'cpu_map' to exactly
2160		 * match the topology we're about to build, but that can only
2161		 * remove CPUs, which only lessens our ability to detect
2162		 * overlaps
2163		 */
2164		if (!cpumask_equal(tl->mask(cpu), tl->mask(i)) &&
2165		    cpumask_intersects(tl->mask(cpu), tl->mask(i)))
2166			return false;
2167	}
2168
2169	return true;
2170}
2171
2172/*
2173 * Build sched domains for a given set of CPUs and attach the sched domains
2174 * to the individual CPUs
2175 */
2176static int
2177build_sched_domains(const struct cpumask *cpu_map, struct sched_domain_attr *attr)
2178{
2179	enum s_alloc alloc_state = sa_none;
2180	struct sched_domain *sd;
2181	struct s_data d;
2182	struct rq *rq = NULL;
2183	int i, ret = -ENOMEM;
2184	bool has_asym = false;
 
2185
2186	if (WARN_ON(cpumask_empty(cpu_map)))
2187		goto error;
2188
2189	alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
2190	if (alloc_state != sa_rootdomain)
2191		goto error;
2192
2193	/* Set up domains for CPUs specified by the cpu_map: */
2194	for_each_cpu(i, cpu_map) {
2195		struct sched_domain_topology_level *tl;
2196
2197		sd = NULL;
2198		for_each_sd_topology(tl) {
2199
2200			if (WARN_ON(!topology_span_sane(tl, cpu_map, i)))
2201				goto error;
2202
2203			sd = build_sched_domain(tl, cpu_map, attr, sd, i);
2204
2205			has_asym |= sd->flags & SD_ASYM_CPUCAPACITY;
2206
2207			if (tl == sched_domain_topology)
2208				*per_cpu_ptr(d.sd, i) = sd;
2209			if (tl->flags & SDTL_OVERLAP)
2210				sd->flags |= SD_OVERLAP;
2211			if (cpumask_equal(cpu_map, sched_domain_span(sd)))
2212				break;
2213		}
2214	}
2215
2216	/* Build the groups for the domains */
2217	for_each_cpu(i, cpu_map) {
2218		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
2219			sd->span_weight = cpumask_weight(sched_domain_span(sd));
2220			if (sd->flags & SD_OVERLAP) {
2221				if (build_overlap_sched_groups(sd, i))
2222					goto error;
2223			} else {
2224				if (build_sched_groups(sd, i))
2225					goto error;
2226			}
2227		}
2228	}
2229
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2230	/* Calculate CPU capacity for physical packages and nodes */
2231	for (i = nr_cpumask_bits-1; i >= 0; i--) {
2232		if (!cpumask_test_cpu(i, cpu_map))
2233			continue;
2234
2235		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
2236			claim_allocations(i, sd);
2237			init_sched_groups_capacity(i, sd);
2238		}
2239	}
2240
2241	/* Attach the domains */
2242	rcu_read_lock();
2243	for_each_cpu(i, cpu_map) {
2244		rq = cpu_rq(i);
2245		sd = *per_cpu_ptr(d.sd, i);
2246
2247		/* Use READ_ONCE()/WRITE_ONCE() to avoid load/store tearing: */
2248		if (rq->cpu_capacity_orig > READ_ONCE(d.rd->max_cpu_capacity))
2249			WRITE_ONCE(d.rd->max_cpu_capacity, rq->cpu_capacity_orig);
2250
2251		cpu_attach_domain(sd, d.rd, i);
 
2252	}
2253	rcu_read_unlock();
2254
2255	if (has_asym)
2256		static_branch_inc_cpuslocked(&sched_asym_cpucapacity);
2257
2258	if (rq && sched_debug_verbose) {
2259		pr_info("root domain span: %*pbl (max cpu_capacity = %lu)\n",
2260			cpumask_pr_args(cpu_map), rq->rd->max_cpu_capacity);
2261	}
 
2262
2263	ret = 0;
2264error:
2265	__free_domain_allocs(&d, alloc_state, cpu_map);
2266
2267	return ret;
2268}
2269
2270/* Current sched domains: */
2271static cpumask_var_t			*doms_cur;
2272
2273/* Number of sched domains in 'doms_cur': */
2274static int				ndoms_cur;
2275
2276/* Attributes of custom domains in 'doms_cur' */
2277static struct sched_domain_attr		*dattr_cur;
2278
2279/*
2280 * Special case: If a kmalloc() of a doms_cur partition (array of
2281 * cpumask) fails, then fallback to a single sched domain,
2282 * as determined by the single cpumask fallback_doms.
2283 */
2284static cpumask_var_t			fallback_doms;
2285
2286/*
2287 * arch_update_cpu_topology lets virtualized architectures update the
2288 * CPU core maps. It is supposed to return 1 if the topology changed
2289 * or 0 if it stayed the same.
2290 */
2291int __weak arch_update_cpu_topology(void)
2292{
2293	return 0;
2294}
2295
2296cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
2297{
2298	int i;
2299	cpumask_var_t *doms;
2300
2301	doms = kmalloc_array(ndoms, sizeof(*doms), GFP_KERNEL);
2302	if (!doms)
2303		return NULL;
2304	for (i = 0; i < ndoms; i++) {
2305		if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
2306			free_sched_domains(doms, i);
2307			return NULL;
2308		}
2309	}
2310	return doms;
2311}
2312
2313void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
2314{
2315	unsigned int i;
2316	for (i = 0; i < ndoms; i++)
2317		free_cpumask_var(doms[i]);
2318	kfree(doms);
2319}
2320
2321/*
2322 * Set up scheduler domains and groups.  For now this just excludes isolated
2323 * CPUs, but could be used to exclude other special cases in the future.
2324 */
2325int sched_init_domains(const struct cpumask *cpu_map)
2326{
2327	int err;
2328
2329	zalloc_cpumask_var(&sched_domains_tmpmask, GFP_KERNEL);
2330	zalloc_cpumask_var(&sched_domains_tmpmask2, GFP_KERNEL);
2331	zalloc_cpumask_var(&fallback_doms, GFP_KERNEL);
2332
2333	arch_update_cpu_topology();
2334	asym_cpu_capacity_scan();
2335	ndoms_cur = 1;
2336	doms_cur = alloc_sched_domains(ndoms_cur);
2337	if (!doms_cur)
2338		doms_cur = &fallback_doms;
2339	cpumask_and(doms_cur[0], cpu_map, housekeeping_cpumask(HK_FLAG_DOMAIN));
2340	err = build_sched_domains(doms_cur[0], NULL);
2341
2342	return err;
2343}
2344
2345/*
2346 * Detach sched domains from a group of CPUs specified in cpu_map
2347 * These CPUs will now be attached to the NULL domain
2348 */
2349static void detach_destroy_domains(const struct cpumask *cpu_map)
2350{
2351	unsigned int cpu = cpumask_any(cpu_map);
2352	int i;
2353
2354	if (rcu_access_pointer(per_cpu(sd_asym_cpucapacity, cpu)))
2355		static_branch_dec_cpuslocked(&sched_asym_cpucapacity);
2356
 
 
 
2357	rcu_read_lock();
2358	for_each_cpu(i, cpu_map)
2359		cpu_attach_domain(NULL, &def_root_domain, i);
2360	rcu_read_unlock();
2361}
2362
2363/* handle null as "default" */
2364static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
2365			struct sched_domain_attr *new, int idx_new)
2366{
2367	struct sched_domain_attr tmp;
2368
2369	/* Fast path: */
2370	if (!new && !cur)
2371		return 1;
2372
2373	tmp = SD_ATTR_INIT;
2374
2375	return !memcmp(cur ? (cur + idx_cur) : &tmp,
2376			new ? (new + idx_new) : &tmp,
2377			sizeof(struct sched_domain_attr));
2378}
2379
2380/*
2381 * Partition sched domains as specified by the 'ndoms_new'
2382 * cpumasks in the array doms_new[] of cpumasks. This compares
2383 * doms_new[] to the current sched domain partitioning, doms_cur[].
2384 * It destroys each deleted domain and builds each new domain.
2385 *
2386 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
2387 * The masks don't intersect (don't overlap.) We should setup one
2388 * sched domain for each mask. CPUs not in any of the cpumasks will
2389 * not be load balanced. If the same cpumask appears both in the
2390 * current 'doms_cur' domains and in the new 'doms_new', we can leave
2391 * it as it is.
2392 *
2393 * The passed in 'doms_new' should be allocated using
2394 * alloc_sched_domains.  This routine takes ownership of it and will
2395 * free_sched_domains it when done with it. If the caller failed the
2396 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
2397 * and partition_sched_domains() will fallback to the single partition
2398 * 'fallback_doms', it also forces the domains to be rebuilt.
2399 *
2400 * If doms_new == NULL it will be replaced with cpu_online_mask.
2401 * ndoms_new == 0 is a special case for destroying existing domains,
2402 * and it will not create the default domain.
2403 *
2404 * Call with hotplug lock and sched_domains_mutex held
2405 */
2406void partition_sched_domains_locked(int ndoms_new, cpumask_var_t doms_new[],
2407				    struct sched_domain_attr *dattr_new)
2408{
2409	bool __maybe_unused has_eas = false;
2410	int i, j, n;
2411	int new_topology;
2412
2413	lockdep_assert_held(&sched_domains_mutex);
2414
2415	/* Let the architecture update CPU core mappings: */
2416	new_topology = arch_update_cpu_topology();
2417	/* Trigger rebuilding CPU capacity asymmetry data */
2418	if (new_topology)
2419		asym_cpu_capacity_scan();
2420
2421	if (!doms_new) {
2422		WARN_ON_ONCE(dattr_new);
2423		n = 0;
2424		doms_new = alloc_sched_domains(1);
2425		if (doms_new) {
2426			n = 1;
2427			cpumask_and(doms_new[0], cpu_active_mask,
2428				    housekeeping_cpumask(HK_FLAG_DOMAIN));
2429		}
2430	} else {
2431		n = ndoms_new;
2432	}
2433
2434	/* Destroy deleted domains: */
2435	for (i = 0; i < ndoms_cur; i++) {
2436		for (j = 0; j < n && !new_topology; j++) {
2437			if (cpumask_equal(doms_cur[i], doms_new[j]) &&
2438			    dattrs_equal(dattr_cur, i, dattr_new, j)) {
2439				struct root_domain *rd;
2440
2441				/*
2442				 * This domain won't be destroyed and as such
2443				 * its dl_bw->total_bw needs to be cleared.  It
2444				 * will be recomputed in function
2445				 * update_tasks_root_domain().
2446				 */
2447				rd = cpu_rq(cpumask_any(doms_cur[i]))->rd;
2448				dl_clear_root_domain(rd);
2449				goto match1;
2450			}
2451		}
2452		/* No match - a current sched domain not in new doms_new[] */
2453		detach_destroy_domains(doms_cur[i]);
2454match1:
2455		;
2456	}
2457
2458	n = ndoms_cur;
2459	if (!doms_new) {
2460		n = 0;
2461		doms_new = &fallback_doms;
2462		cpumask_and(doms_new[0], cpu_active_mask,
2463			    housekeeping_cpumask(HK_FLAG_DOMAIN));
2464	}
2465
2466	/* Build new domains: */
2467	for (i = 0; i < ndoms_new; i++) {
2468		for (j = 0; j < n && !new_topology; j++) {
2469			if (cpumask_equal(doms_new[i], doms_cur[j]) &&
2470			    dattrs_equal(dattr_new, i, dattr_cur, j))
2471				goto match2;
2472		}
2473		/* No match - add a new doms_new */
2474		build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
2475match2:
2476		;
2477	}
2478
2479#if defined(CONFIG_ENERGY_MODEL) && defined(CONFIG_CPU_FREQ_GOV_SCHEDUTIL)
2480	/* Build perf. domains: */
2481	for (i = 0; i < ndoms_new; i++) {
2482		for (j = 0; j < n && !sched_energy_update; j++) {
2483			if (cpumask_equal(doms_new[i], doms_cur[j]) &&
2484			    cpu_rq(cpumask_first(doms_cur[j]))->rd->pd) {
2485				has_eas = true;
2486				goto match3;
2487			}
2488		}
2489		/* No match - add perf. domains for a new rd */
2490		has_eas |= build_perf_domains(doms_new[i]);
2491match3:
2492		;
2493	}
2494	sched_energy_set(has_eas);
2495#endif
2496
2497	/* Remember the new sched domains: */
2498	if (doms_cur != &fallback_doms)
2499		free_sched_domains(doms_cur, ndoms_cur);
2500
2501	kfree(dattr_cur);
2502	doms_cur = doms_new;
2503	dattr_cur = dattr_new;
2504	ndoms_cur = ndoms_new;
2505
2506	update_sched_domain_debugfs();
2507}
2508
2509/*
2510 * Call with hotplug lock held
2511 */
2512void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
2513			     struct sched_domain_attr *dattr_new)
2514{
2515	mutex_lock(&sched_domains_mutex);
2516	partition_sched_domains_locked(ndoms_new, doms_new, dattr_new);
2517	mutex_unlock(&sched_domains_mutex);
2518}