Linux Audio

Check our new training course

Loading...
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Scheduler topology setup/handling methods
   4 */
   5
   6#include <linux/bsearch.h>
   7
   8DEFINE_MUTEX(sched_domains_mutex);
   9
  10/* Protected by sched_domains_mutex: */
  11static cpumask_var_t sched_domains_tmpmask;
  12static cpumask_var_t sched_domains_tmpmask2;
  13
  14#ifdef CONFIG_SCHED_DEBUG
  15
  16static int __init sched_debug_setup(char *str)
  17{
  18	sched_debug_verbose = true;
  19
  20	return 0;
  21}
  22early_param("sched_verbose", sched_debug_setup);
  23
  24static inline bool sched_debug(void)
  25{
  26	return sched_debug_verbose;
  27}
  28
  29#define SD_FLAG(_name, mflags) [__##_name] = { .meta_flags = mflags, .name = #_name },
  30const struct sd_flag_debug sd_flag_debug[] = {
  31#include <linux/sched/sd_flags.h>
  32};
  33#undef SD_FLAG
  34
  35static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
  36				  struct cpumask *groupmask)
  37{
  38	struct sched_group *group = sd->groups;
  39	unsigned long flags = sd->flags;
  40	unsigned int idx;
  41
  42	cpumask_clear(groupmask);
  43
  44	printk(KERN_DEBUG "%*s domain-%d: ", level, "", level);
  45	printk(KERN_CONT "span=%*pbl level=%s\n",
  46	       cpumask_pr_args(sched_domain_span(sd)), sd->name);
  47
  48	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
  49		printk(KERN_ERR "ERROR: domain->span does not contain CPU%d\n", cpu);
  50	}
  51	if (group && !cpumask_test_cpu(cpu, sched_group_span(group))) {
  52		printk(KERN_ERR "ERROR: domain->groups does not contain CPU%d\n", cpu);
  53	}
  54
  55	for_each_set_bit(idx, &flags, __SD_FLAG_CNT) {
  56		unsigned int flag = BIT(idx);
  57		unsigned int meta_flags = sd_flag_debug[idx].meta_flags;
  58
  59		if ((meta_flags & SDF_SHARED_CHILD) && sd->child &&
  60		    !(sd->child->flags & flag))
  61			printk(KERN_ERR "ERROR: flag %s set here but not in child\n",
  62			       sd_flag_debug[idx].name);
  63
  64		if ((meta_flags & SDF_SHARED_PARENT) && sd->parent &&
  65		    !(sd->parent->flags & flag))
  66			printk(KERN_ERR "ERROR: flag %s set here but not in parent\n",
  67			       sd_flag_debug[idx].name);
  68	}
  69
  70	printk(KERN_DEBUG "%*s groups:", level + 1, "");
  71	do {
  72		if (!group) {
  73			printk("\n");
  74			printk(KERN_ERR "ERROR: group is NULL\n");
  75			break;
  76		}
  77
  78		if (cpumask_empty(sched_group_span(group))) {
  79			printk(KERN_CONT "\n");
  80			printk(KERN_ERR "ERROR: empty group\n");
  81			break;
  82		}
  83
  84		if (!(sd->flags & SD_OVERLAP) &&
  85		    cpumask_intersects(groupmask, sched_group_span(group))) {
  86			printk(KERN_CONT "\n");
  87			printk(KERN_ERR "ERROR: repeated CPUs\n");
  88			break;
  89		}
  90
  91		cpumask_or(groupmask, groupmask, sched_group_span(group));
  92
  93		printk(KERN_CONT " %d:{ span=%*pbl",
  94				group->sgc->id,
  95				cpumask_pr_args(sched_group_span(group)));
  96
  97		if ((sd->flags & SD_OVERLAP) &&
  98		    !cpumask_equal(group_balance_mask(group), sched_group_span(group))) {
  99			printk(KERN_CONT " mask=%*pbl",
 100				cpumask_pr_args(group_balance_mask(group)));
 101		}
 102
 103		if (group->sgc->capacity != SCHED_CAPACITY_SCALE)
 104			printk(KERN_CONT " cap=%lu", group->sgc->capacity);
 105
 106		if (group == sd->groups && sd->child &&
 107		    !cpumask_equal(sched_domain_span(sd->child),
 108				   sched_group_span(group))) {
 109			printk(KERN_ERR "ERROR: domain->groups does not match domain->child\n");
 110		}
 111
 112		printk(KERN_CONT " }");
 113
 114		group = group->next;
 115
 116		if (group != sd->groups)
 117			printk(KERN_CONT ",");
 118
 119	} while (group != sd->groups);
 120	printk(KERN_CONT "\n");
 121
 122	if (!cpumask_equal(sched_domain_span(sd), groupmask))
 123		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
 124
 125	if (sd->parent &&
 126	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
 127		printk(KERN_ERR "ERROR: parent span is not a superset of domain->span\n");
 128	return 0;
 129}
 130
 131static void sched_domain_debug(struct sched_domain *sd, int cpu)
 132{
 133	int level = 0;
 134
 135	if (!sched_debug_verbose)
 136		return;
 137
 138	if (!sd) {
 139		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
 140		return;
 141	}
 142
 143	printk(KERN_DEBUG "CPU%d attaching sched-domain(s):\n", cpu);
 144
 145	for (;;) {
 146		if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
 147			break;
 148		level++;
 149		sd = sd->parent;
 150		if (!sd)
 151			break;
 152	}
 153}
 154#else /* !CONFIG_SCHED_DEBUG */
 155
 156# define sched_debug_verbose 0
 157# define sched_domain_debug(sd, cpu) do { } while (0)
 158static inline bool sched_debug(void)
 159{
 160	return false;
 161}
 162#endif /* CONFIG_SCHED_DEBUG */
 163
 164/* Generate a mask of SD flags with the SDF_NEEDS_GROUPS metaflag */
 165#define SD_FLAG(name, mflags) (name * !!((mflags) & SDF_NEEDS_GROUPS)) |
 166static const unsigned int SD_DEGENERATE_GROUPS_MASK =
 167#include <linux/sched/sd_flags.h>
 1680;
 169#undef SD_FLAG
 170
 171static int sd_degenerate(struct sched_domain *sd)
 172{
 173	if (cpumask_weight(sched_domain_span(sd)) == 1)
 174		return 1;
 175
 176	/* Following flags need at least 2 groups */
 177	if ((sd->flags & SD_DEGENERATE_GROUPS_MASK) &&
 178	    (sd->groups != sd->groups->next))
 179		return 0;
 
 
 
 
 
 
 
 180
 181	/* Following flags don't use groups */
 182	if (sd->flags & (SD_WAKE_AFFINE))
 183		return 0;
 184
 185	return 1;
 186}
 187
 188static int
 189sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
 190{
 191	unsigned long cflags = sd->flags, pflags = parent->flags;
 192
 193	if (sd_degenerate(parent))
 194		return 1;
 195
 196	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
 197		return 0;
 198
 199	/* Flags needing groups don't count if only 1 group in parent */
 200	if (parent->groups == parent->groups->next)
 201		pflags &= ~SD_DEGENERATE_GROUPS_MASK;
 202
 
 
 
 
 
 
 
 
 
 203	if (~cflags & pflags)
 204		return 0;
 205
 206	return 1;
 207}
 208
 209#if defined(CONFIG_ENERGY_MODEL) && defined(CONFIG_CPU_FREQ_GOV_SCHEDUTIL)
 210DEFINE_STATIC_KEY_FALSE(sched_energy_present);
 211static unsigned int sysctl_sched_energy_aware = 1;
 212static DEFINE_MUTEX(sched_energy_mutex);
 213static bool sched_energy_update;
 214
 215static bool sched_is_eas_possible(const struct cpumask *cpu_mask)
 216{
 217	bool any_asym_capacity = false;
 218	struct cpufreq_policy *policy;
 219	struct cpufreq_governor *gov;
 220	int i;
 221
 222	/* EAS is enabled for asymmetric CPU capacity topologies. */
 223	for_each_cpu(i, cpu_mask) {
 224		if (rcu_access_pointer(per_cpu(sd_asym_cpucapacity, i))) {
 225			any_asym_capacity = true;
 226			break;
 227		}
 228	}
 229	if (!any_asym_capacity) {
 230		if (sched_debug()) {
 231			pr_info("rd %*pbl: Checking EAS, CPUs do not have asymmetric capacities\n",
 232				cpumask_pr_args(cpu_mask));
 233		}
 234		return false;
 235	}
 236
 237	/* EAS definitely does *not* handle SMT */
 238	if (sched_smt_active()) {
 239		if (sched_debug()) {
 240			pr_info("rd %*pbl: Checking EAS, SMT is not supported\n",
 241				cpumask_pr_args(cpu_mask));
 242		}
 243		return false;
 244	}
 245
 246	if (!arch_scale_freq_invariant()) {
 247		if (sched_debug()) {
 248			pr_info("rd %*pbl: Checking EAS: frequency-invariant load tracking not yet supported",
 249				cpumask_pr_args(cpu_mask));
 250		}
 251		return false;
 252	}
 253
 254	/* Do not attempt EAS if schedutil is not being used. */
 255	for_each_cpu(i, cpu_mask) {
 256		policy = cpufreq_cpu_get(i);
 257		if (!policy) {
 258			if (sched_debug()) {
 259				pr_info("rd %*pbl: Checking EAS, cpufreq policy not set for CPU: %d",
 260					cpumask_pr_args(cpu_mask), i);
 261			}
 262			return false;
 263		}
 264		gov = policy->governor;
 265		cpufreq_cpu_put(policy);
 266		if (gov != &schedutil_gov) {
 267			if (sched_debug()) {
 268				pr_info("rd %*pbl: Checking EAS, schedutil is mandatory\n",
 269					cpumask_pr_args(cpu_mask));
 270			}
 271			return false;
 272		}
 273	}
 274
 275	return true;
 276}
 277
 278void rebuild_sched_domains_energy(void)
 279{
 280	mutex_lock(&sched_energy_mutex);
 281	sched_energy_update = true;
 282	rebuild_sched_domains();
 283	sched_energy_update = false;
 284	mutex_unlock(&sched_energy_mutex);
 285}
 286
 287#ifdef CONFIG_PROC_SYSCTL
 288static int sched_energy_aware_handler(const struct ctl_table *table, int write,
 289		void *buffer, size_t *lenp, loff_t *ppos)
 290{
 291	int ret, state;
 292
 293	if (write && !capable(CAP_SYS_ADMIN))
 294		return -EPERM;
 295
 296	if (!sched_is_eas_possible(cpu_active_mask)) {
 297		if (write) {
 298			return -EOPNOTSUPP;
 299		} else {
 300			*lenp = 0;
 301			return 0;
 302		}
 303	}
 304
 305	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
 306	if (!ret && write) {
 307		state = static_branch_unlikely(&sched_energy_present);
 308		if (state != sysctl_sched_energy_aware)
 309			rebuild_sched_domains_energy();
 
 
 
 
 
 310	}
 311
 312	return ret;
 313}
 314
 315static struct ctl_table sched_energy_aware_sysctls[] = {
 316	{
 317		.procname       = "sched_energy_aware",
 318		.data           = &sysctl_sched_energy_aware,
 319		.maxlen         = sizeof(unsigned int),
 320		.mode           = 0644,
 321		.proc_handler   = sched_energy_aware_handler,
 322		.extra1         = SYSCTL_ZERO,
 323		.extra2         = SYSCTL_ONE,
 324	},
 325};
 326
 327static int __init sched_energy_aware_sysctl_init(void)
 328{
 329	register_sysctl_init("kernel", sched_energy_aware_sysctls);
 330	return 0;
 331}
 332
 333late_initcall(sched_energy_aware_sysctl_init);
 334#endif
 335
 336static void free_pd(struct perf_domain *pd)
 337{
 338	struct perf_domain *tmp;
 339
 340	while (pd) {
 341		tmp = pd->next;
 342		kfree(pd);
 343		pd = tmp;
 344	}
 345}
 346
 347static struct perf_domain *find_pd(struct perf_domain *pd, int cpu)
 348{
 349	while (pd) {
 350		if (cpumask_test_cpu(cpu, perf_domain_span(pd)))
 351			return pd;
 352		pd = pd->next;
 353	}
 354
 355	return NULL;
 356}
 357
 358static struct perf_domain *pd_init(int cpu)
 359{
 360	struct em_perf_domain *obj = em_cpu_get(cpu);
 361	struct perf_domain *pd;
 362
 363	if (!obj) {
 364		if (sched_debug())
 365			pr_info("%s: no EM found for CPU%d\n", __func__, cpu);
 366		return NULL;
 367	}
 368
 369	pd = kzalloc(sizeof(*pd), GFP_KERNEL);
 370	if (!pd)
 371		return NULL;
 372	pd->em_pd = obj;
 373
 374	return pd;
 375}
 376
 377static void perf_domain_debug(const struct cpumask *cpu_map,
 378						struct perf_domain *pd)
 379{
 380	if (!sched_debug() || !pd)
 381		return;
 382
 383	printk(KERN_DEBUG "root_domain %*pbl:", cpumask_pr_args(cpu_map));
 384
 385	while (pd) {
 386		printk(KERN_CONT " pd%d:{ cpus=%*pbl nr_pstate=%d }",
 387				cpumask_first(perf_domain_span(pd)),
 388				cpumask_pr_args(perf_domain_span(pd)),
 389				em_pd_nr_perf_states(pd->em_pd));
 390		pd = pd->next;
 391	}
 392
 393	printk(KERN_CONT "\n");
 394}
 395
 396static void destroy_perf_domain_rcu(struct rcu_head *rp)
 397{
 398	struct perf_domain *pd;
 399
 400	pd = container_of(rp, struct perf_domain, rcu);
 401	free_pd(pd);
 402}
 403
 404static void sched_energy_set(bool has_eas)
 405{
 406	if (!has_eas && static_branch_unlikely(&sched_energy_present)) {
 407		if (sched_debug())
 408			pr_info("%s: stopping EAS\n", __func__);
 409		static_branch_disable_cpuslocked(&sched_energy_present);
 410	} else if (has_eas && !static_branch_unlikely(&sched_energy_present)) {
 411		if (sched_debug())
 412			pr_info("%s: starting EAS\n", __func__);
 413		static_branch_enable_cpuslocked(&sched_energy_present);
 414	}
 415}
 416
 417/*
 418 * EAS can be used on a root domain if it meets all the following conditions:
 419 *    1. an Energy Model (EM) is available;
 420 *    2. the SD_ASYM_CPUCAPACITY flag is set in the sched_domain hierarchy.
 421 *    3. no SMT is detected.
 422 *    4. schedutil is driving the frequency of all CPUs of the rd;
 423 *    5. frequency invariance support is present;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 424 */
 
 
 
 425static bool build_perf_domains(const struct cpumask *cpu_map)
 426{
 427	int i;
 428	struct perf_domain *pd = NULL, *tmp;
 429	int cpu = cpumask_first(cpu_map);
 430	struct root_domain *rd = cpu_rq(cpu)->rd;
 
 
 431
 432	if (!sysctl_sched_energy_aware)
 433		goto free;
 434
 435	if (!sched_is_eas_possible(cpu_map))
 
 
 
 
 
 
 
 
 
 
 
 
 436		goto free;
 
 437
 438	for_each_cpu(i, cpu_map) {
 439		/* Skip already covered CPUs. */
 440		if (find_pd(pd, i))
 441			continue;
 442
 
 
 
 
 
 
 
 
 
 
 
 
 
 443		/* Create the new pd and add it to the local list. */
 444		tmp = pd_init(i);
 445		if (!tmp)
 446			goto free;
 447		tmp->next = pd;
 448		pd = tmp;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 449	}
 450
 451	perf_domain_debug(cpu_map, pd);
 452
 453	/* Attach the new list of performance domains to the root domain. */
 454	tmp = rd->pd;
 455	rcu_assign_pointer(rd->pd, pd);
 456	if (tmp)
 457		call_rcu(&tmp->rcu, destroy_perf_domain_rcu);
 458
 459	return !!pd;
 460
 461free:
 462	free_pd(pd);
 463	tmp = rd->pd;
 464	rcu_assign_pointer(rd->pd, NULL);
 465	if (tmp)
 466		call_rcu(&tmp->rcu, destroy_perf_domain_rcu);
 467
 468	return false;
 469}
 470#else
 471static void free_pd(struct perf_domain *pd) { }
 472#endif /* CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL*/
 473
 474static void free_rootdomain(struct rcu_head *rcu)
 475{
 476	struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
 477
 478	cpupri_cleanup(&rd->cpupri);
 479	cpudl_cleanup(&rd->cpudl);
 480	free_cpumask_var(rd->dlo_mask);
 481	free_cpumask_var(rd->rto_mask);
 482	free_cpumask_var(rd->online);
 483	free_cpumask_var(rd->span);
 484	free_pd(rd->pd);
 485	kfree(rd);
 486}
 487
 488void rq_attach_root(struct rq *rq, struct root_domain *rd)
 489{
 490	struct root_domain *old_rd = NULL;
 491	struct rq_flags rf;
 492
 493	rq_lock_irqsave(rq, &rf);
 494
 495	if (rq->rd) {
 496		old_rd = rq->rd;
 497
 498		if (cpumask_test_cpu(rq->cpu, old_rd->online))
 499			set_rq_offline(rq);
 500
 501		cpumask_clear_cpu(rq->cpu, old_rd->span);
 502
 503		/*
 504		 * If we don't want to free the old_rd yet then
 505		 * set old_rd to NULL to skip the freeing later
 506		 * in this function:
 507		 */
 508		if (!atomic_dec_and_test(&old_rd->refcount))
 509			old_rd = NULL;
 510	}
 511
 512	atomic_inc(&rd->refcount);
 513	rq->rd = rd;
 514
 515	cpumask_set_cpu(rq->cpu, rd->span);
 516	if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
 517		set_rq_online(rq);
 518
 519	/*
 520	 * Because the rq is not a task, dl_add_task_root_domain() did not
 521	 * move the fair server bw to the rd if it already started.
 522	 * Add it now.
 523	 */
 524	if (rq->fair_server.dl_server)
 525		__dl_server_attach_root(&rq->fair_server, rq);
 526
 527	rq_unlock_irqrestore(rq, &rf);
 528
 529	if (old_rd)
 530		call_rcu(&old_rd->rcu, free_rootdomain);
 531}
 532
 533void sched_get_rd(struct root_domain *rd)
 534{
 535	atomic_inc(&rd->refcount);
 536}
 537
 538void sched_put_rd(struct root_domain *rd)
 539{
 540	if (!atomic_dec_and_test(&rd->refcount))
 541		return;
 542
 543	call_rcu(&rd->rcu, free_rootdomain);
 544}
 545
 546static int init_rootdomain(struct root_domain *rd)
 547{
 548	if (!zalloc_cpumask_var(&rd->span, GFP_KERNEL))
 549		goto out;
 550	if (!zalloc_cpumask_var(&rd->online, GFP_KERNEL))
 551		goto free_span;
 552	if (!zalloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
 553		goto free_online;
 554	if (!zalloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
 555		goto free_dlo_mask;
 556
 557#ifdef HAVE_RT_PUSH_IPI
 558	rd->rto_cpu = -1;
 559	raw_spin_lock_init(&rd->rto_lock);
 560	rd->rto_push_work = IRQ_WORK_INIT_HARD(rto_push_irq_work_func);
 561#endif
 562
 563	rd->visit_gen = 0;
 564	init_dl_bw(&rd->dl_bw);
 565	if (cpudl_init(&rd->cpudl) != 0)
 566		goto free_rto_mask;
 567
 568	if (cpupri_init(&rd->cpupri) != 0)
 569		goto free_cpudl;
 570	return 0;
 571
 572free_cpudl:
 573	cpudl_cleanup(&rd->cpudl);
 574free_rto_mask:
 575	free_cpumask_var(rd->rto_mask);
 576free_dlo_mask:
 577	free_cpumask_var(rd->dlo_mask);
 578free_online:
 579	free_cpumask_var(rd->online);
 580free_span:
 581	free_cpumask_var(rd->span);
 582out:
 583	return -ENOMEM;
 584}
 585
 586/*
 587 * By default the system creates a single root-domain with all CPUs as
 588 * members (mimicking the global state we have today).
 589 */
 590struct root_domain def_root_domain;
 591
 592void __init init_defrootdomain(void)
 593{
 594	init_rootdomain(&def_root_domain);
 595
 596	atomic_set(&def_root_domain.refcount, 1);
 597}
 598
 599static struct root_domain *alloc_rootdomain(void)
 600{
 601	struct root_domain *rd;
 602
 603	rd = kzalloc(sizeof(*rd), GFP_KERNEL);
 604	if (!rd)
 605		return NULL;
 606
 607	if (init_rootdomain(rd) != 0) {
 608		kfree(rd);
 609		return NULL;
 610	}
 611
 612	return rd;
 613}
 614
 615static void free_sched_groups(struct sched_group *sg, int free_sgc)
 616{
 617	struct sched_group *tmp, *first;
 618
 619	if (!sg)
 620		return;
 621
 622	first = sg;
 623	do {
 624		tmp = sg->next;
 625
 626		if (free_sgc && atomic_dec_and_test(&sg->sgc->ref))
 627			kfree(sg->sgc);
 628
 629		if (atomic_dec_and_test(&sg->ref))
 630			kfree(sg);
 631		sg = tmp;
 632	} while (sg != first);
 633}
 634
 635static void destroy_sched_domain(struct sched_domain *sd)
 636{
 637	/*
 638	 * A normal sched domain may have multiple group references, an
 639	 * overlapping domain, having private groups, only one.  Iterate,
 640	 * dropping group/capacity references, freeing where none remain.
 641	 */
 642	free_sched_groups(sd->groups, 1);
 643
 644	if (sd->shared && atomic_dec_and_test(&sd->shared->ref))
 645		kfree(sd->shared);
 646	kfree(sd);
 647}
 648
 649static void destroy_sched_domains_rcu(struct rcu_head *rcu)
 650{
 651	struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
 652
 653	while (sd) {
 654		struct sched_domain *parent = sd->parent;
 655		destroy_sched_domain(sd);
 656		sd = parent;
 657	}
 658}
 659
 660static void destroy_sched_domains(struct sched_domain *sd)
 661{
 662	if (sd)
 663		call_rcu(&sd->rcu, destroy_sched_domains_rcu);
 664}
 665
 666/*
 667 * Keep a special pointer to the highest sched_domain that has SD_SHARE_LLC set
 668 * (Last Level Cache Domain) for this allows us to avoid some pointer chasing
 669 * select_idle_sibling().
 670 *
 671 * Also keep a unique ID per domain (we use the first CPU number in the cpumask
 672 * of the domain), this allows us to quickly tell if two CPUs are in the same
 673 * cache domain, see cpus_share_cache().
 674 */
 675DEFINE_PER_CPU(struct sched_domain __rcu *, sd_llc);
 676DEFINE_PER_CPU(int, sd_llc_size);
 677DEFINE_PER_CPU(int, sd_llc_id);
 678DEFINE_PER_CPU(int, sd_share_id);
 679DEFINE_PER_CPU(struct sched_domain_shared __rcu *, sd_llc_shared);
 680DEFINE_PER_CPU(struct sched_domain __rcu *, sd_numa);
 681DEFINE_PER_CPU(struct sched_domain __rcu *, sd_asym_packing);
 682DEFINE_PER_CPU(struct sched_domain __rcu *, sd_asym_cpucapacity);
 683
 684DEFINE_STATIC_KEY_FALSE(sched_asym_cpucapacity);
 685DEFINE_STATIC_KEY_FALSE(sched_cluster_active);
 686
 687static void update_top_cache_domain(int cpu)
 688{
 689	struct sched_domain_shared *sds = NULL;
 690	struct sched_domain *sd;
 691	int id = cpu;
 692	int size = 1;
 693
 694	sd = highest_flag_domain(cpu, SD_SHARE_LLC);
 695	if (sd) {
 696		id = cpumask_first(sched_domain_span(sd));
 697		size = cpumask_weight(sched_domain_span(sd));
 698		sds = sd->shared;
 699	}
 700
 701	rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
 702	per_cpu(sd_llc_size, cpu) = size;
 703	per_cpu(sd_llc_id, cpu) = id;
 704	rcu_assign_pointer(per_cpu(sd_llc_shared, cpu), sds);
 705
 706	sd = lowest_flag_domain(cpu, SD_CLUSTER);
 707	if (sd)
 708		id = cpumask_first(sched_domain_span(sd));
 709
 710	/*
 711	 * This assignment should be placed after the sd_llc_id as
 712	 * we want this id equals to cluster id on cluster machines
 713	 * but equals to LLC id on non-Cluster machines.
 714	 */
 715	per_cpu(sd_share_id, cpu) = id;
 716
 717	sd = lowest_flag_domain(cpu, SD_NUMA);
 718	rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
 719
 720	sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
 721	rcu_assign_pointer(per_cpu(sd_asym_packing, cpu), sd);
 722
 723	sd = lowest_flag_domain(cpu, SD_ASYM_CPUCAPACITY_FULL);
 724	rcu_assign_pointer(per_cpu(sd_asym_cpucapacity, cpu), sd);
 725}
 726
 727/*
 728 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
 729 * hold the hotplug lock.
 730 */
 731static void
 732cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
 733{
 734	struct rq *rq = cpu_rq(cpu);
 735	struct sched_domain *tmp;
 736
 737	/* Remove the sched domains which do not contribute to scheduling. */
 738	for (tmp = sd; tmp; ) {
 739		struct sched_domain *parent = tmp->parent;
 740		if (!parent)
 741			break;
 742
 743		if (sd_parent_degenerate(tmp, parent)) {
 744			tmp->parent = parent->parent;
 745
 746			if (parent->parent) {
 747				parent->parent->child = tmp;
 748				parent->parent->groups->flags = tmp->flags;
 749			}
 750
 751			/*
 752			 * Transfer SD_PREFER_SIBLING down in case of a
 753			 * degenerate parent; the spans match for this
 754			 * so the property transfers.
 755			 */
 756			if (parent->flags & SD_PREFER_SIBLING)
 757				tmp->flags |= SD_PREFER_SIBLING;
 758			destroy_sched_domain(parent);
 759		} else
 760			tmp = tmp->parent;
 761	}
 762
 763	if (sd && sd_degenerate(sd)) {
 764		tmp = sd;
 765		sd = sd->parent;
 766		destroy_sched_domain(tmp);
 767		if (sd) {
 768			struct sched_group *sg = sd->groups;
 769
 770			/*
 771			 * sched groups hold the flags of the child sched
 772			 * domain for convenience. Clear such flags since
 773			 * the child is being destroyed.
 774			 */
 775			do {
 776				sg->flags = 0;
 777			} while (sg != sd->groups);
 778
 779			sd->child = NULL;
 780		}
 781	}
 782
 783	sched_domain_debug(sd, cpu);
 784
 785	rq_attach_root(rq, rd);
 786	tmp = rq->sd;
 787	rcu_assign_pointer(rq->sd, sd);
 788	dirty_sched_domain_sysctl(cpu);
 789	destroy_sched_domains(tmp);
 790
 791	update_top_cache_domain(cpu);
 792}
 793
 794struct s_data {
 795	struct sched_domain * __percpu *sd;
 796	struct root_domain	*rd;
 797};
 798
 799enum s_alloc {
 800	sa_rootdomain,
 801	sa_sd,
 802	sa_sd_storage,
 803	sa_none,
 804};
 805
 806/*
 807 * Return the canonical balance CPU for this group, this is the first CPU
 808 * of this group that's also in the balance mask.
 809 *
 810 * The balance mask are all those CPUs that could actually end up at this
 811 * group. See build_balance_mask().
 812 *
 813 * Also see should_we_balance().
 814 */
 815int group_balance_cpu(struct sched_group *sg)
 816{
 817	return cpumask_first(group_balance_mask(sg));
 818}
 819
 820
 821/*
 822 * NUMA topology (first read the regular topology blurb below)
 823 *
 824 * Given a node-distance table, for example:
 825 *
 826 *   node   0   1   2   3
 827 *     0:  10  20  30  20
 828 *     1:  20  10  20  30
 829 *     2:  30  20  10  20
 830 *     3:  20  30  20  10
 831 *
 832 * which represents a 4 node ring topology like:
 833 *
 834 *   0 ----- 1
 835 *   |       |
 836 *   |       |
 837 *   |       |
 838 *   3 ----- 2
 839 *
 840 * We want to construct domains and groups to represent this. The way we go
 841 * about doing this is to build the domains on 'hops'. For each NUMA level we
 842 * construct the mask of all nodes reachable in @level hops.
 843 *
 844 * For the above NUMA topology that gives 3 levels:
 845 *
 846 * NUMA-2	0-3		0-3		0-3		0-3
 847 *  groups:	{0-1,3},{1-3}	{0-2},{0,2-3}	{1-3},{0-1,3}	{0,2-3},{0-2}
 848 *
 849 * NUMA-1	0-1,3		0-2		1-3		0,2-3
 850 *  groups:	{0},{1},{3}	{0},{1},{2}	{1},{2},{3}	{0},{2},{3}
 851 *
 852 * NUMA-0	0		1		2		3
 853 *
 854 *
 855 * As can be seen; things don't nicely line up as with the regular topology.
 856 * When we iterate a domain in child domain chunks some nodes can be
 857 * represented multiple times -- hence the "overlap" naming for this part of
 858 * the topology.
 859 *
 860 * In order to minimize this overlap, we only build enough groups to cover the
 861 * domain. For instance Node-0 NUMA-2 would only get groups: 0-1,3 and 1-3.
 862 *
 863 * Because:
 864 *
 865 *  - the first group of each domain is its child domain; this
 866 *    gets us the first 0-1,3
 867 *  - the only uncovered node is 2, who's child domain is 1-3.
 868 *
 869 * However, because of the overlap, computing a unique CPU for each group is
 870 * more complicated. Consider for instance the groups of NODE-1 NUMA-2, both
 871 * groups include the CPUs of Node-0, while those CPUs would not in fact ever
 872 * end up at those groups (they would end up in group: 0-1,3).
 873 *
 874 * To correct this we have to introduce the group balance mask. This mask
 875 * will contain those CPUs in the group that can reach this group given the
 876 * (child) domain tree.
 877 *
 878 * With this we can once again compute balance_cpu and sched_group_capacity
 879 * relations.
 880 *
 881 * XXX include words on how balance_cpu is unique and therefore can be
 882 * used for sched_group_capacity links.
 883 *
 884 *
 885 * Another 'interesting' topology is:
 886 *
 887 *   node   0   1   2   3
 888 *     0:  10  20  20  30
 889 *     1:  20  10  20  20
 890 *     2:  20  20  10  20
 891 *     3:  30  20  20  10
 892 *
 893 * Which looks a little like:
 894 *
 895 *   0 ----- 1
 896 *   |     / |
 897 *   |   /   |
 898 *   | /     |
 899 *   2 ----- 3
 900 *
 901 * This topology is asymmetric, nodes 1,2 are fully connected, but nodes 0,3
 902 * are not.
 903 *
 904 * This leads to a few particularly weird cases where the sched_domain's are
 905 * not of the same number for each CPU. Consider:
 906 *
 907 * NUMA-2	0-3						0-3
 908 *  groups:	{0-2},{1-3}					{1-3},{0-2}
 909 *
 910 * NUMA-1	0-2		0-3		0-3		1-3
 911 *
 912 * NUMA-0	0		1		2		3
 913 *
 914 */
 915
 916
 917/*
 918 * Build the balance mask; it contains only those CPUs that can arrive at this
 919 * group and should be considered to continue balancing.
 920 *
 921 * We do this during the group creation pass, therefore the group information
 922 * isn't complete yet, however since each group represents a (child) domain we
 923 * can fully construct this using the sched_domain bits (which are already
 924 * complete).
 925 */
 926static void
 927build_balance_mask(struct sched_domain *sd, struct sched_group *sg, struct cpumask *mask)
 928{
 929	const struct cpumask *sg_span = sched_group_span(sg);
 930	struct sd_data *sdd = sd->private;
 931	struct sched_domain *sibling;
 932	int i;
 933
 934	cpumask_clear(mask);
 935
 936	for_each_cpu(i, sg_span) {
 937		sibling = *per_cpu_ptr(sdd->sd, i);
 938
 939		/*
 940		 * Can happen in the asymmetric case, where these siblings are
 941		 * unused. The mask will not be empty because those CPUs that
 942		 * do have the top domain _should_ span the domain.
 943		 */
 944		if (!sibling->child)
 945			continue;
 946
 947		/* If we would not end up here, we can't continue from here */
 948		if (!cpumask_equal(sg_span, sched_domain_span(sibling->child)))
 949			continue;
 950
 951		cpumask_set_cpu(i, mask);
 952	}
 953
 954	/* We must not have empty masks here */
 955	WARN_ON_ONCE(cpumask_empty(mask));
 956}
 957
 958/*
 959 * XXX: This creates per-node group entries; since the load-balancer will
 960 * immediately access remote memory to construct this group's load-balance
 961 * statistics having the groups node local is of dubious benefit.
 962 */
 963static struct sched_group *
 964build_group_from_child_sched_domain(struct sched_domain *sd, int cpu)
 965{
 966	struct sched_group *sg;
 967	struct cpumask *sg_span;
 968
 969	sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
 970			GFP_KERNEL, cpu_to_node(cpu));
 971
 972	if (!sg)
 973		return NULL;
 974
 975	sg_span = sched_group_span(sg);
 976	if (sd->child) {
 977		cpumask_copy(sg_span, sched_domain_span(sd->child));
 978		sg->flags = sd->child->flags;
 979	} else {
 980		cpumask_copy(sg_span, sched_domain_span(sd));
 981	}
 982
 983	atomic_inc(&sg->ref);
 984	return sg;
 985}
 986
 987static void init_overlap_sched_group(struct sched_domain *sd,
 988				     struct sched_group *sg)
 989{
 990	struct cpumask *mask = sched_domains_tmpmask2;
 991	struct sd_data *sdd = sd->private;
 992	struct cpumask *sg_span;
 993	int cpu;
 994
 995	build_balance_mask(sd, sg, mask);
 996	cpu = cpumask_first(mask);
 997
 998	sg->sgc = *per_cpu_ptr(sdd->sgc, cpu);
 999	if (atomic_inc_return(&sg->sgc->ref) == 1)
1000		cpumask_copy(group_balance_mask(sg), mask);
1001	else
1002		WARN_ON_ONCE(!cpumask_equal(group_balance_mask(sg), mask));
1003
1004	/*
1005	 * Initialize sgc->capacity such that even if we mess up the
1006	 * domains and no possible iteration will get us here, we won't
1007	 * die on a /0 trap.
1008	 */
1009	sg_span = sched_group_span(sg);
1010	sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span);
1011	sg->sgc->min_capacity = SCHED_CAPACITY_SCALE;
1012	sg->sgc->max_capacity = SCHED_CAPACITY_SCALE;
1013}
1014
1015static struct sched_domain *
1016find_descended_sibling(struct sched_domain *sd, struct sched_domain *sibling)
1017{
1018	/*
1019	 * The proper descendant would be the one whose child won't span out
1020	 * of sd
1021	 */
1022	while (sibling->child &&
1023	       !cpumask_subset(sched_domain_span(sibling->child),
1024			       sched_domain_span(sd)))
1025		sibling = sibling->child;
1026
1027	/*
1028	 * As we are referencing sgc across different topology level, we need
1029	 * to go down to skip those sched_domains which don't contribute to
1030	 * scheduling because they will be degenerated in cpu_attach_domain
1031	 */
1032	while (sibling->child &&
1033	       cpumask_equal(sched_domain_span(sibling->child),
1034			     sched_domain_span(sibling)))
1035		sibling = sibling->child;
1036
1037	return sibling;
1038}
1039
1040static int
1041build_overlap_sched_groups(struct sched_domain *sd, int cpu)
1042{
1043	struct sched_group *first = NULL, *last = NULL, *sg;
1044	const struct cpumask *span = sched_domain_span(sd);
1045	struct cpumask *covered = sched_domains_tmpmask;
1046	struct sd_data *sdd = sd->private;
1047	struct sched_domain *sibling;
1048	int i;
1049
1050	cpumask_clear(covered);
1051
1052	for_each_cpu_wrap(i, span, cpu) {
1053		struct cpumask *sg_span;
1054
1055		if (cpumask_test_cpu(i, covered))
1056			continue;
1057
1058		sibling = *per_cpu_ptr(sdd->sd, i);
1059
1060		/*
1061		 * Asymmetric node setups can result in situations where the
1062		 * domain tree is of unequal depth, make sure to skip domains
1063		 * that already cover the entire range.
1064		 *
1065		 * In that case build_sched_domains() will have terminated the
1066		 * iteration early and our sibling sd spans will be empty.
1067		 * Domains should always include the CPU they're built on, so
1068		 * check that.
1069		 */
1070		if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
1071			continue;
1072
1073		/*
1074		 * Usually we build sched_group by sibling's child sched_domain
1075		 * But for machines whose NUMA diameter are 3 or above, we move
1076		 * to build sched_group by sibling's proper descendant's child
1077		 * domain because sibling's child sched_domain will span out of
1078		 * the sched_domain being built as below.
1079		 *
1080		 * Smallest diameter=3 topology is:
1081		 *
1082		 *   node   0   1   2   3
1083		 *     0:  10  20  30  40
1084		 *     1:  20  10  20  30
1085		 *     2:  30  20  10  20
1086		 *     3:  40  30  20  10
1087		 *
1088		 *   0 --- 1 --- 2 --- 3
1089		 *
1090		 * NUMA-3       0-3             N/A             N/A             0-3
1091		 *  groups:     {0-2},{1-3}                                     {1-3},{0-2}
1092		 *
1093		 * NUMA-2       0-2             0-3             0-3             1-3
1094		 *  groups:     {0-1},{1-3}     {0-2},{2-3}     {1-3},{0-1}     {2-3},{0-2}
1095		 *
1096		 * NUMA-1       0-1             0-2             1-3             2-3
1097		 *  groups:     {0},{1}         {1},{2},{0}     {2},{3},{1}     {3},{2}
1098		 *
1099		 * NUMA-0       0               1               2               3
1100		 *
1101		 * The NUMA-2 groups for nodes 0 and 3 are obviously buggered, as the
1102		 * group span isn't a subset of the domain span.
1103		 */
1104		if (sibling->child &&
1105		    !cpumask_subset(sched_domain_span(sibling->child), span))
1106			sibling = find_descended_sibling(sd, sibling);
1107
1108		sg = build_group_from_child_sched_domain(sibling, cpu);
1109		if (!sg)
1110			goto fail;
1111
1112		sg_span = sched_group_span(sg);
1113		cpumask_or(covered, covered, sg_span);
1114
1115		init_overlap_sched_group(sibling, sg);
1116
1117		if (!first)
1118			first = sg;
1119		if (last)
1120			last->next = sg;
1121		last = sg;
1122		last->next = first;
1123	}
1124	sd->groups = first;
1125
1126	return 0;
1127
1128fail:
1129	free_sched_groups(first, 0);
1130
1131	return -ENOMEM;
1132}
1133
1134
1135/*
1136 * Package topology (also see the load-balance blurb in fair.c)
1137 *
1138 * The scheduler builds a tree structure to represent a number of important
1139 * topology features. By default (default_topology[]) these include:
1140 *
1141 *  - Simultaneous multithreading (SMT)
1142 *  - Multi-Core Cache (MC)
1143 *  - Package (PKG)
1144 *
1145 * Where the last one more or less denotes everything up to a NUMA node.
1146 *
1147 * The tree consists of 3 primary data structures:
1148 *
1149 *	sched_domain -> sched_group -> sched_group_capacity
1150 *	    ^ ^             ^ ^
1151 *          `-'             `-'
1152 *
1153 * The sched_domains are per-CPU and have a two way link (parent & child) and
1154 * denote the ever growing mask of CPUs belonging to that level of topology.
1155 *
1156 * Each sched_domain has a circular (double) linked list of sched_group's, each
1157 * denoting the domains of the level below (or individual CPUs in case of the
1158 * first domain level). The sched_group linked by a sched_domain includes the
1159 * CPU of that sched_domain [*].
1160 *
1161 * Take for instance a 2 threaded, 2 core, 2 cache cluster part:
1162 *
1163 * CPU   0   1   2   3   4   5   6   7
1164 *
1165 * PKG  [                             ]
1166 * MC   [             ] [             ]
1167 * SMT  [     ] [     ] [     ] [     ]
1168 *
1169 *  - or -
1170 *
1171 * PKG  0-7 0-7 0-7 0-7 0-7 0-7 0-7 0-7
1172 * MC	0-3 0-3 0-3 0-3 4-7 4-7 4-7 4-7
1173 * SMT  0-1 0-1 2-3 2-3 4-5 4-5 6-7 6-7
1174 *
1175 * CPU   0   1   2   3   4   5   6   7
1176 *
1177 * One way to think about it is: sched_domain moves you up and down among these
1178 * topology levels, while sched_group moves you sideways through it, at child
1179 * domain granularity.
1180 *
1181 * sched_group_capacity ensures each unique sched_group has shared storage.
1182 *
1183 * There are two related construction problems, both require a CPU that
1184 * uniquely identify each group (for a given domain):
1185 *
1186 *  - The first is the balance_cpu (see should_we_balance() and the
1187 *    load-balance blurb in fair.c); for each group we only want 1 CPU to
1188 *    continue balancing at a higher domain.
1189 *
1190 *  - The second is the sched_group_capacity; we want all identical groups
1191 *    to share a single sched_group_capacity.
1192 *
1193 * Since these topologies are exclusive by construction. That is, its
1194 * impossible for an SMT thread to belong to multiple cores, and cores to
1195 * be part of multiple caches. There is a very clear and unique location
1196 * for each CPU in the hierarchy.
1197 *
1198 * Therefore computing a unique CPU for each group is trivial (the iteration
1199 * mask is redundant and set all 1s; all CPUs in a group will end up at _that_
1200 * group), we can simply pick the first CPU in each group.
1201 *
1202 *
1203 * [*] in other words, the first group of each domain is its child domain.
1204 */
1205
1206static struct sched_group *get_group(int cpu, struct sd_data *sdd)
1207{
1208	struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
1209	struct sched_domain *child = sd->child;
1210	struct sched_group *sg;
1211	bool already_visited;
1212
1213	if (child)
1214		cpu = cpumask_first(sched_domain_span(child));
1215
1216	sg = *per_cpu_ptr(sdd->sg, cpu);
1217	sg->sgc = *per_cpu_ptr(sdd->sgc, cpu);
1218
1219	/* Increase refcounts for claim_allocations: */
1220	already_visited = atomic_inc_return(&sg->ref) > 1;
1221	/* sgc visits should follow a similar trend as sg */
1222	WARN_ON(already_visited != (atomic_inc_return(&sg->sgc->ref) > 1));
1223
1224	/* If we have already visited that group, it's already initialized. */
1225	if (already_visited)
1226		return sg;
1227
1228	if (child) {
1229		cpumask_copy(sched_group_span(sg), sched_domain_span(child));
1230		cpumask_copy(group_balance_mask(sg), sched_group_span(sg));
1231		sg->flags = child->flags;
1232	} else {
1233		cpumask_set_cpu(cpu, sched_group_span(sg));
1234		cpumask_set_cpu(cpu, group_balance_mask(sg));
1235	}
1236
1237	sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sched_group_span(sg));
1238	sg->sgc->min_capacity = SCHED_CAPACITY_SCALE;
1239	sg->sgc->max_capacity = SCHED_CAPACITY_SCALE;
1240
1241	return sg;
1242}
1243
1244/*
1245 * build_sched_groups will build a circular linked list of the groups
1246 * covered by the given span, will set each group's ->cpumask correctly,
1247 * and will initialize their ->sgc.
1248 *
1249 * Assumes the sched_domain tree is fully constructed
1250 */
1251static int
1252build_sched_groups(struct sched_domain *sd, int cpu)
1253{
1254	struct sched_group *first = NULL, *last = NULL;
1255	struct sd_data *sdd = sd->private;
1256	const struct cpumask *span = sched_domain_span(sd);
1257	struct cpumask *covered;
1258	int i;
1259
1260	lockdep_assert_held(&sched_domains_mutex);
1261	covered = sched_domains_tmpmask;
1262
1263	cpumask_clear(covered);
1264
1265	for_each_cpu_wrap(i, span, cpu) {
1266		struct sched_group *sg;
1267
1268		if (cpumask_test_cpu(i, covered))
1269			continue;
1270
1271		sg = get_group(i, sdd);
1272
1273		cpumask_or(covered, covered, sched_group_span(sg));
1274
1275		if (!first)
1276			first = sg;
1277		if (last)
1278			last->next = sg;
1279		last = sg;
1280	}
1281	last->next = first;
1282	sd->groups = first;
1283
1284	return 0;
1285}
1286
1287/*
1288 * Initialize sched groups cpu_capacity.
1289 *
1290 * cpu_capacity indicates the capacity of sched group, which is used while
1291 * distributing the load between different sched groups in a sched domain.
1292 * Typically cpu_capacity for all the groups in a sched domain will be same
1293 * unless there are asymmetries in the topology. If there are asymmetries,
1294 * group having more cpu_capacity will pickup more load compared to the
1295 * group having less cpu_capacity.
1296 */
1297static void init_sched_groups_capacity(int cpu, struct sched_domain *sd)
1298{
1299	struct sched_group *sg = sd->groups;
1300	struct cpumask *mask = sched_domains_tmpmask2;
1301
1302	WARN_ON(!sg);
1303
1304	do {
1305		int cpu, cores = 0, max_cpu = -1;
1306
1307		sg->group_weight = cpumask_weight(sched_group_span(sg));
1308
1309		cpumask_copy(mask, sched_group_span(sg));
1310		for_each_cpu(cpu, mask) {
1311			cores++;
1312#ifdef CONFIG_SCHED_SMT
1313			cpumask_andnot(mask, mask, cpu_smt_mask(cpu));
1314#endif
1315		}
1316		sg->cores = cores;
1317
1318		if (!(sd->flags & SD_ASYM_PACKING))
1319			goto next;
1320
1321		for_each_cpu(cpu, sched_group_span(sg)) {
1322			if (max_cpu < 0)
1323				max_cpu = cpu;
1324			else if (sched_asym_prefer(cpu, max_cpu))
1325				max_cpu = cpu;
1326		}
1327		sg->asym_prefer_cpu = max_cpu;
1328
1329next:
1330		sg = sg->next;
1331	} while (sg != sd->groups);
1332
1333	if (cpu != group_balance_cpu(sg))
1334		return;
1335
1336	update_group_capacity(sd, cpu);
1337}
1338
1339/*
1340 * Set of available CPUs grouped by their corresponding capacities
1341 * Each list entry contains a CPU mask reflecting CPUs that share the same
1342 * capacity.
1343 * The lifespan of data is unlimited.
1344 */
1345LIST_HEAD(asym_cap_list);
1346
1347/*
1348 * Verify whether there is any CPU capacity asymmetry in a given sched domain.
1349 * Provides sd_flags reflecting the asymmetry scope.
1350 */
1351static inline int
1352asym_cpu_capacity_classify(const struct cpumask *sd_span,
1353			   const struct cpumask *cpu_map)
1354{
1355	struct asym_cap_data *entry;
1356	int count = 0, miss = 0;
1357
1358	/*
1359	 * Count how many unique CPU capacities this domain spans across
1360	 * (compare sched_domain CPUs mask with ones representing  available
1361	 * CPUs capacities). Take into account CPUs that might be offline:
1362	 * skip those.
1363	 */
1364	list_for_each_entry(entry, &asym_cap_list, link) {
1365		if (cpumask_intersects(sd_span, cpu_capacity_span(entry)))
1366			++count;
1367		else if (cpumask_intersects(cpu_map, cpu_capacity_span(entry)))
1368			++miss;
1369	}
1370
1371	WARN_ON_ONCE(!count && !list_empty(&asym_cap_list));
1372
1373	/* No asymmetry detected */
1374	if (count < 2)
1375		return 0;
1376	/* Some of the available CPU capacity values have not been detected */
1377	if (miss)
1378		return SD_ASYM_CPUCAPACITY;
1379
1380	/* Full asymmetry */
1381	return SD_ASYM_CPUCAPACITY | SD_ASYM_CPUCAPACITY_FULL;
1382
1383}
1384
1385static void free_asym_cap_entry(struct rcu_head *head)
1386{
1387	struct asym_cap_data *entry = container_of(head, struct asym_cap_data, rcu);
1388	kfree(entry);
1389}
1390
1391static inline void asym_cpu_capacity_update_data(int cpu)
1392{
1393	unsigned long capacity = arch_scale_cpu_capacity(cpu);
1394	struct asym_cap_data *insert_entry = NULL;
1395	struct asym_cap_data *entry;
1396
1397	/*
1398	 * Search if capacity already exits. If not, track which the entry
1399	 * where we should insert to keep the list ordered descending.
1400	 */
1401	list_for_each_entry(entry, &asym_cap_list, link) {
1402		if (capacity == entry->capacity)
1403			goto done;
1404		else if (!insert_entry && capacity > entry->capacity)
1405			insert_entry = list_prev_entry(entry, link);
1406	}
1407
1408	entry = kzalloc(sizeof(*entry) + cpumask_size(), GFP_KERNEL);
1409	if (WARN_ONCE(!entry, "Failed to allocate memory for asymmetry data\n"))
1410		return;
1411	entry->capacity = capacity;
1412
1413	/* If NULL then the new capacity is the smallest, add last. */
1414	if (!insert_entry)
1415		list_add_tail_rcu(&entry->link, &asym_cap_list);
1416	else
1417		list_add_rcu(&entry->link, &insert_entry->link);
1418done:
1419	__cpumask_set_cpu(cpu, cpu_capacity_span(entry));
1420}
1421
1422/*
1423 * Build-up/update list of CPUs grouped by their capacities
1424 * An update requires explicit request to rebuild sched domains
1425 * with state indicating CPU topology changes.
1426 */
1427static void asym_cpu_capacity_scan(void)
1428{
1429	struct asym_cap_data *entry, *next;
1430	int cpu;
1431
1432	list_for_each_entry(entry, &asym_cap_list, link)
1433		cpumask_clear(cpu_capacity_span(entry));
1434
1435	for_each_cpu_and(cpu, cpu_possible_mask, housekeeping_cpumask(HK_TYPE_DOMAIN))
1436		asym_cpu_capacity_update_data(cpu);
1437
1438	list_for_each_entry_safe(entry, next, &asym_cap_list, link) {
1439		if (cpumask_empty(cpu_capacity_span(entry))) {
1440			list_del_rcu(&entry->link);
1441			call_rcu(&entry->rcu, free_asym_cap_entry);
1442		}
1443	}
1444
1445	/*
1446	 * Only one capacity value has been detected i.e. this system is symmetric.
1447	 * No need to keep this data around.
1448	 */
1449	if (list_is_singular(&asym_cap_list)) {
1450		entry = list_first_entry(&asym_cap_list, typeof(*entry), link);
1451		list_del_rcu(&entry->link);
1452		call_rcu(&entry->rcu, free_asym_cap_entry);
1453	}
1454}
1455
1456/*
1457 * Initializers for schedule domains
1458 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
1459 */
1460
1461static int default_relax_domain_level = -1;
1462int sched_domain_level_max;
1463
1464static int __init setup_relax_domain_level(char *str)
1465{
1466	if (kstrtoint(str, 0, &default_relax_domain_level))
1467		pr_warn("Unable to set relax_domain_level\n");
1468
1469	return 1;
1470}
1471__setup("relax_domain_level=", setup_relax_domain_level);
1472
1473static void set_domain_attribute(struct sched_domain *sd,
1474				 struct sched_domain_attr *attr)
1475{
1476	int request;
1477
1478	if (!attr || attr->relax_domain_level < 0) {
1479		if (default_relax_domain_level < 0)
1480			return;
1481		request = default_relax_domain_level;
1482	} else
1483		request = attr->relax_domain_level;
1484
1485	if (sd->level >= request) {
1486		/* Turn off idle balance on this domain: */
1487		sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1488	}
1489}
1490
1491static void __sdt_free(const struct cpumask *cpu_map);
1492static int __sdt_alloc(const struct cpumask *cpu_map);
1493
1494static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
1495				 const struct cpumask *cpu_map)
1496{
1497	switch (what) {
1498	case sa_rootdomain:
1499		if (!atomic_read(&d->rd->refcount))
1500			free_rootdomain(&d->rd->rcu);
1501		fallthrough;
1502	case sa_sd:
1503		free_percpu(d->sd);
1504		fallthrough;
1505	case sa_sd_storage:
1506		__sdt_free(cpu_map);
1507		fallthrough;
1508	case sa_none:
1509		break;
1510	}
1511}
1512
1513static enum s_alloc
1514__visit_domain_allocation_hell(struct s_data *d, const struct cpumask *cpu_map)
1515{
1516	memset(d, 0, sizeof(*d));
1517
1518	if (__sdt_alloc(cpu_map))
1519		return sa_sd_storage;
1520	d->sd = alloc_percpu(struct sched_domain *);
1521	if (!d->sd)
1522		return sa_sd_storage;
1523	d->rd = alloc_rootdomain();
1524	if (!d->rd)
1525		return sa_sd;
1526
1527	return sa_rootdomain;
1528}
1529
1530/*
1531 * NULL the sd_data elements we've used to build the sched_domain and
1532 * sched_group structure so that the subsequent __free_domain_allocs()
1533 * will not free the data we're using.
1534 */
1535static void claim_allocations(int cpu, struct sched_domain *sd)
1536{
1537	struct sd_data *sdd = sd->private;
1538
1539	WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
1540	*per_cpu_ptr(sdd->sd, cpu) = NULL;
1541
1542	if (atomic_read(&(*per_cpu_ptr(sdd->sds, cpu))->ref))
1543		*per_cpu_ptr(sdd->sds, cpu) = NULL;
1544
1545	if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
1546		*per_cpu_ptr(sdd->sg, cpu) = NULL;
1547
1548	if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref))
1549		*per_cpu_ptr(sdd->sgc, cpu) = NULL;
1550}
1551
1552#ifdef CONFIG_NUMA
1553enum numa_topology_type sched_numa_topology_type;
1554
1555static int			sched_domains_numa_levels;
1556static int			sched_domains_curr_level;
1557
1558int				sched_max_numa_distance;
1559static int			*sched_domains_numa_distance;
1560static struct cpumask		***sched_domains_numa_masks;
 
1561#endif
1562
1563/*
1564 * SD_flags allowed in topology descriptions.
1565 *
1566 * These flags are purely descriptive of the topology and do not prescribe
1567 * behaviour. Behaviour is artificial and mapped in the below sd_init()
1568 * function. For details, see include/linux/sched/sd_flags.h.
1569 *
1570 *   SD_SHARE_CPUCAPACITY
1571 *   SD_SHARE_LLC
1572 *   SD_CLUSTER
1573 *   SD_NUMA
1574 *
1575 * Odd one out, which beside describing the topology has a quirk also
1576 * prescribes the desired behaviour that goes along with it:
1577 *
1578 *   SD_ASYM_PACKING        - describes SMT quirks
1579 */
1580#define TOPOLOGY_SD_FLAGS		\
1581	(SD_SHARE_CPUCAPACITY	|	\
1582	 SD_CLUSTER		|	\
1583	 SD_SHARE_LLC		|	\
1584	 SD_NUMA		|	\
1585	 SD_ASYM_PACKING)
 
1586
1587static struct sched_domain *
1588sd_init(struct sched_domain_topology_level *tl,
1589	const struct cpumask *cpu_map,
1590	struct sched_domain *child, int cpu)
1591{
1592	struct sd_data *sdd = &tl->data;
1593	struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
1594	int sd_id, sd_weight, sd_flags = 0;
1595	struct cpumask *sd_span;
1596
1597#ifdef CONFIG_NUMA
1598	/*
1599	 * Ugly hack to pass state to sd_numa_mask()...
1600	 */
1601	sched_domains_curr_level = tl->numa_level;
1602#endif
1603
1604	sd_weight = cpumask_weight(tl->mask(cpu));
1605
1606	if (tl->sd_flags)
1607		sd_flags = (*tl->sd_flags)();
1608	if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS,
1609			"wrong sd_flags in topology description\n"))
1610		sd_flags &= TOPOLOGY_SD_FLAGS;
1611
 
 
 
1612	*sd = (struct sched_domain){
1613		.min_interval		= sd_weight,
1614		.max_interval		= 2*sd_weight,
1615		.busy_factor		= 16,
1616		.imbalance_pct		= 117,
1617
1618		.cache_nice_tries	= 0,
1619
1620		.flags			= 1*SD_BALANCE_NEWIDLE
1621					| 1*SD_BALANCE_EXEC
1622					| 1*SD_BALANCE_FORK
1623					| 0*SD_BALANCE_WAKE
1624					| 1*SD_WAKE_AFFINE
1625					| 0*SD_SHARE_CPUCAPACITY
1626					| 0*SD_SHARE_LLC
1627					| 0*SD_SERIALIZE
1628					| 1*SD_PREFER_SIBLING
1629					| 0*SD_NUMA
1630					| sd_flags
1631					,
1632
1633		.last_balance		= jiffies,
1634		.balance_interval	= sd_weight,
1635		.max_newidle_lb_cost	= 0,
1636		.last_decay_max_lb_cost	= jiffies,
1637		.child			= child,
1638#ifdef CONFIG_SCHED_DEBUG
1639		.name			= tl->name,
1640#endif
1641	};
1642
1643	sd_span = sched_domain_span(sd);
1644	cpumask_and(sd_span, cpu_map, tl->mask(cpu));
1645	sd_id = cpumask_first(sd_span);
1646
1647	sd->flags |= asym_cpu_capacity_classify(sd_span, cpu_map);
1648
1649	WARN_ONCE((sd->flags & (SD_SHARE_CPUCAPACITY | SD_ASYM_CPUCAPACITY)) ==
1650		  (SD_SHARE_CPUCAPACITY | SD_ASYM_CPUCAPACITY),
1651		  "CPU capacity asymmetry not supported on SMT\n");
1652
1653	/*
1654	 * Convert topological properties into behaviour.
1655	 */
 
1656	/* Don't attempt to spread across CPUs of different capacities. */
1657	if ((sd->flags & SD_ASYM_CPUCAPACITY) && sd->child)
1658		sd->child->flags &= ~SD_PREFER_SIBLING;
1659
1660	if (sd->flags & SD_SHARE_CPUCAPACITY) {
1661		sd->imbalance_pct = 110;
1662
1663	} else if (sd->flags & SD_SHARE_LLC) {
1664		sd->imbalance_pct = 117;
1665		sd->cache_nice_tries = 1;
1666
1667#ifdef CONFIG_NUMA
1668	} else if (sd->flags & SD_NUMA) {
1669		sd->cache_nice_tries = 2;
1670
1671		sd->flags &= ~SD_PREFER_SIBLING;
1672		sd->flags |= SD_SERIALIZE;
1673		if (sched_domains_numa_distance[tl->numa_level] > node_reclaim_distance) {
1674			sd->flags &= ~(SD_BALANCE_EXEC |
1675				       SD_BALANCE_FORK |
1676				       SD_WAKE_AFFINE);
1677		}
1678
1679#endif
1680	} else {
1681		sd->cache_nice_tries = 1;
1682	}
1683
1684	/*
1685	 * For all levels sharing cache; connect a sched_domain_shared
1686	 * instance.
1687	 */
1688	if (sd->flags & SD_SHARE_LLC) {
1689		sd->shared = *per_cpu_ptr(sdd->sds, sd_id);
1690		atomic_inc(&sd->shared->ref);
1691		atomic_set(&sd->shared->nr_busy_cpus, sd_weight);
1692	}
1693
1694	sd->private = sdd;
1695
1696	return sd;
1697}
1698
1699/*
1700 * Topology list, bottom-up.
1701 */
1702static struct sched_domain_topology_level default_topology[] = {
1703#ifdef CONFIG_SCHED_SMT
1704	{ cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
1705#endif
1706
1707#ifdef CONFIG_SCHED_CLUSTER
1708	{ cpu_clustergroup_mask, cpu_cluster_flags, SD_INIT_NAME(CLS) },
1709#endif
1710
1711#ifdef CONFIG_SCHED_MC
1712	{ cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
1713#endif
1714	{ cpu_cpu_mask, SD_INIT_NAME(PKG) },
1715	{ NULL, },
1716};
1717
1718static struct sched_domain_topology_level *sched_domain_topology =
1719	default_topology;
1720static struct sched_domain_topology_level *sched_domain_topology_saved;
1721
1722#define for_each_sd_topology(tl)			\
1723	for (tl = sched_domain_topology; tl->mask; tl++)
1724
1725void __init set_sched_topology(struct sched_domain_topology_level *tl)
1726{
1727	if (WARN_ON_ONCE(sched_smp_initialized))
1728		return;
1729
1730	sched_domain_topology = tl;
1731	sched_domain_topology_saved = NULL;
1732}
1733
1734#ifdef CONFIG_NUMA
1735
1736static const struct cpumask *sd_numa_mask(int cpu)
1737{
1738	return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
1739}
1740
1741static void sched_numa_warn(const char *str)
1742{
1743	static int done = false;
1744	int i,j;
1745
1746	if (done)
1747		return;
1748
1749	done = true;
1750
1751	printk(KERN_WARNING "ERROR: %s\n\n", str);
1752
1753	for (i = 0; i < nr_node_ids; i++) {
1754		printk(KERN_WARNING "  ");
1755		for (j = 0; j < nr_node_ids; j++) {
1756			if (!node_state(i, N_CPU) || !node_state(j, N_CPU))
1757				printk(KERN_CONT "(%02d) ", node_distance(i,j));
1758			else
1759				printk(KERN_CONT " %02d  ", node_distance(i,j));
1760		}
1761		printk(KERN_CONT "\n");
1762	}
1763	printk(KERN_WARNING "\n");
1764}
1765
1766bool find_numa_distance(int distance)
1767{
1768	bool found = false;
1769	int i, *distances;
1770
1771	if (distance == node_distance(0, 0))
1772		return true;
1773
1774	rcu_read_lock();
1775	distances = rcu_dereference(sched_domains_numa_distance);
1776	if (!distances)
1777		goto unlock;
1778	for (i = 0; i < sched_domains_numa_levels; i++) {
1779		if (distances[i] == distance) {
1780			found = true;
1781			break;
1782		}
1783	}
1784unlock:
1785	rcu_read_unlock();
1786
1787	return found;
1788}
1789
1790#define for_each_cpu_node_but(n, nbut)		\
1791	for_each_node_state(n, N_CPU)		\
1792		if (n == nbut)			\
1793			continue;		\
1794		else
1795
1796/*
1797 * A system can have three types of NUMA topology:
1798 * NUMA_DIRECT: all nodes are directly connected, or not a NUMA system
1799 * NUMA_GLUELESS_MESH: some nodes reachable through intermediary nodes
1800 * NUMA_BACKPLANE: nodes can reach other nodes through a backplane
1801 *
1802 * The difference between a glueless mesh topology and a backplane
1803 * topology lies in whether communication between not directly
1804 * connected nodes goes through intermediary nodes (where programs
1805 * could run), or through backplane controllers. This affects
1806 * placement of programs.
1807 *
1808 * The type of topology can be discerned with the following tests:
1809 * - If the maximum distance between any nodes is 1 hop, the system
1810 *   is directly connected.
1811 * - If for two nodes A and B, located N > 1 hops away from each other,
1812 *   there is an intermediary node C, which is < N hops away from both
1813 *   nodes A and B, the system is a glueless mesh.
1814 */
1815static void init_numa_topology_type(int offline_node)
1816{
1817	int a, b, c, n;
1818
1819	n = sched_max_numa_distance;
1820
1821	if (sched_domains_numa_levels <= 2) {
1822		sched_numa_topology_type = NUMA_DIRECT;
1823		return;
1824	}
1825
1826	for_each_cpu_node_but(a, offline_node) {
1827		for_each_cpu_node_but(b, offline_node) {
1828			/* Find two nodes furthest removed from each other. */
1829			if (node_distance(a, b) < n)
1830				continue;
1831
1832			/* Is there an intermediary node between a and b? */
1833			for_each_cpu_node_but(c, offline_node) {
1834				if (node_distance(a, c) < n &&
1835				    node_distance(b, c) < n) {
1836					sched_numa_topology_type =
1837							NUMA_GLUELESS_MESH;
1838					return;
1839				}
1840			}
1841
1842			sched_numa_topology_type = NUMA_BACKPLANE;
1843			return;
1844		}
1845	}
1846
1847	pr_err("Failed to find a NUMA topology type, defaulting to DIRECT\n");
1848	sched_numa_topology_type = NUMA_DIRECT;
1849}
1850
1851
1852#define NR_DISTANCE_VALUES (1 << DISTANCE_BITS)
1853
1854void sched_init_numa(int offline_node)
1855{
 
1856	struct sched_domain_topology_level *tl;
1857	unsigned long *distance_map;
1858	int nr_levels = 0;
1859	int i, j;
1860	int *distances;
1861	struct cpumask ***masks;
1862
1863	/*
1864	 * O(nr_nodes^2) de-duplicating selection sort -- in order to find the
1865	 * unique distances in the node_distance() table.
1866	 */
1867	distance_map = bitmap_alloc(NR_DISTANCE_VALUES, GFP_KERNEL);
1868	if (!distance_map)
1869		return;
1870
1871	bitmap_zero(distance_map, NR_DISTANCE_VALUES);
1872	for_each_cpu_node_but(i, offline_node) {
1873		for_each_cpu_node_but(j, offline_node) {
1874			int distance = node_distance(i, j);
1875
1876			if (distance < LOCAL_DISTANCE || distance >= NR_DISTANCE_VALUES) {
1877				sched_numa_warn("Invalid distance value range");
1878				bitmap_free(distance_map);
1879				return;
1880			}
1881
1882			bitmap_set(distance_map, distance, 1);
1883		}
1884	}
1885	/*
1886	 * We can now figure out how many unique distance values there are and
1887	 * allocate memory accordingly.
 
 
 
1888	 */
1889	nr_levels = bitmap_weight(distance_map, NR_DISTANCE_VALUES);
 
 
 
 
1890
1891	distances = kcalloc(nr_levels, sizeof(int), GFP_KERNEL);
1892	if (!distances) {
1893		bitmap_free(distance_map);
1894		return;
1895	}
1896
1897	for (i = 0, j = 0; i < nr_levels; i++, j++) {
1898		j = find_next_bit(distance_map, NR_DISTANCE_VALUES, j);
1899		distances[i] = j;
1900	}
1901	rcu_assign_pointer(sched_domains_numa_distance, distances);
 
 
1902
1903	bitmap_free(distance_map);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1904
1905	/*
1906	 * 'nr_levels' contains the number of unique distances
1907	 *
1908	 * The sched_domains_numa_distance[] array includes the actual distance
1909	 * numbers.
1910	 */
1911
1912	/*
1913	 * Here, we should temporarily reset sched_domains_numa_levels to 0.
1914	 * If it fails to allocate memory for array sched_domains_numa_masks[][],
1915	 * the array will contain less then 'nr_levels' members. This could be
1916	 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
1917	 * in other functions.
1918	 *
1919	 * We reset it to 'nr_levels' at the end of this function.
1920	 */
1921	sched_domains_numa_levels = 0;
1922
1923	masks = kzalloc(sizeof(void *) * nr_levels, GFP_KERNEL);
1924	if (!masks)
1925		return;
1926
1927	/*
1928	 * Now for each level, construct a mask per node which contains all
1929	 * CPUs of nodes that are that many hops away from us.
1930	 */
1931	for (i = 0; i < nr_levels; i++) {
1932		masks[i] = kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
1933		if (!masks[i])
 
1934			return;
1935
1936		for_each_cpu_node_but(j, offline_node) {
1937			struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
1938			int k;
1939
1940			if (!mask)
1941				return;
1942
1943			masks[i][j] = mask;
1944
1945			for_each_cpu_node_but(k, offline_node) {
1946				if (sched_debug() && (node_distance(j, k) != node_distance(k, j)))
1947					sched_numa_warn("Node-distance not symmetric");
1948
 
1949				if (node_distance(j, k) > sched_domains_numa_distance[i])
1950					continue;
1951
1952				cpumask_or(mask, mask, cpumask_of_node(k));
1953			}
1954		}
1955	}
1956	rcu_assign_pointer(sched_domains_numa_masks, masks);
1957
1958	/* Compute default topology size */
1959	for (i = 0; sched_domain_topology[i].mask; i++);
1960
1961	tl = kzalloc((i + nr_levels + 1) *
1962			sizeof(struct sched_domain_topology_level), GFP_KERNEL);
1963	if (!tl)
1964		return;
1965
1966	/*
1967	 * Copy the default topology bits..
1968	 */
1969	for (i = 0; sched_domain_topology[i].mask; i++)
1970		tl[i] = sched_domain_topology[i];
1971
1972	/*
1973	 * Add the NUMA identity distance, aka single NODE.
1974	 */
1975	tl[i++] = (struct sched_domain_topology_level){
1976		.mask = sd_numa_mask,
1977		.numa_level = 0,
1978		SD_INIT_NAME(NODE)
1979	};
1980
1981	/*
1982	 * .. and append 'j' levels of NUMA goodness.
1983	 */
1984	for (j = 1; j < nr_levels; i++, j++) {
1985		tl[i] = (struct sched_domain_topology_level){
1986			.mask = sd_numa_mask,
1987			.sd_flags = cpu_numa_flags,
1988			.flags = SDTL_OVERLAP,
1989			.numa_level = j,
1990			SD_INIT_NAME(NUMA)
1991		};
1992	}
1993
1994	sched_domain_topology_saved = sched_domain_topology;
1995	sched_domain_topology = tl;
1996
1997	sched_domains_numa_levels = nr_levels;
1998	WRITE_ONCE(sched_max_numa_distance, sched_domains_numa_distance[nr_levels - 1]);
1999
2000	init_numa_topology_type(offline_node);
2001}
2002
2003
2004static void sched_reset_numa(void)
2005{
2006	int nr_levels, *distances;
2007	struct cpumask ***masks;
2008
2009	nr_levels = sched_domains_numa_levels;
2010	sched_domains_numa_levels = 0;
2011	sched_max_numa_distance = 0;
2012	sched_numa_topology_type = NUMA_DIRECT;
2013	distances = sched_domains_numa_distance;
2014	rcu_assign_pointer(sched_domains_numa_distance, NULL);
2015	masks = sched_domains_numa_masks;
2016	rcu_assign_pointer(sched_domains_numa_masks, NULL);
2017	if (distances || masks) {
2018		int i, j;
2019
2020		synchronize_rcu();
2021		kfree(distances);
2022		for (i = 0; i < nr_levels && masks; i++) {
2023			if (!masks[i])
2024				continue;
2025			for_each_node(j)
2026				kfree(masks[i][j]);
2027			kfree(masks[i]);
2028		}
2029		kfree(masks);
2030	}
2031	if (sched_domain_topology_saved) {
2032		kfree(sched_domain_topology);
2033		sched_domain_topology = sched_domain_topology_saved;
2034		sched_domain_topology_saved = NULL;
2035	}
2036}
2037
2038/*
2039 * Call with hotplug lock held
2040 */
2041void sched_update_numa(int cpu, bool online)
2042{
2043	int node;
2044
2045	node = cpu_to_node(cpu);
2046	/*
2047	 * Scheduler NUMA topology is updated when the first CPU of a
2048	 * node is onlined or the last CPU of a node is offlined.
2049	 */
2050	if (cpumask_weight(cpumask_of_node(node)) != 1)
2051		return;
2052
2053	sched_reset_numa();
2054	sched_init_numa(online ? NUMA_NO_NODE : node);
2055}
2056
2057void sched_domains_numa_masks_set(unsigned int cpu)
2058{
2059	int node = cpu_to_node(cpu);
2060	int i, j;
2061
2062	for (i = 0; i < sched_domains_numa_levels; i++) {
2063		for (j = 0; j < nr_node_ids; j++) {
2064			if (!node_state(j, N_CPU))
2065				continue;
2066
2067			/* Set ourselves in the remote node's masks */
2068			if (node_distance(j, node) <= sched_domains_numa_distance[i])
2069				cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
2070		}
2071	}
2072}
2073
2074void sched_domains_numa_masks_clear(unsigned int cpu)
2075{
2076	int i, j;
2077
2078	for (i = 0; i < sched_domains_numa_levels; i++) {
2079		for (j = 0; j < nr_node_ids; j++) {
2080			if (sched_domains_numa_masks[i][j])
2081				cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
2082		}
2083	}
2084}
2085
2086/*
2087 * sched_numa_find_closest() - given the NUMA topology, find the cpu
2088 *                             closest to @cpu from @cpumask.
2089 * cpumask: cpumask to find a cpu from
2090 * cpu: cpu to be close to
2091 *
2092 * returns: cpu, or nr_cpu_ids when nothing found.
2093 */
2094int sched_numa_find_closest(const struct cpumask *cpus, int cpu)
2095{
2096	int i, j = cpu_to_node(cpu), found = nr_cpu_ids;
2097	struct cpumask ***masks;
2098
2099	rcu_read_lock();
2100	masks = rcu_dereference(sched_domains_numa_masks);
2101	if (!masks)
2102		goto unlock;
2103	for (i = 0; i < sched_domains_numa_levels; i++) {
2104		if (!masks[i][j])
2105			break;
2106		cpu = cpumask_any_and(cpus, masks[i][j]);
2107		if (cpu < nr_cpu_ids) {
2108			found = cpu;
2109			break;
2110		}
2111	}
2112unlock:
2113	rcu_read_unlock();
2114
2115	return found;
2116}
2117
2118struct __cmp_key {
2119	const struct cpumask *cpus;
2120	struct cpumask ***masks;
2121	int node;
2122	int cpu;
2123	int w;
2124};
2125
2126static int hop_cmp(const void *a, const void *b)
2127{
2128	struct cpumask **prev_hop, **cur_hop = *(struct cpumask ***)b;
2129	struct __cmp_key *k = (struct __cmp_key *)a;
2130
2131	if (cpumask_weight_and(k->cpus, cur_hop[k->node]) <= k->cpu)
2132		return 1;
2133
2134	if (b == k->masks) {
2135		k->w = 0;
2136		return 0;
2137	}
2138
2139	prev_hop = *((struct cpumask ***)b - 1);
2140	k->w = cpumask_weight_and(k->cpus, prev_hop[k->node]);
2141	if (k->w <= k->cpu)
2142		return 0;
2143
2144	return -1;
2145}
2146
2147/**
2148 * sched_numa_find_nth_cpu() - given the NUMA topology, find the Nth closest CPU
2149 *                             from @cpus to @cpu, taking into account distance
2150 *                             from a given @node.
2151 * @cpus: cpumask to find a cpu from
2152 * @cpu: CPU to start searching
2153 * @node: NUMA node to order CPUs by distance
2154 *
2155 * Return: cpu, or nr_cpu_ids when nothing found.
2156 */
2157int sched_numa_find_nth_cpu(const struct cpumask *cpus, int cpu, int node)
2158{
2159	struct __cmp_key k = { .cpus = cpus, .cpu = cpu };
2160	struct cpumask ***hop_masks;
2161	int hop, ret = nr_cpu_ids;
2162
2163	if (node == NUMA_NO_NODE)
2164		return cpumask_nth_and(cpu, cpus, cpu_online_mask);
2165
2166	rcu_read_lock();
2167
2168	/* CPU-less node entries are uninitialized in sched_domains_numa_masks */
2169	node = numa_nearest_node(node, N_CPU);
2170	k.node = node;
2171
2172	k.masks = rcu_dereference(sched_domains_numa_masks);
2173	if (!k.masks)
2174		goto unlock;
2175
2176	hop_masks = bsearch(&k, k.masks, sched_domains_numa_levels, sizeof(k.masks[0]), hop_cmp);
2177	hop = hop_masks	- k.masks;
2178
2179	ret = hop ?
2180		cpumask_nth_and_andnot(cpu - k.w, cpus, k.masks[hop][node], k.masks[hop-1][node]) :
2181		cpumask_nth_and(cpu, cpus, k.masks[0][node]);
2182unlock:
2183	rcu_read_unlock();
2184	return ret;
2185}
2186EXPORT_SYMBOL_GPL(sched_numa_find_nth_cpu);
2187
2188/**
2189 * sched_numa_hop_mask() - Get the cpumask of CPUs at most @hops hops away from
2190 *                         @node
2191 * @node: The node to count hops from.
2192 * @hops: Include CPUs up to that many hops away. 0 means local node.
2193 *
2194 * Return: On success, a pointer to a cpumask of CPUs at most @hops away from
2195 * @node, an error value otherwise.
2196 *
2197 * Requires rcu_lock to be held. Returned cpumask is only valid within that
2198 * read-side section, copy it if required beyond that.
2199 *
2200 * Note that not all hops are equal in distance; see sched_init_numa() for how
2201 * distances and masks are handled.
2202 * Also note that this is a reflection of sched_domains_numa_masks, which may change
2203 * during the lifetime of the system (offline nodes are taken out of the masks).
2204 */
2205const struct cpumask *sched_numa_hop_mask(unsigned int node, unsigned int hops)
2206{
2207	struct cpumask ***masks;
2208
2209	if (node >= nr_node_ids || hops >= sched_domains_numa_levels)
2210		return ERR_PTR(-EINVAL);
2211
2212	masks = rcu_dereference(sched_domains_numa_masks);
2213	if (!masks)
2214		return ERR_PTR(-EBUSY);
2215
2216	return masks[hops][node];
2217}
2218EXPORT_SYMBOL_GPL(sched_numa_hop_mask);
2219
2220#endif /* CONFIG_NUMA */
2221
2222static int __sdt_alloc(const struct cpumask *cpu_map)
2223{
2224	struct sched_domain_topology_level *tl;
2225	int j;
2226
2227	for_each_sd_topology(tl) {
2228		struct sd_data *sdd = &tl->data;
2229
2230		sdd->sd = alloc_percpu(struct sched_domain *);
2231		if (!sdd->sd)
2232			return -ENOMEM;
2233
2234		sdd->sds = alloc_percpu(struct sched_domain_shared *);
2235		if (!sdd->sds)
2236			return -ENOMEM;
2237
2238		sdd->sg = alloc_percpu(struct sched_group *);
2239		if (!sdd->sg)
2240			return -ENOMEM;
2241
2242		sdd->sgc = alloc_percpu(struct sched_group_capacity *);
2243		if (!sdd->sgc)
2244			return -ENOMEM;
2245
2246		for_each_cpu(j, cpu_map) {
2247			struct sched_domain *sd;
2248			struct sched_domain_shared *sds;
2249			struct sched_group *sg;
2250			struct sched_group_capacity *sgc;
2251
2252			sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
2253					GFP_KERNEL, cpu_to_node(j));
2254			if (!sd)
2255				return -ENOMEM;
2256
2257			*per_cpu_ptr(sdd->sd, j) = sd;
2258
2259			sds = kzalloc_node(sizeof(struct sched_domain_shared),
2260					GFP_KERNEL, cpu_to_node(j));
2261			if (!sds)
2262				return -ENOMEM;
2263
2264			*per_cpu_ptr(sdd->sds, j) = sds;
2265
2266			sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
2267					GFP_KERNEL, cpu_to_node(j));
2268			if (!sg)
2269				return -ENOMEM;
2270
2271			sg->next = sg;
2272
2273			*per_cpu_ptr(sdd->sg, j) = sg;
2274
2275			sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(),
2276					GFP_KERNEL, cpu_to_node(j));
2277			if (!sgc)
2278				return -ENOMEM;
2279
2280#ifdef CONFIG_SCHED_DEBUG
2281			sgc->id = j;
2282#endif
2283
2284			*per_cpu_ptr(sdd->sgc, j) = sgc;
2285		}
2286	}
2287
2288	return 0;
2289}
2290
2291static void __sdt_free(const struct cpumask *cpu_map)
2292{
2293	struct sched_domain_topology_level *tl;
2294	int j;
2295
2296	for_each_sd_topology(tl) {
2297		struct sd_data *sdd = &tl->data;
2298
2299		for_each_cpu(j, cpu_map) {
2300			struct sched_domain *sd;
2301
2302			if (sdd->sd) {
2303				sd = *per_cpu_ptr(sdd->sd, j);
2304				if (sd && (sd->flags & SD_OVERLAP))
2305					free_sched_groups(sd->groups, 0);
2306				kfree(*per_cpu_ptr(sdd->sd, j));
2307			}
2308
2309			if (sdd->sds)
2310				kfree(*per_cpu_ptr(sdd->sds, j));
2311			if (sdd->sg)
2312				kfree(*per_cpu_ptr(sdd->sg, j));
2313			if (sdd->sgc)
2314				kfree(*per_cpu_ptr(sdd->sgc, j));
2315		}
2316		free_percpu(sdd->sd);
2317		sdd->sd = NULL;
2318		free_percpu(sdd->sds);
2319		sdd->sds = NULL;
2320		free_percpu(sdd->sg);
2321		sdd->sg = NULL;
2322		free_percpu(sdd->sgc);
2323		sdd->sgc = NULL;
2324	}
2325}
2326
2327static struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
2328		const struct cpumask *cpu_map, struct sched_domain_attr *attr,
2329		struct sched_domain *child, int cpu)
2330{
2331	struct sched_domain *sd = sd_init(tl, cpu_map, child, cpu);
2332
2333	if (child) {
2334		sd->level = child->level + 1;
2335		sched_domain_level_max = max(sched_domain_level_max, sd->level);
2336		child->parent = sd;
2337
2338		if (!cpumask_subset(sched_domain_span(child),
2339				    sched_domain_span(sd))) {
2340			pr_err("BUG: arch topology borken\n");
2341#ifdef CONFIG_SCHED_DEBUG
2342			pr_err("     the %s domain not a subset of the %s domain\n",
2343					child->name, sd->name);
2344#endif
2345			/* Fixup, ensure @sd has at least @child CPUs. */
2346			cpumask_or(sched_domain_span(sd),
2347				   sched_domain_span(sd),
2348				   sched_domain_span(child));
2349		}
2350
2351	}
2352	set_domain_attribute(sd, attr);
2353
2354	return sd;
2355}
2356
2357/*
2358 * Ensure topology masks are sane, i.e. there are no conflicts (overlaps) for
2359 * any two given CPUs at this (non-NUMA) topology level.
2360 */
2361static bool topology_span_sane(struct sched_domain_topology_level *tl,
2362			      const struct cpumask *cpu_map, int cpu)
2363{
2364	int i = cpu + 1;
2365
2366	/* NUMA levels are allowed to overlap */
2367	if (tl->flags & SDTL_OVERLAP)
2368		return true;
2369
2370	/*
2371	 * Non-NUMA levels cannot partially overlap - they must be either
2372	 * completely equal or completely disjoint. Otherwise we can end up
2373	 * breaking the sched_group lists - i.e. a later get_group() pass
2374	 * breaks the linking done for an earlier span.
2375	 */
2376	for_each_cpu_from(i, cpu_map) {
 
 
2377		/*
2378		 * We should 'and' all those masks with 'cpu_map' to exactly
2379		 * match the topology we're about to build, but that can only
2380		 * remove CPUs, which only lessens our ability to detect
2381		 * overlaps
2382		 */
2383		if (!cpumask_equal(tl->mask(cpu), tl->mask(i)) &&
2384		    cpumask_intersects(tl->mask(cpu), tl->mask(i)))
2385			return false;
2386	}
2387
2388	return true;
2389}
2390
2391/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2392 * Build sched domains for a given set of CPUs and attach the sched domains
2393 * to the individual CPUs
2394 */
2395static int
2396build_sched_domains(const struct cpumask *cpu_map, struct sched_domain_attr *attr)
2397{
2398	enum s_alloc alloc_state = sa_none;
2399	struct sched_domain *sd;
2400	struct s_data d;
2401	struct rq *rq = NULL;
2402	int i, ret = -ENOMEM;
 
2403	bool has_asym = false;
2404	bool has_cluster = false;
2405
2406	if (WARN_ON(cpumask_empty(cpu_map)))
2407		goto error;
2408
2409	alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
2410	if (alloc_state != sa_rootdomain)
2411		goto error;
2412
 
 
2413	/* Set up domains for CPUs specified by the cpu_map: */
2414	for_each_cpu(i, cpu_map) {
2415		struct sched_domain_topology_level *tl;
2416
2417		sd = NULL;
2418		for_each_sd_topology(tl) {
 
 
 
 
 
 
2419
2420			if (WARN_ON(!topology_span_sane(tl, cpu_map, i)))
2421				goto error;
2422
2423			sd = build_sched_domain(tl, cpu_map, attr, sd, i);
2424
2425			has_asym |= sd->flags & SD_ASYM_CPUCAPACITY;
2426
2427			if (tl == sched_domain_topology)
2428				*per_cpu_ptr(d.sd, i) = sd;
2429			if (tl->flags & SDTL_OVERLAP)
2430				sd->flags |= SD_OVERLAP;
2431			if (cpumask_equal(cpu_map, sched_domain_span(sd)))
2432				break;
2433		}
2434	}
2435
2436	/* Build the groups for the domains */
2437	for_each_cpu(i, cpu_map) {
2438		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
2439			sd->span_weight = cpumask_weight(sched_domain_span(sd));
2440			if (sd->flags & SD_OVERLAP) {
2441				if (build_overlap_sched_groups(sd, i))
2442					goto error;
2443			} else {
2444				if (build_sched_groups(sd, i))
2445					goto error;
2446			}
2447		}
2448	}
2449
2450	/*
2451	 * Calculate an allowed NUMA imbalance such that LLCs do not get
2452	 * imbalanced.
2453	 */
2454	for_each_cpu(i, cpu_map) {
2455		unsigned int imb = 0;
2456		unsigned int imb_span = 1;
2457
2458		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
2459			struct sched_domain *child = sd->child;
2460
2461			if (!(sd->flags & SD_SHARE_LLC) && child &&
2462			    (child->flags & SD_SHARE_LLC)) {
2463				struct sched_domain __rcu *top_p;
2464				unsigned int nr_llcs;
2465
2466				/*
2467				 * For a single LLC per node, allow an
2468				 * imbalance up to 12.5% of the node. This is
2469				 * arbitrary cutoff based two factors -- SMT and
2470				 * memory channels. For SMT-2, the intent is to
2471				 * avoid premature sharing of HT resources but
2472				 * SMT-4 or SMT-8 *may* benefit from a different
2473				 * cutoff. For memory channels, this is a very
2474				 * rough estimate of how many channels may be
2475				 * active and is based on recent CPUs with
2476				 * many cores.
2477				 *
2478				 * For multiple LLCs, allow an imbalance
2479				 * until multiple tasks would share an LLC
2480				 * on one node while LLCs on another node
2481				 * remain idle. This assumes that there are
2482				 * enough logical CPUs per LLC to avoid SMT
2483				 * factors and that there is a correlation
2484				 * between LLCs and memory channels.
2485				 */
2486				nr_llcs = sd->span_weight / child->span_weight;
2487				if (nr_llcs == 1)
2488					imb = sd->span_weight >> 3;
2489				else
2490					imb = nr_llcs;
2491				imb = max(1U, imb);
2492				sd->imb_numa_nr = imb;
2493
2494				/* Set span based on the first NUMA domain. */
2495				top_p = sd->parent;
2496				while (top_p && !(top_p->flags & SD_NUMA)) {
2497					top_p = top_p->parent;
2498				}
2499				imb_span = top_p ? top_p->span_weight : sd->span_weight;
2500			} else {
2501				int factor = max(1U, (sd->span_weight / imb_span));
2502
2503				sd->imb_numa_nr = imb * factor;
2504			}
2505		}
2506	}
2507
2508	/* Calculate CPU capacity for physical packages and nodes */
2509	for (i = nr_cpumask_bits-1; i >= 0; i--) {
2510		if (!cpumask_test_cpu(i, cpu_map))
2511			continue;
2512
2513		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
2514			claim_allocations(i, sd);
2515			init_sched_groups_capacity(i, sd);
2516		}
2517	}
2518
2519	/* Attach the domains */
2520	rcu_read_lock();
2521	for_each_cpu(i, cpu_map) {
2522		rq = cpu_rq(i);
2523		sd = *per_cpu_ptr(d.sd, i);
2524
2525		cpu_attach_domain(sd, d.rd, i);
 
 
2526
2527		if (lowest_flag_domain(i, SD_CLUSTER))
2528			has_cluster = true;
2529	}
2530	rcu_read_unlock();
2531
2532	if (has_asym)
2533		static_branch_inc_cpuslocked(&sched_asym_cpucapacity);
2534
2535	if (has_cluster)
2536		static_branch_inc_cpuslocked(&sched_cluster_active);
2537
2538	if (rq && sched_debug_verbose)
2539		pr_info("root domain span: %*pbl\n", cpumask_pr_args(cpu_map));
2540
2541	ret = 0;
2542error:
2543	__free_domain_allocs(&d, alloc_state, cpu_map);
2544
2545	return ret;
2546}
2547
2548/* Current sched domains: */
2549static cpumask_var_t			*doms_cur;
2550
2551/* Number of sched domains in 'doms_cur': */
2552static int				ndoms_cur;
2553
2554/* Attributes of custom domains in 'doms_cur' */
2555static struct sched_domain_attr		*dattr_cur;
2556
2557/*
2558 * Special case: If a kmalloc() of a doms_cur partition (array of
2559 * cpumask) fails, then fallback to a single sched domain,
2560 * as determined by the single cpumask fallback_doms.
2561 */
2562static cpumask_var_t			fallback_doms;
2563
2564/*
2565 * arch_update_cpu_topology lets virtualized architectures update the
2566 * CPU core maps. It is supposed to return 1 if the topology changed
2567 * or 0 if it stayed the same.
2568 */
2569int __weak arch_update_cpu_topology(void)
2570{
2571	return 0;
2572}
2573
2574cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
2575{
2576	int i;
2577	cpumask_var_t *doms;
2578
2579	doms = kmalloc_array(ndoms, sizeof(*doms), GFP_KERNEL);
2580	if (!doms)
2581		return NULL;
2582	for (i = 0; i < ndoms; i++) {
2583		if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
2584			free_sched_domains(doms, i);
2585			return NULL;
2586		}
2587	}
2588	return doms;
2589}
2590
2591void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
2592{
2593	unsigned int i;
2594	for (i = 0; i < ndoms; i++)
2595		free_cpumask_var(doms[i]);
2596	kfree(doms);
2597}
2598
2599/*
2600 * Set up scheduler domains and groups.  For now this just excludes isolated
2601 * CPUs, but could be used to exclude other special cases in the future.
2602 */
2603int __init sched_init_domains(const struct cpumask *cpu_map)
2604{
2605	int err;
2606
2607	zalloc_cpumask_var(&sched_domains_tmpmask, GFP_KERNEL);
2608	zalloc_cpumask_var(&sched_domains_tmpmask2, GFP_KERNEL);
2609	zalloc_cpumask_var(&fallback_doms, GFP_KERNEL);
2610
2611	arch_update_cpu_topology();
2612	asym_cpu_capacity_scan();
2613	ndoms_cur = 1;
2614	doms_cur = alloc_sched_domains(ndoms_cur);
2615	if (!doms_cur)
2616		doms_cur = &fallback_doms;
2617	cpumask_and(doms_cur[0], cpu_map, housekeeping_cpumask(HK_TYPE_DOMAIN));
2618	err = build_sched_domains(doms_cur[0], NULL);
 
2619
2620	return err;
2621}
2622
2623/*
2624 * Detach sched domains from a group of CPUs specified in cpu_map
2625 * These CPUs will now be attached to the NULL domain
2626 */
2627static void detach_destroy_domains(const struct cpumask *cpu_map)
2628{
2629	unsigned int cpu = cpumask_any(cpu_map);
2630	int i;
2631
2632	if (rcu_access_pointer(per_cpu(sd_asym_cpucapacity, cpu)))
2633		static_branch_dec_cpuslocked(&sched_asym_cpucapacity);
2634
2635	if (static_branch_unlikely(&sched_cluster_active))
2636		static_branch_dec_cpuslocked(&sched_cluster_active);
2637
2638	rcu_read_lock();
2639	for_each_cpu(i, cpu_map)
2640		cpu_attach_domain(NULL, &def_root_domain, i);
2641	rcu_read_unlock();
2642}
2643
2644/* handle null as "default" */
2645static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
2646			struct sched_domain_attr *new, int idx_new)
2647{
2648	struct sched_domain_attr tmp;
2649
2650	/* Fast path: */
2651	if (!new && !cur)
2652		return 1;
2653
2654	tmp = SD_ATTR_INIT;
2655
2656	return !memcmp(cur ? (cur + idx_cur) : &tmp,
2657			new ? (new + idx_new) : &tmp,
2658			sizeof(struct sched_domain_attr));
2659}
2660
2661/*
2662 * Partition sched domains as specified by the 'ndoms_new'
2663 * cpumasks in the array doms_new[] of cpumasks. This compares
2664 * doms_new[] to the current sched domain partitioning, doms_cur[].
2665 * It destroys each deleted domain and builds each new domain.
2666 *
2667 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
2668 * The masks don't intersect (don't overlap.) We should setup one
2669 * sched domain for each mask. CPUs not in any of the cpumasks will
2670 * not be load balanced. If the same cpumask appears both in the
2671 * current 'doms_cur' domains and in the new 'doms_new', we can leave
2672 * it as it is.
2673 *
2674 * The passed in 'doms_new' should be allocated using
2675 * alloc_sched_domains.  This routine takes ownership of it and will
2676 * free_sched_domains it when done with it. If the caller failed the
2677 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
2678 * and partition_sched_domains() will fallback to the single partition
2679 * 'fallback_doms', it also forces the domains to be rebuilt.
2680 *
2681 * If doms_new == NULL it will be replaced with cpu_online_mask.
2682 * ndoms_new == 0 is a special case for destroying existing domains,
2683 * and it will not create the default domain.
2684 *
2685 * Call with hotplug lock and sched_domains_mutex held
2686 */
2687void partition_sched_domains_locked(int ndoms_new, cpumask_var_t doms_new[],
2688				    struct sched_domain_attr *dattr_new)
2689{
2690	bool __maybe_unused has_eas = false;
2691	int i, j, n;
2692	int new_topology;
2693
2694	lockdep_assert_held(&sched_domains_mutex);
2695
 
 
 
2696	/* Let the architecture update CPU core mappings: */
2697	new_topology = arch_update_cpu_topology();
2698	/* Trigger rebuilding CPU capacity asymmetry data */
2699	if (new_topology)
2700		asym_cpu_capacity_scan();
2701
2702	if (!doms_new) {
2703		WARN_ON_ONCE(dattr_new);
2704		n = 0;
2705		doms_new = alloc_sched_domains(1);
2706		if (doms_new) {
2707			n = 1;
2708			cpumask_and(doms_new[0], cpu_active_mask,
2709				    housekeeping_cpumask(HK_TYPE_DOMAIN));
2710		}
2711	} else {
2712		n = ndoms_new;
2713	}
2714
2715	/* Destroy deleted domains: */
2716	for (i = 0; i < ndoms_cur; i++) {
2717		for (j = 0; j < n && !new_topology; j++) {
2718			if (cpumask_equal(doms_cur[i], doms_new[j]) &&
2719			    dattrs_equal(dattr_cur, i, dattr_new, j)) {
2720				struct root_domain *rd;
2721
2722				/*
2723				 * This domain won't be destroyed and as such
2724				 * its dl_bw->total_bw needs to be cleared.  It
2725				 * will be recomputed in function
2726				 * update_tasks_root_domain().
2727				 */
2728				rd = cpu_rq(cpumask_any(doms_cur[i]))->rd;
2729				dl_clear_root_domain(rd);
2730				goto match1;
2731			}
2732		}
2733		/* No match - a current sched domain not in new doms_new[] */
2734		detach_destroy_domains(doms_cur[i]);
2735match1:
2736		;
2737	}
2738
2739	n = ndoms_cur;
2740	if (!doms_new) {
2741		n = 0;
2742		doms_new = &fallback_doms;
2743		cpumask_and(doms_new[0], cpu_active_mask,
2744			    housekeeping_cpumask(HK_TYPE_DOMAIN));
2745	}
2746
2747	/* Build new domains: */
2748	for (i = 0; i < ndoms_new; i++) {
2749		for (j = 0; j < n && !new_topology; j++) {
2750			if (cpumask_equal(doms_new[i], doms_cur[j]) &&
2751			    dattrs_equal(dattr_new, i, dattr_cur, j))
2752				goto match2;
2753		}
2754		/* No match - add a new doms_new */
2755		build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
2756match2:
2757		;
2758	}
2759
2760#if defined(CONFIG_ENERGY_MODEL) && defined(CONFIG_CPU_FREQ_GOV_SCHEDUTIL)
2761	/* Build perf domains: */
2762	for (i = 0; i < ndoms_new; i++) {
2763		for (j = 0; j < n && !sched_energy_update; j++) {
2764			if (cpumask_equal(doms_new[i], doms_cur[j]) &&
2765			    cpu_rq(cpumask_first(doms_cur[j]))->rd->pd) {
2766				has_eas = true;
2767				goto match3;
2768			}
2769		}
2770		/* No match - add perf domains for a new rd */
2771		has_eas |= build_perf_domains(doms_new[i]);
2772match3:
2773		;
2774	}
2775	sched_energy_set(has_eas);
2776#endif
2777
2778	/* Remember the new sched domains: */
2779	if (doms_cur != &fallback_doms)
2780		free_sched_domains(doms_cur, ndoms_cur);
2781
2782	kfree(dattr_cur);
2783	doms_cur = doms_new;
2784	dattr_cur = dattr_new;
2785	ndoms_cur = ndoms_new;
2786
2787	update_sched_domain_debugfs();
2788}
2789
2790/*
2791 * Call with hotplug lock held
2792 */
2793void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
2794			     struct sched_domain_attr *dattr_new)
2795{
2796	mutex_lock(&sched_domains_mutex);
2797	partition_sched_domains_locked(ndoms_new, doms_new, dattr_new);
2798	mutex_unlock(&sched_domains_mutex);
2799}
v5.9
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Scheduler topology setup/handling methods
   4 */
   5#include "sched.h"
 
   6
   7DEFINE_MUTEX(sched_domains_mutex);
   8
   9/* Protected by sched_domains_mutex: */
  10static cpumask_var_t sched_domains_tmpmask;
  11static cpumask_var_t sched_domains_tmpmask2;
  12
  13#ifdef CONFIG_SCHED_DEBUG
  14
  15static int __init sched_debug_setup(char *str)
  16{
  17	sched_debug_enabled = true;
  18
  19	return 0;
  20}
  21early_param("sched_debug", sched_debug_setup);
  22
  23static inline bool sched_debug(void)
  24{
  25	return sched_debug_enabled;
  26}
  27
 
 
 
 
 
 
  28static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
  29				  struct cpumask *groupmask)
  30{
  31	struct sched_group *group = sd->groups;
 
 
  32
  33	cpumask_clear(groupmask);
  34
  35	printk(KERN_DEBUG "%*s domain-%d: ", level, "", level);
  36	printk(KERN_CONT "span=%*pbl level=%s\n",
  37	       cpumask_pr_args(sched_domain_span(sd)), sd->name);
  38
  39	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
  40		printk(KERN_ERR "ERROR: domain->span does not contain CPU%d\n", cpu);
  41	}
  42	if (group && !cpumask_test_cpu(cpu, sched_group_span(group))) {
  43		printk(KERN_ERR "ERROR: domain->groups does not contain CPU%d\n", cpu);
  44	}
  45
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  46	printk(KERN_DEBUG "%*s groups:", level + 1, "");
  47	do {
  48		if (!group) {
  49			printk("\n");
  50			printk(KERN_ERR "ERROR: group is NULL\n");
  51			break;
  52		}
  53
  54		if (!cpumask_weight(sched_group_span(group))) {
  55			printk(KERN_CONT "\n");
  56			printk(KERN_ERR "ERROR: empty group\n");
  57			break;
  58		}
  59
  60		if (!(sd->flags & SD_OVERLAP) &&
  61		    cpumask_intersects(groupmask, sched_group_span(group))) {
  62			printk(KERN_CONT "\n");
  63			printk(KERN_ERR "ERROR: repeated CPUs\n");
  64			break;
  65		}
  66
  67		cpumask_or(groupmask, groupmask, sched_group_span(group));
  68
  69		printk(KERN_CONT " %d:{ span=%*pbl",
  70				group->sgc->id,
  71				cpumask_pr_args(sched_group_span(group)));
  72
  73		if ((sd->flags & SD_OVERLAP) &&
  74		    !cpumask_equal(group_balance_mask(group), sched_group_span(group))) {
  75			printk(KERN_CONT " mask=%*pbl",
  76				cpumask_pr_args(group_balance_mask(group)));
  77		}
  78
  79		if (group->sgc->capacity != SCHED_CAPACITY_SCALE)
  80			printk(KERN_CONT " cap=%lu", group->sgc->capacity);
  81
  82		if (group == sd->groups && sd->child &&
  83		    !cpumask_equal(sched_domain_span(sd->child),
  84				   sched_group_span(group))) {
  85			printk(KERN_ERR "ERROR: domain->groups does not match domain->child\n");
  86		}
  87
  88		printk(KERN_CONT " }");
  89
  90		group = group->next;
  91
  92		if (group != sd->groups)
  93			printk(KERN_CONT ",");
  94
  95	} while (group != sd->groups);
  96	printk(KERN_CONT "\n");
  97
  98	if (!cpumask_equal(sched_domain_span(sd), groupmask))
  99		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
 100
 101	if (sd->parent &&
 102	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
 103		printk(KERN_ERR "ERROR: parent span is not a superset of domain->span\n");
 104	return 0;
 105}
 106
 107static void sched_domain_debug(struct sched_domain *sd, int cpu)
 108{
 109	int level = 0;
 110
 111	if (!sched_debug_enabled)
 112		return;
 113
 114	if (!sd) {
 115		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
 116		return;
 117	}
 118
 119	printk(KERN_DEBUG "CPU%d attaching sched-domain(s):\n", cpu);
 120
 121	for (;;) {
 122		if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
 123			break;
 124		level++;
 125		sd = sd->parent;
 126		if (!sd)
 127			break;
 128	}
 129}
 130#else /* !CONFIG_SCHED_DEBUG */
 131
 132# define sched_debug_enabled 0
 133# define sched_domain_debug(sd, cpu) do { } while (0)
 134static inline bool sched_debug(void)
 135{
 136	return false;
 137}
 138#endif /* CONFIG_SCHED_DEBUG */
 139
 
 
 
 
 
 
 
 140static int sd_degenerate(struct sched_domain *sd)
 141{
 142	if (cpumask_weight(sched_domain_span(sd)) == 1)
 143		return 1;
 144
 145	/* Following flags need at least 2 groups */
 146	if (sd->flags & (SD_BALANCE_NEWIDLE |
 147			 SD_BALANCE_FORK |
 148			 SD_BALANCE_EXEC |
 149			 SD_SHARE_CPUCAPACITY |
 150			 SD_ASYM_CPUCAPACITY |
 151			 SD_SHARE_PKG_RESOURCES |
 152			 SD_SHARE_POWERDOMAIN)) {
 153		if (sd->groups != sd->groups->next)
 154			return 0;
 155	}
 156
 157	/* Following flags don't use groups */
 158	if (sd->flags & (SD_WAKE_AFFINE))
 159		return 0;
 160
 161	return 1;
 162}
 163
 164static int
 165sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
 166{
 167	unsigned long cflags = sd->flags, pflags = parent->flags;
 168
 169	if (sd_degenerate(parent))
 170		return 1;
 171
 172	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
 173		return 0;
 174
 175	/* Flags needing groups don't count if only 1 group in parent */
 176	if (parent->groups == parent->groups->next) {
 177		pflags &= ~(SD_BALANCE_NEWIDLE |
 178			    SD_BALANCE_FORK |
 179			    SD_BALANCE_EXEC |
 180			    SD_ASYM_CPUCAPACITY |
 181			    SD_SHARE_CPUCAPACITY |
 182			    SD_SHARE_PKG_RESOURCES |
 183			    SD_PREFER_SIBLING |
 184			    SD_SHARE_POWERDOMAIN);
 185		if (nr_node_ids == 1)
 186			pflags &= ~SD_SERIALIZE;
 187	}
 188	if (~cflags & pflags)
 189		return 0;
 190
 191	return 1;
 192}
 193
 194#if defined(CONFIG_ENERGY_MODEL) && defined(CONFIG_CPU_FREQ_GOV_SCHEDUTIL)
 195DEFINE_STATIC_KEY_FALSE(sched_energy_present);
 196unsigned int sysctl_sched_energy_aware = 1;
 197DEFINE_MUTEX(sched_energy_mutex);
 198bool sched_energy_update;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 199
 200#ifdef CONFIG_PROC_SYSCTL
 201int sched_energy_aware_handler(struct ctl_table *table, int write,
 202		void *buffer, size_t *lenp, loff_t *ppos)
 203{
 204	int ret, state;
 205
 206	if (write && !capable(CAP_SYS_ADMIN))
 207		return -EPERM;
 208
 
 
 
 
 
 
 
 
 
 209	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
 210	if (!ret && write) {
 211		state = static_branch_unlikely(&sched_energy_present);
 212		if (state != sysctl_sched_energy_aware) {
 213			mutex_lock(&sched_energy_mutex);
 214			sched_energy_update = 1;
 215			rebuild_sched_domains();
 216			sched_energy_update = 0;
 217			mutex_unlock(&sched_energy_mutex);
 218		}
 219	}
 220
 221	return ret;
 222}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 223#endif
 224
 225static void free_pd(struct perf_domain *pd)
 226{
 227	struct perf_domain *tmp;
 228
 229	while (pd) {
 230		tmp = pd->next;
 231		kfree(pd);
 232		pd = tmp;
 233	}
 234}
 235
 236static struct perf_domain *find_pd(struct perf_domain *pd, int cpu)
 237{
 238	while (pd) {
 239		if (cpumask_test_cpu(cpu, perf_domain_span(pd)))
 240			return pd;
 241		pd = pd->next;
 242	}
 243
 244	return NULL;
 245}
 246
 247static struct perf_domain *pd_init(int cpu)
 248{
 249	struct em_perf_domain *obj = em_cpu_get(cpu);
 250	struct perf_domain *pd;
 251
 252	if (!obj) {
 253		if (sched_debug())
 254			pr_info("%s: no EM found for CPU%d\n", __func__, cpu);
 255		return NULL;
 256	}
 257
 258	pd = kzalloc(sizeof(*pd), GFP_KERNEL);
 259	if (!pd)
 260		return NULL;
 261	pd->em_pd = obj;
 262
 263	return pd;
 264}
 265
 266static void perf_domain_debug(const struct cpumask *cpu_map,
 267						struct perf_domain *pd)
 268{
 269	if (!sched_debug() || !pd)
 270		return;
 271
 272	printk(KERN_DEBUG "root_domain %*pbl:", cpumask_pr_args(cpu_map));
 273
 274	while (pd) {
 275		printk(KERN_CONT " pd%d:{ cpus=%*pbl nr_pstate=%d }",
 276				cpumask_first(perf_domain_span(pd)),
 277				cpumask_pr_args(perf_domain_span(pd)),
 278				em_pd_nr_perf_states(pd->em_pd));
 279		pd = pd->next;
 280	}
 281
 282	printk(KERN_CONT "\n");
 283}
 284
 285static void destroy_perf_domain_rcu(struct rcu_head *rp)
 286{
 287	struct perf_domain *pd;
 288
 289	pd = container_of(rp, struct perf_domain, rcu);
 290	free_pd(pd);
 291}
 292
 293static void sched_energy_set(bool has_eas)
 294{
 295	if (!has_eas && static_branch_unlikely(&sched_energy_present)) {
 296		if (sched_debug())
 297			pr_info("%s: stopping EAS\n", __func__);
 298		static_branch_disable_cpuslocked(&sched_energy_present);
 299	} else if (has_eas && !static_branch_unlikely(&sched_energy_present)) {
 300		if (sched_debug())
 301			pr_info("%s: starting EAS\n", __func__);
 302		static_branch_enable_cpuslocked(&sched_energy_present);
 303	}
 304}
 305
 306/*
 307 * EAS can be used on a root domain if it meets all the following conditions:
 308 *    1. an Energy Model (EM) is available;
 309 *    2. the SD_ASYM_CPUCAPACITY flag is set in the sched_domain hierarchy.
 310 *    3. no SMT is detected.
 311 *    4. the EM complexity is low enough to keep scheduling overheads low;
 312 *    5. schedutil is driving the frequency of all CPUs of the rd;
 313 *
 314 * The complexity of the Energy Model is defined as:
 315 *
 316 *              C = nr_pd * (nr_cpus + nr_ps)
 317 *
 318 * with parameters defined as:
 319 *  - nr_pd:    the number of performance domains
 320 *  - nr_cpus:  the number of CPUs
 321 *  - nr_ps:    the sum of the number of performance states of all performance
 322 *              domains (for example, on a system with 2 performance domains,
 323 *              with 10 performance states each, nr_ps = 2 * 10 = 20).
 324 *
 325 * It is generally not a good idea to use such a model in the wake-up path on
 326 * very complex platforms because of the associated scheduling overheads. The
 327 * arbitrary constraint below prevents that. It makes EAS usable up to 16 CPUs
 328 * with per-CPU DVFS and less than 8 performance states each, for example.
 329 */
 330#define EM_MAX_COMPLEXITY 2048
 331
 332extern struct cpufreq_governor schedutil_gov;
 333static bool build_perf_domains(const struct cpumask *cpu_map)
 334{
 335	int i, nr_pd = 0, nr_ps = 0, nr_cpus = cpumask_weight(cpu_map);
 336	struct perf_domain *pd = NULL, *tmp;
 337	int cpu = cpumask_first(cpu_map);
 338	struct root_domain *rd = cpu_rq(cpu)->rd;
 339	struct cpufreq_policy *policy;
 340	struct cpufreq_governor *gov;
 341
 342	if (!sysctl_sched_energy_aware)
 343		goto free;
 344
 345	/* EAS is enabled for asymmetric CPU capacity topologies. */
 346	if (!per_cpu(sd_asym_cpucapacity, cpu)) {
 347		if (sched_debug()) {
 348			pr_info("rd %*pbl: CPUs do not have asymmetric capacities\n",
 349					cpumask_pr_args(cpu_map));
 350		}
 351		goto free;
 352	}
 353
 354	/* EAS definitely does *not* handle SMT */
 355	if (sched_smt_active()) {
 356		pr_warn("rd %*pbl: Disabling EAS, SMT is not supported\n",
 357			cpumask_pr_args(cpu_map));
 358		goto free;
 359	}
 360
 361	for_each_cpu(i, cpu_map) {
 362		/* Skip already covered CPUs. */
 363		if (find_pd(pd, i))
 364			continue;
 365
 366		/* Do not attempt EAS if schedutil is not being used. */
 367		policy = cpufreq_cpu_get(i);
 368		if (!policy)
 369			goto free;
 370		gov = policy->governor;
 371		cpufreq_cpu_put(policy);
 372		if (gov != &schedutil_gov) {
 373			if (rd->pd)
 374				pr_warn("rd %*pbl: Disabling EAS, schedutil is mandatory\n",
 375						cpumask_pr_args(cpu_map));
 376			goto free;
 377		}
 378
 379		/* Create the new pd and add it to the local list. */
 380		tmp = pd_init(i);
 381		if (!tmp)
 382			goto free;
 383		tmp->next = pd;
 384		pd = tmp;
 385
 386		/*
 387		 * Count performance domains and performance states for the
 388		 * complexity check.
 389		 */
 390		nr_pd++;
 391		nr_ps += em_pd_nr_perf_states(pd->em_pd);
 392	}
 393
 394	/* Bail out if the Energy Model complexity is too high. */
 395	if (nr_pd * (nr_ps + nr_cpus) > EM_MAX_COMPLEXITY) {
 396		WARN(1, "rd %*pbl: Failed to start EAS, EM complexity is too high\n",
 397						cpumask_pr_args(cpu_map));
 398		goto free;
 399	}
 400
 401	perf_domain_debug(cpu_map, pd);
 402
 403	/* Attach the new list of performance domains to the root domain. */
 404	tmp = rd->pd;
 405	rcu_assign_pointer(rd->pd, pd);
 406	if (tmp)
 407		call_rcu(&tmp->rcu, destroy_perf_domain_rcu);
 408
 409	return !!pd;
 410
 411free:
 412	free_pd(pd);
 413	tmp = rd->pd;
 414	rcu_assign_pointer(rd->pd, NULL);
 415	if (tmp)
 416		call_rcu(&tmp->rcu, destroy_perf_domain_rcu);
 417
 418	return false;
 419}
 420#else
 421static void free_pd(struct perf_domain *pd) { }
 422#endif /* CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL*/
 423
 424static void free_rootdomain(struct rcu_head *rcu)
 425{
 426	struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
 427
 428	cpupri_cleanup(&rd->cpupri);
 429	cpudl_cleanup(&rd->cpudl);
 430	free_cpumask_var(rd->dlo_mask);
 431	free_cpumask_var(rd->rto_mask);
 432	free_cpumask_var(rd->online);
 433	free_cpumask_var(rd->span);
 434	free_pd(rd->pd);
 435	kfree(rd);
 436}
 437
 438void rq_attach_root(struct rq *rq, struct root_domain *rd)
 439{
 440	struct root_domain *old_rd = NULL;
 441	unsigned long flags;
 442
 443	raw_spin_lock_irqsave(&rq->lock, flags);
 444
 445	if (rq->rd) {
 446		old_rd = rq->rd;
 447
 448		if (cpumask_test_cpu(rq->cpu, old_rd->online))
 449			set_rq_offline(rq);
 450
 451		cpumask_clear_cpu(rq->cpu, old_rd->span);
 452
 453		/*
 454		 * If we dont want to free the old_rd yet then
 455		 * set old_rd to NULL to skip the freeing later
 456		 * in this function:
 457		 */
 458		if (!atomic_dec_and_test(&old_rd->refcount))
 459			old_rd = NULL;
 460	}
 461
 462	atomic_inc(&rd->refcount);
 463	rq->rd = rd;
 464
 465	cpumask_set_cpu(rq->cpu, rd->span);
 466	if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
 467		set_rq_online(rq);
 468
 469	raw_spin_unlock_irqrestore(&rq->lock, flags);
 
 
 
 
 
 
 
 
 470
 471	if (old_rd)
 472		call_rcu(&old_rd->rcu, free_rootdomain);
 473}
 474
 475void sched_get_rd(struct root_domain *rd)
 476{
 477	atomic_inc(&rd->refcount);
 478}
 479
 480void sched_put_rd(struct root_domain *rd)
 481{
 482	if (!atomic_dec_and_test(&rd->refcount))
 483		return;
 484
 485	call_rcu(&rd->rcu, free_rootdomain);
 486}
 487
 488static int init_rootdomain(struct root_domain *rd)
 489{
 490	if (!zalloc_cpumask_var(&rd->span, GFP_KERNEL))
 491		goto out;
 492	if (!zalloc_cpumask_var(&rd->online, GFP_KERNEL))
 493		goto free_span;
 494	if (!zalloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
 495		goto free_online;
 496	if (!zalloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
 497		goto free_dlo_mask;
 498
 499#ifdef HAVE_RT_PUSH_IPI
 500	rd->rto_cpu = -1;
 501	raw_spin_lock_init(&rd->rto_lock);
 502	init_irq_work(&rd->rto_push_work, rto_push_irq_work_func);
 503#endif
 504
 
 505	init_dl_bw(&rd->dl_bw);
 506	if (cpudl_init(&rd->cpudl) != 0)
 507		goto free_rto_mask;
 508
 509	if (cpupri_init(&rd->cpupri) != 0)
 510		goto free_cpudl;
 511	return 0;
 512
 513free_cpudl:
 514	cpudl_cleanup(&rd->cpudl);
 515free_rto_mask:
 516	free_cpumask_var(rd->rto_mask);
 517free_dlo_mask:
 518	free_cpumask_var(rd->dlo_mask);
 519free_online:
 520	free_cpumask_var(rd->online);
 521free_span:
 522	free_cpumask_var(rd->span);
 523out:
 524	return -ENOMEM;
 525}
 526
 527/*
 528 * By default the system creates a single root-domain with all CPUs as
 529 * members (mimicking the global state we have today).
 530 */
 531struct root_domain def_root_domain;
 532
 533void init_defrootdomain(void)
 534{
 535	init_rootdomain(&def_root_domain);
 536
 537	atomic_set(&def_root_domain.refcount, 1);
 538}
 539
 540static struct root_domain *alloc_rootdomain(void)
 541{
 542	struct root_domain *rd;
 543
 544	rd = kzalloc(sizeof(*rd), GFP_KERNEL);
 545	if (!rd)
 546		return NULL;
 547
 548	if (init_rootdomain(rd) != 0) {
 549		kfree(rd);
 550		return NULL;
 551	}
 552
 553	return rd;
 554}
 555
 556static void free_sched_groups(struct sched_group *sg, int free_sgc)
 557{
 558	struct sched_group *tmp, *first;
 559
 560	if (!sg)
 561		return;
 562
 563	first = sg;
 564	do {
 565		tmp = sg->next;
 566
 567		if (free_sgc && atomic_dec_and_test(&sg->sgc->ref))
 568			kfree(sg->sgc);
 569
 570		if (atomic_dec_and_test(&sg->ref))
 571			kfree(sg);
 572		sg = tmp;
 573	} while (sg != first);
 574}
 575
 576static void destroy_sched_domain(struct sched_domain *sd)
 577{
 578	/*
 579	 * A normal sched domain may have multiple group references, an
 580	 * overlapping domain, having private groups, only one.  Iterate,
 581	 * dropping group/capacity references, freeing where none remain.
 582	 */
 583	free_sched_groups(sd->groups, 1);
 584
 585	if (sd->shared && atomic_dec_and_test(&sd->shared->ref))
 586		kfree(sd->shared);
 587	kfree(sd);
 588}
 589
 590static void destroy_sched_domains_rcu(struct rcu_head *rcu)
 591{
 592	struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
 593
 594	while (sd) {
 595		struct sched_domain *parent = sd->parent;
 596		destroy_sched_domain(sd);
 597		sd = parent;
 598	}
 599}
 600
 601static void destroy_sched_domains(struct sched_domain *sd)
 602{
 603	if (sd)
 604		call_rcu(&sd->rcu, destroy_sched_domains_rcu);
 605}
 606
 607/*
 608 * Keep a special pointer to the highest sched_domain that has
 609 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
 610 * allows us to avoid some pointer chasing select_idle_sibling().
 611 *
 612 * Also keep a unique ID per domain (we use the first CPU number in
 613 * the cpumask of the domain), this allows us to quickly tell if
 614 * two CPUs are in the same cache domain, see cpus_share_cache().
 615 */
 616DEFINE_PER_CPU(struct sched_domain __rcu *, sd_llc);
 617DEFINE_PER_CPU(int, sd_llc_size);
 618DEFINE_PER_CPU(int, sd_llc_id);
 
 619DEFINE_PER_CPU(struct sched_domain_shared __rcu *, sd_llc_shared);
 620DEFINE_PER_CPU(struct sched_domain __rcu *, sd_numa);
 621DEFINE_PER_CPU(struct sched_domain __rcu *, sd_asym_packing);
 622DEFINE_PER_CPU(struct sched_domain __rcu *, sd_asym_cpucapacity);
 
 623DEFINE_STATIC_KEY_FALSE(sched_asym_cpucapacity);
 
 624
 625static void update_top_cache_domain(int cpu)
 626{
 627	struct sched_domain_shared *sds = NULL;
 628	struct sched_domain *sd;
 629	int id = cpu;
 630	int size = 1;
 631
 632	sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
 633	if (sd) {
 634		id = cpumask_first(sched_domain_span(sd));
 635		size = cpumask_weight(sched_domain_span(sd));
 636		sds = sd->shared;
 637	}
 638
 639	rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
 640	per_cpu(sd_llc_size, cpu) = size;
 641	per_cpu(sd_llc_id, cpu) = id;
 642	rcu_assign_pointer(per_cpu(sd_llc_shared, cpu), sds);
 643
 
 
 
 
 
 
 
 
 
 
 
 644	sd = lowest_flag_domain(cpu, SD_NUMA);
 645	rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
 646
 647	sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
 648	rcu_assign_pointer(per_cpu(sd_asym_packing, cpu), sd);
 649
 650	sd = lowest_flag_domain(cpu, SD_ASYM_CPUCAPACITY);
 651	rcu_assign_pointer(per_cpu(sd_asym_cpucapacity, cpu), sd);
 652}
 653
 654/*
 655 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
 656 * hold the hotplug lock.
 657 */
 658static void
 659cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
 660{
 661	struct rq *rq = cpu_rq(cpu);
 662	struct sched_domain *tmp;
 663
 664	/* Remove the sched domains which do not contribute to scheduling. */
 665	for (tmp = sd; tmp; ) {
 666		struct sched_domain *parent = tmp->parent;
 667		if (!parent)
 668			break;
 669
 670		if (sd_parent_degenerate(tmp, parent)) {
 671			tmp->parent = parent->parent;
 672			if (parent->parent)
 
 673				parent->parent->child = tmp;
 
 
 
 674			/*
 675			 * Transfer SD_PREFER_SIBLING down in case of a
 676			 * degenerate parent; the spans match for this
 677			 * so the property transfers.
 678			 */
 679			if (parent->flags & SD_PREFER_SIBLING)
 680				tmp->flags |= SD_PREFER_SIBLING;
 681			destroy_sched_domain(parent);
 682		} else
 683			tmp = tmp->parent;
 684	}
 685
 686	if (sd && sd_degenerate(sd)) {
 687		tmp = sd;
 688		sd = sd->parent;
 689		destroy_sched_domain(tmp);
 690		if (sd)
 
 
 
 
 
 
 
 
 
 
 
 691			sd->child = NULL;
 
 692	}
 693
 694	sched_domain_debug(sd, cpu);
 695
 696	rq_attach_root(rq, rd);
 697	tmp = rq->sd;
 698	rcu_assign_pointer(rq->sd, sd);
 699	dirty_sched_domain_sysctl(cpu);
 700	destroy_sched_domains(tmp);
 701
 702	update_top_cache_domain(cpu);
 703}
 704
 705struct s_data {
 706	struct sched_domain * __percpu *sd;
 707	struct root_domain	*rd;
 708};
 709
 710enum s_alloc {
 711	sa_rootdomain,
 712	sa_sd,
 713	sa_sd_storage,
 714	sa_none,
 715};
 716
 717/*
 718 * Return the canonical balance CPU for this group, this is the first CPU
 719 * of this group that's also in the balance mask.
 720 *
 721 * The balance mask are all those CPUs that could actually end up at this
 722 * group. See build_balance_mask().
 723 *
 724 * Also see should_we_balance().
 725 */
 726int group_balance_cpu(struct sched_group *sg)
 727{
 728	return cpumask_first(group_balance_mask(sg));
 729}
 730
 731
 732/*
 733 * NUMA topology (first read the regular topology blurb below)
 734 *
 735 * Given a node-distance table, for example:
 736 *
 737 *   node   0   1   2   3
 738 *     0:  10  20  30  20
 739 *     1:  20  10  20  30
 740 *     2:  30  20  10  20
 741 *     3:  20  30  20  10
 742 *
 743 * which represents a 4 node ring topology like:
 744 *
 745 *   0 ----- 1
 746 *   |       |
 747 *   |       |
 748 *   |       |
 749 *   3 ----- 2
 750 *
 751 * We want to construct domains and groups to represent this. The way we go
 752 * about doing this is to build the domains on 'hops'. For each NUMA level we
 753 * construct the mask of all nodes reachable in @level hops.
 754 *
 755 * For the above NUMA topology that gives 3 levels:
 756 *
 757 * NUMA-2	0-3		0-3		0-3		0-3
 758 *  groups:	{0-1,3},{1-3}	{0-2},{0,2-3}	{1-3},{0-1,3}	{0,2-3},{0-2}
 759 *
 760 * NUMA-1	0-1,3		0-2		1-3		0,2-3
 761 *  groups:	{0},{1},{3}	{0},{1},{2}	{1},{2},{3}	{0},{2},{3}
 762 *
 763 * NUMA-0	0		1		2		3
 764 *
 765 *
 766 * As can be seen; things don't nicely line up as with the regular topology.
 767 * When we iterate a domain in child domain chunks some nodes can be
 768 * represented multiple times -- hence the "overlap" naming for this part of
 769 * the topology.
 770 *
 771 * In order to minimize this overlap, we only build enough groups to cover the
 772 * domain. For instance Node-0 NUMA-2 would only get groups: 0-1,3 and 1-3.
 773 *
 774 * Because:
 775 *
 776 *  - the first group of each domain is its child domain; this
 777 *    gets us the first 0-1,3
 778 *  - the only uncovered node is 2, who's child domain is 1-3.
 779 *
 780 * However, because of the overlap, computing a unique CPU for each group is
 781 * more complicated. Consider for instance the groups of NODE-1 NUMA-2, both
 782 * groups include the CPUs of Node-0, while those CPUs would not in fact ever
 783 * end up at those groups (they would end up in group: 0-1,3).
 784 *
 785 * To correct this we have to introduce the group balance mask. This mask
 786 * will contain those CPUs in the group that can reach this group given the
 787 * (child) domain tree.
 788 *
 789 * With this we can once again compute balance_cpu and sched_group_capacity
 790 * relations.
 791 *
 792 * XXX include words on how balance_cpu is unique and therefore can be
 793 * used for sched_group_capacity links.
 794 *
 795 *
 796 * Another 'interesting' topology is:
 797 *
 798 *   node   0   1   2   3
 799 *     0:  10  20  20  30
 800 *     1:  20  10  20  20
 801 *     2:  20  20  10  20
 802 *     3:  30  20  20  10
 803 *
 804 * Which looks a little like:
 805 *
 806 *   0 ----- 1
 807 *   |     / |
 808 *   |   /   |
 809 *   | /     |
 810 *   2 ----- 3
 811 *
 812 * This topology is asymmetric, nodes 1,2 are fully connected, but nodes 0,3
 813 * are not.
 814 *
 815 * This leads to a few particularly weird cases where the sched_domain's are
 816 * not of the same number for each CPU. Consider:
 817 *
 818 * NUMA-2	0-3						0-3
 819 *  groups:	{0-2},{1-3}					{1-3},{0-2}
 820 *
 821 * NUMA-1	0-2		0-3		0-3		1-3
 822 *
 823 * NUMA-0	0		1		2		3
 824 *
 825 */
 826
 827
 828/*
 829 * Build the balance mask; it contains only those CPUs that can arrive at this
 830 * group and should be considered to continue balancing.
 831 *
 832 * We do this during the group creation pass, therefore the group information
 833 * isn't complete yet, however since each group represents a (child) domain we
 834 * can fully construct this using the sched_domain bits (which are already
 835 * complete).
 836 */
 837static void
 838build_balance_mask(struct sched_domain *sd, struct sched_group *sg, struct cpumask *mask)
 839{
 840	const struct cpumask *sg_span = sched_group_span(sg);
 841	struct sd_data *sdd = sd->private;
 842	struct sched_domain *sibling;
 843	int i;
 844
 845	cpumask_clear(mask);
 846
 847	for_each_cpu(i, sg_span) {
 848		sibling = *per_cpu_ptr(sdd->sd, i);
 849
 850		/*
 851		 * Can happen in the asymmetric case, where these siblings are
 852		 * unused. The mask will not be empty because those CPUs that
 853		 * do have the top domain _should_ span the domain.
 854		 */
 855		if (!sibling->child)
 856			continue;
 857
 858		/* If we would not end up here, we can't continue from here */
 859		if (!cpumask_equal(sg_span, sched_domain_span(sibling->child)))
 860			continue;
 861
 862		cpumask_set_cpu(i, mask);
 863	}
 864
 865	/* We must not have empty masks here */
 866	WARN_ON_ONCE(cpumask_empty(mask));
 867}
 868
 869/*
 870 * XXX: This creates per-node group entries; since the load-balancer will
 871 * immediately access remote memory to construct this group's load-balance
 872 * statistics having the groups node local is of dubious benefit.
 873 */
 874static struct sched_group *
 875build_group_from_child_sched_domain(struct sched_domain *sd, int cpu)
 876{
 877	struct sched_group *sg;
 878	struct cpumask *sg_span;
 879
 880	sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
 881			GFP_KERNEL, cpu_to_node(cpu));
 882
 883	if (!sg)
 884		return NULL;
 885
 886	sg_span = sched_group_span(sg);
 887	if (sd->child)
 888		cpumask_copy(sg_span, sched_domain_span(sd->child));
 889	else
 
 890		cpumask_copy(sg_span, sched_domain_span(sd));
 
 891
 892	atomic_inc(&sg->ref);
 893	return sg;
 894}
 895
 896static void init_overlap_sched_group(struct sched_domain *sd,
 897				     struct sched_group *sg)
 898{
 899	struct cpumask *mask = sched_domains_tmpmask2;
 900	struct sd_data *sdd = sd->private;
 901	struct cpumask *sg_span;
 902	int cpu;
 903
 904	build_balance_mask(sd, sg, mask);
 905	cpu = cpumask_first_and(sched_group_span(sg), mask);
 906
 907	sg->sgc = *per_cpu_ptr(sdd->sgc, cpu);
 908	if (atomic_inc_return(&sg->sgc->ref) == 1)
 909		cpumask_copy(group_balance_mask(sg), mask);
 910	else
 911		WARN_ON_ONCE(!cpumask_equal(group_balance_mask(sg), mask));
 912
 913	/*
 914	 * Initialize sgc->capacity such that even if we mess up the
 915	 * domains and no possible iteration will get us here, we won't
 916	 * die on a /0 trap.
 917	 */
 918	sg_span = sched_group_span(sg);
 919	sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span);
 920	sg->sgc->min_capacity = SCHED_CAPACITY_SCALE;
 921	sg->sgc->max_capacity = SCHED_CAPACITY_SCALE;
 922}
 923
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 924static int
 925build_overlap_sched_groups(struct sched_domain *sd, int cpu)
 926{
 927	struct sched_group *first = NULL, *last = NULL, *sg;
 928	const struct cpumask *span = sched_domain_span(sd);
 929	struct cpumask *covered = sched_domains_tmpmask;
 930	struct sd_data *sdd = sd->private;
 931	struct sched_domain *sibling;
 932	int i;
 933
 934	cpumask_clear(covered);
 935
 936	for_each_cpu_wrap(i, span, cpu) {
 937		struct cpumask *sg_span;
 938
 939		if (cpumask_test_cpu(i, covered))
 940			continue;
 941
 942		sibling = *per_cpu_ptr(sdd->sd, i);
 943
 944		/*
 945		 * Asymmetric node setups can result in situations where the
 946		 * domain tree is of unequal depth, make sure to skip domains
 947		 * that already cover the entire range.
 948		 *
 949		 * In that case build_sched_domains() will have terminated the
 950		 * iteration early and our sibling sd spans will be empty.
 951		 * Domains should always include the CPU they're built on, so
 952		 * check that.
 953		 */
 954		if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
 955			continue;
 956
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 957		sg = build_group_from_child_sched_domain(sibling, cpu);
 958		if (!sg)
 959			goto fail;
 960
 961		sg_span = sched_group_span(sg);
 962		cpumask_or(covered, covered, sg_span);
 963
 964		init_overlap_sched_group(sd, sg);
 965
 966		if (!first)
 967			first = sg;
 968		if (last)
 969			last->next = sg;
 970		last = sg;
 971		last->next = first;
 972	}
 973	sd->groups = first;
 974
 975	return 0;
 976
 977fail:
 978	free_sched_groups(first, 0);
 979
 980	return -ENOMEM;
 981}
 982
 983
 984/*
 985 * Package topology (also see the load-balance blurb in fair.c)
 986 *
 987 * The scheduler builds a tree structure to represent a number of important
 988 * topology features. By default (default_topology[]) these include:
 989 *
 990 *  - Simultaneous multithreading (SMT)
 991 *  - Multi-Core Cache (MC)
 992 *  - Package (DIE)
 993 *
 994 * Where the last one more or less denotes everything up to a NUMA node.
 995 *
 996 * The tree consists of 3 primary data structures:
 997 *
 998 *	sched_domain -> sched_group -> sched_group_capacity
 999 *	    ^ ^             ^ ^
1000 *          `-'             `-'
1001 *
1002 * The sched_domains are per-CPU and have a two way link (parent & child) and
1003 * denote the ever growing mask of CPUs belonging to that level of topology.
1004 *
1005 * Each sched_domain has a circular (double) linked list of sched_group's, each
1006 * denoting the domains of the level below (or individual CPUs in case of the
1007 * first domain level). The sched_group linked by a sched_domain includes the
1008 * CPU of that sched_domain [*].
1009 *
1010 * Take for instance a 2 threaded, 2 core, 2 cache cluster part:
1011 *
1012 * CPU   0   1   2   3   4   5   6   7
1013 *
1014 * DIE  [                             ]
1015 * MC   [             ] [             ]
1016 * SMT  [     ] [     ] [     ] [     ]
1017 *
1018 *  - or -
1019 *
1020 * DIE  0-7 0-7 0-7 0-7 0-7 0-7 0-7 0-7
1021 * MC	0-3 0-3 0-3 0-3 4-7 4-7 4-7 4-7
1022 * SMT  0-1 0-1 2-3 2-3 4-5 4-5 6-7 6-7
1023 *
1024 * CPU   0   1   2   3   4   5   6   7
1025 *
1026 * One way to think about it is: sched_domain moves you up and down among these
1027 * topology levels, while sched_group moves you sideways through it, at child
1028 * domain granularity.
1029 *
1030 * sched_group_capacity ensures each unique sched_group has shared storage.
1031 *
1032 * There are two related construction problems, both require a CPU that
1033 * uniquely identify each group (for a given domain):
1034 *
1035 *  - The first is the balance_cpu (see should_we_balance() and the
1036 *    load-balance blub in fair.c); for each group we only want 1 CPU to
1037 *    continue balancing at a higher domain.
1038 *
1039 *  - The second is the sched_group_capacity; we want all identical groups
1040 *    to share a single sched_group_capacity.
1041 *
1042 * Since these topologies are exclusive by construction. That is, its
1043 * impossible for an SMT thread to belong to multiple cores, and cores to
1044 * be part of multiple caches. There is a very clear and unique location
1045 * for each CPU in the hierarchy.
1046 *
1047 * Therefore computing a unique CPU for each group is trivial (the iteration
1048 * mask is redundant and set all 1s; all CPUs in a group will end up at _that_
1049 * group), we can simply pick the first CPU in each group.
1050 *
1051 *
1052 * [*] in other words, the first group of each domain is its child domain.
1053 */
1054
1055static struct sched_group *get_group(int cpu, struct sd_data *sdd)
1056{
1057	struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
1058	struct sched_domain *child = sd->child;
1059	struct sched_group *sg;
1060	bool already_visited;
1061
1062	if (child)
1063		cpu = cpumask_first(sched_domain_span(child));
1064
1065	sg = *per_cpu_ptr(sdd->sg, cpu);
1066	sg->sgc = *per_cpu_ptr(sdd->sgc, cpu);
1067
1068	/* Increase refcounts for claim_allocations: */
1069	already_visited = atomic_inc_return(&sg->ref) > 1;
1070	/* sgc visits should follow a similar trend as sg */
1071	WARN_ON(already_visited != (atomic_inc_return(&sg->sgc->ref) > 1));
1072
1073	/* If we have already visited that group, it's already initialized. */
1074	if (already_visited)
1075		return sg;
1076
1077	if (child) {
1078		cpumask_copy(sched_group_span(sg), sched_domain_span(child));
1079		cpumask_copy(group_balance_mask(sg), sched_group_span(sg));
 
1080	} else {
1081		cpumask_set_cpu(cpu, sched_group_span(sg));
1082		cpumask_set_cpu(cpu, group_balance_mask(sg));
1083	}
1084
1085	sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sched_group_span(sg));
1086	sg->sgc->min_capacity = SCHED_CAPACITY_SCALE;
1087	sg->sgc->max_capacity = SCHED_CAPACITY_SCALE;
1088
1089	return sg;
1090}
1091
1092/*
1093 * build_sched_groups will build a circular linked list of the groups
1094 * covered by the given span, will set each group's ->cpumask correctly,
1095 * and will initialize their ->sgc.
1096 *
1097 * Assumes the sched_domain tree is fully constructed
1098 */
1099static int
1100build_sched_groups(struct sched_domain *sd, int cpu)
1101{
1102	struct sched_group *first = NULL, *last = NULL;
1103	struct sd_data *sdd = sd->private;
1104	const struct cpumask *span = sched_domain_span(sd);
1105	struct cpumask *covered;
1106	int i;
1107
1108	lockdep_assert_held(&sched_domains_mutex);
1109	covered = sched_domains_tmpmask;
1110
1111	cpumask_clear(covered);
1112
1113	for_each_cpu_wrap(i, span, cpu) {
1114		struct sched_group *sg;
1115
1116		if (cpumask_test_cpu(i, covered))
1117			continue;
1118
1119		sg = get_group(i, sdd);
1120
1121		cpumask_or(covered, covered, sched_group_span(sg));
1122
1123		if (!first)
1124			first = sg;
1125		if (last)
1126			last->next = sg;
1127		last = sg;
1128	}
1129	last->next = first;
1130	sd->groups = first;
1131
1132	return 0;
1133}
1134
1135/*
1136 * Initialize sched groups cpu_capacity.
1137 *
1138 * cpu_capacity indicates the capacity of sched group, which is used while
1139 * distributing the load between different sched groups in a sched domain.
1140 * Typically cpu_capacity for all the groups in a sched domain will be same
1141 * unless there are asymmetries in the topology. If there are asymmetries,
1142 * group having more cpu_capacity will pickup more load compared to the
1143 * group having less cpu_capacity.
1144 */
1145static void init_sched_groups_capacity(int cpu, struct sched_domain *sd)
1146{
1147	struct sched_group *sg = sd->groups;
 
1148
1149	WARN_ON(!sg);
1150
1151	do {
1152		int cpu, max_cpu = -1;
1153
1154		sg->group_weight = cpumask_weight(sched_group_span(sg));
1155
 
 
 
 
 
 
 
 
 
1156		if (!(sd->flags & SD_ASYM_PACKING))
1157			goto next;
1158
1159		for_each_cpu(cpu, sched_group_span(sg)) {
1160			if (max_cpu < 0)
1161				max_cpu = cpu;
1162			else if (sched_asym_prefer(cpu, max_cpu))
1163				max_cpu = cpu;
1164		}
1165		sg->asym_prefer_cpu = max_cpu;
1166
1167next:
1168		sg = sg->next;
1169	} while (sg != sd->groups);
1170
1171	if (cpu != group_balance_cpu(sg))
1172		return;
1173
1174	update_group_capacity(sd, cpu);
1175}
1176
1177/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1178 * Initializers for schedule domains
1179 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
1180 */
1181
1182static int default_relax_domain_level = -1;
1183int sched_domain_level_max;
1184
1185static int __init setup_relax_domain_level(char *str)
1186{
1187	if (kstrtoint(str, 0, &default_relax_domain_level))
1188		pr_warn("Unable to set relax_domain_level\n");
1189
1190	return 1;
1191}
1192__setup("relax_domain_level=", setup_relax_domain_level);
1193
1194static void set_domain_attribute(struct sched_domain *sd,
1195				 struct sched_domain_attr *attr)
1196{
1197	int request;
1198
1199	if (!attr || attr->relax_domain_level < 0) {
1200		if (default_relax_domain_level < 0)
1201			return;
1202		request = default_relax_domain_level;
1203	} else
1204		request = attr->relax_domain_level;
1205
1206	if (sd->level > request) {
1207		/* Turn off idle balance on this domain: */
1208		sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1209	}
1210}
1211
1212static void __sdt_free(const struct cpumask *cpu_map);
1213static int __sdt_alloc(const struct cpumask *cpu_map);
1214
1215static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
1216				 const struct cpumask *cpu_map)
1217{
1218	switch (what) {
1219	case sa_rootdomain:
1220		if (!atomic_read(&d->rd->refcount))
1221			free_rootdomain(&d->rd->rcu);
1222		fallthrough;
1223	case sa_sd:
1224		free_percpu(d->sd);
1225		fallthrough;
1226	case sa_sd_storage:
1227		__sdt_free(cpu_map);
1228		fallthrough;
1229	case sa_none:
1230		break;
1231	}
1232}
1233
1234static enum s_alloc
1235__visit_domain_allocation_hell(struct s_data *d, const struct cpumask *cpu_map)
1236{
1237	memset(d, 0, sizeof(*d));
1238
1239	if (__sdt_alloc(cpu_map))
1240		return sa_sd_storage;
1241	d->sd = alloc_percpu(struct sched_domain *);
1242	if (!d->sd)
1243		return sa_sd_storage;
1244	d->rd = alloc_rootdomain();
1245	if (!d->rd)
1246		return sa_sd;
1247
1248	return sa_rootdomain;
1249}
1250
1251/*
1252 * NULL the sd_data elements we've used to build the sched_domain and
1253 * sched_group structure so that the subsequent __free_domain_allocs()
1254 * will not free the data we're using.
1255 */
1256static void claim_allocations(int cpu, struct sched_domain *sd)
1257{
1258	struct sd_data *sdd = sd->private;
1259
1260	WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
1261	*per_cpu_ptr(sdd->sd, cpu) = NULL;
1262
1263	if (atomic_read(&(*per_cpu_ptr(sdd->sds, cpu))->ref))
1264		*per_cpu_ptr(sdd->sds, cpu) = NULL;
1265
1266	if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
1267		*per_cpu_ptr(sdd->sg, cpu) = NULL;
1268
1269	if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref))
1270		*per_cpu_ptr(sdd->sgc, cpu) = NULL;
1271}
1272
1273#ifdef CONFIG_NUMA
1274enum numa_topology_type sched_numa_topology_type;
1275
1276static int			sched_domains_numa_levels;
1277static int			sched_domains_curr_level;
1278
1279int				sched_max_numa_distance;
1280static int			*sched_domains_numa_distance;
1281static struct cpumask		***sched_domains_numa_masks;
1282int __read_mostly		node_reclaim_distance = RECLAIM_DISTANCE;
1283#endif
1284
1285/*
1286 * SD_flags allowed in topology descriptions.
1287 *
1288 * These flags are purely descriptive of the topology and do not prescribe
1289 * behaviour. Behaviour is artificial and mapped in the below sd_init()
1290 * function:
1291 *
1292 *   SD_SHARE_CPUCAPACITY   - describes SMT topologies
1293 *   SD_SHARE_PKG_RESOURCES - describes shared caches
1294 *   SD_NUMA                - describes NUMA topologies
1295 *   SD_SHARE_POWERDOMAIN   - describes shared power domain
1296 *
1297 * Odd one out, which beside describing the topology has a quirk also
1298 * prescribes the desired behaviour that goes along with it:
1299 *
1300 *   SD_ASYM_PACKING        - describes SMT quirks
1301 */
1302#define TOPOLOGY_SD_FLAGS		\
1303	(SD_SHARE_CPUCAPACITY	|	\
1304	 SD_SHARE_PKG_RESOURCES |	\
 
1305	 SD_NUMA		|	\
1306	 SD_ASYM_PACKING	|	\
1307	 SD_SHARE_POWERDOMAIN)
1308
1309static struct sched_domain *
1310sd_init(struct sched_domain_topology_level *tl,
1311	const struct cpumask *cpu_map,
1312	struct sched_domain *child, int dflags, int cpu)
1313{
1314	struct sd_data *sdd = &tl->data;
1315	struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
1316	int sd_id, sd_weight, sd_flags = 0;
 
1317
1318#ifdef CONFIG_NUMA
1319	/*
1320	 * Ugly hack to pass state to sd_numa_mask()...
1321	 */
1322	sched_domains_curr_level = tl->numa_level;
1323#endif
1324
1325	sd_weight = cpumask_weight(tl->mask(cpu));
1326
1327	if (tl->sd_flags)
1328		sd_flags = (*tl->sd_flags)();
1329	if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS,
1330			"wrong sd_flags in topology description\n"))
1331		sd_flags &= TOPOLOGY_SD_FLAGS;
1332
1333	/* Apply detected topology flags */
1334	sd_flags |= dflags;
1335
1336	*sd = (struct sched_domain){
1337		.min_interval		= sd_weight,
1338		.max_interval		= 2*sd_weight,
1339		.busy_factor		= 32,
1340		.imbalance_pct		= 125,
1341
1342		.cache_nice_tries	= 0,
1343
1344		.flags			= 1*SD_BALANCE_NEWIDLE
1345					| 1*SD_BALANCE_EXEC
1346					| 1*SD_BALANCE_FORK
1347					| 0*SD_BALANCE_WAKE
1348					| 1*SD_WAKE_AFFINE
1349					| 0*SD_SHARE_CPUCAPACITY
1350					| 0*SD_SHARE_PKG_RESOURCES
1351					| 0*SD_SERIALIZE
1352					| 1*SD_PREFER_SIBLING
1353					| 0*SD_NUMA
1354					| sd_flags
1355					,
1356
1357		.last_balance		= jiffies,
1358		.balance_interval	= sd_weight,
1359		.max_newidle_lb_cost	= 0,
1360		.next_decay_max_lb_cost	= jiffies,
1361		.child			= child,
1362#ifdef CONFIG_SCHED_DEBUG
1363		.name			= tl->name,
1364#endif
1365	};
1366
1367	cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
1368	sd_id = cpumask_first(sched_domain_span(sd));
 
 
 
 
 
 
 
1369
1370	/*
1371	 * Convert topological properties into behaviour.
1372	 */
1373
1374	/* Don't attempt to spread across CPUs of different capacities. */
1375	if ((sd->flags & SD_ASYM_CPUCAPACITY) && sd->child)
1376		sd->child->flags &= ~SD_PREFER_SIBLING;
1377
1378	if (sd->flags & SD_SHARE_CPUCAPACITY) {
1379		sd->imbalance_pct = 110;
1380
1381	} else if (sd->flags & SD_SHARE_PKG_RESOURCES) {
1382		sd->imbalance_pct = 117;
1383		sd->cache_nice_tries = 1;
1384
1385#ifdef CONFIG_NUMA
1386	} else if (sd->flags & SD_NUMA) {
1387		sd->cache_nice_tries = 2;
1388
1389		sd->flags &= ~SD_PREFER_SIBLING;
1390		sd->flags |= SD_SERIALIZE;
1391		if (sched_domains_numa_distance[tl->numa_level] > node_reclaim_distance) {
1392			sd->flags &= ~(SD_BALANCE_EXEC |
1393				       SD_BALANCE_FORK |
1394				       SD_WAKE_AFFINE);
1395		}
1396
1397#endif
1398	} else {
1399		sd->cache_nice_tries = 1;
1400	}
1401
1402	/*
1403	 * For all levels sharing cache; connect a sched_domain_shared
1404	 * instance.
1405	 */
1406	if (sd->flags & SD_SHARE_PKG_RESOURCES) {
1407		sd->shared = *per_cpu_ptr(sdd->sds, sd_id);
1408		atomic_inc(&sd->shared->ref);
1409		atomic_set(&sd->shared->nr_busy_cpus, sd_weight);
1410	}
1411
1412	sd->private = sdd;
1413
1414	return sd;
1415}
1416
1417/*
1418 * Topology list, bottom-up.
1419 */
1420static struct sched_domain_topology_level default_topology[] = {
1421#ifdef CONFIG_SCHED_SMT
1422	{ cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
1423#endif
 
 
 
 
 
1424#ifdef CONFIG_SCHED_MC
1425	{ cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
1426#endif
1427	{ cpu_cpu_mask, SD_INIT_NAME(DIE) },
1428	{ NULL, },
1429};
1430
1431static struct sched_domain_topology_level *sched_domain_topology =
1432	default_topology;
 
1433
1434#define for_each_sd_topology(tl)			\
1435	for (tl = sched_domain_topology; tl->mask; tl++)
1436
1437void set_sched_topology(struct sched_domain_topology_level *tl)
1438{
1439	if (WARN_ON_ONCE(sched_smp_initialized))
1440		return;
1441
1442	sched_domain_topology = tl;
 
1443}
1444
1445#ifdef CONFIG_NUMA
1446
1447static const struct cpumask *sd_numa_mask(int cpu)
1448{
1449	return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
1450}
1451
1452static void sched_numa_warn(const char *str)
1453{
1454	static int done = false;
1455	int i,j;
1456
1457	if (done)
1458		return;
1459
1460	done = true;
1461
1462	printk(KERN_WARNING "ERROR: %s\n\n", str);
1463
1464	for (i = 0; i < nr_node_ids; i++) {
1465		printk(KERN_WARNING "  ");
1466		for (j = 0; j < nr_node_ids; j++)
1467			printk(KERN_CONT "%02d ", node_distance(i,j));
 
 
 
 
1468		printk(KERN_CONT "\n");
1469	}
1470	printk(KERN_WARNING "\n");
1471}
1472
1473bool find_numa_distance(int distance)
1474{
1475	int i;
 
1476
1477	if (distance == node_distance(0, 0))
1478		return true;
1479
 
 
 
 
1480	for (i = 0; i < sched_domains_numa_levels; i++) {
1481		if (sched_domains_numa_distance[i] == distance)
1482			return true;
 
 
1483	}
 
 
1484
1485	return false;
1486}
1487
 
 
 
 
 
 
1488/*
1489 * A system can have three types of NUMA topology:
1490 * NUMA_DIRECT: all nodes are directly connected, or not a NUMA system
1491 * NUMA_GLUELESS_MESH: some nodes reachable through intermediary nodes
1492 * NUMA_BACKPLANE: nodes can reach other nodes through a backplane
1493 *
1494 * The difference between a glueless mesh topology and a backplane
1495 * topology lies in whether communication between not directly
1496 * connected nodes goes through intermediary nodes (where programs
1497 * could run), or through backplane controllers. This affects
1498 * placement of programs.
1499 *
1500 * The type of topology can be discerned with the following tests:
1501 * - If the maximum distance between any nodes is 1 hop, the system
1502 *   is directly connected.
1503 * - If for two nodes A and B, located N > 1 hops away from each other,
1504 *   there is an intermediary node C, which is < N hops away from both
1505 *   nodes A and B, the system is a glueless mesh.
1506 */
1507static void init_numa_topology_type(void)
1508{
1509	int a, b, c, n;
1510
1511	n = sched_max_numa_distance;
1512
1513	if (sched_domains_numa_levels <= 2) {
1514		sched_numa_topology_type = NUMA_DIRECT;
1515		return;
1516	}
1517
1518	for_each_online_node(a) {
1519		for_each_online_node(b) {
1520			/* Find two nodes furthest removed from each other. */
1521			if (node_distance(a, b) < n)
1522				continue;
1523
1524			/* Is there an intermediary node between a and b? */
1525			for_each_online_node(c) {
1526				if (node_distance(a, c) < n &&
1527				    node_distance(b, c) < n) {
1528					sched_numa_topology_type =
1529							NUMA_GLUELESS_MESH;
1530					return;
1531				}
1532			}
1533
1534			sched_numa_topology_type = NUMA_BACKPLANE;
1535			return;
1536		}
1537	}
 
 
 
1538}
1539
1540void sched_init_numa(void)
 
 
 
1541{
1542	int next_distance, curr_distance = node_distance(0, 0);
1543	struct sched_domain_topology_level *tl;
1544	int level = 0;
1545	int i, j, k;
 
 
 
1546
1547	sched_domains_numa_distance = kzalloc(sizeof(int) * (nr_node_ids + 1), GFP_KERNEL);
1548	if (!sched_domains_numa_distance)
 
 
 
 
1549		return;
1550
1551	/* Includes NUMA identity node at level 0. */
1552	sched_domains_numa_distance[level++] = curr_distance;
1553	sched_domains_numa_levels = level;
 
 
 
 
 
 
 
1554
 
 
 
1555	/*
1556	 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
1557	 * unique distances in the node_distance() table.
1558	 *
1559	 * Assumes node_distance(0,j) includes all distances in
1560	 * node_distance(i,j) in order to avoid cubic time.
1561	 */
1562	next_distance = curr_distance;
1563	for (i = 0; i < nr_node_ids; i++) {
1564		for (j = 0; j < nr_node_ids; j++) {
1565			for (k = 0; k < nr_node_ids; k++) {
1566				int distance = node_distance(i, k);
1567
1568				if (distance > curr_distance &&
1569				    (distance < next_distance ||
1570				     next_distance == curr_distance))
1571					next_distance = distance;
 
1572
1573				/*
1574				 * While not a strong assumption it would be nice to know
1575				 * about cases where if node A is connected to B, B is not
1576				 * equally connected to A.
1577				 */
1578				if (sched_debug() && node_distance(k, i) != distance)
1579					sched_numa_warn("Node-distance not symmetric");
1580
1581				if (sched_debug() && i && !find_numa_distance(distance))
1582					sched_numa_warn("Node-0 not representative");
1583			}
1584			if (next_distance != curr_distance) {
1585				sched_domains_numa_distance[level++] = next_distance;
1586				sched_domains_numa_levels = level;
1587				curr_distance = next_distance;
1588			} else break;
1589		}
1590
1591		/*
1592		 * In case of sched_debug() we verify the above assumption.
1593		 */
1594		if (!sched_debug())
1595			break;
1596	}
1597
1598	/*
1599	 * 'level' contains the number of unique distances
1600	 *
1601	 * The sched_domains_numa_distance[] array includes the actual distance
1602	 * numbers.
1603	 */
1604
1605	/*
1606	 * Here, we should temporarily reset sched_domains_numa_levels to 0.
1607	 * If it fails to allocate memory for array sched_domains_numa_masks[][],
1608	 * the array will contain less then 'level' members. This could be
1609	 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
1610	 * in other functions.
1611	 *
1612	 * We reset it to 'level' at the end of this function.
1613	 */
1614	sched_domains_numa_levels = 0;
1615
1616	sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
1617	if (!sched_domains_numa_masks)
1618		return;
1619
1620	/*
1621	 * Now for each level, construct a mask per node which contains all
1622	 * CPUs of nodes that are that many hops away from us.
1623	 */
1624	for (i = 0; i < level; i++) {
1625		sched_domains_numa_masks[i] =
1626			kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
1627		if (!sched_domains_numa_masks[i])
1628			return;
1629
1630		for (j = 0; j < nr_node_ids; j++) {
1631			struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
 
 
1632			if (!mask)
1633				return;
1634
1635			sched_domains_numa_masks[i][j] = mask;
 
 
 
 
1636
1637			for_each_node(k) {
1638				if (node_distance(j, k) > sched_domains_numa_distance[i])
1639					continue;
1640
1641				cpumask_or(mask, mask, cpumask_of_node(k));
1642			}
1643		}
1644	}
 
1645
1646	/* Compute default topology size */
1647	for (i = 0; sched_domain_topology[i].mask; i++);
1648
1649	tl = kzalloc((i + level + 1) *
1650			sizeof(struct sched_domain_topology_level), GFP_KERNEL);
1651	if (!tl)
1652		return;
1653
1654	/*
1655	 * Copy the default topology bits..
1656	 */
1657	for (i = 0; sched_domain_topology[i].mask; i++)
1658		tl[i] = sched_domain_topology[i];
1659
1660	/*
1661	 * Add the NUMA identity distance, aka single NODE.
1662	 */
1663	tl[i++] = (struct sched_domain_topology_level){
1664		.mask = sd_numa_mask,
1665		.numa_level = 0,
1666		SD_INIT_NAME(NODE)
1667	};
1668
1669	/*
1670	 * .. and append 'j' levels of NUMA goodness.
1671	 */
1672	for (j = 1; j < level; i++, j++) {
1673		tl[i] = (struct sched_domain_topology_level){
1674			.mask = sd_numa_mask,
1675			.sd_flags = cpu_numa_flags,
1676			.flags = SDTL_OVERLAP,
1677			.numa_level = j,
1678			SD_INIT_NAME(NUMA)
1679		};
1680	}
1681
 
1682	sched_domain_topology = tl;
1683
1684	sched_domains_numa_levels = level;
1685	sched_max_numa_distance = sched_domains_numa_distance[level - 1];
1686
1687	init_numa_topology_type();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1688}
1689
1690void sched_domains_numa_masks_set(unsigned int cpu)
1691{
1692	int node = cpu_to_node(cpu);
1693	int i, j;
1694
1695	for (i = 0; i < sched_domains_numa_levels; i++) {
1696		for (j = 0; j < nr_node_ids; j++) {
 
 
 
 
1697			if (node_distance(j, node) <= sched_domains_numa_distance[i])
1698				cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
1699		}
1700	}
1701}
1702
1703void sched_domains_numa_masks_clear(unsigned int cpu)
1704{
1705	int i, j;
1706
1707	for (i = 0; i < sched_domains_numa_levels; i++) {
1708		for (j = 0; j < nr_node_ids; j++)
1709			cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
 
 
1710	}
1711}
1712
1713/*
1714 * sched_numa_find_closest() - given the NUMA topology, find the cpu
1715 *                             closest to @cpu from @cpumask.
1716 * cpumask: cpumask to find a cpu from
1717 * cpu: cpu to be close to
1718 *
1719 * returns: cpu, or nr_cpu_ids when nothing found.
1720 */
1721int sched_numa_find_closest(const struct cpumask *cpus, int cpu)
1722{
1723	int i, j = cpu_to_node(cpu);
 
1724
 
 
 
 
1725	for (i = 0; i < sched_domains_numa_levels; i++) {
1726		cpu = cpumask_any_and(cpus, sched_domains_numa_masks[i][j]);
1727		if (cpu < nr_cpu_ids)
1728			return cpu;
 
 
 
 
1729	}
1730	return nr_cpu_ids;
 
 
 
1731}
1732
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1733#endif /* CONFIG_NUMA */
1734
1735static int __sdt_alloc(const struct cpumask *cpu_map)
1736{
1737	struct sched_domain_topology_level *tl;
1738	int j;
1739
1740	for_each_sd_topology(tl) {
1741		struct sd_data *sdd = &tl->data;
1742
1743		sdd->sd = alloc_percpu(struct sched_domain *);
1744		if (!sdd->sd)
1745			return -ENOMEM;
1746
1747		sdd->sds = alloc_percpu(struct sched_domain_shared *);
1748		if (!sdd->sds)
1749			return -ENOMEM;
1750
1751		sdd->sg = alloc_percpu(struct sched_group *);
1752		if (!sdd->sg)
1753			return -ENOMEM;
1754
1755		sdd->sgc = alloc_percpu(struct sched_group_capacity *);
1756		if (!sdd->sgc)
1757			return -ENOMEM;
1758
1759		for_each_cpu(j, cpu_map) {
1760			struct sched_domain *sd;
1761			struct sched_domain_shared *sds;
1762			struct sched_group *sg;
1763			struct sched_group_capacity *sgc;
1764
1765			sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
1766					GFP_KERNEL, cpu_to_node(j));
1767			if (!sd)
1768				return -ENOMEM;
1769
1770			*per_cpu_ptr(sdd->sd, j) = sd;
1771
1772			sds = kzalloc_node(sizeof(struct sched_domain_shared),
1773					GFP_KERNEL, cpu_to_node(j));
1774			if (!sds)
1775				return -ENOMEM;
1776
1777			*per_cpu_ptr(sdd->sds, j) = sds;
1778
1779			sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
1780					GFP_KERNEL, cpu_to_node(j));
1781			if (!sg)
1782				return -ENOMEM;
1783
1784			sg->next = sg;
1785
1786			*per_cpu_ptr(sdd->sg, j) = sg;
1787
1788			sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(),
1789					GFP_KERNEL, cpu_to_node(j));
1790			if (!sgc)
1791				return -ENOMEM;
1792
1793#ifdef CONFIG_SCHED_DEBUG
1794			sgc->id = j;
1795#endif
1796
1797			*per_cpu_ptr(sdd->sgc, j) = sgc;
1798		}
1799	}
1800
1801	return 0;
1802}
1803
1804static void __sdt_free(const struct cpumask *cpu_map)
1805{
1806	struct sched_domain_topology_level *tl;
1807	int j;
1808
1809	for_each_sd_topology(tl) {
1810		struct sd_data *sdd = &tl->data;
1811
1812		for_each_cpu(j, cpu_map) {
1813			struct sched_domain *sd;
1814
1815			if (sdd->sd) {
1816				sd = *per_cpu_ptr(sdd->sd, j);
1817				if (sd && (sd->flags & SD_OVERLAP))
1818					free_sched_groups(sd->groups, 0);
1819				kfree(*per_cpu_ptr(sdd->sd, j));
1820			}
1821
1822			if (sdd->sds)
1823				kfree(*per_cpu_ptr(sdd->sds, j));
1824			if (sdd->sg)
1825				kfree(*per_cpu_ptr(sdd->sg, j));
1826			if (sdd->sgc)
1827				kfree(*per_cpu_ptr(sdd->sgc, j));
1828		}
1829		free_percpu(sdd->sd);
1830		sdd->sd = NULL;
1831		free_percpu(sdd->sds);
1832		sdd->sds = NULL;
1833		free_percpu(sdd->sg);
1834		sdd->sg = NULL;
1835		free_percpu(sdd->sgc);
1836		sdd->sgc = NULL;
1837	}
1838}
1839
1840static struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
1841		const struct cpumask *cpu_map, struct sched_domain_attr *attr,
1842		struct sched_domain *child, int dflags, int cpu)
1843{
1844	struct sched_domain *sd = sd_init(tl, cpu_map, child, dflags, cpu);
1845
1846	if (child) {
1847		sd->level = child->level + 1;
1848		sched_domain_level_max = max(sched_domain_level_max, sd->level);
1849		child->parent = sd;
1850
1851		if (!cpumask_subset(sched_domain_span(child),
1852				    sched_domain_span(sd))) {
1853			pr_err("BUG: arch topology borken\n");
1854#ifdef CONFIG_SCHED_DEBUG
1855			pr_err("     the %s domain not a subset of the %s domain\n",
1856					child->name, sd->name);
1857#endif
1858			/* Fixup, ensure @sd has at least @child CPUs. */
1859			cpumask_or(sched_domain_span(sd),
1860				   sched_domain_span(sd),
1861				   sched_domain_span(child));
1862		}
1863
1864	}
1865	set_domain_attribute(sd, attr);
1866
1867	return sd;
1868}
1869
1870/*
1871 * Ensure topology masks are sane, i.e. there are no conflicts (overlaps) for
1872 * any two given CPUs at this (non-NUMA) topology level.
1873 */
1874static bool topology_span_sane(struct sched_domain_topology_level *tl,
1875			      const struct cpumask *cpu_map, int cpu)
1876{
1877	int i;
1878
1879	/* NUMA levels are allowed to overlap */
1880	if (tl->flags & SDTL_OVERLAP)
1881		return true;
1882
1883	/*
1884	 * Non-NUMA levels cannot partially overlap - they must be either
1885	 * completely equal or completely disjoint. Otherwise we can end up
1886	 * breaking the sched_group lists - i.e. a later get_group() pass
1887	 * breaks the linking done for an earlier span.
1888	 */
1889	for_each_cpu(i, cpu_map) {
1890		if (i == cpu)
1891			continue;
1892		/*
1893		 * We should 'and' all those masks with 'cpu_map' to exactly
1894		 * match the topology we're about to build, but that can only
1895		 * remove CPUs, which only lessens our ability to detect
1896		 * overlaps
1897		 */
1898		if (!cpumask_equal(tl->mask(cpu), tl->mask(i)) &&
1899		    cpumask_intersects(tl->mask(cpu), tl->mask(i)))
1900			return false;
1901	}
1902
1903	return true;
1904}
1905
1906/*
1907 * Find the sched_domain_topology_level where all CPU capacities are visible
1908 * for all CPUs.
1909 */
1910static struct sched_domain_topology_level
1911*asym_cpu_capacity_level(const struct cpumask *cpu_map)
1912{
1913	int i, j, asym_level = 0;
1914	bool asym = false;
1915	struct sched_domain_topology_level *tl, *asym_tl = NULL;
1916	unsigned long cap;
1917
1918	/* Is there any asymmetry? */
1919	cap = arch_scale_cpu_capacity(cpumask_first(cpu_map));
1920
1921	for_each_cpu(i, cpu_map) {
1922		if (arch_scale_cpu_capacity(i) != cap) {
1923			asym = true;
1924			break;
1925		}
1926	}
1927
1928	if (!asym)
1929		return NULL;
1930
1931	/*
1932	 * Examine topology from all CPU's point of views to detect the lowest
1933	 * sched_domain_topology_level where a highest capacity CPU is visible
1934	 * to everyone.
1935	 */
1936	for_each_cpu(i, cpu_map) {
1937		unsigned long max_capacity = arch_scale_cpu_capacity(i);
1938		int tl_id = 0;
1939
1940		for_each_sd_topology(tl) {
1941			if (tl_id < asym_level)
1942				goto next_level;
1943
1944			for_each_cpu_and(j, tl->mask(i), cpu_map) {
1945				unsigned long capacity;
1946
1947				capacity = arch_scale_cpu_capacity(j);
1948
1949				if (capacity <= max_capacity)
1950					continue;
1951
1952				max_capacity = capacity;
1953				asym_level = tl_id;
1954				asym_tl = tl;
1955			}
1956next_level:
1957			tl_id++;
1958		}
1959	}
1960
1961	return asym_tl;
1962}
1963
1964
1965/*
1966 * Build sched domains for a given set of CPUs and attach the sched domains
1967 * to the individual CPUs
1968 */
1969static int
1970build_sched_domains(const struct cpumask *cpu_map, struct sched_domain_attr *attr)
1971{
1972	enum s_alloc alloc_state = sa_none;
1973	struct sched_domain *sd;
1974	struct s_data d;
1975	struct rq *rq = NULL;
1976	int i, ret = -ENOMEM;
1977	struct sched_domain_topology_level *tl_asym;
1978	bool has_asym = false;
 
1979
1980	if (WARN_ON(cpumask_empty(cpu_map)))
1981		goto error;
1982
1983	alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
1984	if (alloc_state != sa_rootdomain)
1985		goto error;
1986
1987	tl_asym = asym_cpu_capacity_level(cpu_map);
1988
1989	/* Set up domains for CPUs specified by the cpu_map: */
1990	for_each_cpu(i, cpu_map) {
1991		struct sched_domain_topology_level *tl;
1992
1993		sd = NULL;
1994		for_each_sd_topology(tl) {
1995			int dflags = 0;
1996
1997			if (tl == tl_asym) {
1998				dflags |= SD_ASYM_CPUCAPACITY;
1999				has_asym = true;
2000			}
2001
2002			if (WARN_ON(!topology_span_sane(tl, cpu_map, i)))
2003				goto error;
2004
2005			sd = build_sched_domain(tl, cpu_map, attr, sd, dflags, i);
 
 
2006
2007			if (tl == sched_domain_topology)
2008				*per_cpu_ptr(d.sd, i) = sd;
2009			if (tl->flags & SDTL_OVERLAP)
2010				sd->flags |= SD_OVERLAP;
2011			if (cpumask_equal(cpu_map, sched_domain_span(sd)))
2012				break;
2013		}
2014	}
2015
2016	/* Build the groups for the domains */
2017	for_each_cpu(i, cpu_map) {
2018		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
2019			sd->span_weight = cpumask_weight(sched_domain_span(sd));
2020			if (sd->flags & SD_OVERLAP) {
2021				if (build_overlap_sched_groups(sd, i))
2022					goto error;
2023			} else {
2024				if (build_sched_groups(sd, i))
2025					goto error;
2026			}
2027		}
2028	}
2029
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2030	/* Calculate CPU capacity for physical packages and nodes */
2031	for (i = nr_cpumask_bits-1; i >= 0; i--) {
2032		if (!cpumask_test_cpu(i, cpu_map))
2033			continue;
2034
2035		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
2036			claim_allocations(i, sd);
2037			init_sched_groups_capacity(i, sd);
2038		}
2039	}
2040
2041	/* Attach the domains */
2042	rcu_read_lock();
2043	for_each_cpu(i, cpu_map) {
2044		rq = cpu_rq(i);
2045		sd = *per_cpu_ptr(d.sd, i);
2046
2047		/* Use READ_ONCE()/WRITE_ONCE() to avoid load/store tearing: */
2048		if (rq->cpu_capacity_orig > READ_ONCE(d.rd->max_cpu_capacity))
2049			WRITE_ONCE(d.rd->max_cpu_capacity, rq->cpu_capacity_orig);
2050
2051		cpu_attach_domain(sd, d.rd, i);
 
2052	}
2053	rcu_read_unlock();
2054
2055	if (has_asym)
2056		static_branch_inc_cpuslocked(&sched_asym_cpucapacity);
2057
2058	if (rq && sched_debug_enabled) {
2059		pr_info("root domain span: %*pbl (max cpu_capacity = %lu)\n",
2060			cpumask_pr_args(cpu_map), rq->rd->max_cpu_capacity);
2061	}
 
2062
2063	ret = 0;
2064error:
2065	__free_domain_allocs(&d, alloc_state, cpu_map);
2066
2067	return ret;
2068}
2069
2070/* Current sched domains: */
2071static cpumask_var_t			*doms_cur;
2072
2073/* Number of sched domains in 'doms_cur': */
2074static int				ndoms_cur;
2075
2076/* Attribues of custom domains in 'doms_cur' */
2077static struct sched_domain_attr		*dattr_cur;
2078
2079/*
2080 * Special case: If a kmalloc() of a doms_cur partition (array of
2081 * cpumask) fails, then fallback to a single sched domain,
2082 * as determined by the single cpumask fallback_doms.
2083 */
2084static cpumask_var_t			fallback_doms;
2085
2086/*
2087 * arch_update_cpu_topology lets virtualized architectures update the
2088 * CPU core maps. It is supposed to return 1 if the topology changed
2089 * or 0 if it stayed the same.
2090 */
2091int __weak arch_update_cpu_topology(void)
2092{
2093	return 0;
2094}
2095
2096cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
2097{
2098	int i;
2099	cpumask_var_t *doms;
2100
2101	doms = kmalloc_array(ndoms, sizeof(*doms), GFP_KERNEL);
2102	if (!doms)
2103		return NULL;
2104	for (i = 0; i < ndoms; i++) {
2105		if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
2106			free_sched_domains(doms, i);
2107			return NULL;
2108		}
2109	}
2110	return doms;
2111}
2112
2113void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
2114{
2115	unsigned int i;
2116	for (i = 0; i < ndoms; i++)
2117		free_cpumask_var(doms[i]);
2118	kfree(doms);
2119}
2120
2121/*
2122 * Set up scheduler domains and groups.  For now this just excludes isolated
2123 * CPUs, but could be used to exclude other special cases in the future.
2124 */
2125int sched_init_domains(const struct cpumask *cpu_map)
2126{
2127	int err;
2128
2129	zalloc_cpumask_var(&sched_domains_tmpmask, GFP_KERNEL);
2130	zalloc_cpumask_var(&sched_domains_tmpmask2, GFP_KERNEL);
2131	zalloc_cpumask_var(&fallback_doms, GFP_KERNEL);
2132
2133	arch_update_cpu_topology();
 
2134	ndoms_cur = 1;
2135	doms_cur = alloc_sched_domains(ndoms_cur);
2136	if (!doms_cur)
2137		doms_cur = &fallback_doms;
2138	cpumask_and(doms_cur[0], cpu_map, housekeeping_cpumask(HK_FLAG_DOMAIN));
2139	err = build_sched_domains(doms_cur[0], NULL);
2140	register_sched_domain_sysctl();
2141
2142	return err;
2143}
2144
2145/*
2146 * Detach sched domains from a group of CPUs specified in cpu_map
2147 * These CPUs will now be attached to the NULL domain
2148 */
2149static void detach_destroy_domains(const struct cpumask *cpu_map)
2150{
2151	unsigned int cpu = cpumask_any(cpu_map);
2152	int i;
2153
2154	if (rcu_access_pointer(per_cpu(sd_asym_cpucapacity, cpu)))
2155		static_branch_dec_cpuslocked(&sched_asym_cpucapacity);
2156
 
 
 
2157	rcu_read_lock();
2158	for_each_cpu(i, cpu_map)
2159		cpu_attach_domain(NULL, &def_root_domain, i);
2160	rcu_read_unlock();
2161}
2162
2163/* handle null as "default" */
2164static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
2165			struct sched_domain_attr *new, int idx_new)
2166{
2167	struct sched_domain_attr tmp;
2168
2169	/* Fast path: */
2170	if (!new && !cur)
2171		return 1;
2172
2173	tmp = SD_ATTR_INIT;
2174
2175	return !memcmp(cur ? (cur + idx_cur) : &tmp,
2176			new ? (new + idx_new) : &tmp,
2177			sizeof(struct sched_domain_attr));
2178}
2179
2180/*
2181 * Partition sched domains as specified by the 'ndoms_new'
2182 * cpumasks in the array doms_new[] of cpumasks. This compares
2183 * doms_new[] to the current sched domain partitioning, doms_cur[].
2184 * It destroys each deleted domain and builds each new domain.
2185 *
2186 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
2187 * The masks don't intersect (don't overlap.) We should setup one
2188 * sched domain for each mask. CPUs not in any of the cpumasks will
2189 * not be load balanced. If the same cpumask appears both in the
2190 * current 'doms_cur' domains and in the new 'doms_new', we can leave
2191 * it as it is.
2192 *
2193 * The passed in 'doms_new' should be allocated using
2194 * alloc_sched_domains.  This routine takes ownership of it and will
2195 * free_sched_domains it when done with it. If the caller failed the
2196 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
2197 * and partition_sched_domains() will fallback to the single partition
2198 * 'fallback_doms', it also forces the domains to be rebuilt.
2199 *
2200 * If doms_new == NULL it will be replaced with cpu_online_mask.
2201 * ndoms_new == 0 is a special case for destroying existing domains,
2202 * and it will not create the default domain.
2203 *
2204 * Call with hotplug lock and sched_domains_mutex held
2205 */
2206void partition_sched_domains_locked(int ndoms_new, cpumask_var_t doms_new[],
2207				    struct sched_domain_attr *dattr_new)
2208{
2209	bool __maybe_unused has_eas = false;
2210	int i, j, n;
2211	int new_topology;
2212
2213	lockdep_assert_held(&sched_domains_mutex);
2214
2215	/* Always unregister in case we don't destroy any domains: */
2216	unregister_sched_domain_sysctl();
2217
2218	/* Let the architecture update CPU core mappings: */
2219	new_topology = arch_update_cpu_topology();
 
 
 
2220
2221	if (!doms_new) {
2222		WARN_ON_ONCE(dattr_new);
2223		n = 0;
2224		doms_new = alloc_sched_domains(1);
2225		if (doms_new) {
2226			n = 1;
2227			cpumask_and(doms_new[0], cpu_active_mask,
2228				    housekeeping_cpumask(HK_FLAG_DOMAIN));
2229		}
2230	} else {
2231		n = ndoms_new;
2232	}
2233
2234	/* Destroy deleted domains: */
2235	for (i = 0; i < ndoms_cur; i++) {
2236		for (j = 0; j < n && !new_topology; j++) {
2237			if (cpumask_equal(doms_cur[i], doms_new[j]) &&
2238			    dattrs_equal(dattr_cur, i, dattr_new, j)) {
2239				struct root_domain *rd;
2240
2241				/*
2242				 * This domain won't be destroyed and as such
2243				 * its dl_bw->total_bw needs to be cleared.  It
2244				 * will be recomputed in function
2245				 * update_tasks_root_domain().
2246				 */
2247				rd = cpu_rq(cpumask_any(doms_cur[i]))->rd;
2248				dl_clear_root_domain(rd);
2249				goto match1;
2250			}
2251		}
2252		/* No match - a current sched domain not in new doms_new[] */
2253		detach_destroy_domains(doms_cur[i]);
2254match1:
2255		;
2256	}
2257
2258	n = ndoms_cur;
2259	if (!doms_new) {
2260		n = 0;
2261		doms_new = &fallback_doms;
2262		cpumask_and(doms_new[0], cpu_active_mask,
2263			    housekeeping_cpumask(HK_FLAG_DOMAIN));
2264	}
2265
2266	/* Build new domains: */
2267	for (i = 0; i < ndoms_new; i++) {
2268		for (j = 0; j < n && !new_topology; j++) {
2269			if (cpumask_equal(doms_new[i], doms_cur[j]) &&
2270			    dattrs_equal(dattr_new, i, dattr_cur, j))
2271				goto match2;
2272		}
2273		/* No match - add a new doms_new */
2274		build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
2275match2:
2276		;
2277	}
2278
2279#if defined(CONFIG_ENERGY_MODEL) && defined(CONFIG_CPU_FREQ_GOV_SCHEDUTIL)
2280	/* Build perf. domains: */
2281	for (i = 0; i < ndoms_new; i++) {
2282		for (j = 0; j < n && !sched_energy_update; j++) {
2283			if (cpumask_equal(doms_new[i], doms_cur[j]) &&
2284			    cpu_rq(cpumask_first(doms_cur[j]))->rd->pd) {
2285				has_eas = true;
2286				goto match3;
2287			}
2288		}
2289		/* No match - add perf. domains for a new rd */
2290		has_eas |= build_perf_domains(doms_new[i]);
2291match3:
2292		;
2293	}
2294	sched_energy_set(has_eas);
2295#endif
2296
2297	/* Remember the new sched domains: */
2298	if (doms_cur != &fallback_doms)
2299		free_sched_domains(doms_cur, ndoms_cur);
2300
2301	kfree(dattr_cur);
2302	doms_cur = doms_new;
2303	dattr_cur = dattr_new;
2304	ndoms_cur = ndoms_new;
2305
2306	register_sched_domain_sysctl();
2307}
2308
2309/*
2310 * Call with hotplug lock held
2311 */
2312void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
2313			     struct sched_domain_attr *dattr_new)
2314{
2315	mutex_lock(&sched_domains_mutex);
2316	partition_sched_domains_locked(ndoms_new, doms_new, dattr_new);
2317	mutex_unlock(&sched_domains_mutex);
2318}